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de la UNAM por su contribución a mi formación académica.



palabra



Resumen

En esta tesis se desarrollan tres diferentes métodos para diseñar funciones de Lyapunov para

diferentes clases de sistemas homogéneos. Tales sistemas pueden ser continuos y discontinuos e

incluyen algunas subclases de sistemas homogéneos de marcado interés, por ejemplo: sistemas

lineales, sistemas polinomiales homogéneos, sistemas homogéneos continuos con convergencia

en tiempo finito y algunos sistemas con Modos Deslizantes de Orden Superior. Los métodos

desarrollados son constructivos y en muchos casos muy fáciles de aplicar. Estos métodos explotan

la estructura de los sistemas para los cuales fueron desarrollados.

El primer método se aplica a sistemas descritos por funciones que pueden considerarse como

una generalización de polinomios homogéneos. De esta clase de funciones se toma una familia de

funciones parametrizada en sus coeficientes y se propone como candidata a función de Lyapunov.

La teoŕıa de polinomios positivos se utiliza para verificar de manera indirecta la positividad

definida de la función candidata y la negatividad definida de su derivada a lo largo de las trayec-

torias del sistema. En este último paso todo se reduce a resolver un sistema de desigualdades

lineales o un sistema de desigualdades matriciales lineales.

El segundo método explota la posibilidad de calcular expĺıcitamente las soluciones del sis-

tema. De manera que por medio de la integración de una función positiva definida a lo largo

de las trayectorias del sistema se obtiene una función de Lyapunov. Varios sistemas con Modos

Deslizantes de Orden Superior pueden ser tratados con éste método.

El tercer método fue desarrollado para sistemas homogéneos de segundo orden. Aprovechando

las propiedades de homogeneidad del sistema, el problema de diseñar una función de Lyapunov

se reduce al problema de resolver dos ecuaciones diferenciales ordinarias lineales cuya solución

representa la función de Lyapunov buscada.
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Abstract

Three different methods to design Lyapunov functions for different classes of homogeneous sys-

tems are developed. The systems considered in this work can be continuous or discontinuous

and include some interesting subsets of homogeneous systems like: linear systems, homogeneous

polynomial systems, finite-time converging continuous homogeneous systems, homogeneous high

order sliding mode systems. The Lyapunov function design methods developed here are con-

structive, and in many cases, very easy to apply. Such methods take advantage of the structure

of the systems.

The first method is applied to systems described by functions that can be considered as

a generalization of polynomials. A family of functions from this class is parametrized in its

coefficients and proposed as Lyapunov function candidate. The theory of positive polynomials is

used to verify positive definiteness of the function and the negative definiteness of its derivative

along the system’s trajectories. In this last step the problem is reduced to solve a system of

linear inequalities or a system of linear matrix inequalities.

The second method exploits the possibility to compute explicitly the system’s solutions.

Thus a positive definite function is integrated along the system’s trajectories in order to obtain a

Lyapunov function. Several homogeneous high order sliding mode systems can be found among

the systems tractable with this methodology.

The third method is very useful for second order homogeneous systems. By taking advantage

of the homogeneity properties of the system, the method reduces the problem of designing a

Lyapunov function to the problem of solving two linear ordinary differential equations.
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Notation and abbreviations

• R, Q, Z stand for Real, Rational and Integer numbers, respectively.

• R>0 = {x ∈ R : x > 0}, R≥0 = {x ∈ R : x ≥ 0}, analogously for the signs ≤, <, and in a

similar way for the sets Q and Z.

• diag(a1, . . . , aq) is the diagonal q × q matrix with elements a1 to aq in its diagonal.

• A> stands for the transposed of the matrix A ∈ Rn×m.

• Let f : Rn → Rm be a differentiable vector-valued function, ∂f(x)
∂x denotes the Jacobian

matrix of f . If m = 1, then ∂f(x)
∂x = ∇f(x) is the gradient of f .

• For some positive n,m ∈ Z>0, a function f : Rn → Rm is said to be of class Ck if its partial

derivatives up to k-th order exist and are continuous

• K is the set of strictly increasing continuous functions α : R≥0 → R≥0, such that α(0) = 0.

• For the functions f : Rn → Rp, g : Rm → Rn f ◦ g denotes the composition of f with g,

i.e., for x ∈ Rm, (f ◦ g)(x) = f(g(x)) ∈ Rp.

• GF: Generalized form.

• HOSM: High Order Sliding Mode.

• LF: Lyapunov function.



palabra



Contents

1 Introduction 5

1.1 Motivation and state of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Methodology and problem statement . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Dynamic systems and homogeneity 11

2.1 Continuous and discontinuous systems . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Classical homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Weighted homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Homogeneous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Examples of homogeneous systems . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5.2 Homogeneous polynomial systems . . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Continuous homogeneous systems with finite-time convergence . . . . . . 17

2.5.4 Sliding Mode homogeneous systems . . . . . . . . . . . . . . . . . . . . . 18

2.5.5 A hybrid system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Generalized forms method to design Lyapunov functions 19

3.1 Motivational examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Generalized Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Positive forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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Chapter 1

Introduction

1.1 Motivation and state of the art

Lyapunov’s direct method (LDM) is one of the most powerful tools in analysis and design of

modern control systems [Slotine and Li, 1991, Freeman and Kokotovic, 1996, Sepulchre et al.,

1997, Kokotović and Arcak, 2001, Khalil, 2002, Bacciotti and Rosier, 2005, Khalil, 2015]. Orig-

inally, LDM was used by A. M. Lyapunov as an stability analysis procedure, however, it has

demonstrated to have direct applications in control systems design. LDM has many applications

in control systems theory, some of them are

• Analysis of Lyapunov stability of system’s equilibrium points.

• Analysis of Input-to-State stability properties.

• Estimation of attraction domains.

• Estimation of the reaching time (for systems featuring finite-time convergence to some set).

• Controllers design, for example Backstepping.

• Robust control design, for example Lyapunov redesign.

All of those techniques, that are now standard [Khalil, 2015], are carried out using Lyapunov

functions (LF) or control-LFs. There is no doubt, at all, about the usefulness of LDM, nev-

ertheless its applicability is restricted by the difficulty in finding LFs. The converse Lyapunov

theorems guarantee the existence of LFs for stable equilibrium points, for example, the early

works of Massera, Barbashin and Krasovskii, and Kurzweil (see [Hahn, 1967] and the references

therein) for smooth systems. For the case of non-smooth systems there exist also several re-

sults, see [Clarke et al., 1998b], [Nakamura et al., 2002], [Bacciotti and Rosier, 2005], [Orlov,

2009], [Clarke, 2010], [Bernuau et al., 2014] and the references therein. However, those existence

theorems do not provide a constructive procedure to design LFs.
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For linear time invariant systems, the construction of LFs is very simple since it is needed

only to solve the algebraic Lyapunov equation. However, for nonlinear systems there is not a

general and systematic method to design LFs. Hence, the use and exploitation of LDM in control

theory demands constructive procedures to obtain LFs.

Despite the advantages that LDM offers to study dynamic systems, the method is useful only

if a LF can be found. In the last 60 years many methods to construct LFs have been reported

in the literature. Some classical results are given by

• Krasovskii’s method [Krasovskii, 1963]. It consists in proposing a candidate LF that must

be a quadratic form in the space of the derivatives of the states. This clearly restricts the

set of candidate LFs and the set of systems that can be considered.

• the Variable Gradient method [Schultz and Gibson, 1962]. It consists of constructing a

potential function based on a proposed non rotational vector field.

• Zubov’s method [Zubov, 1964]. Although this method is appealing since it allows to find

the attraction domain, its difficulty comes from the fact that it is necessary to solve a

partial differential equation.

These methods are very analytic, quite general and most of times very hard to carry out. There

are other methods that are very restrictive regarding the systems they can be applied on, for

example [Bose and Li, 1968] and [Vannelli and Vidyasagar, 1985], or even procedures to transform

a non-strict LF into a strict one [Malisoff and Mazenc, 2009]. On the other hand, perhaps due

to the improvement of the computing capacity in personal computers, several numerical based

methods have emerged (in two identifiable groups [Baier et al., 2012])

• By solving, numerically, partial differential equations [Camilli et al., 2001], [Giesl, 2007].

• By means of numerical optimization [Julian et al., 1999], [Johansen, 2000], [Marinósson,

2002].

It is important to mention that in general the numerical LFs do not allow to perform some

additional developments like, for example, robustness analysis.

For the particular case of polynomial systems, a technique has been developed based on the

sum of square representation of the LF candidate [Parrilo, 2000], [Papachristodoulou and Prajna,

2002], [Chesi, 2004], [Ahmadi and Parrilo, 2011], [Kamyar and Peet, 2013]. For Second Order

Sliding Modes systems some other attempts have emerged for example in [Polyakov and Poznyak,

2009a], [Polyakov and Poznyak, 2012], where the authors extend the idea of Zubov’s method to

differential inclusions, thus they are able to build LFs for some second order algorithms. For

switched systems there are some approaches to construct common LFs, see [Vu and Liberzon,

2005] and the references therein.
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1.2 Methodology and problem statement

In general and roughly speaking, the problem of constructing a LF can be established as follows.

Consider the autonomous dynamical system ẋ = f(x), x ∈ Rn, whose origin is an asymptotically

stable equilibrium point. The converse Lyapunov’s theorems ensure the existence of positive

definite functions V,W : Rn → R, V continuously differentiable, such that the derivative of V

along the trajectories of the system is V̇ = ∂V
∂x (x) · f(x) ≤ −W (x). Thus, finding a LF amounts

to solving the ordinary differential inequality

V̇ (x(t)) ≤ −W (x(t)) ,

or the partial differential inequality

∂V

∂x
(x) · f(x) ≤ −W (x) ,

for the unknown functions V and W . All the methods mentioned in the above section are able

to solve, somehow, such differential inequalities. However, in general, three main procedures to

solve them can be identified:

Procedure 1. Trajectory integration. Instead of looking at the inequality, the time dif-

ferential equation V̇ = −W (x) is considered. So, the idea is to obtain a LF V (x) by

integrating W (x) along the system’s solution φ(t; t0, x), where the pair (t0, x) is the initial

condition, and thus

V (x) =

∫ T

t0

W (φ(τ ; t0, x)) dτ ,

for some T > t0. This is indeed the idea in the proofs of the converse theorems. Note that

the main disadvantage of this procedure is that the system’s solution is required explicitly.

Procedure 2. Partial differential equation. Here, if one proposes a positive definite

function W , a LF V can be found by solving the partial differential equation:

∂V (x)

∂x
f(x) = −W (x) .

This is the idea behind some methods as Zubov’s and Variable Gradient methods. It is

important to mention that solving a partial differential equation is in general a difficult

task, except for some particular cases.

Procedure 3. Function parametrization. If it is possible to express the vector field f(x)

and the functions V , W as a linear combination of some basis functions parametrized lin-

early by some coefficients, then the partial differential inequality ∂V (x)
∂x · f(x) ≤ −W (x)
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becomes an algebraic inequality in the coefficients, that could be solved by algebraic meth-

ods. This is the case, e.g., for linear time invariant systems ẋ = Ax and the family of

quadratic functions V (x) = xTPx and W (x) = xTQx, which are parametrized by the coef-

ficients matrices P,Q. Thus, a LF is obtained by solving the algebraic Lyapunov equation

PA+ATP = −Q.

These three procedures are very general and their application can become very complicated

for nonlinear systems. In this thesis systematic methodologies to design LFs are developed by

applying these procedures to some particular but useful and interesting classes of systems. The

structure and properties of such systems allow the designing process to be constructive, and in

several cases very simple. Although not necessary, homogeneity will play a simplifying role on

the construction of the LFs.

Homogeneous systems have appealing geometric and dynamic features (see Chapter 2). The

mere study of them is important because nonlinear systems can be approximated by homogeneous

ones [Hermes, 1991], and such approximation can give system’s information when the linearisation

fails [Bacciotti and Rosier, 2005]. They are considered in this thesis because some very interesting

classes of dynamic systems are homogeneous, for example:

• Linear systems,

• Finite time continuous homogeneous systems [Bhat and Bernstein, 1998], [Hong et al.,

2001], [Bhat and Bernstein, 2005],

• Homogeneous Polynomial systems [Hermes, 1991], [Jerbi and Kharrat, 2003],

• Homogeneous High Order Sliding Mode (HOSM) controllers and differentiators [Levant,

2005].

In particular, HOSM are a very suitable technique for Robust Control since they provide finite

time stability of the system’s origin with the ability to reject non vanishing disturbances. They

also eliminate the restriction of relative degree one and reduce the high-frequency switching Chat-

tering, with respect to the First Order Sliding Modes algorithms [Levant, 1993]. Although LFs

have been used recently to analyse HOSM [Moreno and Osorio, 2008], [Polyakov and Poznyak,

2009b], [Oza et al., 2012], [Polyakov and Poznyak, 2012], [Moreno, 2012], there are no sufficient

methodologies to design LFs.

1.3 Contributions and outline

The main contribution of this thesis is the development of three different constructive procedures

to design LFs for different sets of systems. In general, the autonomous dynamic system ẋ = f(x),
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x ∈ Rn, is considered. The vector field f is homogeneous and can be continuous or discontinuous

(see Chapter 2). Although, the homogeneity is not strictly necessary for two of the methods, the

developments in this thesis are restricted to homogeneous systems. This is due to the advantages

that such property provides. Hence, in Chapter 2, a brief description of homogeneous systems

and their main characteristics is provided.

Chapter 3 is dedicated to the construction of LFs for a set of systems whose vector field is

described by functions called generalized forms (GFs). The method, developed in this chapter,

uses the idea from Procedure 3. A set of parametrized GFs is proposed as candidate LF in

such a way that its time derivative is also a parametrized GF. The problem of finding a LF is

reduced to the algebraic problem of proving positive definiteness of a set of polynomials. This

can be achieved by solving systems of linear inequalities or linear matrix inequalities. Such

inequalities come from the use of Pólya’s theorem or the sum of squares representation of the

obtained polynomials. The procedure provided in this chapter was outlined in [Sanchez and

Moreno, 2014a].

In Chapter 4, a methodology to design LFs for a class of HOSM is given. The structure

of the systems considered in this chapter is such that the solutions can be computed explicitly.

Thus the idea of the method consist in integrating a positive definite function along the system’s

trajectories obtaining this way a LF, as it was sketched in Procedure 1. Such methodology

was presented in [Sanchez and Moreno, 2012] and here is extended for disturbed second order

systems. In this case the positive definite function is integrated along a disturbed system’s

trajectory known as majorizing curves.

In Procedure 2 it is stated a partial differential equation whose solution is a LF. For the

particular case of homogeneous second order systems, such equation is solved in Chapter 5. The

technique used to solve it takes advantage of the homogeneity property of the system, by reducing

the two-variable PDE to a pair of first order linear ordinary differential equations. Thus, LFs

for second order homogeneous systems are provided by the general solution of such ODEs. This

methodology was presented in [Lopez-Ramirez et al., 2014].

Several examples of application of the methods described before are given along this docu-

ment. Finally in Chapter 6, a short discussion about the results of this thesis and the possible

research directions that can be undertaken in the future are provided.

9
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Chapter 2

Dynamic systems and homogeneity

The aim of the present chapter is to briefly describe homogeneous functions and homogeneous

systems as well as their main properties. The next section begins with some general comments

about continuous and discontinuous systems. Then, in Sections 2.2 and 2.3 the definitions and

some properties of homogeneous functions and homogeneous systems are provided. In the last

two sections the properties of homogeneous systems are briefly described and some examples

are provided. Most of the results given in this chapter are taken from [Zubov, 1964], [Hestenes,

1966], [Hahn, 1967], [Filippov, 1988], [Levant, 2005], [Bacciotti and Rosier, 2005] and [Bernuau

et al., 2014].

2.1 Continuous and discontinuous systems

For the following results consider the autonomous dynamic system

ẋ = f(x) , (2.1)

where x ∈ Rn is the state and the vector field f : D → Rn is defined for an open neighbourhood

D ⊆ Rn of the origin. For the initial condition x0 in the time t0, let φ(t; t0, x0) denote the

solution for (2.1) for all t ≥ t0. Note that if the vector field f is locally Lipschitz continuous

on D, then there exists a real δ > 0 such that the system’s solutions φ exist and are unique

for all t in the interval I = [t0, t0 + δ). For the case when f is continuous but not Lipschitz,

the uniqueness of φ is not guaranteed. However, in this thesis, f is assumed to be such that at

least (2.1) has unique solutions in forward time, i.e., for any x0 ∈ D, x0 6= 0, any two solutions

of (2.1) φ1, φ2 with the same initial condition and defined on the interval I = [t0, t1) are such

that φ1(t; t0, x0) = φ2(t; t0, x0) for all t ∈ I. Note that under the above assumptions, φ is a

differentiable function of t for all t ∈ (t0, t1).
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Now consider f discontinuous on the zero-measure set Z. For this case, in general, the

definition of solutions in the sense of Carathéodory [Filippov, 1988] is not suitable. So, it is

common to study this case by replacing (2.1) with the differential inclusion

ẋ ∈ F (x) , (2.2)

where F is a set-valued vector field (for each x ∈ D, F assigns the set F (x) ⊂ Rn) such that

F (x) = f(x) for all x ∈ D\Z. A solution of (2.2) is an absolutely continuous function φ(t; t0, x0)

defined on an interval I ∈ R≥0 and such that φ̇ ∈ F (x) almost everywhere on I [Filippov,

1988]. In this thesis, the definition of F (x), x ∈ Z, given by A. F. Filippov [Filippov, 1988] is

considered: for each x ∈ D let F (x) be the smallest convex closed set containing all the limit

values of the function f(x∗), x∗ → x, x∗ /∈ Z. According to [Filippov, 1988], that definition

allows F to hold the basic conditions: non-empty, compact, convex and upper semi-continuous.

Therefore the existence of solutions is guaranteed. The forward uniqueness is guaranteed under

some additional assumptions on Z and F .

2.2 Classical homogeneity

Consider the function g : Rn → R. Classically, g is said to be homogeneous1 of degree m ∈ R, if

for all x ∈ Rn and all ε ∈ R>0,

g(εx) = εmg(x) .

Note that homogeneity is a scaling property, it means that if in x0 the value of the function is

g(x0), then all values of the function in the points y = εx0 are determined by εmg(x0). One very

simple example of a homogeneous function is a linear one. Linear functions are homogeneous

of degree m = 1, for example if g(x) = ax, 0 6= a ∈ R, then g(εx) = εg(x). Another example

of such functions are homogeneous polynomial functions. Now consider all the differentiable

homogeneous functions g of degree m. A very interesting property of these functions is given by

the Euler’s formula

∇g(x) · x = mg(x) ,

observe that all the differentiable homogeneous functions are characterized by such equation. One

very useful advantage that homogeneous functions offer is in the field of differential equations.

Recall that homogeneous ordinary differential equations are separable equations. So, the process

of solving them is simplified due to their homogeneity.

1Indeed for ε > 0, f is said to be positively homogeneous, see for example [Hestenes, 1966]. In this thesis only

this case of homogeneity is considered.
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2.3 Weighted homogeneity

Homogeneity is a useful scaling property for functions as well as for differential equations. This

idea has been extended to a wider class of functions by generalizing the way the scaling is

performed. Such extension known as weighted homogeneity has been studied, for example in

[Zubov, 1964, Hermes, 1991]. Below some definitions taken from [Bacciotti and Rosier, 2005] are

recalled.

Definition 2.1. Let Λr
ε be the square diagonal matrix given by Λr

ε = diag(εr1 , . . . , εrn), where

r = [r1, . . . , rn]>, ri ∈ R>0, and ε ∈ R>0. The components of r are called the weights of the

coordinates. Thus:

a) A function f : Rn → R is homogeneous of degree m ∈ R (with the weights r) if f (Λr
εx) =

εmf(x), ∀x ∈ Rn, ∀ε ∈ R>0.

b) The vector field f : Rn → Rn, f = [f1(x), . . . , fn(x)]>, is homogeneous of degree k ∈ R
(with the weights r) if fi (Λr

εx) = εk+rifi(x), i = 1, 2, . . . , n, ∀x ∈ Rn, ∀ε > 0.

c) A dynamical system ẋ = f(x), x ∈ Rn, is said to be homogeneous of degree k if f is

homogeneous of degree k.

Definition 2.2. Given a vector of weights r = [r1, . . . , rn]>, a homogeneous norm is a map

x 7→ ‖x‖r,q, where for any q ≥ 1

‖x‖r,q =

(
n∑
i=1

|xi|
q
ri

) 1
q

, ∀x ∈ Rn .

Now let us recall that the homogeneous degree and the weights of a homogeneous function

are not unique, however they are defined with the exception of a positive scaling.

Remark 2.1 (See, for example, [Hong, 2001]). Let f : Rn → R be a homogeneous function of

degree m ∈ R with the weights r = [r1, . . . , rn]>, ri ∈ R>0, then f is also homogeneous of degree

pm ∈ R with the weights r = [pr1, . . . , prn]>, for any p ∈ R>0.

Example 2.1. Consider the function f : R2 → R given by

f(x1, x2) = κ1|x1|
5π
2 + κ2|x1|

π
2 |x2|

4π
3 , κi ∈ R .

This function is homogeneous of degree m = 5π with the weights r = [2, 3]>. However, with

p = 1/π, it is homogeneous of degree m = 5 with the weights r = [2/π, 3/π]>.
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Since many dynamic systems with discontinuous vector fields exhibit homogeneity properties,

the definitions of weighted homogeneity have been extended to discontinuous and set-valued

functions, see for example [Levant, 2005], [Orlov, 2005], or more recently [Bernuau et al., 2014].

Definition 2.3. A vector-set field F ⊂ Rn is called homogeneous of degree k ∈ R if the identity

F (Λr
εx) = εkΛr

εF (x) holds for all x ∈ Rn and any ε ∈ R>0 for some vector of weights r.

In the rest of this thesis weighted homogeneity is only called homogeneity.

Remark 2.2. Note that, as mentioned in [Levant, 2005], Definition 2.3 is equivalent to the

invariance of the differential inclusion ẋ ∈ F (x) with respect to the combined time-coordinate

transformation Gε : (t, x) 7→ (ε−kt,Λr
εx). Hence, a differential inclusion is said to be homoge-

neous if its vector-set field F is homogeneous.

From the last remark it is easy to deduce the following property of the solutions of a homo-

geneous differential inclusion.

Theorem 2.1 ([Levant, 2005], [Bernuau et al., 2014]). Consider the homogeneous differential

inclusion ẋ ∈ F (x) of degree k with the weights r. Let φ(t; t0, x0) denote a system’s solution with

initial condition x0, at the time t0, thus

φ(t; t0,Λ
r
εx) = Λr

εφ(εkt; εkt0, x) .

2.4 Homogeneous systems

Weighted homogeneity is very useful for the analysis of dynamical systems. Below are listed, in

a roughly manner, some characteristics of homogeneous systems.

• Local properties are equivalent to global ones.

• If a homogeneous system has an asymptotically stable equilibrium point, then the conver-

gence rate of the trajectories can be determined by the homogeneous degree of the system.

• There are converse Lyapunov theorems that assert the existence of smooth homogeneous

LFs for homogeneous systems.

• Robustness properties of a homogeneous control system can be determined immediately

based on its homogeneity degree.

Such properties and many others can be found formally in [Zubov, 1964], [Hahn, 1967], [Hermes,

1991], [Bhat and Bernstein, 1997], [Bhat and Bernstein, 2005], [Bacciotti and Rosier, 2005],

[Bernuau et al., 2013], below some of them are recalled.
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One of the main characteristics of systems with non-Lipschitz vector fields is that their

trajectories can exhibit finite-time convergence to the equilibrium points. The following definition

was originally given in [Bhat and Bernstein, 2000], however its version from [Bernuau et al., 2014]

is recalled.

Definition 2.4. System (2.1) is said to be finite-time-stable at the origin (on an open neigh-

bourhood V ⊂ Rn of the origin) if:

1. There exists a function δ ∈ K such that for all x0 ∈ V, ||φ(t : t0, x0)|| ≤ δ(||x0||) for all

t ≥ 0.

2. There exists a function T : V \ {0} → R≥0 such that for all x0 ∈ V \ {0}, φ(t; t0, x0) is

defined, unique, non-zero in [0, T (x0)), and limt→T (x0) φ(t; t0, x0) = 0.

For the case of differential inclusions, finite-time stability is defined in [Moulay and Perru-

quetti, 2005]. Here such definition is recalled, but first let Sx0 denote the set of all the possible

trajectories φ(t; t0, x0) of (2.2) starting at x0.

Definition 2.5. System (2.2) is said to be finite-time-stable at the origin (on an open neigh-

bourhood V ⊂ Rn of the origin) if:

1. There exists a function δ ∈ K such that for all x0 ∈ V, ||φ(t; t0, x0)|| ≤ δ(||x0||) for all

t ≥ 0 and all φ(t; t0, x0) ∈ Sx0.

2. There exists a function T0 : V\{0} → R≥0 such that for all x0 ∈ V and all φ(t; t0, x0) ∈ Sx0,

limt→T0(x0) φ(t; t0, x0) = 0.

The function T is the settling-time function. This is extended to the origin as T (0) = 0. In

general, T is discontinuous at the origin, however, as proved in [Bhat and Bernstein, 2000] for

continuous systems and in [Moulay and Perruquetti, 2005] for discontinuous ones (differential

inclusions), roughly speaking, T is continuous if there exists a LF for the system such that V̇ ≤
−cV α(x), c > 0, α ∈ (0, 1). For the case of homogeneous systems the existence of a homogeneous

LF and [Bhat and Bernstein, 2005, Lemma 4.2] guarantee the last inequality. Hence, a finite-

time stable homogeneous system has always a continuous and locally bounded settling-time

function T . In the literature there are several results on the existence of homogeneous LFs for

(continuous and discontinuous) homogeneous systems, however the results given in [Rosier, 1992]

and [Bernuau et al., 2013] can be seen as generalizations of all its predecessors. The following

theorem was taken from [Bacciotti and Rosier, 2005].

Theorem 2.2. ([Rosier, 1992]) Consider (2.1) with f continuous and homogeneous of degree k

for some vector of weights r. If the system’s origin is an asymptotically stable equilibrium point,
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then for any p ∈ Z>0 and any m > p ·maxi{ri}, there exists a class Cp homogeneous function V

of degree m, which is a strict LF for (2.1).

For the case of differential inclusions there is the following result.

Theorem 2.3. ([Bernuau et al., 2013]) Let F be a homogeneous set-valued vector field of degree

k with the basic conditions, the following is equivalent:

• The differential inclusion (2.2) is strongly globally asymptotically stable.

• For all m > max{k, 0}, there exist a pair (V,W ) of continuous functions such that:

1. V is of class C∞, positive definite and homogeneous of degree m;

2. W is C∞ and strictly positive for all x ∈ Rn \{0}. W is homogeneous of degree m+k;

3. maxv∈F (x){DV (x) · v} ≤ −W (x), for all x 6= 0.

In the first point of this theorem, the word strongly means that the property of asymptotic

stability is for all possible solutions of the differential inclusions, this is due to the non-uniqueness

of the solutions. In the last sentence of the theorem DV denotes the upper directional derivative,

see Appendix A.

From the last two theorems it is possible to characterize the convergence rate of the trajec-

tories regarding the system’s homogeneous degree.

Corollary 2.1. ([Rosier, 1992], [Hong et al., 1999]) Consider (2.1) with f continuous and

homogeneous of degree k for some vector of weights r. Suppose that its origin is an asymptotically

stable equilibrium point.

• If k > 0, x = 0 is rationally stable.

• If k = 0, x = 0 is exponentially stable.

• If k < 0, x = 0 is finite-time stable.

Corollary 2.2. ([Levant, 2005], [Bernuau et al., 2013]) Let F be as in Theorem 2.3. If k < 1

and (2.2) is strongly globally asymptotically stable, then it is strongly globally finite-time stable.

2.5 Examples of homogeneous systems

In this section some examples of homogeneous systems are shown. Such examples belong to

some more general and interesting classes of homogeneous systems. First of all let us introduce

a particular notation that will be used along this thesis. d · cρ = sign(·)| · |ρ, where sign is the

sign function. For example: dxc
2
3 = |x|

2
3 sign(x), dxc1 = dxc = x and dxc0 = sign(x).
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2.5.1 Linear systems

According to the definition of weighted homogeneity any linear system

ẋ = Ax , x ∈ Rn ,

is homogeneous of degree k = 0 with the weights ri = 1. If the matrix A is Hurwitz, it is known

that there exist a positive definite matrix P such that V (x) = x>Px is a LF for the system.

Note that V is a homogeneous function of degree m = 2 with the weights of the system.

2.5.2 Homogeneous polynomial systems

In the set of systems whose vector field is described by homogeneous polynomials, there exists a

subset such that its systems are homogeneous. For example, consider the following polynomial

system

ẋ1 = −x3
1 + x2 , ẋ2 = −x5

1 .

Note that this system is homogeneous of degree k = 2 with the weights r = [1, 3]>. This

system has been taken from [Bacciotti and Rosier, 2005, Example 5.4]. There, the polynomial-

homogeneous function, of degree m = 6,

V (x) = 1
6x

6
1 + 1

2x
2
2 ,

is given as a weak LF for the system. In Section 3.5.2 it is proven that

V̄ = 1
6x

6
1 − αx1dx2c

5
3 + 1

2x
2
2 ,

is a strict homogeneous LF for some values of α ∈ R.

2.5.3 Continuous homogeneous systems with finite-time convergence

Consider the double integrator ẋ1 = x2, ẋ2 = u(x) and the controller with a homogeneous

feedback u(x) = −k1dx1c
1
3 − k2dx2c

1
2 , thus, the closed loop is

ẋ1 = x2, ẋ2 = −k1dx1c
1
3 − k2dx2c

1
2 . (2.3)

This system is homogeneous of degree k = −1 with the weights r = [3, 2]>. The function

V : R2 → R given by

V (x) = α1|x1|
5
3 + α12x1x2 + α2|x2|

5
2 , α1, α12, α2 ∈ R , (2.4)

is homogeneous of degree m = 5 with the same weights. In Section 3.5.1 it is proven that, for

some values of the coefficients α1, α12 and α2, (2.4) is a LF for (2.3).
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2.5.4 Sliding Mode homogeneous systems

Consider the following dynamic system, known as Super–Twisting algorithm [Levant, 1993, 1998],

ẋ1 = −k1dx1c
1
2 + x2, ẋ2 = −k2dx1c0. (2.5)

This discontinuous system is homogeneous of degree k = −1 with the weights r = [2, 1]>.

System 2.5 is studied in Chapter 3.

For another example consider the third order dynamic system

ẋ1 = x2, ẋ2 = x3, ẋ3 = u . (2.6)

in closed loop with the Nested controller [Levant, 2001]

u(x) = −α sign(σ), σ = x3 + 2
(
|x2|3 + x2

1

)1/6
sign

(
x2 + |x1|2/3 sign(x1)

)
. (2.7)

System (2.6), (2.7) is discontinuous and homogeneous of degree k = −1 with the vector of weights

r = [3, 2, 1]>. In Chapter 4 there are more examples of homogeneous Sliding Mode systems.

2.5.5 A hybrid system

Now let us provide another example of a third order system that can be of special interest due

to its hybrid nature. In [Bartolini et al., 2007] it was introduced a controller u(x) = u(x, λ) for

(2.6). The algorithm is given by the following event based switching strategy

Step 1. Set λ = 0 until x2 = x3 = 0

u(x, 0) = −k2 sign(x2)− k3 sign(x3)

Step 2. Set λ = 1 until x1 = 0

u(x, 1) = −k1 sign(x1)

Step 3. Go to Step 1

. (2.8)

Note that this algorithm induces the discrete state λ, therefore, (2.6) in closed loop with (2.8)

becomes the third order hybrid system

ẋ1 = x2, ẋ2 = x3, ẋ3 = u(x, λ) . (2.9)

Note that in both cases, λ = 0 and λ = 1, (2.9) is homogeneous of degree k = −1 with the vector

of weights r = [3, 2, 1]>.
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Chapter 3

Generalized forms method to design

Lyapunov functions

In this chapter, the first contribution of this thesis is described, namely, a method to construct

LFs based on the idea of Procedure 3 from the introduction. As part of the contribution,

in Section 3.2 the concept of generalized forms (GFs) is introduced, and some very important

characteristics of such functions are described. There, the main differences of GFs from classical

forms are discussed. In Section 3.3 some procedures to verify non-negativity of polynomials are

recalled, and extended to GFs. The rest of the chapter describes the LF construction method

based on GFs. The method take advantage of the structure of homogeneous systems described

by GFs, in order to parametrize them. Then, a family of parametrized GFs is proposed as LF

candidate. Thus, the problem of finding a LF is reduced to an algebraic one.

3.1 Motivational examples

Example 3.1. Consider the following polynomial system that is homogeneous of degree k = 2

with the weights r = [1, 3]>,

ẋ1 = −x3
1 + x2 , ẋ2 = −x5

1 . (3.1)

In the Example 5.4 from [Bacciotti and Rosier, 2005] the polynomial-homogeneous function, of

degree m = 6,

V (x) = 1
6x

6
1 + 1

2x
2
2 , (3.2)

is provided as a weak LF for (3.1). The derivative of V along the trajectories of (3.1) is V̇ = −x8
1.

So, the weakness of V comes from the lack of a negative definite term in x2 in its derivative.

Now, consider the system

ẋ1 = −k1x
3
1 + x2 , ẋ2 = −k2x

5
1 . (3.3)
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Note that for k1 = k2 = 1, (3.1) is obtained as a particular case. It is important to mention that

the problem of weakness of (3.2), as a LF for (3.1), is inherited by (3.3) not only with (3.2) but

with all the homogeneous polynomials that are LFs for (3.3). This fact is stated in the following

theorem.

Theorem 3.1. For (3.3) there is no strict LF in the class of homogeneous polynomials of degree

m with weights r = [1, 3]> for any k1, k2 ∈ R and any degree m.

Proof. Consider the following polynomial function

V (x) = α1x
p1
1 + α2x

p2
2 +

N∑
i=1

βix
q1i
1 xq2i2 , p1, p2, q1i, q2i ∈ Z>0 , (3.4)

for some N ∈ Z>0, see Appendix B. Note that all the homogeneous polynomials of degree m

with weights r = [1, 3]> are described by (3.4) if

p1 = m, 3p2 = m, q1i + 3q2i = m. (3.5)

In order to have (3.4) positive definite it is necessary that α1, α2 > 0. Moreover p1 and p2

must be even. From (3.5), p2 = m/3. Thus, to have p2 even, m must be a multiple of six, i.e.,

m ∈ {6n : n ∈ Z>0}. The derivative of (3.4) along the trajectories of (3.3) is

V̇ = −p1α1k1x
p1+2
1 + p1α1x

p1−1
1 x2 − p2α2k2x

5
1x
p2−1
2 +

+
N∑
i=1

βi

(
−q1ik1x

q1i+2
1 xq2i2 + q1ix

q1i−1
1 xq2i+1

2 − q2ik2x
q1i+5
1 xq2i−1

2

)
. (3.6)

The first term of (3.6) is negative definite in x1 but it is necessary to have a negative definite

term in x2. Note that it can be obtained from the term βiq1ix
q1i−1
1 xq2i+1

2 if βi < 0 and q1i = 1

for some i. However, q2i = (m− q1i)/3 and m = 6n, thus

q2i =
6n− 1

3
= 2n− 1

3
,

therefore q2i cannot be integer and this concludes the proof.

Observe that, with q1i = 1 and m = 6, q1i = 5/3. Thus, for example, the following function

can be chosen as a LF candidate for (3.3)

V (x) = α1x
6
1 − α12x1dx2c

5
3 + α2x

2
2 . (3.7)

With the method developed in the present chapter it will be proven that this is a LF for (3.3) for

some k1, k2, α1, α12 and α2.
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Remark 3.1. In the above example for the homogeneous polynomial system (3.3), it seemed

natural to look for a strict LF among the homogeneous polynomial functions. However it is clear

that (3.7) is not a polynomial, although it maintain a very similar structure. This serves as

motivation to extend the class of homogeneous polynomials to functions of the kind of (3.7).

Such functions are the GFs and will be defined in the next section.

Example 3.2. Speed and accuracy have been common topics in many control developments.

Consider, for example, the double integrator ẋ1 = x2, ẋ2 = u, it is well known that the linear

feedback u = −k1x1 − k2x2 stabilizes asymptotically the system’s origin. However, quite similar

controllers, like u = −k1dx1c
1
3 − k2dx2c

1
2 , are able to drive the system’s trajectories to the origin

in a finite time [Haimo, 1986], [Bhat and Bernstein, 1998], [Hong et al., 1999], [Bhat and

Bernstein, 2005], [Orlov et al., 2011], [Jang et al., 2014]. Hence, consider the closed loop

ẋ1 = x2, ẋ2 = −k1dx1c
1
3 − k2dx2c

1
2 . (3.8)

As stated in Section 2.5, this system is homogeneous of degree k = −1 with the weights r = [3, 2]>.

Suppose that V : Rn → R given by

V (x) = α1|x1|
5
3 + α12x1x2 + α2|x2|

5
2 , α1, α12, α2 ∈ R , (3.9)

is proposed as a LF candidate. Its derivative along the system’s trajectories is (∂V/∂x) · f(x) =

−W (x), with

W (x) = β1|x1|
4
3 + β2x1dx2c

1
2 − β3dx1c

2
3x2 + β4dx1c

1
3 dx2c

3
2 + β5|x2|2 , (3.10)

where β1 = α12k1, β2 = α12k2, β3 = 5
3α1, β4 = 5

2α2k1, β5 = 5
2α2k2 − α12.

Thus, to prove that x = 0 is an asymptotically stable equilibrium point of (3.8) it is sufficient

to verify that (3.9) is a LF for (3.8) and it reduces to prove the positive definiteness of (3.9) and

(3.10).

Observe that functions (3.9), (3.10) and those in (3.8) belong to the same class. As will be

explained below, those functions are GFs. In the following sections, a systematic procedure to

propose GFs as LF candidates for systems described by GFs is provided. Also a method to verify

positive definiteness of such functions is developed. The method can be used as both analysis

and designing tool.

3.2 Generalized Forms

In the literature, a classical homogeneous polynomial is called form, see for example [Lang, 2002,

Chapter IX] and Appendix B. In this section a class of homogeneous functions that are a kind
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of generalization of forms are define and studied, such functions are the main ingredient of the

systems considered in this section.

Definition 3.1. A function f : Rn → R is a generalized form of degree m if:

a) It is a homogeneous function of degree m for some vector of weights r.

b) It consists of sums, products and sums of products of terms of the kind:

adxkcp, b|xk|q, a, b ∈ R, 0 ≤ p, q ∈ R.

Note that the general expression for a GF f of degree m with the weights r = [r1, . . . , rn]>

is given by

f(x) =
N∑
j=1

αj

n∏
i=1

υi,j(xi, ρi,j) , (3.11)

where υi,j(xi, ρi,j) denotes either |xi|ρi,j or dxicρi,j , for some finite N ∈ Z>0, and ρi,j ∈ R≥0

satisfying for any j
n∑
i=1

riρi,j = m. (3.12)

Example 3.3. The following are examples of GFs:

• The function V : R2 → R given by (3.9) is a GF of degree m = 5 with the weights

r = [3, 2]>.

• The function f0 : R2 → R given by f0(x) = dx1cπ + dx2cπ
2
, is a GF of degree m = π2 with

the weights r = [π, 1]>. It is also a GF of degree m = π with the weights r = [1, 1/π]>, see

Remark 2.1.

• The function f1 : R→ R given by f1(x) = κdxc
1
3 , κ ∈ R, is a GF of degree m = 1 with the

weight r = 3. Note that also is a GF of degree m = 2/3 with the weight r = 2.

• Consider the function f2 : R2 → R given by

f2(x1, x2) = κ1dx1c
5π
2 dx2c0 + κ2|x1|

π
2 dx2c

4π
3 , κi ∈ R .

This function is a GF of degree m = 5π with the weights r = [2, 3]>. However it is also a

GF of degree m = 5 with the weights r = [2/π, 3/π]>.

• The function f3 : R2 → R given by

f3(x1, x2) = κ1|x1|
5
2 + κ2dx1c2dx2c

1
3 ,

is a GF of degree m = 5 with the weights r = [2, 3]>.
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• The classic form f4 : R3 → R given by

f4(x1, x2) = κ1x
8
2 + κ2x

3
1x2x

4
3 + κ3x1x

2
2x

6
3 ,

is a GF of degree m = 8 with the weights r = [1, 1, 1]>.

From this example it can be seen that the homogeneous degree and the weights are not unique.

It is also important to stress the fact that the classic forms are contained in the class of GFs.

Another important characteristic of GFs is that they can be discontinuous on the coordinate

hyperplanes of Rn, such as f2 in Example 3.3 that is discontinuous on the set {x ∈ R2 : x2 = 0}.
The following result underlines some important characteristics of the GFs.

Theorem 3.2. Let f, g : Rn → R, be two GF of degree m1, m2 respectively, both of them with

the same vector of weights r.

1. If m1 = m2, then f + g is a GF of degree m1 with the weights r.

2. The product fg is a GF of degree m1 +m2 with the weights r.

3. If g is differentiable, then its partial derivatives ∂f/∂xi, i = 1, 2, . . . , n are GF of degree

m1 − ri respectively.

The proof of this theorem is easily obtained from the definition of GFs and the properties

of homogeneous functions, see the proof in the Appendix A. Note that in the point number

three of the theorem, the differentiability of g can be replaced by the differentiability of g almost

everywhere by restricting its non-zero exponents to be greater or equal to one. This is because

the term |x|, x ∈ R, is differentiable almost everywhere and its derivative can be written as

sign(x).

Corollary 3.1. Let ẋ = f(x), x ∈ Rn be a homogeneous system of degree k with the weights

r ∈ Rn, such that each fi in f = [f1, . . . , fn]> is a GF. If V : Rn → R is a differentiable GF of

degree m with the same weights r, then W (x) = −(∂V/∂x) · f(x) is a GF of degree m + k with

the weights r.

Note that if f is discontinuous then in general W is a discontinuous GF. Note also that if

a system is described by GFs and a GF V is proposed as a LF candidate, from Corollary 3.1,

its derivative −W will result in a GF. Therefore, the problem of verifying if V is a strict LF

is reduced to the problem of verifying the positive definiteness of the GFs V and W . Two

systematic procedures to verify positive definiteness of GFs whose exponents are commensurable

by pairs are described in the following section. Recall that p, q ∈ R, p, q 6= 0, are commensurable

if p/q ∈ Q.
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Remark 3.2. Most of the results in the rest of the chapter are valid only for GFs whose exponents

are commensurable. However, with the aim to simplify the explanation, the analysis is done only

for GFs whose exponents are rational numbers. The following lemma explains why this is not a

restriction.

For the following lemma define φ : Rn → Rn as the function given by

φ(y) =
[
dy1c

c1
ι , . . . , dync

cn
ι

]>
, ι ∈ R>0, ci ∈ Z>0, i = 1, . . . , n . (3.13)

Note that each component φi(y) = dyic
ci
ι in (3.13) determines a bijective odd function whose

inverse function is given by yi = dφic
ι
ci , therefore, (3.13) is an isomorphism from Rn to Rn.

Lemma 3.1. For any GF f : Rn → R of degree m with weights r = [r1, . . . , rn]>, whose non

zero exponents are commensurable by pairs, there exists ι ∈ R>0 such that, for any ci ∈ Z>0,

f ◦ φ is a GF whose exponents are rational numbers. Moreover, the homogeneity degree of f ◦ φ
is m̄ = m/ι with the weights r̄i = ri/ci.

The proof of this lemma is given in Appendix A. Observe that the set {(f ◦ φ)(y) ∈ R : y ∈
Rn} is the same that {f(x) ∈ R : x ∈ Rn}. In the following example the usefulness of Lemma 3.1

is shown.

Example 3.4. Consider the GF f2 : R2 → R given in Example 3.3, note that its exponents are

real and commensurable. From (3.13), with c1 = c2 = 1 and ι = π, φ(y) =
[
dy1c

1
π , dy2c

1
π

]>
.

Thus, f2 ◦ φ is given by

f2(y) = (f2 ◦ φ)(y) = κ1dy1c
5
2 dy2c0 + κ2|y1|

1
2 dy2c

4
3 .

This is a GF of degree m̄ = 5 with the weights r = [2, 3]>. Now, with c1 = 2, c2 = 3 and ι = π,

φ(y) =
[
dy1c

2
π , dy2c

3
π

]>
. Thus, f2 ◦ φ is given by

f2(y) = (f2 ◦ φ)(y) = κ1dy1c5dy2c0 + κ2|y1|dy2c4 .

Note that this is a GF of degree m̄ = 5 with the weights r = [1, 1]>.

In order to continue with the developments, the following notation has to be clarified. In this

thesis it is understood by hyperoctant the generalization in Rn of the concept of quadrant in R2.

For example, in R4 one of the sixteen hyperoctants is the set D̄1 = {x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥
0}. As an abuse of the language, open hyperoctant stands for the hyperoctant that does not

contain the sets {xi = 0} for any i ∈ 1, . . . , n, for example, D1 = {x1 > 0, x2 > 0, x3 > 0} is an

open hyperoctant of R3. Denote the open positive hyperoctant of Rn as P = {x1 > 0, . . . , xn >

0}, an the closed one as P̄ = {x1 ≥ 0, . . . , xn ≥ 0}).
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Let {D̄γ} be the set of the 2n hyperoctants of Rn, given a function f : Rn → R, its restriction

to the hyperoctant D̄γ is defined as fD̄γ : D̄γ → R. Thus, from the definition of positive definite

function, the following lemma is straightforward.

Lemma 3.2. A GF f : Rn → R is positive definite if and only if for every γ ∈ {1, 2, 3, . . . , 2n},
each fD̄γ is positive definite.

The above lemma was enunciated only for positive definite GFs, although it is clearly valid

for any positive definite function f . Now, the result that allows to characterize a GF by means

of a set of classic forms can be stated, but first define the following. For each Dγ ⊂ Rn,

γ ∈ {1, 2, 3, . . . , 2n}, define the function dγ : P → Dγ as

dγ(y) = [σ1y
µ1
1 , . . . , σny

µn
n ]> , µi ∈ Q>0 , i = 1, . . . , n , (3.14)

where σi is the sign of the variable xi in the open hyperoctant Dγ .

Lemma 3.3. If f : Rn → R is a GF of degree m with the weights r = [r1, . . . , rn]>, and its

exponents are rational numbers, then there exist µi ∈ Q>0 such that each fDγ ◦ dγ : P → R is a

classic form restricted to P.

Proof. From (3.11), (3.12) and the hypothesis of the lemma,

f(x) =
N∑
j=1

αj

n∏
i=1

υi,j(xi, ρi,j) ,
n∑
i=1

riρi,j = m, ρi,j ∈ Q≥0 .

Denote with fγ to the function given by fγ(y) = (fDγ ◦ dγ)(y), and note that υi,j(σiy
µi
i , ρi,j) =

υi,j(σiyi, µiρi,j). Thus

fγ(y) =
N∑
j=1

αj

n∏
i=1

υi,j(σiyi, µiρi,j) .

Denote with LCDi the least common denominator of all the exponents of the variable xi in f ,

i.e., of all ρi,j with i fixed. Define µi = cLCDi, c ∈ Z>0. Hence, it is clear that all the products

µiρi,j are integer numbers, and therefore, all the exponents in each fγ are integers. Note that,

for a fixed i, σi is constant in each Dγ , and recall that y ∈ P. Hence, there are only two cases

for the functions υi,j ,

1. υi,j(σiyi, µiρi,j) = dσiyicµiρi,j = σiy
µiρi,j
i ,

2. υi,j(σiyi, µiρi,j) = |σiyi|µiρi,j = y
µiρi,j
i .

Therefore each fγ is polynomial restricted to P.
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Now, suppose that for some j and j′ in f , ρa,j , ρb,j′ 6= 0 for some a, b ∈ {1, 2, . . . , n}, more-

over, ρi,j = ρi,j′ = 0 for all i 6= a, b. Hence, a necessary condition for homogeneity of f is

raρa,j = rbρb,j′ = m, this implies that ρa,j/ρb,j′ = rb/ra. Also, a necessary condition to make fγ

homogeneous with weights r = [1, . . . , 1]> is µaρa,j = µbρb,j′ . Thus,

µa
µb

=
ρb,j′

ρa,j
=
ra
rb
⇔ µa

ra
=
µb
rb
.

Since a, b are arbitrary, the relation µa/ra = µb/rb, for any pair (a, b) ∈ {1, . . . , n} × {1, . . . , n},
is a necessary condition to make fγ homogeneous.

Define the constant µ = µi/ri. Since f is homogeneous of degree m, then, for any j,

m =

n∑
i=1

riρi,j =

n∑
i=1

µ

µ
riρi,j =

1

µ

n∑
i=1

µiρi ⇔
n∑
i=1

µiρi = µm .

This last equality shows that fγ is homogeneous of degree µm. Therefore, by choosing µi =

cLCDi, c ∈ Z>0 satisfying µi/ri is constant for any i, the function fγ is a classical form restricted

to P.

Note that for each γ, {fγ(y) ∈ R : y ∈ P} = {f(x) ∈ R : x ∈ Dγ}. However, in general,⋃
γ{fγ(y) ∈ R : y ∈ P} 6= {f(x) ∈ R : x ∈ R} but

⋃
γ{fγ(y) ∈ R : y ∈ P} ⊂ {f(x) ∈ R :

x ∈ R}. This is because Dγ was selected to construct fγ instead of D̄γ . Thus the forms fγ do

not represent completely the GF f . To get a complete characterisation of f , the whole domain

Rn =
⋃
γ D̄γ must be considered. In Appendix A.4 the extension of the domain P to P̄ and the

extensions of the hyperoctants Dγ to D̄γ are explained.

Remark 3.3. Note that if the extension of the domain P to P̄ and the extensions of the hyperoc-

tants Dγ to D̄γ are considered, then the proof of the last lemma provides a procedure to represent

a GF f : Rn → R by means of 2n classical forms {fγ : P̄ → R}, this set is called the set of

associated forms of the GF f . Nonetheless, if f is a symmetric function respect to the origin,

then the number of forms that represent it is reduced to 2n−1. The example below is useful to

clarify the above affirmations.

Example 3.5. Consider (3.9) and recall that it is homogeneous of degree m = 5 with weights

r = [3, 2]>. Choose µ1, µ2 as integer multiples of LCD1 = 3 and LCD2 = 2 respectively. Also,

it is needed that r2µ1 = r1µ2. By choosing µ1 = 3 and µ2 = 2, from (3.14),

dγ(z) = [σ1z
3
1 , σ2z

2
2 ]> . (3.15)

A graphic interpretation of this change of coordinates can be seen in Figure 3.1. By applying the

change of coordinates to (3.9), the functions Vγ = V ◦ dγ : P̄ → R are,
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z x
d1(z)

z z

z x

xx

d2(z)

d3(z) d4(z)

Figure 3.1: Graphic interpretation of (3.15).

• for D̄1 = {x1 ≥ 0, x2 ≥ 0}

V1(z) = α1z
5
1 + α12z

3
1z

2
2 + α2z

5
2 , (3.16)

• for D̄2 = {x1 ≤ 0, x2 ≥ 0}

V2(z) = α1z
5
1 − α12z

3
1z

2
2 + α2z

5
2 , (3.17)

• for D̄3 = {x1 ≤ 0, x2 ≤ 0}

V3(z) = α1z
5
1 + α12z

3
1z

2
2 + α2z

5
2 , (3.18)

• for D̄4 = {x1 ≥ 0, x2 ≤ 0}

V4(z) = α1z
5
1 − α12z

3
1z

2
2 + α2z

5
2 . (3.19)

Note that (3.16–3.19) are homogeneous polynomials of degree m = 5, and, since V is symmetric,

it can be completely characterized by two forms, namely, V1 for D̄1, D̄3, and V2 for D̄2 and D̄4.

From the above results, it is clear the possibility to verify the positive definiteness of a

GF (with commensurable real exponents) f through the positive definiteness of its associated

classical forms {fγ}.

27



3.3 Positive forms

In the present section two classic procedures to verify the positive definiteness (or semidefinite-

ness) of a form are recalled. The first one is the Pólya’s theorem and the second one is the sum

of squares representation of a form. These two procedures consist in giving a new representation

of a form in which its positive definiteness is obvious.

3.3.1 Pólya’s theorem

The following is a strong version of Pólya’s theorem [Pólya, 1928] (see also [Hardy et al., 1988]

or [Delzell, 2008]).

Theorem 3.3 (Pólya). Let F : Rn → R be a form such that F (z) > 0, ∀ z ∈ Pn = {z ∈ Rn | z 6=
0, zi ≥ 0, i = 1, 2, . . . , n}. Then, for any large enough p ∈ Z≥0, the coefficients of the form

G(z) = (z1 + z2 + · · ·+ zn)pF (z) , ∀z ∈ Pn , (3.20)

are strictly positive.

Below some characteristics of Pólya’s theorem are provided, also, the way it can be used to

study and design positive GF.

1. Although clearly stated in the theorem, it is important to underline the fact that Pólya’s

theorem is valid only for forms restricted to the domain Pn.

2. Although it is not clear enough in the the sentence of the theorem, observe that the

positiveness of F is a necessary and sufficient condition for the existence of a large enough

p such that the coefficients of G are strictly positive.

3. Although not stated in the theorem, only every coefficient of all the terms in a single

variable must be strictly positive, the remainder must be only non-negative. This is well

clarified in [Delzell, 2008, Remark 6.2].

4. The above strong version of Pólya’s theorem is valid only for classical forms. In [Delzell,

2008] it was proved the impossibility to extend it to forms with real exponents. However,

a weaker version of Pólya’s theorem can be extended to forms with rational exponents by

means of a change of variables [Delzell, 2008] (this change of variables is a particular case

of the transformation described in Lemma 3.3).

Given a form F restricted to Pn, Pólya’s theorem provides a tool to verify its positive def-

initeness. However, suppose that F is parametrized in its coefficients (it means that they are
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not given a fixed value), and it is required to determine some values of such coefficients such

that F is positive definite. In this case Pólya’s theorem also provides a procedure to design the

coefficients of a form such that it is positive definite restricted to Pn. The next examples are

useful to clarify this idea.

Example 3.6. From Example 3.5, consider the form (3.16) whose coefficients are not fixed.

Note that such form satisfies Pólya’s theorem with p = 0 if α1, α2 > 0 and α12 ≥ 0.

Example 3.7. Now consider V2 given by (3.17). From (3.20) with p = 4, G4(z) = (z1+z2)4V2(z),

G4(z) = α1z
9
1 + 4α1z

8
1z2 + (6α1 − α12) z7

1z
2
2 + (4α1 − 4α12) z6

1z
3
2 + (α1 − 6α12) z5

1z
4
2

+ (−4α12 + α2) z4
1z

5
2 + (−α12 + 4α2) z3

1z
6
2 + 6α2z

2
1z

7
2 + 4α2z1z

8
2 + α2z

9
2 .

Thus, according to Pólya’s theorem, V2 is positive for all z ∈ P2 if all the coefficients of G4 are

positive. This is

(6α1 − α12) > 0 , (4α1 − 4α12) > 0 , (α1 − 6α12) > 0 ,

(−4α12 + α2) > 0 , (−α12 + 4α2) > 0 , α1, α12, α2 > 0 .

Although not necessary for the example, α12 has been restricted to be positive. Recall that the

coefficients of V2 are not fixed. Pólya’s theorem allows to determine their values such that V2 is

positive. This is by solving the above set of inequalities for α1, α12, and α2. Observe that such

inequalities are linear in the coefficients of V2 and it can be rewritten as

AV2α > 0 , AV2 =


1 0 0 6 4 1 0 0

0 1 0 −1 −4 −6 −4 −1

0 0 1 0 0 0 1 4


>

, α = [α1 α12 α2]> , (3.21)

where the sign > is understood element-wise. Therefore, V2 is positive on z ∈ P2 for all α that

satisfies (3.21). As stated below, this system of inequalities is solvable, it means, there exists an

α that is solution for it. p = 4 has been chosen because until p = 3 there is no solution for the

resultant systems of inequalities.

So, a procedure to determine the coefficients of a form that make it positive has been stated.

A very important observation is that given a form F , it is possible to compute explicitly the

coefficients ofG for each p in (3.20). This implies that the matrix in Example 3.7 can be computed

for each p without performing the polynomial products. This fact and a technique to compute

the solution of the system of inequalities are explained in Appendix B. In the following example,

the solution of (3.21) is provided, this has been found with the procedure from Appendix B by

using the software Skeleton [Zolotykh, 2012].
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Example 3.8. The complete set of solutions for (3.21) is found with the procedure explained in

Appendix B, such set is given by

S = {α ∈ R3 : α = BV2γ} , BV2 =


1 0 1

0 0 1/6

0 1 4/6

 ,
where γ = [γ1 γ2 γ3]> and γi ∈ R>0. So, for any election of the vector γ with γi ∈ R>0, an α

that is solution of (3.21) is obtained. Thus it can be concluded that (3.9) is a positive definite

function for any α ∈ S. For example, by choosing γ = [1 1 6]> it is obtained α = [7 1 5]>, with

such solution, AV2α = [7, 1, 5, 41, 24, 1, 1, 19]>.

Remark 3.4. From the observation given in the point number three of the above list, only some

coefficients of (3.20) must be strictly positive and the rest can be greater or equal to zero. Hence,

in (3.21), AV2α > 0 could be replaced by AV2α ≥ 0 but restricting some elements of AV2α to be

strictly positive. On the other hand the set of solutions of AV2α ≥ 0 is a polyhedral cone (see

Appendix B). Thus, with the restriction to the strict inequality AV2α > 0, the solutions in the

border of the set are avoided.

The following lemma is an extension of Pólya’s theorem to GFs. A very important conse-

quence of this lemma is that if a system has a strict LF that is a GF, then the positive definiteness

of V and W can be verified by Pólya’s procedure.

Lemma 3.4. Let F : Rn → R be a GF given by F (x, α) where α is its vector of coefficients. Let

{Fi} be the set of associated forms of F . If there exists α∗ such that F is positive definite, then

there exists p∗ ∈ Z≥0 such that for all p ≥ p∗ the coefficients of the forms

Gi(z) = (z1 + z2 + · · ·+ zn)pFi(z, α
∗) , i = 1, 2, . . . , n , (3.22)

are strictly positive.

Proof. Suppose that F (x, α∗) is positive definite, then its restrictions FD̄i are positive definite.

This implies that each form Fi : P̄ → R is positive definite. From Pólya’s theorem, there exists

pi such that for all p ≥ pi the coefficients of the form

Gi(z) = (z1 + z2 + · · ·+ zn)pFi(z, α
∗) ,

are strictly positive. If p∗ = maxi{pi} is chosen, then for any p ≥ p∗ it is straightforward from

the last equation that each Fi is positive definite and the proof is complete.
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3.3.2 Quadratic form–Sum of squares representation

Consider the polynomial function of degree 2m, 0 < m ∈ Z. A way to determine the non

negativeness of F (x) is to rewrite it such that in the new representation the non negativeness is

obvious. Below, two equivalent ways to do it are described.

• Suppose that F (x) can be represented as the quadratic form F (x) = y>Py, where y is

a vector of monomials of degree m in variable x. Thus, the non negativeness of F (x) is

evident if the matrix P is positive semi-definite.

• Now let us recall that F (x) is called sum of squares1 (SOS) if there exist a finite number

of polynomials fi, i = 1, 2, . . . , N of degree m such that F (x) =
∑N

i=1[fi(x)]2. Note that

the non negativeness of a polynomial is straightforward if it is SOS.

The first idea has been used extensively in the literature, for example, in [Bose and Li, 1968]

it was used to study the stability of equilibrium points of polynomial systems through polynomial

LFs. The second one has been an active field of research in the last century (see, for example,

[Reznick, 2000] an the references therein). But let us recall an important result that relates the

two above ideas, it means the relationship between quadratic and SOS representation.

Theorem 3.4 ([Choi et al., 1995]). Let y be the vector of all the N possible monomials of degree

m in variable x ∈ Rn. The form F : Rn → R of degree 2m is SOS iff there exists a real positive

semi-definite matrix P such that F (x) = y>Py. Moreover, F (x) =
∑N

i=1[fi(x)]2, pi(x) = Riy

where Ri is the i-th row of the matrix R such that P = R>R (i. e., P is the Gram matrix of F

associated to the fi’s).

From the above result, in [Powers and Wörmann, 1998] an analytic procedure to analyse

or design non negative forms was developed. However, the problem of analysis and design of

non negative forms using the quadratic form-SOS relation has been successfully taken into the

convex optimization framework ([Vandenberghe and Boyd, 1996], [Parrilo, 2000], [Parrilo, 2003],

[Blekherman et al., 2012]) by considering the problem of solving the linear matrix inequality

(LMI) P ≥ 0. Below some characteristics of the Quadratic form–SOS representation are dis-

cussed.

• If a polynomial is SOS, then it is non negative. However if a polynomial is non negative it

does not necessarily have a SOS representation, see for example [Marshall, 2008].

1The 17th Hilbert’s problem, one of the twenty three ones given by him in 1900, states that (see for example

[Prestel and Delzell, 2001]): Let F : Rn → R be a positive semi-definite real polynomial. Does there then necessarily

exist a representation of F as a sum of squares of real rational functions, i.e., in the form F (x) =
∑
i[fi(x)]2, for

finitely many rational functions fi? The problem was solved positively by E. Artin in 1926. In this thesis the

attention is restricted to the case when fi are polynomials and F even-degree forms.
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• The verification that a form F : Rn → R of degree 2m is SOS only guarantees its positive

semi-definiteness. However the problem can be modified such that the verification of posi-

tive definiteness is possible. This can be done by searching for the SOS representation of

F̄ (x) = F (x) − ε
∑n

i=1 x
2m
i , for some small enough ε ∈ R>0, see for example [Blekherman

et al., 2012, Section 3.6.2].

• Note that, to verify that a form F is SOS, the explicit SOS representation is not needed.

In fact, it is only required to find the positive semi-definite matrix P for the Quadratic

form representation.

• There is specialized software to certificate that a form is SOS. For example, the software

SOSTOOLS [Prajna et al., 2002–2005], is able to certificate that a form is SOS by means

of finding the matrix P in its quadratic representation.

As stated for the Pólya’s theorem, the SOS representation of a form F , with non-fixed

coefficients, can be used to determine the values of the coefficients that render F non negative.

This is clarified in the following example.

Example 3.9. Consider the form V : R2 → R given by

V (z) = α1z
10
1 − α12z

6
1z

4
2 + α2z

10
2 . (3.23)

The degree of this form is 10 and all the possible monomials of degree 5 are the elements of the

vector y(z) = [z5
1 , z

4
1z2, z

3
1z

2
2 , z

2
1z

3
2 , z1z

4
2 , z

5
2 ]>. To verify the non negativeness of (3.23) it is

sufficient to verify that it is SOS. Equivalently, a positive semi-definite matrix P can be found

such that V (z) = y>(z)Py(z). The software SOSTOOLS can helps in this task. Nevertheless,

for the case when α = [α1, α12, α2]> is not fixed, SOSTOOLS takes it as a decision variable,

and tries to determine its value such that V (z) = y>(z)Py(z) holds and the LMI P ≥ 0 is

feasible. For example, SOSTOOLS can determine the matrix P , satisfying V (z) = y>(z)Py(z),

whose eigenvalues are {1.738, 0.3322, 1.1548, 1.6531, 0.3327, 1.2650}. For such matrix the

coefficients of the form are α = [1.321 , 0.562 , 1.258]>.

In the following section it is explained how the SOS representation and Pólya’s theorem can

be extended to GFs.

3.4 Construction of Lyapunov functions

Consider the homogeneous system

ẋ = f(x, k) , x ∈ Rn , (3.24)
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of degree s and weights r = [r1, . . . , rn]>, whose vector field (continuous or discontinuous) f =

[f1, . . . , fn]> is described by GFs with commensurable exponents. The elements of the vector

k ∈ Rr are the gains of the system i. e., some coefficients of all the GFs fi.

Suppose that x = 0 is an asymptotically stable equilibrium point of the system for a given k.

Since (3.24) is homogeneous, the existence of a homogeneous LF for it is proven (see Chapter 2).

Therefore it seems natural to search for a homogeneous LF for (3.24), moreover to propose it

from the same class of functions of its vector field, i.e., the GFs.

Below a procedure to design LFs for (3.24) is described, this under the assumption that there

exists one in the class of GF. It is also shown how the procedure can be used to search for values

of k (if they exist) such that the origin of the system is asymptotically stable.

Choosing a family of Lyapunov function candidates

Let υi(xi, ρi) denote either |xi|ρi or dxicρi . The first step to design a LF for (3.24) is to choose

a family of GFs parametrized in its coefficients. Namely, the GF V : Rn → R given by

V (x, α) =

n∑
i=1

αi|xi|
m
ri +

q∑
j=1

ᾱj

n∏
i=1

υi,j(xi, ρi,j), (3.25)

for some q ∈ N, and ρi,j ∈ Q≥0. The elements of the vector α ∈ Rn+q are the coefficients αi, ᾱj .

Note that (3.25) will be homogeneous of degree m with the weights r iff
∑n

i=1 riρi,j = m, for all

j = 1, 2, . . . , q. The way to choose the terms in (3.25) and why not all the variables xi have to

appear in the product
∏n
i=1 υi,j(xi, ρi,j) is explained below.

Shaping the family of forms

Every αi needs to be strictly positive to guarantee the positive definiteness of V given by (3.25).

Note that the terms ᾱj are not necessary for the positive definiteness of V . However, they can

be necessary to achieve the negative definiteness of V̇ .

Additionally, in order to guarantee differentiability of V , the homogeneity degree m and the

exponents ρi,j must be restricted to:

m > max
i
{ri} , and

ρi,j ≥ 1 , for υi(xi, ρi,j) = dxicρi,j

ρi,j > 1 , for υi(xi, ρi,j) = |xi|ρi,j
, ∀i, j . (3.26)

Now, by taking the derivative of (3.25) along the trajectories of (3.24), the GF W : Rn → R
given by W (x, β) = −∂V (x)

∂x f(x) is obtained. The general expression for W is

W (x, β) =

n∑
i=1

βi|xi|
m̄
ri +

q̄∑
j=1

β̄j

n∏
i=1

ῡi,j(xi, ρ̄i,j) , (3.27)

33



for some q̄ ∈ Z>0 and a vector β that contains the coefficients βi and β̄j . Note that, from

Corollary 3.1 the homogeneous degree of W is m + s with the same weights of V and f . The

vector β denotes the vector of coefficients of W , observe that the elements of such a vector are

functions of the system’s parameters and the coefficients of V , i. e., β = β(α, k).

Remark 3.5. β is linear in α and in general is affine in k. However it is bilinear in both of

them.

The parameters ᾱj and ρi,j in (3.25) must be chosen such that W (x) contains all the terms

βi|xi|
m+s
ri , i = 1, . . . , n with each βi being strictly positive. This is a necessary condition to assure

the positive definiteness of W .

Positive definiteness of V and W

Now the task is to determine a set of coefficients of V and system’s parameters that guarantee

that V is a LF for (3.24). This can be done by determining the set of α and k that allows

functions V and W to be positive definite. To this end the procedure from Section 3.2 can be

used to represent V and W as classical forms. Then, the two procedures from Section 3.3 to

verify the positive definiteness of V and W can be used as explained below.

Pólya’s theorem procedure

With the procedure explained in Section 3.2 the GFs (3.25) and (3.27) can be represented as a

set of classical forms given by {Vi(z), Wi(z)}, i = 1, 2, . . . , 2n, z ∈ D̄ = {z1 ≥ 0, . . . , zn ≥ 0}. So,

α and k must be such that all of those forms are positive definite. By using Pólya’s theorem,

a linear system of inequalities can be found from each of them, constituting in this way the set

{AViα > 0, AWiβ > 0}. All of those systems might be solved simultaneously. Since β is linear in

α, then there exists a matrix M = M(k) such that β = Mα. Thus the values of α can be found

by solving the system 

AV1

...

AVn

AW1M
...

AWnM


α > 0 .

In Appendix B a procedure to solve such systems of inequalities is given. Now suppose that

the vector k is unknown and it is required to design it, it can be done through the following

procedure.
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1. Define the vector k̄ = [k0 k>]>. Since β is affine in k, the matrix M̄ = M̄(α) can be

computed such that β = M̄k̄, with k0 = 1.

2. Solve simultaneously the linear systems of inequalities {AViα > 0}.

3. Pick an α from the obtained set of solutions and substitute it in M̄(α).

4. Solve for k̄ the linear systems of inequalities {AWiM̄k̄ > 0}.

5. Restrict the obtained set of solutions to k0 = 1.

SOS procedure

The procedure to design the coefficients α that render (3.25) and (3.27) positive definite can be

described as follows. Firstly, by using the technique developed in Section (3.2), find the set of

associated forms {Vi(z), Wi(z)}, i = 1, 2, . . . , 2n, with each Vi being of degree mv and each Wi

of degree mw. Secondly, find the coefficients α that allow each Vi and each Wi to be SOS.

Remark 3.6. Observe that the forms Vi and Wi are defined only on the positive hyperoctant P̄
(see Remark 3.3), and the SOS representation is applicable to forms of even degree defined on the

whole Rn. To accomplish the even degree condition, the change of coordinates can be chosen such

that both mv and mw be even. Now, if the change of coordinates is such that all the exponents

in the forms Vi and Wi are even, then the domain P̄ can be extended to the whole Rn2. Thus,

under these considerations each Vi,Wi : Rn → R.

With the aim to assert positive definiteness of the forms Vi and Wi the following forms (for

some small enough ε ∈ R>0) are defined

V̄i(z) = Vi(z)− ε
n∑
j=1

zmvj , W̄i(z) = Wi(z)− ε
n∑
j=1

zmwj .

Therefore, all the forms Vi and Wi are positive definite if there exist α such that all the forms

V̄i and W̄i are SOS simultaneously.

For the case when the vector k is unknown it can be designed as follows.

1. Find values for α such that every V̄i(z) = Vi(z)− ε
∑n

j=1 z
mv
j be SOS.

2. With the found values for α, find the values of k such that every W̄i(z) = Wi(z)−ε
∑n

j=1 z
mw
j

be SOS.

2This kind of globalization of a form has been used for example in [Reznick, 1995].
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As mentioned above, the problem to find a SOS representation can be transformed to a linear

matrix inequalities problem, in this thesis the very friendly software SOSTOOLS has been used.

In the case of Pólya’s theorem procedure the problem is reduced to a system of linear inequalities,

here the software SKELETON has been used. Some examples to clarify the procedures described

above are provided in the next section.

Let us say that a GF V is SOS if its associated forms Vi are SOS. Although there is no

certainty of the existence of a LF for (3.24) in the class of GFs, the following can be asserted

(This theorem is an extension to GFs of [Ahmadi and Parrilo, 2011, Theorem 4.3]).

Theorem 3.5. Let ẋ = f(x) be a homogeneous system whose vector field f consists of GFs. If

there exist a GF V̄ : Rn → R that is a strict LF for the system, then there exist a GF V : Rn → R
such that it is a strict LF for the system and is SOS. Moreover, the GF W given by W (x) = −V̇
is SOS.

Proof. The following result from [Scheiderer, 2012] is used for the proof. Given two positive

definite forms f, g : Rn → R, for any large enough q ∈ Z≥0 the form fgq is SOS.

Denote W̄ (x) = − ˙̄V . Since V̄ is a GF and a strict LF for the system, V̄ and W̄ are associated

to a set of positive definite forms {V̄i, W̄i}. Define V (x) = V̄ 2q+2(x), q ∈ Z≥0. Note that the

associated forms of V are given by Vi(z) = V̄ 2q+2(z). Since 2q + 2 is even, each Vi is SOS and

therefore the GF V is SOS.

Now, V̇ = (2q + 2)V̄ 2q+1(x) ˙̄V , thus W (x) = (2q + 2)V̄ 2q(x)V̄ (x)W̄ (x), and the associated

forms of W are given by Wi(z) = (2q + 2)[V̄ 2
i (z)]q[(V̄iW̄i)(z)]. From Scheiderer’s theorem, for

each i there exists qi ∈ Z≥0 such that [V̄ 2
i (z)]qi [(V̄iW̄i)(z)] is SOS. By choosing q̄ = maxi{qi} it

can be asserted that all the Wi are SOS for any q ≥ q̄, and therefore the GF W is SOS.

3.5 Examples

In this section some examples are provided using the procedures described in the last sections

to construct LFs . As expected the systems are described by GFs. The first one is that from

the Example 3.2 and the second one is from the Example 3.1. For these systems their LFs have

been announced, in this section the process to design them is shown.

3.5.1 Double integrator with a continuous homogeneous feedback

Here, the second example in Section 3.1 is resumed. Consider the closed loop given by (3.8)

that is a homogeneous system of degree s = −1 with the weights r = [3, 2]>. The vector of

parameters is given by k = [k1 k2]>. According to the last section, the following family of GFs
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can be proposed as a set of LF candidates

V (x, α) = α1|x1|
m
3 + α2|x2|

m
2 + ᾱ1dx1cρ1dx2cρ2 . (3.28)

The homogeneous degree m will be determined later. Note that it is necessary for positive

definiteness of V that α1, α2 > 0. For homogeneity it is necessary and sufficient that ρ2 =

(m − 3ρ1)/2. Taking the derivative of (3.28) along the trajectories of (3.8) it is obtained that

V̇ = −W (x), where

W (x) = −m
3 α1dx1c

m−3
3 x2 + m

2 α2k1dx1c
1
3 dx2c

m−2
2 + m

2 α2k2|x2|
m−1

2 − ρ1ᾱ1|x1|ρ1−1|x2|ρ2+1

+ρ2ᾱ1k1|x1|
3ρ1+1

3 |x2|ρ2−1 + ρ2ᾱ1k2dx1cρ1dx2c
2ρ2−1

2 . (3.29)

Since α2 must be positive, the third term in (3.29) is positive definite in x2 iff k2 > 0. A positive

definite term in x1 is necessary for positive definiteness of W , it can be obtained from the fifth

term in (3.29) if ρ2 = 1 and ᾱ1, k1 > 0. Observe that it was possible to obtain such a term due

to the inclusion of the third term in (3.28). On the other hand, for differentiability of (3.28) it

is needed that m > 3 and ρ1, ρ2 ≥ 1. Thus, to render V homogeneous and differentiable it is

sufficient to choose m = 5, thus ρ1 = 1. Therefore, from (3.28) and (3.29),

V (x) = α1|x1|
5
3 + α2|x2|

5
2 + ᾱ1x1x2 . (3.30)

W (x) = ᾱ1k1|x1|
4
3 + ᾱ1k2x1dx2c

1
2 − 5

3α1dx1c
2
3x2

+5
2α2k1dx1c

1
3 dx2c

3
2 − ᾱ1|x2|2 + 5

2α2k2|x2|2 . (3.31)

Define ᾱ1 = α12, then from (3.30) and (3.31) the functions V (x, α) and W (x, β), given by (3.9)

and (3.10) respectively, are obtained, where α = [α1, α12, α2]> and β = [β1, β2, β3, β4, β5]>. Since

k is not given, it has to be designed by applying one of the two procedures described in the last

section. Let us start with Pólya’s procedure. From Example 3.7 a set of values for α that assert

the positive definiteness of (3.9) was obtained. Thus, by taking one of those values, a value for

k must be found such that (3.10) is positive definite. By using (3.15) in (3.10) it is obtained,

• for D̄1 = {x1 ≥ 0, x2 ≥ 0}

W1(z) = β1z
4
1 + β2z

3
1z2 − β3z

2
1z

2
2 + β4z1z

3
2 + β5z

4
2 , (3.32)

• for D̄2 = {x1 ≤ 0, x2 ≥ 0}

W2(z) = β1z
4
1 − β2z

3
1z2 + β3z

2
1z

2
2 − β4z1z

3
2 + β5z

4
2 , (3.33)
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• for D̄3 = {x1 ≤ 0, x2 ≤ 0}

W3(z) = β1z
4
1 + β2z

3
1z2 − β3z

2
1z

2
2 + β4z1z

3
2 + β5z

4
2 , (3.34)

• for D̄4 = {x1 ≥ 0, x2 ≤ 0}

W4(z) = β1z
4
1 − β2z

3
1z2 + β3z

2
1z

2
2 − β4z1z

3
2 + β5z

4
2 . (3.35)

Note that (3.32) and (3.33) are the same as (3.34) and (3.35) respectively. Therefore it is enough

to analyse W1 and W2. Denote k̄ = [k0 k1 k2]>, thus β = M̄(α)k̄ with

M̄ =



0 α12 0

0 0 α12

5α1/3 0 0

0 5α2/2 0

−α12 0 5α2/2


.

By applying Pólya’s procedure to W1 and W2 for some p, the following system of inequalities[
AW1M̄

AW2M̄

]
k̄ > 0

is obtained. The matrices AW1 and AW2 are computed according to the technique given in

Appendix B. With α = [7, 1, 5, ]> (see Example 3.7) and p < 3 the system of inequalities does

not have solutions. However, with p = 3 the set of solutions is {k̄ ∈ R3 | k̄ = BWγ, k0 = 1},
where γ ∈ R4, γi > 0 and

BW =


1 1 1 1

2018/1071 2018/979 70/41 14/9

1138/357 3686/979 210/41 14/3

 .
For example, by choosing µ = (1/4)[1 1 1 1]> it is obtained k1 = 1548/859 ≈ 1.802, k2 =

3997/955 ≈ 4.185. Thus, a set of values for k and a set of values for α such that (3.9) is a LF

for (3.8) have been provided.

Now let us apply the SOS procedure. For V it has been applied in Example 3.9. There,

di(z) = [σ1z
6
1 , σ2z

4
2 ]> was used. The same transformation is used for W , obtaining this way

• for D̄1 = {x1 ≥ 0, x2 ≥ 0} and D̄3 = {x1 ≤ 0, x2 ≤ 0}

W1(z) = β1z
8
1 + β2z

6
1z

2
2 − β3z

4
1z

4
2 + β4z

2
1z

6
2 + β5z

8
2 , (3.36)
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• for D̄2 = {x1 ≤ 0, x2 ≥ 0} and D̄4 = {x1 ≥ 0, x2 ≤ 0}

W2(z) = β1z
8
1 − β2z

6
1z

2
2 + β3z

4
1z

4
2 − β4z

2
1z

6
2 + β5z

8
2 , (3.37)

Now, define

W̄1(z) = W1(z)− ε(z8
1 + z8

2) , W̄2(z) = W2(z)− ε(z8
1 + z8

2) .

Thus, by choosing the values for α from Example 3.9, the values for k such that W̄1 and W̄2 are

SOS have to be found. Using SOSTOOLS it is obtained the following

W̄1(z) = y>P1y ≥ 0 , W̄2(z) = y>P2y ≥ 0 , y = [z4
1 , z

3
1z2, z

2
1z

2
2 , z1z

3
2 , z

4
2 ]> .

with k1 = 1.16 and k2 = 1.23. The eigenvalues of P1 and P2 are

{0.31, 1.69, 3.66, 0.82, 4.23} , {5.98, 1.17, 0.19, 1.52, 0.33} ,

respectively.

3.5.2 Polynomial system

Now consider the system (3.3) from Example 3.1, it is rewritten here

ẋ1 = −k1x
3
1 + x2

ẋ2 = −k2x
5
1

. (3.38)

This system is homogeneous of degree s = 3 with the weights r = [1, 3]>. Now, according to the

procedure described in the last section, the following LF candidate for (3.38) is proposed

V (x) = α1|x1|6 − α12x1dx2c
5
3 + α2|x2|2 .

The derivative of V along the trajectories of (3.38) is V̇ = −W (x), where

W (x) = β1|x1|8 − β2|x1|6|x2|
2
3 − β3dx1c5x2 − β4dx1c3dx2c

5
3 + β5|x2|

8
3 .

β1 = 6α1k1, β2 = 5
3α12k2, β3 = 6α1 − 2α2k2, β4 = α12k1, β5 = α12 .

In order to find the polynomial representation of V and W the change of coordinates di(z) =

[σ1z1, σ2z
3
2 ]> is used. Hence, for the set {x ∈ R : x1x2 ≥ 0}

V1(z) = α1z
6
1 − α12z1z2

5 + α2z
6
2 ,

W1(z) = β1z
8
1 − β2z

6
1z

2
2 − β3z

5
1z

3
2 − β4z

3
1z

5
2 + β5z

8
2 ,
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and for the set {x ∈ R : x1x2 ≤ 0}

V2(z) = α1z
6
1 + α12z1z2

5 + α2z
6
2 ,

W2(z) = β1z
8
1 − β2z

6
1z

2
2 + β3z

5
1z

3
2 + β4z

3
1z

5
2 + β5z

8
2 .

As explained before, the aim is to find k and α such that all the forms in the set {V1, V2,W1,W2}
are positive definite. In this example only the Pólya’s procedure is used. Firstly let us look

for a LF for the particular case when k1 = k2 = 1, recall that for these gains the system (3.1)

given in Example 3.1 is recovered. Since k is given, the system of linear inequalities Aα > 0,

where A = [A>V1
A>V2

(AW1M)> (AW2M)>]>, can be constructed for each (pv, pw). For the case

(pv, pw) = (6, 12) the solution of the system is {α ∈ R3 |α = Bγ, γi > 0}. The software Skeleton

returns

B =


10 10 10 10 10 10

0 0.019 0.312 2.319 2.915 0.045

30 30.189 30.972 32.548 32.561 29.905

 .
If for example γ = [1, 1, 1, 1, 1, 1]>/6 is chosen, then α = [10, 1, 31]>. Now, with such α the

process can be repeated to obtain a set of gains k. In Figure 3.2 different sets for the gains k are

shown, they were obtained by changing the value of pw in Pólya’s procedure. Note that the sets

grow as pw increases.

3.5.3 Super–Twisting algorithm

Consider the Super–Twisting Algorithm shown in Section 2.5.4 and given by (2.5). This system

is homogeneous of degree s = −1 with the weights r = [2, 1]>. As the first step in the designing

of a LF for (2.5) a suitable GF must be chosen as LF candidatewe. In this example it is proposed

V (x) = α1|x1|
3
2 − α2x1x2 + α3|x2|3, α1, α3 > 0. (3.39)

This function is differentiable and homogeneous of degree m = 3 with the same weights as the

system. Taking the derivative of (3.39) along the trajectories of (2.5) it is obtained V̇ = −W (x),

where

W (x) = 3
2α1k1|x1| − 3

2α1dx1c
1
2x2 − α2k1dx1c

1
2x2 +

+α2|x2|2 − α2k2|x1|+ 3α3k2dx1c0dx2c2. (3.40)

The first term in (3.40) is positive definite in x1 while the fourth one is positive definite in x2

if α2 > 0. Note that the fourth term is obtained from the second term in (3.39). Now, by

simplifying terms in (3.40),

W (x) = β1|x1| − β2dx1c
1
2x2 + β3x

2
2, (3.41)
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Figure 3.2: Set of gains k for different values of pw.

where β1 = 3
2α1k1 − α2k2, and β2 = 3

2α1 + α2k1. The third coefficient is defined as follows:

β3 = β+
3 = α2 + 3α3k2, for {x1x2 > 0}, and β3 = β−3 = α2 − 3α3k2, for {x1x2 < 0}. Note that

β1, β3 > 0 are necessary conditions for positive definiteness of (3.41). To find the polynomial

representation of V and W , the isomorphisms dγ(z) = [σ1z
2
1 , σ2z2]> can be used. Hence,

• For {x1x2 ≥ 0}:
V (z) = α1z

3
1 − α2z

2
1z2 + α3z

3
2

W (z) = β1z
2
1 − β2z1z2 + β+

3 z
2
2

. (3.42)

• For {x1x2 < 0}:
V (z) = α1z

3
1 + α2z

2
1z2 + α3z

3
2

W (z) = β1z
2
1 + β2z1z2 + β−3 z

2
2

. (3.43)

It is clear that V and W in (3.43) are positive definite if all of their coefficients are positive,

therefore, only the pair of functions in (3.42) has to be analysed. By using Pólya’s procedure
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with p = 2

G2(z) = (z1 + z2)2V (z) =α1z
5
1 + (2α1 − α2)z4

1z2 + (α3 − α2)z2
1z

3
2

+ (α1 − 2α2)z3
1z

2
2 + 2α3z1z

4
2 + α3z

5
2 ,

thus, all the coefficients of G2 can be positive if α1, α2, and α3 are chosen such that the following

system of inequalities is satisfied

α1 > 0, α2 > 0, α3 > 0, 2α1 − α2 > 0, α3 − α2 > 0, α1 − 2α2 > 0 .

This system is linear in the coefficients of V and can be rewritten as

Avα > 0 , Av =


1 0 0 2 0 1

0 1 0 −1 −1 −2

0 0 1 0 1 0


>

, α = [α1 α2 α3]> . (3.44)

The same procedure can be applied to W from (3.42), obtaining for each p a system of inequalities

Awβ > 0, β = [β1 β2 β+
3 ]>. Recall that each βi depends (linearly) on α and (affinely) on

k = [k1 k2]>, therefore the systems Avα > 0 and Awβ > 0 might be solved simultaneously.

However, since β = M(α)[1 k>]>, where M is a matrix that depends linearly on α, the following

procedure is performed.

1. Solve the linear system of inequalities (3.44)

2. Pick an α from the set of solutions of (3.44) and substitute it in M(α)

3. Solve for k the linear system of inequalities Awβ = M(α)[1 k>]> > 0.

The set of solutions of (3.44) is given by {α ∈ R3 | α = Bvµ} where

Bv =


2 0 2

0 0 1

0 2 1

 , µ = [µ1 µ2 µ3]> , 0 < µi ∈ R .

By choosing µ = [0.05 0.05 1]> it is obtained α = [2.1 1 1.1]>. Thus the solution of Awβ =

M(α)[1 k>]> > 0 is given by {k ∈ R2 | k = Bwγ }, where γ ∈ Rq, γi > 0,
∑q

i=1 γi = 1, and q

being the number of columns of Bw. With p = 6

Bw =

[
3.788 2.325 3.019

0.303 0.303 0.257

]
,
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and by choosing γ = (1/3)[1 1 1]> it is obtained k1 = 3.04, k2 = 0.28. If p = 16

Bw =

[
0.922 10.107 4.019 2.271 1.534 1.138

0.303 0.303 0.114 0.107 0.148 0.216

]
,

and by choosing γ = (1/15)[10 1 1 1 1 1]> it is obtained k1 = 1.88, k2 = 0.26.

Now, let us to design the LF by means of the SOS procedure. Both polynomials in (3.42)

are defined only on the positive quadrant and the degree of V is not even. Therefore, to apply

the SOS representation, the domains of such polynomials have to be extend . This can be done

by means of the transformation (z1, z2) 7→ (y2
1, y

2
2), thus

V (y) = α1y
6
1 − α2y

4
1y

2
2 + α3y

6
2 , W (y) = β1y

4
1 − β2y

2
1y

2
2 + β+

3 y
4
2 , y ∈ R2 .

Define V̄ (y) = V (y)− ε(y6
1 + y6

2) > 0, fore some ε > 0, and rewrite V̄ as the following quadratic

form:

V̄ (y) = ψ>(y)Qvψ(y) , ψ(y) = [y3
1, y

2
1y2, y1y

2
2, y

3
2]> .

So, by using SOSTOOLS it is obtained

Qv =


10.17 0 −5.30 0

0 6.19 0 −3.81

−5.30 0 7.63 0

0 −3.81 0 9.10

 ,

for ε = 0.1. The eigenvalues of Qv are {14.35, 3.60, 3.44, 11.80}, thus

V (y) = 10.27y6
1 − 4.41y4

1y
2
2 + 9.30y6

2 ,

is positive definite. Analogously for W , W̄ (y) = W (y)− ε(y4
1 + y4

2), rewriting it as

W̄ (y) = ψ>(y)Qwψ(y) , ψ(y) = [y2
1, y1y2, y

2
2]> .

Using again SOSTOOLS, the positive definite matrix

Qw =


148.15 0 −102.64

0 8.56 0

−102.64 0 71.74

 ,
is obtained for k1 = 1, k2 = 0.1. The eigenvalues of Qw are {219.47, 0.42, 8.56}, thus

W (y) = 148.16y4
1 − 196.72y2

1y
2
2 + 71.75y4

2 ,

is a positive definite function.

43



3.6 Chapter conclusions

In this chapter a method to design LFs for homogeneous systems described by GFs was pro-

posed. The usefulness of the method was shown through its application for some continuous and

discontinuous systems. Some other cases where the method was used successfully can be found

in [Torres-Gonzalez et al., 2015] and [Sanchez et al., 2016]. The LFs candidates are chosen from

the class of GFs, they can be differentiable and the homogeneous degree can be selected. Such

functions allow to be represented by a set of classic forms. This let us to reduce the problem

of designing a LF to the problem of finding the coefficients of a set of forms that render them

positive definite. This last step can be done by means of two different procedures, let us make

some comments about such two procedures:

• Pólya’s procedure.

– It is necessary and sufficient, it means that the positive definiteness of a of any positive

definite form can be determined by Pólya’s theorem.

– The determination of the coefficients that make a form positive definite, by means of

the Pólya’s procedure, consist in solving a systems of linear inequalities.

– There is available software to compute the complete set of solutions for the resulting

system of inequalities.

– Although, the system of inequalities is linear in the coefficients of the form and affine

in the parameters of the system, it is not linear (but bilinear) in both. This fact

introduces a difficulty in the case of the design the system’s parameters.

• SOS procedure.

– It is only sufficient, it means that if a form is non negative, it does not have necessarily

an SOS representation.

– The SOS representation of a form can be found by solving a linear matrix inequality.

– There is available and very reliable software to solve the resultant LMIs.

– In the case of the design the system’s parameters, the same problem of non linearity

of the coefficients of the function and the parameters of the system will appear.
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Chapter 4

Trajectory integration method to

design Lyapunov functions

Sliding Mode Control is a suitable technique to control disturbed and uncertain systems. In

particular High Order Sliding Mode (HOSM) controllers provide finite time stability of the

system’s origin with the ability to reject non vanishing disturbances. They also eliminate the

restriction of relative degree one and reduce the high frequency switching, Chattering, with

respect to the First Order Sliding Mode controllers.

Despite of the importance of Lyapunov’s method in analysis and design of control systems,

the stability and robustness properties of HOSMs algorithms were established through geometric

procedures and the homogeneity theory [Levant, 1993, 2005, 2007]. However, in the last years

several successful attempts to analyse and design HOSMs by means of LFs have appeared [Orlov,

2005], [Moreno and Osorio, 2008], [Polyakov and Poznyak, 2009a], [Moreno and Osorio, 2012].

Nevertheless, to continue with the development of such approach, it is crucial to have systematic

methodologies to construct LFs for HOSMs algorithms. Some steps have been done in this

direction recently. For example in [Polyakov and Poznyak, 2012] a method to design LFs for a

certain class of second order HOSMs was presented . Such method consist in solving a partial

differential equation by means of a modification of the Zubov’s method [Zubov, 1964]. Another

attempt was given in [Sanchez and Moreno, 2012]. In this chapter, such proposal to design LFs

for HOSMs is described. It takes advantage of the fact that some HOSM are homogeneous and

piece-wise state affine systems. Two important features of the method are that it is constructive

and that the LFs can be designed to be homogeneous. Moreover, it is possible to design LFs

that guarantee the finite time stability in presence of disturbances. By means of some examples

the method shows its effectiveness to provide usable LFs.

46



4.1 A class of discontinuous controllers

Most HOSM algorithms have been designed to be homogeneous [Levant, 2005, 2007]. HOSM, that

are discontinuous by nature, are designed in this way with the aim to obtain the good geometric

and dynamic characteristics of homogeneous systems. Here the class of control systems that is

going to be addressed in the rest of the chapter is defined. Namely, the class of HOSM algorithms

that are piece-wise state affine. This property and the homogeneity can be very helpful for the

task of designing LFs.

Consider the following n−th order chain of integrators

ẋi = xi+1 , i = 1, . . . , n− 1

ẋn = u
, (4.1)

where x ∈ Rn is the state and u is an input generated by a HOSM controller. The control input

must be such that the following holds

A1 u is piece-wise constant, and it only changes in a finite number of zero-measure switching

surfaces Sj ∈ Rn.

A2 The switching surfaces determine a finite number of open sets Ri ∈ Rn, i ∈ {1, 2, . . . , s}.
Define R̄i as the closure of Ri, thus, the boundaries of each R̄i must be contained in⋃m
j=1 Sj . Moreover,

⋂m
i=1Ri = ∅ and

⋃m
i=1 R̄i = Rn.

A3 The controller u and the surfaces Sj are such that in closed loop with (4.2), the system’s

solutions exist and are unique (in forward time) for any initial condition.

Thus, u = ui,∀x ∈ Ri with m real constants ui. Below, some examples of this class of systems

are given.

Remark 4.1. With the above considerations on u, (4.1) could be seen as a classical switched

system [Liberzon, 2003]. However, in contrast to switched systems, in this work sliding motions

on the switching surfaces and Zeno behaviour (infinite switching) are allowed. So, in general,

the classical procedures to design LFs for switched systems are not applicable for the systems

considered here.

Example 4.1 (Twisting controller). Consider the second order dynamical system

ẋ1 = x2, ẋ2 = u , (4.2)

in closed loop with the Twisting controller [Levant, 1993]

u(x) = −k1 sign(x1)− k2 sign(x2), k1, k2 ∈ R>0. (4.3)
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Note that (4.3) switches on the surfaces S1 = {x1 = 0} and S2 = {x2 = 0}. Thus, by defining

R1 = {x1, x2 > 0}, R2 = {x1 > 0, x2 < 0}, R3 = {x1, x2 < 0}, R4 = {x1 < 0, x2 > 0},
k = k1 + k2 and k̄ = k1 − k2 we have that

u(x) =


u1 = −k, x ∈ R1

u2 = −k̄, x ∈ R2

u3 = k, x ∈ R3

u4 = k̄, x ∈ R4

. (4.4)

Thus the closed loop system (4.2), (4.4) can be rewritten as the following set of piece-wise state

affine systems

ẋ1 = x2 , ẋ2 = ui , x ∈ Ri, i = 1, 2, 3, 4. (4.5)

An example of the trajectories of the system with Twisting controller, with gains k1 and k2 selected

such that asymptotic stability is guaranteed, is shown in Figure 4.1. Note that the trajectories

only cross the switching lines S1 and S2 and they never remain over them, i.e. there are no

sliding modes on the switching surfaces.

x2

x1

Figure 4.1: Example trajectory of the closed loop (4.2), (4.3)

Example 4.2 (Terminal controller). Consider the Terminal controller [Man et al., 1994] (this

is also a particular case of the prescribed convergence controller [Levant, 1993]) given by

u(x) = −α sign(σ) , σ = x2 + β
√
|x1| sign(x1) , α, β ∈ R>0 . (4.6)

This controller switches on the surface S = {σ = 0}, and is constant in the sets R1 = {σ > 0}
and R2 = {σ < 0}. So, in those regions,

u(x) =

{
u1 = −α, x ∈ R1

u2 = α, x ∈ R2

, (4.7)
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and the closed loop dynamics (4.2), (4.6) can be written as the piece-wise state affine systems

ẋ1 = x2 , ẋ2 = ui , x ∈ Ri, i = 1, 2 .

It is important to mention that (4.6) produces different behaviours in closed loop, see Figure 4.2,

depending on the relation between the gains α and β [Levant, 2007], [Polyakov and Poznyak,

2012], [Sanchez and Moreno, 2014b]. In one behaviour, S acts as an sliding surface, but in

another one S is only for switching and the trajectories do not remain on it.

x2

x1

S

x2

x1

S

Figure 4.2: Trajectories of (4.2), (4.6). Left: Terminal behavior. Right: Twisting behavior

Example 4.3 (Generalized 2-sliding homogeneous controller). In [Levant, 2007] the following

controller for (4.2) was proposed,

u(x) = −k1 sign (σ1)− k2 sign (σ2) , (4.8)

σ1 = l1x2 + l2
√
|x1| sign(x1), σ2 = l3x2 + l4

√
|x1| sign(x1) ,

This controller contains, as special cases, many of the basic second order Sliding Mode algorithms.

For example, selecting l1 = l4 = 0, (4.8) becomes the Twisting controller. With l1 = l3, l2 = l4,

and defining α = k1 + k2 and β = l2/l1, (4.8) becomes the Terminal controller. Note that (4.8)

is also piece-wise state affine for any selection of the parameters li, i ∈ {1, 2, 3, 4}.
It is important to see that the switching surfaces S1 = {σ1 = 0} and S2 = {σ2 = 0} are

defined by homogeneous functions. Namely σ1 and σ2 are homogeneous functions of degree k = 1

with the weights (r1, r2) = (2, 1). Moreover, the closed loop (4.2), (4.8) is a homogeneous system

of degree k = −1 with the vector of weights [r1, r2]> = [2, 1]>. Note that (4.2) with Twisting or

Terminal controllers is also homogeneous of degree k = −1 with the same weights.

Example 4.4 (Nested controller). In [Levant, 2001] an arbitrary order controller for (3.24)

was introduced. Such controller is also known as Nested algorithm. The control law is u(x) =
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−α sign(σ), where σ = σ(x1, x2, . . . , xn) is a homogeneous function with weights r = [n, n −
1, . . . , 1]>. When the system’s order is n = 2 the function σ is as in (4.6), therefore, Terminal

controller is a particular case of the Nested algorithm. For the case n = 3, the controller is that

in (2.7). For the closed loop (2.6), (2.7) the switching surface S = {σ = 0} generates the sets

R1 = {σ > 0} and R2 = {σ < 0}. Thus, (2.7) can be written as

u(x) =

{
u1 = −α, x ∈ R1

u2 = α, x ∈ R2

.

Moreover, in R1 and R2 the closed loop (2.6), (2.7) is equivalent to the piece-wise state affine

systems

ẋ1 = x2, ẋ2 = x3, ẋ3 = ui, x ∈ Ri, i = 1, 2 .

Observe that the system (2.6), (2.7) is homogeneous of degree k = −1 with the vector of weights

[r1, r2, r3]> = [3, 2, 1]>.

Example 4.5 (State signum controller). Now consider the closed loop (2.8), (2.9). When λ = 0

there are two switching surfaces for the controller, namely S1 = {x2 = 0} and S2 = {x3 = 0}.
Thus, by defining R1 = {x2, x3 > 0}, R2 = {x2 > 0, x3 < 0}, R3 = {x2 < 0, x3 > 0},
R4 = {x2, x3 < 0}, k = k2 + k3 and k̄ = k2 − k3 we have that

u(x, 0) =


u1 = −k, x ∈ R1

u2 = −k̄, x ∈ R2

u3 = k, x ∈ R3

u4 = k̄, x ∈ R4

.

When λ = 1 there is a switching surface given by S = {x1 = 0}. By defining R1 = {x1 > 0} and

R2 = {x1 < 0}, we have that

u(x, 1) =

{
u1 = −k1, x ∈ R1

u2 = k1, x ∈ R2

.

Note that in both cases, λ = 0 and λ = 1, u is piece-wise constant and (2.9) is a piece-wise state

affin system. Also observe that, for any value of λ, (2.9) is homogeneous of degree k = −1 with

the weights [r1, r2, r3] = [3, 2, 1]>. Figure 4.3 shows an example of a trajectory for this algorithm.

4.1.1 System’s solutions

Consider (4.1) in closed loop with a controller of the kind described in the last section (satisfying

A1-A3). Since u is discontinuous, the Filippov’s definition for the system solutions is required
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x1

x2

x3

Figure 4.3: Trajectory example for (2.9)

(see Section 2.1). Most of the times the discontinuity in u comes from the sign function, sign(x),

that is discontinuous in x = 0. Such a function can be defined as in (A.1). However, since

the Filippov’s solutions are for differential inclusions, it is convenient to define the sign function

as the set valued function given in (A.2). According to [Filippov, 1988], assumptions A1-A3

are sufficient to guarantee the following properties of the solutions of (4.2) with the kind of

controllers described above:

1. The solutions are unique in forward time.

2. They are absolutely continuous functions of time.

3. The solutions depend continuously on the initial conditions.

Note that if there exist sliding motions, they can occur only on the switching surfaces Si.
However, when the solutions are not on such surfaces they evolve on the sets Rj . So, for this

last case, as we have seen in the examples, (4.1) can be written as

ẋ = Ax+Bui, ∀x ∈ Ri, i ∈ {1, 2, . . . ,m} , (4.9)

where

A =



0 1 0 · · · 0

0 0 1
...

...
. . . 0

0 0 1

0 · · · · · · · · · 0


, B =



0

0
...

0

1


.
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Let ϕi(t; 0, x) denote the solution of (4.9) with the initial condition in x ∈ Ri at the initial time

t = 0, this means that ϕi(0; 0, x) = x. Thus, for all t such that ϕi remains in Ri we have that

ϕi(t; 0, x) = eAtx+

∫ t

0
eA(t−τ)B dτ ui , (4.10)

eAt =



1 t t2

2! · · · tn−1

(n−1)!

0 1 t
...

...
. . . t2

2!

0 1 t

0 · · · · · · · · · 1


, and

∫ t

0
eA(t−τ)B dτ =



1
n! t

n

1
(n−1)! t

n−1

...
1
2 t

2

t


,

so, the expression for ϕi(t; 0, x) is always a vector of polynomials in t of degree at most n.

For the case of sliding motion the solution must be computed in each particular case. Hence,

the complete solution of (4.1) can be computed as a succession of solutions like (4.10) and the

solutions in sliding motion.

Remark 4.2. Note that the definition of the signum function as a set valued function is made

only for the requirements of the Filippov’s definition. However, the value of this function in x = 0

is not important for the computations of the solutions.

Remark 4.3. Finally, it is important to observe that if the switching surfaces Si are defined by

homogeneous functions, with the homogeneity weights [r1, r2, . . . , rn]> = [n, n − 1, . . . , 1]>, then

(4.9) is a homogeneous system of degree k = −1.

4.2 Description of the construction method

In this section the proposed method to construct LFs is described. Given a dynamical system

ẋ = f(x), x ∈ Rn, whose origin is an asymptotically stable equilibrium point, the Converse

Lyapunov’s theorems prove the existence of a LF for it (see [Hahn, 1967], [Bernuau et al., 2014]

and the references therein). In several cases the proofs of such theorems are constructive. For

example, suppose that x = 0 is an exponentially stable equilibrium point of the autonomous

system ẋ = f(x), and φ(τ ; t, x) is its solution for the initial condition x = x(t) at the initial

time t. Hence, it is well known that V (x) =
∫ t+δ
t ||φ(τ ; t, x)||22 dτ is a LF for the system for some

δ > 01. This means that, by integrating a positive definite function along the trajectories of the

system, it is possible to obtain a LF. As it was established before, only systems whose trajectories

are supposed to reach the system’s origin in a finite time are considered in this chapter. More-

over, if the system is homogeneous, then its settling time function T is continuous everywhere

1For this classical result see for example [Khalil, 2002]
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(see Section 2.4). However, due to the discontinuous nature of the system, T is generally not

differentiable. Thus, the idea in the following theorem is the basis of the construction method.

Theorem 4.1. Consider the dynamical system ẋ = f(x) as in (4.1) whose origin is a uniform

finite time stable equilibrium point. Let φ(τ ; t, x) denote the system’s solution with initial condi-

tions (t, x). If W : Rn → R is a continuous positive definite function then V : Rn → R given by

V (t, x) =

∫ ∞
t

W (φ(τ ; t, x)) dτ , (4.11)

is a continuous positive definite function. Moreover,

V̇ = −W (x) , ∀x ∈ D , (4.12)

where D ⊂ R× Rn is the set of all (t, x) such that V is differentiable.

Observe that we cannot assert that (4.11) is a LF. This is because the theorem only guarantees

that the function is decreasing on the set where it is differentiable.

Proof. The assumption about the uniform finite time stability of the system’s origin ensures that

the settling time function T (x) is bounded for any bounded initial state x, see [Polyakov and

Fridman, 2014]. Hence, for every initial state x, there exists a time T = T (x) < ∞ such that

φ(τ ; t, x) ≡ 0 and W (φ(τ ; t, x)) ≡ 0 for all τ ≥ t+ T , thus∫ ∞
t

W (φ(τ ; t, x)) dτ =

∫ t+T

t
W (φ(τ ; t, x)) dτ , (4.13)

and therefore V does exist. Positive definiteness of V follows from the positive definiteness of

W . As it was said in the last section, the system’s solution φ depends continuously on x, thus,

continuity of W is a sufficient condition for the continuity of W ◦ φ with respect to x, therefore

V is continuous for all x ∈ Rn. Now on D, by the Leibniz integral rule we have that

V̇ =
∂V

∂t
+
∂V

∂x

dx

dt

=

∫ t+T

t

∂

∂t
W (φ(τ ; t, x)) dτ +W (φ(t+ T ; t, x))

[
1 +

∂T

∂x

dx

dt

]
−W (φ(t; t, x))

+

(∫ t+T

t

∂

∂x
W (φ(τ ; t, x)) dτ +W (φ(t+ T ; t, x))

∂T

∂x

)
dx

dt

= −W (x) +

∫ t+T

t

∂W

∂φ

[
∂

∂t
φ(τ ; t, x) +

∂

∂x
φ(τ ; t, x)

dx

dt

]
dτ

= −W (x) . (4.14)

53



From this proof we can see that Rn \ D is contained in the set of all (t, x) ∈ R × Rn where

the following partial derivatives do not exist:

∂W (x)

∂x
,

∂φ(τ ; t, x)

∂x
,

∂φ(τ ; t, x)

∂t
,

∂T (x)

∂x
.

Remark 4.4. Note that, under the assumptions in Theorem 4.1, (4.11) is positive definite and

its derivative is negative definite for all (t, x) in D. However this is not sufficient to affirm that

(4.11) is a (strict) LF for the system. According to the Zubov’s theorem [Zubov, 1964] 2 V is a

LF if it is positive definite and V ◦ φ is a strictly decreasing function of time. In general, (4.12)

does not guarantee that V is strictly decreasing, therefore further analysis of V ◦ φ is required in

order to confirm that it is a (strict) LF. This can be done for example by means of generalized

gradients on the set Rn \ D (see for example [Clarke et al., 1998a, Chapter 2].

So, based on the idea of Theorem 4.1, a procedure to compute a LF for the class of systems

defined in Section 4.1 is given.

4.2.1 Lyapunov function construction method

The following are the steps to construct LFs for (4.1) in closed loop with a controller satisfying

A1-A3.

1. Compute the system’s solutions φ(t; t0, x) for all x in every Ri and every Sj . If the system

is autonomous, then the initial time can be chosen as t0 = 0.

2. Choose a positive definite function W : Rn → R.

3. Evaluate the following integral

V (x) =

∫ ∞
0

W (φ(t; 0, x)) dt . (4.15)

4. If (4.15) diverges the system’s origin is not uniform finite time stable.

5. If the integral in (4.15) exists, it is sufficient to verify that V ◦φ is a strictly time decreasing

function for every initial condition x in Rn\D, in order to consider V as a LF for the system.

4.2.2 Features of the method

Now some characteristics of the method and some properties of the functions that it provides

are discussed.

2Se also [Poznyak, 2008] and [Polyakov and Fridman, 2014]
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F1 Note that given any W (as stated in Theorem 4.1), and a bounded settling time function

T , the convergence of (4.15) is a necessary and sufficient condition for uniform finite time

stability of the origin of (4.1). Thus, if (4.15) does not converge for some W , then the

system’s origin is not uniform finite time stable, and if the system’s origin is uniform finite

time stable then (4.15) does converge for any W (x).

F2 Theorem 4.11 asks for a continuous function W . However, as it will be seen in the examples

below, it is not necessary that W be continuous to obtain a continuous V . Moreover, a

properly chosen discontinuous W is able to provide a differentiable V .

F3 The method is established as a stability analysis tool. However, it can be used as a pro-

cedure to design the parameters of the controller. Suppose that there are some unknown

parameters in the controller, then they can be designed in order to render (4.15) convergent.

F4 Assume the system homogeneous of degree k = −1 with the weights r = [n, n − 1, . . . , 1]>,

if W is chosen homogeneous of some degree m̄ with the same weights, then V will result

homogeneous of degree m = m̄+1. This can be verified easily by using Theorem 2.1. Thus

V (Λr
εx) =

∫ ∞
0

W (φ(t; 0,Λr
εx)) dt =

∫ ∞
0

W
(

Λr
εφ(εkt; 0, x)

)
dt ,

=

∫ ∞
0

εm̄W
(
φ(εkt; 0, x)

)
dt ,

by defining τ = εkt it is obtained that

V (Λr
εx) =

∫ ∞
0

εm̄W (φ(τ ; 0, x)) ε−k dτ = εm̄+1V (x) .

A simple way to choose W as a homogeneous function is to pick a power of some homoge-

neous norm, i.e., W (x) = ||x||pr,q, p > 0 (see Definition 2.2). In this case the homogeneous

degree of W is m̄ = p.

F5 As we have said, a system’s solution φ is a sequence whose elements are functions of τ defined

in an interval [τk, τk+1]. Thus, Tk is the k−th transient time of the solution through some

Ri or some sliding surface Sj . Therefore, the right hand side of (4.15) must be computed

as a sum of integrals along each one of these intervals of time. Note that each Tk is a

function of the initial condition x, i.e., Tk = Tk(x).

F6 In the special case when W is chosen as the discontinuous function

W (x) =

{
1, if x 6= 0

0, if x = 0
(4.16)
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we have from (4.15) that

V (x) =

∫ ∞
0

W (φ(t; 0, x)) dτ =

∫ T

0
dt =

∞∑
k=1

Tk(x) = T (x) ,

So, in this case, we obtain the settling time function of the system trajectories. Thus, V (x)

provides the time required by the trajectory initiating in x to reach the origin.

F7 Although the method was established for systems in nominal form, there are two options to

work with the disturbed case, these alternatives will be explained in Section 4.3.

4.2.3 Example: Lyapunov functions for the Twisting algorithm

In this Section three different LFs for the Twisting algorithm are designed by using the method

described in the last section. The constructions are done emphasizing the main characteristics

of the method.

Consider the Twisting controller given in Example 4.1. Suppose that t0 = 0 and x ∈ Ri are

the initial conditions of (4.5). Thus, for each x ∈ Ri, the solution for (4.5) is given by

φ(t; 0, x) =

[
φ1

φ2

]
=

[
x1 + x2t+ 1

2uit
2

x2 + uit

]
(4.17)

So, if the initial condition x is in R1, then (4.17) becomes

φ(t; 0, x) =

[
x1 + x2t− 1

2kt
2

x2 − kt

]
.

The trajectory goes to the switching surface S2 and reaches it in a point such that x21 =

x2(T1) = 0. It is easy to compute from the solution that the trajectory reaches the point

(x11, x21) =
(
x1 + x2

2/2k, 0
)
, in a time T1 = x2/k. After that, the trajectory goes into the set

R2, there the solution is given by

φ(t;T1, (x11, x21)) =

[
x11 + x21t− 1

2 k̄t
2

x21 − k̄t

]
.

From this solution it is obtained that T2 = (p/k̄)[x2
2 + 2kx1]1/2 is the transient time from S2 to

S1, specifically, from (x11, x21) to (x12, x22) = (0, −p[x2
2 + 2kx1]1/2) where p =

√
k̄/k. After

that the trajectory will enter the set R3 and so forth. The process is continued some additional

iterations to find general expressions for all the transient times and the crossing points of the

trajectories through the switching surfaces.
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Now, according to the method, we have to select a positive definite function W : R2 → R to

design a LF for the closed loop (4.2), (4.3). Let us choose as a first example that function given

in (4.16). Thus, as stated in F6 we have that

V (x) =
∞∑
j=1

Tj(x). (4.18)

If the starting point is such that x ∈ R1, then from (4.18) it is obtained

V (x) =

∞∑
j=1

Tj(x) =
x2

k
+

√
x2

2 + 2kx1

k

∞∑
j=1

(
pj + pj−2

)
,

Note that V (x) exists if and only if
∑∞

j=1

(
pj + pj−2

)
is a geometrical sum. That occurs if and

only if

p < 1 ⇐⇒ k1 > k2 > 0 (4.19)

The same construction is done for the remaining sets Ri. So, by holding the restriction (4.19),

V (x) is expressed as follows

V (x) =



α1x2 + α2

√
x2

2 + 2kx1, x1 > 0, x2 > 0

−α3x2 + α4

√
x2

2 + 2k̄x1, x1 ≥ 0, x2 ≤ 0

−α1x2 + α2

√
x2

2 − 2kx1, x1 < 0, x2 > 0

α3x2 + α4

√
x2

2 − 2k̄x1, x1 ≤ 0, x2 ≥ 0

,

α1 =
1

k
, α2 =

p−1 + p

k(1− p)
, α3 = −1

k̄
, α4 = α1 + α2 − α3.

Note that we have only extended the function to the whole Rn. Observe that because of the

symmetry with respect to the origin this last function can be rewritten as

V (x) =

 α1|x2|+ α2

√
x2

2 + 2k|x1|, x1x2 > 0

α3|x2|+ α4

√
x2

2 + 2k̄|x1|, x1x2 ≤ 0
. (4.20)

This the function obtained in [Sanchez and Moreno, 2012]. Thus, according to F6, (4.20) is the

settling time function for the closed loop (4.2), (4.3). Since (4.16) is homogeneous of degree

m̄ = 0 and the system is homogeneous of degree q = −1, (4.20) is homogeneous of degree m = 1

as stated in F4. Note that (4.20) is not a Lipschitz function for all x in S1. Also it is not

differentiable for all x in S1 ∪ S2.

With the aim to get a function with better smoothness characteristics than (4.20) we can

try increasing the homogeneity degree of W . Thus, let us choose W (x) = |x1| + x2
2, whose

homogeneity degree is m̄ = 2. By applying the design method we get the following LF

V (x)=

 β1|x2|3 + β2x1x2 + β3

[
x2

2 + 2k|x1|
] 3

2 , x1x2 > 0

β4|x2|3 + β5x1x2 + β6

[
x2

2 + 2k̄|x1|
] 3

2 , x1x2 ≤ 0
(4.21)
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0

x2 x1

Figure 4.4: Example plot of (4.20)

0

x1x2

Figure 4.5: Example plot of (4.21)

β1 =
k + 1

3k2
, β2 =

1

k
, β3 =

p−1(k̄ + 1) + p3(k + 1)

3k2(1− p3)
,

β4 = − k̄ + 1

3k̄2
, β5 =

1

k̄
, β6 = β1 + β3 − β4.

This function was presented also in [Sanchez and Moreno, 2012]. It is important to mention

that (4.21) exists if and only if (4.19) holds. Note that this function is a Lipschitz function

everywhere. However, it is not differentiable for all x in S1 ∪ S2, see Figure 4.5.

Now let us give another example by changing a function W . Consider

W (x) =

{
k|x1|+ 1

2x
2
2, x1x2 ≥ 0

k̄|x1|+ 1
2x

2
2, x1x2 < 0

, (4.22)

Note that this function is discontinuous on S1 and is only a little bit different from W (x) =
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x1x2

Figure 4.6: Example plot of (4.23)

|x1|+ x2
2. Thus, by applying the construction procedure it is obtained

V (x) =


β1|x2|3 + x1x2 + β2

[
x2

2 + 2k|x1|
] 3

2 , x1 > 0, x2 > 0

−β3|x2|3 + x1x2 + β4

[
x2

2 + 2k̄|x1|
] 3

2 , x1 ≥ 0, x2 ≤ 0

β1|x2|3 + x1x2 + β5

[
x2

2 + 2k|x1|
] 3

2 , x1 < 0, x2 > 0

−β3|x2|3 + x1x2 + β6

[
x2

2 + 2k̄|x1|
] 3

2 , x1 ≤ 0, x2 ≥ 0

, (4.23)

β1 =
1

2k
, β3 =

1

2k̄
, β2 = r3(β1 + β3) + r6

(
1 + r + r3 + r4

2k(1− r6)
+ β3

)
,

β4 =
β2

r3
, β5 = β4 − β1 − β3, β6 =

β5

r3
.

Function (4.23) is Lipschitz everywhere, moreover it is differentiable except on the set S2, see

Figure 4.6. Note that by selecting a discontinuous function W the method is also useful. Note

that this is quite natural because of the discontinuity of the system. Moreover, observe that the

discontinuity in (4.22) was very helpful to improve the smoothness of (4.23).

These previous results for the Twisting algorithm can be summarized in the following theo-

rem.

Theorem 4.2. Consider (4.2) in closed loop with (4.3). The system’s origin is stable in finite

time if and only if the gains k1 and k2 are selected such that k1 > k2 > 0 holds. Furthermore

a) The function V : R2 → R≥0 given by (4.20) is an homogeneous LF of degree m = 1 for the

system. The convergence time to the origin from the initial condition x(0) can be computed

exactly by V (x(0)). V is not Lipschitz for all x in S1, and it is not differentiable for all x

in S1 ∪ S2.
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b) The function V : R2 → R≥0 given by (4.21) is a homogeneous LF of degree m = 3 for the

system. It is Lipschitz everywhere, but not differentiable for all x in S1 ∪ S2.

c) The function V : R2 → R≥0 given by (4.23) is a homogeneous LF of degree m = 3 for the

system. It is Lipschitz everywhere, but not differentiable for all x in S2.

Up to now we have designed three different LFs for the Twisting algorithm in nominal case.

In the following section we provide the way to deal with the disturbed case.

4.3 Perturbed systems

Up to now only the unperturbed case has been treated, this is because the LF design method

that has been proposed is valid only for systems in nominal form. However in the current section

we are going to show how to deal with the perturbed case. Consider the following dynamical

system

ẋ1 = x2

ẋ2 = x3

...
...

...

ẋn−1 = xn

ẋn = f(t, x) + g(t, x)u(x)

, (4.24)

where x ∈ Rn is the state and u is the control input as described in Section 4.1. We consider

here the class of uncertain functions f(t, x), g(t, x) ∈ R such that |f(t, x)| ≤ F and 0 < Gm ≤
g(t, x) ≤ GM for some known real constants F, Gm and GM for any (t, x) ∈ R≥0 × Rn. As we

have said before, LFs can be used as robustness analysis tools. Thus, the most natural idea to

use them is as follows

• Consider (4.1), that is the nominal form of (4.24).

• Design a LF V for (4.1).

• Take the derivative of V along the trajectories of (4.24).

• Look for the conditions on the controller parameters or on the functions f, g, that guarantee

that V̇ is negative definite.

Note that this procedure does not guarantee, in general, necessary convergence conditions. Even,

the nominal function V could not be a LF for the disturbed system.

The above idea was used in [Sanchez and Moreno, 2012] to deal with the disturbed case.

However for the second order case, as a contribution of this thesis, an alternative to consider
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perturbations is provided. The idea, developed in the next section, is to take advantage of the

disturbance information in the process of designing the LF.

4.3.1 Second order perturbed systems

It is possible to use the disturbance information in the LF designing process. In the particular

case when the system’s order equals two, a perturbation analysis can be performed, it consists in

finding the Majorizing curves [Emel’yanov et al., 1996] of the system’s trajectories. This is, to

find the perturbation that generates the curve that bounds all the possible system’s trajectories

in the phase plane. Then the construction method can be applied by fixing such perturbation.

Thus, the technique is described as follows

• Consider the uncertain system

ẋ1 = x2, ẋ2 = f(t, x) + g(t, x)u(x) , (4.25)

where f, g are as described before.

• Compute the Majorizing curves φ̂(t; 0, x) for (4.25).

• Apply the construction method, using the trajectories φ̂(t; 0, x), to compute a candidate

LF V for (4.25).

• Verify the negative definiteness of the derivative of V along the trajectories of (4.25).

Remark 4.5. This procedure guarantee sufficient convergence conditions. However, since the LF

is designed by considering only one trajectory of the system, it is not obvious that the convergence

conditions are also necessary. Therefore an analysis for the necessity should be done in each case.

In the following section we try the previous procedure for the Twisting algorithm. Fortunately

in this example, the necessary and sufficient conditions, for finite time stability in the disturbed

case, are found.

4.3.2 Example: Disturbed Twisting algorithm

Consider (4.25) in closed loop with the Twisting controller (4.3). Remember that f and g are

uncertain functions such that |f(t, x)| ≤ F and 0 < Gm ≤ g(t, x) ≤ GM for some real constants

F, Gm and GM . Recall that we have defined k = k1 +k2 and k̄ = k1−k2. To find the Majorizing

curves of (4.25) we consider the initial conditions x1(0) = x10 and x2(0) = x20. Now we rewrite

this initial value problem in its integral form

x1 = x10 +

∫ t

0
x2(τ) dτ, x2 = x20 +

∫ t

0
(f(τ, x) + g(τ, x)u) dτ . (4.26)
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For the set R1, taking into account (4.5), we have that from (4.26)

x2 = x20 +

∫ t

0
f(τ, x) dτ − k

∫ t

0
g(τ, x) dτ

≤ x20 +

∫ t

0
F dτ − k

∫ t

0
Gm dτ = x20 − (kGm − F )t (4.27)

Now, let φ̂ : R→ R2 be a parametric curve defined by φ̂(t) =
[
φ̂1(t) , φ̂2(t)

]>
with the property

that
˙̂
φ1 = φ̂2. If in the quadrant R1, it is used (4.27) in order to define φ̂2 = x20 − (kGm − F )t

then we get that

φ̂ =

[
φ̂1

φ̂2

]
=

[
x10 + x20t− 1

2(kGm − F )t2

x20 − (kGm − F )t

]
.

Analogously, for R2 we have that

x2 = x20 +

∫ t

0
f(τ, x) dτ − k̄

∫ t

0
g(τ, x) dτ

≥ x20 +

∫ t

0
(−F ) dτ − k̄

∫ t

0
GM dτ = x20 − (k̄GM + F )t. (4.28)

Again we build φ̂(t) using (4.28). Thus

φ̂ =

[
φ̂1

φ̂2

]
=

[
x10 + x20t− 1

2(k̄GM + F )t2

x20 − (k̄GM + F )t

]
.

Similar analysis can be done for R3 and R4. Hence, defining U = Gmk − F and Ū = GM k̄ + F

it is possible to establish that, for each Ri, φ̂ is given by

φ̂ =

[
x10 + x20t+ 1

2Ut
2

x20 + Ut

]
, U =


−U, x ∈ R1

−Ū , x ∈ R2

U, x ∈ R3

Ū , x ∈ R4

. (4.29)

Note that the structure of (4.29) is the same as that for the Twisting algorithm in nominal form.

Therefore, the Majorizing curves of the closed loop (4.25), (4.3) are given by the solutions of the

system

ẋ1 = x2, ẋ2 = U . (4.30)

In Figure 4.7 it is illustrated an example of a Majorizing curve. Then it is possible to apply our

method in order to design a LF for (4.30). But, we can avoid to do again all the computations

by replacing adequately the parameters of (4.20). Thus if

p =

√
Ū

U
< 1 ⇐⇒ Gmk − F > GM k̄ + F , (4.31)
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x2

x1

Figure 4.7: Trajectories of (4.25); Solid: x(t) nominal; Dashed: φ̂(t)

holds, then

V (x) =

{
α1|x2|+ α2

√
x2

2 + 2U |x1|, x1x2 > 0

α3|x2|+ α4

√
x2

2 + 2Ū |x1|, x1x2 ≤ 0
, (4.32)

α1 =
1

U
, α2 =

p−1 + p

U(1− p)
, α3 = − 1

Ū
, α4 = α1 + α2 − α3 ,

is a LF for (4.30). This function is the same given in [Polyakov and Poznyak, 2012].

Now we consider (4.32) as a candidate LF for the closed loop (4.25), (4.3). By taking the

derivative of the function along the trajectories of the system it is obtained

V̇ ≤

{
−1, x1x2 > 0

−Gmk̄−F
GM k̄+F

, x1x2 < 0
. (4.33)

Thus, V̇ is negative provided that the inequality Gmk̄ > F is fulfilled. In [Sanchez and Moreno,

2014b] and [Sánchez and Moreno, 2016], the proof for the necessity of this restriction is given.

The convergence time estimation made by using (4.32) is computed in the same references. So,

for any initial condition x(0) the convergence time T to the origin is such that

T ≤ V (x(0))/γ , γ =
Gmk̄ − F
GM k̄ + F

. (4.34)

The results obtained before can be summarized in the following theorem.

Theorem 4.3. The origin of the uncertain system (4.25) in closed loop with the Twisting con-

troller (4.3) is stable in finite time if and only if the gains k1 and k2 are selected such that

Gmk − F > GM k̄ + F , Gmk̄ > F . (4.35)

Furthermore (4.32) is a LF for the system and the convergence time from the initial condition

x(0) to the origin can be estimated as in (4.34).
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It is important to mention that the restrictions given in (4.35) are the same given in [Levant,

1993] and [Polyakov and Poznyak, 2012]. An advantage with the LF design method used in the

present thesis is that it is easy to design a function with a higher homogeneous degree, as those

in (4.21) and (4.23).

4.4 Chapter conclusions

It was proposed a systematic method to design LFs for piece-wise constant HOSM algorithms.

The method is useful to find necessary and sufficient conditions to choose controller’s gains

in order to guarantee finite time stability of the system’s origin in nominal case. It was shown

that, when the algorithm is homogeneous, an homogeneous LF can be constructed with arbitrary

degree. Although the proposed method can be applied on systems in nominal form, it was shown

that the method can be extended to the perturbed case.

The examples in this chapter are for the Twisting controller, nonetheless, there are more

examples where this methodology has been used successfully:

• For the Terminal algorithm in [Sanchez and Moreno, 2014b], LFs that allow to determine

the necessary and sufficient conditions that guarantee finite time stability of the system’s

origin were designed.

• In [Sanchez and Moreno, 2012], the settling time function for the third order system in the

Example 4.5 was designed with this method.

• Also the method was used to compute the settling time function for a three signs controller

in [Sanchez and Moreno, 2013]. In such paper the function was useful to determine the

attraction domain of an equilibrium set different from the origin.

It remains, as future developments, a systematic procedure to propose the function W in

order to obtain differentiable LFs, and the way to introduce the information of the disturbance

for systems of order greater than two.
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Chapter 5

Variable reduction method to design

Lyapunov functions

The LF construction method that we explain in this section was introduced in [Lopez-Ramirez

et al., 2014]. The idea of the method is to transform the partial differential equation given by

Procedure 2 into an ordinary differential equation. This is done by taking advantage of the

homogeneity property of the class of homogeneous second order systems. A similar procedure

was given in [Zubov, 1964] for continuous homogeneous (in the classical sense) systems.

5.1 Variable reduction in homogeneous functions

Consider the following second order homogeneous dynamic system

ẋ1 = F1(x1, x2), ẋ2 = F2(x1, x2). (5.1)

The system’s homogeneous degree is k ∈ R with the weights r = [r1, r2]> ∈ R2. The existence of

a homogeneous LFs for homogeneous systems has been proven in [Rosier, 1992] for continuous

and in [Nakamura et al., 2002] for discontinuous ones (see also [Bernuau et al., 2014]). Thus,

suppose that V : R2 → R is a strict homogeneous LF for (5.1) with homogeneity degree m for

the weights r. The derivative of V along the trajectories of (5.1) is

V̇ =
∂V (x)

∂x1
F1(x) +

∂V (x)

∂x2
F2(x) = −W (x), (5.2)

where W : R2 → R is a positive definite homogeneous function of degree m̄ = m + k with the

same weights r. Note that, since V , W and the vector field of (5.1) are homogeneous, they

satisfy for any x ∈ R2 and any ε ∈ R>0 the equations

F1(εr1x1, ε
r2x2) = εk+r1F1(x1, x2), F2(εr1x1, ε

r2x2) = εk+r2F2(x1, x2), (5.3)
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V (εr1x1, ε
r2x2) = εmV (x1, x2), W (εr1x1, ε

r2x2) = εm̄W (x1, x2). (5.4)

Now let us define z = x2|x1|
− r2
r1 and ε = |x1|

− 1
r1 for any x1 6= 0. By substituting these

definitions in F1 from (5.3) we obtain

F1(dx1c0, z) = |x1|
− k+r1

r1 F1(x1, x2) ⇔ F1(x1, x2) = |x1|
k+r1
r1 F1(dx1c0, z). (5.5)

Note that for x1 > 0, F1(dx1c0, z) = F1(1, z), and for x1 < 0, F1(dx1c0, z) = F1(−1, z). Hence,

let us define the functions f+
1 , f

−
1 : R→ R as follows

f+
1 (z) = F1(1, z) , f−1 (z) = F1(−1, z) .

Therefore, from (5.5), F1 can be expressed as follows

F1(x1, x2) = |x1|
k+r1
r1 f+

1 (z) , x1 > 0 ,

F1(x1, x2) = |x1|
k+r1
r1 f−1 (z) , x1 < 0 .

For simplicity we are going to use f±1 to refer to f+
1 and f−1 simultaneously. Thus

F1(x1, x2) = |x1|
k+r1
r1 f±1 (z), ∀x1 6= 0.

The same can be done for the functions F2, V and W , therefore

F1(x1, x2) = |x1|
k+r1
r1 f±1 (z), F2(x1, x2) = |x1|

k+r2
r1 f±2 (z), (5.6)

W (x1, x2) = |x1|
m̄
r1w±(z), V (x1, x2) = |x1|

m
r1 v±(z). (5.7)

Note that (5.6), (5.7) relate functions in variable x with their equivalents in variable z. Thus,

the properties of a function in the variable x ∈ R2 can be determined through the properties of

its equivalent in variable z ∈ R. For example, the positive definiteness of a function V can be

determined through the study of v± as stated in the theorem below.

Theorem 5.1. Let V : R2 → R be a homogeneous function of degree m with the weights r =

[r1, r2]>, and let v± be as in (5.7). V is positive definite if and only if v± is such that

A1. v±(0) 6= 0 and v±(z) > 0,∀z 6= 0.

A2. The limits

lim
z→∞

v±(z)

|z|
m
r2

, lim
z→−∞

v±(z)

|z|
m
r2

,

exist and are constant.
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The last condition in the theorem means that the growth order of v±(z) and |z|
m
r2 is the same.

These conditions are the same for w±(z) but considering its homogeneous degree m̄ instead of

m. Now, since we have assumed that V is a strict LF for (5.1), then, in (5.2), functions V and

W must be positive definite. This is equivalent that, in the variable z, the functions v± and w±

satisfy the conditions A1 and A2 in Theorem 5.1.

5.2 Lyapunov function design method

In this section we exploit the variable reduction developed in the last section to provide a pro-

cedure to design LFs for a homogeneous system like (5.1).

By substituting (5.6) and (5.7) in (5.2), the following linear ordinary differential equation is

obtained
dv±(z)

dz
+ a(z)v±(z) = b(z), (5.8)

a(z) = ± mf±1 (z)

r1f
±
2 (z)∓ r2zf

±
1 (z)

, b(z) = − r1w(z)

r1f
±
2 (z)∓ r2zf

±
1 (z)

.

Observe that (5.8) indeed represents two different equations, one for v+ and another for v−. For

example
dv+(z)

dz
+ a(z)v+(z) = b(z),

a(z) =
mf+

1 (z)

r1f
+
2 (z)− r2zf

+
1 (z)

, b(z) = − r1w(z)

r1f
+
2 (z)− r2zf

+
1 (z)

.

The solutions for (5.8) are given by

v±(z) = e−A(z)
[
B(z) + c±

]
, (5.9)

where c± is an integration constant and the functions A, B are given by

A(z) =

∫
a(z) dz, B(z) =

∫
eA(z)b(z) dz.

So, with the aim to come back to the domain in the variable x, from (5.7) we have

V (x1, x2) =

|x1|
m
r1 v+

(
x2|x1|

− r2
r1

)
, x1 > 0

|x1|
m
r1 v−

(
x2|x1|

− r2
r1

)
, x1 < 0

. (5.10)

Therefore, the above analysis has given us a procedure to compute a LF V for (5.1), this method

can described as follows:

S1. Given a system like (5.1), obtain the functions f±1 , f
±
2 , as stated in (5.6), by means of the

change of variable z = x2|x1|
− r2
r1 .
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S2. Choose a function w± that satisfy A1 and A2.

S3. Compute v± as in (5.9).

S4. If v± satisfies A1 and A2 then (5.10) is a LF for (5.1).

Observe that (5.10) is not defined for the set x1 = 0. However it is possible to extend it by

a process of limit. Moreover, the integration constant c± can be used to shape the functions v+

and v− such that V is continuous on the set {x1 = 0}.

5.3 Example: Terminal algorithm

Consider the Terminal algorithm given by the second order system

ẋ1 = x2, ẋ2 = −αdσc0, σ = x2 + βdx1c
1
2 , 0 < α, β ∈ R. (5.11)

This system is homogeneous of degree k = −1 with the weights (r1, r2) = (2, 1). Thus, from the

description in (5.1), F1(x) = x2 and F2(x) = −αdx2 + βdx1c
1
2 c0. Observe that

F2(x) =

−α, σ > 0

α, σ < 0
. (5.12)

With the aim to make the example clearer, we are going to consider only the case σ > 0. Now,

by applying the change of variable z = x2|x1|−
1
2 , it is easy to see from (5.6) that

f±1 (z) = z, f±2 (z) = −α. (5.13)

Note that f+
1 = f−1 and f+

2 = f−2 . Let us choose w±(z) = 1, this function satisfies A1 and A2

with m̄ = 0, and, since the homogeneous degree of (5.11) is k = −1, therefore m = 1. In order

to obtain v± from (5.9), we have to compute the integrals

A(z) =

∫
a(z) dz, B(z) =

∫
eA(z)b(z) dz,

a(z) = ± z

−2α∓ z2
and b(z) = − 2

−2α∓ z2
.

Thus A(z) = ln
(

1√
z2±2α

)
and B(z) = z

α
√
z2±2α

. Therefore

v±(z) = e−A(z)
[
B(z) + c±1

]
=
z

α
+ c±1

√
z2 ± 2α. (5.14)

Since the growth of v± is proportional to z, it is clear that v± satisfies A2. Now, by considering

β2 > 2α, it can be proved that v± satisfies A1 if c±1 > β/(α
√
β2 + 2α). So, in variable x we have

from (5.10) that

V (x) = |x1|
1
2 v±

(
x2|x1|−

1
2

)
=
x2

α
+ c±1

√
x2

2 ± 2α|x1| =
x2

α
+ c±1

√
x2

2 + 2αx1 .
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Note that the continuity of V on {x1 = 0} can be achieved with c+
1 = c−1 = c1. Thus for the set

{σ > 0}
V (x) =

x2

α
+ c1

√
x2

2 + 2αx1 .

An important observation is that the restriction β2 > 2α produces a behavior, of the system’s

trajectories, known as “Twisting mode”. This means that σ = 0 is only a switching surface,

therefore there is not a first order sliding mode on such a surface. This kind of behaviour can be

seen in right graphic of Figure 4.2.

Now, for the case σ < 0, an analogous process of designing v± yields, in variable x, the

following function

V (x) = −x2

α
+ c2

√
x2

2 − 2αx1 .

To make V be continuous and defined for the set {σ = 0}, it is necessary and sufficient to chose

c1 = c2 = c, with

c =
2β

α
(√

β2 + 2α−
√
β2 − 2α

) .

Therefore, we have designed the following continuous LF for (5.11):

V (x) =


1
αx2 + c

√
x2

2 + 2αx1, σ ≥ 0

− 1
αx2 + c

√
x2

2 − 2αx1, σ < 0
.

This function coincides with that designed in Polyakov and Poznyak [2012], but here only for the

nominal case. It is important to mention that for this example V̇ = −W (x) where the function

W : R2 → R is such that W (x) = 1, ∀x 6= 0 and W (x) = 0, x = 0. An example plot for V (x) is

shown in Figure 5.1.

x2

x1

Figure 5.1: Example plot of the LF for the Terminal algorithm.
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5.4 Chapter conclusions

In this chapter we have given a method to design LFs for homogeneous second order systems.

One very interesting feature of the method is that all the homogeneous LFs for a homogeneous

system are parametrized by the function W (or w in reduced variable). Although the idea

of reducing the number of variables can be extended to higher orders, the method in not so

appealing in that case. This is because in a system of order n the number of reduced variables is

n− 1. So, it is not possible in general to obtain a system of linear ordinary differential equations

like those in (5.8).

70



Chapter 6

Conclusions

In this thesis, three different methods to design LFs for three classes of homogeneous systems has

been described. Such sets of systems are different, in general, although there exists a non-empty

intersection of them. The proposed methods to design LFs are constructive and, in many cases,

very easy to apply. The three methods allow to choose the homogeneity degree of the LF. Also

they are useful for analysis (when the system’s parameters are given) and for design (when the

system’s parameters are unknown).

6.1 Comparison of methods

In Table 6.1, some of the main features of the LF designing methods, are shown.

6.2 Future work

• Generalized forms method:

1. To simplify the problem of solving a bilinear system of inequalities resulting from the

Pólya’s procedure.

2. To extend the procedure to general polynomial systems.

3. To study the introduction of optimization criteria in the designing of LFs.

• Integration method:

1. To stablish the criteria to obtain differentiable LFs.

2. Consideration of the disturbances in the design of LFs for systems of order greater

than two.

71



• Variable reduction method:

1. Concise study of the discontinuous case.

2. To stablish a procedure to choose the function W .
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Method Integration Variable reduction Generalized forms

Class of

systems
Piece-wise affine Homogeneous Generalized forms

Order Arbitrary Second Arbitrary

A
d

v
a
n

ta
g
e
s

•Necessary and

sufficient conditions are

obtained in nominal

case.

• It can be extended to

second order disturbed

systems.

•The existence of the

function is guaranteed.

•All the homogeneous

Lyapunov functions are

parametrized by the

function W .

•The existence of the

function is guaranteed.

•Flexibility to analyze

positive definiteness

(software available).

•Smooth LFs.

•Easy to follow.

D
is

a
d

v
a
n

ta
g
e
s

•Computing system’s

solutions for orders

greater than three can

be very complicated.

•The extension for

disturbed three order

systems is not clear.

•The expression for the

Lyapunov function is

integral.

•The existence of the

function in the class is

not guaranteed.

•Complexity in

computation for high

order systems.

Table 6.1: Comparison of methods.
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Appendix A

Definitions and proofs

A.1 Some definitions

For the definitions given here see for example [Filippov, 1988], [Clarke et al., 1998a], [Polyakov

and Fridman, 2014] and [Bernuau et al., 2014]. The sign function can be defined as follows

sign(x) =


1, x > 0

−1, x < 0

a, x = 0

, (A.1)

for some a in [−1, 1] ⊂ R. It also can be defined as the following set valued function

sign(x) =


1, x > 0

−1, x < 0

[−1, 1] , x = 0

. (A.2)

Definition A.1. Let S1, S2 be two subsets of Rn, the distance δ from x ∈ Rn to S1 is defined as

δ(x, S1) = inf
y∈S1

||x− y|| ,

and the distance from S1 to S2 is

δ(S1, S2) = sup
x∈S1

δ(x, S2) .

Definition A.2. A set-valued function F , F (x) ∈ Rn, x ∈ Rn, is said to be upper semi-

continuous at y ∈ R if x→ y implies δ(F (y), F (x))→ 0.

Definition A.3. Let V : Rn → R≥0 be a locally Lipschitz continuous function. For any x ∈ Rn

the upper directional derivative DV (x) of is defined as

DV (x)v = lim
y→x
t→0+

V (y + tv)− V (y)

t
, v ∈ Rn ,

where lim is the upper limit.
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A.2 Proof of Theorem 3.2

Proof. In order to be clear, the proof is given for a very simple GF, indeed it consist of only a

generalized monomial but it is valid for the general case. For x ∈ Rn, let the GFs f, g be as in

the Theorem and given by

f(x) =

n∏
i=1

dxicpi ,
n∑
i=1

ripi = m1 ,

g(x) =
n∏
i=1

dxicqi ,
n∑
i=1

riqi = m2 .

The product fg is

fg(x) =

n∏
i=1

dxicpidxicqi =

n∏
i=1

dxicpi+qi ,

thus, its homogeneous degree can be computed as follows

n∑
i=1

ri(pi + qi) =

n∑
i=1

ripi +

n∑
i=1

riqi = m1 +m2 .

Now, the partial derivatives of f are given by

∂

∂xk

n∏
i=1

dxicpi =

 n∏
i=1
i6=k

dxicpi

 pk|xk|pk−1 ,

and its homogeneous degree is

n∑
i=1
i6=k

ripi + rk(pk − 1) =
n∑
i=1

ripi − rk = m1 − rk .

A.3 Proof of Lemma 3.1

Consider the general expression of a GF given in (3.11). Since all the non-zero exponents of f

are commensurable, for any ρi,j , ρk,l 6= 0, ρi,j/ρk,l = ρ̄ijkl ∈ Q>0. Thus, any ρi,j can be written

as ρi,j = pi,jι
′, pi,j ∈ Q>0, ι′ ∈ R>0. Denote (f ◦ φ)(z) = f(z), note that the exponents in

f(y) are given by ci
ι ρi,j , by choosing ι = ι′, such exponents are given by cipi,j ∈ Q>0. Now, by

homogeneity of f , for any j,
∑n

i=1 riρi,j = m. Hence, for any pair (a, b), a, b ∈ {1, 2, 3, . . . , N},
the following holds

n∑
i=1

riρi,a =

n∑
i=1

riρi,b ⇔
n∑
i=1

ri(ρi,a − ρi,b) = 0 . (A.3)
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Comparing by pairs all the terms in f , M =
(
N
2

)
equations like (A.3) will result. Denote

Ds = [ρ1,a − ρ1,b, ρ2,a − ρ2,b, · · · , ρn,a − ρn,b], s = 1, 2, 3, . . . ,M . Thus, all the equations like

that in (A.3) can be written in vector form as follows
D1

...

DM

 r =


0
...

0

 . (A.4)

For any ci ∈ Q>0 there exists r̄i ∈ Q>0 such that ri = cir̄i. Thus, from (A.4)
0
...

0

 =


D1

...

DM

 r =


D1

...

DM



c1r̄1

...

cnr̄n

 =
1

ι


D1

...

DM



c1r̄1

...

cnr̄n

 .
Hence, 0 = 1

ι

∑n
i=1 r̄ici(ρi,a−ρi,b) =

∑n
i=1 r̄i

ci
ι (ρi,a−ρi,b). Since the exponents in f ◦φ are ci

ι ρi,j ,

f ◦ φ is homogeneous with the weights r̄i. Now, suppose that for some j in f , ρi,j = 0 for all i

except for i = a, for some a ∈ {1, 2, . . . , n}. Hence, a necessary condition for homogeneity of f

is raρa,j = m, hence,

m = car̄aρa,j =
ι

ι
car̄aρa,j = ιr̄apa,j ⇔ r̄apa,j =

m

ι
.

Therefore, f ◦ φ is homogeneous of degree m̄ = m/ι.

A.4 Asociated forms of a generalized form

Note that, in general, a GF f : Rn → R is discontinuous on the coordinate hyperplanes {x ∈
Rn : xi = 0}, i = 1, . . . , 2n. Such discontinuities are produced by the functions dxic0 = sign(xi).

Thus the value of f(x) on such sets is determined by the definition of the sign function. The

associated forms fγ : P → R are continuous and represent exactly to the GF f in the open

hyperoctants Dγ and in the origin {0}. However, if the domain P is extended to P̄ considering

the definition of the sign function for the GF f , then the forms fγ : P̄ → R will be, in general,

discontinuous on the set P0 = P̄ \ P. To avoid having discontinuous associated forms there are

two alternatives described below.

• The first one is simply to define the forms fδ = f ◦ dδ, where dδ : P0 → Dδ is given by

dδ(y) = [σ1y
µ1
1 , . . . , σny

µn
n ]> with µi as in (3.14). The sets Dδ are given by any of the non

empty sets (D̄a ∩ D̄b) 6= {0} for any a 6= b, a, b ∈ {1, . . . , 2n}.

• The second one is to extend the domain of the forms fγ : P → R to P̄ but preserving in

D̄γ \ Dγ the value of σi in Dγ . Although this definition of fγ : P̄ → R is such that the

forms fγ do not represent exactly the GF f , it is suitable for the purposes of this thesis.
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Appendix B

Forms and linear inequalities

B.1 Some aspects of forms

In the classical sense, a function F : Rn → R is called form of degree q ∈ N if it is a homogeneous

polynomial function, i. e., every monomial in the function has total degree q. Thus, any form F

in the variables (indeterminates) z1, . . . , zn ∈ R can be written as

F (z) =
∑

q1+···+qn=q

αq1···qn

n∏
i=1

zqii , αq1···qn ∈ R . (B.1)

Given m,n ∈ N, Define the ordered set Γ = {α1, . . . , αk}, αi ∈ {α ∈ Nn :
∑n

i=1 αi = m/2}.
For x ∈ Rn, we denote xα

i
=
∏n
i=1 x

αi
i . Finally define y = (xα

1
, . . . , xα

k
)T .

Note that the number of all the possible monomials in a form of degree q is determined by all

the possible distinct ordered n-tuples (q1, q2, . . . , qn) such that
∑n

i=1 qi = q, qi ∈ N. Therefore:

Lemma B.1. The number of all possible monomials in a form F : Rn → R of degree q is given

by:

N q
n =

(
n+ q − 1

q

)
=

(
q + n− 1

n− 1

)
=

(q + n− 1)!

q!(n− 1)!
.

From the above Lemma it is easy to see that in a form F : Rn → R of degree q there exist at

most N q
n coefficients αq1···qn . Thus, by defining the vectors

qj = (qj1, q
j
2, . . . , q

j
n), j = 1, 2, . . . , N q

n,

and the scalar αj = α
qj1···q

j
n
, the form (B.1) can be rewritten as:

F (z) =

Nq
n∑

j=1

αj

n∏
i=1

z
qji
i .
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Now, let F : Rn → R be a form of degree q. Then, from Lemma B.1, the form Gp : Rn → R
given by Gp(z) = (z1 + · · ·+ zn)pF (z) consist of Np+q

n different monomyals, and therefore it can

be written as follows:

Gp(z) =

Np+q
n∑
k=1

a(sk)

n∏
i=1

z
ski
i , (B.2)

where the components of the vectors sk = (sk1, . . . , s
k
n) non-negative integers such that sk1 + · · ·+

skn = p+ q. Recall that every sk is different from each other. The coefficients function a is given

by:

a(sk) =
∑

{qj | qj≤sk}

p!

(sk1 − q
j
1)! · · · (skn − q

j
n)!
αj ,

where qj ≤ sk means qji ≤ ski for every i ∈ {1, 2, . . . , n}. Observe that given a form F , the

form Gp in (B.2) is that from the statement of Pólya’s theorem, thus, to satisfy such a theorem,

it is required that a(sk) > 0 for every k = 1, 2, . . . , Np+q
n . This last condition produces an

homogeneous linear system of inequalities for the variables αj . Such a system can be written in

the matrix form Aα > 0, where α = (α1, . . . , αNq
n
) and A is a matrix of the size Np+q

n ×N q
n, and

it is given by:

A = [Ak,j ], Ak,j =


p!

(sk1−q
j
1)!···(skn−q

j
n)!
, qj ≤ sk

0, qj > sk
.

Remark B.1. When it is obtained a polynomial representation {Fi(z)} of a GF F (x), any pair

of polynomials (Fi(z), Fj(z)) differ only in the signs of their coefficients. Thus, the matrix Aj

for Fj(z) can be computed from the matrix Ai for Fi(z) with the equation Aj = ∆i,jAi where ∆i,j

is a diagonal matrix whose elements are only the changes of signs in the polynomials.

B.2 Linear inequalities

This is a very brief summary about convex cones and linear inequalities, all the results given

here are classical. The reader can see [Fukuda and Prodon, 1996] and the references therein or

alternatively the web page [Fukuda, 2004] and the references therein.

Consider a system of m linear inequalities in d variables described as

Ax ≥ 0, x ∈ Rd, A ∈ Rm×d. (B.3)

The set of solutions of this system is the convex cone

C = {x ∈ Rd : Ax ≥ 0} .

78



According to the Minkowski-Weyl’s theorem, there exist a finite set of vectors {b1, b2, . . . , bq},
bi ∈ Rd such that

C = {x = Bγ : 0 ≤ γ ∈ Rq} ,

where B = [b1 b2 · · · bq]. Note that the representation of a cone C given by Ax ≥ 0 can be

understood as the specification of its faces while that given by x = Bγ can be understood as the

specification of its edges.

Thus, the whole set of solutions of (B.3) can be completely characterized by finding the

matrix B. There exist methods to find matrix B given a matrix A, for example The Fourier–

Motzkin elimination, The double description and The reverse search methods. Fortunately such

methods have been implemented as software. In this thesis we use [Zolotykh, 2012] that is an

implementation of the double description method.

Now consider the problem Ax > 0. The above results cannot be used directly. However,

it can be considered the problem Ax ≥ ε1 instead of Ax > 0, where 1 is a vector of ones and

ε ∈ R>0. Thus

Ax ≥ ε ⇔ Āx̄ ≥ 0 , Ā = [ε1 A] , x̄ =

[
x0

x

]
, x0 = 1 .
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C. N. Delzell. Impossibility of extending Pólya’s theorem to “forms” with arbitrary real expo-

nents. Journal of Pure and Applied Algebra, 212:2612–2622, 2008.

S. V. Emel’yanov, S. K. Korvin, and A. Levant. High–Order Sliding Modes in Control Systems.

Computational Mathematics and Modeling, 7(3):294–318, 1996.

A. F. Filippov. Differential equations with discontinuous right–hand side. Kluwer. Dordrecht,

The Netherlands, 1988.

R. A. Freeman and P. V. Kokotovic. Robust Nonlinear control Design: State space and Lyapunov

Techniques. Modern Birkhauser Classics, Boston, 1996.

81



K. Fukuda. Frequently Asked Questions in Polyhedral Computation, June 2004. Available in:

http://www.ifor.math.ethz.ch/∼fukuda/polyfaq/polyfaq.html.

K. Fukuda and A. Prodon. Double description method revisited. In Michel Deza, Reinhardt

Euler, and Ioannis Manoussakis, editors, Combinatorics and Computer Science, volume 1120

of Lecture Notes in Computer Science, pages 91–111. Springer Berlin Heidelberg, 1996.

P. Giesl. Construction of Global Lyapunov Functions Using Radial Basis Functions. Springer-

Verlag, Berlin Heidelberg, 2007.

W. Hahn. Stability of Motion. Springer Berlin Heidelberg, 1967.

V. T. Haimo. Finite time controllers. SIAM Journal on Control and Optimization, 24(4):760–770,

1986.
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P. Kokotović and M. Arcak. Constructive nonlinear control: a historical perspective. Automatica,

37(5):637–662, 2001. ISSN 0005–1098.

N. N. Krasovskii. Problems of the Theory of Stability of Motion. Stanford Univ. Press, Stanford,

CA, 1963.

S. Lang. Algebra. Springer–Verlag, New York, 3rd edition, 2002.

A. Levant. Sliding order and sliding accuracy in Sliding Mode Control. International Journal of

Control, 58(6):1247–1263, 1993.

A. Levant. Robust Exact Differentiation via Sliding Mode technique. Automatica, 34(3):379–384,

1998.

A. Levant. Universal SISO Sliding-Mode Controllers with Finite–Time convergence. IEEE Trans-

actions on Automatic Control, 46(9), September 2001.

A. Levant. Homogeneity approach to High–Order Sliding Mode design. Automatica, 41:823–830,

2005.

A. Levant. Principles of 2–Sliding Mmode design. Automatica, 43(4):576–586, April 2007.

D. Liberzon. Switching in systems and control. Birkhäuser, Boston, MA, June 2003.
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