

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

Facultad de Ciencias Biología Experimental

Análisis mediante proteómica y transcriptómica

de la formación de biofilm en Rhizobium etli CE3

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS

PRESENTA:

Agustín Reyes Pérez

TUTOR PRINCIPAL DE TESIS: Dr. SERGIO MANUEL ENCARNACIÓN GUEVARA Centro de Ciencias Genómicas-UNAM COMITÉ TUTOR: DR. GUILLERMO GOSSET LAGARDA Instituto de Biotecnología UNAM, Cuernavaca, Morelos DR. VÍCTOR GONZÁLEZ ZÚÑIGA Centro de Ciencias Genómicas UNAM, Cuernavaca, Morelos

CIUDAD DE MÉXICO. SEPTIEMBRE, 2016.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

Facultad de Ciencias Biología Experimental

Análisis mediante proteómica y transcriptómica

de la formación de biofilm en Rhizobium etli CE3

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIAS

PRESENTA:

Agustín Reyes Pérez

TUTOR PRINCIPAL DE TESIS: Dr. Sergio Manuel Encarnación Guevara Centro de Ciencias Genómicas-UNAM

COMITÉ TUTOR:

Dr. Guillermo Gosset Lagarda Instituto de Biotecnología UNAM, Cuernavaca, Morelos Dr. Víctor González Zúñiga Centro de Ciencias Genómicas UNAM, Cuernavaca, Morelos

CIUDAD DE MÉXICO. SEPTIEMBRE, 2016.

COORDINACIÓN

POSGRADO EN CIENCIAS BIOLÓGICAS FACULTAD DE CIENCIAS DIVISIÓN DE ESTUDIOS DE POSGRADO

> OFICIO FCIE/DEP/517/2016 ASUNTO: Oficio de Jurado

Lic. Ivonne Ramirez Wence Directora General de Administración Escolar, UNAM P r e s e n t e

Ciencias Biológicas

Me permito informar a usted que en la reunión ordinaria del Comité Académico del Posgrado en Ciencias Biológicas, celebrada el día 26 de octubre de 2015, se aprobó el siguiente jurado para el examen de grado de DOCTOR EN CIENCIAS del (la) alumno (a) REYES PÉREZ AGUSTÍN con número de cuenta 505011718 con la tesis fitulada: "Anàlisis mediante proteómica y transcriptómica de la formación de biofilm en *Rhizobium etil* CE3", realizada bajo la dirección del (la) DR. SERGIO MANUEL ENCARNACIÓN GUEVARA:

Presidente	DR. MICHAEL FREDERICK DUNN
Vocal:	DRA MARIA ESPERANZA MARTÍNEZ ROMERO
Secretario:	DR. GUILLERMO GOSSET LAGARDA
Suplente:	DR. ERNESTO PÉREZ RUEDA
Suplente.	DR. GONZALO CASTILLO ROJAS

Sin otro particular, me es grato enviarle un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARA EL ESPÍRITU" Ciudad Universitaria, Cd. Mx. a 24 da agosto de 2016

1 les Clipero

DRA. MARÍA DEL CORO ARIZMENDI ARRIAGA COORDINADORA DEL PROGRAMA

MCAA/MJFM/ASR/grf*

Unidad de Posgrado - Coordinación del Posgrado en Ciencias Biológicas Edificio D, Ler. Piso, Circuito de Posgrados Cd. Universitaria Delegación Coyoacar C.P. 04310 México, D.F. Tel. 5623 7002 http://pebiol.posgrado.unam.mx

AGRADECIMIENTOS

Al Posgrado en Ciencias Biológicas-UNAM, por la formación académica proporcionada durante este tiempo para la realización del presente proyecto

De forma especial al Consejo Nacional de Ciencia y Tecnología (CONACYT) por apoyar económicamente proporcionando la beca: 169051 y recursos a través del proyecto número 155116.

Este proyecto fue financiado con recursos obtenidos por la Dirección General de Asuntos del Personal Académico IN-204714.

Al Centro de Ciencias Genómicas-UNAM, por permitir la realización del presente proyecto dentro del programa de Genómica Funcional de Procariontes.

A mi tutor el Dr. Sergio Manuel Encarnación Guevara por compartir sus conocimientos para la realización de este proyecto.

A mi comité tutoral:

Dr. Víctor González Zúñiga Dr. Guillermo Gosset Lagarda

Por sus comentarios y orientación.

"Vive tu vida como una exclamación en lugar de una explicación"

Sir Isaac Newton.

AGRADECIMIENTOS

De manera especial a la M. en C. Magdalena Hernández Ortiz, por su apoyo, asesoría y colaboración para la realización de este proyecto. Por sus puntos de vista, ideas y colaboración para la realización de cada una de las técnicas experimentales de este proyecto, así como el análisis mediante espectrometría de masas, búsqueda y análisis de los datos de proteómica.

En especial al Dr. Ernesto Pérez Rueda por su colaboración en el primer manuscrito. Por sus comentarios para la revisión de tesis.

Al Dr. Eneas Aguirre von Wobeser por su importante colaboración en el análisis de los datos de microarreglos, así como la escritura del artículo.

El Dr. Michael Frederick Dunn por la revisión de la gramática del artículo científico.

El Dr. Jaime Mora Celis y Quim. Yolanda Pérez Tejada por todo el apoyo para la realización del presente proyecto.

Dedicada a:

A mis padres Amalia Pérez Flores y Agustín Reyes Méndez, por todos los ejemplos que me han dado. Por el roble que no ha olvidado sus raíces.

A mis hermanos Gloria, Rosendo y María Eugenia, por todo el amor de hermanos que nos une a pesar de la distancia.

En memoria mi madre adoptiva, mi tía Esther, que lamentablemente ya no está con nosotros, pero estoy seguro está disfrutando de cada uno de mis logros.

Con todo mi amor a mi familia Yari, Marvin y mi esposa Mary, por sus bendiciones, por soportar las inclemencias, distancia y dificultades de todos estos años durante la etapa de mi formación académica.

Dedicada para Andrea y Denisse, por toda la alegría que han sembrado en mí, durante los últimos meses, para darme ánimos en la finalización de este proyecto.

A Todos mis compañeros de laboratorio, Al Sr. Citlalt Popocatl, Sr. Pero Alonso, Sra. Fulgencia, Sra. Graciela, compañeros, amigos, que de alguna forma el laboratorio nos ha permitido compartir experiencias, tiempo de trabajo y amistad; algunos no están más con nosotros, a ellos mi más sincero reconocimiento y agradecimiento debido que de alguna forma u otra forma contribuyeron en este trabajo.

"Cuando hay una tormenta los pajaritos se esconden, pero las águilas vuelan más alto" Mahatma Gandhi

> "Los sueños y la perseverancia son una poderosa combinación". William Longgood

<u>Índice</u>

Contenido

1	INTRODUCCIÓN	
	1.1 Generalidades	14
	1.2 PROCESO DE LA FORMACIÓN DE BIOPELÍCULAS.	
	1.2.1 Inicio dela formación de biopelículas, adhesión celular.	
	1.2.2 El crecimiento	19
	1.2.3 Maduración de las biopelículas bacterianas	
	1.2.4 Disgregación	
	1.3 IMPORTANCIA DE LAS BIOPELÍCULAS.	
	1.3.1 Punto de vista ecológico de las biopelículas	
	1.4 TIPOS DE BIOPELICULAS.	
	1.4.1 Formado por multiples especies	
	1.4.2 POF UNU SOID ESPECIE.	
	1.5 LOS FACTORES AMBIENTALES QUE AFECTAN LAS BIOFELICULAS	23
	1.5.2 pH	
	1.5.3 Oxígeno.	
	1.5.4 Quórum sensing.	
	1.5.5 \tilde{F} actores genéticos involucrados en el desarrollo de las biopelículas	
	1.5.6 Análisis transcripcional durante la formación de biopelículas bacteriano	
	1.6 PROTEÓMICA DE BIOPELÍCULAS.	
2	OB IETIVO CENERAI	34
-	2.1 ORIETIVOS ESPECÍFICOS	34
3	METODOLOGIA DEL ANALISIS MEDIANTE TRANSCRIPTOMICA	
4	METODOLOGÍA UTILIZADA EN EL ANÁLISIS PROTEÓMICO	
	4.1.1 Células planctónicas	
	4.1.2 Células sésiles	
	4.1.3 Extracción	
	4.1.4 Electroforesis en 2D	
	4.1.5 Identificación de proteínas mediante espectrometría de masas	
5	DISCUSIÓN Y RESULTADOS	
	5.1 Βεςιή ταρώς δει ανάι κις μεριαντέ τρανς απότωσα	37
	5.1 RESULTADOS DEL ANÁLISIS MEDIANTE IRANSERII TOMICA	
	5.2.1 Microscopia confocal	
	5.3 ANÁLISIS DE PROTEÍNAS MEDIANTE ESPECTROMETRÍA DE MASAS	
	5.4 Metabolismo	65
	5.4.1 Producción y conversión de energía (C)	
	5.4.2 Transporte y metabolismo de carbohidratos (G).	71
	5.4.3 Transporte y metabolismo de aminoácidos (E)	
	5.4.4 Transporte y metabolismo de lípidos (I)	
	ALMACENAMIENTO Y PROCESAMIENTO DE LA INFORMACIÓN	
	5.4.5 Estructura y biogénesis de ribosomas para la traducción (J) y transcripción (k)	76
	5.5 SENALIZACION Y PROCESOS CELULARES	
	5.5.1 Pared celular, Membrana y biogénesis de la envoltura celular (M)	
	5.5.2 Chaperonas, modificaciones postraduccionales y plegamiento de proteínas (O)	
	5.5.5 Motilidad celular (N)	
~	5.5.4 Fobremente caracterizadas	
6	CUNCLUSIONES	

7	B	BIBLIOGRAFÍA	
8	A	ANEXOS	
	8.1	ANEXO A	
	8.2	ANEXO B	

Lista de Tablas

<u>Figuras</u>

Resumen

Organismos del género Rhizobium colonizan raíces de plantas leguminosas estableciendo relaciones simbióticas. Las biopelículas son un ecosistema en el cual las bacterias se encuentran embebidas en una matriz de polímeros extracelulares, proceso altamente regulado y en el cual intervienen varios factores y elementos. El proceso de la formación de biopelícula en R. etli CFN42 fue analizado mediante estrategias globales que incluyen un análisis transcriptómico para estudiar los tiempos tempranos y un análisis proteómico que considera las diferentes etapas del desarrollo de biopelícula. En tiempos tempranos (24 horas) y en el estado maduro (72 horas), comparando células del estado sésil con el estado planctónico, el análisis mediante microarreglos permitió la identificación de 498 genes diferencialmente expresados, esto significa que aproximadamente el 8.3% del genoma total de R. etli es alterado durante la formación de biopelículas. Algunos de los genes sobre expresados están involucrados en la síntesis de membrana, transporte y quimotaxis, represión de la síntesis de flagelo, de la misma manera componentes de la superficie celular (exopolisacáridos V lipopolisacáridos), en combinación con la presencia de activadores o estimuladores de N-acil-homoserinas lactonas. Esto nos sugiere que R. etli es capaz de sensar las condiciones ambientales y regular la transición del estado planctónico al sésil. Adicionalmente. En la población planctónica se observa la expresión diferencial de genes relacionados con el transporte, motilidad (flagelo y twitching) y la inhibición de la síntesis de exopolisácaridos.

El análisis mediante proteómica permitió definir la expresión de proteínas durante las diferentes etapas de desarrollo y formación de la biopélicula, para esto se definió mediante microscopía confocal, realizar el análisis en cuatro de las etapas de la formación de biopelículas en *R. etli*, correspondiente a los tiempos 24, 72, 120 y 240 horas de la formación de biopelícula. Las entidades electroforéticas identificadas como sobrexpresadas en su mayoría se relacionan con el metabolismo central, glucolisis y gluconeogénesis, algunas de estas, con la regulación celular ante diferentes tipos de estrés, así como en la síntesis de señales necesarias para la comunicación celular y la formación de la matriz extracelular. El análisis mediante proteómica permitió observar el patrón de expresión durante las diferentes etapas de formación de biopelículas, y este trabajo se muestra una aproximación sobre este proceso

Estos resultados contribuyen en la comprensión de la fisiología celular y estructural relacionada con la formación del biopelículas de esta bacteria.

Abstract

Organisms belonging to the genus *Rhizobium* colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in an extracellular matrix of polymeric substances. The formation of biofilms is a highly regulated and multistep process.

The biofilm formation process of *R. etli* CFN42 was analyzed with transcriptomic studies at early stages and proteomic analysis were performed through different stages of biofilm formation.. Comparing cells in the biofilm with cells remaining in the planktonic stage at an early (24-h) and mature stage (72 h), we were able to identify 498 differentially regulated genes through a genome-wide microarray analysis, implying that the expression of ~8.3 % of the total *R. etli* gene content is altered during biofilm formation. In biofilms-attached cells, genes encoding proteins involved in membrane synthesis, transport and chemotaxis, repression of flagella synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides) were over-expressed. We also observed the presence of activators or stimulators of N-acylhomoserine lactone synthesis This suggests that *R. etli* is able to sense surrounding environmental conditions and regulate accordingly the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis.

The proteomic analysis allowed us to define the expression of proteins during the different stages of development and biofilm formation. This was defined with confocal microscopy in four stages (24, 72, 120 and 240 hour of biofilm formation). The most over expressed proteins are involved in metabolism, glycolysis, and gluconeogenesis. We also found some proteins related to cellular stress regulation and synthesis of molecular signals for extracellular matrix formation. This work shows the results of different stages of biofilm formation in *R. etli* and contributes to understand of cell physiology and structure related to biofilm formation in these bacteria.

1 INTRODUCCIÓN

1.1 Generalidades

En la naturaleza, las bacterias sobreviven en pequeñas comunidades perfectamente organizadas, formando flóculos en suspensión, películas en la superficie de los líquidos formando verdaderas natas. Las biopelículas son comunidades microbianas que se desarrollan en las interfases de sólido-líquido o en la interfase aire-líquido o en las interfases líquido-líquido (Macedo *et al.*, 2005; Spiers & Rainey, 2005). Este proceso genera diversos cambios en la expresión y comportamiento celular, fenómeno que se conoce como biopelículas bacterianas (Rabin *et al.*, 2015).

Las biopelículas se han estudiado en diversos ambientes (de los Rios *et al.*, 2003). Esto ha permitido identificar y clasificar la estructura y etapas de formación de dichas comunidades bacterianas (Doggett, 2000; Lawrence *et al.*, 2004; Rickard *et al.*, 2002; Wimpenny *et al.*, 2000), un ejemplo de este tipo de comunidades es la placa dental, donde por lo menos existen 500 taxas distintas (Jhajharia *et al.*, 2015).

El concepto de biocapa o biofilm fue acuñado en 1978 por Bill Costerton y colaboradores, (Costerton *et al.*, 1999). En las últimas décadas se ha tratado de entender las bases biológicas del proceso y desarrollo de las biopelículas bacterianas. Desde hace tiempo, para su estudio dentro de la industria y ecología, se han utilizado diversas herramientas para observar y estudiar estas comunidades. El empleo de microscopia confocal, acoplada con marcadores fluorescentes (Lawrence *et al.*, 1991); técnicas de biología molecular como la hibridación *in situ*, ensayos con genes reporteros y PCR *in situ* entre otras, han permitido la visualización de su morfología, estructura y biología (Hope *et al.*, 2002; Lawrence *et al.*, 2004; Locke *et al.*, 2015; Wimpenny *et al.*, 2000). Las herramientas mencionadas en conjunto con análisis globales, tales como: la proteómica y transcriptómica, analizando la regulación de la expresión del genoma en biopelículas bacterianas, las cuales actualmente tienen una importancia, no solo dentro de la ecología bacteriana, si no en áreas como la clínica, la industria (figura 1) y la agronomía.

Figura 1. Ejemplos del impacto de las biopelículas en ductos de agua e industria alimentaria. A) Obstrucción de ductos industriales. B) Biopelícula formada por *Listeria monocytogenes* sobre alimentos industrializados.

Mediante la generación de mutantes al azar se han identificado en diversos organismos, genes, relacionándolos con la estructura y metabolismo en biopelículas en estado maduro o en algunos casos componentes que permiten censar el ambiente y regular el inicio del proceso de formación de biopelículas (O'Toole & Kolter, 1998a).

La formación de biopelículas se ha descrito en diversos grupos bacterianos, siendo uno de los mayormente estudiados el de las bacterias Gram negativas. Observándose que las bacterias presentan diversas estrategias para formar y estructurar biopelículas, por ejemplo, en *Pseudomona fluorescens* los estudios realizados muestran que es capaz de formar biopelículas casi en cualquier condición de crecimiento (Armitano *et al.*, 2014; O'Toole & Kolter, 1998b). Contrario a esto *Eschericiha coli* O517:H7 y *Vibrio cholerae* no son capaces de formar biopelículas en medios mínimos, a menos que estos sean suplementados con aminoácidos (Pratt & Kolter, 1998). De la misma forma, el proceso de formación de biopelículas, presenta particularidades en cada especie, por ejemplo se han descrito mutaciones bajo ciertas condiciones que impiden en unos organismos la formación de biopelículas, sin embargo, estas no tienen el mismo efecto En el resto de las especies.

1.2 Proceso de la formación de biopelículas.

Las etapas del proceso de formación de biopelículas bacterianas podrían incluirse en un ciclo interminable, en donde las comunidades bacterianas inician estando en condiciones planctónicas y posteriormente existe una transición al estado agregado o sésil, en donde estas se encuentran inmersas en una matriz de polisacáridos que funciona como soporte para adherirse sobre alguna superficie (Rasamiravaka *et al.*, 2015a).

Estas etapas del desarrollo de biopelículas se conservan en una amplia gama de microorganismos, inclúyelo que incluye la adhesión de las células a un substrato, el crecimiento y formación del biopelículas en micro-colonias, la maduración, el mantenimiento de la arquitectura de las biopelículas y la dispersión de células o sub-poblaciones de biopelículas, esta última con el fin de colonizar nuevos nichos (figura 2). (Armitano *et al.*, 2014; O'Toole *et al.*, 2000). Las biopelículas bacterianas en ocasiones se les ha descrito como verdaderas "ciudades bacterianas" ya que existe una organización y flujo de nutrientes de forma ordenada y perfectamente regulada (Nikolaev Iu & Plakunov, 2007; Watnick & Kolter, 2000).

Figura 2. Modelo del desarrollo de biopelículas, la células de manera individual forman uniones a una superficie dada y el contacto entre célula-célula permite el inicio de la formación de pequeñas microcolonias. El proceso reinicia nuevamente cuando las células se liberan de estas estructuras y colonizan nuevos nichos (O'Toole el al., 2000).

Aunque la composición delas biopelículas es variable en función del sistema de estudio, en general, el componente mayoritario de las biopelículas es el agua, representando hasta un 97% del contenido total. Además del agua y de las células bacterianas, la matriz de las biopelículas es un complejo formado principalmente por exopolisacáridos (EPS), secretados por las propias células. Los EPS constituyen entre el 50 al 90% del total de carbono orgánico de las biopelículas y un 85% de su masa (Flemming *et al.*, 2007). Los EPS permiten la estabilidad de biopelículas, así como la porosidad del mismo, estos determinan y regulan el tránsito de ciertas sustancias, comportándose como un verdadero escudo desde el punto de vista de la protección ante la presencia de ciertas sustancias como los antibióticos (Hathroubi *et al.*, 2016). En menor cantidad se encuentran otras macromoléculas como proteínas, lípidos, fosfolípidos, ADN, ARN y productos diversos procedentes de la lisis de las bacterias (Donlan, 2002; Flemming & Wingender, 2010; Petersen *et al.*, 2005; Sutherland, 2001), así como materiales no celulares tales como cristales minerales, partículas corrosivas, arcillas o componentes sanguíneos dependiendo del ambiente en donde se desarrolle las biopelículas(Donlan, 2002). Se ha descrito que también los EPS se asocian con iones y cationes divalentes. Cabe mencionar que la matriz es un ambiente heterogéneo por los innumerables microambientes que coexisten dentro de él. Adicionalmente, en la naturaleza podemos encontrar comunidades bacterianas de una sola especie, como de distintas especies bacterianas, desde un punto de vista ecológico, todas ellas, pretenden la preservación de la especie y la adaptación a cualquier tipo de ambiente adverso encontrado en la naturaleza.

1.2.1 Inicio dela formación de biopelículas, adhesión celular.

El proceso inicia con la aproximación de la bacteria al sustrato, en algunos casos la motilidad es indispensable para este proceso, esto genera el inicio de la interacción entre el microorganismo y la superficie, durante esta etapa las bacterias utilizan flagelos, fimbrias, curlis y pilis, de la misma forma la quimiotáxis es importante durante el proceso (Guttenplan & Kearns, 2013; Merritt et al., 2007). Además de las interacciones entre la célula y la superficie, se desarrollan interacciones célula-célula participando fimbrias, curlis y algunas adhesinas, permitiendo el establecimiento de microcolonias. Por otro lado, la interfase sólido-líquido que se encuentra entre la superficie y un medio acuoso (como agua o sangre) provee un ambiente ideal para la adhesión y crecimiento de microorganismos. La adhesión depende de la naturaleza de la superficie, ya que se ha observado que si es áspera la adhesión aumenta. También las propiedades fisicoquímicas de las superficies influyen en la velocidad y extensión de las biopelículas. Se ha visto que los microorganismos se adhieren más rápido a superficies hidrofóbicas, no polares como el teflón y otros plásticos que a superficies hidrofílicas, tales como el vidrio o metales (Donlan, 2002). Además, se ha observado que las interacciones hidrofóbicas entre las superficies y los microorganismos hacen posible que se establezca una interacción.

La adhesión se ve influenciada por el acondicionamiento de la superficie debido a que se cubre de polímeros provenientes del medio que la modifican químicamente. Un ejemplo de superficie acondicionada es el esmalte de los dientes en la cavidad oral que es recubierta por albúmina, lisozimas, glicoproteínas, fosfoproteínas, lípidos y fluidos gingivales (Carlen *et al.*, 2003; Kolenbrander, 2000; Kolenbrander *et al.*, 2002). Estas superficies acondicionadas se pueden encontrar en tejidos bañados por sangre, lágrimas, orina, saliva, fluidos intravasculares y secreciones respiratorias, que afectan la adhesión de las bacterias a las diversas superficies.

La velocidad del flujo adyacente a la interfase substrato-líquido forma una barrera hidrodinámica y su grosor depende de la velocidad lineal; la región afuera de esta barrera se caracteriza por ser turbulenta. Esta barrera hidrodinámica afecta las interacciones de las células con el substrato, en donde las células se comportan como partículas en el líquido y la velocidad de la asociación con la superficie sumergida depende en gran parte de las características y velocidad que tenga el líquido (Donlan, 2002). Esta hidrodinámica afecta el establecimiento y disgregación de las biopelículas.

Otras características que juegan un papel importante en la adhesión a las superficies son el pH, la concentración de los nutrientes, la fuerza iónica, temperatura, parámetros climáticos, presencia de cationes, y los niveles intracelulares de hierro (Banin *et al.*, 2005; Mey *et al.*, 2005).

La hidrofobicidad influye en la adhesión de las células a la superficie, debido a la presencia de fimbrias como pilis y flagelos, así como a la producción de EPS y proteínas de superficie, tales como finas fibrillas poliméricas extracelulares y los LPS (Watnick *et al.*, 2001).

Como mencionamos anteriormente uno de los componentes celulares principales para la formación de las biopelículas, son los polisacáridos extracelulares, los cuales han sido clasificados en polisacáridos capsulares o exopolisacáridos, los cuales determinan la arquitectura de las biopelículas(Branda *et al.*, 2005). Dentro de estos polisacáridos se encuentran la celulosa componente de la matriz extracelular de *Gluconacetobacter xylinus, Salmonella typhimurium y E. coli* (Zogaj *et al.*, 2001). El polisacárido llamado adhesina intracelular con siglas en inglés PIA de *Staphylococcus epidermidis y Staphylococcus aureus* codificado por el operon *ica,* tiene un homólogo en *E. coli* (MG1655 llamado PGA, codificado en los genes *pgaABCD* (Wang *et al.*, 2004). Este

polisacárido participa en la adhesión intercelular y en la desunión y dispersión de biopelículas en *Actinobacillus pleuropneumoniae* y *A. actinomycetemcomitans* (Kaplan *et al.*, 2004). Por otro lado, el alginato extracelular que secreta *P. aeruginosa* o los polímeros ricos en carbohidratos PEL (polímero rico en glucosa) y PSL (polímero rico en manosa) han sido involucrados en el desarrollo y formación de biopelículas (Friedman & Kolter, 2004).

La fimbria, proteínas y los EPS ayudan a la adhesión en superficies hidrofóbicas por ser no polares, mientras que los LPS son útiles en la adherencia a superficies hidrofílicas. Además el flagelo es importante en la adhesión ya que su papel es superar las fuerzas repulsivas más que actuar como absorbente o adhesivo (Donlan, 2002).

1.2.2 El crecimiento.

La arquitectura del biofilm es heterogénea en espacio y tiempo, ya que constantemente hay cambios internos y externos. Se ha visto que la motilidad genera la migración de las células de una microcolonia a otra, entonces la estructura de esta cambia, para hacerse más compacta (Kaplan & Fine, 2002)

1.2.3 Maduración de las biopelículas bacterianas.

Los gradientes de nutrientes, productos de desecho, factores de señalización, hacen que la biopelícula sea heterogénea. Las biocapas maduras muestran una estructura tridimensional compleja con numerosos microambientes que difieren en osmolaridad, el acceso a los nutrientes y en la densidad celular. La heterogeneidad produce una variedad de fenotipos,, (Fux *et al.*, 2005). Además, en el interior las células exhiben un patrón de expresión genética diferente (Costerton *et al.*, 1999). Después de la adhesión las microcolonias maduran y se genera una matriz extracelular que genera una señalización al interior de las biopelículas, como en *Serratia liquefaciens* regulando la motilidad tipo *swarming* (Labbate *et al.*, 2004).

1.2.4 Disgregación.

Ocurre por cambios en las concentraciones de nutrientes, la concentración celular, efectos del flujo continuo del medio, cambios en los niveles de oxígeno o pH, también por la acción de enzimas que disgregan los componentes de la matriz como las

polisacárido liasas o las DNAsas (Boyd *et al.*, 1994). El correcto ensamble de los polisacáridos de la matriz extracelular regulan la dispersión celular de las biopelículas, en ocasiones regulada también mediante expresión genética (Yu *et al.*, 2015). Un ejemplo es *retS* en *P. aeruginosa* PAO1 inhibe la formación de biopelículas (Rasamiravaka *et al.*, 2015a). Además la motilidad está involucrada en la dispersión de las biopelículas, resultando en la disolución de las microcolonias, así como el censado de diversas señales moleculares clasificadas por algunos dentro de la socio microbiología (Parsek & Greenberg, 2005), lo cual ha sido descrito en diversos microorganismos (Hall-Stoodley & Stoodley, 2005; Stoodley *et al.*, 2001).

La disgregación de las biopelículas es importante en varios aspectos, debido a que de esta manera se diseminan infecciones y se contaminan los sistemas de agua, etc. Esta disgregación se presenta como una erosión continua de células y/o de pequeñas porciones de las biopelículas (Stoodley *et al.*, 2001).

Un ejemplo de la dispersión es la biopelícula que forma la bacteria oral *Actinobacillus actinomycetemcomitans* en donde se ha observado que el polisacárido O se requiere para la disgregación, provocando el desprendimiento de células para formar nuevas microcolonias, permitiendo la dispersión de las biopelículas y la colonización de nuevas superficies (Kaplan *et al.*, 2003).

En las biopelículas, particularmente dentro de las microcolonias de *P. aeruginosa*, se presenta una muerte de las células por lisis mediada por los fagos filamentosos Pf1 los cuales existen como profagos dentro del genoma (Webb *et al.*, 2003) o por la interacción de fagos externos con las biopelículas (Sutherland *et al.*, 2004). Otro determinante involucrado en la disgregación de las biopelículas propuesto en *P. aeruginosa* es la presencia de los ramnolípidos los cuales producen cavidades dentro de las biopelículas provocando que las células se desprendan en subpoblaciones (Boles *et al.*, 2005) o en *Bordetella bronchiseptica* por la presencia ramnolípidos exógenos (Boles *et al.*, 2005; Irie *et al.*, 2005). También las biopelículas formadas por *P. aeruginosa* se dispersa por un incremento súbito de succinato, glutamato o glucosa,

provocando que las células que se desprenden incrementen la expresión de flagelo (*fliC*) y disminuyan la expresión de pili (*pilA*) (Sauer *et al.*, 2002).

1.3 Importancia de las biopelículas.

Las biopelículas son importantes en actividades industriales, sin embargo algunos casos puede ser afectada, por ejemplo el incremento de la corrosión es un aspecto, la contaminación por especies capaces de asociarse a las cepas de interés. Dentro de la industria alimenticia, la formación de biopelículas se presenta sobre los alimentos y en los sistemas de agua potable, lo cual incrementa el riesgo de contaminación con microbióta patógena. La presencia de biofilms mixtos en los sistemas de agua ha sugerido como una fuente de propagación de algunas enfermedades (Banning *et al.*, 2003; Doggett, 2000).

Los microbiólogos clínicos reconocen que las biopelículas son reservorios de algunos microorganismos patógenos ya que estos pueden estar en ambientes naturales o dentro del cuerpo humano (Hall-Stoodley & Stoodley, 2005; Hall-Stoodley *et al.*, 2004). Las biopelículas tienen un impacto en la medicina debido a que se presentan en enfermedades como la fibrosis quística, endocarditis, otitis media, periodontitis, prostatitis, caries dentales asociados a infecciones en implantes (Saint & Chenoweth, 2003). Aunado a esto, los biofilms son tolerantes a agentes antimicrobianos en concentraciones de 10 a 1,000 veces mayores que lo que se necesita para matar a las células en estado planctónico. Cabe señalar que los antibióticos aminoglicósidos en concentraciones sub-inhibitorias inducen la formación de biopelículas en *E. coli y P. aeruginosa* (Hoffman *et al.*, 2005). Las biopelículas son resistentes a la fagocitosis, lo que hace que sea difícil erradicarlo de los hospederos. La estructura de la matriz exopolisacárida bacteriana permite que sean resistente a los biocidas, debido a la composición de los exopolisacáridos, la baja tasa de crecimiento, la resistencia al estrés y la presencia de bombas multidrogas (Fux *et al.*, 2005; Hathroubi *et al.*, 2016).

La presencia de contaminantes xenobióticos (como los hidrocarburos y los metales pesados) causan en el ambiente grandes estragos, por lo que la biorremediación trata de eliminarlos. Las biopelículas permite realizar procesos de biorremediación, esto se logra inmovilizando, acumulando, procesando, mineralizando y degradando los

contaminantes del ambiente, por lo cual las biopelículas se utilizan en los tratamientos de aguas residuales o de aguas contaminadas (Macedo *et al.*, 2005; Peacock *et al.*, 2004; Singh *et al.*, 2006).

1.3.1 Punto de vista ecológico de las biopelículas.

Posiblemente las bacterias adopten este estilo de vida en biopelículas por las ventajas ecológicas que el ambiente les proporciona, como la protección del medio ambiente, por una mayor resistencia a diversos tipos de estrés y por la cooperación metabólica dentro de las biopelículas, los cuales les ayudan soportar la falta de nutrientes, los cambios de pH, a presencia de radicales de oxígeno, resistencia a la fagocitosis, por mencionar algunos (Costerton *et al.*, 1999; KK., 2004; Lawrence *et al.*, 2004).

Las microcolonias son la estructura básica de las biopelículas, donde se crea un ambiente de gradientes de nutrientes, intercambio de genes y se establece un sistema de detección de densidad celular conocido como *Quórum Sensing* (QS) (Davey & O'Toole G, 2000; Davies *et al.*, 1998; Hammer & Bassler, 2003; Ta & Arnason, 2015). Cuando las microcolonias están compuestas de una mezcla de microorganismos, permiten que cada especie juegue un papel en la producción y degradación de materia orgánica, por lo que se complementan dentro de los ciclo naturales del nitrógeno, azufre y algunos otros metales, esto en ocasiones requiere que todos los grupos bacterianos participen en este esfuerzo dependiendo de sus capacidades metabólicas (Davey & O'Toole G, 2000)

Finalmente, las biopelículas son un excelente nicho para el intercambio de ADN extracromosomal, el cual se presenta por la transferencia de genes que en ocasiones generan resistencia a ciertos compuestos como antibióticos, mediante conjugación y transducción (Kouzel *et al.*, 2015).

1.4 Tipos de biopelículas.

1.4.1 Formado por múltiples especies.

Las biopelículas pueden ser un abanico de diversas especies, conformados de muchas especies bacterianas, hongos, algas, virus y de protistas. Una de las primeras comunidades estudiadas son las que se encuentran en la cavidad bucal de la cual se han identificado los componentes estructurales de esta forma de vida, las interacciones entre las células y la comunicación celular (Drago *et al.*, 2016; Filoche *et al.*, 2004).

1.4.2 Por una sola especie.

La estructura precisa, la química y fisiología de las biopelículas varía con la naturaleza de las células bacterianas y del ambiente local. Para su estudio en el laboratorio se ha tratado de maximizar la reproducibilidad de lo que sucedería en el ambiente natural, por lo que la mayoría de los estudios se han realizado de una sola especie bacteriana (Nikolaev Iu & Plakunov, 2007; Watnick & Kolter, 2000).

1.5 Los factores ambientales que afectan las biopelículas.

1.5.1 Nutrientes en medios de cultivo.

En algunos estudios se observó que la adición de glucosa al medio inhibe la formación de biopelículas en *E. coli* K-12 MG1655, MC4100 y W3110 causando un decremento entre el 30 y 90%, lo cual implica una represión catabólica mediada por el AMP cíclico y su proteína receptora CRP (Jackson *et al.*, 2002).

Las células coordinan la expresión de los genes en respuesta a señales ambientales vía proteínas reguladoras y un selecto grupo de pequeñas moléculas, que incluyen a ppGpp (guanosin tetrafosfato), cAMP (adenosín monofosfato cíclico), leucina y el acetil fosfato (acP). La concentración intracelular del acP está involucrada en la expresión de estructuras celulares de superficie y en los procesos involucrados en los pasos iniciales de la formación de biopelículas como síntesis de ácido colánico, fimbria y pili (Wolfe *et al.*, 2003).

El ácido colánico es un exopolisacárido, producido por las enterobacterias, la presencia de este permite la característica mucosa de algunas sepas como es el caso de *E. coli* y *Salmonella* spp. (Sutherland, 1969). Mutaciones en genes como el caso *yncC* un factor transcripcional durante el inicio de la formación de biopelículas, permite observar que en microorganismos como *E. coli* disminuye su capacidad de mucosidad y aumenta la susceptibilidad a la presencia de bacteriófagos como el caso de P1 (Zhang *et al.*, 2008).

1.5.2 pH.

Muchas especies bacterianas tienen un pequeño intervalo de pH para su crecimiento y su sobrevivencia depende de la heterogeneidad de las biopelículas, ya que las bacterias pueden modular su pH local, regulando genes que codifican para enzimas relacionadas con la producción de bases o ácidos (Schlafer & Dige, 2016; Stoodley *et al.*, 1997).

1.5.3 Oxígeno.

Cuando las bacterias crecen adheridas a superficies presentan gradientes de oxígeno y condiciones locales de anaerobiosis. Por ejemplo, estados maduros de las biopelículas formadas por *P. aeruginosa* la limitación de oxígeno y la presencia de nitrato reduce la susceptibilidad de antibióticos (Borriello *et al.*, 2004). Este tipo de microorganismos se ha descrito tiene la capacidad de convertir el nitrato a nitrógeno gaseoso, a partir de la oxidación de óxido nítrico y óxido nitroso, respectivamente, esto es realizado por un complejo de dos enzimas nitrato reductasas, proteínas periplasmáticas, este proceso permite la obtención de energía en condiciones de anaerobiosis, la sensibilidad al nitrato se ha demostrado modula la formación de biopelículas y la capacidad de virulencia de *P. aeruginosa*, así mismo algunos autores consideran que es parte del QS del proceso, sin embargo no es claro el proceso aún .

La presencia de oxígeno se ha cuantificado por medio de microelectrodos, comprobando que en biopelículas de 210 μ m de espesor existe una región de 50 μ m donde penetra el oxígeno, posterior a esto genera un crecimiento lento o inanición por la limitación de oxígeno cuando el espesor es mayor a los 50 μ m (Borriello *et al.*, 2004).

El hongo oportunista *Candida albicans,* a pesar de crecer en condiciones aeróbicas y anaeróbicas, solo es capaz de formar biopelículas en presencia de oxígeno (Biswas & Chaffin, 2005), por lo cual el oxígeno es un factor determinante en el establecimiento de las formación de biopelículas para algunos microorganismos.

1.5.4 Quórum sensing.

Numerosas evidencias experimentales sugieren que el proceso de formación de biopelículas es regulado por una compleja cascada de reguladores (Van Houdt & Michiels, 2005). Se ha demostrado que la formación de biopelículas es regulada por la concentración celular, la cual es monitoreada por la célula mediante el "quórum

sensing" (QS). El sistema QS es un mecanismo de regulación dependiente de la acumulación en el medio ambiente de una molécula señal, el autoinductor, que permite a la bacteria detectar la densidad de población existente. En bacterias gram-negativas el autoinductor (molécula señal) es principalmente acil homoserina lactona (AHLs) (Rabin *et al.*, 2015), mientras que en bacterias Gram-positivas los autoinductores son péptidos detectados mediante el sistema de dos componentes. Cuando se acumula en el medio una suficiente cantidad del autoinductor se activa un receptor específico que altera la expresión de genes que afectan a distintos fenotipos como la virulencia, esporulación, producción de antibióticos, luminiscencia, motilidad, todo esto durante la interacción con hospederos eucariontes (Bassler, 1999; Federle & Bassler, 2003; Zhang & Dong, 2004).

El QS es usado por bacterias capaces de desarrollar biopelículas en los pulmones de pacientes con fibrosis quística (Kumari et al., 2016; Sethupathy et al., 2016). Por lo que, el papel de las señales extracelulares y del QS esenciales en la diferenciación de biopelículas. Debido al complejo y multifactorial comportamiento dentro de las comunidades bacterianas, el QS se relaciona con el establecimiento de las microcolonias, en la heterogeneidad, arquitectura, resistencia al estrés, en el mantenimiento y desprendimiento de células del biopelículas que comprende la regulación de genes para la adhesión, motilidad, guimiotaxis, producción de EPS, en el crecimiento y competencia, en la toma y liberación de ADN (Davies et al., 1998; Sethupathy et al., 2016). Consistentemente con estas observaciones, se ha reportado que el alga australiana Delisea pulchra produce una furanona halogenada que interfiere con el QS mediado por acil homoserina lactonas, posiblemente al competir por el sitio de unión de la homoserina en la proteína receptora; además las biopelículas tratados con dicha furanona son incapaces de madurar, afectándose la arquitectura y promoviéndose la desunión de bacterias de las biopelículas con la consecuente pérdida de biomasa (Hentzer et al., 2002).

En *P. aeruginosa* existen dos sistemas de comunicación celular, LasR-LasI y RhIR-RhII involucrados en la formación de biopelículas. A una densidad de población suficiente las señales se acumulan y se alcanza la concentración necesaria para la activación de

genes involucrados en la diferenciación de biopelículas, mutantes incapaces de secretar estas señales forman biopelículas de distinta arquitectura (Hentzer *et al.*, 2002).

1.5.5 Factores genéticos involucrados en el desarrollo de las biopelículas.

Estudios genéticos relacionados con infecciones de la cavidad bucal (Jhajharia *et al.*, 2015). En infecciones sistémicas de patógenos del hombre (Pinheiro L, Brito CI, 2016), y en grupos de rhizobeaceas (Rinaudi & Giordano, 2010), han ayudado a definir los genes que participan en la diferenciación de los estadios de la formación de biopelículas. Los genes requeridos para la formación de biopelículas son los relacionados con la adhesión, el QS, con la pared celular, con el metabolismo y con plásmidos (Allewell, 2016). Así mismo, algunos relacionados con el control celular, maduración y dispersión de las biopelículas bacterianos. Las publicaciones sobre este tema se han incrementado en los últimos años con una media de al menos 2,000 por año sobre todo las relacionadas con infecciones crónicas (Bjarnsholt, 2013).

Tabla	1	Genes y prot	teínas i	implicados	en	el	proceso	у	desarrollo	de	la	formación	de	biopelículas	en	diversos
modelo	s b	acterianos.														

Gene	Función	Organismo	Referencia
agn43	Media la interacción célula-célula y	E. coli	Danese et al.,
(flu)	célula-superficie en medio mínimo		2000a.
	suplementado con glucosa (Ag43,		
	antígeno 43)	_	
dspB	Participa en disgregación de las	А.	Kaplan <i>et al</i> ., 2003b.
	biopelículas (N-acetilglucosaminidasa)	actinomycetemcomi	
		tans "	
csrA	Represor de la formación de	E. coli	Jackson <i>et al.</i> ,
	biopeliculas y activador de la		2002b.
	dispersion del mismo (USFA, regulador		
dahA	giobal de union a RINA) Dertigina en el plagamiento de	E coli	Consularity of al
USDA	proteínas extracitoplásmicas que		10002
	contienen nuentes disulfuro y en		15554.
	ensamblaie de fimbria tipo I y del		
	cuerpo basal del flagelo (DsbA)		
flhD	Regulador maestro de síntesis de	E. coli	Pratt v Kolter, 1998.
	flagelo involucrado en la adhesión		, ,
	reversible (FlhDC)		
fliC	Subunidad estructural del flagelo	E. coli	Pratt y Kolter, 1998.
	(Flagelina)		
nlpE	Transmite señales al dominio	E. coli	Otto y Silhavy, 2002.
	periplásmico de CpxA en respuesta a		
	daño en membrana causado al		
	momento de adhesión (Lipoproteína de		

Gene	Función	Organismo	Referencia
ompR234	membrana externa) Mutantes en este gen estimulan la formación de biopelículas vía producción de curli (OmpR, parte del sistema de dos componentes EnvZ/OmpR que responde a	E. coli	Prigent-Combaret <i>et</i> <i>al</i> ., 2001.
oxyR	osmolaridad) La forma reducida de OxyR reprime la expresión del gen <i>flu</i> (OxyR, regulador maestro durante estrés oxidativo)	E. coli	Danese <i>et al.</i> , 2000a; Schembri <i>et</i> <i>al.</i> , 2003.
rfaG rfaP galU	Mutantes en estos genes están afectadas en motilidad y fimbria tipo I (Participan en la biosíntesis del "core" de LPS)	E. coli	Genevaux <i>et al.</i> , 1999b.
rpoS	Factor sigma de fase estacionaria (RpoS)	E. coli	Adams y McClean, 1999. Corona-Izquierdo y Membrillo- Hernández, 2002a. Whiteley <i>et al.</i> 2001
algL	Degrada alginato, participa en disgregación de biopelículas (Alginato liasa)	P. aeruginosa	Boyd y Chakrabarty, 1994.
flgK	Proteína flagelar asociada al gancho	P. aeruginosa	O'Toole y Kolter, 1998a.
lasl	(Lasl) <i>N</i> -(3-oxododecanoil)-L- homoserina lactona	P. aeruginosa	Davies <i>et al.</i> , 1998.
pilBCD	Síntesis de pili tipo IV (PilB, PilC, PilD)	P. aeruginosa	O'Toole y Kolter, 1998a.
agfA	Estabiliza el contacto intracelular y participa en adhesión a superficies (AgfA, subunidad de fimbria SEF17)	S. enteritidis	Austin <i>et al</i> ., 1998.
Katar	Dan protección contra el peróxido de hidrógeno en biopelículas (Catalasas)	P. aeruginosa	Elkins <i>et al</i> ., 1999.
wcaF	Participa en la producción de ácido colánico.	E. coli	Danese <i>et al.</i> , 2000b.
cpsE	Participa en síntesis de ácido colánico	E. coli	Prigent-Combaret et al., 2000.
aafA	Participa en adherencia agregativa (AafA, subunidad de AAF/II)	EAEC*	Czeczulin <i>et al.</i> , 1997.
aggR	Activador transcripcional de AAF/II que afecta la formación de biopelículas (AggR)	EAEC*	Sheikh <i>et al</i> ., 2001.
Fis yafK	Activa la expresión de AggR (Fis) Proteína hipotética, posiblemente regula los genes que codifican AAF/II a nivel transcripcional (YafK)	EAEC* EAEC*	Sheikh <i>et al</i> ., 2001. Sheikh <i>et al</i> ., 2001.
mucA22	Mutantes en este gen sobre producen alginato (Factor anti-sigma de $algT$)	P. aeruginosa	Hentzer <i>et al</i> ., 2001.
algT comCDEX	Regula síntesis de alginato (AlgT) Mutantes en estos genes presentan	P. aeruginosa Streptococcus	Hentzer <i>et al</i> ., 2001 Li <i>et al</i> ., 2002.

.

Gene	Función	Organismo	Referencia
	biopelículas anormal (ComCDEX,	mutans	
	sistema quórum sensing en Gram-		
	positiva)		
mbaA	Participa en la formación y	Vibrio cholerae	Bomchil <i>et al</i> ., 2003.
	mantenimiento de la arquitectura		
	tridimensional del biopelículas maduro		
	(MbaA)		
sigB	Participa en la inducción de	Staphylococcus	Rachid <i>et al</i> ., 2000.
	biopelículas bajo estres osmótico	aureus	
	(Factor sigma $\sigma^{\rm B}$)	.	
Fap1	Participa en biogenesis de fimbrias	S. parasanguis	Froeliger y Fives-
4 m m A	(Fap1, adnesina asociada a fimbria)		l aylor, 2001.
thaA	Participa en la formación de	E. COll	Di Martino <i>et al.</i> ,
	piopeliculas y adherencia a celulas		2002.
	Mutantas an actos ganas disminuyan la	Vibrio choloroo	Zhu y Makalanas
hanP	formación do biopolículas (LuxO	VIDITO CITOLETAE	
Παριχ	HanR sistema quórum sensing)		2003.
Rhf	Involucrado en la agregación	Stanhylococcus	lim et al 2004
1.001	multicelular dentro de las biopelículas	aureus	
	que responde a glucosa v NaCl		
	(Regulador transcripcional Rbf)		
Bola	La sobreexpresión de este gén induce	E. coli	Vieira <i>et al</i> ., 2004
	la formación de biopelículas y la		,
	deleción la disminuye (morfogene para		
	célula redonda, BolA)		
Grupo	Son responsables de la producción de	P. aeruginosa	Friedman y Kolter,
pel	matriz extracelular rica en glucosa en la		2004.
	formación de biopelículas (Proteínas		
	transmembranales y de procesamiento		
4000	de carbohidratos)	– "	
рдаАВСД	Promueve la adhesion intercelular y a	E. COli	Wang <i>et al</i> ., 2004.
	las superficies en la formación de		
	biopeliculas (Adnesina tipo		
rolA	Mutantas an astas ganas presentan un	E coli	Ralzer v Mel ean
reia, spoT	decremento en la formación de	E. COII	
spor	bionelículas en medio mínimo		2002.
	(Biogénesis de (p)ppGpp)		
sarA	Mutantes en este gen inhiben la	Staphylococcus	Valle <i>et al.</i> 2003 [.]
oun i	formación de biopelículas vía la	aureus v S.	Tormo <i>et al</i> ., 2005
	regulación de polisacáridos PIA/PNAG	epidermidis.	,
	(SarA, regulador central)	,	
hha,	Participan en la formación de	E. coli	Barrios <i>et al</i> ., 2005.
ybaJ,	biopelículas, en la motilidad, en		
ompA	conjugación y agregación (Hha, YbaJ y		
	OmpA)		
ryhB	Mutantes en este gen presentan	Vibrio cholerae	Mey <i>et al</i> ., 2005.
	biopelículas diferente a la cepa		
	silvestre y una reducción en motilidad y		
	quimiotaxis en bajo hierro (Pequeño		

Gene	Función	Organismo	Referencia
	RNA; regulador)		
bvgA	Mutantes en este gen disminuyen la formación de biopelículas (BvgAS,	<i>Bordetella</i> spp.	Mishra <i>et al</i> ., 2005.
_	sistema de transducción de señales)	_ <i>i</i>	
wspF	Mutantes en este gen aumentan la formación de biopelículas por un incremento de c-diGMP (operon wsp	P. aeruginosa	Hickman <i>et al</i> ., 2005.
	parte del sistema de traducción de señales)		
sinR	Regula la transición entre células planctónicas a biopelículas (SinR,	Bacillus subtilis	Kearns <i>et al</i> ., 2005.
Smu0630	Mutante en este gen disminuve la	Streptococcus	Brown <i>et al.</i> , 2005.
	formación de biopelículas a pesar de la fuente de carbono (Smu3630, posible lipoproteína de unión a glucano)	mutans	,
rfaH	Reprime la formación de biopelículas por la reducción de la adhesión (RfaH, antitorminador transcrincional)	E. coli	Beloin <i>et al.,</i> 2006.
PrsD/Prs	Responsables en la secreción de	Rhizobium	(Russo <i>et al.</i> , 2006)
E	exopolisacaridos glicanasas PlyA y PlyB	leguminosarum	(,
esal/esa	Regula la adhesión y formación de	Pantoea stewartii	Koutsoudis et al.,
R	biopelículas (Esal/EsaR sistema quórum sensing)		2006.
nodD1A	Participan en el inicio de la infección en	Sinorhizobium	(Fujishige <i>et al.</i> ,
BC	leguminosas y en el inicio de la formación de nódulos, también relacionados con la formación de biopelículas	meliloti	2008)
flbT	Posible participación en swarming durante la formación de biopelículas	Rhizobium phaseoli CNPAF512	(Braeken <i>et al.</i> , 2008)
BdcA	Incrementa la dispersión de las biopelículas en gram negativas.	Rhizobium meliloti	(Ma <i>et al.</i> , 2011)
RaA2	Relacionada con el biofilm bacteriano, con una estructura similar a las caderinas de eucariontes.	Rhizobium Ieguminusaru	(Abdian <i>et al.</i> , 2013)
praR	La mutación de este gene incrementa la formación de biopelículas sobre raíces, considerado un represor de CinR el cual induce el opeon cinlS	Rhizobium leguminusarum	(Frederix <i>et al.</i> , 2014)
PsIG	Dispara el desensamble de los exopolisacáridos de la matriz	Pseudomona aeruginosa	(Yu <i>et al.</i> , 2015)
BinK	Histidin quinasa, regulador negativo de la formación de biopelículas	Vibrio fisheri	(Brooks & Mandel, 2016)
exoU	La presencia de estos genes se relaciona con la resistencia a	Pseudomonas aeruainosa	(Azimi <i>et al.</i> , 2016)
spxA1	antibióticos. Su inactivación disminuve la capacidad	Streptocuccus	(Galvão <i>et al</i> 2016)
	de virulencia en caries dentales.	mutans	

Gene	Función	Organismo	Referencia
binK	Regulador negativo de la formación de biopelículas.	Vibrio fischeri	Brooks JF et al., 2016
VirA,B, G,C,D,E	Genes que permiten la transferencia de información genética durante la formación de biopelículas.	R. etli	Lacroix and Citovsky 2016

*Escherichia coli enteroagregativa.

1.5.6 Análisis transcripcional durante la formación de biopelículas bacteriano

De manera tradicional, la genética clásica aplica el análisis a uno o unos cuantos genes, para explicar cómo funciona cierto proceso dentro de la célula; en análisis globales se espera observar la expresión global de la regulación genética bajo condiciones metabólicas dadas.

Los microarreglos de ADN, han sido utilizados en la descripción de la expresión genética para la regulación de la formación de biopelículas, desde los primeros estudios realizados principalmente en patógenos como *P. aeruginosa* (Whiteley *et al.*, 2001), en la que se describe por primera vez genes implicados en la adhesión celular y genes de vida libre, describiendo su posible participación en la formación de biopelículas bacteriano. El estudio permitió detectar genes involucrados con la resistencia a antibióticos, motilidad, adhesión, traducción, metabolismo y transporte son el tipo de genes sobre expresados durante la formación de biopelículas (Whiteley *et al.*, 2001).

La tolerancia a tratamientos con antibióticos es uno de los temas tratados en estudios globales, en *P. aeruginosa* se describe un comportamiento de mayor resistencia en condiciones agregadas, probado ante la presencia de antibióticos, para comprender el proceso de forma global se han desarrollado proyectos analizando la expresión a nivel de transcritos (Stewart *et al.*, 2015).

La cantidad de datos que se obtienen mediantes este tipo de análisis es considerable. Por lo que, el análisis es complejo, sin embargo es una herramienta útil en la descripción de la expresión global de genes bajo condiciones metabólicas dadas, en nuestro caso bajo condiciones de formación de las biopelículas. Procesos tan complejos como este, requieren de la utilización de nuevas técnicas que permitan describir desde un punto de vista distinto el proceso. Actualmente, el análisis global no solo se limita a comprender la expresión a nivel de transcritos, sino que también se realizan trabajos a nivel de proteínas y metabolitos, proyectos de este tipo han permitido describir un mayor número de genes y sus posibles funciones en procesos como degradación de metales por citar un ejemplo (Goltsman *et al.*, 2013).

En el ambiente existen diversas comunidades bacterianas que permiten comprender el proceso de agregación celular, superficies de agua como ríos, se han realizado diversos análisis comparando poblaciones planctónicas y sésiles, esto ha demostrado que ambas poblaciones guardan ciertas similitudes, por lo menos en análisis mediante metagenómica se ha observado esto, grupos de estos genes se relacionan con el metabolismo de hierro, respuesta a estrés y envoltura celular (Nakamura *et al.*, 2016). Otros análisis sobre poblaciones de biopelículas bacterianas en suelos han permitido comprender como ocurre la degradación de ciertos compuestos contaminantes del suelo, mediante análisis metagenómicos específicamente en pirosecuenciación de regiones de 16S.

Además de la regulación a nivel transcripcional, existen numerosos indicios de la existencia de regulación postranscripcional en el proceso de formación de biopelículas. La activación de la síntesis de celulosa en S. enterica serovar typhimurium se produce por el activador alostérico diguanocil monofosfato ciclico (c-diGMP). La concentración de este activador depende de dos actividades enzimáticas, diguanilato ciclasa y fosfodiesterasa, asociadas a enzimas que contienen los dominios GGDEF y EAL, estos dominios son ampliamente distribuidos en proteínas de procariotes (Méndez-Ortiz et al., 2006). En P. aeruginosa existe un gran número de genes involucrados en la formación de biopelículas, un ejemplo es el gen wspF que presenta el dominio GGDEF, involucrado en generar biopelículas menos robustas y gruesas que el tipo silvestre, lo que indica que la presencia de c-diGMP es necesaria para la formación de biopelículas (Hickman et al., 2005). Un tratamiento con c-diGMP extracelular en Staphylococcus aureus inhibe las interacciones intracelulares y la formación de biopelículas (Karaolis et al., 2005). El c-diGMP ha sido involucrado en diversos procesos de diferenciación celular y en mecanismos de multicelularidad en bacterias, como el proceso de la motilidad, virulencia, resistencia a metales, niveles de competitividad, comunicación célula-célula, en la morfología de la célula, en la síntesis de fimbria, en la producción de celulosa, en la vida libre y en los diferentes pasos de las formación de biopelículas (Karaolis et al., 2005; Méndez-Ortiz et al., 2006). También el c-di-GMP regula la

expresión de genes involucrados en la expresión de exopolisacáridos controlando la estabilidad de las biopelículas (Thormann *et al.*, 2006).

1.6 Proteómica de biopelículas.

La proteómica y la transcriptómica son herramientas complementarias en estudios y análisis globales. Dado que existen limitantes en todos los tipos de análisis globales, es recomendable utilizar más de uno, para tener un panorama lo más completo del funcionamiento celular. Entre las limitantes podemos mencionar que no todos los transcritos analizados mediante microarreglos de ADN, llegan a ser traducidos a proteína y por el contrario productos de transcritos de poca abundancia que podrían no ser detectados mediante proteómica, lo cual limita el análisis cuando solo se utiliza una estrategia de análisis global para disectar el comportamiento celular de un microorganismo. En la actualidad estas y otras técnicas, permiten analizar de manera global el comportamiento celular durante la formación de biopelículas en diversos microorganismos. En proteómica posterior a la separación del complejo proteíco ya sea mediante electroforesis bidimensional o mediante cromatografía líquida, una de las herramientas desarrolladas para la identificación de proteínas es la espectrometría de masas, la identificación de estas permite analizar con más detalle el tipo de proteínas que participan dentro de los diferentes procesos biológicos.

Los análisis realizados utilizando técnicas como proteómica y transcriptómica han permitido definir la expresión proteica del estado sésil y planctónico, esto con la finalidad de comprender la regulación genética de la célula durante este complejo proceso (Khemiri *et al.*, 2015).

En trabajos previos realizados en *E. coli* S17-1, se ha estudiado la expresión diferencial de proteínas en células sésiles y planctónicas, mostrando que existen diferencias a nivel de expresión proteica entre ambas poblaciones celulares (Collet *et al.*, 2007). De la misma forma en otros organismos se han realizado análisis mediante proteómica para describir la formación de biopelículas (Oosthuizen *et al.*, 2001; Steyn *et al.*, 2001).

Las biopelículas han sido analizadas con la finalidad de dilucidar los mecanismos genéticos que regulan este proceso. Comparando la expresión genética entre la condición sésil frente a la planctónica. Alguna de las diferencias son genes relacionados con síntesis de flagelo, una mayor expresión de genes para la adhesión y proteínas

ribosomales (Lazazzera, 2005). LasI biopelículas genera un microambientes en este estado metabólico por lo que la bacteria responde a diversas señales intracelulares o extracelulares, que permiten a la bacteria iniciar el proceso de formación de biopelículas. En *E. coli* en un estudio entre células planctónicas y sésiles, se observó un aumento en la expresión de proteínas involucradas en la adhesión, proteínas de transporte, posible óxido reductasa y genes asociados con el aumento a la resistencia a metales pesados (Schembri *et al.*, 2003). Dentro de los grupos analizados en este trabajo algunos genes y proteínas se relacionan con este tipo de categorías funcionales consideradas mediante COGs (Clusters of Orthologous Groups, pos sus siglas en ingles).

En la literatura existen análisis que describen de forma global la formación de biopelículas, un ejemplo es el realizado en *E. coli* O157:H7, en donde se han identificado proteínas responsables del fenotipo de las células en biopelículas lo cual ha permitido observar las diferencias de expresión entre la condición sésil y planctónica durante el proceso de formación de biopelículas utilizando técnicas mediante proteómica (Tremoulet *et al.*, 2002). De la misma forma en los últimos años se han realizado una serie de trabajos en diversos organismos, analizando la expresión genética durante la formación de biopelículas, en su mayoría se han enfocado en organismos patógenos oportunistas del hombre, un ejemplo es *P. aeruginosa* (Balasubramanian & Mathee, 2009).

En trabajos previos en *P. aeruginosa* y *B. cereus* comparando células sésiles con planctónicas se han identificado varias proteínas expresadas durante la formación de biopelículas, las cuales se expresan diferencialmente durante cada estadio de su desarrollo, estas proteínas están relacionadas con daño oxidativo, producción de exopolímeros, metabolismos aeróbico y anaeróbico y con transporte de metabolitos. (Oosthuizen *et al.*, 2002; Sauer *et al.*, 2002). La expresión genética de los organismos ante diversas condiciones metabólicas es distinta, sin embargo prevalece la expresión de genes relacionados con la homeostasis bacteriana, en *P. aeruginosa* se ha estudiado la expresión genética en diversas condiciones metabólicas, los resultados de expresión analizados mediante microarreglos, muestran que algunos de estos genes, mantienen su expresión y se comparten entre las condiciones analizadas,

específicamente en estudios de QS, biopelículas, estrés oxidativo y , estrés osmótico y ante la presencia de hierro y cobre (Balasubramanian & Mathee, 2009).

En este trabajo el análisis mediante proteómica en *R. etli* CFN42, nos ha permitido proponer diferencias de expresión durante la formación de biopelículas, nuestro análisis se centra en diversos tiempos de la formación de biopelículas, tratando de analizar las principales etapas de su formación. Para esto se determinó analizar la expresión del genoma mediante proteómica a las 24, 72, 120 y 240 horas de la formación de biopelículas.

2 Objetivo general.

Analizar la expresión del genoma de *R. etli* CFN42 durante la formación y desarrollo del biofilm mediante transcriptómica y proteómica.

2.1 Objetivos específicos.

Identificación mediante microarreglos de DNA de los genes diferencialmente expresados en las etapas tempranas de la formación del biofilm en *R. etli* CFN42

Definir el patrón de expresión proteica en las etapas de inicio, maduración y disgregación del biofilm en *R. etli* CFN42, así mismo identificar mediante espectrometría de masas MALDI-TOF a las proteínas involucradas en las diferentes etapas mencionadas y sugerir un probable papel durante la formación y desarrollo del biofilm

3 Metodología del análisis mediante transcriptómica

La metodología del análisis mediante transcriptómica se encuentra detallada en el documento "Transcriptomic analysis of the process of biofilm formation in *Rhizobium etli* CFN42". El cual es mostrado más adelante.

4 Metodología utilizada en el análisis proteómico.

4.1.1 Células planctónicas

La población planctónica se obtiene inoculando 150 ml de medio PY (peptone Yeast Estract) a una densidad óptica (D.O.) de 0.2 inicial, esta es agitada por 6 horas y se colecta mediante centrifugación a 10,000 rpm, la muestra se congela con nitrógeno líquido y posteriormente, se obtiene el extracto de proteínas totales, esta es utilizada para el análisis proteómico, el experimento se realiza por triplicado (ver figura 3).

Figura 3. Para la condición planctónica, los cultivos celulares se crecen a 29 °C y agitación (200 rpm), a las seis horas de crecimiento las células fueron colectadas para la posterior extracción de proteína total.

4.1.2 Células sésiles

Para la condición sésil, se cultivaron las células en matraces Erlenmeyer de 250 ml con 15 ml de medio rico PY, los cuales fueron inoculados a una D.O. inicial de 0.2, cada matraz contenía como superficie de adhesión 40 g de perlas de vidrio (3 mm de diámetro), los matraces se incubaron a una temperatura de 30°C (New Brunswichk Scientific Edison, N. J. U.S.A), sin agitación y a una humedad relativa de 60%. Posteriormente. Se tomaron muestras a los tiempos 24, 72, 120 y 240 horas (ver figura 3). La toma de muestra se realizó, decantando cuidadosamente el sobrenadante, y posteriormente se realizó un lavado suave con agua estéril, posteriormente, se realizó un segundo lavado de forma enérgica, recuperamos el producto de este lavado, para obtener la población sésil. El contenido de 15 matraces (promedio de 150 ml finales en promedio), se centrifugó y congeló en nitrógeno líquido y posteriormente se realiza la extracción de proteínas totales.

Figura 4. Los tiempos para la condición sésil se obtuvieron colocando 40 gramos de perlas de vidrio y 15 ml de PY inoculados a 0.2 de densidad óptica inicial. Las células son colocadas en condiciones de humedad (60%) y temperatura controlada (29 °C). Las células fueron colectadas y obtuvieron los extractos proteicos a distintos tiempos como se indica en la imagen (24, 72, 120 y 240 horas). Todos los experimentos se realizan por triplicado.
4.1.3 Extracción

El proceso se realiza mediante extracción fenólica de acuerdo a Hurkman and Tanaka 1986. Para evitar la actividad proteolítica de las muestras, se emplearon inhibidores de proteasas (complete, Roche).

Las proteínas son solubilizadas en una solución de urea 7 M, thiourea 2M, CHAPS 4%, DTT 60 mM y 5% v/v de anfolitos. La concentración de proteína fue determinada mediante el método de Bradford (Bradford, 1976; Ramagli & Rodriguez, 1985).

4.1.4 Electroforesis en 2D

La separación de proteínas en geles de doble dimensión (2-DE) se realizó con equipo Genomic solutions Investigator 2D Electrophoresis, según las instrucciones del fabricante (Genomic Solutions, Ann Arbor, MI USA) y (Encarnacion *et al.*, 2005). Con las siguientes modificaciones; se empleó un gradiente de pH de 4-8 en el isoelectroenfoque, se cargaron 500 µg de proteína, siendo la concentración del gel concentrador del 12.5% de acrilamida. Los geles fueron fijados y posteriormente teñidos con azul de coomassie coloidal (Candiano *et al.*, 2004). Los geles fueron digitalizados en un densitómetro (GS-800 Bio-Rad USA) a una resolución de 127 x 127 µm, utilizando el software Quantity ONE como interface (Bio-Rad, Hércules, CA). Las imágenes fueron analizadas con el programa PDQuest 8.0 (Bio-Rad, Hércules, CA), las proteínas diferencialmente expresadas fueron seleccionadas considerando por lo menos dos veces de cambio en su expresión respecto a condición planctónica, posteriormente a esto se someten a un análisis estadístico con una prueba de T-student con un valor p 0.05 de significancia. Las proteínas seleccionadas fueron identificadas mediante espectrometría de masas tipo MALDI-TOF.

4.1.5 Identificación de proteínas mediante espectrometría de masas

La identificación de proteínas se realizó mediante espectrometría de masas tipo MALDI-TOF. Las proteínas seleccionadas, fueron recortadas, reducidas, alquiladas, digeridas y automáticamente espotedas para su identificación mediante MALDI-TOF, utilizando el sistema automatizado de identificación de proteínas Proteineer marca Bruker Daltonics, integrado por Proteineer SP y Proteineer DP (robot cortador, robot digestor de proteínas, respectivamente), empleando el "kit" de digestión del fabricante. Los productos de la digestión tríptica fueron procesados automáticamente en un

espectrómetro de masas Autoflex de Bruker Daltonics. Cien espectros satisfactorios fueron acumulados en pasos de veinte disparos, el espectro fue anotado utilizando el programa FlexAnalysis 1.2 v SD1 Patch 2 (Bruker Daltonics, Germany). Los espectros fueron calibrados externamente utilizando un estándar de calibración del fabricante de (Bruker Daltonics 206095). La lista masas fue generada utilizando FlexAnalysis1.2vSD1Patch2 (Bruker Daltonics). El programa MASCOT 2.0, fue empleado como motor de búsqueda para identificar las proteínas contra la base de datos local (Resendis-Antonio et al., 2011), Rhizobium etli CFN42, NC 007761.1, pA, NC_007762.1, pB, NC_007763.1, pC, NC_007764.1, pD, NC_004041.2, pE, NC 007765.1, pF, NC_007766.1) empleando los siguientes criterios de búsqueda: un sitio de corte perdido, carbamidometil cisteína como modificación fija y oxidación de la metionina como modificación variable. Admitimos aquellas proteínas con scores mayores a 50 de acuerdo a una $p \le 0.05$.

Los datos obtenidos fueron exportados a Excel versión 2010 (XLSX), y organizados mediante grupos funcionales mediante COGs (Tatusov *et al.*, 2000), con la finalidad de poder definir su participación en nuestras condiciones de estudio, esta clasificación fue utilizada posteriormente en la discusión de los datos y sirvió para proponer la posible participación de las proteínas identificadas en las condiciones metabólicas estudiadas.

5 Discusión y resultados

5.1 Resultados del análisis mediante transcriptómica

A continuación se anexa el manuscrito que contiene los resultados y detalles experimentales de la formación de las biopelículas bacterianas en etapas tempranas realizado con *R. etli* CFN 42.

Arch Microbiol DOI 10.1007/s00203-016-1241-5

ORIGINAL PAPER

Transcriptomic analysis of the process of biofilm formation in *Rhizobium etli* CFN42

Agustín Reyes-Pérez^{1,2,5} · María del Carmen Vargas¹ · Magdalena Hernández¹ · Eneas Aguirre-von-Wobeser³ · Ernesto Pérez-Rueda⁴ · Sergio Encarnacion¹○

Received: 9 December 2015 / Revised: 17 March 2016 / Accepted: 6 May 2016 © Springer-Verlag Berlin Heidelberg 2016

Abstract Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of *R. etti* CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of -8.3 % of the total *R. etli* gene content was

Communicated by Erko Stackebrandt.

Electronic supplementary material The online version of this article (doi:10.1007/s00203-016-1241-5) contains supplementary material, which is available to authorized users.

Sergio Encarnacion encarnac@ccg.unam.mx

- ¹ Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
- ² Facultad de Ciencias, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Apartado Postal 70-153, C.P. 0415 Cuernavaca, D.F., Mexico
- ³ Red de Estudios Moleculares Avanzados, Instituto de Ecología, A. C. Coatepec 351, El Haya, Xalapa, Veracruz, Mexico
- ⁴ Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, Mexico
- ⁵ Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, Mexico

Published online: 25 May 2016.

altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilationrelated genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.

Keywords Sessile · Planktonic · Biofilm · Microarrays · Rhizobium etli

Introduction

Biofilms represent a very successful mode of microbial existence (Vorachit et al. 1995) because they contribute to increased resistance to environmental stresses as well as antimicrobial tolerance, protection from protozoan predation and the opportunity for horizontal gene transfer (HGT) (Danhorn and Fuqua 2007). Bacteria interacting with plants can be pathogens, commensals or mutualists. In many of these interactions, the ability to form biofilms is likely to be advantageous, if not essential, because it maintains a critical mass of cells in a specific location for long enough periods to initiate beneficial or antagonistic

Springer

interactions with hosts. Rhizobia are nitrogen-fixing symbionts of legumes that employ a variety of strategies that allow them to exist in the soil and adapt to diverse environmental conditions prior to infecting leguminous plant. In this symbiotic relationship, bacteria colonize plant roots to obtain carbon sources and provide the plant with nitrogen. The plant-bacterial interaction shows a high degree of host specificity, based on the exchange of chemical signals, and results in the development of specialized structures called nodules (Schultze and Kondorosi 1998; Karatan and Watnick 2009). The process is mediated by molecular signal exchange between the host and the bacterial cells, which often requires cell-to-cell communication.

Biofilm formation is important in both free living and symbiotic life phases of Rhizobiales. In the free living phase, biofilm formation allows these non-spore-forming soil bacteria to colonize the surrounding habitats and to survive environmental stresses such as desiccation and nutrient limitation. In symbiosis, biofilm formation is essential in the early stages of nodulation, as reported in Sinorhizobium meliloti and R. leguminosarum by, viciae (Fujishige et al. 2006). Bacterial biofilms are widely distributed and play important roles in many environments. Environments faced by soil rhizobia range from a rhizosphere rich in nutrients and root exudates to soils deficient in nitrogen, phosphates, water and nutrients. Numerous microbial species, including rhizobia, form microcolonies or biofilms when they colonize roots (Rinaudi and Giordano 2010), S. meliloti was first reported, and the rhizobia regulatory system in this species and conditions for analyzing its ability to biofilm formation on biotic and abiotic surfaces and have been interested (Fujishige et al. 2005).

Previous reports on biofilm formation have focused on the role of specific genes, such as those involved in cellular aggregation, swarming, nitrogen metabolism in establishing biofilms on abiotic and biotic surfaces such as glass, plastic microtiter plates, sand and soil (Donlan 2002).

Another essential requirement for biofilm formation is the attachment of the cells to a surface, where adhesins, exopolysaccharides, lipopolysaccharides and surface proteins play a central role (Davey and O'Toole 2000). The production of the autoinducers like case *N*-acylhomoserine lactones (AHLs) has also described for *Mesorhizobium tianshanense*, a nitrogen-fixing symbiont (Zheng et al. 2006).

In this work, we used a microarray analysis to analyze gene expression changes in *R. etli* CFN42 during biofilm formation on a glass (abiotic) surface, as described previously for some pathogenic and nitrogen-fixing organisms (Christensen et al. 2007; Rinaudi and Giordano 2010). We analyzed gene expression in the planktonic and sessile phases of growth (24 and 72 h).

This is the first transcriptomic study during biofilm formation in *R. etli* CFN42. As opposed to the majority of

Springer

previous studies in rhizobia using cells obtained in different experiments (biofilms on abiotic or biotic surfaces; and planktonic cells from shaken cultures), we used planktonic and sessile cells, collected from the same culture and performed transcriptomic analysis after carefully separating each cell type. We believe that this strategy enabled us to more reliably detect subtle metabolic and structural differences occurring during the transition from planktonic to sessile cells. Our main goal was to contribute to the understanding of even subtle metabolic, structural and regulatory changes occurring in R. etli during the process of biofilm formation, in contrast to previous reports examining only the planktonic and sessile phases. Thus, our approach focuses on differential gene expression during the change of phases, with the aim of understanding the expression changes needed for biofilm development in nature.

Methods

Biofims formation assay

Biofilm formation was assayed by the ability of R. etli cells to adhere to the wells of 96-well PVC microliter dishes (Falcon 3911 Microtest III flexible assay plate; Becton-Dickinson Labware, USA) using a modification of a previously reported protocol (O'Toole and Kolter 1998a). One-hundred microliters per well of rich medium [PY; (3 g/L yeast extract, 5-g/L bacto peptone and 7 mM CaCl₂·2H₂O)], or minimal medium (MM) with succinate or glucose as carbon source, was inoculated to an initial OD₅₄₀ of 0.05, and the plates were without shaking incubated at 29 °C. Culture growth (OD₅₄₀) was determined at intervals with a microplate reader (Bio Rad Model 3550-UV). For biofilm assays, unattached cells were removed by thoroughly rinsing with water, and then, 125 µl of a 1 % aqueous solution of crystal violet was added to each well (this dye stains cells but not PVC). The plates were incubated at room temperature for 15 min and rinsed repeatedly and thoroughly with water and scored for the formation of biofilm. Growth curves were determined at 29 °C without shaking. OD540 readings were taken over time using a Microplate Reader Bio Rad Instruments Model 3550-UV USA. The amount of CV bound to the biofilm (and therefore the amount of biofilm material) can be quantified via solubilization of CV in dimethyl sulfoxide (DMSO) and subsequently measuring the absorbance of each sample at 570 nm (O'Toole and Kolter 1998a).

Twitching and flagellar motility assays

Twitching motility was assessed by stabbing cells into a thin (2-mm) PY agar plate (1.5 % agar) according to O'Toole and Kolter (1998a). A haze of growth at the agarplate interface and the characteristic flat spreading colony morphology indicates strains having twitching motility. Flagella-mediated motility was assessed on PY medium with 0.3 % of agar at 29 °C.

Planktonic and biofilm culture for transcriptomic and microscopy analysis

R. etli CFN42 cultures were grown in 250-ml Erlenmeyer flasks containing 15 ml liquid PY medium and 40 g of glass pearls as an abiotic adhesion surface. Cultures were inoculated at an initial OD540 of 0.2 (Beckman DU 800 spectrophotometer, USA), Cultures were incubated at 29 °C with 60 % relative humidity in a Biotronette Plant Growth Chamber (Lab-line Instruments, INC. USA), without shaking. The same culture served as a source of both planktonic and sessile cells, which were separated after 24 and 72 h of incubation by decantation. The supernatant contained the planktonic cells. The pearls containing adhered cells were gently washed with DEPC water to remove remaining planktonic cells. Sessile cells were re-suspended from the washed pearls in 15 ml DEPC water with vigorous shaking. Pools were made of 10-15 suspensions of sessile and planktonic cells to obtain a total of 150 ml of sample. in triplicate for each condition. These were centrifuged (13,000g 10 min) to concentrate the cells, and RNA later (AMBION) was added.

For confocal microscopy analyses, cells were grown in 250-ml Erlenmeyer flasks with 30 ml PY medium containing a microscope slide, which served as a surface for biofilm formation.

Microscopy analysis

Microscopic slides with biofilms attached on glass slides after 24 and 72 h of incubation the slides were removed and transferred to 50-ml conical tubes and washed once with PBS and stained for 30 min, using the BacLight LIVE/DEAD staining system according to the manufacturer's protocol (#L7007, Molecular Probes), washed once with PBS and observed with a Zeiss LSM 510 META confocal laser scanning microscope equipped with 488-, 514-, 543- and 633-nm laser lines.

RNA extraction and cDNA synthesis

RNA was extracted from 100 ml of planktonic and sessile cell preparations. Total RNA was isolated by acid hot phenol extraction as described by de Vries et al. (1989). RNA concentrations were determined by their absorbance at 260 and 280 nm. RNA integrity was determined by running samples on a 1.3 % agarose gel. Purified RNA (10 µg) was used as a template for cDNA synthesis, which was differentially labeled with Cy3-dCTP and Cy5-dCTP using a CyScribe first-strand cDNA labeling Kit (Amersham Biosciences).

Microarray experiments

The whole-genome oligonucleotide set on the array contained 6,034 70-mers, representing all (6034) predicted R. etli open reading frames (ORFs) (Salazar et al. 2010). Microarray experiments were carried out using three biologically independent RNA samples prepared at 24 and 72 h from both biofilm formation stages (planktonic and sessile). Pairs of Cy3- and Cy5-labeled cDNA samples were mixed and hybridized on the array (Hegde et al. 2000; Locke et al. 2015). A second hybridization was performed using a dye swap, reversing the assignment of Cy3 and Cy5 to sessile or planktonic samples. The arrays were washed and scanned using a pixel size of 10 µm with a ScanArray Lite microarray scanner (Perkin-Elmer, Boston, MA). Microarray data have been deposited at the NCBI gene expression and hybridization data repository (http:// www.ncbi.nlm.nih.gov/geo/), (GEO accession number GSE67656).

Statistical analysis

Spot detection, determination of mean signals and mean local background intensities, image segmentation, and signal quantification were performed on the microarray images using the Array-Pro Analyzer 4.0 software (Media Cybernetics, L.P.).

Microarray data were analyzed to assess the statistical significance of expression differences between planktonic and sessile cells after 24 and 72 h of growth in conditions favorable for biofilm maturation. The analysis consisted of three steps: background subtraction and data normalization, analysis of variance and controlling for the expected number of false positives (Quackenbush 2002). Microarray data were normalized to have comparable signal values between the different slides. After background subtraction, data were quantile-normalized using the q-spline method (Workman et al. 2002), attaining signal intensities with the same distributions between all microarray slides in the red and green channels. The signals were transformed to logarithmic scale (log2), and the resulting signals were examined using M-A plots (Supplementary Material Figure S1), where no intensity-dependent artifacts were identified.

To determine the significance of expression differences between planktonic and sessile samples, an ANOVA test was conducted for each gene at 24 and 72 h. The ANOVA model used to fit the data was:

$$r_{\text{gabj}} = T_{\text{ga}} + P_{\text{gb}} + (\mathbf{1P})_{\text{gab}} + A_{\text{gj}} + (\mathbf{AP})_{\text{gjb}} + \gamma_{\text{gabj}}$$

where r_{gabj} is the normalized intensity for gene g(g = 1,...,6038), treatment a (a = 0, 1), probe b(b = 1,...,12,076) and array j (j = 1,...,3). Treatments 0 and 1 correspond to planktonic and sessile samples, respectively. The g subindex in the model shows that the model was fitted gene by gene. T_{ga} is the main effect of the treatment for gene g, P_{gb} is the main effect of each probe, TP_{gab} is the probe-specific treatment effect on each gene, A_{gj} is the main effect of the array slide on each gene, and AP_{gjb} is the interaction effect between array and probe. We assumed that the error term γ_{gabj} was normally distributed with zero mean and variance $\sigma\gamma^2$. The term of interest is T_{ga} , which expresses the differential expression between the two metabolic states, biofilm and planktonic.

The ANOVA resulted in one p value for each of the 6038 genes for each time point. These p values indicate the probability that the samples from both origins (planktonic and sessile) came from equal populations, given their differences in expression. Since thousands of hypotheses were tested, it is expected that a number of low p values were obtained only by chance (false positives), while others reflect real expression changes. The q value method (Storey and Tibshirani 2003) was used to control the fraction of false-positive results, called false discovery rate (FDR). This method allowed us to determine a p value threshold that corresponded to a FDR of 0.05. Thus, an expected 5 % of false positives were accepted.

Real-time PCR measurements

To validate the results of the microarray experiments, several genes showing expression changes were analyzed by quantitative real-time PCR (qRT-PCR), and oligonucleotides were designed using the Primer Express 3.0 program from Applied Biosystems and synthesized at the "Unidad de Síntesis del Instituto de Biotecnología, UNAM." RNA was incubated with 1 U µg-1 RNase-free DNase I according to the manufacturer's protocol (Fermentas Life Sciences), and the absence of DNA contamination was confirmed by PCR. Amplifications were performed with the Thermoscript RT-PCR system (Invitrogen) with a reduced number of cycles in order to avoid the reaching plateau DNA amplification reaction. The relative quantification of gene expression was done using the fixL gene. This is reference gene to use gene expression. The normalization our data is an important step to control experimental errors. In biofilm conditions, the expression fixL is constitutive and we used as an endogenous control. fixL primer sequences for forward

Springer

and reverse were F<CGGGACGATCACGCACTG>, R<CGGGACGATCACGCACTG>, respectively. qRT-PCR was used to acquire an independent assessment of the expression of selected genes, under the same growth conditions as for the microarray analysis.

The following primers were used: flagellin synthesis regulator (repressor) protein-related gene (RHE_CH00683): F<GGGCAAGGACCACTCGACGG>, R<GCGTAGAGA CCGCGGATGGC>; multidrug efflux system, acriflavine resistance protein-related gene (RHE_CH03348): F<GGCTT CACCAACTCCTCGAA>, R<CCAGAAAGGTCCGGTGT CTTAC>; and malate dehydrogenase (oxaloacetate decarboxylating; NADP⁺) protein-related gene (RHE CH02355): F<TCTACGAGGGCCGCACCGAA>, R<CGCCAGCAGC TCCGGTTTCA>. Each reaction mixture contained 12.5 µl SYBR green PCR master mixture (Applied Biosystems), 3.5 µl H2O, forward and reverse primers in 5 µl at 5 pM concentration, and 4 µl of the template. PCRs were performed with the ABI Prism 7700 sequence detection system (Applied Biosystems) using the following program: start at 50 °C for 2 min and 95 °C for 10 min, followed by 40 cycles of 95 °C for 15 s and 62 °C for 1 min. The dissociation protocol was 95 °C for 15 s and 62 °C for 20 s, followed by a ramp from 62 to 95 °C for 20 min. Ct values for the target genes were normalized using fixL as reference for relative quantification. The data were analyzed using the $\Delta \Delta CT$ method, and the data are expressed as relative expression level. Each sample was assayed three times.

Functional classification based on COG annotations and interacting partners of gene product prediction

Differentially expressed genes in the planktonic and biofilm stages were classified using the Clusters of Orthologous Groups (COG) annotations (Tatusov et al. 2003). Prediction of interacting partners of the protein products of certain genes was done using the STRING database using default conditions.

Results and discussion

Biofilm formation

The effect of growth phase and nutritional requirements on biofilm development in *R. etli* was examined. Cells were grown at room temperature without shaking in PVC microtiter plates and biofilm formation quantitated by crystal violet staining as described in "Materials and methods"). The ability to form biofilms was strongly influenced by the nutritional environment. Biofilm formation occurred in PY and in minimal media containing casamino acids

Fig. 1 Nutritional effects on biofilm formation. R. etli CFN42 cells are grown at 29 °C without shaking for 48 h in PVC microtitre dishes containing: a succinate-ammonium, b glucose-casamino acids, c

(CAAs), although less efficiently (Fig. 1). In contrast, minimal media without CAA (with succinate as carbon) did not support biofilm formation (Fig. 1). Rhizobia confront soil environments ranging from rhizospheres rich in nutrients and root exudates to soils deficient in nitrogen, phosphates, water and other nutrients. Our results suggest that soil containing diverse carbon sources would favor biofilm formation by *R. etli*. For this reason, we used rich medium (PY) to perform additional biofilm formation studies.

Biofilm development begins with an initial attachment of planktonic cells to a surface. This is followed by cell division and the recruitment of additional planktonic cells to form a complex three-dimensional structure consisting of exopolysaccharide-encased microcolonies punctuated by aqueous channels. This stage typically represents the mature biofilm structure. We indirectly monitored biofilm development by following the increase in CV staining over time and found *R. etli* initiates biofilm formation in saturated stationary-phase cultures after 24 h (Fig. 2). We chose this time point to represent the surface attachment phase for our transcriptomic analysis. In addition, we analyzed gene expression in mature 72-h biofilms (Fig. 2).

Examination of 24- and 72-h biofilms using confocal laser scanning microscopy (CLSM) showed that at 24 h, the biofilm structure is not yet stable (Fig. 3a). At this stationary growth phase, the limited availability of nutrients could be one of the triggers initiating the biofilm formation process. This is supported by previous report showing that biofilm formation was enhanced by nutrient limitation in *R. leguminosarum* (Fujishige et al. 2006). Moreover, it has been shown that in the symbiosis between *Bradyrhizobium* sp. and peanut, the attachment level varies depending on the metabolic state of the rhizobia (Rinaudi and Giordano 2010). Similarly as our case, in another study, an optimal attachment was observed when cells were harvested at

Fig. 2 In R. etli CFN42, biofilm formation (a) occurs during early stationary-phase growth (b). Cultures are grown at 29 °C in PY for the times indicated. Arrow indicates the correlation between early stationary phase (24 h) and incipient biofilm formation. Similar results are observed in PVC and glass

the late log or the early stationary phase (Dardanelli et al. 2003). Nutrient availability thus appears to play a major role in the transition from a planktonic to a sessile mode of life, similar to our findings with in *R. etli*.

At 72 h, the CLSM obtained after LIVE/DEAD images staining showed that biofilm maturation is accompanied by significant alterations in cell viability in the different biofilm layers (Fig. 3b). A decrease in viability might be due to major restrictions in nutrient availability and accumulation of toxic metabolites as the biofilm thickens. It is expected that differential gene expression would allow the bacteria to adapt to different ecological microenvironments. Recent studies have shown that the regulated death of bacterial cells is important for biofilm development. Following cell death, a subpopulation of the dead bacteria lyse and release

Arch Microbiol

Fig. 3 Confocal laser scanning microscopy and LIVE/DEAD staining system are used to identify the phases of biofilm formation in *R. etfl.* a At 24 h after incubation, cells are visualized in initial attachment; most microscopic fields had no cells attached at all. b At 72 h after incubation, images staining showed a biofilm more structured, and biofilm maturation is accompanied by significant alterations in cell viability in the different biofilm layers. Below the original signal, a Z projection is shown

D Springer

Arch Microbiol

genomic DNA, which has a central role in intercellular adhesion and biofilm stability (Bayles 2007).

Genes expressed in the initiation of biofilm formation

As described above, the biofilm formation process starts at about 24 h. This observation was supported with the CLSM images, and where we can observe that the adhesion of microbes to the surface is beginning (Fig. 3a). Diverse genes having changes in their expression at this time point were identified (Supplementary material Table S1-S2) and could be involved in the establishment of the biofilm. One such gene that was upregulated in sessile cells is raiR, homologous to raiR of Rhizobium leguminosarum whose product is a transcriptional activator of the LuxR family. Many rhizobia use N-acyl-homoserine lactone (AHL)-based quorum sensing (OS) systems to monitor their population density and regulate their symbiotic interactions with their plant hosts (Fugua and Winans 1994; Zarkani et al. 2013; Oh and Choi 2015). In R. etli CFN42, a knockout mutation in raiR causes lower levels of fixation activity (Zheng et al. 2015). In R. leguminosarum, the inactivation of praR has increased competitiveness for nodule infection, increased biofilms formation on pea roots and required the rap and gmsA genes (Frederix et al. 2014). Previously, the QS response has been implicated in biofilm formation in R. etli CNPAF512 (Daniels et al. 2006) and the overexpression of raiR in early steps of biofilm formation in CFN42 suggests its role in this process by enhancing QS signaling during early biofilm formation.

We observed an upregulation of RHE_PE00141, encoding a putative trifolitoxin immunity protein (TFX). TFX is homologous to a peptide antibiotic produced by R. *leguminosarum* by. trifolii T24 that inhibits growth of members of the alpha proteobacteria. It has been reported that treatment of *R. etli* CE3 with TFX significantly increases nodule occupancy and competitiveness in field-grown plants (Robleto et al. 1998). This finding suggests that *R. etli* CFN42 expresses this gene, possibly in preparation for the biofilm formation.

Eight genes were overexpressed in planktonic cells, including a putative *pilA* pilus assembly protein (RHE_ CH00202) that participates in the synthesis of pili. Although not formally assigned to this category, RHE_ PE00148 encodes another putative pilus assembly protein that was overexpressed in sessile cells. It has been shown in *P. aeruginosa* that some type of pili is required for a form of surface-associated movement called twitching motility, which does not require flagella, but depends on the extension and retraction of the pili, allowing the cells to move across a surface (O'Toole and Kolter 1998a, b). On the other hand, previous studies with *S. meliloti* and other

Fig. 4 Twitching motility assays of *R. etli*. Thin agar plates (1.5 %) are stab inoculated with a toothpick to the bottom of the plate and incubated for 48 h at 30 °C. The light haze of grow that the agar-plate interface is a measure of twitching motility. The smaller, denser zone represents surface colony growth

alpha proteobacteria, such as Agrobacterium, Azospirillun, Caulobacter and Rhodobacter, have demonstrated flagella-mediated motility. We found that *R. etli* is capable of twitching motility on PY motility medium containing 0.3 % agar (Fig. 4). This ability could be important in the first stages of biofilm formation. Pratt and Kolter (1998) suggest that pili and flagella could be directly required for attachment to abiotic surfaces, thus facilitating the initiation of biofilm formation, and also might be required for the bacteria within a developing biofilm to move along the surface.

Transcriptomic analysis shows that a large number of genes are differentially expressed in sessile and planktonic cells at 72 h

Significant changes in gene expression were observed at 72 h, corresponding to a mature-stage biofilm (Fig. 3b and Supplementary material Tables S3–S4). In biofilm-attached and planktonic cells, 209 and 273 genes, respectively, were overexpressed, representing 3.3 and 4.4 % of the total genes in *R. etli*.

The classification of the biofilm and planktonic overexpressed genes based on their COG categories is shown in Fig. 5. The majority of genes belonged to the "General function prediction only" (18 and 26 genes), "Function unknown" (20 and 21 genes) and "Not in COGs" (62 and 74 genes). Other COGs highly represented in one or both conditions (sessile and planktonic) were transcription (K), with 7 and 14 genes, respectively; replication, recombination and repair (L), 8 and 15 genes; energy production and conversion (C), 10 and 9 genes; carbohydrate transport and metabolism (G), 16 and 23 genes; and amino acid transport and metabolism (E), 19 and 24 genes (Supplementary material Table S5). In the following sections, we describe the genes most relevant to biofilm formation that were identified in this analysis.

Fig. 5 Differentially expresed genes classified in COG categories. All the genes in each functional group are considered, and numbers of gened with expression changes are shown as proportion. Fractions represented are overexpressed in sessile cell (*black*), overexpressed in planktonic cells (*gray*) and without changes in expression (dotted)

Information storage and processing

Translation, ribosomal structure and biogenesis (J)

In sessile cells, six genes in this category were upregulated, including RHE_CH00602, a probable translation initiation inhibitor protein. Using the STRING database, we found that RHE_CH00602 interacts with RHE_CH00601, a TetR family transcriptional regulator. This protein is involved in the transcriptional control of multidrug efflux pumps, pathways for the biosynthesis of antibiotics, response to osmotic stress and toxic chemicals, control of catabolic pathways, differentiation processes and pathogenicity (Ramos et al.

Springer

2005). STRING also predicts an interaction of this gene with the sigma factor *rpoZ* as well as a probable interaction with RHE_CH02879, a putative translation initiation inhibitor protein that allows the bacteria to conserve energy. However, experimental evidence of these interactions is not available so far. These results are consistent with nutrient depletion in the biofilm generating stress conditions, causing the bacteria to downregulate translation to save energy and maintain cellular homeostasis (Metselaar et al. 2015).

In planktonic cells, we identified six overexpressed translational genes (Supplementary material Table S4), including a tRNA 5-methylaminomethyl-2-thio uridylatemethyltransferase protein-related gene (mnmA), which is conserved in the anticodon wobble position of the tRNAs (Numata et al. 2006). STRING predicts an interaction of this gene with lepA, which is required for accurate and efficient protein synthesis under certain stress and with the translation initiation factor IF-1 (encoded by infA) which was also detected overexpressed. In this context, an orthologous factor seems to stimulate the activities of IF-2 and IF-3 in the bacterium Escherichia coli (Belotserkovsky et al. 2011). In E. coli, the translation initiation mechanism requires, in addition to mRNA, fMet-tRNA and ribosomal subunits, the presence of three additional proteins (initiation factors IF-1, IF-2 and IF-3) and at least one GTP molecule (Celano et al. 1988). The infA gene encodes initiation factor I in E. coli, which is a small protein involved in the initiation step of protein synthesis. The protein level of IF-1 increases when E. coli cells are subjected to cold shock (Ko et al. 2006). Because these proteins share similarity at sequence level (based on PFAM assignation), it is possible that the overexpression of infA also plays a significant role in protein synthesis in planktonic conditions. These results propose a continued protein synthesis in planktonic cells. In contrast, in P. fluorescens a continued protein synthesis is not required after the initial events of biofilm formation on an abiotic surface (O'Toole and Kolter 1998b), suggesting that the earliest events of biofilm development can be divided into two stages. The initial interaction with the abiotic surface requires protein synthesis. However, the subsequent stage (short-term maintenance of the attached cells) does not require synthesis of new proteins (O'Toole and Kolter 1998b).

Transcription (K)

In the sessile phase, seven genes related to transcription were overexpressed, including *rpoA*, which encodes the DNA-directed RNA polymerase alpha subunit (Jafri et al. 1995; Ribeiro et al. 2009). In *Agrobacterium tumefaciens*, *rpoA* interacts with TraR, a quorum sensing (QS) activator to activate gene expression (Qin et al. 2004). This is the first report describing a possible role for *rpoA* in biofilm formation in *R. etli* CFN42. Genes such as RHE_CH02976, encoding products belonging to the LysR family of transcriptional regulators, were also overexpressed, and further analyses are required to characterize their function.

rpoE4 is overexpressed in sessile cells and is a master regulator in bacteria, and in *R. etli*, it is upregulated under oxidative, saline and osmotic stress, and microaerobic and stationary-phase growth (Martinez-Salazar et al. 2009a, b). In aggregated cells, the low availability of oxygen and nutrients could provoke stress, causing *rpoE4* upregulation. Probable transcriptional factors from the AsnC, LysR and TetR families were also overexpressed in biofilms (Supplementary material Table S3), and this is the first report associating these proteins with biofilm formation in *R. etli* CFN42.

In planktonic cells, fourteen genes were overexpressed and some of them were identified as probable transcriptional regulator, three LysR families, one LuxR, LacI and AsnC family. Among these, the rpoH1 RNA polymerase factor sigma-32 stands out. This sigma factor is associated with stress responses in diverse organisms, such as in the S. meliloti 1021 pH stress response (de Lucena et al. 2010). A R. etli rpoH1 rpoH2 double mutant had increased sensitivity to heat shock and oxidative stress when compared with the rpoHl single mutant. This suggests that in R. etli, RpoH1 is the main heat-shock sigma factor, but a more complete protective response could be achieved with the participation of RpoH2 (Martinez-Salazar et al. 2009a, b). The overexpression of rpoH1 could be associated with stresses experienced in both metabolic states. The RNA polymerase sigma factor 24 (rpoE2) was also overexpressed in planktonic cells, and its homologs in S. meliloti 1021 are associated with osmotic stress-related genes (Flechard et al. 2010). Other probable transcription factors identified in the planktonic phase included some belonging to the LysR, AsnC and LuxR families. LysR proteins regulate diverse stress conditions, and we suggest that they may function in regulating genes for resisting stresses unique to the planktonic state.

In summary, we show that different stress-related proteins were induced in the planktonic and sessile states, both of which appear to be stressful conditions. Stresses occurring in planktonic cells are expected to include those caused by long culture age and nutrient limitation, which could predispose them to attach to surfaces. These could represent early changes in gene expression occur before the initiation of biofilm formation. On the other hand, the sessile cells also showed expression changes indicative of a stress response, such as the overexpression of *rpoE4*, suggesting that biofilm formation involves adjustments to specific stresses. As mentioned, limitations in nutrient availability in high cell density biofilms could play a role in triggering this response.

Cellular processes and signaling

Signal transduction mechanisms (T)

The five genes that were overexpressed in sessile cells include *ntrC*, encoding a global activator of nitrogen assimilation that allows cells to take up ammonia (Leigh and Dodsworth 2007; Yeom et al. 2010). Analysis with the STRING database indicated that *ntrC* interacts with two other genes for nitrogen regulation: the two-component sensor histidine kinase *ntrB* and RNA polymerase factor sigma-54 (*rpoN*). Vibrio vulnificus has been shown to require *ntrC* for mature biofilm development via controlling lipopolysaccharide and exopolysaccharide biosynthesis (Kim et al. 2009). In addition, in *Rhodospirillum rubrum* the phosphorylated form of NtrC acts as a transcriptional activator of *nifA* and *glnA*, and other genes involved in nitrogen fixation and assimilation (Zhang et al. 2005) and may play a similar role in *R. etli*.

The nodW gene was also overexpressed in sessile condition. NodW in *B. japonicum* positively regulates nod gene expression in response to plant-produced isoflavones (Loh et al. 1997) and is thus critical for Nod-factor production and nodulation, as has been shown in *B. japonicum* and other rhizobia (Jitacksorn and Sadowsky 2008). Nod factors are indispensable for the development of nitrogen-fixing nodules (Lerouge et al. 1990) and are critical for the establishment of a mature rhizobial biofilm (Fujishige et al. 2008). These dual functions of Nod factors involve different control mechanisms: one dependent on flavonoid induction (for nodulation) and the other independent of flavonoids for biofilm production (Rinaudi and Giordano 2010).

Six signal transduction genes were overexpressed under planktonic conditions, including, *phoR*, a two-component sensor histidine kinase required for phosphate acquisition in *E. coli* grown under phosphate limitation (Gardner et al. 2014). The induction of *phoR* in planktonic conditions probably reflects phosphorus deficiencies caused by prolonged growth in liquid medium, a condition that in other bacteria is needed prior to biofilm establishment (Israel 1987; Jayasinghearachchi and Seneviratne 2006).

Genes associated with motility (N)

Several genes associated with motility were overexpressed under sessile conditions (Supplementary material Table S3). These included *flbT*, which encodes the flagellin synthesis repressor protein present in most Gram-negative bacteria including *Rhizobeaceae*, where it promotes the degradation of flagellin mRNA (Anderson and Gober 2000). During biofilm formation, motility is required in the initial stages, while in late stages it may destabilize the biofilm structure (O'Toole and Kolter 1998a; Rasamiravaka et al. 2015). Once cells are established in biofilm, the metabolic cost of flagella synthesis is probably prohibitive, leading to its repression (Smith and Chapman 2010; Dressaire et al. 2015). We suggest that *flbT* could be associated with cellular aggregation because its role in post-transcriptional control of flagellin expression (Belas et al. 2009). In Rhizobia, flagellar motility allows access to attachment sites on the plant, and flagellar motility is also involved in biofilm maturation. In *S. meliloti*, flagellar mutants are reduced in biofilm formation and delayed in nodule formation (Fujishige et al. 2006).

encoding chemotaxis methyltransferases Genes (cheRCh2, mcpZch1 and mcpV2) were also overexpressed in sessile cells, and methyl-accepting chemotaxis proteins (MCPs) are localized in the cytoplasmic membrane and typically consist of a periplasmic ligand-binding domain, two transmembrane helices, and a highly conserved cytoplasmic signaling domain. The proteins encoded by those genes could modulate chemotaxis. According to STRING, the products of cheRCh2 and cheBch2 are interacting chemotaxis-specific methylesterase protein. In this regard, motility and chemotaxis impact different important aspects of the biofilm formation, including dispersion and reattachment, increasing the efficiency and frequency of surface sampling by the bacteria (Schmidt et al. 2011).

Under planktonic conditions, four genes related to flagellum synthesis were overexpressed, including *flaCch4* (flagellin C protein) and *flgLcl* (flagellar hook-associated protein). In contrast to sessile conditions, the planktonic state expression of these genes allows motility, enabling the bacteria to obtain nutrients, evade host defense systems and improve the ability to contend with hostile environments (Ottemann and Miller 1997). As mentioned, pili and flagella are involved in the attachment and microcolony formation steps of biofilm development in *R. etli*. Our results suggest that flagella may not be required for the maintenance of a mature biofilms but that they are involved in early steps in biofilm development.

Metabolism

Carbohydrate transport and metabolism (G)

Sixteen genes in this functional category were overexpressed in sessile cells. These include, like *ndvB*, encoding beta (1->2) glucan biosynthesis protein that could contribute to the formation of the cellular matrix in biofilms. In *P. aeruginosa*, *ndvB* gene is also involved in producing glycerol-phosphorylated beta-(1->3)-glucans that bind aminoglycosides and provide high-level antibiotic resistance

Springer

(Sadovskaya et al. 2010). The gene encoding the permease protein of a trehalose maltose ABC transporter (*thuG*) also had increased expression in planktonic cells. *thuG* in *S. meliloti* is part of a six-gene cluster involved in trehalose transport and utilization as an energy source (Jensen et al. 2002). All of these genes are important for root colonization, but no clear participation in nodulation or in nitrogen fixation has been reported (Jensen et al. 2002). In *R. etli*, this operon is conserved, but only *thuG* overexpression was observed (Table S3). ThuG could be associated with the adhesion system of *R. etli* in biofilm formation.

Finally, genes related to transport systems (probable sugar ABC transporters) were overexpressed in sessile cells and their products could be used in sugar import for building the extracellular matrix, as well as for metabolism.

In planktonic cells, twenty-three genes in this category were overexpressed, including some related to sugar transport, such as *gguB*, encoding the permease of a xylose ABC transporter, and *glgA*, encoding glycogen synthase. During the transition from the planktonic to the biofilm state, the products of these genes could participate in the synthesis of matrix polysaccharides necessary for biofilm formation, import of carbohydrate for use as an energy source, or glycogen synthesis.

Downregulated metabolic genes detected during biofilm formation, included those related to carbohydrate transport and metabolism (19 out of 20 differentially expressed genes), energy conversion and production (17 out of 21 differentially expressed genes), nucleotide transport and metabolism (one out of six differentially expressed genes), and cell motility (eight out of eight differentially expressed genes). This is consistent with reports of a decreased metabolism in sessile cells (Javaherdashti et al. 2013).

Nucleotide transport and metabolism (F)

In this COG, cells in biofilms differentially expressed 6 genes, 1 upregulated and 5 downregulated), as compared to planktonic cells. Sessile cells only overexpressed gmk2, encoding guanylate (GMP) kinase (GMK). GMP kinase catalyzes the ATP-dependent phosphorylation of GMP to produce GDP and is essential for GMP recycling and the indirect regulation of cGMP levels. In prokaryotes like *E. coli*, lower eukaryotes, such as yeast, and in vertebrates, GMK is a highly conserved monomeric protein required for the synthesis of nucleotide precursors and thus indirectly modulating the synthesis of DNA and RNA. In *P. aeruginosa*, bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) controls the expression of genes required for biofilm formation and dispersal (Chua et al. 2015). The expression of this gene and its participation on the specific metabolites synthesis could be part of the metabolic predisposition on planktonic cell previous to their transformation into sessile cells.

In planktonic cells, five genes were overexpressed including, *ndk* (nucleoside-diphosphate kinase), which is associated with quorum sensing in *P. aeruginosa* (Kamath et al. 1998), and *adeC2* (adenine deaminase), whose product degrades adenosine. Exogenous adenosine strongly inhibits biofilm formation in *P. aeruginosa* and *Acidovorax* sp., suggesting that adenosine could act as a biofilm formation inhibitor. Acyl homoserine lactones (AHLs) induce the expression of adenosine deaminase in these organisms (Kusada et al. 2014). We confirmed *ndk* expression in planktonic cells using RT-PCR and suggest that its overexpression could be the part of the initial metabolic changes in planktonic cells that occurs prior to surface attachment.

Inorganic ion transport and metabolism (P)

It is likely that bacteria in the biofilms suffer from iron limitation. In biofilm cells, *afuB1*, encoding the permease protein of an iron (III) ABC transporter, was overexpressed. We previously reported the central role of iron in the formation of mixed biofilms by *Candida albicans* and *P. aeruginosa*, where iron concentration alters the expression of several proteins during mixed biofilm formation (Andrade-Dominguez et al. 2014). Iron limitation also stimulates the production of AHLs, a major class of autoinducer signals used by Gram-negative bacteria to regulate biofilm formation (Modarresi et al. 2015). Thus, iron limitation could be a signal to produce more the AHLs, which would induce biofilm formation.

Poorly characterized

General function prediction only (R)

Under sessile conditions, we identified eighteen overexpressed genes in this COG, including RHE_CH03381, encoding a probable exopolysaccharide (EPS) polymerization/export protein; EPS is required for biofilm formation, for example, in *S. meliloti* and *M. tianshanense* (Fraysse et al. 2003; Wang et al. 2008). Inactivation of genes for EPS polymerization and translocation in *R. leguminosarum* bv. viciae (Young et al. 2006) and bv. trifolii (Laus et al. 2004) show that these genes are essential for biofilm formation. In the STRING database, the RHE_CH03381 protein associates with the PssP (exopolysaccharide polymerization) ExoY, and PssA3 (exopolysaccharide production) proteins, which could be essential for biofilm formation. *pssA* is required for EPS synthesis, and its inactivation in *R. leguminosarum* causes a drastic decrease in biofilm formation in static cultures (Russo et al. 2006). In planktonic conditions, 26 genes were overexpressed including *exoR2*, encoding a negative regulator of EPS production. This might act to prevent the unnecessary production of EPS by cells once they have formed biofilms.

Function unknown (S)

In sessile and planktonic cells, 20 and 21 genes, respectively, in this category were overexpressed. The analysis and study of those proteins will allow the discovery of new functions in the bacteria. We carried out a computational search for domains (http://www.uniprot.org) and found that in sessile cells at least three genes (RHE_CH01640, RHE CH01940 and RHE CH01503) encode proteins with transmembrane regions (Supplementary material Table S6). In planktonic cells, we identified gene products with (1) PIN domains involved in virulence, (2) peptidases, (3) vitamin synthesis, (4) toxins degradation and (5) antibiotic biosynthesis (Supplementary material Table S6). The presence of these domains in the products of genes overexpressed in sessile or planktonic cells indicates important differences in defense mechanisms or metabolic processes between the two cell types. Additional experiments are needed to determine their roles.

NOT in COG

Under sessile conditions, 61 of the overexpresed genes were assigned this COG, the majority of which were hypothetical proteins. However, the gene product of RHE_ PE00148 (putative pilus assembly protein) could be important in biofilm formation, since, as mentioned, flagella and pili are necessary for the initial surface attachment (O'Toole and Kolter 1998a). Flagella or flagella-mediated motility appears to be important for the formation of a bacterial monolayer of the abiotic surface, while pili appear to play a role in downstream events such as microcolony formation and have been shown to be important for the adherence and colonization to eukaryotic cell surfaces and are thought to play a role in pathogenesis (O'Toole and Kolter 1998a, b).

The product of another notable overexpressed gene, rapB2, belongs to the RAP (Rhizobium-adhering proteins) family (Ausmees et al. 2001). RAP proteins associated with calcium promote rhizobial autoaggregation, root attachment and rhizosphere colonization (Dardanelli et al. 2003; Mongiardini et al. 2008). We found that the casA gene encoding a calcium binding protein was overexpressed, and this, along with rapB2, could have an important role during the cellular attachment to surfaces.

Springer

Validation of gene expression by qPCR

We quantified the expression of three genes showing expression changes in the microarrays using qRT-PCR. These genes were selected randomly to exclude any bias in the analysis. In all cases, we found the same differential expression as in the microarrays (Supplementary Material Figure S2).

In sessile conditions, *flbT*, a flagellin synthesis regulator (repressor) protein, was analyzed as a reference for sessile conditions and showed a twofold increase relative to planktonic cells. *mexF1*, encoding a multidrug efflux protein, was 2.5-fold overexpressed relative to planktonic condition, and malate dehydrogenase (RHE_CH00672) was twofold more highly expressed under planktonic conditions. This analysis shows that our gene expression data are robust enough to detect genes whose modified expression rates are significant in the context of biofilm formation.

Concluding remarks

Microarrays are a robust method to globally evaluate gene expression in diverse organisms. Here, we used this technology in *R. etli* CFN42 during biofilm formation by analyzing cells in the sessile, attached, and planktonic states.

This is the first report closely analyze gene expression during biofilm formation in R. etli, using planktonic and sessile cells collected from the same experiment culture, in contrast to previous studies where the metabolic, physiological and structural comparisons were analyzed using cells obtained under different experimental conditions. We believe that this approach allowed us to detect subtle differences in gene expression taking place throughout the transition from the planktonic to sessile phase during biofilm initiation. We identified various sets of differentially expressed genes specific for each condition. The fold changes observed in our study were small as compared to many other microarray studies. This is due to our focus in the early stages of the process, with planktonic cells that might already be preparing for attachment. Nevertheless, the changes observed were statistically significant, and independent validations were successful. Thus, we have confidence of the relevance of these expression changes, which are as subtle as the phenomenon being studied.

In the biofilm phase, overexpressed genes included those encoding proteins with diverse functions, such as membrane synthesis, transport and chemotaxis, EPS and lipopolysaccharide, AHL synthesis, autoaggregation and cellular attachments components as well as a repressor of flagellin synthesis, all of which are potentially crucial for biofilm formation. In contrast, planktonic cells overexpressed genes associated with transport, motility (flagellar and twitching)

Springer

and the inhibition of EPS synthesis. The results of this work give insight into how the bacteria modify their metabolism by the expression of genes with opposing functions prior to and during the transition between planktonic and sessile stages. One of the principal contributions of this work was detecting changes in the expression of symbiosis-related genes such as *nodW* and *ntrC*. This work provides a basis for future studies that will describe gene expression changes during the early stages of the symbiotic relationship with *P. vulgaris*.

In summary, this study extends our understanding of the physiological, metabolic and structural requirements during the transition from the planktonic to sessile states. Further studies of transcriptional profiles with selected gene deletion mutants will elucidate the functions of these gene products during biofilm formation.

Acknowledgments Part of this work was supported by CONACyT Grant 220790 and DGAPA-PAPIIT Grant IN213216. We are grateful to the Posgrado en Ciencias Biológicas de la Facultad de Ciencias, Universidad Nacional Autónoma de México, México; ARP was a recipient of a PhD Studentship from CONACyT. We thanks to Mario Ramírez Yáñez and Victor Bustos Zagal for technical assistance, to Rubén Paul Gaytán Colín and Eugenio López Bustos from Unidad de Síntesis, Instituto de Biotecnología-UNAM, and to Andrés Saraleguí Amaro and Xochitl Alvarado Affantranger from Unidad Laboratorio Nacional de Microscopía Avanzada-UNAM. Thanks also to Michael Dunn for comments on the manuscript and Enrique Reynaud and Veronica Narvaez for technical assistance in qPCR experiments.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

- Anderson PE, Gober JW (2000) FlbT, the post-transcriptional regulator of flagellin synthesis in *Caulobacter crescentus*, interacts with the 5' untranslated region of flagellin mRNA. Mol Microbiol 38:41–52
- Andrade-Dominguez A, Salazar E, Vargas-Lagunas Mdel C et al (2014) Eco-evolutionary feedbacks drive species interactions. ISME J 8:1041–1054. doi:10.1038/ismej.2013.208
- Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in *Rhizobium legumino*sarum by. trifolii. Microbiology 147:549–559
- Bayles KW (2007) The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726. doi:10.1038/ nrmicro1743
- Belas R, Horikawa E, Aizawa SI, Suvanasuthi R (2009) Genetic determinants of *Silicibacter sp.* TM1040 motility. J Bacteriol 191:4502–4512. doi:10.1128/JB.00429-09
- Belotserkovsky JM, Dabbs ER, Isaksson LA (2011) Mutations in 16S rRNA that suppress cold-sensitive initiation factor 1 affect ribosomal subunit association. FEBS J 278:3508–3517. doi:10.1111/j.1742-4658.2011.08272.x
- Celano B, Pawlik RT, Gualerzi CO (1988) Interaction of *Escherichia coli* translation-initiation factor IF-1 with ribosomes. Eur J Biochem 178:351–355

- Christensen LD, Moser C, Jensen PO et al (2007) Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model. Microbiology 153:2312–2320. doi:10.1099/mic.0.2007/006122-0
- Chua SL, Hultqvist LD, Yuan M et al (2015) In vitro and in vivo generation and characterization of *Pseudomonas aeruginosa* biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc 10:1165–1180. doi:10.1038/nprot.2015.067
- Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422. doi:10.1146/annurev. micro.61.080706.093316
- Daniels R, Reynaert S, Hoekstra H et al (2006) Quorum signal molecules as biosurfactants affecting swarming in *Rhizobium etli*. Proc Natl Acad Sci USA 103:14965–14970. doi:10.1073/ pnas.0511037103
- Dardanelli M, Angelini J, Fabra A (2003) A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 49:399–405. doi:10.1139/w03-054
- Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867
- de Lucena DK, Puhler A, Weidner S (2010) The role of sigma factor RpoH1 in the pH stress response of *Sinorhizobium meliloti*. BMC Microbiol 10:265. doi:10.1186/1471-2180-10-265
- de Vries S, Hoge H, Bisseling T (1989) Isolation of total and polysomal RNA from plant tissues. Springer, Netherlands
- Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890
- Dressaire C, Moreira RN, Barahona S et al (2015) BolA is a transcriptional switch that turns off motility and turns on biofilm development. MBio 6:e02352-14. doi:10.1128/mBio.02352-14
- Flechard M, Fontenelle C, Blanco C et al (2010) RpoE2 of Sinorhizobium meliloti is necessary for trehalose synthesis and growth in hyperosmotic media. Microbiology 156:1708–1718. doi:10.1099/ mic.0.034850-0
- Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380
- Frederix M, Edwards A, Swiderska A et al (2014) Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. Mol Microbiol 93:464–478. doi:10.1111/ mmi.12670
- Fujishige NA, Rinaudi L, Giordano W, Hirsch A (2005) Superficial liaisons: colonization of roots and abiotic surfaces by rhizobia. In: Sánchez F, Quinto C, López-Lara IM, Geiger O (eds) Biology of Plant-Microbe Interactions, Proceedings of the 12th International Congress on Molecular Plant-Microbe Interactions, St. Paul, MN, pp 292–299
- Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206. doi:10.1111/j.1574-6941.2005.00044.x
- Fujishige NA, Lum MR, De Hoff PL et al (2008) Rhizobium common nod genes are required for biofilm formation. Mol Microbiol 67:504–515. doi:10.1111/j.1365-2958.2007.06064.x
- Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796–2806
- Gardner SG, Johns KD, Tanner R, McCleary WR (2014) The PhoU protein from *Escherichia coli* interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J Bacteriol 196:1741–1752. doi:10.1128/JB.00029-14
- Hegde P, Qi R, Abernathy K et al (2000) A concise guide to cDNA microarray analysis. Biotechniques 29:548–50, 552–4, 556 passim
- Israel DW (1987) Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiol 84:835–840

- Jafri S, Urbanowski ML, Stauffer GV (1995) A mutation in the rpoA gene encoding the alpha subunit of RNA polymerase that affects metE-metR transcription in Escherichia coli. J Bacteriol 177:524–529
- Javaherdashti R, Nwaoha C, Tan H (2013) Corrosion and materials in the oil and gas industries. CRC Press, Boca Raton
- Jayasinghearachchi HS, Seneviratne G (2006) Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms. Soil Biol Biochem 38:405–408. doi:10.1016/j. soilbio.2005.06.004
- Jensen JB, Peters NK, Bhuvaneswari TV (2002) Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in *Sinorhizobium meliloti*. J Bacteriol 184:2978–2986
- Jitacksorn S, Sadowsky MJ (2008) Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the *Bradyrhizobium japonicum*soybean symbiosis. Appl Environ Microbiol 74:3749–3756. doi:10.1128/AEM 02939-07
- Kamath S, Kapatral V, Chakrabarty AM (1998) Cellular function of elastase in *Pseudomonas aeruginosa*: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol Microbiol 30:933–941
- Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347. doi:10.1128/MMBR.00041-08
- Kim HS, Park SJ, Lee KH (2009) Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of *Vibrio vulnificus*. Mol Microbiol 74:436–453. doi:10.1111/j.1365-2958.2009.06875.x
- Ko JH, Lee SJ, Cho B, Lee Y (2006) Differential promoter usage of infA in response to cold shock in *Escherichia coli*. FEBS Lett 580:539–544. doi:10.1016/j.febslet.2005.12.066
- Kusada H, Hanada S, Kamagafa Y, Kimura N (2014) The effects of N-acylhomoserine lactones, beta-lactam antibiotics and adenosine on biofilm formation in the multi-beta-lactam antibioticresistant bacterium Acidovara sp. strain MR-S7. J Biosci Bioeng 118:14–19. doi:10.1016/j.jbiosc.2013.12.012
- Laus MC, Logman TJ, Van Brussel AA et al (2004) Involvement of exo5 in production of surface polysaccharides in *Rhizobium leguminosarum* and its role in nodulation of *Vicia* sativa subsp. nigra. J Bacteriol 186:6617–6625. doi:10.1128/ JB.186.19.6617-6625.2004
- Leigh JA, Dodsworth JA (2007) Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol 61:349–377. doi:10.1146/annurev. micro.61.080706.093409
- Lerouge P, Roche P, Faucher C et al (1990) Symbiotic host-specificity of *Rhizobium meliloti* is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784. doi:10.1038/344781a0
- Locke AE, Kahali B, Berndt SI et al (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518:197–206. doi:10.1038/nature14177
- Loh J, Garcia M, Stacey G (1997) NodV and NodW, a second flavonoid recognition system regulating nod gene expression in *Bradyrhizobium japonicum*. J Bacteriol 179:3013–3020
- Martinez-Salazar JM, Salazar E, Encarnacion S et al (2009a) Role of the extracytoplasmic function sigma factor RpoE4 in oxidative and osmotic stress responses in *Rhizobium etli*. J Bacteriol 191:4122–4132. doi:10.1128/JB.01626-08
- Martinez-Salazar JM, Sandoval-Calderon M, Guo X et al (2009b) The *Rhizobium etli* RpoH1 and RpoH2 sigma factors are involved in different stress responses. Microbiology 155:386–397. doi:10.1099/mic.0.021428-0
- Metselaar KI, Saa Ibusquiza P, Ortiz Camargo AR et al (2015) Performance of stress resistant variants of Listeria monocytogenes in

Springer

mixed species biofilms with Lactobacillus plantarum. Int J Food Microbiol. doi:10.1016/j.ijfoodmicro.2015.04.021

- Modarresi F, Azizi O, Shakibaie MR et al (2015) Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of *Acinetobacter baumannii*. Virulence 6:152–161. doi:10.1080/21505594.2014.1003001
- Mongiardini EJ, Ausmees N, Pérez-Giménez J et al (2008) The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol 65:279–288. doi:10.1111/j.1574-6941.2008.00467.x
- Numata T, Ikeuchi Y, Fukai Š et al (2006) Crystallization and preliminary X-ray analysis of the tRNA thiolation enzyme MnmA from *Escherichia coli* complexed with tRNA(Glu). Acta Crystallogr Crystallogr F Struct Biol Cryst Commun 62:368–371. doi:10.1107/81744309106600738X
- O'Toole GA, Kolter R (1998a) Flagellar and twitching motility are necessary for *Pseudomonas aeruginosa* biofilm development. Mol Microbiol 30:295–304
- O'Toole GA, Kolter R (1998b) Initiation of biofilm formation in *Pseudomonas fluorescens* WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461
- Oh MH, Choi CH (2015) Role of LuxIR Homologue AnoIR in Acinetobacter nosocomialis and the Effect of Virstatin on the Expression of anoR Gene. J Microbiol Biotechnol. doi:10.4014/ jmb.1504.04069
- Ottemann KM, Miller JF (1997) Roles for motility in bacterial-host interactions. Mol Microbiol 24:1109–1117
- Pratt LA, Kolter R (1998) Genetic analysis of *Escherichia coli* biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293
- Qin Y, Luo ZQ, Farrand SK (2004) Domains formed within the N-terminal region of the quorum-sensing activator TraR are required for transcriptional activation and direct interaction with RpoA from agrobacterium. J Biol Chem 279:40844–40851. doi:10.1074/ibc.M405299200M405299200
- Quackenbush J (2002) Microarray data normalization and transformation. Nat Genet 32(Suppl):496–501. doi:10.1038/ng1032ng1032
- Ramos JL, Martinez-Bueno M, Molina-Henares AJ et al (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356. doi:10.1128/MMBR.69.2.326-356.2005
- Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by *Pseudomonas aeruginosa*: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:759348. doi:10.1155/2015/759348
- Ribeiro RA, Barcellos FG, Thompson FL, Hungria M (2009) Multilocus sequence analysis of Brazilian Rhizobium microsymbionts of common bean (*Phaseolus vulgaris* L.) reveals unexpected taxonomic diversity. Res Microbiol 160:297–306. doi:10.1016/j. resmic.2009.03.009
- Rinaudi LV, Giordano W (2010) An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett 304:1–11. doi:10.1111/j.1574-6968.2009.01840.x
- Robleto EA, Kmiecik K, Oplinger ES et al (1998) Trifolitoxin production increases nodulation competitiveness of *Rhizobium etli* CE3 under agricultural conditions. Appl Environ Microbiol 64:2630–2633
- Russo DM, Williams A, Edwards A et al (2006) Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by *Rhizobium leguminosarum*. J Bacteriol 188:4474–4486. doi:10.1128/JB.00246-06

- Sadovskaya I, Vinogradov E, Li J et al (2010) High-level antibiotic resistance in *Pseudomonas aeruginosa* biofilm: the *ndvB* gene is involved in the production of highly glycerol-phosphorylated beta-(1 - > 3)-glucans, which bind aminoglycosides. Glycobiology 20:895–904. doi:10.1093/glycob/cwq047
- Salazar E, Diaz-Mejia JJ, Moreno-Hagelsieb G et al (2010) Characterization of the NifA-RpoN regulon in *Rhizobium etli* in free life and in symbiosis with *Phaseolus vulgaris*. Appl Environ Microbiol 76:4510–4520. doi:10.1128/AEM.02007-09
- Schmidt J, Musken M, Becker T et al (2011) The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS One 6:e18184. doi:10.1371/journal. pone.0018184
- Schultze M, Kondorosi A (1998) Regulation of symbiotic root nodule development. Annu Rev Genet 32:33–57. doi:10.1146/annurev. genet.32.1.33
- Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. MBio. doi:10.1128/mBio.00131-10
- Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445. doi:10.1073/pnas.15305091001530509100
- Tatusov RL, Fedorova ND, Jackson JD et al (2003) The COG database: an updated version includes eukaryotes. BMC Bioinform 4:41. doi:10.1186/1471-2105-4-411471-2105-4-41
- Vorachit M, Lam K, Jayanetra P, Costerton JW (1995) Electron microscopy study of the mode of growth of *Pseudomonas pseudomallei* in vitro and in vivo. J Trop Med Hyg 98:379–391
- Wang P, Zhong Z, Zhou J et al (2008) Exopolysaccharide biosynthesis is important for *Mesorhizabium tianshanense*: plant host interaction. Arch Microbiol 189:525–530. doi:10.1007/ s00203-007-0345-3
- Workman C, Jensen LJ, Jarmer H et al (2002) A new non-linear normalization method for reducing variability in DNA microarray experiments. Genome Biol 3. doi:10.1186/gb-2002-3-9-research0048.1
- Yeom S, Yeom J, Park W (2010) NtrC-sensed nitrogen availability is important for oxidative stress defense in *Pseudomonas putida* KT2440. J Microbiol 48:153–159. doi:10.1007/s12275-010-0075-0
- Young JPW, Crossman LC, Johnston AWB et al (2006) The genome of *Rhizobium leguminosarum* has recognizable core and accessory components. Genome Biol 7:R34. doi:10.1186/gb-2006-7-4-r34
- Zarkani AA, Stein E, Rohrich CR et al (2013) Homoserine lactones influence the reaction of plants to rhizobia. Int J Mol Sci 14:17122–17146. doi:10.3390/ijms140817122
- Zhang Y, Pohlmann EL, Roberts GP (2005) GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium *Rhodospirillum rubrum*. J Bacteriol 187:1254–1265. doi:10.1128/JB.187.4.1254-1265.2005
- Zheng H, Zhong Z, Lai X et al (2006) A LuxR/LuxI-type quorumsensing system in a plant bacterium, *Mesorhizobium tianshanense*, controls symbiotic nodulation. J Bacteriol 188:1943–1949. doi:10.1128/JB.188.5.1943-1949.2006
- Zheng H, Mao Y, Zhu Q et al (2015) The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and-independent fashions in *Rhizobium etli*. J Bacteriol 197:1573–1581. doi:10.1128/JB.00003-15

Springer

5.2 Resultados del análisis mediante Proteómica

5.2.1 Microscopia confocal

Esta parte del trabajo se basa en el estudio proteómico de cuatro etapas de la formación de las biopelículas, nos referimos a los tiempos 24, 72, 120 y 240 horas (condiciones sésiles), comparadas con el tiempo de 6 horas en condiciones de agitación, considerada como el estado planctónico (figura 5).

Figura 5. Los tiempos analizados representan las etapas de la formación de las biopelículas, 6 horas en agitación representan el estado planctónico, el tiempo 24 horas considerado como la etapa de adhesión y des-adhesión, el tiempo 72 horas como el inicio de la adhesión celular, 120 horas el estado maduro y 240 horas considerado la disgregación de las biopelículas, estas etapas han sido descritas previamente en *P. aeruginosa*.

Para establecer una correlación entre los tiempos definidos para el muestreo y las etapas de formación de las biopelículas, mediante microscopia confocal fueron analizadas las muestras bacterianas colectadas a dichos tiempos, permitiéndonos diferenciar las etapas del desarrollo y formación de las biopelículas. Las observaciones obtenidas mediante microscopia confocal, permiten determinar que los tiempos 24 horas pueden ser considerados como el inicio del proceso de adhesión y desadhesión celular (figura 6), 72 horas como el inicio de la formación de las biopelículas (figura 7), el tiempo 120 horas corresponde al estado maduro de la formación de las biopelículas (figura 8), siendo el tiempo 240 horas considerado como la etapa de disgregación o dispersión de las biopelículas (Figura 9 y 10). Estas etapas has sido previamente descritas en otros organismos como *P. aeruginosa* (Rasamiravaka *et al.*, 2015b).

Figura 6. Análisis de imágenes del tiempo 24 horas de la formación de la biopelícula bacteriana, el corte en Z muestra la delgada capa que mantienen las bacterias a este tiempo de formación de la biopelícula. La muestra fue teñida con Yoduro de propidio y SYTO9, en rojo las células muertas y verdes las viables. En la barra inferior de la imagen, se muestra el grosor de la biopelícula bacteriana, lo que nos indica que a este tiempo la biopelícula es aun delgada por lo que las bacterias podrían encontrarse en el proceso de adhesión y desadhesión.

Figura 7. Las biopelículas bacterianas a las72 horas se observa que en él, el conjunto de imágenes que el proceso de maduración de la biopelícula podría iniciar a este tiempo, considerando como se muestra en la barra inferior celular, sin embargo nosotros consideramos que es el inicio de la maduración de la biopelícula bacteriana.

Figura 8. La formación de la biopelícula bacteriana a las 120 horas se observa una acumulación de células mayor que en todos los tiempos debido al grosor de la biocapa, la inmensa mayoría como podemos observar, se encuentran vivas (en verde) y de la población existen muy pocas células muertas (rojo).

Figura 9. La imagen del tiempo 240 horas de la formación de la biopelícula, la tinción permite observar células muertas (rojo) y vivas (verde), la parte exterior muestra que la mayoría de las células están muertas, sin embargo al observar las capas internas (inferior) se muestra que existen un considerable número de células vivas.

Figura 10. La imagen muestra la formación de la biopelícula a las 240 horas, el área en amarillo describe el desprendimiento de fragmentos de la biopelícula, por lo que sugerimos inicia la etapa de disgregación.

5.3 Análisis de proteínas mediante espectrometría de masas

Las proteínas seleccionadas con cambios de por lo menos dos veces en sus niveles de expresión respecto a la condición planctónica (seis horas), estas diferencias son estadísticamente significativas mediante un análisis de T-student, con 95% de confianza, fueron procesadas para ser identificadas mediante espectrometría de masas. Es importante mencionar que fueron seleccionadas las proteínas diferencialmente expresadas durante los tiempos de formación de biopelículas a las 24, 72, 120 y 240 horas. Estas proteínas fueron digeridas con tripsina y posteriormente analizadas en un espectrómetro de masas tipo Maldi-TOF (ver material y métodos). El programa Mascot fue utilizado como motor de búsqueda para comparar el listado de masas (mass fingerprints) con la base de datos local, esto permitió su identificación y posterior organización mediante categorías funcionales.

Es importante nuevamente mencionar que las comparaciones se realizaron por pares, comparando las proteínas de cada tiempo (24, 72, 120 y 240 horas) contra el patrón proteico del estado planctónico (seis horas en agitación).

Observando que la mayoría de las proteínas identificadas presentaron cambios en los niveles de expresión que fluctúan a los distintos tiempos analizados. Por otro lado, en

ocasiones observamos sobreexpresión de proteínas en solo uno de los tiempos de la formación de la biopelícula.

Las proteínas identificadas se organizaron mediante COG's, con el fin de profundizar en la comprensión de los mecanismos moleculares, esta clasificación funcional de los genes y proteínas se vuelve una herramienta de búsqueda de suma importancia (Tatusov *et al.*, 2000). La clasificación por COG es un intento de clasificación filogenética de las proteínas codificadas en los genomas microbianos. Esto nos permitió determinar a qué categorías funcionales pertenecen, observando que en su mayoría se encuentran en los grupos de **Metabolismo**, **Procesamiento y almacenamiento de la información** Señalización **y procesos celulares**.

Los datos de proteínas analizadas mediante espectrometría de masas, se muestran en las siguientes tablas, organizadas por categorías funcionales según COG´s.

Tabla proteínas identificadas mediante espectrometría de masas durante la formación de biopelículas en *R. etli* CFN42 Metabolismo.

				24 hrs.	72 hrs.	120 hrs.	240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
2503	RHE_CH01926	gltA	type II citrate synthase	0.3	0.7	2.3	0.2	5.9	0.2
2611	RHE_CH03882	lpdAch2	dihydrolipoamide dehydrogenase	2.7	0.2	6.6	4.3	5.8	0.1
2619	RHE_CH01935	pdhB	dihydrolipoamide acetyltransferase	8.5	1.9	0.4	1.2	6.0	0.3
3517	RHE_CH03723	NULL	aldehyde dehydrogenase	0.6	2.5	13.8	11.7	5.7	0.2
3606	RHE_CH00037	pckA	phosphoenolpyruvate carboxykinase	3.2	1.3	2.3	1.8	5.6	0.6
4508	RHE_CH03723	NULL	aldehyde dehydrogenase / dipeptide	1.0	0.6	5.5	7.0	5.7	0.2
			ABC transporter substrate-binding protein (plasmid)						
4601	RHE_CH00037	pckA	phosphoenolpyruvate carboxykinase	19.8	0.5	5.6	2.0	5.6	0.3
4832	RHE_CH03944	acnA	aconitate hydratase	1.0	2.3	6.2	3.0	5.4	0.3
5313	RHE_CH03891	mdh	malate dehydrogenase	0.6	0.3	14.6	1.9	5.5	0.5
8415	RHE_CH03870	atpD	F0F1 ATP synthase subunit beta	1.8	4.4	5.8	7.6	4.8	0.2
1514	RHE_CH03872	atpA	F0F1 ATP synthase subunit alpha	0.9	1.1	0.3	0.2	6.2	0.4
8509	RHE_CH03870	atpD	F0F1 ATP synthase subunit beta	1.0	1.1	0.5	0.3	4.8	0.6
8509	RHE_CH03870	atpD	F0F1 ATP synthase subunit beta	1.0	1.1	0.5	0.3	4.8	0.6
4822	RHE_CH03944	acnA	aconitate hydratase	0.2	0.5	0.3	0.2	5.4	0.2
7401	RHE_CH03890	sucC	succinyl-CoA synthetase subunit beta	1.5	0.7	0.4	0.3	5.0	0.2
2532	RHE_CH03872	atpA	F0F1 ATP synthase subunit alpha	224.2		0.2	0.5	6.2	0.3
2524	RHE_CH04055	NULL	aldehyde dehydrogenase	128.5	0.3	0.1	0.3	5.8	0.1
4824	RHE_CH03944	acnA	aconitate hydratase / dehydrogenase	89.2	0.2	0.5	1.5	5.4	0.17
7102	RHE_CH03793	etfAch	electron-transport flavoprotein-	84.0	0.4	1.6	0.5	4.9	0.31
			alpha-subunit						
4719	RHE_CH00052	glcB	malate synthase G	53.1	1.7	0.7	0.1	5.6	0.1

Producción y conversión de energía (C)

57

Transporte y metabolismo de carbohidratos (G)

				24h	72h	120h	240h		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
3104	RHE_CH00169	gpmA	phosphoglyceromutase /anti-oxidant	1.7	2.8	0.3	1.4	5.7	0.6
			AhpCTSA family protein / glutathione						
2402			S-transferase		0.0	0.2	27	F 0	0.2
3403	RHE_PC00078	идрвс	sn-giyceroi-3-phosphale ABC	1.1	0.9	0.3	2.7	5.9	0.2
7/05	RHE CH00082	NUU	sugar ABC transporter- substrate-	3 9	1 /	13	0.4	77	0.1
7405		NOLL	binding protein	5.5	1.4	1.5	0.4	,.,	0.1
5306	RHE_CH03667	tal	transaldolase B	1.4	6h	14.8	3.7	5.4	0.6
8417	RHE_CH01931	eno	phosphopyruvate hydratase	3.3	3.0	0.9	1.2	4.7	0.4
8302	RHE_CH03172	xylF	xylose ABC transporter- substrate-	2.0	2.4	8.0	3.5	5.2	0.2
			binding protein						
7309	RHE_PF00565	NULL	sugar ABC transporter substrate-	0.6	0.4	12.4	5.9	5.0	0.1
5202			binding protein	7.0	47	267	24.4	6.6	0.4
5202	RHE_CH00492	NULL	sugar ABC transporter- substrate-	7.8	4.7	36.7	24.1	6.6	0.1
2314	RHE PEOOO91	NUU	sugar ABC transporter substrate-	0 9	2.6	2.0	0.8	6.6	0.4
2314		NOLL	binding protein	0.5	2.0	2.0	0.0	0.0	0.4
2316	RHE_PF00091	NULL	sugar ABC transporter substrate-	1.6	4.0	24.1	24.6	6.6	0.3
			binding protein						
6306	RHE_CH03643	NULL	hypothetical protein	0.1	1.7	1.5	2.8	5.2	0.3
6326	RHE_PF00210	thuE	trehalosemaltose ABC transporter	6h	6h	6h	6h	5.5	0.1
			sugar-binding protein						
1601	RHE_CH03542	pykA	pyruvate kinase	32.4	23.8	2.1	18.1	6.3	0.43
2301	RHE_CH00172	glk	glucokinase	20.6	10.7	13.2	16.0	5.9	0.3
7309	RHE_PF00565	NULL	sugar ABC transporter substrate-	11.9	10.7	73.5	9.0	5.0	0.1
0212		N II II I	binding protein	2.1	0.0	1.0	1 4	ГО	0.1
8213	кне_сн03644	NULL	sugar ABC transporter- substrate-	2.1	0.0	1.0	1.4	5.0	0.1
8309	RHF CH03165	chvF	xylose ABC transporter- substrate-	6.9	8.5	5.0	15.7	4.7	0.4
2305	0.100100	0	binding protein	0.5	0.5	5.0	10.7		0.1

8423	RHE_CH01931	eno	phosphopyruvate hydratase	6.4	0.6	1.5	1.4	4.7	0.1
								·	

Transporte y metabolismo de aminoácidos (E)

				24 hrs.	72	120	240		
					hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	рІ	%cov
4715	RHE_PE00090	agpA	alpha-galactoside ABC transporter substrate-binding protein	0.8	2.5	0.2	0.7	5.7	0.2
2412	RHE_CH01508	glyA	serine hydroxymethyltransferase	0.2	1.5	11.5	3.6	6.2	0.3
7816	RHE_CH01226	ptrB	protease II protein	1.4	1.5	3.8	1.0	5.1	0.2
6612	RHE_CH03067	leuA2	2-isopropylmalate synthase	1.6	0.8	6.1	1.8	5.2	0.2
7629	RHE_CH03992	dppAch3	dipeptide ABC transporter- substrate- binding protein	1.1	0.8	11.1	3.7	5.2	0.1
3621	RHE_PF00234	NULL	oligopeptide ABC transporter substrate- binding protein	1.2	0.9	11.0	2.7	6.1	0.2
5511	RHE_CH02102	gInA2	glutamine synthetase	9.8	4.2	9.2	18.9	5.3	0.3
6501	RHE_CH02102	gInA2	glutamine synthetase	1.4	0.3	0.6	2.5	5.3	0.1
6304	RHE_PE00275	NULL	branched chain amino-acid ABC transporter substrate-binding protein	3.5	4.6	14.3	19.8	5.5	0.2
2402	RHE_CH02998	aatAch	aspartate aminotransferase	2.4	1.7	2.0	0.8	5.8	0.4
5606	RHE_CH03067	leuA2	2-isopropylmalate synthase	24.4	4.4	18.9	1.4	5.2	0.2
8306	RHE_CH03093	braC1	amino acid ABC transporter- substrate- binding protein	2.2	2.0	1.8	1.3	4.9	0.5
6206	RHE_CH03851	argl	arginase	0.7	1.9	19.0	6.3	5.1	0.2
2406	RHE_CH03096	оррА	oligopeptide ABC transporter- substrate- binding protein	2.8	3.3	41.5	13.1	5.6	0.1
5607	RHE_CH03096	оррА	oligopeptide ABC transporter- substrate- binding protein	0.7	0.7	1.8	2.3	5.6	0.5
8314	RHE_CH03321	braC2	amino acid ABC transporter- substrate- binding protein	1.9	2.6	48.1	14.6	4.9	0.5
7210	RHE_CH01898	аарЈ	general L-amino acid ABC transporter- substrate-binding protein	4.4	1.2	132.2	8.6	5.44	0.3

				24 hrs.	72 hrs.	120 hrs.	240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	рІ	%cov
4305	RHE_CH03852	rocD	ornithineoxo-acid transaminase	0.5	4.0	12.4	6.5	5.4	0.67
7202	RHE_CH01898	аарЈ	general L-amino acid ABC transporter- substrate-binding protein	1.6	1.0	1.6	2.3	5.4	0.5
8307	RHE_CH03321	braC2	amino acid ABC transporter- substrate- binding protein	1.2	1.3	1.9	2.4	4.9	0.5
2528	RHE_PC00130	NULL	peptide ABC transporter substrate-binding protein	6h	1.4	1.8	2.9	6.5	0.1
3512	RHE_CH02886	gInA3	glutamine synthetase	2.9	6.9	10.0	0.8	5.7	0.2
5604	RHE_CH03096	оррА	oligopeptide ABC transporter- substrate- binding protein	1.2	0.8	12.9	4.4	5.6	0.3

Transporte y metabolismo de nucleótidos (F)

				24 hrs.	72 hrs.	120 hrs.	240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
7803	RHE_CH03555	NULL	5`-nucleotidase	6.9	1.7	2.7	3.9	4.9	0.2
8802	RHE_CH03555	NULL	5`-nucleotidase	19.7	2.8	19.9	3.8	4.9	0.1
2513	RHE_CH02273	purB	adenylosuccinate lyase/ type II citrate synthase	2.4	2.1	2.7	0.9	5.9	0.5
7705	RHE_CH02286	purL	phosphoribosylformylglycinamidine synthase II	5.4	1.3	0.2	0.3	4.8	0.3
8802	RHE_CH03555	NULL	5`-nucleotidase	19.7	2.8	19.9	3.8	4.9	0.1
7803	RHE_CH03555	NULL	5`-nucleotidase	6.9	1.7	2.7	3.9	4.9	0.2

Transporte y metabolismo de lípidos (I)

24 72 120 240
hrs. hrs. hrs. hrs.

SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	рі	%cov
8014	RHE_CH01870	accBch	acetyl-CoA carboxylase biotin carboxyl carrier protein subunit	2.3	2.0	3.6	0.8	4.7	0.3
3407	RHE_CH02476	NULL	3-oxoacyl-(acyl carrier protein) synthase II	3.0	1.2	0.7	0.3	5.6	0.3

Transporte y metabolismo de iones inorgánicos (P)

				24	72	120	240		
				hrs.	hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
6303	RHE_PF00269	NULL	iron ABC transporter substrate-binding protein	4.6	1.6	1.1	0.5	5.4	0.2
7326	RHE_CH04056	sfuA	iron(III) ABC transporter- substrate-binding protein	17.6	2.8	23.9	43.9	5.3	0.2

Biosintesis, transporte y catabolismo de metabolistos secundario (Q)

				24	72	120	240		
				hrs.	hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
4302	RHE_CH03619	NULL	TRAP mannitol/C4-dicarboxylate transporter- substrate-binding protein	0.6	4.4	2.1	3.7	6.5	0.3
6509	RHE_CH01746	hmgA	homogentisate 1-2-dioxygenase	5.7	4.4	97.8	59.9	5.2	0.1

ALMACENAMIENTO Y PROCESAMIENTO DE LA INFORMACIÓN

Traducción, estructura y biogénesis de ribosomas (J)

				24 hrs.	72 hrs.	120 hrs.	240		
							hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
2113	RHE_CH01913	rpsB	30S ribosomal protein S2	0.9	1.3	9.9	2.9	6.1	0.4

				24 hrs.	72 hrs.	120 hrs.	240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
4114	RHE_CH03025	rplY	50S ribosomal protein L25/general stress protein Ctc	1.2	0.6	14.0	3.8	5.5	0.5
5515	RHE_CH00821	hisS	histidyl-tRNA synthetase	2.6	1.7	24.0	5.1	5.4	0.2
5626	RHE_CH00821	hisS	histidyl-tRNA synthetase		6h	2.4	11.3	5.4	0.1
6403	RHE_CH03756	prfA	peptide chain release factor 1		2.0	0.5	1.4	5.0	0.2
6417	RHE_CH01658	tufB	elongation factor Tu	1.3	10.2	20.4	15.8	5.2	0.2
7324	RHE_CH01914	tsf	elongation factor Ts	0.1	0.5	4.5	1.3	5.0	0.6
7521	RHE_CH00097	rpsA	30S ribosomal protein S1	6h	3.9	16.9	7.4	5.1	0.1
7623	RHE_CH00097	rpsA	30S ribosomal protein S1	1.5	3.6	53.3	29.4	5.1	0.2
7624	RHE_CH00097	rpsA	30S ribosomal protein S1	1.0	1.3	2.3	1.6	5.1	0.5

Transcripción (K)

				24	72	120	240		
				hrs.	hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov
8405	RHE_CH01699	rроА	DNA-directed RNA polymerase subunit alpha	0.6	1.5	13.2	4.1	4.7	0.2
9004	RHE_CH01384	rpoZ	DNA-directed RNA polymerase subunit omega	3.1	4.0	2.6	0.3	4.1	0.4

PROCESOS DE SEÑALIZACIÓN CELULAR

Mecanismos de transducción de señales (T)

				24 hrs.	72	120	240		
					hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	%cov

5721	RHE_CH03915	typA	GTP-binding elongation factor protein (tyrosin phosphorylated protein)	1.0	1.5	3.4	2.2	5.3	0.3
4712	RHE_CH02817	NULL	serine protein kinase	18.4	3.2	2.8	3.5	5.7	0.6
4401	RHE_CH03714	cyaG2	Components (only one family member shown for	6h	0.1	2.1	6h	5.5	0.4
			each component + sulfolipid biosynthesis protein						

Biogénesis de la envoltura celular, Pared celular, membrana (M)

				24	72	120	240		
				hrs.	hrs.	hrs.	hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	рІ	%cov
8722	RHE_CH01920	omp1	outer membrane lipoprotein	0.3	0.1	3.5	20.8	4.8	0.1
8711	RHE_CH01920	omp1	outer membrane lipoprotein	3.6	7.1	5.8	3.5	4.8	0.2
3408	RHE_CH02851	murF	UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-L-lysyl-	3.6	0.9	0.7	0.3	5.9	0.2
			D -alanyl-D-alanine synthetase						

Modificaciones postraduccionales, plegamiento de proteínas (O)

				t24 hrs.	72 hrs.	t 120 hrs.	t 240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	рІ	%cov
4504	RHE_CH00049	hslU	ATP-dependent protease ATP-binding subunit HsIU	3.9	3.6	3.0	3.3	5.4	0.5
4801	RHE_CH03753	сlpВ	ATP-dependent Clp protease- ATP-binding subunit protein	1.2	2.5	0.3	0.1	5.5	0.2
4829	RHE_CH03753	сlpВ	ATP-dependent Clp protease- ATP-binding subunit protein	2.0	8.7	1.4	0.4	5.5	0.2
4830	RHE_CH03753	сlpВ	ATP-dependent Clp protease- ATP-binding subunit protein	0.5	7.4	3.3	6h	5.5	0.1
5002	RHE_CH03069	clpP3	ATP-dependent Clp protease proteolytic subunit	1.7	0.8	10.9	5.5	5.3	0.5

5514	RHE_CH00049	hslU	ATP-dependent protease ATP-binding subunit HslU	0.0	6h	6h	3.6	5.4	0.3
6416	RHE_CH01588	clpX	ATP-dependent protease ATP-binding subunit ClpX	2.4	3.1	1.2	1.4	5.3	0.2
7621	RHE_CH00828	groEL	chaperonin GroEL	0.8	1.2	5.0	3.6	5.0	0.43
8513	RHE_CH00828	groEL	chaperonin GroEL	4.0	12.1	46.7	48.6	5.0	0.1
8618	RHE_CH00145	dnaK	molecular chaperone DnaK+ outer membrane lipoprotein	1.3	8.0	13.7	69.8	4.8	0.1
8701	RHE_CH00145	dnaK	molecular chaperone DnaK	3.8	9.5	5.7	9.7	4.8	0.1
9013	RHE_CH00367	Hsp	molecular chaperone small heat shock protein	6h	6h	#iNUM!	#iNUM!	5.5	0.4

A continuación describimos algunos de las proteínas analizadas mediante espectrometría de masas, para lo cual se analiza también la categoría funcionales así como las subcategoría, en su caso a la cual pertenecen.

5.4 Metabolismo

Para identificar el tipo de proteínas relacionadas con la proteína de interés, utilizamos STRING, una base datos que nos permite analizar de forma teórica su posible interacción con otras proteínas, esto nos permite darle un sentido biológico a su expresión durante el proceso de formación de biopelícula.

La figura 11 muestra la interacción entre las proteínas que pertenecen a la categoría funcional de Metabolismo de las 85 identidades obtenidas, solo se ha calculado que 51 interaccionan, no importando la subcategoría funcional a la que pertenezca, el análisis es realizado mediante predicciones con STRING versión 10.0. (Szklarczyk *et al.*, 2015)

Figura 11. La predicción de interacción analizada mediante STRING 10.0. El grupo de proteínas que muestra una mayor interacción se relacionan con metabolismo central, generación de ATP, degradación de carbohidratos entre otros. Las proteínas en rojo pertenecen al ciclo de TCA según KEGG.

Dentro de esta categoría funcional se agrupan subcategorías, las cuales permiten describir a mayor detalle las funciones celulares que posiblemente se expresan durante el proceso de formación de biopelícula bacteriana

5.4.1 Producción y conversión de energía (C)

Este grupo es una subcategoría del metabolismo, nuestros datos muestran que en su mayoría las proteínas se relacionan con el metabolismo en diversos ambientes, ciclo del TCA, biosíntesis de metabolitos secundarios y metabolismo del piruvato. 19 proteínas fueron clasificadas para esta categoría funcional.

Figura 12. Como se muestra en la gráfica algunas de las proteínas de la categoría funcional de producción y conversión de energía tiene una expresión diferencial a lo largo de la formación de biopelícula. Por lo que la bacteria modula los niveles de expresión dependiendo de sus requerimientos de energía.

Dentro del grupo de producción y conversión de energía se PdhB, es una proteína que forma parte del complejo de la piruvato deshidrogenasa (PDH), la cual participa en la conversión del piruvato en acetil-CoA y CO₂. La PDH es un complejo multienzimático, el cual consiste de multimeros de tres distintas subunidades una de ellas codificadas por genes *lpdA*, los cuales son requeridos para su actividad enzimática. La PDH sirve como un importante punto de unión entre la glicolisis y el ciclo de los ácidos tricarboxilicos, ambas funciones en metabolismo aeróbico, Cabe señalar que PdhB su pico máximo de expresión la encontramos en el tiempo 24 horas de formación de la biopelícula y esta se ve disminuida a tiempos posteriores. Sugiriéndonos que el metabolismo en las primeras

etapas es fuertemente aeróbico y que con el desarrollo de las biopelículas, por las condiciones de agregación celular que prevalecen puede pasar a ser de tipo microareóbico.

Figura 13. La imagen muestra la interacción de PdhB con otras de las proteínas presentes en el genoma de *Rhizobium etli*. En su mayoría corresponden a proteínas de metabolismo central, entre las cuales encontramos GltA. No todas las proteínas se identificarón, sin embargo mediante STRING se sugiere la posible interacción de estas con la PdhB.

Análisis previos han demostrado el papel de la PdhB, la función desde el punto de vista bioquímico, se encarga de la descarboxilación del piruvato y su conversión a lactato, en organismos como es el caso de *Mycoplasma agalactiae* un patógeno de pequeños rumiantes, se ha descrito que mutaciones de este gene se considera importante en la morfología de las colonias de esta bacteria, de la misma manera disminuye su capacidad para invadir células eucariotas (Hegde *et al.*, 2015).

Análisis de interacciones utilizando STRING observamos que esta proteína puede interaccionar con PdhA1, LpdA, PdhA2, SucC, LpdAch2 implicadas en la obtención de energía celular y ciclo del TCA (ver figura 13). Cabe señalar que LpdAch2 una dihidroxlipoamida deshidrogenasa, es una de las proteínas identificadas mediante espectrometría de masas la cual se relaciona con la homeostasis del estado redox de la célula, esta proteína observa que su expresión aumenta en tiempo 120 y 240 horas de la formación de las biopelícula. Esta proteína consideramos participa de forma directa en la regulación del estado redox y por sus niveles de expresión observados es

probable que su participación en la biopelícula sea dual en una primera etapa como parte importante de una enzima fundamental en el metabolismo aeróbico (PDH) y en condiciones de biofilm maduro probablemente tenga un papel adicional. En algunas bacterias como *E. coli* la LpdA ha sido sugerida por jugar un papel como protector contra quimiocinas (Schutte *et al.*, 2016), papel que sin duda no jugaría en *R. etli* sin embargo abre la posibilidad para un papel similar como protector celular, lo cual podría estar desempeñando en la etapa tardía de la formación de la biocapa.

Figura 14. De las proteínas que podrían estar interaccionando con PdhB se considera están implicadas en procesos del metabolismo de carbono, en la imagen se muestra en números rojos y fondo verde, las proteínas que han sido identificadas mediante espectrometría de masas dentro de esta categoría funcional, relacionadas con el ciclo del ácido cítrico.

Otra proteína con actividad enzimática identificada y parte de este interactoma teórico es GltA, una citrato sintasa tipo II, identificada mediante espectrometría de masas, en nuestro análisis, la cual muestra un pico máximo de expresión solo en el tiempo 120 horas (estado maduro de la biopelícula). Mutantes en este tipo de proteínas no permiten el correcto funcionamiento de la formación de nódulos en *Sinorhizobium meliloti* Rm104A14. Otro aspecto es que mutantes en este tipo de proteínas sintetizan exopolisacáridos tipo I y carecen de succinoglicanos debido a no presentar niveles

normales de succinato (Grzemski *et al.*, 2005). No se han descrito su función en *R. etli* por lo que sugerimos que su participación dentro de la formación de la biopelícula, podría ser en la formación de este tipo de exopolisacáridos durante el biofilm tardío.

Así mismo es importante mencionar la sobre-expresión de una fosfoenol piruvato carboxiguinasa, (PckA), la cual es la primera enzima de la vía gluconeogenica, específicamente cataliza la conversión de oxaloacetato a fosfoenol piruvato, el análisis de expresión de esta proteína muestra que sus niveles de expresión se mantiene en la mayoría de las condiciones de la formación de la biopelícula, excepto por una disminución a las 72 horas y un aumento a las 24 horas de por lo menos 19 veces respecto a la condición sésil, en el caso de una de las isoformas, en el otro caso su nivel de expresión es similar en casi todos los tiempos. Lo cual nos sugiere que durante la formación y desarrollo de la biopelícula se requiere la síntesis de glucosa y probablemente de otras hexosas a pesar de estar desarrollándose la bacteria en un medio rico, es importante mencionar que en R. etli mutaciones en este gene no permite la correcta formación de nódulos con plantas de frijol, por lo que posiblemente sea esencial para este proceso durante la fijación biológica del nitrógeno (Resendis-Antonio et al., 2011). KEGG nos permite un análisis sistemático de las funciones de los genes, en función de las redes de genes y moléculas. El principal componente de KEGG son los diagramas gráficos de procesos bioquímicos, incluyendo la mayoría de rutas metabólicas y algunas vías de regulación conocidas. Las bases de datos de KEGG se actualizan diariamente y están disponibles en http://www.genome.jp/kegg.

Nuestros análisis mediante KEGG en el contexto metabólico muestran la participación de las algunas de las proteínas identificadas mediante espectrometría de masas, en el TCA y glicolisis (figura 14). Nuestra hipótesis sugiere que los niveles de PDH son esenciales a tiempos tempranos, mientras que GltA en condiciones de la biopelícula en estado maduro.

Otras de las proteínas diferencialmente expresada es Mdh una malato deshidrogenasa. Parte de la función de la malato deshidrogenasa importante dentro del TCA es parte del metabolismo del malato, específicamente en la oxidación de malato a oxoloacetato utilizando NAD como cofactor. No se ha descrito un papel durante el proceso de formación de biopelículas bacteriano en *R. etli*, sin embargo en relaciones simbióticas

entre Rhizobium leguminusarum y Pisum sativum se le ha relacionado con la simbiosis entre estos dos organismos, el análisis se basa en medir la actividad de Mdh en bacteroides y en el citosol de las células de la planta, determinan que el 70% de Mdh es de las células de la planta y el 25% de los bacteroides, encargada de generar el malato, utilizado por los bacteroides como fuente de carbono durante la fijación biológica del nitrógeno (Appels & Haaker, 1988). En condiciones de bajo oxígeno como podría ser la agregación celular observada en el bacteroide resulta interesante observar que el pico máximo de Mdh es en el tiempo 120 horas, considerado como el estado maduro de la formación de la biopelícula, la expresión de este tipo de proteínas, aumenta en condiciones maduras de la agregación en R. etli CFN42. Por otro lado, probablemente es parte del sistema para la generación de energía en el estado maduro de la formación de la biopelícula bacteriana. Adicionalmente en *E. coli* se ha descrito que su expresión se eleva durante la adaptación a cambios de concentraciones de oxígeno, del estado aeróbico al anaeróbico, se le atribuye un papel en el crecimiento de la biopelícula durante el proceso, este análisis mediante proteómica sugiere que el ciclo de los ácidos durante el tricarboxílicos (TCA) aumenta proceso de formación de la biopelícula(Tremoulet et al., 2002).

Otra de las proteínas identificadas dentro de esta categoría funcional es AcnA una aconitato hidratasa, relacionada con la isomerización de citrato a isocitrato mediante la via de cis-aconitato, esta enzima es clave en el ciclo del TCA, en el grupo de las rhizobeaceas se ha estudiado en algunos organismo como *Bradyrhizobium japonicum*, y se considera importante para la vida libre pero no para la relación simbiótica de este microorganismo (Thöny-Meyer & Künzler, 1996). Mutantes en *S. meliloti* 1021 muestran una relación AcnA - GltA (citrato cintasa), mutantes en AcnA muestra un pobre crecimiento celular, sin embargo al mutar GltA esta restaura su capacidad de crecimiento (Koziol *et al.*, 2009). Sugiriendo que la acumulación de citrato cintasa es toxica para la célula, por otro lado al mutar ambas se recupera el crecimiento celular. En *Pseudomona aeruginosa* AcnA la mutación disminuye el espesor de la biopelícula deteriorándola, cuando se restaura la expresión de esta se logra la recuperación de la formación de la biopelícula (Petrova *et al.*, 2012).

Observamos que a las 120 horas, aumenta la expresión delas isoformas de la AtpD y AtpA la subunidad beta de la ATP sintasa. El pico máximo de la otra isoforma (AtpA) es a las 24 horas de la formación de la biopelícula. Cabe señalar que la AtpA y AtpD son parte del mecanismo para la producción de ATP a partir de ADP mediante un gradiente de protones a través de la membrana. AtpA y AtpD son utilizadas como referencia en análisis para la clasificación de diversas poblaciones de rhizobeaceas, esto por considerarse como una de las proteínas conservadas (housekeeping) en este grupo bacteriano (Henssge *et al.*, 2009; Lemaire *et al.*, 2015).

Respecto a nuestro análisis de expresión de las isoformas identificadas observamos que las diferentes isoformas fluctúan en su expresión algunas de ellas en condiciones planctónicas y en tiempos tempranos de la formación de la biopelícula, estas presentan los niveles más altos de su expresión, en el caso de dos de ellas se expresan mayormente en condiciones de biopelículas maduras. No es clara su contribución en la formación de biopelículas, ni tampoco cuales isoformas son las activas. Un análisis puntual de la participación de estas proteínas podrá en un futuro ayudar a comprender mejor como la bacteria regula la expresión de estas proteínas y a definir su papel en el proceso de formación y desarrollo de la formación de la biopelícula, STRING nos permitió observar que estas proteínas a su vez guardan una relación con otro tipo de proteínas tales como AtpH, AtpC, AtpB, AtpF2, AtpF1, AtpG todos son consideradas como ATP sintasas, es claro que esta relación entre ellas, permiten la generación de energía durante todo el proceso incluso en la condición planctónica.

5.4.2 Transporte y metabolismo de carbohidratos (G).

Muchas de las proteínas relacionadas con esta categoría funcional están involucradas en la síntesis de exopolisacáridos, necesarios en la estructura de la biopelícula bacteriana (Flemming & Wingender, 2010). En este organismo actualmente no existe análisis que describan el proceso de formación de la matriz extracelular, algunos estudios realizados en las rhizobeaceas han permitido demostrar la importancia de los exopolisacáridos y su control genético en el proceso simbiótico (Skorupska *et al.*, 2006). En nuestro análisis varias proteínas clasificadas dentro de este grupo funcional se relacionan con el transporte, presentando un pico máximo de expresión a las 120 horas de formación de la biopelícula, como ejemplo podemos mencionar a XyIF, RHE_PF00565, RHE_CH00492, TaL, RHE_CH00492, todos ellos transportadores tipo ABC, relacionados con el transporte de azucares, hipotetizamos que podrían participar en la síntesis de la matriz extracelular y en consecuencia de manera indirecta en la
generación de energía necesaria para la célula. El nivel de expresión de estas proteínas es considerablemente menor en condiciones planctónicas, lo que indica que son fundamentalmente necesarias en formación de la biopelícula. Un ejemplo es ThuE, una proteína relacionada con el transporte de azúcares a través de la membrana, la cual es específica del tiempo 120 horas.

Análisis mediante KEGG nos permiten agrupar a las proteínas identificadas, las cuales se relacionan dentro del metabolismo de azucares GpmA (Fosfoglicerato mutasa), Glk (glucoquinasa), Eno (2-fosfoglicerato dehidratasa), PykA (piruvato quinasa) y Tal (trasaldolasa), las cuales participan en los pasos 3, 4 y 5 de la vía de la glucolisis, y en la gluconeogénesis, estas proteínas mantienen su expresión durante la formación de la biopelícula, mostrando sin embargo diferencias de expresión a lo largo de la formación de la biopelícula. Considerando que también observamos expresada la PckA y que esta enzima es la primera de la vía gluconeogenica y por las condiciones de cultivo utilizadas sugerimos que en estas condiciones la vía que opera es la gluconeogénesis. Por lo anterior sugerimos que estas proteínas y la vía metabólica en la cual participan son importantes en el proceso de formación de la biopelícula.

5.4.3 Transporte y metabolismo de aminoácidos (E).

Los datos de expresión para las proteínas dentro de esta categoría funcional muestran que en su mayoría los niveles más altos de expresión pertenecen a los tiempos 120 y 240 horas (Figura 15). La expresión en los organismos se regula de forma diversa, un ejemplo es la expresión de OppA en *Vibrio fluvialis*, mediante la construcción de una mutante "knockout" se observa un aumento en la formación de la biopelícula respecto a la condición silvestre (Lee *et al.*, 2004). Reportes en otros organismos como *Streptocuccus pneumoniae* ha sido descrito a OppA como parte importante de la capacidad virulenta de esta bacteria, así mismo con el establecimiento de la adhesión celular todo esto mediante el análisis de mutantes en genes relacionados con este tipo de proteínas (Nepomuceno *et al.*, 2007). En nuestro modelo de estudio no existen datos previos sobre el análisis de esta proteína, sin embargo los datos de expresión muestran un nivel alto de expresión para una de las isoformas analizadas en condiciones de formación de la biopelícula, específicamente a las 120 horas, la otra isoforma analizada aumenta en el tiempo de 240 horas. La regulación de genes relacionados con la

formación de biopelícula no se comporta de forma similar en organismos diferentes, este podría ser un ejemplo donde la expresión de OppA no es similar.

Las bacterias utilizan pequeños péptidos de distintas formas, una de ellas es desde el punto de vista nutritivo, así como parte del sistema de señalización celular (Payne, J.W. and Smith, 1994). En procesos de formación de la biopelícula posiblemente sean parte de la cascada de señalización durante este proceso, en nuestros datos encontramos enlistados un importante grupo de transportadores tipo ABC, encargados de transportar oligopéptidos (RHE_PF00234), dipéptidos (DppAch3) y de transporte de L-aminoácidos (AapJ). Probablemente son necesarios para el transporte en condiciones maduras de la formación de la biopelícula, debido a que su nivel de expresión es mayor en tiempos tardíos de la formación de la biopelícula bacteriana, principalmente 120 y 240 horas.

Transporte y metabolismo de aminoácidos (E)

Figura 15 La imagen muestra el nivel de expresión de las proteínas agrupadas dentro de la categoría funcional de transporte y metabolismo de aminoácidos.

Una de las proteínas que consideramos importante para el proceso de formación del de la biopelícula por su abundancia es AapJ, se identificaron dos isoformas, la expresión de éstas aumenta en el estado maduro de la bipelícula, en los tiempos 120 y 240 horas. Sin embargo una de las isoformas prevalecen sus niveles de expresión a lo largo de todos los tiempos analizados. Predicciones mediante STRING (Figura 16) muestran que su relación es con transportadores de L-aminoácidos tipo ABC, lo interesante es que existe la expresión de dos isoformas, probablemente este tipo de proteínas regulan el acceso de aminoácidos y otros compuestos, una de estas, en condiciones de biopelícula madura y la otra isoforma en tiempos tempranos probablemente este sistema también se relaciona con el transporte de solutos necesarios para el metabolismo celular, esto regulado de distinta forma a lo largo de la formación de la biopelícula, incluso en la condición plantónica (Walshaw & Poole, 1996).

Glna2 (glutamino sintetasa) importante en procesos tales como la biosíntesis de glutamina, nuestros datos muestran que se lograron identificar dos isoformas, las cuales muestran un pico máximo de expresión a las 240 horas de la formación del biofilm, probablemente como sabemos la actividad de la glutamino es central para la asimilación de amonio y la síntesis de glutamina quien junto con el glutámico son los donadores universales del nitrógeno para diversas reacciones dentro de la célula, en nuestro caso sugerimos que debido a la poca disponibilidad de nutrientes, la célula aumenta la expresión de Glna2 para la asimilación de amonio ante la limitación de nitrógeno que se pueda estar presentando en las etapas tardías, lo cual puede correlacionar con un incremento necesario en su expresión para que las células adquieran un fenotipo planctónico que se observa durante la disgregación de la biopelícula.

5.4.4 Transporte y metabolismo de lípidos (I)

Dentro de esta categoría funcional se identificó a AccBch, una acetil Coa carboxilasa, por comparaciones de funciones y similitud de dominios según la base de datos UniProt, se considera como parte importante en el metabolismo de ácidos grasos, regula la síntesis de ácidos grasos como su oxidación, utiliza como cofactor biotina, unido a la enzima por un residuo de lisina (Knowles, 1989), sus niveles de expresión son altos durante el estado planctónico los tiempos 24 y 72 horas durante la formación de la biopelícula ya que en el tiempo 240 su expresión disminuye, No contamos con datos experimentales que permitan demostrarlo sin embargo hipotetizamos que Probablemente sea parte del proceso de restauración de la membrana así como del procesos de síntesis y oxidación de ácidos grasos necesarios a nivel celular.

ALMACENAMIENTO Y PROCESAMIENTO DE LA INFORMACIÓN

5.4.5 Estructura y biogénesis de ribosomas para la traducción (J) y transcripción (k)

Dentro de esta categoría se identificó a RpsA, esta proteína participa en el reconocimiento de la región Shine-Dalgarno en la traducción del RNAm, necesaria en el proceso de traducción. De los datos analizados se obtuvo el análisis de tres isoformas, los niveles de estas prevalece durante todo el proceso de formación de la biopelícula, sin embargo dos de ellas mantienen su niveles máximo en tiempos 120 y 240 horas de la formación de la biopelícula. La predicción de interacción, describe su posible relación con proteínas relacionadas con proteínas de ribosomas tales como 50S, 30S así como la subunidad beta de la RNA polimerasa encargada de la transcripción de DNA a RNA y un factor de elongación Tu (Tuf1), encargado de asistir la unión del RNAt al sitio A durante la síntesis de proteínas.

Otras proteínas identificadas dentro de esta categoría funcional están implicadas con transcripción y traducción de proteínas, dentro de esta categoría funcional identificamos a RpsB, RpIY, RpsA, relacionadas con la estructura ribosomal, son proteínas que muestran un nivel de expresión mayor en el tiempo 120 horas. De la misma forma observamos a las proteínas RpoA y RpoZ, subunidades Alfa y Omega de la RNA

polimeraza, durante el proceso de formación de la biopelícula bacteriano, resulta poco claro el aumento de la expresión de este tipo de proteínas, sin embargo se observa a RpoA mayormente expresada a tiempos tardíos de la formación de la biopelícula 120 y 240 horas, contrario a esto RpoZ se observa mayormente en tiempos tempranos específicamente 24, 72 seguido del tiempo 120 horas. Nuestra hipótesis es que son sobre expresadas muy posiblemente debido a los requerimientos de crecimiento e incremento de la masa celular durante esta etapa de formación de la biopelícula.

5.5 SEÑALIZACIÓN Y PROCESOS CELULARES

5.5.1 Pared celular, Membrana y biogénesis de la envoltura celular (M)

MurF ha sido relacionada con la síntesis de UDP-N-acetilmuramiol-L-alanina-Dglutamato sintasa, parte de la vía de síntesis de peptidoglicanos, se observó más sobre expresada en el tiempo 24 horas de la formación de la biopelícula bacteriana, su expresión es menor en la condición planctónicas. Esta proteína debe tener una relación directa con la síntesis de la matriz extracelular durante el inicio de la formación de biofilm bacteriano, así como en la división celular y reparación de la membrana. Mediante STRING podemos observar su posible relación con proteínas implicadas con síntesis de lípidos MraY, división celular FtsL, síntesis de pared celular MurB, MurE. Datos recientes sobre factores de virulencia, muestran un análisis de Actinobacillu pleuropneumoniae causante de enfermedades respiratorias en el cual se muestra que adhesinas triméricas de autotransporte (TAA) al ser mutadas disminuyen la expresión de algunos genes entre ellos murF sugiriendo estar implicadas en sistemas de virulencia necesarios para la bacteria (Qin et al., 2016). Por otro lado este tipo de proteínas se considera importante durante el proceso de división celular bacteriana debido a que son parte importante del proceso de biosíntesis de la pared celular (Sobral et al., 2006)..

En las bacterias la restauración de la membrana es constante, en consecuencia es una de las estructuras de importancia para el desarrollo de la biopelícula, la membrana permite a la célula mantener su homeostasis, comunica con el exterior, permite el paso selectivo de nutrientes así como de señales que permiten a la célula tener comunicación intra y extra celular. El transporte a través de ella es importante como ya lo hemos mencionamos, Omp1 (una lipoproteína extramembranal) probablemente participa en este proceso en la célula durante la formación de la biopelícula, previamente se había solo predicho su posible función (Meneses *et al.*, 2010). Bajo nuestras condiciones contamos con datos de expresión de dos isoformas, una de ellas, muestra su nivel de expresión más alto en el tiempo 240 horas y la otra identidad electroforética mantiene su expresión a lo largo de la formación de la biopelícula.

5.5.2 Chaperonas, modificaciones postraduccionales y plegamiento de proteínas (O)

La interacción entre las proteínas identificadas en este grupo funcional está claramente demostrada (ver imagen 17). GroEL y DnaK son dos de las proteínas más abundantes en los patrones de expresión encada una de las condiciones analizadas, estas proteínas han sido relacionadas con el estrés por calor y estrés oxidativo. Un estudio de DnaK en Pseudomonas aeruginosa, la relacionan con motilidad específicamente con las proteínas de FliC y NirS relacionados con la síntesis del flagelo (Borrero-de Acuña et al., 2015). Otro análisis muestra que DnaK y GroEL aumentan su expresión en mutantes en genes relacionados con la expresión de proteínas de unión a glucanos específicamente GbpA, relacionada con la síntesis de glucosil transferasas en Streptococcus mutans, generando una disminución en la capacidad para formar biopelículas. Sugerimos que probablemente estas proteínas podrían tener un papel de protección celular ante las condiciones de estrés que podrían prevalecer durante el proceso de la formación de la biopelícula bacteriana, por otro lado también sugerimos una relación con la síntesis de la matriz extracelular, durante el establecimiento de la biopelícula bacteriana. Es importante señalar que se identificaron dos entidades electroforéticas para ambas proteínas, su nivel de expresión es mayor en tiempos tardíos específicamente 120 y 240 horas. Adicionalmente, en un estudio previo se reportó que en Pseudomona putida genes implicados en estrés por calor, tales como dnaK, dnaJ y grpE se relacionan con la regulación transcripcional de putisolvina un lipopeptido de importancia para el proceso formación de la biopelícula bacteriana (Dubern et al., 2005).

Figura 17 Red de interacción de DnaK con otras proteínas, en su mayoría chaperonas relacionadas con estrés por calor.

Hsp es una chaperona de "heat shock", la cuantificación de genes *hsp* utilizando qRT-PCR han sido determinada en *Candida albicans* y los resultados muestran que genes como *hsp70, hsp90,* y *hsp104* son necesarios durante el inicio de la formación de la biopelícula bacteriana, este análisis sugiere una importancia durante la transición del estado planctónico al estado sésil, en estados iniciales de la formación de la biopelícula bacteriana (Becherelli *et al.*, 2013). Nuestros datos muestran que el nivel de expresión es mayor en el tiempo 24 horas. No es claro la forma en que se regula la expresión de este tipo de proteínas, sin embargo, posiblemente la expresión de este tipo de proteínas sea inducido por las condiciones de estrés que guarda el estado de agregación celular durante el inicio de este. Los datos mostrados en este estudio permiten determinar su expresión a través de los diferentes tiempos de la formación de la biopelícula.

5.5.3 Motilidad celular (N)

La motilidad en la formación de la biopelícula es fundamental, inicialmente para poblar superficies que permitan a la bacteria adherirse a ellas, en algunos casos se ha descrito que la motilidad existe en el inicio de la formación de la biopelícula y a medida que este se desarrolla la motilidad bacteriana desaparece (Guttenplan & Kearns, 2013). Nosotros identificamos a FliL una proteína relacionada con el ensamble del flagelo, sus niveles de expresión son se observa a las células planctónicas y posteriormente durante todo el proceso de formación de la biopelícula desaparece su expresión, presentándose nuevamente a los tiempos 120 y 240 horas. Siendo en conclusión mayor su expresión

en la fase planctónica y en el tiempo 240. Nosotros sugerimos que esta proteína participa activamente en el estado planctónico, sin embargo durante la disgregación de la biopelícula bacteriana (240 horas) sus niveles de expresión aumentan debido a la necesidad de poblar nuevas superficies.

Figura 18 La relación que mantiene FliL es principalmente con proteínas relacionadas con la síntesis de flagelo, proteínas de flagelo y motilidad celular.

5.5.4 Pobremente caracterizadas

Finalmente se observa algunas proteínas que pertenecen a la categoría funciona de los pobremente caracterizados.

POBREMENTE CARACTERIZADAS

Función por predicción general (R)

				t24 hrs.	72 hrs.	120 hrs.	240 hrs.		
SSP	ID	gene	Protein name	Ratio	Ratio	Ratio	Ratio	pl	% cov
4105	RHE_PD00022	NULL	hypothetical protein	0.3	1.7	6.2	5.5	5.53	0.83
5103	RHE_PD00022	NULL	hypothetical protein	6h.	6h	3.7	6h	5.53	0.82
3313	RHE_CH02084	NULL	ABC transporter- substrate- binding protein	10.6	15.3	6h	6h	5.94	0.45
8201	RHE_CH03929	NULL	ABC transporter- substrate- binding protein	5.3	3.0	0.5	0.9	5.08	0.41
2101	RHE_CH03966	NULL	aldo/keto reductase family oxidoreductase	4.3	6h	2.2	2.2	6.6	0.62
6301	RHE_PB00156	NULL	hypothetical	3.7	5.9	2.4	1.7	5.29	0.48

4608	RHE_CH02873	NULL	protein ABC transporter ATP-binding protein	3.8	1.7	4.0	2.1	5.4	0.18	
Nota: 6h- Solo en planctónicas para esta comparación.										

6 Conclusiones

Las metodologías utilizadas en este trabajo, permiten observar de forma global la expresión genética a nivel de transcritos y proteínas., se emplearon estas metodologías ya que resultan complementarias por ejemplo, una alta abundancia de transcritos no indica que este sea sintetizado a proteína, otros aspecto es que muchas de las proteínas analizadas sufren diversas modificaciones postraduccionales, y en pocos casos coincide que el transcrito analizado mediante microarreglos sea identificado como proteína mediante proteómica.

La organización por grupos funcionales mediante COGs muestra que las categorías funcionales son similares en ambos tipos de análisis, por ejemplo, ambas técnicas muestran transcritos y proteínas relacionadas con diferentes tipos de estrés, principalmente oxidativo; con metabolismo, motilidad, traducción y estructura de ribosomas, entre otros. Otro grupo altamente expresado lo constituyen elementos involucrados en síntesis de proteínas, síntesis de la membrana celular, transportadores de azúcares y péptidos, así como los encargados de la síntesis de matriz extracelular. Es claro que durante la formación de la biopelícula en estado maduro, la motilidad celular se abate y por los datos de expresión a nivel de transcrito y proteínas es clara la disminución de genes relacionados con la síntesis de flagelo, contrario a las condiciones planctónicas en donde su expresión aumenta. Adicionalmente sugerimos que el "Quórum Sensing" en este modelo parece tener un significado importante, regulando el desarrollo y formación del biofilm. Los tiempos analizados mediante proteómica permiten definir, que entre la condición planctónica (6 horas) y el tiempo 240 horas de la formación de la biopelícula existen varios elemento expresándose de manera similar, lo que indica la disgregación del biofilm y el retorno de la célula a su biología de célula planctónica que en ocasiones le permite colonizar nuevos nichos e iniciar nuevamente el ciclo de formación de la biopelícula bacteriana.

La expresión de transcritos y proteínas relacionados con la síntesis de polisacáridos se ve aumentado en condiciones de biopelícula madura, sugerimos que puede relacionarse con la síntesis de la matriz extracelular en la cual los exopolisacáridos son necesarios para el establecimiento correcto del Mediante el análisis de categorías funcionales realizado con los datos proteómicos y transcriptómicos observamos que varios elementos identificados son parte importante del metabolismo central, específicamente, TCA y glucolisis, los niveles de expresión son variables a través del tiempo y la identificación de algunas isoformas proteicas, nos permite sugerir que este proceso es altamente regulado a nivel transcripcional y postraduccional . El estudio puntual de las proteínas modificadas postraduccionalmente identificadas permitirá en el futuro entender a mayor profundidad los procesos fisiológicos y estructurales predominantes en la biopelícula.

Algunos de los elementos identificados en la condición sésil han sido también reportados como parte importante para el establecimiento de la biopelícula, probablemente estos elementos y en particular la formación de una biopelícula correctamente estructurada sea importante previo al proceso de nodulación.

7 Bibliografía

- Abdian, P. L., Caramelo, J. J., Ausmees, N. & Zorreguieta, A. (2013). RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize *Rhizobium leguminosarum* acidic exopolysaccharides. *J Biol Chem* 288, 2893–2904.
- Allewell, N. M. (2016). Introduction to Biofilms Thematic Minireview Series. *J Biol Chem* 291, 12527–8.
- Appels, M. A. & Haaker, H. (1988). Identification of cytoplasmic nodule-associated forms of malate dehydrogenase involved in the symbiosis between *Rhizobium leguminosarum* and *Pisum sativum*. *Eur J Biochem* **171**, 515–22.
- Armitano, J., Méjean, V. & Jourlin-Castelli, C. (2014). Gram-negative bacteria can also form pellicles. *Environ Microbiol Rep* 6, 534–44.
- Azimi, S., Kafil, H. S., Baghi, H. B., Shokrian, S., Najaf, K., Asgharzadeh, M., Yousefi, M., Shahrivar, F. & Aghazadeh, M. (2016). Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among *Pseudomonas aeruginosa* isolates in Northwest Iran. *GMS Hyg Infect Control* **11**, Doc04.
- Balasubramanian, D. & Mathee, K. (2009). Comparative transcriptome analyses of *Pseudomonas aeruginosa*. *Hum Genomics* **3**, 349–61.
- Banin, E., Vasil, M. L. & Greenberg, E. P. (2005). Iron and *Pseudomonas aeruginosa* biofilm formation. *Proc Natl Acad Sci U S A* 102, 11076–11081.
- Banning, N., Toze, S. & Mee, B. J. (2003). Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system. *Microbiology* 149, 47–55.
- **Bassler, B. L. (1999).** How bacteria talk to each other: regulation of gene expression by quorum sensing. *Curr Opin Microbiol* **2**, 582–587.
- Becherelli, M., Tao, J. & Ryder, N. S. (2013). Involvement of heat shock proteins in *Candida albicans* biofilm formation. *J Mol Microbiol Biotechnol* 23, 396–400.
- Biswas, S. K. & Chaffin, W. L. (2005). Anaerobic growth of *Candida albicans* does not support biofilm formation under similar conditions used for aerobic biofilm. *Curr Microbiol* 51, 100–104.
- **Bjarnsholt, T. (2013).** The role of bacterial biofilms in chronic infections. *APMIS Suppl* 1–51.
- Boles, B. R., Thoendel, M. & Singh, P. K. (2005). Rhamnolipids mediate detachment of *Pseudomonas aeruginosa* from biofilms. *Mol Microbiol* 57, 1210–1223.
- Borrero-de Acuña, J. M., Molinari, G., Rohde, M., Dammeyer, T., Wissing, J., Jänsch, L., Arias, S., Jahn, M., Schobert, M. & other authors. (2015). A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in *Pseudomonas aeruginosa. J Bacteriol* **197**, 3066–75.

- Borriello, G., Werner, E., Roe, F., Kim, A. M., Ehrlich, G. D. & Stewart, P. S. (2004). Oxygen limitation contributes to antibiotic tolerance of *Pseudomonas aeruginosa* in biofilms. *Antimicrob Agents Chemother* **48**, 2659–2664.
- **Bradford, M. M. (1976).** A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**, 248–254.
- Braeken, K., Daniels, R., Vos, K., Fauvart, M., Bachaspatimayum, D., Vanderleyden, J. & Michiels, J. (2008). Genetic determinants of swarming in *Rhizobium etli. Microb Ecol* 55, 54–64.
- Branda, S. S., Vik, S., Friedman, L. & Kolter, R. (2005). Biofilms: the matrix revisited. *Trends Microbiol* 13, 20–26.
- Brooks, J. F. & Mandel, M. J. (2016). The histidine kinase BinK is a negative regulator of biofilm formation and squid colonization. *J Bacteriol*.
- Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G. M., Carnemolla, B., Orecchia, P., Zardi, L. & Righetti, P. G. (2004). Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. *Electrophoresis* 25, 1327–33.
- Carlen, A., Rudiger, S. G., Loggner, I. & Olsson, J. (2003). Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. *Oral Microbiol Immunol* **18**, 203–207.
- Collet, A., Vilain, S., Cosette, P., Junter, G. A., Jouenne, T., Phillips, R. S. & Di Martino, P. (2007). Protein expression in *Escherichia coli* S17-1 biofilms: impact of indole. *Antonie Van Leeuwenhoek* 91, 71–85.
- Costerton, J. W., Stewart, P. S. & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. *Science (80-)* 284, 1318–1322.
- Davey, M. E. & O'Toole G, A. (2000). Microbial biofilms: from ecology to molecular genetics. *Microbiol Mol Biol Rev* 64, 847–867.
- Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. *Science (80-)* 280, 295–298.
- **Doggett, M. S. (2000).** Characterization of fungal biofilms within a municipal water distribution system. *Appl Env Microbiol* **66**, 1249–1251.
- Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis 8, 881–890.
- Drago, L., Agrappi, S., Bortolin, M., Toscano, M., Romanò, C. L. & De Vecchi, E. (2016). How to Study Biofilms after Microbial Colonization of Materials Used in Orthopaedic Implants. *Int J Mol Sci* 17.
- Dubern, J.-F., Lagendijk, E. L., Lugtenberg, B. J. J. & Bloemberg, G. V. (2005). The heat shock genes *dnaK*, *dnaJ*, and *grpE* are involved in regulation of putisolvin biosynthesis in *Pseudomonas putida* PCL1445. *J Bacteriol* **187**, 5967–76.
- Encarnacion, S., Hernandez, M., Martinez-Batallar, G., Contreras, S., Vargas Mdel, C. & Mora, J. (2005). Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. *Biol Proced Online* 7, 117–135.

- Federle, M. J. & Bassler, B. L. (2003). Interspecies communication in bacteria. J Clin Invest 112, 1291–1299.
- Filoche, S. K., Zhu, M. & Wu, C. D. (2004). In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions. *J Dent Res* 83, 802–6.
- Flemming, H. C., Neu, T. R. & Wozniak, D. J. (2007). The EPS matrix: the 'house of biofilm cells'. *J Bacteriol* 189, 7945–7947.
- Flemming, H.-C. & Wingender, J. (2010). The biofilm matrix. *Nat Rev Microbiol* 8, 623–33.
- Frederix, M., Edwards, A., Swiderska, A., Stanger, A., Karunakaran, R., Williams, A., Abbruscato, P., Sanchez-Contreras, M., Poole, P. S. & Downie, J. A. (2014). Mutation of praR in *Rhizobium leguminosarum* enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. *Mol Microbiol* 93, 464–478.
- Friedman, L. & Kolter, R. (2004). Genes involved in matrix formation in *Pseudomonas* aeruginosa PA14 biofilms. *Mol Microbiol* **51**, 675–690.
- Fujishige, N. A., Lum, M. R., De Hoff, P. L., Whitelegge, J. P., Faull, K. F. & Hirsch,
 A. M. (2008). *Rhizobium common* nod genes are required for biofilm formation. *Mol Microbiol* 67, 504–515.
- Fux, C. A., Costerton, J. W., Stewart, P. S. & Stoodley, P. (2005). Survival strategies of infectious biofilms. *Trends Microbiol* **13**, 34–40.
- Galvão, L. C. C., Rosalen, P. L., Rivera-Ramos, I., Franco, G. C. N., Kajfasz, J. K., Abranches, J., Bueno-Silva, B., Koo, H. & Lemos, J. A. (2016). Inactivation of the *spxA1* or *spxA2* gene of *Streptococcus mutans* decreases virulence in the rat caries model. *Mol Oral Microbiol*.
- Goltsman, D. S. A., Dasari, M., Thomas, B. C., Shah, M. B., VerBerkmoes, N. C., Hettich, R. L. & Banfield, J. F. (2013). New group in the *Leptospirillum clade*: cultivation-independent community genomics, proteomics, and transcriptomics of the new species 'Leptospirillum group IV UBA BS'. *Appl Environ Microbiol* 79, 5384–93.
- Grzemski, W., Akowski, J. P. & Kahn, M. L. (2005). Probing the *Sinorhizobium meliloti*-alfalfa symbiosis using temperature-sensitive and impaired-function citrate synthase mutants. *Mol Plant Microbe Interact* **18**, 134–41.
- Guttenplan, S. B. & Kearns, D. B. (2013). Regulation of flagellar motility during biofilm formation. *FEMS Microbiol Rev* 37, 849–71.
- Hall-Stoodley, L. & Stoodley, P. (2005). Biofilm formation and dispersal and the transmission of human pathogens. *Trends Microbiol* **13**, 7–10.
- Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Microbiol* 2, 95–108.
- Hammer, B. K. & Bassler, B. L. (2003). Quorum sensing controls biofilm formation in Vibrio cholerae. *Mol Microbiol* 50, 101–104.
- Hathroubi, S., Mekni, M. A., Domenico, P., Nguyen, D. & Jacques, M. (2016). Biofilms: Microbial Shelters Against Antibiotics. *Microb Drug Resist*.

- Hegde, S., Rosengarten, R. & Chopra-Dewasthaly, R. (2015). Disruption of the *pdhB* pyruvate dehydrogenase [corrected] gene affects colony morphology, in vitro growth and cell invasiveness of *Mycoplasma agalactiae*. *PLoS One* **10**, e0119706.
- Henssge, U., Do, T., Radford, D. R., Gilbert, S. C., Clark, D. & Beighton, D. (2009). Emended description of Actinomyces naeslundii and descriptions of Actinomyces oris sp. nov. and Actinomyces johnsonii sp. nov., previously identified as Actinomyces naeslundii genospecies 1, 2 and WVA 963. Int J Syst Evol Microbiol 59, 509–16.
- Hentzer, M., Riedel, K., Rasmussen, T. B., Heydorn, A., Andersen, J. B., Parsek, M. R., Rice, S. A., Eberl, L., Molin, S. & other authors. (2002). Inhibition of quorum sensing in *Pseudomonas aeruginosa* biofilm bacteria by a halogenated furanone compound. *Microbiology* 148, 87–102.
- Hickman, J. W., Tifrea, D. F. & Harwood, C. S. (2005). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. *Proc Natl Acad Sci U S A* **102**, 14422–7.
- Hoffman, L. R., D'Argenio, D. A., MacCoss, M. J., Zhang, Z., Jones, R. A. & Miller, S. I. (2005). Aminoglycoside antibiotics induce bacterial biofilm formation. *Nature* 436, 1171–1175.
- Hope, C. K., Clements, D. & Wilson, M. (2002). Determining the spatial distribution of viable and nonviable bacteria in hydrated microcosm dental plaques by viability profiling. *J Appl Microbiol* **93**, 448–455.
- Van Houdt, R. & Michiels, C. W. (2005). Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156, 626–33.
- Hurkman, W. J. & Tanaka, C. K. (1986). Solubilization of Plant Membrane Proteins for Analysis by Two-Dimensional Gel Electrophoresis. *Plant Physiol* 81, 802–806.
- Irie, Y., O'Toole G, A. & Yuk, M. H. (2005). *Pseudomonas aeruginosa* rhamnolipids disperse Bordetella bronchiseptica biofilms. *FEMS Microbiol Lett* **250**, 237–243.
- Jackson, D. W., Simecka, J. W. & Romeo, T. (2002). Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184, 3406–3410.
- Jhajharia, K., Parolia, A., Shetty, K. V. & Mehta, L. K. (2015). Biofilm in endodontics: A review. J Int Soc Prev Community Dent 5, 1–12.
- Kaplan, J. B., Ragunath, C., Ramasubbu, N. & Fine, D. H. (2003). Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous betahexosaminidase activity. J Bacteriol 185, 4693–4698.
- Kaplan, J. B., Velliyagounder, K., Ragunath, C., Rohde, H., Mack, D., Knobloch, J.
 K. & Ramasubbu, N. (2004). Genes involved in the synthesis and degradation of matrix polysaccharide in *Actinobacillus actinomycetemcomitans* and *Actinobacillus pleuropneumoniae* biofilms. J Bacteriol 186, 8213–8220.
- Kaplan, J. B. & Fine, D. H. (2002). Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. *Appl Environ Microbiol* 68, 4943–50.
- Karaolis, D. K. R., Rashid, M. H., Chythanya, R., Luo, W., Hyodo, M. & Hayakawa,
 Y. (2005). c-di-GMP (3'-5'-cyclic diguanylic acid) inhibits *Staphylococcus aureus* cell-cell interactions and biofilm formation. *Antimicrob Agents Chemother* 49, 1029–

38.

- Khemiri, A., Jouenne, T. & Cosette, P. (2015). Proteomics dedicated to biofilmology: What have we learned from a decade of research? *Med Microbiol Immunol*.
- **KK., J. (2004).** What drives bacteria to produce a biofilm? *FEMS Microbiol Lett* **15**, 163–173.
- Knowles, J. R. (1989). The mechanism of biotin-dependent enzymes. *Annu Rev Biochem* 58, 195–221.
- Kolenbrander, P. E. (2000). Oral microbial communities: biofilms, interactions, and genetic systems. *Annu Rev Microbiol* 54, 413–437.
- Kolenbrander, P. E., Andersen, R. N., Blehert, D. S., Egland, P. G., Foster, J. S. & Palmer Jr., R. J. (2002). Communication among oral bacteria. *Microbiol Mol Biol Rev* 66, 486–505, table of contents.
- Kouzel, N., Oldewurtel, E. R. & Maier, B. (2015). Gene Transfer Efficiency in Gonococcal Biofilms: Role of Biofilm Age, Architecture, and Pilin Antigenic Variation. *J Bacteriol* **197**, 2422–31.
- Koziol, U., Hannibal, L., Rodríguez, M. C., Fabiano, E., Kahn, M. L. & Noya, F.
 (2009). Deletion of citrate synthase restores growth of *Sinorhizobium meliloti* 1021 aconitase mutants. *J Bacteriol* 191, 7581–6.
- Kumari, S., Mangwani, N. & Das, S. (2016). Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium. *Bioengineered* 1–7.
- Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M. & Kjelleberg, S. (2004). Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. J Bacteriol 186, 692–698.
- Lacroix, B. & Citovsky, V. (2016). A Functional Bacterium-to-Plant DNA Transfer Machinery of *Rhizobium etli*. *PLoS Pathog* 12, e1005502.
- Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W. & Caldwell, D. E. (1991). Optical sectioning of microbial biofilms. *J Bacteriol* 173, 6558–6567.
- Lawrence, J. R., Chenier, M. R., Roy, R., Beaumier, D., Fortin, N., Swerhone, G. D., Neu, T. R. & Greer, C. W. (2004). Microscale and molecular assessment of impacts of nickel, nutrients, and oxygen level on structure and function of river biofilm communities. *Appl Env Microbiol* **70**, 4326–4339.
- Lazazzera, B. A. (2005). Lessons from DNA microarray analysis: the gene expression profile of biofilms. *Curr Opin Microbiol* 8, 222–227.
- Lee, E.-M., Ahn, S.-H., Park, J.-H., Lee, J.-H., Ahn, S.-C. & Kong, I.-S. (2004). Identification of oligopeptide permease (opp) gene cluster in *Vibrio fluvialis* and characterization of biofilm production by oppA knockout mutation. *FEMS Microbiol Lett* 240, 21–30.
- Lemaire, B., Dlodlo, O., Chimphango, S., Stirton, C., Schrire, B., Boatwright, J. S., Honnay, O., Smets, E., Sprent, J. & other authors. (2015). Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). *FEMS Microbiol Ecol* 91, 1–17.

- Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., Powell, C., Vedantam, S., Buchkovich, M. L. & other authors. (2015). Genetic studies of body mass index yield new insights for obesity biology. *Nature* 518, 197–206.
- de los Rios, A., Wierzchos, J., Sancho, L. G. & Ascaso, C. (2003). Acid microenvironments in microbial biofilms of antarctic endolithic microecosystems. *Env Microbiol* 5, 231–237.
- Ma, Q., Zhang, G. & Wood, T. K. (2011). Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti. BMC Res Notes 4, 447.
- Macedo, A. J., Kuhlicke, U., Neu, T. R., Timmis, K. N. & Abraham, W. R. (2005). Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. *Appl Env Microbiol* **71**, 7301–7309.
- Méndez-Ortiz, M. M., Hyodo, M., Hayakawa, Y. & Membrillo-Hernández, J. (2006). Genome-wide transcriptional profile of *Escherichia coli* in response to high levels of the second messenger 3',5'-cyclic diguanylic acid. *J Biol Chem* **281**, 8090–9.
- Meneses, N., Mendoza-Hernandez, G. & Encarnacion, S. (2010). The extracellular proteome of *Rhizobium etli* CE3 in exponential and stationary growth phase. *Proteome Sci* **8**, 51.
- Merritt, P. M., Danhorn, T. & Fuqua, C. (2007). Motility and chemotaxis in *Agrobacterium tumefaciens* surface attachment and biofilm formation. *J Bacteriol* 189, 8005–8014.
- Mey, A. R., Craig, S. A. & Payne, S. M. (2005). Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. *Infect Immun* **73**, 5706–5719.
- Nakamura, Y., Yamamoto, N., Kino, Y., Yamamoto, N., Kamei, S., Mori, H., Kurokawa, K. & Nakashima, N. (2016). Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities. *Appl Microbiol Biotechnol*.
- Nepomuceno, R. S. L., Tavares, M. B., Lemos, J. A., Griswold, A. R., Ribeiro, J. L., Balan, A., Guimarães, K. S., Cai, S., Burne, R. A. & other authors. (2007). The oligopeptide (opp) gene cluster of Streptococcus mutans: identification, prevalence, and characterization. *Oral Microbiol Immunol* 22, 277–84.
- Nikolaev Iu, A. & Plakunov, V. K. (2007). [Biofilm--'City of microbes' or an analogue of multicellular organisms?]. *Mikrobiologiia* **76**, 149–163.
- O'Toole, G., Kaplan, H. B. & Kolter, R. (2000). Biofilm formation as microbial development. *Annu Rev Microbiol* 54, 49–79.
- O'Toole, G. A. & Kolter, R. (1998a). Initation of biofilm formation in *Pseudomans fluorescens* WC365 proceeds via multiple, convergent signalling pathways: a genetic analysis. *Mol Microbiol* 28, 449–461.
- O'Toole, G. A. & Kolter, R. (1998b). Flagellar and twitching motility are necessary for *Pseudomonas aeruginosa* biofilm development. *Mol Microbiol* **30**, 295–304.
- Oosthuizen, M. C., Steyn, B., Lindsay, D., Brozel, V. S. & von Holy, A. (2001). Novel method for the proteomic investigation of a dairy-associated Bacillus cereus biofilm.

FEMS Microbiol Lett 194, 47–51.

- Oosthuizen, M. C., Steyn, B., Theron, J., Cosette, P., Lindsay, D., Von Holy, A. & Brözel, V. S. (2002). Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. *Appl Environ Microbiol* **68**, 2770–80.
- Parsek, M. R. & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. *Trends Microbiol* **13**, 27–33.
- Payne, J.W. and Smith, M. W. (1994). Peptide transport by microorganisms. In *Adv Microb Physiol*, pp. 1–180. Boston: Academic Press Limited.
- Peacock, A. D., Chang, Y. J., Istok, J. D., Krumholz, L., Geyer, R., Kinsall, B., Watson, D., Sublette, K. L. & White, D. C. (2004). Utilization of microbial biofilms as monitors of bioremediation. *Microb Ecol* 47, 284–292.
- Petersen, F. C., Tao, L. & Scheie, A. A. (2005). DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. *J Bacteriol* 187, 4392–4400.
- Petrova, O. E., Schurr, J. R., Schurr, M. J. & Sauer, K. (2012). Microcolony formation by the opportunistic pathogen *Pseudomonas aeruginosa* requires pyruvate and pyruvate fermentation. *Mol Microbiol* **86**, 819–35.
- **Pinheiro L, Brito CI, et al. (2016).** *Staphylococcus epidermidis* and Staphylococcus haemolyticus: detection of biofilm genes and biofilm formation in blood culture isolates from patients in a Brazilian teaching hospital. *Diagn Microbiol Infect Dis.*
- Pratt, L. A. & Kolter, R. (1998). Genetic analysis of *Escherichia coli* biofilm formation: roles of flagella, motility, chemotaxis and type I pili. *Mol Microbiol* **30**, 285–293.
- Qin, W., Wang, L., Zhai, R., Ma, Q., Liu, J., Bao, C., Zhang, H., Sun, C., Feng, X. & other authors. (2016). Trimeric autotransporter adhesins contribute to *Actinobacillus pleuropneumoniae* pathogenicity in mice and regulate bacterial gene expression during interactions between bacteria and porcine primary alveolar macrophages. *Antonie Van Leeuwenhoek* 109, 51–70.
- Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E. & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. *Futur Med Chem* **7**, 493–512.
- Ramagli, L. S. & Rodriguez, L. V. (1985). Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. *Electrophoresis* 6, 559–563.
- Rasamiravaka, T., Labtani, Q., Duez, P. & El Jaziri, M. (2015a). The Formation of Biofilms by: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms. *Biomed Res Int* 759348.
- Rasamiravaka, T., Labtani, Q., Duez, P. & El Jaziri, M. (2015b). The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. *Biomed Res Int* 2015, 759348.
- Resendis-Antonio, O., Hernández, M., Salazar, E., Contreras, S., Batallar, G. M., Mora, Y. & Encarnación, S. (2011). Systems biology of bacterial nitrogen fixation: high-throughput technology and its integrative description with constraint-based modeling. *BMC Syst Biol* 5, 120. BioMed Central Ltd.

- Rickard, A. H., Leach, S. A., Hall, L. S., Buswell, C. M., High, N. J. & Handley, P. S. (2002). Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. *Appl Env Microbiol* 68, 3644–3650.
- Rinaudi, L. V & Giordano, W. (2010). An integrated view of biofilm formation in rhizobia. *FEMS Microbiol Lett* 304, 1–11.
- Russo, D. M., Williams, A., Edwards, A., Posadas, D. M., Finnie, C., Dankert, M., Downie, J. A. & Zorreguieta, A. (2006). Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by *Rhizobium leguminosarum*. J Bacteriol **188**, 4474–4486.
- Saint, S. & Chenoweth, C. E. (2003). Biofilms and catheter-associated urinary tract infections. *Infect Dis Clin North Am* **17**, 411–432.
- Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W. & Davies, D. G. (2002). *Pseudomonas aeruginosa* displays multiple phenotypes during development as a biofilm. *J Bacteriol* **184**, 1140–1154.
- Schembri, M. A., Kjaergaard, K. & Klemm, P. (2003). Global gene expression in Escherichia coli biofilms. *Mol Microbiol* **48**, 253–267.
- Schlafer, S. & Dige, I. (2016). Ratiometric Imaging of Extracellular pH in Dental Biofilms. *J Vis Exp*.
- Schutte, K. M., Fisher, D. J., Burdick, M. D., Mehrad, B., Mathers, A. J., Mann, B. J., Nakamoto, R. K. & Hughes, M. A. (2016). Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity. Infect Immun 84, 320–8.
- Sethupathy, S., Prasath, K. G., Ananthi, S., Mahalingam, S., Balan, S. Y. & Pandian, S. K. (2016). Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in *Pseudomonas aeruginosa* PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. *J Proteomics*.
- Singh, R., Paul, D. & Jain, R. K. (2006). Biofilms: implications in bioremediation. *Trends Microbiol* 14, 389–397.
- Skorupska, A., Janczarek, M., Marczak, M., Mazur, A. & Krol, J. (2006). Rhizobial exopolysaccharides: genetic control and symbiotic functions. *Microb Cell Fact* 5, 7.
- Sobral, R. G., Ludovice, A. M., de Lencastre, H. & Tomasz, A. (2006). Role of murF in cell wall biosynthesis: isolation and characterization of a murF conditional mutant of Staphylococcus aureus. *J Bacteriol* **188**, 2543–53.
- Spiers, A. J. & Rainey, P. B. (2005). The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. *Microbiology* 151, 2829–2839.
- Stewart, P. S., Franklin, M. J., Williamson, K. S., Folsom, J. P., Boegli, L. & James, G. A. (2015). Contribution of stress responses to antibiotic tolerance in *Pseudomonas aeruginosa* biofilms. *Antimicrob Agents Chemother* **59**, 3838–47.
- Steyn, B., Oosthuizen, M. C., MacDonald, R., Theron, J. & Brozel, V. S. (2001). The use of glass wool as an attachment surface for studying phenotypic changes in *Pseudomonas aeruginosa* biofilms by two-dimensional gel electrophoresis. *Proteomics* 1, 871–879.

- Stoodley, P., deBeer, D. & Lappin-Scott, H. M. (1997). Influence of electric fields and pH on biofilm structure as related to the bioelectric effect. *Antimicrob Agents Chemother* **41**, 1876–9.
- Stoodley, P., Wilson, S., Hall-Stoodley, L., Boyle, J. D., Lappin-Scott, H. M. & Costerton, J. W. (2001). Growth and detachment of cell clusters from mature mixed-species biofilms. *Appl Env Microbiol* 67, 5608–5613.
- Sutherland, I. W. (1969). Structural studies on colanic acid, the common exopolysaccharide found in the enterobacteriaceae, by partial acid hydrolysis. Oligosaccharides from colanic acid. *Biochem J* 115, 935–45.
- Sutherland, I. W. (2001). The biofilm matrix--an immobilized but dynamic microbial environment. *Trends Microbiol* 9, 222–227.
- Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A. & other authors. (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic Acids Res* 43, D447–52.
- Ta, C. A. K. & Arnason, J. T. (2015). Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors. *Molecules* 21, 29. Multidisciplinary Digital Publishing Institute.
- Tatusov, R. L., Galperin, M. Y., Natale, D. a & Koonin, E. V. (2000). The COG database: a tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res* 28, 33–36.
- **Thöny-Meyer, L. & Künzler, P. (1996).** The *Bradyrhizobium japonicum* aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis. *J Bacteriol* **178**, 6166–72.
- Thormann, K. M., Duttler, S., Saville, R. M., Hyodo, M., Shukla, S., Hayakawa, Y. & Spormann, A. M. (2006). Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP. *J Bacteriol* **188**, 2681–91.
- Tremoulet, F., Duche, O., Namane, A., Martinie, B. & Labadie, J. C. (2002). A proteomic study of *Escherichia coli* O157:H7 NCTC 12900 cultivated in biofilm or in planktonic growth mode. *FEMS Microbiol Lett* **215**, 7–14.
- Walshaw, D. L. & Poole, P. S. (1996). The general L-amino acid permease of *Rhizobium leguminosarum* is an ABC uptake system that also influences efflux of solutes. *Mol Microbiol* 21, 1239–52.
- Wang, X., Preston 3rd, J. F. & Romeo, T. (2004). The pgaABCD locus of *Escherichia coli* promotes the synthesis of a polysaccharide adhesin required for biofilm formation. *J Bacteriol* 186, 2724–2734.
- Watnick, P. & Kolter, R. (2000). Biofilm, city of microbes. J Bacteriol 182, 2675–2679.
- Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L. & Kolter, R. (2001). The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. *Mol Microbiol* **39**, 223–235.
- Webb, J. S., Thompson, L. S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Givskov, M. & Kjelleberg, S. (2003). Cell death in *Pseudomonas aeruginosa* biofilm development. *J Bacteriol* **185**, 4585–4592.

- Whiteley, M., Bangera, M. G., Bumgarner, R. E., Parsek, M. R., Teitzel, G. M., Lory, S. & Greenberg, E. P. (2001). Gene expression in *Pseudomonas aeruginosa* biofilms. *Nature* 413, 860–864.
- Wimpenny, J., Manz, W. & Szewzyk, U. (2000). Heterogeneity in biofilms. *FEMS Microbiol Rev* 24, 661–671.
- Wolfe, A. J., Chang, D. E., Walker, J. D., Seitz-Partridge, J. E., Vidaurri, M. D., Lange, C. F., Pruss, B. M., Henk, M. C., Larkin, J. C. & Conway, T. (2003). Evidence that acetyl phosphate functions as a global signal during biofilm development. *Mol Microbiol* 48, 977–988.
- Yu, S., Su, T., Wu, H., Liu, S., Wang, D., Zhao, T., Jin, Z., Du, W., Zhu, M.-J. & other authors. (2015). PsIG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. *Cell Res* 25, 1352–67.
- Zhang, L.-H. & Dong, Y.-H. (2004). Quorum sensing and signal interference: diverse implications. *Mol Microbiol* 53, 1563–71.
- Zhang, X.-S., García-Contreras, R. & Wood, T. K. (2008). Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA). *ISME J* **2**, 615–31.
- Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Romling, U. (2001). The multicellular morphotypes of Salmonella typhimurium and *Escherichia coli* produce cellulose as the second component of the extracellular matrix. *Mol Microbiol* **39**, 1452–1463.

8 ANEXOS

8.1 ANEXO A

Datos de expresión experimentos mediante microarreglos de ADN, tiempos 24 y 72 horas.

Tabla 1.- Datos de expresión de la condición sésiles a las 24 horas de la formación de la biopelícula.

ID	COG	Letter COG	Log p/S	Std. error	p value	Ration	Name	Function
RHE_CH03362	COG0639	Т	-0.307438353	0.012909152	1.34992E-05	0.808075303		probable serine/threonine specific protein phosphatase protein
RHE_CH03088	COG0748	Р	-0.301357335	0.021801028	0.000190697	0.811488562		hypothetical conserved protein
RHE_CH03393	COG1835	I	-0.285079481	0.02107629	0.000211569	0.820696394		probable acetyltransferase protein
RHE_PE00397	-		-0.181142047	0.014484888	0.00030734	0.882004519		hypothetical conserved protein
RHE_PF00337	-	R	-0.176925001	0.013494919	0.000245533	0.88458642		hypothetical conserved protein
RHE_PE00141	-		-0.163620475	0.007037474	1.51954E-05	0.892781802		putative trifolitoxin immunity protein
RHE_PF00439	COG2771	К	-0.144415927	0.010254788	0.00017443	0.904745588	raiR	transcriptional regulator (activator) protein, LuxR family
RHE_CH00838	-		-0.137888882	0.010428677	0.000235813	0.908848114		hypothetical conserved protein

Tabla 2.- Datos de expresión de la condición planctónica a las 24 horas de la formación de la biopelícula.

ID	COG		Log p/S	Std. error	p value	Ration	Name	Function
RHE_CH02980	COG3570	V	0.082463423	0.006495779	0.000286187	1.058824456		probable antibiotic resistance
RHE_CH03406	COG1187	J	0.123782994	0.00898771	0.000194074	1.089588207		(streptomycin kinase) protein probable pseudouridylate synthase,
RHE_CH01877	COG0436	Е	0.186002693	0.009113628	2.88173E-05	1.137607352	aatCch	succinyldiaminopimelate
RHE_PD00052	-		0.188564386	0.014003785	0.000216174	1.139629116		hypothetical protein
RHE_CH02531	COG0640	К	0.211260588	0.01678268	0.00029791	1.157699308		probable transcriptional regulator

RHE_PC00004	COG2141	С	0.258828424	0.015676291	8.10008E-05	1.196506657		protein, ArsR family putative nitrilotriacetate monooxygenase protein component A
RHE_PF00214	COG1192	D	0.408985808	0.023919114	6.83514E-05	1.327752097	repAf2	plasmid partitioning protein RepAf2
RHE_CH00202	COG3847	U	0.470592215	0.029719705	9.91879E-05	1.385678161	pilA	component of type IV pilus, pilin subunit protein

Tabla 3.- Datos de expresión de la condición sésil a las 72 horas de la formación de la biopelícula.

ALMACENAMIENTO Y PROCESAMIENTO DE LA INFORMACIÓN

ID	COG	Letter	log P/S	Std. error	p value	Ration	name	Function
		COG						
RHE_CH01665	COG0244	[J]	-0.1417891	0.0218861	0.0059421	0.9063944	rplJ	50S ribosomal protein L10
RHE_CH01682	COG0197	[J]	-0.1941502	0.0305106	0.0064020	0.8740876	rpIP	50S ribosomal protein L16
RHE_CH00602	COG0251	[J]	-0.2915683	0.0207982	0.0001783	0.8170134		probable translation initiation inhibitor
RHE_CH02879	COG0251	[J]	-0.1175070	0.0157367	0.0032449	0.9217791		protein putative translation initiation inhibitor protein
RHE_CH02196	COG0441	[J]	-0.1366158	0.0140774	0.0010045	0.9096505	thrS	threonyl-tRNA synthetase protein
RHE_CH02258	COG0162	[J]	-0.1625495	0.0250396	0.0058919	0.8934448	tyrS	tyrosyl-tRNA synthetase protein

Traducción, estructura y biogénesis ribosomal (J)

Transcripción (K)

ID	COG	Letter COG	log P/S	Std. error	p value	Ration	name	Function
RHE_CH01699	COG0202	[K]	-0.2794637	0.0491528	0.0101175	0.8238972	rpoA	DNA-directed RNA polymerase alpha chain protein
RHE_CH02142	COG1802	[K]	-0.1713597	0.0303745	0.0104349	0.8880054		probable transcriptional regulator protein
RHE_PE00222	COG1522	[K]	-0.2546181	0.0131485	0.0000373	0.8382090		probable transcriptional regulator protein, AsnC family

RHE_CH02438	COG1522	[K]	-0.1889399	0.0251938	0.0031844	0.8772501		probable transcriptional regulator
RHE_CH02976	COG0583	[K]	-0.1118202	0.0174232	0.0061792	0.9254198		probable transcriptional regulator
RHE_CH01281	COG1309	[K]	-0.2370782	0.0253916	0.0011985	0.8484619		protein, LysR family probable transcriptional regulator
RHE_CH03273	COG1595	[K]	-0.1955710	0.0181260	0.0006153	0.8732272	rpoE4	RNA polymerase sigma factor

Replicación, recombinación y reparación (L).

ID	COG	Letter COG	log P/S	Std. error	p value	Ration	Name	Function
RHE_CH04083	COG0587	[L]	-0.2013731	0.0162761	0.0003234	0.8697224	dnaEch2	DNA polymerase III alpha subunit protein
RHE_CH03785	COG0122	[L]	-0.3837234	0.0322854	0.0003909	0.7664569	alkA	DNA-3-methyladenine glycosidase II protein
RHE_CH00776	COG3436	[L]	-0.5384641	0.0889676	0.0078660	0.6885035		probable insertion sequence transposase protein
RHE_CH00780	COG2963	[L]	-0.2793967	0.0457911	0.0076105	0.8239355		probable insertion sequence
RHE_CH00774	COG3436	[L]	-0.1420466	0.0190184	0.0032414	0.9062327		probable insertion sequence
RHE_CH01540	COG3335	[L]	-0.4133776	0.0730563	0.0103126	0.7508634		probable insertion sequence transposase protein, ISRM11/ISRM2011-2 element
RHE_CH00235	COG1961	[L]	-0.2282647	0.0215274	0.0006672	0.8536611		probable recombinase, resolvase family
RHE_CH00395	COG0494	[LR]	-0.2830366	0.0420206	0.0050468	0.8218593		putative hydrolase protein, MutT/nudix family

SEÑALIZACIÓN Y PROCESOS CELULARES

Control del ciclo y división celular.

ID	COG	Letter COG	log P/S	Std. p value error	Ration	name Fi	unction	
RHE_CH03802	COG2884	[D]	-0.153505	0.0244999	0.0068254	0.8990632	ftsE	cell-division ATP-binding protein
Mecanismos de	defensa (V)							
RHE_CH03194	COG1680	[V]	-0.326067	0.0097495	0.0000025	0.7977079	ampC	beta-lactamase protein
RHE_CH03348	COG0841	[V]	-0.072144	0.0119401	0.0079199	0.9512230	mexF1	multidrug-efflux system,
RHE_CH03652	COG1566	[V]	-0.182043	0.0309922	0.0088804	0.8814536		probable multidrug resistance efflux protein
Mecanismos de traducción (T)	señales de							
RHE_CH01948	COG2204	[T]	-0.298458	0.0355846	0.0019445	0.8131208	ntrC	nitrogen regulation (two- component response
RHE_PF00074	COG0784	[T]	-0.395039	0.0368420	0.0006334	0.7604685		regulator) protein putative two-component response regulator protein
RHE_PF00066	COG0664	[T]	-0.174155	0.0135845	0.0002731	0.8862863		pseudo
RHE_CH03548	COG2204	[T]	-0.135412	0.0214743	0.0066474	0.9104097	tacA	sigma-54-dependent transcriptional regulator (activator) protein
RHE_PC00095	COG4566	[T]	-0.257684	0.0439010	0.0089059	0.8364294	nodW	two-component nodulation response regulator protein

Biogenesis de la	pared, mem	brana y	envoltura					
celular (M)								
RHE_CH00892	COG2230	[M]	-0.1564604	0.0199632	0.0026260	0.8972237	cfa	cyclopropane-fatty-acyl- phospholipid synthase protein
RHE_CH01126 RHE_CH01560	COG0744 COG0438	[M] [M]	-0.2648982 -0.2974691	0.0317287 0.0510111	0.0019848 0.0091430	0.8322575 0.8136786	mrcB	penicillin binding protein B probable
RHE_CH01378	COG0845	[M]	-0.3685768	0.0245539	0.0001284	0.7745462		glycosyltransferase protein probable protein secretion protein HlyD family
RHE_CH02849	COG0771	[M]	-0.3477570	0.0384221	0.0013805	0.7858049	murD	UDP-N- acetylmuramoylalanineD-
RHE_CH00392	COG0597	[MU]	-0.2271866	0.0370245	0.0074367	0.8542992	lpsA	glutamate ligase protein lipoprotein signal peptidase protein
Movilidad celular (N)								
RHE_CH00683	COG5443	[N]	-0.3050217	0.0417629	0.0035714	0.8094300	flbT	flagellin synthesis regulator (repressor) protein
RHE_CH03516	COG1352	[NT]	-0.1972177	0.0312958	0.0066652	0.8722311	cheRch2	chemotaxis
RHE_CH00708	COG0840	[NT]	-0.2953754	0.0262717	0.0005076	0.8148603	mcpZch1	methyl-accepting chemotaxis protein
RHE_CH00888	COG0840	[NT]	-0.2874322	0.0326850	0.0015724	0.8193591	mcpV2	methyl-accepting chemotaxis protein
Tráfico cellular, s	secreción y t	ransport	te (U)					
RHE_PA00177 RHE_PF00425	COG3838 COG4961	[U] [U]	-0.2690704 -0.2044346	0.0450855 0.0214812	0.0083277 0.0010984	0.8298541 0.8678788	trbC	conjugal transfer protein C hypothetical conserved protein
Modificaciones p chaperonas (O)	os-traduccio	onales, p	legado de proteí	inas y				
RHE_CH00145	COG0443	[O]	-0.1844111	0.0250945	0.0034778	0.8800082	dnaK	chaperone protein (Heat

								shock protein 70)
RHE_CH00048	COG5405	[O]	-0.1802617	0.0315858	0.0099669	0.8825429	hsIV	heat shock protease HsIVU, subunit HsIV protein
RHE_CH02861	COG1076	[O]	-0.2522703	0.0241619	0.0007168	0.8395741	djlA	molecular chaperone
RHE_CH03903	COG0533	[O]	-0.1821376	0.0287091	0.0064823	0.8813961	gcp	o-sialoglycoprotein
RHE_CH01293	COG0265	[O]	-0.2149032	0.0368895	0.0091800	0.8616040	degPch2	serine protease DO-like
RHE_CH02137	COG0526	[OC]	-0.2268252	0.0386101	0.0088748	0.8545132		hypothetical conserved protein
METABOLISMO Producción y Cor energía (C)	nversión de							
RHE_PC00070	COG1071	[C]	-0.1645501	0.0180856	0.0013481	0.8922067	bkDa1	2-oxoisovalerate dehydrogenase alpha subunit protein
RHE_CH00865	COG0636	[C]	-0.4476738	0.0420469	0.0006546	0.7332242	atpE	ATP synthase protein,
RHE_CH02615	COG1845	[C]	-0.1414590	0.0175671	0.0023305	0.9066019	coxO	cytochrome-c oxidase
RHE_CH00953	COG0843	[C]	-0.1885683	0.0230046	0.0021538	0.8774761	ctaD	cytochrome-c oxidase, subunit L protein
RHE_CH03858	COG1894	[C]	-0.3120338	0.0494957	0.0066541	0.8055054	fdsB	formate dehydrogenase, beta subunit protein
RHE_CH03612	COG3288	[C]	-0.1552555	0.0187663	0.0020671	0.8979733	pntA1	NAD(P)(+) transhydrogenase (AB- specific), alpha subunit
RHE_CH03613	COG3288	[C]	-0.1091978	0.0167209	0.0057466	0.9271035	pntA2	NAD(P)(+) transhydrogenase (AB- specific), alpha subunit protein
RHE_PD00319	COG2141	[C]	-0.2574617	0.0238041	0.0006083	0.8365585		probable luciferase protein
RHE_CH01730	COG1053	[C]	-0.2370819	0.0179637	0.0002379	0.8484597		putative oxidoreductase protein
RHE_CH03036	COG2857	[C]	-0.1850306	0.0193224	0.0010678	0.8796304	fbcC	ubiquinolcytochrome c reductase, cytochrome c1

subunit protein

Transporte y met	tabolism de ca	arbohidratos (G)					
RHE_CH03997	COG3459 [[G] -0.1530547	0.0241904	0.0065555	0.8993442	ndvB	beta-1,2-glucan production associated transmembrane protein
RHE_PF00050	COG1621 [[G] -0.2017958	0.0274720	0.0034843	0.8694676	cscA	beta-fructofuranosidase protein
RHE_CH02270	COG0036 [[G] -0.2270827	0.0252529	0.0014217	0.8543608	rpe	D-ribulose-5 phosphate 3- epimerase protein
RHE_CH03598	COG1523 [[G] -0.2658993	0.0326623	0.0022205	0.8316801	glgXch	glycosyl hydrolase (glycogen debranching) protein
RHE_PB00071	COG1070 [[G] -0.1510645	0.0211988	0.0039706	0.9005857	lyxX	L-xylulose kinase protein
RHE_CH00893	COG0406 [[G] -0.2203625	0.0296019	0.0032884	0.8583498		probable phosphoglycerate mutase protein
RHE_CH03379	COG3839 [[G] -0.1058622	0.0097438	0.0005957	0.9292494		probable sugar ABC transporter, ATP-binding protein
RHE_PB00148	COG0395 [[G] -0.2629069	0.0197582	0.0002288	0.8334070		probable sugar ABC transporter, permease protein
RHE_CH02658	COG0395 [[G] -0.2104832	0.0365415	0.0096055	0.8642477		probable sugar ABC transporter, permease protein
RHE_CH03374	COG1653 [[G] -0.2641364	0.0140396	0.0000429	0.8326970		probable sugar ABC transporter, substrate- binding protein
RHE_PF00277	COG0366 [[G] -0.2870813	0.0308236	0.0012122	0.8195584		putative alpha amylase
RHE_PB00113	COG0395 [[G] -0.1024482	0.0174890	0.0089784	0.9314510		putative sugar ABC transporter, permease protein
RHE_CH01003	COG0574 [[G] -0.2118116	0.0373652	0.0102381	0.8634523	ppdK	pyruvate phosphate dikinase protein
RHE_CH03370	COG0395 [[G] -0.3362988	0.0434470	0.0027736	0.7920708	ugpEch2	sn-glycerol-3-phosphate ABC transporter, permease protein

RHE_CH03667	COG0176	[G]	-0.2489523	0.0418517	0.0084392	0.8415073	tal	transaldolase protein
RHE_PF00208	COG0395	[G]	-0.1156744	0.0086934	0.0002288	0.9229508	thuG	trehalosemaltose ABC transporter, permease protein
Transporte y met	abolismo de	aminoá	cidos (E)					
RHE_CH02143	COG0010	[E]	-0.1361420	0.0202309	0.0050666	0.9099493	speB2	agmatinase protein
RHE_PC00188	COG1984	[E]	-0.2684046	0.0380140	0.0041306	0.8302371		hypothetical conserved protein
RHE_CH00042	COG0107	[E]	-0.1992015	0.0328669	0.0078212	0.8710325	hisF	imidazoleglycerol phosphate synthase, cyclase subunit protein
RHE_CH02141	COG4215	[E]	-0.2535147	0.0115314	0.0000200	0.8388503	occQch	octopine ABC transporter,
RHE_PC00183	COG0765	[E]	-0.4413301	0.0251537	0.0000603	0.7364553		probable amino acid ABC transporter, permease
RHE_PC00029	COG1176	[E]	-0.1892799	0.0274219	0.0045498	0.8770434		probable polyamine ABC transporter, permease protein
RHE_CH00483	COG1125	[E]	-0.3041400	0.0473450	0.0061552	0.8099249		probable proline/glycine betaine ABC transporter, ATP-binding protein
RHE_CH03315	COG4177	[E]	-0.2829938	0.0273938	0.0007530	0.8218837		probable urea or short- chain amide ABC transporter, permease
RHE_PF00409	COG0345	[E]	-0.1185245	0.0191006	0.0071026	0.9211293		protein putative pyrroline-5- carboxylate reductase
RHE_CH03660	COG0687	[E]	-0.1532143	0.0174213	0.0015718	0.8992447		putative spermidine/putrescine ABC transporter, substrate- binding protein
RHE_CH02254	COG1104	[E]	-0.1822705	0.0282625	0.0060554	0.8813149	nifSch	pyridoxal-phosphate- dependent aminotransferase protein (nitrogenase cofactor synthesis protein)

RHE_CH02291	COG0169	[E]	-0.1888840	0.0308779	0.0075316	0.8772841	aroEch2	shikimate 5-dehydrogenase protein
RHE_CH02957	COG0505	[EF]	-0.1570464	0.0163584	0.0010554	0.8968593	carA	carbamoyl-phosphate
								(glutamine-hydrolysing)
RHE PF00238	COG0329	[EM]	-0.2193871	0.0271116	0.0022805	0.8589303	dapAf2	protein dihydrodipicolinate
				0.0271110				synthase protein
RHE_CH03876	COG0329	[EM]	-0.1440719	0.0215488	0.0052072	0.9049614		probable dihydrodipicolinate
							-	synthase protein
RHE_CH03097	COG0601	[EP]	-0.3511206	0.0600318	0.0090338	0.7839749	оррВ	oligopeptide ABC transporter, permease
	0004470		0 0000045	0.0044077	0.0040000	0.0400040		protein
RHE_PF00353	COG1173	[EP]	-0.3003045	0.0344677	0.0016396	0.8120810		transporter, permease
	COC0924	(CT)	0 1026469	0 0224527	0 0002221	0 9742026	oon l	protein
KITE_CH01090	0000000	[[]	-0.1930408	0.0324327	0.0003331	0.8743920	aapJ	transporter, substrate-
RHE PC00160	0060834	(FT)	-0 3237898	0 0486746	0 0053192	0 7989683		binding protein probable amino acid ABC
	0000004	נבין	0.0207000	0.0400740	0.0000102	0.7000000		transporter, substrate-
								binding protein
Transporte y met	abolism de							
nucléotidos (F)								
RHE_CH01448	COG0194	[F]	-0.1879793	0.0317989	0.0086544	0.8778344	gmk2	guanylate kinase (GMP
								kinase) protein
Transporte y met	abolism de							
coenzimas (H)								
RHE_CH03046	COG0408	[H]	-0.1926602	0.0215713	0.0014661	0.8749908	hemF	coproporphyrinogen III
RHE PF00002	COG0413	[H]	-0.0975208	0.0099444	0.0009574	0.9346377	panB	oxidase protein ketopantoate
_								hydroximethyltransferase
								protein

RHE_PF00434	COG0161	[H]	-0.2549290	0.0190908	0.0002249	0.8380284		probable beta-alanine- pyruvate aminotransferase protein
Transporte y met	abolism de lí	ípidos						•
(I) RHE_CH00873	COG1947	[1]	-0.4200875	0.0477290	0.0015663	0.7473793	ispE	4-diphosphocytidyl-2-C- methyl-D-erythritol kinase protein
RHE_CH03975	COG1946	[I]	-0.2549225	0.0335376	0.0030030	0.8380321	tesB	acyl-CoA thioesterase II
RHE_CH01411	COG0688	[1]	-0.1669381	0.0244561	0.0047701	0.8907311	psd	phosphatidylserine decarboxylase proenzyme protein
RHE_CH03135	COG0558	[1]	-0.2855596	0.0503225	0.0101958	0.8204233		probable CDP-alcohol phosphatidyltransferase
RHE_PE00199	COG1835	[I]	-0.3300481	0.0511878	0.0060609	0.7955100		putative acetyltransferase
RHE_CH00927	COG1835	[I]	-0.2112995	0.0223314	0.0011279	0.8637588		putative acetyltransferase
RHE_PF00142	COG1028	[IQR]	-0.3048644	0.0293649	0.0007359	0.8095183		probable NAD/NADP dependent oxidoreductase protein
Transporte y met (P)	abolism de id	ones inc	orgánicos					
RHE_CH04099	COG1785	[P]	-0.2412302	0.0416281	0.0093768	0.8460236	phoA	alkaline phosphatase protein
RHE_CH03806	COG3703	[P]	-0.2690014	0.0323663	0.0020252	0.8298938	chaC	cation transporter protein
RHE_CH02125	COG1178	[P]	-0.2669106	0.0428660	0.0070029	0.8310974	afuB1	iron(III) ABC transporter, permease protein
RHE_CH03408	COG0471	[P]	-0.1798958	0.0287495	0.0068624	0.8827668		probable cation transporter protein
RHE_CH02154	COG0861	[P]	-0.2603904	0.0451022	0.0095177	0.8348620		putative transporter protein, TerC family
POBREMENTE CARÁCTERIZADO Función general (DS por predicció	ón (R)						,

RHE_PC00106	COG1064	[R]	-0.2247727	0.0392377	0.0098190	0.8557299	adhA2	alcohol dehydrogenase
RHE_CH01944	COG1546	[R]	-0.3913952	0.0665730	0.0088479	0.7623919	cinA2	competence-damage
RHE_PF00468	COG4114	[R]	-0.2242502	0.0379518	0.0086703	0.8560398	fhuF	ferric iron reductase protein
RHE_CH02706	COG5485	[R]	-0.2763317	0.0413952	0.0052414	0.8256878		hypothetical conserved protein
RHE_PF00157	COG3193	[R]	-0.2235324	0.0373971	0.0082755	0.8564658		hypothetical conserved protein
RHE_PE00212	COG3668	[R]	-0.1728258	0.0253296	0.0047789	0.8871034		hypothetical conserved protein
RHE_PE00238	COG3019	[R]	-0.1637366	0.0249428	0.0056236	0.8927100		hypothetical conserved protein
RHE_PC00014	COG3545	[R]	-0.1485327	0.0192764	0.0028293	0.9021675		hypothetical conserved protein
RHE_PB00099	COG4589	[R]	-0.1155172	0.0189203	0.0075906	0.9230513	cdsAb	phosphatidate cytidylyltransferase protein
RHE_CH00413	COG1487	[R]	-0.2108239	0.0290164	0.0036526	0.8640436	stdB	plasmid stability protein
RHE_CH03381	COG2244	[R]	-0.1489601	0.0249671	0.0083375	0.9019003		probable exopolysaccharide polymerization/export protein
RHE_CH02155	COG1235	[R]	-0.2164261	0.0338009	0.0062393	0.8606949		probable metal-dependent hydrolase protein
RHE_CH02051	COG0673	[R]	-0.2668671	0.0148269	0.0000533	0.8311224		probable oxidoreductase protein
RHE_CH00189	COG4603	[R]	-0.1623335	0.0260409	0.0069698	0.8935786		probable sugar ABC transporter, permease protein
RHE_CH03013	COG0491	[R]	-0.3019227	0.0395680	0.0029529	0.8111706		putative hydrolase protein
RHE_PB00102	COG1744	[R]	-0.1700878	0.0112608	0.0001246	0.8887886		putative lipoprotein periplasmic protein
RHE_PE00433	COG3618	[R]	-0.2015880	0.0247436	0.0022130	0.8695929		putative metal-dependent hydrolase protein
RHE_CH00386	COG0728	[R]	-0.3779836	0.0166934	0.0000173	0.7695124	mviN	virulence factor transmembrane protein
Función descono	ocida (S)							
RHE_CH02840	COG1808	[S]	-0.1813583	0.0294711	0.0073497	0.8818723	ftsZ2	cell division protein

RHE_CH01640	COG0344	[S]	-0.2872985	0.0418477	0.0046554	0.8194350	hypothetical conserved
RHE_CH01940	COG2261	[S]	-0.2870461	0.0248103	0.0004438	0.8195784	hypothetical conserved
							membrane protein
RHE_CH01503	COG1714	[S]	-0.1921325	0.0195571	0.0009495	0.8753109	hypothetical conserved
					/		membrane protein
RHE_CH00099	COG4530	[S]	-0.4344058	0.0513595	0.0018728	0.7399985	hypothetical conserved
	0000004	101	0 44 40 70 5		0 00 11070	0 7500 407	protein
RHE_CH00586	COG3024	[S]	-0.4143785	0.0588772	0.0041878	0.7503427	hypothetical conserved
							protein
RHE_CH00598	COG5467	[S]	-0.3570103	0.0631856	0.0103719	0.7807809	hypothetical conserved
	0004070	101	0.0044004			0 000 157 1	protein
RHE_CH01167	COG1376	[S]	-0.3211034	0.0405991	0.0025229	0.8004574	hypothetical conserved
	0000040	101	0.0744007	0.0440000	0.0057400	0 0000070	protein
RHE_CH03987	COG3812	[8]	-0.2741667	0.0419822	0.0057469	0.8269278	nypothetical conserved
	0004570	101	0.0704000	0 0 4 0 4 4 4 7	0.0050000	0 0000 100	protein
RHE_CH04076	COG1576	[8]	-0.2701269	0.0401417	0.0050668	0.8292466	nypothetical conserved
	0000404	101	0.0554470	0.0050040	0.0040040	0.0070404	protein
RHE_CH03584	COG3181	[8]	-0.2551172	0.0358642	0.0040010	0.8379191	nypothetical conserved
	0004544	101	0.0504070	0 0007700	0.0057000	0 0000005	protein
RHE_PF00150	COG4544	[5]	-0.2534972	0.0387768	0.0057220	0.8388605	nypotnetical conserved
	0005050	101	0.0070040	0.00000554	0.0050000	0.0400750	protein
RHE_CH00515	COG5352	[5]	-0.2372246	0.0300554	0.0059680	0.8483758	nypotnetical conserved
	COC 4640	101	0.0010004	0 0070700	0 0000400	0.9510059	protein by pathetical concerved
RHE_CH03109	COG4649	[5]	-0.2312004	0.0278733	0.0020432	0.8519258	nypothetical conserved
	COC 2701	[0]	0 2070912	0 0210120	0 0011212	0.9662990	protein hypothetical concerved
	0003791	[3]	-0.2070613	0.0219129	0.0011343	0.0002000	nypolitelical conserved
	COC5402	101	0 1/19052	0 0104704	0.0026124	0 0062277	by not hotical concerved
KHE_CHUI200	0000402	[0]	-0.1410955	0.0194794	0.0030124	0.9003277	protein
RHE CH02428	COG5649	[2]	-0 1215220	0 0000150	0 0002151	0 9192168	hypothetical conserved
NIL_01102420	0003049	[0]	-0.1213229	0.0090139	0.0002131	0.9192100	protein
RHE CH02056	COG1610	[9]	-0 1175010	0 01/1087	0 0020067	0 9217824	hypothetical conserved
	0001010	[0]	-0.1175015	0.0141007	0.0020007	0.3217024	nrotein
RHF PD00161	COG5489	ISI	-0 0745528	0.0130928	0 0100571	0 9496364	hypothetical protein
RHE CH03782	COG1238	[0]	-0 1308700	0.0177045	0.0033005	0.0132806	nutative transmembrane-
	0001200	[0]	0.1000700	0.0177040	0.0000000	0.0102000	associated alkaline

phosphatase protein

SIN COG							_	
RHE_PE00049	-	-	-0.2972693	0.0375721	0.0025189	0.8137913	cyaCe	adenylate cyclase protein
RHE_CH02384	-	-	-0.3389983	0.0472889	0.0038703	0.7905901	rapB2	autoaggregation protein
			0.0577117	0 0000470	0 000 4229	0 926/126	0004	(adhering protein)
	-	-	-0.23//11/	0.0220472	0.0004228	0.0304130	tro P	calcium-binding protein
RHE_PAUUIUI	-	-	-0.1516049	0.0104937	0.0021307	0.9000602	แสม	by not hotized conserved
KHE_PE00103	-	-	-0.4923092	0.0400213	0.0003049	0.7100003		protein
RHE CH02985	-	-	-0.4755455	0.0749167	0.0064679	0.7191948		hypothetical conserved
00_000			0	0.01.10.01	0.000.000			protein
RHE_PE00108	-	-	-0.3789970	0.0336930	0.0005064	0.7689720		Pseudo
RHE_CH02924	-	-	-0.3759427	0.0398516	0.0011435	0.7706017		hypothetical conserved
								protein
RHE_CH00688	-	-	-0.3720228	0.0406913	0.0013188	0.7726983		hypothetical conserved
			0.0540005	0.0040700	0 000 4700	0 7040000		protein
RHE_CH00578	-	-	-0.3548285	0.0310738	0.0004720	0.7819626		nypotnetical conserved
RHE CH03497	-	_	-0 3397302	0 0572641	0 0085302	0 7901890		hypothetical conserved
			0.0007002	0.0072041	0.0000002	0.7501050		protein
RHE_CH03340	-	-	-0.3139235	0.0251944	0.0003127	0.8044510		hypothetical conserved
								protein
RHE_CH01182	-	-	-0.3029698	0.0216141	0.0001784	0.8105821		hypothetical conserved
								protein
RHE_PF00081	-	-	-0.2672466	0.0400494	0.0052498	0.8309038		hypothetical conserved
			0.2594960	0 020886	0.0010642	0 9250642		protein by pothetical conserved
KIIL_0100000	-	-	-0.2304009	0.0300000	0.0019042	0.0009042		protein
RHE CH01505	-	-	-0.2534805	0.0390881	0.0059179	0.8388702		hypothetical conserved
								protein
RHE_CH02220	-	-	-0.2441039	0.0385588	0.0065400	0.8443401		hypothetical conserved
								protein
RHE_CH03168	-	-	-0.2436555	0.0295770	0.0021065	0.8446025		hypothetical conserved
			0 2220612	0.0212050	0 0020075	0 9472552		protein
KHE_CH04020	-	-	-0.2369013	0.0312059	0.0029075	0.0475552		protein
RHE CH00885	-	-	-0.2143980	0.0324497	0.0054732	0.8619057		hypothetical conserved
				0.002.101				protein
RHE_CH02130	-	-	-0.2091509	0.0319286	0.0056737	0.8650462		hypothetical conserved
								protein

RHE_CH01251	-	-	-0.2084419	0.0318289	0.0056801	0.8654714	hypothetical conserved
RHE CH00896	-	-	-0.2061779	0.0356202	0.0094200	0.8668306	hypothetical conserved
—							protein
RHE_PA00018	-	-	-0.1918502	0.0197838	0.0010079	0.8754822	hypothetical conserved
			0 1006760	0.0297660	0.0052000	0 9761051	protein
KHE_CH02317	-	-	-0.1900700	0.0207009	0.0055999	0.0701951	protein
RHE_CH00765	-	-	-0.1885225	0.0251167	0.0031726	0.8775040	hypothetical conserved
							protein
RHE_CH00980	-	-	-0.1879298	0.0329504	0.0099923	0.8778645	hypothetical conserved
RHE CH01857	_	-	-0 1711667	0 0259642	0 0055244	0 8881242	protein hypothetical conserved
			0.1711007	0.0200042	0.0000244	0.0001242	protein
RHE_CH02961	-	-	-0.1691417	0.0288562	0.0089557	0.8893716	hypothetical conserved
			0 4044454	0.0400070	0 0004070	0.0040440	protein
RHE_PF00010	-	-	-0.1611451	0.0103372	0.0001070	0.8943149	hypothetical conserved
RHE PF00432	-	-	-0.1224053	0.0104829	0.0004250	0.9186548	hypothetical conserved
			0	010101010	0.000.200		protein
RHE_CH03333	-	-	-0.1212240	0.0197810	0.0074755	0.9194073	hypothetical conserved
			0.4400000	0.0470450	0.0050000	0.0044500	protein
RHE_CH02008	-	-	-0.1138006	0.0173456	0.0056369	0.9241503	nypothetical conserved
RHE CH03045	-	-	-0.1099859	0.0187905	0.0090068	0.9265971	hypothetical conserved
—							protein
RHE_CH03486	-	-	-0.0895616	0.0148122	0.0078973	0.9398083	hypothetical conserved
			0 4070695	0 0254225	0 0004597	0 75/15/2	protein hypothetical protein
RHE_PC00237	-	-	-0.40700005	0.0514950	0.0004387	0.7547545	hypothetical protein
RHE PF00062	-	-	-0.3700863	0.0353936	0.0007119	0.7737362	hypothetical protein
RHE_CH00184	-	-	-0.3652372	0.0556929	0.0056467	0.7763412	hypothetical protein
RHE_PF00554	-	-	-0.3281426	0.0364136	0.0014080	0.7965613	hypothetical protein
RHE_CH01653	-	-	-0.3075138	0.0512086	0.0081208	0.8080330	hypothetical protein
RHE_CH01067	-	-	-0.3048655	0.0371481	0.0021424	0.8095177	hypothetical protein
RHE_PE00321	-	-	-0.2639548	0.0262301	0.0008501	0.8328019	hypothetical protein
RHE_PE00317	-	-	-0.2630223	0.0437423	0.0080776	0.8333403	hypothetical protein
KHE_CHU1U1/	-	-	-0.2551681	0.0418951	0.0076663	0.8378895	nypothetical protein
	-	-	-0.2354625	0.0415722	0.0102722	0.8494120	nypotnetical protein

RHF_CH02001	-	-	-0 2173329	0 0181711	0 0003795	0 8601541		hypothetical protein
RHE_PF00103	-	-	-0.1820982	0.0210775	0.0017029	0.8814202		hypothetical protein
RHE CH02170	-	-	-0.1376088	0.0167587	0.0021373	0.9090246		hypothetical protein
RHE CH00296	-	-	-0.1260593	0.0136205	0.0012475	0.9163310		hypothetical protein
RHE CH01966	-	-	-0.1182501	0.0204333	0.0094272	0.9213044		hypothetical protein
RHE_CH01847	-	-	-0.3519855	0.0512722	0.0046562	0.7835051	lldD2	L-lactate dehydrogenase
RHE_PF00304	-	-	-0.2652735	0.0276112	0.0010518	0.8320410		probable alpha-L-
			0.0040004	0.0470070	0 0000005	0.0000.400		fucosidase protein
RHE_PD00075	-	-	-0.2813094	0.0478679	0.0088625	0.8228438		probable insertion
								protein
RHE CH03180	-	-	-0.3066335	0.0234751	0.0002499	0.8085262		probable potassium
				01020.1.01	0.0002.00	0.0000202		channel protein
RHE_CH01121	-	-	-0.1703696	0.0223998	0.0029948	0.8886150		probable transcriptional
								regulator protein
RHE_CH00397	-	-	-0.3195073	0.0465085	0.0046423	0.8013435		putative acetyltransferase
								protein
RHE_PE00354	-	-	-0.4212943	0.0558751	0.0031107	0.7467544		putative beta-
			0 1020777	0.0005024	0.0056067	0 0747077		fructoruranosidase protein
KHE_CH03520	-	-	-0.1930777	0.0295054	0.0056967	0.0747377		chemotaxis protein
RHE PE00148	-	-	-0.4628911	0.0542733	0.0018042	0.7255309		putative pilus assembly
			011020011	0.000.21.00	010010012	0.1.200000		protein
RHE_CH03394	-	-	-0.2890398	0.0443614	0.0058023	0.8184466		putative pyrroloquinoline-
								quinone-dependent quinate
								dehydrogenase protein
RHE_PA00046	-	-	-0.3113828	0.0397861	0.0026423	0.8058690	virB5a	transport secretion system
								IV, VirB5 protein

Tabla 4.- Datos de expresión de la condición planctónica a las 72 horas de la formación de la biopelícula.

ALMACENAMIENTO Y PROCESAMIENTO DE LA INFORMACIÓN

Traducción, estructura, y biogénesis de ribosomas (J).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03452	COG0482 [J]	0.0898863	0.0150872	0.0083857	1.0642863	Mnma	tRNA 5-methylaminomethyl-2- thiouridylate-
							methyltransferaseprotein
-------------	-------------	-----------	-----------	-----------	-----------	------	--
RHE_CH00821	COG0124 [J]	0.1347097	0.0225794	0.0083387	1.0978719	hisS	histidyl-tRNA synthetase protein
RHE_CH00412	COG0242 [J]	0.1471348	0.0210736	0.0043333	1.1073680	def1	peptide deformylase protein
RHE_CH04064	COG1670 [J]	0.2678654	0.0068059	0.0000011	1.2040251	-	putative acetyltransferase protein
RHE_CH00584	COG0361 [J]	0.2862605	0.0452189	0.0065406	1.2194753	infA	translation initiation factor IF-1 protein
RHE_PF00459	COG1670 [J]	0.3425824	0.0460909	0.0033105	1.2680243	vbsA	N6-hydroxylysine O- acetyltransferase protein

Transcripción (K).

ID	COG		log (P/S)	standard	p value	Ration	Name	Product name
				error				
RHE_CH03342	COG0568	[K]	0.1375975	0.0138975	0.0009162	1.1000717	rpoH1	RNA polymerase factor sigma-32
RHE_CH02779	COG1595	[K]	0.1561966	0.0195649	0.0024208	1.1143455	rpoE2	RNA polymerase sigma factor protein (sigma-24)
RHE_PD00040	COG0583	[K]	0.1689621	0.0275689	0.0074735	1.1242494	-	probable transcriptional regulator protein, LysR family
RHE_CH04124	COG1158	[K]	0.1823618	0.0288736	0.0066037	1.1347400	rho	transcription termination factor protein
RHE_CH01175	COG1846	[K]	0.1895137	0.0235709	0.0023463	1.1403792	-	probable transcriptional regulator protein, MarR family
RHE_CH00453	COG3070	[K]	0.1957397	0.0267555	0.0035457	1.1453112	-	hypothetical conserved protein
RHE_PE00017	COG1609	[K]	0.1998242	0.0329543	0.0078063	1.1485584	-	probable transcriptional regulator protein, Lacl family
RHE_CH01311	COG1522	[K]	0.2255671	0.0379161	0.0084353	1.1692368	-	probable transcriptional regulator protein, AsnC family
RHE_PB00016	COG0583	[K]	0.2605867	0.0319261	0.0021949	1.1979657	-	probable transcriptional regulator protein, LysR family
RHE_CH02500	COG0583	[K]	0.2830876	0.0351517	0.0023294	1.2167962	-	probable transcriptional regulator protein, LysR family
RHE_CH02395	COG2390	[K]	0.3268837	0.0342265	0.0010808	1.2543011	-	probable transcriptional regulator protein
RHE_CH00647	COG2771	[K]	0.4436150	0.0531458	0.0019866	1.3600078	-	probable transcriptional regulator protein, LuxR family
RHE_PE00385	COG1737	[K]	0.4437359	0.0314382	0.0001726	1.3601219	-	probable transcriptional regulator protein
RHE_CH01863	COG0454	[K]	0.2712214	0.0347051	0.0026593	1.2068291	-	probable acetyltransferase protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
	0000547		0.4500004	0.0054005	0.0004.400	4 4 4 7 0 0 0		
RHE_PA00115	COG3547	[L]	0.1528931	0.0254825	0.0081493	1.1117968	-	putative insertion sequence transposase protein, IS1111A/IS1328/IS1533 family
RHE_PA00098	COG3436	[L]	0.1790590	0.0219312	0.0021920	1.1321452	-	probable insertion sequence transposase protein, IS66 family
RHE_PF00110	COG3727	[L]	0.1852787	0.0269331	0.0046156	1.1370366	-	probable DNA mismatch endonuclease protein
RHE_CH03482	COG2255	[L]	0.1929838	0.0293391	0.0055764	1.1431255	ruvB	holliday junction DNA helicase protein
RHE_PD00041	COG5433	[L]	0.1963075	0.0295737	0.0053673	1.1457621	-	probable insertion sequence transposase protein
RHE_CH02363	COG0328	[L]	0.2147635	0.0298483	0.0038094	1.1605137	-	probable ribonuclease H protein
RHE_CH03242	COG0692	[L]	0.2276190	0.0391972	0.0092984	1.1709009	ung	uracil-DNA glycosylase protein
RHE_CH02016	COG2963	[L]	0.2347613	0.0217507	0.0006143	1.1767120	-	putative insertion sequence transposase protein, IS66 family
RHE_PB00142	COG3335	[L]	0.2645614	0.0091200	0.0000051	1.2012708	-	probable insertion sequence transposase protein
RHE_CH00520	COG3335	[L]	0.2785210	0.0199329	0.0001811	1.2129507	-	probable insertion sequence transposase protein
RHE_CH02655	COG3547	[L]	0.2805781	0.0343119	0.0021769	1.2146815	-	putative insertion sequence transposase protein
RHE_PD00313	COG2801	[L]	0.2886180	0.0356320	0.0022706	1.2214696	-	probable insertion sequence transposase protein
RHE_CH01993	COG1961	[L]	0.3173035	0.0496116	0.0062686	1.2459995	-	probable resolvase protein
RHE_CH03050	COG0494	[L]	0.2108285	0.0213941	0.0009362	1.1573526	-	probable NTP pyrophosphohydrolase protein, MutT/nudix family
RHE_PF00086	COG4119	[L]	0.2884269	0.0306695	0.0011598	1.2213079	-	putative NTP pyrophosphohydrolase protein

Recombinación, reparación y replicación (L).

Control del ciclo celular, división celular, partición del cromosoma (D).

ID	COG		log (P/S)	log Std. error (P/S)		p value Ration		Product name
RHE_CH02237	COG0239	[D]	0.189734	42 0.0228983	0.0020528	1.1405536	-	probable integral membrane protein (possibly involved in chromosome

RHE_CH03459 COG0037 [D] 0.1989599 0.0333476 0.0083376 1.1478705 -	putative cell cycle protein MesJ/cytosine deaminase-related protein
---	---

Mecanismos de defense (V).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03357	COG1566 [V]	0.1792747	0.0173325	0.0007487	1.1323145	-	probable protein secretion protein, HlyD family
RHE_PD00277	COG0842 [V]	0.1828051	0.0316632	0.0095172	1.1350887	-	nod factor ABC transporter, permease protein

Mecanismos de señales de transducción (T).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH00625	COG0784 [T]	0.0540253	0.0088498	0.0075946	1.0381575	-	probable two-component response regulator protein
RHE_PC00058	COG0642 [T]	0.1268255	0.0222271	0.0099751	1.0918885	-	probable two-component sensor histidine kinase protein
RHE_CH03915	COG1217 [T]	0.1548966	0.0174836	0.0015206	1.1133418	typA	GTP-binding elongation factor protein (tyrosin phosphorylated protein)
RHE_CH00508	COG0642 [T]	0.2304312	0.0268089	0.0017426	1.1731855	phoR	phosphate regulon, two- component sensor histidine kinase protein
RHE_CH02560	COG2114 [T]	0.3052602	0.0416525	0.0035188	1.2356415	-	probable adenylate cyclase
RHE_CH00537	COG2197 [T]	0.1778281	0.0296807	0.0081967	1.1311797	-	probable two-component response regulator protein

Pared cellular/membrane/biogenesis de la envoltura celular (M).

ID COG log (P/S) Std. error p value Ration Name Product name	
--	--

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03487	COG0668	[M]	0.1531111	0.0150763	0.0008148	1.1119648	-	probable small-conductance mechanosensitive channel transmembrane protein
RHE_CH01368	COG0399	[M]	0.2475256	0.0327726	0.0030876	1.1871692	-	probable aminotransferase protein (involved in cell wall biogenesis)
RHE_CH00862	COG3773	[M]	0.2665562	0.0409494	0.0058253	1.2029329	-	putative cell wall hydrolase protein involved in spore germination
RHE_CH02852	COG0769	[M]	0.2731408	0.0240861	0.0004875	1.2084358	murE	UDP-N-acetylmuramoylalanyl-D- glutamate2, 6-diamin opimelate ligase protein
RHE_CH02768	COG0702	[M]	0.3066129	0.0076801	0.0000010	1.2368006	-	hypothetical conserved protein
RHE_PC00059	COG1538	[M]	0.4165293	0.0270523	0.0001136	1.3347128	nodTc	nodulation protein

Motilidad cellular (N).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH00672	COG1344 [N]	0.2505197	0.0311955	0.0023587	1.1896356	flaCch4	flagellin C protein
RHE_CH00681	COG1344 [N]	0.3123663	0.0545495	0.0098341	1.2417427	flgLch	flagellar hook-assosiated protein
RHE_CH02831	COG0835 [N]	0.1711082	0.0119034	0.0001581	1.1259230	cheW2	chemotaxis signal transduction protein
RHE_PD00153	COG0630 [N]	0.2433940	0.0417426	0.0091469	1.1837743	-	transport secretion system IV, VirB11 protein

Tráfico intracelular Secreción y transporte vesicular (U).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_PE00305	COG3745 [U]	0.1942449	0.0270277	0.0038283	1.1441252	-	putative cpaB pilus assembly protein

Modificaciones postraduccionales, plegamiento de protéinas, chaperonas (O).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01597	COG0386 [C	D] 0.1506627	0.0190950	0.0025497	1.1100792	btuE	glutathione peroxidase protein
RHE_CH02795	COG0265 [C	D] 0.1593339	0.0250585	0.0064225	1.1167714	degPch4	serine protease DO-like protein
RHE_CH00955	COG3175 [C	0.2624422	0.0151536	0.0000642	1.1995075	ctaG	cytochrome-c oxidase assembly protein
RHE_CH01565	COG1612 [C	0.2843018	0.0365213	0.0027053	1.2178207	-	probable cytochrome-c oxidase protein
RHE_CH03061	COG0435 [C	D] 0.3788590	0.0594402	0.0063587	1.3003131	-	putative glutathione S- transferase protein
RHE_CH01008	COG0526 [C	D] 0.1492988	0.0151260	0.0009293	1.1090303	-	hypothetical conserved protein
RHE_CH03300	COG0378 [C	D] 0.1818597	0.0219386	0.0020489	1.1343452	ureG	urease accessory protein

METABOLISMO.

Producción y conversión de energía (C).

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03723	COG1012	[C]	0.1962011	0.0298728	0.0056114	1.1456776	-	putative aldehyde dehydrogenase protein
RHE_CH02383	COG0114	[C]	0.2235381	0.0365442	0.0075326	1.1675935	fumC	fumarate hydratase class II protein
RHE_CH03161	COG1012	[C]	0.2275398	0.0320296	0.0040237	1.1708367	-	probable aldehyde dehydrogenase protein
RHE_PF00338	COG1012	[C]	0.2416397	0.0360852	0.0051728	1.1823357	-	probable aldehyde dehydrogenase protein
RHE_PF00340	COG1012	[C]	0.2428115	0.0360663	0.0050572	1.1832964	gabDf1	succinate semialdehyde dehydrogenase protein
RHE_PD00225	COG2025	[C]	0.2666261	0.0273283	0.0009802	1.2029912	-	electron transfer flavoprotein alpha subunit protein
RHE_PF00402	COG1062	[C]	0.2859325	0.0305723	0.0011893	1.2191981	adhCf	formaldehyde dehydrogenase (glutathione)/alcohol dehydrogenase protein
RHE_CH02979	COG1902	[C]	0.2940607	0.0413042	0.0039866	1.2260865	nerA	glycerol trinitrate reductase protein
RHE_CH03285	COG0604	[C]	0.1410084	0.0208120	0.0049231	1.1026756	-	probable alcohol dehydrogenase protein

Transporte y metabolismo de carbohidratos (G).

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_PF00036	COG1879	[G]	0.1207088	0.0082910	0.0001487	1.0872689	-	
RHE_CH02987	COG3839	[G]	0.1286413	0.0225929	0.0100591	1.0932636	-	probable sugar ABC transporter, ATP-binding protein
RHE_CH03163	COG4214	[G]	0.1398656	0.0225765	0.0071502	1.1018025	gguB	xylose ABC transporter, permease protein
RHE_CH02260	COG0366	[G]	0.1610370	0.0267613	0.0080529	1.1180905	-	putative trehalose synthase (glycosyl hydrolase) protein
RHE_PB00116	COG1082	[G]	0.2037211	0.0298919	0.0048022	1.1516650	-	hypothetical conserved protein
RHE_CH01726	COG3839	[G]	0.2075835	0.0209736	0.0009177	1.1547524	-	probable sugar ABC transporter, ATP-binding protein
RHE_CH03596	COG0297	[G]	0.2144614	0.0338511	0.0065197	1.1602706	glgA	glycogen synthase (starch [bacterial glycogen] synthase) protein
RHE_CH03646	COG1129	[G]	0.2191687	0.0151848	0.0001550	1.1640627	-	probable sugar ABC transporter, ATP-binding protein
RHE_CH03488	COG1023	[G]	0.2222049	0.0265268	0.0019556	1.1665150	-	probable 6-phosphogluconate dehydrogenase protein
RHE_CH02735	COG2133	[G]	0.2371574	0.0162611	0.0001475	1.1786680	-	putative L-sorbosone dehydrogenase protein
RHE_CH03368	COG4101	[G]	0.2394307	0.0325560	0.0034660	1.1805267	-	hypothetical conserved protein
RHE_CH00854	COG3734	[G]	0.2445644	0.0223270	0.0005734	1.1847350	dgoK	2-dehydro-3-deoxygalactonokinase protein
RHE_PB00112	COG3839	[G]	0.2447261	0.0388202	0.0066548	1.1848678	-	probable sugar ABC transporter, ATP-binding protein
RHE_CH03708	COG1175	[G]	0.2488140	0.0332005	0.0031940	1.1882299	-	putative sugar ABC transporter, permease protein
RHE_CH03499	COG0126	[G]	0.2693830	0.0329615	0.0021824	1.2052922	Pgk	phosphoglycerate kinase protein
RHE_CH03457	COG1109	[G]	0.2700551	0.0330362	0.0021802	1.2058538	-	probable phosphosugar isomerase protein
RHE_CH02186	COG0149	[G]	0.2740662	0.0435242	0.0066864	1.2092111	tpiAch	triosephosphate isomerase protein
RHE_CH00495	COG2721	[G]	0.2865044	0.0267985	0.0006421	1.2196815	-	probable altronate hydrolase protein
RHE_CH02085	COG1879	[G]	0.3031783	0.0393482	0.0028299	1.2338597	-	probable sugar ABC transporter, substrate-binding protein
RHE_CH02981	COG1879	[G]	0.3438423	0.0341072	0.0008430	1.2691322	-	putative transcriptional regulator protein, Lacl family

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_PF00098	COG0395 [G]	0.3487517	0.0254358	0.0001983	1.2734582	-	probable sugar ABC transporter, permease protein
RHE_PE00097	COG3839 [G]	0.3721983	0.0258072	0.0001556	1.2943235	-	probable sugar ABC transporter, ATP-binding protein
RHE_CH02224	COG0697 [G]	0.1880802	0.0160243	0.0004147	1.1392467	-	probable permease protein

Transporte y metabolismo de aminoácidos (E).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01896	COG0765 [E]	0.0712113	0.0091977	0.0027707	1.0505984	аарМ	general L-amino acid ABC transporter, permease protein
RHE_PD00222	COG1104 [E]	0.0874405	0.0153438	0.0100249	1.0624836	-	pyridoxal-phosphate-dependent aminotransferase protein (nitrogenase cofactor synthesis protein)
RHE_PE00417	COG0174 [E]	0.0966036	0.0122470	0.0025529	1.0692533	-	
RHE_CH02893	COG3842 [E]	0.0997474	0.0114733	0.0016555	1.0715858	-	probable ABC transporter, ATP- binding protein
RHE_CH03021	COG0006 [E]	0.1015502	0.0166400	0.0076043	1.0729257	-	probable Xaa-Pro dipeptidase protein
RHE_CH00213	COG0260 [E]	0.1280882	0.0159045	0.0023291	1.0928446	-	probable leucine aminopeptidase protein
RHE_PB00081	COG0665 [E]	0.1374089	0.0223763	0.0074133	1.0999278	thiO	thiamine biosynthesis FAD oxidoreductase protein
RHE_PE00427	COG4583 [E]	0.1412668	0.0230886	0.0075249	1.1028731	soxGe	sarcosine oxidase gamma subunit protein
RHE_CH03310	COG0831 [E]	0.1988804	0.0238809	0.0020070	1.1478073	urea	urease (urea amidohydrolase) gamma subunit protein
RHE_CH00045	COG0118 [E]	0.2180821	0.0304024	0.0038598	1.1631863	hisH	imidazoleglycerol phosphate synthase subunit (IGP synthase glutamine amidotransferase subunit) protein
RHE_PC00028	COG0687 [E]	0.2380544	0.0342413	0.0044128	1.1794011	-	probable polyamine ABC transporter, substrate-binding protein
RHE_PE00081	COG2986 [E]	0.2727596	0.0448862	0.0077384	1.2081165	hutHe2	histidine ammonia-lyase protein
RHE_CH00451	COG0665 [E]	0.2772006	0.0456046	0.0077298	1.2118411	-	probable D-amino acid dehydrogenase protein
RHE_CH03448	COG0411 [E]	0.2815702	0.0266762	0.0006815	1.2155171	-	probable branched-chain amino acid ABC transporter, ATP-binding protein
RHE_PF00159	COG1126 [E]	0.2932248	0.0371315	0.0025401	1.2253762	-	probable amino acid ABC transporter,

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
								ATP-binding protein
RHE_CH02495	COG2113	[E]	0.3939609	0.0335155	0.0004119	1.3139960	-	putative amino acid ABC transporter,
								substrate-binding protein
RHE_CH03347	COG0129	[E]	0.1093369	0.0108207	0.0008341	1.0787323	-	probable dihydroxy-acid dehydratase
								protein
RHE_CH01704	COG0129	[E]	0.1590058	0.0248958	0.0063049	1.1165175	ilvDch1	dihydroxy-acid dehydratase protein
RHE_PF00274	COG0028	[E]	0.1433806	0.0200933	0.0039476	1.1044902	ilvB	acetolactate synthase, large subunit
								protein (thiamine pyrophosphate-
								dependent enzyme)
RHE_CH03149	COG0329	[E]	0.1725106	0.0182583	0.0011353	1.1270180	dapAch4	dihydrodipicolinate synthase protein
RHE_CH02062	COG1173	[E]	0.1076161	0.0172124	0.0068856	1.0774464	dppCch2	dipeptide ABC transporter, permease
								protein
RHE_PB00128	COG1173	[E]	0.2503095	0.0389405	0.0061390	1.1894623	-	probable oligopeptide ABC transporter,
								permease protein
RHE_PC00119	COG1063	[E]	0.2968705	0.0263757	0.0005050	1.2284767	-	probable glutathione-independent
								formaldehyde dehydrogenase protein
RHE_CH03963	COG0834	[E]	0.1579248	0.0131863	0.0003771	1.1156812	-	putative amino acid ABC transporter,
								substrate-binding protein

Transporte y metabolism de nucleotidos (F)

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01472	COG0105 [I	F] 0.1194117	0.0195709	0.0076108	1.0862918	Ndk	nucleoside-diphosphate-kinase protein
RHE_CH03420	COG1001 [I	F] 0.1467028	0.0208980	0.0042341	1.1070365	adeC2	adenine deaminase protein
RHE_CH00524	COG0717 [I	F] 0.2268927	0.0399380	0.0101492	1.1703116	Dcd	2`-deoxycytidine 5`-triphosphate deaminase protein
RHE_CH01642	COG0540 [I	F] 0.2574480	0.0333550	0.0028085	1.1953623	pyrB	aspartate carbamoyltransferase protein
RHE_CH01908	COG0537 [I	F] 0.2519560	0.0442593	0.0100672	1.1908205	-	putative hydrolase protein, HIT family

Transporte y metabolismo de coenzimas (H)

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01195	COG0171 [H]	0.1493871	0.0142151	0.0006955	1.1090982	-	probable NH(3)-dependent NAD(+)synthetase protein
RHE_PF00202	COG0161 [H]	0.1717599	0.0154466	0.0005345	1.1264317	-	probable adenosylmethionine8- amino-7-oxononanoate

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03427	COG0382 [H]	0.1727379	0.0277453	0.0070066	1.1271956	-	aminotransferaseprotein putative integral membrane prenyltransferase protein
RHE_CH02647	COG2226 [H]	0.2380087	0.0392776	0.0078275	1.1793637	-	probable menaquinone biosynthesis methyltransferase protein
RHE_CH03846	COG0156 [H]	0.4575903	0.0376260	0.0003507	1.3732462	hemAch	8-amino-7-oxononanoate synthase protein
RHE_CH00179	COG0111 [H]	0.3029324	0.0289536	0.0007099	1.2336493	-	probable hydroxyacid dehydrogenase protein

Transporte y metabolismo de lípidos (I)

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01714	COG0657	[I]	0.1788477	0.0297367	0.0080701	1.1319794	-	putative esterase/lipase/thioesterase family protein
RHE_PC00063	COG4799	[I]	0.1894712	0.0185675	0.0007970	1.1403456	тссА	methylcrotonoyl-CoA carboxylase non- biotinylated subunit protein
RHE_PB00120	COG1960	[I]	0.1950812	0.0315897	0.0072444	1.1447886	-	probable FMNH2-dependent monooxygenase protein
RHE_PE00201	COG1788	[I]	0.3267753	0.0314350	0.0007315	1.2542068	pcal	3-oxoadipate CoA-transferase subunit A protein
RHE_CH02475	COG0304	[I]	0.1639758	0.0269945	0.0077503	1.1203704	-	probable 3-oxoacyl-(acyl-carrier- protein) synthase II protein
RHE_CH02402	COG1028	[I]	0.0735789	0.0107565	0.0047279	1.0523239	-	probable short chain dehydrogenase protein
RHE_CH01018	COG1028	[I]	0.2667892	0.0351774	0.0030325	1.2031272	-	probable oxidoreducatse protein
RHE_CH02403	COG1028	[I]	0.4693397	0.0338762	0.0001886	1.3844757	-	probable short chain dehydrogenase protein

Transporte y metabolismo de iones inorgánicos (P).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01773 RHE_PF00308	COG2897 [P] COG1116 [P]	0.1337382 0.1547230	0.0147505 0.0232969	0.0013696 0.0053556	1.0971329 1.1132078	sseA -	thiosulfate sulfurtransferase protein probable amino acid ABC transporter, ATP-binding protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH02126	COG1840	[P]	0.2052917	0.0108908	0.0000425	1.1529195	afuA1	iron(III) ABC transporter, substrate- binding protein
RHE_PD00202	COG1348	[P]	0.2090665	0.0259389	0.0023209	1.1559400	-	nitrogenase, iron protein
RHE_CH00805	COG0306	[P]	0.2454414	0.0398402	0.0073162	1.1854554	-	probable phosphate transport permease protein
RHE_CH03359	COG0025	[P]	0.3094604	0.0437309	0.0040913	1.2392441	-	probable Na+/H+ antiporter protein
RHE_CH01784	COG0715	[P]	0.3135850	0.0500043	0.0068003	1.2427921	nrtCch	nitrate ABC transporter, ATP-binding protein
RHE_CH00929	COG0619	[P]	0.3419017	0.0443739	0.0028299	1.2674262	bioN	biotin transporter, permease protein
RHE_PD00308	COG1348	[P]	0.3501491	0.0504250	0.0044353	1.2746924	nifH	nitrogenase, iron protein
RHE_CH01219	COG1230	[P]	0.3674701	0.0219000	0.0000749	1.2900886	-	probable cation efflux system protein
RHE_PF00388	COG4638	[P]	0.2232074	0.0312530	0.0039329	1.1673259	-	putative dyoxygenase (alpha subunit) oxidoreductase protein

Biosintesis, transporte y catabolismo de metabolites secundarios (Q).

ID	COG	I	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01585	COG2124 ((Q) (0.2963013	0.0319090	0.0012288	1.2279921	-	probable cytochrome P450 hydroxylase protein
RHE_PC00051	COG2761 ((Q) (0.3369760	0.0302528	0.0005303	1.2631063	-	probable polyketide synthase protein
RHE_CH00591	COG2162 ((Q) (0.3758089	0.0399807	0.0011624	1.2975669	-	probable arylamine N- acetyltransferase protein

POBREMENTE CARACTERIZADOS

Función general por predicción (R)

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH00874	COG0457 [R]	0.1088697	0.0139544	0.0026791	1.0783830	-	hypothetical conserved protein
RHE_CH03262	COG2329 [R]	0.1193033	0.0142591	0.0019658	1.0862102	-	hypothetical conserved protein
RHE_PE00442	COG4111 [R]	0.1380995	0.0095715	0.0001553	1.1004545	-	hypothetical conserved protein
RHE_PE00178	COG4221 [R]	0.1425807	0.0205735	0.0044726	1.1038780	-	probable ribitol 2-dehydrogenase protein
RHE_CH00793	COG0491 [R]	0.1593073	0.0130208	0.0003409	1.1167508	-	putative beta-lactamase family protein
RHE_CH00841	COG0312 [R]	0.1659028	0.0280075	0.0085837	1.1218679	pmbA	modulator of DNA gyrase protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH02416	COG0596	[R]	0.1781067	0.0225009	0.0025139	1.1313982	-	putative hydrolase protein
RHE_PC00223	COG4221	[R]	0.1786659	0.0290440	0.0073605	1.1318368	-	probable ribitol 2-dehydrogenase
								protein
RHE_PE00042	COG1123	[R]	0.1875159	0.0316393	0.0085653	1.1388012	-	probable oligopeptide ABC transporter,
								ATP-binding protein
RHE_CH00394	COG1092	[R]	0.1952302	0.0296873	0.0055817	1.1449068	-	probable SAM-dependent
	0000000	101	0 4070000	0.0040000	0 0000750	4 4 4 0 0 0 5 4		metnyitransterase protein
RHE_PF00179	COG3608	[R]	0.1970666	0.0243398	0.0022750	1.1463651	-	nypotnetical conserved protein
RHE_CH00994	COG2329	[R]	0.2025851	0.0024346	0.0000000	1.1507585	-	hypothetical conserved protein
RHE_CH03726	COG4321	[R]	0.2234594	0.0233161	0.0010637	1.1675299	-	hypothetical conserved protein
RHE_CH02748	COG0637	[R]	0.2319457	0.0327355	0.0040692	1.1744177	-	putative hydrolase protein
RHE_CH03535	COG0596	[R]	0.2408581	0.0401996	0.0081958	1.1816953	-	probable lactone-specific esterase
								protein
RHE_CH01232	COG2514	[R]	0.2412219	0.0379125	0.0064052	1.1819933	-	putative ring-cleaving dioxygenase
								protein
RHE_CH03930	COG0820	[R]	0.2421079	0.0250382	0.0010213	1.1827195	-	hypothetical conserved protein
RHE_CH02387	COG3576	[R]	0.2534227	0.0278342	0.0013439	1.1920318	-	putative pyridoxine biosynthesis
								protein
RHE_CH01179	COG0488	[R]	0.2592446	0.0452504	0.0098148	1.1968519	-	probable ABC transporter, ATP-
								binding protein
RHE_CH03626	COG2319	[R]	0.2642575	0.0275679	0.0010628	1.2010177	-	hypothetical conserved protein
RHE_CH00080	COG0673	[R]	0.2807767	0.0140419	0.0000319	1.2148488	-	putative oxidoreductase protein
RHE_CH00962	COG2334	[R]	0.2827736	0.0489585	0.0095017	1.2165314	thrB	homoserine kinase protein
RHE_CH01814	COG0790	[R]	0.2975326	0.0474898	0.0068271	1.2290406	exoR2	exopolysaccharide production negative
								regulator protein
RHE_CH02713	COG0523	[R]	0.3523599	0.0523724	0.0050711	1.2766472	-	probable cobalamin synthesis protein
RHE_PD00025	COG0517	[R]	0.3707646	0.0287209	0.0002643	1.2930380	-	Pseudo gene
RHE_CH03642	COG0673	[R]	0.4663735	0.0451313	0.0007519	1.3816321	-	probable oxidoreductase protein

Función desconocida (S).

ID	COG	log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03082	COG5345 [S]	0.0961998	0.0134575	0.0039176	1.0689540	-	hypothetical conserved protein
RHE_CH03821	COG0316 [S]	0.1009019	0.0115008	0.0015890	1.0724437	cobS	cobalamin biosynthesis protein
RHE_CH03159	COG3744 [S]	0.1255801	0.0125138	0.0008610	1.0909463	-	hypothetical conserved protein
RHE_CH00595	COG3220 [S]	0.1307532	0.0135893	0.0010447	1.0948651	-	hypothetical protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH04060	COG5476	[S]	0.1456033	0.0206570	0.0041610	1.1061931	-	hypothetical protein
RHE_CH03906	COG4223	[S]	0.1498352	0.0232686	0.0060940	1.1094427	-	hypothetical conserved protein
RHE_CH02991	COG2320	[S]	0.1564481	0.0241063	0.0058986	1.1145398	-	hypothetical conserved protein
RHE_PE00382	COG5476	[S]	0.1627442	0.0256052	0.0064333	1.1194144	-	hypothetical conserved protein
RHE_PF00051	COG3685	[S]	0.1641523	0.0218023	0.0031302	1.1205075	-	hypothetical conserved protein
RHE_PE00285	COG3254	[S]	0.1662924	0.0222335	0.0032218	1.1221709	-	hypothetical conserved protein
RHE_PF00528	COG4094	[S]	0.1755116	0.0296096	0.0085603	1.1293648	nnrU	denitrification regulator protein
RHE_PF00148	COG2135	[S]	0.2135013	0.0333695	0.0062591	1.1594988	-	hypothetical conserved protein
RHE_CH00883	COG1704	[S]	0.2163594	0.0146516	0.0001389	1.1617981	-	hypothetical conserved protein
RHE_CH02198	COG5502	[S]	0.2363608	0.0302462	0.0026600	1.1780174	-	hypothetical conserved protein
RHE_CH02559	COG4312	[S]	0.2371559	0.0307850	0.0028322	1.1786668	-	hypothetical conserved protein
RHE_CH01323	COG3795	[S]	0.2468366	0.0333693	0.0033802	1.1866024	-	hypothetical conserved protein
RHE_CH03129	COG3748	[S]	0.2549939	0.0357853	0.0039716	1.1933307	-	hypothetical conserved membrane protein
RHE_PC00203	COG2326	[S]	0.2706265	0.0367240	0.0034360	1.2063315	-	hypothetical conserved protein
RHE_CH00545	COG1284	[S]	0.3060692	0.0322124	0.0011066	1.2363346	-	hypothetical conserved protein
RHE_PD00133	COG1359	[S]	0.3076098	0.0457982	0.0051073	1.2376555	-	hypothetical protein
RHE_CH03432	COG3181	[S]	0.3118650	0.0470916	0.0054198	1.2413113	-	hypothetical conserved protein

Sin COG

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH01092	-	-	0.1797166	0.0204355	0.0015721	1.1326614	-	putative terminase small subunit protein
RHE_CH02555	-	-	0.0657101	0.0114331	0.0096911	1.0466000	-	hypothetical conserved protein
RHE_PD00244	-	-	0.0935451	0.0135008	0.0044766	1.0669889	-	farnesyltranstransferase protein
RHE_PF00114	-	-	0.0992689	0.0120052	0.0020718	1.0712305	-	hypothetical protein
RHE_PA00170	-	-	0.1106515	0.0134019	0.0020857	1.0797157	trbH	conjugal transfer protein H
RHE_CH02417	-	-	0.1140134	0.0198519	0.0097190	1.0822347	-	putative outer membrane protein, OmpA family
RHE_CH01876	-	-	0.1173894	0.0147021	0.0024194	1.0847702	-	hypothetical conserved protein
RHE_PD00168	-	-	0.1201313	0.0197090	0.0076426	1.0868338	-	conjugal transfer protein D
RHE_CH01929	-	-	0.1300108	0.0221801	0.0089553	1.0943019	-	hypothetical conserved protein
RHE_CH03306	-	-	0.1321037	0.0230500	0.0098006	1.0958905	-	probable urease-associated protein
RHE_CH01069	-	-	0.1335994	0.0218084	0.0074868	1.0970273	-	hypothetical protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_PE00157	-	-	0.1342723	0.0197989	0.0049032	1.0975391	-	putative bacterial type II secretion
RHE_CH03254	-	-	0.1348845	0.0177868	0.0030337	1.0980049	-	hypothetical conserved protein
RHE_CH02631	-	-	0.1356323	0.0138033	0.0009487	1.0985742	-	hypothetical protein
RHE_PA00166	-	-	0.1358639	0.0208604	0.0058118	1.0987505	traM	conjugal transfer transcriptional regulator (repressor) protein
RHE_PF00127	-	-	0.1434723	0.0246787	0.0092562	1.1045604	-	hypothetical protein
RHE_CH01115	-	-	0.1450976	0.0238314	0.0076774	1.1058054	-	hypothetical protein
RHE_PA00157	-	-	0.1484204	0.0231125	0.0061643	1.1083553	traDa	conjugal transfer protein D
RHE_PF00177	-	-	0.1534501	0.0116363	0.0002388	1.1122261	-	hypothetical protein
RHE_PF00414	-	-	0.1553559	0.0050030	0.0000036	1.1136963	-	probable transcriptional regulator protein, AraC family
RHE_PF00038	-	-	0.1640425	0.0266108	0.0072973	1.1204222	-	hypothetical conserved protein
RHE_CH01361	-	-	0.1669010	0.0173794	0.0010539	1.1226444	-	hypothetical protein
RHE_PC00007	-	-	0.1696090	0.0145014	0.0004217	1.1247536	-	probable amino acid ABC transporter, ATP-binding protein
RHE_CH03654	-	-	0.1711719	0.0263333	0.0058598	1.1259727	-	probable transcriptional regulator protein, AraC family
RHE_PD00046	-	-	0.1733873	0.0301869	0.0097150	1.1277031	-	probable insertion sequence transposase protein
RHE_CH01191	-	-	0.1744319	0.0209600	0.0020134	1.1285199	-	probable transcriptional regulator protein, LysR family
RHE_CH00254	-	-	0.1747211	0.0267080	0.0057053	1.1287462	recX	DNA repair regulator protein
RHE_CH02111	-	-	0.1752076	0.0255714	0.0046948	1.1291269	-	hypothetical conserved protein
RHE_CH03211	-	-	0.1766211	0.0164430	0.0006282	1.1302337	pssU	Pseudo
RHE_CH03779	-	-	0.1800247	0.0271064	0.0053554	1.1329033	-	hypothetical protein
RHE_CH01005	-	-	0.1902372	0.0253829	0.0031932	1.1409513	-	hypothetical protein
RHE_PB00043	-	-	0.1904434	0.0175480	0.0005988	1.1411144	-	hypothetical conserved protein
RHE_PC00215	-	-	0.1922981	0.0312298	0.0073314	1.1425823	-	putative 4-hydroxyphenylpyruvate dioxygenase protein
RHE_CH03874	-	-	0.1958485	0.0302582	0.0059648	1.1453976	-	hypothetical conserved protein
RHE_CH01149	-	-	0.2032932	0.0260069	0.0026565	1.1513234	-	putative transporter, permease protein
RHE_CH00691	-	-	0.2129795	0.0374660	0.0101245	1.1590795	-	hypothetical conserved protein
RHE_CH02355	-	-	0.2211731	0.0386833	0.0098943	1.1656811	dme	malate dehydrogenase (oxaloacetate decarboxylating) (NADP+) protein
RHE_CH02736	-	-	0.2213067	0.0300734	0.0034569	1.1657890	-	hypothetical conserved protein
RHE_CH01083	-	-	0.2264976	0.0326831	0.0044732	1.1699911	ndiA2	nutrient deprivation-induced protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH03780	-	-	0.2265716	0.0177266	0.0002771	1.1700512	-	probable cation transporter protein
RHE_CH00555	-	-	0.2300250	0.0318582	0.0037527	1.1728553	-	putative hemagglutinin protein
RHE_CH03187	-	-	0.2351800	0.0329964	0.0039674	1.1770536	-	hypothetical protein
RHE_CH02648	-	-	0.2385474	0.0255297	0.0011944	1.1798041	-	putative transcriptional regulator protein
RHE_CH00029	-	-	0.2392920	0.0253123	0.0011325	1.1804132	-	hypothetical conserved protein
RHE_CH01376	-	-	0.2410900	0.0315208	0.0029224	1.1818853	-	hypothetical conserved protein
RHE_CH00619	-	-	0.2413309	0.0334541	0.0037672	1.1820826	-	hypothetical conserved protein
RHE_PB00146	-	-	0.2417608	0.0162351	0.0001334	1.1824350	-	probable oxidoreductase protein
RHE_CH01500	-	-	0.2418525	0.0423662	0.0099561	1.1825101	-	hypothetical protein
RHE_PA00113	-	-	0.2435381	0.0192527	0.0002911	1.1838925	-	hypothetical conserved protein
RHE_CH02635	-	-	0.2448600	0.0210235	0.0004301	1.1849777	-	hypothetical protein
RHE_CH01424	-	-	0.2485225	0.0366284	0.0048936	1.1879899	-	hypothetical conserved protein
RHE_PD00327	-	-	0.2555736	0.0359035	0.0039892	1.1938103	-	hypothetical protein
RHE_CH03210	-	-	0.2563532	0.0176923	0.0001522	1.1944556	pssV	exopolysaccharide production protein
RHE_CH02764	-	-	0.2568922	0.0438738	0.0089945	1.1949019	-	putative transcriptional regulator
RHE_PD00132	-	-	0.2590851	0.0338917	0.0029292	1.1967196	-	probable aryl-alcohol dehydrogenase protein
RHE_CH03426	-	-	0.2623834	0.0427049	0.0073972	1.1994586	-	hypothetical conserved protein
RHE_CH03564	-	-	0.2648467	0.0195903	0.0002121	1.2015084	-	hypothetical conserved protein
RHE_CH04092	-	-	0.2810910	0.0198074	0.0001681	1.2151134	-	putative L-serine dehydratase protein
RHE_CH03338	-	-	0.2819784	0.0394473	0.0039180	1.2158611	-	hypothetical conserved protein
RHE_CH03226	-	-	0.2878768	0.0370097	0.0027147	1.2208422	pssE	glucuronosyltransferase protein
RHE_CH01844	-	-	0.2924655	0.0405867	0.0037849	1.2247315	-	hypothetical conserved protein
RHE_CH03601	-	-	0.2926720	0.0425618	0.0046237	1.2249068	soxAch	sarcosine oxidase alpha subunit protein
RHE_CH00434	-	-	0.2970215	0.0409346	0.0036737	1.2286053	-	hypothetical conserved protein
RHE_PF00318	-	-	0.2995732	0.0218144	0.0001968	1.2307802	-	putative glucoronyl hydrolase protein
RHE_CH02567	-	-	0.3029786	0.0262412	0.0004481	1.2336889	-	hypothetical protein
RHE_CH02307	-	-	0.3090181	0.0186552	0.0000797	1.2388643	-	probable acetyltransferase protein
RHE_CH01372	-	-	0.3234752	0.0477980	0.0049471	1.2513411	-	hypothetical conserved protein
RHE_CH01123	-	-	0.3502739	0.0211492	0.0000798	1.2748026	-	hypothetical conserved protein
RHE_PE00153	-	-	0.3503638	0.0219156	0.0000947	1.2748821	-	hypothetical protein
RHE_CH01989	-	-	0.3551537	0.0503894	0.0041621	1.2791218	-	hypothetical protein
RHE_PD00044	-	-	0.3617620	0.0508291	0.0039918	1.2849943	-	hypothetical protein

ID	COG		log (P/S)	Std. error	p value	Ration	Name	Product name
RHE_CH00728	-	-	0.3643771	0.0588227	0.0071534	1.2873257	-	hypothetical conserved protein
RHE_CH00156	-	-	0.3682529	0.0377844	0.0009849	1.2907888	-	hypothetical conserved protein
RHE_CH03801	-	-	0.3797956	0.0258861	0.0001433	1.3011575	-	hypothetical conserved protein

8.2 ANEXO B

Imágenes obtenidas para el análisis mediante proteómica durante el proceso de formación de biopelículas.

Mapa de proteinas en la condición 6 horas (planctónica).

Mapa de proteinas en la condición 24 (etapa temprana de la formación de la biopelícula).

Mapa de proteínas en el inicio de la maduración de la biopelícula (72 horas).

Tiempo 120 horas de la formación de la biopelícula en *Rhizobium etli*.