

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA ELÉCTRICA - CONTROL

CONTROL DE UN SISTEMA BILATERAL TELEOPERADO CON RETARDO EN MOVIMIENTO RESTRINGIDO

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: MAURO GILBERTO LÓPEZ RODRÍGUEZ

TUTOR PRINCIPAL DR. MARCO ANTONIO ARTEAGA PÉREZ, FI-UNAM

CIUDAD DE MÉXICO, NOVIEMBRE, 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Maya Ortiz Paul Rolando
Secretario:	Dr. Tang Xu Yu
1er Vocal:	Dr. Arteaga Pérez Marco Antonio
20. Vocal:	Dr. Nuño Ortega Emmanuel
3er. Vocal:	Dr. Rodríguez Angeles Alejandro

La tesis se realizó en el Posgrado de Ingeniería, UNAM.

TUTOR DE TESIS:

Dr. MARCO ANTONIO ARTEAGA PÉREZ, FI-UNAM

IV

•

A la Facultad de Ingeniería y a la Universidad Nacional Autónoma de México, por la formación que me han dado. Es gracias a ustedes que es posible el presente trabajo. En verdad, gracias. A mi alma mater.

Reconocimientos

A mi familia por su apoyo incondicional durante esta etapa de mi vida.

Al Dr. Marco Antonio Arteaga Pérez por la confianza brindada para trabajar en el laboratorio de Robótica. Por sus conocimientos y enseñanzas que me fueron útiles durante la realización de este trabajo.

A los profesores del Programa de Maestría y Doctorado en Ingeniería del campo de Control por brindar los fundamentos y encaminarme a la investigación.

A todos mis compañeros del Laboratorio de Robótica con quienes trabaje y quienes aportaron valiosos consejos y comentarios .

Finalmente quiero agradecer al proyecto "Control de robots coordinados por medio de sistemas maestro-esclavo". Ref. IN116314. DGAPA-UNAM por el apoyo que me otorgó durante mis estudios de maestría y en el desarrollo de este trabajo.

Declaración de autenticidad

Por la presente declaro que, salvo cuando se haga referencia específica al trabajo de otras personas, el contenido de esta tesis es original y no se ha presentado total o parcialmente para su consideración para cualquier otro título o grado en esta o cualquier otra Universidad. Esta tesis es resultado de mi propio trabajo y no incluye nada que sea el resultado de algún trabajo realizado en colaboración, salvo que se indique específicamente en el texto.

Mauro Gilberto López Rodríguez. Ciudad de México, Noviembre, 2016

Resumen

El estilo de vida de hoy en día ha llevado al ser humano a expandir sus fronteras y buscar recursos en ambientes remotos que pueden tornarse complejos, peligrosos o incluso inaccesibles. La respuesta ante estas situaciones, son el uso de sistemas teleoperados bilaterales local-remoto, que toman más importancia cuando están en riesgo vidas humanas. Estos sistemas están diseñados principalmente para cumplir los siguientes objetivos: ser robustos, proveer la sensación al operador humano de presencia en el ambiente remoto y que demuestren buen desempeño en la tarea y tener transparencia. Estos objetivos dependen evidentemente de la fiabilidad que puedan tener cuando intercambian la información mutuamente el sistema local-remoto, esta información pudiese ser posición y/o velocidad, fuerza, visión etc. Sin embargo esta fiabilidad depende en gran medida del canal de comunicación empleado. Entre otros factores, la distancia entre el robot local y el remoto puede imponer un retardo sustancial en este intercambio de información. Este retardo provoca que los objetivos ahora sean ideales, ya que por la naturaleza del retardo, ya es imposible lograr un seguimiento de posición exacto, mientras que la transparencia se ve muy comprometida.

En muchos de los trabajos reportados anteriormente resuelven el problema de regulación, el problema de consenso con o sin líder, o la sincronización de un conjunto de robots induciendo trayectorias de posición periódicas, sin embargo, muchos de estos trabajos toman como un hecho el tener disponibles las velocidades. En la presente tesis se propone un esquema de teleoperación control-observador que soluciona el problema de no poder medir las velocidades. Este esquema tiene una propiedad importante en presencia del humano. Cuando un operador humano mueve el robot local en movimiento libre, el robot remoto tenderá a seguir un perfil de referencia retardado creado por la posición del robot local. Adicionalmente, en la situación más interesante cuando se está en movimiento restringido, este esquema garantiza que la persona tendrá la sensación de telepresencia.

La demostración del esquema propuesto es llevado a cabo con diferentes experimentos bajo diferentes circunstancias.

Índice general

Ín	dice	de figuras	XI										
Ín	dice	de tablas	XIII										
1.	Intr	roducción	1										
	1.1.	Motivación	3										
	1.2.	Estado del arte	3										
		1.2.1. Control de posición/fuerza en sistemas teleoperados	3										
	1.3.	Planteamiento del problema	5										
	1.4.	Contribución	6										
	1.5.	Organización de la tesis	6										
2.	Ma	Marco teórico											
	2.1.	Notación adoptada	9										
	2.2.	Modelo dinámico	10										
		2.2.1. Modelo dinámico de un sistema de teleoperación	10										
	2.3.	Control de posición/fuerza híbrido	10										
		2.3.1. Descomposición ortogonal	11										
3.	\mathbf{Esq}	uema control observador propuesto	15										
	3.1.	Diseño del observador	15										
	3.2.	Diseño control local-remoto	16										
		3.2.1. Dinámica propuesta del humano	17										
		3.2.2. Resultado principal	18										
4.	\mathbf{Res}	lesultados experimentales											
	4.1.	Movimiento restringido sin retardo caso ideal	28										
	4.2.	Movimiento restringido con retardo	36										
		4.2.1. Retardo asimétrico	36										
		4.2.2. Retardo simétrico	48										
		4.2.3. Sin cancelación del par gravitacional	59										

ÍNDICE GENERAL

5.	Conclusiones 5.1. Trabajo futuro	71 72						
А.	Código/Manuales/Publicaciones	73						
	A.1. Robot Geomagic Touch de 3D Systems	73						
	A.1.1. Modelo Cinemático	74						
	A.1.1.1. Cinemática Directa	74						
	A.1.1.2. Cinemática Inversa	74						
A.2. Pares de gravedad								
	A.3. Código Visual Studio C++	77						
Bi	bliografía	97						

Índice de figuras

1.1.	Elementos de un sistema de teleoperación bilateral	2
2.1.	Principio de Ortogonalización	12
4.1.	Sistema de teleoperación con dos <i>Geomagic Touch</i>	27
4.2.	Posiciones sin retardo $q_1(t)$ () $vs q_r(t)$ () $[\circ]$	29
4.3.	Errores de seguimiento sin presencia de retardo $e(t) = q_1(t) - q_r(t) \dots$	30
4.4.	Errores de observación sin presencia de retardo $z(t) = q_1(t) - \hat{q}_1(t)$	31
4.5.	Errores de observación sin presencia de retardo $z(t) = q_r(t) \cdot \hat{q}_r(t) \cdot \dots \cdot$	32
4.6.	Velocidades estimadas sin retardo $\dot{\hat{q}}_1(t)$ () $vs \hat{\hat{q}}_r(t)$ () $[^{\circ}/s]$	33
4.7.	Superficie virtual $p_{l}(t)$ () vs superficie física $p_{r}(t)$ () sin presencia	
	de retardo	34
4.8.	Posiciones con retardo asimétrico $q_l(t)$ () $vs q_r(t-0.7s)$ () $[^{\circ}]$.	37
4.9.	Posiciones con retardo asimétrico $q_r(t)$ () $vs q_r(t - 0.3s)()$ [°].	38
4.10.	Errores de seguimiento con presencia de retardo asimétrico $e(t) = q_{l}(t)$ -	
	$q_{\rm r}(t-0.7s)$	39
4.11.	Errores de seguimiento con presencia de retardo asimétrico $e(t) = q_r(t)$ -	
	$q_{\rm l}(t-0.3s)$	40
4.12.	Errores de observación con presencia de retardo asimétrico $z_l = q_l(t) \cdot \hat{q}_l(t)$	41
4.13.	Errores de observación con presencia de retardo asimétrico $z_{\rm r} = q_{\rm r}(t) - \hat{q}_{\rm r}(t)$	42
4.14.	Velocidad observada $\hat{q}_{l}(t)$ () $vs \hat{q}_{r}(t-0.7s)$ () $[^{\circ}]$	43
4.15.	Velocidad observada $\hat{q}_{\mathbf{r}}(t)$ () $vs \ \hat{q}_{\mathbf{l}}(t - 0.3s)$ (44
4.16.	Superficie real $p_{l}(t)$ () vs superficie virtual $p_{r}(t)$ () con presencia	
	de retardo asimétrico	45
4.17.	Posiciones medidas $q_1(t)$ () v_s posiciones estimadas $\hat{q}_r(t)$ () $[\circ]$.	46
4.18.	Posiciones medidas $q_{\rm r}(t)$ () $[\circ]$.	47
4.19.	Posiciones con retardo simétrico $q_1(t)$ () $vs q_r(t-0.5s)$ () $[\circ]$.	48
4.20.	Posiciones con retardo simétrico $q_r(t)$ () vs $q_r(t-0.5s)$ ()[°].	49
4.21.	Errores de seguimiento con presencia de retardo simétrico $e(t) = q_{l}(t)$ -	
	$q_{\rm r}(t-0.5s)$	50
4.22.	Errores de seguimiento con presencia de retardo simétrico $e(t) = q_r(t)$ -	
1.00	$q_1(t-0.5s)$	51
4.23.	Errores de observación con presencia de retardo asimétrico $z_l = q_l(t) - \hat{q}_l(t)$	52

4.24. Errores de observación con presencia de retardo asimétrico $z_r = q_r(t) - \hat{q}_r(t)$	53
4.25. Velocidad observada $\dot{q}_{l}(t)$ () $vs \dot{q}_{r}(t-0.5s)$ () $[^{\circ}]$	54
4.26. Velocidad observada $\dot{\hat{q}}_{r}(t)$ () $vs \dot{\hat{q}}_{l}(t - 0.5s)$ (55
4.27. Superficie virtual $p_1(t)$ () vs superficie real $p_r(t)$ () con presencia	
de retardo simétrico	56
4.28. Posiciones medidas $q_1(t)$ () vs posiciones estimadas $\hat{q}_r(t)$ () $[\circ]$.	57
4.29. Posiciones medidas $q_{\rm r}(t)$ () vs posiciones estimadas $\hat{q}_{\rm l}(t)$ () [°].	58
4.30. Posiciones sin cancelación del par gravitacional y con presencia de retar-	
do asimétrico $q_{\rm l}(t)$ () $vs q_{\rm r}(t-0.7s)$ () [°]	59
4.31. Posiciones sin cancelación del par gravitacional y con presencia de retar-	
do asimétrico $q_{\rm r}(t)$ () vs $q_{\rm l}(t - 0.3s)$ (60
4.32. Errores de seguimiento sin cancelación del par gravitacional y con pre-	
sencia de retardo asimétrico $e(t) = q_1(t) - q_r(t - 0.7s)$	61
4.33. Errores de seguimiento sin cancelación del par gravitacional y con pre-	
sencia de retardo asimétrico $e(t) = q_r(t) - q_1(t - 0.3s)$	62
4.34. Errores de observación para retardo asimétrico $z_l = q_l(t) - \hat{q}_l(t)$	63
4.35. Errores de observación para retardo asimétrico $z_r = q_r(t) - \hat{q}_r(t)$	64
4.36. Velocidad observada $\dot{\hat{q}}_{l}(t)$ () $vs \dot{\hat{q}}_{r}(t-0.7s)$ () [°]	65
4.37. Velocidad observada $\dot{\hat{q}}_{r}(t)$ () $vs \dot{\hat{q}}_{l}(t - 0.3s)$ (66
4.38. Superficie virtual $p_{l}(t)$ () vs superficie real $p_{r}(t)$ () sin cancelación	
del par gravitacional y con retardo asimétrico	67
4.39. Posiciones medidas $q_{l}(t)$ () vs posiciones estimadas $\hat{q}_{r}(t)$ () $[^{\circ}]$.	68
4.40. Posiciones medidas $q_{\rm r}(t)$ () vs posiciones estimadas $\hat{q}_{\rm l}(t)$ () $[^{\circ}]$.	69
A 1 Bobot Geomagic Touch de 3D Sustems	73
A.2. Vista isométrica	75
	•••

Índice de tablas

A.1.	Es	spe	cifica	ciones	técnic	cas del	robot	Geoma	gic	Tou	ch	de	3D	Sy	stems		76	6
	-	-						\sim		-		-		\sim			_	

A.2. Relación giro-cuentas de encoders Geomagic Touch de 3D Systems $\ .\ .\ .\ 76$

Capítulo1

Introducción

Desde los inicios del ser humano pensante, éste ha desarrollado herramientas y utensilios para cubrir sus necesidades y buscar mejorar su calidad de vida. Tal vez una de estas necesidades fuese quizá, disponer de los frutos de los árboles, empleando pértigas para este fin, este pudiese ser el antecedente más antiguo de la manipulación a distancia. Desde aquel día hasta hoy, la capacidad de disponer de objetos lejanos se ha extendido incluso sin estar presente, vía teleoperación. El término "teleoperación" proviene del prefijo *tele* que proviene del griego y significa *a distancia*, naturalmente *teleoperación* indica operación a distancia.

Hoy en día los sistemas teleoperados robóticos son ideales para realizar tareas con gran repetitividad, ambientes que pueden ser peligrosos, tareas en escalas nano o macro métricas, algunos ejemplos son la industria aeroespacial, química, nuclear, submarina, médica etc.

Es evidente que la dependencia a los sistemas teleoperados robóticos cada día se va reafirmando y más aún cuando se deben realizar tareas cada vez más demandantes y complejas.

Un sistema de teleoperación consta de manera general de 5 elementos básicos:

- Operador humano.
- Manipulador local y su controlador.
- Canal de comunicación.
- Manipulador remoto y su controlador
- Ambiente.

Estos sistemas de teleoperación pueden clasificarse en unilateral y bilateral. El primero corresponde al caso en el que solo el robot maestro/local envía información de posición/velocidad y fuerza al esclavo/remoto. En el segundo caso existe comunicación entre ambos robots, lo que permite que intercambien la información necesaria, como por ejemplo posición-posición, fuerza-posición, posición-fuerza y fuerza-fuerza.

1. INTRODUCCIÓN

Figura 1.1: Elementos de un sistema de teleoperación bilateral

El sistema de teleoperación bilateral mostrado en la Figura 1.1 está constituido por un manipulador llamado robot local/maestro controlado por el humano, un canal de comunicación, un segundo manipulador que sigue el movimiento del robot local/maestro conocido como robot esclavo/remoto y algún ambiente. De manera general, el esquema propuesto opera de la siguiente forma: el humano aplica una fuerza al efector final del robot maestro llevándolo por la trayectoria deseada, de esta manera se genera un perfil de la posición y velocidad de su efector final que a su vez se transmite al robot remoto vía el canal de comunicación, como consecuencia del esquema de control propuesto, éste trata de seguir la trayectoria generada por el humano, con o sin la presencia de algún ambiente que interfiriera.

Este esquema se dice bilateral debido al hecho de que ambos robots se envían información. Para fines prácticos este esquema es bilateral si el humano se intercambia de lugar y sigue teniendo control sobre el robot sobrante.

Desde el punto de vista de control los objetivos principales en los sistemas de teleoperación bilaterales local-remoto son:

Estabilidad. Garantizar la estabilidad del sistema completo.

- **Telepresencia.** Proporcionar al operador la sensación de estar en contacto con el objeto o ambiente remoto.
- **Transparencia.** Si el operador solo siente la dinámica del objeto o entorno que está manipulando se dice que el sistema es transparente.

1.1. Motivación

El problema de mayor interés para este trabajo es la aparición de un retardo en el canal de comunicación. Su presencia puede inestabilizar al sistema si el controlador no fue diseñado considerando este efecto. Sin embargo, la caracterización del retardo mismo puede ser una tarea difícil. En muchos de los trabajos reportados se ataca el problema de dos formas, la primera es considerar al retardo constante, para el análisis de estabilidad se toma este retardo constante como su cota, la segunda y la cual se apega a un comportamiento real es considerar al retardo variante en el tiempo, sin embargo también es necesario conocer una cota.

Es evidente que este tipo de sistemas son cada vez más utilizados para realizar distintas tareas en diferentes áreas, y que aún tienen mucho por desarrollar. Estos sistemas han crecido enormemente especialmente en tareas especificas como lo pueden ser: manejo de material peligroso y radioactivo, realización de cirugías sin la presencia del médico cirujano, la exploración espacial, mantenimiento y reparación de estaciones espaciales. Muchas de estas tareas usan esquemas de control complejos y difíciles de implementar. Debido a estos y otros factores, surge la idea de diseñar un esquema que sea fácilmente implementable y que garantice la estabilidad del sistema en lazo cerrado.

1.2. Estado del arte

1.2.1. Control de posición/fuerza en sistemas teleoperados

Cuando se opera un robot a distancia, es deseable tener alguna información acerca de la interacción que existe entre el ambiente y el robot remoto y posibles efectos con presencia del retardo. La retroalimentación del ambiente remoto puede ser provista al operador humano en diferentes formas: audio, visuales o táctiles. Cuando existe fuerza de retroalimentación desde el esclavo hacia el robot local representando información de contacto con el ambiente, se provee un mayor sentido de la telepresencia. Cuando este proceso funciona también de manera inversa se dice ser un sistema controlado bilateralmente.

Los inicios de los sistemas teleoperados como tal, datan de 1898. El primer sistema considerado como teleoperado unilateral fue un pequeño barco controlado con señales de radio frecuencia creado por el inventor e ingeniero Serbio Nikola Tesla. Posteriormente en la década de los 40's se inventa el primer sistema teleoperado bilateral desarrollado por Raymond Goertz, este no era más que un sistema mecánico que permitía manipular los materiales peligrosos usados en la construcción de la bomba atómica.

Según [1] este evento fue el comienzo de la teleoperación. En la década de los 60's es cuando se observa que existía el problema para garantizar la estabilidad en la reflexión de fuerza en sistemas teleoperados, algunos análisis y soluciones han sido presentadas desde entonces.

1. INTRODUCCIÓN

En 1965 surge el primer trabajo donde trata el problema del retardo en los sistemas teleoperados [2]. Sin embargo, no se usó reflexión de fuerza por lo que el efecto del retardo no fue evidente. No fue hasta 1966, que [3] usa reflexión de fuerza y el efecto desestabilizante del retardo es evidente.

Uno de los primeros trabajos teóricos para sistemas teleoperados con retardo es [4]. En donde se demuestra que el envío de la velocidad hacia el robot esclavo y la fuerza hacia el robot maestro en tareas de teleoperación de fuerza reflejada causa inestabilidad incluso con retardos relativamente pequeños, debido a que tal transmisión de datos representa un bloque de comunicación no pasivo. Para hacer pasivo el canal de comunicación, en [5] se propone una novedosa manera de analizar al sistema de teleoperación. El análisis divide al sistema en cinco bloques: el operador humano, el robot local, el canal de comunicación, el robot remoto y el ambiente. Con uso de teoría de pasividad, de *scattering* y una analogía de elementos mecánicos/eléctricos se presenta una ley de control bilateral que garantiza la estabilidad para ciertos ambientes con ciertos retardos. En este trabajo se concluye que la inestabilidad en el sistema de teleoperación bilateral es debida al bloque de comunicación, por lo tanto la ley de control propuesta minimiza las pérdidas en la linea y de este modo se garantiza que el bloque de comunicación sea pasivo.

Uno de los trabajos que se enfocó en menor conocimiento del modelo, por lo menos para el sistema remoto es el visto en [6], donde se propone incorporar los controladores adaptables [7] y [8].

En muchos de los trabajos mencionados no se había logrado tener un buen desempeño en estado estable para la posición y el seguimiento de fuerza. Se sabía que un análisis basado en una arquitectura utilizando variables de dispersión de onda garantizaban que la red de comunicación fuese pasiva, pero no se garantizaba la sincronización en estado estable de ambos robots cuando la posición inicial de ambos robots es diferente. Una nueva arquitectura que elimina la diferencia de posición en estado estable entre los robots y que además garantiza un seguimiento en estado estable de fuerza en contacto con algún ambiente remoto es presentado en [9]. Esta arquitectura propuesta es similar a la utilizada con variables de dispersión de onda, agregando un controlador proporcional en cada robot que usa la posición retardada como señal de referencia.

En [10] se prueba matemáticamente, usando el Lema de Barbalat que un simple esquema proporcional derivativo (PD) garantiza la operación estable del sistema teleoperado. Sin embargo, este esquema supone mapeos estables \mathcal{L}_{∞} de velocidad-fuerza pertenecientes al humano y al ambiente, suposiciones que resultan difíciles de verificar. El primer controlador propuesto para movimiento libre consta para ambos robots de un término proporcional al error de posición retardada, más la inyección de suficiente amortiguamiento. Esta inclusión de amortiguamiento sin retardo debe dominar a las ganancias proporcionales como se menciona en [11], de esta manera se puede garantizar que las velocidades pertenecen al espacio \mathcal{L}_2 . Para el segundo controlador PD, para el cual se considera inyección de amortiguamiento en función de las velocidades retardadas, no demuestra tener mejor desempeño que el controlador con inyección de amortiguamiento sin retardo. Para el caso de movimiento restringido se propone un controlador que contiene un término proporcional al error de posición más inyección de amortiguamiento para el lado del remoto. Para el lado del local, se plantea utilizar la lectura de la fuerza del remoto con retardo más inyección de amortiguamiento, resultando tener buen desempeño.

Muchos esquemas para sistemas bilaterales han demostrado poseer estabilidad robusta ante retardos de tiempo constantes en la red de comunicación usando conceptos de pasividad, teoría de *scattering* y teoría de redes de dos puertos. Sin embargo muchos esquemas no garantizan seguimiento en posición, en [12] se propone una arquitectura adaptable que usa la retroalimentación de estados para definir una nueva salida pasiva, compuesta por la posición y velocidad. Para movimiento libre se propone un esquema de control usando la nueva salida pasiva para garantizar la coordinación de ambos robots, mientras que para movimiento restringido se garantiza acotamiento final de las trayectorias sobre la superficie en contacto pasiva y considerando al humano no pasivo. Para sistemas de teleoperación se han mencionado algunos de los trabajos más relevantes. En muchos de estos se ha supuesto que se conoce el modelo dinámico de los robots o que las velocidades están disponibles. En ocasiones la construcción y costo de los robots puede interceder con el conocimiento de los parámetros y velocidades del robot. Sin embargo, algunos trabajos que no fueron diseñados inicialmente para tareas de teleoperación pueden ser modificados para este fin.

En [13] se desarrolla la teoría para un novedoso esquema control-observador que no necesita el conocimiento del modelo y además usa únicamente las mediciones de posición, evitando el uso de tacómetros al momento de su implementación. Con este esquema se garantiza que tanto los errores de seguimiento como los de observación tenderán a cero. En [14] se prueba un esquema de control PD bien conocido y la inclusión de un observador lineal demuestra base experimentos ser robusto ante incertidumbres paramétricas del robot y garantiza acotamiento final de los errores de observación y de seguimiento.

1.3. Planteamiento del problema

La mayoría de los investigadores se han enfocado en desarrollar leyes de control para sistemas teleoperados con el objetivo de que el efector final del manipulador remoto siga trayectorias deseadas de posición y fuerza comandadas por un operador humano. Sin embargo muchos de estos trabajos reportados en la literatura consideran que la dinámica de ambos manipuladores local y remoto son conocidas, además de suponer que las velocidades están disponibles. En este trabajo se propone un esquema que evita el conocimiento del modelo dinámico del sistema con excepción del término gravitacional y además, con base en un estimador no se requieren medir directamente las velocidades de las articulaciones. El esquema control-observador diseñado será aplicado a un sistema de teleoperación local-remoto, bajo dos circunstancias:

• Dado un sistema de teleoperación bilateral local-remoto donde el movimiento del remoto está restringido por una superficie conocida, se desea que éste siga una trayectoria suave en posición comandada por el robot local.

Para el caso de movimiento restringido se considera a la superficie rígida y que el contacto es puntual. Así mismo, el movimiento del lado del local debe estar restringido por el ambiente remoto.

1.4. Contribución

Con este trabajo se unifica la idea de usar un controlador que permita llevar a cabo la sincronización de un sistema local-remoto y agregar un observador lineal para evitar el uso de tacómetros. Este enfoque es novedoso y sencillo, además resulta ser muy útil para aplicaciones prácticas.

La contribución principal de este trabajo es la presentación de un esquema controlobservador que no requiere ningún conocimiento del modelo de los manipuladores, con excepción del término gravitacional; además garantiza la sincronización de posición para sistemas de teleoperación bilateral local-remoto. El esquema propuesto posee robustez ante la presencia de retardos de tiempo constantes.

1.5. Organización de la tesis

El documento está organizado de la siguiente manera: en el Capítulo 2 se presentan los conceptos básicos para el desarrollo de la teoría planteada, es decir el modelo dinámico del robot y sus propiedades, que resultan fundamentales para el diseño y análisis del esquema de control-observador. En el Capítulo 3 se presenta el esquema control-observador propuesto para resolver el problema de seguimiento de posición sin el conocimiento de velocidades y que considera la presencia de retardos en el canal de comunicación. En el Capítulo 4 se muestran los resultados experimentales del esquema control-observador diseñados bajo diferentes circunstancias propuestas en el Capítulos 3. Finalmente, el Capítulo 5 presenta las conclusiones, observaciones y el trabajo futuro.

1.5 Organización de la tesis

Capítulo2

Marco teórico

Este capítulo tiene como objetivo sentar las bases matemáticas usadas a lo largo del trabajo. Se inicia con la notación adoptada y culmina con el modelo dinámico del robot *Geomagic Touch* haciendo hincapié en algunas de sus propiedades que son útiles para el diseño y análisis del esquema control-observador presentado en el siguiente capítulo.

2.1. Notación adoptada

A continuación se presenta la notación adoptada:

- $\Re := (-\infty, \infty), \, \Re_{>0} = (0, \infty), \, \Re_{\geq 0} := [0, \infty)$
- El mínimo y máximo valor propio de alguna matriz A son denotados como $\lambda_{\min}(A)$ y $\lambda_{\max}(A)$
- $||\mathbf{x}||$ se mantiene para la norma Euclidiana estándar del vector \mathbf{x} .
- Los subíndices i = l, r están asignados para los robos local (*local*) y remoto (*remoto*) respectivamente.
- En algunos casos el argumento de las señales dependientes del tiempo es omitido $\boldsymbol{q}_i \equiv \boldsymbol{q}_i(t), \, \dot{\boldsymbol{q}}_i \equiv \dot{\boldsymbol{q}}_i(t)$ etc.
- Las señales con argumento de tiempo más retardo; está dada por ($\overline{.}$), por ejemplo $\bar{q}_i(t) \equiv q_i(t T_i)$.
- La estimación de alguna variable está dada por (î.), por ejemplo $\hat{q}_i(t) \equiv \hat{q}_i$.
- La estimación de alguna variable con retardo está dada por $(\bar{\cdot})$, por ejemplo $\bar{q}_i \equiv \bar{q}_i(t T_i)$.

2.2. Modelo dinámico

Esta sección aborda el modelo dinámico del sistema de teleoperación usado y también algunas propiedades útiles.

2.2.1. Modelo dinámico de un sistema de teleoperación

Los robots local y remoto son modelados como manipuladores seriales, de eslabones rígidos y articulaciones rotacionales, ambos con n grados de libertad, pero no necesariamente la misma configuración cinemática. La dinámica no lineal del robot local está dada por [15]:

$$\boldsymbol{H}_{1}(\boldsymbol{q}_{1})\boldsymbol{\ddot{q}}_{1} + \boldsymbol{C}_{1}(\boldsymbol{q}_{1},\boldsymbol{\dot{q}}_{1})\boldsymbol{\dot{q}}_{1} + \boldsymbol{D}_{1}\boldsymbol{\dot{q}}_{1} + \boldsymbol{g}_{1}(\boldsymbol{q}_{1}) = \boldsymbol{\tau}_{1} - \boldsymbol{\tau}_{h}, \qquad (2.1)$$

mientras que la dinámica del robot remoto está dada por :

$$\boldsymbol{H}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}})\boldsymbol{\ddot{q}}_{\mathrm{r}} + \boldsymbol{C}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}}, \boldsymbol{\dot{q}}_{\mathrm{r}})\boldsymbol{\dot{q}}_{\mathrm{r}} + \boldsymbol{D}_{\mathrm{r}}\boldsymbol{\dot{q}}_{\mathrm{r}} + \boldsymbol{g}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}}) = \boldsymbol{\tau}_{\mathrm{e}} - \boldsymbol{\tau}_{\mathrm{r}}, \qquad (2.2)$$

donde $\mathbf{q}_i \in \Re^n$ es el vector de coordenadas generalizadas, $\mathbf{H}_i(\mathbf{q}_i) \in \Re^{n \times n}$ es la matriz de inercia, la cual es simétrica y positiva definida, $C_i(\mathbf{q}_i, \dot{\mathbf{q}}_i)\dot{\mathbf{q}}_i \in \Re^n$ es el vector de Coriolis y pares debido a fuerzas centrifugas, $\mathbf{D}_i \in \Re^{n \times n}$ es una matriz semidefinida positiva, en cuya diagonal principal están contenidos los coeficientes de fricción viscosa, $\mathbf{g}_i(\mathbf{q}_i) \in \Re^n$ es el vector de pares gravitacionales, $\boldsymbol{\tau}_i \in \Re^n$ es el vector de pares actuando sobre cada articulación, $\boldsymbol{\tau}_h \in \Re^n$ representa el par aplicado por el humano al robot local y $\boldsymbol{\tau}_e \in \Re^n$ representa los pares debido a la interacción del robot remoto con algún ambiente. El modelo posee las siguientes propiedades importantes:

Propiedad 2.2.1 Se cumple que $\lambda_{\text{hi}} \parallel \boldsymbol{x} \parallel^2 \leq \boldsymbol{x}^{\text{T}} \boldsymbol{H}_i(q_i) \boldsymbol{x} \leq \lambda_{\text{Hi}} \parallel \boldsymbol{x} \parallel^2 \forall \boldsymbol{q}_i, \in \Re^n, \boldsymbol{x} \in \Re, \ y \ 0 < \lambda_{\text{hi}} < \lambda_{\text{Hi}} < \infty \ con \ \lambda_{\text{hi}} \triangleq \min_{\forall \boldsymbol{q}_i \in \Re^n} \lambda_{\min}(\boldsymbol{H}_i(\boldsymbol{q}_i)) \ y \ \lambda_{\text{Hi}} \triangleq \min_{\forall \boldsymbol{q}_i \in \Re^n} \lambda_{\min}(\boldsymbol{H}_i(\boldsymbol{q}_i)).$

Propiedad 2.2.2 Con una apropiada definición de $C_i(q_i, \dot{q}_i)$, $\dot{H}_i(q_i) - 2C_i(q_i, \dot{q}_i)$ es antisimétrica.

2.3. Control de posición/fuerza híbrido

En los sistemas teleoperados, en el mejor de los casos se desea tener alguna descripción sobre la interacción del robot manipulador remoto y el ambiente. Esta descripción debe a su vez estar en términos de las restricciones naturales y artificiales. Evidentemente ambas restricciones deben estar expresadas con referencia al marco restringido, ya que cuando un manipulador está en contacto con una superficie rígida, existirá una restricción natural que físicamente no le permitiría atravesar la superficie, sino únicamente desplazarse sobre ella. En esta circunstancia se dice que el manipulador está en movimiento restringido y por lo tanto existen algunas direcciones que están sujetas a la restricción de la posición del efector final y también habrá otras a la restricción de la interacción de fuerza, por lo que no es posible imponer simultáneamente valores arbitrarios de posición y fuerza a lo largo de cada dirección.

Cuando se le agrega el retardo debido al canal de comunicación y el robot local es llevado por una persona generando de este modo una trayectoria puede o no ser compatible con las restricciones impuestas por el ambiente. Por este motivo es necesaria tener una descripción analítica de la fuerza de interacción existente entre el manipulador remoto y la superficie.

2.3.1. Descomposición ortogonal

Para resolver el problema de posición y fuerza, Raibert y Craig propusieron en 1981 el llamado control de posición-fuerza híbrida, con el cual se propone un modo de selección que permite distinguir las componentes del control de posición y de fuerza. Sin embargo, este enfoque funcionaba bien sobre superficies planas.

El principio de ortogonalización fue propuesto [16], el cual es una noción extendida del control híbrido (control de fuerza y posición) de robots manipuladores bajo restricciones geométricas. Cuando el efector final del manipulador está en contacto puntual y se mueve a lo largo de una trayectoria aplicando una fuerza, la velocidad será tangente en el punto de contacto, mientras que la fuerza aplicada será normal a la superficie. En esencia el principio de ortogonalización permite descomponer la tarea de control en dos subespacios ortogonales facilitando al mismo tiempo tanto el diseño de la ley de control y el análisis de estabilidad. Estos dos subespacios son la velocidad-posición en el espacio articular y el vector de fuerzas de contacto cuyas componentes son ejercidas en las correspondientes articulaciones.

En cuanto a la superficie con la que el manipulador remoto está en contacto, en este trabajo se asume que puede ser modelada como una restricción holonómica o integrable, es decir que pueda ser escrita por una ecuación algebraica de la siguiente forma:

$$\varphi(\boldsymbol{q}) = 0, \tag{2.3}$$

donde $(\varphi)(\mathbf{q}) : \Re^n \to \Re^l$, *l* es el número de restricciones. Para poder incluir las fuerzas de contacto (remoto-superficie) al modelo dinámico es necesario usar los multiplicadores de Lagrange [17]. El modelo dinámico bajo restricción en su movimiento está dado por;

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\boldsymbol{q}}} - \frac{\partial \mathcal{L}}{\partial \boldsymbol{q}} + \frac{\partial \mathcal{D}}{\partial \dot{\boldsymbol{q}}} = \boldsymbol{\tau} + \frac{\partial \varphi}{\partial \boldsymbol{q}}\boldsymbol{\lambda}, \qquad (2.4)$$

donde $\lambda \in \Re^l$ es el vector de multiplicadores de Lagrange y \mathcal{L} es el lagrangiano del manipulador. Sustituyendo (2.3) en (2.4) se obtiene

$$\boldsymbol{H}(\boldsymbol{q})\ddot{\boldsymbol{q}} + \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}})\dot{\boldsymbol{q}} + \boldsymbol{g}(\boldsymbol{q}) = \boldsymbol{\tau} + \boldsymbol{J}_{\varphi}^{\mathrm{T}}(\boldsymbol{q})\boldsymbol{\lambda}, \qquad (2.5)$$

donde $J_{\varphi}^{\mathrm{T}}(q) = \nabla \varphi(q) \in \Re^{n \times l}$ es el Jacobiano de la restricción y permite mapear cualquier vector sobre un plano perpendicular a la superficie en el punto de contacto. Al derivar (2.3) respecto al tiempo se obtiene

$$\dot{\boldsymbol{\varphi}}(\boldsymbol{q}) = \boldsymbol{J}_{\varphi}(\boldsymbol{q})\dot{\boldsymbol{q}} = 0.$$
(2.6)

Figura 2.1: Principio de Ortogonalización

De la Figura 2.1 se observa que la velocidad $\dot{\boldsymbol{q}}$ está contenida en un plano tangente $\boldsymbol{Q}(\boldsymbol{q})$ sobre el punto de contacto, mientras que la fuerza es normal a este plano. La matriz de proyección $\boldsymbol{P}(\boldsymbol{q}) \in \Re^{n \times n}$, tal que $\boldsymbol{P}(\boldsymbol{q}) \boldsymbol{v} = \boldsymbol{v}, \forall \boldsymbol{v} \in \mathbb{R} \{\boldsymbol{J}_{\varphi}^{\mathrm{T}}\}$, (donde $\mathbb{R}\{\boldsymbol{J}_{\varphi}^{\mathrm{T}}\}$ es el espacio rango de la matriz $\boldsymbol{J}_{\varphi}^{\mathrm{T}}(\boldsymbol{q})$) y está dada por

$$\boldsymbol{P}(\boldsymbol{q}) = \boldsymbol{J}_{\varphi}^{+}(\boldsymbol{q})\boldsymbol{J}_{\varphi}(\boldsymbol{q}), \qquad (2.7)$$

donde $\boldsymbol{J}_{\varphi}^{+}(\boldsymbol{q})$ es la matriz Pseudoinversa de Moore Penrose dada por

$$\boldsymbol{J}_{\varphi}^{+}(\boldsymbol{q}) \triangleq \boldsymbol{J}_{\varphi}^{\mathrm{T}}(\boldsymbol{q}) [\boldsymbol{J}_{\varphi}(\boldsymbol{q}) \boldsymbol{J}_{\varphi}^{\mathrm{T}}(\boldsymbol{q})]^{-1}, \qquad (2.8)$$

De manera similar se tiene a la matriz de proyección $Q(q) \in \Re^{n \times n}$ definida tal que $Q(q)y = y \forall y \in \mathbb{N} \{J_{\varphi}\}$, (donde $\mathbb{N}\{J_{\varphi}\}$ es el espacio nulo de la matriz $J_{\varphi}(q)$). La matriz de proyección Q(q) mapea un vector del espacio articular al plano tangente a la superficie en el punto de contacto y está dada por:

$$\boldsymbol{Q}(\boldsymbol{q}) = \boldsymbol{I}_{n \times n} - \boldsymbol{P}(\boldsymbol{q}). \tag{2.9}$$

El Jacobiano de la restricción $J_{\varphi}(q)$ está contenido en el plano generado por P(q), por lo que se debe satisfacer $J_{\varphi}(q)P(q) = J_{\varphi}(q)$ y $P(q)J_{\varphi}^{\mathrm{T}}(q) = J_{\varphi}^{\mathrm{T}}(q)$; además $Q(q)J_{\varphi}^{\mathrm{T}}(q) = 0$ y $Q(q)J_{\varphi}(q) = 0$.

Usando las definiciones anteriores, el vector de velocidad \dot{q} puede escribirse como:

$$\dot{\boldsymbol{q}} = \boldsymbol{Q}(\boldsymbol{q})\dot{\boldsymbol{q}} + \boldsymbol{P}(\boldsymbol{q})\dot{\boldsymbol{q}} = \boldsymbol{Q}(\boldsymbol{q})\dot{\boldsymbol{q}}.$$
(2.10)

Debido a que la velocidad está contenida en el plano tangente, el vector de velocidad \dot{q} no tiene componente en P(q).

Capítulo 3

Esquema control observador propuesto

En este capítulo se aborda el diseño del esquema controlador observador para el problema de seguimiento de posición de manipuladores rígidos bajo restricciones de movimiento. El esquema diseñado evita tanto el conocimiento del modelo dinámico del manipulador, como la medición explícita de velocidad. Estas propiedades hacen que este esquema sea sencillo a la hora de implementarlo en un sistema de teleoperación. En los sistemas de control bilaterales local-remoto, los principales objetivos son: robustez, sensación de presencia o telepresencia, transparencia y buen desempeño. Sin embargo, cuando existe un retardo en el canal de comunicación o existen pérdidas de paquetes, algunos de los objetivos antes mencionados son sacrificados y optimizados, buscando la estabilidad del sistema en lazo cerrado. El esquema que se presenta a continuación toma en cuenta retardos en el canal de comunicación, teniendo como principal propiedad que en movimiento restringido la persona tendrá la sensación de telepresencia, pero se sacrificará en gran medida la transparencia.

3.1. Diseño del observador

Los sistemas bilaterales local-remoto permiten a las personas desempeñar tareas en un ambiente remoto o inaccesible, mientras se provee una retroalimentación kinestésica hacia el operador humano. En este tipo de aplicaciones es más útil diseñar un estimador de estado que se sobreponga al problema de señales contaminadas con ruido tras usar un tacómetro, sin mencionar que agrega costos, peso, etc.

Por lo tanto, supóngase que las mediciones de velocidades no están disponibles, por lo que el objetivo es diseñar una ley de control para seguimiento de posición que no use las mediciones de velocidad explícitamente. Adicionalmente además para su diseño se debe tomar en cuenta que existen retardos de tiempo constante impuestos por el canal de comunicación dados por $T_l > 0$ y $T_r > 0$. Por simplicidad se define

$$\bar{\boldsymbol{q}}_i = \bar{\boldsymbol{q}}_i(t) \stackrel{\triangle}{=} \boldsymbol{q}_i(t - T_i). \tag{3.1}$$

Sí $(\hat{\cdot})$ es el valor estimado de (\cdot) , entonces el error de observación está dado por

$$\boldsymbol{z}_i \stackrel{\triangle}{=} \boldsymbol{q}_i - \hat{\boldsymbol{q}}_i. \tag{3.2}$$

Basado en [13], se proponen los siguientes observadores

$$\dot{\hat{\boldsymbol{q}}}_{i} = \dot{\hat{\boldsymbol{q}}}_{oi} + \boldsymbol{\Lambda}_{zi}\boldsymbol{z}_{i} + \boldsymbol{K}_{di}\boldsymbol{z}_{i}$$
(3.3)

$$\dot{\hat{\boldsymbol{q}}}_{\mathrm{o}i} = \boldsymbol{K}_{\mathrm{d}i} \boldsymbol{\Lambda}_{\mathrm{z}i} \int_{0}^{\cdot} \boldsymbol{z}_{i}(\vartheta) \mathrm{d}\vartheta,$$
 (3.4)

donde $\mathbf{\Lambda}_{\mathrm{z}i}, \mathbf{K}_{\mathrm{d}i} \in \mathbb{R}^{n \times n}$ son matrices diagonales positivas.

3.2. Diseño control local-remoto

El esquema de control a diseñar debe usar las variables estimadas obtenidas con el observador para garantizar el seguimiento de posición. Basado en [18], se define

$$\dot{\boldsymbol{q}}_{\mathrm{o}i} = \dot{\boldsymbol{\hat{q}}}_i - \boldsymbol{\Lambda}_{\mathrm{z}i} \boldsymbol{z}_i \tag{3.5}$$

$$\boldsymbol{\sigma}_{i} = \int_{0} \left(\boldsymbol{K}_{\beta i} \boldsymbol{s}_{i} + \operatorname{sign}(\boldsymbol{s}_{i}) \right) \mathrm{d}\vartheta \qquad \boldsymbol{\sigma}_{i}(0) = \boldsymbol{0}, \qquad (3.6)$$

donde $\mathbf{K}_{\beta i} \in \mathbb{R}^{n \times n}$ es una matriz diagonal definida positiva y sign $(\mathbf{s}_i) = [\text{sign}(s_{i1}), \dots, \text{sign}(s_{in})]^{\mathrm{T}}$ con elementos s_{ij} de \mathbf{s}_i para $j = 1, \dots, n$, donde

$$\boldsymbol{s}_{\mathrm{r}} = \dot{\boldsymbol{q}}_{\mathrm{r}} - \bar{\dot{\boldsymbol{q}}}_{\mathrm{l}} + \boldsymbol{\Lambda}_{\mathrm{xr}} (\hat{\boldsymbol{q}}_{\mathrm{r}} - \bar{\boldsymbol{q}}_{\mathrm{l}}) \stackrel{\triangle}{=} \Delta \dot{\boldsymbol{q}}_{\mathrm{r}} + \boldsymbol{\Lambda}_{\mathrm{xr}} \Delta \boldsymbol{q}_{\mathrm{r}}$$
(3.7)

$$\boldsymbol{s}_{l} = \dot{\boldsymbol{q}}_{l} - \dot{\boldsymbol{q}}_{r} + \boldsymbol{\Lambda}_{xl}(\boldsymbol{\hat{q}}_{l} - \bar{\boldsymbol{\hat{q}}}_{r}) \stackrel{\Delta}{=} \Delta \boldsymbol{\dot{q}}_{l} + \boldsymbol{\Lambda}_{xl} \Delta \boldsymbol{q}_{l}, \qquad (3.8)$$

 con

$$\bar{\hat{\boldsymbol{q}}}_i = \hat{\boldsymbol{q}}_i(t - T_i) \quad \text{y} \quad \bar{\hat{\boldsymbol{q}}}_i = \dot{\hat{\boldsymbol{q}}}_i(t - T_i).$$
(3.9)

Considere ahora las siguientes variables

$$\dot{\boldsymbol{q}}_{\rm rr} \stackrel{\triangle}{=} \quad \dot{\bar{\boldsymbol{q}}}_{\rm l} - \boldsymbol{\Lambda}_{\rm xr} (\hat{\boldsymbol{q}}_{\rm r} - \bar{\hat{\boldsymbol{q}}}_{\rm l}) - \boldsymbol{K}_{\gamma \rm r} \boldsymbol{\sigma}_{\rm r}$$
(3.10)

$$\dot{\boldsymbol{q}}_{\mathrm{rl}} \stackrel{\Delta}{=} \dot{\boldsymbol{q}}_{\mathrm{r}} - \boldsymbol{\Lambda}_{\mathrm{xl}}(\hat{\boldsymbol{q}}_{\mathrm{l}} - \bar{\hat{\boldsymbol{q}}}_{\mathrm{r}}) - \boldsymbol{K}_{\gamma \mathrm{l}} \boldsymbol{\sigma}_{\mathrm{l}}$$
 (3.11)

у

$$\mathbf{s}_{\mathrm{o}i} \stackrel{\triangle}{=} \dot{\mathbf{q}}_{\mathrm{o}i} - \dot{\mathbf{q}}_{\mathrm{r}i},$$
 (3.12)

donde $K_{\gamma i} \in \mathbb{R}^{n \times n}$ son matrices diagonales definidas positivas. Basado en todas las definiciones previas, la ley de control para el robot remoto está dada por

$$\boldsymbol{\tau}_{\mathrm{r}} = \boldsymbol{K}_{\mathrm{pr}}\boldsymbol{s}_{\mathrm{or}} - \boldsymbol{g}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}}). \tag{3.13}$$

Para el manipulador local es propuesto

$$\boldsymbol{\tau}_{l} = -\boldsymbol{K}_{al} \boldsymbol{\hat{q}}_{l} + \boldsymbol{g}_{l}(\boldsymbol{q}_{l}) - \boldsymbol{K}_{pl} \boldsymbol{s}_{ol}, \qquad (3.14)$$

donde $\boldsymbol{K}_{al}, \boldsymbol{K}_{pr}, \boldsymbol{K}_{pl} \in \mathbb{R}^{n \times n}$ son matrices diagonales positivas.

3.2.1. Dinámica propuesta del humano

Suposición 3.2.1 El par inducido por el humano está descrito por un modelo tipo PD de la forma

$$\boldsymbol{\tau}_{\rm h} = \boldsymbol{K}_{\rm ph}(\boldsymbol{q}_{\rm l} - \boldsymbol{q}_{\rm hd}) + \boldsymbol{K}_{\rm vh}(\dot{\boldsymbol{q}}_{\rm l} - \dot{\boldsymbol{q}}_{\rm hd}), \qquad (3.15)$$

donde $\mathbf{K}_{\rm ph}, \mathbf{K}_{\rm vh} \in \mathbb{R}^{n \times n}$ son matrices positivas definidas y $\mathbf{q}_{\rm hd} \in \mathbb{R}^n$ representa la trayectoria deseada que la persona quiere seguir. \triangle

Observación 3.2.1 La Suposición 3.2.1 es una combinación del comportamiento dinámico del humano propuesto en [15] y [19], donde en el primer trabajo se asume que la persona es un sistema pasivo, mientras que en el segundo se asume que la persona se comporta como un PID. Nótese, sin embargo, que debido a la inclusión de $\dot{q}_{\rm hd}$ en (3.15), $\tau_{\rm h}$ no representa un comportamiento pasivo del humano.
3.2.2. Resultado principal

Se establece el resultado principal de este trabajo.

Proposición 3.2.1 Considérese el sistema bilateral con retardo (2.1)-(2.2) en lazo cerrado con los observadores (3.3)-(3.4) y las leyes de control (3.13)-(3.14), y supóngase que

- a) La fuerza de entrada del humano está dada por la Suposición 3.2.1 y está acotada.
- b) El operador humano mueve las articulaciones del robot local lentamente.
- c) La fuerza externa $\tau_{\rm e}$ es debida al contacto con una superficie rígida y está acotada.
- d) $\tau_{\rm h}$ no es lo suficientemente grande para sobrepasar el par de entrada $\tau_{\rm l}$ en (3.14) cuando el robot local tiende a moverse en la dirección de la restricción impuesta por el ambiente al robot remoto.

Entonces, un conjunto de ganancias pueden ser siempre encontrado tal que

- i. Los errores de observación sean arbitrariamente pequeños, i. e. $z_1 \approx 0$, $\dot{z}_1 \approx 0$, $z_r \approx 0$, $y \dot{z}_r \approx 0$.
- ii. Todos los errores de seguimiento permanezcan acotados.
- *iii.* Las trayectorias del robot remoto satisfagan $\boldsymbol{q}_{r}(t) \approx \boldsymbol{q}_{l}(t-T_{l}) \; y \; \dot{\boldsymbol{q}}_{r}(t) \approx \dot{\boldsymbol{q}}_{l}(t-T_{l}).$
- iv. El movimiento del robot local tienda a ser posible únicamente en la dirección permitida por la restricción real sobre el lado del robot remoto, i. e. el operador humano tendrá la sensación de telepresencia, pero no de transparencia.

 \triangle

Observación 3.2.2 Nótese que los observadores dados en este trabajo son más simples que el introducido en [13]. Como consecuencia, ya no puede ser garantizado que los errores de observación tenderán a cero, sino únicamente pueden ser hechos arbitrariamente pequeños. Desde un punto de vista práctico, la simplificación vale la pena.

 \triangle

Observación 3.2.3 La Condición a) en la Proposición 3.2.1 es necesaria únicamente para llevar a cabo el análisis de estabilidad, pero desde un punto de vista práctico no se requiere para la implementación del esquema control-observador. Ciertamente, el acotamiento de la fuerza del humano puede darse por sentado. \triangle

Observación 3.2.4 Nótese que el esquema de control no emplea mediciones de fuerza por lo que no puede ser garantizado que la fuerza que el operador humano está sintiendo cuando trata de mover el manipulador local en la dirección restringida es proporcional o igual a la aplicada por el robot remoto sobre el entorno real. Por otra parte, la Condición d) en la Proposición 3.2.1 significa que la persona no violará la restricción impuesta cuando se empuja demasiado fuerte.

Para demostrar la Proposición 3.2.1, considérese el siguiente teorema auxiliar.

Teorema 3.2.1 [20] Sea $\mathcal{D} \subset \mathbb{R}^n$ un dominio que contenga el origen $y V : [0, \infty) \times \mathcal{D} \rightarrow \mathbb{R}$ una función continuamente diferenciable tal que

$$\alpha_1(\|\boldsymbol{x}\|) \le V(t, \boldsymbol{x}) \le \alpha_2(\|\boldsymbol{x}\|)$$
(3.16)

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial \boldsymbol{x}} \boldsymbol{f}(t, \boldsymbol{x}) \leq -W_3(\boldsymbol{x}), \quad \forall \|\boldsymbol{x}\| \ge \mu > 0, \quad (3.17)$$

 $\forall t \geq 0 \ y \ \forall x \in \mathcal{D}, \ donde \ \alpha_1 \ y \ \alpha_2 \ son functiones \ clase \ \mathcal{K}, \ W_3(x) \ es \ una \ function \ continua$ $positiva \ definida \ y \ \mathbf{f} : [0, \infty) \times \mathcal{D} \to \mathbb{R}^n \ es \ continua \ por \ intervalos \ en \ t \ y \ localmente$ Lipschitz en \boldsymbol{x} sobre $[0,\infty) \times \mathcal{D}$. Sea r > 0 tal que $\mathcal{B}_r = \{\boldsymbol{x} \in \mathbb{R}^n | \|\boldsymbol{x}\| \leq r\} \subset \mathcal{D}$ y supóngase que

$$\mu < \alpha_2^{-1}(\alpha_1(r)). \tag{3.18}$$

Entonces, existe una función β de la clase \mathcal{KL} y para cada estado inicial $\mathbf{x}(t_0)$ que satisface

$$\|\boldsymbol{x}(t_0)\| \le \alpha_2^{-1}(\alpha_1(r)), \tag{3.19}$$

existe $T \ge 0$ (dependiente de $\boldsymbol{x}(t_0) \ y \ \mu$) tal que la solución de $\dot{\boldsymbol{x}} = \boldsymbol{f}(t, \boldsymbol{x})$ satisface

$$\|\boldsymbol{x}\| \leq \beta(\|\boldsymbol{x}(t_0)\|, t - t_0), \ \forall \ t_0 \leq t \leq t_0 + T$$
(3.20)

$$\|\boldsymbol{x}\| \leq \alpha_1^{-1}(\alpha_2(\mu)), \quad \forall t \geq t_0 + T.$$
 (3.21)

Además, si $\mathcal{D} = \mathbb{R}^n y \alpha_1$ pertenece a la clase \mathcal{K}_{∞} , entonces (3.20)–(3.21) son válidas para algún estado inicial $\mathbf{x}(t_0)$, sin ninguna restricción sobre cuan grande pueda ser μ .

$$\triangle$$

Antes que todo, defina las siguientes variables.

$$\mathbf{s}_{\mathrm{q}i} \stackrel{\Delta}{=} \dot{\mathbf{q}}_i - \dot{\mathbf{q}}_{\mathrm{r}i}$$
 (3.22)

$$\boldsymbol{r}_{i} \stackrel{\Delta}{=} \dot{\boldsymbol{q}}_{i} - \dot{\boldsymbol{q}}_{oi} = \dot{\boldsymbol{z}}_{i} + \boldsymbol{\Lambda}_{zi}\boldsymbol{z}_{i}. \tag{3.23}$$

Ahora, considérese el sistema (2.1) en lazo cerrado con la ley de control (3.14)

$$\boldsymbol{H}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}})\boldsymbol{\ddot{q}}_{\mathrm{l}} + \boldsymbol{C}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}}, \boldsymbol{\dot{q}}_{\mathrm{l}})\boldsymbol{\dot{q}}_{\mathrm{l}} + \boldsymbol{D}_{\mathrm{l}}\boldsymbol{\dot{q}}_{\mathrm{l}} = -\boldsymbol{K}_{\mathrm{al}}\boldsymbol{\dot{q}}_{\mathrm{l}} - \boldsymbol{K}_{\mathrm{pl}}\boldsymbol{s}_{\mathrm{ol}} - \boldsymbol{\tau}_{\mathrm{h}}.$$
(3.24)

Después sustituyendo (3.22) y (3.23) en (3.12) se obtiene $s_{\rm ol} = \dot{q}_{\rm ol} - \dot{q}_{\rm rl} = s_{\rm ql} - r_{\rm l}$ por lo que (3.24) se convierte en

$$\boldsymbol{H}_{l}(\boldsymbol{q}_{l})\dot{\boldsymbol{s}}_{ql} + \boldsymbol{C}_{l}(\boldsymbol{q}_{l}, \dot{\boldsymbol{q}}_{l})\boldsymbol{s}_{ql} + \boldsymbol{K}_{vl}\boldsymbol{s}_{ql} = \boldsymbol{K}_{al}\dot{\boldsymbol{z}}_{l} + \boldsymbol{K}_{pl}\boldsymbol{r}_{l} + \boldsymbol{y}_{al} - \boldsymbol{\tau}_{h}, \qquad (3.25)$$

donde

$$\boldsymbol{K}_{\mathrm{vl}} \stackrel{\Delta}{=} \boldsymbol{D}_{\mathrm{l}} + \boldsymbol{K}_{\mathrm{al}} + \boldsymbol{K}_{\mathrm{pl}}$$
(3.26)

$$\boldsymbol{y}_{\mathrm{al}} \stackrel{\bigtriangleup}{=} -(\boldsymbol{H}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}})\boldsymbol{\ddot{q}}_{\mathrm{rl}} + \boldsymbol{C}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}},\boldsymbol{\dot{q}}_{\mathrm{l}})\boldsymbol{\dot{q}}_{\mathrm{rl}} + \boldsymbol{D}_{\mathrm{l}}\boldsymbol{\dot{q}}_{\mathrm{rl}} + \boldsymbol{K}_{\mathrm{al}}\boldsymbol{\dot{q}}_{\mathrm{rl}}).$$
(3.27)

De manera similar para el robot remoto, tomando en cuenta (2.2), (3.13), (3.22) y (3.23) se obtiene

$$\boldsymbol{H}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}})\dot{\boldsymbol{s}}_{\mathrm{qr}} + \boldsymbol{C}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}}, \dot{\boldsymbol{q}}_{\mathrm{r}})\boldsymbol{s}_{\mathrm{qr}} + \boldsymbol{K}_{\mathrm{vr}}\boldsymbol{s}_{\mathrm{qr}} = \boldsymbol{K}_{\mathrm{pr}}\boldsymbol{r}_{\mathrm{r}} + \boldsymbol{y}_{\mathrm{ar}} + \boldsymbol{\tau}_{\mathrm{e}}, \qquad (3.28)$$

donde

$$\boldsymbol{K}_{\mathrm{vr}} = \boldsymbol{D}_{\mathrm{r}} + \boldsymbol{K}_{\mathrm{pr}} \tag{3.29}$$

$$\boldsymbol{y}_{\mathrm{ar}} = -(\boldsymbol{H}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}})\boldsymbol{\ddot{q}}_{\mathrm{rr}} + \boldsymbol{C}_{\mathrm{r}}(\boldsymbol{q}_{\mathrm{r}},\boldsymbol{\dot{q}}_{\mathrm{r}})\boldsymbol{\dot{q}}_{\mathrm{rr}} + \boldsymbol{D}_{\mathrm{r}}\boldsymbol{\dot{q}}_{\mathrm{rr}}).$$
(3.30)

En cuanto a los observadores, de (3.3)–(3.4) se obtiene para el robot manipulador local

$$\ddot{\boldsymbol{q}}_{l} - \ddot{\boldsymbol{q}}_{l} + \boldsymbol{\Lambda}_{zl} \dot{\boldsymbol{z}}_{l} + \boldsymbol{K}_{dl} \dot{\boldsymbol{z}}_{l} + \boldsymbol{K}_{dl} \boldsymbol{\Lambda}_{zl} \boldsymbol{z}_{l} = \ddot{\boldsymbol{q}}_{l}, \qquad (3.31)$$

que de acuerdo a (3.23) se llega a la siguiente dinámica del observador en lazo cerrado

$$\dot{\boldsymbol{r}}_{l} + \boldsymbol{K}_{dl} \boldsymbol{r}_{l} = \ddot{\boldsymbol{q}}_{l}. \tag{3.32}$$

El mismo análisis puede ser llevado a cabo para el robot remoto para conseguir

$$\dot{\boldsymbol{r}}_{\mathrm{r}} + \boldsymbol{K}_{\mathrm{dr}} \boldsymbol{r}_{\mathrm{r}} = \ddot{\boldsymbol{q}}_{\mathrm{r}}.$$
(3.33)

La Proposición 3.2.1 se demuestra en 3 pasos.

1. Supóngase que la dinámica del humano puede ser descrita por (3.15), y defínase el error de seguimiento del humano como $\Delta \boldsymbol{q}_{\rm h} \stackrel{\triangle}{=} \boldsymbol{q}_{\rm l} - \boldsymbol{q}_{\rm hd}$. Además, defina antes una variable de deslizamiento dada por $\boldsymbol{s}_{\rm h} \stackrel{\triangle}{=} \Delta \dot{\boldsymbol{q}}_{\rm h} + \boldsymbol{\Lambda}_{\rm h} \Delta \boldsymbol{q}_{\rm h}$, donde $\boldsymbol{\Lambda}_{\rm h} \stackrel{\triangle}{=} \boldsymbol{K}_{\rm vh}^{-1} \boldsymbol{K}_{\rm ph}$. Tomando en cuenta estas definiciones, (3.15) se puede reescribir simplemente como

$$\boldsymbol{\tau}_{\mathrm{h}} = \boldsymbol{K}_{\mathrm{vh}} \boldsymbol{s}_{\mathrm{h}}.\tag{3.34}$$

Uno puede considerar a $s_{\rm h}$ como un estado más en el sistema en lazo cerrado, cuya dinámica puede ser considerada y dada por

$$\boldsymbol{H}_{l}(\boldsymbol{q}_{l})\dot{\boldsymbol{s}}_{h} + \boldsymbol{C}_{l}(\boldsymbol{q}_{l}, \dot{\boldsymbol{q}}_{l})\boldsymbol{s}_{h} + \boldsymbol{K}_{Dvh}\boldsymbol{s}_{h} = \boldsymbol{\tau}_{l} + \boldsymbol{y}_{ah}, \qquad (3.35)$$

 $\operatorname{con}\,\boldsymbol{K}_{\mathrm{Dvh}}=\boldsymbol{K}_{\mathrm{vh}}+\boldsymbol{D}_{\mathrm{l}}$

$$\boldsymbol{y}_{\mathrm{ah}} = -\boldsymbol{H}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}})\boldsymbol{\ddot{q}}_{\mathrm{rh}} - \boldsymbol{C}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}},\boldsymbol{\dot{q}}_{\mathrm{l}})\boldsymbol{\dot{q}}_{\mathrm{rh}} - \boldsymbol{D}_{\mathrm{l}}\boldsymbol{\dot{q}}_{\mathrm{rh}} - \boldsymbol{g}_{\mathrm{l}}(\boldsymbol{q}_{\mathrm{l}}), \qquad (3.36)$$

y $\dot{\boldsymbol{q}}_{\mathrm{rh}} = \dot{\boldsymbol{q}}_{\mathrm{hd}} - \boldsymbol{\Lambda}_{\mathrm{h}} \Delta \boldsymbol{q}_{\mathrm{h}}$. Además nótese que $\boldsymbol{s}_{\mathrm{h}} = \dot{\boldsymbol{q}}_{\mathrm{l}} - \dot{\boldsymbol{q}}_{\mathrm{rh}}$. El estado en lazo cerrado está dado por

$$\boldsymbol{x} \stackrel{\Delta}{=} \begin{bmatrix} \boldsymbol{s}_{\mathrm{ql}} \\ \boldsymbol{s}_{\mathrm{qr}} \\ \boldsymbol{s}_{\mathrm{h}} \\ \boldsymbol{r}_{\mathrm{l}} \\ \boldsymbol{r}_{\mathrm{r}} \end{bmatrix}.$$
(3.37)

Considérese la siguiente región

$$\mathcal{D}_{\mathrm{h}} \stackrel{\triangle}{=} \left\{ \boldsymbol{x} \in \mathbb{R}^{5n} | \| \boldsymbol{x} \| \le x_{\mathrm{máx}} \right\},$$
(3.38)

donde $x_{\text{máx}} > 0$. Es posible mostrar que cada variable de interés está acotada si $\boldsymbol{x} \in \mathcal{D}_{\text{h}}$, siempre y cuando se suponga que las posiciones $\boldsymbol{q}_{\text{l}}$ y $\boldsymbol{q}_{\text{r}}$, así como sus derivadas, están acotadas. Este resultado se basa en el hecho de que $\boldsymbol{q}_{\text{hd}}$ se asume estar acotada.

2. Para mostrar el acotamiento final de las trayectorias $x \in \mathcal{D} \ \forall t$, considérese

$$V_{\rm h}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^{\rm T} \boldsymbol{N} \boldsymbol{x}, \qquad (3.39)$$

con $\mathbf{N} \stackrel{\triangle}{=}$ diagonal a bloques { $\mathbf{H}_{l}(\mathbf{q}_{l})$, $\mathbf{H}_{r}(\mathbf{q}_{r})$, $\mathbf{H}_{l}(\mathbf{q}_{l})$, \mathbf{I} , \mathbf{I} }. Tomando en cuenta la Propiedad 2.2.1, se satisface

$$\lambda_{\mathrm{h}1} \|\boldsymbol{x}\|^2 \le V_{\mathrm{h}}(\boldsymbol{x}) \le \lambda_{\mathrm{h}2} \|\boldsymbol{x}\|^2, \qquad (3.40)$$

con $\lambda_{h1} \stackrel{\triangle}{=} \frac{1}{2} \min_{\forall \boldsymbol{x} \in \mathbb{R}^{5n}} \lambda_{\min}(\boldsymbol{N}) \text{ y } \lambda_{h2} \stackrel{\triangle}{=} \frac{1}{2} \max_{\forall \boldsymbol{x} \in \mathbb{R}^{5n}} \lambda_{\max}(\boldsymbol{N}).$ Hay que recalcar que $\|\boldsymbol{s}_{h}\| \leq x_{\max} \text{ y } \|\boldsymbol{\tau}_{e}\| \leq e_{\max}$ para algún $0 < e_{\max} < \infty$. Entonces, la derivada de $V_{h}(\boldsymbol{x})$ a lo largo de las trayectorias (3.25), (3.28), (3.32), (3.33) y (3.35) es

$$egin{array}{rll} \dot{V}_{
m h}(m{x}) &=& m{s}_{
m ql}^{
m T}m{H}_{
m l}\dot{m{s}}_{
m ql} + m{s}_{
m qr}^{
m T}m{H}_{
m r}\dot{m{s}}_{
m qr} + m{s}_{
m h}^{
m T}m{H}_{
m l}\dot{m{s}}_{
m h} + m{r}_{
m l}^{
m T}\dot{m{r}}_{
m l} + m{r}_{
m r}^{
m T}\dot{m{r}}_{
m r} \ + rac{1}{2}[m{s}_{
m ql}^{
m T}\dot{m{H}}_{
m l}m{s}_{
m ql} + m{s}_{
m qr}^{
m T}\dot{m{H}}_{
m r}m{s}_{
m qr} + m{s}_{
m h}^{
m T}\dot{m{H}}_{
m l}m{s}_{
m h}]. \end{array}$$

Desarrollando, se obtiene:

$$\begin{split} \dot{V}_{\mathrm{h}}(\boldsymbol{x}) &= \boldsymbol{s}_{\mathrm{ql}}^{\mathrm{T}}[\boldsymbol{K}_{\mathrm{al}}\dot{\boldsymbol{z}}_{\mathrm{l}} + \boldsymbol{K}_{\mathrm{pl}}\boldsymbol{r}_{\mathrm{l}} + \boldsymbol{y}_{\mathrm{al}} - [\boldsymbol{K}_{\mathrm{vh}}\boldsymbol{s}_{\mathrm{h}} + \boldsymbol{C}_{\mathrm{l}}\boldsymbol{s}_{\mathrm{ql}} + \boldsymbol{K}_{\mathrm{vl}}\boldsymbol{s}_{\mathrm{ql}}]] + \frac{1}{2}\boldsymbol{s}_{\mathrm{ql}}^{\mathrm{T}}\dot{\boldsymbol{H}}_{\mathrm{l}}\boldsymbol{s}_{\mathrm{ql}} \\ &+ \boldsymbol{s}_{\mathrm{qr}}^{\mathrm{T}}[\boldsymbol{K}_{\mathrm{pr}}\boldsymbol{r}_{\mathrm{r}} + \boldsymbol{y}_{\mathrm{ar}} + \boldsymbol{\tau}_{\mathrm{e}} - [\boldsymbol{C}_{\mathrm{r}}\boldsymbol{s}_{\mathrm{qr}} + \boldsymbol{K}_{\mathrm{vr}}\boldsymbol{S}_{\mathrm{qr}}]] + \frac{1}{2}\boldsymbol{s}_{\mathrm{qr}}^{\mathrm{T}}\dot{\boldsymbol{H}}_{\mathrm{r}}\boldsymbol{s}_{\mathrm{qr}} \\ &+ \boldsymbol{s}_{\mathrm{h}}^{\mathrm{T}}[\boldsymbol{\tau}_{\mathrm{l}} + \boldsymbol{y}_{\mathrm{ah}} - [\boldsymbol{C}_{\mathrm{l}}\boldsymbol{s}_{\mathrm{h}} + \boldsymbol{K}_{\mathrm{Dvh}}\boldsymbol{s}_{\mathrm{h}}]] + \boldsymbol{r}_{\mathrm{l}}^{\mathrm{T}}\dot{\boldsymbol{r}}_{\mathrm{l}} + \boldsymbol{r}_{\mathrm{r}}^{\mathrm{T}}\dot{\boldsymbol{r}}_{\mathrm{r}} + \frac{1}{2}\boldsymbol{s}_{\mathrm{h}}^{\mathrm{T}}\dot{\boldsymbol{H}}_{\mathrm{l}}\boldsymbol{s}_{\mathrm{h}}, \end{split}$$

donde $K_{\text{Dvh}} = K_{\text{vh}} + D_{\text{l}}$. Empleando la Propiedad 2.2.2, se obtiene

$$\dot{V}_{\rm h}(\boldsymbol{x}) = -\boldsymbol{s}_{\rm ql}^{\rm T} \boldsymbol{K}_{\rm vl} \boldsymbol{s}_{\rm ql} + \boldsymbol{s}_{\rm ql}^{\rm T} [\boldsymbol{K}_{\rm al} \dot{\boldsymbol{z}}_{\rm l} + \boldsymbol{K}_{\rm pl} \boldsymbol{r}_{\rm l}] - \boldsymbol{r}_{\rm l}^{\rm T} \boldsymbol{K}_{\rm dl} \boldsymbol{r}_{\rm l} - \boldsymbol{s}_{\rm qr}^{\rm T} \boldsymbol{K}_{\rm vr} \boldsymbol{s}_{\rm qr} + \boldsymbol{s}_{\rm qr} \boldsymbol{K}_{\rm pr} \boldsymbol{r}_{\rm r} - \boldsymbol{r}_{\rm r} \boldsymbol{K}_{\rm dr} \boldsymbol{r}_{\rm r} - \boldsymbol{s}_{\rm h} \boldsymbol{K}_{\rm Dvh} \boldsymbol{s}_{\rm h} + \boldsymbol{s}_{\rm ql}^{\rm T} [\boldsymbol{y}_{\rm al} - \boldsymbol{K}_{\rm vh} \boldsymbol{s}_{\rm h}] + \boldsymbol{s}_{\rm qr} [\boldsymbol{y}_{\rm ar} + \boldsymbol{\tau}_{\rm e}] + \boldsymbol{s}_{\rm h} \boldsymbol{\tau}_{\rm l} + \boldsymbol{s}_{\rm h} \boldsymbol{y}_{\rm ah} + \boldsymbol{r}_{\rm l}^{\rm T} \boldsymbol{\ddot{q}}_{\rm l} + \boldsymbol{r}_{\rm r} \boldsymbol{\ddot{q}}_{\rm r},$$

$$(3.41)$$

Tomando en cuenta que se analiza el caso exclusivamente cuando $x \in \mathcal{D}$, de acuerdo con el Paso 1. de la demostración deben existir constantes positivas tales que

$$\beta_{l} \stackrel{\triangle}{=} \lambda_{máx}(\boldsymbol{K}_{al}) \left(\frac{\lambda_{máx}(\boldsymbol{\Lambda}_{zi})}{\lambda_{mín}(\boldsymbol{\Lambda}_{zi})} + 1 \right) \|\boldsymbol{r}_{i}\| + \lambda_{máx}(\boldsymbol{K}_{pl})$$
(3.42)

$$\beta_{\rm h} \stackrel{\triangle}{=} \alpha_{\rm l} + \alpha_{\rm r} + \alpha_{\rm h} + a_{\rm l} + a_{\rm r} \tag{3.43}$$

$$\alpha_{\rm l} \stackrel{\triangle}{=} \max_{\forall \boldsymbol{x} \in \mathcal{D}_{\rm h}} \|\boldsymbol{y}_{\rm al}\| + \lambda_{\rm máx}(\boldsymbol{K}_{\rm vh}) x_{\rm máx}$$
(3.44)

$$\alpha_{\rm r} \stackrel{\triangle}{=} \max_{\forall \boldsymbol{x} \in \mathcal{D}_{\rm h}} \|\boldsymbol{y}_{\rm ar}\| + e_{\rm máx}$$
(3.45)

$$\alpha_{\rm h} \stackrel{\triangle}{=} \min_{\forall \boldsymbol{x} \in \mathcal{D}_{\rm h}} \|\boldsymbol{\tau}_{\rm l} + \boldsymbol{y}_{\rm ah}\|$$
(3.46)

$$a_{\rm l} \stackrel{\triangle}{=} \max_{\forall \boldsymbol{x} \in \mathcal{D}_{\rm h}} \| \boldsymbol{\ddot{q}}_{\rm l} \| \tag{3.47}$$

$$a_{\mathbf{r}} \stackrel{\triangle}{=} \max_{\forall \boldsymbol{x} \in \mathcal{D}_{\mathbf{h}}} \| \boldsymbol{\ddot{q}}_{\mathbf{r}} \|.$$
(3.48)

El valor β_l se obtiene a partir de la definición (3.23) y empleando las siguientes desigualdades

$$\|\boldsymbol{z}_i\| \le \frac{1}{\lambda_{\min}(\boldsymbol{\Lambda}_{zi})} \|\boldsymbol{r}_i\|$$
(3.49)

у

$$\|\dot{\boldsymbol{z}}_{i}\| \leq \left(\frac{\lambda_{\max}(\boldsymbol{\Lambda}_{zi})}{\lambda_{\min}(\boldsymbol{\Lambda}_{zi})} + 1\right) \|\boldsymbol{r}_{i}\|.$$
(3.50)

Tomando en cuenta (3.42)–(3.50), es posible reescribir $\dot{V}_h(\boldsymbol{x})$ en (3.41) como

$$\dot{V}_{h}(\boldsymbol{x}) \leq -\lambda_{\min}(\boldsymbol{K}_{vl}) \|\boldsymbol{s}_{ql}\|^{2} + \beta_{l} \|\boldsymbol{s}_{ql}\| \|\boldsymbol{r}_{l}\| - \lambda_{\min}(\boldsymbol{K}_{dl}) \|\boldsymbol{r}_{l}\|^{2} \qquad (3.51)$$

$$-\lambda_{\min}(\boldsymbol{K}_{vr}) \|\boldsymbol{s}_{qr}\|^{2} + \lambda_{\max}(\boldsymbol{K}_{pr}) \|\boldsymbol{s}_{qr}\| \|\boldsymbol{r}_{r}\| - \lambda_{\min}(\boldsymbol{K}_{dr}) \|\boldsymbol{r}_{r}\|^{2}$$

$$-\lambda_{\min}(\boldsymbol{K}_{vh}) \|\boldsymbol{s}_{h}\|^{2}$$

$$+\beta_{h} \|\boldsymbol{x}\|.$$

Supóngase que las ganancias son escogidas de tal manera que se satisface

$$\lambda_{\min}(\boldsymbol{K}_{vl}) \geq 1+2\delta$$
 (3.52)

$$\lambda_{\min}(\boldsymbol{K}_{vr}) \geq 1 + 2\delta \tag{3.53}$$

$$\lambda_{\min}(\boldsymbol{K}_{dl}) \geq \frac{\beta_{1}}{4} + 2\delta \qquad (3.54)$$

$$\lambda_{\min}(\boldsymbol{K}_{dr}) \geq \frac{\lambda_{\max}(\boldsymbol{K}_{pr})^2}{4} + 2\delta$$
 (3.55)

$$\lambda_{\min}(\boldsymbol{K}_{\mathrm{vh}}) \geq 2\delta,$$
 (3.56)

donde δ es una constante positiva. Entonces, es fácil obtener

$$\dot{V}_{\rm h}(\boldsymbol{x}) \leq -2\delta \|\boldsymbol{x}\|^2 + \beta_{\rm h} \|\boldsymbol{x}\|.$$
(3.57)

Si se define

$$\mu_{\rm h} \stackrel{\triangle}{=} \frac{\beta_{\rm h}}{\delta}, \qquad (3.58)$$

entonces siempre que $\|\boldsymbol{x}\| \ge \mu_{\rm h}$ uno tiene

$$\dot{V}_{\rm h}(\boldsymbol{x}) \leq -\delta \|\boldsymbol{x}\|^2 \stackrel{\triangle}{=} -W_3(\boldsymbol{x}).$$
 (3.59)

Eligiendo $\alpha_1(\|\boldsymbol{x}\|) = \lambda_{h1} \|\boldsymbol{x}\|^2 \text{ y } \alpha_2(\|\boldsymbol{x}\|) = \lambda_{h2} \|\boldsymbol{x}\|^2$ en (3.40) puede ser visto que las condiciones (3.16) y (3.17) pueden ser cumplidas en \mathcal{D}_h mediante la elección apropiada de ganancias, i.e (3.52)-(3.56). De acuerdo con (3.19) la condición inicial debe cumplir con

$$\|\boldsymbol{x}(t_0)\| \le \sqrt{\frac{\lambda_{\rm h1}}{\lambda_{\rm h2}}} x_{\rm máx},\tag{3.60}$$

y de acuerdo con (3.21) el estado final estará finalmente acotado por

$$\|\boldsymbol{x}(t)\| \le \sqrt{\frac{\lambda_{h2}}{\lambda_{h1}}} \mu_{h} \stackrel{\triangle}{=} b_{fh}.$$
 (3.61)

Nótese que δ debe ser suficientemente grande tal que $\mu_{\rm h} < \sqrt{\frac{\lambda_{\rm h1}}{\lambda_{\rm h2}}} x_{\rm máx}$. Sin embargo la cota final $b_{\rm fh}$ no se puede hacer arbitrariamente pequeña. La razón es que el movimiento de cada manipulador está restringido ya sea por el ambiente o por el humano, con lo que es imposible alcanzar seguimiento o regulación sin hacer más suposiciones, como será visto abajo en el siguiente paso.

3. Hasta el momento se ha demostrado que siempre que $\tau_{\rm h} \neq 0$ y/o $\tau_{\rm e} \neq 0$, el acotamiento final de las trayectorias x puede ser garantizado, pero la cota final no puede ser hecha arbitrariamente pequeña. Sin embargo, la dinámica de los diferentes subsistemas puede ser además analizada de manera separada bajo algunas condiciones. En cuanto a los observadores, uno tiene de (3.32)–(3.33) que

$$\|\boldsymbol{r}_i\| \le \frac{1}{\lambda_{\min}(\boldsymbol{K}_{di})} \|\boldsymbol{\ddot{q}}_i\|, \qquad (3.62)$$

para i = l, r. Esto significa que con el incremento de $\lambda_{\min}(\mathbf{K}_{di})$ el valor de $||\mathbf{r}_i||$ puede ser hecho arbitrariamente pequeño sin violar ninguna restricción porque $||\mathbf{\ddot{q}}_i||$ está acotada en \mathcal{D}_h . En cuanto a los errores de observación, de (3.49)– (3.50), ambos \mathbf{z}_i y $\mathbf{\dot{z}}_i$ pueden ser hechos arbitrariamente pequeños a su vez, como se expresa en el inciso *i*. de la Proposición 3.2.1. 4. Supóngase que $\tau_{\rm h} \neq 0$ y $\tau_{\rm e} = 0$ y recuérdese que se ha demostrado que para $x \in \mathcal{D}_{\rm h}$ cada variable de interés está acotada siempre que las condiciones dadas en el inciso 2. se cumplan. Como se explicó antes, haciendo las ganancias arbitrariamente grandes llevaría a un conflicto entre las restricciones impuestas, ya sea por el humano o por ambiente y el movimiento del manipulador. Ya que la cota final ha sido garantizada para el sistema completo en lazo cerrado, un análisis más fino puede ser llevado a cabo separadamente para el manipulador remoto y el local. Por lo anterior, considérese la dinámica en lazo cerrado dada por (3.28) y defina una función positiva definida

$$V_{\rm r}(\boldsymbol{s}_{\rm qr}) = \frac{1}{2} \boldsymbol{s}_{\rm qr}^{\rm T} \boldsymbol{H}_{\rm r}(\boldsymbol{q}_{\rm r}) \boldsymbol{s}_{\rm qr}, \qquad (3.63)$$

cuya derivada puede ser fácilmente calculada como

$$\dot{V}_{\rm r} = -\boldsymbol{s}_{\rm qr}^{\rm T} \boldsymbol{K}_{\rm vr} \boldsymbol{s}_{\rm qr} + \boldsymbol{s}_{\rm qr}^{\rm T} \boldsymbol{K}_{\rm pr} \boldsymbol{r}_{\rm r} + \boldsymbol{s}_{\rm qr}^{\rm T} \boldsymbol{y}_{\rm ar}$$
(3.64)

$$\leq -\lambda_{\min}(\boldsymbol{K}_{vr}) \|\boldsymbol{s}_{qr}\|^2 + (\lambda_{\max}(\boldsymbol{K}_{pr}) \|\boldsymbol{r}_{r}\| + \alpha_{r}) \|\boldsymbol{s}_{qr}\|, \qquad (3.65)$$

con $\alpha_{\rm r}$ dada en (3.45) para $e_{\rm máx} = 0$. Nótese que para garantizar el acotamiento final, las condiciones (3.52)–(3.56) deben satisfacerse y que $||\mathbf{r}_{\rm r}||$ pueden ser hechas arbitrariamente pequeñas. De este modo, con el uso una vez más del Teorema 3.2.1, se puede concluir que $||\mathbf{s}_{\rm qr}||$ pueden ser hecha arbitrariamente pequeña sin violar ninguna restricción.

Una vez que ha sido mostrado que el estado \boldsymbol{x} está acotado y que puede ser hecho arbitrariamente pequeño, se puede mostrar que los errores $\Delta \boldsymbol{q}_{\rm r}$, $\Delta \dot{\boldsymbol{q}}_{\rm r}$, $\Delta \boldsymbol{q}_{\rm l}$ and $\Delta \dot{\boldsymbol{q}}_{\rm l}$ tienden a cero. Considerando (3.7), (3.10) y (3.22) se obtiene

$$\boldsymbol{s}_{\mathrm{qr}} = \dot{\boldsymbol{q}}_{\mathrm{r}} - \dot{\bar{\boldsymbol{q}}}_{\mathrm{l}} + \boldsymbol{\Lambda}_{\mathrm{xr}} (\hat{\boldsymbol{q}}_{\mathrm{r}} - \bar{\hat{\boldsymbol{q}}}_{\mathrm{l}}) + \boldsymbol{K}_{\gamma \mathrm{r}} \boldsymbol{\sigma}_{\mathrm{r}} = \dot{\boldsymbol{z}}_{\mathrm{r}} + \boldsymbol{s}_{\mathrm{r}} + \boldsymbol{K}_{\gamma \mathrm{r}} \boldsymbol{\sigma}_{\mathrm{r}}, \qquad (3.66)$$

0

$$\boldsymbol{s}_{\mathrm{r}} + \boldsymbol{K}_{\gamma \mathrm{r}} \boldsymbol{\sigma}_{\mathrm{r}} = \boldsymbol{s}_{\mathrm{qr}} - \dot{\boldsymbol{z}}_{\mathrm{r}}.$$
 (3.67)

De (3.6) y (3.67) se obtiene

$$\dot{\boldsymbol{s}}_{\rm r} = -\boldsymbol{K}_{\gamma \rm r} \left(\boldsymbol{K}_{\beta \rm r} \boldsymbol{s}_{\rm r} + {\rm sign}(\boldsymbol{s}_{\rm r}) \right) + \dot{\boldsymbol{s}}_{\rm qr} - \ddot{\boldsymbol{z}}_{\rm r}. \tag{3.68}$$

Mediante el uso de esta ecuación y el hecho de que $\dot{s}_{qr} - \ddot{z}_r$ está acotada en \mathcal{D}_h , se puede mostrar que $s_r \equiv \mathbf{0}$ en tiempo finito [13]. Entonces, de (3.7) es claro que $\Delta q_r, \Delta \dot{q}_r \rightarrow \mathbf{0}$, lo cual implica que

$$\hat{\boldsymbol{q}}_{\mathrm{r}} \to \bar{\hat{\boldsymbol{q}}}_{\mathrm{l}} \quad \mathrm{y} \quad \dot{\hat{\boldsymbol{q}}}_{\mathrm{r}} \to \dot{\hat{\boldsymbol{q}}}_{\mathrm{l}}.$$
 (3.69)

De manera similar puede ser mostrado que

$$\hat{\boldsymbol{q}}_{l} \to \bar{\hat{\boldsymbol{q}}}_{r} \quad y \quad \dot{\hat{\boldsymbol{q}}}_{l} \to \dot{\hat{\boldsymbol{q}}}_{r}.$$
 (3.70)

Esto conduce a la conclusión de que

$$\boldsymbol{q}_{\mathrm{r}}(t) \approx \boldsymbol{q}_{\mathrm{l}}(t-T_{\mathrm{l}}) \quad \mathrm{y} \quad \dot{\boldsymbol{q}}_{\mathrm{r}}(t) \approx \dot{\boldsymbol{q}}_{\mathrm{l}}(t-T_{\mathrm{l}}),$$
(3.71)

Ésto prueba el inciso *iii*. de la Proposición 3.2.1. Nótese que no se puede garantizar

$$\boldsymbol{q}_{\mathrm{l}}(t) \approx \boldsymbol{q}_{\mathrm{r}}(t - T_{\mathrm{r}}) \quad \mathrm{y} \quad \dot{\boldsymbol{q}}_{\mathrm{l}}(t) \approx \dot{\boldsymbol{q}}_{\mathrm{r}}(t - T_{\mathrm{r}}),$$
 (3.72)

debido a la fuerza aplicada por el operador humano. En efecto, lo único que se puede decir es que los errores de seguimiento están acotados para el manipulador local. En realidad, no se puede afirmar otra cosa sin hacer suposiciones adicionales, como se hace en el siguiente paso de la demostración.

5.El paso final de la demostración depende en gran medida de la suposición sobre el comportamiento que tiene el operador humano, que permite tener cierto grado de sensación de telepresencia. Por está razón, debería ser entendido que la ley de control τ_1 en (3.14) está pensada para hacer que el manipulador local siga al manipulador remoto. Esto puede ser apreciado claramente en movimiento libre. Cuando una persona aplica una fuerza, el correspondiente par de entrada $\tau_{\rm h}$ evita que τ_1 alcance este objetivo, dependiendo de la magnitud de la fuerza que el operador aplique. Al mismo tiempo, es más difícil prever las trayectorias que el robot local seguirá. Estableciendo $K_{\rm al}, K_{\rm pl}$ muy grandes podría significar a su vez hacer $K_{\rm vl}$ en (3.26) muy grande. De esta forma, si el par generado por el operador es demasiado pequeño, este más bien podría ser considerado como una perturbación que puede ser compensada. En lugar de eso, si las ganancias en τ_1 son relativamente pequeñas y la persona aplica una fuerza grande, entonces el manipulador local no tendería a seguir a la posición del robot remoto retardada porque $\tau_{\rm h}$ se sobrepondría al efecto de $\tau_{\rm l}$. Finalmente, si el humano mueve el efector final del manipulador local lentamente como se asume en el inciso b) de la Proposición 3.2.1, entonces el robot remoto seguirá la posición retardada local y a su vez el manipulador local seguirá suavemente el movimiento en aquella dirección porque la ley de control tratará de alcanzar este objetivo, manteniendo los errores de seguimiento pequeños. Cuando el robot remoto toca la superficie rígida y su movimiento está restringido, los errores de seguimiento sobre el lado del robot local se incrementarán en aquella misma dirección y la acción de τ_1 se incrementará para tratar de disminuir el error. Esto se convierte en algo evidente para el operador humano. Si el operador no empuja lo suficientemente fuerte cuando la sensación de tocar algo aparece, entonces el operador será capaz de reconocer la superficie remota, por lo que surge la sensación de telepresencia, como se estableció en el inciso iv. de la Proposición 3.2.1. Sin embargo, el humano no sería capaz de sentir que tan fuerte el robot remoto está empujando, así que la transparencia no puede ser alcanzada. Esto concluye la demostración.

Capítulo 4

Resultados experimentales

En esta sección son presentados los resultados experimentales del esquema controlador observador diseñado en el Capítulo 3, bajo las restricciones que pueden aparecer debidas al operador humano y el ambiente con $\tau_{\rm h} \neq 0$ y $\tau_{\rm e} \neq 0$. Los experimentos se realizaron con dos robots *Geomagic Touch*. Cada uno de ellos cuenta con actuadores en sus tres primeras articulaciones.

Figura 4.1: Sistema de teleoperación con dos Geomagic Touch

En la Figura 4.1 se muestra en esencia la plataforma experimental. El operador humano mueve el último eslabón del robot local mientras el efector final del robot remoto está siempre en contacto con un objeto. En esta situación la persona, sin estar especialmente adiestrada, tendrá la sensación de estar tocando la superficie.

El algoritmo fue implementado en Lenguaje C++ en el entorno de desarrollo de *Visual Studio*. Los retardos fueron inducidos artificialmente vía software, así que pueden ser establecidos arbitrariamente y constantes. Los códigos pueden ser revisados en el Apéndice A.3.

Los siguientes parámetros usados fueron determinados empíricamente: K_{al} = diag {0.005, 0.005, 0.005}, K_{pl} = diag {0.065, 0.065, 0.065}, Λ_{xl} = diag {15, 18, 12}, Λ_{xr} = diag {15, 15, 10}, $K_{\beta r}$ = 0.000001I, $K_{\beta l}$ = 0.000001I, $K_{\gamma r}$ = 0.15I, $K_{\gamma l}$ = diag {0.06, 0.06, 0.06}, K_{dl} = diag {120, 115, 120}, Λ_{zr} = diag {0.5, 0.5, 0.5}, y K_{dr} = diag {120, 115, 120}.

4.1. Movimiento restringido sin retardo caso ideal

El primer experimento se llevó a cabo sin la presencia de retardos. Tiene como finalidad establecer un punto de comparación.

Figura 4.2: Posiciones sin retardo $q_1(t)$ (---) $vs q_r(t)$ (---) [°].

Figura 4.3: Errores de seguimiento sin presencia de retardo $e(t) = q_1(t) - q_r(t)$

En la Figura 4.2 se muestran las posiciones sin retardo $q_l(t)$ (----) $vs q_r(t)$ (----) [°], se puede observar que sin presencia de retardos ambos robots se siguen sin ningún problema. El error de seguimiento mostrado en la Figura 4.3 demuestra esta afirmación, ya que el error permanece dentro de un margen de $\pm 2^{\circ}$.

Figura 4.4: Errores de observación sin presencia de retardo $z(t) = q_l(t) \cdot \hat{q}_l(t)$

4. RESULTADOS EXPERIMENTALES

Figura 4.5: Errores de observación sin presencia de retardo $z(t) = q_r(t) \cdot \hat{q}_r(t)$

En las Figuras 4.4 y 4.5 se pueden observar los errores de observación, el desempeño de cada observador montado en cada robot es bueno. El error de observación para ambos casos no rebasa los ± 0.5 [°], este error grande en parte se debe al perfil que describe el humano, sin presencia del retardo, el humano puede describir trayectorias no tan suaves, como era de esperarse, con perfiles no tan suaves este observador arroja un error más grande.

Figura 4.6: Velocidades estimadas sin retardo $\dot{\hat{q}}_1(t)$ (----) $vs \dot{\hat{q}}_r(t)$ (----) $[^{\circ}/s]$.

En la Figura 4.6 se observan las velocidades obtenidas mediante el observador propuesto. Como se puede observar las velocidades estimadas $\dot{q}_{l}(t)$ (-----) son muy similares a las velocidades estimadas $\dot{q}_{r}(t)$ (-----) [°/s]. En este caso, sin presencia del retardo se observa que existen picos grandes en las velocidades, sin la presencia del retardo los perfiles que puede seguir el humano pueden ser no tan suaves.

(b) Vista superior

Figura 4.7: Superficie virtual $p_l(t)$ (----) vs superficie física $p_r(t)$ (----) sin presencia de retardo

En la Figura 4.7 se observa que la descripción de la superficie por parte del robot local es similar a la restricción física a la cual está sujeta el robot remoto. Como se mostrará en los siguientes resultados, este desempeño se verá afectado, pero la estabilidad del sistema de teleoperación se mantendrá.

4.2. Movimiento restringido con retardo

Se llevaron a cabo tres experimentos considerando el retardo. El primero se realizó con un retardo asimétrico, es decir, el tiempo de ida y de regreso de la información útil (posición y velocidad) son diferentes, mientras que el segundo es realizado con un retardo simétrico. El tercer experimento se realizó con la finalidad de demostrar el funcionamiento y desempeño del esquema propuesto aún en el escenario donde no se conoce nada sobre el modelo dinámico.

4.2.1. Retardo asimétrico

Para este experimento los retardos de tiempo fueron establecidos en $T_{\rm l} = 0.3$ s y $T_{\rm r} = 0.7$ s. En este caso se toma en cuenta el escenario donde el operador humano mueve el efector final, mientras que el robot remoto se encuentra restringido por una caja de aluminio como puede verse en la Figura 4.1.

Figura 4.8: Posiciones con retardo asimétrico $q_{\rm l}(t)$ (----) $vs q_{\rm r}(t - 0.7s)$ (- - -) [°].

Figura 4.9: Posiciones con retardo asimétrico $q_r(t)$ (----) $vs q_r(t-0.3s)$ (----) [°].

En las Figuras 4.8 y 4.9 se muestran los perfiles de posición de ambos robots. El algoritmo propuesto permite que ambos robots se sigan entre sí. Esta afirmación cobra validez al observar las Figuras 4.10 y 4.11. En la primera se pueden observar el error de seguimiento que presenta el robot local hacia el remoto, notesé que la amplitud de los errores es mayor que la segunda Figura, este efecto de diferencia entre los errores es debido a que el robot local está tratando de seguir un perfil de referencia atrasado 0.7s, el humano no tendrá la sensación de tocar la superficie sino hasta 0.7s después, este retardo implica a su vez, que el error sea más grande. Visto desde el lado del robot remoto éste seguirá un perfil de referencia atrasado 0.3s, por lo que puede actualizar su posición con mayor frecuencia, este efecto se ve reflejado en un error de seguimiento más pequeño.

Figura 4.10: Errores de seguimiento con presencia de retardo asimétrico $e(t){=}~q_{\rm l}(t){-}~q_{\rm r}(t-0.7s)$

Figura 4.11: Errores de seguimiento con presencia de retardo asimétrico $e(t) = q_r(t)$ - $q_l(t - 0.3s)$

Figura 4.12: Errores de observación con presencia de retardo asimétrico $z_l = q_l(t) - \hat{q}_l(t)$

4. RESULTADOS EXPERIMENTALES

Figura 4.13: Errores de observación con presencia de retardo asimétrico $z_{\rm r} = q_{\rm r}(t) - \hat{q}_{\rm r}(t)$

A diferencia de las Figuras 4.4 y 4.5, las amplitudes de los errores mostrados en las Figuras 4.12 y 4.13 son menores. Los errores muestran tener una amplitud de $\pm 0.4[^{\circ}]$. Una consecuencia de la aparición del retardo, es que ahora el humano está obligado a describir perfiles de posición y velocidad más suaves.

Figura 4.14: Velocidad observada $\dot{\hat{q}}_{l}(t)$ (----) $vs \dot{\hat{q}}_{r}(t-0.7s)$ (----) [°].

Figura 4.15: Velocidad observada $\dot{\hat{q}}_{r}(t)$ (- - -) $vs \ \dot{\hat{q}}_{l}(t - 0.3s)$ (-----) [°].

En las Figuras 4.14 y 4.15 se muestran las velocidades obtenidas con el observador propuesto, a diferencia del experimento anterior se obtienen velocidades de menor amplitud.

(a) Vista isométrica

(b) Vista superior

Figura 4.16: Superficie real $p_1(t)$ (----) vs superficie virtual $p_r(t)$ (----) con presencia de

En la Figura 4.16 se puede observar la superficie percibida por el operador humano, nótese que esta superficie percibida es muy similar a la restricción física. Como era de esperarse se aprecia una superficie algo deformada, además yá está presente una pérdida de transparencia, este efecto es debido al retardo y a la inyección de amortiguamiento del lado del robot local. Como se esperaba la pasividad se contrapone a la transparencia. En este trabajo se tiene como prioridad garantizar que el sistema sea estable. A pesar de este sacrificio, aún con retardos grandes se mantiene la sensación de telepresencia y las trayectorias del sistema continúan siendo acotadas.

Figura 4.17: Posiciones medidas $q_l(t)$ (----) $[\circ]$.

Figura 4.18: Posiciones medidas $q_{\rm r}(t)$ (----) vs posiciones estimadas $\hat{q}_{\rm l}(t)$ (----) $[^{\circ}]$.

Las Figuras 4.15 y 4.16 muestran las posiciones estimadas obtenidas con los observadores, es claro que se obtiene una posición estimada muy aproximada a la posición real de cada robot.

4.2.2. Retardo simétrico

El siguiente experimento tiene como objetivo emular un retardo de tiempo similar en el envío y recepción de información. Para este experimento, los retardos de tiempo fueron establecidos en $T_{\rm l} = 0.5$ s y $T_{\rm r} = 0.5$ s.

Figura 4.19: Posiciones con retardo simétrico $q_l(t)$ (----) $vs q_r(t - 0.5s)$ (----) $[\circ]$.

Figura 4.20: Posiciones con retardo simétrico $q_r(t)$ (---) vs $q_r(t-0.5s)$ (----)[°].

En las Figuras 4.19 y 4.20 se muestran los perfiles de posición de ambos robots. Nuevamente el algoritmo propuesto permite que ambos robots se sigan entre sí. Sin embargo, existe un error más grande como se puede apreciar en las Figuras 4.21 y 4.22.

Figura 4.21: Errores de seguimiento con presencia de retardo simétrico $e(t) = q_1(t) - q_r(t - 0.5s)$

Figura 4.22: Errores de seguimiento con presencia de retardo simétrico $e(t) = q_r(t)-q_l(t - 0.5s)$

Figura 4.23: Errores de observación con presencia de retardo asimétrico $z_l = q_l(t) - \hat{q}_l(t)$

Figura 4.24: Errores de observación con presencia de retardo asimétrico $z_{\rm r} = q_{\rm r}(t) \cdot \hat{q}_{\rm r}(t)$

En las Figuras 4.23 y 4.24 se muestran los errores de observación, con retardos iguales de ida y regreso, el observador propuesto demuestra tener buen desempeño. Se observa que existe un error con una amplitud de $\pm 0.3^{\circ}$.

Figura 4.25: Velocidad observada $\dot{\hat{q}}_1(t)$ (----) $vs \ \dot{\hat{q}}_r(t-0.5s)$ (----) [°].

Figura 4.26: Velocidad observada $\dot{\hat{q}}_{r}(t)$ (----) $vs \ \hat{\hat{q}}_{l}(t-0.5s)$ (-----) [°].

En las Figuras 4.25 y 4.26 se observan las velocidades obtenidas mediante el observador diseñado. Sin embargo se observa que la velocidad para la segunda articulación de ambos robots tiene picos, aproximadamente a los diez y sesenta segundos, estos tiempos son precisamente cuando se toca por primera vez la superficie y cuando se trata de atravesar la superficie. En esos instantes el controlador intenta corregir rápidamente el crecimiento del error.

(b) Vista superior

Figura 4.27: Superficie virtual $p_1(t)$ (----) vs superficie real $p_r(t)$ (----) con presencia de retardo simétrico

En las Figura 4.27 se puede observar la superficie percibida por el humano $p_l(t)$ (— —), a pesar de que el humano intenta atravesar la superficie como se aprecia mejor en a), el inciso a) de la Proposición 3.2.1 aún se mantiene. Se puede observar además que el controlador corrige este exceso de fuerza por parte del humano, teniendo la sensación de telepresencia como lo afirma el inciso *iv.*, bajo este escenario se sigue manteniendo la estabilidad del sistema.

Figura 4.28: Posiciones medidas $q_{\rm l}(t)$ (----) vs posiciones estimadas $\hat{q}_{\rm r}(t)$ (----) $[^{\circ}]$.

Figura 4.29: Posiciones medidas $q_r(t)$ (----) vs posiciones estimadas $\hat{q}_l(t)$ (----) $[\circ]$.

Con el fin de mostrar que el observador funciona de buena manera, en las Figuras 4.28 y 4.29 se muestran las posiciones estimadas.

4.2.3. Sin cancelación del par gravitacional

El siguiente experimento se realizó para un retardo $T_{\rm l} = 0.3$ s y $T_{\rm r} = 0.7$ s, con la intención de mostrar que el esquema que se propone funciona sin el conocimiento de ningún parámetro del modelo de ambos robots. Este experimento se trato de reproducir de manera similar al segundo mostrado en este trabajo. El esquema propuesto, en la parte del controlador involucra la cancelación de la gravedad, sin embargo hay que mencionar que se propuso hacerlo de está manera, únicamente para comodidad del operador humano. A continuación se presentan un experimento, en el cuál se ha omitido la cancelación del par gravitacional en ambos manipuladores.

Figura 4.30: Posiciones sin cancelación del par gravitacional y con presencia de retardo asimétrico $q_{\rm l}(t)$ (-----) $vs q_{\rm r}(t - 0.7s)$ (- - - -) [°].

Figura 4.31: Posiciones sin cancelación del par gravitacional y con presencia de retardo asimétrico $q_r(t)$ (- - -) $vs q_l(t - 0.3s)$ (-----) [°].

En las Figuras 4.30 y 4.31 se observan los perfiles de posición de ambos robots, las trayectorias fueron similares a las Figuras 4.8 y 4.9.

Figura 4.32: Errores de seguimiento sin cancelación del par gravitacional y con presencia de retardo asimétrico $e(t) = q_1(t)-q_r(t-0.7s)$

Figura 4.33: Errores de seguimiento sin cancelación del par gravitacional y con presencia de retardo asimétrico $e(t) = q_r(t) - q_1(t - 0.3s)$

En las Figuras 4.32 y 4.33 se muestra que el esquema funciona como se esperaba y no necesita conocer el modelo de los robots, este es un gran aporte. En experimentos anteriores se canceló el vector de gravedad, simplemente se hizo por comodidad del operador humano. Esta capacidad de no cancelar la gravedad tiene sus limitaciones, este experimento se llevó a cabo gracias a que los robots son pequeños y no tienen dimensiones que dificulten su manipulación.

Comparando las Figuras 4.32 y 4.33 con las Figuras 4.8 y 4.9, se puede observar que las amplitudes de los errores de seguimientos son menores cuando no se compensa la gravedad. Aún falta demostrar hasta qué punto la selección de ganancias del controlador podría considerar esta compensación de gravedad como una perturbación tratando de

atenuarla, tratar de demostrarlo puede ser una tarea difícil.

Figura 4.34: Errores de observación para retardo asimétrico $z_{\rm l}{=}~q_{\rm l}(t){-}\hat{q}_{\rm l}(t)$

Figura 4.35: Errores de observación para retardo asimétrico $z_{\rm r} = q_{\rm r}(t) \cdot \hat{q}_{\rm r}(t)$

En las Figuras 4.34 y 4.35 se puede observar que las amplitudes de los errores de observación se mantienen pequeños. Como era de esperarse el observador funciona como se esperaba.

Figura 4.36: Velocidad observada $\dot{\hat{q}}_{l}(t)$ (----) $vs \dot{\hat{q}}_{r}(t-0.7s)$ (----) [°].

Figura 4.37: Velocidad observada $\dot{\hat{q}}_{r}(t)$ (- - -) $vs \ \dot{\hat{q}}_{l}(t - 0.3s)$ (-----) [°].

En las Figuras (4.36) y (4.37) se observan las velocidades estimadas con el observador.

(b) Vista superior

Figura 4.38: Superficie virtual $p_1(t)$ (——) vs superficie real $p_r(t)$ (—–) sin cancelación del par gravitacional y con retardo asimétrico

En la Figura 4.32 se observa la superficie percibida por el humano, nuevamente se obtiene una superficie muy parecida a la restricción física. Sin embargo se observa un plano que presenta ciertas pasos algo abruptos, esta trayectoria puede ser debido al retardo y al comportamiento del humano.

Figura 4.39: Posiciones medidas $q_{l}(t)$ (----) vs posiciones estimadas $\hat{q}_{r}(t)$ (----) $[\circ]$.

Figura 4.40: Posiciones medidas $q_r(t)$ (----) vs posiciones estimadas $\hat{q}_l(t)$ (----) $[\circ]$.

Las Figuras 4.39 y 4.40 muestran las posiciones estimadas obtenidas por los observadores, se observa que el observador funciona como se esperaba.

Este experimento demuestra que en ambos casos, con o sin el conocimiento del vector de pares gravitacionales el esquema propuesto funciona bien para robots con dinámica como la de los *Geomagic Touch*.

Aún queda pendiente demostrar sí, efectivamente el esquema funciona mejor, como aparentemente lo fue cuando no se compensa la gravedad.

Capítulo 5

Conclusiones

Este trabajo presenta un innovador y práctico esquema controlador-observador para sistemas teleoperados bilateralmente diseñado para lidiar con la presencia de retardos constantes en el canal de comunicación. El esquema propuesto resuelve el problema de incertidumbres en el modelo; no es necesario conocerlo, por lo que es robusto. Además, no necesita del conocimiento de las velocidades articulares, ya que también incluye un observador que obtiene una muy buena estimación de las velocidades reales. Con base en experimentación se demostró que el esquema propuesto es muy práctico además de tener muy buen desempeño. Al usar un observador lineal para obtener una estimación de las velocidades articulares, se evita el uso de tacómetros, además del ruido presente en estas señales.

En el desarrollo teórico, se usó el análisis de Lyapunov para demostrar el acotamiento de la solución de la ecuación de estado de la dinámica de los errores de seguimiento y observación. Esta solución tiene propiedades de acotamiento uniforme y acotamiento final que fueron demostradas en el Capítulo 3 sin conocer la solución explícita de la ecuación de estado. Cabe mencionar que gran parte del desarrollo teórico parte de la suposición de que puede expresar de manera simplificada el comportamiento dinámico del operador humano. También se demostró, mediante experimentación que tanto los errores de observación, como los errores de seguimiento entre ambos robots son arbitrariamente pequeños, cabe resaltar que los retardos fueron simétricos y asimétricos. Es importante resaltar que desde un punto de vista teórico no es necesario la cancelación del vector de gravedad, los experimentos muestran que el esquema funciona bien y no necesita conocer el modelo de los robots, este es un gran aporte. En el último experimento no se canceló el vector de gravedad por comodidad del operador humano. Esto se puede hacer dado que los robots son pequeños y no tienen dimensiones que dificulten su manipulación. Una desventaja del esquema propuesto es lograr una sintonización adecuada para las ganancias. Resulta difícil determinar hasta qué punto pueden ser atenuadas por la inyección de amortiguamiento o por la compensación de gravedad en el robot maestro, ya que esta invección o compensaciones pueden verse como perturbaciones a compensar; además de lidiar con un comportamiento del humano que pudiese

ser distinto al contemplado. Quizás este comportamiento pueda verse como una fuerza externa variante en el tiempo o quizás con algún retardo, que resultaría difícil de compensar por parte del contralor del robot remoto.

Todos los resultados obtenidos sugieren que las ganancias están en función del tiempo de retardo. Esto se comprobó comparando el caso con y sin retardo y verificar que el sistema será inestable con un retardo sustancial.

5.1. Trabajo futuro

Como posible continuación de este trabajo, podría realizarse un análisis considerando retardos variantes en el tiempo y pérdida de información por el canal de comunicación.

El algoritmo funciona utilizando las posiciones, a partir de esta información el operador humano tiene la sensación de tocar alguna superficie, sin embargo no es posible afirmar que la fuerza que éste aplique es la misma (por lo menos escalada) sobre la superficie, por ello se plantea la posibilidad de agregar al esquema un término que permita realizar control de fuerza. También se contempla la posibilidad de usar un sensor de fuerza o buscar la inclusión de un observador de fuerza.

Apéndice A

Código/Manuales/Publicaciones

A.1. Robot Geomagic Touch de 3D Systems

Para la validación experimental del esquema propuesto se usarán dos robots *Geomagic Touch de 3D Systems* como maestro y esclavo. El robot *Geomagic Touch* está diseñado especialmente para realizar tareas *hápticas*; sin embargo, gracias a su código abierto puede ser usado para distintos fines.

Figura A.1: Robot Geomagic Touch de 3D Systems

El robot *Geomagic Touch de 3D Systems* de la Figura A.1 cuenta con seis articulaciones, de las cuales, sólo las primeras tres están actuadas mediante motores de corriente directa. Para las articulaciones q_1 , q_2 y q_3 se puede obtener la posición de manera muy precisa por medio de *encoders* digitales, mientras que para q_4 , q_5 y q_6 la posición es obtenida con potenciómetros.

A.1.1. Modelo Cinemático

En esta sección, se aborda el modelo cinemático del robot *Geomagic Touch*. El modelo cinemático de un robot tiene como objetivo describir el movimiento de un robot sin considerar las fuerzas y torques causantes del movimiento.

A.1.1.1. Cinemática Directa

La cinemática directa es empleada para determinar la posición y orientación del efector final dados los valores de las variables articulares del robot. En este trabajo solo se considera la posición del centro de la muñeca $P_c(x_c, y_c, z_c)$ del robot *Geomagic Touch*. Debido a la construcción mecánica del robot, la convención de Denavit Hartenberg no puede ser aplicada directamente, esto es debido a que la tercera articulación se mueve de manera independiente, el ángulo de giro θ_3 usualmente se mide desde x_2 hacia x_3 siendo z_2 el eje de giro, sin embargo basta con una pequeña modificación para poder medir el ángulo de giro θ_3 de acuerdo a esta convención. Así $\theta_3 = q_3 - \theta_2 - 90^\circ$, donde q_3 es la posición angular medida desde un eje vertical en sentido anti horario, con esta transformación se pueden obtener los modelos cinemáticos siguiendo la convención de Denavit Hartenberg.

La Cinemática Directa respecto a la Figura A.2 del centro de la muñeca $P_c(x_c, y_c, z_c)$ respecto al sistema base, esta dada por:

$$x_c = (a_2 \cos(\theta_2) + a_3 \cos(\theta_2 + \theta_3)) \cos \theta_1, \qquad (A.1)$$

$$y_c = (a_2 \cos(\theta_2) + a_3 \cos(\theta_2 + \theta_3)) \sin \theta_1, \qquad (A.2)$$

$$z_c = (a_2 \sin(\theta_2) + a_3 \sin(\theta_2 + \theta_3)) + d_1,$$
(A.3)

A.1.1.2. Cinemática Inversa

La cinemática inversa es empleada para determinar los valores de las variables articulares dada la posición y la orientación del efector final. En general, es más complicado que en la cinemática directa, ya que no siempre puede obtenerse una solución analítica cerrada a este problema. Sin embargo, se puede obtener una solución para el problema cinemático inverso mediante un enfoque geométrico.

Dado el centro de la muñeca del robot Geomagic touch $p_c(x_c, y_c, z_c)$, las soluciones para $q_1, q_2 \ge q_3$ de acuerdo a la Figura A.2 son respectivamente

Figura A.2: Vista isométrica

$$\theta_1 = \tan^{-1} \left(\frac{y_c}{x_c} \right), \tag{A.4}$$

$$\theta_2 = \tan^{-1}\left(\frac{s}{r}\right) - \tan^{-1}\left(\frac{a_3\cos(\theta_3)}{a_2 + a_3\sin(\theta_3)}\right),\tag{A.5}$$

$$\theta_3 = \tan^{-1}\left(\frac{\sqrt{1-D^2}}{D}\right),\tag{A.6}$$

donde $\cos(q_3) = \frac{s^2 + r^2 - a_2^2 - a_3^2}{2a_2 a_3} =: D, \ s = z_c - d_1 \text{ y } r^2 = x_c^2 + y_c^2.$ Para determinar las ecuaciones cinemáticas y dinámicas del robot *Geomagic Touch*,

Para determinar las ecuaciones cinemáticas y dinámicas del robot *Geomagic Touch*, es necesario conocer algunas características importantes, como son: resolución que ofrecen los *encoders*, el espacio de trabajo, etc. Estos datos (ofrecidos por el fabricante) se muestran en la Tabla A.1.

Especificaciones	Descripción	
Peso 3 Libras (1360.78 g)		
Grados de Libertad	6	
	Eje X 1.26 N / mm	
Rigidez	Eje Y 2.31 N / mm	
	Eje Z 1.02 N / mm	
Espacio de trabajo	160 w x 120 h x 70 d [mm]	
Comunicación	Comunicación Puerto Usb o puerto Ethernet conforme a RJ	
Fuerza máxima nominal	0.75 lbf (3.3 N)	
Resolución nominal de la posición	$0.055 \; [mm]$	

Tabla A.1: Especificaciones técnicas del robot Geomagic Touch de 3D Systems

Con ayuda del paquete de librerías *Open Haptics* proporcionadas por *3D Systems*, es posible obtener el número de pulsos de los *encoders* en las seis articulaciones del robot y disponer libremente de los torques a los motores.

Tabla A.2: Relación giro-cuentas de encoders Geomagic Touch de 3D Systems

	$ heta_1$	θ_2	$\theta_3 = f_{min}(\theta_2)$	$\theta_3 = f_{max}(\theta_2)$
Cuentas	-2435 a 2380	-60 a -4420	-841 a 3180	2290 a 4901
Grados	-57 a 57	$0 \ \mathrm{a} \ 105$	$-20.8 < \theta_3 < 73.5$	$-49.9 < \theta_3 < 11.25$

A partir de la Tabla A.2, se puede observar que el rango para la tercera articulación está limitado por la posición de la segunda, esto es debido al diseño mecánico del robot.

A.2. Pares de gravedad

El esquema propuesto está diseñado para evitar en lo posible, el conocimiento del modelo dinámico del robot, solo basta con conocer el vector de pares gravitacionales. El cálculo en línea de este vector $\boldsymbol{g}_{\rm m}(\boldsymbol{q}_{\rm m})$ depende de la posición articular y del conocimiento de parámetros de la estructura del robot, es decir;

$$\boldsymbol{g}_{\rm m}(\boldsymbol{q}_{\rm m}) = \begin{bmatrix} 0 \\ m_2 g_0 \cos(\theta_2) + m_3 g_0 \cos(\theta_2 + \theta_3) \\ m_3 g_0 \cos(\theta_2 + \theta_3) \end{bmatrix},$$
(A.7)

Los parámetros m_2 y m_3 fueron determinados experimentalmente usando el esquema de control adaptable basado en pasividad de [Slotine & Li 1986].

$$\boldsymbol{H}_{m}(\boldsymbol{q}_{m})\dot{\boldsymbol{r}} + \boldsymbol{C}_{m}(\boldsymbol{q}_{m}, \dot{\boldsymbol{q}}_{m})\boldsymbol{r} + \boldsymbol{K}_{m}\boldsymbol{r} + \boldsymbol{g}_{m}(\boldsymbol{q}_{m}) = \boldsymbol{Y}_{m}\boldsymbol{\theta}_{m}, \qquad (A.8)$$

donde

$$egin{array}{rcl} m{v}&=&\dot{m{q}}_m^{
m d}-\Lambda ilde{m{q}}_m\ m{a}&=&\dot{m{v}}= m{\ddot{m{q}}}_m^{
m d}-\Lambda ilde{m{q}}_m\ m{r}&=&m{\dot{m{q}}}_m-m{v}= m{\dot{m{q}}}_m+\Lambda ilde{m{q}}_n \end{array}$$

Para determinar la estimación de $\boldsymbol{\theta}_m$ se uso la ley de adaptación gradiente,

$$\dot{\hat{\boldsymbol{\theta}}}_m = -\Gamma^{-1} \boldsymbol{Y}^T(\boldsymbol{q}_m, \dot{\boldsymbol{q}}_m, \boldsymbol{a}, \boldsymbol{v}) \boldsymbol{r}, \qquad (A.9)$$

Los valores obtenidos para las masas de los eslabones 2 y 3 respectivamente son $m_2 = 0.0085$ kg., $m_3 = 0.01$ kg., y donde $g_0 = 9.79$ es la constante de gravedad en Ciudad Universitaria, México.

A.3. Código Visual Studio C++

```
1 // PhantomDlg.cpp : implementation file
2 #include "stdafx.h"
3 #include "Phantom.h"
4 #include "PhantomDlg.h"
5 #include <HD/hd.h>// Library of haptic device
6 #include <HDU/hduError.h>
7 #include <HDU/hduVector.h>
8 // User includes
9 #include <math.h> // Math operations
10 #include "mmsystem.h" // Multimedia timer
11 #include "analysis.h" // Matrix operations, etc.
12 #include <NIDAQmx.h> // Sensor de fuerza
13 // CPhantomDlg dialog
14 // User definitions
15 #define pi 3.1415926535
16 #define MAX_GRAF_ROWS 60000
17 HHD hHDm;
```

18 HHD hHDs;

```
19 bool initialized = false, schedulerStarted = false; // user flags
20 double taum [3] = \{0.0, 0.0, 0.0\};
21 double taus [3] = \{0.0, 0.0, 0.0\}; // Input arrays
22 double qm[3] = \{0.0\};
23 double qs [3] = \{0.0\}; // Position arrays
24 const double T = 0.001; // Sample time
25 const int n = 3; // Number of joints
26 HDSchedulerHandle servoLoopHandle;
27 bool iCHome = true, homeCompletedFlag = true, iCControl = true,
      controlCompletedFlag = true; // User flags
28 \*Variables para teleoperacion*\
29 bool iCTele=true, teleoperacionCompletedFlag = true;
30 MMRESULT homeTimerID, controlTimerID, teleoperacionTimerID;
31 double grafi [MAX_GRAF_ROWS] [31] = \{0.0\};
32 const int grafSkip = 0; // Number of time intervals to discard for the
      output file
33 int indx = 0;
34 const double angle_final_effector = 15.0*pi/180.0;
35 const double a_2 = 0.145, a_3 = sqrt(.135*.135 + .04*.04 - 2.0*0.135*.04*cos
      (pi-angle_final_effector));
36 const double gamma_final_effector = asin(0.04*sin(pi-angle_final_effector))
      /a3);
37 const double T1=0.3;
38 const double T2=0.7;
39 int CONTT1=0;
40 int CONTT2=0;
41 double BARqm[n] = \{0.0\};
42 double BARESTqm[n] = \{0.0\};
43 double BARESTdqm[n] = \{0.0\};
44 double BARqs[n] = \{0.0\};
45 double BARESTqs[n] = \{0.0\};
46 double BARESTdqs[n] = \{0.0\};
47 double ALMBARqm[MAX_GRAF_ROWS] [n] = \{0.0\};
48 double ALMBARqs[MAX_GRAF_ROWS] [n] = \{0.0\};
49 double ALMBARESTdqm [MAX_GRAF_ROWS] [n] = \{0.0\};
50 double ALMBARESTdqs[MAX_GRAF_ROWS] [n] = \{0.0\};
```

```
51 double ALMBARESTqm [MAX_GRAF_ROWS] [n] = \{0.0\};
52 double ALMBARESTqs [MAX_GRAF_ROWS] [n] = \{0.0\};
53 // Force sensor init
54 TaskHandle taskHandle=0;
_{55} int
             error = 0:
56 float64 data;
57 #define DAQmxErrChk(functionCall) if (DAQmxFailed(error=(functionCall)))
      goto Error; else
58 double lambda;
59 CPhantomDlg::CPhantomDlg(CWnd* pParent /*=NULL*/)
60 : CDialog(CPhantomDlg::IDD, pParent)
61 {
          m_hIcon = AfxGetApp() \rightarrow LoadIcon(IDR_MAINFRAME); \}
62 void CPhantomDlg::DoDataExchange(CDataExchange* pDX)
63 {
           CDialog::DoDataExchange(pDX);
           DDX_Control(pDX, IDC_EDIT1, m_statusTextBox);
64
           DDX_Control(pDX, IDC_READENCODERS, m_readEncoders);
65
           DDX_Control(pDX, IDC_ENCODER1, m_encoderBox1);
66
           DDX_Control(pDX, IDC_ENCODER2, m_encoderBox2);
67
           DDX_Control(pDX, IDC_ENCODER3, m_encoderBox3);
68
           DDX_Control(pDX, IDC_FORCESENSOR, m_ForceValueBox);
69
           DDX_Control(pDX, IDC_PROGRESS1, m_ForceBarCtrl);
70
           DDX_Control(pDX, IDC_ENCODER4, m_encoderBox4);
71
           DDX_Control(pDX, IDC_ENCODER5, m_encoderBox5);
72
           DDX_Control(pDX, IDC_ENCODER6, m_encoderBox6);
73
           DDX_Control(pDX, IDC_TIEMPO, m_TIEMPO);
74
           DDX_Control(pDX, IDC_TIEMPO, m_TIEMPO);
75
76 }
77 BEGIN_MESSAGE_MAP(CPhantomDlg, CDialog)
78 ON_WM_PAINT()
79 ON_WMLQUERYDRAGICON()
80 ON_WM_CLOSE()
s1 ON_BN_CLICKED(IDC_INITIALIZE, &CPhantomDlg::OnBnClickedInitialize)
82 ON_BN_CLICKED(IDC_CALIBRATION, &CPhantomDlg::OnBnClickedCalibration)
83 ON_BN_CLICKED (IDC.READENCODERS, & CPhantomDlg:: OnBnClickedReadencoders)
84 ON_BN_CLICKED(IDC_HOME, &CPhantomDlg::OnBnClickedHome)
```

85 ON_BN_CLICKED(IDC_CONTROL, & CPhantomDlg::OnBnClickedControl)

```
86 ON_BN_CLICKED(IDC_Teleoperacion, &CPhantomDlg::OnBnClickedTeleoperacion)
87 END_MESSAGE_MAP()
88 // CPhantomDlg message handlers
89 BOOL CPhantomDlg::OnInitDialog()
           CDialog::OnInitDialog();
90 {
           // Set the icon for this dialog. The framework does this
^{91}
               automatically
           // when the application's main window is not a dialog
92
           SetIcon(m_hIcon, TRUE);
                                                      // Set big icon
93
94
           SetIcon(m_hIcon, FALSE);
                                                      // Set small icon
           // TODO: Add extra initialization here
95
           return TRUE; // return TRUE unless you set the focus to a
96
               control
97 }
  void CPhantomDlg::OnPaint()
98
99 {
           if (IsIconic())
100
           {
101
           CPaintDC dc(this); // device context for painting
102
           SendMessage(WMJCONERASEBKGND, reinterpret_cast < WPARAM>(dc.
103
               GetSafeHdc()), 0);
           // Center icon in client rectangle
104
           int cxIcon = GetSystemMetrics(SM_CXICON);
105
           int cyIcon = GetSystemMetrics(SM_CYICON);
106
           CRect rect;
107
           GetClientRect(&rect);
108
           int x = (rect.Width() - cxIcon + 1) / 2;
109
           int y = (rect.Height() - cyIcon + 1) / 2;
110
           // Draw the icon
111
           dc.DrawIcon(x, y, m_hIcon);
112
           }
113
           else
114
115
           {
           CDialog::OnPaint();
116
117
           }
118 }
```

```
119 void CPhantomDlg::OnClose() // When close button...
120 {
           timeEndPeriod(1);
121
           if (!iCHome)
122
                    timeKillEvent(homeTimerID);
           {
123
                   homeCompletedFlag = iCHome = true;
                                                             }
124
           if(!iCControl)
125
                    timeKillEvent(controlTimerID);
126
           {
                   controlCompletedFlag = iCControl = true;
                                                                      }
127
           if(!iCTele)
128
                    timeKillEvent(teleoperacionTimerID);
           {
129
                    teleoperacionCompletedFlag = iCTele = true;
                                                                      }
130
           if (initialized&&hdIsEnabled(HD_FORCE_OUTPUT))
131
           hdDisable(HD_FORCE_OUTPUT);
132
           hdUnschedule(servoLoopHandle);
133
           if (schedulerStarted)
134
           hdStopScheduler();
135
           if (initialized)
136
                   hdDisableDevice(hHDm);
           {
137
                   hdDisableDevice(hHDs); }
138
           FILE *outFile;
139
   if(fopen_s(\&outFile, "Data.m", "w")!=0){
140
                   MessageBox(_T("No se pudo crear el archivo para graficar")
141
                       );
           }
142
143 else {
           for (int i=0; i<indx; i++){
144
145 fprintf(outFile, "%f %f %f
147 grafi [i][0], grafi [i][1], grafi [i][2], grafi [i][3], grafi [i][4],
148 grafi [i][5], grafi [i][6], grafi [i][7], grafi [i][8], grafi [i][9],
149 grafi[i][10], grafi[i][11], grafi[i][12], grafi[i][13], grafi[i][14],
150 grafi[i][15], grafi[i][16], grafi[i][17], grafi[i][18], grafi[i][19],
151 grafi [i][20], grafi [i][21], grafi [i][22], grafi [i][23], grafi [i][24],
152 grafi [i][25], grafi [i][26], grafi [i][27], grafi [i][28], grafi [i][29],
153 grafi [i] [30]);}
```

```
fclose(outFile);
154
155
           }
           exit(0);
156
157 }
158 // The system calls this function to obtain the cursor to display while
       the user drags
       the minimized window.
159 //
160 HCURSOR CPhantomDlg::OnQueryDragIcon()
           return static_cast <HCURSOR>(m_hIcon);
161 {
                                                       }
162 HDCallbackCode HDCALLBACK CalibrationStatusCallback(void * pUserData)
           HDenum *pStatus = (HDenum *) pUserData;
163
  {
           hdBeginFrame(hHDm);
164
           hdUpdateCalibration(HD_CALIBRATION_INKWELL);
165
           *pStatus = hdCheckCalibration();
166
           hdEndFrame(hHDm);
167
           hdBeginFrame(hHDs);
168
           hdUpdateCalibration(HD_CALIBRATION_INKWELL);
169
           *pStatus = hdCheckCalibration();
170
           hdEndFrame(hHDs);
171
172
           return HD_CALLBACK_DONE;
173 }
174 typedef struct
175 { hduVector3Dd position;
176 } DeviceStateStruct;
177 DeviceStateStruct state;
178 HDCallbackCode HDCALLBACK ServoLoopCallback(void *pUserData)
179
            DeviceStateStruct *pState = static_cast<DeviceStateStruct *>(
180
               pUserData);
           HDdouble torque [3];
181
           hdBeginFrame(hHDm);
182
           hdGetDoublev(HD_CURRENT_JOINT_ANGLES, pState->position);
183
           torque[0] = -1000.0 * taum[0];
184
           torque[1] = 1000.0 * taum[1];
185
           torque[2] = 1000.0 * taum[2];
186
           qm[0] = -state. position [0];
187
```

```
qm[1] = state.position[1];
188
           qm[2] = state.position[2] - 0.5*pi-qm[1] - gamma_final_effector;
189
            hdSetDoublev(HD_CURRENT_JOINT_TORQUE, torque);
190
            hdBeginFrame(hHDs);
191
            hdGetDoublev(HD_CURRENT_JOINT_ANGLES, pState->position);
192
            torque[0] = -1000.0 * taus[0];
193
            torque[1] = 1000.0 * taus[1];
194
            torque[2] = 1000.0 * taus[2];
195
            qs[0] = -state. position[0];
196
197
            qs[1] = state.position[1];
            qs[2] = state.position[2] - 0.5*pi-qs[1] - gamma_final_effector;
198
            hdSetDoublev(HD_CURRENT_JOINT_TORQUE, torque);
199
            hdEndFrame(hHDm);
200
201
            hdEndFrame(hHDs);
            return HD_CALLBACK_CONTINUE;
202
203 }
204 void CPhantomDlg::OnBnClickedInitialize()
205 \{
            HDErrorInfo error;
206
            HDstring MasterRobot = "Default Device";
207
            HDstring SlaveRobot = "p2";
208
           hHDm = hdInitDevice(MasterRobot);
209
            if (HD_DEVICE_ERROR(error = hdGetError()))
210
                    MessageBox(_T("Master Device not Found!"));
211
            {
                    return; }
212
           hHDs = hdInitDevice(SlaveRobot);
213
            if (HD_DEVICE_ERROR(error = hdGetError()))
214
                    MessageBox(_T("Slave Device not Found!"));
215
            {
                    return; }
216
            servoLoopHandle = hdScheduleAsynchronous(ServoLoopCallback, & state)
217
                , HD_MAX_SCHEDULER_PRIORITY);
            hdMakeCurrentDevice(hHDm);
218
            if (!hdIsEnabled(HD_FORCE_OUTPUT))
219
            hdEnable(HD_FORCE_OUTPUT);
220
            if (HD_DEVICE_ERROR(error = hdGetError()))
221
            MessageBox(_T("Force output enable error!"));
222
```

```
hdMakeCurrentDevice(hHDs);
223
            if (!hdIsEnabled(HD_FORCE_OUTPUT))
224
            hdEnable(HD_FORCE_OUTPUT);
225
            if (HD_DEVICE_ERROR(error = hdGetError()))
226
            MessageBox(_T("Force output enable error!"));
227
            if (! schedulerStarted)
228
                    hdStartScheduler();
            {
229
                    schedulerStarted = true;
230
                    Sleep(1500);
                                     }
231
232
            if (HD_DEVICE_ERROR(error = hdGetError()))
                    MessageBox(_T("Servo loop initialization error"));
            {
233
                    hdDisableDevice(hHDm);
234
                    hdDisableDevice(hHDs);
235
                    exit(-1);
                                       }
236
237
            else
            {
                    initialized = true;
238
                    m_statusTextBox.SetWindowTextW(_T("*** Phantom Robot
239
                        initialized ***"));
            }
240
            timeBeginPeriod(1);
241
242 }
243 void CPhantomDlg::OnBnClickedCalibration()
244
            if (initialized)
245
            int supportedCalibrationStyles;
246 {
            int calibrationStyle;
247
            HDErrorInfo error;
248
            hdGetIntegerv(HD_CALIBRATION_STYLE, & supportedCalibrationStyles);
249
            if (supportedCalibrationStyles & HD_CALIBRATION_INKWELL)
250
                    calibrationStyle = HD_CALIBRATION_INKWELL;
251
            else
252
            MessageBox(_T(" Sorry, no ink-well calibration available "));
253 {
            return:
                             }
254
            if (HD_DEVICE_ERROR(error = hdGetError()))
255
            m_statusTextBox.SetWindowTextW(_T("*** Failed to start the
256
                scheduler***"));
```

257	HDenum status;
258	${\tt hdScheduleSynchronous} ({\tt CalibrationStatusCallback} \; , \; \& {\tt status} \; ,$
	HD_DEFAULT_SCHEDULER_PRIORITY);
259	if (status == HD_CALIBRATION_NEEDS_MANUAL_INPUT)
260	$MessageBox\left(\ _T\left(\ " \ \texttt{Please put the device into the ink-well } "\ \right)\right);$
261	else
262	$\{ m_statusTextBox.SetWindowTextW(_T("*** Calibration done done done done done done done do$
	*** "));
263	}
264	return;
265	}
266	else
267	$\{ {\rm MessageBox(_T(" \ Please \ initialize \ first \ the \ Phantom \ device} } \}$
	"));
268	}
269 }	
270 void (CPhantomDlg::OnBnClickedReadencoders()
271 {	
272	CString text[6];
273	text[0].Format(L"%.3f",qm[0]*180.0/pi);
274	text[1].Format(L"%.3f",qm[1]*180.0/pi);
275	text[2].Format(L"%.3f",qm[2]*180.0/pi);
276	text[3].Format(L"%.3f",qs[0]*180.0/pi);
277	text[4].Format(L"%.3f",qs[1]*180.0/pi);
278	text[5].Format(L"%.3f",qs[2]*180.0/pi);
279	$m_encoderBox1.SetWindowTextW(text[0]);$
280	m_encoderBox2.SetWindowTextW(text[1]);
281	m_encoderBox3.SetWindowTextW(text[2]);
282	m_encoderBox4.SetWindowTextW(text[3]);
283	m_encoderBox5.SetWindowTextW(text[4]);
284	$m_{encoderBox6.SetWindowTextW(text[5]);$
285	return;
286 }	
287 void (CPhantomDlg::OnBnClickedHome()
288 {	
220	

```
timeKillEvent(homeTimerID);
290
                                                                                                                                  homeCompletedFlag = iCHome = true;
291
                                                                                                                                                                                                                                                                                                                                                                                                                 }
                                                                            if(!iCControl)
292
                                                                                                                                  timeKillEvent(controlTimerID); }
                                                                           {
293
                                                                          homeTimerID = timeSetEvent(T*1000, 0, HomeTimerProc, 0,
294
                                                                                                  TIME_PERIODIC);
                                                                                                                                                                                                                                                             // Home timer initialization
295 }
296 void CALLBACK CPhantomDlg::HomeTimerProc(UINT uID, UINT uMsg, DWORD dwUser
                                               , DWORD dw1, DWORD dw2)
297 {static double tini = 0.0;
298 static double tf = 1.0;
299 static double \operatorname{emi}[n] = \{0.0\}, \operatorname{em}[n] = \{0.0\}, \operatorname{esi}[n] = \{0.0\}, \operatorname{es}[n] = \{0.0\}, \operatorname{es}[n]
                                               \{0.0\};
300 static double bm0[n] = \{0.0\}, bm3[n] = \{0.0\}, bm4[n] = \{0.0\}, bm5[n] =
                                               \{0.0\};
301 static double bs0[n] = \{0.0\}, bs3[n] = \{0.0\}, bs4[n] = \{0.0\}, bs5[n] = \{
                                               \{0.0\};
302 const double qmdf[n] = \{0.0*pi/180.0, 90.0*pi/180.0, -90.0*pi/180.0\};
303 const double qsdf[n] = \{0.0*pi/180.0, 90.0*pi/180.0, -90.0*pi/180.0\};
304 double t = 0.0, qmd[n] = \{0.0\}, em[n] = \{0.0\}, emp[n] = \{0.0\}, qsd[n] =
                                               \{0.0\}, es[n] = \{0.0\}, esp[n] = \{0.0\};
305 double c1 = 0.0, c2 = 0.0, c3 = 0.0, c23 = 0.0, s1 = 0.0, s2 = 0.0, s3 = 0.0
                                              0.0, s23 = 0.0;
306 const double kpm[n] = \{3.0, 3.0, 3.0\}, kim[n] = \{1.0, 1.0, 1.0\}, kdm[n] =
                                               \{0.02, 0.02, 0.02\};
307 const double kps [n] = \{3.0, 3.0, 3.0\}, kis [n] = \{1.0, 1.0, 1.0\}, kds [n] = \{1.0, 1.0, 1.0, 1.0
                                               \{0.02, 0.02, 0.02\};
308 double xd[3] = \{0.0\}, x[3] = \{0.0\};
309 const double xdf[3] = \{0.15, 0.0, -0.16\};
310 double D = 0.0;
311 CPhantomDlg *pMainWnd = (CPhantomDlg *) AfxGetApp()->m_pMainWnd;
312 if (iCHome)
313
                                                                           {
                                                                            tini = timeGetTime();
314
                                                                           for (int i=0; i<n; i++)
315
316
```

317	bm0[i] = qm[i];
318	bm3[i] = 10*(qmdf[i]-bm0[i])/(tf*tf*tf);
319	bm4[i] = -15*(qmdf[i]-bm0[i]) / (tf*tf*tf*tf);
320	bm5[i] = 6*(qmdf[i]-bm0[i]) / (tf*tf*tf*tf*tf);
321	bs0[i] = qs[i];
322	bs3[i] = 10*(qsdf[i]-bs0[i])/(tf*tf*tf);
323	bs4[i] = -15*(qsdf[i]-bs0[i]) / (tf*tf*tf*tf);
324	bs5[i] = 6*(qsdf[i]-bs0[i])/(tf*tf*tf*tf*tf);
325	}
326	$pMainWnd \rightarrow m_statusTextBox.SetWindowTextW(_T("*** \texttt{Reaching home})) \\$
	<pre>position ***"));</pre>
327	}
328	t = (timeGetTime() - tini)/1000.0;
329	for (int i=0; i <n; i++)<="" td=""></n;>
330	{
331	$\mathbf{if}(\mathbf{t} \ll \mathbf{f})$
332	{
333	$qmd[i] \ = \ bm0[i] \ + \ bm3[i] * t * t * t \ + \ bm4[i] * t * t * t * t \ + \ bm5[i] * t * t * t * t * t$
	;
334	$qsd[i] \;=\; bs0[i] \;+\; bs3[i]*t*t*t \;+\; bs4[i]*t*t*t*t \;+\; bs5[i]*t*t*t*t*t$
	;
335	}
336	else
337	{
338	qmd[i] = qmdf[i];
339	qsd[i] = qsdf[i];
340	}
341	}
342	for (int i=0; i <n; i++)<="" td=""></n;>
343	{
344	em[i] = qm[i] - qmd[i];
345	es[i] = qs[i] - qsd[i];
346	if (iCHome)
347	{
348	$es_1[i] = es[i];$
349	$em_{-1}[i] = em[i];$

350	}
351	$esp[i] = (es[i] - es_1[i])/T;$
352	$emp[i] = (em[i] - em_1[i]) /T;$
353	taum [i] = -kpm[i] * em[i] - kim[i] * emi[i] - kdm[i] * emp[i];
354	taus[i] = -kps[i] * es[i] - kis[i] * esi[i] - kds[i] * esp[i];
355	}
356	/*if(iCHome)
357	indx = 0;
358	grafi[indx][0] = t;
359	grafi[indx][1] = q[0]*180.0/pi;
360	grafi[indx][2] = q[1]*180.0/pi;
361	grafi[indx][3] = q[2]*180.0/pi;
362	grafi[indx][4] = qd[0]*180.0/pi;
363	grafi[indx][5] = qd[1]*180.0/pi;
364	grafi[indx][6] = qd[2]*180.0/pi;
365	$\operatorname{grafi}[\operatorname{indx}][7] = \operatorname{taus}[0];$
366	$\operatorname{grafi}[\operatorname{indx}][8] = \operatorname{taus}[1];$
367	$\operatorname{grafi}[\operatorname{indx}][9] = \operatorname{taus}[2];$
368	indx++;
369	*/
370	for (int i=0; i <n; i++)<="" td=""></n;>
371	{
372	$\operatorname{emi}[i] += \operatorname{em}[i] *T;$
373	$em_{-1}[i] = em[i];$
374	esi[i] += es[i]*T;
375	$es_1[i] = es[i];$
376	}
377	if(t>tf&&homeCompletedFlag)
378	{
379	$pMainWnd \rightarrow m_statusTextBox.SetWindowTextW(_T("*** \texttt{Home position }***)) \\$
	"));
380	homeCompletedFlag = false;
381	}
382	if(iCHome)
383	iCHome = false;
384	return;

```
385 }
386 void CPhantomDlg::OnBnClickedControl()
387 {
            if (!iCHome)
388
                     timeKillEvent(homeTimerID);
            {
                                                        }
389
            if (!iCTele)
390
                     timeKillEvent(teleoperacionTimerID);
                                                                }
391
            {
            if(!iCControl)
392
                    timeKillEvent(controlTimerID);
            {
393
394
                    controlCompletedFlag = iCControl = true;
                                                                         }
            homeTimerID = timeSetEvent( T*1000, 0, ControlTimerProc, 0,
395
               TIME_PERIODIC);
396 }
397 void CPhantomDlg::OnBnClickedTeleoperacion()
398
  {
399
            if (!iCHome)
                     timeKillEvent(homeTimerID);
            {
                                                        }
400
            if (!iCControl)
401
                     timeKillEvent(controlTimerID);
            {
                                                      }
402
            if(!iCTele)
403
            {
                    timeKillEvent(teleoperacionTimerID);
404
                    teleoperacionCompletedFlag= iCTele = true;
405
                                                                         }
            homeTimerID = timeSetEvent(T*1000, 0, TeleoperacionTimer, 0,
406
               TIME_PERIODIC);
407 }
408 void CALLBACK CPhantomDlg:: TeleoperacionTimer(UINT uID, UINT uMsg, DWORD
       dwUser, DWORD dw1, DWORD dw2)
            //OBSERVADOR Y CONTROL EN MOVIMIENTO LIBRE
409 {
            static double tini = 0.0;
410
            static int grafFlag = 0;
411
            const double g0 = 9.78;
412
            const int p = 5;
413
            CString TIEMPO;
414
            const double tf = 1.0;
415
            double t = 0.0;
416
            const double Kpm[n] = \{7, 8, 6\};
417
```
A. CÓDIGO/MANUALES/PUBLICACIONES

418	const double Kam $[n] = \{.01, .03, .02\};$
419	const double Kps $[n] = \{.4, .9, .8\};$
420	const double Kdm $[n] = \{30, 30, 30\};$
421	const double $Kds[n] = \{20, 50, 20\};$
422	const double Kbetas $[n] = \{0.0000005, 0.0000009, 0.0000007\};$
423	const double Kbetam $[n] = \{0.0000001, 0.0000001, 0.0000001\};$
424	const double DELTAzm $[n] = \{1, 1, .5\};$
425	const double DELTAzs $[n] = \{1, 1, 1\};$
426	const double DELTAxs $[n] = \{10, 12, 10\};$
427	const double DELTAxm $[n] = \{10, 12, 10\};$
428	const double Kgamas $[n] = \{.4, .5, .25\};$
429	const double Kgamam $[n] = \{.2, .2, .15\};$
430	double SIGMAS $[n] = \{0, 0, 0\};$
431	double SIGMAM $[n] = \{0, 0, 0\};$
432	static double $INTm[n] = \{0, 0, 0\};$
433	static double $INTs[n] = \{0, 0, 0\};$
434	static double dSIGMAS $[n] = \{0, 0, 0\};$
435	static double dSIGMAM $[n] = \{0, 0, 0\};$
436	double signos =0;
437	double signom =0;
438	double gm[n] = $\{0, 0, 0\};$
439	double $c2 = 0.0$, $c23 = 0.0$;
440	double $zm[n] = \{0, 0, 0\};$
441	double $zs[n] = \{0, 0, 0\};$
442	double HATqm $[n] = \{0, 0, 0\};$
443	double BARdqm $[n] = \{0, 0, 0\};$
444	double ESTdqom $[n] = \{0, 0, 0\};$
445	double ESTdqos $[n] = \{0, 0, 0\};$
446	double dqos $[n] = \{0, 0, 0\};$
447	double dqom $[n] = \{0, 0, 0\};$
448	double Ss $[n] = \{0, 0, 0\};$
449	double Sm[n] = $\{0, 0, 0\};$
450	double dqrs $[n] = \{0, 0, 0\};$
451	double dqrm $[n] = \{0, 0, 0\};$
452	double Sos $[n] = \{0, 0, 0\};$
453	double Som $[n] = \{0, 0, 0\};$

454	double BARdqs $[n] = \{0, 0, 0\};$
455	double ESTdqm $[n] = \{0, 0, 0\};$
456	double ESTdqs $[n] = \{0, 0, 0\};$
457	static double ESTqm[n];// = {0.0*pi/180.0, 90.0*pi/180.0, -90.0*pi
	/180.0};
458	static double ESTqs[n];// = {0.0*pi/180.0, 90.0*pi/180.0, -90.0*pi
	/180.0};
459	$\label{eq:constraint} CPhantomDlg *pMainWnd = (CPhantomDlg *) AfxGetApp() -> m_pMainWnd;$
460	c2 = cos(qm[1]);
461	c23 = cos(qm[1]+qm[2]);
462	if(iCTele)
463	{ $ESTqm[0] = 0.0*pi/180.0;$
464	ESTqm $[1] = 90.0 * pi / 180.0;$
465	ESTqm $[2] = -90.0 * pi / 180.0;$
466	ESTqs[0] = 0.0*pi/180.0;
467	ESTqs[1] = 90.0* pi / 180.0;
468	ESTqs[2] = -90.0*pi/180.0;
469	tini = timeGetTime();
470	$pMainWnd \rightarrow m_statusTextBox.SetWindowTextW(_T("*** Control WindowTextW(_T("*** Control WindowTextW("*** Control WindowTextW("**** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("**** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("*** Control WindowTextW("**** Control WindowTextW("**** Control WindowTextW("**** Control WindowTextW("******* Control WindowTextW("************************************$
	<pre>in progress ***"));</pre>
471	}
472	t = (timeGetTime() - tini)/1000.0;
473	TIEMPO.Format($_{-}T("\%t"),t$);
474	$pMainWnd \rightarrow m_TIEMPO.SetWindowTextW(TIEMPO);$
475	gm[0] = 0;
476	gm[1] = 0.0085 * g0 * c2 + 0.01 * g0 * c23;
477	gm[2] = 0.01 * g0 * c23;
478	//Guardamos todos los datos
479	for (int i=0; i <n; i++)<="" th=""></n;>
480	{ $ALMBARqm[indx][i]=qm[i];$
481	ALMBARqs[indx][i] = qs[i];
482	ALMBARESTdqm[indx][i] = ESTdqm[i];
483	ALMBARESTdqs[indx][i] = ESTdqs[i];
484	ALMBARESTqm[indx][i] = ESTqm[i];
485	ALMBARESTqs[indx][i] = ESTqs[i];
486	}

A. CÓDIGO/MANUALES/PUBLICACIONES

487	if (t <t< th=""><th>1)</th></t<>	1)
488	{	BARqm $[0] = 0.0 * pi / 180.0;$
489		BARqm[1] = 90.0 * pi / 180.0;
490		BARqm[2] = -90.0* pi / 180.0;
491		BARESTqm $[0] = 0;$
492		BARESTqm $[1] = 90.0 * pi / 180.0;$
493		BARESTqm[2] = $-90.0 * pi / 180.0;$
494		BARESTdqm[0] = 0;
495		BARESTdqm[1]=0;
496		BARESTdqm[2]=0;
497	}	
498	if (t <t< td=""><td>2)</td></t<>	2)
499	{	BARqs[0]=0;
500		BARqs[1] = 90.0 * pi / 180.0;
501		BARqs[2] = -90.0* pi / 180.0;
502		BARESTqs[0] = 0;
503		BARESTqs[1] = 90.0 * pi / 180.0;
504		BARESTqs $[2] = -90.0 * pi / 180.0;$
505		BARESTdqs[0] = 0;
506		BARESTdqs[1] = 0;
507		BARESTdqs[2] = 0;
508	}	
509	\mathbf{if} (t>=	Γ1)
510	{	CONTT1++;
511		for (int i=0; i <n; i++)<="" td=""></n;>
512	{	BARqm[i] = ALMBARqm[CONTT1][i];
513		BARESTdqm[i] = ALMBARESTdqm[CONTT1][i];
		BARESTqm[i] = ALMBARESTqm[CONTT1][i];
514	}	
515	}	
516	\mathbf{if} (t>=	$\Gamma 2)$
517	{	CONTT2++;
518	${\bf for}({\bf int}$	i=0; i < n; i++)
519		$\{ BARqs[i] = ALMBARqs[CONTT2][i];$
520		BARESTdqs[i] = ALMBARESTdqs[CONTT2][i];
521		BARESTqs[i]=ALMBARESTqs[CONTT2][i];

```
522
                      }
             }
523
             /* SIN RETARDO
524
             for (int i=0; i<n; i++)
525
             ł
                      BARqm[i]=qm[i];
526
                      BARESTdqm[i]=ESTdqm[i];
527
                      BARqs[i] = qs[i];
528
                      BARESTdqs[i]=ESTdqs[i]; } */
529
             for (int i=0; i<n; i++)
530
531
             {
                      //Master Observer
            \operatorname{zm}[i] = \operatorname{qm}[i] - \operatorname{ESTqm}[i];
532
            INTm[i]=INTm[i]+zm[i]*T;
533
            ESTdqom[i]=Kdm[i]*DELTAzm[i]*INTm[i];
534
            ESTdqm[i]=ESTdqom[i]+DELTAzm[i]*zm[i]+Kdm[i]*zm[i];
535
             //Slave Observer
536
             zs[i] = qs[i] - ESTqs[i];
537
             INTs[i] = INTs[i] + zs[i] *T;
538
             ESTdqos[i]=Kds[i]*DELTAzs[i]*INTs[i];
539
             ESTdqs[i]=ESTdqos[i]+DELTAzs[i]*zs[i]+Kds[i]*zs[i];
540
             //INTEGRO LAS VELOCIDADES ESTIMADAS PARA COMPARAR
541
            ESTqm[i]=ESTqm[i]+ESTdqm[i]*T;
542
             ESTqs[i] = ESTqs[i] + ESTdqs[i] *T;
543
             }
544
             for (int i=0; i < n; i++)
545
546
             {
             //Controller design
547
             Ss [i]=ESTdqs [i]-BARESTdqm [i]+DELTAxs [i]*(ESTqs [i]-BARESTqm [i]);
548
            Sm[i]=ESTdqm[i]-BARESTdqs[i]+DELTAxm[i]*(ESTqm[i]-BARESTqs[i]);
549
             dqos [i]=ESTdqs [i]-DELTAzs [i] * zs [i];
550
             dqom [ i ]=ESTdqm [ i ]-DELTAzm [ i ] * zm [ i ];
551
             //Function signo se define como sign(Ss) = Ss/|Ss|=sign(Ss[i]);
552
             if (Ss[i]>0)
553
             signos =1;
554
             if (Ss [i]<0)
555
             signos =1;
556
557
             else
```

A. CÓDIGO/MANUALES/PUBLICACIONES

558	signos=0;
559	if (Ss[i]>0)
560	signom =1;
561	if (Ss[i]<0)
562	signom =1;
563	else
564	signom = 0;
565	dSIGMAS[i] = Kbetas[i] * Ss[i] + signos;
566	SIGMAS[i]=SIGMAS[i]+dSIGMAS[i]*T;
567	dSIGMAM[i] = Kbetam[i] * Sm[i] + signom;
568	SIGMAM[i] = SIGMAM[i] + dSIGMAM[i] * T;
569	dqrs[i]=BARESTdqm[i]-DELTAxs[i]*(ESTqs[i]-BARESTqm[i])-Kgamas[i]* SIGMAS[i];
570	dqrm [i]=BARESTdqs [i]-DELTAxm [i]*(ESTqm [i]-BARESTqs [i])-Kgamam [i]* SIGMAM [i];
571	Sos[i]=dqos[i]-dqrs[i];
572	Som[i]=dqom[i]-dqrm[i];
573	}
574	for (int i=0; i <n; i++)<="" td=""></n;>
575	{
576	taus[i] = -0.1 * Kps[i] * Sos[i];
577	taum [i]=-Kam [i] *ESTdqm [i]+gm [i] -0.005 *Kpm [i] *Som [i] ;
578	}
579	if(t>tf&teleoperacionCompletedFlag)
580	{
581	$pMainWnd \rightarrow m_statusTextBox.SetWindowTextW(_T("*** Control and Co$
	Observer in progress ***"));
582	teleoperacionCompletedFlag = false;
583	}
584	if(iCTele)
585	indx = 0;
586	if(grafFlag==0)
587	$\{ grafi[indx][0] = t; \}$
588	$\operatorname{grafi}[\operatorname{indx}][1] = \operatorname{qm}[0];$
589	grafi[indx][2] = qm[1];
590	$\operatorname{grafi}[\operatorname{indx}][3] = \operatorname{om}[2]$:

591	$\operatorname{grafi}[\operatorname{indx}][4] = \operatorname{qs}[0];$
592	$\operatorname{grafi}[\operatorname{indx}][5] = \operatorname{qs}[1];$
593	$\operatorname{grafi}[\operatorname{indx}][6] = \operatorname{qs}[2];$
594	grafi[indx][7] = ESTdqm[0];
595	grafi[indx][8] = ESTdqm[1];
596	grafi[indx][9] = ESTdqm[2];
597	grafi[indx][10] = ESTdqs[0];
598	$\operatorname{grafi}[\operatorname{ind} x][11] = \operatorname{ESTdqs}[1];$
599	$\operatorname{grafi}[\operatorname{indx}][12] = \operatorname{ESTdqs}[2];$
600	$\operatorname{grafi}[\operatorname{indx}][13] = \operatorname{zm}[0];$
601	grafi[indx][14] = zm[1];
602	grafi[indx][15] = zm[2];
603	grafi[indx][16] = zs[0];
604	grafi[indx][17] = zs[1];
605	$\operatorname{grafi}[\operatorname{indx}][18] = \operatorname{zs}[2];$
606	$\operatorname{grafi}[\operatorname{indx}][19] = \operatorname{ESTqm}[0];$
607	$\operatorname{grafi}[\operatorname{indx}][20] = \operatorname{ESTqm}[1];$
608	$\operatorname{grafi}[\operatorname{indx}][21] = \operatorname{ESTqm}[2];$
609	$\operatorname{grafi}[\operatorname{indx}][22] = \operatorname{ESTqs}[0];$
610	$\operatorname{grafi}[\operatorname{indx}][23] = \operatorname{ESTqs}[1];$
611	$\operatorname{grafi}[\operatorname{indx}][24] = \operatorname{ESTqs}[2];$
612	$\operatorname{grafi}[\operatorname{indx}][25] = \operatorname{BARqm}[0];$
613	$\operatorname{grafi}[\operatorname{indx}][26] = \operatorname{BARqm}[1];$
614	$\operatorname{grafi}[\operatorname{indx}][27] = \operatorname{BARqm}[2];$
615	$\operatorname{grafi}[\operatorname{indx}][28] = \operatorname{BARqs}[0];$
616	$\operatorname{grafi}[\operatorname{indx}][29] = \operatorname{BARqs}[1];$
617	$\operatorname{grafi}[\operatorname{indx}][30] = \operatorname{BARqs}[2];$
618	indx++;
619	grafFlag = grafSkip+1;
620	}
621	grafFlag = -;
622	if(iCTele)
623	iCTele = false;
624	return;
625 }	

Bibliografía

- P. Hokayem and M. Spong, "Bilateral teleoperation: an historical survey," Automatica, vol. 42, no. 12, pp. 2035–2057, 2006. 3
- [2] W. R. Ferrell, "Remote manipulation with transmission delay," IEEE Trans. Human Factors Electron., vol. HFE-6. pp. 24-32, Sept 1965. 4
- [3] W. R. Ferrell, "Delayed force feedback," IEEE Trans. Human Factors Electron., vol. HFE-8, pp. 449-455, Oct. 1966. 4
- [4] M. W. S. Robert J. Anderson, "Asymptotic stbility for force redicting teleoperation with delay," *IEEE Int. Conf. Robotics and Automation, Scotsdale, AZ*, 1989. 4
- [5] M. W. S. Robert J. Anderson, "Bilateral control of teleoperators with time delay," *ieeetrc VOL 34 NO 5*, 1989. 4
- [6] N. G. Slotine Jean Jacques, "Asymptotic stability for force reflecting teleoperation with delay," *IEEE Int. Conf. Robotics and Automation, Scotsdale, AZ.*, •. 4
- [7] J. J. E. Slotine and W. Li, "On the adaptive control of robot manipulators," International Journal of Robotics Research, vol. 6, no. 3, pp. 49–59, 1987. 4
- [8] J. J. E. Slotine and W. Li, "Composite adaptive control of robot manipulators," Automatica, vol. 25, no. 4, pp. 509–519, 1989. 4
- [9] R. O. N. E. B. Nikhil Chopra, Mark W. Spong, "On tracking performance in bilateral teleoperation," *IEEE Transactions on Robotics, Vol. 22, No. 4*, Agosto 2006. 4
- [10] N. B. L. B. Emmanuel Nuño, Romeo Ortega, "A globally stable pd controller for bilateral teleoperators," *IEEE Transactions on Robotics, Vol. 24, No. 3*, JUNE 2008. 4
- [11] C. P. G. H. J. Artigas, J. Vilanova, "Time domain passivity control-based telepresence with time delay," Proc. IEEE Int. Conf. Intell. Robots Syst., pp. 4205–4210, 2006. 4

- [12] R. L. Nikhil Chopraa, Mark W. Spong, "Time domain passivity control-based telepresence with time delay," *ELSEVIER*, Automatica 44 (2008) 2142–2148, 23 Dic 2007. 5
- [13] M. A. Arteaga-Pérez, A. M. Castillo-Sánchez, and V. Parra-Vega, "Cartesian control of robots without dynamic model and observer design," *Automatica*, vol. 42, pp. 473–480, 2006. 5, 16, 19, 25
- [14] M. A. Arteaga-Pérez and R. Kelly, "Robot control without velocity measurements: New theory and experimental results," *IEEE Transactions on Robotics and Automation*, vol. 20, no. 2, pp. 297–308, 2004. 5
- [15] E. Nuño, R. Ortega, N. Barabanov, and L. Basañez, "A globally stable PD controller for bilateral teleoperators," *IEEE Transactions on Robotics*, vol. 24, no. 3, pp. 753–758, 2008. 10, 17
- [16] S. Arimoto, Y. H. Liu, and T. Naniwa, "Model-based adaptive hybrid control for geometrically constrained robots," in *Proceedings of the 1993 IEEE International Conference on Robotics and Automation*, pp. 618–623, 1993. 11
- [17] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation. Boca Raton, Florida, USA: CRC Press, 1994. 11
- [18] V. P.-V. Marco A. Arteagaa, Adrián Castillo-Sánchez, "Cartesian control of robots without dynamic model and observer design," *ELSEVIER*, Automatica 42 (2006) 473 – 480, 8 Noviembre 2005. 16
- [19] A. Rodríguez-Ángeles, M. A. Arteaga-Pérez, R. Portillo-Vélez, and C. Cruz-Villar, "Transparent bilateral master-slave control based on virtual surfaces: Stability analysis and experimental results," *International Journal of Robotics and Automation*, vol. 30, no. 2, pp. 128–139, 2015. 17
- [20] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, New Jersey. U.S. A.: Prentice–Hall, 2002. 19