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Abstract

The purpose of this work is to contribute to the research and development of the domestic
design and manufacturing of horizontal wind turbine blades. The analysis consists on the
description of the flow around two dimensional airfoils which in turn represents equally
spaced sections along a hypothetical 3D blade, while keeping an optimum angle of attack.
The study for each section was done by solving mass and momentum conservation equations
by means of a finite volume method over a Cartesian domain. The study was conducted
using a structured grid, with velocity central difference approximation and an implicit time
integration scheme. The pressure coupling method used was SIMPLE-Consistent algorithm.
The scope of the study is limited to a compressible laminar flow using low Reynolds numbers
and validation scenarios that include the simulation of flow over circular and square shapes
with mesh independence analysis and comparison with XFOIL pane-based results.

The blade sectioning method propose starting by computing a twist along the blade span,
an optimal angle of attack computation, besides a domain size and parameter selection. A
result monitor was developed in order to gauge main outputs of interest such as pressure and
tangent velocities on surface as in the whole field. The results obtained show consistency
and certain level of confidence, and they vary depending upon section location along the
hypothetical blade, which meant to set a variation on apparent input velocity as well as
on surface extension of each section. Blade section method gives a good approximation of
results in practice and may be improved –though not considering 3D effects– and compare
results to experimental data. As a final recommendation this code is not completely accurate
or reliable to design or manufacture a wind turbine blade; instead, consider the methodolgy
as a base work or starting point that may be used for pedagogical purposes.

viii



Chapter 1

Introduction to wind turbine blade
theory and literature review.

1.1 Fundamental concepts.

Among the various renewable energy sources, wind energy is one of the most promising and
the fastest growing alternative energy technologies. Wind turbine design is an optimization
problem where the solution should be found under a set of design constraint and specific
targets [12]. However, many authors have proposed different objectives, methods of resolution,
constraints, algorithms, tools and models in their quest to optimize the performance of wind
turbines. In the past, some authors have reviewed the optimization algorithms, energy
policies, economics, and environmental impacts of wind turbines but numerous researchers
have proposed different optimization methodologies as well as resolution strategies. In the
present chapter we will briefly review some of the most important concepts and ideas.

1.1.1 Introduction to wind energy production.

In this section, a brief summary of the fundamental concepts used in wind energy utilization
is given. For comprehensive and authoritative reviews on the subject the reader is referred
to Burton et al. [12], consider the kinetic energy E of air in motion contained in a volume V
moving with velocity vw as shown in figure 1.1, the available power per unit volume is then:

P =
E

t
=

1

2
A%vw

3 (1.1)

where vw the free wind speed. The previous expression indicates that the power density, i.e.
the power per unit of normal area A to the wind direction from which the wind is blowing,
can be defined as P ′ = 1

2
%1 · vw3. Given that the power is proportional to the cube of the

wind velocity, a small change in wind speed will have huge effect on power production.

1
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1.1.2 Maximum theoretical efficiency.

The primary component of a wind turbine is the rotor (energy converter) which transforms
the kinetic energy contained in the moving air into mechanical energy. The mechanical energy
will be transformed into electrical energy by other means involving electrical generators
specifically designed for this application. This last step of energy transformation is out of
the scope of this work. The ultimate goal of a wind turbine is to continuously convert all
the kinetic energy of the wind into mechanical energy of the blades but unfortunately, mass
conservation prevents this possibility. Consequently, there must be an optimum reduction
of the wind speed, to extract the maximum amount of energy.

Figure 1.2 depicts the situation, where streamlines, speed and pressure are shown as functions
of position. The subscript 1 represents the far upstream rotor plane. Notice that v1 = vw.
Subscript 3 indicates a position far downstream, and subscript 2 indicates the rotor plane
position. The elementary momentum method establishes that the flow velocity past the
position of the wind generator where energy is extracted, is reduced, from v1 to v3, while
the cross sectional area is widening from A1 to A3 because of the mass flow balance. The
pressure p1 experiences an increase near the upstream side of the rotor to reach a maximum
p+. Then the pressure features a sudden drop ∆p for a minimum p−. Far downstream the
pressure rises to p3 = p1.

Figure 1.1. Sketch of the ki-
netic energy density E = %v2

2
con-

tained in the volume V = Avt.

Figure 1.2. An Energy Extracting Actuator
Disc and Stream-tube, and the effect over veloc-
ity and pressure.

The mass flow rate is the same everywhere along the stream-tube. Using the notation of
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figure 1.2, the mass conservation reads as follows:

%A1v1 = %A2v2 = %A3v3.

The change in momentum of the wind at the position of the wind turbine can be obtained
by applying Bernoulli’s equation from the upstream position to the front of the wing turbine
and from the back of the wind turbine to the downstream position. In symbols, as seen in
the following equations:

p+
2 − p1 = 1

2
%(v2

1 − v2
2) and p−2 − p3 = 1

2
%(v2

3 − v2
2).

Assuming that the ambient atmospheric pressure is the same far away from the turbine,
p1 = p3 = p∞. Subtracting the two previous expressions, we get:

p+
2 − p−2 = 1

2
%(v2

1 − v2
3).

Using this expression, the force on the wind generator can be calculated,

F = (p+
2 − p−2 )A2 = 1

2
%A2(v2

1 − v2
3). (1.2)

The air passing through the rotor plane undergoes a change in velocity ∆v = v1 − v3, then
the force can be calculated as:

F = ṁ∆v = %A2v2(v1 − v3) (1.3)

From equations (1.2) and (1.3), we get:

v2 =
v1 + v3

2
. (1.4)

We proceed to calculate the power extracted from the wind. The power is defined as P =
F v2, thus, using equation (1.2) for the force, the power is:

P = 1
2
%A2v2(v2

1 − v2
3).

Considering the conservation of momentum, the mechanical power output at the rotor can
be deduced. The velocity v2 can be eliminated from the previous equation with expression
(1.4), and recalling v1 and v3 are the upward and downward velocities:

Pm = 1
4
%A2(v1 + v3)(v2

1 − v2
3)
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where Pm is the mechanical power output, which is equal to the power of the rotor P .
Arranging the terms, this expression can be specified directly as a function of the velocity
ratio in terms of v3/v1:

Pm = 1
4
%A2

(
1 +

v3

v1

)(
1−

(
v3

v1

)2
)
v3

1.

It is convenient, to scale the power with the available wind power contained in the wind
defined by P0 = %A2v

3
1, i.e. the power of the undisturbed free-air stream which flows through

the cross sectional area A2 . The scaled power, also called power coefficient, denoted by CP
is,

CP =
Pm
P0

=
1

2

(
1 +

v3

v1

)(
1−

(
v3

v1

)2
)

(1.5)

Pm/P0, is defined as the ratio of power extracted over the power available.

The result of equation 1.5 can be expressed in terms of axial flow induction factor a =
(v1 − v2)/v1. This variable represents the normalized velocity reduction as the wind meets
the turbine. Note that the net stream-wise velocity at the rotor plane may be expressed as
v2 = v1(1− a), so according to 1.4,

v2

v1

= (1− a) and,
v3

v1

= 1− 2a (1.6)

Then, from 1.5, the power coefficient is:

CP = 4a(1− a)2

The maximum CP may be obtained by taking

dCP
da

= 4(1− a)3(1− 3a) = 0

from where a = v3/v1 = 1/3, thus substituting in 1.5:

Cmax
P = 16

27
= 0.593

The Betz theory assumes a constant linear velocity, but in practice, any rotational forces
such as wake rotation, turbulence caused by drag or vortex shedding (tip losses) will further
reduce the maximum efficiency. Efficiency losses are generally reduced by (1) avoiding low
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tip speed ratios, (2) specialized tip geometries, (3) selecting aerofoils which have a high lift
to drag ratio and others. The last of which will be analysed further on in this study.

Rotor designs also undergo an accumulation of minor losses resulting from blade shape
simplification (simplified blades means reduced manufacturing cost). Lastly, total wind
turbine power delivery will suffer losses due to many causes beyond the rotor, such as drive
train and generator efficiency losses, and losses at the distribution grid.

The power actually captured by the wind turbine rotor, PR, is a fraction of the available
power P , defined by the rotor coefficient of performance, CPR, which is essentially a type
of power conversion efficiency CPR = PR/P . In other words, PR = CPR

%
2
v3
wA. The aero-

dynamic rotor theory yields the interrelation between the geometrical shape of a real rotor
configuration and its power characteristics. Power coefficient curves must be calculated for
different pitch angles at certain r/R locations along the tip speed ratio variation [21].

1.2 Basic HAWT blade dynamic considerations.

The selected blade element for this work analysis corresponds to a typical Horizontal Axis
Wind Turbine or HAWT configuration. Even though there are other power production
devices such as VAWT (Vertical Axis Wind Turbine), which doesn’t require to be aligned in
regards to the wind’s direction, the superiority of HAWT for large power production is well
documented. The qualities of HAWT is mainly based on the following characteristics [21]:

(1) In propeller designs, rotor speed and power output can be controlled by pitching the
rotor blades about their longitudinal axis, also useful as protection against over-speed and
extreme wind (gusts), (2) the rotor blade shape can be aerodynamically optimised and it
has been proven that it will achieve its highest efficiency when aerodynamic lift is maximum,
and (3) the technological lead in the development of propeller design is a decisive factor.

1.2.1 Tip speed ratio.

The tip-speed ratio (λ), is a parameter used to describe the performance of the entire wind
turbine, the influence of which extends far beyond rotor aerodynamics and is defined by
aspects such as efficiency, torque, mechanical stress, aerodynamics and noise. These aspects
should be considered in selecting the appropriate λ (see table 1.1).

λ =
tangential velocity of the rotor blade tip

free wind speed
=
utip
vw

=
ωR

vw
(1.7)

where ω is the angular speed and R is the radius of the wind turbine. Higher values of λ
do not necessarily mean a higher CPR. Wind turbines must be designed with optimal λ
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to extract as much power out of the wind as possible. Common design values are 5-8 for
3-bladed rotors and 9-10 for 2-bladed rotors [21].

Table 1.1. Tip speed ratio design considerations [38].

TSR(λ) Low(1− 2) High(> 10)

Torque (T (r)) High Low
Efficiency (CP ) Decrease below 5(wake) Insignificant increase after 8
Aerodynamic Stress Decreases Increases(linearly with ω)
Solidity Increases(multiple blades) Decreases significantly
Blade profile Large Significantly narrow
Aerodynamics Simple Critical
Noise Increases to 106 order

In table 1.1 several variables are cited, such as torque T (r)(power P transmitted by a shaft
at ω tangential velocity), efficiency CP (converted energy from the wind), aerodynamic
stress (stress over the blade coming from aerodynamic loads), solidity (total blade planform
area/rotor swept area), blade profile (airfoil size), aerodynamics (airfoil shape), noise (sound
pressure level). Some of these concepts will be explained. Each blade element, a division
of the blade into a number of independent sections along its span, will have a variable of
incident velocity, i.e., the relative wind velocity, also known as apparent wind velocity.

1.2.2 Wind velocity components.

The axial freestream velocity ~Vw and the tangential speed ~U(r) at the radius of the corre-

sponding blade cross-section are combined to form a resultant flow velocity ~W , and accord-
ing to the velocity components on figure 1.3, may be expressed as the vectorial difference,
~W = ~Vw − ~U(r).

The airfoil cross-section at radius r is set at a local blade pitch angle β with respect to the
rotor plane of rotation. Together with airfoil chord line, it forms the local aerodynamic angle
of attack α. In aerodynamics, the angle of attack α is an aerodynamic parameter and the
blade pitch angle β is a design parameter [21].

Where,
r =radius,
~W =relative (apparent) velocity,
~U(r) =local blade velocity at r,
~Vw =wind velocity,

RT =total reaction over aerofoil,
α =angle of attack (AOA),
γ =angle of relative wind to rotor axis
or incidence angle,
ϕ =angle of relative wind to rotor plane,
β =pitch angle of the blade (control).
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Figure 1.3. Wind velocity components at a blade element.

A simple example will provide us with information that will be useful to discuss the results
of chapter 4. For simulation purposes, we shall consider W = 1.0 [ms−1], and a chord= 1.0
[m], both at the tip. We will also choose λ = 5 as a good practice design parameter for 3
blades.

(1) Consider that ideally we want to reduce free wind velocity to V = 2
3
Vw at the rotor plane

stage. Then upstream velocity, according to figure 1.3, should be Vw = V1 = WR/
√
λ2 + 4

9
.

For the present example V1 = 0.1982 [ms−1]. According to equation 1.7, we can estimate
u1 = λV1 = 0.991 [ms−1]; thus ω = 0.0991( 1

2π
), in [rev · s−1], if R = 10; i.e. 10 times the

chord.

(2) We easily may obtain the following geometrical parameters for any r location [19]:

γr = arctan
3λ

2R
r

ϕr = arctan
2R

3λ

1

r

βr = arctan ϕr − αD

i.e., for any variation on α, the pitch control angle will vary βr = 90◦ − (α + γr). For the
example, at r = R: γr = 82.4◦, ϕr = 7.6◦ and βr = −7.4◦. We may conclude that the blade
should twist its incidence and rotation plane along the length.
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1.2.3 Twist along the blade’s span.

The twist angle is defined as the angle between the local airfoil chord and 70% of the rotor
radius or that at the blade tip (see figure 1.4). In order to achieve the optimum reduction
in flow velocity over the entire length, the blades have to be twisted along it, considering
effective (which is the relative or apparent component) flow velocity changes from the root
to the tip. The closer to the tip of the blade, the faster the blade is moving through the air,
then the greater the apparent wind angle is. Typically, the twist along blade’s length goes
from 10− 20◦ from root to tip. Near the root structural requirements are the preference and
thereafter low effective aerodynamic take out is expected.

Figure 1.4. Twist along blade’s length.

1.3 2-D aerodynamics of wind turbines.

Aerodynamic forces are functions of the velocities shown in figure 1.3, specifically of ~W .
Even though it is in the downwind direction (parallel to rotor axis), drag force has an effect

of lift due to ~W which is stronger than true wind but the angle is less favourable to torque,
slowing the blade down.
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Acting forces generated over the aerofoil are shown in figure 1.5, where A(r) = is the re-
action at r location, or axial reaction and T (r) = is the torque at r location, or tangent
reaction. These reacting forces may be broken down into convenient components with a
design-analysis aim. An efficient rotor blade consists of several aerofoils blended at an angle
of twist terminating at, e.g. circular flange. For this reason, the study of aerodynamic profile
is the main concern for designing and proposing specific blade geometries.

The spanwise velocity component over a wind turbine blade is much lower than the stream-
wise component, and it is therefore assumed in many aerodynamic models that the flow at
given radial position is two dimensional and 2-D aerofoil data can thus be applied. Two-
dimensional flow is comprised of a plane and if the plane is described with a coordinate
system, the velocity component in the z-direction is zero [20].

In order to realize a 2-D flow it is necessary to extrude an aerofoil into a wing of infinite
span. On a real wing the chord and twist changes along the span and the wing starts at a
hub and ends in a tip, but for long slender wings, like those on modern gliders and wind
turbines, Prandtl demonstrated that local 2-D data for the forces can be used if the angle of
attack is corrected accordingly with the trailing vortices behind the wing [37]. It is now clear
that 2-D aerodynamics is of practical interest even though it is difficult to realize [20] [38].

Figure 1.5. Aerodynamic forces generated at a blade element.

A further reason to consider a 2-D model is, if we desire to design a blade, a simple and ef-
fective method for calculating plan-shape (explained at subsection 1.4.3 and which gives the
basic shape of a modern HAWT), assumes a well calculated lift coefficient (and maintained)
for each section [38].
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1.3.1 Lift and drag

As seen in subsection 1.2.1, an aerodynamic load is generated by lift and drag of the blade’s
aerofoil section (figure 1.3) which is a function of wind velocity (Vw), blade velocity (U),
surface finish, angle of attack(α) and yaw (a mechanism that rotates the whole nacelle, used
to keep the rotor facing into the wind as the wind direction changes). The goal is to resolve
produced lift and drag into useful thrust (T ) in the direction absorbed by the generator.

Lift will only be present if the flow incorporates a circulatory flow about the body and will
be given (for small angles of attack) by the Kutta-Joukowski theorem [12].

The lift is defined by L = %(~Γ× ~U) or, since L is perpendicular to U, L = %∞U∞Γ, where Γ is
the circulation, or vortex strength, defined by Γ =

∮
v ·ds. To achieve a circulatory flow about

a non-rotating body it must have a sharp trailing edge like an aerofoil cross-sectional shape
or a thin plate [12]. Also, the Kutta-condition must be complied, which implies identifying
a particular value of the circulation that moves the rear stagnation point (U = 0) exactly
on the trailing edge, leaving the other stagnation point at the leading edge [20]. Lift is the
responsible force for the power yield generated, which is why it is essential to maximise it.

For a long body, such as a wind turbine blade, the lift per unit span is used in the definition
and the plan area is replaced by the chord length. Considering Γ = πUc sinα as the
circulation on an airfoil,

Cl =
Lift/unit span

1
2
%U2c

=
% (Γ× U)

1
2
%U2c

=
%πUc sinαU

1
2
%U2c

= 2π sinα

where c is the chord of the airfoil. In practice Cl = a0 sinα, where a0 is called the lift-curve
slope. Because the angle of attack is small, often the equation is written as Cl = a0 α. Lift,
thus will depend on α and flow speed U [12].

Drag is a force component parallel to the effective wind direction, i.e. in our present context,
the relative velocity Vw. Basically there are two types of drag involved with our present
problem:

• Skin Friction Drag (due Viscosity and Roughness) caused by the interaction between
a solid and fluid, the magnitude of skin friction drag depends on the properties of
both. In the case of solid, a rough surface will have a high skin friction drag and
a smooth surface, a low one. On the fluid, it is caused by shear stress at all points
over the immersed body concerned where fluid is touching, acting tangentially to the
surface. Here drag is due entirely to the viscosity and thus it is Reynolds number
dependant. Relative velocities causes internal friction between layers inside boundary
layer. The cumulative effect of all these friction forces contributes to produce drag. On
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a streamlined body, skin friction drag is the responsible for most of the drag because
fluid has a longer contact along the surface.

• Form Drag (or Pressure Drag) due to flow separation which creates a pressure difference
between front and back of an object. This difference between high and low pressure
regimes opposes the motion of a moving object. A blunt body is one where most of
the drag is pressure drag, while a streamlined body will reduce form drag.

Parasitic drag is a combination of these kinds of drag and interference drag. Induced drag is
mainly involved with 3-dimensional cases. Parasite drag increases with speed. Induced drag
decreases with speed. The sum of both shows that there is only one airspeed for a given
wind turbine design and load that provides minimum total drag. This is the point which is
the maximum lift-to-drag ratio [5].

1.3.2 Lift to drag ratio.

The most important parameter of the airfoil is the lift-drag ratio [21].

L/D =
CL
CD

The lift/drag ratio, denoted as L/D, has a significant effect upon the efficiency of a wind
turbine and it is recommended that a turbine blade operates at the maximum ratio [12]. In
order to obtain highly accurate L/D, and because it is difficult to predict mathematically,
the use of available simulation software is recommended. The local lift coefficients must be
derived from the polar curves of the selected airfoil and by considering the local angle of
attack, i.e. the blade pitch angle and the blade twist angle. This means that aerodynamically
the optimum distribution of chord and twist of the rotor blades depends on the selection of
a particular lift coefficient. As rule, this lift coefficient will be selected at best L/D for its
correspondent λ value. As a first approximation design CL may range between 0.9 and 1.1.

Reynolds number influences CL and CD: The nature of the flow pattern around an aerofoil
is determined by the Reynolds number and this significantly affects the values of the lift and
drag coefficients. The general level of the drag coefficient increases with decreasing Re and
below a Recrit of about 2 × 105 the boundary layer (see subsection 1.3.3) remains laminar,
therefore causing a sharp rise in the coefficient. The affect on the lift coefficient is largely
concerned with the angle of attack at which the stall occurs (see also subsection 1.3.3). As
Re rises so does the stall angle and, because the lift coefficient increases linearly with angle
of attack below the stall, the maximum value of the lift coefficient also rises [12].
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1.3.3 Boundary layer and flow separation (stall).

The boundary layer is a thin region of slow moving fluid, close to the body surface, within
which viscous forces predominate. Outside this layer the flow behaves almost inviscidly. The
drag on the body caused directly by viscosity is quite small but the effect of this thin layer
on the flow pattern is profound. The drag on an aerofoil can be attributed both to pressure
and viscous sources and the drag coefficient varies significantly with both angle of attack
and Reynolds number [12].

Figure 1.6. Velocity profiles across boundary lay-
ers with favourable and adverse pressure gradients.

Figure 1.7. Streamlines and velocity
profiles near a separation point S. Point
of inflection is indicated by I. The dashed
line represents u=0.

The boundary layer in a decelerating stream has a point of inflection, the existence of this
point implies a slowing down of the region next to the wall, a consequence of the uphill
pressure gradient. Under a strong enough adverse pressure gradient, the flow next to the
wall reverses direction, resulting in a region of backward flow. The reversed flow meets the
forward flow at some point S at which the fluid near the surface is transported out into the
mainstream. This is known as the flow separation from the wall. The separation point S is
defined as the boundary between the forward flow and backward flow of the fluid near the
wall where stress vanishes:

(
∂u
∂x

)
wall

= 0.

To avoid separation and large drag, the trailing section of a submerged body should be
gradually reduced in size, giving it a streamlined shape. The point of separation is insensitive
to the Reynolds number as long as the boundary layer is laminar. However a transition to
turbulence delays boundary layer separation [26]. Laminar and Turbulent Boundary Layers
may occur: Turbulence can be artificially triggered by roughening the body surface. General
flow turbulence tends to produce turbulent boundary layers at Reynolds numbers below
critical value and this certainly seems to happen in the case of wind turbine blades [21].
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If the angle of attack exceeds a certain critical value, separation of the boundary layer will
take place. This causes a wake to form from above the aerofoil, reducing the circulation and
lift, and increasing the drag. Under these circumstances, the flow past the airfoil is stalled [12].

1.3.4 Pressure variation around the airfoil.

The pressure variation (minus the ambient static pressure) in the upper surface of an airfoil
is subject to suction and is responsible for most of the lift force. Figure 1.8 illustrates the
pressure distribution at the surface of an airfoil. The effect of the boundary layer(see next
subsection) is to reduce the pressure distribution at the rear of the aerofoil. The modified
pressure distribution gives rise to pressure drag which is added to the skin friction drag also
caused by boundary layer [12] (see figure 1.9).

Figure 1.8. Pressure distribution
around a symmetric airfoil.

Figure 1.9. Graph x/c − CP showing
boundary layer effects at the trailing edge.

1.4 HAWT blade design features

1.4.1 Blade pitching.

Once the wind in the site is measured, a design speed is established. Afterwards, it is
possible to determine optimum dimensioning for a wind turbine blade. Constant velocities
are desirable but wind conditions are variable for any site and the turbine must operate at
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out of design conditions. A method for limiting the rotational speed must be implemented
to prevent excessive loading of the blade and to maintain a high efficiency at rated wind
speeds. As the oncoming wind velocity directly affects the angle of incidence of the resultant
airflow onto the blade, the blade pitch angle must be altered accordingly. This is known as
pitching, which maintains the lift force of the airfoil section.

Pitching methods are: (1) Feathering, by decreasing the pitch angle (using a clever algorithm
which uses wind condition) reducing the angle of attack and thus reducing lift; (2) Inducing
stall, increasing the angle of attack which can result in excessive dynamic loads. In order
to prevent fluttering, feathering is a better option though it requires a higher mechanical
movement (see figures 1.10). Passive stall control also limits rotor speed under an increased
wind velocity using a fixed pitch angle at which stall starts automatically. This method
requires a safety margin and thus has performance penalties, hence it is usually applied in
small turbines (see figure 1.11) [21] [38].

Figure 1.10. Blade pitching. Feathering and
induced stall.

Figure 1.11. Passive stall control at
operational and high wind speed.

1.4.2 Blade section aerodynamics (airfoils).

The primary objective of wind turbine design is to maximize the aerodynamic efficiency, or
power extracted from the wind. In practical design, this objective should be met together
with constraints on mechanical strength criteria and economical aspects [1]. The blades cut-
ting through the air improve and enhance aerodynamic lift due to changes to their shape
through their length, accommodating different relative air speeds between the tip and hub [2].
The influence of L/D on the power coefficient of the rotor can be represented in a general
way as shown in figure (1.12).
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Figure 1.12. L/D ratio influence over CPR for
different number of blades. Figure 1.13. Influence of roughness

on CPR for different NACA airfoils.

It is clear that CPR will become smaller if L/D decreases for every number of blades. Notice
that for all L/D, the optimum point of the CPR shifts to lower λ values. Thus, high-speed
rotors manage well with fewer blades, but airfoil characteristics become a decisive factor for
power generation [21]. In general the best L/D characteristics are obtained by an aerofoil
that is fairly thin: its thickness may be only 10-15% of its chord length. Due to structural
reasons, at the root, aerofoil shape has less aerodynamic efficiency. [3].

At the beginning of wind turbine blade design, wind power rotors used airfoils developed for
aircraft wings such as four and five-digit NACA airfoils series. Nevertheless, the requirements
made for wind rotor are not in every way identical. Special series have been developed in
order to minimize performance losses due to surface roughness, or to achieve a particular
stall behaviour. Some examples are LS, SERI and FFA series. Commonly modern NACA
airfoils are series 44 and 230, also known as laminar airfoils.

Laminar airfoil shapes keeps flow boundary layer laminar along a long section of the chord
length, with an extremely low drag over a certain angle of attack range [21]. Cambered airfoils,
such as the NACA4412, have curved chord lines and this allows them to produce lift at zero
angle of attack. Usually, cambered airfoils have higher maximum L/D ratios, compared to
symmetrical aerofoils at positive angles [12].

Airfoil special series may have the following roughness characteristics: (1) slightly lower
L/D, but less sensitive to surface roughness, or (2) higher L/D ratio but also more sensitive
to surface roughness. So the required surface quality, as well as the contour accuracy must
be feasible to manufacture. Degradation due to environmental influences must be taken into
consideration, as well as different kinds of dirt in the wind, which is why the performance
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must be based on a standard roughness [21]. Figure 1.13 shows influence of roughness on CPR
for different airfoils.

In regards to the aerodynamics of the blade thickness, the high-performance airfoils are the
thinnest possible rotor blades. In contrast, the structural requirements demand a thick cross
section for the load bearing elements. The goal then is to show the influence of thickness-to-
chord ratio on rotor performance and energy yield. Materials and manufacturing processes
influence on how thin the blade can be built. Aerodynamic requirements determine the
design, but the cost of construction must be reasonable. The aerodynamic shape gives rise
to loads, which are fed to the structural design. Design must be thin (ideal), and thicker
closer to the root, where stresses due to bending are greatest. A trade-off is necessary be-
tween aerodynamic and structural efficiencies. Making a thicker blade at the root instead of
reinforcing it can reduce the cost greatly.

Figure 1.14. Graphs examples for an airfoil NACA4412.

1.4.3 Blade planshape, quantity and span.

According to Betz’s theory, the crucial criterion for calculating the optimum theoretical
shape of contour is that the demand at each blade radius and the wind speed in the rotor
plane be delayed into two thirds of its undisturbed value. This requirement can be met if
the product of the coefficient of local lift and local chord length follows a hyperbolic course
over the blade’s radius. The hyperbolic contours of the theoretical optimum shape present
disadvantages for manufacturing. Moreover, straight-bladed planforms have power losses.
Trapezoidal planforms are cost-effective for its manufacturing and also have a very good
performance. In this sense, from an aerodynamic point of view, the outer blade area is then
of much more importance for the rotor’s perfomance. Because the blade near the hub is
of less significance for the generation of power, higher strength with greater simplicity in
manufacturing is allowed. The shape of the tip influences the tip vortices produced and thus
induces aerodynamic drag.
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For the chord length calculation, an ideal planshape (or planform) of a HAWT rotor blade
is defined using the BEM method, by previously calculating the chord length according to
Betz limit, local air velocities and the airfoil lift. One of the simplest theories for calculating
the optimum chord length is based on the Betz optimization [19]:

c(r)Betz =
16πR

9BCL

1

λ
√
λ2
(
r
R

)2
+ 4

9

c(r)Betz = optimum chord length,
r =local radius (variable),
R =total radius,
B =blade number,
CL = lift coefficient at chosen αD,
λ = local TSR.

This equation gives a good approximation for λ ≈ 5-9. For our example, we want to
c(r)Betz = 1.0 at the tip. Then, using this expression, we will have at the tip (r = R)
R = 9.4834, using a CL = 0.70 that is commonly used for preliminary computations, λ = 5
and B = 3. From here, we will use R = 9.5 as a practical approximation for the exercise to
be presented in chapter 4.

Figure 1.15. Influence of the number of
blades on the rotor power coefficient and the
optimum tip-speed ratio.

Figure 1.16. Optimum rotor blade shapes
for different design λ and blade numbers, for
NACA 4415 and cL,design = 1.1.
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A longer blade will favour the power extraction, due to the fact that it implies a major
sweep area. But, by increasing the blade length, the deflection of the blade tip due to axial
wind force will also increase. Another parameter associated with length and often used for
characterizing the geometrical rotor blade shape are solidity (see table 1.1), aspect ratio
((rotor radius)2 / planform area of a rotor blade) and taper (chord length at the blade tip/
chord length at the blade root); e.g. in order to avoid problems related to the strength or
stiffness of a manufactured slender blades, the blade’s aspect ratio must be reasonable. It is
necessary to provide the blade with a constant slowing effect over the rotor disc so that none
of the air leaves the turbine or passes through too fast, failing to absorb energy. The blade
design can narrow closer to the tip than the root, whilst still generating sufficient lift [3].

Now, on the other hand, considering the number of blades, figure (1.15) shows the influence
of this parameter on the CPR (valid for any type of HAWT blade), and figure 1.16 shows
its relation with planshapes respect to λ, where the NACA airfoil is described in subsection
1.4.2.

There is a small increment in maximum CPR while increasing the quantity of rotor blades, as
seen in figure 1.15. The curves within the range which the CPR is larger than the threshold
is reduced as the number of blades increases [21] [1]. That is to say, the rotors with less blades
rotate faster, thus compensating for their disadvantage of having a smaller physical blade
area [21]. By increasing the number of blades, the cost of the system increases drastically and
the mechanical design of blades becomes a difficult task: The more blades there are, the
thinner they should be in order to be aerodynamically efficient. [1].



Literature review

In the present review, we look for airfoil design and optimization researches, but mainly tools
and models of the flow field calculation around the airfoil using any developed or commercial
of computer aided solution that uses finite volume method (FVM), among other common
methods where available literature is focused on solving the Navier-Stokes equations, or other
types of analysis method. Literature review of optimization problems may be structured as
follows: airfoil shape optimization, wind turbine blade performance optimization (where the
shape of the airfoil is fixed and the design variables are limited to the blade); and wind turbine
optimization of the wind turbine is fully modelled. Other optimization problems include the
different tools and models used in aerodynamic, structural and wind speed modelling, and
finally, optimization algorithms [13].

To avoid excessive lift performance which may lead to an abrupt stall for the airfoil design,
Grasso [18] provides and upper limit for the CL at a specific AOA and a maximum drop after
such point, based on [22,41]. Ju et al. [24] restrict the drag coefficient value in the airfoil geome-
try optimization to prevent it from undesirably becoming higher during the optimization of
the L/D and CL of the airfoil. An important field for the development of wind turbines is
the optimization of the airfoil shape through the design of new airfoil families [40,41] suited for
the blades. We examine the performance optimization approaches for wind turbine airfoils
presented in [17,24,40].

For airfoil optimization via CFD assisted by other tools, Lin et al. [42] propose how to design
and analyze flow over an airfoil shape of a horizontal axis wind turbine for 5 kW power
generation using BEM theory, and using COMSOL Multiphysics R© as an analysis software,
choosing the NACA 4409 airfoil with angle of attack 5 degrees as the optimum blade design,
and thus suitable to construct the HAWT for design average wind speed. Najar et al. [35]

reviews the design optimization of blades. They determine the flow field around the airfoil
of the wind turbine responsible for the buildup of forces acting on the airfoil. A CFD model
has been used to calculate the aerodynamic effect on the blade airfoil at a critical Reynolds
number and constant wind speed under different turbulence models with inviscid flow so that
the blade achieves an optimum power performance with an optimum value for L/D. Zhu et
al. [45] integrates a method to design airfoils and the rotor blade by determining the airfoil
optimization based on the blade local speed ratio. Local 2D airfoil BEM computations were
performed during the airfoil optimization which provide high CP values over a wide range of
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AOA. Final results shows an optimal flow angle and chord length. Validations carried out by
full blade BEM and CFD both showed good aerodynamic characteristics. The integration
of the simplified BEM and XFOIL R© can be regarded as a reliable tool for airfoil and rotor
platform design.

Regarding models and tools, a mathematical model for fluid dynamics wind turbine design
based on the BEM (from the Glauert propeller theory) has been implemented and improved
by [27] using mathematical simulations compared with experimental data found in the lit-
erature. A good agreement was found, and the model was implemented to optimize rotor
performance.

Once the design conditions are set up, which are the rated wind speed, the design tip speed
ratio and the design angle of attack, it is possible to display the linear distributions of the
pitch angle in each section. This is how Bai [10] designs a HAWT blade by BEM theory and
the modified stall model. The blade aerodynamics are also simulated to investigate its flow
structures and aerodynamic characteristics. Investigations of aerodynamic characteristics
for the turbine blade were performed by the numerical simulation.

The Reynolds averaged Navier-Stokes (RANS) equations combined with the Spalart-Allmaras
turbulence model that describes the three dimensional steady state flow on the wind turbine
blade were solved with the aid of a commercial CFD code. The simulation results are com-
pared with the improved BEM theory which demonstrates that the CFD is a good method
on aerodynamic invesigation of a HAWT blade. A good match between the improved BEM
theory and the numerical simulation was achieved.

For exclusive CFD analysis of the system, Almohammadi et al., present two papers [7,8]; in the
first they proposed a solution produced by using the 2D Unsteady Navier-Stokes equations
(URANS) with two turbulence models using a mesh independent approach for convenience,
and mainly due to the sensitivity of the power coefficient produced by the turbine to the
dynamic stall phenomenon and the turbulence level around the blades. The model includes
three VAWT 2D-blade systems immersed in the fluid domain. In the second paper, he uses
2D Navier–Stokes equations to investigate the dynamic stall process in the VAWT 2D-blade
system. Due to an existing experimental work of a VAWT in upright and tilted conditions,
Chowdhury et al. [14] did a numerical validation by means of CFD analysis by solving Un-
steady Reynolds Averaged Navier-Stokes (URANS) equation, choosing a turbulence model
and achieving a mesh dependency analysis and an optimum time step. A good agreement
between experimental and theoretical results were obtained at both tilted and upright posi-
tions. Lanzafame et al. [28] modeled RANS turbulence models for the prediction of the flow
field around wind turbines. The results demonstrate the good capabilities of the transition
turbulence model. The 2D CFD model was calibrated and validated comparing the numeri-
cal results with experimental data. The process of generating the 2D CFD model was done
inside the ANSYS Workbench multi-physics R©. Particularly, the finite volume Fluent Solver
was used in an Unsteady RANS (URANS) version to solve the Navier-Stokes equations and
capture the unsteadiness. A good agreement between numerical and experimental data was
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found. Li et al. [30] presented a dynamic overset CFD simulations, studying two sequences
of the experiment test cases with complete turbine geometry, including the NREL phase VI
blades, and approximate geometries for hub, nacelle and tower. RANS and DES models are
used in the simulations. Results show that the CFD predictions match the experimental
data consistently well, including the general trends of power and thrust, sectional normal
force coefficients and pressure coefficients at different sections along the blade.

Classic literature is very handy and important as supportive literature, like refs. [9,12,20,21,32,43].



Chapter 2

Programming and validation

2.1 Solution of Navier-Stokes equations by numerical

methods.

The use of computational fluid dynamics (CFD) to predict both internal and external flows
has grown enormously in recent decades. Even today the development of CFD software to
analyze aerodynamic problems by which we get answers necessary for the evaluation and
design is widely developed. It is also possible to use certain methodologies to directly apply
CFD analysis on turbine blades.

The geometry of the blade is an aerodynamic shape, with non-linear chord and twist distri-
bution. This can be calculated based on the BEM theory, with respect to a given coefficient
and profile. Four models may be used to predict the performance of the blades: BEM model
(blade element momentum), lifting panel and vortex model, actuator line model, and CFD
(computational fluid dynamics) [35].

The following section is a description of how a CFD technique known as Finite Volume
Method is incorporated into a computer code for solving a discretised or algebraic form of
the governing equations of a fluid in order to study the flow around 2D blades.

2.1.1 Non-dimensional Navier-Stokes equations.

This section briefly describes the physical fundamentals of mathematical modelling of fluid
dynamics, specifically of the governing equations for 2D. The governing equations of fluid
flow that mathematically represent the physical laws of conservation of mass and momentum
can be written for one, two or three dimensions. Our main focus for this study is based
on the two-dimensional solution. The non-dimensional form of the mass and momentum
conservation equations in two dimensions (x, y) can be written as [16]:

∂u

∂x
+
∂v

∂y
= 0, (2.1)
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∂u

∂t
= −∂uu

∂x
− ∂uv

∂y
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∂x
+

1

Re

(
∂2u
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∂2v

∂y2

)
, (2.2)

and
∂v

∂t
= −∂vv

∂x
− ∂uv

∂y
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+

1

Re

(
∂2u

∂x2
+
∂2v

∂y2

)
(2.3)

where equation 2.1 is a continuity equation as an incompressible fluid, i.e. % = %0 = constant,
which has to be coupled with the non-linear time-dependant momentum equations, where the
primitive variables are the velocity components u, v, and the pressure p. Note that the mass
and momentum conservation equations are referred to as the continuity and Navier-Stokes
equations respectively.

The scaling was made as follows: The sole parameter of the system is the Reynolds number
defined by Re = %0V∞L

µ
, V∞ is a stream free velocity, L is a characteristic length and µ is the

dynamic velocity. The steady N-S equations are formally elliptic in space and the unsteady
equations are parabolic in time.

2.1.2 A solution for the Navier-Stokes equations in a two-dimensional
domain using finite-volume method.

The finite-volume method (FVM) is a method for representing and evaluating partial dif-
ferential equations in the form of algebraic equations [29]. The general transport equation
written in terms of a general variable φ is used for solving the governing equations for flow.
We know that all fluid flow equations, including equations for scalar quantities can be usefully
written as:

∂(%φ)

∂t
+ O · (%φu) = O · (Γ O · φ) + Sφ (2.4)

Various phenomena are involved in equation 2.4: a rate of change and a convective term at
the left, and a diffusive with a Γ diffusion coefficient and the source term Sφ at the right
side.

Observe that considering two-dimensions, (φ = u, v), the diffusion coefficient is equal to
the constant viscosity µ, and Sφ = −O · p, the general transport equation, becomes the
dimensional form of equations 2.2 and 2.3.

This equation is used as a starting point for the computational procedures in the finite vol-
ume method, by setting φ equal to any corresponding variable (1, u or v), and selecting the
appropriate diffusion coefficient Γ and source term Sφ, for each partial differential equations
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for mass and momentum conservation. In time-dependent problems it is necessary to inte-
grate with respect to time over a small interval ∆t. It is also necessary to divide what will be
a computational domain into discrete control volumes. The time and space integration yields
the following integral form for the time-dependent process of the transport equation [43]:

∫
∆t

∂

∂t

∫
CV

(%φ)dV

 dt+

∫
∆t

∫
A

n ·(%φu)dAdt =

∫
∆t

∫
A

n ·(ΓφO ·φ)dAdt+

∫
∆t

∫
CV

SφdV dt (2.5)

where CV is a control volume. We place a total number of nodal points at the frontiers of
the domain. The boundaries of the faces of each control volume or cell will be positioned
mid-way between adjacent nodes. Thus, each node is surrounded by a cell. It is common to
set nodes at the edges and corners of the domain where boundary conditions are established.

The common convention for CFD methods use the system notation that identifies P as the
actual nodal point; west and east nodes as W and E, respectively. West and east faces
are referred as lowercase w and e. Distance between nodes are identified as δx and δy.
This convention happens mainly for the scalar variable (p), which in figure 2.1 (a) and (b)
are represented as an orange square and nodes are shown as black dots with capital (I, J)
locations.

(a) u-control volume (b) v-control volume

Figure 2.1. Staggered control volumes and their neighbouring velocity components. Showed
the scalar control volume (orange square) on both figures and the staggered (a) u-velocity and
(b) v-velocity control volume (hatched area). Uppercase denotes the scalar grid and lowercase
the velocities grid.

The finite volume method starts with a discretisation of the flow domain, but we need to
decide where to store velocities. It isn’t possible to store velocities on the same locations
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as the scalar variables, i.e. the same nodes, because a highly non-uniform pressure field
can act like a uniform field in the discretised momentum equations. Therefore, a staggered
grid is needed to solve this, as shown in figures 2.1, for (a) u and (b) v velocities (hatched
control volumes, denoted with lower case notation (i, j) ), in order to avoid non-zero pressure
gradient terms. The idea is to evaluate pressure p in ordinary nodal points, and velocity
components on staggered grids centered around the cell faces.

The key step of the finite volume method is the integration of governing equations over a
control volume to yield a discretised equation at its nodal point P . A clear advantage of
the method is that the discretised equation has a clear physical interpretation. Based on
equation (2.5), and substituting each term by a balance equation of φ related to physical
processes for each control volume and rearranging them, we obtain the following form for
a general internal node point of the discretised equations, considering a uniform regular
gridded 2-D domain [43]:

aPφP = aEφE + aWφW + aNφN + aSφS + SP (2.6)

where each a coefficient may include contributions of convective or diffusive balances, or even
a source model. This equation system must be iteratively solved by, for example, using a
direct tridiagonal matrix (TDMA) method, incorporated as FORTRAN subroutines within
the code.

Due to an issue involving the solution for the pressure field, so a pressure-velocity coupling
strategy must be devised. In general, the velocity field is not known and emerges as part
of the overall solution process along with other flow variables, so a numerical strategy for
computing it is required. The transport equation for each velocity component can be derived
from the equation 2.4 by replacing u, and v, thus satisfying equation 2.1. The problem arises
for solving equations (2.2) and (2.3), because in first place, they contain non-linear quantities
in the convective term, and even more, there is no transport or state equation for solving
pressure.

Since the velocity and pressure are coupled, if the correct pressure field is applied in the
momentum equations, then the resulting velocity field should satisfy continuity. But, due to
the fact that the pressure field is unknown, we need a method for calculating and correcting
pressure on each iteration step in order to get closer to convergence criteria.

An iterative solution strategy is based on the SIMPLE (Semi-Implicit Method for Pressure-
Linked Equations) algorithm, which essentially is a guess-and-correct procedure for the pres-
sure calculation on the staggered grid. In this study a variation called SIMPLE-Consistent or
SIMPLEC algorithm, that follows same SIMPLE algorithm, but omits terms less significant
was used [43].

To initiate the SIMPLEC calculation process a pressure field p∗ is guessed. Discretised
momentum equations are solved using p∗ to yield velocity components u∗ and v∗ that are
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the resultant velocities obtained from the guessed p∗. Now, we define the correction p′, so
that p = p ∗+p′, where p is the final pressure field. Then we define the velocity corrections
u′ and v′ to correct the velocities u and v, as well, v = v ∗+v′ and v = v ∗+v′ [43].

The sequence of operations of the SIMPLEC algorithm are the following:

1. Propose an initial guess p∗, u∗, v∗.

2. Solve discretised momentum equations to obtain u∗, v∗ using previous guessed p∗, u∗,
v∗, φ∗ by solving,

ai,Ju
∗
i,J = Σanbu

∗
nb + (p∗I−1,J − p∗I,J)Ai,J

aI,jv
∗
I,j = Σanbv

∗
nb + (p∗I,J−1 − p∗I,J)AI,j

where summation Σanbu
∗
nb refers to neighbour cells values on the staggered grid, and

the last term represents the pressure.

3. Solve pressure correction equation to obtain p′ using previously computed u∗, v∗ by
solving,

aI,Jp
′
I,J = aI−1,Jp

′
I−1,J + aI+1,Jp

′
I+1,J + aI,J−1p

′
I,J−1 + aI,J+1p

′
I,J+1 + bI,J

which represent the discretised continuity equation that determines the pressure cor-
rection p′. The source term b′ is the continuity imbalance arising from the incorrect
velocity field u∗, v∗. So, b′ must tend to zero in order to obtain pressure correction
field and thus p, u, v.

4. Correct pressure and velocities to obtain p, u, v using p′ by solving,

pI,J = p∗I,J + p′I,J

ui,J = u∗i,J + u′i,J

vI,j = v∗I,j + v′i,J

where u′ and v′ velocity corrections equations are:

u′i,J = di,J(p′I−1,J − p′I,J) and v′I,j = dI,j(p
′
I,J−1 − p′I,J)

where ,

di,J =
Ai,J

ai,J −
∑
anb

and dI,j =
AI,j

aI,j −
∑
anb

5. Compare to convergence criteria, i.e. b′I,J < tolerance and take a decision: If it
complies, then stop loop. If it doesn’t comply, then go back to start using new values,
setting p∗ = p, u∗ = u, v∗ = v, φ∗ = φ.
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The values of coefficients aI,j, ai,J and anb may be calculated with any of the differencing
methods i.e. upwind, hybrid or QUICK [43]. In our case, a central difference scheme for
the coefficients is chosen for its mathematical hardiness, though it may fail under certain
situations involving convection. In order for numerical results to be physically realistic, fun-
damental properties of discretisation schemes must be observed, such as: Conservativeness,
boundedness and transportiveness.

For a uniform grid we can write the cell face value property φ as φe = (φP + φE)/2 and
φw = (φW + φP )/2, by solving equation 2.6. By identifying the coefficients of u in our
code, the central differencing expressions for the discretised convection-diffusion equation in
two-dimensions 2.6, result as follows [43]:

aE = ( 1
Re

se
δx

)− (ue se)/2

aW = ( 1
Re

sw
δx

) + (uw sw)/2

aN = ( 1
Re

sn
δy

)− (un sn)/2

aS = ( 1
Re

ss
δy

) + (us ss)/2

aP = aE + aW + aN + aS +
dV

dt

sP = ui,J
dV

dt
− pI+1,J − pI,J

dx
dV

where ue = (ui,J + ui+1,J)/2, uw = (ui−1,J + ui,J)/2, un = (vi+1,J + vi,J)/2 and us = (ui,J−1 +
ui+1,J−1)/2. The control volume size is defined as dV = δx δy. For v coefficients, we must
use the equivalent expressions.

For the time integration scheme, we shall use a complete implicit method, expressed as:

dφ

dt
=
φn+1 − φn

dt
= f

(
tn+1, φ

n+1
)

(2.7)

where φ is a variable obtained through the discretised transport equations at the current
time n and at the following new time n+ 1, considering the time step dt. This implies that
a system of algebraic equations must be solved at each time level for each variable. For
our code, time marching starts at a given initial velocity and pressure field. The system of
equations has to be solved with the selected dt. The next solution for u, v and p is assigned
as the former values, and the procedure is repeated to progress the solution by a further time
step until the selected elapsed time is completed. Small time steps are needed to ensure the
accuracy of results due the accuracy of the scheme is first order in time. This scheme was
selected because of its robustness and unconditional stability.
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2.1.3 Solid domain definition using a ‘marking-cell’ technique.

Many techniques have been developed to approximate solutions assuming a solid obstacle
of a generalized (non-Cartesian) geometry present within the fluid domain. The internal
cells and boundary cells for this ‘sub-domain’ receive a special discretisation, defined by the
mark-cells variable. See figure 2.2.

Figure 2.2. Control volumes as solid
domains are identified with an index.

Figure 2.3. Velocities for marked cells
are cancelled.

This means that any ‘marked’ and/or adjacent control-volume cells relative to this sub-
domain will receive a particular formulation. Thus, selected cells are subject to either velocity
nullification (figure 2.3) or correction for u and v, considering the staggered grid.

Figure 2.4. Correction in u velocity com-
ponent because internal boundary effect.

Figure 2.5. Correction in v because in-
ternal boundary effect.

According to equation 2.6 , corrections at the boundaries are defined as follows: For u ve-
locity over adjacent control volumes of mark cell(i,j) shown in figure 2.4 the corrections are,
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At east face (west of body): aPφP = (SP + aEu(i+1,j))
At west face (east of body): aPφP = (SP + aWu(i−1,j))
At north face (south of body): (aP + aN)φP = (SP + 2aNu(i,j+1))
At south face (north of body): (aP + aS)φP = (SP + 2aSu(i,j−1))
Inside of body: (δV/δt)φP = (δV/δt)u(i,j))

For v velocity over adjacent control volumes of mark cell(i,j) shown in figure 2.5 the correc-
tions are,

At east face (west of body): (aP + aE)φP = (SP + 2aEv(i+1,j))
At west face (east of body): (aP + aW )φP = (SP + 2aWv(i−1,j))
At north face (south of body): aPφP = (SP + aNv(i,j+1))
At south face (north of body): aPφP = (SP + aSv(i−1,j−1))
Inside of body: (δV/δt)φP = (δV/δt)v(i,j))

2.1.4 Graphical representations.

Some results are presented as vorticity isolines and streamlines. Vorticity for the 2-Dimensional
problem of solving N-S equations are used to show results, and it is defined as:

ω = |ω| = | 5 ×V | = ∂v

∂x
− ∂u

∂y
(2.8)

The stream function definition is ∂ψ
∂y

= u and ∂ψ
∂x

= −v. Then by means of eq. 2.8, the
Poisson equation for the ψ variable can be written as,

52ψ =
∂2ψ

∂x2
v +

∂2ψ

∂y2
= −ω (2.9)

2.2 Programming algorithm for basic geometry.

A code was written for solving the problem of interest by using FORTRAN. Before engaging
in its solution, it is necessary to make some validations so that the given solution complies
with physics. The validation of the results was done by using an immersed regular-geometry
and was later compared to well-validated experimental data.

2.2.1 Flow behind a cylinder.

To validate the code used, a flow around a square and circular cylinder was chosen. As
shown in figure 2.6, the wake behind a cylinder should become unstable beyond Re ≈ 40
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and therefore a slow oscillation begins. As vortices of opposite circulations are shed off
alternately from the two sides, the circulation around the cylinder changes its sign, resulting
in an oscillating lift or lateral force.

Figure 2.6. Some regimes of flow over a circular cylinder.

The passage of regular vortices causes velocity measurements in the wake to have a dominant
periodicity. The frequency is expressed as a nondimensional parameter known as Strouhal
number which is commonly used as a measure of the predominant shedding frequency fs.
The definition is St = fsD/U∞ where D is the diameter of the circular cylinder (character-
istic length) and U∞ the freestream velocity.

The strategy used for Strouhal number computation is as follows: In order to obtain the
Strouhal number for a particular flow condition over a temporal development, the following
steps must be taken [34]. First the total force exerted over all the immerse body must be
evaluated, integrating the pressure (p) and the wall shear stress (τ) over the 2-D geometric
surface.

−→
F =

∮
geom

pds+

∮
geom

τds (2.10)

where the variables are nondimensional. Observe that the non-dimensional expressions for
shear stress is defined by:

τ =
1

Re

∂u

∂y
(2.11)

2.2.2 Squared cylinder as immersed geometry.

A square cylinder was first used as the immersed shape for testing the basic steps of the
algorithm in the code. Depending on its positions, the discrete shear stress for each control
volume is calculated by τx = 1

Re

dui,j
dy/2

and τy = 1
Re

dvi,j
dx/2

as seen in figures (2.7) and (2.8).

The x and y components of the force on the immersed boundary are,
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Figure 2.7. X-direction shear stress on
control volumes.

Figure 2.8. Y-direction shear stress on
control volumes.

Fx =

∮
geom

pxds+

∮
geom

τxds (2.12)

Fy =

∮
geom

pyds+

∮
geom

τyds (2.13)

The manner in which both values are computed for this geometry, is as follows: We choose
groups of control volumes depending on the force direction exerted with respect to the
adjacent boundary. The direction of each force is selected as shown on figures (2.9) and
(2.10).

Using this consideration we then define each group of control volumes for doing the sum of
discrete values,

Fx =
[∑

pwdy +
∑

pedy
]

+
[∑

τndx+
∑

τsdx
]

(2.14)

Fy =
[∑

pndx+
∑

psdx
]

+
[∑

τwdy +
∑

τedy
]

(2.15)

However, because, −→
F = Fxı̂+ Fy ̂ (2.16)

and since the flow is moving in x direction, in this case:

FD = Fx and FL = Fy

Each of these correspond to both drag and lift forces which are frequently expressed as
follows,

FD = CD and FL = CL (2.17)
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Figure 2.9. Selected control volumes for
pressure integration.

Figure 2.10. Selected control volumes
for shear stress integration.

where CD and CL are the drag and lift coefficients.

Because of the wake activity, which is a repetitive production of asymmetric formation of
vortices, a large amount of instantaneous lift forces will be created, producing mechanical
vibration. The relevance of CL is that from the temporal development of this value, we may
obtain (via FFT) a characteristic non-dimensional frequency coming from wake formation
behind the immersed body [34]. If the whole calculation is non-dimensional then the Strouhal
number is given directly by St = fs. This computation will be validated in Chapter 3 for a
circular cylinder case.

2.2.3 Circular cylinder as an immersed geometry.

For a cylinder shaped geometry, the total force is obtained using a procedure similar to that
described in the previous subsection. Firstly pressure and shear stress must be obtained over
the corresponding control volumes in the fluid domain, adjacent to the solid control volumes.

In order to calculate the shear stresses, and thus the tangential forces, we take the following
steps: The horizontal and vertical components of the velocity are evaluated at the nearest
node to the immersed geometry. This is done by averaging the velocity components of the
nearest nodes. Velocities u(i, j), u(i − 1, j) are averaged, as well as v(i, j), v(i, j − 1). This
procedure is illustrated in figures (2.11) and (2.12) for u and v respectively.

The resultant velocity vector ~uR is calculated from such averages on the nodes of each
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Figure 2.11. Interpolation of the u veloc-
ity. Selected control volumes for ū velocity
near cylinder boundary on xc, yc.

Figure 2.12. Interpolation of the v veloc-
ity. Selected control volumes for v̄ velocity
near cylinder boundary on xc, yc.

control volume at the boundary, as shown in figure (2.13). The forces on the boundary can
be calculated by decomposing this resultant velocity vector ~uR into its normal and tangential
components relative to the body surface, i.e.:

~uR = (un, uT ) = unn̂ + uT T̂

where n̂ and T̂ are unit vectors in the normal and tangential directions. Thus: ~uT = ~uR−unn̂,
where uT = |~uT |.
The shear stress is computed as follows: We define a Cartesian coordinate system where ux
is a parallel velocity. In this axis of coordinates, the definition of shear stress is: τij = µ ∂ui

∂xj
,

where (i, j) are refered to the relative reference frame. Once we have defined boundary cells
and marked cells, we interpolate the velocity in the boundary cell nodes considering that
the velocity in the cell face next to the boundary is zero. These interpolations are u, v
components at the nodes. Now, we define the unit normal vector as:

~r =
~p− ~c
|~p− ~c|

where ~p and ~c, and are the position vectors of the node and the center the circle respectively.
The normal and tangential components of the velocity ~uR are: ~un̂ = ~uR ·~r and ~uT = ~uR−~un̂.
The shear stress is then:
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τ =
1

Re

∂uT
∂n
≈ 1

Re

∆uT
∆n

=
1

Re

unodeT − ucircleT

rij − rcircle
(2.18)

where ucircleT = 0, because we are considering a no slipping condition between a viscous flow

and a rigid body. The difference r(i,j) − rcircle, where r(i,j) =
√

(x2
c(i,j)) + (y2

c(i,j)), and x2
c(i,j)

and y2
c(i,j) are the coordinates of the control volume centres, and rcircle is the actual circle

radius.

Once we have the stress tensor, the tangential force can be calculated with the expression
Fτ = τijAij, where the area Aij is the perimeter fraction that corresponds to the node (i, j).

The tangential force vector ~FT in its Cartesian components by projecting in the x and y
directions. This is illustrated in figure 2.14. In the code, we use each vector ~uT to obtain
τ on each boundary cell, and then each corresponding ~FT . Then, we decompose these in x,
y components, to finally integrate them for obtaining total ~Fx and ~Fy derived from shear
stresses.

Figure 2.13. Computation of tangent
velocity vector ~uT from resultant velocity
vector ~uR and n̂ near boundary.

Figure 2.14. Shear stress forces de-
composed on ~Fx and ~Fy components for a
boundary cell (blue).

For computing the force derived from pressure, a similar but simpler procedure was taken.
In this case, we know that Fp = pij Aij. We already established that Aij is the proportional
fraction of circumference according to the total number of control volumes surrounding the
immersed object (see figure 2.15) and defined as Aij = 2πrcircle

ncvbound
, which is a simplified computa-

tion method but what might carry out an error for certain sections around the circumference.
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The magnitude pi,j, was computed on each boundary cells while converging the solution for
all the fluid domain on every control volume centre, so interpolation is not required. Each
one of these Fp must be normal to the surface of the cylinder, and decomposed as well in x,
y components as shown in figure (2.16), and lastly, they should be integrated according to

eq. (2.12) and (2.13) with the goal of obtaining ~Fx and ~Fy due to pressure. The sum of both
x, y pressure and shear stress forces will result in CD and CL respectively.

Figure 2.15. Local pressure pi,j on
boundary cells (blue). Normal vector n̂

shows force ~Fp direction.

Figure 2.16. Pressure forces decom-
posed on ~Fx and ~Fy components for a
boundary cell (blue).

2.3 Square cylinder validation.

One of the most important problems in CFD is having and incompressible fluid flowing
around a square cylinder with a square cross-section confined in a channel. In this example,
we can see the effect of wall confinement on flow field characteristics like flow separation,
periodicity and vortex street formation. Among the most important advantages of the prob-
lem are its simplicity and the fact that flow separation points are fixed. The geometrical
situation is sketched in figure 2.17. At low Reynolds number flow is laminar, steady and
attached to the square cylinder. As Reynolds number increases the flow separates, but
remains laminar. Beyond Re = 50, unsteadiness develops and flow becomes periodic. Local-
ized regions of high vorticity are shed alternatively from either side of the cylinder and are
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convected downstream. In the present example we validate the characteristic unsteady flow
at Re = 100.

Figure 2.17. Diagram showing square-cylinder in the domain.

2.3.1 Inputs.

Initial conditions. The parameters used in the example are taken from satisfactory results
of previous publications available in the literature. The main parameters are: Domain
total length (L), height (H), as well as blockage (B = H/D), where D is the side of the
square, and L/D ratio [36]. The upstream length l = L/4 has been chosen from this study.
The Reynolds number is the main parameter which governs the qualitative behaviour. The
actual parameters are listed in tables 2.1 and 2.2.

Table 2.1. Settings for square cylinder
computations.

Item Inputs

Reynolds number 100
Inlet velocity u = 1.0
Square size D = 1.0
Square location l = 7.5

Table 2.2. Time and convergence settings for
square cylinder computations.

Parameter Inputs

Time 300
Tolerance 1e− 5
Itmaxa 100

aMaximum number of iterations

It is pertinent to observe that if the analysis is transitory, we will have to make the analysis
after a certain period of time from the start (t = 0) has passed and time independent flow
has been achieved. So, we must ensure that the entire run time (time=itmax·dt)1 exceeds
this interval. The velocity at the entrance to the domain is declared as u = 1.0 at t = 0, and
at the domain of the fluid should be u = 0. However, as a mathematical strategy, it has been

1Total elapsed run time equals to the maximum number of iterations multiplied by the time step.
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given an initial value of u = 1.0 at whole the fluid domain looking to achieve steady-state in
less iterations.

Space and time integrating schemes are defined in Table 2.3, as well as the selected velocity-
pressure coupling formulation. No-slip boundary conditions (u = 0, v = 0) are used on the
lower and upper walls of the channel and in the immerse object walls.

Table 2.3. Domain characteristics and schemes for square-cylinder validation

Feature Setting

Grid type Cartesian, structured
Domain size, L× H 30× 15
Number of nodes 750× 375
Scheme Central Difference.
Time scheme Full Implicit
Formulation type SIMPLEC
Boundary cond. on Top/Btm walls No-slip

2.3.2 Results for flow past a square cylinder.

Results obtained from computations include the lift coefficient, drag coefficient and Strouhal
number, and are presented in Table 2.4 and plotted in figure 2.18. In these graphs, sensitivity
to input parameters are plotted, where a clear sensibility to time step dt as well as u du/dt
ratio is observed.

Table 2.4. V ariables and results for the square cylinder calculation.

Run nx× ny dx, dy dt udx
dt

CL avg CL rms CL peak CD St

1. 600× 300 0.050 0.005 10.0 −0.0350 0.1135 0.1605 0.7891 0.0833
2. 600× 300 0.050 0.004 12.5 −0.0316 0.1242 0.1757 0.7885 0.0667
3. 750× 375 0.040 0.005 8.0 −0.0292 0.1475 0.2086 0.7930 0.0833
4. 1000× 500 0.030 0.005 6.0 −0.0252 0.2330 0.3296 0.8001 0.0750
5. 750× 375 0.040 0.0067 6.0 −0.0260 0.1287 0.1820 0.7909 0.1120
6. 750× 375 0.040 0.008 5.0 −0.0250 0.1134 0.1604 0.7915 0.1330
7. 750× 375 0.040 0.010 4.0 −0.0303 0.1036 0.1466 0.7936 0.1550

The root mean square (rms) and peak values are the most common mathematical method
of defining amplitude of a sinosoidal waveform. For a sine wave, the rms value is 0.707 times



2.3. Square cylinder validation. 38

(a) CL and CD. (b) CL and udx/dt, according to table 2.4

(c) Strouhal number, according to table 2.4

Figure 2.18. Flow over an square cylinder at Re = 100. Different scenario plots according
to table 2.4 Parameters: nx = 750, ny = 375, tncv = 281, 250, time = 300, tol = 1e − 5,
maxiter = 100.
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the peak value, thus in table 2.4, CLrms = 1√
2
CLpeak . Results may be compared with the

table of results 2.5.

The best values found for runs 5-7, were compared to published values given in reference [36].
Figure 2.19 shows the periodic time variation for the flow past a square cylinder, and thus lift
coefficient CL and drag coefficient CD dependence of time. There was an expected behaviour
of the periodic variation of lift and drag coefficient for different Re after Recrit ≈ 54 for the
square case.

Table 2.5. Reported experimental-numerical reference values [36] [33].

Re CL,avg CL,peak CD St

100 0.000 0.087− 0.158 1.38− 1.52 0.130− 0.150

Looking at the results, it can be observed that, although the amplitude is almost the same for
CL for every run, different amplitudes are found for CD numbers because this is influenced
mainly by pressure distribution on the rear side of the square cylinder which is strongly
influenced by the vortex shedding at the top and bottom sides of the cylinder.

The z-vorticity and pressure field output graphs are presented in figures 2.20 and 2.21;
interaction between the square cylinder and top/bottom walls may be appreciated. We may
see in the figure captions which variables are kept and which ones are changed.

(a) Signal features. (b) Outputs signals for runs 5 (orange), 6 (cyan) and 7 (dark blue).

Figure 2.19. Flow over an square cylinder at Re = 100.

We may preliminarily conclude that CL is inside the expected range of values, though not
for the case of CD that has an average error of 45%. Despite this we’ll go on with our study,
because our main parameter, the Strouhal number, is inside the range for runs 6 and 7. We
have found a proper independence between the internal-external interaction for certain do-
main sizes, allowing us to observe a proper development of the wake past the square cylinder
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(a) z vorticity, range (−0.5, 0.5) with 0.2 step us-
ing dt = 0.0067, itmax = 44, 776, udx/dt = 6.0.

(b) z vorticity, range (−0.1, 0.1) with 0.04 step
using dt = 0.0067, itmax = 44, 776, udx/dt =
6.0.

(c) z vorticity, range (−0.5, 0.5) with 0.2 step us-
ing dt = 0.008, itmax = 37, 500, udx/dt = 5.0.

(d) z vorticity, range (−0.1, 0.1) with 0.04 step
using dt = 0.008, itmax = 37, 500, udx/dt = 5.0.

(e) z vorticity, range (−0.5, 0.5) with 0.2 step us-
ing dt = 0.010, itmax = 30, 000, udx/dt = 4.0.

(f) z vorticity, range (−0.1, 0.1) with 0.04 step
using dt = 0.010, itmax = 30, 000, udx/dt = 4.0.

Figure 2.20. z vorticity. Parameters: Re=100, nx=750, ny=375, tncv=281,250,
dx=dy=0.040, time=300, tol=1e-5, maxiter=100.
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(a) Pressure, range (−0.5, 0.5) with 0.1 step us-
ing dt = 0.0067, itmax = 44, 776, udx/dt = 6.0.

(b) Pressure, range (−0.5, 0.5) with 0.1 step us-
ing dt = 0.008, itmax = 37, 500, udx/dt = 5.0.

(c) Pressure, range (−0.5, 0.5) with 0.1 step us-
ing dt = 0.010, itmax = 30, 000, udx/dt = 4.0.

Figure 2.21. Pressure. Parameters: Re=100, nx=750, ny=375, tncv=281,250, dx=dy=0.040,
time=300, tol=1e-5, maxiter=100.
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with good Strouhal number proximity.

2.4 Circular cylinder validation.

In this section we will analyse the flow around a circular cylinder in steady and unsteady
flows. A rectangular domain was used to simulate the flow over this stationary cylinder.
Aerodynamic responses have been found and assessed, CD, CL and St outputs were found
after transient variation. Additionally, flow characteristics such as velocity and pressure
field, as well as normal and tangential stresses at the boundary of the cylinder were depicted.

2.4.1 Geometrical and numerical parameters.

A rectangular domain with respect to an aspect ratio L/H, and an immersed circular cylinder
with a diameter D, symmetrically located in the vertical direction and at a distance l from
the inlet was considered, similar to the previous case. The domain is discretised with a
Cartesian structured grid of nx× ny nodes. See figure 2.22.

Figure 2.22. Diagram showing circular-cylinder in the domain.

The central difference discretisation strategy is used for the space derivatives, and the time
integration is made with implicit scheme. As explained in the previous chapters, the pressure
linked equations are solved with the SIMPLEC iterative algorithm. See Table 2.6 and Table
2.7.
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Table 2.6. Conditions for the validation of the circular cylinder numerical solution.

Item Input

Grid type Cartesian, structured
Scheme Central difference
Inlet boundary cond. Dirchlet
Outlet boundary cond. Neumann
Time scheme Implicit
Formulation type Simplec

2.4.2 Initial and boundary conditions.

The initial conditions used for velocity are in the whole domain. An axial constant velocity
u = 1.0 and zero transversal velocity v = 0 are assumed for the inlet boundary (Dirichlet
condition), and a zero axial gradient for the axial velocity ∂u/∂x = 0 and zero transver-
sal velocity v = 0 are considered for the outlet boundary (Neumann condition). A no-slip
boundary condition is assumed for the cylinder (inner boundary) and two types of boundary
conditions are used for the lateral walls: slip and non-slip conditions.

For this section, a set of 17 computation run scenarios are explained:

• Scenarios 1-7 are listed in the Table 2.7 as a first approach using different Re values.
The first seven runs are intended to show qualitative behaviour of the response, outputs
such as periodicity that starts at specific Reynolds numbers, looking for vortex shedding
and St-Re relationship. These vortices develop and remain attached to the cylinder up
to Recrit ≈ 47. Numerical convergence is monitored as well.

• Scenarios 8-11 were run with Re = 100 using different numerical parameters, recording
peak lift coefficients (CL,peak), drag coefficients (CD) and Strouhal numbers (St) as
indicators were made in order to test the numerical convergence and error reduction.

• Scenarios 12-17 were tested at different Re values and listed at Table 2.7, showing the
output summary for these cases in Table 2.10, where we are looking to obtain Strouhal
values and other main indicators for selected parameters.
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Table 2.7. Input summary for the circular cylinder scenarios approach.

Run Re D l Domain nx× ny dx, dy dt time itmax 2 tolerance maxiter 3

size

1. 1 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
2. 40 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
3. 80 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
4. 90 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
5. 100 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
6. 150 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
7. 200 0.47 1.0 6× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
8. 100 1.00 6.0 20× 5 400× 100 0.050 0.005 100 20, 000 1e− 5 100
9. 100 0.47 1.0 3× 2 300× 200 0.010 0.100 100 1, 000 1e− 4 80
10. 100 1.00 7.5 30× 15 750× 375 0.040 0.0067 300 44, 776 1e− 5 100
11. 100 1.00 7.5 30× 15 750× 375 0.040 0.010 300 30, 000 1e− 5 100
12. 60 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
13. 80 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
14. 100 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
15. 120 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
16. 160 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
17. 200 1.00 7.5 30× 15 750× 375 0.040 0.008 300 37, 500 1e− 5 100
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2.4.3 Results for flow past a circular cylinder (runs 1-7 ).

In regards to the transient behaviour, we observe that our numerical integration strategy
presents a large transient period. This is illustrated in figure 2.23 where the lift coefficient
is plotted as function of time for different Reynolds numbers. All of the results shown in the
following sections were obtained for steady flows when the transient behaviour died out.

Figure 2.23. CL as a function of time for different values of the Reynolds numbers: Re=90,
100, 150, and 200. Steadiness appears over Re ≈ 55.

Theoretically, beyond a critical Reynolds number, unsteadiness develops and the flow be-
comes periodic. Graph Time-CL for different Re for runs between 1 < Re < 80 were
discarded because no clear signals coming from the vortex shedding appeared in a Time-CL
graph, plotting only CL patterns as time develops from Re = 90 up to Re = 200 at t = 100,
as shown in figure 2.23. However, snapshots of streamlines around the circular cylinder for
different Reynolds numbers are shown in figure 2.24, from (a) where we consider a Reynolds
number equal to one at t = 100 to (e) Re = 200.

Notice that for Re = 1 the streamline distribution practically coincides with the one of an
ideal fluid. As we can see in graph (b), at Re = 40, flow separates fully and two symmetrical
vortices symmetrical appear behind the cylinder. Alternative behaviour from subsequent
Reynolds numbers are presented at t = 100. One may observe how clear sinusoidal behaviour
barely starts from Re = 60. Also, snapshots were taken along temporal evolution for Re =
100, at timesteps t=40, 60, 80 100 and 200 time units, as shown in figure 2.25 (a) to (e),
where steadiness was achieved at t ≈ 55, describing a time transient stage.

Unfiltered results for CL and CD graphs are shown in figures 2.26, and a sinusoidal pattern,
which is a sign of a sustained vortex shedding process is observed. Figure 2.26 (a) shows CL
and (b) shows CL for run 5, both indicating that no steady state is observed after t = 100.
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(a) Re = 1 at t = 100

(b) Re = 40 at t = 100 (c) Re = 80 at t = 100

(d) Re = 100 at t = 100 (e) Re = 200 at t = 100

Figure 2.24. Streamlines around a cylinder, t=100.

Averaged coefficients are time-averaged outputs obtained for each CL and CD instant value
per its corresponding elapsed time, CL,avg =

∑t
i=1

CL,i

i∆t
and CD,avg =

∑t
i=1

CD,i

i∆t
, being t the

total time units at t = 100, and starting to register from a proposed tsteady = 0.5 time. The
graph shows the assumption that the transient stage ends at t ≈ 0.5. Results are shown in
figures 2.27 (a) and (b) using run 5. An important number to observe is the Courant number
(C), which is defined for a two-dimensional case as C = ux

∆t
∆x

+ uy
∆t
∆y
≤ Cmax. The value of

Cmax changes with the method used to solve the discretised equation, especially depending on
whether the method is explicit or implicit. If an explicit (time-marching) solver is used then
typically C < 1. Implicit (matrix) solvers are usually less sensitive to numerical instability
and so larger values of C may be tolerated. The Courant-Friedrichs-Lewy (CFL) condition
indicates stability for the numerical solution, but not convergence. The Courant number will
be frequently used as a reference parameter in this work.
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(a) Re = 100 at t = 40 (b) Re = 100 at t = 60

(c) Re = 100 at t = 80 (d) Re = 100 at t = 100

(e) Re = 100 at t = 200

Figure 2.25. Streamlines around a cylinder, Re=100

Applying a Discrete Fourier Transformation (DFT) to the CL signal shown in figure 2.26 (a),
we obtain a singular response computed with a Fast Fourier Transform (FFT) algorithm.
See figure 2.28. If noise is present in raw-data, a local regression using weighted linear least
squares and a 2nd degree polynomial model (matlab’s loess command) may be applied to
selected steady data (starting at a proposed steady time) to filter and compare it, as shown
in figure 2.29 (a). A clear sinusoidal behaviour is shown after treatment but this smooth
data is useful just as a demonstration, and is not required for obtaining a latter fs (as we
can see in figure 2.29 (b)) where both curves are superimposed.

These sets of data were useful for obtaining a dominant frequency, as we can see in figure
2.28 using inputs from Table 2.7, and from a clean signal shown in figure 2.26. Figure 2.29
(b) shows the fs found with this method. A brief summary of results are shown in Table 2.8.
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(a) time-CL graph. (b) time-CD graph.

Figure 2.26. First results of lift and drag coefficients evolution in time using Re=100.

(a) time average-CL graph. (b) time average-CD graph.

Figure 2.27. Time averaged lift and drag coefficients using Re=100.

Comparing the pressure distribution to an ideal flow we can see that ideally around the
surface of a circle is CP = 1−( wk

U∞
)2 = 1−4sin2ϕ, where ϕ is the angular coordinate that goes

from 180◦ at the front to 0◦ to the rear of the cylinder. This expansion displays a symmetric
behaviour of the pressure coefficient on the cylinder surface, defined as CP = p − p∞, as a
function of the angle ϕ [39]. We can see a natural discrepancy at the rear side if we compare
figures 2.30 (a) CP obtained for an ideal flow around circle (dotted line) and (b)experimental
(broken line). Finally, 2.30 (c) is the result of the present work (continuous line) using run
5.
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Figure 2.28. FFT graph from t− CL data.

(a) Output from raw data and filtered signal us-
ing matlab’s rloess.

(b) Characteristic frequency after DFT of both
signals.

Figure 2.29. Output from raw data and frequency after DFT.

Regarding the physical conditions at the cylinder surface, we recall that the distance over
which the viscous forces have an effect is termed the boundary layer thickness. The mag-
nitude of shear stress that manifests itself in the boundary layer is given as function of the
polar angle. We can see in 2.30 (b), how shear stress force Fss decays at ϕ ≈ 80◦ attributed
to boundary layer separation. Though our boundary layer may be called artificial due it
consists basically of an interpolation, we have some characteristics that complies with it like
the following [11]:
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Table 2.8. Results for cylinder for run 1 validation

Item Constant

CLF (sum of max.x− y values) 0.313
Cl, average 0.000
Cd, average 0.905
St = fs 0.233

(a) Comparison between CP ideal flow
around circle (1,dotted line), experimen-
tal (2, broken line) and present work re-
sult(3, continuous line).

(b) Force magnitude for shear stress-angle (ϕ−Fss).
If Re increases, the separation point of the BL moves
to lower values of ϕ.

Figure 2.30. Comparison of CP for ideal, experimental and present work. Re=100.

• The velocity decreases to zero at the region closest to the wall. An originally laminar
flow is affected by the presence of the walls.

• Most of the flow is unaffected by the presence of the circular cylinder. The flow away
from the object can be treated as inviscid, and can sometimes be approximated as
potential flow.

• The thickness is a function of the ratio between the inertial forces and the viscous
forces, i.e. the Reynolds number. As Re increases, the thickness decreases. The region
near the wall where the viscous forces are of the same order as the inertial forces. We
will observe this point in further tests.

The separation of the boundary layer is an undesired event because it increases the drag
CD. For the present work, a precise computation of thickness will not be performed, but
separation points are assumed to be well located. When Re increases, the separation point
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of the boundary layer moves to lower values of θ, reaching a minimum value of about 80◦

from the front stagnation point. The furthest the point of separation of the rear stagnation,
the greater the drag. On the validation results some of these characteristics are present,
e.g. 2.30 (b) shows a shear stress force graph respect to the angle on half the circumference
on control volumes next to the solid body, according to the monitor. It can be said that a
sudden fall of velocity and thus shear stress-force shows a clear evidence of flow separation.

Figure 2.31. Pressure and shear stress around circular cylinder.

Using the input corresponding to run 9 in Table 2.7, in figure 2.31, both pressure distribution
and shear stress around the cylinder are shown. A pressure maximum appears at the front
stagnation point then the pressure reduces to minima near the top and bottom of the circular
cylinder.

Numerical simulation shows that recirculation is occurring, which means two things: (1) A
decrease in velocity is happening at the viscous layer due to its proximity to the non-slip
condition of the immerse body, and (2), a prevalence of a pressure gradient against flow is
occurring which is favouring to back-flow. Also, for run 9 inputs, two representations of
control volumes at the boundary next to the body are shown in figures 2.32 (a) and (b).
Here we can confirm graphically how pressure and tangent velocity is occurring at the very
boundary, in magnitude and direction (normal and tangent respectively). Pressure scalar
field is represented in figure 2.32 (c).

The results from the numerical solution concerning the force distribution i.e. pressure and
shear stresses exerted over the solid body, coincide with the expected fields (reference re-
quired) but we consider we may go further on with other validation cases.
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(a) Pressure distribution rep-
resented with vectors.

(b) Tangent velocities
(shear stress) distribution
represented with vectors.

(c) Contour pressure field near circu-
lar cylinder.

Figure 2.32. Graphs for flow around a circle validating our code, with vector and contour
plotting over the boundary control volumes in the fluid domain.

2.4.4 Results for flow past a circular cylinder (runs 8-17 ).

After analysing the results, we conclude that the input parameters used in run 14 were the
best combination of numerical parameters and computer time for our study. In order to
obtain an accurate Strouhal number due alternating vortex shedding, a set of computations
were made at Re = 100 that shares the domain size 30×15 (runs 10, 11 and 14). Results for
these runs are shown in table 2.9. Sensitivity on udx

dt
and dt is observed. The chosen run was

14 with non dimensionalized values (D = 1.0, u = 1.0), obtaining St = fs = 1/(shedding
cycle time)= 0.1466, for Re = 100.

Table 2.9. Results of the circular cylinder at Re = 100. Nncv is the total number of control
volumes in the domain.

Run Nncv udx
dt

CL avg CL rms CL peak CD St

8. 40, 250 10.0 0.000 − − 0.905 0.233
10. 281, 250 6.0 − 0.1374 0.1943 0.6764 0.1218
11. 281, 250 4.0 − 0.1335 0.1841 0.6759 0.1833
14. 281, 250 5.0 − 0.1302 0.1888 0.6761 0.1466

Then, a final set of computational runs are 12 − 17 from the table 2.7, were performed to
obtain St at different Re values. This new set was arranged, using run 14 parameters, but
at different Re according to Table 2.10.
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Comparative results are shown in figure (2.33) with some numerical and experimental well
documented values of previous works. We can see a trend obtained in the present work
compared to documented references.

Over a period of 100 years, beginning with the vortex frequency measurements of Strouhal
in 1878, there has existed a disparity of 20% among the many measurements of Strouhal
number vs Reynolds number in the laminar shedding regime. Agreement to the 1% level
of St − Re relationship for laminar parallel shedding using different techniques are given
in figure 2.33 [44]. According to other sources, experiments show that for a circular cylinder
the value is close to 0.21 for a large range of Reynolds number, including three dimensional
instabilities.

Table 2.10. Variables and results for runs applied to the circular cylinder approach, udx
dt

= 5.0

Run Re CL avg CL rms CL peak CD St

12. 60 −0.0303 0.0762 0.1086 0.7190 0.1200
13. 80 −0.0303 0.1068 0.1511 0.6910 0.1333
14. 100 −0.0303 0.1335 0.1888 0.6761 0.1466
15. 120 −0.0303 0.1684 0.2382 0.6721 0.1466
16. 160 −0.0303 0.2222 0.3142 0.6732 0.1600
17. 200 −0.0303 0.2608 0.3689 0.6783 0.1600

For the circular cylinder case we can state that a qualitative well represented behaviour of the
fluid was demonstrated for Re < 2000. The boundary layer separation and the recirculation
behind the body was qualitatively well captured due the viscous effects noticeable on the
deceleration of flow near the body and the presence of an adverse pressure gradient.

2.5 Summary and present work scope.

In this chapter we presented the description of a numerical code that successfully solves the
conservation equations in fluid mechanics for an integration domain with internal boundaries.
The solution method is based on the marking cells technique.

The results obtained indicate that most properties of the flow are in qualitative agreement
with experimental observations. Some other properties like St(Re) function are predicted to
be within 15% for Re<100.

Ideally, for the treatment of the numerical simulation of a viscous compressible flow over an
airfoil problem, a non-rectangular domain grid is required to be wrapped around the airfoil.
Continuity, momentum and energy equations have to be transformed into a new curvilinear
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Figure 2.33. St-Re number relationship. Acronyms meaning, WT: wind tunnel facility; XYTT:
a water facility known as the XY Towing Tank. The numbers indicate length/diameter ratio.

coordinate system. This treatment or a detailed explanation are beyond the scope of the
present work.

Turbulent flow is also out of the scope of the present work though it is worth to be included
in future development. Typical wind turbine performance situations take place in Re values
between 105 and 106, thus the use of a turbulent model may be decisive for a blade design.
It has been shown that for completely laminar flows, because of the peculiar aerodynamic
properties of some low Reynolds number, flows may separate over airfoils.

To illustrate the importance of using a turbulence model, observe that although a laminar
flow separates over the top and bottom surfaces of the airfoil, if a turbulence model is used
for calculation, a remarkable difference presents with a flow completely attached, because
turbulent flow resists separation much more than laminar flow [9].

The present work uses a finite volume method over a structured rectangular domain with the
intention of demonstrating how far it is from real cases, while keeping certain characteristics
valid or if it is a useful tool for calculating certain blade design features, though not for a
detailed study at the physics of the boundary layer. This work is also a useful example for
pedagogical purposes.



Chapter 3

Streamlined profile validation

3.1 Programming algorithms for a streamlined profile.

A similar procedure used for the squared and circular cylinder geometries will be applied
for a streamlined body immersed within the flow, our main concern being the calculation
of CD and CL. The design of a wind turbine blade, i.e. the proper cross section along its
length must have a streamlined shape (if it is mechanically possible) with a specific tilted
position in order to achieve optimal performance therefore, taking advantage of the forces
which occur during the interaction between the fluid and body. The aerodynamic forces and
moments on a body moving through a fluid or a fluid moving against a relative static body
are due to the pressure and stress distribution over the body’s surface.

Figure 3.1. Resulting aerodynamic force exerted on an airfoil and its components.

Surface force distribution of the fluid flowing about the body exerts a local force-area ~f on
each point of the body. Its normal and tangential components are the pressure p and the
shear stress τ as shown in figure 3.1 [9] [31].

55
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3.1.1 Algorithm for marking cells in the domain

Several steps were taken in order to compute CD and CL over an streamlined profile. The
following list briefly describes each of them:

(i) Choice of online databases.

(ii) Read data and point addition.

(iii) Find aerodynamic center and rotation.

(iv) Select and mark cells of solid domain.

(v) Select boundary cells at fluid domain for monitoring.

(vi) Compute pressure at the boundary.

(vii) Compute shear stress at the boundary.

(viii) Compute of CD, CL, and lift-to-drag ratio.

Each item of this list is described in some detail, as follows:

(i) Online databases. A intermediate goal for the present project is to program a code
capable of reading normalized x−y data that describes an airfoil geometry. Several databases
are available online. There are sites available in which a wide range of symmetrical, NACA
4, 5 or 6 digit airfoils database collection can be found.

Figure 3.2. Airfoil Coordinates for NACA FX 83-W-108 obtained from downloaded database.

The sites contain detailed information like max-min percentage thickness or maximum per-
centage camber relative to the chord, generating x-y coordinates data files, etc. Also, the
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Reynolds number range, turbulence level (Ncrit) and maximum CL/CD are given in some
sites. Default values of the pitch angle, camber radius or thickness may be modified and
plotted for visualization. In figure 3.2, an example of an airfoil downloaded from UIUC
site [6], which contains a wide range of coordinate databases is shown.

(ii) Airfoil data reader and point addition algorithm. Once data is downloaded,
each point is located according to its x-y coordinates in an absolute Cartesian reference
frame. Separation between points should be closer than the size of a single control volume,
otherwise it could trigger problems further on when marked-cells are required for selection,
i.e. a point will be needed for each control volume to be marked out. In other words, selected
control volumes (or marked cells as we will commonly refer to) must conform a closed area
with no cell exception for a later correct selection of all cells inside the airfoil area. To
guarantee this condition, an interpolation process should be implemented. Figure 3.3 shows
how interpolated (blue) points must be located between original (orange) points in order to
complete the reciprocity between a marked cells and coordinate points.
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Figure 3.3. Read points(orange) and interpolated points(blue).

As shown in figure 3.3, the points read from the data base are complemented with new ones
added by interpolating them between existing pairs of points, and inserting as many as it is
necessary in order to fill the space with enough points equally spaced having a separation less
than the size of a control volume (∆x or ∆y, depending on the slope case). The procedure
to achieve this is described in the diagram shown in fig.3.5 where the algorithm is explained.

The original number of points is n =
∑n

i=1 ci, where c is a single Cartesian point (x, y), an m
is the new number of points, summing the original set plus the new ones: m = n+

∑n−1
i=1 pi,

where pi are the points created between each pair of (x, y)i and (x, y)i+1 original points. The
number of interpolated points pi may vary from segment to segment because of it is the ratio
of the distance between original point couple and the size of a control volume. See figure 3.4
for the detailed graphic explanation.

The output data will lead to the selection of the proper control volumes over the Cartesian
domain using the mark cells technique described on step (iv) and is explained in the algo-
rithm shown in figure 3.5. The code has a conditional rule depending on whether the angle
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Figure 3.4. (a)Points read by subroutine (orange) from the original data base and (b)new
added points (yellow) creates the pi set for each pair of original points. The entire enumeration
of points is reset after interpolating new ones. Notice that there must be a point (x, y)p for each
control volume cell(gray) selected further on (future selected control volumes (mark cells) are
only shown as reference).

of attack (AOA) is either equal or different from zero. For AOA 6= 0 an auxiliary subroutine
will be called to rotate all read/created points, to create a file with new Cartesian coordi-
nates x − y. From the wind turbine blade axes of coordinates, this implies it changes the
pitch angle. The output for this tilted airfoil geometry with the specified angle will be also
marked out later according to the technique explained in step (iv). Rotation of all points
will be done as described in the diagram as the rotating subroutine. The algorithm of this
last code segment will be described in what follows.

(iii) Find aerodynamic center and rotation. The point at which the resultant pressure
acts is called the center of pressure. If we consider an airfoil at an angle of attack, we can
theoretically determine the pressure variation around the airfoil, and calculate the aerody-
namic force situated at the center of pressure. Formally, the center of pressure is defined
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Figure 3.5. Flow diagram for reader-point adder subroutine.

by,

xcp =

∫
x(s) p(s) ds∫
p(s) ds

ycp =

∫
y(s) p(s) ds∫
p(s) ds

where s is the coordinate around the airfoil, and x(s), y(s) determine the airfoil profile. If we
change the angle of attack, the pressure distribution changes and therefore the aerodynamic
force, the location of the center of pressure, and the moment will change. Hence, determining
the aerodynamic behavior of an airfoil is very complicated if we use the center of pressure
to analyze the forces. We can compute the moment about any point on the airfoil if we
know the pressure distribution. The aerodynamic force will be the same, but the value of
the moment depends on the point where that force is applied.

On other hand, the aerodynamic center is defined as the point at which the aerodynamic
angular momentum, M , is independent of the angle of attack, α. It is convenient to specify
the aerodynamic center (ac) as the point at which the pitching moment coefficient CM for
the airfoil does not vary with lift coefficient (i.e. angle of attack), which is dCM

dCL
= 0. It
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has been found both experimentally and theoretically for thin airfoils at low speed that, if
the aerodynamic force is applied at a location 1

4
chord from the leading edge on most low

speed airfoils, the magnitude of the aerodynamic moment remains nearly constant with the
angle of attack. The location where the aerodynamic moment remains constant is called the
aerodynamic center (ac) of the airfoil. Using the aerodynamic center as the location where
the aerodynamic force is applied eliminates the problem of the movement of the center of
pressure. For supersonic airfoils, the aerodynamic center is nearer to 1

2
chord location.

For symmetric airfoils, the aerodynamic moment about the ac is zero for all angles of attack.
With camber, the moment is non-zero and constant for thin airfoils. For a positive cambered
airfoil, the moment is negative and results in a counter-clockwise rotation of the airfoil. With
camber, an angle of attack can be determined for which the airfoil produces no lift, but the
moment is still present [4].
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Figure 3.6. Rotated points using aerodynamic center as pivot.

The present code was programmed in such a way that ac is selected precisely as pivot for
pitching the airfoil. This strategy was selected in order to have an equivalent comparison,
keeping the same moment over the airfoil, at the same reference frame conditions and in-
puts. The position of the aerodynamic center is shown in figure 3.6. The flow diagram for
the rotating subroutine algorithm is shown in figure 3.7.

(iv) Select boundary and internal cells in the solid domain. The output for a rotated
or non-rotated geometry will return data to airfoil reading subroutine, leading us to the next
step of the main subroutine: A boundary cell selection in the solid domain.

Two factors are involved here: A measuring proximity factor that indicates if new points
must be created, and an adding proximity factor, that creates and locates the new points
between original pair (x, y)i, (x, y)i+1. Let be n the original number of data points and m
the new number of data points added via while-loop between each (x, y)n data couple.



3.1. Programming algorithms for a streamlined profile. 61

Figure 3.7. Flow diagram for point-rotation subroutine.

A new set k of total points is obtained. At this stage of the main algorithm, slopes mk−1 are
created between each pair of points (x, y)k. It is important to see that for each new pair of
points (x, y)k, a new set of slopes mk−1 between them are created. Then, the algorithm finds a
(i, j) location to assign a mark cell(i,j) value and a local normal slope cell(i,j) value (see figure
3.8). After all new points are created, marking-cell procedure cycle starts. For each new point
(x, y)k created, a control volume or cell is marked with the integer variable marked cell = 1
for the solid domain and the remaining cells with the default values marked cell = 0.

The marking cell technique described on the previous chapter shows the numerical treatment
for each selected cell used as a boundary in the solid domain as well as in the boundary of
the fluid domain. In fig. 3.9, boundary selection for the cells of interest is illustrated.

The selection of the whole solid domain area is done by a boolean operation of a double se-
lection of cells in a vertical direction. Two cycle selections were performed previously: One
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Figure 3.8. Selection of cells at the boundary (mark cells(i,j)=1) and slope value assigment
(slope cells(i,j)=1).
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Figure 3.9. Solid domain first selected boundary cells.

from up-down direction marking cells from the lower boundary of the airfoil, and a second
one, going from down-up direction marking cells from the upper boundary. The union of
both sets contain the final selection of the appropriate cells of the interior area of the object.
An example of final marked cells for tilted control volumes using the ac as pivot is shown in
figure 3.10 highlighted in yellow. The ac pivot is denoted as a red filled circle.

(v) Select boundary cells at fluid domain for monitoring. The next step in the main
algorithm is to identify the boundary cells for the fluid domain. A boundary cell is defined
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Figure 3.10. Final selected control volumes of airfoil in an Cartesian domain. Marked (mark
cells=1) and boundary cells (bound cells=1) selected. Boundary cells are selected and listed.

as a cell that contains a point that defines the airfoil profile. The algorithm used for selecting
boundary cells is as described in figure 3.11:

Figure 3.11. Flow diagram for boundary cells selection (fluid domain) subroutine.

1. Locate the cell at the trailing edge.

2. Search the next cell, looking for the neighbour boundary cell in the fluid domain. Search
these cells with the following priority: Give preference to north, then north-west and
west cells, and mark them as boundaries.
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3. Select the next cells on the boundary, continuing with south-west, south and south-east
cells, in consecutive order.

4. End of search criterion. When the boundary cells search finds the first cell at the
trailing edge cell then the process stops. Figure 3.10 shows an example in the direction
of selection of all boundary cells around.

Examples in the case of a tilted airfoil (relative to incoming wind direction) are shown in
figure 3.10, where the selection of boundary cells of solid body and inside filling (yellow)
using all data points, and boundary fluid cells (blue).

The boundary cells in the fluid domain will work as monitor cells. The purpose of listing
the boundary cells in the order just described is to show information contained there, for
instance the geometrical features, like the normal and tangent angles relative to the surface
for each one of these control volumes. These angles are called θn̂ and θ⊥n̂ of slopes mm−1

and are associated at this point to marked cells in the boundary of the fluid domain using
the variable bound cells = 1, shown in figure 3.12 and 3.13. With this strategy, the pressure
and velocity are conveniently stored once the solution is reached after the time cycle.

Figure 3.12. Normal local slope at different attack angles. The x− axis is the monitor at the
boundary cell denoted as ncv or number of control volume.

Local normal and tangent slopes are allocated in the boundary cells of the fluid domain
(with variable bound cells = 1), and are collected as follows: (1) For each (x, y)i, (x, y)i+1

segment, a mm−1 is computed, (2) For each marked cell (on boundary cells of the solid do-
main), selected as described on step (iv), a mm−1 value is allocated. (3) Likewise, θn̂ and θ⊥n̂
in marked cells will transfer values to boundary cells in the fluid. For each angle of attack,
local normal and tangent angles θn̂ and θ⊥n̂ will change. This method was useful to confirm
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Figure 3.13. Tangent local slope at different attack angles (Only positive values).

that values on every control volume were effectively sensitive to each α step.

(vi) Computation of the total force obtained from pressure. After the time cycle has
finished and the O · u = 0 condition has been satisfied, the final pressure p and velocity u, v
fields are obtained on the whole fluid domain. The pressure algorithm for computing values
at boundary is shown in figure 3.14.

As described on sections 2.2.2 and 2.2.3, for the square and circular geometries, a similar
procedure was followed to compute ~FP,total by integrating

∫
Pds for the whole boundary.

The specific steps of the algorithm are:

1. Normal forces are computed for each cell considering the local pressure in n̂ direction.

2. The segment ds for each control volume at the boundary is computed with the ex-
pression

∑m−1
i=1 (x, y)i,i+1/ncvbound, i.e. the sum of length segments between all m new

points divided by the total number of control volumes in the solid boundary.

3. Resultant force is split in Fx and Fy.

4. The force components are integrated obtaining finally Fx,total and Fy,total for pressure
sources.

The aerodynamic performance of airfoil sections can be studied most easily by reference to
the distribution of pressure over the airfoil. This distribution is usually expressed in terms of
the pressure coefficient, CP = (P − P∞) /

(
1
2
%U2
∞
)
. CP is the difference between local static

pressure and freestream static pressure, nondimensionalized by the freestream dynamic pres-
sure. The plot CP vs. x/c as illustrated on figure 1.9, in chapter 1, and indicates that there
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Figure 3.14. Flow diagram for total force obtained from pressure.

is a variation from the leading edge (0.0) up to the trailing edge (1.0), depending of the
presence of a boundary layer. CP is plotted upside-down with negative values (suction),
higher on the plot.

(vii) Computation of the total force obtained from shear stress. The algorithm

for computing the total force ~Fss,total originated at the boundary is shown in figure 3.15.
The total force is obtained by integrating

∫
τds, where τ is the stress tensor and ds is the

differential of the distance along the airfoil. Let us consider θn̂ as the angle normal to the
airfoil surface, θ⊥n̂ as the angle tangent to the airfoil surface, θu the angle of the velocity of
the fluid at the boundary cell and αss is the opposite angle in the velocity triangle formed
by the velocity of the fluid at the boundary cell and the tangent component of this velocity.
See also figures 3.16 and 3.17 to identify each of them. The steps of the algorithm are:

1. Compute the resultant velocity ~u(u, v) and θu, over a convenient absolute-reference
frame.

2. Classify the location of (~u(u, v), θu) in a specific position (see figure 3.16) formed by
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Figure 3.15. Flow diagram for total force obtained from shear stress.

the absolute-reference frame (x-y) and the relative-reference frame (θn̂, θ⊥n̂) in order to
choose the adequate algebraic rule in the next step. Figure 3.17 shows how this may
change depending on θn̂, θ⊥n̂ and θu case.

3. Compute αss angle using geometric rules based on θn̂, θ⊥n̂ and θu depending on a
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specific category previously defined. Variable αss was created for simplifying computing
duss in the next step. No matter the direction of ~u, the algorithm must compute the
appropriate αss projected value. Notice that αss 6= AOA.

4. Compute duss = ~u · sin αss. This is a tangent component of the velocity for every
control volume on the boundary cells in the fluid domain.

5. Compute shear stress τ = 1
Re
duss/dy, using a constant dy, that is the perpendicular

average distance between the center of the control volume at the boundary(where
velocity is measured) and the airfoil theoretical surface, that is dy = ∆x or ∆y.

6. Compute ~Fss = τ · s applied on θ⊥n̂ direction.

7. Split the resultant force in Fx and Fy.

8. All these local forces are integrated to obtain Fx,total and Fy,total stress source.

Figure 3.16. Projection rules for obtaining a tangent
component from normal and tangent unit vectors.

Figure 3.17. Details for obtaining
tangent component from a velocity
vector.

(viii) Algorithm for lift-to-drag ratio (L/D) ratio subroutine. A useful measure for
the aerodynamic efficiency of an airfoil is the lift-to-drag ratio, given by L

D
= CL

CD
. At any

given velocity, high as possible L
D

values are desired because the higher this ratio value is,
the more aerodynamically efficient the body facing a flow is. The L

D
, algorithm is shown in

diagram 3.18.

The steps for the algorithm are: (1) The forces Fx,total and Fy,total at each point on the
boundary are computed for both pressure and shear stress, (2) the forces are integrated and
projected for each direction x, total and y, total, (3) the coefficients CL and CD are computed
and, (4) the ratio L/D = CL

CD
is obtained.



3.2. Calculation for a streamlined profile. 69

Figure 3.18. Flow diagram for L/D ratio computation.

3.2 Calculation for a streamlined profile.

3.2.1 Inputs.

A validation for a streamlined profile was done by applying the algorithms described on the
previous section. The inputs are shown in tables, 3.1, 3.2 and 3.3

Table 3.1. Inputs for a streamlined a profile run validation.

Item Input

Grid type Cartesian/structured
Domain size, x × y , y − centered 20× 5
Number of control volumes, nx × ny 400× 100
Time step, dt 0.005
Number of time iterations, itmax 20,000
Iteration tolerance 1E-5

3.2.2 Lift and drag relationships.

The aerodynamic performance, which depends mainly on the lift and drag, is fundamental for
the design of an efficient rotor blade. Aerodynamic lift is the force responsible for the power
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Table 3.2. Constants for streamlined profile run validation

Item Constant

Reynolds, Re 100
Inlet x velocity, u 1.0
Control volume size, dx × dy 0.05× 0.05
Cylinder diameter, D 1.0
Center location, (x,y) 6.0, 0.0
Total elapsed time units, time 100
Maximum number of iterations, maxiter 100

Table 3.3. Conditions for streamlined profile run validation

Item Constant

Scheme Central Difference
Boundary cond. on Top/Btm walls Free-slip
Time scheme Implicit
Formulation type Simplec

yield generated by the turbine and it is therefore essential to maximise with an appropriate
design. The drag force which opposes the motion of the blade is also generated by friction
and should be minimized. Figure 3.21 (a) shows the drag and lift coefficients (CD and CL)
as functions of the angle of attack (AOA).

Expected reduction of CL at ≈ 15◦ does not appear, rather it continues ascending until 30◦,
for reasons not completely verified. Below, figure 3.20 (a) at left shows a CD-CL polar type
graph for positive values of CL and right (b) shows the L/D ratio graph.

The ratio of lift to drag is an indication of the aerodynamic efficiency as we already ex-
plained. It is then apparent that an aerofoil section with a high lift to drag ratio, typically
greater than 30, can be chosen for a rotor blade design [38]. We can observe the similarity
with typical curves in 1.14.

3.2.3 Pressure distribution over an streamlined body.

The pressure distribution is plotted using consecutive selected control volumes in the hori-
zontal axis using our own cell monitor. Starting from the trailing edge going over the upper
surface to the leading edge and then back by the lower surface back to the starting point.
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Figure 3.19. CD-α (left); CD-α (right)

Figure 3.20. CD vs. CL (left); L/D ratio (right).

Contrary to typical representations, positive values are plotted in the upper side of the
graph. The pressure at the stagnation point passes through 0. Figure 3.21 shows pressure
distribution at boundary cells at Re=100 for α = 0◦, 10◦ and 20◦ [25].

The pressure field is a function of the thickness of a streamlined body placed in the flow.
The acceleration and deceleration caused by a finite body width creates favourable and un-
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Figure 3.21. Pressure distribution at boundary cells for Re=100, α = 0◦, 10◦ and 20◦, along
chosen control volumes at the boundary.

favourable pressure gradients. When the body is thin, there are only weak pressure gradients
and the flow remains attached. As the body gets thicker, the adverse pressure gradient re-
sulting from the deceleration near the rear, leads to flow separation, recirculation and vortex
shedding. Focusing on the rear region of the flow, it is seen that as thickness of the body is
reduced in the separated region disappears as the adverse pressure gradient is diminished [11].
As we observed in figures 1.8 and 1.9, the effect of the boundary layer is to reduce the
pressure distribution at the rear of the aerofoil [12]. This coincides with previously reported
theoretical observations explaining for a viscous flow: When the backward force due to the
decreased pressures behind the maximum thickness is somewhat increased, while the forward
push due to the increased pressures near the tail is much reduced, provoking a rearward force
known as boundary layer normal-pressure drag (form drag). [23].

The pressure distribution for Re = 100 is shown in figures 3.22 (a), (c) and (e) for α = 0◦,
10◦ and 20◦ respectively. These values will be used later for CL, CD computation. The
pressure field distribution is given in the right hand column, figures (b), (d) and (f). A more
detailed scalar pressure field for this case is shown as the sequence in figure 3.25, for a range
of α values from 0◦ to 30◦. The stagnation point that appears initially at the leading edge
moves back, creating a growing high pressure zone below the aerofoil as α increases.

3.2.4 Shear stress distribution over an streamlined body.

In most aerodynamic situations, the pressure p (or the relative pressure P − P∞ is typically

greater than τ by at least two orders of magnitude, and so the resultant ~f is very nearly
perpendicular to the surface. But the stress often significantly contributes to drag, so it
cannot be neglected entirely.



3.2. Calculation for a streamlined profile. 73

(a) Pressure distribution at 0◦ (b) Pressure field at 0◦

(c) Pressure distribution at 10◦ (d) Pressure field at 10◦

(e) Pressure distribution at 20◦ (f) Pressure field at 20◦

Figure 3.22. Pressure distribution and pressure field around airfoil
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Figure 3.23. Forces from shear stress, function of tangent velocities at boundary cells for
α = 0◦ (gray), 10◦ (cyan) and 20◦ (blue).

Tangent velocity magnitudes used for shear stress (τ) calculation are graphed for Re = 100
are shown in figure 3.23 for α = 0◦, 10◦ and 20◦. Visualization of tangent velocity vectors ~u
are also shown in figure 3.24 on boundary cells control volumes [31]. We may appreciate in
graph 3.23 large variations between values, mainly due the chequered topology of the surface
where the flow see as as small obstacle each stair step that conforms the solid boundary,
we may observe this at the abrupt change in magnitude of the velocities around the airfoil
surface in figure 3.24.

3.2.5 Boundary layer separation over streamlined bodies.

In the case of streamlined airfoils at a low angle of attack, separation occurs only at the
trailing tip with minimal losses. As the angle of attack increases, the separation point
moves upstream leading to an increased drag. Laminar flow may be viewed as a streamlined
sequence in figure 3.26, for a range of angles of attack from 0◦ to 30◦ and for Re = 100. At
approximately 12◦ a separation of flow appears at the rear top zone of airfoil, and a clear
recirculation visualization appears at 20◦.
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Figure 3.24. Tangent velocities next to airfoil at (a)0◦, (b)10◦ and (c)20◦ for the present
work.

3.3 XFOIL comparison using a HAWT blade using a

NACA 4412 profile.

3.3.1 XFOIL results for NACA 4412.

The aim of this study is to compare flow properties at larger Reynolds numbers obtained
with the present work code and XFOIL [15]. XFOIL is an interactive program for the design
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(a) Pressure field at α = 0◦ (b) Pressure field at α = 5◦

(c) Pressure field at α = 10◦ (d) Pressure field at α = 12◦

(e) Pressure field at α = 14◦ (f) Pressure field at α = 16◦

(g) Pressure field at α = 18◦ (h) Pressure field at α = 20◦

(i) Pressure field at α = 25◦ (j) Pressure field at α = 30◦

Figure 3.25. Pressure field at Re=100 for the present work.
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(a) Streamlines at 0◦ (b) Streamlines at 5◦

(c) Streamlines at 10◦ (d) Streamlines at 12◦

(e) Streamlines at 14◦ (f) Streamlines at 16◦

(g) Streamlines at 18◦ (h) Streamlines at 20◦

(i) Streamlines at 25◦ (j) Streamlines at 30◦

Figure 3.26. Streamlines at Re=100 for the present work.
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and analysis of subsonic isolated airfoils. It consists of a collection of menu-driven routines
which perform various useful functions such as viscous or inviscid analysis of an existing
airfoil among other capabilities. Given the coordinates specifying the shape of a 2D airfoil,
Reynolds and Mach numbers, XFOIL can calculate the pressure distribution on the airfoil
and hence lift and drag characteristics. The program also allows inverse design - it will vary
an airfoil shape to achieve the desired parameters. It is released under the GNU GPL.

Table 3.4. Results for NACA 4412 run in XFOIL. Inputs for NACA 4412 XFOIL runs are:
Mach=subsonic, Viscous=yes, α = 5.0◦ and Ncr = 9.0.

Re 100 1000 2000

CL − 0.3084 0.3089
CM − −0.0342 −0.0360
CD − 0.13607 0.1074
L/D − 2.27 2.8700

XFOIL is a firsthand tool, one of the most used for analyzing airfoils because the accuracy of
their results and the versatility for reading data bases. XFOIL generates results and displays
in graphic pressure coefficient (viscous and inviscid) distributions and pressure fields around
the profile as well as in polar plots. To achieve this, we must enter as input a single data or
a sequence, e.g. a sequence of angles of attack or lift coefficients, leaving other parameters
fixed. Another useful result is the thickness of the boundary layer.

Now we present two scenarios: Re = 1000 and Re = 2000, then we perform the runs in
XFOIL software obtaining the results presented in table 3.9. In figures 3.27 a and c pressure
coefficient plots are presented, in figures 3.27 b and d pressure distribution vectors are shown
for both scenarios.

3.3.2 Inputs for our code.

In order to do the comparison with the results reported, the same runs will be performed
with our code. The reason of the selected values is that, in any case, our code might be
valid for laminar flows. Flow transition to turbulent flow begins from Re = 2000, so, no
larger Reynolds can be used. XFOIL software becomes less precise as we decrease Re below
104, moreover, for many profiles, results may not be obtained for such Reynolds values. In
summary, the window between Re = 1000 and Re = 2000 might be the only valid range
-with a certain confidence level- that we can use to compare results.

Default inputs are shown in tables 3.5, 3.6 and 3.7 for three different scenarios: Re = 100,
Re = 1000 and Re = 2000. Here are listed domain and time parameters, as well as numeric
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(a) CP for Re=1000. (b) Pressure vector distribution for Re=1000.

(c) CP for Re=2000 (d) Pressure vector distribution for Re=2000.

Figure 3.27. XFOIL results at α = 5.0◦ for NACA 4412.

schemes, initial and boundary conditions. All these values will be default used, unless any
other declared input is explicitly specified. Table 3.8 shows aerodynamic inputs.

Table 3.5. Domain sizes and characteristics
for all Re scenarios.

Input Description

Grid type Cartesian, structured
dx, dy 0.010× 0.010
nx, ny, 800,100
Total cv 80, 000

Table 3.6. Input time parameters for all Re
scenarios.

Scenario Description/value

Time units 120
Time step, dt 0.0020
Itmax 60, 000
Maxiter 100
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Table 3.7. Schemes and conditions for run
validation.

Item Value

Scheme Central difference
Boundary conditions
on Top/Btm walls Free-slip
Time scheme Implicit
Formulation type Simplec
Tolerance 1E-5

Table 3.8. Aerodynamic inputs and settings
for NACA 4412 run validation.

Item Value

Inlet velocity, u(= wr) 1.0
AOA, α 5.0◦

TSR, λ 5.0
Chord at tip, ctip 1.0
Leading edge location x = 0.0, y = 0.0
Rotation location Aerodyn.ctr.

3.3.3 Results for NACA 4412 comparison.

For purposes of illustration, in the present section we compare the pressure coefficient dis-
tribution obtained with the code developed in the present investigation and that calculated
with the XFOIL code. We chose the airfoil NACA 4412 as the airfoil profile for the bench-
mark. A pressure maximum is detected at the leading edge, as well as suction zones (i.e.
CP < 0) for both upper and lower face, standing out a prevalent suction on the upper side.
Comparable order values are observed, mainly for Re = 2000 curve.

Looking for the possible causes of the differences, we may cite many, as much as all inputs
listed in Tables 3.5 to 3.7. It is important also to consider that our code is time dependent
and shows snapshots of a transitory phenomenon, so we may not be observing the closest
scenario to XFOIL steady-state results, though we might increment the total elapsed time to
close the gap. Also is worth to say that trend difference was expected considering XFOIL uses
x-axis location plotting, and our code plots over the normalized whole surface development,
which might not be the best comparative point of view. At last, we notice a non monotonic
behaviour of the pressure obtained with our code, this effect is originated due the squared-
element shaped airfoil.

Table 3.9 shows a comparative result summary between both methods: XFOIL and the
present work results, obtained for the Re scenarios expressed in terms of CL, CD and L/D.
Errors are also computed and shown in last columns.

As it can be appreciated, quantitative errors are less than 30 % which are tolerable for an
order of magnitude study. Larger errors are found for L/D and this variable is not recom-
mended to be used as a comparison parameter.
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Figure 3.28. Pressure distribution comparison. Present work results are shown in continuous
line. Re = 100 scenario is also plotted in light gray as reference.

Table 3.9. Comparative table summary for NACA 4412, at α = 5.0◦. Re = 100 showed as a
reference.

XFOIL Present work Errors

error error
Re 1000 2000 100 1000 2000 Re = 1000 Re = 2000

CL 0.3084 0.3089 0.4438 0.3699 0.3200 19.94 % 3.59 %
CD 0.13607 0.1074 0.3103 0.0966 0.0750 28.97 % 29.91 %
L/D 2.27 2.8700 1.43 3.83 4.27 68.72 % 61.67 %

3.3.4 Flow description.

A somewhat more detailed description of the dynamic properties of the flow for α = 5.0◦ and
Re =100, 1000, and 2000 is presented in this section. Graphical results are shown in the set
of figures from 3.29 to 3.31. The results shown are: (a) Pressure distribution around airfoil
displaying normal vectors representing magnitude, (b) pressure field around airfoil plotted
by coloured contours, (c) velocity field around airfoil are plotted by coloured vectors repre-
senting magnitude, and (d) streamlines overlapped on a z-vorticity field plot with a colour
scale. Valuable information may be observed. We may complete the visualization of pressure
behaviour around airfoil comparing to figure 3.27, where distribution over the profile may
be appreciated. The pressure distribution as a function of the normalized position is shown
in figure 3.28 although there are obvious differences between the two sets of results, it is
important to highlight that the qualitative trend coincides.
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(a) Pressure around aerofoil (normal vec-
tors shows magnitude).

(b) Pressure field around aerofoil (contour plot).

(c) Velocity field around aerofoil (coloured vec-
tors shows magnitude).

(d) Streamlines and z vorticity field.

Figure 3.29. Results around aerofoil for NACA 4412, at α = 5◦, at Re = 100 for the present
work.
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(a) Pressure around aerofoil (normal vec-
tors shows magnitude).

(b) Pressure field around aerofoil (contour plot).

(c) Velocity field around aerofoil (coloured vec-
tors shows magnitude).

(d) Streamlines and z vorticity field.

Figure 3.30. Results around aerofoil for NACA 4412, at α = 5◦, at Re = 1000 for the present
work.
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(a) Pressure around aerofoil (normal vec-
tors shows magnitude).

(b) Pressure field around aerofoil (contour plot).

(c) Velocity field around aerofoil (coloured vec-
tors shows magnitude).

(d) Streamlines and z vorticity field.

Figure 3.31. Results around aerofoil for NACA 4412, at α = 5◦, at Re = 2000 for the present
work.



Chapter 4

Results

4.1 HAWT blade case for study: NACA 0012.

Once the validation of our code of a flow over over an immersed streamlined body, we will
proceed to consider a case of study using a NACA 0012 at Re = 100 as an exercise. In
this case the low speed NACA 0012 symmetric aerofoil has been chosen as an object of
study because it has been widely analysed. This simple geometry provides an excellent 2D
validation case.

4.1.1 Computation of sections at a distance r from the rest.

For this case of study, eight cross-sections equally spaced along blade’s length will be anal-
ysed, all of them using NACA 0012 airfoil but varying scale and the pitch angle β. The
following parameters are required to completely define the study: First, the chord at the
tip is defined as ctip which has a normalized dimension of 1.0, as well an initial velocity of
1.0. The second fixed parameter is R, which is the total length. Then, the variables will be
r, defined as r = n × ctip, where n is a required number of the times in order to distribute
sections along R. See figure 4.1.

Figure 4.1. Default parameters of a theoretical
blade used as inputs: ctip = 1.0 and R = 9.5.

Figure 4.2. Selected blade sections
for analysis. Step size = 1.0.

The chord at any location r will be given by cr = n× ctip (i.e. n times the tip chord. In the
present work, we use the normalized chord, defined as cr = c/ctip as a normalized dimension

85
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ratio of an actual blade. Figure 4.1 shows each variable on a not to scale diagram. In figure
4.2 we show an illustration of the uniform distribution of eight selected sections, equally
separated, along the blade span, going from 1 to 8 positions.

As explained in Chapter 1, the code requires input values that includes the twist angle and
the chord length. For a better visualization and understanding of how geometry varies along
blade span for each section computation, a collection of graphs are presented using αD = 15◦

as an example. See figures 4.3 to 4.6 where the chosen non-dimensional geometric parameters
are plotted as functionss of r/R, which is the normalized location along the blade, with a
maximum value of 1.0 at the tip.

Figure 4.3 shows the non-dimensional chord c/ctip which gives the typical planform shape.
In this example c/ctip reduces to 1.0 at the tip. Figure (4.4) shows the ratio between total
radius R and the local chord c(r): R/c(r) which is the span times the local chord. We get
the smallest value of this parameter at the root. The total span of the variable is from ∼ 2.3
to 9.5.

Figure 4.3. The normalized chord
(c(r)/c(R)) as a function of the normalized
span (r/R).

Figure 4.4. The normalized ratio
(R/c(r)) as a function of the normalized
span (r/R).

Figure 4.5 describes γ, φ and β as functions of the length of the blade using αD = 15◦.
From root to tip, γ(r) that increases monotonically can be appreciated, while φ(r), and β(r)
decrease monotonically. Observe that are related by an offset β(r) and φ(r). See figure 1.3 in
chapter 1 for the description of these angles. In figure 4.6, the local velocity vectors u(r) and
w(r), are plotted as functions of r/R. Notice the maximum value of u(r), and w(r) ≈ 1.0
at the tip of the blade, while v(r) and vw are kept constant. In a other words, inlet velocity
value will vary for each section to solve.
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Figure 4.5. Local angle as a function
of the normalized span (r/R) which is the
twist along span. αD = 15.0◦.

Figure 4.6. Local velocities (u(r) and
w(r)) as a function of the normalized span
(r/R). Vw = 0.1982 and V = 0.1321.

It is important to clarify that inputs are not the same for all sections even for the same
blade. See table 4.1 for the values used in the present study. We will compute each section
at equally spaced r locations using consistent inputs.

Table 4.1. Parameters related to r locations.

Position r r/R c/ctip scalea Domain size dx,dy dt itmax ux (= wr)

1. 2.5 0.263 3.420 3.4 6.80× 5.10 0.034 0.0170 5882 0.292
2. 3.5 0.368 2.575 2.5 5.20× 3.90 0.026 0.0130 7692 0.388
3. 4.5 0.474 2.050 2.0 4.00× 3.00 0.020 0.0100 10000 0.488
4. 5.5 0.579 1.698 1.7 3.40× 2.55 0.017 0.0085 11765 0.589
5. 6.5 0.684 1.447 1.4 2.80× 2.10 0.014 0.0070 14286 0.691
6. 7.5 0.789 1.260 1.2 2.40× 1.80 0.012 0.0060 16667 0.793
7. 8.5 0.895 1.115 1.1 2.20× 1.65 0.011 0.0055 18182 0.897
8. 9.5 1.000 1.000 1.0 2.00× 1.50 0.010 0.0050 20000 1.000

aRounded value of c/ctip for use as input in the code.

The total radius R is set to R = 9.5× ctip, then r set goes from 2.5 at the root of the blade
to 9.5 at the tip. In the present example, the chord goes from 3.420 at the root to 1.000 at
the tip.

In order to calculate all eight scenarios, chord sizes were scaled, as well as domain sizes, in
such a manner that total number of control volumes (ncv) were kept constant (ncvx = 200,
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ncvy = 150), as well as the total time (time = 100). Scaling factors are listed in Table 4.1.

Figure 4.7 depicts the domain and airfoil at position 1 at the root overlaid upon position 8
at the tip, showing a size comparison between them. Input parameters will be set according
to table 4.1 and obtained as described in subsection 4.1.1.

Figure 4.7. Domain size comparison between root position (1) and tip position (8).

Also, a ratio between control volume size and time step was kept constant, i.e. dx/dt =
constant. This is a factor used for the CLF condition as explained in Chapter 3, ux

∆t
∆x
≤

Cmax, if uy = 0. As expressed in Table 4.1, ux must vary for each section.

Another consideration to keep in mind is that sections must twist with respect to the rotation
plane of the HAWT, depending on β variation. Figure 4.8 illustrates this graphically for the
present set of scenarios from a fixed point of view, showing the twist of the section along
blade’s length. This is just an explanatory diagram, not the one used in the computations.

4.1.2 Selection of CL for L/Dmax

Before the computation of selected sections is made, a previous step must be taken, since an
adequate CL must be found for L/Dmax, while varying α (AOA) at the tip, i.e. at r = R.
This value for CL will be used for further computations. The selected value of α will be
called αD or design angle of attack.
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Figure 4.8. Aerofoil rotation according β angle.

Default inputs for running the code are shown in the following tables. In Table 4.2, the basic
blade dimensions at the tip are shown and the computed velocities are presented in table
4.3 as inputs for the code.

Table 4.2. Input values for the study case.

Variable Value

ctip, (Chord at tip) 1.0
R, (Total radius)= 9.5
λ, (TSR at tip)= 5.0
B, (number of blades)= 3
Aerofoil name NACA 0012

Table 4.3. Computed variables.

Variable Value

vw = v1 = 0.1982
v = v2 = 0.1321
utip = 0.991
wtip = 1.000
αD = at L/Dmax

Default inputs are shown in Tables 4.4, 4.5 and 4.6 for the domain and time parameters at
the tip, as well as numerical schemes, initial and boundary conditions. All these values will
be used as default, unless other inputs are explicitly declared or specified.

Domain sizes are given in Table 4.7. The results trends are very similar for these selected
scenarios, results are sensitive to domain size as shown in graphs 4.9 - 4.12. Recall that in
the square-cylinder validation presented in Chapter 2, solution is sensitive to domain size.
We confirm that this is a influential parameter to establish. In order to obtain several qual-
itative results we will use the small domain sizes due resource saving, thus presented results
may differ from quantitative real solution.
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Table 4.4. Domain and time inputs for run validation

Item Input

Grid type Cartesian/structured
Control volume size, dx × dy 0.010× 0.010
Domain size, x × y , y−centered 20× 5
Number of control volumes, nx × ny 400× 100
Time step, dt 0.005
Number of time iterations, itmax 20,000
Iteration tolerance 1E-4
Total elapsed time units, time 100
Maximum number of iterations, maxiter 100

Table 4.5. Values for NACA 0012 run vali-
dation.

Item Value

Re 100
Inlet velocity, U(= wtip) ∼ 1.0
Chord at tip, ctip 1.0
Leading edge location x=0.0, y=0.0
Rotation location Aerodynamic

center

Table 4.6. Schemes and conditions for run
validation.

Item Value

Scheme Central Diff.
Boundary conditions
on Top/Btm walls Free-slip
Time scheme Implicit
Formulation type Simplec

We use graphs shown in figure 1.14 to compare the behaviour and trends of main results:
Notice that as expected, CD tends to grow as AOA increase. See figure 4.9. However, same
behaviour for CL is not found: As shown in figure 4.10, CL increases up to the last value of
the AOA, while a sudden drop expected at ∼ 15◦ − 20◦ does not occur.

Table 4.7. Domain size scenarios

Domain Size x × y x dim y dim cv

Domain 1 size, 2.0× 1.5 −0.5, 1.5 −0.75, 0.075 200× 150
Domain 2 size, 2.0× 1.5 −0.5, 1.5 −1.00, 0.050 200× 150
Domain 3 size, 2.5× 1.5 −0.5, 2.0 −1.00, 0.050 250× 150

The plot of figure 4.11 shows a typical behaviour of the relation between CL-CD. Figure 4.12
shows how L/Dmax ratio is reached at ∼ 18 − 20◦ in the AOA − L/D graph. It should be
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remembered that the used Re number is very low, which may be a reason for the discrepancy.

Figure 4.9. Drag coefficient (CD) as a
function of the angle of attack (α) for different
integration domains.

Figure 4.10. Lift coefficient (CL) as a func-
tion of the angle of attack (α) for different in-
tegration domains.

The influence of the domain size on the pressure for the same input parameters and aerofoil
features, is shown in figure 4.13. The pressure around airfoil comparative chart for various
domain sizes shown in figure 4.13 helps in the visualization and selection of the different
scenarios. Given the calculation results presented above, the integration domain selected for
the presented study is Domain 1. Additionally, the AOA is chosen as α = 18◦ according to
figure 4.12.

Results are quite different considering the problem is that the same (up to 87% in the
farthest point at the normalized location around the airfoil of 0.8, see figure 4.13), and the
only variable is just the domain size, which we may say is not strictly part of the problem.
Therefore here we can conclude it is important to take care of this point as well as carefully
considering all container boundaries conditions because of its determinant influence on the
solution.

Once αD is selected, it is important to take into account other considerations. As mentioned
above, and as described in the table 4.1, there will be a domain scaling for each section, as
the chord length of each profile will also change.

The following validation strategy which serves to display the change in response due to scal-
ing, was done. The integration domain was scaled by a factor of two (×2) and four (×4),
resizing both control volumes and the time step (t = 0.005, 0.010 and 0.020) while keeping
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Figure 4.11. Drag coefficient (CD) as a
function of the lift coefficient (CL) for different
integration domains.

Figure 4.12. Lift-to-drag ratio coefficient
(L/D) as a function of the angle of attack (α)
for different integration domains.

Figure 4.13. Pressure comparative around airfoil for different domain sizes.

udx/dt ratio fixed. The results are shown in Figure 4.14. Most of the pressure profiles are
similar, but, in some cases the pressure shows an abnormal distribution on the upper sur-
face, attributable mainly to the proximity of the upper and lower borders and at the eastern
border (outflow), and which may warn us of possible errors.
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Figure 4.14. Pressure comparative around the airfoil for different cv size and time step.

4.1.3 Results at selected r locations along blade’s length for NACA
0012.

The pressure, shear stress, velocity and streamlines are shown in the following sets of figures
from 4.16 to 4.23 computed for each section. Each set shows figures with the following
format:

(a) The box placed at the left of the upper row contains the basic parameters required for
the calculation. Information is given for the velocities triangle and their angles, also
CL, CD and L/D are shown. Notice that AOA, rotor plane and rotor axis are plotted
along with the profile, and vary its position while w(r) direction remains fixed.

(b) Pressure field around aerofoil. Pressure field is shown using a contour plot. Maximum
and minimum values are displayed.

(c) Pressure normal distribution around aerofoil. Normal force vectorial components de-
rived from pressure acting over the solid are displayed. The length of the vectors
denotes magnitude, and the direction denotes positive or negative pressure as the case
may be.

(d) Tangential velocity (Shear stress) around aerofoil. Tangential velocities are plotted
at the boundary of the airfoil. The length of the vectors denotes magnitude. Also
direction confirms a correct computation.

(e) Velocity field around aerofoil. Vector field is shown representing the velocities within
the flow. A color code is used to denote magnitude.

(f) Streamlines around aerofoil. The streamlines are shown for a clear visualization of the
air motion pattern.
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A reference diagram is shown in figure 4.15 as a helping key, useful to visualize graphical
results further on. The relative frame is rotated in such a manner that the apparent velocity
w(r) direction keeps fixed, staying parallel to horizontal x− axis and is a reference for defining
αD; therefore, lift force (CL) will acquire y− direction. Rotation plane and rotation axis of
the HAWT are plotted as relative references that may vary depending upon pitch angle β.
The scheme shows the velocities and the angles at a given distance r from the rotor axis. To
design the rotor we have to define the pitch angle β(r) and the chord length c(r) at each r
location, thus both of them depend on the given radius.

Figure 4.15. Scheme showing plot reference point of view. (Explanatory picture). A general
airfoil profile is used for illustration.

The blade is moving upwards, but in figure 4.15, it moves in the T (r) (Torque) direction,
relative to the rotation reference plane and against u(r) velocity. It is also pertinent to
remind that we are following Betz theory which does not include rotation of the wind.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.16. Outputs around aerofoil at r = 9.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.17. Outputs around aerofoil at r = 8.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.18. Outputs around aerofoil at r = 7.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.19. Outputs around aerofoil at r = 6.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.20. Outputs around aerofoil at r = 5.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.21. Outputs around aerofoil at r = 4.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.22. Outputs around aerofoil at r = 3.5 location.
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(a) Results summary (b) Pressure field around aerofoil

(c) Pressure distribution around aerofoil (d) Tangential velocity (Shear stress)

(e) Velocity field around aerofoil (f) Streamlines-vorticity around aerofoil

Figure 4.23. Outputs around aerofoil at r = 2.5 location.
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4.1.4 Discussion.

The pressure field and surface distribution presented in panels (b) and (c) is conveniently
interpreted in terms of the distribution shown in figure 4.24 where the pressure distribution
around the aerofoil for each section. A decrease in pressure magnitude may be appreciated
as the section approaches the root. This is due to a decrease in the velocity with respect to
the tip where the velocity w(r) reaches its highest value because u(R) = umax. Total force
is expected to increase for each section due to the area increment as described in table 4.1
(See chord size variation).

Figure 4.24. Pressure comparison around airfoil for different r locations.

As the sections get closer to the root, the forces increase and the structure may require a
higher thick/chord ratio, mostly in high power wind turbines, clearly affecting the aero-
dynamic performance. For the aerodynamic comparison for the present work, the section
profile remained the same, changing only the size of the section.

A comparison between w2 c/ctip (i.e. the product of the main variables that define the
aerodynamic lift force), and the resulting force FL (= Fy) obtained numerically is shown in
figure 4.25 where there is a clearly rising trend towards the tip, explaining why a maximum
amount of energy is extracted from the region close to the tip.

Figure 4.26 shows Fx−Fy where some points (gray) (out of the main trend (red)) are plotted
independently due to an abnormal dispersion, probably because numerical errors show up
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Figure 4.25. r locations -
w(r),w2.

Figure 4.26. Fx - Fy.

after scaling the domain (See figure 4.7). Small boxes within the graphs show single variables
w2 and c/ctip trending along r as a reminder. This proves that the torque distributions at
blade the tip region will be larger than root region.

Due to the variations of tangent velocities at monitored control volumes near the solid
boundary, a moving average filter was used. In order to reduce leaps in the magnitude of
velocities caused by the staggerred topology of the solid domain, and for solving boundary
equations in the fluid domain, Matlab’s 1D digital filter function was applied. Figure 4.27
shows all shear-stress averages for all positions. In the small box at the right top corner, a
comparative between the original data and the moving average is shown for the position at
the tip (95).

The sum of forces exerted over each section is the total force exerted over the entire hypothet-
ical blade. Before running all eight scenarios, we confirmed consistency at each preliminary
result, such as scaling, domain size and the behaviour of polar curves.

4.2 Closing remarks.

Once the calculations of forces on the blade are done, the torque and power may be com-
puted. Several methods may be used considering the results obtained but they shall not
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Figure 4.27. Shear stress comparative around airfoil for different r locations.

be described here. For example, the calculation of torque and power developed by a rotor
requires knowledge of the flow induction factors, which are obtained by solving the BEM
equations. The maximum power coefficient occurs at a tip speed ratio for which the axial
flow induction factor a, which in general varies with radius, is closely approximated to the
Betz limit value of 1/3.

At lower tip speed ratios the axial flow induction factor can be much less than one third and
the aerofoil angles of attack are high, leading to stalled conditions. For most wind turbines,
stalling is much more likely to occur at the blade root because of practical constraints; the
built-in pitch angle β of a blade is not large enough in that region. Blade stalling causes a
significant loss of power at low tip speed ratios.

At high tip speed ratios where the axial induction factor (a) is also high, the angles of attack
are low and drag begins to predominate. Therefore, at both high and low tip speed ratios,
the drag is high and the general level of the axial induction factor is not optimal, so the
power coefficient lowers. Clearly, it would be best if a turbine can be operated at all wind
speeds at a tip speed ratio close to that which gives the maximum power coefficient.



Conclusions

In the present work a simple and concise method for analysing a single horizontal axis wind
turbine blade has been proposed by solving a set of 2D parallel equally spaced domains along
the span. The code solves the discretised Navier-Stokes equations over a Cartesian domain
via a Finite-volume numerical method. The main algorithm solves the discretised continuity
and momentum coupled conservation equations simulating the fluid flow within a 2D domain
built in a structured grid, with cancelled nodes that act like a solid immersed within the
fluid. This solid can take any shape, including conventional airfoil profile geometries read
from available data bases.

A fixed criteria on using central difference approximation for computing velocities and an
implicit time integration scheme were developed in the study. The pressure coupling method
used was the SIMPLE-Consistent algorithm. The scope is limited to a laminar compressible
flow using low Reynolds numbers, so no turbulent situations are applicable, despite realistic
Reynolds values for this kind of applications are clearly turbulent. An artificial interpolated
boundary layer was proposed to solve specific boundary conditions at the frontier of the solid
domain.

The code describes the velocities and pressure fields inside the fluid domain, which is of
significance if the fluid behaviour past the airfoil. As mentioned before, outputs obtained
at the monitor cells (control volumes adjacent to the immersed object) are first, tangential
and normal vectors, therefore normal pressure and shear stress may be computed; obtaining
finally lift and drag forces over the object. For this reason, despite the existence of different
methods, the CFD model was used to calculate the effect on the blade airfoil. The blade
sectioning method proposes a previous twist for its calculation, an optimal angle of attack
computation and a domain size with a parameter selection.

Code validation was done by performing runs on internal and external flows over immersed
basic geometry cylinders considering selected boundary and initial conditions. An essential
aspect of the code was to include a measuring monitor that collects data outputs at the
surface of the cylinder or airfoil of study. This monitor has two main functions, first to
compute a vector information used later on to compute outputs such as aerodynamic forces
and frequency patterns. A 3D blade may be analysed with some restrictions by sections
along the blade span, and discarding interaction between them, throughout computing the
aerodynamic forces exerted by the fluid motion over the surface of a 2D airfoil.

106



Conclusions 107

Our contribution consists on proposing a simple method to understand and analyse a rather
complex problem. The most meritorious objectives achieved are: Properly located pressure
distribution around the object, consistent flow separation points and an interpolated bound-
ary layer near the object solid surface, although results are not as conclusive or definitive as
we would hope since a number of conditions need to be fulfilled. The results are very sensitive
to numerical parameters, like domain size and boundary conditions. We also found a large
sensitivity to changes in profile and a dependency with respect to angles of attack, which
result in changes in the coefficients of lift and drag as shown in the chapter 4. The profile
NACA 0012 was analysed in somewhat further detail. Results show velocity and pressure
for angles of attack from 0 to 30 degrees. A progressive increase of lift and drag coefficient at
low Reynolds number Re = 100 were obtained, giving relatively high rates as a result, while
maintaining a L/D ratio range reaching a peak before reaching 20 degrees and then reduc-
ing, as expected. The flow was validated with XFOIL results. We found a relatively good
agreement between completely different methods. During analysis, constant wind speed and
different Reynolds numbers were used, always under laminar regime. Optimum values for
angles of attack were obtained, in which there was an increased lift coefficient and minimal
drag, with a maximized L/D ratio.

In a general overview, results encourage further exploration and integration of further work
to include other methods and formulations, but it is important to do so in a way that
can be correlated with experimental results. It is very important in this context to obtain
assessment and design tools for further airfoil evaluation in wind tunnels and real operating
wind turbines. The following steps are recommended to incorporate turbulence models.

We may recommend future paths to follow in order to find a proper design or to confirm
that the supplier’s blades used at current wind turbine farms are correct:

• Apply improved and the most comprehensive numerical models to solve fluid problems
over aerodynamic profiles considering turbulence effects.

• Build new codes to solve problems of flow around airfoils, using different approaches,
like for instance panel or BEM.

• Build models to describe flow around three dimensional, rotating blades.

• Do experimental research to validate numerical models using prototypes.

• Close the gap in terms of design and analysis with current manufacturers and suppliers.

In any case we must keep in mind that the geometric design of the blade should be aimed
to basic design parameters, including those mentioned in Chapter 1, and that the location
of wind speed and the rotor diameter to airfoil geometry, angle of attack and tip speed ratio
design. Likewise, the length of the chord and the twisting distribution must in order to
achieve an optimal power performance be considered.
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