

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DEL MAR Y LIMNOLOGÍA (BIOLOGÍA MARINA)

CARACTERIZACIÓN MORFOLÓGICA Y MOLECULAR DE ALGAS PARDAS COSTROSAS CON MORFOLOGÍA TIPO "STRAGULARIA" EN EL PACÍFICO TROPICAL MEXICANO

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRA EN CIENCIAS

PRESENTA: NATALY QUIROZ GONZÁLEZ

TUTOR: Dr. DANIEL LEÓN ÁLVAREZ FACULTAD DE CIENCIAS, UNAM

COMITÉ TUTOR:

Dr. GUSTAVO A. MONTEJANO ZURITA FACULTAD DE CIENCIAS, UNAM

Dr. ELÍAS PIEDRA IBARRA FACULTAD DE ESTUDIOS SUPERIORES IZTACALA, UNAM

Dr. JORGE EDUARDO CAMPOS CONTRERAS FACULTAD DE ESTUDIOS SUPERIORES IZTACALA, UNAM

Dr. ABEL SENTÍES GRANADOS UNIVERSIDAD AUTÓNOMA METROPOLITANA, UAM

CIUDAD DE MÉXICO, NOVIEMBRE 2016.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Posgrado en Ciencias del Mar y Limnología Universidad Nacional Autónoma de México

CARACTERIZACIÓN MORFOLÓGICA Y MOLECULAR DE ALGAS PARDAS COSTROSAS CON MORFOLOGÍA TIPO "STRAGULARIA" EN EL PACÍFICO TROPICAL MEXICANO

T E S I S que para obtener el grado académico de Maestra en Ciencias (Biología Marina)

presenta

NATALY QUIROZ GONZÁLEZ

Director de Tesis: DR. DANIEL LEÓN ÁLVAREZ Comité Tutoral: DR. GUSTAVO A. MONTEJANO ZURITA DR. ELIAS PIEDRA IBARRA DR. JORGE E. CAMPOS CONTRERAS DR. ABEL SENTÍES GRANADOS

CIUDAD DE MÉXICO, NOVIEMBRE DE 2016

AGRADECIMIENTOS

Este trabajo fue posible gracias al apoyo económico como becaria (No.634535) brindado por el Consejo Nacional de Ciencia y Tecnología (CONACYT) y al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) a través del proyecto IN214115 "Variación genética de *Neoralfsia expansa* y *N. hancockii* (Ralfsiales, Phaeophyceae) de México".

Agradezco a los miembros del comité tutor por dirigir el presente estudio con sus comentarios y sugerencias:

Dr. Daniel León Álvarez (tutor principal)

Dr. Elias Piedra Ibarra

Dr. Abel Sentíes Granados

Dr. Jorge E. Campos Contreras

Dr. Gustavo Montejano Zurita

Gracias al Dr. Daniel León por introducirme en el mundo de las macroalgas marinas y por darme la oportunidad de conocer a las Algas Pardas Costrosas.

Quiero hacer un agradecimiento muy especial a la Dra. Dení Rodriguez Vargas por su participación durante todo el desarrollo de este trabajo, gracias infinitas por su apoyo.

A la Dra. Ma. Edith Ponce Márquez por transmitirme sus conocimientos en el área de la Biología molecular, gracias por su paciencia, su tiempo y su entrega, pero sobre todo mil gracias por su cariño y amistad.

A la M. en C. Fabiola Ramírez Corona por sus consejos y apoyo brindado en el desarrollo de las técnicas moleculares.

Al Dr. Elias Piedra Ibarra le agradezco que me permitiera realizar pruebas en el Laboratorio de Fisiología Vegetal de la Facultad de Estudios Superiores Iztacala a fin de mejorar mi trabajo, por sus consejos y por todas sus observaciones que definitivamente enriquecieron este trabajo. A la coordinación del Posgrado en Ciencias del Mar y Limnología, principalmente a Gloria Vilaclara, Cecilia Vanegas, Diana Juárez, Guadalupe Godoy, Chantal Ruiz y Gabriela Almaraz. Mil gracias a todos mis amigos del posgrado en Ciencias del Mar, Anita, Pas, Esteban, Vero y Vladimir, gracias por los buenos momentos, la complicidad y los aprendizajes, los llevo en mi corazón.

A la Dra. Mónica Rámirez gracias por tu amistad, tu cariño y tus consejos.

A mis compañeros del Herbario, Vivi, Ale, Rubén, Lucero, Luisa, Carlos, Josué gracias por los buenos momentos, sobre todo las salidas de campo que se quedarán por siempre en mis recuerdos.

Especialmente gracias a la M. en C. Viviana Reyes Gómez por ser pieza fundamental en el desarrolló de este trabajo, gracias por compartir tus conocimientos conmigo.

A los chicos del Laboratorio de Fitoplancton Marino, gracias por recibirme como la "agregada cultural", Nadia, Román, Sarita, Diana y por supuesto mil gracias al Dr. David Hernández Becerril por su amistad.

Y por supuesto a todas y cada una de las personas que formaron parte de este proceso con su amor, apoyo y mejores deseos a pesar de la distancia:

A mis amigos incondicionales Maria de los Santos, Alejandra y Xico.

A toda mi familia especialmente a mi tia Mimi y a mi abuelita, pero sobre todo mil gracias a mis padres y hermanos y a mi amado compañero de vida, quien a pesar de las dificultades ha estado conmigo apoyándome y brindadome su amor cada día.

4

DEDICATORIA

Dedicada a los amores de mi vida, quienes siempre me han motivado a seguir adelante con su amor, consejos y apoyo incondicional a pesar de las adversidades: mis padres, Adela González Pérez y Miguel Quiroz Zarate, mis hermanos Miguel E. Quiroz González y Carolina Quiroz González, mis pequeños Carlitos y Elisa, y mi compañero Miguel A. Ortiz Ramos.

Pero sobre todo la dedico a las protagonistas de esta historia:

"Las algas, mi mayor pasión e inspiración"

TABLA DE CONTENIDO

1. INTRODUCCIÓN	
2. ANTECEDENTES	17
2.1 Recuento histórico de Stragularia	17
2.2 Estudios florísticos y morfológicos con algas pardas costrosas	
2.3 Estudios moleculares	19
2.4 Estudios en México	21
3. JUSTIFICACIÓN	23
4. HIPÓTESIS	23
5. OBJETIVO GENERAL	24
5.1 OBJETIVOS ESPECIFICOS	24
6. ÁREA DE ESTUDIO	25
7. MATERIALES Y MÉTODOS	
7.1 Revisión de material de herbario	
7.2 Recolecta de material	
7.3 Estudio morfológico	
7.3.1 Análisis morfológico	
7.4 Análisis molecular	
7.4.1Extracción de ADN	
7.4.2 Purificación ADN	
7.4.3 Amplificación	
7.4.4 Purificación de productos de PCR	
7.4.5 Secuenciación	
7.4.6Análisis molecular	
7.5 Trabajo de gabinete	
8. RESULTADOS	48
8.1Caracterización morfológica	48
8.1.1 Datos de campo y morfología	48
8.1.2 Análisis morfológico	
8.1.3 Comparación de los Grupos I, II, III	57
8.1.4 Descripciones de los Grupos morfológicos I, II, III	64
8.1.5 Comparación con el estudio de León-Álvarez (1996)	73
8.2 Caracterización molecular	74

8.2.1. Análisis filogenético de <i>rbc</i> L para todas las algas pardas (Phaeophyceae)	5
8.2.2 Análisis filogenético de Cox 1 para todas las algas pardas (Phaeophyceae)	9
8.2.3 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen rbcL y Cox 18	4
8.2.3.1 Análisis filogenético a nivel de orden (Ralfsiales) empleando la matriz rbcL_18	4
8.2.3.2Análisis filogenético empleando primer fragmento parcial del gen rbcL (rbcL_2)9	0
8.2.3.3 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen <i>rbc</i> L_3 (segundo fragmento parcial)	3
8.2.3.4 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen Cox 19	6
8.2.4 Análisis filogenético con los genes concatenados (rbcL y Cox 1)10	0
9. DISCUSIÓN	4
9.1 Caracterización morfológica10	4
9.1.1 Datos de campo y morfología10	4
9.1.2 Análisis de conglomerados y de componentes principales10	6
9.1.3 Comparación entre los Grupos I, II, III, IV y V10	6
9.1.4 Comparación con las especies de Stragularia previamente descritas10	7
9.1.5 Comparación con los estudios de León-Álvarez (1996) y López (1997)10	9
9.2 Caracterización molecular	0
9.2.1 Distancia genética11	0
9.2.1.1 Distancia genética con el gen <i>rbc</i> L11	1
9.2.1.2 Distancia genética con el gen <i>Cox</i> 111	2
9.2.2 Análisis filogenético11	4
9.3 Relación análisis morfológico y molecular11	9
9.4 Distribución geográfica de las muestras12	2
10. CONCLUSIONES	3
11. PERSPECTIVAS	5
12. REFERENCIAS BIBLIOGRÁFICAS	6

APÉNDICES

- Formato para la caracterización de algas pardas costrosas con morfología tipo "Stragularia".
- Caracteres revisados en todos los especímenes, se señalan los empleados para los análisis morfológicos.
- 3. Distribución de especímenes en grupos de acuerdo al análisis de conglomerados UPGMA.
- 4. Resumen de los valores propior, porcentaje de varianza y porcentaje de varianza acumulada.
- 5. Contribución de las variables para la distribución de las muestras en los componentes (%).
- 6. Análisis de componentes principales, distribución de variables y casos.
- 7. Matriz de distancia p "no corregida" de *rbc*L_1 (Todas pardas)
- 8. Matriz de distancia p "no corregida" de *Cox* 1 (Todas pardas)
- 9. Matriz de distancia p no corregida de *rbc*L_1 (Ralfsiales)
- 10. Matriz de distancia p no corregida de *rbc*L_2 (Ralfsiales)
- 11. Matriz de distancia p no corregida de *rbc*L_3 (Ralfsiales)
- 12. Matriz de distancia p no corregida de *Cox* 1 (Ralfsiales)
- 13. Resumen de la divergencia nucleotídica para los genes rbcL y Cox 1
- 14. Resumen de la distancia p "no corregida" promedio para la matriz rbcL_2
- 15. Resumen de la distancia p "no corregida" promedio para la matriz rbcL_3
- 16. Árbol filogenético para Inferencia Bayesiana (*rbcL_1*)
- 17. Árbol filogenético para Máxima Verosimilitud (*rbc*L_1)
- 18. Árbol filogenético para Máxima Parsimonia (*rbc*L_1)
- 19. Árbol filogenético para Inferencia Bayesiana (*rbcL_2*)
- 20. Árbol filogenético para Máxima Verosimilitud (*rbcL_2*)
- 21. Árbol filogenético para Máxima Parsimonia (*rbc*L_2)
- 22. Árbol filogenético para Inferencia Bayesiana (*rbc*L_3)
- 23. Árbol filogenético para Máxima Verosimilitud (*rbc*L_3)
- 24. Árbol filogenético para Máxima Parsimonia (*rbcL_3*)
- 25. Árbol filogenético para Inferencia Bayesiana (Cox_1)
- 26. Árbol filogenético para Máxima Verosimilitud (*Cox*_1)
- 27. Árbol filogenético para Máxima Parsimonia (*Cox*_1)

- 28. Árbol filogenético para Inferencia Bayesiana (Genes concatenados)
- 29. Árbol filogenético para Máxima Verosimilitud (Genes concatenados)
- 30. Árbol filogenético para Máxima Parsimonia (Genes concatenados)
- 31. Comparación entre las especies descritas de Stragularia y los Grupos I, II y III.
- 32. Resumen de los taxa propuestos en este estudio.
- 33. Distribución de los grupos morfológicos de este estudio (I, II y III) a lo largo de la Costa del Pacifico tropical mexicano.

ÍNDICE DE CUADROS

Cuadro 1. Caracterización de los sitios de recolecta
Cuadro 2. Cebadores empleados en la amplificación del ADN
Cuadro 3. Listados de secuencias obtenidas de Gen Bank para análisis de Ralfsiales37
Cuadro 4. Listado de secuencias obtenidas de Gen Bank para análisis de Algas Pardas40
Cuadro 5. Listado de secuencas obtenidas de Reyes-Gómez (2015)44
Cuadro 6. Caracteristicas de los ambientes particulares y de los especímenes
Cuadro 7. Comparación entre Grupos morfológicos
Cuadro 8. Estructuras reproductivas pluriloculares de los Grupos I, II y III
Cuadro 9. Estructuras reproductivas uniloculares de los Grupos I, II y III61
Cuadro 10.Distancia genética p "no corregida" rangos y promedio entre las secuencias de rbcL
para todas las algas pardas (Phaeophyceae)73
Cuadro 11. Distancia genética p "no corregida" rangos y promedio entre las secuencias de Cox 1
para todas las algas pardas (Phaeophyceae)77
Cuadro 12. Muestras incluidas por matriz82
Cuadro 13. Distancia genética p "no corregida" rangos y promedio entre las secuencias de <i>rbc</i> L
para Ralfsiales
Caudro 14. Distancia genética p "no corregida" rangos y promedio entre las secuencias de Cox 1
para Ralfsiales
Cuadro 15. Resumen de las divergencias nucleotídicas
Cuadro 16. Relación de las muestras por grupo morfológico y molecular

ÍNDICE DE FIGURAS

Figura 1. Características morfológicas generales de las algas pardas costrosas	11
Figura 2. Ubicación del área de estudio y localidades de muestreo	22
Figura 3. Fotografías de los puntos de muestreo	26
Figura 4.Dendograma para 33 caracteres y 44 muestras	51
Figura 5. Analisis de componentes principales, distribución de casos o muestras	53
Figura 6. Curvatura de los filamentos postígenos al presentar estructuras reproductivas	56
Figura 7.Imágenes del Grupo morfológico I	64
Figura 8.Imágenes del Grupo morfológico II	67
Figura 9. Imágenes del Grupo morfológico III	70
Figura 10. Dendograma de las muestras de este trabajo y las de León-Álvarez (1996), 77	casos y
31 variables	71
Figura 11. Árbol consenso MV e IB para todas pardas <i>rbc</i> L_1	76
Figura 12. Árbol consenso MV e IB para todas pardas <i>Cox</i> 1	81
Figura 13. Árbol consenso MP, MV e IB para <i>rbc</i> L_1 (Ralfsiales)	86
Figura 14. Árbol consenso de MP, MV e IB para <i>rbc</i> L_2 (Ralfsiales)	89
Figura 15. Árbol consenso de MP, MV e IB para <i>rbc</i> L_3 (Ralfsiales)	92
Figura 16. Árbol consenso de MP, MV e IB para <i>Cox</i> 1 (Ralfsiales)	96
Figura 17. Árbol consenso de MP, MV e IB para Genes concatenados	98

RESUMEN

En las costas del Pacifico tropical mexicano se tiene conocimiento de la presencia de algas pardas costrosas con la morfología tipo "Stragularia", de su problemática y de los caracteres generales que la enmarcan, sin embargo hasta la fecha no se ha establecido si los especímenes que se encuentran en estas costas con dicha morfología pertenecen a la misma especie o a especies distintas. Por ello, este estudio tuvo por objetivo principal contribuir al conocimiento de la biodiversidad de estas algas. Se llevó a cabo una caracterizaron morfológica y molecular con base en caracteres morfométricos y secuencias de ADN de los genes rbcL y Cox 1. Los análisis morfológicos de conglomerados (UPGMA) y el de Componentes Principales permitieron la identificación de tres morfologías (Grupo I, Grupo II, Grupo III), diferenciadas principalmente por tres caracteres: grosor del talo, número de células que integran al filamento postígeno y número de células unidas a partir de la base. Los análisis moleculares de Máxima Parsimonia, Máxima Verosimilitud e Inferencia Bayesiana reunieron las tres morfologías en tres clados (Grupo I, Grupo II, Grupo III). Los resultados obtenidos con el gen rbcL fueron consistentes y robustos, sin embargo con el gen Cox1 se presentaron algunas incongruencias. El Grupo I se unió a Diplura sp. fuera del Orden Ralfsiales, mientras que los Grupos II y III si se unieron a dicho orden, el Grupo II formó un grupo cercano a Mesosporaceae, mientras que el Grupo III se unió a las Algas Pardas Mucilaginosas, con valores de bootstrap y probabilidad posterior altos, apoyando así los resultados morfológicos. Los valores de distancia genética interespecífica e intraespecífica para ambos genes se compararon con estudios previos, determinando el grado de similitud molecular entre los especímenes con las especies ya descritas. Los grupos morfológicos y moleculares se integraron por los mismos especímenes, con algunas excepciones.Con base a los datos morfológicos y moleculares se propone una nueva especie del mismo género que *Diplura* sp., además de la existencia de una posible nueva familia hermana a la familia Mesosporaceae, integrada por dos géneros, con dos y una especie (s) respectivamente cuyo carácter diagnóstico es la presencia de paráfisis asociada a los uniloculares, además se reporta una especie previamente registrada de Alga Parda Mucilaginosa, así como una especie distinta de este mismo género. Este estudio revela que las algas pardas costrosas con morfología tipo "Stragularia" pertenecen a distintos grupos taxonómicos, más allá del nivel de familia, información que corrobora que las algas pardas costrosas forman un grupo polifilético que exhibe convergencias morfológicas.

Palabras clave: Algas pardas costrosas, marino, morfología, rbcL, Cox 1

ABSTRACT

On the coasts of the Mexican Tropical Pacific, the presence of crustose brown algae with the "Stragularia" morphology, its problematic and the general characters that surround it, has been known to date. However, to date it has not been established if the specimens Are found in these coasts with this morphology belong to the same species or to different species. Therefore, this study aimed to contribute to the knowledge of the biodiversity of these algae. A morphological and molecular characterization was performed based on morphometric characters and DNA sequences of the *rbcL* and *Cox* 1 genes. The morphological analyzes of clusters (UPGMA) and Principal Components allowed the identification of three morphologies (Group I, Group II, Group III), differentiated mainly by three characters: thallum thickness, number of cells that integrate the postgenic filament and number of cells attached from the base. The molecular analyzes of Maximum Parsimony, Maximum Likelihood and Bayesian Inference combined the three morphologies in three clades (Group I, Group II, Group III). The results obtained with the rbcL gene were consistent and robust, however with the Cox 1 gene there were some incongruities. Group I joined Diplura sp. outside the Ralfsiales Order, while Groups II and III if joined to that order, Group II formed a group close to Mesosporaceae, while Group III joined the Mucilaginian Pardas Algae, with high bootstrap and posterior probability values, thus supporting the morphological results. Interspecific and intraspecific genetic distance values for both genes were compared with previous studies, determining the degree of molecular similarity between the specimens with the species already described. Morphological and molecular groups were integrated by the same specimens. Based on morphological and molecular data, a new species of the same genus as *Diplura* sp. Is proposed. In addition, a possible new sister family is proposed to the Mesosporaceae family, integrated by two genera, with two and one species (s), respectively, whose diagnosis is the presence of unilocular-associated paraphyses, and a previously recorded species of Alga Parda Mucilaginosa and a new species is reported. This study reveals that crusted brown algae with Stragularia morphology belong to different taxonomic groups, beyond the family level, which corroborates that the crusted brown algae form a polyphyletic group exhibiting morphological convergence.

Keywords: Crustose brown seaweed, marine, morphology, rbcL, Cox 1

Caracterización morfológica y molecular de algas pardas costrosas con morfología tipo "Stragularia" en el Pacifico Tropical Mexicano

1. INTRODUCCIÓN

Las algas denominadas costrosas reciben este nombre por la forma de su crecimiento sobre el sustrato, se extienden sobre él como una delgada lámina y adquieren su forma o relieve, además, tienen un crecimiento marginal mayor que en altura y presentan una región dorsal y una basal que se adhiere al sustrato. (León-Álvarez, 1996). Estas algas se encuentran en todas las profundidades desde la supramareal baja hasta la inframareal y se distribuyen desde la zona fótica en los polos, hasta los mares tropicales en todo el mundo (Dethier 1986; 1994; Dethier y Steneck, 2001).

Las costras son una forma de vida, una convergencia morfológica de grupos distintos en su filogenia como clorofitas, rodófitas, feofitas y cianofitas (León-Álvarez y González-González, 1993). Dethier y Steneck (2001) las consideran un grupo funcional ecológico.

Las algas pardas costrosas presentan niveles de organización similares, consisten en un disco basal de filamentos postrados (primigenios) que dan lugar a filamentos erectos (postígenos) ya sea libres o firmemente adheridos y que son relativamente cortos (Buchanan, 2005) (figura 1). Información molecular ha evidenciado que el grupo de las costras pardas no es monofilético (Lim *et al.*, 2007; Poong *et al.*, 2014), pero comparten formas de vida, por lo que su presencia en macrocondiciones similares sugiere una convergencia evolutiva (León-Álvarez, 1996).

Son un componente abundante del bentos marino de mares templados y tropicales, representan el grupo algal dominante en zonas de perturbación potencial (alta herbívora, zonas de socavación de arena y de alto estrés, como exposición a periodos de desecación en el intermareal) (Dethier y Steneck, 2001).

Figura 1. Características morfológicas generales de las algas pardas costrosas.

A pesar de su importancia ecológica son un grupo poco estudiado, lo que puede atribuirse a diversos factores, como la dificultad en la identificación de las especies, el aspecto poco atractivo de los talos, su desconocido valor utilitario, la dificultad de distinguirlas en campo respecto al sustrato en el que crecen o su desarrollo en zonas inaccesibles para recolectar, lo que ha reducido el interés en estas algas (Buchanan, 2005).

El conocimiento sistemático, evolutivo y ecológico de este grupo es escaso a nivel mundial y México no es la excepción, sin embargo, a partir de 1975 con el arranque del proyecto permanente denominado "Programa Flora Ficológica de México, se desarrolló un subproyecto dedicado al estudio de las algas pardas costrosas en la región del Pacifico Tropical Mexicano (Algas pardas costrosas del PTM) en la Facultad de Ciencias, UNAM. Si bien, existían trabajos ficológicos desarrollados por investigadores extranjeros, en muchos casos solo se hizo mención de estas algas como parte de estudios ficoflorísticos locales y prospectivos, que fueron acompañados por descripciones diagnósticas en el mejor de los casos, por eso se considera al Proyecto "Algas Pardas

Costrosas del PTM" (León-Álvarez y González-González, 1993) como el parteaguas para el estudio de estas feofitas en el país.

A partir de dicho proyecto, León-Álvarez en 1996 realizó un estudio florístico de las feofitas costrosas del PTM, donde señaló los principales problemas taxonómicos y presentó propuestas de solución para algunas especies.

Dentro de los problemas detectados, se evidenciaron 3 grupos de especies con morfología muy parecida y difícilmente distinguibles a nivel genérico (por ausencia de estructuras reproductoras, dificultad para evidenciar caracteres críticos, ambigüedad en el manejo de los mismos por parte de las autoridades). Dichos grupos son aquellos con morfología tipo: Ralfsia, un grupo de costras pardas mucilaginosas (Hapalospongidion, Mesospora y Basispora) y uno de costras con morfología tipo Stragularia. Este último, corresponde con la morfología descrita por Batters (1889) cuando subdividió a Ralfsia en los subgéneros Eu-ralfsia y Stragularia. Se trata de costras delgadas que crecen firmemente adheridas al sustrato sin ayuda de rizoides, formando motas o manchas irregulares de márgenes no definidos, con filamentos postígenos rectos que surgen perpendicularmente de los filamentos primigenios, los cuales llegan a formar de 1-3 capas de células, con unangios rodeados de paráfisis, e insertos terminalmente al filamento reproductivo, además de plurangios intercalares que surgen por debajo de una célula estéril terminal (León-Álvarez, 1996). Dicha morfología se diferencia de las costras pardas mucilaginosas ya que éstas presentan filamentos libres (sólo unidos en la parte basal y raramente ramificados), estructuras reproductivas pluriloculares intercalares (plurangios) y uniloculares terminales/laterales (unangios), sin paráfisis (Hapalospongidion, Mesospora y Basispora) (Reyes-Gómez, 2015). Por su parte, *Ralfsia* se caracteriza por formar talos orbiculares o irregulares, con márgenes nítidos, adheridos al sustrato en la porción basal por rizoides, presentan médula y corteza diferenciada por la orientación y el diámetro de las células de los filamentos postígenos. Unangios rodeados por paráfisis, insertos terminal o lateralmente en los filamentos reproductivos. Plurangios insertos subterminalmente, uno por filamento reproductor, debajo de una o varias células (Núñez-Reséndiz, 2012).

En el Pacifico Tropical Mexicano, se han observado especímenes con la morfología *Stragularia*, los cuales son de amplia distribución y presentan una alta frecuencia, cubriendo grandes áreas o espacios dominando sobre otras especies (Lopez,1996). Sin embargo, se desconoce a qué especies pertenecen los especímenes encontrados en el PTM, no se sabe si forman parte de las especies previamente descritas con esta morfología (*Ralfsia confusa*, *R. californica*, *S. clavata*) o si se trata de nuevas especies no descritas para estas costas.

Por mucho tiempo el conocimiento sobre la biodiversidad se basó en caracteres morfológicos y anatómicos, sin embargo para el caso de las macroalgas marinas su plasticidad morfológica y las convergencias evolutivas, pueden dificultar la identificación a distintos niveles, incluido el de especie (Saunders, 2005; McDevit y Saunders, 2009). En el caso particular de las identificación pardas costrosas. su es notoriamente difícil debido algas а la. características morfo-anatómico limitadas disponibles y al gran número de similitudes entre costras de gran variedad de taxones(Poong et al., 2014). Al igual que las algas rojas, su clasificación y taxonomía ha dependido en gran medida de estructuras reproductivas, problemas que recientemente se han resuelto con el apoyo de técnicas moleculares, como en Mesospora elongata, una nueva especie que se describió a partir de análisis morfológico y molecular o el caso de Neoralfsia hancockii nov.comb sugerida por León-Álvarez et al. (2014) para diferenciarla de Ralfsia de la que es genéticamente distinta, así como el estudio de Poong et al. (2014) que emplearon la biología molecular junto con la morfología como parte de un estudio ficoflorístico para la región Indo-Malaya, donde sugieren el uso de estas técnicas para esclarecer la posición ambigua de aquellas especies donde los caracteres morfo-anatómicos están sobrelapados.

Debido a los problemas para la identificación de especies mediante el empleo únicamente de caracteres morfológicos y considerando los aportes que la biología molecular ha hecho al conocimiento de las feofitas costrosas, es importante hacer uso de ambas herramientas para el desarrollo del presente trabajo, el cual busca conocer las especies de algas pardas costrosas con morfología tipo "Stragularia" que se encuentran en las costas del PTM empleando la información brindada por las secuencias de ADN y su correlación con la morfología. Contribuyendo de este modo al conocimiento de la ficoflora de esta región y proporcionando información que pueda apoyar a la solución de problemas taxonómicos y el desarrollo de hipótesis filogenéticas.

2. ANTECEDENTES

2.1 Recuento histórico de Stragularia

El género "Stragularia" fue establecido por Strömfelt en 1886, basado en la especie tipo *Stragularia adhaerens* caracterizándola por sus filamentos verticales y soros unangiales expansivos o confluentes.

Batters, en 1889 subdividió a *Ralfsia* en dos subgéneros: *Stragularia* y *Eu-Ralfsia*. Las especies incluidas en *Stragularia* se caracterizaron por tener soros en manchas irregulares y filamentos vegetativos dispuestos vertical o perpendicularmente respecto a la capa basal, en contraste, las especies consideradas en *Eu-ralfsia* se describieron con soros prominentes y demarcados y con filamentos vegetativos dispuestos ascendentemente y curvados.

En 1890, Batters transfirió *Ralfsia clavata* (Harvey) Crouan y *R. spongiocarpa* Batters a *Stragularia*.

En 1939, Hamel reestableció el género creando nuevas combinaciones de varias especies de *Ralfsia* e incluyó en la sinonimia de *Stragularia clavata* (Harvey in Hooker) Hamel, Farlow non Crouan a la especie tipo del género *Stragularia* (*S. adhaerens*) (León –Álvarez, 1996).

17

Actualmente, a partir de estudios en cultivo se ha demostrado que algunas especies *sensu Stragularia* están vinculadas con la historia de vida de algunas Scytosiphonaceae. Esto ha generado opiniones divididas, algunos autores como Wynne (1969) y Fletcher (1987) incluyen a *Stragularia* en Scytosiphonaceae, otros como Loiseaux (1968) y Hollenberg (1969), la consideran un subgénero de *Ralfsia*.

Loiseaux (1968) y Loiseaux y Wynne (1976) observaron una historia de vida isomórfica para *Ralfsia clavata* para material de Francia, de forma similar a lo obtenido por Kristiansen y Pedersen en 1979 para ejemplares de Dinamarca. De forma opuesta, Fletcher (1987), Edelstein *et al.* (1970a) y Yoneshigue-Valentin y Pupo (1994), llevaron a cabo cultivos de material Británico, Canadiense y Brasileño respectivamente, encontrando que talos de lo que parecía ser *R.clavata* desarrollaban en talos de *Petalonia fascia* (O.F. Müller) Kuntze.

2.2 Estudios florísticos y morfológicos con algas pardas costrosas.

Los estudios referentes a feofitas costrosas, se han enfocado en su mayoría al conocimiento de aspectos florísticos y taxonómicos, considerando aspectos morfológicos (Loiseaux, 1968; Hollenberg, 1969; Nakamura, 1972; Wynne 1979; Tanaka y Chihara, 1980a; Tanaka y Chihara, 1980 b; Peters, 1989; Sartoni y Boddi, 1989; Parente *et al.* ,2000; León-Álvarez y González-González, 1993; León-Álvarez, 1996, León-Álvarez y Norris, 2005; Parente, *et al.* 2006).

Para *Stragularia*, existen descripciones de las especies que se asociaron con este género como las de la obra de Strömfelt (1888) quien describe e a *S. pusilla* Strömfelt para el litoral Escandinavo, en ese mismo año Batters reporta a *S. spongiocarpa* Batters; Setchell y Gardner (1924,1925) presentan a *Ralfsia californica* Setchell *et*. Gardner y *R. clavata*. En 1967, Lund señala a *R. lucida* Lund para aguas Danesas. Hollenberg (1969), da a conocer a *Ralfsia confusa* Hollenberg y *R. californica* Setchell *et*. Gardner para California. En Japón Tanaka y Chihara (1981) describen

a *R. endopluroides* Tanaka y Chihara. Para las Islas británicas, Fletcher (1987), describe a *S. clavata* (Harvey in Hooker) Hamel y *S. spongiocarpa* Batters. Buchanan (2005), llevo a cabo una caracterización morfológica de *R. confusa* Hollenberg para las costas de Nueva Zelanda.

2.3 Estudios moleculares

En general, la taxonomía de las algas pardas ha estado basada en caracteres morfológicos y se ha apoyado de características ultraestructurales y bioquímicas, sin embargo en muchos casos la plasticidad morfológica, la evolución convergente o simplemente la ausencia de caracteres morfológicos impiden la resolución de problemas taxónomicos desde el nivel de orden hasta el de especie, por lo que se ha recurrido a técnicas moleculares, las cuales han permitido resolver algunas problemáticas, aclararando aspectos de su taxonomía asi como el desarrollo de filogenias(Gómez-Garreta,2003; Macdevit y Saunders, 2009).

Los datos moleculares se emplean actualmente junto con la morfología para mejorar la clasificación a diferentes niveles taxonómicos, estimaciones de la diversidad de especies, delimitación de especies y el conocimiento de las relaciones evolutivas (Poong *et al.* 2013).

Son varios los estudios que se han desarrollado empleando técnicas moleculares con diversos grupos de algas pardas, dentro de los que se incluyen Siemer *et al.* (1998); Serrao *et al.* (1999); Kogame *et al.* (1999); Rousseau *et al.* (2000); Draisma, *et al.* (2001); Draisma, *et al.* Cho, *et al.* (2004) Kawai y Sasaki (2004); Cho, *et al.* (2006); Kawai *et al.* (2007); Selivanova, *et al.* (2007); Kucera y Sauders (2008); Phillips (2008); Macdevit y Saunders (2009); Silberfeld (2014).

Para el caso de las pardas costrosas destacan Tan y Druehl (1994); Buchanan (2005); Lim *et al.* (2007); Kain *et al.* (2010); Poong *et al.* (2013a); Poong *et al.* (2013b); León- Álvarez *et al.* (2014a); León-Álvarez *et al.* (2014b).

Desde los primeros estudios moleculares en algas pardas, diversas secuencias de ADN se han examinado para elucidar la filogenia molecular de las Phaeophyceae. Diferentes marcadores moleculares se han empleado, inicialmente se trabajó con los genes nucleares 18 S y 26 S del rADN (Tan y Druehl, 1994), así como con la subunidad larga de la enzima Rubisco (rbcL) (Siemer, et al. 1998; Rousseau y de Reviers, 1999a; Draisma, etal., 2001, Sasaki, et al., 2001; Cho et al., 2004; Kawai y Sasaki, 2004; Lim et al., 2007; Poong et al. 2013). El gen cloroplastidico rbcL codifica para la subunidad larga de la enzima RUBISCO (ribulosa-1,5-bifosfato carboxilasa/oxigensa) y recientemente se ha considerado como el de mejor resultados para discernir relaciones a nivel de orden o familia en las Phaeophyceae (Lim, et al. 2007; Poong et al., 2013). Más recientemente, otros estudios han empleado el gen mitocondrial Cox 1 (Citocromo C oxidasa 1), por ser un marcador exitosamente probado en algas pardas y rojas capaz de diferenciar especies estrechamente relacionadas o que forman un complejo de especies, pero sobre todo por ser el gen utilizado en el gran proyecto conocido como Código de Barras de ADN, el cual pretende estandarizar este gen en la identificación de especies a nivel mundial, (Saunders, 2005; Kucera y Saunders, 2008; McDevit y Saunders, 2009).

Además actualmente en GenBank el mayor número de secuencias existentes para las algas pardas costrosas es de los genes *rbc*L y *Cox* 1, haciendo posible el uso de esta información en la comparación con los datos de otros estudios y complementando la información de los caracteres morfológicos que tienen sus propias limitaciones (Poong, 2014).

En 1994, Tan y Druehl llevaron a cabo el primer estudio en algas pardas costrosas *Analipus japonicus* (Harvey) Wynne y *Ralfsia fungiformis* (Gunnerus) Setchell & N.L. Gardner, empleando el marcador molecular ribosomal 18S, las secuencias obtenidas fueron comparadas con las de representantes de seis ordenes de feofíceas (Dictyotales, Ectocarpales, Fucales, Laminariales,

Sphacelariales y Syringodermatales) y concluyen que el orden Ectocarpales no es un grupo monofilético y que *A. japonicus* y *R. fungiformis* no deben clasificarse dentro de este orden.

En 2007 Lim *et al.*, con base en secuencias del gen *rbc*L ratificaron la existencia del Orden Ralfsiales (Nakamura, 1972), y propusieron la familia Neoralfsiaceae. En este trabajo se corroboraron los resultados obtenidos por Tan y Druehl (1994), demostrando que el Orden Ralfsiales es un grupo monofilético, separado del Orden Ectocarpales. Lim *et al.*, (2007) además evidenciaron que las especies del género *Diplura* Hollenberg se encontraban distantes del Orden Ralfsiales y cercanas al Orden Ishigeales, afirmando así el origen polifilético de las algas costrosas pardas (Poong *et al.*, 2014).

En 2014, Poong *et al.*, desarrollaron un estudio florístico basado en evidencia molecular y morfológica para las algas pardas costrosas de Malasia e Indonesia, donde emplearon el gen cloroplastidico *rbc*L y el mitocondrial *Cox* 1 para la determinación de las especies ante la dificultad que presentaba el uso de sólo caracteres morfológicos, los cuales no esclarecían de que especies se trataba.

2.4 Estudios en México

Por su parte en México, los trabajos han estado enfocados al conocimiento florístico de las algas pardas costrosas del Pacifico (León-Álvarez y González-González, 1993) pero basados únicamente en los aspectos morfológicos y de distribución principalmente del género *Ralfsia* (León-Álvarez y González-González, 2003; León-Álvarez, 2005 y León-Álvarez y Norris, 2005). Los únicos trabajos de tipo florístico-taxonómico hasta el momento donde se combinan caracteres morfológicos y moleculares son Núñez-Reséndiz (2012) y León-Álvarez, *et al.* 2014a y 2014b.

Para el caso de la morfología tipo *Stragularia*, se incluye información importante respecto a ella en la tesis doctoral de León-Álvarez (1996), quien señala las principales problemáticas alrededor de ésta.

López (1997) desarrolló un análisis morfo-ecológico de una feofita costrosa a-fín a "Stragularia" en el PTM, obtuvo una clasificación de los microambientes donde se encontró a esta alga, además llevó a cabo una caracterización morfológica obteniendo dos formas de manifestación, la primera caracterizada por presentar una coloración café oscuro en húmedo y café en seco, por mantenerse integra al ser desprendida de sustrato y restregarse entre los dedos y por formar manchas continuas como resultado del traslape, mientras que la segunda forma de manifestación presentó una coloración verdosa al hidratarse y café-verdosa en seco, se separó en pedazos al ser desprendida del sustrato y formó manchas aisladas entre sí. López (1997) tambien logró observar parte del ciclo de vida de esta costrosa, mediante una muestra en cultivo y algunas características de su ultraestructura.

Recientemente Reyes-Gómez (2015), desarrolló un estudio sobre algas pardas costrosas mucilaginosas en la costa del Pacifico tropical méxicano, llevó a cabo una caracterización morfológica y molecular de dichas algas, para conocer su biodiversidad en esta región. Haciendo uso de la biología molecular y la morfología, encontró dos morfotipos claramente diferenciados principalmente por tres caracteres: grosor del talo, ángulo de surgimiento de los filamentos postígenos a partir de los filamentos primigenios, y largo/diámetro de las células a lo largo del filamento postígeno. Los datos morfológicos y moleculares fueron completamente coherentes.

3. JUSTIFICACIÓN

En las costas del Pacifico tropical mexicano (PTM), se presentan algas pardas costrosas con la morfología tipo "Stragularia", sin embargo hasta la fecha no se ha establecido si los especímenes con dicha morfología pertenecen a la misma especie o a especies distintas. La identificación de las especies de algas costrosas empleando sólo caracteres morfo-anatómicos es notoriamente difícil debido a las características morfológicas limitadas disponibles y al gran número de similitudes entre costras de gran variedad de taxones. Las herramientas moleculares se han convertido en piezas clave en el desarrollo de estudios de biodiversidad y taxonomía en distintos grupos de organismos. El presente estudio pretende conocer la diversidad de costras con morfología tipo "Stragularia" empleando biología molecular mediante los marcadores *rbc*L y *Cox* 1 junto con a la morfología. Este estudio enriquecerá el conocimiento respecto a las algas pardas costrosas del PTM y de zonas tropicales, la información aquí obtenida servirá de base para el desarrollo de futuros estudios taxonómicos y filogenéticos.

4. HIPÓTESIS

-La caracterización molecular por medio de los marcadores *rbc*L y *Cox* 1 y la morfológica permitirán determinar el número de especies de algas pardas costrosas con morfología tipo "Stragularia" en el Pacifico tropical mexicano.

-La información obtenida a travé de las secuencias de *rbc*L y *Cox* 1 será coherente con los caracteres morfológicos.

5. OBJETIVO GENERAL

- Determinar las especies de algas pardas costrosas con morfología tipo "Stragularia" que se encuentran en el Pacifico tropical mexicano.

5.1 OBJETIVOS ESPECIFICOS

-Describir las características morfo-anatómicas de los ejemplares con morfología tipo *Stragularia* del Pacífico tropical mexicano.

-Determinar las secuencias de ADN de la región *rbc*L del genoma del cloroplasto y del gen mitocondrial *Cox* 1 de los ejemplares con morfología tipo "Stragularia".

-Elaborar análisis bionformaticos con las secuencias obtenidas de ambos genes.

-Correlacionar los datos morfológicos y moleculares obtenidos para determinar el número de especies de algas pardas costrosas con morfología tipo "Stragularia" presentes en el Pacífico tropical mexicano.

6. ÁREA DE ESTUDIO

Los ejemplares provienen de siete localidades del Pacifico tropical mexicano (PTM) Fig. 3 y 4. Los sitios se seleccionaron con base en los reportes previos realizados por León-Álvarez (1996).

Figura 2. Ubicación del área de estudio y localidades de muestreo.

Localidad		Geoposición	Acceso	Fisiografía
NAYARIT				
Playa los Muertos		20°52' 21.7'' N;	Carretera federal #200	Afloramientos rocosos
		-105°26'45.1'' W	Puerto Vallarta-Tepic.	expuestos e irregulares,
			Calle Caracol, pasando el	heterogénea ambientalmente,
			panteón de Sayulita.	combina la presencia de riscos,
				pozas de marea y canales de
				corriente. El oleaje es moderado
				y se presenta un flujo y reflujo
				de agua.
JALISCO				
Las Rosadas		19°33'33.4''N;	Carretera federal #200	Peñasco, grandes bloques de
		-105°05'17.5'' W	Puerto Vallarta-	roca y playa de arenas gruesas.
			Manzanillo. Ingreso por	Zona de rompientes.
			la Sede recreativa del	
			sindicato de la CFE	
Playa Playitas,	Cabo	20°20' 25.8'' N;	Carretera federal #200	Dos puntas rocosas separadas
Corrientes		-105°40'15.6'' W	Puerto Vallarta -	por una bahía arenosa.
			Manzanillo, pasado por	Agrupaciones de peñascos
			El Tuito.	rectangulares de hasta de 10 m

Cuadro 1. Caracterización de los sitios de recolecta.

de altura. El oleaje es directo y de rompiente.

Punta Pérula	19°35' 08.1'' N;	Carretera federal #200	Playa arenosa, zona de pequeños
	-105°08'06.8'' W	Puerto Vallarta-	riscos y cantos rodados.
		Manzanillo, desvío hacia	
		Fortuna y luego Pérula	
GUERRERO			
El Palmar, Zihuatanejo	17° 39' 09.107'' N;	Playa contigua al Hotel	Punta rocosa expuesta a manera
	101° 36' 0.0836''	Barceló, Ixtapa	de risco con varios bloques de
	W		roca sueltos, e incidencia directa
			del oleaje.
OAXACA			
Bahia la Ventosa, Salina	16°10' 33.8'' N;	Carretera federal #200	Playa mixta roca-arena,
Cruz	-95°09'20.7'' W	Acapulco-Salina Cruz,	presencia de cantos rodados al ir
		desvío por Ensenada de	avanzando se llega a un
		la Ventosa	acantilado. Oleaje barrido con
			arena.
Barra de Santa Elena	15°43' 58.8'' N;	Carretera federal #200	Es una playa abierta donde los
	-96°50' 09.2'' W	Acapulco- Salina Cruz,	afloramientos rocosos coexisten
		rumbo a Pinotepa	con una serie de plataformas con
		Nacional, desvio a	diferentes grados de erosión.
			Presenta en general un oleaje en

"Abarrotes Santa Elena", forma de barrido hacia la líneakm 171. de costa

Punta Pérula	19°35' 08.1'' N;	Carretera federal #	#200	Playa arenosa, zona de pequeños
	-105°08'06.8'' W	Puerto Valla	larta-	riscos y cantos rodados.
		Manzanillo, desvío h	hacia	
		Fortuna y luego Péru	ula	

Figura 3. Zonas de muestreo. A. Playa los Muertos, Nay.; B. Playa las Rosadas, Jalisco; C. Playa Playitas, Cabo
Corrientes, Jalisco; D. Punta Perula; E. Bahía la Ventosa, Oax.; F. Bahía San Agustín, Oax.; G. Barra de Santa Elena,
Oax.; H e I. Playa el Palmar, Zihuatanejo, Gro.

7. MATERIALES Y MÉTODOS

7.1 Revisión de material de herbario

Se revisó la morfología de muestras de algas pardas costrosas con morfología tipo "Stragularia" depositadas en el herbario FCME de la UNAM, de colectas previas en el Pacifico tropical mexicano. En total se revisaron cuatro muestras del estado de Jalisco, de las Rosadas y Punta Pérula (PTM 9427, PTM 8976, PTM 9430 y PTM 9428) y dos más de Playa el Palmar (PTM 10152, PTM 10153), y una de Puerto Escondido, ambos sitios localizados en Guerrero.

Se tómo material para análisis molecular sólo de aquellas muestras que coincidieron con la morfología "Stragularia" y que estaban preservadas en silica gel (PTM 8976, PTM 9430, PTM 10152 y PTM 10153).

7.2 Recolecta de material

Empleando un cincel y un mazo, se desprendieron fragmentos de rocas que presentaban costras con la morfología "Stragularia" (costra de márgenes difusos, muy adherida a la roca, en coloraciones verdosas, amarillentas, a pardo-naranjas). Cada roca fue guardada en una bolsa plástica con cierre hermético. A cada muestra se le asignó un código de campo con los respectivos datos ambientales y características de la localidad (nivel de marea, tipo de costa, características de las rocas, exposición al oleaje). Posteriormente todas las rocas fueron secadas con servilleta de papel y de cada una se desprendió un fragmento del alga para el análisis molecular y morfológico y otro fragmento para análisis molecular, que fue colocado en una bolsa hermética, envuelto en servilleta de papel junto con sílica gel.

Se tomaron fotografías de cada ambiente y de los especímenes previo a su colecta. Con ayuda de un GPS se tomaron las coordenadas geográficas en cada localidad.

7.3 Estudio morfológico

Las muestras fueron observadas bajo el estereoscópico OLYMPUS SZ 51, con el propósito de diferenciar la existencia de una o varias morfologías en la misma roca, dicha diferenciación se basó en características como el color, relieve, forma, definición de los márgenes, adhesión al sustrato, así como textura y consistencia de la costra. Posteriormente, se llevaron a cabo cortes

manuales de secciones longitudinales radiales del talo en un plano, se elaboraron preparaciones semipermanentes, se tiñeron los cortes con diversos colorantes (verde malaquita, azul de metileno, KMNO₄, fucsina básica) para evidenciar la presencia de diversas estructuras (ej. cloroplastos, pirenoides, fisodes) y se montaron en gelatina glicerinada al 75 % (León-Álvarez y González-González, 2003).También se llevaron a cabo preparaciones, usando la técnica del "squash".

Todos los especímenes fueron observados con un microscopio OLYMPUS CX31 y fotografiados con una cámara Samsung PL120.

Cada muestra fue caracterizada morfológicamente de acuerdo al formato establecido para la descripción morfológica de algas pardas costrosas, basado en los caracteres empleados en las descripciones originales y en el estudio de León-Álvarez, (1996) (Ápendice 1).

7.3.1 Análisis morfológico

Se elaboró una matriz compuesta por 44 especímenes (incluyendo 15 muestras de algas pardas mucilaginosas) y 33 caracteres vegetativos, debido a la ausencia de especímenes con estructuras reproductivas. Se excluyeron todos aquellos caracteres invariables (apéndice 1).

Se llevó a cabo un análisis de conglomerados, empleando como método de agrupamiento el UPGMA (Unweighted Pair Group Method with Arithmetic Mean) y como medida de distancia, la "distancia euclidiana".

También se llevó a cabo un Ánalisis de Componentes Principales, empleando la matriz anterior. Como complemento a la información morfológica se realizó una matriz incluyendo los datos de las muestras revisadas por León-Álvarez en su tesis doctoral. Esta matriz presentó 72 muestras (incluidas las 44 muestras anteriores) y 31 caracteres.

Ambos tipos de análisis (clúster y componentes principales) se realizaron en los programas STATISTICA 10 para Microsoft Windows y XLSTAT.

7.4 Análisis molecular

7.4.1 Extracción de ADN

 A) Método CTAB (Doyle y Doyle 1990, con modificaciones de Edith Ponce Márquez com. pers.)

Las muestras (5-10 mg) fueron trituradas con nitrógeno líquido y colocadas en tubos eppendorf de 1.5 ml. Se añadieron 800 µl del buffer CTAB al 0.4 % de 2-mercaptoetanol, previamente calentado a 65°C y posteriormente, 7 µl de proteinasa K, esto fue mezclado vigorosamente en el vortex.

La mezcla se incubó a 65 °C por 40 minutos, mezclando cada 10 minutos por inversión. Una vez que el buffer se tornó de color marrón, se extrajó todo el líquido y se transfirió a un nuevo tubo eppendorf previamente rotulado. Se añadió el mismo volumen de acetato de potasio, se homogeneizó invirtiendo el tubo varias veces, se colocó en hielo y se dejó incubar por 20 minutos.

Posteriormente se centrifugó por 10 minutos a 14,000 rpm. Se transfirió el líquido obtenido en un nuevo tubo eppendorf, teniendo cuidado de no tocar el botón del fondo. Se agregaron 500 µl de cloroformo: alcohol isoamílico (24:1), se mezcló suavemente y se colocó en el agitador a velocidad moderada por 15 minutos.

La mezcla se centrifugó a 9000 rpm por 10 minutos y transfirió la fase acuosa a un nuevo tubo eppendorf, evitando tocar la fase anterior. A la solución recuperada, se le agregaron dos veces su volumen de isopropanol (2-propanol) enfriado a -20 °C. Para lograr la precipitación, se invirtió el tubo hasta homogeneizar el líquido. Se dejó en el congelador a -20 °C durante la noche.

Al día siguiente, el material se centrifugó por 10 minutos a 13000 rpm. Se retiró el alcohol, posteriormente, se le agregaron 500 µl de etanol al 70 %, se mezcló todo en el vortex.

32

Se centrifugó por 5 minutos a 13000 rpm, se decantó el alcohol, evitando tirar el botón de ADN. El tubo se dejó secar en el termoblock a 40 °C. Una vez que el alcohol se evaporó por completo, el ADN se resuspendió en 100 µl de agua inyectable. Se guardó a -20 °C en el congelador.

 B) Método Master Pure (con modificaciones para tejido seco por Fabiola Ramírez Corona com. pers.).

Con las muestras de las que se obtuvo poco material, se utilizó el kit de extracción Master Pure Complete ADN & RNA de Epicentre.

El tejido fue macerado en un mortero. En aquellos casos donde no se pudo pulverizar en seco, se agregaron 35 μ l de la solución denominada Tissue and Cell Lysis Solution. Posteriormente se añadieron 265 μ l de la solución anterior, para obtener un volumen final de 300 μ l del buffer de lisis.

La mezcla se trasladó a un tubo eppendorf de 1.5 ml estéril, se le añadió 1 µl de proteinasa K mantenida a -20 °C. La mezcla fue incubada a 60 °C durante 30 min., se mezcló en el vortex cada 5 min. a velocidad media (en total 6 veces).

Posteriormente los tubos se pasaron a un baño seco para lo que se empleó un termoblock, se mantuvieron en este durante 5 min. a 37 °C. Una vez transcurrido el tiempo, las muestras se colocaron en hielo por 5 min., luego se agregó 1 μ l de RNasa a cada muestra, las cuales fueron incubadas a 37°C por 30 min., para ser después regresadas al hielo durante 5 min.

Se agregaron 150 µl del buffer MPC protein a cada muestra, se mezclaron en el vortex vigorosamente por 10 seg. y se centrifugaron a 13,000 rpm por 15 min. a 4 °C.

El sobrenadante fue transferido a un tubo estéril de 1.5 ml. Se colocaron 500 µl de Isopropanol frío (mantenido a -20 °C) en cada tubo, los cuales se invirtieron suavemente 40 veces, para luego centrifugarlos a 13,000 rpm por 15 min. a 4 °C.

El pellet fue enjuagado dos veces con etanol al 70 %. Las muestras se dejaron secando toda la noche, para ser resuspendidas al día siguiente en 35 µl de TE pH 8 y posteriormente almacenadas a -20 °C hasta la amplificación.

7.4.2 Purificación ADN

Previo a la PCR, se purificó el ADN con el kit ADN Clean &Concentrator^{TM-5} de Zymo Research.

Se añadieron de 2-7 volúmenes de ADN Binding Buffer por cada volumen de muestra, la mezcla se colocó en una columna Zymo-spin en un tubo colector.

Se centrifugó a 10,285 rpm por 30 seg., posteriormente se colocaron 200 µl de ADN Wash Buffer en la columna y se centrifugó nuevamente a 10,285 rpm por 30 seg.

La columna Zymo-spin, se colocó en un nuevo tubo y se añadieron 30 μ l de agua inyectable, se llevó a cabo otra centrifugación con las características previamente mencionadas, se repitió el procedimiento, para obtener un volumen final de 60 μ l de ADN purificado.

7.4.3 Amplificación

El gen *rbc*L se amplificó completo y en fragmentos parciales empleando diferentes combinaciones de cebadores:

- A) En dos partes con la combinación rbc-Fo y Ral-952 para el primer fragmento y rbc-F3 y PBR-R3 para el segundo (Cuadro 2).
- B) En tres partes con las combinaciones rbc-Fo y rbc-R2, rbc-F3 y Ral-952 y por último rbc-F4-PBR-R3 (Cuadro 2).

Por su parte, el gen *Cox* 1 se amplificó completo en un sólo fragmento utilizando 2 cebadores forward y reverse (Cuadro 2).

La mezcla de reacción para el gen *rbc*L consistió de 2.5 µl de buffer 10X, 1.0 µl de MgCl2, 0.5µl de dNTPs, 1.0 µl de BSA, 1.0 µl de cada cebador (10pmol), 0.125 µl de Taq Polymerasa, 1.0 µl de ADN y 16.875 µl de agua inyectable, para un volumen final de 25µl. La mezcla se corrió en el termociclador Techne Flexi-gene, U.K., siguiendo el protocolo descrito por Lim *et al.*, (2007).

Para amplificar el gen *Cox*1 las proporciones de los reactivos utilizados se redujeron a un volumen total de 15 µl utilizando 1.5 µl de buffer, 1.0 µl de MgCl2, 0.5µl de dNTPs, 1.0 µl de BSA, 0.5 µl de cada (10pmol) 0.125 µl de Taq Polymerasa, 1.0 µl de ADN y 8.875 µl de agua inyectable. Esta mezcla se corrió en el termociclador Techne Flexi-gene, U.K., siguiendo el protocolo descrito por Saunders (sin publicar), iniciando a 94°C por 2 min., seguido de 5 ciclos de desnaturalización a 94°C durante 30 seg., alineamiento a 45°C durante 30 seg. y extensión a 72°C durante 1 seg.; seguido por otros 35 ciclos de desnaturalización a 94°C durante 30 seg., alineamiento a 46.5°C durante 30 seg., alineamiento a 72°C por 1 min.; finalmente temperatura de extensión a 72°C por 7 min (Saunders y Moore, 2013).

Algunas muestras no se lograron amplificar utilizando la mezcla de reacción previamente descrita, por tanto, se utilizó el Kit para PCR, Phire Plant de Thermo-scientific el cual consistió en añadir 10 µl del buffer, 0.5 µl del cebador forward, 0.5 µl del cebador reverse, 6.6 µl de agua, 0.4 µl de Taq Polimerasa y 1 µl de ADN, para un volumen total de 20 µl. Los programa empleados fueron el de Lim *et al.* (2007) para *rbc*L y el de Saunders y Moore (2013) para *Cox* 1 En el cuadro 2 se presenta la combinación de cebadores empleados para los marcadores *rbc*L y *Cox* 1.
Gen	Cebador	Secuencia del cebador (5'- 3')	Fragmentos de la secuencia	Referenci as	Programa
rbcL	rbc-F0	ATCGAATCGAATAAAAA GTGA	20-41	Kawai y Sasaki, 2004	Inicio: 94° x 3' 3 ciclos: 94° x 1' 50° x 1' 72° x 1' 3 ciclos: 94° x 1' 48° x 1' 72° x 1' 30 ciclos: 94° x 1' 46° x 30' 72° x 1' Final:72° x 10'
	rbc-F4	GTAATATCTTTCCATAAA ТСТАА	953-967	Kawai y Sasaki, 2004	
	rbc-F3	CACAACCATTCATGCG	635-650	Kawai y Sasaki, 2004	
	rbc-R2	CGCATGAATGGTTGTG	650-635	Kawai & Sasaki, 2004	
	Ral-952	CATACGCATCCATTTACA	952-934	Lim <i>et al</i> ., 2007	
	PBR-R3	GTAATATCTTTCCATAAA TCTAA	1406-1384	Kogame et al. 1999 (citado en Kawai & Sasaki 2004)	
Cox 1	GWSLF 2	CAAATCATAAAGATATC GGCAC	10-700	Saunders y Moore, 2013	Inicio: 94° x 2' 5 ciclos: 94° x 30'' 45° x 30'' 72° x 1' 35 ciclos: 94° x 30'' 46.5° x 30'' 72° x 1' Final: 72° x 7'

Cuadro.2 Cebadores empleados en la amplificación del ADN.

Para comprobar que los productos PCR correspondieran con la longitud de los amplicones esperados, las muestras (3uls) se cargaron en un gel de agarosa 1%, 1.0 μ l de buffer de carga, 1 μ l de gel red y se corrieron a temperatura ambiente en una cámara de electroforesis con TBE 1X durante 35 minutos a 100 volts.

7.4.4 Purificación de productos de PCR

Se empleó el producto ExoSAP-IT de Affymetrix. Se elaboró una mezcla (1:1) del producto de purificación más el buffer empleado para la PCR, el cual se diluyó de 10x a 1x. A cada muestra se le añadió 1 µl de la mezcla anterior, para posteriormente colocarlas en baño maría a 37°C durante 15 min., transcurrido este tiempo se trasladaron al termoblock donde se dejaron incubando 5 min. a 80 °C. Finalmente las muestras se colocaron en refrigeración.

7.4.5 Secuenciación

Las muestras fueron enviadas a secuenciar al laboratorio de "Bioquímica Molecular", de la FES-IZTACALA (UNAM).

7.4.6 Análisis molecular

La secuencias obtenidas fueron editadas y alineadas en los programas Bioedit (Hall, 1999), Sequencher y ClustalW (Thompson, 1994), junto con secuencias de *rbc*L y secuencias de *Cox1*, tomadas de la base de datos GeneBank (NCBI) y de la tesis de Reyes-Gómez (2015), pertenecientes a las especies de la Clase Phaeophyceae donde se incluyeron *Schizocladia ischiensis* como grupo externo para el gen *rbc*L y *Tribonema aequale* para el gen *Cox* 1. Además para los análisis del Orden Ralfsiales, se incluyó a *Tilopteris mertensii* como grupo externo (Cuadros 3, 4 y 5). Se realizó una matriz para cada gen secuenciado y en el caso de *rbcL* para los fragmentos parciales del gen además de una matriz de genes concatenados, con cada una de ellas se llevaron a cabo los análisis de Máxima Parsimonia (MP), Máxima Verosimilitud (MV) e Inferencia Bayesiana (IB).

La transformación de las matrices a los formatos phylip y nexus, requeridos por los programas para hacer los análisis moleculares, se obtuvieron con el programa Mesquite.

El análisis de MP se llevó a cabo en el programa PAUP* 4.0b10 (Swofford, 2001), haciendo una búsqueda heurística con 1000 réplicas. El intercambio de ramas se realizaró por medio de la opción TBR. Todos los caracteres fueron considerados como no ordenados y de igual peso. El apoyo interno de los clados se evaluó mediante un análisis de bootstrap (BP) con 10,000 réplicas.

Para encontrar el modelo de sustitución de nucleótidos que mejor se ajustara a la matriz de datos se empleó el programa ModelTest v.3.7 (Posada y Crandall, 1998) con el criterio de información Akaike (AIC). El modelo seleccionado para el presente estudio fue GTR (general-time-reversible) + I (proportion of invariable sites)

El análisis de ML se llevó a cabo en el programa RAxML (Randomized Accelerated Maximum Likelihood) (Stamatakis, A. *et al.*, 2005). Bajo el algoritmo de búsqueda heurística, se realizaron 100 réplicas de secuencias aleatorias y posteriormente 100 réplicas de bootstrap.

El análisis bayesiano se realizó con el programa MrBayes 3.2.2 (Huesenbelck y Ronquist, 2001), con 10,000 ,000 generaciones para cada una de las matrices.

Además se uso la página web CIPRES (Cyberinfrastructure for Phylogenetic Research) para correr los análisis de ML e IB y corroborar los resultados obtenidos con los programas.

7.5 Trabajo de gabinete

A cada muestra se le asignó un código de catálogo PTM (Pacífico tropical mexicano), y posteriormente se incorporaron a la Colección de Algas del Herbario de la Facultad de Ciencias, UNAM (FCME).

Cuadro 3. Listado de secuencias obtenidas de Gen Bank para el análisis de Ralfsiales.

Таха	Genes amplicados por sitio de recolecta		Numero de acceso de GenBank		Autor	
	rbcL	Cox 1	rbcL	Cox 1		
Analipus japonicus (Harvey) Wynne	Oshoro, Hokkaido Pref., Japón	Bodega Bay, California USA	AB264042	EU681389	Lim et al. (2007)	
Endoplura aurea Hollenberg	Inubouzaki, Chiba Pref., Japón	-	AB264039	-	Lim et al. (2007)	
<i>Heteroralfsia saxicola</i> A (Okamura et Yamada) Kawai	Ohma, Aomori Pref., Japón	-	AB250070	-	Lim et al. (2007)	
<i>Heteroralfsia saxicola</i> B (Okamura et Yamada) Kawai	Ohma, Aomori Pref., Japón	-	AB2504040	-	Lim <i>et al</i> . (Sin publicar)	
Mesospora elongata A S.W.Poong, P.E.Lim & S.M.Phang	Lombok Island, Nipah, Indonesia	Idem	JQ620004	JQ620012	Poong <i>et al.</i> (2013)	
Mesospora elongata B S.W.Poong, P.E.Lim & S.M.Phang	Lombok Island, Nipah, Indonesia	Idem	JQ620005	JQ620013	Poong et al. (2013)	
Mesospora elongata B S.W.Poong, P.E.Lim & S.M.Phang	<i>oora elongata</i> B S.W.Poong, Okinawa, Isla Ishigaki, Japón Idem P.E.Lim & S.M.Phang		JQ620002	JQ620010	Poong et al. (2013)	
Mesospora elongata B S.W.Poong, P.E.Lim & S.M.Phang	Okinawa, Isla Ishigaki, Japón	Idem	JQ620003	JQ620011	Poong et al. (2013)	
Mesospora negroensis A	Terengganu,Pantai Chendering, Malasia	Idem	KC847391	KC847370	Poong et al. (2014)	
Mesospora negroensis B	Pulau Merambong, Johor, Malasia	Idem	KC847390	KC847369	Poong et al. (2014)	
Mesospora negroensis C	Sin sitio	Sin sitio	KC847389	KC847368	Poong et al. (2014)	
Mesospora schmidtii A Weber-van Bose	Port Dickson, Malasia	Idem	JQ620000	JQ620008	Poong <i>et al.</i> (2013)	
Mesospora schmidtii B Weber-van Bosse	Johor,Pulau Che Kamat, Malasia	Idem	JQ619998	JQ620006	Poong <i>et al.</i> (2013)	
Mesospora schmidtii C Weber-van Bosse	Isla Lombok, Batukijok, Indonesia	Idem	JQ619999	JQ620007	Poong <i>et al.</i> (2013)	
<i>Mesospora schmidtii</i> D Weber-van Bosse	Isla Lombok, Batukijok, Indonesia	Idem	JQ620001	JQ620009	Poong <i>et al.</i> (2013)	
Mesospora schmidtii A	Sabah, Semporna, Malasia	Idem	KC847388	KC847367	Poong et al. (2014)	
Mesospora schmidtii B	Terengganu, Telok Kalong, Malasia	Idem	KC847387	KC847366	Poong <i>et al.</i> (2014)	
Mesospora sp. A	Okinawa, Isla Ishigaki, Fusaki, Japón	-	AB250063	-	Lim <i>et al</i> . (Sin publicar	

Таха	Genes amplificados I	oor sitio de recolecta	Numero de Genl	e acceso de Bank	Autor	
	rbcL	Cox 1	rbcL	Cox 1		
Mesospora sp. C	Johor, Tg Gemoh, Malasia	-	AB250065	-	Lim et al. (2007)	
Mesospora sp. D	Nakura, Ishigaki Island,	-	AB250066	-	Lim et al. (2007)	
	Okinawa Pref., Japon				.	
Mesospora sp. E	Johor, Tg Lompat, Malasia	-	AB250067	-	Lim <i>et al</i> . (Sin publicar)	
Mesospora sp. F	Johor, Tg. Balau, Malasia	-	AB250068	-	Lim <i>et al</i> . (Sin publicar)	
Mesospora sp. G	Shizuoka, Shimoda, Japón	-	AB250069	-	Lim et al. (2007)	
Neoralfsia expansa E (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	Okinawa, Ishigaki Island, Hamasaki, Japón	Idem	AB250077	-	Lim et al. (2007)	
Neoralfsia expansa F (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	Johor, Desaru, Malasia	Idem	AB250078	-	Lim <i>et al.</i> (2007)	
<i>Neoralfsia expansa</i> G (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	Hyogo, Igumi, Japón	Idem	AB250079	-	Lim <i>et al.</i> (2007)	
Neoralfsia expansa A sensu Børgesen	Morro de la Macha, Veracruz, México	Idem	KM032758	-	León-Álvarez <i>et al.</i> , (2014b)	
Neoralfsia expansa B sensu Børgesen	Morro de la Macha, Veracruz, México	Idem	KM032759	-	León-Álvarez <i>et</i> <i>al.</i> , (2014b)	
Neoralfsia expansa C sensu Børgesen	Morro de la Macha, Veracruz, México	Idem	KM032760	-	León-Álvarez et al., (2014b)	
Neoralfsia expansa A (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	-	Johor, Desaru, Malasia	-	KC847384	Poong <i>et al.</i> (2014)	
Neoralfsia expansa B (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	-	Ishigaki, Island, Japón	-	KC847383	Poong <i>et al.</i> (2014)	
Neoralfsia expansa C (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	-	Terengganu, Pantai Kemasik, Malasia	-	KC847373	Poong et al. (2014)	
Neoralfsia expansa D (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	-	Isla Lombok, Indonesia	-	KC847372	Poong <i>et al.</i> (2014)	

Таха	Genes amplificados p	Genes amplificados por sitio de recolecta		e acceso de Bank	Autor	
	rbcL	Cox 1	rbcL	Cox 1		
Neoralfsia expansa E (J.Agardh) P E.Lim & H.Kawai ex Cormaci & G.Furnari	-	Melaka, Pulau Besar, Malasia	-	KC847371	Poong <i>et al.</i> (2014)	
Neoralfsia hancockii A (E.Y.Dawson) D.Leon-Alvarez & M.L.Nunez- Reséndiz	San José del Cabo, La Palmilla, BCS, México	Idem	KF977828	-	León-Álvarez <i>et al.</i> , (2014a)	
Neoralfsia hancockii B (E.Y.Dawson) D.Leon-Alvarez & M.L.Nunez- Reséndi	San José del Cabo, Country Club, BCS, México	Idem	KF977827	-	León-Álvarez <i>et al.</i> , (2014a	
<i>Ralfsia fungiformis</i> A (Gunnerus) Setchell et Gardner	Akkeshi, Hokkaido Pref., Japón	-	AB250071	-	Lim et al. (2007)	
<i>Ralfsia fungiformis</i> B (Gunnerus) Setchell et Gardner	Cap du Bon Désir, Quebec, Canadá	Idem	EU579936	EU681419	Bittner et al. (2008)	
<i>Ralfsia fungiformis</i> A (Gunnerus) Setchell et Gardner	Cap du Bon Désir, Quebec, Canadá	-	EU579873	-	Bittner et al. (2008)	
Ralfsia sp. A	Akou, Hyogo Pref., Japón	-	AB250073		Lim et al. (2007)	
Ralfsia sp. H	Shimoda, Nabeta, Japón	-	AB250080	-	Lim <i>et al</i> . (Sin publicar)	
Ralfsia sp. I	Shimoda, Nabeta, Japón	-	AB250081	-	Lim <i>et al</i> . (Sin publicar)	
Ralfsia sp. K	Hyogo, Takeno, Oura, Japón	-	AB250083	-	Lim <i>et al</i> . (Sin publicar)	
Ralfsia verrucosa (Areschoug) J. Agardh	Roscoff, Brittany, France	-	AB250072	-	Lim et al. (2007)	
Ralfsioide sp. 1	-	Jade Cove, California, USA	-	KM254882	Saunders (2014)	
Ralfsioide sp. 2	-	Gwaii, Alder Island, British Columbia, Canada	-	KM254833	Saunders (2014)	
Ralfsioide sp. 3	-	Santa Cruz, California, USA	-	KM254794	Saunders (2014)	
Ralfsioide sp. 4	-	Jade Cove, California, USA	-	KM254789	Saunders (2014)	
Ralfsioide sp. 5	-	Jade Cove, California, USA	-	KM254634	Saunders(2014)	
Ralfsioide sp. 6	-	Gwaii Haans, Hoskins Islets, British Columbia, Canada	-	KM254572	Saunders (2014)	
Ralfsioide sp. 7	-	Pigeon Point Lighthouse, California, USA	-	KM254526	Saunders(2014)	
Ralfsioide sp. 8	-	Gwaii Haanas, Raspberry Cove, British Columbia, Canada	-	KM254504	Saunders (2014)	

Таха	Genes amplificados por sitio de recolecta		Numero d Gen	Autor	
	rbcL	Cox 1	rbcL	Cox 1	
Ralfsioide sp. 9	-	Gwaii Haanas, Raspberry	-	KM254456	Saunders (2014)
		Cove, British Columbia,			
		Canada			
Ralfsioide sp. 10	-	Bamfield, British Columbia,	-	KM254270	Saunders (2014)
-		Canada			
<i>Tilopteris mertensii</i> (Thrner in Smith) Kobe, Hyogo, Japón Kiitzing		Cultivo	AB045260	EU681430	Sasaki et al. (2001)
					× ,

Cuadro 4. Listado de secuencias obtenidas de Gen Bank para el análisis de Phaeophyceae (Para las Ralfsiales ver cuadro anterior)

Таха	Genes amplificados por	Genes amplificados por sitio de recolecta		Numero de acceso de GenBank		
	rbcL	Cox 1	rbcL	Cox 1		
Ascophyllum nodosum (Linnaeus) Le Jolis	No hay sitio	No hay sitio	AJ287853	EU681390	Bittner <i>et al</i> (2008) Draisma <i>et al</i> (2001)	
Asterocladon rhodochortonoides (Borgesen) Uwai	Japon: Fukuoka, Tsuyazaki	-	AB102867	-	Uwai et al (2005)	
Bachelotia antillarum (Grunow) Gerloff	No hay sitio	No hay sitio	AF207797	EU681393	Bittner <i>et al</i> (2008) Peters y Ramirez (2001)	
Carpomitra costata (Stackhouse) Batters	-	Cultivo	AB776780	-	Kawai <i>et al.</i> (2015)	
Chnoospora implexa J. Agardh	No hay sitio	-	AB022231	-	Kogame <i>et al.</i> (2001)	
Chorda filum (Linnaeus) Stackhouse	Tapan:Oshoro, Hokkaido	Oshoro	AY372983	AF037991	Cho et al. (2004); Ehara <i>et al</i> . (1998) s/publicar	
Choristocarpus tenellus(Kützing) Zanardini	Italia	Cultivo	AJ287861	AB899175	Draisma <i>et al.</i> (2001) Kawai <i>et al.</i> (2015)	
Colpomenia sinuosa (Mertens ex Roth) Derbes y Solier	No hay sitio	-	AY398470	-	Cho <i>et al.</i> (2004)	

Taxa	Genes amplificados	por sitio de recolecta	Numero de Genl	Autor	
	rbcL	Cox 1	rbcL	Cox 1	
Desmarestia aculeata (L.) J.V. Lamouroux	Cultivo	-	AB776773	-	Kawai et al. (2015)
Desmarestia tabacoides Okamura Cultivo		Cultivo	HE866823	HE866763	Yang <i>et al.</i> (2012) S/publicar
Desmarestia tabacoides Okamura	No hay sitio	-	AB037140	-	Kawai y Sasaki (2000)
Desmarestia viridis (O.F. Müller) J.V. Lamouroux	-	No hay sitio	-	KC491234	Zhao,X. (2013) S/publicar
Discosporangium mesarthrocarpum (Meneghini) Hauck	Greece	Greece	AB252654	LM995414	Peters <i>et al.</i> (2015) Kawai <i>et al.</i> (2007)
Dyctiosiphon foeniculaceus (Hudson) Greville	No hay sitio	No hay sitio	AF055396	JX572136	Siemer <i>et al.</i> (1998); Silberfeld, <i>et al.</i> (2010)
Dyctiota dichotoma (Hudson)Lamoroux	No hay sitio	France	AY422654	GQ425131	Cho <i>et al.</i> (2004) Tronholm <i>et</i> <i>al</i> (2010)
Diplura simplex Tanaka et Chihara	Japon: Hyogo, Awaji, Isla Maruyama	-	AB250084	-	Lim et al. (2007)
Diplura spF1	Malasia: Sabah,Semporna	Malasia: Sabah, Semporna	KC847398	KC847377	Poong <i>et al.</i> (2014)
Diplura spF2	Malasia: Terengganu	Malasia: Terengannu, Pantai Chendering	KC847397	KC847376	Poong <i>et al.</i> (2013) Poon <i>et al.</i> (2014)
Diplura spF3	Indonesia:Lombok Island, Gili Genting	Malasia:Sabah, Semporna	KC847396	KC847375	Poong <i>et al.</i> (2014)
Diplura spG1	Malasia: Port Dickson	Malasia: Lombok, Island	KC847402	KC847381	Poong <i>et al.</i> (2014)
Diplura spG2	Indonesia: Lombok Island, Batulayar	Malasia: Lombok, Island	KC847401	KC847380	Poong <i>et al.</i> (2014)
Diplura spG3	Malasia: Johor, Pulau Che Kamat	Malasia: Lombok, Island, Gili Genting	KC847400	KC84739	Poong <i>et al.</i> (2014)
Ectocarpus siliculosus (Dillwyn) Lyngbye	France	No sitio	FN564467	KF367762	Peters <i>et al.</i> (2010) Parham <i>et al.</i> (2013) S/publicar
Halosiphon tomentosus(Lyngbye)Jaasund	Germany:Helgoland	-	AB545977	-	Kawai <i>et al</i> . (2012)

Таха	Genes amplificados p	or sitio de recolecta	Numero de Genl	Autor	
	rbcL	Cox 1	rbcL	Cox 1	
Himantothallus grandifolius (A.Gepp et E.S. Gepp) Zinova	-	No sitio	-	GQ368262	Silberfeld <i>et al</i> (2010)
Ishige okamurae Yendo	No hay sitio	-	FJ427688	-	Lee y Boo (2008)
<i>I.sinicola</i> (Setchell et Gardner)Chihara	No hay sitio	-	FJ427725	-	Lee y Boo (2008)
<i>Laminaria digitata</i> (Hudson) Lamoroux	Port Erin Bay	USA	AY372984	GU097705	Cho <i>et al.</i> (2004) Mcdevit y Saunders (2009)
Microzonia velutina (Harvey) J. Agardh	No hay sitio	-	AY157697	-	Burrowes <i>et al.</i> (2003)
Padina durvillae Bory Saint-Vincent	-	Michoacán, México	-	HF559173	Díaz-Martinez (2014)
Padina pavonica (L.) Thivy	No hay sitio	-	EU579961	-	Bittner et al. (2008)
Onslowia endophytica Searles	USA: Florida	No sitio	AJ287864	EU681389	Draisma <i>et al.</i> (2001) Bittner <i>et al</i> (2008)
Phaeostrophion irregulare Setchell et Gardner	USA	Cultivo	AB117948	AB899184	Kawai <i>et al.</i> (2001) Kawai <i>et al</i> (2015)
Petalonia fascia (O.F. Müller) Kuntze	Irlanda	No sitio	AB579001	EU681415	Kogame <i>et al.</i> (2011) s/publicar Silberfeld <i>et al.</i>) (2010)
Petroderma maculiforme (Wollny) Kuckuck	Japón: Hyogo, Awaji, Isla Maruyama	-	AB250061	-	Lim et al. (2007)
Petalonia zosterifolia (Reinke) Kuntze	No hay sitio	France	AB022242	KF281225	Kogame <i>et al.</i> (1999) Macdevit y Saunders (2014)
Petrospongium berkeleyi (Greville) Nägeli ex Kützing	No hay sitio	No sitio	EU850273	EU681416	Racault <i>et al.</i> (2009) Silberfeld <i>et al.</i> (2010)
Petrospongium rugosum (Okamura) Setchell et N.L. Gardner	Korea del Sur	-	AY996364	-	Cho y Boo (2006)
Pseudolithoderma roscoffense	No hay sitio	-	EU579935	-	Bittner et al. (2008)
Phyllariopsis brevipes (C.Agardh) Henry et South	España	No sitio	AB045247	GQ368264	Sasaki <i>et al.</i> (2001)

Таха	Genes amplificados	por sitio de recolecta	Numero de Genl	Autor	
	rbcL	Cox 1	rbcL	Cox 1	
Sargassum muticum (Yendo) Fensholt	Netherlands	No sitio	AJ287854	EU681423	Draisma <i>et al.</i> (2001) Silberfeld <i>et al.</i> (2010)
Sphacelaria divaricata Montagne	Korea del Sur	-	AY372985	-	Cho et al. (2004)
<i>Sphacelaria plumigera</i> Holmes ex Hauck	Japón	-	FN667656	-	Draisma <i>et al.</i> (2001)
Sphacelaria radicans (Dillwyn) C. Agardh	-	Canadá: Manitoba	-	JX572040	Saunders y Mcdevit (2013),
Splachnidium rugosum (Linnaeus)Greville	Cultivo	No sitio	AB776779	EU681419	Kawai <i>et al</i> (2015) Bittner <i>et al</i> (2008)
Scytosiphon lomentaria (Lyngbye) Link	No hay sitio	No sitio	AB022238	KC491235	Kogame <i>et al.</i> (1999); Zhao,X (2013)
Scytothamnus australis (J.Agardh) Hooker et Harvey	No hay sitio	No sitio	AJ295833	EU681425	Peters y Ramirez (2001) Bittner (2008)
Scytothamnus fasciculatus	Cultivo	-	AB776778	-	Kawai et al. (2015)
Sporochnus bolleanus	Cultivo	-	AB776781	-	Kawai et al. (2015)
Sporochnus pedunculatus (Hudson) C. Agardh	Cultivo	-	EU579937	-	Bittner et al. (2008)
Sporochnus scorparius Harvey	No hay sitio	-	AB037142	-	Kawai y Sasaki (2000)
<i>Syringoderma phinneyi</i> Henry et Müller	Canada: Vancouver	No sitio	AJ287868	EU681429	Draisma <i>et al.</i> (2001); Bittner (2008)
Syringoderma abyssicola (Setchell y N.L. Gardner)	No hay sitio	-	AY157698	-	Burrowes et al. (2003)
Tilopteris mertensii (Turner) Kützing	Cultivo	No sitio	AB776784	EU681430	Kawai et al (2015); Silberfeld (2010)
Zonaria diesingiana J. Agardh	Japon: Isla Ishigaki	Cultivo	AY422682	AB899174	Lee <i>et al.</i> (publicado sólo en base de datos)

<i>Schizocladia ischiensis</i> Henry,Okuda et Kawai	Japon: Kobe, Hyogo	-	AB085615	-	Kawai <i>et al</i> (2015) Kawai <i>et al</i> . (2001)
Tribonema aequale Pascher	-	No hay sitio	-	AB000211	Ehara et al. (1997)

Cuadro 5. Listado de secuencias obtenidas de Reyes-Gómez (2015)

Taxa	PTM	Sitio de	e colecta	Autor
		rbcL	Cox 1	
Alga costrosa gelatinosa_VR5	9622	El Palmar, Gro.	Idem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR6H	9657	El Palmar, Gro.	Idem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR20H	9627	El Palmar, Gro.	Idem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR30H	9576	Las Cuatas, Gro.	Idem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR33	9658	-	La Barrita, Gro.	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR35	9659	-	La Barrita, Gro.	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR38	9663	Puerto Escondido, Gro.	Idem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR39	9664	-	Puerto Escondido, Gro.	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR40	9665	Puerto Escondido, Gro.	Ídem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR41	9666	Puerto Escondido, Gro.	Ídem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR42	9667	Puerto Escondido, Gro.	ídem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR43	9668	El Palmar, Gro.	Ídem	Reyes-Gómez(2015)
Alga costrosa gelatinosa_VR44	9669	El Palmar, Gro.	Ídem	Reyes-Gómez (2015)
Alga costrosa gelatinosa_VR85	9672	El Palmar, Gro.	Ídem	Reyes-Gómez (2015)
Alga costrosa gelatinosa_Hpn	9185	San Agustín, Oax	Ídem	Reyes-Gómez (2015)

8. RESULTADOS

En total se analizó morfológicamente a 29 especímenes, los cuales se distribuyeron (con base a los análisis de conglomerados y de componentes principales) en tres grupos (denominados Grupo I, II y III). Se presenta el análisis, las comparaciones entre los grupos y las descripciones de los mismos. En el análisis bionformático se emplearon las secuencias de los genes rbcL y Cox 1. En los análisis de Máxima Parsimonia, Máxima Verosimilitud e Inferencia Bayesiana los especímenes se distribuyeron en tres grupos. El Grupo I se separó del orden Ralfsiales y se unió a Diplura sp., el Grupo II formó un clado separado de la familia Mesosporaceae, mientras que el Grupo III se unió al Morfo I de las Algas Pardas Mucilaginosas. Los resultados obtenidos con el gen rbcL fueron consistentes y robustos, sin embargo con el gen Cox1 se presentaron algunas incongruencias. Se presentan dos análisis uno en el que se incluyen todas las algas pardas y otro en el que únicamente se incluyen miembros del orden Ralfsiales, en ambos casos se presentan las distancias genéticas p "no corregidas" de cada gen y el dendograma resultado de los análisis filogenéticos.

8.1Caracterización morfológica

8.1.1 Datos de campo y morfología

En total se caracterizaron 29 especímenes, dos de ellos se obtuvieron en Playa los Muertos, Nayarit, cinco muestras más fueron recolectadas en Cabo Corrientes, cinco en Punta Pérula y dos en las Rosadas, los tres situados en Jalisco, mientras que cuatro de ellos pertenecientes a la localidad Playa el Palmar ubicada en el estado de Guerrero, finalmente cinco se encontraron en Bahía la Ventosa y seis en la Barra de Santa Elena, sitios pertenecientes a Oaxaca.

Todos los especímenes analizados se caracterizaron por ser costras irregulares sin márgenes definidos, sin líneas de crecimiento, con una superficie suave o lisa, costras totalmente adheridas

al sustrato, que no presentan rizoides y que en un corte longitudinal-radial los filamentos se disponen de forma unilateral (figura 1).

La coloración de las costras revisadas fue variable, presentando en seco tonos verdes oscuros, cafés verdosos, cafés amarillentos y cafés rojizos, mientras que al hidratarlas las coloraciones fueron café oscuro, café oscuro a negro, café oscuro a rojizo, café amarillento, verde oscuro, verde olivo y verde grisáceo.

En cuanto a las algas asociadas a las muestras, se encontraron *Ulva* sp., *Chaetomorpha* sp., *Hildebrandia* sp., *Ceramium* sp., Cianofitas y otras algas costrosas rojas que no fueron identificadas.

La asociación entre los especímenes y las características del ambiente general en que fueron recolectados se muestran en el cuadro 6.

Grupo morfológ ico	Número	Clave campo	Referencia herbario (PTM)	Localidad	Número de preparación	Ambiente general	Color del crecimiento húmedo	Color del crecimiento en seco	Forma de crecimiento	Formas biológicas conspicuas
GRUPO I	1	NQ1	10152	El Palmar, Gro.	2777-2776	PRE	Verde olivo	Café oscuro a negro	Manchas continuas sin margen nítido	<i>Ulva sp.</i> , roja costrosa
	2	NQ5	10153	El Palmar, Gro.	2787-2796	PRE	Verde olivo	Café oscuro a negro	Manchas continuas sin margen nítido	Ninguna
	3	NQ11	8976	Las Rosadas, Jal.	2797-2805	PRE	Verde pasto	Verde oscuro	Manchas aisladas sin margen nítido	Ninguna
	4	NQ16	9791	Bahía la Ventosa, Oax.	2064-2069	PCR	Verde oscuro a café-verdoso	Verde grisáceo	Manchas aisladas, sin margen nítido	Hildebrandia sp.
	5	NQ17	9792	Bahía la Ventosa, Oax.	2731-2737	PCR	Verde olivo	Café verdoso a negro	Manchas aisladas, sin margen nítido	Ninguna
	6	NQ19A	9794	Bahía la Ventosa, Oax.	2749-2750	PCR	Verde olivo	Café verdoso a negro	Manchas aisladas, sin margen nítido	Ninguna
	7	M28	10066	Cabo Corrientes, Jal.	2745-2748	PRE	Verde olivo	Verde oscuro a negruzco	Manchas aisladas sin margen nítido	Ninguna
	8	M27	10065	Cabo Corrientes, Jal	2043-2048	PRE	Verde olivo	Verde oscuro a negruzco	Manchas aisladas sin margen nítido	Ninguna
	9	M30	10068	Cabo Corrientes, Jal.	2057-2063	PRE	Café amarillento a rojizo	Café oscuro	Manchas continuas	Ninguna
	10	M31	10039	Playa los Muertos, Nay.	2049-2056	PRE	Café amarillento a verdoso	Café oscuro	Manchas continuas	Ninguna
	11	M67	10075	Cabo Corrientes, Jal.	2766-2773	PRE	Café amarillento a rojizo	Café oscuro a rojizo	Manchas continuas	Ulva sp. Chaetomorpha sp., Hildebrandia sp., cianofitas
	12	NQ22A	9795	Bahía la Ventosa, Oax.	2763-2765	PRE	Verde olivo	Verde grisáceo a café	Manchas aisladas sin margen nítido	Alga roja costrosa
	13	NQ20B	9793	Bahía la Ventosa, Oax.	2765	PRE	Verde olivo	Verde grisáceo a cafe	Manchas aisladas sin margen nitido	Ninguna
GRUPO II	24	NQ48E	10156	El Palmar, Gro.	2758	PRE	Café rojizo o anaraniado	Café oscuro	Manchas continuas	Ceramium sp.
	25	NQ49AR1	10157	El Palmar, Gro.	2741-2743	PRE	Café anaranjado	Café oscuro con zonas amarillas	Manchas continuas	Ceramium sp., Ulva sp., Pseudolithoderma sp.
	26	M20B	10058	Cabo Corrientes, Jal.	1969	PRE	Verde olivo	Café verdoso a negro	Manchas aisladas sin margen nítido	Ninguna
	27	VR139	9826	Santa Elena, Oax.	1985	PLR	Café amarillento	Café oscuro	Manchas continuas	Ninguna

Cuadro 6. Características de los ambientes particulares y de los especímenes.

Grupo morfológ ico	Número	Clave campo	Referencia herbario (PTM)	Localidad	Número de preparación	Ambiente general	Color del crecimiento húmedo	Color del crecimiento en seco	Forma de crecimiento	Formas biológicas conspicuas
	28	VR138	9825	Santa Elena, Oax.	1972-1973, 1986	PLR	Café amarillento a rojizo	Café oscuro	Manchas continuas	Ninguna
	29	VR 136	9823	Santa Elena, Oax.	1976-1978	PLR	Café amarillento	Café oscuro	Manchas continuas	Ninguna
GRUPO	14	NQ33A	9808	Santa Elena, Oax.	1877-1880	PLR	Amarillo	Café amarillento	Manchas continuas	Alga roja costrosa
111	15	NQ35A	9810	Santa Elena, Oax.	1882-1885	PLR	Café rojizo o anaranjado	Café oscuro	Manchas continuas	Alga roja
	16	M3	10025	Playa los Muertos, Nay.	2039-2042 2774	PRE	Café amarillento a verdoso	Café oscuro	Manchas continuas	Ninguna
	17	M60	10117	Punta Pérula, Jal.	1990-1994 2756-2757	PCR	Café verdoso	Café oscuro a rojizo	Manchas continuas	Hildebrandia sp.
	18	M91	10118	Punta Pérula, Jal.	1995-1997;2745- 2746; 2775-2776	PCR	Café rojizo o anaranjado	Café rojizo oscuro	Manchas continuas	Hildebrandia sp., cianofitas
	19	M92	10119	Punta Pérula, Jal.	1998-2003	PCR	Café rojizo o anaranjado	Café rojizo oscuro	Manchas continuas	Hildebrandia sp., cianofitas
	20	9550	9550	Santa Elena, Oax.	1255	PLR	-	-	-	-
	21	M80A	10095	Las Rosadas, Jal.	2759-2762	PRE	Café rojizo	Café oscuro	Manchas aisladas sin margen nítido	Ninguna
	22	M58	10115	Punta Pérula, Jal.	1987	PCR	Café amarillento a café verdoso	Café oscuro	Manchas continuas	Hildebrandia sp.
	23	M59R1	10116	Punta Pérula, Jal.	1988-1989	PCR	Café anaranjado	Café rojizo oscuro	Manchas continuas	Hildebrandia sp.

PRE: punta rocosa expuesta. PCR: playa de cantos rodados. PLR: Plataforma rocosa. PRI: playa rocosa irregular. Color rosa: Grupo I; Color amarillo : Grupo III;

Color lila: Grupo II.

8.1.2 Análisis morfológico

En total se revisaron y caracterizaron morfológicamente 29 especímenes.

Con base en la descripción morfológica se elaboró una matriz constituida con 44 especímenes (incluyendo 15 muestras de algas pardas mucilaginosas) y 33 caracteres vegetativos, sólo se emplearon estos ya que no todas las muestras presentaron caracteres reproductivos.

Algunos caracteres fueron invariables en los especímenes y por tanto tampoco se incluyeron en los análisis.

El formato empleado para recabar los datos morfológicos se encuentra en el apéndice 1, mientras que los caracteres por espécimen se presentan el apéndice 2.

8.1.3 Analisis de conglomerados UPGMA y de componentes principales

a) Análisis UPGMA (Unweighted pair-group average)

Como resultado del análisis de conglomerados UPGMA realizado en el programa Statistica (Figura 4), los especímenes se organizaron en dos grupos principales denominados Grupo Principal A y Grupo Principal B que a su vez se subdividieron en cinco grupos, cuatro pertenecientes al Grupo Principal A (Grupo I, II, II y IV) y uno perteneciente al Grupo Principal B (Grupo V).Ver apéndice 3 y figura 4.

Las algas pardas costrosas con morfología tipo "Stragularia" de este estudio se ubicaron al interior del Grupo Principal A distribuidos en tres grupos de morfologías diferentes correspondientes al **Grupo I**, **Grupo II** y **Grupo III**, los Grupos IV y V están integrados únicamente por muestras de Algas Pardas Mucilaginosas descritas por Reyes-Gómez (2015), más adelante se señalan sus principales diferencias respecto a los grupos de este estudio. La relación de las muestras por grupo y su distribución geográfica se presenta en el apéndice 3.

ANALISIS DE CONGLOMERADOS

Figura 4. Dendograma empleando 33 caracteres (vegetativos) y 44 muestras. Análisis de Conglomerados UPGMA, empleado distancia Euclidiana. Formación de dos Grupos Principales: A y B, que se subdividen en cinco y un grupo respectivamente.

- **GRUPO I:** se integró por 13 muestras que se subdividieron en dos grupos. .
- **GRUPO II:** se integró por 10 muestras, que se subdividieron en cuatro grupos menores. •
- GRUPO III: incluyó 6 muestras, que se subdividieron en dos pequeños grupos. •
- GRUPO IV: Incluyó las muestras descritas para el Morfo I de las Algas Pardas Mucilaginosas (Reyes-Gómez, 2015).

GRUPO V: Se separó del resto de las muestras de este estudio y de las muestras del Morfo
I, incluyó especímenes descritos por Reyes-Gómez (2015) dentro del Morfo II de las Algas
Pardas Mucilaginosas.

b) Análisis de componentes principales (ACP)

Para el Análisis de Componentes principales (ACP) se consideraron al igual que para el análisis de conglomerados 44 especímenes y 33 caracteres. Los componentes CP1 y CP2 (figura 5) explicaron el 47.9 % de la variación de los especímenes, la varianza acumulada se presenta para cada componente en el apéndice 4.

En la figura 5 se presenta la distribución de los casos en cada componente, se observa la formación de cuatro nubes de puntos claramente definidas, que incluyen los mismos 5 grupos formados durante el análisis de conglomerados. En este análisis se observan los Grupos I, IV y V claramente diferenciados e integrados por las mismas muestras que en el análisis anterior, sin embargo a diferencia del análisis anterior, los Grupos II y III se unieron en la misma nube de puntos.

Figura 5. Análisis de componentes principales, distribución de casos o muestras. Formación de cuatro nubes de puntos, en la nube de color rosa se presentan los especímenes que integraron el Grupo I en el análisis de conglomerados, en la nube de color morado se incluyen las muestras de los Grupos II y II. Las nubes azul y verde incluyeron especímenes de Algas Pardas Mucilaginosas.

De acuerdo con las contribuciones de las variables (apéndice 5), las que presentan mayor influencia para la segregación de los grupos fueron principalmente tres: **grosor del talo, número de células que integran al filamento postígeno y número de células unidas a partir de la base.**

En el apéndice 6 se observa la relación de los especímenes y todas las variables que influyeron en su agrupación.

El conjunto de caracteres morfológicos que mayor importancia tuvieron para reunir los especímenes en grupos de acuerdo con los de componentes principales ACP1 y ACP 2, fueron (apéndice 6):

- **GRUPO I**: la forma de la superficie de la costra (lisa o irregular), la presencia de pelos hialinos, el número de células que se adhieren entre los filamentos, la unión de los filamentos postígenos (si se unieron en la base, en el ápice o en ambos), la consistencia en el diámetro del filamento, la forma de las células cercanas a la base, el diámetro de las células cercanas a la base, así como el largo de las células del hipotalo.
- **GRUPOS II y III:** la textura de la costra, forma de las células cercanas al ápice, la relación entre el largo y diámetro de las células cercanas al ápice, el grosor de la pared celular, la relación entre el largo y el diámetro de las células apicales y la relación entre el largo y el diámetro de las células apicales y la relación entre el largo y el diámetro de las células del hipotalo.
- GRUPO IV: el diámetro de los filamentos, la distribución de los pelos hialinos, el agrupamiento de los pelos hialinos, posición de los pelos hialinos, número de capas del hipotalo, forma del filamento postígeno, forma de las células apicales, largo de las células apicales, así como el largo de las células cercanas al ápice.
- GRUPO V: el largo de las células cercanas a la base, la relación entre el largo y el diámetro de las células cercanas a la base, el largo de los filamentos postígeno, el grosor de la pared celular, el número de células que conforman a los filamentos, el diámetro de las células cercanas al ápice y el de las células apicales, así como la forma de las células del hipotalo y su diámetro.

8.1.4 Comparación de los Grupos I, II, III

Tomando en cuenta la agrupación generada por los análisis anteriores a continuación se hace la descripción de los grupos I, II y III. En los cuadros 7,8 y 9 se comparan los caracteres a fin de evidenciar las diferencias morfológicas con mayor claridad.

Los miembros del Grupo I presentan un grosor de talo de 170-230 micras, mayor que el presentado en los Grupos II y III, donde los valores varian entre 110-195 micras y de 66-145 micras respectivamente. De esta manera, el Grupo III agrupa a los especímenes con talo de menor grosor.

En los tres grupos se encuentran especímenes con superficie lisa y textura resbalosa, mientras que en el Grupo II se encontraron muestras con superficie irregular y textura suave, misma que también se encontró en algunos miembros del Grupo I.

En el primer grupo los filamentos postígenos fueron únicamente rectos, mientras que en los Grupos II y III se presentaron muestras con filamentos rectos o curvos (ligeramente), la curvatura se observó mas pronunciada en aquellas muestras con estructuras reproductivas uniloculares, posiblemente por un efecto mecánico producido por la estructura reproductiva la cual empuja al resto de los filamentos y los lleva a curvarse, sin embargo no hay que descartar que dicha curvatura este relacionada también con la presión ejercida sobre el talo durante la elaboración de la lámina(figura 6).

El diámetro del filamento fue variable en los grupos I y III (en los dos grupos se presentaron individuos con diámetros completamente uniformes, diámetros que aumentaban o disminuían hacia el ápice) mientras que en el Grupo II, el diámetro aumentó ligeramente hacia el ápice.

Figura 6. Curvatura de los filamentos postígenos al presentarse estructuras reproductivas. **A.** PTM 10118, filamento vegetativo. **B** y **C.** PTM 10118 filamento con uniloculares. **D.** PTM_10039 filamento con uniloculares. FC: Filamento que se curva; FR: filamento recto.

Los filamentos del Grupo I están constituidos por mayor número de células que los grupos II y III, este último incluye especímenes con muy pocas células. Respecto al número de células unidas, en el Grupo I fueron de 6 a 27 células, es decir, se encontraron especímenes con todas sus células unidas (11 de 13 muestras) hasta los que sólo se unieron en la base. En el Grupo II, el número de células unidas fue de 6-9 y en el Grupo III de 3-9, es decir en ambos casos los filamentos postígenos sólo se unieron unas cuantas células en su base, no lo hicieron ni en la parte intermedia ni en el ápice de los mismos. El nivel de separación entre los filamentos postígenos puede estar influenciado por el nivel de presión ejercido al momento de llevar a cabo el "squash", sin embargo, también se llevaron a cabo cortes y el nivel de separación entre los filamentos postígenos fue el mismo.

En los tres grupos las formas de las células cercanas a la base, cercanas al ápice y apicales fueron variables en forma y tamaño.

Los filamentos pimigenios, están dispuestos en capas nítidas en los tres grupos, sin embargo en el Grupo I también se encontraron especímenes donde estas capas no fueron claramente discernibles. En los Grupos II y III los filamentos primigenios se dispusieron en 2 a 3 capas, mientras que en el Grupo I se encontraron de 1 a 3 capas de células.

No.	CARACTERISTICAS	GRUPO I	GRUPO II	GRUPO III
1	FORMASUPERF	LISA	VARIABLE	LISA
2	TEXTURA	VARIABLE	SUAVE O	RESBALOSA
			RESBALOSA	
3	GROSOR	170-230 (197) µm	110-195(155) µm	66-145(113)
4	PRESPELHIAL	FRECUENTES	FRECUENTES	FRECUENTES
5	AGRUPAMIEN	SOLOS O	SOLOS O	SOLOS O
		AGRUPADOS	AGRUPADOS	AGRUPADOS
6	DISTRIPELHIAL	IRREGULAR	TODO EL TALO O	TODO EL TALO O
			IRREGULAR	IRREGULAR
7	POSPELHIAL	SURGIENDO DE LOS	SURGIENDO DE LOS	SURGIENDO DE
		FILAMENTOS	FILAMENTOS	LOS FILAMENTOS
		PRIMIGENIOS	PRIMIGENIOS	PRIMIGENIOS
8	FORFILPOST	RECTOS	RECTOS O CURVOS	RECTOS O
				CURVOS
9	LARFILPOST	160-220(187) μm	100-180(146) μm	60-137(114) μm
10	DIAMFILAM	VARIABLE	AUMENTA HACIA	VARIABLE
			EL APICE	
11	UNIONFILAM	VARIABLE	UNIDOS SOLO EN	UNIDOS SOLO EN
			LA PARTE BASAL	LA PARTE BASAL
			DEL TALO	DEL TALO
12	NUMCELUNID	6-27 CÉLULAS	6-9 CÉLULAS	3-9 CÉLULAS
13	NUMCELPERI	13-29 CÉLULAS	18-21 CÉLULAS	9-23 CÉLULAS
14	FORCELPERB	VARIABLES	CÚBICAS	VARIABLES
		(CÚBICAS,		(DOLIIFORMES,
		CILININDRICAS,		CÚBICAS,
		IRREGULARES)		CILINDRICAS)
15	LARCELPERB	6-14 μm	5-7 μm	4-7 μm
16	DIAMCELPERB	6-12 μm	6-7 μm	4-8 μm

Cuadro 7. Comparación de las características de los Grupos I, II y III.

17	RELCELPERB	0.9-1.5	0.6-1.1	0.8-1.5
18	FORCELAPI	VARIABLES	VARIABLES	VARIABLES
		(CÚBICAS,	(DOLIIFORMES,	(CÚBICAS,
		CILINDRICAS,	CÚBICAS,	CILINDRICAS,
		SUBESFERICAS)	CILINDRICAS)	SUBESFERICAS)
No.	CARACTERISTICAS	GRUPO I	GRUPO II	GRUPO III
19	LARCELAPI	6-9µm	7-12 μm	7-9 μm
20	DIAMCELAPI	3-9 μm	6-7 μm	2-6 μm
21	RELCELAPI	0.9-1.8	1-2	1.3-3
22	FORCELCORT	VARIABLES	VARIABLES	VARIABLES
		(CÚBICAS,	(ELIPSOIDALES,	(CILINDRICAS,
		ELIPSOIDALES	OBOVOIDES)	ELIPSOIDALES,
		SUBESFERICAS)		SUBESFERICAS,
				OBOVOIDES)
23	LARCELCORT	8-14 μm	9-13 μm	9-12 μm
24	DIAMCELCORT	5-10 μm	6-8 µm	4-7 μm
25	RELCELCORT	1.2-1.9	1.3-1.8	1.3-2.1
26	PAREDCEL	DELGADA O	DELGADA O	DELGADA
		GRUESA	GRUESA	
27	CONSFILPRI	EN CAPAS NITIDAS	EN CAPAS NITIDAS	EN CAPAS
		O NO EN CAPAS		NITIDAS
		EVIDENTES		
28	NUMCAPHIPO	1-3 CAPAS	2-3 CAPAS	2-3 CAPAS
29	FORCELHIPO	CILÍNDRICAS A	CILÍNDRICAS A	CILINDRICAS A
		IRREGULARES	IRREGULARES	IRREGULARES
30	LARCELHIPO	12-20 μm	11-14 μm	11-14 μm
31	DIAMCELHIPO	5-10 µm	4-5 μm	4-6 µm
32	RELCELHIPO	1.8-3	2.3-3.1	2.3-2.6
33	PRESGRANUL	PRESENTES	AUSENTES	PRESENTES O
				AUSENTES

En negritas: Caracteres que presentan diferencias entre los grupos.

Al comparar las estructuras reproductivas (cuadros 8 y 9), se observó que los plurangios de los tres grupos coincidieron en la forma de inserción al filamento, su número y forma (intercalares, 1 sólo plurangio por filamento sustentante y de forma cilíndrica). Las diferencias más significativas las presentaron el Grupo I, con plurangios de mayor longitud y con mayor número de células y el Grupo III que presenta de 1 a 2 células estériles.

En cuanto a los uniloculares los tres grupos coincidieron en la forma de inserción al filamento (terminal) y en la morfología del unilocular (obovoide, elipsoidal o claviforme), en el Grupo II se presentaron los uniloculares de mayor longitud y diámetro. Los pedicelos presentaron de 1-5 células en todos los grupos con excepción del Grupo II donde se presentaron hasta 6 células, además cabe mencionar que se observó una variación respecto al diámetro del pedicelo, para los

miembros del Grupo I este se mantuvo constante, sin embargo en los miembros del Grupo II el diámetro del pedicelo aumento conforme se acercaba al unilocular, en los miembros del Grupo III se presentaron especímenes con diámetros constantes y otros más, con ligeros aumentos algunos imperceptibles. Las paráfisis se presentaron para las tres morfologías con forma cilíndrica, esbelta o claviforme, las de mayor tamaño estuvieron en los Grupos II yIII.

Son pocos los caracteres que permiten distinguir con claridad a estos grupos a simple vista, sobre todo en campo parecen ser lo mismo, principalmente los miembros de los Grupos II y III.

Como se ha observado en los análisis anteriores, los especímenes descritos como Algas Pardas Mucilaginosas integraron los Grupos IV y V, es decir son morfológicamente diferentes de los especímenes de este estudio. La separación se debe principalmente a un carácter, el grosor del talo, en los especímenes del Grupo IV es de 278-334 µm, mientras que en el Grupo V el grosor osciló de 439-920 µm. Al comparar dichos valores con los Grupos de este estudio, el Grupo IV presentó un grosor 1.5 a 4 veces mayor que en los Grupos I, II y III, mientras que el grosor del Grupo V fue de 2.5 a 8 veces mayor. Cuadro 8. Estructuras reproductivas pluriloculares en los Grupos I, II y III.

						PLURANGIO					
	INSERPL	NUMPLUR	FORMAPL	LARGOPL	DIAPLU	NUMCELPL	FORMCELPL	NUMCEL	FORMCEL	LARCEL	DIACEL
	URA	FIL	URA	URA	RA	URA	URA	EST	EST	EST	EST
GRUPO I	Intercalar	1	Cilindricos	60-66	3.5-5	12-14	Subesferica	1	Elipsoidal	8-14	5-7
GRUPO II	Intercalar	1	Cilindricos	35-55	5-11	8-14	Cubica	1	Obovoide	8-15	3-8
GRUPO III	Intercalar	1	Cilindricos o irregulares	30-47	4-9	8-10	Subesferica o irregular	1 o 2	Elipsoidal, subesferica, irregular	6-13	3-8

INSERPLURA: inserción del plurangio; NUMPLURFIL: número de plurangios por filamento sustentante; FORMAPLURA: forma del plurangio; DIAPLURA: diámetro del plurangio; NUMCELPLURA: número de células del plurangio; FORMCELPLURA: forma de las células del plurangio; NUMCELEST: número de células estériles; FORMCELEST: forma de las células estériles; LARCELEST: largo de las células estériles; DIACELEST: diámetro de las células esteriles.

Cuadro 9. Estructuras reproductivas uniloculares en los Grupos I, II y III.

	UNANGIOS									
	INSERUNANG	FORMAUNANG	LARGOUNANG	DIAUNANG	RELUNANG	NUMCELPEDI	CELPEDBAS	CELPEDCEN	CELPEDAPI	
GRUPO I	Terminalmente	Obovoides, claviformes o fusiformes	20-58	10-26	1.7-3.9	1-4	5	5	5	
GRUPO II	Terminalmente	Obovoides o elipsoidales	48-130	18-42	1.6-4.3	1-6	6(4-9)	8(5-10)	9(7-12)	
GRUPO III	Terminalmente	Obovoides, claviformes o elipsoidales	26-106	13-26	1.7-4.6	1-5	6(5-7)	7.5(7-8)	8(6-9)	

INSERUNANG: inserción del unangio; FORMAUNANG: forma del unangio; LARGOUNANG: largo unangio; DIAUNANG: diámetro unangio; RELUNANG: relación largo-diámetro del unangio; NUMCELPEDI: número de células del pedicelo; CELPEDBAS: diámetro de la célula del pedicelo basal (más distal al unilocular); CELPEDCEN: diámetro de la celula del pedicelo central; CELPEDAPI: diámetro de la célula del pedicelo más proximal al unilocular.

	UNANGIOS								
	FORMPARA F	LARGPARA F	NUMCELPA RAF	FORCELPA RB	LARCELPA RB	DIACELPA RB	FORCELPARA	LARCELPA RA	DIACELPA RA
GRUPO I	Cilindrica o claviforme	45-100	6-16	Cilindricas	3-15	4-9	Cilindrica, elipsoidal o irregular	6-17	6-11
GRUPO II	Esbelta, cilindrica o claviforme	75-150	6.0-17	Cilindricas	6-15	3-5	Doliiformes o elipsoidales	7-14	4-9
GRUPO III	Cilindrica,esb elta o claviformes	65-170	10-18	Cilindricas	6-13	2-7	Cubicas, elipsoidales,obovoides,sube sfericas o irregulares	6-14	6-8

Cuadro 9. Estructuras reproductivas uniloculares en los Grupos I, II y III (continuación...)

FORMAPARAF: forma de la paráfisis; LARGPARAF: largo de la paráfisis; NUMCELPARA: número de células de la paráfisis; LARCELPARB: largo células basalaes de la parafisis; DIACELPARB:

diámetro de las células basales de la paráfisis; FORCELPARA: forma de las células de la paráfisis; LARCELPARA: largo células apicales de la paráfisis; DIACELPARA: diámetro células apicales de la paráfisis.

8.1.5 Descripciones de los Grupos morfológicos I, II, III

A continuación se presentan las descripciones morfológicas y las figuras de los Grupos que incluyeron los especímenes de este estudio.

GRUPO I:

Caracteres vegetativos

Costras de crecimiento indefinido o irregular, sin márgenes nítidos, completamente adheridos al sustrato cuya coloración en húmedo va del verde olivo al verde oscuro, así como distintas tonalidades de café (café-verdoso, café-amarillento o café-rojizo). Grosor del talo completo de 170-230(197) µm. Filamentos postígenos rectos, con 13-29 células de largo, surgiendo en ángulo transversal con respecto a los filamentos primigenios, con 6 a 27 (21 al 93 % del talo) células unidas a partir de la base. Filamentos postígenos de 160-220(187) µm de largo. Células basales con morfología variable (cúbicas, cilíndricas o irregulares) de 6-14 µm de largo y 6-12 µm de diámetro, con una relación entre el largo y el diámetro de 0.9-1.5. Las células cercanas al ápice presentaron forma cúbica, cilíndrica o subesférica, con 6-9 µm de largo y 3-9 µm de diámetro, cuya relación va de 1.2 a 1.9. Células apicales cúbicas, elipsoidales o subesféricas, de 8-14 µm de largo y 5-10 µm de diámetro con una relación entre el largo y el diámetro de 1.2 a 1.9. Pared celular delgada o gruesa. El diámetro del filamento se mantiene constante o aumenta hacia el ápice. Filamentos primigenios formados por 1-3 capas basales que fueron nítidas en algunas muestras, mientras que en otras no, con células de forma cilíndrica o irregular. Largo de las células de 12-20 µm y de 5-10 µm de diámetro, con una relación de 1.8 a 3. Pelos hialinos presentes en la mayoría de las muestras, originándose en los filamentos primigenios formando grupos o siendo solitarios, se les encuentra distribuidos irregularmente en el talo. En este grupo se observa alta variación morfológica entre sus especímenes.

Caracteres reproductivos

Las estructuras reproductivas no se observaron en todas las muestras, por ello no se tomaron en cuenta para el análisis morfológico comparativo con el resto de los especímenes. Sin embargo, a continuación se describen sus características principales.

Se observaron ambos tipos de estructuras reproductivas únicamente en la muestra PTM_10039, y sólo uniloculares en las muestras PTM_8976, PTM_10068 y PTM_10075.

Pluriloculares: insertos intercalarmente en los filamentos postígenos reproductivos, de forma cilíndrica, de 60-66 (63) μ m de largo y de 3.5-5 (4) μ m de diámetro, conformados por 12-14 células de forma subesférica. Una sola célula estéril, de forma elipsoidal con 8-14 μ m de largo y 5-7 μ m de diámetro.

Uniloculares: surgiendo a nivel de medio peritalo. Insertos terminalmente sobre pedicelos que surgen de los filamentos postígenos, están formados por 1-4 células de 4-8 μ m de diámetro, mismo que se mantiene constante en todo el pedicelo, de los que surge una paráfisis que se diferencia morfológicamente del resto de los filamentos postígenos por ser más delgada y larga que los filamentos vegetativos. Uniloculares obovoides, claviformes o fusiformes de 20-58(39) μ m de largo y de 10-26 (17) μ m de diámetro, con una relación entre el largo y el diámetro de 1.7 a 3.9. Las paráfisis son de forma cilíndrica o claviforme, de 45-100 (81) μ m de largo, formadas por 6-16 células. Células basales de la paráfisis cilíndricas de 3-15 (8) μ m de largo y de 4-9 (5) μ m de diámetro. Células apicales de formas diversas, cilíndricas, elipsoidales o irregulares, de 6-17 (10) μ m de largo y 6-11(9) μ m de diámetro (fig.7 y cuadro 9).

Figura 7. **Grupo I. A-B:** muestra NQ1, vista superficial de la costra, detalle del talo.**C-E:** muestra NQ11, vista superficial de costra hidratada, detalle del talo con filamentos primigenios, detalle de unilocular con parafisis. **F-G:** muestra NQ17, detalle de costra hidrata, talo vegetativo. **H-I:** muestra PTM_10068, talo vegetativo. **J:** muestra PTM_10039 con pluriloculares. **K-L:** muestra PTM_9795, detalle de costra hidratada y talo vegetativo.

GRUPO II:

Costras de crecimiento irregular, sin márgenes definidos, traslapadas, adheridas completamente al sustrato, cuya coloración en húmedo va del verde olivo al café rojizo, amarillento o anaranjado. Grosor del talo vegetativo de 110-195(155) µm. Filamentos postígenos rectos o curvos, con 18-21 células de largo, surgiendo en ángulo transversal con respecto a los filamentos primigenios, con 6-9(29-43% del talo) células unidas a partir de la base. Largo de los filamentos postígenos de 100-180(146) μm. Células basales cúbicas, de 5-7 μm de largo y 6-7 μm de diámetro, con una relación entre el largo y el diámetro de 0.6-1.1. Las células cercanas al ápice presentan formas diversas (doliiformes, cúbicas, cilíndricas o subesféricas) de 7-12 µm de largo y 6-7 µm de diámetro, con una relación entre ambas medidas de 1-2. Células apicales elipsoidales u obovoides, de 9-13 µm de largo y 6-8 µm de diámetro. Pared celular delgada o gruesa. El diámetro del filamento no es uniforme, aumenta hacia el ápice. Los filamentos primigenios se encuentran en capas evidentes, formadas por 2-3 filas de células cilíndricas a irregulares en forma, de 11-14 µm de largo y de 4-5 µm de diámetro. Pelos hialinos presentes en la mayoría de las muestras, se observaron solos o en grupos, originándose en los filamentos primigenios y distribuidos en todo el talo o de forma irregular en este.

Caracteres reproductivos

Las estructuras reproductivas no se observaron en todas las muestras, por ello no se tomaron en cuenta para el análisis morfológico comparativo con el resto de los especímenes. Sin embargo, a continuación se describen sus características principales.

Se observaron ambos tipos de estructuras reproductivas únicamente en la muestra PTM_9826, sólo pluriloculares en la muestra PTM_10158, mientras que en los especímenes restantes se observaron uniloculares (PTM_10156, PTM_10157, PTM_9823 y PTM_9825).

67

Pluriloculares: insertos intercalarmente en los filamentos postígenos reproductivos, de forma cilíndrica, de 35-55 (45) μ m de largo y de 5-11 (7.5) μ m de diámetro, conformados por 8-14 células de forma cúbica. Una sola célula estéril, de forma obovoide con 8-15 μ m de largo y 3-8 μ m de diámetro.

Uniloculares: surgiendo a nivel de medio peritalo. Insertos terminalmente sobre pedicelos que surgen de los filamentos postígenos, están formados por 1-6 células de 5-10 μ m de diámetro, el cual no es constante, sino que aumenta conforme se acerca al unilocular, de ellos surge una paráfisis que se diferencia morfológicamente del resto de los filamentos postígenos. Uniloculares obovoides o elipsoidales, de 48-130(72) μ m de largo y de 18-42 (22) μ m de diámetro, con una relación entre el largo y el diámetro de 1.6 a 4.3. Paráfisis de forma esbelta, cilíndrica o claviforme, de 75-150 (107) μ m de largo, formada por 8-17 células. Células basales cilíndricas de 6-15 (9) μ m de largo y de 3-5 (4.5) μ m de diámetro. Células apicales doliformes o elipsoidales, de 7-14 (10) μ m de largo y 4-9 (6) μ m de diámetro (fig. 8 y cuadro 9).

Figura 8. Grupo II. A-D: muestra PTM_10156, vista superficial de la costra, detalle del talo con estructuras uniloculares, detalle de unilocular, observación de paráfisis y pedicelo. **E-F**: muestra PTM_10157, vista superficial de costra hidratada, detalle del talo con estructuras uniloculares. **G-I:** muestra PTM_9826, detalle de costra hidrata, talos con estructuras reproductivas uniloculares.

GRUPO III:

Caracteres vegetativos

Costras de crecimiento indefinido o irregular, sin márgenes nítidos, completamente adheridos al sustrato cuya coloración en húmedo va del amarillo a distintas tonalidades de café (café amarillento, café verdoso, café rojizo, café anaranjado). Grosor del talo completo de 66-145(113) um. Filamentos postígenos rectos o curvos, con 9-23 células de largo, surgiendo en ángulo transversal con respecto a los filamentos primigenios, con 3 a 9 (13 al 39 % del talo) células unidas a partir de la base. Largo de los filamentos postígenos 60- 137(114) µm. Células basales con morfología variable (doliiformes, cubicas o cilíndricas) de 4-7 µm de largo y 4-8 µm de diámetro, con una relación entre el largo y el diámetro de 0.8-1.5. Las células cercanas al ápice presentaron forma cúbica, cilíndrica o subesferica, con 7-9 µm de largo y 2-6 µm de diámetro, cuya relación es de 1.3 a 3. Células apicales cilíndricas, elipsoidales, subesféricas u obovoides, de 9-12 µm de largo y 4-7 µm de diámetro con una relación entre el largo y el diámetro de 1.3 a 2.1. Pared celular delgada. El diámetro del filamento se mantiene constante o aumenta hacia el ápice. Filamentos primigenios formados por 2-3 capas basales claramente observables, con células de forma cilíndrica o irregular. Largo de las células de 11-14 µm y de 4-6 µm de diámetro, con una relación de 2.3 a 2.6. Pelos hialinos presentes en la mayoría de las muestras, originándose en los filamentos primigenios formando grupos o siendo solitarios, se les encuentra distribuidos irregularmente en el talo. En este grupo se observa alta variación morfológica entre sus especímenes.

Caracteres reproductivos

Las estructuras reproductivas no se observaron en todas las muestras, por ello no se tomaron en cuenta para el análisis morfológico comparativo con el resto de los especímenes. Sin embargo, a continuación se describen sus características principales.

Se observaron ambos tipos de estructuras reproductivas en las muestras PTM_10025, PTM_9810 y PTM 10118, sólo uniloculares en las muestras PTM_9550, PTM_10116 y PTM_10117.

Pluriloculares: insertos intercalarmente en los filamentos postígenos reproductivos, de forma cilíndrica o irregular, de 30-47 (39) μ m de largo y de 4-9 (6) μ m de diámetro, conformados por 8-10 células de forma subesférica o irregular. Una o dos células estériles, de forma elipsoidal, subesferica u obovoide con 6-13 μ m de largo y 3-8 μ m de diámetro.

Uniloculares: surgiendo a nivel de medio peritalo. Insertos terminalmente sobre pedicelos que surgen de los filamentos postígenos, formados por 1-5 células de 4-10 μ m de diámetro, mismo que fue variable entre especímenes, en algunos fue constante desde la base del pedicelo hasta el unilocular, mientras que en otras muestras, el pedicelo aumentó ligeramente su diámetro hacia el unilocular. De cada pedicelo surge una paráfisis que se diferencia ligeramente del resto de los filamentos postígenos. Uniloculares obovoides, claviformes o elipsoidales de 26-105(56) μ m de largo y de 13-26 (21) μ m de diámetro, con una relación entre el largo y el diámetro de 1.7 a 4.6. Paráfisis de forma cilíndrica, esbelta o claviforme, de 65-170 (81) μ m de largo, formada por 10-18 células. Células basales cilíndricas de 6-13 (9) μ m de largo y de 2-7(4) μ m de diámetro. Células apicales de formas diversas, cúbicas, elipsoidales, subesféricas, obovoides o irregulares, de 6-14 (10) μ m de largo y 6-8 (7) μ m de diámetro (fig. 9 y cuadro 9).

Figura 9.Grupo III. A-B: PTM_10118, talo con estructuras uniloculares.**C-E**: PTM_10119, vista superficial de la costra hidratada, talo con estructuras uniloculares y detalle de los filamentos primigenios.**F**: talo reproductivo de PTM_9550. **G**: PTM_10115. **H-I**: PTM_10116, detalle de uniloculares. **J-K**: muestra PTM_10025, con presencia de pluriloculares y uniloculares. **L**: talo de PTM 9808.

8.1.5 Comparación con el estudio de León-Álvarez (1996)

Se llevó a cabo un análisis de conglomerados incluyendo los datos obtenidos en la tesis doctoral de León-Álvarez (1996) con la intención de relacionar los ejemplares previamente determinados con la morfología "Stragularia" y los de este trabajo.

Se creó una matriz con 31 caracteres y 72 especímenes, incluyendo los de León-Álvarez (1996), Reyes-Gómez (2015) y los caracterizados durante este trabajo.

Figura 10. Dendograma de las muestras de este trabajo y las de León-Álvarez (1996), 72 casos y 31 variables. Formación de dos grupos principales (A y B), mismos que se subdividieron en 6(Grupo I, II, III, IV, VI yVI) y 1 grupo (Grupo V) respectivamente.

En este caso también se forman dos grupos principales. En el Grupo Principal A se incluyeron seis grupos menores denominados Grupo I, Grupo II, Grupo III, Grupo IV, Grupo VI y

Grupo VII. Las muestras de este trabajo se incluyeron en los Grupos I, II y III (de la misma forma que en el análisis llevado a cabo sólo para las muestras de este estudio y las mucilaginosas) junto con algunas muestras de León-Álvarez (1996). Mientras que en los grupos VI y VII sólo se encontraron muestras de León-Álvarez. El Grupo Principal B, estuvo integrado únicamente por un grupo menor, llamado Grupo IV, donde sólo se incluyeron muestras de Reyes-Gómez (2015).

La distribución detallada de las muestras se observa en la figura 10. Las muestras de León-Álvarez se unieron con miembros de los Grupos I y III de este estudio.

8.2 Caracterización molecular

Un total de 29 especímenes fueron revisados y caracterizados morfológicamente, 21 de ellos fueron secuenciados.

Se logró amplificar y secuenciar el gen Cox 1 de 18 especímenes, mientras que se obtuvo la secuencia del gen rbcL completo de ocho muestras. En algunos casos solamente se obtuvo la secuencia de fragmentos parciales del gen rbcL: tres correspondieron al primer fragmento y siete al segundo.

Se elaboraron dos matrices con las secuencias (*rbc*L y *Cox* 1) de organismos de distintos órdenes de algas pardas de acuerdo a los publicado por Lim *et al.* (2007), Poong *et al.* (2014) y Silberfeld *et al.* (2014) para determinar si las secuencias de este estudio se relacionan con uno o varios ordenes de algas pardas, con este objetivo se utilizó como grupo externo a la secuencia de *rbc*L de *Schizocladia ischiensis* (E.C. Henry, Okuda *et* H. Kawai) y a la secuencia de *Tribonema aequale* Pascher para la matriz de *Cox* 1.

Adicionalmente, se elaboraron cuatro matrices más (*rbc*L_1, *rbc*L_2, *rbc*L_3 y *Cox* 1) las cuales solo incluyeron miembros del orden Ralfsiales, para este caso la especie empleada como grupo externo fue *Tilopteris mertensii* (J.E. Smith) Kützing.

8.2.1. Análisis filogenético de *rbc*L para todas las algas pardas (Phaeophyceae)

Con las secuencias del gen *rbc*L se construyó una matriz con 125 secuencias de 1193 pb., todas ellas de algas pardas pertenecientes a 14 órdenes (Discosporangiales, Ishigeales, Dyctiotales, Sphacelariales, Onslowiales, Syringodermatales, Desmarestiales, Laminariales, Ectocarpales, Sporochnales, Scytothamnales, Tilopteridales, Fucales y Ralfsiales), incluyendo como grupo externo a *Schizocladia ischiensis* E.C. Henry, Okuda *et* H. Kawai de acuerdo con Silberfeld *et al.* (2014) y ocho secuencias obtenidas en este estudio. Las muestras se reunieron en tres grupos distintos: **GRUPO I, GRUPO II y GRUPO III.**

a) Valores de distancia genética p "no corregida"

El rango de las distancias genéticas y los valores promedio entre las secuencias de *rbc*L para todas las algas pardas (Phaeophyceae) se presentan en el Cuadro 10.

Cuadro 10. Distancia genética p "no corregida" entre las secuencias de *rbc*L para todas las algas pardas (Phaeophyceae).

Especimen (es)	Especimen (es)	Distancia genética	Distancia
	-	(Rango)	genética(Promedio)
Grupo I: PTM_10065	Grupo I: PTM_9792	3.5 %	3.5 %
<i>Dipluras</i> sp. G (1, 2, 3,4)	<i>Dipluras</i> sp. G (1, 2, 3,4)	0 -0.4 %	0.4 %
<i>Dipluras</i> sp. F (1, 2, 3)	<i>Dipluras</i> sp. F (1, 2, 3)	0-0.2%	0.1 %
<i>Diplura</i> sp. G (1, 2, 3,4)	<i>Dipluras</i> sp. F (1, 2, 3)	15.6-16.0%	15.8 %
Ishige sinicola	I. okumarae	6.4 %	6.0 %
<i>Diplura</i> sp. F (1, 2, 3)	D. simplex	13.4 -15.1 %	14.2%
<i>Diplura</i> sp. G (1, 2, 3,4)	PTM_10065 y PTM_9792	6.4 - 7.8%	6.1 %
Diplura sp.	Ishige	13.5-16.8 %	15.8 %
Orden Ishigeales	<i>Diplura</i> sp. G(1,2,3,4) y F(1,2,3)	15.6 al 17.2 %.	16.1%
Grupo III: PTM_10115	Grupo III: PTM_10116	2.9 %	2.9 %
PTM_10115 y PTM_10116	PTM_10119	6.3 - 8.9%	5.2 %
PTM_10115 y PTM_10116	Algas Pardas Mucilaginosas (Morfo	8.2 -14.2%.	9.7 %
	I): Hpn		
PTM 10119	Hpn	7.6%	7.6%
Algas Pardas Mucilaginosa,	Algas Pardas Mucilaginosa, Morfo	0-2.9%	0.7%
Morfo II	II		
(VR5,VR30,VR44,VR38,VR4	(VR5,VR30,VR44,VR38,VR40,VR		
0,VR41,VR42,VR43,VR6P,V	41,VR42,VR43,VR6P,VR6H,VR20		
R6H,VR20H)	H)		
Algas Pardas mucilaginosas (Morfo I), y Grupo III	Algas Pardas mucilaginosas (Morfo I), y Grupo III	4.9-13.7%	7.6%

Especimen (es)	Especimen (es)	Distancia genética	Distancia
_	-	(Rango)	genética(Promedio)
Algas Pardas Mucilaginosas	Algas Pardas Mucilaginosas (Morfo	8.6-16.9 %	14.2%
(Morfo I)	II)		
Grupo II: PTM_10156	Grupo II: PTM_9825	8.4 %	7.8 %
PTM_10156 y PTM_9825	PTM_9808	13.8 - 20.3 %	14.8 %
PTM_10156, PTM_9825,	PTM_10156, PTM_9825, PTM	11.9-23.6%	12.7%
PTM_9808	9808		
Mesospora sp. F	PTM_9808,PTM_10156 y	9.9 - 18.1%	13.6 %
	PTM_9825		
Mesospora sp. F	Mesospora sp. G	7.4 - 17.7%	9.8 %
Grupo II (PTM_10156,	Familia Mesosporaceae	10.2 - 21.2 %.	14.3 %
PTM_9825, PTM_9808,			
Mesospora sp. F y Mesospora			
sp. G)			

El resumen de los valores de distancia genética de mayor relevancia se encuentra en el Cuadro 15.

b) Topologia del árbol filogenético

Las topologías presentadas en los análisis de Máxima Parsimonia, Máxima Verosimilitud e Inferencia Bayesiana fueron muy parecidas, excepto por la distribución de algunas muestras al interior de los clados principales.

En el dendrograma las muestras de este trabajo se distribuyeron en tres grupos, dos de ellos pertenecieron al orden Ralfsiales, mientras que el otro se unió a *Diplura* sp., mismas que aparecen como hermanas al orden Ishigeales. En la figura 11 se presenta el árbol consenso para los tres análisis.

• **GRUPO I:** Incluyó las muestras PTM_10065 y PTM_9792, que se separan del grupo formado por miembros del orden Ralfsiales y se unió a *Diplura* sp., mismas que se presentan como grupo hermano del orden Ishigeales. El soporte de la rama que une a las muestras de este estudio con *Diplura* sp.fue de 100 de probabilidad posterior (IB) y bootstrap (MV y MP), mismos valores que se presentaron en la rama interna que sostuvó al PTM_10065 y PTM_9792.

• **GRUPO II:** Formado por PTM_9808, PTM_9825 y PTM_10156, se incluyó en el orden Ralfsiales y se unió a las muestras referidas como *Mesospora* sp. G., pero se separó de la familia Mesosporaceae formando un clado independiente, esto soportado por valores de probabilidad posterior de 100, mientras que los valores de bootstrap fueron de 90 y 74 dependiendo el modelo empleado (90 para Máxima Verosimilitud y 74 para Máxima Parsimonia).

• **GRUPO III:** Incluyó las muestras PTM_10115,PTM_10116 y PTM_10119, las cuales se unieron al orden Ralfsiales, dentro del grupo de las Algas Pardas Mucilaginosas, soportado por valores de probabilidad posterior(IB) de 100 al igual que los valores de bootstrap (MV y MP).

c) Valores obtenidos con el análisis de Máxima Parsimonia.

La matriz de *rbc*L_1 consistió de 125 secuencias de 1193 pares de bases (81.4 % del gen) 8 de las cuales fueron generadas en este trabajo. El 39.4 % correspondiente a 470 caracteres fueron constantes, el 15.6 % correspondiente a 186 caracteres fueron no informativos y el 45 % correspondiente a 537 caracteres fueron informativos para parsimonia. El análisis recuperó 5377 árboles más parsimoniosos, con una longitud de 37751235 pasos, índice de consistencia (IC) de 0.2289 e índice de retención (IR) de 0.6839.

Los dendogramas generados con las matrices correspondientes a los fragmentos *rbc*L 2 y *rbc*L 3 presentan una topología idéntica al generado por el gen completo independientemente al método usado para construirla (MP, MV, IB).

Figura 11. Árbol filogenético consenso de MP, MV e IB de para todas las algas pardas, gen rbcL. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

8.2.2 Análisis filogenético de Cox 1 para todas las algas pardas (Phaeophyceae)

3	Con las secuencias del gen Cox 1 se construyó una matriz con 98 secuencias de 604 pb. (18
4	generadas en este trabajo), todas ellas de algas pardas pertenecientes a 14 órdenes
5	(Discosporangiales, Ishigeales, Dyctiotales, Sphacelariales, Onslowiales, Syringodermatales,
6	Desmarestiales, Laminariales, Ectocarpales, Sporochnales, Scytothamnales, Tilopteridales,
7	Fucales y Ralfsiales), incluyendo como grupo externo a Tribonema aequale Pascher de acuerdo
8	con Poong (2014).
9	Las muestras se reunieron en tres grupos distintos: GRUPO I, GRUPO II y GRUPO III.
10 11	a) Valores de distancia genética p "no corregida"
12	El rango de las distancias genéticas y los valores promedio entre las secuencias de Cox 1 para
13	todas las algas pardas (Phaeophyceae) se presentan en el cuadro 11.
14	Cuadro 11. Distancia genética p "no corregida" entre las secuencias de Cox 1 para todas las

15 algas pardas (Phaeophyceae).

Especimen (es)	Especimen (es)	Distancia	Distancia genética
		genética (rango)	(promedio)
Grupo I : PTM_9791, PTM_9792 y	Grupo I: PTM_9791,	0.6 -1.3 %	1.7 %
PTM_10039	PTM_9792 y PTM_10039		
Grupo I: PTM_9791,PTM_9792,	Grupo I: PTM_10068	6.8-7.7	7.1%
PTM9795,PTM_10039 y			
PTM_10075			
Grupo I: PTM_9791, PTM_9792	Grupo I: PTM_10065	0.3-1.1%	0.8 %
,PTM_9795,PTM_10039 y			
PTM_10075			
Grupo I: PTM_10068	Grupo I: PTM_10065	6.9 %	6.9 %
Grupo I: PTM_9791, PTM_9792	Grupo I: PTM_9793	0.9-15.4 %.	10.6%
,PTM_9795, PTM_10068,			
PTM_10039 y PTM_10075			
Grupo I: PTM_10065	Grupo I: PTM_9793	9.3%	9.3%
Dipluras sp. G2 y G3	Dipluras sp. G2 y G3	0 %	0%
Dipluras sp. G2 y G3	Diplura sp. G1	2.9 %	2.6%
Dipluras sp. G1, G2 y G3	PTM_9793	9%	9%

Especimen (es)	Especimen (es)	Distancia genética (rango)	Distancia genética (promedio)
Grupo I: PTM_9791, PTM_9792 ,PTM_9795, PTM_10065, PTM_10068, PTM_10039 y PTM_10075	Dipluras sp. G1, G2 y G3	11.0-19.2 %.	11.4%
Grupo III: PTM_10116	Grupo III: PTM_10118	0%	0%
Grupo III: PTM_10115	Grupo III: PTM_10118	0%	0%
Grupo III: PTM_10117	Grupo III: PTM_10115, PTM_10116,PTM_10118	0.3 %	0.3 %
Grupo III: PTM_10115,PTM_10116, PTM_10117 y PTM_10118	Grupo III: PT_10115,PTM_10116, PTM_10117 y PTM_10118	0.6 -1%.	0.6%
Algas Pardas Mucilaginosas (Morfo I) VR33, VR35 y VR39	Algas Pardas Mucilaginosas (Morfo I) VR33, VR35 y VR39	0 -0.1%.	0%
Algas Pardas Mucilaginosas (Morfo I) VR33, VR35 y VR39	Grupo III: PTM_10025	17.9-21.9%	20.7 %
Grupo III: PTM_9823	Grupo III: PTM_9808	0 %	0%
Algas Pardas Mucilaginosas (Morfo II)	Algas Pardas Mucilaginosas (Morfo II)	0 - 2.9	1.2 %
Grupo III: PTM_9823 y PTM_9808	Algas Pardas Mucilaginosas (Morfo II)	21 a 22.8 %	22%
Grupo III: PTM_9823 y PTM_9808	Algas Pardas Mucilaginosas (Morfo I)	17.6 %	17.6 %
Algas Pardas Mucilaginosas (Morfo I)	Algas Pardas Mucilaginosas (Morfo II)	20 - 23 %.	21.9%
Grupo II: PTM_10095	Grupo II: PTM_9825	0.3 %	03%
Grupo II: PTM_10095 y PTM_9825	Grupo II: PTM_10156	6.4 -6.7 %	6.5%
Grupo II: PTM_10156, PTM_10095 y PTM_9825	Padina durvillae	17-22%.	19.1%

El resumen de las distancias genéticas de mayor relevancia se presenta en el Cuadro 15.

17 18

19

b) Topologia del árbol filogenético

Las topologías presentadas en los análisis de Máxima Parsimonia, Máxima Verosimilitud e

20 Inferencia Bayesiana fueron muy parecidas, excepto por la distribución de algunas muestras al

21 interior de los clados principales.

Las muestras de este trabajo se distribuyeron en tres grupos diferentes, dos de ellos pertenecieron al orden Ralfsiales, mientras que el otro se incluyó con *Diplura* sp., como grupo hermano de Ishigeales. En la figura 12 se presenta el árbol filogenético consenso para los tres análisis. GRUPO I: Incluyó los especímenes PTM_9791, PTM_9792, PTM_9793, PTM_9795,
PTM_10065, PTM_10068, PTM_10039 y PTM_10075, dicho grupo se unió como un subgrupo a *Diplura* sp. presentando valores de probabilidad posterior (IB) de 100 y de 100 y 97 para bootstrap (MV y MP respectivamente). La muestra PTM_9793 se unió directamente a las muestras *Diplura* sp. G1, 2 y 3 con un valor de probabilidad de 100 al igual que el bootstrap.La rama que soportaba el resto de las muestras de este estudió presentó valores de 100 para probabilidad posterior y bootstrap.

33 GRUPO II: Formado por las muestras PTM 10095, PTM 9825 y PTM 10156, dicho ٠ 34 grupo se unió a la secuencia de Padina durvillae soportado por valores de probabilidad 35 posterior de 96 mientras que el análisis de Máxima Verosimilitud no arrojó ningún valor 36 de bootstrap de la misma forma que el análisis de Máxima Parsimonia. La rama que unió a 37 las muestras de este estudio presentó valores de probabilidad posterior y bootstrap de 100. 38 GRUPO III: Incluyó las muestras PTM 10115, PTM 10116, PTM 10117, PTM 39 10118,PTM_9808,PTM_9823 y PTM_10025, las cuales se unieron al orden Ralfsiales, 40 dentro del grupo de las Algas Pardas Mucilaginosas. En cuanto a su distribución las 41 muestras PTM_10115, PTM_10116, PTM_10117 y PTM_10118, se unieron al Morfo I, 42 como grupo hermano de las muestras VR33, VR35 y VR38, soportados por valores de 43 probabilidad posterior y bootstrap de 100, mientras que la muestra PTM_10025 tambien 44 formó parte del mismo Morfo pero se separó de todas las muestras anteriores, presentó 45 valores de 100 para probabilidad posterior, mientras que el análisis de Máxima 46 Verosimilitud y el de Máxima Parsimonia no dieron ningún valor. Finalmente las muestras 47 PTM_9808 y PTM_9823 se unieron como grupo hermano al Morfo II con valores de 100 48 para probabilidad poterior y ningún valor para Máxima Verosimilitud y Máxima
49 Parsimonia.

50

51

c) Valores obtenidos con el análisis de Máxima Parsimonia

La matriz de *Cox* 1 consistió en 99 secuencias de 604 pares de bases (86.3 % del tamaño total del gen), 18 de las cuales fueron generadas en este trabajo. El 37.3 % correspondiente a 225 caracteres fueron constantes, el 13.4 % correspondiente a 81 caracteres fueron no informativos y el 49.3 % correspondiente a 298 caracteres fueron informativos para parsimonia. El análisis de Máxima Parsimonia recuperó 3654 árboles más parsimoniosos, con una longitud de 18923983 pasos, índice de consistencia (IC) de 0.1995 e índice de retención (IR) de 0.6785.

Figura 12. Árbol filogenético consenso de MP, MV e IB de para todas las algas pardas, gen *Cox* 1. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

8.2.3 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen rbcL y Cox 1

Se analizaron tres matrices para el gen *rbc*L correspondientes a las secuencias del gen completo y de fragmentos parciales de miembros del orden Ralfsiales y de los especímenes de este estudio, así como una matriz del gen *Cox* 1 (Cuadro 12).

6 Para ambos genes se incluyó a *Tilopteris mertensii* (J.E. Smith) Kützing como grupo externo.

⁷ **Cuadro 12.** Muestras incluidas por matriz.

Matriz	Número de	Tamaño en pb	Secuencias	Muestras incluidas de este estudio
	secuencias		generadas	
			en este	
			estudio	
Matriz <i>rbc</i> L_1	69 secuencias	1214 pb	8	PTM_9792,PTM_9808,PTM_10156
gen completo			secuencias	PTM_10065,
				PTM_10115,PTM_10116, PTM_10119
				y PTM_9825
Matriz <i>rbc</i> L_2	64 secuencias	792 pb	11	PTM_9792,PTM_9808,PTM_10156
Primer fragmento			secuencias	PTM_10065,
				PTM_10115,PTM_10116, PTM
				_10119 ,PTM_9825,PTM_9791,
				PTM_10068 y PTM_10075
Matriz <i>rbc</i> L_3	80 secuencias	720 pb	14	PTM_10025, PTM_10158,
Segundo			secuencias	PTM_10117, PTM_10095,
fragmento				PTM_10118, PTM_9823 y PTM_9826
Cox1	64 secuencias	604 pb	18	PTM_10065,PTM_9792,
			secuencias	PTM_9791,PTM_9793, PTM_9795,
				PTM_10068,PTM_10039,PTM_10075,
				PTM_10095, PTM_9825, PTM_10156,
				PTM, PTM_9808,
				PTM_10118,M59,PTM_10117,
				PTM_10115, PTM_10025

8

8.2.3.1 Análisis filogenético a nivel de orden (Ralfsiales) empleando la matriz *rbc*L_1 (gen completo)

10 11

12 a) Valores de distancia genética p "no corregida"13

- 14 En cuadro 13 se presentan los rangos de distancia genética así como e valor promedio al interior
- 15 de los clados, entre géneros y entre especies.

16 17 18 19 Cuadro 13. Distancia genética p "no corregida" entre las secuencias de *rbc*L (gen completo) para

Ralfsiales.

Especimen (es)	Especimen(es)	Distancia	Distancia
•		genética	genética
		(Rango)	(Promedio)
Grupo I: PTM_9792 y PTM_10065	Grupo I: PTM_9792 y PTM_10065	2.3 %	2.3%
Familia Ralfsiaceae (Analipus	Familia Ralfsiaceae (Analipus	8.2 al 11%	8.8%
japonicus, Endoplura aurea,	japonicus, Endoplura aurea,		
Heteroralfsia saxicola, Ralfsia	Heteroralfsia saxicola, Ralfsia		
fungiformis, R. verrucosa, Ralfsia	fungiformis, R. verrucosa, Ralfsia		
sp.)	sp.)		
Familia Mesosporaceae (Mesopora	Familia Mesosporaceae (Mesopora	0-11.8%	6.9 %
schmidtii, M. elongata,	schmidtii, M. elongata,		
M.negrosensis, Mesospora sp.)	M.negrosensis, Mesospora sp.)		
Grupo II: PTM_10156, PTM_9808,	Grupo II: PTM_10156, PTM_9808,	7.4-18.1%	13.5 %
PTM_9825, <i>Mesospora</i> sp. F y	PTM_9825, <i>Mesospora</i> sp. F y		
Mesospora sp. G.	Mesospora sp. G.		
Familia Neorafsiaceae (Neoralfsia	Familia Neorafsiaceae (Neoralfsia	4.9-9.5%	5.6 %
expansa, N. hancockii, Ralfsia sp.,	expansa, N. hancockii, Ralfsia sp.,		
Ralfsia spJ, Ralfsia spH, Ralfsia	Ralfsia spJ, Ralfsia spH, Ralfsia		
sp. I)	<i>sp</i> . I)		
Algas Pardas Mucilaginosas, Morfo	Algas Pardas Mucilaginosas, Morfo	0-2.9%	0.8 %
II(VR5, VR30, VR6H, VR20H,	II(VR5, VR30, VR6H, VR20H,		
VR44, VR38, VR40, VR 41, VR42,	VR44, VR38, VR40, VR 41, VR42,		
VR43)	VR43)		
Grupo III : PTM_10115,	Grupo III: PTM_10115,		6%
PTM_10116 y PTM_10119	PTM_10116 y PTM_10119		
Mesospora	Neoralfsia	9.4 a 20.7 %,	11.9%
	Ralfsia	9 a 13.7 %	11.2 %
	Heteroralfsia	11.2 al 12.8 %,	11.8%
	Analipus	8.9 y 11.5 %	10.1 %
	Endoplura	10.4 al 13.2 %	11.6 %
	Algas Pardas Mucilaginosas (Morfo	10.5 y 19.8 %	13.2 %
	Algas Pardas Mucilaginosas (Morfo	10.7 a 13.8%.	11.7%
	Grupo I	153a187%	17.2 %
	Grupo II	11 2-21 2%	14%
	Grupo III	11.7-18.8%	14.6%
Neoralfsia	Ralfsia	87 v 13 6%	12.3 %
reoragsia	Heteroralfsia	10.9 al 12.2 %	11.6%
	Analipus	10.3 a 10.9%	10.8%
	Endoplura	11.8 v 13 %.	11.6%
	Algas Pardas Mucilaginosas (Morfo	7.2 y 20.1%	11.9%
	I)	, , , , , , , , , , , , , , , , , , ,	
	Álgas Pardas Mucilaginosas (Morfo II)	11.9 a 13.7%	12.9%
	Grupo I	15.9-18.3%	17.3 %
	Grupo II	14.9 a 18.3 %	15.2 %
	Grupo III	13.6-20.1%	16.2 %
Ralfsia	Heteroralfsia	8.3 a 13.3 %.	10.1%
~	Analipus	6.9 a 11.5%	7.9 %
	Endoplura	9.2 al 13.8 %	10.5%

	Algas Pardas Mucilaginosas (Morfo	12.8 - 20.2	13.4%
	Algas Pardas Mucilaginosas (Morfo II)	12.9 a 14.8%.	13.7%
	Grupo I	169a182%	17 5%
	Grupo II	11 9-20 7%	15.8%
	Grupo III	13 3 20 2%	16.2%
Hatanonalfaia		9 2 0/	9 20/
Heleforaljsta	Anaupus	0.3 %	0.3% 10.0%
	Algos Dordos Musilacinosos (Morfo	10.9%,	10.9%
	Algas Pardas Muchaginosas (Morio I)	13.2 %	13.2%
	Algas Pardas Mucilaginosas (Morfo II)	12.7 a 13.7 %	12.9%
	Grupo I	17.4 a 17.7 %	17.6%
	Grupo II		15.3%
	Grupo III		16.4%
Analipus	Endoplura	9.2 %	9.2%
Ĩ	Algas Pardas Mucilaginosas (Morfo	12.2	12.2%
	1) Algas Pardas Mucilaginosas (Morfo II)	12.3 a 12.7%	12.4%
	Grupo I	16.3 a 16.6%	16.4%
	Grupo II		146%
	Grupo III		15.3%
Endoplura	Algas Pardas Mucilaginosas (Morfo	14.1	14.1%
	Algas Pardas Mucilaginosas (Morfo II)	13.2 a 14.3 %	13.3%
	Grupo I	17.2%	17.2 %
	Grupo II	14 3-21 7%	16.4%
	Grupo III	14 9-19 9%	16.9%
Algas Pardas Mucilaginosas (Morfo	Algas Pardas Mucilaginosas (Morfo	13%	13%
1)	II) Grupo I	176 17 80/	17704
	Grupo I	1/.0-1/.0%	17.7 %
		14.2-22.2%	10.0%
Algas Pardas Mucilaginosas (Morfo	Grupo II Grupo I	8.2-14.2% 16.3 a 18.7 %	10.4 % 18.2 %
II)	Grupo II	11.9-20.5%	14.9 %
	Grupo III	12.2-18.8%	14.3 %
Mesospora schmidtii	Mesospora schmidtii	0 y 1.3%	0.7%
Mesospora negrosensis	Mesospora negrosensis	0.1 a 3.1%	2.1%
Mesospora elongata	Mesospora elongata	0%	0%
Neoralfsia hancockii	Neoralfsia hancockii	0%	0%
<i>Neoralfsia expansa_</i> Mex	Neoralfsia expansa_Mex	0%	0%
Neoralfsia expansa A, B, X y Y	Neoralfsia expansa A, B, X y Y	1.1 - 3.9%	2.7%
Neoralfsia expansa C y Z	Neoralfsia expansa C y Z	0.4 %	0.4%
Algas Pardas Mucilaginosas (Morfo	Algas Pardas Mucilaginosas (Morfo	-	-
I)	I)		
Algas Pardas Mucilaginosas (Morfo II)	Algas Pardas Mucilaginosas (Morfo II)	0-3%	0.8%
Grupo I:PTM 9792	Grupo I:PTM 10065	2.3 %	2.3%
Grupo II: PTM 10156	Grupo II: PTM 9825	8.4%	8.4%
Grupo II: PTM 10156	Grupo II:PTM 9808	13.8%	13.8%
Grupo II: PTM_9825	Grupo II: PTM_9808	20.3%	20.3%

Grupo III: PTM_10115	Grupo III: PTM_10116	6.3%	6.3%
Grupo III: PTM_10115	Grupo III:PTM_10119	2.9%	2.9%
Grupo III:PTM_10116	Grupo III:PTM_10119	8.9%	8.9%

22

21 b) Topología del árbol filogenético

Las topologías presentadas en los análisis de Máxima Parsimonia, Máxima Verosimilitud e
Inferencia bayesiana fueron muy parecidas. Las ocho secuencias obtenidas para el gen *rbc*L se han
dividido en tres grupos distintos con base a su distribución en los clados. En la figura 13 se presenta
el árbol filogenético consenso.En los apéndices 16, 17 y 18 se presentan los árboles obtenidos con
los análisis de Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia.

- GRUPO I: conforman exclusivamente al Clado I e incluye las muestras PTM_10065 y
 PTM_9792, este Clado se separa del orden Ralfsiales. Los valores de bootstrap (IB) y
 probabilidad posterior fueron de 100 (MV y MP).
- GRUPO II: forman parte del Clado III el cual es cercano a la familia Mesosporaceae pero
 se separa de la misma, incluye a PTM_9808, PTM_9825 y PTM_10156. Los valores de
 soporte fueron de 71 para probabilidad posterior (IB) y de 100 y 63 para bootstrap (MV y
 MP respectivamente).
- GRUPO III: forman parte del Clado V (Mucilaginosas) específicamente al denominado
 Morfo I, incluye los especímenes PTM_10115, PTM_10116 y PTM_10119. Los valores de
 soporte y probabilidad posterior de la rama fueron de 100 para los tres análisis (IB, MV y
 MP).
- El resto de las muestras integraron los Clados II y IV que corresponden a las familias
 Mesosporaceae y Neoralfsiaceae así como los Clados VI donde se encuentran las Ralfsiaceace,
 VII que incluye muestras de *Ralfsia* que se separan de la familia Ralfsiaceae y VIII que incluye
 dos muestras cuya morfología se asoció con *Ralfsia hesperia*.

c) Valores obtenidos con el análisis de Máxima Parsimonia

45	La matriz de <i>rbc</i> L_1 consistió en 69 secuencias de 1214 pares de bases (82.8 % del tamaño
46	total del gen), 8 de las cuales fueron generadas en este trabajo. El 42.9 % correspondiente a 522
47	caracteres fueron constantes, el 16.2 % correspondiente a 196 caracteres fueron no informativos y
48	el 38.4 % correspondiente a 466 caracteres fueron informativos para parsimonia. El análisis de
49	Máxima Parsimonia recuperó 2481 árboles más parsimoniosos, con una longitud de 435244 pasos,
50	índice de consistencia (IC) de 0.3994 e índice de retención (IR) de 0.6006.
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	

Figura 13. Árbol filogenético consenso de MP, MV e IB de para Ralfsiales, *rbc*L_1. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaie de distancia genética para cada rama.

8.2.3.2Análisis filogenético empleando primer fragmento parcial del gen rbcL (rbcL_2)

90 Un total de 64 secuencias fueron analizadas incluyendo a *Tilopteris mertensii* (J.E. Smith)
91 Kützing como grupo externo.

92 93

a) Valores de distancia genética p "no corregida"

Las distancias genéticas para el primer fragmento parcial del gen *rbc*L se presentan en el apéndice 14, las mismas se calcularon para compararalas con las distancias genéticas empleando el gen completo, se presentan diferencias notables entre estas, razón por la cual las distancias genéticas de los fragmentos parciales no se emplearán para la discusión.

98 99

b) Topología del árbol filogenético

Las topologías presentadas en los análisis de Máxima Parsimonia, Máxima Verosimilitud e Inferencia Bayesiana fueron muy parecidas, excepto por la distribución de algunas muestras al interior de los clados principales. En los apéndices 19, 20 y 21se presentan los árboles obtenidos con los análisis de Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia. Las 11 secuencias se han dividido en tres grupos distintos, mismas que se incluyeron en tres clados diferentes:

- GRUPO I: conforman al Clado I, incluye las muestras PTM_10065, PTM_9791,
 PTM_9792, PTM_10068, PTM_10075, mismo que sale del orden Ralfsiales, soportado por valores de probabilidad posterior y de bootstrap de 100 (IB, MV Y MP).
- GRUPO II: forman parte del Clado III el cual es cercano a la familia Mesosporaceae pero se separa de la misma, incluye a PTM_9808, PTM_9825 y PTM_10156. Los valores de soporte de la rama fueron de 80 para probabilidad posterior (IB) y de 100 y 62 para bootstrap (MV y MP respectivamente).

GRUPO III: se añaden al Clado de las mucilaginosas (Clado V) específicamente al denominado Morfo I, incluye los especímenes PTM_10115, PTM_10116 y PTM_10119, soportado por un valor de probabilidad posterior y de bootstrap de 100 (IB, MV y MP).
 Además el árbol está formado por los Clados II y IV que corresponden a las familias Mesosporaceae y Neoralfsiaceae, así como los Clados VI donde se encuentran las Ralfsiaceace, VII que incluye muestras de *Ralfsia* se separan de la familia Ralfsiaceae y VIII que incluye dos muestras cuya morfología se asoció con *Ralfsia hesperia*.

120 121

c) Valores obtenidos con el Ánalisis de Máxima Parsimonia

La matriz de *rbc*L_2 consistió en 64 secuencias de 792 pares de bases (54 % del tamaño total del gen), 11 de las cuales fueron generadas en este trabajo. El 38.8 % correspondiente a 307 caracteres fueron constantes, el 17.3 % correspondiente a 137 caracteres fueron no informativos y el 43.9 % correspondiente a 348 caracteres fueron informativos para parsimonia. El análisis de Máxima Parsimonia recuperó 1698 árboles más parsimoniosos, con una longitud de 2712233 pasos, índice de consistencia (IC) de 0.4600 e índice de retención (IR) de 0.7579.

- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136

Figura 14. Árbol filogenético consenso de MP, MV e IB de para Ralfsiales, *rbcL_2*. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

157 8.2.3.3 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen rbcL 3 (segundo fragmento parcial) 158 159 160 Un total de 80 secuencias fueron analizadas incluyendo a *Tilopteris mertensii* (J.E. Smith) 161 Kützing como grupo externo. 162 a) Valores de distancia genética p "no corregida" 163 164 Las distancias genéticas para el segundo fragmento parcial del gen rbcL se presentan en el 165 apéndice 15 las mismas se calcularon para compararalas con las distancias genéticas empleando el 166 gel completo, se presentan diferencias notables entre estas, razón por la cual las distancias genéticas 167 de los fragmentos parciales no se emplearán para la discusión. 168 b) Topología del árbol filogenético 169 170 Las topologías presentadas en los análisis de Máxima Parsimonia, Máxima Verosimilitud 171 Inferencia Bayesiana fueron muy parecidas, excepto por la distribución de algunas muestras al 172 interior de los clados principales. En los apéndices 22, 23 y 24 se presentan los árboles obtenidos 173 con los análisis de Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia. 174 La distribución de los especímenes producto de este estudio en los árboles fue la misma 175 para los tres análisis. Las 14 secuencias obtenidas para el gen rbcL (segundo fragmento F3-R3) se 176 han dividido en cuatro grupos distintos, mismas que se incluyeron en cuatro clados diferentes: 177 **GRUPO I:** conforman al Clado I, incluye las muestras PTM 10065 y PTM 9792. Esta ٠ 178 soportado por valores de probabilidad posterior (IB) y bootstrap (MV y MP) de 100. 179 GRUPO II: forman parte del Clado III incluye a PTM_9808, PTM_9825, PTM_10156, 180 PTM_9826, PTM_10158, PTM_10025, PTM_9808. Los valores de soporte de la rama 181 fueron de 62 para probabilidad posterior y de 55 y 60 para bootstrap (MP y MV 182 respectivamente).

GRUPO III: se añaden al Clado de las mucilaginosas (Clado V) específicamente al denominado Morfo I, incluye los especímenes PTM_10115, PTM_10117, PTM_10118 y
 PTM_10119. Soportado por valores de 100 para bootstrap y probabilidad posterior.

Además el árbol esta formado por los Clados II y IV que corresponden a las familias Mesosporaceae y Neoralfsiaceae así como los Clados VI donde se encuentran las Ralfsiaceace, VII que incluye muestras de *Ralfsia* que se separan de la familia Ralfsiaceae y VIII que incluye dos muestras cuya morfología se asoció con *Ralfsia hesperia*.

190 191

c) Valores obtenidos con el análisis de Máxima Parsimonia

La matriz de *rbc*L_3 consistió en 80 secuencias de 720 pares de bases (49.1 % del tamaño total del gen), 11 de las cuales fueron generadas en este trabajo. El 40.9% correspondiente a 295 caracteres fueron constantes, el 14.7 % correspondiente a 106 caracteres fueron no informativos y el 44.3 % correspondiente a 319 caracteres fueron informativos para parsimonia. El análisis de Máxima Parsimonia recuperó 1630 árboles más parsimoniosos, con una longitud de 11300008 pasos, índice de consistencia (IC) de 0.4136 e índice de retención (IR) de 0.5864.

198

199

200

- 201
- 202
- 203
- 204

205

Figura 15. Árbol filogenético consenso de MP, MV e IB de para todas las algas pardas, *rbc*L_3. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

227 8.2.3.4 Análisis filogenético a nivel de orden (Ralfsiales) empleando el gen Cox 1

228 229

En total 64 secuencias fueron analizadas incluyendo como grupo externo a Tilopteris

230 mertensii (J.E. Smith) Kützing.

231 232

a) Valores de distancia genética p "no corregida"

En el cuadro 14 se presentan los rangos de distancia genética así como e valor promedio al

234 interior de los clados, entre géneros y entre especies para el gen Cox 1 en el análisis del orden

235 Ralfsiales.

236	Cuadro 14. Distancia	genética p "	no corregida"	entre las secuencias	de Cox 1	para Ralfsiales.
-----	----------------------	--------------	---------------	----------------------	----------	------------------

Especimen (es)	Especimen (es)	Distancia genética	Distancia genética
		rango	promedio
Grupo I: PTM_9791,	Grupo I: PTM_9791,	0.03 al 14.5%.	4.7 %
PTM_9792, PTM_9793,	PTM_9792, PTM_9793,		
PTM_9795, PTM_10065,	PTM_9795, PTM_10065,		
PTM_10068, PTM_10039,	PTM_10068, PTM_10039,		
PTM_10075	PTM_10075		
Familia Ralfsiaceae (Ralfsia	Familia Ralfsiaceae (Ralfsia	0-21.0%	14.6 %
fungiformis, R. verrucosa,	fungiformis, R. verrucosa,		
Analipus japonicus)	Analipus japonicus)		
Grupo II:	Grupo II:		6.8 %
PTM_10095, PTM_9825 Y	PTM_10095, PTM_9825 Y		
PTM_10156	PTM_10156		
Familia Mesosporaceae	Familia Mesosporaceae	0-20.8%	14.9 %
(Mesopora schmidtii, M.	(Mesopora schmidtii, M.		
elongata, M.negrosensis y	elongata, M.negrosensis y		
Mesospora sp.)	Mesospora sp.)		
Familia Neorafsiaceae	Familia Neorafsiaceae	4.7-9.6 %	5.8%
Morfo I Mucilaginosas	Morfo I Mucilaginosas	0%	0%
Morfo II de las	Morfo II de las	0-2.5	1.1%
Mucilaginosas	Mucilaginosas		
Grupo III: PTM_10025,	Grupo III: PTM_10025,	0-21.0%	12.1%
PTM_10115,	PTM_10115,		
PTM_10116,PTM_10117,	PTM_10116,PTM_10117,		
PTM_10118, PTM_9823,	PTM_ 10118, PTM_9823,		
PTM_9808	PTM_9808		
Mesospora	Ralfsia	19.5 - 23. <u>8</u> %	22.1%
	Neoralfsia	20 -25.2%	21.4 %
	Analipus	22 - 25%	23.3%
	Algas Pardas	19.2-23%	22.2%
	Mucilaginosas(Morfo I)		
	Algas Pardas	19.2-22.5%	21.7%
	Mucilaginosas(Morfo II)		
	Grupo I	18.9-26.8%	22.4 %
	Grupo II	18.4-28.2%	21.3%
	Grupo III	19.2-23.8%	22.7%

Ralfsia	Neoralfsia	14.2-22.7%	21.3 %
-	Analipus	18-21.0%	19.6%
	Algas Pardas	21.9%	21.9 %
	Mucilaginosas(Morfo I)		
	Algas Pardas	20.8-21.6%	21.3%
	Mucilaginosas(Morfo II)		
	Grupo I	21.1-27.4%	23.0%
	Grupo II	16.7-26.8%	21.6%
	Grupo III	21.9-24.9%	22.7 %
Neoralfsia	Ralfsia	14.2 y 22.7%	21.3 %
Ū.	Analipus	21-23%	22.6%
	Algas Pardas	21.9-24.9%	22.7%
	Mucilaginosas(Morfo I)		
	Algas Pardas	20.3-23.5 %	21.0%
	Mucilaginosas(Morfo II)		
	Grupo I	21.1-27.9%	23.2%
	Grupo II	21.9-29.3 %	24.4 %
	Grupo III	20.5-25.5%	22.6%
Analipus	Algas Pardas	24 %	24 %
-	Mucilaginosas(Morfo I)		
	Algas Pardas	21%	21 %
	Mucilaginosas(Morfo II)		
	Grupo I	21-26%	22.4%
	Grupo II	20-28%	22.8%
	Grupo III	23-24%	23.4%
Algas Pardas	Algas Pardas	21.4%	21.4 %
Mucilaginosas(Morfo I)	Mucilaginosas(Morfo II)		
-	Grupo I	23-27.9%	23.6
	Grupo II	21.6-27.9%	23.8
	Grupo III	0-17 %	7.6 %
Algas Pardas	Grupo I	19.5-24.9%	20.9%
Mucilaginosas(Morfo II)	_		
_ . , , ,	Grupo II	21.9-29.3	23.3%
	Grupo III	18.9-21.9	21.6%

b) Topología del árbol filogenético

Las topologías presentadas en los análisis de Inferencia Bayesiana, Máxima Verosimilitud y de Máxima Parsimonia fueron muy parecidas, excepto por la distribución de algunas muestras al interior de los clados principales. En los apéndices 25, 26 y 27 se presentan los árboles obtenidos con los análisis de Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia.Las 18 secuencias obtenidas para el gen *Cox* 1 se han dividido en tres grupos distintos, mismas que se incluyeron en tres clados diferentes:

- GRUPO I: conforman exclusivamente al Clado I, donde se incluyen las muestras
 PTM_10065, PTM_9792, PTM_9791, PTM_10039, PTM_9795, PTM_10075,
 PTM_10068 y PTM_9793, soportado por un valor de bootstrap de 100.
- GRUPO II: forman parte del Clado VI que conforman miembros de la familia Ralfsiaceae,
 incluye a PTM_10095, PTM_9825 y PTM_10156. Por otro lado, la muestra PTM_9808 y
 PTM_9823 se incluyen con las mucilaginosas (Clado IV) presentaron valores de
 probabilidad posterior (IB) de 68 y con un valor de bootstrap inferior a 50 (MV). En el
 análisis de Máxima Parsimonia las muestras que se unieron fueron PTM_10095,
 PTM_10156 Y PTM_9825 y se incluyeron en el Clado V con un valor de bootstrap de 100.
 GRUPO III: pertenecen al Clado de las mucilaginosas (Clado IV) específicamente al
- denominado Morfo I, incluye los especímenes PTM_10115, PTM_10117, PTM_10116,
 PTM_10118, PTM_10025, con un valor de probabilidad posterior de 100 y de 95 para
 bootstrap (MV). En el análisis de Máxima Parsimonia se unieron a este grupo las muestras
 PTM_9808 y PTM_9823, en este el valor de bootstrap fue de 63.
- 259 Además en el árbol filogenético se incluyen las familias Mesosporaceae,
 260 Neoralfsiaceae y Ralfsiaceae.
- 261 262

c) Valores obtenidos por el análisis de Máxima Parsimonia

La matriz de *Cox* 1 consistió en 64 secuencias de 604 pares de bases, 18 de las cuales fueron generadas en este trabajo. El 43.7% correspondiente a 264 caracteres fueron constantes, el 10.7 % correspondiente a 65 caracteres fueron no informativos y el 45.5 % correspondiente a 275 caracteres fueron informativos para parsimonia. El análisis de Máxima Parsimonia recuperó 1747 árboles más parsimoniosos, con una longitud de 4325714 pasos, índice de consistencia (IC) de 0.3618 e índice de retención (IR) de 0.6382.

Figura 16. Árbol filogenético consenso de MP, MV e IB de para todas las algas pardas, *Cox* 1. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

8.2.4 Análisis filogenético con los genes concatenados (rbcL y Cox 1)

Se analizaron 33 secuencias de 1818 pb., siete de las cuales fueron generadas en éste trabajo.
Se incluyó a *Tilopteris mertensii* como grupo externo.

Las topologías de estos árboles son muy parecidas para los tres análisis Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia, sin embargo difieren notoriamente de las topologías arrojadas para los análisis por separado del gen *Cox*1 y del gen *rbc*L. En los apéndices 28, 29 y 30 se presentan los árboles obtenidos con los análisis de Inferencia Bayesiana, Máxima Verosimilitud y Máxima Parsimonia.

299 300

a) Topología del árbol filogenético

301 Los especímenes estudiados se incluyeron en los Clados I, IV y V.

- GRUPO I: el Clado I salió del orden Ralfsiales y estuvo soportado por valores de
 probabilidad posterior (IB) y de bootstrap de 100 (MV y MP) e incluyeron las muestras
 PTM_10065 y PTM_9792.
- GRUPO II: las muestras PTM_9808, PTM_10156 Y PTM_9825 se incluyeron en el Clado
 IV cercano a las Mucilaginosas (Clado V) con un valor de probabilidad posterior de 100 y
 un valor de bootstrap de 100 y 72(MV y MP).
- GRUPO III: las muestras del Grupo III, PTM_10115 y PTM_10116, se ubicaron en el clado V correspondiente a las algas pardas mucilaginosas, con un valor de bootstrap de 100.
- En el árbol se pueden diferenciar también los Clados correspondientes a las familias
 Mesosporaceae (Clado II), Neoralfsiaceae (Clado III), así como Ralfsiaceae (Clado VI).
- 312
- 313
- 314

b) Valores obtenidos por en análisis de Máxima Parsimonia

317	La matriz de Genes Concatenados consistió en 33 secuencias de 1818 pares de bases, 7 de
318	las cuales fueron generadas en este trabajo. El 49.6 % correspondiente a 901 caracteres fueron
319	constantes, el 14.1 % correspondiente a 256 caracteres fueron no informativos y el 36.4 %
320	correspondiente a 661 caracteres fueron informativos para parsimonia. El análisis de Máxima
321	Parsimonia recuperó 2709 árboles más parsimoniosos, con una longitud de 15055663 pasos, índice
322	de consistencia (IC) de 0.5131 e índice de retención (IR) de 0.4869.
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	

Figura 17. Árbol filogenético consenso de MP, MV e IB de para todas las algas pardas, Genes concatenados. En las ramas terminales se indica el número de acceso de cada secuencia así como la especie a la cual fue asignada. Sobre cada rama se indican los valores de bootstrap para MP (izquierda), MV (medio) y probabilidad posterior IB (derecha). Los números en color azul corresponden al porcentaje de distancia genética para cada rama.

Especimen (es)	Especimen (es)	Tipo de distancia	Gen <i>rbc</i> L %	Gen <i>Cox</i> 1 %
	GRUPO I			
Grupo I	Grupo I	Intraespecífica	2.3 %	
PTM_10065 y PTM_9792	PTM_10065 y PTM_9792			
Grupo I	Grupo I	Intraespecífica	-	0.3%
PTM_10039,PTM_9792,	PTM_10039,PTM_9792,PTM			
PTM_9791,	_9791			
PTM_,PTM_10075, PTM_10065	PTM_9795,PTM_10075,PTM			
	_10065			
PTM_10068	PTM_10039,PTM_9792,PTM	Interespecífica	-	6.3-7.4
	_9791			%
	PTM_9795,PTM_10075,PTM			
	_10065			
PTM_9793	PTM_10039,PTM_9792,PTM	Interespecífica	-	9.1-10.3
	_9791			%
	PTM_9795,PTM_10075,PTM			
	_10065,			
	PTM_10068			
<i>Dipluras</i> sp. G(1,2,3,4)	<i>Dipluras</i> sp. G(1,2,3,4)	Intraespecífica	0-0.4	2.9 %
			%	
Dipluras sp. $G(1,2,3,4)$	Grupo I	Intergenérica	6.4-	-
	(PTM_10065 y PTM_9792)	T	7.8 %	11.0
Dipluras sp. $G(1,2,3,4)$	Grupo I	Intergenérica	-	11.9-
	(PIM_10039,PIM_9/92,PI M_0701			19.2%
	M_9791			
	65.PTM 10068)			
	,			
<i>Dipluras sp.</i> G(1,2,3,4)	PTM_9793	Interespecífica	-	9%
	GRUPO II			
PTM_9825	PTM_10156	Interespecífica	8.4 %	
PTM_9825	PTM_10095	Intraespecífica	-	0.3%
PTM_10156	PTM_10095	Interespecífica	-	6.4%
PTM_9808	PTM_10156 y PTM_9825	Intergenérica	13.8-	-
			20.3	
		T	%	
Grupo II	Mesospora sp. G	Intergenérica	7.4-	-
			17.7	
			%	

Cuadro 15. Resumen de las divergencias nucleotídicas para el gen *rbc*L y *Cox* 1

	Mesospora sp. F	Intergenérica	9.9-	-		
			18.1			
			%			
Grupo II	Familia Mesosporaceae	Entre familias	10.2-	-		
			21.2			
			%			
Grupo II	Padina durvillae	Entre familias	-	17-22		
				%		
	GRUPO III					
Grupo III PTM_10115 y PTM_10116	Grupo III PTM_10115 y	Intraespecifica	2.9	-		
	PTM_10116					
PTM_10119	PTM_10115 y PTM_10116	Interespecifica	6.3-	-		
			8.9 %			
Grupo III (PTM_10115,	Grupo III (PTM_10115,	Intraespecifica	-	0-1.2 %		
PTM_10116,PTM_10117,	PTM_10116,PTM_10117,					
PTM_10118)	PTM_10118)					
Grupo III (PTM_10115,	Morfo I (VR33,VR35,VR39)	Intraespecífica	-	0-1.1 %		
PTM_10116,PTM_10117 y						
PTM_10118)						
Grupo III	Hpn	Intergenérica	8.2-	-		
(PTM_10115,PTM_10115,PTM_			14.2			
10119)			%			

363
9. DISCUSIÓN
364

365 9.1 Caracterización morfológica

366 367

368

9.1.1 Datos de campo y morfología

369 Todos los especímenes analizados se caracterizaron por ser costras irregulares sin márgenes 370 definidos, sin líneas de crecimiento, con una superficie suave o lisa, costras totalmente adheridas 371 al sustrato, que no presentan rizoides, y que en un corte longitudinal-radial los filamentos se 372 disponen de forma unilateral, con filamentos postígenos que se desarrollan transversalmente 373 respecto a los filamentos primigenios, los cuales se encuentran en capas nítidas de 1 a 3 filas de 374 células, además de la presencia de estructuras reproductivas uniloculares insertas terminalmente 375 sobre pedicelos, con presencia de paráfisis y con estructuras pluriloculares insertas intercalarmente 376 y con una a dos células estériles, todas ellas características descritas para la morfología tipo

377 "Stragularia" de acuerdo con las descripciones de distintos autores (Stromfelt, 1888; Batters, 1888;
378 Setchell y Gardner, 1925; Lund 1967; Hollenberg, 1969; Abbot y Hollenberg, 1976; Tanaka y
379 Chihara, 1981; León-Álvarez, 1996; López, 1997).

La coloración es una característica importante en campo, en este estudio las costras presentaron una amplia gama de coloraciones, que fueron de los tonos verdes amarillentos, a los verdes oscuros, cafés amarillentos, rojizos, cafés oscuros hasta el tono negro, sin embargo su determinación depende de la percepción de quien recolecta y describe, ya que no se cuenta con un referente que sirva como base (como una paleta de colores), por ello dicha característica no fue tomada en cuenta para los análisis morfológicos.

386 Las muestras que integraron al Grupo I se presentaron únicamente en puntas rocosas 387 expuestas y playas de cantos rodados, mientras que el Grupo II se encontró en plataformas rocosas, 388 playas de cantos rodados y puntas rocosas expuestas. Finalmente, los miembros del Grupo III se 389 encontraron en puntas rocosas expuestas y plataformas rocosas. En el estudio llevado a cabo por 390 López (1997), señala la presencia de la morfología "Stragularia" principalmente en riscos y con 391 menor frecuencia en canales, plataformas rocosas, plavas de cantos rodados, acantilados y 392 plataformas. Mientras que León-Álvarez (1996) encontró especímenes con dicha morfología en 393 riscos, playas someras rocoso arenosas, plataformas rocosas y playas de cantos rodados. Como 394 señalan León-Álvarez (1996) y López (1997) las especies reconocidas como "Stragularia" se 395 distribuyen en un amplio rango de condiciones ambientales, incluso se les encuentra en ambientes 396 sometidos a condiciones hostiles tales como fuerte oleaje, insolación y consecuentemente una 397 desecación prolongada.

398

9.1.2 Análisis de conglomerados y de componentes principales

402 Los análisis de conglomerados y de componentes principales, permitieron distinguir cinco
403 grupos de morfologías, de los cuales tres incluyeron únicamente especímenes de este estudio, los
404 dos grupos restantes incluyeron especímenes de Algas Pardas Mucilaginosas.

El análisis de Componentes Principales permitió conocer los caracteres que tuvieron mayor
influencia en la segregación de los grupos, dando pie al desarrollo de las descripciones
morfológicas detalladas que se llevaron a cabo para cada Grupo.

408 409

9.1.3 Comparación entre los Grupos I, II, III, IV y V

410 Con base en el análisis de conglomerados UPGMA, las muestras de este estudio se 411 organizaron en tres grupos morfológicos. Las diferencias morfológicas se basan en distintos 412 caracteres pero principalmente en el grosor del talo vegetativo, el número de células que 413 conforman los filamentos postígenos y el número de células unidas en los filamentos 414 postígenos, coincidentemente con lo reportado por Reyes-Gómez (2015) como caracteres 415 fundamentales para diferenciar a las Algas Pardas Mucilaginosas del resto de las Ralfsiales. Con 416 base en sus diferencias morfológicas los grupos con especímenes de este estudio se denominaron 417 Grupo I, Grupo II y Grupo III.

El Grupo I incluyó muestras cuyo grosor del talo fue notablemente mayor respecto a los Grupos II y III. Los filamentos del Grupo I se constituyeron con mayor número de células que los Grupos II y III y respecto al número de células unidas, en el Grupo I se encontraron especímenes con todas sus células unidas hasta los que sólo se unieron en la base, mientras que en los Grupos II y III los filamentos postígenos se unieron en unas cuantas células basales. En los tres grupos las formas de las células mostraron alta variabilidad en forma y tamaño. Las estructuras reproductivas de los tres Grupos coincidieron en gran número de características, como su inserción, forma, y 425 estructuras que las acompañaban o conformaban (ej. forma, tamaño y número de células estériles
426 del plurilocular, presencia de paráfisis y pedicelo), las diferencias más importantes fueron el
427 tamaño de las estructuras reproductivas que fueron mayores en los Grupos II y III. A pesar de que
428 los tres grupos presentan similitud morfológica, el mayor parecido lo presentan los especímenes
429 de los Grupos II y III.

Los Grupos de este estudio (I, II y III) se distinguieron de los Grupos IV y V (descritos por Reyes-Gómez) principalmente por dos características, el grosor del talo que fue de 2 hasta 8 veces mayor en algunos especímenes de los Grupos IV y V, y el número de células que constituyeron los filamentos postígenos en estos grupos, mismo que fue de casi el doble comparados con los miembros de los Grupos I, II y III.

435 436

9.1.4 Comparación con las especies de *Stragularia* previamente descritas

Las descripciones morfológicas de lo tres grupos se han comparado con las descripciones originales de las especies con morfología "Stragularia" (Stromfelt, 1888; Batters, 1888; Setchell y Gardner, 1925; Lund 1967; Hollenberg, 1969; Abbot y Hollenberg, 1976; Tanaka y Chihara, 1981) para saber si existen concordancias entre estas especies y alguno de los grupos morfológicos del presente estudio (Ápendice 14). Todas las descripciones coinciden en que se trata de costras delgadas, firmemente adheridas al sustrato, de márgenes indefinidos o difusos y forma irregular.

El Grupo I concuerda con el grosor del talo de tres especies, *Ralfsia californica* (170200μm), *R. confusa* (150-250μm) y *R. endopluroides* (150-230μm). El Grupo II coincide para este
mismo carácter con *Stragularia clavata* (150μm), *R.californica*, *S. lucida* (40-120μm), *R.confusa*y *R.endopluroides*, prácticamente con todas las especies y esto debido a que el rango de grosor de
dicho grupo es intermedio con todos los demás. Finalmente el Grupo III sólo coincide con *S.lucida*.
Las descripciones originales coinciden en que los filamentos son erectos, excepto en *Ralfsia endopluroides*, donde se menciona que los filamentos pueden llegar a curvarse hacia el ápice de la
misma forma como sucede con los Grupos II y III de este estudio. Respecto al número de células
que forman los filamentos postígenos el Grupo I se relaciona con *Stragularia lucida y R.confusa*,
el Grupo II coincide con *S.lucida*, mientras que el Grupo III se relaciona con *R. californica*, *S.lucida*y *R. confusa*.

En los tres grupos de este trabajo se pueden encontrar hasta tres filas de células del hipotalo mientras que en las descripciones de *Ralfsia californica*, *R.confusa* y *R.endopluroides* se señala que el hipotalo cuenta únicamente con 1-2 filas de células.

457 Los plurangios sólo fueron descritos para Ralfsia endopluroides y R. confusa, los de la 458 primera especie no coinciden con ninguno de los Grupos de este estudio, mientras que los de R. 459 *confusa* se asemejan en ser uniseriados y con una sóla célula esteril terminal con los tres Grupos y 460 en cuanto a la longitud y diámetro del plurangio presentan mayor similitud con los Grupos II y III. 461 En cuanto a los unangios los del Grupo I se asemejan en tamaño a los de Stragularia 462 clavata, S. spongiocarpa y Ralfsia endopluroides, los del Grupo II coinciden con los de todas las 463 especies descritas del mismo modo que los del Grupo III. En relación a la paráfisis, las del Grupo 464 I se asemejan a las descritos para S.clavata y R.endopluroides, mientras que las de los Grupos II y 465 III se asemejan a todas las especies descritas con la morfología "Stragularia" para este carácter.

Gran parte de los caracteres son compartidos entre varias especies y por tal razón es difícil
adjudicar una sola especie a un grupo. Además de la ausencia de caracteres descritos para varias
especies, lo que dificulta en gran medidad la comparación.

469

470

471 472

9.1.5 Comparación con los estudios de León-Álvarez (1996) y López (1997)

473 Con la finalidad de caracterizar y comparar las costras con morfología tipo "Stragularia" de
474 este estudio y las de León-Álvarez (1996), se realizó el análisis morfológico UPGMA con las todos
475 los especímenes distribuidos a través del PTM. Se determinó que los ejemplares registrados como
476 STR58, STRCON53, STR117 y STR115 se agruparon con los 13 especímenes del Grupo
477 morfológico I de este estudio. Mientras que las muestras STRATEN51 y STRACON111 se unieron
478 con el Grupo morfológico III.

León-Álvarez (1996) al trabajar con las costras con morfología tipo "Stragularia", distinguió principalmente tres subgrupos por sus características y problemática: uno con muestras consideradas propiamente "Stragularia", otras que se encontraban en estado vegetativo y por lo mismo afines a otros géneros, y un tercer grupo en el que las muestras podían relacionarse con géneros como *Diplura, Hapalospongidion y Pseudolithoderma*.

Las seis muestras de León-Álvarez que se unieron con los grupos de este estudio fueron consideradas por él dentro del grupo de las "Stragularia". Particularmente las muestras STRATEN51, STRACON53, STR115 y STR117 fueron relacionadas con *Ralfsia confusa*.

487 Mientras que López (1997) reconoció dos formas de manifestación de "Stragularia" 488 producto de la influencia del ambiente, basándose principalmente en la coloración de la costra, las 489 denominó formas de manifestación I y II, la primera se caracterizó por ser una costra de color café 490 oscuro al estar hidratada y de color café al estar seca, mientras que la segunda presentaba una 491 coloración verdosa al hidratarse y café verdosa al estar seca, si se toma en cuenta está característica 492 se pueden relacionar dichas formas de manifestación con los Grupos II y III y I respectivamente. 493 Dicha autora señala que la variación presentada por "Stragularia" es producto de distintas formas 494 de expresión influenciadas por las condiciones ambientales que actúan sobre los organismos, sin 495 considerar la posibilidad de que "Stragularia" pudiera incluir a disitntas especies, tal como se
496 demuestra en el presente estudio.

497 El número de cloroplastos, su forma, disposición y la presencia de pirenoides a pesar de 498 representar caracteres importantes en la identificación de las algas pardas (Kawai, 1991; Silberfeld 499 et al., 2011 Poong ,2014) no se tomaron en cuenta para el análisis morfológico. En la mayoría de 500 las muestras el cloroplasto no fue claramente discernible, en varios casos se observó más de uno 501 pero no fue posible establecer si se trataba de esto o de cloroplastos fragmentados producto del 502 proceso de conservación, o en otros casos la presencia de fisodes imposibilitó la observación de 503 dichas estructuras. Dicha problemática ha sido señalada en otros estudios como el de León-Álvarez (1996), López-Rámirez (1997) y Reyes-Gómez (2015). De nuevo surge la necesidad de 504 505 complementar los estudios morfológicos con el uso de técnicas de microscopia electrónica de 506 transmisión que puedan dar a detalle información sobre dicha estructura.

507 **9.**2

9.2 Caracterización molecular

508 9.2.1 Distancia genética

Los valores de distancia obtenidos con las matrices *rbc*L_1 y *Cox* 1 fueron comparables con los valores registrados por otros autores en estudios realizados para las Algas Pardas y específicamente para el Orden Ralfsiales (Cho *et al.*, 2004; León-Álvarez *et al*, 2014a; León-Álvarez *et al*, 2014b; Poong *et al*, 2013; Poong *et al*, 2014; Reyes-Gómez, 2015). Los valores de las matrices de distancia con los fragmentos parciales de *rbc*L fueron ligeramente diferentes, no se emplearon para la comparación con otros estudios dado que estos emplean al gen completo para el cálculo de las distancias.

516 Las matrices del gen *rbc*L y *Cox* 1 fueron analizadas por tres métodos distintos (MP, MV,
517 IB) a fin de comparar las topologías presentadas en cada uno de ellos. Los análisis de *rbc*L, tanto

con el gen completo como con los fragmentos parciales presentaron topologías idénticas, sin
embargo los análisis realizados con el gen *Cox* 1, presentaron discrepancias respecto al gen *rbc*L,
en lo que respecta a los Grupos II y III.

521

1 9.2.1.1 Distancia genética con el gen *rbc*L

522 Para el gen *rbc*L el valor de distancia genética entre las muestras de *Diplura* sp. G y las 523 muestras del Grupo I fueron de 6.1 %, estos se asemejan a los valores reportados por Poong (2013) 524 para la divergencia interespecífica entre Mesospora elongata y Mesospora schmidtii (7.74 y 8.66 525 %), asi como los valores reportados por Poong (2014) para Mesospora elongata y Mesospora 526 negrosensis (6.24-7.83 %) y los reportados por Cho y Boo (2004) para Ishige okamurae e I. sinicola 527 que osciló entre 6.77 y 7.10 %. La distancia genética entre las muestras del Grupo I, PTM 10065 528 y PTM_9792 fue de 2.3 %, valor similar al reportado para la divergencia intraespecífica en 529 Neoralfsia expansa (1.2-2.9%), en Mesospora schmidtii que fue de 3.89% y en M. negrosensis 530 (3.2%) de acuerdo con Poong (2013) y Reyes-Gómez (2015).

Entre las muestras del Grupo II y la familia Mesosporaceace la distancia genética fue del 14.3% valor comparable con los presentados por Cho y Boo (2004) para el género *Ishige* (Ishigeales) y *Dyctiosiphon foeniculaceus* (Ectocarpales) que fue de 16.6% y el de *Ishige* con *Pylaiella littoralis* (Ectocarpales) que fue de 14.4%, dichos valores también son comparables con la distancia presentada entre Mesosporaceae y Neoralfsiaceae que fue de 11.9 % y entre Neoralfsiaceae y Ralfsiaceae que fue de 12.3 %(Reyes-Gómez, 2015).

Por su parte, las distancias presentadas entre el Grupo II y *Mesospora* sp.G y *Mesospora*sp. F (Lim *et al.*, 2007) con las que se une en los análisis filogenéticos fue de 13.6 %, dichas
divergencias son mayores a las presentadas entre *Mesospora* sp. 3 del estudio de Poong (2014) y *Mesospora* sp. G cuyos valores fueron de 8.7 %, cabe mencionar que las secuencias de *Mesospora*

111

sp. 3 aun no han sido colocadas en la base de datos de Gen Bank y por tanto no pudieron emplearse
en el presente estudio. Finalmente la distancia entre PTM_10156 y PTM_9825 fue de 8.4 %, valor
considerado a nivel interespecífico (Poong *et al*.2013; Poong, 2014). La muestra PTM_9808
presentó un valor de 13.8 % respecto a PTM_10156 y PTM_9825, dicho valor coincide con el
rango reportado para la distancia intergenérica (Choo y Boo, 2004; Nuñez-Reséndiz, 2012; Poong *et al*.2013; Poong, 2014; Reyes-Gómez, 2015).

547 El Grupo III presentó respecto a las Algas Pardas Mucilaginosas (previamente reportadas 548 por Reves-Gómez, 2015) del Morfo I una distancia genética de 10.4 % comparado con la muestra 549 Hpn que es el único espécimen que cuenta con la secuencia completa del gen *rbc*L, mientras que 550 respecto al Morfo II fue de 14.3%, estos valores son similares a los señalados por Poong (2014) y 551 León-Álvarez et al., 2014a para Ralfsia fungiformes y Neoralfsia expansa (12.6 a 13.3%) y 552 Heteroralfsia saxicola y N.expansa donde los valores oscilan de 8.2 a 10.9%. Al interior del Grupo 553 III los valores de distancia genética oscilaron entre 2.9-8.9 %, entre las muestras PTM_10115 y 554 PTM _10116 se presentó una distancia de 2.9 %, considerado como un valor de divergencia a nivel 555 intraespecifico y de 6.3 a 8.9 % entre las muestras anteriores y la muestra PTM_10119, valor de 556 divergencia considerado a nivel interespecífico (Choo y Boo, 2004; Nuñez-Reséndiz, 2012; Poong 557 et al.2013; Poong, 2014; Reyes-Gómez, 2015)

En el Apéndice 31 se presenta un resumen de las divergencias nucleotídicas, y el Apéndice
32 se presenta un resumen de los taxa propuestos en este estudio.

560 9.2.1.2 Distancia genética con el gen *Cox* 1

Los valores de distancia genética entre las muestras de *Diplura* sp.G y las muestras del Grupo I fueron de 11.4-19.2 %, se asemejan a los valores reportados por Poong (2014) para la divergencia interespecífica entre *Mesospora negrosensis* y *M. schmidtii* (19.5 a 21.6 %), asi como

564 los valores reportados por Reyes- Gómez (2015) para M. elongata y M. schmidtii (18.4-22.5 %), 565 sin embargo esta misma autora presenta valores de 20 % en cuanto a la divergencia nucleotídica 566 de Ralfsia fungiformis y Analipus japonicus. Al interior del Grupo I, las divergencias fueron de 0.3-2.1 % entre PTM_9791, PTM_9792, PTM_9795, PTM_10065, PTM_10039 y PTM 10075, 567 568 valores que han sido reportados por Poong (2014) y Reyes-Gómez (2015) para miembros de la 569 misma especie. Por su parte, la muestra PTM 10068 presentó valores de divergencia de 6.3 a 7.6 570 % con el resto de los especímenes del Grupo I. Mientras que la muestra PTM 9793, presentó 571 valores más altos respecto a las especímenes del Grupo I (9.1-10.3 %) misma que mostró un valor 572 de divergencia de 9 % con relación a *Diplura* sp. G (1, 2, 3, 4).

Entre las muestras del Grupo II y *Padina durvillae* la divergencia fue de 20 %. Al interior del Grupo II, las divergencias fueron de 0.3 % entre PTM_10095 y PTM_9825, de 6.4 % entre PTM_10095 y PTM_10156, mientras que entre PTM_10156 y PTM_9825 la distancia fue de 6.7 %.

El Grupo III presentó valores de divergencia nucleotídica de 0 a 1.1 % respecto a las
muestras VR33, VR35 y VR39 (Morfo I de las Algas Pardas Mucilaginosas). Mientras que las
muestras PTM_10115, PTM_10116, PTM_10117 y PTM_10118 presentaron valores de 0-1.2 %.
Las muestras PTM_9808 y PTM_9823 no presentaron ningún valor de divergencia
nucleotídica (0%). Finalmente la muestra PTM_10025 presentó valores de 17 a 18.1 % respecto al
resto de las muestras que integran el Morfo I de las Mucilaginosas.

583 Con los datos obtenidos con ambos genes (*Cox* 1 y *rbc*L) es posible señalar lo siguiente:

GRUPO I: tomando en cuenta los valores de distancia genética entre los especímenes de este grupo
y *Diplura* sp. G, se propone que las muestras de este trabajo pertenecen a una especie distinta del
mismo género que *Diplura*.

587 GRUPO II: se propone que este grupo constituye una familia distinta a Mesosporaceae, dados sus 588 altos valores de distancia genética, misma que esta integrada por dos géneros, el primero compuesto 589 por dos especies, en la primera se incluyen los especímenes PTM_10095 y PTM_9825, mientras 590 que en la segunda se ubica la muestra PTM_10156. El segundo género es monoespecífico y lo 591 integran los especímenes (PTM_9823, PTM_9808).

GRUPO III: lo integran 4 especímenes (PTM_10115, PTM_10116, PTM_10118 y PTM_10117)
que forman parte del mismo género y la misma especie descrita por Reyes-Gómez (2015) como
Morfo I (Algas Pardas Mucilaginosas), unicamente la muestra PTM_10119 presenta un valor de
distancia reportado para especies distintas.

La muestra PTM_10025 es posiblemente miembro del Grupo II, sin embargo es necesario
obtener la secuencia completa del gen *rbc*L para corroborar esta información.

598 En el Cuadro 10 se presenta un resumen de las divergencias nucleotídicas y en el Apéndice
599 15 se presenta un resumen de los taxa propuestos en este estudio.

600 9.2.2 Análisis filogenético

601 En términos generales el análisis de Cox 1 presentó varias incongruencias respecto al 602 análisis de *rbcL* en cuanto a la integración de los órdenes, varias especies aparecieron en órdenes 603 que no les correspondían, presentando diferencias significativas respecto al árbol consenso de *rbc*L. 604 Por ejemplo, el orden Ralfsiales comprende solo tres familias, Mesosporaceae, Neoralfsiaceae y 605 las Algas Pardas Mucilaginosas y los integrantes de la familia Ralfsiaceae quedaron por fuera del 606 orden uniéndose a Onslowia endophytica. Esta situación anómala puede relacionarse con la 607 cantidad de secuencias de Cox 1 con las que se llevó cabo el análisis, es decir, a la baja 608 representatividad de Ralfsiales, aunado a la alta variabilidad del gen y al hecho de que las dos 609 secuencias con las que se unen las muestras PTM_9825, PTM_10156 y PTM_9808 para formar el Grupo II (*Mesospora sp.* F y *Mesospora sp.* G) en el análisis de *rbc*L, no pudieron ser incluidas para la matriz del gen *Cox* 1, dado que no existen. Además tal como señalan otros autores (Lim *et al.* 2007; Poong *et al.* 2013; Poong, 2014), los análisis filogenéticos usando el gen *rbc*L brindan una resolución satisfactoria a nivel de orden o familia mientras que el gen *Cox* 1 es mejor en la elucidación de filogenias a nivel de especie, dicho gen resuelve pobremente las relaciones a nivel intra-ordinal.

Las inconsistencias en la conformación de otros órdenes y los bajos o nulos valores de
Máxima Verosimilitud además de los altos valores de distancia genética, ponen en duda la
certidumbre en cuanto a la unión del Grupo II con *Padina durvillae*, especie con quien no debería
de unirse si se toman en cuenta los resultados obtenidos con el gen *rbc*L.

620 Como se mencionó con anterioridad, el Grupo I se unió a *Diplura* sp., mismas que se 621 integran como grupo hermano al orden Ishigeales, resultados muy parecidos a los reportados por 622 Lim *et al.* (2007), y Poong *et al.* (2014). De acuerdo con Poong (2014) es indispensable contar con 623 la secuencia del generitipo *Diplura simulans* para poder validar a dichas muestras como verdaderas 624 dipluras así como su relación con el orden Ishigeales, ya que en sus estudios los valores de soporte 625 de la rama que unen al orden Ishigeales con estas dipluras son muy bajos, además de que no existen 626 caracteres morfológicos que sostengan una relación entre estas algas.

Ninguna de las muestras de este estudio se unió a especies de Scytosiphonaceae en los
análisis filogenéticos, a pesar de que algunos autores (Wynne (1969); Fletcher,1987) han señalado
la relación de especímenes con morfología "Stragularia" como parte del ciclo de vida o expresiones
de la plasticidad del fenotipo de formas erectas como *Petalonia fascia* o *Scytosiphon lomentaria*por lo que existía la posibilidad de que alguna de las muestras revisadas en este trabajo se incluyera
con alguna especie de esta familia, sin embargo esto no sucedió.

633 Los análisis de *rbcL*, tanto con el gen completo como con los fragmentos parciales 634 presentaron topologías idénticas, a pesar de que las matrices rbcL 2 y rbcL 3 se conformaron por 635 secuencias de menor tamaño, que representaron el 65% y el 49% del gen, el número de árboles 636 mas parsimoniosos (1698 y 1630 árboles), el porcentaje de caracteres constantes (38.8 y 40.9%), 637 asi como el porcentaje de caracteres informativos para parsimonia (43.9 y 44.3%) y el Índice de 638 Consistencia (0.46 y 0.41), fueron similares a los datos obtenidos en la matriz completa de 639 *rbcL* 1(2481 árboles, 42.9 % de caracteres constantes, 38.4% de caracteres informativos e Índice 640 de Consistencia de 0.4). Por lo que es posible considerar que la información obtenida a partir de 641 ambas matrices, es válida, además de que las topologías que brindaron fueron idénticas a las que 642 arrojó el análisis con el gen completo, denotando la ventaja en el uso de secuencias parciales para 643 posibilitar la inclusión de todas aquellas secuencias en las que no se logra amplificar el gen 644 completo, aumentando la información tal como señala Reyes-Gómez (2015).

645 Las ramas internas que sostienen los Clados en el dendrograma obtenido a partir de las 646 matrices de *rbc*L presentaron altos valores de probabilidad posterior (99-100) con los datos 647 provenientes de las matrices rbcL_1 y rbcL_2, sin embargo con la información brindada por la 648 matriz rbcL_3 los valores de las ramas fueron bajos para el Clado II integrado por las 649 Mesosoporaceae (61), Clado III (68) y Clado IV donde se incluyen las mucilaginosas (86), lo que 650 hace pensar que los datos que proporciona el segundo fragmento del gen rbcL no son 651 completamente suficientes para sostener la hipótesis propuesta por el gen completo. Mientras que 652 para los Análisis de Máxima Verosimilitud con las matrices rbcL 1 y rbcL 2, los valores de 653 boostrap fueron altos (94-100) excepto en los presentados para la familia Ralfsiaceae (74 y 76), 654 ademas nuevamente los valores para el análisis realizado con la matriz *rbcL_3* fueron más bajos. 655 Finalmente para el análisis de Máxima Parsimonia los valores fueron bajos (menores de 50 hasta 656 86) con las tres matrices. Reves-Gómez también señala haber obtenido valores bajos para Máxima Parsimonia al igual que para Máxima Verosimilitud, con bootstraps de 50 a 89 y establece que
estos valores bajos se deben al escaso muestreo y/o alto grado de homoplasia entre las especies del
Orden Ralfsiales, indicando que lo primero hace referencia al limitado conocimiento que se tiene
de este grupo y lo segundo se infiere de los resultados obtenidos a partir del Índice de Consistencia
(IC) e Índice de Retención en el análisis de Máxima Parsimonia.

662 El Índice de Consistencia permite estimar la cantidad de sinapormorfía y el grado de 663 homoplasia en el cladograma. Los valores de IC para la matriz *rbc*L 1, *rbc*L 2 y *rbc*L 3 fueron 664 0.3994, 0.4600 y 0.4136 respectivamente. Valores iguales a 1 indican ausencia de homoplasia 665 (Morrone, 2014), sin embargo los resultados pueden considerarse como valores bajos a 666 intermedios, indicando un grado alto a medio de homoplasia. Mientras que el Índice de Retención 667 cuantifica la homoplasia observada en un carácter en función de la homoplasia posible. Los valores 668 obtenidos en las matrices rbcL 1, rbcL 2 y rbcL 3 fueron de 0.6006, 07579 y 0.5864, 669 respectivamente. Se considera que los valores altos (1) en el IR indican que los cambios ocurren 670 predominantemente en los nodos internos y los valores bajos (0) se dan cuando los cambios están 671 concentrados en ramas pertenecientes a taxa terminales (Agudelo Molina et. al., 2011). Para este 672 caso los valores pueden considerarse altos, lo que indican que los cambios ocurren en los nodos 673 internos.

Respecto al gen *Cox* 1, el análisis estuvo restringido por la todavía carencia de secuencias
disponibles en la base de Datos de GenBank, sin embargo a diferencia del estudio realizado por
Reyes-Gómez (2015), en este trabajo se contó con especímenes de Neoralfsiaceae, ademas de
Mesosporaceae, Ralfsiaceaceae y las Mucilaginosas. Las topologías para los tres análisis (MP, MV,
IB) fueron idénticas, donde los especímenes estudiados se distribuyeron en tres clados distintos, el
Clado I (Grupo I) que se separa del Orden Ralfsiales, el Clado IV (Grupo III) que pertenece a las
Algas Pardas Mucilaginosas y el Clado V(Grupo II) que aparece como grupo hermano de las

681 Ralfsiaceace, el primer Clado presentó el mismo resultado en el análisis de rbcL, sin embargo los 682 Clados IV y V presentaron algunas discrepancias. En el Clado IV se incluyeron la muestras 683 PTM_9808 y PTM_9823, mismas que en el análisis rbcL aparecieron como miembros del 684 denominado Clado V (en el análisis de *Cox* 1 es el Clado III), por otro lado las muestras del Clado 685 V aparecen en el análisis de *rbc*L como grupo hermano de las Mesosoporaceae y no de las 686 Ralfsiaceace como sucede aquí, dicha discrepancia como se mencionó anteriormente puede ser 687 producto de la falta de secuencias, pero sobre todo de la alta variabilidad del gen y su baja 688 resolución a nivel de orden o familia, además es importante mencionar que los valores de soporte 689 de la rama que unieron al Clado V con las Ralfsiaceace fueron mucho más bajos que para el análisis 690 de *rbc*L. Precisamente, en cuanto a los valores de soporte que presentaron las ramas de los Clados 691 con este gen, se observaron valores de bootstrap altos para Máxima Parsimonia en las ramas del 692 Grupo I o Clado I, en el Clado II y en el Clado V (95-100), mientras que en los Clados III, IV y V, 693 los valores fueron muy bajos (50) o simplemente el análisis no arrojo ningún dato. Los valores de 694 bootstrap producto del análisis de Máxima Verosimilitud fueron altos en el Clado I, en el Clado II 695 y en el Clado V (99-100), en el resto se presentaron valores de 59 a 81, o no se arrojó ningún valor, 696 finalmente el Ánalisis de Inferencia Bayesiana arrojó valores de probabilidad posterior altos para 697 todos los Clados (91-100) excepto en el Clado VI (59).

698 Contrario a lo que mencionan Poong (2013; 2014) y Reyes-Gómez (2015) respecto al 699 beneficio de concatenar los genes *rbc*L y *Cox* 1 para mejorar la resolución y el robustecimiento de 700 los datos a nivel intraordinal, en este trabajo los genes concatenados arrojaron árboles con 701 diferencias de consideración respecto a los árboles obtenidos de forma separada con *rbc*L y *Cox* 1, 702 principalmente cuando se emplearon las secuencias parciales del gen *rbc*L donde las topologías de 703 los árboles fueron completamente incongruentes respecto a los otros análisis.

704 9.3 Relación análisis morfológico y molecular

Al contrastar los resultados moleculares con los morfológicos, es posible establecer
relaciones entre los grupos de morfologías con los grupos a los que dichas muestras se unieron
molecularmente.

708

709 **Cuadro 16.** Relación de muestras incluidas en los Grupos I, II y III (morfológico y molecular)

CARÁCTER	GRUPO I	GRUPO II	GRUPO III
MORFOLOGÍA	PTM_10152,PTM_10153,	PTM_10156,	PTM_9808, PTM_9810,
	PTM_8976, PTM_9791,	PTM_10157,	PTM 10025, PTM 10117,
	PTM_9792, PTM_9793,	PTM_10058, PTM_9823,	PTM 10118, PTM 10119,
	PTM_9795, PTM_9794,	PTM_9825, PTM_9826	PTM 9550, PTM 10095,
	PTM_10065, PTM_10066,		PTM 10115, PTM
	PTM_10068, PTM_10039,		10116R1
	PTM_10075		
GEN rbcL	PTM_9791, PTM_9792,	PTM_9808, PTM_10156,	PTM 10115, PTM
	PTM_9793, PTM_9795,	PTM_9825	10116R1, PTM 10119
	PTM_10065, PTM_10068,		
	PTM_10039, PTM_10075		
GEN Cox 1	PTM_9791, PTM_9792,	PTM_10156, PTM 10095,	PTM 9808, PTM 10025,
	PTM_9793, PTM_9795,	PTM_9825	PTM_10115, PTM 10116,
	PTM_10065, PTM_10068,		PTM 10117, PTM 10118,
	PTM_10039, PTM_10075		PTM_9823

710

El Grupo I morfológico estuvo integrado por las mismas muestras del Grupo I molecular tanto con el gen *rbc*L como con el gen *Cox* 1, este grupo se unió con *Diplura* sp.G, todas ellas derivadas del estudio de Poong (2014). Es posible que muestras con morfología tipo "Stragularia"

714 estén relacionadas con *Diplura*, León-Álvarez (1996) durante la revisión de los ejemplares con 715 morfología tipo "Stragularia" señaló la existencia de especímenes que podrían ser Diplura sp., 716 sobre todo aquellos que se encontraban en estado vegetativo donde son prácticamente 717 indistinguibles de este grupo. Dados los valores de distancia genética que se presentan entre las 718 muestras de este estudio y las Dipluras sp. y las topologías de los árboles de MP,MV e IB así 719 como sus valores de soporte es posible considerar que dichas muestras son una especie distinta a 720 Diplura sp. G, además de que la descripción morfológica presentada por Poong (2014) para dichos 721 especimenes no coincide con los de este trabajo, aunado a la ausencia de dos plurangios por 722 filamento sustentate, carácter de importante valor para identificar al género Diplura.

723 El Grupo II morfológico y el Grupo II molecular coincidieron en las muestras PTM 10156 724 y PTM 9825 para ambos genes, mientras que las muestras PTM 9808 y PTM 10095 se unieron 725 molecularmente pero no morfológicamente, ya que coincidieron con los caracteres del Grupo III. 726 El grupo molecular se unió a dos muestras de Mesospora que se separaron del resto de la familia 727 Mesosoporaceae, estas derivan del estudio de Lim et al. (2007) de las que no existe información 728 morfológica más que algunos datos someros haciéndolos incomparables, sin embargo Poong 729 (2014) también obtuvo muestras a las que denominó Mesospora sp. 3 que se unieron con las 730 secuencias de Lim et al. (2007) de modo similar a como lo hacen las del presente estudio, cabe 731 mencionar que las secuencias de *Mesospora* sp. 3 aún no son liberadas en Gen Bank, por ello no 732 pudieron emplearse en este trabajo. La información morfológica que proporciona Poong (2014) es 733 sumamente interesante, ya que todos los caracteres que describe se presentan en los especímenes 734 del Grupo II, destacando la presencia de la paráfisis, mismo carácter que ha sido previamente 735 descrito para las muestras de este estudio, hasta el momento esta estructura es la principal diferencia 736 morfológica entre la Familia Mesosporaceace y este grupo, por lo que representa un carácter de 737 alto valor taxonómico. Poong (2014) discute esta situación y presenta los valores de divergencia nucleotídica entre los grupos que incluso son más bajos que los reportados aquí, sin embargo señala
no tener los elementos suficientes para declarar con certeza la existencia de una nueva familia.
Además es interesante la comparación que realiza entre *Mesospora* sp. 3 y *Ralfsia confusa*,
señalando que son sumamente parecidas, algo que también coincide con el presente trabajo. La
presencia de paráfisis y los altos valores de distancia genética con la familia Mesosporaceae que
han sido reportados por otros autores para familias e incluso órdenes diferentes, permiten proponer
que dicho grupo constituye una familia distinta.

745 Finalmente las muestras del Grupo III se unieron molecularmente al Morfo I de las Algas 746 Pardas Mucilaginosas previamente descrito por Reyes-Gómez (2015), pero no morfológicamente, 747 ya que tanto el análisis de conglomerados como el de componentes principales separaron a las 748 Algas Pardas Mucilaginosas del Morfo I en el denominado Grupo IV. Tomando en cuenta los 749 caracteres que tuvieron más influencia en la formación de los grupos, se observaron diferencias 750 significativas entre el Grupo III y el Morfo I para el grosor del talo, el número de células que 751 integran al filamento postígeno y la unión entre estas. De acuerdo con la descripción de Reyes-752 Gómez (2015), el grosor del talo completo para el Morfo I fue de 200-380(160) µm, notablemente 753 mayor que el del Grupo III que fue de 66-145 µm, en el Morfo I el número de células que 754 intergraron los filamentos postígenos fue de 20-51 células, valor que duplica el descrito para los 755 miembros del Grupo III(9-23), sin mencionar que el número de células que se unen va de 0 a 6 756 para el Morfo I y 3 a 9 en el Grupo III. Molecularmente con base a los árboles y a los valores de 757 distancia genética las muestras de este estudio pertenecen al mismo género y especie descrita 758 previamente como Morfo I por Reyes-Gómez (2015), excepto la muestra PTM 10119 que presenta 759 divergencias nucleotídicas altas respecto al resto de los especímenes y de acuerdo a la literatura 760 podría considerarse una especie distinta, sin embargo morfológicamente no se presentan 761 diferencias que sustenten está información.

762 Para conocer con certidumbre a que grupo pertenecen las muestras PTM 9823 y 763 PTM 10025, se requiere obtener la secuencia completa del gen *rbc*L y la secuencia del gen *Cox* 1. 764 El presente estudio revela que las algas pardas costrosas con morfología tipo "Stragularia" 765 pertenecen a distintos grupos taxonómicos, más allá del nivel de familia. Información que 766 corrobora la idea planteada por otros autores (Lim et al. 2007, Silberfeld et al. 2010, Poong et al. 767 2013 y Poong, 2014) quienes señalan que las algas pardas costrosas forman un grupo polifilético, 768 indicando así que la forma costrosa ha evolucionado a los largo del tiempo en las algas pardas y ha 769 exhibido convergencia u homoplasia.

770 **9.4 Distribución geográfica de las muestras**

Grupo I: *Diplura sp.* ha sido reportada previamente para las costas del Pacifico Tropical
Mexicano, en las Manzanillas Nayarit y en la Barra de Santa Elena, Oaxaca, de acuerdo con
Pedroche *et al.* (2008). Las muestras obtenidas en este estudio y que molecularmente corresponden
con *Diplura* se colectaron en Playa el Palmar (Guerrero), Bahía la Ventosa (Oaxaca), Cabo
Corrientes (Jalisco) y Playa los Muertos (Nayarit). Mostrando una distribución continua a lo largo
de la costa del Pacifico tropical mexicano para estas algas.

Grupo II: las muestras de este grupo se recolectaron en Playa el Palmar (Guerrero), Cabo
Corrientes (Jalisco), las Rosadas (Jalisco) y Barra de Santa Elena (Oaxaca), localidades distantes
que demuestran la amplia distribución de este grupo.

Grupo III: Reyes-Gómez (2015) reportó a las Algas Pardas Mucilaginosas del Morfo I en
dos localidades del estado de Guerrero (La Barrita, Puerto Escondido) y una de Oaxaca (San
Agustín), en el presente trabajo se reportan para Cabo Corrientes y Punta Pérula en Jalisco,
ampliando el área de distribución de estas algas.

En el Apéndice 33 se presenta un mapa donde se observa la distribución de los grupos
generados en este estudio a lo largo de las Costas del Pacifico tropical mexicano.

786 **10. CONCLUSIONES**

787

Como resultados de este estudio se formaron tres grupos morfológicos denominados Grupo I, Grupo II y Grupo III, cuyas diferencias principales se basan en el grosor del talo, el número de células que integran al filamento, así como el número de células que se unen desde la base. Los Grupos II y III presentaron similitud morfológica.

Los análisis filogenéticos con los genes *rbc*L y *Cox* 1 tambien distribuyeron las muestras del presente estudio en tres grupos distintos que se integraron por las mismos especímenes que en el análisis morfológico, excepto por las muestras PTM 9808, PTM 10095 que molecularmente se incluyeron dentro del Grupo II, pero morfológicamente formaron parte del Grupo III, lo que indica que estás muestras poseen caracteres relacionados con ambos grupos, impidiendo su correcta segregación con el uso sólo del análisis morfológico.

El gen *rbc*L presentó resultados satisfactorios a nivel de orden, familia, género e incluso de especie, mientras que la alta variabilidad del gen *Cox* 1 y la poca cantidad de secuencias del mismo, generaron inconsistencias en las topologías de algunos análisis. Los genes concatenados no brindaron la información esperada y reportada por otros autores.

Las algas pardas costrosas con morfología tipo "Stragularia" no son exclusivamente pertenecientes al orden Ralfsiales, los miembros del Grupo I se unieron a *Diplura* sp., mismas que forman un orden separado cercano a Ishigeales. Mientras que los miembros del Grupo II presentan caracteres morfológicos y evidencia molecular que los separa de la familia Mesosporaceae, por lo que se propone que dichos especímenes constituyen una nueva familia, caracterizada principalmente por la presencia de paráfisis asociada a los uniloculares, misma que esta ausente en

123

la familia Mesosporaceae. Por su parte el Grupo III incluyó especímenes previamente descritos
como Morfo I de las Algas Pardas Mucilaginosas, así como una muestra que presenta valores de
distancia genética altos respecto a los miembros del Morfo I, pudiéndola considerar una especie
distinta, sin embargo no existe evidencia morfológica de esto.

812 Con base a la evidencia morfológica y molecular se propone que los especímenes del Grupo I 813 constituyen una especie distinta a *Diplura*. Se considera que los miembros del Grupo II consituyen 814 una familia distinta a Mesosporaceae, integrada por dos géneros, con dos y una especie (s) 815 respectivamente. Finalmente se reporta la misma especie descrita por Reyes-Gómez (2015) para el 816 Morfo I de las Algas Pardas Mucilaginosas de las que se describen por primera vez las estructuras 817 reproductivas, así como una nueva especie perteneciente a este mismo género.

818 Se demostró que los especímenes con esta morfología no se relacionan con algas del orden
819 Scytosiphonales.

Las algas pardas con morfología tipo "Stragularia", se distribuyen en distintos ambientes generales y localidades de la Costa del Pacifico tropical mexicano. Dicha morfología no se asocia con un grupo taxonómico particular, sino se trata de un conjunto de características comunes a distintos taxones de algas costrosas.

824 Se concluye que las algas pardas costrosas forman un grupo polifilético, que exhibe 825 convergencia morfológica, posiblemente por estar sometidas a las mismas condiciones 826 ambientales.

827

- **11. PERSPECTIVAS**

Es indispensable seguir trabajando en el análisis morfológico y molecular de los especímenes con morfología tipo "Stragularia" para precisar la existencia de tres grupos moleculares y morfológicos o evidenciar la presencia de más grupos.

- 833 Para realizar formalmente las propuestas taxónomicas relacionadas a cada grupo se requiere
- 834 obtener las secuencias de los especímenes tipo de Diplura simulans y Ralfsia confusa.
- Es importante además generar más secuencias con los marcadores *rbc*L y *Cox* 1 para especies del orden Ralfsiales para ampliar el conocimiento de este grupo y de esta manera poder entender su evolución.

853 12. REFERENCIAS BIBLIOGRÁFICAS

- Abbott, I. y G. Hollenberg. 1976. Marine Algae of California. Standford Univ. Press., Standford,
 CA. 827 p.
- Batters, E. 1888. A description of three new Marine Algae. J.Linn.Soc., Bot. 24: 450-453.
- 858 Batters, E.1890. A list of the marine algae of Berwick-on-Tweed. Alnwick. Hist.Berwickshire Nat.
- 859 Club 12: 221-392.

854

- Buchanan, J. 2005. The crustose brown algae of New Zealand: A taxonomic study. Tesis de
 maestría. School of Biological Sciences Victoria University of Wellington.
- 862 Cho, G., S. Lee, y S. Boo. 2004. A new brown algal order, Ishigeales (Phaeophyceae), established
- 863 on the basis of plastid protein-coding *rbc*L, *psa*A, and *psb*A region comparisons. Journal of Phycol.

864 40: 921–36.

- Bethier, M. 1987. The distribution and reproductive phenology of intertidal fleshy crustose algaein Washington. Canadian Journal of Botany.
- Dethier, M. 1994. The ecology of intertidal algal crusts: variation within a functional group. Journal
 of Experimental Marine Biology and Ecology 177: 37-71.
- 869 Dethier, M. y Steneck, R. 2001. Growth and persistence of diverse intertidal crusts: survival of the
- slow in a fast paced world. Marine Ecology Progress Series 223:89-100.
- Draisma, S., V. Prud'homme, W. Stam y J.Olsen. 2001. A reassessment of phylogenetic
 relationships within the Phaeophyceae based on Rubisco large subunit and ribosomal ADN
 sequences. Journal of Phycology 37: 586–603.
- Edelstein, T., L.Chen, y J. McLachlan. 1970. The life cycle of *Ralfsia clavata* and *R. borneti*.
 Can.J.Bot. 48:527-531.
- 876 Fletcher, R.1987. Seaweeds of the British Islas. Fucophyceae (Phaeophyceae). British Museum
- 877 (Natural History), 3, Parte 1:359 p.

- Hollenberg, G. 1969. An account of the Ralfsiaceae (Phaeophyta) of California. J.Phycol. 5:290301.
- Kawai, H. y H. Sasaki. 2004. Morphology, life history, and molecular phylogeny of Stschapovia
- 881 *flagellaris* (Tilopteridales, Phaeophyceae) and the erection of the family Stschapoviaceae fam. nov.
- Journal of Phycology 40: 1156–69.
- Kogame, K., T. Horiguchi, y M. Masuda.1999. Phylogeny of the order Scytosiphonales
 (Phaeophyceae) based on ADN sequences of *rbcL*, partial rbcS, and partial LSU nrADN.
 Phycologia 38: 496–502.
- Kucera, H. y G. Saunders. 2008. Assigning morphological variants of Fucus (Fucales,
 Phaeophyceae) in Canadian waters to recognized species using ADN barcoding. Botany 86: 1065–
 79.
- León-Álvarez, D. y J. González-González. 1993. Algas costrosas del Pacifico Tropical. En: (S.I.
 Salazar-Vallejo y N.C. González cds.) Biodiversidad Marina y Costera de México. Comisión
 Nacional para la Biodiversidad y CIQRO, México.pp.456-474.
- León-Álvarez, D. 1996. Feofitas costrosas del Pacifico Tropical Mexicano: contribución a la flora
 tónica de macroalgas de la región. Tesis doctoral. Universidad Nacional Autónoma de México.
 México, D.F. 290 p.
- León-Álvarez, D. y J. González-González. 2003. The morphological distinction of *Ralfsia expansa*and *R. hancockii* (Ralfsiaceae, Phaeophyta) from Mexico. Phycologia 42(6): 613-621.
- 897 León-Álvarez, D. 2005. The morphology of *Ralfsia expansa* (J. Agardh) J. Agardh (Ralfsiaceae,
- 898 Phaeophyta) from Veracruz, México. Cryptogamie Algol. 26: 343–354.
- 899 León-Álvarez, D. y J. Norris.2005. Terminology and Position of Reproductive Structures in
- 900 Crustose Brown Algae: Missaplication, confusión and clarification. Cryptogamie Algologie 26:91-
- 901 102.

- 902 León-Álvarez, D. y M. Núñez-Reséndiz. 2012. Géneros de algas marinas tropicales de México: II
 903 algas pardas. UNAM, Facultad de Ciencias. 107 p.
- 904 León Álvarez D. 2013. Sistema de información de la Sección de Algas. Publicación electrónica
- 905 Herbario de la Facultad de Ciencias de la UNAM, México, D.F,
 906 http://sistinfo.fciencias.unam.mx/sisa; 18/03/2013
- 907 León-Álvarez, D., M. Núñez-Reséndiz y M. Ponce-Márquez. 2014a. Morphological and molecular
- 908 characterizacion of Neoralfsia hancockii comb. nov. (Ralfsiales, Phaeophyceae) from topotype of
- 909 San José del Cabo, Baja California, México. Botanica Marina 57(2): 139-146.
- 910 León-Alvarez, D., M. Núñez-Resendiz y M. Wynne. 2014b. Morphological and molecular studies
- 911 on topotype material of Neoralfsia expansa (Phaeophyceae) reveal that Asian specimens assigned
- 912 to this taxon are genetically distinct. Botanica Marina 57 (5): 1-8.
- Lim, P., M. Sakaguchi, T. Hanyuda, K. Kogame, S. Phang y H. Kawai. 2007. Molecular phylogeny
- 914 of crustose brown algae (Ralfsiales, Phaeophyceae) inferred from *rbcL* sequences resulting in the
- 915 proposal for Neoralfsiaceae fam. nov. *Phycologia* 46: 456–466.
- 916 Loiseaux, S. 1968. Recherches sur les cycles de développement des Myrionématacées
- 917 (Pheophycees). III Tribu des Ralfsiees. IV. Conclusions générales. Rev. gén. Bot. 75: 295-318.
- 918 Loiseaux, S. y M.Wynne. 1976. Recent advances in life history studies of the Phaeophyta.
- 919 Phycologia, 15 (3/4): 435-452.
- 920 López, M. 1997. Análisis morfolo-ecologico de una feofita afín a Stragularia sp. (Strömfelt) en el
- 921 Pacifico Tropical Mexicano. Tesis de licenciatura. Universidad Nacional Autónoma de Mexico. 66922 p.
- Lund. 1967. Ralfsia lucida a new brown algae from danish waters. Botaniste 50: 287-295.

- 924 McDevit, D. y G. Saunders. 2009. On the utility of ADN barcoding for species differentiation
- 925 among brown macroalgae (Phaeophyceae) including a novel extraction protocol. Phycological
 926 Research 57: 131 141.
- 927 Nakamura, Y. 1972. A proposal on the classification of the Phaeophyta. In: Abbott, I. A. & Kurogi,
- 928 M. Contributions to the systematics of benthic marine algae of the North Pacific. Japanese Society
- 929 of Phycology, Kobe, Japan. 147–155.
- 930 Nelson, W.1982. A critical review of the order Ralfsiales, Ralfsiaceae and the taxonomic position
- 931 of *Analipus japonicas* (Harv.) Wynne (Phaeophyta). British Phycological Journal 17: 311-320.
- Norris, J. 2010. Marine algae of the northern Gulf of California: Chlorophyta and Phaeophyceae.
- 933 Smithsonian contributions to botany; no. 94: 289 p.
- 934 Núñez-Reséndiz, M. 2012. Caracterización taxonómica de Ralfsia expansa y R. hancockii
- 935 (Ralfsiaceae, Phaeophyta) basada en evidencias morfológicas y moleculares. Tesis de Maestría.
- 936 Facultad de Ciencias, UNAM. México. 60 pp.
- 937 Parente, M., A. Neto, R. Fletcher, M. Gil-Rodríguez y R. Haroun. 2006. Morphological studies of
- 938 Hapalospongidion macrocarpum and Nemoderma tingitanum (phaeophyceae) from the Salvage
- 939 Islands (Madeira archipelago). Arquipélago. Life and Marine Sciences 23A: 19-26.
- 940 Peters, A. 1989. Sexuelle Fortpflanzung bei der braunen Krustenalge Pseudolithoderma
 941 extensum.Helgolander Meeresunters. 43: 195-205.
- 942 Phillips, N., R. Burrowes, F. Rousseau, B. de Reviers y G. Saunders. 2008. Resolving evolutionary
- relationships among the brown algae using chloroplast and nuclear genes. Journal of Phycolgy.
 44(2): 394–405.
- Poong, S., P. Lim, S.Phang, G. Gerung y H. Kawai. 2013. Mesospora elongata sp. nov. (Ralfsiales,
 Phaeophyceae), a new crustose brown algal species from the Indo-Pacific
 Region. Phycologia 52(1): 74-81.

- Poong, S., Lim, P., Phang, S., Sunarpi, H., West, J. and Kawai, H. 2014. A molecular-assisted
 floristic survey of crustose brown algae (Phaeophyceae) from Malaysia and Lombok Island,
 Indonesia based on rbcL and partial cox 1 genes. *J. Appl. Phycol.* DOI 10.1007/s10811-013-00819.
- Reyes-Gómez, V. 2015. Caracterización morfológica y molecular de las algas costrosas pardas
 mucilaginosas del Pacifico Tropical Mexicano. Tesis de Maestría. Universidad Nacional
 Autónoma de México. México. 123 pp.
- Saunders, G. 2005. Applying ADN barcoding to red macroalgae: a preliminary appraisal holds
 promise for future applications. Philosophical Transactions of the Royal Society B: Biological
 Sciences, 360 (1462), 1879–1888.
- Saunders, G. y T. Moore.2013. Refinements for the amplification and sequencing of red algal ADN
 barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies.
 Algae 28(1): 31-43.
- 961 Sasaki, H., A. Flores-Moya, E. Henry, D. Müller, H. Kawai. 2001. Molecular phylogeny of
- 962 Phyllariaceae, Halosiphonaceae and Tilopteridales (Phaeophyceae) Phycologia 40: 123-134.
- 963 Siemer, B., W. Stam, J. Olsen y P. Pedersen. 1998. Phylogenetic relationships of the brown algal
- 964 orders Ectocarpales, Chordariales, Dictyosiphonales, and Tilopteridales (Phaeophyceae) ased on
 965 rubisco large subunit and spacer sequences. Journal of Phycology. 34: 1038–48.
- 966 Silberfeld T., J. Leigh, H. Verbruggen, C. Cruaud, B. De Reviers, F. Rousseau. 2010. A multi-
- 967 locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae):
- 968 Investigating the evolutionary nature of the "brown algal crown radiation". Molecular
- 969 Phylogenetics and Evololution 56: 659–674.
- 970 Stamatakis, A., M. Ott, T. Ludwig. 2005. Raxml-omp: An efficient program for phylogenetic
- 971 inference on smps. In: Proc. of PaCT05 : 288–302.

- 972 Strömfelt, H. 1886. Einige fur die Wissenschaft neue Meeresalgen aus Island. Bot. Zbl. 26: 172973 173.
- 974 Swofford, D .2003. PAUP. Phylogenetic analysis Using parsimony (and other methods), version
- 975 4. Sinauer Associates, Sunderland, Massachusetts.
- 976 Tan, I. y L.Druehl. 1994. A molecular analysis of Analipus and Ralfsia (Phaeophyceae) suggest
- 977 the order Ectocarpales is Polyphyletic. Journal of Phycology 30: 721-729.
- 978 Tanaka, J. y M.Chihara. 1980 a. Taxonomic study of the Japanese crustose brown algae (1) General
- account and the order Ralfsiales. Journ.Jap. Bot. Vol 55 (7): 193-202.
- 980 Tanaka, J. y M.Chihara. 1980 b. Taxonomic study of the Japanese crustose brown algae (2) General
- account and the order Ralfsiales. Journ.Jap. Bot. Vol 55 (8): 225-236.
- 982 Thompson, J., D. Higgins y T. Gibson. 1994. Clustal W: improving the sensitivity of progressive
- multiple sequence alignments through sequence weighting, positions specific gap penalties and
 weigth matrix choice. Nucl. Acids Res. 22: 4673-4680.
- 985 Williamson, J. y R.Creese. 1996. Colonisation and persistence of patches of the crustose brown
- alga *Pseudolithoderma* sp. Journal of Experimental Marine Biology and Ecology, 203: 191-208.
- 987 Wynne, M. y S. Loiseaux.1976. Recent advances in life history studies of the Phaeophyta.
- 988 Phycologia 15 (3/4): 435-452.
- 989 Yoneshigue–Valentin, Y. y D. Pupo. 1994. Estudos in situ e in vitro de fase Ralfsióide Stragularia
- 990 clavata (Harv. in Hook.) Hamel de Petalonia fascia (O.F. Müller) Kuntze (Scytosiphonales -
- 991 Phaeophyta). Revista Brasil. Biol. 54: 489–496.
- 992

993

994	Apéndice 1. Formato para la caracterización morfológica de las algas pardas costrosas con
995	morfología tipo "Stragularia"
006	monologia upo buagalaria.
990	
997	Características empleadas en la descripción de unidades merísticas de feolitas costrosas del
998	Pacífico Tropical Mexicano.
999	
1000	#1. NUMIDESCRIP
1001	#2. NUMILESTRA#5. NUMANTERIO
1002	#4 EECHAMUEST Dranaragión# Egto
1003	Ambiente general
1004	Ambiente perticular
1005	#5 CENEDO #6 ESDECIE
1000	#J. OENERO #0. ESPECIE #7. AUTORIDAD #8. AUTORDESCR (de la descrinción)/
1007	#1. AUTORIDAD $#0$. AUTORDESER (de la desemption)/
1009	CARACTERES EN AZUL = INVARIABLES
1010	
1011	
1012	FORMA DE MANIFESTACIÓN
1013	#9 Costras formando motas <formsuperf></formsuperf>
1014	0. IR Irregulares
1015	1. OV ovaladas, elipsoidales o circulares
1016	
1017	#10. <colorhumed>/ en húmedo/</colorhumed>
1018	0. Amarillo
1019	1. Verde pasto
1020	2. Café amarillento a verdoso
1021	3. Café amarillento a rojizo
1022	4. Café rojizo
1023	5. Verde oscuro
1024	
1025	#11. <colorseco>/ en seco/</colorseco>
1026	0. Verde oscuro a negro
1027	1. Café amarillento
1028	2. Café oscuro
1029	3. Café oscuro a rojizo
1030	4. Verde grisáceo o caté
1021	
1032	#12. Presencia de lineas de crecimiento <preslincre></preslincre>
1033	0. Lineas de crecimiento evidentes
1034	1. No presenta nneas de crecimiento evidentes
1035	#13 Superficie del talo ZEORMSUPERE>/
1037	π_1 3. Superficie del tato Γ OKIVISOT EKI $>$
1038	1 I I lisa
1039	2 AF afelnada
1040	3 IR Irregular
10/1	4 AD enlanda

- 1041 1042 4. AP aplanada
- 5. CO coriácea en apariencia

#14.Textura (al ser restregada entre los dedos) <TEXTURA>

0. SU suave

1. AS áspera

2. GE gelatinosa

3. RE resbalosa al restregarse entre los dedos

#15.Adherencia al sustrato <ADHERENCIA>

0. TO total incluido el margen

1. SC parcial solo en el centro

2. SM parcial solo en el margen

#16. Consistencia (integridad de la costra) <CONSISTENC >

0. MI se mantiene integra al ser desprendida del sustrato y restregarse entre los dedos

1. DE se desintegra al ser desprendida del sustrato

2. PE se separa en pedazos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos

#17. Márgenes <MARGENCONS>

0. S conspicuo

1. N incospicuo

FORMA DE ORGANIZACIÓN DEL TALO

#18. Grosor de la parte vegetativa del talo <GROSORVEG> µm de largo

#19. Pelos hialinos <PRESPELHIAL>

0. S presentes

1. N ausentes

#20. Agrupamiento <AGRUPAMIEN >

0. SO solos

1. GR. en grupos

#21. Distribución de pelos hialinos

- 0. TT distribuidos por todo el talo
- 1. PT restringidos a ciertas partes del talo
- 2. HE en hendiduras (pozos)
- 3. NH no en hendiduras
- 4. IR irregularmente distribuidos en el talo

#22. Origen y posición de los pelos hialinos <POSPELHIAL>

- 0. PB surgiendo de los filamentos primigenios
- 1. PM originándose a medio grosor del talo (de los filamentos postígenos)
- 2. PA originándose en la superficie del talo (del ápice de los filamentos postígenos)

#23. Rizoides <presencia: PRESRIZOID>

- 0. S presentes
- 1. N ausentes

#24. En un corte longitudinal-radial los filamentos se disponen en simetría<SIMETRIA>

0. UN unilateral (filamentos primigenios en posición ventral y dispuestos paralelamente al sustrato, filamentos postígenos hacia la posición dorsal)

1. BI bilateral (filamentos primigenios en el eje de simetría de los filamentos postígenos que están dispuestos dorsoventralmente)

2. BP bilateral con poco desarrollo ventral.

FILAMENTOS POSTÍGENOS

#25. Filamentos postígenos vegetativos <GELFILPOST>
0. EG envueltos en una matriz gelatinosa
1. NG no envueltos en una matriz gelatinosa

#26. Disposición de los filamentos postígenos <DISPOFILAM>
0. AG surgiendo en ángulos agudos respecto a los primigenios
1. TR surgiendo transversalmente respecto a los primigenios

#27. Forma <FORFILPOST>

0. TO tortuosos

1. CR crespos

2. RE rectos.

3. CU curvos.

#28. Largo de los filamentos postígenos <LARFILPOST> um de largo

#29. Uniformidad en el diámetro de los filamentos postígenos <DIAMFILPOST>

- 0. DA disminuye hacia el ápice
- 1. UT es uniforme en toda su longitud
- 2. AA aumenta hacia el ápice

#30. Unión filamentos postígenos <UNIONFILAM>

0. SB unidos entre sí sólo en la parte basal del talo

1. SA unidos entre sí sólo en la base y en los ápices

2. LJ laxamente unidos entre sí en toda su longitud

3. EJ estrechamente unidos en toda su longitud

#31. Número de células que se adhieren entre los filamentos <NUMCELUNID> células

#32. Número de las células <NUMCELFILPOS> células

#33. Orden de ramificación <ORDENRAMIF>

- 0. No ramifica
- 1. Uno

2. Dos

3. Tres o más

#34. Forma de las células en la parte basal de los filamento postígenos <FORCELPERB>

0. BA doliformes (en forma de barril)/ 1. CU cúbicas / 2. CI cilíndricas / 3. LA lanceoladas/ 4. EL. elipsoidales 5. FU fusiformes / 6. SF subesféricas / 7.IR irregulares en forma / 8. MO moniliformes.

#35. Relación largo/diámetro de las células en la parte basal de los filamentos postígenos (dos a tres células por encima de los filamentos primigenios) <RELCERPERB>

Largo					
Diámetro					
Largo/diámetro					

<LARCELPERB> µm <DIACELPERB> µm <RELCELPERB> µm

#36. Forma de las células cercanas al ápice de los filamentos postígenos <FORCELCERAPI>

0. BA doliiformes (en forma de barril)/ 1. CU cúbicas/2. CI cilíndricas/3. LA lanceoladas/

4. EL elipsoidales/5. FU fusiformes/ 6. SF subesféricas/7. IR irregulares en forma/ 8. MO moniliformes/

#37. Pared celular <GROSPARCEL>/

1. DE delgadas (menos de un tercio el diámetro de la célula)/

2. GR gruesas (igual o más de un tercio el diámetro de la célula)

#38. Relación Largo/Diámetro células cercanas al ápice <RELCELPERA>

Largo					
Diámetro					
Largo/diámetro					

<LARCELPERA> µm

<DIACELPERA> µm

<RELCELPERA> µm

#39. Forma de las células apicales <FORCELAPI>

0. BA doliformes (en forma de barril)/ 1. CU cúbicas /2. CI cilíndricas/ 3. LA lanceoladas /4. EL elipsoidales 5. FU fusiforme / 6. SF subesféricas /7. OB obovoides / 8. OV ovoides /9. DO en forma de domo

10. IR irregulares en forma

#40. Relación del largo/diámetro de las células apicales <RELCELAPI>

*					
Largo					
Diámetro					
Largo/diámetro					

<LARCELAPI> μm <DIACELAPI> μm <RELCELAPI> μm

FILAMENTOS PRIMIGENIOS

#41. Filamentos primigenios <CONSFILPRI>0. CN en capas nítidas1. NC no en capas nítidas

#42. Numero de capas de filamentos primigenios <CONSFILPRI>

Largo					
Diámetro					
Largo/diámetro					

<LARCELHIPO> µm <DIACELHIPO> µm <RELCELHIPO> µm ESTRUCTURAS CELULARES #43. Numero de cloroplastos por célula <NUMCLOROPL>

#44. Forma del cloroplasto <FORMCLOROP> 0. LA laminares

1. DI discoidales

2. LO lobulados

#45. Posición del cloroplasto <POSICLOROP>

0. PA parietal

1. CE central

2. AP terminal o apical

#46. Pirenoides <PRESPIRENO>

- 0. S presentes
- 1. N ausentes

#47. Gránulos hialinos discoidales en el protoplasma <PRESGRANUL>

- 0. S presentes
- 1. N ausentes

CARACTERES REPRODUCTIVOS

#48. Unangios y plurangios presentes <UNANPLURJU>
0. S en el mismo talo
1. N en talos separados
PLURILOCULARES Y ESTRUCTURAS ASOCIADAS
#49. Plurangios <PRESPLURAN>
0. S presentes

1. N ausentes

#50.Presencia de capa mucilaginosa <GELATPLURA>

- 0. S cubiertos por una matriz gelatinosa
- 1. N no cubiertos por una matriz gelatinosa

#51. Estado de madures de los plurangios <EDODESPLUR>

- 0. PR en estado de primordios
- 1. JU juveniles
- 2. MA maduros

#52.Lugar de inserción <INSERPLURA>

0. IN intercalarmente en los filamentos postígenos reproductivos, por debajo de células estériles terminales <no lateralmente

1. IL lateralmente <intercalados> en los filamentos postígenos reproductivos

- 2. TE terminalmente en los filamentos postígenos reproductivos <no lateralmente a paráfisis
- 3. TL terminalmente en los filamentos postígenos reproductivos pero lateralmente a las paráfisis

#53. Número de plurangios por filamento sustentante <NUMPLURFIL>

- #54.Forma de los plurangios <FORMAPLURA>
- 0. ES esbeltos
- 1. MO moniliformes
- 2. CI cilíndricos
- 3. CL claviformes
- 4. IR irregulares en forma

#55. Largo de los plurangios <LARGOPLURA>

#56. Diámetro de los plurangios <DIAMPLURAN>

#57. Número de series de células por plurangio <NUMSERIEPL>

#58. Forma de las células <FORMCELPLU>

- 0. BA de barril
- 1. CU cúbica
- 2. CI cilíndrica
- 3. LA lanceolada

4. EL elipsoidal
5. SF subesférica
6. OB obovoide
7. OV ovoide
8. FU fusiforme
9. IR irregular
#59. Células estériles terminales <PRESCELEST>

S presentes
S la substance

#60. Número de células terminales <NUCELESTER>

#61. Forma de las células terminales <FORMCELEST>

0. BA de barril

1. CU cúbica

2. CI cilíndrica

3. LA lanceolada

4. EL elipsoidal

5. SF subesférica

6. OB obovoide

7. OV ovoide

8. FU fusiforme

9. DO de domo

10. IR irregular

#62. Relación largo/diámetro de las células terminales <RELCELESTE>

Largo					
Diámetro					
Largo/diámetro					

<LARCELESTE> µm <DIACELESTE> µm <RELCELESTE> µm

UNILOCULARES Y ESTRUCTURAS ASOCIADAS

#63. Uniloculares <PRESUNANGI>

0. S presentes

1. N ausentes

#64. Estado de madurez <EDODESUNAN>

0. PR en estado de primordios

1. JU juveniles

2. MA maduros

#65. Capa que los cubre <GELATUNANG>

0. S cubiertos por una capa gelatinosa

1. N no cubiertos por una capa gelatinosa

#66. Surgiendo <POSUNANTAL>

0. BA cerca de los filamentos primigenios

1. ME a nivel de medio peritalo

2. SB subsuperficialmente

3. SS sobre la superficie del talo

#67. Posición de los filamentos circundantes <POSFILCIRC>

0. LA lateralmente a filamentos circundantes

1. NL sin filamentos laterales o basales que los circunden

#68. Diferenciación <DIFMORFCIR>

0. DM diferenciados morfológicamente de los filamentos reproductivos (paráfisis)

1. ND no diferenciados morfológicamente de los filamentos reproductivos

#69. Filamentos reproductivos <PRESPEDIUN>

0. S diferenciados morfológicamente de los filamentos postígenos vegetativos

1. N no diferenciado morfológicamente de los filamentos postígenos vegetativos

#70. Insertados <INSERUNILOC>

0. LA de forma lateral en los filamentos reproductivos <siempre sésil>

1. IN intercalar <no lateralmente> en los filamentos reproductivos

2. TE terminalmente en los filamentos reproductivos <o pedicelos>

#71. Dispuestos < DISPOUNANG>

0. CA en cadena

1. NC no en cadena

#72. Forma de los uniloculares <FORMUNANGI>

0. OB obovoides

1. OV ovoides

2. SF subesféricos

3. CL claviformes

4. EL elipsoidales

5. FU fusiformes

6. SV ubclaviformes

#73. Relación largo/diámetro <RELUNILOC>

Largo					
Diámetro					
Largo/diámetro					

<LARCOUNILOC> µm <DIACELUNILOC>µm

<RELCELUNILOC> µm

#74. Proliferaciones laterales basales <PROLIFLAUN>

- 0. S presentes
- 1. N ausentes

#75. Filamento unangial con pedicelo<PEDICEL>

0. S presentes

1. N ausentes

#76. Número de células del filamento unilocular (o pedicelo) <NUMCELPEDI>

#77. Diámetro del filamento <DIAMCELPED>

#78. Forma de la paráfisis <FORMPARAFI>

0. ES esbeltas

1. MO moniliformes

2. CI cilíndricas

3. CL claviformes

4. IR irregulares en forma

#79. Largo de la paráfisis <LARGPARAFI>

#80. Número de células de la paráfisis <NUMCELPARA>

#81. Forma de las células basales de las paráfisis <FORCELPARB>

0. BA doliformes

1. CU cúbicas

2. CI cilíndricas

3. LA lanceoladas

4. EL elipsoidales

5. SF subesféricas

6. OB obovoides

7. OV ovoides

8. FU fusiformes

9. IR irregulares en forma

#82. Relación largo/diámetro de las células basales de la paráfisis <RELCELPARB>

Largo					
Diámetro					
Largo/diámetro					

<LARCELPARB> µm <DIACELPARB > µm

 $<\!\!RELCELPARB > \mu m$

#83. Forma de las células apicales de las paráfisis <FORCELPARA>

0. BA en forma de barril

1. CU cúbicas

2. CI cilíndricas

3. LA lanceoladales

4. EL elipsoidales

5. SF subesféricas

6. OB obovoides

7. OV ovoides

8. FU fusiformes

9. IR irregulares en forma

#84. Relación largo/diámetro de las células apicales de la paráfisis <RELCELPARA>

Largo					
Diámetro					
Largo/diámetro					

<LARCELPARA> µm <DIACELPARA > µm <RELCELPARA > µm

FORMA DE CRECIMIENTO

#85. Crecimiento sobre el sustrato <CRECIMIENT>

- 0. Formando manchas reticuladas.
- 1. Formando manchas aisladas con margen nítido.
- Formando manchas continuas sin traslape.
 Formando manchas continuas sin margen nítido.

Apéndice 2. Caracteres revisados en cada especimen, con asterisco se señalan los utilizados en el análisis de conglomerados y el de componentes principales.

GRUPO MORFOLÓGICO	CLAVE CAMPO	REFERENCIA HERBARIO	FORMA MOTAS	COLOR HÚMEDO	COLORSECO	PRESENCIA LINEAS DE CRECIMIENTO	FORMA SUPERFICIE *	TEXTURA AL RESTREGARSE ENTRE LOS DEDOS*	ADHERENCIA AL SUSTRATO	CONSISTENCIA	MÁRGENES
GRUPO I	NQ1	PTM10152	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Suave	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	1
GRUPO I	NQ5	PTM 10153	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Suave	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	1
GRUPO I	NQ11	PTM 8976	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	NQ16	PTM 9791	Irregulares	Verde oscuro	Verde grisaceo a café	Ausentes	Irregular	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	NQ17	PTM 9792	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	NQ19A	PTM9794	Irregulares	Verde pasto	Verde grisaceo a café	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	M28	PTM 10066	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Suave	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	1
GRUPO I	M27	PTM 10065	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Suave	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	1
GRUPO I	M30	PTM 10068	Irregulares	Café amarillento a rojizo	Café oscuro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	M31	PTM 10039	Irregulares	Café amarillento a rojizo	Café oscuro a rojizo	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	M67	PTM 10075	Irregulares	Café amarillento a rojizo	Café oscuro a rojizo	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	2
GRUPO I	NQ22A	PTM 9797	Irregulares	Verde pasto	Verde grisaceo a café	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO I	PTM_9793	PTM 9797	Irregulares	Verde pasto	Verde grisaceo a café	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo

GRUPO MORFOLÓGICO	CLAVE CAMPO	REFERENCIA HERBARIO	FORMA MOTAS	COLOR HÚMEDO	COLORSECO	PRESENCIA LINEAS DE CRECIMIENTO	FORMA SUPERFICIE *	TEXTURA AL RESTREGARSE ENTRE LOS DEDOS*	ADHERENCIA AL SUSTRATO	CONSISTENCIA	MÁRGENES
GRUPO II	NQ48e	PTM10154	Irregulares	Café amarillento a rojizo	Café oscuro	Ausentes	Irregular	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO II	NQ49	PTM10157	Irregulares	Café amarillento a rojizo	Café oscuro	Ausentes	Rugosa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO II	M20B	PTM10065	Irregulares	Verde pasto	Verde oscuro a negro	Ausentes	Lisa	Áspera	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO II	VR139	PTM9826	Irregulares	Café amarillento a verdoso	Café oscuro a rojizo	Ausentes	Lisa	Suave	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO II	PTM_9825	PTM 9825	Irregulares	Café amarillento a rojizo	Café oscuro	Ausentes	Lisa	4	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO II	VR136	PTM 9823	Irregulares	Café amarillento a verdoso	Café oscuro	Ausentes	Lisa	4	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	NQ33A	PTM 9808	Irregulares	Amarillo	Café amarillento	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se desintegra al ser desprendida del sustrato	Inconspicuo
GRUPO III	NQ 35	PTM 9810	Irregulares	Café rojizo	Café oscuro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	М3	PTM 10025	Irregulares	Café amarillento a verdoso	Café oscuro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M60	PTM 10117	Irregulares	Verde pasto	Café oscuro a rojizo	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M91	PTM 10118	Irregulares	Café rojizo	Café oscuro a rojizo	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M92	PTM 10119	Irregulares	Café amarillento a rojizo	Café oscuro a rojizo	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo

GRUPO MORFOLÓGICO	CLAVE CAMPO	REFERENCIA HERBARIO	FORMA MOTAS	COLOR HÚMEDO	COLORSECO	PRESENCIA LINEAS DE CRECIMIENTO	FORMA SUPERFICIE*	TEXTURA AL RESTREGARSE ENTRE LOS DEDOS*	ADHERENCIA AL SUSTRATO	CONSISTENCIA	MÁRGENES
GRUPO III	PTM9550	PTM9550	Irregulares	Amarillo	Café amarillento	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M80A	PTM 10095	Irregulares	Café rojizo	Café oscuro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M58	PTM10115	Irregulares	Café amarillento a verdoso	Café oscuro	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo
GRUPO III	M59R1	PTM 10116	Irregulares	Café amarillento a verdoso	Café oscuro a rojizo	Ausentes	Lisa	Resbalosa	Totalmente adherida	Se separa en pedezos al ser desprendida del sustrato pero se desintegra al restregarse entre los dedos	Inconspicuo

GRUPO MORFOLÓGICO	CLAVE CAMPO	GROSOR TALO VEGETATIVO*	RANGO	GROSOR TALO REPRODUCTIVO	RANGO	PRESENCIA PELOS HIALINOS*	AGRUPAMIENTO*	DISTRIBUCIÓN PELOS HIALINOS*	POSICIÓN PELOS HIALINOS*	PRESENCIA	DISTRIBUCIÓN RIZOIDES	SIMETRÍA	DISPOSICIÓN FILAMENTOS
GRUPO I	NQ1	238	220-250	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ5	238	220-250	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ11	162	140-200	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ16	136	75-240	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ17	190	150-250	-	-	Presentes	Solos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ19A	285	220-350	-	-	Ausentes	-	Irregularmente distribuidos en el talo	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO MORFOLÓGICO	CLAVE CAMPO	GROSOR TALO VEGETATIVO*	RANGO	GROSOR TALO REPRODUCTIVO	RANGO	PRESENCIA PELOS HIALINOS*	AGRUPAMIENTO*	DISTRIBUCIÓN PELOS HIALINOS*	POSICIÓN PELOS HIALINOS*	PRESENCIA	DISTRIBUCIÓN RIZOIDES	SIMETRÍA	DISPOSICIÓN FILAMENTOS
----------------------	----------------	-------------------------------	---------	-----------------------------	----------	---------------------------------	---------------	--	---	-----------	--------------------------	------------	---
GRUPO I	M28	197	128-160	-	-	Presentes	En grupos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	M27	197	128-160	-	-	Presentes	En grupos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los
GRUPO I	M30	159	118-215	-	-	Presentes	Solos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los
GRUPO I	M31	127	110-145	118	95-160	Presentes	Solos	Irregularmente distribuidos en el talo	primigenios Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	primigenios Surgiendo transversalmente respecto a los primigenios
GRUPO I	M67	123	100-140	153	140-175	Presentes	Solos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ22A	238	190-260	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO I	NQ20B	238	190-260	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	NQ48e	-	-	190	162-205	Presentes	Solos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	NQ49	-	-	191	145-225	Ausentes	-	-		Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	M20B	-	-	115	87.5-130	Presentes	En grupos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	VR 139	-	-	165	142-185	Presentes	En grupos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	VR 138	145	140-150	171	138-213	Presentes	Solos	Irregularmente distribuidos en el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios
GRUPO II	VR 136	-	-	175	140-215	Presentes	En grupos	Dstribuidos por todo el talo	Surgiendo de los filamentos primigenios	Ausentes	-	Unilateral	Surgiendo transversalmente respecto a los primigenios

GRUPO MORFOLÓGICO	CLAVE CAMPO	GROSOR TALO	RANGO	GROSOR TALO REPRODUCTIVO	RANGO	PRESENCIA PELOS	AGRUPAMIENTO*	DISTRIBUCIÓN PELOS	POSICIÓN PELOS	PRESENCIA	DISTRIBUCIÓN RIZOIDES	SIMETRÍA	DISPOSICIÓN FILAMENTOS
		VEGETATIVO*				HIALINOS*		HIALINOS*	HIALINOS*				
GRUPO III	NQ33A	66	50-79	0	0	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo
													transversalmente
													primigenios
GRUPO III	NQ 35	74.3	72-77.5	103.75	90-117.5	Presentes	En grupos	Irregularmente	Surgiendo de	Ausentes	-	Unilateral	Surgiendo
								distribuidos en el	los				transversalmente
								talo	filamentos				respecto a los
GRUPO III	M3	88	58-110	86	73-100	Presentes	Solos	Irregularmente	Surgiendo de	Aucontos		Unilatoral	Surgiendo
OKUI U III	1415	88	56-110	80	75-100	Tresentes	50103	distribuidos en el	los	Auschies	-	Offinateral	transversalmente
								talo	filamentos				respecto a los
									primigenios				primigenios
GRUPO III	M60	172	125-213	194	162-225	Presentes	Solos	Irregularmente	Surgiendo de	Ausentes	-	Unilateral	Surgiendo
								distribuidos en el	los				transversalmente
								taio	primigenios				primigenios
GRUPO III	M91	126	107-150	191	150-230	Presentes	En grupos	Restringidos a	Surgiendo de	Ausentes	-	Unilateral	Surgiendo
							0 1	ciertas partes del	los				transversalmente
								talo	filamentos				respecto a los
CDUDO III	1.602	127	120,170			Descentes	0.1.	Detailerideesee	primigenios	A		II-Second	primigenios
GRUPO III	M92	157	120-160	-	-	Presentes	50105	todo el talo	Surgiendo de	Ausentes	-	Unilateral	surgiendo
								todo el talo	filamentos				respecto a los
									primigenios				primigenios
GRUPO III	PTM9550	106	87-115	129	110-155	Ausentes	-	-		Ausentes	-	Unilateral	Surgiendo
													transversalmente
													respecto a los
GRUPO III	M80.4	131	120-145			Presentes	En grupos	Irregularmente	Surgiendo de	Aucontos		Unilatoral	Surgiendo
OKUI U III	MOUA	151	120-145	-	-	Tresentes	En grupos	distribuidos en el	los	Auschies	-	Offinateral	transversalmente
								talo	filamentos				respecto a los
									primigenios				primigenios
GRUPO III	M58	130	100-	-	-	Ausentes	-	-	-	Ausentes	-	Unilateral	Surgiendo
			157.5										transversalmente
													respecto a los
GRUPO III	M59R1	129	112-	173	137-200	Presentes	En grupos	Irregularmente	Surgiendo de	Ausentes	_	Unilateral	Surgiendo
OKOI O III	MO/MI	127	162.5	115	157 200	1 resentes	En grupos	distribuidos en el	los	rusences		Simuerai	transversalmente
								talo	filamentos				respecto a los
									primigenios				primigenios

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	FORMA FILAMENTOS POSTÍGENOS*	LARGO FILAMENTO POSTÍGENO*	RANGO	DIAMETRO FILAMENTO*	UNIÓN FILAMENTOS POSÍGENOS*	NUMERO DE CÉLULAS UNIDAS*	RANGO	NÚMERO DE CÉLULAS DEL PERITALO*	RANGO	ORDEN RAMIFICACIÓN	FORMA DE LAS CÉLULAS BASALES DE LOS FILAMENTO POSTÍGENOS*	LARGO CÉLULAS BASALES*
GRUPO I	NQ1	Rectos	222	200-234	Disminuye hacia el ápice	Unidos entre sí sólo en la parte basal del talo	27	-	-	-	1	Cúbicas	9.3
GRUPO I	NQ5	Rectos	222	200-234	Disminuye hacia el ápice	Unidos entre sí sólo en la parte basal del talo	27	-	-	-	1	Cúbicas	9.3

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	FORMA FILAMENTOS POSTÍGENOS*	LARGO FILAMENTO POSTÍGENO*	RANGO	DIAMETRO FILAMENTO*	UNIÓN FILAMENTOS POSÍGENOS*	NUMERO DE CÉLULAS UNIDAS*	RANGO	NÚMERO DE CÉLULAS DEL PERITALO*	RANGO	ORDEN RAMIFICACIÓN	FORMA DE LAS CÉLULAS BASALES DE LOS FILAMENTO POSTÍGENOS*	LARGO CÉLULAS BASALES*
GRUPO I	NQ11	Rectos	129	128-130	Es uniforme en toda su longitud	Estrechamente unidos en toda su longitud	12	8-17.0	17		1	Cúbicas	8.3
GRUPO I	NQ16	Rectos	105	70-160	Aumenta hacia el ápice	Laxamente unidos en toda su longitud	9	04-14.0	13	7.0-18.0	1	Irregulares	8
GRUPO I	NQ17	Rectos	184	145-245	Es uniforme en toda su longitud	Laxamente unidos en toda su longitud	6	4-8.0	18	15.0-21.0	1	Cúbicas	10
GRUPO I	NQ19A	Rectos	273	200-335	Es uniforme en toda su longitud	Estrechamente unidos en toda su longitud	27	16-37.0	29	21.0-37.0	1	Cúbicas	6
GRUPO I	M28	Rectos	194	175-240	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	7	1-12.0	18	14-23	1	Cúbicas	13.5
GRUPO I	M27	Rectos	194	175-240	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	7	1-12.0	18	14-23	1	Cúbicas	13.5
GRUPO I	M30	Rectos	-	-	Es uniforme en toda su longitud	Laxamente unidos en toda su longitud	9.4	8-11.0	14	8-20.0	1	Cúbicas	10.6
GRUPO 1	M31	Rectos	113	100-120	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	9	8-11.0	18	16-20	1	Cúbicas	5.8
GRUPO I	M67	Rectos	117	110-125	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	7	6-8.0	16	14-18.0	0	Cúbicas	7
GRUPO I	NQ22A	Rectos	216	185-245	Es uniforme en toda su longitud	Estrechamente unidos en toda su longitud	23	16-29	25	21-29	1	Cilindricas	9
GRUPO I	NQ20B	Rectos	216	185-245	Es uniforme en toda su longitud	Estrechamente unidos en toda su longitud	23	16-29	25	21-29	1	Cilindricas	9
GRUPO II	NQ48e	Rectos	165	150-180	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	7	5-10.0	18	17-19.0	0	Cúbicas	6
GRUPO II	NQ49	Curvos	180	170-190	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	9	6-10.0	21	19.0-22.0	1	Cúbicas	6
GRUPO II	M20B	Rectos	111	105-118	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	7	3.0-12.0	19	16-21.0	1	Cúbicas	6
GRUPO II	VR 139	Curvos	124	65-180	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	8	6-10.0	21	17-26	0	Cúbicas	4.5
GRUPO II	VR 138	Rectos	128	120-140	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	6	4-8.0	19	14-21	0	Cúbicas	5.6
GRUPO II	VR 136	Curvos	175	145-200	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	6	4.0-7.0	21	16-26	0	Cúbicas	6.5
GRUPO III	NQ33												4.6
		Curvos	60	45-77	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	3	2-5.0	9	5-12.0	1	Doliiformes	

GRUPO MORFOLOGICO	CLAVE DE CAMPO	FORMA FILAMENTOS POSTÍGENOS*	LARGO FILAMENTO POSTÍGENO*	RANGO	DIAMETRO FILAMENTO*	UNIÓN FILAMENTOS POSÍGENOS*	NUMERO DE CÉLULAS UNIDAS*	RANGO	NÚMERO DE CÉLULAS DEL PERITALO*	RANGO	ORDEN RAMIFICACIÓN	FORMA DE LAS CÉLULAS BASALES DE LOS FILAMENTO POSTÍGENOS*	LARGO CÉLULAS BASALES*
GRUPO II	NQ 35	Rectos	76.625	62-113	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	7	4-10.0	17	16-18	1	Cúbicas	3.9
GRUPO II	M3	Rectos	-	-	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	6	04-10.0	15	13-19	1	Cilindricas	5.6
GRUPO II	M60	Rectos	187	175-200	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	6	5-7.0	23	21-25.0	1	Cúbicas	6
GRUPO II	M91	Rectos	167	137-220	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	9	7-10.0	21	12-26.0	1	Cúbicas	7
GRUPO II	M92	Rectos	115	100-130	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	5	4.0-6.0	16	14-19.0	1	Cúbicas	6
GRUPO II	PTM9550	Rectos	118	95-135	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	5		19		1	Doliiformes	7
GRUPO II	M80A	Rectos	110	100-120	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	8	7-9.0	18	16.0-19.0	0	Cúbicas	5
GRUPO II	M58	Rectos	129	87.5-150	Es uniforme en toda su longitud	Unidos entre sí sólo en la parte basal del talo	5	4-6.0	5	4-6.0	1	Cúbicas	7
GRUPO II	M59R1	Curvos	155	100-190	Aumenta hacia el ápice	Unidos entre sí sólo en la parte basal del talo	6	4-8.0	16	14-20.0	1	Cúbicas	6

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	RANGO	DIAMETRO CÉLULAS BASALES*	RANGO	RELACIÓN LARGO- DIAMETRO*	RANGO	FORMA CELULAS CERCANAS AL ÁPICE*	GROSOR PARED CELULAR*	LARGO CÉLULAS CERCANAS AL ÁPICE*	RANGO	DIÁMETRO CÉLULAS CERCANAS AL ÁPICE*	RANGO	RELACIÓN LARGO- DIAMETRO*
GRUPO I	NQ1	7-11.5	10.7	9.4-12.1	0.9	0.6-1	Cúbicas	Delgadas	6.8	5.7-7.5	6.2	5.4-6.6	1.1
GRUPO I	NQ5	7-11.5	10.7	9.4-12.1	0.9	0.6-1	Cúbicas	Delgadas	6.8	5.7-7.5	6.2	5.4-6.6	1.1
GRUPO I	NQ11	7-9.0	9.05	7.5-10.0	0.9	0.7-1.06	Cúbicas	Delgadas	8.05	6.5-10	8.2	6-10.0	1
GRUPO I	NQ16	6.0-10.0	8	7.0-10.0	0.9	0.6-1.1	Cilindricas	Delgadas	7	6.0-8.0	7.5	6-8.0	0.9
GRUPO I	NQ17	9.0-12.0	12	9.0-15.0	0.8	0.6-1.2	Cúbicas	Delgadas	7	6.0-9.0	7	5.0-9.0	1
GRUPO I	NQ19A	5-7.0	9	8-10.0	0.7	0.5-0.8	Cúbicas	Delgadas	8	7-9.0	8	7-9.0	1
GRUPO I	M28	10-17.0	9	8-14.0	1.3	0.7-1.7	Cúbicas	Delgadas	7.9	6-10.0	8.9	8-10.0	0.9
GRUPO I	M27	10-17.0	9	8-14.0	1.3	0.7-1.7	Cúbicas	Delgadas	7.9	6-10.0	8.9	8-10.0	0.9
GRUPO I	M30	09-13.0	9.5	8-11.0	1.1	0.8-1.6	Subesfericas	Gruesas	8.9	7-12.0	8.3	7-10.0	1.1
GRUPO I	M31	5-7.0	5.7	3-7.0	1.1	0.7-2.3	Cilindricas	Delgadas	5.9	4-8.0	3.3	3-4.0	1.8

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	RANGO	DIAMETRO CÉLULAS BASALES*	RANGO	RELACIÓN LARGO- DIAMETRO*	RANGO	FORMA CELULAS CERCANAS AL ÁPICE*	GROSOR PARED CELULAR	LARGO CÉLULAS CERCANAS AL ÁPICE*	RANGO	DIÁMETRO CÉLULAS CERCANAS AL ÁPICE*	RANGO	RELACIÓN LARGO- DIAMETRO*
GRUPO I	M67	6-8.0	8	7.0-10.0	0.9	0.8-1.0	Cúbicas	Gruesas	8	7.0-10.0	5	4.0-6.0	1.8
GRUPO I	NQ22A	7-11.0	6	5-8.0	1.5	1.1-1.8	Cúbicas	Delgadas	8	7-10.0	8	7-9.0	1
GRUPO I	NQ20B	7-11.0	6	5-8.0	1.5	1.1-1.8	Cúbicas	Delgadas	8	7-10.0	8	7-9.0	1
GRUPO II	NQ48e	5.0-6.0	7	6-8.0	0.8	0.6-1.0	Dolliformes	Delgadas	12	10-15.0	6	5-6.0	2
GRUPO II	NQ49	5.0-9.0	6	5-7.0	1.1	0.7-1.8	Cilindricas	Delgadas	11	9-15.0	6	6-7.0	1.8
GRUPO II	M20B	5-7.0	6	5-8.0	1	0.6-1.2	-	-	-	-	-	-	-
GRUPO II	VR 139	4-5.0	7	7	0.6	0.5-0.7	Cúbicas	Gruesas	8	7-8.0	6	5-6.0	1.4
GRUPO II	VR 138	5-6.0	6.7	6-7.0	0.8	0.7-1.0	Dolliformes	Gruesas	8	6-10.0	6	5-7.0	1.2
GRUPO II	VR 136	5.0-8.0	7	5.0-8.0	1	0.7-1.3	Dolliformes	Delgadas	7	5-8.0	7	6-7.0	1
GRUPO III	NQ33A	3.8-5.3	4.9	4.1-5.8	0.9	0.7-1.17	Cilindricas	Delgadas	7.05	5.5-8.9	3.7	3-4.8	1.9
GRUPO III	NQ 35	3-5.0	3.7	3-5.0	1.1	0.6-1.7	Cilindricas	Delgadas	5.7	4-7.0	3.4	3-4.0	1.7
GRUPO III	M3	5-6.0	5.4	3.8-7	1.1	0.7-1.5	Subesfericas	Delgadas	7.35	6-9.0	5.6	4.8-6.5	1.3
GRUPO III	M60	5-6.0	7	6-8.0	0.8	0.6-1.0	Cúbicas	Delgadas	8	6-10.0	6	5-7.0	1.3
GRUPO III	M91	5.0-9.0	8	7.0-10.0	0.9	0.5-1.3	Cilindricas	Delgadas	6	6	2	1.3-1.7	11
GRUPO III	M92	5.0-8.0	6	5.0-7.0	1	0.8-1.3	Cilindricas	Delgadas	9	6-12.0	6	5-6.0	1.6
GRUPO III	PTM9550	6-7.0	5.8		1.1		Cilindricas	Delgadas	6		5		1.2
GRUPO III	M80A	4-6.0	7	5-8.0	0.8	0.6-1.0	Cilindricas	Gruesas	7	6-8.0	5	5	1.5
GRUPO III	M58	7-8.0	5	4.0-6.0	1.5	1.2-2.0	Cilindricas	Delgadas	8	6-9.0	6	6	1.3
GRUPO III	M59R1	5-7.0	5	4-6.0	1.1	0.8-1.8	Cilindricas	Delgadas	9	7-10.0	5.5	5-6.0	1.6

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	RANGO	FORMA CÉLULA CORTICAL*	LARGO CÉLULA CORTICAL*	RANGO	DIÁMETRO CÉLULA CORTICAL*	RANGO	RELACIÓN LARGO- DIÁMETRO *	RANGO	CAPAS FILAMENTOS PRIMIGENIOS*	NÚMERO DE CAPAS FILAMENTOS PRIMIGENIOS*	FORMA CÉLULAS DEL HIPOTALO*	LARGO CÉLULAS DEL HIPOTALO*
GRUPO I	NQ1	0.98-1.2	Subesfericas	8.3	6.4-9.5	6.1	5.2-7.5	1.4	1.1-1.6	En capas nítidas	2	Cilíndricas	12.8
GRUPO I	NQ5	0.98-1.2	Subesfericas	8.3	6.4-9.5	6.1	5.2-7.5	1.4	1.1-1.6	En capas nítidas	2	Cilíndricas	12.8
GRUPO I	NQ11	0.7-1.5	Cúbicas	10	7-12.0	8.25	6-10.0	1.2	0.7-1.7	En capas nítidas	2	Cilíndricas	20
GRUPO I	NQ16												13
		0.7-1.2	Subesfericas	9.5	7.0-12.0	7.7	6-11.0	1.3	0.7-1.7	No en capas nítidas	2	Irregulares	

GRUPO MORFOLÓGICO	CLAVE DE CAMPO	RANGO	FORMA CÉLULA CORTICAL*	LARGO CÉLULA CORTICAL*	RANGO	DIÁMETRO CÉLULA CORTICAL*	RANGO	RELACIÓN LARGO- DIÁMETRO*	RANGO	CAPAS FILAMENTOS PRIMIGENIOS*	NÚMERO DE CAPAS FILAMENTOS PRIMIGENIOS*	FORMA CÉLULAS DEL HIPOTALO*	LARGO CÉLULAS DEL HIPOTALO*
GRUPO I	NQ17	0.7-1.4	Subesfericas	9	7.0-11.0	7	5.0-9.0	1.4	1-2.2	No en capas nítidas	1	Irregulares	12
GRUPO I	NQ19A	0.7-1.2	Elipsoidales	12	10.0-14.0	8	6-9.0	1.5	1.1-1.8	No en capas	2	Irregulares	12
GRUPO I	M28	0.6-1.3	Subesfericas	14.2	12-18.0	10.2	9-12.0	1.4	1.1-1.6	En capas nítidas	2	Irregulares	17.9
GRUPO I	M27	0.6-1.3	Subesfericas	14.2	12-18.0	10.2	9-12.0	1.4	1.1-1.6	En capas nítidas	2	Irregulares	17.9
GRUPO I	M30	0.7-1.5	Subesfericas	11.2	9-15.0	10	7-12.0	1.2	0.8-2.1	En capas nítidas	2	Irregulares	15.9
GRUPO 1	M31	1-2.6	Elipsoidales	9.3	7-12.0	5	3-7.0	1.9	1.2-2.6	En capas nítidas	2	Cilíndricas	11.5
GRUPO I	M67	1.1-2.5	Elipsoidales	12	10-14.0	8	6.0-9.0	1.6	1.2-2.0	En capas nítidas	2	Cilíndricas	13
GRUPO I	NQ22A	0.7-1.2	Subesfericas	11	9-12.0	9	7-10.0	1.3	1.0-1.5	No en capas	2	Irregulares	12
GRUPO I	NQ20B	0.7-1.2	Subesfericas	11	9-12.0	9	7-10.0	1.3	1.0-1.5	No en capas	2	Irregulares	12
GRUPO II	NQ48e	1.3-2.5	Cilindricas	8.5	6-10.4	4.1	3.7-4.3	2.1	1.41-2.8	En capas nítidas	2	Irregulares	10.2
GRUPO II	NQ49	1.3-2.3	Subesfericas	9.9	7-11.0	5.2	4-6.0	1.9	1.4-2.3	En capas nítidas	2	Cilíndricas	10.5
GRUPO II	M20B	1.1-1.6	Obovoides	11.4	09-14.0	6.7	6-8.0	1.7	1.4-2.3	En capas nítidas	2	Cilíndricas	8.3
GRUPO II	VR 139	1-1.5	Obovoides	10	9-12.0	7	6-7.0	1.6	1.2-1.8	En capas nítidas	3	Irregulares	13
GRUPO II	VR 138	8.0-12.0	Elipsoidales	11	8.0-12.0	7	6-7.0	1.7	1.1-2.0	En capas nítidas	2	Cilíndricas	16
GRUPO II	VR 136	1-2.2	Elipsoidales	10	8-13.0	7	6-7.0	1.5	1.1-2.2	En capas nítidas	3	Irregulares	13
GRUPO III	NQ 35		Elipsoidales	9		7		1.3		En capas nítidas	2	Irregulares	14.5
GRUPO III	M3	1.2-1.6	Obovoides	12	11-13.0	6.5	5-7.0	1.8	1.6-2.4	En capas nítidas	3	Cilíndricas	11
GRUPO III	M60	1-1.5	Elipsoidales	11	10.0-14.0	6	5-8.0	1.8	1.3-2.8	En capas nítidas	2	Cilíndricas	12
GRUPO III	M91	13-20	Obovoides	10	8-13.0	6	5-7.0	1.8	13-26	En capas nítidas	2	Irregulares	13
GRUPO III	M92	1.5-2.0	Obovoides	10	8 15 0	6	670	1.0	1.2.2.0	En capas nítidas	2	Irragularaa	11
		1.4-2.5	Elipsoidales	11	11-15.0	7.2	7-8.0	1.8	1.5-2.2	En capas nítidas	2	Irregulares	11
GRUPO III	PTM9550	1.7-3.0	-	-	-	-	-	-	-	En capas nítidas	2	Irregulares	13
GRUPO III	M80A	1.3-1.6	Obovoides	11	10.0-12.0	8	7-9.0	1.4	1.0-1.7	En capas nítidas	2	Cilíndricas	12
GRUPO III	M58	1.1-1.4	Obovoides	12	10.0-13.0	7	6.0-9.0	1.6	1.3-2.0	En capas nítidas	3	Cilíndricas	14
GRUPO III	M59R1	0.8-1.2	Elipsoidales	9	8-11.0	7	6-8.0	1.3	1.1-1.8	En capas nítidas	2	Cilíndricas	14

GRUPO MORFOLÓGIC O	CLAVE CAMPO	RANG O	DIÁMETR O CÉLULAS DEL HIPOTALO *	RANG O	RELACIÓN LARGO- DIAMETRO *	RANG O	NÚMERO DE CLOROPLASTO S	PRESENCIA DE PIRENOIDE S	FISODE S	UNANGIOS Y PLURANGIO S EN EL MISMO TALO	PRESENCIA DE PLURANGIO S	PRESENCIA DE CAPA MUCILAGINOS A	ESTADO DE MADUREZ DE LOS PLURANGIO S	LUGAR DE INSERCIÓN DE LOS PLURANGIO S	NÚMERO DE PLURANGIO S
GRUPO I	NQ1	12.3-15	6.3	5.2-7.1	2	1.7-2.3	1	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	NQ5	12.3-15	6.3	5.2-7.1	2	1.7-2.3	1	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	NQ11	14-31	7.5	6.5-9	2.6	1.8-3.6	1	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	NQ16	10.0- 17.0	7	4.0-10.0	7	4.0-10.0	1	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	NQ17	9-14.0	7	5-10.0	1.8	1.0-2.6	2	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	NQ19A	9-19.0	7	5-10.0	1.8	1.1-2.7	2	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I GRUPO I	M28 M27	13-24 13-24	10.2 10.2	8-12.0 8-12.0	1.8 1.8	1.3-2.2 1.3-2.2	-	Ausentes Ausentes	Presentes Presentes	-	Ausentes Ausentes	-	-	-	-
GRUPO I	M30	11-20.0	7.8	5-11.0	2.1	1.1-2.6	-	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO I	M31	8-16.0	4.9	3.5-8.0	2.4	1.8-3.2	1	Ausentes	Presentes	En el mismo talo	Presentes	No cubiertos por una matriz gelatinosa	Maduros	Intercalarment e en los filamentos postígenos reproductivos	1
GRUPO I	M67	10-17.0	5	4-5.0	3	2-3.8	1	Ausentes	Presentes	En talos separados	Ausentes	-	-	-	-
GRUPO I	NO22A	9-19.0	7	5-10.0	1.8	1.1-2.7	2	Ausentes	Presentes	· -	Ausentes	-	-	-	-
GRUPO I	NQ20B	9-19.0	7	5-10.0	1.8	1.1-2.7	2	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO II	NQ48e	8-15.0	5	3.0-6.0	2.3	1.6-2.8	1	Ausentes	Ausentes	En talos separados	Ausentes	-	-	-	-
GRUPO II	NQ49	10-17.0	4	3-5.0	3	2-4.3	1	Ausentes	Ausentes	-	Ausentes	-	-	-	-
GRUPO II	M20B	10-16.0	4.5	4-5.0	3	2.2-3.8	1	Ausentes	Ausentes	En talos separados	Presentes	No cubiertos por una matriz gelatinosa	Maduros	Intercalarment e en los filamentos postígenos reproductivos	1
GRUPO II	VR 139	8-16.0	4	3-6.0	3	1.6-3.8	1	Ausentes	Ausentes	En el mismo talo	Presentes	No cubiertos por una matriz gelatinosa	Maduros	Intercalarment e en los filamentos postígenos reproductivos	1
GRUPO II	VR 138	12.0- 18.0	5	3-8.0	3	1.7-4.6	1	Ausentes	Presentes	En talos separados	Ausentes	-	-	-	-
GRUPO II	VR 136	9-16.0	5	3-6.0	3.1	2-5.3	1	Ausentes	Ausentes	En talos separados	Ausentes	-	-	-	-
GRUPO III	NQ 35	7.4-13.9	4.4	3.3-5.6	2.4	1.81- 3.19	-	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO III	М3	8-13.0	3.6	2-5.0	3.2	1.8-4	-	Ausentes	Presentes	En el mismo talo	Presentes	No cubiertos por una matriz gelatinosa	Juveniles	Intercalarment e en los filamentos postígenos reproductivos	1

GRUPO MORFOLÓGIC O	CLAVE CAMPO	RANG O	DIÁMETR O CÉLULAS DEL	RANG O	RELACIÓN LARGO- DIAMETRO *	RANG O	NÚMERO DE CLOROPLASTO S	PRESENCIA DE PIRENOIDE S	FISODE S	UNANGIOS Y PLURANGIO S EN EL	PRESENCIA DE PLURANGIO S	PRESENCIA DE CAPA MUCILAGINOS A	ESTADO DE MADUREZ DE LOS PLURANGIO	LUGAR DE INSERCIÓN DE LOS PLURANGIO	NÚMERO DE PLURANGIO S
			HIPOTALO *							MISMO TALO			S	S	
GRUPO III	M60	5-15.0	4.45	3-5.5	1.9	1.2-3.8	1	Ausentes	Presentes	En el mismo talo	Presentes	No cubiertos por una matriz gelatinosa	Maduros	Intercalarment e en los filamentos postígenos reproductivos	1
GRUPO III	M91	11-15.0	4	3.0-7.0	3	2-5.0	1	Ausentes	Ausentes	En talos separados	Ausentes	-	-		-
GRUPO III	M92	11.0- 20.0	4	3.0-5.0	4.2	2.7-6.7	1	Ausentes	Ausentes	En el mismo talo	Presentes	No cubiertos por una matriz gelatinosa	Maduros	Intercalarment e en los filamentos postígenos reproductivos	1
		10.0- 15.0	5	2-9.0	3	1.2-5.5	1	Ausentes	Ausentes	-	Ausentes	-	-	· -	-
GRUPO III	РТМ955 0		6		2.6		1	Ausentes	Ausentes	-	Ausentes	-	-	-	-
GRUPO III	M80A	9-14.0	3.5	3-4.0	3.1	2.2-4.3	1	Ausentes	Presentes	-	Ausentes	-	-	-	-
GRUPO III	M58	10.0-	5	3.0-6.0	3	2.5-3.8	1	Ausentes	Ausentes	-	Ausentes	-	-	-	-
GRUPO III	M59R1	10-15.0	5	4.0-6.0	2.7	2-3.5	1	Ausentes	Ausentes	En talos separados	Ausentes	-	-	-	-

GRUPO MORFOLÓGICO	CLAVE CAMPO	FORMA PLURANGIOS	LARGO PLURANGIOS	RANGO	DIAMETRO PLURANGIO	RANGO	NÚMERO DE SERIES DE CÉLULAS DEL PLURANGIO	FORMA CÉLULAS DEL PLURANGIO	PRESENCIA CÉLULAS ESTÉRILES	NÚMERO DE CÉLULAS ESTÉRILES	FORMA CÉLULAS ÉSTERILES	LARGO CÉLULAS ÉSTERILES	RANGO
GRUPO I	NQ1	-	-	-	-	-	-	-	-	-	-	-	
GRUPO I	NQ5	-	-	-	-	-	-	-	-	-	-	-	
GRUPO I	NQ11	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ16	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ17	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ19A	-	-	-	-		-	-	-	-	-	-	-
GRUPO I	M28	-	-	-	-		-	-	-	-	-	-	
GRUPO I	M27	-	-	-	-		-	-	-	-	-	-	
GRUPO I	M30	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	M31	Cilíndricos	63	60-66	4.17	3.5-5	12.8	Subesféricas	Presentes	1	Elipsoidal	10.7	08-14.0
GRUPO I	M67	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ22A	-	-	-	-		-	-	-	-	-	-	-
GRUPO I	NQ20B	-	-	-	-		-	-	-	-	-	-	-
GRUPO II	NQ48e	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	NQ49	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	M20B	Cilíndricos	42	35-49.0	6	5-7.0	1	Cúbica	Presentes	1	Obovoide	13	11-15.0
GRUPO II	VR 139	Cilíndricos	48	45-55	9	6-11.0	1	Cúbica	Presentes	1	Obovoide	10	8-12.0
GRUPO II	VR 138	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	VR 136	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	NQ33 A	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	NQ 35	Cilíndricos	40.3	37-47	5	4-7.0	8.4	Irregular	Presentes	1	Subesférica	8.9	7-11.0
GRUPO III	M3	Cilíndricos	-	-	-	-	10	Subesféricas	Presentes	1	Obovoide	9.1	6-10.0
GRUPO III	M60	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M91	Irregulares	38	30.0-41.0	8	6-9.0	2	Subesféricas	Presentes	2	Elipsoidal	8.5	6.0-13.0

GRUPO III	M92	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	PTM9550	-	-	-	-		-	-	-	-	-	-	
GRUPO III	M80A	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M58	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M59R1	-	-	-	-	-	-	-	-	-	-	-	-

GRUPO MORFOLÓGICO	CLAVE CAMPO	DIÁMETRO DE CÉLULAS ESTERILES	RANGO	RELACIÓN LARGO- DIÁMETRO	RANGO	PRESENCIA UNANGIOS	MADUREZ DE LOS UNANGIOS	CAPA QUE LOS CUBRE	POSICIÓN DE SURGIMIENTO DE LOS UNANGIOS	POSICIÓN DE LOS FILAMENTOS CIRCUNDANTES	FORMA DE INSERCIÓN DE LOS UNANGIOS	DISPOSICIÓN DE LOS UNANGIOS	FORMA UNANGIOS	LARGO UNANGIOS
GRUPO I	NQ1	-	-	-		-	-	-	-	-	-	-	-	-
GRUPO I	NQ5	-		-		-	-	-	-	-	-	-	-	-
GRUPO I	NQ11	-	-	-	-	Presentes	Maduros	Cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Obovoides	35
GRUPO I	NQ16	-	-	-	-	-	-	-	-	-		-	-	-
GRUPO I	NQ17	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ19A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	M28 M27	-		-		-	-	-	-	-	-	-	-	-
GRUPO I	M30	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos	No en cadena	Fusiformes	36.2
GRUPO I	M31	6.2	5-7.0	1.8	1.1-2.6	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	reproductivos Terminalmente en los filamentos reproductivos	No en cadena	Claviformes	46.3
GRUPO I	M67	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Obovoides	50
GRUPO I	NQ22A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NO20B	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	NQ48e	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos Terminalmente	No en cadena	Obovoides	63
GRUPO II	NQ49	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	en los filamentos reproductivos	No en cadena	Obovoides	75
GRUPO II	M20B	7	6-8.0	1.8	1.5-2.2	-	-	-	-	-	-	-	-	-
GRUPO II	VR 139	5	3-6.0	2	1.6-4.0	Presentes	Maduros	Cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Obovoides	60
GRUPO II	VR 138	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Obovoides	60
GRUPO II	VR 136	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Elipsoidales	104
GRUPO III	NQ33 A	3.8	3-5.0	2.4	1.8-2.7	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Ovoides	37
GRUPO III	NQ 35	5.6	5-7.0	1.7	1-2.0	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los	No en cadena	Claviformes	47

											filamentos reproductivos			
GRUPO III	M3	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Elipsoidales	77
GRUPO III	M60	6.5	5.0-8.0	1.3	1.0-1.6	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Elipsoidales	71
GRUPO III	M91	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M92	-		-		Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Claviformes	45.9
GRUPO III	PTM9550	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M80A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M58	-	-	-	-	Presentes	Maduros	No cubiertos por una capa gelatinosa	A nivel de medio peritalo	Lateralmente a filamentos circundantes	Terminalmente en los filamentos reproductivos	No en cadena	Elipsoidales	59
GRUPO III	M59R1													

GRUPO MORFOLÓGICO	CLAVE CAMPO	RANGO	DIÁMETRO UNANGIO	RANGO	RELACIÓN LARGO- DIÁMETRO	RANGO	PEDICELO	NÚMERO CÉLULAS PEDICELO	DIAMETRO PEDICELO	RANGO	PARÁFISIS	FORMA PARAFISIS	LARGO PARAFISIS	RANGO
GRUPO I	NQ1	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ5	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ11	20-52	21.2	18-25	1.7	0.8-2.6	Presente	4	7	5-8.0	Presente	Cilindricas	79	45-95
GRUPO I	NQ16	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ17	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ19A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	M28		-		-		-	-	-		-	-	-	
GRUPO I	M27		-		-		-	-	-		-	-	-	
GRUPO I	M30	28-43	9.4	7-12.0	3.9	2.8-6	Presente	1	4.7	4-6.0	Presente	Cilindricas	72.3	62-84
GRUPO I	M31	33-58	20	18-26	2.4	1.2-2.7	Presente	1	5.3	4-7.0	Presente	Claviformes	91.7	80-100
GRUPO I	M67	40-60	23	20-26	2.2	1.8-3.0	Presente	1	5.2	5-6.0	Presente	Cilindricas	70	60-85
GRUPO I	NQ22A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ20B	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	NO48e	51-79	23	18-27	2.8	2.4-3.3	Presente	3	9	7-10.0	Presente	Claviformes	123	95-150
GRUPO II	NQ49	62-95.0	24	20-27.0	3.2	2.5-4.3	Presente	3	9.3	8.0-10.0	Presente	Esbeltas	129.7	110-150.0
GRUPO II	M20B	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	VR 139	48-72	27	24-32	2.3	1.6-2.8	Presente	2	7	5-8.0	Presente	Cilindricas	88	75-100
GRUPO II	VR 138	50-75	30	26-35	2	1.7-2.4	Presente	1	5.3	5-6.0	Presente	Cilindricas	92.5	80-110
GRUPO II	VR 136	60-130	31.5	22-42	3.3	2.7-3.9	Presente	4	10	6-12.0	Presente	Esbeltas	103	
GRUPO III	NQ33 A	26-47	19.6	13-23.0	1.9	1.75-2.1	Presente	1	5.3	5-6.0	Presente	Cilindricas	73.5	67.5-78
GRUPO III	NQ 35	38-66	22	11-30.0	2.2	1.7-3.5	Presente	2	5.5	04-6.0	Presente	Esbeltas	85.5	65-93
GRUPO III	M3	55-105	21	17-26	3.7	3.2-4.2	Presente	5	4.35	8-10.0	Presente	Cilindricas	130	100-170
GRUPO III	M60	50-92	22	18-25	3.3	2.6-3.8	Presente	3	8	7.5-8.0	Presente	Esbeltas	128	115-145
GRUPO III	M91	-	-	-	-	-	-	-	-	-	-	-	-	-

GRUPO MORFOLÓGICO	CLAVE CAMPO	RANGO	DIÁMETRO UNANGIO	RANGO	RELACIÓN LARGO- DIÁMETRO	RANGO	PEDICELO	NÚMERO CÉLULAS PEDICELO	DIAMETRO PEDICELO	RANGO	PARÁFISIS	FORMA PARAFISIS	LARGO PARAFISIS	RANGO
GRUPO III	M92		22.5		2.1		Presente	1	5.8		Presente	Claviformes	68	
GRUPO III	PTM9550	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M80A	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M58	50.0-82.0	17	13.0-21	3.5	2.8-4.6	Presente	5	7	6-9.0	Presente	Cilindricas	120	105-135.0
GRUPO III	M59R1													

GRUPO MORFOLÓGICO	CLAVE CAMPO	NÚMERO CÉLULAS PARÁFISIS	RANGO	FORMA CÉLULA BASAL PARAFISI	LARGO CÉLULA BASAL PARAFISIS	RANGO	DIAMETRO CÉLULA BASAL PARAFISIS	RANGO	RELACIÓN LARGO- DIAMETRO	RANGO	FORMA CÉLULA ÁPICE	LARGO CÉLULA ÁPICE	RANGO	DIAMETRO CÉLULA ÁPICE	RANGO	RELACIÓN LARGO- DIAMETRO	RANGO
GRUPO I	NQ1	-	-	-	-	-	-	-	-	-	-	-		-		-	-
GRUPO I	NQ5	-	-	-	-	-	-	-	-	-	-	-		-		-	-
GRUPO I	NQ11	11	6-14.0	Cilindricas	5.3	03-5.0	6.3	6.0-7.0	1.4	0.75-2.3	Cilindricas	6.9	6-8.0	10.8	9.5-11.0	1.6	1.35-1.8
GRUPO I	NQ16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ19A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	M28	-		-	-		-		-		-	-		-		-	-
GRUPO I	M27	-		-	-		-		-		-	-		-		-	-
GRUPO I	M30	6	4-9.0	Cilindricas	9.9	8-15.0	5.6	4-9.0	1.8	1.3-2.4	Elipsoidales	12.9	10-17.0	8.6	6-11.0	1.6	1.1-2.4
GRUPO I	M31	12.5	1116.0	Cilindricas	7.6	6-10.0	3.6	2-5.0	2.27	1.2-5	Irregulares	9.9	7-12.0	6.1	4-7.0	1.6	1.3-2.0
GRUPO I	M67	8	7-10.0	Cilindricas	9	7-11.0	4	3-4.0	2.5	1.7-2.7	Obovoides	10	9-12.0	8	6-9.0	1.4	1.1-2.0
GRUPO I	NQ22A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO I	NQ20B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	NQ48e	15	13-17.0	Cilindricas	9	7-15.0	4	3-5.0	2	1.6-3.8	Elipsoidales	10	7-13.0	6	4-9.0	1.4	1-1.9
GRUPO II	NQ49	14	12-16.0	Cilindricas	9	8-12.0	4	3-5.0	2.5	2.0-3.0	Elipsoidales	12	10-14.0	6	5-7.0	2	1.6-2.8
GRUPO II	M20B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO II	VR 139	10	8-13.0	Cilindricas	10	10	5	5	2	2	Doliiformes	10	10	7	7	1.4	1.4
GRUPO II	VR 138	13	12.0-15.0	Cilindricas	7	6-8.0	4	3-5.0	1.8	1.2-2.6	Elipsoidales	9	8-12.0	6	5-7.0	1.5	1.1-2.0
GRUPO II GRUPO III	VR 136 NQ33 A	11		Cilindricas	8		5		1.8		Elipsoidales	9		6		1.5	
GRUPO III	NQ 35	12		Cilindricas	9	8-10.0	2	2	4.5	4-5.0	Subesfericas	9	8-10.0	7.5	7-8.0	1.196428571	1.1-1.3
GRUPO III	M3	12	10-13.0	Cilindricas	8.2	6-11.0	3.4	2-4.0	2.5	1.7-4	Irregulares	11.3	6-14.0	6.9	6-8.0	1.7	0.8-2.2
GRUPO III	M60	15	12.0-18.0	Cilindricas	9	7.0-11.0	6	5.0-7.0	1.5	1.1-1.8	Cúbicas	11	8-12.5	7	6-7.5	1.6	1.3-2.2
GRUPO III	M91	14.4	13.0-15.0	Cilindricas	9.8	7.0-13.0	3.9	3-4.0	2.6	1.7-4.3	Elipsoidales	10	8-12.0	6	6-7.0	1.6	1.3-2.0
GRUPO III	M92	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	PTM9550	11		Cilindricas	6.4		2		2.3		Subesfericas	9.2		6.2		1.5	2
GRUPO III	M80A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M58	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GRUPO III	M59R1	13	12-14.0	Cilindricas	10	8-12.0	3.4	3-4.0	3	2.5-4.0	Obovoides	10	8-12.0	6.5	6-7.0	1.6	1.1-2.0

Grupo Principal	Subgrupo	Especímenes	Localidades
Α	Grupo I	13 especímenes:	Playa el Palmar (Gro.), Bahía la Ventosa (Oax.), Las
		PTM_10152,PTM_10153,PTM_8976,PTM_9791,PTM_9792,	Rosadas (Jal.), Cabo Corrientes (Jal.) y Los Muertos
		PTM_9794, PTM_9793 ,PTM_9795 ,PTM_10065,	(Nay.).
		PTM_10068, PTM_10039, PTM_10075	
	Grupo II	6 especímenes: PTM_10156, PTM_10157, PTM_10158,	: Playa el Palmar (Gro.), Barra de Santa Elena
		PTM_9823, PTM_9825, PTM_9826	(Oax.) y Cabo Corrientes (Jal.)
	Grupo III	10 especímenes: PTM 9808, PTM_9810, PTM	Barra de Santa Elena (Oax.), Playa los Muertos
		10025,PTM_10115,PTM_10116, PTM 10117, PTM_10095,	(Nay.), Punta Pérula (Jal.), Las Rosadas (Jal.)
		PTM 10118, PTM_10119, PTM9550	
	Grupo IV:	6 especímenes: VR33, VR35, VR39, VR40, VR44 y Hpn (La Barrita y Puerto Escondido (Gro.)
		Algas Pardas Mucilaginosas)	
В	Grupo V	9 especímenes: VR5, VR6H, VR20H, VR41, VR42, VR43,	El Palmar, Puerto Escondido, Las Cuatas (Gro.),
		VR85,VR30H,VR38 (Algas Pardas Mucilaginosas)	Caleta de Campos (Mich.), Las Rosadas (Jal.)

Apéndice 3. Distribución de los especímenes en grupos de acuerdo al análisis de conglomerados UPGMA.

Componente	Valor propio	Variabilidad (%)	% acumulado
CP1	11.016	34.426	34.426
CP2	4.308	13.461	47.888
CP3	3.207	10.021	57.908
CP4	2.183	6.821	64.729
CP5	1.843	5.761	70.490
CP6	1.675	5.233	75.723
CP7	1.093	3.417	79.140
CP8	0.983	3.073	82.213
CP9	0.880	2.750	84.963
CP10	0.791	2.473	87.436
CP11	0.646	2.019	89.456
CP12	0.505	1.580	91.035
CP13	0.472	1.475	92.511
CP14	0.445	1.391	93.902
CP15	0.354	1.106	95.008
CP16	0.295	0.921	95.929
CP17	0.220	0.687	96.616
CP18	0.191	0.595	97.211
CP19	0.175	0.546	97.757
CP20	0.156	0.486	98.243
CP21	0.140	0.437	98.681
CP22	0.119	0.372	99.053
CP23	0.103	0.323	99.376
CP24	0.063	0.195	99.571
CP25	0.044	0.138	99.709

Apéndice 4. Resumen de los valores propios y el porcentaje de varianza y varianza acumulada.

Apéndice 5. Contribución de las	variables para la	distribución d	le las muestras	en los
componentes (%).				

VARIABLE	CP1	CP2
FORMSUPERF	0.088	0.248
TEXTURA	0.004	7.012
GROSOR	8.997	1.432
PRESPELHIA	2.570	6.348
AGRUPAMIEN	4.384	4.512
DISTRPELHI	3.214	5.284
POSPELHIAL	6.709	2.937
FORFILPOST	3.599	0.130
LARFILPOST	7.119	0.951
DIAMFILAME	1.519	6.031
UNIONFILAM	0.410	11.579
NUMCELUNID	3.482	7.586
NUMCELPER	5.083	0.997
FORCELPERB	0.579	1.770
LARCELPERB	7.127	1.572
DIACELPERB	0.001	7.253
RELCELPERB	7.134	0.356
FORCELPERA	0.101	0.715
GROSPARCEL	0.026	1.671
LARCELPERA	1.671	0.001
DIACELPERA	3.780	5.612
RELCELPERA	0.631	7.155
FORCELCORT	6.335	0.155
LARCELCORT	1.485	0.014
DIACELCORT	4.712	2.268
RELCELCORT	1.479	4.243
CONSFILPRI	0.709	5.873
NUMCAPHIPO	2.580	0.514
FORMCELHIP	1.238	0.526
LARCELHIPO	4.705	0.490
DIACELHIPO	7.018	0.713
RELCELHIPO	3.496	0.069

Apéndice 6. Análisis de componentes principales, distribución de variables y casos. Biplot (ejes CP1 y CP2: 47.89 %)

FORMASUPERF: forma de la superficie del talo. TEXTURA: textura del talo al ser restregado entre los dedos. GROSORVEG: grosor de las estructuras vegetativas. PRESPEHIAL: presencia de pelos hialinos. AGRUPAMIEN: agrupamiento de los pelos hialinos. DISTRIPELHIAL: distribución de pelos hialinos. FORFILPOST: forma de los filamentos postígenos. LARFILPOST: largo de los filamentos postígenos. DIAMFILAME: diámetro de los filamentos. UNIONFILAM: unión de los filamentos postígenos. NUMCELUNID: número de células unidas. NUMCELPERI: número de células del peritalo. FORCELPERB: forma de las células cercanas a la base. LARCELPERB: largo de las células cercanas a la base. DIACELPERB: diámetro de las células cercanas a la base. BIACELPERB: diámetro de las células cercanas a la base. FORCELPERA: forma de las células cercanas al ápice. LARCELPERA: largo de las células cercanas al ápice. DIAMCELPERA: diámetro de las células cercanas al ápice. RELCELPERB: relación largo-diámetro de las células cercanas al ápice. GROSORPARCEL: grosor de las células apicales. RELCELCORT: relación largo-diámetro de las células del apired celular. FORCELCORT: relación largo-diámetro de las células cercanas al ápice. CONSFILPRI: filamentos primigenios. NUMCAPHIPO: número de capas del hipotalo. FORMCELHIP: forma de las células cercanas al ápice. CONSFILPRI: filamentos primigenios. NUMCAPHIPO: diámetro células del hipotalo. RELCELHIPO: relación largo-diámetro de las células del hipotalo. PRESGRANUL: presencia de gránulos. NQ1: PTM_1015; NQ2:PTM_1015; NQ22A:PTM_ 9795; NQ20E:PTM_9793; NQ48E: PTM_10155; M22A:PTM_105; NQ22A:PTM_ 9795; NQ20E:PTM_9793; NQ48E: PTM_10155; NPM_2105; NMA22A:PTM_ 9795; NQ20E:PTM_9793; NQ48E: PTM_10155; NPM_10155; NPM_22A:PTM_ 9795; NQ20E:PTM_9793; NQ48E: PTM_10155; NPM_22A:PTM_9795; NQ20E:PTM_9795; NQ20E:PTM_9793; NQ48E: PTM

NQ49R1:PTM_10157; M20B: PTM_10158; VR139:PTM_9826; VR138: PTM_9825; VR136:PTM_9823; NQ33A:PTM_9808; M3: PTM_10025; M60: PTM_10117; M91:PTM_10118; M92: PTM_10119; M80A: PTM_10095; M58: PTM_10115; M59R1:PTM 10116.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	AB085615_Schizocladia_ischiensis																				
2	AB252654_Discosporangium_mesarthrocarpum	0.141																			
3	AJ287862_Choristocarpus_tenellus	0.139	0.117																		
4	FJ427725_Ishige_sinicola	0.178	0.152	0.162																	
5	FJ427688_Ishige_okamurae	0.158	0.152	0.166	0.064																
6	AY422654_Dictyota_dichotoma	0.186	0.172	0.174	0.182	0.170															
7	EU579961_Padina_pavonica	0.152	0.156	0.170	0.145	0.133	0.148														
8	AY527199_Zonaria_diesingiana	0.170	0.150	0.178	0.172	0.172	0.158	0.127													
9	AJ287864_Onslowia_endophytica	0.174	0.158	0.172	0.164	0.168	0.162	0.137	0.145												
10	FN667656_Sphacelaria_plumigera	0.150	0.141	0.156	0.156	0.152	0.139	0.125	0.145	0.113											
11	AY372985_Sphacelaria_divaricata	0.160	0.143	0.162	0.154	0.148	0.141	0.139	0.154	0.125	0.072										
12	AB117948_Phaeostrophion_irregulare	0.178	0.139	0.166	0.158	0.156	0.162	0.148	0.160	0.113	0.100	0.117									
13	AY157698_Syringoderma_abyssicola	0.164	0.152	0.152	0.148	0.139	0.139	0.139	0.152	0.109	0.102	0.109	0.094								
14	AY157697_Microzonia_velutina	0.168	0.143	0.158	0.156	0.150	0.152	0.133	0.148	0.121	0.113	0.117	0.090	0.057							
15	AJ287868_Syringoderma_phinneyi	0.166	0.145	0.160	0.156	0.148	0.141	0.133	0.141	0.107	0.094	0.100	0.090	0.047	0.051						
16	AB102867_Asterocladon_rhodochortonoides	0.178	0.139	0.176	0.154	0.166	0.154	0.148	0.154	0.154	0.131	0.127	0.152	0.131	0.148	0.131					
17	AJ295824_Asterocladon_lobatum	0.180	0.156	0.178	0.172	0.174	0.158	0.150	0.133	0.154	0.139	0.135	0.158	0.154	0.145	0.135	0.111				
18	AB776773_Desmarestia_aculeata	0.152	0.135	0.139	0.123	0.117	0.154	0.131	0.158	0.123	0.096	0.096	0.111	0.098	0.094	0.084	0.119	0.119			
19	HE866823_Desmarestia_tabacoides	0.150	0.131	0.145	0.127	0.117	0.148	0.125	0.152	0.117	0.096	0.096	0.107	0.098	0.092	0.086	0.123	0.105	0.027		
20	AF055397_Dictyosiphon_foeniculaceus	0.174	0.168	0.162	0.148	0.131	0.170	0.139	0.172	0.166	0.150	0.131	0.148	0.137	0.125	0.127	0.115	0.131	0.092	0.100	
21	FN564467_Ectocarpus_siliculosus	0.170	0.148	0.166	0.168	0.154	0.150	0.145	0.156	0.164	0.131	0.123	0.156	0.141	0.129	0.131	0.092	0.119	0.107	0.098	0.078
22	EU850273_Petrospongium_berkeleyi	0.170	0.156	0.154	0.156	0.145	0.150	0.143	0.160	0.152	0.129	0.123	0.145	0.137	0.129	0.133	0.107	0.119	0.092	0.094	0.059
23	AY996364_Petrospongium_rugosum	0.172	0.156	0.158	0.156	0.150	0.152	0.143	0.162	0.154	0.129	0.121	0.145	0.143	0.131	0.131	0.111	0.127	0.094	0.098	0.066
24	AB022242_Petalonia_zosterifolia	0.168	0.150	0.162	0.154	0.152	0.158	0.148	0.152	0.152	0.133	0.127	0.148	0.135	0.125	0.127	0.094	0.127	0.100	0.098	0.057
25	AB579001_Petalonia_fascia	0.176	0.148	0.164	0.158	0.148	0.158	0.145	0.156	0.152	0.129	0.125	0.148	0.135	0.125	0.123	0.088	0.131	0.098	0.100	0.055
26	AB022238_Scytosiphon_lomentaria	0.174	0.148	0.168	0.148	0.150	0.152	0.148	0.154	0.156	0.131	0.127	0.143	0.133	0.125	0.131	0.092	0.125	0.100	0.098	0.074
27	AY398470_Colpomenia_sinuosa	0.178	0.148	0.168	0.156	0.150	0.152	0.148	0.158	0.166	0.143	0.139	0.137	0.125	0.117	0.123	0.092	0.127	0.102	0.100	0.072
28	AB022231_Chnoospora_implexa_A	0.174	0.154	0.145	0.152	0.141	0.145	0.143	0.158	0.150	0.141	0.133	0.139	0.113	0.109	0.117	0.096	0.119	0.096	0.092	0.068
29	AJ287853_Ascophyllum_nodosum	0.148	0.152	0.145	0.139	0.119	0.162	0.143	0.154	0.148	0.131	0.129	0.145	0.125	0.131	0.139	0.133	0.148	0.102	0.098	0.117

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
30	AJ287854_Sargassum_muticum	0.162	0.154	0.152	0.152	0.141	0.158	0.125	0.154	0.145	0.137	0.139	0.150	0.135	0.129	0.133	0.139	0.139	0.117	0.107	0.123
31	AY372984_Laminaria_digitata	0.162	0.148	0.154	0.145	0.139	0.160	0.156	0.154	0.145	0.109	0.113	0.127	0.115	0.111	0.105	0.109	0.129	0.074	0.068	0.094
32	AB037142_Sporochnus_scoparius	0.162	0.158	0.150	0.150	0.143	0.158	0.137	0.160	0.123	0.121	0.121	0.150	0.127	0.129	0.117	0.117	0.139	0.080	0.078	0.125
33	AB037140_Desmarestia_tabacoides	0.148	0.127	0.143	0.127	0.121	0.145	0.123	0.150	0.113	0.094	0.094	0.102	0.094	0.088	0.082	0.119	0.105	0.027	0.004	0.105
34	AY372983_Chorda_filum	0.152	0.137	0.143	0.141	0.133	0.145	0.125	0.152	0.123	0.111	0.105	0.115	0.113	0.111	0.096	0.098	0.123	0.078	0.080	0.094
35	AB264040_Heteroralfsia_saxicola_A	0.164	0.152	0.178	0.178	0.152	0.176	0.143	0.166	0.164	0.156	0.154	0.148	0.158	0.152	0.145	0.143	0.154	0.123	0.119	0.135
36	AB250070_Heteroralfsia_saxicola_B	0.164	0.152	0.178	0.178	0.152	0.176	0.143	0.166	0.164	0.156	0.154	0.148	0.158	0.152	0.145	0.143	0.154	0.123	0.119	0.135
37	AB264039_Endoplura_aurea	0.174	0.145	0.184	0.170	0.148	0.174	0.158	0.166	0.162	0.162	0.139	0.145	0.152	0.143	0.150	0.145	0.156	0.125	0.119	0.145
38	AB250073_Ralfsia_spA	0.160	0.152	0.170	0.176	0.150	0.160	0.141	0.160	0.154	0.156	0.152	0.145	0.156	0.152	0.150	0.143	0.156	0.121	0.117	0.129
39	AB264042_Analipus_japonicus_A	0.160	0.152	0.170	0.170	0.145	0.170	0.139	0.154	0.156	0.148	0.137	0.143	0.150	0.139	0.135	0.137	0.150	0.109	0.107	0.123
40	AY095323_Analipus_japonicus_B	0.154	0.145	0.164	0.164	0.139	0.166	0.135	0.150	0.150	0.143	0.131	0.137	0.143	0.133	0.133	0.131	0.148	0.102	0.100	0.117
41	AB250071_Ralfsia_fungiformis_A	0.170	0.158	0.174	0.174	0.158	0.174	0.148	0.158	0.158	0.162	0.160	0.154	0.154	0.150	0.154	0.154	0.150	0.125	0.123	0.143
42	EU579936_Ralfsia_fungiformis_B	0.174	0.154	0.178	0.176	0.162	0.182	0.152	0.160	0.162	0.164	0.160	0.150	0.158	0.154	0.158	0.158	0.156	0.129	0.127	0.148
43	AB250072_Ralfsia_verrucosa	0.162	0.150	0.168	0.164	0.152	0.168	0.139	0.143	0.150	0.154	0.152	0.154	0.154	0.141	0.141	0.145	0.148	0.117	0.109	0.133
44	AB250068_Mesospora_spF	0.195	0.170	0.172	0.176	0.168	0.174	0.170	0.158	0.180	0.162	0.158	0.180	0.170	0.166	0.162	0.148	0.158	0.148	0.139	0.162
45	AB250069_Mesospora_spG	0.189	0.186	0.186	0.168	0.160	0.184	0.152	0.174	0.164	0.150	0.154	0.164	0.156	0.141	0.135	0.158	0.164	0.127	0.117	0.150
46	AB250067_Mesospora_spE	0.186	0.170	0.168	0.160	0.154	0.180	0.166	0.160	0.162	0.148	0.139	0.152	0.150	0.143	0.141	0.152	0.148	0.119	0.119	0.139
47	AB250066_Mesospora_spD	0.189	0.170	0.166	0.160	0.154	0.178	0.172	0.164	0.162	0.148	0.139	0.152	0.152	0.150	0.143	0.152	0.152	0.123	0.123	0.143
48	JQ620001_Mesospora_schmidtii_D	0.180	0.172	0.168	0.186	0.178	0.182	0.158	0.160	0.156	0.154	0.154	0.160	0.158	0.156	0.160	0.154	0.148	0.133	0.125	0.145
49	JQ620000_Mesospora_schmidtii_A	0.180	0.174	0.168	0.182	0.178	0.174	0.162	0.158	0.150	0.156	0.152	0.154	0.156	0.156	0.158	0.148	0.152	0.141	0.131	0.152
50	JQ619999_Mesospora_schmidtii_C	0.180	0.174	0.168	0.182	0.178	0.168	0.162	0.158	0.154	0.156	0.152	0.162	0.156	0.156	0.158	0.148	0.148	0.137	0.131	0.148
51	JQ619998_Mesospora_schmidtii_B	0.174	0.168	0.168	0.178	0.174	0.170	0.156	0.152	0.148	0.150	0.145	0.156	0.150	0.150	0.152	0.141	0.143	0.135	0.125	0.145
52	AB250065_Mesospora_spC	0.170	0.154	0.154	0.164	0.145	0.160	0.154	0.139	0.150	0.131	0.127	0.141	0.129	0.135	0.139	0.133	0.137	0.105	0.092	0.131
53	JQ620005_Mesospora_elongata_B	0.178	0.162	0.164	0.164	0.162	0.164	0.154	0.156	0.145	0.152	0.135	0.162	0.141	0.139	0.141	0.117	0.150	0.125	0.131	0.143
54	JQ620004_Mesospora_elongata_A	0.178	0.162	0.164	0.164	0.162	0.164	0.154	0.156	0.145	0.152	0.135	0.162	0.141	0.139	0.141	0.117	0.150	0.125	0.131	0.143
55	JQ620003_Mesospora_elongata_D	0.178	0.162	0.164	0.164	0.162	0.164	0.154	0.156	0.145	0.152	0.135	0.162	0.141	0.139	0.141	0.117	0.150	0.125	0.131	0.143
56	JQ620002_Mesospora_elongata_C	0.178	0.162	0.164	0.164	0.162	0.164	0.154	0.156	0.145	0.152	0.135	0.162	0.141	0.139	0.141	0.117	0.150	0.125	0.131	0.143
57	AB250063_Mesospora_spA	0.182	0.166	0.166	0.154	0.158	0.162	0.156	0.160	0.150	0.154	0.135	0.174	0.152	0.148	0.148	0.111	0.148	0.113	0.123	0.131
58	VR5	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
59	VR43	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
60	VR30	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
61	VR6P	0.193	0.180	0.186	0.176	0.174	0.172	0.156	0.164	0.174	0.158	0.184	0.180	0.166	0.162	0.164	0.168	0.168	0.143	0.141	0.164
62	VR44	0.186	0.176	0.182	0.172	0.170	0.168	0.158	0.166	0.170	0.156	0.180	0.176	0.164	0.160	0.162	0.164	0.170	0.139	0.137	0.164
63	VR6H	0.193	0.180	0.186	0.176	0.174	0.172	0.156	0.164	0.174	0.158	0.184	0.180	0.166	0.162	0.164	0.168	0.168	0.143	0.141	0.164
64	VR20H	0.193	0.180	0.186	0.176	0.174	0.172	0.156	0.164	0.174	0.158	0.184	0.180	0.166	0.162	0.164	0.168	0.168	0.143	0.141	0.164
65	VR38	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
66	VR40	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
67	VR41	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
68	VR42	0.191	0.176	0.184	0.172	0.170	0.170	0.154	0.162	0.170	0.154	0.180	0.176	0.162	0.158	0.160	0.164	0.166	0.139	0.137	0.164
69	Hpn	0.195	0.168	0.184	0.178	0.178	0.166	0.158	0.154	0.170	0.168	0.156	0.174	0.166	0.152	0.145	0.148	0.135	0.127	0.121	0.150
70	NQ48E_PTM10156_ELPALMAR_GRO	0.209	0.197	0.189	0.186	0.189	0.178	0.164	0.176	0.182	0.176	0.184	0.189	0.184	0.186	0.182	0.170	0.166	0.168	0.158	0.172
71	M58_PTM10115_PUNTAPERULA_JAL	0.227	0.199	0.199	0.199	0.195	0.178	0.180	0.178	0.191	0.186	0.174	0.189	0.182	0.178	0.170	0.170	0.170	0.152	0.148	0.174
72	M27_PTM10065_CABOCORRIENTES	0.170	0.166	0.174	0.164	0.162	0.193	0.176	0.178	0.176	0.164	0.164	0.162	0.178	0.172	0.174	0.172	0.191	0.156	0.150	0.170
73	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.166	0.160	0.172	0.162	0.164	0.189	0.176	0.170	0.170	0.158	0.158	0.156	0.164	0.168	0.164	0.164	0.180	0.154	0.143	0.174
74	M92_PTM10119_PUNTAPERULA_JAL	0.232	0.205	0.209	0.197	0.193	0.189	0.180	0.184	0.182	0.182	0.176	0.191	0.178	0.176	0.166	0.172	0.178	0.154	0.150	0.176
75	VR138_PTM9825_BARRADESANTAELENA_OAX	0.285	0.279	0.264	0.260	0.264	0.262	0.242	0.258	0.252	0.248	0.252	0.264	0.248	0.260	0.252	0.254	0.242	0.242	0.238	0.250
76	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.291	0.279	0.270	0.266	0.264	0.260	0.246	0.264	0.256	0.250	0.262	0.262	0.256	0.254	0.252	0.242	0.238	0.240	0.225	0.240
77	M59R1_PTM10116_PUNTAPERULA_JAL	0.283	0.260	0.260	0.260	0.246	0.238	0.246	0.250	0.266	0.242	0.246	0.250	0.240	0.242	0.236	0.244	0.242	0.213	0.209	0.240
78	AB250082_Ralfsia_spJ	0.174	0.162	0.164	0.158	0.148	0.158	0.135	0.156	0.156	0.152	0.152	0.145	0.148	0.148	0.150	0.133	0.145	0.133	0.123	0.143
79	AB250083_Ralfsia_spK	0.176	0.160	0.162	0.156	0.150	0.160	0.133	0.154	0.154	0.154	0.154	0.148	0.150	0.150	0.152	0.131	0.143	0.135	0.125	0.145
80	AB250081_Ralfsia_spI	0.180	0.164	0.166	0.162	0.156	0.164	0.139	0.158	0.154	0.156	0.154	0.152	0.150	0.148	0.152	0.137	0.148	0.137	0.129	0.139
81	AB250080_Ralfsia_spH	0.176	0.160	0.162	0.156	0.150	0.160	0.133	0.154	0.154	0.154	0.154	0.148	0.150	0.150	0.152	0.131	0.143	0.135	0.125	0.145
82	GU014708_Ralfsia_sp_JK7	0.180	0.158	0.166	0.148	0.141	0.166	0.145	0.162	0.143	0.139	0.133	0.139	0.148	0.137	0.129	0.133	0.156	0.113	0.107	0.131
83	GU014707_Ralfsia_sp_JK6	0.180	0.158	0.166	0.148	0.141	0.166	0.145	0.162	0.143	0.139	0.133	0.139	0.148	0.137	0.129	0.133	0.156	0.113	0.107	0.131
84	AB250076_Ralfsia_sp_RspD	0.170	0.160	0.174	0.143	0.137	0.158	0.133	0.156	0.158	0.156	0.148	0.152	0.150	0.145	0.145	0.137	0.141	0.127	0.115	0.127
85	AB250075_Ralfsia_sp_RspC	0.182	0.162	0.168	0.160	0.150	0.170	0.156	0.174	0.154	0.139	0.141	0.143	0.148	0.139	0.131	0.131	0.160	0.109	0.102	0.133
86	AB250074_Ralfsia_sp_RspB	0.180	0.158	0.166	0.148	0.141	0.166	0.145	0.162	0.143	0.139	0.133	0.139	0.148	0.137	0.129	0.133	0.156	0.113	0.107	0.131
87	AB250079_Neoralfsia_expansa_G	0.176	0.160	0.162	0.156	0.150	0.160	0.133	0.154	0.154	0.154	0.154	0.148	0.150	0.150	0.152	0.131	0.143	0.135	0.125	0.145
88	AB250077_Neoralfsia_expansa_E	0.184	0.160	0.172	0.152	0.141	0.166	0.127	0.148	0.154	0.152	0.152	0.152	0.156	0.154	0.141	0.129	0.141	0.139	0.129	0.148
89	AB250078_Neoralfsia_expansa_F	0.172	0.158	0.158	0.158	0.150	0.162	0.137	0.164	0.160	0.156	0.156	0.152	0.150	0.154	0.152	0.129	0.152	0.137	0.127	0.150

90	KM032758_Neoralfsia_expansa_A	0.174	0.158	0.166	0.160	0.162	0.168	0.135	0.148	0.162	0.162	0.162	0.152	0.156	0.150	0.150	0.135	0.133	0.141	0.129	0.143
91	KM032759_Neoralfsia_expansa_B	0.170	0.158	0.162	0.160	0.162	0.164	0.135	0.148	0.162	0.162	0.158	0.152	0.156	0.150	0.150	0.137	0.129	0.141	0.127	0.143
92	KM032760_Neoralfsia_expansa_C	0.164	0.148	0.158	0.150	0.152	0.164	0.129	0.139	0.148	0.143	0.143	0.150	0.148	0.145	0.145	0.121	0.117	0.135	0.121	0.139
93	KF977827_Neoralfsia_hancockii_A	0.176	0.156	0.160	0.137	0.141	0.164	0.129	0.150	0.143	0.150	0.145	0.137	0.145	0.143	0.143	0.123	0.143	0.131	0.123	0.137
94	KF977828_Neoralfsia_hancockii_B	0.176	0.156	0.160	0.137	0.141	0.164	0.129	0.150	0.143	0.150	0.145	0.137	0.145	0.143	0.143	0.123	0.143	0.131	0.123	0.137
95	RhancPtm9178	0.178	0.160	0.166	0.160	0.158	0.164	0.135	0.145	0.160	0.154	0.158	0.150	0.152	0.148	0.145	0.133	0.109	0.139	0.125	0.141
96	RahancPtm8982	0.158	0.145	0.156	0.145	0.133	0.154	0.129	0.141	0.150	0.137	0.129	0.145	0.133	0.125	0.123	0.117	0.100	0.100	0.090	0.115
97	RhespPTM8970	0.158	0.154	0.158	0.145	0.133	0.158	0.133	0.150	0.143	0.135	0.131	0.145	0.131	0.129	0.129	0.119	0.143	0.100	0.092	0.123
98	KC847394_Neoralfsia_expansa_A	0.172	0.156	0.158	0.152	0.145	0.156	0.131	0.160	0.154	0.152	0.152	0.145	0.143	0.148	0.148	0.127	0.148	0.133	0.123	0.143
99	KC847393_Neoralfsia_expansa_B	0.180	0.160	0.162	0.152	0.150	0.158	0.131	0.160	0.156	0.156	0.156	0.141	0.148	0.150	0.150	0.131	0.148	0.135	0.125	0.143
100	KC847392_Neoralfsia_expansa_C	0.178	0.162	0.164	0.154	0.152	0.158	0.135	0.156	0.152	0.156	0.152	0.150	0.148	0.152	0.150	0.129	0.145	0.137	0.127	0.148
101	KC847391_Mesospora_negrosensis_A	0.176	0.172	0.158	0.158	0.143	0.178	0.162	0.156	0.158	0.137	0.135	0.158	0.145	0.148	0.152	0.145	0.152	0.123	0.117	0.141
102	KC847390_Mesospora_negrosensis_B	0.160	0.152	0.143	0.152	0.139	0.166	0.150	0.137	0.148	0.127	0.129	0.143	0.137	0.133	0.139	0.129	0.133	0.111	0.105	0.127
103	KC847389_Mesospora_negrosensis_C	0.174	0.170	0.156	0.156	0.141	0.176	0.160	0.154	0.156	0.139	0.133	0.156	0.143	0.145	0.150	0.148	0.154	0.125	0.119	0.139
104	KC847388_Mesospora_schmidtii_A	0.174	0.168	0.168	0.178	0.174	0.170	0.156	0.152	0.148	0.150	0.145	0.156	0.150	0.150	0.152	0.141	0.143	0.135	0.125	0.145
105	KC847387_Mesospora_schmidtii_B	0.182	0.174	0.170	0.184	0.180	0.180	0.160	0.162	0.154	0.156	0.152	0.162	0.156	0.158	0.158	0.152	0.150	0.135	0.127	0.148
106	EU579935_Pseudolithoderma_roscoffense	0.172	0.166	0.178	0.156	0.135	0.148	0.131	0.156	0.135	0.105	0.133	0.117	0.115	0.119	0.113	0.148	0.164	0.135	0.131	0.164
107	AB250061_Petroderma_maculiforme_A	0.182	0.162	0.168	0.143	0.123	0.170	0.162	0.166	0.178	0.156	0.137	0.166	0.150	0.148	0.143	0.143	0.145	0.123	0.123	0.068
108	AB250084_Diplura_simplex	0.170	0.162	0.197	0.168	0.135	0.178	0.154	0.160	0.160	0.162	0.162	0.170	0.162	0.156	0.168	0.166	0.152	0.150	0.150	0.156
109	KC847402_Diplura_sp_G1	0.164	0.152	0.160	0.168	0.162	0.176	0.178	0.160	0.164	0.156	0.158	0.141	0.168	0.162	0.166	0.168	0.182	0.143	0.137	0.168
110	KC847401_Diplura_sp_G2	0.164	0.150	0.160	0.164	0.160	0.174	0.174	0.156	0.160	0.152	0.154	0.137	0.164	0.158	0.162	0.164	0.178	0.139	0.133	0.164
111	KC847400_Diplura_sp_G3	0.164	0.150	0.160	0.164	0.160	0.174	0.174	0.156	0.160	0.152	0.154	0.137	0.164	0.158	0.162	0.164	0.178	0.139	0.133	0.164
112	KC847399_Diplura_sp_G4	0.164	0.150	0.160	0.164	0.160	0.174	0.174	0.156	0.160	0.152	0.154	0.137	0.164	0.158	0.162	0.164	0.178	0.139	0.133	0.164
113	KC847398_Diplura_sp_F1	0.193	0.176	0.193	0.162	0.160	0.141	0.166	0.156	0.162	0.162	0.166	0.162	0.158	0.166	0.166	0.162	0.182	0.164	0.160	0.172
114	KC847397_Diplura_sp_F2	0.195	0.178	0.195	0.164	0.162	0.143	0.166	0.158	0.164	0.164	0.168	0.164	0.160	0.168	0.168	0.164	0.184	0.166	0.162	0.172
115	KC847396_Diplura_sp_F3	0.195	0.178	0.195	0.164	0.162	0.143	0.166	0.158	0.164	0.164	0.168	0.164	0.160	0.168	0.168	0.164	0.184	0.166	0.162	0.172
116	AF207797_Bachelotia_antillarum	0.168	0.148	0.152	0.156	0.150	0.164	0.152	0.156	0.158	0.133	0.117	0.143	0.125	0.119	0.117	0.143	0.139	0.092	0.090	0.115
117	AJ295833_Scytothamnus_australis	0.164	0.152	0.164	0.158	0.148	0.180	0.158	0.164	0.156	0.148	0.152	0.158	0.139	0.133	0.133	0.145	0.139	0.102	0.102	0.123
118	AB776778_Scytothamnus_fasciculatus	0.164	0.158	0.170	0.152	0.148	0.176	0.154	0.156	0.160	0.143	0.131	0.148	0.121	0.117	0.119	0.125	0.139	0.082	0.082	0.109
119	AB776779_Splachnidium_rugosum	0.154	0.154	0.158	0.148	0.135	0.174	0.123	0.148	0.150	0.129	0.125	0.143	0.127	0.109	0.111	0.127	0.135	0.084	0.084	0.107

Apéndice 7. Distancia	p no cor	regida de	rbcL_1	(Todas	pardas).
-----------------------	----------	-----------	--------	--------	----------

			1	2	3	4	5	6	7	8	9	10	0 1	1 1	2 13	14	15	16	17	18	19	20
120	EU579937_Sporochnus_pedunculatus		0.156	0.154	0.145	0.145	0.137	0.152	0.129	0.15	6 0.11	5 0.1	27 0.1	23 0.1	45 0.1	0.12	5 0.113	0.113	0.139	0.078	0.072	0.121
121	AB776781_Sporochnus_bolleanus		0.160	0.154	0.139	0.145	0.137	0.152	0.131	0.154	4 0.11	9 0.1	21 0.1	17 0.1	45 0.12	0.12	3 0.111	0.113	0.135	0.076	0.074	0.119
122	AB776780_Carpomitra_costata		0.154	0.141	0.150	0.137	0.131	0.137	0.123	0.13	7 0.11	9 0.1	09 0.1	11 0.1	31 0.10	07 0.10	7 0.102	0.115	0.127	0.074	0.070	0.115
123	AB545977_Halosiphon_tomentosus		0.160	0.131	0.141	0.145	0.131	0.156	0.125	0.14	5 0.13	87 0.1	09 0.0	98 0.1	27 0.12	25 0.12	1 0.109	0.117	0.135	0.074	0.070	0.100
124	AB045247_Phyllariopsis_brevipes		0.154	0.150	0.158	0.156	0.137	0.160	0.125	0.14	1 0.14	8 0.1	21 0.1	21 0.1	37 0.1	35 0.12	3 0.113	0.121	0.148	0.094	0.088	0.109
125	AB776784_Tilopteris_mertensii		0.158	0.137	0.141	0.162	0.152	0.145	0.121	0.14	5 0.13	3 0.1	02 0.1	11 0.1	25 0.1	0.11	3 0.102	0.131	0.139	0.078	0.070	0.111
		21	22	23	24	25	26	27	2	.8	29	30	31	32	33	34	35	36	37	38	39	40
22	EU850273_Petrospongium_berkeleyi	0.057																				
23	AY996364_Petrospongium_rugosum	0.061	0.016																			
24	AB022242_Petalonia_zosterifolia	0.064	0.049	0.061																		
25	AB579001_Petalonia_fascia	0.061	0.051	0.055	0.014	4																
26	AB022238_Scytosiphon_lomentaria	0.070	0.061	0.070	0.020	0.03	5															
27	AY398470_Colpomenia_sinuosa	0.076	0.064	0.076	0.045	5 0.04	7 0.04	19														
28	AB022231_Chnoospora_implexa_A	0.066	0.055	0.066	0.045	5 0.04	7 0.05	63 0.04	45													
29	AJ287853_Ascophyllum_nodosum	0.111	0.105	0.113	0.105	5 0.10	9 0.10	09 0.1	0.0)98												
30	AJ287854_Sargassum_muticum	0.113	0.121	0.127	0.117	7 0.12	3 0.12	0.1	21 0.1	17 0	0.096											
31	AY372984_Laminaria_digitata	0.098	0.096	0.100	0.092	2 0.09	0 0.09	0.0	96 0.0	092 (0.113	0.133										
32	AB037142_Sporochnus_scoparius	0.117	0.125	0.131	0.123	3 0.11	9 0.12	.5 0.1	29 0.1	13 0	0.115	0.131	0.094									
33	AB037140_Desmarestia_tabacoides	0.096	0.092	0.096	0.096	5 0.09	8 0.09	0.0	98 0.0)90 (0.096	0.105	0.064	0.074								
34	AY372983_Chorda_filum	0.090	0.090	0.090	0.084	4 0.07	6 0.08	36 0.0	88 0.0)94 (0.113	0.109	0.068	0.092	0.076							
35	AB264040_Heteroralfsia_saxicola_A	0.129	0.127	0.131	0.13	7 0.13	5 0.13	9 0.1	35 0.1	35 0	0.135	0.131	0.117	0.127	0.115	0.109						
36	AB250070_Heteroralfsia_saxicola_B	0.129	0.127	0.131	0.13	7 0.13	5 0.13	9 0.1	35 0.1	35 0	0.135	0.131	0.117	0.127	0.115	0.109	0.000					
37	AB264039_Endoplura_aurea	0.135	0.135	0.133	0.13	7 0.13	5 0.12	0.1	39 0.1	31 0	0.129	0.148	0.127	0.150	0.117	0.119	0.098	0.098				
38	AB250073_Ralfsia_spA	0.131	0.131	0.131	0.13	0.12	5 0.13	81 0.1	31 0.1	35 0	0.131	0.139	0.113	0.135	0.117	0.107	0.072	0.072	0.100			
39	AB264042_Analipus_japonicus_A	0.123	0.129	0.133	0.119	9 0.12	1 0.11	9 0.1	25 0.1	27 0	0.121	0.121	0.102	0.125	0.107	0.096	0.088	0.088	0.092	0.070		
40	AY095323_Analipus_japonicus_B	0.117	0.123	0.127	0.113	3 0.11	5 0.11	3 0.1	23 0.1	21 0	0.115	0.115	0.096	0.119	0.100	0.094	0.082	0.082	0.086	0.064	0.006	
41	AB250071_Ralfsia_fungiformis_A	0.139	0.137	0.141	0.12	1 0.12	7 0.12	0.1	33 0.1	133 (0.129	0.131	0.123	0.143	0.121	0.117	0.098	0.098	0.098	0.082	0.070	0.064
42	EU579936_Ralfsia_fungiformis_B	0.139	0.133	0.137	0.12	5 0.13	1 0.12	0.1	37 0.1	137 0	0.133	0.135	0.127	0.148	0.125	0.117	0.098	0.098	0.102	0.082	0.070	0.064
43	AB250072_Ralfsia_verrucosa	0.117	0.123	0.121	0.12	1 0.12	3 0.12	21 0.1	25 0.1	121 0).119	0.129	0.111	0.125	0.107	0.113	0.076	0.076	0.105	0.066	0.072	0.066
44	AB250068_Mesospora_spF	0.137	0.131	0.133	0.14	1 0.14	8 0.14	3 0.1	50 0.1	35 0	0.156	0.160	0.125	0.137	0.139	0.139	0.125	0.125	0.145	0.133	0.117	0.111
45	AB250069_Mesospora_spG	0.141	0.143	0.141	0.132	7 0.13	9 0.13	37 0.1-	43 0.1	133 (0.150	0.156	0.129	0.123	0.113	0.123	0.117	0.117	0.143	0.135	0.129	0.123

		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
46	AB250067_Mesospora_spE	0.139	0.129	0.133	0.135	0.141	0.137	0.139	0.127	0.121	0.137	0.102	0.123	0.115	0.137	0.127	0.127	0.131	0.123	0.109	0.102
47	AB250066_Mesospora_spD	0.143	0.129	0.133	0.139	0.145	0.141	0.143	0.131	0.121	0.143	0.107	0.127	0.119	0.141	0.121	0.121	0.129	0.121	0.107	0.100
48	JQ620001_Mesospora_schmidtii_D	0.148	0.141	0.148	0.148	0.150	0.148	0.145	0.141	0.131	0.154	0.121	0.123	0.125	0.143	0.127	0.127	0.129	0.123	0.105	0.098
49	JQ620000_Mesospora_schmidtii_A	0.145	0.139	0.145	0.145	0.152	0.145	0.143	0.135	0.127	0.150	0.129	0.121	0.131	0.141	0.127	0.127	0.123	0.127	0.113	0.107
50	JQ619999_Mesospora_schmidtii_C	0.145	0.143	0.150	0.145	0.152	0.145	0.143	0.135	0.123	0.150	0.125	0.121	0.131	0.145	0.131	0.131	0.129	0.127	0.109	0.102
51	JQ619998_Mesospora_schmidtii_B	0.139	0.137	0.143	0.139	0.145	0.139	0.137	0.129	0.123	0.150	0.123	0.115	0.125	0.139	0.125	0.125	0.125	0.125	0.107	0.100
52	AB250065_Mesospora_spC	0.121	0.111	0.121	0.119	0.125	0.119	0.121	0.113	0.105	0.133	0.102	0.105	0.092	0.123	0.113	0.113	0.117	0.113	0.094	0.088
53	JQ620005_Mesospora_elongata_B	0.137	0.119	0.125	0.141	0.139	0.141	0.137	0.127	0.129	0.143	0.121	0.115	0.127	0.111	0.115	0.115	0.113	0.123	0.102	0.096
54	JQ620004_Mesospora_elongata_A	0.137	0.119	0.125	0.141	0.139	0.141	0.137	0.127	0.129	0.143	0.121	0.115	0.127	0.111	0.115	0.115	0.113	0.123	0.102	0.096
55	JQ620003_Mesospora_elongata_D	0.137	0.119	0.125	0.141	0.139	0.141	0.137	0.127	0.129	0.143	0.121	0.115	0.127	0.111	0.115	0.115	0.113	0.123	0.102	0.096
56	JQ620002_Mesospora_elongata_C	0.137	0.119	0.125	0.141	0.139	0.141	0.137	0.127	0.129	0.143	0.121	0.115	0.127	0.111	0.115	0.115	0.113	0.123	0.102	0.096
57	AB250063_Mesospora_spA	0.123	0.107	0.111	0.115	0.111	0.117	0.123	0.113	0.123	0.143	0.113	0.111	0.119	0.111	0.129	0.129	0.131	0.127	0.109	0.102
58	VR5	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
59	VR43	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
60	VR30	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
61	VR6P	0.158	0.152	0.154	0.162	0.168	0.162	0.162	0.154	0.143	0.145	0.145	0.145	0.145	0.156	0.131	0.131	0.141	0.135	0.127	0.121
62	VR44	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.143	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
63	VR6H	0.158	0.152	0.154	0.162	0.168	0.162	0.162	0.154	0.143	0.145	0.145	0.145	0.145	0.156	0.131	0.131	0.141	0.135	0.127	0.121
64	VR20H	0.158	0.152	0.154	0.162	0.168	0.162	0.162	0.154	0.143	0.145	0.145	0.145	0.145	0.156	0.131	0.131	0.141	0.135	0.127	0.121
65	VR38	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
66	VR40	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
67	VR41	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
68	VR42	0.154	0.150	0.152	0.158	0.164	0.158	0.158	0.150	0.139	0.141	0.143	0.141	0.141	0.154	0.129	0.129	0.135	0.133	0.125	0.119
69	Hpn	0.143	0.148	0.150	0.143	0.145	0.137	0.139	0.139	0.133	0.135	0.129	0.117	0.117	0.133	0.129	0.129	0.143	0.115	0.123	0.117
70	NQ48E_PTM10156_ELPALMAR_GRO	0.164	0.156	0.156	0.162	0.168	0.166	0.170	0.160	0.174	0.182	0.168	0.154	0.158	0.162	0.148	0.148	0.164	0.139	0.137	0.131
71	M58_PTM10115_PUNTAPERULA_JAL	0.168	0.164	0.172	0.168	0.170	0.162	0.164	0.168	0.154	0.162	0.158	0.143	0.143	0.158	0.141	0.141	0.162	0.133	0.143	0.137
72	M27_PTM10065_CABOCORRIENTES	0.170	0.162	0.170	0.174	0.176	0.174	0.180	0.176	0.170	0.158	0.150	0.174	0.145	0.152	0.170	0.170	0.172	0.174	0.162	0.160
73	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.166	0.162	0.170	0.170	0.176	0.170	0.176	0.174	0.168	0.148	0.148	0.172	0.139	0.150	0.168	0.168	0.170	0.172	0.156	0.154
74	M92_PTM10119_PUNTAPERULA_JAL	0.172	0.166	0.176	0.170	0.172	0.164	0.166	0.170	0.156	0.166	0.160	0.145	0.145	0.160	0.148	0.148	0.166	0.143	0.150	0.143
75	VR138_PTM9825_BARRADESANTAELENA_OAX	0.246	0.236	0.236	0.244	0.248	0.246	0.252	0.240	0.262	0.256	0.242	0.236	0.238	0.240	0.223	0.223	0.242	0.221	0.225	0.219
76	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.236	0.234	0.236	0.236	0.242	0.240	0.238	0.230	0.248	0.252	0.236	0.230	0.225	0.234	0.230	0.230	0.240	0.221	0.217	0.213
77	M59R1_PTM10116_PUNTAPERULA_JAL	0.238	0.230	0.242	0.236	0.238	0.234	0.234	0.234	0.221	0.240	0.223	0.209	0.209	0.227	0.217	0.217	0.234	0.209	0.215	0.211
78	AB250082_Ralfsia_spJ	0.125	0.133	0.137	0.133	0.139	0.131	0.131	0.125	0.127	0.123	0.123	0.125	0.119	0.115	0.100	0.100	0.125	0.107	0.098	0.092
79	AB250083_Ralfsia_spK	0.127	0.135	0.139	0.135	0.141	0.133	0.133	0.127	0.129	0.125	0.125	0.123	0.121	0.117	0.102	0.102	0.127	0.109	0.100	0.094
80	AB250081_Ralfsia_spI	0.129	0.131	0.135	0.129	0.135	0.131	0.131	0.125	0.131	0.127	0.129	0.125	0.125	0.119	0.107	0.107	0.127	0.113	0.102	0.096

		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
81	AB250080_Ralfsia_spH	0.127	0.135	0.139	0.135	0.141	0.133	0.133	0.127	0.129	0.125	0.125	0.123	0.121	0.117	0.102	0.102	0.127	0.109	0.100	0.094
82	GU014708_Ralfsia_sp_JK7	0.135	0.129	0.129	0.127	0.121	0.133	0.125	0.129	0.111	0.129	0.107	0.119	0.102	0.107	0.094	0.094	0.119	0.100	0.078	0.072
83	GU014707_Ralfsia_sp_JK6	0.135	0.129	0.129	0.127	0.121	0.133	0.125	0.129	0.111	0.129	0.107	0.119	0.102	0.107	0.094	0.094	0.119	0.100	0.078	0.072
84	AB250076_Ralfsia_sp_RspD	0.123	0.117	0.121	0.121	0.125	0.127	0.127	0.115	0.123	0.129	0.127	0.125	0.113	0.123	0.115	0.115	0.123	0.123	0.102	0.096
85	AB250075_Ralfsia_sp_RspC	0.133	0.127	0.127	0.129	0.123	0.135	0.119	0.127	0.121	0.127	0.109	0.117	0.098	0.111	0.100	0.100	0.123	0.098	0.090	0.084
86	AB250074_Ralfsia_sp_RspB	0.135	0.129	0.129	0.127	0.121	0.133	0.125	0.129	0.111	0.129	0.107	0.119	0.102	0.107	0.094	0.094	0.119	0.100	0.078	0.072
87	AB250079_Neoralfsia_expansa_G	0.127	0.135	0.139	0.135	0.141	0.133	0.133	0.127	0.129	0.125	0.125	0.123	0.121	0.117	0.102	0.102	0.127	0.109	0.100	0.094
88	AB250077_Neoralfsia_expansa_E	0.137	0.143	0.143	0.148	0.141	0.145	0.152	0.135	0.143	0.139	0.131	0.131	0.129	0.123	0.111	0.111	0.125	0.100	0.102	0.096
89	AB250078_Neoralfsia_expansa_F	0.133	0.137	0.141	0.143	0.145	0.141	0.137	0.131	0.135	0.133	0.131	0.119	0.123	0.121	0.100	0.100	0.127	0.102	0.100	0.094
90	KM032758_Neoralfsia_expansa_A	0.127	0.143	0.150	0.131	0.137	0.129	0.137	0.121	0.139	0.131	0.121	0.121	0.125	0.117	0.107	0.107	0.135	0.115	0.105	0.098
91	KM032759_Neoralfsia_expansa_B	0.127	0.143	0.150	0.131	0.137	0.129	0.137	0.121	0.139	0.131	0.119	0.121	0.123	0.117	0.107	0.107	0.133	0.115	0.105	0.098
92	KM032760_Neoralfsia_expansa_C	0.117	0.131	0.137	0.127	0.133	0.125	0.133	0.117	0.123	0.121	0.115	0.113	0.117	0.109	0.105	0.105	0.135	0.111	0.102	0.096
93	KF977827_Neoralfsia_hancockii_A	0.125	0.135	0.139	0.131	0.137	0.129	0.133	0.119	0.123	0.119	0.127	0.117	0.119	0.113	0.102	0.102	0.131	0.115	0.105	0.098
94	KF977828_Neoralfsia_hancockii_B	0.125	0.135	0.139	0.131	0.137	0.129	0.133	0.119	0.123	0.119	0.127	0.117	0.119	0.113	0.102	0.102	0.131	0.115	0.105	0.098
95	RhancPtm9178	0.125	0.137	0.143	0.135	0.141	0.133	0.137	0.121	0.129	0.123	0.123	0.121	0.121	0.121	0.113	0.113	0.145	0.115	0.113	0.107
96	RahancPtm8982	0.113	0.107	0.113	0.117	0.115	0.115	0.119	0.098	0.113	0.119	0.092	0.109	0.090	0.098	0.098	0.098	0.105	0.084	0.094	0.088
97	RhespPTM8970	0.123	0.113	0.117	0.125	0.123	0.123	0.123	0.109	0.111	0.119	0.100	0.109	0.092	0.102	0.086	0.086	0.096	0.086	0.080	0.074
98	KC847394_Neoralfsia_expansa_A	0.129	0.133	0.137	0.137	0.139	0.135	0.131	0.125	0.131	0.127	0.127	0.115	0.119	0.119	0.098	0.098	0.125	0.105	0.098	0.092
99	KC847393_Neoralfsia_expansa_B	0.133	0.135	0.139	0.135	0.137	0.133	0.133	0.123	0.133	0.133	0.125	0.119	0.121	0.121	0.102	0.102	0.123	0.109	0.102	0.096
100	KC847392_Neoralfsia_expansa_C	0.129	0.137	0.141	0.137	0.143	0.135	0.135	0.125	0.131	0.127	0.127	0.121	0.123	0.119	0.105	0.105	0.129	0.111	0.102	0.096
101	KC847391_Mesospora_negrosensis_A	0.131	0.123	0.127	0.133	0.139	0.133	0.141	0.123	0.117	0.139	0.111	0.125	0.117	0.137	0.121	0.121	0.143	0.127	0.109	0.102
102	KC847390_Mesospora_negrosensis_B	0.123	0.113	0.117	0.123	0.129	0.127	0.129	0.113	0.102	0.129	0.096	0.109	0.105	0.121	0.115	0.115	0.121	0.115	0.088	0.082
103	KC847389_Mesospora_negrosensis_C	0.133	0.121	0.125	0.131	0.137	0.131	0.139	0.121	0.115	0.141	0.109	0.127	0.119	0.135	0.123	0.123	0.141	0.125	0.107	0.100
104	KC847388_Mesospora_schmidtii_A	0.139	0.137	0.143	0.139	0.145	0.139	0.137	0.129	0.123	0.150	0.123	0.115	0.125	0.139	0.125	0.125	0.125	0.125	0.107	0.100
105	KC847387_Mesospora_schmidtii_B	0.150	0.143	0.150	0.150	0.152	0.150	0.148	0.139	0.133	0.156	0.123	0.121	0.127	0.145	0.129	0.129	0.131	0.125	0.107	0.100
106	$EU579935_Pseudolithoderma_roscoffense$	0.150	0.158	0.158	0.162	0.158	0.164	0.143	0.139	0.141	0.141	0.150	0.148	0.127	0.141	0.158	0.158	0.170	0.170	0.156	0.152
107	AB250061_Petroderma_maculiforme_A	0.115	0.107	0.111	0.105	0.092	0.117	0.117	0.111	0.125	0.141	0.115	0.152	0.127	0.123	0.158	0.158	0.158	0.152	0.150	0.143
108	AB250084_Diplura_simplex	0.152	0.160	0.164	0.158	0.154	0.162	0.166	0.150	0.145	0.137	0.162	0.166	0.148	0.145	0.180	0.180	0.166	0.178	0.176	0.170
109	KC847402_Diplura_sp_G1	0.164	0.160	0.168	0.168	0.172	0.168	0.166	0.168	0.154	0.150	0.141	0.162	0.133	0.150	0.164	0.164	0.172	0.160	0.145	0.143
110	KC847401_Diplura_sp_G2	0.160	0.156	0.164	0.164	0.168	0.164	0.162	0.166	0.152	0.145	0.137	0.158	0.129	0.145	0.160	0.160	0.168	0.156	0.141	0.139

		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
111	KC847400_Diplura_sp_G3	0.160	0.156	0.164	0.164	0.168	0.164	0.162	0.166	0.152	0.145	0.137	0.158	0.129	0.145	0.160	0.160	0.168	0.156	0.141	0.139
112	KC847399_Diplura_sp_G4	0.160	0.156	0.164	0.164	0.168	0.164	0.162	0.166	0.152	0.145	0.137	0.158	0.129	0.145	0.160	0.160	0.168	0.156	0.141	0.139
113	KC847398_Diplura_sp_F1	0.176	0.174	0.176	0.166	0.166	0.170	0.176	0.170	0.164	0.170	0.162	0.178	0.160	0.143	0.158	0.158	0.168	0.162	0.168	0.162
114	KC847397_Diplura_sp_F2	0.176	0.176	0.178	0.168	0.168	0.172	0.178	0.172	0.166	0.170	0.164	0.180	0.162	0.145	0.158	0.158	0.166	0.162	0.168	0.162
115	KC847396_Diplura_sp_F3	0.176	0.176	0.178	0.168	0.168	0.172	0.178	0.172	0.166	0.170	0.164	0.180	0.162	0.145	0.158	0.158	0.166	0.162	0.168	0.162
116	AF207797_Bachelotia_antillarum	0.107	0.109	0.119	0.109	0.111	0.117	0.113	0.105	0.102	0.127	0.092	0.121	0.088	0.107	0.129	0.129	0.141	0.129	0.113	0.107
117	AJ295833_Scytothamnus_australis	0.113	0.117	0.127	0.109	0.117	0.117	0.121	0.113	0.125	0.137	0.105	0.127	0.098	0.109	0.139	0.139	0.141	0.137	0.131	0.125
118	$AB776778_Scytothamnus_fasciculatus$	0.100	0.107	0.111	0.094	0.102	0.094	0.094	0.100	0.115	0.127	0.090	0.105	0.078	0.096	0.115	0.115	0.129	0.123	0.109	0.102
119	AB776779_Splachnidium_rugosum	0.092	0.102	0.107	0.105	0.100	0.113	0.115	0.105	0.117	0.125	0.094	0.098	0.080	0.092	0.109	0.109	0.127	0.119	0.111	0.105
120	EU579937_Sporochnus_pedunculatus	0.113	0.123	0.129	0.119	0.115	0.123	0.123	0.109	0.111	0.119	0.096	0.020	0.068	0.092	0.125	0.125	0.145	0.129	0.121	0.115
121	AB776781_Sporochnus_bolleanus	0.111	0.117	0.123	0.117	0.113	0.121	0.121	0.102	0.107	0.123	0.090	0.010	0.070	0.088	0.125	0.125	0.145	0.131	0.121	0.115
122	AB776780_Carpomitra_costata	0.100	0.102	0.109	0.107	0.111	0.102	0.119	0.109	0.105	0.111	0.080	0.076	0.066	0.080	0.119	0.119	0.127	0.121	0.107	0.100
123	AB545977_Halosiphon_tomentosus	0.084	0.086	0.090	0.096	0.090	0.100	0.100	0.092	0.096	0.107	0.078	0.092	0.068	0.074	0.109	0.109	0.131	0.109	0.102	0.096
124	AB045247_Phyllariopsis_brevipes	0.105	0.098	0.109	0.100	0.094	0.109	0.098	0.098	0.092	0.111	0.092	0.111	0.090	0.084	0.119	0.119	0.123	0.109	0.096	0.094
125	AB776784_Tilopteris_mertensii	0.107	0.100	0.105	0.100	0.098	0.111	0.107	0.100	0.082	0.094	0.090	0.098	0.068	0.076	0.115	0.115	0.129	0.115	0.102	0.100

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

42	EU579936_Ralfsia_fungiformis_B	0.012															
43	AB250072_Ralfsia_verrucosa	0.047	0.047														
44	AB250068_Mesospora_spF	0.131	0.127	0.115													
45	AB250069_Mesospora_spG	0.129	0.125	0.117	0.117												
46	AB250067_Mesospora_spE	0.117	0.121	0.105	0.096	0.119											
47	AB250066_Mesospora_spD	0.115	0.119	0.102	0.100	0.119	0.008										
48	JQ620001_Mesospora_schmidtii_D	0.119	0.123	0.111	0.102	0.119	0.076	0.072									
49	JQ620000_Mesospora_schmidtii_A	0.115	0.115	0.111	0.107	0.127	0.074	0.070	0.023								
50	JQ619999_Mesospora_schmidtii_C	0.115	0.123	0.115	0.111	0.131	0.072	0.068	0.018	0.010							
51	JQ619998_Mesospora_schmidtii_B	0.113	0.117	0.109	0.105	0.125	0.078	0.074	0.014	0.008	0.008						
52	AB250065_Mesospora_spC	0.115	0.115	0.094	0.100	0.117	0.066	0.066	0.078	0.074	0.078	0.072					
53	JQ620005_Mesospora_elongata_B	0.123	0.119	0.105	0.107	0.121	0.088	0.088	0.096	0.086	0.090	0.086	0.080				
54	JQ620004_Mesospora_elongata_A	0.123	0.119	0.105	0.107	0.121	0.088	0.088	0.096	0.086	0.090	0.086	0.080	0.000			
55	JQ620003_Mesospora_elongata_D	0.123	0.119	0.105	0.107	0.121	0.088	0.088	0.096	0.086	0.090	0.086	0.080	0.000	0.000		
56	JQ620002_Mesospora_elongata_C	0.123	0.119	0.105	0.107	0.121	0.088	0.088	0.096	0.086	0.090	0.086	0.080	0.000	0.000	0.000	

		41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
57	AB250063_Mesospora_spA	0.123	0.123	0.113	0.107	0.133	0.100	0.100	0.111	0.105	0.105	0.100	0.094	0.037	0.037	0.037	0.037				
58	VR5	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127			
59	VR43	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000		
60	VR30	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000	0.000	
61	VR6P	0.135	0.141	0.129	0.111	0.145	0.131	0.135	0.117	0.121	0.113	0.115	0.119	0.127	0.127	0.127	0.127	0.129	0.006	0.006	0.006
62	VR44	0.137	0.143	0.127	0.113	0.141	0.131	0.131	0.115	0.119	0.111	0.113	0.115	0.123	0.123	0.123	0.123	0.125	0.006	0.006	0.006
63	VR6H	0.135	0.141	0.129	0.111	0.145	0.131	0.135	0.117	0.121	0.113	0.115	0.119	0.127	0.127	0.127	0.127	0.129	0.006	0.006	0.006
64	VR20H	0.135	0.141	0.129	0.111	0.145	0.131	0.135	0.117	0.121	0.113	0.115	0.119	0.127	0.127	0.127	0.127	0.129	0.006	0.006	0.006
65	VR38	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000	0.000	0.000
66	VR40	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000	0.000	0.000
67	VR41	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000	0.000	0.000
68	VR42	0.133	0.139	0.127	0.109	0.141	0.129	0.133	0.115	0.119	0.111	0.113	0.117	0.125	0.125	0.125	0.125	0.127	0.000	0.000	0.000
69	Hpn	0.131	0.135	0.115	0.143	0.143	0.131	0.131	0.133	0.133	0.125	0.127	0.121	0.129	0.129	0.129	0.129	0.133	0.119	0.119	0.119
70	NQ48E_PTM10156_ELPALMAR_GRO	0.143	0.141	0.133	0.090	0.115	0.137	0.141	0.133	0.129	0.133	0.127	0.131	0.125	0.125	0.125	0.125	0.135	0.119	0.119	0.119
71	M58_PTM10115_PUNTAPERULA_JAL	0.152	0.156	0.139	0.158	0.158	0.141	0.141	0.143	0.143	0.135	0.137	0.127	0.141	0.141	0.141	0.141	0.145	0.133	0.133	0.133
72	M27_PTM10065_CABOCORRIENTES	0.180	0.178	0.174	0.189	0.184	0.180	0.180	0.189	0.178	0.186	0.182	0.160	0.170	0.170	0.170	0.170	0.174	0.182	0.182	0.182
73	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.174	0.172	0.168	0.184	0.182	0.174	0.174	0.189	0.174	0.182	0.178	0.154	0.164	0.164	0.164	0.164	0.168	0.176	0.176	0.176
74	M92_PTM10119_PUNTAPERULA_JAL	0.158	0.162	0.143	0.164	0.160	0.141	0.141	0.148	0.148	0.139	0.141	0.133	0.143	0.143	0.143	0.143	0.148	0.135	0.135	0.135
75	VR138_PTM9825_BARRADESANTAELENA_OAX	0.217	0.215	0.215	0.182	0.191	0.221	0.225	0.223	0.217	0.221	0.215	0.215	0.215	0.215	0.215	0.215	0.225	0.209	0.209	0.209
76	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.225	0.223	0.215	0.191	0.189	0.227	0.232	0.215	0.207	0.211	0.203	0.215	0.209	0.209	0.209	0.209	0.219	0.201	0.201	0.201
77	M59R1_PTM10116_PUNTAPERULA_JAL	0.227	0.227	0.221	0.230	0.232	0.213	0.215	0.219	0.219	0.211	0.213	0.201	0.215	0.215	0.215	0.215	0.219	0.199	0.199	0.199
78	AB250082_Ralfsia_spJ	0.115	0.119	0.107	0.125	0.127	0.117	0.117	0.123	0.125	0.125	0.119	0.105	0.119	0.119	0.119	0.119	0.123	0.127	0.127	0.127
79	AB250083_Ralfsia_spK	0.117	0.121	0.109	0.123	0.129	0.115	0.115	0.121	0.123	0.123	0.117	0.102	0.117	0.117	0.117	0.117	0.121	0.125	0.125	0.125
80	AB250081_Ralfsia_spI	0.119	0.123	0.111	0.127	0.133	0.117	0.117	0.123	0.125	0.125	0.119	0.105	0.119	0.119	0.119	0.119	0.123	0.129	0.129	0.129
81	AB250080_Ralfsia_spH	0.117	0.121	0.109	0.123	0.129	0.115	0.115	0.121	0.123	0.123	0.117	0.102	0.117	0.117	0.117	0.117	0.121	0.125	0.125	0.125
82	GU014708_Ralfsia_sp_JK7	0.111	0.119	0.088	0.131	0.125	0.109	0.109	0.117	0.121	0.117	0.117	0.105	0.107	0.107	0.107	0.107	0.113	0.143	0.143	0.143
83	GU014707_Ralfsia_sp_JK6	0.111	0.119	0.088	0.131	0.125	0.109	0.109	0.117	0.121	0.117	0.117	0.105	0.107	0.107	0.107	0.107	0.113	0.143	0.143	0.143
84	AB250076_Ralfsia_sp_RspD	0.127	0.127	0.117	0.127	0.123	0.121	0.121	0.121	0.121	0.121	0.115	0.113	0.119	0.119	0.119	0.119	0.123	0.129	0.129	0.129
85	AB250075_Ralfsia_sp_RspC	0.121	0.125	0.098	0.143	0.135	0.121	0.121	0.127	0.131	0.131	0.127	0.109	0.117	0.117	0.117	0.117	0.121	0.145	0.145	0.145
86	AB250074_Ralfsia_sp_RspB	0.111	0.119	0.088	0.131	0.125	0.109	0.109	0.117	0.121	0.117	0.117	0.105	0.107	0.107	0.107	0.107	0.113	0.143	0.143	0.143

		41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
87	AB250079_Neoralfsia_expansa_G	0.117	0.121	0.109	0.123	0.129	0.115	0.115	0.121	0.123	0.123	0.117	0.102	0.117	0.117	0.117	0.117	0.121	0.125	0.125	0.125
88	AB250077_Neoralfsia_expansa_E	0.115	0.119	0.111	0.121	0.129	0.107	0.111	0.121	0.123	0.123	0.117	0.107	0.117	0.117	0.117	0.117	0.125	0.123	0.123	0.123
89	AB250078_Neoralfsia_expansa_F	0.123	0.127	0.115	0.119	0.133	0.113	0.113	0.117	0.119	0.119	0.113	0.105	0.113	0.113	0.113	0.113	0.121	0.123	0.123	0.123
90	KM032758_Neoralfsia_expansa_A	0.121	0.121	0.109	0.123	0.133	0.119	0.127	0.135	0.131	0.131	0.125	0.115	0.123	0.123	0.123	0.123	0.127	0.125	0.125	0.125
91	KM032759_Neoralfsia_expansa_B	0.121	0.121	0.109	0.121	0.131	0.117	0.125	0.133	0.131	0.131	0.125	0.115	0.123	0.123	0.123	0.123	0.127	0.125	0.125	0.125
92	KM032760_Neoralfsia_expansa_C	0.123	0.123	0.107	0.119	0.131	0.121	0.121	0.133	0.131	0.131	0.125	0.111	0.119	0.119	0.119	0.119	0.123	0.121	0.121	0.121
93	KF977827_Neoralfsia_hancockii_A	0.121	0.125	0.113	0.119	0.129	0.121	0.121	0.133	0.125	0.129	0.123	0.111	0.121	0.121	0.121	0.121	0.125	0.123	0.123	0.123
94	KF977828_Neoralfsia_hancockii_B	0.121	0.125	0.113	0.119	0.129	0.121	0.121	0.133	0.125	0.129	0.123	0.111	0.121	0.121	0.121	0.121	0.125	0.123	0.123	0.123
95	RhancPtm9178	0.131	0.131	0.119	0.127	0.139	0.119	0.127	0.137	0.137	0.137	0.129	0.119	0.133	0.133	0.133	0.133	0.137	0.125	0.125	0.125
96	RahancPtm8982	0.109	0.109	0.098	0.117	0.125	0.115	0.123	0.123	0.127	0.127	0.119	0.102	0.113	0.113	0.113	0.113	0.117	0.111	0.111	0.111
97	RhespPTM8970	0.107	0.107	0.088	0.115	0.119	0.111	0.111	0.113	0.117	0.117	0.111	0.088	0.092	0.092	0.092	0.092	0.096	0.102	0.102	0.102
98	KC847394_Neoralfsia_expansa_A	0.121	0.125	0.113	0.121	0.129	0.113	0.113	0.115	0.117	0.117	0.111	0.105	0.115	0.115	0.115	0.115	0.119	0.121	0.121	0.121
99	KC847393_Neoralfsia_expansa_B	0.117	0.121	0.113	0.123	0.125	0.115	0.111	0.117	0.119	0.119	0.113	0.107	0.121	0.121	0.121	0.121	0.125	0.125	0.125	0.125
100	KC847392_Neoralfsia_expansa_C	0.119	0.123	0.111	0.121	0.131	0.113	0.113	0.123	0.121	0.121	0.115	0.105	0.115	0.115	0.115	0.115	0.119	0.123	0.123	0.123
101	KC847391_Mesospora_negrosensis_A	0.131	0.131	0.111	0.082	0.111	0.066	0.066	0.086	0.088	0.092	0.088	0.061	0.086	0.086	0.086	0.086	0.090	0.127	0.127	0.127
102	KC847390_Mesospora_negrosensis_B	0.113	0.113	0.096	0.068	0.107	0.068	0.068	0.070	0.072	0.076	0.072	0.051	0.074	0.074	0.074	0.074	0.084	0.111	0.111	0.111
103	KC847389_Mesospora_negrosensis_C	0.129	0.129	0.109	0.080	0.113	0.064	0.064	0.084	0.086	0.090	0.086	0.059	0.084	0.084	0.084	0.084	0.088	0.129	0.129	0.129
104	KC847388_Mesospora_schmidtii_A	0.113	0.117	0.109	0.105	0.125	0.078	0.074	0.014	0.008	0.008	0.000	0.072	0.086	0.086	0.086	0.086	0.100	0.113	0.113	0.113
105	KC847387_Mesospora_schmidtii_B	0.121	0.125	0.113	0.100	0.121	0.074	0.070	0.002	0.020	0.016	0.012	0.080	0.094	0.094	0.094	0.094	0.109	0.113	0.113	0.113
106	$EU579935_Pseudolithoderma_roscoffense$	0.164	0.172	0.150	0.176	0.164	0.148	0.150	0.178	0.172	0.166	0.170	0.152	0.154	0.154	0.154	0.154	0.166	0.168	0.168	0.168
107	AB250061_Petroderma_maculiforme_A	0.160	0.164	0.145	0.180	0.178	0.154	0.154	0.174	0.172	0.166	0.170	0.141	0.160	0.160	0.160	0.160	0.152	0.191	0.191	0.191
108	AB250084_Diplura_simplex	0.174	0.174	0.172	0.189	0.193	0.176	0.180	0.184	0.186	0.184	0.182	0.168	0.172	0.172	0.172	0.172	0.176	0.180	0.180	0.180
109	KC847402_Diplura_sp_G1	0.170	0.168	0.160	0.176	0.189	0.166	0.162	0.178	0.170	0.174	0.174	0.145	0.168	0.168	0.168	0.168	0.170	0.168	0.168	0.168
110	KC847401_Diplura_sp_G2	0.166	0.164	0.156	0.174	0.184	0.162	0.158	0.176	0.168	0.172	0.172	0.141	0.164	0.164	0.164	0.164	0.166	0.164	0.164	0.164
111	KC847400_Diplura_sp_G3	0.166	0.164	0.156	0.174	0.184	0.162	0.158	0.176	0.168	0.172	0.172	0.141	0.164	0.164	0.164	0.164	0.166	0.164	0.164	0.164
112	KC847399_Diplura_sp_G4	0.166	0.164	0.156	0.174	0.184	0.162	0.158	0.176	0.168	0.172	0.172	0.141	0.164	0.164	0.164	0.164	0.166	0.164	0.164	0.164
113	KC847398_Diplura_sp_F1	0.164	0.172	0.166	0.186	0.178	0.195	0.191	0.189	0.193	0.189	0.186	0.170	0.164	0.164	0.164	0.164	0.168	0.180	0.180	0.180
114	KC847397_Diplura_sp_F2	0.164	0.172	0.166	0.184	0.180	0.197	0.193	0.191	0.195	0.191	0.189	0.172	0.166	0.166	0.166	0.166	0.170	0.178	0.178	0.178
115	KC847396_Diplura_sp_F3	0.164	0.172	0.166	0.184	0.180	0.197	0.193	0.191	0.195	0.191	0.189	0.172	0.166	0.166	0.166	0.166	0.170	0.178	0.178	0.178
116	AF207797_Bachelotia_antillarum	0.127	0.131	0.119	0.129	0.135	0.117	0.121	0.125	0.129	0.129	0.123	0.102	0.131	0.131	0.131	0.131	0.125	0.148	0.148	0.148
117	AJ295833_Scytothamnus_australis	0.150	0.154	0.141	0.150	0.152	0.137	0.143	0.154	0.154	0.154	0.148	0.131	0.141	0.141	0.141	0.141	0.133	0.164	0.164	0.164

		41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
118	AB776778_Scytothamnus_fasciculatus	0.117	0.121	0.111	0.139	0.125	0.125	0.127	0.133	0.133	0.133	0.127	0.109	0.133	0.133	0.133	0.133	0.123	0.145	0.145	0.145
119	AB776779_Splachnidium_rugosum	0.127	0.131	0.113	0.135	0.127	0.129	0.133	0.141	0.145	0.145	0.139	0.119	0.131	0.131	0.131	0.131	0.123	0.141	0.141	0.141
120	EU579937_Sporochnus_pedunculatus	0.137	0.141	0.121	0.133	0.119	0.123	0.127	0.119	0.117	0.117	0.111	0.100	0.111	0.111	0.111	0.111	0.107	0.135	0.135	0.135
121	AB776781_Sporochnus_bolleanus	0.139	0.143	0.123	0.135	0.119	0.121	0.125	0.119	0.117	0.117	0.111	0.102	0.113	0.113	0.113	0.113	0.109	0.137	0.137	0.137
122	AB776780_Carpomitra_costata	0.115	0.119	0.107	0.129	0.129	0.125	0.129	0.135	0.137	0.133	0.131	0.109	0.119	0.119	0.119	0.119	0.119	0.133	0.133	0.133
123	AB545977_Halosiphon_tomentosus	0.125	0.129	0.109	0.129	0.121	0.117	0.117	0.123	0.131	0.127	0.125	0.098	0.125	0.125	0.125	0.125	0.123	0.137	0.137	0.137
124	AB045247_Phyllariopsis_brevipes	0.127	0.129	0.107	0.141	0.143	0.127	0.129	0.125	0.125	0.125	0.119	0.102	0.125	0.125	0.125	0.125	0.127	0.135	0.135	0.135
125	AB776784_Tilopteris_mertensii	0.123	0.127	0.107	0.137	0.135	0.131	0.135	0.125	0.125	0.125	0.119	0.107	0.125	0.125	0.125	0.125	0.121	0.129	0.129	0.129

		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
62	VR44	0.012																			
63	VR6H	0.000	0.012																		
64	VR20H	0.000	0.012	0.000																	
65	VR38	0.006	0.006	0.006	0.006																
66	VR40	0.006	0.006	0.006	0.006	0.000															
67	VR41	0.006	0.006	0.006	0.006	0.000	0.000														
68	VR42	0.006	0.006	0.006	0.006	0.000	0.000	0.000													
69	Hpn	0.121	0.119	0.121	0.121	0.119	0.119	0.119	0.119												
70	NQ48E_PTM10156_ELPALMAR_GRO	0.121	0.125	0.121	0.121	0.119	0.119	0.119	0.119	0.152											
71	M58_PTM10115_PUNTAPERULA_JAL	0.135	0.139	0.135	0.135	0.133	0.133	0.133	0.133	0.049	0.160										
72	M27_PTM10065_CABOCORRIENTES	0.184	0.176	0.184	0.184	0.182	0.182	0.182	0.182	0.197	0.211	0.207									
73	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.178	0.170	0.178	0.178	0.176	0.176	0.176	0.176	0.191	0.205	0.205	0.035								
74	M92_PTM10119_PUNTAPERULA_JAL	0.137	0.141	0.137	0.137	0.135	0.135	0.135	0.135	0.053	0.164	0.031	0.217	0.209							
75	VR138_PTM9825_BARRADESANTAELENA_OAX	0.211	0.215	0.211	0.211	0.209	0.209	0.209	0.209	0.234	0.119	0.238	0.283	0.273	0.240						
76	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.205	0.201	0.205	0.205	0.201	0.201	0.201	0.201	0.225	0.143	0.238	0.264	0.264	0.234	0.236					
77	M59R1_PTM10116_PUNTAPERULA_JAL	0.201	0.205	0.201	0.201	0.199	0.199	0.199	0.199	0.137	0.230	0.092	0.262	0.268	0.119	0.273	0.305				
78	AB250082_Ralfsia_spJ	0.129	0.127	0.129	0.129	0.127	0.127	0.127	0.127	0.119	0.137	0.141	0.180	0.174	0.148	0.219	0.219	0.221			
79	AB250083_Ralfsia_spK	0.127	0.125	0.127	0.127	0.125	0.125	0.125	0.125	0.117	0.135	0.139	0.182	0.176	0.145	0.217	0.217	0.219	0.002		

		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
80	AB250081_Ralfsia_spI	0.131	0.129	0.131	0.131	0.129	0.129	0.129	0.129	0.119	0.135	0.141	0.189	0.182	0.143	0.219	0.219	0.219	0.012	0.010	
81	AB250080_Ralfsia_spH	0.127	0.125	0.127	0.127	0.125	0.125	0.125	0.125	0.117	0.135	0.139	0.182	0.176	0.145	0.217	0.217	0.219	0.002	0.000	0.010
82	GU014708_Ralfsia_sp_JK7	0.145	0.143	0.145	0.145	0.143	0.143	0.143	0.143	0.127	0.143	0.141	0.168	0.164	0.143	0.232	0.230	0.221	0.111	0.113	0.115
83	GU014707_Ralfsia_sp_JK6	0.145	0.143	0.145	0.145	0.143	0.143	0.143	0.143	0.127	0.143	0.141	0.168	0.164	0.143	0.232	0.230	0.221	0.111	0.113	0.115
84	AB250076_Ralfsia_sp_RspD	0.133	0.129	0.133	0.133	0.129	0.129	0.129	0.129	0.135	0.133	0.156	0.180	0.178	0.162	0.213	0.213	0.230	0.051	0.053	0.059
85	AB250075_Ralfsia_sp_RspC	0.148	0.145	0.148	0.148	0.145	0.145	0.145	0.145	0.125	0.148	0.145	0.176	0.174	0.148	0.242	0.234	0.219	0.109	0.111	0.113
86	AB250074_Ralfsia_sp_RspB	0.145	0.143	0.145	0.145	0.143	0.143	0.143	0.143	0.127	0.143	0.141	0.168	0.164	0.143	0.232	0.230	0.221	0.111	0.113	0.115
87	AB250079_Neoralfsia_expansa_G	0.127	0.125	0.127	0.127	0.125	0.125	0.125	0.125	0.117	0.135	0.139	0.182	0.176	0.145	0.217	0.217	0.219	0.002	0.000	0.010
88	AB250077_Neoralfsia_expansa_E	0.125	0.127	0.125	0.125	0.123	0.123	0.123	0.123	0.129	0.127	0.150	0.189	0.186	0.156	0.213	0.221	0.225	0.045	0.043	0.053
89	AB250078_Neoralfsia_expansa_F	0.125	0.123	0.125	0.125	0.123	0.123	0.123	0.123	0.127	0.131	0.150	0.184	0.182	0.156	0.221	0.217	0.223	0.027	0.025	0.035
90	KM032758_Neoralfsia_expansa_A	0.127	0.129	0.127	0.127	0.125	0.125	0.125	0.125	0.111	0.129	0.141	0.186	0.180	0.148	0.211	0.217	0.221	0.041	0.039	0.049
91	KM032759_Neoralfsia_expansa_B	0.127	0.125	0.127	0.127	0.125	0.125	0.125	0.125	0.111	0.129	0.141	0.182	0.176	0.148	0.211	0.215	0.221	0.037	0.035	0.045
92	KM032760_Neoralfsia_expansa_C	0.123	0.121	0.123	0.123	0.121	0.121	0.121	0.121	0.094	0.129	0.139	0.176	0.170	0.143	0.211	0.211	0.219	0.033	0.031	0.041
93	KF977827_Neoralfsia_hancockii_A	0.127	0.123	0.127	0.127	0.123	0.123	0.123	0.123	0.117	0.129	0.148	0.176	0.170	0.154	0.213	0.215	0.227	0.035	0.033	0.043
94	KF977828_Neoralfsia_hancockii_B	0.127	0.123	0.127	0.127	0.123	0.123	0.123	0.123	0.117	0.129	0.148	0.176	0.170	0.154	0.213	0.215	0.227	0.035	0.033	0.043
95	RhancPtm9178	0.127	0.129	0.127	0.127	0.125	0.125	0.125	0.125	0.098	0.139	0.133	0.193	0.186	0.141	0.223	0.213	0.209	0.045	0.043	0.053
96	RahancPtm8982	0.113	0.115	0.113	0.113	0.111	0.111	0.111	0.111	0.092	0.135	0.127	0.158	0.156	0.135	0.223	0.211	0.199	0.102	0.105	0.111
97	RhespPTM8970	0.105	0.105	0.105	0.105	0.102	0.102	0.102	0.102	0.113	0.131	0.129	0.154	0.152	0.133	0.219	0.207	0.201	0.090	0.092	0.098
98	KC847394_Neoralfsia_expansa_A	0.123	0.121	0.123	0.123	0.121	0.121	0.121	0.121	0.125	0.131	0.148	0.182	0.180	0.154	0.217	0.217	0.225	0.018	0.016	0.027
99	KC847393_Neoralfsia_expansa_B	0.127	0.125	0.127	0.127	0.125	0.125	0.125	0.125	0.125	0.135	0.148	0.189	0.186	0.154	0.217	0.217	0.227	0.023	0.020	0.031
100	KC847392_Neoralfsia_expansa_C	0.125	0.123	0.125	0.125	0.123	0.123	0.123	0.123	0.115	0.133	0.137	0.184	0.178	0.143	0.215	0.215	0.217	0.004	0.002	0.012
101	KC847391_Mesospora_negrosensis_A	0.127	0.125	0.127	0.127	0.127	0.127	0.127	0.127	0.141	0.129	0.154	0.166	0.162	0.154	0.217	0.215	0.225	0.117	0.115	0.119
102	KC847390_Mesospora_negrosensis_B	0.115	0.109	0.115	0.115	0.111	0.111	0.111	0.111	0.137	0.119	0.154	0.152	0.148	0.158	0.207	0.205	0.225	0.107	0.105	0.109
103	KC847389_Mesospora_negrosensis_C	0.129	0.127	0.129	0.129	0.129	0.129	0.129	0.129	0.143	0.131	0.156	0.164	0.160	0.156	0.219	0.217	0.227	0.119	0.117	0.121
104	KC847388_Mesospora_schmidtii_A	0.115	0.113	0.115	0.115	0.113	0.113	0.113	0.113	0.127	0.127	0.137	0.182	0.178	0.141	0.215	0.203	0.213	0.119	0.117	0.119
105	KC847387_Mesospora_schmidtii_B	0.115	0.113	0.115	0.115	0.113	0.113	0.113	0.113	0.131	0.131	0.141	0.191	0.191	0.145	0.221	0.213	0.217	0.125	0.123	0.125
106	EU579935_Pseudolithoderma_roscoffense	0.172	0.168	0.172	0.172	0.168	0.168	0.168	0.168	0.168	0.189	0.193	0.193	0.182	0.189	0.264	0.256	0.250	0.139	0.141	0.148
107	AB250061_Petroderma_maculiforme_A	0.195	0.191	0.195	0.195	0.191	0.191	0.191	0.191	0.184	0.197	0.205	0.168	0.172	0.207	0.275	0.277	0.266	0.170	0.172	0.166
108	AB250084_Diplura_simplex	0.182	0.180	0.182	0.182	0.180	0.180	0.180	0.180	0.186	0.219	0.215	0.172	0.166	0.217	0.289	0.281	0.279	0.176	0.178	0.180
109	KC847402_Diplura_sp_G1	0.170	0.162	0.170	0.170	0.168	0.168	0.168	0.168	0.174	0.201	0.193	0.078	0.068	0.199	0.283	0.262	0.264	0.168	0.170	0.174
110	KC847401_Diplura_sp_G2	0.166	0.158	0.166	0.166	0.164	0.164	0.164	0.164	0.170	0.197	0.189	0.076	0.064	0.195	0.279	0.258	0.264	0.164	0.166	0.170

		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
111	KC847400_Diplura_sp_G3	0.166	0.158	0.166	0.166	0.164	0.164	0.164	0.164	0.170	0.197	0.189	0.076	0.064	0.195	0.279	0.258	0.264	0.164	0.166	0.170
112	KC847399_Diplura_sp_G4	0.166	0.158	0.166	0.166	0.164	0.164	0.164	0.164	0.170	0.197	0.189	0.076	0.064	0.195	0.279	0.258	0.264	0.164	0.166	0.170
113	KC847398_Diplura_sp_F1	0.182	0.180	0.182	0.182	0.180	0.180	0.180	0.180	0.170	0.207	0.191	0.168	0.166	0.197	0.283	0.281	0.260	0.154	0.156	0.164
114	KC847397_Diplura_sp_F2	0.180	0.178	0.180	0.180	0.178	0.178	0.178	0.178	0.172	0.205	0.193	0.166	0.164	0.199	0.281	0.279	0.262	0.154	0.156	0.164
115	KC847396_Diplura_sp_F3	0.180	0.178	0.180	0.180	0.178	0.178	0.178	0.178	0.172	0.205	0.193	0.166	0.164	0.199	0.281	0.279	0.262	0.154	0.156	0.164
116	AF207797_Bachelotia_antillarum	0.152	0.148	0.152	0.152	0.148	0.148	0.148	0.148	0.135	0.158	0.158	0.178	0.178	0.164	0.236	0.227	0.227	0.137	0.135	0.137
117	AJ295833_Scytothamnus_australis	0.166	0.166	0.166	0.166	0.164	0.164	0.164	0.164	0.154	0.174	0.172	0.178	0.170	0.170	0.250	0.242	0.234	0.131	0.133	0.137
118	AB776778_Scytothamnus_fasciculatus	0.148	0.148	0.148	0.148	0.145	0.145	0.145	0.145	0.137	0.162	0.156	0.176	0.170	0.154	0.244	0.232	0.225	0.121	0.123	0.123
119	AB776779_Splachnidium_rugosum	0.141	0.145	0.141	0.141	0.141	0.141	0.141	0.141	0.143	0.154	0.158	0.156	0.152	0.156	0.234	0.242	0.227	0.113	0.115	0.119
120	EU579937_Sporochnus_pedunculatus	0.139	0.135	0.139	0.139	0.135	0.135	0.135	0.135	0.119	0.152	0.145	0.172	0.170	0.148	0.230	0.227	0.215	0.115	0.113	0.117
121	AB776781_Sporochnus_bolleanus	0.141	0.137	0.141	0.141	0.137	0.137	0.137	0.137	0.115	0.150	0.141	0.170	0.168	0.143	0.232	0.225	0.211	0.119	0.117	0.119
122	AB776780_Carpomitra_costata	0.137	0.137	0.137	0.137	0.133	0.133	0.133	0.133	0.135	0.156	0.152	0.143	0.141	0.154	0.232	0.238	0.217	0.115	0.117	0.125
123	AB545977_Halosiphon_tomentosus	0.141	0.137	0.141	0.141	0.137	0.137	0.137	0.137	0.141	0.160	0.156	0.154	0.154	0.162	0.236	0.244	0.221	0.117	0.119	0.127
124	AB045247_Phyllariopsis_brevipes	0.137	0.135	0.137	0.137	0.135	0.135	0.135	0.135	0.141	0.156	0.154	0.166	0.164	0.156	0.246	0.232	0.221	0.113	0.115	0.117
125	AB776784_Tilopteris_mertensii	0.131	0.129	0.131	0.131	0.129	0.129	0.129	0.129	0.129	0.158	0.156	0.162	0.160	0.156	0.246	0.215	0.225	0.119	0.121	0.123

		81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
82	GU014708_Ralfsia_sp_JK7	0.113																			
83	GU014707_Ralfsia_sp_JK6	0.113	0.000																		
84	AB250076_Ralfsia_sp_RspD	0.053	0.111	0.111																	
85	AB250075_Ralfsia_sp_RspC	0.111	0.037	0.037	0.113																
86	AB250074_Ralfsia_sp_RspB	0.113	0.000	0.000	0.111	0.037															
87	AB250079_Neoralfsia_expansa_G	0.000	0.113	0.113	0.053	0.111	0.113														
88	AB250077_Neoralfsia_expansa_E	0.043	0.113	0.113	0.061	0.111	0.113	0.043													
89	AB250078_Neoralfsia_expansa_F	0.025	0.109	0.109	0.053	0.102	0.109	0.025	0.039												
90	KM032758_Neoralfsia_expansa_A	0.039	0.117	0.117	0.078	0.119	0.117	0.039	0.064	0.055											
91	KM032759_Neoralfsia_expansa_B	0.035	0.117	0.117	0.074	0.119	0.117	0.035	0.059	0.051	0.008										
92	KM032760_Neoralfsia_expansa_C	0.031	0.117	0.117	0.070	0.115	0.117	0.031	0.059	0.047	0.025	0.020									
93	KF977827_Neoralfsia_hancockii_A	0.033	0.113	0.113	0.074	0.111	0.113	0.033	0.059	0.049	0.047	0.047	0.035								
94	KF977828_Neoralfsia_hancockii_B	0.033	0.113	0.113	0.074	0.111	0.113	0.033	0.059	0.049	0.047	0.047	0.035	0.000							
95	RhancPtm9178	0.043	0.125	0.125	0.078	0.119	0.125	0.043	0.068	0.059	0.037	0.033	0.020	0.043	0.043						
96	RahancPtm8982	0.105	0.102	0.102	0.102	0.100	0.102	0.105	0.098	0.100	0.094	0.090	0.078	0.100	0.100	0.066					
97	RhespPTM8970	0.092	0.082	0.082	0.092	0.090	0.082	0.092	0.092	0.084	0.105	0.102	0.096	0.098	0.098	0.109	0.043				
98	KC847394_Neoralfsia_expansa_A	0.016	0.109	0.109	0.045	0.102	0.109	0.016	0.039	0.008	0.047	0.043	0.039	0.041	0.041	0.051	0.098	0.082			
99	KC847393_Neoralfsia_expansa_B	0.020	0.111	0.111	0.051	0.109	0.111	0.020	0.043	0.025	0.045	0.041	0.041	0.043	0.043	0.053	0.100	0.088	0.016		
100	KC847392_Neoralfsia_expansa_C	0.002	0.115	0.115	0.051	0.113	0.115	0.002	0.041	0.023	0.037	0.033	0.029	0.031	0.031	0.041	0.102	0.090	0.014	0.018	
101	KC847391_Mesospora_negrosensis_A	0.115	0.107	0.107	0.123	0.119	0.107	0.115	0.117	0.117	0.125	0.125	0.119	0.123	0.123	0.129	0.123	0.105	0.121	0.123	0.117
102	KC847390_Mesospora_negrosensis_B	0.105	0.096	0.096	0.105	0.109	0.096	0.105	0.111	0.107	0.115	0.115	0.109	0.109	0.109	0.119	0.102	0.084	0.107	0.109	0.107
103	KC847389_Mesospora_negrosensis_C	0.117	0.105	0.105	0.125	0.121	0.105	0.117	0.119	0.119	0.127	0.127	0.121	0.125	0.125	0.131	0.121	0.102	0.123	0.125	0.119
104	KC847388_Mesospora_schmidtii_A	0.117	0.117	0.117	0.115	0.127	0.117	0.117	0.117	0.113	0.125	0.125	0.125	0.123	0.123	0.129	0.119	0.111	0.111	0.113	0.115
105	KC847387_Mesospora_schmidtii_B	0.123	0.119	0.119	0.119	0.129	0.119	0.123	0.119	0.115	0.133	0.131	0.131	0.131	0.131	0.135	0.121	0.111	0.113	0.115	0.121
106	$EU579935_Pseudolithoderma_roscoffense$	0.141	0.143	0.143	0.150	0.145	0.143	0.141	0.145	0.145	0.152	0.152	0.141	0.133	0.133	0.145	0.139	0.129	0.139	0.143	0.139
107	AB250061_Petroderma_maculiforme_A	0.172	0.139	0.139	0.156	0.152	0.139	0.172	0.162	0.174	0.174	0.174	0.168	0.162	0.162	0.176	0.148	0.150	0.172	0.172	0.174
108	AB250084_Diplura_simplex	0.178	0.189	0.189	0.176	0.197	0.189	0.178	0.180	0.184	0.174	0.172	0.164	0.176	0.176	0.170	0.150	0.162	0.180	0.182	0.180
109	KC847402_Diplura_sp_G1	0.170	0.156	0.156	0.170	0.168	0.156	0.170	0.180	0.176	0.178	0.174	0.168	0.164	0.164	0.178	0.156	0.148	0.174	0.170	0.172
110	KC847401_Diplura_sp_G2	0.166	0.152	0.152	0.166	0.164	0.152	0.166	0.176	0.172	0.174	0.170	0.164	0.160	0.160	0.174	0.152	0.143	0.170	0.166	0.168
111	KC847400_Diplura_sp_G3	0.166	0.152	0.152	0.166	0.164	0.152	0.166	0.176	0.172	0.174	0.170	0.164	0.160	0.160	0.174	0.152	0.143	0.170	0.166	0.168

		81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
112	KC847399_Diplura_sp_G4	0.166	0.152	0.152	0.166	0.164	0.152	0.166	0.176	0.172	0.174	0.170	0.164	0.160	0.160	0.174	0.152	0.143	0.170	0.166	0.168
113	KC847398_Diplura_sp_F1	0.156	0.164	0.164	0.168	0.176	0.164	0.156	0.166	0.164	0.166	0.166	0.160	0.160	0.160	0.170	0.164	0.158	0.158	0.160	0.158
114	KC847397_Diplura_sp_F2	0.156	0.166	0.166	0.170	0.178	0.166	0.156	0.166	0.164	0.166	0.166	0.160	0.160	0.160	0.170	0.166	0.160	0.158	0.160	0.158
115	KC847396_Diplura_sp_F3	0.156	0.166	0.166	0.170	0.178	0.166	0.156	0.166	0.164	0.166	0.166	0.160	0.160	0.160	0.170	0.166	0.160	0.158	0.160	0.158
116	AF207797_Bachelotia_antillarum	0.135	0.109	0.109	0.133	0.127	0.109	0.135	0.143	0.139	0.131	0.131	0.129	0.133	0.133	0.135	0.113	0.113	0.135	0.137	0.137
117	AJ295833_Scytothamnus_australis	0.133	0.127	0.127	0.135	0.141	0.127	0.133	0.143	0.135	0.131	0.131	0.135	0.143	0.143	0.137	0.123	0.125	0.135	0.135	0.135
118	AB776778_Scytothamnus_fasciculatus	0.123	0.107	0.107	0.123	0.117	0.107	0.123	0.139	0.129	0.123	0.123	0.127	0.131	0.131	0.133	0.119	0.113	0.125	0.121	0.125
119	AB776779_Splachnidium_rugosum	0.115	0.098	0.098	0.117	0.113	0.098	0.115	0.119	0.117	0.113	0.113	0.117	0.117	0.117	0.127	0.098	0.092	0.113	0.109	0.117
120	EU579937_Sporochnus_pedunculatus	0.113	0.119	0.119	0.117	0.117	0.119	0.113	0.125	0.109	0.115	0.115	0.111	0.111	0.111	0.123	0.109	0.098	0.105	0.109	0.111
121	AB776781_Sporochnus_bolleanus	0.117	0.115	0.115	0.119	0.113	0.115	0.117	0.125	0.113	0.115	0.115	0.107	0.111	0.111	0.117	0.105	0.105	0.109	0.113	0.115
122	AB776780_Carpomitra_costata	0.117	0.111	0.111	0.117	0.117	0.111	0.117	0.123	0.121	0.119	0.119	0.115	0.115	0.115	0.127	0.096	0.092	0.117	0.121	0.119
123	AB545977_Halosiphon_tomentosus	0.119	0.100	0.100	0.109	0.111	0.100	0.119	0.117	0.121	0.123	0.123	0.119	0.117	0.117	0.131	0.098	0.090	0.117	0.119	0.121
124	AB045247_Phyllariopsis_brevipes	0.115	0.113	0.113	0.109	0.109	0.113	0.115	0.115	0.115	0.121	0.121	0.113	0.113	0.113	0.119	0.094	0.094	0.109	0.115	0.117
125	AB776784_Tilopteris_mertensii	0.121	0.111	0.111	0.113	0.115	0.111	0.121	0.127	0.121	0.123	0.123	0.117	0.121	0.121	0.121	0.100	0.098	0.117	0.121	0.123
		101	102	103 10	4 105	106	107	108	109 11	0 111	112	113	114	115 11	6 117	118	119	120	121 12	2 123	124

		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	11/	118	119	120	120 121	120 121 122	120 121 122	120 121 122	120 121 122	120 121 122 1	120 121 122 12	120 121 122 12.	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123	120 121 122 123
102	KC847390_Mesospora_negrosensis_B	0.033																																					
103	KC847389_Mesospora_negrosensis_C	0.002	0.031																																				
104	KC847388_Mesospora_schmidtii_A	0.088	0.072	0.086																																			
105	KC847387_Mesospora_schmidtii_B	0.088	0.072	0.086	0.012																																		
106	EU579935_Pseudolithoderma_roscoffense	0.152	0.145	0.154	0.170	0.176																																	
107	AB250061_Petroderma_maculiforme_A	0.150	0.143	0.148	0.170	0.176	0.160																																
108	AB250084_Diplura_simplex	0.180	0.166	0.182	0.182	0.186	0.158	0.148																															
109	KC847402_Diplura_sp_G1	0.160	0.141	0.158	0.174	0.180	0.170	0.170	0.170																														
110	KC847401_Diplura_sp_G2	0.158	0.139	0.156	0.172	0.178	0.166	0.166	0.166	0.004																													
111	KC847400_Diplura_sp_G3	0.158	0.139	0.156	0.172	0.178	0.166	0.166	0.166	0.004	0.000																												
112	KC847399_Diplura_sp_G4	0.158	0.139	0.156	0.172	0.178	0.166	0.166	0.166	0.004	0.000	0.000																											
113	KC847398_Diplura_sp_F1	0.184	0.170	0.182	0.186	0.191	0.172	0.170	0.139	0.160	0.156	0.156	0.156																										
114	KC847397_Diplura_sp_F2	0.186	0.172	0.184	0.189	0.193	0.174	0.170	0.141	0.160	0.156	0.156	0.156	0.002																									
115	KC847396_Diplura_sp_F3	0.186	0.172	0.184	0.189	0.193	0.174	0.170	0.141	0.160	0.156	0.156	0.156	0.002	0.000																								
116	AF207797_Bachelotia_antillarum	0.113	0.105	0.111	0.123	0.127	0.152	0.137	0.168	0.172	0.170	0.170	0.170	0.172	0.174	0.174																							
117	AJ295833_Scytothamnus_australis	0.133	0.133	0.135	0.148	0.156	0.166	0.154	0.152	0.156	0.152	0.152	0.152	0.166	0.168	0.168	0.113																						

118	AB776778_Scytothamnus_fasciculatus	0.107	0.113	0.109	0.127	0.135	0.162	0.139	0.174	0.160	0.156	0.156	0.156	0.178	0.176	0.176	0.096	0.078							
119	AB776779_Splachnidium_rugosum	0.117	0.113	0.119	0.139	0.143	0.145	0.127	0.150	0.150	0.145	0.145	0.145	0.168	0.168	0.168	0.109	0.090	0.074						
120	EU579937_Sporochnus_pedunculatus	0.121	0.102	0.123	0.111	0.117	0.143	0.148	0.160	0.156	0.152	0.152	0.152	0.172	0.174	0.174	0.119	0.121	0.098	0.092					
121	AB776781_Sporochnus_bolleanus	0.123	0.105	0.125	0.111	0.117	0.141	0.145	0.160	0.158	0.154	0.154	0.154	0.172	0.174	0.174	0.111	0.121	0.100	0.092	0.014				
122	AB776780_Carpomitra_costata	0.131	0.107	0.129	0.131	0.137	0.129	0.131	0.143	0.137	0.133	0.133	0.133	0.143	0.143	0.143	0.105	0.123	0.096	0.078	0.074	0.072			
123	AB545977_Halosiphon_tomentosus	0.107	0.096	0.105	0.125	0.125	0.137	0.115	0.156	0.152	0.148	0.148	0.148	0.164	0.166	0.166	0.084	0.117	0.086	0.074	0.088	0.086	0.078		
124	AB045247_Phyllariopsis_brevipes	0.129	0.115	0.127	0.119	0.127	0.145	0.129	0.164	0.160	0.156	0.156	0.156	0.172	0.174	0.174	0.111	0.121	0.111	0.102	0.100	0.102	0.105	0.080	
125	AB776784_Tilopteris_mertensii	0.129	0.109	0.127	0.119	0.127	0.137	0.139	0.152	0.143	0.139	0.139	0.139	0.158	0.160	0.160	0.088	0.107	0.105	0.100	0.092	0.090	0.084	0.076	0.059

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	AB000211_Tribonema_aequale																								
2	LM995414_Discosporangium_mesarthrocarpum	0.215																							
3	EU681430_Tilopteris_mertensii	0.228	0.192																						
4	EU579870_Onslowia_endophytica	0.221	0.202	0.196																					
5	EU681389_Analipus_japonicus	0.231	0.228	0.208	0.167																				
6	KC491234_Desmarestia_viridis	0.218	0.170	0.173	0.151	0.196																			
7	HE866763_Desmarestia_tabacoides	0.228	0.186	0.179	0.170	0.212	0.048																		
8	KF367762_Ectocarpus_siliculosus	0.192	0.183	0.176	0.173	0.179	0.144	0.154																	
9	KC491235_Scytosiphon_lomentaria	0.218	0.186	0.212	0.199	0.196	0.173	0.189	0.119																
10	EU681424_Scytosiphon_lomentaria	0.218	0.186	0.212	0.199	0.196	0.173	0.189	0.119	0.000															
11	EU579869_Ishige_okamurael	0.250	0.247	0.240	0.266	0.256	0.266	0.260	0.228	0.240	0.240														
12	AB899174_Zonaria_diesingiana	0.192	0.199	0.199	0.183	0.208	0.176	0.176	0.167	0.183	0.183	0.263													
13	AB899175_Choristocarpus_tenellus	0.212	0.157	0.192	0.192	0.221	0.199	0.196	0.157	0.192	0.192	0.228	0.179												
14	AB899184_Phaeostrophion_irregulare	0.276	0.237	0.266	0.253	0.263	0.215	0.221	0.221	0.253	0.253	0.266	0.244	0.231											
15	AF037991_Chorda_filum	0.224	0.212	0.224	0.215	0.237	0.202	0.208	0.167	0.192	0.192	0.282	0.224	0.221	0.279										
16	EU681390_Ascophyllum_nodosum	0.228	0.199	0.199	0.186	0.215	0.163	0.160	0.147	0.176	0.176	0.256	0.170	0.189	0.234	0.205									
17	EU681415_Petalonia_fascia	0.212	0.173	0.176	0.202	0.199	0.170	0.170	0.119	0.122	0.122	0.218	0.196	0.144	0.237	0.189	0.163								
18	GQ368262_Himantothallus_grandifolius	0.247	0.192	0.183	0.179	0.212	0.125	0.125	0.167	0.192	0.192	0.250	0.199	0.212	0.221	0.218	0.176	0.202							
19	GU097705_Laminaria_digitata	0.234	0.170	0.189	0.192	0.202	0.151	0.157	0.131	0.176	0.176	0.260	0.196	0.196	0.234	0.202	0.170	0.154	0.183						
20	JX572136_Dictyosiphon_foeniculaceus	0.231	0.176	0.173	0.179	0.192	0.157	0.167	0.119	0.179	0.179	0.256	0.196	0.179	0.228	0.186	0.176	0.147	0.189	0.157					
21	GQ368264_Phyllariopsis_brevipes	0.221	0.189	0.176	0.186	0.192	0.151	0.176	0.163	0.179	0.179	0.234	0.189	0.189	0.240	0.202	0.179	0.173	0.183	0.167	0.160				
22	EU681416_Petrospongium_berkeleyi	0.224	0.212	0.196	0.208	0.196	0.154	0.163	0.138	0.176	0.176	0.295	0.218	0.224	0.260	0.208	0.189	0.170	0.189	0.151	0.151	0.202			
23	EU681393_Bachelotia_antillarum	0.205	0.179	0.205	0.202	0.234	0.163	0.160	0.135	0.183	0.183	0.234	0.167	0.147	0.221	0.202	0.186	0.160	0.183	0.199	0.167	0.192	0.205		

24	EU579877_Splachnidium_rugosum	0.221	0.202	0.205	0.205	0.215	0.183	0.196	0.173	0.183	0.183	0.266	0.202	0.196	0.234	0.228	0.189	0.183	0.212	0.199	0.183	0.179	0.183	0.196	
25	EU681423_Sargassum_muticum	0.247	0.199	0.202	0.196	0.196	0.186	0.183	0.167	0.189	0.189	0.253	0.192	0.205	0.231	0.208	0.167	0.170	0.183	0.199	0.170	0.192	0.202	0.202	0.199
26	EU681419_Ralfsia_fungiformis	0.260	0.196	0.205	0.202	0.212	0.173	0.170	0.186	0.212	0.212	0.234	0.212	0.228	0.260	0.234	0.208	0.208	0.160	0.215	0.215	0.196	0.208	0.215	0.208
27	HF559173_Padina_durvillei	0.215	0.202	0.199	0.192	0.218	0.179	0.192	0.151	0.192	0.192	0.231	0.202	0.202	0.253	0.199	0.212	0.196	0.189	0.196	0.186	0.192	0.218	0.179	0.218
28	KC847376_Diplura_sp_F2	0.228	0.176	0.231	0.221	0.250	0.205	0.215	0.176	0.189	0.189	0.228	0.215	0.196	0.221	0.231	0.228	0.179	0.244	0.186	0.199	0.208	0.247	0.192	0.215
29	KC847377_Diplura_sp_F1	0.228	0.176	0.231	0.221	0.250	0.205	0.215	0.176	0.189	0.189	0.228	0.215	0.196	0.221	0.231	0.228	0.179	0.244	0.186	0.199	0.208	0.247	0.192	0.215
30	KC847375_Diplura_sp_F3	0.228	0.176	0.231	0.221	0.250	0.205	0.215	0.176	0.189	0.189	0.228	0.215	0.196	0.221	0.231	0.228	0.179	0.244	0.186	0.199	0.208	0.247	0.192	0.215

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), contuación...

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
31	KC847379_Diplura_sp_G3	0.269	0.205	0.234	0.231	0.228	0.205	0.208	0.192	0.215	0.215	0.221	0.231	0.170	0.247	0.224	0.212	0.186	0.208	0.196	0.212	0.218	0.224	0.212	0.221
32	KC847380_Diplura_sp_G2	0.269	0.205	0.234	0.231	0.228	0.205	0.208	0.192	0.215	0.215	0.221	0.231	0.170	0.247	0.224	0.212	0.186	0.208	0.196	0.212	0.218	0.224	0.212	0.221
33	KC847381_Diplura_sp_G1	0.272	0.208	0.224	0.244	0.244	0.205	0.215	0.205	0.228	0.228	0.218	0.240	0.186	0.253	0.224	0.231	0.196	0.221	0.205	0.228	0.221	0.224	0.221	0.237
34	KM254882_Ralfsioid_sp_1	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
35	KM254833_Ralfsioid_sp_2	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
36	KM254789_Ralfsioid_sp_3	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
37	KM254634_Ralfsioid_sp_4	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
38	KM254794_Ralfsioid_sp_5	0.256	0.215	0.253	0.228	0.228	0.183	0.205	0.202	0.212	0.212	0.263	0.208	0.218	0.244	0.240	0.240	0.231	0.215	0.224	0.202	0.192	0.247	0.176	0.205
39	KM254573_Ralfsioid_sp_6	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
40	KM254504_Ralfsioid_sp_7	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
41	KM254270_Ralfsioid_sp_8	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
42	KM254572_Ralfsioid_sp_9	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
43	KM254456_Ralfsioid_sp_10	0.253	0.218	0.250	0.224	0.224	0.179	0.202	0.199	0.208	0.208	0.266	0.205	0.215	0.247	0.237	0.237	0.228	0.218	0.221	0.199	0.189	0.244	0.173	0.202
44	EU579873_Ralfsia_fungiformis_A	0.260	0.196	0.205	0.202	0.212	0.173	0.170	0.186	0.212	0.212	0.234	0.212	0.228	0.260	0.234	0.208	0.208	0.160	0.215	0.215	0.196	0.208	0.215	0.208
45	EU681419_Ralfsia_fungiformis_B	0.260	0.196	0.205	0.202	0.212	0.173	0.170	0.186	0.212	0.212	0.234	0.212	0.228	0.260	0.234	0.208	0.208	0.160	0.215	0.215	0.196	0.208	0.215	0.208
46	GQ425131_Dictyota_dichotoma	0.208	0.215	0.212	0.221	0.231	0.192	0.196	0.183	0.208	0.208	0.224	0.189	0.202	0.250	0.237	0.173	0.189	0.218	0.221	0.218	0.208	0.199	0.189	0.212
47	EU681429_Syringoderma_phinneyi	0.247	0.199	0.212	0.221	0.224	0.170	0.163	0.186	0.228	0.228	0.260	0.199	0.192	0.250	0.234	0.163	0.199	0.186	0.170	0.208	0.186	0.202	0.199	0.208
48	EU681425_Scytothamnus_australis	0.260	0.218	0.240	0.253	0.212	0.212	0.215	0.179	0.218	0.218	0.256	0.240	0.212	0.285	0.228	0.218	0.208	0.244	0.247	0.202	0.218	0.215	0.199	0.189
49	JQ620013_Mesospora_elongata_NIP66	0.228	0.218	0.224	0.215	0.244	0.208	0.199	0.173	0.221	0.221	0.247	0.228	0.170	0.237	0.231	0.199	0.192	0.196	0.186	0.196	0.202	0.192	0.186	0.199
50	JQ620012_Mesospora_elongata_GIL56	0.228	0.218	0.224	0.215	0.244	0.208	0.199	0.173	0.221	0.221	0.247	0.228	0.170	0.237	0.231	0.199	0.192	0.196	0.186	0.196	0.202	0.192	0.186	0.199
51	JQ620011_Mesospora_elongata_FUS3	0.228	0.218	0.224	0.215	0.244	0.208	0.199	0.173	0.221	0.221	0.247	0.228	0.170	0.237	0.231	0.199	0.192	0.196	0.186	0.196	0.202	0.192	0.186	0.199
52	JQ620010_Mesospora_elongata_FUS2	0.228	0.218	0.224	0.215	0.244	0.208	0.199	0.173	0.221	0.221	0.247	0.228	0.170	0.237	0.231	0.199	0.192	0.196	0.186	0.196	0.202	0.192	0.186	0.199

53	JQ620009_Mesospora_schmidtii_BAT43	0.237	0.208	0.250	0.221	0.263	0.189	0.202	0.183	0.218	0.218	0.228	0.234	0.218	0.250	0.228	0.212	0.202	0.212	0.215	0.221	0.205	0.231	0.202	0.237
54	JQ620008_Mesospora_schmidtii_POR32	0.256	0.247	0.250	0.237	0.256	0.196	0.192	0.199	0.218	0.218	0.263	0.228	0.231	0.282	0.250	0.234	0.208	0.215	0.237	0.228	0.244	0.234	0.205	0.244
55	JQ620007_Mesospora_schmidtii_BAT7A	0.244	0.212	0.260	0.218	0.253	0.186	0.173	0.179	0.205	0.205	0.250	0.224	0.215	0.266	0.224	0.218	0.199	0.221	0.231	0.224	0.231	0.212	0.179	0.215
56	JQ620006_Mesospora_schmidtii_CHE3	0.240	0.215	0.256	0.231	0.260	0.202	0.208	0.186	0.215	0.215	0.276	0.228	0.218	0.276	0.231	0.231	0.215	0.218	0.234	0.228	0.228	0.212	0.196	0.221
57	AB776659_Ralfsia_verrucosa	0.240	0.192	0.199	0.192	0.189	0.176	0.173	0.167	0.189	0.189	0.231	0.186	0.189	0.234	0.228	0.196	0.183	0.173	0.196	0.186	0.196	0.218	0.170	0.208
58	KC847384_Neoralfsia_expansa_A	0.218	0.189	0.237	0.215	0.231	0.205	0.212	0.192	0.221	0.221	0.208	0.208	0.192	0.234	0.244	0.244	0.208	0.247	0.234	0.199	0.221	0.234	0.176	0.205
59	KC847383_Neoralfsia_expansa_B	0.231	0.189	0.240	0.208	0.237	0.196	0.192	0.192	0.221	0.221	0.231	0.205	0.202	0.237	0.212	0.247	0.199	0.240	0.221	0.186	0.205	0.240	0.170	0.202
60	KC847382_Mesospora_sp_C	0.244	0.237	0.231	0.224	0.260	0.212	0.212	0.202	0.221	0.221	0.250	0.250	0.253	0.276	0.250	0.240	0.221	0.221	0.228	0.192	0.228	0.228	0.208	0.250

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
61	KC847373_Neoralfsia_expansa_C	0.234	0.205	0.247	0.224	0.224	0.224	0.221	0.212	0.221	0.221	0.218	0.215	0.205	0.250	0.244	0.256	0.221	0.247	0.250	0.221	0.231	0.247	0.196	0.212
62	KC847372_Neoralfsia_expansa_D	0.218	0.199	0.244	0.221	0.234	0.212	0.208	0.205	0.218	0.218	0.224	0.215	0.212	0.237	0.237	0.250	0.215	0.253	0.224	0.221	0.237	0.231	0.183	0.212
63	KC847371_Neoralfsia_expansa_E	0.221	0.186	0.240	0.205	0.224	0.196	0.202	0.196	0.202	0.202	0.215	0.205	0.192	0.231	0.224	0.240	0.192	0.234	0.221	0.202	0.212	0.234	0.183	0.199
64	KC847370_Mesospora_negrosensis_A	0.231	0.212	0.247	0.221	0.234	0.218	0.224	0.189	0.215	0.215	0.260	0.237	0.244	0.272	0.253	0.208	0.224	0.228	0.250	0.196	0.237	0.208	0.215	0.205
65	KC847369_Mesospora_negrosensis_B	0.240	0.218	0.263	0.218	0.231	0.212	0.231	0.202	0.205	0.205	0.266	0.224	0.244	0.276	0.253	0.212	0.218	0.234	0.250	0.221	0.240	0.234	0.221	0.224
66	KC847368_Mesospora_negrosensis_C	0.228	0.208	0.240	0.218	0.231	0.215	0.221	0.186	0.212	0.212	0.260	0.234	0.240	0.269	0.253	0.202	0.221	0.224	0.247	0.192	0.234	0.212	0.212	0.202
67	KC847367_Mesospora_schmidtii_A	0.240	0.215	0.256	0.231	0.260	0.202	0.208	0.186	0.215	0.215	0.276	0.228	0.218	0.276	0.231	0.231	0.215	0.218	0.234	0.228	0.228	0.212	0.196	0.221
68	KC847366_Mesospora_schmidtii_B	0.240	0.215	0.253	0.215	0.260	0.186	0.205	0.186	0.221	0.221	0.240	0.234	0.221	0.244	0.228	0.208	0.215	0.208	0.218	0.218	0.205	0.231	0.202	0.231
69	VR6H	0.266	0.215	0.231	0.240	0.228	0.202	0.205	0.221	0.237	0.237	0.260	0.234	0.215	0.279	0.244	0.250	0.212	0.202	0.224	0.199	0.221	0.218	0.199	0.228
70	VR30H	0.253	0.208	0.224	0.234	0.224	0.189	0.199	0.215	0.240	0.240	0.256	0.224	0.199	0.266	0.231	0.234	0.205	0.196	0.221	0.196	0.221	0.224	0.189	0.224
71	VR38	0.253	0.208	0.224	0.234	0.224	0.189	0.199	0.215	0.240	0.240	0.256	0.224	0.199	0.266	0.231	0.234	0.205	0.196	0.221	0.196	0.221	0.224	0.189	0.224
72	VR40	0.253	0.208	0.224	0.234	0.224	0.189	0.199	0.215	0.240	0.240	0.256	0.224	0.199	0.266	0.231	0.234	0.205	0.196	0.221	0.196	0.221	0.224	0.189	0.224
73	VR42	0.253	0.208	0.224	0.234	0.224	0.189	0.199	0.215	0.240	0.240	0.256	0.224	0.199	0.266	0.231	0.234	0.205	0.196	0.221	0.196	0.221	0.224	0.189	0.224
74	VR43	0.253	0.208	0.224	0.234	0.224	0.189	0.199	0.215	0.240	0.240	0.256	0.224	0.199	0.266	0.231	0.234	0.205	0.196	0.221	0.196	0.221	0.224	0.189	0.224
75	VR41	0.253	0.205	0.224	0.231	0.221	0.186	0.196	0.212	0.237	0.237	0.256	0.221	0.196	0.263	0.231	0.231	0.202	0.192	0.218	0.192	0.218	0.221	0.189	0.224
76	VR20H	0.266	0.215	0.231	0.240	0.228	0.202	0.205	0.221	0.237	0.237	0.260	0.234	0.215	0.279	0.244	0.250	0.212	0.202	0.224	0.199	0.221	0.218	0.199	0.228
77	VR33	0.266	0.250	0.231	0.215	0.240	0.205	0.186	0.208	0.228	0.228	0.250	0.250	0.234	0.285	0.256	0.244	0.221	0.192	0.221	0.247	0.231	0.244	0.247	0.237
78	VR39	0.266	0.250	0.231	0.215	0.240	0.205	0.186	0.208	0.228	0.228	0.250	0.250	0.234	0.285	0.256	0.244	0.221	0.192	0.221	0.247	0.231	0.244	0.247	0.237
79	VR35	0.266	0.250	0.231	0.215	0.240	0.205	0.186	0.208	0.228	0.228	0.250	0.250	0.234	0.285	0.256	0.244	0.221	0.192	0.221	0.247	0.231	0.244	0.247	0.237
80	VR44	0.276	0.231	0.250	0.240	0.247	0.237	0.260	0.228	0.244	0.244	0.253	0.269	0.231	0.266	0.269	0.253	0.208	0.266	0.218	0.247	0.250	0.231	0.256	0.237
81	JX572040_Sphacelaria_radicans	0.253	0.260	0.250	0.247	0.269	0.228	0.234	0.208	0.253	0.253	0.250	0.208	0.221	0.221	0.263	0.240	0.240	0.244	0.224	0.231	0.234	0.263	0.212	0.272
82	M3_PTM10025_LOSMUERTOS_NAY	0.269	0.240	0.250	0.234	0.231	0.234	0.228	0.237	0.250	0.250	0.240	0.272	0.253	0.298	0.253	0.266	0.234	0.228	0.250	0.253	0.234	0.263	0.260	0.240
83	M27_PTM10065_CABOCORRIENTES_JAL	0.250	0.208	0.218	0.215	0.231	0.212	0.228	0.202	0.215	0.215	0.228	0.244	0.202	0.240	0.247	0.224	0.179	0.234	0.196	0.221	0.228	0.205	0.228	0.212
84	M30_PTM10066_CABOCORRIENTES_JAL	0.301	0.269	0.266	0.269	0.282	0.266	0.282	0.263	0.272	0.272	0.292	0.292	0.266	0.285	0.295	0.279	0.240	0.292	0.266	0.276	0.288	0.260	0.279	0.250

85	M31_PTM10039_LOSMUERTOS_NAY	0.253	0.212	0.221	0.218	0.234	0.215	0.231	0.205	0.218	0.218	0.231	0.247	0.205	0.244	0.250	0.228	0.183	0.237	0.199	0.224	0.231	0.208	0.231	0.215
86	M58_PTM10115_PUNTAPERULA_JAL	0.276	0.260	0.240	0.224	0.250	0.215	0.196	0.218	0.237	0.237	0.260	0.260	0.244	0.295	0.266	0.253	0.231	0.202	0.231	0.256	0.240	0.253	0.256	0.247
87	M59R1_PTM10116_PUNTAPERULA_JAL	0.266	0.250	0.231	0.215	0.240	0.205	0.186	0.208	0.228	0.228	0.250	0.250	0.234	0.285	0.256	0.244	0.221	0.192	0.221	0.247	0.231	0.244	0.247	0.237
88	M60_PTM10117_PUNTAPERULA_JAL	0.272	0.256	0.237	0.221	0.247	0.212	0.192	0.215	0.234	0.234	0.256	0.256	0.240	0.292	0.263	0.250	0.228	0.199	0.228	0.253	0.237	0.250	0.253	0.244
89	M67_PTM10075_CABOCORRIENTES_JAL	0.260	0.218	0.228	0.224	0.240	0.221	0.237	0.212	0.224	0.224	0.237	0.253	0.212	0.250	0.253	0.234	0.189	0.244	0.205	0.231	0.237	0.215	0.237	0.221
90	M80A_PTM10095_LASROSADAS_JAL	0.228	0.160	0.186	0.196	0.202	0.167	0.170	0.128	0.151	0.151	0.250	0.173	0.196	0.272	0.186	0.157	0.160	0.183	0.173	0.154	0.205	0.176	0.176	0.199
91	M91_PTM10118_PUNTAPERULA_JAL	0.266	0.250	0.231	0.215	0.240	0.205	0.186	0.208	0.228	0.228	0.250	0.250	0.234	0.285	0.256	0.244	0.221	0.192	0.221	0.247	0.231	0.244	0.247	0.237
92	NQ16_PTM9791_BAHIALAVENTOSA_OAX	0.247	0.215	0.215	0.215	0.231	0.212	0.224	0.202	0.218	0.218	0.224	0.240	0.202	0.244	0.247	0.221	0.179	0.234	0.202	0.221	0.228	0.205	0.231	0.215
93	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.253	0.212	0.221	0.218	0.234	0.215	0.231	0.205	0.218	0.218	0.231	0.247	0.205	0.244	0.250	0.228	0.183	0.237	0.199	0.224	0.231	0.208	0.231	0.215
94	NQ20B_PTM9795_BAHIALAVENTOSA_OAX	0.244	0.202	0.221	0.215	0.234	0.215	0.218	0.192	0.208	0.208	0.221	0.212	0.170	0.221	0.218	0.215	0.160	0.221	0.186	0.224	0.224	0.224	0.208	0.208
95	NQ22A_PTM9797_BAHIALAVENTOSA_OAX	0.263	0.221	0.231	0.228	0.244	0.224	0.240	0.215	0.228	0.228	0.240	0.256	0.215	0.253	0.256	0.237	0.192	0.247	0.208	0.234	0.240	0.218	0.240	0.224
96	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.253	0.221	0.247	0.215	0.244	0.221	0.234	0.218	0.221	0.221	0.247	0.253	0.234	0.269	0.212	0.234	0.240	0.224	0.224	0.247	0.208	0.266	0.240	0.253
97	NQ48E_PTM10156_ELPALMAR_GRO	0.263	0.218	0.237	0.244	0.250	0.224	0.228	0.179	0.196	0.196	0.288	0.221	0.234	0.317	0.231	0.205	0.221	0.234	0.228	0.215	0.250	0.221	0.231	0.247
98	VR136_PTM9823_BARRADESANTAELENA_OAX	0.253	0.221	0.247	0.215	0.244	0.221	0.234	0.218	0.221	0.221	0.247	0.253	0.234	0.269	0.212	0.234	0.240	0.224	0.224	0.247	0.208	0.266	0.240	0.253
99	VR138_PTM9825_BARRADESANTAELENA_OAX	0.231	0.163	0.189	0.199	0.205	0.170	0.173	0.131	0.154	0.154	0.253	0.176	0.199	0.276	0.189	0.160	0.163	0.186	0.176	0.157	0.208	0.179	0.179	0.202

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
26	EU681419_Ralfsia_fungiformis	0.202																							
27	HF559173_Padina_durvillei	0.173	0.189																						
28	KC847376_Diplura_sp_F2	0.221	0.244	0.199																					
29	KC847377_Diplura_sp_F1	0.221	0.244	0.199	0.000																				
30	KC847375_Diplura_sp_F3	0.221	0.244	0.199	0.000	0.000																			
31	KC847379_Diplura_sp_G3	0.202	0.237	0.208	0.189	0.189	0.189																		
32	KC847380_Diplura_sp_G2	0.202	0.237	0.208	0.189	0.189	0.189	0.000																	
33	KC847381_Diplura_sp_G1	0.212	0.244	0.218	0.192	0.192	0.192	0.029	0.029																
34	KM254882_Ralfsioid_sp_1	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224															
35	KM254833_Ralfsioid_sp_2	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000														
36	KM254789_Ralfsioid_sp_3	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000													
37	KM254634_Ralfsioid_sp_4	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000												
38	KM254794_Ralfsioid_sp_5	0.244	0.250	0.221	0.215	0.215	0.215	0.202	0.202	0.228	0.003	0.003	0.003	0.003											
39	KM254573_Ralfsioid_sp_6	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000	0.000	0.003										
40	KM254504_Ralfsioid_sp_7	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000	0.000	0.003	0.000									
41	KM254270_Ralfsioid_sp_8	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000	0.000	0.003	0.000	0.000								
42	KM254572_Ralfsioid_sp_9	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000							

43	KM254456_Ralfsioid_sp_10	0.247	0.253	0.224	0.212	0.212	0.212	0.199	0.199	0.224	0.000	0.000	0.000	0.000	0.003	0.000	0.000	0.000	0.000						
44	EU579873_Ralfsia_fungiformis_A	0.202	0.000	0.189	0.244	0.244	0.244	0.237	0.237	0.244	0.253	0.253	0.253	0.253	0.250	0.253	0.253	0.253	0.253	0.253					
45	EU681419_Ralfsia_fungiformis_B	0.202	0.000	0.189	0.244	0.244	0.244	0.237	0.237	0.244	0.253	0.253	0.253	0.253	0.250	0.253	0.253	0.253	0.253	0.253	0.000				
46	GQ425131_Dictyota_dichotoma	0.186	0.228	0.221	0.199	0.199	0.199	0.196	0.196	0.192	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.228	0.228			
47	EU681429_Syringoderma_phinneyi	0.228	0.218	0.215	0.221	0.221	0.221	0.205	0.205	0.205	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.218	0.218	0.231		
48	EU681425_Scytothamnus_australis	0.205	0.208	0.199	0.215	0.215	0.215	0.240	0.240	0.250	0.253	0.253	0.253	0.253	0.256	0.253	0.253	0.253	0.253	0.253	0.208	0.208	0.221	0.240	
49	JQ620013_Mesospora_elongata_NIP66	0.221	0.253	0.228	0.240	0.240	0.240	0.215	0.215	0.224	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.253	0.253	0.228	0.186	0.228
50	JQ620012_Mesospora_elongata_GIL56	0.221	0.253	0.228	0.240	0.240	0.240	0.215	0.215	0.224	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.253	0.253	0.228	0.186	0.228

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
51	JQ620011_Mesospora_elongata_FUS3	0.221	0.253	0.228	0.240	0.240	0.240	0.215	0.215	0.224	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.253	0.253	0.228	0.186	0.228
52	JQ620010_Mesospora_elongata_FUS2	0.221	0.253	0.228	0.240	0.240	0.240	0.215	0.215	0.224	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.253	0.253	0.228	0.186	0.228
53	JQ620009_Mesospora_schmidtii_BAT43	0.228	0.218	0.215	0.183	0.183	0.183	0.250	0.250	0.244	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.218	0.218	0.192	0.237	0.199
54	JQ620008_Mesospora_schmidtii_POR32	0.244	0.231	0.215	0.224	0.224	0.224	0.250	0.250	0.263	0.253	0.253	0.253	0.253	0.256	0.253	0.253	0.253	0.253	0.253	0.231	0.231	0.202	0.272	0.199
55	JQ620007_Mesospora_schmidtii_BAT7A	0.231	0.212	0.199	0.205	0.205	0.205	0.237	0.237	0.244	0.244	0.244	0.244	0.244	0.247	0.244	0.244	0.244	0.244	0.244	0.212	0.212	0.183	0.237	0.176
56	JQ620006_Mesospora_schmidtii_CHE3	0.237	0.234	0.202	0.215	0.215	0.215	0.244	0.244	0.250	0.244	0.244	0.244	0.244	0.247	0.244	0.244	0.244	0.244	0.244	0.234	0.234	0.202	0.250	0.196
57	AB776659_Ralfsia_verrucosa	0.186	0.141	0.170	0.196	0.196	0.196	0.212	0.212	0.228	0.221	0.221	0.221	0.221	0.218	0.221	0.221	0.221	0.221	0.221	0.141	0.141	0.208	0.208	0.221
58	KC847384_Neoralfsia_expansa_A	0.234	0.244	0.208	0.196	0.196	0.196	0.231	0.231	0.231	0.208	0.208	0.208	0.208	0.212	0.208	0.208	0.208	0.208	0.208	0.244	0.244	0.221	0.224	0.208
59	KC847383_Neoralfsia_expansa_B	0.218	0.224	0.192	0.212	0.212	0.212	0.237	0.237	0.240	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.224	0.224	0.247	0.218	0.212
60	KC847382_Mesospora_sp_C	0.240	0.234	0.247	0.237	0.237	0.237	0.256	0.256	0.263	0.244	0.244	0.244	0.244	0.247	0.244	0.244	0.244	0.244	0.244	0.234	0.234	0.237	0.247	0.263
61	KC847373_Neoralfsia_expansa_C	0.237	0.231	0.231	0.224	0.224	0.224	0.240	0.240	0.240	0.221	0.221	0.221	0.221	0.224	0.221	0.221	0.221	0.221	0.221	0.231	0.231	0.221	0.247	0.231
62	KC847372_Neoralfsia_expansa_D	0.244	0.234	0.221	0.208	0.208	0.208	0.231	0.231	0.228	0.221	0.221	0.221	0.221	0.224	0.221	0.221	0.221	0.221	0.221	0.234	0.234	0.240	0.221	0.228
63	KC847371_Neoralfsia_expansa_E	0.231	0.212	0.205	0.202	0.202	0.202	0.221	0.221	0.231	0.202	0.202	0.202	0.202	0.205	0.202	0.202	0.202	0.202	0.202	0.212	0.212	0.215	0.244	0.231
64	KC847370_Mesospora_negrosensis_A	0.240	0.244	0.250	0.247	0.247	0.247	0.240	0.240	0.250	0.247	0.247	0.247	0.247	0.250	0.247	0.247	0.247	0.247	0.247	0.244	0.244	0.202	0.256	0.205
65	KC847369_Mesospora_negrosensis_B	0.240	0.221	0.221	0.237	0.237	0.237	0.234	0.234	0.250	0.221	0.221	0.221	0.221	0.224	0.221	0.221	0.221	0.221	0.221	0.221	0.221	0.234	0.263	0.244
66	KC847368_Mesospora_negrosensis_C	0.237	0.247	0.247	0.244	0.244	0.244	0.237	0.237	0.247	0.244	0.244	0.244	0.244	0.247	0.244	0.244	0.244	0.244	0.244	0.247	0.247	0.199	0.253	0.208
67	KC847367_Mesospora_schmidtii_A	0.237	0.234	0.202	0.215	0.215	0.215	0.244	0.244	0.250	0.244	0.244	0.244	0.244	0.247	0.244	0.244	0.244	0.244	0.244	0.234	0.234	0.202	0.250	0.196
68	KC847366_Mesospora_schmidtii_B	0.231	0.224	0.212	0.192	0.192	0.192	0.237	0.237	0.237	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.224	0.224	0.192	0.237	0.202
69	VR6H	0.244	0.231	0.237	0.221	0.221	0.221	0.208	0.208	0.218	0.202	0.202	0.202	0.202	0.199	0.202	0.202	0.202	0.202	0.202	0.231	0.231	0.228	0.228	0.237
70	VR30H	0.237	0.228	0.231	0.218	0.218	0.218	0.202	0.202	0.205	0.205	0.205	0.205	0.205	0.202	0.205	0.205	0.205	0.205	0.205	0.228	0.228	0.218	0.208	0.234
71	VR38	0.237	0.228	0.231	0.218	0.218	0.218	0.202	0.202	0.205	0.205	0.205	0.205	0.205	0.202	0.205	0.205	0.205	0.205	0.205	0.228	0.228	0.218	0.208	0.234
72	VR40	0.237	0.228	0.231	0.218	0.218	0.218	0.202	0.202	0.205	0.205	0.205	0.205	0.205	0.202	0.205	0.205	0.205	0.205	0.205	0.228	0.228	0.218	0.208	0.234
73	VR42	0.237	0.228	0.231	0.218	0.218	0.218	0.202	0.202	0.205	0.205	0.205	0.205	0.205	0.202	0.205	0.205	0.205	0.205	0.205	0.228	0.228	0.218	0.208	0.234
74	VR43	0.237	0.228	0.231	0.218	0.218	0.218	0.202	0.202	0.205	0.205	0.205	0.205	0.205	0.202	0.205	0.205	0.205	0.205	0.205	0.228	0.228	0.218	0.208	0.234
75	VR41	0.234	0.228	0.231	0.221	0.221	0.221	0.199	0.199	0.202	0.202	0.202	0.202	0.202	0.199	0.202	0.202	0.202	0.202	0.202	0.228	0.228	0.221	0.205	0.237
----	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------
76	VR20H	0.244	0.231	0.237	0.221	0.221	0.221	0.208	0.208	0.218	0.202	0.202	0.202	0.202	0.199	0.202	0.202	0.202	0.202	0.202	0.231	0.231	0.228	0.228	0.237
77	VR33	0.260	0.221	0.244	0.250	0.250	0.250	0.228	0.228	0.228	0.256	0.256	0.256	0.256	0.260	0.256	0.256	0.256	0.256	0.256	0.221	0.221	0.240	0.215	0.231
78	VR39	0.260	0.221	0.244	0.250	0.250	0.250	0.228	0.228	0.228	0.256	0.256	0.256	0.256	0.260	0.256	0.256	0.256	0.256	0.256	0.221	0.221	0.240	0.215	0.231
79	VR35	0.260	0.221	0.244	0.250	0.250	0.250	0.228	0.228	0.228	0.256	0.256	0.256	0.256	0.260	0.256	0.256	0.256	0.256	0.256	0.221	0.221	0.240	0.215	0.231
80	VR44	0.256	0.276	0.266	0.196	0.196	0.196	0.147	0.147	0.147	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.276	0.276	0.224	0.266	0.285

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
81	JX572040_Sphacelaria_radicans	0.256	0.266	0.244	0.244	0.244	0.244	0.263	0.263	0.269	0.250	0.250	0.250	0.250	0.253	0.250	0.250	0.250	0.250	0.250	0.266	0.266	0.228	0.247	0.276
82	M3_PTM10025_LOSMUERTOS_NAY	0.234	0.240	0.240	0.247	0.247	0.247	0.224	0.224	0.224	0.272	0.272	0.272	0.272	0.276	0.272	0.272	0.272	0.272	0.272	0.240	0.240	0.237	0.237	0.256
83	M27_PTM10065_CABOCORRIENTES_JAL	0.221	0.244	0.234	0.167	0.167	0.167	0.115	0.115	0.115	0.218	0.218	0.218	0.218	0.221	0.218	0.218	0.218	0.218	0.218	0.244	0.244	0.199	0.237	0.253
84	M30_PTM10066_CABOCORRIENTES_JAL	0.266	0.301	0.292	0.221	0.221	0.221	0.192	0.192	0.186	0.263	0.263	0.263	0.263	0.266	0.263	0.263	0.263	0.263	0.263	0.301	0.301	0.244	0.292	0.298
85	M31_PTM10039_LOSMUERTOS_NAY	0.224	0.247	0.237	0.170	0.170	0.170	0.119	0.119	0.119	0.221	0.221	0.221	0.221	0.224	0.221	0.221	0.221	0.221	0.221	0.247	0.247	0.202	0.240	0.256
86	M58_PTM10115_PUNTAPERULA_JAL	0.269	0.231	0.253	0.260	0.260	0.260	0.237	0.237	0.237	0.266	0.266	0.266	0.266	0.269	0.266	0.266	0.266	0.266	0.266	0.231	0.231	0.250	0.224	0.240
87	M59R1_PTM10116_PUNTAPERULA_JAL	0.260	0.221	0.244	0.250	0.250	0.250	0.228	0.228	0.228	0.256	0.256	0.256	0.256	0.260	0.256	0.256	0.256	0.256	0.256	0.221	0.221	0.240	0.215	0.231
88	M60_PTM10117_PUNTAPERULA_JAL	0.266	0.228	0.250	0.256	0.256	0.256	0.234	0.234	0.234	0.263	0.263	0.263	0.263	0.266	0.263	0.263	0.263	0.263	0.263	0.228	0.228	0.247	0.221	0.237
89	M67_PTM10075_CABOCORRIENTES_JAL	0.231	0.253	0.244	0.176	0.176	0.176	0.125	0.125	0.125	0.228	0.228	0.228	0.228	0.231	0.228	0.228	0.228	0.228	0.228	0.253	0.253	0.208	0.247	0.263
90	M80A_PTM10095_LASROSADAS_JAL	0.160	0.212	0.167	0.208	0.208	0.208	0.196	0.196	0.205	0.234	0.234	0.234	0.234	0.237	0.234	0.234	0.234	0.234	0.234	0.212	0.212	0.186	0.196	0.208
91	M91_PTM10118_PUNTAPERULA_JAL	0.260	0.221	0.244	0.250	0.250	0.250	0.228	0.228	0.228	0.256	0.256	0.256	0.256	0.260	0.256	0.256	0.256	0.256	0.256	0.221	0.221	0.240	0.215	0.231
92	NQ16_PTM9791_BAHIALAVENTOSA_OAX	0.218	0.244	0.237	0.176	0.176	0.176	0.125	0.125	0.125	0.224	0.224	0.224	0.224	0.228	0.224	0.224	0.224	0.224	0.224	0.244	0.244	0.196	0.234	0.256
93	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.224	0.247	0.237	0.170	0.170	0.170	0.119	0.119	0.119	0.221	0.221	0.221	0.221	0.224	0.221	0.221	0.221	0.221	0.221	0.247	0.247	0.202	0.240	0.256
94	NQ20B_PTM9795_BAHIALAVENTOSA_OAX	0.212	0.231	0.208	0.163	0.163	0.163	0.090	0.090	0.090	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.231	0.231	0.199	0.212	0.250
95	NQ22A_PTM9797_BAHIALAVENTOSA_OAX	0.234	0.256	0.247	0.179	0.179	0.179	0.128	0.128	0.128	0.231	0.231	0.231	0.231	0.234	0.231	0.231	0.231	0.231	0.231	0.256	0.256	0.212	0.250	0.266
96	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.256	0.240	0.224	0.247	0.247	0.247	0.228	0.228	0.228	0.231	0.231	0.231	0.231	0.228	0.231	0.231	0.231	0.231	0.231	0.240	0.240	0.250	0.218	0.260
97	NQ48E_PTM10156_ELPALMAR_GRO	0.205	0.256	0.218	0.266	0.266	0.266	0.250	0.250	0.260	0.282	0.282	0.282	0.282	0.285	0.282	0.282	0.282	0.282	0.282	0.256	0.256	0.237	0.247	0.256
98	VR136_PTM9823_BARRADESANTAELENA_OAX	0.256	0.240	0.224	0.247	0.247	0.247	0.228	0.228	0.228	0.231	0.231	0.231	0.231	0.228	0.231	0.231	0.231	0.231	0.231	0.240	0.240	0.250	0.218	0.260
99	VR138_PTM9825_BARRADESANTAELENA_OAX	0.163	0.215	0.170	0.212	0.212	0.212	0.199	0.199	0.208	0.237	0.237	0.237	0.237	0.240	0.237	0.237	0.237	0.237	0.237	0.215	0.215	0.189	0.199	0.212

180

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
50	JQ620012_Mesospora_elongata_GIL56	0.000																							
51	JQ620011_Mesospora_elongata_FUS3	0.000	0.000																						
52	JQ620010_Mesospora_elongata_FUS2	0.000	0.000	0.000																					
53	JQ620009_Mesospora_schmidtii_BAT43	0.179	0.179	0.179	0.179																				
54	JQ620008_Mesospora_schmidtii_POR32	0.208	0.208	0.208	0.208	0.128																			
55	JQ620007_Mesospora_schmidtii_BAT7A	0.179	0.179	0.179	0.179	0.093	0.058																		
56	JQ620006_Mesospora_schmidtii_CHE3	0.186	0.186	0.186	0.186	0.109	0.099	0.071																	
57	AB776659_Ralfsia_verrucosa	0.234	0.234	0.234	0.234	0.221	0.228	0.215	0.228																
58	KC847384_Neoralfsia_expansa_A	0.224	0.224	0.224	0.224	0.208	0.247	0.237	0.250	0.215															
59	KC847383_Neoralfsia_expansa_B	0.224	0.224	0.224	0.224	0.231	0.253	0.234	0.234	0.218	0.090														
60	KC847382_Mesospora_sp_C	0.199	0.199	0.199	0.199	0.186	0.192	0.186	0.192	0.247	0.244	0.237													
61	KC847373_Neoralfsia_expansa_C	0.244	0.244	0.244	0.244	0.231	0.247	0.250	0.269	0.212	0.048	0.099	0.260												
62	KC847372_Neoralfsia_expansa_D	0.215	0.215	0.215	0.215	0.215	0.260	0.244	0.256	0.234	0.067	0.087	0.253	0.064											
63	KC847371_Neoralfsia_expansa_E	0.221	0.221	0.221	0.221	0.224	0.240	0.240	0.260	0.205	0.064	0.083	0.234	0.051	0.061										
64	KC847370_Mesospora_negrosensis_A	0.186	0.186	0.186	0.186	0.199	0.196	0.196	0.205	0.240	0.224	0.224	0.196	0.231	0.237	0.228									
65	KC847369_Mesospora_negrosensis_B	0.205	0.205	0.205	0.205	0.205	0.218	0.224	0.221	0.208	0.228	0.221	0.189	0.240	0.234	0.218	0.122								
66	KC847368_Mesospora_negrosensis_C	0.189	0.189	0.189	0.189	0.196	0.192	0.192	0.202	0.240	0.221	0.221	0.192	0.228	0.234	0.224	0.006	0.122							
67	KC847367_Mesospora_schmidtii_A	0.186	0.186	0.186	0.186	0.109	0.099	0.071	0.000	0.228	0.250	0.234	0.192	0.269	0.256	0.260	0.205	0.221	0.202						
68	KC847366_Mesospora_schmidtii_B	0.173	0.173	0.173	0.173	0.022	0.128	0.093	0.103	0.224	0.208	0.221	0.183	0.228	0.218	0.221	0.192	0.199	0.189	0.103					
69	VR6H	0.212	0.212	0.212	0.212	0.231	0.234	0.228	0.221	0.218	0.244	0.231	0.221	0.237	0.240	0.228	0.260	0.250	0.263	0.221	0.224				
70	VR30H	0.218	0.218	0.218	0.218	0.221	0.228	0.215	0.221	0.215	0.231	0.218	0.224	0.228	0.224	0.218	0.266	0.250	0.263	0.221	0.215	0.029			
71	VR38	0.218	0.218	0.218	0.218	0.221	0.228	0.215	0.221	0.215	0.231	0.218	0.224	0.228	0.224	0.218	0.266	0.250	0.263	0.221	0.215	0.029	0.000		
72	VR40	0.218	0.218	0.218	0.218	0.221	0.228	0.215	0.221	0.215	0.231	0.218	0.224	0.228	0.224	0.218	0.266	0.250	0.263	0.221	0.215	0.029	0.000	0.000	
73	VR42	0.218	0.218	0.218	0.218	0.221	0.228	0.215	0.221	0.215	0.231	0.218	0.224	0.228	0.224	0.218	0.266	0.250	0.263	0.221	0.215	0.029	0.000	0.000	0.000
74	VR43	0.218	0.218	0.218	0.218	0.221	0.228	0.215	0.221	0.215	0.231	0.218	0.224	0.228	0.224	0.218	0.266	0.250	0.263	0.221	0.215	0.029	0.000	0.000	0.000
75	VR41	0.215	0.215	0.215	0.215	0.224	0.231	0.218	0.224	0.218	0.231	0.218	0.228	0.228	0.224	0.218	0.266	0.250	0.263	0.224	0.218	0.029	0.003	0.003	0.003
76	VR20H	0.212	0.212	0.212	0.212	0.231	0.234	0.228	0.221	0.218	0.244	0.231	0.221	0.237	0.240	0.228	0.260	0.250	0.263	0.221	0.224	0.000	0.029	0.029	0.029
77	VR33	0.228	0.228	0.228	0.228	0.234	0.205	0.224	0.240	0.218	0.231	0.240	0.260	0.234	0.234	0.237	0.244	0.266	0.240	0.240	0.240	0.218	0.218	0.218	0.218
78	VR39	0.228	0.228	0.228	0.228	0.234	0.205	0.224	0.240	0.218	0.231	0.240	0.260	0.234	0.234	0.237	0.244	0.266	0.240	0.240	0.240	0.218	0.218	0.218	0.218
79	VR35	0.228	0.228	0.228	0.228	0.234	0.205	0.224	0.240	0.218	0.231	0.240	0.260	0.234	0.234	0.237	0.244	0.266	0.240	0.240	0.240	0.218	0.218	0.218	0.218

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72
80	VR44	0.250	0.250	0.250	0.250	0.231	0.272	0.263	0.272	0.256	0.247	0.272	0.266	0.276	0.250	0.253	0.260	0.256	0.256	0.272	0.231	0.247	0.247	0.247	0.247
81	JX572040_Sphacelaria_radicans	0.228	0.228	0.228	0.228	0.244	0.260	0.253	0.263	0.244	0.247	0.250	0.288	0.250	0.240	0.237	0.272	0.272	0.269	0.263	0.253	0.260	0.247	0.247	0.247
82	M3_PTM10025_LOSMUERTOS_NAY	0.256	0.256	0.256	0.256	0.240	0.237	0.234	0.237	0.250	0.234	0.218	0.260	0.240	0.237	0.240	0.269	0.253	0.266	0.237	0.253	0.212	0.202	0.202	0.202
83	M27_PTM10065_CABOCORRIENTES_JAL	0.224	0.224	0.224	0.224	0.202	0.244	0.234	0.244	0.234	0.231	0.253	0.240	0.256	0.228	0.234	0.244	0.234	0.240	0.244	0.208	0.208	0.208	0.208	0.208
84	M30_PTM10066_CABOCORRIENTES_JAL	0.282	0.282	0.282	0.282	0.263	0.298	0.285	0.295	0.285	0.279	0.308	0.288	0.304	0.282	0.285	0.288	0.282	0.285	0.295	0.263	0.272	0.272	0.272	0.272
85	M31_PTM10039_LOSMUERTOS_NAY	0.228	0.228	0.228	0.228	0.205	0.247	0.237	0.247	0.237	0.234	0.256	0.244	0.260	0.231	0.237	0.247	0.237	0.244	0.247	0.212	0.212	0.212	0.212	0.212
86	M58_PTM10115_PUNTAPERULA_JAL	0.237	0.237	0.237	0.237	0.244	0.215	0.234	0.250	0.228	0.240	0.250	0.269	0.244	0.244	0.247	0.253	0.276	0.250	0.250	0.250	0.228	0.228	0.228	0.228
87	M59R1_PTM10116_PUNTAPERULA_JAL	0.228	0.228	0.228	0.228	0.234	0.205	0.224	0.240	0.218	0.231	0.240	0.260	0.234	0.234	0.237	0.244	0.266	0.240	0.240	0.240	0.218	0.218	0.218	0.218
88	M60_PTM10117_PUNTAPERULA_JAL	0.234	0.234	0.234	0.234	0.240	0.212	0.231	0.247	0.224	0.237	0.247	0.266	0.240	0.240	0.244	0.250	0.272	0.247	0.247	0.247	0.224	0.224	0.224	0.224
89	M67_PTM10075_CABOCORRIENTES_JAL	0.234	0.234	0.234	0.234	0.212	0.253	0.244	0.253	0.244	0.240	0.263	0.250	0.266	0.237	0.244	0.253	0.244	0.250	0.253	0.218	0.218	0.218	0.218	0.218
90	M80A_PTM10095_LASROSADAS_JAL	0.186	0.186	0.186	0.186	0.202	0.212	0.196	0.202	0.170	0.234	0.228	0.228	0.231	0.234	0.234	0.176	0.202	0.173	0.202	0.199	0.221	0.224	0.224	0.224
91	M91_PTM10118_PUNTAPERULA_JAL	0.228	0.228	0.228	0.228	0.234	0.205	0.224	0.240	0.218	0.231	0.240	0.260	0.234	0.234	0.237	0.244	0.266	0.240	0.240	0.240	0.218	0.218	0.218	0.218
92	NQ16_PTM9791_BAHIALAVENTOSA_OAX	0.224	0.224	0.224	0.224	0.205	0.244	0.234	0.244	0.231	0.228	0.250	0.240	0.253	0.224	0.231	0.250	0.237	0.247	0.244	0.212	0.212	0.212	0.212	0.212
93	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.228	0.228	0.228	0.228	0.205	0.247	0.237	0.247	0.237	0.234	0.256	0.244	0.260	0.231	0.237	0.247	0.237	0.244	0.247	0.212	0.212	0.212	0.212	0.212
94	NQ20B_PTM9795_BAHIALAVENTOSA_OAX	0.212	0.212	0.212	0.212	0.224	0.247	0.221	0.224	0.215	0.231	0.231	0.250	0.247	0.212	0.221	0.253	0.253	0.250	0.224	0.215	0.221	0.215	0.215	0.215
95	NQ22A_PTM9797_BAHIALAVENTOSA_OAX	0.237	0.237	0.237	0.237	0.215	0.256	0.247	0.256	0.247	0.244	0.266	0.253	0.269	0.240	0.247	0.256	0.247	0.253	0.256	0.221	0.221	0.221	0.221	0.221
96	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.240	0.240	0.240	0.240	0.244	0.253	0.237	0.250	0.250	0.228	0.240	0.250	0.234	0.228	0.221	0.247	0.256	0.250	0.250	0.234	0.205	0.205	0.205	0.205
97	NQ48E_PTM10156_ELPALMAR_GRO	0.221	0.221	0.221	0.221	0.253	0.263	0.253	0.260	0.221	0.279	0.279	0.276	0.276	0.272	0.279	0.231	0.250	0.231	0.260	0.247	0.269	0.276	0.276	0.276
98	VR136_PTM9823_BARRADESANTAELENA_OAX	0.240	0.240	0.240	0.240	0.244	0.253	0.237	0.250	0.250	0.228	0.240	0.250	0.234	0.228	0.221	0.247	0.256	0.250	0.250	0.234	0.205	0.205	0.205	0.205
99	VR138_PTM9825_BARRADESANTAELENA_OAX	0.189	0.189	0.189	0.189	0.205	0.215	0.199	0.205	0.173	0.237	0.231	0.231	0.234	0.237	0.237	0.179	0.205	0.176	0.205	0.202	0.224	0.228	0.228	0.228

Apéndice 8. Distancia p no corregida de *Cox* 1 (Todas pardas), continuación...

		73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96
74	VR43	0.000																							
75	VR41	0.003	0.003																						
76	VR20H	0.029	0.029	0.029																					
77	VR33	0.218	0.218	0.218	0.218																				
78	VR39	0.218	0.218	0.218	0.218	0.000																			
79	VR35	0.218	0.218	0.218	0.218	0.000	0.000																		
80	VR44	0.247	0.247	0.244	0.247	0.260	0.260	0.260																	
81	JX572040_Sphacelaria_radicans	0.247	0.247	0.247	0.260	0.263	0.263	0.263	0.298																

82	M3_PTM10025_LOSMUERTOS_NAY	0.202	0.202	0.202	0.212	0.179	0.179	0.179	0.256	0.263															
83	M27_PTM10065_CABOCORRIENTES_JAL	0.208	0.208	0.205	0.208	0.228	0.228	0.228	0.048	0.276	0.221														
84	M30_PTM10066_CABOCORRIENTES_JAL	0.272	0.272	0.269	0.272	0.292	0.292	0.292	0.096	0.337	0.285	0.087													
85	M31_PTM10039_LOSMUERTOS_NAY	0.212	0.212	0.208	0.212	0.231	0.231	0.231	0.051	0.279	0.224	0.003	0.090												
86	M58_PTM10115_PUNTAPERULA_JAL	0.228	0.228	0.228	0.228	0.010	0.010	0.010	0.269	0.272	0.189	0.237	0.295	0.240											
87	M59R1_PTM10116_PUNTAPERULA_JAL	0.218	0.218	0.218	0.218	0.000	0.000	0.000	0.260	0.263	0.179	0.228	0.292	0.231	0.010										
88	M60_PTM10117_PUNTAPERULA_JAL	0.224	0.224	0.224	0.224	0.006	0.006	0.006	0.266	0.269	0.186	0.234	0.292	0.237	0.003	0.006									
89	M67_PTM10075_CABOCORRIENTES_JAL	0.218	0.218	0.215	0.218	0.237	0.237	0.237	0.038	0.285	0.231	0.010	0.080	0.013	0.247	0.237	0.244								
90	M80A_PTM10095_LASROSADAS_JAL	0.224	0.224	0.221	0.221	0.224	0.224	0.224	0.244	0.237	0.237	0.215	0.269	0.218	0.234	0.224	0.231	0.224							
91	M91_PTM10118_PUNTAPERULA_JAL	0.218	0.218	0.218	0.218	0.000	0.000	0.000	0.260	0.263	0.179	0.228	0.292	0.231	0.010	0.000	0.006	0.237	0.224						
92	NQ16_PTM9791_BAHIALAVENTOSA_OAX	0.212	0.212	0.208	0.212	0.231	0.231	0.231	0.058	0.276	0.224	0.010	0.090	0.013	0.240	0.231	0.237	0.019	0.215	0.231					
93	NQ17_PTM9792_BAHIALAVENTOSA_OAX	0.212	0.212	0.208	0.212	0.231	0.231	0.231	0.045	0.279	0.224	0.003	0.083	0.006	0.240	0.231	0.237	0.006	0.218	0.231	0.013				
94	NQ20B_PTM9795_BAHIALAVENTOSA_OAX	0.215	0.215	0.212	0.221	0.224	0.224	0.224	0.119	0.253	0.224	0.090	0.154	0.093	0.234	0.224	0.231	0.099	0.212	0.224	0.099	0.093			
95	NQ22A_PTM9797_BAHIALAVENTOSA_OAX	0.221	0.221	0.218	0.221	0.240	0.240	0.240	0.045	0.288	0.234	0.013	0.083	0.016	0.250	0.240	0.247	0.010	0.228	0.240	0.022	0.016	0.103		
96	NQ33A_PTM9808_BARRADESANTAELENA_OAX	0.205	0.205	0.205	0.205	0.176	0.176	0.176	0.260	0.260	0.221	0.234	0.295	0.237	0.186	0.176	0.183	0.244	0.228	0.176	0.237	0.237	0.231	0.247	
97	NQ48E_PTM10156_ELPALMAR_GRO	0.276	0.276	0.272	0.269	0.263	0.263	0.263	0.292	0.282	0.282	0.263	0.317	0.266	0.269	0.263	0.266	0.272	0.064	0.263	0.263	0.266	0.266	0.276	0.269
98	VR136_PTM9823_BARRADESANTAELENA_OAX	0.205	0.205	0.205	0.205	0.176	0.176	0.176	0.260	0.260	0.221	0.234	0.295	0.237	0.186	0.176	0.183	0.244	0.228	0.176	0.237	0.237	0.231	0.247	0.000
99	VR138_PTM9825_BARRADESANTAELENA_OAX	0.228	0.228	0.224	0.224	0.228	0.228	0.228	0.247	0.240	0.240	0.218	0.272	0.221	0.237	0.228	0.234	0.228	0.003	0.228	0.218	0.221	0.215	0.231	0.231

97 98

 98
 VR136_PTM9823_BARRADESANTAELENA_OAX
 0.269

 99
 VR138_PTM9825_BARRADESANTAELENA_OAX
 0.067
 0.231

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	AB776784_Tilopteris_mertensii	-														
2	AB250079_Neoralfsia_expansa_Z	0.130	-													
3	AB250083_Ralfsia_sp	0.137	0.006	-												
4	AB250082_Ralfsia_sp_J	0.134	0.006	0.005	-											
5	AB250080_Ralfsia_sp_H	0.136	0.005	0.009	0.009	-										
6	KC847392_Neoralfsia_expansa_C	0.132	0.004	0.008	0.008	0.006	-									
7	AB250081_Ralfsia_sp_I	0.137	0.011	0.013	0.015	0.011	0.013	-								
8	AB250078_Neoralfsia_expansa_Y	0.137	0.024	0.025	0.028	0.026	0.020	0.030	-							
9	KC847394_Neoralfsia_expansa_A	0.132	0.018	0.021	0.021	0.020	0.014	0.026	0.011	-						
10	KC847393_Neoralfsia_expansa_B	0.136	0.020	0.024	0.024	0.023	0.019	0.029	0.026	0.020	-					
11	AB250077_Neoralfsia_expansa_X	0.138	0.036	0.040	0.040	0.039	0.033	0.045	0.034	0.031	0.039	-				
12	KF977828_Neoralfsia_hancockii	0.114	0.070	0.074	0.077	0.075	0.069	0.082	0.087	0.078	0.082	0.093	-			
13	KF977827_Neoralfsia_hancockii	0.114	0.070	0.074	0.077	0.075	0.069	0.082	0.087	0.078	0.082	0.093	0.000	-		
14	KM032760_Neoralfsia_expansa_Mex	0.120	0.072	0.078	0.078	0.077	0.070	0.083	0.084	0.077	0.078	0.088	0.058	0.058	-	
15	KM032759_Neoralfsia_expansa_Mex	0.120	0.072	0.078	0.078	0.077	0.070	0.083	0.084	0.077	0.078	0.088	0.058	0.058	0.000	-
16	KM032758_Neoralfsia_expansa_Mex	0.120	0.072	0.078	0.078	0.077	0.070	0.083	0.084	0.077	0.078	0.088	0.058	0.058	0.000	0.000
17	RhancPtm9178	0.122	0.082	0.088	0.088	0.087	0.080	0.093	0.094	0.084	0.090	0.095	0.054	0.054	0.028	0.028
18	GU014708_Ralfsia_sp_JK7	0.110	0.112	0.118	0.115	0.117	0.113	0.117	0.115	0.109	0.115	0.113	0.124	0.124	0.125	0.125
19	AB250074_Ralfsia_sp_B	0.110	0.112	0.118	0.115	0.117	0.113	0.117	0.115	0.109	0.115	0.113	0.124	0.124	0.125	0.125
20	GU014707_Ralfsia_sp_JK6	0.110	0.112	0.118	0.115	0.117	0.113	0.117	0.115	0.109	0.115	0.113	0.124	0.124	0.125	0.125
21	AB250075_Ralfsia_sp_C	0.118	0.113	0.119	0.117	0.118	0.114	0.119	0.113	0.110	0.117	0.114	0.120	0.120	0.122	0.122
22	EU579936_Ralfsia_fungiformis	0.124	0.129	0.136	0.133	0.134	0.130	0.134	0.136	0.132	0.132	0.129	0.127	0.127	0.124	0.124
23	AB250071_Ralfsia_fungiformis	0.123	0.128	0.134	0.132	0.133	0.129	0.133	0.133	0.130	0.130	0.125	0.125	0.125	0.123	0.123
24	AB264042_Analipus_japonicus	0.110	0.103	0.109	0.107	0.108	0.107	0.108	0.109	0.104	0.109	0.108	0.109	0.109	0.108	0.108
25	AB250073_Ralfsia_sp_A	0.125	0.114	0.120	0.118	0.117	0.115	0.118	0.117	0.113	0.122	0.108	0.128	0.128	0.130	0.130
26	AB264040_Heteroralfsia_saxicola	0.124	0.113	0.119	0.117	0.115	0.114	0.118	0.115	0.110	0.118	0.122	0.115	0.115	0.109	0.109
27	AB250070_Heteroralfsia_saxicola	0.124	0.113	0.119	0.117	0.115	0.114	0.118	0.115	0.110	0.118	0.122	0.115	0.115	0.109	0.109
28	RahespPtm8982	0.109	0.123	0.129	0.127	0.128	0.124	0.132	0.125	0.119	0.123	0.120	0.095	0.095	0.069	0.069
29	RhespPTM8970	0.099	0.090	0.097	0.094	0.095	0.092	0.099	0.094	0.087	0.093	0.097	0.103	0.103	0.105	0.105
30	AB250068_Mesospora_sp_F	0.136	0.115	0.122	0.122	0.120	0.117	0.123	0.120	0.119	0.123	0.120	0.118	0.118	0.117	0.117
31	AB250067_Mesospora_sp	0.128	0.109	0.115	0.115	0.114	0.108	0.115	0.113	0.108	0.117	0.105	0.122	0.122	0.119	0.119
32	AB250066_Mesospora_sp_D	0.133	0.115	0.120	0.122	0.119	0.114	0.122	0.119	0.117	0.119	0.112	0.125	0.125	0.124	0.124

_	_	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
33	JQ619999_Mesospora_schmidtii_A	0.123	0.113	0.119	0.119	0.118	0.114	0.119	0.118	0.112	0.115	0.117	0.125	0.125	0.127	0.127
34	JQ619998_Mesospora_schmidtii_B	0.119	0.109	0.115	0.115	0.114	0.110	0.115	0.114	0.108	0.112	0.113	0.122	0.122	0.123	0.123
35	KC847388_Mesospora_schmidtii_C	0.119	0.109	0.115	0.115	0.114	0.110	0.115	0.114	0.108	0.112	0.113	0.122	0.122	0.123	0.123
36	KC847387_Mesospora_schmidtii_D	0.124	0.113	0.119	0.119	0.118	0.114	0.119	0.115	0.109	0.113	0.114	0.127	0.127	0.127	0.127
37	AB250065_Mesospora_sp_C	0.112	0.108	0.114	0.114	0.113	0.109	0.112	0.114	0.112	0.112	0.112	0.115	0.115	0.120	0.120
38	KC847391_Mesospora_negrosensis_A	0.122	0.107	0.113	0.113	0.112	0.108	0.114	0.114	0.113	0.115	0.114	0.127	0.127	0.128	0.128
39	KC847389_Mesospora_negrosensis_C	0.120	0.108	0.114	0.114	0.113	0.109	0.115	0.115	0.114	0.117	0.115	0.128	0.128	0.129	0.129
40	KC847390_Mesospora_negrosensis_B	0.110	0.102	0.108	0.108	0.107	0.105	0.109	0.109	0.105	0.108	0.112	0.115	0.115	0.122	0.122
41	AB250063_Mesospora_sp_A	0.115	0.120	0.127	0.127	0.125	0.122	0.127	0.127	0.123	0.125	0.129	0.120	0.120	0.123	0.123
42	JQ620005_Mesospora_elongata_A	0.120	0.112	0.118	0.118	0.117	0.113	0.118	0.115	0.114	0.117	0.118	0.123	0.123	0.123	0.123
43	JQ620004_Mesospora_elongata_B	0.120	0.112	0.118	0.118	0.117	0.113	0.118	0.115	0.114	0.117	0.118	0.123	0.123	0.123	0.123
44	JQ620003_Mesospora_elongata_C	0.120	0.112	0.118	0.118	0.117	0.113	0.118	0.115	0.114	0.117	0.118	0.123	0.123	0.123	0.123
45	JQ620002_Mesospora_elongata_D	0.120	0.112	0.118	0.118	0.117	0.113	0.118	0.115	0.114	0.117	0.118	0.123	0.123	0.123	0.123
46	AB250064_Mesospora_sp_B	0.120	0.119	0.125	0.125	0.124	0.120	0.127	0.127	0.123	0.127	0.127	0.094	0.094	0.099	0.099
47	AB250069_Mesospora_sp_G	0.137	0.117	0.123	0.120	0.119	0.120	0.120	0.127	0.122	0.119	0.120	0.129	0.129	0.129	0.129
48	AB264039_Endoplura_aurea	0.122	0.122	0.128	0.125	0.127	0.123	0.125	0.123	0.118	0.122	0.124	0.125	0.125	0.130	0.130
49	AB250076_Ralfsia_sp_D	0.132	0.070	0.077	0.074	0.075	0.072	0.077	0.077	0.066	0.074	0.078	0.092	0.092	0.095	0.095
50	Hpn	0.132	0.130	0.136	0.136	0.134	0.130	0.134	0.143	0.137	0.139	0.141	0.103	0.103	0.084	0.084
51	VR5	0.134	0.127	0.132	0.132	0.130	0.124	0.130	0.129	0.123	0.125	0.123	0.130	0.130	0.133	0.133
52	VR30	0.133	0.125	0.130	0.130	0.129	0.123	0.129	0.128	0.122	0.124	0.122	0.129	0.129	0.132	0.132
53	VR6P	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.129	0.129	0.130	0.130
54	VR6H	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.129	0.129	0.130	0.130
55	VR20H	0.130	0.123	0.128	0.128	0.127	0.120	0.127	0.125	0.119	0.127	0.119	0.128	0.128	0.129	0.129
56	VR38	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.128	0.128	0.130	0.130
57	VR40	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.128	0.128	0.130	0.130
58	VR41	0.133	0.125	0.130	0.130	0.129	0.123	0.129	0.128	0.122	0.127	0.122	0.129	0.129	0.129	0.129
59	VR42	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.128	0.128	0.130	0.130
60	VR43	0.132	0.124	0.129	0.129	0.128	0.122	0.128	0.127	0.120	0.125	0.120	0.128	0.128	0.130	0.130
61	VR44	0.137	0.133	0.137	0.137	0.136	0.129	0.136	0.134	0.130	0.130	0.133	0.132	0.132	0.137	0.137
62	NQ48e_ptm10156_elpalmar_gro	0.151	0.120	0.127	0.127	0.125	0.119	0.125	0.123	0.120	0.123	0.119	0.123	0.123	0.119	0.119
63	M58_ptm10115_puntaperula_jal	0.151	0.136	0.141	0.141	0.138	0.136	0.139	0.148	0.142	0.144	0.142	0.148	0.148	0.141	0.141
64	M27_ptm10065_cabocorrientes	0.158	0.173	0.174	0.174	0.174	0.174	0.178	0.179	0.177	0.179	0.183	0.164	0.164	0.174	0.174

Apéndice 9. Distancia p no corregida de *rbc*L_1 (continuación...)

		1	2	3	4	5	6	7	8	9		10	11	12	13	14	15
65	NQ17_ptm9792_Bahialaventosa_oax	0.156	0.168	0.169	0.169	0.169	0.169	0.174	0.177	0.17	4 0).177	0.181	0.159	0.159	0.169	0.169
66	M92_ptm10119_puntaperula_jal	0.157	0.143	0.147	0.147	0.144	0.142	0.143	0.154	0.14	18 ().151	0.148	0.158	0.158	0.149	0.149
67	VR138_ptm9825_barradesantaelena_oax	0.211	0.179	0.186	0.186	0.184	0.178	0.186	0.187	0.18	32 0	0.182	0.181	0.183	0.183	0.178	0.178
68	NQ33a_ptm9808_barradesantaelena_oax	0.208	0.201	0.207	0.207	0.206	0.199	0.207	0.205	0.20	01 ().205	0.205	0.202	0.202	0.202	0.202
69	M59R1_ptm10116_puntaperula_jal	0.193	0.188	0.193	0.193	0.191	0.188	0.192	0.197	0.19	03 ().196	0.192	0.201	0.201	0.193	0.193
			16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16	KM032758_Neoralfsia_expansa_Me	ex	-														
17	RhancPtm9178		0.028	-													
18	GU014708_Ralfsia_sp_JK7		0.125	0.130	-												
19	AB250074_Ralfsia_sp_B		0.125	0.130	0.000	-											
20	GU014707_Ralfsia_sp_JK6		0.125	0.130	0.000	0.000	-										
21	AB250075_Ralfsia_sp_C		0.122	0.123	0.041	0.041	0.041	-									
22	EU579936_Ralfsia_fungiformis		0.124	0.136	0.115	0.115	0.115	0.124	-								
23	AB250071_Ralfsia_fungiformis		0.123	0.134	0.112	0.112	0.112	0.120	0.009	-							
24	AB264042_Analipus_japonicus		0.108	0.115	0.080	0.080	0.080	0.099	0.069	0.070	-						
25	AB250073_Ralfsia_sp_A		0.130	0.133	0.105	0.105	0.105	0.109	0.090	0.092	0.077	-					
26	AB264040_Heteroralfsia_saxicola	ι	0.109	0.119	0.105	0.105	0.105	0.110	0.097	0.098	0.083	0.083	-				
27	AB250070_Heteroralfsia_saxicola	ι	0.109	0.119	0.105	0.105	0.105	0.110	0.097	0.098	0.083	0.083	0.000	-			
28	RahespPtm8982		0.069	0.046	0.118	0.118	0.118	0.113	0.120	0.119	0.103	0.113	0.112	0.112	-		
29	RhespPTM8970		0.105	0.109	0.082	0.082	0.082	0.093	0.104	0.105	0.079	0.093	0.092	0.092	0.065	-	
30	AB250068_Mesospora_sp_F		0.117	0.123	0.128	0.128	0.128	0.137	0.123	0.124	0.107	0.132	0.113	0.113	0.118	0.100	-
31	AB250067_Mesospora_sp		0.119	0.123	0.103	0.103	0.103	0.118	0.127	0.123	0.107	0.125	0.124	0.124	0.124	0.105	0.093
32	AB250066_Mesospora_sp_D		0.124	0.127	0.102	0.102	0.102	0.115	0.122	0.118	0.102	0.128	0.118	0.118	0.128	0.104	0.097
33	JQ619999_Mesospora_schmidtii_A	4	0.127	0.133	0.107	0.107	0.107	0.123	0.127	0.120	0.105	0.127	0.128	0.128	0.128	0.105	0.103
34	JQ619998_Mesospora_schmidtii_H	3	0.123	0.128	0.107	0.107	0.107	0.120	0.123	0.119	0.104	0.125	0.124	0.124	0.123	0.102	0.099
35	KC847388_Mesospora_schmidtii_0	С	0.123	0.128	0.107	0.107	0.107	0.120	0.123	0.119	0.104	0.125	0.124	0.124	0.123	0.102	0.099
36	KC847387_Mesospora_schmidtii_l	D	0.127	0.132	0.108	0.108	0.108	0.120	0.130	0.127	0.104	0.124	0.127	0.127	0.124	0.102	0.097
37	AB250065_Mesospora_sp_C		0.120	0.124	0.100	0.100	0.100	0.108	0.118	0.117	0.095	0.122	0.115	0.115	0.120	0.090	0.102
38	KC847391_Mesospora_negrosensis_	_A	0.128	0.134	0.097	0.097	0.097	0.109	0.128	0.129	0.104	0.120	0.114	0.114	0.129	0.092	0.089
39	KC847389_Mesospora_negrosensis_	_C	0.129	0.136	0.095	0.095	0.095	0.110	0.127	0.128	0.103	0.119	0.115	0.115	0.128	0.090	0.088
40	KC847390_Mesospora_negrosensis_	_B	0.122	0.127	0.090	0.090	0.090	0.105	0.119	0.120	0.089	0.115	0.115	0.115	0.115	0.082	0.083

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
41	AB250063_Mesospora_sp_A	0.123	0.133	0.104	0.104	0.104	0.113	0.123	0.122	0.103	0.125	0.118	0.118	0.118	0.089	0.099
42	JQ620005_Mesospora_elongata_A	0.123	0.136	0.098	0.098	0.098	0.109	0.122	0.123	0.099	0.119	0.113	0.113	0.122	0.090	0.103
43	JQ620004_Mesospora_elongata_B	0.123	0.136	0.098	0.098	0.098	0.109	0.122	0.123	0.099	0.119	0.113	0.113	0.122	0.090	0.103
44	JQ620003_Mesospora_elongata_C	0.123	0.136	0.098	0.098	0.098	0.109	0.122	0.123	0.099	0.119	0.113	0.113	0.122	0.090	0.103
45	JQ620002_Mesospora_elongata_D	0.123	0.136	0.098	0.098	0.098	0.109	0.122	0.123	0.099	0.119	0.113	0.113	0.122	0.090	0.103
46	AB250064_Mesospora_sp_B	0.099	0.099	0.113	0.113	0.113	0.110	0.124	0.125	0.104	0.125	0.119	0.119	0.097	0.103	0.103
47	AB250069_Mesospora_sp_G	0.129	0.137	0.115	0.115	0.115	0.128	0.122	0.123	0.115	0.125	0.112	0.112	0.127	0.103	0.098
48	AB264039_Endoplura_aurea	0.130	0.138	0.109	0.109	0.109	0.113	0.099	0.098	0.092	0.100	0.109	0.109	0.114	0.092	0.132
49	AB250076_Ralfsia_sp_D	0.095	0.098	0.128	0.128	0.128	0.127	0.146	0.147	0.114	0.134	0.133	0.133	0.113	0.108	0.138
50	Hpn	0.084	0.072	0.136	0.136	0.136	0.133	0.138	0.134	0.122	0.128	0.132	0.132	0.069	0.113	0.130
51	VR5	0.133	0.136	0.138	0.138	0.138	0.144	0.142	0.137	0.125	0.132	0.130	0.130	0.130	0.108	0.114
52	VR30	0.132	0.134	0.137	0.137	0.137	0.143	0.141	0.136	0.124	0.132	0.129	0.129	0.129	0.107	0.113
53	VR6P	0.130	0.133	0.138	0.138	0.138	0.144	0.139	0.134	0.125	0.130	0.128	0.128	0.128	0.105	0.112
54	VR6H	0.130	0.133	0.138	0.138	0.138	0.144	0.139	0.134	0.125	0.130	0.128	0.128	0.128	0.105	0.112
55	VR20H	0.129	0.132	0.137	0.137	0.137	0.143	0.138	0.133	0.124	0.129	0.127	0.127	0.127	0.104	0.110
56	VR38	0.130	0.133	0.136	0.136	0.136	0.142	0.139	0.134	0.123	0.130	0.128	0.128	0.128	0.105	0.112
57	VR40	0.130	0.133	0.136	0.136	0.136	0.142	0.139	0.134	0.123	0.130	0.128	0.128	0.128	0.105	0.112
58	VR41	0.129	0.132	0.137	0.137	0.137	0.143	0.141	0.136	0.124	0.132	0.129	0.129	0.127	0.107	0.110
59	VR42	0.130	0.133	0.136	0.136	0.136	0.142	0.139	0.134	0.123	0.130	0.128	0.128	0.128	0.105	0.112
60	VR43	0.130	0.133	0.136	0.136	0.136	0.142	0.139	0.134	0.123	0.130	0.128	0.128	0.128	0.105	0.112
61	VR44	0.137	0.144	0.143	0.143	0.143	0.148	0.143	0.138	0.127	0.137	0.132	0.132	0.137	0.113	0.123
62	NQ48e_ptm10156_elpalmar_gro	0.119	0.133	0.137	0.137	0.137	0.144	0.129	0.129	0.124	0.134	0.137	0.137	0.134	0.113	0.074
63	M58_ptm10115_puntaperula_jal	0.141	0.141	0.133	0.133	0.133	0.147	0.152	0.148	0.133	0.130	0.144	0.144	0.138	0.120	0.139
64	M27_ptm10065_cabocorrientes	0.174	0.182	0.171	0.171	0.171	0.177	0.179	0.182	0.166	0.178	0.177	0.177	0.158	0.152	0.182
65	NQ17_ptm9792_Bahialaventosa_oax	0.169	0.177	0.169	0.169	0.169	0.174	0.177	0.179	0.163	0.178	0.174	0.174	0.156	0.149	0.178
66	M92_ptm10119_puntaperula_jal	0.149	0.151	0.139	0.139	0.139	0.152	0.161	0.157	0.142	0.141	0.154	0.154	0.148	0.129	0.152
67	VR138_ptm9825_barradesantaelena_oax	0.178	0.193	0.199	0.199	0.199	0.211	0.183	0.183	0.187	0.193	0.194	0.194	0.197	0.176	0.142
68	NQ33a_ptm9808_barradesantaelena_oax	0.202	0.207	0.211	0.211	0.211	0.221	0.208	0.211	0.194	0.205	0.208	0.208	0.210	0.188	0.177
69	M59R1_ptm10116_puntaperula_jal	0.193	0.191	0.188	0.188	0.188	0.196	0.202	0.201	0.183	0.183	0.194	0.194	0.186	0.168	0.187

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
31	AB250067_Mesospora_sp	-														
32	AB250066_Mesospora_sp_D	0.034	-													
33	JQ619999_Mesospora_schmidtii_A	0.053	0.077	-												
34	JQ619998_Mesospora_schmidtii_B	0.056	0.080	0.005	-											
35	KC847388_Mesospora_schmidtii_C	0.056	0.080	0.005	0.000	-										
36	KC847387_Mesospora_schmidtii_D	0.056	0.078	0.013	0.010	0.010	-									
37	AB250065_Mesospora_sp_C	0.077	0.070	0.083	0.079	0.079	0.084	-								
38	KC847391_Mesospora_negrosensis_A	0.070	0.072	0.085	0.083	0.083	0.083	0.066	-							
39	KC847389_Mesospora_negrosensis_C	0.069	0.070	0.084	0.082	0.082	0.082	0.065	0.001	-						
40	KC847390_Mesospora_negrosensis_B	0.070	0.079	0.074	0.072	0.072	0.072	0.066	0.031	0.030	-					
41	AB250063_Mesospora_sp_A	0.095	0.100	0.092	0.089	0.089	0.094	0.090	0.087	0.085	0.084	-				
42	JQ620005_Mesospora_elongata_A	0.080	0.093	0.075	0.073	0.073	0.078	0.083	0.078	0.077	0.070	0.030	-			
43	JQ620004_Mesospora_elongata_B	0.080	0.093	0.075	0.073	0.073	0.078	0.083	0.078	0.077	0.070	0.030	0.000	-		
44	JQ620003_Mesospora_elongata_C	0.080	0.093	0.075	0.073	0.073	0.078	0.083	0.078	0.077	0.070	0.030	0.000	0.000	-	
45	JQ620002_Mesospora_elongata_D	0.080	0.093	0.075	0.073	0.073	0.078	0.083	0.078	0.077	0.070	0.030	0.000	0.000	0.000	-
46	AB250064_Mesospora_sp_B	0.098	0.102	0.107	0.103	0.103	0.103	0.078	0.064	0.065	0.061	0.107	0.104	0.104	0.104	0.104
47	AB250069_Mesospora_sp_G	0.109	0.113	0.113	0.109	0.109	0.107	0.113	0.104	0.105	0.102	0.117	0.109	0.109	0.109	0.109
48	AB264039_Endoplura_aurea	0.122	0.125	0.118	0.115	0.115	0.118	0.117	0.125	0.124	0.113	0.119	0.104	0.104	0.104	0.104
49	AB250076_Ralfsia_sp_D	0.130	0.136	0.128	0.124	0.124	0.127	0.133	0.130	0.132	0.117	0.134	0.130	0.130	0.130	0.130
50	Hpn	0.137	0.136	0.127	0.128	0.128	0.130	0.130	0.143	0.144	0.142	0.130	0.134	0.134	0.134	0.134
51	VR5	0.125	0.127	0.113	0.114	0.114	0.114	0.109	0.117	0.118	0.109	0.119	0.118	0.118	0.118	0.118
52	VR30	0.124	0.125	0.112	0.113	0.113	0.113	0.108	0.115	0.117	0.108	0.118	0.117	0.117	0.117	0.117
53	VR6P	0.123	0.125	0.110	0.112	0.112	0.112	0.110	0.117	0.118	0.112	0.117	0.115	0.115	0.115	0.115
54	VR6H	0.123	0.125	0.110	0.112	0.112	0.112	0.110	0.117	0.118	0.112	0.117	0.115	0.115	0.115	0.115
55	VR20H	0.122	0.124	0.109	0.110	0.110	0.110	0.109	0.115	0.117	0.110	0.118	0.117	0.117	0.117	0.117
56	VR38	0.123	0.124	0.110	0.112	0.112	0.112	0.107	0.114	0.115	0.107	0.119	0.118	0.118	0.118	0.118
57	VR40	0.123	0.124	0.110	0.112	0.112	0.112	0.107	0.114	0.115	0.107	0.119	0.118	0.118	0.118	0.118
58	VR41	0.124	0.125	0.112	0.113	0.113	0.113	0.108	0.115	0.117	0.108	0.120	0.119	0.119	0.119	0.119
59	VR42	0.123	0.124	0.110	0.112	0.112	0.112	0.107	0.114	0.115	0.107	0.119	0.118	0.118	0.118	0.118
60	VR43	0.123	0.124	0.110	0.112	0.112	0.112	0.107	0.114	0.115	0.107	0.119	0.118	0.118	0.118	0.118
61	VR44	0.138	0.132	0.122	0.123	0.123	0.123	0.117	0.124	0.125	0.119	0.127	0.125	0.125	0.125	0.125

Apéndice 9. Distancia	p no corregida de <i>rbc</i> I	L_1 Ralfsiales (continuación)

		31	32	33	34	35	36	37	38	;	39	40	41	42	43	44	45
62	NQ48e_ptm10156_elpalmar_gro	0.117	0.125	0.115	0.112	0.112	0.114	0.122	2 0.11	0	.118	0.115	0.120	0.113	0.113	0.113	0.113
63	M58_ptm10115_puntaperula_jal	0.124	0.138	0.117	0.118	0.118	0.120	0.122	2 0.13	37 0	.138	0.139	0.128	0.122	0.122	0.122	0.122
64	M27_ptm10065_cabocorrientes	0.182	0.187	0.179	0.177	0.177	0.182	0.177	7 0.16	56 0	.164	0.157	0.176	0.176	0.176	0.176	0.176
65	NQ17_ptm9792_Bahialaventosa_oax	0.177	0.182	0.176	0.173	0.173	0.181	0.173	3 0.16	52 0	.161	0.153	0.171	0.171	0.171	0.171	0.171
66	M92_ptm10119_puntaperula_jal	0.133	0.144	0.125	0.127	0.127	0.129	0.130	0.14	42 0	.143	0.147	0.136	0.129	0.129	0.129	0.129
67	VR138_ptm9825_barradesantaelena_oax	0.179	0.186	0.178	0.174	0.174	0.178	0.182	2 0.17	78 0	.179	0.177	0.184	0.177	0.177	0.177	0.177
68	NQ33a_ptm9808_barradesantaelena_oax	0.199	0.210	0.189	0.184	0.184	0.191	0.192	2 0.19	93 0	.194	0.191	0.201	0.193	0.193	0.193	0.193
69	M59R1_ptm10116_puntaperula_jal	0.172	0.187	0.167	0.168	0.168	0.171	0.172	2 0.18	34 0	.186	0.187	0.176	0.169	0.169	0.169	0.169
			46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
46	AB250064_Mesospora_sp_B		0.118	-													
47	AB250069_Mesospora_sp_G	r	0.129	0.130	-												
48	AB264039_Endoplura_aurea		0.123	0.130	0.132	-											
49	AB250076_Ralfsia_sp_D		0.105	0.137	0.141	0.136	-										
50	Hpn		0.129	0.129	0.134	0.143	0.132	-									
51	VR5		0.128	0.128	0.133	0.142	0.130	0.001	-								
52	VR30		0.130	0.128	0.134	0.142	0.129	0.008	0.006	-							
53	VR6P		0.130	0.128	0.134	0.142	0.129	0.008	0.006	0.000	-						
54	VR6H		0.129	0.127	0.133	0.141	0.128	0.009	0.008	0.001	0.001	l -					
55	VR20H		0.127	0.127	0.132	0.141	0.129	0.003	0.001	0.008	0.008	3 0.006	-				
56	VR38		0.127	0.127	0.132	0.141	0.129	0.003	0.001	0.008	0.008	3 0.006	0.000	-			
57	VR40		0.128	0.128	0.132	0.142	0.128	0.004	0.003	0.009	0.009	0.008	0.001	0.001	-		
58	VR41		0.127	0.127	0.132	0.141	0.129	0.003	0.001	0.008	0.008	3 0.006	0.000	0.000	0.001	-	
59	VR42		0.127	0.127	0.132	0.141	0.129	0.003	0.001	0.008	0.008	3 0.006	0.000	0.000	0.001	0.000	-
60	VR43		0.129	0.136	0.138	0.142	0.136	0.024	0.023	0.029	0.029	0.030	0.024	0.024	0.025	0.024	0.024
61	VR44		0.134	0.099	0.143	0.142	0.142	0.122	0.120	0.119	0.119	0.120	0.122	0.122	0.120	0.122	0.122
62	NQ48e_ptm10156_elpalmar_g	ro	0.151	0.139	0.149	0.158	0.082	0.125	0.124	0.123	0.123	0.122	0.123	0.123	0.124	0.123	0.123
63	M58_ptm10115_puntaperula_j	al	0.159	0.178	0.172	0.171	0.178	0.188	0.187	0.186	0.186	6 0.184	0.186	0.186	0.186	0.186	0.186
64	M27_ptm10065_cabocorriente	s	0.156	0.178	0.172	0.169	0.176	0.184	0.183	0.182	0.182	0.181	0.182	0.182	0.182	0.182	0.182
65	NQ17_ptm9792_Bahialaventosa_	oax	0.158	0.146	0.158	0.167	0.089	0.133	0.132	0.130	0.130	0.129	0.130	0.130	0.132	0.130	0.130
66	M92_ptm10119_puntaperula_j	al	0.193	0.154	0.199	0.199	0.201	0.186	0.184	0.183	0.183	0.184	0.186	0.186	0.184	0.186	0.186
67	VR138_ptm9825_barradesantaelen	a_oax	0.193	0.154	0.199	0.199	0.201	0.186	0.184	0.183	0.183	0.184	0.186	0.186	0.184	0.186	0.186

68	NQ33a_ptm9808_barradesantaelena_oax	0.212	0.181	0.217	0.217	0.222	0.196	0.194	0.194	0.194	0.193	0.193	0.193	0.192	0.193	0.193
69	M59R1_ptm10116_puntaperula_jal	0.198	0.191	0.199	0.208	0.142	0.169	0.168	0.167	0.167	0.167	0.168	0.168	0.169	0.168	0.168
		61		62	63		64		65	6	6	67		68		69
61	VR44	-														
62	NQ48e_ptm10156_elpalmar_gro	0.129		-												
63	M58_ptm10115_puntaperula_jal	0.144	0	.137	-											
64	M27_ptm10065_cabocorrientes	0.167	0	.194	0.20	1	-									
65	NQ17_ptm9792_Bahialaventosa_oax	0.163	0	.189	0.20	1	0.023		-							
66	M92_ptm10119_puntaperula_jal	0.149	0	.148	0.02	9	0.210		0.206		-					
67	VR138_ptm9825_barradesantaelena_oax	0.193	0	0.084	0.19	6	0.246		0.238	0.2	202	-				
68	NQ33a_ptm9808_barradesantaelena_oax	0.205	0	.138	0.20	6	0.256		0.255	0.2	.05	0.203		-		
69	M59R1_ptm10116_puntaperula_jal	0.188	0	.182	0.06	3	0.241		0.243	0.0	189	0.216		0.251		-

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	AB776784_Tilopteris_mertensii	-														
2	AB250079_Neoralfsia_expansa_Z	0.144	-													
3	AB250083_Ralfsia_sp	0.154	0.010	-												
4	AB250082_Ralfsia_sp_J	0.152	0.008	0.006	-											
5	AB250080_Ralfsia_sp_H	0.152	0.008	0.014	0.012	-										
6	KC847392_Neoralfsia_expansa_C	0.144	0.004	0.010	0.008	0.008	-									
7	AB250081_Ralfsia_sp_I	0.150	0.014	0.016	0.018	0.014	0.014	-								
8	AB250078_Neoralfsia_expansa_Y	0.152	0.020	0.022	0.024	0.024	0.016	0.026	-							
9	KC847394_Neoralfsia_expansa_A	0.150	0.020	0.026	0.024	0.024	0.016	0.030	0.008	-						
10	KC847393_Neoralfsia_expansa_B	0.154	0.022	0.028	0.026	0.026	0.022	0.032	0.030	0.030	-					
11	AB250077_Neoralfsia_expansa_X	0.150	0.028	0.034	0.032	0.032	0.024	0.039	0.030	0.028	0.039	-				
12	KF977828_Neoralfsia_hancockii	0.118	0.097	0.103	0.105	0.105	0.097	0.112	0.114	0.110	0.114	0.112	-			
13	KF977827_Neoralfsia_hancockii	0.118	0.097	0.103	0.105	0.105	0.097	0.112	0.114	0.110	0.114	0.112	0.000	-		
14	KM032760_Neoralfsia_expansa_Mex	0.130	0.105	0.116	0.114	0.114	0.105	0.120	0.116	0.114	0.114	0.110	0.079	0.079	-	
15	KM032759_Neoralfsia_expansa_Mex	0.130	0.105	0.116	0.114	0.114	0.105	0.120	0.116	0.114	0.114	0.110	0.079	0.079	0.000	-
16	KM032758_Neoralfsia_expansa_Mex	0.130	0.105	0.116	0.114	0.114	0.105	0.120	0.116	0.114	0.114	0.110	0.079	0.079	0.000	0.000
17	EU579936_Ralfsia_fungiformis	0.120	0.138	0.148	0.146	0.146	0.138	0.144	0.144	0.142	0.140	0.134	0.122	0.122	0.128	0.128

18	AB250071_Ralfsia_fungiformis	0.124	0.138	0.148	0.146	0.146	0.138	0.144	0.142	0.142	0.140	0.130	0.122	0.122	0.128	0.128
19	AB264042_Analipus_japonicus	0.097	0.105	0.116	0.114	0.114	0.110	0.112	0.112	0.108	0.114	0.112	0.103	0.103	0.112	0.112
20	AB250073_Ralfsia_sp_A	0.124	0.120	0.130	0.128	0.124	0.120	0.124	0.128	0.122	0.134	0.118	0.130	0.130	0.140	0.140
21	AB264040_Heteroralfsia_saxicola	0.124	0.138	0.148	0.146	0.142	0.138	0.142	0.142	0.138	0.148	0.144	0.130	0.130	0.126	0.126
22	AB250070_Heteroralfsia_saxicola	0.124	0.138	0.148	0.146	0.142	0.138	0.142	0.142	0.138	0.148	0.144	0.130	0.130	0.126	0.126
23	AB250068_Mesospora_sp_F	0.134	0.126	0.134	0.132	0.132	0.128	0.132	0.136	0.134	0.138	0.136	0.130	0.130	0.130	0.130
24	AB250067_Mesospora_sp	0.118	0.128	0.138	0.136	0.136	0.128	0.134	0.136	0.130	0.142	0.122	0.140	0.140	0.142	0.142
25	AB250066_Mesospora_sp_D	0.124	0.136	0.144	0.144	0.142	0.136	0.142	0.144	0.142	0.144	0.130	0.144	0.144	0.148	0.148
26	JQ619999_Mesospora_schmidtii_A	0.120	0.124	0.134	0.132	0.132	0.128	0.130	0.132	0.126	0.130	0.130	0.140	0.140	0.148	0.148
27	JQ619998_Mesospora_schmidtii_B	0.118	0.122	0.132	0.130	0.130	0.126	0.128	0.130	0.124	0.128	0.128	0.138	0.138	0.146	0.146
28	KC847388_Mesospora_schmidtii_C	0.118	0.122	0.132	0.130	0.130	0.126	0.128	0.130	0.124	0.128	0.128	0.138	0.138	0.146	0.146
29	KC847387_Mesospora_schmidtii_D	0.124	0.126	0.136	0.134	0.134	0.130	0.132	0.134	0.128	0.132	0.132	0.144	0.144	0.150	0.150
30	AB250065_Mesospora_sp_C	0.105	0.120	0.130	0.128	0.128	0.120	0.126	0.128	0.126	0.124	0.126	0.120	0.120	0.134	0.134
31	KC847391_Mesospora_negrosensis_A	0.110	0.118	0.128	0.126	0.126	0.118	0.126	0.128	0.124	0.126	0.128	0.134	0.134	0.150	0.150
32	KC847389_Mesospora_negrosensis_C	0.112	0.120	0.130	0.128	0.128	0.120	0.128	0.130	0.126	0.128	0.130	0.136	0.136	0.152	0.152

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
33	KC847390_Mesospora_negrosensis_B	0.105	0.112	0.122	0.120	0.120	0.116	0.120	0.126	0.118	0.120	0.126	0.126	0.126	0.142	0.142
34	AB250063_Mesospora_sp_A	0.103	0.128	0.138	0.136	0.136	0.132	0.134	0.138	0.136	0.142	0.142	0.120	0.120	0.134	0.134
35	JQ620005_Mesospora_elongata_A	0.105	0.120	0.130	0.128	0.128	0.124	0.126	0.130	0.128	0.134	0.134	0.130	0.130	0.140	0.140
36	JQ620004_Mesospora_elongata_B	0.105	0.120	0.130	0.128	0.128	0.124	0.126	0.130	0.128	0.134	0.134	0.130	0.130	0.140	0.140
37	JQ620003_Mesospora_elongata_C	0.105	0.120	0.130	0.128	0.128	0.124	0.126	0.130	0.128	0.134	0.134	0.130	0.130	0.140	0.140
38	JQ620002_Mesospora_elongata_D	0.105	0.120	0.130	0.128	0.128	0.124	0.126	0.130	0.128	0.134	0.134	0.130	0.130	0.140	0.140
39	AB250064_Mesospora_sp_B	0.112	0.136	0.146	0.144	0.144	0.136	0.144	0.146	0.138	0.142	0.146	0.087	0.087	0.105	0.105
40	AB250069_Mesospora_sp_G	0.138	0.128	0.136	0.134	0.130	0.130	0.130	0.140	0.138	0.132	0.128	0.138	0.138	0.146	0.146
41	AB264039_Endoplura_aurea	0.118	0.122	0.132	0.130	0.130	0.122	0.126	0.124	0.120	0.124	0.132	0.118	0.118	0.130	0.130
42	AB250076_Ralfsia_sp_D	0.152	0.075	0.085	0.083	0.083	0.079	0.089	0.083	0.077	0.087	0.079	0.110	0.110	0.118	0.118
43	VR5	0.132	0.136	0.144	0.142	0.142	0.134	0.142	0.140	0.134	0.140	0.126	0.140	0.140	0.146	0.146
44	VR30	0.130	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.138	0.124	0.138	0.138	0.144	0.144
45	VR6P	0.128	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.142	0.124	0.138	0.138	0.144	0.144
46	VR6H	0.128	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.142	0.124	0.138	0.138	0.144	0.144
47	VR20H	0.128	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.142	0.124	0.138	0.138	0.144	0.144
48	VR38	0.130	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.138	0.124	0.138	0.138	0.144	0.144
49	VR40	0.130	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.138	0.124	0.138	0.138	0.144	0.144

50	VR41	0.132	0.136	0.144	0.142	0.142	0.134	0.142	0.140	0.134	0.140	0.126	0.140	0.140	0.142	0.142
51	VR42	0.130	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.138	0.124	0.138	0.138	0.144	0.144
52	VR43	0.130	0.134	0.142	0.140	0.140	0.132	0.140	0.138	0.132	0.138	0.124	0.138	0.138	0.144	0.144
53	VR44	0.138	0.144	0.150	0.148	0.148	0.140	0.148	0.146	0.144	0.146	0.140	0.140	0.140	0.150	0.150
54	M27_ptm10065_cabo_corrientes_jal	0.158	0.162	0.164	0.166	0.164	0.162	0.164	0.174	0.172	0.174	0.176	0.150	0.150	0.170	0.170
55	M30_ptm10066_cabo_corrientes_jal	0.154	0.160	0.162	0.164	0.162	0.160	0.164	0.172	0.170	0.172	0.174	0.144	0.144	0.164	0.164
56	M58_ptm10115_punta_perula_jal	0.130	0.136	0.144	0.142	0.140	0.138	0.140	0.148	0.142	0.144	0.136	0.144	0.144	0.138	0.138
57	M59r1_ptm10116_punta_perula_jal	0.158	0.172	0.181	0.178	0.176	0.174	0.176	0.183	0.176	0.181	0.172	0.181	0.181	0.174	0.174
58	M67_ptm10075_cabo_corrientes_jal	0.162	0.164	0.166	0.168	0.166	0.164	0.168	0.176	0.174	0.176	0.174	0.148	0.148	0.166	0.166
59	M92_ptm_10119_punta_perula_jal	0.148	0.156	0.162	0.160	0.158	0.156	0.154	0.166	0.160	0.162	0.154	0.168	0.168	0.160	0.160
60	NQ16_ptm9791_bahia_la_ventosa_oax	0.154	0.156	0.154	0.156	0.158	0.156	0.160	0.168	0.166	0.168	0.170	0.144	0.144	0.164	0.164
61	NQ17_ptm9792_bahia_la_ventosa_oax	0.156	0.164	0.166	0.168	0.166	0.164	0.168	0.176	0.174	0.176	0.178	0.148	0.148	0.168	0.168
62	NQ33a_ptm9808_barra_de_santa_elena_oax	0.241	0.254	0.262	0.260	0.260	0.252	0.258	0.256	0.252	0.256	0.252	0.254	0.254	0.254	0.254
63 64	NQ48e_ptm10156_el_palmar_gro VR138_ptm9825_barra_de_santa_elena_oax	0.142 0.189	0.128 0.170	0.136 0.178	0.134 0.176	0.134 0.176	0.126 0.168	0.132 0.172	0.132 0.181	0.130 0.178	0.136 0.181	0.126 0.170	0.130 0.172	0.130 0.172	0.128 0.170	0.128 0.170

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16	KM032758_Neoralfsia_expansa_Mex	0.128														
17	EU579936_Ralfsia_fungiformis	0.128	0.004													
18	AB250071_Ralfsia_fungiformis	0.112	0.065	0.069												
19	AB264042_Analipus_japonicus	0.140	0.095	0.099	0.073											
20	AB250073_Ralfsia_sp_A	0.126	0.099	0.103	0.071	0.093										
21	AB264040_Heteroralfsia_saxicola	0.126	0.099	0.103	0.071	0.093	0.000									
22	AB250070_Heteroralfsia_saxicola	0.130	0.138	0.138	0.108	0.146	0.114	0.114								
23	AB250068_Mesospora_sp_F	0.142	0.138	0.138	0.112	0.138	0.142	0.142	0.103							
24	AB250067_Mesospora_sp	0.148	0.132	0.132	0.101	0.140	0.134	0.134	0.108	0.053						
25	AB250066_Mesospora_sp_D	0.148	0.134	0.134	0.108	0.130	0.138	0.138	0.114	0.041	0.081					
26	JQ619999_Mesospora_schmidtii_A	0.146	0.132	0.132	0.105	0.128	0.136	0.136	0.112	0.045	0.085	0.004				
27	JQ619998_Mesospora_schmidtii_B	0.146	0.132	0.132	0.105	0.128	0.136	0.136	0.112	0.045	0.085	0.004	0.000			
28	KC847388_Mesospora_schmidtii_C	0.150	0.142	0.142	0.112	0.132	0.142	0.142	0.110	0.047	0.083	0.010	0.010	0.010		
29	KC847387_Mesospora_schmidtii_D	0.134	0.126	0.126	0.093	0.128	0.118	0.118	0.101	0.085	0.073	0.081	0.079	0.079	0.085	
30	AB250065_Mesospora_sp_C	0.150	0.136	0.140	0.105	0.128	0.118	0.118	0.101	0.075	0.075	0.079	0.079	0.079	0.081	0.067
31	KC847391_Mesospora_negrosensis_A	0.152	0.138	0.142	0.108	0.130	0.120	0.120	0.099	0.077	0.077	0.081	0.081	0.081	0.083	0.069
32	KC847389_Mesospora_negrosensis_C	0.142	0.130	0.134	0.093	0.120	0.122	0.122	0.093	0.077	0.089	0.077	0.077	0.077	0.079	0.073
33	KC847390_Mesospora_negrosensis_B	0.134	0.130	0.130	0.093	0.126	0.116	0.116	0.097	0.083	0.089	0.079	0.079	0.079	0.081	0.073

34	AB250063_Mesospora_sp_A	0.140	0.132	0.132	0.095	0.120	0.124	0.124	0.103	0.073	0.091	0.069	0.069	0.069	0.071	0.077
35	JQ620005_Mesospora_elongata_A	0.140	0.132	0.132	0.095	0.120	0.124	0.124	0.103	0.073	0.091	0.069	0.069	0.069	0.071	0.077
36	JQ620004_Mesospora_elongata_B	0.140	0.132	0.132	0.095	0.120	0.124	0.124	0.103	0.073	0.091	0.069	0.069	0.069	0.071	0.077
37	JQ620003_Mesospora_elongata_C	0.140	0.132	0.132	0.095	0.120	0.124	0.124	0.103	0.073	0.091	0.069	0.069	0.069	0.071	0.077
38	JQ620002_Mesospora_elongata_D	0.105	0.130	0.134	0.103	0.134	0.124	0.124	0.118	0.112	0.116	0.110	0.108	0.108	0.110	0.089
39	AB250064_Mesospora_sp_B	0.146	0.138	0.138	0.116	0.136	0.122	0.122	0.099	0.118	0.126	0.116	0.114	0.114	0.112	0.120
40	AB250069_Mesospora_sp_G	0.130	0.101	0.101	0.087	0.103	0.120	0.120	0.130	0.126	0.130	0.118	0.120	0.120	0.118	0.128
41	AB264039_Endoplura_aurea	0.118	0.156	0.160	0.118	0.138	0.152	0.152	0.150	0.144	0.150	0.138	0.136	0.136	0.140	0.146
42	AB250076_Ralfsia_sp_D	0.146	0.138	0.138	0.126	0.134	0.136	0.136	0.105	0.132	0.132	0.126	0.124	0.124	0.126	0.105
43	VR5	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.130	0.124	0.122	0.122	0.124	0.103
44	VR30	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.132	0.124	0.122	0.122	0.124	0.105
45	VR6P	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.132	0.124	0.122	0.122	0.124	0.105
46	VR6H	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.132	0.124	0.122	0.122	0.124	0.105
47	VR20H	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.132	0.124	0.122	0.122	0.124	0.105

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
48	VR38	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.130	0.124	0.122	0.122	0.124	0.103
49	VR40	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.130	0.124	0.122	0.122	0.124	0.103
50	VR41	0.142	0.138	0.138	0.126	0.136	0.136	0.136	0.101	0.132	0.132	0.126	0.124	0.124	0.126	0.105
51	VR42	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.130	0.124	0.122	0.122	0.124	0.103
52	VR43	0.144	0.136	0.136	0.124	0.134	0.134	0.134	0.103	0.130	0.130	0.124	0.122	0.122	0.124	0.103
53	VR44	0.150	0.142	0.142	0.126	0.140	0.136	0.136	0.120	0.150	0.138	0.138	0.136	0.136	0.138	0.120
54	M27_ptm10065_cabo_corrientes_jal	0.170	0.174	0.178	0.154	0.176	0.178	0.178	0.187	0.187	0.193	0.176	0.176	0.176	0.183	0.183
55	M30_ptm10066_cabo_corrientes_jal	0.164	0.174	0.178	0.154	0.172	0.170	0.170	0.183	0.187	0.193	0.176	0.176	0.176	0.183	0.183
56	M58_ptm10115_punta_perula_jal	0.138	0.148	0.148	0.116	0.130	0.144	0.144	0.130	0.114	0.138	0.110	0.108	0.108	0.114	0.105
57	M59r1_ptm10116_punta_perula_jal	0.174	0.183	0.183	0.150	0.162	0.174	0.174	0.158	0.144	0.168	0.142	0.140	0.140	0.142	0.138
58	M67_ptm10075_cabo_corrientes_jal	0.166	0.176	0.181	0.158	0.174	0.168	0.168	0.181	0.191	0.197	0.176	0.176	0.176	0.183	0.183
59	M92_ptm_10119_punta_perula_jal	0.160	0.170	0.170	0.138	0.154	0.168	0.168	0.158	0.136	0.156	0.132	0.130	0.130	0.136	0.128
60	NQ16_ptm9791_bahia_la_ventosa_oax	0.164	0.170	0.174	0.150	0.168	0.170	0.170	0.183	0.183	0.189	0.172	0.172	0.172	0.178	0.178
61	NQ17_ptm9792_bahia_la_ventosa_oax	0.168	0.181	0.185	0.158	0.176	0.174	0.174	0.187	0.189	0.195	0.181	0.181	0.181	0.187	0.185
62	NQ33a_ptm9808_barra_de_santa_elena_oax	0.254	0.247	0.252	0.225	0.243	0.249	0.249	0.227	0.235	0.249	0.227	0.223	0.223	0.227	0.223
63	NQ48e_ptm10156_el_palmar_gro	0.128	0.124	0.124	0.120	0.138	0.140	0.140	0.069	0.116	0.128	0.118	0.116	0.116	0.118	0.124
64	VR138_ptm9825_barra_de_santa_elena_oax	0.170	0.154	0.154	0.162	0.183	0.181	0.181	0.124	0.156	0.164	0.162	0.162	0.162	0.166	0.166

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
32	KC847389_Mesospora_negrosensis_C	0.002														
33	KC847390_Mesospora_negrosensis_B	0.026	0.028													
34	AB250063_Mesospora_sp_A	0.073	0.075	0.069												
35	JQ620005_Mesospora_elongata_A	0.063	0.065	0.059	0.010											
36	JQ620004_Mesospora_elongata_B	0.063	0.065	0.059	0.010	0.000										
37	JQ620003_Mesospora_elongata_C	0.063	0.065	0.059	0.010	0.000	0.000									
38	JQ620002_Mesospora_elongata_D	0.063	0.065	0.059	0.010	0.000	0.000	0.000								
39	AB250064_Mesospora_sp_B	0.085	0.087	0.081	0.101	0.112	0.112	0.112	0.112							
40	AB250069_Mesospora_sp_G	0.114	0.116	0.114	0.112	0.114	0.114	0.114	0.114	0.130						
41	AB264039_Endoplura_aurea	0.124	0.122	0.118	0.114	0.110	0.110	0.110	0.110	0.134	0.142					
42	AB250076_Ralfsia_sp_D	0.136	0.138	0.128	0.138	0.138	0.138	0.138	0.138	0.130	0.146	0.140				
43	VR5	0.110	0.108	0.108	0.112	0.114	0.114	0.114	0.114	0.134	0.126	0.132	0.154			
44	VR30	0.108	0.105	0.105	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.002		
45	VR6P	0.108	0.105	0.108	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.006	0.004	
46	VR6H	0.108	0.105	0.108	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.006	0.004	0.000
47	VR20H	0.108	0.105	0.108	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.006	0.004	0.000
48	VR38	0.108	0.105	0.105	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.002	0.000	0.004
49	VR40	0.108	0.105	0.105	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.002	0.000	0.004
50	VR41	0.110	0.108	0.108	0.112	0.114	0.114	0.114	0.114	0.134	0.126	0.130	0.154	0.004	0.002	0.006
51	VR42	0.108	0.105	0.105	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.002	0.000	0.004
52	VR43	0.108	0.105	0.105	0.110	0.112	0.112	0.112	0.112	0.132	0.124	0.130	0.152	0.002	0.000	0.004
53	VR44	0.120	0.118	0.122	0.122	0.124	0.124	0.124	0.124	0.132	0.136	0.140	0.150	0.037	0.034	0.039
54	M27_ptm10065_cabo_corrientes_jal	0.172	0.172	0.166	0.176	0.174	0.174	0.174	0.174	0.162	0.183	0.168	0.168	0.174	0.172	0.170
55	M30_ptm10066_cabo_corrientes_jal	0.172	0.172	0.166	0.172	0.174	0.174	0.174	0.174	0.158	0.181	0.164	0.162	0.170	0.168	0.166
56	M58_ptm10115_punta_perula_jal	0.126	0.128	0.122	0.116	0.110	0.110	0.110	0.110	0.150	0.130	0.138	0.152	0.114	0.112	0.112
57	M59r1_ptm10116_punta_perula_jal	0.154	0.156	0.150	0.142	0.136	0.136	0.136	0.136	0.178	0.156	0.172	0.189	0.142	0.140	0.140
58	M67_ptm10075_cabo_corrientes_jal	0.172	0.172	0.166	0.172	0.174	0.174	0.174	0.174	0.158	0.185	0.164	0.162	0.172	0.170	0.168
59	M92_ptm_10119_punta_perula_jal	0.142	0.144	0.142	0.136	0.130	0.130	0.130	0.130	0.170	0.150	0.160	0.174	0.134	0.132	0.132
60	NQ16_ptm9791_bahia_la_ventosa_oax	0.168	0.168	0.162	0.172	0.170	0.170	0.170	0.170	0.158	0.181	0.160	0.162	0.174	0.172	0.170
61	NQ17_ptm9792_bahia_la_ventosa_oax	0.174	0.176	0.168	0.174	0.176	0.176	0.176	0.176	0.160	0.183	0.172	0.166	0.178	0.176	0.174
62	NQ33a_ptm9808_barra_de_santa_elena_oax	0.233	0.235	0.229	0.233	0.231	0.231	0.231	0.231	0.260	0.223	0.254	0.278	0.223	0.221	0.217
63	NQ48e_ptm10156_el_palmar_gro	0.120	0.122	0.120	0.118	0.116	0.116	0.116	0.116	0.146	0.101	0.130	0.156	0.124	0.122	0.122
64	VR138_ptm9825_barra_de_santa_elena_oax	0.166	0.168	0.166	0.164	0.162	0.162	0.162	0.162	0.193	0.136	0.166	0.199	0.168	0.166	0.166

		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
47	VR20H	0.000														
48	VR38	0.004	0.004													
49	VR40	0.004	0.004	0.000												
50	VR41	0.006	0.006	0.002	0.002											
51	VR42	0.004	0.004	0.000	0.000	0.002										
52	VR43	0.004	0.004	0.000	0.000	0.002	0.000									
53	VR44	0.039	0.039	0.034	0.034	0.037	0.034	0.034								
54	M27_ptm10065_cabo_corrientes_jal	0.170	0.170	0.172	0.172	0.172	0.172	0.172	0.142							
55	M30_ptm10066_cabo_corrientes_jal	0.166	0.166	0.168	0.168	0.168	0.168	0.168	0.138	0.014						
56	M58_ptm10115_punta_perula_jal	0.112	0.112	0.112	0.112	0.114	0.112	0.112	0.142	0.170	0.170					
57	M59r1_ptm10116_punta_perula_jal	0.140	0.140	0.140	0.140	0.142	0.140	0.140	0.170	0.199	0.199	0.039				
58	M67_ptm10075_cabo_corrientes_jal	0.168	0.168	0.170	0.170	0.170	0.170	0.170	0.140	0.024	0.014	0.176	0.207			
59	M92_ptm_10119_punta_perula_jal	0.132	0.132	0.132	0.132	0.134	0.132	0.132	0.158	0.189	0.189	0.034	0.073	0.195		
60	NQ16_ptm9791_bahia_la_ventosa_oax	0.170	0.170	0.172	0.172	0.172	0.172	0.172	0.142	0.012	0.010	0.166	0.199	0.018	0.185	
61	NQ17_ptm9792_bahia_la_ventosa_oax	0.174	0.174	0.176	0.176	0.176	0.176	0.176	0.146	0.024	0.014	0.176	0.209	0.024	0.195	0.020
62	NQ33a_ptm9808_barra_de_santa_elena_oax	0.217	0.217	0.221	0.221	0.219	0.221	0.221	0.237	0.282	0.282	0.215	0.249	0.286	0.223	0.278
63	NQ48e_ptm10156_el_palmar_gro	0.122	0.122	0.122	0.122	0.120	0.122	0.122	0.136	0.178	0.178	0.112	0.140	0.178	0.140	0.174
64	VR138_ptm9825_barra_de_santa_elena_oa	0.166	0.166	0.166	0.166	0.164	0.166	0.166	0.181	0.217	0.219	0.158	0.183	0.221	0.178	0.215

		61	62	63	64
61	NQ17_ptm9792_bahia_la_ventosa_oax	0.020			
62	NQ33a_ptm9808_barra_de_santa_elena_oax	0.278	0.286		
63	NQ48e_ptm10156_el_palmar_gro	0.174	0.183	0.189	
64	VR138_ptm9825_barra_de_santa_elena_oa	0.215	0.217	0.239	0.073

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	AB776784_Tilopteris_mertensii															
2	AB250079_Neoralfsia_expansa_Z	0.126														
3	AB250083_Ralfsia_sp	0.126	0.000													
4	AB250082_Ralfsia_sp_J	0.126	0.000	0.000												
5	AB250080_Ralfsia_sp_H	0.126	0.000	0.000	0.000											
6	KC847392_Neoralfsia_expansa_C	0.129	0.003	0.003	0.003	0.003										
7	AB250081_Ralfsia_sp_I	0.129	0.013	0.013	0.013	0.013	0.016									
8	AB250078_Neoralfsia_expansa_Y	0.121	0.038	0.038	0.038	0.038	0.035	0.051								
9	KC847394_Neoralfsia_expansa_A	0.113	0.024	0.024	0.024	0.024	0.022	0.038	0.013							
10	KC847393_Neoralfsia_expansa_B	0.124	0.022	0.022	0.022	0.022	0.019	0.035	0.032	0.019						
11	AB250077_Neoralfsia_expansa_X	0.132	0.048	0.048	0.048	0.048	0.046	0.062	0.048	0.046	0.043					
12	KF977828_Neoralfsia_hancockii	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046				
13	KF977827_Neoralfsia_hancockii	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046	0.000			
14	KM032760_Neoralfsia_expansa_Mex	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046	0.011	0.011		
15	KM032759_Neoralfsia_expansa_Mex	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046	0.011	0.011	0.000	
16	KM032758_Neoralfsia_expansa_Mex	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046	0.011	0.011	0.000	0.000
17	RhancPtm9178	0.129	0.008	0.008	0.008	0.008	0.005	0.022	0.035	0.022	0.019	0.046	0.011	0.011	0.011	0.011
18	GU014708_Ralfsia_sp_JK7	0.129	0.116	0.116	0.116	0.116	0.118	0.116	0.121	0.118	0.116	0.108	0.118	0.118	0.116	0.116
19	AB250074_Ralfsia_sp_B	0.129	0.116	0.116	0.116	0.116	0.118	0.116	0.121	0.118	0.116	0.108	0.118	0.118	0.116	0.116
20	GU014707_Ralfsia_sp_JK6	0.129	0.116	0.116	0.116	0.116	0.118	0.116	0.121	0.118	0.116	0.108	0.118	0.118	0.116	0.116
21	AB250075_Ralfsia_sp_C	0.126	0.116	0.116	0.116	0.116	0.118	0.118	0.110	0.108	0.116	0.108	0.118	0.118	0.121	0.121
22	EU579936_Ralfsia_fungiformis	0.134	0.121	0.121	0.121	0.121	0.124	0.121	0.129	0.124	0.129	0.126	0.124	0.124	0.118	0.118
23	AB250071_Ralfsia_fungiformis	0.126	0.118	0.118	0.118	0.118	0.121	0.118	0.126	0.121	0.126	0.124	0.121	0.121	0.116	0.116
24	AB264042_Analipus_japonicus	0.118	0.113	0.113	0.113	0.113	0.116	0.113	0.113	0.108	0.113	0.113	0.116	0.116	0.110	0.110
25	AB250073_Ralfsia_sp_A	0.132	0.116	0.116	0.116	0.116	0.118	0.118	0.108	0.108	0.118	0.099	0.118	0.118	0.118	0.118
26	AB264040_Heteroralfsia_saxicola	0.134	0.089	0.089	0.089	0.089	0.091	0.094	0.097	0.091	0.086	0.094	0.091	0.091	0.091	0.091
27	AB250070_Heteroralfsia_saxicola	0.134	0.089	0.089	0.089	0.089	0.091	0.094	0.097	0.091	0.086	0.094	0.091	0.091	0.091	0.091
28	RahespPtm8982	0.102	0.097	0.097	0.097	0.097	0.094	0.105	0.091	0.086	0.083	0.083	0.094	0.094	0.094	0.094
29	RhespPTM8970	0.105	0.099	0.099	0.099	0.099	0.097	0.108	0.094	0.089	0.086	0.086	0.097	0.097	0.097	0.097
30	AB250068_Mesospora_sp_F	0.140	0.134	0.134	0.134	0.134	0.132	0.140	0.129	0.129	0.126	0.126	0.126	0.126	0.126	0.126
31	AB250067_Mesospora_sp	0.145	0.129	0.129	0.129	0.129	0.126	0.132	0.126	0.124	0.121	0.126	0.126	0.126	0.126	0.126
32	AB250066_Mesospora_sp_D	0.148	0.132	0.132	0.132	0.132	0.129	0.134	0.129	0.126	0.124	0.129	0.129	0.129	0.129	0.129

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
33	JQ619999_Mesospora_schmidtii_A	0.132	0.134	0.134	0.134	0.134	0.132	0.137	0.129	0.124	0.132	0.137	0.126	0.126	0.126	0.126
34	JQ619998_Mesospora_schmidtii_B	0.121	0.124	0.124	0.124	0.124	0.121	0.126	0.118	0.113	0.121	0.126	0.116	0.116	0.116	0.116
35	KC847388_Mesospora_schmidtii_C	0.121	0.124	0.124	0.124	0.124	0.121	0.126	0.118	0.113	0.121	0.126	0.116	0.116	0.116	0.116
36	KC847387_Mesospora_schmidtii_D	0.132	0.134	0.134	0.134	0.134	0.132	0.137	0.124	0.118	0.126	0.132	0.126	0.126	0.126	0.126
37	AB250065_Mesospora_sp_C	0.118	0.121	0.121	0.121	0.121	0.124	0.118	0.124	0.121	0.118	0.118	0.124	0.124	0.124	0.124
38	KC847391_Mesospora_negrosensis_A	0.140	0.121	0.121	0.121	0.121	0.124	0.126	0.124	0.126	0.124	0.121	0.129	0.129	0.118	0.118
39	KC847389_Mesospora_negrosensis_C	0.137	0.124	0.124	0.124	0.124	0.126	0.129	0.126	0.129	0.126	0.124	0.132	0.132	0.121	0.121
40	KC847390_Mesospora_negrosensis_B	0.124	0.118	0.118	0.118	0.118	0.121	0.124	0.116	0.118	0.116	0.118	0.121	0.121	0.116	0.116
41	AB250063_Mesospora_sp_A	0.134	0.134	0.134	0.134	0.134	0.132	0.137	0.145	0.140	0.132	0.132	0.132	0.132	0.126	0.126
42	JQ620005_Mesospora_elongata_A	0.142	0.126	0.126	0.126	0.126	0.124	0.129	0.132	0.132	0.124	0.118	0.124	0.124	0.118	0.118
43	JQ620004_Mesospora_elongata_B	0.142	0.126	0.126	0.126	0.126	0.124	0.129	0.132	0.132	0.124	0.118	0.124	0.124	0.118	0.118
44	JQ620003_Mesospora_elongata_C	0.142	0.126	0.126	0.126	0.126	0.124	0.129	0.132	0.132	0.124	0.118	0.124	0.124	0.118	0.118
45	JQ620002_Mesospora_elongata_D	0.142	0.126	0.126	0.126	0.126	0.124	0.129	0.132	0.132	0.124	0.118	0.124	0.124	0.118	0.118
46	AB250064_Mesospora_sp_B	0.140	0.124	0.124	0.124	0.124	0.126	0.129	0.126	0.129	0.126	0.124	0.132	0.132	0.121	0.121
47	AB250069_Mesospora_sp_G	0.161	0.132	0.132	0.132	0.132	0.134	0.134	0.134	0.126	0.124	0.129	0.134	0.134	0.129	0.129
48	AB264039_Endoplura_aurea	0.145	0.137	0.137	0.137	0.137	0.140	0.134	0.142	0.137	0.134	0.137	0.140	0.140	0.140	0.140
49	AB250076_Ralfsia_sp_D	0.116	0.056	0.056	0.056	0.056	0.054	0.059	0.062	0.048	0.048	0.065	0.054	0.054	0.054	0.054
50	Hpn	0.156	0.124	0.124	0.124	0.124	0.121	0.124	0.137	0.132	0.132	0.134	0.126	0.126	0.126	0.126
51	VR5	0.137	0.129	0.129	0.129	0.129	0.126	0.129	0.121	0.116	0.121	0.137	0.124	0.124	0.126	0.126
52	VR30	0.137	0.129	0.129	0.129	0.129	0.126	0.129	0.121	0.116	0.121	0.137	0.124	0.124	0.126	0.126
53	VR6P	0.140	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.118	0.134	0.121	0.121	0.124	0.124
54	VR6H	0.140	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.118	0.134	0.121	0.121	0.124	0.124
55	VR20H	0.137	0.124	0.124	0.124	0.124	0.121	0.124	0.116	0.110	0.121	0.132	0.118	0.118	0.121	0.121
56	VR38	0.134	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.124	0.134	0.121	0.121	0.124	0.124
57	VR40	0.134	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.124	0.134	0.121	0.121	0.124	0.124
58	VR41	0.134	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.124	0.134	0.121	0.121	0.124	0.124
59	VR42	0.134	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.124	0.134	0.121	0.121	0.124	0.124
60	VR43	0.134	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.124	0.134	0.121	0.121	0.124	0.124
61	VR44	0.137	0.129	0.129	0.129	0.129	0.126	0.129	0.121	0.116	0.121	0.137	0.124	0.124	0.126	0.126
62	VR20S	0.140	0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.118	0.134	0.121	0.121	0.124	0.124
63	VR33	0.161	0.129	0.129	0.129	0.129	0.126	0.129	0.137	0.137	0.137	0.134	0.132	0.132	0.132	0.132
64	VR35	0.159	0.126	0.126	0.126	0.126	0.124	0.126	0.134	0.134	0.134	0.132	0.129	0.129	0.129	0.129

					1 2	3	4	5	6	7	8	9	10	11	12	13	14	15
	65 vr39			0.15	6 0.124	0.124	0.124	0.124	0.121	0.124	0.137	0.132	0.132	0.134	0.126	0.126	0.126	0.126
	66 vr85			0.14	0 0.126	0.126	0.126	0.126	0.124	0.126	0.118	0.113	0.118	0.134	0.121	0.121	0.124	0.124
	67 M3_ptm10025_losmuertos_nay			0.14	0.142	0.142	0.142	0.142	0.140	0.145	0.129	0.129	0.134	0.129	0.137	0.137	0.140	0.140
	68 M27_ptm10065_cabocorrientes_jal			0.17	0.194	0.194	0.194	0.194	0.196	0.199	0.199	0.196	0.191	0.196	0.196	0.196	0.191	0.191
	69 M92_ptm10119_puntaperula_jal			0.16	0.129	0.129	0.129	0.129	0.126	0.129	0.142	0.137	0.137	0.140	0.132	0.132	0.132	0.132
	70 NQ17_ptm9792_bahialaventosa_oax			0.16	64 0.161	0.161	0.161	0.161	0.164	0.169	0.177	0.175	0.164	0.177	0.164	0.164	0.159	0.159
	71 NQ48e_ptm10156_elpalmar_gro			0.15	0.140	0.140	0.140	0.140	0.137	0.142	0.129	0.126	0.126	0.129	0.132	0.132	0.132	0.132
	72 M58_ptm10115_puntaperula_jal			0.16	0.132	0.132	0.132	0.132	0.129	0.132	0.145	0.140	0.140	0.142	0.134	0.134	0.134	0.134
	73 NQ33a_ptm9808_barradesantaelena_oax			0.16	0.156	0.156	0.156	0.156	0.153	0.159	0.153	0.151	0.159	0.151	0.148	0.148	0.153	0.153
	74 VR138_ptm9825_barradesantaelena_oax			0.24	0.231	0.231	0.231	0.231	0.228	0.234	0.231	0.228	0.218	0.226	0.223	0.223	0.223	0.223
	75 M20b_ptm10058_cabocorrientes_jal			0.22	0.196	0.196	0.196	0.196	0.194	0.202	0.194	0.191	0.183	0.196	0.188	0.188	0.188	0.188
	76 M60_ptm10117_puntaperula_jal			0.26	6 0.237	0.237	0.237	0.237	0.234	0.245	0.237	0.237	0.242	0.234	0.239	0.239	0.239	0.239
	77 M80a_ptm10095_lasrosadas_jal			0.13	0.175	0.175	0.175	0.175	0.177	0.172	0.169	0.167	0.169	0.180	0.177	0.177	0.172	0.172
	78 M91_ptm10118_puntaperula_jal			0.19	0.175	0.175	0.175	0.175	0.172	0.172	0.172	0.172	0.180	0.175	0.177	0.177	0.177	0.177
	79 VR136_ptm9823_barradesantaelena_oax			0.13	0.175	0.175	0.175	0.175	0.177	0.172	0.169	0.167	0.169	0.180	0.177	0.177	0.172	0.172
	80 VR139_ptm9826_barradesantaelena_oax			0.15	0.137	0.137	0.137	0.137	0.134	0.140	0.126	0.124	0.124	0.126	0.129	0.129	0.129	0.129
		16	17	18	19	20	21	22	2	3	24	25	26	27	2	8	29	30
17	RhancPtm9178	0.011																
18	GU014708_Ralfsia_sp_JK7	0.116	0.118															
19	AB250074_Ralfsia_sp_B	0.116	0.118	0.000														
20	GU014707_Ralfsia_sp_JK6	0.116	0.118	0.000	0.000													
21	AB250075_Ralfsia_sp_C	0.121	0.118	0.035	0.035	0.035												
22	EU579936_Ralfsia_fungiformis	0.118	0.126	0.124	0.124	0.124	0.134											
23	AB250071_Ralfsia_fungiformis	0.116	0.124	0.110	0.110	0.110	0.126	0.013	3									
24	AB264042_Analipus_japonicus	0.110	0.116	0.089	0.089	0.089	0.108	0.075	5 0.0	73								
25	AB250073_Ralfsia_sp_A	0.118	0.121	0.108	0.108	0.108	0.108	0.081	0.0	78 (0.091							
26	AB264040_Heteroralfsia_saxicola	0.091	0.094	0.105	0.105	0.105	0.105	0.102	2 0.0	99 (0.110	0.078						
27	AB250070_Heteroralfsia_saxicola	0.091	0.094	0.105	0.105	0.105	0.105	0.102	2 0.0	99 (0.110	0.078	0.000					
28	RahespPtm8982	0.094	0.094	0.091	0.091	0.091	0.091	0.102	2 0.0	99 ().094	0.083	0.083	0.083	3			
29 30	RhespPTM8970 AB250068_Mesospora_sp_F	0.097 0.126	0.097 0.132	0.091 0.142	0.091 0.142	0.091 0.142	0.091 0.153	0.102 0.124	2 0.0 4 0.1	99 (26 ().094).118	0.086 0.140	0.086 0.129	0.086 0.129	5 0.0 9 0.1	03 05 ().105	

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
31	AB250067_Mesospora_sp	0.126	0.126	0.121	0.121	0.121	0.132	0.134	0.126	0.118	0.137	0.126	0.126	0.108	0.108	0.091
32	AB250066_Mesospora_sp_D	0.129	0.129	0.124	0.124	0.124	0.134	0.132	0.124	0.121	0.140	0.124	0.124	0.110	0.110	0.094
33	JQ619999_Mesospora_schmidtii_A	0.126	0.132	0.124	0.124	0.124	0.134	0.132	0.118	0.124	0.148	0.142	0.142	0.116	0.118	0.108
34	JQ619998_Mesospora_schmidtii_B	0.116	0.121	0.118	0.118	0.118	0.124	0.121	0.113	0.118	0.142	0.132	0.132	0.105	0.108	0.097
35	KC847388_Mesospora_schmidtii_C	0.116	0.121	0.118	0.118	0.118	0.124	0.121	0.113	0.118	0.142	0.132	0.132	0.105	0.108	0.097
36	KC847387_Mesospora_schmidtii_D	0.126	0.132	0.121	0.121	0.121	0.126	0.132	0.124	0.118	0.142	0.137	0.137	0.110	0.110	0.097
37	AB250065_Mesospora_sp_C	0.124	0.124	0.113	0.113	0.113	0.116	0.118	0.116	0.099	0.129	0.121	0.121	0.089	0.091	0.097
38	KC847391_Mesospora_negrosensis_A	0.118	0.124	0.124	0.124	0.124	0.129	0.129	0.126	0.110	0.134	0.124	0.124	0.102	0.102	0.065
39	KC847389_Mesospora_negrosensis_C	0.121	0.126	0.121	0.121	0.121	0.132	0.126	0.124	0.108	0.132	0.126	0.126	0.099	0.099	0.062
40	KC847390_Mesospora_negrosensis_B	0.116	0.121	0.110	0.110	0.110	0.121	0.118	0.116	0.094	0.134	0.118	0.118	0.091	0.091	0.062
41	AB250063_Mesospora_sp_A	0.126	0.137	0.132	0.132	0.132	0.142	0.137	0.134	0.140	0.145	0.140	0.140	0.108	0.110	0.110
42	JQ620005_Mesospora_elongata_A	0.118	0.129	0.121	0.121	0.121	0.134	0.132	0.134	0.129	0.140	0.118	0.118	0.102	0.105	0.110
43	JQ620004_Mesospora_elongata_B	0.118	0.129	0.121	0.121	0.121	0.134	0.132	0.134	0.129	0.140	0.118	0.118	0.102	0.105	0.110
44	JQ620003_Mesospora_elongata_C	0.118	0.129	0.121	0.121	0.121	0.134	0.132	0.134	0.129	0.140	0.118	0.118	0.102	0.105	0.110
45	JQ620002_Mesospora_elongata_D	0.118	0.129	0.121	0.121	0.121	0.134	0.132	0.134	0.129	0.140	0.118	0.118	0.102	0.105	0.110
46	AB250064_Mesospora_sp_B	0.121	0.126	0.121	0.121	0.121	0.121	0.129	0.126	0.113	0.137	0.124	0.124	0.105	0.105	0.078
47	AB250069_Mesospora_sp_G	0.129	0.134	0.134	0.134	0.134	0.145	0.129	0.132	0.137	0.137	0.118	0.118	0.113	0.116	0.121
48	AB264039_Endoplura_aurea	0.140	0.145	0.129	0.129	0.129	0.142	0.116	0.113	0.110	0.124	0.110	0.110	0.105	0.108	0.153
49	AB250076_Ralfsia_sp_D	0.054	0.054	0.118	0.118	0.118	0.121	0.129	0.126	0.116	0.132	0.116	0.116	0.094	0.097	0.134
50	Hpn	0.126	0.121	0.132	0.132	0.132	0.137	0.134	0.126	0.145	0.121	0.137	0.137	0.116	0.118	0.156
51	VR5	0.126	0.126	0.153	0.153	0.153	0.156	0.151	0.140	0.129	0.148	0.140	0.140	0.116	0.118	0.126
52	VR30	0.126	0.126	0.153	0.153	0.153	0.156	0.151	0.140	0.129	0.148	0.140	0.140	0.116	0.118	0.126
53	VR6P	0.124	0.124	0.161	0.161	0.161	0.164	0.148	0.137	0.137	0.145	0.137	0.137	0.118	0.121	0.129
54	VR6H	0.124	0.124	0.161	0.161	0.161	0.164	0.148	0.137	0.137	0.145	0.137	0.137	0.118	0.121	0.129
55	VR20H	0.121	0.121	0.159	0.159	0.159	0.161	0.145	0.134	0.134	0.142	0.134	0.134	0.116	0.118	0.126
56	VR38	0.124	0.124	0.151	0.151	0.151	0.153	0.148	0.137	0.126	0.145	0.137	0.137	0.113	0.116	0.124
57	VR40	0.124	0.124	0.151	0.151	0.151	0.153	0.148	0.137	0.126	0.145	0.137	0.137	0.113	0.116	0.124
58	VR41	0.124	0.124	0.151	0.151	0.151	0.153	0.148	0.137	0.126	0.145	0.137	0.137	0.113	0.116	0.124
59	VR42	0.124	0.124	0.151	0.151	0.151	0.153	0.148	0.137	0.126	0.145	0.137	0.137	0.113	0.116	0.124
60	VR43	0.124	0.124	0.151	0.151	0.151	0.153	0.148	0.137	0.126	0.145	0.137	0.137	0.113	0.116	0.124
61	VR44	0.126	0.126	0.153	0.153	0.153	0.156	0.151	0.140	0.129	0.148	0.140	0.140	0.116	0.118	0.126

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
62	VR20S	0.124	0.124	0.161	0.161	0.161	0.164	0.148	0.137	0.137	0.145	0.137	0.137	0.118	0.121	0.129
63	VR33	0.132	0.126	0.132	0.132	0.132	0.137	0.134	0.126	0.145	0.121	0.137	0.137	0.116	0.118	0.156
64	VR35	0.129	0.124	0.129	0.129	0.129	0.134	0.132	0.124	0.142	0.118	0.134	0.134	0.113	0.116	0.153
65	vr39	0.126	0.121	0.132	0.132	0.132	0.137	0.134	0.126	0.145	0.121	0.137	0.137	0.116	0.118	0.156
66	vr85	0.124	0.124	0.161	0.161	0.161	0.164	0.148	0.137	0.137	0.145	0.137	0.137	0.118	0.121	0.129
67	M3_ptm10025_losmuertos_nay	0.140	0.140	0.156	0.156	0.156	0.151	0.145	0.137	0.145	0.142	0.153	0.153	0.118	0.121	0.134
68	M27_ptm10065_cabocorrientes_jal	0.191	0.202	0.180	0.180	0.180	0.196	0.185	0.185	0.180	0.185	0.188	0.188	0.156	0.159	0.185
69	M92_ptm10119_puntaperula_jal	0.132	0.126	0.137	0.137	0.137	0.142	0.140	0.132	0.151	0.126	0.142	0.142	0.121	0.124	0.161
70	NQ17_ptm9792_bahialaventosa_oax	0.159	0.169	0.172	0.172	0.172	0.191	0.169	0.169	0.167	0.177	0.169	0.169	0.145	0.148	0.167
71	NQ48e_ptm10156_elpalmar_gro	0.132	0.137	0.145	0.145	0.145	0.145	0.148	0.148	0.137	0.140	0.151	0.151	0.113	0.116	0.094
72	M58_ptm10115_puntaperula_jal	0.134	0.129	0.140	0.140	0.140	0.145	0.142	0.134	0.153	0.129	0.145	0.145	0.124	0.126	0.161
73	NQ33a_ptm9808_barradesantaelena_oax	0.153	0.153	0.164	0.164	0.164	0.167	0.159	0.159	0.161	0.156	0.169	0.169	0.142	0.145	0.132
74	VR138_ptm9825_barradesantaelena_oax	0.223	0.231	0.242	0.242	0.242	0.250	0.231	0.231	0.234	0.237	0.234	0.234	0.212	0.215	0.194
75	M20b_ptm10058_cabocorrientes_jal	0.188	0.196	0.215	0.215	0.215	0.220	0.202	0.204	0.204	0.210	0.210	0.210	0.172	0.175	0.164
76	M60_ptm10117_puntaperula_jal	0.239	0.234	0.247	0.247	0.247	0.258	0.250	0.242	0.258	0.226	0.242	0.242	0.231	0.234	0.266
77	M80a_ptm10095_lasrosadas_jal	0.172	0.177	0.159	0.159	0.159	0.161	0.153	0.145	0.148	0.164	0.161	0.161	0.140	0.142	0.172
78	M91_ptm10118_puntaperula_jal	0.177	0.172	0.172	0.172	0.172	0.177	0.183	0.175	0.183	0.164	0.177	0.177	0.153	0.156	0.199
79	VR136_ptm9823_barradesantaelena_oax	0.172	0.177	0.159	0.159	0.159	0.161	0.153	0.145	0.148	0.164	0.161	0.161	0.140	0.142	0.172
80	VR139_ptm9826_barradesantaelena_oax	0.129	0.134	0.142	0.142	0.142	0.142	0.145	0.145	0.134	0.137	0.148	0.148	0.110	0.113	0.099

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
32	AB250066_Mesospora_sp_D	0.003														
33	JQ619999_Mesospora_schmidtii_A	0.078	0.075													
34	JQ619998_Mesospora_schmidtii_B	0.086	0.083	0.011												
35	KC847388_Mesospora_schmidtii_C	0.086	0.083	0.011	0.000											
36	KC847387_Mesospora_schmidtii_D	0.081	0.078	0.016	0.016	0.016										
37	AB250065_Mesospora_sp_C	0.067	0.070	0.089	0.078	0.078	0.089									
38	KC847391_Mesospora_negrosensis_A	0.067	0.070	0.102	0.091	0.091	0.091	0.054								
39	KC847389_Mesospora_negrosensis_C	0.065	0.067	0.099	0.089	0.089	0.089	0.051	0.003							
40	KC847390_Mesospora_negrosensis_B	0.065	0.067	0.081	0.070	0.070	0.070	0.046	0.027	0.024						
41	AB250063_Mesospora_sp_A	0.118	0.121	0.124	0.113	0.113	0.124	0.116	0.108	0.105	0.108					
42	JQ620005_Mesospora_elongata_A	0.099	0.102	0.102	0.091	0.091	0.102	0.094	0.102	0.099	0.091	0.051				

43	JQ620004_Mesospora_elongata_B	0.099	0.102	0.102	0.091	0.091	0.102	0.094	0.102	0.099	0.091	0.051	0.000			
44	JQ620003_Mesospora_elongata_C	0.099	0.102	0.102	0.091	0.091	0.102	0.094	0.102	0.099	0.091	0.051	0.000	0.000		
45	JQ620002_Mesospora_elongata_D	0.099	0.102	0.102	0.091	0.091	0.102	0.094	0.102	0.099	0.091	0.051	0.000	0.000	0.000	
46	AB250064_Mesospora_sp_B	0.073	0.075	0.099	0.089	0.089	0.089	0.048	0.024	0.027	0.030	0.113	0.094	0.094	0.094	0.094
47	AB250069_Mesospora_sp_G	0.132	0.129	0.148	0.137	0.137	0.137	0.124	0.113	0.116	0.110	0.153	0.134	0.134	0.134	0.134
48	AB264039_Endoplura_aurea	0.129	0.132	0.124	0.121	0.121	0.126	0.118	0.145	0.142	0.129	0.151	0.124	0.124	0.124	0.124
49	AB250076_Ralfsia_sp_D	0.129	0.132	0.129	0.118	0.118	0.126	0.116	0.129	0.132	0.116	0.145	0.137	0.137	0.137	0.137
50	Hpn	0.145	0.142	0.126	0.126	0.126	0.132	0.137	0.151	0.153	0.161	0.148	0.142	0.142	0.142	0.142
51	VR5	0.148	0.151	0.118	0.118	0.118	0.118	0.132	0.140	0.142	0.129	0.151	0.145	0.145	0.145	0.145
52	VR30	0.148	0.151	0.118	0.118	0.118	0.118	0.132	0.140	0.142	0.129	0.151	0.145	0.145	0.145	0.145
53	VR6P	0.151	0.153	0.121	0.121	0.121	0.121	0.140	0.148	0.151	0.137	0.153	0.148	0.148	0.148	0.148
54	VR6H	0.151	0.153	0.121	0.121	0.121	0.121	0.140	0.148	0.151	0.137	0.153	0.148	0.148	0.148	0.148
55	VR20H	0.148	0.151	0.118	0.118	0.118	0.118	0.137	0.145	0.148	0.134	0.156	0.151	0.151	0.151	0.151
56	VR38	0.145	0.148	0.116	0.116	0.116	0.116	0.129	0.137	0.140	0.126	0.153	0.148	0.148	0.148	0.148
57	VR40	0.145	0.148	0.116	0.116	0.116	0.116	0.129	0.137	0.140	0.126	0.153	0.148	0.148	0.148	0.148
58	VR41	0.145	0.148	0.116	0.116	0.116	0.116	0.129	0.137	0.140	0.126	0.153	0.148	0.148	0.148	0.148
59	VR42	0.145	0.148	0.116	0.116	0.116	0.116	0.129	0.137	0.140	0.126	0.153	0.148	0.148	0.148	0.148
60	VR43	0.145	0.148	0.116	0.116	0.116	0.116	0.129	0.137	0.140	0.126	0.153	0.148	0.148	0.148	0.148
61	VR44	0.148	0.151	0.118	0.118	0.118	0.118	0.132	0.140	0.142	0.129	0.151	0.145	0.145	0.145	0.145
62	VR20S	0.151	0.153	0.121	0.121	0.121	0.121	0.140	0.148	0.151	0.137	0.153	0.148	0.148	0.148	0.148
63	VR33	0.145	0.142	0.126	0.126	0.126	0.132	0.137	0.151	0.153	0.161	0.148	0.142	0.142	0.142	0.142

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
64	VR35	0.142	0.140	0.124	0.124	0.124	0.129	0.134	0.148	0.151	0.159	0.145	0.140	0.140	0.140	0.140
65	vr39	0.145	0.142	0.126	0.126	0.126	0.132	0.137	0.151	0.153	0.161	0.148	0.142	0.142	0.142	0.142
66	vr85	0.151	0.153	0.121	0.121	0.121	0.121	0.140	0.148	0.151	0.137	0.153	0.148	0.148	0.148	0.148
67	M3_ptm10025_losmuertos_nay	0.151	0.153	0.137	0.132	0.132	0.142	0.145	0.142	0.145	0.142	0.145	0.140	0.140	0.140	0.140
68	M27_ptm10065_cabocorrientes_jal	0.180	0.183	0.194	0.183	0.183	0.194	0.172	0.172	0.169	0.161	0.194	0.191	0.191	0.191	0.191
69	M92_ptm10119_puntaperula_jal	0.151	0.148	0.132	0.132	0.132	0.137	0.142	0.156	0.159	0.167	0.153	0.148	0.148	0.148	0.148
70	NQ17_ptm9792_bahialaventosa_oax	0.167	0.169	0.175	0.164	0.164	0.180	0.156	0.153	0.151	0.142	0.172	0.169	0.169	0.169	0.169
71	NQ48e_ptm10156_elpalmar_gro	0.140	0.142	0.129	0.118	0.118	0.124	0.132	0.124	0.126	0.121	0.137	0.124	0.124	0.124	0.124
72	M58_ptm10115_puntaperula_jal	0.153	0.151	0.134	0.134	0.134	0.140	0.145	0.159	0.161	0.169	0.156	0.151	0.151	0.151	0.151
73	NQ33a_ptm9808_barradesantaelena_oax	0.175	0.177	0.153	0.142	0.142	0.159	0.164	0.161	0.164	0.159	0.167	0.153	0.153	0.153	0.153

74	VR138_ptm9825_barradesantaelena_oax	0.223	0.226	0.223	0.215	0.215	0.220	0.223	0.220	0.223	0.218	0.239	0.226	0.226	0.226	0.226
75	M20b_ptm10058_cabocorrientes_jal	0.202	0.204	0.199	0.194	0.194	0.199	0.202	0.194	0.196	0.191	0.210	0.196	0.196	0.196	0.196
76	M60_ptm10117_puntaperula_jal	0.263	0.261	0.242	0.245	0.245	0.242	0.255	0.266	0.269	0.274	0.272	0.266	0.266	0.266	0.266
77	M80a_ptm10095_lasrosadas_jal	0.172	0.175	0.185	0.180	0.180	0.185	0.148	0.167	0.164	0.161	0.148	0.175	0.175	0.175	0.175
78	M91_ptm10118_puntaperula_jal	0.188	0.185	0.169	0.172	0.172	0.169	0.183	0.196	0.199	0.207	0.196	0.191	0.191	0.191	0.191
79	VR136_ptm9823_barradesantaelena_oax	0.172	0.175	0.185	0.180	0.180	0.185	0.148	0.167	0.164	0.161	0.148	0.175	0.175	0.175	0.175
80	VR139_ptm9826_barradesantaelena_oax	0.134	0.137	0.124	0.118	0.118	0.124	0.132	0.129	0.132	0.126	0.142	0.129	0.129	0.129	0.129
		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
47	AB250069_Mesospora_sp_G	0.124														
48	AB264039_Endoplura_aurea	0.137	0.153													
49	AB250076_Ralfsia_sp_D	0.132	0.126	0.145												
50	Hpn	0.148	0.142	0.161	0.140											
51	VR5	0.140	0.151	0.148	0.137	0.132										
52	VR30	0.140	0.151	0.148	0.137	0.132	0.000									
53	VR6P	0.148	0.148	0.151	0.134	0.129	0.008	0.008								
54	VR6H	0.148	0.148	0.151	0.134	0.129	0.008	0.008	0.000							
55	VR20H	0.145	0.145	0.148	0.132	0.126	0.011	0.011	0.003	0.003						
56	VR38	0.137	0.148	0.145	0.134	0.129	0.003	0.003	0.011	0.011	0.008					
57	VR40	0.137	0.148	0.145	0.134	0.129	0.003	0.003	0.011	0.011	0.008	0.000				
58	VR41	0.137	0.148	0.145	0.134	0.129	0.003	0.003	0.011	0.011	0.008	0.000	0.000			
59	VR42	0.137	0.148	0.145	0.134	0.129	0.003	0.003	0.011	0.011	0.008	0.000	0.000	0.000		

		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
60	VR43	0.137	0.148	0.145	0.134	0.129	0.003	0.003	0.011	0.011	0.008	0.000	0.000	0.000	0.000	-
61	VR44	0.140	0.151	0.148	0.137	0.132	0.000	0.000	0.008	0.008	0.011	0.003	0.003	0.003	0.003	0.003
62	VR20S	0.148	0.148	0.151	0.134	0.129	0.008	0.008	0.000	0.000	0.003	0.011	0.011	0.011	0.011	0.011
63	VR33	0.148	0.148	0.161	0.145	0.005	0.132	0.132	0.129	0.129	0.126	0.129	0.129	0.129	0.129	0.129
64	VR35	0.145	0.145	0.159	0.142	0.003	0.129	0.129	0.126	0.126	0.124	0.126	0.126	0.126	0.126	0.126
65	vr39	0.148	0.142	0.161	0.140	0.000	0.132	0.132	0.129	0.129	0.126	0.129	0.129	0.129	0.129	0.129
66	vr85	0.148	0.148	0.151	0.134	0.129	0.008	0.008	0.000	0.000	0.003	0.011	0.011	0.011	0.011	0.011
67	M3_ptm10025_losmuertos_nay	0.148	0.145	0.161	0.140	0.129	0.124	0.124	0.124	0.124	0.121	0.121	0.121	0.121	0.121	0.121
68	M27_ptm10065_cabocorrientes_jal	0.177	0.196	0.180	0.194	0.220	0.212	0.212	0.212	0.212	0.210	0.210	0.210	0.210	0.210	0.210

M92_ptm10119_puntaperula_jal	0.153	0.148	0.167	0.145	0.005	0.137	0.137	0.134	0.134	0.132	0.134	0.134	0.134	0.134	0.134
NQ17_ptm9792_bahialaventosa_oax	0.164	0.188	0.167	0.180	0.202	0.191	0.191	0.188	0.188	0.185	0.188	0.188	0.188	0.188	0.188
NQ48e_ptm10156_elpalmar_gro	0.124	0.113	0.177	0.137	0.159	0.124	0.124	0.126	0.126	0.129	0.126	0.126	0.126	0.126	0.126
M58_ptm10115_puntaperula_jal	0.156	0.151	0.169	0.148	0.008	0.140	0.140	0.137	0.137	0.134	0.137	0.137	0.137	0.137	0.137
NQ33a_ptm9808_barradesantaelena_oax	0.164	0.140	0.196	0.151	0.175	0.153	0.153	0.153	0.153	0.151	0.151	0.151	0.151	0.151	0.151
VR138_ptm9825_barradesantaelena_oax	0.220	0.199	0.258	0.220	0.261	0.223	0.223	0.226	0.226	0.228	0.226	0.226	0.226	0.226	0.226
M20b_ptm10058_cabocorrientes_jal	0.199	0.172	0.220	0.199	0.226	0.196	0.196	0.199	0.199	0.202	0.199	0.199	0.199	0.199	0.199
M60_ptm10117_puntaperula_jal	0.263	0.250	0.272	0.245	0.137	0.239	0.239	0.237	0.237	0.234	0.237	0.237	0.237	0.237	0.237
M80a_ptm10095_lasrosadas_jal	0.167	0.167	0.161	0.153	0.188	0.194	0.194	0.191	0.191	0.188	0.191	0.191	0.191	0.191	0.191
M91_ptm10118_puntaperula_jal	0.194	0.188	0.191	0.185	0.059	0.172	0.172	0.175	0.175	0.172	0.169	0.169	0.169	0.169	0.169
VR136_ptm9823_barradesantaelena_oax	0.167	0.167	0.161	0.153	0.188	0.194	0.194	0.191	0.191	0.188	0.191	0.191	0.191	0.191	0.191
VR139_ptm9826_barradesantaelena_oax	0.129	0.110	0.169	0.134	0.156	0.121	0.121	0.124	0.124	0.126	0.124	0.124	0.124	0.124	0.124
	M92_ptm10119_puntaperula_jal NQ17_ptm9792_bahialaventosa_oax NQ48e_ptm10156_elpalmar_gro M58_ptm10115_puntaperula_jal NQ33a_ptm9808_barradesantaelena_oax VR138_ptm9825_barradesantaelena_oax M20b_ptm10058_cabocorrientes_jal M60_ptm10117_puntaperula_jal M80a_ptm10095_lasrosadas_jal M91_ptm10118_puntaperula_jal VR136_ptm9823_barradesantaelena_oax VR139_ptm9826_barradesantaelena_oax	M92_ptm10119_puntaperula_jal 0.153 NQ17_ptm9792_bahialaventosa_oax 0.164 NQ48e_ptm10156_elpalmar_gro 0.124 M58_ptm10115_puntaperula_jal 0.156 NQ33a_ptm9808_barradesantaelena_oax 0.164 VR138_ptm9825_barradesantaelena_oax 0.220 M20b_ptm10058_cabocorrientes_jal 0.199 M60_ptm10117_puntaperula_jal 0.263 M80a_ptm10095_lasrosadas_jal 0.167 M91_ptm10118_puntaperula_jal 0.194 VR136_ptm9823_barradesantaelena_oax 0.167 VR139_ptm9826_barradesantaelena_oax 0.167	M92_ptm10119_puntaperula_jal 0.153 0.148 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 M58_ptm10115_puntaperula_jal 0.156 0.151 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 VR138_ptm9825_barradesantaelena_oax 0.220 0.199 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 M60_ptm10117_puntaperula_jal 0.263 0.250 M80a_ptm10095_lasrosadas_jal 0.167 0.167 VR136_ptm9823_barradesantaelena_oax 0.167 0.167 VR136_ptm9826_barradesantaelena_oax 0.129 0.110	M92_ptm10119_puntaperula_jal 0.153 0.148 0.167 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 0.167 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 0.177 M58_ptm10115_puntaperula_jal 0.156 0.151 0.169 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 0.196 VR138_ptm9825_barradesantaelena_oax 0.220 0.199 0.258 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 0.220 M60_ptm10117_puntaperula_jal 0.263 0.250 0.272 M80a_ptm10095_lasrosadas_jal 0.167 0.161 M91_ptm10118_puntaperula_jal 0.194 0.188 0.191 VR136_ptm9823_barradesantaelena_oax 0.167 0.161 VR136_ptm9826_barradesantaelena_oax 0.129 0.110 0.169	M92_ptm10119_puntaperula_jal 0.153 0.148 0.167 0.145 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 0.167 0.180 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 0.177 0.137 M58_ptm10115_puntaperula_jal 0.156 0.151 0.169 0.148 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 0.196 0.151 VR138_ptm9825_barradesantaelena_oax 0.220 0.199 0.258 0.220 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 0.220 0.199 M60_ptm10017_puntaperula_jal 0.263 0.250 0.272 0.245 M80a_ptm10095_lasrosadas_jal 0.167 0.161 0.153 VR136_ptm9823_barradesantaelena_oax 0.167 0.161 0.153 VR136_ptm9823_barradesantaelena_oax 0.167 0.161 0.153	M92_ptm10119_puntaperula_jal 0.153 0.148 0.167 0.145 0.005 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 0.167 0.180 0.202 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 0.177 0.137 0.159 M58_ptm10115_puntaperula_jal 0.156 0.151 0.169 0.148 0.008 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 0.196 0.151 0.175 VR138_ptm9825_barradesantaelena_oax 0.220 0.199 0.258 0.220 0.261 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 0.220 0.199 0.226 M60_ptm10117_puntaperula_jal 0.263 0.250 0.272 0.245 0.137 M80a_ptm10095_lasrosadas_jal 0.167 0.161 0.153 0.188 M91_ptm10118_puntaperula_jal 0.194 0.188 0.191 0.185 0.059 VR136_ptm9823_barradesantaelena_oax 0.167 0.161 0.153 0.188 VR139_ptm9826_barradesantaelena_oax 0.129 0.110 0.169 0.134 0.156	M92_ptm10119_puntaperula_jal 0.153 0.148 0.167 0.145 0.005 0.137 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 0.167 0.180 0.202 0.191 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 0.177 0.137 0.159 0.124 M58_ptm10115_puntaperula_jal 0.156 0.151 0.169 0.148 0.008 0.140 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 0.196 0.151 0.175 0.153 VR138_ptm9825_barradesantaelena_oax 0.220 0.199 0.258 0.220 0.261 0.223 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 0.220 0.199 0.226 0.196 M60_ptm10117_puntaperula_jal 0.263 0.250 0.272 0.245 0.137 0.239 M80a_ptm10095_lasrosadas_jal 0.167 0.161 0.153 0.188 0.194 M91_ptm10118_puntaperula_jal 0.194 0.188 0.191 0.185 0.059 0.172 VR136_ptm9823_barradesantaelena_oax 0.129 0.110 0.169 0.134	M92_ptm10119_puntaperula_jal 0.153 0.148 0.167 0.145 0.005 0.137 0.137 NQ17_ptm9792_bahialaventosa_oax 0.164 0.188 0.167 0.180 0.202 0.191 0.191 NQ48e_ptm10156_elpalmar_gro 0.124 0.113 0.177 0.137 0.159 0.124 0.124 M58_ptm10115_puntaperula_jal 0.156 0.151 0.169 0.148 0.008 0.140 0.140 NQ33a_ptm9808_barradesantaelena_oax 0.164 0.140 0.196 0.151 0.175 0.153 0.153 VR138_ptm9825_barradesantaelena_oax 0.200 0.199 0.258 0.220 0.261 0.223 0.223 M20b_ptm10058_cabocorrientes_jal 0.199 0.172 0.220 0.199 0.226 0.196 0.196 M60_ptm1017_puntaperula_jal 0.263 0.250 0.272 0.245 0.137 0.239 0.239 M80a_ptm10095_lasrosadas_jal 0.167 0.161 0.153 0.188 0.194 0.194 M91_ptm10118_puntaperula_jal 0.194 0.188 0.191 0.185 <td< td=""><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.153VR138_ptm9825_barradesantaelena_oax0.2200.1990.2580.2200.2610.2230.2230.226M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.199M60_ptm10117_puntaperula_jal0.2630.2500.2720.2450.1370.2390.237M80a_ptm10095_lasrosadas_jal0.1670.1610.1850.0590.1720.1720.175VR136_ptm9823_barradesantaelena_oax0.1670.1610.1530.1880.1940.191VR139_ptm9826_barradesantaelena_oax0.1670.1610.1530.1880.1940.191</td><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.153VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.2610.2230.2260.2260.226M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.1990.197M60_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1910.1910.191M91_ptm10118_puntaperula_jal0.1940.1670.1610.1530.1880.1940.1940.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1940.1910.191M91_ptm10118_puntaperula_jal0.1940.1670.1610.1530.1880.1940.1940.1910.191VR136_ptm9826_barradesantaelena_oax0.1290.1100.1690.1340.1560.1210.1240.124<!--</td--><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.132NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.185NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.129M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.134NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.2610.2230.2260.2260.2260.228M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.1990.2370.2370.234M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1940.1910.188M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.188VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.188VR139_ptm9826_barradesantaelena_oax0.1690.1690.1340.1560.1210.1240.1240.126</td><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1960.1960.1990.2020.199M60_ptm10058_cabocorrientes_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191M80a_ptm10095_lasrosadas_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191VR136_ptm9825_barradesantaelena_oax0.1670.1670.1610.1530.1880.1940.1940.1910.1910.1880.191M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.1910.1880.191VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.</td><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.1880.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.1260.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.1370.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1510.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1260.1220.2260.2260.2260.2280.2200.199M60_ptm10058_cabocorrientes_jal0.1970.1670.1610.1530.1880.1940.1910.1910.1880.1910.191M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1240.1260.1240.124<</td><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.1340.1320.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1360.1360.1360.1260.1260.1260.1260.1260.1260.1260.1260.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137</td><td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137</td></td></td<>	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.153VR138_ptm9825_barradesantaelena_oax0.2200.1990.2580.2200.2610.2230.2230.226M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.199M60_ptm10117_puntaperula_jal0.2630.2500.2720.2450.1370.2390.237M80a_ptm10095_lasrosadas_jal0.1670.1610.1850.0590.1720.1720.175VR136_ptm9823_barradesantaelena_oax0.1670.1610.1530.1880.1940.191VR139_ptm9826_barradesantaelena_oax0.1670.1610.1530.1880.1940.191	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.153VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.2610.2230.2260.2260.226M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.1990.197M60_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1910.1910.191M91_ptm10118_puntaperula_jal0.1940.1670.1610.1530.1880.1940.1940.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1940.1910.191M91_ptm10118_puntaperula_jal0.1940.1670.1610.1530.1880.1940.1940.1910.191VR136_ptm9826_barradesantaelena_oax0.1290.1100.1690.1340.1560.1210.1240.124 </td <td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.132NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.185NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.129M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.134NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.2610.2230.2260.2260.2260.228M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.1990.2370.2370.234M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1940.1910.188M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.188VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.188VR139_ptm9826_barradesantaelena_oax0.1690.1690.1340.1560.1210.1240.1240.126</td> <td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1960.1960.1990.2020.199M60_ptm10058_cabocorrientes_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191M80a_ptm10095_lasrosadas_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191VR136_ptm9825_barradesantaelena_oax0.1670.1670.1610.1530.1880.1940.1940.1910.1910.1880.191M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.1910.1880.191VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.</td> <td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.1880.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.1260.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.1370.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1510.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1260.1220.2260.2260.2260.2280.2200.199M60_ptm10058_cabocorrientes_jal0.1970.1670.1610.1530.1880.1940.1910.1910.1880.1910.191M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1240.1260.1240.124<</td> <td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.1340.1320.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1360.1360.1360.1260.1260.1260.1260.1260.1260.1260.1260.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137</td> <td>M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137</td>	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.132NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.185NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.129M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.134NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.2610.2230.2260.2260.2260.228M20b_ptm10058_cabocorrientes_jal0.1990.1720.2200.1990.2260.1960.1960.1990.2370.2370.234M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1940.1910.188M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.188VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.188VR139_ptm9826_barradesantaelena_oax0.1690.1690.1340.1560.1210.1240.1240.126	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1530.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1960.1960.1990.2020.199M60_ptm10058_cabocorrientes_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191M80a_ptm10095_lasrosadas_jal0.1670.1670.1610.1530.1880.1940.1910.1910.1880.191VR136_ptm9825_barradesantaelena_oax0.1670.1670.1610.1530.1880.1940.1940.1910.1910.1880.191M91_ptm10118_puntaperula_jal0.1670.1610.1530.1880.1940.1940.1910.1910.1880.191VR136_ptm9826_barradesantaelena_oax0.1670.1610.1530.	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.134NQ17_ptm9792_bahialaventosa_oax0.1640.1880.1670.1800.2020.1910.1910.1880.1880.1850.1880.188NQ48e_ptm10156_elpalmar_gro0.1240.1130.1770.1370.1590.1240.1240.1260.1260.1290.1260.126M58_ptm10115_puntaperula_jal0.1560.1510.1690.1480.0080.1400.1400.1370.1370.1340.1370.137NQ33a_ptm9808_barradesantaelena_oax0.1640.1400.1960.1510.1750.1530.1530.1530.1510.1510.151VR138_ptm9825_barradesantaelena_oax0.2200.1990.2260.1260.1220.2260.2260.2260.2280.2200.199M60_ptm10058_cabocorrientes_jal0.1970.1670.1610.1530.1880.1940.1910.1910.1880.1910.191M80a_ptm10095_lasrosadas_jal0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1910.1880.1910.191VR136_ptm9825_barradesantaelena_oax0.1670.1610.1530.1880.1940.1910.1240.1260.1240.124<	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1320.1340.1340.1320.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1360.1360.1360.1260.1260.1260.1260.1260.1260.1260.1260.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137	M92_ptm10119_puntaperula_jal0.1530.1480.1670.1450.0050.1370.1370.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1340.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.1370.137

		61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
62	VR20S	0.008														
63	VR33	0.132	0.129													
64	VR35	0.129	0.126	0.003												
65	vr39	0.132	0.129	0.005	0.003											
66	vr85	0.008	0.000	0.129	0.126	0.129										
67	M3_ptm10025_losmuertos_nay	0.124	0.124	0.129	0.126	0.129	0.124									
68	M27_ptm10065_cabocorrientes_jal	0.212	0.212	0.220	0.218	0.220	0.212	0.204								
69	M92_ptm10119_puntaperula_jal	0.137	0.134	0.005	0.008	0.005	0.134	0.134	0.226							
70	NQ17_ptm9792_bahialaventosa_oax	0.191	0.188	0.202	0.199	0.202	0.188	0.199	0.059	0.204						
71	NQ48e_ptm10156_elpalmar_gro	0.124	0.126	0.159	0.156	0.159	0.126	0.108	0.207	0.164	0.196					
72	M58_ptm10115_puntaperula_jal	0.140	0.137	0.013	0.011	0.008	0.137	0.137	0.223	0.013	0.210	0.167				
73	NQ33a_ptm9808_barradesantaelena_oax	0.153	0.153	0.175	0.172	0.175	0.153	0.110	0.196	0.180	0.199	0.059	0.183			
74	VR138_ptm9825_barradesantaelena_oax	0.223	0.226	0.258	0.258	0.261	0.226	0.207	0.272	0.258	0.269	0.132	0.263	0.153		
75	M20b_ptm10058_cabocorrientes_jal	0.196	0.199	0.223	0.223	0.226	0.199	0.177	0.274	0.223	0.247	0.121	0.234	0.156	0.145	
76	M60_ptm10117_puntaperula_jal	0.239	0.237	0.134	0.137	0.137	0.237	0.234	0.325	0.132	0.296	0.263	0.145	0.282	0.296	0.255
77	M80a_ptm10095_lasrosadas_jal	0.194	0.191	0.191	0.188	0.188	0.191	0.194	0.204	0.194	0.191	0.185	0.196	0.212	0.272	0.228
78	M91_ptm10118_puntaperula_jal	0.172	0.175	0.054	0.056	0.059	0.175	0.167	0.263	0.054	0.239	0.194	0.067	0.218	0.266	0.231
79	VR136_ptm9823_barradesantaelena_oax	0.194	0.191	0.191	0.188	0.188	0.191	0.194	0.204	0.194	0.191	0.185	0.196	0.212	0.272	0.228
80	VR139_ptm9826_barradesantaelena_oax	0.121	0.124	0.156	0.153	0.156	0.124	0.099	0.204	0.161	0.194	0.013	0.164	0.051	0.129	0.110

		76	77	78	79
77	M80a_ptm10095_lasrosadas_jal	0.285			
78	M91_ptm10118_puntaperula_jal	0.094	0.228		
79	VR136_ptm9823_barradesantaelena_oax	0.285	0.000	0.228	
80	VR139_ptm9826_barradesantaelena_oax	0.255	0.185	0.188	0.185

Apéndice 12. Distancia p no corregida de *Cox* 1 Ralfsiales.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	EU681430_Tilopteris_mertensii	-														
2	JQ620013_Mesospora_elongata_NIP66	0.214														
3	JQ620012_Mesospora_elongata_GIL56	0.216	0.003													
4	JQ620011_Mesospora_elongata_FUS3	0.214	0.000	0.003												
5	JQ620010_Mesospora_elongata_FUS2	0.214	0.000	0.003	0.000											
6	JQ620009_Mesospora_schmidtii_BAT43	0.233	0.178	0.175	0.178	0.178										
7	JQ620008_Mesospora_schmidtii_POR32	0.236	0.200	0.197	0.200	0.200	0.118									
8	JQ620007_Mesospora_schmidtii_BAT7A	0.241	0.181	0.178	0.181	0.181	0.085	0.063								
9	JQ620006_Mesospora_schmidtii_CHE3	0.236	0.181	0.184	0.181	0.181	0.107	0.099	0.074							
10	AB776659_Ralfsia_verrucosa	0.189	0.227	0.225	0.227	0.227	0.208	0.211	0.203	0.214						
11	KC847384_Neoralfsia_expansa_A	0.227	0.211	0.208	0.211	0.211	0.203	0.233	0.225	0.238	0.203					
12	KC847383_Neoralfsia_expansa_B	0.230	0.216	0.214	0.216	0.216	0.222	0.244	0.222	0.230	0.208	0.082				
13	KC847382_Mesospora_sp_C	0.219	0.197	0.195	0.197	0.197	0.167	0.178	0.167	0.178	0.230	0.233	0.227			
14	KC847373_Neoralfsia_expansa_C	0.236	0.225	0.222	0.225	0.225	0.219	0.230	0.233	0.252	0.200	0.047	0.096	0.244		
15	KC847372_Neoralfsia_expansa_D	0.233	0.200	0.203	0.200	0.200	0.211	0.241	0.233	0.241	0.225	0.068	0.090	0.244	0.060	
16	KC847371_Neoralfsia_expansa_E	0.227	0.211	0.208	0.211	0.211	0.208	0.219	0.219	0.238	0.189	0.066	0.088	0.216	0.049	0.063
17	KC847370_Mesospora_negrosensis_A	0.236	0.184	0.186	0.184	0.184	0.195	0.184	0.186	0.195	0.225	0.211	0.214	0.192	0.219	0.219
18	KC847369_Mesospora_negrosensis_B	0.244	0.197	0.195	0.197	0.197	0.192	0.200	0.208	0.203	0.200	0.219	0.219	0.181	0.227	0.222
19	KC847368_Mesospora_negrosensis_C	0.230	0.186	0.189	0.186	0.186	0.192	0.181	0.184	0.192	0.225	0.208	0.211	0.189	0.216	0.216
20	KC847367_Mesospora_schmidtii_A	0.236	0.181	0.184	0.181	0.181	0.107	0.099	0.074	0.000	0.214	0.238	0.230	0.178	0.252	0.241
21	KC847366_Mesospora_schmidtii_B	0.236	0.175	0.173	0.175	0.175	0.025	0.123	0.079	0.101	0.211	0.200	0.211	0.164	0.214	0.211
22	KM254882_Ralfsioid_sp_1	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
23	KM254833_Ralfsioid_sp_2	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216

24	KM254794_Ralfsioid_sp_3	0.238	0.214	0.211	0.214	0.214	0.219	0.236	0.233	0.227	0.205	0.205	0.222	0.233	0.214	0.219
25	KM254789_Ralfsioid_sp_4	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
26	KM254634_Ralfsioid_sp_5	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
27	KM254572_Ralfsioid_sp_6	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
28	KM254526_Ralfsioid_sp_7	0.238	0.214	0.211	0.214	0.214	0.219	0.236	0.233	0.227	0.205	0.205	0.222	0.233	0.214	0.219
29	KM254504_Ralfsioid_sp_8	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
30	KM254456_Ralfsioid_sp_9	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
31	KM254270_Ralfsioid_sp_10	0.236	0.211	0.208	0.211	0.211	0.216	0.233	0.230	0.225	0.208	0.203	0.219	0.230	0.211	0.216
32	EU579873_Ralfsia_fungiformis_A	0.195	0.238	0.236	0.238	0.238	0.200	0.216	0.195	0.216	0.142	0.227	0.211	0.214	0.216	0.225

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
33	EU681419_Ralfsia_fungiformis_B	0.195	0.238	0.236	0.238	0.238	0.200	0.216	0.195	0.216	0.142	0.227	0.211	0.214	0.216	0.225
34	VR6H	0.222	0.192	0.195	0.192	0.192	0.225	0.225	0.222	0.211	0.211	0.225	0.219	0.211	0.214	0.216
35	VR30H	0.216	0.197	0.200	0.197	0.197	0.216	0.219	0.211	0.211	0.208	0.214	0.208	0.214	0.205	0.203
36	VR38	0.216	0.197	0.200	0.197	0.197	0.216	0.219	0.211	0.211	0.208	0.214	0.208	0.214	0.205	0.203
37	VR40	0.216	0.197	0.200	0.197	0.197	0.216	0.219	0.211	0.211	0.208	0.214	0.208	0.214	0.205	0.203
38	VR42	0.216	0.197	0.200	0.197	0.197	0.216	0.219	0.211	0.211	0.208	0.214	0.208	0.214	0.205	0.203
39	VR43	0.216	0.197	0.200	0.197	0.197	0.216	0.219	0.211	0.211	0.208	0.214	0.208	0.214	0.205	0.203
40	VR41	0.216	0.195	0.197	0.195	0.195	0.219	0.222	0.214	0.214	0.211	0.214	0.208	0.216	0.205	0.203
41	VR20H	0.222	0.192	0.195	0.192	0.192	0.225	0.225	0.222	0.211	0.211	0.225	0.219	0.211	0.214	0.216
42	VR33	0.227	0.219	0.216	0.219	0.219	0.219	0.192	0.211	0.230	0.219	0.219	0.233	0.249	0.219	0.219
43	VR39	0.227	0.219	0.216	0.219	0.219	0.219	0.192	0.211	0.230	0.219	0.219	0.233	0.249	0.219	0.219
44	VR35	0.227	0.219	0.216	0.219	0.219	0.219	0.192	0.211	0.230	0.219	0.219	0.233	0.249	0.219	0.219
45	VR44	0.222	0.236	0.238	0.236	0.236	0.214	0.247	0.241	0.244	0.233	0.230	0.252	0.244	0.255	0.233
46	M3_ptm10025_los_muertos_nay	0.244	0.241	0.244	0.241	0.241	0.241	0.230	0.233	0.230	0.249	0.230	0.219	0.255	0.233	0.225
47	M27_ptm10065_cabocorrientes_jal	0.195	0.214	0.216	0.214	0.214	0.189	0.222	0.216	0.219	0.214	0.216	0.236	0.222	0.238	0.214
48	M30_ptm10068_cabocorrientes_jal	0.236	0.263	0.266	0.263	0.263	0.241	0.268	0.260	0.263	0.258	0.258	0.282	0.263	0.279	0.260
49	NQ16_ptm9791_bahialaventosa_oax	0.192	0.214	0.216	0.214	0.214	0.192	0.222	0.216	0.219	0.211	0.214	0.233	0.222	0.236	0.211
50	NQ17_ptm9792_bahialaventosa_oax	0.197	0.216	0.219	0.216	0.216	0.192	0.225	0.219	0.222	0.216	0.219	0.238	0.225	0.241	0.216
51	NQ20b_ptm9795_bahialaventosa_oax	0.211	0.203	0.205	0.203	0.203	0.219	0.236	0.219	0.211	0.211	0.227	0.227	0.244	0.241	0.211
52	NQ33a_ptm9808_barradesantaelena_oax	0.230	0.219	0.222	0.219	0.219	0.227	0.233	0.216	0.227	0.236	0.208	0.225	0.233	0.211	0.205
53	NQ22a_ptm9797_bahialaventosa_oax	0.205	0.225	0.227	0.225	0.225	0.200	0.233	0.227	0.230	0.225	0.227	0.247	0.233	0.249	0.225
54	M31_ptm10039_losmuertos_nay	0.200	0.219	0.222	0.219	0.219	0.195	0.227	0.222	0.225	0.219	0.222	0.241	0.227	0.244	0.219
55	M58_ptm10115_puntaperula_jal	0.233	0.225	0.222	0.225	0.225	0.225	0.197	0.216	0.238	0.225	0.225	0.238	0.255	0.225	0.225

56	M59r1_ptm10116_puntaperula_jal	0.227	0.219	0.216	0.219	0.219	0.219	0.192	0.211	0.230	0.219	0.219	0.233	0.249	0.219	0.219
57	M80a_ptm10095_lasrosadas_jal	0.178	0.184	0.186	0.184	0.184	0.200	0.203	0.189	0.192	0.167	0.219	0.219	0.222	0.222	0.219
58	M67_ptm10075_cabocorrientes_jal	0.203	0.222	0.225	0.222	0.222	0.197	0.230	0.225	0.227	0.222	0.225	0.244	0.230	0.247	0.222
59	M91_ptm10118_puntaperula_jal	0.227	0.219	0.216	0.219	0.219	0.219	0.192	0.211	0.230	0.219	0.219	0.233	0.249	0.219	0.219
60	VR136_ptm9823_barradesantaelena_oax	0.230	0.219	0.222	0.219	0.219	0.227	0.233	0.216	0.227	0.236	0.208	0.225	0.233	0.211	0.205
61	NQ48e_ptm10156_elpalmar_gro	0.252	0.249	0.252	0.249	0.249	0.274	0.282	0.268	0.271	0.244	0.288	0.285	0.293	0.290	0.285
62	VR138_ptm9825_barradesantaelena_oax	0.181	0.186	0.189	0.186	0.186	0.203	0.205	0.192	0.195	0.170	0.222	0.222	0.225	0.225	0.222
63	M60_ptm10117_puntaperula_jal	0.233	0.225	0.222	0.225	0.225	0.225	0.197	0.216	0.236	0.225	0.225	0.238	0.255	0.225	0.225
64	EU681389_Analipus_japonicus	0.2	0.225	0.227	0.225	0.225	0.247	0.238	0.244	0.244	0.178	0.225	0.233	0.249	0.214	0.222

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16	KC847371_Neoralfsia_expansa_E	-														
17	KC847370_Mesospora_negrosensis_A	0.216	-													
18	KC847369_Mesospora_negrosensis_B	0.208	0.123	-												
19	KC847368_Mesospora_negrosensis_C	0.214	0.005	0.123	-											
20	KC847367_Mesospora_schmidtii_A	0.238	0.195	0.203	0.192	-										
21	KC847366_Mesospora_schmidtii_B	0.203	0.184	0.186	0.181	0.101	-									
22	KM254882_Ralfsioid_sp_1	0.189	0.236	0.205	0.233	0.225	0.214	-								
23	KM254833_Ralfsioid_sp_2	0.189	0.236	0.205	0.233	0.225	0.214	0.000	-							
24	KM254794_Ralfsioid_sp_3	0.192	0.238	0.208	0.236	0.227	0.216	0.003	0.003	-						
25	KM254789_Ralfsioid_sp_4	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	-					
26	KM254634_Ralfsioid_sp_5	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	0.000	-				
27	KM254572_Ralfsioid_sp_6	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	0.000	0.000	-			
28	KM254526_Ralfsioid_sp_7	0.192	0.238	0.208	0.236	0.227	0.216	0.003	0.003	0.000	0.003	0.003	0.003	-		
29	KM254504_Ralfsioid_sp_8	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	0.000	0.000	0.000	0.003	-	
30	KM254456_Ralfsioid_sp_9	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	0.000	0.000	0.000	0.003	0.000	-
31	KM254270_Ralfsioid_sp_10	0.189	0.236	0.205	0.233	0.225	0.214	0.000	0.000	0.003	0.000	0.000	0.000	0.003	0.000	0.000
32	EU579873_Ralfsia_fungiformis_A	0.200	0.238	0.214	0.241	0.216	0.205	0.244	0.244	0.241	0.244	0.244	0.244	0.241	0.244	0.244
33	EU681419_Ralfsia_fungiformis_B	0.200	0.238	0.214	0.241	0.216	0.205	0.244	0.244	0.241	0.244	0.244	0.244	0.241	0.244	0.244
34	VR6H	0.211	0.247	0.241	0.249	0.211	0.219	0.200	0.200	0.197	0.200	0.200	0.200	0.197	0.200	0.200
35	VR30H	0.203	0.252	0.241	0.249	0.211	0.211	0.203	0.203	0.200	0.203	0.203	0.203	0.200	0.203	0.203
36	VR38	0.203	0.252	0.241	0.249	0.211	0.211	0.203	0.203	0.200	0.203	0.203	0.203	0.200	0.203	0.203
37	VR40	0.203	0.252	0.241	0.249	0.211	0.211	0.203	0.203	0.200	0.203	0.203	0.203	0.200	0.203	0.203
38	VR42	0.203	0.252	0.241	0.249	0.211	0.211	0.203	0.203	0.200	0.203	0.203	0.203	0.200	0.203	0.203

39	VR43	0.203	0.252	0.241	0.249	0.211	0.211	0.203	0.203	0.200	0.203	0.203	0.203	0.200	0.203	0.203
40	VR41	0.203	0.252	0.241	0.249	0.214	0.214	0.200	0.200	0.197	0.200	0.200	0.200	0.197	0.200	0.200
41	VR20H	0.211	0.247	0.241	0.249	0.211	0.219	0.200	0.200	0.197	0.200	0.200	0.200	0.197	0.200	0.200
42	VR33	0.225	0.230	0.244	0.227	0.230	0.225	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
43	VR39	0.225	0.230	0.244	0.227	0.230	0.225	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
44	VR35	0.225	0.230	0.244	0.227	0.230	0.225	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
45	VR44	0.230	0.238	0.241	0.236	0.244	0.214	0.216	0.216	0.219	0.216	0.216	0.216	0.219	0.216	0.216
46	M3_ptm10025_los_muertos_nay	0.236	0.249	0.238	0.247	0.230	0.249	0.249	0.249	0.252	0.249	0.249	0.249	0.252	0.249	0.249
47	M27_ptm10065_cabocorrientes_jal	0.214	0.225	0.222	0.222	0.219	0.195	0.205	0.205	0.208	0.205	0.205	0.205	0.208	0.205	0.205

		16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
48	M30_ptm10068_cabocorrientes_jal	0.258	0.263	0.263	0.260	0.263	0.241	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
49	NQ16_ptm9791_bahialaventosa_oax	0.211	0.230	0.225	0.227	0.219	0.197	0.211	0.211	0.214	0.211	0.211	0.211	0.214	0.211	0.211
50	NQ17_ptm9792_bahialaventosa_oax	0.216	0.227	0.225	0.225	0.222	0.197	0.208	0.208	0.211	0.208	0.208	0.208	0.211	0.208	0.208
51	NQ20b_ptm9795_bahialaventosa_oax	0.214	0.247	0.247	0.244	0.211	0.214	0.219	0.219	0.222	0.219	0.219	0.219	0.222	0.219	0.219
52	NQ33a_ptm9808_barradesantaelena_oax	0.205	0.222	0.238	0.225	0.227	0.214	0.222	0.222	0.219	0.222	0.222	0.222	0.219	0.222	0.222
53	NQ22a_ptm9797_bahialaventosa_oax	0.225	0.236	0.233	0.233	0.230	0.205	0.216	0.216	0.219	0.216	0.216	0.216	0.219	0.216	0.216
54	M31_ptm10039_losmuertos_nay	0.219	0.230	0.227	0.227	0.225	0.200	0.211	0.211	0.214	0.211	0.211	0.211	0.214	0.211	0.211
55	M58_ptm10115_puntaperula_jal	0.230	0.236	0.252	0.233	0.238	0.230	0.252	0.252	0.255	0.252	0.252	0.252	0.255	0.252	0.252
56	M59r1_ptm10116_puntaperula_jal	0.225	0.230	0.244	0.227	0.230	0.225	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
57	M80a_ptm10095_lasrosadas_jal	0.219	0.167	0.195	0.164	0.192	0.192	0.225	0.225	0.227	0.225	0.225	0.225	0.227	0.225	0.225
58	M67_ptm10075_cabocorrientes_jal	0.222	0.233	0.230	0.230	0.227	0.203	0.214	0.214	0.216	0.214	0.214	0.214	0.216	0.214	0.214
59	M91_ptm10118_puntaperula_jal	0.225	0.230	0.244	0.227	0.230	0.225	0.244	0.244	0.247	0.244	0.244	0.244	0.247	0.244	0.244
60	VR136_ptm9823_barradesantaelena_oax	0.205	0.222	0.238	0.225	0.227	0.214	0.222	0.222	0.219	0.222	0.222	0.222	0.219	0.222	0.222
61	NQ48e_ptm10156_elpalmar_gro	0.293	0.247	0.274	0.247	0.271	0.263	0.301	0.301	0.304	0.301	0.301	0.301	0.304	0.301	0.301
62	VR138_ptm9825_barradesantaelena_oax	0.222	0.170	0.197	0.167	0.195	0.195	0.227	0.227	0.230	0.227	0.227	0.227	0.230	0.227	0.227
63	M60_ptm10117_puntaperula_jal	0.230	0.236	0.249	0.233	0.236	0.230	0.249	0.249	0.252	0.249	0.249	0.249	0.252	0.249	0.249
64	EU681389_Analipus_japonicus	0.214	0.222	0.222	0.219	0.244	0.249	0.216	0.216	0.219	0.216	0.216	0.216	0.219	0.216	0.216

		31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
31	KM254270_Ralfsioid_sp_10	-														
32	EU579873_Ralfsia_fungiformis_A	0.244	-													
33	EU681419_Ralfsia_fungiformis_B	0.244	0.000	-												
34	VR6H	0.200	0.216	0.216	-											
35	VR30H	0.203	0.214	0.214	0.025	-										
36	VR38	0.203	0.214	0.214	0.025	0.000	-									
37	VR40	0.203	0.214	0.214	0.025	0.000	0.000	-								
38	VR42	0.203	0.214	0.214	0.025	0.000	0.000	0.000	-							
39	VR43	0.203	0.214	0.214	0.025	0.000	0.000	0.000	0.000	-						
40	VR41	0.200	0.214	0.214	0.025	0.003	0.003	0.003	0.003	0.003	-					
41	VR20H	0.200	0.216	0.216	0.000	0.025	0.025	0.025	0.025	0.025	0.025	-				
42	VR33	0.244	0.219	0.219	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.214	-			
43	VR39	0.244	0.219	0.219	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.000	-		
44	VR35	0.244	0.219	0.219	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.000	0.000	-	
45	VR44	0.216	0.252	0.252	0.230	0.230	0.230	0.230	0.230	0.230	0.227	0.230	0.252	0.252	0.252	-
46	M3_ptm10025_los_muertos_nay	0.249	0.247	0.247	0.205	0.197	0.197	0.197	0.197	0.197	0.197	0.205	0.173	0.173	0.173	0.249
47	M27_ptm10065_cabocorrientes_jal	0.205	0.225	0.225	0.197	0.197	0.197	0.197	0.197	0.197	0.195	0.197	0.225	0.225	0.225	0.041
48	M30_ptm10068_cabocorrientes_jal	0.244	0.274	0.274	0.252	0.252	0.252	0.252	0.252	0.252	0.249	0.252	0.279	0.279	0.279	0.082
49	NQ16_ptm9791_bahialaventosa_oax	0.211	0.225	0.225	0.200	0.200	0.200	0.200	0.200	0.200	0.197	0.200	0.227	0.227	0.227	0.049
50	NQ17_ptm9792_bahialaventosa_oax	0.208	0.227	0.227	0.200	0.200	0.200	0.200	0.200	0.200	0.197	0.200	0.227	0.227	0.227	0.038
51	NQ20b_ptm9795_bahialaventosa_oax	0.219	0.222	0.222	0.214	0.208	0.208	0.208	0.208	0.208	0.205	0.214	0.227	0.227	0.227	0.115
52	NQ33a_ptm9808_barradesantaelena_oax	0.222	0.225	0.225	0.189	0.189	0.189	0.189	0.189	0.189	0.189	0.189	0.170	0.170	0.170	0.236
53	NQ22a_ptm9797_bahialaventosa_oax	0.216	0.236	0.236	0.208	0.208	0.208	0.208	0.208	0.208	0.205	0.208	0.236	0.236	0.236	0.038
54	M31_ptm10039_losmuertos_nay	0.211	0.230	0.230	0.203	0.203	0.203	0.203	0.203	0.203	0.200	0.203	0.230	0.230	0.230	0.047
55	M58_ptm10115_puntaperula_jal	0.252	0.225	0.225	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.011	0.011	0.011	0.258
56	M59r1_ptm10116_puntaperula_jal	0.244	0.219	0.219	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.000	0.000	0.000	0.252
57	M80a_ptm10095_lasrosadas_jal	0.225	0.205	0.205	0.216	0.219	0.219	0.219	0.219	0.219	0.216	0.216	0.216	0.216	0.216	0.227
58	M67_ptm10075_cabocorrientes_jal	0.214	0.233	0.233	0.205	0.205	0.205	0.205	0.205	0.205	0.203	0.205	0.233	0.233	0.233	0.033
59	M91_ptm10118_puntaperula_jal	0.244	0.219	0.219	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.214	0.000	0.000	0.000	0.252
60	VR136_ptm9823_barradesantaelena_oax	0.222	0.225	0.225	0.189	0.189	0.189	0.189	0.189	0.189	0.189	0.189	0.170	0.170	0.170	0.236
61	NQ48e_ptm10156_elpalmar_gro	0.301	0.268	0.268	0.288	0.293	0.293	0.293	0.293	0.293	0.290	0.288	0.279	0.279	0.279	0.296
62	VR138_ptm9825_barradesantaelena_oax	0.227	0.208	0.208	0.219	0.222	0.222	0.222	0.222	0.222	0.219	0.219	0.219	0.219	0.219	0.230
63	M60_ptm10117_puntaperula_jal	0.249	0.225	0.225	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.219	0.005	0.005	0.005	0.258

64 EU681389_Analipus_japonicus

		46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
4	6 M3_ptm10025_los_muertos_nay	-														
4	7 M27_ptm10065_cabocorrientes_jal	0.219	-													
4	8 M30_ptm10068_cabocorrientes_jal	0.274	0.074	-												
4	9 NQ16_ptm9791_bahialaventosa_oax	0.222	0.008	0.077	-											
5	0 NQ17_ptm9792_bahialaventosa_oax	0.222	0.003	0.071	0.011	-										
5	1 NQ20b_ptm9795_bahialaventosa_oax	0.225	0.090	0.145	0.099	0.093	-									
5	2 NQ33a_ptm9808_barradesantaelena_oax	0.211	0.214	0.266	0.216	0.216	0.225	-								
5	3 NQ22a_ptm9797_bahialaventosa_oax	0.230	0.011	0.071	0.019	0.014	0.101	0.225	-							
54	4 M31_ptm10039_losmuertos_nay	0.225	0.005	0.079	0.014	0.008	0.093	0.219	0.016	-						
5	5 M58_ptm10115_puntaperula_jal	0.181	0.230	0.279	0.233	0.233	0.236	0.175	0.241	0.236	-					
5	6 M59r1_ptm10116_puntaperula_jal	0.173	0.225	0.279	0.227	0.227	0.227	0.170	0.236	0.230	0.011	-				
5	7 M80a_ptm10095_lasrosadas_jal	0.227	0.203	0.249	0.203	0.205	0.211	0.216	0.214	0.208	0.222	0.216	-			
5	8 M67_ptm10075_cabocorrientes_jal	0.227	0.008	0.068	0.016	0.005	0.099	0.222	0.008	0.014	0.238	0.233	0.211	-		
5	9 M91_ptm10118_puntaperula_jal	0.173	0.225	0.279	0.227	0.227	0.227	0.170	0.236	0.230	0.011	0.000	0.216	0.233	-	
6	0 VR136_ptm9823_barradesantaelena_oax	0.211	0.214	0.266	0.216	0.216	0.225	0.000	0.225	0.219	0.175	0.170	0.216	0.222	0.170	-
6	1 NQ48e_ptm10156_elpalmar_gro	0.301	0.271	0.318	0.271	0.274	0.279	0.279	0.282	0.274	0.288	0.279	0.099	0.279	0.279	0.279
6	2 VR138_ptm9825_barradesantaelena_oax	0.230	0.205	0.252	0.205	0.208	0.214	0.219	0.216	0.211	0.225	0.219	0.003	0.214	0.219	0.219
6	3 M60_ptm10117_puntaperula_jal	0.178	0.230	0.279	0.233	0.233	0.233	0.175	0.241	0.236	0.005	0.005	0.222	0.238	0.005	0.175
6	4 EU681389_Analipus_japonicus	0.227	0.214	0.258	0.214	0.216	0.222	0.227	0.225	0.219	0.241	0.236	0.203	0.222	0.236	0.227
		61		62		63	6	4								
61	NQ48e_ptm10156_elpalmar_gro	-														
62	VR138_ptm9825_barradesantaelena_oax	0.101		-												
63	M60_ptm10117_puntaperula_jal	0.282		0.225		-										
64	EU681389_Analipus_japonicus	0.277		0.205	C	.241		-								

Especímen 1	Especímen 2	<i>rbc</i> L (%)	<i>Cox</i> 1 (%)
	GRUPO)I	
PTM 10065 (M27)	PTM9792 (NQ17)	3.5	0.3 %
PTM 10065 (M27)	PTM 10068 (M30)	-	7.4%
PTM 10065 (M27)	PTM 9791 (NQ16)	-	0.8%
PTM 10065 (M27)	PTM 9795 (NQ22A)	-	1.1 %
PTM 10065 (M27)	PTM 10039 (M31)	-	0.5 %
PTM 10065 (M27)	PTM 10075 (M67)	-	0.8 %
PTM 10065 (M27)	PTM 9793 (NQ20B)	-	9.1 %
PTM 9792(NQ17)	PTM 10068 (M30)	-	6.6 %
PTM 9792(NQ17)	PTM 9791 (NQ16)	-	1.2 %
PTM 9792(NQ17)	PTM 9795 (NQ22A)	-	1.5 %
PTM 9792(NQ17)	PTM 10039 (M31)	-	0.9%
PTM 9792(NQ17)	PTM 10075 (M67)	-	0.6%
PTM 9792(NQ17)	PTM 9793 (NQ20B)	-	9.4%
PTM 10068 (M30)	PTM 9791 (NQ16)	-	7.3%
PTM 10068 (M30)	PTM 9795 (NQ22A)	-	6.6 %
PTM 10068 (M30)	PTM 10039 (M31)	-	7.6 %
PTM 10068 (M30)	PTM 10075 (M67)	-	6.3 %
PTM 10068 (M30)	PTM 9793 (NQ20B)	-	13.9%
PTM 9791 (NQ16)	PTM 9795 (NQ22A)	-	2.1 %
PTM 9791 (NQ16)	PTM 10039 (M31)	-	1.5 %
PTM 9791 (NQ16)	PTM 10075 (M67)	-	1.8 %
PTM 9791 (NQ16)	PTM 9793 (NQ20B)	-	10%
PTM 9795 (NQ22A)	PTM 10039 (M31)	-	1.8%
PTM 9795 (NQ22A)	PTM 10075 (M67)	-	0.9 %
PTM 9795 (NQ22A)	PTM 9793 (NQ20B)	-	10.3%
PTM 10039 (M31)	PTM 10075 (M67)	-	1.5%
PTM 10039 (M31)	PTM 9793 (NQ20B)	-	9.4 %
PTM 10075 (M67)	PTM 9793 (NQ20B)	-	10 %
<i>Diplura</i> sp. G 1,2,3,4	<i>Diplura</i> sp. G 1,2,3,4	0-0.4 %	2.9%
<i>Diplura</i> sp. G 1,2,3,4	PTM 9793 (NQ20B)	-	9 %

Apéndice 13. Resumen de la distancia genética para el gen rbcL y Cox 1

Especímen 1	Especímen 2	<i>rbc</i> L (%)	<i>Cox</i> 1 (%)
<i>Dipluras</i> sp. G (1,2,3,4)	Muestras de este estudio	6.4-7.8 %	11.9-19.2 %
y PTM_9793			
	GRUPO	II	
PTM 10156 (NQ48E)	PTM 9825 (VR138)	8.4%	6.7%
PTM 10156 (NQ48E)	PTM 9808 (NQ33A)	13.8 %	-
PTM 10156 (NQ48E)	PTM 10095 (M80A)	-	6.4%
VR138	PTM 9808 (NQ33A)	20.3 %	-
VR138	PTM 10095 (M80A)	-	0.3%
NQ33A	PTM 10095 (M80A)	-	-
Mesospora sp. G	PTM 10156 (NQ48E)	9.9 %	-
Mesospora sp. G	PTM 9825 (VR138)	15.4 %	-
Mesospora sp. G	PTM 9808 (NQ33A)	18.1%	-
Mesospora sp. F	PTM 10156 (NQ48E)	7.4 %	-
Mesospora sp. F	PTM 9825 (VR138)	14.2 %	-
Mesosospora sp. F	PTM 9808 (NQ33A)	17.7%	-
Mesospora sp. G	Mesospora sp. F	9.8 %	-
Muestras de este	Mesosporaceae	10.2-21.2 %	-
estudio			
Muestras de este	Padina durvillae	-	17-22%
estudio			
	GRUPO	III	
PTM 10115 (M58)	PTM 10116 (M59)	2.9 %	1.2 %
PTM 10115 (M58)	PTM 10117 (M60)	-	0.6 %
PTM 10115 (M58)	PTM 10118 (M91)	-	1.2%
PTM 10115 (M58)	PTM 10119 (M92)	6.3%	-
PTM 10115 (M58)	Hpn	8.2%	-
PTM 10116 (M59)	PTM 10117 (M60)	-	0.6 %
PTM 10116 (M59)	PTM 10118 (M91)	-	0%
PTM 10116 (M59)	PTM 10119 (M92)	8.9 %	-
PTM 10116 (M59)	Hpn	14.2 %	-
PTM 10117 (M60)	PTM 10118 (M91)	-	0.6%
PTM 10117 (M60)	PTM 10119 (M92)	-	-

Especímen 1	Especímen 2	<i>rbc</i> L (%)	<i>Cox</i> 1 (%)
M60	Hpn	-	-
PTM 10118 (M91)	PTM 10119 (M92)	-	-
PTM 10118 (M91)	Hpn	8.9 %	-
PTM 10119 (M92)	Hpn	-	-
Mucilaginosas Morfo	Muestras de este estudio	-	0-1.1 %
1(VR 33,VR35, VR39)			

Especimen (es)	Especimen (es)	Distancia genética
Grupo I • PTM 0702 PTM 10065	Crupo I: PTM0702 PTM 10065	2.5%
Familia Ralfsiaceae (Analinus ianonicus	Familia Ralfsiaceae (Analinus ianonicus	9.2%
Endoplura aurea Heteroralfsia saxicola	Fndonlura aurea Heteroralfsia saxicola	9.270
Ralfsia fungiformis, R. verrucosa, Ralfsia sp.)	Ralfsia fungiformis, R. verrucosa, Ralfsia	
	sp.)	
Familia Mesosporaceae	Familia Mesosporaceae	7.7 %
Grupo II: PTM 9808, PTM 10156, PTM	Grupo II: PTM 9808, PTM 10156, PTM	11.8%
10025,PTM_10158, PTM 9825, PTM_9826	10025,PTM_10158, PTM 9825, PTM_9826	
<i>Mesospora</i> sp. F y <i>Mesospora</i> sp. G	<i>Mesospora</i> sp. F y <i>Mesospora</i> sp. G	12.1%
Familia Neorafsiaceae	Familia Neoralfsiaceae	1.9%
Algas Pardas Mucilaginosas (Morfo I)	Algas Pardas Mucilaginosas (Morfo I)	0.3 %
Algas Pardas Mucilaginosas (Morfo II)	Algas Pardas Mucilaginosas (Morfo II)	0.6%
Grupo III: PTM 10115,PTM_10117, PTM	Grupo III: PTM 10115,PTM_10117,	8.4%
10118, PTM 10119	PTM 10118, PTM 10119	
Mesospora	Neoralfsia	12.5%
	Ralfsia	12.7%
	Heteroralfsia	12.6%
	Analipus	11.9%
	Endoplura	12.9%
	Algas Pardas Mucilaginosas (Morfo I)	14.1 %
	Algas Pardas Mucilaginosas (Morfo II)	13.8 %
	Grupo I	17.4%
	Grupo II	16.3%
	Grupo III	18.6%
Neoralfsia	Ralfsia	11%
	Heteroralisia	9.1%
	Anaupus	11.3%
	Endoplura	13.9%
	Algas Pardas Mucilaginosas (Morfo II)	12.8%
	Algas Pardas Muchaginosas (Morio II)	12.4%
	Grupo II	16.0%
	Grupo III	17.0%
Ralfsia	Heteroralfsia	10.2%
Kuijstu	Analinus	9.1%
	Endonlura	12.8%
	Algas Pardas Mucilaginosas (Morfo I)	13.1%
	Algas Pardas Mucilaginosas (Morfo II)	14.9%
	Grupo I	18.1%
	Grupo II	17.3%
	Grupo III	17.4%
Heteroralfsia	Analipus	11.0%
	Endoplura	11.0%
	Algas Pardas Mucilaginosas (Morfo I)	13.6%
	Algas Pardas Mucilaginosas (Morfo II)	13.8%
	Grupo I	17.9%
	Grupo II	17.7%
	Grupo III	17.7%

Apéndice 14. Valores de distancia p "no corregida" para el primer fragmento de *rbc*L (*rbc*L_3)

Analipus	Endoplura	11%
	Algas Pardas Mucilaginosas (Morfo I)	14.4 %
	Algas Pardas Mucilaginosas (Morfo II)	13.1%
	Grupo I	17.3%
	Grupo II	16.9%
	Grupo III	18.6%
Endoplura	Algas Pardas Mucilaginosas (Morfo I)	16.1%
	Algas Pardas Mucilaginosas (Morfo II)	14.8%
	Grupo I	17.3%
	Grupo II	19.7%
	Grupo III	20.0%
Algas Pardas Mucilaginosas (Morfo I)	Algas Pardas Mucilaginosas (Morfo II)	12.9%
	Grupo I	21.0%
	Grupo II	18.3%
	Grupo III	5.2%
Algas Pardas Mucilaginosas (Morfo II)	Grupo I	20%
	Grupo II	15.8%
	Grupo III	17.0%
Mesospora schmidtii	Mesospora schmidtii	1.2 %
Mesospora negrosensis	Mesospora negrosensis	1.8 %
Mesospora elongata	Mesospora elongata	0 %
Neoralfsia hancockii	Neoralfsia hancockii	0%
Neoralfsia expansa_Mex	Neoralfsia expansa_Mex	0%
Neoralfsia expansa A, B, X y Y	Neoralfsia expansa A, B, X y Y	3.4%
Morfo 1 de las mucilaginosas	Morfo 1 de las mucilaginosas	0.3%
Morfo II de las mucilaginosas	Morfo II de las mucilaginosas	0.6%
Grupo I	Grupo I	5.9%
Grupo II	Grupo II	11.8%
Grupo III	Grupo III	8.4%

Especimen (es)	Especimen (es)	Distancia genética Promedio
Grupo I: PTM 10065, PTM 10068, PTM	Grupo I: PTM 10065, PTM 10068.	1.9 %
10039,M67, PTM 9791 y PTM 9792	PTM 10039, PTM_10075, PTM 9791 v PTM 9792	1.9 /0
Familia Ralfsiaceae (Analipus japonicus, Endoplura aurea, Heteroralfsia saxicola, Ralfsia fungiformis, R. verrucosa, Ralfsia sp.)	Familia Ralfsiaceae (Analipus japonicus, Endoplura aurea, Heteroralfsia saxicola, Ralfsia fungiformis R vertucosa Ralfsia sp.)	10.2 %
Familia Mesosporaceae (Mesopora schmidtii, M. elongata, M.negrosensis, Mesospora sp.)	Familia Mesosporaceae (Mesopora schmidtii, M. elongata, M.negrosensis, Mesospora sp.)	6.7 %
Grupo II: PTM 9808,PTM_10156, PTM_9825	Grupo II: PTM 9808,PTM_10156, PTM 9825	18.6 %
Grupo II: PTM 9808,PTM_10156, PTM_9825	Familia Mesosporaceae (<i>Mesopora</i> schmidtii, M. elongata, M.negrosensis, Mesospora sp.)	
Familia Neorafsiaceae (<i>Neoralfsia expansa, N.</i> hancockii, Ralfsia sp., Ralfsia spJ, Ralfsia spH, Ralfsia sp. I)	Familia Neorafsiaceae (<i>Neoralfsia</i> expansa, N. hancockii, Ralfsia sp., Ralfsia spJ, Ralfsia spH, Ralfsia sp.	7.2 %
Algas Pardas Mucilaginosas Morfo II(VR5, VR30, VR6H, VR20H, VR44, VR38, VR40, VR 41, VR42, VR43)	Algas Pardas Mucilaginosas Morfo II (VR5, VR30, VR6H, VR20H, VR44, VR38, VR40, VR 41, VR42, VR43)	1%
Grupo III : PTM 10115,M59,PTM 10119)	Grupo III : PTM 10115,M59,PTM 10119	4.4 %
Mesospora	Neoralfsia	12.9%
······································	Ralfsia	11.6%
	Heteroralfsia	12.7%
	Analipus	9.8%
	Endoplura	11.7%
	Algas Pardas Mucilaginosas (Morfo I)	12.6 %
	Algas Pardas Mucilaginosas (Morfo II)	11.2%
	Grupo I	17.7%
	Grupo II	17.8%
	Grupo III	13 %
Neoralfsia	Ralfsia	12.6%
	Heteroralfsia	14.2%
	Analipus	11.2%
	Endoplura	12.6%
	Algas Pardas Mucilaginosas (Morfo I)	10.9 %
	Algas Pardas Mucilaginosas (Morfo II)	13.8%
	Grupo I	16.7 %
	Grupo II	18.9 %
	Grupo III	15.5 %
Ralfsia	Heteroralfsia	11.8 %
	Analipus	8.7%
	Endoplura	10.8
	Algas Pardas Mucilaginosas (Morfo I)	13.2%
	Algas Pardas Mucilaginosas (Morfo II)	13.9%
	Grupo I	17.1%

Apéndice 15. Valores de distancia p "no corregida" para el primer fragmento de *rbc*L (*rbc*L_3)
	Grupo II	20.0%
	Grupo III	15.6 %
Heteroralfsia	Analipus	7.4%
	Endoplura	11.8 %
	Algas Pardas Mucilaginosas (Morfo I)	13.2%
	Algas Pardas Mucilaginosas (Morfo II)	13.6%
	Grupo I	17.6%
	Grupo II	20%
	Grupo III	16.5%
Analipus	Endoplura	8.6%
*	Algas Pardas Mucilaginosas (Morfo I)	10.2%
	Algas Pardas Mucilaginosas (Morfo II)	12.2%
	Grupo I	16.1%
	Grupo II	17.6%
	Grupo III	13.4%
Endoplura	Algas Pardas Mucilaginosas (Morfo I)	13.2%
*	Algas Pardas Mucilaginosas (Morfo II)	13.4%
	Grupo I	16.8%
	Grupo II	19.2%
	Grupo III	16%
Algas Pardas Mucilaginosas (Morfo I)	Grupo I	15.2%
	Grupo II	19.2 %
	Grupo III	13.2 %
Algas Pardas Mucilaginosas (Morfo II)	Grupo I	17.5%
	Grupo II	18.3%
	Grupo III	13.1%
Mesospora schmidtii	Mesospora schmidtii	0.6%
Mesospora negrosensis	Mesospora negrosensis	2%
Mesospora elongata	Mesospora elongata	0%
Neoralfsia hancockii	Neoralfsia hancockii	0%
Neoralfsia expansa_Mex	Neoralfsia expansa_Mex	0%
Neoralfsia expansa A, B, X y Y	Neoralfsia expansa A, B, X y Y	2.9%
Morfo I	Morfo I	-
Morfo II	Morfo II	1%
Grupo I	Grupo I	1.9%
Grupo II	Grupo II	18.6%
Grupo III	Grupo III	4.4%

Apéndice 16. Árbol filogenético de Inferencia Bayesiana para *rbc*L_1 (Ralfsiales).

Apéndice 18. Árbol filogenético de Máxima Parsimonia para rbcL_1 (Ralfsiales).

Apéndice 19. Árbol filogenético de Inferencia Bayesiana primer fragmento de *rbc*L_2(Ralfsiales).

Ápéndice 20. Árbol filogenético de Máxima Verosimilitud primer fragmento de *rbc*L_2 (Ralfsiales).

Apéndice 21. Árbol filogenético de Máxima Parsimonia primer fragmento de *rbc*L_2 (Ralfsiales).

Apéndice 22. Árbol filogenético de Inferencia Bayesiana segundo fragmento de *rbc*L_3 (Ralfsiales).

Apéndice 23. Árbol filogenético de Máxima Verosimilitud segundo fragmento de *rbc*L_3 (Ralfsiales).

Apéndice 24. Árbol filogenético de Máxima Parsimonia segundo fragmento de *rbc*L_3 (Ralfsiales).

Ápendice 27. Árbol filogenético de Máxima Parsimonia para el gen Cox 1 (Ralfsiales).

0.05

Apéndice 29. Árbol filogenético de Máxima Verosimilitud genes concatenados *rbcL_Cox* 1 (Ralfsiales).

0.07

Apéndice 30. Árbol filogenético de Máxima Parsimonia genes concatenados *rbcL_Cox* 1 (Ralfsiales).

CARACTERISTI CAS	GRUPO I	GRUPO II	GRUPO III	Stragularia sp.	Stragularia d	clavata	Ralfsia ca	lifornica	Stragularia lucida	Stragula ria pusilla	Strag spongi	ularia ocarpa	Ralfsia confusa	Ralfsia endopluroid es
SINÓNIMOS	-	-	-	-	Myrionema clavata, Ralfsia clavata,Myrione ma henschei, S. adhaerens, R. bornetii, R. tenuis	Sinónimos : Ralfsia clavata; Stragulari a adhaerens	-	-	Ralfsia lucida	Ralfsia pusilla (Strömfe lt) Foslie	-	-	-	-
AUTOR	-	-	-	Strömfelt 1888	Fletcher 1987	Setchell y Gardner	Setchell y Gardner (1925)	Hollenberg (1969)	Lund,1967	Strömfelt (1888)	Batters (1888)	Fletcher 1987	Hollenberg (1969);Abbo tt y Hollenberg (1976)	Tanaka y Chihara (1981)
COLOR DEL TALO EN SECO	Verde oscuro a negro	Café oscuro, café rojizo	Café oscuro, café verdoso, café rojizo o café amarillento	-	Del café claro al oscuro, hasta el negro	-	Café oscuro	Café oscuro	Verde olivo amarillento a marrón verdoso negruzco en seco Las costras más jóvenes	-	Negruzco- oliváceo	Amarillo a café oscuro casi negro	Café claro a medio oscuro	Café oscuro
FORMA Y TAMAÑO DE LA COSTRA	Costras de crecimiento indefinido o irregular, sin márgenes nítidos	Costras de crecimiento indefinido o irregular, sin márgenes nítidos	Costras de crecimiento indefinido o irregular, sin márgenes nítidos	Costras en forma de motas o manchas de margen difuso	Costra delgada, discreta y orbicular, llegando a ser confluente e irregular, de 5 cm o más en extensión	2-20 mm de diámetro	Costra plana, circular a irregular	Menor de 1 cm de ancho	son pequeñas, aisladas y orbiculares, de 1 a 2 mm de diámetro, los talos maduros son más o menos irregulares y gradualment e por confluencia muestran grandes manchones, extendiéndos e hasta alcanzar varios cm2	-	Costras delgadas	Delgada, discreta y orbicular, hasta 10 mm de diámetro.	0.5- 1 cm de ancho	Indefinida e irregular, hasta de 1.5 cm
ADHESION AL SUSTRATO	Completament e adherida al sustrato	Completam ente adherida al sustrato	Completam ente adherida al sustrato	Firmement e adherida al sustrato, sin rizoides	Firmemente adherido al sustrato, sin rizoides	adherido al sustrato con rizoides ocasionale s	firmemente adherido al sustrato por toda la superficie, sin rizoides	firmemente adherido a las rocas, sin rizoides	Firmemente adherido al sustrato por la capa basal, sin rizoides	-	Firmemen te adheridas a la roca	Firmemen te adherido al sustrato	-	Firmemente adherida al sustrato sin rizoides

Apéndice 31. Comparación entre las especies descritas de Stragularia y los Grupos I, II y III.

CARACTERISTI CAS	GRUPO I	GRUPO II	GRUPO III	Stragularia sp.	Stragularia	clavata	Ralfsia co	ılifornica	Stragularia lucida	Stragula ria pusilla	Stragul spongioo	aria carpa	Ralfsia confusa	Ralfsia endopluroid es
GROSOR	170-230 micras	110-195 micras	66-145 micras	-	-	150 micras	280-350 micras	170-200 micras	40-120 micras, hasta 225	-	-	-	150-250 micras	150-300 micras
HIPOTALO	1-3 filas de células	2-3 filas de células	2-3 filas de células	-	-	-	-	1-2 filas de células	-	-	-	-	1-2 filas de células	1-2 filas de células
CELULAS DEL HIPOTALO	5-10 micras	5-7 micras	4-6 micras	-	-	-	-	-	-	-	-	-	9-12 micras	8-11 micras
CARACTERISTI CAS	GRUPO I	GRUPO II	GRUPO III	Stragularia sp.	Stragularia	clavata	Ralfsia co	ılifornica	Stragularia lucida	Stragula ria pusilla	Stragul spongioo	aria carpa	Ralfsia confusa	Ralfsia endopluroid es
LARGO CELULAS DEL HIPOTALO	12-20 micras	11-14 micras	11-14 micras	-	-	-	-	-	-	-	-	-	1.5-2 diámetros de longitud	2-3 diámetros de longitud Filamentos
PERITALO	Filamentos postígenos rectos	Filamentos postígenos rectos o curvos	Filamentos postígenos rectos o curvos	Filamentos erectos, con diferente grado de agregación entre ellos	-	-	Filamentos erectos	Filamentos erectos	Filamentos erectos	Filament os erectos	Filamento s erectos	-	Filamentos erectos	erectos surgiendo de las células basales, ligeramente curvados hacia arriba, firmemente
NÚMERO DE CÉLULAS DEL PERITALO	6-27 células	18-21 células	9-23 células	-	-	-	8-12 células	8-10 células	8- 35 células	-	-	-	10-15 células o más	adheridos -
DIAMETRO CELULAS DEL PERITALO	6-12 micras	6-7 micras	5-7 micras	-	-	-	-	-	-	10-15 micras	-	10-19 micras	5-6 micras	6-9 micras
LARGO CÉLULAS DEL PERITALO	6-14 micras	5-7 micras	4-7 micras	-	-	-	-	1 diámetro de longitud o más cortas	-	70-90 micras	-	-	Tan largas como anchas	1-1.8 diámetros de longitud
PELOS HIALINOS	Presentes	Presentes	Presentes	-	-	No se observan	No se observan	Ocasionale s	-	-	-	-	Frecuentes	-
SOROS FORMA DE LOS UNILOCULARES	No claramente discernibles del resto del talo	No claramente discernibles del resto del talo	No claramente discernibles del resto del talo	No claramente discernible s del resto del talo	-	-	-	-	-	-	-	-	Solitarios y continuamen te en la parte central de la costra	Soros pequeños
UNILOCULARES	Obovoides, claviformes o fusiformes	Obovoides o elipsoidales	Obovoides, claviformes o elipsoidales	-	-	Ovoides a piriformes	Clavados	Clavados, sésiles o pedicelado s	-	clavados	Ovoides, sésiles o ligerament e pedicelado s	-	Clavados ligeramente	Piriformes, clavados u obovoides

CARACTERISTI CAS	GRUPO I	GRUPO II	GRUPO III	Stragularia sp.	Stragularia d	clavata	Ralfsia cal	lifornica	Stragularia lucida	Stragula ria pusilla	Stragu spongic	laria carpa	Ralfsia confusa	Ralfsia endopluroid es
UBICACIÓN EN EL TALO Y FORMA DE CRECIMIENTO	Surgiendo a nivel de medio peritalo. Insertos terminalmente en los filamentos postígenos vegetativos	Surgiendo a nivel de medio peritalo. Insertos terminalmen te en los filamentos postígenos vegetativos	Surgiendo a nivel de medio peritalo. Insertos terminalme nte en los filamentos postígenos vegetativos	Inserción terminal o lateral en los filamentos reproductiv os	-	En toda la superficie excepto en los márgenes de la costra	Creciendo lateralmente a la base de las parafisis , distribuidos uniformemen te en la parte central y más larga del talo	En la base de la parafisis	-	-	-	-	-	-
DIAMETRO DE LOS UNILOCULARES	10-26 micras	18-42 micras	13-26 micras	-	-	13-18 micras	16-22 micras, hasta 32	25 micras	-	30 micras	28 micras	-	20-25 micras	13-25 micras
LARGO DE LOS UNILOCULARES	20-58 micras	48-130 micras	26-105 micras	-	-	40-60 micras	80-95, hasta 140.	80-100 micras	-	70-90 micras	48-52 micras	-	70-90 micras	45-70 micras
SESILES O PEDICELADOS	Pedicelos	Pedicelados	Pedicelados	-	-	-	-	-	-	-	-	-	Ambos	-
CARACTERISTI CAS	GRUPO I	GRUPO II	GRUPO III	Stragularia sp.	Stragularia c	clavata	Ralfsia cal	lifornica	Stragularia lucida	Stragula ria pusilla	Stragu spongic	laria ocarpa	Ralfsia confusa	Ralfsia endopluroid es
NUMERO DE CÉLULAS DEL PEDICELO	1-4	1-6	1-5	-	-	-	-	-	-	-	-	-	1-3-6 células	-
PARÁFISIS	SI	SI	SI	SI	-	SI	SI	SI		SI		SI	SI	SI
FORMA	Cilíndrica o claviforme	Esbelta, cilíndrica o claviforme	Esbelta, cilíndrica o claviforme		-	Clavada	Cilíndrica a ligeramente clavada	clavada	Delgadas con o sin paredes exteriores	clavadas	-	-	-	Clavadas
TAMAÑO DE LA PARÁFISIS	45-100 micras	75-150 micras	65-170 micras		-	80-100 micras de largo y 12-15 de diámetro	180-220 micras de largo, 9-11 micras de diámetro	150- 175micras	-	100-125 de largo y de 15 micras de diámetro	-	-	75-100 micras	80-95 micras de largo
NUMERO DE CÉLULAS DE LA PARÁFISIS	6-16	8-17	10-18		-	-	-	6 a 12	-	-	-	8-12 células	10-12 células	8-6 células
DIÁMETRO DE LAS CÉLULAS	6-11 micras	4-9 micras	6-8 micras		-	-	-	6-8 micras	-	-	-	-	6-8 micras	-
LARGO DE LAS CÉLULAS	6-17 micras	7-14 micras	6-14 micras		-	-	-	1 diámetro de longitud	-	-	-	1-2 diámetros de longitud	1 diámetro de longitud en la zona distal y más alargadas a continuación	-

PLURANGIOS	Insertos intercalarmente	Insertos intercalarme nte	Insertos intercalarm ente	Se insertan terminal o subterminal mente en los filamentos reproductiv os	-	-	-	Desconoci do	-	-	-	-	En talos separados	En talos separados, localizado en la parte subterminal de los filamentos erectos
LARGO PLURANGIO	60-66 micras de largo	35-55 micras	30-47 micras	-	-	-	-	-	-	-	-	-	3060 micras	-
CÉLULAS DEL PLURANGIO	Uniseriado	Uniseriado	Uniseriado	-	-	-	-	-	-	-	-	-	Mayormente uniseriado	Multiseriado (2 filas de filamentos reproductivo s)
DIAMETRO CÉLULAS DEL PLURANGIO	3.5-5 micras	5-11 micras		-	-	-	-	-	-	-	-	-	5 micras	4 micras
LARGO CELULAS DEL PLURANGIO	-	-	-	-	-	-	-	-	-	-	-	-	Mayormente más corto que ancho	-
CELULA ESTÉRIL	1 célula estéril	1 célula estéril	1 o 2 células estériles	una o varias	-	-	-	-	-	-	-	-	1 célula estéril terminal	3 células estériles, apiladas en el ápice
TAMAÑO CÉLULA ESTÉRIL	8-14 micras de largo y 5-7 micras de diámetro.	8-15 micras de largo y 3-8 micras de diámetro.		-	-		-	-	-	-	-	-	Similar diámetro de 1.5 a 2 diámetros de longitud	-

Apéndice 32. Resumen de los taxa propuestos en el presente estudio.

Grupo	Familia	Género	Especie	Especímenes
Ι	Misma familia	Diplura	Especie 1	PTM_9791,PTM_9792,M
	que las			31,PTM_10075,PTM_100
	<i>Diplura</i> sp. G			65
				PTM_9795
II	Nueva Familia	Género 1	Especie 1	PTM 10156
	hermana de		Especie 2	PTM 9825 y PTM 10095
	Mesosporaceae	Género 2	Especie 1	PTM 9808 y VR 136
III	Algas Pardas	Morfo I	Especie 1	PTM 10115,M59,PTM
	Mucilaginosas			10118
				PTM 10117
			Especie 2	PTM 10119

Apéndice 33. Distribución de los grupos morfológicos de este estudio (I, II y III) a lo largo de la Costa del Pacifico Tropical Mexicano.

