

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIA E INGENIERÍA DE MATERIALES

"Los adobes arqueológicos de la Gran Pirámide de Cholula: Caracterización detallada de su composición relacionada con sus propiedades como material de construcción"

Tesis

Que para optar por el grado de Doctora en Ciencia e Ingeniería de Materiales

Presenta

Nora Ariadna Pérez Castellanos

Tutor principal

Dr. Lauro Bucio Galindo Instituto de Física, UNAM

Miembros del Comité Tutor

Dr. Enrique Lima Muñoz Instituto de Investigaciones en Materiales, UNAM Dr. Enrique Soto Castruita Instituto Mexicano del Petróleo

México, D.F, julio de 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Science is a way of life. Science is a perspective.

Science is the process that takes us from confusion to understanding in a manner that's precise, predictive and reliable-a transformation, for those lucky enough to experience it, that is empowering and emotional.

Brian Greene

AGRADECIMIENTOS

Esta tesis fue realizada con el apoyo de la beca otorgada por el Consejo Nacional de Ciencia y Tecnología (CONACYT) a través del Programa Nacional de Posgrados de Calidad (PNPC) al cual pertenece el Posgrado de Ciencia e Ingeniería de Materiales de la Universidad Nacional Autónoma de México. Agradezco al personal y al cuerpo docente del PCeIM por brindarme su apoyo y conocimiento para realizar esta investigación, así como al programa PAEP-UNAM para apoyarme para difundirlo en congresos nacionales e internacionales. Agradezco también:

Al Arqueólogo Carlos Cedillo y la Restauradora Dulce Grimaldi por haberme compartido su pasión y amor por la Z.A. de Cholula e invitarme a contribuir en la investigación para su conservación.

> A mi comité tutoral que recorrió este camino conmigo al asesorar esta tesis: Dr. Lauro Bucio, Dr. Enrique Soto y Dr. Enrique Lima.

A los siguientes profesores que desde el inicio estuvieron enriqueciendo y asesorando el proyecto: Dra. Teresa Pi, Dr. Luis Fernando Guerrero, Dr. Xim Bokhimi, Dr. Claus Siebe, Dr. Jesús Arenas, Dra. Annick Daneels, Dra. Isabel Villaseñor y Dr. Eligio Orozco.

Esta tesis involucró un gran número de laboratorios que me apoyaron con sus recursos, infraestructura y personal: Laboratorio de Cristalografía y Materiales Naturales (LCMN del IFUNAM) Apoyo técnico de Ángel Osornio, Eréndira Martínez, Leticia Trejo. Proyecto CONACYT CB-211/167624.

Laboratorio de Refinamiento de Estructuras Cristalinas (LAREC del IFUNAM) Apoyo técnico de Antonio Morales.

Laboratorio Central de Microscopía (LCM del IFUNAM) Apoyo técnico de Jaqueline Cañetas, Mario Monroy, Diego Quiterio.

Laboratorio Nacional de Ciencias para la Investigación y Conservación del Patrimonio Cultural (LANCIC sede IFUNAM) Proyectos CONACYT LN232619, LN 260779 y LN 271614, así como el apoyo parcial Proyecto CONACyT 131944 y PAPIIT UNAM IN402813.

Laboratorio del Acelerador Pelletron (IFUNAM) Apoyo técnico de Karim López, Francisco Jaimes y Mauricio Escobar.

Biblioteca Juan de Oyarzábal (IFUNAM) Apoyo técnico de Pablo Carrasco Cañas.

Laboratorio de sedimentología (Dep. Vulcanología del Instituto de Geofísica de la UNAM) Dra. Lilia Arana y Dr. Claus Siebe.

Laboratorio del Resonancia Magnética Nuclear (UAM-Iztapalapa) Apoyo técnico de Marco Antonio Vera.

Laboratorio de Materiales de CYAD (UAM-Xochimilco) Dr. Luis Fernando Guerrero

Laboratorio de Conservación, Diagnóstico y Caracterización Espectroscópica de Materiales (CODICE de la CNCPC-INAH) Apoyo técnico de Abel Jiménez. Proyecto CONACYT INFRA 2014-22845.

DEDICATORIA

Primero quiero dedicar este trabajo de cuatro años a mi esposo José Luis porque considero debe llevarse una mención especial por apoyarme y cuidarme durante todo el proceso que conlleva la realización de un trabajo de investigación de este tipo. Este logro es de ambos.

Todo lo que he realizado en mi vida ha sido gracias al amor y la educación que me dieron mis padres, es por ellos que yo he podido llegar tan lejos y tener un desarrollo profesional tan satisfactorio.

El trabajo de investigación puede ser solitario al estar tantas horas en el laboratorio pero para mí el Laboratorio de Cristalofísica y Materiales Naturales en el Instituto de Física de la UNAM se volvió un hogar, con compañeros que se vuelven hermanos e investigadores que se vuelven guías de vida: Lety, Ere, Ángel, Alberto, Ángeles, Marco, Germain, Sofi, Edrey, Brenda, Jacobo, Yosh, Bárbara, Gaby y el Dr. Lauro.

Soy muy afortunada, pues durante la investigación tuve amigos que me ayudaron en múltiples actividades disminuyendo la frustración e incrementando la alegría al investigar: Sol, Edgar, Juan Carlos Jr., Abel, Dulce, Pieter, Isaac, Martha, Erik y Magali. También tuve porristas que no dejaron que me diera por vencida: Pablo, Karla, Mayte, Jocelyn, Isabel, Brenda, Armando, Iván, Arturo, Tahany, Denise y Gilda.

Finalmente quisiera decirles a todos los anteriormente mencionados: Esta tesis no sólo es un producto de trabajo sino también un testimonio de amistad.

How do I feel by the end of the day? (Are you sad because you're on your own?) No, I get by with a little help from my friends

John Lennon y Paul McCartney

RESUMEN

El adobe como un sistema constructivo fabricado con tierra, presenta una complejidad intrínseca que requiere ser estudiado de manera multidisciplinaria. Adobe as a building system made of soil, has an intrinsic complexity that requires to be studied by a multidisciplinary approach.

En esta tesis, se estudió el caso de los adobes de la Gran Pi-In this thesis, the case of adobes of the Great Pyramid of Chorámide de Cholula, Puebla. El tema de investigación implicó lula, Puebla was studied. The research topic in this project que en este provecto se generaran propuestas metodológicas required that specific methodological proposals were generaespecíficas para la caracterización de geomateriales perteneted for the characterization of geomaterials belonging to the cientes al patrimonio cultural con implicaciones en su concultural heritage with implications for its conservation. These servación. Éstas se desarrollaron desde la Ciencia e Ingeniería methods were developed from the Materials Science and Ende Materiales, campo científico multidisciplinario enfocado a gineering multidisciplinary scientific field, since its research is investigar la relación existente entre estructura, procesamienfocused on the relationship between structure, processing and to y las propiedades de los materiales; con la finalidad de properties of materials for the case study. comprender estos aspectos en los adobes del caso de estudio.

Research conducted by various complementary analytical La investigación realizada mediante diversas técnicas anatechniques showed that the group of studied adobes has a líticas complementarias mostró que el grupo de adobes escommon mineralogical composition to regional volcanic tudiados tienen una composición mineralógica común a los soils without addition of organic materials. Detailed analysis suelos volcánicos regionales sin adición de materiales orgániof the fine fraction found that the presence and quantity of cos. El estudio detallado de la fracción fina determinó que la amorphous materials allow the local soil of Cholula to form a presencia y cantidad de materiales amorfos permiten que el building material with remarkable properties. Experiments of suelo local sea un material de construcción con propiedades water transport showed that the loss of fine grain size material notables. Los experimentos de transporte de agua mostraron by entrainment of water directly impacts the stability of the que la pérdida del material de tamaño de grano fino por el adobes and therefore affects its conservation. arrastre del agua, impacta directamente en la estabilidad de los adobes y por tanto afecta su conservación.

The results of this outstanding research constitute a precedent Los resultados constituyen un precedente en cuanto al conoin the knowledge of materials for the earthen architecture, cimiento de la arguitectura de tierra, puesto que el estudio since the study from the field of Materials Science provides desde el campo de la Ciencia de Materiales brinda aportacioimportant contributions to contemporary architecture, by prones relevantes tanto para la arguitectura contemporánea, al ving the feasibility of generating in the region a competitive comprobar la factibilidad de generar en la región un producto product for sustainable construction with remarkable properde construcción competitivo y sustentable con propiedades ties; and to pre-Hispanic architecture, where the results can be notables; como para la arquitectura prehispánica, donde used to support conservation proposals focused on the speciademás, los resultados permiten fundamentar propuestas de fic characteristics of the soil that is used as a building material. conservación enfocadas en las características específicas de la tierra que es utilizada como material de construcción. Keywords: adobe, materials science, Cholula

Palabras clave: adobe, ciencia de materiales, Cholula

ABSTRACT

INDÍCE

Capítulo 1	El adobe como material de construcción	13
Capítulo 2	Caso de estudio: La Gran Pirámide de Cholula	25
Capítulo 3	Experimental	37
Capítulo 4	Análisis general de adobes prehispánicos y suelos de Cholula, Puebla	51
Capítulo 5	Evaluación de las propiedades físicas de adobes re- presentativos y el suelo tepetate de Cholula	89
Capítulo 6	Identificación de materiales semicristalinos y amor- fos en la fracción fina de adobes representativos y el suelo tepetate de Cholula	129
Capítulo 7	Cuantificación de los materiales amorfos en la frac- ción fina de adobes representativos y el suelo tepe- tate de Cholula	147
Capítulo 8	Evaluación de absorción y transporte de agua en pro- betas por el método de tubo Karsten	169
Capítulo 9	Conclusiones	207
Referencias		210
Anexo A	Experimento de transporte de agua por el método de tubo Karsten en geometría horizontal	221
Anexo B	Experimento de transporte de agua por el método de tubo Karsten en geometría vertical.	231
Anexo C	Artículos publicados	241

Capítulo 1 EL ADOBE COMO MATERIAL **DE CONSTRUCCIÓN**

Los materiales cerámicos por definición son materiales des y resistencia mecánica adecuados para un buen inorgánicos, compuestos por elementos metálicos y no sistema constructivo. Los adobes se construyen a partir de la tierra disponible, un material abundante y por lo metálicos, los cuales pueden ser cristalinos o parcialmente cristalinos [1,2]. Debido a la abundancia de oxítanto potencialmente sostenible. En este momento, geno y silicio en naturaleza, los silicatos son ubicuos; este sistema de construcción a base de tierra se está rocas, polvo, arcilla, barro, montañas, arena, es decir, la estudiando en todo el mundo para mejorar sus propiegran mayoría de la corteza terrestre se compone de midades como un material que puede cumplir los requenerales basados en silicatos, por tanto estos fueron de rimientos de sustentabilidad actuales, puesto que una los primeros materiales utilizados por el hombre para vez que se termina la vida útil del suelo como adobe la producir cerámicos. materia prima se reintegra al medio ambiente.

El campo de los materiales cerámicos estudia de ma-La investigación enfocada en el patrimonio cultural es en la actualidad un campo muy dinámico en la invesnera interdisciplinaria materiales que son funcionales habilitándolos para diversos fines y mejorándolos de tigación de ciencia de materiales. Esto es debido a la manera específica. Las propiedades mecánicas son relación inseparable entre la composición, microesimportantes en los materiales estructurales y de constructura, propiedades y la transformación de los matetrucción; en la ciencia de materiales se estudia desde el riales, con su uso y función. Estas investigaciones no comportamiento mecánico de los materiales como essólo contribuyen a desentrañar el pasado, sino también fuerzo y deformación hasta los defectos cristalográficos para reintroducir los conocimientos tecnológicos anticon la finalidad de predecir sus propiedades, puesto quos en el presente, permite analizar y reconstruir la que las propiedades físicas de cualquier sustancia cecomposición y variabilidad microestructural de objetos rámica son resultado directo de su estructura cristalina y procesos, así como medir y tener una mejor comprensión de las propiedades especiales que poseen y sus y composición química [1,2]. características de desempeño, por lo tanto, generando Los ladrillos de tierra cruda o adobes son parte del painnovaciones y mejoras de las técnicas actuales de sado y el presente en la cultura mexicana, desde tiemconstrucción.

pos inmemoriales han demostrado tener las propieda-

El estudio cristalográfico de este tipo de materiales permite aumentar nuestra comprensión de la estructura y propiedades; esto se puede realizar al identificar el papel que juega cada mineral en las propiedades de los adobes integrando conocimientos de mineralogía y ciencia de materiales. La presencia de materiales semicristalinos, amorfos y de distintos tamaños de cristal brinda a los suelos propiedades especiales útiles para la ingeniería como, baja densidad, alto contenido de material orgánica, alta porosidad, gran capacidad de retención de agua y límites de Atterberg altos, siendo los últimos muy importantes para un material de construcción dinámico [3-6].

LA ARQUITECTURA DE TIERRA

La construcción con tierra comenzó con las primeras sociedades agrícolas [7]. Estas se desarrollaron independientemente en muchos lugares del planeta y progresaron a velocidades diferentes, la variación en la forma y selección de los materiales dependía del medio local. El desarrollo del adobe como unidad prefabricada de albañilería hecha de tierra secada al sol ocurrió en distintas civilizaciones en Medio Oriente, África, Europa y América [8].

Hay incontables formas de construcciones de tierra alrededor del mundo que reflejan la naturaleza propia de cada región, sus técnicas de construcción y por tanto la gran cantidad de formas en la que la tierra puede ser manipulada y usada como material de construcción. Esta diversidad geográfica y uso extensivo del material brinda una gran diversidad de información respecto a la arquitectura de tierra en general [9].

Actualmente en países con bajo desarrollo, parte de la población mundial vive en construcciones hechas a base 14

de tierra **[7]**. No obstante, el número de construcciones de distintas épocas fabricadas con este material suman 500,000 en todo el mundo **[7]**. En 2007, 106 de 660 bienes con valor cultural registrados en la lista de Patrimonio de la Humanidad de la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO) eran inmuebles construidos con tierra **[10]**.

En arquitectura y conservación el término usado para denominar el material para estas construcciones es "tierra", sin embargo, el término adecuado para el material empleado es el suelo, pero, ¿qué es el suelo?

La palabra suelo es usada con diferentes definiciones por diferentes personas, para el agricultor es un medio para el crecimiento de las plantas. Para el ingeniero civil, el geólogo y algunos arqueólogos es un sedimento sin consolidar que incluye fragmentos de roca. Sin embargo para la geología tiene una definición específica: "El suelo es una entidad natural tridimensional que es resultado de un proceso de alteración que ocurre en la superficie inmediata de la Tierra en sus sedimentos y rocas, actuando como medio para el crecimiento de plantas, y es el resultado de la interacción del clima, la flora, fauna y posición geográfica, todas actuando durante el tiempo." [11,12]. marco para forma y se mezcla con paja, es una construcción monolítica [9]. De manera ideal, la tierra para usarse en construcción debe contener: arena gruesa, arena fina, limo y arcilla,

sin embargo, cualquiera de ellos podría no estar presente y aun así la tierra puede ser satisfactoria para este Los suelos se encuentran extensivamente en forma lateral sobre el paisaje, se forma sobre distintas superfin. La arena gruesa proporciona resistencia, la arena fina es un relleno para unir los granos de arena gruesa ficies a partir de una variedad de materiales parentales y se transforman en una manera predecible debido a y el limo y arcilla actúan como material cohesivo y mecambios por la erosión, deposición, drenaje, vegetadio plástico. La tolerancia de proporciones entre cada ción, fauna y antigüedad del paisaje, también varían componente es amplia, sin embargo algunas tierras dependiendo del microclima y el macroclima [12] El requieren modificaciones, por lo general relacionadas suelo tiene textura, color y estructura que definen sus con la presencia natural de gran cantidad de arcilla [8]. propiedades y comportamiento [13].

Cuando la tierra no es apropiada para usarse en construcción se emplean modificadores para mejorar las propiedades finales, el empleo de algún tipo en específico de modificador depende de la disponibilidad y el tipo de tierra. Algunos ejemplos de modificadores de acuerdo a Cooke [9] son:

La tierra como material de construcción se ha usa para fabricar:

a) Bloques de tierra o adobe: se mezcla la tierra húmeda a veces mezclada con materia vegetal como paja o bagazo, se modela o se coloca en moldes y se deja secar al sol [9].
b) Tierra e since ada a terria.
Ceniza: modifica la plasticidad de la tierra.

b) Tierra apisonada o tapia: usa una tierra relativamente seca la cual se aplica en moldes y después se compacta para incrementar su densidad, usualmente no se requiere añadir agua o sólo se añade muy poca, esta técnica no requiere materiales modificadores adicionales a los contenidos ya en la tierra [9,14].

c) Tierra apilada (tipo "cob"): se usa una tierra moderadamente mojada, la cual se va apilando en montones de tamaño tipo mazorca sin ningún Asfalto o bitumen: aumenta la resistencia al agua disminuyendo su absorción.

•Hidróxido de calcio: la reacción con los aluminosilicatos del suelo realiza una reacción puzolánica brindando mayor resistencia mecánica e hidraulicidad al material.

 Paja: disminuye la contracción y fracturas de la tierra después de su secado.

INMUEBLES CONTEMPORÁNEOS

La construcción con tierra proviene desde las primeras civilizaciones y está asociado a un trabajo comunitario y familiar puesto que requiere un mantenimiento periódico. Este tipo de construcción permanece en algunas regiones como tradición pero en general se ha perdido debido a la introducción de los materiales de construcción industrializados.

La tierra tiene tres desventajas principales en comparación con materiales industriales [15]:

- No es un material estandarizado. Por tanto, la preparación de las mezclas es única para cada tipo de tierra y se requiere de mucha experiencia para conocer el suelo y cómo modificarlo cuando es necesario.
- Las mezclas de tierra se encojen al secar. Debido a que se requiere aqua para hacer plástica la tierra, el proceso de secado modifica el tamaño del material y puede causar grietas.
- La tierra no es resistente al agua. Las construcciones de tierra deben protegerse contra el agua con techos amplios etc.

Sin embargo, la tierra tiene las siguientes ventajas de acuerdo a Minke [15]:

• La tierra permite el transporte de la humedad del aire. El material tiene la capacidad de absorber y desorber la humedad en mayor cantidad y a mayor velocidad que cualquier otro material de construcción, por tanto equilibra el clima interior de las construcciones.

• La tierra almacena calor. Por tanto, en zonas con diferencias de temperatura muy altas la tierra almacena el calor equilibrando nuevamente el interior de las edificaciones.

- La tierra ahorra energía y reduce la contaminación ambiental. La preparación, transporte y construcción con tierra local del sitio requiere sólo el 1% de la energía necesitada para construir con materiales industriales.
- La tierra siempre es reutilizable. La tierra sin cocer puede utilizarse un indefinido número de veces sólo con volverse a humectar

En años recientes, el concepto de sustentabilidad es del interés en diversas disciplinas. El desarrollo sustentable requiere cumplir con las necesidades básicas de todos y asegurar que el mundo será un hábitat más justo, seguro y próspero para la humanidad [16]. Siendo la sustentabilidad, uno de los principales valores establecidos por la Organización de las Naciones Unidas (ONU), donde existe el compromiso del desarrollo económico y social de manera sustentable **[17]**.

La sustentabilidad incluye cuatro dominios interconectados: ecología, economía, política y cultura [18]. Este concepto es de vital importancia para todos puesto que lidia con la supervivencia de la especie humana y las demás criaturas vivientes en el planeta. La arquitectura sustentable y eco-amigable es una de las principales metas que los humanos han creado para poder formar una mejor vida [19]. La arguitectura sustentable implica en la parte económica: infraestructura, tecnología, producción y distribución de los recursos. La parte ecológica involucra: materiales, energía, agua, hábitat, tierra así como emisiones y desper-

dicios. La dimensión política: en forma de organización y Actualmente existen varios arguitectos y constructores mexicanos que edifican inmuebles contemporáneos con seguridad, y la dimensión cultural: como memoria y protierra como en la región de Puebla, Tlaxcala y Oaxaca. Por lo yección, creencias, creatividad e identidad [18]. tanto, la arguitectura de tierra en México ha permanecido espacial y temporalmente, pero aun así existen esfuerzos Por lo anterior, el practicar una "arguitectura verde" es por mucho el prinicipal reto arguitectónico de este tiempo [20]. En este tipo de arguitectura se desea cumplir con los requerimientos anteriores al reducir el número de re-Nacional de Antropología e Historia (INAH).

para el estudio y conservación de las tradiciones locales así como de edificios patrimoniales, muestra de ello es la falta de un registro de diversos inmuebles por parte del Instituto cursos consumidos en la construcción de un inmueble, su uso y operación, así como disminuir la contaminación En México el INAH ante esta situación y con el afán de al medio ambiente por la fabricación y posterior eliminapromover el rescate y el uso del material de tierra, ha ción de los materiales de construcción [19]. Esta probado implementado programas de concientización para evique es imposible cumplir estos requerimientos de constar que la gente derrumbe sus viviendas, muchas de las trucción de casas con materiales industriales, por tanto cuales son una herencia que ha pasado de generación estos requerimientos sólo pueden cumplirse al utilizar en generación, esto principalmente en el norte del país materiales de construcción locales. El suelo es el material en los estados de Sonora, Chihuahua, Coahuila y Nuevo de construcción más importante, puesto que está dispo-León donde la arquitectura de tierra representó además nible en todas las regiones del mundo [15,16]. de una vivienda, un modo de sobrevivencia debido a las propiedades del material, el cual guarda el calor en el La construcción con tierra es un tema de alto interés en invierno y mantiene la humedad durante el verano [22].

diversos países [21] y actualmente ya existen diversos tipos de edificios contemporáneos construidos con este material [15]:

El censo del 2010 realizado por el Instituto Nacional de Estadística y Geografía (INEGI) tiene como indicadores de vivienda los materiales con los que están construi-• Edificios culturales y educativos: en Alemania, das. La tierra como tal sólo figura en el caso de vivien-Bangladesh, India, Gran Bretaña, Estados Unidos, das con pisos de tierra en contraste con viviendas con Suecia, México. recubrimiento en los pisos (como recubrimiento están el cemento o firme, madera y mosaico); mientras que los • Edificios residenciales: en Alemania. México. otros indicadores son respecto a materiales durables en paredes y en techos (como materiales durables se inclu-Estados Unidos, Australia, Nueva Zelanda, India, yen el tabique, ladrillo, block, piedra cantera, cemento o concreto). Sólo en techo considera el terrado con viguería como un material durable, el único de arquitectura de • Edificios comerciales y hospitales: en Gran tierra. Por tanto los porcentajes de vivienda que no pre-Bretaña, Austria, Chile, Alemania, Estados Unidos, sentan estos materiales por eliminación están fabricados Australia. con tierra, lámina o cartón.

- Chile, Perú.

En la actualidad, el creciente interés en la arguitectura de Los resultados del censo indican que en todo el país de tierra y su característica como arguitectura sustentable ha cada 100 viviendas, 6 tienen piso de tierra [23]. En la Fipermitido redescubrir las cualidades ecológicas, térmicas gura 1, Figura 2 y Figura 3 se presenta la comparación de y económicas del material de tierra [10]. La arguitectura los censos desde 1950 con respecto a estos indicadores de tierra está clasificada como arguitectura vernácula, los cuales muestran un aumento drástico en el empleo puesto que está basada en requerimientos locales como de materiales clasificados como "durables", por tanto los materiales y tradiciones, la cual permanece con la gente materiales considerados como no durables son lámina, a través del tiempo [21]. cartón o tierra.

Caracteristicas de las viviendas

Porcentaje de viviendas con materiales durables en paredes, 1950 a 2010

Figura 1. Porcentaje de viviendas con materiales durables en paredes de 1950 a 2010. Adaptado de [24].

Caracteristicas de las viviendas

Porcentaje de viviendas con materiales durables en paredes, 1970 a 2010

Nota: 1970, el porcentaje está calculado respecto al total de las viviendas; a partir de 1990, respecto a las viviendas particulares habitadas. Se consideraron recubrimiento en los pisos con: cemento o firme, madera, mosaico, y otro recubrimiento.

Fuente: INEGI, Censos de Población y Vivienda, 1970 a 2010. INEGI, Il Conteo de Población y Vivienda, 2005. Fecha de actualización: jueves 03 de marzo de 2011

Figura 2. Porcentaje de viviendas con recubrimiento en los pisos de 1970 a 2010. Adaptado de [24]. 18

Caracteristicas de las viviendas

Porcentaje de viviendas con materiales durables en paredes, 1970 a 2010

Porcentaje

Figura 3. Porcentaje de viviendas con materiales durables en techos de 1970 a 2010. Adaptado de [24].

Los estados del país con mayor porcentaje de viviendas de manera adecuada en un sistema constructivo provee con piso de tierra están relacionados no sólo con zonas una mejor calidad de vida, sin embargo los indicadores rurales sino también con rigueza cultural, estos estados de "urbanización y modernidad" afectan esta percepción son: Chiapas 15%, Guerrero 18%, Michoacán 10%, entre las comunidades; esto causa que destruyan las Oaxaca 19% y Veracruz 12%. Los estados que siguen en viviendas de tierra aún existentes y construyan con ceporcentaje de piso de tierra son: Baja California Sur 6%, mento u otros materiales considerados "durables". Campeche 5%, Colima 5%, Durango 6%, Hidalgo 7%, Puebla 9%, Morelos 7%, San Luis Potosí 9%, Tabasco 6%, En la actualidad se invierte una gran cantidad de re-Sinaloa 6%. El resto de los estados varía del 1% al 4% [23].

cursos en investigación de construcción en tierra [10] debido a la pérdida del conocimiento de trabajo con A partir de los datos anteriores es importante destacar que tierra. Entonces es necesario volver a generar este conola construcción de tierra en México no está relacionada cimiento desde el campo de los materiales y la arguiúnicamente con climas áridos como se piensa comúntectura investigando: las diferentes mezclas de tierra, mente; sino que la vivienda de tierra es netamente local proporciones de tierra-aqua, posibles aditivos y sus funciones, así como diversos sistemas constructivos; con y funciona para todo tipo climático por las características la finalidad de construir sustentablemente, y generar de transporte de calor y humedad mencionadas al inicio. edificaciones resistentes principalmente a la intempe-La tierra además de ser un material sustentable es accesirie y a los sismos.

ble para las personas sin recursos el cual al ser empleado

19

INMUEBLES PATRIMONIALES

La importancia de la tierra como material de construcción radica en que es una expresión de la habilidad humana para crear un refugio con los recursos disponibles; y esta expresión incluye a todos los continentes, en diversas épocas y una gran variedad de estructuras que van desde templos, palacios y graneros hasta centros de las ciudades y viviendas, y por tanto los inmuebles construidos por civilizaciones anteriores son considerados actualmente como patrimonio cultural [10].

La permanencia de las construcciones de tierra es evidente puesto que existen estructuras que han durado cientos de años, sin embargo, también son estructuras frágiles que dependen de su contexto y ambiente. Una de las causas responsables de la erosión de muros de tierra es debido a la energía cinética que tiene el impacto de la lluvia sobre ellas, haciendo importante la orientación geográfica de los inmuebles debido a que el aire modifica la dirección de la lluvia. Los desastres naturales como inundaciones y temblores también afectan su estabilidad. Asimismo, el adecuado mantenimiento, reparaciones y restauraciones que sean compatibles con la construcción original también son decisivos para la subsistencia de las construcciones de tierra [7].

Debido a las causas anteriores de deterioro y además la industrialización global, la inclusión de nuevas tecnologías y la pérdida de prácticas tradicionales de cons-

trucción con tierra, en 2007 el Comité de Patrimonio Mundial de la Organización de las Naciones Unidas para la Educación, la Ciencia y la Cultura (UNESCO) implementó un programa de actividades para la conservación, estudio y revitalización del patrimonio mundial construido con tierra (World Heritage Earthen Architecture Program, WHEAP) [10].

En México, las construcciones de tierra no sólo se encuentran en zonas desérticas sino que están distribuidas en todo el territorio nacional y además pertenecen a distintas temporalidades, así existen inmuebles de arguitectura de tierra como los sitios Olmecas de la Venta, Tres Zapotes y San Lorenzo, La Gran Pirámide de Cholula, Paquimé en Chihuahua, el sitio de Tepapayeca se construyó con muros de adobe cubiertos de lodo y estuco. También los primeros monasterios del Siglo XVI que se encuentran sobre las laderas del Popocatépetl se construyeron con tierra, así como 19 sitios misionales en Baja California del siglo XVIII y algunos de los conventos dominicos de los siglos XVI y XVII en Oaxaca. Varias haciendas coloniales y casas en Aquascalientes, Campeche y otros estados fueron construidas a base de tierra (Figura 4); sin embargo no hay un registro por parte del INAH que ponga en evidencia la materialidad específica de los inmuebles mexicanos.

El objetivo principal del programa de la UNESCO es desarrollar un planteamiento global integrado para identificar y formular metodologías y técnicas, así como políticas de conservación y gestión apropiadas para un mantenimiento sustentable de la arguitectura de tierra protegida bajo la Convención de Patrimonio Mundial [10]. Testigo de la gran evidencia de tecnología que es la arguitectura de tierra, aproximadamente un cuarto de los inmuebles culturales inscritos en la Lista de Patrimonio Mundial en Peligro son sitios arguitectónicos de tierra [10].

La conservación del patrimonio cultural reguiere la definición tanto de deterioro como de conservación en sí misma:

Figura 4. Mapa de la república mexicana donde se señalan algunos de los sitios registrados en el INAH con construcciones de tierra.

• Deterioro: Cualquier modificación química o física a las propiedades intrínsecas del material que conllevan a la pérdida de su valor o impide su uso o función [25].

• Conservación: Acciones realizadas para salvaguardar el patrimonio cultural, respetando sus valores y significados, y garantizando su acceso y disfrute para generaciones presentes y futuras. El término "conservación" es genérico e incluye la conservación preventiva, las acciones de conservación directa y la restauración [26].

Se considera que toda acción de conservación deberá respetar la integridad del patrimonio cultural, basándose en la comprensión y el respeto de su materia, factura, sistema constructivo, aspecto o imagen, valores, significados, usos, asociaciones y contexto, así como considerar a los actores sociales vinculados con dicho patrimonio. Además, deberá realizarse mediante un proceso metodológico basado en el trabajo de un equipo interdisciplinario, con la finalidad de poder contribuir al estudio, comprensión y transmisión de los valores del patrimonio cultural [26].

Por lo anterior, para definir la metodología y técnicas apropiadas para la intervención de las estructuras de tierra, el programa WHEAP tiene un sector de investigación en el cual se desarrolla trabajo a nivel de laboratorio y además aplicado en los sitios, donde se abordan las problemáticas principales en conservación de estos inmuebles: las materias primas, estabilización, control de calidad, deterioro por la presencia de sales y migración de humedad [10].

INVESTIGACIÓN EN ARQUITECTURA DE TIERRA

La construcción con tierra contiene mucha información que es necesario recuperar del patrimonio cultural, así como información que se puede generar a partir de construcciones modernas. En patrimonio se puede determinar su antigüedad, procedencia de la tierra, tecnología respecto a la técnica de manufactura que incluye composición, textura y aditivos, además de identificar los sistemas constructivos antiguos que serán los más adecuados para el contexto local.

En investigaciones para construir edificios modernos se genera información sobre estabilizantes de tierra, composición y textura de la tierra, aditivos, herramientas para construcción, tradición oral sobre sistemas constructivos, sustentabilidad y recursos energéticos, 22

así como intercambio térmico, difusión de humedad, propiedades mecánicas y resistencia sísmica.

La información obtenida se puede utilizar para mejorar las formas de construcción actuales o reproducir técnicas antiguas que pueden ser usadas para restauraciones [27]. También identificar causas de deterioro [28] y la modificación de las propiedades del suelo o sistema constructivo a respuestas sísmicas.

Aunque existe información reportada respecto a diversos estudios de arguitectura de tierra, actualmente no hay una metodología establecida para el estudio completo de este material debido a la complejidad del objeto como geomaterial que tiene una función

como material de construcción, el cual además posee • Arqueología y Conservación: se emplean estudios físicos y químicos en los cuales se obtiene indiferencias regionales en composición y sistemas consformación sobre la temporalidad y la tecnología de las construcciones que permite a los arqueólogos establecer hipótesis sobre el desarrollo de las civilizaciones para generar ese tipo de edificaciones. Los resultados de los estudios se pueden utilizar además para generar propuestas de restauración con materiales compatibles y que conserven no información con requerimientos específicos. Las áreas sólo la información material, sino también la cultural, empleando los mismos materiales y sistemas constructivos; con frecuencia se hacen entrevistas • Ciencias de la tierra: se utilizan las metodologías de guímica y física de suelos para abordar esy se invita a gente de la comunidad local que aún tos materiales, como: determinación cuantitativa trabaja la arquitectura de tierra, recuperando la de tamaño de partícula, análisis micromorfológico, información así como materiales locales . Por lo medición de color y acidez, análisis de minerales general en patrimonio cultural la toma de muescristalinos presentes, análisis elemental, además tra está restringida a micromuestras y a análisis no de análisis microquímicos. Estos análisis brindan destructivos que optimicen la toma de muestras.

tructivos. También se requiere establecer métodos que procuren la adecuada conservación de la arguitectura de tierra de inmuebles antiguos. Por tanto, este tipo de construcción es objeto de estudio de diversas áreas en las cuales se obtiene diferente principales son:

información sobre el tipo de tierra que se emplea o empleó en las construcciones y permite por tanto seleccionar los materiales. Los análisis están estandarizados para muestras grandes (del orden de gramos o kilogramos) debido a que el suelo es un material abundante [29].

• Arquitectura e Ingeniería Civil: se realiza la ubicación de los materiales en los edificios, dimensiones, conformación de sistemas constipo de suelo [32]. tructivos, definición y usos de espacios. Además, realizan estudios que evalúan las propiedades En el sitio arqueológico de La Joya en Veracruz se hizo un del suelo como material en los diversos sistemas estudio similar, y además, se comparó con adobes del siconstructivos. Las propiedades que se miden son tio de Arslantepe en Turguía. Las autoras reportan que en mecánicas para determinar su estabilidad estrucambos sitios los constructores tenían pleno conocimientural, también se estudia su resistencia a la intemto del comportamiento de los materiales en un entorno determinado adoptando las soluciones más eficaces, y perie y fenómenos sísmicos. Además se evalúan estabilizantes del suelo y aditivos con la finalidad seleccionaban los materiales considerados como los más de mejorar sus propiedades. Estas pruebas están adecuados en función del material disponible y de las estandarizadas por las normas de construcción condiciones climáticas, además de que se registró una y requieren probetas de geometrías y tamaños mayor calidad en las materias primas para la construcdeterminados, así como un amplio número de ción de edificios con mayor importancia que otros [31]. probetas para determinar reproducibilidad de las Además, en los adobes de La Joya ha sido reportado el propiedades [1]. uso de bitumen como aglutinante empleando análisis instrumentales del área de la Química [33].

Las investigaciones sobre arquitectura de tierra en México han sido realizadas desde los campos anteriores y además se han incluido otras áreas como la guímica y ciencia de materiales. Desde la Edafología se han estudiado recientemente los sitios de Zethé y Sabina Grande en Hidalgo donde se concluyó que el material provenía del entorno inmediato, la existencia de continuidad en la técnica de manufactura y se determinó el En Teotihuacán se han estudiado los sedimentos de la región, puesto que la tierra fue la principal materia prima para los rellenos constructivos, además de que la tierra mezclada con agua se utilizó como mortero en las construcciones. Se determinó que en algunas muestras de adobe pertenecientes a la plataforma que rodea a la pirámide del Sol contienen una mezcla de sedimentos predominantemente limosos y arenas, además de fragmentos de 5 mm de toba volcánica, y el comportamiento del material es de tipo flujo de cenizas, lo que concuerda con la identificación de lahares [34].

Otro estudio realizado en México es la caracterización de cerámicas prehispánicas, cuya materia prima es también el suelo y mientras no sean cerámicas sometidas a alta temperatura, en composición son parecidas a la tierra. El caso de estudio de los comales de Tzompantepec y los suelos aledaños en Tlaxcala, demuestra la relación de los suelos actuales de la región con los materiales empleados en época prehispánica. Los autores identifican el tipo de suelo presente con la materia prima de las cerámicas y, a partir de estos resultados,

concluyen que el intemperismo de los minerales volcánicos primarios brinda una combinación de componentes de arcilla cristalinos y amorfos deseable para la producción de la cerámica [35].

Las investigaciones con metodologías provenientes del campo de la Ciencia de Materiales están enfocadas en la microestructura y las propiedades de los adobes, principalmente para el mejoramiento de las construcciones modernas de adobe [36]. En Arquitectura se busca diseñar las propiedades mecánicas de la mampostería y obtener propiedades térmicas o hidrotérmicas, además de la adición de materiales estabilizantes de la tierra para construcciones modernas [7,14,37,38].

El interés por comprender, conservar y emplear los conocimientos de construcción de épocas antiguas para desarrollar en la actualidad una civilización sustentable, es el motor para la aplicar en conjunto las ciencias sociales y naturales en la investigación de la arquitectura de tierra.

Capítulo 2 CASO DE ESTUDIO: LA GRAN PIRÁMIDE DE CHOLULA

Figura 5. La Grán Pirámide de Cholula en la actualidad (izq.). Página del Códice Colonial Vaticano A, donde se ilustra el Tlachihualtépetl (der. [39]).

Tlachihualtépetl, el "cerro hecho a mano", es la pirámide más grande que se construyó en el México antiguo, a lo largo de 600 años entre los siglos II al IX [39]. Los habitantes de Cholula utilizando el sistema constructivo de adobes lograron esta magnífica e imponente

edificación de carácter ritual, la cual tiene ocho fases constructivas mayores que cubrieron en cada ocasión las etapas anteriores. Se reporta que La Gran Pirámide fue mutilada desde la época colonial, cuando su última etapa constructiva fue desmantelada, para utilizar los

Figura 6. Pintura de Chollolan. Se muestra la distribución de la ciudad colonial de Cholula, en la parte superior izquierda está representado el Tlachihualtépetl con el topónimo Tollan Chollolan. La Gran Pirámide está representada en cada imagen de los distintos municipios del valle de Cholula [39].

elementos de piedra y edificar con el mismo material de aquellas secciones que soportan a las escalinatas las nuevas construcciones cristianas [39]. En la actualidonde se construyó con piedra y barro. Esta primera dad, el Tlachihualtépetl se aprecia como un cerro artifiestructura fue cubierta por otra novedosa de mayores cial, con algunos adobes del núcleo original a la vista, dimensiones, el cual muestra un estilo arguitectónico y sobre el que se sustenta el Santuario de la Virgen de distinto puesto que se compone de nueve cuerpos escalonados en talud, con núcleo de adobe recubierto los Remedios (Figura 5) [39]. con piedras calcáreas y con terminado de estuco, esta El Tlachihualtépetl repite la forma del volcán Popocatées la Pirámide de los nueve cuerpos escalonados [39].

petl que lo enmarca hacia el oeste y tiene una de sus fachadas en dirección del volcán, relacionándolo con El túnel principal que actualmente visitan los turistas otras culturas de la región central de México que tenían abarca 280 m de los más de diez kilómetros de túneles una estrecha relación con el vulcanismo y el culto a las que se requirieron en la exploración argueológica. La Gran Pirámide en su última fase constructiva (siglo IX) montañas [34,39-41]. alcanzó 65 m de altura y 400 m por lado en la base Contemporánea de Teotihuacán, Tula y Tenochtitlán, como producto de las varias etapas que se efectuaron, Cholula se advierte como la otra gran ciudad del centro constituyendo el basamento de mayor volumen en el de México. Sin embargo, la alusión a Cholula persiscontinente americano.

te en varias fuentes tempranas demostrando que los Estudios recientes [39,43] demuestran que hay ocho etapas constructivas, tres más de las reportadas por Marguina. Otro dato novedoso obtenido de esta investigación es que en un corredor que penetra justo al centro en lo más profundo de la pirámide, se detectó la primera edificación, hasta ahora no reportada. No es posible calcular sus dimensiones puesto que sólo se aprecia una pequeña sección del talud que la formaba, pero era una plataforma de adobe que de acuerdo a las fechas de radiocarbono se erigió hacia fines del primer siglo después de cristo. Se le llama edificio de la olla, puesto que el conducto termina en una oquedad; pero eso es debido a que una manera de formar los núcleos de los basamentos era crear una retícula de muros de adobe, y llenar los cajones con diversos materiales, asegurando que el relleno no se desplazara con facilidad poniendo en riesgo la estabilidad de la estructura [39,43].

cholultecas están entre los primeros pueblos mesoamericanos, y también de su centralidad en los relatos fundacionales de las culturas del altiplano puesto que se han encontrado evidencias argueológicas de ocupación humana en esa región desde 300 aC (Figura 6). Además, su posición privilegiada le permitió ser punto de conexión entre diferentes rutas del México prehispánico, pues por ella atravesaron guienes iban a la Costa del Golfo y a la vez fue lugar de paso hacia Oaxaca; lo que promovió la convergencia entre culturas [39,42]. El antecedente más temprano de las incursiones arqueológicas en Cholula ocurre hacia finales del siglo XIX, por Adolph Bandelier. Décadas más tarde, a partir de 1931, se llevaron a cabo las excavaciones institucionales en La Gran Pirámide, a cargo de Ignacio Marquina. Las exploraciones descubrieron la existencia de varias sub estructuras que evidenciaron los periodos histórico-arqueológicos de la gran edificación [39].

La información argueológica reportada indica una transformación de la arquitectura de la Gran Pirámide La subestructura más antigua en Cholula tiene taludes y tableros que la identifican y están ornamentados con desde tiempos prehispánicos, debido a la sobre posipintura mural que representan cráneos pintados; deción de las distintas etapas por los cambios e influenbido a esta característica se le denomina Pirámide de cias de otras culturas, específicamente la teotihuacana. los cráneos pintados. Los argueólogos advirtieron que Estos cambios se pueden observar en las diversas dien esta primera época se utilizaron adobes de buena mensiones de los adobes así como acabados arguitecfactura para el núcleo y para los muros, a excepción tónicos de cada etapa.

CONTEXTO GEOLÓGICO

El Altiplano central mexicano se conforma fundamentalmente por la cuenca de México y los valles poblano tlaxcaltecas, ambos a más de 2000 m sobre el nivel del mar; su característica fisiográfica la constituyen las cadenas montañosas que lo rodean y delimitan. Los valles poblano-tlaxcaltecas formaban hace miles de años una cuenca que, a la llegada de sus primeros pobladores, se había desecado de manera natural, creando múltiples ecosistemas que en algunas regiones, como es el caso de Cholula, gozaban de buena fertilidad por la presencia de los ríos [39]. En la parte más baja del valle la precipitación anual es de 600 a 700 mm y tiene un clima templado de meseta con inviernos secos, y veranos frescos, mientras que las lluvias más intensas son a principios del verano [44].

Cholula está situada en el centro del Valle de Puebla. que se encuentra en la Plataforma Neovolcánica al oeste de la Sierra Nevada. Está limitada al noreste por el volcán La Malinche, al oeste por la Sierra Nevada; al sur se extiende por la cuenca del río Atoyac con la presa de Valsequillo y al norte con el cerro de San Lorenzo. En la parte central están situados el cerro Tecajete y el cerro Zapotecas, los cuales son conos volcánicos de tipo cinerítico en su parte superior con derrames lávicos en su base [44].

A su vez el Valle está cubierto por depósitos lacustres y aluvión reciente, interrumpido solamente por los conos volcánicos. Existió una laguna en el área que ahora ocupa la ciudad de Puebla, que se formó debido al cierre que ocasionaron los abanicos volcánicos de la Malinche contra los plegamientos cretácicos en la región

de Valseguillo; otro lago pudo estar formado dentro del área que limitan las terrazas aluviales que actualmente se encuentran rodeando los conos del Tecajete y el Zapotecas. Estos lagos se perdieron con la captura de sus aguas por el río Atoyac, limpiando prácticamente toda la zona de depósitos lacustres [44].

Las fotografías aéreas de mediados del siglo XX aún muestran la capacidad extraordinaria de ese valle para la producción agrícola y la notable fertilidad, que le otorgaban desde tiempos ancestrales el río Atoyac y sus afluentes, y constituyó sin duda el mayor atractivo para que las primeras poblaciones se asentaran en esa región desde el año 300 aC [39].

Los eventos geológicos más importantes en la región han sido las recurrentes erupciones Plinianas del volcán Popocatépetl cada 1000 a 3000 años. Las erupciones más importantes ocurrieron entre 2830 y 3195 aC, 800 y 215 aC y entre 675 y 1095 dC. [45].

Estas tres erupciones tuvieron un patrón similar y comenzaron con expulsión y flujos pequeños de ceniza. Las erupciones tuvieron su máximo con el pulso Pliniano principal que produjo la deposición de ceniza, el emplazamiento de flujos de ceniza caliente y finalmente flujos extensivos de lodo volcánico (lahares). En cada ocasión el área devastada era repoblada antes de volver a ser devastada por otro evento Pliniano. Siebe et al. han establecido las zonas inundadas con lahares y la estratigrafía de la región, de acuerdo a las secuencias eruptivas y relacionándolas con la ocupación en época prehispánica (Figura 7) [45].

Figura 7. Ubicación del Popocatépetl en relación a los Valles de México y Puebla. Adaptado de [45].

Para efectos de comprensión de los tipos de suelo, el parecidos a los anteriores pero tienen un material área de Cholula fue dividida en tres regiones en las excaparental distinto, tienen alófano y también están vaciones del sitio realizadas por Marguina (Figura 8) [46]: mezclados con ceniza basáltica y pómez.

• La segunda región: El área al norte del Cerro • Primera región: Limitada en la parte baja por Tecajete y el Zapotecas, hasta la parte norte de la Huejotzingo y San Buenaventura. En esta región ciudad de Puebla. Están los suelos aluviales prose encuentran los depósitos pumíticos y fluviales, ducto de los depósitos del río Atoyac y de los arrose encuentran dos tipos de suelos los Inceptisoles, que son suelos poco desarrollados y recientes, yos y ríos intermitentes de la zona. Todo el material de estos suelos presenta alto contenido de ceniza mezclados con pómez y ceniza volcánica basáltica. Además se encontraron Fluvisoles, los cuales son volcánica sana.

Continuación Figura 7. Columnas estratigráficas que muestran las secuencias eruptivas asociadas con el Popocatépetl. Adaptado de [45].

• La tercera región: El área corresponde al sur de la segunda región, y se presenta una gran variación en los suelos, existen Inceptisoles, Fluvisoles y Litosoles, los cuales son suelos poco profundos que tienen cenizas en superficie, también hay presencia de lahares y material andesítico. Se registraron suelos llamados Vertisoles, que son de color negro o gris oscuro de textura limo-arcillosa y en la parte central de Cholula se identificaron paleosuelos con un alto contenido de cenizas poco meteorizadas.

Estudios más recientes de los paleosuelos en la región de Puebla-Tlaxcala determinaron suelos similares, donde predominan suelos tepetate, suelos aluviales con distintas proporciones de arcilla, limo, arena y sedimentos lacustres, además de los sedimentos volcánicos mencionados anteriormente como pómez, brechas volcánicas, lapilli, flujos de lava y depósitos de ceniza [47].

La información geológica de la región es importante debido a que determina la composición mineralógica de la tierra empleada para construir la Gran Pirámide así como sus propiedades, que en conjunto establecen el sistema constructivo empleado.

ESTADO DE CONSERVACIÓN

El INAH ha llevado a cabo diversas acciones de conservación, desarrollando proyectos de mantenimiento de diversas escalas, como en 1995 con las intervenciones estructurales del túnel donde se localiza el mural Los Bebedores; además se concluyeron trabajos de salvaguarda en la pintura Los Chapulines, en especial en el costado noroeste, área no del todo liberada de los adobes originales. Se realizaron estudios de la técnica de manufactura de los murales, por lo que se pensó en la necesidad de contar con un propósito de mayor magnitud que permitiera procesar los datos obtenidos, con la finalidad de entender integralmente los factores que están deteriorando los túneles. Sin embargo, esta situación se enfrenta a la falta de información precisa sobre la problemática de conservación de La Gran Pirámide [39]. 32

Desde el 2002 se ha desarrollado el Proyecto de Integración Argueológico, Histórico y Urbano de Cholula, Puebla, que en una primera etapa se orientó a la elaboración de un diagnóstico sobre el estado físico del exterior e interior de la Gran Pirámide. En este proyecto se realizó una ficha de deterioros al interior de la pirámide con su descripción y disposición, también se realizaron nuevos planos de la pirámide con una estación total. Para la parte exterior se hizo un estudio topográfico y la descripción de la superficie en cuanto a presencia de árboles, arbustos, caminos y veredas, así como de agentes que pudieran influir en el complicado mantenimiento del interior del basamento piramidal [39].

Mediante los estudios geofísicos y geotécnicos realideterminó que existen muchos agujeros de perros y zados en el 2002 por la empresa ICD S. A. de C. V. a madrigueras de roedores, fauna que es nociva para la petición de Comisión Diocesana de Arte Sacro, se deconservación de la Zona Argueológica [49]. terminaron los contactos estratigráficos de las diferentes etapas de construcción de la pirámide, así como En la temporada de junio-julio del mismo año, se la definición de discontinuidades como sistemas de realizó la investigación "Evaluación de Materiales fracturas y probables cavidades u oquedades exispara Fijación del Sustrato de las Pinturas Murales tentes. Las zonas que presentan una mayor tendende la Zona Argueológica de Cholula, Puebla" dentro cia a desplazamientos son las conformadas por los del Proyecto de Conservación e Investigación para las bloques al sur y oriente de la pirámide; el resto, apa-Pinturas Murales de la Zona Argueológica de Cholula, rentemente, representa zonas estables. Se analizó la Puebla de la Coordinación Nacional de Conservación estabilidad del talud del lado oriente indicando que, del Patrimonio Cultural (CNCPC-INAH), a cargo de la con respecto a la norma sísmica, existe un factor de Restauradora Dulce María Grimaldi. Esto debido a seguridad un poco mayor al mínimo reguerido [48]. que el mural Los Bebedores presenta como deterioro más grave la inestabilidad estructural en cuanto a disgregación de materiales a nivel de sustrato de adobe En octubre del 2009, el antropólogo Martín Cruz Sánchez, Administrador de la zona argueológica de y de capa pictórica. Esto esencialmente se nota en la Cholula, reportó la afectación al interior de los túneles pérdida de cohesión entre las partículas del adobe, manifestada por el desprendimiento de adobes en entre partículas de la capa pictórica (pulverulencia), y las paredes y techo sobre la fachada norte del "Edifientre capa pictórica y muro (escamas). Por otra parte, cio Escalonado", causadas por la fractura de los tubos se observan zonas activas de humedad y eflorescendel drenaje sanitario que desciende por el costado cia de sales que promueve la disgregación de susnorte de la Gran Pirámide de Cholula, drenaje que trato de adobe y de la capa pictórica. En el estudio de Grimaldi [50] se realizó difracción de rayos X en procede de los baños del Santuario de la Virgen de los Remedios hasta la Av. Morelos 14 Poniente [49]. muestras y observación en microscopio óptico, mientras que el nivel macroscópico se evaluó de manera A pesar de los trabajos en el drenaje, la saturación de organoléptica.

humedad en los túneles continúo provocando desprendimientos de los adobes, por lo tanto en 2012 El estado de conservación general del túnel principal el encargado de la Zona Argueológica de Cholula, de la Gran Pirámide es estable excepto en la zona de el Argueólogo Carlos Cedillo Ortega, implementó desprendimiento de adobes por efecto del agua de la el "Proyecto Intervención en el Túnel de la Fachada tubería interna; mientras que en el túnel de Bebedo-Norte del Edificio Escalonado de la Gran Pirámide de res la disgregación de los adobes que actúan como sustrato de las pinturas y las eflorescencias salinas en Cholula", el cual consistió en la restitución de los adobes dañados mediante el desbaste de los mismos, la superficie de la pintura mural son algunos de los deterioros que afectan la permanencia del sistema a fin de hacer una bóveda que permitiera el trabajo de sustitución de los adobes dañados con adobes constructivo. modernos mejorados. En este proyecto además se

JUSTIFICACIÓN

Desde el área de la ciencia e ingeniería de materiales que intrínsecamente es multidisciplinaria se puede hacer una propuesta para el estudio de los adobes arqueológicos de México. La información sobre la forma en que la composición de los materiales utilizados para la construcción afecta sus propiedades permitirá entender en particular las características del caso de estudio: el Sitio Arqueológico de Cholula, Puebla. Actualmente, hay información limitada respecto a las relaciones cuantitativas entre la composición, microestructura, propiedades y desempeño del suelo como material y su uso tecnológico en la época prehispánica.

La información sobre el estudio de arquitectura de tierra es todavía limitada y por tanto no hay metodologías reportadas que se puedan aplicar para la caracterización y conservación de sitios arqueológicos construidos con esta técnica, en los cuales además existe la condición de toma de muestra mínima. Hasta el momento las investigaciones en el Sitio Arqueológico de Cholula se han enfocado a las pinturas murales presentes, datación, cálculos sobre requerimientos de material y personas para su construcción y planos arquitectónicos actualizados de las etapas constructivas de la Gran Pirámide, pero aún no se han realizado estudios que involucren la materialidad de los adobes. El adobe como elemento constructivo en el sitio arqueológico de Cholula es frágil lo cual impacta en la estabilidad del sitio, por tanto, los arqueólogos y los restauradores desean establecer estrategias para su conservación integral. En julio del 2012 se inició el "Proyecto Intervención en el Túnel de la Fachada Norte del Edificio Escalonado de la Gran Pirámide de Cholula", el cual tiene dos objetivos principales: uno arquitectónico, que involucra el retiro de los materiales dañados y su sustitución con adobes mejorados para dar una estabilidad adecuada del sector afectado y así poder abrir el túnel nuevamente al público. El otro consiste en la realización de una investigación para conocer los materiales y sistemas constructivos utilizados en la época prehispánica para cubrir el edificio escalonado.

Para realizar labores de conservación es necesario tener información de la manufactura de estos adobes, sus propiedades y cómo interactúan con su medio. Es a partir de esta necesidad y el objetivo de investigación del Proyecto de Intervención del Túnel, en el que se inserta el presente proyecto de investigación. Sólo algunos estudios desde el punto de vista de la ciencia de materiales se han realizado para identificar la manera en que se elaboraron los adobes en las regiones prehispánicas y aunque la arquitectura de tierra ha sido trabajada desde tiempos antiguos, el conocimiento respecto a las relaciones cuantitativas entre la composición, propiedades y desempeño de estos es

HIPÓTESIS

1. La tecnología desarrollada para la elaboració de adobes consistió en la mezcla de suelos de di tintas granulometrías y de otros materiales.

2. Se puede realizar una caracterización integral de los adobes a partir del empleo de micro muestras.

ón	 El color y la textura observada en los adobes de
is-	pende exclusivamente de su composición.
de	4 . Las propiedades cohesivas y de transporte de agua son factores relevantes para el proceso de

ción granulométrica.

deterioro de los adobes y dependen de la distribu-

Capítulo 3 **EXPERIMENTAL**

El objetivo general de la investigación consiste en caracterizar los adobes del Sitio Argueológico de Cholula, Puebla. A fin de obtener información respecto a los materiales utilizados y poder así determinar si las diferencias visibles en cuanto a color y textura corresponden con variaciones en composición, microestructura y propiedades. Se tienen como objetivos particulares:

1. Caracterizar los suelos locales relacionados con etapas prehispánicas.

2. Determinar la distribución granulométrica de adobes y suelos prehispánicos a través de la cuantificación de los gránulos de diferentes tamaños.

3. Identificar los minerales que componen cada fase granulométrica de los adobes en comparación

con los suelos, para entender la selección y transformación de los materiales locales.

- 4. Estudiar las propiedades cohesivas de cada fase granulométrica. El identificar las propiedades de cada fase se puede buscar una relación con la tecnología y la transformación del material a través del tiempo.
- **5.** Estudiar las propiedades de transporte de agua en una mezcla modelo de adobe, mediante el modelo se entenderá el proceso de deterioro de los adobes por este agente externo.

Este conocimiento permitirá sustentar posibles estrategias de conservación.

MUESTRAS

Las muestras de adobes prehispánicos fueron proporcolapso tiene una longitud de 17.56 metros lineales cionadas por el argueólogo Carlos Cedillo encargado y se han desprendido los adobes conservando adde la Z. A. de Cholula y responsable del proyecto de heridos sus morteros de tierra, en el Túnel que corre Intervención en el Túnel de la Fachada Norte del Edide Poniente a Oriente en sus dos perfiles norte y sur, además de la cala 1 en sus perfiles oriente y poniente, ficio Escalonado de la Gran Pirámide de Cholula [49], en el cual se colaboró y por tanto fue posible desadel llamado "Edificio Escalonado" o estructura 4 de rrollar la presente investigación. Los adobes suminisacuerdo al Proyecto Tetimpa y a la etapa II de acuerdo a Marquina [39] (Figura 10). En los adobes se encontró trados proceden del túnel principal de la pirámide, algunos se desprendieron debido a un colapso prematerial argueológico como cerámica y lítica, además vio del túnel y otros se extrajeron de la misma zona de piedras como cantos rodados, travertinos y rocas colapsada de acuerdo a diferencias de color como de origen volcánicos [49]. se describe en el proyecto [49] (Figura 9). El área de

Figura 9. Esquema de la pirámide y edificios anexos. En cuadros azules se marcan las zonas de donde se suministraron las muestras de adobe. Adaptado de [39].

Figura 10. Túnel interior de la Gran Pirámide (izq). Zona del "edificio escalonado" donde se observa la variación de adobes (der)[49].

Se caracterizaron 12 muestras de adobe prehispánic de la Gran Pirámide de Cholula (Tabla 1), los cuale fueron seleccionados debido a sus diferentes colore y texturas; 5 muestras de polvo (micromuestras) de sustrato de las pinturas murales "Los Bebedores" qu se incluyen en el Proyecto de Conservación e Invest

gación para las Pinturas Murales de la Z.A. de Cholu-
la, Puebla [50] perteneciente al edificio 3 (Tabla 2) y 5
muestras de suelos relacionados con etapas prehis-
pánicas de la ciudad de Cholula también suministra-
das por el Proyecto de Intervención [49](Tabla 3).

TIPOTAMAÑOAdobes completos≈15 Kg

NOMENCLATURA

M1TP, M2TP, M3TP, M5TPCLARA, M5TPOSCURA, M6TP, M7TP, M8TP, M9TP, M10TP, M11TP, M12TPCLARA, M12TPOSCURA

Tabla 1. Muestras suministradas del túnel principal.

TIPO	TAMAÑO	NOMENCLATURA
micro-muestras	≈4 mg	MA, MB, MC, MD, ME

Tabla 2. Muestras suministradas del túnel "Bebedores". 40

TIPO polvo	TAMAÑO ≈250 g	NOME Barro, Te
		1
	23	
21		
36	1	
	T	

Tabla 3. Muestras de suelos regionales.

METODOLOGÍA

La metodología propuesta es desde el área de Ciencia e Ingeniería de Materiales e incluye análisis y protocolos desde las áreas de Ciencias de la Tierra y Arquitectura, considerando los requerimientos del análisis de patrimonio cultural y las cuestiones respecto a la información arqueológica que posee el caso de estudio, así como su conservación. En la **Figura 11** se presenta el

NCLATURA

lepetate, Arena, Ceniza 2013(única 1mg), Suelo1

Figura 11. Diagrama del protocolo de análisis general.

INFORMACIÓN SOBRE LA APARIENCIA MACROS-CÓPICA Y MICROSCÓPICA DE LOS ADOBES

Se presentan en este apartado las técnicas empleadas para obtener información sobre la micro textura, micro morfología y agregados del suelo, así como el color de los adobes.

MICROSCOPÍA ÓPTICA

Se utilizó un microscopio portátil Zarbeco USB par observación in-situ de la superficie de los adobes y u microscopio petrográfico Primotech Carl Zeiss para lo análisis petrográficos con amplificación de 40x y 60x ambos del Laboratorio de Conservación, Diagnóstico

MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM)

El microscopio JEOL JSM 5600-LV con condiciones de 20 kV y WD=21 mm en modo de electrones retrodis persados y el microscopio de alta resolución de emi sión de campo JSM-7800F (Schottky Field Emission-

ra	Caracterización Espectroscópica de Materiales (CODI-
In	CE) de la CNCPC-INAH. La observación general de las
) S	muestras se realizó en un microscopio estereoscópico
Х;	Olympus SZX16 del Laboratorio de Cristalofísica y Ma-
У	teriales Naturales del Instituto de Física de la UNAM.

е	Scanning Electron Microscope, FE-SEM) del Laboratorio
<u>}</u> -	Central de Microscopía (LCM) del Instituto de Física de
-	la UNAM fueron empleados para los análisis de micro-

Las mediciones colorimétricas se hicieron con un espectrómetro Ocean Optics USB4000 con una lámpara de halógeno (360-2500 nm) y los resultados se reportaron en el espacio de color CIELab, el cual es un sistema cuantitativo que mide la luminosidad (L*) en un rango de O a 100, la coordenada a* es la relación verde-rojo y la coordenada b* es la relación amarilloazul. Estas coordenadas se convierten en atributos de color como son la saturación o croma (C*) y el tono (h) mediante fórmulas trigonométricas. UNAM. Las partículas empleadas fueron 3MeV de pro-Las áreas de los picos de rayos X en los espectros fueron procesados con el código AXIL [52]. La eficiencia del sistones con un diámetro de haz de 1.5 mm y mediciones de 600s por muestra para obtener buena estadística. Los tema de detección fue medido usando los estándares de referencia: NIST SRM-2704 y NIST SRM-2711. El rayos X de elementos ligeros se detectaron por un detector Si-PIN AMptek (150 eV de resolución para el pico código PIXEINT [53] para análisis de muestras gruesas Mn-K α) con un Colimador de Ta de 1.5 mm de diámetro se empleó para calcular las concentraciones de cada y un flujo de He para mejorar la detección de los rayos X elemento en las muestras, considerando la eficiencia de baja energía. Los elementos de alta energía se detecdel detector taron simultáneamente con un detector Canberra LEGe de filtro de aluminio de 60 µm de grosor [51].

DIFRACCIÓN DE RAYOS X EN POLVO (XRD)

Los análisis de difracción de rayos X se realizaron en el Laboratorio de Refinamiento de Estructuras Cristalinas (LAREC) del Instituto de Física de la UNAM.

CONFIGURACIÓN BRAGG-BRENTANO

ANÁLISIS DE EMISIÓN DE RAYOS X INDUCIDOS POR PARTÍCULAS (PIXE)

La composición elemental se determinó mediante la técnica PIXE. Las muestras pulverizadas y compactadas 44

en pastilla fueron irradiados en la línea de haz externo del acelerador Pelletron del Instituto de Física de la Se utilizó un difractómetro D8 Avance con radiación Cu K α (1.54 Å) en la configuración Bragg-Brentano, rango angular 2 θ de 5-90 grados y las fases minerales se identificaron comparando con la base de datos ICDD.

INFORMACIÓN SOBRE LA COMPOSICIÓN DE LOS ADOBES

En este apartado se presentan las técnicas empleadas para determinar la composición mineralógica y elemental de las muestras y realizar la cuantificación tanto de materiales cristalinos como amorfos. En esta configuración se hicieron las medidas a temperatura ambiente en un difractómetro marca Bruker modelo D8 Discover con un monocromador Johansson en el haz primario y un detector de banda unidimensional de silicio. La radiación fue de Mo K α 1 (0.7096 Å) con el tubo de rayos X operando a 45 kV y 45 mA. El tubo capilar kapton se llenó de acuerdo a Von Dreele **[54]** y se montó en el eje rotatorio del equipo. La geometría del instrumento fue la siguiente: una apertura antiscattering de 6 mm, velocidad de rotación de la muestra de 5 rpm, ángulo de inicio (2 Θ) de 4° y ángulo final (2 Θ) de 60° con un paso de 0.02, y un tiempo de paso de 17 s.

MÉTODO RIETVELD

Se realizó el análisis por el método Rietveld de los difractogramas empleando los software GSAS y EXPGUI [55,56].

ESPECTROSCOPÍA INFRARROJO (FTIR)

Las muestras se midieron en un equipo Bruker FTIR Alpha en modo de reflexión total atenuada (ATR) con una celda de diamante en el intervalo de 400-4000cm⁻¹ con una resolución de 4 cm⁻¹ y 24 scans en el Laboratorio Nacional de Ciencias e Investigación para el patrimonio Cultural del Instituto de Física de la UNAM.

RESONANCIA MAGNÉTICA NUCLEAR EN ESTADO SÓLIDO (MAS-NMR)

Los espectros de resonancia magnética fueron adquirifue referenciado a una disolución acuosa de $Al(NO_2)_2$ dos en condiciones de ángulo mágico (54.74 grados) como estándar externo. Los espectros del núcleo ²⁹Si se en un espectrómetro Bruker Avance II 300 con un camadquirieron a una frecuencia de resonancia de 59.595 MHz con un programa HPDEC (High Power Decoupo de 7.05 T en el Laboratorio de Resonancia Magnética Nuclear de la UAM-Iztapalapa. Se midió el núcleo pling Pulse Program), la frecuencia de giro fue de 5 kHz de ²⁷Al con un programa de pulsos de $\pi/2$ con una y el tetrametilsilano (TMS) se usó como referencia, los duración de 2 en la frecuencia de Larmor de 78.172 tiempos de relajación fueron de 90 s. Los espectros se MHz, una frecuencia de giro de 10 kHz y un tiempo de analizaron y deconvolucionaron utilizando el software relajación de 0.5 s. El desplazamiento químico del ²⁷Al MestReNova.

ANÁLISIS TÉRMICOS

Se realizó el análisis termogravimétrico (TGA) en conjunto con calorimetría diferencial de barrido (DSC) en un equipo TA SDTQ600 del Laboratorio de Cristalofísica y Materiales Naturales del Instituto de Física de 10°C/min. de la UNAM. Las condiciones experimentales fueron: flujo de aire seco en un intervalo de temperatura de 25°C a 1200°C con una velocidad de calentamiento de 10°C/min.

47

INFORMACIÓN RELEVANTE SOBRE LAS PRO-PIEDADES DE LA TIERRA COMO GEOMATERIAL

En este apartado se presentan los análisis realizados para evaluar las propiedades físicas de las muestras que son relevantes para el suelo como material de construcción y arqueológico. Además, la prueba de

absorción de agua empleada para estudiar el comportamiento y resistencia de adobes modelo ante este fenómeno.

ANÁLISIS DE ADSORCIÓN DE NITRÓGENO

(Brunauer-Emmett-Teller) y el diámetro de poro prome-Se degasificaron las muestras a temperatura ambiente durante 16 h en un equipo BELprep II vac y postedio con el método BJH (Barrett-Joyner-Halenda) [58]. El riormente, se registraron las isotermas de adsorciónanálisis se realizó en el Instituto de Investigaciones en desorción de nitrógeno a 77 K en un equipo BELsorp Materiales de la UNAM. Il mini. El área superficial se calculó con el método BET

ANÁLISIS GRANULOMÉTRICO

Se tamizaron mecánicamente los adobes de acuerdo a la norma ASTM-D422 [57]en el Laboratorio de Materiales de CYAD de la UAM Xochimilco. El análisis de las partículas menores a $\mathbf{\Phi}$ =4(0.063 mm) por vía húmeda utilizando el foto sedimentógrafo Analysette20

fue realizado por la Dra. Lilia Arana en el Laboratorio de Sedimentología Volcánica del Instituto de Geofísica de la UNAM. Los datos obtenidos fueron normalizados al 100% y los resultados graficados para su debida interpretación.

LÍMITES DE ATTERBERG

El estado sólido del suelo se define cuando está com pletamente seco, al agregar agua pasa al estado semi sólido, plástico y finalmente líquido. Para definir esto

٦-	límites se utilizó la copa Casagrande de acuerdo a la
-	norma ASTM D4318 Standard Test Methods for Liquid
)S	Limit, Plastic Limit and Plasticity Index of Soils [59].

Se realizaron pruebas de barrido de amplitud con un reómetro Physica MCR 101 de la marca Anton Parr. Se trabajó en la geometría de placas paralelas con un diámetro de 50 mm, con una cámara de saturación de humedad para prevenir la evaporación del agua en la muestra. Se aplicaron los siguientes parámetros: distancia de plato 1 mm, periodo de reposo previo a la medición de 5 s, amplitud de deformación de 0.1 a 100% y los experimentos se realizaron a dos frecuencias: 1 rad/s y 10 rad/s.

Capítulo 4 ANÁLISIS GENERAL DE **ADOBES PREHISPÁNICOS** Y SUELOS DE CHOLULA, PUEBLA

ABSORCIÓN DE AGUA

La velocidad de absorción de agua se midió con tubos Karsten. Este método es aplicado como análisis no destructivo en patrimonio cultural edificado para determinar el comportamiento al absorber agua, el tubo Karsten es un tubo de vidrio abierto con un cuerpo cilíndrico al final, el cual se sella al contacto con el adobe mediante plastilina. El modelo del tubo puede ser horizontal o vertical dependiendo de la superficie a analizar. Una vez que el tubo está sellado el agua se añade y se registra el tiempo que tarda en absorber 4

mL de agua. La columna de agua ejerce una presión en la superficie 961.38 Pa. Esta presión corresponde con gotas de lluvia golpeando la pared con una velocidad de viento estática de 140 km/h perpendicular a la superficie [60].

La humedad superficial de los adobes se registró con un higrómetro portátil de contacto marca Delmhorst Modelo TECHSCAN A210.

Figura 12. Imagen de adobe que presenta diferentes colores y texturas.

En esta primera etapa, el contexto geológico fue el punto de partida para proponer el estudio de los adobes. Como en cualquier sistema químico, el conocimiento detallado de la materia prima es vital para la comprensión de los mecanismos involucrados en la formación del producto final. Por tanto, el estudio de los suelos utilizados para la fabricación de los adobes brinda información para la interpretación de los resultados de caracterización de los adobes.

Los estudios argueológicos en la Zona Argueológica de Cholula, Puebla relacionados con los adobes han sido enfocados en el diseño de la pirámide, así como su función como estructura con fines rituales [61], puesto que tanto la Gran Pirámide como los edificios circundantes tenían fachadas decoradas con pinturas murales ejecutadas sobre material de tierra. Los ado-

bes tanto del edificio principal como del edificio 3 se observan diferentes en cada área, tanto en color, textura y dimensiones (Figura 12) y está reportado que millares de adobes tuvieron que ser manufacturados para formar su núcleo y por tanto, los adobes eran producto de diversos grupos campesinos que poblaban las laderas del Popocatépetl [39,61].

El propósito de esta sección fue caracterizar los diferentes adobes y compararlos con las muestras de suelo natural para identificar la variabilidad en las muestras de manera cuantitativa y determinar si las diferencias visibles respecto a las cuales se hizo el muestreo corresponden con variaciones en composición, empleando una metodología que cumpla con los requerimientos de tamaño de muestra para análisis de patrimonio cultural.

METODOLOGÍA

Se observaron con el microscopio portátil todos los adobes y muestras descritos en la Tabla 1, Tabla 2 y Tabla 3 del capítulo experimental. A partir de esta observación se tomaron muestras para los diferentes análisis dependiendo de la cantidad disponible de material y

del requerimiento del análisis instrumental. El orden en que fueron realizados los análisis dependió de las necesidades de preparación de la muestra y su carácter destructivo. La metodología de estudio de esta etapa se presenta en la Figura 13:

Figura 12. Imagen de adobe que presenta diferentes colores y texturas.

OBSERVACIÓN MICROSCÓPICA

Las muestras en polvo se observaron con el microscopio estereoscópico, para describir el color, las fases y distintos tamaños de los agregados policristalinos. Para este estudio además se observó una muestra de ceniza recolectada de la expulsión del Popocatépetl en 2013. A partir de esta observación se seleccionaron muestras para preparación de láminas delgadas con la finalidad

de identificar las fases minerales mediante petrografía y observar también la alteración de los minerales [62-64]. Las muestras en polvo se montaron sobre cinta de carbono en portamuestras cilíndricos sin aplicar recubrimiento para observarse en SEM. El objetivo del estudio fue observar la micromorfología de los componentes de los adobes. Posterior al análisis las muestras se recuperaron.

CARACTERIZACIÓN ESPECTROSCÓPICA

Cada muestra se molió manualmente en un mortero de ágata y se colocaron en un portamuestras de vidrio para medirse por XRD en configuración de Bragg-Brentano. La identificación de las fases cristalinas del patrón de difracción se realizó en conjunto con los resultados de análisis petrográfico y análisis elemental mediante la técnica de PIXE.

La espectroscopía FTIR con el modo de ATR se seleccionó porque no requiere de preparación de la muestra lo que permitió que las mismas muestras empleadas para XRD se midieran. La información de los grupos funcionales fue complementaria para la

identificación de los minerales y para la identificación de posibles grupos funcionales orgánicos.

Las muestras previamente molidas se recuperaron y prepararon como pastillas para cuantificar la composición química con una sensibilidad de hasta ppm con la técnica PIXE (Figura 14). El fundamento de esta técnica es la ionización de los átomos presentes en la muestra por interacción con un haz de protones, provocando la emisión de rayos X característicos de los elementos presentes en el material. Uno de los aspectos importantes es su carácter de técnica de análisis no destructiva y su factibilidad para estudiarse en atmósfera de aire y por tanto directo sobre los objetos culturales.

Figura 14. Análisis PIXE en línea de haz externo del acelerador Pelletron del IFUNAM (izg.), muestras preparadas para análisis (der.)

Se seleccionó esta técnica por su alta sensibilidad para medir elementos ligeros como: Mg, Al, Si, K, Ca, Ti, Mn y Fe [65-67] en comparación con la técnica de fluorescencia de rayos X. El espectro obtenido se conforma por la superposición de las señales K α , K β , L α y L β de estos elementos y se realizó un análisis cuantitativo a partir de las razones de intensidades reales de los picos al utilizar materiales de referencia certificados. En todos los casos los espectros se ajustaron a un modelo considerando la eficiencia del detector. Los resultados cuantitativos se trataron estadísticamente con el software Statistica con un análisis de cúmulos para determinar las similitudes y diferencias en composición elemental de las muestras.

La espectroscopía de resonancia magnética nuclear provee una mayor profundidad en el conocimiento de la estructura molecular puesto que estudia los ambientes guímicos locales. Para el caso de los materiales cerámicos se utiliza la técnica en estado sólido, la muestra en polvo se hace girar a un ángulo de 54.74° el cual es denominado "ángulo mágico" para adquirir el espectro.

En particular los núcleos de ²⁹Si y ²⁷Al dan una señal que es sensible a la coordinación y ambientes locales, los cuales permiten determinar sitios específicos del silicio y aluminio en distintas coordinaciones. El desplazamiento químico observado varía del grado de condensación de las unidades de SiO, con otros grupos SiO, y con unidades de AlO, (Figura 15), siendo complementarios los resultados de ambos núcleos y por tanto es una herramienta poderosa para proveer información estructural de especies de aluminosilicatos de materiales cristalinos, semicristalinos y amorfos, los cuales están presentes en los suelos. Además, la intensidad de la señal de RMN es directamente proporcional al número de núcleos de ²⁹Si presentes, por tanto permite la determinación cuantitativa [68].

Q _n	δ (ppm)	Q_(1AI)	δ (ppm)	Q _n (2AI)	δ (ppm)	Q _, (3AI)	δ (ppm)	Q_(4AI)	δ (ppm)
Q 0 0510	60 al 73								
0 , 0 05:05: 0	76 al 83	0,(1A) 0-5-0-4 0	75						
0 2 0 510-51-0-51 0	86 al 91	0, (1AI) SEO SEO AI	85	0,(2A) ALOSIOA	80				
o , si 0 0 0	95 al 101	Q ₃ (1Al) _S 0 SEO SEO Al	95	0,(240) 0 A 0.5 0 A	90	0,(340 _N 0 N 0 510 A	85		
Q, SI 0 SI 0-SI 0-SI 0 SI	103 al 120	0,(1AI) 0 5+0-5+0-4. 0 5	97 al 1(15	Q ₄ (2A) _{SI} 0 AF0-SF0-A, 0 SI	92 al 99	0,(3A) 0 NO-S-O-AL	88 al 94	Q, (AAI) _{AI} 0 M-O-S-O-AL	83 al 97

Figura 15. Intervalos de desplazamientos químicos de 29Si para Qn(mAl) en silicatos y aluminosilicatos [69].

La técnica de resonancia magnética nuclear en estado de termogravimetría y térmico diferencial (TGA-DSC), sólido (MAS-NMR) es complementaria a XRD y FTIR para puesto que mediante la combinación de estas técnicas proveer información estructural de las especies de alumise determinan los cambios de fases cristalinas inducidos nosilicatos. A partir de los resultados de los análisis antepor la temperatura, los cuales son característicos de los riores se seleccionaron cinco muestras para ser medidas minerales presentes y esta información se utilizó para por MAS-NMR considerando que los rotores para el inscomplementar la identificación de las fases amorfas trumento de NMR permiten el empleo de una pequeña presentes [70]; además se comparó con referencias de cantidad de muestra y la muestra se puede recuperar. extractos naturales de mucílagos de nopal y sábila los cuales pueden ser usados como aditivos.

Finalmente, después de los anteriores análisis se separaron 50µg de muestra para los análisis simultáneos

DETERMINACIÓN DE COLOR

Las mediciones colorimétricas en el espacio de color CIELab (Figura 4) permiten tener una relación cuantitativa de la diferencia de color entre las muestras y por tanto, relacionarlo con su composición y granulometría [71,72]. Se hicieron tres mediciones en las muestras en forma de pastillas tanto secas como después de ser humectadas, con la finalidad de determinar si las diferencias observadas cuando los argueólogos tomaron las muestras con el túnel aún húmedo afectaron la percepción de color y por tanto, visualmente se consideraron diferentes.

Figura 16. Espacio de color CIELab.

RESULTADOS MICROSCOPÍA PORTÁTIL

La observación inicial de la superficie de los adobes con el microscopio USB mostró que el tamaño de partícula era muy pequeño con granos un poco más grandes

brillantes. A simple vista no se observaron materiales orgánicos como paja o pasto. Los granos tenían colores similares, amarillos, negros y transparentes. .

Figura 17. Imágenes de microscopía óptica portátil en adobes. a,b y c) detalles de superficie donde se observan los granos y agregados de color amarillo y negro d)detalle donde se observa una partícula de carbón. 58

La rugosidad de la superficie se relacionó con la obserprincipal y se seleccionaron cuatro adobes para tomar vación de microfracturas entre los granos. Sin embargo, muestras de 30 g para preparación de láminas delgadas. la apariencia general era de un conglomerado homogé-La selección se hizo considerando los adobes donde se neo de partículas con tamaño aproximado de 1 mm o observaron distintos tipos de granos así como por cantimenores. En zonas con pérdida de material fue donde dad de material disgregado. En el momento de tomar las se observaron los granos más grandes y se distinguieron muestras más grandes se fracturaron algunos adobes perfragmentos de carbón (Figura 17). mitiendo ver el material de relleno: pedazos de cerámica y obsidiana, así como fragmentos de carbón (Figura 18). Después de esta primera observación se tomaron mues-

tras en polvo (10 mg) de todos los adobes del túnel

2CM

Figura 18. Material de relleno en los adobes. A) cerámica y obsidiana b) fragmento de carbón.

MICROSCOPÍA ESTEREOSCÓPICA

Las muestras de los adobes del túnel principal observadas mediante un microscopio estereoscópico permitieron confirmar que los granos tienen las mismas características visuales, la diferencia principal fue la presencia

de granos de distintos tamaños. Se pudieron observar agregados muy unidos de material fino y granos de cristales completos con características ópticas transparentes y negras principalmente (Figura 19).

blancos pueden ser calcita (figura 20a) y otros se inter-Las características observadas de las muestras del túnel Bebedores son similares a las del túnel principal, pretaron como eflorescencias salinas (figura 20d) [73], se observa un tamaño de grano menor que los otros puesto que un mecanismo de deterioro en el túnel de adobes y en este caso en particular se observan granos Bebedores es la presencia de sales. blancos en algunas muestras. Algunos de estos granos

Figura 20. Imágenes con microscopio estereoscópico de adobes del túnel de Bebedores.

Figura 19. Imágenes con microscopio estereoscópico de adobes del túnel principal. 60

de identificar las fases minerales mediante petrografía y observar también la alteración de los minerales [62-64]. Las muestras en polvo se montaron sobre cinta de carbono en portamuestras cilíndricos sin aplicar recubrimiento para observarse en SEM. El objetivo del estudio fue observar la micromorfología de los componentes de los adobes. Posterior al análisis las muestras se recuperaron.

PETROGRAFÍA

En la Figura 22 y Figura 23 se muestran algunas imágene de las láminas delgadas de los adobes y los suelos estu diados. Los minerales identificados son plagioclasas, an fíboles, piroxenos, también se observó vidrio [63,64,74] así como distintos fragmentos líticos. Una característica que se observa es que los minerales identificados se en cuentran tanto en los adobes como en los suelos, sin em bargo tienen diferentes grados de alteración y tamaños. En las muestras de suelos se observan fragmentos líticos los minerales no se puede distinguir si este cambio de y cristales euhedrales con un tamaño promedio de 500 tamaño es realizado por el hombre o hay una selección µm. Hay una mayor cantidad de cristales en relación a de material que está previamente fracturado. la matriz. En los adobes los minerales se observan frac-

Figura 21. Imágenes de microscopio estereoscópico. A) arena b) ceniza c) suelo 1 d) tepetate

Figura 22. Imágenes de petrografía. A) barro con nícoles paralelos 10x, b) barro con nícoles cruzados 10x.

?S	turados y hay una relación alta de matriz contra cristales.
J-	La matriz es de material muy fino y también hay frag-
]-	mentos líticos de origen volcánico de diversos tamaños,
],	ocasionalmente se observan cristales completos.
a	
]-	La similitud de minerales y diferencia en tamaños es
]-	consistente con lo que se observó en el microscopio es-
<u>.</u>	tereoscópico, pero por la forma en qué están fracturados

Continuación Figura 22. Imágenes de petrografía. C y d) tepetate con nícoles cruzados 5x, e y f) suelo 1 con nícoles cruzados 5x.

Figura 23.1mágenes de petrografía de adobes del túnel principal a y b) nícoles cruzados 5x. 64

Continuación Figura 23.Imágenes de petrografía de adobes del túnel principal c)nícoles cruzados 10x, e, f y g) nícoles curzados 5x, d y h) nícoles paralelos 5x.

MICROSCOPÍA ELECTRÓNICA DE BARRIDO (SEM)

Las imágenes de SEM de los adobes muestran que hay un material aglutinante entre partículas (Figura 24) que no puede ser resuelto a mayor amplificación por el tipo

de preparación de muestra sin recubrimiento y trabajando con el instrumento en modo de bajo vacío para que se pueda recuperar la muestra.

En varios adobes tanto del túnel principal como de Belitificarse; pueden estar presente en horizontes de bedores se identificaron diatomeas de forma cuadrada suelo relacionados con depósitos de agua [75]. Las diatomeas sólo se identificaron en el suelo denominado pero sobre todo de forma tubular. Las diatomeas son depósitos de estructuras de sílice amorfa de organisarena el cual es de un estrato relacionado con un demos tipo plancton los cuales se acumulan y pueden pósito lacustre.

DIFRACCIÓN DE RAYOS X (XRD)

La identificación de las fases en XRD se realizó contraspor cuatro fases cristalinas principales: plagioclasa, cuarzo, piroxeno y anfíbol, una fase semicristalina de ópalo tando los patrones de difracción con los resultados de petrografía y análisis de composición elemental. Los CT y finalmente un fondo amorfo (Figura 25). Todas las muestras presentan estas fases pero varía en las intensidifractogramas muestran que los adobes del túnel principal y los adobes de la pintura mural están compuestos dades debido a la abundancia relativa de cada fase.

Figura 24.imágenes de SEM. A y b) adobe túnel principal c) adobe túnel Bebedores d) arena 66

Figura 25. Difractogramas comparativos. A) adobes túnel principal. Am (anfíbol), px (piroxeno), pl (plagioclasa), qtz (cuarzo), opCT (opalo CT), cal(calcita). 67

Las fases cristalinas identificadas para los adobes del túnel principal fueron:

- Plagioclasa: Fórmula de acuerdo a tarjeta ICSD 66127 Na_{0.499}Ca_{0.491}(Al_{1.488} Si_{2.506} O₈) Feldespato de composición intermedia con tres reflexiones principales en 3.20, 3.75 and 2.52 Å.
- Cuarzo: Fórmula de acuerdo a tarjeta ICSD 100341 SiO₂ Identificado por las reflexiones en 3.34, 4.25 y 1.81 Å.
- Piroxeno: Fórmula de acuerdo a tarjeta ICSD 159938 (Fe_{0.818} Mg_{0.156} Ca_{0.01} Mn0.016) (Fe_{0.149}

 $Mg_{0.767} Al_{0.084}$) ((Si_{1.848} Al_{0.152}) O₆) Piroxeno de Mg-Fe con una estructura ortorrómbica con reflexiones en 6.38, 2.12 y 2.48 Å.

• Hornblenda: Fórmula de acuerdo a tarjeta ICSD 76840 (Na_{0.31} K_{0.01}) (Ca_{0.83} Na_{0.09} Fe_{0.08})₂ (Mg_{3.47} $\operatorname{Fe}_{1.19}\operatorname{Al}_{0.28}\operatorname{Ti}_{0.06}^{0.01}$ (Si_{7.28} Al_{0.72}) O₂₂ $\operatorname{F}_{0.2}^{0}$ (OH)_{1.8} Anfibol con reflexiones en 8.43, 3.39 y 2.94 Å.

La fase semicristalina de ópalo fue identificado por su perfil de pico característico [76]. De acuerdo a la clasificación sedimentaria de los ópalos, se puede considerar que el ópalo presente es de tipo CT, debido a sus reflexiones en d = 4.0, 4.05 and 2.5 Å [77,78]. La fase del ópalo CT se modeló con los datos de las fases cristalina de cristobalita y tridimita.

- Cristobalita baja SiO, (ICSD 9327): Identificad con d₁₀₁ en 4.04 Å, d₂₀₀ en 2.48 Å y d102 en 2.84
- Tridimita SiO₂ (ICSD 153471): Identificada co d₃₁₁ en 4.32 Å, d₃₁₁ en 3.82 Å y d₃₁₅ en 2.97 Å.

Las fases cristalinas identificadas para los adobes de túnel Bebedores fueron:

- Plagioclasa: Fórmula de acuerdo a tarjeta ICSI 29361 Ca_{0.52}Na_{0.48}(Si, Al)₄O₆ Feldespato de con posición intermedia con tres reflexiones principa les en 3.20, 3.18 y 4.04 Å.
- Cuarzo: Fórmula de acuerdo a tarjeta ICS 100341 SiO₂ Identificado por las reflexiones e 3.34, 4.25 y 1.81 Å.

LOCACIÓN	MUESTRA	FASES CRISTALINAS	FASES SEMICRISTALINAS	FONDO AMORFO
Túnel principal Túnel Bebedores Suelos locales	12 adobes 4 adobes 1 adobe Arena Barro Ceniza Tepetate Suelo 1	pl, am, px,qtz pl, am, px,qtz pl, am, px,qtz,cal pl, am, px,qtz pl, am, px,qtz pl, am, px,qtz pl, am, px,qtz pl, am, px,qtz	OpCI OpCI no se identificó OpCI no se identificó OpCI no se identificó	sí sí sí no sí no

NOTA: AM (ANFÍBOL), PX (PIROXENO), PL (PLAGIOCLASA), QtZ (CUARZO), OPCT (OPALO CT), CAL (CALCITA).

as	• Piroxeno: Fórmula de acuerdo a tarjeta ICSD 56918 (Fe _{0.23} $Mg_{0.75} Al_{0.01} Ti_{0.01}$) (Ca _{0.79} $Na_{0.02} Fe_{0.17}$ $Mg_{0.04} Mn_{0.05}$) ((Si _{1.05} $Al_{0.07}$) O.) Piroxeno con una
da Å.	estructura monoclínica con reflexiones en 2.99, 2.51 y 2.52 Å.
n	• Hornblenda: Fórmula de acuerdo a tarje- ta ICSD 89801 (Na $_{0.82}$ K $_{0.18}$) (Ca $_{0.08}$ Na $_{1.84}$ Fe $_{0.06}$) (Mg $_{0.09}$ Mn $_{0.22}$ Fe $_{0.42}$ Alaga Tig $_{0.18}$) Sig $O_{0.02}$ (Q $_{0.42}$ (OH) $_{0.42}$
el	Anfíbol con reflexiones en 8.39, 2.71 y 2.70 Å.
D	Se identificó la misma fase semicristalina de ópalo Cl
n	del túnel se identificó además de las fasos anteriores
	la face calcita (CaCO : ICCD 20170) Mientras que en
d-	otra muestra la labradorita presentó otra composición química (Ca _{0,63} Na _{0,37} Si _{2,37} Al _{1,63} O ₈₇ ICSD 29361) y no se
D	identificó ópalo CT (TABLA 4) .
en	

Tabla 4. Resumen de fases identificadas por XRD en las muestras de suelos y adobes.
En los suelos las fases cristalinas identificadas fueron las mismas que las del túnel principal. Los cambios fueron en las fases semicristalinas y amorfas. La arena, el barro, el tepetate y el suelo 1 tienen un fondo amorfo, sin embargo el que tiene una mayor contribución es el suelo tepetate. En la ceniza y el suelo 1 no se identificó el ópalo CT (Figura 26).

En la Figura 27 se agruparon los difractogramas de los adobes del túnel Bebedores que son similares al suelo suelo tepetate. En la Figura 29 se compararon algunos adobes del túnel principal con el suelo tepetate y la muestra de ceniza. Los perfiles de los picos son variados y sus intensidades muestran la variación de abundancias de barro por intensidades en las fases principales, en la Figura 28 se compararon las otras dos muestras con sus respectivos suelos: la muestra MB es más parecida al relativas de cada mineral. suelo arena, mientras que, la muestra ME se parece al

Figura 26. Difractograma de los suelos locales. am (anfíbol), px (piroxeno), pl (plagioclasa), qtz (cuarzo), opCT (opalo CT).

Figura 27. Comparación de los difractogramas de los adobes de túnel de Bebedores (MA, MC y MD) con el suelo denominado barro.

Figura 29. Comparación de los difractogramas de los adobes del túnel principal (M1, M3, M5 y M7) con el suelo denominado tepetate y ceniza volcánica del 2013.

El ensanchamiento en los picos de los difractogramas es causado por los efectos de partículas de tamaño pe-queño y sílice no cristalina. El fondo amorfo puede tener diferentes contribuciones, de acuerdo al contexto geológico puede ser la fase de ópalo, SiO₂ amorfo de vidrio volcánico y sus materiales de alteración como puede ser el alófano o imogolita [79–81].

Los principales elementos identificados por PIXE fueron el K, Ca, Si, Al, Fe, Ti, Mg y algunos elementos traza como el Cr, Cu, Rb y Zr. Los datos elementales cuantitativos (wt%) se analizaron estadísticamente con un análisis tipo cúmulos para determinar grupos similares entre los adobes (Figura 30).

El análisis de cúmulos por STATISTICA mostró que de acuerdo a la composición elemental hay dos grupos

principales: uno compuesto por los suelos barro y tepetate (Grupo 1) y un segundo grupo compuesto por las muestras de adobes y arena fina (Grupo 2). Esto coincide con lo determinado por XRD. Algunas muestras del túnel principal son más parecidas a los suelos de tepetate y barro, pero hay un subgrupo dentro de estas muestras cuya composición elemental está entre la del grupo 1 y el extremo del grupo 2.

ESPECTROSCOPÍA INFRARROJA (FTIR)

Los espectros FTIR de los adobes y suelos (Figura 31) presentan las bandas principales para los silicatos TO, donde (T = Si o Al) están en aproximadamente 1000 cm⁻¹, 820 cm⁻¹, 525 cm⁻¹ [82]. En la región de 3700-3200 cm⁻¹ se

Figura 31. Espectros de FTIR. A) adobes túnel principal.

(2B, 2C y 2D) como se muestra en la Figura 30. Los subgrupos de muestras de adobes tienen una composición elemental entre los suelos del grupo 1 y la arena, esto se atribuve a la mezcla de suelos y las proporciones entre estos para la fabricación de los adobes.

detectan pequeñas señales correspondientes al grupo hidroxilo (OH) y en la muestra MC se observan adicionalmente las bandas de la calcita (CO₂) [83].

C)

76

Continuación Figura 31. Espectros de FTIR. b) adobes túnel bebedores, c) muestras de suelos.

La asignación de la bandas se presenta en la TABLA 5 y concuerda con las fases identificadas en XRD.

NÚMERO DE ASIGNACIÓN ONDA (cm ⁻¹) DE LA SEÑAL		NÚMERO DE ONDA (cm ⁻¹)	ASIGNACIÓN DE LA SEÑAL	NÚMERO DE ONDA (cm ⁻¹)	ASIGNACIÓN DE LA SEÑAL		
416	Anillo de silicato (apertura poro 10,) [84]	785	Elongación sim. entre TO ₄ [82,84]	1118	Elongación asim. entre TO ₁ [82,84]		
524	Flexión O-Si-O [85]	870	v2 Deformación asim, CO ₃ [82,83]	1453	Vibración por materia orgánica [86]		
667	Flexión fuera del plano Fe-O [87]	910	Deformación 1-0H-1 [82,85]	1431,1523	v3 elongación asim. CO ₁ [82,83]		
740	Elongación sim. 10, interno [82,84]	1000	Elongación asim. TO ₁ interno (82,84)	1634, 3351- 3700	Vibración grupo OH [82,85,86]		

Tabla 5. Asignación de bandas de FTIR. T=Si o Al.

Se debe notar que en algunas muestras se distingue hidroxilo en la región de 3300-3700 cm⁻¹ pueden estar la banda de vibración asociada a materia orgánica del atribuidas a grupos Si-OH, Al-OH y moléculas de agua; suelo (SOM por sus siglas en inglés). Los constituyenpero además, a vibraciones relacionadas con el grutes orgánicos ejercen gran influencia sobre las propiepo (Mg, Fe, Mn)-OH y puede ser indicativo de la presencia de ferrihidrita, un compuesto no cristalino con dades físicas del suelo como son la estructura, penetración y retención de agua. Las sustancias que proceden alta ocurrencia en suelos volcánicos [88,89]. Se debe de la descomposición de la materia orgánica son los considerar que no toda la materia orgánica estabiliza agentes que unen las partículas del suelo para formar el suelo, algunos compuestos simples como los azúagregados; esta materia, junto con las partículas tamacares, son ineficaces hasta que forman parte del tejido ño arcilla, tiene propiedades coloidales las cuales por microbiano, la materia orgánica cruda no ayuda a que lo general, mejoran las características de retención de se formen agregados estables, para que sea efectiva su aqua así como de infiltración [29]. acción se requiere que los microorganismos del suelo intervengan y/o compuesto minerales. En cambio las El efecto agregante de la materia orgánica está influengrasas, ceras, ligninas, proteínas tienen un efecto estaciada por la presencia de materiales amorfos como el bilizador directo [29,86].

alófano y la ferrihidrita [86]. Las vibraciones del grupo

RESONANCIA MAGNÉTICA NUCLEAR EN ESTADO SÓLIDO (MAS-NMR)

Los espectros de ²⁹Si presentaron varias señales debido a la complejidad y variedad de ambientes de silicio, ya que todas las fasés minerales tienen Si en su composición. Las señales fueron asignadas de acuerdo a los desplazamientos químicos reportados para minerales naturales y por tanto, pequeñas variaciones en los des-

plazamientos respecto a los reportados pueden ocurrir [68]. Una de las características específicas de NMR es la posibilidad de determinar especies tanto en estado cristalino como amorfo, por tanto se seleccionaron muestras que presentaron un fondo amorfo más pronunciado con la intención de identificar algunas de estas fases.

En los aluminosilicatos, los sitios de Si se denominan ción se muestran en la TABLA 6. usualmente Q (mAl) donde n (varía de 0 a 4) significa el número de tetraedros de silicio directamente unido al sitio y m es el número de Al e la primera esfera de co valencia [68].

Los espectros se presentan en la Figura 32 y la asignació general de señales después del proceso de deconvolu

Figura 32. Espectros de MAS-NMR de adobe del túnel principal (M1), túnel Bebedores (MB) y suelos (tepetate, barro y arena) a) núcleo 29Si.

núcleo de ²⁷Al.

A)

DS	La señal en -79 ppm es característica del alófano, co-
0-	rrespondiendo a una unidad Q_0 [90-92]. Las señales de
	-81 a -96 ppm corresponden a especies polimerizadas
	de silicio y las señales de -98 a -116 ppm indican que
'n	todos los átomos de silicio están coordinados con cuatro
U-	oxígenos en un arreglo tridimensional de tetraedros [93].

Continuación Figura 32. Espectros de MAS-NMR de adobe del túnel principal (M1), túnel Bebedores (MB) y suelos (tepetate, barro y arena) b)

ASIGNACIÓN DE LA SEÑAL	DESPLAZA- MIENTO QUÍMICO ²⁹ Si (ppm)	ASIGNACIÓN DE LA SEÑAL	DESPLAZA- MIENTO QUÍMICO 29Si (ppm)	ASIGNACIÓN DE LA SEÑAL
Alófano [94,95]	-101, -103	Silanol [96,97]	-111,-113	Ópalo (7 [93]
Plagioclasa, piroxeno y anfibol [68,98]	-105	Plagiodasa [68,98]	-115	Plagioclasa <mark>(68,98)</mark>
Piroxeno y	-108	Cuarzo [68,93]		
	ASIGNACIÓN DE LA SEÑAL Alófano (94,95) Plagioclasa, piroxeno y anfibol (68,98) Piroxeno y anfibol (68,98)	ASIGNACIÓN DE LA SEÑAL Alófano [94,95] Plagioclasa, piroxeno y anfibol [68,98] Piroxeno y anfibol [68,98]	ASIGNACIÓN DE LA SEÑALDESPLAZA- MIENTO QUÍMICO 29Si (ppm)ASIGNACIÓN DE LA SEÑALAlófano [94,95]-101, -103Silanol [96,97]Plagioclasa, piroxeno y anfibol [68,98]-105Plagioclasa [68,98]Piroxeno y anfibol [68,98]-108Cuarzo [68,93]	ASIGNACIÓN DE LA SEÑALDESPLAZA- MIENTO QUÍMICO 2°Si (ppm)ASIGNACIÓN DE LA SEÑALDESPLAZA- MIENTO QUÍMICO 2°Si (ppm)Alófano [94,95]-101,-103Silanol [96,97]-111, -113Plagioclasa, piroxeno y anfibol [68,98]-105Plagioclasa [68,98]-115Proxeno y anfibol [68,98]-108Cuarzo [68,93]-115

Tabla 6.desplazamientos químicos δ (ppm) obtenidos de la deconvolución de los espectros de ²⁹Si MAS-NMR.

La mayoría de las señales identificadas pertenecen a la plagioclasa, ya que la red de feldespato es sensible a pequeños cambio de Al/Si en la estructura **[98,99]**. Los desplazamientos químicos del piroxeno y el anfíbol son a campos bajos indicando que uno o más silicios se reemplazan por aluminio en la esfera de coordinación externa **[3,100]**.

La señal de las unidades de silanol corresponde a los grupos terminales de la mayoría de los minerales presentes. La señal en -108 ppm se asignó a cuarzo. La señal de ópalo CT en -111 ppm. La señal de -113 ppm también puede ser asignada a la fase de tridimita que se identificó en XRD para modelar la fase de ópalo **[91,93,101]**.

Los espectros de ²⁷Al consistieron en una señal de desplazamiento a campo bajo (-3 a 1 ppm) asociado con sitios de Al octaédrico, también se identificó una señal de Al (V). La contribución más grande del espectro fue la señal ente 52-56 ppm indicando predominantemente Al en un ambiente tetraédrico **[68,102]**.

ANÁLISIS TÉRMICO

Los resultados de los análisis térmicos se muestran en la **Figura 33** y las asignaciones para la pérdida de peso y su señal de DSC en la **TABLA 7**. En general las curvas de TGA tienen pérdidas de peso en un rango amplio de temperatura con escalones poco definidos. Los principales

Figura 33. Comparación de resultados de los análisis térmicos para las diferentes muestras.

B)

Continuación Figura 33. Comparación de resultados de los análisis térmicos para las diferentes muestras. 82

Continuación Figura 33. Comparación de resultados de los análisis térmicos para las diferentes muestras.

Las fases de plagioclasa y piroxeno no tienen eventos En esta técnica se comparó con una muestra de referencia de mucílago de nopal con el fin de determinar térmicos en el intervalo de análisis, los anfíboles sufren un proceso de deshidratación a 300°C y un proceso de si había rastro de materiales orgánicos de ese tipo. De deshidroxilación en el intervalo de 400-800°C [103]. El acuerdo con la temperatura de descomposición y el pico exotérmico presente en algunos adobes y en el pico angosto endotérmico asociado, estas característisuelo tepetate en aproximadamente 868°C puede ser cas no se observaron en ninguna de las muestras, siendo los resultados más similares a las características de atribuido a la temperatura de cristalización del alófano los suelos evaluados. [103,104].

D)

ANÁLISIS TÉRN	IICO GRAVIM	ÉTRICO	CALORIMETRÍA DIFERENCIAL DE BARRIDO					
TEMPERATURA (°C)	PÉRDIDA DE PESO (%)	PÉRDIDA DE PROCESO PESO (%) ASIGNADO		EXOTÉRMICO/ ENDOTÉRMICO	PROCESO ASIGNADO			
25-235	3.8	Evaporación de agua adsorbida	164	Endotérmico (ancho)	Evaporación de agua adsorbida			
235-572	4.0	Evaporación de agua estructural y deshidroxilación	449	Endotérmico (angosto)	Evaporación de agua estructural			
			869	Exotérmico (angosto)	Temperatura de cristalización del alófario			

Tabla 7. Resultados de análisis térmico.

DETERMINACIÓN DE COLOR

Las medidas de color de las muestras secas y mojadas confirmaron que la diferencia macroscópica es textural debido a variación en tamaño de partícula y no debido a composición, ya que el color es cuantitativamente

muy similar en adobes y suelos. La diferencia de color entre seco y mojado ($\triangle E^*$) es más evidente y tienen una mayor dispersión en las medidas de color (en promedio 24±5 unidades en el espacio de color CIELab).

Figura 34. Resultados en 3 dimensiones de colorimetría comparando muestras en seco y mojado.

En las muestras secas, hay diferencias menores a tres Las muestras cuando están secas presentan una comunidades que no son perceptibles con el ojo humano binación de colores rojo y amarillo, mientras que en el [105]. Los valores de $\triangle E^*$ entre muestras es menor a momento en que se mojan el color cambia en el eje b 3±2 unidades para el túnel Bebedores, mientras que hacia el color azul y por tanto la diferencia observable las diferencias entre las muestras del túnel principal es entre ellos es mayor (Figura 35). Asimismo, el cambio en de 9±5 unidades, indicando que la diferencia de color el valor de la luminosidad es drástico en el momento en entre muestras es perceptible pero no drástica como el que se mojan puesto que hay un cambio hasta de 20 cambio por humedad. unidades entre las muestras secas y húmedas (Figura 34).

- Bebedores seco
- Bebedores mojado
- Tunel Principal seco
- Tunel Principal mojado
- Suelos seco
- Suelos mojado

Figura 35. Gráfica en dos dimensiones de resultados de colorimetría comparando muestras en seco y mojado.

DISCUSIÓN

La observación mediante microscopía óptica en los distintos aumentos y mediante petrografía muestra que los agregados de los distintos adobes y suelos son similares en composición y tipo pero se diferencian en tamaño de grano, indicando fragmentación de los cristales.

Los minerales identificados por las técnicas de petrografía, XRD y FTIR son plagioclasa, hornblenda, piroxeno, cuarzo y ópalo CT tanto en los adobes del túnel principal como de las muestras del túnel de Bebedores. Los

suelos locales que coinciden con esta composición son el barro, el tepetate y el suelo 1. La composición de fases cristalinas coincide pero el fondo amorfo en los patrones de difracción coincide principalmente con el suelo denominado tepetate.

Mediante la técnica de FTIR no se detectaron grupos orgánicos que indicaran la presencia de un material orgánico mezclado con los suelos. Mediante la técnica de TGA-DSC se compararon los resultados con las se-

ñales de materiales de referencias como son los extracmismo origen (suelos volcánicos de la región de Cholula) puesto que la composición es similar, sin embargo, tos naturales de cactáceas y tampoco se identificaron hay diferencias en granulometrías que puede indicar señales de un material orgánico. que se seleccionan diferentes estratos de suelo por su granulometría o que se modifica el tamaño de grano En SEM se observa un material parecido a un gel que une los granos. El análisis elemental (EDS) en el gel de un determinado estrato. El suelo que es más pareindica que corresponde a un material con composición cido en composición cristalina y amorfa es el tepetate, de Si y Al. Esto coincide con los resultados de FTIR y sin embargo este suelo no sería el único empleado. La TGA-DSC donde no se identificó un material orgánico. propuesta de mezcla de suelos está sustentada tam-En las imágenes de SEM se identificó la presencia de bién en el hecho de la presencia de diatomeas en los diatomeas en las muestras de adobes, las diatomeas adobes pero no en todos los suelos sino solamente en (ricas en Si **[106]**) sólo se identificaron en la muestra de la arena, indicando una tecnología en cuestión de sesuelo denominada arena. lección de material, tamaño de grano y probablemente también en proporciones de los suelos.

El hecho de que no se haya detectado un aditivo orgánico se interpreta en esta primera etapa como indica-Las medidas de color de las muestras secas y húmedor de que el tipo de suelo empleado no requería un das en las muestras molidas confirmaron que la diferencia que se observa con el ojo humano de los difematerial adicional de estas características, lo cual se verificará en la siguiente sección de propiedades del suerentes adobes es debida a la variación en tamaño de lo. Está reportado que los suelos volcánicos naturales partículas y no a la composición, puesto que el color es similar en adobes y suelos. La variación del color es tienen materiales de tamaño arcilla los cuales actúan más evidente cuando los adobes están húmedos por la como el contacto entre partículas cristalinas [3-6]. Por tanto, influye en la plasticidad y en el comportamiento saturación del color. de contracción de los suelos; propiedades requeridas

para la fabricación de los adobes. Para complementar la información de composición se requiere un estudio de las propiedades físicas de los Los suelos volcánicos tienen como característica la adobes como granulometría y límites de Atterberg, además de la identificación precisa de los materiales presencia de materiales amorfos como el alófano o la amorfos que influyen las propiedades del suelo. En imogolita. El alófano se identificó en las muestras de este caso se consideran: el alófano, diatomeas (ópalo adobes y en el suelo denominado tepetate por TGA-DSC y MAS-NMR, este material puede ser también el A), vidrio, materia orgánica y ferrihidrita. Se concluye de este análisis general que la combinación de suelos gel que se observa en SEM que sirve como aglutinante regionales puede cumplir los requerimientos para elade los granos a nivel microscópico. borar los adobes empleados en la Z.A. de Cholula.

El análisis de los datos en conjunto indica que para fabricar los adobes se está seleccionando material del

Capítulo 5 EVALUACIÓN DE LAS **PROPIEDADES FÍSICAS DE ADOBES REPRESENTATIVOS Y EL** SUELO TEPETATE **DE CHOLULA**

El suelo desde el punto de vista físico se define como sos físicos que ocurren en el suelo causados por agenun sistema trifásico (sólido, líquido y gaseoso) y heterotes como la temperatura, luz, presión, agua, solutos y géneo. La física de suelos estudia los factores y proceorganismos **[29]**.

PROPIEDADES FÍSICAS DEL SUELO RELEVANTES PARA LA ARQUITECTURA DE TIERRA

La distribución del tamaño de partícula en los suelos es un parámetro que no cambia dentro del tiempo ordinario y en condiciones normales y es importante por su relación con la superficie específica de sus partículas. Para estudiar las partículas del suelo éstas se clasifican en grupos según su tamaño, estos diferentes grupos se llaman fracciones (Figura 36). El procedimiento analítico mediante el cual se separan se conoce como análisis granulométrico, el cual es una determinación de la distribución de los tamaños de partícula. Se emplea el método mecánico de tamizado para partículas grandes del suelo (mayores a 50 µm) y para partículas de menor tamaño, se emplea la sedimentación. En esta técnica las partículas del suelo están dispersas en un fluido viscoso y su proporción depende de la velocidad en que caen [29,107].

Las pruebas de laboratorio recomendadas para arquitectura de tierra son primeramente el análisis granulométrico y de sedimentación, cuyos resultados pueden ser interpretados en términos de la estabilización del suelo para diversos sistemas de construcción con tierra. Se han definido curvas óptimas de distribución de partículas, las cuales pueden dar indicaciones respecto a la distribución requerida para un suelo que va a ser empleado como material de construcción [108,109].

El estudio granulométrico del suelo se limita al análisis del tamaño de sus elementos constitutivos que condi-

cionan sus propiedades físicomecánicas, pero este no es el único parámetro importante para la construcción. Las arcillas presentan propiedades físicas y mecánicas variables y es necesario entonces, complementar con una serie de pruebas que permiten definir el contenido de aqua en suelos y su variación en el estado plástico. La determinación de los límites de Atterberg, permite prever rápidamente las posibilidades constructivas de un suelo de acuerdo a su consistencia [108,109].

La consistencia del suelo comprende los atributos del material que están expresados en su grado y clase de cohesión y adhesión o en su resistencia a la deformación y ruptura. Desde el punto de vista de la física de suelos, la plasticidad es una forma de consistencia. Es la capacidad del suelo para ser moldeado. Esto significa un cambio de forma sin romperse [29,107].

Durante todo este capítulo se utilizará la palabra arcilla por tanto es importante definirla. La definición general de arcilla en el diccionario es: un material terroso que es plástico cuando es húmedo y endurece cuando se pone al fuego, que se compone principalmente de partículas finas de silicatos de aluminio hidratados y otros minerales, y que se utiliza para ladrillos, azulejos y cerámica; suelo compuesto principalmente de este material que tiene partículas de menos de un tamaño especificado [110].

Tamaño	PHI	Depositos sedin	Depositos volcánicos		ASTM No. (U.S. Standard)	Tyler Mesch No.	
32.8 m 16.4 8.2 4.1	-15 -14 -13 -12	muy grueso grueso mediano fino	Bloque Block	grueso			
2.0 1.0 0.5 m 256 min	-11 -10 -9 -8	muy grueso grueso mediano fino	Canto Boulder		Bloque Block		
128 64	-7 -6	grueso fino	Guijarro Cobble	fino		2 .12"	21
32 16 8 4	-5 -4 -3 -2	muy gruesa gruesa mediana fina	Grava Pebble	grueso mediano	Lapillo Lapillus	1 1/4" 5/8" 5/16" 5	2-" 1 1/2" 1.05" .742" .525" .371" 3
2	-1		Gránulo Granule	fino		10	6 9
1 0.500 min 250 125 63	0 1 2 3 4	muy grueso grueso mediano fino muy fino	Arena Sand	gruesa mediana		18 35 60 120 230	16 32 60 115 250
31 15 8 4	5 6 7 8	grueso mediano fino muy fino	Limo Silt		Ceniza Ash		
2 1 0.5 0.2	9 10 11 12		Arcilla Clay	fina			
U. μm	13						

Figura 36. Clasificación de depósitos sedimentarios y volcánicos de acuerdo al tamaño de grano. Modificado de [111].

La AIPEA (Association Internationale pour l'Etude des Argiles) define arcilla como: un material de origen natural compuesto principalmente por minerales de grano fino, el cual es generalmente plástico si se le añade el contenidos de agua apropiado y se endurece cuando se seca o se calienta. Aunque la arcilla usualmente contiene filosilicatos, también puede contener otros materiales que imparten plasticidad y endurecen cuando se secan o calientan. Fases asociadas a la arcilla pueden incluir materiales que no impartan plasticidad o que sean materia orgánica [112].

Además, definen arcilla mineral como: minerales de tipo filosilicato y otros minerales que imparten plasticidad a la arcilla y se endurecen al secarse o calentarse [112]. La cantidad de arcilla necesaria para que un suelo sea plástico depende del tipo de arcilla mineral, así como las cantidades relativas de limo, arena y materia orgánica. La cantidad de arcilla define la variación de contenido de humedad que permite que sea plástico el suelo [29].

Según el contenido de agua un suelo puede ser líguido, plástico o sólido; los límites de Atterberg definen las fronteras convencionales entre estos estados (Figura 37). En el área de la arguitectura de tierra, a partir del estudio de las especificaciones relativas de los límites de Atterberg en diversas construcciones, se desarrolló una clasificación preferencial de estos para el suelo como material de construcción [108,109].

Tierra Arcillosa%

COMPORTAMIENTO REOLÓGICO

La definición de Reología es el estudio del flujo y deforcidad. Algunas de estas desviaciones son debidas a la mación de la materia bajo la influencia de una fuerza presencia de partículas coloidales o a la influencia de superficies [113]. El comportamiento reológico de una mecánica. Se refiere particularmente al comportamiento del material, que no puede describirse por los sustancia está definido por la respuesta que ofrece a un modelos lineales simples de la hidrodinámica y elastiesfuerzo externo o a una deformación [114].

10 20 30 40 50 60 70 80 90

Variación de los límites de Atterberg por el contenido de arena

Adaptado de [115].

Figura 37. Ejemplo de la variación de los límites de Atterberg por la granulometría. Redibujado de [108].

Ejemplo

Figura 38. Gráfica ideal de una prueba barrido de amplitud de deformación. Módulo de almacenamiento (G'), módulo de pérdida (G'') vs deformación (🕮).

Las características antes mencionadas son relevantes para los adobes, puesto que nos indican cómo es su comportamiento al fluir. Por ejemplo, en este caso qué tan fácil o difícil va a ser preparar la mezcla y vaciarla en los moldes para elaborar adobes, y/u otro tipo de sistema constructivo que requiera verter la mezcla de suelo y agua. Este comportamiento es determinante para el diseño de las mezclas además de las otras propiedades físicas mencionadas.

Las técnicas reológicas permiten determinar medidas físicas cuantitativas relacionadas con el comportamiento de la microestructura del suelo ante los esfuerzos [115]. Una gráfica típica de pruebas de barrido de amplitud de deformación (amplitude sweep test-AST) se presenta en la **Figura 38**. Se distinguen tres zonas de pérdida de elasticidad con una transición gradual de un carácter elástico (Fase 1: G'>G'') a un carácter viscoso (Fase 3: G'<G''). El intervalo viscoelástico lineal (LVE) y el límite de deformación (**Y**L) son parámetros que cuantifican la "elasticidad" almacenada de un material viscoelástico como el suelo [115], que se interpreta como la "rigidez" de la mezcla.

Por tanto, el objetivo de esta etapa es el estudio del tamaño de partícula, consistencia y otras propiedades físicas de dos adobes representativos del túnel principal y del suelo tepetate; con la finalidad de tener una comprensión completa del objeto de estudio así como la factibilidad como elemento de construcción creado a partir del suelo.

se separaron 0.5 g de muestra que se secaron durante Para el análisis de XRD, las fracciones de arena se mo-24 hr a 90 °C para eliminar el agua adsorbida y postelieron en un mortero de ágata mientras que la fracción riormente se registró el peso, se le añadieron 0.5 mL de fina que incluye limos y arcillas (menor a 0.074 mm) disolución de peróxido de hidrógeno 30 %vol, se dejano se molió. Se analizaron en configuración de Braggron reaccionar durante 24 hr. se secaron nuevamente a Brentano para determinar la composición presente de 90°C y se volvió a registrar el peso [117]. La diferencia cada mineral en las fracciones granulométricas. Con de peso es indicador de la materia orgánica MO prelos polvos molidos se realizaron pastillas, y se midió el sente; para cada muestra el experimento se realizó 5 color de cada fracción para comparar con los resultados veces y se calculó el promedio. previos de los adobes completos. deformación [114].

METODOLOGÍA

Con base en los resultados presentados en el capítulo 4 se seleccionaron dos adobes genéricos del túnel principal, los cuales se denominarán Adobe 1 (A1) y Adobe 2 (A2), así como el tipo de suelo que fue más similar en composición a los adobes: Tepetate (T).

Aproximadamente 2 Kg de cada uno se tamizó mecánicamente siguiendo la norma ASTM D422 para análisis de tamaño de partícula para suelos **[57]**. Posteriormente, se realizó un análisis por sedimentación de la fracción fina (tamaño de partícula menor a 0.074 mm) para completar el análisis de tamaño de partícula para tamaños de Φ mayor a 4. El diagrama general de esta etapa se presenta en la **Figura 39**.

Cada fracción granulométrica de los adobes se observó en microscopio estereoscópico con la finalidad de comparar con los análisis previos los resultados de los adobes completos. Se midió el pH en agua destilada de los adobes completos y de cada fracción granulométrica en una proporción suelo seco:agua de 1:5 [116] con tiras indicadoras marca Merck con intervalo de 1 a 14. Con la finalidad de tener un estimado del contenido de materia orgánica en los adobes y en cada fracción

Figura 39. Diagrama de metodología de análisis.

Se tomó una muestra de 500 mg de la fracción granulométrica fina para separarse por sedimentación en agua. Se separó en dos fracciones que se dejaron secar a temperatura ambiente y posteriormente se observaron con microscopio estereoscópico.

Después de haber realizado los análisis microscópicos y de composición se realizó la determinación de los límites líquido, límite plástico e índice de plasticidad de las muestras de acuerdo a la norma ASTM D4318 [59]. Para realizar la prueba de límites de Atterberg fue necesario tamizar otros adobes representativos que coincidieran con los tipos de adobes 1 y 2, puesto que

se requiere mucho material para la prueba. La determinación de los límites se realiza en la fracción fina del suelo, va que son los elementos sobre los cuales el agua actúa modificando su consistencia [108].

Con base en los resultados de proporción granulométrica, se trabajó con 3 mezclas diferentes presentadas en la Tabla 8 donde se varió la proporción de fracción fina con el objetivo de determinar la influencia de esta fracción granulométrica en su consistencia. La proporción original de los adobes es la Mezcla 2, está ajustada puesto que la prueba de Atterberg se realiza sin la fracción gruesa.

fina (0.149 mm a 0.074 mm) y limo (menor a 0.074 aproximadamente 3 mm de diámetro, como se muestra en la Figura 41. La diferencia entre el límite líquido y el mm). El análisis permitió que se determinara el área límite plástico se llama índice de plasticidad [29]. específica así como la microporosidad, propiedades que dependen de la composición del material y además mediante la isoterma de adsorción y desorción fue Para el análisis de las propiedades reológicas se fabricaron pastas modelo con las fracciones granulométriposible estimar la forma en que este proceso ocurre. cas de los adobes. Se realizaron tres pastas modelo El área específica se calculó con la ecuación BET, por con las mismas mezclas de la Tabla 8, con la cantidad la naturaleza del material a los datos se les dio un trade agua determinada por los resultados del índice de tamiento acorde a microporosidad. La distribución del plasticidad. Las mezclas se prepararon por duplicado a tamaño de microporos y volumen de microporosidad, temperatura ambiente (20°C). Se realizó un barrido de se determinó con el método MP el cual se calcula a partir del gradiente de la gráfica-t. La distribución de amplitud de deformación (AST) para identificar el comportamiento viscoelástico de las mezclas, el intervalo poros en un intervalo intermedio de tamaño se calculó lineal y el esfuerzo de cedencia. por el método BJH **[58,118,119]**.

Finalmente, se realizó el análisis de adsorción de nitrógeno por el método BET en las dos fracciones finas separadas mecánicamente de los adobes: arena muy

TAMAÑO DE GRANO (mm)	MEZCLA 1 (wt%)	MEZCLA 2 (wt%)	MEZCLA 3 (wt%)		
	Baja proporción en	Proporción	Alta proporción en		
	material fino	original de los adobes	material finos		
0.420 - 0.210	22	12	12		
0.210 - 0.149	36	28	22		
0.149 - 0.074	30	22	16		
menor a 0.074	12	38	50		

Tabla 8. Porcentaje en peso de las mezclas empleadas para pruebas de límites de Atterberg y propiedades reológicas.

El límite líquido señala el paso del estado plástico al estado líquido. Se midió con el aparato de Casagrande en el cual se colocó la mezcla de suelo (aproximadamente entre 50 g y 100 g) y se procedió como se describe en la Figura 40. 96

El límite plástico define la cantidad mínima de agua necesaria para que el suelo pueda moldearse, y se mide por el contenido de agua en un pequeño cordón realizado con la muestra de suelo sobre una lámina de vidrio, hasta que éste se quiebra en pedazos cuando alcanza

Figura 40. Instrumento y procedimiento para determinar el limite líquido en suelos de acuerdo a norma ASTM D4318.

Figura 41. Procedimiento para determinar el límite plástico en suelos de acuerdo a norma ASTM D4318.

RESULTADOS ANÁLISIS GRANULOMÉTRICO Y SEDIMENTACIÓN

Los resultados distribución granulométrica se presenta en la **Figura 42**. Se observa que la mayor cantidad de material en los adobes se encuentra en la arena muy gruesa y el limo. Sin embargo, se debe considerar que en el tamizado en seco pueden quedar terrones de material fino.

A)

Figura 42. Resultados de los análisis granulométricos.b) adobe 2, c) tepetate.

C)

Figura 42. Resultados de los análisis granulométricos. a) adobe.

La distribución de los tamaños de grano entre los adobes es muy similar, mientras que en el suelo tepetate la cantidad de arena gruesa es mayor y las proporciones son diferentes respecto a los adobes.

Los resultados del análisis por sedimentación en la Figura 43 muestran nuevamente que en la fracción arcilla y limo la granulometría en los adobes es similar, mientras que en el tepetate la distribución de la fracción fina cambia respecto a la de los adobes.

Continuación Figura 43. Resultados de los análisis de sedimentología. b) adobe 2, c) tepetate.

C)

Figura 43. Resultados de los análisis de sedimentología. a) adobe 1.

Los resultados combinados de ambos análisis se colocaron en el triángulo de textura de suelos presentado en la Figura 44 donde se localiza a los adobes en el área de suelo franco-arenoso. La localización no se está usando con fines de clasificación del suelo con el que se fabricaron los adobes puesto que no se realiza un estudio riguroso de clasificación, sino como comparación para

comprender e interpretar las propiedades físicas que se analizaron, respecto al conocimiento ya generado de los tipos de suelo. Por ejemplo, algunos autores que han escrito sobre arquitectura de tierra se recomiendo usar suelos "francos" puesto que tienen propiedades plásticas adecuadas para construcción [120].

ANÁLISIS MICROSCÓPICO

El suelo se comporta no sólo dependiendo del tipo y ta-El modelo propuesto en la Figura 45 es un esquema muy simplificado sobre la estabilidad de los cúmulos de manemaño de sus partículas sino cómo están unidas entre ellas, a veces ocurren como colección de granos indivira que se comportan como una unidad. La fracción arcilla duales como se observa en la Figura 46 en las imágenes (que se observa en la Figura 46 imagen i) está arreglada d, e y f. Pero pueden estar unidas como cúmulos de en paquetes de cristales orientados y estos dominios están variada estabilidad como en las imágenes a, b y c. unidos a partículas más grandes, la unión puede ser electrostática (D) o mediante materia orgánica (A, B y C).

Figura 44. Resultados de los análisis granulométricos en comparación con la clasificación de los adobes y suelo de acuerdo a su granulometría. Redibujado de [107]. Loam se puede traducir al español como suelo franco o marga.

D

Figura 45. Modelo del posible acomodo en un cúmulo de los granos tamaño arena, dominios arcilla y materia orgánica. Tipo de enlace: A, cuarzo-materia orgánica-cuarzo; B, cuarzo-materia orgánica-dominio; C, dominio-materia orgánica-dominio; D, dominio-dominio. Redibujado de [121].

106

Figura 46. Imágenes de microscopía estereoscópica del adobe 1 para las diversas fracciones granulométricas. a) arena muy gruesa, b y c) arena gruesa, d) arena media, e) arena fina, f) arena muy fina.

i) arcilla.

minuye, este material fino se separa dejando los granos limpios como en las imágenes d y e de la **Figura 47** donde Las imágenes de las diversas granulometrías del adobe 2 **(Figura 47)** tienen las mismas características que las del adobe 1 y nuevamente se observa que los granos más se pueden apreciar granos de minerales como piroxeno y grandes no son únicos sino que son cúmulos de material más fino uniendo otros granos, y conforme el tamaño disfeldespato.

Continuación Figura 46. Imágenes de microscopía estereoscópica del adobe 1 para las diversas fracciones granulométricas. g) limo grueso, h) limo fino,

107

Figura 47.Imágenes de microscopía estereoscópica del adobe 2 para las diversas fracciones granulométricas. a) arena muy gruesa, b y c) arena gruesa, d) arena media, e) arena fina, f) arena muy fina.

Continuación Figura 47. Imágenes de microscopía estereoscópica del adobe 2 para las diversas fracciones granulométricas. g) limo grueso, h) limo fino, i) arcilla.

DIFRACCIÓN DE RAYOS X

MEDICIÓN DE pH Y MATERIA ORGÁNICA

El pH medido en agua para los adobes 1 y 2 completos, así como para cada fracción granulométrica fue de 6. Los resultados de contenido de materia orgánica del suelo (SOM) se presentan en la Tabla 9. El contenido de

materia orgánica en el adobe completo es de 2.7% y por la variación de este contenido en cada fracción se determinó que el mayor contribuyente de este material está en la fracción fina.

MUESTRA	pH EN AGUA	SOM* wt%		
Adobe completo	6	2.7±0.09		
Arena muy gruesa	6	2.1±0.08		
Arena gruesa	6	2.4±0.02		
Arena media	6	1.7±0.01		
Arena fina	6	2.4±0.01		
Arena muy fina	6	0.9±0.01		
Fracción fina (limo y arcilla)	6	11.2±0.06		

SOM: Materia orgânica del suelo por sus siglas en ingle

Tabla 9. Resultados de contenido de análisis de pH y contenido de materia orgánica.

En la Figura 48 se observan los distintos difractogramas 0.074mm, incluye limo y arcilla), esto es debido a que de cada fracción para el adobe 1. Todas las fases cristalila fracción fina está compuesta de una cantidad mayor nas cuya identificación se expuso en el capítulo 4 están de material amorfo, que como ya se mencionó en el capresentes en cada fracción granulométrica. Se pueden pítulo anterior, puede ser una mezcla de alófano, vidrio, observar las diferencias relativas en intensidades, y que ferrihidrita, diatomeas y materia orgánica. La presencia con buena razón se pueden asociar a diferencias en de fondo amorfo en la fase más gruesa se puede explicomposición porcentual. Lo primero que se observa es car por las observaciones en microscopía óptica, donde un cambio en 10.5° del anfíbol, también se observa el se observa que esta fase está compuesta por cúmulos cambio en la reflexión de ópalo CT, los cambios en el de granos grandes con material fino entre ellos. Aun intervalo de 40 y 60° se atribuyen a los cambios geneasí, la fase amorfa es mayor en la fracción limo, que rales en las fases puesto que a ángulos altos todas las puede estar relacionada con el contenido de materia fases tienen diversas reflexiones. orgánica medida.

El cambio más notorio es el fondo amorfo en la fracción arena muy gruesa y en la fracción limo (menor a

Figura 48. Difractogramas de cada fracción granulométrica del adobe 1. Se señalan las zonas de cambios en intensidad de las fases.

En el adobe 2 nuevamente se observan cambios en las intensidades relativas en cada fracción de esta muestra (Figura 49), se observa el cambio en el anfíbol, de observa también que el perfil del pico alrededor de 20° cambia por la contribución del material amorfo. En este caso la diferencia de fase amorfa en la fracción fina es muy notoria en comparación con la de la fase gruesa y no sólo se observa en el fondo sino en los cambios del perfil en esta zona del difractograma.

Los cambios observados en las fracciones granulométricas de las dos muestras de adobe son características 112

que están ampliamente registrados como típicas del suelo: los minerales del material parental varían en su estabilidad y por tanto su ocurrencia en el suelo. El cuarzo domina frecuentemente la fracción no-arcillosa por su resistencia a la alteración, la muscovita y el feldespato potásico son más resistentes que otros minerales feldespáticos o ferromagnesianos. Los minerales secundarios incluyen yeso, calcita, dolomita, óxidos e hidróxidos de Fe, Si o Al. Los minerales anteriores están presentes principalmente en la fracción "gruesa" (mayor a 2 µm) pero no están confinados a ella, puesto que este límite es arbitrario [107].

Los minerales principales de la fracción arcilla son material amorfo a los rayos X. Las partículas de esta productos secundarios de alteración que se refieren fracción llegando hasta los 5 nm son los que influyen colectivamente como minerales arcilla, los cuales tieen el comportamiento físico del suelo como plasticidad nen estructuras cristalinas definidas que se pueden y contracción [107]. determinar por XRD pero además puede estar presente

Figura 49. Difractogramas de cada fracción granulométrica del adobe 2. Se señalan las zonas de cambios en intensidad de las fases.

MEDICIÓN DE COLOR

Las fracciones granulométricas a simple vista presentaron un mismo color pero distintos tonos, como se puede observar en la Figura 50. Los distintos tamaños de grano brindan una textura que para el ojo humano se traduce en diferentes colores.

FIGURA 50. FOTOGRAFÍA DE LAS FRACCIONES GRANULOMÉTRICAS.

114

valo también es amplio (mayor a 5 unidades) desde Los colores medidos están en la zona de rojos y amarillos, donde se agrupan todas las fracciones en un in-10 a 70 unidades, estas variaciones coinciden con las tervalo de rojo de 4 a 8 unidades, varían en el amarillo medidas en el capítulo 4 para los adobes completos desde 4 a 15 unidades, por tanto la variación en color (Figura 51). es respecto a esta coordenada. En luminosidad el inter-

Figura 51. Gráficas de las medidas de color en el sistema CIElab* para las fracciones granulométricas.

En el sistema CIELAb; el tono o matiz (h*) de cualquier color es el atributo de una sensación visual de acuerdo a la similitud de un área que es parecido a los colores rojo, amarillo, verde o azul o su combinación [105] Mientras que, la saturación o pureza (C*) de un color

r	es la diferencia visual del color respecto al gris neutral.
0	Estos dos atributos del color dependen de la ilumina-
)-	ción con que se observa el color y la percepción del ob-
].	servante, por tanto la medición instrumental elimina la
r	variable de percepción (Tabla 10).

MUESTRA	TONO (h*, u.a.)	SATURACIÓN (C*, u.a.)
Arena muy gruesa	66.9 ± 0.6	14.2±1.3
Arena gruesa	55.4 ± 3.6	7.3±4.2
Arena media	60.5 ± 6.0	14.1±1.6
Arena fina	63.9 ± 1.3	15.0±2.3
Arena muy fina	50.2 ± 1.1	11.8±0.3
Fracción fina (limo y arcilla)	24.5 ± 8.5	29.1±2.4

Tabla 10. Resultados de tono y saturación para las fracciones granulométricas.

	ADOI	BE 1	ADOBE 2				TEPE		
	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 1	MUESTRA 2	MUESTRA 3
Proporción de material fino	Baja	Media	Alta	Baja	Media	Alta	Baja	Media	Alta
Límite líquido (LL) Índice de plasticidad (IP)	27.2 3.7	29.0 5.4	33.1 8.7	26.5 4.9	28.9 6.3	32.4 4.29	33.7 14.1	34.4 9.1	36.6 11

Tabla 11. Resultados de prueba de límites de Atterberg.

La información de color en contraste con los resultados por XRD demuestra que las diferencias observadas no son debidas a composición sino a la textura por la distribución granulométrica, ya que cada fracción tiene distintos atributos de color que hacen que se diferencien y contribuyan a diferencias de color en los adobes completos.

LÍMITES DE ATTERBERG

Los resultados de las pruebas de Atterberg se presentan en la TABLA 11. Los cuales varían en función de la cantidad de material fino. Los valores de los límites de Atterberg para los adobes son muy similares para las primeras mezclas; mientras que estos límites difieren 116

en la tercera mezcla, lo cual puede ser resultado de la composición en cada fracción fina como se observó en XRD. El suelo tepetate es diferente en las mezclas con baja y alta proporción de material fino.

Los valores obtenidos se graficaron en la Figura 52 con limosas de baja plasticidad y el tepetate en el límite la finalidad de complementar la descripción del suelo entre ambas secciones. realizada por granulometría, sin fines de clasificación sino de determinar principalmente si las mezclas están A pesar de que los resultados indiquen que los suelos consideradas de baja o alta plasticidad. La mezcla 1 de son poco y medianamente plásticos para todas las ambos adobes se localizó en la zona de arenas limosas mezclas, se fotografiaron las mezclas (Figura 53) para mostrar que la mezcla 1 se fractura al secarse la pasta, de baja plasticidad, mientras que la misma mezcla en el tepetate se localizó en la zona de arcillas inorgánicas la mezcla 3 se deforma fácilmente y la mezcla 2 que es la que coincide con las granulometrías de los adobes de baja plasticidad. tiene un buen comportamiento. A pesar de que la clasificación indique ciertas propiedades, en realidad para La mezcla 2 (proporción original del adobe) para el adobe 2 y el tepetate se localizaron en la zona de arla finalidad del suelo como material de construcción la cillas inorgánicas de baja plasticidad, mientras que el mezcla adecuada es la 2, que se considera de baja plasadobe 1 se localizó en el límite entre la sección anterior ticidad. Sin embargo, una interpretación adecuada de estos resultados se tratará en la sección de discusión, ya y la sección de limos arcillosos y arenas. Finalmente, la mezcla 3 fue la que varió para todos los casos: el adoque la gráfica de la Figura 52 se diseñó para sedimentos be 1 se localizó en la sección de arcillas inorgánicas de [122]

baja plasticidad, el adobe 2 en la sección de arenas

Figura 52. Resultados de las pruebas de límites de Atterberg, en la clasificación de suelos uscs [107]

Figura 53. Imagen de las pastas utilizadas en las pruebas de límites de Atterberg. 118

ANÁLISIS PROPIEDADES REOLÓGICAS

En las mediciones de las propiedades reológicas se Los resultados de los parámetros medidos en las prueobserva el mecanismo de flujo de agua entre las partíbas se presentan en la Tabla 12. Se observa claramente culas puesto que las dos fuerzas principales causantes la influencia de la frecuencia con la que es aplicado el de la consistencia del suelo son la atracción molecular esfuerzo sobre las mezclas. Con la primera frecuencia (cohesión) y la tensión superficial (adhesión). La atracen las mezclas 1 y 2 se observó claramente la transición molecular se lleva a cabo por las cargas superfición de la fase elástica hasta la viscosa, pudiendo esciales de las partículas de arcilla y por la atracción de tablecer el rango lineal de deformación y el límite de deformación. Esto no se definió para la mezcla 3 en partícula a partícula. La consistencia como resultado de la atracción molecular será grande solamente si las parestas condiciones experimentales. Mientras que con la tículas de suelo están muy cerca una de otras y tienen frecuencia de 10 rad/s, las tres mezclas cedieron desde superficies relativamente grandes en común. Mientras el principio lo que determinó solamente el punto de que, la cohesión es mayor en suelos secos y decrece al cedencia de éstas. penetrar el agua entre las partículas ya que hace que se separen [29].

	0)=	1 rad/	s				(i)=	10 rad	d/s			
	MEZO	CLA 1	MEZ	CLA 2	MEZO	LA 3	MEZO	LA 1	MEZO	CLA2	MEZO	LA 3
Proporción de material fino	Baja	Media	Alta	Baja	Media	Alta	Baja	Media	Alta	Baja	Media	Alta
Rango lineal Y _c (%) Punto de cedencia (%)	0102 0.2 17,7	0.102 0.2 60.6	0102 0.2 15.9	0102 0.2 71.0	10.4	21.9	17.7	46.9	14.8	46.8	16.5	26.5

Tabla 12. Parámetros viscoelásticos de la prueba de barrido de amplitud de deformación.

Con base en la Figura 54 y Figura 55 se puede considerar que las mezclas 1 y 2 al tener una parte elástica debido al contacto entre partículas por el agua permite deformarlas y aun así mantener su "forma" esto es deseable desde el punto de vista de fabricación de los adobes, puesto que se pueden trabajar con poco esfuerzo, sin

embargo las mezclas son fácilmente susceptibles a deformarse irreversiblemente aumentando el esfuerzo, como se observa en la Figura 55, donde no se define la zona elástica de la gráfica, sino que inmediatamente inicia en la zona de transición.

Figura 54. Resultados de la prueba de barrido de amplitud de deformación con una frecuencia ω =1 rad/s. a) mezcla 1.

Continuación Figura 54. Resultados de la prueba de barrido de amplitud de deformación con una frecuencia ω =1 rad/s. b) mezcla 2, c) mezcla 3.

A)

C)

La mezcla 3 con poco esfuerzo se deforma irreversible mente, esto es debido al exceso de material fino que hace que se deforme muy fácilmente, estos resultado

Continuación Figura 55. Resultados de la prueba de barrido de amplitud de deformación con una frecuencia ω =10 rad/s. b) mezcla 2, c) mezcla 3.

e-	comprueban las mediciones de los límites de Atterberg
le	y las observaciones que conciernen a la Figura 53.
DS	

Figura 55. Resultados de la prueba de barrido de amplitud de deformación con una frecuencia ω =10 rad/s. a) mezcla 1. 122

Las isotermas de adsorción para los suelos son tipo IIB para los adobes en ambas granulometrías y tipo IIC para el tepetate en la fracción arena muy fina, mientras que en la fracción fina es tipo IIB **[58,118]**.

El efecto de histéresis que presentan todas las muestras es indicativo de que existen mesoporos (Figura 56). La histéresis está clasificada por la IUPAC como tipo H3 y está relacionada con la presencia de poros con forma de placas [58].

Las isotermas de adsorción anteriores son típicas de suelos alofánicos [119]. Las correspondientes áreas específicas determinada por BET (Tabla 13) resultaron ser menores a las reportadas en la literatura para suelos alofánicos [119] esto puede ser debido a dos razones: la primera es que no se realizó la eliminación de la materia orgánica con peróxido de hidrógeno para no alterar la muestra y la segunda es que las muestras de este estudio no están compuestas únicamente por alófano como las reportadas.

Sin embargo, la comparación entre las muestras señala que el área específica en la fracción arena es mucho mayor en el tepetate que en los adobes, pero no así en la fracción limo. Esto está directamente relacionado con las propiedades de fisisorción observadas en las isotermas, donde la fracción arena del tepetate es distinta a las demás y señala una mayor cantidad de mesoporos. En la fracción fina el adobe 1 fue el que tuvo mayor área específica, pero la diferencia no es tan drástica como en la fracción arena.

MUESTRA	VOLUMEN DE MICROPOROSIDAD (cm ³ /g)		ÁREA ESPECÍFICA BET (m²/g)	
	Fracción arena muy fina	Fracción fina (limo y arcilla)	Fracción arena muy fina	Fracción limo grueso
Adobe 1 Adobe 2 Tepetate	0.0089 0.0089 0.0084	0.0105 0.0067 0.0077	34.56 30.98 103.63	44,55 31,16 24,92

Figura 56. Isotermas de adsorción y desorción de nitrógeno. a y b) adobe 1, c y d) adobe 2, e y f) tepetate.

La gráfica del diferencial del volumen del poro contra el radio del poro determinado por el método BJH se muestra en la Figura 57. Se observa que en la fracción arena, el tepetate tiene una mayor distribución de volumen de poros en el intervalo de 2.5 a 11 nm, mientras que los adobes presentan una pequeña distribución en el intervalo de 5 a 11 nm. Esta distribución de los adobes es atribuida a la agregación de partículas muy pequeñas y no a mesoporos como en el caso de la arena. En la fracción fina la distribución de volumen poros es muy baja destacando sólo en un intervalo muy pequeño los adobes (3 a 12 nm). Sin embargo, igual que en el otro caso, también se atribuye a la agregación de partículas muy pequeñas [119].

En la gráfica del diferencial del volumen del poro contra el radio del microporo determinado por el método MP sí es posible definir una distribución de tamaño de poro como se puede observar por los picos en distintos puntos de la gráfica de la Figura 57. Para la fracción arena el tepetate nuevamente domina y tiene un mayor volumen de poros en 0.3 nm y en 0.8 nm. Mientras que los adobes tienen un comportamiento muy similar con un máximo en el intervalo de 0.3-0.4 nm pero una distribución en el intervalo de 0.5 nm a 1 nm.

En la fracción fina se observa una distribución similar para las tres muestras, hay un pico en 0.35 nm para el adobe 1 y el tepetate, y un pico en 0.3 para el adobe 2. Posteriormente las tres muestras tienen una distribución de tamaño de poros en el intervalo de 0.5 a 1 nm.

Figura 57. Resultados de la distribución de tamaño de poro. a y b) rango intermedio de poros calculado por método BJH.

DISCUSIÓN

Las propiedades físicas de los adobes y el suelo tepetate En los adobes del caso de estudio se observó que no se evaluaron de acuerdo con los requerimientos estacontienen gravillas pero en cambio hay fragmentos de cerámica y obsidiana. La mayor cantidad de material blecidos en el área de arquitectura para un material de construcción. La distribución granulométrica promedio estuvo en el intervalo de fracción arena media y fina. Por tanto, de acuerdo con las granulometrías reportade los adobes se muestra en la Figura 58 en comparación con las regiones consideradas de un material esdas [108] los adobes son estables como material de table para tapia pisada y blogues prensados que es lo construcción aunque se consideren en estado detemás similar a los adobes. La escasa cantidad de agua riorado. Una característica especial de los adobes fue requerida y la forma en la que se comprime el suelo son la distribución de tamaño de partícula definida en los las variaciones principales entre estos, por eso tienen adobes para las partículas limo y arcilla (Figura 43), lo distribuciones de tamaño de grano similares. que coincide con lo observado en el capítulo anterior

Continuación Figura 57. Resultados de la distribución de tamaño de poro. C y d) rango de microporos calculado con método MP a partir de t-plot.

Capítulo 6 IDENTIFICACIÓN DE MATERIALES SEMICRISTALINOS Y AMORFOS EN LA FRACCIÓN FINO DE ADOBES REPRESENTATIVOS Y EL SUELO TEPETATE DE CHOLULA

La identificación precisa de los componentes amorfos El alófano natural es difícil de identificar debido a su del suelo se realiza por diversos métodos estandariestructura amorfa. Está presente principalmente en zados y ampliamente probados. Sin embargo, existen la fracción arcilla del suelo y por tanto no puede ser muchas dificultades para aplicar estos métodos-que detectado en un análisis petrográfico. La composición química es extremadamente variable y con la fórmula requieren un muestras de varios gramos-por las restricciones impuestas en las muestras relacionadas empírica mSiO₂.Al₂O₂.nH₂O [90,123,124]. Debido a con patrimonio cultural, por tanto al proponer una la presencia de Si y Al en otras fases minerales, los metodología de identificación para estos materiales análisis elementales realizados por fluorescencia de se deben realizar métodos analíticos diseñados para rayos X u otras técnicas basadas en rayos X no son micromuestras. concluyentes. Consecuentemente, el alófano desafía las técnicas instrumentales estándares para mineralogía.

El material parental, el alto contenido de agua y los cambios irreversibles ante el secado, son considerados entre los factores importantes para la identificación regular del alófano en muestras de suelo. Si las muestras cumplen con estos criterios, se emplean métodos químicos destructivos para identificar el contenido de amorfo y su cuantificación al promover una reacción con NaF, HCl, NaOH, o bien la extracción con oxalatos o la adsorción de fósforo [125-130]. Esta identificación, aunque estandarizada, no es precisa, por ejemplo el oxalato puede disolver completamente el alófano, de manera que la cuantificación del alófano mediante técnicas no destructivas como la resonancia magnética nuclear con el núcleo ²⁹Si es recomendada como alternativa, y además requiere poca cantidad de muestra.

Las técnicas como espectrometría de absorción atómica o detección espectro-fotoquímica se emplean en las extracciones de suelos para cuantificar Si y Al [125,131,132]. En años recientes, el alófano se identificó en la superficie de Marte brindando nueva información sobre este material a través de su caracterización realizada por técnicas espectroscópicas in situ [132-134]. En pocos estudios arqueológicos y de arquitectura de tierra se realizan análisis de los componentes de baja cristalinidad a pesar de su relevancia en las propiedades del suelo [27,32,95,125,135,136].

En esta etapa se aplicó una metodología para identificar de manera precisa el alófano y otros materiales amorfos en los 2 adobes y el suelo tepetate en forma de micromuestras.

Se tomaron micromuestras de 1 mg de la fracción fina (limo y arcilla) del Adobe 1 **(A1)** y Adobe 2 **(A2)**, así como del Tepetate (T). La metodología general de análisis se muestra en la **Figura 60**.

Figura 60. Diagrama de la me6gtodología de análisis.

CARACTERIZACIÓN MICROSCÓPICA

RESULTADOS ANÁLISIS MICROSCÓPICO

La parte A de cada muestra se colocó sobre cinta de carbón y se observaron por SEM sin recubrimiento. Las imágenes brindaron información sobre la micromorfología de las fases minerales. Como el alófano se esperaba en la fracción arcilla, la parte B de cada muestra se empleó para formar una suspensión en aqua y se sometió a tres procesos de separación por sedimentación por gravedad, se tomaron alícuotas de la disolución hasta que en la tercera separación el agua se observaba clara a simple vista.

El primer proceso de sedimentación duró 2 h, el segundo 3 h y la última sedimentación duró 1 h. Después, el agua fue sonicada por 20 min con la finalidad de separar las posibles aglomeraciones de partículas. Una gota de la suspensión de partículas tamaño arcilla (1µg mL⁻¹) se depositó en un portamuestras de SEM y se dejó secar a temperatura ambiente para que se depositaran las partículas; después a las muestras se les recubrió con oro para evitar problemas de carga. Se usó un microscopio electrónico de barrido de emisión de campo (FE-SEM) para observar la nanofase de alófano.

Se identificaron diatomeas de distintas estructuras en diatomea de forma tubular de alrededor de 100 µm. las muestras de adobes. En el adobe 1, se observaron entre otras estructuras (Figura 61). No se detectaron fragmentos de alrededor de 10 µm con diferentes diatomeas en la muestra de tepetate. forma. En el adobe 2 se observó frecuentemente una

Figura 61. Imagen de sem. a) adobe 1. En círculos se marcan las estructuras de las diatomeas.

CARACTERIZACIÓN ESPECTROSCÓPICA

El análisis espectroscópico incluye las técnicas aplicadas en el capítulo 4 pero llevadas a cabo únicamente en la fracción fina de las muestras seleccionadas. A partir de las medidas de XRD realizadas en el capítulo 5 se hizo una identificación de las fases presentes, después, las muestras se midieron mediante FTIR-ATR. Los análisis de ²⁹Si y ²⁷Al NMR-MAS fueron utilizados para diferenciar entre Al en ambiente octaédrico y tetraédrico, así como una variedad de ambientes de Si en las fases de alófano.

vidrio y ópalo, los cuales no pueden ser detectados sin ambigüedad por las espectroscopías anteriores [137]. La deconvolución de los espectros se realizó con curvas gaussianas para las posibles especies Qn(mAl).

La parte C de las muestras se empleó para los análisis TGA-DSC puesto que es destructivo. Los análisis térmicos determinaron transformaciones de fase inducidas por temperatura que ayudaron a identificar el alófano [70].

Continuación Figura 61. Imagen de sem. b) adobe 2. En círculos se marcan las estructuras de las diatomeas.

Las imágenes de la Figura 61 muestran que hay un material que agrega las partículas que no fue resuelto con este tipo de preparación de muestra ni con la resolución posible del equipo, por eso se decidió preparar especialmente el material para utilizar un microscopio electrónico de emisión de campo, con la finalidad de determinar si este material está constituido por nanopartículas de los suelos.

La Figura 62 muestra la superficie las partículas depositadas después de los tres procesos de sedimentación y sonicación para separar los agregados, las partículas de tamaño arcilla todavía están unidas unas a las otras, pero conforme se aumenta la magnificación, se observa que el aglutinante está formado por aglomerados de partículas esféricas con diámetros externos de aproximadamente 5 nm, lo cual corresponde al alófano de acuerdo con observaciones reportadas [92,124,125,132,138]. Estos agregados se observaron en todas las muestras.

Figura 62.Imágenes de FE-SEM del adobe 1. A) 3000x de las partículas depositadas, b) 35000x de la misma área, que muestra las nanopartículas esféricas del alófano.

Figura 62.Imágenes de FE-SEM del adobe 1. c) 80000x y d) 90000x que muestra las nanopartículas esféricas del alófano. 136

CARACTERIZACIÓN ESPECTROSCÓPICA

En la Figura 63 se presenta la identificación de las fases Las fases identificadas en XRD de las muestras fueron las mismas identificadas anteriormente en el capítulo cristalinas resaltando el fondo amorfo en la muestra del 4: plagioclasa, cuarzo, ortopiroxeno, hornblenda, y la adobe 2 con la finalidad de apreciar mejor este comfase semicristalina de ópalo [76]. En esta fracción se deponente; se señalan también, los posibles materiales tectaron pequeñas diferencias en la distancia interplaque pueden conformar esta fase como el alófano, dianar para la fase ópalo entre los adobes (d = 4.0, 4.05 y tomeas, materia orgánica, ferrihidrita y vidrio. 2.5 Å) y el tepetate (d = 4.05, 4.1 y 2.5 Å) **[77,78]**. Esta diferencia puede ser debido al diferente ordenamiento de los tetraedros de silicio.

Figura 63. Difractogramas de las muestras. Fases cristalinas: plagioclasa (pl), anfíbol (am), piroxeno (px), cuarzo (qtz), la fase de ópalo ct está marcada con estrellas en d=4.05 y 2.5 Å. En la parte de abajo, el fondo del difractograma se remarca en gris con los posibles componentes.

Con el objetivo de identificar la presencia de alófano en las muestras se emplearon las técnicas de FTIR y NMR-MAS. La presencia de minerales con orden a corto alcance, ensancha las bandas de absorción en el espectro de FTIR, lo cual dificulta la identificación de fases [125]. Los resultados de FTIR fueron consistentes con la interpretación de la presencia de alófano, la intensa banda de \mathbf{v} a Si-O-Si en 1038 y 906 cm⁻¹ junto con la banda de deformación fuera del plano de Si-O-Al en 524 v 418 cm⁻¹[92,127,129,132]. Las bandas débiles en 1485 cm^{-1} corresponden a la deformación de O₂-Si-OH, la vibración por deformación del H2O está en 1640 y el hombro en 688 cm⁻¹ es debido a la deformación fuera del plano del grupo OH [132]. La banda ancha en 3621 cm⁻¹ corresponde a vs OH (Figura 64).

La banda en 465 cm⁻¹ identifica el modo δ Si-O del ópalo CT[3,139]. El doblete en 791 y 740 cm⁻¹ está indicado como \mathbf{v} s Si-O-Si, que puede ser asignado al ópalo CT, cuarzo y alófano [3,125]. En este caso, se considera que su contribución principal proviene del alófano y el ópalo debido a la remoción de la fracción arena, que contiene usualmente los granos de cuarzo, como se presentó en el capítulo 5.

Las bandas en 1640, 688 y 500 cm⁻¹, previamente asignadas al alófano también tiene contribución de la sílice opalina de las diatomeas [132,140,141] además de que la banda en 688 cm⁻¹ está presente sólo en los adobes, coincidiendo con lo observado en SEM.

Las bandas en 1105 y 1002 cm⁻¹ corresponden a la elonrales, y por tanto puede haber ligeras variaciones. Esta gación asimétrica (\mathbf{v} a) del TO, de la plagioclasa, donde (T técnica es fundamental porque permite definir los cam-= Si o Al). Las bandas asignadas corresponden con estubios relacionados con las especies de sílice amorfa [68]. dios previos en alófano, ópalo y diatomeas, pero se debe considerar que todas las fases identificadas (cristalinas o no cristalinas) contienen los mismos grupos funcionales, entonces esta banda puede tener contribuciones de todas ellas y por lo tanto, es fundamental el tamizado de la muestra para el análisis con la finalidad de promover un enriquecimiento relativo de la fase amorfa. Mediante la técnica de FTIR no se identificaron las bandas correspondientes a ferrihidrita y sólo se observó una pequeña contribución por materia orgánica en el adobe 1 con la señal alrededor de 1450 cm⁻¹

Los espectros de NMR-MAS se presentan en la Figura 65. Las asignaciones se realizaron de acuerdo con los desplazamientos químicos reportados para minerales natu-

Figura 65. a) Espectros de ²⁹Si NMR-MAS. Los desplazamientos químicos asignados se presentan en la tabla 2.

Figura 64. Espectros de FTIR de las muestras.

En la Tabla 14 están las asignaciones realizadas sobre las señales después del proceso de deconvolución mostrado en la Figura 66. Las señales son similares a las identificadas en el capítulo 4, sin embargo por la preparación de la muestra hay mayor definición en las señales obtenidas. La señal en -79 ppm es característica del alófano y corresponde a una unidad Q_o (monogrupo aislado) **[90–92]**. Las señales de -81 a -96 ppm corresponden a especies de silicio polimerizado y las señales de -98 a -116 indican que todos los átomos de silicio están coordinados a cuatro oxígenos en un arreglo de 3D de tetraedros que comparten vértices [93]. Estas características espectrales indican que se trata de un alófano rico en aluminio [90-92].

B)

Continuación Figura 65. b) Espectros de ²⁷Al NMR-MAS.

La mayoría de las señales detectadas corresponden a la plagioclasa. El mecanismo de sustitución de Si por Al ocurre en la disolución sólida que va de anortita (CaAl₂Si₂O₈) hacia albita (NaAlSi₂O₂) y por tanto en este caso, se detecta la variación estructural de la plagioclasa con composición intermedia identificada por XRD. Doce señales se asignaron a la plagioclasa, en campo bajo de -81 a -89 ppm corresponde a Si localizado en las zonas cercanas a Ca, mientras que las señales de -92 a -113 ppm corresponden al Si localizado en zonas cercanas al Na [98,99].

Los desplazamientos guímicos en el piroxeno y el anfíbol están hacia campos bajos, indicando que uno o más átomos de silicio se reemplazaron por aluminio en su esfera 140

de coordinación externa. Las unidades Q₂ que caracterizan a los inosilicatos están en la señal alrededor de -92 ppm [3,100], pero las señales de las unidades Q₄(mAl) también pueden ser parte de la estructura del piroxeno y el anfíbol.

La señal en -108 ppm asignada al cuarzo se detectó en el adobe 1 y el tepetate, mientras que la señal de ópalo CT en -111 ppm se identificó en todas las muestras [91,93,101]. Es importante notar que la señal en -113 ppm puede ser también asignada a la fase tridimita, la cual se identificó por XRD. Las señales en -89 y -98 ppm también se asignaron al silicio amorfo como parte del vidrio volcánico [93]. volcánico [93].

A)

Figura 66. Deconvolución de los espectros de ²⁹Si NMR-MAS. a) adobe 1, b) adobe 2, c) tepetate.

_Observado . . Calculado Deconvolución

Observado Deconvolución
Los espectros de ²⁷Al consistieron en señales en un intervalo de -3 a 1 ppm, que corresponden al aluminio en ambiente octaédrico en productos tipo alófano **[68,94,95]**. En el caso del adobe 2 y el tepetate las muestras tienen una señal de Al en ambiente pentaédrico entre 35-37 ppm [68,102]. Sin embargo, la mayor contribución al espectro fue la señal entre 52 y 56 ppm, que indican la presencia de aluminio en un ambiente tetraédrico (Figura 65b).

ADOBE 1	ADOBE 1	TEPETATE		ADOBE 1	ADOBE 1	TEPETATE	
Desplazan	niento quír	mico (ppm)	Asignación	Desplazar	niento quir	nica (ppm)	Asignación
-78.9	-78.8	-79.2	Unidad OO alófano [90-92]	-96.5			zonas sódicas de la plagioclasa (98) piroxeno y antibol (68)
-81.1		-82.5	Zonas cálcicas de la plagioclasa [98,99] piroxeno y antibol [68]	-101.2, -103.5	-101.7, -103.5	-101.9	Q, plagioclasa [98] unidades de silanol [96]
-84.9	-84.0	-84.8	Zonas cilicicas de la plagioclasa (98,99), piroxeno y anfibol (68)	-105.4	-106.0	-105,4	O, plagioclasa (98)
-89.3	-89.5	-87.9	Sílice amorfo [93], zonas cálcicas de la plagioclasa [98,99]	-108.6		108.2	cuareo [91,93,101]
-92.7	-93.2	-91.4	O, del piroxeno y anfibol [100], zonas sódicas de la plagio- clasa [98,99]	-111.2	-111.7	-111.3	ópalo y silice amorfo [93]
-94.7	-94,8	-94.7	zonas sódicas de la plagioclasa (98), piroxeno y antibol (68)	-113.4		-113.8	0, [98]. ópalo [93]
-98.6	-99.3	-98.6	Sílice amorío [93]				

amorfo y el alófano puede tener agua unida en sitios con Los resultados de los análisis térmicos se muestran en la Tabla 15. Las moléculas de agua en las fases amorfas defectos y por tanto el proceso de deshidratación es conestán unidas por diferentes energías y por tanto, las tinuo en el intervalo de temperatura analizado [103]. curvas de análisis termogravimétrico tienen una pérdi-Las fases de plagioclasa y piroxeno no tienen eventos térmicos en el intervalo de 20-1200 °C. Mientras que el da de peso en un intervalo amplio de temperatura con características poco definidas. La pérdida de peso en las muestras se atribuye a la eliminación de moléculas de anfíbol tiene un proceso de deshidratación en 300 °C y un proceso de deshidroxilación en el intervalo de 400agua y grupos hidróxilo, en este caso, principalmente por la adsorción de las fases amorfas. La superficie del sílice 800 °C **[103]**.

ANÁLISIS TERMOGRAVIMÉTRICO			TRICO CAL	CALORIMETRÍA DIFERENCIAL DE BARRIDO				
Muestra	Temperatura (°C)	Pérdida de peso (%)	Proceso asignado	Temperatura (°C)	Exotérmico/ Endotérmico	Proceso asignado		
Adobe 1	25-235	3.8	Evaporación de agua adsorbida	164	Endotérmico (ancho)	Evaporación de agua adsorbida		
	235-572	4.0	Evaporación de agua estructural y deshidroxilación	449	Endotérmico (estrechia)	Evaporación de agua estructural		
				869	Exotérmico estrecho)	Temperatura de cristalización del alótano		
Adobe 2	25-253	33	Evaporación de agua adsorbida	148	Endotérmico (ancho)	Evaporación de agua adsorbida		
	253-552	3.7	Evaporación de agua estructural y deshídroxilación	444	Endotérmico (estrecho)	Biaporación de agua estructural		
				B73	Exotérmico (estrecho)	Temperatura de cristalización del alólano		
Tepetate	25-191	1.0	Evaporación de agua adsorbida	170	Endotérmico (ancho)	Evaporación de agua adsorbida		
	191-574	2.3	Evaporación de agua	421	Endotérmico	Evaporación de		
			estructural y deshidroxilación	591	(ancho)	agua estructural		
				868	Endotérmico (ancho)	inversión α – β del cuarzo		
				1088	Exotérmico (estrecho)	Temperatura de cristalización del alófano		
					Exotêrmico (estrecho)	Formación de mulita		

Tabla 14. Asignación de señales de la deconvolución del espectro de $\,^{\rm 29}\!{\rm Si}$ MAS-NMR en la figura 7.

Tabla 15. Procesos observados en los análisis térmicos de las muestras.

El pico ancho endotérmico en aproximadamente 150°C corresponde a agua adsorbida en los minerales, incluyendo el alófano y ópalo. Las diatomeas tienen endotermas estrechas en 120 y 210 °C que no fue posible definir debido a la contribución de otras fases, que ensancharon la señal por el proceso de deshidratación. El proceso de deshidroxilación de las fases antes de alófano y ópalo ocurre en 440°C [76,103,104,139,142,143].

La muestra de tepetate tiene un pico endotérmico en 591°C que corresponde a la inversión α - β del cuarzo [70,103,139]. El pico exotérmico presente en todas las muestras alrededor de 868 °C se atribuye a la temperatura de cristalización del alófano hacia una estructura tipo espinela [103,104]. El pico pequeño exotérmico en 1088 °C presente solamente en el tepetate se puede atribuir a la formación de mulita en estructuras tipo caolinita.

DISCUSIÓN

En la fracción fina de las muestras analizadas, no se identificaron arcillas minerales; debido al fondo amorfo y las propiedades de los suelos volcánicos, se sospechó que el alófano podía actuar como arcilla.

El alófano fue identificado por su señal característica en el espectro ²⁹Si MAS-NMR en -78 ppm. Las muestras de adobe 2 y tepetate también presentaron una señal de Al pentaédrico, indicando una estructura variada. Los análisis de DSC confirmaron la presencia del alófano para todas las muestras. En el tepetate, fue posible observar en el análisis DSC todas las transformaciones polimórficas de las estructuras tipo caolinita, lo que puede indicar una mayor cantidad de alófano en el suelo.

En los espectros de FTIR no se identificaron bandas en el intervalo entre 3400 y 1200 cm⁻¹ que indicaran la presencia de un aditivo orgánico. La observación del alófano en la imágenes de SEM como un material tipo gel que cohesiona partículas más grandes y su posterior observación en amplificaciones mayores confirmó

que este material se constituye de nanoesferas y por tanto actúa como agente aglutinante.

La fase semicristalina de ópalo CT se identificó por XRD y fue corroborada por FTIR y NMR-MAS. El ópalo puede ir de amorfo a una variedad poco cristalina de sílice que también contiene moléculas de agua (SiO₂.nH₂O); la variedad de ópalo CT tiene un tipo de apilamiento desordenado de cristobalita y tridimita por lo cual el arreglo es modelado de esa manera en los difractogramas. Sin embargo, está reportado por De Jong [93] que el ópalo CT no es una mezcla de microcristales de cristobalita y tridimita sino que exhibe un orden a largo alcance de empacamiento compacto de átomos de oxígeno, lo cual permite su identificación por XRD pero con orden a corto alcance de los átomos de silicio. Esta característica se identificó en el espectro de ²⁹Si MAS-NMR, donde los ambientes locales de Si identificadas corresponden a aquellos entre la tridimita y la sílice amorfa.

Las observaciones de diatomeas en las imágenes de SEM de las

dos muestras de adobe indica la presencia de ópalo A, el cual En general, las características espectrales entre las muestras fueron similares pero no idénticas. El alófano, ópalo CT y vidrio fueron puede ser precipitado por organismos marinos como en este caso, o puede precipitar de disoluciones saturadas de sílice formadas identificadas con precisión en todas las muestras con la metodocomo resultado de la interacción de agua con rocas ricas en sílilogía propuesta; las diatomeas se identificaron exclusivamente en ce como las cenizas volcánicas. Esta asociación explica por qué el las muestras de adobe. La presencia de ferrihidrita no se detectó ópalo CT ocurre en depósitos formados por la alteración de ceniza por las técnicas seleccionadas y en FTIR se detectó una banda volcánica. Las diatomeas están compuestas de este tipo de sílice débil y ancha sólo en un adobe; en contraste con las medidas opalina, pero como el vidrio y las diatomeas tienen característirealizadas en el capítulo 5, la materia orgánica del suelo debe escas espectrales similares a la sílice amorfa (como se identificó por tar en una concentración mayor para ser detectada por la técnica NMR-MAS), su observación en el SEM fue determinante para su espectroscópica. identificación [140].

Nuevamente la identificación de diatomeas sólo en los adobes En ópalo se hace una distinción entre el agua molecular y los grupero no en el suelo tepetate, confirma la contribución de suelos pos silanol en la estructura. Ambos grupos se dividen en tipo A (morelacionados con depósitos de agua. Esto confirma que la selecléculas aislados y grupos hidroxilos atrapados en la estructura) y ción de materiales por los Cholultecas no fue al azar, sino que tipo B (acumulación de moléculas de agua o grupos hidroxilo fuertenían conocimiento de las propiedades del suelo, conocimiento temente unidas por puentes de hidrógenos en la estructura o en utilizado para fabricar adobes de buena calidad que han perduralas superficies internas y externas). Gran parte del agua en la sílice do hasta este momento. opalina es molecular, con la mayoría de los grupos silanol siendo de tipo B **[78]**. Esta característica explica la pérdida de peso similar El análisis multiespectroscópico propuesto combinado con las técentre el agua tipo B y el agua adsorbida en el análisis de TGA. nicas de microscopía, permitió identificar no sólo el alófano sino

Las técnicas estándar de laboratorio para la detección de alófano los estándares de patrimonio cultural. Debe ser considerado que consideran la interacción no sólo para los productos alofánicos sino también para los complejos organo-aluminio que tienen una amplia cantidad de técnicas analíticas fue requerida debido a la aluminio activo que puede reaccionar con NaF o adsorber P. Por complejidad de una muestra de un material natural con una mezcla ejemplo, la prueba con NaF puede dar positivo en suelos con arcide minerales, por tanto la separación granulométrica y posterior prellas ácidas que son ricas en minerales arcilla con aluminio interlaparación de las micromuestras tuvo un papel importante. minar o con carbonatos libres, por tanto es necesario medir el pH y carbonatos por HCl primero. Ambas pruebas, están diseñadas Consecuentemente, la metodología propuesta puede ser de inpara ser empleadas en el campo, pero requieren una cantidad terés para otros estudios de geomateriales relacionados con el de muestra (del orden de gramos) necesaria para observar visualpatrimonio cultural, los cuales contienen materiales amorfos en mente efervescencia o algún cambio de color, y a partir de los anásu composición y permite sólo toma de micromuestras. Estos relisis, la muestra queda destruida o contaminada, lo cual evita que sultados han sido publicados recientemente [144]. se puedan realizar análisis posteriores en las muestras.

otras fases semicristalinas y amorfas, más allá de la identificación general de minerales, con la cantidad de muestra requerida para

Capítulo 7 CUANTIFICACIÓN DEL MATERIAL AMORFOS EN LA FRACCIÓN FINA **DE ADOBES** REPRESENTATIVOS Y EL SUELO TEPETATE **DE CHOLULA**

En el capítulo 5 se concluyó que la fase amorfa influye en las propiedades de los adobes, así como la necesidad no sólo de identificar sus componentes sino también de cuantificarlo. El análisis cuantitativo de fases (QPA) de materiales policristalinos usando XRD en muestras en polvo, puede ser utilizado para la determinación tanto de la fase cristalina como la fase amorfa cuando están mezclados [145].

Xs, w $Xa = \frac{1}{1-Xs,w}$ 1--Xs,c (Ec.1) 147

El cálculo de la fase amorfa con el método combinado de RIR-Rietveld (RIR- Relación de Intensidad de Referencia) deriva el contenido de material amorfo, a partir de una pequeña sobreestimación de un estándar cristalino interno en el refinamiento Rietveld de una mezcla [145,146], de acuerdo con la ecuación:

Donde Xa es la fracción de fase amorfa, Xs,w es la fracción añadida del estándar interno y Xs,c es la fracción refinada del estándar interno obtenido de una cuantificación de fases por refinamiento Rietveld aplicado a las fases cristalinas presentes (sin la contribución de la fase amorfa que se modela como fondo). Por tanto, son de suma importancia la selección del estándar y la cantidad añadida de éste a la mezcla.

Este método ha sido ampliamente utilizado para determinar la cantidad de material amorfo en cementos tipo Portland **[146,147]**, materiales vidriados **[148]**, mezclas orgánicas [149], rocas [150], productos farmacéuticos [151], productos de la combustión del carbón [152], así como ladrillos y tejas [153]. Por lo tanto, en una gran variedad de aplicaciones es importante determinar el contenido de material amorfo.

La aplicación de este método a mezclas complejas como en los materiales del suelo, requiere conocer toda la información contenida en un difractograma de una muestra en polvos [154]; esto tiene como fin determinar la mejor estrategia para el refinamiento Rietveld (Figura 67). Esta sección se enfocó en el procedimiento seguido para cuantificar las fases amorfas detectadas en las dos muestras de adobe y de tepetate caracterizadas en el el proceso de refinamiento Rietveld.

METODOLOGÍA PREPARACIÓN MUESTRAS PARA CUANTIFICACIÓN

Se tomaron muestras de la fracción fina de los adobes y 2 así como el suelo tepetate y se mezclaron con 10 % wt del material de referencia NIST SRM 674b siguiend el procedimiento establecido por Gualtieri [145]. Con l adición de 10 % wt del material de referencia es posibl calcular la cantidad de material amorfo de manera mu precisa en la muestra.

Figura 67. Diagrama que presenta la información contenida en un difractograma de muestra en polvo. Adaptado de [154].

1	
%	
0	
la	
le	
Jy	

Se seleccionó el estándar de ZnO debido a que no hay fases que contengan Zn en su composición, por lo tanto es un marcador adecuado tanto para XRD, como para los análisis elementales. El estándar se añadió a cada muestra y se homogeneizaron en un amalgamador. La metodología general del análisis instrumental se presenta en la **Figura 68**.

Debye-Scherrer (Figura 69) se prefirió debido a la minimización de los efectos por tamaño de grano y orientación preferencial. Otra ventaja, que tuvo el instrumento de laboratorio utilizado fue la radiación monocromática, la cual elimina los efectos de perfil debido a las radiaciones K α 2 y K β . 150

del instrumento fue la siguiente: una apertura antiscattering de 6 mm, velocidad de rotación de la muestra de 5 rpm, intervalo (2 θ) de 4 a 60° con un paso de 0.02 y tiempo por paso de 17 s.

Figura 69. A) Diagrama de configuración de Debye-Scherrer. b) Diagrama de configuración Bragg-Brentano. Adaptado de [154].

Los software GSAS y la interfase gráfica EXPGUI [55,56] se emplearon para el análisis Rietveld; el contenido de amorfo fue calculado de acuerdo con la metodología descrita por Gualtieri [145]. Primero, un archivo de parámetros del instrumento (archivo .ins) se creó a partir de la medición del estándar para perfil de LaB₆ en las mismas condiciones experimentales que las muestras

Long-tud de onda (Å) Intervalo 20

Fracción de polarización

Ancho de colas del pico

GW

LX.

HAL

de adobe y suelo; con la finalidad de determinar los parámetros de perfil por la contribución del instrumento. Estos parámetros obtenidos experimentalmente se muestran en la Tabla 16. El parámetro GV se fijó en cero siguiendo las consideraciones reportadas por Kaduk [155] y Von Dreele [156].

Como resultado de la baja simetría de las fases hay muesto permitió reducir al máximo el número de paráchas reflexiones que se solapan y por tanto es muy fácil metros refinados, y con ello asegurar los valores con un que el refinamiento conduzca a valores inaceptables significado físico. Después de la convergencia, los parápara los parámetros. Por tanto, la importancia de definir metros de red, tamaño de cristal y ensanchamiento por previamente los parámetros de perfil instrumentales; microdeformación se refinaron.

ANÁLISIS ELEMENTAL POR PIXE

La composición elemental se midió con PIXE en las QPA se comparó con PIXE, para determinar las diferencias elementales que se atribuyen a la presencia de la muestras ya preparadas con el estándar. La composición se calculó de acuerdo con la fórmula de cada fase y su fase amorfa, como se expondrá en los resultados. fracción obtenida en los resultados Rietveld. El análisis

Tabla 16.parámetros instrumentales de perfil para la función 3 de GSAS. Obtenido del refinamiento de LaB, para la configuración experimental.

4a.60"

0.9 90.93

3.875 1.079

0 0.0174

15-04

Los datos estructurales de partida para el refinamiento Rietveld de las fases cristalinas identificadas fueron tomados de la base de datos ICSD [157]. Se aplicó una corrección por absorción para muestras cilíndricas [158]. De acuerdo con la composición de la muestra (μ =49.4 cm⁻¹) con una fracción de empacamiento estimada de 0.6 con esta información se calculó el valor de 1.976 [159] y es el dato que se introduce en GSAS [160]. El parámetro térmico Uiso se fijó en 0.025 para todos los átomos en todas las fases.

Los perfiles de pico se modelaron usando una función Pseudo Voigt-Finger, Cox y Jephcoat con los parámetros 152

de perfil instrumentales como están señalados en la Tabla 16. Los siguientes parámetros fueron refinados: factor de escala, constantes de red, ensanchamiento Lorentziano por tamaño de cristal y por deformación cuando fue necesario.

La secuencia para el refinamiento fue la siguiente: primero la posición de los picos fue ajustada con la corrección del cero; después los factores de escala de todas las fases se refinaron. El fondo se ajustó gráficamente tomando 110 puntos del fondo del difractograma, mediante una función de Chebyshev con 22 coeficientes.

ANÁLISIS DEL AMBIENTE QUÍMICO DE SILICIO POR ²⁹SI NMR-MAS

A partir de los análisis del capítulo 6 se consideró que la previamente permitió realizar la deconvolución de los fase amorfa está compuesta solamente por compuesespectros, por tanto la determinación de los diferentes tos de Si y Al. La resolución de los espectros obtenidos tipos de silicio presentes en el sistema. Los resultados 153

cuantitativos de la deconvolución de los espectros se emplearon para comparar la fracción amorfa de Si obtenida por esta técnica con la fracción calculada por XRD.

En la Figura 70 se presenta la metodología de cálculos y procesamiento de datos que involucran los resultados de las tres técnicas para la cuantificación del contenido de material amorfo.

RESULTADOS

tales como para las muestras, puesto que se contó con un modelo para la absorción por muestras cilíndricas implementado en GSAS [158]. El archivo de parámetros instrumentales (.ins) fue esencial para comenzar con un buen modelo de la muestra; restringió los parámetros refinados a los que estaban relacionados con los modelos físicos para microestructura y, permitió un buen ajuste para los diferentes fenómenos que ocurren en los cristales de una mezcla de minerales. Después de seleccionar la configuración experimental, el procedimiento de refinamiento se realizó de acuerdo con la metodología. La identificación de minerales se realizó en los capítulos 4 y 6, con las tres muestras presentando composición similar (Tabla 17).

El procedimiento que se realizó de refinar el estándar de LaB6, tuvo ventajas para modelar el fondo y los perfiles de los picos. Los análisis de las muestras de los adobes y el tepetate fueron desafiantes debido al gran número de fases con estructura de baja simetría, así como la presencia de fases semicristalinas y amorfas que requirieron una metodología de refinamiento restringida y precisa, desde la región de bajos ángulos. En el inicio del experimento, la geometría de Bragg-Brentano con radiación Cu K α se utilizó, pero fue muy difícil modelar los parámetros instrumentales, además de los efectos de microabsorción causados por el estándar que no permitieron modelar completamente el difractograma experimental. Por tanto, la geometría de Debye-Scherrer con una radiación monocromática Kα1 de Mo se consideró, obteniendo buenos resultados en el modelo tanto para los parámetros instrumen-

Figura 70. Diagrama de la metodología de procesamiento de los datos para cuantificación del amorfo. 154

NOMBRE	FÖRMULA QUÍMICA	GRUPO ESPACIAL	PDF
Cristobalita Baja	SiO,	P4,2,2 No.92	04-005-4875 9327
Homblenda magnesiana	$\begin{array}{l} (Na_{121},K_{122}) \left(Ga_{3,12},Na_{3,22},Fe_{3,20})2 \left(Mg_{2,12},Fe_{1,12},A_{1,26}\right) \\ \overline{u}_{222} \left(G_{2,26},A_{3,22},O_{22},F_{62}\right) \left(OH\right)_{1,6} \end{array}$	C12/m 1 No. 12	01-089-7282 76840
Ortopiraxena	$\begin{array}{l}(Fe_{n+m}Mg_{n+m}Ga_{n+m}Mn_{n+m})(Fe_{n+m}Mg_{n+m}A_{n+m})\\((SI_{n+m}A_{n+m}O_{n})\end{array}$	P <i>bca</i> No.61	04-017-1513 159938
Andesina	$Na_{g,am}Ca_{g,am}(AI,_{aag}SI_{g,aag}O_g)$	C-1 No.2	01-079-1148 66127
Cuarzo bajo	SiO ₂	P 3, 21 No. 154	01-086-1560 100341
Tridimita	SIO	Altalt No.9	04-012-1133 153471
NISTSRM 674b	ZnO	P.6, <i>m.c</i> No. 186	01-076-0704 65119

Tabla 17. Identificación de las fases cristalinas.

Los fondos de los difractogramas de los adobes fueron similares en forma (Figura 71 y Figura 72), mientras que el suelo tuvo un perfil de fondo diferente (Figura 73). En todas las muestras, el intervalo en ángulos bajos 4-20° (2θ) fue determinante ya que es la región huella, no sólo por la presencia de los minerales semicristalinos como el ópalo CT y los materiales amorfos, sino también por las reflexiones principales en esos ángulos.

El fondo se encontró principalmente en el intervalo de 4-20° (2 θ °). El intervalo de 20-60° (2 θ °) era casi plano. El fondo se modeló en varias ocasiones con diferentes puntos empleando la función de Chebyshev con 22 coeficientes. Por la complejidad del perfil del fondo, el ajuste del fondo se fijó durante todo el proceso de refinamiento para todas las muestras.

Figura 71.Difractograma refinado del adobe 1. Datos experimentales (cruces), calculado (línea continua roja) y curva de diferencia (última línea gris).

Figura 72.Difractograma refinado del adobe 2. Datos experimentales (cruces), calculado (línea continua roja) y curva de diferencia (última línea gris).

Figura 73.Difractograma refinado del tepetate. Datos experimentales (cruces), calculado (línea continua roja) y curva de diferencia (última línea gris).

2000

El archivo de parámetros instrumentales ayudó a disminuir los parámetros refinados puesto que en algunas fases los parámetros están muy correlacionados. En el archivo se definieron los componentes Gaussianos y Lo-

rentzianos (GU y GW), así como la asimetría de los picos (S/Ly H/L). Por tanto el número de los parámetros que se refinaron en las muestras fue mínimo, como se muestra en la Tabla 18.

Muestra	No. de fases	Factor de escala	No. parámetros de celda(1)	LX	DY.	Total
Adobe 1	7	7	15	20.3	150	32
Adobe Z	7	7	16	300	0	33
Tepetate	7	7	15	3500		32

NOTE. Note: (1) Parimeters de celda para 200 haven fijm, (2) Refende sile para la face bordelevita. (3) Refende sile para la face tridivita. (4) Refende sile para la face tridivita.

Tabla 18. Número de parámetros refinados para cada muestra. Los parámetros se presentan en el orden en que fueron refinados (izquierda a derecha) considerando la función de perfil 3 de GSAS.

Dado que la medición se realizó en la fracción fina, esto promovió un enriquecimiento relativo de la fase amorfa, del ortopiroxeno y la hornblenda (fases con variaciones de perfil por tamaño de cristal). Mientras que, otras fases como la andesina y el cuarzo están principalmente presentes en la fracción arena y por tanto, no requirieron el refinamiento de parámetros de perfil; indicando que tienen parámetros similares a los del estándar de LaB₆ y no están sometidos a efectos de microestructura.

Posteriormente, los parámetros de red de todas las fases minerales se refinaron, excepto por el estándar interno (ZnO). Los parámetros finales de los minerales fueron razonablemente similares a los de la tarjeta PDF (Tabla 19). El ópalo CT se modeló con dos fases cristalinas: cristobalita y tridimita, las tarjetas PDF se seleccionaron de acuerdo con las fases de baja temperatura y con una estructura de supercelda, dado que esto facilitó el modelado de la estructura combinada. El tamaño de cristal de estas fases fue refinado debido a su condición de fase semicristalina.

FASE	PARÁMETROS DE RED (Ā / °)	TARJETA PDF	MUESTR	AS					
		l l	Relinados				Diferencia		
			Adobe 1	Adobe 2	Tepetate		Adobe 1	Adobe 2	Tepetate
Cristobalita Baja	a= C=	4.978 6.948	4.999 6.959	4.989 6.950	4 992 6 953	Ase Age	0.021 0.011	0.011 0.002	0.014 0.005
Homblenda magnesiana	a= b= C= β-	9.857 18.112 5.309 104.81	9.819 18.078 5.296 104.82	9.837 19.086 5.295 104.89	9.825 18.077 5.302 104.85	dar= dar= dar= dβ=	-0.037 -0.033 -0.012 0.012	-0.019 0.974 -0.013 0.08	-0.031 -0.034 -0.006 0.04
Ontopiroxeno	й= b= с=	18.280 8.860 5.216	18.321 8.905 5.298	18.183 8.921 5.220	18.304 8.943 5.213	∆a≃ ∆b≃ ∆c≈	0.040 0.045 0.062	-0.095 0.051 0.004	0.024 0.083 -0.002
Andesira	$a = b = c = \alpha = \beta = \gamma = \gamma$	8.179 12.880 7.112 93.44 116.21 90.23	8.173 12.887 7.116 93.50 116.23 90.21	8.174 12.885 7.114 93.46 116.22 90.22	8 174 12 884 7 113 93 45 116 21 90 22	Δa= Δh= Δa= Δ a = Δ a = Δ a =	-0.007 0.007 0.004 0.06 0.02 -0.02	-0.005 0.005 0.001 0.02 0.01 -0.01	-0.004 0.004 0.001 0.01 0.00 0.01
Cuarzo bajo	a= (=	4.916 5.405	4.924 5.400	4.922 5.401	4.922 5.403	Δe+ Δe+	0.008 0.005	0.006	0.002
Tridmita	a= b= t= β=	25.878 5.001 18.526 117.69	25.810 5.172 18.393 117.69	25.778 5.154 18.405 117.25	26.818 5.090 18.547 117.6 9	Δ2+ Δb+ Δc= Δ β =	0.068 0.171 -0.133 0.00	0.100 0.153 -0.121 -0.44	0.941 0.089 0.021 0.00

Tabla 19. Comparación entre los valores finales de los parámetros de red refinados y los reportados en las tarjetas PDF

El tamaño de cristal también se refinó para el ortor roxeno y la hornblenda. Esto es razonable ya que so fases que se van alterando hacia minerales arcillosos [161]. Para las otras fases minerales sólo los parámetros de red fueron refinados. Los resultados del refinamiento Rietveld se presentan en la Tabla 20. Las incertidumbres asociadas con los refinamientos Rietveld calculados por GSAS se indican en paréntesis.

)pi-	Con los re
son	ecuación 1
SOS	cantidad d

esultados anteriores se aplicó la fórmula de la dando aproximadamente un 30 %wt para la cantidad de material amorfo en las muestras de adobe y un valor no razonable para el tepetate (Tabla 21).

FASE	MUESTRAS					
	Adobe 1 (%wt)	Adobe 2 (%wt)	Tepetate (%wt)			
Cristobalita Baja	2.8(2)	2.5(2)	2.5 (4)			
Homblenda magnesiana	5.2.(7)	4.7 (3)	36(4)			
Ortopiroxeno	19.7 (9)	28.2 (5)	16.4 (8)			
Andesina	42,4 (4)	38.5 (3)	46.6 (4)			
Сиатор Бајо	1.9 (2)	1.7 (1)	2.0(2)			
Tridimita	13.0 (6)	9.2 (5)	18.0 (6)			
NIST SRM 674b Rwp Rp x2	15.1(1) 0.102 0.079 5.913	15.0 (8) 0.088 0.067 5.705	10.9 (2) 0.105 0.084 6.738			

Tabla 20. Resultados del análisis cuantitativo de fases por Rietveld (QPA).

FASE	MUESTRAS					
	Adobe 1 (%wt)	Adobe 2 (%wt)	Tepetate (%wt)			
Cristobalita Baja	2.1	1.9	25			
Homblenda magnesiana	3.8	3.5	3.7			
Ortopiroxeno	14.6	20.9	16.4			
Andesina	31.3	28.5	47.4			
Cuarzo bajo	1.4	13	2.0			
Indimita	9.6	6.8	18,3			
Amorifo	37.3	37.0	0.1			

Tabla 21. Cálculo del contenido de la fase amorfa utilizando los resultados directos del QPA. 162

El contenido de ZnO resultó bajo para el análisis del suelo muestras con el estándar. Para verificar esta hipótesis se (10.9 %) después del análisis QPA. Por tanto el cálculo de la midió el contenido de Zn en las muestras con PIXE (Tabla fase amorfa fue cero, ya que no hubo sobreestimación del 22), donde el límite de detección para este elemento es estándar interno, lo cual como se mencionó previamente, de 10 ppm. Las incertidumbres asociadas con la técnica es requisito para aplicar la ecuación de RIR-Rietveld. que se consideraron fue la sección eficaz de producción de rayos X, la eficiencia del detector, el factor másico de Se consideró entonces la posibilidad de la pérdida del atenuación de rayos x y el poder de frenado.

estándar en el proceso de mezclado y preparación de las

	ELEMENTO (%wt)	ADOBE 1	ADOBE 2	TEPETATE
Mayores	Si	31.7(15)	27.1(14)	33.8(17)
	Al	11.8 (6)	10.9(5)	13.7(7)
	O	41.7(21)	46.7(23)	40.1(20)
	Zri	8.52(43)	9.53(48)	6.20(31)
Menores	Mg	0.670(67)	0.716(72)	0.649(65)
	K	0.469(47)	0.432(43)	0.593(59)
	Ca	1.41(14)	0.887(89)	1.11(11)
	Fe	3.43(34)	3.52(35)	3.66(37)
	P	0.113(11)	0.054(5)	0.074(7)
Traza	S	0.026(3)	0.013(1)	0.014(1)
	Ti	0.023(2)	0.024(2)	0.028(3)
	Gr	0.004(1)	0.004(1)	0.005(1)
	Mn	0.068(7)	0.054(5)	0.059(6)
	Cu	0.025(3)	0.023(2)	0.015(2)
	Rb	0.004(1)	0.007(1)	0.009(1)
	Zr	0.049(5)	0.056(6)	0.064(6)

Tabla 22. Resultados del análisis elemental por PIXE.

Se encontró que los valores de Zn en el análisis elemen-Esta situación se resolvió con la corrección de los valores tal fueron sistemáticamente menores que el 10% pesade Xs,w en la ecuación 1 de acuerdo con la cantidad de do al preparar las mezclas. Se consideró que la pérdida Zn medida en PIXE. Entonces se volvió a calcular la fracdel estándar ocurrió en todas las muestras, como conseción amorfa Xa con esta corrección y los resultados son cuencia del empacamiento del rotor empleado para la los que se presentan en la Tabla 23. mezcla, siendo mayor la pérdida en el tepetate.

FASE	MUESTRAS					
	Adobe 1 (%wt)	Adobe 2 (%wt)	Tepetate (%wt)			
Cristobalita Baja	17	18	15			
Homblenda magnesiana	32	33	7.2			
Ortopinoxeno	12.2	19.8	99			
Andesina	26.2	27	28.2			
Cuarzo bajo	1.1	12	1.2			
Tridimita	8.1	6.5	10.9			
Amorio	47,4	40.3	46.1			

Tabla 23. Cálculo del contenido de la fase amorfa aplicando la corrección con el análisis QPA/PIXE.

Después de la corrección, la cantidad de material amorfo en las muestras es similar, como se estimaba por la observación del difractograma experimental. El valor es congruente con la interpretación del análisis elemental; se confirmó la segregación del estándar por la preparación, el cual afectó el cálculo con los resultados directos. Con el objetivo de comparar los resultados con los datos de PIXE, en la Tabla 24 se calcularon los porcentajes elementales a partir del análisis QPA/PIXE, considerando la fórmula química de la Tabla 17, para cada fase.

La diferencia en los elementos mayoritarios: Si, Al y O en el análisis elemental, se atribuye a la fase amorfa y puede ser usada para calcular una fórmula química. Sin embargo, aún existe la dificultad de una fórmula estimada para el alófano [122,123] además del factor que la fracción amorfa es una mezcla de vidrio volcánico, alófano y la fase de ópalo. La diferencia en Fe puede atribuirse a la presencia de ferrihidrita de baja cristalinidad, la cual también influye las propiedades del suelo análogamente al alófano y es un componente común en los suelos volcánicos [88,89].

Elemento Si Al	MUESTRA									
	ADOBE 1			ADOBE 2			TEPETATE			
	XRD (%wt)	PIXE (%wt)	Diferencia (%wt)	XRD (%wt)	PIXE (%wt)	Diferencia (%wt)	XRD (%wt)	PIXE (%wt)	Diferencia (%wt)	
Si Al O Fe	14.0 3.6 22.9 0.56	35.2 13.2 44.6 3.8	21.2 9.6 21.6 3.3	15.3 3.9 25.7 0.75	30.6 12.3 50.6 3.9	15.3 8.4 24.9 3.2	14,9 3.7 23.8 0.43	36.4 14.8 41.9 4.0	21.5 11.1 18.2 3.5	
Mg K Ca Ti Mn	1.5 1.6x10 ⁴⁰ 1.6 9.6x10 ⁴⁰ 0.05	0.75 0.52 1.6 0.02 0.06	0.7 0.5 0.0 0.02 0.01	2.1 1.6x10 ⁴¹ 1.7 9.6x10 ⁴³ 0.08	0.81 0.49 1.0 0.02 0.06	1.3 0.5 0.7 0.02 0.02	1.1 1.1x10 ⁰⁷ 1.7 6.6x10 ⁰¹ 0.03	0.70 0.64 1.2 0.03 0.06	0.40 0.6 0.5 0.02 0.02	

Nator: El resultado de XMD Net solo cancidera las fases cristalinas. El resultado de PDE Net cancidera elementos presentes en las fases cristalinas y amarías. La diferencia Net calculada considera las dementes presentes en la fases cristalinas y

Tabla 24. Comparación del análisis QPA de las fases cristalinas con el análisis elemental PIXE.

La espectroscopía de resonancia magnética nuclear es Una de las incertidumbres asociadas con la técnica considerada un técnica cuantitativa, puesto que la inson las variaciones en el promedio del desplazamiento tensidad de la señal de resonancia es proporcional al químico de las diferentes especies, sin embargo este número de núcleos resonantes [162]. Se utilizaron las error fue disminuido al calcular las razones de las inintensidades de las señales amorfas (alófano, ópalo, tensidades [163]. El error estimado por la técnica es de silanol) en relación con las intensidades de las señales 10% de la intensidad relativa de los picos de acuerdo de Si cristalino, para determinar la fracción de material con Fyfe **[164]**. amorfo (Tabla 25).

MUESTRA	QPA/PIXE	29Si MAS-NMR		
Adobe 1	0.47(4)	0.39 (4)		
Adobe 2	0.40(4)	0.35 (4)		
Tepetate	0,46 (4)	0.39 (4)		

Tabla 25.Comparación de los resultados de cuantificación de la fase amorfa por las técnicas de QPA/PIXE y la técnica de 2ºSi MAS-NMR.

La cuantificación del contenido de material amorfo coincide dentro de un 10% entre los métodos de QPA/ PIXE y MAS-NMR (Tabla 25). Esta variación puede ser debida a la presencia del material amorfo basado en hierro, que no está contemplado en la técnica de NMR. Debe ser considerado que el método QPA y el análisis por PIXE son complementarios (como se observa en la primera columna de la Tabla 25). NMR dio buenos resultados con la ventaja de que utiliza una pequeña cantidad de muestra y preparación simple, puesto que no requiere de un estándar, además de un relativamente sencillo y rápido análisis con el software para procesar y evaluar datos [165]. Sin embargo, como está reportado por Malz [162] en las pruebas interlaboratorios para análisis cuantitativo de NMR, es de extrema importancia que el operador del equipo realice un proceso adecuado para poder obtener espectros de buena calidad y por tanto, resultados confiables.

La afectación del cálculo del contenido de material amorfo debida a la segregación del estándar durante la preparación pudo ser corregida con el análisis elemental; por tanto es una herramienta útil a considerar en la cuantificación de las fases amorfas. A partir de estos resultados, se considera que la selección del estándar interno debe ser hecha desde el punto de vista de la composición, de manera que se pueda diferenciar el estándar de la muestra en un análisis elemental. Respecto a la diferencia en los coeficientes de absorción de la muestra y el estándar, se pueden considerar diferentes configuraciones de equipos que permitan incluir modelos de corrección por absorción en el refinamiento, como en este caso fue la geometría de Debye-Scherrer. Finalmente, en la preparación de la muestra también debe ser considerado el tamaño de partícula tanto de la muestra como del estándar para asegurar una correcta mezcla.

DISCUSIÓN

Las fases cristalinas identificadas son estructuras con A partir de este trabajo experimental, se concluyó que baja simetría y por consiguiente, presentan varias la selección del estándar para esta metodología debe reflexiones sobrepuestas, por tanto, una buena conconsiderar la composición, geometrías para equipos volución de los parámetros de perfil dados por el insde XRD disponibles y modelos de microabsorción. trumento cobra particular importancia. Los parámetros Respecto a la preparación de la muestra, el tamaño de de perfil instrumentales fueron determinados de mapartícula entre ambos materiales debe ser similar para nera precisa debido a la configuración de equipo seevitar la segregación del estándar, aunque de ocurrir, leccionada. Estas condiciones permitieron refinar sólo puede ser corregido con el análisis elemental en el cálun número mínimo de parámetros y asegurar valores culo de la ecuación 1. con significado físico para el tipo de muestras. Como resultado, se logró una cuantificación razonablemente buena para la fracción amorfa.

El análisis elemental químico es recomendado para complementar la información obtenida por el método QPA, ya que en este caso se comprobó una diferencia composicional en los materiales amorfos, que no había podido ser comprobada previamente.

La metodología propuesta cumple con los requerimientos de micromuestras para patrimonio cultural y por tanto puede ser aplicada a otros geomateriales que contienen fases amorfas en su composición. Estos resultados han sido publicados recientemente [166].

167

Capítulo 8 EVALUACIÓN DE ABSORCIÓN Y TRANSPORTE DE AGUA EN PROBETAS MODELO POR EL MÉTODO DE TUBO KARSTEN

La absorción de agua en un material de construcción lo tanto que se puede considerar como un almacén de (como el adobe) es una propiedad importante que deagua [29]. En el caso de las arcillas minerales la absortermina cómo se relaciona con el ambiente. Uno de los ción de agua y posterior evaporación de esta, puede factores principales que afectan al patrimonio cultural propiciar la ruptura de las estructuras, por tanto, eleedificado es el agua, como un detonador de deterioros mentos construidos con tierra que no están protegidos o estabilizados pueden tener problemas de durabilirelacionados con el transporte de sales solubles, biodeterioro y procesos de alteración mineral. La penetración dad debido a la penetración de agua [168]. de agua puede ocurrir como filtración, a presión, por La permeabilidad se define como: el volumen de un capilaridad o difusión de vapor de agua [167].

capilaridad o difusión de vapor de agua [167]. Los materiales implicados en la arquitectura de tierra, sufren erosión con el impacto de la lluvia y por tanto pueden colapsar al exponerse a esta durante varias horas. Por otro lado, el suelo tiene la propiedad de retener agua actuando en contra de la fuerza de gravedad; por

169

La permeabilidad se modela con la ley de Darcy (ecuación 2), mediante un experimento en el cual se hace pasar un líquido a flujo constante (Q, con unidades de volumen sobre tiempo: L³T¹) a través de un recipiente de sección transversal constante (A, con unidades de área: L²) y con dos barómetros, uno a la entrada y otro a la salida que miden el cambio de presión $\triangle P$ (a través del cambio en la altura de la columna de agua ($\triangle h$, con unidades de longitud: L) y la longitud (L, con la unidad:L) entre los puntos A y B) y a través de este se define una constante de permeabilidad K, que tiene por tanto unidades de LT⁻¹ (Figura 74).

Figura 74. Diagrama del experimento de Darcy para medir la permeabilidad [170]. Donde q es el flujo de agua, l la longitud entre los dos puntos de medición (a y b) del cambio de presión (ΔP). El tubo Karsten es un tubo de vidrio abierto con un cuerpo cilíndrico, al final del cual se sella al contacto con la superficie del material mediante plastilina. El modelo del tubo puede ser horizontal o vertical de-La selección del método depende de su carácter nopendiendo de la superficie a analizar (Figura 75). Una vez que el tubo está sellado el agua se añade al tubo destructivo, así como del objetivo del análisis. La técnica de capilaridad requiere toma de muestra, lo cual y se registra el tiempo que tarda en absorber 4 mL de agua. Con este arreglo, la columna de agua ejerce una no se puede realizar durante trabajos de monitoreo en los cuales la misma área se evalúa repetidas veces o en presión en la superficie de 961.38 Pa. Esta presión cozonas donde no sea posible tomar muestra suficiente rresponde con la acción de gotas de lluvia golpeando para registrar este fenómeno. En contraste, el métoa la pared con una velocidad de viento estática de 140 do del tubo Karsten (KT) se desarrolló específicamente km/h perpendicular a la superficie [60]. para ser aplicado *in situ* de manera no destructiva. Los

Figura 75. Diagrama tubo Karsten para superficies en posición vertical (izq.) y superficies en posición horizontal (der.)

La prueba de absorción de agua brinda una medida de la susceptibilidad de la superficie a absorber agua en la superficie expuesta, la selección del método de tubo Karsten para el experimento es debida a que a pesar de que fundamentalmente se utiliza como método comparativo, este método a diferencia de otros provee datos que pueden ser posteriormente utilizados en simulaciones numéricas hidrotermales [172].

Además, los datos obtenidos reflejan el estado actual en que se encuentra la superficie a analizar, factor de suma importancia puesto que los materiales de construcción, con el paso del tiempo, presentan capas de polvo, biopelículas, sales y otras pátinas que modifican su resistencia a la absorción de agua respecto al material original.

En el caso de los adobes como material de construcción además de la absorción del agua, también se desea conocer el perfil de mojado por el contacto con el líquido y registrar el tiempo que tarda en atravesar el flujo de agua el adobe. Respecto a esta propiedad, no hay métodos estandarizados sino que se diseñan los experimentos dependiendo de la situación que se desea emular. Los métodos reportados de perfil de mojado o determinación del flujo de agua son del área de Hidrología donde se estudia el flujo de corrientes de agua contaminadas con fines de control ambiental [173-176].

Las técnicas desarrolladas para estudiar la distribución de agua y su movimiento emplean marcadores en el líquido, estos son frecuentemente tintas con diferentes tamaños de partícula que se escogen dependiendo del tipo de suelo, la duración de la tinta y su toxicidad. El movimiento del agua se registra mediante imágenes con un método de análisis sistemático. con la finalidad de relacionar la intensidad de color con concentración y los patrones de flujo con la porosidad [174,176].

El objetivo de este estudio fue la comprensión de la interacción de adobes modelo con el agua. En el caso de estudio de la Gran Pirámide de Cholula la interacción con el agua es constante, no sólo del medio ambiente sino por las tuberías que la atraviesan así como por el agua estancada en distintas áreas de la Zona Argueológica. Los resultados obtenidos del análisis se interpretaron considerando la composición y propiedades físicas de los adobes determinados en los capítulos anteriores.

capítulos anteriores. Para el experimento se utili-• El movimiento del agua está influenciado por las zaron la mezcla 1 y la mezcla 2 presentadas en el condiciones de saturación de los poros [175]. capítulo 5.

• El flujo de agua en los adobes en la Z.A. de Cholula puede ser en diferentes direcciones, dependiendo del origen del líquido. Para el modelo experimental se consideraron las dos geometrías del tubo Karsten: vertical y horizontal.

FABRICACIÓN DE PROBETAS

METODOLOGÍA

El experimento de transporte de agua se diseñó considerando tres variables: la granulometría, geometría del tubo Karsten (dirección de flujo) y humedad inicial de la probeta.

• La granulometría influye significativamente en la estabilidad del adobe así como en su consistencia por la composición determinada de cada fase granulométrica de acuerdo con los resultados de

el molde, como se determinó también en las pruebas Se trituraron adobes de la Z. A. de Cholula y se tamizaron de acuerdo con la norma ASTM D422 para tener las del capítulo 5. granulometrías definidas con la misma composición de los adobes originales. El experimento se realizó con Las pastas se vaciaron en moldes de madera de diprobetas puesto que se requería controlar las variables mensiones 12.5 x 12.5 x 2 cm, posteriormente se golde granulometría y los adobes originales eran muy pearon con una espátula para evitar espacios vacíos y frágiles para cortarse a un tamaño determinado. Con aire en las probetas (Figura 76b). Se dejaron secar dulas fracciones granulométricas se fabricaron pastas morante 1 mes a temperatura ambiente en interior. delo a partir de las mezclas 1 y 2 (siendo la mezcla 2 las proporciones originales de los adobes) del capítulo En total se fabricaron 40 probetas considerando las variables definidas para el experimento y además, cada 5, en este caso las mezclas sí consideraron todos los experimento se realizó 5 veces para determinar repetititamaños de grano desde la arena muy gruesa hasta el vidad en el fenómeno de transporte de agua (Tabla 26). material fino. No se consideró la mezcla 3 puesto que fue demasiado plástica y no conservaba su forma en

Se consideró que el flujo de agua en la Z. A. de Cholula ocurre en el inicio de la temporada de lluvia cuando los adobes están inicialmente secos y posteriormente durante la temporada de lluvia cuando los adobes están previamente mojados. Entonces, los experimentos se realizaron en dos condiciones iniciales: seca y húmeda.

GRANULOMETRÍA	MEZCLA 1			MEZCLA 2 (Adobe original)				
Condición	Seco		Hümede		Seco		Húmiedo	
Geometría	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal
No de probetas	5	5	5	ő	5	5.1	5	5

Tabla 26. Número de probetas de acuerdo con las variables definidas en el experimento considerando su repetición.

El tiempo de toma (time lapse) varió dependiendo de la posición y condición inicial de la probeta, puesto que el fenómeno de transporte ocurrió a distintas velocidades y por tanto se requirieron distintos tiempos. También la posición de las cámaras fue determinada por las condiciones del experimento, se definió una

MONTAJE EXPERIMENTAL

El experimento con el tubo Karsten es dinámico y se esperó observar los patrones de flujo en el adobe, por tanto se diseñó un montaje con cámaras de video con el objetivo de registrar los cambios en las probetas por la absorción de agua.

Se emplearon dos cámaras web lifecam marca Microsoft que tomaron video en tiempo real, una cámara

de iphone y una cámara de ipad en las que se usó la aplicación imotion para tomar fotografías en lapsos de tiempo **(TABLA 27)** y juntar todos los cuadros y crear una película rápida. El montaje de cada cámara respecto a la posición del tubo Karsten en la probeta y el tiempo de toma de cada cuadro (time lapse) en la aplicación imotion se especifica en la **TABLA 27**.

1	POSICIÓN/TIM	E LAPSE	POSICIÓN/TIME LAPSE		
	Seco		Húmedo		
	Vertical	Horizontal	Vertical	Horizontal	
Câmara web 1	Frenterbirmpo real	Superon/tempo teal	Frende/tiempo real	Superior/tiempo real.	
Camara web 2	Posterior/Herripo real	Inferior/Gerrgio real	Pesterior/tiempo real	Interior/tiempo real	
Carnata iphone	Lateral detectio/3 s	Lateral derectio/3.s	lateral derecho/3 s	tateoldirecto/1s	
Cámaia ipad	Lateral Repuleed of 3 s	Lateral izquierdo/3 s	Lateral inquierdo/3 s	Lateral inquierdo/1 s	

Figura 77. Montaje de los experimentos. Posición vertical.

Tabla 27. Posición y tiempo de cámaras en experimento. 176

Continuación Figura 77. Montaje de los experimentos. Posición horizontal.

ANÁLISIS

Se midió el porcentaje de contracción de los adobes modelo después del secado con un vernier. Para el experimento de KT se preparó una disolución de Rodamina B al 5x10-04 M **[177,178]** con la finalidad de brindar color al agua e intensificar su tono al entrar en contacto con la probeta. 178 Previo al montaje de cada adobe en el soporte y después de desmontar cada experimento, se realizó la observación con microscopio USB en todas las caras y se midió la humedad relativa de las superficies superior e inferior con un higrómetro de contacto. El medidor de humedad portátil es un aparato que mide la humectación de la superficie de un material. El instrumento seleccionado permite que las medidas se realicen de manera no destructiva, tiene dos electrodos en la base que se ponen en contacto con la superficie a medir (Figura 78). Estos electrodos transmiten un señal eléctrica de baja frecuencia de acuerdo con el material preseleccionado en la escala del instrumento y varía la

Figura 78. Medición de humedad en superficie con higrómetro portátil.

Cada probeta se fracturó con un golpe de una pica para poder observar en la parte interna el frente de mojado puesto que en las pruebas en la pieza completa no fue posible registrar los cambios. La metodología general de fabricación y análisis de las probetas se presenta en la **Figura 80**. Para la condición en seco después de montar el tubo Karsten sobre la probeta se añadió el volumen requerido de la disolución de Rodamina B (15 mL) y se comenzó el experimento. Para la condición en húmedo después de montar el tubo Karsten, se aplicó agua con un aspersor en la superficie, se realizaron cuatro aplicaciones por lado a una distancia aproximada de 10 cm (Figura 79).

Figura 79. c) preparación de superficie para condición inicial húmeda.

El procesamiento de datos se hizo registrando el tiempo de absorción de los 4 mL del tubo Karsten. Las imágenes de las cámaras se seleccionaron para tener un seguimiento representativo del transporte de agua en cada

Figura 79. a) tubo Karsten en geometría vertical sin llenar, b) inicio de experimento.

Figura 80. Diagrama de metodología general de análisis.

RESULTADOS

El procesamiento de datos se hizo registrando el tiempo probeta, se registró la erosión, distancia del frente de de absorción de los 4 mL del tubo Karsten. Las imágenes mojado y el tiempo que tardó en observarse la humedad de las cámaras se seleccionaron para tener un seguien el extremo opuesto al tubo Karsten. miento representativo del transporte de agua en cada

Figura 81. Comparación del método de absorción de tubo Karsten para las probetas.

La condición húmeda cambió la velocidad de absorción para la mezcla 1 disminuyendo el tiempo de absorción y para la mezcla 2 aumentó el tiempo de absorción, con respecto a las condiciones en seco. Sin embargo las velocidades de absorción están en un intervalo de 200 a 300 segundos para todas las variables consideradas.

El porcentaje de contracción de los adobes en ambas mezclas fue de 4% en todas las direcciones, con mayor cantidad de grietas en superficie en la mezcla 1 como se estableció en el capítulo 5. Los cambios principales se observaron debido a la geometría, por tanto los siguientes resultados se presentarán por geometría para ambas mezclas.

GEOMETRÍA TUBO KARSTEN VERTICAL

El tiempo de absorción fue similar para ambas mezclas en las diferentes condiciones iniciales. Las medidas de humedad en superficie cambiaron pocas unidades en el frente después del experimento; los cambios más drásticos en la humedad fueron en la parte posterior indicando que en el momento de tomar las medidas el frente ya estaba secándose. El aqua se transmitió hasta la parte posterior de las probetas y la diferencia en el tiempo que tardó en observarse la mancha de mojado en esta zona fue en promedio de 300 s para todos las probetas excepto para la mezcla 1 en condiciones iniciales húmedo. Los valores finales de humedad posterior fue mayor en las probetas en condiciones iniciales húmedo (Tabla 28).

Figura 82. Gráfica de volumen de infiltración en geometría vertical.

	MEZCLA	1-BAJO CONTENIDO DE MATERIAL FINO		2-CONTENID DE MATERIA	o original L fino
	Condición inicial	Seco	Húmedo	Seco	Húmedo
Infiltación del volumen de agua	Coeficiente a Exponente b	0.07±0.06 0.75±0.12	0.05±0.02 0.80±0.02	0.02±0.01 0.97±0.04	0.03±0.01 0.97±0.05 0.002±0.004
Distancia de infiltración en el adobe	Cooficiente a Exponente b	0.06±0.07 1.97±0.2	0.39±0.10 1.12±0.09	0.003±0.001 2.83±0.16	3.63±0.19

En ingeniería se emplea una ecuación empírica para modelar la infiltración de agua en el suelo (ecuación 3). Donde I es la cantidad de agua que se infiltra en el suelo,

Tabla 28. Resultados para el experimento en geometría tubo Karsten vertical. 184

= a t ^b	
ŭt	(ec.3)
	185

El coeficiente a está relacionado con la velocidad inicial de la infiltración, y por tanto depende de la estructura y de la condición del suelo en el momento en que se aplica el agua. Un valor de **a** grande (cercano a 1) si el suelo tiene grietas y poros grandes. El exponente b se relaciona con la estabilidad estructural del suelo; un valor pequeño de **b** (cercano a cero) indica que la estructura del suelo no es estable y la velocidad de infiltración se reduce debido a la destrucción de la estructura. Los sue-

los que son estables tienen exponentes **b** mayores a 0.6 y pueden aproximarse a 1.0, este parámetro depende además de la geometría del flujo [29].

Los datos de infiltración por volumen de aqua de la Figura 82 y los datos de la distancia de infiltración presentados en la Figura 83 se ajustaron a esta ecuación empírica y se presentan los valores obtenidos para el coeficiente a y el exponente **b** en la **Tabla 29**.

MEZCLA	1-BAJO CO	ONTENIDO	2-CONTENIDO ORIGINAL		
	DE MATER	IAL FINO	DE MATERIAL FINO		
Condición inicial	Seco	Húmedo	Seco	Húmedo	
Humedad inicial frente (u.a.)	64±3	54±7	63±3	71±4	
Humedad final frente (u.a.)	67±6	61±4	66±3	71±4	
Humedad inicial posterior (u.a.)	65±1	66±2	63±5	65±4	
Humedad final posterior (u.a.)	72±3	85±6	79±9	86±5	
Tiempo de absorción KT (s)	249±61	261±8	241±14	223±35	
Tiempo de pedil de mojado posterior (s)	377±48	827±32	309±6	322±8	

Tabla 29. Coeficientes de la ecuación de infiltración para geometría Karsten vertical.

Los valores en la Tabla 29 indican que las probetas no tienen grietas o poros grandes, sin embargo, los coeficientes de la mezcla 1 son un poco mayores que los de la mezcla 2, esto es consistente con la distribución granulométrica de las mezclas. Los valores del exponente b son cercanos o mayores a 1, por tanto indican que el suelo es estable. El valor de b en la mezcla 2 es mayor que en la mezcla 1.

El avance del frente de mojado representado en la Figura 83 muestra que el avance es constante en la mezcla 2, 186

mientras que en la mezcla 1 en húmedo en un tiempo corto la velocidad de infiltración disminuye, este comportamiento no ocurre en la condición seca.

Por tanto, se observa que la distribución granulométrica de las probetas es relevante para el transporte de agua dentro de ellas y que la condición inicial de seco o húmedo puede o no ser relevante dependiendo de la granulometría de los adobes.

100 10 Infiltración de agua (mm) Ω 5 10 Tiempo (min) Mezcla 1 seco — Mezcla 1 humedo — Mezcla 2 seco — Mezcla 2 humedo

Figura 83. Gráfica de profundidad de infiltración en geometría Karsten vertical.

flujo van del centro hacia el exterior. En la figura también es posible observar restos de la tierra dentro del tubo debido a la erosión.

En la **Figura 85** se muestra la erosión causada por el contacto con el agua. En la probeta en condición seca fue más agresiva la erosión dejando gran parte en el tubo, sin embargo por el perfil se observa que la erosión es en el inicio del contacto, estabilizándose posteriormente. La probeta previamente humedecida se observa que la erosión no fue agresiva inicialmente sino que fue lenta y homogénea creando un patrón de erosión circular no profundo.

Figura 84. imágenes finales del experimento donde se observa el frente de mojado, así como la erosión superficial en la zona de contacto con el agua en geometría tubo Karsten vertical. A) experimento en seco, b) experimento en húmedo.

Figura 85.Imágenes finales del experimento donde se observa la erosión superficial en la zona de contacto con el agua en geometría tubo Karsten vertical. A) experimento en seco, b) experimento en húmedo.

En la **Figura 86** se presentan las micrografías de las superficies antes y después del experimento, en ellas estructura; mientras que en el húmedo no se eliminó este material y se fue humectando la superficie gradualmente en capas, causando micro fracturas y micro exfoliaciones.

Figura 86. Imágenes de microscopía de la superficie de las probetas en geometría tubo Karsten vertical. Mezcla 1 a) antes de experimento. Después del experimento b) en seco, c y d) en húmedo. Mezcla 2 e) antes de experimento. Después del experimento f) en seco.

En la mezcla 2 se observó tanto en seco como en húmedo que la eliminación del material fino fue poca en comparación con la mezcla 1 y no se destruyó la estructura del suelo sino que se fue humectando homogéneamente. Se observaron nuevamente micro fracturas y micro exfoliaciones debido a este proceso.

Continuación Figura 86. Imágenes de microscopía de la superficie de las probetas en geometría tubo Karsten vertical. Mezcla 1 g y h) en húmedo.

<u>)</u> -	En el anexo B se presentan una secuencia representativa
]-	de imágenes de los experimentos en geometría de tubo
а	Karsten vertical donde se puede observar el proceso de ero-
]-	sión que ocurre desde el inicio del experimento así como el
0	transporte de agua en las cuatro caras de la probeta.

El tiempo de absorción para la mezcla 1 en condición húmedo fue menor que en la condición seca, mientras que en la mezcla 2 en la misma condición fue mayor el tiempo, sin embargo considerando todos los experimentos realizados el cambio en ambas condiciones para la mezcla 2 no es significativo. Las medidas de humedad en superficie cambiaron tanto en la parte superior como en la parte inferior de la probeta. Las medidas de humedad fueron homogéneas en ambas superficies y las

unidades registradas para la parte inferior fueron de 85 en promedio y es más alta que las registradas en la geometría Karsten vertical.

El tiempo de observación del perfil de mojado en la cara inferior fue similar para todos los experimentos, el cambio más significativo fue en la mezcla 1 en húmedo nuevamente (Tabla 30).

MEZCLA	1-BAJO CO	INTENIDO	2-CONTENIDO ORIGINAL	
	DE MATER	IAL FINO	DE MATERIAL FINO	
Condición inicial	Seco	Húmedo	Seco	Húmedo
Humedad inicial superior (u.a.)	60±8	64±7	70±4	70±8
Humedad final superior (u.a.)	79±8	74±2	76±4	76±7
Humedad inicial inferior (u.a.)	67±4	69±2	68±8	63±8
Humedad final inferior (u.a.)	80±5	85±5	84±5	83±4
Tiempo de absorción KT (s)	218±32	169±47	259±36	289±42
Tiempo de perfil de mojado inferior (s)	333±65	430±71	330±42	380±92

GEOMETRÍA TUBO KARSTEN HORIZONTAL

Tabla 30. Resultados para el experimento en geometría tubo Karsten horizontal

nidos para el coeficiente a y el exponente b en la Tabla Los datos de infiltración por volumen de aqua y de la distancia de infiltración presentados en la Figura 87 y 31. Se observa que en la geometría Karsten horizontal Figura 88 se ajustaron a la ecuación 3. Los valores obtefue homogénea la infiltración del agua.

Figura 87. Gráfica de volumen de infiltración en geometría tubo Karsten horizontal.

Los valores de a en la ecuación 3 presentados en la Tabla 31 indican que las probetas no tienen grietas o poros grandes, sin embargo, los coeficientes de la mezcla 1 son un poco mayores que los de la mezcla 2, esto es consistente con la distribución granulométrica de las mezclas. Los valores del exponente son cercanos o

mayores a 1, por tanto indican que el suelo es estable. El valor de b en condición seca es mayor en la mezcla 1 que en la mezcla 2, mientras que en la condición inicial húmedo es mayor en la mezcla 2. Estos resultados difieren a los observados en la geometría tubo Karsten vertical.

	MEZCLA Condición inicial	1-BAJO CONTENIDO DE MATERIAL FINO		2-CONTENIDO ORIGINAL DE MATERIAL FINO	
		Seco	Húmedo	Seco	Húmedo
Infiltración del	Coeficiente a	0.03±0.001	0.06±0.01	0.05±0.07	0.04±0.01
volumen de agua	Exponente b	0.88±0.07	0.82±0.03	0.87±0.03	0.81±0.03
Destancia de	Coeficiente a	0.04±0.03	0.006±0.003	0.15±0.09	0.0004±0.0005
Infiltración en el adobe	Exponente b	2.04±0.06	2.98±0.09	1.82±0.11	3.75±0.15

Tabla 31. Coeficientes de la ecuación de infiltración para geometría tubo Karsten horizontal.

En esta geometría el avance del frente de mojado varía dependiendo de las condiciones de inicio y de la mezcla. En la Figura 88 se observa que la mezcla 1 en condición inicial seca tiene un periodo donde no avanza el frente a diferencia de la condición húmeda donde el avance es constante, mientras que en la mezcla 2 el avance es más lento cuando está en condiciones de humedad.

Por tanto, en esta geometría tanto la distribución granulométrica como la condición son relevantes en el transporte de aqua.

Figura 88. Gráfica de profundidad de infiltración en geometría tubo Karsten horizontal.

Figura 89. Imágenes finales del experimento donde se observa la erosión superficial en la zona de contacto con el agua en geometría tubo Karsten horizontal. a) y b) experimento en seco, c) y d) experimento en húmedo. 196

Figura 90. Imágenes finales del experimento donde se observa la erosión superficial en la zona de contacto con el agua en geometría tubo Karsten horizontal. A) y b) experimento en seco, c) y d) experimento en húmedo

En este caso la erosión por el agua fue en círculos concéntricos conforme fue avanzando el frente del agua. La erosión en el caso del material seco fue mayor que en el material húmedo (Figura 89), sin embargo en ambos casos, durante el experimento se formó una fractura a la mitad de la probeta que causó que el agua que quedaba se escurriera, esta fractura ocurre de un extremo a otro tanto transversalmente como longitudinalmente. Esto se observa en la **Figura 90**.

El colapso de la probeta por la fractura para la condición seca ocurrió después de un período más largo que en el caso húmedo, siendo en este caso más estable la mezcla 2, con un menor número de colapsos que la mezcla 1. En la Figura 91 se observan las micro fracturas causadas por el agua y la superficie después del experimento para la mezcla 1 se observa que el material fino no se arrastró y que hay micro exfoliaciones para ambas condiciones iniciales. En la mezcla 2 (Figura 92), se observan las micro exfoliaciones para la condición seca y además la pérdida de material fino. Mientras que para la condición inicial húmeda se observan micro fracturas y no se observa una pérdida significativa de material fino.

Figura 91. Imágenes de microscopía de la superficie de las probetas de la mezcla 1 en geometría tubo Karsten horizontal. a) antes de experimento. Después del experimento b) y c) en seco, d) en húmedo.

Figura 92. Imágenes de microscopía de la superficie de las probetas de la mezcla 2 en geometría tubo Karsten horizontal. A) antes de experimento. Después del experimento b, c y d) en seco.

Continuación Figura 92. Imágenes de microscopía de la superficie de las probetas de la mezcla 2 en geometría tubo Karsten horizontal. e, f, g y h) en húmedo.

En el anexo A se presenta una secuencia representativa de imágenes de los experimentos en geometría vertical donde se puede observar el proceso de erosión

que ocurre desde el inicio del experimento así como el transporte de agua en las cuatro caras de la probeta.

DISCUSIÓN

En general se observó que de las variables estudiación y de intercapas pueden ser más grandes que las fuerzas de capilaridad. Ya que estas fuerzas repulsivas das la geometría del tubo Karsten (que determina la dirección del flujo) fue la más importante puesto son resultado de ambas adsorción e interacción de la que definió los tiempos de absorción del KT y en la doble capa con el agua, y son balanceadas a cierto geometría tubo Karsten horizontal generó fracturas nivel por fuerzas de capilaridad, el efecto neto está recompletas antes de que se absorbiera toda el agua, lacionado como la afinidad del suelo con el agua [29]. mientras que en la geometría tubo Karsten vertical la erosión de la superficie fue significativa pero sin frac-Se considera que los suelos arenosos con partículas grandes tendrán espacios porosos grandes y menos turar estructuralmente poros de tamaño pequeño que un suelo arcilloso Esto se explica debido a que el suelo seco ejerce una constituido de partículas finas, indicando una relagran presión cuando se está humedeciendo y en la ción entre el tamaño de poro y el contenido de humegeometría horizontal el peso es fundamental estruc-

dad. Estas dos características están asociadas con dos turalmente. El proceso de hinchamiento de los suelos interfases importantes del suelo [29]: se define como el fenómeno que ocurre cuando aumenta el volumen de un sólido y disminuye su cohesión, mientras éste absorbe un líguido sin perder su homogeneidad aparente. Los factores que influyen en en contacto el hinchamiento son: el tipo de arcilla, arena superficial, densidad de carga superficial, cationes y aniones •Interfase aire-aqua que ocurre en donde la diasociados a la arcilla, materia orgánica, sesquióxidos solución del suelo se pone en contacto con el aire y agua entre las capas de arcilla [29]. del mismo.

Sin embargo, este fenómeno puede ser menos drás-Esta relación se observa de manera específica en las tico en la geometría vertical donde las fuerzas de medidas de humedad superficial tomadas antes y descapilaridad que resultan de la interfase aire-aqua, pués del experimento, en las cuales el contenido de producen una atracción entre partículas que podrían humedad en todos los casos fue menor para la mezcla dar una cierta resistencia al hinchamiento. Así en los 1 en comparación con la mezcla 2. suelos expandibles las fuerzas repulsivas se adsor-

• Interfase sólido-líquido que ocurre en donde las partículas del suelo y las del agua se ponen

LA ESTRUCTURA DEL SUELO Y EROSIÓN DE LOS ADOBES

SOBRE LA INFILTRACIÓN Y EL FRENTE DE MOJADO

El término estructura de suelo se refiere morfológicamente a la disposición de la partículas elementales (arena, limo y arcilla) que forman partículas compuestas, separadas de las contiguas y que tienen propiedades diferentes de las de una masa igual de partículas elementales sin agregación [29].

Una propiedad importante de la estructura del suelo es la capacidad que tienen los granos de retener su forma cuando se humedecen y de permitir el paso del agua a través del suelo. A esta propiedad se le llama estabilidad estructural. Los granos de suelo deben tener suficiente estabilidad para que permitan el libre paso del agua y la entrada de aire conforme el agua sale [29].

Los cambios estructurales que ocurren en el suelo tienen lugar con la humectación inicial y pueden manifestarse simultáneamente por un hinchamiento rápido de los vacíos del suelo. La influencia de la humedad en la estructura la pone de manifiesto la proporción de permeabilidad intrínseca al agua, con la permeabilidad al aire. El movimiento del agua ocurre cuando hay diferencias de potencial entre diferentes puntos del sistema [29].

En los experimentos en geometría tubo Karsten vertical se observó erosión superficial desde el inicio del con-

tacto agua-probeta, estabilizándose posteriormente. Si la probeta está previamente humedecida se observó que entonces la erosión no fue agresiva, sino que fue lenta y homogénea creando un patrón de erosión circular no profundo. La estabilidad de los agregados y poros disminuye al mojar el suelo seco rápidamente, puesto que el mojado rápido también causa daño por aire atrapado en el agua que llena los poros externos antes de avanzar hacia adelante y por tanto, esta presión por aire fractura a los suelos [107].

En la geometría tubo Karsten horizontal fue muy notorio cómo las condiciones iniciales de humedad cambiaron la estabilidad de la probeta, provocando mayor erosión en seco que en húmedo. Asimismo, la pérdida de material fino ocurrió en todos los casos de la geometría vertical mientras que en la geometría horizontal se perdió sólo en la condición seca.

El hinchamiento y pérdida de la estructura de las probetas por el agua en ambas geometrías fue inicialmente por micro exfoliaciones que derivaron en micro fracturas y posteriormente como fracturas estructurales en la geometría horizontal. Por tanto, hubo un cambio en la erosión inicial o la manera en la que se hincha el suelo dependiendo de las condiciones iniciales y de la granulometría para ambas configuraciones.

entonces, probablemente el que estén llenos los poros Está reportado que el agua avanza en el suelo como un frente de humedad. Cuando la humedad llega hasta previamente causó que se retrasara el flujo debido a la el suelo seco del frente de mojadura, la conductividad disminución del potencial de humedad. disminuye bruscamente dando la impresión de que el La infiltración y la permeabilidad están íntimamente reagua se acumula detrás del frente hasta que el suelo lacionadas con el tamaño de los poros y la estabilidad tiene alrededor del 80% de saturación después de lo de las unidades estructurales del suelo. En los suelos cual se mueve bastante rápido hasta el próximo agreque tienen grietas grandes la infiltración puede ser alta inicialmente, sin embargo, la velocidad de infiltración gado o grano [29].

bajará tan pronto como las grietas grandes se llenen, Si el suelo dentro del que se está infiltrando el agua estaba inicialmente húmedo, el movimiento del frente de mojadura hacia abajo es más gradual que en suelo seco. El frente de mojadura es muy pronunciado en el suelo seco [29]. Los resultados experimentales de infiltración se ajustaron

Los resultados experimentales de infiltración se ajustaron a la ecuación 3 donde para la geometría tubo Karsten En la geometría tubo Karsten vertical, el frente de mojavertical los valores de a muestran que no hay grietas o do en la mezcla 1 tardó más tiempo en aparecer en congrandes poros, sin embargo la diferencia entre la mezcla 1 y mezcla 2 en la profundidad de infiltración es signifidición inicial de humedad, mientras que en la mezcla 2 fue constante y por tanto indica que el agua se distribucativa, mostrando que hay menos poros en la mezcla 2 y que la condición inicial de seco o húmedo no afecta. yó en la probeta y continuó fluyendo. En geometría tubo Asimismo, en la mezcla 2 los valores de b son mayores Karsten horizontal, se observaron cambios de velocidad en frente de secado por granulometría y condición inique en la mezcla 1 mostrando que tiene una estructura cial, siendo más rápido en la mezcla 1 que en la mezcla 2 más estable. Nuevamente, no se observó que se afecte y también en condición seco, como se esperaba, debido por la condición inicial de seco o húmedo. a que la conductividad de humedad del suelo es función del número y espesor de las películas conductoras, rela-En la geometría tubo Karsten horizontal los valores de cionado con el potencial de humedad [29]. a indican que las probetas no tienen grietas o poros

del número y espesor de las películas conductoras, relacionado con el potencial de humedad **[29]**. En la geometría tubo Karsten horizontal, el tiempo de absorción en la mezcla 1 tuvo un cambio significativo en el cual absorbió más rápido en húmedo que en seco; sin embargo, fue en esta geometría la que tardó más en observarse la mancha en la cara opuesta, es mayor en la mezcla 1 que en la mezcla 2, mientras que en la condición inicial húmedo es mayor en la mezcla 2. Estos resultados coinciden con lo observado respecto a que la mezcla 2 en condición húmedo es más estable que las otras mezclas. Para este caso sí fue importante la condición inicial de humedad.

Cuando el agua se infiltra en el suelo, se llena el reservorio de humedad hasta rebasarlo en cada intervalo sucesivo de profundidad, por lo tanto la cantidad de agua que entra en un suelo dado, depende de la cantidad de agua que ese suelo puede almacenar y de la velocidad con que el exceso de agua se transmite a través del suelo húmedo, al frente de mojado en contacto con el suelo seco de abajo [29]. Estos reservorios de humedad por profundidades explican el deterioro por capas que se observó en la microscopía óptica y la razón por la cual el deterioro comienza de esta manera.

El movimiento del agua hacia la parte posterior para la mezcla 1 en geometría tubo Karsten vertical tuvo cambios en su tendencia, probablemente por la destrucción temprana de la estructura de la probeta y además, cuando está húmeda se observó que se saturó en un tiempo corto lo que previno su movimiento y por tanto, retrasó la aparición de la mancha en la cara posterior. A partir de los experimentos y la forma en la que aparece el frente de mojado en todas las caras de las probetas (Anexos A y B), se determinó que en geometría tubo Karsten vertical las líneas de flujo atraviesan transversalmente la probeta desde el centro hacia el exterior y en geometría tubo Karsten horizontal lo hacen de la misma manera pero formando círculos concéntricos. Esto es consistente con los modelos computacionales reportados por Hendricx [8] donde calculan la absorción de agua de un ladrillo belga antiguo con un tubo Karsten en posición vertical, el patrón de flujo parece ser similar, así como los tiempos y profundidad de penetración, sin embargo es difícil comparar los resultados directamente, puesto que en este caso se están observando sólo las caras finales de las probetas, pero coinciden razonablemente con la simulación presentada en la Figura 93.

Por tanto, se observó que en geometría tubo Karsten vertical, la distribución granulométrica de los adobes fue relevante para el transporte de agua dentro de ellos y que la condición inicial de seco o húmedo puede o no ser relevante dependiendo de la granulometría. Si la granulometría cambió por el deterioro siendo más arenosa, el transporte de agua dentro de las probetas será diferencial dependiendo de si la probeta está previamente seca o húmeda. En la geometría tubo Karsten horizontal también es relevante la granulometría puesto que la mezcla 2 no sufrió pérdida de material fino y además, si el adobe estaba previamente húmedo la erosión disminuyó considerablemente y el colapso por fractura ocurrió en un tiempo más largo del experimento.

Figura 93. Resultados de la simulación realizada con el software Delphin 5, que permite simulación de transporte de calor y humedad para geometrías con simetría axial. Simulación realizada en un ladrillo belga antiguo con alta porosidad [8].

CONSIDERACIONES EXPERIMENTALES Y RECOMENDACIONES EN MATERIA DE CONSERVACIÓN

La aplicación del tubo Karsten requiere una superficie adecuada y precisión para su colocación, ya que aunque sea una prueba sencilla, la textura de la superficie 205 para los adobes, si se erosiona demasiado, la pulverulencia causa el despegue del tubo y se escurre el agua antes de terminar el experimento.

En general, la pérdida de material fino no fue tan agresiva para el deterioro de las probetas realizadas con la mezcla original (mezcla 2) puesto que hay mayor cantidad de material fino que agrega las partículas grandes, sin embargo, es necesario evaluar con suficientes ciclos de humedad cuando se alcance el estado crítico de pérdida total de este material y por tanto se pierda la estructura y estabilidad.

La cantidad de agua que se infiltra en un suelo en un intervalo de tiempo es máxima al comenzar la aplicación del agua en el suelo. Después de un tiempo largo la velocidad con que el agua entra en el suelo se acerca a un valor constante conforme la curva se aproxima a una línea recta [2], como se observó en las figuras de resultados para todos los casos. La velocidad de infiltración depende de muchos factores, entre ellos: el espesor de agua empleado, la temperatura del agua y el suelo, la estructura y compactación, textura, contenido de humedad del suelo, estratificación, agregación y actividades microbianas [2].

En este experimento el modelo empírico para la infiltración fue aplicable puesto que fue un "suelo" que permaneció homogéneo durante el proceso de flujo y el contenido de agua fue la única variable del potencial del aqua [2]. Sin embargo, las mismas ecuaciones no aplican si se están considerando los factores mencionados arriba, de especial importancia es la temperatura, puesto que hay un cambio en la viscosidad y tensión superficial del agua pura [2].

En el caso de la Gran Pirámide los resultados que se presentaron aquí son una primera aproximación, pero

es necesario construir otros modelos que consideren la estratificación, que en este caso serían las distintas etapas constructivas, además del sistema constructivo completo y no sólo como unidad; y puesto que está recubierta por vegetación se debe plantear en un sistema aire-agua-suelo-raíces. Otro factor que se debe de estudiar, es el cambio en las condiciones de la doble capa difusa por la presencia de sales solubles como se puede atestiguar en el túnel de Bebedores.

La conservación del suelo para fines agrícolas se da por medio de la agregación que disminuya la destrucción y el transporte del material erosionado por medio de agua o del aire y aumenten la condiciones favorables para la infiltración y percolación, de manera que la erosión y los deslaves se mantengan al mínimo [2]. Por tanto se pueden buscar estabilizantes similares a los de esta área para regular la humedad y aereación con la finalidad de mantener la estructura de los adobes.

Se confirmó que es posible modelar los adobes con pastas de distintas granulometrías y así comprender la relación de composición-microestructura-propiedades para este material de construcción. En este estudio a pesar de lo simple del modelo, se logró determinar la importancia de la dirección en la que fluye la humedad como un factor determinante para los colapsos: si el agua llega en dirección horizontal a una superficie en posición vertical entonces habrá erosión pero no colapsos inmediatos; mientras que si el agua llega en dirección vertical a una superficie en posición horizontal, entonces el peso de la tierra mojada causará colapsos antes que erosión.

Finalmente, este conocimiento se puede aplicar para fabricar nuevos adobes con propiedades mejoradas o conservar los ya existentes.

Capítulo 9 CONCLUSIONES

El estudio de los materiales que componen los adobes riaciones en el contenido de material amorfo. Se determinaron tres suelos principales por su similitud con empleados en la construcción de la pirámide principal del centro ceremonial de la Zona Argueológica de Cholos adobes: 1) el denominado barro cuya composición lula fue realizado a partir de una propuesta metodoresultó ser similar a los adobes pero con bajo contenido lógica completa, que involucra diversas técnicas anade material amorfo y sin diatomeas, 2) el tepetate con líticas para abarcar los aspectos globales y específicos, contenido similar de material amorfo y sin diatomeas y así como la relevancia de los componentes inorgánicos 3) el suelo denominado arena con poco material amorcristalinos y amorfos. Con base en estos estudios fue fo y con diatomeas. posible obtener información sobre su composición que es de gran utilidad para comprender el uso de los ma-A partir de estas variaciones de composición en los teriales, las propiedades, la técnica de manufactura, y suelos, así como los resultados de colorimetría y dissu comportamiento. Estos aspectos tienen una notable tribución granulométrica de los adobes, se puede contribución para la toma de decisiones para la conserafirmar que los adobes se fabricaron con mezclas de vación de este importante monumento y las construcdistintos suelos locales. Las diferencias observadas en ciones cercanas de época prehispánica y aún actual, color y textura de los adobes se deben a la distribución pues la manufactura y uso de adobe está vigente en granulométrica de suelos locales de origen volcánico esta región y en otras regiones del país. seleccionada pero no a variación en composición.

A partir de los análisis realizados se pudo determinar Los estudios que se efectuaron para evaluar algunas de que la población de adobes estudiados tiene una comlas propiedades físicas de los adobes indicaron que son posición mineralógica común: cuarzo, ópalo CT, plaestables como material de construcción aunque se congioclasa, piroxeno y anfíbol, así como material amorfo sideren deteriorados y no requieren de un estabilizante compuesto por alófano, vidrio, ópalo amorfo (proveadicional. Se estableció que la composición de los adobes-en este caso suelos volcánicos- está directamente niente de diatomeas), ferrihidrita y materia orgánica. No se identificaron materiales orgánicos adicionales relacionada con las propiedades físicas medidas. En cuya función pudiera haber sido de aglutinante. En los particular la fracción fina de los adobes que actúa como suelos locales estudiados se identificaron los mismos material cohesivo entre granos. materiales cristalinos que en los adobes, pero con va-

Se confirmó que los adobes se pueden modelar como una mezcla de materiales de distintas granulometrías, puesto que esta característica es necesaria para la cohesión del material y para sus propiedades. El resultado final está definido por la composición, distribución granulométrica y cantidad de agua que permite el cambio de una pasta más o menos fluida a una pasta seca y finalmente, a la pasta endurecida que caracteriza a laos adobes.

Por lo tanto, de acuerdo con el estudio exhaustivo de la fracción fina como determinante de las propiedades de los adobes por su alto contenido de material amorfo (la cuantificación del material amorfo en los adobes fue en promedio 40%wt) y la identificación precisa del alófano en dicha fracción, se puede afirmar que el suelo volcánico de la región de Cholula permite que los adobes se puedan fabricar de manera apropiada debido a su comportamiento plástico similar al de las arcillas de estructura cristalina pero con propiedades geotécnicas notables que permiten hacer un material de construcción duradero.

Se encontró una gran similitud entre los adobes en cuanto a composición y granulometría; implicando que en época prehispánica se desarrolló una tecnología muy precisa para la fabricación de los adobes, que incluía no sólo el conocimiento de las propiedades de los suelos locales (relacionados con su composición) sino también las proporciones exactas en las que debían de ser mezclados de acuerdo a tamaños de grano específicos así como la cantidad de agua necesaria para la mezcla.

Los experimentos realizados para el transporte de aqua en las probetas definieron que este fenómeno está determinado primeramente por la dirección del agua de acuerdo a la posición de la probeta y en segundo lugar por la cantidad de agua inicial que contienen. Se determinó que el factor principal de deterioro de los adobes de manera estructural es la dirección en la que fluye la fuente de aqua, siendo más susceptibles a la fractura cuando el agua llega completamente per-

pendicular a la probeta (geometría horizontal del tubo Karsten) debido principalmente al peso de la tierra mojada. Las probetas fueron más resistentes si el agua se administraba de manera vertical, sin embargo aun así se erosionaban de forma significativa en la superficie. Con los experimentos anteriores, se estableció que el transporte de agua arrastra el material fino de alto contenido de alófano, cuya función es unir los granos de mayor tamaño, causando micro fracturas y micro exfoliaciones lo cual debilita a los adobes por la pérdida del material cohesivo de la superficie en contacto con el flujo de agua.

La complejidad del objeto de estudio de esta investigación como un material de construcción fabricado con suelo, el cual además es patrimonio cultural prehispánico que debe ser conservado implicó considerar seriamente el estudio de micromuestras, lo que condujo a generar propuestas metodológicas específicas para el estudio de geomateriales pertenecientes al patrimonio cultural, que frecuentemente están restringidos a la mínima o nula toma de muestra así como a análisis no destructivos.

Esta complejidad se observa en la metodología general de la tesis en la cual se consideraron técnicas instrumentales y experimentos de las áreas de ciencia de materiales, ciencias de la tierra, arquitectura y conservación del patrimonio. Sin una metodología multidisciplinaria hubiera sido complicado abordar todas las facetas que tiene el material y que son pertinentes de estudiar para generar una comprensión general de éste.

Además de la metodología general, se desarrolló una metodología específica para identificación de los materiales amorfos presentes en micromuestras. Se consideró pertinente debido a que las metodologías estandarizadas en geología para esta caracterización son análisis destructivos. La metodología propuesta puede además ser aplicada para otros materiales como cerámicas y morteros.

La metodología empleada para la cuantificación de material amorfo con el método RIR-Rietveld combinado con PIXE y su comparación con la técnica de pequeños fragmentos de carbón que estaban en peresonancia magnética nuclear en estado sólido es noqueña proporción pero distribuidos homogéneamente vedosa respecto a las dos técnicas empleadas para este en los adobes, como hipótesis por la forma de los carfin así como la convergencia de resultados en ambas boncillos, se propone que se usaron suelos que deritécnicas lo que permite emplear ambas para dicho fin, vado de la actividad humana tenían restos de carbón. pero considerando que son técnicas complementarias. pero esto debe ser investigado y sustentado por investigaciones del área de argueología y etnografía.

Este trabajo es una aportación al campo de la cristalografía que puede ser aplicada no sólo a geomateriales También dentro del área de la argueometría de acuerdel patrimonio cultural sino también al estudio de las do a la metodología empleada para las propiedades fases de hidratación de los cementos así como los adifísicas, se podría estudiar de manera comparativa por tivos empleados para mejorar sus propiedades que freetapas constructivas de la Zona arqueológica para decuentemente son amorfos. También se puede aplicar terminar si la tecnología tan precisa identificada en esta investigación para fabricar adobes ya estaba deal estudio de ladrillos y otros materiales cuyo material sarrollada cuando se inició la construcción de la Gran amorfo esté constituido mayoritariamente con silicio. Pirámide o si es una tecnología posterior, o si ésta cam-La investigación desarrollada en la tesis tuvo el objetibió de acuerdo a la temporalidad.

vo de incluir todas las dimensiones del objeto cultural estudiado: el adobe prehispánico. Sin embargo aún se En materia de conservación, es necesario hacer más puede y debe profundizar en cada aspecto con la finainvestigación concerniente al transporte de agua en lidad de aportar mayor información en cada campo de los adobes considerando las dimensiones de los adobes originales y la manera en que su estabilidad se ve conocimiento. modificada por la presencia de alto contenido de sales A partir de los resultados obtenidos se plantean aun que afecten el potencial zeta del suelo y el fenómeno de doble capa difusa. También es pertinente la evaluación diversas interrogantes sobre todo en el área de arde posibles materiales de conservación enfocados a disqueometría y conservación. En esta investigación se minuir el proceso de erosión por agua del material fino. identificó el alófano como un material que aglutina las

partículas y brinda propiedades notables al suelo. El alófano como precursor de las arcillas minerales podría Se debe considerar que en esta investigación se esser eliminado con medios químicos para identificar si tudiaron los adobes como unidad y no como sistema ya está formada alguna arcilla y de esta manera servir constructivo. Las propiedades mecánicas y de resistencia como marcador para identificar los estratos de suelo de estructural en los adobes deben ser consideradas como los que se está extrayendo el material. un sistema constructivo que funciona en conjunto.

Con los análisis realizados no fue posible definir si el Seguramente hay una mayor cantidad de información que descubrir respecto a la tecnología prehispánica tamaño de grano en los adobes fue obtenido en época prehispánica mezclando suelos con granulometrías defiademás de la fabricación del adobe en sí mismo. Al nidas o modificando la granulometría de suelos seleccioconsiderar el sistema constructivo son relevantes las nados, por tanto con fines argueométricos se podría defidimensiones de los adobes, así como la forma en la nir esta tecnología mediante arqueología experimental. que están acomodados y unidos. Esta información es de suma importancia para la arguitectura de tierra Otra característica de los adobes que no fue posible actual por la antigüedad de la Gran Pirámide y al ser explicar mediante la ciencia de materiales, fueron los arquitectura monumental que hasta esta fecha se ha 209

mantenido de pie considerando que se encuentra en una zona sísmica y volcánica.

La investigación desarrollada en esta tesis brinda una metodología base la cual se puede adaptar para la caracterización de los materiales empleados en arquitectura no sólo de tierra sino de otros geomateriales como morteros o cemento.

En específico, los resultados obtenidos a partir del desarrollo del método de identificación y cuantificación de material amorfo resalta la importancia de conocer estos materiales para comprender mejor las propiedades de los objetos hechos de suelo; como la metodología está desarrollada para micromuestras es posible aplicarlo en arqueología y conservación en el estudio de cerámicas y de morteros de tierra o cal, o para objetos de materiales orgánicos como resinas o hules, que como parte de su proceso de envejecimiento, los polímeros sufren un proceso de cristalización teniendo una mezcla de parte amorfa y cristalina. En el campo de la arquitectura de manera específica, se puede aplicar a la caracterización de cementos.

Los resultados de esta investigación son un precedente en cuanto el conocimiento de los materiales para la arquitectura de tierra actual y prehispánica, puesto que permiten vislumbrar una propuesta de conservación con el uso de materiales locales para la preparación de adobes con propiedades similares a las de los adobes prehispánicos, así como la factibilidad de generar un producto competitivo y sustentable de notables propiedades para la construcción actual en la región.

REFERENCIAS

- [1] D.R. Askeland, P. Fulay, W. Wright, Ciencia e Ingeniería de Materiales, 6ta ed., CENGAGE Learning, México, D.F., 2011.
- [2] M.W. Barsoum, Fundamentals of Ceramics, Institute of Physics Publishing, Bristol, 2003.
- [3] B. Prado, C. Duwig, C. Hidalgo, D. Gómez, H. Yee, C. Prat, et al., Characterization, functioning and classification of two volcanic soil profiles under different land uses in Central Mexico, Geoderma. 139 (2007) 300–313.
- [4] R. Horn, H. Taubner, M. Wuttke, T. Baumgartl, Soil physical properties related to soil structure, Soil Tillage Res. 30 (1994) 187–216.

- [5] Y. Wan, J. Kwong, H.G. Brandes, R.C. Jones, Influence of Amorphous Clay-Size Materials on Soil Plasticity and Shrink-Swell Behavior, J. Geotech. Geoenvironmental Eng. 128 (2002) 1026–1031.
- [6] B.A.J. Mehta, E.J. Hayter, W.R. Parker, R.B. Krone, A.M. Teeter, Cohesive Sedimet Transport. I: Process description, J. Hydraul. Eng. 115 (1990) 1076–1093.
- [7] F. Pacheco-Torgal, S. Jalali, Earth construction:Lessons from the past for future eco-efficient construction, Constr. Build. Mater. 29 (2012) 512–519.

- [8] P.G. McHenry, Adobe: como construir fácilmen te, Trillas, México, D.F., 2008.
- [9] L. Cooke, Conservation Approaches to Earthe Architecture in Archaeological Contexts, BA Intern, Archaeopress, Oxford, 2010.
- [10] 2009-2017 World Heritage Earthen A chitecture Programme: Project Documer (2009) 7. http://unesdoc.unesco.org images/0021/002170/217022e.pdf (access do Mayo 10, 2013).
- [11] What is soil?, Soil Sci. Soc. Am. (2013). https: www.soils.org/about-soils/what-is-soil (acces do June 11, 2013).
- [12] V.T. Holliday, Soils in Archaeological Researc Oxford University Press, New York, 2004.
- [13] What makes soil, soil?, Soil Sci. Soc. Am. (2013 https://www.soils.org/about-soils/what-is- soi what-makes-soil (accesado Junio 11, 2013).
- [14] L. Fernando, G. Baca, Pasado y porvenir de la arqu tectura de tapia, Bitácora Arquit. 22 (2011) 6–13.
- [15] G. Minke, Building with Earth. Design and T chnology of a Sustainable Architecture, 3rd eo Birkhäuser Verlag GmbH, Basel, 2013.
- [16] M. Dastbaz, I. Strange, S. Selkowitz, eds., Bu ding Sustainable Futures. Design and the Bu Environment, Springer, Cham, 2016.
- [17] UN General Assembly, 60/1.2005 World Summ Outcome, a/Res/60/1. (2005) 1–38. http://dat unaids.org/Topics/UniversalAccess/worldsum mitoutcome_resolution_24oct2005_en.pdf.
- **[18]** Circles of Sustainability The Cities Programm Glob. Compact Cities Program. (n.d.). http: web.archive.org/web/20130508005017

210

'n-	http://citiesprogramme.com/aboutus/our-approach/ circles-of-sustainability (accesado Abril 17, 2016).
en [19] AR	A. Ragheb, H. El-Shimy, G. Ragheb, Green Archi- tecture: A Concept of Sustainability, Procedia - Soc. Behav. Sci. 216 (2016) 778–787.
Ar- [20] nt, g/ sa-	M. Mahdavinejad, A. Zia, A.N. Larki, S. Ghanava- ti, N. Elmi, Dilemma of green and pseudo green architecture based on LEED norms in case of de- veloping countries, Int. J. Sustain. Built Environ. 3 (2014) 235–246.
// [21] sa-	H. Niroumand, J.A. Barceló Álvarez, M. Saaly, Investigation of earth building and earth archi- tecture according to interest and involvement levels in various countries, Renew. Sustain. Ener- gy Rev. 57 (2016) 1390–1397.
[22] 3). il/	En el Norte de México, Inst. Nac. Antropol. E Hist. (2013). http://www.inah.gob.mx/ especiales/149-en- el-norte-de-mexico- (acce- sado Junio 19, 2013).
ui- [23]	Instituto Nacional de Estadística y Geografía, Censo de Población y Vivienda (2010). Panorama sociodemográfico de México, México, D.F., 2011.
e- d., [24] ill- ilt	Instituto Nacional de Estadística y Geografía, Características de las viviendas, Censos Población Y Vivienda. 1970 a 2010 (2011). http://www. inegi.org.mx/est/contenidos/proyectos/grafi- cas_temas/epobla15.htm?s=est&c=2220 7 (accesado Febrero 17, 2016).
nit [25] ta. m-	Illustrated glossary on stone deterioration patterns ICOMOS, ISCS, Champigny, 2008. http://www.icomos.org/publications/monu- ments_and_sites/15/pdf/Monuments_and_ Sites_15_ISCS_Glossary_Stone.pdf.
ne, // [26] 7/	INAH, Lineamientos Institucionales Generales en Materia de Conservación del Patrimonio 211

Cultural INAH-NIS-0115., México,D.F., 2014. http://www.normateca.inah.gob.mx/documents/2014-12-26_15-32-30.pdf.

- [27] M. Uĝuryol, F. Kulakoĝlu, A preliminary study for the characterization of Kültepe's adobe soils with the purpose of providing data for conservation and archaeology, J. Cult. Herit. 14S (2013) e117–e124.
- [28] J.A. Calabria, W.L. Vasconcelos, A.R. Boccaccini, Microstructure and chemical degradation of adobe and clay bricks, Ceram. Int. 35 (2009) 665–671.
- [29] S.A. Gavande, Física de suelos. Principios y aplicaciones., Limusa, México, D.F., 1976.
- [30] R. Coffman, N. Agnew, G. Austin, E. Doehne, Adobe mineralogy: Characterization of adobes from around the world, in: 6th Int. Conf. Conserv. Earthen Archit. Adobe 90 Prepr. Las Cruces New Mex. Getty Conservation Institute, Los Angeles, 1990: pp. 424–429.
- [31] G. Liberotti, A. Daneels, Adobes en arquitectura monumental: análisis químico-físicos, arqueología y reconstrucción 3D para determinar la técnicas constructivas en los sitios de La Joya (México) y Arslantepe (Turquía), Bol. La Soc. Geol. Mex. 64 (2012) 79–89.
- [32] J.E. Gama-Castro, T. Cruz y Cruz, T. Pi-Puig, R. Alcalá-Martínez, H. Cabadas-Báez, C. Jasso-Castañeda, et al., Arquitectura de tierra: El adobe como material de construcción en la época prehispánica, Bol. La Soc. Geol. Mex. 64 (2012) 177–188.
- [33] Y. Kita, A. Daneels, A.R. De Vivar, Chemical analysis to identify organic compounds in pre-Columbian monumental earthen architecture, Online J. Sci. Technol. 3 (2013) 39–45.

- [34] L.A. Barba Pingarrón, J.L. Córdova Frunz, Materiales y Energía en la arquitectura de Teotihuacán, Instituto de Investigaciones Antropológicas, UNAM, México, D.F., 2010.
- [35] Y. Ramos-Galicia, C. Hidalgo-Moreno, S. Sedov, T. Poetsch, Comales of Tzomantepec and paleosols: a case study, Rev. Mex. Ciencias Geológicas. 20 (2003) 263–269.
- [36] Y. Millogo, M. Hajjaji, R. Ouedraogo, Microstructure and physical properties of lime-clayey adobe bricks, Constr. Build. Mater. 22 (2008) 2386–2392.
- [37] J. Ninov, I. Donchev, Lime stabilization of clay from the "Mirkovo" deposit: Part I. Kinetics and mechanism of the processes, J. Therm. Anal. Calorim. 91 (2008) 487–490.
- [38] C. Galán-Marín, C. Rivera-Gómez, J. Petric, Claybased composite stabilized with natural polymer and fibre, Constr. Build. Mater. 24 (2010) 1462–1468.
- [39] F. Solís, G. Uruñuela, P. Plunket, M. Cruz, D. Rodríguez, Cholula: La Gran Pirámide, CONACUL-TA-INAH, México, D.F., 2006.
- [40] C. Siebe, J.L. Macía, M. Abrams, J. Obenholzner, La destruccion de cacaxtla y cholula:un suceso en la historia eruptiva del Popocatépetl, Ciencias. (1996) 36–45. http://biblat.unam.mx/pt/ revista/ciencias-mexico-d-f/articulo/la-destruccion-de-cacaxtla-y-cholula (accesado Septiembre 18, 2015).
- [41] P. Plunket, G. Uruñuela, Social and cultural consequences of a late Holocene eruption of Popocatépetl in central Mexico, Quat. Int. 151 (2006) 19–28.
- [42] A. Ashwell, Cholula : su herencia es una red de agujeros Parte II, Elementos. 55-56 (2004) 3–11.

- [43] P. Plunket, G. Uruñuela, Dating Cholu la, Mexico, 2005. http://www.famsi.org reports/02042/02042Plunket01.pdf.
- [44] M. Reyes, Geología general de la región d Cholula, Puebla, in: I. Marquina (Ed.), Pro Cholula, Instituto Nacional de Antropología Historia, México, D.F., 1970: pp. 9–15.
- [45] C. Siebe, M. Abrams, J.L. Macías, J. Obenhol ner, Repeated volcanic disasters in Prehispan time at Popocatépetl, central Mexico: Past ke to the future?, Geology 24 (1996) 399–402.
- [46] A. Flores Díaz, Suelos, in: I. Marquina (Ed.), Pro Cholula, Instituto Nacional de Antropología Historia, México, D.F., 1970: pp. 17–21.
- [47] K. Heine, Paleopedological evidence of humar induced environmental change in the Puebla Tlaxcala area (Mexico) during the last 3,500 year Rev. Mex. Ciencias Geol. 20 (2003) 235–244.
- [48] A.I. Lagunas Torres, J.G.A. Ponce, Informe Estudi Geotécnico para la rehabilitación estructural d la iglesia de Nuestra Señora de los Remedio Parroquia de San Pedro Cholula, Puebla, 2002.
- [49] A.E. Romero Butrón, C. Cedillo Ortega, Interver ción en el Túnel de la Fachada Norte del Edifici Escalonado de la Gran Pirámide de Cholula Centro INAH Puebla, Puebla, 2012.
- [50] C.R. Roque, N.A.P. Castellanos, Evaluación d Materiales para Fijación del Sustrato de la Pinturas Murales de la Zona Arqueológica d Cholula, Puebla, in: D. Grimaldi (Ed.), Proy. Cor serv. E Investig. Para Las Pinturas Murales La Z A. Cholula, Puebla Tempor. Junio-Julio 2012 CNCPC-INAH, México, D.F., 2012.
- [51] L. Bucio, J.L. Ruvalcaba-Sil, C. Thions, J. Urrutia Fucugauchi, E. Orozco, Combined PIXE an

u- g/		X-ray diffraction analysis of accretionary lapilli from the Cretaceous / Paleogene boundary El Guayal Section , Tabasco , Mexico, X-Ray Spec- trom. 45 (2015) 111–116.
de)y. e	[52]	P. Van Espen, K. Janssens, J. Nobels, AXIL-PC, software for the analysis of complex X-ray spec- tra, Chemom. Intell. Lab. Syst. (1986).
lz- nic ey	[53]	J. Miranda, de L. O., E.M. Santillana, D.L. Agui- lar, Proceeding of the XL National Conference of Physics, Sociedad Mexicana de Física, Monte- rrey, Mexico, in: Proceeding XL Natl. Conf. Phy- sics, Soc. Mex. Física, 1997: p. 27.
e e	[54]	R.B. Von Dreele, A rapidly filled capillary mount for both dry powder and polycrystalline slurry samples, J. Appl. Crystallogr. 39 (2006) 124–126.
rs,	[55]	A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS), 1994.
io	[56]	B.H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Crystallogr. 34 (2001) 210–213.
)S,	[57]	ASTM International, ASTM D422: Standard Test Method for Particle-Size Analysis of Soils, (2007) 1–8.
io la,	[58]	F. Rouquerol, J. Rouquerol, K. Sing, Adsorp- tion by Powders and Porous Solids. Principles, Methodology and Applications, Academic Press, London, 1999.
as de n-	[59]	ASTM International, ASTM D4318:Standard Test Methods for Liquid Limit, Plastic Limit, and Plas- ticity Index of Soils,(2005) 1–14.
2, a- nd	[60]	D. Vandevoorde, V. Cnudde, J. Dewanckele, M. Boone, M. de Bouw, V. Meynen, et al., Compa- rison of non-destructive techniques for analysis of the water absorbing behavior of stone, in: 12th Int. Congr. Deterior. Conserv. Stone, New 213
York, 22-26 Oct. 2012, 2014: pp. 1–9.

- [61] G. Uruñuela, P. Plunket, A. Robles, Building the Tlachihualtepetl: The social and ideological foundations of the Great Pyramid of Cholula, Mexico, in: S. Sugiyama, S. Kabata, T. Taniguchi, E. Niwa (Eds.), Constr., Deconstructing, Reconstr. Soc. Identity-2,000 Years Monum. Teotihuacan Cholula, Mex., Cultural Symbiosis Research Institute, Aichi Prefectural University, Nakagute, 2013: pp. 95–106.
- [62] C.J. Reedy, Thin-Section Petrography of Stone and Ceramic Cultural Materials, Archetype Publications, London, 2008.
- [63] W.S. Mackenzie, C. Guilford, Atlas of Rock Forming Minerals in thin section, Longman, London, 1980.
- [64] J. Reinhardt, M.M. Raith, P. Raase, Guide to thin section microscopy, 2nd ed., Raith, Raase, Reinhardt, Bonn, 2012, http://www.minsocam.org/ msa/openaccess publications/ 2011.
- [65] F. Benyaïch, A. Makhtari, L. Torrisi, G. Foti, PIXE and XRF comparison for applications to sediments analysis, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 132 (1997) 481–488.
- [66] K.G. Malmqvist, Comparison between PIXE and XRF for applications in art and archaeology, Nucl. Inst. Methods Phys. Res. B. 14 (1986) 86–92.
- [67] J.L. Campbell, J.A. Maxwell, S.M. Andrushenko, S.M. Taylor, B.N. Jones, W. Brown-Bury, A GUPIXbased approach to interpreting the PIXE-plus-XRF spectra from the Mars Exploration Rovers: I. Homogeneous standards, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 269 (2011) 57-68.

- [68] K.J.D. Mackenzie, M.E. Smith, Multinuclear solid state NMR of Inorganic Materials, Volume 6, Pergamon Materials Series, Oxford, 2002.
- [69] J. Davidovits, Geopolymer. Chemistry and Applications, 3rd ed., Institut Géopolymére, Saint Quentin, 2011.
- [70] T. Hatakeyama, Z. Liu, Handbook of thermal analysis, Jonh Wiley & Sons Ltd., Chichester, 1998.
- [71] J.C. Sanz, R. Gallego, Diccionario del color, AKAL, Madrid, 2001.
- [72] S.K. Shevell, ed., The Science of Color, 2nd ed., Optical Society of America and Elsevier, Amsterdam, 2003.
- [73] N. Pérez, L. Bucio, E. Lima, C. Cedillo, D. Grimaldi, Unraveling the core of the Gran Piramide from Cholula, Puebla. A compositional and microstructural analysis of the adobe, Mater. Res. Soc. Symp. Proc. 1656 (2015).
- [74] A.R. Philpotts, Petrography of Igneous and Metamorphic Rocks, Waveland Press, Prospect Heights, (2003) 190.
- **[75]** R.J. Swope, An X-ray Diffraction Study of Opals, The Ohio State University, Columbus, 1983.
- [76] B.Y. Lynne, K.A. Campbell, B.J. James, P.R.J. Browne, J. Moore, Tracking crystallinity in siliceous hot-spring deposits, Am. J. Sci. 307 (2007) 612-641.
- [77] J.B. Jones, E.R. Segnit, The nature of opal I. nomenclature and constituent phases, J. Geol. Soc. Aust. 18 (1971) 57-68.
- [78] N.R. Herdianita, P.R.L. Browne, K.A. Rodgers, K.A. Campbell, Mineralogical and textural changes accompanying ageing of silica sinter, Miner. Depos. 35 (2000) 48-62.

- [79] V.E. Neall, Volcanic soils, in: Land Use and Land **[89]** C.W. Childs, Ferrihydrite: A Review of Structure, Cover, Sci. Encycl. Life Support Syst., Eolss Pu-Properties, and Occurence in Relation to Soils, J. blishers, UNESCO, Oxford, 1992. Plant Nutr. Soil Sci. 155 (1992) 441–448. [90] S. Hiradate, Structural changes of allophane ture, properties and management of volcanic during purification procedures as determined by solid-state 27A1 and 29Si NMR, Clays Clay soils, Adv. Agron. 82 (2004) 113-182. Miner. 53 (2005) 653–658. sition of allophane, Am. Mineral. 61 (1976) [91] K.A. Smith, R.J. Kirkpatrick, E. Oldfield, D.M.
- [80] R.A. Dahlgren, M. Saigusa, F.C. Ugolini, The na-[81] T. Henmi, K. Wada, Morphology and compo-379-390.
- Henderson, High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of **[82]** G. Socrates, Infrared and Raman Characteristic rock-forming silicates., Am. Mineral. 68 (1983) Group Frequencies. Tables and charts., 3rd ed., 1206-1215. John Wiley & Sons, Chichester, 2001.
- [92] C. Levard, E. Doelsch, I. Basile-Doelsch, Z. Abi-[83] S. Gunasekaran, G. Anbalagan, S. Pandi, Radin, H. Miche, A. Masion, et al., Structure and man and infrared spectra of carbonates of caldistribution of allophanes, imogolite and protocite structure, J. Raman Spectrosc. 37 (2006) imogolite in volcanic soils, Geoderma. 183-184 892-899. (2012) 100-108.
- [84] D. Breck, Zeolite Molecular Sieves: Structure, [93] B.H.W.S. De Jong, J. Van Hoek, W.S. Veeman, D.V. Manson, X-ray diffraction and 29Si magic-Chemistry and Use, Wiley Interscience Publicaangle-spinning NMR of opals; incoherent longtion, New York, 1974. and short-range order in opal-CT, Am. Mineral. [85] W. Yan, D. Liu, D. Tan, P. Yuan, M. Chen, FTIR 72 (1987) 1195-1203.
- spectroscopy study of the structure changes of palygorskite under heating, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 97 (2012) 1052-1057.
- [86] Z. Hernández, G. Almendros, P. Carral, A. Álvarez, H. Knicker, J.P. Pérez-Trujillo, Influence of non-342-346. crystalline minerals in the total amount, resilience and molecular composition of the orga-[95] C.W. Childs, Structural Studies of Silica Springs nic matter in volcanic ash soils (Tenerife Island, Allophane, Clay Miner. 25 (1990) 329-341. Spain), Eur. J. Soil Sci. 63 (2012) 603–615.
- [96] J. Dedecek, S. Sklenak, C. Li, B. Wichterlová, V. Gábová, J. Brus, et al., Effect of Al-Si-Al and Alstudies, Vib. Spectrosc. 31 (2003) 1-10. Si-Si-Al Pairs in the ZSM-5 Zeolite Framework on the 27 Al NMR Spectra . A Combined High-Resolution 27 Al NMR and DFT / MM Study, J. ferric hydroxide, Geoderma. 10 (1973) 237-247. Phys. Chem. C. 113 (2009) 1447-1458.
- **[87]** J. Madejová, FTIR techniques in clay mineral [88] U. Schwertmann, W.R. Fischer, Natural "amorphous"

[94] B.A. Goodman, J.D. Russell, B. Montez, E. Oldfield, R.J. Kirkpatrick, Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy, Phys. Chem. Miner. 12 (1985)

- [97] M. Hunger, D. Freude, H. Pfeifer, W. Schwieger, MAS NMR studies of silanol groups in zeolites ZSM-5 synthesized with an ionic template, Chem. Phys. Lett. 167 (1990) 21–26.
- **[98]** R.J. Kirkpatrick, M.A. Carpenter, W.-H. Yang, B. Montez, 29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase felds-pars, Nature. 325 (1987) 236–238.
- [99] B.L. Sherriff, J.S. Hartman, Solid-state high resolution 29Si NMR of feldspars: Al-Si disorder and the effect of paramagnetic centres, Can. Mineral. 23 (1985) 205–212.
- [100] M. Mägi, E. Lippmaa, A. Samoson, G. Engelhardt, A.R. Grimmer, Solid-state high-resolution silicon-29 chemical shifts in silicates, J. Phys. Chem. 88 (1984) 1518–1522.
- [101] E. Lippmaa, M. Mägi, A. Samoson, G. Engelhardt, A.R. Grimmer, Structural studies of silicates by solid-state high-resolution 29Si NMR, J. Am. Chem. Soc. 102 (1980) 4889–4893.
- [102] H. Zhao, K. Hiragushi, Y. Mizota, Phase segregation of non-stoichiometric aluminosilicate gels characterized by 27Al and 29Si MAS-NMR, J. Non. Cryst. Solids. 311 (2002) 199–206.
- **[103]** M. Földvári, Handbook of thermogravimetric system of minerals and its use in geological practice, Geological Institute of Hungary, Budapest, 2011.
- **[104]** F.H. Norton, Critical study of the differential thermal method for the identification of the clay minerals, J. Am. Ceram. Soc. 22 (1939) 54–64.
- **[105]** Comission Internationale De L'Eclairage, Technical report Colorimetry, 2004.
- [106] P.J. Lopez, J. Desclés, A.E. Allen, C. Bowler, Prospects in diatom research, Curr. Opin. Biotechnol. 16 (2005) 180–186.

- [107] T.J. Marshall, J.W. Holmes, Soil physics, 2nd ed., Cambridge University Press, Cambridge, 1988.
- [108] P. Doat, A. Hays, H. Houben, S. Matuk, F. Vitoix, Construir con tierra. Tomo II, CRAterre y Fondo Rotatorio Editorial, Bogotá, 1990.
- [109] Tecnología de construcción de tierra sin cocer, CONSECAL-Revista Espec. En Espac. Educ. (1982) 1–100.
- **[110]** Full definition of clay, (n.d.). http://www.merriam-webster.com/dictionary/clay (accesado Marzo 6, 2016).
- [111] D. Sarrochi, Análisis textural del depósito de flujo de bloques y ceniza del 17 de julio de 1999 en el volcán de colima, UNAM, México, D.F. 2006.
- **[112]** S. Guggenheim, R.T. Martin, Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees, Clays Clay Miner. 43 (1995) 255–256.
- [113] A.D. McNaught, A. Wilkinson, eds., IUPAC. Compendium of Chemical Terminology (the "Gold Book"), 2nd ed., Blackwell Scientific Publications, Oxford, 1997. http://goldbook.iupac.org/ R05381.html.
- **[114]** R. Moreno, Reología de suspensiones cerámicas, Consejo Superior de Investigaciones Científicas-CSIC, Madrid, 2005.
- [115] W. Markgraf, C.W. Watts, W.R. Whalley, T. Hrkac, R. Horn, Influence of organic matter on rheological properties of soil, Appl. Clay Sci. 64 (2012) 25–33.
- **[116]** A. Aguirre Gómez, Química de los suelos ácidos, templados y tropicales, FES Cuautitlán-UNAM, Cuautitlán Izcalli, 2007.

- [117] W.O. Robinson, The determination of organ matter in soils by means of hydrogen peroxid J. Agric. Res. 34 (1927) 339–356.
- **[118]** S. Lowell, J. Shields, M. Thomas, M. Thormes, Characterization of porous solids ar powders:Surface area, pore size and densi Springer, New York, 2004.
- **[119]** E. Paterson, Specific Surface Area and Po Structure of Allophanic Soil Clays, Clay Mine 12 (1977) 1–9.
- **[120]** J. Fernandez, Material Architecture. Emerge materials for innovative buildings and ecol gical construction, Architectural Press, Oxfor 2006.
- [121] W. Emerson, The structure of soil crumbs, J. Sc Sci. 10 (1959) 235–244.
- **[122]** L. Wesley, Behaviour and geotechnical properties of residual soils and allophane clays, Obra Y Proy. Rev. Ing. Civ. 6 (2009) 5–10.
- **[123]** C.S. Ross, P.F. Kerr, Halloysite and allophan in: Shorter Contrib. to Gen. Geol., United Stat Department of the Interior Geological Surve 1934: pp. 135–148.
- [124] S.I. Wada, K. Wada, Density and structure allophane, Clay Miner. 12 (1977) 289–298.
- **[125]** T. Rennert, K. Eusterhues, S. Hiradate, Breitzke, G. Buntkowsky, K.U. Totsche, et a Characterisation of Andosols from Laacher Se tephra by wet-chemical and spectroscopic t chniques (FTIR, 27AI-, 29Si-NMR), Chem. Geo 363 (2014) 13–21.
- **[126]** I. Kett, J. Ingham, J. Evans, Identifying an effe tive binder for the stabilisation of allophan soils, Int. J. Pavement Eng. 11 (2010) 223–23

nic [1 de, m-	127]	M. Russell, R. Parfitt, G. Claridge, Estimation of the amounts of allophane and other materials in the clay fraction of an Egmont loam profile and other volcanic ash soils, New Zealand, Aust. J. Soil Res. 19 (1981) 185–195.
na ity, [1 ore er.	128]	C. Hidalgo, J.D. Etchevers, A. Martínez-Richa, H. Yee-Madeira, H.A. Calderon, R. Vera-Graziano, et al., Mineralogical characterization of the fine fraction ($<2\mu$ m) of degraded volcanic soils and tepetates in Mexico, Appl. Clay Sci. 49 (2010) 348–358.
ent [1 lo- rd,	129]	R.L. Parfitt, R.J. Furkert, T. Henmi, Identification and Structure of Two Types of Allophane from Volcanic Ash Soils and Tephra, Clays Clay Miner. 28 (1980) 328–334.
oil [1 er-	130]	M.A. Beck, W.P. Robarge, S.W. Buol, Phosphorus retention and release of anions and organic car- bon by two Andisols, Eur. J. Soil Sci. 50 (1999) 157–164.
ras [1 ne, tes	31]	S. Kaufhold, K. Ufer, A. Kaufhold, J.W. Stucki, A.S. Anastácio, R. Jahn, et al., Quantification of allophane from Ecuador, Clays Clay Miner. 58 (2010) 707–716.
ey, [1 of	132]	J.L. Bishop, E.B. Rampe, D.L. Bish, Z. Abidin, L.L. Baker, N. Matsue, et al., Spectral and hydration properties of allophane and imogolite, Clays Clay Miner. 61 (2013) 57–74.
H. [1 al., ee te- ol.	133]	J.L. Bishop, H.B. Franz, W. Goetz, D.F. Blake, C. Freissinet, H. Steininger, et al., Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA, Icarus. 224 (2013) 309–325.
ec- [1 nic 36.	134]	E.B. Rampe, M.D. Kraft, T.G. Sharp, D.C. Golden, D.W. Ming, P.R. Christensen, et al., Detection of Allophane on Mars Through Orbital and In-Situ 217

Thermal-Infrared Spectroscopy, in: 42nd Lunar Planet. Sci. Conf. March 7-11,2011, Contrib. No. 1608, 2011: p. 2145.

- **[135]** S.N. Sedov, E. Solleiro-Rebolledo, J.E. Gama-Castro, Andosol to Luvisol evolution in Central Mexico: Timing, mechanisms and environmental setting, Catena. 54 (2003) 495–513.
- [136] R.L. Parfitt, Allophane in New Zealand a review, Aust. J. Soil Res. 28 (1990) 343–360.
- **[137]** S. Ramdas, J. Thomas, J. Klinowski, C. Fyfe, J. Hartman, Ordering of aluminium and silicon in synthetic faujasites, Nature. 292 (1981) 228–230.
- **[138]** M. Calabi-Floody, J.S. Bendall, A.A. Jara, M.E. Welland, B.K.G. Theng, C. Rumpel, et al., Nanoclays from an Andisol: Extraction, properties and carbon stabilization, Geoderma. 161 (2011) 159–167.
- **[139]** J.B. Jones, E.R. Segnit, N.M. Nickson, Differential Thermal and X-Ray Analysis of Opal, Nature. 198 (1963) 1191.
- **[140]** A. Kamatani, Physical and chemical characteristics of biogenous silica, Mar. Biol. 8 (1971) 89–95.
- **[141]** S.B. Rice, H. Freund, W.L. Huang, J.A. Clouse, C.M. Isaacs, Application of fourier transform infrared spectroscopy to silica diagenesis: the opal-A to opal-CT transformation, J. Sediment. Res. A65 (1995) 639–647.
- [142] E.R. Segnit, T.J. Stevens, J.B. Jones, The role of water in opal, J. Geol. Soc. Aust. 12 (1965) 211–226.
- [143] L. Stoch, B. Procyk, P. Stoch, Thermochemistry of vitrified waste incineration ashes crystallization, J. Therm. Anal. Calorim. 97 (2009) 197–201.

- [144] N.A. Pérez, L. Bucio, E. Lima, E. Soto, C. Cedillo, Identification of allophane and other semi-crystalline and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico, Microchem. J. 126 (2016) 349–358.
- **[145]** A. Gualtieri, Accuracy of XRPD QPA using the combined Rietveld-RIR method, J. Appl. Crystallogr. 33 (2000) 267–278.
- [146] A.G. de la Torre, M.A. Aranda, Accuracy in Rietveld quantitative phase analysis of Portland cements, J. Appl. Crystallogr. (2003) 1169–1176.
- [147] S. Kemethmüller, A. Roosen, F. Goetz-Neunhoeffer, J. Neubauer, Quantitative analysis of crystalline and amorphous phases in glass-ceramic composites like LTCC by the rietveld method, J. Am. Ceram. Soc. 89 (2006) 2632–2637.
- **[148]** X. Orlhac, C. Fillet, P. Deniard, a. M. Dulac, R. Brec, Determination of the crystallized fractions of a largely amorphous multiphase material by the Rietveld method, J. Appl. Crystallogr. 34 (2001) 114–118.
- [149] M. Schreyer, L. Guo, M. Tjahjono, M. Garland, Three approaches to total quantitative phase analysis of organic mixtures using an external standard, J. Appl. Crystallogr. 44 (2011) 17–24.
- **[150]** S. Hillier, Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio method and the importance of sample preparation, Clay Miner. 35 (2000) 291–302.
- **[151]** N.V.Y. Scarlett, I.C. Madsen, L.M.D. Cranswick, T. Lwin, E. Groleau, G. Stephenson, et al., Outcomes of the International Union of Crystallography Commission on Powder Diffraction Round Robin on Quantitative Phase Analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite

and pharmaceuticals, J. Appl. Crystallogr. 3 (2002) 383–400.

- **[152]** R.S. Winburn, S.L. Lerach, B.R. Jarabek, M. Wisdom, D.G. Grier, G.J. Mccarthy, Quantitativ XRD analysis of coal combustion by-products b the Rietveld method. Testing with standard min tures, Adv. X Ray Anal. 42 (2000) 387–396.
- **[153]** A.F. Gualtieri, V. Riva, A. Bresciani, S. Maretti, M. Tamburini, A. Viani, Accuracy in quantitative ph se analysis of mixtures with large amorphot contents. The case of stoneware ceramics an bricks, J. Appl. Crystallogr. 47 (2014) 835–846
- [154] R.E. Dinnebier, K. Friese, Modern XRD method in mineralogy, in: P. Tropper (Ed.), Introd. to N neral. Sci. Encycl. Life Support Syst., Eolss Publi hers, UNESCO, Oxford, 2003.
- [155] J. Kaduk, J. Reid, Typical values of Rietveld in trument profile coefficients, Powder Diffr. 2 (2011) 88–93.
- **[156]** R.B. Von Dreele, GSAS Profile Terms, (n.d https://wiki-ext.aps.anl.gov/ug11bm/inde php/GSAS_Profile_Terms (accesado Octub 3, 2014).
- [157] The Inorganic Crystal Structure Database (ICSD), (n.d
- [158] N. Lobanov, L. Alte da Veiga, Analytic absorptio correction factors for cylinders to an accuracy 0.5%, in: 6th European Powder Diffraction Conf rence, Abstract P12-16, Aug. 22-25 (1998) 12–1
- **[159]** A.N.L. Advance Photon Source, Compute X-ra Absorption, (n.d.). http://11bm.xray.aps.an gov/absorb/absorb.php (accesado Diciembr 15, 2014).
- [160] R.B. Von Dreele, Applying Capillary Geomet Absorption Correction in GSAS, (n.d.). http:

35		www.ccp14.ac.uk/solution/gsas/absorption. htm (accesado Septiembre 1, 2014).
.A. ve by ix-	[161]	S. Aomine, K. Wada, Differential weathering of volcanic ash and pumice, resulting in formation of hydrated halloysite, Am. Miner. 47 (1962) 1024–1048.
M.	[162]	F. Malz, H. Jancke, Validation of quantitative NMR, J. Pharm. Biomed. Anal. 38 (2005) 813–823.
na- ius nd 6.	[163]	S. Schramm, E. Oldfield, High-resolution oxygen-17 NMR of solids, J. Am. Chem. Soc. 106 (1984) 2502–2506.
ids Mi- is- ns- 26	[164]	C.A. Fyfe, G.C. Gobbi, G.J. Kennedy, Quanti- tatively reliable silicon-29 magic-angle spin- ning nuclear magnetic resonance spectra of surfaces and surface-immobilized species at high field using a conventional high-resolu- tion spectrometer, J. Phys. Chem. 89 (1985) 277–281.
1.). 2X.	[165]	S.L. Mestrelab Research, Mnova, (n.d.). http:// mestrelab.com/software/mnova/ (accesado Marzo 9, 2016).
ore 1.). on	[166]	N.A. Pérez, L. Bucio, X. Bokhimi, E. Lima, E. Soto, Quantification of amorphous phases in the silt fraction of Mexican pre-Hispanic adobe earth bricks Quantification of amorphous phases in the silt fraction of Mexican pre-Hispanic adobe earth bricks, J. Appl. Crystallogr. (2016) 561–568.
fe- I6. ray nl. pre	[167]	R. Duarte, I. Flores-Colen, J. De Brito, In Situ Testing Techniques for Evaluation of Water Pe- netration in Rendered Facades - the Portable Moisture Meter and Karsten Tube, in: Int. Conf. Durabilty Build. Mater. Components, Porto- Portugal, 12-15 April. XII DBMC, 2011: pp. 1–8.
try ://	[168]	K.B. Ren, D.A. Kagi, Upgrading the durability of mud bricks by impregnation, Build. Environ. 30 (1995) 433–440.
		040

- [169] M. Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New York, 1937.
- **[170]** D. Hernández, Efecto de la Mojabilidad sobre el flujo a través de un medio poroso, UNAM, México, D.F., 2013.
- [171] D. Vandevoorde, V. Cnudde, J. Dewanckele, L. Brabant, M. de Bouw, V. Meynen, et al., Validation of in situ Applicable Measuring Techniques for Analysis of the Water Adsorption by Stone, Procedia Chem. 8 (2013) 317-327.
- [172] R. Hendrickx, Using the Karsten tube to estimate water transport parameters of porous building materials, Mater. Struct. (2012) 1–12.
- [173] S.E. Allaire, S. Roulier, A.J. Cessna, Quantifying preferential flow in soils: A review of different techniques, J. Hydrol. 378 (2009) 179–204.
- [174] S.E. Allaire-Leung, S.C. Gupta, J.F. Moncrief, Water and solute movement in soil as influenced by macropore characteristics - 1. Macro-

pore continuity, J. Contam. Hydrol. 41 (2000) 283-301.

- [175] D. Giraldi, M. de'Michieli Vitturi, M. Zaramella, A. Marion, R. Iannelli, Hydrodynamics of vertical subsurface flow constructed wetlands: Tracer tests with rhodamine WT and numerical modelling, Ecol. Eng. 35 (2009) 265–273.
- [176] M. Weiler, H. Flühler, Inferring flow types from dye patterns in macroporous soils, Geoderma. 120 (2004) 137-153.
- [177] V. Gitis, C. Dlugy, G. Ziskind, S. Sladkevich, O. Lev, Fluorescent clays-Similar transfer with sensitive detection, Chem. Eng. J. 174 (2011) 482-488.
- [178] I. Forrer, A. Papritz, R. Kasteel, H. Flühler, D. Luca, Quantifying dye tracers in soil profiles by image processing, Eur. J. Soil Sci. 51 (2000) 313-322.

ANFXO A

EXPERIMENTO DE TRANSPORTE DE AGUA HORIZONTAL

POR EL MÉTODO DE TUBO KARSTEN EN GEOMETRÍA

MEZCLA 1 **EN CONDICIÓN INICIAL SECO**

MEZCLA 1 EN CONDICIÓN INICIAL HÚMEDO

MEZCLA 2 EN CONDICIÓN INICIAL SECO

MEZCLA 2 EN CONDICIÓN INICIAL HÚMEDO

t=17 min

t=21 min

ANEXO B

EXPERIMENTO DE TRANSPORTE DE AGUA VERTICAL

POR EL MÉTODO DE TUBO KARSTEN EN GEOMETRÍA

MEZCLA 1 EN CONDICIÓN INICIAL SECO

t=0 min

t=2 min

t=2 min

t=15 min

t=15 min

t=15 min

t=16 min

MEZCLA 1 EN CONDICIÓN INICIAL HÚMEDO

MEZCLA 2 EN CONDICIÓN INICIAL SECO

t=34 min

MEZCLA 2 EN CONDICIÓN INICIAL HÚMEDO

ANEXO C ARTÍCULOS PUBLICADOS

Unraveling the Core of The *Gran Pirámide* From Cholula, Puebla. A Compositional and Microstructural Analysis of the Adobe

N. A. Pérez¹, L. Bucio¹, E. Lima², C. Cedillo³, D. M. Grimaldi⁴

¹Instituto de Física, Universidad Nacional Autónoma de México, México DF, México

²Instituto de Investigaciones en Materiales, UNAM, México

³Zona Arqueológica de Cholula, Centro INAH Puebla, Instituto Nacional de Antropología e Historia, Puebla, México

⁴Área de Conservación Arqueológica, Coordinación Nacional de Conservación del Patrimonio Cultural, Instituto Nacional de Antropología e Historia, México DF, México.

ABSTRACT

The *Gran Pirámide*, a Mexican cultural heritage site, is located at the archaeological site of Cholula, Puebla, Mexico. At the base of its platform this pyramid is the largest in the world. It was built in layers from 800 to 1100 AD by the Cholultecan pre-Hispanic culture. The archaeological site is famous by its great mural paintings that have been well-studied. The pyramid was built with earthen construction, a system of multiple bulding episodes with layers of adobe. The building material, adobe, has not been well studied. Due to its fragile condition, a more extensive study was conducted to understand the behavior of the building and the mural paintings substrate, in order to propose conservation strategies.

Geological context of the area was the starting point to propose the relevant materials used in its construction. That was a fundamental key for the interpretation of the experimental techniques used that include X-ray Diffraction (XRD), Particle-Induced X-ray Emission (PIXE), ²⁹Si and ²⁷Al Nuclear-Magnetic Resonance with Magic-Angle Spin (NMR-MAS), Thermal Analysis, Optical and Scanning Electron Microscopy (SEM) and colorimetric measurements.

The results obtained from the original adobes have been compared with fresh soils from horizons related with pre-Hispanic activity. The results indicate presence of amorphous materials and neo-mineral formation besides feldspars and opal. The amorphous phases have been identified by NMR-MAS and SEM.

Differences were found in the composition from the adobe used for the joints, mainly in the clay fraction, that can be distinguished by color and that guided to group the information acquired.

These results provide new information on the composition and microstructure of adobes from the *Gran Pirámide* of Cholula. Further studies will involve soil physics methods and erosion tests to complete the task of having a comprehensive knowledge of the earth architecture of the pyramid.

INTRODUCTION

Geological and cultural Setting

Cholula is located in the center of Puebla valley, in the Mexican Transvolcanic Belt to the west of the Sierra Nevada, 2000 m above sea level (Figure 1). The main physiographic characteristics are the mountains that surround and enclose the valley. To to the northeast it is bordered by *La Malinche* volcano, to the west by the Sierra Nevada. To the south is the Atoyac River Basin and on the north with the hill of San Lorenzo. In the center are located the hills of Tecajete and Zapotecas, that consists of a type of volcanic cone complex with lava spills at the base.

The annual rainfall at the lower part of the valley is 600-700 mm and has a temperate climate with dry winters and cool summers with the heaviest rains [1].

Figure 1. Location of the archaeological site of Cholula on the Puebla Valley. The marked green region is the Mexican Transvolcanic Belt. Image of the Great Pyramid of Cholula (right).

The most important geological events in the region have been the recurring Plinian eruptions of *Popocatépetl* volcano every 1000 to 3000 years. These eruptions have followed a similar pattern and start with the expulsion of small ash flows. The eruptions reached their maximum with the main Plinian pulse that caused the ash deposition, the emplacement of hot ash flows and finally extensive volcanic mud flows known as lahars. On each occasion, the devastated area was repopulated before the return of another Plinian event. Siebe has established the extent of areas flooded with lahars and regional stratigraphy according to the eruptive sequences and relatined them to pre-Hispanic activity [2].

Contemporary with Teotihuacan, Cholula is seen as the other major city in central Mexico during the Classic period. However, the reference to Cholula persists in several early sources showing that the *cholultecas* were among the first Mesoamerican people, as well as their centrality in the foundational stories of the highland cultures. The archaeological evidence of human occupation in the region since 300 BCE has provided further evidence and reinforced this conclusion. In addition, its unique geographic position allowed the city to be the connection point between different routes in ancient Mexico, for it was an obligatory crossing in the route to the Gulf Coast and to Oaxaca; therefore, a convergence of cultures occurred in this area [3, 4].

Tlachihualtépetl is The Great Pyramid's pre-Hispanic name which means the "handmade hill". It is the largest pyramid that was built in Ancient Mexico by the people of Cholula using adobe bricks. This magnificent and imposing ritual building has eight major construction phases that were carried out in such a way that previous stages were hidden each time. The Great Pyramid was mutilated starting in colonial times, when the last construction stage was dismantled to use the stone and building elements for the new catholic buildings.

Currently, the *Tlachihualtépetl* is seen as an artificial hill with some original adobe visible, and on top of which is based and was built the Sanctuary of the Virgen de los Remedios [3].

The main tunnel that tourists now use to visit in the interior layers covers 280 m of more than ten kilometers of tunnels that were required for archaeological exploration (Figure 2). The Great Pyramid in its final construction phase reached 65 m high and 400 m per side at the base as a result of the various building phases, constituting the largest volume of a pyramid in the American continent [3, 5].

Figure 2. The main tunnel of The Great Pyramid used to visit the interior stages of the pyramid (left). Detail of the "Bebedores" mural painting (right).

The Great Pyramid as well as some other minor constructions around it, had facades extensively decorated with mural paintings executed over earthen support. Among the remnants the more important ones are "Chapulines" (Grasshopers), "Estrellas" (Stars) and "Los Bebedores" (The Drinking Ones), all of them painted in a *secco* technique, using inorganic pigments [6]. "Los Bebedores" is located in Building 3, to the south of the Great Pyramid. Its archaeological exploration that took place at the end of the 1960's uncovered 120 square meters of murals, which nowadays are not open to public visit due to conservation requirements. A tunnel was constructed in order to reach "Los Bebedores" mural without dismantling two other construction stages of the same building. The pyramid was constructed with different types of adobes that can be observed from area to area of the building, with different color, texture and dimensions which suggests that the building material was brought from different locations to the site.

Causes of on site deterioration

The permanence of the adobe construction sites is evident since there are structures that have lasted hundreds of years. However, they are also fragile structures that depend on context and environment. Proper maintenance, repairs and restoration that are compatible with the original buildings are critical for the survival of earthen archaeological sites [7].

In the archaeological site of Cholula, several factors promote the deterioration and decay of the adobes. From the natural context, the site is subjected to frequent earthquakes since it is a seismic zone. Additionaly, the adobes are made of soil, and are vulnerable to changes in the humidity not only directly but also from the various changes on the underground water level primarily due to the urban expansion of the city of Cholula.

Different changes in quantity and diffusion velocities of the water going in and out of the adobes generates alterations in the construction system that shows effects, such as fungi on the walls and adobe collapses (Figure 3). Recent studies have shown that the main collapses take place when the rainy season starts, followed by over three months to absorb all the water. When it starts again, the adobe is porous, friable and often collapses although this is not a predictable periodic cycle. Variations in the water content of the adobes underlies the need to understand the role that water plays in the microstructure of the adobes, and therefore, affects its properties and stability. At present, we do not know if the adobes had or not, an additive to enhance the cohesion and strength.

Plants covering the pyramid which have deep roots penetrating into the adobe bricks and walls, and they are a major factor in deterioration. Roots tend to expand or contract with changes in humidity, causing fractures that end in the collapse of the adobes and that leave micro-fractures and disaggregated material.

Figure 3. Detail of a collapsed earthen left upper wall of one of "Los Bebedores" mural that affects the stability and durability of the mural paintings.

Soluble salts have also affected the adobe. The cement extensively used to consolidate exterior walls as well as more recent construction stages at some buildings has added deleterious sulfates, as happened at Building 1. Broken pipes from the catholic church on the top of the

Great Pyramid has added nitrates [8]. Furthermore, some adobe was grouted or surfaces were treated with synthetic polymers beginning 1930 but mostly during the 1960's and 1970's, changing its original behavior [9]. Many of these polymers act as impermeable surface layers that do not breathe. The lack of stability of the adobe not only threatens wall paintings due to collapse from the upper part of the tunnels, but also because of cracking and delamination of the paintings and deterioration of the fragile support. Diagnosis of the condition of the murals at "Los Bebedores" recorded plenty of voids in the earthen support that have required of immediate intervention to prevent the paint layer collapse [8, 10, 11].

Results of monitoring during the conservation showed that the main deterioration factors exist from the top of the pyramid to the bottom. Therefore, an integral, long-term and comprehensive proposal needs to be made in order to assess correctly the conservation and preservation problems.

Purpose of the research

Our focus is placed on materials analysis, behavior and properties of the adobe, as the constituent material in the archaeological site of Cholula, is a brittle material which affects the stability of the buildings. Knowledge about the composition, their properties and how they interact with their environment is necessary to establish comprehensive strategies for its conservation.

EXPERIMENTAL DETAILS

Sampling

Twelve adobe brick samples were taken from the main tunnel of the interior of the Pyramid in a collapse area, based on a sampling selection that emphasized color and textural differences. Another five samples were taken from "Los Bebedores" tunnels four and six from areas nearby the mural paintings (Figure 3). Three fresh soils samples just offsite from horizons related to pre-Hispanic activity were selected due to their current use in brick manufacture at the Cholula region.

Composition and microstructural characterization

Optical microscopy was first employed to observe the main characteristics of the adobe surfaces and different phases in the soils. The identification of the mineral phases was made through petrographic analysis and X-ray Diffraction (XRD) of powder samples in a Bruker D8 Advance with Cu K α radiation. Measurements were carried out in the 2 θ angular range 6-90 degrees, the results obtained were complemented with chemical compositions analyzed by Particle Induced X-ray Emission (PIXE) spectrometry, using a 3 MeV proton external beam with 1.5 mm diameter beam spot and measurements of 600 s per region on each sample.

To study the local chemical environments and to identify the semi-crystalline and amorphous phases, nuclear magnetic resonance using solid state ²⁹Si and ²⁷Al (MAS-NMR) was used. The MAS-NMR spectra were acquired under magic angle conditions ($\theta = 54.74$ degrees) in a Bruker Advance II 300 spectrometer with a 7.05 T magnetic field. The chemical shift of ²⁷Al was referenced to an aqueous solution of Al(NO₃)₃ as an external standard and for the ²⁹Si nuclei tetramethylsilane (TMS) was used as reference. Simultaneous thermogravimetry (TGA) and

differential thermal analysis (DTA) in a TA SDTQ600 instrument was performed with an air flux to complement the identification of the amorphous phases.

The textural properties determined by petrographic analysis were complimented with observation by Scanning Electron Microscopy (SEM), a JEOL JSM 5600-LV instrument, used in secondary electron mode in low vacuum conditions. Colorimetric measurements were done with an Ocean Optics USB4000 spectrometer with a halogen lamp (360-2500 nm) and were reported on the CIE Lab color space.

DISCUSSION

The thorough crystallographic study of this type of cultural heritage enables the expansion of our knowledge about the details of structure and properties. We identified the role that each mineral contributes on the properties of the adobe by integrating knowledge from mineralogy with that of materials science. Volcanic soils are important due to their unique properties. The presence of amorphous materials gives them distinctive engineering properties such as: low bulk density, high organic matter content, high porosity and high water retention capacity and high Atterberg limits, as the latter are very important for successful use and preservation of dynamic construction material such as adobe [12-15].

The XRD results of the research show that the adobe blocks from the Great Pyramid and the adobes from the mural painting have an amorphous phase and five main crystalline phases shows in Figure 4 as: calcium/sodium aluminosilicate (plagioclase, PLG), quartz (Qz), opal CT (Op CT), pyroxene (Pyx) and amphibole (Amp).

Figure 4. XRD pattern of an adobe block from the main tunnel in the Grand Pyramid, showing plagioclase (Plg), quartz (Qz), opal CT (Op CT), pyroxene (Pyx) and amphibole (Amp).

The results obtained from the original adobes were compared with fresh soils from horizons related to pre-Hispanic activity on which the same mineral phases have been identified. The main difference among the sample groups is the particle size distribution as observed by optical microscopy and petrographic analysis (Figure 5).

Figure 5. Petrographic images of representative local soil denominated tepetate (left) and adobe block from the main tunnel in the Grand Pyramid (right).

Based on quantitative elemental analysis accordingly to the semi-quantitative analysis of XRD results and observation by optical microscope, the plagioclase, pyroxene, amphibole and quartz phases constitute the larger aggregates forming the sand- and silt-sized phases of the mixture. A mixture of cristobalite and tridymite indicate the presence of opal CT, which together with the amorphous phases, corresponds to the clay-sized particles. The literature on volcanic soils suggests presence of allophane, glass and organic material. Based on these results it was of great interest to determine the amorphous materials since they have a strong influence on plasticity and on the shrink-swell behavior of the soils. Most of these clay-sized materials act to strengthen the contacts between crystalline particles, thus explaining the use of this material that increases plasticity and cohesion by ancient cultures [12, 16].

The MAS-NMR technique was useful to identify the allophane phase of the adobe samples and also in the soils (Table 1). This result was confirmed by the thermal analysis (TGA-DTA) that shows the exothermic peak at 900°C corresponding to allophane [17, 18].

	²⁹ Si signal (ppm)	²⁷ Al signal (ppm)
Allophane	-85	-4,39,54
Opal CT	-103, -96	54
Quartz	-115	
Aluminosilicates	-92, -96,-103,-108	-4,54

Table 1. ²⁹Si MAS-NMR signals assignment for the adobes and soil samples.

The color measurements of dry and wet samples confirmed that the macroscopic textural difference in adobes is due to particle size variations and not to composition because the color is very similar in the adobes and soils. The color variation is more evident when the adobes are wet and have a larger dispersion of colors (more than five units in CIE Lab color space). In the dry samples, a difference of three units or less is not noticeable to the naked eye (Figure 6).

Figure 6. Colorimetric measurements of the dry and wet adobe samples of the main tunnel, mural paintings ("Los Bebedores") and local soils.

CONCLUSIONS

The relationship between structure and function is fundamental to understanding materials, and, from this knowledge, pathways of how to control and forecast the properties of earth building materials are developed. From this approach we determined that the materials used for the construction of the adobes are from local soils but the noticeable difference in color is due to different proportions of the various soils and selection of particle size for the different adobes according to the construction system. The results indicate presence of amorphous materials and neo-mineral formation besides a major presence of plagioclase and quartz. The amorphous phases have been identified by MAS-NMR and DTA. Therefore cohesive properties of the adobes are due to clay-sized amorphous materials such as glass, allophane and organic matter. The combination of cohesive, plastic materials, such as the regional soils fulfilled the requirements for building the cities with available material that still remain functional today.

ACKNOWLEDGMENTS

We thank Eréndira Martínez, Antonio Morales, Marco Vera, Angel Osornio, Jacqueline Cañetas and Mario Monroy for the technical assistance for this research. To the Laboratorio Central de Microscopia (IFUNAM) for the SEM facility. Thanks to CONACyT for the graduate scholarship and CONACyT project CB-2011/167624.

REFERENCES

- 1. M. Reyes in Proyecto Cholula, edited by I. Marquina (INAH, México, 1970), p. 9-15.
- 2. C. Siebe, M. Abrams, J.L. Macías, J. Obenholzner, Geology 24, 399 (1996).

3. F. Solís, G. Uruñuela, P. Plunket, M. Cruz, D. Rodríguez, *Cholula: La Gran Pirámide* (CONACULTA-INAH, México, 2006).

- 4. A. Ashwell, Revista Elementos 54, 39 (2004).
- 5. P. Plunket, G. Uruñuela, FAMSI Grantee Report, 2005.
- 6. A. Huerta, Report CNCPC-INAH, 1972.
- 7. F. Pacheco-Torgal, S. Jalali, Constr. Build. Mater. 29, 512 (2012).

8.D.M. Grimaldi, M. Aguirre, C. Ramirez, Report CNCPC-INAH Informe del Proyecto de Conservación e Investigación de la Pintura Mural de la Zona Arqueológica de Cholula, Puebla, temporada de campo, 2012.

9. D.M. Grimaldi and T. López, Report CNCPC-INAH Resumen de los tratamientos realizados en las pinturas murales de la Zona Arqueológica de Cholula, Puebla (1967-1970), 2006.

10. D. M. Grimaldi, M. Aguirre, C. Ramirez, Report CNCPC-INAH Informe del Proyecto de Conservación e Investigación de la Pintura Mural de la Zona Arqueológica de Cholula, Puebla, temporada de campo, 2010.

11. D. M. Grimaldi, J. Porter, C. Ramirez, Report CNCPC-INAH Informe del Proyecto de Conservación e Investigación de la Pintura Mural de la Zona Arqueológica de Cholula, Puebla, temporadas de campo, 2011.

12. R. Horn, H. Taubner, M. Wuttke, T. Baumgartl, Soil & Tillage Research 30, 187 (1994).

13. Y. Wan, J. Kwong, H. G. Brandes, R. C. Jones, J. Geotech. Geoenviron. 128, 1026 (2002).

14. B. Prado, C. Duwiga, C. Hidalgo, D. Gómez, H. Yee, C. Prat, M. Esteves, J.D. Etchevers, Geoderma 139, 300 (2007).

15. A. J. Mehta, E. J. Hayter, W. R. Parker, R. B. Krone, A. M. Teeter, Journal of Hydraulic Engineering 115, 1076 (1989).

16. Y. Wan, J. Kwong, Eng. Geol. 65, 293 (2002).

17. B.A. Goodman, J.D. Russell, B. Montez, E. Oldfield and R.J. Kirkpatrick, Phys Chem Minerals 12, 342 (1985).

18. A. F. Plante, J. M. Fernández, and J. Leifeld, Geoderma 153, 1 (2009).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/microc

Microchemical Journal

Identification of allophane and other semi-crystalline and amorphous phases on pre-Hispanic Mexican adobe earth bricks from Cholula, Mexico*

Nora A. Pérez^{a,*,1}, Lauro Bucio^a, Enrique Lima^b, Enrique Soto^c, Carlos Cedillo^d

^a Laboratorio de Cristalofísica y Materiales Naturales, Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la investigación Científica SN Ciudad Universitaria, Distrito Federal, 04510, Mexico

^b Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior SN Ciudad Universitaria, Distrito Federal, 04510, Mexico

^c Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, Distrito Federal, 07730, Mexico

^d Centro INAH Puebla, Instituto Nacional de Antropología e Historia, Centro Cívico 5 de Mayo, Av. Ejército de Oriente SN Col. de Los Fuertes, Puebla, Puebla 72270, Mexico

ARTICLE INFO

Article history: Received 14 August 2015 Received in revised form 21 December 2015 Accepted 25 December 2015 Available online 31 December 2015

Keywords: Allophane Earth bricks Amorphous phases Opal FE-SEM ²⁹Si MAS-NMR

ABSTRACT

A critical step in designing conservation strategies for earth architecture is the adequate identification of all mineral constituents into a given piece. Of particular importance is the accurate identification of amorphous components, which is normally achieved by well-proved and standardized procedures. However, a lot of difficulties often appear mainly by the severe restrictions imposed when samples involved with cultural heritage are concerned. This allows us to follow a methodology for identifying with accuracy allophane and other amorphous materials as components in micro-samples of archeological adobe earth bricks from Cholula, which is described here. These short-range-order components are relevant because of the properties that they give to the adobe earth bricks as structural material. A set of multi-spectroscopic analysis including both long-range (XRD) and short-range order techniques (FTIR and ²⁹Si and ²⁷Al MAS-NMR); as well as thermal analyses (TGA-DSC); combined with optical microscopy and electron microscopy (SEM and FE-SEM); allowed us to the identification of not only allophane but also other semi-crystalline and amorphous phases like opal-CT, diatoms and volcanic glass.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Adobe earth bricks are manufactured with the most accessible materials: soil and water. Persistence of the adobes appears to be controlled by composition – particularly the clay mineralogy – and particle-size distribution according to relevant facts identified by architects, conservators and scientists [1]. Properties such as plasticity and shrink-swell behavior are severely influenced by the presence of amorphous phases and are of extremely importance if the analysis of the adobe earth brick is focused as a structural material.

Structural earth bricks were used in Central Mexico by the pre-Hispanic culture of Cholula (Cholultecas) to build one of the largest basing pyramids in the world known as La Gran Pirámide (The Great Pyramid) preserved at the archeological site of Cholula. This magnificent structure, currently perceived as a small hill (Fig. 1) was built

e-he-catl@live.com.mx (C. Cedillo).

¹ Present address.

from 30 to 450 CE in eight consecutive construction stages, each one bigger than the earlier [2]. Fig. 2 shows an external detailed view of the pyramid where the construction system beneath the vegetation is evinced; different local groups delivered the adobe earth bricks as a tribute to build the pyramid.

In the specific case of the adobe earth bricks from Cholula, the identification of amorphous or semi-crystalline components such as allophane, opal-CT, diatoms, and volcanic glass, among others is a very important task for a complete analysis of its properties. However, it is important to take into account the difficulties when researchers need to sample materials related with cultural heritage; they must to keep in mind the necessity of performing analytical methods of analysis designed for small quantity or small-sized samples (micro-samples). In this work we describe our experience when applying a methodology for accurately identifying allophane and other amorphous materials in archeological adobe earth bricks analyzed in the form of microsamples. The methodology is based on the application of spectroscopic analyses and microscopy techniques that are in agreement with the cultural heritage standards for analysis.

With the aim of a general characterization, in a previous research [3] seventeen adobes from the pyramid and three local soils were studied in bulk through several techniques. It was concluded that the adobes

[☆] Selected papers presented at TECHNART 2015 Conference, Catania (Italy), April 27– 30, 2015.

^{*} Corresponding author.

E-mail addresses: norari.perez@gmail.com (N.A. Pérez), bucio@fisica.unam.mx (L. Bucio), lima@iim.unam.mx (E. Lima), esotoca@conacyt.mx (E. Soto),

Fig. 1. a) The Great Pyramid from Cholula as it can be appreciated arriving at the archeological site.

analyzed were similar compositionally differing in grain size distribution. The identification of allophane and other amorphous materials is listed in Table 1 and was relevant for the adobe brick properties. From this general study three representative samples were selected for the present research.

Natural allophane is difficult to identify due to its amorphous structure. It is mainly present in the clay fraction of the soil and therefore cannot be detected in a petrographic analysis. The chemical composition is extremely variable having the empirical formula mSiO₂·Al₂O₃·nH₂O [4–6]. Due to the presence of Si and Al in other mineral phases, the elemental analysis performed by X-ray fluorescence (XRF) or other X-ray based techniques is not conclusive. Consequently, the allophane component challenges the standard mineralogical instrumental techniques.

Soil provenance and properties–such as volcanic parent material–, very high water contents, high liquid and plastic limits, and irreversible air drying changes; are considered among the important factors for the regular identification of allophane in soil samples. If the soil convenes these criteria, chemical destructive methods are then used to identify the allophane content and its quantification by promoting a reaction with NaF, HCl, NaOH, oxalate extraction or P adsorption [7–12]. This identification, although standardized, is not precise–for instance oxalate may dissolve allophane incompletely–, so that allophane quantifications using non-destructive techniques such as ²⁹Si Nuclear Magnetic Resonance (NMR) are recommended as an alternative and require small quantity of sample.

Techniques such as atomic absorption spectrometry or spectrophotochemical detection are employed in the soils extractions to quantify Si and Al [7,13,14]. In recent years allophane was identified in the surface of Mars, providing new information of in-situ spectroscopic techniques [14–16].

The poorly crystalline components of soils are often neglected in mineralogical studies, despite their relevance on soil properties. Studies on allophanic andosols with widespread techniques are limited, especially in archeological case studies [7,17–21]. In the present study we describe the application of a methodology for identifying allophane

and other amorphous materials accurately in small-sized samples (micro-samples) of archeological adobe earth bricks.

2. Material and methods

2.1. Sample selection and preparation

Two representative adobe earth bricks were selected from the main tunnel of the interior of The Great Pyramid, corresponding to the structure 4 of the construction [2,22]. The bricks were selected in accordance to a previous study on which six crystalline phases were identified through XRD: plagioclase, quartz, pyroxene, hornblende, cristobalite and tridymite, the later phases were used to model the opal-CT phase [3]. It was concluded that the adobes were manufactured from the local soils but had different colors according to the particle size distribution used for its manufacture.

First, a portable Zarbeco USB microscope was employed on site to observe the adobe earth brick surface. The samples taken were of 4 mg (the samples filled a 2.0 mL Eppendorf tube) and were sieved to obtain the silt fraction (particle size $<74 \mu$ m), since the amorphous phases occur mainly in the clay fraction (particle size $<2 \mu$ m) of the soil. The sieved samples weighted approximately 1 mg each and will be named Adobe 1 and Adobe 2. The original adobes were compared with a fresh soil sample just offsite from horizons related to pre-Hispanic activity in Cholula, the soil is called Tepetate [23] and was sieved with the same procedure, this sample is denominated Tepetate soil. The general examination of these samples is shown in Fig. 3.

2.2. Spectroscopic characterization

The sieved samples were first measured in XRD to confirm the presence of the amorphous materials. The instrument was a Bruker D8 Advance Diffractometer with Cu K α radiation in Bragg–Brentano configuration, 2 θ angular range of 5–90° and the mineral phases were identified comparing with the ICDD database. Afterwards, the samples

Table 1

Summary of the identification results of amorphous phases in a previous general study of the adobes [3].

Location	Sample	XRD	²⁹ Si NMR-MAS	DSC	SEM
Main pyramid tunnel	9 Bulk adobes 2 Bulk adobes	Opal CT, amorphous background Opal CT, amorphous background	Not measured Not measured	Allophane Not present	Diatoms Diatoms
	1 Bulk adobe	Opal CT, amorphous background	Allophane	Allophane	Diatoms
"Bebedores" tunnel	4 Bulk adobes	Opal CT, amorphous background	Not measured	Allophane	Diatoms
	1 Bulk adobe	Opal CT, amorphous background	Allophane	Allophane	Diatoms
Local soils	Mud	Opal CT, amorphous background	Allophane	Allophane	Not observed
	Sand	Opal CT, amorphous background	Not present	Not present	Diatoms
	Tepetate	Opal CT, amorphous background	Allophane	Allophane	Not observed

were measured in a Bruker FTIR ALPHA spectrometer in Attenuated Total Reflectance (ATR) mode with a diamond crystal; the measurement range was 400–4000 cm⁻¹ with 4 cm⁻¹ resolution and 24 averaging scans.

Analyses based on ²⁷Al and ²⁹Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) give valuable information on the molecular environment of these atoms, which allows for a differentiation of octahedral and tetrahedral Al and a variety of Si containing phases such as allophane, volcanic glass and opaline silica, which cannot be unambiguously detected by XRD and FTIR spectroscopy. MAS-NMR spectra were acquired under magic angle conditions (54.74°), in a Bruker Avance II 300 spectrometer with a 7.05 T magnetic field. For the ²⁷Al, a pulse program of $\pi/2$ with duration of 2 s at a Larmor frequency of 78.172 MHz, a spin frequency of 10 kHz and recycle delays of 0.5 s. The chemical shift of ²⁷Al was referenced to an aqueous solution of Al(NO₃)₃ as an external standard. The ²⁹Si spectra were acquired at a resonance frequency of 59.595 MHz with a high power decoupling pulse program (HPDEC), the spin frequency was 5 kHz and tetramethylsilane (TMS) was used as reference. The recycle delays were 90 s. The spectra resolution obtained was sufficient for accurate deconvolution of the spectra using the software MestReNova. The spectra were carefully inspected and Gaussian peaks were assigned for the possible $Q_n(mAl)$ species [24].

At this point, each sieved sample was divided in three parts: two of 50 μ g (Part A and Part B) and another of 900 μ g (Part C). Part A of each sample was characterized by simultaneous Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), since it is a destructive technique. The analysis were carried out on a TA SDTQ600 instrument with dried air flux from 25 °C to 1200 °C at 10 °C/min heating rate. The combination of the thermal analyses determined the phase transformations induced by temperature that helped identify the allophane [25].

2.3. Microscopy techniques

Different microscopic techniques were employed in order to examine at different amplifications the various polycrystalline aggregates. The silt fraction was observed under an optical Primotech Carl Zeiss microscope.

The Part B of each sample were taken and introduced in a Scanning Electron Microscope (SEM) JEOL JSM 5600-LV in 20 kV and WD = 21 mm in backscattered electron mode. The images gave information of the micromorphology of the large mineral phases.

Since the allophane was expected to be in the clay fraction, the Part C of each sample was used to form a soil suspension in water and

Fig. 3. Diagram of the general analysis for the adobe samples.

Fig. 4. Optical microscopy images. a) Surface of Adobe 1 taken on-site with portable microscope. b) Image sieved sample of Adobe 1. c) Image sieved sample of Adobe 2. d) Image sieved sample of Tepetate soil.

subjected to three sedimentation separation processes under gravity, taking aliquots of water until at the third separation the water was clean at the eye. The first sedimentation process lasted 2 h, the second 3 h and the final sedimentation lasted 1 h. The water was then sonicated for 20 min in order to separate the possible particle agglomerations. A drop of the clay suspension $(1 \ \mu g \ mL^{-1})$ was then deposited in a SEM sample holder and allowed to dry at room temperature for particle deposition; afterwards the particles were sputtered with gold to avoid charge issues. A High Resolution JSM-7800F Schottky Field Emission-Scanning Electron Microscope (FE-SEM) was used in order to observe the allophane nanophase.

3. Results

3.1. Microscopy techniques

The initial observation of the adobes surface on-site with the USB microscope showed a very small particle size with larger bright grains, probably quartz. No organic materials such as grass or straws were observed. The surface showed agglomerates of small grains with its roughness associated to the loss of cohesion of the particles.

After the sieving process, the size of the grain aggregates in the adobe samples were of approximately 30 µm with no recognizable grains due to its small size, except for a few pyroxene and quartz grains which passed the sieve and are noticed due its size, approximately 80 µm. In the Tepetate soil sample, all the grains were distinguishable and measured 50–70 µm and in its composition there were more quartz grains and a few pyroxene grains of 90 µm that passed the sieve, no smaller size aggregates were observed (Fig. 4).

Diatoms were identified in the original adobe samples. Diatoms are a deposit of the amorphous silica shells of planktonic organisms which

accumulate and may be lithified [26]. It can be present in soil horizons related to water deposits. In the Adobe 1 sample, different structures were observed with fragments size of around 10 μ m. In contrast, in the Adobe 2 sample there was a concurrent tubular formed diatom that measured 100 μ m, among other different shell structures (Fig. 5). There was no presence of the diatoms in the Tepetate soil sample.

The SEM images of the adobes and soil showed that there was a binding material between particles that cannot be resolved with the usual magnification. Since allophane was the suspect for the gel-like material observed; a Field Emission-SEM was employed in order to detect the soil nanoparticles. Fig. 6 shows the surface of the deposited particles after three gravity sedimentation processes, the clay size particles are still merged to each other, and as magnification is higher, the resolution is increased showing that the binder is formed of globular agglomerates of spherical particles with outer diameters of approximately 5 nm, which corresponds to allophane [7,14,6,27,28]. These aggregates were observed on both Adobe samples and in the Tepetate soil.

3.2. Spectroscopic characterization

The XRD results show the presence of minerals from volcanic soils. All the samples present similar mineralogical phases and are slightly different due to the relative abundance of each phase. The main minerals are plagioclase and orthopyroxene, with quartz and amphibole as minor phases (Fig. 7). The identified crystalline phases were:

- Plagioclase Na_{0.499}Ca_{0.491}(Al_{1.488} Si_{2.506} O₈) (ICSD 66127): feldspar of intermediate composition with three main reflections at 3.20, 3.75 and 2.52 Å.
- Quartz low SiO₂ (ICSD 100341): identified by the reflections at 3.34, 4.25 and 1.81 Å.

Fig. 5. SEM images. a) Image sieved sample of Adobe 1. b) Image sieved sample of Adobe 2. In circles are marked some of the shell structures from the diatoms.

- Orthopyroxene (Fe_{0.818} Mg_{0.156} Ca_{0.01} Mn_{0.016}) (Fe_{0.149} Mg_{0.767} Al_{0.084}) ((Si_{1.848} Al_{0.152}) O₆) (ICSD 159938): Mg–Fe pyroxene with an orthorhombic structure with reflections at 6.38, 2.12 and 2.48 Å.
- Magnesian hornblende (Na_{0.31} K_{0.01}) (Ca_{0.83} Na_{0.09} Fe_{0.08})₂ (Mg_{3.47} Fe_{1.19} Al_{0.28} Ti_{0.06}) (Si_{7.28} Al_{0.72}) O₂₂ F_{0.2} (OH)_{1.8} (ICSD 76840): amphibole with reflections at 8.43, 3.39 and 2.94 Å.

The semi-crystalline phase of opal was identified by its characteristic peak profile [29]. According to the sedimentary classification of the opals, it can be considered that the opal present is of type CT, due to the presence of the reflections at d = 4.0, 4.05 and 2.5 Å for the Adobe 1 and Adobe 2 samples and at d = 4.05, 4.1 and 2.5 Å for the Tepetate soil [30,31]. The difference in interplanar distance between the adobes and the soil may be due to different ordering of the Si tetrahedra. The

XRD pattern of opal-CT was modeled in the diffraction pattern with the cristobalite and tridymite crystalline phases.

- Cristobalite low SiO₂ (ICSD 9327): identified with d₁₀₁ at 4.04 Å, d₂₀₀ at 2.48 Å and d₁₀₂ at 2.84 Å.
- Tridymite SiO₂ (ICSD 153471): identified with d₃₁₋₁ at 4.32 Å, d₃₁₁ at 3.82 Å and d₃₁₋₅ at 2.97 Å.

The peaks broadening on the diffraction patterns are caused by the effects of small particle size and non-crystalline silica. The background may also have different contributions from the samples. According to the geological context, the contributors can be the opal phase, the amorphous SiO_2 phase from volcanic glass and weathering of the volcanic ashes such as allophane.

Fig. 6. FE-SEM images of Adobe 1 sample a) 3000× magnification of the deposited particles. b) 35000× magnification of the same area. c) 80000× magnification and d) 90000× magnification show allophane spherical nanoparticles.

Fig. 7. X ray diffraction patterns of the samples. Crystalline phases: plagioclase (Plg), amphibole (Amp), pyroxene (Pyx), quartz (Qz).Opal-CT phase is marked with gray stars at d = 4.05 and 2.5 Å. At the bottom, the diffractogram background is highlighted in gray with the amorphous materials present.

In order to identify the presence of allophane in the samples FTIR and MAS-NMR were employed. The presence of short range ordered minerals broadens absorption bands in FTIR spectra, which hamper phase identification [7]. The FTIR results were consistent with allophane, the strong Si–O–Si ν_a band in 1038 and 906 cm⁻¹ together with the 524 and 418 cm⁻¹ Si–O–Al out-of-plane bending [9,11,14,28]. The weak bands at 1485 cm⁻¹ corresponds to O₃–Si–OH, the H₂O bending is at 1640 and 688 cm⁻¹ shoulder is to OH out-of-plane bending [14]. The weak broad band at 3621 cm⁻¹ corresponds to OH ν_s (Fig. 8).

The bands at 465 cm⁻¹ identifies the Si–O δ of opal-CT [32,33]. The doublet at 791 and 740 cm⁻¹ is indicated as Si–O–Si ν_s , which can be assigned both to the opal-CT, quartz and allophane [7,33]. During the sieving process the sand fraction from the sample is removed, which typically contains quartz grains, promoting a relative enrichment of the allophane and opal phases. Therefore, in this case we will consider that the main contribution of these FTIR bands is from allophane and opal.

The bands at 1640, 688 and 500 cm⁻¹, previously assigned to the allophane, contain also contributions of the disordered structure of

the opaline silica from the diatoms [14,34,35], the band at 688 cm⁻¹ is present only at the original adobes.

The bands at 1105 and 1002 cm⁻¹ correspond to the TO₄ v_a of the plagioclase, where (T = Si or Al). The assigned bands coincide with previous studies on allophane, opal and diatoms, but it must be considered that all the phases contain the same functional groups and hence the differentiation is subtle. Each band can have contributions from different minerals, which is why the sieving of the sample is fundamental to the analysis in order to promote a relative enrichment of the amorphous phase.

In the NMR spectra the several signals are due to the complexity and variety of silica environments, since all crystalline and amorphous phases contain Si in their composition. The environments were assigned according to the reported chemical shifts for natural minerals and therefore, slight variations on the chemical shifts [36] can be expected. Chemical shifts variation in amorphous silica species point towards an important feature in NMR spectroscopy.

In aluminosilicates, silicon sites are usually denoted $Q_n(mAl)$, where n (ranging from 0 to 4) stands for the number of directly linked silicon

Fig. 8. FTIR spectra of the samples.

Fig. 9. a) ²⁹Si NMR-MAS spectra. The chemical shifts assigned are presented in Table 2. b) ²⁷Al NMR-MAS spectra.

tetrahedrons and m is the number of Al in the first covalence sphere of silicon [36]. The NMR-MAS spectra are presented in Fig. 9a and the signals assignment after the deconvolution process are shown in Table 2. The signal at -79 ppm is characteristic of allophane, corresponding to a Q₀ unit (isolated mono-group) [28,4,37]. The signals from -81 to -96 ppm correspond to polymerized silicon species and signals from -98 to -116 indicate that all silicon atoms are coordinated to four oxygens in a 3D array of corner-sharing tetrahedron [38]. The general spectral features indicate an Al-rich allophane [4,28,37].

Most of the signals detected belong to the plagioclase. Since the feld-spar framework is sensitive to small amounts of Al/Si disorder; the substitution mechanism of Si for Al in the solid solution from pure anorthite (CaAl₂Si₂O₈) towards albite (NaAlSi₃O₈) and in this case, the structural variation in the intermediate composition feldspar. Twelve signals have been determined for plagioclase minerals, at low fields at -81 to -89 ppm correspond to Si located in a calcium zone, while the signals from -92 to -113 ppm correspond to Si in sodium areas [39,40].

The pyroxene and amphibole chemical shifts are towards low fields indicating that one or more silicon atoms are being replaced by aluminum in the external coordination sphere. The characteristic Q_2 units corresponding to the inosilicates are on the signal around -92 ppm [33,41], but the signals of the Q_4 (mAl) units can also be part of the pyroxene and amphibole structure, since the samples are a mineral mixture.

The silanol units correspond to the terminal groups of most of the minerals present including the allophane and opal. The signal at -108 ppm assigned to quartz was detected in Adobe 1 and Tepetate soil samples only, while the opal-CT signal at -111 ppm was present

in all three samples [37,38,43]. It is important to notice that the -113 ppm signal can also be assigned to the tridymite phase which was identified in XRD to model the opal phase. The signals at -89 and -98 ppm were also assigned to amorphous silicon such as volcanic glass [38].

The 27 Al NMR spectra consisted of a relatively low chemical shift signal (-3 to 1 ppm), this chemical shift is in the range of octahedral Al in allophane-type products [19,36,44]. In the case of Adobe 2 and Tepetate soil samples a pentahedral Al signal between 35 and 37 ppm was detected [36,45]. The main contribution in the spectra was the signal between 52 and 56 ppm, indicating Al in a tetrahedral environment (Fig. 9b).

The results of the thermal analysis are shown in Table 3. Water molecules in amorphous phases are bounded by different energies and therefore, TGA curves have loss of weight over a wide range of temperatures with poorly defined features. The weight loss in the samples is due to elimination of water molecules and hydroxyl groups, mainly from the adsorption of amorphous phases. The surface of amorphous silica or allophane can have water bounded on the defect sites on the surface, and the process of dehydration is continuous through the temperature range [46].

The plagioclase and pyroxene phases do not have thermal events in the 20–1200 °C range. The amphibole goes through a dehydration process at 300 °C and a dihydroxylation process in a range of 400–800 °C [46].

The broad endothermic peak at approximately 150 $^{\circ}$ C corresponds to water adsorbed on the minerals including allophane and opal-CT. Diatoms have sharp endotherms at 120 and 210 $^{\circ}$ C which were not

Table 2

²⁹ Si MAS-NMR signa	l assignments from	the deconvolution	of the spectra in Fig. 9a.
--------------------------------	--------------------	-------------------	----------------------------

	0 0		1 0				
Adobe 1	Adobe 2	Tepetate soil		Adobe 1	Adobe 2	Tepetate soil	
Chemical shifts (ppm)	Chemical shifts (ppm)	Chemical shifts (ppm)	Signal assignment	Chemical shifts (ppm)	Chemical shifts (ppm)	Chemical shifts (ppm)	Signal assignment
- 78.9	- 78.8	- 79.2	Allophane Q ₀ unit [28,4,37]	-96.5			Plagioclase sodium zones [40], pyroxene and amphibole [36]
-81.1		-82.5	Plagioclase calcium zones [39,40], pyroxene and amphibole [36]	-101.2, -103.5	-101.7, -103.5	- 101.9	Q4 plagioclase [40], silanol units [42]
-84.9	-84.0	-84.8	Plagioclase calcium zones [39,40], pyroxene and amphibole [36]	-105.4	- 106.0	- 105.4	Q4 plagioclase [40]
- 89.3	- 89.5	-87.9	Amorphous silica [38], plagioclase calcium zones [39,40]	-108.6		- 108.2	Quartz [37,38,43]
-92.7	-93.2	-91.4	Q ₂ pyroxene and amphibole [41], plagioclase sodium zones [39,40]	-111.2	-111.7	-111.3	Opal and amorphous silica [38]
-94.7	-94.8	-94.7	Plagioclase sodium zones [40], pyroxene and amphibole [36]	-113.4		- 113.8	Q4 plagioclase [40], opal [38]
-98.6	- 99.3	-98.6	Amorphous silica [38]				

Thermal analysis	f the adobe and	l soil samples.
------------------	-----------------	-----------------

Sample	Thermogravimetric analysis			Differential thermal analysis		
	Temperature (°C)	Weight loss (%)	Process assignment	Temperature (°C)	Exothermic/endothermic	Process assignment
Adobe 1	25-235	3.8	Evaporation adsorbed water	164	Endothermic (broad)	Evaporation adsorbed water
	235–572	4.0	Evaporation of structural water and dihydroxylation	449	Endothermic (sharp)	Evaporation of structural water
				869	Exothermic (sharp)	Crystallization temperature of allophane
Adobe 2	25-253	3.3	Evaporation adsorbed water	148	Endothermic (broad)	Evaporation adsorbed water
	253-552	3.7	Evaporation of structural water and dihydroxylation	444	Endothermic (sharp)	Evaporation of structural water
			5 5	873	Exothermic (sharp)	Crystallization temperature of allophane
Tepetate soil	25-191	1.0	Evaporation adsorbed water	170	Endothermic (broad)	Evaporation adsorbed water
-	191–574	2.3	Evaporation of structural water and dihydroxylation	421	Endothermic (broad)	Evaporation of structural water
				591	Endothermic (broad)	α - β quartz inversion
				868	Exothermic (sharp)	Crystallization temperature of allophane
				1088	Exothermic (sharp)	Mullite formation

possible to define due to the contributions of the other phases that led to a broadening of the signal from the dehydration process. The dihydroxylation process of the latter phases occurs at 440 °C [29,32, 46–49].

The Tepetate soil sample showed at 591 °C an endothermic peak which corresponds to the α - β inversion of quartz [25,32,46]. The exothermic peak present in all samples at approximately 868 °C is attributed to the temperature of crystallization of allophane towards a spinel-type structure [46,48]. The small sharp exothermic peak at 1088 °C present only in the Tepetate soil sample can be attributed to the formation of mullite in kaolinite-type structures.

4. Discussion and significance of amorphous materials in adobe earth bricks composition

The observation by means of the portable microscope on-site indicated the absence of grass or straws or other common additives for earth architecture. A usual feature found in adobe earth bricks is the presence of other materials that compensate soil properties.

Analysis by optical microscopy showed that Adobe 1 and Adobe 2 have very homogeneous and similar particle size in comparison with Tepetate soil, which has different grains and particle size. All samples have the same mineralogical composition that is in concordance with similar color and form of the grains.

The mineral identification by XRD was determinant to establish the presence of clay minerals, which are one of the principal components of workable soil. In this case, no clay minerals were identified. Due to the known composition and properties of volcanic soils, i.e. an amorphous gel-like material that promotes high natural water content and void ratios, all of which indicate that andosols might be a good construction earth material, allophane was suspected to be present.

Allophane was identified by its characteristic – 78 ppm in its ²⁹Si MAS-NMR spectrum. Samples of Adobe 2 and Tepetate soil also had a pentahedral Al signal indicating a disordered structure. The DSC analysis confirmed the presence of allophane. In the DSC analysis it was possible to observe all the polymorphic transformations of the kaolinite-type structure attributed to allophane, which may indicate a larger quantity of allophane in the soil.

In the FTIR spectra there are no bands in the range between 3400 and 1200 cm⁻¹ that indicate the presence of an organic binder, thus suggesting that allophane nanoparticles are the binding agent in the adobes. The identification of allophane was confirmed by the observation of nanoparticles in the FE-SEM images; the allophane was observed at low magnifications as an amorphous gel-like material that provided cohesion to larger particles. After mechanical separation and

observation at higher magnifications it was possible to discern the conglomeration of 5 nm spherules.

Semi-crystalline phase of opal CT phase was identified by XRD and subsequently corroborated by FTIR and MAS-NMR. Opal goes from an amorphous to poorly crystallized variety of silica that also contains water (SiO₂·nH₂O); the variety of opal-CT shows a type of stacking of disordered cristobalite and tridymite which is why it is mostly modeled in that way in XRD patterns. However, it is reported by De Jong et al. that opal-CT is not comprised of a mixture of cristobalite and tridymite micro-crystallites but instead exhibits a long-range ordering of close packed oxygen atoms, which allows its identification by XRD maintaining a short-range ordering in Si. This feature was identified in the ²⁹Si MAS-NMR spectra, where local Si environments that are between those encountered in tridymite and amorphous silica were detected [38]. The signal of tridymite in the NMR spectra for the Adobe 1 and Tepetate soil samples may be an indication of a more abundant tridymite Si environment in those samples.

The observation of diatoms in the SEM images of both adobe samples indicates the presence of opal-A, that may be precipitated by marine organisms as skeletal material like this case, or it may precipitate from silica-saturated solutions formed as a result of water interaction with silica-rich rocks such as volcanic ash. This genetic association explains why opal-CT occurs in deposits formed by the alteration of volcanic ash. Diatoms are formed by this type of opaline silica, but since diatoms and volcanic glass have spectral features similar to those of amorphous silica, their observation in the electron microscope was determinant for its identification [34].

In opal a distinction is made between molecular water and silanol groups in the structure. Both molecular water and silanol group water are divided into type A (isolated molecules and hydroxyl groups trapped in the structure) and type B (strongly hydrogen-bonded accumulations of water molecules or hydroxyls either within the structure or on external and internal surfaces). Much of the water in opaline silica is molecular, with the majority of any silanols present being type B [31]. This feature explains the similar weight loss percentage of type B water and the adsorbed water in the TGA analysis.

The standard laboratory techniques for detection of allophane consider the interaction not only of allophanic products but also the organo-aluminum complexes that have active aluminum which can react with NaF or sorb P. However for example for the NaF test the reaction can be positive with acid clayey soils that are rich in aluminuminterlayered clay minerals or free carbonates, therefore it is necessary to test pH and carbonates by HCl first. Both tests are designed to be employed in the field but require enough sample to visually observe effervescence or a color change, and afterwards the sample is destroyed or contaminated which prevents carrying further analysis on the sample. The proposed multi spectroscopic analysis combined with the microscopy techniques allowed identifying not only the allophane but also other semi-crystalline and amorphous phases besides the general mineral identification. Thus this methodological approach is suitable for other soil related cultural heritage materials since it satisfies the cultural heritage sample quantity standards.

5. Conclusions

In general, spectral features among the samples were similar but not identical. Allophane, opal-CT and volcanic glass were precisely identified on all samples with the methodology proposed; diatoms were identified exclusively in the adobe samples.

The Adobe 1 and Tepetate soil samples have similar silicon chemical environments indicating that probably this type of soil horizon was employed for the earth brick manufacture, while the presence of diatoms only in the adobes but not in the Tepetate soil suggests a contribution from soils from other horizons related to water deposits. This characteristic indicates that the materials selection by the Cholultecas pre-Hispanic culture was not made randomly, but in fact there was knowledge of the soil properties that was employed in order to obtain good quality adobe earth bricks.

The combination of analytical techniques allowed the identification of different amorphous phases; it should be considered that a large variety of techniques were required due to the complexity of a natural sample with a mineral mixture. Preparation of the micro-samples was very important, also optical microscopy techniques should not be overlooked in the case of cultural heritage materials, since it is the first microscopic look of the object of study that can be done on-site and provides key information about the technological transformation of the raw material.

Acknowledgments

Authors acknowledge A. Morales from LAREC laboratory at IF-UNAM for the assistance during the XRD measurements, *M. Vera* from the Nuclear Magnetic Resonance Laboratorio, UAM—Unidad Iztapalapa for performing the NMR experiments, M. Monroy and J. Cañetas for the technical work in the scanning electron microscopes at the LCM laboratory at IF-UNAM and E. Casanova for revising the manuscript. Authors thank CODICE Laboratory at CNCPC-INAH for providing the optical microscopy instrumentation through CONACYT INFRA 2014-22845 Project. This research has been supported by CONACYT CB-2011/167624. We acknowledge the financial support from graduate program in Materials Science (PCeIM-UNAM and PAEP-UNAM). E. Soto acknowledges "Cátedras CONACYT" for the financial support. N. A. Pérez acknowledges CONACYT for the PhD grant.

References

- R. Coffman, N. Agnew, G. Austin, E. Doehne, Adobe mineralogy: characterization of adobes from around the world, 6th Int. Conf. Conserv. Earthen Archit. Adobe 90 Prepr. Las Cruces New Mex. USA 1990, pp. 424–429.
- P. Plunket, G. Uruñuela, Dating Cholula, Mexico, <u>http://www.famsi.org/reports/</u> 02042/02042Plunket01.pdf2005.
- [3] N. Perez, L. Bucio, E. Lima, C. Cedillo, D. Grimaldi, Unraveling the core of the gran piramide from Cholula, Puebla. A compositional and microstructural analysis of the adobe, Mater. Res. Soc. Symp. Proc. 2015 (1656).
- [4] S. Hiradate, Structural changes of allophane during purification procedures as determined by solid-state 27A1 and 29Si NMR, Clay Clay Miner. 53 (2005) 653–658.
- [5] C.S. Ross, P.F. Kerr, Halloysite and allophane, Shorter Contrib. to Gen. Geol., United States Department of the Interior Geological Survey 1934, pp. 135–148.
- [6] S.I. Wada, K. Wada, Density and structure of allophane, Clay Miner. 12 (1977) 289–298.
- [7] T. Rennert, K. Eusterhues, S. Hiradate, H. Breitzke, G. Buntkowsky, K.U. Totsche, et al., Characterisation of Andosols from Laacher See tephra by wet-chemical and spectroscopic techniques (FTIR, 27AI-, 29Si-NMR), Chem. Geol. 363 (2014) 13–21.
- [8] I. Kett, J. Ingham, J. Evans, Identifying an effective binder for the stabilisation of allophanic soils, Int. J. Pavement Eng. 11 (2010) 223–236.

- [9] M. Russell, R. Parfitt, G. Claridge, Estimation of the amounts of allophane and other materials in the clay fraction of an Egmont loam profile and other volcanic ash soils, New Zealand, Aust. J. Soil Res. 19 (1981) 185–195.
- [10] C. Hidalgo, J.D. Etchevers, A. Martínez-Richa, H. Yee-Madeira, H.A. Calderon, R. Vera-Graziano, et al., Mineralogical characterization of the fine fraction (<2 μm) of degraded volcanic soils and tepetates in Mexico, Appl. Clay Sci. 49 (2010) 348–358.
- [11] R.L. Parfitt, R.J. Furkert, T. Henmi, Identification and structure of two types of allophane from volcanic ash soils and tephra, Clay Clay Miner. 28 (1980) 328–334.
- [12] M.A. Beck, W.P. Robarge, S.W. Buol, Phosphorus retention and release of anions and organic carbon by two Andisols, Eur. J. Soil Sci. 50 (1999) 157–164.
- [13] S. Kaufhold, K. Ufer, A. Kaufhold, J.W. Stucki, A.S. Anastácio, R. Jahn, et al., Quantification of allophane from Ecuador, Clay Clay Miner. 58 (2010) 707–716.
- [14] J.L. Bishop, E.B. Rampe, D.L. Bish, Z. Abidin, L.L. Baker, N. Matsue, et al., Spectral and hydration properties of allophane and imogolite, Clay Clay Miner. 61 (2013) 57–74.
- [15] J.L. Bishop, H.B. Franz, W. Goetz, D.F. Blake, C. Freissinet, H. Steininger, et al., Coordinated analyses of Antarctic sediments as Mars analog materials using reflectance spectroscopy and current flight-like instruments for CheMin, SAM and MOMA, Icarus 224 (2013) 309–325.
- [16] E.B. Rampe, M.D. Kraft, T.G. Sharp, D.C. Golden, D.W. Ming, P.R. Christensen, et al., Detection of allophane on Mars through orbital and in-situ thermal-infrared spectroscopy, 42nd Lunar Planet. Sci. Conf. March 7-11,2011, Contrib. No. 1608 2011, p. 2145.
- [17] S.N. Sedov, E. Solleiro-Rebolledo, J.E. Gama-Castro, Andosol to Luvisol evolution in Central Mexico: timing, mechanisms and environmental setting, Catena 54 (2003) 495–513.
- [18] R.L. Parfitt, Allophane in New Zealand a review, Aust. J. Soil Res. 28 (1990) 343–360.
- [19] C.W. Childs, Structural studies of silica springs allophane, Clay Miner. 25 (1990) 329–341.
- [20] M. Uĝuryol, F. Kulakoĝlu, A preliminary study for the characterization of Kültepe's adobe soils with the purpose of providing data for conservation and archaeology, J. Cult. Herit. 14S (2013) e117–e124.
- [21] J.E. Gama-Castro, T. Cruz y Cruz, T. Pi-Puig, R. Alcalá-Martínez, H. Cabadas-Báez, C. Jasso-Castañeda, et al., Arquitectura de tierra: El adobe como material de construcción en la época prehispánica, Bol. Soc. Geol. Mex. 64 (2012) 177–188.
- [22] F. Solís, G. Uruñuela, P. Plunket, M. Cruz, D. Rodríguez, Cholula: La Gran Pirámide, CONACULTA-INAH, México, 2006.
- [23] S. Rodríguez-Tapia, M.D.C. Gutiérrez, C. Hidalgo, C.A. Ortiz, Intemperismo en tepetates y en cenizas volcanicas y su influencia en la formación de andisoles, Terra 17 (1999) 97–108.
- [24] S. Ramdas, J. Thomas, J. Klinowski, C. Fyfe, J. Hartman, Ordering of aluminium and silicon in synthetic faujasites, Nature 292 (1981) 228–230.
- [25] T. Hatakeyama, Z. Liu, Handbook of Thermal Analysis, Jonh Wiley & Sons Ltd., England, 1998.
- [26] R.J. Swope, An X-ray Diffraction Study of Opals, The Ohio State University, 1983.
- [27] M. Calabi-Floody, J.S. Bendall, A.A. Jara, M.E. Welland, B.K.G. Theng, C. Rumpel, et al., Nanoclays from an Andisol: extraction, properties and carbon stabilization, Geoderma 161 (2011) 159–167.
- [28] C. Levard, E. Doelsch, I. Basile-Doelsch, Z. Abidin, H. Miche, A. Masion, et al., Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils, Geoderma 183-184 (2012) 100–108.
- [29] B.Y. Lynne, K.A. Campbell, B.J. James, P.R.J. Browne, J. Moore, Tracking crystallinity in siliceous hot-spring deposits, Am. J. Sci. 307 (2007) 612–641.
- [30] J.B. Jones, E.R. Segnit, The nature of opal I. Nomenclature and constituent phases, J. Geol. Soc. Aust. 18 (1971) 57–68.
- [31] N.R. Herdianita, P.R.L. Browne, K.A. Rodgers, K.A. Campbell, Mineralogical and textural changes accompanying ageing of silica sinter, Mineral. Deposita 35 (2000) 48–62.
- [32] J.B. Jones, E.R. Segnit, N.M. Nickson, Differential thermal and X-ray analysis of opal, Nature 198 (1963) 1191.
- [33] B. Prado, C. Duwig, C. Hidalgo, D. Gómez, H. Yee, C. Prat, et al., Characterization, functioning and classification of two volcanic soil profiles under different land uses in Central Mexico, Geoderma 139 (2007) 300–313.
- [34] A. Kamatani, Physical and chemical characteristics of biogenous silica, Mar. Biol. 8 (1971) 89–95.
- [35] S.B. Rice, H. Freund, W.L. Huang, J.A. Clouse, C.M. Isaacs, Application of fourier transform infrared spectroscopy to silica diagenesis: the opal-A to opal-CT transformation, J. Sediment. Res. A65 (1995) 639–647.
- [36] K.J.D. Mackenzie, M.E. Smith, Multinuclear solid state NMR of inorganic materials, Pergamon Materials Series, Volume 6, Pergamon, The Netherlands, 2002.
- [37] K.A. Smith, R.J. Kirkpatrick, E. Oldfield, D.M. Henderson, High-resolution silicon-29 nuclear magnetic resonance spectroscopic study of rock-forming silicates, Am. Mineral. 68 (1983) 1206–1215.
- [38] B.H.W.S. De Jong, J. Van Hoek, W.S. Veeman, D.V. Manson, X-ray diffraction and 29Si magic-angle-spinning NMR of opals; incoherent long-and short-range order in opal-CT, Am. Mineral. 72 (1987) 1195–1203.
- [39] B.L. Sherriff, J.S. Hartman, Solid-state high resolution 29Si NMR of feldspars: Al-Si disorder and the effect of paramagnetic centres, Can. Mineral. 23 (1985) 205–212.
- [40] R.J. Kirkpatrick, M.A. Carpenter, W.-H. Yang, B. Montez, 29Si magic-angle NMR spectroscopy of low-temperature ordered plagioclase feldspars, Nature 325 (1987) 236–238.
- [41] M. Mägi, E. Lippmaa, A. Samoson, G. Engelhardt, A.R. Grimmer, Solid-state high-resolution silicon-29 chemical shifts in silicates, J. Phys. Chem. 88 (1984) 1518–1522.
- [42] J. Dedecek, S. Sklenak, C. Li, B. Wichterlová, V. Gábová, J. Brus, et al., Effect of Al–Si–Al and Al–Si–Si–Al pairs in the ZSM-5 zeolite framework on the 27 Al NMR spectra. A

combined high-resolution 27 Al NMR and DFT/MM study, J. Phys. Chem. C 113 (2009) 1447–1458.

- [43] E. Lippmaa, M. Mägi, A. Samoson, G. Engelhardt, A.R. Grimmer, Structural studies of silicates by solid-state high-resolution 295i NMR, J. Am. Chem. Soc. 102 (1980) 4889-4893.
- [44] B.A. Goodman, J.D. Russell, B. Montez, E. Oldfield, R.J. Kirkpatrick, Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy, Phys. Chem. Miner. 12 (1985) 342–346.
 [45] H. Zhao, K. Hiragushi, Y. Mizota, Phase segregation of non-stoichiometric aluminosilicate gels characterized by 27Al and 29Si MAS-NMR, J. Non-Cryst, Solids 311
- (2002) 199–206.
- [46] M. Földvári, Handbook of Thermogravimetric System of Minerals and Its Use in
- Geological Practice, Geological Institute of Hungary, Budapest, 2011.
 [47] E.R. Segnit, T.J. Stevens, J.B. Jones, The role of water in opal, J. Geol. Soc. Aust. 12 (1965) 211–226.
- [48] F.H. Norton, Critical study of the differential thermal method for the identification of
- [46] F.H. KOLOB, CHICLESTRUGY OF the differential internal interformer for the identification of the

ISSN: 1600-5767 journals.iucr.org/j

Quantification of amorphous phases in the silt fraction of Mexican pre-Hispanic adobe earth bricks

Nora A. Pérez, Lauro Bucio, Xim Bokhimi, Enrique Lima and Enrique Soto

J. Appl. Cryst. (2016). 49, 561–568

IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.

For further information see http://journals.iucr.org/services/authorrights.html

ISSN 1600-5767

Received 8 September 2015 Accepted 16 February 2016

Edited by J. M. García-Ruiz, Instituto Andaluz de Ciencias de la Tierra, Granada, Spain

Keywords: amorphous phases; quantitative phase analysis; Rietveld refinement; soil; minerals.

^{© 2016} International Union of Crystallography

Quantification of amorphous phases in the silt fraction of Mexican pre-Hispanic adobe earth bricks

Nora A. Pérez,^a* Lauro Bucio,^a Xim Bokhimi,^a Enrique Lima^b and Enrique Soto^c

^aInstituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n Ciudad Uiversitaria, Coyoacán, México, DF 04150, Mexico, ^bInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Uiversitaria, Coyoacán, México, DF 04510, Mexico, and ^cInstituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México, DF 07730, Mexico. *Correspondence e-mail: norari.perez@gmail.com

This study is focused on quantifying the amorphous phases in soil-related material samples by quantitative phase analysis (QPA) with a carefully designed methodological strategy in the X-ray diffraction sample measurement and in the refinement procedure. The configuration applied was Debye-Scherrer geometry with Mo $K\alpha$ radiation which, together with meticulous instrumental profile modelling using an LaB₆ standard, allowed the refinement of a minimum of sample-related parameters. This method was applied to two micro-samples of adobe earth bricks from The Great Pyramid of Cholula, Mexico, and one local soil micro-sample containing several amorphous and semi-crystalline phases such as allophane, volcanic glass and opal. The results obtained by the QPA method, complemented by elemental particle induced X ray emission (PIXE) spectrometry analysis, were compared with a silicon chemical environment analysis by ²⁹Si MAS-NMR. An average amorphous content of 40 wt% was calculated with the QPA/PIXE results, which is in agreement within 10% with the NMR experiments. Consequently, the methodology proposed could be of interest for further studies of cultural heritage geomaterials, which usually contain amorphous phases in their composition and allow only micro-sampling.

1. Introduction

Quantitative phase analysis (QPA) of polycrystalline materials using X-ray powder diffraction can be performed using the Rietveld method, for determination of both crystalline and amorphous phases when they are mixed (Gualtieri, 2000). This method derives the amorphous content from the small overestimation of an internal crystalline standard in a Rietveld refinement of a mixture (De la Torre *et al.*, 2001; Gualtieri, 2000; Walenta & Füllmann, 2004).

QPA has been used to determine the amorphous phase fraction in Portland cements (De la Torre *et al.*, 2001; Kemethmüller *et al.*, 2006), glass materials (Orlhac *et al.*, 2001), organic mixtures (Schreyer *et al.*, 2011), sandstone (Hillier, 2000), pharmaceuticals (Scarlett *et al.*, 2002), coal combustion products (Winburn *et al.*, 2000), stoneware tiles and fired bricks (Gualtieri *et al.*, 2014). The results indicate that for many applications it is very important to determine the amorphous content.

The adobe (earth brick) is a construction material that is part of the past and present of Mexican culture. It has proven since pre-Hispanic times to have the mechanical strength to endure to the present. The Mexican pre-Hispanic culture called *Cholultecas* built constructions with adobes made from the local volcanic soils as early as the second century AD, as
dated by the initial building phase of their main building, the Great Pyramid (Plunket & Uruñuela, 2005). The endurance of this construction as well as the good properties of adobes is attributed to the amorphous phases identified in a previous research, such as allophane, opal, diatoms and volcanic glass (Pérez *et al.*, 2016).

Most of the research in the area of archaeological adobe characterization has been focused on the influence of crystalline clay minerals (Adorni *et al.*, 2013; Coffman *et al.*, 1990; Spengler *et al.*, 2012; Uğuryol & Kulakoğlu, 2013). Although an amorphous phase has been noticed in adobes, it is often neglected owing to the difficulties involved in its characterization, mainly because of the sample size allowed in cultural heritage materials. Nonetheless, it is important to quantify the amorphous phase owing to its influence on the plasticity and shrink–swell behaviour of adobe earth bricks. Therefore, the precise identification of crystalline phases and quantification of the amorphous content in this material is required, especially measurements and modelling at very low angles where the amorphous contribution is higher.

The purpose of this research is to present a strategy for applying the QPA method to soil-related micro-samples which frequently contain amorphous phases, semi-crystalline materials with low-angle reflections and crystalline materials that have low-symmetry structures. In this particular case we applied this strategy to two pre-Hispanic adobe earth bricks from the Great Pyramid of Cholula and a local soil, because of the aforementioned influence of the silt fraction amorphous materials on the adobe properties.

2. Experimental

Two adobe earth brick samples were taken from the main tunnel internally crossing the Great Pyramid from the archaeological site of Cholula, in a collapsed area. On the basis of a previous study, six crystalline phases were identified by comparing with the ICDD database (International Centre for Diffraction Data; http://www.icdd.com/products/pdf4.htm): plagioclase, quartz, pyroxene, hornblende, cristobalite and tridymite. The latter two phases were used to model the opal-CT phase (Pérez et al., 2015). It was determined that the silt phase had the larger amount of amorphous material, and therefore, these two samples were sieved according to the standard method ASTM-D422 and the silt fraction (grain size $< 74 \,\mu\text{m}$) was separated (ASTM, 2007). The original adobes were compared with a fresh soil sample obtained just off-site from a region related to pre-Hispanic activity, which was selected because of its current use in brick manufacture in the Cholula region. The soil was sieved with the same procedure. The samples are labelled A1 = adobe 1, A2 = adobe 2and S = soil.

For the X-ray data collection the mixtures were prepared by adding 10 wt% of ZnO (SRM 674b) following the procedure of Gualtieri (2000). Mixing 10 wt% allows us to calculate the most accurate amorphous content in the sample, and the ZnO standard was selected because there is no other phase that contains Zn, and therefore it is a marker for both the X-ray

Tal	hla	1
1 a)	uie	

GSAS function 3 instrument profile parameters obtained by the refinement of LaB₆ for the laboratory setting.

Wavelength (Å)	Mo Kα 0.7093 Å
2θ range	4-60
Polarization fraction	0.9
GU	90.93
GV	0
GW	3.875
LX	1.079
LY	0
S/L	0.0171
H/L	0.0174
Peak cutoff	1×10^{-4}

diffraction (XRD) and the chemical analysis. The standard was added to each sample and each mixture was homogenized in a small rotor mixer.

2.1. X-ray diffraction analysis

The X-ray powder diffraction pattern was recorded at room temperature with a Bruker X-ray diffractometer (model D8 Discover) in the Debye–Scherrer geometry, having a Johansson monochromator in the primary beam and an Sistrip one-dimensional detector. Mo $K\alpha_1$ radiation (0.7093 Å) was used, with the X-ray tube operating at 45 kV and 45 mA.

Transmission (Debye–Scherrer) mode was preferred because this allows the minimization of the grain size and preferred orientation effects. Other advantages were the use of monochromatic radiation in a laboratory instrument, which eliminates the profile effects due to the $K\alpha_2$ and $K\beta$ radiation.

A Kapton capillary tube was filled in accordance with the method of Von Dreele (2006) and mounted on the rotating axis of the equipment. The geometric setup was the following: an antiscattering slit of 6 mm, sample spinning at 5 r min⁻¹, start angle (2θ) of 4° and end angle (2θ) of 60° with a step size of 0.02, time per step 17 s. The strategy for the data collection was chosen to achieve the best compromise between intensity and resolution.

The GSAS and EXPGUI software packages (Larson & Von Dreele, 1994; Toby, 2001) were employed for the Rietveld analysis; amorphous content was calculated following the method described by Gualtieri (2000). First an instrument parameter file (Table 1) was created by measuring an LaB₆ standard, setting the same experimental conditions in order to determine the profile parameters of the instrument (Kaduk & Reid, 2011).

The starting structure models were taken from the ICSD database (Inorganic Crystal Structure Database; http:// www.fiz-informationsdienste.de/en/DB/icsd/). An absorption correction for cylindrical samples was applied (Lobanov & Veiga, 1998) in accordance with the composition of the sample ($\mu = 49.4 \text{ cm}^{-1}$), with an estimated 0.6 packing fraction (Advance Photon Source, 2013) as implemented in *GSAS*. The displacement parameter U_{iso} was set to 0.025 for all atoms. The background was fitted graphically using a Chebyshev function with 22 terms.

The peak profiles were modelled using a pseudo-Voigt Finger, Cox and Jephcoat asymmetry with the instrumental profile parameters as shown in Table 1. The following parameters were refined: phase fractions, lattice constants, Lorentzian crystallite size broadening and Lorentzian strain broadening when necessary.

The strategy for refinement was as follows: first the peak positions were adjusted with a zero correction; afterwards the scale factors were refined. The background was fitted graphically using a Chebyshev function between 110 fixed points.

As a result of the low symmetry of the phases there are many overlapping reflections and it is very easy to diverge from the original structure models, hence the importance of the instrument profile parameters in order to constrain the refinement parameters to the minimum and secure physically meaningful values. After convergence, lattice parameters, crystallite size and strain broadening were refined.

2.2. Elemental analysis by PIXE

Chemical analyses that require a small amount of sample and are nondestructive were performed in order to compare and complement the results of the QPA method for determining the amorphous content. The elemental composition was determined by particle induced X-ray emission spectrometry (PIXE). This technique was selected because of its high sensitivity for light elements: Mg, Al, Si, K, Ca, Ti, Mn and Fe (Benyaïch *et al.*, 1997; Malmqvist, 1986; Campbell *et al.*, 2011).

The powdered sample was pressed into a small pellet and then irradiated in a Pelletron NEC accelerator with a 3 MeV proton external beam with a 1.5 mm diameter beam spot, taking measurements of 600 s per sample for good statistics. X-rays from light elements were detected by an Si-PIN Amptek detector (150 eV resolution for the Mn $K\alpha$ line) with a 1.5 mm diameter Ta collimator and a helium jet to improve detection of low-energy X-rays. Heavier elements were detected simultaneously using a Canberra LEGe detector with an aluminium filter of 60 µm thickness (Bucio *et al.*, 2015).

The X-ray peak areas in the PIXE spectra were obtained by the AXIL code (Van Espen et al., 1986). The efficiency of the X-ray detection system was measured using the NIST SRM-2704 and SRM-2711 standard reference materials; the PIXEINT code for thick target analysis (Miranda et al., 1997) was used to calculate the concentrations for each element in the samples, taking into consideration the detector efficiency.

The elemental composition was calculated according to the phase formula and its weight fraction obtained by the Rietveld results. This QPA elemental composition was compared with the PIXE elemental composition, determining the elemental differences as a result of the amorphous phase.

2.3. Silicon chemical environment analysis by ²⁹Si MAS-NMR

Nuclear magnetic resonance (NMR) magic angle spinning (MAS) spectroscopy is a powerful technique capable of providing information about the structure of materials in the solid state. It is useful for probing the atomic environments of the most disordered as well as the most ordered single-crystal systems, and therefore it is ideal for studying natural minerals

which can exist in a variety of structural states and heterogeneities (Mackenzie & Smith, 2002).

From previous analyses (Pérez *et al.*, 2015) we consider that the amorphous phase is composed only of aluminosilicate compounds, allowing us to employ NMR to compare the fraction of amorphous silicon obtained by the ²⁹Si MAS-NMR signal with the proportions obtained by XRD.

The spectra were acquired under magic angle conditions (54.74°) , in a Bruker Avance II 300 spectrometer with a 7.05 T magnetic field. The ²⁹Si spectra were acquired at a resonance frequency of 59.595 MHz with a high-power decoupling pulse program (HPDEC). The spin frequency was 5 kHz and tetramethylsilane was used as reference. The recycle delays were 90 s.

In contrast to crystalline compounds such as zeolites where silicon NMR peaks are well resolved and narrow, in glassy and amorphous materials often there is a lack of spectral resolution for ²⁹Si NMR signals, and several reports have set out a deconvolution procedure to separate and quantify $Q^n(mAl)$ species. [In NMR of aluminosilicates, silicon sites are usually denoted $Q^n(mAl)$, where *n* stands for the number of directly linked silicon tetrahedrons and *m* is the number of Al atoms in the first covalence sphere of Si (Mackenzie & Smith, 2002).] Previous work (Lee & Stebbins, 1999) has involved the successful deconvolution of broad unresolved ²⁹Si NMR of aluminosilicates using a Gaussian peak for each of the five possible $Q^4(mAl)$ species (Ramdas *et al.*, 1981).

The spectral resolution obtained is sufficient for accurate deconvolution of the spectra, which enables the determination of the relative amounts of the different silicon nuclei present in the system. The deconvolution process was carried out through an extremely cautious manual spectrum inspection and manual integration of the curves. We did not use the automatic correction of the software. Since there is not a unique profile for the line shape, it is necessary to carefully determine the signal areas of interests as well as width and height. The spectra were analysed and deconvoluted using the software *MestReNova* (http://mestrelab.com/software/mnova/nmr/).

3. Results and discussion

The followed procedure of refining the LaB_6 standard had advantages for the background and profile modelling. The analyses of adobe and soil samples were challenging owing to the large number of phases with low-symmetry structures, and the presence of semi-crystalline and amorphous phases which required a constrained and precise refinement method from very low angles in the diffraction pattern.

At the beginning of the experiment, the Bragg–Brentano geometry with Cu $K\alpha$ radiation was employed, but it was very difficult to model the instrumental parameters and absorption effects because the standard did not allow the correct modelling of the entire experimental pattern. Hence the Debye–Scherrer geometry with monochromatic Mo $K\alpha_1$ radiation was considered, obtaining good modelling results for both the instrumental parameters and the sample refined

research papers

 Table 2

 Identification of crystalline phases.

Phase name	Chemical formula	Space group	ICDD/ICSD
Cristobalite low	SiO ₂	P4 ₁ 2 ₁ 2, No. 92	04-005-4875/9327
Magnesian hornblende	$(Na_{0.31}K_{0.01})(Ca_{0.83}Na_{0.09}Fe_{0.08})_2(Mg_{3.47}Fe_{1.19}Al_{0.28}Ti_{0.06})(Si_{7.28}Al_{0.72})O_{22}F_{0.2}(OH)_{1.8}$	C12/m1, No. 12	01-089-7282/76840
Orthopyroxene	$(Fe_{0.818}Mg_{0.156}Ca_{0.01}Mn_{0.016})(Fe_{0.149}Mg_{0.767}Al_{0.084})[(Si_{1.848}Al_{0.152})O_6]$	Pbca, No. 61	04-017-1513/159938
Andesine	$Na_{0.499}Ca_{0.491}(Al_{1.488}Si_{2.506}O_8)$	$C\overline{1}$, No. 2	01-079-1148/66127
Quartz low	SiO ₂	P3 ₂ 21, No. 154	01-086-1560/100341
Tridymite	SiO ₂	A1a1, No. 9	04-012-1133/153471
NIST SRM 674b	ZnO	<i>P</i> 6 ₃ <i>mc</i> , No. 186	01-076-0704/65119

parameters by using the cylindrical absorption correction implemented in *GSAS* (Fig. 1).

During the refinement procedure the instrument parameter file was essential for a good modelling of the sample. It restricted the refinement parameters to those related to physical models for microstructure and allowed a better fitting of the different crystal phenomena occurring in natural mixed minerals which are unique to each soil. After selecting the XRD experimental configuration, the procedure as described in §2 was performed.

The identification of the minerals was performed according to the geological context as established in previous regional studies as well as in the PIXE elemental analysis (Siebe *et al.*, 1996; Armienta *et al.*, 2002; Pérez *et al.*, 2016), with the three samples exhibiting similar composition (Table 2).

The backgrounds of the diffraction patterns of the adobes had a similar form, while the soil had a different background. In all samples the low-angle range $4-20^{\circ} 2\theta$ was determinant since it was the fingerprint region, not only because of the presence of semi-crystalline minerals, such as opal-CT and the amorphous materials (allophane and volcanic glass), but also for the main reflections of the minerals in those angles (Fig. 2).

The main background was in the low-angle range of $4-20^{\circ}$ 2θ . The 20-60° 2θ range was mostly flat. The background was modelled several times with different numbers of points in order to get the best fitting.

The background was composed of different curves modelled with the Chebyshev function with 22 coefficients, in

Figure 1

Figure 2

Refined patterns of the samples. Experimental data (crosses), calculated (continuous line) and difference curves (bottom line): (a) adobe 1; (b) adobe 2; (c) soil.

Table 3 Number of refined parameters for each sample.

Parameters are presented in the order they were refined (from left to right) considering *GSAS* profile function 3.

Sample	No. of phases	Scale	No. of cell parameters ⁽¹⁾	LX	LY	Total
A1	7	7	15	$2^{(2,3)}_{2^{(3,4,5)}}$	$1^{(2)}$	32
S S	7	7	15	$3^{(3,4,5)}$	0	33 32

Notes: (1) Cell parameters for ZnO were fixed. (2) Refined only for hornblende. (3) Refined only for tridymite. (4) Refined only for cristobalite. (5) Refined only for orthopyroxene.

order to obtain the closest model according to each sample; the background was fixed during the refinement procedure.

The instrument parameter file was created in order to refine only the sample profile parameters, restricting the number of refined parameters to a minimum because of the high correlation of parameters in some phases. In the instrument parameters file the Gaussian and Lorentzian components were defined (GU and GW), as well as the asymmetry of the peaks (S/L and H/L). These initial parameters allowed us to focus the refinement procedure only on sample-related parameters (Table 3), and the profile fitting was performed with special care owing to the overlapping of the reflections and various peak widths.

The sample preparation which included sieving the soil to obtain the silt fraction promoted a relative enrichment of the orthopyroxene and hornblende phases, the crystallite size of which is variable. Other phases such as andesine and quartz are mainly present in the sand fraction and their profile parameters did not need to be included in the refinement, indicating that they have similar profile parameters to the LaB₆ standard and that they are not subject to microstructural effects.

Afterwards, the lattice parameters of all the mineral phases were refined, except for the internal standard. The lattice constant refinement indicated that the minerals had reasonably similar parameters to the ICDD structures (Table 4).

The opal-CT was modelled as two different crystalline phases: cristobalite and tridymite. We selected the ICDD structures that represented low-temperature phases and had a supercell, since this facilitated the modelling of the combined structure. The crystallite size of these phases was refined because of its variability.

The Lorentzian crystallite size was also refined for orthopyroxene and the magnesian hornblende phase. For the other mineral phases only the lattice parameters were refined. The results of the Rietveld refinement are presented in Table 5. The uncertainties associated with the Rietveld refinements as calculated by *GSAS* are indicated in parentheses.

The calculation of the amorphous phase considers that the Rietveld refinement method overestimates the amount of internal standard, according to the equation

$$X_{\rm a} = \frac{1}{1 - X_{\rm s,w}} \left(1 - \frac{X_{\rm s,w}}{X_{\rm s,c}} \right),\tag{1}$$

Table 4

Comparison between refined lattice parameters of identified minerals and	
reported ICDD structures.	

			Sample						
			Refine	ed			Differe	nce	
Phase name	Lattice constant (Å, °)	ICDD	A1	A2	S		A1	A2	S
Cristobalite low	a = c =	4.978 6.948	4.999 6.959	4.989 6.950	4.992 6.953	$\Delta a = \Delta c =$	0.021 0.011	0.011 0.002	0.014 0.005
Magnesian hornblende	$a = b = c = \beta = \beta$	9.857 18.112 5.309 104.81	9.819 18.078 5.296 104.82	9.837 19.086 5.295 104.89	9.825 18.077 5.302 104.85	$\begin{array}{l} \Delta a = \\ \Delta b = \\ \Delta c = \\ \Delta \beta = \end{array}$	-0.037 -0.033 -0.012 0.01	-0.019 0.974 -0.013 0.08	$-0.031 \\ -0.034 \\ -0.006 \\ 0.04$
Ortho- pyroxene	a = b = c =	18.280 8.860 5.216	18.321 8.905 5.298	18.183 8.921 5.220	18.304 8.943 5.213	$\Delta a = \Delta b = \Delta c =$	0.040 0.045 0.082	-0.096 0.061 0.004	$0.024 \\ 0.083 \\ -0.002$
Andesine	$a = b = c = \alpha = \beta = \gamma = \alpha$	8.179 12.880 7.112 93.44 116.21 90.23	8.173 12.887 7.116 93.50 116.23 90.21	8.174 12.885 7.114 93.46 116.22 90.22	8.174 12.884 7.113 93.45 116.21 90.22	$\begin{array}{l} \Delta a = \\ \Delta b = \\ \Delta c = \\ \Delta \alpha = \\ \Delta \beta = \\ \Delta \gamma = \end{array}$	$-0.007 \\ 0.007 \\ 0.004 \\ 0.06 \\ 0.02 \\ -0.02$	$\begin{array}{c} -0.005\\ 0.005\\ 0.001\\ 0.02\\ 0.01\\ -0.01\end{array}$	$\begin{array}{c} -0.004 \\ 0.004 \\ 0.001 \\ 0.01 \\ 0.00 \\ 0.01 \end{array}$
Quartz low	a = c =	4.916 5.405	4.924 5.400	4.922 5.401	4.922 5.403	$\Delta a = \Delta c =$	$0.008 \\ -0.005$	0.006 -0.004	0.002 0.002
Tridymite	$a = b = c = \beta = \beta$	25.878 5.001 18.526 117.69	25.810 5.172 18.393 117.69	25.778 5.154 18.405 117.25	26.818 5.090 18.547 117.69	$\begin{array}{l} \Delta a = \\ \Delta b = \\ \Delta c = \\ \Delta \beta = \end{array}$	-0.068 0.171 -0.133 0.00	-0.100 0.153 -0.121 -0.44	0.941 0.089 0.021 0.00

Table 5

Posults of the Distuald quantitative phase analys	
NESULS OF THE NICLVERT TRAILITATIVE DUASE ANALYS	sis

	Sample			
Phase name	A1 (wt%)	A2 (wt%)	S (wt%)	
Cristobalite low	2.8 (2)	2.5 (2)	2.5 (4)	
Magnesian hornblende	5.2 (7)	4.7 (3)	3.6 (4)	
Orthopyroxene	19.7 (9)	28.2 (5)	16.4 (8)	
Andesine	42.4 (4)	38.5 (3)	46.6 (4)	
Quartz low	1.9 (2)	1.7 (1)	2.0 (2)	
Tridymite	13.0 (6)	9.2 (5)	18.0 (6)	
NIST SRM 674b	15.1 (1)	15.0 (8)	10.9 (2)	
R _{wp}	0.102	0.088	0.105	
R _p	0.079	0.067	0.084	
χ ²	5.913	5.705	6.738	

Table 6

Calculation of the amorphous phase content using the direct results of QPA.

	Sample						
Phase name	A1 (wt%)	A2 (wt%)	S (wt%)				
Cristobalite low	2.1	1.9	2.5				
Magnesian hornblende	3.8	3.5	3.7				
Orthopyroxene	14.6	20.9	16.4				
Andesine	31.3	28.5	47.4				
Quartz low	1.4	1.3	2.0				
Tridymite	9.6	6.8	18.3				
Amorphous	37.3	37.0	0.1				

J. Appl. Cryst. (2016). 49, 561-568

research papers

Table	7			
Elemen	ntal	analysis	by	PIXE.

	Element	A1 (wt%)	A2 (wt%)	S (wt%)
Major	Si	31.7 (15)	27.1 (14)	33.8 (17)
•	Al	11.8 (6)	10.9 (5)	13.7 (7)
	0	41.7 (21)	46.7 (23)	40.1 (20)
	Zn	8.52 (43)	9.53 (48)	6.20 (31)
Minor	Mg	0.670 (67)	0.716 (72)	0.649 (65)
	ĸ	0.469 (47)	0.432 (43)	0.593 (59)
	Ca	1.41 (14)	0.887 (89)	1.11 (11)
	Fe	3.43 (34)	3.52 (35)	3.66 (37)
	Р	0.113 (11)	0.054 (5)	0.074 (7)
Trace	S	0.026 (3)	0.013 (1)	0.014 (1)
	Ti	0.023 (2)	0.024 (2)	0.028 (3)
	Cr	0.004 (1)	0.004 (1)	0.005 (1)
	Mn	0.068 (7)	0.054 (5)	0.059 (6)
	Cu	0.025 (3)	0.023 (2)	0.015 (2)
	Rb	0.004 (1)	0.007 (1)	0.009(1)
	Zr	0.049 (5)	0.056 (6)	0.064 (6)

where X_a is the amorphous fraction, $X_{s,w}$ is the weighted internal standard fraction and $X_{s,c}$ is the refined fraction of the internal standard. Thus, it is important that the amount of standard is correctly measured. The results of the QPA method (Table 6) indicate around 30 wt% of amorphous phase in the adobe samples.

The ZnO content was found to be low for the soil sample (10.9%) after QPA analysis. Therefore the calculated amorphous phase content was zero, since there was no overestimation of the internal standard as mentioned above. We considered then the possibility of loss of ZnO at the time of the preparation of the samples mixed with the standard. To verify this hypothesis, we measured the Zn content in the ZnO mixed samples by PIXE (Table 7), where the limit of detection for zinc is 10 p.p.m. The uncertainties associated with the PIXE technique that were considered were the ionization cross section, the detector efficiency, the X-ray attenuation mass factor and the stopping power cross section.

The values for the elemental analysis of Zn in the mixed samples were found to be systematically lower than in the 10% weighted samples. The loss of the standard was considered to exist in all the samples as a consequence of the packing of the rotor employed in the mixing process, the loss being severe in the soil sample. This issue has been addressed with a correction of the values of $X_{s,w}$ in equation (1). The amorphous fraction X_a was corrected by taking into account the elemental analysis for Zn by PIXE. The results are presented in Table 8.

After the correction the large quantity of amorphous material is similar in all samples. The new amorphous content value is congruent with the interpretation of the XRD data; a segregation of the standard during the preparation was confirmed, which affected the calculation of amorphous content with the direct results. In order to carefully compare these results with the PIXE data in Table 9, elemental weight percentages were calculated from the Rietveld analysis, considering the chemical formula given by the ICDD.

The differences in the major elements, Si, Al and O, in the elemental analysis are accounted for by the amorphous phase,

Table 8

Calculation	of	the	content	of	amorphous	phase	applying	the	PIXE
elemental an	naly	sis c	orrection	ı.					

	Sample				
Phase name	A1 (wt%)	A2 (wt%)	S (wt%)		
Cristobalite low	1.7	1.8	1.5		
Magnesian hornblende	3.2	3.3	2.2		
Orthopyroxene	12.2	19.8	9.9		
Andesine	26.2	27.0	28.2		
Quartz low	1.1	1.2	1.2		
Tridymite	8.1	6.5	10.9		
Amorphous	47.4	40.3	46.1		

Table 9

Comparison of the QPA analysis of the crystalline phases with the PIXE elemental analysis.

	Sample								
	A1			A2			S		
Element	XRD (wt%)	PIXE (wt%)	Diff. (wt%)	XRD (wt%)	PIXE (wt%)	Diff. (wt%)	XRD (wt%)	PIXE (wt%)	Diff. (wt%)
Si	14.0	35.2	21.2	15.3	30.6	15.3	14.9	36.4	21.5
Al	3.6	13.2	9.6	3.9	12.3	8.4	3.7	14.8	11.1
0	22.9	44.6	21.6	25.7	50.6	24.9	23.8	41.9	18.2
Fe	0.56	3.8	3.3	0.75	3.9	3.2	0.43	4.0	3.5
Mg	1.5	0.75	0.7	2.1	0.81	1.3	1.1	0.70	0.40
ĸ	0.0016	0.52	0.5	0.0016	0.49	0.5	0.0011	0.64	0.6
Ca	1.6	1.6	0.0	1.7	1.0	0.7	1.7	1.2	0.5
Ti	0.0096	0.02	0.02	0.0096	0.02	0.02	0.0066	0.03	0.02
Mn	0.05	0.06	0.01	0.08	0.06	0.02	0.03	0.06	0.02

Notes: XRD wt% accounts only for elements present in crystalline phases. PIXE wt% accounts for elements present in both crystalline and amorphous phases. Difference (Diff.) wt% accounts for elements present in amorphous phases.

and this can be used to calculate a chemical formula. The difficulty still lies in the lack of a formula estimate for the allophane (Wesley, 2009; Ross & Kerr, 1934) and the fact that the amorphous material is still a mixture of volcanic glass, allophane and the opal phase. The difference in Fe can be accounted for by the presence of low-crystalline ferrihydrite, which can also influence soil properties analogously to allophane and is considered a common component of volcanic ash soils (Childs, 1992; Schwertmann & Fischer, 1973).

The different signals of the MAS-NMR results (Fig. 3 and Table 10) expose several silicon chemical environments owing to the mixture of minerals from the samples.

NMR is considered a quantitative spectroscopic technique because the intensity of the resonance line is directly proportional to the number of resonant nuclei (Malz & Jancke, 2005). We used the intensities of the amorphous signals (allophane, opal, silanol) in relation to the intensities of the crystalline signals to determine the fraction of amorphous material (Table 11). The variations in the mean chemical shift of different Q species are potentially the largest source of error associated with quantitative NMR, though this error can be diminished by calculating ratios of the signal intensities (de Jong *et al.*, 1987).

It is reported that the sources of error in the calculation of intensities are diminished if instead of signal integration a line shape fit is performed. We also take into account the fact that the uncertainty of the technique for different spectrometers at various magnetic fields and for different probes is 1.5% for ¹H NMR (Malz & Jancke, 2005). The estimated error is 10% of the relative peak intensities according to Fyfe *et al.* (1985).

The quantification of the amorphous content obtained by QPA/PIXE and MAS-NMR (Table 11) is in agreement within 10%. The discrepancies can be attributed to the presence of the iron-based amorphous material that is not accounted for in the NMR technique. It has to be considered that the QPA method and PIXE analysis are complementary (as seen in the first column of Table 11). NMR gave good results with the

 29 Si MAS-NMR spectra with the deconvolution signal assignments presented in Table 10: (a) adobe 1; (b) adobe 2; (c) soil.

Table 10	
Chemical shifts δ (p.p.m.) obtained from the deconvolu-	tion of ²⁹ Si MAS-
NMR spectra.	

MR spee	etra.			

²⁹ Si chemical shifts	
(p.p.m.)	Signal assignment
-78	Allophane (Goodman <i>et al.</i> , 1985: Childs, 1990)
-81, -84, -89	Plagioclase, pyroxene and amphibole (Mackenzie & Smith, 2002; Kirkpatrick <i>et al.</i> , 1987)
-92, -94, -96, -98	Pyroxene and amphibole (Mackenzie & Smith, 2002; Kirkpatrick <i>et al.</i> , 1987)
-101, -103	Silanol (Dědeček et al., 2009; Hunger et al., 1990)
-105	Plagioclase (Mackenzie & Smith, 2002; Kirkpatrick et al., 1987)
-108	Quartz (Mackenzie & Smith, 2002; de Jong et al., 1987)
-111, -113	Opal-CT (de Jong et al., 1987)
-115	Plagioclase (Mackenzie & Smith, 2002; Kirkpatrick et al., 1987)

Table 11

Comparison of quantification of amorphous fraction between the QPA/ PIXE results and the ²⁹Si MAS-NMR technique.

	QPA/PIXE	²⁹ Si MAS-NMR		
A1	0.47 (4)	0.39 (4)		
A2	0.40 (4)	0.35 (4)		
S	0.46 (4)	0.39 (4)		

advantages of small samples and simple sample preparation, besides a rather quick and easy analysis with the modern software packages for processing and evaluating data, with no need for a standard. But, as reported by Malz & Jancke (2005) in quantitative NMR round robin tests, it is extremely important that the instrument operator performs an accurate procedure in order to obtain good spectra and therefore reliable results.

Variations caused by segregation of the standard during the preparation can be corrected by taking into account the elemental analysis; therefore this is a useful tool to consider in this method of quantification of amorphous phases. From these results, we consider that the standard selection should be made from a composition point of view that will allow differentiating the standard from the sample in an elemental analysis. Regarding the difference in X-ray absorption coefficients from the sample and the standard, different diffraction configurations can be considered that include appropriate absorption modelling, such as the Debye–Scherrer geometry used in this case. Finally, in the sample preparation mixing process the particle size of both materials should also be considered.

4. Conclusions

The measurement and refinement methodology proposed in this work was pivotal in enabling the quantification of the amorphous fraction, owing to the complexity of the natural samples composed of a mixture of crystalline, semi-crystalline and amorphous materials. The instrumental profile parameters were accurately determined as a result of the diffraction instrument geometry selected. The crystalline phases had low-symmetry structures with many overlapping reflections. Therefore, a good knowledge of the instrument profile parameters is of particular importance in order to allow the refinement of only the minimum number of parameters and physically related values. An accurate elemental analysis is recommended in order to complement the information obtained by the QPA method, since the former can unveil compositional differences for the amorphous materials, as shown in this case.

From this study we conclude that the selection of the standard material for QPA should consider composition, available X-ray diffraction geometries and absorption modelling. Finally, regarding the sample mixing process, the particle size of both sample and standard should be similar in order to avoid standard segregation, although this can be corrected with elemental analysis using equation (1).

Acknowledgements

The authors would like to thank Arq. C. Cedillo from Centro INAH Puebla for providing the adobes and soil for the study. The authors acknowledge A. Morales from LAREC laboratory at IF-UNAM for assistance during the XRD measurements, M. Vera from the Nuclear Magnetic Resonance Laboratory, UAM-Unidad Iztapalapa, for performing the NMR experiments, K. López and F. Jaimes for their assistance during the PIXE measurements at the Pelletron accelerator of IF-UNAM, and A. Martínez for revising the manuscript. This research has been partially supported by CONACYT grant 131944 MOVIL II, PAPIIT UNAM contract IN402813 ANDREAH I and CONACYT CB-211/167624. We acknowledge financial support from the graduate program in Materials Science (PCeIM-UNAM). ES acknowledges 'Cátedras CONACYT' for financial support. NAP acknowledges CONACYT for a PhD grant.

References

- Adorni, E., Coïsson, E. & Ferretti, D. (2013). Constr. Build. Mater. 40, 1–9.
- Advance Photon Source (2013). *Compute X-ray Absorption*, http:// 11bm.xray.aps.anl.gov/absorb/absorb.php.
- Armienta, M. A., De la Cruz-Reyna, S., Morton, O., Cruz, O. & Ceniceros, N. (2002). J. Volcanol. Geotherm. Res. 113, 61–80.
- ASTM (2007). D422 Standard Test Method for Particle Size Analysis of Soils. West Conshohocken: ASTM International.
- Benyaïch, F., Makhtari, A., Torrisi, L. & Foti, G. (1997). Nucl. Instrum. Methods Phys. Res. Sect. B, 132, 481–488.
- Bucio, L., Ruvalcaba-Sil, J. L., Thions, C., Urrutia-Fucugauchi, J. & Orozco, E. (2015). X-ray Spectrom. 45, 11–116.
- Campbell, J. L., Maxwell, J. A., Andrushenko, S. M., Taylor, S. M., Jones, B. N. & Brown-Bury, W. (2011). Nucl. Instrum. Methods Phys. Res. Sect. B, 269, 57–68.
- Childs, C. W. (1990). Clay Miner. 25, 329-341.
- Childs, C. W. (1992). J. Plant Nutr. Soil Sci. 155, 441-448.
- Coffman, R., Agnew, N., Austin, G. & Doehne, E. (1990). 6th International Conference on the Conservation of Earthen Architecture, Adobe 90 Preprints, pp. 424–429. Los Angeles: Getty Conservation Institute.

- Dědeček, J., Sklenak, S., Li, C., Gao, F., Brus, J., Zhu, Q. & Tatsumi, T. (2009). J. Phys. Chem. C, **113**, 14454–14466.
- De La Torre, A. G., Bruque, S. & Aranda, M. A. G. (2001). J. Appl. Cryst. 34, 196–202.
- Fyfe, C., Gobbi, G. & Kennedy, G. (1985). J. Phys. Chem. 89, 277-281.
- Goodman, B., Russell, J., Montez, B., Oldfield, E. & Kirkpatrick, R. J. (1985). *Phys. Chem. Miner.* **12**, 342–346.
- Gualtieri, A. F. (2000). J. Appl. Cryst. 33, 267-278.
- Gualtieri, A. F., Riva, V., Bresciani, A., Maretti, S., Tamburini, M. & Viani, A. (2014). J. Appl. Cryst. 47, 835–846.
- Hillier, S. (2000). Clay Miner. 35, 291-302.
- Hunger, M., Freude, D., Pfeifer, H. & Schwieger, W. (1990). Chem. Phys. Lett. 167, 21-26.
- Jong, B. H. S. de, van Hoek, J., Veeman, W. S. & Manson, D. V. (1987). Am. Mineral. 72, 1195–1203.
- Kaduk, J. A. & Reid, J. (2011). Powder Diffr. 26, 88-93.
- Kemethmüller, S., Roosen, A., Goetz-Neunhoeffer, F. & Neubauer, J. (2006). J. Am. Ceram. Soc. 89, 2632–2637.
- Kirkpatrick, R. J., Carpenter, M. A., Yang, W. H. & Montez, B. (1987). *Nature*, **325**, 236–238.
- Larson, A. C. & Von Dreele, R. B. (1994). Report LAUR 86–748. Los Alamos National Laboratory, New Mexico, USA.
- Lee, S. K. & Stebbins, J. F. (1999). Am. Mineral. 84, 937-945.
- Lobanov, N. N. & Alte da Veiga, L. (1998). Abstracts, 6th European Powder Diffraction Conference, pp. 12–16.
- Mackenzie, K. J. D. & Smith, M. E. (2002). Multinuclear Solid-State NMR of Inorganic Materials, 1st ed. Oxford: Pergamon.
- Malmqvist, K. G. (1986). Nucl. Instrum. Methods Phys. Res. Sect. B, 14, 86–92.
- Malz, F. & Jancke, H. (2005). J. Pharm. Biomed. Anal. 38, 813-823.
- Miranda, J., de Lucio, O., Santillana, E. M. & Aguilar, D. L. (1997). Proceedings of the XL National Conference of Physics, Sociedad Mexicana de Física, Monterrey, Mexico, p. 27. Monterrey: Sociedad Mexicana de Física.
- Orlhac, X., Fillet, C., Deniard, P., Dulac, A. M. & Brec, R. (2001). J. *Appl. Cryst.* **34**, 114–118.
- Pérez, N., Bucio, L., Lima, E., Cedillo, G. & Grimaldi, D. (2015). Symposium PP – Materials Issues in Art and Archaeology X, Materials Research Society Proceedings Vol. 1656. Materials Research Society.
- Pérez, N. A., Bucio, L., Lima, E., Soto, E. & Cedillo, C. (2016). *Microchem. J.* **126**, 349–358.
- Plunket, P. & Uruñuela, G. (2005). Dating Cholula, México, http:// www.famsi.org/reports/02042/section04.htm.
- Ramdas, S., Thomas, J. M., Klinowski, J., Fyfe, C. A. & Hartman, J. S. (1981). *Nature*, **292**, 228–230.
- Ross, C. S. & Kerr, P. F. (1934). Shorter Contrib. Gen. Geol. Professional Paper 185-G, 135–148.
- Scarlett, N. V. Y., Madsen, I. C., Cranswick, L. M. D., Lwin, T., Groleau, E., Stephenson, G., Aylmore, M. & Agron-Olshina, N. (2002). J. Appl. Cryst. 35, 383–400.
- Schreyer, M., Guo, L., Tjahjono, M. & Garland, M. (2011). J. Appl. Cryst. 44, 17–24.
- Schwertmann, U. & Fischer, W. R. (1973). Geoderma, 10, 237-247.
- Siebe, C., Abrams, M., Luis Macías, J. & Obenholzner, J. (1996). *Geol*, **24**, 399–402.
- Spengler, G., Jiménez-Millán, J., Campos-Suñol, M. J. & Do-Campo, M. (2012). Revista de la Sociedad Española de Mineralogía, 16, 8–9. Toby, B. H. (2001). J. Appl. Cryst. 34, 210–213.
- Uğuryol, M. & Kulakoğlu, F. (2013). J. Cult. Herit. 14, e117-e124.
- Van Espen, P., Janssens, K. & Nobels, J. (1986). Chemom. Intell. Lab. Syst. 1, 109–114.
- Von Dreele, R. B. (2006). J. Appl. Cryst. 39, 124-126.
- Walenta, G. & Füllmann, T. (2004). Powder Diffr. 19, 40-44.
- Wesley, L. (2009). Obras Proyectos, 6, 5-10.
- Winburn, R. S., Lerach, S. L., Jarabek, B. R., Wisdom, M. A., Grier, D. G. & Mccarthy, G. J. (2000). Adv. X-ray Anal. 42, 387–396.