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Introduction

The construction of fixpoints is a common tool in mathematics to justify inductive and coinductive definitions [16].
Among the most common examples are inductively and coinductively defined sets, and recursively defined functions.

In order theory, the Knaster-Tarski Lemma [16] is one of the main tools to define least and greatest fixpoints
for monotone functions. Together with the Knaster-Tarski Lemma, there are also iterative approaches for building
least and greatest fixpoints, under suitable conditions on the monotone function [16].

It is well-known that many iterative approaches for building fixpoints can be generalized into category-theoretic
constructions [8]. These generalizations roughly use the following “translation table”:

Order Theory Category Theory
Ordered set Category
A ≤ B Morphism: f : A→ B

Bottom element Initial object
Top element Final object

Monotone function Functor
Increasing sequence Chain
Decreasing sequence Cochain

Supremum of increasing sequence Colimit of chain
Infimum of decreasing sequence Limit of cochain

Prefixpoint Algebra
Postfixpoint Coalgebra

Least fixpoint Initial algebra
Greatest fixpoint Final coalgebra

Table 1: Concept translation from Order Theory to Category Theory

The categorical generalization has the advantage of building not only the objects serving as least and greatest
fixpoints (i.e. an initial algebra and a final coalgebra), but also the principles for constructing morphisms (or
functions) out of the initial algebra and into the final coalgebra. These principles are usually called recursion and
corecursion principles [17].

Although the literature focuses on carrying out these generalizations into category theory, it is interesting to see
how these constructions can be expressed in alternative formalisms, like type theory.

A further motivation is that we are usually interested in “effectively constructing” fixpoints (i.e. how to obtain
the fixpoint through an algorithm). Type theories are well-suited for this kind of “constructive thinking”.

Type theory started as a mechanism for avoiding paradoxes in set theory, and quickly evolved into a formalism
that is powerful enough to express logics, and as a consequence, mathematical theories (see Section 1.1 for more
details).

Homotopy Type Theory is a recent upshot of this evolving nature of type theory. This recently developed type
theory embodies a very expressive constructive logic. Also, it is currently proposed as a foundation for mathematics,
as an alternative to Zermelo-Fraenkel Set Theory [20].

Set theory axiomatizes the undefined notion of collection, while type theory focuses on formalizing the unde-
fined notion of type. The meaning of types has changed since their invention. Initially, types were classification
mechanisms for avoiding paradoxes and excluding unwanted expressions. For example, stating that a function f
can be applied on natural numbers excludes expressions like f(f), where f is applied on itself. In other words, any

vii



viii INTRODUCTION

input to f must have the type of natural numbers, or equivalently, any input to f must be classified as a natural
number.

In a later development, baptized as the Curry-Howard correspondence [18], types were interpreted as logical
propositions, opening the door for type theories to encode logics [13]. More recently, Homotopy Type Theory added
another interpretation: types are a special kind of topological spaces [20]. The interpretation provided by Homotopy
Type Theory even subsumes the logical interpretation as a special case.

A common feature on a type theory (and Homotopy Type Theory is not the exception) is that it introduces
inference rules, which express how types can be formed, how expressions can be constructed and assigned a type,
and how expressions can be simplified (or how computation is performed on expressions).

Among the many kinds of types that a type theory can define, we will be interested on those called inductive
types and coinductive types (see Sections 1.9 and 1.10).

An inductive type captures the idea that all its expressions can be built from the “bottom up”, by iteratively
applying constructors. For example, to define the type of natural numbers (seen as an inductive type), we state
that the symbol 0 is a natural number (i.e. the symbol 0 acts as a base constructor), then we state that if n is
a previously constructed natural number, the expression S(n) is also a natural number (i.e. the symbol S acts
as a recursively defined constructor).1 Hence, any natural number can be constructed by repeatedly applying the
constructor S on the base constructor 0.

Dually, a coinductive type captures the idea that its expressions can be “decomposed” into an observation part
and a next state part. Coinductive types use destructors to decompose expressions, while inductive types use
constructors to build up expressions. For example, the coinductive type of infinite lists over natural numbers (also
called streams), can be defined by two destructors. The first destructor, denoted by the expression head(s), extracts
the first element of stream s (in other words, the symbol head is the destructor producing the current available
observation in s). The second destructor, denoted by the expression tail(s), removes the first element from stream
s (in other words, the symbol tail is the destructor producing the next state of s, so that this next state is ready
to be decomposed again).

In type theory, there are many alternative ways to define (co)inductive types. One of them consists on using
initial algebras and final coalgebras (see [20] and [4]). Initial algebras encode inductive types and final coalgebras
encode coinductive types. This claim will me made precise in Sections 1.9 and 1.10.

Therefore, it is very important to investigate the construction of initial algebras and final coalgebras. The liter-
ature usually focus on iterative approaches. These approaches construct initial and final coalgebras by computing
colimits of chains and limits of cochains, see [8] and [1].

The iterative approaches are categorical generalizations (through the “translation table” above) of well-known
order-theoretic techniques, which obtain least and greatest fixpoints by computing the least upper bound of increas-
ing sequences and the greatest lower bound of decreasing sequences, see [16].

Hence, if iterative approaches can be generalized, a natural question arises: Is the Knaster-Tarski Lemma (which
is an order-theoretic result) susceptible to generalization into the language of algebras and coalgebras? Of course,
instead of working in Category Theory, we want to develop our results in Homotopy Type Theory.

We can now state the main goal of this document.

We will experiment with the question (and explore some of its consequences) of whether or not initial algebras
and final coalgebras can be constructed in Homotopy Type Theory by directly translating the proof of the
Knaster-Tarski Lemma into the language of algebras and coalgebras.

We will show that the main consequence of such experiment is that the constructed (co)algebras fail to be
initial/final only by a universe level. These structures will be called lower level initial algebras and lower level final
coalgebras.

Lower level initial/final (co)algebras are interesting, because we will show that any endofunctor has a lower
level initial algebra, and any set-preserving2 endofunctor has a lower level final coalgebra. To understand why this
claim is interesting, just consider that there are set-preserving endofunctors without initial/final (co)algebras (see
Sections 3.2.3 and 3.3.3).

In spite of the universe level restriction, lower level initial/final (co)algebras are still useful, because they have
(co)iteration principles that allow the definition of unique functions by (co)recursive equations.

1In standard mathematics, another clause must be added expressing that 0 and S are the only ways in which natural numbers can
be constructed. In type theory this clause is omitted, because it is captured by “elimination rules”, see Section 1.5.

2Preservation of sets is made precise in Section 1.9.
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Another consequence is the generality of the results, as endofunctors only need to preserve sets. To the contrary,
iterative approaches impose stronger conditions (for example, endofunctors need to preserve colimits of chains and
limits of cochains [1]).

In addition to the main results, this report provides two detailed examples on how lower level initial/final
(co)algebras are used: the natural numbers seen as a lower level initial algebra, and the streams seen as a lower
level final coalgebra.

A secondary goal of this document is to provide more evidence that Homotopy Type Theory is a very powerful
formalism for doing mathematics.

Also, the reader will notice that almost all proofs on this report have a lot of detail, even to a level that a
mathematician might deem unnecessary. The author made the decision of including very detailed proofs because
Homotopy Type Theory is a very recent and relatively unknown formalism, and the only way to build intuition
when learning a new formalism is to actually carry out all the details.

On this document we are working within the framework of computer formalized mathematics [22]. As such,
another advantage of having detailed proofs is that they can be checked in interactive proof assistants, like Coq
[24]. For example, the contents of Chapters 2 and 3 were computer-checked in Coq. See [26] for details on how to
download the coq script file containing the results on this document.

We make a final point regarding notation. On this report, it will be common to switch between standard
mathematics and Homotopy Type Theory, specially when doing comparisons between formalizations of a particular
concept. To differentiate between the two formalisms, we will use the following typographical conventions.

When an expression is written in standard mathematics, we will use italic font:

a, b, c, W, X, A, f

When an expression is written in Homotopy Type Theory, we will use sans serif font:

a, b, c, W, X, A, f

This document is structured as follows:

• Chapter 1 provides a minimal presentation of Homotopy Type Theory. It introduces just the amount of
material to be able to prove the results on Chapters 2 and 3.

The chapter also defines the important concepts of functor, algebra, coalgebra, algebra and coalgebra mor-
phism, initial algebra, final coalgebra, inductive type and coinductive type (see Sections 1.9 and 1.10).

• Chapter 2 formalizes in Homotopy Type Theory all the basic concepts found in order theory, like partially
ordered set, monotone function, complete lattice, infimum, supremum, least and greatest fixpoint.

It also provides a proof in Homotopy Type Theory of the Knaster-Tarski Lemma. The proof of this lemma
provides the construction to be generalized in Chapter 3.

The chapter also constructs induction and coinduction principles as corollaries to the Knaster-Tarski Lemma.

• Chapter 3 contains the main results on this report.

Section 3.1 provides an introduction to the iterative approach for building initial/final (co)algebras, as usually
found in the literature.

Sections 3.2 and 3.3 carry out the generalization of the the Knaster-Tarski construction for inductive and
coinductive types, respectively.

These sections prove the existence theorems for lower level initial/final (co)algebras. They also provide an
example of a set-preserving endofunctor having a lower level initial/final (co)algebra but not an initial/final
(co)algebra.

In addition, these sections show detailed examples on how lower level initial/final (co)algebras are used. They
also discuss limitations on the experiment.

• Chapter 4 summarizes the experiment findings and provides a list of questions for future work.
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Chapter 1

Homotopy Type Theory (HoTT)

This chapter provides a self-contained presentation for Homotopy Type Theory (HoTT). It is based on the HoTT
book [20]. However, it will present only the minimal amount of results that are required for the developments on
Chapters 2 and 3.

As such, it should not be taken as a full exposition of HoTT, as there are amazing applications that the author
had to leave out. Nevertheless, all basic types and axioms found on the standard presentation are included, so that
one can start formalizing mathematics, as Chapters 2 and 3 will show. The reader is invited to have a look at the
HoTT book [20] for an extended presentation.

This chapter is structured as follows:

• Section 1.1 provides a short historical account for type theory, and a motivation for the concept of type.

• Section 1.2 presents the syntax and basic concepts required for carrying out formal proofs in HoTT.

• Section 1.3 introduces type universes and contexts.

• Section 1.4 lists structural rules required in formal proofs.

• Section 1.5 introduces all HoTT standard types, together with inference rules for reasoning with them.

• Section 1.6 lists some basic results and introduces the important concepts of equivalence and type equivalence.
Also, the function extensionality axiom and the univalence axiom are introduced.

• Section 1.7 provides an informal account of the homotopy (or topological) interpretation for HoTT.

• Section 1.8 introduces the concepts of contractible type, proposition, and set, together with some of their
properties. This section also introduces the propositional resizing axiom.

• Section 1.9 presents the important concept of inductive type, which is formalized through the concept of initial
algebra. This section also presents the important notions of functor and algebra morphism.

• Section 1.10 presents the important concept of coinductive type, which is formalized through the concept of
final coalgebra. This section also presents the important notion of coalgebra morphism.

• Section 1.11 introduces the concept of higher inductive type (HIT), together with some HITs that will be
required on later chapters.

1.1 Background on type theory

A detailed historical account for type theory can be found in [13]. This section only provides a very short summary.
The origins of type theory can be traced back to Bertrand Russell’s ramified theory of types as a way to solve

set-theoretic paradoxes at the time.

1



2 CHAPTER 1. HOMOTOPY TYPE THEORY (HOTT)

The need to simplify Russell’s ramified theory of types, prompted Frank Ramsey to introduce his simple theory
of types. This type theory influenced the development of the simply typed λ-calculus, due to Alonzo Church, which
introduced the concept of function as a primitive concept.

The next development occurred with the discovery of the Curry-Howard correspondence or propositions-as-
types correspondence [18], which was independently discovered by many people (Heyting, Kolmogorov, Curry, Feys,
Howard). The Curry-Howard correspondence arose as the realization that types can be interpreted as propositions
in a logic, and terms in the type theory as proofs for propositions. For example, a proof in propositional logic for
the implication p→ q can be interpreted as a typed function in the simply typed λ-calculus.

The Curry-Howard correspondence opened up the unification between logic and type theory, which meant that
a type theory could also be used as a logic.

In the light of the Curry-Howard correspondence, Martin Löf developed the now called Martin Löf ’s Type
Theory, which extends the simply typed λ-calculus with type universes, identity types, and dependent types. In
this type theory, dependent types correspond to logical quantifiers in first-order intuitionistic logic.

Homotopy Type Theory is a recent development. It is Martin Löf’s Type Theory extended with the univalence
axiom (see Section 1.6.2) and higher inductive types (see Section 1.11). The beginnings of HoTT can be traced
back to the discovery that Martin-Löf’s Type Theory has a topological model ([23] and [21]). In the topological
model, types are spaces and proofs for identities are paths in spaces. The univalence axiom was later discovered by
Voevodsky [14].

The fact that type theories can be used as a logic made possible the development of proof assistants for the
formalization of mathematics. For example, the contents of Chapters 2 and 3 were formalized in the Coq proof
assistant [24].1 Also, many of the results on the current chapter are formalized in the HoTT Coq library [25].

The key concept in a type theory is that of type. What is a type? The answer to this question has evolved since
types were invented.

One way to look at a type is that it is a syntactical classification mechanism for removing unwanted expressions
in a formal language. For example, if we have a function f from natural numbers to natural numbers, then it is
an invalid operation to apply this function on rationals, or on matrices, or on itself, etc. The type of the input
classifies the expressions that can be given as input to f . This is the way in which types are commonly used in
programming languages.

Another way to look at types is that they are propositions, due to the Curry-Howard correspondence [18]. Even
another way to look at types is that they are sets, where all expressions having the type denote elements in the
set. Hence, by mixing the logical interpretation with the set interpretation, a type can also be seen as the set of all
proofs of the proposition it denotes.

HoTT introduces even another interpretation: types are spaces [20]. This interpretation has the advantage
of clarifying the meaning of many expressions in type theory, specially the behavior of identity types. Also,
this interpretation made possible the discovery of the univalence axiom. It even subsumes the set and logical
interpretations as special cases (sets and propositions can be represented as a special kind of spaces, see Section
1.8). With all these advantages, HoTT becomes a suitable alternative for the foundations of mathematics.

The following sections are devoted to provide a self-contained presentation of HoTT.

1.2 Syntax, judgments, and derivation trees

First, we define the syntax for HoTT. We assume the existence of a countably infinite set of variables VAR. We will
denote variables by letters v,w, y, z, or numerated letters (for example w1,w2, y5, . . .), or longer names if necessary.

There will be two syntactical classes2 in our type theory: syntactical terms and syntactical contexts.

Definition 1.2.1. The set of syntactical terms T ERM (or S-terms for short) is inductively defined by the following
clauses:

• Every variable in VAR is an S-term.

• If i ≥ 0 is a natural number, then the symbol Ui is an S-term called a type universe at level i.

• If v is a variable, and T,R are S-terms, then (
∏

v:T R) is an S-term called the dependent function type.

1For details on how to download the Coq script file for Chapters 2 and 3, see [26].
2For the time being, the elements on these syntactical classes should be interpreted as symbols.
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• If v is a variable, and T, τ are S-terms, then (λv :T. τ) is an S-term called a lambda expression.

• If τ and ν are S-terms, then (τ ν) is an S-term called function application or just application.

• If v is a variable, and T,R are S-terms, then (
∑

v:T R) is an S-term called the dependent pair type.

• If τ and ν are S-terms, then (τ, ν) is an S-term called a tuple or a pair.

• If v, w, y are variables, and C, τ , ν are S-terms, then (indΣ[v.C](w.y.τ ; ν)) is an S-term called the Σ-eliminator.

• If T and R are S-terms, then (T + R) is an S-term called the sum type.

• If τ is an S-term, then (inl τ) and (inr τ) are S-terms called left injection and right injection, respectively.

• If v, w, y are variables, and C, τ , ν, α are S-terms, then (ind+[v.C](w.τ ; y.ν; α)) is an S-term called the
+-eliminator.

• The symbol 0 is an S-term called the empty type.

• If v is a variable, and C, τ are S-terms, then (ind0[v.C](τ)) is an S-term called the 0-eliminator.

• The symbol 1 is an S-term called the unit type.

• The symbol ? is an S-term called the unit term.

• If v is a variable, and C, τ , ν are S-terms, then (ind1[v.C](τ ; ν)) is an S-term called the 1-eliminator.

• The symbol N is an S-term called the natural numbers type.

• The symbol 0 is an S-term called the zero.

• If τ is an S-term, then (succ τ) is an S-term called the successor of τ .

• If v, w, y are variables, and C, τ , ν, α are S-terms, then (indN[v.C](τ ; w.y.ν; α)) is an S-term called the
N-eliminator.

• If τ , ν, and T are S-terms, then (τ =T ν) is an S-term called the identity type.

• If T and τ are S-terms, then (reflT τ) is an S-term called the reflexivity proof for τ .

• If v, w, y, z are variables, and C, τ , ν, α, β are S-terms, then (ind=[v.w.y.C](z.τ ; ν; α; β)) is an S-term called
the =-eliminator.

• If τ and ν are S-terms, then (funext τ ν) is an S-term called the function extensionality proof.

• If T and R are S-terms, then (univalence T R) is an S-term called the univalence proof.

• The symbol propres is an S-term called the propositional resizing proof.

N

For example, valid S-terms are (even if some of these S-terms are “nonsensical”):

• (N, ?)

• (λv : (0 + (0 =1 N)). (inl v))

• (? =N 0)

• (
∏

v:U1 ((succ N) =w1 v))

As these examples show, writing an S-term involves the use of lots of parentheses. As we proceed, many
conventions will be added so that we will be able to remove unnecessary parentheses. For example, the S-term
((λn :N. (succ n)) (succ 0)) will be written as (λn :N. succ n) (succ 0) once the appropriate conventions are intro-
duced.

We present our first convention.
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Convention 1.2.2. Given an S-term τ , we will omit the most external parentheses in τ , as long as τ is not a tuple.
However, external parentheses will be used for emphasis or when there is ambiguity.

For example, (
∏

v:U1 (N =w1 v)) can be written as
∏

v:U1 (N =w1 v), but the tuple (N, ?) will be written as such.
N

Our second syntactical class corresponds to the set of syntactical contexts, which we inductively define as follows.

Definition 1.2.3. The set of syntactical contexts CNT X (or S-contexts for short) is defined inductively by the
following clauses:

• The symbol � is an S-context called the empty context.

• If Γ is an S-context, v a variable, and T an S-term, then (Γ, v : T) is an S-context.

N

An example of S-context is:
(((�, v1 : N), z : 0), v1 : z =1 v1)

To simplify this ugly expression, we introduce another convention.

Convention 1.2.4. In an S-context, the empty context and parentheses will be removed, so that an S-context like:

(. . . (((�, v1 : T1), v2 : T2), v3 : T3), . . .)

can be written as:
v1 : T1, v2 : T2, v3 : T3, . . .

N

So, our example above can be rewritten as:

v1 : N, z : 0, v1 : z =1 v1

The two syntactical classes (T ERM and CNT X ) come together into the concept of judgment. A judgment will
capture the idea of “well-formedness” or “meaningfulness”. HoTT uses three kinds of judgments, which we define
next.

Definition 1.2.5. A judgment is any one of the following three kinds of sequences of symbols:

• If Γ is an S-context, then:
Γ ctx

is a context judgment.

• If Γ is an S-context, τ is an S-term, and T is an S-term, then:

Γ ` τ : T

is a typing judgment.

• If Γ is an S-context, τ is an S-term, ν is an S-term, and T is an S-term, then:

Γ ` τ ≡ ν : T

is a definitional equality judgment.

N

Convention 1.2.6. For typing and definitional equality judgments, we write ` τ : T and ` τ ≡ ν : T, instead of
� ` τ : T and � ` τ ≡ ν : T, respectively.

N
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Informally speaking, a context judgment Γ ctx will express that Γ “makes sense”, it is “meaningful”, or “well-
formed”. Intuitively, a meaningful S-context will represent a list of assumptions. For example:

w : A, y : B, z : C

will read as: “Let us suppose we have three terms,3 which we name by variables w, y, and z. These terms have
types4 A, B, and C, respectively”. We will explain shortly how the judgment Γ ctx makes precise this idea.

Similarly, a typing judgment Γ ` τ : T will express that under the list of assumptions in Γ, term τ can be assigned
type T, or that τ is well-typed, or “makes sense”. Again, we will explain shortly how this idea of meaningfulness is
made precise.

However, it is useful to try to think of Γ ` τ : T as saying that term τ is a T, or that τ gets classified as a T, or
that τ belongs to T, if we imagine type T to be some sort of collection. In fact, at this moment in the development
of our type theory, it is harmless to think that types are collections classifying terms. Later, when our type theory
is more developed, we will have to change this view of “type = collection” into a view where types have more
structure than just a mere collection of terms.5

There is even another interpretation for Γ ` τ : T due to the Curry-Howard correspondence [18]. A reader
familiar with formal logic may have noticed the striking resemblance between typing judgments Γ ` τ : T and
sequents Γ ` T, which are used in formal logic to state that under the assumptions in Γ, formula or proposition T
has a proof. The Curry-Howard correspondence expresses that types correspond to propositions.

In formal logic, the notion of proof is meta-theoretical (i.e. it is a notion built outside the inference rules of the
logical calculus), but type theory introduces an internal notion of proof, effectively expressing that terms correspond
to proofs of propositions.

In this way, judgment Γ ` τ : T now reads: “Under the list of assumptions in Γ, term τ is a proof for proposition
T”. This is why it is said that type theory is proof-relevant, because it has a built-in notion of proof, contrary to
standard formal logic, where the notion of proof is external.

Finally, a definitional equality judgment Γ ` τ ≡ ν : T will express that under the list of assumptions in Γ, term
τ can be simplified/expanded or computes “by definition” to term ν, while respecting their common type T. Hence,
definitional equality judgments introduce a notion of valid or meaningful computation into the type theory.

But how can a judgment capture the idea of “meaningfulness” if there is nothing so far forbidding us from
constructing a nonsensical judgment? For example, we can form the judgment ` N : N, which expresses that the
collection of natural numbers is a natural number. The notion of inference rule will solve this problem.

The general form of an inference rule can be described as follows:

J1 J1 J2 . . . Jn
C

NAME

where J1, J1, J2, . . ., Jn, and C are judgments of any of the three kinds in Definition 1.2.5, and NAME is an
identifier we assign to the inference rule. The judgments J1, J1, J2, . . ., Jn are called premises, and the judgment
C is called the conclusion. Notice that n may be zero, corresponding to an inference rule without premises.

The premises correspond to conditions that must be satisfied in order to derive the conclusion. This means that
inference rules without premises allow the derivation of C, because there are no conditions to satisfy.

For example, let us say we want to represent natural numbers as S-terms. We know the zero symbol 0 is a
natural number. Therefore, we add the rule:

` 0 : N
R-0

so that we will be able to derive the judgment ` 0 : N, because the rule has no premises.
But v : N ` 0 : N should also be a derivable judgment, since 0 is still a natural number independently of what

list of assumptions we place in our S-context to the left of the turnstile ` symbol. However, R-0 concludes that 0
is a natural number only when the list of assumptions is empty. In fact, Γ ` 0 : N should be a derivable judgment

3We have not defined what a term is, but think of it as a “well-formed” S-term (see Definition 1.2.7).
4Again, we have not defined what a type is, but think of it as a “well-formed” S-term that represents a collection of terms that “look

alike”. In our example, w : A means that w is an arbitrary term in the collection A. In this sense, types will be a kind of classification
mechanism for terms. See Section 1.3 for a formal definition of type.

5In Section 1.7 we will see that a type is like a topological space.
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for any S-context Γ. If we attempt to fix our rule R-0 to include this possibility, we soon realize we need to add
one inference rule for every possible S-context!

This is fixed by using a schema. A schema is an inference rule with placeholders. If we replace a placeholder
with a specific symbol, it will produce an instance of the schema or an instantiated inference rule. In this way, a
schema can encode an infinite number of inference rules in a compact way.

In our example, we change our rule R-0 into the schema:

Γ ` 0 : N
R-0

by stipulating that Γ stands for any S-context (we were lazy and assigned the same name R-0 to our schema).
Following this strategy, we can add another schema expressing how the successor of a natural number can be

constructed:
Γ ` n : N

Γ ` succ n : N
R-succ

by stipulating that Γ stands for any S-context, and n stands for any S-term.
One possible instance of R-succ is the inference rule:

` N : N

` succ N : N

This instantiated inference rule seems to suggest that the nonsensical judgment ` succ N : N will be derivable.
But this is not the case. To derive ` succ N : N, we first have to derive the premise ` N : N, which is impossible,
since it does not fit the conclusion of neither of the rules R-succ nor R-0 under any instance of Γ and n. In fact,
it should not be hard to convince ourselves that the only judgments that can be derived by using rules R-0 and
R-succ, are judgments of the form:

Γ ` succ (succ (. . . (succ 0) . . .)) : N

where symbol succ is applied a finite number of times (even zero times) to the symbol 0.
In other words, if R-succ and R-0 are the only inference rules in our type theory, then the only meaningful

S-terms (or the only ones that “make sense”) are (succ (succ (. . . (succ 0) . . .))). Any other combination of S-terms
will be nonsensical, according to this limited type theory.

Hence, inference rules encode a notion of how we can construct evidence of “meaningfulness”,6 while a judgment
is a claim of “meaningfulness”. Only those judgments derivable by inference rules will have their claim confirmed.
Therefore, the only judgments we will consider to be valid are precisely the ones that can be derived by inference
rules.

We have talked informally about derivations, but derivations can be organized graphically into derivation trees.
This concept is better explained with an example.

Let us suppose we want to derive the judgment ` succ (succ (succ 0)) : N in the type theory with rules R-0 and
R-succ above. Then, by pasting the conclusions of one instantiated inference rule after another, we have the tree
(which is degenerated into one branch):

` 0 : N
R-0

` succ 0 : N
R-succ

` succ (succ 0) : N
R-succ

` succ (succ (succ 0)) : N
R-succ

where the judgment we wanted to derive is at the root of the tree (i.e. the conclusion at the bottom).
Therefore, instantiated inference rules can be pasted together to produce derivation trees:

J1
A-1

J2
A-2

J3
R-2

J4
A-3

J5
R-1

6Of course, this is at the level of syntax, but we will see that at the level of semantics inference rules can encode many different
concepts.
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Intuitively, a derivation tree is a proof for the judgment at the root of the tree (J5 in the example).
It would be overkill to prove all theorems on this report by using derivation trees, since derivation trees tend

to obfuscate the proof with irrelevant technicalities that do not add anything to its understanding. Therefore, we
need a way to build judgment proofs in natural language, as it is done in standard mathematical practice. For
judgments of the form Γ ctx this will be developed in Section 1.3. For judgments of the form Γ ` τ ≡ ν : T this will
be developed in Section 1.4. For judgments of the form Γ ` τ : T this will be developed starting on Section 1.5.

Before ending this section, we define some terminology we will keep using on this report.

Definition 1.2.7. We define a list of concepts involving derivation of judgments:

• We will say that a judgment J is derivable or provable if there is a derivation tree with J as its root.

• We will say that an S-context Γ is a context or a meaningful S-context, if the judgment Γ ctx is derivable.

• Given an S-context Γ, we will say that an S-term τ is a term or a meaningful S-term, if there is an S-term T
such that the judgment Γ ` τ : T is derivable.

N

The rest of this chapter will be focused on adding inference rules, so that we can encode a notion of meaningfulness
or “makes sense” for S-contexts, S-terms, and computational steps in our type theory.

1.3 Type universes and contexts

By Definition 1.2.1, for every natural number i ≥ 0 there is a symbol Ui in T ERM called a type universe at level i.
At this moment, it is useful to think of a type universe as a “collection of types”. In other words, given an

S-context Γ, if we can derive the judgment Γ ` τ : Ui for some i ≥ 0 and S-term τ , then τ is a type itself, since the
intuitive meaning of Γ ` τ : Ui is that τ belongs to Ui . This intuition is formalized in the following definition.

Definition 1.3.1. Given an S-context Γ, we will say that an S-term T is a type, if there is some natural number
i ≥ 0 such that the judgment Γ ` T : Ui is derivable.

N

We make some important comments regarding this definition.

Remark 1.3.2. In Section 1.2, we explained that the meaning of judgment Γ ` τ : T is: “τ has type T”. However,
Definition 1.3.1 does not allow calling T a type unless we can derive the judgment Γ ` T : Ui for some i ≥ 0.

This is not a problem, because HoTT has the following property:7 “If judgment Γ ` τ : T is derivable, then
judgment Γ ` T : Ui is also derivable for some i ≥ 0”. Therefore, whenever we have a derivation for the judgment
Γ ` τ : T, we are justified in calling T a type.

The same will happen to judgments of the form Γ ` τ ≡ ν : T, i.e. HoTT has the following property: “If
Γ ` τ ≡ ν : T is derivable, then Γ ` T : Ui is derivable for some i ≥ 0”.

We have a similar behavior for judgments of the form Γ ctx, i.e. “If Γ ctx is derivable, then, for each assumption
w : T in Γ, we have that Γ ` T : Ui is derivable for some i ≥ 0”. Hence, for each of the assumptions w : T in Γ, we
are justified in calling T a type.

N

We now introduce more terminology regarding types.

Definition 1.3.3. We define a list of concepts involving types:

• Given an S-context Γ and a type T, we will say that T is inhabited if there is an S-term τ such that the
judgment Γ ` τ : T is derivable.

Under the Curry-Howard correspondence, the statement “T is inhabited” corresponds to the statement “propo-
sition T has a proof”.

7Although we will not prove this property, it can be carried out by structural induction on derivation trees once all inference rules
are presented.
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• Given an S-context Γ and S-terms τ and T, we will say that τ : T is well-typed if the judgment Γ ` τ : T is
derivable.

N

Before introducing inference rules for type universes, we state a convention for introducing inference rules and
schemas on this chapter.

Convention 1.3.4. We will introduce schemas (inference rules) by using the following pattern:

• “Schema name in natural language” (“placeholders organized into syntactical classes”):

J1 J1 J2 . . . Jn {S1} . . . {Sm}
C

IDENTIFIER

After the schema name, we will indicate in parentheses the symbols acting as placeholders and to which syntac-
tical class they belong.

Here, J1, . . ., Jn, C are judgments (n may be zero), and S1, . . ., Sm are side conditions (m may be zero). A side
condition will be a syntactical requirement any instance of the schema must satisfy. Side conditions will always be
written inside braces { } and they will never be written in derivation trees.

N

Using this convention, type universes are subject to the following schemas.

• Universe introduction (S-context: Γ):
Γ ctx

Γ ` Ui : Ui+1

U-INTRO

Informal reading. Under any context Γ, a type universe at level i is a type at level i+ 1.

In informal proofs we will say: “By the universe introduction rule, we know Ui : Ui+1”, where context Γ will
be left implicit, as it is usually done in standard mathematical practice.

• Cumulative universe (S-context: Γ; S-term: A):

Γ ` A : Ui
Γ ` A : Ui+1

U-CUMUL

Informal reading. If A is a type at level i, then A is also a type at level i+ 1.

In other words, a type universe includes all types belonging to universes below it, so that we can imagine type
universes to be organized into some kind of containment hierarchy (if we imagine them as collections):

U0 ⊆ U1 ⊆ U2 ⊆ . . . ⊆ Ui ⊆ . . .

In informal proofs we will say: “Since we know A : Ui , we will have A : Ui+1 by the cumulative universe rule”,
where context Γ is left implicit again.

This containment hierarchy is necessary, because having a type theory with a “universe of all types” U together
with a rule stating that U is a type itself (i.e. an inference rule with conclusion U : U), produces an inconsistent
type theory (see [15]).

Remark 1.3.5. Notice that the cumulative universe rule does not include the judgment Γ ctx as one of its premises.
This is due to a property of HoTT, which states: “If Γ ` t : T is derivable, then Γ ctx is also derivable”.

In other words, we cannot derive a typing judgment without constructing a well-formed context in the first
place. Hence, the premise Γ ctx is unnecessary in the cumulative universe rule, because the condition Γ ` A : Ui is
already stated.

A similar property holds for definitional equality judgments, i.e. if Γ ` t ≡ r : T is derivable, then Γ ctx is also
derivable.

Therefore, from now on, the condition Γ ctx will be omitted as long as there is a judgment of the form Γ ` t : T
or Γ ` t ≡ r : T as one of the premises in the inference rule.

N
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Inference rules for deriving context judgments can now be stated.

• Empty context:

� ctx
CTX-EMP

Informal reading. The S-context � is always a context.

To properly state the next rule, we need to define the notion of “domain of an S-context”, which can be informally
described as the set of all declared variables in the S-context.

Definition 1.3.6 (Assumptions and domain of an S-context). Given an S-context Γ, we define its set of assumptions,
denoted assum(Γ), by structural recursion on Γ as:

assum(�) = ∅
assum( (Γ, x : T) ) = assum(Γ) ∪ {(x,T)}

Also, given an S-context, we define its domain, denoted dom(Γ), to be the set:

dom(Γ) = {w ∈ VAR | (w,T) ∈ assum(Γ)}

i.e. dom(Γ) is the set of all variables declared in the assumptions of Γ.
N

We can now state the inference rule.

• Context extension (S-context: Γ; S-term: A; Variable: w):

Γ ` A : Ui {w /∈ dom(Γ)}
Γ,w : A ctx

CTX-EXT

Informal reading. If under context Γ we can construct type A, then augmenting Γ with the assumption w : A
forms a context again (or a valid list of assumptions), as long as w is a new variable (i.e. a variable not listed
in Γ).

For example, judgment (w : U0 , y : U1 ) ctx is derivable by the following derivation tree:

� ctx
CTX-EMP

` U0 : U1
U-INTRO

(w : U0 ) ctx
CTX-EXT

w : U0 ` U1 : U2
U-INTRO

(w : U0 , y : U1 ) ctx
CTX-EXT

Instead of using derivation trees to prove context judgments, we will use informal reasoning as follows. Let us
suppose we want to prove the context judgment:

(x1 : T1, x2 : T2, . . . , xn−1 : Tn−1, xn : Tn) ctx

We ask: Can we prove that T1 is a type from no assumptions at all? If the answer is yes, then the assumption
x1 : T1 gets justified (by implicit application of the CTX-EXT rule).

Now, we ask: Can we prove that T2 is a type under the assumption x1 : T1? If the answer is yes, then the
assumption x2 : T2 gets justified (of course, we need to verify that variable x2 is different from x1).

Hence, the general step is: Can we prove that Tj is a type under the assumptions x1 : T1, . . ., xj−1 : Tj−1? If the
answer is yes, then the assumption xj : Tj gets justified, as long as variable xj is different from each one of x1, . . . , xj−1.

This process stops until xn : Tn gets justified.

By using this informal procedure, we can prove that judgment (w : U0 , y : U1 ) ctx is derivable as follows.
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Under no assumptions, by the universe introduction rule, we know U0 : U1 . Therefore, we can make the assump-
tion w : U0 . Now, knowing assumption w : U0 , by the universe introduction rule we know U1 : U2 .8 Therefore, we
can make the assumption y : U1 . This proves that judgment (w : U0 , y : U1 ) ctx is derivable.

Checking that an S-context is well-formed is so straightforward that most of the time we will omit the proof,
unless there is some assumption xj : Tj for which it is not obvious that Tj is a type. On those rare cases, we will
have to provide a proof that Tj is a type.

1.4 Structural rules

Let us suppose we want to prove that judgment (A : U0 , w : A) ctx is derivable (here, A is a variable).
If we proceed informally, we say: “Under no assumptions, by the universe introduction rule we know U0 : U1 .

Therefore, we can make the assumption A : U0 . Now, given assumption A : U0 , we can conclude A : U0 since it is an
assumption we already had (in other words, we concluded that A is a type). Therefore, we can add the assumption
w : A. This proves that (A : U0 , w : A) ctx is derivable.”

However, this informal “proof” is wrong. The problem is at step: “Now, given assumption A : U0 , we can
conclude A : U0 since it is an assumption we already had”. There is no inference rule allowing the conclusion of an
assumption!

In fact, if we attempt to build a derivation tree for (A : U0 , w : A) ctx, we will get stuck:

� ctx
CTX-EMP

` U0 : U1
U-INTRO

(A : U0 ) ctx
CTX-EXT

A : U0 ` A : U0
(????)

(A : U0 , w : A) ctx
CTX-EXT

where (????) is a nonexistent rule allowing the conclusion A : U0 ` A : U0 from (A : U0 ) ctx.
We will call this desired rule the “variable rule” (in logic, this rule is usually called the “assumption rule”).

• Variable (S-context: Γ; S-term: T; Variable: w):

Γ ctx {(w,T) ∈ assum(Γ)}
Γ ` w : T

VBLE

Informal reading. Under any context Γ, we can always conclude an assumption w : T that is already in context
Γ.

With this rule, the informal proof we did above for (A : U0 , w : A) ctx becomes a correct proof. This example
also shows that the variable rule is never explicitly used in informal proofs.

The next rule states that known facts remain true even when we augment our assumptions.

• Weakening (S-context: Γ, ∆; S-term: τ , T):

∆ ctx Γ ` τ : T {assum(Γ) ⊆ assum(∆)}
∆ ` τ : T

WEAK

Informal reading. If under some context Γ we are able to prove that τ has type T, then this fact will still hold
if we add more assumptions to context Γ.

In informal arguments, the weakening rule is used when proving subproofs or claims inside other proofs. For
example, let us suppose we are in the middle of a proof (under some assumptions Γ) where we were able to prove
τ : T as some intermediate step. Now, let us suppose we want to prove a claim inside our proof. Normally, we

8Notice that U1 : U2 is true even without the assumption w : U0 . We say that assumption w : U0 is irrelevant for concluding that U1
is a type.
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would start the proof of the claim by stating some hypotheses. These extra hypotheses will implicitly add more
assumptions into Γ, since the assumptions we made for the “external” proof are still in place. However, while
proving the claim, we want to be able to use the result τ : T which was proved before starting the claim. The
weakening rule will allow the use of τ : T inside the proof of our claim, since τ : T will still hold under the extended
list of assumptions.

Hence, the weakening rule will never be explicitly stated in informal proofs, as it captures the intuitive idea that
proved statements remain true even if we start a subproof or a claim.

Now, it is time to add rules involving definitional equality judgments (i.e. judgments of the form Γ ` τ ≡ ν : T).
These rules will capture our intuition that ≡ (definitional equality) behaves like identity in standard mathematics,
i.e. if Γ ` τ ≡ ν : T is derivable, then we should be able to freely replace τ anywhere for term ν, and vice versa.
Also, ≡ will capture the idea that τ simplifies/expands by definition into ν, or that τ and ν are interchangeable.

The first three rules express that definitional equality is an equivalence relation on terms.

• Reflexivity of ≡ (S-context: Γ; S-term: τ , T):

Γ ` τ : T

Γ ` τ ≡ τ : T
REFL

Informal reading. If we can construct a term τ , then τ simplifies/expands to τ .

• Symmetry of ≡ (S-context: Γ; S-term: τ , ν, T):

Γ ` τ ≡ ν : T

Γ ` ν ≡ τ : T
SYM

Informal reading. If term τ simplifies/expands to ν, then ν simplifies/expands to τ .

• Transitivity of ≡ (S-context: Γ; S-term: τ , ν, ρ, T):

Γ ` τ ≡ ν : T Γ ` ν ≡ ρ : T

Γ ` τ ≡ ρ : T
TRAN

Informal reading. If term τ is interchangeable with ν and term ν is interchangeable with ρ, then τ is inter-
changeable with ρ.

The next two rules express that this equivalence relation is respected by typing.

• Type interchangeability 1 (S-context: Γ; S-term: τ , T, R):

Γ ` T ≡ R : Ui Γ ` τ : T

Γ ` τ : R
T-EQUIV-1

Informal reading. If types T and R are interchangeable, then any term τ with type T can also be considered
to have type R.

• Type interchangeability 2 (S-context: Γ; S-term: τ , ν, T, R):

Γ ` T ≡ R : Ui Γ ` τ ≡ ν : T

Γ ` τ ≡ ν : R
T-EQUIV-2

Informal reading. If types T and R are interchangeable, then any two interchangeable terms τ and ν of type
T can also be considered to have type R.

We also have weakening for definitional equality judgments, which captures the same idea as weakening for
typing judgments (i.e. the WEAK rule).
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• Weakening for ≡ (S-context: Γ, ∆; S-term: τ , ν, T):

∆ ctx Γ ` τ ≡ ν : T {assum(Γ) ⊆ assum(∆)}
∆ ` τ ≡ ν : T

WEAK-EQUIV

Informal reading. If under some context Γ we are able to prove that τ is interchangeable with ν, then this
fact will still hold if we add more assumptions to context Γ.

In informal proofs, all the previous rules for definitional equality are used without explicit mention. For example,
suppose we have the following derivation tree, where (∗) indicates omitted parts of the derivation:

(∗)
Γ ` t1 ≡ t2 : T

(∗)
Γ ` t2 ≡ t3 : T

(∗)
Γ ` t3 ≡ t4 : T

Γ ` t2 ≡ t4 : T
TRAN

Γ ` t1 ≡ t4 : T
TRAN

In an informal proof, this derivation tree is translated to a sequence of equalities:

t1 ≡ t2 ≡ t3 ≡ t4 (1.1)

without explicit mention to the transitivity rule. The justification of each equality is usually omitted unless it is
not obvious. A similar remark applies to the reflexivity and symmetry rules.

Also, notice that neither the context nor the type of terms t1, t2, t3, t4 in (1.1) were written, as these two pieces
of data are left implicit in informal proofs.

However, the reader should have in mind that whenever we write equations like (1.1), we are really claiming
that judgment Γ ` t1 ≡ t4 : T is derivable.

As an example of the informal use of the type interchangeability rules, suppose that we were able to prove τ : T.
Suppose we also proved the following sequence of equalities:

T ≡ T2 ≡ . . . ≡ R

Then, we are allowed to say: “We have τ : T, or equivalently, τ : R”. This is just an application of the T-EQUIV-1
rule, because T and R are interchangeable types. The use of the type interchangeability 2 rule is similar.

There are more rules involving definitional equality judgments, but we defer them to Section 1.5 because we
require to introduce types into our theory to properly state them.

Before ending this section, we introduce conventions regarding the use of definitions in informal proofs. By a
definition we mean a symbol that serves as a shortcut for a longer term, so that certain expressions become easier
to read.

Convention 1.4.1. Definitions inside informal proofs will be introduced by the pattern:

Identifier :≡ τ

where Identifier is the name given to the definition, and τ is the S-term acting as the definition body.
When we want to emphasize that τ is actually a term, we will write:

Identifier :≡ τ : T

where T must be a type according to the current context, which is always left implicit.
N

Bear in mind that definitions are not new symbols added into the theory. In other words, defined symbols
occurring inside a term should be thought as abbreviations.

For example, if we define:
univ :≡ U0 : U1
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Then, the S-term:
U2 + univ

really stands for:
U2 + U0

Therefore, if we claim in an informal proof that the following holds by definition:

univ ≡ U0

What we are really claiming is that the following holds:

U0 ≡ U0

which is simply an application of the reflexivity rule!

1.5 Types

It is time to add types into our theory. We need inference rules expressing how to form a type, how to build its
terms, how terms on the type can be decomposed to be able to construct proofs, and how terms on the type can
simplify. As such, the inference rules will be grouped into rule classes. Each rule class represents an action that
can be done on the type:

• Formation rules: They will state the valid way to form the type in question.

• Introduction rules: They will express how terms in the type can be built. These rules are also called the type
constructors.

• Elimination rules: They will express how to use elements of the type to construct functions and proofs. These
rules are also called the type eliminators.

• Computation rules: They will express what happens when a constructor is given to an eliminator. They
capture a notion of term simplification.

• Uniqueness rules: These rules will be optional. They will express what happens when an eliminator is given
to a constructor.

In addition to these rules, there will be congruence rules, which express that type formation, type constructors,
and type eliminators respect definitional equality. Congruence rules are not placed inside a rule class because they
are more like structural rules. Congruence rules express that all the rule classes above “fit together nicely” with
definitional equality.

1.5.1 Dependent function type (Π-type)

A Π-type, also called a dependent function type, will capture the idea of dependent functions. A dependent function
is a function whose codomain varies according to the element given as input. To motivate the concept, let us work
in standard mathematics.

Suppose we have the indexed family of sets {Ni}i∈N, where each Ni is the i-times Cartesian product of the
natural numbers N, i.e. an element of Ni is a tuple of natural numbers with exactly i elements.

Suppose we define a function f that takes a natural number n and returns the tuple (n, n, . . . , n) ∈ Nn

where n is repeated n times. In standard notation, we would write the domain and codomain of this function
as f : N→

⋃
i∈N Ni with the following side note: “for every n ∈ N, we have f(n) ∈ Nn”.

In other words, given 1 as input, function f outputs a 1-tuple: f(1) ∈ N1; given 2 as input, f outputs a 2-tuple:
f(2) ∈ N2; and so on. Hence, the “codomain” of f depends on the input: for 1, the “codomain” is N1; for 2, the
“codomain” is N2; etc. We say that f is a dependent function.

The standard notation for describing the domain and (varying) codomain of function f is a bit clumsy, because
we have to say that the codomain is

⋃
i∈N Ni and then add the side note: “for every n ∈ N, we have f(n) ∈ Nn”.
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Let us suppose we change the notation from f : N →
⋃
i∈N Ni to f :

∏
n∈N Nn so that this new notation

emphasizes the fact that the codomain changes to Nn on input n ∈ N. This is the idea behind a Π-type.
In fact, the notation

∏
n∈N Nn was chosen to suggest the Cartesian product of the indexed family {Ni}i∈N, as

defined in set theory: ∏
n∈N

Nn =

{
g : N→

⋃
i∈N

Ni
∣∣∣∣∣ ∀n ∈ N. g(n) ∈ Nn

}
which happily corresponds to the set of dependent functions from N to the family {Ni}i∈N. This is why a Π-type
is also called a dependent product type, because it corresponds to a Cartesian product of an indexed family when
types are interpreted as sets.

Notice that dependent functions can also represent standard functions (i.e. functions with a fixed codomain).
For example, given sets A and B, a function f : A→ B can be represented as f :

∏
i∈AB where the same codomain

B is assigned to each input i ∈ A.
We now present inference rules for working with Π-types.

• Formation (S-context: Γ; S-term: A, B; Variable: w):

Γ ` A : Ui Γ,w : A ` B : Ui
Γ `

∏
w:A

B : Ui
Π-FORM

Informal reading. Let A be a type at level i. If given w : A we are able to construct a type B at level i, then∏
w:A B is a type at level i.

Notice that variable w may appear in type B. This means that type B will change if variable w is replaced
by a specific term. So, the expression

∏
w:A B captures the idea that the codomain will change if the input is

changed.

In standard mathematics, we usually use the notation x 7→ τ to define a function that takes x as input and
returns an expression τ . For example, the successor function S : N→ N is defined by x 7→ x+ 1.

In HoTT, to define a function we use a lambda expression. A lambda expression, written (λw :T. τ), will denote
a function that takes as input a w of type T, and returns a term τ .

The following introduction rule will make precise how lambda expressions represent dependent functions.

• Introduction (S-context: Γ; S-term: τ , A, B; Variable: w):

Γ,w : A ` τ : B

Γ ` (λw :A. τ) :
∏
w:A

B
Π-INTRO

Informal reading. If given w : A we are able to construct a term τ of type B (where τ and B are dependent
on variable w), then we can construct the lambda expression (λw :A. τ), which denotes a dependent function
transforming terms of type A into terms of type B.

Again, notice that variable w may appear in term τ and type B. The fact that variable w appears in type B
means that the codomain of function (λw :A. τ) will vary depending on the specific term given as input.

The introduction rule states that type
∏

w:A B has dependent functions as elements.

To define non-dependent functions (i.e. functions with fixed codomain), we need to introduce the concepts of
bind structure, and bound and free occurrence of a variable in an S-term.

Definition 1.5.1 (Occurrence of a variable). An occurrence of a variable w in an S-term is an appearance of w in
the S-term. Occurrences are counted from left to right.

For example, variable w has two occurrences in (λw :A. 1 + w), where the first occurrence is at (λw . . ., and the
second occurrence is at . . .+ w).

N
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Definition 1.5.2 (Bind structures and local variables for Π-types). There are two kinds of bind structures for
Π-types.

• In a lambda expression (λw :A. t), a bind structure is defined by the underlined parts, as indicated in the
following expression:

λw : A. t

The set of local variables in the bind structure is defined to be {w}.
For example, in the lambda expression (λw :y. w =y w), the first occurrence of y is not in the bind structure,
but the second occurrence of y is in the bind structure.

• In a Π-type expression
∏

w:A B, a bind structure is defined by the underlined parts, as indicated in the following
expression: ∏

w: A
B

The set of local variables in the bind structure is defined to be {w}.

N

Remark 1.5.3. As more types are introduced, more bind structures with their corresponding set of local variables
will be added.

Also, if S is a bind structure, we will denote its set of local variables by LV (S).
N

Definition 1.5.4 (Free and bound occurrence of a variable). Let w be a variable and τ an S-term.

• We will say that the n-th occurrence of w in τ is bound if there is some bind structure S in τ such that the
n-th occurrence of w is inside S and w ∈ LV (S).

• We will say that the n-th occurrence of w in τ is free if it is not bound, or equivalently, whenever S is a bind
structure in τ such that the n-th occurrence of w is inside S, we have that w /∈ LV (S).

• Variable w occurs free in τ if there is an occurrence of w in τ which is free.

• Variable w does not occur free in τ if every occurrence of w in τ is not free, or equivalently, if every occurrence
of w in τ is bound.

Notice that if variable w does not occur at all in τ , then w does not occur free in τ , since the condition holds
vacuously.

N

For example, let us analyze the (nonsensical) S-term (λw :w. z (λy :w. y + z)), where w, y, z are variables. We
will denote by (1) the bind structure defined by the most external lambda, and by (2) the bind structure defined
by the most internal lambda.

• The first occurrence of w is bound (i.e. not free), because it occurs inside bind structure (1), and w is a local
variable in (1).

• The second occurrence of w is free because the condition holds vacuously, as the second occurrence of w is
not inside bind structures (1) and (2).

• The third occurrence of w is bound, because it occurs inside bind structure (1), and w is a local variable in
(1).

Notice that this occurrence of w is not inside bind structure (2).

• The first occurrence of y is bound, because it occurs inside bind structure (2), and y is a local variable in (2).

Notice that this occurrence of y is also inside bind structure (1), but y is not a local variable in (1).
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• The second occurrence of y is bound, because it occurs inside bind structure (2), and y is a local variable in
(2).

Notice that this occurrence of y is also inside bind structure (1), but y is not a local variable in (1).

• The first occurrence of z is free. Although it occurs inside bind structure (1), z is not a local variable in (1).

• The second occurrence of z is free. Although it occurs inside bind structures (1) and (2), z is not a local
variable in neither of them.

• Variable w occurs free, since its second occurrence is free.

• Variable y does not occur free, since all its occurrences are bound.

• Variable z occurs free, since its first (and second) occurrence is free.

• Any other variable t ∈ VAR does not occur free, since t does not occur at all in the expression (i.e. the
condition holds vacuously).

With this at hand, we now introduce the non-dependent function type (→), also called function type or arrow
type, as special case of the dependent function type.

Definition 1.5.5 (Arrow type →). Let A and B be S-terms. Let w be a variable. If variable w does not occur free
in B, the S-term

∏
w:A B will be written as A→ B.

The S-term A→ B should be interpreted as the type of all functions with domain A and codomain B.
N

As an example on how to define functions, let us define the identity function.

Definition 1.5.6 (Identity function). Let A : Ui be a type. Then, we define the function:9

idA :≡ (λw :A. w) : A→ A

which will be called the identity function over A.10

N

So, the identity function just returns what it receives as input. How can we be sure that this “definition” written
in natural language is justified by a judgment derivation in our type theory? Observe that the definition starts
by introducing the assumption A : Ui . Hence, it is implicitly building a context. Then, it goes to claim that term
(λw :A. w) has type A→ A.

In other words, our “definition” is actually a claim stating that judgment A : Ui ` (λw :A. w) : A→ A is derivable,
or equivalently, that judgment A : Ui ` (λw :A. w) :

∏
w:A A is derivable. Therefore, we need to check the derivability

of this judgment if we want to be sure that our definition “makes sense”.
By using derivation trees, the proof looks like:

(∗)
(A : Ui , w : A) ctx

CTX-EXT

A : Ui , w : A ` w : A
VBLE

A : Ui ` (λw :A. w) :
∏
w:A

A
Π-INTRO

(1.2)

where (∗) is a proof for the judgment (A : Ui , w : A) ctx, which we omit.
However, an informal proof reads: “First, assume A : Ui , which is clearly a context. Now, by the Π-INTRO rule,

it is enough to assume w : A and prove w : A (checking of course that w is different from A to get a valid context).
But w : A trivially holds because it is now one of our assumptions!”

9Notice we are justified in writing A → A instead of
∏

w:A A because variable w does not occur in variable A, as they are different
variables.

10Strictly speaking, we are introducing a different symbol idA for each type A : Ui .
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Most of the time we will not check that definitions are correct (i.e. we will omit the proof of the judgment they
claim), as a quick glance will suffice to convince us that the involved terms are well-typed. Of course, there will be
cases where this is not obvious and we will have to justify the definition with an argument starting like: “Observe
this definition is well-typed because...”.

There is another observation regarding the identity function. Notice that the derivation tree (1.2) ended with
the judgment:

A : Ui ` (λw :A. w) :
∏
w:A

A

but we can apply the Π-INTRO rule again to get the judgment:

` (λA :Ui . (λw :A. w)) :
∏
A:Ui

(∏
w:A

A

)

or equivalently:

` (λA :Ui . (λw :A. w)) :
∏
A:Ui

(A→ A) (1.3)

which represents a function that takes a type A as input, and returns the identity function on A. Hence, functions
can produce other functions as output and, as we will see shortly, can receive other functions as input.

Judgment (1.3) also serves to introduce more conventions.

Convention 1.5.7 (Parentheses). We follow these conventions regarding parentheses:

• In a lambda expression λw :T. τ , we will omit the most external parentheses in τ and T.

• In a dependent function type
∏

w:A B we will omit the most external parentheses in A and B.

There is, however, an exception to this rule. In an S-term of the form A→ B we will never remove the most
external parentheses in A and B. But, if B has the form C→ D, then the most external parentheses in B can
be removed.

For example, the S-term A → (C → D) will be written as A → C → D. Instead, the parentheses in
(A→ C)→ D cannot be removed.

Of course, we may add external parentheses for emphasis or when there is ambiguity.
N

Hence, judgment (1.3) can we written as:

` (λA :Ui . λw :A. w) :
∏
A:Ui

A→ A

Another convention involves the use of nested lambdas.

Convention 1.5.8 (Nested lambdas). If we have an S-term of the form:

λa :A. λb :B. λc :C. . . . λq :Q. τ

which corresponds to nested lambdas, the S-term can be written as:

λ(a : A)(b : B)(c : C) . . . (q : Q). τ

N

Hence, judgment (1.3) can be written as:

` (λ(A :Ui)(w :A). w) :
∏
A:Ui

A→ A

Another convention involves variables in dependent function types
∏

w:A B.
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Convention 1.5.9 (Grouping of variables). If we have an S-term of the form:∏
a1:A

∏
a2:A

. . .
∏
an:A

∏
b1:B

∏
b2:B

. . .
∏
bm:B

∏
w:A

∏
c:C

D

we may group variables as long as they have a common type and are adjacent to one another:∏
a1,a2,...,an:A

∏
b1,b2,...,bm:B

∏
w:A

∏
c:C

D

Notice we did not place variable w at the end of list a1, a2, . . . , an because variable w is not adjacent to an.
N

We also have a convention regarding the definition of functions (as in the definition of the identity function).

Convention 1.5.10 (Implicit lambda notation). When introducing a definition of the form:

Identifier :≡ λ(a : A)(b : B)(c : C) . . . (q : Q). τ

This may be written as:

Identifier a b c . . . q :≡ τ

where all input types are left implicit.
N

Hence, the identity function can be defined as:

idA w :≡ w

Now, before introducing the elimination rule for Π-types, we need to explain the concept of capture-free substi-
tution.

Suppose we have an S-term τ such that variable w occurs in τ . Let us suppose we want to substitute all
occurrences of w with another S-term ν. Denote by τ [w/ν] the result of substituting in τ all occurrences of w by
the S-term ν. Then, for example, ((w + 1) + w)[w/0] will denote the S-term (0 + 1) + 0.

However, if we want the result of the substitution to be an S-term, then this definition of substitution is wrong.
For example, (λA :U0 . A)[A/0] denotes (λ0 :U0 . 0) which is not even an S-term because 0 is not a variable. In the
lambda expression (λA :U0 . A), variable A should not be replaceable with a non-variable S-term because A denotes
an arbitrary input to a function. Notice that all occurrences of A are bound on this lambda expression. So, it seems
that we should only replace free occurrences of variables.

We now reinterpret τ [w/ν] to denote the result of substituting in τ all free occurrences of w by the S-term ν.
With this, (λA :U0 . A)[A/0] correctly denotes the S-term (λA :U0 . A), because every occurrence of A is not free.

However, even this definition has a problem. Consider lambda (λA :U0 . B) where A and B are variables. This
lambda denotes a function that receives a type and returns variable B, where variable B is declared in some context
Γ that is left implicit. Now, consider the substitution (λA :U0 . B)[B/A] which produces lambda (λA :U0 . A), because
the only occurrence of B is free. Hence, we changed our function into the identity function in U0 . This is clearly
not what we want. The meaning of our functions should not change after performing a substitution.

The problem in this last example is that the free occurrence of variable B was replaced by A, which happens
to be a local variable in (λA :U0 . B). In other words, after performing the substitution of B for A, variable A got
captured by the local variable in (λA :U0 . B).

This problem is solved if we rename all occurrences of local variables in the bind structure before performing
the substitution. Therefore, to perform:

(λA :U0 . B)[B/A]

first, inside the lambda expression, rename all occurrences of the local variable A into a different variable:

(λC :U0 . B)[B/A]
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and then perform the substitution of all free occurrences of B, to get:

λC :U0 . A

Why is it valid to rename local variables? Because local variables have meaning only inside the bind structure,
as they behave like “placeholders”. For example, the function (λw :A. w) will still be the identity function on A if
we change variable w to variable t.

This last form of substitution (with local variable renaming) is called capture-free substitution, and it is the one
we will use.

Definition 1.5.11 (Capture-free substitution). We will denote by:

τ [w1/ν1,w2/ν2, . . . ,wm/νm]

the result of simultaneously11 substituting in τ all free occurrences of w1, w2, . . ., wm by the S-terms ν1, ν2, . . .,
νm, respectively, with the added side note that all local variables on all bind structures inside τ should be renamed
(only if necessary) into variables not appearing in S-terms ν1, ν2, . . ., νm.

Also, an expression like:

τ [w1/ν1][w2/ν2][ . . .][wm/νm] (1.4)

will denote:

( ( (τ [w1/ν1])[w2/ν2] )[. . .] )[wm/νm]

which corresponds to iterated application of substitution, i.e. we first perform τ [w1/ν1], then substitution w2/ν2 is
performed on the result of the first substitution, and so on. Hence, an expression like (1.4) will denote sequential
substitution.

N

For example, (a, b)[a/b, b/c] denotes (b, c) because a and b must be substituted at the same time. Instead,
(a, b)[a/b][b/c] denotes the iterated substitution ((a, b)[a/b])[b/c]. If we perform the most internal substitution, we
get (b, b)[b/c], which then produces (c, c).

We can now state the elimination rule for Π-types.

• Elimination (S-context: Γ; S-term: f, τ , A, B; Variable: w):

Γ ` f :
∏
w:A

B Γ ` τ : A

Γ ` f τ : B[w/τ ]
Π-ELIM

Informal reading. If we are given a dependent function f :
∏

w:A B and a term τ of type A, then we can give τ
as input to f (i.e. the application f τ) to obtain a term belonging to type B[w/τ ].

The elimination rule expresses that the codomain must change according to the function input. This is why
we have to substitute all free occurrences of variable w in B to obtain the specific codomain corresponding to
input τ .

Also, notice that function application is written as f n, while in standard mathematics it is written as f(n).

When the elimination rule is instantiated with the special case of the arrow type (where variable w does not
occur free in B), we get:

Γ ` f : A→ B Γ ` τ : A

Γ ` f τ : B

because substitution will leave B intact, as w does not occur free in B.

11By “simultaneous” we mean that all variables should be replaced at the same time.
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Convention 1.5.12 (Parentheses). A term of the form:

((. . . (((ν1 ν2) ν3) ν4) . . .) νm)

representing a sequence of applications (i.e. ν1 is applied on ν2, the result of which is a function applied on ν3, the
result of which is a function applied on ν4, and so on), will be written as:

ν1 ν2 ν3 ν4 . . . νm

to emphasize the sequential nature of applications.
N

As an example of function application, we define the function composition operator.

Definition 1.5.13 (Function composition). Let A : Ui , B : Uj , and C : Uk be types. We define function composition
as:12

◦ :≡ (λ(f :A→ B)(g :B→ C). λw :A. g (f w)) : (A→ B)→ (B→ C)→ A→ C

Instead of (◦ f g), we will write (g ◦ f), which uses infix notation. Notice that the order of functions is switched
in the infix notation, to conform with standard mathematical notation.

N

In other words, function composition receives functions f : A → B and g : B → C, and returns as output the
function (λw :A. g (f w)) : A→ C, which represents the composition of f followed by g.

We can write a small informal proof to verify that ◦ is well-typed: “Suppose A : Ui , B : Uj , and C : Uk . By
the Π-INTRO rule applied three times, it is enough to suppose f : A → B, g : B → C, and w : A, and then prove
(g (f w)) : C. But, by two applications of the Π-ELIM rule, we have (f w) : B, and (g (f w)) : C”.

However, there is an important observation regarding our informal proof. To justify that the following is a
context:

A : Ui , B : Uj , C : Uk , f : A→ B, g : B→ C, w : A

we have to prove that A→ B and B→ C are types, each at some universe level.
Let us check the case for A→ B, as the case for other type is similar. We have A : Ui and B : Uj as hypotheses.

Remember that A→ B really stands for
∏

z:A B where z is a “dummy” variable, i.e. a variable that does not occur
free in B. Therefore, by the Π-FORM rule, to conclude that

∏
z:A B is a type, we have to prove the following:

• A is a type at some universe level m.

• Assuming z : A, prove that B is a type at the same universe level m.

Thus, we have to prove that A and B can be placed at the same universe level, but we seem to be stuck since
the only thing we know is that A is a type at level i and B is a type at level j, where i and j may be different levels.

The problem is fixed by the cumulative universe rule (U-CUMUL). By the U-CUMUL rule we can conclude
A : Umax{i,j} and B : Umax{i,j} by repeatedly applying the rule (even zero times) on A and B. Therefore, A and B
can be placed at level max{i, j}. Hence, the Π-FORM rule can conclude that A→ B is a type at level max{i, j}.

The next rule states how function application simplifies.

• Computation (S-context: Γ; S-term: τ , ν, A, B; Variable: w):

Γ,w : A ` τ : B Γ ` ν : A

Γ ` (λw :A. τ) ν ≡ τ [w/ν] : B[w/ν]
Π-COMP

Informal reading. The result of giving input ν to function (λw :A. τ) is term τ [w/ν]. Or equivalently, the
application (λw :A. τ) ν simplifies to τ [w/ν].

12Remember that this definition is really making the claim that the following judgment is derivable:

A : Ui , B : Uj , C : Uk ` (λ(f :A→ B)(g :B→ C). λw :A. g (f w)) : (A→ B)→ (B→ C)→ A→ C
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In the beginning of Section 1.5 it was stated that a computation rule describes what happens when a con-
structor is given to an eliminator. In this case, a lambda expression (i.e. the constructor, because lambda
expressions are produced by an introduction rule) is placed inside a function application (i.e. the eliminator,
because applications are produced by an elimination rule).

For example, with the computation rule, the identity function behaves as expected. Given A : Ui and a : A, we
have by definition and the Π-COMP rule:13

idA a ≡ (λw. w) a ≡ w[w/a] ≡ a (1.5)

Notice we wrote (λw. w) instead of (λw :A. w) in (1.5). We will usually remove type information from lambdas
so that the expressions become shorter.

Also, the composition operator computes as expected. Given A : Ui , B : Uj , C : Uk , h : A→ B, and k : B→ C, we
have by definition and the Π-COMP rule:

k ◦ h ≡ ◦ h k ≡ (λf. λg. λw. g (f w)) h k

≡ (λg. λw. g (f w))[f/h] k

≡ (λg. λw. g (h w)) k

≡ (λw. g (h w))[g/k]

≡ λw. k (h w)

And so, given a : A, we have:

(h ◦ k) a ≡ (λw. h (k w)) a ≡ (h (k w))[w/a] ≡ h (k a)

From now on, we will omit any step where a substitution is involved, unless otherwise stated for emphasis. For
example, instead of:

idA a ≡ (λw. w) a ≡ w[w/a] ≡ a

we will write:
idA a ≡ (λw. w) a ≡ a

The next rule states that a function is determined by its values.

• Uniqueness (S-context: Γ; S-term: f, A, B; Variable: w):

Γ ` f :
∏
w:A

B

Γ ` (λw :A. f w) ≡ f :
∏
w:A

B
Π-UNIQ

Informal reading. Given a dependent function f, “wrapping” function f inside a lambda expression does not
produce a function different from f.

In the beginning of Section 1.5 it was stated that a uniqueness rule describes what happens when an eliminator
is given to a constructor. In this case, a function application (i.e. the eliminator) is the body of a lambda
expression (i.e. the constructor).

The next rules are the so-called “congruence rules” for Π-types. They express that Π-type formation, lambda
formation and function application respect definitional equality. More intuitively, these rules express that inter-
changeable terms are formed from interchangeable subterms. This idea is so intuitive that congruence rules are
never explicitly used in informal proofs. Also, for other types, the pattern these rules follow will be the same.
Therefore, congruence rules will not be explicitly stated for the remaining types on this chapter.

13These equations are an informal proof for the following judgment:

A : Ui , a : A ` idA a ≡ a : A
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• Formation congruence (S-context: Γ; S-term: A1, A2, B1, B2; Variable: w):

Γ ` A1 ≡ A2 : Ui Γ,w : A1 ` B1 ≡ B2 : Ui
Γ `

∏
w:A1

B1 ≡
∏
w:A2

B2 : Ui
Π-FORM-EQUIV

Informal reading. Two Π-types are interchangeable if their domains and codomains are interchangeable.

• Introduction congruence (S-context: Γ; S-term: τ1, τ2, A1, A2, B1, B2; Variable: w):

Γ ` A1 ≡ A2 : Ui Γ,w : A1 ` B1 ≡ B2 : Ui Γ,w : A1 ` τ1 ≡ τ2 : B1

Γ ` λw :A1. τ1 ≡ λw :A2. τ2 :
∏
w:A1

B1

Π-INTRO-EQUIV

Informal reading. Two lambdas are interchangeable if the types of their inputs are interchangeable and their
bodies are interchangeable.

• Elimination congruence (S-context: Γ; S-term: f, g, τ1, τ2, A, B; Variable: w):

Γ ` f ≡ g :
∏
w:A

B Γ ` τ1 ≡ τ2 : A

Γ ` f τ1 ≡ g τ2 : B[w/τ1]
Π-ELIM-EQUIV

Informal reading. Two function applications are interchangeable if both functions are interchangeable and
both inputs are interchangeable.

In the beginning of this section, we showed an example of a dependent function with domain and codomain
described as f :

∏
n∈N Nn. Observe that this notation shows the family index n in the codomain of function f . But

in the notation for type theory, type
∏

w:A B does not make explicit that B depends on variable w. It would be nice
to have a notation emphasizing the dependence of type B on variable w. For example, something like

∏
w:A B w,

where B w is an application. For this, we need the concept of type family.

Definition 1.5.14 (Type family). Let A : Ui be a type. Any function of type A → Uj will be called a type family
indexed by A.

We will say that a type family P : A → Uj is constant, if P is a constant function, i.e. P has the form λz :A. D
for some D : Uj , such that variable z does not occur free in D.

N

With this, the formation, introduction, and elimination rules can be stated in terms of type families. Please
note that we are not replacing the previous inference rules. We are just adding a result on top those rules so that
it is easier to reason with statements involving Π-types.

Lemma 1.5.15 (Rules with type families). Let A : Ui be a type and P : A→ Uj a type family. Then, the formation,
introduction, and elimination rules can be stated in terms of type families as follows:

• Formation:

Term
∏

w:A P w is a type at level max{i, j}.

• Introduction:

If for every w : A we can construct a term t : P w. Then, (λw :A. t) is a function of type
∏

w:A P w.

• Elimination:

If we have f :
∏

w:A P w and a : A, then f a : P a.

Proof. We prove each item in turn.
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• Formation:

The statement is claiming that the following judgment is derivable:

A : Ui , P : A→ Uj `
∏
w:A

P w : Umax{i,j}

So, we suppose the context. To be able to use the Π-FORM rule we have to prove that:

– Term A is a type at level max{i, j}. Proof: by assumption we have A : Ui . Hence, by the cumulative
universe rule we have A : Umax{i,j}.

– If we suppose w : A, then term P w is a type at level max{i, j}. Proof: by the Π-ELIM rule (for the special
case of arrow types) we have P w : Uj , and then, by the cumulative universe rule we have P w : Umax{i,j}.

• Introduction:

The statement is claiming that the following inference rule holds:

A : Ui , P : A→ Uj , w : A ` t : P w

A : Ui , P : A→ Uj ` (λw :A. t) :
∏
w:A

P w

But it is simply an instance of the Π-INTRO rule.

• Elimination:

The statement is claiming that the following judgment is derivable:

A : Ui , P : A→ Uj , f :
∏
w:A

P w, a : A ` f a : P a

So, we suppose the context. But then, by Π-ELIM we have f a : (P w)[w/a]. But (P w)[w/a] denotes term P a.

The following remark explains how to compute the universe level of a Π-type. This property will be used a lot
on this report.

Remark 1.5.16 (Universe level for Π-types). Suppose we are given a type
∏

w:A B. The only way to form this
type is to use the Π-FORM rule, which states that types A and B must be at the same universe level.

Hence, if A is at level i, and for every w : A, type B is at level j, then the only way for type
∏

w:A B to be valid is
that the cumulative universe rule was used to move types A and B up into the universe Umax{i,j}. In other words,
we must have

∏
w:A B : Umax{i,j}.

Therefore, to compute the universe level of
∏

w:A B, just take the maximum of the levels of A and B for every
w : A.

N

To end this section, we state a small remark regarding the interpretation of Π-types under the Curry-Howard
correspondence.

Remark 1.5.17 (Logical interpretation of Π-types). Under the Curry-Howard correspondence, a Π-type corre-
sponds to a universally quantified statement [18]. In other words, type

∏
w:A B can be interpreted as: “For every

proof w for A, proposition B holds”. A function f :
∏

w:A B can also be seen as a procedure that transforms proofs
for A into proofs for B. Therefore, function f acts as a proof for the universal statement.

The special case of the arrow type A→ B corresponds to logical implication. In other words, type A→ B can be
interpreted as: “If A holds, then B holds”. Again, a function f : A→ B can be a seen as a procedure that transforms
proofs for A into proofs for B, making f itself a proof for the implication.

In fact, a reader familiar with formal logic may have noticed that the Π-INTRO rule corresponds to the universal
generalization rule (the special case of the arrow type corresponds to the implication introduction rule); and the
Π-ELIM rule corresponds to the universal specification rule (the special case of the arrow type corresponds to the
Modus Ponens rule).

N
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1.5.2 Dependent pair type (Σ-type)

A Σ-type, also called a dependent pair type, will capture the idea of dependent pairs. A dependent pair is a pair
(a, b) where the type of b depends on the first coordinate a.

To motivate the concept, let us work in standard mathematics. Suppose we have an indexed family of sets
{Ai}i∈I . The disjoint union of this family is the set:∑

i∈I
Ai =

⋃
i∈I

({i} ×Ai)

The elements of this set are pairs (a, b) where a ∈ I and b ∈ Aa. In other words, pair (a, b) is a dependent pair
because the set to which b belongs depends on the first coordinate a. Hence,

∑
i∈I Ai is a set of dependent pairs.

If we interpret types as collections, a Σ-type will represent the disjoint union of an indexed family of collections.
This is why Σ-types are also called dependent sum types.

When the indexed family {Ai}i∈I assigns the same set B to each i ∈ I, we get:∑
i∈I

B =
⋃
i∈I

({i} ×B) = I ×B

Hence, the binary Cartesian product will be a special case of the disjoint union of an indexed family.
The idea behind a Σ-type like

∑
w:A B is that A will be the type for the first coordinate of the pair, and for each

w : A, type B will be the varying type for the second coordinate of the pair.
We now present inference rules for working with Σ-types.

• Formation (S-context: Γ; S-term: A, B; Variable: w):

Γ ` A : Ui Γ,w : A ` B : Ui
Γ `

∑
w:A

B : Ui
Σ-FORM

Informal reading. Let A be a type at level i. If given w : A we are able to construct a type B at level i, then∑
w:A B is a type at level i.

Notice that variable w may appear in type B. This means that type B will change whenever variable w is
replaced by a specific term. So, at least at this intuitive level, the expression

∑
w:A B captures the idea that

the type of the second coordinate will change if the first coordinate changes.

We introduce the non-dependent pair type (×), also called Cartesian product type or just product type, as special
case of the dependent pair type.

Definition 1.5.18 (Product type ×). Let A and B be S-terms. Let w be a variable. If variable w does not occur
free in B, the S-term

∑
w:A B will be written as A× B.

The S-term A×B should be interpreted as the type of all pairs with first coordinate in A and second coordinate
in B.

N

As in standard mathematics, to denote a pair we will use the expression (a, b), as evidenced by the following
introduction rule.

• Introduction (S-context: Γ; S-term: a, b, A, B; Variable: w):

Γ,w : A ` B : Ui Γ ` a : A Γ ` b : B[w/a]

Γ ` (a, b) :
∑
w:A

B
Σ-INTRO

Informal reading. If we can construct a term a of type A and a term b whose type depends on term a, then
(a, b) is a dependent pair.
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The introduction rule is stating that type
∑

w:A B has dependent pairs as elements.

When the introduction rule is instantiated with the product type (where variable w does not occur free in B),
we get:

Γ,w : A ` B : Ui Γ ` a : A Γ ` b : B

Γ ` (a, b) : A× B

because substitution will leave B intact.

We follow the next convention regarding parentheses.

Convention 1.5.19 (Parentheses). In a dependent pair type
∑

w:A B we will omit the most external parentheses
in A and B.

So, an S-term like: ∑
A:(U0+1)

(∑
w:A

w

)
can be written as: ∑

A:U0+1

∑
w:A

w

There is, however, an exception to this rule. In an S-term of the form A × B we will never remove the most
external parentheses in A and B. However, if A or B are products themselves, then their most external parentheses
can be removed on the corresponding case.

For example, the S-term A× (C×D) will be written as A×C×D, but parentheses will be kept in (C→ D)×B.
Notice that there is ambiguity in the expression A × C × D, because it could be interpreted as (A × C) × D or

A× (C× D). In Corollary 1.6.24, we will prove that the product type is associative. Therefore, it does not matter
how S-term A × C × D is interpreted. Nevertheless, for the sake of resolving ambiguity, (A × C) × D will be the
preferred interpretation.

Of course, we may add parentheses for emphasis or when there is ambiguity.
N

Another convention involves the grouping of variables in dependent pair types.

Convention 1.5.20 (Grouping of variables). If we have an S-term of the form:∑
a1:A

∑
a2:A

. . .
∑
an:A

∑
b1:B

∑
b2:B

. . .
∑
bm:B

∑
w:A

∑
c:C

D

we may group variables as long as they have a common type and are adjacent to one another:∑
a1,a2,...,an:A

∑
b1,b2,...,bm:B

∑
w:A

∑
c:C

D

Notice we did not place variable w at the end of list a1, a2, . . . , an because variable w is not adjacent to an.
N

As we did for Π-types, the formation and introduction rules can be stated in terms of type families. For the
moment, we are leaving out the elimination rule, as this rule will be encapsulated into an statement called “induction
principle”.

Lemma 1.5.21 (Rules with type families). Let A : Ui be a type and P : A→ Uj a type family. Then, the formation
and introduction rules can be stated in terms of type families as follows:

• Formation:

Term
∑

w:A P w is a type at level max{i, j}.

• Introduction:

If we have a : A and b : P a, then (a, b) :
∑

w:A P w.
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Proof. We prove each item in turn.

• Formation:

The statement is claiming that the following judgment is derivable:

A : Ui , P : A→ Uj `
∑
w:A

P w : Umax{i,j}

So, we suppose the context. To be able to use the Σ-FORM rule we have to prove:

– Term A is a type at level max{i, j}. Proof: by assumption we have A : Ui . Hence, by the cumulative
universe rule we have A : Umax{i,j}.

– If we suppose w : A, then term P w is a type at level max{i, j}. Proof: by the Π-ELIM rule we have
P w : Uj , and then, by the cumulative universe rule we have P w : Umax{i,j}.

• Introduction:

The statement is claiming that the following judgment is derivable:

A : Ui , P : A→ Uj , a : A, b : P a ` (a, b) :
∑
w:A

P w

So, we suppose the context. To be able to use the Σ-INTRO rule, we have to prove:

– If we suppose w : A, then P w is a type at some level. Proof: just apply the Π-ELIM rule to get P w : Uj .
– a : A must hold. Proof: by assumption.

– b : (P w)[w/a] must hold. Proof: term (P w)[w/a] denotes P a, but we have by assumption b : P a.

Now, we present the elimination rule for Σ-types.

• Elimination (S-context: Γ; S-term: g, p, A, B, C; Variable: w, y, z):

Γ, z :
∑
w:A

B ` C : Ui Γ,w : A, y : B ` g : C[z/(w, y)] Γ ` p :
∑
w:A

B

Γ ` indΣ[z.C](w.y.g; p) : C[z/p]
Σ-ELIM

Informal reading. This is one case where interpreting C as a proposition or predicate (allowed by the Curry-
Howard correspondence) is more illuminating.

Condition Γ, z :
∑

w:A B ` C : Ui reads: “Let C be a unary predicate on dependent pairs”.

Condition Γ ` p :
∑

w:A B reads: “Let p be an arbitrary dependent pair”.

Then, the rest reads: “To prove that predicate C holds for dependent pair p (i.e. type C[z/p] in the conclu-
sion), prove that predicate C holds for any dependent pair of the form (w, y) (i.e. condition Γ,w : A, y : B `
g : C[z/(w, y)])”.

The intuition is that if C holds for all canonical dependent pairs (a canonical dependent pair is a term of the
form (w, y)), then it will certainly hold for an arbitrary dependent pair p, because p can be “decomposed”
into a pair (r, t), for some r and t, as this is the only way to build pairs in the first place, i.e. the only way to
build p is by using the introduction rule.

The Σ-eliminator term indΣ[z.C](w.y.g; p) is a witness for this proof by elimination. It remembers all the
pieces: the predicate C, the proof g that C holds for all canonical pairs, and the arbitrary pair p.

The dot notation z.C and w.y.g inside term indΣ[z.C](w.y.g; p) denotes bind structures (see Definition 1.5.23
below). The dot notation emphasizes that z is a local variable for C, and w, y are local variables for g.
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Convention 1.5.22 (Parentheses). Given an S-term of the form:

indΣ[z.A](w.y.τ ; p)

we will omit the most external parentheses in S-terms A, τ and p. However, we may write them for emphasis or in
case of ambiguity.

N

We now introduce the bind structures for Σ-types.

Definition 1.5.23 (Bind structures and local variables for Σ-types). There are three kinds of bind structures for
Σ-types.

• In a Σ-eliminator indΣ[z.A](w.y.τ ; p) there are two bind structures:

– The expression z.A is a bind structure. Its set of local variables is defined to be {z}.
– The expression w.y.τ is a bind structure. Its set of local variables is defined to be {w, y}.

• In a Σ-type expression
∑

w:A B, a bind structure is defined by the underlined parts, as indicated in the following
expression: ∑

w: A
B

The set of local variables in the bind structure is defined to be {w}.

N

It is time to state the computation rule.

• Computation (S-context: Γ; S-term: g, a, b, A, B, C; Variable: w, y, z):

Γ, z :
∑
w:A

B ` C : Ui Γ,w : A, y : B ` g : C[z/(w, y)] Γ ` a : A Γ ` b : B[w/a]

Γ ` indΣ[z.C](w.y.g; (a, b)) ≡ g[w/a, y/b] : C[z/(a, b)]
Σ-COMP

Informal reading. If the proof produced by the elimination rule is applied on the canonical pair (a, b), then
this proof is just g instantiated with a and b.

To understand the intuition behind the computation rule, it is useful to reinterpret the elimination rule in a
procedural way. Given an arbitrary pair p, the elimination rule produces a proof for C[z/p] by “decomposing”
p into a pair (r, t), for some r and t. Then, it passes r and t into g (since g can be seen as a function14 that
produces a proof for C[z/(w, y)] given inputs w and y) to produce a proof for C[z/(r, t)], or equivalently, C[z/p].

Hence, if pair p is already decomposed as (a, b), then the proof produced by the elimination rule is actually g
applied on a and b, as the computation rule suggests.

In the beginning of Section 1.5 it was stated that a computation rule describes what happens when a con-
structor is given to an eliminator. In this case, a canonical pair (i.e. the constructor, because canonical pairs
are produced by the introduction rule) is placed inside a Σ-eliminator.

HoTT does not state a uniqueness rule for Σ-types. However, there is a propositional uniqueness principle, see
Lemma 1.6.1.

The elimination and computation rules can be encapsulated into an induction principle, as the following lemma
shows.

Lemma 1.5.24 (Induction principle for Σ-types). Let A : Ui be a type and P : A→ Uj a type family.
If C : (

∑
w:A P w)→ Uk is a type family and we have a function:

g :
∏
w:A

∏
y:P w

C (w, y)

14Apply twice the Π-INTRO rule on condition Γ,w : A, y : B ` g : C[z/(w, y)] to get the desired function.
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Then, we can define a function:

f :
∏

p:
∑
w:A

P w

C p

as:

f (a, b) :≡ g a b

where a : A and b : P a.

Proof. If we define the context:

Γ :≡ A : Ui , P : A→ Uj , C :

(∑
w:A

P w

)
→ Uk , g :

∏
w:A

∏
y:P w

C (w, y)

then the lemma is claiming that there is an S-term f such that the following judgments are derivable:

Γ ` f :
∏

p:
∑
w:A

P w

C p

Γ, a : A, b : P a ` f (a, b) ≡ g a b : C (a, b)

For the first judgment, suppose context Γ, and then define:

f :≡ λp :
∑
w:A

P w. indΣ[z.C z](w.y.g w y; p)

Now, we check this f has the required type. Suppose p :
∑

w:A P w (i.e. we are augmenting our context with
term p). We need to check:

indΣ[z.C z](w.y.g w y; p) : C p

We will use the Σ-ELIM rule, so we need to prove:

• Given z :
∑

w:A P w, term C z is a type. Proof: apply Π-ELIM on C to get C z : Uk .

• Given w : A and y : P w, term g w y : (C z)[z/(w, y)] holds. Proof: By two applications of the type family version
of Π-ELIM (Lemma 1.5.15), we have g w y : C (w, y). But (C z)[z/(w, y)] denotes C (w, y).

• p :
∑

w:A P w holds. Proof: by assumption.

Hence, by Σ-ELIM we have:

indΣ[z.C z](w.y.g w y; p) : (C z)[z/p]

But (C z)[z/p] denotes C p.

Now, for the second judgment15, we have by the Π-COMP and Σ-COMP rules:

f (a, b) ≡ (λp. indΣ[z.C z](w.y.g w y; p)) (a, b)

≡ (indΣ[z.C z](w.y.g w y; p))[p/(a, b)]

≡ indΣ[z.C z](w.y.g w y; (a, b))

≡ (g w y)[w/a, y/b]

≡ g a b

15The context in the second judgment is an extension of the context in the first judgment. Hence, by the weakening rule on page 10,
function f can still be derived from the assumptions in the extended context, justifying its use inside the definitional equality judgment.
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The induction principle reads (under the Curry-Howard correspondence):16 “Let C be a unary predicate on
dependent pairs. If we have a proof g that all canonical pairs (w, y) in

∑
w:A P w satisfy C, then we will have a proof

f that all pairs p in
∑

w:A P w satisfy C”.
But, from the point of view of functions, the induction principle reads: “To define a function on dependent

pairs, define it on canonical pairs (a, b), and freely use terms a and b inside the function body”.

When family C in the induction principle is constant, we have a recursion principle.

Lemma 1.5.25 (Recursion principle for Σ-types). Let A : Ui be a type and P : A→ Uj a type family.
If D : Uk is a type and we have a function:

g :
∏
w:A

((P w)→ D)

Then, we can define a function:

f :

(∑
w:A

P w

)
→ D

as:
f (a, b) :≡ g a b

where a : A and b : P a.

Proof. Suppose the context. Then, instantiate the induction principle with the constant family:

C :≡ (λz. D) :

(∑
w:A

P w

)
→ Uk

And simplify applications accordingly.

What do we mean by “instantiate” in the proof of the recursion principle? We know that the induction principle
is really claiming that the following judgments are derivable:

Γ ` f :
∏

p:
∑
w:A

P w

C p

Γ, a : A, b : P a ` f (a, b) ≡ g a b : C (a, b)

where f is some function and Γ is context:

A : Ui , P : A→ Uj , C :

(∑
w:A

P w

)
→ Uk , g :

∏
w:A

∏
y:P w

C (w, y)

If we apply four times the Π-INTRO rule to the first judgment, we get:

` (λA. λP. λC. λg. f) :
∏
A:Ui

∏
P:A→Uj

∏
C:

(∑
w:A

P w

)
→Uk

∏
w:A

∏
y:P w

C (w, y)

→
 ∏

p:
∑
w:A

P w

C p

 (1.6)

Let us define:

TI :≡
∏
A:Ui

∏
P:A→Uj

∏
C:

(∑
w:A

P w

)
→Uk

∏
w:A

∏
y:P w

C (w, y)

→
 ∏

p:
∑
w:A

P w

C p


16The dependent function type can be interpreted as a universally quantified statement, see Remark 1.5.17.
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Hence, the induction principle is claiming that the dependent function type TI is inhabited. Remember that
under the Curry-Howard correspondence, a dependent function type can be interpreted as a universally quantified
statement. Hence, type TI reads as the statement of the induction principle (Lemma 1.5.24). The fact that TI is
inhabited means that the induction principle has a proof or it is a true theorem.

Therefore, a theorem stated in natural language is really a dependent function type:17 the domain of the function
corresponds to the condition of the theorem, and the codomain of the function corresponds to the conclusion of the
theorem. The statement “Theorem A is true or has a proof” means that type A is inhabited.

But we have not explained what we mean by “instantiate”. Let us continue the example. Now define the
context:

∆ :≡ A : Ui , P : A→ Uj , D : Uk , g :
∏
w:A

((P w)→ D)

which corresponds to the assumptions on the recursion principle (Lemma 1.5.25).
Then, by the weakening rule applied on judgment (1.6), we have:

∆ ` (λA. λP. λC. λg. f) : TI

Therefore, by applying the Π-ELIM rule four times with inputs A, P, (λz. D), and g, we get:

∆ ` (λA. λP. λC. λg. f) A P (λz. D) g :
∏

p:
∑
w:A

P w

(λz. D) p

where (λz. D) is the constant type family as used in the proof for the recursion principle. This judgment simplifies
to (after performing applications and simplifying notation):

∆ ` f[A/A][P/P][C/(λz. D)][g/g] :

(∑
w:A

P w

)
→ D

which says: “Under the assumptions in ∆, type (
∑

w:A P w) → D is inhabited”. This is precisely the statement of
the recursion principle.

In other words, to prove the recursion principle, we applied inputs:

A, P, (λz. D), g

to the proof (λA. λP. λC. λg. f) for the induction principle (type TI). Hence, the statement “instantiate the induction
principle” means: apply the appropriate inputs to the proof of the dependent function type TI, as this will specialize
type TI into type (

∑
w:A P w)→ D, which is the conclusion of the recursion principle.

In informal proofs, it will be common to say “by Lemma X we have ...” or “apply Lemma X to get...”. All these
expressions will mean “instantiate Lemma X...” as explained in here.

As an example on how the induction and recursion principles are used, we define the coordinate projection
functions.

Lemma 1.5.26 (Projection functions for Σ-types). Let A : Ui be a type and P : A→ Uj a type family.
Then, the two coordinate projection functions:

pr1 :

(∑
w:A

P w

)
→ A

pr2 :
∏

q:
∑
w:A

P w

P (pr1 q)

are defined as:

pr1 (a, b) :≡ a

pr2 (a, b) :≡ b

17This will be true most of the time, as there will be theorems without assumptions. On those cases, the theorem is simply a
non-function type.
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The special case in which P is a constant family P :≡ (λz. D) : A→ Uj for some D : Uj such that z does not occur
free in D, the types of the projection functions simplify to:

pr1 : (A× D)→ A

pr2 : (A× D)→ D

Proof. The first projection function pr1 follows by the recursion principle when instantiated with the function:

g :≡ (λ(w :A)(y :P w). w) :
∏
w:A

((P w)→ A)

Hence, by the recursion principle, we have:

pr1 (a, b) ≡ (λw. λy. w) a b ≡ (λy. a) b ≡ a

The second projection function pr2 follows by the induction principle when instantiated with the family:

C :≡ (λz. P (pr1 z)) :

(∑
w:A

P w

)
→ Uj

and function:
g :≡ (λ(w :A)(y :P w). y) :

∏
w:A

∏
y:P w

C (w, y)

Notice that g is well-typed, since:
C (w, y) ≡ P (pr1 (w, y)) ≡ P w

Hence, by the induction principle, we have:

pr2 (a, b) ≡ (λw. λy. y) a b ≡ (λy. y) b ≡ b

We introduce the following convention.

Convention 1.5.27. An S-term of the form: ∏
q:
∑
w:A

P w

C q

can be written as: ∏
(r,t):

∑
w:A

P w

C (r, t)

Observe that this convention is justified by the induction principle for Σ-types, because the induction principle
can prove statements of the form: ∏

q:
∑
w:A

P w

C q

by assuming that q has a canonical form, like (r, t), for some r and t.
Similarly, an S-term of the form: ∑

q:
∑
w:A

P w

C q

can be written as: ∑
(r,t):

∑
w:A

P w

C (r, t)

N
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For example, following this convention, the second projection function can be written as:

pr2 :
∏

(r,t):
∑
w:A

P w

P r

since P (pr1 (r, t)) ≡ P r by definition of the first projection function.

Another useful function will be the Σmap function. This function represents a “functorial mapping” on Σ-types,
i.e. if we have maps between coordinates, then we have a map between pairs.

Lemma 1.5.28 (Σmap function). Let A : Ui , B : Uj be types, P : A → Uk , Q : B → Ul type families, and f : A → B a
function.

If we are given a function:

h :
∏
w:A

(P w)→ (Q (f w))

then, we define the Σmap function:

Σmap f h :

(∑
w:A

P w

)
→

(∑
w:B

Q w

)
as:

Σmap f h (a, b) :≡ (f a, h a b)

where a : A and b : P a.

Proof. By the recursion principle for Σ-types, it is enough to define a function:

g :
∏
w:A

(P w)→

∑
y:B

Q y


So, define:

g :≡ λ(w :A)(q :P w). (f w, h w q)

Notice g is well typed, since h w q : Q (f w).
Hence, we have:

Σmap f h (a, b) ≡ g a b ≡ (f a, h a b)

Before ending this section, we have a couple of remarks.

Remark 1.5.29 (Universe level for Σ-types). To compute the universe level of
∑

w:A B, just take the maximum
between the levels of A and B (for every w : A). The reasoning is similar to the one in Remark 1.5.16.

N

Remark 1.5.30 (Logical interpretation of Σ-types). Under the Curry-Howard correspondence, a Σ-type corre-
sponds to an existentially quantified statement [18]. In other words, type

∑
w:A B can be interpreted as: “There is

a proof w for A such that B holds”.
However, there is a fine point here. A Σ-type is a constructive existential. A constructive existential not only

claims that certain object exists, but also provides the actual object whose existence is claimed. In more detail,
given a pair (a, b) :

∑
w:A B, term a is the object claimed to exist, and b is a proof that object a satisfies proposition

B. This means that pairs can be interpreted as proofs for the existential statement, as they are the required
evidence.

To the contrary, a classical existential (as understood in first-order classical logic) claims that an object exists
without necessarily constructing the object whose existence is claimed. This is why indirect proofs for existential
claims are acceptable in classical logic.

In classical logic, an indirect proof for an existential claim has the following form:

• Assume that an object satisfying the claim does not exist.



1.5. TYPES 33

• Prove intermediate steps.

• A contradiction is reached. Conclude that an object satisfying the claim must exist.

However, an indirect proof as above only shows that some object exists, but we do not know the specific object
that does (i.e. we cannot point our finger to the particular object satisfying the claim). In classical logic, indirect
proofs are sound because classical existentials are not required to “show” the object they claim.

We will see that HoTT is able to represent classical existentials as well, once we introduce the concept of
(−1)-truncations in Section 1.11.1.

Finally, the product type A×B corresponds to logical conjunction. In other words, type A×B can be interpreted
as: “Both A and B hold”. Given a pair (a, b) : A× B, term a will be a proof for A, and b will be a proof for B.

N

1.5.3 Sum type

If A and B are types, then A + B will denote the sum type (also called coproduct type) of A and B. Intuitively,
whenever A and B are interpreted as collections, A + B will be their disjoint union.

We state the formation rule for sum types.

• Formation (S-context: Γ; S-term: A, B):

Γ ` A : Ui Γ ` B : Ui
Γ ` A + B : Ui

+-FORM

Informal reading. If A and B are types at level i, then A + B is a type at level i.

The formation rule requires both types to be at the same universe level, but this is not necessary, as the following
lemma shows.

Lemma 1.5.31. Let A : Ui and B : Uj be types. Then, A + B is a type at level max{i, j}.

Proof. The statement is claiming that the following judgment is derivable:

A : Ui , B : Uj ` A + B : Umax{i,j}

So, we suppose the context. To be able to use the +-FORM rule we have to prove:

• Term A is a type at level max{i, j}. Proof: by assumption we have A : Ui . Hence, by the cumulative universe
rule we have A : Umax{i,j}.

• Term B is a type at level max{i, j}. Proof: by assumption we have B : Uj . Hence, by the cumulative universe
rule we have B : Umax{i,j}.

We follow the next convention regarding parentheses.

Convention 1.5.32 (Parentheses). In an S-term of the form A + B we will never remove the most external
parentheses in A and B. But, if A or B are sum types themselves, then their most external parentheses can be
removed on the corresponding case.

For example, the S-term A + (C + D) will be written as A + C + D, but parentheses will be kept in (C×D) + B.
Notice that there is ambiguity in the expression A + C + D, because it could be interpreted as (A + C) + D or

A + (C + D). However, it can be proved that the sum type is associative.18 So, it does not matter how S-term
A + C + D is interpreted. But, for the sake of resolving ambiguity, (A + C) + D will be the preferred interpretation.

Of course, we may add parentheses for emphasis or when there is ambiguity.
N

We state the introduction and elimination rules. This is the first case where we have two introduction rules.

18We omit the proof, as this situation will never occur on this report.
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• Introduction 1 (S-context: Γ; S-term: α, A, B):

Γ ` A : Ui Γ ` B : Ui Γ ` α : A

Γ ` inl α : A + B
+-INTRO-1

Informal reading. Let α be a term belonging to A. Then, we can construct a copy of term α, denoted as
(inl α), in type A + B.

Here, inl is called left injection, because the copy it produces will live at the type on the left side of A + B.

• Introduction 2 (S-context: Γ; S-term: β, A, B):

Γ ` A : Ui Γ ` B : Ui Γ ` β : B

Γ ` inr β : A + B
+-INTRO-2

Informal reading. Let β be a term belonging to B. Then, we can construct a copy of term β, denoted as
(inr β), in type A + B.

Here, inr is called right injection, because the copy it produces will live at the type on the right side of A + B.

• Elimination (S-context: Γ; S-term: g, h, q, A, B, C; Variable: w, y, z):

Γ, z : A + B ` C : Ui Γ,w : A ` g : C[z/inl w] Γ, y : B ` h : C[z/inr y] Γ ` q : A + B

Γ ` ind+[z.C](w.g; y.h; q) : C[z/q]
+-ELIM

Informal reading. Condition Γ, z : A + B ` C : Ui reads: “Let C be a unary predicate on the disjoint union of
A and B”.

Condition Γ ` q : A + B reads: “Let q be an arbitrary element in the disjoint union”.

Then, the rest reads: “To prove that predicate C holds for q (i.e. type C[z/q] in the conclusion), prove that
predicate C holds for all copies on the left side (i.e. condition Γ,w : A ` g : C[z/inl w]) and all copies on the
right side (i.e. condition Γ, y : B ` h : C[z/inr y])”.

The intuition is that if C holds for all canonical elements of type A + B (a canonical element is a term of
the form (inl w) or (inr y)), then it will hold for an arbitrary element q in type A + B, because q can be
“decomposed” into one of the forms (inl w) for some w or (inr y) for some y, as this is the only way to build
elements of A + B in the first place, i.e. the only way to build q is by using one of the introduction rules.

The +-eliminator term ind+[z.C](w.g; y.h; q) is a witness for this proof by elimination. It remembers all the
pieces: the predicate C, the proof g that C holds for all copies on the left side of A + B, the proof h that C
holds for all copies on the right side of A + B, and the arbitrary element q.

The dot notation z.C, w.g, and y.h in term ind+[z.C](w.g; y.h; q) denotes bind structures (see Definition 1.5.34
below).

Convention 1.5.33 (Parentheses). Given an S-term of the form:

ind+[z.A](w.τ ; y.ν; p)

we will omit the most external parentheses in A, τ , ν, and p. However, we may write them for emphasis or in case
of ambiguity.

N

We now introduce the bind structures for sum types.

Definition 1.5.34 (Bind structures and local variables for sum types). In a +-eliminator:

ind+[z.A](w.τ ; y.ν; p)

there are three bind structures:
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• The expression z.A is a bind structure. Its set of local variables is defined to be {z}.

• The expression w.τ is a bind structure. Its set of local variables is defined to be {w}.

• The expression y.ν is a bind structure. Its set of local variables is defined to be {y}.

N

It is time to state the computation rules. Since we have two constructors (i.e. two introduction rules), there are
two ways to give a constructor into a +-eliminator. Hence, we will have two computation rules.

• Computation 1 (S-context: Γ; S-term: α, g, h, A, B, C; Variable: w, y, z):

Γ, z : A + B ` C : Ui Γ,w : A ` g : C[z/inl w] Γ, y : B ` h : C[z/inr y] Γ ` α : A

Γ ` ind+[z.C](w.g; y.h; inl α) ≡ g[w/α] : C[z/inl α]
+-COMP-1

Informal reading. If the the proof produced by the elimination rule is applied on the left injection (inl α),
then this proof is just g instantiated with α.

To understand the intuition behind the computation rule, it is useful to reinterpret the elimination rule in a
procedural way. Given arbitrary q : A + B, the elimination rule produces a proof for C[z/q] by “decomposing”
q into one of the forms (inl r) or (inr t), for some r and t. Then, it passes r or t into g or h, respectively, to
produce a proof for one of the statements: C[z/inl r] or C[z/inr t] (both of them denoting statement C[z/q]).

Hence, if q : A + B is already decomposed as (inl α), the proof produced by the elimination rule is actually g
applied on α, as the computation rule suggests.

• Computation 2 (S-context: Γ; S-term: β, g, h, A, B, C; Variable: w, y, z):

Γ, z : A + B ` C : Ui Γ,w : A ` g : C[z/inl w] Γ, y : B ` h : C[z/inr y] Γ ` β : B

Γ ` ind+[z.C](w.g; y.h; inr β) ≡ h[y/β] : C[z/inr β]
+-COMP-2

Informal reading. The idea is similar to the computation 1 rule, but this time we work on right injections,
and we use proof h instead of g.

HoTT does not state a uniqueness rule for sum types. Also, the elimination and computation rules can be
encapsulated into an induction principle.

Lemma 1.5.35 (Induction principle for sum types). Let A : Ui and B : Uj be types.

If C : (A + B)→ Uk is a type family, and we have two functions:

g :
∏
w:A

C (inl w)

h :
∏
y:B

C (inr y)

Then, we can define a function:

f :
∏

q:A+B

C q

as:

f (inl l) :≡ g l

f (inr r) :≡ h r

where l : A and r : B.
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Proof. If we define the context:

Γ :≡ A : Ui , B : Uj , C : (A + B)→ Uk , g :
∏
w:A

C (inl w), h :
∏
y:B

C (inr y)

then, the lemma is claiming that there is an S-term f such that the following judgments are derivable:

Γ ` f :
∏

q:A+B

C q

Γ, l : A ` f (inl l) ≡ g l : C (inl l)

Γ, r : B ` f (inr r) ≡ h r : C (inr r)

For the first judgment, suppose the context and then define:

f :≡ λq :A + B. ind+[z.C z](w.g w; y.h y; q)

Now, we check this f has the required type. Suppose q : A + B. We need to check:

ind+[z.C z](w.g w; y.h y; q) : C q

We will use the +-ELIM rule, so we need to prove:

• Given z : A + B, term C z is a type. Proof: apply Π-ELIM to get C z : Uk .

• Given w : A, check g w : (C z)[z/inl w]. Proof: apply the type family version of Π-ELIM to get g w : C (inl w).
But (C z)[z/inl w] denotes C (inl w).

• Given y : B, check h y : (C z)[z/inr y]. Proof: apply the type family version of Π-ELIM to get h y : C (inr y).
But (C z)[z/inr y] denotes C (inr y).

• q : A + B holds. Proof: by assumption.

Hence, we have:

ind+[z.C z](w.g w; y.h y; q) : (C z)[z/q]

But (C z)[z/q] denotes C q.

Now, for the second judgment, we have by computation rules:

f (inl l) ≡ (λq. ind+[z.C z](w.g w; y.h y; q)) (inl l)

≡ (ind+[z.C z](w.g w; y.h y; q))[q/inl l]

≡ ind+[z.C z](w.g w; y.h y; inl l)

≡ (g w)[w/l]

≡ g l

And for the third judgment:

f (inr r) ≡ (λq. ind+[z.C z](w.g w; y.h y; q)) (inr r)

≡ (ind+[z.C z](w.g w; y.h y; q))[q/inr r]

≡ ind+[z.C z](w.g w; y.h y; inr r)

≡ (h y)[y/r]

≡ h r
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The induction principle reads (under the Curry-Howard correspondence): “Let C be a unary predicate on a
disjoint union. If we have proofs g and h expressing that all canonical elements (inl l) and (inr r) in A + B satisfy C,
then we will have a proof f that all elements q in A + B satisfy C”.

But from the point of view of functions, the induction principle reads: “To define a function on a sum type,
define it by cases on canonical elements (inl l) and (inr r), and freely use terms l and r inside the function body of
the respective equation”.

When family C in the induction principle is constant, we have a recursion principle.

Lemma 1.5.36 (Recursion principle for sum types). Let A : Ui and B : Uj be types.
If D : Uk is a type and we have two functions:

g : A→ D

h : B→ D

Then, we can define a function:

f : (A + B)→ D

as:

f (inl l) :≡ g l

f (inr r) :≡ h r

where l : A and r : B.

Proof. Instantiate the induction principle with the constant family:

C :≡ (λz. D) : (A + B)→ Uk

And simplify applications accordingly.

Before ending this section, we have a couple of remarks.

Remark 1.5.37 (Universe level for sum types). To compute the universe level of A + B, take the maximum of the
levels of A and B. This is a direct consequence of Lemma 1.5.31.

N

Remark 1.5.38 (Logical interpretation of sum types). Under the Curry-Howard correspondence, a sum type
corresponds to logical disjunction [18]. In other words, type A + B can be interpreted as: “Either A or B holds”.

However, a sum type is a constructive disjunction. Constructive disjunctions not only claim that one of two
cases holds, but also indicate which case actually happens. For example, when we have a term inl α : A + B, this is
a proof for either A or B, but we also know that A was the case that actually happened, because we are given a
proof α for A injected on the left side of A + B. The reasoning is similar for terms inr β : A + B.

Instead, a classical disjunction (as understood in first-order classical logic) claims that one of two cases holds
without necessarily indicating the case that actually happens. This is why indirect proofs for classical disjunctions
are acceptable in classical logic.

In classical logic, an indirect proof for a disjunction has the following form:

• Assume that neither of the cases is true.

• Prove intermediate steps.

• A contradiction is reached. Conclude that one of the cases must be true.

However, an indirect proof as above only shows that one of the cases holds, but we cannot point our finger to
the actual case that holds.
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Let us do an example to understand the difference between a classical disjunction and a constructive one.
Suppose P is the statement of some mathematical conjecture which has not been proved or disproved. Then, in
classical logic we have that:

“P is true or false” (1.7)

is a true statement because we are allowed to use an indirect proof, i.e. assuming “P is neither true nor false”
is trivially a contradiction. In other words, we are not required to indicate the case that holds when proving a
disjunction.

Instead, in a constructive logic like HoTT, if we want to prove (1.7), we have to either construct a proof for P
or disprove19 P, since we are forced to indicate the case that actually holds (i.e. we cannot use an indirect proof
because this will “hide” the case).

We will see that HoTT is able to represent classical disjunctions as well, once we introduce the concept of
(−1)-truncations in Section 1.11.1.

N

1.5.4 The empty type 0

The empty type 0 will represent a collection without elements. Hence, it will not have constructors.
We have the following inference rules.

• Formation (S-context: Γ):
Γ ctx

Γ ` 0 : Ui
0-FORM

Informal reading. 0 is a type at an arbitrary level i.

This rule means that type 0 is at every universe level.

• Elimination (S-context: Γ; S-term: α, C; Variable: z):

Γ, z : 0 ` C : Ui Γ ` α : 0

Γ ` ind0[z.C](α) : C[z/α]
0-ELIM

Informal reading. Condition Γ, z : 0 ` C : Ui reads: “Let C be a unary predicate on the empty type”.

Then, the rest reads: “If we are able to construct an element α on the empty type, then we are in an
inconsistent state (because 0 is empty !) and we can conclude anything. In particular, we can conclude that
C holds for α”.

The elimination rule captures the ex falso quodlibet rule in logic, which states that once a contradiction is
reached, any proposition follows. Hence, we can imagine type 0 as representing a contradiction.

The 0-eliminator term ind0[z.C](α) is a witness for this proof by elimination. It remembers all the pieces: the
predicate C, and the (impossible) element α.

The dot notation z.C in term ind0[z.C](α) denotes a bind structure (see Definition 1.5.40 below).

Since there are no introduction rules, there are no terms to be placed inside a 0-eliminator. Hence, there are no
computation rules. Similarly, there are no uniqueness rules.

Convention 1.5.39 (Parentheses). Given an S-term of the form:

ind0[z.A](τ)

we will omit the most external parentheses in S-terms A and τ . However, we may write them for emphasis or in
case of ambiguity.

N

We now introduce the bind structures for 0.

19Section 1.5.4 will explain how falsity is modeled in HoTT.
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Definition 1.5.40 (Bind structures and local variables for the empty type). In a 0-eliminator:

ind0[z.A](τ)

The expression z.A is a bind structure. Its set of local variables is defined to be {z}.
N

We have the following induction principle for the empty type.

Lemma 1.5.41 (Induction principle for the empty type). If C : 0 → Ui is a type family. Then, the following type
is inhabited: ∏

q:0

C q

Proof. The lemma is claiming that there is an S-term f such that the following judgment is derivable:

C : 0→ Ui ` f :
∏
q:0

C q

So, suppose the context and then define:

f :≡ λq :0. ind0[z.C z](q)

We need to check this f has the required type. Suppose q : 0. We need to check:

ind0[z.C z](q) : C q

We will use the 0-ELIM rule, so we need to prove:

• Given z : 0, term C z is a type. Proof: apply Π-ELIM to get C z : Ui .

• Check q : 0. Proof: by assumption.

Hence, we have:
ind0[z.C z](q) : (C z)[z/q]

But (C z)[z/q] denotes C q.

The induction principle reads (under the Curry-Howard correspondence): “From a contradiction, we can con-
clude any predicate C whatsoever” or “Any element of 0 satisfies any predicate C whatsoever”, which is vacuously
true since there are no elements in 0.

When family C in the induction principle is constant, we have a recursion principle.

Lemma 1.5.42 (Recursion principle for the empty type). If D : Ui is a type. Then, the following type is inhabited:

0→ D

Proof. Instantiate the induction principle with the constant family:

C :≡ (λz. D) : 0→ Ui

And simplify applications accordingly.

Intuitively, the recursion principle states that there is always a function from the empty collection into an
arbitrary collection. In fact, we should be able to prove that this function is unique (see Lemma 1.8.2).

To express falsity in HoTT, we introduce the negation operator, which can be defined with the aid of the empty
type.
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Definition 1.5.43 (Negation operator ¬). Let A : Ui be a type. Then, type:

A→ 0

will be denoted as ¬A. We read ¬A as “not A” or “A is not inhabited”.
N

Before ending this section, we have a remark.

Remark 1.5.44 (Logical interpretation of 0). Under the Curry-Howard correspondence, the empty type corre-
sponds to the “always false” proposition ⊥ or contradiction [18]. Hence, proposition ¬A (denoting A → 0) means
that “A is refutable”, because a contradiction is reached if we assume A.

N

1.5.5 The unit type 1

The unit type 1 will represent a collection with exactly one element.
We state the formation, introduction, and elimination rules.

• Formation (S-context: Γ):
Γ ctx

Γ ` 1 : Ui
1-FORM

Informal reading. 1 is a type at an arbitrary level i.

This rule means that type 1 is at every universe level.

• Introduction (S-context: Γ):
Γ ctx

Γ ` ? : 1
1-INTRO

Informal reading. ? is an element of 1.

• Elimination (S-context: Γ; S-term: g, q, C; Variable: z):

Γ, z : 1 ` C : Ui Γ ` g : C[z/?] Γ ` q : 1

Γ ` ind1[z.C](g; q) : C[z/q]
1-ELIM

Informal reading. Condition Γ, z : 1 ` C : Ui reads: “Let C be a unary predicate on the unit type”.

Condition Γ ` q : 1 reads: “Let q be an arbitrary element in the unit type”.

Then, the rest reads: “To prove that predicate C holds for q (i.e. type C[z/q] in the conclusion), prove that
predicate C holds for ? (i.e. condition Γ ` g : C[z/?])”.

The intuition is that if C holds for ?, then it will hold for some arbitrary element q in 1, because q must be
?, as the only way to build elements in 1 is through the introduction rule.

The 1-eliminator term ind1[z.C](g; q) is a witness for this proof by elimination. It remembers all the pieces:
the predicate C, the proof g that C holds for ?, and the arbitrary element q.

The dot notation z.C in term ind1[z.C](g; p) denotes a bind structure (see Definition 1.5.46 below).

Convention 1.5.45 (Parentheses). Given an S-term of the form:

ind1[z.A](τ ; ν)

we will omit the most external parentheses in S-terms A, τ , and ν. However, we may write them for emphasis or in
case of ambiguity.

N

We now introduce the bind structures for the unit type.
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Definition 1.5.46 (Bind structures and local variables for the unit type). In a 1-eliminator:

ind1[z.A](τ ; ν)

The expression z.A is a bind structure. Its set of local variables is defined to be {z}.
N

Now the computation rule.

• Computation (S-context: Γ; S-term: g, C; Variable: z):

Γ, z : 1 ` C : Ui Γ ` g : C[z/?]

Γ ` ind1[z.C](g; ?) ≡ g : C[z/?]
1-COMP

Informal reading. If the proof produced by the elimination rule is applied on ?, then this proof must be g.

To understand the intuition behind the computation rule, it is useful to reinterpret the elimination rule in a
procedural way. Given arbitrary q : 1, the elimination rule produces a proof for C[z/q] by “decomposing” q
into the form ?. Then, it returns the proof g, which is a proof for C[z/?], or equivalently, C[z/q].

Hence, if q : 1 is already decomposed as ?, the proof produced by the elimination rule is actually g, as the
computation rule suggests.

HoTT does not state a uniqueness rule for the unit type, but it has a propositional uniqueness principle (see
Lemma 1.6.2).

Also, the elimination and computation rules can be encapsulated into an induction principle.

Lemma 1.5.47 (Induction principle for the unit type). If C : 1 → Ui is a type family and we have a term g : C ?,
then we can define a function:

f :
∏
q:1

C q

as:
f ? :≡ g

Proof. The pattern should be clear by now. Just define:

f :≡ λq :1. ind1[z.C z](g; q)

and then check that f is well-typed by using the 1-ELIM rule.
The equation f ? ≡ g follows by unfolding definitions and computation.

The induction principle reads (under the Curry-Howard correspondence): “Let C be a unary predicate on the
unit type. To prove that C holds for all elements in 1, just prove that C holds for ?”.

But from the point of view of functions, the induction principle reads: “To define a function on the unit type,
it is enough to define it on ?”.

When family C in the induction principle is constant, we have a recursion principle.

Lemma 1.5.48 (Recursion principle for the unit type). If D : Ui is a type and we have a term g : D, then we can
define a function:

f : 1→ D

as:
f ? :≡ g

Proof. Instantiate the induction principle with the constant family:

C :≡ (λz. D) : 1→ Ui

And simplify applications accordingly.
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Before ending this section, we have the following remark.

Remark 1.5.49 (Logical interpretation of the unit type). Under the Curry-Howard correspondence, the unit type
corresponds to the “always true” proposition > or tautology [18].

N

1.5.6 The natural number type N

Type N will correspond to the collection of natural numbers.
We state the formation and introduction rules.

• Formation (S-context: Γ):
Γ ctx

Γ ` N : Ui
N-FORM

Informal reading. N is a type at an arbitrary universe level i.

This rule means that type N is at every universe level.

• Introduction 1 (S-context: Γ):
Γ ctx

Γ ` 0 : N
N-INTRO-1

Informal reading. The zero term 0 is a natural number.

• Introduction 2 (S-context: Γ; S-term: n):

Γ ` n : N

Γ ` succ n : N
N-INTRO-2

Informal reading. If n is a natural number, then its successor (succ n) is a natural number.

Notice we have two introduction rules (i.e. two constructors), one for zero and another one for the successor.
The elimination rule will encode the idea that these two constructors are the only way to get natural numbers.

• Elimination (S-context: Γ; S-term: g, h, n, C; Variable: w, z):

Γ, z : N ` C : Ui Γ ` g : C[z/0] Γ, z : N,w : C ` h : C[z/succ z] Γ ` n : N

Γ ` indN[z.C](g; z.w.h; n) : C[z/n]
N-ELIM

Informal reading. Condition Γ, z : N ` C : Ui reads: “Let C be a unary predicate on natural numbers”.

Condition Γ ` n : N reads: “Let n be an arbitrary natural number”.

Then, the rest reads: “To prove that predicate C holds for n (i.e. type C[z/n] in the conclusion), prove:

– Predicate C holds for 0, i.e. condition Γ ` g : C[z/0].

– If z : N satisfies C, then (succ z) also satisfies C, i.e. condition Γ, z : N,w : C ` h : C[z/succ z].

Notice that variable z appears in C, this is why assumption w : C expresses that z satisfies C”.

This is the usual induction principle for the natural numbers, i.e. prove the base case (witnessed by g), and
then prove the inductive step for the successor (witnessed by h).

The N-eliminator term indN[z.C](g; z.w.h; n) is a witness for this proof by elimination. It remembers all the
pieces: the predicate C, the proof g that C holds for 0, the proof h for the inductive step, and the arbitrary
element n.

The dot notation z.C and z.w.h in term indN[z.C](g; z.w.h; n) denotes bind structures (see Definition 1.5.51
below).
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Convention 1.5.50 (Parentheses). Given an S-term of the form:

indN[z.A](τ ; y.w.ν; p)

we will omit the most external parentheses in S-terms A, τ , ν, and p. However, we may write them for emphasis or
in case of ambiguity.

N

We now introduce the bind structures for N.

Definition 1.5.51 (Bind structures and local variables for N). In a N-eliminator:

indN[z.A](ν; y.w.τ ; p)

there are two bind structures:

• The expression z.A is a bind structure. Its set of local variables is defined to be {z}.

• The expression y.w.τ is a bind structure. Its set of local variables is defined to be {y,w}.

N

It is time to state the computation rules. Since we have two constructors (i.e. two introduction rules), there
will be two ways to give a constructor into an N-eliminator. Hence, we will have two computation rules.

• Computation 1 (S-context: Γ; S-term: g, h, C; Variable: w, z):

Γ, z : N ` C : Ui Γ ` g : C[z/0] Γ, z : N,w : C ` h : C[z/succ z]

Γ ` indN[z.C](g; z.w.h; 0) ≡ g : C[z/0]
N-COMP-1

Informal reading. If the proof produced by the elimination rule is applied on 0, then this proof must be g, i.e.
it must be the proof for the base case.

• Computation 2 (S-context: Γ; S-term: g, h, n, C; Variable: w, z):

Γ, z : N ` C : Ui Γ ` g : C[z/0] Γ, z : N,w : C ` h : C[z/succ z] Γ ` n : N

Γ ` indN[z.C](g; z.w.h; succ n) ≡ h[z/n,w/indN[z.C](g; z.w.h; n)] : C[z/succ n]
N-COMP-2

Informal reading. Suppose that the elimination rule was used to produce the proof indN[z.C](g; z.w.h; succ n),
i.e. (succ n) satisfies C. Then, the only way for this to be true is that the elimination rule was used to produce
the proof indN[z.C](g; z.w.h; n) (i.e. n satisfies C), which then was passed into the proof for the inductive step
h.

HoTT does not state a uniqueness rule for N. Also, the elimination and computation rules can be encapsulated
into an induction principle.

Lemma 1.5.52 (Induction principle for N). Let C : N→ Ui be a type family. If we have:

g : C 0

h :
∏
z:N

(C z)→ (C (succ z))

Then, we can define a function:

f :
∏
n:N

C n

as:

f 0 :≡ g

f (succ m) :≡ h m (f m)

where m : N.
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Proof. We follow the same pattern.20 First define:

f :≡ λn :N. indN[z.C z](g; z.w.h z w; n)

Now, we check that f has the required type. Suppose n : N. We need to check:

indN[z.C z](g; z.w.h z w; n) : C n

We will use the N-ELIM rule, so we need to prove:

• Given z : N, term C z is a type. Proof: apply Π-ELIM to get C z : Ui .

• Check g : (C z)[z/0]. Proof: by assumption, since (C z)[z/0] denotes C 0.

• Given z : N and w : C z, check h z w : (C z)[z/succ z]. Proof: apply twice the type family version of Π-ELIM to
get h z w : C (succ z). But (C z)[z/succ z] denotes C (succ z).

• Check n : N. Proof: by assumption.

Hence, we have:
indN[z.C z](g; z.w.h z w; n) : (C z)[z/n]

But (C z)[z/n] denotes C n.
Now, the first equation follows directly by definition and the N-COMP-1 rule. For the second equation we have:

f (succ m) ≡ (λn. indN[z.C z](g; z.w.h z w; n)) (succ m)

≡ indN[z.C z](g; z.w.h z w; succ m)

≡ (h z w)[z/m,w/indN[z.C z](g; z.w.h z w; m)]

≡ h m indN[z.C z](g; z.w.h z w; m)

≡ h m (indN[z.C z](g; z.w.h z w; n)[n/m])

≡ h m ((λn. indN[z.C z](g; z.w.h z w; n)) m)

≡ h m (f m)

The induction principle reads (under the Curry-Howard correspondence): “Let C be a unary predicate on natural
numbers. If we prove the base case C 0 and the inductive step (C n) → (C (succ n)) for any natural n, then C will
hold for all naturals”.

But from the point of view of functions, the induction principle reads: “To define a function on natural numbers,
simply define it by primitive recursion”.

When family C in the induction principle is constant, we have a recursion principle.

Lemma 1.5.53 (Recursion principle for natural numbers). Let D : Ui be a type. If we have:

g : D

h : N→ D→ D

Then, we can define a function:
f : N→ D

as:

f 0 :≡ g

f (succ m) :≡ h m (f m)

where m : N.

Proof. Instantiate the induction principle with the constant family:

C :≡ (λz. D) : N→ Ui
And simplify applications accordingly.

20We will do the details, as this is the first case in which we have a type with an inductive step on the elimination rule.
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1.5.7 Identity types

Let A be a type, and α, β two terms of type A. Type α =A β will denote the proposition that α and β are identifiable.
When we have a term τ : α =A β, this term τ will be a proof to the fact that α and β are identifiable. Hence, we
call these types, identity types.

Do not confuse = with definitional equality ≡. Definitional equality is a judgment, while the identity type is,
well, a type. It will be true that if α simplifies to β (i.e. judgment α ≡ β is derivable), then we will have that
α and β are identifiable (i.e. α =A β is inhabited). But, the converse will not be true in general: if α and β are
identifiable, then α does not necessarily simplify to β.

We provide an example to make the difference clear. Given a pair p :
∑

w:A P w, in Lemma 1.6.1 we will prove
that the following type is inhabited:

(pr1 p, pr2 p) = p

If we attempt to derive the judgment (pr1 p, pr2 p) ≡ p we will get stuck, because the projection functions do
not know how to compute when a variable p is given as input to them, i.e. their defining equations only compute
on canonical pairs (see Lemma 1.5.26). In other words, from the point of view of definitional equality, computing
the first and second coordinates of a variable itself does not make any sense. Definitional equality is syntactical
computation.

To the contrary, when we claim that (pr1 p, pr2 p) = p is inhabited, we are implicitly assuming that variable p
stands for some arbitrary canonical pair (a, b). Hence, we are really claiming that type (pr1 (a, b), pr2 (a, b)) = (a, b)
is inhabited. In other words, type (pr1 p, pr2 p) = p is claiming a general property about pairs (i.e. it holds for any
canonical pair).

We state the formation and introduction rules for identity types.

• Formation (S-context: Γ; S-term: α, β, A):

Γ ` A : Ui Γ ` α : A Γ ` β : A

Γ ` α =A β : Ui
=-FORM

Informal reading. Let A be a type at level i. If α and β are terms of type A, then α =A β is a type at level i.

• Introduction (S-context: Γ; S-term: α, A, B):

Γ ` A : Ui Γ ` α : A

Γ ` reflA α : α =A α
=-INTRO

Informal reading. Let α be a term belonging to A. Then, term reflA α is a proof expressing that α is identifiable
with itself.

Term reflA α is called the reflexivity proof or the trivial proof for α =A α.

Convention 1.5.54. We follow the next conventions:

• In an S-term of the form α =A β we will omit the most external parentheses in S-terms α and β. However,
sometimes we may write them for readability.

• Most of the time, in an S-term of the form α =A β, we will omit the S-term A. For example, S-term 0 =U0 1
can be written as 0 = 1.

N

Now, we state the elimination rule for identity types.

• Elimination (S-context: Γ; S-term: α, β, g, q, A, C; Variable: w, y, z, p):

Γ,w : A, y : A, p : w =A y ` C : Ui
Γ, z : A ` g : C[w/z, y/z, p/reflA z] Γ ` α : A Γ ` β : A Γ ` q : α =A β

Γ ` ind=[w.y.p.C](z.g; α; β; q) : C[w/α, y/β, p/q]
=-ELIM
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Informal reading. Condition Γ,w : A, y : A, p : w =A y ` C : Ui reads: “Let C be a predicate on identification
proofs”.

Conditions Γ ` α : A, Γ ` β : A, and Γ ` q : α =A β together read: “Let q be a proof that elements α and β
are identifiable”.

Then, the rest reads: “To prove that predicate C holds for q (i.e. type C[w/α, y/β, p/q] in the conclusion),
prove that predicate C holds for all reflexivity proofs on elements of A”.

We are given that α and β are identifiable through a proof q. Since the introduction rule only constructs
trivial proofs, term q should be decomposable into the form reflA b for some b : A (i.e. the only way to build
q is through the introduction rule). Therefore, C should hold for q because C holds for all trivial proofs.

The explanation on the last paragraph seems natural enough. However, at some point in the future we will
add inference rules that introduce identity proofs different from the reflexivity proof (see Sections 1.6.1 and
1.6.2). At the moment those rules are added, the explanation on the previous paragraph will start to seem
doubtful, because reflexivity proofs will not be the only proofs for identities. So, we will have to revise what
the elimination rule is really saying. The homotopy interpretation for HoTT, which will be presented in
Section 1.7, will provide an explanation for why the elimination rule is still sound even though there are
identity proofs different from the reflexivity proof.

The =-eliminator term ind=[w.y.p.C](z.g; α; β; q) is a witness for this proof by elimination. It remembers all
the pieces: the predicate C, the proof g that C holds for reflexivity proofs, and the elements α, β with proof
q, which witnesses their identification.

We follow the usual dot notation for describing bind structures in ind=[w.y.p.C](z.g; α; β; q).

Convention 1.5.55 (Parentheses). Given an S-term of the form:

ind=[w.y.p.A](z.τ ; α; β; ν)

we will omit the most external parentheses in S-terms A, τ , α, β, and ν. However, we may write them for emphasis
or in case of ambiguity.

N

We now introduce the bind structures for identity types.

Definition 1.5.56 (Bind structures and local variables for identity types). In a =-eliminator:

ind=[w.y.p.A](z.τ ; α; β; ν)

there are two bind structures:

• The expression w.y.p.A is a bind structure. Its set of local variables is defined to be {w, y, p}.

• The expression z.τ is a bind structure. Its set of local variables is defined to be {z}.

N

It is time to state the computation rule.

• Computation (S-context: Γ; S-term: α, g, A, C; Variable: w, y, z, p):

Γ,w : A, y : A, p : w =A y ` C : Ui Γ, z : A ` g : C[w/z, y/z, p/reflA z] Γ ` α : A

Γ ` ind=[w.y.p.C](z.g; α; α; reflA α) ≡ g[z/α] : C[w/α, y/α, p/reflA α]
=-COMP

Informal reading. If we prove, using the elimination rule, that C holds for the trivial proof reflA α, then
this proof must be g applied on α, because the elimination rule makes use of g to produce proofs for
C[w/α, y/α, p/reflA α].

HoTT does not state a uniqueness rule for identity types. Also, the elimination and computation rules can be
encapsulated into an induction principle.
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Lemma 1.5.57 (Induction principle for identity types). Let A : Ui be a type.
If we are given a family C :

∏
w,y:A ((w = y)→ Uj ),21 and a function:

g :
∏
z:A

C z z (reflA z)

Then, we can define a function:

f :
∏

m,n:A

∏
q:m=n

C m n q

as:
f a a (reflA a) :≡ g a

where a : A.

Proof. Define:
f :≡ λ(m :A)(n :A)(q :m = n). ind=[w.y.p.C w y p](z.g z; m; n; q)

Now, we check that f has the required type. Suppose m : A, n : A, and q : m = n. We need to check:

ind=[w.y.p.C w y p](z.g z; m; n; q) : C m n q

We will use the =-ELIM rule, so we need to prove:

• Given w : A, y : A, and p : w = y, term C w y p is a type. Proof: apply Π-ELIM three times to get C w y p : Uj .

• Given z : A, check g z : (C w y p)[w/z, y/z, p/reflA z]. Proof: apply the type family version of Π-ELIM to get
g z : C z z (reflA z).

But (C w y p)[w/z, y/z, p/reflA z] denotes C z z (reflA z).

• Check m : A. Proof: by assumption.

• Check n : A. Proof: by assumption.

• Check q : m = n. Proof: by assumption.

Hence, we have:
ind=[w.y.p.C w y p](z.g z; m; n; q) : (C w y p)[w/m, y/n, p/q]

But (C w y p)[w/m, y/n, p/q] denotes C m n q.

Now, for the equation, we have by definition and computation:

f a a (reflA a) ≡ (λm. λn. λq. ind=[w.y.p.C w y p](z.g z; m; n; q)) a a (reflA a)

≡ ind=[w.y.p.C w y p](z.g z; a; a; reflA a)

≡ (g z)[z/a]

≡ g a

The induction principle reads (under the Curry-Howard correspondence): “To prove that C holds for m and n
when m and n are identifiable, it is enough to prove that C holds for trivial proofs”.

But from the point of view of functions, the induction principle reads: “To define a function on identity types,
just define it on trivial proofs reflA a for arbitrary a : A, and freely use term a : A inside the function body”.

When family C in the induction principle is constant, we have a recursion principle.

21This function is a type family, but a family parameterized over three inputs instead of the usual form E → Uj , which depends on
one input.

It is possible to rewrite the induction principle so that it uses a standard family C : (
∑

w,y:A w = y)→ Uj (i.e. dependent on only one

input), because types (
∑

w,y:A w = y)→ Uj and
∏

w,y:A ((w = y)→ Uj ) are equivalent by Lemma 1.6.29. We will define the concept of
type equivalence in Section 1.6.
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Lemma 1.5.58 (Recursion principle for identity types). Let A : Ui and D : Uj be types. If we are given a function:

g : A→ D

Then, we can define a function:

f :
∏

m,n:A

((m = n)→ D)

as:
f a a (reflA a) :≡ g a

where a : A.

Proof. Instantiate the induction principle with the constant family:

C :≡ (λw. λy. λp. D) :
∏

w,y:A

((w = y)→ Uj )

And simplify applications accordingly.

To show how the induction principle is applied, we define some functions that will be prominently used on this
report.

The first one is the symmetry operator. It takes a proof q : a = b and returns a proof for the symmetric statement
(b = a). Also, the operator acts as proof for the statement that the identity type is symmetric.

Lemma 1.5.59 (Symmetry operator). Let A : Ui be a type. We define a function:22

−1 :
∏

w,y:A

(w = y)→ (y = w)

called the symmetry operator, as:
−1 a a (reflA a) :≡ reflA a (1.8)

where a : A.
Given w : A, y : A, and p : w = y, instead of (−1 w y p) we will write p−1, where inputs w and y are left implicit.
Hence, Equation (1.8) can be written as:

(reflA a)−1 :≡ reflA a

Proof. By the induction principle instantiated with the family:23

C :≡ (λw. λy. λp. y = w) :
∏

w,y:A

((w = y)→ Ui)

if we can construct a function:
g :
∏
z:A

C z z (reflA z)

or equivalently (after simplification):

g :
∏
z:A

z = z

then, there will be a function:
−1 :

∏
m,n:A

∏
q:m=n

C m n q

22The symbol −1 is the name of the function.
23Since A is at level i, type y = w inside the lambda is at level i. See the formation rule for the identity type on page 45.
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or equivalently (after simplification):
−1 :

∏
m,n:A

∏
q:m=n

n = m

which can be written as (since q does not occur in n = m):

−1 :
∏

m,n:A

(m = n)→ (n = m)

So, define:

g :≡ (λz. reflA z) :
∏
z:A

z = z

And we have:
−1 a a (reflA a) ≡ g a ≡ (λz. reflA z) a ≡ reflA a

The next function is the transitivity operator. It takes two proofs p : a = b, q : b = c and returns a proof for the
transitive statement (a = c). Also, the operator acts as proof for the statement that the identity type is transitive.

Lemma 1.5.60 (Transitivity operator). Let A : Ui be a type. We define a function:24

� :
∏

w,y,z:A

(w = y)→ (y = z)→ (w = z)

called the transitivity operator, as:
� a a a (reflA a) (reflA a) :≡ reflA a (1.9)

where a : A.
Given w : A, y : A, z : A, p : w = y, and q : y = z, instead of � w y z p q, we will write p � q, where inputs w, y, and

z are left implicit.
Hence, Equation (1.9) can be written as:

(reflA a) � (reflA a) :≡ reflA a

Proof. If we can construct a function:

f :
∏

w,y:A

(w = y)→

(∏
z:A

(y = z)→ (w = z)

)

then, we will be able to define the transitivity operator as:

� :≡ (λw. λy. λz. λp. λq. f w y p z q) :
∏

w,y,z:A

(w = y)→ (y = z)→ (w = z)

So, we focus on constructing function f. To this end, we apply the induction principle for identity types with
the family:25

C :≡

(
λw. λy. λp.

∏
z:A

(y = z)→ (w = z)

)
:
∏

w,y:A

((w = y)→ Ui)

So, f will exist if we are able to construct a function:

g :
∏
t:A

C t t (reflA t)

24The symbol � is the name of the function.
25Type A is at level i, therefore, by the =-FORM rule, types y = z and w = z are at level i. So, by Remark 1.5.16, type

∏
z:A (y = z)→

(w = z) is at level max{i, i, i} = i.
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or equivalently (after simplification):

g :
∏
t:A

∏
z:A

(t = z)→ (t = z)

But we will construct this function g by induction again, but this time with the family:

E :≡ (λw. λy. λp. w = y) :
∏

w,y:A

((w = y)→ Ui)

So, g will exist if we are able to construct a function:

h :
∏
r:A

E r r (reflA r)

or equivalently (after simplification):

h :
∏
r:A

r = r

So, define:

h :≡ (λr. reflA r) :
∏
r:A

r = r

Then, the induction principle tells us that g satisfies the following equation (for arbitrary input a : A):

g a a (reflA a) ≡ h a ≡ reflA a (1.10)

But now that g is defined, we satisfied the condition required for the existence of function f. Hence, f exists,
and the induction principle tells us that f satisfies the following equation (for arbitrary input a : A):

f a a (reflA a) ≡ g a (1.11)

Hence, we have by definition and computation rules:

� a a a (reflA a) (reflA a) ≡ f a a (reflA a) a (reflA a)

≡ (f a a (reflA a)) a (reflA a)

(1)
≡ (g a) a (reflA a)

≡ g a a (reflA a)

(2)
≡ reflA a

where (1) follows by (1.11), and (2) by (1.10).

The next function is the transport operator. This operator acts as proof for the statement that identical terms
satisfy the same properties.

Lemma 1.5.61 (Transport operator). Let A : Ui be a type. We define a function:

transport :
∏

P:A→Uj

∏
w,y:A

(w = y)→ (P w)→ (P y)

called the transport operator, as:26

transport Q a a (reflA a) :≡ id(Q a) (1.12)

where Q : A→ Uj and a : A.

26Here, id(Q a) is the identity function on Q a, see Definition 1.5.6.
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Given P : A→ Uj , w : A, y : A, and q : w = y, instead of transport P w y q we will write transportP q, where inputs
w and y are left implicit. Also, when parameter P is clear from context, we write q∗ instead of transportP q.

Hence, Equation (1.12) can be written as:

transportQ (reflA a) :≡ id(Q a)

or:
(reflA a)∗ :≡ id(Q a)

Proof. Define:
transport :≡ λP :A→ Uj . fP

where:
fP :

∏
w,y:A

(w = y)→ (P w)→ (P y)

is a function we will define by induction on identity types (here, the notation fP emphasizes that term f is dependent
on variable P).

By using the family:

CP :≡ (λw. λy. λp. (P w)→ (P y)) :
∏

w,y:A

((w = y)→ Uj )

the induction principle says that fP will exist if we can construct a function:

gP :
∏
z:A

CP z z (reflA z)

or equivalently (after simplification):

gP :
∏
z:A

(P z)→ (P z)

So, define:
gP :≡ λz :A. id(P z)

where id(P z) is the identity function on P z.
Therefore, fP exists and satisfies the equation:

fP a a (reflA a) ≡ gP a ≡ id(P a)

Hence, we finally have:

transport Q a a (reflA a) ≡ (λP. fP) Q a a (reflA a)

≡ fQ a a (reflA a)

≡ id(Q a)

The next function is the application operator. This operator acts as proof for the statement that identical inputs
to a function produce identical outputs.

Lemma 1.5.62 (Application operator). Let A : Ui and B : Uj be types. We define a function:

ap :
∏

f:A→B

∏
w,y:A

(w = y)→ (f w = f y)

called the application operator, as:
ap h a a (reflA a) :≡ reflB (h a) (1.13)

where h : A→ B and a : A.
Given f : A → B, w : A, y : A, and q : w = y, instead of ap f w y q we will write apf q, where inputs w and y are

left implicit.
Hence, Equation (1.13) can be written as:

aph (reflA a) :≡ reflB (h a)
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Proof. Define:

ap :≡ λf :A→ B. kf

where:

kf :
∏

w,y:A

(w = y)→ (f w = f y)

is a function we will define by induction on identity types.

By using the family:

Cf :≡ (λw. λy. λp. f w = f y) :
∏

w,y:A

((w = y)→ Uj )

the induction principle says that kf will exist if we can construct a function:

gf :
∏
z:A

Cf z z (reflA z)

or equivalently (after simplification):

gf :
∏
z:A

f z = f z

So, define:

gf :≡ λz :A. reflB (f z)

Therefore, kf exists and satisfies the equation:

kf a a (reflA a) ≡ gf a ≡ reflB (f a)

Hence, we finally have:

ap h a a (reflA a) ≡ (λf. kf) h a a (reflA a)

≡ kh a a (reflA a)

≡ reflB (h a)

We also have a version for the application operator when the involved function is dependent.

Lemma 1.5.63 (Dependent application operator). Let A : Ui be a type and P : A→ Uj a type family. We define a
function:

apd :
∏

f:
∏
w:A

P w

∏
w,y:A

∏
q:w=y

transportP q (f w) = f y

called the dependent application operator, as:27

apd h a a (reflA a) :≡ refl(P a) (h a) (1.14)

where h :
∏

w:A P w and a : A.

Given f :
∏

w:A P w, w : A, y : A, and q : w = y, instead of apd f w y q we will write apdf q, where inputs w and y
are left implicit.

Hence, Equation (1.14) can be written as:

apdh (reflA a) :≡ refl(P a) (h a)

27Notice this equation is well-typed, because transportP (reflA a) (h a) simplifies to (h a) by Lemma 1.5.61.
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Proof. Define:

apd :≡ λf :
∏
w:A

P w. kf

where:
kf :

∏
w,y:A

∏
q:w=y

transportP q (f w) = f y

is a function we will define by induction on identity types.
By using the family:

Cf :≡ (λw. λy. λq. transportP q (f w) = f y) :
∏

w,y:A

((w = y)→ Uj )

the induction principle says that kf will exist if we can construct a function:

gf :
∏
z:A

Cf z z (reflA z)

or equivalently, by definition of Cf :

gf :
∏
z:A

transportP (reflA z) (f z) = f z

or equivalently, after simplification (because transportP (reflA z) ≡ id(P z) by Lemma 1.5.61):

gf :
∏
z:A

f z = f z

So, define:
gf :≡ λz :A. refl(P z) (f z)

Therefore, kf exists and satisfies the equation:

kf a a (reflA a) ≡ gf a ≡ refl(P a) (f a)

Hence, we finally have:

apd h a a (reflA a) ≡ (λf. kf) h a a (reflA a)

≡ kh a a (reflA a)

≡ refl(P a) (h a)

1.6 Basic properties and equivalences

The first properties are propositional uniqueness principles. For Σ-types, their uniqueness principle will express
that any pair is identifiable with a canonical pair.

Lemma 1.6.1 (Uniqueness principle for Σ-types). Let A : Ui be a type and P : A→ Uj a family. Then, the following
type is inhabited: ∏

q:
∑
w:A

P w

(pr1 q, pr2 q) = q

Proof. By the induction principle for Σ-types (Lemma 1.5.24) applied with the family:28

C :≡ (λt. (pr1 t, pr2 t) = t) :

(∑
w:A

P w

)
→ Umax{i,j}

28See remark 1.5.29 on universe level for Σ-types. See also the formation rule for identity types on page 45.
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it is enough to prove that the following type is inhabited:∏
a:A

∏
b:P a

C (a, b)

or equivalently: ∏
a:A

∏
b:P a

(pr1 (a, b), pr2 (a, b)) = (a, b)

or equivalently (after projections are simplified):∏
a:A

∏
b:P a

(a, b) = (a, b)

But this type is inhabited by the function:

λ(a :A)(b :P a). refl(∑
w:A

P w

) (a, b)

The uniqueness principle for 1 expresses that any term in 1 is identifiable with ?.

Lemma 1.6.2 (Uniqueness principle for the unit type). The following type is inhabited:∏
w:1

w = ?

Proof. By the induction principle for 1 (Lemma 1.5.47), it is enough to prove that the following type is inhabited:29

? = ?

But this type is inhabited by (refl1 ?).

We also have some properties regarding function composition.

Lemma 1.6.3 (Associativity of function composition). Let A : Ui , B : Uj , C : Uk , D : Ul be types, and f : A → B,
g : B→ C, h : C→ D three functions. Then, the following judgment is derivable:30

(h ◦ g) ◦ f ≡ h ◦ (g ◦ f)

Proof. By definition:

(h ◦ g) ◦ f ≡ λt. (h ◦ g) (f t)

≡ λt. (λw. h (g w)) (f t)

≡ λt. h (g (f t))

And:

h ◦ (g ◦ f) ≡ λt. h ((g ◦ f) t)

≡ λt. h ((λw. g (f w)) t)

≡ λt. h (g (f t))

29We are using the family:
C :≡ (λw. w = ?) : 1→ Ui

From now on, the involved family will not be explicitly stated, unless it is not obvious.
30Here, ◦ is function composition, see Definition 1.5.13.
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Lemma 1.6.4 (Composition of identities). Let A : Ui , B : Uj be types, and f : A→ B a function. Then, the following
two judgments are derivable:

idB ◦ f ≡ f

f ◦ idA ≡ f

Proof. By definition:

idB ◦ f ≡ λt. idB (f t)

≡ λt. f t

≡ f

where the last step follows by the uniqueness rule for Π-types on page 21.
For the other judgment:

f ◦ idA ≡ λt. f (idA t)

≡ λt. f t

≡ f

Proofs for identity types have the following properties.

Lemma 1.6.5. Let A : Ui . The following types are inhabited:31

(i) ∏
w,y:A

∏
p:w=y

p = p � (reflA y)

(ii) ∏
w,y:A

∏
p:w=y

p = (reflA w) � p

(iii) ∏
w,y:A

∏
p:w=y

p−1 � p = reflA y

(iv) ∏
w,y:A

∏
p:w=y

p � p−1 = reflA w

(v) ∏
w,y:A

∏
p:w=y

(p−1)−1 = p

Proof. We prove each case as follows.

(i). By the induction principle for identity types, it is enough to prove:∏
a:A

reflA a = (reflA a) � (reflA a)

or equivalently: ∏
a:A

reflA a = reflA a

31Here, � is the transitivity operator, see Lemma 1.5.60. Also, −1 is the symmetry operator, see Lemma 1.5.59.
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since (reflA a) � (reflA a) ≡ reflA a by Lemma 1.5.60.
So, let a : A. We have refl(a=a) (reflA a) : reflA a = reflA a.

(ii). The argument is similar to (i).

(iii). By the induction principle for identity types, it is enough to prove:∏
a:A

(reflA a)−1 � (reflA a) = reflA a

or equivalently: ∏
a:A

reflA a = reflA a

since (reflA a)−1 ≡ reflA a by Lemma 1.5.59, and (reflA a) � (reflA a) ≡ reflA a by Lemma 1.5.60.
So, let a : A. We have refl(a=a) (reflA a) : reflA a = reflA a.

(iv). The argument is similar to (iii).

(v). By the induction principle for identity types, it is enough to prove:∏
a:A

((reflA a)−1)−1 = reflA a

or equivalently: ∏
a:A

reflA a = reflA a

since (reflA a)−1 ≡ reflA a by Lemma 1.5.59.
So, let a : A. We have refl(a=a) (reflA a) : reflA a = reflA a.

The next lemma expresses that transporting on a constant family has no effects.

Lemma 1.6.6. Let A : Ui and B : Uj be two types. Then, the following type is inhabited:32∏
w,y:A

∏
q:w=y

∏
b:B

transport(λr. B) q b = b

Proof. By the induction principle for identity types, it is enough to prove:∏
a:A

∏
b:B

transport(λr. B) (reflA a) b = b

or equivalently: ∏
a:A

∏
b:B

b = b

since transport(λr. B) (reflA a) ≡ id((λr. B) a) ≡ idB by Lemma 1.5.61.
Therefore, (λa. λb. reflB b) inhabits our type.

In order to define what an equivalence is, we need to introduce the concept of pointwise identifiable functions.

Definition 1.6.7 (Pointwise identifiable functions). Let A : Ui be a type, P : A → Uj a family, and f, g :
∏

w:A P w
two functions. We define type:

f ∼ g :≡
∏
w:A

f w = g w

When type f ∼ g is inhabited, we say that f and g are pointwise identifiable.
N

32The transport operator is defined in Lemma 1.5.61.
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Under the Curry-Howard correspondence, type f ∼ g expresses: “For any w : A, functions f and g have identifiable
outputs when given w as input”.

In standard mathematics, if we know that two functions are pointwise equal, then we can conclude that both
functions are equal. However, it is not possible to prove in our type theory so far that (f = g) is inhabited whenever
f and g are pointwise identifiable. To fix this problem and force our functions to behave as in standard mathematics,
we will introduce the function extensionality axiom in the next subsection.

We now show a couple of results involving pointwise identifiability. The first one expresses that type f ∼ g is an
equivalence relation on functions.

Lemma 1.6.8. Let A : Ui be a type and P : A→ Uj a type family. Then, the following types are inhabited:

(i) Reflexivity: ∏
f:
∏
w:A

P w

f ∼ f

(ii) Symmetry: ∏
f,g:
∏
w:A

P w

(f ∼ g)→ (g ∼ f)

(iii) Transitivity: ∏
f,g,h:

∏
w:A

P w

(f ∼ g)→ (g ∼ h)→ (f ∼ h)

Proof. We prove each case as follows.
(i). Let f :

∏
w:A P w. Then:

(λw :A. refl(P w) (f w)) : f ∼ f

(ii). Let f, g :
∏

w:A P w with a proof G : f ∼ g. Then:

(λw :A. (G w)−1) : g ∼ f

(iii). Let f, g, h :
∏

w:A P w with proofs G : f ∼ g and J : g ∼ h. Then:

(λw :A. (G w) � (J w)) : f ∼ h

Type f ∼ g is preserved under function composition as the following lemma shows.

Lemma 1.6.9. Let A : Ui , B : Uj , and C : Uk be types. Then, the following types are inhabited:

(i) Left composition: ∏
f,g:A→B

∏
h:B→C

(f ∼ g)→ (h ◦ f ∼ h ◦ g)

(ii) Right composition: ∏
f,g:A→B

∏
h:C→A

(f ∼ g)→ (f ◦ h ∼ g ◦ h)

Proof. We prove each case as follows.
(i). Let f, g : A→ B and h : B→ C with a proof G : f ∼ g. Then:33

(λw :A. aph (G w)) : h ◦ f ∼ h ◦ g

33Here, ap is the application operator, see Lemma 1.5.62.
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because by definition:

(h ◦ f ∼ h ◦ g) ≡

(∏
w:A

(h ◦ f) w = (h ◦ g) w

)
≡

(∏
w:A

h (f w) = h (g w)

)

(ii). Let f, g : A→ B and h : C→ A with a proof G : f ∼ g. Then:

(λw :C. G (h w)) : f ◦ h ∼ g ◦ h

because by definition:

(f ◦ h ∼ g ◦ h) ≡

(∏
w:C

(f ◦ h) w = (g ◦ h) w

)
≡

(∏
w:C

f (h w) = g (h w)

)

We are ready to introduce the concept of equivalence. An equivalence will be a function that has a right and a
left inverse.

Definition 1.6.10 (Equivalence). Let A : Ui , B : Uj be types, and f : A→ B a function. We define type:

IsEquiv f :≡

 ∑
g:B→A

f ◦ g ∼ idB

×( ∑
h:B→A

h ◦ f ∼ idA

)

When type IsEquiv f is inhabited, we say that f is an equivalence. Hence, f is an equivalence if there is34 a
function g such that it is a right inverse for f, and there is a function h such that it is a left inverse for f.

N

Of course, the right and left “inverses” are only up to pointwise identifiability, because the definition uses ∼
instead of the identity type. Nevertheless, once the function extensionality axiom is introduced, it will not matter
if ∼ or = is used in the definition of equivalence.

Convention 1.6.11. Given a term ((g, α), (h, β)) : IsEquiv f, we will write it as (g, α, h, β) : IsEquiv f.
N

Definition 1.6.12 (Equivalence inverse). Let A : Ui , B : Uj be types, and f : A → B a function. If we are given a
proof (g, α, h, β) : IsEquiv f that f is an equivalence, then we will say that g is the inverse of f. The inverse of f will
be denoted as f−1.

N

We have the following remark regarding the definition of inverse.

Remark 1.6.13. Notice that Definition 1.6.12 is implicitly assuming that f has a unique inverse, because it defines
function g to be “the” inverse for f. We can justify that g is unique as follows.

Type IsEquiv f has the property that any two terms e1, e2 : IsEquiv f are identifiable, i.e. e1 = e2 is inhabited.
This property of IsEquiv f will not be proved on this report, but a proof can be found in Section 4.3 of the HoTT
book [20].

This means that if we have two terms ((g1, α1), (h1, β1)), ((g2, α2), (h2, β2)) of type IsEquiv f, then there is a proof
p : ((g1, α1), (h1, β1)) = ((g2, α2), (h2, β2)), which means appr1

(appr1
p) : g1 = g2.

Hence, we are justified in calling g the inverse, because it is unique up to identification.
Also, if we want to be strict on the wording of Definition 1.6.12, it should have been written as: “If we are given

a proof p : IsEquiv f that f is an equivalence, then we will say that pr1 (pr1 p) is the inverse of f”.
However, this wording looks ugly due to the excessive use of projection functions. We are justified in writing

(g, α, h, β) : IsEquiv f instead of p : IsEquiv f by Convention 1.5.27.
N

34An existential in the constructive sense, see Remark 1.5.30.
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It is possible to choose h as the inverse, instead of g, due to the following lemma.

Lemma 1.6.14. Let A : Ui , B : Uj be types, and f : A→ B a function. If we are given a proof (g, α, h, β) : IsEquiv f,
then the following type is inhabited:

g ∼ h

Proof. By hypothesis we have α : f ◦ g ∼ idB. Then, by Lemma 1.6.9(i), there is a proof p1 : h ◦ (f ◦ g) ∼ h ◦ idB,35

which simplifies to p1 : h ◦ (f ◦ g) ∼ h by Lemma 1.6.4.
Similarly, we have β : h ◦ f ∼ idA. Then, by Lemma 1.6.9(ii), there is a proof p2 : (h ◦ f) ◦ g ∼ idA ◦ g, which

simplifies to p2 : (h ◦ f) ◦ g ∼ g by Lemma 1.6.4. But this simplifies again to p2 : h ◦ (f ◦ g) ∼ g by Lemma 1.6.3.
Since we have p2 : h ◦ (f ◦ g) ∼ g, by Lemma 1.6.8(ii) there is a proof p3 : g ∼ h ◦ (f ◦ g).
Finally, since we have p3 : g ∼ h ◦ (f ◦ g) and p1 : h ◦ (f ◦ g) ∼ h, by Lemma 1.6.8(iii) there is a proof p4 : g ∼ h.

The inverse f−1 behaves as expected.

Lemma 1.6.15. Let A : Ui , B : Uj be types, and f : A→ B a function. If f is an equivalence, then the following types
are inhabited:

f ◦ f−1 ∼ idB

f−1 ◦ f ∼ idA

Proof. Since f is an equivalence, we have (f−1, α, h, β) : IsEquiv f.
The first type follows by hypothesis α : f ◦ f−1 ∼ idB.
Now, we prove the second type. By Lemma 1.6.14, there is a proof p1 : f−1 ∼ h. Then, by Lemma 1.6.9(ii), there

is a proof p2 : f−1 ◦ f ∼ h ◦ f.
Since we have p2 : f−1 ◦ f ∼ h ◦ f and β : h ◦ f ∼ idA, by Lemma 1.6.8(iii) there is a proof p3 : f−1 ◦ f ∼ idA.

Also, to prove that f is an equivalence, it is enough to build an inverse for it.

Lemma 1.6.16. Let A : Ui , B : Uj be types, and f : A→ B a function.
If we can construct a function g : B→ A such that the following types are inhabited:

f ◦ g ∼ idB

g ◦ f ∼ idA

Then, f is an equivalence.

Proof. We are given g : B→ A with α : f ◦ g ∼ idB and β : g ◦ f ∼ idA as hypotheses.
Therefore, (g, α, g, β) : IsEquiv f.

We can now define equivalence of types.

Definition 1.6.17 (Type equivalence). Let A : Ui and B : Uj be types. We define type:

A ' B :≡
∑

f:A→B

IsEquiv f

When type A ' B is inhabited, we say that A and B are equivalent types. Hence, two types are equivalent when
there is an equivalence between them.

N
35In more detail, by Lemma 1.6.9(i), there is a term:

G :
∏

j,k:B→B

∏
m:B→A

(j ∼ k)→ (m ◦ j ∼ m ◦ k)

Therefore, G (f ◦ g) idB h α : h ◦ (f ◦ g) ∼ h ◦ idB.
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To prove a type equivalence, it suffices to construct two functions between the types, such that these functions
are inverses of each other, as the following lemma shows.

Lemma 1.6.18. Let A : Ui and B : Uj be types.
If we have two functions f : A→ B and g : B→ A such that the following types are inhabited:

f ◦ g ∼ idB

g ◦ f ∼ idA

Then, types A and B are equivalent.

Proof. We are given f : A→ B and g : B→ A with α : f ◦ g ∼ idB and β : g ◦ f ∼ idA as hypotheses.
Therefore, (g, α, g, β) : IsEquiv f, which means (f, (g, α, g, β)) : A ' B.

Now, we present a series of results involving equivalences.

Lemma 1.6.19 (Reflexivity of equivalences). Let A : Ui be a type. Then idA : A → A is an equivalence. Hence the
following type is inhabited:

A ' A

Proof. We use Lemma 1.6.16. We need to define a function acting as inverse for idA. Just take idA itself. Now, we
have to prove:

idA ◦ idA ∼ idA

idA ◦ idA ∼ idA

But, by Lemma 1.6.4, type idA ◦ idA ∼ idA simplifies to idA ∼ idA, which is always inhabited (Lemma 1.6.8(i)).

Lemma 1.6.20 (Symmetry of equivalences). Let A : Ui and B : Uj be types. If e : A→ B is an equivalence, then
e−1 : B→ A is an equivalence.

Hence, the following type is inhabited:
(A ' B)→ (B ' A)

Proof. Since e is an equivalence, by Lemma 1.6.15, the following types are inhabited:

e ◦ e−1 ∼ idB

e−1 ◦ e ∼ idA

But, by Lemma 1.6.16, this means that e−1 is also an equivalence.

Lemma 1.6.21 (Transitivity of equivalences). Let A : Ui , B : Uj , and C : Uk be types. If e1 : A→ B and e2 : B→ C
are equivalences, then e2 ◦ e1 : A→ C is an equivalence.

Hence, the following type is inhabited:

(A ' B)→ (B ' C)→ (A ' C)

Proof. Since e1 and e2 are equivalences, by Lemma 1.6.15, the following types are inhabited:

e1 ◦ e−1
1 ∼ idB

e−1
1 ◦ e1 ∼ idA

e2 ◦ e−1
2 ∼ idC

e−1
2 ◦ e2 ∼ idB

We will use Lemma 1.6.16 to conclude that e2 ◦ e1 is an equivalence. We propose function e−1
1 ◦ e−1

2 as the
inverse for e2 ◦ e1.
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By Lemma 1.6.9(i), type e2 ◦ (e1 ◦ e−1
1 ) ∼ e2 ◦ idB is inhabited, which simplifies to e2 ◦ (e1 ◦ e−1

1 ) ∼ e2 by Lemma
1.6.4.

Now, by Lemma 1.6.9(ii), type (e2 ◦ (e1 ◦ e−1
1 )) ◦ e−1

2 ∼ e2 ◦ e−1
2 is inhabited, which simplifies to

(e2 ◦ e1) ◦ (e−1
1 ◦ e−1

2 ) ∼ e2 ◦ e−1
2 by Lemma 1.6.3.

But e2 ◦ e−1
2 ∼ idC, hence, by Lemma 1.6.8(iii), the first equation follows:

(e2 ◦ e1) ◦ (e−1
1 ◦ e−1

2 ) ∼ idC

The second equation:
(e−1

1 ◦ e−1
2 ) ◦ (e2 ◦ e1) ∼ idA

will hold by an identical strategy.

The next property expresses that identifiable elements produce equivalent properties.

Lemma 1.6.22 (Transport is an equivalence). Let A : Ui be a type and P : A→ Uj a type family. Then the following
type is inhabited: ∏

w,y:A

∏
q:w=y

IsEquiv (transportP q)

Hence, the following type is also inhabited:∏
w,y:A

(w = y)→ ((P w) ' (P y)) (1.15)

Proof. By the induction principle for identity types, it is enough to prove that the following type is inhabited:∏
a:A

IsEquiv (transportP (reflA a))

But transportP (reflA a) ≡ id(P a) by Lemma 1.5.61. Hence, it is enough to prove:∏
a:A

IsEquiv id(P a)

which follows by Lemma 1.6.19.
Now, type (1.15) is inhabited, because given w, y : A and q : w = y, we proved above that:

transportP q : (P w)→ (P y)

is an equivalence. Therefore, (P w) ' (P y) is inhabited by definition of type equivalence.

The following property expresses that parentheses in nested pairs can be rearranged.

Lemma 1.6.23 (Associativity of Σ-types). Let A : Ui be a type, and P : A→ Uj , Q : (
∑

w:A P w)→ Uk type families.
If we define the family:

T :≡

λw :A.
∑

y:P w

Q (w, y)

 : A→ Umax{j ,k}

then there is a function:

m :
∏

y:
∑
w:A

P w

(Q y)→ (T (pr1 y))

such that the following function is an equivalence:36

Σmap pr1 m :

 ∑
q:
∑
w:A

P w

Q q

→ (∑
w:A

T w

)

36Function Σmap was defined in Lemma 1.5.28.
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or equivalently (by the definition of T):

Σmap pr1 m :

 ∑
q:
∑
w:A

P w

Q q

→
∑

w:A

∑
y:P w

Q (w, y)


Hence, the following type is inhabited: ∑

q:
∑
w:A

P w

Q q

 '
∑

w:A

∑
y:P w

Q (w, y)


Proof. We will construct function m using the induction principle for Σ-types. So, it is enough to define a function:

g :
∏
w:A

∏
y:P w

(Q (w, y))→ (T (pr1 (w, y)))

or equivalently (by definition of T and simplification):

g :
∏
w:A

∏
y:P w

(Q (w, y))→

(∑
t:P w

Q (w, t)

)

Define:
g :≡ λ(w :A)(y :P w)(q :Q (w, y)). (y, q)

Hence, by the induction principle, we have (for arbitrary a : A and b : P a):

m (a, b) ≡ g a b

To prove that Σmap pr1 m is an equivalence, we use Lemma 1.6.16. To define its inverse function, we will use the
recursion principle for Σ-types. So, to construct:

inv :

∑
w:A

∑
y:P w

Q (w, y)

→
 ∑

q:
∑
w:A

P w

Q q


just define it on pairs:

inv (a, b) :≡ ((a, pr1 b), pr2 b)

where a : A and b :
∑

y:P a Q (a, y). Notice this is well-typed, since pr1 b : P a and pr2 b : Q (a, pr1 b).
Now, we need to check that Σmap pr1 m and inv are inverses of each other.

• Σmap pr1 m (inv p) = p for arbitrary p :
∑

w:A

∑
y:P w Q (w, y).

By the induction principle for Σ-types, it is enough to prove that the following type is inhabited:∏
a:A

∏
b:
∑

y:P a

Q (a,y)

Σmap pr1 m (inv (a, b)) = (a, b)

So, suppose a : A. But: ∏
b:
∑

y:P a

Q (a,y)

Σmap pr1 m (inv (a, b)) = (a, b)

can be proved by the induction principle again. Therefore, it is enough to prove:

Σmap pr1 m (inv (a, (c, d))) = (a, (c, d))
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for arbitrary c : P a and d : Q (a, c). Hence:

Σmap pr1 m (inv (a, (c, d))) ≡ Σmap pr1 m ((a, pr1 (c, d)), pr2 (c, d))

≡ Σmap pr1 m ((a, c), d)

≡ (pr1 (a, c),m (a, c) d)

≡ (a, g a c d)

≡ (a, (c, d))

• inv (Σmap pr1 m p) = p for arbitrary p :
∑

q:
∑

w:A P w Q q.

By the induction principle for Σ-types applied twice, it is enough to prove that the following type is inhabited:∏
a:A

∏
c:P a

∏
d:Q (a,c)

inv (Σmap pr1 m ((a, c), d)) = ((a, c), d)

Hence:

inv (Σmap pr1 m ((a, c), d)) ≡ inv (pr1 (a, c),m (a, c) d)

≡ inv (a, g a c d)

≡ inv (a, (c, d))

≡ ((a, pr1 (c, d)), pr2 (c, d))

≡ ((a, c), d)

Corollary 1.6.24 (Associativity of ×). Let A : Ui , B : Uj , and C : Uk be types. Then, the following type is inhabited:

(A× B)× C ' A× (B× C)

Proof. Apply Lemma 1.6.23 with the constant families:

P :≡ (λw. B) : A→ Uj

Q :≡ (λq. C) :

(∑
w:A

P w

)
→ Uk

and simplify applications accordingly.

The next property states that any identity proof on a pair can be split into identity proofs on its coordinates.

Lemma 1.6.25. Let A : Ui be a type, and P : A→ Uj a type family. Then, the following type is inhabited:37

∏
y,z:
∑
w:A

P w

(
(y = z) '

∑
q: pr1 y=pr1 z

q∗ (pr2 y) = pr2 z

)
(1.16)

Proof. To prove that (1.16) is inhabited, we will have to define some auxiliary functions.
First, we define a function by induction on identity types:

f1 :
∏

y,z:
∑
w:A

P w

(
(y = z)→

( ∑
q: pr1 y=pr1 z

q∗ (pr2 y) = pr2 z

))

37Here, q∗ is the transport operator, see Lemma 1.5.61. Also, notice this is well-typed, since q∗ : P (pr1 y) → P (pr1 z), and
pr2 y : P (pr1 y), and pr2 z : P (pr1 z).
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by stating how it acts on reflexivity proofs for arbitrary a :
∑

w:A P w:

f1 a a (refl(∑
w:A

P w

) a) :≡ ( reflA (pr1 a), refl(P (pr1 a)) (pr2 a) )

Notice this equation is well-typed, since:

reflA (pr1 a) : pr1 a = pr1 a

and:
refl(P (pr1 a)) (pr2 a) : pr2 a = pr2 a

or equivalently:
refl(P (pr1 a)) (pr2 a) : (reflA (pr1 a))∗ pr2 a = pr2 a

because (reflA (pr1 a))∗ ≡ id(P (pr1 a)) by definition of the transport operator in Lemma 1.5.61.
In other words, both sides of the equation will have type:∑

q: pr1 a=pr1 a

q∗ (pr2 a) = pr2 a

Now, we define another function by induction on identity types:

g1 :
∏
a:A

∏
y,z:P a

(y = z)→ ((a, y) = (a, z))

by stating how it acts on reflexivity proofs:38

g1 a b b (refl(P a) b) :≡ refl(∑
w:A

P w

) (a, b)

for arbitrary a : A and b : P a.
We define yet another function by induction on identity types:

g2 :
∏

y1,z1:A

∏
q:y1=z1

∏
y2:P y1

∏
z2:P z1

(q∗ y2 = z2)→ ((y1, y2) = (z1, z2))

as:
g2 a a (reflA a) :≡ g1 a

for arbitrary a : A.
Notice this equation is well-typed, since g2 a a (reflA a) has type:∏

y2:P a

∏
z2:P a

((reflA a)∗ y2 = z2)→ ((a, y2) = (a, z2))

which simplifies to: ∏
y2,z2:P a

(y2 = z2)→ ((a, y2) = (a, z2))

and this is precisely the type of g1 a.
Finally, we define a function:

g3 :
∏

y,z:
∑
w:A

P w

(( ∑
q: pr1 y=pr1 z

q∗ (pr2 y) = pr2 z

)
→ (y = z)

)

by induction on Σ-types applied three times:

g3 (a1, b1) (a2, b2) (q1, q2) :≡ g2 a1 a2 q1 b1 b2 q2

38Notice we are using implicit lambda notation on parameter a, i.e. we introduce variable a : A and then we apply the induction
principle.



1.6. BASIC PROPERTIES AND EQUIVALENCES 65

where a1 : A, b1 : P a1, a2 : A, b2 : P a2, q1 : pr1 (a1, b1) = pr1 (a2, b2), or equivalently, q1 : a1 = a2, and
q2 : q1∗ (pr2 (a1, b1)) = pr2 (a2, b2), or equivalently, q2 : q1∗ b1 = b2.

Now, we prove the following claims.

Claim 1: The following type is inhabited:∏
y,z:
∑
w:A

P w

∏
q:y=z

g3 y z (f1 y z q) = q

By the induction principle for identity types, it is enough to prove:∏
a:
∑
w:A

P w

g3 a a (f1 a a (refl(∑
w:A

P w

) a)) = refl(∑
w:A

P w

) a

But then, by the induction principle for Σ-types, it is enough to prove, for arbitrary c : A and d : P c, the following:

g3 (c, d) (c, d) (f1 (c, d) (c, d) (refl(∑
w:A

P w

) (c, d))) = refl(∑
w:A

P w

) (c, d)

Hence:

g3 (c, d) (c, d) (f1 (c, d) (c, d) (refl(∑
w:A

P w

) (c, d)))

≡ g3 (c, d) (c, d) ( reflA (pr1 (c, d)), refl(P (pr1 (c,d))) (pr2 (c, d)) )

≡ g3 (c, d) (c, d) (reflA c, refl(P c) d)

≡ g2 c c (reflA c) d d (refl(P c) d)

≡ g1 c d d (refl(P c) d)

≡ refl(∑
w:A

P w

) (c, d)

This proves the claim.

Claim 2: The following type is inhabited:∏
y,z:
∑
w:A

P w

∏
t:

∑
q: pr1 y=pr1 z

q∗ (pr2 y)=pr2 z

f1 y z (g3 y z t) = t

By applying three times the induction principle for Σ-types (and simplifying), it is enough to prove:∏
a1:A

∏
b1:P a1

∏
a2:A

∏
b2:P a2

∏
q1:a1=a2

∏
q2:q1∗ b1=b2

f1 (a1, b1) (a2, b2) (g3 (a1, b1) (a2, b2) (q1, q2)) = (q1, q2) (1.17)

But it is enough to prove:39∏
a1,a2:A

∏
q1:a1=a2

∏
b1:P a1

∏
b2:P a2

∏
q2:q1∗ b1=b2

f1 (a1, b1) (a2, b2) (g3 (a1, b1) (a2, b2) (q1, q2)) = (q1, q2) (1.18)

Therefore, by the induction principle for identities types, it is enough to prove (after simplification):∏
a:A

∏
b1:P a

∏
b2:P a

∏
q2:b1=b2

f1 (a, b1) (a, b2) (g3 (a, b1) (a, b2) (reflA a, q2)) = (reflA a, q2)

39If (1.18) has a proof G, then:
λa1. λb1. λa2. λb2. λq1. λq2. G a1 a2 q1 b1 b2 q2

will be a proof for (1.17).
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So, suppose a : A. But then, by the induction principle for identity types, it is enough to prove:∏
b:P a

f1 (a, b) (a, b) (g3 (a, b) (a, b) (reflA a, refl(P a) b)) = (reflA a, refl(P a) b)

Hence:

f1 (a, b) (a, b) (g3 (a, b) (a, b) (reflA a, refl(P a) b))

≡ f1 (a, b) (a, b) (g2 a a (reflA a) b b (refl(P a) b))

≡ f1 (a, b) (a, b) (g1 a b b (refl(P a) b))

≡ f1 (a, b) (a, b) (refl(∑
w:A

P w

) (a, b))

≡ ( reflA (pr1 (a, b)), refl(P (pr1 (a,b))) (pr2 (a, b)) )

≡ (reflA a, refl(P a) b)

This proves the claim.

Now, to prove (1.16), we will use Lemma 1.6.18. Let y, z :
∑

w:A P w. Define:

h1 :≡ (λt. f1 y z t) : (y = z)→

( ∑
q: pr1 y=pr1 z

q∗ (pr2 y) = pr2 z

)

h2 :≡ (λt. g3 y z t) :

( ∑
q: pr1 y=pr1 z

q∗ (pr2 y) = pr2 z

)
→ (y = z)

The equation h2 (h1 t) = t follows by Claim 1, while equation h1 (h2 t) = t follows by Claim 2.

We have the following corollary.

Corollary 1.6.26. Let A : Ui and B : Uj be types. The following type is inhabited:∏
y,z: A×B

(pr1 y = pr1 z)→ (pr2 y = pr2 z)→ (y = z)

Proof. Let y, z : A× B with:

h1 : pr1 y = pr1 z

h2 : pr2 y = pr2 z

By applying Lemma 1.6.25 with the constant family P :≡ (λr :A. B) : A→ Uj , it is enough to prove:∑
q: pr1 y=pr1 z

transport(λr. B) q (pr2 y) = pr2 z

We already have h1 : pr1 y = pr1 z by hypothesis. Therefore, it remains to show that the following type is
inhabited:

transport(λr. B) h1 (pr2 y) = pr2 z

By Lemma 1.6.6, there is a term:

p1 : transport(λr. B) h1 (pr2 y) = pr2 y

Therefore, we have:
p1 � h2 : transport(λr. B) h1 (pr2 y) = pr2 z
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1.6.1 The function extensionality axiom

Given two functions f, g :
∏

w:A P w, the following lemma shows that they are pointwise identifiable whenever they
are identifiable.

Lemma 1.6.27. Let A : Ui be a type and P : A→ Uj a type family.
Then, there is a function:

happly :
∏

f,g:
∏
w:A

P w

(f = g)→ (f ∼ g)

defined by induction on identity types as:

happly k k (refl(∏
w:A

P w

) k) :≡ λw :A. refl(P w) (k w)

for arbitrary k :
∏

w:A P w.

Proof. Directly by the induction principle for identity types. Just notice:

(λw :A. refl(P w) (k w)) :
∏
w:A

k w = k w

However, as was discussed after Definition 1.6.7, in our type theory so far it is not possible to prove the converse
of Lemma 1.6.27, i,e. if two functions are pointwise identifiable then they are identifiable. We want to reason with
functions as it is done in standard mathematics. So, the function extensionality axiom is introduced to fix this
problem. This axiom expresses that function:

happly f g : (f ∼ g)→ (f = g)

is an equivalence for any functions f and g. In other words, the axiom expresses that function happly f g has an
inverse, or that the converse of Lemma 1.6.27 also holds.

• Function extensionality (S-context: Γ; S-term: f, g, A, P; Variable: w):

Γ ` f :
∏
w:A

P w Γ ` g :
∏
w:A

P w

Γ ` funext f g : IsEquiv (happly f g)
Π-EXT

Here, (funext f g) is a term acting as proof to the fact that (happly f g) is an equivalence. In informal proofs
we will simply say “by function extensionality...” when we want to use the inverse of (happly f g) without
explicit mention to the Π-EXT rule.

Hence, we have the following:

Lemma 1.6.28. Let A : Ui be a type and P : A→ Uj a type family. The following type is inhabited:∏
f,g:
∏
w:A

P w

((f = g) ' (f ∼ g))

Proof. Let f, g :
∏

w:A P w. Define:

h1 :≡ (happly f g) : (f = g)→ (f ∼ g)

h2 :≡ (happly f g)−1 : (f ∼ g)→ (f = g)

The equations:

h2 (h1 p) = p

h1 (h2 q) = q

are satisfied by Lemma 1.6.15, since (happly f g) or h1 is an equivalence.
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The next property is an example of how function extensionality is used. This property expresses that functions
with pairs as input can be rewritten as nested lambdas, and vice versa (these are the so-called curry and uncurry
operations).

Lemma 1.6.29 (Curry and uncurry operations). Let A : Ui be a type, and P : A → Uj , Q : (
∑

w:A P w) → Uk type
families.

The function:

curry :≡ (λf. λw. λy. f (w, y)) :

 ∏
q:
∑
w:A

P w

Q q

→
∏

w:A

∏
y:P w

Q (w, y)


is an equivalence (its inverse will be called the uncurry operation).

Hence, the following type is inhabited: ∏
q:
∑
w:A

P w

Q q

 '
∏

w:A

∏
y:P w

Q (w, y)


Proof. To prove that curry is an equivalence, we use Lemma 1.6.16. We will use the induction principle for Σ-types
to construct the inverse for curry. So, to construct:

uncurry :

∏
w:A

∏
y:P w

Q (w, y)

→
 ∏

q:
∑
w:A

P w

Q q


just define it on pairs:40

uncurry f (a, b) :≡ f a b

for arbitrary f :
∏

w:A

∏
y:P w Q (w, y), and a : A, b : P a.

Notice this equation is well-typed, because f a b : Q (a, b).

Now, we need to check that curry and uncurry are inverses of each other.

• curry (uncurry f) = f for any f :
∏

w:A

∏
y:P w Q (w, y).

We have:

curry (uncurry f) ≡ λw. λy. uncurry f (w, y)

≡ λw. λy. f w y

≡ λw. f w

≡ f

where the last two steps follow by the uniqueness rule for Π-types on page 21. In more detail, given w : A,
function f w :

∏
y:P w Q (w, y) is “wrapped” inside a lambda with variable y, hence (λy. f w y) ≡ f w by the

uniqueness rule.

• uncurry (curry f) = f for any f :
∏

q:
∑

w:A P w Q q.

Since we are trying to prove that two functions are identifiable, by the function extensionality axiom it is
enough to prove that the following type is inhabited:∏

p:
∑
w:A

P w

uncurry (curry f) p = f p

40Notice we are using implicit lambda notation to introduce the parameter f :
∏

w:A

∏
y:P w Q (w, y). See Convention 1.5.10.
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But, by the induction principle for Σ-types, it is enough to prove:∏
a:A

∏
b:P a

uncurry (curry f) (a, b) = f (a, b)

Hence:

uncurry (curry f) (a, b) ≡ curry f a b

≡ f (a, b)

Remark 1.6.30 (Commutative diagrams). On this report, it will be common to have commutative diagrams
involving functions. For example, given functions f, g, h, and j, whenever it is said that diagram:

A B

C D

f

g

h

j

commutes, this will mean that it commutes pointwise, i.e. type (j ◦ f) ∼ (h ◦ g) is inhabited.
Because we have function extensionality, this also means that type j ◦ f = h ◦ g is inhabited. Therefore, it makes

no difference if we choose ∼ or = as the meaning of a commutative diagram, but the pointwise version will be
preferred.

N

1.6.2 The univalence axiom

If two types are identifiable, then they are equivalent types. The following definition makes this precise.

Definition 1.6.31. We define a function:

idtoequiv :
∏
T:Ui

∏
R:Uj

(T =Umax{i,j} R)→ (T ' R)

as:
idtoequiv :≡ λ(T :Ui)(R :Uj )(q :T = R). H T R q

where H is the proof of (1.15) in Lemma 1.6.22 instantiated with type:

A :≡ Umax{i,j}

and type family:
P :≡ idUmax{i,j} : Umax{i,j} → Umax{i,j}

N

The univalence axiom states that function idtoequiv is an equivalence, i.e. it has an inverse, which expresses
that equivalent types can be identified.

• Univalence (S-context: Γ; S-term: T, R):

Γ ` T : Ui Γ ` R : Uj
Γ ` univalence T R : IsEquiv (idtoequiv T R)

Umax{i,j}-UNIV

Here, (univalence T R) is a term acting as proof to the fact that (idtoequiv T R) is an equivalence. In informal
proofs we will simply say “by univalence...” when we want to use the inverse of (idtoequiv T R) without
explicit mention to the Umax{i,j}-UNIV rule.
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Hence, we have the following result.

Lemma 1.6.32. The following type is inhabited:∏
T:Ui

∏
R:Uj

(T =Umax{i,j} R) ' (T ' R)

Proof. Let T : Ui and R : Uj . Define:

h1 :≡ (idtoequiv T R) : (T = R)→ (T ' R)

h2 :≡ (idtoequiv T R)−1 : (T ' R)→ (T = R)

The equations:

h2 (h1 p) = p

h1 (h2 q) = q

are satisfied by Lemma 1.6.15, since (idtoequiv T R) or h1 is an equivalence.

One interesting consequence of univalence is that it is not necessary to add function extensionality as an addi-
tional axiom to HoTT (as we did in Section 1.6.1), because function extensionality logically follows from univalence
(see Section 4.9 in the HoTT book [20] for a proof of this).

If we interpret types as sets and the identity type as equality, the univalence axiom then expresses that isomorphic
sets are equal, which is clearly nonsensical. This implies that, in HoTT, statements of the form w = y should not
be interpreted as expressing equality between w and y in the sense of standard mathematics, but only that w and y
are identifiable (by some “mechanism”, if you like), or that they are indistinguishable from the point of view of the
theory. The word “identifiable” should suggest a weaker notion than the standard mathematical notion of equality.
Section 1.7 will explore further what we mean by “identifiable”.

In fact, in standard mathematics, it is a common informal practice to “identify” isomorphic structures. The
reason is that under a certain mathematical domain, theorems are usually invariant under isomorphism. The
univalence axiom formally justifies this practice by claiming that equivalent types (i.e. isomorphic types) can be
identified. In other words, in HoTT, all theorems will be invariant under equivalence. For an example on how
univalence makes possible the identification of isomorphic structures, see Section 2.14 in the HoTT book, where it
is shown that two semigroups can be identified precisely when they are isomorphic in the algebraic sense.

However, the main use of univalence is to transfer results proved for some type A into an equivalent type B. For
example, let us suppose we proved t : Q A which expresses that property Q holds for type A. Since B is equivalent
to A, by univalence we will have a proof q : A = B, and hence transportQ q t : Q B. In other words, we will have a
proof that Q also holds for type B.

1.7 The homotopy interpretation

For this section, the author assumes that the reader is already familiar with basic concepts of algebraic topology.
The reader is invited to read Hatcher’s book [12]. A reference book is also Aguilar, Gitler & Prieto [2].

We have not explained why HoTT has the word “homotopy” on its name. HoTT is Martin Löf’s Intentional
Type Theory extended with the univalence axiom and higher inductive types [20] (higher inductive types will be
presented in Section 1.11).

It is known that Martin Löf’s Intentional Type Theory has topological models ([23], [6], and [21]). In particular,
when the univalence axiom is added, HoTT has a model (or semantics) in simplicial sets [14], which have CW
complexes (a special kind of topological space) as their realization [10].

In the topological semantics for HoTT, homotopies (as understood in algebraic topology) play an important
role. Hence the word “homotopy” on the type theory name.

Although the semantics for HoTT make use of CW complexes (more specifically, simplicial sets), when the
semantics are explained informally, it is easier to think in terms of general topological spaces instead of simplicial
sets and CW complexes. This is what we will do here.



1.7. THE HOMOTOPY INTERPRETATION 71

Type theory Homotopy Logical
A is a type A is a topological space A is a proposition
τ : A τ is a point in space A τ is a proof for proposition A
A→ B
(non-dependent functions)

Space of continuous functions
from A to B

Proofs for implication: functions mapping
proofs for A into proofs for B∑

w:A P w
(dependent pairs)

Total space for fibration
pr1 : (

∑
w:A P w)→ A

Proofs for existential: a proof w for A together
with a proof that w satisfies P∏

w:A P w
(dependent functions)

Space of continuous sections for
fibration pr1 : (

∑
w:A P w)→ A

Proofs for universal statement: functions
mapping a proof w for A into a proof that w
satisfies P

A× B
(non-dependent pairs)

Product space Proofs for conjunction: a proof for A together
with a proof for B

A + B
(case injections)

Disjoint union of spaces Proofs for disjunction: either a proof for A or
a proof for B, indicating which case holds

0 (empty type) Empty space Proofs for contradiction
1 (singleton type) Singleton space Proofs for tautology
w =A y
(identifications)

Space of paths in A starting at
point w and ending at point y

Proofs for the proposition claiming that proofs
w and y are identifiable

reflA w
(trivial proof for w = w)

Constant loop at point w Reflexivity proof (or trivial proof) for w = w

Table 1.1: Interpretations for HoTT

This section will give only an informal overview of the topological semantics for HoTT, since a full formal
description will not be required. The reason is that the topological semantics will not play a role on this report, as
all the results on this document can be understood by working entirely within the intended type theoretic meaning
(as described in all previous sections), mixed with the logical interpretation. If we were doing homotopy theory
inside HoTT, then the topological semantics would be critical for our development. See for example Chapter 8 in
the HoTT Book [20].

However, it would be odd to present HoTT without explaining its most awe-inspiring aspect: HoTT has a
topological interpretation. Also, the topological semantics serve to clarify the logical meaning of identity types, as
we will do at the end of this section.

To motivate the homotopy interpretation (or topological interpretation or topological model) for HoTT, let us
have a look on a type that cannot be proved to be inhabited in HoTT:∏

A:Ui

∏
w:A

∏
p:w=w

p = reflA w (1.19)

If we attempt to prove (1.19) by an appeal to the induction principle for identity types (Lemma 1.5.57), we
soon realize that it is not clear how to apply the principle, because type w = w has variable w fixed on both sides.
Remember that the induction principle proves statements of the form

∏
w,y:A

∏
p:w=y C w y p, where type w = y does

not have variable w fixed on both sides.

Type (1.19) expresses that any proof for w = w (for an arbitrary w : A) must be the trivial proof reflA w. It is
reasonable to think that this type should not be inhabited since we have function extensionality and univalence,
which are ways for introducing identity proofs that are different from the trivial proof.

However, if we remove function extensionality and univalence, this type still cannot be proved to be inhabited.41

This seems surprising because univalence and function extensionality seem to be the only way to produce identity
proofs different from the trivial proof.

Also, why is the elimination rule for identity types still valid if trivial proofs are not the only available proofs?

The homotopy interpretation provides an answer to these questions. Table 1.1 summarizes the homotopy
interpretation in the “homotopy” column. We also add the logical interpretation for comparison (in the “logical”
column). We proceed to explain the homotopy interpretation.

41Because the topological model is still a model if univalence and function extensionality are removed from HoTT.
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The most surprising aspect of the homotopy interpretation is the meaning assigned to identity types. Given
w, y : A, type w =A y denotes the space (in standard mathematical notation):

{p : I → A | p(0) = w, p(1) = y}

of paths starting at point w and ending at point y. Here, I denotes the unit interval [0, 1] ⊆ R.
So, what is the meaning of type p =(w=y) q? It should be the space of paths:

{H : I → {r : I → A | r(0) = w, r(1) = y} | H(0) = p, H(1) = q}

which, by the exponential law,42 can be rewritten as:

{H : I × I → A | ∀t ∈ I. H(0, t) = p(t), H(1, t) = q(t), H(t, 0) = w, H(t, 1) = y}

which corresponds to the space of all homotopies rel end points between paths p and q. In other words, any term
of type p =(w=y) q can be interpreted as an homotopy rel end points between paths p and q.

If we continue this analysis, any term of type H =(p=(w=y)q) Q will be a 2-homotopy between homotopies H and
Q (i.e. an “homotopy between surfaces H and Q” as homotopies can be seen as “surfaces”), and so on.

Another interesting aspect of the homotopy interpretation is the meaning given to types
∑

w:A P w and
∏

w:A P w.
First, terms of type

∏
w:A P w can be seen as sections for the projection function pr1 : (

∑
w:A P w) → A (ignore

for the moment that Table 1.1 claims that pr1 is a fibration). Given f :
∏

w:A P w, we can form the graph function
for f as:

graphf :≡ (λw. (w, f w)) : A→

(∑
w:A

P w

)
which is a section for pr1:

pr1 (graphf a) ≡ pr1 (a, f a) ≡ a

Also, under the homotopy interpretation, any function is continuous. This means that functions of type
∏

w:A P w
are continuous sections for pr1.

Now, type
∑

w:A P w can be seen as the total space for the fibration pr1 : (
∑

w:A P w) → A. But, what do we
mean by a fibration?

In algebraic topology, a fibration [2] (or Hurewicz fibration) is a continuous function p : E → B with the
homotopy lifting property, that is: if X is a topological space, f : X → E a continuous function, and H : X×I → B
an homotopy such that the following square commutes:

X E

X × I B

f

j0 p

H

where j0 is function j0(x) = (x, 0), then, there is an homotopy H ′ : X × I → E making the two triangles commute:

X E

X × I B

f

j0 p

H

H′

Here, E is called the total space for the fibration, B is called the base space for the fibration, H ′ is called the
lifted homotopy, and for every b ∈ B, p−1({b}) is called the fiber for b.

However, there is an alternative characterization for fibrations involving a path-lifting map,43 which we explain
next.

42See Section 1.3 in Aguilar, et al. [2].
43See Section 4.3 in Aguilar, et al. [2].
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First, given a continuous function p : E → B, define the space:

E ×B BI :≡ {(e, α) ∈ E ×BI | p(e) = α(0)}

where BI denotes the space of paths in B, i.e. BI is the space of all continuous functions I → B.
With this definition, a continuous function p : E → B is a fibration if and only if there is a continuous function:

Γ : E ×B BI → EI

such that for every (e, α) ∈ E ×B BI , we have Γ(e, α)(0) = e and p(Γ(e, α)(t)) = α(t) for every t ∈ I.
In other words, Γ is a function that takes as input:

• A “starting” point e in the total space E.

• A path α in the base space B. This path must start at a point “below” e, i.e. condition “p(e) = α(0)” in the
definition of E ×B BI .

and produces as output:

• A path in the total space. This path will start at e (i.e. condition “Γ(e, α)(0) = e”), and it will be “above” α
(i.e. condition “p(Γ(e, α)(t)) = α(t) for every t ∈ I”).

Hence, Γ continuously “lifts” paths on the base space into the total space.

With this characterization, we can now check that pr1 : (
∑

w:A P w) → A is a fibration. For this, we need to
construct a continuous path-lifting function that lifts paths from the base space A into the total space

∑
w:A P w.

This is achieved by proving that the following type is inhabited:

∏
u:A

∏
z:P u

∏
y:A

∏
α:u=y

 ∑
β : (u, z)=(y, α∗ z)

appr1
β = α

 (1.20)

where A : Ui is a given type and P : A→ Uj a given type family.
Let us dissect this type. To prove this type is inhabited, we have to construct a function Γ that will receive as

input:

• A point u : A in the base space, and a point z : P u. Equivalently, we are given a point (u, z) :
∑

w:A P w in the
total space. The pair (u, z) is analogous to point e ∈ E in the characterization.

• A path44 α : u = y in the base space A. Path α starts at point pr1 (u, z) ≡ u, which is “below” point (u, z).
This is analogous to condition “p(e) = α(0)” in the characterization.

and will produce as output:

• A path β : (u, z) = (y, α∗ z) in the total space, i.e. the lifted path. This path starts at point (u, z). This is
analogous to condition “Γ(e, α)(0) = e” in the characterization.

Since we have to specify where our path ends, a natural point to choose is one “above” y. Notice that we
have the transport function α∗ : (P u)→ (P y). Therefore, it is reasonable to choose point (y, α∗ z) as the end
point, as (y, α∗ z) is “above” y, i.e. pr1 (y, α∗ z) ≡ y.

• An homotopy H : appr1
β = α between paths:

appr1
β : pr1 (u, z) = pr1 (y, α∗ z)

α : u = y

This is analogous to condition: “p(Γ(e, α)(t)) = α(t) for every t ∈ I” in the characterization.

However, condition p(Γ(e, α)(t)) = α(t) is a strict equality, while HoTT can only express that appr1
β is

homotopic rel end points to α. HoTT is unable to express that two paths are exactly the same. It can only
express that paths are equal up to homotopy.

44Notice we have to introduce the parameter y : A in type (1.20) to express that path α ends at some point. In HoTT, we always
have to specify the point where a path ends.
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The proof that type (1.20) is inhabited is quite trivial. It follows by one application of the induction principle
for identity types (Lemma 1.5.57). We omit the proof as this is not essential for our development.

Since
∑

w:A P w is the total space for fibration pr1, type P w (for w : A) can be interpreted as the fiber for w.

With the homotopy interpretation at hand, we can explain why type (1.19) cannot be inhabited. Type (1.19) is
claiming that there is a continuous function ∆ such that given an arbitrary space A, a point w on A, and a loop p
on w, function ∆ will produce as output an homotopy rel end points between loop p and the constant loop at w.

This function is impossible to construct, for take the circle (S1, ∗), where ∗ is its base point. We know that there
is no homotopy rel end points between the circle S1 and the constant loop at ∗, for otherwise, (S1, ∗) will have a
trivial fundamental group, which is not the case. Therefore, if function ∆ exists, we will be able to construct an
homotopy between S1 and the constant loop at ∗, which is a contradiction.

The homotopy interpretation provides quite interesting meanings to the results on previous sections. For ex-
ample, the symmetry operator (Lemma 1.5.59) can be interpreted as a path inversion operator (i.e. the path that
results by traversing the original path “in reverse”), and the transitivity operator (Lemma 1.5.60) can be interpreted
as a path concatenation operator.

Hence, under the homotopy interpretation, Lemma 1.6.5 expresses the usual properties on paths known in
homotopy theory:

• If we concatenate a path p with a constant loop, we will get a path that is homotopic to the original path p.

• If we concatenate a path p and its inverse path p−1, we will get a path that is homotopic to a constant loop.

• If we invert a path p twice, we will get a path that is homotopic to the original path p.

Also, Definition 1.6.7 expresses that type f ∼ g (for f, g :
∏

w:A P w) is inhabited when there is a continuous
function assigning to each point w ∈ A, a path from f(w) to g(w). By the exponential law, this is equivalent to
claiming that there is an homotopy H between functions f and g. In other words, type f ∼ g means that continuous
functions f and g are homotopic.

Therefore, it follows that type A ' B (Definition 1.6.10) means that spaces A and B are homotopy equivalent.
As another example, Lemma 1.6.22 expresses a well known property for fibrations: if there is a path p connecting

points w and y in the base space, then the fibers of w and y will be homotopy equivalent spaces.
The function extensionality axiom (see Section 1.6.1) expresses that paths in function spaces correspond to

homotopies between functions.
The univalence axiom (see Section 1.6.2) expresses that paths in universes (a universe is a space of spaces)

correspond to homotopy equivalences between spaces. So, in the homotopy interpretation, univalence makes sense
because (=) denotes paths and not strict equality.

Since (=) denotes paths in a space, our use of the word “identifiable” when working inside the logical interpre-
tation, can be explained as follows.

Given a proof p : w = y that w and y are identifiable, p can be interpreted as a “procedure or algorithm”
that performs the identification of w and y. In the homotopy interpretation, between any two different points
w, y ∈ A, there may be many different paths connecting them. Therefore, when this is translated into the logical
interpretation, it must be the case that between any two non-definitionally equal terms, there may be many different
procedures (or proofs) identifying them.45 Therefore, w = y cannot mean that w and y are identical in the sense
of standard mathematics, because w and y may be non-definitionally equal terms. It is only required the existence
of a proof (or procedure) that performs the identification between w and y to be able to conclude that those two
terms are indistinguishable from the point of view of the theory. To summarize, “identifiable” means equal modulo
a proof or procedure that performs the identification.

Under this remark, univalence does make sense, because it claims that types are identifiable if they are equivalent.
It does not claim that types are exactly the same if they are equivalent. Univalence simply claims that there is
always a way to construct a procedure that performs the identification when we already know that there is an
equivalence between the two types.

45Because a path in the homotopy interpretation corresponds to an identification procedure or proof in the logical interpretation.
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We are ready to explain why the elimination rule for identity types is sound even under the presence of non-trivial
proofs for w = w (i.e. non-constant loops at w).

To make the explanation easier, we will work with the induction principle for identity types (Lemma 1.5.57),
which we will call “IP”, instead of working with the elimination and computation rules. The reason is that IP is
“more natural” to work with, as it states everything in terms of functions and type families, while the inference
rules make excessive use of substitutions and judgments. In spite of working with IP, our explanation will still apply
to the elimination rule, because IP is just the elimination and computation rules “in disguise”, i.e. IP is provable
from the elimination and computation rules (as we did in Lemma 1.5.57), and conversely, the elimination and
computation rules are derivable from IP (though we omit the proof of this, as it is not critical for the developments
on this report).

The explanation will be based on the following lemma.

Lemma 1.7.1. Let (TR) and (UP) denote the following statements.

(TR) There is a function:

T :
∏
A:Ui

∏
C:A→Uj

∏
w,y:A

(w = y)→ (C w)→ (C y)

such that for any A : Ui , C : A→ Uj , and a : A, it satisfies:

T A C a a (reflA a) ≡ id(C a) (1.21)

In other words, T is a “transport operator” (notice the similarity with Lemma 1.5.61).

Parameters A, w, and y will be left implicit, so that Equation (1.21) can be written as:

T C (reflA a) ≡ id(C a) (1.22)

(UP) There is a function:

U :
∏
A:Ui

∏
w,y:A

∏
p:w=y

(w, (w, reflA w) ) = ( w, (y, p) )

such that for any A : Ui and a : A, it satisfies:

U A a a (reflA a) ≡ refl(∑
w:A

∑
y:A

w=y

) ( a, (a, reflA a) ) (1.23)

Function U acts as a proof for the so-called “Uniqueness principle for identity types”.

Then, the following implications hold.

(i) (TR) and (UP) together imply IP.

(ii) IP implies both (TR) and (UP).

Proof. We prove each case as follows.
(i). Suppose functions T and U. Since we want to prove IP, we suppose the following:

A : Ui
C :
∏

w,y:A

((w = y)→ Uj )

g :
∏
a:A

C a a (reflA a)

and then construct the required function f.
First, we define a type family D : (

∑
w:A

∑
y:A w = y)→ Uj by the recursion principle for Σ-types (applied twice)

as:
D ( w, (y, p) ) :≡ C w y p
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Now, define function f as:

f w y p :≡ T D (U A w y p) (g w)

Notice f is well-typed, since:

g w : C w w (reflA w)

or equivalently, by definition of family D:

g w : D ( w, (w, reflA w) )

Similarly:

T D (U A w y p) (g w) : D ( w, (y, p) )

or equivalently, by definition of D:

T D (U A w y p) (g w) : C w y p

Finally, for any a : A, we have:

f a a (reflA a) ≡ T D (U A a a (reflA a)) (g a)

(1)
≡ T D (refl(∑

w:A

∑
y:A

w=y

) ( a, (a, reflA a) )) (g a)

(2)
≡ id(D ( a, (a, reflA a) )) (g a)

≡ id(C a a (reflA a)) (g a)

≡ g a

where (1) follows by (1.23), and (2) by (1.22).

(ii). Suppose IP.

(TR) follows by a proof similar to the one for the transport operator in Lemma 1.5.61.

(UP) follows by IP, since Equation (1.23) defines function U on trivial proofs, as required by IP.

Lemma 1.7.1 “reveals” the intuition behind IP (or the elimination and computation rules), because IP is really
clamming two things:

• (TR) claims that, for all involved spaces in our theory, it is always possible to continuously transport fibers
along a path in any base space.

Observe that in the continuous path-lifting map (1.20), the transport function is used to obtain the endpoint
of the lifted path. Therefore, (TR) is also expressing that, for all involved spaces in our theory, we can
continuously obtain the point where lifted paths will end, as long as we provide a starting point for the lifted
path.

• (UP) claims something very interesting. Paths of the form:

(w, (w, reflA w) ) = ( w, (y, p) )

correspond to homotopies between the constant loop reflA w and path p, where the endpoints on both paths
can freely move during the homotopy.46

Therefore, (UP) claims that, for all involved spaces in our theory, it is always possible to continuously assign
homotopies (with free endpoints) between constant loops reflA w and paths starting at w.

46See Section 2.7 and Lemma 2.11.2 in the HoTT book [20].
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This claim is sensible in standard mathematics, because we can always construct an homotopy (with free
endpoints) between a constant loop at w ∈ A:

c : I → A

cw(x) = w

and a path between points w, y ∈ A:

pw,y ∈ {q : I → A | q(0) = w and q(1) = y}

as follows:

H : I × I → A

H(r, t) = pw,y(rt)

since H(r, 0) = pw,y(0) = w = cw(r) for any r ∈ I, and H(r, 1) = pw,y(r) for any r ∈ I.

Let us summarize the claims made by IP. At the moment we introduce into HoTT the elimination and compu-
tation rules for identity types, we are implicitly introducing the claims that fibers connected through a path can
be transported along it, and that any constant loop at some point can be deformed by an homotopy with free
endpoints into a path starting at the point.

Hence, the elimination and computation rules are sound not because (reflA a) are the only proofs for identity
types (which is false), but because constant loops can be deformed into non-constant paths by homotopies with free
endpoints. In the logical interpretation this means that trivial proofs can be transformed into non-trivial proofs,
and the elimination rule is claiming that there is a procedure doing this.

Although we have barely scratched the surface of the homotopy interpretation for HoTT, this section should
suggest to the reader that HoTT is a very interesting language for doing homotopy theory. For example, many
spaces can be defined in HoTT and get their homotopy groups investigated. Another advantage is that any function
definable between these spaces will be automatically continuous. For further details on the homotopy interpretation,
the reader is invited to have a look at Chapters 2, 6, 7, and 8 in the HoTT book [20].

1.8 Contractible types, propositions and sets

A contractible type will be a type with only one element up to identification.

Definition 1.8.1 (Contractible type). Let A : Ui be a type. We define type:

IsContr A :≡
∑
a:A

∏
w:A

a = w

If type IsContr A is inhabited, we say that A is a contractible type. Contractible types are also called (−2)-types.
We call term a : A the center of contraction for A, and denote it as center A.

N

Hence, A is contractible if every term in A can be identified with its center of contraction (i.e. A has exactly one
element up to identification).

The name “contractible” comes from the homotopy interpretation. Type IsContr A states that A is a space with
a point a ∈ A and a continuous function H : A→ AI that assigns to each w ∈ A a path p ∈ AI such that p(0) = a
and p(1) = w. Since H is continuous, by the exponential law we get a continuous function H ′ : A × I → A such
that H ′(w, 0) = a and H ′(w, 1) = w. This H ′ corresponds to a homotopy between the constant function at a and
the identity function on A. Therefore, the space A is contractible.

An example of contractible type is 1, because all its terms are identifiable with ? by Lemma 1.6.2. Here, ? acts
as the center of contraction for 1.

Another example is provided by the following lemma.

Lemma 1.8.2. Let D : Ui be a type. Then, the following type is inhabited:

IsContr (0→ D)

i.e. there is only one function with domain 0 and codomain an arbitrary type D.
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Proof. By the recursion principle for 0 (Lemma 1.5.42), there is a function f : 0 → D. This f will be the center of
contraction.

Now, given another g : 0→ D, we have to prove f = g. By function extensionality, it is enough to prove:∏
w:0

f w = g w

but this is trivially inhabited by the induction principle for 0 (Lemma 1.5.41).

The next property provides a characterization for Σ-types when the type family P : A → Uj is a family of
contractible types.

Lemma 1.8.3. Let A : Ui and P : A → Uj . If for every w : A, type P w is contractible, then the following type is
inhabited: (∑

w:A

P w

)
' A

Proof. We need to prove a type equivalence, so we need to define two mutually inverse functions between the types
(Lemma 1.6.18).

The first function will be the projection function:

pr1 :

(∑
w:A

P w

)
→ A

The second function is defined as follows:

f :≡ (λw :A. (w, center (P w))) : A→

(∑
w:A

P w

)
For w : A, equation pr1 (f w) = w follows:

pr1 (f w) ≡ pr1 (w, center (P w)) ≡ w

For the other equation f (pr1 w) = w, by the induction principle for Σ-types it is enough to prove:

f (pr1 (a, b)) = (a, b)

for any a : A and b : P a.
We have by definition:

f (pr1 (a, b)) ≡ f a ≡ (a, center (P a))

So, it remains to prove (a, center (P a)) = (a, b). By Lemma 1.6.25 it is enough to construct a proof q : a = a
such that q∗ (center (P a)) = b is inhabited.

So, consider reflA a : a = a. Type (reflA a)∗ (center (P a)) = b simplifies to center (P a) = b which is inhabited
since P a is contractible (i.e. any term b : P a will be identifiable with the center of P a).

Now, we introduce the notion of mere proposition.

Definition 1.8.4 (Mere proposition). Let A : Ui be a type. We define type:

IsProp A :≡
∏

w,y:A

w = y

If type IsProp A is inhabited, we say that A is a mere proposition or simply a proposition. Mere propositions are
also called (−1)-types.

We also define type:

Propi :≡
∑
A:Ui

IsProp A

called the universe of mere propositions at level i.
N
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A mere proposition is a type where any two of its terms can be identified. In other words, under the Curry-
Howard correspondence, a mere proposition is a logical statement where any of its proofs is as good as any other
(because all its proofs are identifiable). Mere propositions are proof-irrelevant.

Notice we have now two uses of the word “proposition”. When we want to interpret a type as a proposition
according to the Curry-Howard correspondence, we will explicitly say so. Instead, if we just say that a type is a
proposition, this will mean that it satisfies Definition 1.8.4.

Under the homotopy interpretation, a mere proposition is a path-connected space that contracts to a point if
the space is not empty, i.e. if there is a point a : A, then we have

∏
y:A a = y, which means A is contractible. Hence,

the only information this space encodes is the existence or nonexistence of a point up to continuous deformation
(i.e. the space behaves like a truth value).

Convention 1.8.5 (Implicit casting of mere propositions). Instead of (A, p) : Propi , we will write A : Propi . When
A : Propi is an assumption in some lemma, we will interpret this as: “We have A : Ui , and an implicit proof that it
is a mere proposition”. When we want to treat A : Propi as a pair, we will explicitly write it as such.

N

Any inhabited proposition is contractible, as expressed by the following lemma.

Lemma 1.8.6. Let A : Propi be a proposition. If A is inhabited, then A is contractible.

Proof. A is inhabited by hypothesis, so there is a point w : A.
Since A is a proposition, type

∏
y:A w = y is inhabited. Hence, w acts as a center of contraction.

For the next lemma we require a definition.

Definition 1.8.7 (Logical equivalence). Let A : Ui and B : Uj be two types. If there are functions:

f : A→ B

g : B→ A

then we say that A and B are logically equivalent. Hence, under the Curry-Howard correspondence, this reads: “A
if and only if B”.

N

In general, logical equivalence of A and B does not imply that A and B are equivalent types. However, when A
and B are mere propositions, this is indeed the case.

Lemma 1.8.8. Let A : Propi and B : Propj be two propositions. If A and B are logically equivalent, then they are
equivalent types.

Proof. By hypothesis, A and B are logically equivalent, so, we are given two functions:

f : A→ B

g : B→ A

It remains to show that these functions are inverses of each other.
Let w : A. The equation g (f w) = w holds because g (f w) and w are terms of type A, which is a proposition

(hence, both terms are identifiable).
Similarly, given w : B, the equation f (g w) = w holds because f (g w) and w are terms of type B, which is a

proposition.

Now, we present the concept of set.

Definition 1.8.9 (Set). Let A : Ui be a type. We define type:

IsSet A :≡
∏

w,y:A

∏
p,q:w=y

p = q



80 CHAPTER 1. HOMOTOPY TYPE THEORY (HOTT)

If type IsSet A is inhabited, we say that A is a set. Sets are also called 0-types. Notice that the definition of
IsSet A can also be given as:

IsSet A :≡
∏

w,y:A

IsProp (w = y)

We define type:

Seti :≡
∑
A:Ui

IsSet A

called the universe of sets at level i.
N

A set is a type where any two of its terms can be identified in at most one way. This conforms with standard
mathematical practice where it is proof-irrelevant whether or not two elements in a set are equal.

Under the homotopy interpretation, a set is a space where any two paths with the same end points can be
continuously assigned a homotopy. Sets can also be interpreted as spaces where each path-connected component is
contractible [20]. Therefore, if we contract each path-connected component, the result will be a space that looks
like a discrete space, hence the name set.

Convention 1.8.10 (Implicit casting of sets). Instead of (A, p) : Seti , we will write A : Seti . When A : Seti is an
assumption in some lemma, we will interpret this as: “We have A : Ui , and an implicit proof that it is a set”. When
we want to treat A : Seti as a pair, we will explicitly write it as such.

N

Now, we present some results. The first one states that any mere proposition is a set.

Lemma 1.8.11. If A : Propi , then A : Seti .

Proof. Since A is a proposition, there is a function f :
∏

w,y:A w = y.
First, we prove that there is a function:

g :
∏

w,y,z:A

∏
p:y=z

p = (f w y)−1 � (f w z)

Let w : A. Then, by the induction principle for identity types, it is enough to prove:∏
a:A

reflA a = (f w a)−1 � (f w a)

So, let a : A. But type reflA a = (f w a)−1 � (f w a) is inhabited by Lemma 1.6.5(iii).
Therefore, function g exists. Now, to prove that A is a set, let w, y : A with p, q : w = y.
Then, we have:

g w w y p : p = (f w w)−1 � (f w y)

g w w y q : q = (f w w)−1 � (f w y)

which means (g w w y p) � (g w w y q)−1 : p = q.

Lemma 1.8.11 has the following consequence.

Lemma 1.8.12. Let A : Ui . Then, IsProp A is a mere proposition.

Proof. Let f, g : IsProp A. By function extensionality applied twice, to prove f = g it is enough to prove f w y = g w y
for any w, y : A.

So, let w, y : A. Since A is a proposition, by Lemma 1.8.11 it is also a set. This means that type w = y is a mere
proposition (see alternative definition of set).

But we have f w y : w = y and g w y : w = y, which means that f w y = g w y is inhabited because w = y is a mere
proposition.
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Another consequence of Lemma 1.8.11 is the following.

Lemma 1.8.13. Let A : Propi be a proposition, and w, y : A. Then, type w = y is contractible.

Proof. Since A is a proposition, there is a function f :
∏

r,t:A r = t.
Also, by Lemma 1.8.11, type A is a set. This means that w = y is a mere proposition.
Since type w = y is inhabited by (f w y), it follows by Lemma 1.8.6 that type w = y is contractible.

The next property provides a characterization for identities on Σ-types when the type family P : A → Uj is a
family of propositions P : A→ Propj , also called a “predicate on A”.

Lemma 1.8.14. Let A : Ui be a type and P : A → Propj a family of propositions. Then, the following type is
inhabited: ∏

y,z:
∑
w:A

P w

(y = z) ' (pr1 y = pr1 z)

Proof. Let y, z :
∑

w:A P w. By Lemma 1.6.25, we have:

(y = z) '
∑

p:pr1 y=pr1 z

p∗ (pr2 y) = pr2 z

Notice that given arbitrary p : pr1 y = pr1 z, type p∗ (pr2 y) = pr2 z is an identity type on the mere proposition
P (pr1 z). Therefore, by Lemma 1.8.13, type p∗ (pr2 y) = pr2 z is contractible for every p.

Therefore, by Lemma 1.8.3, we have:( ∑
p:pr1 y=pr1 z

p∗ (pr2 y) = pr2 z

)
' (pr1 y = pr1 z)

Hence:
(y = z) ' (pr1 y = pr1 z)

since equivalences are transitive by Lemma 1.6.21.

We also have a characterization for identities in the universe of propositions Propi .

Lemma 1.8.15. The following type is inhabited:∏
(P,p):Propi

∏
(Q,q):Propj

((P, q) =Propmax{i,j} (Q, q)) ' (P ' Q)

Proof. Let (P, p) : Propi and (Q, q) : Propj . By the cumulative universe rule, we have P,Q : Umax{i,j}. But
p : IsProp P and q : IsProp Q. Therefore, (P, q), (Q, q) : Propmax{i,j}.

Now, by Lemma 1.8.12, for every type T, type IsProp T is a mere proposition. Therefore, by definition, type
Propmax{i,j} is a Σ-type over a family of propositions. So, by Lemma 1.8.14 we have:

((P, p) =Propmax{i,j} (Q, q)) ' (P =Umax{i,j} Q)

But, by Lemma 1.6.32, we have:
(P =Umax{i,j} Q) ' (P ' Q)

Hence:
((P, p) =Propmax{i,j} (Q, q)) ' (P ' Q)

since equivalences are transitive by Lemma 1.6.21.

As we would expect, equivalences preserve propositions and sets.
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Lemma 1.8.16. Let A : Ui and B : Uj be types. Suppose that A and B are equivalent types. Then the following
statements hold.

(i) If A is a proposition, then B is a proposition.

(ii) If A is a set, then B is a set.

Proof. Since A and B are equivalent, by univalence we have a proof q : A = B. If A is a proposition, we have a proof
G : IsProp A. Hence, transport(λY. IsProp Y) q G : IsProp B is a proof that B is a proposition.

The proof is similar when A is a set.

Propositions have the following closure properties.

Lemma 1.8.17 (Closure properties for propositions). Given the condition on the left side of the following table,
we will have the conclusion on the right side of the table.

Condition Conclusion

(1) A : Propi , P : A→ Propj

(∑
w:A

P w

)
: Propmax{i,j}

(2) A : Ui , P : A→ Propj

(∏
w:A

P w

)
: Propmax{i,j}

(3) 0 : Propi

(4) 1 : Propi

(5) A : Ui ¬A : Propi

(6) A : Seti , w : A, y : A (w = y) : Propi

(7) A : Propi , w : A, y : A (w = y) : Propi

Proof. We prove each case as follows.

(1) Let y, z :
∑

w:A P w. By Lemma 1.8.14, to prove y = z it is enough to prove pr1 y = pr1 z (since P is a family
of propositions).

But (pr1 y) =A (pr1 z) is inhabited, since A is a mere proposition.
Type

∑
w:A P w is at level max{i, j} by Remark 1.5.29.

(2) Let f, g :
∏

w:A P w. By function extensionality, to prove f = g it is enough to prove f w = g w for every w : A.
So, let w : A. But f w =(P w) g w is inhabited, since P w is a mere proposition.
Type

∏
w:A P w is at level max{i, j} by Remark 1.5.16.

(3) Type
∏

w,y:0 w = y is inhabited by a direct application of the induction principle for 0.

(4) Let y, z : 1. By Lemma 1.6.2, we have a function f :
∏

w:1 w = ?. Hence, (f y) � (f z)−1 : y = z.

(5) Type ¬A denotes A→ 0. By (3), 0 is a proposition. Therefore, type A→ 0 is a proposition by (2).
Type ¬A is at level i because A and 0 are at level i.47

(6) By definition of set.

(7) By Lemma 1.8.11, A is also a set. Therefore, this case reduces to (6).

Notice that Lemma 1.8.17 left out the case for sum types A + B. A sum type represents a disjoint union. Hence,
it will not be a path-connected space in general (i.e. not a mere proposition). For example, 1 + 1 is a discrete space
with two disconnected points, even though 1 is a mere proposition.

Sets have similar closure properties.

Lemma 1.8.18 (Closure properties for sets). Given the condition on the left side of the following table, we will
have the conclusion on the right side of the table.

47Type 0 is at every universe level.
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Condition Conclusion

(1) A : Seti , P : A→ Setj

(∑
w:A

P w

)
: Setmax{i,j}

(2) A : Ui , P : A→ Setj

(∏
w:A

P w

)
: Setmax{i,j}

(3) A : Seti , B : Setj A + B : Setmax{i,j}
(4) 0 : Seti
(5) 1 : Seti
(6) N : Seti
(7) A : Ui ¬A : Seti
(8) A : Seti , w : A, y : A (w = y) : Seti
(9) Propi : Seti+1

Proof. We prove each case as follows.

(1) Let y, z :
∑

w:A P w. We will prove that type y = z is a mere proposition. From this, it will follow that∑
w:A P w is a set (see Definition 1.8.9).
By Lemma 1.6.25, we have:

(y = z) '
∑

p:pr1 y=pr1 z

p∗ (pr2 y) = pr2 z

Since we know that A is a set, it follows that type (pr1 y) =A (pr1 z) is a mere proposition. Also, we know that
for every w : A, type P w is a set. Hence, type p∗ (pr2 y) =(P (pr1 z)) pr2 z is a mere proposition for every p.

Therefore, by Lemma 1.8.17, type
∑

p:pr1 y=pr1 z p∗ (pr2 y) = pr2 z is a mere proposition.
But propositions are preserved under equivalences (Lemma 1.8.16), which means that type y = z is a mere

proposition.
Type

∑
w:A P w is at level max{i, j} by Remark 1.5.29.

(2) Let f, g :
∏

w:A P w. We will prove that type f = g is a mere proposition. From this, it will follow that∏
w:A P w is a set.

By Lemma 1.6.28, we have:

(f = g) '
∏
w:A

f w = g w

We know that for every w : A, type P w is a set. Hence, type f w =(P w) g w is a mere proposition for every w : A.
Therefore, by Lemma 1.8.17, type

∏
w:A f w = g w is a mere proposition.

But propositions are preserved under equivalences (Lemma 1.8.16), which means that type f = g is a mere
proposition.

Type
∏

w:A P w is at level max{i, j} by Remark 1.5.16.

(3) For this case, we make use of the following three functions whose proof we omit. The reader can find a proof
of these functions on Section 2.12 in the HoTT book [20].

L :
∏

a1,a2:A

((inl a1 = inl a2) ' (a1 = a2))

R :
∏

b1,b2:B

((inr b1 = inr b2) ' (b1 = b2))

M :
∏
a:A

∏
b:B

((inl a = inr b) ' 0)

We need to prove that type
∏

r,t:A+B IsProp (r = t) is inhabited.
By the induction principle for sum types applied twice (Lemma 1.5.35), it is enough to prove the following four

cases:

• IsProp (inl l1 = inl l2) for l1, l2 : A. We know A is a set, which means l1 = l2 is a mere proposition. Since
equivalences preserve propositions, by function L above we get that inl l1 = inl l2 is a mere proposition.
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• IsProp (inl l1 = inr r2) for l1 : A and r2 : B. By Lemma 1.8.17, 0 is a proposition. Since equivalences preserve
propositions, by function M above we get that inl l1 = inr r2 is a proposition.

• IsProp (inr r1 = inl l2) for r1 : B and l2 : A. By Lemma 1.8.17, 0 is a proposition. Since equivalences preserve
propositions, by function M above we get that inr r1 = inl l2 is a proposition.48

• IsProp (inr r1 = inr r2) for r1, r2 : B. We know B is a set, which means r1 = r2 is a mere proposition. Since
equivalences preserve propositions, by function R above we get that inr r1 = inr r2 is a mere proposition.

Type A + B is at level max{i, j} by Remark 1.5.37.

(4), (5), (7), and (8). Each one of these types is a proposition by Lemma 1.8.17. Therefore, they are also sets
by Lemma 1.8.11.

(6) We omit the proof as it is not critical for the results on this report. The reader can find a proof at Example
3.1.4 in the HoTT book [20]. An alternative proof can be found at Theorem 7.2.6 in the HoTT book.

(9) Since Propi is a Σ-type, by Remark 1.5.29, its universe level will be the maximum between Ui and IsProp P
for every P : Ui . By the universe introduction rule on page 8, Ui is at level i+ 1.

Now, given P : Ui , type IsProp P is a Π-type, therefore, by Remark 1.5.16, its level will be the maximum between
the level of P and the level of the identity type w = y for every w, y : P. Since identity types preserve universe level
(see formation rule on page 45), we conclude that IsProp P is at level i.

Therefore, Propi is a type at level max{i+ 1, i} = i+ 1.
It remains to prove that Propi is a set. Let (P, p), (Q, q) : Propi . Again, we will prove that type (P, p) =Propi

(Q, q)
is a mere proposition.

By Lemma 1.8.15, we have:
((P, p) =Propi

(Q, q)) ' (P ' Q)

But P ' Q denotes type
∑

f: P→Q IsEquiv f, where IsEquiv f denotes: ∑
g:Q→P

f ◦ g ∼ idQ

×( ∑
h:Q→P

h ◦ f ∼ idP

)

Since P and Q are propositions by hypothesis, all these types are mere propositions by closure properties in
Lemma 1.8.17.

So, (P, p) =Propi
(Q, q) is a proposition, as equivalences preserve them.

For the next lemma, we require a definition.

Definition 1.8.19 (Subtypes and subsets). Let A : Ui be a type and P : A→ Propj a family of propositions.
Type: ∑

w:A

P w (1.24)

will be called the subtype of A determined by P. If in addition A is a set, then type (1.24) is a set (Lemma 1.8.18)
and it will be called the subset of A determined by P.

We sometimes abuse terminology and say that the family P is the subtype (subset, resp.) of A. This will cause
no confusion, as P is not a type, but a only a term that determines type (1.24).

Therefore, we can safely say that A → Propj is the type of all subtypes of A or the powertype of A. Similarly,
when A is a set, we can say that A→ Propj is the type of all subsets of A or the powerset of A.

Notice that Propj is a set by Lemma 1.8.18, which means, by the same lemma, that A → Propj is always a
set, independently of A, justifying the name “powerset”.

N
48Strictly speaking, if we use M, we only get that inl l2 = inr r1 is a proposition.
Although we did not state it as a lemma, one can prove that the symmetry operator (for any C : Uk ):

−1 :
∏

a,b:C

(a = b)→ (b = a)

is an equivalence, by proving that it is its own inverse (with aid from Lemma 1.6.5(v)).
Hence inl l2 = inr r1 is equivalent to inr r1 = inl l2, and the result follows.
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The next lemma states that no type is equivalent to its powertype. This is a generalization to Cantor’s Theorem:
there is no bijection between a set and its powerset.

Lemma 1.8.20. Let A : Ui be a type. Then the following type is inhabited:

¬((A→ Propj ) ' A)

Proof. Suppose (A→ Propj ) ' A is inhabited, we want to prove that 0 is inhabited.
By hypothesis, we have an equivalence e : (A→ Propj )→ A. Now, define:

k :≡ (λa :A. ¬(e−1 a a)) : A→ Propj

Notice k is well-typed, since e−1 a a : Propj and the negation operator produces a proposition at the same level
(Lemma 1.8.17).

Since e is an equivalence, there is a proof p1 : k = e−1 (e k).
Define δ :≡ e k. Hence:49

p2 :≡ happly k (e−1 δ) p1 : k ∼ e−1 δ

which means:
p2 δ : k δ = e−1 δ δ

or equivalently:
p2 δ : ¬(e−1 δ δ) = e−1 δ δ

since k δ ≡ ¬(e−1 δ δ).
Now, we prove the following claim.

Claim 1: There is a function:
f :
∏

C:Um

((¬C = C)→ 0)

Suppose C : Um and h1 : ¬C = C. We want to prove that 0 is inhabited. We have:50

idtoequiv ¬C C h1 : ¬C ' C

This means there are two functions g1 : ¬C→ C and g2 : C→ ¬C. But then we can define:

g3 :≡ (λw :C. g2 w w) : ¬C

which means:
g3 (g1 g3) : 0

This proves the claim.

To finish the proof, by Claim 1 we have:

f (e−1 δ δ) (p2 δ) : 0

1.8.1 The propositional resizing axiom

Since universes are cumulative, we will have a function Propi → Propi+1 defined as follows.

Definition 1.8.21 (Propositional resizing function). We define a function:

PropRi : Propi → Propi+1

by recursion on Σ-types as:
PropRi (P, q) :≡ (P, q)

Notice PropRi is well-typed, since P : Ui implies P : Ui+1 by the cumulative universe rule.
N

49Function happly is defined in Lemma 1.6.27.
50Function idtoequiv is stated in Definition 1.6.31.
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The propositional resizing axiom states that PropRi is an equivalence.

• Propositional resizing (S-context: Γ):

Γ ctx

Γ ` propres : IsEquiv PropRi

PROP-RES-i

Here, propres is a term acting as proof to the fact that PropRi is an equivalence. In informal proofs we will
say “by propositional resizing...” when we want to use the inverse of PropRi without explicit mention to the
PROP-RES-i rule.

Propositional resizing implies that all propositional universes are mutually equivalent. This axiom will allow
impredicative definitions. An impredicative definition is one that quantifies over a totality of objects to which the
defined object belongs to. An example of an impredicative definition can be found in Example 2.2.8 of Chapter 2.

Also, the reader may have noticed that the powertype A → Propj is dependent on the universe level j. This
means that there is a powertype for each universe level j. Since propositional resizing implies that all propositional
universes are equivalent, it is irrelevant which level j we choose for A→ Propj . In other words, we are justified in
calling A→ Propj the powertype of A.

The propositional resizing axiom is not part of the standard presentation of HoTT, but it can be safely added
to HoTT without producing an inconsistency [20].

We will use the propositional resizing axiom in a more general form as follows.

Lemma 1.8.22 (Generalized propositional resizing). If i ≤ j, there is an equivalence:

GPropRj
i : Propi → Propj

such that for any A : Ui and p : IsProp A, it satisfies:

GPropRj
i (A, p) ≡ (A, p)

Proof. If i = j, our equivalence is the identity function (Lemma 1.6.19). If j = i+ 1, our equivalence is PropRi . If
j > i+ 1, just compose the corresponding PropR function j − i times, as equivalences compose by Lemma 1.6.21.

If we resize a proposition using (GPropRj
i )
−1, we get an equivalent proposition.

Lemma 1.8.23. Let i ≤ j. The following type is inhabited:∏
(P,q):Propj

pr1 ((GPropRj
i )
−1 (P, q)) ' P (1.25)

However, type (1.25) looks ugly due to the excessive use of pairs, parentheses, and the projection function. Hence,
we can use Convention 1.8.5 to rewrite it as:∏

P:Propj

((GPropRj
i )
−1 P) ' P

where the proof for IsProp P is implicitly added wherever is needed.

Proof. Let (P, q) : Propj . Define δ :≡ ((GPropRj
i )
−1 (P, q)) : Propi .

Since GPropRj
i is an equivalence, there is a proof q1 : GPropRj

i δ =Propj
(P, q).

But, by Lemma 1.6.1, we have a proof q2 : (pr1 δ, pr2 δ) =Propi
δ. Therefore:

q3 :≡ transportR q−1
2 q1 : GPropRj

i (pr1 δ, pr2 δ) =Propj
(P, q)

where:
R :≡ λA :Propi . GPropRj

i A =Propj
(P, q)



1.9. INDUCTIVE TYPES AND INITIAL ALGEBRAS 87

However, by definition of GPropRj
i , we have GPropRj

i (pr1 δ, pr2 δ) ≡ (pr1 δ, pr2 δ) : Propj , which means:

q3 : (pr1 δ, pr2 δ) =Propj
(P, q)

Therefore, by Lemma 1.8.15, there is a proof:

q4 : pr1 δ ' P

or by definition of δ:

q4 : pr1 ((GPropRj
i )
−1 (P, q)) ' P

We also have the following useful property.

Lemma 1.8.24. Let i ≤ j be universe levels, P : Propj a proposition, and A : Uk a type.

If P→ A is inhabited, then ((GPropRj
i )
−1 P)→ A is inhabited.

Proof. We are given a function f : P→ A.
By Lemma 1.8.23, there is an equivalence:

e : ((GPropRj
i )
−1 P)→ P

Hence, f ◦ e : ((GPropRj
i )
−1 P)→ A.

1.9 Inductive types and initial algebras

The intuitive idea behind an inductive type is that all its elements are constructed from the “bottom up”. An
inductive type has base constructors for the bottom elements, and inductive constructors, which take previously
constructed elements and return new elements. For example, the natural numbers have 0 as their base constructor
and the successor function S as their inductive constructor.

In addition, inductive types have inductive and/or recursion principles, which allow the construction of functions
out of the inductive type. These principles encode the idea that the constructors are the only way to build elements
in the inductive type. For example, to define a function with domain the natural numbers, it is enough to define it
on the zero case and the successor case, since these are the only ways to construct a natural number.

There are many ways to present an inductive type. One way is to provide formation, introduction, elimination,
and computation rules as we did in Section 1.5.51 More alternative ways can be found in Chapter 5 of the HoTT
book [20], but the way we will be particularly interested is through the concept of initial algebra. Initial algebras
will encode inductive types [20].

The most general definition of initial algebra comes from category theory. This report will use an special case
of the general definition. In order the understand the special case, we need to have a look at how initial algebras
are defined in category theory. For the moment, we will only state the definitions of these categorical concepts. We
defer their explanation until we start modeling them in HoTT.

We start with the concept of category, as defined in Awodey [5].

Definition 1.9.1 (Category). A category consists of:

• Objects: A, B, C, . . .

• Arrows: f , g, h, . . .

51The reason why most of the types in Section 1.5 have the name “ind” on their eliminators (see their elimination rules) is because
these types are actually inductive types.

However, most of these types do not have inductive constructors, only base constructors (see their introduction rules). There is even
a case of an inductive type (the empty type 0) without constructors at all.
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• For each arrow f , there are given objects:

dom(f) cod(f)

called the domain and codomain of f . Whenever an arrow is written as:

f : A→ B

it is understood that A is dom(f) and B is cod(f).

• Given arrows f : A→ B and g : B → C, there is given an arrow:

g ◦ f : A→ C

called the composite of f and g.

• For each object A, there is given an arrow:
1A : A→ A

called the identity arrow of A.

such that the following properties are satisfied:

• Associativity:
h ◦ (g ◦ f) = (h ◦ g) ◦ f

for all f : A→ B, g : B → C, and h : C → D.

• Unit:
f ◦ 1A = f = 1B ◦ f

for all f : A→ B.

N

Next comes the concept of functor, also defined in [5].

Definition 1.9.2 (Functor). Let C and D be two categories. A functor H between categories C and D, denoted
H : C → D, is a mapping of objects and arrows from C to D, i.e.

• For each object A in C, functor H maps A to an object in D, denoted H(A).

• For each arrow f : A → B in C, functor H maps f to an arrow in D, denoted H(f), but in such a way that
the domain of H(f) is H(A), and the codomain of H(f) is H(B). This is denoted as H(f) : H(A)→ H(B).

so that the following conditions are satisfied:

H(1A) = 1H(A) (1.26)

H(g ◦ f) = H(g) ◦H(f) (1.27)

for any object A and arrows f : B → C and g : C → D in C.
N

We can now define what an algebra is (see [1]).

Definition 1.9.3 (Algebra). Let C be a category and H : C → C a functor.
An H-algebra is an object A in C together with an arrow InA : H(A) → A. We will denote H-algebras as

(A, InA).
N

To be able to define what an initial algebra is, we need the notion of algebra morphism (see [1]).
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Definition 1.9.4 (Algebra morphism). Let C be a category and H : C → C a functor.
An algebra morphism between H-algebras (A, InA) and (B, InB) is an arrow m : A→ B such that the following

diagram commutes:

H(A) H(B)

A B

H(m)

InA InB

m

N

And now we can state the definition of initial algebra (see [1]).

Definition 1.9.5 (Initial algebra). Let C be a category and H : C → C a functor.
An initial H-algebra is an H-algebra (A, InA) such that for any other H-algebra (B, InB), there is a unique

algebra morphism from (A, InA) to (B, InB).
N

On this report, we will be interested on constructing initial/final (co)algebras inside type universes, which means
that we will not work in arbitrary categories. However, observe that a type universe Ui can be understood as a
category, where the objects are the types in the universe, the arrows are all functions between those types, arrow
composition is just the function composition operator of Definition 1.5.13, the identity arrow is just the identity
function of Definition 1.5.6, and the associativity and unit laws are satisfied by Lemmas 1.6.3 and 1.6.4.

Hence, the reader can consider all the following definitions to be just the general definitions above but instantiated
on the “type universe categories”.

The first notion we need to model in HoTT is that of functor.

Definition 1.9.6 (Functor). Let H : Ui → Uj be a function between type universes. Any term of type:

FunctorStr H :≡
∑

map:
∏

A,B:Ui
(A→B)→(H A)→(H B)

[(∏
A:Ui

map A A idA ∼ id(H A)

)
×

 ∏
A,B,C:Ui

∏
g:A→B

∏
h:B→C

map A C (h ◦ g) ∼ (map B C h) ◦ (map A B g)


will be called a functor structure for H. Also, any term of type:∑

G:Ui→Uj

FunctorStr G

will be called a functor.
N

A functor ( H, ( map, (α, β) ) ) :
∑

G:Ui→Uj FunctorStr G is a tuple consisting on a function H between type uni-

verses (i.e. the function maps objects between “type universe categories”), together with a map function (i.e. each
arrow f : A → B is mapped to an arrow map(f) : H(A) → H(B)) in such a way that α is a proof that the arrow
mapping respects the identity function (i.e. Condition (1.26) in Definition 1.9.2) and β is a proof that the arrow
mapping respects function composition (i.e. Condition (1.27) in Definition 1.9.2).

Notice that a functor was defined using pointwise identifiability (∼) instead of the identity type (=), but it does
not matter which one is used, because we have function extensionality.

Now, a convention regarding functors.

Convention 1.9.7. In informal arguments, we will say: “Let H : Ui → Uj be a functor...” leaving implicit all the
functor structure. When we want to refer to the map function associated with H, it will be written as mapH.

Also, given A,B : Ui and f : A→ B, instead of mapH A B f, we will write mapH f, where parameters A and B are
left implicit.

These conventions also apply when defining functors.
N
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For example, we can define a functor by first defining the type mapping function:

NatFi :≡ (λY :Ui . 1 + Y) : Ui → Ui

And then define its arrow mapping function:

mapNatFi :
∏

A,B:Ui

(A→ B)→ ((1 + A)→ (1 + B))

or equivalently:

mapNatFi :
∏

A,B:Ui

(A→ B)→ ((NatFi A)→ (NatFi B))

by the recursion principle for sum types (for arbitrary A,B : Ui , f : A→ B, l : 1, and r : A):

mapNatFi f (inl l) :≡ inl l

mapNatFi f (inr r) :≡ inr (f r)

See Lemma 3.2.29 for a proof that NatFi (together with its arrow mapping function) defines a functor.

We will be interested on two properties a functor may have.

Definition 1.9.8 (Endofunctor). Let H : Ui → Uj be a functor. We will say that H is an endofunctor, if j = i.
In informal arguments we will say: “Let H : Ui → Ui be a functor...” as it will be implied that it is an endofunctor,

because we are using the same universe level on the domain and codomain of H.
N

Definition 1.9.9 (Set-preserving functor). Let H : Ui → Uj be a functor. We will say that H preserves sets or that
H is a set-preserving functor if given a set C : Seti , we have that H C is also a set.

This property will play a role until Chapter 3, but we define it in here for completeness.
N

Functors preserve equivalences, as the following lemma shows.

Lemma 1.9.10. Let H : Ui → Uj be a functor, and k,m ≤ i universe levels. Let A : Uk and B : Um be two types,
and e : A→ B an equivalence.

Then, mapH e : (H A)→ (H B) is an equivalence.52

Proof. By Lemma 1.6.16 we need to construct an inverse for mapH e. We claim that mapH e−1 will be its inverse.
Type

∏
a:H A mapH e−1 (mapH e a) = a is inhabited, since we have:53

mapH e−1 (mapH e a)
(1)
= mapH (e−1 ◦ e) a

(2)
= mapH idA a

(3)
= id(H A) a

(4)
= a

where (1) follows by functorial mapping of function composition (see Definition 1.9.6), (2) follows by function
extensionality applied to the fact that e is an equivalence,54 (3) by functorial mapping on the identity function, and
(4) by definition of the identity function.

Type
∏

b:H B mapH e (mapH e−1 b) = b is also inhabited by an identical argument.

52Notice that levels k,m need to be lower or equal to i because H needs to be applied on types A and B.
53Notice that these identities can be pasted together using the transitivity operator defined in Lemma 1.5.60, i.e. this sequence of

identities are really claiming that type mapH e−1 (mapH e a) = a is inhabited.
54In more detail, we know there is a proof q1 : (e−1 ◦ e) ∼ idA since e is an equivalence. Therefore, by function extensionality, there is

a proof q2 : e−1 ◦ e = idA. Hence, by the application operator, we have apmapH q2 : mapH (e−1 ◦ e) = mapH idA.

Now, apply the happly function defined in Lemma 1.6.27 to get a proof for mapH (e−1 ◦ e) a = mapH idA a.
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Now, we introduce the concept of algebra.

Definition 1.9.11 (H-algebra). Let H : Ui → Ui be a functor, and k ≤ i be a universe level.55 Any term of type:

Algk H :≡
∑
A:Uk

(H A)→ A

will be called an H-algebra at level k. In other words, an algebra is a type A : Uk together with a function (H A)→ A.
Functions of type (H A)→ A are usually called In functions.

Also, notice that functor H is an endofunctor. This conforms with Definition 1.9.3, where the functor is required
to be a mapping between the same category.

N

For example, a NatFi -algebra looks like: ∑
A:Uk

((1 + A)→ A)

which can be rewritten as:56 ∑
A:Uk

(A× (A→ A))

In other words, a NatFi -algebra is a type with a distinguished element and a unary operator. The natural
numbers are an example of a NatFi -algebra, because their “In” function InN : (NatFi N)→ N can be defined by the
recursion principle for sum types:

InN (inl l) :≡ 0

InN (inr n) :≡ succ n
(1.28)

Given an initial algebra A, the intuition behind its “In” function InA : (H A) → A is that it will encode the
constructors for the inductive type. For example, Equations (1.28) show that the constructors for N (0 and succ)
can be “wrapped inside” the InN : (NatFi N)→ N function.

Next, we define the concept of algebra morphism.

Definition 1.9.12 (Algebra morphism). Let H : Ui → Ui be a functor, and k, l ≤ i universe levels. Let (A, InA) : Algk H,
and (B, InB) : Algl H be two H-algebras. Any term of type:

AlgMor A B :≡
∑

f:A→B

(f ◦ InA) ∼ (InB ◦mapH f)

will be called an H-algebra morphism between H-algebras (A, InA) and (B, InB).
In other words, function f : A→ B will be an H-algebra morphism between (A, InA) and (B, InB), if the following

diagram commutes:

H A H B

A B

InA

mapH f

InB

f

N

For example, if f : A→ B is a NatFi -algebra morphism, it satisfies:∏
w:1+A

f (InA w) = InB (mapNatFi f w)

55Notice that level k needs to be lower or equal to i because H needs to be applied on type A.
56It can be proved that for any type B, types (1 + B)→ B and B× (B→ B) are equivalent, but we omit the proof.
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which reduces to the following equations, when w is given in canonical form:

f (InA (inl ?)) = InB (inl ?)∏
a:A

f (InA (inr a)) = InB (inr (f a))

If we define DA :≡ InA (inl ?) to be the distinguished element of A (and similarly for B), and UA a :≡ InA (inr a)
to be the unary operator on A (and similarly for B), then, these equations can be rewritten as:

f DA = DB∏
a:A

f (UA a) = UB (f a)

which state that f preserves the distinguished element and the unary operator. In fact, when A is N, these equations
look like (use function InN as defined by Equations (1.28)):

f 0 = DB∏
a:N

f (succ a) = UB (f a)

which correspond to the definition of f : N→ B by recursion.

Therefore, algebra morphisms will encode recursive equations or computation rules.

Also, H-algebra morphisms compose as one would expect.

Lemma 1.9.13. Let H : Ui → Ui be a functor. Let k, l,m ≤ i be universe levels, (A, InA) : Algk H, (B, InB) : Algl H,
and (C, InC) : Algm H three H-algebras.

Let f : A→ B, and g : B→ C be two H-algebra morphisms. Then, g ◦ f : A→ C is an H-algebra morphism.

In other words, if both squares:

H A H B H C

A B C

InA

mapH f

InB

mapH g

InC

f g

commute, then the following square commutes:

H A H C

A C

InA

mapH (g ◦ f)

InC

g ◦ f

Proof. Let w : H A. Then:

InC (mapH (g ◦ f) w)
(1)
= InC (mapH g (mapH f w))

(2)
= g (InB (mapH f w))

(3)
= g (f (InA w))

(4)
= (g ◦ f) (InA w)
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where (1) follows by functorial mapping of H,57 (2) holds because g is a morphism, (3) holds because f is a morphism,
and (4) follows by definition of function composition.

Also, the identity function is an H-algebra morphism.

Lemma 1.9.14. Let H : Ui → Ui be a functor. Let k ≤ i be a universe level, and (A, InA) : Algk H an H-algebra.
Then, idA : A→ A is an H-algebra morphism.

In other words, the following square commutes:

H A H A

A A

InA

mapH idA

InA

idA

Proof. Let w : H A. Then:

InA (mapH idA w)
(1)
= InA (id(H A) w)

(2)
= InA w

(3)
= idA (InA w)

where (1) follows by functorial mapping on the identity function, and (2) and (3) by definition of the identity
function.

Next, we introduce the concept of initial algebra.

Definition 1.9.15 (Initial H-algebra). Let H : Ui → Ui be a functor. Let k ≤ i be a universe level. Any term of
type:

InAlgk H :≡
∑

(A,InA):Algk H

∏
(B,InB):Algk H

IsContr (AlgMor A B)

will be called an initial H-algebra at level k. If type InAlgk H is inhabited, we say that functor H has an initial
algebra.

N

In other words, an initial algebra is an algebra (A, InA) such that for any other algebra (B, InB) there is a unique
function f : A → B satisfying the recursive equations, i.e. a unique algebra morphism from A to B (in HoTT
terminology, the type of morphisms AlgMor A B is contractible, see Definition 1.8.1).

An initial algebra encapsulates the following ideas:

• The constructors for A encoded in function InA.

• A recursion principle and its computation rules, both encoded in type
∏

(B,InB):Algk H IsContr (AlgMor A B).

The conditions for the recursion principle are encoded in the fact that (B, InB) is an algebra.

An initial algebra also encodes an induction principle, though it is less obvious (see page 65 in [17] and Section
5.5 in the HoTT book [20] for examples).

Also, any two initial algebras for a functor H can be proved to be equivalent (see Lemma 2.5.5 in [17]). So, we
are justified in calling it the initial algebra for H.

57In more detail, by functorial mapping of function composition (see Definition 1.9.6), we have a proof:

q : mapH (g ◦ f) w = mapH g (mapH f w)

which implies:
apInC

q : InC (mapH (g ◦ f) w) = InC (mapH g (mapH f w))

by the application operator ap (see Lemma 1.5.62).
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Notice that algebra morphisms encode computation rules through the use of identity types (=). To the contrary,
all computation rules in Section 1.5 use definitional equality (≡). This is why initial algebras are called homotopy
initial algebras in HoTT [20].

As a final point, beware that type InAlgk H may not be inhabited for an arbitrary functor H. We will explore
the initial algebra existence question in Chapter 3.

1.10 Coinductive types and final coalgebras

The intuitive idea behind a coinductive type is that all its elements are “decomposable” into an “observation” and
a “next state”, where this next state may be decomposable again. For example, we can imagine an infinite list (also
called a stream) to be a structure decomposable into a first element (i.e. the observation) and the rest of the list
(i.e. the next state). The rest of the list is again an infinite list that is decomposable again into an observation and
a next state, and so on ad infinitum.

Inductive types have constructors, while coinductive types have destructors, which are in charge of decomposing
the elements into observations and next states. For the streams example, one destructor is the head operation
returning the first element of the list, and the second destructor is the tail operation returning the list without the
first element.

In addition, coinductive types encode corecursion principles, which allow the construction of functions into the
coinductive type. These principles encode the idea that the destructors are the only way to decompose elements on
the coinductive type. For example, to define a function into the type of streams, it is enough to state what is the
head and tail of the image of every input to the function, because using the head and tail destructors is the only
way to decompose a stream in the first place.

Inductive types are encoded by initial algebras, while coinductive types are encoded by final coalgebras [4].
As we did for initial algebras, the categorical definitions are presented first, followed by their definitions in

HoTT. We start with the concept of coalgebra (see [1]).

Definition 1.10.1 (Coalgebra). Let C be a category and H : C → C a functor.
An H-coalgebra is an object A in C together with an arrow OutA : A→ H(A). We will denote H-coalgebras as

(A,OutA)
N

We also have the notion of coalgebra morphism [1].

Definition 1.10.2 (Coalgebra morphism). Let C be a category and H : C → C a functor.
A coalgebra morphism between H-coalgebras (A,OutA) and (B,OutB) is an arrow m : A → B such that the

following diagram commutes:

A B

H(A) H(B)

m

OutA OutB

H(m)

N

And next, the concept of final coalgebra [1].

Definition 1.10.3 (Final coalgebra). Let C be a category and H : C → C a functor.
A final H-coalgebra is an H-coalgebra (A,OutA) such that for any other H-coalgebra (B,OutB), there is a

unique coalgebra morphism from (B,OutB) to (A,OutA).
N

Now, it is time to model these concepts in HoTT. We start with the concept of coalgebra.

Definition 1.10.4 (H-coalgebra). Let H : Ui → Ui be a functor, and k ≤ i a universe level. Any term of type:

CoAlgk H :≡
∑
A:Uk

A→ (H A)



1.10. COINDUCTIVE TYPES AND FINAL COALGEBRAS 95

will be called an H-coalgebra at level k. In other words, a coalgebra is a type A : Uk together with a function
A→ (H A). Functions of type A→ (H A) are usually called Out functions.

N

To see an example of a coalgebra, let us first define a functor. Given A : Ui , define:

StreamFi A :≡ (λY :Ui . A× Y) : Ui → Ui

Now define its arrow mapping function:∏
C,D:Ui

(C→ D)→ ((A× C)→ (A× D))

or equivalently: ∏
C,D:Ui

(C→ D)→ ((StreamFi A C)→ (StreamFi A D))

by recursion on Σ-types (for any C,D : Ui , f : C→ D, o : A, and s : C):

map(StreamFi A) f (o, s) :≡ (o, f s)

Lemma 3.3.36 provides a proof that StreamFi A (together with its arrow mapping function) defines a functor.

Now, a StreamFi A-coalgebra will look like: ∑
B:Uk

(B→ (A× B))

which can be rewritten as:58 ∑
B:Uk

((B→ A)× (B→ B))

In other words, a StreamFi A-coalgebra is a type with two operations. One operation returns elements on A
(call it the observation function), while the other is a unary operator (call it the next state function).

To explain the nature of “Out” functions, let us suppose we were able to construct the type of streams StrA for
arbitrary A : Ui (this will be done in Section 3.3.4), together with the following two destructors for StrA:

head : StrA → A

tail : StrA → StrA

Then, StrA will be a StreamFi A-coalgebra if we define its “Out” function as follows:

OutStrA
s :≡ (head s, tail s) (1.29)

Given a final coalgebra C, the intuition behind its “Out” function OutC : C → (H C) is that it will encode the
destructors for the coinductive type. For example, Equation (1.29) shows that the destructors for StrA (i.e. head
and tail) can be “wrapped inside” the OutStrA

: StrA → (StreamFi A StrA) function.

Now, we define the concept of coalgebra morphism.

Definition 1.10.5 (Coalgebra morphism). Let H : Ui → Ui be a functor. Let k, l ≤ i be universe levels,
(A,OutA) : CoAlgk H, and (B,OutB) : CoAlgl H two H-coalgebras. Any term of type:

CoAlgMor A B :≡
∑

f:A→B

(mapH f ◦ OutA) ∼ (OutB ◦ f)

will be called an H-coalgebra morphism between H-coalgebras (A,OutA) and (B,OutB).

58Given C : Ui and D : Uj , it can be proved that C→ (D× C) and (C→ D)× (C→ C) are equivalent types, but we omit the proof.
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In other words, function f : A → B will be an H-coalgebra morphism between (A,OutA) and (B,OutB), if the
following diagram commutes:

A B

H A H B

OutA

f

OutB

mapH f

N

For example, if f : C→ D is a StreamFi A-coalgebra morphism, it satisfies:∏
w:C

map(StreamFi A) f (OutC w) = OutD (f w)

Since OutC w has the type of a pair, by Lemma 1.6.1 we can rewrite this equation as:∏
w:C

map(StreamFi A) f (pr1 (OutC w), pr2 (OutC w)) = OutD (f w)

which, by definition of map(StreamFi A) f, simplifies to:∏
w:C

(pr1 (OutC w), f (pr2 (OutC w))) = OutD (f w)

Now, split OutD (f w) into a pair, as we did for OutC w, to get:∏
w:C

(pr1 (OutC w), f (pr2 (OutC w))) = (pr1 (OutD (f w)), pr2 (OutD (f w)))

If we define OC w :≡ pr1 (OutC w) to be the observation function on C (and similarly for D), and SC w :≡
pr2 (OutC w) to be the next state function on C (and similarly for D), then, our equation is rewritten as:∏

w:C

(OC w, f (SC w)) = (OD (f w),SD (f w))

This equation can be split into two equations using the ap operator with the projection functions pr1 and pr2

(see Lemma 1.5.62): ∏
w:C

OC w = OD (f w)∏
w:C

f (SC w) = SD (f w)

These equations express that f leaves intact the current observation in w, and that f preserves the next state
of w. In fact, when D is the type of streams StrA, these equations look like (use function OutStrA

as defined by
Equation (1.29)): ∏

w:C

OC w = head (f w)∏
w:C

f (SC w) = tail (f w)

which correspond to the definition of f : C → StrA by corecursion, i.e. if we read the equations from right to left,
they express how the image of each w under f can be decomposed as a stream.

Therefore, coalgebra morphisms will encode corecursive equations or computation rules.

H-coalgebra morphisms compose as one would expect.
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Lemma 1.10.6. Let H : Ui → Ui be a functor. Let k, l,m ≤ i be universe levels, (A,OutA) : CoAlgk H,
(B,OutB) : CoAlgl H, and (C,OutC) : CoAlgm H three H-coalgebras.

Let f : A→ B, and g : B→ C be two H-coalgebra morphisms. Then, g ◦ f : A→ C is an H-coalgebra morphism.
In other words, if both squares:

A B C

H A H B H C

OutA

f

OutB

g

OutC

mapH f mapH g

commute, then the following square commutes:

A C

H A H C

OutA

(g ◦ f)

OutC

mapH (g ◦ f)

Proof. Let w : A. Then:

mapH (g ◦ f) (OutA w)
(1)
= mapH g (mapH f (OutA w))

(2)
= mapH g (OutB (f w))

(3)
= OutC (g (f w))

(4)
= OutC ((g ◦ f) w)

where (1) follows by functorial mapping of H (see Definition 1.9.6), (2) holds because f is a morphism, (3) holds
because g is a morphism, and (4) follows by definition of function composition.

Also, the identity function is an H-coalgebra morphism.

Lemma 1.10.7. Let H : Ui → Ui be a functor. Let k ≤ i be a universe level, and (A,OutA) : CoAlgk H an H-coalgebra.
Then, idA : A→ A is an H-coalgebra morphism.

In other words, the following square commutes:

A A

H A H A

OutA

idA

OutA

mapH idA

Proof. Let w : A. Then:

mapH idA (OutA w)
(1)
= id(H A) (OutA w)

(2)
= OutA w

(3)
= OutA (idA w)

where (1) follows by functorial mapping on the identity function (see Definition 1.9.6), (2) by definition of the
identity function id(H A), and (3) by definition of the identity function idA.

Next, we introduce the concept of final coalgebra.
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Definition 1.10.8 (Final H-coalgebra). Let H : Ui → Ui be a functor. Let k ≤ i be a universe level. Any term of
type:

FinCoAlgk H :≡
∑

(A,OutA):CoAlgk H

∏
(B,OutB):CoAlgk H

IsContr (CoAlgMor B A)

will be called a final H-coalgebra at level k. If type FinCoAlgk H is inhabited, we say that functor H has a final
coalgebra.

N

In other words, a final coalgebra is a coalgebra (A,OutA) such that for any other coalgebra (B,OutB) there is
a unique function f : B → A satisfying the corecursive equations, i.e. a unique morphism from B to A (in HoTT
terminology, the type of morphisms CoAlgMor B A is contractible, see Definition 1.8.1).

A final coalgebra encapsulates the following ideas:

• The destructors for A encoded in function OutA.

• Type
∏

(B,OutB):CoAlgk H IsContr (CoAlgMor B A) encodes a corecursion principle and its computation rules. The

conditions for the corecursion principle are encoded in the fact that (B,OutB) is a coalgebra.

A final coalgebra also encodes a coinduction principle (see Section 2.7 in [17] for an explanation). In addition,
see Lemma 3.3.39 for an example of a coinduction principle.

Also, any two final coalgebras for a functor H can be proved to be equivalent (see Lemma 2.6.4 in [17]). So, we
are justified in calling it the final coalgebra for H.

Notice that coalgebra morphisms encode computation rules through the use of identity types (=). Definitional
equality (≡) is not used. This is why final coalgebras are called homotopy final coalgebras in HoTT.

As it happens with initial algebras, type FinCoAlgk H may not be inhabited for an arbitrary functor H. We will
explore the final coalgebra existence question in Chapter 3.

1.11 Higher Inductive types

A higher inductive type (HIT) is an inductive type with the additional property of having higher-order constructors
or just higher constructors.

Standard constructors introduce terms into the type, as we have seen in previous sections. Instead, higher
constructors introduce proofs for identities.

From the point of view of the homotopy interpretation, standard constructors introduce individual points into
the space, while higher constructors introduce paths, surfaces, or even higher dimensional constructions into the
space.

It is possible to present HITs by using inference rules, as we have done so far for every type. However, the
reader may have noticed that once an induction principle is proved, the elimination and computation rules are
never used again. Also, the formation and introduction rules can always be stated in natural language. Therefore,
it is not necessary to explicitly state inference rules when introducing a new type into HoTT, as it is enough to
state in natural language how the type is formed, what are its constructors, and declare its induction principle
without proof. This is the standard approach taken by the HoTT book. If the reader is curious about how HITs
are presented with explicit inference rules, an example can be found in Appendix A.3.2 of the HoTT book [20].

Of course, whenever new types are introduced into the type theory, we need to augment the set of syntactical
terms T ERM (i.e. we need to add more clauses to Definition 1.2.1). Also, we need to define the appropriate
bind structures for the new types. However, these are irrelevant technicalities, because we are only concerned with
informal proofs in HoTT. Hence, we will omit these details from now on.59

This section presents the minimum amount of HITs required by the results on Chapters 2 and 3. But there are
many more HITs that can be added into HoTT. See Chapter 6 in the HoTT book [20], where many more HITs are
explained.

59The reader can fill the technical details. They are quite straightforward.
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1.11.1 (−1)-truncations

Given a type A : Ui , the (−1)-truncation of A, denoted ‖A‖, is a type that identifies all terms in A. Because all
terms in ‖A‖ are identified, type ‖A‖ is a mere proposition (see Definition 1.8.4).60

The name “truncation” comes from the homotopy interpretation. Because ‖A‖ is a mere proposition, space ‖A‖
loses all the non-trivial homotopy information that space A has, i.e. the homotopy information of A gets truncated.

Definition 1.11.1 (Formation and introduction rules for (−1)-truncations). Let A : Ui be a type. There is a type
at level i, denoted ‖A‖, and called the (−1)-truncation of A.

Type ‖A‖ has the following two constructors:

• Term constructor. | | : A→ ‖A‖.
Instead of | | a, we will write |a|.

• Higher constructor. |iden| :
∏

w,y:‖A‖ w = y.

Instead of |iden| w y, we will write |iden w y|.

N

Constructor | | makes copies of all terms in A, while constructor |iden| introduces the proof |iden w y| : w = y for
any two terms w, y in ‖A‖. In other words, constructor |iden| is expressing that ‖A‖ is a mere proposition.

(−1)-truncations are subject to the following induction principle.

Definition 1.11.2 (Induction principle for (−1)-truncations). Let A : Ui be a type and P : ‖A‖ → Uj a type family.
If we can build two functions:

h :
∏
a:A

P |a|

k :
∏

w,y:‖A‖

∏
a:P w

∏
b:P y

transportP |iden w y| a = b

then we can define a function:
f :
∏

w:‖A‖

P w

by the following equations:61

f |a| :≡ h a

apdf |iden w y| = k w y (f w) (f y)

where a : A and w, y : ‖A‖.
N

To understand the induction principle, it is useful to have a look at the general pattern for induction principles.
So far, all induction principles define a function out of a type A by stating how the function behaves on canonical
elements of A (canonical elements are those that can be put in the form of a constructor). For example:

• To define a function f with domain a Σ-type, by the induction principle (Lemma 1.5.24) we define f on pairs
(a, b), as follows:

f (a, b) :≡ g a b

where g is a given function.

In other words:
f (a, b) :≡ some function dependent on a and b

60The number (−1) suggests that the (−1)-truncation produces a mere proposition, because propositions are also called (−1)-types.
61Here, apd is the dependent application operator, see Lemma 1.5.63. Also, notice that the equation involving apd is well-typed, since

apdf |iden w y| : transportP |iden w y| (f w) = f y, and k w y (f w) (f y) : transportP |iden w y| (f w) = f y.
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• To define a function f with domain a sum type, by the induction principle (Lemma 1.5.35) we define f on
terms of the form inl a and inr b, as follows:

f (inl a) :≡ g a

f (inr b) :≡ h b

where g and h are given functions.

In other words:

f (inl a) :≡ some function dependent on a

f (inr b) :≡ some function dependent on b

• To define a function f with domain the unit type, by the induction principle (Lemma 1.5.47) we define f on
term ?, as follows:

f ? :≡ c

where c is a given term.

In other words:
f ? :≡ some constant

• To define a function f with domain the natural numbers, by the induction principle (Lemma 1.5.52) we define
f on terms of the form 0 and (succ n), as follows:

f 0 :≡ c

f (succ n) :≡ g n (f n)

where g is a given function and c a given term.

In other words:

f 0 :≡ some constant

f (succ n) :≡ some function dependent on n and recursive call (f n)

Notice that the last equation also depends on the recursive call (f n). This seems to suggest that whenever
an input variable has the type of the domain (like n in our example), a recursive call on the variable needs to
be added to the function body (like (f n) in our example). Contrast this with all previous equations, where
no input variable (a or b) has the type of the domain. Hence, there is no recursive call on those variables.

To further exemplify the pattern. Let us suppose that given types B : Ui and D : Uj , we introduce type
FooB,D : Umax{i,j} into HoTT, with the following constructors:

c1 : FooB,D

c2 : B→ FooB,D

c3 : FooB,D → FooB,D → D→ FooB,D

Given terms b : B and d : D, some examples of terms in type FooB,D are:

c1 : FooB,D

c2 b : FooB,D

c3 (c2 b) c1 d : FooB,D

Now, to define a function f with domain FooB,D, we will have to define three clauses in the induction principle
for FooB,D, because we have three constructors. In more detail, we have to define f on canonical terms of the form
c1, (c2 e), and (c3 a1 a2 m), as follows:

f c1 :≡ some constant

f (c2 e) :≡ some function dependent on e

f (c3 a1 a2 m) :≡ some function dependent on a1, a2, and m,

and recursive calls (f a1) and (f a2)
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Notice that the last equation depends on recursive calls (f a1) and (f a2), because terms a1, a2 have type FooB,D.

Now, let us apply this pattern to (−1)-truncations. Terms |a| are in canonical form. Therefore, the induction
principle will have the clause:

f |a| :≡ some function dependent on a

But |a| are not the only terms produced by the constructors, there are also the identity proofs |iden w y| produced
by the higher constructor! Therefore, the induction principle must include a clause stating how f behaves when
applied on identity proofs of the form |iden w y|.

The application operators (Lemma 1.5.62 and Lemma 1.5.63) are used when we want to express that a function
is applied on identity proofs.

In the case for (−1)-truncations, we have to use the dependent version of the application operator apd (Lemma
1.5.63), because the induction principle builds a dependent function. Hence, the induction principle will have the
following clause:

apdf |iden w y| = some function dependent on w, y,

and recursive calls (f w) and (f y)
(1.30)

Notice that recursive calls (f w) and (f y) must be included in (1.30) because w and y have type ‖A‖.
Name k the required function on the right side of (1.30). Since f must have type

∏
w:‖A‖ P w, we require f w : P w

and f y : P y for any w, y : ‖A‖. This means that the type of k must start like:∏
w,y:‖A‖

∏
a:P w

∏
b:P y

. . .

where . . . is a type we still need to determine.
Hence, (1.30) can be written as the following candidate equation:

apdf |iden w y| = k w y (f w) (f y) (1.31)

However, we still need to determine the output type for k. Observe that apdf |iden w y| has type (see Lemma
1.5.63):

transportP |iden w y| (f w) = f y

This means that term k w y (f w) (f y) must have this type if we want (1.31) to be well-defined. Hence, the type
of k is determined to be: ∏

w,y:‖A‖

∏
a:P w

∏
b:P y

transportP |iden w y| a = b

The induction principle for (−1)-truncations can be interpreted topologically, but we will not delve into this
interpretation, since the operational explanation developed above will suffice for the purposes on this report.62

Notice that Equation (1.31) is not stated using definitional equality. The HoTT book explains this by arguing
that judgmental equalities are part of the deductive system, and so, they should not depend on definitions made
inside the type theory, as it is the case for the apd function.

The induction principle can be simplified, as the following corollary shows.

Corollary 1.11.3 (Simplified induction principle for (−1)-truncations). Let A : Ui be a type and P : ‖A‖ → Propj

a family of propositions. If we can build a function:

h :
∏
a:A

P |a|

then we can define a function:

f :
∏

w:‖A‖

P w

by the following equation (for any a : A):
f |a| :≡ h a

62The reader can have a look at Chapter 6 in the HoTT book [20], where the homotopy interpretation is explored in detail for some
HITs.
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Proof. By hypothesis, we already have function h. Therefore, by the induction principle (Definition 1.11.2) it
remains to prove that there is a function:

k :
∏

w,y:‖A‖

∏
a:P w

∏
b:P y

transportP |iden w y| a = b

So, let w, y : ‖A‖, a : P w, and b : P y. By hypothesis, P y is a mere proposition. Therefore, the following type is
trivially inhabited:

transportP |iden w y| a =(P y) b

Hence, a function k exists.

When the simplified induction principle is instantiated with a constant family, we get a recursion principle.

Corollary 1.11.4 (Recursion principle for (−1)-truncations). Let A : Ui be a type and D : Propj a proposition. If
we can build a function:

h : A→ D

then we can define a function:
f : ‖A‖ → D

by the following equation (for any a : A):
f |a| :≡ h a

Proof. Apply Corollary 1.11.3 with the constant family:

P :≡ (λw. D) : ‖A‖ → Propj

The following remark explains how (−1)-truncations allow the representation of classical logic operators (as
understood in first-order classical logic). Also, the remark provides an intuitive explanation for the recursion
principle.

Remark 1.11.5 (Logical interpretation of (−1)-truncations). Classical existence of proofs can be modeled using
(−1)-truncated types. Given a proof p : ‖T‖, this can be interpreted as: “p is a proof to the fact that there is some
proof for T”.

To understand this statement, observe that the only way to construct terms in ‖T‖ is through one of its
constructors. The higher constructor |iden| produces proofs for identities between terms already existing in ‖T‖,
and the constructor | | produces a term if provided with a term in T. In other words, if there are no terms in T,
then no constructor for ‖T‖ will be applicable, producing as a result no terms in ‖T‖. Therefore, if we have p : ‖T‖,
then some term in T must exist (otherwise, the existence of p is impossible), though we cannot pinpoint which term
it is.

To see why we cannot pinpoint the actual proof for T when there is a proof p : ‖T‖, observe that p is identifiable
with |t| for every t : T, since ‖T‖ is a mere proposition. This means that it is possible to be in a situation where we
have two non-identifiable proofs for T (say r, s : T), but we will have p = |r| and p = |s|. So, the question is: Which
one is the proof for T? Is it term t or term s? We cannot arbitrarily choose t or s as the proof for T, because they
are non-identifiable in T.

Since ‖T‖ means that T has some proof, this suggest we can obtain classical logic operators by (−1)-truncation.
For example, if we (−1)-truncate a Σ-type: ∥∥∥∥∥∑

w:A

P w

∥∥∥∥∥
this can be interpreted as a classical existential, as in classical first-order logic:

∃w : A. P w

Let us explain why it is a classical existential. In Remark 1.5.30, we explained that a sigma
∑

w:A P w is a
constructive existential, in the sense that any proof for

∑
w:A P w is a pair (α, β), where α is the object claimed to
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exist, and β is a proof that object α satisfies P. But, if we have a proof for ‖
∑

w:A P w‖ this means that there is
some pair that inhabits

∑
w:A P w. In other words, there is (in the classical sense) an object w : A satisfying P w,

i.e. we cannot point our finger to the object whose existence is claimed by the truncated sigma.
Similarly, if we (−1)-truncate a sum type:

‖A + B‖

this can be interpreted as a classical disjunction, as in classical first-order logic:

A ∨ B

Again, to understand why this can be interpreted as such, in Remark 1.5.38 we explained that a sum type can be
interpreted as a constructive disjunction, in the sense that a proof for A + B always indicates the case that actually
holds. However, if we have a proof for ‖A + B‖ this means that there is some term that inhabits A + B. In other
words, we know either A or B, but we no longer know which one holds, because we cannot pinpoint the proof for
A + B.

With this logical interpretation for (−1)-truncations, the recursion principle (Corollary 1.11.4) now reads: “Let
D be a mere proposition. To construct a proof for D assuming that A has some proof, it is enough to construct a
proof for D by assuming we have a concrete proof for A”. If we know there is some proof for A, and we also know
that any proof for A can be transformed into a proof for D, then it will not matter the actual proof for A that gets
chosen when constructing a proof for D, since D is a mere proposition.

In the previous paragraph, it may not be clear the significance of condition: “D is a mere proposition”. To see
why this condition is absolutely critical for the soundness of the recursion principle, let us reword our explanation
in terms of functions.

The recursion principle is attempting to build a function f : ‖A‖ → D by defining it on canonical terms of the
form |t|, for arbitrary t : A. Since all terms in ‖A‖ are identified, this is effectively saying that function f is arbitrarily
choosing a proof for A on its definition, because it only knows that some proof for A exists.

When D is not a mere proposition, f is not well-defined, as we explain next. For any t, r : A, type |t| = |r| is
always inhabited. Therefore, by the application operator apf , type f |t| = f |r| is also inhabited. But it may be the
case that f |t| and f |r| are non-identifiable terms in D (since D is not a mere proposition), which will produce a
contradiction. In other words, when D is not a mere proposition, it is not sound to arbitrarily choose a proof for A
in the definition of f.

N

To clarify the difference between classical operators and constructive operators, let us compare the so-called
“Choice Theorem” and the “Axiom of Choice”.

Theorem 1.11.6 (Choice Theorem). Let A : Ui be a type, B : A → Uj a type family, and P :
∏

w:A ((B w) → Uk )
another type family.

The following type is inhabited:

(∏
w:A

∑
a:B w

P w a

)
→

 ∑
g:
∏
y:A

B y

∏
w:A

P w (g w)


Proof. Suppose f :

∏
w:A

∑
a:B w P w a. Define:

g :≡ (λy :A. pr1 (f y)) :
∏
y:A

B y

It remains to prove that type
∏

w:A P w (g w) is inhabited.
Let w : A. But we have pr2 (f w) : P w (pr1 (f w)), or equivalently, by definition of g:

pr2 (f w) : P w (g w)
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If we logically interpret the Choice Theorem, it states: “if for every w in A, there is a : B w such that (P w a)
holds, then we can construct a choice function g, which picks for every y : A an element of (B y), so that P w (g w)
holds for any w : A”.

This reads exactly like the axiom of choice in standard mathematics, but in here, it is a theorem instead of an
axiom. How can we explain this? The reason is that all Σ-types in the Choice Theorem are constructive existentials.
Σ-types are picking an specific object when they claim “there is...”. Hence, building the choice function g amounts
to taking the object that the Σ-type already chose for us!

Therefore, if we want to encode the classical intuition behind the axiom of choice, we have to (−1)-truncate all
Σ-types in the Choice Theorem. To make the statement closer to the axiom of choice, we will word it in terms of
sets and propositions as follows.

Given a set A : Seti , a family of sets B : A → Setj , and a binary predicate P :
∏

w:A ((B w) → Propk ), the
following type encodes the so-called “Axiom of Choice”:

(∏
w:A

∥∥∥∥∥∑
a:B w

P w a

∥∥∥∥∥
)
→

∥∥∥∥∥∥∥∥
∑

g:
∏
y:A

B y

∏
w:A

P w (g w)

∥∥∥∥∥∥∥∥ (1.32)

This reads: “if for every w in A, there is (in the classical sense) a : B w such that (P w a) holds, then there is
(in the classical sense) a choice function g, which picks for every y : A an element of (B y), so that P w (g w) holds
for every w : A”.

Type (1.32) cannot be proved to be inhabited in HoTT [20]. It has to be added as an axiom if we want to use
it. On this report we will not make use of the axiom of choice.

The following explanation provides some intuition on why the axiom of choice cannot be proved to be inhabited.
If we attempt to construct the choice function g, we cannot pick an object from the sigma in the hypothesis, because
the truncated sigma is no longer making a choice for us (i.e. we only know that some object exists, but there is no
“procedure” for choosing it). Hence, the conclusion on type (1.32) is stating that some choice function exists, even
though there is no way to define it constructively.

However, there are special cases where we can extract a choice function. For example, when there is exactly one
object, we can choose it constructively. This is the so-called “Principle of unique choice”. To prove this principle,
we need to prove the following lemma, which states that (−1)-truncating a proposition has no effect on it.

Lemma 1.11.7. Let A : Propi be a proposition. Then A ' ‖A‖ is inhabited.

Proof. Since A and ‖A‖ are mere propositions, by Lemma 1.8.8 it is enough to prove that they are logically
equivalent.

For the first function, we already have the (−1)-truncation constructor | | : A → ‖A‖. It remains to define the
second function.

By the recursion principle for (−1)-truncations (Corollary 1.11.4), to build a function ‖A‖ → A it is enough to
build a function A→ A, since A is a mere proposition. The identity function idA : A→ A will suffice.

And now the principle, which is a consequence of the previous lemma.

Lemma 1.11.8 (Principle of unique choice). Let A : Ui be a type and P : A→ Uj a type family.
If the following types are inhabited: ∏

w:A

IsProp (P w)∏
w:A

‖P w‖

then the following type is inhabited: ∏
w:A

P w
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Proof. Let w : A. We want to prove that P w is inhabited.
By the first hypothesis, P w is a mere proposition. Therefore, by Lemma 1.11.7, P w and ‖P w‖ are equivalent.

So, we have an equivalence e : (P w)→ ‖P w‖.
By the second hypothesis, we have a proof h : ‖P w‖. Hence:

e−1 h : P w

In other words, given w : A, if there is at most one proof for P w (i.e. IsProp (P w) is inhabited), and there is (in
the classical sense) a proof for P w (i.e. ‖P w‖ is inhabited), then there is exactly one proof for P w, which we can
certainly choose. Therefore, we can define a function

∏
w:A P w constructively.

Surjective functions are another classical concept that can be defined using (−1)-truncations.

Definition 1.11.9 (Surjective function). Let A : Ui and B : Uj be types, and f : A→ B a function. We define type:

IsSurjection f :≡
∏
b:B

∥∥∥∥∥∑
a:A

f a = b

∥∥∥∥∥
If IsSurjection f is inhabited, we say that f is a surjection, or that f is a surjective function.

N

In other words, f is surjective if every element on its codomain is the image of some (in the classical sense)
element on its domain.

The identity function is trivially surjective.

Lemma 1.11.10. Let A : Ui be a type. Then idA is surjective.

Proof. Let a : A. Then |(a, reflA a)| : ‖
∑

b:A idA b = a‖.

Surjective functions compose as expected.

Lemma 1.11.11. Let A : Ui , B : Uj and C : Uk be types. Let f : A→ B and g : B→ C be functions.
If f and g are surjective, then g ◦ f is surjective.

Proof. Let c : C. Since g is surjective, type ‖
∑

b:B g b = c‖ is inhabited. Therefore, we will be done if we are able
to prove: ∥∥∥∥∥∑

b:B

g b = c

∥∥∥∥∥→
∥∥∥∥∥∑

a:A

g (f a) = c

∥∥∥∥∥
By (−1)-recursion (Corollary 1.11.4), it is enough to prove:(∑

b:B

g b = c

)
→

∥∥∥∥∥∑
a:A

g (f a) = c

∥∥∥∥∥
which in turn, by Σ-recursion (Lemma 1.5.25), it is enough to prove:

∏
b:B

(
(g b = c)→

∥∥∥∥∥∑
a:A

g (f a) = c

∥∥∥∥∥
)

So, let b : B with p1 : g b = c. Since f is surjective, type ‖
∑

a:A f a = b‖ is inhabited. Therefore, we will be done
if we are able to prove: ∥∥∥∥∥∑

a:A

f a = b

∥∥∥∥∥→
∥∥∥∥∥∑

a:A

g (f a) = c

∥∥∥∥∥
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By (−1)-recursion and Σ-recursion, it is enough to prove:∏
a:A

(
(f a = b)→

∥∥∥∥∥∑
a:A

g (f a) = c

∥∥∥∥∥
)

So, let a : A with p2 : f a = b. Then, we have p3 :≡ apg p2 : g (f a) = g b. Hence:

|(a, p3 � p1)| :

∥∥∥∥∥∑
a:A

g (f a) = c

∥∥∥∥∥

1.11.2 0-truncations

If (−1)-truncating a type produces a mere proposition, 0-truncating a type will produce a set.63

Definition 1.11.12 (Formation and introduction rules for 0-truncations). Let A : Ui be a type. There is a type at
level i, denoted ‖A‖0, and called the 0-truncation of A.

Type ‖A‖0 has the following two constructors:

• Term constructor. | |0 : A→ ‖A‖0.

Instead of | |0 a, we will write |a|0.

• Higher constructor. |iden|0 :
∏

w,y:‖A‖0

∏
p,q:w=y p = q.

Instead of |iden|0 w y p q, we will write |iden p q|0, where w and y are left implicit.

N

Constructor | |0 copies all terms in A, while constructor |iden|0 introduces the proof |iden p q|0 : p = q for any
two identity proofs p, q : w = y in ‖A‖0. In other words, constructor |iden|0 is expressing that ‖A‖0 is a set.

Although it is possible to state a general version of the induction principle for 0-truncations (as we did for
(−1)-truncations), we will state the simplified version,64 as this is the version we will use on this report.

Definition 1.11.13 (Induction principle for 0-truncations). Let A : Ui be a type and P : ‖A‖0 → Setj a family of
sets. If we can build a function:

h :
∏
a:A

P |a|0

then we can define a function:
f :

∏
w:‖A‖0

P w

by the following equation (for any a : A):
f |a|0 :≡ h a

N

We also have a recursion principle as a consequence.

Corollary 1.11.14 (Recursion principle for 0-truncations). Let A : Ui be a type and D : Setj a set. If we can build
a function:

h : A→ D

then we can define a function:
f : ‖A‖0 → D

by the following equation (for any a : A):
f |a|0 :≡ h a

Proof. Apply Definition 1.11.13 with the constant family:

P :≡ (λw. D) : ‖A‖0 → Setj

63Sets are also called 0-types, see Definition 1.8.9.
64The reader can find the more general version at Section 6.9 in the HoTT book [20].
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1.11.3 Coequalizers

In category theory [5], the coequalizer of two arrows f, g : A→ B is an object C together with an arrow c : B → C
such that c ◦ f = c ◦ g. Moreover, the object C and arrow c must satisfy the following universal property: for
any arrow h : B → D satisfying h ◦ f = h ◦ g, there is a unique arrow u : C → D making the following diagram
commute:

A B C

D

f

g

h

c

u!

The coequalizer C can be modeled as a HIT, where arrow c acts as its constructor, and condition c ◦ f = c ◦ g
as its higher constructor. In fact, the universal property for coequalizers will correspond to the induction/recursion
principles, since these principles construct functions out of C.

Definition 1.11.15 (Formation and introduction rules for coequalizers). Let A : Ui and B : Uj be types. Let
f, g : A→ B be two functions.

There is a type at level max{i, j}, denoted Coeq f g, and called the coequalizer for f and g.
Type Coeq f g has the following two constructors:

• Term constructor. coeq : B→ Coeq f g.

• Higher constructor. coeqiden :
∏

a:A coeq (f a) = coeq (g a).

N

Type Coeq f g is subject to the following induction principle.

Definition 1.11.16 (Induction principle for coequalizers). Let A : Ui , B : Uj be types, f, g : A→ B two functions,
and P : (Coeq f g)→ Uk a type family.

If we can build two functions:

h :
∏
b:B

P (coeq b)

k :
∏
a:A

transportP (coeqiden a) (h (f a)) = h (g a)

then we can define a function:
u :

∏
w:Coeq f g

P w

by the following equations:65

u (coeq b) :≡ h b

apdu (coeqiden a) = k a

for any b : B and a : A.
N

Notice that the equations defining u conform to the “general pattern”:

u (coeq b) :≡ some function dependent on b

apdu (coeqiden a) = some function dependent on a

where the type of functions h and k (i.e. the required functions on the right side of the equations) is determined by
the terms on the left side of the equations.

Instead of this general induction principle, we will use the following simplified version.

65Notice that the second equation is well-typed, since apdu (coeqiden a) : transportP (coeqiden a) (u (coeq (f a))) = u (coeq (g a)), which
simplifies to apdu (coeqiden a) : transportP (coeqiden a) (h (f a)) = h (g a) by the first equation.
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Lemma 1.11.17 (Simplified induction principle for coequalizers). Let A : Ui , B : Uj be types, f, g : A→ B two func-
tions, and P : (Coeq f g)→ Propk a family of propositions.

If the following type is inhabited: ∏
b:B

P (coeq b)

then the following type is inhabited: ∏
w:Coeq f g

P w

Proof. We are given a function h :
∏

b:B P (coeq b) by hypothesis. Therefore, by the induction principle, it is enough
to prove that the following type is inhabited:∏

a:A

transportP (coeqiden a) (h (f a)) = h (g a)

Let a : A. Since P (coeq (g a)) is a mere proposition, the identity type is trivially inhabited.

We also have a (simplified) recursion principle.

Lemma 1.11.18 (Recursion principle for coequalizers). Let A : Ui , B : Uj be types, f, g : A→ B two functions, and
D : Uk a type.

If we can build a function:
h : B→ D

such that the following type is inhabited: ∏
a:A

h (f a) = h (g a)

then there is a function:
u : (Coeq f g)→ D

satisfying (for every b : B):
u (coeq b) ≡ h b

Proof. We are given two functions:

h : B→ D

k :
∏
a:A

h (f a) = h (g a)

Define the constant family:
P :≡ (λw. D) : (Coeq f g)→ Uk

Then, by the induction principle (Definition 1.11.16), it remains to prove:∏
a:A

transportP (coeqiden a) (h (f a)) = h (g a)

So, let a : A. By Lemma 1.6.6, there is a proof:

q1 : transportP (coeqiden a) (h (f a)) = h (f a)

which means:
q1 � (k a) : transportP (coeqiden a) (h (f a)) = h (g a)

Notice that the recursion principle reads like the universal property for coequalizers. In fact, it can be proved
that the function produced by the induction principle is unique, but we omit the proof.

The coequalizer constructor coeq is always surjective, as the following lemma shows.
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Lemma 1.11.19. Let A : Ui , B : Uj be types, and f, g : A→ B two functions. The constructor coeq : B→ (Coeq f g)
is surjective.

Proof. To prove: ∏
w:Coeq f g

∥∥∥∥∥∑
b:B

coeq b = w

∥∥∥∥∥
it is enough to prove: ∏

a:B

∥∥∥∥∥∑
b:B

coeq b = coeq a

∥∥∥∥∥
by the induction principle (Lemma 1.11.17).

Let a : B. Therefore: ∣∣(a, refl(Coeq f g) (coeq a))
∣∣ : ∥∥∥∥∥∑

b:B

coeq b = coeq a

∥∥∥∥∥

1.11.4 Pushouts

In category theory, the pushout of two arrows f : A → C and g : A → B is an object P together with two arrows
pl : B → P and pr : C → P such that pl ◦ g = pr ◦ f . Moreover, the object P and arrows pl, pr must satisfy the
following universal property: for any two arrows h1 : B → D and h2 : C → D satisfying h1 ◦ g = h2 ◦ f , there is a
unique arrow u : P → D making the following diagram commute:

A C

B P

D

f

g pr

h2

pl

h1

u!

It is possible to model pushout P as a HIT, with arrows pl and pr as its constructors, and condition pl ◦ g = pr ◦ f
is its higher constructor. However, it is also known [5] that pushout P can be defined as the coequalizer for:

A B t C
inl ◦ g

inr ◦ f

where B t C is the coproduct of B and C, and inl : B → B t C and inr : C → B t C are the coproduct injection
arrows.

We will define pushouts in terms of coequalizers.

Lemma 1.11.20 (Formation and introduction for pushouts). Let A : Ui , B : Uj , and C : Uk be types. Let g : A→ B
and f : A→ C be two functions.

There is a type at level max{i, j, k}, denoted Push g f, and called the pushout for g and f.
Type Push g f has the following three constructors:

• Term constructor. pushl : B→ Push g f.

• Term constructor. pushr : C→ Push g f.

• Higher constructor. pushiden :
∏

a:A pushl (g a) = pushr (f a).

Proof. Define:
Push g f :≡ Coeq (inl ◦ g) (inr ◦ f)

where inl : B→ B + C and inr : C→ B + C.
Notice that Push g f is at level max{i, j, k} since Coeq (inl ◦ g) (inr ◦ f) must be at level max{i,max{j, k}}.
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Now, define:

pushl :≡ (λb. coeq (inl b)) : B→ Push g f

pushr :≡ (λc. coeq (inr c)) : C→ Push g f

pushiden :≡ (λa. coeqiden a) :
∏
a:A

pushl (g a) = pushr (f a)

Notice that pushiden is well-typed since:

coeqiden a : coeq (inl (g a)) = coeq (inr (f a))

or equivalently:
coeqiden a : pushl (g a) = pushr (f a)

by definition of pushl and pushr.

We have the following (simplified) induction and recursion principles for pushouts.

Lemma 1.11.21 (Induction principle for pushouts). Let A : Ui , B : Uj , and C : Uk be types. Let g : A→ B and
f : A→ C be two functions, and P : (Push g f)→ Propm a family of propositions.

If the following types are inhabited: ∏
b:B

P (pushl b)∏
c:C

P (pushr c)

then the following type is inhabited: ∏
w:Push g f

P w

Proof. We are trying to prove: ∏
w:Coeq (inl ◦ g) (inr ◦ f)

P w

So, by Lemma 1.11.17, it is enough to prove: ∏
w:B+C

P (coeq w)

but by the induction principle for sum types (Lemma 1.5.35), it is enough to prove:∏
b:B

P (coeq (inl b))∏
c:C

P (coeq (inr c))

or equivalently, by definition of pushl and pushr: ∏
b:B

P (pushl b)∏
c:C

P (pushr c)

which are inhabited by hypothesis.
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Lemma 1.11.22 (Recursion principle for pushouts). Let A : Ui , B : Uj , and C : Uk be types. Let g : A→ B and
f : A→ C be two functions, and D : Um a type.

If there are two functions:

h1 : B→ D

h2 : C→ D

such that the following type is inhabited: ∏
a:A

h1 (g a) = h2 (f a)

then there is a function:
u : (Push g f)→ D

satisfying:

u (pushl b) ≡ h1 b

u (pushr c) ≡ h2 c

for any b : B and c : C.

Proof. We are trying to construct a function u : (Coeq (inl ◦ g) (inr ◦ f)) → D. So, by Lemma 1.11.18, it is enough
to construct a function h : (B + C)→ D satisfying

∏
a:A h (inl (g a)) = h (inr (f a)).

By the recursion principle for sum types, we can define h by cases as (for arbitrary b : B and c : C):

h (inl b) :≡ h1 b

h (inr c) :≡ h2 c

With this definition,
∏

a:A h (inl (g a)) = h (inr (f a)) simplifies to:∏
a:A

h1 (g a) = h2 (f a)

which is inhabited by hypothesis.
To finish the proof, we have by Lemma 1.11.18 and our definitions:

u (pushl b) ≡ u (coeq (inl b)) ≡ h (inl b) ≡ h1 b

u (pushr c) ≡ u (coeq (inr c)) ≡ h (inr c) ≡ h2 c

Notice that the recursion principle reads like the universal property for pushouts. Also, we will use the following
property regarding the pushout constructors.

Lemma 1.11.23. Let A : Ui , B : Uj , and C : Uk be types. Let g : A→ B and f : A→ C be two functions.

• If g is surjective, then pushr : C→ Push g f is surjective.

• If f is surjective, then pushl : B→ Push g f is surjective.

Proof. For the first claim, we are trying to prove:∏
w:Push g f

∥∥∥∥∥∑
a:C

pushr a = w

∥∥∥∥∥
Therefore, by the induction principle for pushouts, it is enough to prove that the following types are inhabited:∏

b:B

∥∥∥∥∥∑
a:C

pushr a = pushl b

∥∥∥∥∥∏
c:C

∥∥∥∥∥∑
a:C

pushr a = pushr c

∥∥∥∥∥
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The second type is inhabited by:

λc :C.
∣∣(c, refl(Push g f) (pushr c))

∣∣
For the first type, let b : B. We know g is surjective, this means that type

∥∥∥∑y:A g y = b
∥∥∥ is inhabited. Therefore,

we will be done if we can prove that the following type is inhabited:∥∥∥∥∥∥
∑
y:A

g y = b

∥∥∥∥∥∥→
∥∥∥∥∥∑

a:C

pushr a = pushl b

∥∥∥∥∥
By (−1)-recursion (Corollary 1.11.4) and Σ-recursion (Lemma 1.5.25), it is enough to prove:

∏
y:A

(
(g y = b)→

∥∥∥∥∥∑
a:C

pushr a = pushl b

∥∥∥∥∥
)

Let y : A with p1 : g y = b. Therefore, p2 :≡ appushl p1 : pushl (g y) = pushl b. We also have:

p3 :≡ (pushiden y)−1 : pushr (f y) = pushl (g y)

Hence:

|(f y, p3 � p2)| :

∥∥∥∥∥∑
a:C

pushr a = pushl b

∥∥∥∥∥
The second claim is proved similarly.

1.11.5 Quotients

Let us work for a moment inside classical set theory. Given a set A and an arbitrary binary relation R ⊆ A × A,
we can define the quotient of A under R, denoted A/R, to be the quotient of A under the smallest equivalence
relation on A containing R. This idea can be expressed in the category of sets, where set A/R is defined to be the
coequalizer for:

R A
pr1

pr2

where pr1 and pr2 are the projection functions [5].
By analogy, given a type A : Ui and a binary relation66 R : A→ A → Propj , we can define the quotient of A

under R, denoted A/R, to be the coequalizer for:(∑
a:A

∑
b:A

R a b

)
A

pr1

pr1 ◦ pr2

Again, it is possible to define A/R as a HIT by the same strategy we followed for coequalizers. Instead, A/R
will be defined in terms of coequalizers, as was done with pushouts.

Also, on this report, type A/R will be required to be a set.67 Hence, A/R will be defined as the 0-truncation of
the coequalizer.

Lemma 1.11.24 (Formation and introduction for quotients). Let A : Ui be a type and R : A→ A→ Propj a binary
relation.

There is a set at level max{i, j}, denoted A/R, and called the quotient of A under R.
The set A/R has the following two constructors:

66By Lemma 1.6.29, it makes no difference if we define the type of R as (A× A)→ Propj or as A→ A→ Propj .
Also, strictly speaking, R is a binary predicate. However, in Definition 1.8.19 it was explained that it is safe to identify a predicate

with the subtype or subset it defines, which in this case is
∑

a:A

∑
b:A R a b. This Σ-type is the real binary relation.

67The reasons for this restriction will become clear in Chapter 3.
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• Term constructor. [ ] : A→ A/R.

Instead of [ ] a, we will write [a]. Term [a] can be understood as the equivalence class of a.

• Higher constructor. quotiden :
∏

a,b:A (R a b)→ ([a] = [b]).

Instead of quotiden a b p, we will write quotiden p, where terms a and b are left implicit.

Proof. Define:
A/R :≡ ‖Coeq pr1 (pr2 ◦ pr1)‖0

where: (∑
a:A

∑
b:A

R a b

)
A

pr1

pr1 ◦ pr2

Notice that A/R is a set since it is a 0-truncation. Also, it is at level max{i, j} since Coeq pr1 (pr1 ◦ pr2) must be
at level max{max{i, j}, i} (see Remark 1.5.29 for computing universe level on Σ-types), and 0-truncations preserve
levels (see Definition 1.11.12).

Now, define:

[ ] :≡ (λa. |coeq a|0) : A→ A/R

quotiden :≡ (λa. λb. λp. ap| |0 (coeqiden (a, (b, p)))) :
∏

a,b:A

(R a b)→ ([a] = [b])

Notice that quotiden is well-typed since:

coeqiden (a, (b, p)) : coeq (pr1 (a, (b, p))) = coeq (pr1 (pr2 (a, (b, p))))

or equivalently:
coeqiden (a, (b, p)) : coeq a = coeq b

which means:
ap| |0 (coeqiden (a, (b, p))) : |coeq a|0 = |coeq b|0

or equivalently:
ap| |0 (coeqiden (a, (b, p))) : [a] = [b]

by definition of [ ].

Quotients have the following (simplified) induction and recursion principles.

Lemma 1.11.25 (Induction principle for quotients). Let A : Ui be a type, R : A→ A → Propj a binary relation,
and P : (A/R)→ Propk a family of propositions.

If the following type is inhabited: ∏
a:A

P [a]

then the following type is inhabited: ∏
w:A/R

P w

Proof. We are trying to prove: ∏
w:‖Coeq pr1 (pr2◦pr1)‖0

P w

So, by the induction principle for 0-truncations (Definition 1.11.13), it is enough to prove:68∏
w:Coeq pr1 (pr2◦pr1)

P |w|0

68Strictly speaking, the induction principle for 0-truncations requires a family P′ : (A/R)→ Setk , which can be defined as:

P′ :≡ λw. (pr1 (P w),m (pr2 (P w)))

where m is the proof for Lemma 1.8.11, which transforms a proof for “pr1 (P w) is a proposition” into a proof for “pr1 (P w) is a set”.
Since this is just a technicality, it is harmless to think that P : (A/R)→ Propk also has type (A/R)→ Setk .
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but, by the induction principle for coequalizers (Lemma 1.11.17), it is enough to prove:∏
a:A

P |(coeq a)|0

or equivalently, by definition of [ ]: ∏
a:A

P [a]

which is inhabited by hypothesis.

Lemma 1.11.26 (Recursion principle for quotients). Let A : Ui be a type, R : A→ A → Propj a binary relation,
and D : Setk a set.

If there is a function:
h : A→ D

such that the following type is inhabited: ∏
a,b:A

(R a b)→ (h a = h b)

then there is a function:
u : (A/R)→ D

satisfying (for any a : A):
u [a] ≡ h a

Proof. We are trying to construct a function u : ‖Coeq pr1 (pr2 ◦ pr1)‖0 → D. So, by the recursion principle for
0-truncations (Corollary 1.11.14), it is enough to construct a function s : (Coeq pr1 (pr2 ◦ pr1)) → D, so that u will
be determined by:

u |w|0 :≡ s w

for any w : Coeq pr1 (pr2 ◦ pr1).
To define s, by Lemma 1.11.18 it is enough to construct a function t : A→ D satisfying:∏

q:
∑
a:A

∑
b:A

R a b

t (pr1 q) = t (pr1 (pr2 q)) (1.33)

so that s will satisfy:
s (coeq a) ≡ t a

for any a : A.
So, define t :≡ h. Now, we prove that t satisfies (1.33). By the induction principle for Σ-types, it is enough to

prove: ∏
a,b:A

∏
p:R a b

t (pr1 (a, (b, p))) = t (pr1 (pr2 (a, (b, p))))

which simplifies to (by projections and definition of t):∏
a,b:A

(R a b)→ (h a = h b)

which is inhabited by hypothesis.
To finish the proof, we have by definitions:

u [a] ≡ u |coeq a|0 ≡ s (coeq a) ≡ t a ≡ h a
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Notice that the recursion principle expresses that any function that is compatible with the binary relation can
be extended into equivalence classes.

We will use the following property regarding constructor [ ].

Lemma 1.11.27. Let A : Ui be a type and R : A→ A→ Propj a binary relation.
The constructor [ ] : A→ A/R is surjective.

Proof. We want to prove
∏

w:A/R ‖
∑

a:A [a] = w‖. By the induction principle for quotients (Lemma 1.11.25), it is
enough to prove: ∏

c:A

∥∥∥∥∥∑
a:A

[a] = [c]

∥∥∥∥∥
But the following function inhabits this type:

λc.
∣∣(c, reflA/R [c])

∣∣

1.12 Chapter summary

This chapter presented Homotopy Type Theory (HoTT) with the minimal amount of results required for the
developments on Chapters 2 and 3.

Sections 1.1 through 1.5 introduced HoTT standard types by means of inference rules. Section 1.6 introduced
the concepts of equivalence, type equivalence, the function extensionality axiom, and the univalence axiom. Section
1.7 explained the homotopy (or topological) interpretation for HoTT, and clarified the meaning of identity types.
Section 1.8 introduced the concepts of contractible type, proposition, set, and the propositional resizing axiom.
Sections 1.9 and 1.10 explained how inductive types and coinductive types can be encoded through initial algebras
and final coalgebras, respectively. And finally, Section 1.11 introduced the concept of higher inductive type (HIT),
together with some HITs that will be required on later chapters.

This chapter only scratched the surface of HoTT. The reader is invited to read the HoTT book [20] for further
concepts and applications.
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Chapter 2

Complete lattices and fixpoints in HoTT

This chapter formalizes in HoTT classical results regarding the existence of fixpoints for monotone functions on a
complete lattice. The intention for doing such thing is twofold: first, we are going to make use of these results in
Chapter 3, and second, we want to provide more evidence that HoTT is a suitable foundation for doing set-based
mathematics.

Another important point this chapter emphasizes is that it is possible to do mathematics in HoTT without
worrying too much about universe levels, though care must be taken in some edge cases. In other words, this
chapter will highlight the “ignore universe levels” style of doing mathematics in HoTT.

This chapter is structured as follows:

• Sections 2.1 and 2.2 define the concepts of poset, monotone function and complete lattice. A couple of
examples are shown as well.

• Section 2.3 provides a proof for the Knaster-Tarski Lemma, which is the main tool we will use to obtain
fixpoints out of monotone functions.

• Section 2.4 constructs induction and coinduction principles as corollaries to the Knaster-Tarski Lemma.

The results on this chapter have been computer-checked in the Coq proof assistant [24]. See [26] for details on
how to download the proof script file.

2.1 Posets and monotone functions

The basic concept in order theory is that of partially ordered set, or poset for short. A poset is a set together with
a binary relation that is reflexive, antisymmetric, and transitive [9]. In HoTT, a poset can be formalized as follows.

Definition 2.1.1 (Poset). Given a set P : Set.1 Any term of type:2

PosetStr P :≡
∑

R:P→P→Prop

(∏
w:P

R w w

)
×

∏
w,y:P

(R w y)→ (R y w)→ (w = y)

 ×
 ∏

w,y,z:P

(R w y)→ (R y z)→ (R w z)


will be called a poset structure for P. In particular, a poset will be any term of type:

Poset :≡
∑

Q:Set

PosetStr Q

N
1Notice we are ignoring the universe level of Set.
2By Lemma 1.6.29, it makes no difference if we define R as having type P→ P→ Prop or type P× P→ Prop.

Also, notice we are using Conventions 1.8.5 and 1.8.10 regarding implicit casting of propositions and sets. See also Definitions 1.8.4
and 1.8.9.

117



118 CHAPTER 2. COMPLETE LATTICES AND FIXPOINTS IN HOTT

In other words, a poset structure over a set P will be a binary relation3 R : P→ P→ Prop together with proofs
that R is reflexive, antisymmetric, and transitive. A poset will be a set together with a poset structure over it.

Convention 2.1.2. Given a poset (P, (R, (r, (a, t)))) :
∑

Q:Set PosetStr Q, we will write this poset as (P,R, r, a, t) to
improve readability. Whenever we want to leave terms r, a, t implicit, we will write the poset as (P,R, . . .).

Also, relation R can be written using the symbol ≤ or some other binary relation symbol. On those cases, we
will use infix notation, i.e. instead of (≤ w y), we will write (w ≤ y).

N

In the definition of PosetStr P, the identity type w = y is a mere proposition for any w, y : P, because P is a set
(see Lemma 1.8.17). Also, since R w y is a mere proposition for any w, y : P, by closure properties for propositions
(Lemma 1.8.17) the three types in PosetStr P expressing that R is reflexive, antisymmetric, and transitive, are
all mere propositions. This means that any proof for the types expressing that R is reflexive, antisymmetric, and
transitive, will be as good as any other one. This is in accordance with classical reasoning in set-based mathematics,
where we do not care about all the different ways in which the binary relation satisfies the properties, as long as
the relation satisfies them (i.e. classical mathematics is proof-irrelevant). Therefore, HoTT is able to capture this
aspect of classical mathematics.

To emphasize the previous point, let us suppose P : U is a type (not necessarily a set), and let us change the
binary relation R : P→ P→ Prop in the definition of PosetStr P to a type family R : P→ P→ U . Then, the three
types expressing that R is reflexive, antisymmetric, and transitive, are not necessarily mere propositions. Let us
explore the consequences of this change.

Suppose we construct a type family S : P→ P→ U , together with two “poset structures” (S, r1, a1, t1) : PosetStr P
and (S, r2, a2, t2) : PosetStr P. These two poset structures will not be necessarily the same. For example, it might not
be the case that r1 = r2, because type

∏
w:P S w w is not necessarily a mere proposition. This situation is completely

at odds with classical mathematics, because we have a relation S that is reflexive, antisymmetric and transitive,
but we are claiming that S itself is somehow two different poset structures!

The key to understand this “inconsistency” is to notice that when the statement “S is reflexive, antisymmetric
and transitive” is claimed in standard mathematics, we are implicitly accepting that any proof for this claim will
be as good as any other one. This classical assumption of “proof irrelevancy” is incompatible with our example,
since we have two non-identifiable proofs (r1 and r2) that S is reflexive.

This means that our attempt of generalizing the definition of poset structure from binary relations into general
type families, is not capturing the classical concept of poset structure, because in classical mathematics we require
poset structures (S, r1, a1, t1) and (S, r2, a2, t2) to be the same.

HoTT can express properties about proofs themselves. In our example, proofs r1 and r2 are different, a possibility
that is not even considered in classical mathematics. In HoTT we do proof-relevant mathematics, and when we
want to represent the proof-irrelevant behavior of classical mathematics, we work in the universe of sets (Set) and
propositions (Prop).

To convince us that Definition 2.1.1 does capture the required proof-irrelevance behavior of classical posets,
just notice that Lemma 1.8.14 implies that any two poset structures (S, r1, a1, t1) and (S, r2, a2, t2) are identifiable,
because the three types expressing reflexivity, antisymmetry and transitivity are mere propositions, and we have a
trivial proof for S = S.

There is another point regarding the definition of PosetStr P. Since Prop is a set (Lemma 1.8.18), by closure
properties for Π-types and Σ-types (Lemma 1.8.18), PosetStr P is a set for any set P. Therefore, type PosetStr P
can also be interpreted as “the set of all poset structures over set P”.

Now, we present an example of poset.

Example 2.1.3 (Dual Poset). Given a poset (P,≤, rh, ah, th), its dual poset will also have P as underlying set, but
its relation will be inverted, i.e. w ≤ y will hold in the dual if and only if y ≤ w holds in P.

Therefore, we define the dual binary relation as follows:

≤−1 :≡ (λw. λy. y ≤ w) : P→ P→ Prop

Now, we need to prove that there is some term inhabiting each one of the types expressing that ≤−1 is reflexive,
antisymmetric, and transitive.

3Strictly speaking, R is a binary predicate. However, in Definition 1.8.19 it was explained that it is safe to identify a predicate with
the subtype or subset it defines, which in this case is

∑
a:P

∑
b:P R a b. This Σ-type is the real binary relation.
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• ≤−1 is reflexive, i.e. we need to prove that type
∏

w:P w ≤−1 w is inhabited.

Given w : P, we have by definition (w ≤−1 w) ≡ (w ≤ w). But ≤ is reflexive, i.e. we have a proof:

rh :
∏
a:P

a ≤ a

Therefore, rh w : w ≤ w, which means that w ≤−1 w is inhabited.

• ≤−1 is antisymmetric, i.e. we need to prove that the following type is inhabited:∏
w,y:P

(w ≤−1 y)→ (y ≤−1 w)→ (w = y)

Given w, y : P with h1 : w ≤−1 y and h2 : y ≤−1 w, we have by definition:

(w ≤−1 y) ≡ (y ≤ w)

(y ≤−1 w) ≡ (w ≤ y)

But ≤ is antisymmetric, i.e. we have a proof:

ah :
∏

a,b:P

(a ≤ b)→ (b ≤ a)→ (a = b)

Therefore, ah w y h2 h1 : w = y.

• ≤−1 is transitive, i.e. we need to prove that the following type is inhabited:∏
w,y,z:P

(w ≤−1 y)→ (y ≤−1 z)→ (w ≤−1 z)

Given w, y, z : P with h1 : w ≤−1 y and h2 : y ≤−1 z, we have by definition:

(w ≤−1 y) ≡ (y ≤ w)

(y ≤−1 z) ≡ (z ≤ y)

(w ≤−1 z) ≡ (z ≤ w)

But R is transitive, i.e. we have a proof:

th :
∏

a,b,c:P

(a ≤ b)→ (b ≤ c)→ (a ≤ c)

Therefore, th z y w h2 h1 : z ≤ w, or equivalently, w ≤−1 z is inhabited.

N

The next example shows that any subset of a poset is still a poset under the same order relation. This example
will show how we work in HoTT with the concept of subset. As was discussed in Definition 1.8.19, subsets of a set
P can be identified with terms of type P→ Prop (i.e. predicates or properties on P).

Example 2.1.4 (Subset Poset). Let (P,≤, rh, ah, th) be a poset, and S : P→ Prop a subset (predicate) of P. Then
we can form a poset (Q,≤Q, . . .), where Q is the subset defined by predicate S, i.e. Q :≡

∑
w:P S w, and ≤Q is

relation ≤ restricted to subset S, i.e.,

≤Q :≡ (λw. λy. pr1 w ≤ pr1 y) : Q→ Q→ Prop

Now, we need to show that ≤Q is an order relation.
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• ≤Q is reflexive, i.e. we need to show that type
∏

w:Q w ≤Q w is inhabited.

Let w : Q. By definition, (w ≤Q w) ≡ (pr1 w ≤ pr1 w). But R is reflexive, i.e. we have a proof rh :
∏

a:P a ≤ a.
Therefore, rh (pr1 w) : pr1 w ≤ pr1 w, or equivalently, w ≤Q w is inhabited.

• ≤Q is antisymmetric, i.e. we need to show that type
∏

w,y:Q (w ≤Q y)→ (y ≤Q w)→ (w = y) is inhabited.

Let w, y : Q with h1 : w ≤Q y and h2 : y ≤Q w. By definition:

(w ≤Q y) ≡ (pr1 w ≤ pr1 y)

(y ≤Q w) ≡ (pr1 y ≤ pr1 w)

But R is antisymmetric, i.e. we have a proof:

ah :
∏

a,b:P

(a ≤ b)→ (b ≤ a)→ (a = b)

Therefore, ah (pr1 w) (pr1 y) h1 h2 : pr1 w = pr1 y.

Now, by Lemma 1.8.14, type w = y is inhabited, because S z is a mere proposition for every z : P and
pr1 w = pr1 y is inhabited.

• ≤Q is transitive, i.e. we need to show that type
∏

w,y,z:Q (w ≤Q y)→ (y ≤Q z)→ (w ≤Q z) is inhabited.

Let w, y, z : Q with h1 : w ≤Q y and h2 : y ≤Q z. By definition:

(w ≤Q y) ≡ (pr1 w ≤ pr1 y)

(y ≤Q z) ≡ (pr1 y ≤ pr1 z)

(w ≤Q z) ≡ (pr1 w ≤ pr1 z)

But R is transitive, i.e. we have a proof:

th :
∏

a,b,c:P

(a ≤ b)→ (b ≤ c)→ (a ≤ c)

Therefore, th (pr1 w) (pr1 y) (pr1 z) h1 h2 : pr1 w ≤ pr1 z, or equivalently, w ≤Q z is inhabited.

N

Another important example from order theory is the powerset poset, which consists on all subsets of a set
ordered by inclusion. In HoTT this is achieved by constructing a poset on type S→ Prop (the type of all subsets
or predicates on set S). Since Prop is a set (Lemma 1.8.18), by closure properties for the arrow type (Lemma
1.8.18), T → Prop will be a set for any type T : U . This means we can form not only the powerset poset for any
set S : Set, but also the “powertype” poset for any type T : U , as the following example shows.

Example 2.1.5 (“Powertype” Poset). Let T : U be a type. Then, we can build a poset (P,⊆, . . .), where P is the
set of all subtypes (predicates) of T, i.e. P :≡ T→ Prop, and ⊆ is the subtype “inclusion” relation:

⊆ :≡

(
λA. λB.

∏
w:T

(A w)→ (B w)

)
: P→ P→ Prop

Given two predicates A,B : P, the type
∏

w:T A w → B w is indeed a mere proposition, since B w is a mere
proposition for any w : T, and mere propositions are closed under Π-types (Lemma 1.8.17). Therefore, ⊆ is well-
typed.

Also, since
∏

w:T (A w)→ (B w) is a mere proposition for any A,B : P, it can be interpreted as a logical statement.
A ⊆ B reads as follows: “For any w : T, if w is in A (or w satisfies A) then w is in B (or w satisfies B)”. Therefore,
A ⊆ B means that A is “contained” in B.

We proceed to show that ⊆ is an order relation.



2.1. POSETS AND MONOTONE FUNCTIONS 121

• ⊆ is reflexive, i.e. we need to show that type
∏

A:P A ⊆ A is inhabited.

Let A : P. By definition, (A ⊆ A) ≡
∏

w:T (A w)→ (A w).

So, let w : T such that A w holds. But then, A w holds trivially by hypothesis.

• ⊆ is antisymmetric, i.e. we need to show that type
∏

A,B:P (A ⊆ B)→ (B ⊆ A)→ (A = B) is inhabited.

Let A,B : P with h1 : A ⊆ B and h2 : B ⊆ A. By definition:

(A ⊆ B) ≡
∏
w:T

(A w)→ (B w)

(B ⊆ A) ≡
∏
w:T

(B w)→ (A w)

Claim 1: Type
∏

w:T A w = B w is inhabited.

Let w : T. We know A w and B w are mere propositions. Also, (A w) → (B w) and (B w) → (A w) hold by
hypothesis. Therefore, by Lemma 1.8.8, A w and B w are equivalent types. Hence, by univalence (see Section
1.6.2), we get A w = B w.

This proves the claim.

To finish the proof, since A and B are functions (i.e. A,B : T→ Prop), by Claim 1 and function extensionality
(see Section 1.6.1), we get A = B.

• ⊆ is transitive, i.e. we need to show that type
∏

A,B,C:P (A ⊆ B)→ (B ⊆ C)→ (A ⊆ C) is inhabited.

Let A,B,C : P with h1 : A ⊆ B and h2 : B ⊆ C. By definition:

(A ⊆ B) ≡
∏
w:T

(A w)→ (B w)

(B ⊆ C) ≡
∏
w:T

(B w)→ (C w)

(A ⊆ C) ≡
∏
w:T

(A w)→ (C w)

So, let w : T with h3 : A w. This implies, h1 w : (A w)→ (B w) and h2 w : (B w)→ (C w).

Therefore, h2 w (h1 w h3) : C w as was required.

N

The other basic concept in order theory is that of monotone function between two posets (also called order-
preserving functions).

Definition 2.1.6 (Monotone function). Let (P,≤P, r1, a1, t1) and (Q,≤Q, r2, a2, t2) be posets, and f : P → Q a
function. If the following type is inhabited:∏

w,y:P

(w ≤P y)→ (f w ≤Q f y)

then f is called monotone.
N

Again, since a ≤Q b is a mere proposition for any a, b : Q, by closure properties for mere propositions (Lemma
1.8.17), type

∏
w,y:P (w ≤P y)→ (f w ≤Q f y) is a mere proposition. Therefore, it reads as: “If w is less than y, then

(f w) is less than (f y)” (i.e. f preserves the order between w and y).

Convention 2.1.7. From this moment on, unless otherwise stated, all monotone functions will have the same
poset as domain and range.

N
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Monotone functions are still monotone if we replace their poset by their dual poset (Example 2.1.3), as the
following lemma shows.

Lemma 2.1.8. Let A :≡ (P,≤, r1, a1, t1) be a poset, and f : P→ P a monotone function. Let A−1 :≡ (P,≤−1, r2, a2, t2)
be the dual poset, as constructed in Example 2.1.3. Then, f is monotone in the dual poset, i.e. the following type
is inhabited: ∏

w,y:P

(w ≤−1 y)→ (f w ≤−1 f y)

Proof. Let w, y : P such that h1 : w ≤−1 y. By definition, (w ≤−1 y) ≡ (y ≤ w) and (f w ≤−1 f y) ≡ (f y ≤ f w).
But f is monotone in A, i.e. we have a proof k :

∏
a,b:P (a ≤ b) → (f a ≤ f b). So, we have k y w h1 : f y ≤ f w,

which means (f w ≤−1 f y) is inhabited.

2.2 Complete lattices

A complete lattice is a poset where every subset has a least upper bound and a greatest lower bound [9]. It is
possible to work with a more compact definition for complete lattices, because it is only required the existence of
least upper bounds (see [9]). In spite of this, the author took the decision of working with the full definition, so
that all constructions are more explicit and symmetrical.

To define a complete lattice, we need to define upper and lower bounds first.

Definition 2.2.1 (Upper bound and lower bound). Let (P,≤, r, a, t) be a poset, w : P an element in the poset, and
S : P→ Prop a subset (predicate) of P.

(i) If the following type is inhabited:

IsUpperBound w S :≡
∏
y:P

(S y)→ (y ≤ w)

we say that w is an upper bound for subset S.

(ii) If the following type is inhabited:

IsLowerBound w S :≡
∏
y:P

(S y)→ (w ≤ y)

we say that w is a lower bound for subset S.

N

Convention 2.2.2. In the notation (IsUpperBound w S) and (IsLowerBound w S) above, the order relation is not
specified. There will be no confusion on this, since the order relation will be clear from context most of the time.
Nevertheless, there will be proofs where two or more posets are used at the same time. On those cases, we will
emphasize the order relation ≤ by writing (IsUpperBound≤ w S) and (IsLowerBound≤ w S) in superscript.

N

Again, types (IsUpperBound w S) and (IsLowerBound w S) are mere propositions, since w ≤ y is a mere proposition
for any w, y : P, and mere propositions are closed under Π-types (Lemma 1.8.17). Therefore, both types can be
interpreted as logical statements. The first type reads: “Any y : P that is in subset S is below w”. The second type
reads: “Any y : P that is in subset S is above w”.

Definition 2.2.3 (Supremum and infimum). Let (P,≤, r, a, t) be a poset, w : P an element in the poset, and
S : P→ Prop a subset (predicate) of P.

(i) If the following type is inhabited:

IsLUB w S :≡ (IsUpperBound w S)×

∏
y:P

(IsUpperBound y S)→ (w ≤ y)


we say that w is the least upper bound for subset S. Term w is also called the supremum of S.



2.2. COMPLETE LATTICES 123

(ii) If the following type is inhabited:

IsGLB w S :≡ (IsLowerBound w S)×

∏
y:P

(IsLowerBound y S)→ (y ≤ w)


we say that w is the greatest lower bound for subset S. Term w is also called the infimum of S.

N

Convention 2.2.4. The same applies as in Convention 2.2.2. When the order relation ≤ is not clear from context,
we will emphasize it as (IsLUB≤ w S) and (IsGLB≤ w S), written in superscript.

N

Again, both components in types (IsLUB w S) and (IsGLB w S) are mere propositions. (IsLUB w S) reads: “w is
an upper bound for subset S and any other upper bound for S is above w”. (IsGLB w S) reads: “w is a lower bound
for subset S and any other lower bound for S is below w”.

Also, notice we used the definite article in the definitions of (IsLUB w S) and (IsGLB w S) (i.e. we said the least
upper bound and the greatest lower bound). This can be justified as follows. Let a and b be two least upper bounds
for subset S. Then, since both of them are upper bounds and least upper bounds, both a ≤ b and b ≤ a will hold.
Therefore, by antisymmetry, a = b will be inhabited. Hence, the least upper bound is unique (the argument is
similar for the greatest lower bound).

Now, the concept of complete lattice can be stated.

Definition 2.2.5 (Complete lattice). Let A :≡ (L,≤, r, a, t) be a poset. Any term of type:

CLatticeStr A :≡

 ∑
sup:(L→Prop)→L

∏
S:L→Prop

IsLUB (sup S) S

×
 ∑

inf:(L→Prop)→L

∏
S:L→Prop

IsGLB (inf S) S


will be called a complete lattice structure for poset A. In particular, any term of type:

CLattice :≡
∑

B:Poset

CLatticeStr B

will be called a complete lattice.
N

In other words, to build a complete lattice structure on a poset A :≡ (L,≤, r, a, t), we need to provide two
functions sup, inf : (L→ Prop)→ L, which assign to each subset S of L the elements sup S : L and inf S : L, in such
a way that sup S is the supremum of S and inf S is the infimum of S. A complete lattice is a poset with a complete
lattice structure.

Convention 2.2.6. Given a complete lattice A, we will write its components as (L,≤, r, a, t; sup, sp, inf, ip) instead
of ((L,≤, r, a, t), ((sup, sp), (inf, ip))), so that the expression becomes easier to read. In the simplified notation, the
semicolon symbol (;) separates the poset components from the complete lattice components.

We will write (L,≤, r, a, t; . . .), whenever terms sup, sp, inf, ip are left implicit.
Also, observe that A is a poset by removing its complete lattice components, i.e. by keeping only (L,≤, r, a, t).

N

To a reader familiar with the classical notion of complete lattice, the way CLatticeStr A was defined may seem
a bit odd. In standard mathematics, a complete lattice is defined in terms of existentials, i.e. a poset where every
subset has a supremum and an infimum. Why are we using functions sup, inf : (L→ Prop)→ L in the definition of
CLatticeStr A? If we want CLatticeStr A to be closer to the classical definition (i.e. by using existentials), it should
be defined as follows:

CLatticeStr2 A :≡

 ∏
S:L→Prop

∑
w:L

IsLUB w S

×
 ∏

S:L→Prop

∑
w:L

IsGLB w S
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which reads: “Every subset S : L→ Prop has some w : L acting as supremum for S, and some w : L acting as infimum
for S”.

It turns out that CLatticeStr A and CLatticeStr2 A are equivalent types. Just apply Theorem 1.11.6 (the “Choice
Theorem”) to both components of CLatticeStr2 A to get the required equivalence.4 So, answering the question
posed above, definition CLatticeStr A was chosen because of technical convenience, i.e. we have two functions
directly accessing the supremum and infimum of a subset, instead of indirectly using projection functions if we were
to use definition CLatticeStr2 A.

The reader may object that CLatticeStr2 A is not “classical enough”, since all its Σ-types are constructive
existentials (see Remark 1.5.30 for an explanation). To make CLatticeStr2 A truly classical, we have to (−1)-
truncate all sigmas, so that they become classical existentials (see Remark 1.11.5). Therefore, we have a third
candidate for the definition of complete lattice structure:

CLatticeStr3 A :≡

 ∏
S:L→Prop

∥∥∥∥∥∑
w:L

IsLUB w S

∥∥∥∥∥
×

 ∏
S:L→Prop

∥∥∥∥∥∑
w:L

IsGLB w S

∥∥∥∥∥


However, this type is still equivalent to CLatticeStr2 A. The intuitive reason is that if every subset S has (in the
classical sense) a supremum and an infimum, then these are unique, which means we can constructively choose the
supremum and infimum by using the principle of unique choice (Lemma 1.11.8). This intuitive argument can be
formalized as follows.

We will show that the left components of CLatticeStr3 A and CLatticeStr2 A are equivalent, as the argument is
similar for their right components. So, we want to show: ∏

S:L→Prop

∥∥∥∥∥∑
w:L

IsLUB w S

∥∥∥∥∥
 '

 ∏
S:L→Prop

∑
w:L

IsLUB w S

 (2.1)

First, we show that for every S : L → Prop, type
∑

w:L IsLUB w S is a mere proposition. Let S : L → Prop.
Given w1,w2 :

∑
w:L IsLUB w S we want to show w1 = w2. We already know that IsLUB w S is a mere proposition for

every w : L. Therefore, by Lemma 1.8.14, it is enough to prove pr1 w1 = pr1 w2. But (pr1 w1) and (pr1 w2) are least
upper bounds for S, which means that both (pr1 w1 ≤ pr1 w2) and (pr1 w2 ≤ pr1 w1) must be inhabited. Therefore,
by antisymmetry, pr1 w1 = pr1 w2 is inhabited.

Hence, by Lemma 1.8.17, both sides of the equivalence (2.1) are mere propositions. Therefore, by Lemma 1.8.8,
it is enough to prove that both sides are logically equivalent.

The right-to-left implication is obvious:

(λf. λS. |f S|) :

 ∏
S:L→Prop

∑
w:L

IsLUB w S

→
 ∏

S:L→Prop

∥∥∥∥∥∑
w:L

IsLUB w S

∥∥∥∥∥


For the left-to-right implication, suppose
∏

S:L→Prop ‖
∑

w:L IsLUB w S‖ is inhabited. We are going to use the
principle of unique choice (Lemma 1.11.8) to conclude that

∏
S:L→Prop

∑
w:L IsLUB w S must be inhabited.

We already know
∏

S:L→Prop IsProp (
∑

w:L IsLUB w S) is inhabited, and
∏

S:L→Prop ‖
∑

w:L IsLUB w S‖ is inhab-
ited by hypothesis. Therefore, the required conclusion follows directly by the principle.

Hence, types CLatticeStr3 A and CLatticeStr2 A are equivalent, which means they are equivalent to CLatticeStr A.
Although type CLatticeStr3 A is closer to the classical notion of complete lattice, on this report we will use type

CLatticeStr A, since it is more “natural” from the point of view of type theory.
Now, we proceed to show some examples of complete lattices.

4Although it was not proved, Theorem 1.11.6 can be strengthened into an equivalence:

(∏
w:T

∑
a:B w

P w a

)
'

 ∑
g:
∏
y:T

B y

∏
w:T

P w (g w)


The reader can find the proof for this stronger version at Theorem 2.15.7 in the HoTT book [20].
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Example 2.2.7 (Complete Dual Lattice). Let A :≡ (L,≤, r1, a1, t1; sup, sp1, inf, ip1) be a complete lattice. Let
P :≡ (L,≤−1, r2, a2, t2) be its dual poset, as constructed in Example 2.1.3 (interpreting A as a poset).

Then, we can augment P into a complete lattice by interchanging the role of functions sup and inf in A. This
way, we will get the dual lattice for A. So, define the dual of A to be:

A−1 :≡ (L,≤−1, r2, a2, t2; inf, sp2, sup, ip2)

where sp2 :
∏

S:L→Prop IsLUB≤
−1

(inf S) S and ip2 :
∏

S:L→Prop IsGLB≤
−1

(sup S) S are terms we still need to con-
struct. As always, we only need to show that these types are inhabited.

• Type
∏

S:L→Prop IsLUB≤
−1

(inf S) S is inhabited.

Let S : L→ Prop.

– First we need to show IsUpperBound≤
−1

(inf S) S is inhabited.

Let y : L with h1 : S y. We need to show that y ≤−1 (inf S) holds.

By definition, (y ≤−1 (inf S)) ≡ ((inf S) ≤ y). But we have a proof:

ip1 :
∏

S:L→Prop

IsGLB≤ (inf S) S

So, pr1 (ip1 S) y h1 : (inf S) ≤ y. Therefore, y ≤−1 (inf S) is inhabited.

– Second, we need to show that the following type is inhabited:∏
y:L

(IsUpperBound≤
−1

y S)→ ((inf S) ≤−1 y)

Let y : L with h1 : IsUpperBound≤
−1

y S, or equivalently:

h1 :
∏
z:L

(S z)→ (z ≤−1 y)

Claim 1: Type IsLowerBound≤ y S is inhabited.

Let z : L with g1 : S z. Then, h1 z g1 : z ≤−1 y. But (z ≤−1 y) ≡ (y ≤ z).

This proves the claim.

Now, by definition, ((inf S) ≤−1 y) ≡ (y ≤ (inf S)). But we have a proof:

ip1 :
∏

S:L→Prop

IsGLB≤ (inf S) S

By Claim 1, we have a term c of type IsLowerBound≤ y S. So:

pr2 (ip1 S) y c : y ≤ (inf S)

Therefore, (inf S) ≤−1 y is inhabited.

• Type
∏

S:L→Prop IsGLB≤
−1

(sup S) S is inhabited.

This is proved like the previous case. Just carefully follow the definitions and interchange lower bounds and
upper bounds, and infima and suprema from the previous proof.

N

The next example extends the poset in Example 2.1.5 into a complete lattice. This will be a case where the
propositional resizing axiom is required (see Section 1.8.1).
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Example 2.2.8 (“Powertype” Complete Lattice). Let T : U be a type. Let A :≡ (P,⊆, r, a, t) be the “Powertype”
poset for T as constructed in Example 2.1.5, where P :≡ T→ Prop, and ⊆ is the subtype “inclusion” relation:

⊆ :≡

(
λA. λB.

∏
w:T

(A w)→ (B w)

)
: P→ P→ Prop

We want to extend poset A into a complete lattice. For that matter, we need to provide a supremum function
sup : (P→ Prop)→ P and an infimum function inf : (P→ Prop)→ P.

In classical set theory, given a set T and a family F ⊆ P(T ) of subsets of T , the supremum and infimum of F
are: ⋃

F = {x ∈ T | ∃B ∈ F, x ∈ B}⋂
F = {x ∈ T | ∀B ∈ F, x ∈ B}

In HoTT, since subtypes of T can be identified with predicates on T, the previous classical definitions are
tentatively translated as follows. Given a family F : (T → Prop) → Prop of subtypes of T, its supremum will be
the subtype: λw :T.

∥∥∥∥∥∥
∑

B:T→Prop

(F B)× (B w)

∥∥∥∥∥∥
 : T→ Prop (2.2)

which reads: “It is the subtype of all w : T such that there is a subtype B of T belonging to the family F so that w
is in B”. Observe that we need to truncate the Σ-type to a mere proposition, as this will ensure that the lambda
output will be a proposition (the Σ-type by itself is not necessarily a mere proposition, because T→ Prop is a set,
see Lemma 1.8.18).

Similarly, the infimum of F will be the subtype:λw :T.
∏

B:T→Prop

(F B)→ (B w)

 : T→ Prop (2.3)

which reads: “It is the subtype of all w : T such that any subtype B of T belonging to the family F has w as an
element”. In this case, there is no need to truncate, because B w is a mere proposition, and propositions are closed
under Π-types (Lemma 1.8.17).

Although lambdas (2.2) and (2.3) seem to be well-typed, they are not. The reason is very subtle, and it has to
do with universe levels. At the start of this chapter we claimed that most of the time we do not need to worry about
universe levels, except for some “edge cases”. This is one of those cases, as we are doing impredicative definitions.
We are trying to construct two lambdas of type T → Prop, both of which are quantifying over type T → Prop
inside their own definition.

If we carelessly continue to use both lambdas as defined in (2.2) and (2.3), we may be causing an inconsistency
in the theory. It is always a good idea to check all definitions in an automated proof assistant. For example, if we
use Coq and try to define both lambdas as above, Coq will respond with a “universe inconsistency” error, which
means that Coq was unable to assign a universe level to the types of both lambdas.

Therefore, it is a good rule of thumb to check universe levels whenever an impredicative definition is made. Let
us check universe levels on both lambdas above. We will see that the propositional resizing axiom is needed to
properly define them.

Let us put back universe levels on lambdas (2.2) and (2.3):λw :T.

∥∥∥∥∥∥
∑

B:T→Propi

(F B)× (B w)

∥∥∥∥∥∥
 : T→ Propi (2.4)

λw :T.
∏

B:T→Propi

(F B)→ (B w)

 : T→ Propi (2.5)

for any F : (T→ Propi)→ Propj and T : Uk . The natural numbers i, j, and k represent arbitrary universe levels.
Although each appearance of Prop could be assigned a different level, there are certain restrictions forcing some

levels to appear more than once. For example, level i must be assigned as specified because:
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• The supremum function takes a family F with type (T→ Propi)→ Propj and must return something with
type T → Propi . Remember that we are defining a complete lattice structure on type T → Propi , hence
the universe level on the output type of the supremum function gets forced as specified. The same reasoning
applies to the infimum function.

• In the Σ-type, B must have type T → Propi because F is applied on B. The same reasoning applies to the
Π-type.

As there are no restrictions for levels j and k, they can be different from i.
Now, by Lemma 1.8.18, we know Propi is at level i + 1. Therefore, T → Propi will be at level max{k, i + 1}

(see Remark 1.5.16). Also, (F B) is at level j and (B w) is at level i. This means (F B)× (B w) and (F B)→ (B w)
are at level max{j, i} (see Remark 1.5.29). This implies:∥∥∥∥∥∥

∑
B:T→Propi

(F B)× (B w)

∥∥∥∥∥∥ : Umax{k ,i+1 ,j} (2.6)

and:  ∏
B:T→Propi

(F B)→ (B w)

 : Umax{k ,i+1 ,j} (2.7)

But max{k, i+1, j} > i, for otherwise we would have i+1 ≤ max{k, i+1, j} ≤ i, which is impossible. Therefore,
propositions (2.6) and (2.7) cannot be assigned into level i (i.e. they do not have type Propi , as is required). We
need some way of “moving the level down”, and this is what the propositional resizing axiom is used for.

By Lemma 1.8.22 (which is a direct consequence of the propositional resizing axiom), there is an equivalence:

GPropR
max{k ,i+1 ,j}
i : Propi → Propmax{k ,i+1 ,j}

With this equivalence, we can rewrite lambdas (2.4) and (2.5) as:λw :T.
(

GPropR
max{k ,i+1 ,j}
i

)−1

∥∥∥∥∥∥
∑

B:T→Propi

(F B)× (B w)

∥∥∥∥∥∥
 : T→ Propi (2.8)

λw :T.
(

GPropR
max{k ,i+1 ,j}
i

)−1

 ∏
B:T→Propi

(F B)→ (B w)

 : T→ Propi (2.9)

which are now correctly typed.
We are ready to define the supremum and infimum functions. By omitting universe levels in (2.8) and (2.9) and

making use of definition P :≡ T→ Prop, the supremum and infimum functions can be defined as follows:

sup :≡

(
λF. λw. GPropR−1

∥∥∥∥∥∑
B:P

(F B)× (B w)

∥∥∥∥∥
)

: (P→ Prop)→ P

inf :≡

(
λF. λw. GPropR−1

(∏
B:P

(F B)→ (B w)

))
: (P→ Prop)→ P

To finish this example, it remains to prove that the following types are inhabited:∏
F:P→Prop

IsLUB (sup F) F

∏
F:P→Prop

IsGLB (inf F) F

• Type
∏

F:P→Prop IsLUB (sup F) F is inhabited.

Let F : P→ Prop.
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– First, we need to show IsUpperBound (sup F) F is inhabited.

Let E : P with h1 : F E. We need to show that E ⊆ (sup F) holds, or equivalently, that the following type
is inhabited: ∏

w:T

(E w)→ (sup F w)

So, let w : T with p1 : E w. By definition of sup, we need to construct a term of type:

GPropR−1

∥∥∥∥∥∑
B:P

(F B)× (B w)

∥∥∥∥∥
By Lemma 1.8.23, it is enough to build a term of type ‖

∑
B:P (F B)× (B w)‖.

So, consider term |(E, (h1, p1))|, which has the correct type.

– Second, we need to show
∏

E:P (IsUpperBound E F)→ ((sup F) ⊆ E) is inhabited.

Let E : P with h1 : IsUpperBound E F, or equivalently:

h1 :
∏
D:P

(F D)→ (D ⊆ E)

By definition of ⊆, we need to show that
∏

w:T (sup F w) → (E w) is inhabited, or equivalently, by
definition of sup: ∏

w:T

(
GPropR−1

∥∥∥∥∥∑
B:P

(F B)× (B w)

∥∥∥∥∥
)
→ (E w)

So, let w : T. By Lemma 1.8.24, it is enough to prove:∥∥∥∥∥∑
B:P

(F B)× (B w)

∥∥∥∥∥→ (E w)

but then, by (−1)-truncation recursion (Corollary 1.11.4) and Σ-recursion (Lemma 1.5.25) applied twice,
it is enough to prove: ∏

B:P

((F B)→ (B w)→ (E w))

Let B : P with p1 : F B and p2 : B w.

By hypothesis h1 :
∏

D:P (F D)→ (D ⊆ E). Therefore, h1 B p1 : B ⊆ E, or equivalently:

h1 B p1 :
∏
y:T

(B y)→ (E y)

which implies:
h1 B p1 w p2 : E w

• Type
∏

F:P→Prop IsGLB (inf F) F is inhabited.

The proof details are left to the reader. The proof strategy is similar to the previous case.

N

Regarding monotone functions, we know that a complete lattice is also a poset, which means that monotone
functions can also be considered to be defined on complete lattices. Also, we have the following corollary regarding
monotone functions and complete dual lattices.

Corollary 2.2.9. Let A :≡ (L,≤, . . .) be a complete lattice, and f : L→ L a monotone function.
Let A−1 :≡ (L,≤−1, . . .) be the complete dual lattice of A, as constructed in Example 2.2.7. Then, f is monotone

in A−1, i.e. the following type is inhabited:∏
w,y:L

(w ≤−1 y)→ (f w ≤−1 f y)
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Proof. By Lemma 2.1.8, we know f is monotone in the dual poset of A (interpreting A as a poset). Therefore,
type

∏
w,y:L (w ≤−1 y) → (f w ≤−1 f y) is inhabited, because this fact does not depend on the complete lattice

components of A.

Now, we have a series of properties regarding suprema and infima for “two element sets”. First, we introduce
notation for such suprema and infima.

Definition 2.2.10 (Join and Meet). Let A :≡ (L,≤, . . . ; sup, . . . , inf, . . .) be a complete lattice, and a, b : L two
elements in the lattice.

(i) Define:
a ∨ b :≡ sup (λw :L. ‖(w = a) + (w = b)‖)

to be the supremum of the subset λw :L. ‖(w = a) + (w = b)‖ : L → Prop. This operation is called the join
of a and b.

(ii) Define:
a ∧ b :≡ inf (λw :L. ‖(w = a) + (w = b)‖)

to be the infimum of the same subset of L. This operation is called the meet of a and b.

N

In Definition 2.2.10, we were forced to (−1)-truncate the sum type, even though w = a and w = b are mere
propositions.5 Remember that mere propositions are not closed under sum types, see comments after the proof of
Lemma 1.8.17.

As was explained in Remark 1.11.5, a (−1)-truncated sum type behaves like a classical “or”. Therefore, a ∨ b
and a ∧ b represent the supremum and infimum of the classical two element set:

{a, b} = {x ∈ L | (x = a) ∨ (x = b)}

Lemma 2.2.11. Let A :≡ (L,≤, . . . ; sup, sp, inf, ip) be a complete lattice, and a, b : L elements in the lattice. Then,
the following mere propositions are inhabited:

(i) (a ∧ b) ≤ a.

(ii) a ≤ (a ∨ b).

(iii) (a ∧ b) ≤ b.

(iv) b ≤ (a ∨ b).

Proof. Define G :≡ λw :L. ‖(w = a) + (w = b)‖.

(i) We know G a ≡ ‖(a = a) + (a = b)‖ is inhabited, because term t :≡ |inl (reflL a)| has the correct type. This
means that “a is in the two element set {a, b}”.

Now, we have a term pr1 (ip G) : IsLowerBound (a ∧ b) G, since a ∧ b ≡ inf G. But:

IsLowerBound (a ∧ b) G :≡
∏
y:L

(G y)→ ((a ∧ b) ≤ y)

Therefore, pr1 (ip G) a t : (a ∧ b) ≤ a as required.

(ii) Let A−1 :≡ (L,≤−1, . . .) be the dual lattice of A as constructed in Example 2.2.7. Then, by (i) applied with
A−1, we have a term t : (a ∧−1 b) ≤−1 a, where a ∧−1 b is notation for emphasizing that ∧ should be taken in the
dual lattice.

But a ∧−1 b ≡ sup G, since the infimum in the dual lattice is the supremum function in A. And sup G ≡ a ∨ b
by definition. So, t : (a ∨ b) ≤−1 a.

But (a ∨ b) ≤−1 a ≡ a ≤ (a ∨ b) by definition. Therefore, t : a ≤ (a ∨ b) as required.

5They are mere propositions because they are identities on a set, see Lemma 1.8.17.
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(iii) The proof is similar to (i). Here, pr1 (ip G) b t : (a∧b) ≤ b will provide the proof, where t :≡ |inr (reflL b)| : G b,
or equivalently, t : ‖(b = a) + (b = b)‖.

(iv) The proof is similar to (ii). Here, we need to apply (iii) with A−1, and (a∧−1 b) ≤−1 b will be definitionally
equal to b ≤ (a ∨ b) by duality.

We have some preservation properties with respect to ∧ and ∨.

Lemma 2.2.12. Let A :≡ (L,≤, rp, ap, tp; sup, sp, inf, ip) be a complete lattice, and a, b, c, d : L elements in the lattice.
Then, the following mere propositions are inhabited:

(i) (a ≤ c)→ (b ≤ d)→ ((a ∧ b) ≤ (c ∧ d)).

(ii) (a ≤ c)→ (b ≤ d)→ ((a ∨ b) ≤ (c ∨ d)).

Proof. Define:

F :≡ λw :L. ‖(w = a) + (w = b)‖
G :≡ λw :L. ‖(w = c) + (w = d)‖

(i) Let h1 : a ≤ c and h2 : b ≤ d. We need to show that a ∧ b is a lower bound to the “two element set {c, d}”.
From this, the result will follow since c ∧ d is the greatest lower bound for such set.

Claim 1: IsLowerBound (a ∧ b) G is inhabited.
Let w : L. Since we are trying to prove (G w)→ ((a ∧ b) ≤ w), where (a ∧ b) ≤ w is a mere proposition, we can

apply (−1)-truncation recursion (Corollary 1.11.4) to reduce the proof to ((w = c) + (w = d))→ ((a ∧ b) ≤ w).
Now, by the recursion principle for sum types (see Lemma 1.5.36), it is enough to prove the following two cases:

• (w = c)→ ((a ∧ b) ≤ w) is inhabited.

Let p : w = c. By Lemma 2.2.11(i) we have a term t1 : (a ∧ b) ≤ a. By transitivity of the order relation we
have t2 :≡ tp (a ∧ b) a c t1 h1 : (a ∧ b) ≤ c. And so, transport(λx. (a∧b)≤x) p−1 t2 : (a ∧ b) ≤ w.6

• (w = d)→ ((a ∧ b) ≤ w) is inhabited.

This is similar to the previous case.

This proves the claim.

Hence, we have:

pr2 (ip G) :
∏
y:L

(IsLowerBound y G)→ (y ≤ inf G)

and by Claim 1, there is a term t : IsLowerBound (a ∧ b) G.
Therefore, pr2 (ip G) (a ∧ b) t : (a∧b) ≤ inf G, or equivalently, (a∧b) ≤ (c∧d), since inf G ≡ (c∧d) by definition.

(ii) The argument goes by duality. Just apply the previous case with the dual lattice A−1.

We also have idempotency properties.

Lemma 2.2.13. Let A :≡ (L,≤, rp, ap, tp; sup, sp, inf, ip) be a complete lattice, and a : L an element in the lattice.
Then, the following mere propositions are inhabited:

(i) (a ∧ a) = a.

(ii) (a ∨ a) = a.

6−1 denotes the symmetry operator, see Lemma 1.5.59. Also, transport denotes the transport operator, see Lemma 1.5.61.
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Proof. Define G :≡ λw :L. ‖(w = a) + (w = a)‖.

(i) By Lemma 2.2.11(i) we have a term t1 : (a ∧ a) ≤ a. Therefore, if we can prove that there is a term
t2 : a ≤ (a ∧ a), by antisymmetry we will have ap (a ∧ a) a t1 t2 : (a ∧ a) = a.

To prove that a ≤ (a∧ a) is inhabited, we need to show that a is a lower bound to the “two element set {a, a}”.
From this, the result will follow since a ∧ a is the greatest lower bound for such set.

Claim 1: IsLowerBound a G is inhabited.
Let w : L. Since we are trying to prove (G w) → (a ≤ w), where a ≤ w is a mere proposition, we can apply

(−1)-truncation recursion (Corollary 1.11.4) to reduce the proof to ((w = a) + (w = a))→ (a ≤ w).
Now, by the recursion principle for sum types (Lemma 1.5.36), it is enough to prove the following case:

• (w = a)→ (a ≤ w) is inhabited.

Let p : w = a. By reflexivity, there is a term r1 :≡ rp a : a ≤ a. And so, transport(λz. a≤z) p−1 r1 : a ≤ w.

This proves the claim.

Hence, we have:

pr2 (ip G) :
∏
y:L

(IsLowerBound y G)→ (y ≤ inf G)

and by Claim 1, there is a term t : IsLowerBound a G.
Therefore, pr2 (ip G) a t : a ≤ inf G, or equivalently, a ≤ (a ∧ a) is inhabited, as inf G ≡ (a ∧ a) by definition.

(ii) The argument goes by duality. Just apply the previous case with the dual lattice A−1.

Lastly, we have a compatibility corollary.

Corollary 2.2.14. Let A :≡ (L,≤, rp, ap, tp; . . .) be a complete lattice, and a, b, c, d : L elements in the lattice. Then,
the following mere propositions are inhabited:

(i) (a ≤ c)→ (a ≤ d)→ (a ≤ (c ∧ d)).

(ii) (a ≤ c)→ (b ≤ c)→ ((a ∧ b) ≤ c).

(iii) (a ≤ c)→ (a ≤ d)→ (a ≤ (c ∨ d)).

(iv) (a ≤ c)→ (b ≤ c)→ ((a ∨ b) ≤ c).

Proof. (i) Let h1 : a ≤ c and h2 : a ≤ d.
By Lemma 2.2.12(i), there is a term:

p1 : (a ≤ c)→ (a ≤ d)→ ((a ∧ a) ≤ (c ∧ d))

Therefore, p2 :≡ p1 h1 h2 : (a ∧ a) ≤ (c ∧ d).
By Lemma 2.2.13(i), there is a term q : (a ∧ a) = a. Therefore:

transport(λz. z≤(c∧d)) q p2 : a ≤ (c ∧ d)

(ii) Let h1 : a ≤ c and h2 : b ≤ c.
By Lemma 2.2.11(i), there is a term p1 : (a ∧ b) ≤ a. Therefore, by transitivity of the order relation, we have

tp (a ∧ b) a c p1 h1 : (a ∧ b) ≤ c as required.

(iii) This is similar to (ii).

(iv) This is similar to (i).
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2.3 Fixpoints and the Knaster-Tarski Lemma

We proceed to prove the main result on this chapter, the so-called Knaster-Tarski Lemma, which obtains fixpoints
from monotone functions. For that matter, we need to define a couple of concepts. Although these concepts are
defined relative to posets, they also apply to complete lattices by Convention 2.2.6.

Definition 2.3.1 (Prefixpoint, postfixpoint and fixpoint). Let A :≡ (P,≤, . . .) be a poset, f : P → P a function,
and w : P an element in the poset.

(i) If the following proposition is inhabited:

IsPrefixpoint w f :≡ f w ≤ w

we say that w is a prefixpoint of f.

(ii) If the following proposition is inhabited:

IsPostfixpoint w f :≡ w ≤ f w

we say that w is a postfixpoint of f.

(iii) If the following proposition is inhabited:

IsFixpoint w f :≡ f w = w

we say that w is a fixpoint of f.

N

Convention 2.3.2. When the order relation ≤ is not clear from context, we will emphasize it as (IsPrefixpoint≤ w f)
and (IsPostfixpoint≤ w f), written in superscript.

N

Fixpoints were defined independently of prefixpoints and postfixpoints, but fixpoints are those elements that
are prefixpoints and postfixpoints at the same time, as the following lemma shows.

Lemma 2.3.3. Let A :≡ (P,≤, rp, ap, tp) be a poset, f : P→ P a function, and w : P an element in the poset. Then,
the following mere propositions are equivalent:

• IsFixpoint w f.

• (IsPrefixpoint w f)× (IsPostfixpoint w f)

Proof. To prove that two mere propositions are equivalent, it is enough to prove they are logically equivalent (Lemma
1.8.8). So, it is enough to prove the following two implications:

• (IsFixpoint w f)→ ((IsPrefixpoint w f)× (IsPostfixpoint w f)).

Let h : IsFixpoint w f, or equivalently, h : f w = w.

By reflexivity of the order relation, we have t :≡ rp (f w) : f w ≤ f w. So:

t1 :≡ (transport(λz. (f w)≤z) h t) : f w ≤ w

and:

t2 :≡ (transport(λz. z≤(f w)) h t) : w ≤ f w

Therefore, (t1, t2) : (IsPrefixpoint w f)× (IsPostfixpoint w f).
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• ((IsPrefixpoint w f)× (IsPostfixpoint w f))→ (IsFixpoint w f).

By the recursion principle for Σ-types, it is enough to prove:

(IsPrefixpoint w f)→ (IsPostfixpoint w f)→ (IsFixpoint w f)

Let h1 : IsPrefixpoint w f and h2 : IsPostfixpoint w f, or equivalently:

h1 : f w ≤ w

h2 : w ≤ f w

Then, by antisymmetry of the order relation, we have:

ap (f w) w h1 h2 : f w = w

Now, among the fixpoints, there are two special ones (if they exist at all): the greatest and the smallest.

Definition 2.3.4 (Least and greatest fixpoint). Let A :≡ (P,≤, . . .) be a poset, f : P→ P a function, and w : P an
element in the poset.

(i) If the following type is inhabited:

IsLFP w f :≡ (IsFixpoint w f)×

∏
y:P

(IsFixpoint y f)→ (w ≤ y)


we say that w is the least fixpoint for function f.

(ii) If the following type is inhabited:

IsGFP w f :≡ (IsFixpoint w f)×

∏
y:P

(IsFixpoint y f)→ (y ≤ w)


we say that w is the greatest fixpoint for function f.

N

Convention 2.3.5. When the order relation ≤ is not clear from context, we will emphasize it as (IsLFP≤ w f) and
(IsGFP≤ w f), written in superscript.

N

Both components in types (IsLFP w f) and (IsGFP w f) are mere propositions (propositions are closed under
Σ-types and Π-types). IsLFP w f reads: “w is a fixpoint for function f, and any other fixpoint for f is above w”.
IsGFP w f reads: “w is a fixpoint for function f, and any other fixpoint for f is below w”.

Also, notice we used the definite article in the definitions of (IsLFP w f) and (IsGFP w f) (i.e. we said the least
fixpoint and the greatest fixpoint). This can be justified as follows. Let a and b be two least fixpoints for function
f. Then, since both of them are fixpoints and least fixpoints, both a ≤ b and b ≤ a will hold. Therefore, by
antisymmetry, a = b will be inhabited. Hence, the least fixpoint is unique (the argument is similar for the greatest
fixpoint).

We are ready to state the Knaster-Tarski Lemma.

Lemma 2.3.6 (Knaster-Tarski). Let A :≡ (L,≤, rp, ap, tp; sup, sp, inf, ip) be a complete lattice, and f : L → L a
monotone function. Then,

(i) f has a least fixpoint in L, or equivalently, there is a pair:

(Lfp f, Lfp pr f) :
∑
w:L

IsLFP w f

where Lfp f denotes the least fixpoint of f, and Lfp pr f denotes a proof that Lfp f is the least fixpoint of f.



134 CHAPTER 2. COMPLETE LATTICES AND FIXPOINTS IN HOTT

(ii) f has a greatest fixpoint in L, or equivalently, there is a pair:

(Gfp f, Gfp pr f) :
∑
w:L

IsGFP w f

where Gfp f denotes the greatest fixpoint of f, and Gfp pr f denotes a proof that Gfp f is the greatest fixpoint of
f.

Proof. (i) Define:
P :≡ (λw :L. IsPrefixpoint w f) : L→ Prop

to be the subset of all elements in L that are prefixpoints of f.
Our candidate for the least fixpoint for f will be the infimum of P:

Lfp f :≡ inf P

If we can build a term Lfp pr f : IsLFP (Lfp f) f, then pair (Lfp f, Lfp pr f) :
∑

w:L IsLFP w f will be the required
proof.

Term Lfp pr f will exist if we can prove that IsLFP (Lfp f) f is inhabited. But first, we prove a claim.

Claim 1: Proposition IsLowerBound (f (Lfp f)) P is inhabited.
Let w : L with h1 : P w, or equivalently, h1 : f w ≤ w. By definition, Lfp f is the infimum of P, which means

pr1 (ip P) : IsLowerBound (Lfp f) P (since Lfp f ≡ inf P). So, p1 :≡ pr1 (ip P) w h1 : Lfp f ≤ w.
But f is monotone, i.e. there is a term:

m :
∏

w,y:L

(w ≤ y)→ (f w ≤ f y)

which implies, p2 :≡ m (Lfp f) w p1 : f (Lfp f) ≤ f w.
Hence, by transitivity:

tp (f (Lfp f)) (f w) w p2 h1 : f (Lfp f) ≤ w

This proves the claim.

Now, we proceed to prove IsLFP (Lfp f) f by showing the following two propositions:

• IsFixpoint (Lfp f) f is inhabited.

By Claim 1, there is a term p3 : IsLowerBound (f (Lfp f)) P. By definition, Lfp f is the greatest lower bound for
P, so:

p4 :≡ pr2 (ip P) (f (Lfp f)) p3 : f (Lfp f) ≤ inf P

or, equivalently, p4 : f (Lfp f) ≤ Lfp f.

Therefore, if we can prove Lfp f ≤ f (Lfp f), then, by antisymmetry, Lfp f will be a fixpoint.

But f is monotone, i.e. there is a term m :
∏

w,y:L (w ≤ y)→ (f w ≤ f y). Therefore:

p5 :≡ m (f (Lfp f)) (Lfp f) p4 : f (f (Lfp f)) ≤ f (Lfp f)

or equivalently, p5 : IsPrefixpoint (f (Lfp f)) f.

By definition of P, this can be restated as p5 : P (f (Lfp f)).

But Lfp f is a lower bound for P, so pr1 (ip P) (f (Lfp f)) p5 : Lfp f ≤ f (Lfp f) as required.

•
∏

y:L (IsFixpoint y f)→ (Lfp f ≤ y) is inhabited.

Let y : L with h : IsFixpoint y f, or equivalently, h : f y = y.

By reflexivity, we have p6 :≡ rp y : y ≤ y.

But then, p7 :≡ transport(λz. z≤y) h−1 p6 : f y ≤ y, or equivalently, p7 : IsPrefixpoint y f. Hence, p7 : P y by
definition of P.

But Lfp f is a lower bound for P, so pr1 (ip P) y p7 : Lfp f ≤ y as required.
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(ii) The argument goes by duality. Just apply the previous case on the dual lattice A−1.
Notice that the least fixpoint in the dual lattice A−1 will correspond to the greatest fixpoint in lattice A. Also,

the greatest fixpoint in lattice A will be:

sup (λw :L. IsPostfixpoint≤ w f)

2.4 Induction and coinduction principles

In standard mathematics, the existence of “inductively” and “coinductively” defined sets is justified by the Knaster-
Tarski Lemma, because these sets are implicitly constructed as a fixpoint of a monotone function in the powerset
lattice (see [16] for examples).

Also, whenever we want to prove a property about these “inductively” and “coinductively” defined sets, we make
use of proof techniques that take advantage of their inductive and coinductive nature. These proof techniques are
the so-called induction and coinduction principles. These principles are corollaries to the Knaster-Tarski Lemma,
as the following results show.

First, the induction principles.

Corollary 2.4.1 (Conventional induction principle). Let A :≡ (L,≤, . . . ; . . . , inf, ip) be a complete lattice, f : L→ L a
monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:7

(f w ≤ w)→ (Lfp f ≤ w)

Proof. Let h : f w ≤ w. In the proof of Lemma 2.3.6(i), Lfp f was constructed as:

Lfp f :≡ inf P

where:
P :≡ λy :L. IsPrefixpoint y f

Since h : f w ≤ w, we have h : P w. But Lfp f is the infimum of P (and hence a lower bound for P). So,
pr1 (ip P) w h : Lfp f ≤ w as required.

To understand the statement of the conventional induction principle, it is useful to think of A as some particular
complete lattice. In all the following explanations, A will denote the powertype lattice of Example 2.2.8. In other
words, we have:

A :≡ (T→ Prop,⊆, rp, ap, tp; sup, sp, inf, ip)

where ⊆ is the “inclusion” relation.
Monotone functions f : (T → Prop) → (T → Prop) on this lattice can be pictured as procedures that map

subtypes of T into subtypes “closer” to a fixpoint of f, i.e. given a subtype C : T → Prop, then f C : T → Prop is
a subtype closer to a fixpoint of f. Hence, fixpoints of f are subtypes that cannot be “improved further”.

In this lattice, the conventional induction principle reads: “To prove that all elements of Lfp f are in w (i.e.
Lfp f ⊆ w), prove that any improvement of w falls inside w again”. In other words, if either w has points in excess
(because the improvement falls inside w again) or w is already a fixpoint, then w must contain some fixpoint, and
as a consequence, it will contain the least fixpoint.

The next induction principle states that it is not necessary to check that the improvement of all of w falls
inside w again, but it is enough to take those elements in w belonging to the least fixpoint of f (i.e. condition
f (Lfp f ∧ w) ≤ w in the following induction principle).

Corollary 2.4.2 (Extended conventional induction principle). Let A :≡ (L,≤, rp, ap, tp; . . .) be a complete lattice,
f : L → L a monotone function, and w : L an element in the complete lattice. Then, the following mere proposition
is inhabited:

(f (Lfp f ∧ w) ≤ w)→ (Lfp f ≤ w)

7Lfp f exists by the Knaster-Tarski Lemma.
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Proof. Let h : f (Lfp f ∧ w) ≤ w.
By Lemma 2.2.11(i) we have a term t1 : (Lfp f ∧ w) ≤ Lfp f.
Since f is monotone (i.e. there is a term m :

∏
w,y:L (w ≤ y)→ (f w ≤ f y)), we have:

t2 :≡ m (Lfp f ∧ w) (Lfp f) t1 : f (Lfp f ∧ w) ≤ f (Lfp f)

But Lfp f is a fixpoint of f, i.e. there is t3 :≡ pr1 (Lfp pr f) : f (Lfp f) = Lfp f. So:

t4 :≡ transport(λz. f (Lfp f∧w)≤z) t3 t2 : f (Lfp f ∧ w) ≤ Lfp f

Now, by Corollary 2.2.14(i), there is a term:

p : (f (Lfp f ∧ w) ≤ Lfp f)→ (f (Lfp f ∧ w) ≤ w)→ (f (Lfp f ∧ w) ≤ (Lfp f ∧ w))

So, there is a term t5 :≡ p t4 h : f (Lfp f ∧ w) ≤ (Lfp f ∧ w).
Term t5 is a proof that Lfp f ∧ w is a prefixpoint of f. Therefore, by conventional induction, there is a term

t6 : Lfp f ≤ (Lfp f ∧ w). But, by Lemma 2.2.11(iii), there is a term t7 : (Lfp f ∧ w) ≤ w. So, by transitivity of the
order relation:

tp (Lfp f) (Lfp f ∧ w) w t6 t7 : Lfp f ≤ w

The following induction principle has an “iterative flavor” to it. Its core idea comes from Mendler-style recursion
schemes (see [3] for extensive examples).

Corollary 2.4.3 (Mendler-style induction principle). Let A :≡ (L,≤, rp, ap, tp; . . .) be a complete lattice, f : L→ L a
monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:∏

y:L

(y ≤ w)→ (f y ≤ w)

→ (Lfp f ≤ w)

Proof. Let h :
∏

y:L (y ≤ w)→ (f y ≤ w).
Then, t1 :≡ h w (rp w) : f w ≤ w. So, t1 is a proof that w is a prefixpoint of f. Therefore, by conventional

induction, there is a term t2 : Lfp f ≤ w as required.

In the powertype lattice, Mendler-style induction states: “To prove that all elements in Lfp f are in w, prove that
any subtype y contained in w has its improvement contained in w”. The hypothesis (instantiated in the powertype
lattice): ∏

y:T→Prop

(y ⊆ w)→ (f y ⊆ w) (2.10)

is implicitly stating an iterative condition, as the following explanation shows.
Suppose ⊥ is the empty subtype:

⊥ :≡ (λY. 0) : T→ Prop

where the empty type 0 is a proposition by Lemma 1.8.17.
By definition of the inclusion relation, we know:

(⊥ ⊆ w) ≡
∏
z:T

(0→ (w z))

Therefore, by the recursion principle for the empty type (Lemma 1.5.42), we have that ⊥ ⊆ w is inhabited.
Hence, from hypothesis (2.10), we can conclude (f ⊥) ⊆ w. But then, by applying (2.10) again, f (f ⊥) ⊆ w

holds, which means f (f (f ⊥)) ⊆ w holds, and so on.
In other words, hypothesis (2.10) is implicitly claiming that each element in the sequence:

⊥, f ⊥, f (f ⊥), f (f (f ⊥)), . . .
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is contained in w. Each application of f gets us closer to a fixpoint. Therefore, if we continue this iterative process,
w must contain some fixpoint, which implies that it contains the least fixpoint.

The following induction principle specializes the Mendler-style induction principle. It chooses y in the hypothesis
so that it is contained not only in w, but also in Lfp f.

Corollary 2.4.4 (Extended Mendler-style induction principle). Let A :≡ (L,≤, . . .) be a complete lattice, f : L→ L a
monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:∏

y:L

(y ≤ Lfp f)→ (y ≤ w)→ (f y ≤ w)

→ (Lfp f ≤ w)

Proof. Let h :
∏

y:L (y ≤ Lfp f)→ (y ≤ w)→ (f y ≤ w).
By Lemma 2.2.11(i), there is a term t1 : (Lfp f ∧ w) ≤ Lfp f. Also, by Lemma 2.2.11(iii), there is a term

t2 : (Lfp f ∧ w) ≤ w.
Then, t3 :≡ h (Lfp f ∧ w) t1 t2 : f (Lfp f ∧ w) ≤ w. Therefore, term t3 is a proof that the condition on the extended

conventional induction principle holds, which implies that Lfp f ≤ w is inhabited.

Now, the coinduction principles. These principles are duals to all previous induction principles.

The conventional coinduction principle reads: “To prove that all elements in w are in Gfp f, prove that w is
contained on its improvement”. In other words, if either w lacks points (because w falls inside its improvement f w)
or w is already a fixpoint, then w must be contained in some fixpoint, and as a consequence, it will be contained in
the greatest fixpoint.

Corollary 2.4.5 (Conventional coinduction principle). Let A :≡ (L,≤, . . .) be a complete lattice, f : L → L a
monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:

(w ≤ f w)→ (w ≤ Gfp f)

Proof. It follows by duality. Just apply the conventional induction principle on the dual lattice A−1, as constructed
in Example 2.2.7.

The next coinduction principle states that it is enough to check that w is contained in the improvement of the
union of w and Gfp f. It is dual to the extended induction principle.

Corollary 2.4.6 (Extended conventional coinduction principle). Let A :≡ (L,≤, . . .) be a complete lattice, f : L→ L
a monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:

(w ≤ f (Gfp f ∨ w))→ (w ≤ Gfp f)

Proof. It follows by duality. Just apply the extended conventional induction principle on the dual lattice A−1.

We explained that Mendler-style induction claims that if each element on the sequence:

⊥, f ⊥, f (f ⊥), f (f (f ⊥)), . . .

is contained in w (where ⊥ is the empty subtype), then w must contain the least fixpoint.
Dually, Mendler-style coinduction claims that if each element on the sequence:

>, f >, f (f >), f (f (f >)), . . .

contains w, where > is the full subtype > :≡ (λY. 1) : T→ Prop, then w must be contained in some fixpoint, and
as a consequence, w will be contained in the greatest fixpoint.
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Corollary 2.4.7 (Mendler-style coinduction principle). Let A :≡ (L,≤, . . . ) be a complete lattice, f : L → L a
monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:∏

y:L

(w ≤ y)→ (w ≤ f y)

→ (w ≤ Gfp f)

Proof. It follows by duality. Just apply the Mendler-style induction principle on the dual lattice A−1.

The following coinduction principle specializes Mendler-style coinduction. It chooses y in the hypothesis so that
it contains not only w, but also Gfp f.

Corollary 2.4.8 (Extended Mendler-style coinduction principle). Let A :≡ (L,≤, . . .) be a complete lattice, f : L→ L
a monotone function, and w : L an element in the complete lattice. Then, the following mere proposition is inhabited:∏

y:L

(Gfp f ≤ y)→ (w ≤ y)→ (w ≤ f y)

→ (w ≤ Gfp f)

Proof. It follows by duality. Just apply the extended Mendler-style induction principle on the dual lattice A−1.

2.5 Chapter summary

This chapter developed in HoTT classical results regarding the existence of fixpoints for monotone functions on a
complete lattice. This provided an opportunity to show an example on how set-based mathematics can be formalized
in HoTT.

Sections 2.1 and 2.2 defined the concepts of poset, monotone function, complete lattice, infima, suprema, meet,
and join. The dual and powertype lattices were constructed as examples. Also, the powertype lattice served as
an example on how the propositional resizing axiom is used for impredicative definitions. Section 2.3 defined the
concepts of prefixpoint, postfixpoint, and least and greatest fixpoints. It also provided a proof for the Knaster-Tarski
Lemma. Finally, Section 2.4 constructed induction and coinduction principles as corollaries to the Knaster-Tarski
Lemma.



Chapter 3

Constructing types in HoTT

This chapter explores the construction of inductive and coinductive types inside HoTT. In other words, it explores
the construction of types without adding more inference rules than those already present in Chapter 1.

Sections 1.9 and 1.10 explained that inductive and coinductive types can be modeled by initial algebras and
final coalgebras, respectively. Also, these sections mentioned that an arbitrary functor does not necessarily have an
initial algebra and a final coalgebra.

This chapter explores the initial/final (co)algebra existence question for an endofunctor.1 The standard ap-
proach found in the literature involves the use of chains and cochains under suitable conditions on the functor (see
introduction in the next section). But, instead of reproducing results involving chains and cochains, which can be
found formalized in HoTT (see for example [4]), we will attempt to translate the Knaster-Tarski construction done
in the proof for Lemma 2.3.6 into the language of algebras and coalgebras. Can we get initial algebras and final
coalgebras by doing such thing? If not, how close are the constructed (co)algebras from being initial or final? Are
these constructions useful at all? This chapter explores some implications on performing such experiment.

One consequence of the proposed experiment is that we only require very mild conditions on the involved
endofunctor. For example, it needs to preserve sets, but there is no need to require that the functor preserves
colimits of chains and limits of cochains, as it is required in standard approaches (see introduction in the next
section).

However, this generality comes with a cost. The (co)algebras fail to be initial or final only by a universe level.
In other words, they behave like initial algebras and final coalgebras, except for a restriction on universe levels.2

We will call these constructions lower level initial algebras and lower level final coalgebras for reasons we will make
precise later. Another limitation on the approach is that we can only build sets instead of general types.

Although the proposed experiment does not answer positively the initial/final (co)algebra existence question,
we will see that the lower level initial/final (co)algebras constructed by the experiment are still useful, as they are
able to define unique functions by (co)recursive equations.

Another important point to be highlighted on this chapter is the explicit use of universe levels. In contrast to
Chapter 2 where the theory was developed by ignoring universe levels, we will see that the results on this chapter
depend critically on the explicit use of universe levels. The results developed on this chapter are among those
rare occasions where ignoring universe levels leads to an apparent inconsistency in the type theory, justifying their
explicit use. If Chapter 2 was an example for the “ignore universe levels” style of doing mathematics in HoTT, this
chapter will serve as an example for the “explicit universe levels” style.

This chapter is structured as follows:

• Section 3.1 presents an overview of the initial/final (co)algebra existence problem. It describes the most
common approach found in the literature, which involves the computation of colimits of ω-chains and limits
of ω-cochains.

• Sections 3.2 and 3.3 develop the suggested experiment for inductive and coinductive types, respectively.

These sections prove the existence theorems for lower level initial/final (co)algebras. Also, they show that the
“powertype functor” has a lower level initial/final (co)algebra, but not an initial/final (co)algebra.

1See Definition 1.9.8.
2This “restriction” will become clear as the results are developed and some examples are presented.
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These sections also provide examples on how lower level initial/final (co)algebras are used: the natural numbers
seen as a lower level initial algebra, and the streams seen as a lower level final coalgebra.

Finally, each section discusses the limitations on the approach, and explains why certain decisions were made
by the author.

The results on this chapter have been computer-checked in the Coq proof assistant [24]. See [26] for details on
how to download the proof script file for this chapter.

3.1 Introduction

For this section, we will work in standard mathematics. The author assumes that the reader is already familiar
with basic concepts like partial order, monotone function, complete lattice, least upper bound (supremum), and
greatest lower bound (infimum), as presented in standard mathematics (see [9] and [16] for references).

The procedure commonly used for constructing initial and final (co)algebras is a generalization of an order-
theoretic result for constructing least and greatest fixpoints of monotone functions on a complete lattice. This
order-theoretic result differs from the Knaster-Tarski Lemma (see Lemma 2.3.6) in the sense that it computes
fixpoints by explicit iteration. We explain this alternative order-theoretic result before explaining its generalization
into the language of algebras and coalgebras.

The “iterative procedure” will require that monotone functions satisfy an extra condition, which we define next
(see Definition 2.8.1 in [16]).

Definition 3.1.1 (Continuous and cocontinuous monotone function). Let 〈L,≤,
∧
,
∨
〉 be a complete lattice3 and

g : L→ L a monotone function. We say that:

• Function g is continuous if every increasing sequence in L:

α0 ≤ α1 ≤ α2 ≤ . . .

satisfies g(
∨
{αi | i ∈ N}) =

∨
{g(αi) | i ∈ N}, i.e. if g preserves the supremum of any increasing sequence.

• Function g is cocontinuous if every decreasing sequence in L:

α0 ≥ α1 ≥ α2 ≥ . . .

satisfies g(
∧
{αi | i ∈ N}) =

∧
{g(αi) | i ∈ N}, i.e. if g preserves the infimum of any decreasing sequence.

N

Every complete lattice has a bottom element ⊥ :≡
∨
∅ and a top element > :≡

∧
∅. Hence, for every monotone

function g : L→ L, we can obtain an increasing sequence (since ⊥ is a bottom element):

⊥ ≤ g(⊥) ≤ g(g(⊥)) ≤ g(g(g(⊥))) ≤ . . .

and a decreasing sequence (since > is a top element):

> ≥ g(>) ≥ g(g(>)) ≥ g(g(g(>))) ≥ . . .

We can rewrite these sequences as:

g0(⊥) ≤ g1(⊥) ≤ g2(⊥) ≤ g3(⊥) ≤ . . .

g0(>) ≥ g1(>) ≥ g2(>) ≥ g3(>) ≥ . . .
(3.1)

where gn denotes the n-times composition of g (here, g0 is defined to be the identity function).

The “iterative procedure” is then encoded in the following result (see Theorem 2.8.5 in [16]).

3≤ denotes the partial order relation,
∧

the infimum operation, and
∨

the supremum operation.
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Theorem 3.1.2. Let 〈L,≤,
∧
,
∨
〉 be a complete lattice and g : L→ L a monotone function.

(i) If g is continuous, then
∨
{gi(⊥) | i ∈ N} is the least fixpoint of g, i.e. if we iterate g starting from the bottom

element (producing an increasing sequence), the least fixpoint of g will be the supremum of the sequence.

(ii) If g is cocontinuous, then
∧
{gi(>) | i ∈ N} is the greatest fixpoint of g, i.e. if we iterate g starting from the

top element (producing a decreasing sequence), the greatest fixpoint of g will be the infimum of the sequence.

Now, the common approach for building initial and final (co)algebras is just a generalization of Theorem 3.1.2,
but expressed in the language of category theory, which we explain next.

A category (Definition 1.9.1) will serve as a generalization to a partially ordered set. An arrow f : A→ B in a
category serves as a generalization to the statement “A ≤ B” in a partially ordered set.

Next, we define a generalization to the concept of increasing and decreasing sequences (see Definition 2.9 in [8]).

Definition 3.1.3 (ω-chain and ω-cochain). Let C be a category. We define:

• An ω-chain in C is a collection {Oi}i∈N of objects in C together with a collection of arrows {αi : Oi → Oi+1}i∈N.

O0 O1 O2 O3 . . .
α0 α1 α2 α3

• An ω-cochain in C is a collection {Oi}i∈N of objects in C together with a collection of arrows
{αi : Oi+1 → Oi}i∈N.

O0 O1 O2 O3 . . .
α0 α1 α2 α3

N

An ω-chain generalizes the idea of an increasing sequence in a poset, because its diagram translates to:

O0 ≤ O1 ≤ O2 ≤ O3 ≤ . . .

Similarly, an ω-cochain generalizes the idea of a decreasing sequence.
An upper bound for an increasing sequence and a lower bound for a decreasing sequence can be generalized

through the concepts of cocone for an ω-chain and cone for an ω-cochain, respectively (see Definition 2.11 in [8]).

Definition 3.1.4 (Cocone for ω-chain and cone for ω-cochain). Let C be category. We define:

• A cocone for the ω-chain ({Oi}, {αi : Oi → Oi+1}) is an object C together with a collection of arrows
{βi : Oi → C}i∈N such that for every i ∈ N, we have βi = βi+1 ◦ αi.
In other words, the following diagram commutes for every i ∈ N:

. . . Oi Oi+1 . . .

C

αi−1 αi

βi

αi+1

βi+1

The collection {βi : Oi → C}i∈N expresses that C is “above” all objects Oi. Hence, C is an “upper bound”
for the “increasing sequence”.

• A cone for the ω-cochain ({Oi}, {αi : Oi+1 → Oi}) is an object C together with a collection of arrows
{βi : C → Oi}i∈N such that for every i ∈ N, we have βi = αi ◦ βi+1.

In other words, the following diagram commutes for every i ∈ N:

C

. . . Oi Oi+1 . . .

βi βi+1

αi−1 αi αi+1

The collection {βi : C → Oi}i∈N expresses that C is “below” all objects Oi. Hence, C is a “lower bound” for
the “decreasing sequence”.

N
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The supremum for an increasing sequence and the infimum for a decreasing sequence follow a similar general-
ization through the concepts of colimit for an ω-chain and limit for an ω-cochain, respectively (see Definition 2.13
in [8]).

Definition 3.1.5 (Colimit for ω-chain and limit for ω-cochain). Let C be a category. We define:

• A colimit for the ω-chain ({Oi}, {αi : Oi → Oi+1}) is a cocone (C, {βi : Oi → C}) such that for any other
cocone (Y, {γi : Oi → Y }), there is a unique arrow h : C → Y such that for any i ∈ N, we have γi = h ◦ βi.
In other words, the following diagram commutes for every i ∈ N:

. . . Oi . . .

C Y

αi−1 αi

βi γi

h!

The collection {γi : Oi → Y } means that Y is an “upper bound” for the “increasing sequence” (similarly for
C), and arrow h : C → Y means that C is “smaller” than Y . Hence, C is the “least upper bound” (as Y is
arbitrary).

• A limit for the ω-cochain ({Oi}, {αi : Oi+1 → Oi}) is a cone (C, {βi : C → Oi}) such that for any other cone
(Y, {γi : Y → Oi}), there is a unique arrow h : Y → C such that for any i ∈ N, we have γi = βi ◦ h.

In other words, the following diagram commutes for every i ∈ N:

Y C

. . . Oi . . .

γi

h!

βi

αi−1 αi

The collection {γi : Y → Oi} means that Y is a “lower bound” for the “decreasing sequence” (similarly for
C), and arrow h : Y → C means that C is “bigger” than Y . Hence, C is the “greatest lower bound” (as Y is
arbitrary).

N

Notice that the statement for Theorem 3.1.2 depends only on our ability to obtain the supremum of an increasing
sequence and the infimum of a decreasing sequence. Therefore, we do not need a complete lattice, but only a poset
where every increasing sequence has a supremum and every decreasing sequence has an infimum. Also, our poset
needs to have a top element and a bottom element.

These conditions can be expressed in category theory by claiming that category C (i.e. our poset) needs to
have colimits for any ω-chain (i.e. any increasing sequence has a supremum) and limits for any ω-cochain (i.e. any
decreasing sequence has an infimum). Also, C needs to have an initial object 0 (i.e. a bottom element), and a final
object 1 (i.e. a top element). Therefore, we make the following definitions (see Definition 2.15 in [8]).

Definition 3.1.6 (ω-complete and ω-cocomplete category). Let C be a category. We say that:

• Category C is ω-complete if it has an initial object, and every ω-chain has a colimit.

• Category C is ω-cocomplete if it has a terminal object, and every ω-cochain has a limit.

N

An example of a category that is ω-complete and ω-cocomplete is SET (the category of sets and functions).4

Now, a functor (Definition 1.9.2) acts as a generalization to the concept of monotone function, i.e. just no-
tice that the arrow mapping (A → B) → (H(A) → H(B)) can be interpreted as the monotonicity statement
“(A ≤ B)→ (H(A) ≤ H(B))”.

The concepts in Definition 3.1.1 can be generalized to a functor as follows.

4It follows by Corollary 5.22 and Theorem 5.23 in [5].
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Definition 3.1.7 (Preservation of (co)limits of ω-(co)chains). Let C be a category and H : C → C a functor.

• We say that functor H preserves colimits of ω-chains if given a colimit (C, {βi}) for the ω-chain ({Oi}, {αi}),
we have that (H(C), {H(βi)}) is also a colimit for the ω-chain ({H(Oi)}, {H(αi)}).
Stating that (C, {βi}) is a colimit for ({Oi}, {αi}) is analogous to expressing “C =

∨
{Oi}” in the language

of order theory (since colimits are unique up to isomorphism). Similarly, stating that (H(C), {H(βi)}) is
a colimit for ({H(Oi)}, {H(αi)}) is analogous to expressing “H(C) =

∨
{H(Oi)}” in the language of order

theory.

Therefore, it is as if we are expressing “H(
∨
{Oi}) =

∨
{H(Oi)}”. In other words, our functor is “continuous”

because it preserves the “supremum of increasing sequences”.

• We say that functor H preserves limits of ω-cochains if given a limit (C, {βi}) for the ω-cochain ({Oi}, {αi}),
we have that (H(C), {H(βi)}) is also a limit for the ω-cochain ({H(Oi)}, {H(αi)}).
Again, a similar analysis shows that it is as if we are expressing “H(

∧
{Oi}) =

∧
{H(Oi)}” in the language of

order theory. In other words, our functor is “cocontinuous” because it preserves the “infimum of decreasing
sequences”.

N

We also have generalizations for the increasing and decreasing sequences in (3.1).

Definition 3.1.8 (Initial ω-chain and final ω-cochain). Let C be a category and H : C → C a functor.

• If C has an initial object 0, then we define the initial ω-chain:

0 H1(0) H2(0) H3(0) . . .! H1(!) H2(!) H3(!)

where ! is the unique arrow going out of initial object 0, arrow Hn(!) denotes the n-application of functor H
on arrow !, and Hn(0) denotes the n-application of functor H on object 0.

The initial ω-chain is analogous to the increasing sequence:

g0(⊥) ≤ g1(⊥) ≤ g2(⊥) ≤ g3(⊥) ≤ . . .

for a monotone function g.

• If C has a final object 1, then we define the final ω-cochain:

1 H1(1) H2(1) H3(1) . . .! H1(!) H2(!) H3(!)

where ! is the unique arrow going into terminal object 1, arrow Hn(!) denotes the n-application of functor H
on arrow !, and Hn(1) denotes the n-application of functor H on object 1.

The final ω-cochain is analogous to the decreasing sequence:

g0(>) ≥ g1(>) ≥ g2(>) ≥ g3(>) ≥ . . .

for a monotone function g.

N

Next, we need to define generalizations for the concepts of prefixpoint, postfixpoint and fixpoint found in order
theory (see Definition 2.3.1).

An H-algebra for a functor H : C → C (Definition 1.9.3) was defined as a pair (A, InA), where A is an object
and InA : H(A) → A is an arrow. But the arrow H(A) → A reads as the statement “H(A) ≤ A”. Hence, an
H-algebra can be interpreted as a “prefixpoint” for “monotone function” H.

Similarly, an H-coalgebra for a functor H : C → C (Definition 1.10.1) was defined as a pair (A,OutA), where A
is an object and OutA : A → H(A) is an arrow. But the arrow A → H(A) reads as the statement “A ≤ H(A)”.
Hence, an H-coalgebra can be interpreted as a “postfixpoint” for “monotone function” H.
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Now, (A, InA) is an initial H-algebra (Definition 1.9.5) if for any other H-algebra (B, InB), there is a unique
algebra morphism A→ B. But the arrow A→ B reads as the statement “A ≤ B”. Hence, an initial algebra can be
interpreted as a “prefixpoint” A that is “smaller” than any other “prefixpoint” B, i.e. the “smallest prefixpoint”
for “monotone function” H.

By a similar argument, a final H-coalgebra (Definition 1.10.3) can be interpreted as the “greatest postfixpoint”
for “monotone function” H.

However, if A is the smallest prefixpoint for a monotone function, then it is actually the smallest fixpoint.
Similarly, if A is the greatest postfixpoint for a monotone function, then it is actually the greatest fixpoint. This is
supported by two results due to Lambek (see Lemma 2.5.5 and Lemma 2.6.4 in [17]), which state that if A is an
initial H-algebra or a final H-coalgebra, then A and H(A) are isomorphic objects.

So, an initial H-algebra is a generalization to the concept of least fixpoint for a monotone function, and a final
H-coalgebra is a generalization to the concept of greatest fixpoint for a monotone function.

With all these concepts at hand, we are ready to state a generalized version of Theorem 3.1.2 (see Theorems
2.1.9 and 2.3.3 in [1]).

Theorem 3.1.9. Let C be a category and H : C → C a functor.

(i) Suppose C is ω-complete and functor H preserves colimits of ω-chains. Let C be the colimit of the initial
ω-chain. Then, there is an arrow InC : H(C)→ C such that (C, InC) is an initial H-algebra.

(ii) Suppose C is ω-cocomplete and functor H preserves limits of ω-cochains. Let C be the limit of the final
ω-cochain. Then, there is an arrow OutC : C → H(C) such that (C,OutC) is a final H-coalgebra.

Although it is possible to formalize all these results in HoTT,5 this report will take another route.
What could happen if we attempt a direct generalization of the Knaster-Tarski construction (Lemma 2.3.6)

using the analogies presented on this section? Can we get initial and final (co)algebras by doing such thing? If not,
can we obtain something useful out of it? Will the results be general, in the sense that they apply to an arbitrary
endofunctor (in comparison to Theorem 3.1.9, where the endofunctor needs to preserve (co)limits of ω-(co)chains)?

The following sections flesh out the details of such experiment, first for inductive types or initial algebras (Section
3.2), and then for coinductive types or final coalgebras (Section 3.3).

3.2 Inductive types

This section describes the construction of inductive types by means of generalizing the Knaster-Tarski construction
(Lemma 2.3.6(i)) into the language of algebras.

We will see that generalizing Knaster-Tarski produces lower level weakly initial algebras (this concept will be
made precise later). Therefore, to obtain a (lower level) initial algebra from a (lower level) weakly initial algebra,
we need to devise a method of “refinement”.

Hence, the development will be split into two parts. Subsection 3.2.1 carries out the generalization of Knaster-
Tarski, and Subsection 3.2.2 carries out the “refinement” of (lower level) weakly initial algebras into (lower level)
initial algebras.

3.2.1 Generalizing the Knaster-Tarski construction

As was discussed in Section 1.9, we will not be interested on building initial/final (co)algebras on general categories,
but only on type universes. All concepts discussed in Section 3.1 apply to type universes, because they can be
seen as categories (see discussion on Section 1.9). Hence, our functors will be maps between type universes (see
Definition 1.9.6).

As suggested on Section 3.1, a functor is a generalization to the concept of monotone function (Definition 2.1.6),
the arrow type → acts as a generalization to the order relation ≤ (i.e. A → B corresponds to “A ≤ B”), and an
H-algebra acts as a generalization to the concept of prefixpoint of a monotone function.

Now, if we examine the proof for the first part of Knaster-Tarski (Lemma 2.3.6(i)), we see that the least fixpoint
was defined as the infimum of all prefixpoints of the monotone function. Therefore, the only missing ingredient is
a generalization to the concept of “greatest lower bound of a subset in the lattice”.

5See [4] for an example on how these ideas can be formalized in HoTT. In [4], they prove the existence of final coalgebras for
“polynomial” functors, using some of the ideas presented on this section.
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Again, as suggested on Section 3.1, a category (with additional conditions) generalizes the concept of lattice. In
our case, type universes play the role of “categories”, hence type universes will be our “lattices”.

Therefore, a “subset of elements in the lattice” gets translated to a “collection of types in a type universe”. To
represent collections of types in a type universe Uj , we will use type families M → Uj , where M is some indexing
type. In other words, a function F : M → Uj will be analogous to a “family of collections” {Fi}i∈M indexed by
collection M , as understood in standard mathematics.

With this in mind, a “lower bound” for a family F : M→ Uj will be a type A : Uk that is “below” every element
in the family (i.e. for every i : M, we have a proof for A → (F i), or interpreted order-theoretically, a proof for
“A ≤ F i”). By borrowing terminology from category theory, this generalized notion of “lower bound” corresponds
to the notion of cone over the family F.

Definition 3.2.1 (Cone over a family). Let M : Ui be an indexing type, and F : M → Uj a family of types. Let k
be a universe level. Any term of type:

Conek F :≡
∑
A:Uk

∏
i:M

A→ (F i)

will be called a cone over the family F at level k.
N

Intuitively, Conek F is the type of all “lower bounds” for the family F. Observe that a cone over F is a type A
together with a family of functions f :

∏
i:M A→ (F i). In other words, we have the diagram:

A

F i . . . F j . . . F k

f i
f j

f k

Now, the “greatest lower bound” will be the biggest among the lower bounds. If we try to generalize Definition
2.2.3(ii), we will get the following: (∏

i:M

A→ (F i)

)
×

 ∏
(Y,g):Conek F

Y → A


Therefore, the type of all generalized greatest lower bounds for F will look like:

∑
A:Uk

(∏
i:M

A→ (F i)

)
×

 ∏
(Y,g):Conek F

Y → A


which can be rewritten as: ∑

(A,f):Conek F

∏
(Y,g):Conek F

Y → A (3.2)

by associativity of sigma types (i.e. expand definitions and apply Lemma 1.6.23).
In other words, A will be a “greatest lower bound” for F if A is a “lower bound” for F (i.e. it forms a cone for F),

and any other “lower bound” Y (i.e. a cone over F) is “below” A. However, there may be many different proofs of
Y → A for every (Y, g) : Conek F, since, in this case, the arrow type is not a mere proposition. This is a completely
different situation to what happened in Definition 2.2.3(ii), where the order relation ≤ was a mere proposition (and
hence, proofs were irrelevant).

So, this confronts us with the problem of which function should we choose as proof of Y → A for each
(Y, g) : Conek F. It turns out that a “useful” condition the chosen function should satisfy is captured by the notion
of weak limit (borrowing again from category theory). Weak limits will provide us with a working generalization to
the concept of “greatest lower bound”.6

6Although we may use the stronger notion of limit (see [5]), the notion of weak limit will be enough for the purposes on this report,
see Remark 3.2.8.
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Definition 3.2.2 (Weak limit of a type family). Let M : Ui be an indexing type, and F : M→ Uj a family of types.
Let k be a universe level. Any term of type:

WLimitk F :≡
∑

(L,f):Conek F

∏
(Y,g):Conek F

∑
h:Y→L

∏
i:M

∏
w:Y

g i w = f i (h w)

will be called a weak limit for the family F at level k. In other words, we have the commutative diagram:

Y L

F i . . . F j . . . F k

g i

g j

g k

h

f i

f j

f k

i.e. the cone (L, f) will be a weak limit for F if for any other cone (Y, g), there is a function h : Y → L such that for
every i : M, the following triangle commutes:

Y L

F i

g i

h

f i

N

Notice that type WLimitk F is just (3.2) augmented with the “commutativity condition”:∏
i:M

∏
w:Y

g i w = f i (h w)

With this “commutativity condition”, we are effectively claiming that functions f :
∏

i:M A→ (F i), g :
∏

i:M Y →
(F i), and h : Y → A in type (3.2) are not chosen arbitrarily (which would be implied if we were to use type (3.2)
instead of WLimitk F).

The first result states that any family has a weak limit (i.e. any family has a “greatest lower bound”).

Lemma 3.2.3. Let M : Ui be an indexing type, and F : M → Uj a family of types. Then, the following type is
inhabited:

WLimitmax{i,j} F

Proof. First, we need to build a tuple (L, f) : Conemax{i,j} F.
In standard mathematics, the greatest lower bound for a family of sets {Fi}i∈M is the set

⋂
i∈M Fi.

In our case, type
∏

i:M F i will be analogous to
⋂
i∈M Fi.

Define:
L :≡

∏
i:M

F i

Notice L : Umax{i,j} since M : Ui and F i : Uj for every i : M (see Remark 1.5.16).
Next, we need to build a function f :

∏
i:M L→ (F i). Define:

f :≡ λ(i :M)(j :L). j i

which is well-typed, since j :
∏

i:M F i.
Now, we need to prove that the following type is inhabited:∏

(Y,g):Conemax{i,j} F

∑
h:Y→L

∏
i:M

∏
w:Y

g i w = f i (h w)

Let (Y, g) : Conemax{i,j} F. Define:

h :≡ (λy :Y. λi :M. g i y) : Y →

(∏
i:M

F i

)
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Now, let i : M and w : Y. Then, we have by definition:

f i (h w) ≡ f i (λi :M. g i w)

≡ (λi :M. g i w) i

≡ g i w

And so, g i w = f i (h w) is inhabited.

Next, we need to define the concept of weakly initial set algebra, but first we need to specialize the concept
of H-algebra (Definition 1.9.11) to sets. The reason of why we require to restrict Definition 1.9.11 to sets will be
discussed in Section 3.2.5.

Definition 3.2.4 (Set H-algebra). Let H : Ui → Ui be a functor, and k ≤ i a universe level. Any term of type:

SAlgk H :≡
∑

A:Setk

(H A)→ A

will be called a set H-algebra at level k.
N

The notion of algebra morphism AlgMor A B (Definition 1.9.12) applies to set H-algebras, because any set H-
algebra is an H-algebra by ignoring that it is a set.

Now, we are ready to define the notion of weakly initial set H-algebra. We will define two versions for it.
The difference between the two versions is in the universe level of the set H-algebra quantified on the Π-type

(see Definition 3.2.5 below). In type LLWinSAlgk H, the level is k − 1. In type WinSAlgk H, the level is k.

Definition 3.2.5 ((Lower level) weakly initial set H-algebra). Let H : Ui → Ui be a functor.

(i) Let 0 < k ≤ i be a universe level. Any term of type:

LLWinSAlgk H :≡
∑

(W,InW):SAlgk H

∏
(B,InB):SAlgk−1 H

AlgMor W B

will be called a lower level weakly initial set H-algebra (LLWinSAlg for short) at level k.

(ii) Let k ≤ i be a universe level. Any term of type:

WinSAlgk H :≡
∑

(W,InW):SAlgk H

∏
(B,InB):SAlgk H

AlgMor W B

will be called a weakly initial set H-algebra (WinSAlg for short) at level k.

N

Convention 3.2.6. We will write lower level weakly initial set H-algebras as (W, InW,m), instead of ((W, InW),m).
The same applies to weakly initial set H-algebras.

N

Both versions are similar to Definition 1.9.15, except that type AlgMor W B is not asserted to be contractible.
This means that in a (lower level) weakly initial set algebra, the algebra morphism is not required to be unique.

Also, a LLWinSAlg residing at level k will be weakly initial relative to set H-algebras at level k − 1 (hence
the words lower level in their name). Instead, a WinSAlg residing at level k will be weakly initial relative to set
H-algebras at level k.

The restriction to level k− 1 in type LLWinSAlgk H is the “restriction on universe levels” that was mentioned at
the start of this chapter. Lemma 3.2.7 will show that generalizing the Knaster-Tarski construction only produces a
LLWinSAlg. This restriction will carry on to the next section, where we will refine the LLWinSAlg into a lower level
initial set H-algebra. To the contrary, the existence of a WinSAlg for an arbitrary endofunctor can be answered in
the negative (see Corollary 3.2.26 for an example of functor without a WinSAlg).
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Nevertheless, we state both versions because the refinement process of Section 3.2.2 applies to both a LLWinSAlg
and a WinSAlg (i.e. if we start with a LLWinSAlg we will get a lower level initial set H-algebra; if we start with a
WinSAlg we will get an initial set H-algebra, see Definition 3.2.9 below).

Now, we state the main result on this section.

Lemma 3.2.7. Let i > 0 and H : Ui → Ui a functor. Then, the following type is inhabited:

LLWinSAlgi H

i.e. any endofunctor has a lower level weakly initial set H-algebra.

Proof. First, we need to construct (W, InW) : SAlgi H.
In the proof of Lemma 2.3.6(i), the least fixpoint was the greatest lower bound of the set of all prefixpoints

of the monotone function. So, we will define W to be a weak limit for the family of set H-algebras at level i − 1
(remember, an H-algebra is a generalization to the notion of prefixpoint). Notice that we can diminish level i by
one because i > 0.

The family of set H-algebras at level i− 1 is represented by the first projection function:

pr1 : (SAlgi−1 H)→ Ui−1

where type SAlgi−1 H is acting as the “collection of indices”.7

Now, (SAlgi−1 H) : Ui , because:

• We know Seti−1 is defined as
∑

Y:Ui−1
IsSet Y. So, by Remark 1.5.29 and the universe introduction rule on

page 8, type Seti−1 is at level max{i, i− 1} = i.

• For every A : Seti−1 , type (H A)→ A is at level max{i, i− 1} = i, since H A : Ui and A : Ui−1 .

• Therefore, type SAlgi−1 H ≡
∑

A:Seti−1
(H A)→ A is at level max{i, i} = i.

So, by Lemma 3.2.3, family pr1 has a weak limit at level max{i, i− 1} = i:

((W, f), q) : WLimiti pr1 (3.3)

Hence, W corresponds to type (see proof of Lemma 3.2.3):∏
A:SAlgi−1 H

pr1 A

and (W, f) is a cone over pr1.

Claim 1: W is a set.
By Lemma 1.8.18, it is enough to prove that pr1 A is a set for every A : SAlgi−1 H. But pr1 A is a set by definition

of SAlgi−1 H.
This proves the claim.

Now, we need to construct a function InW : (H W)→W.
Since W is a weak limit for pr1, if we can construct a proof that H W is a cone over pr1, there will be a function

of type (H W)→W.

Claim 2: H W forms a cone over pr1.
We need to build a function of type

∏
Y:SAlgi−1 H (H W)→ (pr1 Y), which can be rewritten as:∏

(A,InA):SAlgi−1 H

(H W)→ A

by Convention 1.5.27.

7Strictly speaking, the first projection function has type (SAlgi−1 H)→ Seti−1 , but we are invoking Convention 1.8.10, so that we
can interpret the projection function as having type (SAlgi−1 H)→ Ui−1 .
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So, let (A, InA) : SAlgi−1 H. Consider the composition:

H W H A A
mapH (f (A,InA)) InA

where function f (A, InA) : W→ A exists, because (W, f) is a cone over pr1. Observe we can apply the mapH function,
since W : Ui and A : Ui−1 (and hence, A : Ui by the cumulative universe rule).

This proves the claim.

Therefore, since W is a weak limit, by Claim 2 there is a function InW : (H W)→W satisfying:∏
(A,InA):SAlgi−1 H

∏
y:H W

InA (mapH (f (A, InA)) y) = f (A, InA) (InW y) (3.4)

We have constructed (W, InW) : SAlgi H. It remains to show that the following type is inhabited:∏
(B,InB):SAlgi−1 H

AlgMor W B (3.5)

Let (B, InB) : SAlgi−1 H. We have to construct an H-algebra morphism from (W, InW) to (B, InB).
But (W, f) is a cone over pr1 and (B, InB) is in the family, which means we have f (B, InB) : W → (pr1 (B, InB)),

or equivalently, f (B, InB) : W→ B.
To show that f (B, InB) is a morphism, we need to show that the following diagram commutes:

H W H B

W B

InW

mapH (f (B,InB))

InB

f (B,InB)

Let y : H W. But this diagram is type (3.4) instantiated with (B, InB) and y.

Before ending this section, we have a remark regarding Lemma 3.2.7.

Remark 3.2.8. The reader may ask why the LLWinSAlg constructed by Lemma 3.2.7 is not already a lower level
initial set H-algebra (see Definition 3.2.9 below) instead of just weakly initial. The reader may suspect that the
problem resides on our use of weak limits instead of the stronger notion of limit.

However, strengthening (3.3) from a weak limit into a limit seems to be useless, because a limit will construct
unique functions into type W, while type (3.5) will require to construct a unique function out of type W, if we want
an initial algebra.

Nevertheless, the author accepts that there may be some non-obvious way in which initiality will follow if we
use a limit instead of a weak limit, but he was unable to see this.

In spite of this, there is a way to construct a (lower level) initial set H-algebra out of a (lower level) weakly
initial set H-algebra. This is the subject of the following section.

N

3.2.2 Refining into a (lower level) initial set algebra

The previous section showed that any endofunctor has a LLWinSAlg (the existence of a WinSAlg for an arbitrary
endofunctor will be answered in the negative, see Corollary 3.2.26). This section will explore if the result can be
strengthened to an initial set H-algebra.

In particular, this section will show that if we are given a LLWinSAlg for some functor H, then we can refine it
into a lower level initial set H-algebra. But also, if we are given a WinSAlg for some functor H, then we can refine
it into an initial set H-algebra.

First, we need to define the notions of “initial algebra” this section will use.

Definition 3.2.9 ((Lower level) initial set H-algebra). Let H : Ui → Ui be a functor.
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(i) Let 0 < k ≤ i be a universe level. Any term of type:

LLInSAlgk H :≡
∑

(W,InW):SAlgk H

∏
(B,InB):SAlgk−1 H

IsContr (AlgMor W B)

will be called a lower level initial set H-algebra (LLInSAlg for short) at level k.

(ii) Let k ≤ i be a universe level. Any term of type:

InSAlgk H :≡
∑

(W,InW):SAlgk H

∏
(B,InB):SAlgk H

IsContr (AlgMor W B)

will be called an initial set H-algebra (InSAlg for short) at level k. Notice this is just Definition 1.9.15, but
restricted to sets.

N

Convention 3.2.10. We will write lower level initial set H-algebras as (W, InW,mc), instead of ((W, InW),mc). The
same applies to initial set H-algebras.

N

Definition 3.2.9 is like Definition 3.2.5, with the exception that algebra morphisms are asserted to be unique,
i.e. type AlgMor W B is contractible (see Definition 1.8.1).

It is fairly obvious that any InSAlg is a LLInSAlg (just by unfolding definitions), but the other way around is
not necessarily true. Although both concepts look superficially the same, LLInSAlgs are weaker than InSAlgs, as
it will shown that LLInSAlgs are sometimes InSAlgs (see Section 3.2.4) but sometimes they are not (see comments
after Theorem 3.2.25).

To support the claim that LLInSAlgs are weaker than InSAlgs, Corollary 3.2.22 will show that any endofunctor
has a LLInSAlg, while Theorem 3.2.25 will show that there are endofunctors without an InSAlg.

Another way to support this “weakness claim” is through the following lemma, due to Lambek (see Lemma
2.5.5 in [17]). This lemma can be proved only for InSAlgs, but not for LLInSAlgs, as we will explain shortly.

Lemma 3.2.11 (Lambek). Let H : Ui → Ui be set-preserving8 functor. Let k ≤ i be a universe level, and
(A, InA,mc) : InSAlgk H an initial set H-algebra. Then, H A and A are equivalent types. In other words, the fol-
lowing type is inhabited:

H A ' A

Proof. By Lemma 1.6.18, to prove that H A and A are equivalent, it is enough to construct two mutually inverse
functions (H A)→ A and A→ (H A).

We take InA : (H A)→ A as the first function. It remains to define the second function.

Observe that H A is at universe level i. Also, H A is a set, since A is a set by definition, and H preserves sets.

To make H A a set H-algebra, we require an “In” function. Consider:

mapH InA : (H (H A))→ (H A)

Therefore, we can form the set H-algebra (H A,mapH InA) at level i.

This means we can apply term mc on algebra (H A,mapH InA) to get a morphism A→ (H A). More specifically,
we have a morphism:9

hm :≡ center (mc (H A,mapH InA)) : AlgMor A (H A)

Therefore, we can define our second function as:

u :≡ pr1 hm : A→ (H A)

8See Definition 1.9.9.
9Since mc (H A,mapH InA) : IsContr (AlgMor A (H A)), we can obtain its center of contraction. See Definition 1.8.1.
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Notice that we also have a proof (pr2 hm) stating that the following diagram commutes:

H A H (H A)

A H A

InA

mapH u

mapH InA

u

(3.6)

Now, it remains to show that InA and u are inverses of each other.

• Type
∏

w:A InA (u w) = w is inhabited.

We have the two commutative squares:

H A H (H A) H A

A H A A

InA

mapH u

mapH InA

mapH InA

InA

u InA

where the square on the left is Diagram (3.6), and the square on the right is the composition:

H (H A) H A A
mapH InA InA

written twice on the sides of the square (hence the right square trivially commutes).

This means that the “external” square commutes:

H A H A

A A

InA

(mapH InA)◦(mapH u)

InA

InA◦u

which, by functorial mapping of H (see Definition 1.9.6), is equivalent to the commutative diagram:

H A H A

A A

InA

mapH (InA◦u)

InA

InA◦u

This last diagram claims that function InA ◦ u is an algebra morphism from A to A. But the identity function
idA is also an algebra morphism from A to A (Lemma 1.9.14). Since A is an initial set H-algebra, we must
have that InA ◦ u = idA holds, because morphisms from A to A are unique.

• Type
∏

w:H A u (InA w) = w is inhabited.

Let w : H A. We have the following sequence of identifications:

u (InA w)
(1)
= mapH InA (mapH u w)

(2)
= mapH (InA ◦ u) w

(3)
= mapH idA w

(4)
= id(H A)w

(5)
= w
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where (1) follows by commutativity of Diagram (3.6), (2) by functorial mapping of H, (3) by the previous case
and function extensionality,10 (4) by functorial mapping of H on the identity function, and (5) by definition
of the identity function.

Lambek’s Lemma claims that an initial set H-algebra is a “fixpoint” for functor H. This becomes clear if we
apply univalence to the conclusion of Lambek’s Lemma, because we will have the equation H A = A (i.e. A is a
fixpoint for H).

If we try to repeat Lambek’s Lemma for a LLInSAlg (A, InA,mc), we will get stuck while defining function
A → (H A). The reason is that type H A is at level i. Therefore, we will not be able to apply mc on H A because
mc will expect an algebra at level i− 1. Later, we will construct a LLInSAlg for which the conclusion of Lambek’s
Lemma does not hold (see Corollary 3.2.27). Therefore, LLInSAlgs are weaker than InSAlgs because they fail to
be “fixpoints” in general.

Before starting the refinement process, we need a couple of definitions and lemmas.
Given a set H-algebra (A, InA) and a predicate P : A→ Propi , it will be useful to restrict the domain of InA to

only those terms in A satisfying the predicate P. This is the subject of the following definition.

Definition 3.2.12 (Property In function). Let H : Ui → Ui be a functor, k,m ≤ i universe levels, (A, InA) : SAlgk H
a set H-algebra, and P : A→ Propm a predicate on A. Then, the function:

InP
A :

(
H
∑
w:A

P w

)
→ A

defined by composition as: (
H
∑
w:A

P w

)
H A A

mapH pr1 InA

will be called the P-property In (or just property In when P is clear from context) for (A, InA).
N

Notice we can apply functor H on type
∑

w:A P w, because
∑

w:A P w is at level max{k,m} ≤ i.

The “property In” function has the following properties.

Lemma 3.2.13. Let H : Ui → Ui be a functor, k, l,m, n ≤ i universe levels, (A, InA) : SAlgk H and (B, InB) : SAlgl H
two set H-algebras, P : A→ Propm and Q : B→ Propn two predicates, g : A→ B a function, and a function:

h :
∏
w:A

(P w)→ (Q (g w))

If g is an H-algebra morphism, then the following type is inhabited:11∏
y:H

∑
w:A

P w

g (InP
A y) = InQ

B (mapH (Σmap g h) y)

Or equivalently, if the following diagram commutes:

H A H B

A B

InA

mapH g

InB

g

10In more detail,
∏

z:A InA (u z) = z holds by the previous case. Then, by function extensionality we have a proof q : InA ◦ u = idA.
Therefore, we have apR q : mapH (InA ◦ u) w = mapH idA w, where R is the function λf :A→ A. mapH f w.

11The Σmap function was defined in Lemma 1.5.28.
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then the following diagram commutes:(
H
∑
w:A

P w

) (
H
∑
w:B

Q w

)

A B

InP
A

mapH (Σmap g h)

InQ
B

g

Proof. First, we prove that the following diagram commutes:(∑
w:A

P w

) (∑
w:B

Q w

)

A B

pr1

Σmap g h

pr1

g

(3.7)

Let (a, b) :
∑
w:A

P w. Then, by definition of Σmap g h and pr1, we have:

pr1 (Σmap g h (a, b)) ≡ pr1 (g a, h a b)

≡ g a

≡ g (pr1 (a, b))

But H is a functor, which means that Diagram (3.7) passes to H:12(
H
∑
w:A

P w

) (
H
∑
w:B

Q w

)

H A H B

mapH pr1

mapH (Σmap g h)

mapH pr1

mapH g

i.e. given w : H
∑

w:A P w, we have:

mapH g (mapH pr1 w)
(1)
= mapH (g ◦ pr1) w

(2)
= mapH (pr1 ◦ (Σmap g h)) w

(3)
= mapH pr1 (mapH (Σmap g h) w)

where (1) follows by functorial mapping of H, (2) by the commutativity of Diagram (3.7) and function extensionality,
and (3) by functorial mapping of H.

Now, since g is a morphism, we have that both squares commute:(
H
∑
w:A

P w

) (
H
∑
w:B

Q w

)

H A H B

A B

mapH pr1

mapH (Σmap g h)

mapH pr1

InA

mapH g

InB

g

12Observe that all types in Diagram (3.7) will be at a level less or equal to i. So, H can be applied on them.
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Therefore, the external square commutes:(
H
∑
w:A

P w

) (
H
∑
w:B

Q w

)

A B

InA ◦ (mapH pr1)

mapH (Σmap g h)

InB ◦ (mapH pr1)

g

(3.8)

But, by definition of the “property In” function, Diagram (3.8) is precisely:(
H
∑
w:A

P w

) (
H
∑
w:B

Q w

)

A B

InP
A

mapH (Σmap g h)

InQ
B

g

Lemma 3.2.13 states that function g still “behaves” like an algebra morphism when the domains of InA and InB

are restricted to the subsets induced by predicates P and Q.
Another lemma about the “property In” function expresses what happens when predicate P : A→ Propi picks

all elements in algebra A, i.e. when P is the constant function (λw :A. 1) (by Lemma 1.8.17, 1 is a proposition).

Lemma 3.2.14. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra. Then,
the following type is inhabited:13 ∏

y:H
∑
w:A

1

idA (Inλw. 1
A y) = InA (mapH pr1 y)

Or equivalently, the following diagram commutes:(
H
∑
w:A

1

)
H A

A A

Inλw. 1
A

mapH pr1

InA

idA

Proof. Let y : H
∑

w:A 1, then we have:

idA (Inλw. 1
A y) ≡ Inλw. 1

A y

≡ InA (mapH pr1 y)

where the last step follows by definition of Inλw. 1
A .

Given a LLWinSAlg (or a WinSAlg) A, the refinement process into a LLInSAlg (InSAlg respectively) will consist
on the following steps:

1. Filter out those elements in A that cannot be placed in a “canonical form”. Denote the resultant type AI.

2. Prove that AI is a set H-algebra.

3. Construct an induction principle for AI.

4. Use the induction principle to prove the initiality of AI.

The last step is the only one where we need A to be a LLWinSAlg (or a WinSAlg). All other steps can be
performed with the weaker assumption that A is a set H-algebra.

13Notice that functor H can be applied on type
∑

w:A 1 because 1 is at every universe level (see its formation rule on page 40). This
means

∑
w:A 1 is at level max{k, i} = i.
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Step 1: Filter out non-canonical elements

Given an arbitrary set H-algebra (A, InA), it may have elements that cannot be placed in the form InA b for some
b : H A. We call these elements non-canonical. Non-canonical elements represent elements that cannot be built by a
constructor, because function InA encapsulates the idea of “constructors” for A (see Section 1.9 for an explanation).

The intuition behind an initial algebra is that all its elements can be built only through the constructors. There-
fore, we need a way to remove non-canonical elements from algebra A.

A first approach would be to define type: ∑
w:A

∑
b:H A

w = InA b

as the subset of canonical elements.
The problem with this definition is that even if w can be placed in the form InA b for some b : H A, term b

itself may have a non-canonical element as a subterm. Therefore, we need a way to build the subset of canonical
elements from the “bottom up”, i.e. starting with the empty set, we build the next subset by adding all the base
constructors, then we build the next subset by applying the inductive constructors on the previous subset, and so
on. This will make sure that all elements in the set are built up from canonical elements. In other words, we require
this set to be defined inductively. To accomplish this, we will use the results of Chapter 2.

Since subsets can be identified with predicates, we will use the powertype lattice of Example 2.2.8. We will
have to define a monotone function on this complete lattice. Then, the least fixpoint of this function will be the
predicate “x is a canonical element”.

Let us define the monotone function.

Definition 3.2.15. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra. We
define a function with type (A→ Propi)→ (A→ Propi) as:

CanStepA :≡ λ(T :A→ Propi)(w :A).

∥∥∥∥∥∥∥
∑

y:H
∑
z:A

T z

w = InT
A y

∥∥∥∥∥∥∥
called the canonical element step function (or just step function for short) for set H-algebra A.

N

Notice that type
∑

z:A T z is at level max{k, i} = i, which means that it can be applied to functor H. Also, type∑
y:H

∑
z:A T z (w = InT

A y) is at level max{i, k} = i.

To understand the CanStepA function, it is useful to interpret it in set-theoretic language, as follows:

CanStepA(T ) = {w ∈ A | ∃y ∈ H(T ). w = InA(y)} = InA[H(T )]

where T ⊆ A. For the explanation, we look at functor H as a mapping between sets, and we identify predicates
with subsets of A. Type H

∑
z:A T z can be identified with set H(T ), and the truncated sigma can be viewed as

a classical existential. Notice that H(T ) ⊆ H(A). Therefore, function InA can be applied without restricting its
domain to H(T ), as we had to do in type theory by using the T-Property In function InT

A.
In other words, CanStepA(T ) takes the image of H(T ) under the InA function. If we imagine set T ⊆ A as

a construction step in our iterative process, then CanStepA(T ) applies functor H on set T so that more elements
are “added” to T , and then, all elements on the incremented set are placed in a canonical form by using “some
constructor” (represented by the application of function InA). This way, all elements in set CanStepA(T ) will
consist of canonical elements built from canonical elements in set T .

We now prove that CanStepA is a monotone function.

Lemma 3.2.16. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra. Let:

L :≡ (A→ Propi ,⊆, rp, ap, tp; sup, sp, inf, ip)

be the “Powertype” lattice of Example 2.2.8. Then, CanStepA is a monotone function in L.
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Proof. Given P,Q : A → Propi and p1 : P ⊆ Q, we need to prove CanStepA P ⊆ CanStepA Q, or equivalently, by
definition of ⊆: ∏

w:A

(CanStepA P w)→ (CanStepA Q w)

but, by definition of CanStepA, it is enough to prove:

∏
w:A

∥∥∥∥∥∥∥
∑

y:H
∑
z:A

P z

w = InP
A y

∥∥∥∥∥∥∥→
∥∥∥∥∥∥∥
∑

y:H
∑
z:A

Q z

w = InQ
A y

∥∥∥∥∥∥∥
Let w : A. By (−1)-truncation recursion (Corollary 1.11.4), it is enough to prove: ∑

y:H
∑
z:A

P z

w = InP
A y

→
∥∥∥∥∥∥∥
∑

y:H
∑
z:A

Q z

w = InQ
A y

∥∥∥∥∥∥∥
So, suppose we have y : H

∑
z:A P z with w = InP

A y. By the (−1)-truncation constructor:

| | :

 ∑
y:H

∑
z:A

Q z

w = InQ
A y

→
∥∥∥∥∥∥∥
∑

y:H
∑
z:A

Q z

w = InQ
A y

∥∥∥∥∥∥∥
it is enough to build a term t : H

∑
z:A Q z satisfying w = InQ

A t.
But we have the Σmap function (Lemma 1.5.28):(∑

w:A

P w

) (∑
w:A

Q w

)
Σmap idA p1

where idA is the identity on A, and p1 : P ⊆ Q is an hypothesis.14

Therefore, by applying H on function (Σmap idA p1), we get:(
H
∑
w:A

P w

) (
H
∑
w:A

Q w

)
mapH (Σmap idA p1)

We know term y is in the domain of this function. Define:

t :≡ mapH (Σmap idA p1) y

Since idA is a morphism (Lemma 1.9.14), the following diagram commutes by Lemma 3.2.13:(
H
∑
w:A

P w

) (
H
∑
w:A

Q w

)

A A

InP
A

mapH (Σmap idA p1)

InQ
A

idA

Therefore, we have:

w
(1)
= InP

A y

(2)
= idA (InP

A y)

(3)
= InQ

A (mapH (Σmap idA p1) y)

(4)
= InQ

A t

14Notice that P ⊆ Q ≡
∏

z:A (P z)→ (Q z) ≡
∏

z:A (P z)→ (Q (idA z)). The last type has the form required by the Σmap function.
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where (1) follows by hypothesis on y, (2) by definition of idA, (3) by commutativity of the diagram, and (4) by
definition of t.

Therefore, by Knaster-Tarski (Lemma 2.3.6(i)), function CanStepA has a least fixpoint in the “Powertype” lattice.
This fixpoint corresponds to the predicate “x is a canonical element”. With this, we define the set of canonical
elements in algebra A as follows.

Definition 3.2.17. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra.
Then, type:15

AI :≡
∑
w:A

Lfp CanStepA w

will be called the set of canonical elements in A.
N

Because A is a set and Lfp CanStepA : A→ Propi (hence, a family of sets by Lemma 1.8.11), we must have that
AI is a set by closure properties for Σ-types (Lemma 1.8.18).

When A is a WinSAlg (or LLWinSAlg), type AI will be our candidate for the InSAlg (LLInSAlg, respectively).

Step 2: Prove AI is a set H-algebra

To prove that AI is a set H-algebra, we need to construct a function InAI
: (H AI)→ AI.

Lemma 3.2.18. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra. Then,
there is a function InAI

: (H AI)→ AI, so that we have the pair:

(AI, InAI
) : SAlgi H

i.e. AI is a set H-algebra.

Proof. Observe that AI is at universe level max{k, i} = i, because A is at level k ≤ i and Lfp CanStepA w is at level
i for every w : A. Also, AI is a set by the discussion after Definition 3.2.17. Therefore, it only remains to construct
function InAI

: (H AI)→ AI.
Let y : H AI. We weed to construct a pair (a, b) : AI, where a : A and b : Lfp CanStepA a is a proof that “a is a

canonical element”.
We have the Property In function:

InLfp CanStepA

A : (H
∑
w:A

Lfp CanStepA w)→ A

or equivalently, InLfp CanStepA

A : (H AI)→ A, by definition of AI.
Hence, we can define:

a :≡ InLfp CanStepA

A y

Now, we need to construct a term b : Lfp CanStepA a (it is enough to show that Lfp CanStepA a is inhabited).
In the proof for the first part of Knaster-Tarski (Lemma 2.3.6(i)), the least fixpoint was defined as the infimum

of all prefixpoints of the monotone function. When Knaster-Tarski is instantiated in the “Powertype” lattice of
Example 2.2.8, the infimum function is:

λ(F : (A→ Propi)→ Propl)(w :A). GPropR−1

 ∏
P:A→Propi

(F P)→ (P w)

 (3.9)

where GPropR : Propi → Propmax{k ,i+1 ,l} is a propositional resizing equivalence, and l is an arbitrary universe
level independent of levels k and i.

15Lfp CanStepA is notation for the least fixpoint of CanStepA, see Lemma 2.3.6(i).
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Therefore, Lfp CanStepA corresponds to the predicate:16

λw :A. GPropR−1

 ∏
P:A→Propi

(IsPrefixpoint P CanStepA)→ (P w)


or equivalently:

λw :A. GPropR−1

 ∏
P:A→Propi

(CanStepA P ⊆ P)→ (P w)


Hence, type (Lfp CanStepA a) corresponds to:

GPropR−1

 ∏
P:A→Propi

(CanStepA P ⊆ P)→ (P a)


To prove that this type is inhabited, it is enough to prove (by Lemma 1.8.23):∏

P:A→Propi

(CanStepA P ⊆ P)→ (P a)

In other words, to prove that term a is in the least fixpoint of CanStepA, we need to prove that term a is in
every prefixpoint of CanStepA.

Let P : A→ Propi with p1 : CanStepA P ⊆ P.
By definition of ⊆, we have:

(CanStepA P ⊆ P) ≡

(∏
z:A

(CanStepA P z)→ (P z)

)

Hence, if we can construct a proof d : CanStepA P a, then p1 a d : P a will be the required proof.
By definition, type (CanStepA P a) is: ∥∥∥∥∥∥∥

∑
w:H

∑
z:A

P z

a = InP
A w

∥∥∥∥∥∥∥
By the (−1)-truncation constructor:

| | :

 ∑
w:H

∑
z:A

P z

a = InP
A w

→
∥∥∥∥∥∥∥

∑
w:H

∑
z:A

P z

a = InP
A w

∥∥∥∥∥∥∥
it is enough to build a term t : H

∑
z:A P z satisfying a = InP

A t.
By p1 : CanStepA P ⊆ P and the conventional induction principle (Corollary 2.4.1), there is a term:

p2 : Lfp CanStepA ⊆ P

which, by definition of ⊆, is equivalent to:

p2 :
∏
z:A

(Lfp CanStepA z)→ (P z)

16The set of all prefixpoints of CanStepA is represented by the predicate:

(λP : (A→ Propi ). IsPrefixpoint P CanStepA) : (A→ Propi )→ Propi

So, to compute Lfp CanStepA, we give this predicate as input to the infimum function (3.9).
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By the Σmap function, we have:(∑
w:A

Lfp CanStepA w

) (∑
w:A

P w

)
Σmap idA p2

or equivalently, by definition of AI:

AI

(∑
w:A

P w

)
Σmap idA p2

Therefore, by functorial mapping on H, we get the function:

H AI

(
H
∑
w:A

P w

)
mapH (Σmap idA p2)

We know y : H AI by hypothesis. So, define:

t :≡ mapH (Σmap idA p2) y

Since idA is a morphism (Lemma 1.9.14), the following diagram commutes by Lemma 3.2.13:

H AI

(
H
∑
w:A

P w

)

A A

InLfp CanStepA

A

mapH (Σmap idA p2)

InP
A

idA

Therefore, we have:

a
(1)
= InLfp CanStepA

A y

(2)
= idA (InLfp CanStepA

A y)

(3)
= InP

A (mapH (Σmap idA p2) y)

(4)
= InP

A t

where (1) follows by definition of term a, (2) by definition of idA, (3) by commutativity of the diagram, and (4) by
definition of t.

Step 3: Construct an induction principle for AI

First, we need a small lemma stating that the first projection function pr1 : AI → A is an algebra morphism.

Lemma 3.2.19. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A, InA) : SAlgk H a set H-algebra. Then,
the first projection:

pr1 : AI → A

is an H-algebra morphism. Or equivalently, the following diagram commutes:

H AI H A

AI A

InAI

mapH pr1

InA

pr1



160 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Proof. This follows directly by construction of InAI
in Lemma 3.2.18.

In more detail, let w : H AI. Then, we have by definitions and computation:

pr1 (InAI
w) ≡ pr1 (InLfp CanStepA

A w, t)

≡ InLfp CanStepA

A w

≡ InA (mapH pr1 w)

where t is some term with type Lfp CanStepA (InLfp CanStepA

A w), but we do not care for the actual term.

We can now state an induction principle for AI.

Lemma 3.2.20 (Induction Principle). Let H : Ui → Ui be a functor, k,m ≤ i universe levels, and (A, InA) : SAlgk H
a set H-algebra.

Let P : AI → Propm be a predicate on AI. If the following type is inhabited:

∏
T:AI→Propm

 ∏
w:
∑
y:AI

T y

P (pr1 w)

→
 ∏

w:H
∑
y:AI

T y

P (InT
AI

w)

 (3.10)

then, the following type is inhabited: ∏
n:AI

P n (3.11)

Proof. Let:

Hind :
∏

T:AI→Propm

 ∏
w:
∑
y:AI

T y

P (pr1 w)

→
 ∏

w:H
∑
y:AI

T y

P (InT
AI

w)


Define:

B :≡

λw :A.
∑

q:Lfp CanStepA w

P (w, q)

 : A→ Propi

First, we explain that B is well-typed. Type Lfp CanStepA w is a mere proposition for every w : A, and P b is a
mere proposition for every b : AI. Therefore, by closure properties for sigma types (Lemma 1.8.17), B b is a mere
proposition for every b : A. Also, since Lfp CanStepA w is at universe level i for every w : A, and P b is at universe
level m for every b : AI, we will have that B b is at universe level max{i,m} = i for every b : A.

Observe that B is basically P, but seen as a predicate on A instead of AI.
Now, we prove a claim.

Claim 1: Lfp CanStepA ⊆ B is inhabited.
If we can prove that CanStepA B ⊆ B is inhabited, the claim will follow by conventional induction (Corollary

2.4.1).
Let w : A. We need to prove that the following type is inhabited:

(CanStepA B w)→ (B w)

or equivalently, by definition of CanStepA: ∥∥∥∥∥∥∥
∑

y:H
∑
z:A

B z

w = InB
A y

∥∥∥∥∥∥∥→ (B w)
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Since B w is a mere proposition, by (−1)-truncation recursion it is enough to prove: ∑
y:H

∑
z:A

B z

w = InB
A y

→ B w

Let y : H
∑

z:A B z with w = InB
A y. We need to prove that B w is inhabited.

By Lemma 1.6.23, we know sigma types are “associative”. In other words we have an equivalence: ∑
z:
∑
q:A

Lfp CanStepA q

P z

 (∑
z:A

∑
q:Lfp CanStepA z

P (z, q)

)
Σmap pr1 j

or equivalently, by putting back definitions:(∑
z:AI

P z

) (∑
z:A

B z

)
Σmap pr1 j

where:
j :
∏
z:AI

(P z)→ (B (pr1 z))

is some function (we only care that it exists by Lemma 1.6.23).
Therefore, by Lemma 1.9.10, we have an equivalence:(

H
∑
z:AI

P z

) (
H
∑
z:A

B z

)
mapH (Σmap pr1 j)

Define as a shorthand:
s :≡ mapH (Σmap pr1 j)

Since pr1 is an H-algebra morphism (Lemma 3.2.19), the following diagram commutes by Lemma 3.2.13:(
H
∑
z:AI

P z

) (
H
∑
z:A

B z

)

AI A

InP
AI

s

InB
A

pr1

By hypothesis, we know term y is in the codomain of function s, and since function s is an equivalence, we have
that term s−1 y is in the domain of s. Therefore, the following holds:

pr1 (InP
AI

(s−1 y))
(1)
= InB

A (s (s−1 y))

(2)
= InB

A y

(3)
= w

(3.12)

where (1) follows by commutativity of the previous diagram, (2) by s (s−1 y) = y since s is an equivalence, and (3)
by hypothesis on y.

Now, by applying Hind with P, the second projection function:

pr2 :
∏

z:
∑
r:AI

P r

P (pr1 z)
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and s−1 y, we get:

Hind P pr2 (s−1 y) : P (InP
AI

(s−1 y))

Define as a shorthand:

r :≡ InP
AI

(s−1 y) : AI

so that:

Hind P pr2 (s−1 y) : P r

Since r : AI is a pair, by Lemma 1.6.1, we know:

r = (pr1 r, pr2 r)

Therefore, there is a term:17

h1 : P (pr1 r, pr2 r)

But:

pr2 r : Lfp CanStepA (pr1 r)

since r : AI, or equivalently, r :
∑

z:A Lfp CanStepA z.
This means that:

(pr2 r, h1) :
∑

q:Lfp CanStepA (pr1 r)

P (pr1 r, q)

or equivalently, by definition of B:

(pr2 r, h1) : B (pr1 r)

But, by (3.12) and definition of r, we have:

pr1 r = pr1 (InP
AI

(s−1 y))

= w

This means that B w is inhabited.
This proves the claim.

To finish the proof, we need to prove that
∏

n:AI
P n is inhabited.

Let n : AI. This means we have pr1 n : A and pr2 n : Lfp CanStepA (pr1 n).
By Claim 1, there is a term k : Lfp CanStepA ⊆ B. By definition of ⊆, this means:

k :
∏
z:A

(Lfp CanStepA z)→ (B z)

Therefore:

k (pr1 n) (pr2 n) : B (pr1 n)

By definition of B, this means we have q : Lfp CanStepA (pr1 n) such that P (pr1 n, q).
But Lfp CanStepA (pr1 n) is a mere proposition, which means q = pr2 n is inhabited. So, the following type is

inhabited:18

P (pr1 n, pr2 n)

But we know n = (pr1 n, pr2 n) by Lemma 1.6.1, which means that the following type is inhabited:

P n

17In more detail, if we have the proof q : r = (pr1 r, pr2 r), then transportP q (Hind P pr2 (s−1 y)) : P (pr1 r, pr2 r).
18In more detail, if we have proofs t1 : q = pr2 n and t2 : P (pr1 n, q), then transport(λg. P (pr1 n,g)) t1 t2 : P (pr1 n, pr2 n).
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The idea behind the induction principle for AI is similar to the strategy followed by the extended Mendler-
style induction principle (Corollary 2.4.4). To see the analogy, it is useful to interpret the induction principle in a
set-theoretic language by identifying predicates (and their corresponding sigma types) with subsets, and regarding
functor H as a map between sets.

For the set interpretation, we regard AI as a subset of A, and T as an arbitrary subset of A. Also, unary
predicate P is represented as a subset of A (i.e. the set of all elements in A satisfying the predicate).

Then, condition (3.10) can be written as:

∀T. (T ⊆ AI)→ (T ⊆ P )→ (InAI [H(T )] ⊆ P )

and the conclusion (3.11) can be written as:
AI ⊆ P

where:

• T ⊆ AI denotes term T : AI → Propm (i.e. T is a subset of AI ⊆ A).

• T ⊆ P denotes type: ∏
w:
∑
y:AI

T y

P (pr1 w)

i.e. “Any w in T , also satisfies P”.

• InAI [H(T )] ⊆ P denotes type: ∏
w:H

∑
y:AI

T y

P (InT
AI

w)

i.e. “For any w in H(T ) we have that InAI (w) satisfies P”, which is logically equivalent to: “Any w in
InAI [H(T )] satisfies P”, where InAI [H(T )] is the image of H(T ) under function InAI .

Notice that the set-theoretic translation looks a lot like Corollary 2.4.4, with ⊆ acting as the order relation.
Hence, the induction principle for AI claims that every element of AI satisfies P if every set in the following sequence
satisfies P (see the explanation for Mendler-style induction after Corollary 2.4.3):

∅ , G(∅) , G(G(∅)) , G(G(G(∅))) , G(G(G(G(∅)))) , . . .

where G is a function defined on subsets of A as G(X) = InAI [H(X)].

Step 4: Prove initiality for AI

All previous steps worked with an arbitrary set H-algebra. For this step we require the stronger condition that the
algebra is a LLWinSAlg or a WinSAlg. This means we will prove two cases, i.e. if A is a LLWinSAlg, then AI is a
LLInSAlg; if A is a WinSAlg, then AI is an InSAlg.

Theorem 3.2.21. Let H : Ui → Ui be a functor.

(i) Let i > 0 and (A, InA,m) : LLWinSAlgi H a lower level weakly initial set H-algebra. Then the tuple (AI, InAI
,mc)

is a lower level initial set H-algebra, where mc is a proof that the type of morphisms going out of AI is
contractible.

In other words, we have the tuple:19

(AI, InAI
,mc) : LLInSAlgi H

(ii) Let (A, InA,m) : WinSAlgi H be a weakly initial set H-algebra. Then the tuple (AI, InAI
,mc) is an initial set

H-algebra, where mc is a proof that the type of morphisms going out of AI is contractible.

In other words, we have the tuple:
(AI, InAI

,mc) : InSAlgi H

19By Lemma 3.2.18, we have that AI is at universe level i when algebra A is at level k ≤ i. In this case k = i.



164 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Proof. The proof for both results is almost identical. As such, we will develop the proof for (i). The proof for (ii)
is obtained by replacing all occurrences of universe level i− 1 for universe level i.

We have to construct a proof:

mc :
∏

(B,InB):SAlgi−1 H

IsContr (AlgMor AI B)

Let (B, InB) : SAlgi−1 H.
We have to build a term of type IsContr (AlgMor AI B). By definition of contractible type, this means we have

to build a term of type: ∑
(h,w1):AlgMor AI B

∏
(g,w2):AlgMor AI B

(h,w1) = (g,w2)

Intuitively, this means we have to prove the “existence” of a morphism (h,w1) from AI to B, and the “uniqueness”
of such morphism.

Existence

By hypothesis, we have a term:

m :
∏

(C,InC):SAlgi−1 H

AlgMor A C

This means we have a function:
pr1 (m (B, InB)) : A→ B

and also pr2 (m (B, InB)) is a proof that this function is a morphism.
Therefore, we can define h as the composition:

AI A B
pr1 pr1 (m (B,InB))

It remains to build a proof w1 that h is a morphism. But h is the composition of two morphisms, since pr1 is
a morphism by Lemma 3.2.19, and pr2 (m (B, InB)) is a proof that pr1 (m (B, InB)) is a morphism. Therefore, by
Lemma 1.9.13, h is a morphism.20 This means we have the commutative diagram:

H AI H B

AI B

mapH h

InAI
InB

h

(3.13)

Uniqueness

We have to show that the following type is inhabited:∏
(g,w2):AlgMor AI B

(h,w1) = (g,w2)

where (h,w1) is the morphism built in the existence part.
Let (g,w2) : AlgMor AI B. In other words, we have the commutative diagram:

H AI H B

AI B

mapH g

InAI
InB

g

(3.14)

20We are only interested in the existence of a proof w1, we do not require the specific term w1 stands for.
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We know that type AlgMor AI B is defined as (see Definition 1.9.12):∑
f:AI→B

∏
w:H AI

f (InAI
w) = InB (mapH f w)

The second component of this sigma type, i.e.,∏
w:H AI

f (InAI
w) = InB (mapH f w)

is a mere proposition for every f : AI → B, since both terms appearing in the equality are of type B (which is a set),
and propositions are closed under Π-types (see Lemma 1.8.17).

Therefore, by Lemma 1.8.14, to prove that (h,w1) = (g,w2) is inhabited, it is enough to prove that h = g holds.
However, by function extensionality (see Section 1.6.1), it is enough to prove:∏

w:AI

h w = g w

To prove this, we will use the induction principle for AI (Lemma 3.2.20) instantiated with the predicate:

P :≡ (λw :AI. h w = g w) : AI → Propi−1

In other words, if we can prove that the following type is inhabited:

∏
T:AI→Propi−1

 ∏
w:
∑
y:AI

T y

P (pr1 w)

→
 ∏

w:H
∑
y:AI

T y

P (InT
AI

w)


then, the following type will be inhabited: ∏

w:AI

h w = g w

Let T : AI → Propi−1 such that the following type is inhabited:∏
w:
∑
y:AI

T y

P (pr1 w)

or equivalently, by definition of P: ∏
w:
∑
y:AI

T y

h (pr1 w) = g (pr1 w) (3.15)

We have to prove that the following type is inhabited:∏
w:H

∑
y:AI

T y

P (InT
AI

w)

or equivalently, by definition of P: ∏
w:H

∑
y:AI

T y

h (InT
AI

w) = g (InT
AI

w)

Define the function:
ts :≡ Σmap idAI

(λ(w :AI)(y :T w). ?)

which has type: (∑
y:AI

T y

) (∑
y:AI

1

)
ts



166 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Now, we prove a claim.

Claim 1: The following diagram commutes:

(
H
∑
y:AI

T y

) (
H
∑
y:AI

1

)
H AI H B

mapH ts mapH pr1

mapH h

mapH g

(3.16)

First, we prove that the following diagram commutes:(∑
y:AI

T y

) (∑
y:AI

1

)
AI Bts pr1

h

g

(3.17)

Let (a, b) :
∑

y:AI
T y. Then, we have:

h (pr1 (ts (a, b)))
(1)
= h (pr1 (a, ?))

(2)
= h a

(3)
= g a

(4)
= g (pr1 (a, ?))

(5)
= g (pr1 (ts (a, b)))

where (1) and (5) follow by definition of ts and the Σmap function (see Lemma 1.5.28), (2) and (4) by definition of
pr1, and (3) by the inductive hypothesis (type (3.15)).21

Now, we are ready to prove the claim. Let w : H
∑

y:AI
T y. Then, we have:

mapH h (mapH pr1 (mapH ts w))
(1)
= mapH (h ◦ pr1 ◦ ts) w

(2)
= mapH (g ◦ pr1 ◦ ts) w

(3)
= mapH g (mapH pr1 (mapH ts w))

where (1) and (3) follow by functorial mapping of H (see Definition 1.9.6), and (2) follows by Diagram (3.17) and
function extensionality.

This proves the claim.

Now, we have the following diagram:

(
H
∑
y:AI

T y

) (
H
∑
y:AI

1

)
H AI H B

AI AI AI B

mapH ts

InT
AI (F)

mapH pr1

Inλw. 1
AI (�)

mapH h

mapH g

InAI
InB

idAI
idAI

h

g

(3.18)

where the square marked with (F) follows by Lemma 3.2.13 since the identity function is a morphism (Lemma
1.9.14), the square marked with (�) follows by Lemma 3.2.14, the square using dashed arrows22 (99K) is Diagram
(3.13), and the square using squiggly arrows23 ( ) is Diagram (3.14). Each one of these four squares commutes.

21In more detail, we have a term q having type (3.15), therefore q (a, b) : h (pr1 (a, b)) = g (pr1 (a, b)) which is equivalent to
q (a, b) : h a = g a by definition of the projection function pr1.

22The square includes functions InAI
and InB.

23The square includes functions InAI
and InB.
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We are trying to prove that the following type is inhabited:∏
w:H

∑
y:AI

T y

h (InT
AI

w) = g (InT
AI

w)

Let w : H
∑

y:AI
T y. By chasing Diagram (3.18), we have the following sequence of identifications:24

h (InT
AI

w)
(1)
= h (idAI

(idAI
(InT

AI
w)))

(2)
= h (idAI

(Inλw. 1
AI

(mapH ts w)))

(3)
= h (InAI

(mapH pr1 (mapH ts w)))

(4)
= InB (mapH h (mapH pr1 (mapH ts w)))

(5)
= InB (mapH g (mapH pr1 (mapH ts w)))

(6)
= g (InAI

(mapH pr1 (mapH ts w)))

(7)
= g (idAI

(Inλw. 1
AI

(mapH ts w)))

(8)
= g (idAI

(idAI
(InT

AI
w)))

(9)
= g (InT

AI
w)

where (1) and (9) follow by definition of the identity function idAI
, (2) and (8) by commutativity of the square (F),

(3) and (7) by commutativity of the square (�), (4) by commutativity of the square with dashed arrows (99K) or
Diagram (3.13), (5) by commutativity of Diagram (3.16) in Claim 1, and (6) by commutativity of the square with
squiggly arrows ( ) or Diagram (3.14).

Theorem 3.2.21 states that the problem of building a (lower level) initial set algebra is reduced to the problem
of building a (lower level) weakly initial set algebra.

The theorem has the following corollary.

Corollary 3.2.22. Let i > 0, and H : Ui → Ui a functor. Then, H has a lower level initial set H-algebra. In other
words, the following type is inhabited:

LLInSAlgi H

Proof. By Lemma 3.2.7, H has a lower level weakly initial set H-algebra at universe level i. Denote this LLWinSAlg
by (W, InW,m).

But then, by Theorem 3.2.21(i), (WI, InWI
,mc) is a lower level initial set H-algebra at universe level i.

Therefore, any endofunctor has a lower level initial set H-algebra. What about an initial set H-algebra?

3.2.3 A functor without an initial set algebra

In set-based mathematics, it is well-known that the powerset functor does not have an initial algebra (see Section
10.5 in [5]). The powerset functor maps each set X into its powerset P(X), and each function f : A → B into a
function g : P(A)→ P(B) such that for each X ∈ P(A), we have g(X) = f [X] (i.e. g maps X into the image of X
under function f).

We can reproduce this classic result in HoTT. First, we need to represent the powerset functor. However, we
will call it “powertype” functor, because it is defined for arbitrary types.

24These identifications make implicit use of the ap operator almost everywhere (see Lemma 1.5.62). For example, in step (2), by
commutativity of the square (F), there is a proof q : idAI

(InT
AI

w) = Inλw. 1
AI

(mapH ts w).

Therefore, aph (apidAI
q) : h (idAI

(idAI
(InT

AI
w))) = h (idAI

(Inλw. 1
AI

(mapH ts w))) by the ap operator applied twice.

We omit the details for the other steps regarding the use of the ap operator, since the pattern is similar.
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Definition 3.2.23 (Powertype functor). Let i > 0 and j < i two universe levels. We define the function
Powi,j : Ui → Ui as:

Powi,j :≡ (λY :Ui . Y → Propj ) : Ui → Ui
and a mapping function:

mapPowi,j :≡ λ(A :Ui)(B :Ui)(f :A→ B)(P :A→ Propj ). λw :B. (GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (f y = w)

∥∥∥∥∥∥
having type: ∏

A,B:Ui

(A→ B)→ ((A→ Propj )→ (B→ Propj ))

N

First, we explain that functions Powi,j and mapPowi,j are well-typed. Type Y → Propj is at level

max {i, j + 1} = i, since Propj : Uj+1 and j+1 ≤ i. Also, the sigma type in mapPowi,j is (−1)-truncated because it is
required to be a proposition (i.e. A is an arbitrary type, which means that the sigma type is not necessarily a propo-
sition). Function mapPowi,j requires the use of the propositional resizing equivalence GPropRi

j : Propj → Propi (see
Lemma 1.8.22), since type: ∥∥∥∥∥∥

∑
y:A

(P y)× (f y = w)

∥∥∥∥∥∥
is at level max {i, j, i} = i, but it is required to be at level j.

The definition of Powi,j is imitating the classical definition of the powerset functor. In HoTT, the “powertype”
of a type is the type of all predicates on it (Definition 1.8.19). Therefore, Powi,j maps a type Y into its powertype
Y → Propj . Similarly, the mapping function mapPowi,j takes a function f : A→ B and a subtype P : A→ Propj of
A, and returns the “image” of P under function f. To see that predicate:

λw :B. (GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (f y = w)

∥∥∥∥∥∥
is the “image” of P under f, it is useful to recast it in set-theoretic language, as follows:25

{x ∈ B | ∃y ∈ A, (y ∈ P ) ∧ (f(y) = x)} = {x ∈ B | ∃y ∈ P, f(y) = x} = f [P ]

where P ⊆ A (remember that predicates can be interpreted as subsets, and (−1)-truncated sigmas as classical
existentials, see Remark 1.11.5).

Now, function Powi,j and its mapping function mapPowi,j form a functor.

Lemma 3.2.24. Let i > 0 and j < i be two universe levels. Function Powi,j (together with its mapping function
mapPowi,j ) is an endofunctor that preserves sets.

Proof. It is obvious from its definition that Powi,j is an endofunctor. Also, for any type Y we have that Y → Propj

is a set, because Propj is a set by Lemma 1.8.18, and sets are closed under Π-types (Lemma 1.8.18). Hence, Powi,j

preserves sets.
Now, we need to show that Powi,j satisfies the two functorial properties (see Definition 1.9.6).

• Type
∏

A:Ui
∏

P:A→Propj
mapPowi,j idA P = P is inhabited.

Let A : Ui and P : A → Propj . By function extensionality. it is enough to prove that the following type is
inhabited: ∏

w:A

mapPowi,j idA P w = P w

25Although we are dealing with general types and not sets, it is illuminating to interpret this predicate as if it were using sets, because
doing such thing helps in understanding the definition.
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Let w : A. We are trying to prove an equality between propositions. Therefore, by univalence, it is enough to
prove that they are equivalent types. But, by Lemma 1.8.8, it is enough to prove that these propositions are
logically equivalent. In other words, we need to prove that the following type is inhabited:

((mapPowi,j idA P w)→ (P w))× ((P w)→ (mapPowi,j idA P w))

First, we prove (mapPowi,j idA P w)→ (P w), or equivalently:(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (idA y = w)

∥∥∥∥∥∥
→ (P w)

By Lemma 1.8.24, it is enough to prove:∥∥∥∥∥∥
∑
y:A

(P y)× (idA y = w)

∥∥∥∥∥∥→ (P w)

By (−1)-truncation recursion (since P w is a proposition), it is enough to prove (after simplification):∑
y:A

(P y)× (y = w)

→ (P w)

Let (y, q, r) :
∑

y:A (P y)× (y = w). Then, we have transportP r q : P w, as required.

For the other direction, we have to prove (P w)→ (mapPowi,j idA P w), or equivalently (after simplification):

(P w)→

(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (y = w)

∥∥∥∥∥∥


Let q : P w. We need to construct a term of type:

(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (y = w)

∥∥∥∥∥∥
By Lemma 1.8.23, it is enough to construct a term of type:∥∥∥∥∥∥

∑
y:A

(P y)× (y = w)

∥∥∥∥∥∥
But then, we have:

|(w, q, reflA w)| :

∥∥∥∥∥∥
∑
y:A

(P y)× (y = w)

∥∥∥∥∥∥
• The following type is inhabited:∏

A,B,C:Ui

∏
g:A→B

∏
h:B→C

∏
P:A→Propj

mapPowi,j (h ◦ g) P = mapPowi,j h (mapPowi,j g P)

Let A,B,C : Ui , g : A→ B, h : B→ C, and P : A→ Propj . By function extensionality, it is enough to prove:∏
w:C

mapPowi,j (h ◦ g) P w = mapPowi,j h (mapPowi,j g P) w
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Let w : C. We are trying to prove an equality between propositions. Therefore, by univalence and Lemma
1.8.8, it is enough to prove that they are logically equivalent.

First, we prove (mapPowi,j (h ◦ g) P w)→ (mapPowi,j h (mapPowi,j g P) w), or equivalently:(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (h (g y) = w)

∥∥∥∥∥∥
→ (

(GPropRi
j )
−1

∥∥∥∥∥∑
z:B

(mapPowi,j g P z)× (h z = w)

∥∥∥∥∥
)

By Lemma 1.8.24 and (−1)-truncation recursion, it is enough to prove:∑
y:A

(P y)× (h (g y) = w)

→ (
(GPropRi

j )
−1

∥∥∥∥∥∑
z:B

(mapPowi,j g P z)× (h z = w)

∥∥∥∥∥
)

Let (y, q, r) :
∑

y:A (P y)× (h (g y) = w). By Lemma 1.8.23, it is enough to construct a term of type:∥∥∥∥∥∑
z:B

(mapPowi,j g P z)× (h z = w)

∥∥∥∥∥
If we are able to construct a term t : mapPowi,j g P (g y), we will have:

|(g y, t, r)| :

∥∥∥∥∥∑
z:B

(mapPowi,j g P z)× (h z = w)

∥∥∥∥∥
Therefore, it remains to prove that type mapPowi,j g P (g y) is inhabited, or equivalently:

(GPropRi
j )
−1

∥∥∥∥∥∑
z:A

(P z)× (g z = g y)

∥∥∥∥∥
By Lemma 1.8.23 again, it is enough to construct a term of type:∥∥∥∥∥∑

z:A

(P z)× (g z = g y)

∥∥∥∥∥
But we have:

|(y, q, reflB (g y))| :

∥∥∥∥∥∑
z:A

(P z)× (g z = g y)

∥∥∥∥∥
For the other direction, we now prove:

(mapPowi,j h (mapPowi,j g P) w)→ (mapPowi,j (h ◦ g) P w)

or equivalently:(
(GPropRi

j )
−1

∥∥∥∥∥∑
z:B

(mapPowi,j g P z)× (h z = w)

∥∥∥∥∥
)
→

(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (h (g y) = w)

∥∥∥∥∥∥


By Lemma 1.8.24 and (−1)-truncation recursion, it is enough to prove:(∑
z:B

(mapPowi,j g P z)× (h z = w)

)
→

(GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (h (g y) = w)

∥∥∥∥∥∥
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Let (z, q, r) :
∑

z:B (mapPowi,j g P z)× (h z = w).

By Lemma 1.8.23, it is enough to construct a term of type:∥∥∥∥∥∥
∑
y:A

(P y)× (h (g y) = w)

∥∥∥∥∥∥
Now, by hypothesis we have a term q : mapPowi,j g P z, or equivalently, we have:

q : (GPropRi
j )
−1

∥∥∥∥∥∥
∑
y:A

(P y)× (g y = z)

∥∥∥∥∥∥
Hence, by Lemma 1.8.23, there is a term:

q1 :

∥∥∥∥∥∥
∑
y:A

(P y)× (g y = z)

∥∥∥∥∥∥
Then, by (−1)-truncation recursion, there will be a term:

(t, s, u) :
∑
y:A

(P y)× (g y = z)

Therefore, we can construct a proof:26

(aph u) � r : h (g t) = w

Which means:

|(t, s, (aph u) � r)| :

∥∥∥∥∥∥
∑
y:A

(P y)× (h (g y) = w)

∥∥∥∥∥∥
By Corollary 3.2.22, the Powi,j functor has a lower level initial set Powi,j -algebra. However, it does not have an

initial set Powi,j -algebra, as the following theorem shows.

Theorem 3.2.25. Let i > 0 and j < i be two universe levels. The functor Powi,j does not have an initial set
Powi,j -algebra. In other words, the following type is inhabited:

¬(InSAlgi Powi,j )

or, equivalently, type InSAlgi Powi,j is not inhabited.

Proof. Suppose (A, InA,mc) : InSAlgi Powi,j is an initial set Powi,j -algebra. We want to prove that this leads to a
contradiction (i.e. type 0 is inhabited).

Since Powi,j is a set-preserving endofunctor (Lemma 3.2.24), we can apply Lambek’s Lemma (Lemma 3.2.11)
to obtain that Powi,j A and A are equivalent types.

Therefore, by definition of Powi,j , types A→ Propj and A are equivalent, which is impossible by Lemma 1.8.20
(i.e. by Lemma 1.8.20, type 0 is inhabited because (A→ Propj ) ' A is inhabited).

Theorem 3.2.25 implies that any LLInSAlg for functor Powi,j is not an InSAlg. In particular, the LLInSAlg
constructed by Corollary 3.2.22, is not an InSAlg for functor Powi,j . Hence, not every LLInSAlg is an InSAlg.

We also have a corollary regarding the non-existence of weakly initial set algebras for functor Powi,j .

26See Lemma 1.5.60 for the transitivity operator (�).



172 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Corollary 3.2.26. Let i > 0 and j < i be two universe levels. The functor Powi,j does not have a weakly initial
set Powi,j -algebra. In other words, the following type is inhabited:

¬(WinSAlgi Powi,j )

or, equivalently, type WinSAlgi Powi,j is not inhabited.

Proof. Suppose (A, InA,m) : WinSAlgi Powi,j .
By Theorem 3.2.21(ii), (AI, InAI

,mc) is an initial set Powi,j -algebra, which contradicts Theorem 3.2.25.

Another corollary states that no LLInSAlg for Powi,j satisfies the conclusion of Lambek’s Lemma. In other
words, a LLInSAlg will not be, in general, a “fixpoint” for its functor.

Corollary 3.2.27. Let i > 0 and j < i be two universe levels, and (A, InA,mc) a lower level initial set Powi,j -algebra.
Then, Powi,j A and A are not equivalent types. In other words, the following type is inhabited:

¬(Powi,j A ' A)

In particular, the LLInSAlg constructed by Corollary 3.2.22, is not a “fixpoint” for functor Powi,j

Proof. Let (A, InA,mc) : LLInSAlgi Powi,j . Suppose, for a contradiction, that Powi,j A and A are equivalent types.
Then, by definition of Powi,j , types A→ Propj and A are equivalent, which is impossible by Lemma 1.8.20.

These results support the claim that LLInSAlgs are weaker than InSAlgs. Nevertheless, LLInSAlgs are still
useful, as they can define unique functions by recursive equations (see Section 3.2.4).

This is a good place to emphasize a very important remark regarding the explicit use of universe levels. The
definitions for LLInSAlg and InSAlg differ only by a universe level. If universe levels are omitted altogether on this
chapter (as we did in Chapter 2), we are going to be puzzled by the apparent contradiction that every endofunctor
has an initial set algebra, while at the same time we can construct an endofunctor without one! This justifies their
explicit use.

We proceed to show an example on how lower level initial set H-algebras are used. In Section 3.2.5 we will
discuss particularities and limitations of the approach leading to Corollary 3.2.22.

3.2.4 Example: Natural numbers

We will construct the natural numbers as a LLInSAlg. This will be a case where a LLInSAlg is an InSAlg.
First, we need to define the functor.

Definition 3.2.28. We define the function NatFi : Ui → Ui as:

NatFi :≡ (λY :Ui . 1 + Y) : Ui → Ui

Given A,B : Ui and function f : A→ B, we define the mapping function as:

mapNatFi f (inl l) :≡ inl l

mapNatFi f (inr r) :≡ inr (f r)

having type: ∏
A,B:Ui

(A→ B)→ ((1 + A)→ (1 + B))

N

Function NatFi : Ui → Ui is well-typed, as we explain next. Given Y : Ui , type 1 + Y is at level i, because type
1 is at every universe level (see formation rule on page 42), and the sum type is at level max{i, i} = i (see Remark
1.5.37).

Function NatFi and its mapping function form a functor.
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Lemma 3.2.29. The function NatFi (together with its mapping function mapNatFi ) is an endofunctor that preserves
sets.

Proof. It is obvious from its definition that NatFi is an endofunctor. NatFi preserves sets because 1 is a set (Lemma
1.8.18), and sets are closed under sum types (see Lemma 1.8.18).

It remains to prove the two functorial properties (see Definition 1.9.6).

• Type
∏

A:Ui
∏

w:1+A mapNatFi idA w = w is inhabited.

Let A : Ui . We will use the induction principle for sum types (Lemma 1.5.35) to prove that the following type
is inhabited: ∏

w:1+A

mapNatFi idA w = w

– “Left” Case.

We are given l : 1, and we need to prove mapNatFi idA (inl l) = inl l.

But mapNatFi idA (inl l) ≡ inl l, by definition of mapNatFi .

– “Right” Case.

We are given r : A, and we need to prove mapNatFi idA (inr r) = inr r.

By definition, we have:

mapNatFi idA (inr r) ≡ inr (idA r)

≡ inr r

• The following type is inhabited:∏
A,B,C:Ui

∏
g:A→B

∏
h:B→C

∏
w:1+A

mapNatFi (h ◦ g) w = mapNatFi h (mapNatFi g w)

Let A,B,C : Ui , g : A → B, and h : B → C. Again, we will use the induction principle for sum types to prove
that the following type is inhabited:∏

w:1+A

mapNatFi (h ◦ g) w = mapNatFi h (mapNatFi g w)

– “Left” Case.

We are given l : 1, and we need to prove:

mapNatFi (h ◦ g) (inl l) = mapNatFi h (mapNatFi g (inl l))

But, by definition, we have:

mapNatFi h (mapNatFi g (inl l)) ≡ mapNatFi h (inl l)

≡ inl l

And also:
mapNatFi (h ◦ g) (inl l) ≡ inl l

– “Right” Case.

We are given r : A, and we need to prove:

mapNatFi (h ◦ g) (inr r) = mapNatFi h (mapNatFi g (inr r))

But, by definition, we have:

mapNatFi h (mapNatFi g (inr r)) ≡ mapNatFi h (inr (g r))

≡ inr (h (g r))

And also:
mapNatFi (h ◦ g) (inr r) ≡ inr (h (g r))



174 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Therefore, for i > 0, functor NatFi has a LLInSAlg by Corollary 3.2.22. We introduce notation for this.

Definition 3.2.30. Let i > 0 be a universe level. We will denote by (Nati , InNati ,mc) the lower level initial set
NatFi -algebra constructed by Corollary 3.2.22.

N

Observe that the InNati function has type (NatFi Nati) → Nati , which is equivalent to (1 + Nati) → Nati .
Intuitively, this means we can “split” the InNati : (1 + Nati) → Nati function into two functions 1 → Nati and
Nati → Nati , which will be the so-called constructors for Nati . These constructors correspond to the zero constant
and the successor function, respectively.

Definition 3.2.31. Let i > 0 be a universe level. We define two constructors for Nati .

• The zero constant 0i : Nati is defined as:
0i :≡ InNati (inl ?)

• The successor function Si : Nati → Nati is defined as:

Si :≡ λn :Nati . InNati (inr n)

N

We proceed to prove the standard induction principle for the natural numbers.

Theorem 3.2.32. (Induction Principle for Nati) Let i > 0 and j ≤ i be universe levels. Let P : Nati → Propj be
a predicate. If the following type is inhabited:

(P 0i)×

( ∏
n:Nati

(P n)→ (P (Si n))

)
then, the following type is inhabited: ∏

n:Nati

P n

Proof. Let:

base : P 0i

Ind :
∏

n:Nati

(P n)→ (P (Si n))

We will use Lemma 3.2.20 to conclude that the following type is inhabited:27∏
n:Nati

P n

Hence, it is enough to prove that the following type is inhabited:

∏
T:Nati→Propj

 ∏
w:
∑

y:Nati

T y

P (pr1 w)

→
 ∏

w: NatFi

∑
y:Nati

T y

P (InT
Nati w)


Let T : Nati → Propj with:

HInd :
∏

w:
∑

y:Nati

T y

P (pr1 w)

By definition of NatFi , we need to prove: ∏
w: 1+

∑
y:Nati

T y

P (InT
Nati w)

By the induction principle for sum types, it is enough to prove the following cases.

27Notice we can use Lemma 3.2.20 because Nati is of the form AI, where A is the LLWinSAlg constructed by Lemma 3.2.7.
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• “Left Case”.

We need to prove: ∏
l:1

P (InT
Nati (inl l))

By the induction principle for the unit type 1 (Lemma 1.5.47), it is enough to prove:

P (InT
Nati (inl ?))

But, by definition of InT
Nati

(see Definition 3.2.12), the definition of mapNatFi , and the definition of 0i , we have:

InT
Nati (inl ?) ≡ InNati (mapNatFi pr1 (inl ?))

≡ InNati (inl ?)

≡ 0i

In other words, we need to prove that the following type is inhabited:

P 0i

but this is immediate by hypothesis base : P 0i .

• “Right Case”.

We need to prove: ∏
r:
∑

y:Nati

T y

P (InT
Nati (inr r))

Let r :
∑

y:Nati
T y. Then, we have:

HInd r : P (pr1 r)

Define:

t1 :≡ Ind (pr1 r) (HInd r) : P (Si (pr1 r))

Then, by definition of InT
Nati

, the definition of mapNatFi , and the definition of Si , we have:

InT
Nati (inr r) ≡ InNati (mapNatFi pr1 (inr r))

≡ InNati (inr (pr1 r))

≡ Si (pr1 r)

In other words, we need to prove that the following type is inhabited:

P (InT
Nati (inr r))

which is equivalent to:

P (Si (pr1 r))

but this is immediate from term t1 : P (Si (pr1 r)).

Notice that this induction principle works for predicates (i.e. P : Nati → Propj ), but not for general type
families (i.e. P : Nati → Uj ). This is one limitation of the approach in Section 3.2.2. Nevertheless, this limitation is
not critical, as long as we work in the universe of propositions and sets.

Next, we prove the standard iteration principle for the natural numbers.
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Theorem 3.2.33 (Iteration principle for Nati). Let i > 0 be a universe level. Let D : Seti−1 be a set, base : D a
constant, and step : D→ D a function. Then, the following type is inhabited:

IsContr

[ ∑
f:Nati→D

(f 0i = base)×

( ∏
n:Nati

f (Si n) = step (f n)

)]
(3.19)

In other words, there is a unique function f : Nati → D satisfying the stated recursive equations.

Proof. First, by the recursion principle for sum types, we can define a function InD : (NatFi D)→ D, or equivalently,
InD : (1 + D)→ D, as follows:

InD (inl l) :≡ base

InD (inr r) :≡ step r

Therefore, (D, InD) is a set NatFi -algebra at level i − 1. Since Nati is a LLInSAlg, there is a unique morphism
h : Nati → D making the following diagram commute:28

1 + Nati 1 + D

Nati D

mapNatFi h

InNati InD

h

(3.20)

To prove that type (3.19) is inhabited (see Definition 1.8.1), we have to construct a function f satisfying the
stated equations (i.e. the existence step) such that any other function satisfying the equations must be equal to f
(i.e. the uniqueness step).

Existence

We propose the morphism h above as our candidate function. It remains to construct a proof w1 that h satisfies
the equations in type (3.19).

But we have:

h 0i
(1)
= h (InNati (inl ?))

(2)
= InD (mapNatFi h (inl ?))

(3)
= InD (inl ?)

(4)
= base

where (1) follows by definition of 0i , (2) by commutativity of Diagram (3.20), (3) by definition of mapNatFi h, and
(4) by definition of InD.

Also, given an arbitrary n : Nati , we have:

h (Si n)
(1)
= h (InNati (inr n))

(2)
= InD (mapNatFi h (inr n))

(3)
= InD (inr (h n))

(4)
= step (h n)

28In more detail, given (Nati , InNati ,mc), we have mc (D, InD) : IsContr (AlgMor Nati D). In other words, the following type is inhabited:∑
(h,q1):AlgMor Nati D

∏
(g,q2):AlgMor Nati D

(h, q1) = (g, q2)

This means we have a morphism (h, q1), where q1 is a proof that the corresponding diagram for h commutes, and any other morphism
(g, q2) must be equal to (h, q1).
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where (1) follows by definition of Si , (2) by commutativity of Diagram (3.20), (3) by definition of mapNatFi h, and
(4) by definition of InD.

Uniqueness

By definition of contractible type, we need to prove that the following type is inhabited:∏
(g,w2):

∑
f:Nati→D

(f 0i=base)×
( ∏

n:Nati

f (Si n)=step (f n)

) (h,w1) = (g,w2)

where w1 is a proof (constructed in the existence part) that h satisfies the equations, and w2 is a proof that g
satisfies the equations.

So, let g : Nati → D satisfying the recursive equations:

(g 0i = base)×

( ∏
n:Nati

g (Si n) = step (g n)

)

We know that the second component of the sigma type:

∑
f:Nati→D

(f 0i = base)×

( ∏
n:Nati

f (Si n) = step (f n)

)

(i.e. the recursive equations) is a mere proposition for every f : Nati → D, since all terms appearing in the equalities
are of type D (which is a set), and propositions are closed under the product type and Π-types (Lemma 1.8.17).

Therefore, by Lemma 1.8.14, to prove that (h,w1) = (g,w2) is inhabited, it is enough to prove that h = g is
inhabited.

To prove h = g, we are going to show that g is an algebra morphism from Nati to D, because h is the only such
morphism by definition of LLInSAlg.

So, we need to construct a proof q2 that the following diagram commutes:

1 + Nati 1 + D

Nati D

mapNatFi g

InNati InD

g

By the induction principle for sum types, it is enough to prove the following cases.

• “Left Case”.

We need to prove: ∏
l:1

g (InNati (inl l)) = InD (mapNatFi g (inl l))

By the induction principle for the unit type 1, it is enough to prove:

g (InNati (inl ?)) = InD (mapNatFi g (inl ?))

But we have:

g (InNati (inl ?))
(1)
= g 0i

(2)
= base

where (1) follows by definition of 0i , and (2) by hypothesis on function g.
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And also:

InD (mapNatFi g (inl ?))
(1)
= InD (inl ?)

(2)
= base

where (1) follows by definition of mapNatFi g, and (2) by definition of InD.

• “Right Case”.

We are given r : Nati , and we need to prove:

g (InNati (inr r)) = InD (mapNatFi g (inr r))

But we have:

g (InNati (inr r))
(1)
= g (Si r)

(2)
= step (g r)

where (1) follows by definition of Si , and (2) by hypothesis on function g.

And also:

InD (mapNatFi g (inr r))
(1)
= InD (inr (g r))

(2)
= step (g r)

where (1) follows by definition of mapNatFi g, and (2) by definition of InD.

Notice that Theorem 3.2.33 requires D to be a set at level i− 1. This level restriction is forced by the fact that
Nati is a LLInSAlg. If we attempt to prove Theorem 3.2.33, but this time for a set D at level i, we will not be able
to construct the morphism h : Nati → D. The reason is that Nati expects an algebra at level i− 1, but (D, InD) will
be at level i. This small detail has very interesting consequences, specially when defining functions on Nati .

For example, let us try to define addition on the natural numbers addi : Nati → Nati → Nati for some i > 0.
We want to use the iteration principle, but the universe level restriction forces us to define addition as having type
addi : Nati → Nati+1 → Nati . Let us do it step by step.

We are going to do recursion on the second parameter of addi . Define:

addi :≡ λn :Nati . αn

where αn : Nati+1 → Nati is a function (depending on n) we still need to construct. We will use the iteration
principle to build function αn.

First, we require a constant of type Nati . We have n : Nati available.
Second, we require a function of type Nati → Nati . We have the successor function Si .
Therefore, by the iteration principle, there is a unique function αn satisfying:

αn 0i+1 = n

and: ∏
m:Nati+1

αn (Si+1 m) = Si (αn m)

If we write addi n instead of αn, all these equations can be written as:∏
n:Nati

addi n 0i+1 = n

∏
n:Nati

∏
m:Nati+1

addi n (Si+1 m) = Si (addi n m)
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This example shows that we need to play a lot with universe levels. However, we quickly find difficulties. For
example, there is a down cast function ↓ : Nati+1 → Nati , defined by the equations:

↓ 0i+1 = 0i∏
n:Nati+1

↓ (Si+1 n) = Si (↓ n)

The down cast function behaves like an “identity function” mapping each number to its corresponding number
at a lower level. Is there an up cast function ↑ : Nati → Nati+1 ? Clearly, we cannot use the iteration principle,
because the codomain type is at a higher level than the domain type. Nevertheless, both types Nati and Nati+1 look
the same: both have a zero and every other number can be constructed by using the successor function. Intuitively,
these two types should be equivalent. In fact, if we can build the up cast function, it follows that all Nati at every
level become mutually equivalent. If all types Nati for every i > 0 are equivalent, we do not have to worry about
universe levels when defining functions between them.

One possible approach for defining the up cast function is to use the principle of unique choice (Lemma 1.11.8).29

Another approach is to construct the function as a fixpoint of partial functions, by using techniques similar to those
on Chapter 2.

Instead of building the up cast function, we will prove that all types Nati (for i > 0) are equivalent, by proving
that each one of them is equivalent to the natural numbers type N (see Section 1.5.6). This will show that Nati is
actually an initial set NatFi -algebra, and one consequence of this will be the existence of the up cast function.

Also, proving that Nati is equivalent to N highlights an important observation. If we add to HoTT inference
rules for working with the inductive type generated by some functor H, we will find out that the lower level initial
algebra for functor H will be equivalent to the inductive type introduced by the inference rules. It is still unknown
to the author to what extend this observation is true. However, Theorem 3.2.25 should warn the reader that we
cannot indiscriminately add inference rules into HoTT. For example, if we add inference rules for working with the
“inductive type” of the powertype functor, we will be implicitly adding an initial algebra for the powertype functor,
contradicting Theorem 3.2.25 and producing, as a result, an inconsistent type theory.

Theorem 3.2.34. Let i > 0 be a universe level. Then, types Nati and N are equivalent. In other words, the
following type is inhabited:

Nati ' N

Proof. We have to define two functions f : Nati → N and g : N→ Nati , so that f and g are inverses of each other.
To define function f : Nati → N, we will use the iteration principle for Nati . We can use the iteration principle

because N is at every universe level (see formation rule for N on page 42). In particular, N is at level i − 1. Also,
by Lemma 1.8.18, N is a set.

So, there is a unique function f : Nati → N, defined by the equations:

f 0i = 0∏
n:Nati

f (Si n) = succ (f n)

For the other function g : N→ Nati , we use the recursion principle for N as follows (for any n : N):

g 0 :≡ 0i

g (succ n) :≡ Si (g n)

To prove: ∏
n:Nati

g (f n) = n

we use the induction principle for Nati . Notice we can use the induction principle, because g (f n) = n is a proposition
at level i for every n : Nati , as Nati is a set at level i.

29However, the author has not explored this possibility.
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For the base case, we have by definition:

g (f 0i) = g 0

= 0i

For the inductive case, we suppose g (f n) = n for some n : Nati , and we have:

g (f (Si n)) = g (succ (f n))

= Si (g (f n))

(1)
= Si n

where (1) follows by the inductive hypothesis, and the rest follows by definition of f and g.
To prove: ∏

n:N

f (g n) = n

we use the induction principle for N.
For the base case, we have by definition:

f (g 0) = f 0i

= 0

For the inductive case, we suppose f (g n) = n for some n : N, and we have:

f (g (succ n)) = f (Si (g n))

= succ (f (g n))

(1)
= succ n

where (1) follows by the inductive hypothesis, and the rest follows by definition of f and g.

Theorem 3.2.34 implies that all types Nati for i > 0 are mutually equivalent. Also, by Theorem 3.2.34 and
univalence, we have Nati = N for every i > 0.

It is not hard to prove that N can be given the structure of an initial set NatFi -algebra. Define the InN : NatFi N→
N function by cases:

InN (inl l) :≡ 0

InN (inr r) :≡ succ r

and then, by the recursion principle for N, we can construct a morphism from N to any other set NatFi -algebra.
Finally, by using the induction principle for N, we can prove that such morphism is unique (we will not do the
details, as it is not critical for the example).

Once we know that N is an InSAlg, we can transfer the InSAlg structure of N into algebra Nati , since we already
know a proof q : Nati = N (by univalence). To transfer the structure, we use the transport function as follows.

First, we transfer the InN function:

In′Nati :≡ (transport(λY. NatFi Y→Y) q−1 InN) : NatFi Nati → Nati

Hence, by Lemma 1.6.25, we have a proof:

q′ : (N, InN) =(SAlgi NatFi ) (Nati , In
′
Nati )

that N and Nati are identifiable as algebras.
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Let us define a predicate on NatFi -algebras:

P :≡ λ(A, InA) :SAlgi NatFi .
∏

(B,InB):SAlgi NatFi

IsContr (AlgMor A B)

Since we know N is an InSAlg, we have a proof mc : P (N, InN). This means we can transfer mc to Nati by using
the transport function and proof q′ as follows:

mc′ :≡ (transportP q′ mc) : P (Nati , In
′
Nati )

or equivalently:

mc′ :≡ (transportP q′ mc) :
∏

(B,InB):SAlgi NatFi

IsContr (AlgMor Nati B)

Hence, we have:
(Nati , In

′
Nati ,mc′) : InSAlgi NatFi

In other words, Nati can be given the structure of an initial set NatFi -algebra.

Recapitulating, we showed that all types Nati are mutually equivalent by proving that each Nati is equivalent
to the natural numbers type N. As a byproduct, each type Nati can be given the structure of an InSAlg. But how
can we prove mutual equivalence between LLInSAlgs when there is no predefined type (like the natural numbers
type N in our example)?

A first attempt involves the addition of inference rules to induce an inductive type, to which the LLInSAlgs
will be equivalent. However, this approach is risky, as Theorem 3.2.25 suggests. There are functors without an
initial algebra. Hence, we cannot add inference rules to induce an initial algebra for those functors, as we would be
producing an inconsistent type theory.

A second approach involves the construction of an up cast function ↑ (see discussion before Theorem 3.2.34).
Even more interesting, it seems that the existence of an up cast function is another way to characterize initial

algebras, i.e. the down cast function ↓ is an equivalence (having as inverse the up cast function ↑) if and only if
Nati can be given the structure of an initial set NatFi -algebra. This is mere speculation of course, but it justifies
further investigation on the existence of an up cast function and its consequences.

3.2.5 Discussion

The first obvious limitation of the approach developed on Sections 3.2.1 and 3.2.2 is that it only builds set algebras.
In what follows, we explain why we had to limit the development to sets.

The heart of the problem resides in our dependence on the results of Chapter 2. At step 1 of Section 3.2.2, we
defined type AI (Definition 3.2.17) as a least fixpoint on the powertype lattice of Example 2.2.8.

This causes the induction principle for AI (Lemma 3.2.20) to work for predicates AI → Propm , but not for
general type families AI → Um . The reason is that the proof for the induction principle depends on Corollary 2.4.1,
which is instantiated on the powertype lattice.

This restriction on the induction principle forces AI to be a set, as we explain next. Let us suppose we want
to use the induction principle to prove the statement

∏
w:AI

r w = t w, where r, t : AI → AI are arbitrary functions.
Since our induction principle only works for predicates, type r w = t w is required to be a mere proposition for every
w : AI. One way to ensure that r w = t w is a mere proposition, is to force AI to be a set.

For example, a situation like this is found in the proof of Theorem 3.2.34, where type
∏

n:Nati
g (f n) = n is

proved by the induction principle for Nati (which is obtained directly from the induction principle for AI).
Another restriction forced on us by the induction principle becomes evident in the proof of Theorem 3.2.21.

There, the following type is proved by the induction principle for AI:∏
w:AI

h w = g w

where h, g : AI → B, and B is the universally quantified set H-algebra in Definition 3.2.9. We observe that B must
be a set, otherwise the identity h w = g w is not guaranteed to be a mere proposition.

Therefore, we have two restrictions so far:
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• AI must be a set.

• H-algebra B in Definition 3.2.9 must be a set.

This justifies the restriction of Definitions 1.9.11 and 1.9.15 to set H-algebras and initial set H-algebras, as stated
in Definitions 3.2.4 and 3.2.9.

Now, remember that AI was defined in 3.2.17 as:∑
w:A

Lfp CanStepA w

On this definition, it is true that AI might be a set even if A is not a set (it depends on how A interacts with the
predicate Lfp CanStepA). To ensure that AI is a set without doubt, we force A to be a set, ensuring this way that
AI is a set by Lemma 1.8.18.

Therefore, for Theorem 3.2.21 to work, the (lower level) weakly initial set H-algebra A in the hypothesis must
be a set, because the theorem produces as initial algebra AI and we already explained that AI is forced to be a set
(which then forces A to be a set).

Hence, we have the new restriction:

• Our (lower level) weakly initial H-algebras30 must be sets.

This restriction justifies Definition 3.2.5 for (lower level) weakly initial set H-algebras.

The reader might think that Definition 3.2.5 does not need to be restricted to sets, because it is a reasonable
guess to suppose that 0-truncating a (lower level) weakly initial H-algebra will produce a (lower level) weakly initial
set H-algebra. However, it appears that functor H needs to satisfy the “morphism 0-truncation property” defined
below for 0-truncation to work.

Although the “morphism 0-truncation property” is a sufficient condition, it is unknown to the author if it is a
necessary condition, i.e. whether or not the following statement is true: “If 0-truncating a weakly initial H-algebra
produces a weakly initial set H-algebra, then functor H must have the property”.

Definition 3.2.35 (Morphism 0-truncation property). Let H : Ui → Ui be a functor and k,m ≤ i universe levels.
We say that H 0-truncates morphisms if given an H-algebra (A, InA) : Algk H, we can construct a function

In‖A‖0
: (H ‖A‖0)→ ‖A‖0 such that for any other set H-algebra (B, InB) : SAlgm H and algebra morphism h : A→ B,

we have that ‖h‖0 : ‖A‖0 → B is an algebra morphism. Term ‖h‖0 denotes the function produced by the recursion
principle for 0-truncations when it is applied with function h (see Corollary 1.11.14).

N

To see that the “morphism 0-truncation property” is a sufficient condition, let us suppose functor H has the
property. Let us also suppose we are given a (lower level) weakly initial H-algebra (W, InW,m). Then, by the
0-truncation property, we have a set H-algebra (‖W‖0, In‖W‖0

). Now, given an arbitrary set H-algebra (B, InB), since
W is (lower level) weakly initial, there is an algebra morphism h : W→ B. Therefore, by the 0-truncation property,
function ‖h‖0 : ‖W‖0 → B is an algebra morphism. Hence, ‖W‖0 is a (lower level) weakly initial set H-algebra.

However, in the proof for Lemma 3.2.7, we want to obtain a lower level weakly initial set H-algebra without
imposing extra conditions on the functor. Therefore, we need to find a way to get lower level weakly initial set
H-algebras without using 0-truncations.

It turns out that we can achieve this by taking advantage of the set closure property for Π-types in Lemma
1.8.18. In the proof for Lemma 3.2.7, we were able to construct a lower level weakly initial set H-algebra by taking
the weak limit of the family of set H-algebras:

pr1 : (SAlgi−1 H)→ Ui−1

producing type: ∏
A:SAlgi−1 H

pr1 A

30(Lower level) weakly initial H-algebras are like in Definition 3.2.5, but all references to SAlg are replaced with Alg (Definition 1.9.11).
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which is a set by Lemma 1.8.18, because pr1 A is a set by construction.
If instead we take the weak limit of the family of H-algebras (as one would do if the Knaster-Tarski construction

is generalized directly):
pr1 : (Algi−1 H)→ Ui−1

we get type: ∏
A:Algi−1 H

pr1 A

which is not necessarily a set, as pr1 A is a general type.
This small trick (i.e. taking advantage of Lemma 1.8.18) allowed the construction of lower level weakly initial

set H-algebras without the need to use 0-truncations.

Therefore, if we hope to generalize the results of Section 3.2 to arbitrary (lower level) initial H-algebras and not
just (lower level) initial set H-algebras, we have to find a way to remove the dependence on Chapter 2, as this is
the main bottleneck that cascades to the results in Section 3.2.2.

The second obvious limitation is that our experiment only produces lower level initial set algebras, which are
weaker than initial set algebras. Nevertheless, lower level initial set algebras are still useful concepts, as they are
capable of defining unique functions by recursive equations.

3.3 Coinductive types

This section describes the construction of coinductive types by means of generalizing the Knaster-Tarski construction
(Lemma 2.3.6(ii)) into the language of coalgebras.

As it happened with inductive types, we will see that generalizing Knaster-Tarski produces lower level weakly
final coalgebras. Therefore, to obtain a (lower level) final coalgebra from a (lower level) weakly final coalgebra, we
need to devise a method of “refinement”.

Hence, the development will be split into two parts. Subsection 3.3.1 carries out the generalization of Knaster-
Tarski, and Subsection 3.3.2 carries out the “refinement” of (lower level) weakly final coalgebras into (lower level)
final coalgebras.

3.3.1 Generalizing the Knaster-Tarski construction

If we examine the proof for the second part of Knaster-Tarski (Lemma 2.3.6(ii)), we see that the greatest fixpoint
was defined as the supremum of all postfixpoints of the monotone function. Hence, continuing the generalization
started on Section 3.2.1, the only missing ingredient is a generalization to the concept of “least upper bound”.

We define an “upper bound” for a family F : M → Uj to be a type A : Uk that is “above” every element in the
family (i.e. for every i : M, we have a proof for (F i)→ A, or interpreted order-theoretically, a proof for “F i ≤ A”).
By borrowing terminology from category theory, this generalized notion of “upper bound” corresponds to the notion
of cocone over the family F.

Definition 3.3.1 (Cocone over a family). Let M : Ui be an indexing type, and F : M→ Uj a family of types. Let k
be a universe level. Any term of type:

Coconek F :≡
∑
A:Uk

∏
i:M

(F i)→ A

will be called a cocone over the family F at level k. N

Intuitively, Coconek F is the type of all “upper bounds” for the family F. Observe that a cocone over F is a type
A together with a family of functions f :

∏
i:M (F i)→ A. In other words, we have the diagram:

F i . . . F j . . . F k

A

f i
f j f k
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In Section 3.2.1, weak limits (Definition 3.2.2) served as a working generalization to the notion of “greatest
lower bound”. On this section, weak colimits will serve as a working generalization to the notion of “least upper
bound”.31

Definition 3.3.2 (Weak colimit of a type family). Let M : Ui be an indexing type, and F : M → Uj a family of
types. Let k be a universe level. Any term of type:

WCoLimitk F :≡
∑

(C,f):Coconek F

∏
(Y,g):Coconek F

∑
h:C→Y

∏
i:M

∏
w:F i

g i w = h (f i w)

will be called a weak colimit for the family F. In other words, we have the commutative diagram:

F i . . . F j . . . F k

C Y

f i
g i

f j g j
f k

g k

h

i.e. the cocone (C, f) will be a weak colimit for F if for any other cocone (Y, g), there is a function h : C → Y such
that for every i : M, the following triangle commutes:

F i

C Y

f i g i

h

N

In other words, C is a “least upper bound” for F if C is an “upper bound” for F (i.e. it forms a cocone
for F), and any other “upper bound” Y (i.e. a cocone over F) is “above” C. The “commutativity condition”∏

i:M

∏
w:F i g i w = h (f i w) expresses that functions f :

∏
i:M (F i) → C, g :

∏
i:M (F i) → Y, and h : C → Y are not

chosen arbitrarily.
The first result states that any family has a weak colimit (i.e. any family has a “least upper bound”).

Lemma 3.3.3. Let M : Ui be an indexing type, and F : M → Uj a family of types. Then, the following type is
inhabited:

WCoLimitmax{i,j} F

Proof. First, we need to build a tuple (C, f) : Coconemax{i,j} F.
In standard mathematics, the least upper bound for a family of sets {Fi}i∈M is the set

⋃
i∈M Fi.

In our case, type
∑

i:M F i will be analogous to
⋃
i∈M Fi.

Define:
C :≡

∑
i:M

F i

Notice C : Umax{i,j} since M : Ui and F i : Uj for every i : M (see Remark 1.5.29).
Next, we need to build a function f :

∏
i:M (F i)→ C. Define:

f :≡ λ(i :M)(j :F i). (i, j)

Now, we need to prove that the following type is inhabited:∏
(Y,g):Coconemax{i,j} F

∑
h:C→Y

∏
i:M

∏
w:F i

g i w = h (f i w)

31Although we may use the stronger notion of colimit (see [5]), the notion of weak colimit will be enough for our purposes, see Remark
3.3.7.
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Let (Y, g) : Coconemax{i,j} F. Define h by Σ-recursion (Lemma 1.5.25):

h (i, j) :≡ g i j

which is well-typed, since g i j : Y.
Now, let i : M and w : F i. Then, we have by definition:

h (f i w) ≡ h (i,w)

≡ g i w

And so, g i w = h (f i w) is inhabited.

Contrary to what was done in Definition 3.2.5, we do not need to specialize the concept of H-coalgebra (Definition
1.10.4) to sets. See Section 3.3.5 for a discussion on this.

Next, we need to define the concept of weakly final coalgebra. We define two versions, as was done in Definition
3.2.5. The difference between the two versions is in the universe level of the H-coalgebra quantified in the Π-type
(see Definition 3.3.4 below). In type LLWfinCoAlgk H, the level is k − 1. In type WfinCoAlgk H the level is k.

Definition 3.3.4 ((Lower level) weakly final H-coalgebra). Let H : Ui → Ui be a functor.

(i) Let 0 < k ≤ i be a universe level. Any term of type:

LLWfinCoAlgk H :≡
∑

(W,OutW):CoAlgk H

∏
(B,OutB):CoAlgk−1 H

CoAlgMor B W

will be called a lower level weakly final H-coalgebra (LLWfinCoAlg for short) at level k.

(ii) Let k ≤ i be a universe level. Any term of type:

WfinCoAlgk H :≡
∑

(W,OutW):CoAlgk H

∏
(B,OutB):CoAlgk H

CoAlgMor B W

will be called a weakly final H-coalgebra (WfinCoAlg for short) at level k.

N

Convention 3.3.5. We will write lower level weakly final H-coalgebras as (W,OutW,m), instead of ((W,OutW),m).
The same applies to weakly final H-coalgebras.

N

Both versions are similar to Definition 1.10.8, except that type CoAlgMor B W is not asserted to be contractible.
This means that in a (lower level) weakly final coalgebra, the coalgebra morphism is not required to be unique.

Also, a LLWfinCoAlg residing at level k will be weakly final relative to H-coalgebras at level k − 1 (hence
the words lower level in their name). Instead, a WfinCoAlg residing at level k will be weakly final relative to
H-coalgebras at level k.

Lemma 3.3.6 will show that generalizing the Knaster-Tarski construction only produces a LLWfinCoAlg. This
restriction will carry on to the next section, where we will refine the LLWfinCoAlg into a lower level final H-
coalgebra. To the contrary, the existence of a WfinCoAlg for an arbitrary endofunctor can be answered in the
negative (see Corollary 3.3.33 for an example of functor without a WfinCoAlg).

Nevertheless, we state both versions because the refinement process of Section 3.3.2 applies to both a LLWfin-
CoAlg and a WfinCoAlg (i.e. if we start with a LLWfinCoAlg we will get a lower level final H-coalgebra; if we start
with a WfinCoAlg we will get a final H-coalgebra, see Definition 3.3.8 below).

Now, we state the main result on this section.

Lemma 3.3.6. Let i > 0 and H : Ui → Ui a functor. Then, the following type is inhabited:

LLWfinCoAlgi H

i.e. any endofunctor has a lower level weakly final H-coalgebra.
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Proof. First, we need to construct (W,OutW) : CoAlgi H.
In the proof of Lemma 2.3.6(ii), the greatest fixpoint was the least upper bound of the set of all postfixpoints

of the monotone function. So, we will define W to be a weak colimit for the family of H-coalgebras at level i − 1
(remember, an H-coalgebra is a generalization to the notion of postfixpoint). Notice that we can diminish level i
by one because i > 0.

The family of H-coalgebras at level i− 1 is represented by the first projection function:

pr1 : (CoAlgi−1 H)→ Ui−1

where type CoAlgi−1 H is acting as the “collection of indices”.
Now, (CoAlgi−1 H) : Ui , because:

• Ui−1 : Ui by the universe introduction rule.

• For every A : Ui−1 , type A→ (H A) is at level max{i− 1, i} = i, since A : Ui−1 and H A : Ui .

• Therefore, type CoAlgi−1 H ≡
∑

A:Ui−1
A→ (H A) is at level max{i, i} = i.

So, by Lemma 3.3.3, family pr1 has a weak colimit at level max{i, i− 1} = i:

((W, f), q) : WCoLimiti pr1 (3.21)

Hence, W corresponds to type (see proof of Lemma 3.3.3):∑
A:CoAlgi−1 H

pr1 A

and (W, f) is a cocone over pr1.
Now, we need to construct a function OutW : W→ (H W).
Since W is a weak colimit for pr1, if we can construct a proof that H W is a cocone over pr1, there will be a

function of type W→ (H W).

Claim 1: H W forms a cocone over pr1.
We need to build a function of type

∏
Y:CoAlgi−1 H (pr1 Y)→ (H W), which can be rewritten as:∏
(A,OutA):CoAlgi−1 H

A→ (H W)

by Convention 1.5.27.
So, let (A,OutA) : CoAlgi−1 H. Consider the composition:

A H A H W
OutA mapH (f (A,OutA))

where function f (A,OutA) : A→W exists, because (W, f) is a cocone over pr1.
This proves the claim.

Therefore, since W is a weak colimit, by Claim 1 there is a function OutW : W→ (H W) satisfying:∏
(A,OutA):CoAlgi−1 H

∏
y:A

mapH (f (A,OutA)) (OutA y) = OutW (f (A,OutA) y) (3.22)

We have constructed (W,OutW) : CoAlgi H. It remains to show that the following type is inhabited:∏
(B,OutB):CoAlgi−1 H

CoAlgMor B W (3.23)

Let (B,OutB) : CoAlgi−1 H. We have to construct an H-coalgebra morphism from (B,OutB) to (W,OutW).
But (W, f) is a cocone over pr1 and (B,OutB) is in the family, which means we have:

f (B,OutB) : (pr1 (B,OutB))→W
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or equivalently, f (B,OutB) : B→W.
To show that f (B,OutB) is a morphism, we need to prove that the following diagram commutes:

B W

H B H W

OutB

f (B,OutB)

OutW

mapH (f (B,OutB))

Let y : B, or equivalently, y : pr1 (B,OutB). But this diagram is type (3.22) instantiated with (B, InB) and y.

Before ending this section, we have a remark regarding Lemma 3.3.6. This remark is similar to Remark 3.2.8.

Remark 3.3.7. Similar comments apply as in Remark 3.2.8. This time, strengthening (3.21) from a weak colimit
into a colimit seems to be useless, because a colimit will construct unique functions out of type W, while type (3.23)
will require to construct a unique function into type W, if we want a final coalgebra.

In spite of this, there is a way to construct a (lower level) final H-coalgebra out of a (lower level) weakly final
H-coalgebra. This is the subject of the following section.

N

3.3.2 Refining into a (lower level) final coalgebra

The previous section showed that any endofunctor has a LLWfinCoAlg. This section will explore if the result can
be strengthened to a final H-coalgebra.

In particular, this section will show that if we are given a LLWfinCoAlg for some functor H, then we can refine
it into a lower level final H-coalgebra. But also, if we are given a WfinCoAlg for some functor H, then we can refine
it into a final H-coalgebra.

First, we need to define the notions of “final coalgebra” this section will use.

Definition 3.3.8 ((Lower level) final H-coalgebra). Let H : Ui → Ui be a functor.

(i) Let 0 < k ≤ i be a universe level. Any term of type:

LLFinCoAlgk H :≡
∑

(W,OutW):CoAlgk H

∏
(B,OutB):CoAlgk−1 H

IsContr (CoAlgMor B W)

will be called a lower level final H-coalgebra (LLFinCoAlg for short) at level k.

(ii) Let k ≤ i be a universe level. Any term of type:

FinCoAlgk H :≡
∑

(W,OutW):CoAlgk H

∏
(B,OutB):CoAlgk H

IsContr (CoAlgMor B W)

will be called a final H-coalgebra (FinCoAlg for short) at level k. Notice this is just Definition 1.10.8, but we
repeat it here for convenience.

N

Convention 3.3.9. We will write lower level final H-coalgebras as (W,OutW,mc) instead of ((W,OutW),mc). The
same applies to final H-coalgebras.

N

Definition 3.3.8 is like Definition 3.3.4, with the exception that coalgebra morphisms are asserted to be unique,
i.e. type CoAlgMor B W is contractible (see Definition 1.8.1).

It is obvious that a FinCoAlg is a LLFinCoAlg (just by unfolding definitions), but the other way around is not
necessarily true. Although both concepts look superficially the same, LLFinCoAlgs are weaker than FinCoAlgs. A
LLFinCoAlg is not necessarily a “fixpoint” for its functor (see Corollary 3.3.34), but any FinCoAlg is a fixpoint for
its functor, as the following lemma shows.32

32This is dual to Lemma 3.2.11.
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Lemma 3.3.10 (Lambek). Let H : Ui → Ui be a functor. Let k ≤ i be a universe level, and (A,OutA,mc) : FinCoAlgk H
a final H-coalgebra. Then, H A and A are equivalent types. In other words, the following type is inhabited:

H A ' A

Proof. By Lemma 1.6.18, to prove that H A and A are equivalent, it is enough to construct two mutually inverse
functions (H A)→ A and A→ (H A).

We take OutA : A→ (H A) as the second function. It remains to define the first function.

To make H A an H-coalgebra, we require an “Out” function, consider:

mapH OutA : (H A)→ (H (H A))

Therefore, we can form the H-coalgebra (H A,mapH OutA) at level i.

This means we can apply term mc on coalgebra (H A,mapH OutA) to get a morphism (H A) → A. More
specifically, we have a morphism:

hm :≡ center (mc (H A,mapH OutA)) : CoAlgMor (H A) A

Therefore, we can define our second function as:

u :≡ pr1 hm : (H A)→ A

Notice that we also have a proof (pr2 hm) stating that the following diagram commutes:

H A A

H (H A) H A

mapH OutA

u

OutA

mapH u

(3.24)

Now, it remains to show that OutA and u are inverses of each other.

• Type
∏

w:A u (OutA w) = w is inhabited.

We have the two commutative squares:

A H A A

H A H (H A) H A

OutA

OutA

mapH OutA

u

OutA

mapH OutA mapH u

where the square on the right is Diagram (3.24), and the square on the left is the composition:

A H A H (H A)
OutA mapH OutA

written twice on the sides of the square (hence the left square trivially commutes).

This means that the “external” square commutes:

A A

H A H A

OutA

u ◦ OutA

OutA

(mapH u)◦(mapH OutA)
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which, by functorial mapping of H (see Definition 1.9.6), is equivalent to the commutative diagram:

A A

H A H A

OutA

u ◦ OutA

OutA

mapH (u ◦ OutA)

This last diagram claims that function u◦OutA is a coalgebra morphism from A to A. But the identity function
idA is also a coalgebra morphism from A to A (Lemma 1.10.7). Since A is a final H-coalgebra, we must have
that u ◦ OutA = idA holds, because morphisms from A to A are unique.

• Type
∏

w:H A OutA (u w) = w is inhabited.

Let w : H A. We have the following sequence of identifications:

OutA (u w)
(1)
= mapH u (mapH OutA w)

(2)
= mapH (u ◦ OutA) w

(3)
= mapH idA w

(4)
= id(H A)w

(5)
= w

where (1) follows by commutativity of Diagram (3.24), (2) by functorial mapping of H, (3) by the previous
case and function extensionality, (4) by functorial mapping of H on the identity function, and (5) by definition
of the identity function.

If we try to repeat Lambek’s Lemma for a LLFinCoAlg (A,OutA,mc), we will get stuck while defining function
(H A)→ A. The reason is that type H A is at level i. Therefore, we will not be able to apply mc on H A because mc
will expect a coalgebra at level i− 1. Later, we will construct a LLFinCoAlg for which the conclusion of Lambek’s
Lemma does not hold (see Corollary 3.3.34).

Before starting the refinement process, we need a couple of lemmas.

Lemma 3.3.11 (Coalgebra pushout square). Let H : Ui → Ui be a functor, k, l,m ≤ i universe levels, and
(A,OutA) : CoAlgk H, (B,OutB) : CoAlgl H, and (C,OutC) : CoAlgm H three H-coalgebras.

If h : A→ B and g : A→ C are two surjective33 coalgebra morphisms, then there is an H-coalgebra
(T,OutT) : CoAlgmax{k ,l,m} H and two surjective coalgebra morphisms pl : B→ T, pr : C→ T such that (pl ◦ h) ∼
(pr ◦ g).

In other words, given a diagram of coalgebras and surjective coalgebra morphisms:34

A C

B

h

g

this diagram can be completed into a commutative “pushout square” of coalgebras and surjective coalgebra mor-
phisms:35

A C

B T

h

g

pr

pl

33See Definition 1.11.9.
34From now on, surjective functions will be denoted by double-headed arrows (�) in diagrams.
35It is possible to prove the stronger result that coalgebra (T,OutT) satisfies the universal property for pushouts, but it will not be

needed on this report.
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Proof. Define:36

T :≡ Push h g : Umax{k ,l,m}

We have two functions:

h1 :≡ ((mapH pushl) ◦ OutB) : B→ (H T)

h2 :≡ ((mapH pushr) ◦ OutC) : C→ (H T)

Therefore, if we are able to prove
∏

a:A h1 (h a) = h2 (g a), by the recursion principle for pushouts (Lemma
1.11.22) we will have a function OutT : T→ (H T) satisfying:

OutT (pushl b) ≡ h1 b ≡ mapH pushl (OutB b)

OutT (pushr c) ≡ h2 c ≡ mapH pushr (OutC c)

for any b : B and c : C.
So, we need to prove that

∏
a:A h1 (h a) = h2 (g a) is inhabited, or equivalently:∏

a:A

mapH pushl (OutB (h a)) = mapH pushr (OutC (g a))

Let a : A. We have:

mapH pushl (OutB (h a))
(1)
= mapH pushl (mapH h (OutA a))

(2)
= mapH (pushl ◦ h) (OutA a)

(3)
= mapH (pushr ◦ g) (OutA a)

(4)
= mapH pushr (mapH g (OutA a))

(5)
= mapH pushr (OutC (g a))

where (1) holds because h is a coalgebra morphism, (2) follows by functorial mapping of H, (3) follows by the
higher constructor pushiden for Push h g (see Lemma 1.11.20) and function extensionality, (4) follows by functorial
mapping of H, and (5) holds because g is a coalgebra morphism.

Therefore, function OutT exists. Now, define:

pl :≡ pushl

pr :≡ pushr

Functions pl : B→ T and pr : C→ T are coalgebra morphisms, since we have by definition of T:

OutT (pl b) ≡ OutT (pushl b) ≡ mapH pushl (OutB b) ≡ mapH pl (OutB b)

OutT (pr c) ≡ OutT (pushr c) ≡ mapH pushr (OutC c) ≡ mapH pr (OutC c)

for any b : B and c : C.
Since functions h and g are surjective functions, we have that functions pl and pr are surjective functions, by

Lemma 1.11.23.
The pushout square commutes by the higher constructor pushiden for Push h g (see Lemma 1.11.20).

Lemma 3.3.12 (Coalgebra coequalizer diagram). Let H : Ui → Ui be a functor, k,m ≤ i universe levels, and
(A,OutA) : CoAlgk H, (B,OutB) : CoAlgm H two H-coalgebras.

If f : A→ B and g : A→ B are two coalgebra morphisms, then there is an H-coalgebra (T,OutT) : CoAlgmax{k ,m} H
and a surjective coalgebra morphism p : B→ T such that (p ◦ f) ∼ (p ◦ g).

36See Lemma 1.11.20.
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In other words, given a diagram of coalgebras and coalgebra morphisms:

A B
f

g

this diagram can be completed into a commutative “coequalizer diagram” of coalgebras and coalgebra morphisms:37

A B T
f

g

p

Proof. Define:38

T :≡ Coeq f g : Umax{k ,m}

We have a function:
h :≡ ((mapH coeq) ◦ OutB) : B→ (H T)

Therefore, if we are able to prove
∏

a:A h (f a) = h (g a), by the recursion principle for coequalizers (Lemma
1.11.18) we will have a function OutT : T→ (H T) satisfying:

OutT (coeq b) ≡ h b ≡ mapH coeq (OutB b)

for any b : B.
So, we need to prove that

∏
a:A h (f a) = h (g a) is inhabited, or equivalently:∏

a:A

mapH coeq (OutB (f a)) = mapH coeq (OutB (g a))

Let a : A. We have:

mapH coeq (OutB (f a))
(1)
= mapH coeq (mapH f (OutA a))

(2)
= mapH (coeq ◦ f) (OutA a)

(3)
= mapH (coeq ◦ g) (OutA a)

(4)
= mapH coeq (mapH g (OutA a))

(5)
= mapH coeq (OutB (g a))

where (1) holds because f is a coalgebra morphism, (2) follows by functorial mapping of H, (3) follows by the higher
constructor coeqiden for Coeq f g (see Definition 1.11.15) and function extensionality, (4) follows by functorial
mapping of H, and (5) holds because g is a coalgebra morphism.

Therefore, function OutT exists. Now, define:

p :≡ coeq

Function p : B→ T is a coalgebra morphism, since we have by definition of T:

OutT (p b) ≡ OutT (coeq b) ≡ mapH coeq (OutB b) ≡ mapH p (OutB b)

for any b : B.
By Lemma 1.11.19, function p is a surjective function because it is the constructor for the coequalizer.
The coequalizer diagram commutes by the higher constructor coeqiden for Coeq f g (see Definition 1.11.15).

Given a LLWfinCoAlg (or a WfinCoAlg) A, the refinement process into a LLFinCoAlg (FinCoAlg respectively)
will consist on the following steps:

37It is possible to prove the stronger result that coalgebra (T,OutT) satisfies the universal property for coequalizers, but it will not
be needed on this report.

38See Definition 1.11.15.
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1. Identify those terms in A that “behave the same way”. Denote the resultant type AF.

2. Prove that AF is an H-coalgebra.

3. Construct a coinduction principle for AF.

4. Use the coinduction principle to prove the finality of AF.

The last step is the only one where we need A to be a LLWfinCoAlg (or a WfinCoAlg). All other steps can be
performed with the weaker assumption that A is an H-coalgebra.

Step 1: Identify terms that behave the same way

Let (A,OutA) : CoAlgk H be a coalgebra, and w, y : A two terms. Many binary relations ≈ : A→ A → Propi can
be defined for expressing that terms w and y “behave the same way” (see [19]). The intention on defining such
“behavior” relation is that if we take the quotient of coalgebra A under the relation, we will be able to treat two
elements of A as the same if they behave the same way. On this report we will be interested on two “behavior”
relations: behavioral equivalence and bisimilarity.

To motivate both concepts, let us work for a moment in standard mathematics. Let SET be the category of sets,
and let us suppose we have a set A. Define the functor39 HA : SET→ SET as:

HA(X) = A×X
HA(f)(a, x) = (a, f(x))

where X is a set and f : C → D a function between sets C and D.
Let Aω be the set of countably infinite sequences on elements of A (Aω is also called the set of streams on A).

We denote elements of Aω as (a1, a2, a3, . . .), where a1, a2, a3, . . . ∈ A.
Let us define the head : Aω → A and tail : Aω → Aω functions as follows:

head(a1, a2, a3, . . .) = a1

tail(a1, a2, a3, . . .) = (a2, a3, a4, . . .)

This way, we can form an HA-coalgebra40 on Aω, by defining OutAω : Aω → HA(Aω) as follows:

OutAω (s) = (head(s), tail(s))

We can consider elements of Aω as sequences of observations: given s ∈ Aω, every time we apply head(s),
we get the current available observation in s; and every time we apply tail(s), we change s into its next state.
Therefore, to get the second available observation, apply head(tail(s)); to get the third available observation, apply
head(tail(tail(s))); and so on.

Given s, s′ ∈ Aω, what does it mean for s and s′ to “behave the same way”? Our intuition tells us that they
behave the same way if we cannot tell them apart from the point of view of observations, i.e. both match on their
first observation, on their second observation, on their third observation, etc.

So, we say that s and s′ are behaviorally equivalent if head(tailn(s)) = head(tailn(s′)) for every n ≥ 0, where
tailn is defined recursively as follows:

tail0(x) = x

tailn+1(x) = tailn(tail(x))

i.e. s and s′ are behaviorally equivalent if they match on all their observations.
We can express this more succinctly by defining the behavior function beh : Aω → Aω, which maps each x ∈ Aω

into its observation history :

beh(x) = (head(tail0(x)), head(tail1(x)), head(tail2(x)), . . .)

39See Definition 1.9.2.
40See Definition 1.10.1.
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so that s and s′ are behaviorally equivalent if and only if beh(s) = beh(s′).
The behavior function is a coalgebra morphism,41 since we have for any x ∈ Aω:

HA(beh)(OutAω (x)) = HA(beh)(head(x), tail(x))

= (head(x), beh(tail(x)))

= (head(x), (head(tail0(tail(x))), head(tail1(tail(x))),

head(tail2(tail(x))), . . .) )

= (head(x), (head(tail1(x)), head(tail2(x)),

head(tail3(x)), . . .) )

= (head(tail0(x)), (head(tail1(x)), head(tail2(x)),

head(tail3(x)), . . .) )

= (head(beh(x)), tail(beh(x)))

= OutAω (beh(x))

In fact, given s, s′ ∈ Aω, we have the following property: “Streams s and s′ are behaviorally equivalent if and
only if there is a coalgebra (T,OutT ) and two coalgebra morphisms f, g : Aω → T such that f(s) = g(s′)”.

For the ⇒ direction, just define T to be Aω, and define f and g to be the behavior function beh (which is a
coalgebra morphism). The proof for the ⇐ direction can be found at Example 2.6 in [11].

The above property is expressing: “To check that s and s′ are behaviorally equivalent, it is enough to find a
coalgebra (T,OutT ) encoding observation histories, and two coalgebra morphisms f, g : Aw → T acting as behavior
functions, in such a way that the observation histories of s and s′ are exactly the same (i.e. f(s) = g(s′))”.

This property allows the generalization of “behavioral equivalence” to arbitrary coalgebras, as we state in the
following candidate definition for behavioral equivalence. For the moment, we will express this candidate definition
in standard mathematics. Once we have our final definition, we will formalize it in HoTT.

Candidate definition 3.3.13 (Behavioral equivalence, version 1). Let H : SET→ SET be a functor. Let (A,OutA) be
an H-coalgebra and x, y ∈ A. We say that x and y are behaviorally equivalent if there is an H-coalgebra (T,OutT )
and two coalgebra morphisms f, g : A→ T such that f(x) = g(y).

N

In the literature, the concept of behavioral equivalence is defined for two arbitrary coalgebras, and not just for
one coalgebra as we did in the above candidate definition (see Definition 2.7 in [11], and Definition 163 in Chapter
6 of [7]). But this simplified version will be enough for the purposes on this report.

However, there is a small issue with version 1 of behavioral equivalence. The author took the idea of using
behavioral equivalence from [11], because, as shown in there, taking a quotient over behavioral equivalence produces
a coalgebra again. However, if we follow the results in [11], at some point we will need to provide a non-constructive
proof for the following statement:

“Let (A,OutA) and (B,OutB) be two coalgebras (where A 6= ∅) and f : A → B a coalgebra morphism. Then,
f can be factorized into a surjective coalgebra morphism s : A → I, followed by an injective coalgebra morphism
i : I → B:

A I Bs

f

i

where (I,OutI) is some coalgebra”.
Although we will not do the details,42 the proof for this statement defines I to be the image f [A], function s to

be the codomain restriction of f to f [A], and i to be the inclusion function f [A]→ B. Then, the proof asserts that
the inclusion function i has a left inverse, and then proceeds to define function OutI by using the left inverse of
i. In classical mathematics, it is true that inclusion functions with non-empty domain have left inverses. However,
this is not necessarily true in constructive mathematics, because defining a left inverse for an arbitrary inclusion
function requires the law of excluded middle.

41See Definition 1.10.2.
42Details for the proof can be found at Lemma 3.5 in [11].
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So, if we want to avoid excluded middle, we need to avoid using the above statement in our development. One
way to accomplish this is to make sure that all coalgebra morphisms in our argument are always surjective. This
way, we will not need to factorize them through a surjective function (since they are already surjective functions).
It turns out that the only thing we need to do to guarantee this “surjective coalgebra morphism property” is to
change the candidate definition for behavioral equivalence as follows.

Candidate definition 3.3.14 (Behavioral equivalence, version 2). Let H : SET→ SET be a functor. Let (A,OutA) be
an H-coalgebra and x, y ∈ A. We say that x and y are behaviorally equivalent if there is an H-coalgebra (T,OutT )
and two surjective coalgebra morphisms f, g : A→ T such that f(x) = g(y).

N

In other words, we will require both morphisms f, g to be surjective.
It turns out that, classically, the two versions for behavioral equivalence are logically equivalent. It is obvious

that version 2 implies version 1. However, to prove version 2 from version 1 we need to use excluded middle. We
omit the proof as it is not critical for our development.

We can now express behavioral equivalence (version 2) in HoTT.

Definition 3.3.15 (Pure behavioral equivalence). Let H : Ui → Ui be a functor, k, l ≤ i universe levels, and
(A,OutA) : CoAlgk H an H-coalgebra.

Let w, y : A be two terms. We define type:

PurelyBehEquivl w y :≡
∑

(T,OutT):CoAlgl H

∑
(f,mf),(g,mg):CoAlgMor A T

(IsSurjection f)× (IsSurjection g)× (f w = g y)

If type (PurelyBehEquivl w y) is inhabited, we say that w and y are purely behaviorally equivalent.43

N

A second concept that also captures an idea of “similar behavior” is bisimilarity. Behavioral equivalence expresses
that x and y have exactly the same global observation history, while bisimilarity states that x and y observationally
imitate each other, but locally. To make this statement clear, let us work with HA-coalgebra (Aω, OutAω ), as we
did with behavioral equivalence.

Let s, s′ ∈ Aω be two streams. After we observe the head of s using head(s), the next state of s is represented
by tail(s). We can ask ourselves if s′ can match or imitate the action we just did for s, i.e. after observing the head
of s′, head(s′) is exactly head(s), and we can repeat this process, but now starting at states tail(s) and tail(s′). If
we can indefinitely continue this process, then s′ can simulate or imitate all observations encoded in s.

Now, to show that s can simulate all observations encoded in s′, we reverse the roles of s′ and s. In other words,
we observe head(s′), which forces s′ to change its state to tail(s′). Then, we ask ourselves if s can imitate the action
we just did for s′, or in other words, after observing the head of s, head(s) is exactly head(s′), and we can repeat
this process, but now starting at states tail(s′) and tail(s).

This informal explanation is formally captured by the concepts of bisimulation and bisimilar streams, which we
explain next.

Let R ⊆ Aω ×Aω be a binary relation. We say that R is a bisimulation if the following two clauses hold:

• For every (a, b) ∈ R, we have head(a) = head(b) and (tail(a), tail(b)) ∈ R.

• For every (a, b) ∈ R−1, we have head(a) = head(b) and (tail(a), tail(b)) ∈ R−1.

where R−1 = {(b, a) | (a, b) ∈ R} is the inverse of R. We say that s and s′ in Aω are bisimilar if there is some
bisimulation R ⊆ Aω ×Aω such that (s, s′) ∈ R.

The first clause expresses that for any pair (a, b) in R, stream b simulates or imitates stream a, because b has
the same head as a and we can repeat the process on their tails. The informal statement “repeat the process” is
captured by condition (tail(a), tail(b)) ∈ R, because the first clause needs to be satisfied for every pair in R.

43The word purely is a convention in HoTT to emphasize that all our Σ-types are interpreted as constructive existentials, see Remark
1.5.30. We added the word “pure” to differentiate it from a (−1)-truncated version we will define later, i.e. a version that uses classical
existentials, see Remark 1.11.5.
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Similarly, the second clause states that for any pair (a, b) in R, stream a simulates or imitates stream b, because
we are “reversing the roles” of the streams by working in the inverse relation R−1.

In other words, R is a bisimulation if every pair in R consists of two elements in Aω that “imitate or simulate
each other”. Hence, two streams are bisimilar if there is a bisimulation showing that they “simulate each other”.

Notice that the second clause in the definition of bisimulation is superfluous, because given (a, b) ∈ R−1 we can
conclude (b, a) ∈ R, which implies that head(b) = head(a) and (tail(b), tail(a)) ∈ R by the first clause. Therefore,
(tail(a), tail(b)) ∈ R−1 as required. However, bear in mind that other coalgebras will have a non-superfluous second
clause. It just happens that for the particular case of streams, their definition of bisimulation is quite simple.

Therefore, we can simplify the definition as follows. Let R ⊆ Aω ×Aω be a binary relation. R is a bisimulation
if for every (a, b) ∈ R, we have that head(a) = head(b) and (tail(a), tail(b)) ∈ R.

In order to reach a definition of bisimulation that applies to arbitrary coalgebras, we now prove that stream
bisimulations R ⊆ Aω × Aω are characterized by the following property. “R is a bisimulation if and only if R
can be given a coalgebraic structure (i.e. there is a function OutR : R → HA(R)) such that the first and second
projections pr1, pr2 : R→ Aω are coalgebra morphisms”.

First, we prove direction ⇒.
Define OutR(a, b) = ( head(a), (tail(a), tail(b)) ). Notice that OutR is well-defined, because whenever we have

(a, b) ∈ R, it must hold (tail(a), tail(b)) ∈ R, since R is a bisimulation by hypothesis.
Now, pr1 and pr2 are coalgebra morphisms, because:

OutAω (pr1(a, b)) = (head(a), tail(a))

= HA(pr1)( head(a), (tail(a), tail(b)) )

= HA(pr1)(OutR(a, b))

OutAω (pr2(a, b)) = (head(b), tail(b))

= (head(a), tail(b))

= HA(pr2)( head(a), (tail(a), tail(b)) )

= HA(pr2)(OutR(a, b))

where we used the fact that head(a) = head(b).

Now, we prove direction ⇐.
Let (a, b) ∈ R. Since pr1 and pr2 are morphisms, we have:

HA(pr1)(OutR(a, b)) = OutAω (pr1(a, b)) = (head(a), tail(a))

HA(pr2)(OutR(a, b)) = OutAω (pr2(a, b)) = (head(b), tail(b))

But we also have by definition of functor HA:

HA(pr1)(OutR(a, b)) = HA(pr1)( pr1(OutR(a, b)), pr2(OutR(a, b)) )

= ( pr1(OutR(a, b)), pr1(pr2(OutR(a, b))) )

HA(pr2)(OutR(a, b)) = HA(pr2)( pr1(OutR(a, b)), pr2(OutR(a, b)) )

= ( pr1(OutR(a, b)), pr2(pr2(OutR(a, b))) )

Which implies:

head(a) = pr1(OutR(a, b)) = head(b)

tail(a) = pr1(pr2(OutR(a, b)))

tail(b) = pr2(pr2(OutR(a, b)))

But ( pr1(pr2(OutR(a, b))), pr2(pr2(OutR(a, b))) ) = pr2(OutR(a, b)) ∈ R, which means (tail(a), tail(b)) ∈ R.
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The generalization of bisimulation to arbitrary coalgebras is based on the above characterization for stream
bisimulations. The following candidate definition is due to Mendler and Aczel (see Definition 2.7.1 in [17]).

Candidate definition 3.3.16 (Bisimulation, version 1). Let H : SET → SET be a functor. Let (A,OutA) be an
H-coalgebra.

Let R ⊆ A × A be a binary relation. We say that R is a bisimulation if there is a function OutR : R → H(R)
(hence, (R,OutR) is an H-coalgebra) such that the first and second projections pr1, pr2 : R → A are coalgebra
morphisms.

N

In the literature, the standard concept of bisimulation is defined for relations R ⊆ A×B, where A and B may
be different sets. Instead, the above candidate definition makes use of relations in only one set R ⊆ A × A. This
simplified version will be enough for the purposes on this report.

Bisimulation can be rewritten in an equivalent form, as follows.

Candidate definition 3.3.17 (Bisimulation, version 2). Let H : SET → SET be a functor. Let (A,OutA) be an
H-coalgebra.

Let R ⊆ A× A be a binary relation. We say that R is a bisimulation if for every (a, b) ∈ R, there is t ∈ H(R)
such that OutA(a) = H(pr1)(t) and OutA(b) = H(pr2)(t).

N

Classically, both versions of bisimulation are logically equivalent. For direction “version 1 ⇒ version 2”, define
t to be OutR(a, b). For direction “version 1 ⇐ version 2”, use the axiom of choice to construct the function
OutR : R→ H(R).

With the notion of bisimulation (version 2), we can now define bisimilarity.

Candidate definition 3.3.18 (Bisimilarity). Let H : SET→ SET be a functor. Let (A,OutA) be an H-coalgebra, and
x, y ∈ A two elements.

We say that x and y are bisimilar if there is a bisimulation R ⊆ A×A such that (x, y) ∈ R.
N

Bisimulation (version 2) and bisimilarity can be expressed in HoTT as follows.

Definition 3.3.19 (Bisimulation). Let H : Ui → Ui be a functor, k,m ≤ i universe levels, (A,OutA) : CoAlgk H an
H-coalgebra, and R : (A× A)→ Um a binary type family.44

We define type:

IsBisimu R :≡
∏

a,b:A

(R (a, b))→

 ∑
t: H

∑
z:A×A

R z

(OutA a = mapH (pr1 ◦ pr1) t)× (OutA b = mapH (pr2 ◦ pr1) t)


When type IsBisimu R is inhabited, we say that R is a bisimulation.

N

Type H
∑

z:A×A R z represents H(R) in Candidate definition 3.3.17. Notice
∑

z:A×A R z is at level max{k,m} ≤ i,
which means H can be applied on it. Also, to extract the first and second coordinates of A× A in

∑
z:A×A R z we

have to use pr1 ◦ pr1 and pr2 ◦ pr1, respectively.

Definition 3.3.20 (Bisimilarity). Let H : Ui → Ui be a functor, k,m ≤ i universe levels, and (A,OutA) : CoAlgk H
an H-coalgebra.

Let w : A, and y : A be two terms. We define type:

Bisimm w y :≡
∑

R:(A×A)→Um

(R (w, y))× (IsBisimu R)

When type (Bisimm w y) is inhabited, we say that w and y are bisimilar.
N

44We will use type families of type (A× A)→ Propm instead of A→ A→ Propm , as this produces more symmetrical conditions in
the definition of bisimulation.
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Bisimilarity always implies pure behavioral equivalence, as the following lemma shows.

Lemma 3.3.21. Let H : Ui → Ui be a functor, k,m ≤ i universe levels, (A,OutA) : CoAlgk H an H-coalgebra, and
w : A, y : A two terms. Then, the following type is inhabited:

(Bisimm w y)→ (PurelyBehEquivmax{k ,m} w y)

Proof. By Σ-recursion, it is enough to prove (PurelyBehEquivmax{k ,m} w y) given R : (A× A)→ Um with h1 : R (w, y)
and h2 : IsBisimu R.

First, we construct two surjective coalgebra morphisms:

m1,m2 : T→ A

where (T,OutT) is some H-coalgebra.
Define:

T :≡

( ∑
z:A×A

R z

)
+

( ∑
z:A×A

pr1 z = pr2 z

)
which is a type at level max{k,m} ≤ i (see Remarks 1.5.29 and 1.5.37).

We need to define an Out function for T so that it becomes an H-coalgebra.
Define f1 :

(∑
z:A×A R z

)
→ (H T) as the composition:

( ∑
z:A×A

R z

) (
H
∑

z:A×A

R z

)
H T

f′1 mapH inl

where inl is the left injection constructor for sum types, and f ′1 is defined by Σ-recursion (Lemma 1.5.25), applied
twice:

f ′1 ((a, b), p) :≡ pr1 (h2 a b p)

for a, b : A and p : R (a, b).
Define f2 :

(∑
z:A×A pr1 z = pr2 z

)
→ (H T) as the composition:

( ∑
z:A×A

pr1 z = pr2 z

)
A× A A H A H T

pr1 pr1 OutA mapH f′2

where f ′2 is defined as:

f ′2 :≡ (λa :A. inr ((a, a), reflA a)) : A→ T

We can now define the OutT : T→ (H T) function by recursion on sum types (Lemma 1.5.36):

OutT (inl a) :≡ f1 a

OutT (inr b) :≡ f2 b

for a :
∑

z:A×A R z and b :
∑

z:A×A pr1 z = pr2 z.
Now, we need to define our two surjective coalgebra morphisms m1,m2 : T → A. We define them by recursion

on sum types:

m1 (inl a) :≡ pr1 (pr1 a)

m1 (inr b) :≡ pr1 (pr1 b)

and:

m2 (inl a) :≡ pr2 (pr1 a)

m2 (inr b) :≡ pr2 (pr1 b)
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Next, we prove that m1 and m2 are coalgebra morphisms (the case for m2 is similar to the case for m1, so we
will only show the proof for m1).

We have to prove that the following diagram commutes:

T A

H T H A

m1

OutT OutA

mapH m1

By induction on sum types (Lemma 1.5.35) we need to prove a left case and a right case.

• Given q :
∑

z:A×A R z, prove that the following type is inhabited:

OutA (m1 (inl q)) = mapH m1 (OutT (inl q))

By Σ-induction applied twice, it is enough to prove (for any a, b : A and p : R (a, b)):

OutA (m1 (inl ((a, b), p))) = mapH m1 (OutT (inl ((a, b), p)))

But we have by definition of m1:

OutA (m1 (inl ((a, b), p))) ≡ OutA (pr1 (pr1 ((a, b) p))) ≡ OutA a

And also:

mapH m1 (OutT (inl ((a, b), p)))
(1)
= mapH m1 (f1 ((a, b), p))

(2)
= mapH m1 (mapH inl (pr1 (h2 a b p)))

(3)
= mapH (m1 ◦ inl) (pr1 (h2 a b p))

(4)
= mapH (λt. m1 (inl t)) (pr1 (h2 a b p))

(5)
= mapH (λt. pr1 (pr1 t)) (pr1 (h2 a b p))

(6)
= mapH (pr1 ◦ pr1) (pr1 (h2 a b p))

(7)
= OutA a

where (1) follows by definition of OutT, (2) by definition of f1, (3) by functorial mapping of H, (4) by definition
of function composition, (5) by definition of m1, (6) by definition of function composition, and (7) holds because
R is a bisimulation, i.e. we have a proof:

pr1 (pr2 (h2 a b p)) : OutA a = mapH (pr1 ◦ pr1) (pr1 (h2 a b p))

• Given q :
∑

z:A×A pr1 z = pr2 z, prove that the following type is inhabited:

OutA (m1 (inr q)) = mapH m1 (OutT (inr q))

By Σ-induction applied twice, it is enough to prove:

OutA (m1 (inr ((a, b), p))) = mapH m1 (OutT (inr ((a, b), p)))

for any a, b : A and p : pr1 (a, b) = pr2 (a, b), or equivalently, p : a = b.

But we have by definition of m1:

OutA (m1 (inr ((a, b), p))) ≡ OutA (pr1 (pr1 ((a, b) p))) ≡ OutA a



3.3. COINDUCTIVE TYPES 199

And also:

mapH m1 (OutT (inr ((a, b), p)))
(1)
= mapH m1 (f2 ((a, b), p))

(2)
= mapH m1 (mapH f ′2 (OutA a))

(3)
= mapH (m1 ◦ f ′2) (OutA a)

(4)
= mapH (λt. m1 (f ′2 t)) (OutA a)

(5)
= mapH (λt. m1 (inr ((t, t), reflA t))) (OutA a)

(6)
= mapH (λt. t) (OutA a)

(7)
= OutA a

where (1) follows by definition of OutT, (2) by definition of f2, (3) by functorial mapping of H, (4) by definition
of function composition, (5) by definition of f ′2, (6) by definition of m1, and (7) by functorial mapping of H on
the identity function.

Now, we need to check that m1 and m2 are surjective functions (we will only show the proof for m1, as the proof
for m2 is identical).

Let a : A, we have to show that the following type is inhabited:∥∥∥∥∥∑
t:T

m1 t = a

∥∥∥∥∥
But we have p1 :≡ inr ((a, a), reflA a) : T, and also reflA a : m1 p1 = a, since m1 p1 ≡ m1 (inr ((a, a), reflA a)) ≡ a

by definition of m1.
Hence, we have:

|(p1, reflA a)| :

∥∥∥∥∥∑
t:T

m1 t = a

∥∥∥∥∥
Therefore, we have a diagram of coalgebras and surjective coalgebra morphisms:

T A

A

m2

m1

which, by Lemma 3.3.11, can be completed into a commutative “pushout square” of coalgebras and surjective
coalgebra morphisms:

T A

A Q

m2

m1 pr

pl

(3.25)

where Q is some coalgebra at level max{k,m}.
Since we have two surjective coalgebra morphisms pl, pr : A→ Q, if we can prove that pl w = pr y is inhabited,

type (PurelyBehEquivmax{k ,m} w y) will be inhabited by definition.
But we have:

pl w
(1)
= pl (m1 (inl ((w, y), h1)))

(2)
= pr (m2 (inl ((w, y), h1)))

(3)
= pr y

where (1) follows by definition of m1,45 (2) by commutativity of Diagram (3.25), and (3) by definition of m2.

45In more detail, m1 (inl ((w, y), h1)) ≡ w, where h1 : R (w, y) is an hypothesis given at the start of the proof.
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However, behavioral equivalence does not imply bisimilarity in general. For the concepts to coincide, functor H
needs to preserve weak pullbacks (see Definition 175 and Theorem 177 in Chapter 6 of [7]).

Also, behavioral equivalence is always an equivalence relation.46 However, on this report we will not need to
make use of this fact.

To the contrary, bisimilarity is not an equivalence relation in general, as transitivity may fail. However, if functor
H preserves weak pullbacks, bisimilarity will be an equivalence relation, since bisimilarity coincides with behavioral
equivalence on this case (see Theorem 177 in Chapter 6 of [7]).

Behavioral equivalence has the following useful property.

Lemma 3.3.22. Let H : Ui → Ui be a functor, k,m ≤ i universe levels, (A,OutA) : CoAlgk H an H-coalgebra, and
w : A, y : A two terms.

If (PurelyBehEquivm w y) is inhabited, then there is an H-coalgebra (Q,OutQ) : CoAlgmax{k ,m} H and a surjective
coalgebra morphism q : A→ Q such that q w = q y.

Proof. By definition of (PurelyBehEquivm w y), there is an H-coalgebra (T,OutT) at level m, and two surjective
coalgebra morphisms:

A T
h

g

such that h w = g y is inhabited.
By Lemma 3.3.12, this diagram can be completed into a commutative “coequalizer diagram” of coalgebras and

surjective coalgebra morphisms:

A T Q
h

g

p
(3.26)

where (Q,OutQ) is some coalgebra at level max{k,m}.
Now, define q :≡ p ◦ h. It remains to show that q is a surjective coalgebra morphism and that q w = q y is

inhabited.
Function q is a coalgebra morphism because it is the composition of two coalgebra morphisms (Lemma 1.10.6).
Function q is surjective because it is the composition of two surjective functions (Lemma 1.11.11).
And we have:

q w
(1)
= p (h w)

(2)
= p (g y)

(3)
= p (h y)

(4)
= q y

where (1) follows by definition of q, (2) holds since h w = g y is inhabited by definition of (PurelyBehEquivm w y),
(3) follows by commutativity of Diagram (3.26), and (4) by definition of q.

One of our goals is to build a coinduction principle (this will be achieved at Step 3), which states something
like: “If w and y behave the same way, then w = y”. So, the natural way to proceed is to take a quotient over
the “similar behavior” relation, as we want to identity terms that behave the same way. When A is a weakly final
H-coalgebra (or LLWfinCoAlg), the quotient of A over the “similar behavior” relation will be our candidate for the
final H-coalgebra (or LLFinCoAlg).

However, we have now two possible concepts for “similar behavior”: behavioral equivalence and bisimilarity.47

Which one should we use?
It is known that behavioral equivalence produces quotients that are coalgebras again [11]. Also, since behavioral

equivalence is always an equivalence relation while bisimilarity may not be, it seems that behavioral equivalence
is “better behaved” for the task. However, note that if we assume that functor H preserves weak pullbacks (see

46Reflexivity and symmetry follow directly from the definition. For a proof of transitivity, see Lemma 3.4 in [11].
47Remember that whenever a quotient is taken in HoTT (Lemma 1.11.24), the binary relation is not required to be an equivalence

relation, as the quotient is defined over the smallest equivalence relation containing the given relation.
Therefore, we can still define a quotient using bisimilarity, even though bisimilarity fails to be an equivalence relation.
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Definition 175 in Chapter 6 of [7]), we will be able to prove that H has a final coalgebra when bisimilarity is taken
as the quotient relation. The reason is that bisimilarity and behavioral equivalence coincide when H preserves weak
pullbacks. However, it is unknown to the author if we can get a final coalgebra by using bisimilarity when the weak
pullback preservation property is dropped.

Therefore, we will use behavioral equivalence as our quotient relation. The reader might be asking what is the
point of introducing bisimilarity if we are going to discard it anyway. Once we have a coinduction principle in terms
of behavioral equivalence, then it is an easy corollary of Lemma 3.3.21 that we also have a coinduction principle
that uses bisimilarity. It is easier to work with bisimilarity than with behavioral equivalence, as bisimilarity requires
less conditions than behavioral equivalence.

To define a quotient over a relation, the relation is required to have type A→ A→ Propn (see Lemma 1.11.24),
where n is some universe level. Therefore, given a functor H : Ui → Ui and an H-coalgebra (A,OutA) at level k ≤ i,
we need to (−1)-truncate pure behavioral equivalence:

λ(w :A)(y :A). ‖PurelyBehEquivi w y‖ (3.27)

We know ‖PurelyBehEquivi w y‖ is a proposition at level i + 1, because type CoAlgi H is at level i + 1, type
CoAlgMor A T is at level i for any coalgebra T at level i, and types IsSurjection f, IsSurjection g, and f w = g y are
at level i for any morphisms f and g.48

This means that the quotient of A over relation (3.27) will be at level max{k, i + 1} = i + 1 > i (see Lemma
1.11.24). But, for our development to work, we will require that the quotient does not exceed the input level i of
functor H. Therefore, relation (3.27) will be resized as follows.

Definition 3.3.23 (Behavioral equivalence). Let H : Ui → Ui be a functor, k ≤ i a universe level, and
(A,OutA) : CoAlgk H an H-coalgebra.

We define behavioral equivalence to be the binary relation:49

BehEquiv :≡ λ(w :A)(y :A).
(
GPropRi+1

i

)−1 ‖PurelyBehEquivi w y‖

having type A → A → Propi . When proposition (BehEquiv w y) is inhabited for w, y : A, we say that w and y are
behaviorally equivalent.

N

We can now define the quotient.

Definition 3.3.24. Let H : Ui → Ui be a functor, k ≤ i a universe level, and (A,OutA) : CoAlgk H an H-coalgebra.
We define type:

AF :≡ (A/BehEquiv) : Ui
N

Term AF is well-typed because it is at level max{k, i} = i, by Lemma 1.11.24.

Step 2: Prove AF is an H-coalgebra

First, we prove a lemma stating that the quotient constructor [ ] : A → AF factorizes through surjective coalgebra
morphisms.

Lemma 3.3.25. Let H : Ui → Ui be a functor, k,m ≤ i universe levels, and (A,OutA) : CoAlgk H,
(B,OutB) : CoAlgm H two H-coalgebras.

Let h : A→ B be a surjective coalgebra morphism. Then, there is a function g : B→ AF such that [ ] ∼ (g ◦ h).

Proof. Since there is no obvious recursion principle to help us define a function out of B (as B is arbitrary), we will
use the Principle of unique choice (Lemma 1.11.8) and the Choice Theorem (Theorem 1.11.6) to define g.

Define:

P :≡ λw :B.
∑
y:AF

∥∥∥∥∥∑
c:A

([c] = y)× (h c = w)

∥∥∥∥∥
48Regarding computation of universe levels, see Remarks 1.5.16, 1.5.29, Definition 1.11.1, and the formation rule for identity types

on page 45.
49GPropRi+1

i is the propositional resizing equivalence of Lemma 1.8.22.
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P is stating what g should do to every input w: “The required function should map w : B into some y : AF such
that y can be put in the form [c] for some c : A, in such a way that h c = w, i.e. if we had our function g, then
g w = g (h c) = [c]”.

Claim 1: Type
∏

w:B IsProp (P w) is inhabited.
Let w : B. We need to prove

∏
p1,p2:P w (p1 = p2). By Σ-induction (Lemma 1.5.24), it is enough to prove:∏

y1:AF

∏
py1:

∥∥∥∥∑
c:A

([c]=y1)×(h c=w)

∥∥∥∥
∏

y2:AF

∏
py2:

∥∥∥∥∑
c:A

([c]=y2)×(h c=w)

∥∥∥∥
(y1, py1) = (y2, py2)

Since ‖
∑

c:A ([c] = y)× (h c = w)‖ is a mere proposition for every y : AF, by Lemma 1.8.14, it is enough to prove:∏
y1:AF

∏
py1:

∥∥∥∥∑
c:A

([c]=y1)×(h c=w)

∥∥∥∥
∏

y2:AF

∏
py2:

∥∥∥∥∑
c:A

([c]=y2)×(h c=w)

∥∥∥∥
y1 = y2

or equivalently, after simplifying notation and rearranging quantified variables:

∏
y1,y2:AF

∥∥∥∥∥∑
c:A

([c] = y1)× (h c = w)

∥∥∥∥∥→
∥∥∥∥∥∑

c:A

([c] = y2)× (h c = w)

∥∥∥∥∥→ (y1 = y2)

Let y1, y2 : AF. We know (y1 = y2) is a mere proposition, since AF is a set (see Lemmas 1.11.24 and 1.8.17).
Also, since mere propositions are closed under the arrow type (Lemma 1.8.17), by (−1)-recursion (Corollary 1.11.4)
applied twice, it is enough to prove:(∑

c:A

([c] = y1)× (h c = w)

)
→

(∑
c:A

([c] = y2)× (h c = w)

)
→ (y1 = y2)

but, by Σ-recursion (Lemma 1.5.25), it is enough to prove:∏
c1,c2:A

([c1] = y1)→ (h c1 = w)→ ([c2] = y2)→ (h c2 = w)→ (y1 = y2)

Let c1, c2 :A with the following inhabited types:

[c1] = y1 h c1 = w

[c2] = y2 h c2 = w
(3.28)

Therefore, to prove (y1 = y2), it is enough to prove [c1] = [c2]. But, by the higher constructor for quotients
quotiden (see Lemma 1.11.24), it is enough to prove that (BehEquiv c1 c2) is inhabited.

By Lemma 1.8.23 and the (−1)-truncation constructor | | (Definition 1.11.1), it is enough to prove that
(PurelyBehEquivi c1 c2) is inhabited.

By hypothesis, we have a coalgebra (B,OutB) at level m ≤ i (hence, at level i), and a surjective coalgebra
morphism h : A→ B. Therefore, by definition of PurelyBehEquivi c1 c2, it remains to show that type h c1 = h c2 is
inhabited (we use h twice in the definition of PurelyBehEquivi c1 c2).

But h c1 = w and w = h c2 are inhabited by (3.28).
This proves the claim.

Claim 2: Type
∏

w:B ‖P w‖ is inhabited.
Let w : B. Since h is surjective, type ‖

∑
c:A h c = w‖ is inhabited. So, we will be done if we can prove that the

following type is inhabited: ∥∥∥∥∥∑
c:A

h c = w

∥∥∥∥∥→ ‖P w‖
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By (−1)-truncation recursion (Corollary 1.11.4) and Σ-recursion, it is enough to prove:∏
c:A

(h c = w)→ ‖P w‖

Let c : A with cp : h c = w. Then, we have:

|( [c], |(c, reflAF
[c], cp)| )| : ‖P w‖

This proves the claim.

Therefore, by Claims 1 and 2 and the Principle of unique choice (Lemma 1.11.8), the following type is inhabited:

∏
w:B

∑
y:AF

∥∥∥∥∥∑
c:A

([c] = y)× (h c = w)

∥∥∥∥∥
Then, by Theorem 1.11.6, the following type is inhabited:

∑
g:B→AF

∏
w:B

∥∥∥∥∥∑
c:A

([c] = g w)× (h c = w)

∥∥∥∥∥
In other words, we have a function g : B→ AF, and a term:

t :
∏
w:B

∥∥∥∥∥∑
c:A

([c] = g w)× (h c = w)

∥∥∥∥∥
It remains to show that [ ] ∼ (g ◦ h) is inhabited. Let z : A. We have to prove [z] = g (h z). First, we have:

t (h z) :

∥∥∥∥∥∑
c:A

([c] = g (h z))× (h c = h z)

∥∥∥∥∥
Therefore, we will be done if we can prove that the following type is inhabited:∥∥∥∥∥∑

c:A

([c] = g (h z))× (h c = h z)

∥∥∥∥∥→ ([z] = g (h z))

We know [z] = g (h z) is a mere proposition, because AF is a set. Hence, by (−1)-truncation recursion and
Σ-recursion, it is enough to prove:∏

c:A

([c] = g (h z))→ (h c = h z)→ ([z] = g (h z))

Let c : A with the following inhabited types:

[c] = g (h z) h c = h z (3.29)

By hypothesis, we have a coalgebra (B,OutB) at level m ≤ i (hence, at level i), and a surjective coalgebra
morphism h : A→ B. Also, we have h c = h z by (3.29), which means (PurelyBehEquivi c z) is inhabited (we use h
twice in the definition of PurelyBehEquivi c z).

Hence, by the (−1)-truncation constructor | | and Lemma 1.8.23, type (BehEquiv c z) is inhabited. Then, by the
higher constructor for quotients quotiden, type [c] = [z] is inhabited.

So, we have [z] = [c] and [c] = g (h z) by (3.29). Therefore, [z] = g (h z) is inhabited.

We proceed to prove that AF is an H-coalgebra.
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Lemma 3.3.26. Let H : Ui → Ui be a set-preserving50 functor, k ≤ i a universe level, and (A,OutA) : CoAlgk H an
H-coalgebra. Then, there is a function OutAF

: AF → (H AF).

In other words, (AF,OutAF
) is an H-coalgebra at level i.

Proof. We will define OutAF
by the recursion principle for quotients (Lemma 1.11.26).

Observe that H AF is a set, because H is a set-preserving functor and AF is a set (see Lemma 1.11.24).

First, define function h : A→ (H AF) as the composition:

A H A H AF
OutA mapH [ ]

If we can prove that the following type is inhabited:∏
a,b:A

(BehEquiv a b)→ (h a = h b)

or equivalently: ∏
a,b:A

(BehEquiv a b)→ (mapH [ ] (OutA a) = mapH [ ] (OutA b))

then, by the recursion principle for quotients, there will be a function OutAF
: AF → (H AF), such that for every a : A

it will satisfy:

OutAF
[a] ≡ h a ≡ mapH [ ] (OutA a) (3.30)

Let a, b : A. By Lemma 1.8.24 and (−1)-truncation recursion (Corollary 1.11.4), it is enough to prove:

(PurelyBehEquivi a b)→ (mapH [ ] (OutA a) = mapH [ ] (OutA b))

So, suppose (PurelyBehEquivi a b). Then, by Lemma 3.3.22, there is an H-coalgebra (Q,OutQ) at level
max{k, i} = i and a surjective coalgebra morphism q : A→ Q such that q a = q b is inhabited.

But then, by Lemma 3.3.25, the quotient constructor [ ] factorizes through q, i.e. there is some function
g : Q→ AF such that [ ] ∼ (g ◦ q). Hence, [ ] = g ◦ q is inhabited by function extensionality.

Therefore, we have:

mapH [ ] (OutA a)
(1)
= mapH (g ◦ q) (OutA a)

(2)
= mapH g (mapH q (OutA a))

(3)
= mapH g (OutQ (q a))

(4)
= mapH g (OutQ (q b))

(5)
= mapH g (mapH q (OutA b))

(6)
= mapH (g ◦ q) (OutA b)

(7)
= mapH [ ] (OutA b)

where (1) and (7) hold because [ ] = g ◦ q is inhabited, (2) and (6) hold by functorial mapping of H, (3) and (5)
hold because q : A→ Q is a coalgebra morphism, and (4) holds because q a = q b is inhabited.

We have the following corollary.

Corollary 3.3.27. Let H : Ui → Ui be a set-preserving functor, k ≤ i a universe level, and (A,OutA) : CoAlgk H an
H-coalgebra. Then, the quotient constructor [ ] : A→ AF is a coalgebra morphism.

50See Definition 1.9.9.
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In other words, we have a commutative diagram:

A AF

H A H AF

[ ]

OutA OutAF

mapH [ ]

Proof. By definition of OutAF
, as it satisfies equation (3.30) in the proof of Lemma 3.3.26.

Step 3: Construct a coinduction principle for AF

We will have two coinduction principles, one using behavioral equivalence, and another one using bisimilarity.

Lemma 3.3.28 (Coinduction principle, behavioral equivalence version). Let H : Ui → Ui be a set-preserving functor,
k,m ≤ i universe levels, and (A,OutA) : CoAlgk H an H-coalgebra. Then, the following type is inhabited:51∏

w,y:AF

(PurelyBehEquivm w y)→ (w = y)

Proof. Since AF is a set, type w = y is a mere proposition for every w, y : AF. Also, mere propositions are closed
under Π-types by Lemma 1.8.17. Therefore, we can apply the induction principle for quotients (Lemma 1.11.25)
twice, so that it is enough to prove:∏

w,y:A

(PurelyBehEquivm [w] [y])→ ([w] = [y])

Let w, y : A with (PurelyBehEquivm [w] [y]). To prove [w] = [y], it is enough to prove (BehEquiv w y) by the higher
constructor quotiden for quotients (see Lemma 1.11.24).

By Lemma 1.8.23 and the (−1)-truncation constructor | |, it is enough to prove (PurelyBehEquivi w y).

Now, since (PurelyBehEquivm [w] [y]) is inhabited, there is an H-coalgebra (T,OutT) at level m (hence, at level
i) and two surjective coalgebra morphisms h, g : AF → T such that h [w] = g [y] is inhabited.

But then, we have the compositions h ◦ [ ] : A→ T and g ◦ [ ] : A→ T. Functions h ◦ [ ] and g ◦ [ ] are surjective
coalgebra morphisms, since [ ] is a coalgebra morphism (Corollary 3.3.27), coalgebra morphisms compose (Lemma
1.10.6), [ ] is a surjective function (Lemma 1.11.27), and surjective functions compose (Lemma 1.11.11).

Therefore, to conclude that (PurelyBehEquivi w y) is inhabited, it remains to show that type (h ◦ [ ]) w = (g ◦ [ ]) y
is inhabited. But, by definition of composition, this simplifies to h [w] = g [y], which is already inhabited.

As a corollary of Lemma 3.3.21, we have the bisimilarity version.

Corollary 3.3.29 (Coinduction principle, bisimilarity version). Let H : Ui → Ui be a set-preserving functor, k,m ≤ i
universe levels, and (A,OutA) : CoAlgk H an H-coalgebra. Then, the following type is inhabited:∏

w,y:AF

(Bisimm w y)→ (w = y)

Proof. Let w, y : AF with (Bisimm w y). By Lemma 3.3.21 applied with (AF,OutAF
) : CoAlgi H, we have that

(PurelyBehEquivmax{i,m} w y), or equivalently, (PurelyBehEquivi w y) is inhabited.

Therefore, by Lemma 3.3.28 applied with (A,OutA) : CoAlgk H and m = i, we have that (w = y) is inhabited.

51Notice that (PurelyBehEquivm w y) is applied on AF, not on A. This is valid since (AF,OutAF
) is an H-coalgebra at level i by Lemma

3.3.26.



206 CHAPTER 3. CONSTRUCTING TYPES IN HOTT

Step 4: Prove finality for AF

All previous steps worked with an arbitrary H-coalgebra. For this step we require the stronger condition that the
coalgebra is a LLWfinCoAlg or a WfinCoAlg. This means we will prove two cases, i.e. if A is a LLWfinCoAlg, then
AF is a LLFinCoAlg; if A is a WfinCoAlg, then AF is a FinCoAlg.

Theorem 3.3.30. Let H : Ui → Ui be a set-preserving functor.

(i) Let i > 0 and (A,OutA,m) : LLWfinCoAlgi H a lower level weakly final H-coalgebra. Then the tuple
(AF,OutAF

,mc) is a lower level final H-coalgebra, where mc is a proof that the type of morphisms going into
AF is contractible.

In other words, we have the tuple:52

(AF,OutAF
,mc) : LLFinCoAlgi H

(ii) Let (A,OutA,m) : WfinCoAlgi H be a weakly final H-coalgebra. Then the tuple (AF,OutAF
,mc) is a final H-

coalgebra, where mc is a proof that the type of morphisms going into AF is contractible.

In other words, we have the tuple:

(AF,OutAF
,mc) : FinCoAlgi H

Proof. The proof for both results is almost identical. As such, we will develop the proof for (i). The proof for (ii)
is obtained by replacing all occurrences of universe level i− 1 for universe level i.

We have to construct a proof:

mc :
∏

(B,OutB):CoAlgi−1 H

IsContr (CoAlgMor B AF)

Let (B,OutB) : CoAlgi−1 H.
We have to build a term of type IsContr (CoAlgMor B AF). By definition of contractible type, this means we

have to build a term of type: ∑
(h,w1):CoAlgMor B AF

∏
(g,w2):CoAlgMor B AF

(h,w1) = (g,w2)

Intuitively, this means we have to prove the “existence” of a coalgebra morphism (h,w1) from B to AF, and the
“uniqueness” of such morphism.

Existence

By hypothesis, we have a term:

m :
∏

(C,OutC):CoAlgi−1 H

CoAlgMor C A

This means we have a function:

pr1 (m (B,OutB)) : B→ A

and also pr2 (m (B,OutB)) is a proof that this function is a morphism.
Therefore, we can define h as the composition:

B A AF
pr1 (m (B,OutB)) [ ]

It remains to build a proof w1 that h is a morphism. But h is the composition of two morphisms, since [ ] is
a coalgebra morphism by Corollary 3.3.27, and pr2 (m (B,OutB)) is a proof that pr1 (m (B,OutB)) is a morphism.

52By Lemma 3.3.26, we have that (AF,OutAF
) is a coalgebra at universe level i.
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Therefore, by Lemma 1.10.6, h is a coalgebra morphism.53 This means we have the commutative diagram:

B AF

H B H AF

h

OutB OutAF

mapH h

(3.31)

Uniqueness

We have to show that the following type is inhabited:∏
(g,w2):CoAlgMor B AF

(h,w1) = (g,w2)

where (h,w1) is the morphism built in the existence part.
Let (g,w2) : CoAlgMor B AF. In other words, we have the commutative diagram:

B AF

H B H AF

g

OutB OutAF

mapH g

(3.32)

We know that type CoAlgMor B AF is defined as (see Definition 1.10.5):∑
f:B→AF

∏
w:B

OutAF
(f w) = mapH f (OutB w)

The second component of this Σ-type, i.e.,∏
w:B

OutAF
(f w) = mapH f (OutB w)

is a mere proposition for every f : B → AF, since both terms appearing in the identity are of type H AF, which is a
set (AF is a set and H is set-preserving), and propositions are closed under Π-types (see Lemma 1.8.17).

Therefore, by Lemma 1.8.14, to prove that (h,w1) = (g,w2) is inhabited, it is enough to prove that h = g holds.
However, by function extensionality (see Section 1.6.1), it is enough to prove:∏

w:B

h w = g w

Let w : B. By the bisimilarity version of the coinduction principle (Corollary 3.3.29), it is enough to prove
(Bisimi (h w) (g w)).54

In other words, we need to construct a bisimulation R : (AF × AF)→ Ui such that R (h w, g w) is inhabited.
Define R by Σ-recursion as (for any a, b : AF):

R (a, b) :≡
∑
c:B

(a = h c)× (b = g c)

Notice that R (a, b) is a type at level i, because B is at level i− 1. Also, type (a = h c)× (b = g c) is at level i,
since AF is at level i.

Then, R (h w, g w) is inhabited by:

( w, (reflAF
(h w), reflAF

(g w)) ) : R (h w, g w)

53We are only interested in the existence of a proof w1, we do not require the specific term w1 stands for.
54We are setting m = i in Corollary 3.3.29.
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It remains to show that R is a bisimulation. Let m, n : AF. We have to show that the following type is inhabited:

(R (m, n))→

 ∑
t: H

∑
z:AF×AF

R z

(OutAF
m = mapH (pr1 ◦ pr1) t)× (OutAF

n = mapH (pr2 ◦ pr1) t)


or equivalently, by definition of R and Σ-recursion:

∏
c:B

(m = h c)→ (n = g c)→

 ∑
t: H

∑
z:AF×AF

R z

(OutAF
m = mapH (pr1 ◦ pr1) t)× (OutAF

n = mapH (pr2 ◦ pr1) t)


Let c : B with the following inhabited types:

m = h c n = g c (3.33)

First, define a function:

k : B→

( ∑
z:AF×AF

R z

)
as:

k r :≡ ( (h r, g r), (r, (reflAF
(h r), reflAF

(g r)) ) )

Now, define:

t :≡ mapH k (OutB c) : H
∑

z:AF×AF

R z

It remains to show that this t satisfies the two required equations. We have:

mapH (pr1 ◦ pr1) t
(1)
= mapH (pr1 ◦ pr1) (mapH k (OutB c))

(2)
= mapH (pr1 ◦ pr1 ◦ k) (OutB c)

(3)
= mapH (λr. h r) (OutB c)

(4)
= mapH h (OutB c)

(5)
= OutAF

(h c)

(6)
= OutAF

m

where (1) follows by definition of t, (2) by functorial mapping of H, (3) by definition of function composition and
function k,55 (4) by the uniqueness rule for Π-types on page 21, (5) by commutativity of Diagram (3.31), and (6)
holds because m = h c is inhabited by Equations (3.33).

Similarly:

mapH (pr2 ◦ pr1) t
(1)
= mapH (pr2 ◦ pr1) (mapH k (OutB c))

(2)
= mapH (pr2 ◦ pr1 ◦ k) (OutB c)

55In more detail, we have by computation:

pr1 ◦ pr1 ◦ k ≡ λr. pr1 (pr1 (k r))

≡ λr. pr1 (pr1 ( (h r, g r), (r, (reflAF
(h r), reflAF

(g r)) ) ))

≡ λr. pr1 (h r, g r)

≡ λr. h r
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(3)
= mapH (λr. g r) (OutB c)

(4)
= mapH g (OutB c)

(5)
= OutAF

(g c)

(6)
= OutAF

n

where (1) follows by definition of t, (2) by functorial mapping of H, (3) by definition of function composition and
function k, (4) by the uniqueness rule for Π-types on page 21, (5) by commutativity of Diagram (3.32), and (6)
holds because n = g c is inhabited by Equations (3.33).

Theorem 3.3.30 states that the problem of building a (lower level) final coalgebra is reduced to the problem of
building a (lower level) weakly final coalgebra.

The theorem has the following corollary.

Corollary 3.3.31. Let i > 0, and H : Ui → Ui a functor that preserves sets. Then, H has a lower level final
H-coalgebra. In other words, the following type is inhabited:

LLFinCoAlgi H

Proof. By Lemma 3.3.6, H has a lower level weakly final H-coalgebra at universe level i. Denote this LLWfinCoAlg
by (W,OutW,m).

But then, by Theorem 3.3.30(i), (WF,OutWF
,mc) is a lower level final H-coalgebra at universe level i.

Therefore, any set-preserving endofunctor has a lower level final H-coalgebra. What about a final H-coalgebra?

3.3.3 A functor without a final coalgebra

In Section 3.2.3, it was shown that the powertype functor Powi,j (see Definition 3.2.23 and Lemma 3.2.24) does not
have an initial set Powi,j -algebra (Theorem 3.2.25).

In this section, we will show that functor Powi,j does not have a final Powi,j -coalgebra. However, by Corollary
3.3.31, it does have a lower level final Powi,j -coalgebra, since Powi,j is a set-preserving endofunctor (Lemma 3.2.24).

Theorem 3.3.32. Let i > 0 and j < i be two universe levels. The functor Powi,j does not have a final Powi,j -
coalgebra. In other words, the following type is inhabited:

¬(FinCoAlgi Powi,j )

or, equivalently, type FinCoAlgi Powi,j is not inhabited.

Proof. Suppose, for a contradiction, that (A,OutA,mc) : FinCoAlgi Powi,j is a final Powi,j -coalgebra.
Since Powi,j is an endofunctor (Lemma 3.2.24), we can apply Lambek’s Lemma (Lemma 3.3.10) to obtain that

Powi,j A and A are equivalent types.
Therefore, by definition of Powi,j , types A→ Propj and A are equivalent, which is impossible by Lemma 1.8.20.

Theorem 3.3.32 implies that any LLFinCoAlg for functor Powi,j is not a FinCoAlg. In particular, the LLFin-
CoAlg constructed by Corollary 3.3.31, is not a FinCoAlg for functor Powi,j . Hence, not every LLFinCoAlg is a
FinCoAlg.

We also have a corollary regarding the non-existence of weakly final coalgebras for functor Powi,j .

Corollary 3.3.33. Let i > 0 and j < i be two universe levels. The functor Powi,j does not have a weakly final
Powi,j -coalgebra. In other words, the following type is inhabited:

¬(WfinCoAlgi Powi,j )

or, equivalently, type WfinCoAlgi Powi,j is not inhabited.
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Proof. Suppose (A,OutA,m) : WfinCoAlgi Powi,j .
By Theorem 3.3.30(ii), (AF,OutAF

,mc) is a final Powi,j -coalgebra, which contradicts Theorem 3.3.32.

Another corollary states that no LLFinCoAlg for Powi,j satisfies the conclusion of Lambek’s Lemma. In other
words, a LLFinCoAlg will not be, in general, a “fixpoint” for its functor.

Corollary 3.3.34. Let i > 0 and j < i be two universe levels, and (A,OutA,mc) a lower level final Powi,j -coalgebra.
Then, Powi,j A and A are not equivalent types. In other words, the following type is inhabited:

¬(Powi,j A ' A)

In particular, the LLFinCoAlg constructed by Corollary 3.3.31, is not a “fixpoint” for functor Powi,j .

Proof. Let (A,OutA,mc) : LLFinCoAlgi Powi,j . Suppose, for a contradiction, that Powi,j A and A are equivalent
types.

Then, by definition of Powi,j , types A→ Propj and A are equivalent, which is impossible by Lemma 1.8.20.

These results support the claim that LLFinCoAlgs are weaker than FinCoAlgs. Nevertheless, LLFinCoAlgs are
still useful, as they can define unique functions by corecursive equations (see Section 3.3.4).

And again, these results emphasized the importance of explicitly handling universe levels. Ignoring them pro-
duces the apparent contradiction that every set-preserving endofunctor has a final coalgebra, while at the same time
the Powi,j functor does not have one.

We proceed to show an example on how these lower level final H-coalgebras are used.

3.3.4 Example: Streams

We will construct the streams as a LLFinCoAlg. First, we need to define the functor.

Definition 3.3.35. Let A : Ui be a type. We define function StreamFi A : Ui → Ui as:

StreamFi A :≡ (λY :Ui . A× Y) : Ui → Ui

Given C,D : Ui and function f : C→ D, we define the mapping function as:

map(StreamFi A) f (o, s) :≡ (o, f s)

having type: ∏
C,D:Ui

(C→ D)→ ((A× C)→ (A× D))

N

Function StreamFi A : Ui → Ui is well-typed, as we explain next. Given Y : Ui , type A× Y is at level i, because
type A is at level i and the product type is at level max{i, i} = i (see Remark 1.5.29).

Function StreamFi A and its mapping function form a functor.

Lemma 3.3.36. Let A : Ui be a type. The function StreamFi A (together with its mapping function map(StreamFi A))
is an endofunctor. If in addition A is a set, then StreamFi A also preserves sets.

Proof. It is obvious from its definition that StreamFi A is an endofunctor. When A is a set, StreamFi A preserves
sets because sets are closed under Σ-types (hence, product types), by Lemma 1.8.18.

It remains to show the two functorial properties (see Definition 1.9.6).

• Type
∏

C:Ui
∏

w:A×C map(StreamFi A) idC w = w is inhabited.

Let C : Ui . By the induction principle for Σ-types (Lemma 1.5.24), it is enough to prove:∏
a:A

∏
c:C

map(StreamFi A) idC (a, c) = (a, c)
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or equivalently, by definition of map(StreamFi A):∏
a:A

∏
c:C

(a, idC c) = (a, c)

which is trivially inhabited by:

λ(a :A)(c :C). refl(A×C) (a, c)

• The following type is inhabited:∏
B,C,D:Ui

∏
g:B→C

∏
h:C→D

∏
w:A×B

map(StreamFi A) (h ◦ g) w = map(StreamFi A) h (map(StreamFi A) g w)

Let B,C,D : Ui , g : B→ C, and h : C→ D. Again, by the induction principle for Σ-types, it is enough to prove:∏
a:A

∏
b:B

map(StreamFi A) (h ◦ g) (a, b) = map(StreamFi A) h (map(StreamFi A) g (a, b))

or equivalently, by definition of map(StreamFi A):∏
a:A

∏
b:B

(a, h (g b)) = map(StreamFi A) h (a, g b)

which simplifies to: ∏
a:A

∏
b:B

(a, h (g b)) = (a, h (g b))

and is trivially inhabited by:

λ(a :A)(b :B). refl(A×D) (a, h (g b))

Therefore, when i > 0 and A is a set, functor StreamFi A has a LLFinCoAlg, by Corollary 3.3.31. We introduce
notation for this.

Definition 3.3.37. Let i > 0 be a universe level and A : Seti a set. We will denote by (Streami A,Out(Streami A),mc)
the lower level final StreamFi A-coalgebra constructed by Corollary 3.3.31.

N

Observe that the Out(Streami A) function has type:

(Streami A)→ (StreamFi A (Streami A))

which is equivalent to:

(Streami A)→ (A× (Streami A))

Intuitively, this means we can “split” the Out(Streami A) function into two functions (Streami A) → A and
(Streami A)→ (Streami A), which will be the destructors for Streami A. These destructors correspond to the head
and tail functions, respectively.

Definition 3.3.38. Let i > 0 be a universe level and A : Seti a set. We define two destructors for Streami A.

• The head function headi : (Streami A)→ A is defined as:56

headi :≡ λs :Streami A. pr1 (Out(Streami A) s)

56We will write headi , instead of headi A, leaving A implicit. But on those rare cases when we want to emphasize A, we will write

head
A
i . The tail function follows this convention as well.
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• The tail function taili : (Streami A)→ (Streami A) is defined as:

taili :≡ λs :Streami A. pr2 (Out(Streami A) s)

N

Next, we prove a coinduction principle for Streami A. It essentially expresses that two terms in Streami A are
identifiable if there is a stream bisimulation that relates them.

Theorem 3.3.39 (Coinduction principle for Streami A). Let i > 0 and m ≤ i be two universe levels. Let A : Seti
be a set, and w, y : Streami A two terms.

If the following type is inhabited:

∑
R:(Streami A)→(Streami A)→Um

(R w y)×

 ∏
m,n:Streami A

(R m n)→
(
(headi m = headi n)× (R (taili m) (taili n))

)
then, the following type is inhabited:

w = y

Proof. Let us suppose we have some R : (Streami A)→ (Streami A)→ Um such that h1 : R w y and:

h2 :
∏

m,n:Streami A

(R m n)→
(
(headi m = headi n)× (R (taili m) (taili n))

)
We are going to use the bisimilarity coinduction principle (Corollary 3.3.29) to prove that w = y is inhabited.57

Therefore, we need to prove that (Bisimm w y) is inhabited.
This means we need to define some bisimulation S : ((Streami A) × (Streami A)) → Um such that S (w, y) is

inhabited.
Define:

S :≡ λp. R (pr1 p) (pr2 p)

We have S (w, y) ≡ R w y by definition, hence h1 : S (w, y). It remains to show that S is a bisimulation.
Let m, n : Streami A with p1 : S (m, n) (which simplifies to p1 : R m n). Then we have:

p2 :≡ pr1 (h2 m n p1) : headi m = headi n

p3 :≡ pr2 (h2 m n p1) : R (taili m) (taili n)

where p3 also has type S (taili m, taili n) by definition of S.
To finish the proof, we have to construct a term of type:∑

t: A×
( ∑

z:(Streami A)×(Streami A)

S z

) (Out(Streami A) m = map(StreamFi A) (pr1 ◦ pr1) t) ×

(Out(Streami A) n = map(StreamFi A) (pr2 ◦ pr1) t)

Define:

t :≡ ( headi m, ( (taili m, taili n), p3 ) ) : A×

 ∑
z:(Streami A)×(Streami A)

S z


It remains to show that this term t satisfies the two required equations. We have:

map(StreamFi A) (pr1 ◦ pr1) t
(1)
= ( headi m, pr1 (pr1 ( (taili m, taili n), p3 )) )

(2)
= ( headi m, taili m )

(3)
= ( pr1 (Out(Streami A) m), pr2 (Out(Streami A) m) )

(4)
= Out(Streami A) m

57Notice that we can use this coinduction principle, because Streami A has the form WF, where W is the LLWfinCoAlg constructed
by Lemma 3.3.6.
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where (1) follows by definition of t and map(StreamFi A), (2) by definition of pr1, (3) by definition of headi and taili ,
and (4) by Lemma 1.6.1.

Similarly:

map(StreamFi A) (pr2 ◦ pr1) t
(1)
= ( headi m, pr2 (pr1 ( (taili m, taili n), p3 )) )

(2)
= ( headi m, taili n )

(3)
= ( headi n, taili n )

(4)
= ( pr1 (Out(Streami A) n), pr2 (Out(Streami A) n) )

(5)
= Out(Streami A) n

where (1) follows by definition of t and map(StreamFi A), (2) by definition of pr1 and pr2, (3) holds because headi m = headi n
is inhabited, (4) by definition of headi and taili , and (5) by Lemma 1.6.1.

Next, we prove a stream coiteration principle.

Theorem 3.3.40 (Coiteration principle for Streami A). Let i > 0 be a universe level and A : Seti a set. Let D : Ui−1
be a type, h : D→ A a function, and t : D→ D a function. Then, the following type is inhabited:

IsContr

 ∑
f:D→(Streami A)

∏
w:D

(headi (f w) = h w)× (taili (f w) = f (t w))

 (3.34)

In other words, there is a unique function f : D→ (Streami A) satisfying the stated corecursive equations.

Proof. First, define a function OutD : D→ (StreamFi A D), or equivalently, OutD : D→ (A× D) as follows:

OutD d :≡ (h d, t d)

This means that (D,OutD) is a StreamFi A-coalgebra at level i−1. Therefore, since Streami A is a LLFinCoAlg,
there is a unique morphism u : D→ (Streami A) making the following diagram commute:

D Streami A

A× D A× (Streami A)

u

OutD Out(Streami A)

map(StreamFi A) u

(3.35)

To prove that type (3.34) is inhabited (see Definition 1.8.1), we have to construct a function f satisfying the
stated equations (i.e. the existence step), such that any other function satisfying those equations is equal to f (i.e.
the uniqueness step).

Existence

We propose the morphism u above as our candidate function. It remains to construct a proof w1 that u satisfies
the equations in type (3.34).

Let w : D. First, we prove the following identities:

Out(Streami A) (u w)
(1)
= map(StreamFi A) u (OutD w)

(2)
= map(StreamFi A) u (h w, t w)

(3)
= (h w, u (t w))

where (1) follows by commutativity of Diagram (3.35), (2) by definition of OutD, and (3) by definition of map(StreamFi A).
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Therefore, by applying pr1 and pr2 to both sides of the above identity, we get:

headi (u w)
(1)
= pr1 (Out(Streami A) (u w)) = pr1 (h w, u (t w)) = h w

taili (u w)
(2)
= pr2 (Out(Streami A) (u w)) = pr2 (h w, u (t w)) = u (t w)

where (1) follows by definition of headi , and (2) by definition of taili .

Uniqueness

By definition of contractible type, we have to prove that the following type is inhabited:∏
(g,w2):

∑
f:D→(Streami A)

∏
w:D

(headi (f w)=h w)×(taili (f w)=f (t w))

(u,w1) = (g,w2)

where w1 is a proof (constructed in the existence part) that u satisfies the equations, and w2 is a proof that g
satisfies the equations.

So, let g : D→ (Streami A) satisfying the corecursive equations:∏
w:D

(headi (g w) = h w)× (taili (g w) = g (t w)) (3.36)

The second component of the sigma type:∑
f:D→(Streami A)

∏
w:D

(headi (f w) = h w)× (taili (f w) = f (t w))

(i.e. the corecursive equations) is a mere proposition for every f : D→ (Streami A), as we explain next. The identity
headi (f w) = h w is a mere proposition, because it is defined on set A. The identity taili (f w) = f (t w) is a mere
proposition, because it is defined on set Streami A.58 Also, by Lemma 1.8.17, propositions are closed under the
product type and Π-types.

Therefore, by Lemma 1.8.14, to prove that (u,w1) = (g,w2) is inhabited, it is enough to prove that u = g is
inhabited.

To prove u = g, we are going to show that g is a coalgebra morphism from D to Streami A, because u is the only
such morphism by definition of LLFinCoAlg.

So, we need to construct a proof q2 that the following diagram commutes:

D Streami A

A× D A× (Streami A)

g

OutD Out(Streami A)

map(StreamFi A) g

Let w : D. We are trying to prove the identity:

Out(StreamFi A) (g w) = map(StreamFi A) g (OutD w)

which is on the product type A× (Streami A). So, by Corollary 1.6.26, it is enough to prove that the following two
types are inhabited:

pr1 (Out(StreamFi A) (g w)) = pr1 (map(StreamFi A) g (OutD w))

pr2 (Out(StreamFi A) (g w)) = pr2 (map(StreamFi A) g (OutD w))

We have:

pr1 (map(StreamFi A) g (OutD w))
(1)
= pr1 (map(StreamFi A) g (h w, t w))

58Remember that Streami A has the form WF, which is a quotient. Quotients are always sets, see Lemma 1.11.24.



3.3. COINDUCTIVE TYPES 215

(2)
= pr1 (h w, g (t w))

(3)
= h w

(4)
= headi (g w)

(5)
= pr1 (Out(StreamFi A) (g w))

where (1) follows by definition of OutD, (2) by definition of map(StreamFi A), (3) by definition of pr1, (4) by equations
(3.36), and (5) by definition of headi .

Similarly:

pr2 (map(StreamFi A) g (OutD w))
(1)
= pr2 (map(StreamFi A) g (h w, t w))

(2)
= pr2 (h w, g (t w))

(3)
= g (t w)

(4)
= taili (g w)

(5)
= pr2 (Out(StreamFi A) (g w))

where (1) follows by definition of OutD, (2) by definition of map(StreamFi A), (3) by definition of pr2, (4) by equations
(3.36), and (5) by definition of taili .

Notice that Theorem 3.3.40 requires D to be a type at level i − 1. This level restriction is forced by the fact
that Streami A is a LLFinCoAlg. As it happened with the natural numbers in Section 3.2.4, this universe level
restriction forces us to play with universe levels whenever we attempt to define functions between streams.

For example, let us define a stream map function. The function takes as input a function f and a stream s, and
it produces as output a stream where function f is applied on each element of s.

In other words, given i > 0, two sets A,B : Seti , and a function f : A→ B, we want to define a function:

mapStri f : (Streami A)→ (Streami B)

However, if we want to use the coiteration principle for Streami B, the domain level of this function needs to be
lower than the codomain level. Therefore, this function needs to have type (Streami A)→ (Streami+1 B).

Now, we have the functions:

f ◦ head
A

i : (Streami A)→ B

tail
A

i : (Streami A)→ (Streami A)

Therefore, by the coiteration principle for (Streami+1 B), there is a unique function mapStri f : (Streami A) →
(Streami+1 B) defined by the corecursive equations (for every w : Streami A):

head
B

i+1 (mapStri f w) = f (head
A

i w)

tail
B

i+1 (mapStri f w) = mapStri f (tail
A

i w)
(3.37)

In other words, if we represent streams as infinite lists59 (a1, a2, a3, . . .), where:

head
A

i (a1, a2, a3, . . .) ≡ a1

tail
A

i (a1, a2, a3, . . .) ≡ (a2, a3, . . .)

then, mapStri f (a1, a2, a3, . . .) will be a stream having as head:

f (head
A

i (a1, a2, a3, . . .)) ≡ f a1

59Bear in mind this is just informal notation to explain the intuition behind equations (3.37).
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and tail:
mapStri f (tail

A

i (a1, a2, a3, . . .)) ≡ mapStri f (a2, a3, . . .)

which it turn will be a stream having as head and tail:

f (head
A

i (a2, a3, . . .)) ≡ f a2

mapStri f (tail
A

i (a2, a3, . . .)) ≡ mapStri f (a3, . . .)

and so on, i.e. the output of mapStri f (a1, a2, a3, . . .) will be the stream:

(f a1, f a2, f a3, . . .)

This example shows that we need to play a lot with universe levels. However, we quickly reach difficulties. For
example, there is an up cast function ↑ : (Streami A)→ (Streami+1 A) defined by the corecursive equations (for any
w : Streami A):60

headi+1 (↑ w) = headi w

taili+1 (↑ w) = ↑ (taili w)

i.e. the up cast function behaves like an identity function, mapping each stream into a copy at a higher universe
level.

Is there a down cast function ↓ : (Streami+1 A) → (Streami A)? Clearly, the down cast function ↓ cannot be
defined using the coiteration principle, because its domain level is higher than its codomain level. Notice that this
situation mirrors the one discussed in Section 3.2.4, where we were able to construct a down cast function ↓, but the
up cast function ↑ was missing. Instead, in this section we have the up cast function ↑, but the down cast function
↓ is missing.

As discussed for natural numbers in Section 3.2.4, one possible approach for defining the down cast function is
to use the Principle of unique choice (Lemma 1.11.8). However, the author has not explored this possibility.

The question of whether or not the down cast function exists is an interesting one, because its existence implies
that Streami A and Streami+1 A are equivalent types. If all Streami A are mutually equivalent, we do not have to
worry about universe levels when defining functions between them, like the mapStri function above.

One approach to prove the mutual equivalence of all Streami A, is to augment HoTT with inference rules for
manipulating streams. We would have to add a formation rule for streams, “destruction” rules like: “If s is a
stream, then (head s) is of type A and (tail s) is a stream”, and rules mirroring the coinduction principle and the
coiteration principle. We will not do this, as we want to remain within the theory fleshed out in Chapter 1. Also,
Theorem 3.3.32 should be a warning for indiscriminately adding inference rules into HoTT. For example, if we add
inference rules for the powertype functor, we will be implicitly adding a final coalgebra for the functor, contradicting
Theorem 3.3.32.

Instead, the approach we will follow consists on finding a primitive HoTT type T, so that each Streami A is
equivalent to T. If streams are like infinite lists, then they can be seen as functions with domain the natural
numbers, i.e. elements of type N → A. Hence, Streami A and N → A should be equivalent types. This is what we
prove next.

Theorem 3.3.41. Let i > 0 be a universe level and A : Seti−1 a set (hence, A is also at level i). Then, type
Streami A is equivalent to type N→ A. In other words, the following type is inhabited:

(Streami A) ' (N→ A)

Proof. First, we define an auxiliary function by recursion on N (Lemma 1.5.53). This function composes a given
function f : C → C an specified number of times n. So, given C : Uj and f : C → C, define iter f : N → C → C by the
equations (for any n : N):

iter f 0 :≡ idC

iter f (succ n) :≡ (iter f n) ◦ f

60Notice that A is playing two roles. In (Streami A), type A is at level i, while in (Streami+1 A), type A is at level i + 1. This is
allowed by the cumulative universe rule, i.e. if A : Ui , then also A : Ui+1 .
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Now, define f1 : (Streami A)→ (N→ A) as:

f1 s :≡ λn :N. headi (iter taili n s)

We will define function f2 : (N→ A)→ (Streami A) by the coiteration principle for Streami A. The principle can
be used because A is at level i− 1, which implies that N→ A is at level i− 1 (type N is at every universe level, see
its formation rule on page 42).

So, define f2 by the equations (for any g : N→ A):61

headi (f2 g) = g 0

taili (f2 g) = f2 (λn :N. g (succ n))

In other words, given g, function f2 will produce the stream (g 0, g 1, g 2, . . .).
Next, we prove that f1 and f2 are inverses of each other.

Claim 1: Type
∏

g:N→A f1 (f2 g) = g is inhabited.
Let g : N→ A. We are trying to prove that two functions are identifiable. Therefore, by function extensionality,

it is enough to prove: ∏
n:N

f1 (f2 g) n = g n (3.38)

However, if we try to prove (3.38) by induction on natural numbers, we will get stuck in the inductive step,
because (3.38) does not produce an inductive hypothesis that is sufficiently general. So, we will prove the following
type instead: ∏

n:N

∏
t:N→A

f1 (f2 t) n = t n (3.39)

If type (3.39) is inhabited, then it trivially follows that type (3.38) is inhabited, i.e. just instantiate (3.39) with
function g.

We prove (3.39) by induction on N (Lemma 1.5.52). So, we need to prove that the following types are inhabited:∏
t:N→A

f1 (f2 t) 0 = t 0

∏
n:N

( ∏
t:N→A

f1 (f2 t) n = t n

)
→

( ∏
r:N→A

f1 (f2 r) (succ n) = r (succ n)

)

The first type is inhabited as follows:

f1 (f2 t) 0
(1)
= headi (iter taili 0 (f2 t))

(2)
= headi (f2 t)

(3)
= t 0

where (1) follows by definition of f1, (2) by definition of iter applied on 0, and (3) by definition of f2 on its headi

case.
For the second type, let n : N with inductive hypothesis

∏
t:N→A f1 (f2 t) n = t n. Then, we have:

f1 (f2 r) (succ n)
(1)
= headi (iter taili (succ n) (f2 r))

(2)
= headi (iter taili n (taili (f2 r)))

61To conform to the coiteration principle, the first equation is using function r :≡ λg :N→ A. g 0, so that headi (f2 g) = r g is
definitionally equal to headi (f2 g) = g 0.

The second equation is using function t :≡ λg :N→ A. λn :N. g (succ n), so that taili (f2 g) = f2 (t g) is definitionally equal to
taili (f2 g) = f2 (λn :N. g (succ n)).
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(3)
= f1 (taili (f2 r)) n

(4)
= f1 (f2 (λm :N. r (succ m))) n

(5)
= (λm :N. r (succ m)) n

(6)
= r (succ n)

where (1) follows by definition of f1, (2) by definition of iter applied on a successor, (3) by definition of f1, (4) by
definition of f2 on its taili case, (5) by the inductive hypothesis, and (6) by computation.

This proves the claim.

Claim 2: Type
∏

s:Streami A f2 (f1 s) = s is inhabited.
Let s : Streami A. We will use the coinduction principle for Streami A (Theorem 3.3.39) to conclude that

f2 (f1 s) = s is inhabited.
Define:

R a b :≡
∑

w:Streami A

(a = f2 (f1 w))× (b = w)

having type (Streami A)→ (Streami A)→ Ui (see Remark 1.5.29 and formation rule for identity types on page 45).
We have that R (f2 (f1 s)) s is inhabited by term:

( s, (refl(Streami A) (f2 (f1 s)), refl(Streami A) s) )

So, it remains to show that R is a stream bisimulation, i.e. the following type is inhabited:∏
m,n:Streami A

(R m n)→
(
(headi m = headi n)× (R (taili m) (taili n))

)
Let m, n : Streami A with h1 : R m n. By definition of R m n, we have w : Streami A with the following inhabited

types:

m = f2 (f1 w) n = w (3.40)

Then, we have:

headi m
(1)
= headi (f2 (f1 w))

(2)
= f1 w 0

(3)
= headi (iter taili 0 w)

(4)
= headi w

(5)
= headi n

where (1) holds because m = f2 (f1 w) is inhabited by Equations (3.40), (2) follows by definition of f2 on its headi

case, (3) by definition of f1, (4) by definition of iter applied on 0, and (5) holds because n = w is inhabited by
Equations (3.40).

We also have:

taili m
(1)
= taili (f2 (f1 w))

(2)
= f2 (λr :N. f1 w (succ r))

(3)
= f2 (λr :N. headi (iter taili (succ r) w))

(4)
= f2 (λr :N. headi (iter taili r (taili w)))

(5)
= f2 (λr :N. f1 (taili w) r)
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(6)
= f2 (f1 (taili w))

(7)
= f2 (f1 (taili n))

where (1) holds because m = f2 (f1 w) is inhabited by Equations (3.40), (2) follows by definition of f2 on its taili case,
(3) by definition of f1, (4) by definition of iter applied on a successor, (5) by definition of f1, (6) by the uniqueness
of Π-types rule on page 21, and (7) holds because n = w is inhabited by Equations (3.40).

Therefore, we have a proof p1 : taili m = f2 (f1 (taili n)), which implies that type R (taili m) (taili n) is inhabited
by term:

( taili n, (p1, refl(Streami A) (taili n)) )

Hence, R is a stream bisimulation, and this proves the claim.

Therefore, if we take some set A : Set0 , we will have that all (for i > 0) Streami A are mutually equivalent. From
here, using univalence, one can prove that Streami A can be given the structure of a final StreamFi A-coalgebra
(and not just merely a lower level final coalgebra). But we omit the details, as this is not critical for the example.

Recapitulating, we showed that all types Streami A are mutually equivalent by proving that each Streami A is
equivalent to the function type N→ A.

However, we should not dismiss investigating the construction of a down cast function ↓ (see discussion before
Theorem 3.3.41), because its existence seems to characterize final coalgebras, i.e. the up cast function ↑ is an
equivalence (having as inverse the down cast function ↓) if and only if Streami A can be given the structure of a
final StreamFi A-coalgebra. Further exploration is required on this.

3.3.5 Discussion

In this section, we discuss particularities and limitations of the approach leading to Corollary 3.3.31.
The first limitation is that our functors need to preserve sets. This has as consequence that all functor parameters

have to be sets (for example, parameter A in functor StreamFi A has to be a set). In what follows, we explain why
we had to impose this limitation to the results of Section 3.3.2.

In the proof of Lemma 3.3.25, we defined some predicate P as:

λw :B.
∑
y:AF

∥∥∥∥∥∑
c:A

([c] = y)× (h c = w)

∥∥∥∥∥ (3.41)

which expresses how some required function should behave. Later in the proof, this definition of P leads to a proof
that the following type is inhabited:

∏
y1,y2:AF

∥∥∥∥∥∑
c:A

([c] = y1)× (h c = w)

∥∥∥∥∥→
∥∥∥∥∥∑

c:A

([c] = y2)× (h c = w)

∥∥∥∥∥→ (y1 = y2)

If y1 = y2 is not a mere proposition, then we cannot use (−1)-truncation recursion to remove the (−1)-truncations
on the hypotheses. Therefore, this leads to the restriction:

• Type AF must be a set.

Type AF was defined as the quotient over some behavior relation. Quotients were defined as 0-truncations of
some coequalizer (see proof of Lemma 1.11.24). However, in Section 1.11.5 it was not explained why quotients need
to be sets. Since AF must be a set, using 0-truncations in the definition of quotients will ensure that this restriction
on AF is satisfied.

Since quotients use 0-truncations, their recursion principle can be used only for constructing functions whose
codomain is a set (see Corollary 1.11.14 and Lemma 1.11.26). In the proof of Lemma 3.3.26, we needed to construct
a function of type AF → (H AF). The natural thing to do here is to use the recursion principle for quotients.
However, H AF must be a set if we want to use the recursion principle. The easiest way to achieve this is to require
that functor H preserves sets (so that H AF will be a set).
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Even though AF is required to be a set, we did not have to specialize Definitions 1.10.4 and 1.10.8 to sets, as we
had to do in Section 3.2 for their algebra counterparts. The reason for this is that on the critical lemmas of Section
3.3.2, we never work at the level of an abstract coalgebra, but we always use the quotient AF. Another reason
for not specializing Definitions 1.10.4 and 1.10.8 to sets is that there is no restriction on the universally quantified
coalgebra B in Definition 1.10.8.

Therefore, if we want to remove the “set preservation property” on our functor, we need to find a way to remove
the (−1)-truncation in the definition of predicate P (function (3.41) above), as this will remove the restriction that
AF must be a set.

The second obvious limitation is that our experiment only produces lower level final coalgebras, which are
weaker than final coalgebras. Nevertheless, lower level final coalgebras are still useful concepts, as they are capable
of defining unique functions by corecursive equations.

3.4 Chapter summary

This chapter carried out the generalization of the Knaster-Tarski Lemma into the language of algebras and coalge-
bras. The intention on doing such generalization was to explore the possibility of constructing initial algebras (i.e.
inductive types) and final coalgebras (i.e. coinductive types). The generalization followed some of the analogies
between order theory and category theory.

Although the experiment fails to produce initial/final (co)algebras, it produces structures that are capable of
defining unique functions by (co)recursion. These structures were baptized lower level initial/final (co)algebras,
because they behave like an initial/final (co)algebra but only relative to (co)algebras at a strictly lower universe
level.

Section 3.1 gave an overview of the most common approach used in the literature to compute initial/final
(co)algebras. The approach involves the computation of colimits of ω-chains and limits of ω-cochains. The approach
also served to explain the analogy between order theory and category theory.

Sections 3.2 and 3.3 developed the suggested generalization of Knaster-Tarski for inductive and coinductive types,
respectively. First, both sections showed how the generalization produces lower level weakly initial/final (co)algebras
(Subsections 3.2.1 and 3.3.1, respectively). Then, it was shown how these lower level weakly initial/final (co)algebras
can be refined into lower level initial/final (co)algebras (Subsections 3.2.2 and 3.3.2, respectively). An example of
endofunctor without an initial/final (co)algebra, but having a lower level initial/final (co)algebra, was presented in
Subsections 3.2.3 and 3.3.3, respectively. Two examples were developed in Subsections 3.2.4 and 3.3.4 showing how
lower level initial/final (co)algebras are used. Finally, limitations on the approach were discussed, together with
explanations of some decisions made by the author (Subsections 3.2.5 and 3.3.5, respectively).



Chapter 4

Conclusions

In order to explore the possibility of building initial algebras (i.e. inductive types) and final coalgebras (i.e. coin-
ductive types) in HoTT, this report investigated the generalization of the Knaster-Tarski Lemma1 into the language
of algebras and coalgebras. The generalization followed some of the analogies between order theory and category
theory (see Section 3.1).

The particular approach followed on this report for doing the aforementioned generalization produced the fol-
lowing consequences:

• For inductive types, there are no required conditions on the endofunctor (see Theorem 3.2.21 and Corollary
3.2.22).

For coinductive types, the only required condition on the endofunctor is that it needs to preserve sets (see
Theorem 3.3.30 and Corollary 3.3.31).

In contrast, common iterative approaches require that endofunctors preserve colimits of chains and limits of
cochains (see Section 3.1).

• For inductive types, the constructed structures fail to be initial algebras only by a universe level. We called
these structures lower level initial set algebras (see Definition 3.2.9 and Corollary 3.2.22), because they behave
like initial algebras relative to set algebras that are at a strictly lower universe level than the universe level
where the lower level initial set algebra lives in.

For coinductive types, the constructed structures fail to be final coalgebras only by a universe level. We called
these structures lower level final coalgebras (see Definition 3.3.8 and Corollary 3.3.31), because they behave
like final coalgebras relative to coalgebras that are at a strictly lower universe level than the universe level
where the lower level final coalgebra lives in.

Notice that lower level final coalgebras are defined relative to types at a lower level, while lower level initial
set algebras are defined relative to sets at a lower level.

• In spite of this restriction on universe levels, it was shown that lower level initial set algebras are capable of
defining unique functions by recursive equations, as initial algebras are able to. This ability was demonstrated
with a detailed example in Section 3.2.4, where the usual iteration and induction principles for the natural
numbers (seen as a lower level initial set algebra) were derived.

Similarly, it was shown that lower level final coalgebras are capable of defining unique functions by corecursive
equations, as final coalgebras are able to. This ability was demonstrated with a detailed example in Section
3.3.4, where the usual coiteration and coinduction principles for streams (seen as a lower level final coalgebra)
were derived.

However, as the examples in Sections 3.2.4 and 3.3.4 showed, we need to play a lot with universe levels when
defining functions using the (co)iteration principles, due to the intrinsic restriction on universe levels forced
on us by lower level initial/final (co)algebras. This is a clear disadvantage.

1Lemma 2.3.6.

221
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• Theorems 3.2.21 and 3.3.30, which are the last steps of the “refinement processes” in Sections 3.2.2 and 3.3.2,
can be summarized in the following table:2

If we have... ... then we can construct
Lower level weakly initial set algebra Lower level initial set algebra

Weakly initial set algebra Initial set algebra
Lower level weakly final coalgebra Lower level final coalgebra

Weakly final coalgebra Final coalgebra

In particular, these processes showed that the refinement of a lower level weakly initial set algebra into a lower
level initial set algebra uses the same steps and proofs as the refinement of a weakly initial set algebra into
an initial set algebra.

Similarly, the refinement of a lower level weakly final coalgebra into a lower level final coalgebra uses the same
steps and proofs as the refinement of a weakly final coalgebra into a final coalgebra.

• Lower level initial/final (co)algebras are weaker concepts than initial/final (co)algebras. Evidence for this is
the fact that any set-preserving endofunctor has a lower level initial/final (co)algebra (Corollaries 3.2.22 and
3.3.31), but not every set-preserving endofunctor has an initial/final (co)algebra. An example of such functor
is the powertype functor,3 as shown by Theorems 3.2.25 and 3.3.32.

Another piece of evidence is that Lambek’s Lemma4 does not hold in general for lower level initial/final
(co)algebras, as shown by Corollaries 3.2.27 and 3.3.34.

• A big limitation of the approach presented on this report is that it can only build sets, not general types.
Sections 3.2.5 and 3.3.5 explained the origins of this limitation.

This report also showed the following:

• Chapter 2 developed an example of set-based mathematics formalized in HoTT. More specifically, it formalized
basic order-theoretic concepts, like poset, monotone function, complete lattice, infima, suprema, meet, join,
fixpoint, greatest and least fixpoint, the Knaster-Tarski Lemma, and (co)induction principles.

• Chapter 2 made use of the “ignore universe levels” style of doing mathematics in HoTT. The chapter also
highlighted an edge case for this style at Example 2.2.8, where an impredicative definition was made.

• In contrast, Chapter 3 made use of the “explicit universe levels” style of doing mathematics in HoTT.

The chapter justified the use of this style by explaining that lower level initial/final (co)algebras are different
from initial/final (co)algebras only by a quantification at different universe levels (see Definitions 3.2.9 and
3.3.8). Therefore, if universe levels were ignored, we would get the apparent contradiction that any set-
preserving endofunctor has an initial/final (co)algebra, while at the same time, the powertype functor does
not have one!

Before ending this report, we provide a list of possible questions to investigate for future work. Most of these
questions are a restatement of the limitations described at Sections 3.2.5 and 3.3.5.

• Can dependence on the results of Chapter 2 be removed from the refinement process on Section 3.2.2? Will
this be enough for the refinement process to be generalized to arbitrary types?

• Can Lemma 3.3.25 be proved without using (-1)-truncations on property (3.41), as explained in Section 3.3.5?
Will this be enough for the refinement process to be generalized to quotients that are not sets?

• In Section 3.2.5 it was explained that the “morphism 0-truncation property” (Definition 3.2.35) seems to be
required in order to obtain a (lower level) weakly initial set algebra by 0-truncating a (lower level) weakly
initial algebra. Is the “morphism 0-truncation property” a necessary condition?

2See Definitions 3.2.5, 3.3.4, 3.2.9, and 3.3.8.
3See Definition 3.2.23 and Lemma 3.2.24.
4See Lemmas 3.2.11 and 3.3.10.
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• At step 1 of the refinement process in Section 3.3.2, it was stated that bisimilarity and behavioral equivalence
are logically equivalent when functor H preserves weak pullbacks.5

We chose behavioral equivalence for the refinement process because it is always an equivalence relation, while
bisimilarity may fail to satisfy transitivity. However, when H preserves weak pullbacks, bisimilarity is an
equivalence relation, because it coincides with behavioral equivalence on this case.

Can we construct a final coalgebra by using bisimilarity, without assuming that H preserves weak pullbacks?

Notice that we do not need to prove that a relation is an equivalence relation to be able to define a quotient
(see Lemma 1.11.24).

• Sections 3.2.4 and 3.3.4 raised a very interesting problem.

In Section 3.2.4, it was explained that we need to carefully manipulate universe levels in order to define
functions between types Nati (i.e. the lower level initial set algebra for the natural numbers functor NatFi).

If we are able to prove that all Nati are mutually equivalent (for i > 0), then there is no need to worry about
universe levels when defining functions.

Section 3.2.4 proved the mutual equivalence between all Nati , by showing that each one of them is equivalent
to type N (see Theorem 3.2.34).

But Section 3.2.4 suggested another possibility for showing mutual equivalence: if we are able to prove that
there is an up cast function ↑ : Nati → Nati+1 acting as inverse to the (always existing) down cast function
↓ : Nati+1 → Nati , then all Nati are mutually equivalent.

Also, by using the fact that Nati is equivalent to N (Theorem 3.2.34), it seems that the following statement
is provable (however, the author has not verified this).

For every i > 0, Nati can be given the structure of an initial set algebra if and only if for every i > 0,
the down cast function ↓ : Nati+1 → Nati is an equivalence.

Can we prove this statement without using Theorem 3.2.34?

The pattern is similar for the streams example in Section 3.3.4, but the roles for the up and down cast functions
are reversed: if we are able to prove that there is a down cast function ↓ : (Streami+1 A)→ (Streami A) acting
as inverse to the (always existing) up cast function ↑ : (Streami A)→ (Streami+1 A), then all (Streami A) are
mutually equivalent.

And again, by using the fact that Streami A is equivalent to N → A (Theorem 3.3.41), it seems that the
following statement is provable (again, the author has not verified this).

For every i > 0, Streami A can be given the structure of a final coalgebra if and only if for every i > 0,
the up cast function ↑ : (Streami A)→ (Streami+1 A) is an equivalence.

Can we prove this statement without using Theorem 3.3.41?

The two boxed statements suggest that there might be a general pattern. Is it possible to generalize these
statements to arbitrary lower level initial/final (co)algebras?

Can initial/final (co)algebras be characterized by lower level initial/final (co)algebras through the use of the
up and down cast functions, as in the boxed statements above? Is this question even sensible? Further
investigation is required.

5See Definitions 3.3.15, 3.3.19, and 3.3.20. See also Definition 175 and Theorem 177 in Chapter 6 of [7].
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[15] Per Martin-Löf. An intuitionistic theory of types. Department of Mathematics. University of Stockholm, 1972.
Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.926.

[16] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press, 2012.

225

https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
http://pdxscholar.library.pdx.edu/open_access_etds/2088/
http://arxiv.org/abs/1504.02949
http://arxiv.org/abs/0709.0248
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.2003
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.2003
http://arxiv.org/abs/1211.2851
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.926


226 REFERENCES

[17] Davide Sangiorgi and Jan Rutten. Advanced Topics in Bisimulation and Coinduction, volume 52 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2012.

[18] Morten Heine Sørensen and Pawe l Urzyczyn. Lectures on the Curry-Howard Isomorphism, volume 149 of
Studies in Logic and the Foundations of Mathematics. Elsevier Science Inc., 2006.

[19] Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer Science, 7(1:13), 2011.
arXiv:1101.4223.

[20] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https:
//homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[21] Benno van den Berg and Richard Garner. Topological and simplicial models of identity types. ACM Transac-
tions on Computational Logic, 13(1:3), 2012. arXiv:1007.4638.

[22] What is Formal Math? vdash.org article available at: http://vdash.org/formal.

[23] Michael Alton Warren. Homotopy Theoretic Aspects of Constructive Type Theory. PhD thesis, Carnegie Mellon
University, 2008. Available at: http://mawarren.net/papers/phd.pdf.

[24] The Coq Proof Assistant. Reference manual and software at: https://coq.inria.fr.

[25] The HoTT Coq Library. Source code and installation instructions at: https://github.com/HoTT/HoTT.

[26] Coq script for this document and instructions on how to run it are available at: https://github.com/

jeshecdom/hott-knaster-tarski-experiment-dissertation.

http://arxiv.org/abs/1101.4223
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
http://arxiv.org/abs/1007.4638
http://vdash.org/formal
http://mawarren.net/papers/phd.pdf
https://coq.inria.fr
https://github.com/HoTT/HoTT
https://github.com/jeshecdom/hott-knaster-tarski-experiment-dissertation
https://github.com/jeshecdom/hott-knaster-tarski-experiment-dissertation

	Texto Completo

