

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA INGENIERÍA CIVIL – ESTRUCTURAS

ANÁLISIS DE FATIGA DEL TRAMO DE ARMADURA DEL PUENTE COATZACOALCOS I

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: ABRAHAM GERARDO LÓPEZ DELGADO

TUTOR PRINCIPAL: ROBERTO GÓMEZ MARTÍNEZ, DR. PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA

CIUDAD DE MÉXICO, SEPTIEMBRE DE 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	Dr. Escobar Sánchez José Alberto			
Secretario:	Dr. Pozos Estrada Adrián			
Vocal:	Dr. Gómez Martínez Roberto			
1 er. _{Suplente:}	Dra. Suárez López Martha María			
2 do. Suplente:	Dr. Díaz López Orlando Javier			

CIUDAD DE MÉXICO

TUTOR DE TESIS:

DR. GÓMEZ MARTÍNEZ ROBERTO

FIRMA

A Dios por darme la oportunidad de crecer intelectualmente y como persona.

A mi papá, mamá y hermanas quienes me han dado su apoyo incondicional, son mi pilar y les debo todo.

A mi novia Estefanía quien me ha dado tanto cariño y apoyo a pesar de la distancia.

A mi familia y amigos quienes se han preocupado por mí y me han dado fuerzas para superar la distancia.

AGRADECIMIENTOS

Al Doctor Roberto Gómez, Maestro Raúl Sánchez, y a quienes forman parte del distinguido jurado que me han brindado su ayuda y aportes.

A mis compañeros de la maestría con quienes he compartido gratos momentos.

Al Programa de Maestría y Doctorado en Ingeniería de la Universidad Nacional Autónoma de México (UNAM) por haberme dado la oportunidad de estudiar y aprender de sus valiosos profesores.

Al Instituto de Ingeniería de la UNAM (IINGEN) por el apoyo.

Al Concejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada para realizar mis estudios de maestría.

RESUMEN

El presente estudio tiene como finalidad realizar el análisis de fatiga del tramo de 66 m de armadura metálica del puente Coatzacoalcos I ubicado en Veracruz; el mismo que ha sido remplazado en el año 2014 debido a fracturas de sus elementos. Por tal motivo es de interés la revisión de diseño y evaluación ante fatiga del tramo remplazado, con el objetivo de prevenir fracturas o fallas a causa de este fenómeno, mediante recomendaciones de mantenimiento o reforzamiento en zonas críticas.

ABSTRACT

The following study completes the fatigue analysis of a 66-meter steel truss section of the Coatzacoalcos I bridge located in Veracruz; the same section that had recently been replaced in 2014 due to fractures in its structure. Due to its recent replacement, a review of the design and fatigue evaluation of the replaced truss section is of interest. The objective of the analysis is to prevent similar cracks or failures through recommendations of preventative maintenance and possible reinforcement of critical areas.

CAP	ÍTULO 1	1
1.	ANTECEDENTES Y OBJETIVOS	1
11	ANTECEDENTES	1
1.2.	OBJETIVOS	4
САР	ÍTULO 2	5
2.	DESCRIPCIÓN DEL FENÓMENO	5
2.1.	EL PUENTE	
2.2.	FATIGA	7
	2.2.1. Diseño y evaluación estructural	7
	2.2.2. Principios de la teoría de fatiga	8
	2.2.2.1. Calculo de esfuerzos en elementos para el análisis de fatiga	8
	2.2.2.2. Naturaleza v principios del fenómeno de fatiga	. 10
	2.2.2.3. Parámetros de tensión para el análisis de fatiga	. 14
	2.2.2.4. Curvas S-N	. 15
	2.2.2.5. Categorización de detalles estructurales y curvas S-N propuestas er	ı el
	Eurocódigo	. 17
	2.2.2.6. Categorización de detalles estructurales y curvas S-N propuestas er	ı el
	AASHTO	. 19
	2.2.2.7. Cargas consideradas en la fatiga	. 25
	2.2.2.8. Historial de tensiones	. 25
	2.2.2.9. Conteo de ciclos	. 27
	2.2.2.10. Regla del daño (Palmgren-Miner)	. 28
	2.2.3. Selección de la normativa para revisión de diseño y evaluación de fatiga	. 34
	2.2.3.1. Evolución de estudios acerca de fatiga en las principales normativas	. 34
	2.2.3.2. Revisión de las normativas realizada en el Reporte 721 NCHRP "Natio	onal
	Cooperative Highway Research Program. (2012). Fatigue Evaluation of S	teel
	Bridges"	. 36
CAP	ÍTULO 3	. 40
3.	DESCRIPCIÓN DEL PUENTE	. 40
31	UBICACIÓN	43
3.1.	GEOMETRÍA	. 45
5.2.	3.2.1 Superestructura	. 40
	3.2.1. Superconductura	. 4 0 52
	3.2.2. Substituted a military reconstruidos	52
	3.2.2.1. Duques de alba	. 52
	3 2 2 3 Apovos intermedios	53
	3.2.2.5. Apoyos micrinedios	. 55
33	NORMATIVA	. 54
3.J.	ΜΔΤΕΡΙΔΙ ΕS	. 55
5.4.	3 ± 1 Acero	. 55
	342 Concreto	. 55
35	CARGAS	- 55 56
5.5.		0

CONTENIDO

	3.5.1. Carga muerta y sobrecarga muerta3.5.2. Cargas vivas	56 56
CAD	άτιπ ο 4	57
CAP	11ULO 4	57
4.	MODELO MATEMÁTICO	57
4.1.	MODELO MATEMÁTICO 3D	57
	4.1.1. Componentes estructurales	59
	4.1.1.1. Armadura A	59
	4.1.1.2. Armadura B	59
	4.1.1.3. Rigidizadores inclinados de las armaduras	59
	4.1.1.4. Rigidizadores horizontales de las armaduras	60
	4.1.1.5. Rigidizadores del sistema de piso carretero y ferroviario	60
	4.1.1.0. Vigas transversales	00
	4.1.1.7. Laiguelos del cuerpo carretero y rerioviario	01 62
42	PRUEBAS EN CAMPO Y CALIBRACIÓN DEL MODELO MATEMÁTICO	63
<i>т.2</i> .	4.2.1 Pruebas de vibración ambiental	63
	4.2.1. Frequencias y periodos determinados en campo	63
	4.2.1.2. Calibración del modelo matemático ante vibración ambiental	64
	4.2.2. Pruebas de carga	65
	4.2.2.1. Pruebas de carga estática	70
	4.2.2.2. Pruebas de carga dinámica	75
САР		78
-		70
5.	ANÁLISIS POR FATIGA	78
5. 5.1.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 78
5. 5.1.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica	78 78 79
5. 5.1. 5.2.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR	 78 78 79 79
5. 5.1. 5.2.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I	78 78 79 79 80
5. 5.1. 5.2. 5.3.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR	78 78 79 79 80 83
5. 5.1. 5.2. 5.3. 5.4.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR	78 78 79 79 80 83 84
5. 5.1. 5.2. 5.3. 5.4.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica	78 78 79 79 80 83 84 85
5. 5.1. 5.2. 5.3. 5.4. 5.5.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 79 79 80 83 84 85 87
5. 5.1. 5.2. 5.3. 5.4. 5.5.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica FRECUENCIA DE TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROVIARIO	78 78 79 80 83 83 85 87 87
5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica	78 78 79 80 83 83 85 87 87 88 89
 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 79 79 80 83 83 85 87 87 88 89 89
5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 78 79 80 83 83 85 87 87 88 89 89 97
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 78 79 80 83 83 83 85 87 87 88 89 89 97
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica	78 78 79 80 83 83 83 85 87 87 87 88 89 97 97 113
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 78 79 80 83 84 85 87 87 87 88 89 97 97 113
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 6.1. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica FRECUENCIA DE TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROCARROVIARIO 5.7.1. Elementos sujetos principalmente a esfuerzos axiales 5.7.2. Elementos sujetos principalmente a esfuerzos de flexión ÍTULO 6 METODOLOGÍA	78 78 79 80 83 83 84 85 87 87 87 87 87 89 97 113 113
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 6.1. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica FRECUENCIA DE TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROCARROVIARIO 5.7.1. Elementos sujetos principalmente a esfuerzos axiales 5.7.2. Elementos sujetos principalmente a esfuerzos de flexión ÍTULO 6 METODOLOGÍA 6.1.1. Determinación de posición del camión de fatiga	78 78 79 80 83 84 85 87 87 87 88 89 97 113 113 113
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 6.1. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica FRECUENCIA DE TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico FERROVARIO CATEGORIZACIÓN DE DETALLES ESTRUCTURALES DEL PUENTE 5.7.1. Elementos sujetos principalmente a esfuerzos axiales 5.7.2. Elementos sujetos principalmente a esfuerzos de flexión ÍTULO 6 METODOLOGÍA 6.1.1. Determinación de posición del camión de fatiga 6.1.2. Posición del tren de fatiga	78 78 79 80 83 84 85 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 89 97 113 113 113 115
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 6.1. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA 5.1.1. Factor de incremento por carga dinámica FRECUENCIA DEL TRÁFICO VEHICULAR 5.2.1. Análisis de tráfico en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO VEHICULAR CARGA FERROVIARIA DE FATIGA 5.4.1. Efecto por carga dinámica FRECUENCIA DE TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROVIARIO 5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I VELOCIDAD DEL TRÁFICO FERROCARROVIARIO CATEGORIZACIÓN DE DETALLES ESTRUCTURALES DEL PUENTE 5.7.1. Elementos sujetos principalmente a esfuerzos axiales 5.7.2. Elementos sujetos principalmente a esfuerzos de flexión ÍTULO 6 REVISIÓN DE DISEÑO ESTRUCTURAL POR FATIGA METODOLOGÍA 6.1.1. Determinación de posición del camión de fatiga 6.1.2. Posición del tren de fatiga 6.1.3. Criterio de diseño	78 78 79 80 83 84 85 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 89 97 113 113 113 115 118
 5. 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. CAP 6. 6.1. 	ANÁLISIS POR FATIGA CARGA VEHICULAR DE FATIGA	78 78 79 80 83 84 85 87 87 87 87 87 87 87 87 87 87 87 97 113 113 113 115 118 118

	6.1.6.	Análisis de vida de fatiga infinita	0
	6.1.7.	Ejemplo de revisión de diseño de un detalle estructural mediante norma AASHT 121	O
6.2.	CALC	ULOS PARA REVISION DE DISENO ANTE CARGA DE FATIG	A
	VEHIC	ULAR	.4
	0.2.1. 6.2.2	Revisión de elementos críticos de la armadura A	.4 95
	0. <i>2</i> . <i>2</i> .	Revisión de elementos críticos de la armadura B	.5
	0.2.3.	armaduras	15
	6.2.4.	Revisión de elementos críticos de los rigidizadores inclinados del sistema de pis	60 10
	6.2.5.	Revisión de elementos críticos de los rigidizadores horizontales del sistema de pis	.0 50
	6.2.6.	Revisión de elementos críticos de los rigidizadores horizontales del sistema de pis	0 50
	()7	Interroviario	.7
	0.2.7.	Revisión de elementos críticos de las vigas transversales	./
63	0.2.8. CÁLCI	LILOS PARA REVISIÓN DE DISEÑO ANTE CARGA DE FATIG	.0 A
0.5.	FERR	OVIARIA REVISION DE DISENO ANTE CAROA DE FATIO.	50
	6.3.1.	Revisión de elementos críticos de la armadura A	0
	6.3.2.	Revisión de elementos críticos de la armadura B	0
	6.3.3.	Revisión de elementos críticos de los rigidizadores superiores de la	is
		armaduras13	1
	6.3.4.	Revisión de elementos críticos de los rigidizadores inclinados del sistema de pis	0
	625	carretero	
	0.3.3.	carretero	30 32
	6.3.6.	Revisión de elementos críticos de los rigidizadores del sistema de pis	50
		ferroviario13	52
	6.3.7.	Revisión de los elementos críticos de las vigas transversales13	3
	6.3.8.	Revisión de los elementos críticos de los largueros del cuerpo carretero 13	4
	6.3.9.	Revisión de los elementos críticos de los largueros del cuerpo ferroviario 13	5
CAP	ÍTULO	7	6
7.	EVAL	UACIÓN DE FATIGA 13	6
7.1.	МЕТО	DOLOGÍA	6
	7.1.1.	Estimación de rango de esfuerzos	6
	7.1.	1.1. Determinación de factor de presencia múltiple (<i>Rp</i>)	6
	7.1.	1.2. Determinación del factor de carga parcial (Rs)	7
	7.1.2.	Estimación de rangos de esfuerzos	7
	7.1.3.	Determinación de detalles propensos a fatiga	8
	7.1.4.	Revisión de vida de fatiga infinita	8
	7.1.5.	Estimación de vida de fatiga finita	9
	7.1.	5.1. Determinación del factor de carga para la evaluación de fatiga (RR) 13	i9
	7.1.	5.2. Estimación del número de ciclos por el paso de un camión	-0 1 1
	/.1.6.	Indice de serviciabilidad de latiga	/1 (1
	/.l. 71	6.2 Acciones recomendadas hasadas en el índice de serviciabilidad do fotigo 14	·1 2
	7.1.7.	Eiemplo de cálculo de evaluación de fatiga de un detalle estructural	3
		J 1	

7.2.	CÁLC VEHIC	ULOS DE EVALUACIÓN DE FATIGA ANTE MODELO DE CARCULAR	GA 147
	7.2.1.	Evaluación de un elemento crítico de la armadura A	147
	7.2.2.	Evaluación de un elemento crítico de la armadura B	149
	7.2.3. 7.2.4.	Evaluación de un elemento crítico de los rigidizadores superiores Evaluación de un elemento crítico de los rigidizadores del sistema de piso vehicu 151	150 ılar
	7.2.5.	Evaluación de un elemento crítico de los rigidizadores del sistema de p ferroviario	iso 152
	7.2.6. 7.2.7.	Evaluación de un elemento crítico de las vigas transversales Evaluación de un elemento crítico de los largueros del sistema de p vehicular	153 oiso 162
7.3.	CÁLC	ULOS DE EVALUACIÓN DE FATIGA ANTE MODELO DE CAR	GA
	FERRV	/IARIA1	165
	7.3.1.	Evaluación de un elemento crítico de la armadura A	165
	7.3.2.	Evaluación de un elemento crítico de la armadura B 1	67
	7.3.3.	Evaluación de un elemento crítico de los rigidizadores de las armaduras 1	169
	7.3.4.	Evaluación de un elemento crítico de los rigidizadores del sistema de piso vehicu 170	ılar
	7.3.5.	Evaluación de un elemento crítico de los rigidizadores del sistema de p	iso
	726	rerroviario.	1/1
	7.5.0.	Evaluación de un elemento crítico de los largueros del sistema de n	1/3
	1.5.1.	ferroviario	180
CAP	ÍTULO	81	186
8.	ANÁL	ISIS DE RESULTADOS 1	186
8. CAP	ANÁL ÍTULO	ISIS DE RESULTADOS 1 9 1	186 188
8. CAP 9.	ANÁL ÍTULO CONC	ISIS DE RESULTADOS	186 188 188
8. CAP 9. 10.	ANÁL ÍTULO CONC REFE	ISIS DE RESULTADOS	186 188 188 189
 8. CAPI 9. 10. 11. 	ANÁL ÍTULO CONC REFE ANEX	ISIS DE RESULTADOS	186 188 188 189 196
 8. CAP 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFEI ANEX NUME	ISIS DE RESULTADOS	186 188 188 188 189 196
 8. CAP 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFE ANEX NUME	ISIS DE RESULTADOS	186 188 188 188 189 196 196
 CAP 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2.	ISIS DE RESULTADOS	186 188 188 188 189 196 196 196
 CAPI 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFEI ANEX NUME 11.1.1. 11.1.2. 11.1.3.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 196 196 197
 CAP 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 196 197 197
 CAP 9. 10. 11. 11.1. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5.	ISIS DE RESULTADOS	186 188 188 188 189 196 196 196 197 197
 8. CAP! 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 197 197 198
 8. CAP 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFEI ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 197 197 197 198 198
 8. CAP 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1. 11.2.2.	ISIS DE RESULTADOS	186 188 188 189 196 196 196 196 197 197 197 198 198 200
 8. CAP 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1. 11.2.2. 11.2.3.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 196 197 197 198 200 202
 8. CAP 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1. 11.2.1. 11.2.3. 11.2.4.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 197 197 198 198 200 202 204
 8. CAP 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1. 11.2.3. 11.2.4. 11.2.5.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 196 197 197 198 198 200 202 204 205
 8. CAP! 9. 10. 11. 11.1. 11.2. 	ANÁL ÍTULO CONC REFE ANEX NUME 11.1.1. 11.1.2. 11.1.3. 11.1.4. 11.1.5. ELEM 11.2.1. 11.2.2. 11.2.3. 11.2.4. 11.2.5. 11.2.6.	ISIS DE RESULTADOS	 186 188 188 189 196 196 196 196 197 198 200 202 204 205 207

11.3.	CLASI	FICACIÓN DE DETALLES ESTRUCTURALES (AASHTO-AISC)
11.4.	RANG	US DE ESFUERZOS OBTENIDOS PARA LA REVISION DE DISENO ANTE
	FATIG	A DEBIDOS AL MODELO DE CARGA DE CAMION
	11.4.1.	Determinación de rangos de esfuerzos en elementos de la armadura A, con posición del camión de fatiga en el carril A
	11/2	Determinación de rangos de esfuerzos en elementos de la armadura B, con posición
	11.4.2.	del camión de fatiga en el carril B
	1143	Determinación de rangos de esfuerzos en rigidizadores superiores de las
	11.1.5.	armaduras, con posición del camión de fatiga en el carril A
	11.4.4.	Determinación de rangos de esfuerzos en rigidizadores inclinados del sistema de
		piso carretero, con posición del camión de fatiga en el carril A 227
	11.4.5.	Determinación de rangos de esfuerzos en rigidizadores horizontales del sistema de
		piso carretero, con posición del camión de fatiga en el carril B 228
	11.4.6.	Determinación de rangos de esfuerzos en rigidizadores del sistema de piso
		ferroviario, con posición del camión de fatiga en el carril A
	11.4.7.	Determinación de rangos de esfuerzos en vigas transversales principales, con
	11.4.0	posición del camión de fatiga en el carril B
	11.4.8.	Determinación de rangos de estuerzos en largueros del cuerpo carretero, con
11 7	DANC	posicion del camion de fatiga en el cartil B
11.5.	KANG	US DE ESFUERZOS OBTENIDOS PARA LA REVISION DE DISENO ANTE
	FAIIG	A DEBIDOS AL MODELO DE CARGA DE TREN
	11.5.1.	Determinación de rangos de estuerzos en elementos de la armadura A
	11.5.2.	Determinación de rangos de esfuerzos en elementos de la armadura B
	11.5.5.	Determinación de rangos de estuerzos en rigidizadores superiores de las armaduras
	1154	250 Determinación de rangos de esfuerzos en rigidizadores inclinados del sistema de
	11.3.4.	piso carretero
	1155	Determinación de rangos de esfuerzos en rigidizadores horizontales del sistema de
	11.5.5.	niso carretero 238
	1156	Determinación de rangos de esfuerzos en rigidizadores del sistema de piso
	11.0.0.	ferroviario
	11.5.7.	Determinación de rangos de esfuerzos en vigas transversales principales
	11.5.8.	Determinación de rangos de esfuerzos en largueros del cuerpo carretero
	11.5.9.	Determinación de rangos de esfuerzos en largueros del cuerpo ferroviario 244
11.6.	RANG	OS DE ESFUERZOS OBTENIDOS PARA LA EVALUACIÓN DE FATIGA
	DEBID	OS AL MODELO DE CARGA DE CAMIÓN
	11.6.1.	Rangos de esfuerzos en elementos de la armadura A, con movimiento del camión
		de fatiga a través carril A
	11.6.2.	Rangos de esfuerzos en elementos de la armadura B, con movimiento del camión
		de fatiga a través carril B
	11.6.3.	Rangos de esfuerzos en rigidizadores superiores, con movimiento del camión de
		fatiga a través carril A
	11.6.4.	Rangos de esfuerzos en rigidizadores del sistema de piso vehicular, con
		movimiento del camión de fatiga a través carril B 248
	11.6.5.	Rangos de esfuerzos en rigidizadores del sistema de piso ferroviario, con
		movimiento del camión de fatiga a través carril A 250
	11.6.6.	Rangos de esfuerzos en vigas transversales, con movimiento del camión de fatiga
		a través carril B
	11.6.7.	Rangos de esfuerzos en largueros del sistema de piso vehicular, con movimiento
	DANG	del camion de fatiga a través carril A
11.7.	KANG	us de esfuerzos obtenidos para la evaluación de fatiga

DEBIDOS AL MODELO DE CARGA DE TREN	257
11.7.1. Rangos de esfuerzos en elementos de la armadura A	257
11.7.2. Rangos de esfuerzos en elementos de la armadura B	258
11.7.3. Rangos de esfuerzos en elementos rigidizadores superiores de las armaduras	259
11.7.4. Rangos de esfuerzos en elementos rigidizadores del sistema de piso carretero.	260
11.7.5. Rangos de esfuerzos en elementos rigidizadores del sistema de	piso
ferroviario	262
11.7.6. Rangos de esfuerzos en vigas transversales	264
11.7.7. Rangos de esfuerzos en largueros del sistema de piso ferroviario	266

CAPÍTULO 1

1. ANTECEDENTES Y OBJETIVOS

1.1. ANTECEDENTES

La fatiga es un efecto crítico en diversos tipos de estructuras que se ven sujetas a cargas cíclicas. En algunos países como Estados Unidos, Inglaterra, Japón, se han estudiado las fallas debidas a este fenómeno especialmente en puentes. Estas investigaciones han adquirido importancia luego de haberse presentado fallas en estructuras de puentes de acero significando pérdidas humanas y económicas considerables. Por este motivo se han propuesto métodos con la finalidad de estudiar este fenómeno, desarrollando teorías para un diseño adecuado y para la evaluación de las estructuras existentes, permitiendo así desarrollar programas de mantenimiento o reparaciones preventivas. Estos métodos de predicción se basan principalmente en la determinación de la vida útil estructural con base en el tránsito de circulación y los rangos de esfuerzos producidos en la estructura. [24]

Debido al alto crecimiento poblacional, hay un incremento en las necesidades de la comunidad que demandan ser atendidas, entre éstas el medio de transporte. En los últimos años el desarrollo tecnológico ha permitido la aparición de vehículos de mayor capacidad de carga. Así también el desarrollo económico se ve reflejado en el crecimiento del parque automotor, teniendo como consecuencia un tráfico de volumen y carga superior que circula por las redes e infraestructuras viales del país, características que han causado su deterioro prematuro.

Dentro de las principales infraestructuras viales están los puentes. Estas estructuras permiten la circulación a través de causes de agua, cañones, obstáculos físicos o cualquier accidente geográfico. Su seguridad, mantenimiento y preservación son competencia de las autoridades, por tal motivo la evaluación estructural de puentes se ha hecho más popular.

Basado en el inventario realizado por el programa SIPUMEX implementado por la Secretaría de Comunicaciones y Transportes (SCT) en el año 2010 se registraron 7585 puentes de la Red Federal de Carreteras, de los cuales el 61.75% fueron construidos entre los años 1931 y 1980, significando así una vida de servicio entre 30 y 80 años. La razón de que estas estructuras continúen dando un servicio adecuado es debido a diseños muy conservadores, no obstante, es claro el riesgo al que están expuestas ante el continuo crecimiento vehicular, además del deterioro físico de las mismas. [17]

Anteriormente, el análisis, investigaciones y diseño de puentes se habían enfocado únicamente en el estudio de la resistencia de materiales, sin considerar la importancia de la evaluación de cargas del tráfico real actuante y su influencia en la estructura. Algunas consideraciones de diseño pueden verse afectadas por la evolución vehicular y alteraciones en el trafico estimado, razón por la cual dentro de la ingeniería estructural de puentes se tiene un gran interés en la medición y estadística de las cargas en la etapa de servicio.

Todas las estructuras son propensas a la acumulación de daños de una manera gradual durante su vida útil, y por lo tanto son susceptibles a presentar falla. Una de las acciones a las que se puede atribuir la falla en diversas estructuras es la fatiga. Este fenómeno se observa en los puentes, ya que en estos existe un deterioro por efectos debidos a las cargas cíclicas dinámicas soportadas. Ante este efecto se produce una degradación de la rigidez pudiendo generar fallas importantes, llevando la estructura al colapso incluso antes de haber alcanzado su resistencia. [17]. En consecuencia, es el interés de esta investigación la realización del análisis de fatiga de la armadura metálica principal del Puente Coatzacoalcos I, ante las cargas cíclicas dinámicas producidas por los vehículos y ferrocarriles que circulan por éste.

La fatiga se define como "el daño de un material resultante de la aplicación de esfuerzos repetitivos (Carga Cíclica)". [17]

La fatiga es un modo de falla importante en las estructuras de acero ya que entre el 80% y 90% de las fallas que se presentan, están asociadas con la fatiga y fractura [26]. El problema se agrava si el deterioro por las condiciones ambientales es considerado. Varios puentes existentes que están llegando al fin de su vida útil requieren de reforzamiento, reparación o reconstrucción para asegurar un nivel aceptable de seguridad teniendo en cuenta las condiciones de tráfico crecientes. En la *Figura 1.1* se puede observar una fractura en el acero debida a la fatiga.

Figura 1.1 Ejemplo de fractura en un elemento debido a fatiga [web]

La revisión del estado límite de fatiga tiene el objetivo de garantizar con una alta probabilidad que la estructura tendrá un comportamiento adecuado durante su vida útil, sin que se produzca falla de la estructura propiamente dicha ni en sus elementos ante la aparición de grietas.

En el análisis del fenómeno de fatiga se toma en consideración el número de aplicaciones de carga, la magnitud del rango de tensión y la intensidad de las concentraciones de esfuerzos asociadas a detalles específicos de las conexiones.

El deterioro debido a la fatiga se inicia en los defectos o discontinuidades del material (micro fisuras) que actúan como zonas de concentración de esfuerzos generando la aparición o propagación de grietas. Específicamente, una grieta de fatiga se puede iniciar en cualquier lugar de un componente donde el

esfuerzo y la deformación sean lo suficientemente altos para causar un deslizamiento alterno continuo, luego le sigue un periodo de propagación continuando con el deslizamiento alterno, hasta que la grieta alcanza un tamaño crítico. En consecuencia, la vida de fatiga de un componente estructural por iniciación y propagación de una grieta es igual a la suma de la fase de iniciación y de propagación. Cuando un componente contiene una imperfección tipo grieta se reduce o elimina la vida de la fase de iniciación. [17]

Cuando se ha dado el crecimiento de la grieta hasta un tamaño crítico, la estructura falla. En vista de que el fenómeno de fatiga es un proceso lento, el daño se va acumulando durante la vida útil del puente. Se han desarrollado criterios de diseño y programas de gestión de puentes para evitar la falla de estas estructuras. [26]. En la *Figura 1.2* se puede observar la falla de un elemento estructural.

Figura 1.2 Fractura por fatiga [web]

1.2. OBJETIVOS

- Generar un modelo matemático representativo de la estructura real que permita evaluar la respuesta de la armadura ante cargas vehiculares.
- Revisar el diseño ante fatiga de la estructura metálica del puente Coatzacoalcos I con la normativa vigente.
- Evaluar la fatiga de la estructura metálica del puente Coatzacoalcos I y estimar la vida remanente de sus elementos.
- Realizar las recomendaciones de mantenimiento o reforzamiento para los elementos críticos.

CAPÍTULO 2

2. DESCRIPCIÓN DEL FENÓMENO

2.1. EL PUENTE

El puente Coatzacoalcos I, a casi medio siglo de soportar sobre su estructura el paso de alrededor de 18000 vehículos diarios, ha sido denominado como "La llave del Sureste" debido a su gran importancia en la comunicación vial. Esta estructura presenta un deterioro por el aumento de tráfico vehícular, ciclos de carga y el ambiente corrosivo de la zona, por lo que se han realizado varias acciones para su rehabilitación, incluso cambiando en totalidad el tramo de armadura principal (*Figura 2.1*).

Figura 2.1 Tramo de armadura del puente Coatzacoalcos I

Posterior a la sustitución de la armadura principal se han utilizado técnicas de monitoreo estructural consistentes en la colocación de sensores en elementos o secciones de interés y mediante un sistema de adquisición de datos se ha realizado un análisis del comportamiento de la estructura.

Específicamente en esta armadura se colocaron deformímetros en elementos considerados críticos, y utilizando un software se obtuvieron histogramas de deformación ante la acción de cargas, para posteriormente obtener histogramas de esfuerzos. Esta actividad de monitoreo se realizó por el IIUNAM con el propósito de evaluar la condición estructural de la armadura. [13]

El monitoreo estructural mediante sensores, es una actividad reciente en Ingeniería Civil, que se ha visto necesaria por los diversos problemas ocasionados por el funcionamiento de estructuras más allá de su vida útil, sobretodo en puentes donde la evaluación de la condición actual y futura es casi imprescindible como herramienta de gestión.

Los avances tecnológicos en la instrumentación de estructuras, junto con una buena comprensión del fenómeno y la capacidad de modelar el comportamiento estructural, han dado lugar a un mayor interés y desarrollo de este campo. Esta técnica también brinda la posibilidad de identificación de daños y su progresión en la estructura, pudiendo realizar reparaciones o rehabilitaciones rentables antes de que ocurran colapsos o fallas.

Un aspecto muy importante en un diseño de rehabilitación o reparación de puentes, es la estimación de la vida útil restante por fatiga. Existen varios enfoques para estimar la vida de fatiga de puentes. [9] En el presente estudio nos basaremos principalmente en el manual MBE "*Manual for Bridge Evaluation*" y el reporte 721 NCHRP "*National Cooperative Highway Research Program. (2012). Fatigue Evaluation of Steel Bridges*".

2.2. FATIGA

Para la realización de un adecuado diseño o evaluación de una estructura sujeta a la fatiga es necesario comprender el fenómeno. La fatiga se define como el mecanismo por el cual las fisuras en un elemento estructural se incrementan bajo la acción de tensiones cíclicas, pudiendo producirse la rotura en zonas que están sometidas a esfuerzos de tracción debido a que la sección transversal se ha reducido, siendo así insuficiente para resistir la carga.

Las fisuras son procedentes de imperfecciones presentes en el acero, en términos de defectos de soldadura, muescas, abolladuras, discontinuidades, etc. Estas se propagan cuando se someten a un proceso de carga cíclica aleatoria en el tiempo, degradando así la integridad de la estructura. [26]

En el caso de estructuras como pórticos de edificios el fenómeno de fatiga no es crítico ya que no se presentan cargas de carácter cíclico. Caso contrario sucede para las estructuras de puentes o trabes grúas, las que son sometidas a acciones importantes de carga y descarga continúas proporcionadas por los vehículos.

2.2.1. Diseño y evaluación estructural

Es de importancia recalcar o diferenciar, los enfoques que rigen entre las etapas de diseño estructural y evaluación estructural, debido a que el interés de este estudio es el análisis de una estructura existente que se encuentra en funcionamiento.

En la etapa de diseño, generalmente se utilizan criterios conservadores que permiten a la estructura estar del lado de la seguridad, debido a que se consideran diversas hipótesis que pueden diferir de lo que se presenta en la realidad, como calidad u homogeneidad de materiales, variantes en la etapa constructiva, cargas o efectos ignorados.

La evaluación, tiene como finalidad obtener un diagnóstico del funcionamiento, comportamiento y respuesta de una estructura en servicio ante las solicitaciones reales, permitiendo prolongar la vida útil de la misma mediante mantenimiento, reparaciones y correcciones con la finalidad de preservar los bienes económicos y vidas humanas.

Los análisis de las dos etapas se basan en los mismos fundamentos o teorías, sin embargo, hay que tener en cuenta que en la etapa de diseño se consideran criterios conservadores ante efectos que pueden desconocerse, variar o requieren ser verificados en la etapa de servicio de la estructura, mediante la evaluación estructural.

2.2.2. Principios de la teoría de fatiga

Se ha podido encontrar diversa bibliografía en la que se estudia el fenómeno de fatiga, basadas en teorías o principios similares, con enfoques de aplicabilidad para diversas ramas de la ingeniería.

Dentro del estudio del fenómeno de fatiga generalmente se trata el tema "Mecánica de fractura en materiales" en donde se analiza detalladamente el proceso de iniciación, propagación de fisuras y formación de grietas hasta la fractura del material. Éste análisis es necesario para comprender el desarrollo del proceso de fatiga, sin embargo, no se profundizará en éste, pues el objetivo en la ingeniería estructural es evitar el desarrollo de fisuras o grietas mediante la realización de mantenimiento, reparaciones o refuerzos en elementos críticos que pueden presentar fallo.

Las normativas de uso más común en México para el análisis de fatiga en estructuras, son el **Eurocódigo** y **AASHTO LRFD**, por lo que se presentarán sus principios y criterios y con la selección de una de ellas se realizará el estudio de fatiga del puente.

Para el caso del análisis de estructuras ferroviarias de acero, se utilizará la normativa **AREMA** "*The American Railway Engineering and Maintenance of way Association*", que contiene criterios y consideraciones especializados ante la acción de cargas ferroviarias en estructuras.

2.2.2.1. Calculo de esfuerzos en elementos para el análisis de fatiga

Es esencial el definir claramente los diferentes orígenes de las tensiones o esfuerzos a los que estará sujeto un elemento, con el fin de obtener un cálculo más preciso para el análisis de la fatiga.

a. Tensión nominal (*Figura 2.2*):

La tensión o esfuerzo nominal de un elemento de construcción uniforme sometido a carga uní-axial será:

0:

$$\sigma_N = \frac{N}{A} \tag{2.1}$$

Donde:

N= Carga normal a la sección transversal

A= Área de la sección transversal perpendicular a la carga

Para el caso de un elemento sometido a flexión la tensión o esfuerzo será:

$$\sigma_M = \frac{Mc}{I} \tag{2.2}$$

$$\sigma_M = \frac{M}{S} \tag{2.3}$$

Donde:

M= Momento flector actuante

I= Momento de inercia de la sección

c= Distancia del eje neutro a la fibra más alejada de la sección

S= Módulo de Sección

Figura 2.2 Tensiones nominales en una sección [19]

b. Concentración de tensiones o esfuerzos (*Figura 2.3*)

Las razones principales por las cuales se da concentración de tensiones en un elemento estructural son:

- Geometría global del elemento estructural: Uniones sobre el alma o cartelas sobre patines.
- Alteración local de la geometría de la soldadura: Agujeros, desviación local de rigidez.
- Discontinuidades locales, debidas a trabajo de taller: Muescas, picaduras, defectos de soldadura.

Para estos casos el esfuerzo se calcula con:

$$\sigma_G = K_t \,\sigma_{N.net} \tag{2.4}$$

Donde:

 K_t = Coeficiente de concentración de tensiones o esfuerzos. $\sigma_{N,net}$ = Tensión o esfuerzo nominal, calculada al área transversal neta.

Figura 2.3 Concentración de tensiones en una sección con agujero [19]

Las concentraciones de tensiones o esfuerzos locales están consideradas implícitamente en las curvas (S-N) propuestas en normativas, que se tratan más adelante en el inciso 2.2.2.4. Sin embargo, es necesario el estudio de las tensiones secundarias debidas a la excentricidad de uniones, por la rigidez de la unión y redistribuciones debidas al pandeo. [19]

2.2.2.2. Naturaleza y principios del fenómeno de fatiga

2.2.2.2.1. Influencia de soldadura en la fatiga

Generalmente en estructuras metálicas soldadas, el mecanismo de fatiga se inicia a partir de las soldaduras y no en otras uniones. Esto se debe a que la mayoría de procesos de soldadura dejan como resultado minúsculas discontinuidades metalúrgicas de las cuales se pueden propagar las fisuras ante cargas cíclicas, de esta manera es inexistente o es muy corto el periodo inicial normal de aparición de fisura. (*Figuras 2.4 y 2.5*)

Figura 2.4 Distribución de tensiones en el borde de soldadura [19]

Soldadura en ángulo

Figura 2.5 Concentración de tensiones por soldadura [19]

2.2.2.2.2. Crecimiento de fisuras

Inicialmente las fisuras son muy pequeñas y por lo tanto de difícil detección, es en la última etapa de la vida de estas, en donde se observa un mayor tamaño causando una pérdida significativa del área de la sección como se puede representar en la *Figura 2.6*.

Figura 2.6 Crecimiento de fisuras [19]

En la *Figura 2.7* se puede observar las 3 etapas del desarrollo de la fisura: **etapa I** en donde se da la iniciación de la fisura en la microestructura, en esta zona se encuentra el umbral de agrietamiento Δk_{lim} , en donde bajo este límite no se registran procesos de agrietamiento, **etapa II** en la que se propaga una fisura de carácter dominante, también conocido como el crecimiento estable, en esta etapa las grietas crecen lo suficiente para poder ser observadas a simple vista, además se pueden unir dos o más grietas. Paris observó que esta etapa se puede representar con una relación empírica, relacionando la velocidad de crecimiento de la grieta con la amplitud del factor de intensidad de esfuerzos (ΔK) y la última **etapa III** conocida como la zona de fractura o falla final, debido a un rápido crecimiento de la grieta hasta un tamaño crítico en donde se da la fractura del elemento, ya que en la sección reducida se producen esfuerzos que superan la resistencia del material. [16]

Figura 2.7 Curva de propagación de la fisura [16]

En las tres etapas la velocidad de propagación de la fisura está en función del número de ciclos y de la magnitud de la variación de los esfuerzos que se generan en el extremo de la grieta, que en condiciones lineal-elásticas están descritos por el factor de intensidad de esfuerzos (K). [16]

2.2.2.2.3. Resistencia a la fatiga

La resistencia a fatiga está definida como el rango de esfuerzo $(\Delta \sigma)$ o (Δf) que, oscilando a una amplitud constante, da origen al agotamiento del elemento después de un número determinado de ciclos (N).

Figura 2.8 Historia de tensiones o esfuerzos de amplitud constante [19]

En la *Figura 2.8* se muestra un ejemplo de curva de historia de esfuerzos o tensiones de rango constante $(\Delta \sigma)$, y la identificación del número de ciclos para el agotamiento del miembro o detalle (N).

Figura 2.9 Parámetros de curvas de historia de esfuerzos de amplitud constante [19]

En la *Figura 2.9* se muestran los parámetros de las curvas de historia de esfuerzos de amplitud constante que se definen de la siguiente manera:

Figura 2.10 Graficas de historias para los diferentes casos de valores de R y tensión media [19]

En la *Figura 2.10* se ilustran diferentes ejemplos para valores de la relación R y tensiones medias. La amplitud de esfuerzo generalmente es el parámetro principal del estudio de fatiga, sin embargo, el parámetro de esfuerzo o tensión media también puede ser analizado en la vida de fatiga del elemento, en general un esfuerzo medio de tracción representa una reducción a la vida de fatiga del elemento, mientras que un esfuerzo medio de compresión representa ser favorable a una mayor vida de fatiga, esto se puede representar en la *Figura 2.11*. [19]

Figura 2.11 Efecto de la tensión media σ_m sobre la vida a fatiga [19]

2.2.2.3. Parámetros de tensión para el análisis de fatiga

• Área de tensión

Cuando una fisura se inicia al borde de una soldadura se considerará la sección transversal del elemento. En el caso en el que la fisura se inicie en la raíz de la soldadura y se propague a través de su garganta se utilizará el área mínima de ésta.

• Rango de tensión ($\Delta \sigma$) o (Δf):

Para el cálculo de este parámetro se consideran hipótesis de la teoría elástica, en donde se asume que las secciones planas permanecen planas. Además, se ignoran las tensiones residuales debidas a la soldadura puesto que este efecto ya se ha considerado en el parámetro "a" propuesto en el Eurocódigo, o "A" en la normativa AASHTO en la que se determina la clase o categoría del detalle estructural indicados más adelante. No se considerará la redistribución plástica. (*Figura 2.12*)

Figura 2.12 Tensiones que se propagan en el metal base [19]

• Efectos de concentraciones de tensión o esfuerzos

En el caso que existan agujeros, se presentarán concentraciones de esfuerzos debidos a la reducción de la sección, por lo que el cálculo se basará en el área neta. Si existe una unión soldada se deberá utilizar la tensión real como se observa a continuación. (*Figura 2.13*)

Figura 2.13 Concentración de tensiones [19]

2.2.2.4. Curvas S-N

Una curva S-N, es un modelo que representa la resistencia a la fatiga de un detalle estructural, al estar sometido a un rango de esfuerzos para un número de ciclos determinado.

A continuación, se realizará una descripción de las curvas S-N, utilizadas por las normativas Eurocódigo [11] y AASHTO LRFD [6]. Estas fueron obtenidas de los mismos principios y conceptos de fatiga, sin embargo, tienen ciertas diferencias, las mismas que se analizarán más adelante con la finalidad de determinar cuál de las dos normativas será aplicada para nuestro análisis.

Partiendo de la expresión (2.5) que relaciona el rango de esfuerzos $\Delta \sigma$ y el número de ciclos para el agotamiento N, puede trazarse una gráfica en escala logarítmica denominada curva S-N con la ecuación (2.6).

La resistencia a fatiga también depende de la geometría y tipo de la unión o detalle estructural, para lo cual se ha incluido en el análisis un parámetro representativo denotado por "a" en el caso del Eurocódigo y "A" por la AASHTO. Siendo así posible el cálculo del número de ciclos para la fatiga (N) a partir de la expresión (**2.5**).

$$N = \frac{a}{\Delta \sigma^m} \tag{2.5}$$

$$\log N = \log a - m \log \Delta \sigma \tag{2.6}$$

Donde:

m= Constante que para la mayoría de uniones soldadas m=3

a= Constante que depende de la categoría del detalle. (En el manual AASHTO se denota como "A") N=Número de ciclos

 $\Delta \sigma$ = Rango de tensiones o esfuerzos (En el manual AASHTO se denota como " Δf ")

Así, de las expresiones anteriores se puede definir la curva (S-N) (Figura 2.14)

Figura 2.14 Curva general de resistencia a la fatiga (S-N) [19]

Analizando una curva general (S-N) se puede observar lo siguiente:

En el extremo izquierdo de la gráfica se representa el límite "Agotamiento estático" que representa la acción de grandes esfuerzos para un número reducido de ciclos de carga (N=0), en donde se supera la resistencia límite de un material provocando la rotura o la fatiga estática.

En la parte central de la curva se observa una degradación de resistencia ante la acción de un mayor número de repeticiones de carga (Esto es debido a la influencia del efecto cíclico de carga que origina la propagación de fisuras. "Fatiga"). [19]

En el extremo derecho se puede observar un límite de rango de esfuerzos para el cual el elemento no sufre degradación de resistencia por mayor que sea el número de ciclos de carga. Este límite se denomina tensión no propagadora ($\Delta \sigma_D$) o umbral. Para el caso de curvas S-N del AASHTO se denomina (ΔF)_{TH} y quiere decir que rangos de tensiones por debajo de este límite son demasiado pequeños para provocar la propagación de fisuras, esto se observa en resistencias a la fatiga que superen los 5 o 10 millones de ciclos.

2.2.2.5. Categorización de detalles estructurales y curvas S-N propuestas en el Eurocódigo

2.2.2.5.1. Categorías de detalles estructurales del Eurocódigo

A partir de ensayos de fatiga de amplitud constante realizados para los diferentes tipos de uniones frecuentemente utilizados en estructuras, el Eurocódigo ha dividido en catorce clases principales (*Tabla 2.1*).

	-		
Categoría $\Delta \sigma_C$	Constante	Rango $\Delta \sigma_D$	Rango $\Delta \sigma_L$
(N/mm2)	a	(N/mm2)	(N/mm2)
160	7.962 10 ¹²	117	64
140	5.636 10 ¹²	104	57
125	3.990 10 ¹²	93	51
112	$2.825 \ 10^{12}$	83	45
100	$2.000 \ 10^{12}$	74	40
90	1.416 10 ¹²	66	36
80	1.002 1012	59	32
71	0.710 10 ¹²	52	29
63	$0.502 \ 10^{12}$	46	26
56	0.356 1012	41	23
50	$0.252 \ 10^{12}$	37	20
45	0.178 1012	33	18
40	0.126 10 ¹²	29	16
36	$0.089 \ 10^{12}$	26	14

Tabla 2.1 Categorías de detalles estructurales (Eurocódigo) [11]

Es posible trazar estas clases como familias de curvas S-N, y las diferencias de rangos de tensión entre curvas varían de 15 a 20%. En la *figura 2.15* se observa la curva S-N propuesta por el Eurocódigo.

Figura 2. 15 Curvas S-N propuestas por el Eurocódigo [11]

2.2.2.5.2. Clasificación de detalles estructurales por el Eurocódigo

En la *figura 2.16* se ilustra los principales detalles estructurales y su clasificación de categoría utilizada por el Eurocódigo.

Figura 2.16 Clasificación de categorías de uniones más comunes [11]

2.2.2.6. Categorización de detalles estructurales y curvas S-N propuestas en el AASHTO

2.2.2.6.1. Categoría de detalles estructurales

De manera muy similar a la *tabla 2.1* propuesta en el Eurocódigo, a partir de la realización de ensayos para diferentes tipos de detalles estructurales, en el manual AASHTO se definieron las siguientes categorías clasificadas por letras, y la constante "A" correspondiente a cada una de ellas.

Catagoría	Constante A	(ΔF) TH
Categoria	$(kg/cm2)^3$	(kg/cm2)
Α	8.6883E+15	1687
В	4.17039E+15	1125
B'	2.11995E+15	844
С	1.52914E+15	703
C'	1.52914E+15	844
D	7.64571E+14	492
E	3.82285E+14	316
E'	1.35538E+14	183

Tabla 2.2 Categorías de detalles estructurales (Tabla 6.6.1.2.5-1 AASHTO) [6]

Número de Ciclos, N Figura 2.17 Curvas S-N propuestas por AASHTO [7]

2.2.2.6.2. Clasificación de detalles estructurales por AASHTO

A continuación, se presentan las tablas de clasificación de detalles estructurales AASHTO obtenidas de las especificaciones AISC 2005 [7], únicamente con un cambio de nomenclatura de la constante "A" por la constante "Cf", y el umbral de rango de esfuerzos " $(\Delta F)_{TH}$ " por "FTH". La totalidad de tablas se pueden observar en el **Anexo 11.3.**

Pará	netros d	LA A-3.1 e Diseño	para	atiga
Descripción	Categoria de Tensión	Constante C,	Umbral F.,	Punto de Potencial Inicio de Fractura
SECCIÓN 1 - M	ATERIAL PURO	ALEJADO DE CI	ALQUIER SC	LDADURA
 Metal base, excepto acero de uta resistencia no cubierto, con su- erficie laminada o limpia. Bordes ortados termicamente con dureza auperficial de 1000 µin. (25 µm) o nenor, pero sin esquinas entrantes. 	A	250 x 10 ⁸	1686 (165)	Alejado de toda soldadura o conexión estructural.
2. Metal base de acero de alta esistencia no recubierto con su- erficie laminada o límpia. Bordes ortados termicamente con dureza uperficial de 1000 µin. (25 µm) o nenor, pero sin esquinas entrantes.	8	120 x 10 ⁶	1125 (110)	Alejado de toda soldadura o conexión estructural.
3. Miembros con agujeros taladra- los o escariados. Miembros con es- urinas entrantes en rebajes, cortes, obstrucciones o discontinuidades eométricas hechas de acuerdo a so requerimientos del Anexo 3.5, os requerimientos de acceso para olidadura.	8	120 x 10 ⁸	(110)	En un borde externo o en el perfimetro del agujero.
4 Secciones transversales lami- adas con agujeros de acceso para oldadura hechos de acuerdo a los equerimientos de la Sección J1.6 Anexo 3.5. Miembros con agu- rans taladrados o escariados que ontengan planos para uni arrios- amiento liviano donde hay una omponente longitudinal pequeña e la fuerza en la riostra.	0	44 x 10 ⁸	702 (69)	En la esquina entrante del agujero de acceso para sol- dadura o en cualquier agujero pequeño (puede contener permo para conexiones me- nores)
SECCIÓN 2 - MATER	RIAL CONECTAD	O EN UNIONES	SUJETAS ME	CANICAMENTE
2.1 Area brufa del metal base en untas de trastape conectadas con eenos de atta resistencia en unio- res que satisfacen todos los requeri- nientos para conexiones de desliza- niento crítico.	8	120 x 10 ⁸	(110) (110)	A través del área bruta cerca- na al aguero.
2.2 Metal base en el área neta de miones apembdas de alta resistencia fiseñadas en base a resistencia de ontacto, pero fabricadas e instilaidas ontorme a los requerimientos para onecomes de desplazamiento críbio.	8	120 x 10 ⁸	(110)	En área neta originándose en el lado del agujero.
2.3 Metal base en el área neta de tras uniones conectadas mecáni- amente excepto barras y piacas le pasador.	Q	20 x 10 ⁸	490 (48)	En área neta originándose en el lado del agujero.
2.4 Metal base en el área neta de ca- ezas de barras o placas de pasador.	Ш	11 x 10 ⁸	316 (31)	En área neta originándose en el lado del agujero.

Parám	TABLA etros de	A-3.1 (co Diseño	ont.) para Fa	atiga
Descripción	Categoría de Tensión	Constante C,	Umbral F _{IN}	Punto de Potencial Inicio de Fractura
SECCIÓN 3 - UNIONES S	OLDADAS QUE	UNEN COMPON	ENTES DE P	ERFILES SOLDADOS
3.1 Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por sol- daduras longitudinales de penetración completa, rebajadas y soldadas nue- vamente desde el segundo costado, o por soldaduras de filete continuas.	В	120 x 10 ⁸	1125 (110)	Desde la superficie o discon- tinuidades internas en la sol- dadura alejada del extremo de soldadura.
3.2 Metal base y metal de soldadu- ra en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de pene- tración completa sin remoción de las barras de soporte, o por soldadura de filete de penetración parcial.	Β'	61 x 10 ⁸	843 (83)	Desde la superficie o discon- tinuidades internas en la sol- dadura, incluyendo soldadura que une barras de soporte.
3.3 Metal base y terminación de metal de soldadura de soldaduras longitudinales en agujeros de ac- ceso para soldadura en miembros armados conectados.	D	22 x 10 ⁸	492 (48)	Desde la terminación de la sol- dadura hacia dentro del alma o ala.
3.4 Metal base en extremos de seg- mentos longitudinales intermitentes de soldadura de filete.	E	11 x 10 ⁸	316 (31)	En el material conectado los lugares de inicio y fin de cual- quier depósito de soldadura.
3.5 Metal base en extremos de pla- cas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cru- zando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor del ala ≤ 0.8 cm (20 mm) Espesor del ala > 0.8 cm (20 mm)	E	11 x 10 ⁸ 3.9 x 10 ⁸	316 (31) 183 (18)	En el ala al pie de la soldadu- ra de extremo o en el ala al término de soldadura longitu- dinal o en el borde del ala con placas de cubierta anchas.
3.6 Metal base en extremos de placas de cubierta con soldadura de longitud parcial más anchas que el ala sin soldaduras cruzando los extremos.	E	3.9 x 10 ⁸	183 (18)	En el borde el ala en el extre- mo de la soldadura de placa de cubierta.
SECCIÓN 4 - CONEXIO	NES DE EXTREM	NO CON SOLDADI	JRA LONGITU	DINAL DE FILETE
4.1 Metal base en empalme de miembros cargados axialmente con conexiones de extremo soldadas longitudinalmente. Las soldaduras deben ser en cada lado del eje del miembro para balancear las tensiones en la soldadura. $t\leq 20\ mm$	E	11 x 10 ⁸	316	Iniciándose desde el extremo de cualquier terminación de soldadura extendiéndose ha- cia el metal base.
t > 20 mm	E'	3.9 x 10 ⁸	(31) 183 (18)	

2.2.2.7. Cargas consideradas en la fatiga

Es imprescindible para el proyectista prever las cargas a las que estará sometida la estructura a lo largo de su vida útil y determinar la condición de carga más desfavorable; en el análisis estático de la estructura la carga máxima soportada será la que gobierne el diseño, condición que no rige en el análisis de fatiga ya que ésta carga representará solo un ciclo entre millones.

En las vigas de puentes se pueden experimentar alrededor de 100 millones de ciclos significativos a lo largo de su vida. Por lo que es importante determinar cómo se afecta el rango de esfuerzos en el elemento estructural ante más de un sistema de carga independiente. Para esto se define un espectro de cargas simplificado al que se verá sometida la estructura, el mismo que está constituido por una serie de bandas de niveles de cargas vehiculares constantes y número de veces de aplicación como se puede observar en la *Figura 2.18*. [19]

Figura 2.18. Espectro simplificado de cargas [19]

2.2.2.8. Historial de tensiones

Ante la acción cíclica de cargas en una estructura es necesario el análisis de los esfuerzos resultantes en sus componentes estructurales, mediante el cual se obtienen histogramas de tensiones de carácter cíclico que pueden ser de amplitud constante o de amplitud variable. (*Figuras 2.19 y 2.20*)

Figura 2.19. Historial de tensiones (Rango de tensión constante) [19]

Figura 2.20 Historial de tensiones (Rango de tensión variable) [19]

En la práctica real las historias de tensiones en las estructuras debidas a cargas cíclicas son de amplitud variable, siendo necesario el análisis de rango de tensiones o esfuerzos equivalentes para este caso.

La forma de realizar una representación del historial de tensiones irregulares o variables consiste en resumir los rangos esfuerzos que tengan igual amplitud obteniendo una distribución de bloques denominados "campos de esfuerzos constantes". Este se conoce como espectro simplificado de esfuerzos o tensiones. (*Figura 2.21*)

En donde cada campo se caracteriza por un número de ciclos n_i y por un rango de tensión constante $\Delta \sigma_i$. Por motivos de conveniencia los histogramas de tensión se realizan con bloques en orden decreciente. [19]

Figura 2.21 Espectro de tensiones [19]

2.2.2.9. Conteo de ciclos

Existen varios métodos para el conteo de ciclos a partir de un historial de esfuerzos, entre los más conocidos están el "*método de la alberca*" o uno muy similar "*método del embalse*", y el método "*Rain Flow*" que son los más aceptados. (*Figura 2.22 y 2.23*)

Figura 2.22 Métodos para el recuento de ciclos de esfuerzos [19]

Figura 2.23 Ejemplo de conteo de ciclos por método del embalse [19]

2.2.2.10. Regla del daño (Palmgren-Miner)

Como se mencionó anteriormente, en la realidad las estructuras y por ende sus componentes no están sujetos a cargas de fatiga constantes. Razón por la cual en la práctica se utilizan métodos que simplifiquen el cálculo y que den resultados satisfactorios.

En el Eurocódigo, el AASHTO y otros reglamentos para el cálculo de daño, se hace referencia a la regla de Palmgren-Miner para la evaluación del daño. Esta regla supone que el daño total que acumula un elemento estructural sujeto a rangos de esfuerzo variable, se determina mediante la suma lineal del daño causado por cada rango de esfuerzo individual. (*Figura 2.24*)

Figura 2.24 Daño acumulable [19]

$$D = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \dots + \frac{n_k}{N_k} = \sum_{i=1}^k \frac{n_k}{N_i}$$
(2.6)

Donde:

 n_i = Número de ciclos para el rango de amplitud variable $\Delta \sigma_i$

 N_i =Número de ciclos requeridos para el agotamiento para el rango de amplitud constante $\Delta \sigma_i$

D= Es el porcentaje de daño

El principio de seguridad establece que la sumatoria de los daños efectuados por cada una de las bandas no debe ser mayor a la unidad.

 $D \leq 1$

$$\frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \frac{n_4}{N_4} + \dots + \frac{n_n}{N_n} \le 1$$
(2.7)

$$\sum_{i=1}^{k} \frac{n_i}{N_i} \le 1 \tag{2.8}$$

A partir del espectro de esfuerzos a los que se encuentra sometido el elemento o detalle estructural, se ha introducido el concepto de esfuerzo equivalente, en el cual se calcula un esfuerzo de rango uniforme que ocasionará el mismo daño, utilizando la siguiente expresión:

0

$$\Delta \sigma_{equ} = \left[\frac{\Sigma(n_i \Delta \sigma_i^m)}{\Sigma n_i}\right]^{\frac{1}{m}}$$
(2.9)

Donde:

 $\Delta \sigma_{equ}$ = Rango de tensiones o rango de esfuerzos equivalentes m = 3, o 5 según resulte apropiado (Eurocódigo) m=3 (AASHTO)

Cuando se considera una pendiente única $\left(-\frac{1}{m}\right)$ el cálculo resulta más sencillo, sin que sea necesario volver a calcular los daños en la curva S-N, la consideración de pendiente doble se analiza en el inciso **2.2.2.10.2.**

El rango de tensiones equivalente calculado $\Delta \sigma_{equ}$ depende solo del espectro de cargas de fatiga y de la constante m. Por lo tanto, al evaluar la **ecuación (2.9)** resulta sencillo definir la categoría de detalle que presente una resistencia a fatiga adecuada.

2.2.2.10.1. Cálculo de daño

Ante la acción de cargas de amplitud variable en una estructura, la vida de ésta puede determinarse mediante el análisis o cálculo de daños totales, utilizando el espectro simplificado de esfuerzos o tensiones con un número manejable de bandas o "campos de esfuerzos constantes". (*Figura 2.25*)

Figura 2.25 Espectro de rangos de esfuerzos [19]

Donde:

i= Número de banda

 $\Delta \sigma$ = Rango de tensión de la banda

n= Número de ciclos de la banda durante la vida de cálculo

N= Resistencia a la fatiga bajo un rango de tensión i

2.2.2.10.2. Análisis de curvas S-N con doble pendiente, propuestas por el Eurocódigo

En esta normativa se considera que, en el caso de rangos de tensiones de amplitud variable las bandas del espectro $\Delta\sigma$ inferiores al límite de tensión no propagadora $\Delta\sigma_C$, pueden afectar a la propagación de fisuras, al contrario del caso de amplitud constante; esto es debido a que los ciclos de mayor amplitud pudieron dar inicio a la propagación de la fisura. Para representar este fenómeno la constante $\Delta\sigma_C$ de la gráfica es remplazada por una línea inclinada con gradiente logarítmico $\frac{1}{m+2}$ como se observa en la *figura* 2.26.

Figura 2.26 Curva S-N de doble pendiente [19]

En el caso que se considere una curva (S-N) con pendiente doble, resulta más compleja la determinación de la tensión equivalente, se utiliza la función de estado límite:

$$\gamma_{Ff} \cdot \Delta \sigma_{equ} \le \frac{\Delta \sigma_R}{\gamma_{Mf}} \tag{2.10}$$

Donde:

 $\Delta \sigma_R$ =Resistencia a la fatiga correspondiente a $\Delta \sigma_{equ}$ en la curva (S-N) para un número de ciclos N de vida teórica.

 γ_{Ff} =Coeficiente parcial de seguridad para la intensidad de la carga de fatiga (Valores de 1.0 a 1.5)

 γ_{Mf} =Coeficiente parcial de seguridad para la resistencia a fatiga (Valor normal=1)

a. Cálculo de daños para una curva (S-N) de doble pendiente, con rango de tensión por debajo y por encima de $\Delta \sigma_D$

Tomando en cuenta que hay bloques con rango de tensión que está por encima de $\Delta \sigma_C$ y otros bloques con rango de tensión por debajo de $\Delta \sigma_D$

Considerando los coeficientes:

i = Para bloque $\Delta \sigma_i > \Delta \sigma_D$ j= Para bloque $\Delta \sigma_i < \Delta \sigma_D$ Para este caso el daño está definido por:

$$D = \sum \frac{n_i}{N_i} + \sum \frac{n_j}{N_j}$$
(2.11)

Tomando para cada serie de bloques de rango de tensiones en la curva (S-N)

$$D = \sum \frac{n_i}{a \,\Delta \sigma_i^{-3}} + \sum \frac{n_j}{b \,\Delta \sigma_j^{-5}} \tag{2.12}$$

De la ecuación (2.5) se tiene que:

$$N_i = \frac{a}{\Delta \sigma_i^3}$$
$$N_j = \frac{b}{\Delta \sigma_j^3}$$

Figura 2.27. Análisis de cambio de pendiente [19]

$$D = \frac{1}{b} \left[\frac{\sum n_i \,\Delta\sigma_i^3}{\frac{a}{b}} + \sum n_j \Delta\sigma_j^5 \right]$$
(2.13)

De la *figura 2.27*:

$$N_D = a \,\Delta \sigma_D^{-3} = b \,\Delta \sigma_D^{-5} \tag{2.14}$$

Con N_D correspondiente a 5 millones de ciclos:

$$\frac{a}{b} = \frac{1}{\Delta \sigma_D^2} \tag{2.15}$$

Combinando las ecuaciones (2.13), (2.14) y (2.15)

$$D = \frac{Q}{N_D \,\Delta \sigma_D^3} \tag{2.16}$$

Sabiendo que:

$$Q = \sum n_i \Delta \sigma_i^3 + \sum n_i \Delta \sigma_j^3 \left(\frac{\Delta \sigma_j}{\Delta \sigma_D}\right)^2$$
(2.17)

El daño puede ser calculado directamente de las ecuaciones (2.11) y (2.16).

b. Cálculo del rango de tensión equivalente para la curva (S-N) con pendiente doble

Es necesario para este caso en específico decidir la pendiente a la que la definición de $\Delta \sigma_{equ}$ se refiere. No existirá una diferencia al elegir una pendiente 3 o 5 en el resultado final del cálculo de $\Delta \sigma_{equ}$ cuando el cálculo es para las dos partes de la curva (S-N).

Inicialmente tomando **m=3** se calculará $\Delta \sigma_{equ}$ que para este caso lo denominaremos $\Delta \sigma_{equ.3}$ y se demostrará que es válida para **m=5**.

Por definición sabemos que:

$$D = \frac{N}{N_{equ}} \tag{2.18}$$

Donde:

D= Daño

 N_{equ} =Número equivalente de ciclos de agotamiento bajo el rango de tensión equivalente $\Delta \sigma_{equ}$ N= $\sum n_i + \sum n_j$

Al evaluar N_{equ} basándonos en la curva (S-N) para m=3:

$$D = \frac{N}{a \, \Delta \sigma_{equ}^{-3}} = \frac{\sum n_i + \sum n_j}{a \, \Delta \sigma_{equ}^{-3}} \tag{2.19}$$

Combinando las ecuaciones (2.12) y (2.19):

$$D = \sum \frac{N_i}{a \,\Delta \sigma_j^{-3}} + \sum \frac{n_j}{b \,\Delta \sigma_j^{-3}} = \frac{\sum n_i + \sum n_j}{a \,\Delta \sigma_{equ}^{-3}}$$
(2.20)

De las ecuaciones (2.19) y (2.20):

$$\Delta \sigma_{equ}^{3} = \left[\frac{\sum n_{i} \Delta \sigma_{i}^{3} + \sum n_{i} \Delta \sigma_{j}^{3} \left(\frac{\Delta \sigma_{j}}{\Delta \sigma_{j}} \right)^{2}}{\sum n_{i} + \sum n_{j}} \right]$$
(2.21)

$$\Delta \sigma_{equ.3} = \left[\frac{Q}{\sum n_i + \sum n_j}\right]^{1/3} \tag{2.22}$$

$$\Delta \sigma_{Rd.3} = \Delta \sigma_D (\frac{N_D}{N})^{1/3} \tag{2.23}$$

De las ecuaciones (2.22) y (2.23):

$$\left[\frac{\Delta\sigma_{equ.3}}{\Delta\sigma_{Rd.3}}\right]^3 = \frac{Q/N}{\Delta\sigma_D^3 N_D/N} = \frac{Q}{\Delta\sigma_D^3 N_D}$$
(2.24)

Esta ecuación representa la acumulación de daños (D), así como la que nos resulta de la ecuación (2.16) por lo tanto:

$$\left[\frac{\Delta\sigma_{equ.3}}{\Delta\sigma_{Rd.3}}\right]^3 = \frac{Q}{\Delta\sigma_D^3 N_D} \le 1$$
(2.25)

Como se pudo observar para el análisis de fatiga la normativa AASHTO considera en las curvas S-N una sola pendiente mientras que en el caso del Eurocódigo se ha utilizado doble pendiente; esto es debido a que, al haber ya un inicio de agrietamiento los rangos de esfuerzos por debajo del umbral afectarán en la vida de fatiga y cuyo análisis es más complejo.

Al realizar una investigación de las diferencias entre estas normativas, se pudo encontrar un estudio realizado por la NCHRP (National Cooperative Highway Research Program), en el cual se realizan ensayos de diferentes detalles estructurales y se comparan los resultados con los modelos de curvas S-N, propuestos por estas dos normativas. Este análisis se revisa a continuación para permitirnos utilizar la alternativa más adecuada.

2.2.3. Selección de la normativa para revisión de diseño y evaluación de fatiga

Con base en un análisis realizado en el reporte 721 NCHRP [20] por el National Cooperative Highway Research Program. Fatigue Evaluation of Steel Bridges, en donde se hace una revisión de la normativa AASHTO para el análisis por fatiga, se presenta una comparación entre las normativas comúnmente empleadas (AASHTO y Eurocódigo), permitiendo seleccionar la normatividad conveniente a emplear en este estudio.

Por tal razón, a continuación, se ha considerado importante mencionar un resumen del reporte 721 NCHRP en donde se describen las principales consideraciones de cada norma, diferencias, cambios y algunas mejoras que se han dado en éstas para el análisis por fatiga.

Además, en el reporte se mencionan importantes mejoras y propuestas para la evaluación por fatiga en puentes, basadas en el capítulo 7 del manual de evaluación de puentes (MBE) realizado por la AASHTO, que también se analizarán, para su aplicación.

2.2.3.1. Evolución de estudios acerca de fatiga en las principales normativas

• Disposiciones AASHO/AASHTO para el diseño y evaluación de fatiga en puentes

A partir de las primeras disposiciones para el diseño por fatiga en puentes en 1965, y en la publicación de 1969 se propone un rango de esfuerzo por fatiga admisible que está en función de la carga según la clasificación de la carretera, tipo de detalle, resistencia del acero y R (Relación del esfuerzo mínimo para el esfuerzo máximo). En esta publicación se definieron 11 categorías de detalle, diferentes a las usadas actualmente, manteniéndose sin cambios mayores hasta el año 1973.

En la edición del año 1977 ya se tenía un enfoque revisado para el diseño por fatiga de puentes de autopista, cambios que fueron el resultado de la investigación del NCHRP realizada por el Dr., John Fisher y colegas. Se emitieron especificaciones orientadas al diseño de elementos "Detalles" de acero comunes en estructuras de puentes carreteros. Estos detalles atornillados o soldados que son sensibles a la fatiga fueron agrupados en categorías de resistencia a fatiga similares, categorizadas con las letras de la "A" a la "F".

El cambio más significativo fue la inclusión del concepto de rango de esfuerzos para el diseño por fatiga. La vida de fatiga estaba en función del rango de esfuerzos, categoría del detalle y número de ciclos de carga, concluyendo que los parámetros mencionados previamente como la resistencia del material y la relación "R" no tienen gran relevancia en la vida de fatiga de los detalles.

Se propuso un rango o gama de esfuerzo admisible para un número específico de ciclos para cada una de las categorías mencionadas (de la "A" a la "F"), las que definen efectivamente la resistencia a la fatiga basada en el concepto rango de esfuerzo, además se definió el límite de resistencia a la fatiga.

Al igual que en las versiones anteriores, la vida de diseño requerida está en función del tipo de miembro, clasificación de carretera y ADTT (tráfico de camiones promedio diario).

Aquí también se incluyó el concepto de diseño de vida infinita y diseño de vida finita, que se espera ante un número elevado de ciclos y/o requerimiento de que ningún agrietamiento por fatiga se puede tolerar. A partir de aquí las ediciones de la publicación de esta serie han cambiado muy poco.

En 1994 la publicación, AASHTO LRFD Bridge Design Specifications, incorporó un enfoque basado en la fiabilidad de los aspectos de diseño relacionados con puentes carreteros. Aquí se revisaron las

disposiciones de fatiga con cambios en la realización del modelo de carga utilizada para el diseño de la fatiga, en la que se utiliza el concepto de un "Camión de fatiga efectiva"

En 1990 se edita la Guide Specifications for Fatigue Evaluation of Existing Steel Bridges. Esta guía introdujo un método completo para la evaluación de la vida de fatiga de puentes de acero. Estos procedimientos se desarrollan en el proyecto 21-83 del NCHRP y son presentados en el informe NCHRP 299 por Moses et al. (1987), los mismos que dan una alternativa de las especificaciones de diseño que no eran muy adecuadas en la evaluación de puentes existentes.

En el manual LRFR o AASHTO Manual for Condition Evaluation and LRFR of Highway Bridges (2003), se realizó una actualización significativa de las especificaciones AASHTO 1990. En este manual además se indica que el rango de esfuerzo efectivo se calcula como el rango medido o un valor de rango determinado mediante la utilización del camión de fatiga, haciendo el uso de factores parciales de carga que ajustan el rango de esfuerzos, ya que la incertidumbre se reduce como resultado de un mejor análisis. Una vez determinado el rango efectivo de esfuerzos se procede a la comprobación para determinar si los detalles son propensos a daños por fatiga.

En el manual se utilizó un factor de resistencia RR, en la expresión de vida de fatiga para dar concepto a los tres tipos de estimaciones, con una probabilidad de falla asociada a la fatiga respectiva de 2%, 16% y 50%:

- a. Vida mínima esperada, la misma que es muy conservadora e igual a la vida de diseño.
- b. Vida a fatiga de evaluación, la misma que daría una estimación conservadora de la vida a fatiga.
- c. Vida a fatiga media, que es la estimación más probable de la vida a fatiga.

La estimación de la vida de fatiga también se ve afectada por el crecimiento de volumen de tráfico. En el manual LRFR, la correlación se hace con el tráfico promedio de camiones diarios en un solo carril (ADTT)sL.

En 2008 y con segunda edición en 2011 se publicó la MBE, "Fatigue Evaluation of Steel Bridges" de la AASHTO, la cual se ha combinado con pequeños cambios en las publicaciones "The Manual for Condition Evaluation of Bridges", segunda edición y revisiones en (2000), (2001) y (2003), con la guía "Guide Manual for Condition Evaluation and LRFR of Highway Bridges", primera edición y revisiones (2005). [21] Son los documentos y guías de diseño utilizadas actualmente.

• Eurocódigo

Esta normativa utiliza también el concepto de la curva (S-N). A diferencia de la AASHTO no se considera una única pendiente, sino dos (m=3 y m=5), además se proponen 14 categorías de detalle en lugar de 8 como en el AASHTO MBE (2011). También para los rangos de esfuerzo de corte se presenta otro conjunto de curvas con una pendiente constante (m=5).

En las curvas S-N para rangos de esfuerzos se tienen diferentes límites de vida infinita, mientras que para el caso de esfuerzos de corte se tiene sólo un límite.

Las especificaciones australianas son muy similares al Eurocódigo, con pequeñas diferencias. Como en el caso de las especificaciones australianas se tiene una categoría más. [21]

2.2.3.2. Revisión de las normativas realizada en el Reporte 721 NCHRP "National Cooperative Highway Research Program. (2012). Fatigue Evaluation of Steel Bridges"

En el reporte NCHRP 721, se hace un análisis sobre las teorías propuestas de Fatiga por el AASHTO y el Eurocódigo 3, y se comentan los siguientes aspectos de importancia.

• Curvas S-N

Para el análisis y revisión de las curvas S-N, correspondientes a las normativas de la AASHTO y del Eurocódigo, se realizaron ensayos en 3 tipos diferentes de detalles soldados sometidos a carga cíclica (NCHRP informe 354) (Fisher et al., 1993), de los cuales se encontró que los resultados apoyan la hipótesis de un diseño conservador, y que la propuesta lineal de la curva de resistencia a fatiga se puede utilizar para predecir la vida de fatiga ante carga variable. [21]

Para rangos normales de esfuerzo el Eurocódigo ha propuesto 14 categorías de detalles, a diferencia de las 8 categorías propuestas por la AASHTO. Cada categoría de detalle propuesta por el Eurocódigo está designada por un número, el cual es la referencia de la resistencia a la fatiga a los 2 millones de ciclos. [21]

Las curvas S-N del Eurocódigo presentan una pendiente m=3 hasta los 5 millones de ciclos en el rango de esfuerzo correspondiente a el "CAFL" (Límite de fatiga de amplitud constante $\Delta \sigma D$), y a partir de los 5 millones de ciclos hasta los 100 millones de ciclos se utiliza una pendiente m=5 hasta llegar al límite denominado (de corte o de truncamiento $\Delta \sigma L$) que está representado por una recta horizontal. [21]

A continuación, se presenta la *figura 2.28* obtenida del reporte 721 NCHRP, en la cual se comparan los datos de la realización de una prueba para un detalle con categoría 80 (80 N/mm2) designada por el Eurocódigo o un detalle de categoría C (10ksi) designada por la AASHTO. [21]

Figura 2.28 Comparación de resultados de pruebas con curvas S-N AASHTO y Eurocódigo [21]

Analizando la gráfica se puede observar que la curva AASHTO, se ha extendido por debajo del valor (CAFL=10ksi), hasta el valor límite (VAFL) que corresponde a la mitad del valor CAFL. Así también puede observarse que la curva AASHTO es una buena aproximación para este ensayo para la distorsión inducida por agrietamiento por fatiga, en comparación con la curva del Eurocódigo. Aunque estas dos

son muy cercanas en la etapa inicial, la curva AASHTO parece ajustarse mejor a la dispersión de puntos en la zona de larga duración en donde la curva Eurocódigo cambia la pendiente de m=3 a m=5. [21]

Un modelo bilineal incrementa considerablemente el esfuerzo en el cálculo de la vida de fatiga como se puede observar en el inciso **2.2.2.10.2**, además parece que este modelo no mejora considerablemente la precisión de la predicción de la vida de fatiga, por lo que el modelo lineal se ha conservado en la normativa AASHTO. [21].

• Revisión y validación del camión de fatiga propuesto por AASHTO

Para poder realizar este análisis, se utilizaron datos registrados WIM (Peso en movimiento) de estaciones, sitios, volúmenes de tráfico y meses de grabación seleccionados al azar. Teniendo como objetivo comprender si el camión de fatiga AASHTO modela razonablemente la carga real, o como se podría mejorar el modelo. [21]

Los datos WIB utilizados fueron de estaciones en California, Florida, Idaho, New York, Michigan, Texas y Vermont. La configuración de la carretera fue de 2 a 4 carriles en una sola dirección. En donde se determinaron ADTT (Tráfico promedio diario de camiones) por carril muy variados, desde decenas de camiones hasta miles de camiones en otros casos. La distribución del tráfico de camiones entre los diferentes carriles de un mismo sitio puede ser muy distinta incluso un carril puede tener el 86% del tráfico total de camiones, así también otro carril puede tener un 4% del tráfico de camiones. En este estudio se ha tomado un valor promedio de ADTT sobre el número de carriles registrados. [21]

Las gráficas y resultados de las pruebas realizadas para esta evaluación se encuentran en el apéndice B del informe NCHRP 721, a continuación, se muestra un ejemplo de los datos obtenidos de este informe en la estación 8280 ubicada en New york durante seis meses del año 2003, en donde hay dos carriles (ADTT = 1386/carril) (*Figuras 2.29 y 2.30*) [21]

Figura 2.29 Comparación del vehículo de fatiga AASHTO con estudio WIM, carril izquierdo [21]

Figura 2.30 Comparación del vehículo de fatiga AASHTO con estudio WIM, carril derecho [21]

En el eje vertical de estas gráficas se calcula la relación entre los efectos de carga WIM (sumadas de acuerdo a la ley de Miner) y el modelo de carga de camión de fatiga AASHTO.

Si la relación es mayor a 1 quiere decir que el camión AASHTO subestima el efecto real de la carga de fatiga, en caso contrario el modelo sobreestima el efecto de la carga de fatiga.

Analizando los resultados de las pruebas realizadas tal como en el ejemplo anterior, es difícil concluir si el modelo de camión de fatiga propuesto por la AASHTO sobreestima o subestima el efecto de carga, pues como se aprecia hay zonas en las que la gráfica muestra una subestimación y en otras una sobreestimación. En las curvas se puede observar un comportamiento común, sin embargo, para una misma estación y carril se puede notar que en un mes determinado la curva puede superar el valor de la unidad y para otros meses esta se queda por debajo de la unidad.

Por esta razón no ha habido razones o justificación para cambiar o proponer un nuevo modelo, que permita describir mejor el efecto de carga a fatiga, a pesar de que los datos WIB pueden ser más fiables cuando se tiene un adecuado mantenimiento de las estaciones y calibración de equipos permitiendo una estimación más refinada. [21]

• Normativa a utilizar:

Se han propuesto modelos de carga para análisis de fatiga más apegadas a las características vehiculares en México, sin embargo, requieren de una validación similar a la revisada anteriormente a partir de pruebas WIM para que se establezca el uso del modelo. Por lo tanto, se ha considerado factible la utilización del modelo de camión de fatiga propuesto por AASHTO, que representa de una manera aproximada estas características. [24] Tomando en consideración al estudio realizado en el reporte 721 NCHRP, se realizará el análisis por fatiga basado en la normativa AASHTO LRFD, mediante el modelo de camión de fatiga propuesto por la misma normativa.

Para el caso del estudio ante acciones ferroviarias se considerarán las recomendaciones del manual AREMA, en el cual también se especifica un modelo de tren de fatiga y aplicando la noma AASHTO LRFD se realizará el análisis en elementos y detalles estructurales.

En el reporte 721 NCHRP, se han propuesto ciertos cambios para el capítulo 7 del MBE AASHTO, los cuales serán analizados en el proceso de cálculo. [21]

CAPÍTULO 3

3. DESCRIPCIÓN DEL PUENTE

La longitud total del Puente Coatzacoalcos I es de 965.61 m, con un ancho de 12.8 m que permite la circulación de dos carriles vehiculares de 3.5 m, una vía de ferrocarril de 3.4 m y un camino peatonal de 1.6m.

La longitud total está conformada por un primer tramo en la margen izquierda con 199.09 m, un tramo principal de 398.34 m, un tramo en isla de 211.40 m y un tramo auxiliar en la margen derecha de 156.78m. (*Figura 3.1*)

Figura 3.1 Distribución general del puente Coatzacoalcos I [20]

Este puente es de estructura mixta, es decir está conformado por vigas de concreto presforzado en 27 claros de 31.52 m soportado por 7 apoyos principales y 22 apoyos intermedios; y un tramo de 66 m de armadura metálica que tiene la característica de ser móvil, ya que puede ser levantada 26.16 m a través de un sistema proporcionado por dos torres laterales. De esta manera embarcaciones pueden circular de un lado hacia otro.

Esta estructura se ha visto afectada por diversos problemas, principalmente en el tramo de la armadura a causa de diversos factores, entre los más importantes la fatiga de los elementos y conexiones debidos al crecimiento del tráfico y a la corrosión del ambiente marítimo; mismos que han obligado a realizar operaciones de mantenimiento que permitan al puente seguir dando servicio, incluso se realizó la sustitución de la armadura completa. En la *figura 3.2* se puede observar un historial de las reparaciones mayores realizadas.

El objetivo de esta investigación se enfoca en el análisis del tramo de armadura colocada en sustitución a la antigua en el año 2014, sin embargo, cabe mencionar brevemente consideraciones que se tomaron para el reforzamiento de todo el puente.

El diseño inicial del puente consideró como carga máxima vehicular el camión H-15-S-20 y para el ferrocarril se contempló la locomotora Cooper E-50. Sin embargo, en los años (1990-1992) se realizó un análisis para reforzar la estructura total del puente, en el que se consideraron los camiones tipo HS-20 y T3-S2-R4 como cargas máximas vehiculares y para la carga de ferrocarril la locomotora Cooper E-80 debido al evidente aumento y cambio del tráfico vehicular.

Como consecuencia a esta nueva consideración, en los tramos de concreto presforzado se colocó refuerzo a flexión y cortante; en zonas del tramo ferroviario ya dañados se colocó refuerzo para flexión, y estribos presforzados externos a lo largo del puente para el cortante. (*Figura 3.3*)

Figura 3.3 Refuerzo colocado en vigas [20]

En 2007 realizaron estudios en el tramo de armadura para determinar los esfuerzos a los que estaba sometida. En el dictamen se concluyó que las cargas que recibía el puente generaban esfuerzos de flexión de 750 kg/cm2, mayor al máximo permisible por la combinación de carga y fatiga que recomiendan las normas AASHTO, IMCA y AISC (500kg/cm2). En conclusión, se determinó que la falla estructural podría haber ocurrido debido a la fatiga del material. [20]

3.1. UBICACIÓN

El puente Coatzacoalcos I se ubica en la ciudad de Coatzacoalcos, en el estado de Veracruz-México en el Km 2+100 (1+200) de la carretera Coatzacoalcos-Puerto Juárez, esta ciudad es la más importante y desarrollada del sur de Veracruz. Su Municipio ubicado al norte del Istmo de "Tehuantepec", limita con los Municipios de "Moloacán", "Pajapan", "Minatitlán", "Cosoleacaque, "Agua Dulce", "Nanchital de Lázaro Cárdenas" e "Ixhuatlán del Sureste". (*Figuras 3.4, 3.5 y 3.6*)

Los principales accesos a la ciudad Coatzacoalcos son los puentes Coatzacoalcos I y Puente Coatzacoalcos II (Puente Ing. Antonio Dovalí Jaime)

Otras vías de enlace:

- Puente "Kilometro 14": Ubicado en la carretera antigua a Minatitlán
- Puente "Calzadas": Ubicado en la carretera que conduce a Minatitlán, por el rumbo de las "Matas"

Figura 3.4 Carretera Federal 180 Matamoros-Puerto Juárez

Figura 3.5 Ubicación Local

Figura 3.6 Puente Coatzacoalcos I

Coordenadas del puente Coatzacoalcos I:

Ubicación del puente Coatzacoalcos I						
Lado	UTM	Este	349496.75	Grados Decimales	Latitud	18.120507
Coatzacoalcos		Norte	2004099.21		Longitud	-94.422535
Lado	UTM	Este	350195.07	Grados Decimales	Latitud	18.11767
Villahermosa		Norte	2003779.87		Longitud	-94.415913

Tabla 3.1 Coordenadas del puente Coatzacoalcos I

Tabla 3.2 Coordenadas de la armadura principal

Ubicación del tramo de armadura						
Lado	UTM	Este	349594.15	Grados Decimales	Latitud	18.12015
Coatzacoalcos		Norte	2004059.64		Longitud	-94.421613
Lado	UTM	Este	349658.8	Grados Decimales	Latitud	18.119875
Villahermosa		Norte	2004028.84		Longitud	-94.421006

3.2. GEOMETRÍA

El Puente Coatzacoalcos I está conformado por tramos laterales de concreto presforzado y uno central que consta de una armadura de acero levadiza. En la *Figura 3.7* se muestra un perfil del puente.

Figura 3.7 Estructura general del puente Coatzacoalcos I [22]

La investigación de este trabajo se enfoca en el tramo de armadura, sin embargo, cabe mencionar la estructuración general de todo el puente Coatzacoalcos I.

3.2.1. Superestructura

a. Superestructura (Tramo presforzado)

En su mayoría el puente Coatzacoalcos I está conformado por trabes de concreto presforzado, éstas dan soporte a dos zonas: la primera al tráfico vehicular de dos carriles y un camino peatonal, conformada por 4 trabes, mientras que la segunda está constituida por tres trabes sobre los que se asienta la vía de ferrocarril, como se puede observar en la *Figura 3.8*.

Figura 3.8 Sección transversal general [22]

El ancho del cuerpo vehicular es de 9.23 m, del cuerpo ferroviario es de 3.27 m y de la calzada donde se da servicio a dos carriles es de 7.00m.

b. Superestructura armadura metálica (tramo de interés)

La armadura elevadiza está conformada por dos cerchas de acero tipo Warren, esta armadura simplemente apoyada puede ser izada por medio de un sistema de contrapesos, accionado por un sistema electromecánico a través de dos torres de 39 m. En cada torre hay una caseta de máquinas, como se puede observar en las *Figuras 3.9* y *3.10*.

Figura 3.10 Sistema de torres para elevado de armadura

La armadura da servicio a un paso vehicular de dos carriles constituidos por 5 trabes metálicas, un camino peatonal conformada por ménsulas metálicas conectadas hacia la armadura principal, y finalmente una vía de ferrocarril soportada por dos trabes.

El sistema de piso en cada zona transmite las cargas a la armadura mediante vigas principales (transversales) y secundarias (largueros).

La armadura tiene una separación de 12.9 m entre ejes de cerchas y una altura de 10 m entre ejes de cuerdas. (*Figuras 3.11 y 3.12*)

Figura 3.11 Detalle de elementos de contraventeo de las armaduras [22]

Figura 3.12 Sección transversal de la armadura [22]

Las vigas transversales son perpendiculares a la dirección del tráfico, con una separación de 8.25 m están apoyadas en sus extremos en el sector nodal de las dos cerchas de acero y soportan las cargas transmitidas por los largueros. Los largueros, están colocados en sentido paralelo a la dirección del tráfico y se apoyan en las vigas transversales, tienen un claro de 8.25 m y están espaciadas 1.75 m en el cuerpo carretero y 2.0 m en el cuerpo ferroviario. Para los carriles vehiculares se observan 5 largueros y para el ferroviario 2, en ambos casos se han colocado elementos horizontales e inclinados de contraventeo proporcionándoles rigidez lateral. (*Figura 3.13*)

Figura 3.13 Sistema de piso vista interior [22]

Las vigas longitudinales, o del cuerpo del carretero soportan las cargas del tránsito transmitidas por la rejilla estructural tipo IRVING, sostenida por elementos canal (*Figuras 3.14 y 3.15*).

Figura 3.15 Larguero del cuerpo carretero

El camino peatonal está conformado por una capa de concreto y losa-acero de 88cm apoyada en vigas en sentido paralelo a la dirección del tráfico, éstas se asientan en unas ménsulas metálicas soportadas por el lado aguas arriba de la armadura o denominado lado B.

En la *Figura 3.16* se puede observar un detalle del sistema de piso del camino peatonal, su barandal de protección y la guarnición de la vía.

Figura 3.16 Detalle de camino peatonal lateral y guarnición de la vía

3.2.2. Subestructura

La subestructura es la infraestructura que da soporte a la superestructura. La cual está conformada por 7 apoyos principales y 22 apoyos intermedios, cimentados con pilas.

Uno de los apoyos intermedios previo al ingreso al puente de armadura, está conformado por pilotes de cimentación los mismos que fueron reconstruidos debido a problemas de asentamientos.

3.2.2.1. Zona de pilotes reconstruidos

Esta intervención se realizó con la finalidad de detener los asentamientos que se producían en la cimentación inicial de este tramo. Aquí se colocaron 3 trabes cabezal para soporte, que se apoyan en zapatas de repartición y de las cuales se proyectan las pilas de cimentación. (*Figura 3.17*)

Figura 3.17 Cimentación reconstruida

3.2.2.2. Duques de alba

Como parte de la subestructura se consideran los duques de alba, que son estructuras que forman parte de la obra complementaria que se utilizó para el remplazo de la armadura metálica, y constan de un cabezal cilíndrico apoyado sobre una serie de pilas soportadas por el estrato de suelo resistente que se encuentra a una profundidad aproximada de 42 m. (*Figura 3.18*)

3.2.2.3. Apoyos intermedios

Conformados generalmente por un cabezal en el cual se apoyan las vigas de concreto presforzado, y tienen forma de abanico en su parte superior y zapatas cilíndricas de apoyo en su parte inferior. A partir de las zapatas se proyectan las pilas a una profundidad promedio de 30 m. (*Figuras 3.19 y 3.20*)

Figura 3.19 Cabezal de pilotes [22]

Figura 3.20 Apoyos intermedios [22]

3.2.2.4. Apoyos principales

La estructura de los apoyos principales consiste en cabezales de forma rectangular, con 4 zapatas de apoyo cilíndricas en su base, de los mismos se proyectan los pilotes hasta el manto arenoso. Podemos observar estos apoyos en los extremos del tramo de armadura en la *Figura 3.21*.

Figura 3.21 Cimentación en extremos de armadura

3.3. NORMATIVA

A continuación, se nombran las normas empleadas en este estudio.

- Reglamento de Construcciones del Distrito Federal y Normas Técnicas Complementarias (NTC).
- Manual de diseño de obras Civiles del CFE 2008 (MDOC)
- AASHTO- (American Association of State Highway and Transportations Officials) LRFD Bridge Design Specifications. 2012.
- AASHTO. (2011). Manual for Bridge Evaluation. Second Edition, American Association of State Highway and Transportation Officials. Washington, D.C.
- AREMA- (American Railway Engineering Association): Manual for Railway Engineering.
- IMCA- Manual del "Instituto Mexicano de la Construcción en Acero"
- AISC-Manual del "American Institute of Steel Construction"
- ACI-Normas del "American Concrete Institute"
- ASTM-American Society of Testing and Materials.

3.4. MATERIALES

A continuación, se definen los materiales considerados para el análisis de fatiga, de acuerdo con los planos constructivos, especificaciones y normativas.

3.4.1. Acero

Tabla 3.3 Especificaciones del acero estructural

Тіро	Límite de fluencia fy
Acero estructural A-572, Grado-50	fy=3519 kg/cm2
Acero estructural A-36	fy=2530 kg/cm2

Tabla 3.4 Especificaciones de tornillos

Tipo	Límite de ruptura fu		
Tornillos A-490	fy=10550 kg/cm2		

Tabla 3.5 Características del acero estructural

Características de acero estructural			
Módulo de elasticidad Es	2039000 kg/cm2		
Peso específico γs	7850 kg/m3		

3.4.2. Concreto

Tabla 3.6	Especificaciones	del concreto
-----------	------------------	--------------

Elemento	Resistencia del concreto f'c
Losa de camino peatonal	250 kg/cm2

Tabla 3.7 Características del concreto

Módulo de elasticidad a	4800*(f'c)^0.5
corto plazo Ec	
Coeficiente de poisson v	0.2
Peso específico γ	2400 kg/cm2

3.5. CARGAS

3.5.1. Carga muerta y sobrecarga muerta

Se define como carga muerta al peso propio de los componentes estructurales y elementos no estructurales adicionales, soportados por éstos. Las sobrecargas muertas están constituidas por el peso de elementos secundarios tales como: tubos, rieles, durmientes, barandas, pasarelas servicios públicos, etc. Para la consideración de estas cargas se realizó un análisis detallado de las especificaciones de los planos ejecutivos como cantidades y propiedades de los materiales, este análisis se detalla en el **capítulo 4.1.2.**

3.5.2. Cargas vivas

Para la revisión y evaluación de la armadura, los manuales AASHTO, y AREMA, proponen modelos de carga, representativos para el análisis de fatiga, (camión de fatiga y tren de fatiga, respectivamente). Nuevos modelos de fatiga pueden ser considerados con base en estudios (WIM) "Peso en Movimiento" en sitio para un análisis más fino. Las ilustraciones de estos modelos se indican en el **capítulo 5.1** para el caso del camión de fatiga, y en el **capítulo 5.4** para el tren de fatiga.

CAPÍTULO 4

4. MODELO MATEMÁTICO

Uno de los objetivos principales de esta tesis es el determinar un modelo matemático representativo del puente Coatzacoalcos I, es decir, un modelo cuyas características estructurales tengan un comportamiento similar a la estructura real, para de esta manera poder realizar análisis y evaluaciones estructurales que proporcionen resultados y conclusiones confiables.

Para la realización del modelo matemático se utilizó el programa CSi Bridge 2015v17.3.0 especializado en el análisis estructural de puentes, brindándonos herramientas que nos facilitan el estudio por ejemplo el análisis en el tiempo del tránsito de un vehículo en la estructura.

Enfocado en el análisis por fatiga, el presente modelo matemático tiene como finalidad la determinación de los rangos de esfuerzos en elementos y conexiones, encontrando así las zonas críticas para la realización de la evaluación estructural de las mismas.

Para la realización de un modelo representativo de la estructura real, es necesaria la comparación de parámetros reales medidos en campo mediante la instrumentación del puente y los resultantes del modelo. La calibración del modelo matemático se realizó con los datos obtenidos de la instrumentación del puente Coatzacoalcos I resultantes de pruebas de carga estática y dinámica. [13]

4.1. MODELO MATEMÁTICO 3D

El Software en el que se realizó el análisis (CSI Bridge versión 2015) es un programa basado en el programa SAP 2000 pero con herramientas de análisis enfocado en puentes.

Con la finalidad de representar de mejor manera la estructura real, el modelo se realizó tomando en cuenta la mayor parte de detalles presentados en los planos estructurales ejecutivos, verificando longitudes, niveles, orientación de cada uno de los miembros de la estructura y las propiedades mecánicas especificadas para los materiales, aunque siempre existen pequeñas diferencias entre los planos estructurales y la estructura real. (*Figuras 4.1 y 4.2*)

Figura 4.1 Modelo matemático (Ejes de elementos)

Figura 4.2 Modelo matemático 3D

4.1.1. Componentes estructurales

Los componentes estructurales utilizados en el modelo matemático se detallan en el Anexo 11.2. A continuación se muestra la numeración asignada a cada elemento para una fácil identificación. La numeración de cada elemento realizada por el programa en el modelo matemático se muestra en el Anexo **11.1.**

4.1.1.1. Armadura A

Figura 4.3 Numeración de elementos de la armadura A

4.1.1.2. Armadura B

Figura 4.4 Numeración de elementos de la armadura B

4.1.1.3. Rigidizadores inclinados de las armaduras

Figura 4.5 Numeración de elementos rigidizadores superiores inclinados
4.1.1.4. Rigidizadores horizontales de las armaduras

Figura 4.6 Numeración de elementos rigidizadores superiores horizontales

4.1.1.5. Rigidizadores del sistema de piso carretero y ferroviario

4.1.1.6. Vigas transversales

Figura 4.8 Numeración de elementos de vigas transversales

4.1.1.7. Largueros del cuerpo carretero y ferroviario

1_5	2_5	3_5	4_5	5_5	6_5	7_5	8_5
1_4	2_4	3_4	4_4	5_4	6_4	7_4	8_4
1_3	2_3	3_3	4_3	5_3	6_3	7_3	8_3
1_2	2_2	3_2	4_2	5_2	6_2	7_2	8_2
1_1	2_1	3_1	4_1	5_1	6_1	7_1	8_1
1	3	5	7	9	11	13	15
2	4	6	8	10	12	14	16

Figura 4.9 Numeración de elementos largueros de sistema de piso vehicular y ferroviario

4.1.2. Análisis estático ante peso propio

Como paso inicial a la calibración del modelo matemático resulta esencial verificar el peso de la estructura. Algunos elementos que no se incluyeron físicamente en el modelo se consideraron como cargas muertas repartidas, por ejemplo, pasamanos, parapetos y guarniciones vehiculares. La malla estructural de los carriles vehiculares se consideró una membrana sin peso, y su peso se consideró como una carga muerta de área.

Elemente	Peso
Elemento	[t]
Armadura A (Aguas Abajo)	90.809
Armadura B (Aguas Arriba)	99.13
Vigas Transversales	63.561
Rigidizadores Superiores	54.691
Largueros Cuerpo Carretero	28.205
Rigidizadores Largueros Cuerpo Carretero	8.822
Placas para Rigidizadores Cuerpo Carretero	1.614
Canales de Apoyo para Rejilla Estructural	42.312
Rejilla Estructural	61.658
Parapeto Vehicular y Guarniciones	18.783
Largueros Cuerpo Ferroviario	23.856
Rigidizadores para Largueros Cuerpo Ferroviario	2.065
Placas para Rigidizadores Cuerpo Ferroviario	0.559
Durmientes Vía Ferrocarril	1.026
Rieles	12.717
Camino Peatonal y Pasamano	30.708

Tabla 4.1 Tabla de cálculo del peso de la estructura

Peso Total [t]:	540.516

Tabla 4.2 Error relativo del peso de la estructura

Peso Calculado [t]	540.516
Peso Modelo [t]	531.039
Error Relativo [%]	1.75

4.2. PRUEBAS EN CAMPO Y CALIBRACIÓN DEL MODELO MATEMÁTICO

Para la validación de este modelo, se requiere de la verificación de varios parámetros con valores de mediciones reales, permitiendo definir un modelo como una herramienta confiable para el análisis y evaluación de la estructura ante diversas acciones o fenómenos, obteniendo resultados cercanos o aproximados a la realidad.

El modelo se calibró utilizando los resultados de un estudio experimental del puente mediante vibración ambiental y pruebas de carga. Este estudio realizado por el Instituto de Ingeniería UNAM se describe en el informe de referencia [13].

4.2.1. Pruebas de vibración ambiental

Para la determinación experimental de las propiedades dinámicas del puente, se llevaron a cabo una serie de pruebas de vibración ambiental en la estructura metálica, colocando sensores de aceleración en puntos estratégicos de la armadura como se observa en la *figura 4.10* y se midieron las aceleraciones debidas a las vibraciones ocasionadas por la interacción con el entorno. [13]

Las aceleraciones se registraron en dirección longitudinal (L), dirección transversal (T), y vertical (V). Para esta prueba se utilizó un equipo Guralp Systems conformado por tres acelerómetros triaxiales y registradores [13]. De esta manera se obtuvieron los parámetros dinámicos de la estructura: las frecuencias, periodos y modos de vibrar.

Figura 4.10 Localización de acelerómetros [13]

4.2.1.1. Frecuencias y periodos determinados en campo

En el informe de referencia [13] se indica cómo las frecuencias se determinaron a partir del procesamiento de los registros de aceleración realizando un análisis por pares de señales (Bendat y Piersol, 1989) para los cuales fueron calculadas las funciones de densidad espectral, coherencia, ángulo de fase y de transferencia correspondientes a los acelerogramas [13]. Las frecuencias obtenidas este informe se muestran en la *tabla 4.3*.

Modo	Componente	Frecuencia [Hz]	Periodo [s]
1	Т	1.465	0.683
2	Т	2.539	0.394
3	V-L	3.711	0.269
4	V	4.248	0.235
5	Torsión	5.225	0.191
6	Т	6.152	0.163
7	V-L	7.52	0.133
8	L	8.057	0.124
9	V	8.252	0.121
10	V	9.509	0.105

Tabla 4.3 Tabla de modos de vibrar y frecuencias determinadas en campo [13]

4.2.1.2. Calibración del modelo matemático ante vibración ambiental

Con la información obtenida de mediciones en campo, se comparó con las propiedades dinámicas obtenidas con el modelo matemático mediante un análisis modal de eigenvalores.

Modo	Medido	Componente	Modelo	Error Relativo
	Periodo [s]		Periodo [s]	%
1	0.683	Transversal	0.63	7.06
2	0.394	Transversal	0.36	8.15
3	0.269	L-T	0.32	18.87
4	0.235	Vertical	0.26	8.66
5			0.21	
6	0.191	Torsión	0.19	1.66
7	0.163	Transversal	0.17	1.60
8	0.133	V-L	0.16	17.39
9	0.124	L	0.16	25.91
10	0.121	Vertical	0.14	12.08
11			0.13	
12	0.105	Vertical	0.11	4.14

Tabla 4.4 Comparación de los principales modos de vibrar de la estructura

Análisis:

De la comparación de los modos de vibrar y frecuencias respectivas, obtenidos a partir de las mediciones y de los resultados obtenidos en el modelo matemático se aprecia un error de 7% aproximadamente del primer modo de vibrar y del 1% al 25% aproximadamente para el resto de modos, por lo que se considera que el modelo puede representar adecuadamente el comportamiento dinámico de la estructura.

4.2.2. Pruebas de carga

Las pruebas de carga constituyen un método eficaz para la evaluación de capacidad y desempeño de los puentes. Estas consisten básicamente en reproducir uno o varios estados de carga en la estructura. Existen diferentes tipos de pruebas de carga siendo las principales las de carga estática y carga dinámica.

Las pruebas de carga realizadas en el puente Coatzacoalcos I consistieron en hacer pasar sobre el puente camiones y locomotoras con diferentes pesos y números de ejes, para obtener los registros de tiempodeformación y, a partir de ellos el cálculo de esfuerzos en cada elemento instrumentado. [13]

Se utilizaron deformímetros eléctricos localizados en las armaduras y en los largueros centrales del puente como se muestra en las *figuras 4.11, 4.12* y 4.13, con la finalidad de obtener los registros tiempodeformación de cada uno de los elementos analizados ante la acción de cargas de tráfico.

Generalmente se realiza un modelo matemático preliminar con la finalidad de determinar los elementos o zonas críticas para la localización adecuada de sensores.

Figura 4.12 Sensores en la armadura B [13]

Figura 4.13 Sensores en largueros [13]

Deformímetro eléctrico

Vehículos y trenes utilizados para pruebas de carga:

• Camión Kenworth 53 [t]

Figura 4.14 Camión Kenworth 53 t

Tabla 4.5	i Ejes del	camión	Kenworth	53 t
-----------	------------	--------	----------	------

Kenworth 53 (T3-S3)					
Cargas	x [m]	X [m]	Factor	P [t]	
1	0	0	0.12	6.36	
2	4.28	4.28	0.20	10.34	
3	1.34	5.62	0.20	10.34	
4	6.45	12.07	0.16	8.66	
5	1.27	13.34	0.16	8.66	
6	1.27	14.61	0.16	8.66	
$\Sigma =$	14.61		1.00	53	

• Camión Kenworth 35 [t]

Figura 4.15 Camión Kenworth 35 t

Tabla 4.6 Ejes del camión Kenworth 35 t

Kenworth 35 (T3-S3)					
Cargas	x [m]	X [m]	Factor	P [t]	
1	0	0	0.12	4.20	
2	5.2	5.2	0.20	6.83	
3	1.3	6.5	0.20	6.83	
4	7.9	14.4	0.16	5.72	
5	1.3	15.7	0.16	5.72	
6	1.3	17	0.16	5.72	
$\Sigma =$	17		1.00	35	

• Camión Kenworth 18 [t]

Figura 4.16 Camión Kenworth 18 t

Tabla 4.7 Ejes del camión Kenworth 18 t

Kenworth 18 (T3-S2)						
Cargas	x [m]	X [m]	Factor	P [t]		
1	0	0	0.14	2.52		
2	4.09	4.09	0.215	3.87		
3	1.35	5.44	0.215	3.87		
4	9.24	14.68	0.215	3.87		
5	1.26	15.94	0.215	3.87		
$\Sigma =$	15.94		1	18		

• Camión Dina 20 [t]

Figura 4.17 Camión Dina 20 t

Dina 20 (T3-S2)						
Cargas	x [m]	X [m]	Factor	P [t]		
1	0	0	0.12	2.40		
2	4.49	4.49	0.20	3.90		
3	1.3	5.79	0.20	3.90		
4	6.07	11.86	0.16	3.27		
5	1.28	13.14	0.16	3.27		
6	1.32	14.46	0.16	3.27		
$\Sigma =$	14.46		1.00	20		

Tabla 4.8 Ejes del camión Dina 20 t

• Ferrocarril Canadian Pacific GE AC 4400CW 190 [t]

Figura 4.18 Locomotora Canadian Pacific 9703

Ferrocarril 190						
Cargas	x [m]	X [m]	Factor	P [t]		
1	0.00	0.00	0.17	31.67		
2	2.00	2.00	0.17	31.67		
3	2.00	4.00	0.17	31.67		
4	9.70	13.70	0.17	31.67		
5	2.00	15.70	0.17	31.67		
6	2.00	17.70	0.17	31.67		
Σ	17.70		1.00	190.00		

Tabla 4.9 Ejes de la Locomotora Canadian Pacific

- Vagones de carga:
 - Carro tanque 110 [t]

Figura 4.19 Ejemplo de carro tanque

• **Furgón 90 [t]**

Figura 4.20 Ejemplo de furgón

• Tolva 120 [t]

Figura 4.21 Ejemplo de tolva

4.2.2.1. Pruebas de carga estática

Las pruebas estáticas consistieron en la obtención de esfuerzos en los elementos instrumentados ante los efectos de diversos camiones o ferrocarril que se detuvieron en la parte central del claro del puente. Estas configuraciones de carga se ilustran en las *figuras 4.22, 4.23, 4.24, 4.25, 4.26. y 4.27*.

Figura 4.22 Posición de prueba E1

Figura 4.23 Posición de prueba E2

Figura 4.24 Posición de prueba E3

	- 13 53	13-5 2	-53	

Figura 4.25 Posición de prueba E4

Figura 4.26 Posición de prueba E5

Figura 4.27 Prueba de carga estática E5 [13]

4.2.2.1.1. Calibración del modelo ante pruebas de carga estáticas

En el modelo matemático se replicaron las pruebas de carga estáticas esquematizadas en el inciso anterior, con la finalidad de realizar la comparación de resultados obtenidos en campo verificando la validez del modelo.

• Esfuerzos y deflexión máxima determinados en base a mediciones en campo:

	Prueba	E 1	E2	E3	E4	E5
V	Elemento #	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2
RA	2	-49.94	-94.84	-120.26	-130.36	-80.96
5	4	55.90	108.39	139.92	152.12	87.06
AI	28	-61.80	-116.17	-155.15	-171.11	-104.11
Z	29	-80.34	-141.44	-162.03	-177.19	-98.60
AF	30	-74.48	-132.55	-133.07	-156.58	-92.47
	31	-84.55	-149.40	-164.75	-180.69	-106.50

 Tabla 4.10 Esfuerzos axiales en elementos de la armadura A determinados por mediciones [13]

Tabla 4.11 Esfuerzos axiales en elementos de la armadura B determinados por mediciones [13]

	Prueba	E 1	E2	E3	E4	E5
B	Elemento #	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2
RA	2	-	-	-	-	-
DC	4	-	-	-	-	-
I	28	-	-	-	-	-
M	29	-25.09	-46.01	-42.24	-48.53	-174.42
AF	30	-8.20	-36.28	-59.82	-55.18	-231.16
	31	-6.20	-28.73	-52.27	-50.14	-172.92

Tabla 4.12 Deflexión máxima en centro del claro determinado en campo [13]

Prueba	E1	E2	E3	E4	E5
Def. máx. [cm]	0.8	1.3	1.5	2.7	1.9

• Esfuerzos y deflexión máxima determinados del modelo matemático:

	Prueba	E1	E2	E3	E4	E5
A	Elemento #	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2
RA	2	-71.27	-103.35	-132.18	-142.59	-80.19
DO	4	80.97	117.91	154.16	166.08	98.97
AL	28	-63.19	-92.01	-118.99	-128.25	-76.53
M	29	-85.44	-124.51	-137.88	-202.99	-121.96
AF	30	-85.50	-124.59	-137.82	-202.96	-121.93
	31	-69.56	-104.73	-111.60	-135.09	-79.36

Tabla 4.13 Esfuerzos axiales en elementos de la armadura A determinados por el modelo

Tabla 4.14 Esfuerzos axiales en elementos de la armadura B determinados por el modelo

	Prueba	E 1	E2	E3	E4	E5
B	Elemento #	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2
RA	2	-19.93	-41.17	-48.98	-57.02	-255.00
5	4	25.26	50.65	60.50	69.83	296.14
I	28	-12.07	-24.84	-28.93	-33.70	-153.16
Ŋ	29	-23.33	-47.37	-48.80	-58.86	-243.03
AF	30	-23.35	-47.42	-48.77	-58.85	-243.02
	31	-14.20	-30.03	-27.58	-39.03	-147.40

Tabla 4.15 Deflexión máxima en centro del claro determinado en el modelo

Prueba	E1	E2	E3	E4	E5
Def. máx. [cm]	0.65	0.96	1.08	1.2	2.07

• Determinación de errores relativos para verificación del modelo matemático ante pruebas de carga estáticas.

	Prueba	E1	E2	E3	E4	E5
A	Elemento #	%	%	%	%	%
RA	2	-	8.97	9.92	9.38	0.95
٦ <u></u>	4	-	8.78	10.17	9.18	13.68
I	28	2.26	20.80	23.30	25.05	26.49
Ŋ	29	6.35	11.97	14.90	14.56	23.69
AF	30	14.79	6.00	3.57	29.62	31.87
	31	17.73	29.90	32.27	25.23	25.48

	Prueba	E1	E2	E3	E4	E5
В	Elemento #	%	%	%	%	%
RA	2	-	-	-	-	-
5	4	-	-	-	-	-
IAI	28	-	-	-	-	-
N.	29	7.01	2.96	15.52	21.28	39.34
Ν	30	-	30.71	18.47	6.66	5.13
	31	-	4.52	47.24	22.16	14.76

Tabla 4.17 Errores relativos determinados para elementos de la armadura B

Tabla 4.18 Errores relativos determinados de deflexión máxima

Prueba	E 1	E2	E3	E4	E5
Error Rel. [%]	18.75	26.15	28.00	55.56	8.95

Análisis:

En la tabla 4.17 se puede apreciar los errores relativos resultantes de comparar los esfuerzos determinados en campo y del modelo matemático que varían aproximadamente entre el 2% y el 40%.

En las pruebas de carga en el que actúan menor cantidad de vehículos se observa una mejor aproximación que el caso en el que actúan más vehículos, esto es debido a que la posición y carga por eje exacta de los vehículos en el momento de la prueba son desconocidos. Sin embargo, con la finalidad de reproducir con mayor certeza en el modelo las pruebas realizadas en campo, se ha asignado una porción del peso total del vehículo a cada eje según el tipo de camión, como se observa en el inciso 4.2.2 y se consideró varias posibilidades de localización de los vehículos.

Algunos valores de los registros de mediciones en campo no se disponen o son incongruentes y por lo tanto no se tomaron en consideración.

A pesar de que se dispone de una información aproximada, a partir del modelo se ha podido obtener valores de esfuerzos y deflexiones muy semejantes a los resultantes de medición en campo pudiendo concluir que el modelo está calibrado ante las pruebas de carga estática.

4.2.2.2. Pruebas de carga dinámica

Las pruebas de carga dinámica se detallan en el informe de referencia [13] y éstas consistieron en la obtención de registros tiempo-esfuerzo en los elementos instrumentados durante el lapso en el que una carga transita a lo largo del puente a una velocidad determinada.

- La prueba D1 consistió en hacer pasar un camión a una velocidad constante aproximada de 20 km/h en el carril de la armadura A en dirección Coatzacoalcos, con el camión (T3-S3) Kenworth 53 t.
- La prueba D3, consistió en hacer pasar un tren de cargas ferroviarias conformadas por locomotora, furgón, carro tanque y una tolva en dirección Coatzacoalcos con una velocidad aproximada de 20km/h.

De los datos obtenidos se registraron las amplitudes de esfuerzos axiales máximos en la zona de instrumentación de los elementos. [13]

Figura 4.28 Prueba de carga dinámica D1 [13]

4.2.2.2.1. Calibración del modelo matemático ante pruebas de carga dinámicas

A partir de los datos resultantes del monitoreo de esfuerzos durante el tiempo transcurso de cada prueba de carga dinámica, se registraron valores máximos de amplitudes de esfuerzo en los elementos de análisis. Estos valores se comparan con los rangos máximos obtenidos de un análisis dinámico realizado con el software de análisis de puentes. Al reproducir el paso de los vehículos a una velocidad aproximada de 20km/h, se obtiene una base de datos TIME-HISTORY de cada elemento.

Mediante la exportación de datos a una hoja de cálculo se obtienen graficas tiempo-esfuerzo de cada elemento, permitiendo realizar un análisis comparativo del comportamiento de cada uno de los elementos.

• Amplitudes máximas de esfuerzos obtenidas de medición en campo:

Tabla 4.19 Esfuerzos axiales en elementos de la armadura A determinados por mediciones [13]

	Prueba	D1	D3
A	Elemento #	kg/cm2	kg/cm2
RA	2	-71.40	-105.00
DO.	4	79.80	105.00
AI	28	-88.20	-153.30
ARM	29	-84.00	-203.70
	30	-84.00	-210.00
	31	-79.80	-153.00

Tabla 4.20 Esfuerzos axiales en elementos de la armadura B determinados por mediciones [13]

	Prueba	D1	D3
8	Elemento		
A J	#	kg/cm2	kg/cm2
UR	2	-12.6	-401.1
DI	4	25.2	382.2
MA	28	_	_
R	29	-23.10	-378.00
A	30	-14.70	-441.00
	31	-18.90	-420.00

• Amplitudes máximas de esfuerzos obtenidas del análisis paso a paso del modelo matemático.

Tabla 4.21 Esfuerzos axiales en elementos de la armadura A determinados por el modelo

	Prueba	D1	D3
V	Elemento #	kg/cm2	kg/cm2
RA	2	-110.11	-148.36
5	4	106.92	131.80
I	28	-83.01	-115.28
Ŋ	29	-83.39	-118.92
AF	30	-83.39	-118.93
	31	-82.84	-115.54

	Prueba	D1	D3
В	Elemento #	kg/cm2	kg/cm2
RA	2	-23.54	-518.17
DO	4	24.66	453.33
II	28	-	
M	29	-18.23	-333.65
AF	30	-18.24	-333.63
	31	-11.76	-234.21

Tabla 4.22 Esfuerzos axiales en elementos de la armadura B determinados por el modelo

• Determinación de errores relativos para verificación del modelo matemático ante pruebas de carga dinámicas

Tabla 4.23 Errores relativos determinados para elementos de la armadura A

	Prueba	D1	D3
A	Elemento #	%	%
RA	2	-	-
5	4	33.98	25.52
AI	28	5.88	24.80
M	29	0.73	41.62
AF	30	0.73	43.37
	31	3.81	24.48

Tabla 4.24 Errores relativos determinados para elementos de la armadura B

	Prueba	D1	D3
B	Elemento #	%	%
RA	2	-	29.19
DC	4	2.14	18.61
IV	28	-	-
Z	29	21.08	11.73
AF	30	24.08	24.35
	31	37.78	44.24

Análisis:

En la tabla 4.23 y 4.24 se puede apreciar los errores relativos resultantes de comparar los esfuerzos determinados en campo y del modelo matemático que varían aproximadamente entre el 1% y el 45%.

El error determinado se puede ver influenciado por las variaciones de velocidad que se dieron en la realidad, además de que no se conoce la trayectoria y cargas exactas. Sin embargo, se obtienen valores muy semejantes a los determinados en campo pudiendo concluir que el modelo está calibrado ante las pruebas de carga dinámica.

CAPÍTULO 5

5. ANÁLISIS POR FATIGA

El análisis por fatiga en el tramo de armadura metálica del puente Coatzacoalcos I, se realizó mediante una revisión del diseño a fatiga del puente utilizando la normativa AASHTO, y la evaluación de la estructura ante las solicitaciones reales, mediante recomendaciones de evaluación de puentes propuestos por AASHTO (MBE) y por el reporte 721 NCHRP. Para el caso del análisis de acciones del ferrocarril se considerarán las recomendaciones AREMA.

5.1. CARGA VEHICULAR DE FATIGA

El modelo de carga para el análisis por fatiga será el camión de fatiga propuesto por AASHTO (artículo 3.6.1.2.2) con una separación constante de 9 metros entre los ejes posteriores, tal como se especifica en esta norma.

Figura 5.1 Camión de fatiga AASHTO

Como se mencionó anteriormente, el reporte 721 NCHRP "National Cooperative Highway Research Program. (2012). Fatigue Evaluation of Steel Bridges" presenta un análisis para la validación del camión de fatiga propuesto por AASHTO mediante un estudio WIM, (Peso en Movimiento) realizado en distintos puentes de EEUU, en el que no se consideró factible la modificación de este modelo.

En la realidad, en México, se presentan diferencias en la configuración de cargas vehiculares y se requeriría un análisis WIM, para realizar una evaluación similar a la presentada en el reporte 721 NCHRP, para la validación del modelo AASHTO o proponer un nuevo modelo para el caso en específico.

Sin embargo, de lo reportado en 721 NCHRP se deduce que a pesar de comparaciones para diferentes puentes no se define claramente un mejor modelo para el daño. En esta tesis se asume el modelo propuesto por AASHTO para el análisis por fatiga en el puente Coatzacoalcos I.

5.1.1. Factor de incremento por carga dinámica

A la carga vehicular de fatiga en el análisis estático se le deberá aplicar el incremento por carga dinámica como se especifica AASHTO (artículo 3.6.2.)

Componente	IM	
Juntas del tablero-todos los	75%	
estados límites	13%	
Todos los demás componentes:		
Estado límite de fatiga y fractura	15%	
Todos los demás estados límites	33%	

Tabla 5.1 Incremento por carga dinámica

5.2. FRECUENCIA DEL TRÁFICO VEHICULAR

Para realizar el análisis por fatiga es necesario determinar la frecuencia de la carga vehicular de fatiga, considerada como el tráfico medio diario de camiones en un solo carril (ADTT)SL "Average Daily Truck Traffic" AASHTO (artículo 3.6.1.2.2). Este valor se tomará del carril con mayor tráfico (generalmente el carril de mayor número de tráfico de camiones es el del lado de la banqueta) y se considerará éste para todos los carriles, debido a que los patrones de tráfico futuro son inciertos.

En caso de desconocer el promedio diario de camiones, la norma propone tomar un porcentaje del promedio diario de vehículos (ADT) "Average daily traffic" el mismo que está físicamente limitado a un aproximado de 20000 vehículos por carril y por día. AASHTO (artículo C3.6.1.4.2)

Tipo de Carretera	Fracción de camiones en el tráfico
Rural interestatal	0.20
Urbana interestatal	0.15
Otras rurales	0.15
otras urbanas	0.10

Tabla 5.2 Fracción de camiones en el tráfico [6]

AASHTO (C.3.6.1.4)

$$ADT_{Max} = 20000 \ vehiculos$$

$$ADTT = ADT * C1 \tag{5.1}$$

AASHTO (3.6.1.4.2-1)
$$(ADTT)_{SL} = p * ADTT$$
 (5.2)

Donde:

ADTT = Número de camiones por día en una dirección, promediado sobre el período de diseño $ADTT_{SL}$ = Número de camiones por día en un único carril, promediado sobre el período de diseño p = Valor especificado en la Tabla 5.3 AASHTO (capítulo 3.6.1.4.2-1)

Número de carriles disponibles para camiones	р
1	1.00
2	0.85
3 o mas	0.80

Tabla 5.3 Fracción de tránsito de camiones en un único carril [6]

5.2.1. Análisis de tráfico en el puente Coatzacoalcos I

En la base de datos viales de la Subsecretaría de Infraestructura, de la Secretaria de Comunicaciones y Transportes (SCT) se realiza la operación de un sistema de conteo vehicular, donde se pueden conocer los volúmenes anuales y la clasificación del tráfico. Estos datos se encuentran recopilados a través del libro Datos Viales[web].

Para el caso del puente Coatzacoalcos I se consideran los datos registrados en la caseta de cobro localizada antes del ingreso al puente, recopilados a partir del año 2003 para definir el tráfico promedio diario (*tabla 5.4.*)

Año	TDPA	Μ	Α	B	C2	C3	T3-S2	T3-S3	T3-S2-R4	OTROS	Total de
											Camiones
	#	%	%	%	%	%	%	%	%	%	%
2003	17585		79	8.7	4.2	3.2	2.1	1.2	0.5	1.1	12.3
2004	18950		73.3	8.2	7.4	3.8	3.7	1.7	0.1	1.8	18.5
2005	19424		71.9	9.6	7.9	3.9	3.1	1.7	0	1.9	18.5
2006	18997		71.6	9.1	8	3.7	2.8	2	1.5	1.3	19.3
2007	12508		69.9	5.3	3.5	1	6.1	3	7.7	3.5	24.8
2008	13743		71.8	4	3.2	0.9	6	2.9	7.7	3.5	24.2
2009	13721		71.9	4.4	4.8	1.5	5.6	2.8	6.9	2.1	23.7
2010	15542		79.8	3.9	5.9	3.1	3.6	1.3	2	0.4	16.3
2011	15991	1.3	81.4	5.3	4.6	2.8	1.4	1.9	0.8	0.5	12
2012	16246	1.3	80.8	5.3	4.1	2.5	2.3	1.8	0.9	1	12.6
2013	17731	1.3	80.6	5.4	4	2.5	2.3	1.8	1	1.1	12.7
2014	18671	1.3	80.6	5.4	4	2.5	2.3	1.8	1	1.1	12.7
2015	19808	1.2	84.3	2.9	8.8	1.7	0.2	0.7	0.1	0.1	11.6

 Tabla 5.4 Registros de tráfico del puente Coatzacoalcos I [SCT]

TDPA: Tráfico diario promedio anual registrado en el punto generador.

Tabla 5.5 Descripción de términos de los registros del tráfico	SCT	1
--	-----	---

Tipo de Vehículo	Descripción
Μ	Motos
Α	Automóviles
В	Autobuses
C2	Camiones unitarios de 2 ejes.
C3	Camiones unitarios de 3 ejes.
T3S2	Tractor de 3 ejes con semirremolque de 2 ejes.
T3S3	Tractor de 3 ejes con semirremolque de 3 ejes.
T3S2R4	Tractor de 3 ejes con semirremolque de 2 ejes y remolque de 4 ejes.
Otros:	Considera otro tipo de combinaciones de camiones de carga.

Figura 5.2 Grafica de TDPA en el puente Coatzacoalcos I

En la *figura 5.2* se puede observar un crecimiento lineal en los últimos años con una tasa de crecimiento de aproximadamente 8.78%, sin embargo, se llega a un valor de saturación cercano a los 20000 vehículos por carril por día, valor similar al especificado en AASHTO (artículo C3.6.1.4.2). Para casos en los que se desconoce la tasa de crecimiento se han recomendado las siguientes tasas de crecimiento de acuerdo con Cemex [web].

	Tasa de crecimiento
Caso	[%]
Crecimiento normal	1 a 3
Vías completamente saturadas	0 a 1
Con tráfico inducido*	4 a 5
Alto crecimiento*	mayor a 5
	*aalamanta da 2 a 5 añoa

Tabla 5.6 Tasas de crecimiento vehicular

Para poder definir una tasa de crecimiento (g) mediante el concepto de estimación de tráfico futuro, considerando un periodo de diseño de 75 años de los cuales lleva 2 años ya en funcionamiento, y que el valor de saturación es de 20000 vehículos por carril por día se tiene:

$$Vf = Vo(1+g)^n \tag{5.3}$$

$$\sqrt[n]{\frac{Vf}{Vo}} - 1 = g \tag{5.4}$$

^{*}solamente de 3 a 5 años

$$g = \left(\sqrt[73]{\frac{20000}{19808}} - 1\right)$$

$$g = 0.013\%$$

Donde:

Vf= Volumen proyectado

Vo=Volumen de tráfico de periodo inicial igual al TDPA

g = Tasa de crecimiento anual

n= Número de años de proyección

El tráfico promedio diario de camiones en un carril se calcula de acuerdo a AASHTO (artículo 3.6.1.2.4):

$$ADTT_{SL} = ADT * C1 * p \tag{5.5}$$

Tabla 5.7 Cálculo de ADTT_{SL}

ADT (Tráfico promedio diario)	19808
C1 (Fracción de camiones)	0.1646
ADTT (Número de camiones diarios)	3260.397
P (Factor de carriles)	1
ADTT SL (Número de camiones en un carril)	3260

5.3. VELOCIDAD DEL TRÁFICO VEHICULAR

De manera similar, a partir de la base de datos viales de la Subsecretaria de Infraestructura, de la Secretaría de Comunicaciones y Transportes (SCT), en la estación de la caseta de cobro del puente Coatzacoalcos I, se registraron velocidades promedio cercanas a **65km/h**, por lo que se adopta esta velocidad para el análisis dinámico.

Velocidad vehicular [km/h] 65

5.4. CARGA FERROVIARIA DE FATIGA

La determinación de un modelo para el análisis por fatiga, en puentes de ferrocarril, resulta más complejo. En el manual AREMA 2008 se proponen dos tipos modelos. El modelo de tren de carga se compone de varias partes, incluyendo la carga estática del tren y el efecto dinámico debido al movimiento. El esquema de carga estándar Cooper-E-Series fue incorporado por AREMA.

a) Modelo Cooper E80 truncado

El modelo es similar al modelo de ferrocarril Cooper E-80, pero sin la carga distribuida en su parte posterior de 8000 lb/ft, debido a que esta no proporciona cambios en los esfuerzos. Éste modelo rige para puentes de claro largo [35] (Inciso 5.3.2.2.2.1). Se puede observar el modelo en la siguiente figura, con carga por eje en libras y distancias entre ejes en pies.

Figura 5.3 Modelo de carga de fatiga Cooper E-80 [25]

b) Modelo de carga alternativa

Está compuesta de cuatro ejes de 10000 Lb, un 25% mayor a la carga por eje del modelo Cooper E80. Este modelo simula el acople de los carros típicos de 4 ejes; con él se inducen momentos y cortantes mayores que con el modelo Cooper E-80 en puentes de claro corto. El modelo alternativo produce aproximadamente un momento 25% más grande que el modelo Cooper E-80, por tal motivo este modelo rige para claros cortos.

A continuación, se observa el modelo de carga alternativo, en el que se indica la carga por eje en libras y distancia entre ejes en pies.

Figura 5.4 Modelo de carga de fatiga alternativo

5.4.1. Efecto por carga dinámica

De manera similar al análisis para cargas vehiculares, el impacto en el manual AREMA se considera que el efecto dinámico es una porción de la respuesta estática:

$$LE_D = I_F * [LE_S] \tag{5.6}$$

Donde:

 LE_D = Efecto por carga dinámica LE_S = Efecto máximo de carga estática I_F = Factor de impacto

El factor de impacto se determina tomando en cuenta los efectos de fuerzas oscilantes, provocadas por fuerzas perpendiculares al tren provocado por viento y variaciones en el riel entre otros.

$$I_F = RE + I_V \tag{5.7}$$

Donde:

RE=Efectos debidos a fuerza oscilante I_V =Efectos debidos a fuerzas verticales

El manual AREMA determina RE como un porcentaje de la carga viva vertical independiente de la velocidad.

Con Ly en pies: $RE = \frac{100}{Ly}$ (5.8)

Figura 5.5 Efecto oscilatorio

$$Ly = 2 m = 6.56 ft$$

 $RE = \frac{100}{6.56} = 15.24\%$

Para claros de más de 80 pies, con locomotoras con golpe gradual de martillo (eléctricas, diésel).

$$I_V = 16 + \frac{600}{L - 30} \tag{5.9}$$

Con L en pies:

L = 66 m = 216.54 ft

$$I_V = 16 + \frac{600}{216.54 - 30} = 19.22\%$$

Por lo tanto:

$$I_F = RE + I_V = 15.24 + 19.22 = 34.46\%$$

Para el caso del análisis de fatiga se debe considerar una reducción en el factor de impacto como se determina en AREMA.

Tabla 5.8 Porcentaje de impacto para fatiga [25]

Mean Impact Loads for Fatigue Design

Member	Percentage of Total Impact Load
Beams (stringers, floorbeams) and girders	35
Members with loaded lengths less than or	65
equal to 10 ft and no load sharing	
capabilities	
Truss members (except hangers)	65
Hangers in through trusses	40

Por lo tanto:

 $65\% * I_F = (0.65 * 34.46) = 22.4\%$

 $I_F = 22.4\%$

5.5. FRECUENCIA DE TRÁFICO FERROVIARIO

5.5.1. Análisis de tráfico ferroviario en el puente Coatzacoalcos I

Debido a que no se ha podido obtener información estadística detallada del tráfico de ferrocarriles sobre el puente Coatzacoalcos I, se utilizará un valor estimado de número de trenes promedio diario. El manual AREMA, propone considerar un tránsito de 60 trenes por día, sin embargo, el tránsito de trenes en el puente Coatzacoalcos es mucho menor.

ADTT' (Average Daily Train Traffic)	5
-------------------------------------	---

Tomando en cuenta los datos estadísticos de SCT, se asumió un valor promedio de la tasa de crecimiento del equipo ferroviario basados en los datos del equipo de transporte total ferroviario en México.

Tabla 5.9 Evolución del equipo de transporte en México [SCT]

				Eve	olución d	el equipo) de trans	sporte en	México			
oorte	1000	400.	• • • • •	• • • • •	• • • •	••••	• • • •		• • • • •	••••	• • • •	• • • •

Evolución del equipo de transporte en México														
Transporte Ferroviario	1993	1995	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Vagones Pasajeros	699	431	135	40	40	41	41	39	44	57	130	130	120	120
Carros de														
Carga	-	-	-	30058	30780	31702	32388	34819	32013	31227	31845	27924	28565	30658
Locomotoras	_	-	-	1365	1302	1269	1209	1199	1245	1178	1177	1160	1212	1236

Fuente: Manual estadístico del sector transporte 2013 IMT, SCT. [web]

Calculando la tasa de crecimiento promedio con la ecuación:

$$\sqrt[n]{\frac{Vf}{Vo}} - 1 = g \tag{5.4}$$

$$g(Vagones \ de \ pasajeros) = \left(\sqrt[18]{\frac{120}{699}} - 1\right) * 100 = -9.33\%$$

$$g(carros \ de \ carga) = \left(\sqrt[10]{\frac{30658}{30058}} - 1\right) * 100 = 0.2\%$$

$$g(Locomotoras) = \left(\sqrt[18]{\frac{1236}{1365}} - 1\right) * 100 = -1\%$$

Como se observa, para el caso de vagones de transporte de pasajeros y locomotoras ha habido un descenso en el equipo ferroviario, mientras que para carros de carga existe un aumento con una tasa del 0.2%, siendo éste el tipo de equipo que predomina en el número total de equipos ferroviarios, se asumirá este último valor para el análisis de tráfico ferroviario.

$$g(Ferroviario) = 0.2\%$$

Número de ciclos n

En el manual AREMA se recomienda tomar en cuenta los siguientes valores de n, para el análisis de ciclos de esfuerzos ante el paso de trenes.

Tabla 5.10 Número	de	ciclos	por	paso	del	tren	[25]
-------------------	----	--------	-----	------	-----	------	------

Variable Amplitude Stress Range Cycles per Train

Span Length, L (ft)	Variable Amplitude Stress Range Cycles per Train	Total Variable Amplitude Stress Range Cycles, <i>N</i> v
L > 100	3	$5.3 imes 10^6$
100 >= L > 75	6	10.5×10^{6}
75 >= L > 50	55	96.3×10^{6}
50 >= L	110	192.5×10^{6}

5.6. VELOCIDAD DEL TRÁFICO FERROCARROVIARIO

Para el análisis se ha considerado una velocidad promedio entre 20 y 30 km/h

Velocidad ferrocarril [km/h] 30

5.7. CATEGORIZACIÓN DE DETALLES ESTRUCTURALES DEL PUENTE

Para la categorización de cada uno de los detalles estructurales críticos del elemento de análisis procedemos de la siguiente manera:

- Identificación de los tipos de detalles estructurales que posee el elemento de análisis.
- Determinación de los puntos críticos correspondientes a cada detalle estructural. (Puntos donde los esfuerzos son mayores)
- Categorización de cada uno de los detalles estructurales del elemento mediante las tablas ASIC [7] o AASHTO LRFD [6].
- Selección del detalle estructural crítico del elemento o conexión, en este caso se toma el detalle estructural de menor categoría es decir de menor resistencia a la fatiga.

5.7.1. Elementos sujetos principalmente a esfuerzos axiales

• Cuerdas inferiores de la armadura

Este elemento está constituido por un perfil IR 356x196.5, que no tiene soldaduras en su longitud. La sección crítica se considera en la zona de nodo de la armadura, en donde existe soldadura entre la placa del nudo y el patín del elemento.

Identificación de detalles estructurales:

Determinación de puntos críticos:

Figura 5.6 Categorización de la cuerda inferior de la armadura

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 3.5	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos.	F	En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta anchas
		Espesor de ala > 20 mm	E'	
Punto a	Tipo 3.6	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más anchas que el ala sin soldaduras cruzando los extremos	Е	En el borde del ala en el extremo de la soldadura de placa de cubierta.
Punto a	Tipo 3.2	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, sin remoción de las barras de soporte, por soldadura de filete de penetración parcial	В'	Desde la superficie o discontinuidades internas en la soldadura, incluyendo soldadura que une barras de soporte

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

Debido a que el espesor de patín es mayor a 20mm para un detalle de tipo 3.5, se categoriza éste como E^{2} .

Detalle categoría, punto a E'

• Rigidizadores superiores horizontales de las armaduras

Este elemento está constituido por un perfil IR 406x114.5, que no tiene soldaduras en su longitud. La sección crítica se considera en la zona de soldadura con la placa del nodo; el perfil se une perpendicularmente a la placa del nudo, y las zonas de soldadura se consideran como detalle tipo 5.5 o 5.6.

Identificación de detalles estructurales:

Determinación de puntos críticos:

Figura 5.7 Categorización de rigidizadores superiores de las armaduras

Categorización de los detalles estructurales:

Localización		Descripción		Punto potencial de inicio de fractura
		Metal base y metal de		
		soldadura en conexiones		Iniciándose de
		transversales de extremos		discontinuidad
		de elementos tipo placa		geométrica al pie
		cargados en tracción		de soldadura
		usando uniones de tope de		extendiéndose
		penetración parcial T o de		hacia el metal base
Punto a	Tipo	esquina con torno, Fsr debe		o iniciándose en la
i unto a	5.5	ser menor entre el rango de		raíz de soldadura
		tensión del agrietamiento		sujeta a tracción
		de pie tope o el		extendiéndose
		agrietamiento de raíz		hacia arriba y
		Grieta iniciándose desde	C	luego hacia afuera
		pie de soldadura	C	a través de la
		Grieta iniciándose desde	C	soldadura
		raíz de soldadura	C	
		Metal base y metal de		
		relleno en conexiones		Iniciándose de
		transversales de extremos		discontinuidad
		de elementos tipo placa		geométrica al pie
		cargados en tracción		de soldadura
		usando un par de		extendiéndose
		soldaduras de filete en		hacia el metal base
Dunta	Tipo	lados opuestos a la placa,		o iniciándose en la
Punto a	5.6	Fsr debe ser menor entre el		raíz de soldadura
		rango de tensión del		sujeta a tracción
		agrietamiento de pie tope o		extendiéndose
		el agrietamiento de raíz		hacia arriba y
		Grieta iniciándose desde pie	C	luego hacia afuera
		de soldadura	C	a través de la
		Grieta iniciándose desde		soldadura
		raíz de soldadura	C'	

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

Tanto en el tipo de detalle 5.5 y 5.6, se tienen las categorías C y C' cuya selección depende de donde se pueda iniciar la fisura, considerando que la categoría C es la más crítica.

Detalle categoría, punto a C

• Rigidizadores del sistema de piso vehicular

Estos elementos están conformados por perfiles WT 6X20 y canales CE 12X20.7, que no tienen soldadura en su longitud, aunque en sus partes extremas se encuentran unidos a placas mediante pernos colocados en las alas de la sección T invertida y en el alma en el caso de los perfiles canal.

Identificación de detalles estructurales:

Determinación de puntos críticos:

Figura 5.8 Categorización de rigidizadores del sistema de piso vehicular

Figura 5.9 Detalle de unión de los rigidizadores del sistema de piso vehicular

Categorización de los detalles estructurales:

Localización	Descripción		Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 2.1	Área bruta del metal base en juntas de traslape conectadas con pernos de alta resistencia en uniones que satisfacen todos los requerimientos para conexiones de deslizamiento crítico	В	A través del área bruta cercana al agujero
Punto a	Tipo 2.2	Metal base en el área neta de uniones apernadas de alta resistencia diseñadas en base a resistencia de contacto, pero fabricadas e instaladas conforme a los requerimientos para conexiones de desplazamiento crítico	В	En área neta originándose en el lado del agujero.

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

Tanto en el tipo de detalle 2.1 y 2.2 que son los posibles casos tienen categoría B, por lo tanto, se define así la categoría de este detalle estructural.

Detalle categoría, punto a B
• Rigidizadores del sistema de piso del ferrocarril

Estos elementos están conformados por perfiles tipo L 127X10, que no tienen soldaduras en su longitud, aunque se encuentran soldados en sus extremos a placas.

Identificación de detalles estructurales:

Determinación de puntos críticos:

Figura 5.10 Categorización de rigidizadores del sistema de piso ferroviario

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 4.1	Metal base en empalme de miembros cargados axialmente con conexiones de extremo soldadas longitudinalmente. Las soldaduras deben ser en cada lado del eje del miembro para balancear las tensiones en la soldadura	E	Iniciándose desde el extremo de cualquier terminación de soldadura extendiéndose hacia el metal base
		t <= 20mm	E	
		t > 20mm	E'	

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

Este detalle es de tipo 4.1 y se define como categoría E debido a que el espesor del patín es menor a 20mm.

Detalle categoría, punto a E

5.7.2. Elementos sujetos principalmente a esfuerzos de flexión

• Vigas transversales

Estos elementos están compuestos por un perfil I soldado, que a lo largo de su longitud tiene diferentes reforzamientos soldados, por tal motivo se divide este elemento en 5 secciones transversales de análisis, tal como se construyó el modelo con base al puente existente. En los extremos estas vigas se unen a las placas de los nudos de la armadura.

Identificación de detalles estructurales:

Figura 5.11 Detalle longitudinal de la viga transversal

• Viga transversal sección 1

Esta sección está compuesta por una sección I armada, tiene como reforzamientos placas soldadas en la parte interna de los patines.

Determinación de puntos críticos:

Figura 5.12 Categorización de la sección transversal 1

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 5.5	Metal base y metal de soldadura en conexiones transversales de extremos de elementos tipo placa cargados en tracción usando uniones de tope de penetración parcial T o de esquina con torno, Fsr debe ser menor entre el rango de tensión del agrietamiento de pie tope o el agrietamiento de raíz Grieta iniciándose desde pie de soldadura Grieta iniciándose desde raíz de	C C'	Iniciándose de discontinuidad geométrica al pie de soldadura extendiéndose hacia el metal base o iniciándose en la raíz de soldadura sujeta a tracción extendiéndose hacia arriba y luego hacia afuera a través de la soldadura
Punto b	Tipo 3.1	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	В	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.
Punto c	Tipo 3.5	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor de ala <= 20mm	E	En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta anchas
		Espesor de ala > 20 mm	E'	

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

Este detalle estructural se considera como tipo 3.5 por ser el más crítico, y debido a que el patín es mayor a 20mm el detalle estructural se define con categoría E'.

Detalle categoría, Punto c	E'
Distancia del punto c [cm]	51.96

• Viga transversal sección 2

Esta sección, además de las placas soldadas en el interior de los patines, se tiene una placa soldada en la parte exterior de los patines.

Determinación de puntos críticos:

Figura 5.13 Categorización de la sección transversal 2

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a, c	Tipo 3.5	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor de ala <= 20mm	E	En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta anchas
		Espesor de ala > 20 mm	E'	
Punto b	Tipo 3.1	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	В	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

El tipo 3.5 para la localización del punto a, resulta ser más crítico por que se presentan mayores esfuerzos que en el punto c y considerando que el patín es mayor a 20mm se clasifica el detalle estructural como E'.

Detalle categoría, punto a, c	E'
Distancia del punto a [cm]	54.5

• Viga transversal sección 3

Esta sección es similar a la sección 2 pero con una placa de mayor espesor soldada en el exterior de los patines.

Figura 5.14 Categorización de la sección transversal 3

Categorización de los detalles estructurales:

Ya que el caso es similar a la sección transversal 2 la categoría del detalle estructural será el mismo.

Detalle categoría, punto a, c	E'
Distancia del punto a [cm]	54.5

• Viga transversal sección 3 reforzada

Esta sección está constituida por la sección 3 pero con placas laterales de reforzamiento soldadas en los lados de los patines, y se considera un punto adicional de análisis "d".

Identificación de detalles estructurales:

Figura 5.15 Categorización de la sección transversal 3 reforzada

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a, c	Tipo 3.5	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos.		En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta
		Espesor de ala <= 20mm	E	unenus
Punto b	Tipo 3.1	Espesor de ala > 20mm Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	B	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.
		Espesor de ala <= 20mm	E	
Punto d	Tipo 3.2	Espesor de ala > 20mm Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, sin remoción de las barras de soporte, por soldadura de filete de penetración parcial	B'	Desde la superficie o discontinuidades internas en la soldadura, incluyendo soldadura que une barras de soporte

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

En este detalle estructural el caso más crítico sigue siendo el tipo 3.5, y con un espesor de patín mayor a 20mm se obtiene una categoría E'.

Detalle categoría, punto a, c	E'
Distancia del punto a [cm]	54.5

• Viga transversal sección 2 reforzada

Esta sección está constituida por la sección 2 pero con placas laterales de reforzamiento soldadas en los lados de los patines y se considera un punto de análisis adicional "e".

Figura 5.16 Categorización de la sección transversal 2 reforzada

Categorización de los detalles estructurales:

Localización	Descripción		Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 5.5	Metal base y metal de soldadura en conexiones transversales de extremos de elementos tipo placa cargados en tracción usando uniones de tope de penetración parcial T o de esquina con torno, Fsr debe ser menor entre el rango de tensión del agrietamiento de pie tope o el agrietamiento de raíz Grieta iniciándose desde pie de soldadura Grieta iniciándose desde raíz de soldadura	C C'	Iniciándose de discontinuidad geométrica al pie de soldadura extendiéndose hacia el metal base o iniciándose en la raíz de soldadura sujeta a tracción extendiéndose hacia arriba y luego hacia afuera a través de la soldadura
Punto b, d	Tipo 3.5	Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor de ala <= 20mm Espesor de ala > 20mm	E E'	En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta anchas
Punto c	Tipo 3.1	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	В	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.
Punto e	Tipo 3.2	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, sin remoción de las barras de soporte, por soldadura de filete de penetración parcial	В'	Desde la superficie o discontinuidades internas en la soldadura, incluyendo soldadura que une barras de soporte

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

En este detalle estructural el caso más crítico es el tipo 3.5, y con un espesor de patín mayor a 20mm se obtiene una categoría E'.

Detalle categoría, punto b, d	E'
Distancia del punto b [cm]	54.5

• Largueros del cuerpo carretero

Estos elementos están conformados por vigas I armadas, es decir con soldadura en la zona de unión alma patín. Además, tienen placas soldadas para las conexiones de rigidizadores horizontales e inclinados, también tienen en sus extremos perforaciones en el alma para conectarse por medio de pernos con las vigas transversales.

Identificación de detalles estructurales:

Figura 5.17 Categorización de un larguero del sistema de piso vehicular

Categorización de los detalles estructurales:

Localización		Dosoringión	Categoría	Punto potencial de
Localizacion		Descripcion	de detalle	inicio de fractura
Punto a	Tipo 3.1	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	В	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.
Punto b	Tipo 1.3	Miembros con agujeros taladrados. Miembros con esquinas entrantes en rebajes, cortes, obstrucciones o discontinuidades geométricas hechas de acuerdo a los requerimientos del Anexo 3.5, excepto para agujeros de acceso para soldadura	В	En un borde externo o en el perímetro del agujero

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

En este detalle estructural para los puntos de análisis se tiene los tipos 3.1 y 1.3; en los dos casos se define con categoría B.

Detalle categoría, punto a B

• Canales de apoyo para rejilla estructural

Estos elementos están compuestos por perfiles canales que tienen perforaciones para conectarse mediante tornillos con los largueros del sistema de piso vehicular.

Identificación de detalles estructurales:

Figura 5.18 Categorización de elementos canal del sistema de piso vehicular

Categorización de los detalles estructurales:

Localización		Descripción		Punto potencial de inicio de fractura
Punto a	Tipo 2.1	Área bruta del metal base en juntas de traslape conectadas con pernos de alta resistencia en uniones que satisfacen todos los requerimientos para conexiones de deslizamiento crítico	В	A través del área bruta cercana al agujero
Punto a	Tipo 2.2	Metal base en el área neta de uniones apernadas de alta resistencia diseñadas en base a resistencia de contacto, pero fabricadas e instaladas conforme a los requerimientos para conexiones de desplazamiento crítico	В	En área neta originándose en el lado del agujero.

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

En este detalle estructural para los puntos de análisis se tiene los tipos 2.1 y 2.2; en los dos casos se define con categoría B.

Detalle categoría B

• Largueros del cuerpo ferroviario

Estos elementos están conformados por vigas I armadas con soldadura en la zona de unión alma patín, además están reforzadas por placas colocadas sobre los patines. En los extremos se conectan a las vigas transversales mediante soldadura.

Identificación de detalles estructurales:

Figura 5.19 Categorización de largueros del sistema de piso ferroviario

b

Categorización de los detalles estructurales:

Localización		Descripción	Categoría de detalle	Punto potencial de inicio de fractura
Punto a	Tipo 5.5	Metal base y metal de soldadura en conexiones transversales de extremos de elementos tipo placa cargados en tracción usando uniones de tope de penetración parcial T o de esquina con torno, Fsr debe ser menor entre el rango de tensión del agrietamiento de pie tope o el agrietamiento de raíz Grieta iniciándose desde pie de soldadura Grieta iniciándose desde raíz	C	Iniciándose de discontinuidad geométrica al pie de soldadura extendiéndose hacia el metal base o iniciándose en la raíz de soldadura sujeta a tracción extendiéndose hacia arriba y luego hacia afuera a través de la soldadura
Punto b	Tipo 3.5	de soldadura Metal base en extremos de placas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cruzando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor de ala <= 20mm Espesor de ala > 20mm	С' Е Е'	En el ala al pie de la soldadura de extremo o en el ala al término de soldadura longitudinal o en el borde del ala con placas de cubierta anchas
Punto c	Tipo 3.1	Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de penetración completa, rebajadas y soldadas nuevamente desde el segundo costado, o por soldaduras de filete continuas	В	Desde la superficie o discontinuidades internas en la soldadura alejada del extremo de soldadura.

Tabla de clasificación realizada con base en AISC [7]

Selección del detalle estructural crítico del elemento o conexión:

En este detalle estructural el caso más crítico es el tipo 3.5, y con un espesor de patín menor a 20mm se obtiene una categoría E.

Detalle categoría, Punto b E

CAPÍTULO 6

6. REVISIÓN DE DISEÑO ESTRUCTURAL POR FATIGA

Para la revisión del diseño por fatiga del puente se utilizará la normativa *AASHTO LRFD Bridge Design Specifications* (2012).

6.1. METODOLOGÍA

6.1.1. Determinación de posición del camión de fatiga

Como se menciona en AASHTO (artículo 3.6.1.4.3) se debe determinar la localización longitudinal y transversal en la cual se obtenga el máximo rango de tensiones en el detalle estructural considerado.

• Posición longitudinal

La posición longitudinal del camión que cause mayor daño, puede calcularse por medio un de análisis de líneas de influencia, y verificando la posición en la que se produce el momento máximo.

Cargas de ejes	X	P [t]	P.x
1	0	3.6	0
2	4.3	14.8	63.64
3	13.3	14.8	196.84
	$\Sigma =$	33.20	260.48

Tabla 6.1 Modelo de camión de fatiga

Posición de resultante	7.846	m	
Respecto al eje	2	3.546	m
Respecto al eje	3	5.454	m

Tabla 6.3 Reacciones ante la acción del camión de fatiga

S=	3.546	m
X=(L-S)/2=	31.227	m
R Izq. =	15.708	[t]
R Der. =	17.492	[t]

Tabla 6.4 Momento máximo debido a la acción del camión de fatiga

Momentos respecto al eje:				
2				
M R izq. =	490.5211	[t.m]		
M eje 1 =	-15.48	[t.m]		
M eje 2 =	0	[t.m]		
M máx.=	475.041	[t.m]		

Verificación mediante líneas de influencia:

X [m]	X1 [m]	M [t.m]
Longitud	Posición eje 1	
0	0	0
5	5	133.69
10	5.7	248.38
15	10.7	342.58
20	15.7	411.64
25	20.7	455.54
30	25.7	474.28
33	28.7	473.46
35	30.7	467.88
40	26.7	451.82
45	31.7	417.75
50	36.7	358.53
55	41.7	274.15
60	46.7	164.63
65	51.7	29.95
66	66	0
31.227	26.927	475.04

Tabla 6.5 Determinación del momento máximo mediante líneas de influencia ante el camión de fatiga

Figura 6.1 Diagrama envolvente de momento debido al paso del camión de fatiga

• Posición transversal

La posición transversal del vehículo afecta al rango de esfuerzos de cada detalle estructural, por tal motivo para el análisis de cada detalle se utilizará la posición que maximice el rango de tensiones como se especifica en AASHTO (artículo 4.6.1.4.3.). (Se consideran dos posiciones transversales del vehículo de fatiga: en el carril A o en el carril B)

6.1.2. Posición del tren de fatiga

• Posición longitudinal

De la misma manera, la posición longitudinal del tren de fatiga que cause mayor daño, puede calcularse por medio de análisis de líneas de influencia, y verificando la posición en la que se produce el momento máximo.

Cargas	X	P [t]	P.X
1	0	18.2	0
2	2.44	36.29	88.47
3	3.96	36.29	143.77
4	5.49	36.29	199.07
5	7.01	36.29	254.37
6	9.75	23.60	230.17
7	11.28	23.60	266.14
8	13.11	23.60	309.30
9	14.64	23.60	345.39
10	17.07	18.20	310.73
11	19.51	36.29	708.00
12	21.04	36.29	763.31
13	22.56	36.29	818.61
14	24.08	36.29	873.91
15	26.83	23.60	633.09
16	28.35	23.60	669.06
17	29.87	23.60	705.03
18	31.40	23.60	740.99
	$\Sigma =$	515.50	8059.41

Tabla 6.6 Modelo del tren de fatiga

Tabla 6.7 Posición de resultante del tren de fatiga

Posición de resulta	15.634	m	
Respecto al eje	9	0.999	m
Respecto al eje	10	1.439	m

Tabla 6.8 Reacciones ante la acción del tren de fatiga

S=	0.999	m
X=(L-S)/2=	32.500	m
R Izq.=	253.847	[t]
R Der.=	261.652	[t]

Momentos respecto al eje:					
9					
M R izq.=	8250.15	[t.m]			
M eje 1 =	-266.36	[t.m]			
M eje $2 =$	-442.6	[t.m]			
M eje $3 =$	-387.3	[t.m]			
M eje 4 =	-331.99	[t.m]			
M eje 5 =	-276.69	[t.m]			
M eje 6 =	-115.22	[t.m]			
M eje 7 =	-79.249	[t.m]			
M eje 8 =	-36.084	[t.m]			
M eje 9 =	0	[t.m]			
M máx.=	6314.66	[t.m]			

Tabla 6.9 Momento máximo debido la acción del tren de fatiga

• Verificación mediante líneas de influencia:

Tabla 6.10 Determinación del momento máximo mediante líneas de influencia ante el tren de fatiga

X [m]	X1 [m]	M [t.m]
Long Viga	Posición eje 1	
0	0	0
5	2.56	1822.51
10	6.03	3334.86
15	9.51	4520.4
20	12.98	5379.15
25	13.723	5962.68
30	15.36	6265.83
33	16.9	6312.71
35	17.92	6303.95
40	18.96	6097.87
45	22.44	5571.28
50	12.12	4717.89
55	28.17	3548.05
60	30.12	2108.52
66	0	0
32.5	10.16	6314.66

Figura 6.2 Diagrama envolvente de momento debido al paso del tren de fatiga

• Posición transversal

La posición transversal del tren de fatiga va a considerarse única, ya que solo existe un eje de riel ferroviario.

6.1.3. Criterio de diseño

Para consideraciones de fatiga cada elemento o detalle estructural deberá cumplir:

$$\gamma * (\Delta f) \le (\Delta F)_n \tag{6.1}$$

Donde:

 $\Upsilon = (\gamma_I = 1.5; o \gamma_{II} = 0.75)$ Factor de carga especificado en AASHTO (tabla 3.4.1-1) (Δf)= Rango de esfuerzos debido a paso de camón de fatiga. [kg/cm2] (ΔF)_n=Resistencia nominal de fatiga. [kg/cm2] (Se define en el inciso **6.1.4**)

Esta ecuación también se puede escribir de la siguiente forma:

$$AASHTO(C6.6.1.2.2) \qquad \qquad \eta * \gamma * (\Delta f) \le \phi * (\Delta F)_n \tag{6.2}$$

Pero para el estado límite de fatiga:

$$\begin{array}{l} \eta = 1 \\ \varphi = 1 \end{array}$$

6.1.4. Resistencia a fatiga

La resistencia a fatiga de un detalle estructural se denota como $(\Delta F)_n$ y se determina como el mayor de a) o b):

a) Para la combinación de carga de fatiga I y vida infinita:

$$(\Delta F)_n = (\Delta F)_{TH} \tag{6.3}$$

b) Para la combinación de carga de fatiga II y vida finita

$$(\Delta F)_n = \left(\frac{A}{N}\right)^{1/3} \tag{6.4}$$

En el cual:

AASHTO (6.6.1.2.5-3)
$$N = (365) * (75) * n * (ADTT)_{SL}$$
 (6.5)

Donde:

N=Número total de ciclos en la vida de diseño (75 años)

 $(\Delta F)_{TH}$ = Umbral, esfuerzo de amplitud constante denotado para cada detalle estructural AASHTO (tabla 6.6.1.2.5-3)

A= Constante para cada detalle estructural AASHTO (Tabla 6.6.1.2.5-3).

n= Número de ciclos de rango de esfuerzo por paso de camón de fatiga tomado de AASHTO (Tabla 6.6.1.2.5-3)

 $(ADTT)_{SL}$ = Tráfico promedio diario de camiones en un sólo carril como se especifica en el AASHTO (artículo 3.6.1.4).

Catagoria	Constante A	$(\Delta \mathbf{F})_{\mathbf{TH}}$
Categoria	$(kg/cm^2)^3$	(kg/cm2)
А	8.69E+15	1687
В	4.17E+15	1125
Β'	2.12E+15	844
С	1.53E+15	703
C'	1.53E+15	844
D	7.65E+14	492
Е	3.82E+14	316
E'	1.36E+14	183
M164 (A325)	5.94E+14	2180
M253 (A490)	1.09E+15	2672

Tabla 6.11 Constante A, y umbral $(\Delta F)_{TH}$ [6]

Tabla	6.12	Consid	eración	de n.	número	de	ciclos	[6	1
1 0000		consta					000000	L Ÿ.	1

Longitudinal momborg	Span	length		
Longituumai members	>40.0 ft	<= 40.0 ft		
Simple span Girders	1.0	2.0		
Continuous Girders				
1) Near interior support	1.5	2.0		
2) elsewhere	1.0	2.0		
Cantilever Girders	5	.0		
Orthotropic Deck Plate				
Connections Subjected to	5.0			
Wheel Load Cycling				
Trusses	1	.0		
	Spa	acing		
Transverse Members	>20.0 ft	<=20.0 ft		
	1	2		

6.1.5. Determinación de rango de esfuerzos debidos al modelo de carga de fatiga

Para la obtención del rango de esfuerzos (Δf) al que estará sometido cada detalle, se utiliza el modelo matemático calibrado y se carga con el camión de fatiga en la posición más desfavorable para el elemento de análisis incluyendo el factor de impacto.

 Δf = Rango de esfuerzos resultante de carga de fatiga mayorada por factor de impacto

$$\Delta f = \Delta f_{LL+IM} \tag{6.6}$$

AASHTO (tabla 3.6.2.1-1)

Factor de impacto IM=15%

6.1.6. Análisis de vida de fatiga infinita

Para combinación de fatiga I, y vida infinita se considera el siguiente rango de esfuerzos:

$$(\Delta f)_{max} = \gamma_I * \Delta f = 1.5 * \Delta f \tag{6.7}$$

Para combinación de fatiga II, y vida finita se considera el siguiente rango de esfuerzos:

$$(\Delta f)_{eff} = \gamma_{II} * \Delta f = 0.75 * \Delta f \tag{6.8}$$

6.1.7. Ejemplo de revisión de diseño de un detalle estructural mediante norma AASHTO

Se analizará el elemento #23 (938) de la armadura B, ante la colocación del modelo de fatiga Cooper E-80 truncado en la localización que cause un mayor rango de esfuerzos, como se obtuvo en el inciso 6.1.2.

Figura 6.3 Cuerda inferior de la armadura B (Elemento 23)

a) Obtención del esfuerzo máximo resultante en el elemento a partir del modelo matemático ante la carga viva

$$\Delta f_{LL} = 1053.51 \ \frac{kg}{cm^2}$$

b) Cálculo e inclusión del factor de impacto del tren

Del inciso 5.4.1. se tiene:

$$IM = 22.4 \%$$

c) Determinación del rango de esfuerzos a partir de ecuación (6.6).

$$\Delta f = \Delta f_{LL+IM} = 1053.51 * (1 + 0.224) = 1289.5 \frac{kg}{cm^2}$$

d) Categorización del detalle estructural como se especifica en el inciso **5.7.1**. para el **punto a**, situado a **37.34 cm** del eje neutro del elemento.

Catagonía	Constante A
Categoria	$(kg/cm2)^3$
E'	1.36E+14

Umbral del detalle definido en tabla 6.11 para un detalle estructural de categoría E':

$$(\Delta F)_{TH} = 183 \frac{kg}{cm^2}$$

e) Resistencia nominal del detalle categoría E'

$$(\Delta F)_n = (\Delta F)_{TH}$$
 Si, el detalle tiene vida infinita (6.3)
 $(\Delta F)_n = \left(\frac{A}{N}\right)^{1/3}$ Si, el detalle tiene vida finita (6.4)

f) Revisión de resistencia a la fatiga mediante criterio de vida infinita (Combinación de Fatiga I $(\gamma_I=1.5))$

De la ecuación (6.7):

$$(\Delta f)_{max} = \gamma_I * \Delta f = 1.5 * \Delta f = 1.5 * 1289.5 = 1934.25 \frac{kg}{cm^2}$$

 $(\Delta f)_{max} > (\Delta F)_{TH}$

Por lo tanto, la vida del detalle estructural es **finita** y la resistencia nominal se determina a continuación.

g) Determinación de resistencia nominal de vida finita

De la ecuación (6.5) se calcula primero el número total de ciclos para la vida de diseño:

Considerando n=1 para elementos de armaduras AASHTO (tabla 6.6.1.2.5-2)

$$N = (365) * (75) * n * (ADTT)_{SL} = 365 * 75 * 1 * 5 = 136875 \text{ ciclos}$$

A partir de la ecuación (6.4) calculamos la resistencia nominal del detalle de vida finita:

$$(\Delta F)_n = \left(\frac{A}{N}\right)^{1/3} = \left(\frac{1.36E14}{136875}\right)^{1/3} = 996.73 \frac{kg}{cm^2}$$

h) Revisión de resistencia a fatiga mediante criterio de vida finita con la ecuación (6.8) (Combinación de Fatiga II (γ_{II} =0.75))

$$(\Delta f)_{eff} = \gamma_{II} * \Delta f = 0.75 * \Delta f = 0.75 * 1289.5 = 967.13 \frac{kg}{cm^2}$$
$$(\Delta f)_{eff} < (\Delta F)_n$$

$$967.13 \frac{kg}{cm^2} < 996.73 \frac{kg}{cm^2} \qquad OK$$

Por lo tanto, se verifica que el detalle estructural analizado cumple con los requerimientos de diseño ante fatiga.

De manera sistemática se ha realizado la revisión de cada elemento y detalle estructural mediante una hoja electrónica. A continuación, se presentan los cálculos de los elementos más críticos.

6.2. CÁLCULOS PARA REVISIÓN DE DISEÑO ANTE CARGA DE FATIGA VEHICULAR

A continuación, se realiza sistemáticamente la revisión de diseño por fatiga de los elementos estructurales con el uso de una hoja de cálculo siguiendo el mismo procedimiento que se indicó **6.1.7**, mediante los resultados obtenidos de la corrida del modelo matemático ante la acción del camión de fatiga propuesto. La determinación del rango de tensiones correspondiente a cada elemento se presentará en el **Anexo 11.4**.

En las tablas de cálculos que se muestran a continuación la nomenclatura "d" corresponde al peralte del elemento y "y" a la distancia del punto de análisis al eje neutro del elemento.

6.2.1. Revisión de elementos críticos de la armadura A

Posición de camión que causa mayores efectos en los elementos analizados: **carril A** Los elementos críticos en la armadura A, son las cuerdas inferiores centrales, y dos de sus diagonales las que presentan los mayores rangos de esfuerzos.

Elemento	Efecto	d	у	Catagonia	Constante A	(Δ f)
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
23	Axial	37.34	18.67	E'	1.36E+14	79.89
22	Axial	37.34	18.67	E'	1.36E+14	72.20
21	Axial	37.34	18.67	E'	1.36E+14	62.20
20	Axial	37.34	18.67	E'	1.36E+14	66.12
14	Axial	38.7	19.35	E'	1.36E+14	61.54
4	Axial	38.7	19.35	E'	1.36E+14	56.61

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida in	finita,	Vida finita,				
	Fati	ga I	Fati	Fatiga II			
Elemento	(∆f)máx.	(ΔF) th	(∆f)eff	$(\Delta F)n$	$(\Delta F)n$	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida	Revision
23	119.84	183.00	59.92	114.95	183.00	Infinita	OK
22	108.29	183.00	54.15	114.95	183.00	Infinita	OK
21	93.30	183.00	46.65	114.95	183.00	Infinita	OK
20	99.18	183.00	49.59	114.95	183.00	Infinita	OK
14	92.31	183.00	46.15	114.95	183.00	Infinita	OK
4	84.92	183.00	42.46	114.95	183.00	Infinita	OK

6.2.2. Revisión de elementos críticos de la armadura B

Posición de camión que causa mayores efectos en los elementos analizados: carril B

Elemento	Efecto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Liecto	cm	cm	Categoria	$(kg/cm^2)^3$	kg/cm2
23	Axial	37.34	18.67	E'	1.36E+14	50.68
22	Axial	37.34	18.67	E'	1.36E+14	46.27
21	Axial	37.34	18.67	E'	1.36E+14	52.90
20	Axial	37.34	18.67	E'	1.36E+14	56.57
14	Axial	38.7	19.35	E'	1.36E+14	32.65
4	Axial	38.7	19.35	E'	1.36E+14	37.03

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida in	finita,	Vida finita,				
	Fatiga I		Fati	ga II			
Elemento	(∆f)máx.	(ΔFтн	(∆f)eff	(∆F)n	$(\Delta F)n$	Vido	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	- Vida	Kevision
23	76.02	183.00	38.01	114.95	183.00	Infinita	OK
22	69.40	183.00	34.70	114.95	183.00	Infinita	OK
21	79.35	183.00	39.68	114.95	183.00	Infinita	OK
20	84.85	183.00	42.42	114.95	183.00	Infinita	OK
14	48.98	183.00	24.49	114.95	183.00	Infinita	OK
4	55.55	183.00	27.77	114.95	183.00	Infinita	OK

6.2.3. Revisión de elementos críticos de los rigidizadores superiores de las armaduras

Posición de camión que causa mayores efectos en los elementos analizados: carril A

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto	d	У	Catagoría	Constante A	(Δ f)
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
2_3	Axial	37.34	18.67	С	1.53E+15	11.18
4_3	Axial	37.34	18.67	С	1.53E+15	26.16
6_3	Axial	37.34	18.67	С	1.53E+15	27.08
8_3	Axial	37.34	18.67	С	1.53E+15	12.69

b) Revisión de diseño por fatiga:

	Vida infinita, Fatiga I		Vida finita, Fatiga II				
Elemento	(Δf) máx.	(ΔF) тн	(∆f)eff	(∆F)n	(∆F)n	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida	Revision
2_3	16.78	703.00	8.39	257.81	703.00	Infinita	OK
4_3	39.24	703.00	19.62	257.81	703.00	Infinita	OK
6_3	40.62	703.00	20.31	257.81	703.00	Infinita	OK
8_3	19.03	703.00	9.52	257.81	703.00	Infinita	OK

6.2.4. Revisión de elementos críticos de los rigidizadores inclinados del sistema de piso carretero

Posición de camión que causa mayores efectos en los elementos analizados: carril A

Elemento	Efecto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Liecto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
1_16	Axial	37.34	18.67	В	4.17E+15	72.14
1_12	Axial	37.34	18.67	В	4.17E+15	71.28
1_14	Axial	37.34	18.67	В	4.17E+15	68.46
1_5	Axial	37.34	18.67	В	4.17E+15	51.12
2_13	Axial	37.34	18.67	В	4.17E+15	49.19

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida in Fati	nfinita, iga I	Vida finita, Fatiga II				
Elemento	(∆f)máx.	$(\Delta \mathbf{F})$ th	(∆f)eff	(∆F)n	(∆F)n	Vido	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida	REVISION
1_16	108.21	1125.00	54.11	360.19	1125.00	Infinita	OK
1_12	106.92	1125.00	53.46	360.19	1125.00	Infinita	OK
1_14	102.69	1125.00	51.34	360.19	1125.00	Infinita	OK
1_5	76.68	1125.00	38.34	360.19	1125.00	Infinita	OK
2_13	73.78	1125.00	36.89	360.19	1125.00	Infinita	OK

6.2.5. Revisión de elementos críticos de los rigidizadores horizontales del sistema de piso carretero

Posición de camión que causa mayores efectos en los elementos analizados: carril B

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto d		У	Catagonía	Constante A	(Δ f)
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
5_3	Axial	30.5	11.2	В	4.17E+15	78.27
5_4	Axial	30.5	11.2	В	4.17E+15	49.91
5_2	Axial	30.5	11.2	В	4.17E+15	43.73
4_3	Axial	30.5	11.2	В	4.17E+15	40.63
4_2	Axial	30.5	11.2	В	4.17E+15	32.04

c) Revisión de diseño por fatiga:

	Vida in Fati	nfinita, Iga I	Vida Fati	finita, ga II			
Elemento	(Δf) máx.	(ΔF) тн	(∆f)eff	$(\Delta F)n$	$(\Delta F)n$	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
5_3	117.40	1125.00	58.70	360.19	1125.00	Infinita	OK
5_4	74.87	1125.00	37.43	360.19	1125.00	Infinita	OK
5_2	65.59	1125.00	32.80	360.19	1125.00	Infinita	OK
4_3	60.94	1125.00	30.47	360.19	1125.00	Infinita	OK
4_2	48.06	1125.00	24.03	360.19	1125.00	Infinita	OK

6.2.6. Revisión de elementos críticos de los rigidizadores horizontales del sistema de piso ferroviario

Posición de camión que causa mayores efectos en los elementos analizados: carril A

Elemento	Ffooto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
5	Axial	37.34	18.67	E	3.82E+14	55.80
1	Axial	37.34	18.67	E	3.82E+14	48.08
12	Axial	37.34	18.67	E	3.82E+14	42.75
8	Axial	37.34	18.67	Е	3.82E+14	36.64

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida iı Fati	nfinita, Iga I	Vida finita, Fatiga II				
Elemento	(∆f)máx.	$(\Delta \mathbf{F})$ th	(∆f)eff	(∆F)n	(∆F)n	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
5	83.69	316.00	41.85	162.41	316.00	Infinita	OK
1	72.12	316.00	36.06	162.41	316.00	Infinita	OK
12	64.12	316.00	32.06	162.41	316.00	Infinita	OK
8	54.96	316.00	27.48	162.41	316.00	Infinita	OK

6.2.7. Revisión de elementos críticos de las vigas transversales

Posición de camión que causa mayores efectos en los elementos analizados: **carril B** Dado que las vigas transversales se han considerado el análisis de 6 secciones, el esfuerzo ha sido determinado en cada cambio de sección transversal.

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto	Dunto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Electo	Punto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
5_5	Flexión	с	109	51.96	E'	1.36E+14	29.94
5_4	Flexión	а	111.54	54.5	E'	1.36E+14	146.59
5_3	Flexión	а	114.08	54.5	E'	1.36E+14	146.35
5_2	Flexión	а	114.08	54.5	E'	1.36E+14	103.12
5_1	Flexión	d	111.54	54.5	E'	1.36E+14	48.34
5_1	Flexión	а	111.54	55.77	С	1.53E+15	49.47
4_5	Flexión	с	109	51.96	E'	1.36E+14	14.47
4_4	Flexión	а	111.54	54.5	E'	1.36E+14	118.16
4_3	Flexión	а	114.08	54.5	E'	1.36E+14	116.36
4_2	Flexión	а	114.08	54.5	E'	1.36E+14	78.79
4_1	Flexión	d	111.54	54.5	E'	1.36E+14	37.59
4_1	Flexión	а	111.54	55.77	С	1.53E+15	38.47

b) Revisión de diseño por fatiga:

	Vida iı	ıfinita,	Vida	Vida finita,			
	Fati	ga I	Fati	ga II			
Elemento	(Δf)máx.	(ΔF) тн	(∆f)eff	$(\Delta F)n$	(∆F)n	Vida	Dowición
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Kevision
5_5	44.91	183.00	22.46	114.95	183.00	Infinita	OK
5_4	219.88	183.00	109.94	114.95	183.00	Finita	OK
5_3	219.52	183.00	109.76	114.95	183.00	Finita	OK
5_2	154.68	183.00	77.34	114.95	183.00	Infinita	OK
5_1	72.51	183.00	36.25	114.95	183.00	Infinita	OK
5_1	74.20	703.00	37.10	257.81	703.00	Infinita	OK
4_5	21.71	183.00	10.85	114.95	183.00	Infinita	OK
4_4	177.24	183.00	88.62	114.95	183.00	Infinita	OK
4_3	174.54	183.00	87.27	114.95	183.00	Infinita	OK
4_2	118.18	183.00	59.09	114.95	183.00	Infinita	OK
4_1	56.38	183.00	28.19	114.95	183.00	Infinita	OK
4_1	57.70	703.00	28.85	257.81	703.00	Infinita	OK

6.2.8. Revisión de elementos críticos de los largueros del piso carretero

Posición de camión que causa mayores efectos en los elementos analizados: **carril B** La zona de mayores rangos de esfuerzos que tiene la viga es su el extremo izquierdo.

Elemento	Efecto	Dunto	d	у	Catagoría	Constante A	(Δ f)
# asignado	Liecto	Punto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
5_1	Flexión	а	60	28.73	В	4.17E+15	244.86
5_2	Flexión	а	60	28.73	В	4.17E+15	205.17
5_3	Flexión	а	60	28.73	В	4.17E+15	104.51
5_4	Flexión	а	60	28.73	В	4.17E+15	14.24
5_5	Flexión	а	60	28.73	В	4.17E+15	21.37
6_1	Flexión	а	60	28.73	В	4.17E+15	101.28
6_2	Flexión	а	60	28.73	В	4.17E+15	99.52
6_3	Flexión	а	60	28.73	В	4.17E+15	63.01
6_4	Flexión	а	60	28.73	В	4.17E+15	21.68
6_5	Flexión	а	60	28.73	В	4.17E+15	7.48

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida i Fat	nfinita, iga I	Vida Fati	Vida finita, Fatiga II			
Elemento	(∆f)máx.	<u>(</u> Δ F)тн	(∆f)eff	$(\Delta F)n$	(ΔF)n	X7: J _	D
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	vida	Revision
5_1	367.28	1125.00	183.64	360.19	1125.00	Infinita	OK
5_2	307.76	1125.00	153.88	360.19	1125.00	Infinita	OK
5_3	156.76	1125.00	78.38	360.19	1125.00	Infinita	OK
5_4	21.35	1125.00	10.68	360.19	1125.00	Infinita	OK
5_5	32.06	1125.00	16.03	360.19	1125.00	Infinita	OK
6_1	151.92	1125.00	75.96	360.19	1125.00	Infinita	OK
6_2	149.28	1125.00	74.64	360.19	1125.00	Infinita	OK
6_3	94.52	1125.00	47.26	360.19	1125.00	Infinita	OK
6_4	32.52	1125.00	16.26	360.19	1125.00	Infinita	OK
6_5	11.23	1125.00	5.61	360.19	1125.00	Infinita	OK

6.3. CÁLCULOS PARA REVISIÓN DE DISEÑO ANTE CARGA DE FATIGA FERROVIARIA

A continuación, se realiza sistemáticamente la revisión de diseño por fatiga de los elementos estructurales con el uso de una hoja de cálculo siguiendo el mismo procedimiento que se indicó **6.1.7**, mediante los resultados obtenidos de la corrida del modelo matemático ante la acción del tren de fatiga propuesto. La determinación del rango de tensiones correspondiente a cada elemento se presentará en el **Anexo 11.5**.

6.3.1. Revisión de elementos críticos de la armadura A

Elemento	Ffooto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
23	Axial	37.34	18.67	E'	1.36E+14	415.40
22	Axial	37.34	18.67	E'	1.36E+14	376.01
21	Axial	37.34	18.67	E'	1.36E+14	406.70
20	Axial	37.34	18.67	E'	1.36E+14	481.48
14	Axial	38.7	19.35	E'	1.36E+14	332.63
4	Axial	38.7	19.35	E'	1.36E+14	287.10

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

b) Revisión de diseño por fatiga:

	Vida iı	nfinita,	Vida finita,				
	Fati	ga I	Fati	ga II			
Elemento	(Δf) máx.	(ΔF) тн	(∆f)eff	$(\Delta F)n$	$(\Delta F)n$	Vide	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
23	623.10	183.00	311.55	996.73	996.73	Finita	OK
22	564.02	183.00	282.01	996.73	996.73	Finita	OK
21	610.05	183.00	305.03	996.73	996.73	Finita	OK
20	722.21	183.00	361.11	996.73	996.73	Finita	OK
14	498.95	183.00	249.48	996.73	996.73	Finita	OK
4	430.66	183.00	215.33	996.73	996.73	Finita	OK

6.3.2. Revisión de elementos críticos de la armadura B

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento		d	У		Constante A	(Δ f)
#	Efecto			Categoría		
asignado		cm	cm		$(kg/cm2)^3$	kg/cm2
23	Axial	37.34	18.67	E'	1.36E+14	1289.50
22	Axial	37.34	18.67	E'	1.36E+14	1152.36
21	Axial	37.34	18.67	E'	1.36E+14	1078.98
20	Axial	37.34	18.67	E'	1.36E+14	1174.24
14	Axial	37.34	18.67	E'	1.36E+14	927.66
4	Axial	37.34	18.67	E'	1.36E+14	945.63

b) Revisión de diseño por fatiga:

	Vida i	nfinita,	Vida finita,				
Elemento	Fat (Af)máx		$\begin{array}{c c} Fatiga II \\ \hline (\Delta f) eff & (\Delta F) n \end{array}$		(AF)n		
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida	Revisión
23	1934.25	183.00	967.13	996.73	996.73	Finita	OK
22	1728.55	183.00	864.27	996.73	996.73	Finita	OK
21	1618.48	183.00	809.24	996.73	996.73	Finita	OK
20	1761.36	183.00	880.68	996.73	996.73	Finita	OK
14	1391.49	183.00	695.74	996.73	996.73	Finita	OK
4	1418.45	183.00	709.23	996.73	996.73	Finita	OK

6.3.3. Revisión de elementos críticos de los rigidizadores superiores de las armaduras

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento		d	У		Constante A	(Δ f)
#	Efecto			Categoría		
asignado		cm	cm		$(kg/cm2)^3$	kg/cm2
2_3	Axial	37.34	18.67	С	1.53E+15	156.89
4_3	Axial	37.34	18.67	С	1.53E+15	354.01
6_3	Axial	37.34	18.67	С	1.53E+15	358.84
8_3	Axial	37.34	18.67	С	1.53E+15	162.84

b) Revisión de diseño por fatiga:

	Vida infinita, Fatiga I		Vida finita, Fatiga II				
Elemento	(∆f)máx.	(ΔF) тн	(∆f)eff	(∆F)n	(∆F)n	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
2_3	235.33	703.00	117.66	2235.50	2235.50	Infinita	OK
4_3	531.02	703.00	265.51	2235.50	2235.50	Infinita	OK
6_3	538.26	703.00	269.13	2235.50	2235.50	Infinita	OK
8_3	244.26	703.00	122.13	2235.50	2235.50	Infinita	OK

6.3.4. Revisión de elementos críticos de los rigidizadores inclinados del sistema de piso carretero

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto	d	У	Catagonía	Constante A	(Δ f)	
# asignado	Electo	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2	
1_3	Axial	37.34	18.67	В	4.17E+15	690.09	
2_2	Axial	37.34	18.67	В	4.17E+15	612.17	
1_5	Axial	37.34	18.67	В	4.17E+15	580.25	
2_4	Axial	37.34	18.67	В	4.17E+15	538.84	
2_6	Axial	37.34	18.67	В	4.17E+15	484.50	
	Vida i Fat	nfinita, iga I	Vida Fati	finita, ga II			
------------	---------------	-------------------	--------------	------------------	---------	----------	----------
Elemento	(∆f)máx.	(ΔF) тн	(∆f)eff	(∆F)n	(∆F)n	Vido	D
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
1_3	1035.14	1125.00	517.57	3123.33	3123.33	Infinita	OK
2_2	918.26	1125.00	459.13	3123.33	3123.33	Infinita	OK
1_5	870.38	1125.00	435.19	3123.33	3123.33	Infinita	OK
2_4	808.25	1125.00	404.13	3123.33	3123.33	Infinita	OK
2_6	726.75	1125.00	363.38	3123.33	3123.33	Infinita	OK

6.3.5. Revisión de elementos críticos de los rigidizadores horizontales del sistema de piso carretero

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Ffacto	d y		Catagonía	Constante A	(Δ f)
# asignado	Liecto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
4_3	Axial	30.5	11.2	В	4.17E+15	123.17
5_3	Axial	30.5	11.2	В	4.17E+15	120.32
4_2	Axial	30.5	11.2	В	4.17E+15	116.60
6_3	Axial	30.5	11.2	В	4.17E+15	97.38

b) Revisión de diseño por fatiga:

	Vida i	nfinita,	Vida finita, Fatiga II				
Elemento	rat (∆f)máx.	лда 1 (ΔF)тн	rau (∆f)eff	$(\Delta F)n$	(ΔF)n	X 7 ° J -	Destation
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	vida	Revision
4_3	184.75	1125.00	92.37	3123.33	3123.33	Infinita	OK
5_3	180.47	1125.00	90.24	3123.33	3123.33	Infinita	OK
4_2	174.90	1125.00	87.45	3123.33	3123.33	Infinita	OK
6_3	146.07	1125.00	73.04	3123.33	3123.33	Infinita	OK

6.3.6. Revisión de elementos críticos de los rigidizadores del sistema de piso ferroviario

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Ffooto d y Cotogoría		Constante A	(Δ f)		
# asignado	Electo	cm	em cm Cat		$(kg/cm2)^3$	kg/cm2
52	Axial	37.34	18.67	Е	3.82E+14	1418.96
56	Axial	37.34	18.67	Е	3.82E+14	1212.61
45	Axial	37.34	18.67	E	3.82E+14	1206.84
49	Axial	37.34	18.67	E	3.82E+14	1033.14

	Vida in Fati	nfinita, ga I	Vida finita, Fatiga II				
Elemento	(∆f)máx.	$(\Delta \mathbf{F})$ th	(∆f)eff	(ΔF)n	(∆F)n	Vida	Dovisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
52	2128.44	316.00	1064.22	1408.28	1408.28	Finita	OK
56	1818.92	316.00	909.46	1408.28	1408.28	Finita	OK
45	1810.26	316.00	905.13	1408.28	1408.28	Finita	OK
49	1549.71	316.00	774.86	1408.28	1408.28	Finita	OK

6.3.7. Revisión de los elementos críticos de las vigas transversales

De manera similar a la metodología realizada para la determinación de rangos de esfuerzos en las vigas transversales ante la carga del tren de fatiga, se consideran 6 secciones transversales que conforman cada viga transversal y se determina el rango de esfuerzos en cada cambio de sección.

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto	Dunto	У	Constante A	(Δ f)
# asignado	Electo	Punto	cm	$(kg/cm2)^3$	kg/cm2
6_5	Flexión	с	51.96	1.36E+14	178.67
6_4	Flexión	а	54.5	1.36E+14	545.85
6_3	Flexión	а	54.5	1.36E+14	771.63
6_2	Flexión	а	54.5	1.36E+14	733.57
6_1	Flexión	d	54.5	1.36E+14	845.79
6_1	Flexión	а	55.77	1.53E+15	865.50
4_5	Flexión	с	51.96	1.36E+14	148.12
4_4	Flexión	а	54.5	1.36E+14	532.63
4_3	Flexión	а	54.5	1.36E+14	746.50
4_2	Flexión	a	54.5	1.36E+14	708.07
4_1	Flexión	d	54.5	1.36E+14	812.73
4_1	Flexión	a	55.77	1.53E+15	831.67

	Vida ir Fati	nfinita, ga I	Vida Fati	finita, ga H			
Elemento	(∆f)máx.	<u>а</u> Г (ΔF)тн	(∆f)eff	$(\Delta F)n$	(∆F)n	X 7• 1	D
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida	Revision
6_5	268.01	183.00	134.01	691.10	691.10	Finita	OK
6_4	818.78	183.00	409.39	691.10	691.10	Finita	OK
6_3	1157.45	183.00	578.73	691.10	691.10	Finita	OK
6_2	1100.35	183.00	550.18	691.10	691.10	Finita	OK
6_1	1268.69	183.00	634.35	691.10	691.10	Finita	OK
6_1	1298.25	703.00	649.13	1550.01	1550.01	Finita	OK
4_5	222.19	183.00	111.09	691.10	691.10	Finita	OK
4_4	798.94	183.00	399.47	691.10	691.10	Finita	OK
4_3	1119.75	183.00	559.87	691.10	691.10	Finita	OK
4_2	1062.11	183.00	531.06	691.10	691.10	Finita	OK
4_1	1219.10	183.00	609.55	691.10	691.10	Finita	OK
4_1	1247.51	703.00	623.75	1550.01	1550.01	Finita	OK

6.3.8. Revisión de los elementos críticos de los largueros del cuerpo carretero

Para los largueros del sistema de piso carretero y ferrocarril se obtuvieron rangos de esfuerzos tanto en sus extremos como al centro del claro, sin embargo, se presenta los rangos del extremo Izquierdo en donde se han determinado los máximos valores.

Elemento	Ffooto	Dunto	d	У	Catagomía	Constante A	(Δ f)
# asignado	Liecto	Punto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
6_1	Flexión	а	60	28.73	В	4.17E+15	34.01
6_2	Flexión	а	60	28.73	В	4.17E+15	406.64
6_3	Flexión	а	60	28.73	В	4.17E+15	309.93
6_4	Flexión	а	60	28.73	В	4.17E+15	156.93
6_5	Flexión	а	60	28.73	В	4.17E+15	51.39
3_1	Flexión	а	60	28.73	В	4.17E+15	109.30
3_2	Flexión	а	60	28.73	В	4.17E+15	58.93
3_3	Flexión	а	60	28.73	В	4.17E+15	46.45
3_4	Flexión	a	60	28.73	В	4.17E+15	0.24
3_5	Flexión	a	60	28.73	В	4.17E+15	40.02

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

	Vida ir Fati	nfinita, ga I	Vida finita, Fatiga II				
Elemento	(∆f)máx.	(ΔF) тн	(∆f)eff	(∆F)n	(∆F)n	Vida	Revisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Viua	IXC VISIOII
6_1	51.01	1125.00	25.51	2165.59	2165.59	Infinita	OK
6_2	609.96	1125.00	304.98	2165.59	2165.59	Infinita	OK
6_3	464.89	1125.00	232.45	2165.59	2165.59	Infinita	OK
6_4	235.39	1125.00	117.70	2165.59	2165.59	Infinita	OK
6_5	77.08	1125.00	38.54	2165.59	2165.59	Infinita	OK
3_1	163.95	1125.00	81.97	2165.59	2165.59	Infinita	OK
3_2	88.39	1125.00	44.20	2165.59	2165.59	Infinita	OK
3_3	69.67	1125.00	34.84	2165.59	2165.59	Infinita	OK
3_4	0.36	1125.00	0.18	2165.59	2165.59	Infinita	OK
3_5	60.03	1125.00	30.01	2165.59	2165.59	Infinita	OK

6.3.9. Revisión de los elementos críticos de los largueros del cuerpo ferroviario

Similarmente se determinaron los rangos de esfuerzos de la viga a sus extremos y al centro del claro, a continuación, se presenta el rango de esfuerzos al centro del claro en donde se han determinado los máximos valores.

a) Determinación de parámetros iniciales y rango de esfuerzos a partir del modelo matemático:

Elemento	Efecto	Dunto	d	У	Catagonía	Constante A	(Δ f)
# asignado	Electo	Punto	cm	cm	Categoria	$(kg/cm2)^3$	kg/cm2
5	Flexión	b	91.4	44.43	Е	3.82E+14	875.35
6	Flexión	b	91.4	44.43	Е	3.82E+14	854.32
11	Flexión	b	91.4	44.43	Е	3.82E+14	602.96
12	Flexión	b	91.4	44.43	E	3.82E+14	589.90

b) Revisión de diseño por fatiga:

	Vida i Fat	nfinita, iga I	Vida finita, Fatiga II				
Elemento	(Δf)máx.	(ΔF) тн	(∆f)eff	(∆F)n	$(\Delta F)n$	Vide	Dowisión
# asignado	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	viua	Revision
5	1313.02	316.00	656.51	976.44	976.44	Finita	OK
6	1281.48	316.00	640.74	976.44	976.44	Finita	OK
11	904.43	316.00	452.22	976.44	976.44	Finita	OK
12	884.85	316.00	442.42	976.44	976.44	Finita	OK

CAPÍTULO 7

7. EVALUACIÓN DE FATIGA

A diferencia de la revisión del diseño, en esta sección se realizará una evaluación ante fatiga, utilizando las recomendaciones del Manual de Evaluación de Puentes (MBE), AASHTO y las recomendaciones del reporte 721 NCHRP "National Cooperative Highway Research Program. (2012). Fatigue Evaluation of Steel Bridges"

7.1. METODOLOGÍA

7.1.1. Estimación de rango de esfuerzos

MBE (7.2.2-1)
$$(\Delta f)_{eff} = R_p * R_s * \Delta f$$
 (7.1)

Donde:

 R_p = Factor de presencia múltiple. Como se describe en 7.2.2-1 para rangos de estrés calculados, o igual a **1** en caso de rangos de esfuerzos medidos.

 R_s = Factor de carga parcial, de rango de esfuerzo, calculado como $R_{sa} * R_{st}$, a menos que se especifique de otro modo, resumido en (tabla 7.2.2.1-1) MBE.

 Δf = Rango de esfuerzo efectivo medido, o $Y_{II} * \Delta f$ obtenido debido al paso del camión de fatiga como se especifica en el artículo 3.6.1.4, o rango de esfuerzo calculado debido al paso de un camión determinado por un estudio (WIM).

7.1.1.1. Determinación de factor de presencia múltiple (R_p)

El factor de presencia múltiple toma en cuenta el efecto de la presencia de camiones simultáneamente en múltiples carriles en lugar de un solo carril donde actúa la carga. Cuando se utilizan rangos de esfuerzos medidos, el factor de presencia múltiple no suele utilizarse en la ecuación MBE (7.2.2-1), ya que los efectos de presencia múltiple están ya reflejados en los rangos de esfuerzos medidos.

MBE (7.2.2.1-1)

$$R_{p} = 0.988 + 22.54 * 10^{-5} * [L] + 4.01 * 10^{-6} * [ADTT]_{PRESENT} + \frac{0.0107}{n_{l}} \ge 1$$
(7.2)

Donde:

L=Longitud del puente en metros

 $[ADTT]_{PRESENT}$ = Número promedio de camiones que circulan por un carril, en el presente. n_L =Número de carriles.

7.1.1.2. Determinación del factor de carga parcial (\mathbf{R}_s)

Fatigue-Life Evaluation	Analysis	Truck Weight	Stress-Range						
Methods	Partial Load	Partial Load	Estimate Partial Load						
Withous	Factor, Rsa	Factor Rst	Factor Rs*						
For Evaluation or Minimum Fatigue Life									
Stress range by simplified									
analysis, and truck weight per	1.0	1.0	1.0						
Article 3.6.1.4 of the LRFD	1.0	1.0	1.0						
Specifications									
Stress range by simplified									
analysis, and truck weight	1.0	0.05	0.05						
estimated through weight	1.0	0.95	0.95						
estimated thought WIM study.									
Stress range by refined									
analysis, and truck weight by	0.95	0.95	0.95						
WIM study.									
Stress range by field measured	NIA	ΝA	0.85						
strains	INA	INA	0.85						
	For mean fatig	ue life							
All methods	NA	NA	1.0						

 Tabla 7.1 Factor de carga parcial [5] MBE (tabla 7.2.2.1-1)

• In General, Rs=Rsa*Rst

Para el cálculo de la vida media de fatiga, en el cálculo del rango efectivo de esfuerzos el factor R_s se tomará $R_s = 1.0$. MBE (7.2.2.1.2)

7.1.2. Estimación de rangos de esfuerzos

El rango efectivo de esfuerzos puede ser estimado de mediciones en campo, considerando condiciones de tráfico típicas.

$$(\Delta f)_{eff} = R_s \left(\sum \gamma_i \, \Delta f_i^3 \right)^{1/3} \tag{7.3}$$

4 10

Donde:

 γ_i = Porcentaje de ciclos de un particular rango de esfuerzos o, $\left(\frac{n_i}{N}\right)$

 Δf_i = Rango de esfuerzos particular, en histograma de rango de esfuerzos medidos, se considera para esfuerzos mayores a (ΔF_{TH})/2

Para mediciones en campo de deformaciones usadas para determinar rangos de esfuerzos efectivos, se tomará R_s igual a 1.0. para la determinación de vida de fatiga media.

Debido a que el modelo matemático se aceptó como representativo, los resultados de los esfuerzos obtenidos se podrán simular como los medidos en campo, considerando que los resultados serán similares.

7.1.3. Determinación de detalles propensos a fatiga

Para elementos que se encuentran en compresión ante las acciones de carga muerta, estas requieren de ser analizados si:

MBE (7.2.3)
$$2 * (\Delta f)_{tensión} > f_{compresión por carga muerta}$$
(7.4)

En donde:

 $(\Delta f)_{tensión}$ =Parte de tensión del rango de esfuerzos efectivo calculado en el artículo 7.2.2 de (MBE) $f_{compresión \, por \, carga \, muerta}$ =Esfuerzo de compresión sin factorar debido a carga muerta en el detalle de análisis

7.1.4. Revisión de vida de fatiga infinita

Si se tiene que:

MBE (7.2.4-1)
$$(\Delta f)_{max} \le (\Delta F)_{TH}$$
(7.5)

Se considera que el detalle o elemento estructural tiene vida infinita:

MBE (7.2.4-2)
$$Y = \infty$$
 (7.6)

En donde:

- $(\Delta f)_{max}$ =Máximo rango de esfuerzo esperado en el detalle estructural propenso. Este se puede tomar como:
 - R_p Veces el rango de esfuerzos obtenido debido al paso del camión de fatiga, mayorado por el factor Y_I correspondiente a la combinación de carga Fatiga I, o de vida infinita, es decir:

 $(\Delta f)_{max} = R_p * Y_I * \Delta f$

ο $2 * (\Delta f)_{eff}$; para rango de esfuerzos calculado, debido a un camión de fatiga determinado por un estudio WIM con $R_s = 1$

• El máximo de:

 $2 * (\Delta f)_{eff}$, u otro valor válido

 Δf_i

para rango de esfuerzos medidos se toma $R_s = 1$

Para el caso en que no se cumple con la ecuación (7.5), el detalle estructural tiene vida finita, y se procederá a calcular o estimar la vida de fatiga "Y" mediante la propuesta realizada en el reporte 721 NCHRP con la ecuación (7.7) en donde se incluye la estimación de tráfico futuro y el parámetro R_R que se indica a continuación.

7.1.5. Estimación de vida de fatiga finita

Para la estimación de la vida de fatiga se han considerado cuatro niveles de evaluación:

- Vida mínima de fatiga, la misma que es igual a la de diseño de fatiga "Evaluación Conservadora"
- Evaluación de fatiga 1 "Evaluación algo menos conservadora"
- Evaluación de fatiga 2 "Evaluación más conservadora"
- Vida media de fatiga "Evaluación de vida de fatiga estadísticamente más probable"

A partir de estas cuatro definiciones se caracteriza el parámetro R_R , para la evaluación de la vida de fatiga requerida mediante la siguiente ecuación:

$$Y = \frac{\log\left[\frac{R_R * A}{365 * n * [(ADTT)]_{SL_{PRESENT}} * [(\Delta f)_{eff}]^3} * g * (1+g)^{a-1} + 1\right]}{\log(1+g)}$$
(7.7)

Donde:

Y= Vida remanente del detalle estructural en años.

 R_R = Factor de resistencia, especificado para el tipo de evaluación dado en MBE (tabla 7.2.5.1-1) A=Constante definido por la categoría del detalle estructural dado en AASHTO (tabla 6.6.1.2.5-1) n = Número de ciclos rango de esfuerzos por el paso del camión, de acuerdo a él MBE (artículo 7.2.5.2) g= Estimación del crecimiento de volumen vehicular anual en porcentaje a=Edad presente del detalle analizado en años $[(ADTT)]_{SL_{PRESENT}}$ = Número promedio de camiones que circulan por un carril, en el presente. $(\Delta f)_{eff}$ =Rango de esfuerzo efectivo como se especifica en MBE (artículo 7.2.2)

7.1.5.1. Determinación del factor de carga para la evaluación de fatiga (R_R)

Detail Category (From Table 6.6.1.2.5- 1 of LRFD specifications)	RR			
	Minimum	Evaluation 1	Evaluation 2	Mean
	Life	Life	Life	Life
Α	1.0	1.5	2.2	2.9
В	1.0	1.3	1.7	2.0
B '	1.0	1.3	1.6	1.9
С	1.0	1.3	1.7	2.1
С'	1.0	1.3	1.7	2.1
D	1.0	1.3	1.7	2.0
Е	1.0	1.2	1.4	1.6
E'	1.0	1.3	1.6	1.9

Tabla 7.2 Factor de carga R _R [21] NCHRP (Tabla 7.2.5.1-	-1)
---	----	---

7.1.5.2. Estimación del número de ciclos por el paso de un camión

El número de ciclos de rangos de esfuerzo para el paso de un camión puede ser estimado mediante:

- Uso de líneas de influencia
- Mediciones de campo
- Como se especifica en AASHTO (Tabla 6.6.1.2.5-2)

Como se mencionó anteriormente, con la obtención de un modelo calibrado podemos suponer resultados similares a mediciones de campo, por lo que mediante un registro tiempo-esfuerzos se puede determinar el número de ciclos para cada uno de los rangos i, al que está sujeto el elemento o detalle de análisis.

Para la categorización del rango de esfuerzos y número de ciclos se pueden emplear varias metodologías como el método de lluvia, método del embalse, método del embalse invertido.

En nuestro caso se utilizó una herramienta computacional "JRAIN" que nos facilita el proceso de conteo y categorización de rangos de esfuerzos. Esta herramienta se basa en los algoritmos de los métodos mencionados.

7.1.6. Índice de serviciabilidad de fatiga

En el manual de evaluación de puentes MBE, se ha propuesto la utilización de este índice que permite al ingeniero tener un parámetro adimensional y con ello una categorización cualitativa, también una recomendación de inspección para mantenimiento y toma de decisiones tempranas.

Este coeficiente es una relación entre el desempeño de un detalle estructural en una localización particular en la estructura, con respecto de la resistencia global por fatiga del miembro.

MBE (7.2.6.1.)
$$Q = \left(\frac{Y-a}{N}\right) * G * R * I$$
 (7.8)

En donde:

Y=Vida remanente del detalle estructural en años
a=Edad presente del detalle analizado en años
N=El mayor de: Y o 100 años
G= Factor de trayectoria de carga dado en MBE (tabla 7.2.6.1-1)
R=Factor de Redundancia dado en MBE (tabla 7.2.6.1-1)
I=Factor de importancia dado en MBE (tabla 7.2.6.1-3)

7.1.6.1. Determinación de factores (G, R, I)

Tabla 7.3 Factor	G [21] MBE	(Tabla	7.2.6.1-1)
------------------	-------	-------	--------	------------

Number of Load Path	
Members	G
1 or 2 members	0.8
3 members	0.9
4 or more members	1

Tabla 7.4 Factor R [21] MBE (Tabla 7.2.6.1-2)

Type of Span	R
Simple	0.9
Continuous	1

Structure or Location	Importance Factor, I
Interstate Highway Main Arterial State Route Other Critical Route	0.90
Secondary Arterial Urban Areas	0.95
Rural Roads Low ADTT routes	1.00

Tabla 7.5 Factor de importancia [21] MBE (Tabla 7.2.6.1-3)

7.1.6.2. Acciones recomendadas basadas en el índice de serviciabilidad de fatiga

A partir del resultado del índice de serviciabilidad, se puede realizar una evaluación con base al MBE (tabla 7.2.6.2-1), asignando una calificación cualitativa para cada rango de resultados del índice y recomendaciones de inspección, con la finalidad de detección de fisuras y reparaciones preventivas.

Tabla 7.6 Recomendaciones ante resultado del índice de serviciabilidad [21]

Fatigue Serviceability Index, Q	Fatigue Rating	Assessment Outcome
1.00 to 0.50	Excellent	Continue Regular Inspection
0.50 to 0.35	Good	Continue Regular Inspection
0.35 to 0.20	Moderate	Continue Regular Inspection
0.20 to 0.10	Fair	Increase Inspection Frequency
0.10 to 0.00	Poor	Assess Frequently
<0.00	Critical	Consider Retrofit, Replacement
	Citical	or Reassessment

7.1.7. Ejemplo de cálculo de evaluación de fatiga de un detalle estructural

Para el cálculo se analiza el detalle estructural correspondiente a la viga transversal sección 2, de una viga transversal crítica ante la circulación del vehículo de fatiga por el carril B.

Figura 7.1 Sección 2 de la viga transversal

	# Asignado	# Modelo
Elemento Crítico	2_4	285

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga.

Mediante un análisis paso a paso en el modelo matemático se determinó un historial de esfuerzos en la sección analizada. En el modelo de carga de fatiga ya se ha incluido en el programa el factor de impacto de 15% en cada eje del modelo.

Historia de esfuerzos en la fibra inferior de la sección de la viga transversal obtenido del programa:

Ya que el punto **a** de análisis de la viga se encuentra a 54.5 cm del eje neutro, mediante una relación de triángulos se puede determinar el esfuerzo en este punto como se puede observar en la *figura 7.1* para cada caso de rango de esfuerzo. Se utiliza la ayuda del software JRAIN, para la realización del conteo de ciclos de rangos de esfuerzos.

Figura 7.2 Determinación de esfuerzo en el punto de análisis

a) Conteo de ciclos por método Rain Flow

Como se puede observar en la parte izquierda de la siguiente tabla, se han determinado los rangos de esfuerzos para el punto de análisis y el número de ciclos respectivo ante el paso del modelo de carga. Sin embargo, en el cálculo de rango de esfuerzo equivalente se considerará únicamente el rango de esfuerzo mayor a (Δ f)TH/2, como se especifica en MBE (artículo 7.2.2.2-1)

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ДІ)ТН /2	kg/cm2
1	12.75	8.95	3.79	10.93	0	0.00
1	-6.58	-6.82	0.24	0.00	0	0.00
1	6.74	-9.07	15.80	789.57	0	0.00
1	11.28	0.00	11.28	286.97	0	0.00
1	161.9	-15.72	177.64	1121146.37	1	5605731.83
5				103.92	1	177.64

b) Rango de esfuerzo equivalente y número de Ciclos

De la tabla anterior se obtiene:

(∆fi)máx.	177.64	kg/cm2
(∆f)eq	177.64	kg/cm2
n=	1	

c) Categorización del detalle estructural

Según la caracterización de cada detalle realizado en el **inciso 5.7.2** se tiene que para el punto de análisis (a) se tiene una categoría E':

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E'	1.35538E+14	183

d) Resistencia nominal de fatiga.

Para la resistencia nominal de fatiga se toma el mayor valor de las ecuaciones (6.3) o (6.4):

$$(\Delta F)_n = (\Delta F)_{TH} = 183 \frac{kg}{cm^2}$$

o
$$(\Delta F)_n = \left(\frac{A}{N}\right)^{1/3} = \left(\frac{1.35E15}{89242500}\right)^{1/3} = 114.64 \frac{kg}{cm^2}$$

Se considera que a partir de la ecuación (6.5) se calcula el número total de ciclos en la vida útil de la estructura (75 años):

El valor de n=1 resulta del conteo de número de ciclos por el método Rain Flow en el inciso **b**) y **c**).

$$N = (365) * (75) * n * (ADTT)_{SL} = 365 * 75 * 1 * 3260 = 89242500 ciclos$$

e) Análisis de vida infinita.

Se considera que el detalle tiene vida infinita $Y=\infty$ si considerando la ecuación (7.5):

$$(\Delta f)_{max} \leq (\Delta F)_{TH}$$

Donde $(\Delta f)_{max}$ se toma el mayor valor de:

- $(\Delta f)_{max} = R_p * Y_I * \Delta f = 1 * 1.5 * 177.64 \frac{kg}{cm^2} = 266.46 \frac{kg}{cm^2}$ R_p se ha tomado igual a 1 por que se consideran valores de Δf medidos
- $2 * (\Delta f)_{eff} = 2 * (\Delta f)_{eff} = 2 * R_s (\sum \gamma_i \Delta f_i^3)^{\frac{1}{3}} = 2 * 1 * 177.64 \frac{kg}{cm^2} = 355.28 \frac{kg}{cm^2}$

•
$$(\Delta f_i)_{max} = 177.64 \frac{kg}{cm^2}$$

Se tiene que:

$$355.28 \ \frac{kg}{cm^2} > 183 \frac{kg}{cm^2}$$

Por lo tanto, la vida del detalle es finita y se procede a calcular la vida remanente "Y" del detalle:

f) Cálculo de vida remanente a partir de la ecuación (7.7).

$$Y = \frac{\log \left[\frac{R_R * A}{365 * n * [(ADTT)]_{SLPRESENT} * [(\Delta f)_{eff}]^3} * g * (1+g)^{a-1} + 1\right]}{\log(1+g)}$$

A partir de los siguientes datos obtenidos anteriormente de registros:

ADTT	3260	Camiones
g	0.013%	%
а	2	años
n	1	Ciclos

Rr=	1.9	Para Vida Probable (Tabla 7.2)

$$Y = \frac{\log\left[\frac{1.9 * 1.35538E + 14}{365 * 1 * 3260 * [177.64]^3} * 0.00013 * (1 + 0.00013)^{2-1} + 1\right]}{\log(1 + 0.00013)} = 38.52 \text{ años}$$

g) Cálculo de índice de serviciabilidad a partir de ecuación (7.8) y tablas 7.3, 7.4 y 7.5:

$$Q = \left(\frac{Y-a}{N}\right) * G * R * I$$
$$Q = \left(\frac{38.52 - 2}{100}\right) * 1 * 0.9 * 0.9 = 0.3$$

Como resultado del análisis, este detalle estructural tiene vida finita remanente igual a 38.52 años, con un índice de serviciabilidad de 0.3 que otorga una calificación "Moderado" según la tabla 7.6. Por lo tanto, se requiere de la realización de inspecciones regulares para verificar su estado ante la fatiga.

7.2. CÁLCULOS DE EVALUACIÓN DE FATIGA ANTE MODELO DE CARGA VEHICULAR

A continuación, se realiza el análisis sistemático de la evaluación por fatiga de los elementos estructurales con el uso de una hoja de cálculo siguiendo el mismo procedimiento que se indicó en el ejemplo de cálculo **7.1.7**, utilizando los resultados obtenidos de la corrida del modelo matemático ante la acción del camión de fatiga propuesto. El vehículo se hizo transitar por el carril A y el carril B, incluyendo en el modelo el factor de impacto considerado por AASHTO LRFD para fatiga.

Para el análisis de cada elemento estructural se considerará la posición del camión que causa un mayor daño o mayor rango de esfuerzos tal como se indica en AASHTO (artículo 4.6.1.4.3)

7.2.1. Evaluación de un elemento crítico de la armadura A

La cuerda inferior es el elemento crítico de la armadura A, y tiene mayor efecto ante el paso del vehículo de fatiga por el carril A.

Considerando su historial de esfuerzos mediante el método de conteo **Rain-flow** determinamos, el número de ciclos de cada rango de esfuerzos, considerando únicamente los rangos mayores a $\frac{(\Delta f)_{TH}}{2}$, como se considera en el MBE.

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Ciclos	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$	>(A f)	$\Delta \mathbf{f} \mathbf{eq'}$
	kg/cm2	kg/cm2	kg/cm2	kg/cm2	(∆1)TH /2	kg/cm2
1	1.97	-2.06	4.03	16.39	0	0.00
1	4.65	-2.48	7.13	90.66	0	0.00
1	3.28	-1.73	5.01	31.42	0	0.00
1	90.75	-4.38	95.12	215164.05	1	860656.19
4				59.94	1	95.12

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	95.12	kg/cm2
(∆f)eq	95.12	kg/cm2
n=	1.00	

d) Categorización de detalle estructural:

Catagonía	Constante A	(∆ f) тн	
Categoria	$(kg/cm2)^3$	kg/cm2	
E'	1.35538E+14	183	

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	3260
N=	89242500

				Comproba			
(∆f)eff	(∆f)n	(∆ f) тн	(∆f)n	Rp*1.5*(∆ f)	2*(∆f)eff	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
95.12	114.95	183	183.00	142.68	190.24	95.12	Finita

g) Cálculo de vida remanente:

(∆f)eff	95.12	kg/cm2
Rr=	1.9	

ADTT	3260	Camiones
g	0.013%	%
a	2	años
n	1	Ciclos

Y
Años
247.49

h) Cálculo de índice de serviciabilidad:

G	R	Ι	Q
0.8	0.9	0.9	0.64

7.2.2. Evaluación de un elemento crítico de la armadura B

La cuerda inferior es el elemento crítico de la armadura B, y tiene mayor efecto ante el paso del vehículo de fatiga por el carril B.

Considerando su historial de esfuerzos mediante el método de conteo **Rain-flow** determinamos, el número de ciclos de cada rango de esfuerzos, considerando únicamente los rangos mayores a $\frac{(\Delta f)_{TH}}{2}$, como se considera en el MBE.

	# Asignado	# Modelo
Elemento Crítico	20	935

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Ciclos	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		$\Delta \mathbf{f} \mathbf{eq'}$
	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	2.48	1.46	1.02	0.27	0	0.00
1	4.27	-1.42	5.69	46.04	0	0.00
1	3.55	-2.89	6.45	67.05	0	0.00
1	58.11	-4.05	62.16	60053.00	0	0.00
4				39.18	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	62.16	kg/cm2
(∆f)eq	0	kg/cm2
n=	0	

7.2.3. Evaluación de un elemento crítico de los rigidizadores superiores

El elemento rigidizador superior, se ve más afectado por el paso del camión de fatiga por el carril A, de manera similar a lo anterior se realiza el análisis en base a el conteo de ciclos de rangos de esfuerzos.

	# Asignado	# Modelo
Elemento Crítico	6	2593

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆f eq	>(∆f)тн/2	∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2
1	1.17	0.00	1.17	0.40	0	0.00
1	1.30	-0.56	1.86	1.62	0	0.00
1	1.56	-0.84	2.40	3.46	0	0.00
1	27.89	-1.43	29.32	6303.53	0	0.00
4				18.48	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	29.32	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

7.2.4. Evaluación de un elemento crítico de los rigidizadores del sistema de piso vehicular

El rigidizador del sistema de piso vehicular se ve más afectado por el paso del vehículo por el carril B, de manera similar a lo anterior se realiza el análisis con base en el conteo de ciclos de rangos de esfuerzos.

	# Asignado	# Modelo
Elemento Crítico	2_3	2216

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de fatiga

b) Conteo y análisis de ciclos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	>(ДІ)ТН /2	kg/cm2
1	8.77	1.93	6.85	53.47	0	0.00
1	2.98	-1.51	4.48	15.02	0	0.00
1	0.46	0.00	0.46	0.02	0	0.00
1	0.85	-0.43	1.28	0.35	0	0.00
1	2.04	-2.79	4.83	18.76	0	0.00
1	128.89	-5.61	134.50	405517.10	0	0.00
6				74.02	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	134.50	kg/cm2
(∆f)eq	0	kg/cm2
n=	0	

7.2.5. Evaluación de un elemento crítico de los rigidizadores del sistema de piso ferroviario

El rigidizador del sistema de piso vehicular se ve más afectado por el paso del vehículo por el carril A, de manera similar a lo anterior se realiza el análisis con base a el conteo de ciclos de rangos de esfuerzos.

	# Asignado	# Modelo
Elemento Crítico	5	484

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Cialog	Máx.	Min	$\Delta \mathbf{f}$	∆f eq	>(∆f),,,/2	∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	1.62	-4.79	6.41	52.78	0	0.00
1	0.09	-5.37	5.47	32.66	0	0.00
1	3.81	0.00	3.81	11.04	0	0.00
1	7.08	-6.98	14.06	556.21	0	0.00
1	57.82	-9.94	67.76	62224.62	0	0.00
5				39.76	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	67.76	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

7.2.6. Evaluación de un elemento crítico de las vigas transversales.

En estos elementos se analiza la flexión, de manera similar se hace en una primera instancia el análisis de ciclos de rangos de esfuerzos, con base al programa **Rain-Flow**, y se determina el rango de esfuerzos en el punto de la sección donde anteriormente se determinó la categoría del detalle mediante relación de triángulos.

• Sección transversal 1

	# Asignado	# Modelo
Elemento Crítico	2_5	286

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	>(ДІ)ТН /2	kg/cm2
1	0.68	2.91	2.24	2.24	0	0.00
1	-1.48	-1.12	0.35	0.01	0	0.00
1	-0.76	0.42	1.18	0.33	0	0.00
1	0.00	1.09	1.09	0.26	0	0.00
1	-2.71	23.32	26.02	3524.54	0	0.00
5				15.22	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	26.02	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

• Sección transversal 2

	# Asignado	# Modelo
Elemento Crítico	2_4	285

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆f eq	>(∆f)тн /2	$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2
1	12.75	8.95	3.79	10.93	0	0.00
1	-6.58	-6.82	0.24	0.00	0	0.00
1	6.74	-9.07	15.80	789.57	0	0.00
1	11.28	0.00	11.28	286.97	0	0.00
1	161.93	-15.72	177.64	1121146.37	1	5605731.83
5				103.92	1	177.64

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	177.64	kg/cm2
(∆f)eq	177.64	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E'	1.35538E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	3260
N=	89242500

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
177.64	114.95	183	183.00	266.46	355.28	177.64	Finita

g) Cálculo de vida remanente:

(∆f)eff	177.64	kg/cm2
Rr=	1.9	

ADTT	3260	Camiones
g	0.013%	%
a	2	años
n	1	Ciclos

h) Cálculo de índice de serviciabilidad:

G	R	Ι	Q
1	0.9	0.9	0.30

• Sección transversal 3

	# Asignado	# Modelo
Elemento Crítico	2_3	288

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq	>(∆f)тн /2	∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2
1	-11.93	-8.60	3.33	7.40	0	0.00
1	6.43	7.47	1.04	0.22	0	0.00
1	-6.83	9.09	15.92	807.09	0	0.00
1	-11.25	0.00	11.25	284.70	0	0.00
1	-160.24	15.28	175.52	1081410.50	1	5407052.49
5				102.68	1	175.52

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	175.52	kg/cm2
(∆f)eq	175.52	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E'	1.35538E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita

Rs=	1
Rp=	1
ADTT=	3260
N=	89242500

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
175.52	114.95	183	183.00	263.28	351.03	175.52	Finita

g) Cálculo de vida remanente:

(∆f)eff	175.52	kg/cm2
Rr=	1.9	

ADTT	3260	Camiones
g	0.013%	%
a	2	años
n	1	Ciclos

h) Cálculo de índice de serviciabilidad:

G	R	Ι	Q
1	0.9	0.9	0.31

• Sección transversal 3 reforzada

	# Asignado	# Modelo
Elemento Crítico	2_2	287

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH /2	kg/cm2
1	8.40	6.08	2.33	2.52	0	0.00
1	-4.65	-6.00	1.35	0.50	0	0.00
1	5.30	-6.99	12.29	371.61	0	0.00
1	8.60	0.00	8.60	127.23	0	0.00
1	117.33	-11.69	129.02	429558.25	1	2147791.26
5				75.48	1	129.02

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	129.02	kg/cm2
(∆f)eq	129.02	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E'	1.35538E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	3260
N=	89242500

				Comproba			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
129.02	114.95	183	183.00	193.53	258.04	129.02	Finita

g) Cálculo de vida remanente:

(∆f)eff	175.52	kg/cm2
Rr=	1.9	

ADTT	3260	Camiones
g	0.013%	%
a	2	años
n	1	Ciclos

h) Cálculo de índice de serviciabilidad:

G	R	Ι	Q
1	0.9	0.9	0.79

• Sección transversal 2 reforzada

	# Asignado	# Modelo
Elemento Crítico	2_1	284

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	4.81	2.91	1.90	1.37	0	0.00
1	-1.85	-5.26	3.41	7.91	0	0.00
1	4.29	-5.30	9.60	176.75	0	0.00
1	6.27	0.00	6.27	49.40	0	0.00
1	58.69	-8.45	67.14	60523.36	0	0.00
5				39.31	0	0.00

c) Determinación de rango de esfuerzos equivalente y máxima:

(∆fi)máx.	67.14	kg/cm2
(∆f)eq	0	kg/cm2
n=	0	

• Sección transversal 2 reforzada, analizada en el borde de la unión con la armadura

	# Asignado	# Modelo
Elemento Crítico	2_1	284

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq	· >(∆f)тн /2	$\Delta \mathbf{f} \mathbf{eq'}$
Ciclos	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2
1	0.30	0.69	0.39	0.01	0	0.00
1	-0.60	-0.41	0.19	0.00	0	0.00
1	-0.63	0.46	1.09	0.26	0	0.00
1	0.00	0.79	0.79	0.10	0	0.00
1	-1.30	11.48	12.78	417.55	0	0.00
5				7.48	0	0.00

d) Determinación rango de esfuerzos equivalente y máxima:

(∆fi)máx.	12.78	kg/cm2
(∆f)eq	0	kg/cm2
n=	0	

7.2.7. Evaluación de un elemento crítico de los largueros del sistema de piso vehicular

El elemento larguero, se ve más afectado por el paso del camión de fatiga por el carril A, de manera similar a lo anterior se realiza el análisis con base a el conteo de ciclos de rangos de esfuerzos.

	# Asignado	# Modelo
Elemento Crítico	8_5	384

• Larguero carretero, extremo izquierdo

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Ciclos	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$		$\Delta \mathbf{f} \mathbf{eq'}$
	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH /2	kg/cm2
1	-7.24	-5.55	1.69	0.80	0	0.00
1	-7.90	0.58	8.48	101.64	0	0.00
1	-8.78	7.32	16.10	695.51	0	0.00
1	0.00	10.03	10.03	168.09	0	0.00
1	-18.37	19.28	37.65	8891.80	0	0.00
1	-18.81	406.14	424.96	12790335.54	0	0.00
6				233.92	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	424.96	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

• Larguero carretero, centro del claro

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cielea	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	-15.05	-17.15	2.10	1.86	0	0.00
1	5.33	-3.67	9.00	145.96	0	0.00
1	8.44	-6.94	15.38	727.73	0	0.00
1	35.24	-22.84	58.08	39187.59	0	0.00
1	350.06	-26.08	376.14	10643166.58	0	0.00
5				220.24	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	376.14	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

• Larguero carretero, extremo derecho

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		∆f eq'	
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~ (Δ1)1H /2	kg/cm2	
1	-2.01	-0.28	1.73	1.04	0	0.00	
1	-2.19	0.50	2.69	4.86	0	0.00	
1	-0.82	0.62	1.44	0.75	0	0.00	
1	-1.00	0.94	1.94	1.83	0	0.00	
1	-29.20	19.90	49.10	29598.61	0	0.00	
5				30.94	0	0.00	

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	49.10	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

7.3. CÁLCULOS DE EVALUACIÓN DE FATIGA ANTE MODELO DE CARGA FERRVIARIA

De manera similar a la evaluación para el modelo de camión de fatiga se realizará la evaluación para el modelo de tren de fatiga (Cooper E-80 truncado).

La utilización de las ecuaciones será como se estipula en AASHTO LRFD, y MBE, tomando en cuenta los requerimientos establecidos en éstos, para la consideración de vías férreas. (AASHTO 3.6.1.5, C3.6.1.5)

El diseño resultante del análisis de cargas ferroviarias en ningún caso será menor que el diseño resultante de solicitaciones de cargas vehiculares.

Considerando que en el puente Coatzacoalcos I la vía de ferrocarril utiliza un carril exclusivo, las características de la carga ferroviaria deben incluir:

- o Cargas
- Distribución de Cargas
- o Dinámica
- Dimensiones

Estas recomendaciones se han considerado del manual AREMA, documento especializado en el análisis ferroviario. Cumpliendo los requerimientos, las ecuaciones y consideraciones son aplicables también para este caso.

Para la obtención de rangos de esfuerzos en los elementos estructurales, en la corrida del modelo matemático se considera el tren de carga Cooper E-80 truncado, incluyendo el factor de impacto que propone AREMA calculado anteriormente.

7.3.1. Evaluación de un elemento crítico de la armadura A

	# Asignado	# Modelo
Elemento Crítico	18	941

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	5.64	-1.50	7.14	182.23	0	0.00
1	530.75	-6.41	537.16	77495651.39	1	154991302.78
2				426.34	1	537.16

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	537.16	kg/cm2
(∆f)eq	537.158	kg/cm3
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ th
	$(kg/cm^2)^3$	kg/cm2
E'	1.35538E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	273750

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	(∆f)n	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
537.16	996.73	183	996.73	805.74	1074.32	537.16	Finita

g) Determinación de vida remanente:

(∆f)eff	537.16	kg/cm2
Rr=	1.9	

ADTT	5	Trenes
g	0.20%	%
a	2	años
n	1	Ciclos

Y	
Años	
519.68	

El valor resultante de 519.68 años se debe a que hay un bajo número de repeticiones del esfuerzo efectivo considerado, por tal motivo este detalle estructural se considera con vida mayor a 100 años, siendo no crítico al fenómeno de fatiga.

7.3.2. Evaluación de un elemento crítico de la armadura B

	# Asignado	# Modelo
Elemento Crítico	23	938

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq	>(Af)==== /2	$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~ (Δ1)TH /2	kg/cm2
1	3.29	0.00	3.29	11.89	0	0.00
1	6.42	-0.03	6.44	89.10	0	0.00
1	1351.21	-2.34	1353.55	826609857.43	1	2479829572.30
3				938.50	1	1353.55

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	1353.55	kg/cm2
(∆f)eq	1353.55	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E'	1.35538E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1						
Rp=	1						
ADTT=	5						
N=	136875						
				Comproba			
---------	--------	--------------------------	---------------	------------------------------	-------------------	-----------	--------
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
1353.55	996.73	183	996.73	2030.32	2707.10	1353.55	Finita

g) Cálculo de vida remanente:

(∆f)eff	1353.55	kg/cm2
Rr=	1.9	

ADTT	5	Trenes
g	0.20%	%
a	2	años
n	1	Ciclos

h) Cálculo de índice de serviciabilidad:

G	R	Ι	Q
0.8	0.9	0.9	0.34

7.3.3. Evaluación de un elemento crítico de los rigidizadores de las armaduras

	# Asignado	# Modelo
Elemento Crítico	4	2591

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de fatiga

b) Análisis de rangos de ciclos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	>(ДІ)ТН /2	kg/cm2
1	2.19	0.00	2.19	3.52	0	0.00
1	3.33	-0.40	3.73	17.31	0	0.00
1	372.10	-0.43	372.53	17232717.98	1	51698153.93
3				258.30	1	372.53

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	372.53	kg/cm2
(∆f)eq	372.53	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	(∆ f) тн
	$(kg/cm2)^3$	kg/cm2
С	1.52914E+15	703

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comproba			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
372.53	2235.50	703	2235.50	558.79	745.06	372.53	Infinita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga la vida remanente calcula es mayor a 100 años.

7.3.4. Evaluación de un elemento crítico de los rigidizadores del sistema de piso vehicular

	# Asignado	# Modelo
Elemento Crítico	1_1	385

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq	>(∆f)тн /2	>(A f)	$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2	
1	10.38	-8.82	19.20	2358.59	0	0.00	
1	12.67	0.00	12.67	677.77	0	0.00	
1	920.86	-10.30	931.16	269122928.38	1	807368785.15	
3				645.63	1	931.16	

c) Determinación de rango de esfuerzos:

(∆fi)máx.	931.16	kg/cm2
(∆f)eq	931.159	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
В	4.17039E+15	1125

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	(∆ f) тн	$(\Delta f)N$	Rp*1.5*(∆ f)	2*(∆f)eff	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
931.16	3123.33	1125	3123.33	1396.74	1862.32	931.16	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga la vida remanente calcula es mayor a 100 años.

7.3.5. Evaluación de un elemento crítico de los rigidizadores del sistema de piso ferroviario

	# Asignado	# Modelo
Elemento Crítico	52	532

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	20.84	-8.73	29.57	12924.24	0	0.00
1	1432.02	-13.42	1445.44	1509991217.39	1	3019982434.78
2				1147.25	1	1445.44

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	1445.44	kg/cm2
(∆f)eq	1445.44	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E	3.82285E+14	316

e) Y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
1445.44	1408.28	316	1408.28	2168.17	2890.89	1445.44	Finita

g) Cálculo de vida remanente:

(∆f)eff	1445.44	kg/cm2
Rr=	1.6	
A=	3.82285E+14	

ADTT	5	Trenes
g	0.20%	%
a	2	años
n	1	Ciclos

Y
Años
100.51

h) Cálculo de índice de Serviciabilidad:

G	R	Ι	Q
1	0.9	0.9	0.79

7.3.6. Evaluación de un elemento crítico de la viga transversal

• Sección transversal 1

	# Asignado	# Modelo
Elemento Crítico	2_5	286

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Ciolog	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH /2	kg/cm2
1	62.06	71.31	9.25	263.42	0	0.00
1	-6.05	8.50	14.55	1025.99	0	0.00
1	-82.99	106.09	189.08	2253439.14	1	6760317.41
3				131.13	1	189.08

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	189.08	kg/cm2
(∆f)eq	189.08	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E'	1.3554E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ th	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
189.08	996.73	183	996.73	283.63	378.17	189.08	Finita

i) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Sección transversal 2

	# Asignado	# Modelo
Elemento Crítico	2_4	285

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH /2	kg/cm2
1	17.40	8.51	8.89	140.53	0	0.00
1	580.22	494.36	85.86	126587.05	0	0.00
1	22.96	-4.33	27.29	4066.46	0	0.00
1	24.27	0.00	24.27	2859.76	0	0.00
1	594.25	-5.94	600.19	43240769.52	1	216203847.59
5				351.35	1	600.19

c) Determinación de rango de esfuerzos máximo y equivalente:

(Δfi)máx.	600.19	kg/cm2
$(\Delta f) eq$	600.19	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E'	1.3554E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ th	$(\Delta f)N$	Rp*1.5* (∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
600.19	996.73	183	996.73	900.28	1200.38	600.19	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Sección transversal 3

	# Asignado	# Modelo
Elemento Crítico	2_3	288

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Conteo y análisis de ciclos con el método Rain flow

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(<u>\\)</u>]]H/2	kg/cm2
1	-780.61	-658.70	121.91	301984.56	1	905953.69
1	-9.49	-6.85	2.64	3.07	0	0.00
1	-15.97	4.11	20.08	1349.78	0	0.00
1	-5.54	0.00	5.54	28.29	0	0.00
1	-26.50	11.64	38.14	9246.44	0	0.00
1	-809.82	13.71	823.54	93089097.42	1	279267292.25
6				453.72	2	654.35

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	823.54	kg/cm2
(∆f)eq	654.35	kg/cm2
n=	2	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E'	1.3554E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	273750

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	(∆ f) тн	$(\Delta f)N$	Rp*1.5*(∆ f)	2*(∆f)eff	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
654.35	791.11	183	791.11	981.52	1308.70	823.54	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Sección transversal 3 reforzada

	# Asignado	# Modelo
Elemento Crítico	2_2	287

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$	>(∆f)тн /2	∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2		kg/cm2
1	-0.39	-0.62	0.22	0.00	0	0.00
1	731.17	612.32	118.84	239777.63	1	839221.70
1	12.30	3.44	8.86	99.37	0	0.00
1	9.96	-1.52	11.48	216.07	0	0.00
1	0.34	-0.17	0.51	0.02	0	0.00
1	19.87	-11.34	31.21	4342.23	0	0.00
1	761.76	-20.65	782.41	68422273.16	1	239477956.05
7				409.50	2	621.72

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	782.41	kg/cm2
(∆f)eq	621.72	kg/cm2
n=	2	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
E'	1.3554E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	273750

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	(∆ f) тн	$(\Delta f)N$	Rp*1.5*(∆ f)	2*(∆f)eff	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
621.72	791.11	183	791.11	932.58	1243.44	782.41	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Sección trasversal 2 reforzada

	# Asignado	# Modelo
Elemento Crítico	2_1	284

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$		$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)TH 72	kg/cm2
1	811.03	664.56	146.47	628512.63	1	1571281.57
1	5.52	1.57	3.95	12.30	0	0.00
1	12.91	0.07	12.84	423.12	0	0.00
1	14.88	-8.65	23.53	2605.41	0	0.00
1	853.50	-41.39	894.89	143328802.28	1	358322005.70
5				524.10	2	711.31

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	894.89	kg/cm2
(∆f)eq	711.31	kg/cm2
n=	2	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E'	1.3554E+14	183

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	273750

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
711.31	791.11	183	791.11	1066.96	1422.62	894.89	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Sección transversal 2 reforzada analizada en el extremo de la unión con la armadura

	# Asignado	# Modelo
Elemento Crítico	2_1	284

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	∆f eq		∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH /2	kg/cm2
1	73.64	85.64	12.01	346.04	0	0.00
1	0.23	0.37	0.14	0.00	0	0.00
1	0.03	2.25	2.22	2.19	0	0.00
1	0.00	1.47	1.47	0.64	0	0.00
1	-1.28	95.41	96.69	180795.51	0	0.00
5				56.58	0	0.00

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	96.69	kg/cm2
(∆f)eq	0.00	kg/cm2
n=	0	

Ante el tránsito del modelo por el carril A no se registran ciclos mayores a (Δf)TH/2 del análisis, resultando que este detalle estructural tiene vida infinita a fatiga.

7.3.7. Evaluación de un elemento crítico de los largueros del sistema de piso ferroviario

	# Asignado	# Modelo
Elemento Crítico	1	882

- Extremo izquierdo
- a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	∆ f eq		$\Delta \mathbf{f} \mathbf{e} \mathbf{q}'$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH /2	kg/cm2
1	99.21	148.94	49.72	24585.33	0	0.00
1	5.80	6.83	1.03	0.22	0	0.00
1	-5.41	7.87	13.28	468.42	0	0.00
1	-14.93	3.60	18.54	1273.58	0	0.00
1	-64.48	176.61	241.09	2802587.72	1	14012938.62
5				141.43	1	241.09

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	241.09	kg/cm2
(∆f)eq	241.09	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm^2)^3$	kg/cm2
E	3.8229E+14	316

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
241.09	1408.28	316	1408.28	361.63	482.18	241.09	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Centro del claro

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de fatiga

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cialag	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$	>(A f)	∆f eq'
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔI)IH/2	kg/cm2
1	0.32	0.25	0.06	0.00	0	0.00
1	945.98	508.43	437.55	13961582.49	1	41884747.47
1	4.64	0.00	4.64	16.66	0	0.00
1	12.05	-13.85	25.89	2893.53	0	0.00
1	28.53	-15.59	44.12	14312.75	0	0.00
1	1041.59	-68.97	1110.56	228285677.73	1	684857033.20
6				623.39	2	899.07

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	1110.56	kg/cm2
(∆f)eq	899.07	kg/cm2
n=	2	

d) Categorización del detalle estructural:

Categoría	Constante A	(∆ f) тн	
	$(kg/cm2)^3$	kg/cm2	
Е	3.8229E+14	316	

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	273750

				Comproba	ción de vida	a infinita	
(∆f)eff	(∆f)n	(∆ f) тн	$(\Delta f)N$	Rp*1.5*(∆ f)	2*(∆f)eff	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
899.07	1117.75	316	1117.75	1348.60	1798.14	1110.56	Finita

g) Cálculo de Vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

• Extremo derecho

a) Determinación de esfuerzos en un elemento ante el tránsito del modelo de carga de fatiga:

b) Análisis y conteo de ciclos de rangos de esfuerzos con el método Rain flow:

#Cieles	Máx.	Min	$\Delta \mathbf{f}$	$\Delta \mathbf{f} \mathbf{e} \mathbf{q}$	<u>>(лөтц /)</u>	$\Delta \mathbf{f} \mathbf{eq'}$
#CICIOS	kg/cm2	kg/cm2	kg/cm2	kg/cm2	~(ΔΙ)ΤΠ /2	kg/cm2
1	268.73	386.36	117.63	406956.91	0	0.00
1	-18.47	19.32	37.79	13491.36	0	0.00
1	-42.48	23.63	66.11	72222.92	0	0.00
1	-46.07	599.58	645.65	67286828.23	1	269147312.92
4				407.72	1	645.65

c) Determinación de rango de esfuerzos máximo y equivalente:

(∆fi)máx.	645.65	kg/cm2
(∆f)eq	645.65	kg/cm2
n=	1	

d) Categorización del detalle estructural:

Categoría	Constante A	$(\Delta \mathbf{f})$ тн
	$(kg/cm2)^3$	kg/cm2
Е	3.8229E+14	316

e) y f) Determinación de resistencia a fatiga y análisis de vida infinita:

Rs=	1
Rp=	1
ADTT=	5
N=	136875

				Comprobación de vida infinita			
(∆f)eff	(∆f)n	$(\Delta \mathbf{f})$ тн	$(\Delta f)N$	Rp*1.5*(∆ f)	$2*(\Delta f)eff$	(∆fi)máx.	Rev
kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	kg/cm2	Vida
645.65	1408.28	316	1408.28	968.47	1291.30	645.65	Finita

g) Cálculo de vida remanente:

Debido a una baja repetición de ciclos de carga, la vida remanente calculada es mayor a 100 años.

CAPÍTULO 8

8. ANÁLISIS DE RESULTADOS

A continuación, se presentan las tablas resumen de la revisión de diseño de fatiga de elementos estructurales críticos y de la realización de la evaluación de fatiga de elementos estructurales ante los modelos de carga de fatiga propuestos.

Revisión de diseño a fatiga realizada mediante la acción de un modelo de fatiga estático situado en la posición que cause un mayor daño, en este análisis se incluye un factor de impacto propuesto por las normas.

Grupo de Elementos	Elemento # Modelo	Elemento # Asignado	Carga Crítica	Vida	Cumple
Armadura A	946	23	Ferrocarril	Finita	Si
Armadura B	938	23	Ferrocarril	Finita	Si
Rigidizador Armaduras	2593	6_3	Ferrocarril	Infinita	Si
Rigidizador Carretero	387	1_3	Ferrocarril	Infinita	Si
Rigidizador Ferroviario	532	52	Ferrocarril	Finita	Si
Viga transversal Sec. 1	306	6_5	Ferrocarril	Finita	Si
Viga transversal Sec. 2	305	6_4	Ferrocarril	Finita	Si
Viga transversal Sec. 3	308	6_3	Ferrocarril	Finita	Si
Viga transversal Sec. 3 reforzada	307	6_2	Ferrocarril	Finita	Si
Viga transversal Sec. 2 reforzada	304	6_1	Ferrocarril	Finita	Si
Viga transversal Sec. 2 reforzada'	304	6_1	Ferrocarril	Finita	Si
Larguero Carretero Extremo Izq.	358	6_2	Ferrocarril	Infinita	Si
Larguero Carretero Centro	350	6_1	Ferrocarril	Infinita	Si
Larguero Carretero Extremo Der.	355	3_2	Ferrocarril	Infinita	Si
Larguero Ferrocarril Extremo Izq.	890	9	Ferrocarril	Finita	Si
Larguero Ferrocarril Centro	886	5	Ferrocarril	Finita	Si
Larguero Ferrocarril Extremo Der.	888	7	Ferrocarril	Finita	Si

Tabla 8.1 Tabla de resumen de revisión de diseño por fatiga

La evaluación de fatiga realizada mediante el tránsito de un modelo de carga de fatiga dinámico a lo largo del puente (Análisis paso a paso), en el análisis se incluyó también un factor de impacto como se especifica en las normas.

De este análisis se obtienen historiales de esfuerzos de cada uno de los elementos estructurales que mediante el método Rain Flow, se determinan los ciclos de cada rango de esfuerzos, lo que nos permite realizar el análisis de fatiga.

Grupo de Elementos	Elemento	Elemento	Carga Crítica	Vida	Vida Remanente	Índice	Calificación
	#Modelo	#Asignado	Critica		Años	V V	
Armadura A	946	23	Vehículo A	Finita	>>100	-	Excelente
Armadura B	938	23	Ferrocarril	Finita	54.05	0.34	Moderado
Rigidizador Armaduras	2591	4	Ferrocarril	Finita	>>100	-	Excelente
Rigidizador Carretero	385	1_1	Ferrocarril	Finita	>>100	-	Excelente
Rigidizador Ferroviario	532	52	Ferrocarril	Finita	100.51	0.79	Excelente
Viga transversal Sec. 1	286	2_5	Ferrocarril	Finita	>>100	-	Excelente
Viga transversal Sec. 2	285	2_4	Vehículo B	Finita	38.52	0.30	Moderado
Viga transversal Sec. 3	288	2_3	Vehículo B	Finita	39.93	0.31	Moderado
Viga transversal Sec. 3 reforzada	287	2_2	Vehículo B	Finita	100.13	0.79	Excelente
Viga transversal Sec. 2 reforzada	284	2_1	Ferrocarril	Finita	>>100	-	Excelente
Viga transversal Sec. 2 reforzada'	284	2_1	Ferrocarril	Finita	>>100	-	Excelente
Larguero Carretero Extremo I	344	1_1	Vehículo A	Infinita	-	-	Excelente
Larguero Carretero Centro	344	1_1	Vehículo A	Infinita	-	-	Excelente
Larguero Carretero Extremo D	344	1_1	Vehículo A	Infinita	-	-	Excelente
Larguero Ferrocarril Extremo I	882	1	Ferrocarril	Finita	>>100	-	Excelente
Larguero Ferrocarril Centro	882	1	Ferrocarril	Finita	>>100	-	Excelente
Larguero Ferrocarril Extremo D	882	1	Ferrocarril	Finita	>>100	-	Excelente

Tabla 8.2 Tabla de resumen de evaluación de fatiga

Ante las calificaciones obtenidas para cada detalle estructural, el manual de mantenimiento de puentes nos recomienda en la tabla.7.2.6.2-1 (MBE) continuar con inspecciones periódicas en especial con más frecuencia e importancia a las de índice Q menor, pues son las más propensas a la iniciación de fisuras.

CAPÍTULO 9

9. CONCLUSIONES Y RECOMENDACIONES

Como se puede observar en la *tabla 8.1* donde se resume la revisión del diseño ante fatiga, se puede determinar que el diseño de la armadura del Puente Coatzacoalcos I, cumple con la normativa, y sus requerimientos.

En base al manual de evaluación de puentes (MBE), se ha realizado una metodología para la evaluación de fatiga de puentes existentes mediante el uso de un modelo matemático validado, representando así aceptablemente el fenómeno real, permitiendo determinar los elementos o detalles estructurales más vulnerables a fatiga.

Una vez que se han determinado los elementos estructurales críticos, se ha realizado el análisis de evaluación como se muestra en resumen en la *tabla 8.2*, se concluyó que los detalles estructurales que poseen una menor vida remanente son las zonas de soldadura de placas en los patines de las vigas transversales, debido a los altos esfuerzos resultantes del paso del ferrocarril. Esto también ocurre en la zona del nudo de la armadura B, en donde se conecta la cuerda inferior de esta armadura.

La realización de inspecciones o procesos de detección de fisuras no dejan de ser importantes en la evaluación estructural, sin embargo, este estudio constituye una herramienta de ayuda para la realización de mantenimiento, reparación o reforzamiento de detalles estructurales críticos ante fatiga.

En complemento a la realización de inspecciones y procesos de detección de fisuras, existen métodos no destructivos basados en probabilidad bayesiana para la determinación de la vida remanente de un detalle estructural, estos métodos se tratan con detalle en las referencias [5], [21] y [26].

La corrosión es un efecto muy importante en la aceleración de procesos de fisura, debido que el puente se encuentra en una zona costera se ve más afectado por este fenómeno si no se realizan procesos de mantenimiento o protección al ambiente corrosivo, la aparición de fisuras o fracturas ocurrirán en un menor tiempo.

Se ha visto necesario el poder contar con bases de datos y estudios de tráfico actualizados del sector de estudio, que permitan desarrollar una evaluación adecuada de la estructura ante fatiga, que además de verificar las hipótesis de la etapa de diseño, facilite la toma de decisiones con el fin de preservar la estructura.

La información de la instrumentación de la estructura ha sido de vital importancia para la obtención de un modelo matemático representativo, significando ésta una herramienta para el análisis de una estructura ante diversos efectos, proporcionando ventajas económicas, de manejo de datos y de tiempo.

10. REFERENCIAS

- [1] AASHTO. (1990). Guide Specifications for Fatigue Evaluation of Existing Steel Bridges. American Association of State Highway and Transportation Officials. Washington, D.C.
- [2] AASHTO. (1994). Manual for Condition Evaluation of Bridges. Second Edition, American Association of State Highway and Transportation Officials. Washington, D.C.
- [3] AASHTO. (2003). Guide Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges. American Association of State Highway and Transportation Officials. Washington, D.C.
- [4] AASHTO. (2010). *LRFD Bridge Design Specifications. Fifth Edition, American Association of State Highway and Transportation Officials.* Washington, D.C.
- [5] AASHTO. (2011). Manual for Bridge Evaluation. Second Edition, American Association of State Highway and Transportation Officials. Washington, D.C.
- [6] AASHTO. (2012). *LRFD Bridge Design Specifications. Sixth Edition, American Association of State Highway and Transportation Officials.* Washington, D.C.
- [7] AISC. (2010). Steel Construction Manual. 14th Edition, American Institute of Steel Construction. Chicago.
- [8] AREMA. (s.f.). *Manual for Railway Engineering*.
- [9] Banerji, P., & Chikermane, S. A. (2011). Structural Health Monitoring of a Steel Railway Bridge for Increased Axle Loads. *Structural Engineering International*.
- [10] Eurocódigo. (1993). Design of Steel Structures.
- [11] Eurocódigo. (2005). Design of Steel Structures.
- [12] Fu, G. (2013). *Bridge Design and Evaluation: LRFD and LRFR*. New Jersey: Wiley.
- [13] Instituto de Ingeniería Unam. (2014). *Verificación del control de calidad y seguimiento durante la reconstrucción de la superestructura y subestructura del puente "Coatzacoalcos I"*. México Distrito Federal.
- [14] Instituto Mexicano del Transporte. (1999). *Modelo de cargas vivas vehiculares para diseño estructural de puentes en México*. Sanfandila.
- [15] Instituto Mexicano del Transporte. (2004). *Formulación de la norma sct de cargas vehiculares para diseño estructural de puentes carreteros*. Sanfandila.
- [16] Instituto Mexicano del Transporte. (2013). Análisis de Deterioro por Fatiga en Torones de Presfuerzo Utilizados en Puentes. Sanfandila.
- [17] Instituto Mexicano del Transporte. (2013). Análisis del deterioro estructural por fatiga y prognosis de un puente típico de concreto utilizando simulación MonteCarlo. Sanfandila.

- [18] Instituto Mexicano del Transporte. (2013). Simulación Monte Carlo de las cargas vivas en el puente Barranca Honda para la obtención de las proyecciones estadísticas de esfuerzos y ciclos de carga. Sanfandila.
- [19] Instituto Técnico de la Estructura en Acero. (s.f.). Diseño para Fatiga (Vol. 14).
- [20] López, M. A. (2014). *REVISIÓN ESTRUCTURAL DEL TRAMO METÁLICO LEVADIZO DE UN PUENTE*. México D.F.
- [21] National Cooperative Highway Research Program. (2012). *Fatigue Evaluation of Steel Bridges*. Washington, D.C.
- [22] Quiroz, L. A. (2015). Inspección y mantenimiento 2011 del Puente Coatzacoalcos I.
- [23] Secretaría de Comunicaciones y Transportes. (2014). *NORMA Oficial Mexicana NOM-012-SCT-2-2014*.
- [24] Torres, B. T. (2011). CARACTERIZACIÓN DE LOS MODELOS DE CARGA VIVA PARA LA EVALUACIÓN DE LA FATIGA EN PUENTES VEHICULARES DE ACERO EN MÉXICO. Nuevo León.
- [25] Unsworth, J. F. (2010). *Design of Modern Steel Railway Bridges*. Boca Raton, FL, United States of America: Taylor and Francis Group. LLC.
- [26] Zhao, Z., & Haldar, A. (1996). Bridge Fatigue Damage Evaluation And Updating Using Non-Destructive Inspections. *Engineering Fracture Mechanics Vol. 53*, 14.
- [27] Zhou, Y. E. (2006). Assessment of Bridge Remaining Fatigue Life through Field. *Journal Of Bridge Engineering*, 8.

• Índice de Figuras

Figura 1.1 Ejemplo de fractura en un elemento debido a fatiga [web]	2
Figura 1.2 Fractura por fatiga [web]	3
Figura 2.1 Tramo de armadura del puente Coatzacoalcos I	5
Figura 2.2 Tensiones nominales en una sección [19]	9
Figura 2.3 Concentración de tensiones en una sección con agujero [19]	9
Figura 2.4 Distribución de tensiones en el borde de soldadura [19]	. 10
Figura 2.5 Concentración de tensiones por soldadura [19]	. 11
Figura 2.6 Crecimiento de fisuras [19]	. 11
Figura 2.7 Curva de propagación de la fisura [16]	. 12
Figura 2.8 Historia de tensiones o esfuerzos de amplitud constante [19]	. 12
Figura 2.9 Parámetros de curvas de historia de esfuerzos de amplitud constante [19]	. 13
Figura 2.10 Graficas de historias para los diferentes casos de valores de R y tensión media [19]	. 13
Figura 2.11 Efecto de la tensión media σm sobre la vida a fatiga [19]	. 14
Figura 2.12 Tensiones que se propagan en el metal base [19]	. 14
Figura 2.13 Concentración de tensiones [19]	. 15
Figura 2.14 Curva general de resistencia a la fatiga (S-N) [19]	. 16
Figura 2. 15 Curvas S-N propuestas por el Eurocódigo [11]	. 18
Figura 2.16 Clasificación de categorías de uniones más comunes [11]	. 18
Figura 2.17 Curvas S-N propuestas por AASHTO [7]	. 19
Figura 2.18. Espectro simplificado de cargas [19]	. 25
Figura 2.19. Historial de tensiones (Rango de tensión constante) [19]	. 25
Figura 2.20 Historial de tensiones (Rango de tensión variable) [19]	. 26
Figura 2.21 Espectro de tensiones [19]	. 26
Figura 2.22 Métodos para el recuento de ciclos de esfuerzos [19]	. 27
Figura 2.23 Ejemplo de conteo de ciclos por método del embalse [19]	. 27
Figura 2.24 Daño acumulable [19]	. 28
Figura 2.25 Espectro de rangos de esfuerzos [19]	. 29
Figura 2.26 Curva S-N de doble pendiente [19]	. 30
Figura 2.27. Análisis de cambio de pendiente [19]	. 31
Figura 2.28 Comparación de resultados de pruebas con curvas S-N AASHTO y Eurocódigo [21]	. 36
Figura 2.29 Comparación del vehículo de fatiga AASHTO con estudio WIM, carril izquierdo [21]	. 37
Figura 2.30 Comparación del vehículo de fatiga AASHTO con estudio WIM, carril derecho [21]	. 38

)
L
2
3
ł
ł
5
1
1
3
3
)
)
)

Figura 3.15 Larguero del cuerpo carretero	. 50
Figura 3.16 Detalle de camino peatonal lateral y guarnición de la vía	. 51
Figura 3.17 Cimentación reconstruida	. 52
Figura 3.18 Duques de alba [20]	. 53
Figura 3.19 Cabezal de pilotes [22]	. 53
Figura 3.20 Apoyos intermedios [22]	. 54
Figura 3.21 Cimentación en extremos de armadura	. 54

Figura 4.1 Modelo matemático (Ejes de elementos)	58
Figura 4.2 Modelo matemático 3D	58
Figura 4.3 Numeración de elementos de la armadura A	59
Figura 4.4 Numeración de elementos de la armadura B	59
Figura 4.5 Numeración de elementos rigidizadores superiores inclinados	59
Figura 4.6 Numeración de elementos rigidizadores superiores horizontales	50
Figura 4.7 Numeración de elementos rigidizadores del sistema de piso	50
Figura 4.8 Numeración de elementos de vigas transversales	50
Figura 4.9 Numeración de elementos largueros de sistema de piso vehicular y ferroviario	51
Figura 4.10 Localización de acelerómetros [13]	53
Figura 4.11 Sensores en la armadura A [13]	55
Figura 4.12 Sensores en la armadura B [13]	55
Figura 4.13 Sensores en largueros [13]	55
Figura 4.14 Camión Kenworth 53 t	56
Figura 4.15 Camión Kenworth 35 t	56
Figura 4.16 Camión Kenworth 18 t	57
Figura 4.17 Camión Dina 20 t	57
Figura 4.18 Locomotora Canadian Pacific 9703	58
Figura 4.19 Ejemplo de carro tanque 6	59
Figura 4.20 Ejemplo de furgón	59
Figura 4.21 Ejemplo de tolva	59
Figura 4.22 Posición de prueba E1	70
Figura 4.23 Posición de prueba E2	70
Figura 4.24 Posición de prueba E3	70
Figura 4.25 Posición de prueba E4	70
Figura 4.26 Posición de prueba E5	71
Figura 4.27 Prueba de carga estática E5 [13]	71
Figura 4.28 Prueba de carga dinámica D1 [13]	75

Figura 5.1 Camión de fatiga AASHTO	78
Figura 5.2 Grafica de TDPA en el puente Coatzacoalcos I	82
Figura 5.3 Modelo de carga de fatiga Cooper E-80 [25]	84
Figura 5.4 Modelo de carga de fatiga alternativo	84
Figura 5.5 Efecto oscilatorio	85
Figura 5.6 Categorización de la cuerda inferior de la armadura	90
Figura 5.7 Categorización de rigidizadores superiores de las armaduras	92
Figura 5.8 Categorización de rigidizadores del sistema de piso vehicular	94
Figura 5.9 Detalle de unión de los rigidizadores del sistema de piso vehicular	95
Figura 5.10 Categorización de rigidizadores del sistema de piso ferroviario	96
Figura 5.11 Detalle longitudinal de la viga transversal	98
Figura 5.12 Categorización de la sección transversal 1	98

Figura 5.13 Categorización de la sección transversal 2	
Figura 5.14 Categorización de la sección transversal 3	
Figura 5.15 Categorización de la sección transversal 3 reforzada	103
Figura 5.16 Categorización de la sección transversal 2 reforzada	105
Figura 5.17 Categorización de un larguero del sistema de piso vehicular	108
Figura 5.18 Categorización de elementos canal del sistema de piso vehicular	109
Figura 5.19 Categorización de largueros del sistema de piso ferroviario	

Figura 6.1 Diagrama envolvente de momento debido al paso del camión de fatiga	. 114
Figura 6.2 Diagrama envolvente de momento debido al paso del tren de fatiga	. 117
Figura 6.3 Cuerda inferior de la armadura B (Elemento 23)	. 121

Figura 7.1 Sección 2 de la viga transversal	143
Figura 7.2 Determinación de esfuerzo en el punto de análisis	144

• Índice de Tablas

Tabla 2.1 Categorías de detalles estructurales (Eurocódigo) [11]	17
Tabla 2.2 Categorías de detalles estructurales (Tabla 6.6.1.2.5-1 AASHTO) [6]	19

Tabla 3.1 Coordenadas del puente Coatzacoalcos I	. 45
Tabla 3.2 Coordenadas de la armadura principal	. 45
Tabla 3.3 Especificaciones del acero estructural	. 55
Tabla 3.4 Especificaciones de tornillos	. 55
Tabla 3.5 Características del acero estructural	. 55
Tabla 3.6 Especificaciones del concreto	. 55
Tabla 3.7 Características del concreto	. 56

Tabla 4.1 Tabla de cálculo del peso de la estructura
Tabla 4.2 Error relativo del peso de la estructura
Tabla 4.3 Tabla de modos de vibrar y frecuencias determinadas en campo [13] 64
Tabla 4.4 Comparación de los principales modos de vibrar de la estructura
Tabla 4.5 Ejes del camión Kenworth 53 t
Tabla 4.6 Ejes del camión Kenworth 35 t
Tabla 4.7 Ejes del camión Kenworth 18 t 67
Tabla 4.8 Ejes del camión Dina 20 t 67
Tabla 4.9 Ejes de la Locomotora Canadian Pacific
Tabla 4.10 Esfuerzos axiales en elementos de la armadura A determinados por mediciones [13] 72
Tabla 4.11 Esfuerzos axiales en elementos de la armadura B determinados por mediciones [13] 72
Tabla 4.12 Deflexión máxima en centro del claro determinado en campo [13] 72
Tabla 4.13 Esfuerzos axiales en elementos de la armadura A determinados por el modelo73
Tabla 4.14 Esfuerzos axiales en elementos de la armadura B determinados por el modelo73
Tabla 4.15 Deflexión máxima en centro del claro determinado en el modelo73
Tabla 4.16 Errores relativos determinados para elementos de la armadura A
Tabla 4.17 Errores relativos determinados para elementos de la armadura B74
Tabla 4.18 Errores relativos determinados de deflexión máxima
Tabla 4.19 Esfuerzos axiales en elementos de la armadura A determinados por mediciones [13] 76
Tabla 4.20 Esfuerzos axiales en elementos de la armadura B determinados por mediciones [13] 76
Tabla 4.21 Esfuerzos axiales en elementos de la armadura A determinados por el modelo76
Tabla 4.22 Esfuerzos axiales en elementos de la armadura B determinados por el modelo77
Tabla 4.23 Errores relativos determinados para elementos de la armadura A77
Tabla 4.24 Errores relativos determinados para elementos de la armadura B77

. 79
. 79
. 80
81
81
82
83
86

Tabla 5.9 Evolución del equipo de transporte en México [SCT]	. 87
Tabla 5.10 Número de ciclos por paso del tren [25]	. 88

Tabla 6.1 Modelo de camión de fatiga	
Tabla 6.2 Posición de resultante del camión de fatiga	
Tabla 6.3 Reacciones ante la acción del camión de fatiga	
Tabla 6.4 Momento máximo debido a la acción del camión de fatiga	
Tabla 6.5 Determinación del momento máximo mediante líneas de influencia ante el c	amión de fatiga
Tabla 6.6 Modelo del tren de fatiga	
Tabla 6.7 Posición de resultante del tren de fatiga	
Tabla 6.8 Reacciones ante la acción del tren de fatiga	
Tabla 6.9 Momento máximo debido la acción del tren de fatiga	
Tabla 6.10 Determinación del momento máximo mediante líneas de influencia ante el tr	en de fatiga 116
Tabla 6.11 Constante A, y umbral $(\Delta F)TH$ [6]	
Tabla 6.12 Consideración de n, número de ciclos [6]	

Tabla 7.1 Factor de carga parcial [5] MBE (tabla 7.2.2.1-1)	137
Tabla 7.2 Factor de carga <i>RR</i> [21] NCHRP (Tabla 7.2.5.1-1)	139
Tabla 7.3 Factor G [21] MBE (Tabla 7.2.6.1-1)	141
Tabla 7.4 Factor R [21] MBE (Tabla 7.2.6.1-2)	141
Tabla 7.5 Factor de importancia [21] MBE (Tabla 7.2.6.1-3)	142
Tabla 7.6 Recomendaciones ante resultado del índice de serviciabilidad [21]	142

Tabla 8.1 Tabla de resumen de revisión de diseño por fatiga	. 186
Tabla 8.2 Tabla de resumen de evaluación de fatiga	. 187

11. ANEXOS

11.1. NUMERACIÓN DE ELEMENTOS PRINCIPALES ASIGNADA POR EL **PROGRAMA**

11.1.1. Armaduras

Armadura A

940

Rigidizadores inclinados

Rigidizadores horizontales

328	2589	2590	2591	2592	2593	2594	2595	329

11.1.4. Vigas transversales

11.1.5. Largueros del cuerpo carretero y ferroviario

377	378	379	380	381	382	383	384
369	370	371	372	373	374	375	376
361	362	363	364	365	366	367	368
353	354	355	356	357	358	359	360
344	345	346	348	349	350	351	352
882	884	886	888	890	892	894	895
896	898	900	902	904	906	908	909

11.2. ELEMENTOS DE MODELO MATEMÁTICO

11.2.1. Armadura A

• Cuerda inferior

	W 14X132	Displ	ay Color
Section Notes	Modify/Show N	otes	
Dimensions		Section	
Outside height (t3)	0.3734		2
Top flange width (t2)	0.3734		
Top flange thickness (tf)	0.0262	3_	
Web thickness (tw)	0.0164		
Bottom flange width (t2b)	0.3734		
Bottom flange thickness (tfb)	0.0262		
Section Name	W 14X132		
Properties			
Properties Cross-section (axial) area	0.0248 Se	ction modulus about 3 axis	3.406E-03
Properties Cross-section (axial) area Moment of Inertia about 3 axis	0.0248 Se 6.360E-04 Se	ction modulus about 3 axis ction modulus about 2 axis	3.406E-03 1.218E-03
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis	0.0248 Se 6.360E-04 Se 2.275E-04 Pla	ection modulus about 3 axis ection modulus about 2 axis astic modulus about 3 axis	3.406E-03 1.218E-03 3.819E-03
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3	0.0248 Se 6.360E-04 Se 2.275E-04 Pk 0. Pk	ection modulus about 3 axis ection modulus about 2 axis sstic modulus about 3 axis astic modulus about 2 axis	3.406E-03 1.218E-03 3.819E-03 1.848E-03
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	0.0248 Se 6.360E-04 Se 2.275E-04 Pk 0. Pk 6.124E-03 Re	ection modulus about 3 axis ection modulus about 2 axis astic modulus about 3 axis astic modulus about 2 axis idius of Gyration about 3 axis	3.406E-03 1.218E-03 3.819E-03 1.848E-03 0.16
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	0.0248 Se 6.360E-04 Se 2.275E-04 Pla 0. Pla 6.124E-03 Ra 0.0163 Ra	ection modulus about 3 axis ection modulus about 2 axis astic modulus about 3 axis astic modulus about 2 axis idlus of Gyration about 3 axis idlus of Gyration about 2 axis	3.406E-03 1.218E-03 3.819E-03 1.848E-03 0.16 0.0957

• Cuerda superior

Section Name	W14X257	Dis	splay Color
Section Notes	Modify/Sh	ow Notes	
Extract Data from Section Property F	ile		
Open File c:\program files	(x86)\computers and	structures\csibridge	Import
Dimensions		Section	
Outside height (t3)	0.4166		2
Top flange width (t2)	0.4064		
Top flange thickness (tf)	0.048	3	
Web thickness (tw)	0.03		
Bottom flange width (t2b)	0.4064		
Bottom flange thickness (tfb)	0.048		
Section Name			
Properties			
Cross-section (axial) area	0.0488	Section modulus about 3 axis	6.795E-03
Moment of Inertia about 3 axis	1.415E-03	Section modulus about 2 axis	2.642E-03
Moment of Inertia about 2 axis	5.369E-04	Plastic modulus about 3 axis	7.981E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	4.031E-03
Shear area in 2 direction	0.0125	Radius of Gyration about 3 axi	s 0.1703
Change and in O dispeties	0.0325	Radius of Gyration about 2 axi	s 0.1049
Shear area in 3 direction			

• Cuerda superior reforzada

	Section Name	Cuerda	a Superior Reforzada A	
	Properties			
	Cross-section (axial) area	0.0676	Section modulus about 3 axis	7.851E-03
•	Moment of Inertia about 3 axis	1.636E-03	Section modulus about 2 axis	6.227E-03
	Moment of Inertia about 2 axis	1.424E-03	Plastic modulus about 3 axis	9.734E-03
· · · · · · · · · · · · · · · · · · ·	Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	8.134E-03
	Shear area in 2 direction	0.0326	Radius of Gyration about 3 axis	0.1555
	Shear area in 3 direction	0.0444	Radius of Gyration about 2 axis	0.1451
	Torsional constant	3.643E-05	Shear Center Eccentricity (x3)	0.

• Montantes y diagonales

Section Name	W14X176		ay Color
Section Notes	Modify/Sh	ow Notes	
Extract Data from Section Property Fi	le		
Open File C:\program files	(x86)\computers and	structures\csibridge	Import
Dimensions		Section	
Outside height (t3)	0.3861		2
Top flange width (t2)	0.3988		
Top flange thickness (tf)	0.0333	3	
Web thickness (tw)	0.0211		
Bottom flange width (t2b)	0.3988		
Bottom flange thickness (tfb)	0.0333		+++++++++++++++++++++++++++++++++++++++
Section Name			
Properties			
Cross-section (axial) area	0.0334	Section modulus about 3 axis	4.614E-03
Moment of Inertia about 3 axis	8.907E-04	Section modulus about 2 axis	1.749E-03
Moment of Inertia about 2 axis	3.488E-04	Plastic modulus about 3 axis	5.244E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	2.671E-03
Shear area in 2 direction	8.139E-03	Radius of Gyration about 3 axis	0.1633
Shear area in 3 direction	0.0221	Radius of Gyration about 2 axis	0.1022
	1.103E-05		0

• Diagonales reforzadas

Section Name	Diago	onal Reforzada	
 Properties			
Cross-section (axial) area	0.0389	Section modulus about 3 axis	4.885E-03
Moment of Inertia about 3 axis	9.430E-04	Section modulus about 2 axis	2.807E-03
 Moment of Inertia about 2 axis	5.821E-04	Plastic modulus about 3 axis	5.710E-03
 Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	3.814E-03
 Shear area in 2 direction	0.0141	Radius of Gyration about 3 axis	0.1558
Shear area in 3 direction	0.027	Radius of Gyration about 2 axis	0.1224
Torsional constant	7.692E-04	Shear Center Eccentricity (x3)	0.

11.2.2. Armadura B

• Cuerda inferior

	W 14X132 Modify/Show Notes		Display Color
Section Notes			
mensions		Section	
Outside height (t3)	0.3734		
Top flange width (t2)	0.3734		
Top flange thickness (tf)	0.0262	3	
Web thickness (tw)	0.0164		
Bottom flange width (t2b)	0.3734		
	0.0262	L	
Bottom flange thickness (tfb)	0.0202		
Bottom flange thickness (tfb)	0.0202 W 14X	132	
Bottom flange thickness (tfb) Section Name	W 14X	132	
Bottom flange thickness (tfb) Section Name operties	W 14X	132	3 406E-01
Bottom flange thickness (tfb) Section Name operties Cross-section (axial) area	0.0248	132 Section modulus about 3	axis 3.406E-0;
Bottom flange thickness (tfb) Section Name opperties ross-section (axial) area loment of Inertia about 3 axis	0.0248 0.0248 6.360E-04	132 Section modulus about 3 Section modulus about 2	axis 3.406E-0; axis 1.218E-0;
Bottom flange thickness (tfb) Section Name opperties irross-section (axial) area Aoment of Inertia about 3 axis Aoment of Inertia about 2 axis	0.0248 0.0248 6.360E-04 2.275E-04	132 Section modulus about 3 Section modulus about 2 Plastic modulus about 3	axis 3.406E-00 axis 1.218E-00 axis 3.819E-00
Bottom flange thickness (tfb) Section Name opperties Iross-section (axial) area Aoment of Inertia about 3 axis Aoment of Inertia about 2 axis Product of Inertia about 2-3	0.0248 0.0248 6.360E-04 2.275E-04 0.	132 Section modulus about 3 Section modulus about 2 Plastic modulus about 3 Plastic modulus about 2	axis 3.406E-00 axis 1.218E-00 axis 3.819E-00 axis 1.848E-00
Bottom flange thickness (tfb) Section Name opperties Iross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	0.0248 0.0248 0.360E-04 2.275E-04 0. 6.124E-03	132 Section modulus about 3 Section modulus about 2 Plastic modulus about 3 Plastic modulus about 2 Radius of Gyration abou	axis 3.406E-00 axis 1.218E-00 axis 3.819E-00 axis 1.848E-00 axis 0.16
Bottom flange thickness (1fb) Section Name coperties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	W 14X 0.0248 6.360E-04 2.275E-04 0. 6.124E-03 0.0163	132 Section modulus about 3 Section modulus about 2 Plastic modulus about 3 Plastic modulus about 2 Radius of Gyration abou Radius of Gyration abou	axis 3.406E-00 axis 1.218E-00 axis 3.819E-00 axis 1.848E-00 t3 axis 0.16 t2 axis 0.0957

• Cuerda superior

Section Name	W14X257		Display Color
Section Notes	Modify/St	now Notes	
Extract Data from Section Property F	ile		
Open File c:\program files	(x86)\computers and	I structures/csibridge	Import
Dimensions		Section	
Outside height (t3)	0.4166		2
Top flange width (t2)	0.4064		
Top flange thickness (tf)	0.048	3	
Web thickness (tw)	0.03		
Bottom flange width (t2b)	0.4064		
Bottom flange thickness (tfb)	0.048		+ 4 + + + + + 4 + + + + + + + + + + + +
Section Name			
Properties			
Cross-section (axial) area	0.0488	Section modulus about 3 axis	6.795E-03
Moment of Inertia about 3 axis	1.415E-03	Section modulus about 2 axis	2.642E-03
Moment of Inertia about 2 axis	5.369E-04	Plastic modulus about 3 axis	7.981E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	4.031E-03
Shear area in 2 direction	0.0125	Radius of Gyration about 3 a	xis 0.1703
Shear area in 3 direction	0.0325	Radius of Gyration about 2 a	xis 0.1049
Torsional constant	3.292E-05	Shear Center Eccentricity (x)	3) 0.

• Cuerda superior reforzada

	Section Name	Cuerda	a Superior B	
	Properties			
	Cross-section (axial) area	0.0735	Section modulus about 3 axis	7.886E-03
	Moment of Inertia about 3 axis	1.643E-03	Section modulus about 2 axis	6.738E-03
•	Moment of Inertia about 2 axis	1.546E-03	Plastic modulus about 3 axis	9.812E-03
	Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	8.917E-03
	Shear area in 2 direction	0.0348	Radius of Gvration about 3 axis	0.1496
	Shear area in 3 direction	0.0497	Radius of Gyration about 2 axis	0.1451
	Torsional constant	3.748E-05	Shear Center Eccentricity (x3)	0.

• Montantes y diagonales

Section Name	W14X176		Display Color
Section Notes	Modify/Sh	ow Notes	
Extract Data from Section Property Fil	e		
Open File C:\program files	(x86)\computers and	structures\csibridge	Import
Dimensions		Sectio	n
Outside height (t3)	0.3861		2
Top flange width (t2)	0.3988		
Top flange thickness (tf)	0.0333		3
Web thickness (tw)	0.0211		
Bottom flange width (t2b)	0.3988		
Bottom flange thickness (tfb)	0.0333		*****
Section Name			
Properties			
Cross-section (axial) area	0.0334	Section modulus about	3 axis 4.614E-03
Moment of Inertia about 3 axis	8.907E-04	Section modulus about	2 axis 1.749E-03
Moment of Inertia about 2 axis	3.488E-04	Plastic modulus about	3 axis 5.244E-03
Product of Inertia about 2-3	0.	Plastic modulus about	2.671E-03
Shear area in 2 direction	8.139E-03	Radius of Gyration abo	out 3 axis 0.1633
Shear area in 3 direction	0.0221	Radius of Gyration abo	out 2 axis 0.1022
Torsional constant	1.103E-05	Shear Center Eccentri	city (x3) 0.

Diagonales reforzadas

) + B	→ X	
8			

Section Name	Diago	nal Reforzada	
Properties			
Cross-section (axial) area	0.0389	Section modulus about 3 axis	4.885E-03
Moment of Inertia about 3 axis	9.430E-04	Section modulus about 2 axis	2.807E-03
Moment of Inertia about 2 axis	5.821E-04	Plastic modulus about 3 axis	5.710E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	3.814E-03
Shear area in 2 direction	0.0141	Radius of Gyration about 3 axis	0.1558
Shear area in 3 direction	0.027	Radius of Gyration about 2 axis	0.1224
Torsional constant	7.692E-04	Shear Center Eccentricity (x3)	0.

11.2.3. Elementos de vigas transversales

Section Name	Trans	2_Ref	
Properties			
Cross-section (axial) area	0.1046	Section modulus about 3 axis	0.0304
Moment of Inertia about 3 axis	0.0169	Section modulus about 2 axis	0.0156
Moment of Inertia about 2 axis	4.145E-03	Plastic modulus about 3 axis	0.0377
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	0.0181
Shear area in 2 direction	0.0673	Radius of Gyration about 3 axis	0.4024
Shear area in 3 direction	0.0416	Radius of Gvration about 2 axis	0.199
Torsional constant	0.0107	Shear Center Eccentricity (x3)	0.

Second Second	8	
4	10	8
8	8	8
4	- 13	- B
8	N	100
4	19	8
8	- 24	100
8	12	R
3	8	8
8	8	8
4	- 13	8
8	8	100
4		- R
8	20	100
8	12	RS
3	- 12	8
8	2	83
4		8
8	10	100
9	5	RS
4	- 83	
8	- 8	
8		↓ V8
3	8	- 183
8	- 18	89
4	10	- DO
8	8	100
9	19	RS
8	- 10	
8	8	
4	8	- R
8	20	100
8	- 19	- R
4	8	8
8	2	8
9	18	8
8	- 8	
8	18	R8
4	10	100
8	- 8	- B
8	- 10	8
8	8	8
8	18	8
9	- 8	8
8	18	R8
10000000000000000000000000000000000000	K.	Survey and
	0000000	

Section Name	Trans	3_Ref		
Properties			ef Section modulus about 3 axis 0.0339 Section modulus about 2 axis 0.0158 Plastic modulus about 3 axis 0.042 Plastic modulus about 2 axis 0.0187 Radius of Gyration about 3 axis 0.4153 Radius of Gyration about 2 axis 0.1935	
Cross-section (axial) area	0.1122	Section modulus about 3 axis	0.0339	
Moment of Inertia about 3 axis	0.0194	Section modulus about 2 axis	0.0158	
Moment of Inertia about 2 axis	4.202E-03	Plastic modulus about 3 axis	0.042	
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	0.0187	
Shear area in 2 direction	0.0688	Radius of Gyration about 3 axis	0.4153	
Shear area in 3 direction	0.0493	Radius of Gyration about 2 axis	0.1935	
Torsional constant	0.0112	Shear Center Eccentricity (x3)	0.	

Section Name	Trans 3	3	
Properties			
Cross-section (axial) area	0.0582	Section modulus about 3 axis	0.025
Moment of Inertia about 3 axis	0.0143	Section modulus about 2 axis	3.106E-03
Moment of Inertia about 2 axis	7.455E-04	Plastic modulus about 3 axis	0.0277
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	5.018E-03
Shear area in 2 direction	0.0144	Radius of Gyration about 3 axis	0.4951
Shear area in 3 direction	0.0411	Radius of Gyration about 2 axis	0.1132
Torsional constant	3.337E-05	Shear Center Eccentricity (x3)	0.

processo	000000000	
·····		
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
34		> X
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	8	
	0	
	8	
	8	
And a state of the		

	- V	22
	8	-
	8	
	8	
	8	
	8	
	0	
	8	
	19	
	10	
	8	
	10	
	8	
	12	
	13	
	8	
	8	
	8	
	8	
	8	
3 4		(
	8	
	1	
	8	
	N	
	8	
	8	
	13	
	13	
	8	
	8	
	8	
	8	
	10	
	8	
	13	
	6	
	8	
a ly la	8	
the second se	CONTRACTOR OF THE OWNER	_

Section Name	Trans	2	
Properties			
Cross-section (axial) area	0.0505	Section modulus about 3 axis	0.0212
Moment of Inertia about 3 axis	0.0118	Section modulus about 2 axis	2.868E-03
Moment of Inertia about 2 axis	6.884E-04	Plastic modulus about 3 axis	0.0234
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	4.446E-03
Shear area in 2 direction	0.0141	Radius of Gyration about 3 axis	0.4838
Shear area in 3 direction	0.0327	Radius of Gyration about 2 axis	0.1167
Torsional constant	1.873E-05	Shear Center Eccentricity (x3)	0.

Section Name	Trans	1	
Properties			
Cross-section (axial) area	0.0429	Section modulus about 3 axis	0.0175
Moment of Inertia about 3 axis	9.512E-03	Section modulus about 2 axis	2.630E-03
Moment of Inertia about 2 axis	6.312E-04	Plastic modulus about 3 axis	0.0192
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	3.875E-03
Shear area in 2 direction	0.0138	Radius of Gyration about 3 axis	0.4708
Shear area in 3 direction	0.0237	Radius of Gyration about 2 axis	0.1213
Torsional constant	1.012E-05	Shear Center Eccentricity (x3)	0.
11.2.4. Contraventeo superior

• Inclinados

Section Name	W14X176	Displ	ay Color	
Section Notes	Modify/St	ow Notes		
Extract Data from Section Property F	ile			
Open File c:\program files	s (x86)\computers and	structures\csibridge	Import	
Dimensions		Section		
Outside height (t3)	0.3861		2	
Top flange width (t2)	0.3988			
Top flange thickness (tf)	0.0333	3		
Web thickness (tw)	0.0211			
Bottom flange width (t2b)	0.3988			
Bottom flange thickness (tfb)	0.0333			
Section Name				
roperties				
Cross-section (axial) area	0.0334	Section modulus about 3 axis	4.614E-03	
Moment of Inertia about 3 axis	8.907E-04	Section modulus about 2 axis	1.749E-03	
Moment of Inertia about 2 axis	3.488E-04	Plastic modulus about 3 axis	5.244E-03	
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	2.671E-03	
Shear area in 2 direction	8.139E-03	Radius of Gyration about 3 axis	0.1633	
Shear area in 3 direction	0.0221	Radius of Gyration about 2 axis	0.1022	

• Horizontales

Section Name	W16X77		splay Color	
Section Notes	Modify/S	Show Notes]	
xtract Data from Section Property F	ïle			
Open File	s (x86)\computers an	d structures\csibridge	Import	
imensions		Section		
Outside height (t3)	0.4191		2	
Top flance width (t2)	0.2616			
Ton flance thickness (tf)	0.0193	3		
Web thickness (tu)	0.0116			
web thickness (tw)	0.2616			
Bottom flange width (t2b)	0.2010			
Bottom flange thickness (tfb)	0.0193			
Section Name				
Deservation	1			
Cross-section (axial) area	0.0146	Section modulus about 3 axis	2.205E-03	
Moment of Inertia about 3 axis	4.620E-04	Section modulus about 2 axis	4.391E-04	
Moment of Inertia about 2 axis	5.744E-05	Plastic modulus about 3 axis	2.458E-03	
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	6.735E-04	
Shear area in 2 direction	4.844E-03	Radius of Gyration about 3 axis	0.178	
Shear area in 3 direction	8.417E-03	Radius of Gyration about 2 axis	0.0628	
	1 1005 00		-	

11.2.5. Sistema de piso del cuerpo carretero

	Larguero Carretero Modify/Show Notes		Display Color
ection Notes			
nensions		Section	n
Outside height (t3)	0.6		2
Top flange width (t2)	0.205		
Top flange thickness (tf)	0.0127		3 🧹
Web thickness (tw)	0.01		
Bottom flange width (t2b)	0.205		
Bottom flange thickness (tfb)	0.0127		┠┤┽╎┼┠╎┽╎┤ <mark>┠</mark> ╎┼╎┤┠╎┼╎
Section Name	Largue	ero Carretero	
Section Name	Largue	ro Carretero	
Section Name operties cross-section (axial) area	Largue	ro Carretero Section modulus about	3 axis 2.024E-03
Section Name operties cross-section (axial) area Moment of Inertia about 3 axis	0.011 6.072E-04	rro Carretero Section modulus about Section modulus about	3 axis 2.024E-03 2 axis 1.784E-04
Section Name operties cross-section (axial) area Joment of Inertia about 3 axis Joment of Inertia about 2 axis	0.011 6.072E-04 1.828E-05	ro Carretero Section modulus about Section modulus about Plastic modulus about 3	3 axis 2.024E-03 2 axis 1.784E-04 axis 2.354E-03
Section Name operties tross-section (axial) area Noment of Inertia about 3 axis Noment of Inertia about 2 axis Product of Inertia about 2-3	Largue 0.011 6.072E-04 1.828E-05 0.	ro Carretero Section modulus about Section modulus about Plastic modulus about 3 Plastic modulus about 2	3 axis 2.024E-03 2 axis 1.784E-04 axis 2.354E-03 axis 2.812E-04
Section Name operties cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	Largue 0.011 6.072E-04 1.828E-05 0. 6.000E-03	section modulus about Section modulus about Section modulus about Plastic modulus about 3 Plastic modulus about 2 Radius of Gyration abo	3 axis 2.024E-03 2 axis 1.784E-04 axis 2.354E-03 axis 2.812E-04 ut 3 axis 0.2354
Section Name operties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	Largue 0.011 6.072E-04 1.828E-05 0. 6.000E-03 4.339E-03	section modulus about Section modulus about Section modulus about Plastic modulus about 3 Plastic modulus about 2 Radius of Gyration abo Radius of Gyration abo	3 axis 2.024E-03 2 axis 1.784E-04 axis 2.354E-03 axis 2.812E-04 ut 3 axis 0.2354 ut 2 axis 0.0409

• Largueros del cuerpo carretero

• Rigidizadores inclinados para largueros del cuerpo carretero

	WT6X20 Modify/Show Notes		
Section Notes			
Extract Data from Section Property F	ile		
Open File c:\program files	s (x86)\computers an	d structures\csibridge	Import
Dimensions		Section	
Outside stem (t3)	0.1516		
Outside flange (t2)	0.2035	3	
Flange thickness (tf)	0.0131		
Stem thickness (tw)	7.493E	-03	
			••••
Section Name			
Section Name			
Section Name Properties Cross-section (axial) area	3.768E-03	Section modulus about 3	axis 4.836E-05
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis	3.768E-03 5.994E-06	Section modulus about 3 Section modulus about 2	axis 4.836E-05 axis 9.002E-05
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis	3.768E-03 5.994E-06 9.157E-06	Section modulus about 3 Section modulus about 2 Plastic modulus about 3 a	axis 4.836E-05 axis 9.002E-05 xis 8.652E-05
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3	3.768E-03 5.994E-06 9.157E-06 0.	Section modulus about 3 Section modulus about 2 Plastic modulus about 3 a Plastic modulus about 2 a	axis 4.836E-05 axis 9.002E-05 xis 8.652E-05 xis 1.373E-04
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	3.768E-03 5.994E-06 9.157E-06 0. 1.136E-03	Section modulus about 3 Section modulus about 2 Plastic modulus about 3 a Plastic modulus about 2 a Radius of Gyration about	axis 4.836E-05 axis 9.002E-05 xis 8.652E-05 xis 1.373E-04 3 axis 0.0399
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	3.768E-03 5.994E-06 9.157E-06 0. 1.136E-03 2.218E-03	Section modulus about 3 Section modulus about 2 Plastic modulus about 3 a Plastic modulus about 2 a Radius of Gyration about Radius of Gyration about	axis 4.836E-05 axis 9.002E-05 xis 8.652E-05 xis 1.373E-04 3 axis 0.0399 2 axis 0.0493

• Canales de soporte para rejilla

Section Name	C10X30	Dis	play Color
Section Notes	Modify/S	now Notes	
Extract Data from Section Property F	ile s (x86)\computers and	1 structures\csibridge	Import
Dimensions		Section	
Outside depth (t3)	0.254		2
Outside flange width (t2)	0.077		
Flange thickness (tf)	0.0111	3 <	
Web thickness (tw)	0.0171		
Section Name			
Descertion			
Cross-section (axial) area	5.684E-03	Section modulus about 3 axis	3.376E-04
Moment of Inertia about 3 axis	4.287E-05	Section modulus about 2 axis	2.705E-05
Moment of Inertia about 2 axis	1.636E-06	Plastic modulus about 3 axis	4.375E-04
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	6.194E-05
Shear area in 2 direction	4.342E-03	Radius of Gyration about 3 axis	0.0868
Shear area in 3 direction	1.705E-03	Radius of Gyration about 2 axis	0.017
Torsional constant	5.078E-07	Shear Center Eccentricity (x3)	0.0255

• Rigidizadores horizontales de largueros del cuerpo carretero

	C12X20.7 Modify/Show Notes		Display Color
Section Notes			
xtract Data from Section Property F	ile		
Open File c:\program file	s (x86)\computers an	d structures\csibridge	Import
imensions		Sec	tion
Outside depth (t3)	0.3048	•	2
Outside flange width (t2)	0.0747		
Flange thickness (tf)	0.0127		3 _
Web thickness (tw)	7.163E	-03	
Section Name			
Section Name			
Section Name Properties Cross-section (axial) area	3.923E-03	Section modulus abo	ut 3 axis 3.523E-04
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis	3.923E-03 5.369E-05	Section modulus abo	ut 3 axis 3.523E-04 ut 2 axis 2.821E-05
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis	3.923E-03 5.369E-05 1.607E-06	Section modulus abo Section modulus abo Plastic modulus abou	ut 3 axis 3.523E-04 ut 2 axis 2.821E-05 t 3 axis 4.195E-04
Section Name roperties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3	3.923E-03 5.369E-05 1.607E-06 0.	Section modulus abo Section modulus abo Plastic modulus abou Plastic modulus abou	ut 3 axis 3.523E-04 ut 2 axis 2.821E-05 t 3 axis 4.195E-04 t 2 axis 5.686E-05
Section Name roperties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	3.923E-03 5.369E-05 1.607E-06 0. 2.183E-03	Section modulus abo Section modulus abo Plastic modulus abou Plastic modulus abou Radius of Gyration al	ut 3 axis 3.523E-04 ut 2 axis 2.821E-05 t 3 axis 4.195E-04 t 2 axis 5.686E-05 pout 3 axis 0.117
Section Name Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	3.923E-03 5.369E-05 1.607E-06 0. 2.183E-03 1.901E-03	Section modulus abo Section modulus abo Plastic modulus abou Plastic modulus abou Radius of Gyration al Radius of Gyration al	ut 3 axis 3.523E-04 ut 2 axis 2.821E-05 t 3 axis 4.195E-04 t 2 axis 5.686E-05 pout 3 axis 0.117 pout 2 axis 0.0202

11.2.6. Sistema de piso del cuerpo ferroviario

• Largueros del cuerpo ferroviario

Section Name	La	rguero Ferrocarril	
Properties			
Cross-section (axial) area	0.0257	Section modulus about 3 axis	7.888E-03
Moment of Inertia about 3 axis	3.705E-03	Section modulus about 2 axis	5.325E-04
Moment of Inertia about 2 axis	6.656E-05	Plastic modulus about 3 axis	9.041E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	8.831E-04
Shear area in 2 direction	0.0117	Radius of Gyration about 3 axis	0.3796
Shear area in 3 direction	0.0139	Radius of Gyration about 2 axis	0.0509
Torsional constant	4.867E-06	Shear Center Eccentricity (x3)	0.0396

• Rigidizadores de largueros del cuerpo ferroviario

Section Name	L5X5X3/8		Display Color	
Section Notes	Modify/Sho	ow Notes		
Extract Data from Section Property F	ile			
Open File c:\program files	(x86)\computers and	structures\csibridge	Import	
Dimensions		Se	ection	
Outside vertical leg (t3)	0.127			
Outside horizontal leg (t2)	0.127			
Horizontal leg thickness (tf)	9.525E-0	3		
Vertical leg thickness (tw)	9.525E-0	3	3	
		Pr	operties	
Material	Property Modifi	ers	Section Properties	
+ A709Gr50 ~	Set Moo	lifiers	Time Dependent Properties	
Contine Name				
Section Name				
Properties				
Properties Cross-section (axial) area	2.329E-03	Section modulus al	bout 3 axis 3.955E-05	
Properties Cross-section (axial) area Moment of Inertia about 3 axis	2.329E-03 3.646E-06	Section modulus al Section modulus al	oout 3 axis 3.955E-05 oout 2 axis 3.955E-05	
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis	2.329E-03 3.646E-06 3.646E-06	Section modulus al Section modulus al Plastic modulus ab	Joout 3 axis 3.955E-05 Joout 2 axis 3.955E-05 Jout 2 axis 7.096E-05	
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3	2.329E-03 3.646E-06 3.646E-06 2.168E-06	Section modulus al Section modulus al Plastic modulus ab Plastic modulus ab	bout 3 axis 3.955E-05 bout 2 axis 3.955E-05 bout 3 axis 7.096E-05 bout 2 axis 7.096E-05	
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction	2.329E-03 3.646E-06 3.646E-06 2.168E-06 1.210E-03	Section modulus al Section modulus al Plastic modulus ab Plastic modulus ab Radius of Gyration	bout 3 axis 3.955E-05 bout 2 axis 3.955E-05 bout 3 axis 7.096E-05 bout 2 axis 7.096E-05 bout 3 axis 0.0396	
Properties Cross-section (axial) area Moment of Inertia about 3 axis Moment of Inertia about 2 axis Product of Inertia about 2-3 Shear area in 2 direction Shear area in 3 direction	2.329E-03 3.646E-06 3.646E-06 2.168E-06 1.210E-03 1.210E-03	Section modulus al Section modulus al Plastic modulus ab Plastic modulus ab Radius of Gyration Radius of Gyration	bout 3 axis 3.955E-05 bout 2 axis 3.955E-05 bout 3 axis 7.096E-05 bout 2 axis 7.096E-05 about 3 axis 0.0396 about 2 axis 0.0396	

• Durmientes

Section Name	Duerr	nientes	
Properties			
Cross-section (axial) area	0.0625	Section modulus about 3 axis	2.604E-03
Moment of Inertia about 3 axis	3.255E-04	Section modulus about 2 axis	2.604E-03
Moment of Inertia about 2 axis	3.255E-04	Plastic modulus about 3 axis	3.906E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	3.906E-03
Shear area in 2 direction	0.0521	Radius of Gyration about 3 axis	0.0722
Shear area in 3 direction	0.0521	Radius of Gyration about 2 axis	0.0722
Torsional constant	5.503E-04	Shear Center Eccentricity (x3)	0.

11.2.7. Sistema de piso del camino peatonal

• Ménsula sección variable

Nonprismatic Sec	tion Name	Mensula		Disp	Display Color		
Section Notes		Modify/S	Show Notes				
Start Section	End Section	Length	Length Type	EI33 Variation	El22 Variation		
Mensula 2 v	Mensula 2 V	0.198 Absolute V L		Linear v	Linear \checkmark		
Mensula 1	Mensula 2	1.44	Absolute	Linear	Linear		
Mensula 2	Mensula 2	0.198	Absolute	Linear	Linear		

		×	

Properties			
Cross-section (axial) area	7.400E-03	Section modulus about 3 axis	5.545E-04
Moment of Inertia about 3 axis	5.545E-05	Section modulus about 2 axis	2.614E-04
Moment of Inertia about 2 axis	3.660E-05	Plastic modulus about 3 axis	6.130E-04
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	3.965E-04
Shear area in 2 direction	1.992E-03	Radius of Gyration about 3 axis	0.0866
Shear area in 3 direction	4.993E-03	Radius of Gyration about 2 axis	0.0703
Torsional constant	2.497E-07	Shear Center Eccentricity (x3)	0.

10000000000		000000000000000000000000000000000000000
		51
		53
		19
		101
		DQ
		83
		52
		23
		10
		54
		23
		101
		D0
		10
		68
		00
		R
		51
		20
		88
		20
		00
		21
		X
		2
		10
		3 1
	3 ←	
		101
		101
		D0
		8
		51
		23
		8
		51
		69
		52
		29
		101
		51
		RS
		101
		51
		23
		68
		50
		RI
		101
		50
		23
		69
		50
		8

Section Name	Mensu	la 2	
Properties			
Cross-section (axial) area	0.0111	Section modulus about 3 axis	2.027E-03
Moment of Inertia about 3 axis	5.777E-04	Section modulus about 2 axis	2.617E-04
Moment of Inertia about 2 axis	3.663E-05	Plastic modulus about 3 axis	2.324E-03
Product of Inertia about 2-3	0.	Plastic modulus about 2 axis	4.058E-04
Shear area in 2 direction	5.602E-03	Radius of Gyration about 3 axis	0.2281
Shear area in 3 direction	5.025E-03	Radius of Gyration about 2 axis	0.0574
Torsional constant	3.738E-07	Shear Center Eccentricity (x3)	0.

• Vigas camino peatonal

Section Name	W10X49		Display Color			
Section Notes	Modify/S	how Notes				
Extract Data from Section Property F	ile					
Open File c:\program file	s (x86)\computers an	d structures\csibridge	Import			
Dimensions		Section				
Outside height (t3)	0.254		2			
Top flange width (t2)	0.254					
Top flange thickness (tf)	0.0142	3	<			
Web thickness (tw)	8.636E	-03				
Bottom flange width (t2b)	0.254					
Bottom flange thickness (tfb)	0.0142					
Section Name						
roperties						
Cross-section (axial) area	9.290E-03	Section modulus about 3	8 axis 8.915E-04			
Moment of Inertia about 3 axis	1.132E-04	Section modulus about 2	2 axis 3.061E-04			
Moment of Inertia about 2 axis	3.888E-05	Plastic modulus about 3	axis 9.898E-04			
Product of Inertia about 2-3	0.	Plastic modulus about 2	axis 4.638E-04			
Shear area in 2 direction	2.194E-03	Radius of Gyration about	it 3 axis 0.1104			
Shear area in 3 direction	6.021E-03	Radius of Gyration about	it 2 axis 0.0647			
	C 700C 07		0			

11.3. CLASIFICACIÓN DE DETALLES ESTRUCTURALES (AASHTO-AISC)

Parár	TAB netros d	LA A-3.1 le Diseño	para	Fatiga								
Descripción	Categoria de Tensión Constante C _r Umbral F _m			Punto de Potencial Inicio de Fractura								
SECCIÓN 1 - MATERIAL PURO ALEJADO DE CUALQUIER SOLDADURA												
1.1 Metal base, excepto acero de alta resistencia no cubierto, con su- perficie laminada o limpia. Bordes cortados térmicamente con dureza superficial de 1000 µin. (25 µm) o menor, pero sin esquinas entrantes.	A	250 x 10 ⁸	1686 (165)	Alejado de toda soldadura o conexión estructural.								
1.2 Metal base de acero de alta resistencia no recubierto con su- perficie laminada o limpia. Bordes cortados térmicamente con dureza superficial de 1000 µin. (25 µm) o menor, pero sin esquinas entrantes.	В	120 x 10 ⁸	1125 (110)	Alejado de toda soldadura o conexión estructural.								
1.3 Miembros con agujeros taladra- dos o escariados. Miembros con es- quinas entrantes en rebajes, cortes, obstrucciones o discontinuidades geométricas hechas de acuerdo a los requerimientos del Anexo 3.5, excepto agujeros de acceso para soldadura.	В	120 x 10 ⁸	1125 (110)	En un borde externo o en el perimetro del agujero.								
1.4 Secciones transversales lami- nadas con agujeros de acceso para soldadura hechos de acuerdo a los requerimientos de la Sección J1.6 y Anexo 3.5. Miembros con agu- jeros taladrados o escariados que contengan pernos para unir arrios- tramiento liviano donde hay una componente longitudinal pequeña de la fuerza en la riostra.	C	44 x 10 ⁸	702 (69)	En la esquina entrante del agujero de acceso para sol- dadura o en cualquier agujero pequeño (puede contener perno para conexiones me- nores)								
SECCIÓN 2 - MATER	IAL CONECTAL	O EN UNIONES	SUJETAS ME	CANICAMENTE								
2.1 Área bruta del metal base en juntas de traslape conectadas con pernos de alta resistencia en unio- nes que satisfacen todos los requeri- mientos para conexiones de desliza- miento crítico.	В	120 x 10 ⁸	1125 (110)	A través del área bruta cerca- na al aguero.								
2.2 Metal base en el área neta de uniones apernadas de alta resistencia diseñadas en base a resistencia de contacto, pero fabricadas e instaladas conforme a los requerimientos para conexiones de desplazamiento crítico.	В	120 x 10 ⁸	1125 (110)	En área neta originándose en el lado del agujero.								
2.3 Metal base en el área neta de otras uniones conectadas mecáni- camente excepto barras y placas de pasador.	D	20 x 10 ⁸	490 (48)	En área neta originándose en el lado del agujero.								
2.4 Metal base en el área neta de ca- bezas de barras o placas de pasador.	E	11 x 10 ⁸	316 (31)	En área neta originándose en el lado del agujero.								

Parám	TABLA etros de	A-3.1 (co Diseño	ont.) para Fa	atiga
Descripción	Categoría de Tensión	Constante C,	Umbrai F ₁₂₄	Punto de Potencial Inicio de Fractura
SECCIÓN 3 - UNIONES S	OLDADAS QUE	UNEN COMPON	ENTES DE P	ERFILES SOLDADOS
3.1 Metal base y metal de soldadura en miembros sin piezas unidas de placas o perfiles conectados por sol- daduras longitudinales de penetración completa, rebajadas y soldadas nue- vamente desde el segundo costado, o por soldaduras de filete continuas.	В	120 x 10 ⁸	1125 (110)	Desde la superficie o discon- tinuidades internas en la sol- dadura alejada del extremo de soldadura.
3.2 Metal base y metal de soldadu- ra en miembros sin piezas unidas de placas o perfiles conectados por soldaduras longitudinales de pene- tración completa sin remoción de las barras de soporte, o por soldadura de filete de penetración parcial.	Β'	61 x 10 ⁸	843 (83)	Desde la superficie o discon- tinuidades internas en la sol- dadura, incluyendo soldadura que une barras de soporte.
3.3 Metal base y terminación de metal de soldadura de soldaduras longitudinales en agujeros de ac- ceso para soldadura en miembros armados conectados.	D	22 x 10 ⁸	492 (48)	Desde la terminación de la sol- dadura hacia dentro del alma o ala.
3.4 Metal base en extremos de seg- mentos longitudinales intermitentes de soldadura de filete.	E	11 x 10 ⁸	316 (31)	En el material conectado los lugares de inicio y fin de cual- quier depósito de soldadura.
3.5 Metal base en extremos de pla- cas de cubierta con soldadura de longitud parcial más estrecha que el ala con extremos cuadrados o afilados, con o sin soldaduras cru- zando los extremos de las placas de cubierta más anchas que el ala con soldaduras cruzando los extremos. Espesor del ala ≤ 0.8 cm (20 mm) Espesor del ala > 0.8 cm (20 mm)	E E'	11 x 10 ⁸ 3.9 x 10 ⁸	316 (31) 183 (19)	En el ala al pie de la soldadu- ra de extremo o en el ala al término de soldadura longitu- dinal o en el borde del ala con placas de cubierta anchas.
3.6 Metal base en extremos de placas de cubierta con soldadura de longitud parcial más anchas que el ala sin soldaduras cruzando los extremos.	E	3.9 x 10 ⁸	183 (18)	En el borde el ala en el extre- mo de la soldadura de placa de cubierta.
SECCIÓN 4 - CONEXIO	NES DE EXTRE	NO CON SOLDADI	JRA LONGITU	DINAL DE FILETE
$\begin{array}{llllllllllllllllllllllllllllllllllll$	E	11 x 10 ⁸	316	Iniciándose desde el extremo de cualquier terminación de soldadura extendiéndose ha- cia el metal base.
t>20 mm	E	3.9 x 10 ⁸	(31) 183 (18)	

TABLA A-3.1 (cont.) Parámetros de Diseño para Fatiga								
Descripción	Categoría de Tensión	Constante C _i	Umbral F _{TR}	Punto de Potencial Inicio de Fractura				
SECCIÓN 5 - UNIONES	SOLDADAS TR	ANSVERSALES A	LA DIRECCIÓ	N DE TENSIONES				
5.1 Metal base y metal de soldadu- ra en o adyacente a empalmes con soldadura de penetración completa en secciones transversales lami- nadas o soldadas con soldaduras esmeriladas esencialmente parale- las a la dirección de la tensión.	В	120 x 10 ⁸	1125 (110)	Desde discontinuidades inter- nas en metal de relleno o a lo largo del límite de fusión.				
5.2 Metal base y metal de soldadura en o adyacente a empalmes con sol- dadura de penetración completa con soldaduras esmeniadas esencialmente paralelas a la dirección de la tensión en transiciones en espesor o ancho hechas en una razón no mayor a 8 a 20%. $F_{\gamma} < 620 MPa$ $F_{\gamma} \le 620 MPa$	B B"	120 x 10 ⁸ 61 x 10 ⁸	1125 (110) 843 (83)	Desde discontinuidades internas en metal de relleno o a lo largo del límite de fusión o al inicio de la transición cuando $F_y \ge 90$ ksi (620 MPa)				
5.3 Metal base con <i>F</i> , mayor o igual a 90 ksi (200 MPa) y metal de solda- dura en o adyacente a empalmes con soldadura de penetración completa con soldaduras esmeriladas esen- cialmente paralelas a la dirección de la tensión en transiciones en ancho hechas en un radio no menor a 2 ft (600 mm) con el punto de tangencia en el extremo de la soldadura.	В	120 x 10 ⁸	1125 (110)	Desde discontinuidades inter- nas en el metal de relleno o discontinuidades a lo largo del límite de fusión.				
5.4 Metal base y metal de soldadura en o adyacente al pie de uniones T o esquina de penetración completa o empalmes, con o sin transiciones en espesor con razones no mayores a 8 a 20%, cuando el refuerzo de soldadura no es removido.	C	44 x 10 ⁸	702 (69)	Desde la discontinuidad su- perficial al pie de soldadura extendiéndose hacia el metal base o a lo largo del límite de fusión,				
5.5 Metal base y metal de soldadu- ra en conexiones transversales de extremos de elementos tipo placa cargados en tracción usando uniones de tope de penetración parcial T o de esquina, con filetes de refuerzo o con- torno, F_{SP} debe ser el menor entre el rango de tensión del agrietamiento de pie tope o el agrietamiento de raíz.				Iniciándose de discontinuidad geométrica al pie de solda- dura extendiéndose hacia el metal base o iniciándose en la raiz de soldadura sujeta a tracción extendiéndose hacia arriba y luego hacia afuera a través de la soldadura.				
 Grieta iniciándose desde pie de soldadura. Grieta iniciándose desde raíz de sol- dadura. 	C C'	44 x 10 ⁸ Eqn A - 3 - 4 ó A - 3 - 4 M	702 (69) No aplica					

Parám	TABLA etros de	A-3.1 (co Diseño	ont.) para Fa	ntiga
Descripción	Categoría de Tensión	Constante C _r	Umbral F ₁₁₄	Punto de Potencial Inicio de Fractura
SECCIÓN 5 - UNIONES	SOLDADAS TR	ANSVERSALES A	LA DIRECCIÓ	N DE TENSIONES
5.6 Metal base y metal de relieno en conexiones transversales de extremo de elementos tipo placa cargados en tracción usando un par de soldaduras de filete en lados opuestos de la placa. F_{SP} debe ser el menor entre el rango de tensión del agrietamiento de pie tope o del				Iniciándose desde discontinui- dad geométrica al pie de sol- dadura extendiéndose hacia el metal base o iniciándose en la raíz de soldadura sujeta a tracción extendiéndose hacia arriba y luego hacia afuera a través de la soldadura.
agnetamiento de raíz. - Grieta iniciándose desde pie de soldadura. - Grieta iniciándose desde raíz de soldadura.	C C"	44 x 10 ⁸ Eqn A - 3 - 5 ó	702 (69) No aplica	
5.7 Metal base de elementos tipo placa cargados en tracción y en almas o alas de girders o vigas laminadas al pie de soldaduras transversales de filete adyacentes a atiesadores transversales soldados.	C	A - 3 - 5 M 44 x 10 ⁸	702 (69)	De discontinuidades geométri- cas al pie del filete extendién- dose hacia el metal base.
SECCIÓN 6 - METAL BAS	E EN CONEXIO	NES SOLDADAS		DS TRANSVERSALES
6.1 Metal base en detalles conecta- dos por soldaduras de penetración competa sujetos solo a carga lon- gitudinal cuando el detalle abarca un radio de transición, <i>R</i> , con la terminación de soldadura esmeri- lada suave.				Cercano al punto de tangen- cia del radio en el borde del miembro.
R ≥ 24 in. (600 mm)	В	120 x 10 ⁸	1125	
24 in. > $R \ge 6$ in. (600 mm > $R > 150 mm$)	C	44 x 10 ⁸	702 (69)	
$6 \text{ in.} > R \ge 2 \text{ in.}$ (150 mm > R > 50 mm)	D	22 x 10 ⁸	492	
2 in. (50 mm) > R	Е	11 x 10 ⁸	316	

Parám	TABLA etros de	A-3.1 (co Diseño	ont.) para Fa	atiga
Descripción	Categoria de Tensión	Constante C,	Umbrai F _{av}	Punto de Potencial Inicio de Fractura
SECCIÓN 6 - METAL BAS	E EN CONEXIO	NES SOLDADAS	DE MIEMBR	OS TRANSVERSALES
6.2 Metai base en detailes de igual espesor conectados por solidaduras de penetración completa sujetos a carga transversal con o sin carga longitudinal cuando el detalle abar- ca un radio de transición, R , con la terminación de solidadura esmenita- da suave: - Cuando el refuerzo para solidadura es removido: $R \ge 24$ in. (600 mm) 24 in. > $R \ge 6$ in. (600 mm > $R \ge 150$ mm.) 6 in.> $R \ge 2$ in.	B C D	120 x 10 ⁸ 44 x 10 ⁸ 22 x 10 ⁸	1125 (110) 702 (69) 492	Al pie de soldadura ya sea a lo largo del borde o miembro o pieza unida.
(150mm. > R ≥ 50 mm) 2 in.(50 mm) > R - Quando el refuerzo de soldadura	E	11 x 10 ⁸	(48) 316 (31)	Cerca de los puntos de tan- gencia del radio o en la solda-
no es removido: $R \ge 24$ in. (600 mm) 24 in. $> R \ge 6$ in.	c	44 x 10 ⁵	702 (69) 702	dura o en el límite de fusión o miembro o pieza unida.
$(600 \text{ mm} > R \ge 150 \text{ in.})$ $6 \text{ in.} > R \ge 2 \text{ in.}$ $(150 \text{ mm.} > R \ge 50 \text{ mm.})$ 2 in. (50 mm) > R	DE	22 x 10 ² 11 x 10 ²	(69) 492 (48) 316 (31)	
6.3 Metal base en detalles de dis- tinto espesor conectados por sol- daduras de penetración completa sujetos a carga transversal con o sin carga longitudinal cuando el de- talle abarca un radio de transición, <i>R</i> , con la terminación de soldadura esmentiada suave: - Cuando el refuerzo de soldadura es removido:			5-14	
R > 2 in. (50 mm)	D	22 x 10 ²	492 (48)	Al pie de soldadura a lo largo del borde del material más
R ≤ 2 in, (50 mm)	E	11 x 10 ^g	316 (31)	delgado. En la terminación de soldadura en el radio pequeño.
 Cuando el refuerzo no es removido: 				
Cualquier radio	E	11 x 10 ^g	316 (31)	Al pie de soldadura a lo largo del borde del material más delgado.

Parám	TABLA etros de	A-3.1 (co Diseño (ont.) para Fa	atiga								
Descripción	Categoría de Tensión	Constante C _t	Umbral F _{TH}	Punto de Potencial Inicio de Fractura								
SECCIÓN 6 – METAL BASE EN CONEXIONES SOLDADAS DE MIEMBROS TRANSVERSALES												
6.4 Metal base sujeto a tensión longitudinal en miembros transver- sales, con o sin tensión transversal, conectados por soldaduras de filete o penetración parcial paralela a la dirección de la tensión cuando el detalle abarca un radio de transición R, con la terminación de soldadura esmerilada suave: R > 2 in. (50 mm) $R \le 2$ in. (50 mm)	D E	22 x 10 ⁸ 11 x 10 ⁸	492 (48) 316 (31)	En terminación de soldadura o desde el pie de la soldadura extendiéndose hacia el miem- bro.								
SECC	IÓN 7 - METAL	BASE EN ADJUN	TOS CORTOS	S								
7.1 Metal base sujeto a carga lon- gitudinal en detalles conectados por soldaduras de filete paralelas o transversales a la dirección de la tensión donde el detalle no abarca un radio de transición y con la lon- gitud del detalle en dirección de la tensión, a, y altura normal a la su- perficie del miembro, b: a < 2 in. (50 mm) 2 in. (50 mm) $\leq a \leq 12$ b o 4 in. (100 mm.) a > 12 b o 4 in. (100 mm) cuando b es ≤ 1 in. (25 mm) a > 12 b o 4 in. (100 mm) cuado b es > 1 in. (25 mm)	C D E E	44 x 10 ⁸ 22 x 10 ⁸ 11 x 10 ⁸ 3.9 x 10 ⁸	702 (69) 492 (48) 316 (31) 182 (18)	En el miembro en el extremo de la soldadura.								
7.2 Metal base sujeto a carga longi- tudinal en detalles conectados por soldaduras de filete o de penetra- ción parcial, con o sin carga trans- versal en el detalle, cuando el de- talle abarca un radio de transición, R, con la terminación de soldadura esmerilada suave: R > 2 in. (50 mm) $R \le 2$ in. (50 mm)	D E	22 x 10 ⁸ 11 x 10 ⁸	492 (48) 316 (31)	En la terminación de solda- dura extendiéndose hacia el miembro.								

por lo tanto reduce la resistencia a fatiga.

	TABLA	A-3.1 (co	nt.)			
Parám	etros de	Diseño (oara Fa	atiga		
Descripción	Categoría de Tensión	Categoría de Tensión Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr Cr				
	SECCIÓN	8 - MISCELÁNEO)S			
8.1 Metal base en conectores de corte conectados por soldadura de filete o eléctrica.	C	44 x 10 ⁸	702 (69)	Al pie de la soldadura en el metal base.		
8.2 Corte en garganta de soldadu- ras de filete continuas o intermiten- tes longitudinales o transversales.	F	150 x 10 ⁸ (Eqn. A - 3 - 2 ó A - 3 - 2 M)	562 (55)	En la garganta de la soldadu- ra.		
8.3 Metal base en soldaduras de tapón o de ranura.	E	11 x 10 ⁸	316 (31)	En el extremo de la soldadura en el metal base.		
8.4 Corte en soldaduras de tapón o ranura.	F	150 x 10 ⁸ (Eqn. A - 3 - 2 ó A - 3 - 2 M)	562 (55)	En la superficie de contacto.		
8.5 Pernos de alta resistencia no completamente tensados, pernos comunes, barras de anclaje con hilo y ganchos con corte, hilos esmerilados o limpiados. Rango de tensión en el área de tensión de tracción debido a carga viva más acción de palanca cuando corres- ponda.	E	3.9 x 10 ⁸	492 (48)	En la raíz de los hilos exten- diéndose hacia el área de tensión de tracción.		

11.4. RANGOS DE ESFUERZOS OBTENIDOS PARA LA REVISIÓN DE DISEÑO ANTE FATIGA DEBIDOS AL MODELO DE CARGA DE CAMIÓN

11.4.1.	Determinación	de	rangos	de	esfuerzos	en	elementos	de	la	armadura	А,	con	posición	del
	camión de fatig	a er	ı el carı	il A	1									

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Longitud Localización Ρ σ Axial σL*I		P σ Axial		$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localizacion	t	kg/cm2	15%	kg/cm2
1	261	334.2	1001.40	261_0	-0.23	-0.70	-0.80	0.00
2	270	389.76	1296.39	270_0	-16.97	-43.53	-50.06	0.00
3	262	334.2	1000.00	262_0	0.00	0.00	0.00	0.00
4	272	334.2	1296.39	272_0	16.45	49.23	56.61	56.61
5	263	334.2	1000.00	263_0	0.00	0.00	0.00	0.00
6	273	334.2	1296.39	273_0	-17.43	-52.14	-59.97	0.00
7	264	334.2	1000.00	264_0	0.00	0.00	0.00	0.00
8	274	334.2	1296.39	274_0	11.18	33.45	38.47	38.47
9	265	334.2	1000.00	265_0	0.00	0.00	0.00	0.00
10	275	334.2	1296.39	275_0	5.62	16.82	19.34	19.34
11	266	334.2	1000.00	266_0	0.00	0.00	0.00	0.00
12	276	334.2	1296.39	276_0	-18.11	-54.19	-62.32	0.00
13	267	334.2	1000.00	267_0	0.00	0.00	0.00	0.00
14	277	334.2	1296.39	277_0	17.88	53.51	61.54	61.54
15	268	334.2	1000.00	268_0	0.00	0.00	0.00	0.00
16	271	389.76	1296.39	271_0	-18.03	-46.26	-53.20	0.00
17	269	334.2	1001.40	269_0	-0.21	-0.63	-0.72	0.00
18	941	250.3	825.00	941_0	2.68	10.73	12.33	12.33
19	942	250.3	825.00	942_0	-0.64	-2.56	-2.94	0.00
20	943	250.3	825.00	943_0	14.39	57.50	66.12	66.12
21	944	250.3	825.00	944_0	13.54	54.09	62.20	62.20
22	945	250.3	825.00	945_0	15.71	62.78	72.20	72.20
23	946	250.3	825.00	946_0	17.39	69.47	79.89	79.89
24	947	250.3	825.00	947_0	1.82	7.26	8.35	8.35
25	948	250.3	825.00	948_0	6.73	26.90	30.93	30.93
26	921	487.8	878.00	921_0	-0.05	-0.10	-0.12	0.00
27	922	487.8	825.00	922_0	-18.63	-38.20	-43.93	0.00
28	923	487.8	825.00	923_0	-18.76	-38.45	-44.22	0.00
29	924	677.8	825.00	924_0	-35.28	-52.06	-59.86	0.00
30	925	677.8	825.00	925_0	-35.31	-52.10	-59.91	0.00
31	926	487.8	825.00	926_0	-20.66	-42.35	-48.70	0.00
32	927	487.8	825.00	927_0	-20.53	-42.08	-48.39	0.00
33	928	487.8	878.00	928 0	-0.08	-0.15	-0.18	0.00

					Carga viva camión fatiga				
Elemento	# Frame	Área	Longitud	Docioión	Р	σ	σ*IM	$\Delta \mathbf{f}$	
	Modelo	(cm2)	cm	rosicion	t	kg/cm2	15%	kg/cm2	
1	242	334.2	1001.40	242_0	-0.01	-0.04	-0.05	0.00	
2	251	389.76	1296.39	251_0	-10.36	-26.58	-30.56	0.00	
3	243	334.2	1000.00	243_0	0.00	0.00	0.00	0.00	
4	253	334.2	1296.39	253_0	10.76	32.20	37.03	37.03	
5	244	334.2	1000.00	244_0	0.00	0.00	0.00	0.00	
6	254	389.76	1296.39	254_0	-9.58	-24.57	-28.26	0.00	
7	245	334.2	1000.00	245_0	0.00	0.00	0.00	0.00	
8	255	334.2	1296.39	255_0	3.43	10.27	11.82	11.82	
9	246	334.2	1000.00	246_0	0.00	0.00	0.00	0.00	
10	256	334.2	1296.39	256_0	5.83	17.44	20.05	20.05	
11	247	334.2	1000.00	247_0	0.00	0.00	0.00	0.00	
12	257	389.76	1296.39	257_0	-9.50	-24.37	-28.02	0.00	
13	248	334.2	1000.00	248_0	0.00	0.00	0.00	0.00	
14	258	334.2	1296.39	258_0	9.49	28.39	32.65	32.65	
15	249	334.2	1000.00	249_0	0.00	0.00	0.00	0.00	
16	252	389.76	1296.39	252_0	-9.30	-23.85	-27.43	0.00	
17	250	334.2	1001.40	250_0	-0.01	-0.03	-0.03	0.00	
18	325	250.3	825.00	325_0	4.16	16.63	19.12	19.12	
19	326	250.3	825.00	326_0	1.94	7.75	8.92	8.92	
20	935	250.3	825.00	935_0	12.31	49.19	56.57	56.57	
21	936	250.3	825.00	936_0	11.51	46.00	52.90	52.90	
22	937	250.3	825.00	937_0	10.07	40.23	46.27	46.27	
23	938	250.3	825.00	938_0	11.03	44.07	50.68	50.68	
24	939	250.3	825.00	939_0	1.59	6.34	7.30	7.30	
25	940	250.3	825.00	940_0	3.74	14.94	17.18	17.18	
26	913	487.8	878.00	913_0	-0.03	-0.05	-0.06	0.00	
27	914	738.2	825.00	914_0	-11.83	-16.02	-18.43	0.00	
28	915	738.2	825.00	915_0	-11.88	-16.10	-18.51	0.00	
29	916	738.2	825.00	916_0	-19.61	-26.57	-30.56	0.00	
30	917	738.2	825.00	917_0	-19.60	-26.55	-30.53	0.00	
31	918	738.2	825.00	918_0	-10.61	-14.37	-16.52	0.00	
32	919	738.2	825.00	919_0	-10.56	-14.31	-16.46	0.00	
33	920	487.8	878.00	920_0	-0.02	-0.05	-0.06	0.00	

11.4.2. Determinación de rangos de esfuerzos en elementos de la armadura B, con posición del camión de fatiga en el carril B

					Carga viva camión fatiga				
Elemento	# Frame	Área	Longitud	Localización	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$	
	Modelo	(cm2)	cm	Localizacion	t	kg/cm2	15%	kg/cm2	
1_1	330	334.2	1089.45	330_0	0.42	1.25	1.43	1.43	
2_1	2598	334.2	1047.21	2598_0	-3.11	-9.30	-10.69	0.00	
3_1	2604	334.2	1047.21	2604_0	-1.58	-4.72	-5.43	0.00	
4_1	2605	334.2	1047.21	2605_0	-3.80	-11.38	-13.09	0.00	
5_1	2608	334.2	1047.21	2608_0	-3.13	-9.37	-10.78	0.00	
6_1	2609	334.2	1047.21	2609_0	-2.46	-7.37	-8.47	0.00	
7_1	2612	334.2	1047.21	2612_0	-2.97	-8.89	-10.22	0.00	
8_1	332	334.2	1089.45	332_0	0.26	0.77	0.89	0.89	
1_2	331	334.2	1089.45	331_0	-0.41	-1.23	-1.41	0.00	
2_2	2603	334.2	1047.21	2603_0	-1.45	-4.35	-5.00	0.00	
3_2	2606	334.2	1047.21	2606_0	-2.96	-8.86	-10.19	0.00	
4_2	2607	334.2	1047.21	2607_0	-2.80	-8.38	-9.63	0.00	
5_2	2610	334.2	1047.21	2610_0	-3.47	-10.38	-11.94	0.00	
6_2	2611	334.2	1047.21	2611_0	-2.69	-8.06	-9.27	0.00	
7_2	2614	334.2	1047.21	2614_0	-2.20	-6.60	-7.59	0.00	
8_2	333	334.2	1089.45	333_0	-0.25	-0.75	-0.86	0.00	
1_3	328	145.8	1290.00	328_0	0.24	1.63	1.88	1.88	
2_3	2589	145.8	1290.00	2589_0	1.42	9.73	11.18	11.18	
3_3	2590	145.8	1290.00	2590_0	0.12	0.79	0.91	0.91	
4_3	2591	145.8	1290.00	2591_0	3.32	22.75	26.16	26.16	
5_3	2592	145.8	1290.00	2592_0	0.02	0.16	0.18	0.18	
6_3	2593	145.8	1290.00	2593_0	3.43	23.55	27.08	27.08	
7_3	2594	145.8	1290.00	2594_0	0.18	1.23	1.42	1.42	
8_3	2595	145.8	1290.00	2595_0	1.61	11.03	12.69	12.69	
9_3	329	145.8	1290.00	329_0	0.15	1.00	1.15	1.15	

11.4.3. Determinación de rangos de esfuerzos en rigidizadores superiores de las armaduras, con posición del camión de fatiga en el carril A

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	T a calina sián	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localizacion	t	kg/cm2	15%	kg/cm2
1_1	385	37.68	448.09	385_0	1.26	33.37	38.37	38.37
1_2	386	37.68	448.09	386_0	-0.89	-23.72	-27.28	0.00
1_3	387	37.68	448.09	387_0	1.36	36.14	41.57	41.57
1_4	388	37.68	448.09	388_0	-0.88	-23.44	-26.96	0.00
1_5	389	37.68	448.09	389_0	1.67	44.45	51.12	51.12
1_6	390	37.68	448.09	390_0	0.09	2.38	2.73	2.73
1_7	391	37.68	448.09	391_0	0.69	18.27	21.01	21.01
1_8	392	37.68	448.09	392_0	0.36	9.67	11.12	11.12
1_9	393	37.68	448.09	393_0	0.28	7.48	8.60	8.60
1_10	394	37.68	448.09	394_0	1.36	36.19	41.62	41.62
1_11	395	37.68	448.09	395_0	-0.36	-9.47	-10.89	0.00
1_12	397	37.68	448.09	397_0	2.34	61.98	71.28	71.28
1_13	398	37.68	448.09	398_0	-1.41	-37.42	-43.04	0.00
1_14	399	37.68	448.09	399_0	2.24	59.53	68.46	68.46
1_15	400	37.68	448.09	400_0	-1.62	-43.04	-49.50	0.00
1_16	401	37.68	448.09	401_0	2.36	62.73	72.14	72.14
2_1	402	37.68	448.09	402_0	-0.53	-14.19	-16.32	0.00
2_2	403	37.68	448.09	403_0	0.80	21.23	24.41	24.41
2_3	404	37.68	448.09	404_0	-0.33	-8.82	-10.14	0.00
2_4	405	37.68	448.09	405_0	0.90	23.91	27.50	27.50
2_5	406	37.68	448.09	406_0	0.26	6.90	7.94	7.94
2_6	407	37.68	448.09	407_0	1.10	29.09	33.45	33.45
2_7	408	37.68	448.09	408_0	0.77	20.50	23.57	23.57
2_8	409	37.68	448.09	409_0	0.92	24.48	28.15	28.15
2_9	410	37.68	448.09	410_0	1.36	36.19	41.62	41.62
2_10	411	37.68	448.09	411_0	0.52	13.75	15.81	15.81
2_11	412	37.68	448.09	412_0	1.61	42.68	49.08	49.08
2_12	413	37.68	448.09	413_0	-0.01	-0.29	-0.33	0.00
2_13	414	37.68	448.09	414_0	1.61	42.77	49.19	49.19
2_14	415	37.68	448.09	415_0	-0.80	-21.18	-24.35	0.00
2_15	416	37.68	448.09	416_0	1.56	41.28	47.47	47.47
2 16	417	37.68	448.09	417 0	-1.12	-29.61	-34.05	0.00

11.4.4. Determinación de rangos de esfuerzos en rigidizadores inclinados del sistema de piso carretero, con posición del camión de fatiga en el carril A

			-		Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Localización	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localizacion	t	kg/cm2	15%	kg/cm2
1_1	450	39.29	175	450_0	-0.03	-0.64	-0.73	0.00
1_2	451	39.29	175	451_0	0.02	0.53	0.61	0.61
1_3	452	39.29	175	452_0	0.02	0.54	0.62	0.62
1_4	453	39.29	175	453_0	-0.02	-0.51	-0.59	0.00
2_1	454	39.29	175	454_0	0.01	0.30	0.35	0.35
2_2	2615	39.29	175	2615_0	0.04	0.94	1.09	1.09
2_3	2616	39.29	175	2616_0	0.03	0.88	1.01	1.01
2_4	456	39.29	175	456_0	0.01	0.34	0.40	0.40
3_1	457	39.29	175	457_0	0.18	4.52	5.20	5.20
3_2	2617	39.29	175	2617_0	0.39	9.81	11.28	11.28
3_3	2618	39.29	175	2618_0	0.27	6.87	7.90	7.90
3_4	459	39.29	175	459_0	0.07	1.75	2.01	2.01
4_1	460	39.29	175	460_0	0.49	12.51	14.39	14.39
4_2	2619	39.29	175	2619_0	1.09	27.86	32.04	32.04
4_3	2620	39.29	175	2620_0	1.39	35.33	40.63	40.63
4_4	462	39.29	175	462_0	0.80	20.27	23.31	23.31
5_1	463	39.29	175	463_0	0.50	12.61	14.51	14.51
5_2	464	39.29	175	464_0	1.49	38.02	43.73	43.73
5_3	465	39.29	175	465_0	2.67	68.06	78.27	78.27
5_4	466	39.29	175	466_0	1.71	43.40	49.91	49.91
6_1	467	39.29	175	467_0	-0.01	-0.26	-0.30	0.00
6_2	468	39.29	175	468_0	0.07	1.77	2.04	2.04
6_3	469	39.29	175	469_0	0.02	0.56	0.64	0.64
6_4	470	39.29	175	470_0	-0.04	-1.07	-1.23	0.00
7_1	471	39.29	175	471_0	0.01	0.13	0.15	0.15
7_2	472	39.29	175	472_0	0.02	0.40	0.46	0.46
7_3	473	39.29	175	473_0	0.02	0.40	0.46	0.46
7_4	474	39.29	175	474_0	0.01	0.19	0.22	0.22
8_1	475	39.29	175	475_0	-0.02	-0.51	-0.59	0.00
8_2	476	39.29	175	476_0	0.02	0.55	0.63	0.63
8_3	477	39.29	175	477_0	0.02	0.54	0.62	0.62
8_4	478	39.29	175	478_0	-0.02	-0.40	-0.47	0.00

11.4.5. Determinación de rangos de esfuerzos en rigidizadores horizontales del sistema de piso carretero, con posición del camión de fatiga en el carril B

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Localización	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm		t	kg/cm2	15%	kg/cm2
1	482	23.29	287.26	482_0	0.97	41.81	48.08	48.08
2	479	23.29	200	479_0	0.06	2.61	3.01	3.01
3	483	23.29	287.26	483_0	-1.09	-46.80	-53.82	0.00
4	480	23.29	200	480_0	-0.01	-0.59	-0.68	0.00
5	484	23.29	287.26	484_0	1.13	48.52	55.80	55.80
6	481	23.29	200	481_0	-0.08	-3.34	-3.85	0.00
7	485	23.29	287.404	485_0	-0.93	-39.79	-45.75	0.00
8	489	23.29	287.26	489_0	0.74	31.86	36.64	36.64
9	486	23.29	200	486_0	0.04	1.53	1.76	1.76
10	490	23.29	287.26	490_0	-0.80	-34.53	-39.71	0.00
11	487	23.29	200	487_0	-0.02	-0.84	-0.96	0.00
12	491	23.29	287.26	491_0	0.87	37.17	42.75	42.75
13	488	23.29	200	488_0	-0.07	-3.16	-3.64	0.00
14	492	23.29	287.404	492_0	-0.67	-28.79	-33.11	0.00
15	496	23.29	287.26	496_0	0.54	23.34	26.84	26.84
16	493	23.29	200	493_0	0.02	0.66	0.76	0.76
17	497	23.29	287.26	497_0	-0.54	-23.28	-26.78	0.00
18	494	23.29	200	494_0	-0.03	-1.18	-1.36	0.00
19	498	23.29	287.26	498_0	0.63	26.87	30.90	30.90
20	495	23.29	200	495_0	-0.06	-2.41	-2.78	0.00
21	499	23.29	287.404	499_0	-0.46	-19.68	-22.63	0.00
22	503	23.29	287.26	503_0	0.33	14.33	16.48	16.48
23	500	23.29	200	500_0	-0.01	-0.33	-0.38	0.00
24	504	23.29	287.26	504_0	-0.29	-12.26	-14.10	0.00
25	501	23.29	200	501_0	-0.03	-1.39	-1.59	0.00
26	505	23.29	287.26	505_0	0.38	16.47	18.95	18.95
27	502	23.29	200	502_0	-0.04	-1.65	-1.90	0.00
28	506	23.29	287.404	506_0	-0.25	-10.76	-12.38	0.00
29	510	23.29	287.26	510_0	0.23	9.91	11.39	11.39
30	507	23.29	200	507_0	-0.01	-0.62	-0.71	0.00
31	511	23.29	287.26	511_0	-0.19	-8.01	-9.21	0.00
32	508	23.29	200	508_0	-0.03	-1.43	-1.64	0.00
33	512	23.29	287.26	512_0	0.29	12.36	14.21	14.21
34	509	23.29	200	509_0	-0.03	-1.24	-1.42	0.00
35	513	23.29	287.404	513_0	-0.16	-6.97	-8.01	0.00
36	517	23.29	287.26	517_0	0.00	-0.09	-0.10	0.00
37	514	23.29	200	514_0	-0.03	-1.12	-1.29	0.00
38	518	23.29	287.26	518_0	0.06	2.67	3.08	3.08
39	515	23.29	200	515_0	-0.03	-1.10	-1.27	0.00
40	519	23.29	287.26	519_0	0.01	0.61	0.71	0.71
41	516	23.29	200	516_0	-0.01	-0.29	-0.34	0.00
42	520	23.29	287.404	520_0	0.07	3.02	3.47	3.47
43	524	23.29	287.26	524_0	-0.14	-5.85	-6.73	0.00
44	521	23.29	200	521_0	-0.04	-1.74	-2.00	0.00
45	525	23.29	287.26	525_0	0.22	9.31	10.71	10.71
46	522	23.29	200	522_0	-0.01	-0.58	-0.67	0.00

11.4.6. Determinación de rangos de esfuerzos en rigidizadores del sistema de piso ferroviario, con posición del camión de fatiga en el carril A

47	526	23.29	287.26	526_0	-0.17	-7.44	-8.56	0.00
48	523	23.29	200	523_0	0.01	0.37	0.42	0.42
49	527	23.29	287.404	527_0	0.20	8.47	9.74	9.74
50	531	23.29	287.26	531_0	-0.31	-13.16	-15.13	0.00
51	528	23.29	200	528_0	-0.04	-1.59	-1.83	0.00
52	532	23.29	287.26	532_0	0.38	16.41	18.87	18.87
53	529	23.29	200	529_0	-0.01	-0.34	-0.40	0.00
54	533	23.29	287.26	533_0	-0.36	-15.38	-17.69	0.00
55	530	23.29	200	530_0	0.02	1.03	1.18	1.18
56	534	23.29	287.404	534_0	0.34	14.40	16.56	16.56

						Carga viva camión fatiga			a
Viga	# Frame	Longitud	Inercia	Sx	Localización	Mom	σ	σ*IM	$\Delta \mathbf{f}$
#	Modelo	cm	m4	m3		t.m	kg/cm2	15%	kg/cm2
1_5	281	450	0.010	0.017	281_4.5	-0.059	-0.34	-0.39	0.39
1_4	280	195	0.012	0.021	280_1.95	0.288	1.36	1.56	1.56
1_3	283	120.3	0.014	0.025	283_1.203	0.330	1.32	1.52	1.52
1_2	282	264.7	0.019	0.034	282_2.647	0.350	1.03	1.19	1.19
1_1	278	260	0.017	0.030	278_2.6	0.420	1.38	1.59	1.59
1_1	278	260	0.017	0.030	278_0	0.615	2.03	2.33	2.33
2_5	286	450	0.010	0.017	286_4.5	0.020	0.12	0.13	0.13
2_4	285	195	0.012	0.021	285_1.95	-0.409	-1.93	-2.22	2.22
2_3	288	120.3	0.014	0.025	288_1.203	-0.562	-2.25	-2.59	2.59
2_2	287	264.7	0.019	0.034	287_2.647	-0.666	-1.96	-2.26	2.26
2_1	284	260	0.017	0.030	284_2.6	-0.496	-1.63	-1.88	1.88
2_1	284	260	0.017	0.030	284_0	0.156	0.51	0.59	0.59
3_5	291	450	0.010	0.017	291_4.5	0.193	1.10	1.27	1.27
3_4	290	195	0.012	0.021	290_1.95	1.166	5.50	6.32	6.32
3_3	293	120.3	0.014	0.025	293_1.203	1.783	7.14	8.21	8.21
3_2	292	264.7	0.019	0.034	292_2.647	2.213	6.52	7.50	7.50
3_1	289	260	0.017	0.030	289_2.6	1.835	6.04	6.95	6.95
3_1	289	260	0.017	0.030	289_2.6	1.835	6.04	6.95	6.95
4_5	296	450	0.010	0.017	296_4.5	-2.304	-13.20	-15.18	15.18
4_4	295	195	0.012	0.021	295_1.95	22.300	105.14	120.92	120.92
4_3	298	120.3	0.014	0.025	298_1.203	26.461	105.90	121.79	121.79
4_2	297	264.7	0.019	0.034	297_2.647	24.338	71.71	82.46	82.46
4_1	294	260	0.017	0.030	294_2.6	10.157	33.45	38.47	38.47
4_1	294	260	0.017	0.030	294_0	-2.190	-7.21	-8.30	8.30
5_5	301	450	0.010	0.017	301_4.5	-4.766	-27.31	-31.41	31.41
5_4	300	195	0.012	0.021	300_1.95	27.664	130.44	150.00	150.00
5_3	303	120.3	0.014	0.025	303_1.203	33.280	133.19	153.17	153.17
5_2	302	264.7	0.019	0.034	302_2.647	31.855	93.85	107.93	107.93
5_1	299	260	0.017	0.030	299_2.6	13.063	43.01	49.47	49.47
5_1	299	260	0.017	0.030	299_0	-4.979	-16.39	-18.85	18.85
6_5	306	450	0.010	0.017	306_4.5	-0.970	-5.56	-6.39	6.39
6_4	305	195	0.012	0.021	305_1.95	11.062	52.16	59.98	59.98
6_3	308	120.3	0.014	0.025	308_1.203	13.408	53.66	61.71	61.71
6_2	307	264.7	0.019	0.034	307_2.647	13.385	39.43	45.35	45.35
6_1	304	260	0.017	0.030	304_2.6	6.118	20.15	23.17	23.17
6_1	304	260	0.017	0.030	304_0	-1.187	-3.91	-4.50	4.50
7_5	311	450	0.010	0.017	311_4.5	0.503	2.88	3.31	3.31
7_4	310	195	0.012	0.021	310_1.95	-0.737	-3.48	-4.00	4.00
7_3	313	120.3	0.014	0.025	313_1.203	-0.796	-3.19	-3.66	3.66
7_2	312	264.7	0.019	0.034	312_2.647	-0.663	-1.95	-2.25	2.25
7_1	309	260	0.017	0.030	309_2.6	0.051	0.17	0.19	0.19
7_1	309	260	0.017	0.030	309_0	0.039	0.13	0.15	0.15
8_5	316	450	0.010	0.017	316_4.5	-0.062	-0.35	-0.41	0.41
8_4	315	195	0.012	0.021	315_1.95	-0.064	-0.30	-0.35	0.35
8_3	318	120.3	0.014	0.025	318_1.203	-0.124	-0.50	-0.57	0.57

11.4.7. Determinación de rangos de esfuerzos en vigas transversales principales, con posición del camión de fatiga en el carril B

8_2	317	264.7	0.019	0.034	317_2.647	-0.198	-0.58	-0.67	0.67
8_1	314	260	0.017	0.030	314_2.6	-0.204	-0.67	-0.77	0.77
8_1	314	260	0.017	0.030	314_0	0.113	0.37	0.43	0.43
9_5	321	450	0.010	0.017	321_4.5	-0.097	-0.55	-0.64	0.64
9_4	320	195	0.012	0.021	320_1.95	0.259	1.22	1.40	1.40
9_3	323	120.3	0.014	0.025	323_1.203	0.322	1.29	1.48	1.48
9_2	322	264.7	0.019	0.034	322_2.647	0.359	1.06	1.22	1.22
9_1	319	260	0.017	0.030	319_2.6	0.441	1.45	1.67	1.67
9_1	319	260	0.017	0.030	319_0	0.612	2.01	2.32	2.32

						Carga viva camión fatiga			
Elemento	# Frame	Longitud	Inercia	Sx	Localización	Mom	σ	σ*IM	$\Delta \mathbf{f}$
	Modelo	cm	m4	m3	0	t.m	kg/cm2	15%	kg/cm2
1_1	344	825	0.001	0.002	344_0	0.028	1.37	1.58	1.58
1_2	353	825	0.001	0.002	353_0	-0.018	-0.87	-1.00	1.00
1_3	361	825	0.001	0.002	361_0	-0.011	-0.54	-0.62	0.62
1_4	369	825	0.001	0.002	369_0	0.001	0.04	0.05	0.05
1_5	377	825	0.001	0.002	377_0	0.273	13.47	15.49	15.49
2_1	345	825	0.001	0.002	345_0	0.027	1.34	1.54	1.54
2_2	354	825	0.001	0.002	354_0	-0.019	-0.95	-1.10	1.10
2_3	362	825	0.001	0.002	362_0	-0.008	-0.39	-0.45	0.45
2_4	370	825	0.001	0.002	370_0	0.006	0.32	0.36	0.36
2_5	378	825	0.001	0.002	378_0	0.163	8.04	9.24	9.24
3_1	346	825	0.001	0.002	346_0	-0.239	-11.81	-13.58	13.58
3_2	355	825	0.001	0.002	355_0	-0.164	-8.12	-9.34	9.34
3_3	363	825	0.001	0.002	363_0	-0.151	-7.44	-8.56	8.56
3_4	371	825	0.001	0.002	371_0	-0.161	-7.97	-9.16	9.16
3_5	379	825	0.001	0.002	379_0	0.006	0.30	0.35	0.35
4_1	348	825	0.001	0.002	348_0	-1.221	-60.32	-69.37	69.37
4_2	356	825	0.001	0.002	356_0	-1.085	-53.60	-61.64	61.64
4_3	364	825	0.001	0.002	364_0	0.043	2.13	2.45	2.45
4_4	372	825	0.001	0.002	372_0	0.696	34.41	39.57	39.57
4_5	380	825	0.001	0.002	380_0	-0.267	-13.21	-15.19	15.19
5_1	349	825	0.001	0.002	349_0	-4.500	-222.33	-255.68	255.68
5_2	357	825	0.001	0.002	357_0	-3.771	-186.30	-214.24	214.24
5_3	365	825	0.001	0.002	365_0	-1.921	-94.89	-109.13	109.13
5_4	373	825	0.001	0.002	373_0	-0.262	-12.93	-14.87	14.87
5_5	381	825	0.001	0.002	381_0	-0.393	-19.40	-22.32	22.32
6_1	350	825	0.001	0.002	350_0	-1.861	-91.97	-105.76	105.76
6_2	358	825	0.001	0.002	358_0	-1.829	-90.37	-103.92	103.92
6_3	366	825	0.001	0.002	366_0	-1.158	-57.22	-65.80	65.80
6_4	374	825	0.001	0.002	374_0	-0.398	-19.69	-22.64	22.64
6_5	382	825	0.001	0.002	382_0	-0.138	-6.79	-7.81	7.81
7_1	351	825	0.001	0.002	351_0	0.164	8.11	9.32	9.32
7_2	359	825	0.001	0.002	359_0	0.169	8.36	9.62	9.62
7_3	367	825	0.001	0.002	367_0	0.098	4.83	5.55	5.55
7_4	375	825	0.001	0.002	375_0	0.041	2.02	2.33	2.33
7_5	383	825	0.001	0.002	383_0	-0.226	-11.15	-12.83	12.83
8_1	352	825	0.001	0.002	352_0	-0.035	-1.71	-1.96	1.96
8_2	360	825	0.001	0.002	360_0	-0.020	-0.990	-1.14	1.14
8_3	368	825	0.001	0.002	368_0	-0.015	-0.745	-0.86	0.86
8_4	376	825	0.001	0.002	376_0	-0.002	-0.092	-0.11	0.11
8.5	384	825	0.001	0.002	384 0	-0 105	-5 205	-5 99	5 99

11.4.8. Determinación de rangos de esfuerzos en largueros del cuerpo carretero, con posición del camión de fatiga en el carril B

11.5. RANGOS DE ESFUERZOS OBTENIDOS PARA LA REVISIÓN DE DISEÑO ANTE FATIGA DEBIDOS AL MODELO DE CARGA DE TREN

r.

			-		Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Locolizogión	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localizacion	t	kg/cm2	22.4%	kg/cm2
1	261	334.2	1001.4	261_0	1.09	3.27	4.01	4.01
2	270	389.76	1296.4	270_0	-75.85	-194.61	-238.20	0.00
3	262	334.2	1000.0	262_0	0.00	0.00	0.00	0.00
4	272	334.2	1296.4	272_0	78.39	234.56	287.10	287.10
5	263	334.2	1000.0	263_0	0.00	0.00	0.00	0.00
6	273	334.2	1296.4	273_0	-59.09	-176.80	-216.41	0.00
7	264	334.2	1000.0	264_0	0.00	0.00	0.00	0.00
8	274	334.2	1296.4	274_0	19.89	59.52	72.86	72.86
9	265	334.2	1000.0	265_0	0.00	0.00	0.00	0.00
10	275	334.2	1296.4	275_0	24.30	72.72	89.01	89.01
11	266	334.2	1000.0	266_0	0.00	0.00	0.00	0.00
12	276	334.2	1296.4	276_0	-66.51	-199.00	-243.58	0.00
13	267	334.2	1000.0	267_0	0.00	0.00	0.00	0.00
14	277	334.2	1296.4	277_0	90.82	271.76	332.63	332.63
15	268	334.2	1000.0	268_0	0.00	0.00	0.00	0.00
16	271	389.76	1296.4	271_0	-92.46	-237.22	-290.36	0.00
17	269	334.2	1001.4	269_0	0.45	1.34	1.64	1.64
18	941	250.3	825.0	941_0	94.25	376.56	460.90	460.90
19	942	250.3	825.0	942_0	51.02	203.83	249.49	249.49
20	943	250.3	825.0	943_0	98.46	393.36	481.48	481.48
21	944	250.3	825.0	944_0	83.17	332.27	406.70	406.70
22	945	250.3	825.0	945_0	76.89	307.20	376.01	376.01
23	946	250.3	825.0	946_0	84.95	339.38	415.40	415.40
24	947	250.3	825.0	947_0	14.18	56.64	69.33	69.33
25	948	250.3	825.0	948_0	35.35	141.23	172.87	172.87
26	921	487.8	878.0	921_0	-0.77	-1.58	-1.94	0.00
27	922	487.8	825.0	922_0	-87.77	-179.94	-220.24	0.00
28	923	487.8	825.0	923_0	-88.33	-181.07	-221.63	0.00
29	924	677.8	825.0	924_0	-143.48	-211.68	-259.10	0.00
30	925	677.8	825.0	925_0	-143.48	-211.68	-259.10	0.00
31	926	487.8	825.0	926_0	-96.46	-197.75	-242.04	0.00
32	927	487.8	825.0	927_0	-95.91	-196.62	-240.66	0.00
33	928	487.8	878.0	928_0	-0.43	-0.87	-1.07	0.00

11.5.1. Determinación de rangos de esfuerzos en elementos de la armadura A

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	T	Р	σ	σ*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localization	t	kg/cm2	22.4%	kg/cm2
1	242	334.2	1001.40	242_0	-2.61	-7.81	-9.56	0.00
2	251	389.76	1296.39	251_0	-259.54	-665.91	-815.07	0.00
3	243	334.2	1000.00	243_0	0.00	0.00	0.00	0.00
4	253	334.2	1296.39	253_0	258.20	772.58	945.63	945.63
5	244	334.2	1000.00	244_0	0.00	0.00	0.00	0.00
6	254	389.76	1296.39	254_0	-197.21	-505.99	-619.33	0.00
7	245	334.2	1000.00	245_0	0.00	0.00	0.00	0.00
8	255	334.2	1296.39	255_0	67.32	201.42	246.54	246.54
9	246	334.2	1000.00	246_0	0.00	0.00	0.00	0.00
10	256	334.2	1296.39	256_0	52.15	156.05	191.00	191.00
11	247	334.2	1000.00	247_0	0.00	0.00	0.00	0.00
12	257	389.76	1296.39	257_0	-184.28	-472.80	-578.70	0.00
13	248	334.2	1000.00	248_0	0.00	0.00	0.00	0.00
14	258	334.2	1296.39	258_0	253.29	757.89	927.66	927.66
15	249	334.2	1000.00	249_0	0.00	0.00	0.00	0.00
16	252	389.76	1296.39	252_0	-252.69	-648.31	-793.54	0.00
17	250	334.2	1001.40	250_0	-1.84	-5.50	-6.74	0.00
18	325	250.3	825.00	325_0	34.31	137.09	167.80	167.80
19	326	250.3	825.00	326_0	-0.83	-3.30	-4.04	0.00
20	935	250.3	825.00	935_0	240.12	959.35	1174.24	1174.24
21	936	250.3	825.00	936_0	220.65	881.52	1078.98	1078.98
22	937	250.3	825.00	937_0	235.65	941.47	1152.36	1152.36
23	938	250.3	825.00	938_0	263.69	1053.51	1289.50	1289.50
24	939	250.3	825.00	939_0	50.68	202.47	247.82	247.82
25	940	250.3	825.00	940_0	105.12	419.97	514.05	514.05
26	913	487.8	878.00	913_0	-0.42	-0.85	-1.05	0.00
27	914	738.2	825.00	914_0	-294.81	-399.37	-488.83	0.00
28	915	738.2	825.00	915_0	-296.00	-400.98	-490.80	0.00
29	916	738.2	825.00	916_0	-442.47	-599.38	-733.65	0.00
30	917	738.2	825.00	917_0	-442.52	-599.45	-733.73	0.00
31	918	738.2	825.00	918_0	-296.32	-401.41	-491.33	0.00
32	919	738.2	825.00	919_0	-295.20	-399.89	-489.47	0.00
33	920	487.8	878.00	920_0	-0.51	-1.04	-1.27	0.00

11.5.2. Determinación de rangos de esfuerzos en elementos de la armadura B

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	T	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localization	t	kg/cm2	22.4%	kg/cm2
1_1	330	334.2	1089.45	330_0	-4.72	-14.11	-17.28	0.00
2_1	2598	334.2	1047.21	2598_0	-20.71	-61.98	-75.86	0.00
3_1	2604	334.2	1047.21	2604_0	-39.74	-118.92	-145.55	0.00
4_1	2605	334.2	1047.21	2605_0	-34.16	-102.21	-125.10	0.00
5_1	2608	334.2	1047.21	2608_0	-45.44	-135.96	-166.42	0.00
6_1	2609	334.2	1047.21	2609_0	-31.36	-93.85	-114.87	0.00
7_1	2612	334.2	1047.21	2612_0	-29.72	-88.94	-108.86	0.00
8_1	332	334.2	1089.45	332_0	-1.79	-5.36	-6.56	0.00
1_2	331	334.2	1089.45	331_0	4.86	14.55	17.81	17.81
2_2	2603	334.2	1047.21	2603_0	-40.76	-121.96	-149.28	0.00
3_2	2606	334.2	1047.21	2606_0	-21.44	-64.15	-78.52	0.00
4_2	2607	334.2	1047.21	2607_0	-49.94	-149.43	-182.90	0.00
5_2	2610	334.2	1047.21	2610_0	-38.65	-115.64	-141.54	0.00
6_2	2611	334.2	1047.21	2611_0	-32.20	-96.36	-117.95	0.00
7_2	2614	334.2	1047.21	2614_0	-34.13	-102.12	-125.00	0.00
8_2	333	334.2	1089.45	333_0	1.94	5.82	7.12	7.12
1_3	328	145.8	1290.00	328_0	-2.79	-19.15	-23.44	0.00
2_3	2589	145.8	1290.00	2589_0	18.69	128.17	156.89	156.89
3_3	2590	145.8	1290.00	2590_0	-0.63	-4.35	-5.33	0.00
4_3	2591	145.8	1290.00	2591_0	42.17	289.22	354.01	354.01
5_3	2592	145.8	1290.00	2592_0	-3.58	-24.52	-30.02	0.00
6_3	2593	145.8	1290.00	2593_0	42.74	293.17	358.84	358.84
7_3	2594	145.8	1290.00	2594_0	-1.93	-13.22	-16.18	0.00
8_3	2595	145.8	1290.00	2595_0	19.40	133.04	162.84	162.84
9_3	329	145.8	1290.00	329_0	-1.08	-7.42	-9.09	0.00

11.5.3. Determinación de rangos de esfuerzos en rigidizadores superiores de las armaduras

					Carga viva camión fatiga			
Elemento	# Frame	Área	rea Longitud	Localización	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm		t	kg/cm2	22.4%	kg/cm2
1_1	385	37.68	448.09	385_0	22%	5.94	7.28	7.28
1_2	386	37.68	448.09	386_0	-18.06	-479.41	-586.80	0.00
1_3	387	37.68	448.09	387_0	21.24	563.80	690.09	690.09
1_4	388	37.68	448.09	388_0	-12.19	-323.62	-396.11	0.00
1_5	389	37.68	448.09	389_0	17.86	474.06	580.25	580.25
1_6	390	37.68	448.09	390_0	-5.91	-156.88	-192.03	0.00
1_7	391	37.68	448.09	391_0	11.77	312.47	382.46	382.46
1_8	392	37.68	448.09	392_0	-0.53	-13.94	-17.06	0.00
1_9	393	37.68	448.09	393_0	7.65	202.94	248.40	248.40
1_10	394	37.68	448.09	394_0	2.88	76.51	93.65	93.65
1_11	395	37.68	448.09	395_0	1.98	52.53	64.30	64.30
1_12	397	37.68	448.09	397_0	7.55	200.48	245.38	245.38
1_13	398	37.68	448.09	398_0	-2.74	-72.82	-89.13	0.00
1_14	399	37.68	448.09	399_0	7.52	199.70	244.44	244.44
1_15	400	37.68	448.09	400_0	-6.19	-164.18	-200.96	0.00
1_16	401	37.68	448.09	401_0	10.03	266.12	325.73	325.73
2_1	402	37.68	448.09	402_0	-14.30	-379.52	-464.54	0.00
2_2	403	37.68	448.09	403_0	18.85	500.14	612.17	612.17
2_3	404	37.68	448.09	404_0	-9.53	-253.00	-309.68	0.00
2_4	405	37.68	448.09	405_0	16.59	440.23	538.84	538.84
2_5	406	37.68	448.09	406_0	-4.15	-110.24	-134.93	0.00
2_6	407	37.68	448.09	407_0	14.92	395.83	484.50	484.50
2_7	408	37.68	448.09	408_0	0.10	2.68	3.28	3.28
2_8	409	37.68	448.09	409_0	11.28	299.31	366.35	366.35
2_9	410	37.68	448.09	410_0	2.44	64.84	79.37	79.37
2_10	411	37.68	448.09	411_0	8.31	220.57	269.98	269.98
2_11	412	37.68	448.09	412_0	5.16	136.90	167.57	167.57
2_12	413	37.68	448.09	413_0	3.98	105.74	129.42	129.42
2_13	414	37.68	448.09	414_0	4.68	124.08	151.88	151.88
2_14	415	37.68	448.09	415_0	-0.12	-3.22	-3.94	0.00
2_15	416	37.68	448.09	416_0	6.29	166.81	204.18	204.18
2_16	417	37.68	448.09	417_0	-4.10	-108.92	-133.32	0.00

11.5.4. Determinación de rangos de esfuerzos en rigidizadores inclinados del sistema de piso carretero

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Localización	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localization	t	kg/cm2	22.4%	kg/cm2
1_1	450	39.29	175	450_0	-0.39	-9.87	-12.08	0.00
1_2	451	39.29	175	451_0	0.78	19.81	24.24	24.24
1_3	452	39.29	175	452_0	0.79	20.10	24.61	24.61
1_4	453	39.29	175	453_0	-0.28	-7.06	-8.64	0.00
2_1	454	39.29	175	454_0	0.41	10.48	12.83	12.83
2_2	2615	39.29	175	2615_0	1.65	41.90	51.29	51.29
2_3	2616	39.29	175	2616_0	1.67	42.48	52.00	52.00
2_4	456	39.29	175	456_0	0.50	12.80	15.67	15.67
3_1	457	39.29	175	457_0	1.08	27.48	33.63	33.63
3_2	2617	39.29	175	2617_0	2.97	75.57	92.50	92.50
3_3	2618	39.29	175	2618_0	3.10	78.87	96.54	96.54
3_4	459	39.29	175	459_0	1.26	32.16	39.37	39.37
4_1	460	39.29	175	460_0	1.60	40.62	49.72	49.72
4_2	2619	39.29	175	2619_0	3.74	95.26	116.60	116.60
4_3	2620	39.29	175	2620_0	3.95	100.63	123.17	123.17
4_4	462	39.29	175	462_0	1.87	47.68	58.36	58.36
5_1	463	39.29	175	463_0	1.58	40.15	49.14	49.14
5_2	464	39.29	175	464_0	3.66	93.19	114.06	114.06
5_3	465	39.29	175	465_0	3.86	98.30	120.32	120.32
5_4	466	39.29	175	466_0	1.83	46.69	57.14	57.14
6_1	467	39.29	175	467_0	1.18	29.94	36.65	36.65
6_2	468	39.29	175	468_0	2.95	75.10	91.92	91.92
6_3	469	39.29	175	469_0	3.13	79.56	97.38	97.38
6_4	470	39.29	175	470_0	1.39	35.39	43.32	43.32
7_1	471	39.29	175	471_0	0.47	11.89	14.55	14.55
7_2	472	39.29	175	472_0	1.18	30.09	36.83	36.83
7_3	473	39.29	175	473_0	1.23	31.34	38.36	38.36
7_4	474	39.29	175	474_0	0.55	13.96	17.09	17.09
8_1	475	39.29	175	475_0	-0.18	-4.58	-5.61	0.00
8_2	476	39.29	175	476_0	0.18	4.59	5.62	5.62
8_3	477	39.29	175	477_0	0.17	4.27	5.23	5.23
8_4	478	39.29	175	478_0	-0.15	-3.90	-4.77	0.00

11.5.5. Determinación de rangos de esfuerzos en rigidizadores horizontales del sistema de piso carretero

					Carga viva camión fatiga			
Elemento	# Frame	Área	Longitud	Tankatia	Р	σ Axial	σL*IM	$\Delta \mathbf{f}$
	Modelo	(cm2)	cm	Localization	t	kg/cm2	22.4%	kg/cm2
1	482	23.29	287.26	482_0	10.43	447.89	548.21	548.21
2	479	23.29	200.00	479_0	0.79	33.89	41.48	41.48
3	483	23.29	287.26	483_0	-11.59	-497.52	-608.97	0.00
4	480	23.29	200.00	480_0	-0.20	-8.40	-10.28	0.00
5	484	23.29	287.26	484_0	12.23	525.16	642.80	642.80
6	481	23.29	200.00	481_0	-1.23	-52.62	-64.41	0.00
7	485	23.29	287.40	485_0	-9.71	-416.90	-510.29	0.00
8	489	23.29	287.26	489_0	9.34	401.06	490.89	490.89
9	486	23.29	200.00	486_0	0.50	21.34	26.11	26.11
10	490	23.29	287.26	490_0	-9.44	-405.17	-495.93	0.00
11	487	23.29	200.00	487_0	-0.40	-16.99	-20.80	0.00
12	491	23.29	287.26	491_0	10.78	462.95	566.65	566.65
13	488	23.29	200.00	488_0	-1.57	-67.57	-82.71	0.00
14	492	23.29	287.40	492_0	-7.62	-327.36	-400.69	0.00
15	496	23.29	287.26	496_0	6.28	269.65	330.05	330.05
16	493	23.29	200.00	493_0	0.54	23.10	28.27	28.27
17	497	23.29	287.26	497_0	-5.09	-218.70	-267.69	0.00
18	494	23.29	200.00	494_0	-0.86	-36.85	-45.11	0.00
19	498	23.29	287.26	498_0	7.55	324.13	396.74	396.74
20	495	23.29	200.00	495_0	-1.36	-58.60	-71.72	0.00
21	499	23.29	287.40	499_0	-4.10	-176.03	-215.46	0.00
22	503	23.29	287.26	503_0	0.86	36.78	45.01	45.01
23	500	23.29	200.00	500_0	-0.56	-23.97	-29.34	0.00
24	504	23.29	287.26	504_0	2.18	93.71	114.71	114.71
25	501	23.29	200.00	501_0	-0.89	-38.41	-47.01	0.00
26	505	23.29	287.26	505_0	0.47	19.98	24.46	24.46
27	502	23.29	200.00	502_0	-0.72	-30.77	-37.67	0.00
28	506	23.29	287.40	506_0	1.95	83.90	102.70	102.70
29	510	23.29	287.26	510_0	-6.12	-262.77	-321.63	0.00
30	507	23.29	200.00	507_0	-1.26	-54.04	-66.15	0.00
31	511	23.29	287.26	511_0	10.70	459.51	562.44	562.44
32	508	23.29	200.00	508_0	-1.02	-43.95	-53.80	0.00
33	512	23.29	287.26	512_0	-7.57	-324.92	-397.70	0.00
34	509	23.29	200.00	509_0	-0.06	-2.76	-3.37	0.00
35	513	23.29	287.40	513_0	8.78	377.14	461.62	461.62
36	517	23.29	287.26	517_0	-12.93	-555.29	-679.68	0.00
37	514	23.29	200.00	514_0	-1.75	-74.95	-91.73	0.00
38	518	23.29	287.26	518_0	18.13	778.35	952.70	952.70
39	515	23.29	200.00	515_0	-0.79	-34.01	-41.63	0.00
40	519	23.29	287.26	519_0	-15.76	-676.67	-828.24	0.00
41	516	23.29	200.00	516_0	1.79	76.84	94.06	94.06
42	520	23.29	287.40	520_0	13.66	586.57	/1/.96	/1/.96
43	524	23.29	287.26	524_0	-17.59	-755.44	-924.66	0.00
44	521	23.29	200.00	521_0	-2.17	-92.97	-113.79	0.00
45	525	23.29	287.26	525_0	22.96	985.98	1206.84	1206.84
46	522	23.29	200.00	522_0	-0.54	-23.03	-28.19	0.00
4/	526	25.29	287.26	526_0	-21.20	-912.97	-111/.4/	0.00
48	523	25.29	200.00	523_0	1.04	44.53	54.50	54.50
1 49	521	2.5.29	287.40	5270	19.00	844.07	1033.14	1033.14

11.5.6. Determinación de rangos de esfuerzos en rigidizadores del sistema de piso ferroviario
50	531	23.29	287.26	531_0	-21.88	-939.67	-1150.15	0.00
51	528	23.29	200.00	528_0	-2.01	-86.25	-105.57	0.00
52	532	23.29	287.26	532_0	27.00	1159.28	1418.96	1418.96
53	529	23.29	200.00	529_0	-0.34	-14.80	-18.11	0.00
54	533	23.29	287.26	533_0	-26.03	-1117.51	-1367.83	0.00
55	530	23.29	200.00	530_0	1.59	68.24	83.52	83.52
56	534	23.29	287.40	534_0	23.07	990.70	1212.61	1212.61

						Carga viva camión fatiga			ı
Viga	# Frame	Longitud	Inercia	Sx	T P ! /	Mom	σ	σ*IM	$\Delta \mathbf{f}$
#	Modelo	cm	m4	m3	Localization	t.m	kg/cm2	22.4%	kg/cm2
1_5	281	450	0.010	0.017	281_4.5	28.851	165.309	202.34	202.34
1_4	280	195	0.012	0.021	280_1.95	9.417	44.400	54.35	54.35
1_3	283	120.3	0.014	0.025	283_1.203	0.398	1.592	1.95	1.95
1_2	282	264.7	0.019	0.034	282_2.647	-5.147	-15.166	-18.56	18.56
1_1	278	260	0.017	0.030	278_2.6	-15.800	-52.030	-63.68	63.68
1_1	278	260	0.017	0.030	278_0	-23.785	-78.321	-95.87	95.87
2_5	286	450	0.010	0.017	286_4.5	11.775	67.468	82.58	82.58
2_4	285	195	0.012	0.021	285_1.95	2.618	12.343	15.11	15.11
2_3	288	120.3	0.014	0.025	288_1.203	-1.274	-5.098	-6.24	6.24
2_2	287	264.7	0.019	0.034	287_2.647	-4.101	-12.082	-14.79	14.79
2_1	284	260	0.017	0.030	284_2.6	-9.551	-31.449	-38.49	38.49
2_1	284	260	0.017	0.030	284_0	-8.891	-29.276	-35.83	35.83
3_5	291	450	0.010	0.017	291_4.5	-9.183	-52.616	-64.40	64.40
3_4	290	195	0.012	0.021	290_1.95	46.337	218.480	267.42	267.42
3 3	293	120.3	0.014	0.025	293 1.203	75.000	300.156	367.39	367.39
3 2	292	264.7	0.019	0.034	292 2.647	94.437	278.231	340.56	340.56
3_1	289	260	0.017	0.030	289_2.6	87.978	289.706	354.60	354.60
3 1	289	260	0.017	0.030	289 2.6	87.978	289.706	354.60	354.60
4 5	296	450	0.010	0.017	296 4.5	-22.154	-126.932	-155.37	155.37
4_4	295	195	0.012	0.021	295_1.95	94.443	445.295	545.04	545.04
4 3	298	120.3	0.014	0.025	298 1.203	159.494	638.308	781.29	781.29
4_2	297	264.7	0.019	0.034	297_2.647	205.503	605.453	741.08	741.08
4_1	294	260	0.017	0.030	294_2.6	206.341	679.469	831.67	831.67
4_1	294	260	0.017	0.030	294_0	-10.126	-33.344	-40.81	40.81
5_5	301	450	0.010	0.017	301_4.5	-39.026	-223.604	-273.69	273.69
5_4	300	195	0.012	0.021	300_1.95	90.018	424.431	519.50	519.50
5_3	303	120.3	0.014	0.025	303_1.203	153.178	613.030	750.35	750.35
5_2	302	264.7	0.019	0.034	302_2.647	195.686	576.529	705.67	705.67
5_1	299	260	0.017	0.030	299_2.6	187.840	618.545	757.10	757.10
5_1	299	260	0.017	0.030	299_0	-9.494	-31.263	-38.27	38.27
6_5	306	450	0.010	0.017	306_4.5	-26.722	-153.111	-187.41	187.41
6_4	305	195	0.012	0.021	305_1.95	96.787	456.348	558.57	558.57
6_3	308	120.3	0.014	0.025	308_1.203	164.865	659.802	807.60	807.60
6_2	307	264.7	0.019	0.034	307_2.647	212.901	627.251	767.76	767.76
6_1	304	260	0.017	0.030	304_2.6	214.735	707.110	865.50	865.50
6_1	304	260	0.017	0.030	304_0	-7.074	-23.294	-28.51	28.51
7_5	311	450	0.010	0.017	311_4.5	-22.964	-131.576	-161.05	161.05
7_4	310	195	0.012	0.021	310_1.95	50.263	236.990	290.08	290.08
7_3	313	120.3	0.014	0.025	313_1.203	87.055	348.400	426.44	426.44
7_2	312	264.7	0.019	0.034	312_2.647	112.134	330.369	404.37	404.37
7_1	309	260	0.017	0.030	309_2.6	110.858	365.049	446.82	446.82
7_1	309	260	0.017	0.030	309_0	-4.958	-16.326	-19.98	19.98
8_5	316	450	0.010	0.017	316_4.5	0.226	1.294	1.58	1.58
8_4	315	195	0.012	0.021	315_1.95	2.156	10.164	12.44	12.44
8_3	318	120.3	0.014	0.025	318_1.203	2.702	10.814	13.24	13.24
8_2	317	264.7	0.019	0.034	317_2.647	2.704	7.968	9.75	9.75
8_1	314	260	0.017	0.030	314_2.6	0.909	2.995	3.67	3.67

11.5.7. Determinación de rangos de esfuerzos en vigas transversales principales

8_1	314	260	0.017	0.030	314_0	0.826	2.720	3.33	3.33
9_5	321	450	0.010	0.017	321_4.5	8.922	51.118	62.57	62.57
9_4	320	195	0.012	0.021	320_1.95	3.791	17.876	21.88	21.88
9_3	323	120.3	0.014	0.025	323_1.203	1.393	5.575	6.82	6.82
9_2	322	264.7	0.019	0.034	322_2.647	-0.668	-1.969	-2.41	2.41
9_1	319	260	0.017	0.030	319_2.6	-1.584	-5.217	-6.39	6.39
9_1	319	260	0.017	0.030	319_0	2.502	8.238	10.08	10.08

						Carga viva camión fatiga			
Elemento	# Frame	Longitud	Inercia	Sx	Localización	Mom	σ	σ*IM	Δ f
	Modelo	cm	m4	m3	0	t.m	kg/cm2	22.4%	kg/cm2
1_1	344	825	0.001	0.002	344_0	0.39	19.16	23.45	23.45
1_2	353	825	0.001	0.002	353_0	-0.22	-11.08	-13.56	13.56
1_3	361	825	0.001	0.002	361_0	-0.17	-8.36	-10.24	10.24
1_4	369	825	0.001	0.002	369_0	0.04	2.02	2.47	2.47
1_5	377	825	0.001	0.002	377_0	4.73	233.79	286.15	286.15
2_1	345	825	0.001	0.002	345_0	-1.57	-77.69	-95.09	95.09
2_2	354	825	0.001	0.002	354_0	-1.15	-56.87	-69.61	69.61
2_3	362	825	0.001	0.002	362_0	-0.76	-37.55	-45.97	45.97
2_4	370	825	0.001	0.002	370_0	-0.45	-22.44	-27.47	27.47
2_5	378	825	0.001	0.002	378_0	1.31	64.51	78.95	78.95
3_1	346	825	0.001	0.002	346_0	-1.89	-93.24	-114.13	114.13
3_2	355	825	0.001	0.002	355_0	1.02	50.27	61.53	61.53
3_3	363	825	0.001	0.002	363_0	0.80	39.63	48.50	48.50
3_4	371	825	0.001	0.002	371_0	0.00	0.21	0.25	0.25
3_5	379	825	0.001	0.002	379_0	0.69	34.14	41.79	41.79
4_1	348	825	0.001	0.002	348_0	0.66	32.66	39.97	39.97
4_2	356	825	0.001	0.002	356_0	6.83	337.24	412.78	412.78
4_3	364	825	0.001	0.002	364_0	5.33	263.58	322.62	322.62
4_4	372	825	0.001	0.002	372_0	2.76	136.15	166.65	166.65
4_5	380	825	0.001	0.002	380_0	0.10	4.82	5.90	5.90
5_1	349	825	0.001	0.002	349_0	-5.49	-271.34	-332.12	332.12
5_2	357	825	0.001	0.002	357_0	1.31	64.49	78.93	78.93
5_3	365	825	0.001	0.002	365_0	0.81	39.98	48.94	48.94
5_4	373	825	0.001	0.002	373_0	-0.64	-31.48	-38.53	38.53
5_5	381	825	0.001	0.002	381_0	-2.05	-101.14	-123.79	123.79
6_1	350	825	0.001	0.002	350_0	0.59	29.01	35.51	35.51
6_2	358	825	0.001	0.002	358_0	7.02	346.91	424.61	424.61
6_3	366	825	0.001	0.002	366_0	5.35	264.40	323.63	323.63
6_4	374	825	0.001	0.002	374_0	2.71	133.88	163.87	163.87
6_5	382	825	0.001	0.002	382_0	-0.89	-43.84	-53.66	53.66
7_1	351	825	0.001	0.002	351_0	-2.62	-129.59	-158.61	158.61
7_2	359	825	0.001	0.002	359_0	1.80	88.98	108.91	108.91
7_3	367	825	0.001	0.002	367_0	1.17	58.02	71.01	71.01
7_4	375	825	0.001	0.002	375_0	0.19	9.62	11.77	11.77
7_5	383	825	0.001	0.002	383_0	-2.10	-103.56	-126.75	126.75
8_1	352	825	0.001	0.002	352_0	-2.32	-114.53	-140.18	140.18
8_2	360	825	0.001	0.002	360_0	-0.93	-46.01	-56.32	56.32
8_3	368	825	0.001	0.002	368_0	-0.88	-43.34	-53.05	53.05
8_4	376	825	0.001	0.002	376_0	-0.60	-29.78	-36.45	36.45
8_5	384	825	0.001	0.002	384_0	-1.01	-49.92	-61.10	61.10

1159	Determinación	de rangos de	osfuorzas on	largueros d	ol cuorna	ferroviario
11.3.7.	Determinucion	ue rangos ae	esjuerzos en	urgueros u	ei cuerpo	jerroviario

							Carga viva	camión fatig	ga
Elemento	# Frame	Longitud	Inercia	Sx	Localización	Mom	σ	σ*IM	$\Delta \mathbf{f}$
	Modelo	cm	m4	m3	4.124	t.m	kg/cm2	22.4%	kg/cm2
1	882	825	0.004	0.008	882_4.124	-0.49	-6.18	-7.57	7.57
2	896	825	0.004	0.008	896_4.124	-0.30	-3.75	-4.59	4.59
3	884	825	0.004	0.008	884_4.124	-11.39	-144.44	-176.79	176.79
4	898	825	0.004	0.008	898_4.124	-9.82	-124.45	-152.33	152.33
5	886	825	0.004	0.008	886_4.124	58.02	735.60	900.37	900.37
6	900	825	0.004	0.008	900_4.124	56.63	717.92	878.74	878.74
7	888	825	0.004	0.008	888_4.124	24.35	308.68	377.82	377.82
8	902	825	0.004	0.008	902_4.124	24.45	309.96	379.39	379.39
9	890	825	0.004	0.008	890_4.124	4.61	58.41	71.49	71.49
10	904	825	0.004	0.008	904_4.124	6.48	82.19	100.60	100.60
11	892	825	0.004	0.008	892_4.124	39.97	506.69	620.19	620.19
12	906	825	0.004	0.008	906_4.124	39.10	495.72	606.76	606.76
13	894	825	0.004	0.008	894_4.124	-8.41	-106.62	-130.50	130.50
14	908	825	0.004	0.008	908_4.124	-6.84	-86.74	-106.17	106.17
15	895	825	0.004	0.008	895_4.124	-0.05	-0.59	-0.72	0.72
16	909	825	0.004	0.008	909_4.124	0.43	5.44	6.66	6.66

11.6. RANGOS DE ESFUERZOS OBTENIDOS PARA LA EVALUACIÓN DE FATIGA DEBIDOS AL MODELO DE CARGA DE CAMIÓN

11.6.1. Rangos de esfuerzos en elementos de la armadura A, con movimiento del camión de fatiga a través carril A

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	N
0.18	-0.85	1.03	1	261	-4.71
1.56	-79.61	81.17	2	270	-51.11
0.00	0.00	0.00	3	262	Infinito
77.24	-4.09	81.34	4	272	-0.05
0.00	0.00	0.00	5	263	-21.33
13.35	-63.65	77.00	6	273	-4.77
0.00	0.00	0.00	7	264	-0.03
49.82	-26.56	76.38	8	274	-0.53
0.00	0.00	0.00	9	265	Infinito
42.32	-34.47	76.79	10	275	-0.81
0.00	0.00	0.00	11	266	Infinito
19.81	-57.21	77.03	12	276	-2.89
0.00	0.00	0.00	13	267	-0.09
72.42	-9.46	81.87	14	277	-0.13
0.00	0.00	0.00	15	268	-0.05
3.94	-81.00	84.94	16	271	-20.58
0.17	-0.96	1.13	17	269	-5.71
43.10	-2.24	45.34	18	941	-0.05
31.07	-4.51	35.58	19	942	-0.15
76.75	-5.40	82.15	20	943	-0.07
76.57	-3.65	80.22	21	944	-0.05
81.33	-4.00	85.33	22	945	-0.05
90.75	-4.38	95.12	23	946	-0.05
42.73	-1.73	44.46	24	947	-0.04
56.53	-3.25	59.79	25	948	-0.06
0.09	-0.19	0.28	26	921	-2.16
1.54	-61.34	62.87	27	922	-39.91
1.54	-61.59	63.13	28	923	-40.03
1.43	-58.49	59.91	29	924	-41.04
1.44	-58.43	59.87	30	925	-40.54
2.37	-60.03	62.40	31	926	-25.35
2.33	-59.86	62.20	32	927	-25.66
0.06	-0.27	0.33	33	928	-4.58

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	К
0.32	-0.41	0.73	1	242	-1.28
4.34	-47.71	52.05	2	251	-10.99
0.00	0.00	0.00	3	243	Infinito
40.27	-2.71	42.98	4	253	-0.07
0.00	0.00	0.00	5	244	-6.00
8.16	-25.87	34.03	6	254	-3.17
0.00	0.00	0.00	7	245	-1.00
24.71	-14.62	39.33	8	255	-0.59
0.00	0.00	0.00	9	246	Infinito
25.33	-14.48	39.81	10	256	-0.57
0.00	0.00	0.00	11	247	Infinito
4.89	-27.98	32.87	12	257	-5.73
0.00	0.00	0.00	13	248	-0.37
40.83	-4.20	45.03	14	258	-0.10
0.00	0.00	0.00	15	249	-0.17
0.51	-42.21	42.73	16	252	-82.35
0.19	-0.26	0.46	17	250	-1.36
32.07	-5.80	37.86	18	325	-0.18
24.55	-4.60	29.14	19	326	-0.19
58.11	-4.05	62.16	20	935	-0.07
55.52	-3.71	59.23	21	936	-0.07
53.65	-4.61	58.26	22	937	-0.09
56.64	-4.51	61.16	23	938	-0.08
27.18	-0.37	27.55	24	939	-0.01
33.43	-0.65	34.08	25	940	-0.02
0.07	-0.17	0.25	26	913	-2.41
1.33	-22.32	23.64	27	914	-16.83
1.36	-22.33	23.69	28	915	-16.39
1.13	-29.74	30.87	29	916	-26.41
1.06	-29.78	30.85	30	917	-28.03
0.96	-21.75	22.71	31	918	-22.67
0.88	-21.64	22.51	32	919	-24.67
0.12	-0.24	0.35	33	920	-2.05

11.6.2. Rangos de esfuerzos en elementos de la armadura B, con movimiento del camión de fatiga a través carril B

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
1.44	-0.43	1.87	1	330	-0.30
1.01	-14.38	15.40	2	2598	-14.21
0.78	-10.08	10.86	3	2604	-12.89
0.92	-12.48	13.40	4	2605	-13.62
1.05	-10.79	11.84	5	2608	-10.24
0.42	-11.82	12.24	6	2609	-28.01
1.00	-13.08	14.08	7	2612	-13.09
0.87	-0.37	1.25	8	332	-0.43
0.39	-1.39	1.78	1	331	-3.52
0.47	-9.52	9.98	2	2603	-20.45
1.00	-13.82	14.83	3	2606	-13.78
1.01	-9.72	10.73	4	2607	-9.65
0.77	-11.42	12.18	5	2610	-14.87
0.86	-12.23	13.09	6	2611	-14.16
0.48	-11.00	11.48	7	2614	-22.93
0.32	-0.87	1.19	8	333	-2.71
1.85	-0.36	2.21	1	328	-0.19
16.60	-1.12	17.72	2	2589	-0.07
0.93	-0.94	1.88	3	2590	-1.01
26.80	-1.29	28.09	4	2591	-0.05
2.04	-0.81	2.85	5	2592	-0.40
27.89	-1.43	29.32	6	2593	-0.05
1.48	-0.50	1.98	7	2594	-0.34
15.84	-0.79	16.63	8	2595	-0.05
1.01	-0.35	1.36	9	329	-0.35

11.6.3. Rangos de esfuerzos en rigidizadores superiores, con movimiento del camión de fatiga a través carril A

Máx.	Min	Rango	Elemento	D	
kg/cm2	kg/cm2	kg/cm2	#	К	
45.34	-12.22	57.56	385	-0.27	
7.65	-34.27	41.92	386	-4.48	
41.69	-5.74	47.43	387	-0.14	
5.38	-26.57	31.95	388	-4.93	
45.08	-4.82	49.90	389	-0.11	
4.00	-12.92	16.91	390	-3.23	
29.78	-5.31	35.09	391	-0.18	
20.30	-5.53	25.83	392	-0.27	
13.55	-5.95	19.50	393	-0.44	
29.67	-1.57	31.24	394	-0.05	
4.93	-9.06	14.00	395	-1.84	
42.34	-4.88	47.22	397	-0.12	
5.66	-25.56	31.22	398	-4.52	
44.20	-5.98	50.18	399	-0.14	
0.93	-33.38	34.30	400	-36.03	
52.67	-4.28	56.95	401	-0.08	
10.22	-20.07	30.30	402	-1.96	
32.09	-6.14	38.24	403	-0.19	
7.70	-13.69	21.39	404	-1.78	
37.28	-6.11	43.39	405	-0.16	
16.34	-6.10	22.44	406	-0.37	
41.19	-2.24	43.43	407	-0.05	
25.46	-5.91	31.37	408	-0.23	
32.41	-3.59	36.00	409	-0.11	
32.14	-1.27	33.42	410	-0.04	
21.78	-6.10	27.87	411	-0.28	
33.72	-3.98	37.70	412	-0.12	
10.42	-3.63	14.06	413	-0.35	
33.26	-4.56	37.83	414	-0.14	
6.14	-14.11	20.25	415	-2.30	
33.18	-1.17	34.34	416	-0.04	
2.96	-23.18	26.15	417	-7.83	
10.22	-20.07	30.30	402	-1.96	
32.09	-6.14	38.24	403	-0.19	
7.70	-13.69	21.39	404	-1.78	
37.28	-6.11	43.39	405	-0.16	
16.34	-6.10	22.44	406	-0.37	
41.19	-2.24	43.43	407	-0.05	
25.46	-5.91	31.37	408	-0.23	
32.41	-3.59	36.00	409	-0.11	
32.14	-1.27	33.42	410	-0.04	
21.78	-6.10	27.87	411	-0.28	
33.72	-3.98	37.70	412	-0.12	
10.42	-3.63	14.06	413	-0.35	
33.26	-4.56	37.83	414	-0.14	

11.6.4. Rangos de esfuerzos en rigidizadores del sistema de piso vehicular, con movimiento del camión de fatiga a través carril B

6.14	-14.11	20.25	415	-2.30
33.18	-1.17	34.34	416	-0.04
2.96	-23.18	26.15	417	-7.83
6.36	-21.82	28.18	434	-3.43
5.54	-26.64	32.18	435	-4.80
7.18	-13.47	20.65	436	-1.87
5.72	-13.96	19.67	437	-2.44
11.18	-8.74	19.91	438	-0.78
14.71	-5.78	20.49	439	-0.39
8.21	-6.37	14.57	440	-0.78
10.61	-4.07	14.69	441	-0.38
9.05	-0.88	9.93	442	-0.10
9.09	-3.41	12.49	443	-0.38
9.49	-3.22	12.71	444	-0.34
9.42	-2.61	12.03	445	-0.28
6.32	-7.94	14.25	446	-1.26
5.90	-3.77	9.67	447	-0.64
6.22	-6.75	12.97	448	-1.09
1.98	-5.97	7.95	449	-3.01
17.59	-4.43	22.02	450	-0.25
53.33	-9.64	62.97	451	-0.18
10.66	-1.83	12.49	454	-0.17
33.27	-4.49	37.76	2615	-0.14
8.90	-3.47	12.37 457		-0.39
30.09	-7.61	37.70 2617		-0.25
11.69	-1.69	13.39	460	-0.14
41.80	-4.01	45.81	2619	-0.10
13.07	-3.25	16.32	463	-0.25
39.25	-8.19	47.44	464	-0.21
13.34	-3.14	16.49	467	-0.24
33.15	-6.72	39.87	468	-0.20
13.65	-1.16	14.81	471	-0.09
27.82	-1.69	29.51	472	-0.06
8.49	-2.32	10.81	475	-0.27
20.73	-3.11	23.84	476	-0.15
111.12	-8.99	120.12	452	-0.08
80.22	-7.07	87.29	453	-0.09
123.60	-5.38	128.99	2616	-0.04
104.80	-3.94	108.74	456	-0.04
121.55	-6.52	128.07	2618	-0.05
107.47	-6.51	113.99	459	-0.06
94.21	-3.39	97.60	2620	-0.04
70.05	-3.29	73.34	462	-0.05
74.66	-10.91	85.58	465	-0.15
48.25	-8.48	56.73	466	-0.18
51.24	-8.56	59.80	469	-0.17
31.92	-7.50	39.41	470	-0.23
30.57	-3.40	33.97	473	-0.11
18.54	-2.74	21.28	474	-0.15
40.36	-2.91	43.27	477	-0.07
29.72	-2.85	32.57	478	-0.10

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	К
50.18	-6.02	56.19	1	482	-0.12
3.12	-1.28	4.41	2	479	-0.41
8.52	-56.06	64.58	3	483	-6.58
0.61	-1.05	1.65	4	480	-1.73
57.81	-9.94	67.76	5	484	-0.17
0.79	-3.93	4.73	6	481	-4.95
8.36	-47.28	55.63	7	485	-5.66
34.91	-4.91	39.82	8	489	-0.14
1.59	-0.46	2.05	9	486	-0.29
5.39	-37.32	42.71	10	490	-6.92
0.46	-1.09	1.55	11	487	-2.37
40.19	-2.40	42.59	12	491	-0.06
0.73	-3.56	4.29	13	488	-4.87
2.14	-31.64	33.78	14	492	-14.80
24.78	-6.78	31.56	15	496	-0.27
0.82	-0.30	1.12	16	493	-0.37
7.09	-24.46	31.55	17	497	-3.45
0.78	-1.53	2.31	18	494	-1.97
28.62	-6.21	34.83	19	498	-0.22
0.44	-2.70	3.14	20	495	-6.11
4.41	-21.06	25.47	21	499	-4.78
14.82	-4.87	19.69	22	503	-0.33
0.15	-0.47	0.62	23	500	-3.14
5.47	-13.87	19.34	24	504	-2.54
0.63	-1.78	2.41	25	501	-2.82
16.91	-4.89	21.79	26	505	-0.29
0.47	-1.85	2.32	27	502	-3.91
3.98	-11.02	15.01	28	506	-2.77
10.00	-4.94	14.95	29	510	-0.49
0.27	-0.88	1.16	30	507	-3.22
6.03	-7.96	13.99	31	511	-1.32
0.05	-1.67	1.72	32	508	-32.33
12.87	-5.71	18.58	33	512	-0.44
0.33	-1.33	1.66	34	509	-3.96
4.38	-6.54	10.93	35	513	-1.49
4.03	-2.46	6.48	36	517	-0.61
0.36	-1.20	1.56	37	514	-3.33
5.84	-3.97	9.81	38	518	-0.68
0.95	-1.34	2.29	39	515	-1.42
3.69	-4.70	8.39	40	519	-1.27
0.33	-0.67	1.01	41	516	-2.01
5.50	-4.29	9.78	42	520	-0.78
5.02	-6.80	11.82	43	524	-1.35
0.35	-1.80	2.15	44	521	-5.17
9.48	-5.96	15.44	45	525	-0.63
0.73	-0.89	1.62	46	522	-1.22
3.95	-7.01	10.96	47	526	-1.78
0.60	-0.50	1.10	48	523	-0.84

11.6.5. Rangos de esfuerzos en rigidizadores del sistema de piso ferroviario, con movimiento del camión de fatiga a través carril A

8.19	-3.57	11.76	49	527	-0.44
7.11	-17.54	24.65	50	531	-2.47
0.56	-2.09	2.65	51	528	-3.75
20.86	-6.62	27.48	52	532	-0.32
0.66	-0.76	1.42	53	529	-1.14
6.06	-19.36	25.42	54	533	-3.20

11.6.6. Rangos de esfuerzos en vigas transversales, con movimiento del camión de fatiga a través carril B

• Extremo izquierdo

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
6.85	-44.76	51.61	1_5	281	-6.54
74.68	-10.96	85.65	1_4	280	-0.15
79.17	-11.91	91.08	1_3	283	-0.15
60.15	-9.57	69.72	1_2	282	-0.16
21.89	-5.47	27.36	1_1	278	-0.25
2.84	-24.45	27.30	2_5	286	-8.61
165.70	-16.08	181.78	2_4	285	-0.10
167.71	-15.99	183.70	2_3	288	-0.10
122.80	-12.24	135.04	2	287	-0.10
60.06	-8.64	68.70	2_1	284	-0.14
3.37	-28.79	32.16	3_5	291	-8.55
129.80	-14.15	143.95	3_4	290	-0.11
135.41	-13.75	149.17	3_3	293	-0.10
101.10	-10.04	111.14	3_2	292	-0.10
48.90	-5.49	54.40	3_1	289	-0.11
3.17	-17.05	20.22	4_5	296	-5.38
129.58	-20.91	150.49	4_4	295	-0.16
131.67	-21.48	153.14	4_3	298	-0.16
96.67	-16.25	112.92	4_2	297	-0.17
46.60	-10.14	56.74	4_1	294	-0.22
3.52	-28.94	32.47	5_5	301	-8.21
137.17	-18.44	155.61	5_4	300	-0.13
140.14	-18.04	158.18	5_3	303	-0.13
101.70	-13.00	114.70	5_2	302	-0.13
47.11	-6.90	54.00	5_1	299	-0.15
3.36	-18.73	22.09	6_5	306	-5.58
136.69	-22.14	158.84	6_4	305	-0.16
138.38	-21.77	160.15	6_3	308	-0.16
98.40	-16.43	57.52	6_2	307	-0.17
4/.4/	-10.06	21.75	<u> </u>	304	-0.21
2.85	-28.89	31.75	7_5	210	-10.15
135.04	-18.72	152.50	7_4	212	-0.14
02.67	-19.90	107.85	7_3	212	-0.13
42.07	-13.10	52.13	7_2	300	-0.10
42.99	-9.14	22.13	<u> </u>	316	-0.21
1.21	-6.11	152.53	8_J	315	-18.05
140.42	-7.07	154.85	83	318	-0.04
102 10	-5.40	107.50	8 2	317	-0.05
48.37	-3.31	51.67	8 1	314	-0.07
9.28	-8.84	18.12	9.5	321	-0.95
13.63	-14.00	27.64	9 4	320	-1.03
16.51	-17.06	33.57	9.3	323	-1.03
13.63	-14.30	27.92	9 2	322	-1.05
8.90	-9.25	18.15	9_1	319	-1.04

• Extremo derecho

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	к
90.76	-13.32	104.08	1_5	281	-0.15
93.27	-14.03	107.31	1_4	280	-0.15
81.70	-13.01	94.71	1_3	283	-0.16
19.59	-4.89	24.48	1_2	282	-0.25
5.11	-25.86	30.98	1_1	278	-5.06
201.36	-19.54	220.90	2_5	286	-0.10
197.58	-18.84	216.42	2_4	285	-0.10
166.81	-16.62	183.43	2_3	288	-0.10
53.73	-7.73	61.47	2_2	287	-0.14
1.30	-11.48	12.78	2_1	284	-8.82
157.74	-17.19	174.93	3_5	291	-0.11
159.53	-16.20	175.74	3_4	290	-0.10
137.33	-13.64	150.97	3_3	293	-0.10
43.75	-4.92	48.67	3_2	292	-0.11
1.86	-17.46	19.32	3_1	289	-9.39
157.47	-25.41	182.87	4_5	296	-0.16
155.12	-25.30	180.42	4_4	295	-0.16
131.32	-22.07	153.39	4_3	298	-0.17
41.69	-9.08	50.77	4_2	297	-0.22
1.40	-9.44	10.84	4_1	294	-6.75
166.69	-22.41	189.10	5_5	301	-0.13
165.10	-21.26	186.35	5_4	300	-0.13
138.15	-17.66	155.81	5_3	303	-0.13
42.15	-6.17	48.32	5_2	302	-0.15
2.36	-17.52	19.88	5_1	299	-7.42
166.11	-26.91	193.02	6_5	306	-0.16
163.03	-25.64	188.67	6_4	305	-0.16
133.67	-22.32	155.99	6_3	308	-0.17
42.47	-9.00	51.48	6_2	307	-0.21
1.65	-9.61	11.26	6_1	304	-5.84
162.40	-22.75	185.15	7_5	311	-0.14
159.47	-23.44	182.91	7_4	310	-0.15
125.88	-20.62	146.50	7_3	313	-0.16
38.46	-8.18	46.64	7_2	312	-0.21
2.63	-16.16	18.79	7_1	309	-6.13
177.93	-7.43	185.36	8_5	316	-0.04
174.11	-8.33	182.43	8_4	315	-0.05
138.69	-7.34	146.03	8_3	318	-0.05
43.27	-2.96	46.23	8_2	317	-0.07
0.73	-9.48	10.22	8_1	314	-12.94
16.57	-17.02	33.59	9_5	321	-1.03
19.45	-20.10	39.55	9_4	320	-1.03
18.51	-19.42	37.93	9_3	323	-1.05
7.96	-8.27	16.24	9_2	322	-1.04
5.61	-5.86	11.46	91	319	-1.04

11.6.7. Rangos de esfuerzos en largueros del sistema de piso vehicular, con movimiento del camión de fatiga a través carril A

• Extremo izquierdo

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	K
7.48	-13.30	20.78	1_1	344	-1.78
0.26	-1.60	1.86	1_2	353	-6.06
0.28	-0.67	0.95	1_3	361	-2.35
0.05	-0.31	0.36	1_4	369	-6.65
16.34	-1.97	18.32	1_5	377	-0.12
10.98	-23.51	34.48	2_1	345	-2.14
41.66	-14.83	56.49	2_2	354	-0.36
9.71	-17.58	27.29	2_3	362	-1.81
18.48	-79.15	97.63	2_4	370	-4.28
19.16	-86.15	105.31	2_5	378	-4.50
9.43	-20.64	30.07	3_1	346	-2.19
24.63	-20.36	45.00	3_2	355	-0.83
3.41	-81.66	85.08	3_3	363	-23.92
7.25	-177.89	185.15	3_4	371	-24.52
19.50	-159.29	178.79	3_5	379	-8.17
23.06	-18.19	41.26	4_1	348	-0.79
19.93	-25.12	45.05	4_2	356	-1.26
7.18	-127.40	134.58	4_3	364	-17.74
9.46	-237.53	246.99	4_4	372	-25.11
22.66	-243.48	266.14	4_5	380	-10.74
10.06	-19.36	29.42	5_1	349	-1.92
3.60	-46.63	50.23	5_2	357	-12.94
5.68	-168.25	173.93	5_3	365	-29.62
16.68	-271.73	288.41	5_4	373	-16.29
35.12	-312.90	348.02	5_5	381	-8.91
25.05	-13.89	38.94	6_1	350	-0.55
4.90	-55.42	60.32	6_2	358	-11.30
11.67	-176.42	188.09	6_3	366	-15.12
22.62	-273.01	295.63	6_4	374	-12.07
34.30	-354.26	388.56	6_5	382	-10.33
11.66	-20.64	32.30	7_1	351	-1.77
7.73	-74.27	82.00	7_2	359	-9.60
16.27	-192.78	209.05	7_3	367	-11.85
34.12	-284.78	318.89	7_4	375	-8.35
59.73	-373.88	433.60	7_5	383	-6.26
14.54	-13.62	28.16	8_1	352	-0.94
11.21	-65.69	76.90	8_2	360	-5.86
12.31	-205.18	217.49	8_3	368	-16.67
19.12	-323.96	343.09	8_4	376	-16.94
19.65	-424.10	443.74	8_5	384	-21.59

• Centro de claro

Máx.	Min	Rango Elemento		Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	K
29.54	-18.06	47.61	1_1	344	-0.61
26.78	-18.30	45.08	1_2	353	-0.68
56.56	-19.40	75.96	1_3	361	-0.34
89.20	-24.20	113.40	1_4	369	-0.27
105.07	-33.39	138.45	1_5	377	-0.32
29.85	-12.55	42.40	2_1	345	-0.42
27.25	-14.84	42.10	2_2	354	-0.54
27.58	-27.60	55.18	2_3	362	-1.00
34.55	-37.09	71.63	2_4	370	-1.07
76.97	-11.81	88.78	2_5	378	-0.15
25.95	-22.64	48.59	3_1	346	-0.87
38.43	-21.94	60.36	3_2	355	-0.57
54.53	-23.12	77.65	3_3	363	-0.42
64.82	-30.76	95.58	3_4	371	-0.47
134.59	-37.22	171.81	3_5	379	-0.28
22.17	-30.12	52.29	4_1	348	-1.36
63.66	-18.90	82.56	4_2	356	-0.30
103.93	-25.47	129.40	4_3	364	-0.25
127.15	-32.09	159.23	4_4	372	-0.25
207.82	-31.82	239.65	4_5	380	-0.15
23.08	-22.27	45.34	5_1	349	-0.97
75.92	-16.89	92.81	5_2	357	-0.22
151.57	-31.94	183.51	5_3	365	-0.21
203.11	-41.50	244.61	5_4	373	-0.20
250.15	-43.68	293.82	5_5	381	-0.17
25.19	-25.53	50.72	6_1	350	-1.01
71.76	-30.25	102.00	6_2	358	-0.42
217.70	-37.33	255.03	6_3	366	-0.17
335.50	-45.61	381.11	6_4	374	-0.14
340.44	-48.80	389.24	6_5	382	-0.14
7.92	-7.41	15.33	7_1	351	-0.94
71.61	-29.33	100.94	7_2	359	-0.41
190.64	-56.47	247.11	7_3	367	-0.30
287.31	-75.49	362.80	7_4	375	-0.26
292.66	-89.85	382.52	7_5	383	-0.31
23.61	-21.94	45.55	8_1	352	-0.93
130.56	-22.41	152.97	8_2	360	-0.17
238.26	-22.33	260.58	8_3	368	-0.09
323.76	-25.45	349.21	8_4	376	-0.08
420.37	-31.31	451.68	8_5	384	-0.07

• Extremo derecho

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
9.51	-17.45	26.96	1_1	344	-1.84
41.13	-13.52	54.65	1_2	353	-0.33
9.72	-17.54	27.26	1_3	361	-1.80
18.14	-76.52	94.66	1_4	369	-4.22
22.75	-98.69	121.44	1_5	377	-4.34
5.73	-17.86	23.59	2_1	345	-3.11
24.62	-20.31	44.93	2_2	354	-0.83
3.39	-78.93	82.33	2_3	362	-23.27
7.42	-176.04	183.47	2_4	370	-23.72
17.14	-159.25	176.39	2_5	378	-9.29
17.37	-15.26	32.63	3_1	346	-0.88
20.05	-25.13	45.18	3_2	355	-1.25
7.15	-125.13	132.28	3_3	363	-17.51
9.68	-236.48	246.16	3_4	371	-24.44
23.38	-238.07	261.44	3_5	379	-10.18
15.09	-16.66	31.74	4_1	348	-1.10
3.56	-46.59	50.15	4_2	356	-13.07
5.77	-167.06	172.83	4_3	364	-28.95
17.49	-271.26	288.76	4_4	372	-15.51
18.61	-301.33	319.94	4_5	380	-16.19
13.51	-18.36	31.86	5_1	349	-1.36
4.94	-55.08	60.02	5_2	357	-11.14
11.62	-176.17	187.80	5_3	365	-15.16
21.65	-273.35	295.00	5_4	373	-12.63
37.66	-342.17	379.84	5_5	381	-9.08
14.25	-15.92	30.17	6_1	350	-1.12
7.59	-74.36	81.95	6_2	358	-9.80
16.14	-193.02	209.16	6_3	366	-11.96
34.84	-285.51	320.36	6_4	374	-8.19
54.23	-354.69	408.91	6_5	382	-6.54
15.24	-20.23	35.46	7_1	351	-1.33
11.20	-65.38	76.58	7_2	359	-5.84
12.31	-205.61	217.92	7_3	367	-16.70
17.98	-325.20	343.18	7_4	375	-18.09
47.87	-408.65	456.52	7_5	383	-8.54
7.84	-11.93	19.78	8_1	352	-1.52
0.22	-0.79	1.01	8_2	360	-3.52
0.19	-2.47	2.66	8_3	368	-12.90
0.40	-2.79	3.19	8_4	376	-6.91
30.49	-20.78	51.27	8_5	384	-0.68

11.7. RANGOS DE ESFUERZOS OBTENIDOS PARA LA EVALUACIÓN DE FATIGA DEBIDOS AL MODELO DE CARGA DE TREN

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	N
4.16	-1.03	5.19	1	261	-0.25
2.97	2.97 -315.85		2	270	-106.43
0.00	0.00	0.00	3	262	Infinito
305.71	-5.59	311.29	4	272	-0.02
0.00	0.00	0.00	5	263	-170.63
32.28	-232.26	264.53	6	273	-7.20
0.00	0.00	0.00	7	264	-0.02
145.44	-82.06	227.50	8	274	-0.56
0.00	0.00	0.00	9	265	Infinito
175.49	-72.56	248.05	10	275	-0.41
0.00	0.00	0.00	11	266	Infinito
27.69	-262.34	290.03	12	276	-9.47
0.00	0.00	0.00	13	267	-0.01
337.21	-2.26	339.47	14	277	-0.01
0.00	0.00	0.00	15	268	-0.01
4.77	-348.72	353.49	16	271	-73.09
2.30	-0.70	3.00	17	269	-0.31
530.75	-6.40	537.15	18	941	-0.01
318.69	-5.66	324.35	19	942	-0.02
500.46	-3.28	503.75	20	943	-0.01
429.31	-0.70	430.02	21	944	0.00
383.31	-1.47	384.77	22	945	0.00
419.08	0.00	419.08	23	946	0.00
131.12	-5.72	136.84	24	947	-0.04
223.22	-3.83	227.05	25	948	-0.02
0.29	-2.20	2.50	26	921	-7.54
0.57	-241.55	242.12	27	922	-422.77
0.77	-242.96	243.73	28	923	-314.20
1.85	-259.20	261.05	29	924	-139.91
1.77	-259.15	260.92	30	925	-146.12
0.00	-255.27	255.27	31	926	Infinito
0.00	-254.24	254.24	32	927	Infinito
0.18	-1.34	1.52	33	928	-7.58

11.7.1. Rangos de esfuerzos en elementos de la armadura A

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
0.91	-11.15	12.06	1	242	-12.30
4.66	-1086.09	1090.75	2	251	-233.31
0.00	0.00	0.00	3	243	Infinito
1029.61	-14.18	1043.78	4	253	-0.01
0.00	0.00	0.00	5	244	-4.00
123.68	-662.07	785.74	6	254	-5.35
0.00	0.00	0.00	7	245	-0.50
526.66	-277.44	804.10	8	255	-0.53
0.00	0.00	0.00	9	246	Infinito
519.52	-314.46	833.98	10	256	-0.61
0.00	0.00	0.00	11	247	Infinito
146.44	-621.15	767.59	12	257	-4.24
0.00	0.00	0.00	13	248	-0.17
978.43	-32.32	1010.76	14	258	-0.03
0.00	0.00	0.00	15	249	-0.23
0.00	-1022.03	1022.03	16	252	Infinito
0.66	-9.34	10.00	17	250	-14.09
475.34	-8.12	483.46	18	325	-0.02
334.73	-79.63	414.35	19	326	-0.24
1229.06	-5.78	1234.85	20	935	0.00
1155.70	-5.76	1161.46	21	936	0.00
1218.36	-2.92	1221.27	22	937	0.00
1351.21	-2.34	1353.55	23	938	0.00
568.07	-3.95	572.02	24	939	-0.01
775.09	-1.43	776.52	25	940	0.00
0.53	-3.74	4.27	26	913	-7.06
1.84	-557.77	559.61	27	914	-303.96
2.27	-558.35	560.62	28	915	-245.93
1.55	-725.01	726.56	29	916	-468.16
1.65	-725.12	726.77	30	917	-440.06
2.62	-553.16	555.78	31	918	-211.38
2.36	-552.12	554.48	32	919	-233.89
0.34	-3.20	3.54	33	920	-9.40

11.7.2. Rangos de esfuerzos en elementos de la armadura B

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	К
2.43	-18.41	20.84	1	330	-7.57
2.48	-99.64	102.12	2	2598	-40.19
0.00	-161.63	161.63	3	2604	Infinito
2.62	-123.42	126.04	4	2605	-47.08
3.22	-166.65	169.87	5	2608	-51.79
3.06	-130.69	133.75	6	2609	-42.70
0.63	-125.96	126.59	7	2612	-199.79
2.58	-7.62	10.20	8	332	-2.95
19.03	-3.07	22.10	1	331	-0.16
2.81	-166.08	168.89	2	2603	-59.01
2.20	-102.53	104.73	3	2606	-46.62
4.04	-183.33	187.37	4	2607	-45.38
4.42	-139.29	143.71	5	2610	-31.52
1.71	-134.27	135.98	6	2611	-78.55
0.64	-140.00	140.64	7	2614	-219.45
8.04	-2.90	10.94	8	333	-0.36
2.16	-24.19	26.35	1	328	-11.23
175.89	-3.28	179.17	2	2589	-0.02
3.92	-18.92	22.83	3	2590	-4.83
372.10	-0.43	372.53	4	2591	0.00
2.40	-31.12	33.52	5	2592	-12.98
367.79	-0.05	367.84	6	2593	0.00
3.67	-24.70	28.37	7	2594	-6.73
174.05	-2.21	176.27	8	2595	-0.01
2.31	-13.09	15.40	9	329	-5.66

11.7.3. Rangos de esfuerzos en elementos rigidizadores superiores de las armaduras

Máx	Min	Rango	Elemento		
kg/cm2	g/cm2 kg/cm2		#	R	
920.85	-10.31	931.16	385	-0.01	
10.28	-599.83	610.11	386	-58.37	
710.06	-18.37	728.43	387	-0.03	
4.99	-410.30	415.29	388	-82.15	
590.44	-8.14	598.59	389	-0.01	
5.79	-196.77	202.56	390	-34.00	
391.58	-11.70	403.28	391	-0.03	
31.42	-49.59	81.01	392	-1.58	
263.92	-7.34	271.26	393	-0.03	
114.57	-5.07	119.64	394	-0.04	
88.31	-10.12	98.43	395	-0.11	
246.30	-5.72	252.02	397	-0.02	
24.12	-108.57	132.69	398	-4.50	
254.74	-3.68	258.42	399	-0.01	
15.17	-245.05	260.22	400	-16.15	
352.46	-23.83	376.29	401	-0.07	
6.50	-465.22	471.72	402	-71.61	
631.50	-3.91	635.41	403	-0.01	
11.57	-306.75	318.32	404	-26.51	
570.79	-10.21	581.00	405	-0.02	
15.14	-142.65	157.78	406	-9.42	
487.77	-5.72	493.49	407	-0.01	
20.43	-32.37	52.81	408	-1.58	
369.25	-4.54	373.79	409	-0.01	
77.72	-14.58	92.30	410	-0.19	
279.16	-4.74	283.90	411	-0.02	
161.65	-7.66	169.31	412	-0.05	
146.18	-9.11	155.29 413		-0.06	
187.14	-12.30	199.45	414	-0.07	
54.10	-14.36	68.46	415	-0.27	
249.80	-12.42	262.21	416	-0.05	
21.32	-145.81	167.13	417	-6.84	
6.50	-465.22	471.72	402	-71.61	
631.50	-3.91	635.41	403	-0.01	
11.57	-306.75	318.32	404	-26.51	
570.79	-10.21	581.00	405	-0.02	
15.14	-142.65	157.78	406	-9.42	
487.77	-5.72	493.49	407	-0.01	
20.43	-32.37	52.81	408	-1.58	
369.25	-4.54	373.79	409	-0.01	
77.72	-14.58	92.30	410	-0.19	
279.16	-4.74	283.90	411	-0.02	
161.65	-7.66	169.31	412	-0.05	
146.18	-9.11	155.29	413	-0.06	
187.14	-12.30	199.45	414	-0.07	
54.10	-14.36	68.46	415	-0.27	
249.80	-12.42	262.21	416	-0.05	
21.32	-145.81	167.13	417	-6.84	

11.7.4. Rangos de esfuerzos en elementos rigidizadores del sistema de piso carretero

9.61	-217.87	227.48	434	-22.68
262.33	-17.56	279.89	435	-0.07
19.44	-152.27	171.70	436	-7.83
289.57	-11.34	300.91	437	-0.04
20.93	-106.81	127.74	438	-5.10
305.53	-6.67	312.20	439	-0.02
9.36	-75.87	85.23	440	-8.11
292.00	-6.95	298.94	441	-0.02
9.96	-97.76	107.72	442	-9.81
313.07	-11.69	324.76	443	-0.04
5.17	-101.60	106.77	444	-19.64
311.05	-11.51	322.56	445	-0.04
9.93	-147 39	157.32	446	-14 84
290.37	-10.16	300.53	447	-0.03
16.15	-180.15	196.30	448	-11 15
221.37	-47.66	269.03	449	-0.22
35.36	-11 38	46 74	450	-0.32
74.35	-12.47	86.82	451	-0.17
57.75	-11.50	69.24	454	-0.20
129.64	-29.13	158 77	2615	-0.20
51.46	-5.28	56.74	457	-0.10
126.49	-10.34	136.83	2617	-0.10
50.16	-7.94	58.10	460	-0.16
119 53	-11.03	130.56	2619	-0.09
50.03	-10.91	60.94	463	-0.22
120.77	-22.55	143 31	464	-0.19
49.07	-13.22	62 29	467	-0.27
119.19	-16.68	135.87	468	-0.14
58 38	-9.06	67.44	471	-0.16
118 32	-16.36	134 67	472	-0.14
32.85	-16.74	49.58	475	-0.51
55.78	-24.02	79.80	476	-0.43
79.01	-15.47	94.48	452	-0.20
43.63	-7.91	51.54	453	-0.18
135.65	-28.77	164.42	2616	-0.21
67.13	-19.95	87.09	456	-0.30
133.39	-9.43	142.82	2618	-0.07
59.26	-10.30	69.56	459	-0.17
128.11	-14.11	142.22	2620	-0.11
59.45	-6.90	66.35	462	-0.12
127.41	-22.34	149.76	465	-0.18
62.46	-12.62	75.08	466	-0.20
124.87	-17.68	142.55	469	-0.14
62.11	-12.82	74.93	470	-0.21
124.07	-19.13	143.20	473	-0.15
66.41	-12.19	78.60	474	-0.18
59.50	-24.10	83.60	477	-0.41
44.45	-21.93	66.38	478	-0.49

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
545.63	-19.32	564.95	1	482	-0.04
41.81	-9.31	51.12	2	479	-0.22
11.82	-603.74	615.56	3	483	-51.06
3.65	-14.33	17.99	4	480	-3.92
636.74	-16.36	653.10	5	484	-0.03
2.01	-62.56	64.57	6	481	-31.13
24.58	-503.49	528.07	7	485	-20.48
492.01	-12.77	504.78	8	489	-0.03
26.66	-2.65	29.31	9	486	-0.10
13.83	-506.46	520.29	10	490	-36.62
6.81	-24.03	30.83	11	487	-3.53
568.79	-6.15	574.95	12	491	-0.01
2.00	-80.05	82.05	13	488	-40.09
11.30	-406.23	417.53	14	492	-35.95
333.28	-10.65	343.93	15	496	-0.03
15.29	-5.39	20.68	16	493	-0.35
9.47	-283.83	293.30	17	497	-29.97
1.99	-44.30	46.29	18	494	-22.24
385.07	-13.74	398.81	19	498	-0.04
0.84	-64.55	65.39	20	495	-76.70
23.35	-228.17	251.52	21	499	-9.77
142.51	-129.20	271.71	22	503	-0.91
0.73	-41.45	42.18	23	500	-56.78
264.62	-67.29	331.91	24	504	-0.25
1.37	-48.58	49.95	25	501	-35.58
152.30	-154.78	307.08	26	505	-1.02
2.01	-47.89	49.91	27	502	-23.78
220.51	-44.89	265.40	28	506	-0.20
10.05	-386.23	396.28	29	510	-38.44
2.41	-69.28	71.69	30	507	-28.76
589.39	-16.21	605.60	31	511	-0.03
2.50	-51.29	53.79	32	508	-20.49
23.88	-459.87	483.75	33	512	-19.26
8.30	-23.43	31.72	34	509	-2.82
507.82	-20.46	528.27	35	513	-0.04
24.75	-670.34	695.10	36	517	-27.08
3.85	-91.74	95.59	37	514	-23.82
939.85	-12.54	952.39	38	518	-0.01
6.71	-49.51	56.21	39	515	-7.38
19.71	-810.79	830.49	40	519	-41.14
37.79	-2.75	40.54	41	516	-0.07
802.01	-31.47	833.47	42	520	-0.04
22.18	-961.70	985.89	43	524	-43.36
5.15	-113.76	118.91	44	521	-22.10
1223.43	-12.83	1230.20	45	525	-0.01
10.86	-52.65	45.52	40	522	-5.01
20.25	-1152.10	62.96	4/	520	-33.90
39.10	-3.69	02.80	48	525	-0.06
1039.07	-30.31	1172.00	49	521	-0.04
11.94	-1100.28	11/2.22	50	331	-91.21

11.7.5. Rangos de esfuerzos en elementos rigidizadores del sistema de piso ferroviario

3.25	-104.41	107.66	51	528	-32.12
1432.02	-13.43	1445.45	52	532	-0.01
2.96	-24.27	27.23	53	529	-8.19
5.19	-1374.78	1379.97	54	533	-264.84

11.7.6. Rangos de esfuerzos en vigas transversales

• Extremo Izquierdo

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	К
212.04	-194.21	406.26	1_5	281	-0.92
265.00	-37.75	302.75	1_4	280	-0.14
367.95	-38.53	406.48	1_3	283	-0.10
357.93	-32.11	390.03	1_2	282	-0.09
364.47	-72.08	436.54	1_1	278	-0.20
87.05	-111.28	198.33	2_5	286	-1.28
608.10	-6.07	614.18	2_4	285	-0.01
847.57	-14.35	861.92	2_3	288	-0.02
797.27	-21.61	818.87	2_2	287	-0.03
873.39	-42.35	915.75	2_1	284	-0.05
27.76	-194.14	221.90	3_5	291	-6.99
592.65	-28.24	620.89	3_4	290	-0.05
844.07	-25.35	869.42	3_3	293	-0.03
796.88	-16.98	813.86	3_2	292	-0.02
863.63	-25.17	888.80	3_1	289	-0.03
2.95	-151.34	154.29	4_5	296	-51.32
548.71	-20.76	569.47	4_4	295	-0.04
784.73	-25.89	810.62	4_3	298	-0.03
743.45	-23.22	766.67	4_2	297	-0.03
829.37	-22.70	852.08	4_1	294	-0.03
8.86	-286.26	295.12	5_5	301	-32.31
562.62	-27.58	590.20	5_4	300	-0.05
831.43	-22.80	854.23	5_3	303	-0.03
792.87	-15.12	807.99	5_2	302	-0.02
882.25	-6.21	888.45	5_1	299	-0.01
2./1	-188.86	191.57	6_5	306	-69.//
<u> </u>	-30.41	382.04	6_4	305	-0.06
750.02	-20.10	824.00	<u> </u>	308	-0.04
739.92 959.99	-20.83	100.11 877.68	<u> </u>	307	-0.03
1 57	-10.00	263.45	<u> </u>	311	-0.02
564.99	-33.99	598.98	7_3	310	-0.06
829.46	-24.65	854 11	73	313	-0.03
792.85	-14 41	807.26	7 2	312	-0.02
884.65	-8.18	892.82	7 1	309	-0.01
4.99	-137.55	142.54	8.5	316	-27.54
568.84	-14.12	582.96	8 4	315	-0.02
809.67	-16.20	825.88	8_3	318	-0.02
766.75	-13.34	780.08	8_2	317	-0.02
851.14	-12.17	863.31	8_1	314	-0.01
93.35	-215.17	308.51	9_5	321	-2.31
211.45	-11.56	223.00	9_4	320	-0.05
348.62	-13.00	361.62	9_3	323	-0.04
352.76	-12.92	365.67	9_2	322	-0.04
393.22	-14.19	407.41	9_1	319	-0.04

• Extremo Derecho

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
322.03	-45.88	367.90	1_5	281	-0.14
433.49	-45.39	478.88	1_4	280	-0.10
486.20	-43.61	529.81	1_3	283	-0.09
326.09	-64.49	390.58	1_2	282	-0.20
13.64	-209.09	222.73	1_1	278	-15.33
738.97	-7.38	746.35	2_5	286	-0.01
998.55	-16.91	1015.46	2_4	285	-0.02
1083.00	-29.35	1112.35	2_3	288	-0.03
781.43	-37.89	819.32	2_2	287	-0.05
1.28	-95.41	96.69	2_1	284	-74.68
720.19	-34.31	754.50	3_5	291	-0.05
994.42	-29.87	1024.29	3_4	290	-0.03
1082.47	-23.07	1105.54	3_3	293	-0.02
772.69	-22.52	795.21	3_2	292	-0.03
3.34	-130.12	133.45	3_1	289	-39.01
666.79	-25.23	692.02	4_5	296	-0.04
924.52	-30.50	955.02	4_4	295	-0.03
1009.89	-31.55	1041.43	4_3	298	-0.03
742.04	-20.31	762.36	4_2	297	-0.03
18.48	-45.71	64.19	4_1	294	-2.47
683.70	-33.52	717.22	5_5	301	-0.05
979.53	-26.86	1006.39	5_4	300	-0.03
1077.02	-20.54	1097.56	5_3	303	-0.02
789.35	-5.55	794.90	5_2	302	-0.01
34.42	-64.65	99.07	5_1	299	-1.88
670.34	-36.96	707.29	6_5	306	-0.06
937.59	-33.20	970.78	6_4	305	-0.04
1032.27	-28.32	1060.59	6_3	308	-0.03
768.44	-16.82	785.26	6_2	307	-0.02
25.16	-31.99	57.15	6_1	304	-1.27
686.58	-41.31	727.89	7_5	311	-0.06
977.21	-29.04	1006.25	7_4	310	-0.03
1076.99	-19.58	1096.57	7_3	313	-0.02
791.49	-7.31	798.81	7_2	312	-0.01
38.34	-91.92	130.26	<u> /_1</u>	309	-2.40
691.26	-17.16	/08.41	8_5	316	-0.02
953.90	-19.09	972.99	8_4	315	-0.02
1041.54	-18.11	1059.65	8_3	318	-0.02
761.51	-10.89	772.40	8_2	317	-0.01
2.51	-70.14	72.65	<u>8_1</u>	314	-27.92
256.95	-14.04	2/1.00	9_5	321	-0.05
410.72	-15.31	426.03	9_4	320	-0.04
479.18	-17.54	496.73	9_3	323	-0.04
351.81	-12.70	364.51	9_2	322	-0.04
17.63	-145.79	163.43	91	319	-8.27

11.7.7. Rangos de esfuerzos en largueros del sistema de piso ferroviario

• Extremo Izquierdo

Máx.	Min	Rango	Elemento	Elemento	р	
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ	
143.33	-66.26	209.59	1_1	344	-0.46	
6.63	-14.32	20.94	1_2	353	-2.16	
1.06	-10.46	11.53	1_3	361	-9.85	
2.48	-1.88	4.36	1_4	369	-0.76	
304.03	-8.67	312.70	1_5	377	-0.03	
138.39	-199.62	338.01	2_1	345	-1.44	
446.41	-100.02	546.43	2_2	354	-0.22	
358.77	-65.21	423.99	2_3	362	-0.18	
195.43	-63.04	258.47	2_4	370	-0.32	
85.59	-70.57	156.16	2_5	378	-0.82	
69.75	-285.99	355.74	3_1	346	-4.10	
342.37	-101.12	443.49	3_2	355	-0.30	
253.72	-78.80	332.52	3_3	363	-0.31	
100.49	-67.56	168.06	3_4	371	-0.67	
78.68	-83.00	161.68	3_5	379	-1.05	
120.87	-206.15	327.02	4_1	348	-1.71	
448.90	-86.64	535.53	4_2	356	-0.19	
347.39	-64.77	412.16	4_3	364	-0.19	
181.61	-39.88	221.49	4_4	372	-0.22	
48.92	-63.50	112.42	4_5	380	-1.30	
35.31	-347.74	383.05	5_1	349	-9.85	
381.64	-113.65	495.29	5_2	357	-0.30	
282.91	-93.09	376.01	5_3	365	-0.33	
116.57	-73.23	189.80	5_4	373	-0.63	
34.02	-135.79	169.81	5_5	381	-3.99	
58.40	-257.74	316.14	6_1	350	-4.41	
403.32	-96.82	500.14	6_2	358	-0.24	
315.59	-76.41	392.00	6_3	366	-0.24	
171.75	-56.62	228.37	6_4	374	-0.33	
31.09	-121.68	152.78	6_5	382	-3.91	
43.14	-351.49	394.64	7_1	351	-8.15	
327.52	-101.02	428.54	7_2	359	-0.31	
245.88	-81.66	327.54	7_3	367	-0.33	
105.93	-73.96	179.89	7_4	375	-0.70	
19.55	-196.06	215.61	7_5	383	-10.03	
142.62	-224.97	367.60	8_1	352	-1.58	
483.11	-66.83	549.95	8_2	360	-0.14	
383.41	-57.20	440.62	8_3	368	-0.15	
211.28	-36.96	248.23	8_4	376	-0.17	
40.77	-152.99	193.76	8_5	384	-3.75	

• Centro del Claro

Máx.	Min	Rango	Elemento	Elemento	р
kg/cm2	kg/cm2	kg/cm2	#	#	ĸ
312.31	-66.13	378.44	1_1	344	-0.21
172.04	-55.09	227.14	1_2	353	-0.32
126.30	-45.82	172.12	1_3	361	-0.36
147.58	-78.65	226.22	1_4	369	-0.53
186.48	-116.52	303.00	1_5	377	-0.62
261.27	-97.87	359.14	2_1	345	-0.37
73.84	-89.91	163.75	2_2	354	-1.22
28.57	-70.06	98.63	2_3	362	-2.45
58.92	-40.11	99.03	2_4	370	-0.68
146.02	-76.52	222.54	2_5	378	-0.52
255.66	-77.99	333.64	3_1	346	-0.31
86.34	-68.94	155.28	3_2	355	-0.80
46.50	-58.31	104.82	3_3	363	-1.25
82.61	-33.03	115.63	3_4	371	-0.40
144.48	-67.00	211.47	3_5	379	-0.46
241.79	-60.39	302.18	4_1	348	-0.25
102.74	-59.87	162.61	4_2	356	-0.58
61.32	-50.56	111.89	4_3	364	-0.82
80.88	-14.49	95.37	4_4	372	-0.18
140.56	-33.34	173.90	4_5	380	-0.24
224.78	-83.00	307.78	5_1	349	-0.37
68.17	-83.61	151.78	5_2	357	-1.23
43.21	-51.80	95.02	5_3	365	-1.20
62.85	-27.76	90.60	5_4	373	-0.44
117.73	-28.19	145.92	5_5	381	-0.24
251.88	-76.96	328.84	6_1	350	-0.31
64.93	-72.13	137.05	6_2	358	-1.11
33.07	-57.90	90.98	6_3	366	-1.75
66.66	-34.71	101.38	6_4	374	-0.52
156.91	-37.14	194.05	6_5	382	-0.24
345.66	-76.63	422.29	7_1	351	-0.22
138.82	-71.12	209.94	7_2	359	-0.51
62.29	-50.98	113.26	7_3	367	-0.82
60.92	-33.12	94.04	7_4	375	-0.54
143.24	-49.43	192.67	7_5	383	-0.35
410.00	-121.35	531.35	8_1	352	-0.30
225.01	-94.58	319.59	8_2	360	-0.42
128.01	-58.51	186.52	8_3	368	-0.46
114.74	-68.78	183.52	8_4	376	-0.60
158.46	-94.56	253.02	8_5	384	-0.60

• Extremo Derecho

Máx.	Min	Rango	Elemento	Elemento	D
kg/cm2	kg/cm2	kg/cm2	#	#	К
213.33	-172.02	385.35	1_1	344	-0.81
449.04	-94.61	543.65	1_2	353	-0.21
359.61	-64.57	424.18	1_3	361	-0.18
196.47	-61.88	258.35	1_4	369	-0.31
47.45	-198.33	245.79	1_5	377	-4.18
50.81	-312.63	363.44	2_1	345	-6.15
343.82	-99.84	443.67	2_2	354	-0.29
254.28	-77.56	331.84	2_3	362	-0.31
115.83	-66.27	182.10	2_4	370	-0.57
19.64	-241.16	260.80	2_5	378	-12.28
170.34	-134.22	304.56	3_1	346	-0.79
447.83	-84.57	532.40	3_2	355	-0.19
347.08	-64.93	412.02	3_3	363	-0.19
190.92	-33.56	224.49	3_4	371	-0.18
54.64	-139.30	193.95	3_5	379	-2.55
93.78	-284.35	378.14	4_1	348	-3.03
376.44	-115.60	492.05	4_2	356	-0.31
282.37	-93.69	376.06	4_3	364	-0.33
123.61	-68.49	192.10	4_4	372	-0.55
32.01	-182.29	214.30	4_5	380	-5.69
133.21	-202.57	335.78	5_1	349	-1.52
395.13	-100.74	495.88	5_2	357	-0.25
313.90	-77.70	391.60	5_3	365	-0.25
176.80	-54.78	231.58	5_4	373	-0.31
31.88	-108.91	140.79	5_5	381	-3.42
78.15	-301.86	380.01	6_1	350	-3.86
305.66	-105.98	411.64	6_2	358	-0.35
243.00	-83.36	326.36	6_3	366	-0.34
103.12	-74.27	177.39	6_4	374	-0.72
53.87	-128.90	182.77	6_5	382	-2.39
166.69	-83.57	250.26	7_1	351	-0.50
476.02	-95.08	571.10	7_2	359	-0.20
382.07	-59.48	441.55	7_3	367	-0.16
211.71	-34.35	246.06	7_4	375	-0.16
34.17	-96.43	130.60	7_5	383	-2.82
163.39	-37.67	201.06	8_1	352	-0.23
7.64	-26.48	34.12	8_2	360	-3.47
0.35	-8.83	9.18	8_3	368	-25.02
5.53	-1.12	6.66	8_4	376	-0.20
127.63	-6.67	134.29	8 5	384	-0.05