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Preface

The intriguing problem of Earth’s glacial cycles was analysed in this work with a dynam-
ical systems approach. This work puts forward a conceptual box model of Earth System —
that encompasses Carbon and Energy Subsystems — in which the importance of internal
components in long timescales is revealed by stressing that simulated Carbon Subsystem
is enough to drive glacial cycles and its internal flux variations could explain transitional
events such as Mid-Pleistocene Transition.
This work — represented by this written report — explains thoroughly and in a clear

manner — the author wants to believe — every aspect of the model. Therefore, one can
expect a basic structure in the chapters and sections that follow: there will be some intro-
ductory ideas. Only then, ideas will be developed in deep, for having no logical jumps or
mischievous assumptions, since the approach taken in this research is not quite standard
in the field. Therefore, maybe reader would have some questions once he/she has read
introductory ideas, this questions will be answered duly when we delve deep into those.
Ideas and explanations — that have their origin on phenomenological and mathematical

reasoning — shall be rewritten in hypotheses, axioms, theorems, propositions and the like;
in order to have a clear and readable summary once the reasoning is sound in the mind of
the reader.
It is worth to remark the difference between axioms and hypotheses. Hypotheses are sup-

positions concerning phenomenological models and axioms are assumptions made about
the mathematical model. That is, while hypotheses talk about nature itself, axioms are
translation rules of natural principles into mathematical objects. This is a point that has not
been emphazised enough in physical sciences, not only in an epistemological way but in
a practical and interpretative one.
Once given an overview on the form in which information is presented, it is also necessary

to give a prospect of the themes that this monography will cover. First, it is presented the
particular problem accompanied by a short overview on the literature about it and a proper
discussion by the author. In addition, it shall be shown information about the original
problem that encouraged the development of the model: Vostok Ice Core time series. This
panorama is closed by a statement in which lie the guide behind the construction of the
model.
Following chapters describe thoroughly the models of chosen subsystems. The presen-
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tation leave no doubts about their construction. Building of Carbon Subsystem Model is
not standard, in the sense that it centers on the relationships and phenomenology between
reservoirs, in opposition to the complexity shown in some recent models: complexity with
its origin in a process-oriented analysis. This difference in focus leads us to another way to
learn about the system, that shows clearly the reasons about why past and present models
(and future ones, if paradigm does not change) could not capture the workings of Earth
System in all its glory: they have minimized the effects that the Earth can have over her-
self, e.g. life (profoundly intertwined in Carbon and Water Cycles), and have detailed
descriptions of physical processes, in spite of evidence that long-term evolution of Earth’s
climate is modulated by the Subsystems on its own right, as is shown in the first chapter of
this thesis. Finally, the model in that way constructed is applied to the situation that gave
rise to it: Vostok Ice Core. Results show that idealized reconstruction generate some of the
observed periodicities (e.g. 100ka) and also show the observed assymetries: fast heating
towards interglacial period and slow cooling en route to glacial period. It is concluded that
reconstruction is good despite the model simplicity.
In this way, present work pretends to show that explanations for glacial cycles —and any

type of periodicities and transitions between them— on the palæoclimatic record must be
seen as consequence to structural changes in the way in which planet works. This changes
lead it to states consistent with the main external forcing. Maybe some of this changes are
made by this forcing, nonetheless transitional states and final state are determined by the
Earth System itself. With this perspective and the methods presented to study the dynamical
system just modeled, author believes that is of primary interest to use extensively this type
of analysis for simple models in order to widen our understanding in terms of relationships
between processes: we already know a large part of the biology, geology, physics and
chemistry behind Earth System workings, but we do not know how processes interact. Is it
not worth to unravel this relationships which give rise to new unexpected phenomena? Is
this not the key to study the Earth as a whole, instead of a ensemble of processes without
relationship? Would this not better our understanding in order to gain more knowledge of
our planet and to think in realistic ways to mitigate anthropogenic contribution to climate
change?
From the author’s point of view, this work has not only a value for the palæoclimatology,

but an episthemological and methodological value for Earth Sciences in general —and
Atmospheric Sciences in particular— where, given the desirable multidisciplinary and inter-
disciplinary approach, there are fundamental problems in the application of mathematical
methods, either by the informality in the way they are applied or because they are not
adequate. But above all, there is a lack of awareness of certain methods that could help
to delve deep into the intrinsic complexity of our studies (through modeling) of a complex
system like, without doubt, a planet.

iv



Prefacio

El interesante problema de los ciclos glaciales de la Tierra ha sido analizado en este
trabajo desde una perspectiva de sistemas dinámicos. Este trabajo propone un modelo del
Sistema Tierra —que abarca los Subsistemas Carbono y Energía— en el que la importancia
de los componentes internos en escalas de tiempo largas se revela al hacer incapié en que
el Subsistema Carbono es suficiente para controlar los ciclos glaciales y que las variaciones
internas en sus flujos pueden explicar los eventos de transición tales como la Transición del
Pleistoceno Medio.
Este trabajo —cuyo producto es este reporte escrito— explica a cabalidad y en una

forma clara —según piensa el autor— cada aspecto del modelo. Por tanto, se puede
esperar una estructura básica en los capítulos y secciones, a saber: se presentarán ideas
introductorias. Una vez hecho eso, las ideas se desarrollarán en profundidad, para impedir
saltos lógicos o supuestos erróneos, dado que la perspectiva usada en esta investigación
no es la estándar en el campo de estudio. Así, si el lector tuviera preguntas una vez ha
leído las ideas introductorias, esas preguntas serán respondidas satisfactoriamente cuando
indaguemos profundamente en ellas.
Las ideas y explicaciones —que tengan su origen en razonamientos fenomenológicos y

matemáticos— serán reescritas en hipótesis, axiomas, teoremas, proposiciones y similares;
de manera que se tenga un resumen claro y legible una vez los razonamientos hayan
cristalizado en la mente del lector.
Es importante destacar la diferencia entre axioma e hipótesis. Las hipótesis son suposi-

ciones que le conciernen a los modelos fenomenológicos y los axiomas son supuestos
hechos en el contexto del modelo matemático. Mientras las hipótesis hablan de la nat-
uraleza como tal, los axiomas son reglas de traducción de éstos principios naturales en
objetos matemáticos. Éste es un punto en el que no se ha hecho suficiente énfasis en
las ciencias físicas, no sólo en un sentido espistemológico sino en los sentidos práctico e
interpretativo.
Una vez dada someramente la forma en que se presenta el material, también daremos un

panorama de los temas que se cubrirán en el texto. Por principio, se presenta el problema
en particular acompañado de una revisión de la literatura sobre el tema y una discusión de
ésta por parte del autor. Además, se mostrará el problema original que motivó el desarrollo
del modelo: las series de tiempo del Barreno Glacial de Vostok. Este panorama se cierra
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con una declaración de intenciones que se siguió para el diseño del modelo.

En los siguientes capítulos se describen exhaustivamente los modelos de los subsistemas
modelados, no dejando dudas sobre su construcción. La construcción del modelo del
Subsistema Carbono no es estándar en el sentido de que se centra en las relaciones y
la fenomenología entre los reservorios, a diferencia del enfoque centrado en el comple-
jísimo entramado de relaciones que se usa en muchos de los modelos de la actualidad.
Esta diferencia en enfoque nos permite conocer de otra forma el mismo sistema, pero así
presentado nos permite ver claramente las razones por las que los modelos pasados y
actuales (y también los futuros, si es que no se cambia de paradigma) no han podido
capturar del todo el funcionamiento del Sistema Tierra: han minimizado los efectos que la
propia maquinaria de la Tierra puede tener sobre sí misma, en particular la vida (muy aso-
ciada al Ciclo de Carbono y al Ciclo Hidrológico), detallando más que nada los aspectos
físicos; aún cuando hay evidencias claras que nos indican que la evolución a largo plazo
del clima de la Tierra se da con la participación fundamental de los propios Subsistemas,
como se menciona en el capítulo primero. Finalmente el modelo construido se aplica a la
situación que lo motivó, el Barreno Glacial de Vostok, para reconstruir a primer orden las
series de tiempo de Carbono y Temperatura. Los resultados muestran que la reconstruc-
ción, aunque simple, genera algunas de las periodicidades observadas (en particular, la
principal de 100ka) —además de mostrar las asimetrías observadas en el registro: calen-
tamiento rápido desde la glaciación y enfriamiento lento desde el período interglacial. Se
concluyó que tal reconstrucción es bastante buena para la simplicidad del modelo.

Es así como, con este trabajo, se pretende mostrar que las explicaciones para los peri-
odos glaciales y en realidad para cualquier tipo de periodicidades —y transiciones entre
periodicidades— en el registro paleoclimático deben de ser vistas como consecuencia de
cambios estructurales en la forma en que el planeta funciona, que lo llevan a estados con-
sistentes con el forzador externo principal. Tal vez algunos de esos cambios estructurales
son iniciados por el forzador externo, mas los estados transicionales y el estado final es-
tán determinados por el Sistema Tierra. Con esta perspectiva y los métodos presentados
para estudiar el sistema dinámico modelado, el autor cree que es de capital importancia
comenzar a usar de manera extensiva este tipo de análisis para modelos simples de forma
que se amplie nuestro entendimiento de las relaciones entre procesos: ya conocemos la
biología, la geología, la física y la química detrás de los procesos en el sistema Tierra,
pero no sabemos como es que esos procesos interactúan ¿No acaso valdría la pena de-
sentrañar esas relaciones que dan origen a nuevos fenómenos inesperados? ¿No es esa
la clave para comenzar a estudiar la Tierra como un todo y no como un conjunto de
procesos por separado? ¿No mejoraría ésto nuestra visión para poder tener un mayor
conocimiento del planeta y poder pensar en verdaderas formas de mitigación del cambio
climático antropogénico?
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Así, el trabajo —desde el punto de vista del autor— no sólo tiene un valor como tal
para el campo de la paleoclimatología, sino un valor epistemológico y metodológico para
las Ciencias de la Tierra en general —y las Ciencias Atmosféricas, en particular— donde,
dado el carácter teórico de ser multidisciplinarias e interdisciplinarias, hay problemas fun-
damentales de aplicación de métodos matemáticos, ya sea por la informalidad con la que
se aplican o porque no son adecuados. Pero sobre todo, hay un desconocimiento de cier-
tos métodos que podrían ayudar a desentrañar —como dijimos— la complejidad inherente
en el estudio (a través de la modelación) de un sistema complejo —como lo es, sin duda,
un planeta.
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1 State-of-the-Art and principles.

Die Wahrheit triumphiert nie,
sondern ihre Gegner sterben nur
aus.

(Rephrased quote of Max Planck
(1858-1947))

1.1 Introduction.

Throughout Earth’s history there are examples of climate change, sometimes severe. Ear-
liest registered glaciation — Huronian glaciation in the Siderian and Rhyacian periods of
Palæoproterozoic era, circa 2400Ma before present — take place in the context of the
changing young Earth – in which biogeochemical cycles were changing rapidly due to
processes such mantle plumes and weathering – the relative-to-present faint young Sun and
the rise of aerobic organisms. These factors made the onset of a glacial age a matter
of reorganization of the biogeochemical cycles (Melezhik, 2006): CO2 was sequestered
by silicate weathering of basalts coming from massive floods caused by mantle plumes,
which in turn reinforced carbon burial due to flourishment of aerobic organisms and CH4
was nearly eliminated by aerobic organisms’ byproduct, namely O2. What brought about
Huronian glaciation was an unusual combination of factors that next glaciations — Sturtian
and Marinoan glaciations — occur until similar conditions were met in the Cryogenian
period of Neoproterozoic era, circa 700Ma before present (Melezhik, 2006). Huronian,
Sturtian and Marinoan glaciations are theorized to have been so severe that possibly Earth
was entirely covered by snow and ice — Snowball Earth theory — or it was covered aside
from a equatorial channel — a Slushball Earth.
Following these ancient events, three glaciations occur in Phanerozoic eon — the present

eon — which are the Andean-Saharan — circa 450Ma before present — Karoo and Pleis-
tocene glaciations. Karoo glaciation — circa 300Ma before present — has a trigger in
common with Huronian glaciation: an oxigenation event (Berner, 1999).
More recently — in the late Pliocene epoch of the Neogene period and Pleistocene epoch

of the Quaternary period, both in the Cenozoic era, 3Ma before present — the last glacial
age was established. This glaciation is the most studied of all known glaciations, since it is
the most recent and there are proxies and evidence, which are still well-preserved. From this
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1 State-of-the-Art and principles.

evidence, it is possible to say that climate in Pleistocene glaciation have evolved through
intervals with extensive ice-covered surface — the so-called glacial periods — and others —
which are called interglacial periods — with narrower ice cover and milder temperatures;
glacial and interglacial periods form glacial cycles. In fact, present climate constitutes
the last interglacial period of the last glaciation. Glacial cycles have been also identified
in Karoo glaciation (Soreghan and Giles, 1999); therefore, they are not a peculiarity of
Pleistocene glacial age.
An idea that has been popular as a driver of glacial cycles was proposed since XIX

century: variations of Earth’s orbital parameters could be responsible for glacial cycles.
Earlier proponents were french mathematician Joseph Adhémar and scottish scientist James
Croll (as quoted by Paillard, 2001). This idea was not formalized until the seminal works
by Milankovic on the orbital theory of climate (Milankovic, 1920, 1930, 1941). This
theory takes into account that variations in orbital parameters — mainly eccentricity (e),
obliquity (ϵ) and precession (measured by the sine of the longitude of the periapsis ϖ) —
make Earth’s received solar radiation a function of time, in particular the insolation in the
Northern Hemisphere. Thus, insolation forcing triggers a feedback based on ice-albedo
mechanism, which is implemented in classical models like those by Budyko, (1969) and
Sellers, (1969).
However, this theory was not accepted thoroughly until high resolution proxies came —

like deep-ocean cores and ice cores — and the work by Hays et al., (1976) revealed the
fingerprints of the variations of e, ϵ, sinϖ in deep-ocean proxies: periodicities of glacial
cycles seem to be in accordance with those of orbital parameters (including those from
Karoo glaciation — that show 100ka periodicity associated with e — as shown by Belt
et al., 2015).
Nevertheless, it is not necessarily true that, because fingerprints are present in proxies,

orbital forcing is the driver of glacial cycles. In fact, a common problem that is elusive for
orbital theory of climate is the existence of transitional events, in which the dominant peri-
odicity of glacial cycles change. One of such transitional events is the mid-Pleistocene Tran-
sition (Ashkenazy and Tziperman, 2004; Huybers, 2007; Tziperman and Gildor, 2003)
— which ocurred in-between the Pleistocene glaciation, circa 1Ma ago — characterized
by a change from 41ka periodicity (associated with ϵ) to 100ka cycles (related to e), an
asymmetrization of glacial cycles — which were essentially symmetric until that time —
and with greater amplitude. Oscillation of orbital parameters has been always present
and, therefore, it is deeply imprinted in Earth System. Thus, it is not strange that we find
this orbital periodicities in palæoclimate proxies.
Then, the question is about what selects dominant periodicities and if orbital forcing is

only a trigger instead of driver. The obvious candidates to tackle these points come from
Earth System’s internal factors: some of them are ice-sheet dynamics, Ocean circulation,
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1.2 The Vostok proxy

greenhouse gases (GHG) and inherent nonlinear responses (Huybers, 2007; Ikeda and
Tajika, 1999; Paillard, 2001; Tajika, 1998). Efforts in order to incorporate these factors
into a model have been put forward in classical works by Källén et al., (1979) and Saltzman
and Maasch, (1988) or the comprehensive model shown recently by Fowler et al., (2013).
Another candidate could be an external factor: the intrinsic variation of solar activity across
history, such as in the Huronian glaciation.
The role of GHG over climate has been acknowledged since XIX century — for example,

by Fourier, (1824),Tyndall, (1861) and Arrhenius, (1896) — until the most recent IPCC
assessment reports. However, their impact over glacial cycles remains obscure.
We propose a simple model of Earth System that could account for the 100ka periodicity

and assymetries depicted in the data from Vostok proxy (Petit et al., 1999) and for tran-
sitional events without relying upon astronomical and astrophysical factors. This model is
based on the systems theory approach due to the International Geosphere and Biosphere
Programme (IGBP) (Falkowski et al., 2000; Steffen, 2000). The aim is to show that Earth
System’s internal mechanisms — in particular, those related to GHG — could drive glacial
cycles and not only serve as an amplifying mechanism of orbital forcing.
Some efforts in this way have been put forward by Hogg, (2008), who proposed a

model of atmospheric carbon that depends on surface temperature (T). However, orbital
parameters already drive Carbon Subsystem.

1.2 The Vostok proxy

We give a brief description of the Vostok ice core (Petit et al., 1999). This proxy has
three time series: one for CO2, another for CH4 and the third for the anomaly of T (∆T).
We shall focus in time series of atmospheric CO2 — which is measured by concentration
(rCO2s) in ppmv — and ∆T — measured in ˝C, with respect to the normal in Vostok Station,
Antarctica.

rCO2s time series was obtained from air trapped inside bubbles within ice as a result
of glacier formation, while ∆T series relies on the fact that H2O enthalpy of evaporation
varies with its isotopic composition, therefore one can measure ratios of δ O18 to δ O16 —
or δD to δH — to obtain an empirical function of T which can be inverted to obtain T as
a function of these ratios, as described by Petit et al., (1999). Depth-age correlation and
data were downloaded from NOAA-NGDC (Petit et al., 1999).
In figure 1, we present both time series with time labeled from zero — the deepest data

and, therefore, the oldest one — to the most recent data.
Time series show the following features (Falkowski et al., 2000; McGehee and Lehman,

2012; Petit et al., 1999; Steffen, 2000):
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Figure 1: Time series from Vostok proxy, Petit et al., (1999). T “ T`∆T — where T “ 15˝C
is global annual average temperature — and rCO2s. Time is set in kiloannum.
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1.2 The Vostok proxy

Periodicity. There are four cycles with five maxima and four minima, which are evenly
distributed in time.

Almost in phase. As Garduño et al., (2005) remark, extrema are matched over time. This
hints a correlation between ∆T and rCO2s across a millenial time scale.

Boundedness. This feature, together with periodicity, means that Earth System oscillates
between two states in this lapse (Petit et al., 1999; Steffen, 2000).

Assymetries. Evolution from a glacial to an interglacial period is faster than passage in the
converse direction: heating ocurrs very fast, while cooling is slow. Also, it is possible
to observe that glacial periods are wider in time than integlacials.

Qualitative explanation of these features has been put forward by Falkowski et al., (2000)
and Steffen, (2000). This explanation may be summarized in the following terms: starting
in an interglacial period, T and rCO2s are at their highest. Increased precipitation causes
increased biological activity. Then, carbon is transferred to Continent (emerged lands) from
Atmosphere (troposphere) until a saturation level is reached. At that point — triggered by
runoff and airborne dust — the Ocean (saline waters that surround Continent) absorbs CO2,
while its biological activity gradually recovers — because of formerly described sowing
by Continent — and makes more space for absorbing carbon. T and CO2 drop until the
Ocean reaches its saturation level and the process is now reversed. This ”control switching”
between Ocean and Continent — mediated by Atmosphere — is the main driver of glacial
cycles.
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2 Preliminaries.

Oft macht man eine Bemerkung
und sieht erst später, wie wahr
sie ist.

(Ludwig Wittgenstein
(1889-1951))

The modeling idea behind present work is to divide Earth in subsystems, which will
interact to produce climate.
Actual modeled subsystems described here are Energy and Carbon. Energy is repre-

sented by an energy balance and Carbon is depicted by a model of global carbon cycle
based on qualitative ideas by Steffen, (2000).
Carbon Subsystem has been selected, because it is portrayed in Vostok proxy. Thus,

this selection has not been done for we consider Carbon Subsystem be more important
than Water Subsystem: it is well known this is not the case, since water vapor is the most
important GHG and also water has a decisive role through contributions of cloud cover,
snow and ice to albedo.
However, it is clear enough that Carbon and Water Subsystems have key factors that

are connected through Clausius-Clapeyron relation (which links phase changes to state
changes): when there is some increment on Atmospheric Carbon, Energy Subsystem is
modified in such a way that there is a T increment due to a rise in internal energy. This
allows for an increment on evaporation, since more liquid water molecules overcome inter-
molecular forces due to this increment in internal energy — and which makes latent heat
dependent on T. Freed water molecules add up to water vapor amount in the Atmosphere,
which further modify Energy Subsystem by acting as a feedback on carbon-dependent ini-
tial boost on T. But, the new T increment rises Ocean temperature and makes that Oceanic
water has lesser dissolving capacity for gases — because Henry’s law solubility constant
depends on temperature — which causes outgassing that increments Atmospheric Carbon.
This closes the feedback of Carbon Subsystem into Water Subsystem, as well as the con-
verse feedback.
Energy Subsystem is key to understand the dynamics of weather and climate, since dy-

namics is closely interwoven with thermodynamics. That is, circulation — in short- and
long-term — relies heavily on balances and imbalances due to thermal energy gradients
and these gradients are established because of solar radiation — and its absortion by
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2 Preliminaries.

Earth’s surface — is not equally distributed.
However, as thermodynamics is subsidiary to dynamics in short timescales (meteorology),

it is also true that thermodynamics dominate over dynamics in long timescales (climate). That
is thermodynamics is commonly parametrized in short time scales and dynamics is subject
to constitutive relations in large time scales. An example of this modeling idea is pivotal in
the model by Adem, (1962).
In the present case, we consider that — in the millenial timescales of Vostok proxy — ∆T

is representative of a global anomaly of T — because time step is wide enough to think that
Atmosphere is well-mixed. Therefore, we make use of global energy budget in terms of the
radiation that is captured from the Sun.

12



3 Modeling Carbon Subsystem.

Wahrlich ist es nicht das Wissen,
sondern das Lernen, nicht das
Besitzen, sondern das Erwerben,
nicht das Da-Seyn, sondern das
Hinkommen, was den größten
Genuss gewährt.

(Carl Friedrich Gauß
(1777-1855))

Global carbon cycle is complex, because of the many different processes that transform
carbon between several chemical compounds — and not to mention its key relationship to
life — most of which relies heavily upon carbon-based biochemistry. In fact, complexity
is more evident when one looks deeply into Oceanic and Continental parts of Carbon
Subsystem, which resemble a box full of even more little boxes connected with a complex
mesh of tubes, representing every kind of transformation between different carbon chemical
compounds that takes place within Ocean or Continent: due to phenomena of physical or
chemical nature or a combination of both (mainly biological phenomena).
None of this complex internal dynamics is the purpose of proposed model — because

precise knowledge of this adds up nothing, but would obscure what we want to show— and
will be simplified in the following manner. As one can fix the limits of a thermodynamic
system — selecting the actual system under study in an arbitrary way and guiding this
freedom by the purpose of our scientific inquiries — we will define precisely which part of
Carbon Subsystem will be modeled. If we were to take the complete subsystem, we must
take into account necessarily every single process and introduce full complexity. Thus, we
formulate the following

Hypothesis 1 We constrain the modeled Carbon Subsystem to Atmospheric reservoir and
Continental and Oceanic subreservoirs that interact directly with its surroundings: that is,
those Continental and Oceanic subreservoirs having carbon stock readily available to ex-
change with the outside of its parent reservoir (Continental or Oceanic).

Graphical representation — for the sake of clarity — is shown in the figure 2.
This hypothesis has an important consequence: this model of Carbon Subsystem shall not

be conservative with respect to total carbon stock as becomes apparent from construction
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Figure 2: Carbon Subsystem. Actual modeled subsystem in color.
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of the hypothesis and the related figure.
In spite of the former consideration, we must make another remark to ease modeling tasks.

Since we want not to deal with various carbon compounds — which arise in Continental
case — then we do not distinguish between compounds or their phases. That means, we
put forward a generic carbon stock.

Hypothesis 2 Generic carbon is the carbon which each reservoir — as defined in hypothesis
1 — have as stock, independently of chemical compounds it forms.

This is completely valid, because we will see in a while that the processes linking reser-
voirs and interchanging stocks are clearly not intertwined with respect to carbon com-
pounds.
The former hypotheses 1 and 2 make the description of Carbon Subsystem more elegant

and susceptible of extensions as we will see next, when we proceed to build mathematical
model from phenomenological grounds.
We have three reservoirs, whose stocks are going to flow between each other. This flows

are determined by the nature of the processes that drive them. The first thing to consider is
the following rule

Axiom 1 Every single flow between reservoirs can be of one of three sorts, with respect
to controlling stock: donor-controlled flow, recipient-controlled flow, donor- and recipient-
controlled flow (or interaction flow).

Then, we must analyze phenomena in order to choose a class for each flow in the mod-
eled subsystem. Let us begin with Continental stock and we look at the relationships to
Atmospheric and Oceanic stocks. Relationship with Atmosphere comes through processes
that rely on weathering processes and biological activity, since basis of Continental ecosys-
tems and food chains are plants which need light and CO2 to produce more complex
carbon compounds, in order to nurture higher levels of food chain. However, the relation-
ship is also on the side of Continent acting as a donor for the decomposition of organic
matter and respiration of organisms and other physical and chemical processes such as
fires and volcanic eruptions (in a lesser extent). Thus, Atmospheric-Continental flow of
carbon depends on both Atmospheric and Continental stocks: it is an interaction flow. Re-
lationship with Ocean is special and we will tackle it from two perspectives. For now, we
will take the perspective of Continental stock. How does carbon flow from Continent to
Ocean? Organic matter due to Continental biological productivity and inorganic carbon
reach Ocean through run-off mechanism mainly and secondarily through dust blown by
winds. Then, Ocean has no direct way to intervene this processes. Thus, we conclude
that Oceanic-Continental flow — as seen from Continental perspective — relies only on
Continental stock: it is a donor-controlled flow.
Next, we seek for an analogous analysis from Ocean’s perspective. Connection to At-
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3 Modeling Carbon Subsystem.

mosphere is done in a physical way, since Oceanic reservoir — as chosen — spans only
water and has nothing to do with biology, in opposition to Continental case. The link is
the gases dissolved into Oceanic water, then flow depends on the quasistatic processes
of dissolving and outgassing, which depend on the concentrations of gases dissolved into
Oceanic water and in the Atmospheric gaseous phase. Thus, Atmospheric-Oceanic flow
relies on both Atmospheric and Oceanic stocks: it is an interaction flow as Atmospheric-
Continental flow was. Now, we tackle Continental-Oceanic flow from the perpective of
Ocean. One can become aware of the reason why this flow is special, when one reasons
that carbon flow from Continent does not enter directly to our Oceanic reservoir, but to
the Oceanic food chain and Ocean water acid-alkaline balance — things that are out of
the system by our hypotheses. Thus, from a perspective of the ocean, Continental-Oceanic
flow only depends on Oceanic stock, which could be taken as an indicator of food chain
activity and acid-alkaline balance in an implicit way. Then, Continental-Oceanic flow —
as seen from Oceanic perspective — is a recipient-controlled flow.
We have left Atmosphere’s perspective at the end, because it is somewhat trivial. Both,

Atmospheric-Continental and Atmospheric-Oceanic flows, are interaction flows. Then, the
analyses are symmetric when done from Atmospheric perspective. That is: Continental-
Atmospheric and Oceanic-Atmospheric flows are the same as the former ones.
We make a summary of the results deduced before

Proposition 1 For Carbon subsystem the following are the flows and their nature as regards
controlling stock.

• Interaction flows: Atmospheric-Oceanic and Atmospheric-Continental flows.

• Recipient-controlled flows: Continental-Oceanic flow (Oceanic perspective).

• Donor-controlled flows: Continental-Oceanic flow (Continental perspective).

Former phenomenological model of the flows is enough to set a mathematical model,
in this case a system of ordinary differential equations (SODE) that model stocks evolution
quantitatively. SODE is intended to express the temporal rate of change of stocks — then
it will be a first-order SODE — in terms of the flows. The rule, that we propose to translate
phenomenological model to mathematical one, is the following set of notation and rule.

Notation 1 Continental carbon stock is represented by the symbol C1, while Atmospheric
carbon stock is designed by the symbol C2 and Oceanic carbon stock is given the symbol
C3

Axiom 2 Let Φ be a given flow between reservoirs i, j, where i is the donor and j the
recipient. If Φ is an interaction flow, it will be represented by a term containing the product
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of stocks CiCj and if it is a flow that is controlled by either side but only one of them, it will
appear as a term containing only the donor or the recipient stock, that is Ci or Cj.

Remark 1 The flow will depend on the stock — the quantity of carbon that the reservoir
keeps — and, then, it is impossible to transfer carbon if controlling reservoir is empty.
Interaction flows are controlled by both, and a product is as simple and as valid to describe
the same fact.

With this rule in our hands, we simply write the system from phenomenological model
summarized in proposition 1.

Proposition 2 For Continental stock we write down

9C1 “ ´αC1 ` βC1C2

and for Atmospheric stock we say

9C2 “ ´βC1C2 ` εC2C3

and, finally, Oceanic stock ODE reads

9C3 “ ζC3 ´ εC2C3

However, this is not quite complete. As one can see, there are some coefficients multiply-
ing representation of flows. These are the missing part in flow modeling. While flows are
controlled by stock of carbon available, the rate could be modified by the phenomena that
drive flows: that is exactly what coefficients mean. Then — in a full description of the driv-
ing phenomena — they are complex parametrizations of these phenomena, other models
in its own right: ε must be a function of solubility (through Henry’s law of dissolution), of
T and of Ocean dynamics and thermodynamics — i.e. mixing layer depth, thermohaline
circulation and Ocean temperature —, α depends on Continental biological productivity,
rainfall and winds in the same manner as ζ relies on Oceanic biological productivity or
acid-alkaline balance and β must be a function of Atmosphere dynamics and thermodynam-
ics and Continental biological productivity. However, we also want our parametrizations
be correct but not a burden.
As a first approximation to the processes described before, we will take constant coeffi-

cients. This is not unrealistic, since — in a millennial timescale and not taking into account
transitional events — processes that drive non-interaction flows could be assummed to be
constant because fluctuations are small. Interaction flows may reverse in sign — because
of the control switching aforementioned in section 1.2. Yet that could be a little difficult to
model without a further analysis, that is in the course of another research goal and out of
the scope of this work.
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3 Modeling Carbon Subsystem.

Remark 2 For that reason, we will introduce an auxiliary flow in Atmospheric ODE in
order to take into account any excess or deficit of carbon due to constant parametrizations
of interaction flows: that is, a corrective flow. It will only depend on Atmospheric stock.

Therefore, because of the former remark, our SODE reads

Theorem 3 According to the rules we established
$

’

&

’

%

9C1 “ ´αC1 ` βC1C2
9C2 “ γC2 ´ βC1C2 ` εC2C3
9C3 “ ζC3 ´ εC2C3

(1)

where all coefficients are constant and positive (with the possible exception of γ).

Remark 3 Note that interaction terms — due to their nature — appear in a skew-symmetric
fashion.

The next thing to do is an analysis of SODE 1. We will do it in a dynamic-systemic
fashion.

3.1 Very short overview on techniques for dynamical systems.

3.1.1 Definition of dynamical system and interpretations.

SODEs, and in general differential equations, are expressions of dynamical systems.
Formally, we can write the following

Definition 1 [Dynamical System] A dynamical system on an open set X Ă Rn is a C1´

mapping (differentiable mapping with continuous derivative)

ϕ : R ˆ X −Ñ X

such that, when one defines the family of maps ϕt :“ ϕpt, xq, satisfies

(i) ϕ0pxq “ x, @x P X

(ii) pϕt ˝ ϕsqpxq “ ϕt`spxq, @s, t P R, x P X

Definition 2 [States and phase space] The points of the open set X are known as the states
of the dynamical system ϕ. X is known as the phase space of the dynamical system.

Because the scalar variable t represents time in applications, ϕ can be interpreted as a
mapping that, if x “ x0 P X is fixed, it gives the new state of the system x P X at time t.
More clearly, let us fix an initial x0 P X, then xptq “ ϕpt, x0q is the function that describes
the evolution of the system (the states that dynamical system visit), when we begin at x0. The
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3.1 Very short overview on techniques for dynamical systems.

set of states X can be interpreted as the possible combinations that state variables, which
characterize the system, can take. Thus, in the applications ϕ represents all possible paths
of evolution for the system, e.g. the possible trajectories a pendulum can take.
On the other hand, for a fixed tf, ϕ represents the new state xf to which x P X will

evolve, when we reach time tf. That is the same as having all possible initial states of the
system and evolving them in time. This is the meaning of the ϕt mappings.
Therefore, ϕpt, xq has all the information we need about evolution of dynamical system.

Remark 4 In this context, definition 1 says that at initial time t “ 0, ϕt is the identity map
on X (since to get the system at initial time is to do nothing), and that we can do translations
in time by composing these mappings (and therefore we can redefine initial time).

Let us make it more explicit to the reader. We fix a t0, t1 P R and select some x P X, then

ϕp0, xq “ x

ϕpt0, xq “ x0

ϕpt1, xq “ x1

i.e. the system at the state x at time t “ 0, is at the state x0 when t “ t0 and at the state
x1 when t “ t1. However, it is also true that if the system is at state x0 at time t “ 0 (since
ϕp0, x0q “ x0), then

ϕp´t0, x0q “ ϕp´t0,ϕpt0, xqq

“ pϕ´t0 ˝ ϕt0qpxq

“ ϕ´t0`t0pxq “ ϕ0pxq

“ x

and it follows that

x1 “ ϕpt1, xq

“ ϕpt1,ϕp´t0, x0qq

“ pϕt1 ˝ ϕ´t0qpx0q

“ ϕt1´t0px0q

“ ϕpt1 ´ t0, x0q

Thus,

ϕp´t0, x0q “ x

ϕp0, x0q “ x0

ϕpt1 ´ t0, x0q “ x1
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3 Modeling Carbon Subsystem.

when we take as initial state (we select the time origin) as x0.
When we choose x1 as the initial state, for the sake of completeness, then

ϕp´t1, x1q “ ϕp´t1,ϕpt1, xqq

“ pϕ´t1 ˝ ϕt1qpxq

“ ϕ´t1`t1pxq “ ϕ0pxq

“ x

ϕpt0 ´ t1, x1q “ ϕpt0 ´ t1,ϕpt1, xqq

“ pϕt0´t1 ˝ ϕt1qpxq

“ ϕt0´t1`t1pxq

“ ϕt0pxq

“ ϕpt0, xq

“ x0

which leads us to

ϕp´t1, x1q “ x

ϕpt0 ´ t1, x1q “ x0

ϕp0, x1q “ x1

Then we always can redefine the origin of time.
It is almost trivial to acknowledge the following (we have used it before in a sense)

Proposition 4 Let ϕ be a dynamical system on X. Then @t P R, ϕt is a diffeomorphism (a
C1´mapping with C1´inverse).

Proof. Since ϕ is a C1´mapping, then its restrictions ϕt are also a one-parameter family
of C1´mappings (a mapping for each t) in the form ϕt : X −Ñ X. Using the definition of
dynamical system, this family satisfies that @x P X

pϕt ˝ ϕ´tqpxq “ ϕt´tpxq

“ ϕ0pxq “ x

“ idpxq

therefore, ϕ´t, which is C1´mapping by hypothesis, is the inverse mapping of ϕt. We
conclude that ϕt is a diffeomorphism for every t P R, as we wanted to prove. □

Remark 5 In the context of time, former proposition says that dynamical systems accept
time-reversal transformation. Thus, dynamical systems are deterministic (as we only need
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3.1 Very short overview on techniques for dynamical systems.

to know initial state of the system to know every other future state) and time-reversible (we
also know, given initial state, every other past state — consistent with dynamics — using
negative time).

Let us delve deeper into the meaning of a dynamical system to emerge in the differential
equations realm. Let ϕpt, xq be a dynamical system over X, then the function

fpxq :“
dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“0

defines a C1-vector field. Why we evaluate at t “ 0 and not at t “ t0? We use limit
definition of derivative

dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“0
“ lim

hÑ0

ϕph, xq ´ ϕp0, xq

h

dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“t0

“ lim
hÑ0

ϕpt0 ` h, xq ´ ϕpt0, xq

h

both expressions are valid for any x P X. Then we use definition 1 in the second expression

dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“t0

“ lim
hÑ0

ϕpt0 ` h, xq ´ ϕpt0, xq

h

“ lim
hÑ0

ϕph ` t0, xq ´ ϕp0 ` t0, xq

h

“ lim
hÑ0

ϕph,ϕpt0, xqq ´ ϕp0,ϕpt0, xqq

h

“ lim
hÑ0

ϕph, x0q ´ ϕp0, x0q

h

but x0 P X. Therefore,

dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“0
“

dϕ

dt

ˇ

ˇ

ˇ

ˇ

t“t0

, @t0 P R

which means that f ‰ fpt, xq and validates our selection of t “ 0 to evaluate derivative.
Now, reader must note that fpxq is tangent to ϕpt, xq, @x P X. Thus, ϕpt, x0q is the

solution (integral curve or quadrature) of the following SODE with its corresponding initial
value problem (IVP)

$

&

%

9x “ fpxq

xp0q “ x0
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3 Modeling Carbon Subsystem.

The converse — that any
$

&

%

9x “ fpxq

xp0q “ x0

for which f is a C1´vector field, defines a dynamical system ϕ — is true by virtue of the
global existence theorem (see Perko, 2001, ch. 3; in particular section 3.1, theorem 1).
Therefore, the dynamical system is the general solution of former SODE.
From former revelation, one can think that dynamical systems only arise from autonomous

SODEs — those SODEs for which f ‰ fpt, xq — because it is clear that for each time f

changes and therefore we can not make time translations. However, what happens if we
grow the dimension of phase space, by the definition of the following?

X :“ pt, xq 6 X0 “ pt0, x0q

dt

dT
“ 1 6 t “ T ` cst.

FpXq :“ p1, fpXqq

then the non-autonomous SODE
$

&

%

9x “ fpt, xq

xpt0q “ x0

can be rewritten as the following SODE
$

&

%

dX
dT

“ FpXq

Xp0q “ X0

which is autonomous, and defines a dynamical system ϕpT ,Xq. What we have done, by
the addition of t as another dimension of phase space, is to glue together the one-parameter
family of C1´vector fields ftpxq :“ fpt, xq to form a complete vector field F, and saying that
the new t state variable is not coupled to the others.
Another interpretation of a dynamical system is the reason behind another name for ϕ:

the flow of the SODE. ϕ determines how the system evolves in a lagrangian fluid-dynamical
point of view (where the particles we follow are specific realizations of the dynamical
system). The equivalent eulerian point of view — how the phase space (or a subset of it)
flows — will be the evolution of every point in that subset: that means, the evolution of
different realizations of the system.
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3.1.2 Invariant sets of a dynamical system.

Former section leads us to formulate new questions. Is there any state in phase space
that is fixed? That is, if we start in that state, do we continue in that state? A third form to
express this is: Are there states that do not flow at all? Also, we could think about subsets
of phase space that do not flow or that their states flow inside them: the flow is constrained
to those subsets. These sets are known as invariant sets and, in the case of states, they are
called fixed points or — in other fields such as Physics — they are also known as equilibria.
From former questions, we can formulate definitions of invariant sets.

Definition 3 [Invariant set of a dynamical system] Let ϕ : R ˆ X −Ñ X be a dynamical
system and let Y Ă X satisfy that

ϕpt, Yq Ď Y, @t P R

that is, for every time t, all points in Y flow to other points in Y. Then Y is an invariant
subset of ϕ.

Remark 6 In a more informal way, dynamical system is constrained to evolve inside this
subset of states, if it begins in one of these states.

Definition 4 [Fixed point of a dynamical system] Let ϕ : RˆX −Ñ X be a dynamical system
and let x0 P X satisfy that

ϕpt, x0q “ x0, @t P R

then x0 is a fixed point of ϕ.

Remark 7 In relation to former definition, it is clear that a fixed point is an invariant set
that consists of only one state.

From former definitions, one would think that the search for invariant sets is doomed
to failure, since it seems that knowledge of invariant sets pass through finding an explicit
form for the flow ϕ. That is impossible in a general case — since not every SODE has a
closed form solution. In spite of this, one must query SODE in other ways to obtain this
information, without obtaining a numerical (approximate) or closed solution. This is the
goal of dynamical systems theory.
SODE associated to ϕ is written as 9x “ fpxq. This expression determines the tangent vec-

tor to the evolution curve in phase space corresponding to every initial state (in a lagrangian
point of view) or it determines the flow velocity field in the phase space and, therefore, any
possible realization of the system follow curves that have this field (constrained to them, in
a eulerian point of view), as we have explained before. Thus, if a point x0 is a fixed point,
then 9x “ 0 since xptq “ x0. Thus, we have shown that
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3 Modeling Carbon Subsystem.

Proposition 5 Let ϕ : R ˆ X −Ñ X be a dynamical system and 9x “ fpxq the corresponding
SODE. Then, every fixed point x0 P X satisfies that 9x “ 0, @t P R or, equivalently

fpx0q “ 0

Conversely, every zero of f is a fixed point.

Then, to look for fixed points, simply we seek the root of the vector field that defines the
flow.
For other invariant sets, criteria are more complicated. The following is for invariant

surfaces: we will not need more for our purposes.

Proposition 6 Let ϕ : R ˆ X −Ñ X be a dynamical system and 9x “ fpxq the corresponding
SODE. Then an invariant surface S Ď X satisfies that, if y P S, fpyq P TyS, where TyS is
the tangent space of S at point y.

Proof. Take any point y P S as an initial state. Then the solution xptq, defined in terms of
dynamical system as the flow of y or xptq “ ϕpt,yq, is a curve in phase space such that its
tangents at any time are determined by pf ˝ xqptq. By hypothesis, xptq P S for any t P R.
Suppose that pf ˝ xqptbq R TxptbqS for some tb P R but xptbq P S. Such supposition tells

us that, since f is C1´vector field, the point xptbq would have a neighborhood, where the
curve were not contained inside S. That is, we would conclude that S is not invariant: we
obtain a contradiction because of supposition that tangent vectors to the solution are not
contained in tangent space of the surface S.
Thus, @t, pf ˝ xqptq P TxptqS and — since xptq is defined for all y P S — then, for every

y P S, it follows that fpyq P TyS; which is what we were trying to show. □

Remark 8 The former proof could be summarized in the following manner: If any surface
is invariant, then all the trajectories beginning inside the surface will remain inside it. Thus,
tangent vectors of trajectories must be tangent to the surface.

An equivalent criteria can be developed for surfaces, when we are given its normal
space (e.g. for planar surface it is common to give the normal vector). This is a direct
consequence of former proposition.

Corolary 7 Let ϕ : R ˆ X −Ñ X be a dynamical system and 9x “ fpxq the corresponding
SODE. Then an invariant surface S Ď X satisfies that @y P S, fpxq K NyS, where NyS is the
normal space of S at point y.

Former criteria show that the vector field fpxq contains the same information as ϕ. How-
ever, we must make some workarounds to overcome the general impossibility to obtain a
closed expression for ϕ.
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Remark 9 Why we do not speak of invariant curves? As we can see, from the definition
of invariant surface, vector field defined by dynamical system must be inside the tangent
space at any point of the surface. If we apply that idea to a curve, then the vector field
shall be tangent to the curve at every point. Thus, an invariant curve is nothing else but
an integral curve of the vector field, which we call a solution. Then, for us, there are no
invariant curves. However, as we shall see in next subsection, there can be manifolds (in
particular curves) made of fixed points.

3.1.3 Classification of fixed points. Bifurcations.

Once we identified invariant sets for a given dynamical system, we want to know how
the system behaves in a neighborhood near them. In general, that task will involve a careful
evaluation using linearization or second-order approximation (termed Normal Form Theory)
around fixed points and, in some cases, Lyapunov functions. For surfaces or other invariant
sets, there is a more complex set of techniques, which will not be summarized.
The flow around equilibria is important, since it can give us a general portrait of the

evolution of the system without solving it (neither closed nor approximate solution): if a
fixed point is stable, the system will evolve towards it (trajectories will flow towards it or
the flow of phase space will sink into it); while if it is unstable, the system will evolve away
(trajectories will flow away or the flow of phase space have a source on it).
There are many types of equilibrium, depending on dimensionality of phase space. In a

2´dimensional framework, they are classified entirely and we present this classification.
First subdivision is between hyperbolic and non-hyperbolic fixed points. A hyperbolic

equilibrium is one with a linearization that has non-zero real eigenvalues. In opposition, a
non-hyperbolic fixed point has complex eigenvalues with non-vanishing imaginary part.
We look first into hyperbolic type. They are called nodes. There are three posibilities for

the eigenvalues of the linearization: both eigenvalues are positive, both are negative or
we have eigenvalues of different sign. Positive eigenvalues of linearization are associated
with fundamental solutions of the form eλt | λ ą 0, which increase arbitrarily when time in-
creases; negative ones are related to fundamental solutions of the form e´λt | λ ą 0, which
tend to vanish when time increases. Thus, positive eigenvalues define (in the linearization)
eigenspaces in which the dynamical system tends to go away from node (in non-linearized
system there will be a submanifold in which the flow tends to go away of the node and such
that the eigenspace found for the linearization is tangent to the submanifold at the node). In
opposition, negative eigenvalues define eigenspaces, and the corresponding submanifolds,
in which flow goes towards node. From former discussion, we classify nodes

Definition 5 [Hyperbolic fixed points] Let x P X be a node for a dynamical system, for which
X is a 2´manifold. Then it is a
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1. Stable node iff all eigenvalues of linearization are negative.

2. Unstable node iff all eigenvalues of linearization are positive.

3. Saddle node iff one eigenvalue is positive and the other is negative.

If eigenvalues are equal, for a stable or an unstable node, then the node is termed
improper node or degenerate node (if related eigenspace has dimension 1 and therefore
system is non-diagonalizable) or star (if the entire plane is eigenspace): e.g. there can be
improper stable nodes (degenerate stable nodes) or stable stars.

Remark 10 A glimpse to the topology of the flow around these equilibria is given in figure
3.

Now, we turn to non-hyperbolic fixed points. There is no general name for them. Since
their eigenvalues are complex with non-vanishing imaginary part, then, if λ is an eigenvalue,
λ˚ is the remaining eigenvalue (by virtue of the Fundamental Theorem of Algebra). Thus,
there are three posibilities for the eigenvalues: both eigenvalues are purely imaginary,
both eigenvalues have positive real part or both have negative real part. There are no
degenerate cases as in the case of hyperbolic ones: the diagonalization is always possible.
As before, the pair of purely imaginary eigenvalues have fundamental solutions of the form
e˘iλt (or can be written in terms of cosine and sine functions). Therefore, the flow does
not tend towards or away from equilibrium. Trajectories are closed and in the linearization
look like ellipses. The other two options, since the fundamental solutions are of the form
eReλte˘i Imλt, have flows that spiral down (negative real part) or away (positive real part)
from fixed point. This discussion leads to

Definition 6 [Non-hyperbolic fixed points] Let x P X be a non-hyperbolic fixed point for a
dynamical system, for which X is a 2´manifold. Then it is a

1. Center iff eigenvalues of linearization are purely imaginary.

2. Stable focus iff eigenvalues of linearization have positive real part.

3. Unstable focus iff eigenvalues of linearization have negative real part.

Remark 11 Centers are somewhat weak, because if one detects a center in a linearization,
it is possible that the non-linear (true) flow has not a center but a focus: that means that
the transformation of linearization may not preserve the topology of the flow between the
linearized flow and the true flow. In that case, to confirm the character of a non-hyperbolic
fixed point, it is necessary to use Normal Form Theory (a second order approximation at
the equilibrium) or Lyapunov functions. A glimpse to the topology of the flow around this
equilibria is given in figure 4.
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3.1 Very short overview on techniques for dynamical systems.

Until now, we have not seen equilibria with null eigenvalues in the linearization. These
ones will lead to manifolds of fixed points associated to the eigenspace of the null eigen-
value, since the fundamental solutions for the null eigenvalue are constant. This are called
non-isolated fixed points. For defining isolation without relying on linearization, we define
it with the following: a fixed point x is isolated if there exists an ϵ ą 0 such that there is no
other fixed point inside the ball of radius ϵ centered in the fixed point x. Negation of this
is our definition of non-isolated fixed point.

Definition 7 [Non-isolated fixed point] Let x be a fixed point. If for every ϵ ą 0, there is at
least one fixed point inside the ball, other than x, then x is non-isolated.

Remark 12 A glimpse to the topology of the flow around non-isolated fixed points is given
in figure 5.

In an n´dimensional setting (being X an n´manifold) classification is more complicated,
since there could be a manifold that pases through fixed point, in which it is a stable
focus; but another manifold passes through, in which it is unstable node; and also another
manifold in which the behavior is inconclusive from only linearization. In general, for each
equilibria we will have three submanifolds: The stable manifold (in which equilibrium is
stable), the unstable manifold (in which equilibrium is unstable), and the center manifold
(in which linearization is not enough to deduce stability). The sum of dimensionalities
of these submanifolds must be the whole space, unless there is some degeneration. In
the context of 2´dimensional systems, hyperbolic equilibria have no center manifold and
centers have only center manifold. Something to note is the following: while stable and
unstable manifolds are unique, center manifold may not be unique. This means that we
can find at least one center manifold, but maybe there is another manifold passing through
the fixed point, that also serves as center manifold and is different from the one we have
found.

However, there are another questions, and maybe the most important ones. When a
system has parameters, how the flow of the phase space is modified? Do fixed points or
invariant sets change their characteristics because of them? Do invariant sets vanish with
parameter modification? Since fpxq depends on parameters, it is clear that existence, char-
acterization, rise or vanishing of invariant sets is closely related with parameters. The char-
acter changes on fixed points are termed bifurcations and can be seen as phase changes
relying on parameters. These are important, because bifurcations make structural changes
in the flow of phase space, which can be related to changes in the evolution of physical
phenomena described by the dynamical system under inquiry.
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Figure 3: Phase space around fixed points (red points). First column: unstable cases. Sec-
ond column: stable cases. In rows: nodes, stars, improper nodes and saddle
nodes. Red lines: eigenspaces.
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Figure 4: Phase space around fixed points (red points). First column: counterclockwise
cases. Second column: clockwise cases. In rows: centers, unstable foci and
stable foci.

29



3 Modeling Carbon Subsystem.
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Figure 5: Phase space around fixed points (red points). Examples of flow around non-
isolated fixed points (a fixed point with a vanishing eigenvalue). Red line: line of
fixed points. Note that it acts as a separatrix of flow regimes.
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3.1 Very short overview on techniques for dynamical systems.

3.1.4 2D Example: Analysis of a non-linear pendulum.

We will illustrate these techniques, and show bifurcations, with a physicist-friendly non-
linear mechanical system: the pendulum. Pendulum, that we will analyze, has two terms:
the usual gravity term and a dampening term. The state of the system is given by θ the
angle formed by the pendulum and the local plumb line. Equation reads

:θ “ ´µ 9θ ´
g

L
sin θ

where µ is a parameter controlling dampening or forcing1 and L is the longitude of the
pendulum.
Every n´order ODE can be transformed into an n´dimensional SODE of first order. In

this case we introduce a new state variable ω :“ 9θ: this variable is angular velocity. Thus,
:θ “ 9ω and former equation can be recasted as the following SODE

#

9θ “ ω

9ω “ ´
g
L
sin θ´µω

First, we search for fixed points

fpθ,ωq “ pω,´
g

L
sin θ ´ µωq “ 0

First component of former expression establishes thatω ” 0. Second component establishes
that

ω “ ´
g

µL
sin θ

in order to vanish. Both conditions must be fulfilled at once, thus

´
g

µL
sin θ “ 0

sin θ “ 0 6

θ “ kπ, k P Z

if we suppose µ ‰ 0. If we allow µ “ 0, at the end we obtain the same condition. Then
there is a family of countable isolated fixed points given by

pθ,ωq “ pkπ,0q

1This type of forcing is somewhat artificial, but for the purpose of showing dynamical systems techniques is
perfect.
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3 Modeling Carbon Subsystem.

We linearize the pendulum SODE using Taylor series of f at each equilibrium. At first
order of approximation:

f „ fpθ0,ω0q ` pθ ´ θ0,ω ´ ω0q∇f|pθ0,ω0q

„ 0 ` pθ ´ kπ,ωq

˜

0 ´
g
L
cos θ

1 ´µ

¸ˇ

ˇ

ˇ

ˇ

ˇ

pθ0,ω0q

„ pθ ´ kπ,ωq

˜

0 ´
g
L
coskπ

1 ´µ

¸

f „

´

ω,´
g

L
pcoskπqpθ ´ kπq ´ ωµ

¯

„

´

ω, p´1qk`1g

L
pθ ´ kπq ´ ωµ

¯

„

$

&

%

`

ω,´
g
L

pθ ´ kπq ´ ωµ
˘

k “ 2ℓ, ℓ P Z
`

ω, g
L

pθ ´ kπq ´ ωµ
˘

k “ 2ℓ ` 1, ℓ P Z

then linearized system is
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

$

&

%

9θ “ ω

9ω “ ´
g
L

pθ ´ kπq´µω
,k “ 2ℓ, ℓ P Z

$

&

%

9θ “ ω

9ω “
g
L

pθ ´ kπq´µω
,k “ 2ℓ ` 1, ℓ P Z

and, for the sake of clarity, we make an invariant translation on θ: θn :“ θ ´ kπ and
9θn “ 9θ. Thus,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

$

&

%

9θ “ ω

9ω “ ´
g
L
θ´µω

,k “ 2ℓ, ℓ P Z
$

&

%

9θ “ ω

9ω “
g
L
θ´µω

,k “ 2ℓ ` 1, ℓ P Z

or in matrix form

p 9θ, 9ωq “ pθ,ωq

˜

0 ´
g
L

1 ´µ

¸

, k “ 2ℓ, ℓ P Z

p 9θ, 9ωq “ pθ,ωq

˜

0 g
L

1 ´µ

¸

, k “ 2ℓ ` 1, ℓ P Z
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3.1 Very short overview on techniques for dynamical systems.

Let us obtain the eigenvalues of system matrix:

det

˜

´λ ¯
g
L

1 ´pµ ` λq

¸

“ 0

pµ ` λqλ ¯
g

L
“ 0

λ2 ` µλ ¯
g

L
“ 0

or, for µ “ 0

λ2 ¯
g

L
“ 0

Thus, the two solutions are the following

λ˘ “ ´
1
2
µ ˘

1
2

c

µ2 ˘ 4
g

L

“ ´
1
2
µ ˘

1
2
µ

d

1 ˘
4g
µ2L

“
1
2
µ

˜

´1 ˘

d

1 ˘
4g
µ2L

¸

or for µ “ 0

λ˘ “ ˘

c

˘
g

L

where the switch in signs inside square root comes from the parity of k.
All the characteristics of eigenvalues rely upon the expression inside square root (a dis-

criminant). Let us look closer into it

D¯ “ 1 ˘
4g
µ2L

or for µ “ 0

D¯ “ ˘
g

L

If D¯ ă 0, then we have complex eigenvalues with non-vanishing imaginary part (non-
hyperbolic fixed points). Else (D¯ ě 0) eigenvalues are real (nodes). We divide this task
by cases.

1. µ ‰ 0 (forced — µ ă 0 — or dampened — µ ą 0 — pendulum)
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3 Modeling Carbon Subsystem.

a) D´ “ 1 `
4g
µ2L

i. D´ ă 0: impossible, since g,L ą 0, µ P R.

ii. D´ “ 0: impossible, since g,L ą 0, µ P R.

iii. D´ ą 0: unique available behavior.

A. 1
µ
λ` ą 0: always true, since D´ ą 1. If µ ą 0, then equilibrium is a

saddle node. If µ ă 0, it is a stable node.

B. 1
µ
λ` “ 0: impossible, since D´ ą 1.

C. 1
µ
λ` ă 0: impossible, since D´ ą 1.

b) D` “ 1 ´
4g
µ2L

i. D` ă 0: true, if µ2L ă 4g. Complex conjugate eigenvalues

λ “
1
2
µ

˜

´1 ˘ i

d

4g
µ2L

´ 1

¸

then this equilibrium is a focus. It is stable if µ ą 0 and unstable if µ ă 0.

ii. D` “ 0: true, if µ2L “ 4g. Eigenvalues with multiplicity. Both eigenvalues
are

λ “ ´
1
2
µ

and means that equilibrium is unstable if µ ă 0 and stable if µ ą 0. Possibly
an improper node.

iii. D` ą 0: true, if µ2L ą 4g.

A. 1
µ
λ` ą 0: impossible, since D` ă 1.

B. 1
µ
λ` “ 0: impossible, since D` ă 1.

C. 1
µ
λ` ă 0: always true, since D` ă 1. If µ ą 0, then equilibrium is a

stable node. If µ ă 0, it is a saddle node.

2. µ “ 0 (Classical simple pendulum)

a) D´ “
g
L
: symmetric real eigenvalues

λ˘ “ ˘

c

g

L

which means a saddle node.
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3.2 Analysis of Carbon Subsystem Model.

b) D` “ ´
g
L
: complex conjugate eigenvalues, pure imaginary

λ˘ “ ˘i

c

g

L

which means a center.

In the case of fixed points with odd k, these pass from stable nodes to saddle nodes with
increasing µ. Fixed points with even k have more rich behaviour: for µ ă 0 they pass
from unstable foci, through improper unstable nodes, to saddle nodes. For µ “ 0 they are
centers. For µ ą 0 they pass from stable foci, through improper stable nodes, to stable
nodes. These situations can be seen in figures 6, 7 and 8
The linearization centers are centers in the non-linear flow. This is confirmed by the

existence of a Hamiltonian: a conserved quantity, that in this case is related to the sum of
kinetic and potential energy. Hamiltonian function is a Lyapunov function in this case.

3.2 Analysis of Carbon Subsystem Model.

We will analyze SODE in equation 1 with the theory and ideas portrayed formerly.

3.2.1 Fixed points.

First, we identify our fpxq or, precisely, our fpCq.

fpCq “ p´αC1 ` βC1C2,γC2 ´ βC1C2 ` εC2C3, ζC3 ´ εC2C3q (2)

and we find zeros of this vector field and the conditions, if there are any, for this to happen.
These may reveal fixed points according to proposition 5. From the first component of 2

´αC1 ` βC1C2 “ 0

p´α ` βC2qC1 “ 0

out of which we have two conditions: @tC1ptq ” 0 or ´α ` βC2 vanishes or, equivalently,
@tC2ptq “ α{β.
We can do an analogous analysis of the third component of 2

ζC3 ´ εC2C3 “ 0

pζ ´ εC2qC3 “ 0

from which we have two conditions @tC3ptq ” 0 or ζ´εC2 is equal to zero or, equivalently,
@tC2ptq “ ζ{ε.
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Figure 6: Phase space of dampened pendulum with g
L

“ 1
s2 . In panels, from top to bottom:

overdampened µ “ 41
s , critically dampened µ “ 21

s and dampened µ “ 11
s .

Red points are fixed points.
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Figure 7: Phase space of classical simple pendulum with g
L

“ 1 1
s2 .

Second component of 2 is more involved

γC2 ´ βC1C2 ` εC2C3 “ 0

pγ ´ βC1 ` εC3qC2 “ 0

and this leads us to say that @tC2ptq ” 0 or γ ´ βC1 ` εC3 becomes zero or, equivalently,
@tC3ptq “ pβ{εqC1ptq ´ pγ{εq.
At first glance, it is obvious that certain conditions are incompatible. Let us experiment

with all combinations for the sake of completeness.
Firstly, we take C1ptq ” 0. Since C1 does not appear in third component, we can have

both conditions from this component:

• C1ptq,C3ptq ” 0

• C1ptq ” 0 ^ C2ptq ” ζ{ε

then we proceed to compare this conditions with those from second component. It is clear
that, unless γ{ε “ 0 (that is γ “ 0, which is not possible because our construction), second
condition on second component clashes with the first of former conditions. In the same
manner, unless ζ “ 0 (which is also not possible), first condition on second component
conflicts with the second of former conditions. This results in the following valid conditions

• C1ptq,C2ptq,C3ptq ” 0

• C1ptq ” 0 ^ C2ptq ” ζ{ε ^ C3ptq ” ´γ{ε
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Now, we make tests with second condition of the first component: C2ptq ” α{β. Third
component first option is compatible at a glance. Second option is not as clear as before.
The compliance of both of them means that

α

β
“

ζ

ε

which is a strong, but plausible, condition — it lowers dimensionality to parameter space
in one degree of freedom. Then valid conditions are, until now, the following

• C2ptq ” α{β ^ C3ptq ” 0

• C2ptq ” α{β ” ζ{ε

Former conditions clash with first condition on the second component, unless a parameter
or two vanishes, but they are fully compatible with the second condition. Valid options are

• C1ptq ” γ{β ^ C2ptq ” α{β ^ C3ptq ” 0

• ζ “ αε{β ^ C2ptq ” α{β ^ C3ptq “ pβ{εqC1ptq ´ pγ{εq

Finally, we summarize the valid conditions that we have obtained

1. C1ptq,C2ptq,C3ptq ” 0

2. C1ptq ” 0 ^ C2ptq ” ζ{ε ^ C3ptq ” ´γ{ε

3. C1ptq ” γ{β ^ C2ptq ” α{β ^ C3ptq ” 0

4. ζ “ αε{β ^ C2ptq ” α{β ^ C3ptq “ pβ{εqC1ptq ´ pγ{εq

First valid condition says that origin is a fixed point, second condition reveals that always
there is a fixed point in C2´C3 plane. In the same manner, third condition shows that there
is always a fixed point in C1´C2 plane. Nevertheless, both coordinate plane equilibria can
vary depending on parameters. This could be an evidence for invariant surfaces. Fourth
condition unveils that the only other fixed points that Carbon Subsystem model has, are
those on a line Γ (given in parametric form) subjected to the existence of a relationship
between flow parameters. It is worth to note that these fixed points are non-isolated.
Once we have interpreted results from our analysis we condense them in the following

theorem.

Theorem 8 SODE 1 has the following equilibria

1. The origin.

2. p0, ζ{ε,´γ{εq
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3 Modeling Carbon Subsystem.

3. pγ{β,α{β,0q

4. pτ,α{β, pβ{εqτ ´ pγ{εqq ÐÑ ζ “ αε{β, τ P R

Remark 13 From this theorem, it is possible to say something about bifurcations in Carbon
Subsystem. If Carbon Subsystem flows do not satisfy condition βζ “ αε, then the line of
non-isolated fixed points vanishes. Thus, former condition establishes a strong structural
change (a bifurcation and a structural instability of the system) in the flow of the dynamical
system. This can be an indication of the existence of invariant manifolds, that cut this line
of fixed points (or not — if the flow is parallel to this line). Also, it is worth to note that
second and third equilibria are contained inside the line of non-isolated fixed points, when
the condition for its existence is fulfilled.

3.2.2 Invariant surfaces.

Two things make us wonder ifC1´C2 andC2´C3 planes (and the remaining one, too) are
invariant: always there are two fixed points inside them (origin and the other equilibrium)
and it is somewhat strange to have negative concentrations that pass to positive values
or the other way round. Thus, we test their invariance with help of proposition 6 or its
corolary. Normal vectors for the three coordinate planes are e3, e1, e2 respectively: the
canonical coordinate vectors. Let us check that they are perpendicular to fpCq vector field
at each point of the planes2. We make dot product

fpCq ¨ e3 “ pζ ´ εC2qC3

fpCq ¨ e1 “ pα ` βC2qC1

fpCq ¨ e2 “ pγ ´ βC1 ` εC3qC2

and then we evaluate over corresponding planes

rfpCq ¨ e3spC1,C2,0q “ pζ ´ εC2q0 “ 0

rfpCq ¨ e1sp0,C2,C3q “ pα ` βC2q0 “ 0

rfpCq ¨ e2spC1,0,C3q “ pγ ´ βC1 ` εC3q0 “ 0

Thus, we have proven that fpCq is tangent to the coordinate planes. Therefore, these are
invariant and contain the flow of the dynamical system in each octant: that is, if we begin in
a given octant we will stay on that octant or at the boundary of it (coordinate planes). Thus,
if we have positive concentrations of carbon, we will have non-negative concentrations in

2In a three-dimensional setting, curves have one-dimensional tangent space and two-dimensional normal space
and surfaces have two-dimensional tangent space and one-dimensional normal space.
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3.2 Analysis of Carbon Subsystem Model.

all the evolution of the system. Also, if one reservoir gets depleted (a catastrophic event in
reality), it will never recover.
We summarize, as we have done with equilibria, former results in the following theorem

Theorem 9 For SODE 1, coordinate planes are invariant. Thus, flow of the dynamical
system is constrained to the octants: if the system begins in an octant, it stays in that octant
or its boundary (coordinate planes).

Before we begin to seek other invariant surfaces of this system in a non-educated manner,
we can use remarks 3 and 13 to guide our prospects: if we sum SODE 1 equations, we
get rid of non-linear terms and obtain the following

d

dt
pC1 ` C2 ` C3q “ ´αC1 ` γC2 ` ζC3 (3)

this means that Carbon content is not a conserved quantity, as we proposed when we
constructed the model. Now, from former study, we can restate original system in the
following manner, considering that Ci ‰ 0,

$

’

&

’

%

1
C1

9C1 “ ´α ` βC2
1
C2

9C2 “ γ ´ βC1 ` εC3
1
C3

9C3 “ ζ ´ εC2

in which left-hand sides can be rewritten as logarithmic derivatives
$

’

&

’

%

d
dt

lnC1 “ ´α ` βC2
d
dt

lnC2 “ γ ´ βC1 ` εC3
d
dt

lnC3 “ ζ ´ εC2

(4)

Let us try to write the right-hand side of the time derivative of the sum of the carbon stocks
with former expressions. From a quick and shallow examination, it is clear that second
equation and one of the remaining are enough to write it.
Let us try the first and the second equations of system 4: we need a γC2, then we multiply

first equation by γ{β. We need a ´αC1, then we multiply second equation by α{β. We
obtain

#

γ
β

d
dt

lnC1 “ ´αγ
β

` βγ
β
C2

α
β

d
dt

lnC2 “ γα
β

´ βα
β
C1 ` εα

β
C3

and a simplification gives
#

d
dt

lnCγ{β

1 “ ´
αγ
β

` γC2
d
dt

lnCα{β

2 “
αγ
β

´ αC1 ` αε
β
C3
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3 Modeling Carbon Subsystem.

which upon summation gives

d

dt

”

ln
´

C
γ{β

1 C
α{β

2

¯ı

“ ´αC1 ` γC2 `
αε

β
C3

Substraction of former expression from that of the sum of stocks tells us that

d

dt

”

C1 ` C2 ` C3 ´ ln
´

C
γ{β

1 C
α{β

2

¯ı

“

ˆ

ζ ´
αε

β

˙

C3

If we expect expression under time derivative to be conserved, right-hand side shall vanish.
But C3 ‰ 0, therefore ζ “ αε{β. Nevertheless, this is the condition for having the line of
fixed points! If condition is fullfilled, former expression means that

C1 ` C2 ` C3 ´ ln
´

C
γ{β

1 C
α{β

2

¯

“ H1 “ cst.

but this expression defines a one-parameter family of surfaces given by

g1pC1,C2q “ H1 ´ pC1 ` C2q ` ln
´

C
γ{β

1 C
α{β

2

¯

where H1 is the parameter. Thus, we can question ourselves about the possibility that this
surfaces are invariant. It is very likely. Let us prove it. We obtain the normal vector from
the expression of g1pC1,C2q.

n “ pB1g1, B2g1,´1q

“

ˆ

´1 `
γ

βC1
,´1 `

α

βC2
,´1

˙

“ ´p1,1,1q `

ˆ

γ

βC1
,

α

βC2
,0

˙

and if we make dot product with the vector field 2

fpCq ¨ n “ ´fpCq ¨ p1,1,1q ` fpCq ¨

ˆ

γ

βC1
,

α

βC2
,0

˙

but the first term is the equivalent to sum the three original equations of the SODE and the
second term is what we have done with logarithmic equations:

fpCq ¨ n “ αC1 ´ γC2 ´ ζC3 ´
αγ

β
` γC2 `

αγ

β
´ αC1 `

αε

β
C3

“ ´

ˆ

ζ ´
αε

β

˙

C3

thus, if line of equilibria exists, then these surfaces are invariant! We summarize these
results in the following
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3.2 Analysis of Carbon Subsystem Model.

Theorem 10 For SODE 1 where ζ “ αε{β the quantity

H1pCq “ C1 ` C2 ` C3 ´ ln
´

C
γ{β

1 C
α{β

2

¯

(5)

is a constant of movement or conserved quantity and it defines invariant surfaces

g1pC1,C2q “ H1 ´ pC1 ` C2q ` ln
´

C
γ{β

1 C
α{β

2

¯

In a similar way, let us construct a similar function using the remaining logarithmic equa-
tion (that for lnC3) — third equation of 4 — and the second one of the system 4. We need
a γC2, then we multiply third equation by ´γ{ε. Since we need ζC3, we multiply second
equation by ζ{ε. This leads to the following pair of equations

#

d
dt

lnCζ{ε

2 “
γζ
ε

´
βζ
ε
C1 ` ζC3

d
dt

lnC´γ{ε

3 “ ´
γζ
ε

` γC2

and, when we sum both equations, we obtain

d

dt

”

ln
´

C
ζ{ε

2 C
´γ{ε

3

¯ı

“ ´
βζ

ε
C1 ` γC2 ` ζC3

and substracting this last expression from the sum of reservoirs 3

d

dt

”

C1 ` C2 ` C3 ´ ln
´

C
ζ{ε

2 C
´γ{ε

3

¯ı

“

ˆ

´α `
βζ

ε

˙

C1

and if we hope that this quantity is conserved, as in the first case, we need that the factor
inside parenthesis at the right-hand side vanishes — since C3 ‰ 0. But, analogously as
before, the vanishing of that factor means that we have the line of fixed points! This makes us
clear that this line of fixed points is somewhat special: it gives birth to conserved quantities!
As before, conservation means

C1 ` C2 ` C3 ´ ln
´

C
ζ{ε

2 C
´γ{ε

3

¯

“ H2 “ cst.

and this defines a one-parameter family of surfaces given by

g2pC2,C3q “ H2 ´ pC2 ` C3q ` ln
´

C
ζ{ε

2 C
´γ{ε

3

¯

where H2 is the parameter. Also, let us check it is invariant. The normal vector is

n “ p´1, B2g2, B3g2q

“

ˆ

´1,´1 `
ζ

εC2
,´1 ´

γ

εC3

˙

“ ´p1,1,1q `

ˆ

0,
ζ

εC2
,´

γ

εC3

˙
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and if we make dot product with fpCq

fpCq ¨ n “ ´fpCq ¨ p1,1,1q ` fpCq

ˆ

0,
ζ

εC2
,´

γ

εC3

˙

but the first term is the equivalent to sum the three original equations of the SODE and the
second term is what we have done with logarithmic equations:

fpCq ¨ n “ αC1 ´ γC2 ´ ζC3 ´
βζ

ε
C1 ` γC2 ` ζC3

“

ˆ

α ´
βζ

ε

˙

C1

then these surfaces are also invariant! We summarize these results in the following

Theorem 11 For SODE 1 where ζ “ αε{β the quantity

H2pCq “ C1 ` C2 ` C3 ´ ln
´

C
ζ{ε

2 C
´γ{ε

3

¯

(6)

is a constant of movement or conserved quantity and it defines invariant surfaces

g2pC2,C3q “ H2 ´ pC2 ` C3q ` ln
´

C
ζ{ε

2 C
´γ{ε

3

¯

Remark 14 The existence of a second family g2 makes us wonder, if members of both
families have points in common. This is important, since if one point is common to both
invariant surfaces, then it must remain in both surfaces. The intersection of surfaces is a
curve and, therefore, this curve is invariant. But invariant curves, as we have remarked,
are solutions to the dynamical system.

Remark 15 Since each of g1´surfaces is invariant, then flow of SODE is constrained to
this surfaces. We also can do a one-one correspondence of this surfaces (and therefore the
numerical value of the constantH1) with points on the line of fixed points: that means that the
dynamics near the fixed points are only determined by the dynamics inside each invariant
surface. We have reduced a 3´dimensional problem to a 2´dimensional situation in the
particular case of ζ “ αε{β. That is, since there is a line of fixed points it means that these
points have one null eigenvalue and the eigendirection is the vector that determines the line.
Since we have found an invariant 2´manifold associated to each equilibrium in that line,
then flow is not parallel to the line and will depend on the character of the two remaining
eigenvalues.

Note the form of the conserved quantities 5 and 6. It consists of the sum of the reservoirs
minus an expression under a logarithm. The invariant surfaces that they generate and their
intersections (which must be solutions) could be difficult to describe. However, at a glance,
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3.2 Analysis of Carbon Subsystem Model.

if we substract conserved quantity 6 from 5 we obtain another conserved quantity, say H3,
which is

H3 “ H2 ´ H1 “ ´ ln
´

C
ζ{ε

2 C
´γ{ε

3

¯

` ln
´

C
γ{β

1 C
α{β

2

¯

“ ln
´

C
γ{β

1 C
pα{βq´pζ{εq

2 C
γ{ε

3

¯

but the exponent of C2 vanishes since we are in the case ζ “ αε{β. Thus, we write

H3 “ ln
´

C
γ{β

1 C
γ{ε

3

¯

H3
ε

γ
“

ε

γ
ln

´

C
γ{β

1 C
γ{ε

3

¯

“ ln
´

C
ε{β

1 C3

¯

eH3ε{γ “ C
ε{β

1 C3 6

C3 “ eH3ε{γC
´ε{β

1

Therefore, the invariant surface related to conserved quantity H3 is a cylinder. That means,
there are solutions of the system that lie in those surfaces. Last results just proved are
summarized in the following

Theorem 12 For SODE 1 where ζ “ αε{β, the quantity

H3pCq “ ln
´

C
γ{β

1 C
γ{ε

3

¯

(7)

is a constant of movement or conserved quantity and it defines invariant surfaces

g3pC1,C2q “ eH3ε{γC
´ε{β

1

Remark 16 From former three invariant surfaces — induced by the constants of movement
5, 6 and 7 —, we acknowledge that, in the case that there exist a line of equilibria, the
structure of the solutions is determined by two of the invariant surfaces: solutions are given
by their intersections. One of the families is dependent on the other two families.

Now, we shall analyze the stability of equilibria in theorem 8 in order to put former results
in context.
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3 Modeling Carbon Subsystem.

3.2.3 Local stability around equilibria.

First we make first order approximation of the SODE around equilibria

f „ fpC0q ` pC ´ C0q∇f|C0

„ 0 ` pC ´ C0q

¨

˚

˝

´α ` βC2 ´βC2 0
βC1 γ ´ βC1 ` εC3 ´εC3
0 εC2 ζ ´ εC2

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C0

„ pC ´ C0q

¨

˚

˝

´α ` βC2 ´βC2 0
βC1 γ ´ βC1 ` εC3 ´εC3
0 εC2 ζ ´ εC2

˛

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C0

Thus, for each equilibrium in theorem 8, former expression reads

pC ´ C0q

¨

˚

˝

´α 0 0
0 γ 0
0 0 ζ

˛

‹

‚
, C0 “ p0,0,0q

pC ´ C0q

¨

˚

˝

´α `
βζ
ε

´
βζ
ε

0
0 0 γ

0 ζ 0

˛

‹

‚
, C0 “ p0, ζ{ε,´γ{εq

pC ´ C0q

¨

˚

˝

0 ´α 0
γ 0 0
0 αε

β
ζ ´ αε

β

˛

‹

‚
, C0 “ pγ{β,α{β,0q

pC ´ C0q

¨

˚

˝

0 ´α 0
βτ 0 ´βτ ` γ

0 αε
β

0

˛

‹

‚
, C0pτq “ pτ,α{β, pβ{εqτ ´ pγ{εqq

the C0 term is not important, since we can do a translation to make new origin coincide
with our fixed point, as we have done in the pendulum case. Thus, we will obtain the
eigenvalues of former matrices to analyze local flow.

However, for the sake of clarity, we make analysis in batch. Characteristic polynomials
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3.2 Analysis of Carbon Subsystem Model.

of former linearized system matrices are

det

¨

˚

˝

´α ´ λ 0 0
0 γ ´ λ 0
0 0 ζ ´ λ

˛

‹

‚
“ p´α ´ λqpγ ´ λqpζ ´ λq

det

¨

˚

˝

´α `
βζ
ε

´ λ ´
βζ
ε

0
0 ´λ γ

0 ζ ´λ

˛

‹

‚
“ pλ ´

a

γζqpλ `
a

γζq

ˆ

´α `
βζ

ε
´ λ

˙

det

¨

˚

˝

´λ ´α 0
γ ´λ 0
0 αε

β
ζ ´ αε

β
´ λ

˛

‹

‚
“ pλ ´ i

?
αγqpλ ` i

?
αγq

ˆ

ζ ´
αε

β
´ λ

˙

det

¨

˚

˝

´λ ´α 0
βτ ´λ ´βτ ` γ

0 αε
β

´λ

˛

‹

‚
“ ´λ

„

λ2 ´
αε

β
p´βτ ` γq

ȷ

´ αβτλ

“ ´λ

„

λ2 ` αβτ `
αε

β
pβτ ´ γq

ȷ

and, therefore, eigenvalues are

$

’

’

’

’

’

&

’

’

’

’

’

%

λ1 “ ´α, λ2 “ γ, λ3 “ ζ C0 “ p0,0,0q

λ1 “ ´α `
βζ
ε
, λ2,3 “ ˘

?
γζ C0 “ p0, ζ{ε,´γ{εq

λ1 “ ζ ´ αε
β
, λ2,3 “ ˘i

?
αγ C0 “ pγ{β,α{β,0q

λ1 “ 0, λ2,3 “ ˘i
b

αβτ ` αε
β

pβτ ´ γq C0pτq “ pτ,α{β, pβ{εqτ ´ pγ{εqq

At the first fixed point, the origin, there is a negative eigenvalue and one positive and
another that depends on the sign of γ. Therefore, there is an stable 1´eigenspace, one
unstable 1´eigenspaces and the other depending on γ (if γ ą 0, there is another un-
stable 1´eigenspace; if γ ă 0, there is another stable 1´eigenspace; or one unstable
2´eigenspace if γ “ ζ). The second equilibrium has three different eigenvalues: at least
there is one 1´eigenspace that is unstable, if βζ ą αε; and stable, if βζ ă αε. The
other eigenvalues are associated with two 1´eigenspaces: if γ ą 0, they have a saddle-
like behaviour; if γ ă 0, they have center-like behavior. The third fixed point introduces
a 1´eigenspace that is unstable or stable relying on the same criteria as for the former
fixed point. The two remaining induce a center-like behavior, if γ ą 0; and a saddle-like
character, if γ ă 0.

47



3 Modeling Carbon Subsystem.

The line of equilibria deserves a separate analysis. We analyse

D “ αβτ `
αε

β
pβτ ´ γq

“ αpβ ` εqτ ´
αε

β
γ

if D ă 0, eigenvalues λ2,3 become real, but remain pure imaginary if D ą 0:

D ă 0

αpβ ` εqτ ´
αε

β
γ ă 0

pβ ` εqτ ´
ε

β
γ ă 0

pβ ` εqτ ă
ε

β
γ

τ ă
ε

βpβ ` εq
γ

therefore, for equilibria on the line that have τ satisfiying latter condition, they have eigenspaces
with saddle-like behavior related to λ2,3. If not, they have center-like behavior. If γ ą 0 there
is saddle-like behavior at first octant, if γ ă 0, first octant has purely center-like behavior.
We summarize former findings into the next two theorems.

Theorem 13 For SODE 1 and its equilibria in theorem 8, the linearizations in a neighbor-
hood of each equilibrium give the following system matrices

1. p0,0,0q:
¨

˚

˝

´α 0 0
0 γ 0
0 0 ζ

˛

‹

‚

2. p0, ζ{ε,´γ{εq:
¨

˚

˝

´α `
βζ
ε

´
βζ
ε

0
0 0 γ

0 ζ 0

˛

‹

‚

3. pγ{β,α{β,0q:
¨

˚

˝

0 ´α 0
γ 0 0
0 αε

β
ζ ´ αε

β

˛

‹

‚
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3.2 Analysis of Carbon Subsystem Model.

4. pτ,α{β, pβ{εqτ ´ pγ{εqq:
¨

˚

˝

0 ´α 0
βτ 0 ´βτ ` γ

0 αε
β

0

˛

‹

‚

Theorem 14 For SODE 1 and its equilibria in theorem 8, the linearizations in a neighbor-
hood of each equilibrium give the following eigenvalues and linear stability results

1. p0,0,0q:

λ1 “ ´α (stable)

λ2 “ γ (unstable if γ ą 0, stable if γ ă 0)

λ3 “ ζ (unstable)

2. p0, ζ{ε,´γ{εq:

λ1 “ ´α `
βζ

ε
(unstable if βζ ą αε, stable if βζ ă αε)

λ2,3 “ ˘
a

γζ (saddle-like if γ ą 0, center-like if γ ă 0)

3. pγ{β,α{β,0q:

λ1 “ ζ ´
αε

β
(unstable if βζ ą αε, stable if βζ ă αε)

λ2,3 “ ˘i
?
αγ (center-like if γ ą 0, saddle-like if γ ă 0)

4. pτ,α{β, pβ{εqτ ´ pγ{εqq:

λ1 “ 0 (non-isolated fixed points)

λ2,3 “ ˘i

c

αβτ `
αε

β
pβτ ´ γq

which are saddle-like if τ ă εγ{pβpβ` εqq and center-like for the other option; where,
if γ ă 0, all fixed points in first octant have center-like behavior.

3.2.4 Stable, unstable and center-like subspaces.

Once we have made the analysis of the stability with a linear approximation, let us look
for the eigenspaces of which we have declared their existence in former analysis. For that
end, we shall obtain eigenvectors associated with eigenvalues. Thus, we need to find the
vectors u that make the following: Λpuq “ λu, where Λ is the linear function that represents
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3 Modeling Carbon Subsystem.

linearization of the SODE. Former expression can be written as Λpuq ´ λ idpuq “ 0 or
Spuq “ 0 where S “ Λ ´ λ id. That is, we seek the kernel of the linear function S or the
kernel of any matrix that represents S in a particular basis, e.g. A ´ λI. Let us rewrite
linearized system matrices in terms of their eigenvalues to ease this task.

Theorem 15 For SODE 1, and its equilibria in theorem 8, the linearizations in a neighbor-
hood of each equilibrium give the following system matrices in terms of eigenvalues.

1. p0,0,0q:
¨

˚

˝

λ1 0 0
0 λ2 0
0 0 λ3

˛

‹

‚

2. p0, ζ{ε,´γ{εq:
¨

˚

˚

˝

λ1 ´pα ` λ1q 0

0 0
λ2
2,3
ζ

0
λ2
2,3
γ

0

˛

‹

‹

‚

3. pγ{β,α{β,0q:
¨

˚

˚

˝

0
λ2
2,3
γ

0

´
λ2
2,3
α

0 0
0 ´pλ1 ´ ζq λ1

˛

‹

‹

‚

4. pτ,α{β, pβ{εqτ ´ pγ{εqq:
¨

˚

˚

˚

˝

0
λ2
2,3

βτ` ε
β pβτ´γq

0

γ ´
β
αε

pλ22,3 ` αβτq 0 β
αε

pλ22,3 ` αβτq

0 ´ ε
β

λ2
2,3

βτ` ε
β pβτ´γq

0

˛

‹

‹

‹

‚

and we analyze the kernels of each A ´ λiI matrix. We begin with the origin

A ´ λiI “

¨

˚

˝

λ1 ´ λi 0 0
0 λ2 ´ λi 0
0 0 λ3 ´ λi

˛

‹

‚

then, it follows that

ppλ1 ´ λiqC1, pλ2 ´ λiqC2, pλ3 ´ λiqC3q “ p0,0,0q (8)
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and if i “ 1

p0, pλ2 ´ λiqC2, pλ3 ´ λiqC3q “ p0,0,0q ÐÑ C2 “ C3 ” 0

then eigenvectors are of the form pC1,0,0q or we say that eigenspace is U1 “ ⟨tp1,0,0qu⟩.
In an entirely analogous manner, it follows from 8 that U2 “ ⟨tp0,1,0qu⟩ and U3 “

⟨tp0,0,1qu⟩.

We come to the second fixed point and we get

A ´ λiI “

¨

˚

˚

˝

λ1 ´ λi ´pα ` λ1q 0

0 ´λi
λ2
2,3
ζ

0
λ2
2,3
γ

´λi

˛

‹

‹

‚

and we write down transformed vector

˜

pλ1 ´ λiqC1,´pα ` λ1qC1 ´ λiC2 `
λ22,3

γ
C3,

λ22,3

ζ
C2 ´ λiC3

¸

“ p0,0,0q (9)

and if i “ 1 former expression reduces to

˜

0,´pα ` λ1qC1 ´ λiC2 `
λ22,3

γ
C3,

λ22,3

ζ
C2 ´ λiC3

¸

“ p0,0,0q

From third component of reduced 9, we can put C3 in terms of C2

λ22,3

ζ
C2 ´ λiC3 “ 0

λiC3 “
λ22,3

ζ
C2

C3 “
λ22,3

ζλi
C2

and from second component of reduced 9, we put C2 in terms of C1 eliminating C3 from
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former expression

´pα ` λ1qC1 ´ λiC2 `
λ22,3

γ
C3 “ 0

´pα ` λ1qC1 ´ λiC2 `
λ42,3

γζλi
C2 “ 0

´pα ` λ1qC1 ´ λiC2 `
λ22,3

λi
C2 “ 0

´pα ` λ1qC1 `
λ22,3 ´ λ2i

λi
C2 “ 0

λ22,3 ´ λ2i

λi
C2 “ pα ` λ1qC1

C2 “
λipα ` λ1q

λ22,3 ´ λ2i
C1

which leads to

C3 “
γpα ` λ1q

λ22,3 ´ λ2i
C1

and we conclude that eigenvectors have the form

C1

˜

1,
λipα ` λ1q

λ22,3 ´ λ2i
,
γpα ` λ1q

λ22,3 ´ λ2i

¸

or

C1
α ` λ1

λ22,3 ´ λ2i

˜

λ22,3 ´ λ2i

α ` λ1
, λi,γ

¸

and, therefore, the related eigenspace is

U1 “

⟨#˜

λ22,3 ´ λ21

α ` λ1
, λ1,γ

¸+⟩

Now, we do the same for the other eigenvalues at once. First component of 9, since
λ1 ‰ λ2,3, gives C1 ” 0. The expression for C3, that we have derived for the i “ 1 case,
is already valid and it reads

C3 “
λ2,3

ζ
C2
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Also, expression for C2 is valid, but previous manipulations:

λ22,3 ´ λ2i

λi
C2 “ 0

expression that leads to saying that C2 is arbitrary. Therefore, eigenvectors for i “ 2,3 are
of the form

C2

ˆ

0,1,
λ2,3

ζ

˙

and the related eigenspaces are

U2,3 “

⟨"ˆ

0,1,
λ2,3

ζ

˙*⟩

Once we are seasoned in the mechanics of this operations, we delve into the next fixed
point, which has matrix

A ´ λiI “

¨

˚

˚

˝

´λi
λ2
2,3
γ

0

´
λ2
2,3
α

´λi 0
0 ´pλ1 ´ ζq λ1 ´ λi

˛

‹

‹

‚

and the related transformed vector is

˜

´λiC1 ´
λ22,3

α
C2,

λ22,3

γ
C1 ´ λiC2 ´ pλ1 ´ ζqC3, pλ1 ´ λiqC3

¸

“ p0,0,0q (10)

However, in this chance, we begin with the first component and get C1 in terms of C2

´λiC1 ´
λ22,3

α
C2 “ 0

λiC1 “ ´
λ22,3

α
C2

C1 “ ´
λ22,3

αλi
C2
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Readily, we plug former result in the second component of 10 and reduce

λ22,3

γ
C1 ´ λiC2 ´ pλ1 ´ ζqC3 “ 0

´
λ42,3

αγλi
C2 ´ λiC2 ´ pλ1 ´ ζqC3 “ 0

λ22,3

λi
C2 ´ λiC2 ´ pλ1 ´ ζqC3 “ 0

λ22,3 ´ λ2i

λi
C2 ´ pλ1 ´ ζqC3 “ 0

λ22,3 ´ λ2i

λi
C2 “ pλ1 ´ ζqC3

C2 “
λipλ1 ´ ζq

λ22,3 ´ λ2i
C3

and C1 is in terms of C3

C1 “
γpλ1 ´ ζq

λ22,3 ´ λ2i
C3

Thus, if i “ 1, third component of 10 says that C3 is arbitrary and eigenvectors are of
the form

C3

˜

γpλ1 ´ ζq

λ22,3 ´ λ2i
,
λipλ1 ´ ζq

λ22,3 ´ λ2i
,1

¸

or

C3
λ1 ´ ζ

λ22,3 ´ λ2i

˜

γ, λi,
λ22,3 ´ λ2i

λ1 ´ ζ

¸

and the related eigenspace results

U1 “

⟨#˜

γ, λ1,
λ22,3 ´ λ21

λ1 ´ ζ

¸+⟩

If we make an analogy with the former fixed point; if i “ 2,3, we obtain that third com-
ponent of 10 says that C3 ” 0 since λ1 ‰ λ2,3. Expression for C1 is already valid and it
reads

C1 “ ´
λ2,3

α
C2
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and we obtain that C2 is arbitrary from second component (before reduction). Therefore,
eigenvectors take the form

C2

ˆ

´
λ2,3

α
,1,0

˙

Therefore, the corresponding eigenspaces are

U2,3 “

⟨"ˆ

´
λ2,3

α
,1,0

˙*⟩
Finally, we will do the same operations for the case of the line of equilibria. Matrix is

written as

A ´ λiI “

¨

˚

˚

˚

˝

´λi
λ2
2,3

βτ` ε
β pβτ´γq

0

γ ´
β
αε

pλ22,3 ` αβτq ´λi
β
αε

pλ22,3 ` αβτq

0 ´ ε
β

λ2
2,3

βτ` ε
β pβτ´γq

´λi

˛

‹

‹

‹

‚

expression that leads to the following three equations

´λiC1 `

ˆ

γ ´
β

αε
pλ22,3 ` αβτq

˙

C2 “ 0 (11)

λ22,3

βτ ` ε
β

pβτ ´ γq
C1 ´ λiC2 ´

ε

β

λ22,3

βτ ` ε
β

pβτ ´ γq
C3 “ 0 (12)

β

αε
pλ22,3 ` αβτqC2 ´ λiC3 “ 0 (13)

and from equation 13, we find that

C3 “
β

αελi
pλ22,3 ` αβτqC2

Similarly, from equation 11

C1 “

ˆ

γ

λi
´

β

αελi
pλ22,3 ` αβτq

˙

C2

“
γ

λi
C2 ´ C3

If we plug former expression into equation 12

γ

λi

λ22,3

βτ ` ε
β

pβτ ´ γq
C2 ´

λ22,3

βτ ` ε
β

pβτ ´ γq
C3´

λiC2 ´
ε

β

λ22,3

βτ ` ε
β

pβτ ´ γq
C3 “ 0
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collecting terms

γλ22,3 ´

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

λi

”

βτ ` ε
β

pβτ ´ γq

ı C2 ´

ˆ

1 `
ε

β

˙

λ22,3

βτ ` ε
β

pβτ ´ γq
C3 “ 0

and we conclude that

ˆ

1 `
ε

β

˙

λ22,3

βτ ` ε
β

pβτ ´ γq
C3 “

γλ22,3 ´

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

λi

”

βτ ` ε
β

pβτ ´ γq

ı C2

ˆ

1 `
ε

β

˙

λ22,3C3 “
γλ22,3 ´

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

λi
C2

C3 “
β

pβ ` εqλ22,3

γλ22,3 ´

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

λi
C2

“
γ

λi

βλ22,3 ´
β
γ

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

pβ ` εqλ22,3
C2

and

C1 “
γ

λi

ελ22,3 ´
β
γ

”

βτ ` ε
β

pβτ ´ γq

ı

λ2i

pβ ` εqλ22,3
C2

If i “ 1, former expressions are not valid since λ1 “ 0. However, in that case equations
11 and 13 lead to the vanishing of C2, and equation 12 reduces to C3 “ pβ{εqC1, then
eigenvectors are of the form C1p1,0,β{εq and U1 “ ⟨tp1,0,β{εqu⟩. Note that this is the
direction vector of the line of fixed points.
If i “ 2,3, then expressions we derived are valid and become

C1 “
γ

λ2,3

ε ´
β
γ

”

βτ ` ε
β

pβτ ´ γq

ı

β ` ε
C2

C3 “
γ

λ2,3

β ´
β
γ

”

βτ ` ε
β

pβτ ´ γq

ı

β ` ε
C2

and eigenvectors have the form
ˆ

ε ´
β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ

,
β ` ε

γ
λ2,3,β ´

β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ˙
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Therefore, eigenspaces become

U2,3 “⟨"ˆ

ε ´
β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ

,
β ` ε

γ
λ2,3,β ´

β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ˙*⟩
We summarize proven results in the following

Theorem 16 For SODE 1 and its equilibria in theorem 8 the linearizations in a neigh-
borhood of each equilibria give the following eigenspaces, related to the corresponding
eigenvalues

1. p0,0,0q:

U1 “ ⟨te1u⟩
U2 “ ⟨te2u⟩
U3 “ ⟨te3u⟩

2. p0, ζ{ε,´γ{εq:

U1 “

⟨#˜

λ22,3 ´ λ21

α ` λ1
, λ1,γ

¸+⟩

U2,3 “

⟨"ˆ

0,1,
λ2,3

ζ

˙*⟩

3. pγ{β,α{β,0q:

U1 “

⟨#˜

γ, λ1,
λ22,3 ´ λ21

λ1 ´ ζ

¸+⟩

U2,3 “

⟨"ˆ

´
λ2,3

α
,1,0

˙*⟩

4. pτ,α{β, pβ{εqτ ´ pγ{εqq:

U1 “ ⟨tp1,0,β{εqu⟩

U2,3 “

⟨"ˆ

ε ´
β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ

,
β ` ε

γ
λ2,3,β ´

β

γ

„

βτ `
ε

β
pβτ ´ γq

ȷ˙*⟩

Let us now identify manifolds, if possible, and discuss the dynamics.
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3.2.5 Stable, unstable and center manifolds.

We have said in section 3.1.3 that manifolds related to stable and unstable cases are
unique and manifolds related to center-like behavior may not be unique. Taking this into
account, let us compare what we know from invariant manifolds and our previous work
regarding stability in the linear approximation.
We begin with the origin. Eigenspaces are generated by the canonical vectors (theorem

16). And we have found that invariant surfaces through the origin are the coordinate
planes, their intersections being the axes, which are lines whose direction vectors are the
canonical vectors. Therefore, axes are solutions of the dynamical system. This can be seen
in figures 9-12.
For the second and third fixed points, invariant manifolds coincide with manifolds in

which center or saddle-like behavior takes place, depending on the sign of γ. However,
only one of such fixed points is present at the first octant not matter if γ is positive or
negative. The fixed point at the first octant has always a center-like behavior at the linear
approximation. Therefore, at least for these points, C1 ´ C2 or C2 ´ C3 planes are center
manifolds. In that cases, it remains to know, if in non-linear regime, those fixed points at the
first octant are centers or foci. The other manifold will determine if the flux will be towards
that plane or away from it depending on stability. However, with the information retrieved
in former sections, there is no hint of this.
Until now, the most striking feature of Carbon Subsystem Model is the existence of a

line of equilibria, subjected to the condition that ζ “ αε{β. In this case, the system has
three families of invariant surfaces induced by three non-independent constants of motion.
Constant given by equation 7 sheds light into the structure of the field: it is organized
in those hyperbolic-like cylinders, g3 surfaces, given by the invariant surfaces induced by
that conserved quantity. Figures 9-12, show the differences between the phase space
with ζ “ αε{β and the cases where former condition is not fulfilled. It is evident the
aforementioned organization of the vector field in the cases where the condition is present.
In all the aformentioned figures, ζ ą αε{β. Therefore for ζ ă αε{β flow will go towards
coordinate planes, in opposition to the depicted behavior.
Now, each equilibrium point on the line — at the interior of the first octant — lies in

one and only one g3. Therefore, in each g3 lies all the evolution around corresponding
equilibrium points. Thus, we can think that these surfaces are center manifolds consistent
with the previous linear local analysis. We want to know if there exist periodic solutions (or
closed orbits).
Every single point of the first octant has a well-defined value of each H1,H2 and H3.

Therefore, the families of surfaces induced by Hi, that is gi, do not intersect each other
within the same family: since they are the level surfaces of Hi. From former reasoning,
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each equilibrium has its own triplet of surfaces g1,g2,g3 that contain it. We say that at
each equilibrium, the corresponding gi´triplet — and the corresponding pairs — intersect
in only one point: the fixed point itself. If it were not true, then there would be a intersection
that must be a solution of the system, which renders the fixed point to be a non-fixed point:
that is a contradiction.
Let c be a fixed point on the line, g3,c be the surface that passes through it. Therefore,

any point on that surface will have a different value of H1 than the value of H1,c assigned
to the fixed point. Take the surface g1,c of all fixed points such that H1: g1,c “ H1,c ´

H1pC1,C2,0q. For any other point C, in particular on g3,c, those which have a certain
H1 “ h1 “ cst. lie on the surface g1 “ h1 ´ H1pC1,C2,0q. Thus, g1 ´ g1,c “ h1 ´ H1,c.
We analyze cases: if h1 “ H1,c, both surfaces are the same; if h1 ă H1,c, g1 is below
g1,c, which means that g1 Xg3,c “ H since g1 Xg1,c “ H, because they are level surfaces
of H1; finally, if h1 ą H1,c, g1 is above g1,c and there must be a non-empty g1 X g3,c, in
which c R g1 X g3,c.
Former paragraph is a proof that the function Ĥ1 “ H1 ´H1,c is positive on g3,cztcu and

satisfies that Ĥ1pcq “ H1pcq ´H1,c “ H1,c ´H1,c “ 0. Direct consequence of the definition
of Ĥ1 is that, it is another constant of motion, because we are only substracting a constant
H1,c to H1 (which is already a conserved quantity).
In order to see the purpose of the construction of Ĥ1, we state — without proof — a

theorem, due to Aleksandr Lyapunov (Perko, 2001), and an auxiliary definition.

Definition 8 [Lyapunov functions] Let X Ď Rn be an open subset that contains a point x0
and let 9x “ f P C1pXq such that fpx0q “ 0 (x0 is a fixed point of f). A function L P C1pXq

such that Lpx0q “ 0 and Lpxq ą 0 for all x P Xztx0u is called a Lyapunov function.

Theorem 17 [Lyapunov stability criteria] Let X Ď Rn be an open subset that contains a
point x0, let 9x “ f P C1pXq such that fpx0q “ 0 and L be a Lyapunov function in X. If
9L ď 0, @x P X, then x0 is stable; if 9L ă 0 for x P Xztx0u, then x0 is asymptotically stable
and if 9L ą 0 for x P Xztx0u, then x0 is unstable.

Therefore, we have constructed a Lyapunov function — namely Ĥ — over the surface
g3, which can be taken as the space X since flow is constrained to this surface. But this
function has a vanishing time derivative as we have proven previous to the establishment
of Lyapunov stability criteria. In consequence,

Corolary 18 [Center-like dynamics of Carbon Subsystem] Any equilibrium on the line of
fixed points for the Carbon Subsystem Model, that has center-like linearization, behaves as
a center (in the non-linear flow) on the family of surfaces g3. Then these surfaces are filled
with a continuum of closed orbits.

This is a surprising result! Former corolary has a graphical representation in the figures
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9 and 11, where it is possible to infer, from vector field, closed orbits surrounding line of
equilibria in each case.

3.2.6 Physical consequences of former mathematical analysis.

Former analysis can be extended in order to obtain periods and amplitudes of the peri-
odic solutions g1 X g3,c or, at least approximations, in which we would see how flows of
Carbon between Continent, Atmosphere and Ocean generate different periodicities. These
will be in terms of the Hi, which are heavily relying on parameters (flows of carbon). This
could be a future line of research.
However, the main results of this chapter — and maybe of this whole work — are the

consequences of the corolary 18: for certain equivalence of ratios of the flows — the ratio
of the productivity of the Ocean to its interaction with Atmosphere be equal to the ratio of
the productivity of Continent to its interaction with Atmosphere, ζ{ε “ α{β — yields that
Carbon Subsystem has a periodic evolution. If equivalence of ratios is not fulfilled, Carbon
Subsystem renders aperiodic and spirals down or goes away. Then, there are two phases:
one in which organization leads to periodicity (periodic phase) and one where there are
no constants of motion and leads to decay (aperiodic phase). The model is structurally
unstable. But this structural instability was discussed in chapter 1, where we presented the
Mid-Pleistocene Transition. Structural instability exists in reality, we are only modeling it:
in the context of the presented model Mid-Pleistocen Transition and similar events have an
immediate explanation as phase transitions due to structural instability.
Transition itself is a lapse when the equivalence of ratios is not fulfilled, then the system

migrates between invariant surfaces — which in aperiodic phase are no longer invariant.
Internal mechanisms tend to restore the equivalence of ratios and system again gets in
the periodic phase, but with different periodicity and amplitude. Some lapses that are
in periodic phase are the glacial ages. These glacial ages contain several cycles of the
periodic phase, which are the glacial cycles.
Short-term evolution depends on other internal processes. These processes alter flows of

Carbon as perturbations. If the perturbations are sufficiently large, then a phase change
to aperiodic phase is induced. If perturbations are relatively small, they give the in-cycle
variability seen in Vostok proxy. Therefore, presented model is equivalent to the idea of
the model of a large central object, e.g. the Sun, and the point-like object, e.g. the Earth,
in which the orbit of the Earth is an ellipse. When we put in action the gravitational
influences of the other planets and the Moon, orbit of the Earth is no longer an ellipse nor is
closed. In spite of this, we can say that, at any instant, Earth go through an ”instantaneous”
ellipse: the whole orbit is made of bits of ellipses. In the context of our model, Carbon
Subsystem follows trajectories that have ”noise” because there are perturbations. However,
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Figure 9: Phase space of Carbon Subsystem with ζ “ αε{β and γ ă 0
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Figure 10: Phase space of Carbon Subsystem with ζ ‰ αε{β and γ ă 0
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Figure 11: Phase space of Carbon Subsystem with ζ “ αε{β and γ ą 0
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Figure 12: Phase space of Carbon Subsystem with ζ ‰ αε{β and γ ą 0
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the model with constant coefficients we have presented and analyzed shows some sort of
mean behavior of the Subsystem.
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4 Modeling Energy Subsystem.

Wir müssen wissen — wir
werden wissen!

(David Hilbert (1862-1943))
Energy is the key to the Earth System as we know it. It starts and keeps running Atmo-

sphere dynamics and Ocean circulation and most of biological activity. In particular, it
determines Surface (both Continent and Ocean) temperature — amongst other factors. The
main energy source — on which Earth System relies — is, unsurprisingly, the Sun. Stars
emit electromagnetic radiation — due to thermonuclear reactions inside them, mantained
by equilibria of diverse nature, e.g. equilibrium between internal thermal pressure and grav-
itational collapse — in a characteristic spectrum, which is more or less related to surface
temperature and stellar atmosphere composition.
In the case of the Sun, it is a main sequence G2 spectral type star: that means it has an

effective temperature (Teff,@) about 5778K. Its emission spectrum can be approximated by
that of a blackbody with this temperature. Shifts on this basic behavior are due to absortion
by stellar atmosphere and the fact that blackbody is an idealization. However, we will use
it.

Hypothesis 3 Sun radiates as a spherical blackbody at Teff,@.

With this in mind, we begin a series of calculations.

Lemma 19 Sun luminosity — total energetic output — is

L@ “ 4πr2@σT4eff,@ (14)

where r@ is Sun’s radius and σ is Stefan-Boltzmann constant.

Proof. By hypothesis 3, solar output per unit area is

σT4eff,@

and we multiply this by Sun’s area

4πr2@
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4 Modeling Energy Subsystem.

we obtain

4πr2@σT4eff,@

which turns out is the total energetic output, as we wanted to show. □

Lemma 20 Solar irradiance — energetic output distributed at a sphere of radius r — is

I@ “

´r@

r

¯2
σT4eff,@ (15)

Proof. From former lemma, we know the total output. Since by hypothesis 3 the output is
assumed homogeneous and isotropic, if we divide luminosity by the area of the sphere of
radius r we obtain the irradiance.

I@ “
L@

4πr2

“

´r@

r

¯2
σT4eff,@

as we required. □

Corolary 21 At r “ r@´C « 1AU

I@ « p1370 ˘ 10q
W
m2 (16)

where r@´C is the mean distance between Sun and Earth.

Proof. At r “ r@´C « 1AU, irradiance calculation gives

I@ «

˜

6.96342 ˆ 108m
1.49598023 ˆ 1011m

¸2

5.6736713 ˆ 10´8 W
m2K4

p5778Kq4

« p1370 ˘ 10q
W
m2

as we meant. □

Remark 17 As one can see, equation 15 with r “ r@´C summarizes the factors through
which I@ “ I@ptq. Astrophysical factors are given by variations of Teff,@ and r@, while
part of the orbital forcing enters through r@´C. Uncertainties were calculated with radius,
distance and effective temperature.

Now, we will figure out the amount of energy Earth intercepts. For that, we must multiply
irradiance by the area actually covered by Earth. Accordingly, we make the following
assumptions.
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Hypothesis 4 We will ignore the fact that there exists a variation of distance due to non-flat
Earth. That is, let Earth gather solar energy as a disk.

Hypothesis 5 Let Earth be spherical, when one distributes radiation across Surface.

Lemma 22 Intercepted solar energy by Earth is given by

F@ “ π

ˆ

r@rC

r@´C

˙2
σT4eff,@ (17)

where rC is the mean Earth’s radius.

Proof. We must multiply solar irradiance at r “ r@´C by the area Earth covers in accor-
dance with hypothesis 4, that is

F@ “ πr2CI@

“ π

ˆ

r@rC

r@´C

˙2
σT4eff,@

which is the result we sought. □

Finally, one can calculate total energy flux integrated over the whole Earth’s spherical
area.

Proposition 23 Solar energy flux distributed over Earth is

Ω@ “
1
4
I@ (18)

Proof. Lemma 22 gives us F@. Dividing this by Earth’s area according to hypothesis 5 we
obtain

Ω@ “
F@

4πr2C

“
1
4

ˆ

r@

r@´C

˙2
σT4eff,@

but the latter expression, in accordance with lemma 20, can be rewritten as

Ω@ “
1
4
I@

which is the result we wanted to prove. □

Corolary 24 At r “ r@´C

Ω@ « p343 ˘ 2q
W
m2 (19)
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Proof. By corolary 21, the result follows trivially. □

As we assumed constant quantities when we worked out former numerical values, we
shall do that in the following, therefore

Hypothesis 6 Radii and effective temperature are constant.

Remark 18 This assumption is necessary, if we want to show that astrophysical and celestial-
mechanical factors could be only triggers. Then, received solar input will be constant.

It is worth to note that values we used in former calculations — which are present values
— are those that, possibly, were taken by variables during Vostok proxy timeline.

Once we had a glimpse on energy source, we must figure out how Earth System collects
this energy. This could be complicated, if we choose to do it in a full-physics approach,
since radiative transfer is a physical process in which many physical concepts — from
electromagnetism through thermodynamics and quantum mechanics — are involved and
mathematical formulation would be as complex as one wish.
Before Earth absorb any incoming solar radiation, part of it goes again out of Earth

System towards space: due to reflection of this radiation by atmospheric aerosols, clouds,
diverse kinds of surface — from water bodies to different kinds of soils — snow and ice and
scattering by atmospheric gases. The ratio of the integrated value of these contributions to
the total is the planetary albedo.
Obviously, in the meanwhile, solar radiation may interact — in a stronger way than

scattering —with atmospheric gases, e.g. absortion of UV radiation by O3 at the upper
atmosphere and, of course, absortion by clouds. However, this attenuation of incoming
solar radiation is small — since most atmospheric gases have quantum-mechanical prop-
erties, which make them non-reactive to incoming solar radiation, and absorbed parts of
incoming radiation sprectrum are minimum in energetic content, because Sun emission is
mostly at visible spectrum. Also, the absortion by lower clouds is quite low, since most of
solar radiation inicident on them is reflected — they have high albedo — and higher clouds
are not optically thick. Therefore, we shall not include this attenuation in our balance.
The remaining flux — total minus planetary albedo contribution — is absorbed by Earth.

That is, it heightens Surface internal energy, which in turn rises its temperature. A body that
has a temperature over 0K emits electromagnetic radiation. Thus, heated Surface radiates.
We will do the following hypothesis, as we done it for Sun’s emission

Hypothesis 7 Surface radiates as a spherical blackbody at Teff,C.

A direct consequence of this hypothesis is the following proposition.

Proposition 25 Surface emission is

ΩC “ σT4eff,C (20)
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It is straightforward to see that typically Teff,C ! Teff,@, which in consequence means that
their blackbody spectra have almost no overlapping — which means that the overlap oc-
curs for wavelength ranges, where at least one of them has nearly no emission. While most
of solar emission is within visible range, terrestrial radiation is within IR range: that makes
reasonable the common terminology of incoming shortwave radiation (ISR) for incoming
solar radiation and outgoing longwave radiation (OLR) for terrestrial radiation. Coinci-
dentally, while Atmosphere is almost transparent to ISR, many atmospheric gases interact
strongly with OLR — as their molecular levels become excited by the energy of these pho-
tons. These gases are the GHG, water vapor the most important of them, as we have
explained in section 2.
When GHG molecules return to base state, they radiate again in the IR range. Depend-

ing on layers of GHG, there are three possibilities for a reemited photon: it is absorbed
again by another GHG molecule, it leaves Earth System into space or it reaches Surface
— where it is absorbed again — and heats it: GHG interaction with OLR and this back
radiation constitute together the so-called Greenhouse effect. Models of layers of GHG
require using integro-differential equations which are well beyond the complexity level we
want to achieve.
OLR is not entirely shielded by GHG absortion bands: there are wavelength ranges —

customarily called windows — through which OLR flux departs. Broadening or narrowing
of windows relies on concentration of GHG (due to probability of interaction increases if the
density of GHG molecules increases). This fact makes necessary to consider Atmosphere
as a ”grey” body regarding OLR.
Finally, some of Surface’s internal energy is spent in other thermodynamical phenomena

which are not radiative in nature, such as convection — that leads to Ocean circulation and
Atmosphere dynamics — sensible heat flux to Atmosphere — that heats it — or in phase
change processes. However, latent heat flux — due to Water Subsystem phase changes —
is balanced in a global annual average, since global water vapor content in Atmosphere
does not rises nor decreases.
Former discussion enables us to construct a model of Energy Subsystem analogously to

the setting up of Carbon Subsystem model. The rules here are easier to understand, but we
present them in summary as we have done with Carbon, and we give figure 13 in order
to settle down ideas.
From this scheme we can formulate the following axiom and notation.

Axiom 3 Energy transformations will be represented by non-dimensional and normalized
fractions — that is, they take real values in r0,1s.

Therefore, energy transformations divide fluxes of energy. In figure 13 these are repre-
sented by orange flux divisors.
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Notation 2 Non-dimensional fractions associated with Energy transformations are repre-
sented by the symbols ai, where i P N.

We have proven the following proposition from the description of Energy Subsystem.

Proposition 26 Earth System energy transformations are the following

Planetary albedo. Fraction of ISR that is reflected towards space by Earth. Represented
by non-dimensional fraction a1.

Shortwave absortion. Fraction of ISR minus albedo fraction that is absorbed by Atmo-
sphere. Represented by a2. Nonetheless, a2 Ñ 0.

Non-radiative. Fraction of internal energy of Surface that is employed in convection or
lost in sensible heat flow. Represented by a3.

Longwave absortion. Fraction of OLR absorbed by Atmosphere’s GHGs. Represented
by a4

Back radiation. Emitted Atmospheric LR towards Surface. Represented by a5.

Now, we formulate another axiom — concerning energy reservoirs.

Axiom 4 Energy reservoirs are Surface and Atmosphere. Energy stock is measured in
J{m2.

Notation 3 Surface reservoir is represented by S and Atmosphere is written as A.

Remark 19 Energy stock comprehends roughly internal energy per unit surface of Surface
and Atmosphere.

We will also axiomatize the concept of Energy flux.

Axiom 5 Energy flux is the exchange of energy between reservoirs.
Available energy fluxes are the outputs Atmosphere and Surface would have as their

stocks are emitted as radiation only.

With this in mind and the following notation, we begin to write down fluxes.

Notation 4 Energy fluxes will be represented by the following symbol: ϕ. Available energy
fluxes will be represented by φ. All have a subindex according to their nature and are
measured in W{m2

Proposition 27 The following are the fluxes taken into account in the model of Energy
Subsystem:

• ϕ@ “ Ω@
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• ϕalb “ a1Ω@

• ϕabs,sr “ a2p1 ´ a1qΩ@

• ϕabs,sfc “ p1 ´ a2qp1 ´ a1qΩ@

• φC “ ΩC

• ϕabs,nr “ a3ΩC

• ϕOLR “ p1 ´ a3qΩC

• ϕabs,lr “ a4p1 ´ a3qΩC

• ϕspc,1 “ p1 ´ a4qp1 ´ a3qΩC

• φA “ ΩAtm

• ϕbck,lr “ a5ΩAtm

• ϕspc,2 “ p1 ´ a5qΩAtm

Once we have done the former axioms and notations, we can sum inputs and outputs in
order to obtain the rate of change of reservoirs at the following proposition.

Proposition 28 For the Surface reservoir we have

9S “ p1 ´ a1qΩ@ ` a5ΩAtm ´ ΩC

and for Atmosphere reservoir we write down

9A “ pa3 ` p1 ´ a3qa4qΩC ´ ΩAtm

Proof. In the case of S we sum input fluxes and substract output fluxes

9S “ ϕabs,sfc ` ϕbck,lr ´ φC

“ p1 ´ a1qΩ@ ` a5ΩAtm ´ ΩC

Similarly for Atmosphere

9A “ ϕabs,nr ` ϕabs,lr ´ φA

“ a3ΩC ` a4p1 ´ a3qΩC ´ ΩAtm

“ pa3 ` p1 ´ a3qa4qΩC ´ ΩAtm

Both results are the ones we sought. □

Nevertheless, we need to couple Carbon and Energy Subsystems. What we have being
saying from the very beginning makes us to link both SODEs through the effect of Carbon
Cycle in the way Earth captures radiation. There is no other place to do that but in energy
transformations: energy transformations will be carbon-dependent. But, how?
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4.1 Parametrizations. Coupling with Carbon Subsystem.

Let us analyze energy transformations one by one to figure out how Carbon participates
in each. We will reason deeply about factors, but from former sections it remains clear that
C2 is the parameter.

Planetary albedo. The way elements of Earth System reflect ISR rely upon biology and
Water Subsystem.

Clouds are the most important contribution to albedo since they cover Earth’s surface
in an average of 50 percent — albeit they also support OLR absortion. Their contri-
bution to albedo and OLR absortion is a function of their type and distribution: it is
determined by the area they cover, their thickness, water content, droplet and/or ice
cristal geometry and condensation nuclei chemical composition, besides other factors.
Because of the discussion at the beginning of the chapter about coupling of Carbon
Subsystem and Water Subsystem, we can conclude that — in interglacial periods —
Atmosphere has more water vapor content and, since surface is warmer, there is a
potential to have more convection and low cloud formation. Convection will raise
rainfall that nurtures Continental food chain and soil types gradually change to ones
with lesser albedo, for they tend to be covered by vegetation. That is, though clouds
formation is favored, their role as reflectors does not overwhelm the Surface Energy
stock to maintain interglacial warmer temperatures — because of OLR absortion role
of increased water vapor content in the Atmosphere and their vanishing half life com-
pared to kiloannum timescales. In glacial periods — even though low cloud activity
lessens — Atmosphere’s thermodynamical state is enough for precipitation being in
the form of ice and snow. Gradually, cloud cover type that increases albedo dimin-
ishes but ice and snow cover grows. Mid-latitudes — due to the developing of the ice
and snow cover — and tropical — due to decrease in rainfall — vegetation diminish
and let that desertification augments further planetary albedo. Therefore, it is hinted
that we can parametrize a1 “ a1pC2q and this function is a decreasing function.

Non-radiative. As we described cloud role in the former reasoning, and since convection
increases as a response to non-homogeneous thermodynamical state of the Atmo-
sphere, subject to the boundary conditions of surface and higher atmosphere, it is
clear that we can put forward that a3 “ a3pC2q and it is an increasing function.

Longwave absortion. This trasformation is the clearest of all of them that relies upon GHG
heavily, as we said when we drafted quantum-mechanical aspects of absortion of OLR
by GHGs molecules. Therefore, it is clear that a4 “ a4pC2q and it is an increasing
function.
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4 Modeling Energy Subsystem.

Back radiation. This is the other end of OLR absortion in the latter discussion. Therefore it is
also straightforward to suggest that a5 “ a5pC2q and that it is an increasing function.

We have found that all energy transformations could be written down as monotonic
functions of C2. But we need to figure out closed expressions — or at least a model —
for these functions. In order to advance throughout this problem, we can discuss about
characteristics of these functions in relation to natural phenomena described.
Since we are dealing with ai P r0,1s, the function values are bounded. Then, we must

seek a model which is bounded. Concerning natural phenomena, it is clear that energy
transformations never reach maximum or minimum values of the codomain. Extrema are in
no way possible: matter can not be a perfect reflector or a perfect absorber of ISR; GHG
can not absorb all OLR, although we make concentrations become overwhelmingly high
and we raise temperatures and pressures — and in the process, we obliterate Earth System
— in such a level that broadening of spectral absortion lines becomes larger and larger;
emission of GHG can not be directed completely towards Surface and all energy stock
can not be used by non-radiative processes, since them depend upon an imbalance that is
corrected continuously by these very processes. Thus, there is always some saturation limit
— for both extrema — in energy transformations.

From the former argumentation, it becomes apparent: saturation implies that functions
are asymptotic to the boundaries of the codomain. This — in addition to monotonicity —
means that: ai Ñ 0 when C2 Ñ ´8 and ai Ñ 1 when C2 Ñ 8 for i “ 3,4,5 and the
converse for i “ 1. This lower the number of candidates for parametrizations. However, it
would be also nice if our parametrization is continuous.
Instead of determining in a completely arbitrary way this function, we can let selection

be done through the construction of an ODE that governs ai: the arbitrariness shall only be
that we restrict governing ODE to be a first-order ODE. Thus, we must think about the rate
of change of ai with C2.
Natural first option — for the case of monotonical increasing function — would be to

write down
dai

dC2
“ riai

that is, an exponential growth. Note that an steady-state solution is the null function, then
asymptotical properties are fulfilled for the lower limit since solutions — by virtue of the
ODE existence and uniqueness theorem — do not intersect each other. Nonetheless, this
model fails utterly to capture the other limit: we must restrict exponential growth.
The following model can be the solution

dai

dC2
“ riai p1 ´ ℓipaiqq
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4.1 Parametrizations. Coupling with Carbon Subsystem.

where ℓi is a known function of ai. Extra term will stop exponential growth depending
on the function ℓi. For making a selection of ℓi, we must consider the meaning of slope.
Exponential growth ODE says us that slope of ai grows arbitrarily since ai is a monotonic
increasing function and determines its own slope. Thus, second model must cut off this
growth and, at the same time, keep slope positive — because we want a monotonic in-
creasing function. Then, ℓi is such a function that makes rate of change of ai non-negative
but with at least one concavity. Function ai will increase but there is a point which marks
a decreasing rate of rise.
For simplicity, let us pick ℓi as follows

ℓipaiq “
1
ni

ai

therefore, the rate of change reads

dai

dC2
“ riai

ˆ

1 ´
1
ni

ai

˙

“ riai ´
ri

ni

a2i

and we conclude that slope profile has a parabolic form. By the sign of quadratic term, we
know this parabola opens downwards. First line gives us steady-state solutions which are
ai “ 0 and ai “ ni, and therefore (by symmetry of parabola) ai “

ni

2 is where the apex
of parabola is located — where maximum growth ocurrs amidst both steady-state solutions.
Since we have two steady-state solutions of the governing ODE, every solution — other
than steady-state — will be asymptotic to one or both. If we take as an IVP the condition
aipC2,0q “ ai,0 P p0,niq, former discussion lets us see that aipC2q will be monotonic
increasing and asymptotic to both steady-state solutions — again, owing to existence and
uniqueness of solutions. For IVP away from this band between 0 and ni, the behavior shall
be of growth towards 0 or decay to ni — because of the sign of the field determined by
parabola and in this context 0 is stable and ni is unstable, while in the band 0 is unstable
and ni is stable — but the values that the function takes are quite unphysical.
Former dynamical-systemic analysis leads to the following interpretation of parameters of

this governing ODE: ri are intrinsic growth rates associated with exponential growth, which
are bounded by the existence of a cap for the increase, ni. For our purpose ni “ 1, @i.
Former analysis is only reversed in certain details for the case where ri ă 0 and gives the
corresponding model for albedo. As a summary, we propose the following

Theorem 29 Let ai : R −Ñ p0,1q Ă r0,1s the energy transformation functions. Then, ai

satisfy the following non-linear first-order ODE

dai

dC2
“ riaip1 ´ aiq (21)
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4 Modeling Energy Subsystem.

Remark 20 The governing ODE — which we have constructed before — is the so-called lo-
gistic equation, proposed by the first time by Verhulst, (1845) in connection with population
dynamics.

We want an expression for the relevant solutions of ODE 21. Fortunately in this case,
non-linearity is not an issue to get a closed form. We propose the IVP aipC2,0q “ ai,0 and
integrate using the method of partial fractions to recast ODE in a convenient form

a 1
i “ riaip1 ´ aiq

1
aip1 ´ aiq

a 1
i “ ri

ˆ

B

ai

`
D

1 ´ ai

˙

a 1
i “ ri

Bp1 ´ aiq ` Dai

aip1 ´ aiq
a 1
i “ ri

therefore

Bp1 ´ aiq ` Dai “ 1

B ` pD ´ Bqai “ 1 6

B “ 1, D “ 1

which are the coefficients of the partial fraction expansion of the left hand side. By intro-
ducing this information into the ODE, we have recasted it into the following form

ˆ

1
ai

`
1

1 ´ ai

˙

a 1
i “ ri

which can be integrated readily using the fundamental theorem of calculus, as both terms
on the left hand side are the derivatives of logarithms

ż

1
ai

dai `

ż

1
1 ´ ai

dai “

ż

ri dC2
ż

1
ai

dai ´

ż

´
1

1 ´ ai

dai “

ż

ri dC2

lnai ´ lnp1 ´ aiq “ riC2 ` ln c

ln
ai

1 ´ ai

“ riC2 ` ln c

ai

1 ´ ai

“ ceriC2
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4.1 Parametrizations. Coupling with Carbon Subsystem.

We shall do some algebra gymnastics to obtain a closed form as we promised

ai “ ceriC2 ´ ceriC2ai
`

1 ` ceriC2
˘

ai “ ceriC2

aipC2q “
ceriC2

1 ` ceriC2

“

1
c
e´riC2

1
c
e´riC2

ceriC2

1 ` ceriC2

“
1

1 ` 1
c
e´riC2

and substitute IVP for determining c

aipC2,0q “
1

1 ` 1
c
e´riC2,0

“ ai,0 6

ai,0 “
1

1 ` 1
c
e´riC2,0

1
ai,0

“ 1 `
1
c
e´riC2,0

1
ai,0

´ 1 “
1
c
e´riC2,0

1
c

“

ˆ

1
ai,0

´ 1
˙

eriC2,0

and we introduce this in the explicit quadrature

aipC2q “
1

1 `

´

1
ai,0

´ 1
¯

e´ripC2´C2,0q

and we have proven the following

Theorem 30 Explicit formula for ai : R −Ñ p0,1q Ă r0,1s is the following

aipC2q “
1

1 `

´

1
ai,0

´ 1
¯

e´ripC2´C2,0q
(22)

where ai,0 is the value ai takes at the reference C2,0 and ri ă 0 for i “ 1 and ri ą 0, i “

3,4,5.

In figure 14 we show some plots to exhibit the behavior of the parametrizations.
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4.2 Model set up.

4.2 Model set up.

From the axiom 5, we can recast equations in proposition 28 in a form that ΩC ÞÑ S

and ΩAtm ÞÑ A. This mapping of variables is accomplished by multiplying by 1{s both
stocks. Formally, that is equivalent to say that ΩC and ΩAtm are proportional to S and
A — respectively — through proportionality factors kC,kAtm, which have units of 1{s and
values of 1. This will establish a first-order SODE for Energy Subsystem.
We will also establish arbitrarily Ω@ ‰ Ω@ptq as normalizing factor by dividing SODE

by it. Therefore, we map S{Ω@ ÞÑ s and A{Ω@ ÞÑ b

Theorem 31 Energy Subsystem SODE is given by
#

9s “ p1 ´ a1q ` a5b ´ s
9b “ ´ b ` pa3 ` p1 ´ a3qa4qs

(23)

in a non-dimensionalized way and in a normal form
#

9S “ p1 ´ a1qΩ@ ` a5A ´ S
9A “ ´ A ` pa3 ` p1 ´ a3qa4qS

(24)

where all coefficients are given by parametrizations of theorem 30.

Remark 21 It is worth to note that Energy Subsystem SODE is linear, but with variable
coefficients.

From the solutions of this SODE, one can promptly calculate T through Stefan-Boltzmann
equation slightly modified for the effect of non-radiative processes: we use ϕOLR in the
calculation instead of φC, therefore — accounting for non-dimensionalization —

p1 ´ a3qsΩ@ “ σT4 6

T “
4

c

p1 ´ a3qs

σ
Ω@

and we have proven that

Theorem 32 From the solutions of the SODE 23, Surface temperature T (in Kelvin) is given
by

T “
4

c

p1 ´ a3qs

σ
Ω@ (25)

or from SODE 24

T “
4

c

p1 ´ a3q

σ
S (26)
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4 Modeling Energy Subsystem.

4.3 Standard energy equation.

We can do some algebra to mix equations in SODE 24 and obtain an equation for
temporal evolution of T . First, we take equation 26, raise to fourth power, and get its time
derivative

σT4 “ p1 ´ a3qS

4σT3 9T “ p1 ´ a3q 9S ´ 9a3S

and since a3 “ a3pC2q, we can use chain rule to calculate 9a3

4σT3 9T “ p1 ´ a3q 9S ´
da3
dC2

9C2S

and we remember that a3 satisfies logistic equation by theorem 29, so we substitute this in
the latter expression and obtain

4σT3 9T “ p1 ´ a3q 9S ´ r3a3p1 ´ a3q 9C2S

and we do the same with 9S using corresponding equation of the SODE 24

4σT3 9T “ p1 ´ a3q rp1 ´ a1qΩ@ ` a5A ´ Ss ´ r3a3p1 ´ a3q 9C2S

At the left hand side we will try to complete an S, since we have a σT3 and on the right
hand side we have a p1´a3q. In order to do that, we multiply former equation by T , divide
it by p1 ´ a3qT and, subsequently, using relationship between T and S we get

4
σT4

1 ´ a3

1
T

9T “ p1 ´ a1qΩ@ ` a5A ´ S ´ r3a3
9C2S

4
S

T
9T “ p1 ´ a1qΩ@ `

´

a5A ´ r3a3
9C2S

¯

´ S

“ p1 ´ a1qΩ@ `

˜

a5A ´
r3a3

9C2
1 ´ a3

σT4
¸

´
1

1 ´ a3
σT4

From proposition 27 we see that ϕOLR “ p1 ´ a3qΩC and from proposition 25 we can
write down ϕOLR “ p1 ´ a3qσT4eff,C. Therefore, we can conclude that T4 “ p1 ´ a3qT4eff,C
and we can recast former equation in terms of effective temperature

4
S

T
9T “ p1 ´ a1qΩ@ `

´

a5A ´ r3a3
9C2σT

4
eff,C

¯

´ σT4eff,C (27)

Former equation can be compared with the one presented by Hogg, (2008) and that is
an standard in the literature in its generic form:

R 9Tstd “ Sstd ` Gstd ´ σT4std
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4.3 Standard energy equation.

where R is the surface heat capacity, Sstd is insolation and Gstd is greenhouse effect term.
In our equation

R ÞÑ 4
S

T
, Sstd ÞÑ p1 ´ a1qΩ@, Gstd ÞÑ a5A ´ r3a3

9C2σT
4
eff,C
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Part III

Numerical Results and Conclusions
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5 Simulation and results

Rationem vero harum gravitatis
proprietatum ex phænomenis
nondum potui deducere, et
hypotheses non fingo.

(Isaac Newton (1643-1727))
Once we have constructed and made an analysis of our Earth System Model, it is our

task to use it. Equations from SODEs 1 and 23 are numerically solved using information of
previous chapters concerning the dynamical structure of the Carbon Subsystem mainly: the
fundamental corolary 18. The objective is to simulate Vostok time series for atmospheric
CO2 and T: then we seek for closed orbits in Carbon Subsystem.

5.1 Workflow.

We made an algorithm to begin numerical explorations of the model. The summarized
version is the following: We searched for reasonable initial conditions and chosen param-
eter values. This was made in an iterative process at the end of which we obtained the
best fitting parameters to Vostok data. The approximation algorithm was a manual process,
that is, we did not use an automatized optimization algorithm. However, we used MSE
between observations and simulations as a guide to judge best fitting.
We used formulas to link model and observation spaces, since we have made use of

non-dimensionalized SODEs 1 and 23. In the case of Carbon Subsystem, we used a
concentration translation and a homothetic transformation on the observed data to obtain
an initial approximation for the amplitude and base level in the model space. This was also
an iterative process.
The results from this iterative process yielded the following expression:

C2,model “ 5.202 ˆ 10´3 pC2,obsq ´ 0.9 (28)

Similarly, for ∆T, we assumed an annual global climatic normal of 15 ˝C, that is,

Tmodel,celsius “ ∆Tobs ` 15 ˝C (29)

All iterations in both processes were carried out in Python programming language using
two approaches: using Numpy numerical libraries (based on Fortran-written numerical
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5 Simulation and results

methods) — in particular the solver odeint based on lsoda from ODEPACK and ode
based on vode from NETLIB — and the autor-written library of numerical methods — in
particular an implementation of Adams-Bashforth-Moulton predictor-corrector method with
one iteration of an explicit fourth order Runge-Kutta to start the method.
The final output was processed, taking it to observation space. We have done a linear

interpolation of both proxy data and numerical solutions to obtain regularly spaced samples,
and then we have run DFT-based spectral analysis on both sources in order to compare
spectral composition of observations with that of simulation. For that end, we have used
periodogram naïve spectral estimation, since we thought that a more complex technique is
not necessary in this case (such as multitaper or wavelet analysis). We have used native
Numpy signal processing methods to obtain periodogram. Previously, signals were linearly
detrended and standarized in order to comparison of power spectra be feasible.

5.2 Initialization and results.

The initial conditions for the Energy Subsystem were estimated taking into account that
Atmospheric and Surface fluxes must be greater than Ω@. Additionally, considering the
recent value of C2ref “ 387ppmv, we also fix ai,0: a1,0 “ 0.313,a2,0 “ 0.207,a3,0 “

0.897,a4,0 “ 0.624, from considerations of actual albedo and outgoing radiation and
estimation through simulations of non-radiative processes contribution.
Unfortunately, initial conditions for the Carbon Subsystem were more difficult to establish.

Although there are proxies for Continental and Oceanic stocks, they are not in the form we
need: generic interchangeable carbon. Given our modeling assumptions — dating since
chapter 1 and construction of Carbon Subsystem Model in chapter 3 — and the fact that we
begin at an interglacial period with an active Continent and a dormant Ocean — we may
infer the following ordering for the initial values of the carbon stocks: C3,0 ď C1,0 ď C2,0.
Results from the iterative process are presented in table 1.
In table 1 we do not summarize the values for C3,0, γ and ζ. The following is done to

obtain them. Initial conditions fulfill C1,0 ` C2,0 ` C3,0 “ 1. From this, we set γ as

γ “ α
C1,0

C2,0
´

αε

β

C3,0

C2,0
(30)

in order to the sum of Carbon Subsystem equations be zero at the starting time. ζ becomes
determined by the condition ζ “ αε{β since we consider Vostok proxy pictures a periodic
phase of the system. The final values are: C3,0 « 0.1400, γ « ´0.0118 and ζ « 0.1012.
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5.3 Analysis and discussion of the results.

Initial conditions Parameters

Carbon Energy Carbon Energy

Symb. Stock Symb. Stock Symb. Val. Symb. Val.ˆ10´3

C1 0.2305 s 1.3879 α 0.0293 ´r1 4.122

C2 0.6295 b 1.2591 β 0.1050 r2 4.135

ε 0.3630 r3 0.476

r4 0.074

Table 1: Initial conditions and best fitting parameters for Carbon and Energy Subsystems.

5.3 Analysis and discussion of the results.

Time series product of simulation for Carbon Subsystem are shown in figure 15, where we
can note the phase shift between Continental and Oceanic stocks (and also Atmospheric
one). This phase shift makes clear that closed orbits in phase space are not circles nor
ellipses and reveal the change in control, from Continental to Oceanic and the converse:
Our model captures assymetries we have identified in Vostok proxy, not only in Atmospheric
stock but in the other stocks. Variability of Atmosphere across glacial cycles is large, since
it acts as a conduit, while Continent and Ocean have smaller amplitude. It is worth to note
that Ocean gets its highest concentrations, when we are arriving to the interglacial period,
while Continent peaks amidst the journey to glacial period. This makes sense with the
explanation we presented in chapter 1: that is, our results are in accordance with proxies
and the qualitative explanations already given.
The computed time series for Atmospheric CO2 and ∆T depicted in figure 16 show the as-

symetries with faster heating and slow cooling, and interglacials periods of shorter duration
than glacial ones.
There are some interesting things, when we analyze the (frequency) power spectrum,

psp. In figure 17, we mark the frequencies of our simulation and also mark the nearest or
coincident periodicities on proxy (labeled in period and not in frequency). It can be seen
that proxy power spectra has more spectral components than simulation one, then power
decays more rapidly on simulation than in observation. In spite of the shifts, periodicities
of simulation are remarkably similar to those of proxy in both spectra. Periodicities, that
do not appear in simulation, point at processes and perturbations that we are not taking
into account in our model. However, our simple model capture the main points of observed
behavior. This is reinforced by the figure 18, in which is presented, side by side, Vostok
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Figure 15: Carbon stocks from simulation. Green C1, red C2 and blue C3.
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Figure 16: Simulated Atmospheric carbon (red) and ∆T (black).
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5.3 Analysis and discussion of the results.

time series and the corresponding simulated series.
In figure 18, it can be seen clearly what we have said at section 3.2.6: Parameters in

reality are functions of time, even in periodic phases. That is the reason behind, e.g. the
variation of period seen at the end of the series, where the glacial period is extended for a
while.
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5.3 Analysis and discussion of the results.
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6 Conclusions.

Autoritätsdusel ist der größte
Feind der Wahrheit.

(Albert Einstein (1879-1955))
As we have seen along all the sections of this work, celestial mechanical considerations

— characteristic of orbital theory of climate — are not explicit. This is what distinguishes
the model just presented from other models that community has been proposed.
The analysis of Carbon Subsystem, through the model we propose, has shown that pe-

riodic behavior is possible without taking into account orbital parameters. In spite of that
fact, we say that orbital parameters and solar intrinsic variability enter as the background
in which Earth System is immersed and, therefore, orbital parameters force Earth System
to be suceptible to certain periodicities: transitional events end only when the System is at
a new state compatible with equilibrium of the flows and with orbital forcing. That means,
orbital forcing makes that some parts of phase space be more probable — for the system
to evolve there — than others. However, the control upon the evolution of the System is
internally driven.
Perturbations and shorter timescale phenomena are responsible of variations in fluxes in

Earth System that modify periodicity, as said in section 3.2.6 and seen in section 5.3.
Although results presented hightens the trust in our model, another work would be com-

paring the results of Carbon Subsystem for Ocean and Continent with reality. For that task,
we must process proxies for the Carbon stock in Ocean and Continent to get an estimate
of the interchangeable Carbon, as we defined it at chapter 3.
Dynamical-systemic results make us wonder if we can obtain the period for a given closed

orbit in terms of parameters. This will help us determine readily possible states of the system
for certain principal periodicity and identify readily periodicities for other glacial ages.
Also we can ask, how much perturbation is needed to break a periodic phase into an

aperiodic one and what is the decaying speed (a measure of how it evolves away of
the periodic solution). This could help us estimate, if antropogenic action over the system
is sufficiently strong to induce a relatively long transition event and estimate the general
characteristics of the new periodic phase that will be established.
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7 Remarks on modeling: an episthemological
perspective.

Die Grenzen meiner Sprache
bedeuten die Grenzen meiner
Welt...
Wovon man nicht sprechen kann,
darüber muss man schweigen.

(Ludwig Wittgenstein
(1889-1951))

This chapter, first in this part of the present monography, contain some thoughts of my own
that I want to share with the readers of the scientific community of Atmospheric Sciences
and other disciplines.
As I have suggested at the preface to this thesis, that the greatest problem on modeling

(and, in science, in general) is that a lot of scientists do not know what they really do.
When I talk about modeling I mean that kind of models that arise from phenomenology

(physics, biology, chemistry or the like, including sociology), which is a result of a precise
observation of nature.
First, models are collection of propositions that describe the phenomena that observa-

tions and experimentation had isolated. They do not need mathematization —a thoroughly
translation of the principles into axioms to manipulate some mathematical objects— unless
scientists make use of some mathematical concepts to draw simple relations between vari-
ables; e.g. you can talk about physics without a heavy mathematical language. Therefore,
this model is a phenomenological model.
For several causes, scientists want to have a construct to work with, in which other rela-

tionships between phenomena arise, once they realize that certain rules are followed by
phenomena. Here mathematization comes in. However, mathematization is not a unique
process for several reasons. First, there is no unique rule that assign one and only one
mathematical object to each object in the phenomenological model. Second, there can be
many ways to describe the same objects, thereof there is not a one-one correspondence
between certain phenomenological framework and mathematical models of it. Third, not
every phenomena in nature is described by the phenomenological model, which results
in mathematical constructs that lack certain characteristics that are found later in nature.
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7 Remarks on modeling: an episthemological perspective.

Fourth, we can not expect that any conclusion, which is a logical consequence of the math-
ematical model, has an expression in nature, inasmuch as we could not grasp the whole
nature.
Then we can not expect to get a perfect representation of reality. In fact, such thing is

useless, because it would mean that we know already everything and we can build a new
universe from scratch: model becomes real. However, the information we took for giving
rise to a certain model is far from complete, since it becomes clear that we only sense one
part of the reality, a concept that is obscured by this very crippled perception.
Thus, the objective of the modeling is, for starters, to approximate perceived reality and

not to reproduce it. Notwithstanding our lack of information, modern research science
wants to have monstruous models that consume high quantities of energy and computa-
tional power but with poor understanding of the complexity that arises when phenomena
of diverse nature interact. They only pull the lever and do not question why they pull it.
They try to reduce nature to a bunch of phenomena that is barely connected with the help
of parameterizations, that are small models heavily idealized. In addition, actual model is
a numerical model.
To this moment we have three levels: phenomenological model, mathematical model and

numerical model. Three steps that are not the same. Maybe phenomenological and math-
ematical models are, given a certain mathematization and a buch of luck, isomorphically
related, but numerical model is an approximation to the mathematical model. Therefore it
is a second order approximation to phenomena.
In Atmospheric Sciences, numerical models are monsters that approximate solutions to

Navier-Stokes equations and are embroidered with parameterizations. We are running
detailed Navier-Stokes and thermodynamical solvers with poor parameterizations of the
Earth Subsystems that are not physical in nature, which is equivalent to say that Earth is
only a great rotating and spherical tank of moist air with certain small complexities due
to its relief, land use, convection, biology, chemistry and the like. This loss of respect for
the other subsystems of Earth, comparable to the mechanistic way of thinking, pervades
modeling community. We have lost curiosity. We are becoming engineers into the search
of new algorithms that make more efficient our calculations. But we do not see that a review
of the basis is what we really need. We do not see that we are using tools not appropiate
to the task, we just use them the way others have used them, no matter if they were wrong.
Meteorology and climatology where raised by mathematicians. In spite of that, it amazes

me the lack of critical thinking within the community. I know it is not only this scientific com-
munity that have this kind of problems. But as a physicist and a mathematician this decline
or stagnation of sciences is not nice. Mathematics is not a minor tool of natural sciences.
Mathematics is not only numbers. Mathematics is thinking. Its etymology comes from the
greek mathema, which means knowledge. I give my own definition of Mathematics as a
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tool: Mathematics is the art of analyzing unsolvable problems and obtaining conclusions in
an elegant and near-effortless way. Contrary to this definition, most of the community con-
ceive Mathematics as a toolbox that can be used without care: like speaking a language
in the worst way possible.
Most scientists do not realise that a mathematical way of thinking could help us to make

insight in the complex problems that we study this days. We are no more concerned with
individual phenomena, but with the interaction of phenomena. To unravel this interactions,
to see through non-linearity is the use that we could make of Mathematics, and in this way
obtain simplifications to the monstruous models that are timescale- or spacescale-aware in
a smart way: simplifications that are relevant to our purpouses and not monsters that want
to describe everything (as I said at the beginning).
And you must never forget: Models are gimmicks to study nature. Models are never

nature itself.
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8 Acknowledgements and final words.

In re mathematica ars
proponendi quæstionem pluris
facienda est quam solvendi.

(Georg Cantor (1845-1918))
I know this is not included inside the tradition of thesis writing. In fact, that tradition

states that acknowledgements and dedications be short and come at the beginning of the
monograph. I think this kind of rules, that come from traditional rituals, are quite outdated:
Science is not a task of extremely earnest people only, but one of human beings that have
emotions and enjoy their work. Creativity and intuition forms an integral part of sciences
and, when it is balanced by formality, becomes the true science.
Examples of this attitude come to my mind immediately, but the most important for me is

the case of Johannes Kepler, who shared with their readers the surprise and disappointment
that his findings — and the process to get them — made in his spirit.
I think that the text of the former monograph about a model of the Earth System is well

written in that point, since conclusions are only the ending of the journey to them. And the
journey itself is more important than the goal: since the goal could be disappointing or not
what we wanted.
In the case of the present work it is really reassuring that the conclusions are in accordance

with my expectations, that were a fruit of a rigurous mathematical thinking, previous to the
developing of more formal work. In spite of that, the main idea is one of my own, the
simple preeliminar work and ideas are not only due to me. There were scattered out there
in the conversations with my peers, which are my closest friends in a lot of cases.
That is because I need to acknowledge their contributions to my work and also their

support to endure day by day in this difficult task of science.
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