

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

Síntesis y caracterización de compuestos de oro(I) con JohnPhos y ligantes fluoroazufrados

TESIS

PARA OPTAR POR EL GRADO DE QUIMICA

PRESENTA Q. KRISTOPHER MANUEL HESS FRIELING

Ciudad de México 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado

NORAH YOLANDA BARBA BEHRNES (PRESIDENTE)

HUGO TORRENS MIQUEL (VOCAL)

ARMANDO MARIN BECERRA (SECRETARIO)

NOE ZUÑIGA VILLARREAL (1er. SUPLENTE)

MARCOS FLORES ALAMO (2do. SUPLENTE)

Tutor: Dr. Hugo Torrens Miquel

Sustentante Kristopher Manuel Hess Frieling

Lugar donde se desarrolló el trabajo:

Laboratorio 209 Departamento de Química Inorgánica Facultad de Química Universidad Nacional Autónoma de México

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México por haberme permitido ser parte de su alumnado

A la Facultad de Química que ha sido mi segundo hogar

Al jurado asignado por el tiempo invertido en la revisión del presente trabajo y las valiosas aportaciones realizadas.

DGAPA-UNAM, proyecto IN-202314 y a CONACYT, Proyecto CB-2012-147498 por apoyo financiero y al SNI por la beca otorgada como ayudante de investigador.

Al Dr. Hugo Torrens, por dirigir este trabajo, por el apoyo incondicional.

A todas las personas que me acompañaron en este raro camino. Los espero en la puerta

Índice

1Introducción	6
2 Antecedentes	8
2.1Química del oro	8
2.2 Catálisis con compuestos de oro	10
2.3 Aurofilia	12
2.4Ligantes fluoró-azufrados	13
2.5 Fosfinas como ligantes en complejos metálicos	14
2.6 JohnPhos y [AuCl(C ₂₀ H ₂₇ P)]	14
3Objetivos	16
4Instrumentación	16
5Desarrollo experimental	17
5.1Síntesis de tiolatos de plomo	17
5.2Síntesis de [AuCI(C ₂₀ H ₂₇ P)] con ligates fluoró-azufrados	17
6Caracterización de [Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	18
7Caracterización de [Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	
8Caracterización de [Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	
9Caracterización de [Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	48
10Caracterización de [Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	59
11Caracterización de [Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	69
12Caracterización de [Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	79
13Analisis de resultados	87
14 Conclusiones	90
Anexo. Datos Cristalográficos	92

1.-Introducción

El oro ha sido uno de los metales más importantes en la historia ya que siempre ha tenido un gran valor para los humanos. A lo largo de la historia el oro ha jugado el papel de moneda, material para joyería e incluso un metal con poderes mágicos. En la alquimia se creía que la piedra filosofal podía transformar cualquier objeto en oro puro. La alquimia fue practicada en Mesopotamia, el Antiguo Egipto, Persia, la India y China, en la Antigua Grecia y el Imperio romano, en el Imperio islámico y después en Europa hasta el siglo XVIII. En estos tiempos se empezó a estudiar la química del oro. Era considerado el metal más noble y valioso ya que su color dorado no se oxidaba a lo largo del tiempo.

El oro es un metal de transición. Se considera un metal noble y sus números de oxidación más comunes son (I) o (III). El Au(I) tiene como configuración electrónica $[Xe]4f^{14}5d^{10}6s^0$. Se ha observado que algunos compuestos de oro tienen propiedades de cristales líquidos y luminiscencia. Los compuestos de coordinación oro-tiolato los se utilizan en diversos sistemas, desde los que sirven como fármacos contra la artritis y otras enfermedades, hasta en las pastas de "oro líquido" en las industrias cerámica y vidriera. Más aún la tecnología y la química de mono capas de auto ensamblaje dependen de las propiedades de los sistemas Au(I)-azufre.

También se ha estudiado que el Au(I) tiene una tendencia a formar interacciones metal-metal, a estas interacciones se les conoce como "aurofilia". Los complejos metálicos polinucleares, particularmente los de configuración electrónica d¹⁰, han atraído mucha atención dada su gran diversidad estructural y porque algunos de ellos exhiben una fuerte *luminiscencia*.^{1,2,3}

La aurofilia es una interacción de dos o más núcleos de Au que puede producir luminiscencia. Esta interacción tiene una energía de enlace de 7 a 12 kcal/mol, comparable con la energía de enlace de puentes de hidrogeno.^{1,2} Comúnmente se puede identificar esta interacción cuando dos o más átomos de Au(I) o Au(III) se encuentran a una distancia promedio de 2.8 a 3 Å de distancia.^{1,2}

Se dice que un material es *luminiscente*, cuando a la formación de un estado electrónico excitado, del material en cuestión, (debido a la aplicación de energía desde una fuente externa)⁴, le sigue la emisión en forma de luz visible. Algunos grupos de investigación reportan que la interacción aurofílica no afecta ni es una condición necesaria para la luminiscencia de complejos de Au(I) sin embargo, existen múltiples reportes que han establecido la importancia de las interacciones metal-metal en el origen de dicho comportamiento. Los compuestos con el sistema fosfina-oro-tiolato pueden servir como bloque de construcción para sensores químicos y para interruptores moleculares controlados mediante la presencia o ausencia de interacciones débiles metal-metal⁵.

La fosfina con el nombre IUPAC (2-Bifenil)di-tertbutilfosfina forma compuestos de oro(I), [AuCl(2-Bifenil)di-tertbutilfosfina)], substancia también conocida como JohnPhosAuCl que es comúnmente utilizada como precursor en síntesis orgánica⁸.

También se usa en reacciones de hidroalquilación oxidativa asistida por cocatalizadores de plata.^{6,7,8}

En este trabajo de tesis se sintetizaron y estudiaron nuevos compuestos, al coordinar al núcleo de oro de la JohnPhosAuCl una serie homologa de ligantes tiolatos florados en sistemas aromáticos. Estos sistemas se caracterizan por medio de resonancia magnética nuclear (RMN) de ³¹P y ¹⁹F, espectrometría de masas, espectroscopia vibracional de infra-rojo y cristalografía mediante difracción de rayos x de cristales únicos. También se exploró de modo preliminar la posible luminiscencia e interacciones supramoleculares de estos compuestos.

La reacción general que se lleva a cabo es:

2
$$[AuCl(C_{20}H_{27}P)]$$
 + PbR₂ \rightarrow 2 $[Au(R)(C_{20}H_{27}P)]$ +2 PbCl₂

En las que R es:

Figura 1.Ligantes fluoro azufrados empleados en las sintesis que se describen en este trabajo.

2.-Antecedentes

2.1-Quimica del oro

En las notas de August Kekulé en 1848 solo existen dos páginas que describen la química del oro. Estas páginas principalmente describen procesos de refinación para obtener oro como metal y algunos subproductos que se obtienen de este proceso.

A principios del siglo XX la química del oro seguía sin ampliamente desarrollada. En 1978 se publicó un importante manuscrito describiendo la química del oro. Este manuscrito solo tenía 250 páginas y contenía la mayor parte del conocimiento de la química del oro en esa época.²

En 1940 se logró sintetizar un anión de Au⁻ y se obtuvo la cristalización de Cs⁺Au⁻ en amoniaco concentrado. 11,2

Al desarrollarse la química organometalica, entre los años de 1970 a 1990, la química de compuestos de oro también fue desarrollada ampliamente.²

Actualmente la química del oro es uno de los campos de estudio que ha crecido de manera exponencial porque ha contribuido de manera importante a la ciencia de materiales.¹ Algunas de estas áreas han sido la catálisis, la formación de aleaciones para circuitos eléctricos, etc. Otra área que ha crecido es la formación de nano partículas de oro para catálisis orgánica. Compuestos de coordinación de oro o sales de oro han demostrado ser muy activos en catálisis homogénea. Incluso se han observado que tienen propiedades de líquidos cristalinos y comportamiento óptico no lineales. De muchos complejos cristalinos con Au(I), como fosfinas o complejos polifluorados, se ha obtenido una gran cantidad de información estructural sobre la química del oro⁹.

Los electrones en capas internas del oro sufren de manera significativa efectos relativistas que lleva a una contracción de sus orbitales f. Actualmente se sabe que el estado de oxidación más común para el oro es Au(I) y que en este estado catiónico su configuración electrónica es de capa cerrada $[Xe]4f^{14}5d^{10}6s^0$. En este

caso es posible que existan interacciones metal-metal con propiedades físicoquímicas importantes. A esta interacción se le conoce como metalofilia. Esta misma interacción también se ha observado en sistemas de Au(III).^{1,2,11}

Los efectos relativistas del oro explican las variaciones en energía de ionización, afinidad electrónica y radio atómico y iónico o la alta electronegatividad del oro.^{1,2}

Los orbitales 6s se contraen por la contracción lantánida. Lo que genera hibridación de orbitales d-s-p. La contracción de los orbitales de valencia baja la energía de los orbitales híbridos con alto carácter-s favorece el número de coordinación.² En la escala de Pauling, su electronegatividad es de 2.4. Lo que lo hace el metal más electronegativo que los demás metales

Otra aplicación de los compuestos de oro es en la industria farmacéutica y en tratamientos médicos. El Au¹⁹⁸ es un emisor β con el cual se puede visualizar el hígado. También puede formar fácilmente coloides *in vivo* y las dosis que absorbe el paciente son elevadas.¹⁰

Las aleaciones con oro tienen como propiedad física de hacerlos más duras y estable¹¹. Comúnmente se disuelve el Au(0) en agua regia para obtener sales de oro con las cuales son usadas como materia prima para sintetizar las sales de oro

Comúnmente se encuentra en su forma nativa Au(0) y puede formar compuestos de estados de oxidación del -1 al +5, En la naturaleza solo se encuentran los estados de oxidación +1 y +3.

El oro, en polvo, en la antigua china e india era usado para tratar varias enfermedades como la artritis^{,10}. Actualmente ha existido un gran desarrollo en Tiolatos de Au(I) como inyectables para el tratamiento de la artritis reumatoide.

También existen algunos compuestos de Au(III) con propiedades anti-tumorales como se ven en la figura 3

Figura 2. Medicamentos contra la artritis Myocrysine y solganol

Figura 3. Compuestos con actividad antitumoral

Hasta el momento no se ha podido describir el mecanismo de estos compuestos *in vivo*. Se han hecho gran variedad de estudios con respecto a estos medicamentos y sus mecanismos de acción. Se cree que algunos de estos compuestos reaccionan selectivamente con los sitios de ciertas proteínas con selenocisteína lo que inicia la apoptosis de la célula en la mitocondria¹⁶.

2.2 Catálisis con compuestos de oro

Antes se pensaba que los compuestos de oro eran catalíticamente inactivos. En 1990 se cambió esta visión, ya que los trabajos de Teles demostraron la actividad de [LAu]⁺ para activar alquenos y alquinos^{7,12}. En los últimos años el desarrollo en la investigación de la catálisis del oro ha sido de gran importancia. El enfoque principal es usar el oro para la activación electrofilica de alquinos y hacerlos susceptibles a una gran variedad de nucleofilos.¹⁶

Figura 4. Esquema de reacción de catálisis homogénea de un alquino donde $L=(C_{20}H_{27}P)$

Una de las primeras reacciones donde se uso un complejo de Au(I) como catalizador fueron en la adicción de CH_3OH y H_2O a difenilacetileno.

Figura 5. Reacciones catalizadas por Complejos de Au(I)

Se han diseñado una gran variedad de ligantes para controlar los procesos de catálisis del Au(I) u Au(III). Gran parte de los catalizadores de oro tienen ligantes fosfito, fosfinas y carbenos. Esto se debe a que en estos ligantes se puede controlar la capacidad de donadores- σ / aceptores- π .¹³

Otra gran área de estudio relacionada a la catálisis del oro son las nanoparticulas de oro o coloides de oro. El primer método de síntesis de nanoparticulas de oro fue diseñado en 1994 por Brust y Schiffrin.

 $Au_m(SC_{12}H_{25})_n$

Figura 6. Síntesis de Brust y Schiffrin para nanoparticulas de oro

Actualmente se puede controlar el tamaño y la forma de las nanopartículas con estrategias químicas como la electrodeposición y más. Las aplicaciones más comunes para las nanopartículas de oro son para catálisis o recubrimientos de materiales para mejorar la conductividad eléctrica ^{1,6,11,13.}

2.3.-Aurofilia

En algunas sales de Au pueden observarse interacciones metal-metal que influyen en la estructura del compuesto de coordinación y en el empaquetamiento de la celda cristalina.^{1,2}

En 1978 se publicó el libro "The Chemistry of Gold" de Puddephatt. En este libro se señalaba que existían varias estructuras de complejos de oro que no se podían explicar por reglas de valencia convencionales. Se tenía compuestos que generaban estructuras cíclicas con torsiones poco usuales, la cual ocurre porque ambos átomos de oro se acercan lo suficiente por una interacción intermolecular y modificar la geometría de la molécula.^{1,2,5}

En 1981 Jones publico una serie de estudios estructurales de complejos de oro que demostraban una interacción entre dos átomos de oro.^{1,2}

En 1985 Schmidbaur demostro por primera vez una interacción Au-Au después de sintetizar una gran serie de compuestos de coordinación de Au(I) y caracterizarlos. Todos estos compuestos mostraban tener el mismo comportamiento y se veía que existía una interacción entre dos o más átomos de oro. Además Schmidbaur pudo demostrar que la energía de la interacción de Au—Au es comparable a la de los puentes de hidrogeno. ¹

A este efecto se le conoce como "aurofilia". La Aurofilia se define como la tendencia de núcleos de oro a interaccionar a distancias de alrededor de 3Å. Este tipo de interacciones también se ha visto en otros elementos de capa cerrada, por ejemplo Ag(I) y Cu(I) por esto también se conoce esta interacción como "metalofilia".^{1,14}

Esta interacción se manifiesta principalmente entre átomos de oro con una configuración electrónica de capa cerrada, un número de coordinación de 2 y una estructura lineal entre los ligantes de oro $L_p - Au - X$. (L_p = ligante con una fosfina, X=ligante tiolado o halogeno). Es muy importante que se tenga el bajo número de coordinación ya que minimiza el impedimento estérico que se pueda generar por los ligantes. Por eso no es común observar este tipo de interacciones con números de coordinación mayores a dos, aunque hay excepciones. Comúnmente los complejos de Au(I) forman cristales translucidos. El volumen de los ligantes va a definir la geometría de los compuestos.^{1,2,11}

La interacción aurofilica no se asocia con una pérdida de entropía. Los casos más comunes de evidencia experimental son de complejos de Au(I) que contienen ligantes donadores de densidad electrónica y cadenas flexibles entre el átomo central y los donadores.^{1,2}

La aurofilia es un fenómeno estructural que se presenta tanto intermolecular como intramolecular con las siguientes características¹⁵

- a) La interacción aurofilica se manifiesta a una distancia de 2.7 Å a 3.7 Å ya que la distancia debe ser menos a la suma de dos radios de Van der Waals de los átomos del Au (166pm).
- b) Si existe esta interacción en varias especies se pueden formar cadenas poliméricas con estructuras cuadradas, triangulares, etc.
- c) La energía de esta interacción es del orden de magnitud de un puente de hidrogeno.
- d) Si se disuelve en disolventes donadores de densidad electrónica, predominan especies monomericas

Las interacciones entre los núcleos de oro pueden ser controladas por la naturaleza de los ligantes unidos a ellos. Existen tres tipos de estructuras que pueden presentar aurofilia. Las parcialmente soportadas, las libres y las completamente soportadas.

Figura 7 estructura de ligantes con presencia de aurofilia A) libre, B) es parcialmente soportada C) totalmente soportadas

Los ligantes reducen el impedimento estérico que existe entre núcleos metálicos y así favorecer la formación de una interacción aurofilica. ^{1,2,5}

2.4.-Ligantes fluoró-azufrados:

Los tiolatos metálicos siempre han sido de interés químico. Actualmente se ha generado un gran interés en este tipo de compuestos ya que se ha descubierto que existen un gran número de tiolatos coordinados a metaloenzimas, como: nitrogenasas, molibdo-oxidasas, metalotioneínas, ferredoxinas y hemocianinas.

Estos ligantes son especies aniónicas tipo pseudohalógenos. Estos ligantes son típicamente muy blandos ya que donan mucha densidad electrónica a iones metálicos blandos. En especial tienen afinidad por núcleos de Au(I) y Au(III)¹⁶.

La incorporación de grupos electronegativos dentro del anillo aromático de un bencentiolato reduce la disponibilidad del par libre del átomo de azufre para coordinarse. Al mismo tiempo se facilita la retrodonación desde el metal hasta el azufre. Es conocido además que ambos efectos combinados disminuyen el efecto *trans* del ligante.^{11,16}

Asimismo, los tiolatos bencenofluorados tienden a formar complejos con nuclearidad reducida como consecuencia de la sustitución sucesiva de protones por átomos de flúor. De esta manera, al introducir grupos electroatractores se reduce la basicidad del átomo de azufre mediante la polarización de la densidad electrónica. Así, se puede ejercer un control preciso de las propiedades estéricas y electrónicas de los fluorobencentiolatos.¹⁷

2.5 Fosfinas como ligantes en complejos metálicos

Uno de los usos más comunes para las fosfinas es estabilizar complejos organometálicos. Las fosfinas se usan como ligantes espectadores y no como ligantes activos¹⁸. Otra cualidad de las fosfinas, PR₃, es que tienen la característica de que se les puede alterar el grupo R con diferentes cadenas alifáticas o sistemas aromáticos^{7,18}. Algunas fosfinas sirven para controlar efectos estéricos sobre la reacción deseada.

En la figura 8 vemos que la fosfina tiene un par electrónico libre por el cual se puede coordinar a un centro metálico lo que es un evidente donador σ

Figura 8. Fosfina PR₃

Fosfinas con grupo R =alkeno son bases fuertes y son buenos donadores σ . Los organofosfitos son buenos aceptores π y forman complejos muy estables con metales de transición ricos en electrones como el Au(I)¹⁹.

2.6.- JohnPhos y [AuCl(C₂₀H₂₇P)]:

La fosfina conocida por su nombre UIPAC como (2-Biphenylyl)di-tert-butylfosfina (JohnPhos) pertenece a la familia de los ligantes de Buchwald⁸. Estos ligantes son conocidos por ser fosfinas voluminosas ricas en electrones que se usan comúnmente para catalizar reacciones de formación de enlace de C-C, C-N y C-O.^{8,22}

La reacción de Suzuki-Miyaura ha sido beneficiada por este tipo de catalizadores, desactivando los cloruros de arilo.

El método más común de síntesis de JohnPhos se puede ver en la figura 9. Esta reacción es de alto rendimiento.²⁰

Figura 9. Esquema de síntesis de JohnPhos²⁰

Comúnmente se le coordina un metal rico en electrones en el cual se lleva a cabo la catálisis. Estos metales pueden variar de Au(I), Pd(II) incluso Ag(I).

Figura 10. Esquema de reacción para sintetizar [AuCl(C₂₀H₂₇P)]²⁰

El compuesto [AuCl(C₂₀H₂₇P)] es también es usado para catalizar reacciones en la síntesis de norboranos y fenoles. El compuesto de coordinación [AuCl(C₂₀H₂₇P)] es un precursor catalítico que requiere de sales de Ag(I) como co-catalizador⁸.

Figura 11: Diagrama de [AuCl(C₂₀H₂₇P)]

[AuCl(C₂₀H₂₇P)] es un precursor catalítico. En la disolución de reacción se tiene a dos núcleos de oro puenteados por el uno de cloro como se puede ver en la figura 12.⁸

Figura 12 {Au₂Cl(C₂₀H₂₇P)₂} en solución como precursor catalítico

3-Objetivos

A) Sintetizar y caracterizar una serie homóloga de compuestos de coordinación derivados de [AuCl($C_{20}H_{27}P$)] con ligantes fluoroazufrados R= 1.-SC₆F₅, 2.-SC₆HF₄, 3.-SC₆H₃F₂-3,5, 4.- SC₆H₃F₂-2,4,5.-SC₆H₄F-2, 6.- SC₆H₄F-3, 7.-SC₆H₄F-4.

B) Caracterizar cada compuesto por medio de espectrometría de masas, espectroscopía de infrarrojo, resonancia magnética nuclear de ³¹P y ¹⁹F y determinación de la estructura molecular y cristalina mediante difracción de rayos X en monocristal.

C) Estudiar la posible interacción aurofílica a pesar de la presencia de una fosfina voluminosa.

4.-Instrumentación

Los espectros de IR se llevaron a cabo mediante la técnica de reflectancia en un Espectrofotómetro de FTIR / FIR Spectrum 400 de Perkin-Elmer.

Los espectros de RMN de ¹H, ¹³C ³¹P y ¹⁹F se obtuvieron en un espectrómetro Varian Unity Inova 300, operando a 300, 100, 300 y 376 MHz. Como disolvente se usó acetona deuterada para todos los sistemas.

La determinación de las estructuras cristalinas por difracción de rayos-X se realizó en un difractómetro Bruker P4 a 298 K, con radiación Mo K α

Las determinaciones de espectrometría de masas se llevaron a cabo en un espectrómetro Jeol JMS-SX102A.

5.-Desarrollo experimental.

5.1.-Síntesis de tiolatos de plomo

La síntesis del tiolato se lleva a cabo mediante la siguiente reacción:

 $Pb(CH_3COO)_2 + 2 HS-R \rightarrow Pb(SR)_2$

En la que R= 1.- C₆F₅, 2.-C₆HF₄, 3.-C₆H₃F₂-3,5, 4.- C₆H₃F₂-2,4,5.-C₆H₄F-2, 6.- C₆H₄F-3, 7.- C₆H₄F-4

A una disolución de Pb(CH₃COO)₂, 12.5 mmol en 100 mL de agua desionizada y previamente desoxigenada se adiciona el tiol correspondiente HSR 25.0 mmol, la mezcla, se agita magnéticamente por 2 horas, posteriormente se enfría a 0°C y se mantiene a esa temperatura por una hora; en todos los casos se observa la aparición de un precipitado de color amarillo, en rendimientos siempre mayores al 80% (tabla 1),el producto obtenido se filtra y se lava con agua fría y se seca al aire.

Tiolato	Color	rendimiento
[Pb(C ₆ F ₅)] ₂	Amarillo	83%
[Pb(C ₆ HF ₄ -4)] ₂	Blanco	87%
[Pb(C ₆ H ₃ F ₂ -3,5] ₂	Amarillo	89%
[Pb(C ₆ H ₃ F ₂ -2,4] ₂	Amarillo	80%
[Pb(C ₆ H ₄ F-2)] ₂	Amarillo	81%
[Pb(C ₆ H ₄ F-3)] ₂	Amarillo	85%
[Pb(C ₆ H ₄ F-4)] ₂	Amarillo	86%

Tabla 1. Datos de los tiolatos sintetizados.

5.2.-Síntesis de [AuCl(C₂₀H₂₇P)] con ligates fluoró-azufrados

Reacción general

 $\underline{2}[AuCl(C_{20}H_{27}P)] + Pb(R)_2 \rightarrow 2 [Au(R)(C_{20}H_{27}P)] + 2 \downarrow PbCl_2$

Sintesis de [Au(R)(C₂₀H₂₇P)] con R=SC₆F₄ y SC₆HF₄-4

Se pesan 0.471mmol de $[AuCl(C_{20}H_{27}P)]$ y se disuelven en 50mL en acetona. Del tiolato correspondiente se pesan 0.235mmol y se disuelven 50ml de acetona. La mezcla se agita a temperatura ambiente por 24 horas, posteriormente se filtra y el disolvente se elimina a presión reducida, el producto principal se purifica mediante cromatografía en columna⁷.

Sintesis de [Au(R)(C₂₀H₂₇P)] con R=SC₆H₃F₂-2,4 y SC₆H₃F₂-3,5

Se pesan 0.471mmol de [AuCl($C_{20}H_{27}P$)] y se disuelven en 50mL de THF. Del tiolato correspondiente se pesan 0.235mmol y se disuelven en 50ml de THF Se mezclan y se deja en agitación. Se filtra y se purifica por cromatografía en columna.

Sintesis de [Au(R)(C₂₀H₂₇P)] con R=SC₆H₄F-2, SC₆H₄F-3 y SC₆H₄F-4

Se pesan 0.471mmol de $[AuCl(C_{20}H_{27}P)]$ y se disuelven en 50mL en acetona. Del tiolato correspondiente se pesan 0.235mmol y se disuelven 50ml de acetona. Se mezclan y se deja en suspensión. Posteriormente se filtra por gravedad. El producto principal se purifica mediante cromatografía en columna

Se utilizó el programa mestrenova para procesar y simular los espectros de resonancia magnética nuclear de ¹⁹F para cada uno de los compuestos

6.-Caracterización de [Au(SC₆F₅)(C₂₀H₂₇P)]

Reacción:

 $2[AuCl(C_{20}H_{27}P)] + Pb(SC_{6}F_{5})_{2} \rightarrow 2[Au(SC_{6}F_{5})(C_{20}H_{27}P)] + \downarrow PbCl_{2}$

Figura 13. Diagrama representativo de [Au(SC₆F₅)(C₂₀H₂₇P)]

La reacción entre la materia prima, $[AuCl(C_{20}H_{27}P)]$, con el fluorotiolato de plomo, Pb(SC₆F₅)₂, en acetona produce, tras agitación por una hora y a temperatura ambiente, PbCl₂ que se separa por filtración y una disolución incolora. De la disolución, por evaporación, se obtiene un sólido cristalino incoloro, estable a la atmosfera cuyos posteriores análisis, presentados en esta sección, corroboran que es: [Au(SC₆F₅)(C₂₀H₂₇P)]. El rendimiento de esta reacción fue de 73% con respecto a la cantidad inicial de [AuCl(C₂₀H₂₇P)].

Espectroscopia de infrarrojo

En los espectros de infrarrojo de $[Au(SC_6F_5)(C_{20}H_{27}P)]$ la señal en 1083 cm⁻¹ puede asignarse a la vibración de v(C-F). También se observa una señal muy intensa en

1471 cm⁻¹ que se le atribuye a la deformación de los anillos aromático. En la zona de 1600 cm⁻¹ a 2000 cm⁻¹ se ve la señal de torsión de los anillos aromáticos. Podemos identificar las señales de los ter-butilos de la fosfina aproximadamente en 1251 cm⁻¹. Se observan las señales típicas de v(C-H) de aromáticos por arriba de 3000 cm⁻¹ y de v(C-H) de alifáticos por debajo de 3000 cm⁻¹. ²¹

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular $[M^+]$, $[Au(SC_6F_5)(C_{20}H_{27}P)]^+$ en 694 m/Z con una abundancia de aproximadamente 10%. El pico base (100% de abundancia, aparece en 495 M/Z y corresponde a la pérdida de un fragmento fluorotiolato del ion molecular, $[Au(C_{20}H_{27}P)]^+$.

Figura 15. Pico base con peso molecular $495 \frac{g}{mol}$

Una observación importante en estos espectros es la señal en 1189 M/Z. Dicho peso corresponde al posible dímero de $\{Au_2(SC_6F_5)(C_{20}H_{27}P)_2\}$.

Este resultado puede originarse de dos modos diferentes. Por un lado, es posible que una de las especies presente en la disolución que se introduce al espectrómetro sea, un dímero estabilizado por interacciones aurofilicas, que pierde un pentafluorofenil tiolato; o bien que se trate de un rearreglo en el interior del espectrómetro.

Figura 16. Interacción Au(I)-Au(I)en espectro de masas con peso molecular de $1189 \frac{g}{mol}$

Figura 17. Espectro de masas del compuesto [Au(SC₆F₅)(C₂₀H₂₇P)] obtenido por FAB

Resonancia magnética nuclear de ¹H

Para los terbutilos de la fosfina las señales correspondientes se encuentran a 1.31 ppm. Esta señal es un doblete ya que existe un acoplamiento del protón del terbutilo con el fosforo. Entre 7 ppm a 8 ppm encontramos los multipletes que corresponden a los protones del di anillo aromático de la fosfina.

Figura18. Señales de RMN de ¹H para [Au(SC₆F₅)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética de ³¹P

En los espectros de ³¹P-RMN obtenidos de [AuCl(C₂₀H₂₇P)] encontramos un singulete a 60.05 ppm. Una vez que la materia prima de Au(I) se coordina con el ligante fluoro-azufrado, para formar [Au(SC₆F₅)(C₂₀H₂₇P)], la señal de ³¹P se desplaza a frecuencia baja, y aparece en 62.88 ppm. Este desplazamiento implica una desprotección electrónica del núcleo de fósforo en el compuesto [Au(SC₆F₅)(C₂₀H₂₇P)] lo que puede explicarse asumiendo que el ligante aniónico extraerá densidad electrónica del oro que a su vez extraerá densidad electrónica del fósforo²².

Figura 19. Señal de ${}^{31}P$ de [AuCl(C₂₀H₂₇P)] comparada con señal de ${}^{31}P$ de [Au(SC₆F₅)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

El espectro obtenido por RMN de ¹⁹F son de segundo orden. En el espectro de ¹⁹F encontramos tres señales ya que el ligante fluoro-azufrado presenta tres grupos de átomos de flúor no equivalentes, *orto (-133.81ppm), meta (-166.82 ppm)* y *para (-167.22 ppm)*.

Figura 20. Señales de RMN de ¹⁹F para [Au(SC₆F₅)(C₂₀H₂₇P)] en acetona-d⁶

Al simular el espectro con MestReNova vemos que se obtienen tres señales por cada grupo de flúor equivalentes. Dos señales cercanas y una a mayores partes por millón. Las señales que se encuentran cercanas pertenecen a los flúor en *para* y *meta* ya que el entorno electrónico es muy parecido, mientras la señal más desplazada se asigna al flúor en posición *orto*.

MestReNova comparado con el espectro de ¹⁹F obtenido

Determinación de la estructura de rayos X

Se obtuvieron cristales adecuados para la determinación de la estructura molecular y cristalina mediante difracción de rayos X en monocristal. La estructura tiene un arreglo casi lineal ya que el ángulo de P1-Au1-S1 es de 173°.

El ángulo entre el Au1-S1-C21 es de 106°, lo que nos propone que en esa parte se tiene un arreglo tetraédrico deformado. Se consideran los pares de electrones libres del azufre, por la teoría de repulsión de pares electrónicos, generan este tetraedro deformado.

Algunas de las distancias de enlace importantes se listan en la tabla 2:

Enlace	Distancia de enlace en Å
P1-Au1	2.267
Au1-S1	2.301
S1-C21	1.745

Tabla 2. Distancias de enlace

Formula	[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	
Sistema	Ortorrómbico	
Grupo espacial	Pbca	
Dimensión	a= 10.279Å α=90° b=19.238Å β=90° c=26.261Å γ=90°	CI SI AUI PI
Z	8	
R	R1=0.0408 wR2=0.0795	

Figura 22. Estructura determinada por difracción de RX de monocristal del compuesto [Au(SC₆F₅)(C₂₀H₂₇P)].

Empaquetamiento cristalino

El compuesto cristaliza en un sistema ortorrómbico. La distancia entre núcleos de Au(I) de diferentes moléculas es de alrededor de 7.7 Å. La distancia está dada por el volumen de los ligantes ($C_{20}H_{27}P$) y el ligante anionico (SC₆F₅). Esto no permite que exista una interacción aurofilica.

Figura 23. Empaquetamiento cristalino de [Au(SC₆F₅)(C₂₀H₂₇P)]

Existen puentes de hidrogeno e interacción F3-C16 (3.1 Å) de carbonos adyacentes. El flúor en posición *orto* y *para* son los que interactúan con las moléculas vecinas. Se tiene la interacción de F1 con H15 (2.5 Å) de la molécula vecina al igual que F3 con C17. Este protón y carbón pertenecen a la parte aromatica de la fosfina. Este empaquetamiento reduce el impedimento estérico que existe por parte de los ligantes y favorece las interacciones mencionadas que pueden surgir por la cercanía de los átomos.

Figura 24. Interacciones intermoleculares

7.- Caracterización de [Au(SC₆HF₄)(C₂₀H₂₇P)]

Reacción

 $2[AuCl(C_{20}H_{27}P)] + Pb(SC_6HF_4)_2 \rightarrow 2[Au(SC_6HF_4)(C_{20}H_{27}P)] + \downarrow PbCl_2$

Figura 25. Diagrama representativo de [Au(SC₆HF₄))(C₂₀H₂₇P)]

La reacción entre la materia prima, $[AuCl(C_{20}H_{27}P)]$, con el fluorotiolato de plomo, Pb(SC₆HF₄)₂, en acetona produce, en una hora y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución incolora. El sólido blanco es, como se esperaba, PbCl₂. De la disolución, por evaporación, se obtiene un sólido cristalino incoloro, relativamente estable a la atmosfera cuyos posteriores análisis, presentados en este capítulo, corroboran que es [Au(SC₆HF₄))(C₂₀H₂₇P)]. El rendimiento de esta reacción fue de 68% considerando el compuesto [AuCl(C₂₀H₂₇P)] como reactivo limitante.

Espectroscopia de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración de v(C-F) en 1164 cm⁻¹. Se observa una señal muy intensa en 1482 cm⁻¹ por la deformación de los anillos aromáticos sobre el plano. Se identifican las señales típicas de aromáticos arriba de 3000cm⁻¹ y alifáticos debajo de 3000cm^{-1 21}.

Espectrometría de Masas

σ En espectrometría de masas se observa la señal correspondiente al ion molecular de aproximadamente 15%. El pico base en 495 M/Z que corresponde a la pérdida de Ð compuesto previamente caracterizado encontramos una señal con una abundancia igual que corresponde abundancia ₹ [Au(C₂₀H₂₇P)]⁺. una anb con Z/W Z/W del ion molecular, 1171 676 en de 50% [Au(SC₆HF₄)(C₂₀H₂₇P)]⁺ un fragmento fluorotiolato [Au₂(SC₆HF₄)(C₂₀H₂₇P)₂]⁺ aproximadamente $[M^+],$ qe

Resonancia magnética nuclear de ¹H

De 7 ppm a 8 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. En 1.44 ppm se encuentran las señales correspondientes a los terbutilos de la fosfina, al igual que en $[Au(SC_6F_5)(C_{20}H_{27}P)]$ vemos un doblete por el acoplamiento protón-fosforo. Adicionalmente vemos un multiplete en 6.95 ppm que se identifica como el protón del ligante fluoro-azufrado.

Figura 28. Señales de RMN de ¹H para [Au(SC₆HF4)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

Como en el compuesto previo, vemos que es un espectro de orden mayor a uno. En este caso se llevó acabo la simulación en MestReNova. Vemos que existen dos grupos de flúor equivalentes (posiciones *orto y meta*). Por lo tanto solo vemos dos señales.

Figura 29: Señal de ¹⁹F de [Au(SC₆HF₄) (C₂₀H₂₇P)] en acetona-d⁶

Al comparar el espectro que se predijo se ven dos señales como se esperaba. La señal más desplazada pertenece a los flúor en *meta* -134.06 ppm y la menos desplazada pertenece al flúor en posición *orto* -143.40 ppm.

Figura 30. Señales de RMN de ¹⁹F para [Au(SC₆HF4)(C₂₀H₂₇P)] simulada en MestReNova comparado con espectro de ¹⁹F obtenido.

Resonancia magnética de ³¹P

Encontramos un singulete en 62.83 ppm. Este desplazamiento implica una desprotección electrónica del núcleo de fosforo como se discutió previamente.

Figura 31. Señal de ³¹ P de [Au(SC₆HF₄) (C₂₀H₂₇P)] acetona-d⁶

Determinación de estructura de rayos X

El ángulo P1-Au1-S1 es de 173°. El ángulo Au1-S1-C21 es de 107° lo que nos propone que en esa parte se tiene un arreglo con un tetraedro deformado ya que los pares de electrones libres del azufre se van a repeler para estar a la mayor distancia posible. Algunas de las distancias de enlace importantes se presentan en la siguiente tabla:

Enlace	Distancia de enlace en Å
P1-Au1	2.273
Au1-S1	2.302
S1-C21	1.739
Formula	[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]
----------------	---
Sistema	ortorombico
Grupo espacial	Pbca
Dimensión	a= 10.356Å α=90° b=19.210Å β=90° c=25.719Å γ=90°
Z	8
R	R1=0.0322 wR2=0.0586

Figura 32. Estructura determinada por difracción de rayos X de monocristal de [Au(SC₆HF₄)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema ortorrómbico. La distancia entre núcleos de Au(I) con otro núcleo de Au(I) de una molécula vecina es de de 8.8 Å. La distancia está dada por el volumen de los ligantes y el ligante anionico. Esto no permite que exista una interacción aurofilica. Tenemos un empaquetamiento muy parecido al compuesto [Au(SC₆F₅)(C₂₀H₂₇P)], esto se debe a que la interacción de puente de hidrogeno es favorecida por este empaquetamiento, dejando el protón del dianillo aromático muy cercano al flúor en posición *orto.* El empaquetamiento cristalino reduce el impedimento estérico que pueda existir entre los ligantes.

Podemos ver en la figura 34 una interacción con una distancia de 2.5 Å que corresponde a un puente de hidrógeno (H8) solo el átomo de flúor en posición *orto* (F1) tienen esta interacción con el dianillo aromático de la molécula vecina.

Figura 34. Interacciones intermoleculares

8.-Caracterización de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]

Reacción:

2 [AuCl(C₂₀H₂₇P)]+ Pb(SC₆H₃F₂-3,5)₂ →2 [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]+ \downarrow PbCl₂

Figura 35. Diagrama representativo de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]

La reacción entre la materia prima, [AuCl(C₂₀H₂₇P)], con el fluorotiolato de plomo, Pb(SC₆H₃F₂-3,5)₂, en THF produce, en una hora y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución incolora. El sólido blanco es, como se esperaba, PbCl₂. De la disolución, por evaporación, se obtiene un sólido cristalino incoloro, relativamente estable a la atmosfera y cuyos posteriores análisis que se presentan en esta sección, corroboran que es [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]. El rendimiento de esta reacción fue de 75% considerando el compuesto [AuCl(C₂₀H₂₇P)] como reactivo limitante.

Espectroscopia de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración de v(C-F) en 1170 cm⁻¹. Se observa una señal muy intensa en 1440 cm⁻¹ que se le atribuye a la deformación de los anillos aromáticos sobre el plano. Al igual que en los previos compuestos tenemos las señales características de aromáticos arriba de 3000 cm⁻¹ 21

Figura 36. Espectro de IR de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular $[M^+]$, $[Au(SC_6H_3F_2-3,5)(C_{20}H_{27}P)]^+$ de 640 M/Z con una abundancia de aproximadamente 25%. El pico base aparece en 495 M/Z que resulta de la pérdida de un fragmento fluorotiolato del ion molecular, $\{Au(C_{20}H_{27}P)\}^+$. Al igual que el compuesto previamente caracterizado encontramos una señal con una abundancia de aproximadamente casi el 100% en 1135 M/Z. Esta señal corresponde $\{Au_2(SC_6H_3F_2-3,5)(C_{20}H_{27}P)_2\}^+$.

Figura 37. Espectro de masas del compuesto [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)] obtenido por FAB⁺

Resonancia magnética nuclear de ¹H

De 7 ppm a 8.5 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. Cerca de 1.55 ppm se encuentran el doblete correspondiente al acoplamiento protón-fosforo correspondientes a los terbutilos de la fosfina. En el ligante anionico existen dos grupos de protones equivalentes. En el espectro vemos dos señales entre 6.44ppm con una integración de 0.85 y 6.93 ppm con una integración de 1.87 respectivamente. Estas señales pertenecen a los protones del ligante anionico. El protón en posición *orto*, al azufre, se le asigna la señal de 6.93ppm y al protón en *para* se le asigna la señal de 6.44 ppm.

Figura 38. Señales de RMN de ¹H para [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

Al comparar el espectro obtenido con el espectro simulado concordamos que solo debe haber una señal. En el espectro de ¹⁹F tenemos una señal en -114.40 ppm, ya que existe solo un grupo de átomos de flúor equivalentes por lo cual solo observaremos una señal. Tenemos un espectro de orden mayor.

en acetona-d⁶

Figura 39. señales de RMN de ¹⁹F para [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)] simulada en mestReNova comparado con espectro de ¹⁹F obtenido.

Resonancia magnética de ³¹P

Encontramos un singulete, en 63.48 ppm, este desplazamiento es debido a la desprotección electrónica del núcleo de fósforo²².

Figura 40. Señal de ³¹ P de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)] en acetona-d⁶

Determinación de estructura de rayos X

La estructura tiene un arreglo prácticamente lineal ya que el ángulo de P1-Au1-S1 es de 176°.

El ángulo entre S1-Au1-C21 es de 107° lo que nos propone que, en esa parte se tiene el arreglo de un tetraedro deformado gracias a los pares de electrones libres del azufre.

Algunas de las distancias de enlace importantes son:

Tabla 4.Distancias de enlace

Enlace	Distancia de enlace en Å
P1-Au1	2.278
Au1-S1	2.309
S1-C21	1.771

	-	
Formula	[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	
Sistema	triclínico	
Grupo espacial	P -1	
Dimensión	a= 9.886 Å	α=75.206°
	b=11.981 Å	β=82.287°
	c=21.508 Å	γ=85.619°
Z	4	
R	R1=0.0343	
	wR2=0.0580	

Figura 41. Estructura determinada por difracción de rayos X en monocristal de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema triclinico. La distancia entre núcleos de Au(I) es de alrededor de 7.3 Å. En Sólido, no encontramos una interacción aurofilica. En este caso los ligantes anionicos se encuentran alternados con la fosfina. Las interacciones entre las moléculas son por parte de los flúor en forma de puente de hidrogeno con los terbutilos de la molécula vecina. Con el empaquetamiento alternado se obtiene un sistema triclínico, ya que no se tiene flúor en posición *orto*.

Figura 42. Empaquetamiento cristalino de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)]

Podemos ver en la figura 43 dos interaccionen intermolecular (H15B-F1) con una distancia de 2.534 Å. Se claramente que es la misma interacción. Este compuesto en solido tiende a formar dímeros.

Figura 43. Interacciones intermoleculares de [Au(SC₆H₃F₂-3,5)(C₂₀H₂₇P)] en solido

9.-Caracterización de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]

2 [AuCl(C₂₀H₂₇P)]+ Pb(SC₆H₃F₂-2,4)₂ \rightarrow 2 [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)] + \downarrow PbCl₂

Figura 44. Diagrama representativo de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]

La reacción entre la materia prima, [AuCl(C₂₀H₂₇P)], con el fluorotiolato de plomo, Pb(SC₆H₃F₂-2,4)₂, en THF produce, en 24 horas y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución amarilla. El sólido blanco es, como se esperaba, PbCl₂. La disolución filtrada se purifica por cromatografía en columna para obtener una disolución translucida. De la disolución se obtiene por evaporación un sólido cristalino incoloro, relativamente estable a la atmosfera y formulado como [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]. El rendimiento de esta reacción fue de 59% considerando el compuesto [AuCl(C₂₀H₂₇P)] como reactivo limitante

Espectroscopia de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración lineal de v(C-F) en 1172 cm⁻¹. Se observa una señal muy intensa en 1470 cm⁻¹ que se le atribuye a la deformación de los anillos aromático. Se observan las señales correspondientes a las vibraciones de v(C-H) del anillo aromatico fluorado en 3051 cm⁻¹ y 698 cm⁻¹. ²¹

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular [M^+], [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]⁺ de 640 M/Z con una abundancia de aproximadamente 25% .El pico base aparece en 495 M/Z {Au(C₂₀H₂₇P)}⁺. También vemos la señal del dímero {Au₂(SC₆H₃F₂-2,4)(C₂₀H₂₇P)₂} con una abundancia de aproximadamente casi el 80% en 1135 M/Z.

Figura 46. Espectro de masas de $[Au(SC_6H_3F_2-2,4)(C_{20}H_{27}P)]$ obtenido por FAB.

52

Resonancia magnética nuclear de ¹H

De 7 ppm a 8.5 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. En 1.45 ppm se encuentran el doblete correspondiente al acoplamiento fosforo protón de los terbutilos. Adicionalmente vemos un tres multipletes que representan los protones en el ligante anionico. Estos se ven en 6.66 ppm, en 6.75ppm (H32) y en 7.16 ppm.

Figura 47. Señales de RMN de ¹H para [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética de ³¹P

Encontramos una señal en 63.08 ppm²². Este desplazamiento es debido a la desprotección electrónica del núcleo de fosforo.

Resonancia magnética nuclear de ¹⁹F

El espectro de orden superior muestra dos señales. En este caso no se tiene grupos de flúor equivalentes. Por esta misma razón se tienen dos señales diferentes, al comparar el espectro simulado vemos que, se encuentran las señales encimadas en la simulación. El flúor en posición *orto* aparece en -102.54 ppm, el flúor en *para* aparece en -120.34 ppm

Figura 38: Señal de ¹⁹F de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)] en acetona-d⁶

Figura 49. Señales de RMN de ¹⁹F para [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)] comparado con su respectiva simulación en MesReNova.

Determinación de estructura de rayos X

La estructura tiene un arreglo casi lineal ya que el ángulo de P1-Au1-S1 es de 174°.

El ángulo Au1-S1-C21 es de 103.45° lo que nos propone que en esa parte se tiene un arreglo de un tetraedro deformado.

Algunas de las distancias de enlace importantes son

Tabla 5. Distancias de enlace

Enlace	Distancia de enlace en Å
P1-Au1	2.275
Au1-S1	2.299
S1-C21	1.752

Formula	[Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]
Sistema	monoclínico
Grupo espacial	P 21/n
Dimensión	a= 13.323Å α=90° b=12.947Å β=106.518° c=15.195Å γ=90°
Z	4
R	R1=0.0346 wR2=0.0551

Figura 50. Estructura determinada por difracción de rayos X en monocristal de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema monoclínico. La distancia entre núcleos de Au(I) de cada molécula es de alrededor de 8.1 Å. En Solido no encontramos una interacción aurofilica. Tenemos el ligante anionico alternado con la fosfina. Esta estructura se debe a que hay puentes de hidrogeno del azufre con los protones de terbutilos vecinos, de esta manera se reduce el impedimento estérico en el empaquetamiento.

Figura 51. Empaquetamiento cristalino de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]

Podemos ver en la figura 51 dos interacciones interatómicas. Una es de S1 con un hidrogeno de un terbutilo vecino (H21B) con una distancia de 2.925 Å y otra de un carbono del ligante anionico con un protón del primer anillo aromático de la fosfina. Ya que se tiene un menos número de átomos de flúor el ligante pierde volumen. Esto permite que en solido el protón (H21B) forme este puente de hidrogeno.

Figura 52. Interacciones intermoleculares de [Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)] en sólido.

10.-Caracterización de [Au(SC₆H₄F-2)(C₂₀H₂₇P)]

2 [AuCl(C₂₀H₂₇P)]+ Pb(SC₆H₄F-2)₂ \rightarrow 2 [Au(SC₆H₄F-2)(C₂₀H₂₇P)]+ \downarrow PbCl₂

Figura 53. Diagrama representativo de [Au(SC₆H₄F-2)(C₂₀H₂₇P)].

La reacción entre la materia prima, [AuCl(C₂₀H₂₇P)], con el fluorotiolato de plomo, Pb(SC₆H₄F-2)₂, en acetona produce, en 24 horas y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución amarilla. El sólido blanco es, como se esperaba, PbCl₂. La disolución filtrada se purifica por cromatografía en columna para obtener una disolución translucida. Por evaporación, se obtiene un sólido cristalino incoloro, relativamente estable a la atmosfera cuyos posteriores análisis que se presentan en esta sección, corroboran que es [Au(SC₆H₄F-2)(C₂₀H₂₇P)]. El rendimiento de esta reacción fue de 53% considerando el compuesto [AuCl(C₂₀H₂₇P)] como reactivo limitante.

Espectroscopia de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración lineal de v(C-F) en 1171 cm⁻¹. Se observa una señal muy intensa en 1461 cm⁻¹ que se le atribuye a la deformación de los anillos aromáticos. Se observan las señales correspondientes a las vibraciones de v(C-H) del anillo aromático fluorado en 3059 cm⁻¹ y 698 cm⁻¹. Se observan las señales características de anillos aromáticos arriba de 3000 cm⁻¹.²⁴

Figura 54. Espectro de IR de [Au(SC₆H₄F-2)(C₂₀H₂₇P)]

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular [M⁺], [Au(SC₆H₄F-2)(C₂₀H₂₇P)]⁺ de 622 M/Z con una abundancia de aproximadamente 40% .El pico base [Au(C₂₀H₂₇P)]⁺ aparece en 495 M/Z . Vemos la señal del dímero {Au₂(SC₆H₄F-2)(C₂₀H₂₇P)₂}⁺ en 1117 M/Z.

Figura 55. Espectro de masas del compuesto [Au(SC₆H₄F-2) (C₂₀H₂₇P)] obtenido por FAB⁺

63

Resonancia magnética nuclear de ¹H

De 7 ppm a 8.5 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. En 1.52 ppm se encuentran el doblete correspondiente a los terbutilos de la fosfina. Adicionalmente vemos un multiplete en 6.8 ppm que se identifica como los protones del ligante fluoro-azufrado. En este caso vemos una señal adicional que también se asigna a los protones del anillo aromático de 7.23ppm, pero dicha señal se traslapa con las señales de los protones del dianillo aromático de la fosfina.

Figura 56. Señales de RMN de ¹H para [Au(SC₆H₄F-2)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

En el espectro de orden mayor vemos una señal que corresponde al flúor en posición orto (-107.67ppm), ya que solo existe un flúor en el ligante anionico solo se espera una señal.

Resonancia magnética nuclear de ³¹P

Tenemos un singulete en 63.16 ppm. Al coordinar el ligante anionico se desprotege el átomo de fósforo lo que lo desplaza a menor frecuencia.²²

Figura 58. Señales de RMN de ³¹P para [Au(SC₆H₄F-2)(C₂₀H₂₇P)] en acetona-d⁶

Cristalografía de rayos X de [Au(SC₆H₄F-2)(C₂₀H₂₇P)]

La estructura tiene un arreglo lineal, ya que el ángulo de P1-Au1-S1 es de 175°.

El ángulo Au1-S1-C21 es de 107° lo que nos propone que en esa parte se tiene un arreglo de un tetraedro deformado, modificado por los pares libres del azufre. En la siguiente tabla se presentan algunas distancias importantes de enlace:

Tabla 6. Distancias de enlace

Enlace	Distancia de enlace en Å
P1-Au1	2.279
Au1-S1	2.311
S1-C21	1.761

Formula	[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]
Sistema	monoclinico
Grupo espacial	P21/c
Dimensión	a= 8.434 Å α=90° b= 17.991 Å β=101° c= 16.224 Å γ=90°
Z	4
R	R1=0.0335

Figura 60. Estructura determinada por difracción de rayos X en monocristal de [Au(SC₆H₄F-2)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema monoclínico. La distancia de enlace entre núcleos de Au(I) con las moléculas vecinas es de alrededor de 8.1 Å. Como en los compuestos anteriores y como se esperaba, no se presenta una interacción aurofilica, por el que los ligantes son muy voluminosos. Los ligantes anionicos se encuentran nuevamente alternados, esto ya se esperaba, ya que así, se tiene el menor impedimento estérico entre fosfina y ligante anionico.

En la figura 61 podemos ver una interacción de flúor (F1) con hidrógeno (H20C) a 2.5Å de distancia. En este caso el flúor solo interactúa con los terbutilos de la fosfina, ya que el empaquetamiento cristalino lo favorece.

Figura 62. Interacciones intermoleculares de [Au(SC₆H₄F-2)(C₂₀H₂₇P)]

11.-Caracterización de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

 $2[AuCl(C_{20}H_{27}P)] + Pb(SC_{6}H_{4}F-3)_{2} \rightarrow 2[Au(SC_{6}H_{4}F-3)(C_{20}H_{27}P)] + \downarrow PbCl_{2}$

Figura 63. Diagrama representativo de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

La reacción entre la materia prima, [AuCl(C₂₀H₂₇P)], con el fluorotiolato de plomo, Pb(SC₆H₄F-3)₂, en acetona produce, en 24 horas y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución amarilla. El sólido

blanco es, como se esperaba, PbCl₂. Se purifico por cromatografía en columna y se obtuvo una disolución translucida.

De la disolución translucida, por evaporación, se obtiene un sólido cristalino incoloro, relativamente estable a la atmósfera, cuyos posteriores análisis que se presentan en esta sección, corroboran que es $[Au(SC_6H_4F-3)(C_{20}H_{27}P)]$. El rendimiento de esta reacción fue de 62% considerando el compuesto $[AuCI(C_{20}H_{27}P)]$ como reactivo limitante.

Espectroscopía de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración lineal de v(C-F) en 1168 cm⁻¹. Se observa una señal muy intensa en 1461 cm⁻¹ que se le atribuye a la deformación de los anillos aromáticos. Se advierte que las señales correspondientes a las vibraciones de v(C-H) del anillo aromático fluorado en 3059 cm⁻¹ y 696 cm⁻¹. Podemos identificar las señales de los terbutilos de la fosfina en 1254 cm⁻¹. Tenemos las señales características de aromáticos arriba de 3000 cm⁻¹ 21.

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular [M⁺], [Au(SC₆H₄F-3)(C₂₀H₂₇P)]⁺ de 622 M/Z con una abundancia de aproximadamente 40% . El pico base [Au(C₂₀H₂₇P)]⁺ aparece en 495 M/Z. Encontramos el dímero {Au₂(SC₆H₄F-3)(C₂₀H₂₇P)₂}⁺ con una abundancia del 90% en 1117 M/Z.

Figura 65. Espectro de masas del compuesto [Au(SC₆H₄F-3)(C₂₀H₂₇P)] obtenido por FAB⁺

Resonancia magnética nuclear de ¹H

De 7 ppm a 8.5 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. En 1.48 ppm, se encuentran las señales correspondientes a los terbutilos de la fosfina. Adicionalmente vemos un multiplete en 6.9ppm que se identifica como los protónes del ligante flouro-azufrado

Figura 66. Espectro de RMN de ¹H de [Au(SC₆H₄F-3)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

Ya que solo existe un flúor en el ligante anionico solo se espera una señal en -111.71 ppm

Figura 67. Señales de RMN de ¹⁹F para [Au(SC₆H₄F-3)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética de ³¹P

Tenemos un sigulente en 68.81 ppm. Este lo identificamos como el fosforo de la fosfina que esta electrónicamente desprotegido²² por la coordinación del ligante anionico.

Figura 68. Espectro de RMN de ³¹P de [Au(SC₆H₄F-3)(C₂₀H₂₇P)] acetona-d⁶

Cristalografía de rayos X de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

La estructura tiene un arreglo casi lineal, ya que el ángulo de P1-Au1-S1 es de 176°.

El ángulo Au1-S1-C21 es de 106°, lo que nos propone que en esa parte se tiene un arreglo de un tetraedro deformado considerando los pares libres de electrones del azufre. En la siguiente tabla se presentan algunas distancias de enlace importantes:

Tabla 7. Distancias de	enlace
------------------------	--------

Enlace	Distancia de enlace en Å
P1-Au1	2.280
Au1-S1	2.302
S1-C21	1.771

Formula	
Sistema	[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]
Grupo espacial	P -1
Dimensión	a=11.000 Å α=108° b=14.590 Å β=104° c=16.912 Å γ=91°
Z	4
R	R1=0.0338 wR2=0.0686

Figura 69. Estructura determinada por difracción de rayos X en monocristal de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema triclínico. La distancia de enlace entre núcleos de Au(I) entre moléculas es de alrededor de 8.5 Å. Como en los compuestos anteriores y como se esperaba, no se presenta una interacción aurofilica.

Figura 70. Empaquetamiento cristalino de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

En la figura 71 vemos un puente de hidrogeno, uno es de azufre (S1) con el hidrogeno (H31). Con menor cantidad de flúor en el ligante anionico se pierde el impedimento estérico permitiendo que existan interacciones azufre protón.

Figura 71. Interacciones intermoleculares de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

12.-Caracterización de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

 $2[AuCl(C_{20}H_{27}P)] + Pb(SC_{6}H_{4}F-4)_{2} \rightarrow 2[Au(SC_{6}H_{4}F-4)(C_{20}H_{27}P)] + \downarrow PbCl_{2}$

Figura 72. Diagrama representativo de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

La reacción entre la materia prima, [AuCl(C₂₀H₂₇P)], con el fluorotiolato de plomo, Pb(SC₆H₄F-4)₂, en acetona produce, en 24 horas y a temperatura ambiente, un precipitado blanco que se separa por filtración y una disolución amarilla. El sólido blanco es, como se esperaba, PbCl₂. Se purifico por cromatografía en columna y se obtuvo una disolución translucida.

Por evaporación, se obtiene un sólido cristalino incoloro, relativamente estable a la atmosfera y formulado como $[Au(SC_6H_4F-2)(C_{20}H_{27}P)]$. El rendimiento de esta reacción fue de 46% considerando el compuesto $[AuCI(C_{20}H_{27}P)]$ como reactivo limitante.

Espectroscopía de infrarrojo

El espectro IR muestra la señal correspondiente a la vibración lineal de v(C-F) en 1170 cm⁻¹. Se observa una señal muy intensa en 1477 cm⁻¹ que se le atribuye a la deformación de los anillos aromáticos. Asi mismo, se manifiestan las señales correspondientes a las vibraciones de v(C-H) del anillo aromático fluorado en 3047 cm⁻¹ y 696 cm⁻¹. Podemos identificar las señales de los ter-butilos de la fosfina en 1285 cm⁻¹. Encontramos las señales características de los anillos aromáticos arriba de 3000 cm⁻¹.²¹

Figura 73. Espectro de IR de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

Espectrometría de Masas

En espectrometría de masas se observa la señal correspondiente al ion molecular [M⁺], [Au(SC₆H₄F-4)(C₂₀H₂₇P)]⁺ de 622 M/Z con una abundancia de aproximadamente 50% .El pico base [Au(C₂₀H₂₇P)]⁺ aparece en 495 M/Z . Al igual que en los demás compuestos encontramos el dímero {Au₂(SC₆F₅)(C₂₀H₂₇P)₂}⁺ en 1117 M/Z.

Figura 74. Espectro de masas del compuesto [Au(SC₆H₄F-4)(C₂₀H₂₇P)] obtenido por FAB⁺

Resonancia magnética nuclear de ¹H

De 7 ppm a 8.5 ppm encontramos los multipletes que corresponden a los protones de los anillos aromáticos de la fosfina. Cerca de 1.46 ppm se encuentra el doblete correspondiente a los terbutilos de la fosfina. En la molécula tenemos dos grupos de protones equivalentes. Por esta razón tenemos dos señales, una en 6.72 ppm que se atribuye a los protones en meta. La otra señal esta en 6.27ppm que se le atribuye a los protones en orto al azufre.

Figura 75. Espectro de RMN de ¹H de [Au(SC₆H₄F-4)(C₂₀H₂₇P)] en acetona-d⁶

Resonancia magnética nuclear de ¹⁹F

En el espectro de segundo orden de RMN ¹⁹F tenemos un singulete en -119.84 ppm. Solo esperamos una señal ya que tenemos solo un átomo de flúor en el ligante anionico

Resonancia magnética de ³¹P

Vemos el singulete esperado en 68.59 ppm.²² Este lo identificamos como el fosforo que esta electrónicamente desprotegido por la coordinación del ligante anionico

Figura 77. Espectro de RMN de ³¹P de [Au(SC₆H₄F-4)(C₂₀H₂₇P)] acetona-d⁶

Cristalografia de rayos X de [Au(SC₆H₄F-3)(C₂₀H₂₇P)]

La estructura tiene un arreglo lineal ya que el ángulo de P1-Au1-S1 es de 178.20°.

El ángulo Au1-S1-C21 es de 107° lo que nos propone que en esa parte se tiene un arreglo de un tetraedro deformado. Aquí se presentan algunas distancias de enlace importantes:

Tabla 8. Distancias de enlace

Enlace	Distancia de enlace en Å
P1-Au1	2.275
Au1-S1	2.302
S1-C21	1.773

Formula	[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	
Sistema	Triclínico	
Grupo espacial	P -1	
Dimensión	a=11.000Å α=108.771° b=14.590Å β=104.898° c=16.912 γ=91.213°	
Z	4	
R	R1=0.0338 wR2=0.0686	

Figura 78. Estructura determinada por difracción de rayos X en monocristal de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

Empaquetamiento cristalino

El compuesto cristaliza en un sistema triclínico. La distancia de enlace entre núcleos de Au(I) es de alrededor de 9.0 Å entre las moléculas. Como se esperaba, no se presenta una interacción aurofilica. El ligante anionico al tener menor cantidad de flúor menos volumen tiene, permitiendo que se formen puentes de hidrógeno con el azufre.

Figura 79. Empaquetamiento cristalino de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

En la figura 79 podemos ver una interacción de flúor (F1) con hidrogeno a 2.5Å de distancia. Otros puentes de hidrogeno existen con el azufre (S1) y protones de moléculas vecinas (H47C y H31) con una distancia de 2.9 Å.

Figura 80. Interacciones intermoleculares de [Au(SC₆H₄F-4)(C₂₀H₂₇P)]

13.-Analisis de resultados:

La síntesis propuesta en este trabajo se llevó acabo de manera exitosa con los rendimientos que observamos en la tabla 9.

Compuesto	Rendimiento
	(%)
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	73
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	68
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	75
[Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	59
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	53
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	62
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	46

Tabla 9. Rendimientos obtenidos en la síntesis

Como era de esperarse para compuestos de oro(I), d¹⁰, di coordinados, el ángulo P-Au-S es casi lineal en los siete compuestos sintetizados como se observa en la tabla 10.

Compuesto	Angulo de P1-Au1-S1	Tipo de
		empaquetamiento
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	173.59	Ortorrómbico
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	173.69	Ortorrómbico
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	174.83	Triclínico
[Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	174.63	Monoclínico
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	175.91	Monoclínico
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	176.35	Monoclínico
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	178.20	Triclínico

Tabla 10. Ángulos P1-Au1-S1 en [Au(SR)(C₂₀H₂₇P)]

Podemos ver una tendencia, en sólido, de que al disminuir el número de átomos de flúor, en el ligante anionico, disminuye el ángulo P-Au-S. El ángulo va a modificarse por el impedimento estérico generado por el volumen y distribución de los átomos de flúor en el ligante fluoro-azufrado, como se ve en la tabla 10.

El Au(I) puede retrodonar densidad electrónica al fosforo y al azufre. En la tabla 11 vemos que, en promedio, la distancia de enlace menor pertenece a P-Au. Esto indica que Existe mayor retrodonacios del Au(I) al fosforo de la fosfina. Al disminurir la flouracion del anillo se observa una influencia trans sobre el desplazamiento de la señal en ³¹P del fosforo de la fosfina (como se observa en la tabla 11).

Compuesto	Distancia P-Au	Señal de ³¹ P
	(Å)	(ppm)
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	2,267	62,88
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	2,273	62,83
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	2,278	63,48
[Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	2,275	63,08
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	2,279	63,16
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	2,28	68,31
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	2,275	68,59

Tabla 11 Comparación de distancias de enlace de P-Au y Au-S

En los espectros de ³¹P-RMN obtenidos de [AuCl(C₂₀H₂₇P)] encontramos un singulete a 60.05 ppm. Una vez que la materia prima de Au(I) se coordina con el ligante fluoro-azufrado, la señal de ³¹P se desplaza a frecuencia baja, y aparece a ppm mayores a 60, como se ve en la tabla 11. Este desplazamiento implica una desprotección electrónica del núcleo de fósforo en el compuesto lo que puede

explicarse asumiendo que el ligante aniónico extraerá densidad electrónica del oro que a su vez extraerá densidad electrónica del fósforo²³.

La geometría de Au-S-C es casi tetraédrica como se ve en la tabla 10. Esto se debe a que los pares de electrones libres del azufre funcionan como los demás vértices del tetraedro.

Compuesto	Angulo de Au-S-C	Tipo de empaquetamiento
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	106.65	Ortorrómbico
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	107.24	Ortorrómbico
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	106.76	Triclínico
Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	103.45	Monoclínico
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	107.54	Monoclínico
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	106.37	Monoclínico
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	107.54	Triclínico

Tabla 12 ángulos Au-S-C.

Al disminuir la cantidad de átomos de flúor en la molécula vemos interacciones del azufre con átomos de las moléculas vecinas. El volumen del ligante fluoro-azufrado disminuye y permite el este tipo de interacciones ya que, probablemente, los hidrógenos se encuentran en posiciones más cercanas al azufre para puentearse.

Los ligantes de estos compuestos son muy voluminosos lo que genera impedimento estérico en el cristal. Las distancias internucleares de los núcleos de oro vecinos se ven en la tabla 13.

Tabla 13. Distancias de núcleos de Au-Au
--

Compuesto	Distancias Au-Au
	(Å)
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	7.705
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	8.892
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	7.374
Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	8.189
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	8.177
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	8.516
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	9.025

Estas distancias representan cerca de tres veces la suma de los radios de van der Walls para los átomos de oro. Por esta razón no se tiene interacciones aurofilicas.

En espectrometría de masas se tiene evidencia de la tendencia de estos compuestos a asociarse. Es posible que una de las especies presente en la

disolución, que se introduce al espectrómetro, sea un dímero estabilizado por interacciones aurofilicas, que pierde un ligante anionico. En la tabla 14 vemos que la suma de la masa del pico base y la del $[M^+]$ que al sumarlos nos da el peso molecular asignable al posible dímero descrito.

Compuesto	Pico base M/Z	[M ⁺] M/Z	Au—Au M/Z
[Au(SC ₆ F ₅)(C ₂₀ H ₂₇ P)]	495	694	1189
[Au(SC ₆ HF ₄)(C ₂₀ H ₂₇ P)]	495	676	1171
[Au(SC ₆ H ₃ F ₂ -3,5)(C ₂₀ H ₂₇ P)]	495	640	1135
[Au(SC ₆ H ₃ F ₂ -2,4)(C ₂₀ H ₂₇ P)]	495	640	1135
[Au(SC ₆ H ₄ F-2)(C ₂₀ H ₂₇ P)]	495	622	1117
[Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)]	495	622	1117
[Au(SC ₆ H ₄ F-4)(C ₂₀ H ₂₇ P)]	495	622	1117

Tabla 14: espectrometría de masas

15.- Conclusiones:

La síntesis propuesta en este trabajo permite obtener los productos buscados en rendimientos del 46% a 73%.

Los compuestos obtenidos no presentan interacciones aurofilicas, en el cristal, debido a lo voluminoso de los ligantes.

En espectrometría de masas se tiene evidencia de la tendencia de estos compuestos a asociarse

Al disminuir la cantidad de átomos de flúor en la molécula vemos interacciones del azufre con átomos de las moléculas vecinas, esto se debe a que los hidrógenos se encuentran en posiciones más cercanas al azufre para puentearse.

La retrodonación del Au(I) se manifiesta de mayor manera con el fosforo.

Bibliografía

- ¹ Schmidbaur, H., & Schier. Chem. Soc. Rev, 2008, 37, 1931-1951
- ² Raubenheimer, H. G., & Schmidbaur, H. J. Chem. Educ., 2014, 91, 2024–2036
- ³ Doulain, P.-E., Decréau, R., Racoeur, C., Goncalves, V., Dubrez, L., Bettaieb, A.,Bodio, E. . *Dalton Trans. 2015, 44*, 4874–4883.
- ⁴ Langdon-Jones, E. E., & Pope, S. J. a. *Chem Commun (Camb) 2014*, *50*, 10343– 10354
- ⁵ Jiang, X., Hau, F. K., Sun, Q., Yu, S., & Yam, V. W. *J. Am. Chem*, 2014.136, 10921–10929.
- ⁶ Jiménez-Núñez, E., & Echavarren, A. M. Chem Commun (Camb), 2007, 333-346
- ⁷ Raducan, M., Moreno, M., Bour, C., & Echavarren, A. M. *Chem Commun* (*Camb*), 2012, 48, 52–54.
- ⁸ Homs, A., Escofet, I., & Echavarren, A. M. Org let., 2013, 15, 5782–5785
- ⁹ Doulain, P.-E., Decréau, R., Racoeur, C., Goncalves, V., Dubrez, L., Bettaieb, A. Bodio, E. *Dalton Trans.* (2015)., *44*, 4874–4883.
- ¹⁰ Shaw, C. *Chem. Rev.*1999. 99, 2589–2600.
- ¹¹ Gimeno, C. M. *The Chemistry of Gold. Modern Supramolecular Gold Chemistry: Gold-Metal Interactions and Applications.* Wiley-Vch verlag GmbH, Weinheim, 2008
- ¹² Goutham, K., Ashok Kumar, D., Suresh, S., Sridhar, B., Narender, R., & Karunakar, G. V. *J. Org. Chem.* 2015, 80, 11162-11168

- ¹³ Crabtree, R. H. Chemistry of the Transition Metals the Organometallic Chemistry of the., John Wiley & Sons, USA, 2005
- ¹⁴ Holligan, K., Rogler, P., Rehe, D., Pamula, M., Kornienko, A. Y., Emge, T. J.Brennan, J. G. 2015. *Inorg. Chem.*, 2015, *54*, pp 8896–8904
- ¹⁵ Yam, V. W. W., Chan, C. L., Li, C. K., & Wong, K. M. C. Coordination Chemistry Reviews, 2001. 216-217, 173–194
- ¹⁶ Barreiro, E., Casas, J. S., Couce, M. D., Sánchez, A., Sánchez-Gonzalez, A., Sordo, J., & Vázquez-López, E. M. *J. Inorg. Biochem* ,2014 *138*, 89–98.
- ¹⁷ Zheng, A.-X., Ren, Z.-G., Li, L.-L., Shang, H., Li, H.-X., & Lang, J.-P. *Dalton Trans.*, 2011, *40*, 589–96.

¹⁹ Piet W. N. M. Van Leeuwen. Homogeneous catalysis—understanding the art. Kluwer, Dordrecht, 2004

²⁰ Hashmi, A. S. K., Bechem, D. B., Loos, A. A., Hamzic, M., Rominger, A. F., & C,
H. R. Austrailian Journal of Chemistry 2014,67, 481–499

²¹ Nakamoto K., "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Ed. John Wiley & Sons, New York, 1997.

²² Zhdanko, A., Ströbele, M., & Maier, M. E. *Chemistry - A European Journal*, 2012.
 18, 14732–14744215

Anexo

Datos cristalográficos

La estructura e idioma de cada tabla se ha conservado como se obtuvo originalmente del instrumento.

 $[Au(SC_6F_5)(C_{20}H_{27}P)]$

Identification code Empirical formula Formula weight Temperature Wavelength shelx C26 H27 Au F5 P S 694.47 298(2) K 0.71073 Å 92

Crystal system Space group Unit cell dimensions	Orthorhombic P b c a $a = 10.2791(4)$ Å $b = 19.2381(8)$ Å $c = 26.2618(10)$ Å
Volume	5193.3(4) Å ³
Z	8
Density (calculated)	1.776 Mg/m ³
Absorption coefficient	5.856 mm ⁻¹
F(000)	2704
Theta range for data collection	3.682 to 29.496°.
Index ranges	-13<=h<=10, -22<=k<=26, -36<=l<=24
Reflections collected	17607
Independent reflections	6213 [R(int) = 0.0492]
Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6213 / 0 / 313
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0480, wR2 = 0.0795
R indices (all data)	R1 = 0.0890, wR2 = 0.0921
Extinction coefficient	n/a
Largest diff. peak and hole	0.966 and -1.585 e.Å ⁻³

Table 2. Atomic coordinates	x 10 ⁴) and equivalent isotropic displacement parameters (A^2x 10 ³)	
for khc4	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor	r.

	х	У	Z	U(eq)
C(1)	4937(6)	1475(3)	1631(2)	49(2)
C(2)	3864(7)	1043(3)	1671(3)	61(2)
C(3)	3323(7)	843(4)	2118(3)	77(2)
C(4)	3850(9)	1057(4)	2562(3)	81(2)
C(5)	4901(9)	1488(4)	2547(3)	74(2)
C(6)	5422(7)	1681(3)	2093(2)	60(2)
C(7)	6473(6)	4548(3)	967(2)	45(1)
C(8)	5107(6)	4501(3)	963(2)	50(2)
C(9)	4301(5)	3854(3)	1031(2)	50(2)
C(10)	3748(6)	3533(4)	617(3)	70(2)
C(11)	2910(7)	2976(4)	682(3)	80(2)
C(12)	2614(7)	2743(4)	1157(3)	77(2)
C(13)	3137(7)	3063(4)	1572(3)	72(2)
C(14)	3975(6)	3622(4)	1511(2)	61(2)
C(15)	4402(7)	5107(4)	875(3)	74(2)
C(16)	4985(8)	5735(4)	804(3)	80(2)
C(17)	6309(8)	5782(4)	817(3)	71(2)
C(18)	7032(7)	5189(3)	894(2)	60(2)
C(19)	8672(6)	3759(4)	507(2)	58(2)
C(20)	9265(6)	3034(3)	478(3)	66(2)
C(21)	7820(8)	3861(4)	38(2)	98(3)
C(22)	9823(8)	4268(4)	516(3)	100(3)
C(23)	8336(6)	3920(3)	1696(2)	51(2)
C(24)	9111(7)	4594(4)	1753(3)	80(2)
C(25)	9212(7)	3297(4)	1807(3)	72(2)
C(26)	7222(7)	3939(4)	2085(2)	69(2)
Au(1)	6462(1)	2755(1)	1077(1)	46(1)
F(1)	3319(4)	797(2)	1243(2)	95(1)
F(2)	2286(5)	415(3)	2126(2)	125(2)
F(3)	3338(6)	865(3)	3010(2)	130(2)
F(4)	5442(6)	1716(2)	2985(2)	113(2)
F(5)	6479(5)	2094(2)	2112(2)	91(1)
P(1)	7523(1)	3788(1)	1064(1)	41(1)
S(1)	5561(2)	1662(1)	1028(1)	60(1)

Table 3. Bond lengths [Å] and angles [°] for khc4.

.371(8)
.385(8)
.745(6)

C(2)-F(1) C(2)-C(3) C(3)-F(2) C(3)-C(4) C(4)-F(3) C(4)-F(3) C(4)-C(5) C(5)-F(4) C(5)-C(6) C(6)-F(5) C(7)-C(18) C(7)-C(18) C(7)-C(8) C(7)-C(15) C(8)-C(15) C(8)-C(9) C(9)-C(14) C(10)-C(11) C(10)-H(10) C(11)-C(12) C(11)-H(12) C(11)-H(12) C(13)-H(13) C(12)-H(12) C(13)-H(13) C(14)-H(14) C(15)-C(16) C(15)-H(15) C(16)-C(17) C(16)-H(16) C(17)-C(18) C(17)-H(17) C(16)-H(16) C(17)-C(18) C(17)-H(17) C(16)-H(18) C(19)-C(22) C(19)-C(21) C(19)-C(21) C(19)-C(22) C(19)-P(1) C(20)-H(20A) C(20)-H(20A) C(21)-H(21B) C(21)-H(21B) C(22)-H(22B) C(22)-H(22A) C(23)-C(25) C(23)-C(24) C(23)-C(24) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C)	$\begin{array}{c} 1.343(7)\\ 1.355(10)\\ 1.347(8)\\ 1.347(8)\\ 1.349(11)\\ 1.341(8)\\ 1.363(10)\\ 1.352(8)\\ 1.359(9)\\ 1.359(9)\\ 1.346(7)\\ 1.375(8)\\ 1.407(8)\\ 1.375(8)\\ 1.407(8)\\ 1.374(8)\\ 1.378(8)\\ 1.36(10)\\ 0.9300\\ 1.362(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 0.9300\\ 1.361(10)\\ 0.9300\\ 0.9600\\ 0.96$
C(21)-H(21B) C(21)-H(21C) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-C(25) C(23)-C(24) C(23)-C(26) C(23)-P(1) C(24)-H(24A) C(24)-H(24A) C(24)-H(24B) C(24)-H(24B) C(25)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25B) C(25)-H(25B) C(26)-H(26B) C(26)-H(26C) Au(1)-P(1) Au(1)-P(1)	0.9600 0.9600 0.9600 0.9600 1.527(8) 1.531(9) 1.535(8) 1.873(5) 0.9600
C(6)-C(1)-C(2) $C(6)-C(1)-S(1)$ $C(2)-C(1)-S(1)$ $F(1)-C(2)-C(3)$ $F(1)-C(2)-C(1)$ $C(3)-C(2)-C(1)$ $F(2)-C(3)-C(4)$ $F(2)-C(3)-C(2)$ $C(4)-C(3)-C(2)$	113.4(6) 127.5(5) 119.1(5) 117.1(7) 118.6(6) 124.3(7) 119.4(8) 120.7(8) 119.8(7)

C(25)-C(23)-C(26)	109.4(5)
C(24)-C(23)-C(26)	107.6(5)
C(25)-C(23)-P(1)	109.0(4)
C(24)-C(23)-P(1)	115.7(4)
C(26)-C(23)-P(1)	105.0(4)
C(23)-C(24)-H(24A)	109.5
C(23)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(23)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(23)-C(25)-H(25A)	109.5
C(23)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(23)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(23)-C(26)-H(26A)	109.5
C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
P(1)-Au(1)-S(1)	173.60(6)
C(7)-P(1)-C(23)	106.2(3)
C(7)-P(1)-C(19)	106.5(3)
C(23)-P(1)-C(19)	114.4(3)
C(7)-P(1)-Au(1)	114.6(2)
C(23)-P(1)-Au(1)	108.68(19)
C(19)-P(1)-Au(1)	106.7(2)
C(1)-S(1)-Au(1)	106.7(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	50(4)	38(3)	58(4)	4(3)	-7(3)	2(3)
C(2)	64(4)	59(4)	61(4)	2(3)	-16(4)	-2(4)
C(3)	69(5)	72(5)	90(6)	29(5)	-4(5)	-9(4)
C(4)	103(6)	70(5)	68(5)	23(4)	8(5)	-4(5)
C(5)	114(6)	53(4)	54(4)	5(3)	-16(5)	7(5)
C(6)	65(4)	52(4)	62(4)	2(3)	-16(4)	-2(4)
C(7)	43(3)	51(4)	41(3)	6(3)	3(3)	6(3)
C(8)	46(3)	62(4)	42(3)	-4(3)	-1(3)	17(3)
C(9)	31(3)	69(4)	51(4)	-6(3)	4(3)	18(3)
C(10)	57(4)	97(6)	55(4)	-11(4)	-5(4)	6(4)
C(11)	50(4)	100(6)	91(6)	-31(5)	-15(4)	5(5)
C(12)	41(4)	86(5)	102(6)	-5(5)	3(4)	2(4)
C(13)	58(4)	85(5)	73(5)	3(4)	24(4)	2(4)
C(14)	49(4)	88(5)	46(4)	-8(3)	6(3)	0(4)
C(15)	52(4)	79(5)	89(5)	3(4)	-8(4)	22(4)
C(16)	79(6)	68(5)	92(6)	1(4)	-15(5)	27(5)
C(17)	85(6)	52(4)	77(5)	11(4)	-20(4)	8(4)
C(18)	55(4)	64(4)	60(4)	8(3)	-9(3)	2(4)
C(19)	57(4)	71(4)	47(4)	8(3)	10(3)	2(4)
C(20)	49(4)	83(5)	66(4)	-7(4)	7(4)	17(4)
C(21)	118(7)	137(7)	39(4)	6(4)	6(4)	57(7)
C(22)	92(6)	99(6)	108(7)	3(5)	50(5)	-22(6)
C(23)	55(4)	57(4)	40(3)	1(3)	-16(3)	0(3)
C(24)	81(5)	88(5)	70(5)	-3(4)	-24(4)	-20(5)
C(25)	68(4)	78(5)	70(4)	1(4)	-23(4)	12(4)
C(26)	82(5)	78(5)	47(4)	-5(3)	-2(4)	-1(4)
Au(1)	40(1)	49(1)	47(1)	0(1)	-1(1)	0(1)
F(1)	92(3)	104(3)	90(3)	17(3)	-27(3)	-48(3)
F(2)	101(4)	143(4)	131(4)	51(3)	-1(3)	-55(4)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc4. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

F(3) F(4) F(5) P(1) S(1)	180(6) 194(6) 116(4) 36(1) 62(1)	132(4) 88(3) 84(3) 47(1) 58(1)	79(3) 57(3) 71(3) 38(1) 61(1)	36(3) 4(2) 5(2) 4(1) -9(1)	31(3) -22(3) -30(3) -1(1) -2(1)	-18(4) -5(4) -38(3) 3(1) -11(1)
[Au(SC ₆ HF, Identificatio Empirical for Formula we Temperatur Wavelength Crystal syst Space grou Unit cell din	(C ₂₀ H ₂₇ P)] n code prmula eight re n tem p nensions			shelx C26 H28 Au F4 F 676.48 298(2) K 0.71073 Å Orthorhombic P b c a a = 10.3561(2) Å b = 19.2100(5) Å c = 25.7190(6) Å	° S	□ = 90°. □ = 90°. □ = 90°.
Volume Z				5116.6(2) Å ³ 8		
Density (ca Absorption F(000) Theta range Index range Reflections Independer Completene	lculated) coefficient e for data colle ss collected nt reflections ess to theta = 2	ction 25.242°		1.756 Mg/m ³ 5.936 mm ⁻¹ 2640 3.730 to 29.624°. -14<=h<=14, -25- 42047 6643 [R(int) = 0.0 99.7 %	<=k<=24, -32< 328]	= <=33
Refinement method Full-matrix least-squares on F ²						
Goodness- Final R indi R indices (a Extinction c	of-fit on F ² ces [I>2sigma all data) coefficient	[1)]		1.076 R1 = 0.0322, wR2 R1 = 0.0551, wR2 n/a	2 = 0.0586 2 = 0.0658	
Largest diff	. peak and hole	e		0.880 and -0.798	e.Å ⁻³	
Table 2. At	Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å ² x 10^3)					

Table 2.	Atomic coordinates (x 10 ⁴) and equivalent isotropic displacement parameters (Å ² x 1	10 ³)
for khc2.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	

	Х	у	Z	U(eq)
Au(1)	6435(1)	2762(1)	1095(1)	46(1)
C(1)	3974(4)	3604(2)	1514(2)	61(1)
C(2)	3131(5)	3048(3)	1557(2)	73(1)
C(3)	2605(4)	2763(3)	1123(2)	74(1)
C(4)	2896(4)	3027(3)	648(2)	78(2)
C(5)	3739(4)	3579(3)	598(2)	67(1)
C(6)	4300(4)	3877(2)	1032(2)	50(1)
C(7)	5097(4)	4519(2)	984(1)	49(1)
C(8)	4403(5)	5131(2)	917(2)	66(1)
C(9)	4993(5)	5768(3)	867(2)	75(1)
C(10)	6309(5)	5814(2)	875(2)	68(1)
C(11)	7022(5)	5216(2)	941(2)	59(1)
C(12)	6458(4)	4564(2)	997(1)	45(1)
C(13)	8612(4)	3774(2)	508(2)	61(1)
C(14)	7752(6)	3861(4)	37(2)	114(2)
C(15)	9735(6)	4304(3)	508(3)	117(2)
C(16)	9237(4)	3056(2)	477(2)	67(1)
C(17)	8311(4)	3922(2)	1729(2)	51(1)
C(18)	7216(4)	3932(2)	2125(2)	66(1)
C(19)	9172(5)	3291(2)	1829(2)	70(1)
C(20)	9103(5)	4587(3)	1792(2)	78(1)
C(21)	4936(4)	1474(2)	1668(2)	53(1)
C(22)	3868(4)	1041(2)	1711(2)	64(1)
C(23)	3361(5)	845(3)	2180(2)	82(2)
C(24)	3885(6)	1067(3)	2636(2)	91(2)
C(25)	4929(6)	1498(2)	2607(2)	81(2)
C(26)	5429(5)	1695(2) 97	2141(2)	66(1)

	2226(2)	700(0)	1070(1)	00(1)
F(1)	3326(3)	796(2)	1278(1)	96(1)
F(2)	2317(4)	424(2)	2181(2)	131(1)
F(3)	5480(5)	1734(2)	3047(1)	126(1)
F(4)	6475(3)	2113(2)	2153(1)	99(1)
P(1)	7494(1)	3798(1)	1081(1)	40(1)
S(1)	5545(1)	1665(1)	1054(1)	63(1)
0(1)	5545(1)	1000(1)	1004(1)	00(1)
Table 2 Dand langths	[Å] and angles [°] for kha?			
Table 5. Donu lenguis	[A] and angles [] for kincz	•		
A(4) D(4)	0.0700/0)			
Au(1)-P(1)	2.2728(9)			
Au(1)-S(1)	2.3024(11)			
C(1)-C(2)	1.384(6)			
C(1)-C(6)	1.389(6)			
C(1)-H(1)	0.9300			
C(2)-C(3)	1.358(7)			
C(2)-H(2)	0.9300			
C(3)-C(4)	1.358(7)			
C(3) - H(3)	0.9300			
$C(3)$ - $\Gamma(3)$	1 380(7)			
C(4) - C(5)	1.360(7)			
C(4)-H(4)	0.9300			
C(5)-C(6)	1.383(6)			
C(5)-H(5)	0.9300			
C(6)-C(7)	1.490(6)			
C(7)-C(8)	1.388(6)			
C(7)-C(12)	1.412(5)			
C(8)-C(9)	1.375(7)			
C(8)-H(8)	0.9300			
C(9)-C(10)	1.365(7)			
C(0) - H(0)	0.9300			
C(10) C(11)	1 377(6)			
C(10) - C(11)	0.0300			
$C(10) - \Pi(10)$	0.9300			
C(11)-C(12)	1.390(6)			
C(11)-H(11)	0.9300			
C(12)-P(1)	1.832(4)			
C(13)-C(14)	1.513(7)			
C(13)-C(16)	1.525(6)			
C(13)-C(15)	1.546(7)			
C(13)-P(1)	1.875(4)			
C(14)-H(14A)	0.9600			
C(14)-H(14B)	0.9600			
C(14)-H(14C)	0.9600			
C(15)-H(15A)	0.9600			
C(15)-H(15B)	0.9600			
C(15)-H(15C)	0.9600			
C(16) - H(16A)	0.9600			
C(16) - H(16B)	0.9600			
C(16) = H(16C)	0.0000			
$C(10)-\Pi(100)$	1.524(6)			
C(17) - C(10)	1.524(0)			
C(17) - C(20)	1.527(0)			
C(17)-C(19)	1.520(0)			
C(17) - P(1)	1.884(4)			
C(18)-H(18A)	0.9600			
C(18)-H(18B)	0.9600			
C(18)-H(18C)	0.9600			
C(19)-H(19A)	0.9600			
C(19)-H(19B)	0.9600			
C(19)-H(19C)	0.9600			
C(20)-H(20A)	0.9600			
C(20)-H(20B)	0.9600			
C(20) - H(20C)	0.9600			
C(21)-C(26)	1 386(6)			
C(21)-C(22)	1,389(6)			
C(21)-S(1)	1 740(4)			
$C(22)_{-}E(1)$	1 222(5)			
C(22) C(22)	1.000(0)			
C(22) = C(23)	1.309(7)			
$O(23) - \Gamma(2)$	1.350(6)			
U(23)-U(24)	1.360(8)			
0(24)-0(25)	1.364(7)			
C(24)-H(24)	0.9300			
C(25)-F(3)	1.346(6)			

C(25)-C(26)	1.359(7)
C(26)-F(4)	1.348(5)
$\begin{array}{c} C(25)-C(26)\\ C(26)-F(4) \end{array} \\ \\ P(1)-Au(1)-S(1)\\ C(2)-C(1)-C(6)\\ C(2)-C(1)-H(1)\\ C(3)-C(2)-C(1)\\ C(3)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(1)-C(2)-H(2)\\ C(4)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(3)-C(4)-C(5)\\ C(3)-C(4)-H(4)\\ C(5)-C(4)-H(4)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-H(5)\\ C(5)-C(6)-C(1)\\ C(5)-C(6)-C(1)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(6)\\ C(1)-C(6)-C(7)\\ C(8)-C(7)-C(6)\\ C(1)-C(6)-C(7)\\ C(9)-C(8)-H(8)\\ C(1)-C(9)-C(8)\\ C(1)-C(9)-H(9)\\ C(1)-C(9)-H(9)\\ C(1)-C(9)-H(9)\\ C(1)-C(9)-H(9)\\ C(1)-C(9)-H(9)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(1)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(10)\\ C(1)-C(1)-H(14)\\ H(14A)-C(14)-H(14C)\\ H(14A)-C(14)-H(14C)\\ H(14A)-C(14)-H(14C)\\ H(14A)-C(15)-H(15C)\\ H(15A)-C(15)-H(15C)\\ H(15B)-C(15)-H(15C)\\ H(15B)-C(15$	$\begin{array}{c} 1.359(7)\\ 1.348(5)\\ 173.69(4)\\ 121.1(4)\\ 119.5\\ 119.5\\ 119.9(5)\\ 120.0\\ 120.0\\ 120.0(5)\\ 120.0\\ 120.0(5)\\ 120.0\\ 120.0(5)\\ 120.0\\ 120.8(5)\\ 119.6\\ 120.6(4)\\ 120.6(4)\\ 121.5(4)\\ 118.0(4)\\ 125.1(4)\\ 126.9(4)\\ 122.3(4)\\ 118.1(4)\\ 126.9(4)\\ 122.3(4)\\ 118.8\\ 118.8\\ 120.0(4)\\ 122.3(4)\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.7\\ 118.1(4)\\ 119.3(3)\\ 122.6(3)\\ 107.9(4)\\ 111.7(5)\\ 106.0(4)\\ 105.2(3)\\ 109.5\\ 1$
$\begin{array}{l} H(15A)-C(15)-H(15C) \\ H(15B)-C(15)-H(15C) \\ C(13)-C(16)-H(16A) \\ C(13)-C(16)-H(16B) \\ H(16A)-C(16)-H(16B) \\ C(13)-C(16)-H(16C) \\ H(16A)-C(16)-H(16C) \\ H(16B)-C(16)-H(16C) \\ H(16B)-C(16)-H(16C) \\ C(18)-C(17)-C(20) \\ C(18)-C(17)-C(19) \\ C(20)-C(17)-C(19) \\ C(20)-C(10)-C(10)-C(10)-C(10) \\ C(10)-$	109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 108.5(4) 109.4(3) 109.4(4)
C(20)-C(17)-P(1)	116.2(3)
C(19)-C(17)-P(1)	108.1(3)

C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-U(18)-H(18B)	109.5
$U(10A) C(10) - \Pi(10C)$	109.5
$\Pi(10A) - C(10) - \Pi(10C)$	109.5
$\Gamma(10D) - C(10) - \Pi(10C)$	109.5
C(17)-C(19)-H(19R)	109.5
H(19A) - C(19) - H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(17)-C(20)-H(20A)	109.5
C(17)-C(20)-H(20B)	109.5
H(20Á)-C(20)-H(20B)	109.5
C(17)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(26)-C(21)-C(22)	114.0(4)
C(26)-C(21)-S(1)	126.8(3)
C(22)-C(21)-S(1)	119.2(3)
F(1)-C(22)-C(23)	118.6(4)
F(1)-C(22)-C(21)	118.7(4)
C(23)-C(22)-C(21)	122.7(5)
F(2)-C(23)-C(24)	120.4(5)
F(2)-C(23)-C(22)	118.2(5)
C(24)-C(23)-C(22)	121.4(5)
C(23) - C(24) - C(25)	117.3(5)
$C(25) - C(24) - \Pi(24)$	121.4
$C(25)-C(24)-\Pi(24)$ E(3)-C(25)-C(26)	121.4
F(3)-C(25)-C(24)	110.6(5)
C(26)-C(25)-C(24)	121.3(5)
E(4)-C(26)-C(25)	116 8(4)
F(4)-C(26)-C(21)	119 9(4)
C(25)-C(26)-C(21)	123.3(4)
C(12)-P(1)-C(13)	106.84(18)
C(12)-P(1)-C(17)	105.36(17)
C(13)-P(1)-C(17)	114.9(2)
C(12)-P(1)-Au(1)	114.96(13)
C(13)-P(1)-Au(1)	106.76(15)
C(17)-P(1)-Au(1)	108.26(12)
C(21)-S(1)-Au(1)	107.24(13)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	41(1)	49(1)	49(1)	0(1)	-2(1)	0(1)
C(1)	53(2)	79(3)	50(2)	-8(2)	7(2)	-2(2)
C(2)	55(3)	85(3)	79(3)	4(3)	17(3)	-3(3)
C(3)	41(2)	82(3)	97(4)	-9(3)	8(3)	-3(2)
C(4)	51(3)	101(4)	83(4)	-35(3)	-11(3)	-2(3)
C(5)	54(3)	96(3)	50(2)	-11(2)	-4(2)	8(2)
C(6)	36(2)	65(2)	49(2)	-6(2)	4(2)	10(2)
C(7)	48(2)	67(2)	34(2)	-2(2)	-1(2)	14(2)
C(8)	58(3)	75(3)	66(3)	0(2)	-2(2)	22(2)
C(9)	84(4)	67(3)	75(3)	3(3)	-11(3)	30(3)
C(10)	85(4)	53(3)	67(3)	6(2)	-14(3)	9(2)
C(11)	61(2)	53(2)	62(3)	11(2)	-5(2)	3(2)
C(12)	47(2)	54(2)	35(2)	3(2)	-1(2)	9(2)
C(13)	60(2)	74(3)	50(2)	9(2)	17(2)	6(2)
C(14)	132(5)	170(6)	39(2)	15(3)	12(3)	80(5)
C(15)	122(5)	98(4)	132(6)	-3(4)	76(5)	-29(4)
C(16)	52(2)	87(3)	64(3)	-5(2)	12(2)	15(2)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc2. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

0(47)	F2(2)		44(0)	1(0)	11(0)	2(2)	
	53(2)	55(2)	44(2)	1(2)	-11(2)	-2(2)	
C(18)	74(3)	83(3)	39(2)	-3(2)	-6(2)	1(2)	
C(19)	67(3)	81(3)	61(3)	7(2)	-20(2)	13(3)	
C(20)	77(3)	85(3)	71(3)	0(3)	-20(3)	-23(3)	
C(21)	55(2)	39(2)	63(3)	2(2)	-11(2)	2(2)	
C(22)	63(3)	59(3)	71(3)	10(2)	-13(2)	-9(2)	
C(23)	80(4)	73(3)	93(4)	26(3)	-1(3)	-11(3)	
C(24)	126(5)	81(4)	66(3)	18(3)	9(3)	2(3)	
C(25)	133(5)	54(3)	57(3)	8(2)	-24(3)	0(3)	
C(26)	84(3)	45(2)	68(3)	10(2)	-22(3)	-9(2)	
F(1)	96(2)	103(2)	88(2)	14(2)	-28(2)	-50(2)	
F(2)	113(3)	144(3)	137(3)	58(3)	1(2)	-56(2)	
F(3)	224(4)	89(2)	64(2)	7(2)	-37(2)	-15(3)	
F(4)	124(3)	86(2)	85(2)	17(Ź)	-46(2)	-42(2)	
P(1)	38(1)	48(1)	36(1)	5(1)	0(1)	3(1)	
S(1)	67(1)	57(1)	67(1)	-10(1)	1(1)	-10(1)	

$[Au(SC_6H_3F_2-3,5)(C_{20}H_{27}P)]$

shelx C26 H30 Au F2 P S 640.49 130(2) K 0.71073 Å Triclinic
$a = 9.8864(6) Å$ $= 75.206(5)^{\circ}$. $b = 11.9819(7) Å$ $= 82.287(5)^{\circ}$. $c = 21.5082(11) Å$ $= 85.619(5)^{\circ}$.
2438.7(2) Å ³ 4
1.744 Mg/m ³
6.210 mm ⁻¹ 1256
0.570 x 0.430 x 0.060 mm ³ 3.410 to 29.447°. -13<=h<=13, -16<=k<=16, -27<=l<=29 21726 11357 [R(int) = 0.0433] 99.7 %
Full-matrix least-squares on F ² 11357 / 0 / 571
0.972 R1 = 0.0343, wR2 = 0.0580 R1 = 0.0497, wR2 = 0.0646 n/a
1.058 and -1.868 e.Å ⁻³

Table 2.	Atomic coordinates ($x10^4)$ and equivalent isotropic displacement parameters (Å $^2x10^3)$
for khc5.	U(eq) is defined as one third of the trace of the orthogonalized U ^{jj} tensor.

	Х	у	Z	U(eq)
C(1)	-790(5)	3136(4)	4631(2)	20(1)
C(2)	-1657(5)	4114(4)	4595(2)	24(1)
C(3)	-2079(5)	4712(4)	4004(2)	23(1)
C(4)	-1640(5)	4328(4)	3463(2)	24(1)
C(5)	-766(5)	3353(4)	3495(2)	23(1)
C(6)	-313(4)	2761(4)	4081(2)	18(1)
C(7)	559(5)	1662(4)	4111(2)	18(1)
C(8)	-101(5)	696(4)	4079(2)	20(1)
C(9)	594(5)	-344(4)	4098(2)	23(1)
C(10)	1962(5)	-461(4)	4174(2)	21(1)
C(11)	2632(5)	482(4)	4206(2)	21(1)
C(12)	1963(5)	1569(4)	4168(2)	17(1)
C(13)	3587(5)	2576(4)	4932(2)	17(1)
		101		

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0(11)	4500(5)	0550(4)	(000(0)	04(4)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(14)	4532(5)	3550(4)	4906(2)	21(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(15)	2294(5)	2656(4)	5398(2)	22(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(16)	4321(5)	1405(4)	5192(2)	26(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(17)	4419(5)	2805(4)	3438(2)	19(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(18)	5657(5)	1970(4)	3598(2)	28(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(19)	3763(5)	2548(4)	2879(2)	28(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(20)	4961(5)	4027(4)	3187(2)	27(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(21)	2238(5)	7293(4)	3246(2)	18(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(22)	3570(5)	7012(4)	3420(2)	18(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(23)	4564(5)	7777(4)	3178(2)	21(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(24)	4386(5)	8849(4)	2767(2)	26(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(25)	3061(6)	9104(4)	2608(2)	27(1)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(26)	2009(5)	8383(4)	2829(2)	21(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au(1)	1841(1)	4559(1)	3852(1)	16(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(1)	5856(3)	7466(3)	3351(1)	33(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(2)	2819(3)	10165(2)	2206(1)	40(1)	
$\begin{array}{cccccc} S(1) & 856(1) & 6393(1) & 3531(1) & 22(1) \\ C(27) & 6040(5) & 3366(4) & 8367(2) & 21(1) \\ C(28) & 6742(5) & 4365(4) & 8261(2) & 25(1) \\ C(29) & 6825(5) & 4872(4) & 8767(2) & 28(1) \\ C(30) & 6215(5) & 3355(4) & 9432(2) & 25(1) \\ C(31) & 5510(5) & 3355(4) & 9432(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9069(2) & 18(1) \\ C(33) & 4702(5) & 1754(4) & 9069(2) & 29(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & -451(4) & 9224(2) & 29(1) \\ C(36) & 3677(6) & -451(4) & 9224(2) & 29(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1338(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(47) & 2401(5) & 7041(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(47) & 2401(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8526(4) & 7802(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10$	P(1)	2990(1)	2813(1)	4112(1)	15(1)	
$\begin{array}{ccccc} C(27) & 6040(5) & 3366(4) & 8367(2) & 21(1) \\ C(28) & 6742(5) & 4365(4) & 8261(2) & 25(1) \\ C(29) & 6825(5) & 4872(4) & 8767(2) & 28(1) \\ C(30) & 6215(5) & 4355(4) & 9385(2) & 25(1) \\ C(31) & 5510(5) & 3355(4) & 9492(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9069(2) & 18(1) \\ C(34) & 5563(5) & 764(4) & 9069(2) & 29(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & -451(4) & 9284(2) & 29(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2628(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(44) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(44) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7036(4) & 729(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(5) & 52(1) & 549$	S(1)	856(1)	6393(1)	3531(1)	22(1)	
$\begin{array}{ccccc} C(28) & 6742(5) & 4365(4) & 8211(2) & 25(1) \\ C(29) & 6825(5) & 4872(4) & 8767(2) & 28(1) \\ C(30) & 6215(5) & 4355(4) & 9385(2) & 25(1) \\ C(31) & 5510(5) & 3355(4) & 9492(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9089(2) & 18(1) \\ C(34) & 5563(5) & 764(4) & 9060(2) & 29(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & -451(4) & 9284(2) & 29(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8920(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(27)	6040(5)	3366(4)	8367(2)	21(1)	
$\begin{array}{ccccc} C(29) & 6825(5) & 4872(4) & 8767(2) & 28(1) \\ C(30) & 6215(5) & 4355(4) & 9385(2) & 25(1) \\ C(31) & 5510(5) & 3355(4) & 9492(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9089(2) & 18(1) \\ C(34) & 5563(5) & 764(4) & 9151(2) & 32(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & -451(4) & 9284(2) & 29(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(5) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(28)	6742(5)	4365(4)	8261(2)	25(1)	
$\begin{array}{cccc} C(30) & 6215(5) & 4355(4) & 9385(2) & 25(1) \\ C(31) & 5510(5) & 3355(4) & 9492(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9089(2) & 18(1) \\ C(34) & 5563(5) & 764(4) & 9060(2) & 29(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & 451(4) & 9284(2) & 29(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8928(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(29)	6825(5)	4872(4)	8767(2)	28(1)	
$\begin{array}{ccccc} C(31) & 5510(5) & 3355(4) & 9492(2) & 21(1) \\ C(32) & 5400(4) & 2865(4) & 8982(2) & 17(1) \\ C(33) & 4702(5) & 1754(4) & 9089(2) & 18(1) \\ C(34) & 5563(5) & 764(4) & 9060(2) & 29(1) \\ C(35) & 5049(6) & -304(4) & 9151(2) & 32(1) \\ C(36) & 3677(6) & -451(4) & 9284(2) & 29(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 277(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(55) & 5742(6) & 8926(4) & 7692(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(30)	6215(5)	4355(4)	9385(2)	25(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	5510(5)	3355(4)	9492(2)	21(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(32)	5400(4)	2865(4)	8982(2)	17(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(33)	4702(5)	1754(4)	9089(2)	18(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(34)	5563(5)	764(4)	9060(2)	20(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(35)	5049(6)	-304(4)	9151(2)	32(1)	
$\begin{array}{ccccc} C(30) & 3077(0) & 4-37(4) & 9204(2) & 23(1) \\ C(37) & 2808(5) & 500(4) & 9311(2) & 25(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(4) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(36)	3677(6)	-304(4)	0.0284(2)	$\frac{32(1)}{20(1)}$	
$\begin{array}{ccccc} C(37) & 2000(3) & 300(4) & 9311(2) & 23(1) \\ C(38) & 3290(5) & 1607(4) & 9206(2) & 18(1) \\ C(39) & 1077(5) & 2786(4) & 8448(2) & 23(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(30)	2808(5)	-431(4)	020+(2)	25(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(38)	2000(5)	1607(4)	0206(2)	23(1)	
$\begin{array}{ccccc} C(30) & 107(3) & 2700(4) & 0440(2) & 25(1) \\ C(40) & 13(6) & 1860(5) & 8594(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(30)	3290(3) 1077(5)	2786(4)	9200(2)	23(1)	
$\begin{array}{ccccc} C(40) & 15(0) & 160(3) & 6394(3) & 41(2) \\ C(41) & 2173(5) & 2619(5) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(39)	1077(5)	2700(4)	0440(Z) 9504(2)	23(1)	
$\begin{array}{cccc} C(41) & 2173(3) & 203(3) & 7904(2) & 33(1) \\ C(42) & 356(5) & 3960(4) & 8217(2) & 29(1) \\ C(43) & 947(5) & 2626(4) & 9942(2) & 21(1) \\ C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \end{array}$	C(40)	13(0) 2172(5)	1000(3)	7004(3)	41(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(41)	2173(3)	2019(5)	7904(2)	33(T) 20(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(42)	330(3) 047(5)	3900(4)	0217(2)	29(1)	
$\begin{array}{ccccc} C(44) & 1838(5) & 2911(4) & 10404(2) & 26(1) \\ C(45) & -288(5) & 3493(4) & 9868(2) & 27(1) \\ C(46) & 402(6) & 1406(4) & 10257(2) & 34(1) \\ C(47) & 2401(5) & 7401(4) & 8305(2) & 17(1) \\ C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(43)	947(5)	2626(4)	9942(2)	21(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(44)	1838(5)	2911(4)	10404(2)	20(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(45)	-288(5)	3493(4)	9868(2)	27(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		402(6)	1406(4)	10257(2)	34(1)	
$\begin{array}{ccccc} C(48) & 1103(5) & 7035(4) & 8276(2) & 19(1) \\ C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \\ \end{array}$	C(47)	2401(5)	7401(4)	8305(2)	17(1)	
$\begin{array}{ccccc} C(49) & 207(5) & 7800(4) & 7929(2) & 23(1) \\ C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ F(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \end{array}$	C(48)	1103(5)	7035(4)	8276(2)	19(1)	
$\begin{array}{ccccc} C(50) & 512(6) & 8926(4) & 7600(2) & 28(1) \\ C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \end{array}$	C(49)	207(5)	7800(4)	7929(2)	23(1)	
$\begin{array}{cccccc} C(51) & 1802(6) & 9239(4) & 7644(2) & 31(1) \\ C(52) & 2740(5) & 8526(4) & 7982(2) & 24(1) \\ Au(2) & 2922(1) & 4622(1) & 8922(1) & 16(1) \\ F(3) & -1048(3) & 7439(3) & 7906(1) & 35(1) \\ F(4) & 2163(4) & 10321(2) & 7315(2) & 53(1) \\ P(2) & 2038(1) & 2837(1) & 9144(1) & 16(1) \\ S(2) & 3649(1) & 6482(1) & 8724(1) & 21(1) \end{array}$	C(50)	512(6)	8926(4)	7600(2)	28(1)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(51)	1802(6)	9239(4)	/644(2)	31(1)	
Au(2) $2922(1)$ $4622(1)$ $8922(1)$ $16(1)$ F(3) $-1048(3)$ $7439(3)$ $7906(1)$ $35(1)$ F(4) $2163(4)$ $10321(2)$ $7315(2)$ $53(1)$ P(2) $2038(1)$ $2837(1)$ $9144(1)$ $16(1)$ S(2) $3649(1)$ $6482(1)$ $8724(1)$ $21(1)$	C(52)	2740(5)	8526(4)	7982(2)	24(1)	
F(3) $-1048(3)$ $7439(3)$ $7906(1)$ $35(1)$ $F(4)$ $2163(4)$ $10321(2)$ $7315(2)$ $53(1)$ $P(2)$ $2038(1)$ $2837(1)$ $9144(1)$ $16(1)$ $S(2)$ $3649(1)$ $6482(1)$ $8724(1)$ $21(1)$	Au(2)	2922(1)	4622(1)	8922(1)	16(1)	
F(4)2163(4)10321(2)7315(2)53(1) $P(2)$ 2038(1)2837(1)9144(1)16(1) $S(2)$ 3649(1)6482(1)8724(1)21(1)	F(3)	-1048(3)	(439(3)	7906(1)	35(1)	
P(2)2038(1)2837(1)9144(1)16(1)S(2)3649(1)6482(1)8724(1)21(1)	F(4)	2163(4)	10321(2)	7315(2)	53(1)	
S(2) 3649(1) 6482(1) 8724(1) 21(1)	P(2)	2038(1)	2837(1)	9144(1)	16(1)	
	S(2)	3649(1)	6482(1)	8724(1)	21(1)	

Table 3. Bond lengths [Å] and angles [°] for khc5.

C(1)-C(6)	1.383(6)	
C(1)-C(2)	1.389(6)	
C(1)-H(1)	0.9300	
C(2)-C(3)	1.392(6)	
C(2)-H(2)	0.9300	
C(3)-C(4)	1.363(6)	
C(3)-H(3)	0.9300	
C(4)-C(5)	1.392(6)	
C(4)-H(4)	0.9300	
C(5)-C(6)	1.392(6)	
C(5)-H(5)	0.9300	
C(6)-C(7)	1.510(6)	
C(7)-C(8)	1.393(6)	
C(7)-C(12)	1.403(6)	
C(8)-C(9)	1.371(6)	
C(8)-H(8)	0.9300	
C(9)-C(10)	1.377(6)	
C(9)-H(9)	0.9300	

$\begin{array}{c} 1.837(5)\\ 1.528(6)\\ 1.536(6)\\ 1.536(6)\\ 1.537(6)\\ 1.881(4)\\ 0.9600\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900\\ 0.900$
$\begin{array}{c} 1.401(6)\\ 1.416(6)\\ 1.370(7)\\ 0.9300\\ 1.364(7)\\ 0.9300\\ 1.382(6)\\ 0.9300\\ 1.398(7)\\ 0.9300\\ 1.839(4)\\ 1.522(6)\\ 1.527(6)\\ \end{array}$

$\begin{array}{l} C(39)-C(40)\\ C(39)-P(2)\\ C(40)-H(40A)\\ C(40)-H(40B)\\ C(40)-H(40C)\\ C(41)-H(41C)\\ C(41)-H(41A)\\ C(41)-H(41C)\\ C(42)-H(42B)\\ C(42)-H(42B)\\ C(42)-H(42B)\\ C(42)-H(42B)\\ C(42)-H(42C)\\ C(43)-C(45)\\ C(43)-C(45)\\ C(43)-C(45)\\ C(43)-P(2)\\ C(44)-H(44B)\\ C(44)-H(44B)\\ C(44)-H(44B)\\ C(44)-H(44B)\\ C(45)-H(45C)\\ C(45)-H(45C)\\ C(45)-H(45C)\\ C(46)-H(46A)\\ C(46)-H(46B)\\ C(47)-C(52)\\ C(48)-C(49)\\ C(49)-F(3)\\ C(50)-C(51)\\ C(50)-C(51)\\ C(50)-F(4)\\ C(51)-F(4)\\ C(52)-H(52)\\ Au(2)-P(2)\\ Au(2)-P(2)\\ Au(2)-P(2)\\ Au(2)-S(2)\\ \end{array}$	$\begin{array}{c} 1.532(7)\\ 1.893(4)\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.529(6)\\ 1.539(6)\\ 1.539(6)\\ 1.550(7)\\ 1.869(5)\\ 0.9600\\ 0.900\\ 0.9$
$\begin{array}{l} C(6)-C(1)-C(2)\\ C(6)-C(1)-H(1)\\ C(2)-C(1)-H(1)\\ C(1)-C(2)-C(3)\\ C(1)-C(2)-H(2)\\ C(3)-C(2)-H(2)\\ C(4)-C(3)-C(2)\\ C(4)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(3)-C(4)-C(5)\\ C(3)-C(4)-H(4)\\ C(4)-C(5)-C(6)\\ C(4)-C(5)-H(5)\\ C(6)-C(5)-H(5)\\ C(1)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(6)\\ C(1)-C(6)-C(7)\\ C(6)-C(7)-C(6)\\ C(1)-C(10)-C(9)\\ C(1)-C(10)-C(9)\\ C(11)-C(10)-H(10)\\ C(10)-C(11)-C(12)\\ \end{array}$	120.7(4) 119.6 119.6 $120.0(4)$ 120.0 120.0 120.3 120.3 $120.8(4)$ 119.6 $120.3(4)$ 119.6 $120.3(4)$ 119.8 119.8 119.8 119.8 119.8 $118.6(4)$ $121.9(4)$ $119.2(4)$ $119.4(4)$ $116.4(4)$ $124.1(4)$ $124.1(4)$ $124.1(4)$ $124.3(4)$ 119.3 119.3 $120.0(5)$ 120.0 $119.5(4)$ 120.2 $122.0(4)$

C(10)-C(11)-H(11) 1 C(12)-C(11)-H(11) 1 C(7)-C(12)-P(1) 1 C(11)-C(12)-P(1) 1 C(15)-C(13)-C(14) 1 C(15)-C(13)-C(16) 1 C(14)-C(13)-P(1) 1 C(14)-C(13)-P(1) 1 C(14)-C(13)-P(1) 1 C(14)-C(13)-P(1) 1 C(13)-C(14)-H(14A) 1 C(13)-C(14)-H(14C) 1 H(14A)-C(14)-H(14C) 1 H(14A)-C(14)-H(14C) 1 C(13)-C(15)-H(15B) 1 C(13)-C(15)-H(15C) 1 H(15A)-C(15)-H(15C) 1 H(15A)-C(15)-H(15C) 1 H(15A)-C(15)-H(15C) 1 H(15A)-C(15)-H(15C) 1 H(16A)-C(16)-H(16C) 1 H(16A)-C(16)-H(16C) 1 H(16A)-C(16)-H(16C) 1 H(16A)-C(16)-H(16C) 1 C(13)-C(17)-P(1) 1 C(17)-C(18)-H(18C) 1 G(13)-C(16)-H(16C) 1 H(16A)-C(16)-H(16C) 1 H(16A)-C(16)-H(16C) 1
19.0 19.0 19.0 17.6(4) 23.5(3) 18.6(3) 10.3(4) 07.4(4) 09.1(4) 05.5(3) 09.5 09.

C(21)-C(26)-H(26)	120.2
C(12)-P(1)-C(13)	105.44(19)
C(12)-P(1)-C(17)	106.5(2)
C(13)-P(1)-C(17) C(12)-P(1)-Au(1)	113.8(2) 114 43(14)
C(13)-P(1)-Au(1)	109.94(14)
C(17)-P(1)-Au(1)	106.83(14)
C(21)-S(1)-Au(1) C(28)-C(27)-C(32)	104.75(15) 120 1(4)
C(28)-C(27)-H(27)	119.9
C(32)-C(27)-H(27)	119.9
C(27)-C(28)-H(28)	120.4(5)
C(29)-C(28)-H(28)	119.8
C(28)-C(29)-C(30) C(28)-C(29)-H(29)	119.5(5) 120 3
C(30)-C(29)-H(29)	120.3
C(31)-C(30)-C(29)	120.2(5)
C(31)-C(30)-H(30) C(29)-C(30)-H(30)	119.9
C(30)-C(31)-C(32)	120.2(4)
C(30)-C(31)-H(31)	119.9
C(31)-C(32)-C(27)	119.6(5)
C(31)-C(32)-C(33)	121.3(4)
C(27)-C(32)-C(33) C(38)-C(33)-C(34)	119.0(4) 117.4(5)
C(38)-C(33)-C(32)	126.4(4)
C(34)-C(33)-C(32)	116.2(4)
C(35)-C(34)-H(34)	119.1
C(33)-C(34)-H(34)	119.1
C(36)-C(35)-C(34) C(36)-C(35)-H(35)	120.6(5) 119.7
C(34)-C(35)-H(35)	119.7
C(35)-C(36)-C(37) C(35)-C(36)-H(36)	118.9(5) 120.5
C(37)-C(36)-H(36)	120.5
C(36)-C(37)-C(38)	122.1(5)
C(38)-C(37)-H(37)	118.9
C(37)-C(38)-C(33)	119.0(4)
C(37)-C(38)-P(2) C(33)-C(38)-P(2)	118.4(4) 122 4(3)
C(42)-C(39)-C(41)	107.6(4)
C(42)-C(39)-C(40)	108.1(4)
C(42)-C(39)-P(2)	108.5(3)
C(41)-C(39)-P(2)	105.4(3)
C(40)-C(39)-P(2) C(39)-C(40)-H(40A)	109.5
C(39)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B) C(39)-C(40)-H(40C)	109.5 109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(39)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
C(39)-C(41)-H(41C) H(41A)-C(41)-H(41C)	109.5 109.5
H(41B)-C(41)-H(41C)	109.5
C(39)-C(42)-H(42A)	109.5
H(42A)-C(42)-H(42B)	109.5
C(39)-C(42)-H(42C)	109.5
п(42A)-С(42)-П(42С) Н(42B)-С(42)-Н(42С)	109.5
C(44)-C(43)-C(45)	109.1(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{C(1)}$	19(2)	23(3)	15(2)	-1(2)	-1(2)	0(2)
C(2)	22(3)	25(3)	24(3)	-7(2)	-3(2)	2(2)
C(3)	21(3)	13(2)	33(3)	-6(2)	-4(2)	1(2)
C(4)	19(3)	31(3)	21(3)	0(2)	-7(2)	-1(2)
C(5)	22(3)	30(3)	18(2)	-6(2)	-5(2)	2(2)
C(6)	15(2)	16(2)	24(3)	-8(2)	0(2)	-6(2)
C(7)	18(2)	23(3)	13(2)	-6(2)	1(2)	0(2)
C(8)	15(2)	21(3)	24(3)	-5(2)	-1(2)	-7(2)
C(9)	32(3)	17(2)	22(3)	-5(2)	0(2)	-9(2)
C(10)	29(3)	14(2)	19(2)	-6(2)	6(2)	-1(2)
C(11)	22(3)	20(2)	22(2)	-9(2)	-2(2)	2(2)
				107		

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc5. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Symmetry trans	formations use	d to generate	equivalent atoms:
----------------	----------------	---------------	-------------------

C(44)-C(43)-C(46)	107.6(4)						
C(45)-C(43)-C(46)	107.9(4)						
C(44)-C(43)-P(2)	105.6(3)						
C(45)-C(43)-P(2)	108.8(3)						
C(46)-C(43)-P(2)	117.5(3)						
C(43)-C(44)-H(44A)	109.5						
C(43)-C(44)-H(44B)	109.5						
H(44A)-C(44)-H(44B)	109.5						
C(43)-C(44)-H(44C)	109.5						
H(44A)-C(44)-H(44C)	109.5						
H(44B)-C(44)-H(44C)	109.5						
C(43)-C(45)-H(45A)	109.5						
C(43)-C(45)-H(45B)	109.5						
H(45Á)-C(45)-H(45B)	109.5						
C(43)-C(45)-H(45C)	109.5						
H(45Á)-C(45)-H(45Ć)	109.5						
H(45B)-C(45)-H(45C)	109.5						
C(43)-Ć(46)-H(46A)	109.5						
C(43)-C(46)-H(46B)	109.5						
H(46A)-C(46)-H(46B)	109.5						
C(43)-C(46)-H(46C)	109.5						
H(46A)-C(46)-H(46C)	109.5						
H(46B)-C(46)-H(46C)	109.5						
C(52)-C(47)-C(48)	119.0(4)						
C(52)-C(47)-S(2)	118.3(4)						
C(48)-C(47)-S(2)	122.7(3)						
C(49)-C(48)-C(47)	118.8(4)						
C(49)-C(48)-H(48)	120.6						
C(47)-C(48)-H(48)	120.6						
F(3)-C(49)-C(48)	118.3(4)						
F(3)-C(49)-C(50)	118.0(4)						
C(48)-C(49)-C(50)	123.7(5)						
C(51)-C(50)-C(49)	115.1(4)						
C(51)-C(50)-H(50)	122.5						
C(49)-C(50)-H(50)	122.5						
F(4)-C(51)-C(52)	118.4(5)						
F(4)-C(51)-C(50)	117.3(4)						
C(52)-C(51)-C(50)	124.3(5)						
C(51)-C(52)-C(47)	119.1(5)						
C(51)-C(52)-H(52)	120.4						
C(47)-C(52)-H(52)	120.4						
P(2)-Au(2)-S(2)	175.56(4)						
C(38)-P(2)-C(43)	107.3(2)						
C(38)-P(2)-C(39)	104.8(2)						
C(43)-P(2)-C(39)	113.9(2)						
C(38)-P(2)-Au(2)	115.97(16)						
C(43)-P(2)-Au(2)	107.08(16)						
C(39)-P(2)-Au(2)	107.92(16)						
C(47)-S(2)-Au(2)	106.40(16)						
Symmetry transformations us	sed to generate equ						
C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(20) C(21) C(22) C(23) C(24) C(25) C(26) Au(1) F(1) F(2) P(1) S(1) C(27) C(26) Au(1) F(2) P(1) S(1) C(27) C(28) C(29) C(30) C(31) C(29) C(30) C(31) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(37) C(38) C(37) C(38) C(39) C(40) C(41) C(42) C(43) C(44) C(45) C(44) C(45) C(46) C(47) C(48) C(49) C(50) C(51) C(52) Au(2) F(3) F(4) P(2) S(2) Table 5. Hy	21(2) 20(2) 19(2) 23(3) 35(3) 18(2) 21(3) 33(3) 19(3) 26(3) 25(3) 16(2) 28(3) 25(3) 16(2) 28(3) 39(3) 22(3) 15(1) 20(2) 48(2) 14(1) 16(1) 20(2) 48(2) 14(1) 16(1) 20(3) 15(2) 20(3) 47(4) 47(4) 32(3) 20(2) 20(3) 20(3) 20(2) 20(3) 20(2) 20(3) 20(2) 20(3) 20(2) 20(3) 20(2) 20(3) 20(3) 20(2) 20(3) 20(3) 20(2) 20(3)	17(2) 15(2) 31(3) 24(3) 23(3) 22(3) 31(3) 31(3) 38(3) 13(2) 11(2) 27(3) 23(3) 17(3) 20(2) 12(1) 47(2) 16(2) 13(1) 15(1) 23(3) 44(3) 28(3) 34(3) 29(3) 22(2) 22(3) 30(3) 22(2) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(3) 22(3) 17(2) 30(3) 45(4) 44(3) 18(2) 31(3) 38(3) 26(3) 17(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 15(1) 40(2) 15(2) 15(1) 40(2) 15(2) 15(1) 40(2) 15(2) 15(1) 40(2) 15(1) 40(2) 15(2) 15(1) 19(1) 15(2) 1	$\begin{array}{c} 11(2)\\ 18(2)\\ 19(2)\\ 22(3)\\ 18(2)\\ 30(3)\\ 20(3)\\ 22(3)\\ 16(2)\\ 20(2)\\ 22(3)\\ 16(2)\\ 20(2)\\ 22(3)\\ 19(2)\\ 20(1)\\ 33(2)\\ 45(2)\\ 18(1)\\ 33(1)\\ 20(2)\\ 14(2)\\ 35(3)\\ 28(3)\\ 17(2)\\ 15(2)\\ 9(2)\\ 25(3)\\ 24(3)\\ 23(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 13(2)\\ 16(2)\\ 23(3)\\ 16(2)\\ 24(3)\\ 24($	$\begin{array}{c} -2(2) \\ -5(2) \\ -7(2) \\ -7(2) \\ -7(2) \\ -7(2) \\ -7(2) \\ -7(2) \\ -8(2) \\ -11(2) \\ -5(2) \\ -6(2) \\ -8(2) \\ -13(2) \\ -9(2) \\ -2(2) \\ -7(2) \\ -3(1) \\ -7(1) \\ 6(1) \\ -4(1) \\ -3(1) \\ -4(1) \\ -3(1) \\ -4(1) \\ -3(1) \\ -1(2) \\ 0(2) \\ -9(2) \\ -2(2) \\ -1(2) \\ 0(2) \\ -9(2) \\ -2(2) \\ -1(2) \\ -5(2) \\ $	$\begin{array}{c} 0(2) \\ -4(2) \\ 0(2) \\ -11(2) \\ 2(2) \\ 4(2) \\ 2(2) \\ -2(2) \\ -5(2) \\ -3(2) \\ 8(2) \\ 3(2) \\ -2(2) \\ -3(2) \\ 8(2) \\ 3(2) \\ -2(2) \\ -4(1) \\ -5(1) \\ 6(2) \\ -2(1) \\ -6(1) \\ -4(2) \\ -6(2) \\ -2(1) \\ -6(2) \\ -2(2) \\ -7(2) \\ -10(2) \\ -4(2) \\ -6(2) \\ -2(2) \\ -7(2) \\ -10(3) \\ -5(3) \\ -6(2) \\ -2(2) \\ -7(2) \\ -10(3) \\ -5(3) \\ -6(2) \\ -3(2) \\ -3(2) \\ -3(2) \\ -10(2) \\ 1(2) \\ 0(2) \\ 3(2) \\ 4(3) \\ 4(2) \\ -1(2) \\ -6(2) \\ -13(2) \\ -2(3) \\ -1(2) \\ -1(2) \\ -1(1) \\ -16(2) \\ -1(1) \\ -3(1) \\ \end{array}$	$\begin{array}{c} -3(2) \\ 2(2) \\ -4(2) \\ -7(2) \\ 8(2) \\ -2(2) \\ 3(2) \\ -6(2) \\ -6(2) \\ 0(2) \\ -1(2) \\ 3(2) \\ -9(2) \\ -3(2) \\ 4(2) \\ -1(1) \\ -8(1) \\ -1(1) \\ 0(1) \\ 1(1) \\ -8(1) \\ -1(1) \\ 0(1) \\ 1(1) \\ -2(2) \\ 3(2) \\ 4(2) \\ -1(2) \\ 5(2) \\ 6(2) \\ 3(2) \\ 4(2) \\ 12(2) \\ 18(3) \\ 4(3) \\ 0(2) \\ 4(2) \\ -7(2) \\ -16(3) \\ 9(3) \\ 7(2) \\ 0(2) \\ -2(2) \\ -1(2) \\ -8(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ -2(2) \\ -1(2) \\ -8(3) \\ 1(2) \\ 0(2) \\ 0(2) \\ 0(2) \\ 0(2) \\ 14(3) \\ 0(3) \\ 0(2) \\ 0(1) \\ 6(1) \\ -3(2) \\ -1(1) \\ -4(1) \\ \end{array}$	
--	---	---	---	---	--	---	--
P(2)	16(1)	15(1)	18(1)	-5(1)	-1(1)	-1(1)	
S(2)	20(1)	19(1)	24(1)́	-1(1)	-3(1)́	-4(1)	
Table 5. Hy	drogen bonds	s for khc5 [Å and °].					
D-HA		d(D-H)		d(HA)	d(DA)	<(DHA)	
C(19)-H(19)	B) S(2)#1	0.96		3.02	3 978(5)	175 5	
C(15)-H(15	B)F(1)#1	0.96		2.54	3.418(5)	152.9	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

 $[Au(SC_6H_3F_2-2,4)(C_{20}H_{27}P)]$

Identification code Empirical formula Formula weight Temperature

shelx C26 H30 Au F2 P S 640.49 298(2) K

Wavelength Crystal system Space group Unit cell dimensions	0.71073 Å Monoclinic P 21/n a = 13.3235(8) Å b = 12.9471(6) Å c = 15.1958(10) Å	a= 90°. b= 106.518(7)°. g = 90°.
Volume Z	2513.1(3) Å ³ 4	
Density (calculated)	1.693 Mg/m ³	
Absorption coefficient F(000)	6.026 mm ⁻¹ 1256	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	0.340 x 0.280 x 0.050 mm ³ 3.444 to 29.329°. -18<=h<=17, -17<=k<=12, -11<=l<= 13387 5974 [R(int) = 0.0343] 99.7 %	=20
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 5974 / 0 / 286	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.029 R1 = 0.0346, wR2 = 0.0551 R1 = 0.0699, wR2 = 0.0667 n/a	
Largest diff. peak and hole	0.645 and -0.655 e.Å ⁻³	

Table 2. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for khcop. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	Х	У	Z	U(eq)
C(1)	2971(4)	3472(4)	1371(4)	54(1)
C(2)	3606(5)	3643(5)	811(4)	72(2)
C(3)	4374(5)	2956(7)	721(5)	91(2)
C(4)	4502(6)	2101(6)	1227(6)	97(2)
C(5)	3943(5)	1879(5)	1810(5)	82(2)
C(6)	3184(4)	2549(4)	1894(4)	65(2)
C(7)	-1507(4)	1670(3)	735(3)	46(1)
C(8)	-1269(4)	1655(3)	-99(3)	44(1)
C(9)	-399(4)	2214(3)	-312(3)	45(1)
C(10)	529(4)	1719(4)	-286(4)	59(1)
C(11)	1303(5)	2218(5)	-563(4)	75(2)
C(12)	1161(5)	3223(5)	-862(4)	73(2)
C(13)	264(5)	3712(4)	-895(4)	70(2)
C(14)	-530(4)	3224(3)	-629(3)	57(1)
C(15)	-1918(5)	1084(4)	-828(4)	64(1)
C(16)	-2764(5)	547(4)	-722(5)	81(2)
C(17)	-2999(5)	554(4)	88(5)	80(2)
C(18)	-2381(4)	1106(4)	811(4)	64(1)
C(19)	-108(4)	1349(4)	2599(4)	57(1)
C(20)	621(5)	1866(4)	3450(4)	90(2)
C(21)	555(5)	713(4)	2133(4)	81(2)
C(22)	-865(5)	633(5)	2895(5)	104(2)
C(23)	-1639(4)	3276(3)	2089(4)	56(1)
C(24)	-2223(5)	3850(5)	1220(4)	91(2)
C(25)	-2423(6)	2793(5)	2530(6)	105(2)
C(26)	-984(5)	4066(5)	2771(5)	99(2)
Au(1)	631(1)	3334(1)	1529(1)	46(1)
F(1)	3465(3)	4514(3)	314(3)	109(1)
F(2)	5258(4)	1422(4)	1133(4)	164(2)
P(1)	-714(1)	2376(1)	1738(1)	43(1)
S(1)	2012(1)	4363(1)	1453(1)	64(1)

Table 3. Bond lengths [Å] and angles [°] for khcop.

C(1)-C(2)	1.379(7)
C(1)-C(6)	1.418(7)
C(1)-S(1)	1.752(5)

C(2)-F(1) C(2)-C(3) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-F(2) C(5)-C(6) C(5)-H(5) C(6)-H(6) C(7)-C(8) C(7)-C(18) C(7)-C(18) C(7)-C(10) C(9)-C(10) C(9)-C(10) C(9)-C(10) C(9)-C(11) C(10)-H(10) C(10)-H(11) C(10)-H(11) C(12)-C(13) C(12)-H(12) C(13)-H(12) C(13)-H(13) C(14)-H(14) C(15)-C(16) C(15)-H(15) C(16)-C(17) C(16)-H(16) C(17)-C(18) C(17)-C(18) C(17)-H(17) C(18)-H(18) C(19)-C(21) C(19)-C(20) C(19)-P(1) C(20)-H(20A) C(20)-H(20A) C(20)-H(20A) C(21)-H(21A) C(21)-H(21A) C(22)-H(22A) C(22)-H(22A) C(23)-C(24) C(23)-C(25) C(23)-C(24) C(24)-H(24A) C(24)-H(25A) C(25)-H(25A) C(25)-H(25A) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26C) Au(1)-P(1) Au(1)-S(1)	1.341(6) 1.392(9) 1.331(9) 0.9300 1.340(9) 1.374(7) 1.366(7) 0.9300 0.9300 1.391(6) 1.408(6) 1.833(5) 1.406(7) 1.479(6) 1.382(6) 1.382(6) 1.382(7) 0.9300 1.372(7) 0.9300 1.372(7) 0.9300 1.372(8) 0.9300 1.372(8) 0.9300 1.372(8) 0.9300 1.372(7) 0.9300 1.372(7) 0.9300 1.372(7) 0.9300 1.372(7) 0.9300 1.354(8) 0.9300 1.522(7) 1.529(7) 1.529(7) 1.529(7) 1.522(8) 1.879(5) 0.9600 0
C(2)-C(1)-C(6)	114.9(5)
C(2)-C(1)-S(1)	121.7(4)
C(6)-C(1)-S(1)	123.3(4)
F(1)-C(2)-C(1)	118.1(6)
F(1)-C(2)-C(3)	118.1(6)
C(1)-C(2)-C(3)	123.7(6)
C(4)-C(3)-C(2)	116.9(6)
C(4)-C(3)-H(3)	121.5
C(2)-C(3)-H(3)	121.5

$C(3)-C(4)-C(5) \\ C(3)-C(4)-F(2) \\ C(5)-C(4)-F(2) \\ C(4)-C(5)-H(5) \\ C(5)-C(6)-C(1) \\ C(5)-C(6)-H(6) \\ C(1)-C(6)-H(6) \\ C(1)-C(6)-H(6) \\ C(1)-C(6)-H(6) \\ C(1)-C(6)-H(1) \\ C(1)-C(6)-H(1) \\ C(1)-C(6)-C(18) \\ C(1)-C(8)-C(19) \\ C(10)-C(9)-C(14) \\ C(10)-C(9)-C(8) \\ C(11)-C(10)-H(10) \\ C(12)-C(11)-H(10) \\ C(12)-C(11)-H(10) \\ C(12)-C(11)-H(11) \\ C(13)-C(12)-H(12) \\ C(11)-C(12)-H(12) \\ C(11)-C(13)-H(13) \\ C(12)-C(13)-H(13) \\ C(12)-C(13)-H(13) \\ C(12)-C(13)-H(13) \\ C(12)-C(13)-H(13) \\ C(12)-C(13)-H(13) \\ C(13)-C(12)-H(12) \\ C(11)-C(15)-H(15) \\ C(16)-C(15)-H(15) \\ C(17)-C(16)-H(15) \\ C(16)-C(15)-H(15) \\ C(17)-C(16)-H(16) \\ C(16)-C(17)-H(17) \\ C(18)-C(17)-H(17) \\ C(18)-C(17)-H(17) \\ C(18)-C(17)-H(18) \\ C(11)-C(19)-P(1) \\ C(22)-C(19)-P(20) \\ C(21)-C(19)-P(1) \\ C(22)-C(19)-P(1) \\ C(22)-C(19)-P(1) \\ C(22)-C(19)-P(1) \\ C(22)-C(19)-P(1) \\ C(20)-C(20)-H(200) \\ C(19)-C(20)-H(200) \\ C(19)-C(21)-H(210) \\ (19)-C(21)-H(210) \\ (19)-C(21)-H(220) \\ (19)-C(21)-H(220) \\ (19)-C(21)-H(210) \\ (19)-C(21)-H($	123.8(7) $116.7(8)$ $119.5(8)$ $119.4(6)$ 120.3 120.3 $121.2(6)$ 119.4 119.4 119.4 119.4 119.4 $118.5(4)$ $122.6(3)$ $119.0(4)$ $118.4(4)$ $122.6(1)$ $118.1(4)$ $120.5(4)$ 119.6 $120.0(5)$ 120.0 120.1 120.0 120.0 120.1 120.0 120.0 120.1 120.0 120.0 120.1 120.3 119.3 119.3 119.3 119.3 119.3 119.3 119.4 $120.8(6)$ 119.4 119.4 $120.8(6)$ 119.4 119.4 120.3 $121.7(5)$ 119.1 $109.2(4)$ $108.4(5)$ $109.2(5)$ $104.5(3)$ $104.5(3)$ 109.5
C(19)-C(22)-H(22C) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) C(24)-C(23)-C(25)	109.5 109.5 109.5 109.5 109.6(5)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	41(3)	61(3)	56(3)	-8(2)	7(3)	-10(2)
C(2)	60(4)	85(4)	66(4)	3(3)	12(3)	-19(3)
C(3)	55(4)	141(6)	87(5)	-39(5)	33(4)	-11(4)
C(4)	72(5)	103(5)	105(6)	-27(5)	9(5)	29(4)
C(5)	75(5)	76(4)	82(5)	-11(3)	-2(4)	11(4)
C(6)	58(4)	60(3)	65(4)	-5(3)	-2(3)	1(3)
C(7)	40(3)	45(2)	53(3)	-2(2)	12(2)	1(2)
C(8)	48(3)	36(2)	45(3)	0(2)	8(2)	9(2)
C(9)	49(3)	48(3)	40(3)	0(2)	15(2)	0(2)
C(10)	58(4)	57(3)	68(4)	1(3)	27(3)	7(3)
C(11)	67(4)	92(4)	78(4)	-9(3)	39(4)	5(3)
C(12)	78(5)	88(4)	63(4)	-3(3)	37(3)	-17(4)
C(13)	84(5)	64(3)	65(4)	14(3)	27(4)	-7(3)
C(14)	61(4)	57(3)	56(3)	8(2)	20(3)	9(3)
C(15)	73(4)	61(3)	51(3)	-6(3)	7(3)	0(3)
C(16)	73(5)	67(4)	89(5)	-16(3)	0(4)	-15(3)
C(17)	62(4)	79(4)	94(5)	-6(4)	14(4)	-20(3)
C(18)	53(4)	72(3)	71(4)	-1(3)	24(3)	-11(3)
C(19)	57(4)	57(3)	55(3)	12(2)	12(3)	2(3)
C(20)	104(6)	98(4)	59(4)	19(3)	6(4)	-8(4)
C(21)	81(5)	73(4)	81(4)	15(3)	9(4)	28(3)
C(22)	81(5)	97(4)	131(6)	64(4)	27(4)	-11(4)
C(23)	59(3)	52(3)	69(4)	-1(3)	39(3)	6(3)
C(24)	96(5)	84(4)	102(5)	14(4)	41(4)	44(4)
C(25)	105(6)	96(4)	151(7)	1(4)	97(6)	6(4)
C(26)	105(6)	94(4)	112(6)	-40(4)	54(5)	7(4)
Au(1)	40(1)	47(1)	52(1)	-1(1)	17(1)	-4(1)
F(1)	104(3)	125(3)	107(3)	21(2)	43(3)	-23(2)
F(2)	89(3)	172(4)	229(6)	-65(4)	45(4)	44(3)
				112		

Table 4. Anisotropic displacement parameters ($Å^2 x \ 10^3$)for khcop. The anisotropic displacement factor exponent takes the form: $-2p^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

C(24)-C(23)-C(26)	108.2(5)			
C(25)-C(23)-C(26)	107.7(5)			
C(24)-C(23)-P(1)	105.7(3)			
C(25)-C(23)-P(1)	117.2(3)			
C(26)-C(23)-P(1)	108.1(4)			
C(23)-C(24)-H(24A)	109.5			
C(23)-C(24)-H(24B)	109.5			
H(24A)-C(24)-H(24B)	109.5			
C(23)-C(24)-H(24C)	109.5			
H(24A)-C(24)-H(24C)	109.5			
H(24B)-C(24)-H(24C)	109.5			
C(23)-C(25)-H(25A)	109.5			
C(23)-C(25)-H(25B)	109.5			
H(25A)-C(25)-H(25B)	109.5			
C(23)-C(25)-H(25C)	109.5			
H(25A)-C(25)-H(25C)	109.5			
H(25B)-C(25)-H(25C)	109.5			
C(23)-C(26)-H(26A)	109.5			
C(23)-C(26)-H(26B)	109.5			
H(26A)-C(26)-H(26B)	109.5			
C(23)-C(26)-H(26C)	109.5			
H(26A)-C(26)-H(26C)	109.5			
H(26B)-C(26)-H(26C)	109.5			
P(1)-Au(1)-S(1)	174.63(5)			
C(7)-P(1)-C(19)	104.9(2)			
C(7)-P(1)-C(23)	106.0(2)			
C(19)-P(1)-C(23)	115.3(2)			
C(7)-P(1)-Au(1)	116.48(15)			
C(19)-P(1)-Au(1)	106.48(17)			
C(23)-P(1)-Au(1)	107.93(15)			
C(1)-S(1)-Au(1)	103.43(16)			
Symmetry transformations used to generate equivalent atoms:				

P(1) S(1)	42(1) 47(1)	46(1) 51(1)	47(1) 94(1)	2(1) 5(1)	20(1) 22(1)	-1(1) -5(1)
Table 5.	Torsion angles [°] for khcop.				
$ \begin{array}{c} \hline Table 5. \\ \hline \hline Table 5. \\ \hline \hline C(6)-C(1) \\ S(1)-C(1) \\ S(1)-C(1) \\ S(1)-C(2) \\ C(2)-C(3) \\ C(2)-C(3) \\ C(2)-C(3) \\ C(2)-C(3) \\ C(2)-C(3) \\ C(2)-C(4) \\ F(2)-C(4) \\ C(2)-C(4) \\ C(1)-C(7) \\ C(1)-C(8) \\ C(7)-C(8) \\ C(1)-C(6) \\ C(1)-C(6) \\ C(1)-C(6) \\ C(1)-C(6) \\ C(1)-C(7) \\ C(2)-C(7) \\ C($	Torsion angles [-C(2)-F(1) -C(2)-F(1) -C(2)-C(3) -C(2)-C(3) -C(3)-C(4) -C(3)-C(4) -C(3)-C(4) -C(5)-C(6) -C(5)-C(6) -C(6)-C(5) -C(6)-C(5) -C(6)-C(5) -C(6)-C(15) -C(8)-C(15) -C(8)-C(15) -C(8)-C(10) -C(9)-C(10) -C(9)-C(10) -C(9)-C(10) -C(10)-C(11) -C(10)-C(11) -C(10)-C(11) -C(10)-C(11) -C(12)-C(13) 12)-C(13)-C(13) 12)-C(13)-C(14) -C(14)-C(13) 13)-C(14)-C(13) -C(14)-C(13) -C(15)-C(16) -C(16)-C(17) -C(18)-C(17)	°] for khcop.			$\overline{178.4(5)}$ -0.7(7) 2.6(8) 179.7(5) 179.6(6) -1.4(10) 0.5(11) 179.7(6) 0.9(11) 179.7(6) 0.5(9) -2.1(8) 179.7(4) 0.5(6) 179.4(3) 178.7(4) -2.4(6) 99.0(5) 82.7(6) 87.1(6) 99.0(5) 82.7(6) 87.1(6) 91.2(5) 0.2(8) 174.3(5) 0.2(8) 174.3(5) 0.2(8) 174.3(5) 0.2(8) 174.3(5) 0.2(8) 174.3(5) 0.2(9) -0.9(7) 174.9(5) 0.7(8) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.9(7) 174.9(5) 0.7(8) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.9(7) 174.9(5) 0.7(8) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 178.7(5) 0.1(9) 0.2(9) -0.4(7) 177.6(3) 57.2(5) -66.7(5) -62.7(4) 176.8(4) 53.0(4) -50.8(4) 71.6(5) 166.5(4) 174.6(5)	
C(25)-C(2 C(26)-C(2 C(2)-C(1) C(6)-C(1)	23)-P(1)-Au(1) 23)-P(1)-Au(1) I-S(1)-Au(1) I-S(1)-Au(1)			 - 1 -	162.9(5) 41.0(4) 140.9(4) 41.7(4)	

Table 6. Hydrogen bonds for khcop [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(21)-H(21B)S(1)#1	0.96	2.93	3.771(6)	147.6
Symmetry transformations use #1 -x+1/2,y-1/2,-z+1/2	d to generate equiva	ilent atoms:		
$ \begin{bmatrix} Au(SC_6H_4F-2)(C_{20}H_{27}P) \end{bmatrix} \\ \hline Identification code \\ Empirical formula \\ Formula weight \\ Temperature \\ Wavelength \\ Crystal system \\ Space group \\ Unit cell dimensions \\ \end{bmatrix} $		shelx C26 H31 A 622.50 403(2) K 0.71073 Å Monoclinic P 21/c a = 8.4347 b = 17.991 c = 16.224	u F P S (8) Å 5(15) Å 0(13) Å	a= 90°. b= 101.120(8)°. g = 90°.
Volume Z		2415.8(4) 4	43	-
Density (calculated) Absorption coefficient F(000)		1.712 Mg/r 6.261 mm⁻ 1224	n ³ 1	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.24	2°	0.530 x 0.4 3.418 to 29 -11<=h<=1 25924 6060 [R(int 99.7 %	00 x 0.180 mm ³ 0.503°. 1, -24<=k<=24, -20 1) = 0.0575]	<= <=20
Refinement method Data / restraints / parameters		Full-matrix 6060 / 0 / 2	least-squares on F ² 277	2
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole		1.056 R1 = 0.033 R1 = 0.042 n/a 1.673 and -	25, wR2 = 0.0764 25, wR2 = 0.0829 -1.847 e.Å ⁻³	

Table 2.	Atomic coordinates ($x10^4)$ and equivalent isotropic displacement parameters (Å $^{2}x10^{3})$
for khc6.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	x	У	Z	U(eq)
C(1)	4228(5)	293(2)	1851(2)	18(1)
C(2)	4641(5)	-387(2)	2238(2)	22(1)
C(3)	3939(5)	-1049(2)	1920(3)	25(1)
C(4)	2783(6)	-1037(3)	1195(3)	30(1)
C(5)	2357(6)	-369(2)	795(3)	28(1)
C(6)	3058(5)	304(2)	1100(2)	20(1)
C(7)	2503(5)	967(2)	583(2)	19(1)
C(8)	3108(6)	1120(3)	-137(3)	30(1)
C(9)	2480(7)	1689(3)	-665(3)	41(1)
C(10)	1222(7)	2119(3)	-491(3)	44(2)
C(11)	611(6)	1973(3)	214(3)	38(1)
C(12)	1247(5)	1410(3)	755(3)	27(1)
C(13)	7462(5)	992(3)	2316(3)	26(1)
C(14)	7548(7)	666(4)	1459(4)	60(2)
C(15)	8365(6)	491(3)	3017(4)	48(2)
C(16)	8301(5)	1744(3)	2398(3)	29(1)
C(17)	4772(5)	1209(2)	3393(2)	21(1)
C(18)	5078(6)	524(3)	3963(3)	29(1)
C(19)	5706(6)	1869(2)	3849(3)	27(1)

Table 3. Bond lengths [Å] and angles [°] for khole $C(1)$ - $C(2)$ 1.390(6) $C(1)$ - $C(6)$ 1.412(5) $C(1)$ - $P(1)$ 1.835(4) $C(2)$ - $C(3)$ 1.386(6) $C(2)$ - $H(2)$ 0.9300 $C(3)$ - $C(4)$ 1.375(6) $C(3)$ - $H(2)$ 0.9300 $C(4)$ - $H(2)$ 0.9300 $C(4)$ - $H(4)$ 0.9300 $C(5)$ - $C(6)$ 1.380(6) $C(5)$ - $H(5)$ 0.9300 $C(5)$ - $C(6)$ 1.389(6) $C(7)$ - $C(12)$ 1.389(6) $C(7)$ - $C(12)$ 1.389(6) $C(7)$ - $C(12)$ 1.385(9) $C(9)$ - $C(10)$ 1.385(9) $C(9)$ - $C(10)$ 1.385(9) $C(10)$ - $C(11)$ 1.367(8) $C(10)$ - $H(10)$ 0.9300 $C(11)$ - $H(12)$ 0.9300 $C(11)$ - $H(12)$ 0.9300 $C(11)$ - $H(12)$ 0.9300 $C(13)$ - $C(16)$ 1.521(6) $C(13)$ - $C(15)$ 1.533(7) $C(13)$ - $C(15)$ 1.533(7) $C(13)$ - $C(15)$ 1.533(7) $C(13)$ - $C(15)$ 1.533(7) $C(13)$ - $P(1)$ 1.878(4) $C(14)$ - $H(14A)$ 0.9600 $C(14)$ - $H(14A)$ 0.9600 $C(15)$ - $H(15A)$ 0.9600 $C(16)$ - $H(16B)$ 0.9600 $C(17)$ - $C(18)$ 1.532(6) $C(17)$ - $C(19)$ 1.535(6) $C(17)$ - $C(19)$ 1.532(6)	F(1)	1160(5)
$\begin{array}{ccccc} C(1)-C(2) & 1.390(6) \\ C(1)-C(6) & 1.412(5) \\ C(1)-P(1) & 1.835(4) \\ C(2)-C(3) & 1.386(6) \\ C(2)-H(2) & 0.9300 \\ C(3)-C(4) & 1.375(6) \\ C(3)-H(3) & 0.9300 \\ C(4)-C(5) & 1.380(6) \\ C(4)-C(5) & 1.380(6) \\ C(4)-H(4) & 0.9300 \\ C(5)-C(6) & 1.396(6) \\ C(5)-H(5) & 0.9300 \\ C(6)-C(7) & 1.480(6) \\ C(7)-C(8) & 1.389(6) \\ C(7)-C(8) & 1.389(6) \\ C(7)-C(12) & 1.396(6) \\ C(8)-C(9) & 1.374(7) \\ C(8)-H(8) & 0.9300 \\ C(9)-C(10) & 1.385(9) \\ C(9)-H(9) & 0.9300 \\ C(10)-C(11) & 1.367(8) \\ C(10)-H(10) & 0.9300 \\ C(11)-C(12) & 1.380(6) \\ C(11)-H(11) & 0.9300 \\ C(13)-C(16) & 1.521(6) \\ C(13)-C(14) & 1.522(7) \\ C(13)-C(15) & 1.533(7) \\ C(13)-C(15) & 1.533(7) \\ C(13)-P(1) & 1.878(4) \\ C(14)-H(14A) & 0.9600 \\ C(15)-H(15A) & 0.9600 \\ C(15)-H(15B) & 0.9600 \\ C(15)-H(15B) & 0.9600 \\ C(15)-H(15C) & 0.9600 \\ C(15)-H(15C) & 0.9600 \\ C(15)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16C) & 0.9600 \\ C(16)-H(16B) & 0.9600$	Table 3. Bond lengths	[Å] and angles [°] for kho
	Table 3. Bond lengths $\overline{C(1)-C(2)}$ $C(1)-C(6)$ $C(1)-P(1)$ $C(2)-C(3)$ $C(2)-H(2)$ $C(3)-C(4)$ $C(3)-H(3)$ $C(4)-C(5)$ $C(4)-C(5)$ $C(4)-C(5)$ $C(5)-H(5)$ $C(6)-C(7)$ $C(7)-C(12)$ $C(8)-C(9)$ $C(8)-H(8)$ $C(9)-C(10)$ $C(9)-H(10)$ $C(10)-C(11)$ $C(10)-H(10)$ $C(10)-H(10)$ $C(11)-C(12)$ $C(11)-H(11)$ $C(12)-H(12)$ $C(13)-C(16)$ $C(13)-C(14)$ $C(13)-C(16)$ $C(13)-C(14)$ $C(13)-C(15)$ $C(13)-P(1)$ $C(14)-H(14A)$ $C(14)-H(14B)$ $C(14)-H(14B)$ $C(15)-H(15A)$ $C(15)-H(15A)$ $C(16)-H(16A)$ $C(16)-H(16B)$ $C(17)-C(19)$ $C(17)-C(18)$ $C(17)-C(19)$ $C(17)-C(19)$ $C(17)-C(19)$ $C(17)-C(19)$ $C(11)-H(19B)$ $C(19)-H(19B)$ $C(19)-H(19B)$ $C(19)-H(19B)$ $C(19)-H(19B)$ $C(12)-H(12C)$ $C(20)-H(20A)$ $C(20)-H(20A)$ $C(20)-H(20B)$ $C(21)-C(21)$ $C(21)-C(21)$ $C(21)-C(21)$ $C(21)-C(21)$ $C(21)-C(21)$ $C(21)-C(21)$ $C(21)-C(22)$ $C(21)-C(21)$ $C(22)-H(22)$ $C(23)-C(24)$ $C(23)-H(23)$	[A] and angles [°] for kho 1.390(6) 1.412(5) 1.835(4) 1.386(6) 0.9300 1.375(6) 0.9300 1.380(6) 0.9300 1.396(6) 1.396(6) 1.396(6) 1.374(7) 0.9300 1.385(9) 0.9300 1.367(8) 0.9300 1.367(8) 0.9300 1.367(8) 0.9300 1.521(6) 1.522(7) 1.533(7) 1.878(4) 0.9600

Table 3.	Bond lengths [Å] and angles [°] for khc6.

C(20)	2947(5)	1369(3)	3243(3)	29(1)	
C(21)	1924(5)	3550(2)	1157(3)	25(1)	
C(22)	1435(6)	3370(3)	1907(3)	32(1)	
C(23)	-87(7)	3535(3)	2052(4)	43(1)	
C(24)	-1174(7)	3892(4)	1450(4)	50(2)	
C(25)	-755(7)	4090(3)	706(4)	53(2)	
C(26)	773(7)	3923(3)	575(3)	38(1)	
S(1)	3848(1)	3342(1)	948(1)	24(1)	
P(1)	5256(1)	1137(1)	2313(1)	15(1)	
Au(1)	4473(1)	2213(1)	1610(1)	17(1)	
F(1)	1160(5)	4116(3)	-145(2)	81(1)	
()	(-)	- (-)	- ()	- ()	

C(24)-C(25) C(24)-H(24) C(25)-C(26) C(25)-H(25) C(26)-F(1) S(1)-Au(1) P(1)-Au(1)	1.369(9) 0.9300 1.379(8) 0.9300 1.319(6) 2.3113(11) 2.2790(10)
C(2)-C(1)-C(6) C(2)-C(1)-P(1) C(3)-C(2)-H(2) C(1)-C(2)-H(2) C(4)-C(3)-C(2) C(4)-C(3)-C(2) C(4)-C(3)-H(3) C(2)-C(3)-H(3) C(2)-C(3)-H(3) C(3)-C(4)-C(5) C(3)-C(4)-H(4) C(4)-C(5)-C(6) C(4)-C(5)-H(5) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(6)-C(7)-C(6) C(1)-C(6)-C(7) C(8)-C(7)-C(6) C(1)-C(6)-C(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(9) C(10)-C(9)-H(9) C(10)-C(9)-H(9) C(10)-C(9)-H(9) C(11)-C(10)-H(10) C(9)-C(10)-H(10) C(9)-C(10)-H(10) C(10)-C(11)-H(11) C(10)-C(11)-H(11) C(10)-C(11)-H(11) C(10)-C(11)-H(12) C(10)-C(11)-H(12) C(10)-C(11)-H(12) C(10)-C(13)-C(14)-H(14) C(16)-C(13)-C(15) C(14)-C(13)-P(1) C(13)-C(14)-H(14B) H(14A)-C(14)-H(14B) H(14A)-C(14)-H(14B) H(14A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(16)-H(16B) C(13)-C(16)-H(16B) H(16A)-C(16)-H(16B) H(16A)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C) H(16B)-C(16)-H(16C)	118.4(4) $119.1(3)$ $122.5(3)$ $122.5(4)$ 118.8 $119.1(4)$ 120.4 120.4 120.4 120.2 $122.3(4)$ 118.8 118.8 $119.6(4)$ 120.2 $122.3(4)$ 118.8 118.8 $118.1(4)$ $120.6(4)$ $121.0(4)$ $120.8(5)$ 119.6 $120.5(5)$ 119.7 119.7 119.7 120.3 $120.7(5)$ 119.7 119.7 $120.6(4)$ $120.7(5)$ 119.7 $120.6(4)$ 119.7 $120.6(4)$ 119.7 $120.5(5)$ 119.7 $120.6(4)$ 119.7 $120.5(1)$ 119.7 $120.5(2)$ 109.5 <
C(18)-C(17)-C(19) C(18)-C(17)-C(20)	108.7(3)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(2)	17(2)	19(2)	-1(2)	8(2)	-4(2)
C(2)	19(2)	24(2)	20(2)	-1(2)	2(2)	1(2)
C(3)	29(2)	15(2)	29(2)	0(2)	3(2)	-5(2)
C(4)	31(2)	23(2)	32(2)	-5(2)	-2(2)	-12(2)
C(5)	30(2)	25(2)	26(2)	-2(2)	-2(2)	-7(2)
C(6)	18(2)	23(2)	20(2)	-1(2)	7(2)	-2(2)
C(7)	18(2)	23(2)	16(2)	0(2)	-1(1)	-9(2)
C(8)	43(3)	27(2)	21(2)	-3(2)	7(2)	-8(2)
C(9)	63(4)	36(3)	19(2)	2(2)	-2(2)	-17(3)
C(10)	48(3)	33(3)	40(3)	15(2)	-20(3)	-16(3)
C(11)	26(3)	26(3)	56(3)	6(2)	-11(2)	-7(2)
C(12)	24(2)	25(2)	32(2)	4(2)	4(2)	-2(2)
				117		

Table 4. Anisotropic displacement parameters ($Å^2 x 10^3$)for khc6. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}]$

C(19)-C(17)-C(20)	109.6(4)
C(18)-C(17)-P(1)	117.8(3)
C(19)-C(17)-P(1)	108.6(3)
C(20)-C(17)-P(1)	104.8(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(17)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(17)-C(20)-H(20A)	109.5
С(17)-С(20)-Н(20В)	109.5
H(20A)-C(20)-H(20B)	109.5
C(17)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(26)-C(21)-C(22)	114.8(4)
C(26)-C(21)-S(1)	121.4(4)
C(22)-C(21)-S(1)	123.9(4)
C(23)-C(22)-C(21)	122.6(5)
C(23)-C(22)-H(22)	118.7
C(21)-C(22)-H(22)	110.7
C(24) - C(23) - C(22)	119.9(5)
$C(24) - C(23) - \Pi(23)$	120.1
$C(22) - C(23) - \Pi(23)$	120.1
C(23) - C(24) - C(25) C(23) - C(24) - U(24)	120.1(5)
C(25)-C(24)-H(24)	110.0
C(24)-C(25)-C(26)	110 1(5)
C(24)-C(25)-H(25)	120.4
C(26)-C(25)-H(25)	120.4
F(1)-C(26)-C(25)	118 5(5)
F(1)-C(26)-C(21)	118 0(5)
C(25)-C(26)-C(21)	123 5(5)
C(21)-S(1)-Au(1)	103 46(15)
C(1)-P(1)-C(17)	105.51(18)
C(1)-P(1)-C(13)	105.95(19)
C(17)-P(1)-C(13)	113.65(19)
C(1)-P(1)-Au(1)	115.44(13)
C(17)-P(1)-Au(1)	108.36(13)
C(13)-P(1)-Au(1)	108.09(15)
P(1)-Au(1)-S(1)	175.91(4)
•	

C(13)	17(2)	24(2)	38(2)	-9(2)	9(2)	-2(2)	
C(14)	37(3)	78(5)	74(4)	-48(4)	37(3)	-27(3)	
C(15)	18(2)	35(3)	91(4)	11(3)	6(3)	3(2)	
C(16)	20(2)	31(3)	37(2)	-4(2)	6(2)	-6(2)	
C(17)	24(2)	20(2)	19(2)	-1(2)	9(2)	0(2)	
C(18)	41(3)	24(2)	22(2)	1(2)	7(2)	-1(2)	
C(19)	37(3)	23(2)	21(2)	-2(2)	6(2)	-4(2)	
C(20)	29(2)	32(3)	30(2)	2(2)	16(2)	0(2)	
C(21)	32(2)	20(2)	23(2)	-1(2)	4(2)	-2(2)	
C(22)	39(3)	24(2)	37(2)	-1(2)	16(2)	2(2)	
C(23)	51(3)	27(3)	56(3)	3(2)	28(3)	2(2)	
C(24)	33(3)	51(4)	68(4)	-16(3)	14(3)	1(3)	
C(25)	47(3)	49(4)	52(3)	-9(3)	-14(3)	26(3)	
C(26)	54(3)	36(3)	21(2)	1(2)	-2(2)	18(3)	
S(1)	32(1)	20(1)	21(1)	4(1)	8(1)	-1(1)	
P(1)	14(1)	15(1)	17(1)	-1(1)	3(1)	-2(1)	
Au(1)	20(1)	15(1)	16(1)	1(1)	3(1)	-2(1)	
F(1)	107(3)	105(3)	34(2)	29(2)	20(2)	65(3)	
Table 5.	Hydrogen bonds	s for khc6 [Å and °].				
D-HA		d(D-H)	d(HA)	d(DA)	— <(DHA)	

D-HA	d(D-H)	0(HA)	d(DA)	<(DHA
C(20)-H(20C)F(1)#1	0.96	2.55	3.376(6)	144.5

 $\overline{\mbox{Symmetry transformations used to generate equivalent atoms:}$ #1 x,-y+1/2,z+1/2

Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)] Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shelx C26 H31 Au F P S 622.50 173(2) K 0.71073 Å Triclinic P -1 a = 11.0004(6) Å b = 14.5902(6) Å c = 16.9126(8) Å	□= 108.771(4)°. □= 104.898(4)°. □ = 91.213(4)°.
Volume Z	2467.6(2) Å ³ 4	
Density (calculated)	1.676 Mg/m ³	
Absorption coefficient F(000)	6.129 mm ⁻¹ 1224	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	0.500 x 0.310 x 0.300 mm ³ 3.428 to 29.496°. -14<=h<=15, -20<=k<=19, -21<=l- 32793 11912 [R(int) = 0.0488] 99.7 %	<=21
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 11912 / 0 / 553	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole	1.064 R1 = 0.0338, wR2 = 0.0686 R1 = 0.0470, wR2 = 0.0765 n/a 1.320 and -1.925 e.Å ⁻³	

Table 2. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for khc8. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	у	Z	U(eq)
Au(2)	7566(1)	8308(1)	3563(1)	18(1)
		110		

S(2)	6615(1)	8145(1)	4581(1)	24(1)	
P(2)	8603(1)	8409(1)	2582(1)	18(1) 56(1)	
C(50)	10940(3)	9834(4)	3868(3)	40(1)	
C(35)	6508(4)	9981(3)	2887(3)	19(1)	
C(33)	8127(4)	9308(3)	2045(3)	19(1)	
C(34)	7285(4)	9991(3)	2292(2)	18(1)	
C(36)	5527(4)	9234(3)	2648(3)	21(1)	
C(31)	8590(5)	8118(4)	6935(3)	41(1)	
C(46)	6934(5)	7057(4)	1195(4)	55(2)	
C(39)	5821(4)	10794(4)	4153(3)	31(1)	
C(30)	9707(5)	//46(4)	6800(3)	43(1)	
C(37)	4712(4)	9276(3)	3156(3)	24(1)	
C(31)	6641(4)	9023(3) 10768(3)	2000(4)	26(1)	
C(40)	7827(4)	7963(3)	5417(3)	20(1)	
C(45)	8331(4)	7177(3)	1705(3)	26(1)	
C(38)	4863(4)	10058(3)	3911(3)	28(1)	
C(52)	10851(5)	8157(5)	3671(5)	70(2)	
C(41)	7123(4)	10733(3)	1923(3)	22(1)	
C(28)	8951(4)	7604(3)	5282(3)	28(1)	
C(44)	8708(4)	9380(3)	1419(3)	23(1)	
C(42)	7734(4)	10806(3)	1327(3)	26(1)	
C(47)	8522(6)	6410(3)	2146(3)	44(1)	
C(43)	8521(4)	10118(3)	1070(3)	28(1)	
C(49)	10306(4)	8804(3)	3200(3)	27(1)	
C(32)	7003(3) 0842(4)	7501(4)	5980(3)	36(1)	
C(48)	9133(5)	7004(4)	1076(3)	43(1)	
Au(1)	2182(1)	3276(1)	1668(1)	22(1)	
S(1)	876(1)	1878(1)	757(1)	25(1)	
P(1)	3445(1)	4682(1)	2546(1)	23(1)	
F(1)	-2737(3)	4059(2)	786(2)	67(1)	
C(20)	3946(6)	5046(4)	1171(3)	50(2)	
C(15)	6943(4)	3664(4)	2844(4)	44(1)	
C(16)	7744(5)	4483(4)	3379(4)	49(2)	
C(12)	3768(4)	837(3)	978(3)	33(1)	
C(24)	3300(0)	44Z4(5) 2105(2)	404Z(4)	54(Z) 20(1)	
C(10)	4392(4) 5138(4)	2103(3) 4562(3)	2876(3)	23(1)	
C(21)	1935(5)	5552(5)	1473(4)	62(2)	
C(25)	3543(7)	6176(4)	4201(4)	66(2)	
C(11)	3834(4)	1172(3)	1850(3)	32(1)	
C(26)	1501(5)	5125(5)	3332(4)	57(2)	
C(1)	-634(4)	2204(3)	369(3)	23(1)	
C(22)	3956(8)	6559(4)	2386(4)	73(2)	
C(8)	5633(4)	3669(3)	2580(3)	25(1)	
C(9)	4897(4)	2719(3)	2017(3)	24(1)	
C(14)	4829(4)	2358(3)	7131(3)	31(1)	
C(3)	-2000(4)	5528(3)	-7 10(3)	31(1)	
C(2)	-1085(4)	3062(3)	755(3)	32(1)	
C(6)	-1455(4)	1514(3)	-373(3)	27(1)	
C(18)	5979(4)	5380(3)	3419(3)	32(1)	
C(23)	2955(4)	5169(3)	3579(3)	30(1)	
C(13)	4268(5)	1434(3)	622(3)	36(1)	
C(17)	7265(5)	5349(4)	3666(3)	42(1)	
C(4)	-3124(4)	2547(4)	-324(3)	37(1)	
U(3)	-2313(5)	3201(4)	392(3)	38(1)	

Table 3. Bond lengths [Å] and angles [°] for khc8.

Au(2)-P(2)	2.2799(11)
Au(2)-S(2)	2.3017(11)
S(2)-C(27)	1.770(4)
P(2)-C(33)	1.836(4)
P(2)-C(49)	1.881(4)
P(2)-C(45)	1.885(4)
F(2)-C(29)	1.368(6)
C(50)-C(49)	1.516(6)

C(50)-H(50A)	0.9800
C(50)-H(50B)	0.9800
C(50)-H(50C)	0.9800
C(35)-C(40)	1.395(6)
C(35)-C(36)	1.399(6)
C(35)-C(34)	1.482(6)
C(33)-C(44)	1.398(6)
C(33)-C(34)	1.412(5)
C(34)-C(41)	1.406(6)
C(36)-C(37)	1.381(6)
C(36)-H(36)	0.9500
C(31)-C(32)	1.388(6)
C(31)-C(30)	1.396(8)
C(31)-H(31)	0.9500
C(46)-C(45)	1.532(6)
C(46)-H(46A)	0.9800
C(46)-H(46C) C(39)-C(38)	0.9800 0.9800 1.371(7)
C(39)-C(40)	1.383(6)
C(39)-H(39)	0.9500
C(30)-C(29)	1.364(7)
C(30)-H(30)	0.9500
C(37) C(28)	1.380(6)
C(37)-C(38) C(37)-H(37) C(51)-C(49)	0.9500
C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C) C(40)-H(40)	0.9800 0.9500 1.385(6)
C(27)-C(32) C(27)-C(28) C(45)-C(48)	1.398(6) 1.516(7)
C(45)-C(47)	1.523(6)
C(38)-H(38)	0.9500
C(52)-C(49)	1.521(7)
C(52)-H(52A)	0.9800
C(52)-H(52B)	0.9800
C(52)-H(52C)	0.9800
C(41)-C(42)	1.377(6)
C(41)-H(41)	0.9500
C(28)-C(29)	1.379(6)
C(20)-FI(20)	0.9500
C(44)-C(43)	1.382(6)
C(44)-H(44)	0.9500
C(42)-C(43)	1.376(6)
C(42)-H(42)	0.9500
C(47)-H(47A)	0.9800
C(47)-H(47B)	0.9800
C(47) H(47C)	0.9800
C(43)-H(43) C(32)-H(32)	0.9500 0.9500 0.9500
C(48)-H(48A)	0.9800
C(48)-H(48B)	0.9800
Au(1)-P(1)	2.2797(12)
Au(1)-S(1)	2.3051(11)
S(1)-C(1)	1.757(4)
P(1)-C(7)	1.831(4)
P(1)-C(23)	1.883(5)
P(1)-C(19)	1.891(5)
F(1)-C(3)	1.370(5)
C(20)-C(19)	1.527(7)
C(20)-H(20A)	0.9800
C(20)-H(20B) C(20)-H(20C) C(15) C(16)	0.9800 0.9800
C(15)-C(8)	1.396(6)
C(15)-H(15)	0.9500
C(16)-C(17)	1.369(7)

C(16)-H(16) C(12)-C(11) C(12)-C(13) C(12)-H(12) C(24)-C(23) C(24)-H(24A) C(24)-H(24B) C(24)-H(24C) C(10)-C(11) C(10)-C(9) C(10)-H(10) C(7)-C(18) C(7)-C(8) C(21)-H(21A) C(21)-H(21A) C(21)-H(21A) C(21)-H(21A) C(25)-C(23) C(25)-H(25A) C(25)-H(25B) C(25)-H(25B) C(25)-H(25C) C(11)-H(11) C(26)-C(23) C(26)-H(26A) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(22)-H(22A) C(22)-H(22A) C(22)-H(22B) C(22)-H(22B) C(22)-H(22C) C(8)-C(9) C(9)-C(14) C(14)-C(13) C(14)-H(14) C(5)-C(6) C(5)-H(5) C(2)-C(3) C(2)-H(2) C(13)-H(13) C(17)-H(17) C(4)-C(3) C(4)-H(4)	0.9500 1.378(7) 1.382(7) 0.9500 1.534(7) 0.9800 0.9800 0.9800 1.395(6) 0.9500 1.391(6) 1.412(6) 1.526(7) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.540(7) 0.9800 0.9800 1.540(7) 0.9800 0.9800 1.540(7) 0.9800 1.540(7) 0.9800 1.380(6) 1.403(6) 1.510(7) 0.9800 0.9800 1.380(6) 1.479(6) 1.392(6) 1.372(7) 0.9500 1.382(6) 0.9500 1.374(6) 0.9500 0.9500 1.354(7) 0.9500 1.354(7) 0.9500
$\begin{array}{l} P(2)-Au(2)-S(2)\\ C(27)-S(2)-Au(2)\\ C(33)-P(2)-C(49)\\ C(33)-P(2)-C(45)\\ C(49)-P(2)-C(45)\\ C(33)-P(2)-Au(2)\\ C(49)-P(2)-Au(2)\\ C(49)-C(50)-H(50A)\\ C(49)-C(50)-H(50B)\\ H(50A)-C(50)-H(50B)\\ C(49)-C(50)-H(50C)\\ H(50A)-C(50)-H(50C)\\ H(50A)-C(50)-H(50C)\\ H(50B)-C(50)-H(50C)\\ H(50B)-C(50)-H(50C)\\ H(50G)-C(35)-C(34)\\ C(40)-C(35)-C(34)\\ C(40)-C(33)-C(34)\\ C(44)-C(33)-C(24)\\ C(34)-C(33)-P(2)\\ C(34)-C(33)-P(2)\\ C(44)-C(33)-C(34)\\ \end{array}$	$\begin{array}{c} 176.35(3)\\ 106.36(16)\\ 103.6(2)\\ 107.45(19)\\ 115.1(2)\\ 116.36(13)\\ 106.85(15)\\ 107.82(15)\\ 109.5\\ 10$

C(50)-C(49)-C(52) C(50)-C(49)-C(51) C(52)-C(49)-P(2) C(51)-C(49)-P(2) C(51)-C(49)-P(2) C(51)-C(32)-C(31) C(27)-C(32)-C(31) C(27)-C(32)-H(32) C(31)-C(32)-H(32) C(31)-C(32)-H(32) C(31)-C(32)-H(32) C(31)-C(32)-H(32) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-C(28) F(2)-C(29)-C(28) F(2)-C(29)-C(28) C(45)-C(48)-H(48A) C(45)-C(48)-H(48B) H(48A)-C(48)-H(48B) H(48A)-C(48)-H(48C) P(1)-Au(1)-S(1) C(1)-S(1)-Au(1) C(1)-S(1)-Au(1) C(1)-S(1)-Au(1) C(1)-S(1)-Au(1) C(1)-S(1)-Au(1) C(23)-P(1)-C(19) C(23)-P(1)-Au(1) C(23)-P(1)-Au(1) C(19)-P(1)-Au(1) C(19)-P(20)-H(20A) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) C(16)-C(15)-C(15) C(17)-C(16)-C(15) C(17)-C(16)-H(15) C(17)-C(16)-H(15) C(17)-C(16)-H(16) C(11)-C(12)-H(12) C(13)-C(12)-H(12) C(13)-C(24)-H(24C) H(24A)-C(24)-H(24C) H	109.8(4) 107.1(4) 109.3(4) 104.6(3) 109.7(3) 116.1(3) 121.7(5) 119.2 119.2 119.0(4) 124.2(5) 116.7(5) 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5
--	--

C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(2)-C(1)-C(6)	118.0(4)
C(2)-C(1)-S(1)	125.2(3)
C(6)-C(1)-S(1)	116.7(3)
C(19)-C(22)-H(22A)	109.5
C(19)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(15)-C(8)-C(7)	117.8(4)
C(15)-C(8)-C(9)	115.8(4)
C(7)-C(8)-C(9)	126.5(4)
C(10)-C(9)-C(14)	117.8(4)
C(10)- $C(9)$ - $C(8)$	121.3(4)
C(14) - C(9) - C(8)	120.5(4)
C(13) - C(14) - C(9)	120.9(5)
$C(13)-C(14)-\Pi(14)$	119.5
C(4) C(5) C(6)	120.0(4)
C(4) - C(5) - C(0)	120.0(4)
C(6) - C(5) - H(5)	120.0
C(22)-C(19)-C(21)	109 1(5)
C(22)-C(19)-C(20)	109 7(5)
C(21)-C(19)-C(20)	108 1(4)
C(22)-C(19)-P(1)	116.2(3)
C(21)-C(19)-P(1)	108.0(4)
C(20)-C(19)-P(1)	105.4(3)
C(1)-C(2)-C(3)	118.6(4)
C(1)-C(2)-H(2)	120.7
C(3)-C(2)-H(2)	120.7
C(5)-C(6)-C(1)	121.4(4)
C(5)-C(6)-H(6)	119.3
C(1)-C(6)-H(6)	119.3
C(17)-C(18)-C(7)	122.4(4)
C(17)-C(18)-H(18)	118.8
C(7)-C(18)-H(18)	118.8
C(25)-C(23)-C(24)	109.0(4)
C(25)-C(23)-C(26)	109.9(5)
C(24)-C(23)-C(26)	106.7(5)
C(23)-C(23)-P(1)	117.7(4)
C(24)-C(23)-P(1)	104.0(3)
C(20)- $C(23)$ - $F(1)$	100.1(3)
C(14)-C(13)-U(13)	120.3(3)
C(12)-C(13)-H(13)	110.7
C(16)-C(17)-C(18)	119 3(5)
C(16)-C(17)-H(17)	120.3
C(18)-C(17)-H(17)	120.3
C(3)-C(4)-C(5)	117.5(4)
C(3)-C(4)-H(4)	121.2
C(5)-C(4)-H(4)	121.2
C(4)-C(3)-F(1)	118.0(4)
C(4)-C(3)-C(2)	124.5(5)
F(1)-C(3)-C(2)	117.5(4)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc8. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(2)	18(1)	19(1)	16(1)	5(1)	4(1)	3(1)
				404		

124

S(2)	23(1)	32(1)	19(1)	9(1)	8(1)	5(1)	
P(2)	17(1)	17(1)	18(1)	5(1)	5(1)	4(1)	
F(2)	35(2)́	66(2)	69(2)	32(2)	2(2)	17(2)	
C(50)	30(3)	43(3)	35(3)	1(2)	3(2)	-10(2)	
C(35)	15(2)	21(2)	20(2)	7(2)	6(2)	6(2)	
C(33)	17(2)	20(2)	22(2)	10(2)	8(2)	3(2)	
C(34)	19(2)	21(2)	13(2)	5(2)	4(2)	2(2)	
C(36)	16(2)	23(2)	21(2)	7(2)	3(2)	9(2)	
C(31)	56(3)	45(3)	22(3)	14(2)	5(2)	2(3)	
C(46)	41(3)	36(3)	49(3)	-19(3)	-10(3)	-1(3)	
C(39)	33(2)	36(3)	20(2)	2(2)	12(2)	8(2)	
C(30)	52(3) 10(2)	37(3) 28(2)	34(3)	22(2) 13(2)	-11(2)	-3(3) 8(2)	
C(51)	23(3)	20(2)	32(2) 48(3)	10(2)	13(2)	-1(3)	
C(40)	27(2)	22(2)	30(2)	8(2)	11(2)	5(2)	
C(27)	26(2)	18(2)	23(2)	5(2)	3(2)	-2(2)	
C(45)	31(2)	22(2)	23(2)	4(2)	13(2)	4(2)	
C(38)	27(2)	42(3)	27(2)	20(Ź)	17(2)	15(2)	
C(52)	32(3)	68(4)	110(6)	62(4)	-20(3)	-3(3)	
C(41)	24(2)	18(2)	26(2)	9(2)	10(2)	7(2)	
C(28)	31(2)	24(2)	26(2)	9(2)	2(2)	-3(2)	
C(44)	26(2)	21(2)	26(2)	8(2)	15(2)	8(2)	
C(42)	34(2)	24(2)	25(2)	12(2)	11(2)	8(2)	
C(47)	80(4)	19(3)	37(3)	9(2)	24(3)	12(3)	
C(43)	30(Z) 16(2)	31(3)	25(2)	7 (Z) 0(2)	16(2)	0(2)	
C(49) C(32)	46(3)	32(3)	$\frac{32(3)}{24(2)}$	9(Z) 13(2)	4(2) 12(2)	Z(Z) 7(2)	
C(32)	25(2)	34(3)	46(3)	18(2)	1(2)	1(2)	
C(48)	72(4)	28(3)	31(3)	4(2)	26(3)	9(3)	
Au(1)	20(1)	22(1)	20(1)	5(1)	2(1)	2(1)	
S(1)	22(1)́	26(1)́	23(1)	6(1)	2(1)	2(1)	
P(1)	24(1)	20(1)	22(1)	5(1)	4(1)	5(1)	
F(1)	47(2)	42(2)	88(3)	0(2)	2(2)	14(2)	
C(20)	69(4)	56(4)	44(3)	28(3)	30(3)	27(3)	
C(15)	25(2)	25(3)	70(4)	10(3)	2(2)	4(2)	
C(16)	23(2)	36(3)	75(4)	19(3)	-5(3)	-5(2)	
C(12)	$\frac{27(2)}{72(4)}$	ZI(Z) 62(4)	42(3)	7 (Z)	1(2)	U(Z) 19(2)	
C(24)	72(4)	02(4) 24(2)	44(3) 34(3)	20(3)	29(3)	10(3) 5(2)	
C(7)	25(2)	24(2)	21(2)	9(2)	2(2)	-1(2)	
C(21)	49(3)	86(5)	82(5)	68(4)	18(3)	28(4)	
C(25)	94(5)	44(4)	46(4)	-12(3)	34(3)	-13(3)	
C(11)	31(2)	19(2)	47(3)	12(2)	11(2)	6(2)	
C(26)	42(3)	86(5)	45(3)	16(3)	22(3)	24(3)	
C(1)	19(2)	28(2)	24(2)	12(2)	6(2)	2(2)	
C(22)	137(7)	32(3)	39(3)	18(3)	1(4)	-22(4)	
C(8)	20(2)	23(2)	28(2)	10(2)	1(2)	1(2)	
C(9)	19(2)	16(2)	35(3)	8(2)	6(2)	8(2)	
C(14)	29(2) 20(2)	27(3)	37(3)	15(2)	4(Z) 5(2)	4(Z) 7(2)	
C(19)	$\frac{23(2)}{41(3)}$	20(2)	30(3)	10(2)	7(2)	9(2)	
C(2)	28(2)	29(3)	32(3)	9(2)	1(2)	2(2)	
Č(6)	28(2)	30(3)	22(2)	9(2)	7(2)	1(2)	
C(18)	31(2)́	24(2)	37(3)	7(2)	6(2)	-1(2)	
C(23)	37(3)	29(3)	23(2)	6(2)	10(2)	5(2)	
C(13)	45(3)	29(3)	26(3)	4(2)	3(2)	6(2)	
C(17)	30(3)	35(3)	45(3)	8(2)	-4(2)	-13(2)	
C(4)	26(2)	43(3)	44(3)	26(3)	1(2)	3(2)	
C(3)	38(3)	26(3)	51(3)	13(2)	13(2)	10(2)	

Table 5. Torsion angles [°] for khc8.

C(49)-P(2)-C(33)-C(44)	64.9(4	4)
C(45)-P(2)-C(33)-C(44)	-57.3(4)
Au(2)-P(2)-C(33)-C(44)	-178.2	(3)
C(49)-P(2)-C(33)-C(34)	-109.1	(4)
C(45)-P(2)-C(33)-C(34)	128.7(3)
Au(2)-P(2)-C(33)-C(34)	7.7(4)
C(44)-C(33)-C(34)-C(41)	-2.9(6	5)
P(2)-C(33)-C(34)-C(41)	171.2(3)

C(44) C(22) C(24) C(25)	174 7(4)
C(44) - C(33) - C(34) - C(35)	1/4./(4)
P(2)-C(33)-C(34)-C(35)	-11.2(6)
C(40) $C(35)$ $C(34)$ $C(41)$	61 7(5)
C(40) - C(33) - C(34) - C(41)	-01.7(3)
C(36)-C(35)-C(34)-C(41)	110.9(4)
C(AO) $C(35)$ $C(34)$ $C(33)$	120 7/5
2(40)-2(33)-2(34)-2(33)	120.7(3)
C(36)-C(35)-C(34)-C(33)	-66.7(5)
C(40) $C(25)$ $C(27)$	0.0(6)
C(40)- $C(30)$ - $C(30)$ - $C(37)$	0.0(0)
C(34)-C(35)-C(36)-C(37)	-172 8(4)
	11 2.0(1)
C(32)-C(31)-C(30)-C(29)	0.9(8)
C(35) - C(36) - C(37) - C(38)	-0.3(6)
	0.0(0)
C(38)-C(39)-C(40)-C(35)	-0.5(7)
C(36) - C(35) - C(40) - C(39)	0 5(6)
	0.0(0)
C(34)-C(35)-C(40)-C(39)	173.2(4)
	155 5(3)
Au(2) - S(2) - S(2) - S(32)	155.5(5)
Au(2)-S(2)-C(27)-C(28)	-22.9(4)
	65 7(4)
C(33) - F(2) - C(43) - C(48)	05.7(4)
C(49)-P(2)-C(45)-C(48)	-49.1(4)
	160 2(2)
Au(2)-P(2)-C(45)-C(46)	-100.2(3)
C(33)-P(2)-C(45)-C(47)	-171.2(3)
	74 4(4)
C(49)-P(2)-C(45)-C(47)	74.1(4)
Au(2)-P(2)-C(45)-C(47)	-45 0(4)
C(33)-P(2)-C(45)-C(46)	-55.7(4)
C(49)-P(2)-C(45)-C(46)	-1704(4)
Au(2)-P(2)-C(45)-C(46)	70.5(4)
C(A0) - C(30) - C(33) - C(37)	0.2(6)
C(40) - C(30) - C(30) - C(31)	0.2(0)
C(36)-C(37)-C(38)-C(39)	0.2(6)
c_{123} c_{124} c_{141} c_{142}	1 0(6)
C(33) - C(34) - C(41) - C(42)	1.0(0)
C(35)-C(34)-C(41)-C(42)	-176.8(4)
C(22) $C(27)$ $C(20)$	0 0 (7)
C(32) - C(21) - C(20) - C(29)	0.0(7)
S(2)-C(27)-C(28)-C(29)	179.2(4)
C(24) $C(22)$ $C(44)$ $C(42)$	ວັດເຊັ່
C(34) - C(33) - C(44) - C(43)	2.0(0)
P(2)-C(33)-C(44)-C(43)	-171 5(3)
	4 0(7)
C(34)-C(41)-C(42)-C(43)	1.0(7)
C(41)-C(42)-C(43)-C(44)	-1 2(7)
	0.0(7)
C(33)-C(44)-C(43)-C(42)	-0.8(7)
C(33) - P(2) - C(40) - C(50)	63 9(4)
	(10.0(4)
C(45)-P(2)-C(49)-C(50)	-179.2(3)
$A_{11}(2) - P(2) - C(40) - C(50)$	-50 5(3)
Au(2)-1 (2)-C(30)	-33.3(3)
C(33)-P(2)-C(49)-C(52)	-178.4(4)
	61 4(5)
$C(43) - \Gamma(2) - C(43) - C(32)$	-01.4(3)
Au(2)-P(2)-C(49)-C(52)	58.3(4)
	52 O(A)
C(33) - F(2) - C(49) - C(31)	-55.9(4)
C(45)-P(2)-C(49)-C(51)	63.0(4)
$A_{12}(2) = C(2) = C(2) = C(2)$	177 2(4)
Au(2)-P(2)-C(49)-C(51)	-177.3(4)
C(28)-C(27)-C(32)-C(31)	0.5(7)
$\mathcal{C}(2)$, $\mathcal{C}(2)$, $\mathcal{C}(2)$, $\mathcal{C}(2)$	177 0(4)
S(2)-C(27)-C(32)-C(31)	-177.9(4)
C(30)-C(31)-C(32)-C(27)	-1 4(8)
C(21) $C(20)$ $C(20)$ $C(2)$	170 2(4)
C(31)-C(30)-C(29)-F(2)	170.3(4)
C(31)-C(30)-C(29)-C(28)	0.5(8)
C(27) C(20) C(20)	1 4(7)
U(21)-U(20)-U(28)-U(30)	-1.4(/)
C(27)-C(28)-C(29)-F(2)	-179.2(4)
	0.0(0)
C(8)-C(15)-C(16)-C(17)	-0.8(9)
C(23)-P(1)-C(7)-C(18)	-58 4(4)
U(19)-P(1)-U(7)-U(18)	63.5(4)
Au(1)-P(1)-C(7)-C(18)	-179 3(3)
	110.0(0)
C(23)-P(1)-C(7)-C(8)	123.2(4)
C(19)-P(1)-C(7)-C(8)	-114 9(4)
$A_{1,1}(A) = A_{1,1}(A) = A_{$	
Au(1)-P(1)-C(7)-C(8)	Z.3(4)
C(13)-C(12)-C(11)-C(10)	0.4(7)
C(9)-C(10)-C(11)-C(12)	-0.2(6)
$A_{11}(1)-S(1)-C(2)$	-20 4(4)
Au(1)-S(1)-C(1)-C(6)	162.4(3)
C(16) - C(15) - C(8) - C(7)	ດ ຂເຂົ້າ
	0.0(0)
C(16)-C(15)-C(8)-C(9)	-178.8(5)
C(18) - C(7) - C(8) - C(15)	-0.8(7)
	-0.0(7)
P(1)-C(7)-C(8)-C(15)	177.6(4)
C(18) - C(7) - C(8) - C(0)	178 7/5
	110.1(0)
P(1)-C(7)-C(8)-C(9)	-2.8(6)
C(11) - C(10) - C(11)	-0 4(6)
	-0.+(0)

	00 5/0)	
C(15)-C(8)-C(9)-C(10)	93.5(6)	
C(7) = C(8) = C(9) = C(10)	-80.1(5)	
C(15)-C(8)-C(9)-C(14)	-78.2(5)	
C(7)-C(8)-C(9)-C(14)	102.2(5)	
C(10)-C(9)-C(14)-C(13)	0.8(6)	
C(8)-C(9)-C(14)-C(13)	172.8(4)	
C(7)-P(1)-C(19)-C(22)	-65.5(5)	
C(23)-P(1)-C(19)-C(22)	50.6(5)	
Au(1)-P(1)-C(19)-C(22)	171.9(4)	
C(7)-P(1)-C(19)-C(21)	171.5(4)	
C(23)-P(1)-C(19)-C(21)	-72 4(4)	
$\Delta_{\rm U}(1) - P(1) - C(10) - C(21)$	/2()	
C(7) D(1) C(10) C(20)	FG 2(4)	
C(7) - P(1) - C(19) - C(20)	50.2(4) 170.0(0)	
C(23)-P(1)-C(19)-C(20)	172.2(3)	
Au(1)-P(1)-C(19)-C(20)	-66.5(4)	
C(6)-C(1)-C(2)-C(3)	-0.4(7)	
S(1)-C(1)-C(2)-C(3)	-177.6(4)	
C(4)-C(5)-C(6)-C(1)	-0.8(7)	
C(2)-C(1)-C(6)-C(5)	0.7(7)	
S(1)-C(1)-C(6)-C(5)	178 1(4)	
C(8) C(7) C(18) C(17)	0.8(7)	
C(0)-C(7)-C(10)-C(17)	0.0(7)	
P(1)-C(7)-C(18)-C(17)	-1/7.7(4)	
C(7)-P(1)-C(23)-C(25)	63.7(4)	
C(19)-P(1)-C(23)-C(25)	-51.0(5)	
Au(1)-P(1)-C(23)-C(25)	-171.3(4)	
C(7)-P(1)-C(23)-C(24)	-57.5(4)	
C(19)-P(1)-C(23)-C(24)	-172.2(4)	
$A_{ii}(1) - P(1) - C(23) - C(24)$	67 4(4)	
$C(7)_P(1)_C(23)_C(26)$	-171 0(4)	
C(10) D(1) C(20) C(20)	-171.0(+)	
C(19)-P(1)-C(23)-C(20)	74.3(4)	
Au(1)-P(1)-C(23)-C(26)	-46.1(4)	
C(9)-C(14)-C(13)-C(12)	-0.7(7)	
C(11)-C(12)-C(13)-C(14)	0.0(7)	
C(15)-C(16)-C(17)-C(18)	0.7(9)	
C(7)-C(18)-C(17)-C(16)	-0.7(8)	
C(6)-C(5)-C(4)-C(3)	0.7(7)	
C(5) - C(4) - C(3) - E(1)	179 7(5)	
C(5) - C(4) - C(3) - C(2)	0.5(8)	
O(3) - O(4) - O(3) - O(2)	-0.5(8)	
C(1)-C(2)-C(3)-C(4)	0.4(8)	
C(1)-C(2)-C(3)-F(1)	-179.9(4)	
Au(30674F-4)(020727F)]	aboly	
_mpirical formula	C26 H31 AU F P S	
Formula weight	622.50	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Shace droup	P _1	
Unit cell dimensione	$\Gamma = 1$ $\alpha = 11,0004(6)$ Å $\Box = 109,771(4)$	0
	$a = 11.0004(0) A$ $\Box = 100.771(4)$	
	$b = 14.5902(6) A$ $\Box = 104.898(4)$	٠.
	c = 16.9126(8) A □ = 91.213(4)°	•
Volume	2467.6(2) Å ³	
Ζ	4	
Density (calculated)	1.676 Mg/m ³	
Absorption coefficient	6.129 mm ⁻¹	
F(000)	1224	
	<u> </u>	
Crystal size	0.500 x 0.310 x 0.300 mm ³	
Theta range for data collection	3.428 to 29.496°.	
Index ranges	-14<=h<=15, -20<=k<=19, -21<=l<=21	
Reflections collected	32793	
Independent reflections	11912 [R(int) = 0.0488]	
Completeness to theta = 25.242°	99 7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11912 / 0 / 553	
Goodness-of-fit on F ²	1.064	
Einal D indiana [[>20iama(])]		
	R1 = 0.0338 wR2 = 0.0686	
	R1 = 0.0338, wR2 = 0.0686	
	R1 = 0.0338, wR2 = 0.0686 127	

R indices (all data) Extinction coefficient Largest diff. peak and hole R1 = 0.0470, wR2 = 0.0765 n/a 1.320 and -1.925 e.Å⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for khc8. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	У	Z	U(eq)
Au(2)	7566(1)	8308(1)	3563(1)	18(1)
S(2)	6615(1)	8145(1)	4581(1)	24(1)
P(2)	8603(1)	8409(1)	2582(1)	18(1)
F(2)	10940(3)	7158(2)	5831(2)	56(1)
C(50)	10263(5)	9834(4)	3868(3)	40(1)
C(35)	6508(4)	9981(3)	2887(3)	19(1)
C(34)	0127(4)	9300(3)	2043(3)	19(1)
C(34)	5527(4)	9234(3)	2648(3)	21(1)
C(31)	8590(5)	8118(4)	6935(3)	41(1)
C(46)	6934(5)	7057(4)	1195(4)	55(2)
C(39)	5821(4)	10794(4)	4153(3)	31(1)
C(30)	9707(5)	7746(4)	6800(3)	43(1)
C(37)	4712(4)	9276(3)	3156(3)	24(1)
C(51)	11178(5)	9023(5)	2680(4)	55(2)
C(40) C(27)	6641(4) 7927(4)	10768(3)	3650(3)	26(1)
C(27)	8331(4)	7903(3)	1705(3)	24(1)
C(38)	4863(4)	10058(3)	3911(3)	28(1)
C(52)	10851(5)	8157(5)	3671(5)	70(2)
C(41)	7123(4)	10733(3)	1923(3)	22(1)
C(28)	8951(4)	7604(3)	5282(3)	28(1)
C(44)	8708(4)	9380(3)	1419(3)	23(1)
C(42)	7734(4)	10806(3)	1327(3)	26(1)
C(47)	8522(6)	6410(3)	2146(3)	44(1)
C(43)	8521(4)	10118(3)	1070(3)	28(1)
C(49) C(32)	7663(5)	0004(0) 8211(3)	5200(3) 6242(3)	27(1)
C(29)	9842(4)	7501(4)	5980(3)	36(1)
C(48)	9133(5)	7004(4)	1076(3)	43(1)
Aù(1)	2182(1)	3276(1)	1668(1)́	22(1)
S(1)	876(1)	1878(1)	757(1)	25(1)
P(1)	3445(1)	4682(1)	2546(1)	23(1)
F(1)	-2737(3)	4059(2)	786(2)	67(1)
C(20)	3946(6)	5046(4)	1171(3)	50(2)
C(15) C(16)	0943(4) 7744(5)	3004(4) 4483(4)	2044(4) 3379(4)	44(1)
C(12)	3768(4)	837(3)	978(3)	33(1)
C(24)	3306(6)	4424(5)	4042(4)	54(2)
C(10)	4392(4)	2105(3)	2365(3)	29(1)
C(7)	5138(4)	4562(3)	2876(3)	23(1)
C(21)	1935(5)	5552(5)	1473(4)	62(2)
C(25)	3543(7)	6176(4)	4201(4)	66(2)
C(11) C(26)	3834(4)	1172(3)	1850(3)	32(1) 57(2)
C(20)	-634(4)	2204(3)	369(3)	23(1)
C(22)	3956(8)	6559(4)	2386(4)	73(2)
C(8)	5633(4)	3669(3)	2580(3)	25(1)
C(9)	4897(4)	2719(3)	2017(3)	24(1)
C(14)	4829(4)	2358(3)	1131(3)	31(1)
C(5)	-2685(4)	1688(4)	-718(3)	31(1)
C(19)	3334(5)	5528(3)	1893(3)	31(1)
U(2)	-1085(4)	3062(3)	155(3)	32(1)
C(18)	- 1400(4) 5070(4)	5380(3)	-313(3) 3410(3)	∠/(I) 30(1)
C(23)	2955(4)	5169(3)	3579(3)	32(1)
C(13)	4268(5)	1434(3)	622(3)	36(1)
C(17)	7265(5)	5349(4)	3666(3)	42(1)
C(4)	-3124(4)	2547(4)	-324(3)	37(1)
C(3)	-2313(5)	3201(4)	392(3)	38(1)

$\Delta \mu(2) - P(2)$	2 2700/11)
	2.2700(11)
Au(2)-S(2)	2.3017(11)
S(2)-C(27)	1.770(4)
P(2) - C(33)	1 836(4)
$\Gamma(2) = O(33)$	1.000(4)
P(2)-C(49)	1.881(4)
P(2)-C(45)	1 885(4)
E(2) C(20)	1 269(6)
F(Z)=C(Z9)	1.300(0)
C(50)-C(49)	1.516(6)
C(50)-H(50A)	0.9800
	0.0000
C(50)-H(50B)	0.9800
C(50)-H(50C)	0.9800
C(35) - C(40)	1 395(6)
	1.000(0)
C(35)-C(36)	1.399(6)
C(35)-C(34)	1,482(6)
C(33) - C(44)	1 308(6)
	1.530(0)
C(33)-C(34)	1.412(5)
C(34)-C(41)	1 406(6)
C(26) C(27)	1 201(6)
C(30) - C(37)	1.361(0)
C(36)-H(36)	0.9500
C(31) - C(32)	1.388(6)
C(01) C(02)	1.000(0)
C(31)-C(30)	1.396(8)
C(31)-H(31)	0.9500
C(46) - C(45)	1 532(6)
$C(46) \cup (46)$	0.0800
C(40)-A(40A)	0.9600
C(46)-H(46B)	0.9800
C(46)-H(46C)	0.9800
C(20) C(20)	1 071/7)
C(39)-C(30)	1.371(7)
C(39)-C(40)	1.383(6)
C(39)-H(39)	0.9500
C(30) - C(20)	1 364(7)
C(30) - C(29)	1.304(7)
C(30)-H(30)	0.9500
C(37)-C(38)	1 380(6)
$C(37) \sqcup (37)$	0.0500
O(57) - I(57)	0.9500
C(51)-C(49)	1.531(7)
C(51)-H(51A)	0.9800
	0 0800
	0.9000
C(51)-H(51C)	0.9800
C(40)-H(40)	0.9500
C(27) C(22)	1 385(6)
O(27) - O(32)	1.303(0)
C(27)-C(28)	1.398(6)
C(45)-C(48)	1.516(7)
C(45) - C(47)	1 523(6)
O(43) - O(47)	1.525(0)
C(38)-H(38)	0.9500
C(52)-C(49)	1.521(7)
C(52)-H(52A)	0.9800
	0.0000
C(52)-FI(52B)	0.9600
C(52)-H(52C)	0.9800
C(41)-C(42)	1.377(6)
$C(41) \sqcup (41)$	0.0500
$C(41) - \Gamma(41)$	0.9500
C(28)-C(29)	1.379(6)
C(28)-H(28)	0.9500
C(44)- $C(43)$	1 382(6)
O(44) - O(43)	1.502(0)
C(44)-H(44)	0.9500
C(42)-C(43)	1.376(6)
C(42) - H(42)	0.9500
C(47) H(47A)	0.0800
C(47)-H(47A)	0.9600
C(47)-H(47B)	0.9800
C(47)-H(47C)	0.9800
$C(\Lambda_3) \sqcup (\Lambda_3)$	0.0500
	0.9500
C(32)-H(32)	0.9500
C(48)-H(48A)	0.9800
C(48) = H(48B)	0 0800
	0.0000
U(48)-H(48U)	0.9800
Au(1)-P(1)	2.2797(12)
Au(1)-S(1)	2 3051(11)
S(1) C(1)	1 757(4)
5(1)-0(1)	1./5/(4)
P(1)-C(7)	1.831(4)

Table 3. Bond lengths [Å] and angles [°] for khc8.

$\begin{array}{l} P(1)-C(23)\\ P(1)-C(19)\\ F(1)-C(3)\\ C(20)-H(20A)\\ C(20)-H(20B)\\ C(20)-H(20B)\\ C(20)-H(20C)\\ C(15)-C(16)\\ C(15)-C(16)\\ C(15)-C(16)\\ C(15)-C(17)\\ C(16)-H(15)\\ C(12)-C(11)\\ C(12)-C(11)\\ C(12)-C(13)\\ C(12)-H(12)\\ C(24)-C(23)\\ C(24)-H(24A)\\ C(24)-H(24B)\\ C(24)-H(24B)\\ C(24)-H(24B)\\ C(24)-H(24B)\\ C(24)-H(24B)\\ C(21)-C(11)\\ C(10)-C(11)\\ C(10)-C(11)\\ C(10)-C(19)\\ C(21)-C(18)\\ C(21)-C(18)\\ C(21)-C(28)\\ C(21)-H(21A)\\ C(21)-H(21B)\\ C(21)-H(21B)\\ C(25)-H(25B)\\ C(25)-H(25B)\\ C(25)-H(25B)\\ C(25)-H(25B)\\ C(25)-H(25B)\\ C(26)-H(26B)\\ C(26)-H(26B)\\ C(26)-H(26B)\\ C(26)-H(26B)\\ C(22)-C(19)\\ C(22)-C(19)\\ C(22)-C(19)\\ C(22)-C(19)\\ C(22)-C(19)\\ C(22)-H(22B)\\ C(22)-H(21C)\\ C(3)-C(4)\\ C(13)-H(13)\\ C(13)-H(13)\\ C(13)-H(13)\\ C(13)-H(13)\\ C(13)-H(13)\\ C(17)-H(17)\\ C(4)-C(3)\\ C(4)-H(4)\\ C(4)-C(3)\\ C(4)-H(4)\\ C(4)-\mathsf$	$\begin{array}{c} 1.883(5)\\ 1.891(5)\\ 1.370(5)\\ 1.527(7)\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.369(7)\\ 1.396(6)\\ 0.9500\\ 1.369(7)\\ 0.9500\\ 1.378(7)\\ 1.382(7)\\ 0.9500\\ 1.534(7)\\ 0.9500\\ 1.534(7)\\ 0.9800\\ 0$
P(2)-Au(2)-S(2) C(27)-S(2)-Au(2) C(33)-P(2)-C(49) C(33)-P(2)-C(45) C(49)-P(2)-C(45) C(33)-P(2)-Au(2) C(49)-P(2)-Au(2) C(49)-P(2)-Au(2) C(49)-C(50)-H(50A) C(49)-C(50)-H(50B)	176.35(3) 106.36(16) 103.6(2) 107.45(19) 115.1(2) 116.36(13) 106.85(15) 107.82(15) 109.5

	100 5
H(50A)-C(50)-H(50B)	109.5
C(49)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B) - C(50) - H(50C)	109 5
C(40) C(25) C(26)	110 2(4)
C(40) - C(30) - C(30)	110.3(4)
C(40)-C(35)-C(34)	120.7(4)
C(36)-C(35)-C(34)	120.5(4)
C(44)-C(33)-C(34)	118 3(4)
C(44)- $C(33)$ - $P(2)$	118 6(3)
C(24) C(22) D(2)	10.0(0)
C(34)-C(33)-P(2)	122.0(3)
C(41)-C(34)-C(33)	118.0(4)
C(41)-C(34)-C(35)	116.1(3)
C(33)-C(34)-C(35)	125.8(4)
C(37)-C(36)-C(35)	120.7(4)
C(27) C(26) U(26)	110.6
	119.0
C(35)-C(36)-H(36)	119.6
C(32)-C(31)-C(30)	119.6(5)
C(32)-C(31)-H(31)	120.2
C(30)-C(31)-H(31)	120.2
C(45)-C(46)-H(46A)	109.5
C(45) - C(46) + U(46D)	100.0
	109.5
H(46A)-C(46)-H(46B)	109.5
C(45)-C(46)-H(46C)	109.5
H(46A)-C(46)-H(46C)	109.5
H(46B)-C(46)-H(46C)	109.5
C(38) - C(30) - C(40)	121 0(4)
C(30) - C(30) - C(40)	121.0(4)
C(38)-C(39)-H(39)	119.5
C(40)-C(39)-H(39)	119.5
C(29)-C(30)-C(31)	117.6(4)
C(29)-C(30)-H(30)	121.2
C(31)-C(30)-H(30)	121 2
C(38) C(37) C(36)	120 1(4)
C(30) - C(37) - C(30)	120.1(4)
C(38)-C(37)-H(37)	119.9
C(36)-C(37)-H(37)	119.9
C(49)-C(51)-H(51A)	109.5
C(49)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(40) C(51) H(51C)	100.0
	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
C(39)-C(40)-C(35)	120.1(4)
C(39)-C(40)-H(40)	120.0
C(35)-C(40)-H(40)	120.0
C(32) - C(27) - C(28)	118 0(1)
C(32) - C(27) - C(20)	110.3(4)
C(32) - C(27) - S(2)	110.4(3)
C(28)-C(27)-S(2)	122.7(3)
C(48)-C(45)-C(47)	108.7(4)
C(48)-C(45)-C(46)	108.9(4)
C(47)-C(45)-C(46)	108.3(5)
C(48)-C(45)-P(2)	117 5(3)
C(47) C(45) P(2)	107.0(3)
C(47) - C(43) - F(2)	107.9(3)
C(46)-C(45)-P(2)	105.2(3)
C(39)-C(38)-C(37)	119.7(4)
C(39)-C(38)-H(38)	120.1
C(37)-C(38)-H(38)	120.1
C(49) - C(52) - H(52A)	109.5
C(40) C(52) H(52P)	100.5
$C(49)-C(52)-\Pi(52D)$	109.5
H(52A)-C(52)-H(52B)	109.5
C(49)-C(52)-H(52C)	109.5
H(52A)-C(52)-H(52C)	109.5
H(52B)-C(52)-H(52C)	109.5
C(42)-C(41)-C(34)	122 6(4)
C(42)-C(41)-H(41)	118 7
C(24) C(41) U(41)	140 7
U(34) - U(41) - H(41)	110./
C(29)-C(28)-C(27)	118.0(4)
C(29)-C(28)-H(28)	121.0
C(27)-C(28)-H(28)	121.0
C(43)-C(44)-C(33)	121.9(4)
C(43)-C(44)-H(44)	119.1
C(33)-C(44)-H(44)	110.1
0(00)-0(++)-11(++)	113.1

	400 -
H(21B)-C(21)-H(21C)	109.5
	100 5
0(23)-0(23)-11(23A)	103.5
C(23)-C(25)-H(25B)	109.5
	400 5
H(25A)-C(25)-H(25B)	109.5
C(23) - C(25) - H(25C)	100 5
0(20)-0(20)-11(200)	103.5
H(25A)-C(25)-H(25C)	109 5
	100 5
H(25B)-C(25)-H(25C)	109.5
C(12) C(11) C(10)	120 1(5)
O(12) - O(11) - O(10)	120.1(3)
C(12)-C(11)-H(11)	120.0
O(10) O(11) U(11)	400.0
C(10)-C(11)-H(11)	120.0
	100 5
$C(23) - C(20) - \Gamma(20A)$	109.5
C(23)-C(26)-H(26B)	109 5
	400 5
H(26A)-C(26)-H(26B)	109.5
	100 5
0(20)-0(20)-11(200)	103.5
H(26A)-C(26)-H(26C)	109.5
	100 E
П(20D)-С(20)-П(20С)	109.5
C(2) - C(1) - C(6)	118 0(4)
	110.0(1)
C(2)-C(1)-S(1)	125.2(3)
	116 7(3)
C(0) - C(1) - C(1)	110.7(3)
C(19)-C(22)-H(22A)	109 5
	400.5
C(19)-C(22)-H(22B)	109.5
H(22A) - C(22) - H(22B)	100 5
(22A)-O(22)-I (22D)	103.5
C(19)-C(22)-H(22C)	109.5
	100 5
H(ZZA)-U(ZZ)-H(ZZU)	109.5
H(22B)-C(22)-H(22C)	109 5
	100.0
C(15)-C(8)-C(7)	117.8(4)
	115 0/1
C(13) - C(0) - C(9)	115.0(4)
C(7)-C(8)-C(9)	126 5(4)
	447.0(4)
C(10)-C(9)-C(14)	117.8(4)
	121 2/1
C(10) - C(3) - C(0)	121.3(4)
C(14)-C(9)-C(8)	120.5(4)
C(40) $C(44)$ $C(0)$	400 0(5)
C(13)-C(14)-C(9)	120.9(5)
C(13) - C(14) - H(14)	110 5
O(10) - O(14) - 11(14)	110.0
C(9)-C(14)-H(14)	119.5
	100 0(4)
U(4) - U(3) - U(0)	120.0(4)
C(4)-C(5)-H(5)	120.0
	100.0
C(b)-C(5)-H(5)	120.0
C(22) C(10) C(21)	100 1/5)
O(22) - O(19) - O(21)	109.1(5)
C(22)-C(19)-C(20)	109.7(5)
C(24) C(40) C(20)	100 1(1)
C(21)-C(19)-C(20)	100.1(4)
C(22)-C(19)-P(1)	116 2(3)
	110.2(0)
C(21)-C(19)-P(1)	108.0(4)
	105 1(3)
O(20) - O(13) - I(1)	100.4(0)
C(1)-C(2)-C(3)	118.6(4)
C(4) $C(2)$ $U(2)$	100 7
U(1)-U(2)-H(2)	120.7
C(3)-C(2)-H(2)	120 7
	104 4/4
C(5)-C(6)-C(1)	121.4(4)
	110 3
0(0)-0(0)-11(0)	110.0
C(1)-C(6)-H(6)	119.3
	100 4(4)
U(17) - U(10) - U(7)	122.4(4)
C(17)-C(18)-H(18)	118.8
	440.0
C(7)-C(18)-H(18)	118.8
C(25) - C(23) - C(24)	100 0(4)
0(23)-0(23)-0(24)	100.0(+)
C(25)-C(23)-C(26)	109.9(5)
C(24) $C(22)$ $C(26)$	106 7(5)
O(24) - O(23) - O(20)	100.7(5)
C(25)-C(23)-P(1)	117 7(4)
	101.0(0)
C(24)-C(23)-P(1)	104.8(3)
C(26) - C(23) - D(1)	108 1(3)
	100.1(3)
C(14)-C(13)-C(12)	120.5(5)
	110 7
∪(14)-∪(13)-⊓(13)	119.7
C(12)-C(13)-H(13)	119.7
	140.0/=
U(10)-U(17)-U(18)	119.3(5)
C(16)-C(17)-H(17)	120 3
	120.0
C(18)-C(17)-H(17)	120.3
	117 5(4)
U(3)-U(4)-U(3)	117.5(4)
C(3)-C(4)-H(4)	121 2
	101.0
U(3)-U(4)-H(4)	121.2
C(4)-C(3)-F(1)	110 0(4)
	110 1141
<i> </i>	110.0(4)
C(4)-C(3)-C(2)	124.5(5)
C(4)-C(3)-C(2) F(1)-C(3)-C(2)	124.5(5) 127.5(4)
C(4)-C(3)-C(2) F(1)-C(3)-C(2)	124.5(5) 117.5(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(2)	18(1)	19(1)	16(1)	5(1)	4(1)	3(1)
S(2)	23(1)	32(1)	19(1)́	9(1)	8(1)	5(1)
P(2)	17(1)	17(1)	18(1)	5(1)	5(1)	4(1)
F(2) C(50)	35(2) 30(3)	66(2) 43(3)	69(2) 35(3)	32(2) 1(2)	2(2)	-10(2)
C(35)	15(2)	21(2)	20(2)	7(2)	6(2)	6(2)
C(33)	17(2)	20(2)	22(2)	10(2)	8(2)	3(2)
C(34)	19(2)	21(2)	13(2)	5(2)	4(2)	2(2)
C(36) C(31)	16(2) 56(3)	23(2) 45(3)	21(2) 22(3)	7(2) 14(2)	3(Z) 5(2)	9(2) 2(3)
C(46)	41(3)	36(3)	49(3)	-19(3)	-10(3)	-1(3)
C(39)	33(2)	36(3)	20(2)	2(2)	12(2)	8(2)
C(30)	52(3)	37(3)	34(3)	22(2)	-11(2)	-3(3)
C(37) C(51)	19(2) 23(3)	28(2) 86(5)	32(2) 48(3)	13(2)	13(2)	8(2) -1(3)
C(40)	27(2)	22(2)	30(2)	8(2)	11(2)	5(2)
C(27)	26(2)	18(2)	23(2)	5(2)	3(2)	-2(2)
C(45)	31(2)	22(2)	23(2)	4(2)	13(2)	4(2)
C(30) C(52)	$\frac{27(2)}{32(3)}$	42(3) 68(4)	27(2)	20(2) 62(4)	-20(3)	-3(3)
C(41)	24(2)	18(2)	26(2)	9(2)	10(2)	7(2)
C(28)	31(2)	24(2)	26(2)	9(2)	2(2)	-3(2)
C(44)	26(2)	21(2)	26(2)	8(2)	15(2)	8(2)
C(42) C(47)	34(2) 80(4)	24(2) 19(3)	23(2) 37(3)	9(2)	24(3)	0(<i>2</i>) 12(3)
C(43)	30(2)	31(3)	25(2)	7(2)	16(2)	0(2)
C(49)	16(2)	32(3)	32(3)	9(2)	4(2)	2(2)
C(32)	46(3)	31(3)	24(2)	13(2)	12(2)	7(2) 1(2)
C(29) C(48)	72(4)	28(3)	31(3)	4(2)	26(3)	9(3)
Au(1)	20(1)	22(1)	20(1)	5(1)	2(1)	2(1)
S(1)	22(1)	26(1)	23(1)	6(1)	2(1)	2(1)
P(1) F(1)	24(1)	20(1)	22(1) 88(3)	5(1)	4(1) 2(2)	5(1) 14(2)
C(20)	69(4)	56(4)	44(3)	28(3)	30(3)	27(3)
C(15)	25(2)	25(3)	70(4)	10(3)	2(2)	4(2)
C(16)	23(2)	36(3)	75(4)	19(3)	-5(3)	-5(2)
C(12) C(24)	27(2) 72(4)	21(2) 62(4)	42(3) 44(3)	7(2) 28(3)	29(3)	0(2) 18(3)
C(10)	26(2)	24(2)	34(3)	7(2)	9(2)	5(2)
C(7)	25(2)	24(2)	21(2)	9(2)	2(2)	-1(2)
C(21)	49(3)	86(5)	82(5)	68(4)	18(3)	28(4)
C(25) C(11)	94(5) 31(2)	19(2)	47(3)	-12(3)	34(3) 11(2)	-13(3) 6(2)
C(26)	42(3)	86(5)	45(3)	16(3)	22(3)	24(3)
C(1)	19(2)	28(2)	24(2)	12(2)	6(2)	2(2)
C(22)	137(7)	32(3)	39(3)	18(3)	1(4) 1(2)	-22(4) 1(2)
C(8) C(9)	19(2)	16(2)	35(3)	8(2)	6(2)	8(2)
C(14)	29(2)	27(3)	37(3)	15(2)	4(2)	4(2)
C(5)	29(2)	40(3)	27(2)	16(2)	5(2)	-7(2)
C(19)	41(3) 28(2)	20(2)	30(3) 32(3)	10(2) 9(2)	7(2) 1(2)	9(2) 2(2)
C(6)	28(2)	30(3)	22(2)	9(2)	7(2)	1(2)
C(18)	31(2)	24(2)	37(3)	7(2)	6(2)	-1(2)
C(23)	37(3)	29(3)	23(2)	6(2)	10(2)	5(2)
C(13) C(17)	45(3) 30(3)	29(3)	20(3) 45(3)	4(2) 8(2)	3(2) -4(2)	6(2) _13(2)
C(4)	26(2)	43(3)	44(3)	26(3)	1(2)	3(2)
C(3)	38(3)	26(3)	51(3)́	13(2)	13(Ź)	10(2)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc8. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(49)-P(2)-C(33)-C(44)	64.9(4)
C(45)-P(2)-C(33)-C(44)	-57.3(4)
$A_{11}(2) = P(2) = C(33) = C(44)$	178 2(3)
	-170.2(3)
C(49)-P(2)-C(33)-C(34)	-109.1(4)
C(45)-P(2)-C(33)-C(34)	128.7(3)
$A_{11}(2) - P(2) - C(33) - C(34)$	7 7(4)
	7.7(4)
C(44)-C(33)-C(34)-C(41)	-2.9(6)
P(2)-C(33)-C(34)-C(41)	171.2(3)
C(44)- $C(33)$ - $C(34)$ - $C(35)$	174 7(4)
	114.1(4)
P(2)-C(33)-C(34)-C(35)	-11.2(6)
C(40)-C(35)-C(34)-C(41)	-61.7(5)
C(36) - C(35) - C(34) - C(41)	110 0(1)
	100.3(4)
C(40)-C(35)-C(34)-C(33)	120.7(5)
C(36)-C(35)-C(34)-C(33)	-66.7(5)
C(40) - C(35) - C(36) - C(37)	0.0(6)
	(0.0(0))
C(34)-C(35)-C(36)-C(37)	-172.8(4)
C(32)-C(31)-C(30)-C(29)	0.9(8)
(35) C(36) C(37) C(39)	0.3(6)
	-0.3(0)
C(38)-C(39)-C(40)-C(35)	-0.5(7)
C(36)-C(35)-C(40)-C(39)	0.5(6)
C(34) C(35) C(40) C(39)	173 2(4)
	173.2(4)
Au(2)-S(2)-C(27)-C(32)	155.5(3)
Au(2)-S(2)-C(27)-C(28)	-22 9(4)
(2) D(2) C(4) C(4)	65 7(4)
C(33)-F(2)-C(43)-C(48)	05.7(4)
C(49)-P(2)-C(45)-C(48)	-49.1(4)
Au(2)-P(2)-C(45)-C(48)	-1682(3)
(2) = (2) = (2) = (2) = (2)	171 0(2)
C(33)-P(2)-C(43)-C(47)	-171.2(3)
C(49)-P(2)-C(45)-C(47)	74.1(4)
$A_{11}(2) - P(2) - C(45) - C(47)$	-450(4)
(2) = (2)	55 7(4)
C(33)-P(2)-C(45)-C(46)	-55.7(4)
C(49)-P(2)-C(45)-C(46)	-170.4(4)
Au(2) - P(2) - C(45) - C(46)	70 5(4)
C(4) = C(2) = C(2) = C(2)	0.2(6)
C(40)-C(39)-C(38)-C(37)	0.2(6)
C(36)-C(37)-C(38)-C(39)	0.2(6)
C(33)-C(34)-C(41)-C(42)	1 0(6)
	176 0(4)
C(35)-C(34)-C(41)-C(42)	-170.0(4)
C(32)-C(27)-C(28)-C(29)	0.8(7)
S(2) - C(27) - C(28) - C(29)	179 2(<u>4</u>)
	0.0(0)
C(34) - C(33) - C(44) - C(43)	2.0(0)
P(2)-C(33)-C(44)-C(43)	-171.5(3)
C(34)-C(41)-C(42)-C(43)	1 0(7)
	1.0(7)
C(41)-C(42)-C(43)-C(44)	-1.2(7)
C(33)-C(44)-C(43)-C(42)	-0.8(7)
C(33)-P(2)-C(49)-C(50)	63.9(4)
C(45) P(2) C(40) C(50)	170 2(2)
C(43)-F(2)-C(43)-C(50)	-179.2(3)
Au(2)-P(2)-C(49)-C(50)	-59.5(3)
C(33)-P(2)-C(49)-C(52)	-178 4(4)
C(45) $P(2)$ $C(40)$ $C(52)$	61 4(5)
C(43) = C(2) = C(32)	-01.4(3)
Au(2)-P(2)-C(49)-C(52)	58.3(4)
C(33)-P(2)-C(49)-C(51)	-53.9(4)
C(45) $P(2)$ $C(40)$ $C(51)$	63 0(4)
C(43)- $F(2)$ - $C(43)$ - $C(31)$	03.0(4)
Au(2)-P(2)-C(49)-C(51)	-177.3(4)
C(28)-C(27)-C(32)-C(31)	0.5(7)
S(2) = C(27) = C(31)	177 0(1)
S(z) - C(z) - C(z) - C(z)	-177.9(4)
C(30)-C(31)-C(32)-C(27)	-1.4(8)
C(31)-C(30)-C(29)-F(2)	178.3(4)
C(31) $C(30)$ $C(20)$ $C(28)$	0 5(8)
C(3T)- $C(30)$ - $C(23)$ - $C(23)$ - $C(23)$ -	0.5(6)
C(27)-C(28)-C(29)-C(30)	-1.4(7)
C(27)-C(28)-C(29)-F(2)	-179.2(4)
C(8)-C(15)-C(16)-C(17)	-0.8(0)
	-0.0(9)
C(23)-P(1)-C(7)-C(18)	-58.4(4)
C(19)-P(1)-C(7)-C(18)	63.5(4)
$\Delta_{11}(1) - D(1) - C(7) - C(18)$	-170 2/2)
Au(1)-F(1)-U(1)-U(10)	-1/9.3(3)
C(23)-P(1)-C(7)-C(8)	123.2(4)
C(19)-P(1)-C(7)-C(8)	-114.9(4)
$\Delta_{11}(1) - D(1) - C(7) - C(8)$	2 3/4)
	2.3(4)
U(13)-U(12)-U(11)-U(10)	0.4(7)

C(9)-C(10)-C(11)-C(12) Au(1)-S(1)-C(1)-C(2) Au(1)-S(1)-C(1)-C(6) C(16)-C(15)-C(8)-C(7) C(16)-C(15)-C(8)-C(9) C(18)-C(7)-C(8)-C(15) P(1)-C(7)-C(8)-C(9) P(1)-C(7)-C(8)-C(9) C(11)-C(10)-C(9)-C(14) C(11)-C(10)-C(9)-C(14) C(11)-C(10)-C(9)-C(10) C(7)-C(8)-C(9)-C(10) C(7)-C(8)-C(9)-C(10) C(15)-C(8)-C(9)-C(14) C(7)-C(8)-C(9)-C(14) C(10)-C(9)-C(14)-C(13) C(7)-P(1)-C(19)-C(22) C(23)-P(1)-C(19)-C(22) C(23)-P(1)-C(19)-C(22) C(23)-P(1)-C(19)-C(21) C(23)-P(1)-C(19)-C(21) C(23)-P(1)-C(19)-C(21) C(7)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(23)-P(1)-C(19)-C(20) C(4)-C(5)-C(6)-C(1) C(2)-C(3) C(4)-C(5)-C(6)-C(5) S(1)-C(1)-C(2)-C(3) C(4)-C(5)-C(6)-C(5) S(1)-C(1)-C(2)-C(25) C(7)-P(1)-C(23)-C(25) C(7)-P(1)-C	$\begin{array}{c} -0.2(6) \\ -20.4(4) \\ 162.4(3) \\ 0.8(8) \\ -178.8(5) \\ -0.8(7) \\ 177.6(4) \\ 178.7(5) \\ -2.8(6) \\ -0.4(6) \\ -172.3(4) \\ 93.5(6) \\ -86.1(5) \\ -78.2(5) \\ 102.2(5) \\ 0.8(6) \\ 172.8(4) \\ -65.5(5) \\ 50.6(5) \\ 171.9(4) \\ 171.5(4) \\ -72.4(4) \\ 48.9(4) \\ 56.2(4) \\ 172.2(3) \\ -66.5(4) \\ -0.4(7) \\ -177.6(4) \\ -0.8(7) \\ 0.7(7) \\ 178.1(4) \\ 0.8(7) \\ -177.7(4) \\ 63.7(4) \\ -51.0(5) \\ -171.3(4) \\ -57.5(4) \end{array}$
P(1)-C(7)-C(18)-C(17) C(7) P(1) C(25)	-177.7(4)
C(7)-P(1)-C(23)-C(25) C(19)-P(1)-C(23)-C(25) Au(1)-P(1)-C(23)-C(25) C(7)-P(1)-C(23)-C(24)	65.7(4) -51.0(5) -171.3(4) -57.5(4)
$\begin{array}{l} C(19)-P(1)-C(23)-C(24)\\ Au(1)-P(1)-C(23)-C(24)\\ C(7)-P(1)-C(23)-C(24)\\ C(7)-P(1)-C(23)-C(26)\\ C(20)-C(20)-C(20)\\ C(20)-C(20)-C(20)\\ C(20)-C(20)-C(20)\\ C(20)-C(20)\\ C(2$	-172.2(4) 67.4(4) -171.0(4)
C(19)-P(1)-C(23)-C(26) Au(1)-P(1)-C(23)-C(26) C(9)-C(14)-C(13)-C(12) C(11)-C(12)-C(13)-C(14) C(15)-C(16)-C(17)-C(18)	74.3(4) -46.1(4) -0.7(7) 0.0(7) 0.7(9)
C(7)-C(18)-C(17)-C(16) C(6)-C(5)-C(4)-C(3) C(5)-C(4)-C(3)-F(1) C(5)-C(4)-C(3)-F(1)	-0.7(8) 0.7(7) 179.7(5)
C(1)-C(2)-C(3)-C(4) C(1)-C(2)-C(3)-F(1)	-v.3(8) 0.4(8) -179.9(4)

²³ Zhdanko, A., Ströbele, M., & Maier, M. E. *Chemistry - A European Journal*, 2012. 18, 14732–14744215

Anexo

Datos cristalográficos

La estructura e idioma de cada tabla se ha conservado como se obtuvo originalmente del instrumento.

 $[Au(SC_6F_5)(C_{20}H_{27}P)]$

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shelx C26 H27 Au F5 P S 694.47 298(2) K 0.71073 Å Orthorhombic P b c a a = 10.2791(4) Å b = 19.2381(8) Å c = 26.2618(10) Å
Volume	5193.3(4) Å ³
Z	8
Density (calculated)	1.776 Mg/m ³
Absorption coefficient	5.856 mm ⁻¹
F(000)	2704
Theta range for data collection	3.682 to 29.496°.
Index ranges	-13<=h<=10, -22<=k<=26, -36<=l<=24
Reflections collected	17607
Independent reflections	6213 [R(int) = 0.0492]
Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6213 / 0 / 313
Goodness-of-fit on F ²	1.077
Final R indices [I>2sigma(I)]	R1 = 0.0480, wR2 = 0.0795
R indices (all data)	R1 = 0.0890, wR2 = 0.0921
Extinction coefficient	n/a
Largest diff. peak and hole	0.966 and -1.585 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for khc4. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		x	у	Z	U(eq)
$\begin{array}{ccccc} C(2) & 3864(7) & 1043(3) & 1671(3) & 61(2) \\ C(3) & 3323(7) & 843(4) & 2118(3) & 77(2) \\ C(4) & 3850(9) & 1057(4) & 2562(3) & 81(2) \\ C(5) & 4901(9) & 1488(4) & 2547(3) & 74(2) \\ C(6) & 5422(7) & 1681(3) & 2093(2) & 60(2) \\ C(7) & 6473(6) & 4548(3) & 967(2) & 45(1) \\ C(8) & 5107(6) & 4501(3) & 963(2) & 50(2) \\ C(9) & 4301(5) & 3854(3) & 1031(2) & 50(2) \\ C(10) & 3748(6) & 3533(4) & 617(3) & 70(2) \\ C(11) & 2910(7) & 2976(4) & 682(3) & 80(2) \\ C(12) & 2614(7) & 2743(4) & 1157(3) & 77(2) \\ C(13) & 3137(7) & 3063(4) & 1572(3) & 72(2) \\ C(14) & 3975(6) & 3222(4) & 1511(2) & 661(2) \\ C(16) & 4985(8) & 5735(4) & 804(3) & 80(2) \\ C(17) & 6309(8) & 5735(4) & 804(3) & 80(2) \\ C(17) & 6309(8) & 5782(4) & 817(3) & 71(2) \\ C(18) & 7032(7) & 5189(3) & 894(2) & 60(2) \\ C(20) & 9265(6) & 3034(3) & 478(3) & 66(2) \\ C(21) & 7820(8) & 3861(4) & 38(2) & 98(3) \\ C(22) & 9823(8) & 4268(4) & 516(3) & 100(3) \\ C(23) & 8336(6) & 3920(3) & 1696(2) & 51(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(25) & 7222(7) & 3939(4) & 2085(2) & 69(2) \\ Au(1) & 6462(1) & 2755(1) & 1077(1) & 46(1) \\ F(1) & 3319(4) & 797(2) & 1243(2) & 95(1) \\ F(2) & 2286(5) & 415(3) & 2126(2) & 125(2) \\ F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ P(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ 41(1) & 646(1) & 41(1) \\ F(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \\ \end{array}$	C(1)	4937(6)	1475(3)	1631(2)	49(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	3864(7)	1043(3)	1671(3)	61(2)
$\begin{array}{cccccc} C(4) & 3850(9) & 1057(4) & 2562(3) & 81(2) \\ C(5) & 4901(9) & 1488(4) & 2547(3) & 74(2) \\ C(6) & 5422(7) & 1681(3) & 2093(2) & 60(2) \\ C(7) & 6473(6) & 4548(3) & 967(2) & 45(1) \\ C(8) & 5107(6) & 4501(3) & 963(2) & 50(2) \\ C(9) & 4301(5) & 3854(3) & 1031(2) & 50(2) \\ C(10) & 3748(6) & 3533(4) & 617(3) & 70(2) \\ C(11) & 2910(7) & 2976(4) & 682(3) & 80(2) \\ C(12) & 2614(7) & 2743(4) & 1157(3) & 77(2) \\ C(13) & 3137(7) & 3063(4) & 1572(3) & 72(2) \\ C(14) & 3975(6) & 3622(4) & 1511(2) & 61(2) \\ C(15) & 4402(7) & 5107(4) & 875(3) & 74(2) \\ C(16) & 4985(8) & 5735(4) & 804(3) & 80(2) \\ C(17) & 6309(8) & 5782(4) & 817(3) & 71(2) \\ C(18) & 7032(7) & 5189(3) & 894(2) & 60(2) \\ C(19) & 8672(6) & 3759(4) & 507(2) & 58(2) \\ C(20) & 9265(6) & 3034(3) & 478(3) & 66(2) \\ C(21) & 7820(8) & 3861(4) & 38(2) & 98(3) \\ C(22) & 9823(8) & 4268(4) & 516(3) & 100(3) \\ C(23) & 8336(6) & 3920(3) & 1696(2) & 51(2) \\ C(24) & 9111(7) & 4594(4) & 1753(3) & 80(2) \\ C(25) & 9212(7) & 3297(4) & 1807(3) & 72(2) \\ C(26) & 7222(7) & 3339(4) & 2085(2) & 69(2) \\ Au(1) & 6462(1) & 2755(1) & 1077(1) & 46(1) \\ F(1) & 3319(4) & 797(2) & 1243(2) & 95(1) \\ F(2) & 2286(5) & 415(3) & 2126(2) & 125(2) \\ F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ P(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ S(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \\ \end{array}$	C(3)	3323(7)	843(4)	2118(3)	77(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	3850(9)	1057(4)	2562(3)	81(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	4901(9)	1488(4)	2547(3)	74(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	5422(7)	1681(3)	2093(2)	60(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	6473(6)	4548(3)	967(2)	45(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8)	5107(6)	4501(3)	963(2)	50(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	4301(5)	3854(3)	1031(2)	50(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	3748(6)	3533(4)	617(3)	70(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	2910(7)	2976(4)	682(3)	80(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	2614(7)	2743(4)	1157(3)	77(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	3137(7)	3063(4)	1572(3)	72(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	3975(6)	3622(4)	1511(2)	61(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	4402(7)	5107(4)	875(3)	74(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	4985(8)	5735(4)	804(3)	80(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(17)	6309(8)	5782(4)	817(3)	71(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(18)	7032(7)	5189(3)	894(2)	60(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(19)	8672(6)	3759(4)	507(2)	58(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	9265(6)	3034(3)	478(3)	66(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	7820(8)	3861(4)	38(2)	98(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	9823(8)	4268(4)	516(3)	100(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	8336(6)	3920(3)	1696(2)	51(2)
$\begin{array}{ccccccc} C(25) & 9212(7) & 3297(4) & 1807(3) & 72(2) \\ C(26) & 7222(7) & 3939(4) & 2085(2) & 69(2) \\ Au(1) & 6462(1) & 2755(1) & 1077(1) & 46(1) \\ F(1) & 3319(4) & 797(2) & 1243(2) & 95(1) \\ F(2) & 2286(5) & 415(3) & 2126(2) & 125(2) \\ F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ F(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ S(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \end{array}$	C(24)	9111(7)	4594(4)	1753(3)	80(2)
$\begin{array}{cccccc} C(26) & 7222(7) & 3939(4) & 2085(2) & 69(2) \\ Au(1) & 6462(1) & 2755(1) & 1077(1) & 46(1) \\ F(1) & 3319(4) & 797(2) & 1243(2) & 95(1) \\ F(2) & 2286(5) & 415(3) & 2126(2) & 125(2) \\ F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ F(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ S(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \end{array}$	C(25)	9212(7)	3297(4)	1807(3)	72(2)
$\begin{array}{cccccc} Au(1) & 6462(1) & 2755(1) & 1077(1) & 46(1) \\ F(1) & 3319(4) & 797(2) & 1243(2) & 95(1) \\ F(2) & 2286(5) & 415(3) & 2126(2) & 125(2) \\ F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ P(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ S(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \end{array}$	C(26)	7222(7)	3939(4)	2085(2)	69(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Au(1)	6462(1)	2755(1)	1077(1)	46(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(1)	3319(4)	797(2)	1243(2)	95(1)
$\begin{array}{ccccccc} F(3) & 3338(6) & 865(3) & 3010(2) & 130(2) \\ F(4) & 5442(6) & 1716(2) & 2985(2) & 113(2) \\ F(5) & 6479(5) & 2094(2) & 2112(2) & 91(1) \\ P(1) & 7523(1) & 3788(1) & 1064(1) & 41(1) \\ S(1) & 5561(2) & 1662(1) & 1028(1) & 60(1) \end{array}$	F(2)	2286(5)	415(3)	2126(2)	125(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F(3)	3338(6)	865(3)	3010(2)	130(2)
F(5)6479(5)2094(2)2112(2)91(1)P(1)7523(1)3788(1)1064(1)41(1)S(1)5561(2)1662(1)1028(1)60(1)	F(4)	5442(6)	1716(2)	2985(2)	113(2)
P(1)7523(1)3788(1)1064(1)41(1)S(1)5561(2)1662(1)1028(1)60(1)	F(5)	6479(5)	2094(2)	2112(2)	91(1)
S(1) 5561(2) 1662(1) 1028(1) 60(1)	P(1)	7523(1)	3788(1)	1064(1)	41(1)
	S(1)	5561(2)	1662(1)	1028(1)	60(1)

Table 3. Bond lengths [Å] and a	angles [°] for khc4.
C(1)-C(6)	1.371(8)
C(1)-C(2)	1.385(8)
C(1)-S(1)	1.745(6)
C(2)-F(1)	1.343(7)
C(2)-C(3)	1.355(10)
C(3)-F(2)	1.347(8)
C(3)-C(4)	1.349(11)
C(4)-F(3)	1.341(8)
C(4)-C(5)	1.363(10)
C(5) - F(4)	1.352(0)
C(5)-C(0)	1.339(9)
C(0) = (0)	1 375(8)
C(7)-C(8)	1 407(8)
C(7)-P(1)	1 835(6)
C(8)-C(15)	1.392(8)
C(8)-C(9)	1.506(9)
C(9)-C(10)	1.374(8)
C(9)-C(14)	1.378(8)
C(10)-C(11)	1.386(10)
C(10)-H(10)	0.9300
C(11)-C(12)	1.362(10)
C(11)-H(11)	0.9300
C(12)-C(13)	1.362(10)
C(12)-H(12)	0.9300
C(13)-C(14)	1.387(9)
$C(13) - \Pi(13)$	0.9300
$C(14) - \Pi(14)$ C(15) - C(16)	1 361(10)
C(15)-H(15)	0 9300
C(16)-C(17)	1 364(10)
C(16)-H(16)	0.9300
C(17)-C(18)	1.377(9)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-C(20)	1.524(8)
C(19)-C(21)	1.524(9)
C(19)-C(22)	1.536(9)
C(19)-P(1)	1.881(6)
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-H(21A)	0.9600
C(21) - H(21C)	0.9000
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
C(22)-H(22C)	0.9600
C(23)-C(25)	1.527(8)
C(23)-C(24)	1.531(9)
C(23)-C(26)	1.535(8)
C(23)-P(1)	1.873(5)
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(26) = H(26A)	0.9600
$C(26)_{-H(26R)}$	0.9600
C(26)-H(26C)	0.9600
Au(1)-P(1)	2 2674(15)
Au(1)-S(1)	2.3007(16)
C(6)-C(1)-C(2)	113.4(6)
C(6)-C(1)-S(1)	127.5(5)
C(2)-C(1)-S(1)	119.1(5)
F(1)-C(2)-C(3)	117.1(7)

$\begin{array}{c} C(1) - C(8) - C(9) \\ C(10) - C(9) - C(14) \\ C(10) - C(9) - C(8) \\ C(14) - C(9) - C(8) \\ C(9) - C(10) - C(11) \\ C(9) - C(10) - H(10) \\ C(11) - C(10) - H(10) \\ C(12) - C(11) - C(10) \\ C(12) - C(11) - H(11) \\ C(13) - C(12) - H(12) \\ C(13) - C(12) - H(12) \\ C(13) - C(12) - H(12) \\ C(12) - C(13) - H(12) \\ C(12) - C(13) - H(12) \\ C(12) - C(13) - H(13) \\ C(12) - C(13) - H(13) \\ C(14) - C(13) - H(13) \\ C(13) - C(14) - H(14) \\ C(13) - C(14) - H(14) \\ C(13) - C(14) - H(14) \\ C(13) - C(15) - H(15) \\ C(15) - C(16) - C(17) \\ C(15) - C(16) - H(16) \\ C(17) - C(16) - H(16) \\ C(16) - C(17) - C(18) \\ \end{array}$	126.9(5) 118.6(6) 120.2(6) 120.7(6) 120.4(7) 119.8 119.8 119.8 120.5(7) 119.8 119.7(7) 120.2 120.3(7) 119.8 119.8 120.5(6) 119.8 119.8 120.5(6) 119.8 119.8 120.5(7) 119.8 119.8 119.8 120.5(7) 119.8 119.8 119.8 120.5(7) 119.8 119.8 119.8 120.5(7) 120.2 120.3 120.3 120.5 120.3 120.2 12
C(14)-C(9)-C(8) C(9)-C(10)-C(11) C(9)-C(10)-H(10) C(11)-C(10)-H(10) C(12)-C(11)-C(10) C(12)-C(11)-C(10) C(12)-C(11)-H(11) C(10)-C(11)-H(11)	120.7(6) 120.4(7) 119.8 119.8 120.5(7) 119.8 119.8 119.8
C(13)-C(12)-C(11) C(13)-C(12)-H(12) C(11)-C(12)-H(12) C(12)-C(13)-C(14) C(12)-C(13)-H(13) C(14)-C(13)-H(13) C(9)-C(14)-C(13) C(9)-C(14)-C(13)	119.7(7) 120.2 120.2 120.3(7) 119.8 119.8 120.5(6)
C(9)-C(14)-H(14) C(13)-C(14)-H(14) C(16)-C(15)-C(8) C(16)-C(15)-H(15) C(8)-C(15)-H(15) C(15)-C(16)-C(17)	119.8 119.8 122.5(7) 118.8 118.8 119.7(7)
C(15)-C(16)-H(16) C(17)-C(16)-H(16) C(16)-C(17)-C(18) C(16)-C(17)-H(17) C(18)-C(17)-H(17) C(7)-C(18)-C(17) C(7)-C(18)-H(18)	120.2 120.2 119.1(7) 120.4 120.4 122.6(6) 118.7
C(17)-C(18)-H(18) C(20)-C(19)-C(21) C(20)-C(19)-C(22) C(21)-C(19)-C(22) C(20)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(22)-C(19)-P(1) C(20)-H(20)-H(20)	118.7 107.9(6) 106.1(5) 111.9(6) 108.5(4) 105.3(4) 116.9(5)
C(19)-C(20)-H(20B) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) C(19)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) C(19)-C(21)-H(21A) C(10)-C(21)-H(21B)	109.5 109.5 109.5 109.5 109.5 109.5 109.5
H(21A)-C(21)-H(21B) H(21A)-C(21)-H(21B) C(19)-C(21)-H(21C) H(21A)-C(21)-H(21C) H(21B)-C(21)-H(21C) C(19)-C(22)-H(22A) C(19)-C(22)-H(22B)	109.5 109.5 109.5 109.5 109.5 109.5

Table 4. Anisotropic displacement parameters ($Å^2x \ 10^3$)for khc4. The anisotropic displacement factor exponent takes the form: $-2\Box^2[\ h^2a^{*2}U^{11} + ... + 2\ h\ k\ a^*\ b^*\ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	50(4)	38(3)	58(4)	4(3)	-7(3)	2(3)
C(2)	64(4)	59(4)	61(4)	2(3)	-16(4)	-2(4)
C(3)	69(5)	72(5)	90(6)	29(5)	-4(5)	-9(4)
C(4)	103(6)	70(5)	68(5)	23(4)	8(5)	-4(5)
C(5)	114(6)	53(4)	54(4)	5(3)	-16(5)	7(5)
C(6)	65(4)	52(4)	62(4)	2(3)	-16(4)	-2(4)
C(7)	43(3)	51(4)	41(3)	6(3)	3(3)	6(3)
C(8)	46(3)	62(4)	42(3)	-4(3)	-1(3)	17(3)
C(9)	31(3)	69(4)	51(4)	-6(3)	4(3)	18(3)
C(10)	57(4)	97(6)	55(4)	-11(4)	-5(4)	6(4)
C(11)	50(4)	100(6)	91(6)	-31(5)	-15(4)	5(5)
C(12)	41(4)	86(5)	102(6)	-5(5)	3(4)	2(4)
C(13)	58(4)	85(5)	73(5)	3(4)	24(4)	2(4)
C(14)	49(4)	88(5)	46(4)	-8(3)	6(3)	0(4)
C(15)	52(4)	79(5)	89(5)	3(4)	-8(4)	22(4)
C(16)	79(6)	68(5)	92(6)	1(4)	-15(5)	27(5)
C(17)	85(6)	52(4)	77(5)	11(4)	-20(4)	8(4)
C(18)	55(4)	64(4)	60(4)	8(3)	-9(3)	2(4)
C(19)	57(4)	71(4)	47(4)	8(3)	10(3)	2(4)
C(20)	49(4)	83(5)	66(4)	-7(4)	7(4)	17(4)
C(21)	118(7)	137(7)	39(4)	6(4)	6(4)	57(7)
C(22)	92(6)	99(6)	108(7)	3(5)	50(5)	-22(6)
C(23)	55(4)	57(4)	40(3)	1(3)	-16(3)	0(3)
C(24)	81(5)	88(5)	70(5)	-3(4)	-24(4)	-20(5)

	CO(4)	70/5)	70(4)	4 (4)	00(4)	10(4)
C(25)	68(4)	78(5)	70(4)	1(4)	-23(4)	12(4)
C(26)	82(5)	78(5)	47(4)	-5(3)	-2(4)	-1(4)
Au(1)	40(1)	49(1)	47(1)	0(1)	-1(1)	0(1)
F(1)	92(3)	104(3)	90(3)	17(3)	-27(3)	-48(3)
F(2)	101(4)	143(4)	131(4)	51(3)	-1(3)	-55(4)
F(3)	180(6)	132(4)	79(3)	36(3)	31(3)	-18(4)
F(4)	194(6)	88(3)	57(3)	4(2)	-22(3)	-5(4)
F(5)	116(4)	84(3)	71(3)	5(2)	-30(3)	-38(3)
P(1)	36(1)	47(1)	38(1)	4(1)	-1(1)	3(1)
S(1)	62(1)	58(1)	61(1)	-9(1)	-2(1)	-11(1)

 $[Au(SC_6HF_4)(C_{20}H_{27}P)]$ Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta = 25.242°

Refinement method Data / restraints / parameters

Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient

Largest diff. peak and hole

shelx C26 H28 Au F4 P S 676.48 298(2) K 0.71073 Å Orthorhombic P b c a a = 10.3561(2) Å b = 19.2100(5) Å c = 25.7190(6) Å 5116.6(2) Å ³ 8 1.756 Mg/m ³ 5.936 mm ⁻¹ 2640 3.730 to 29.624°. -14<=h<=14, -25<=k<=24, -32<= <= 42047	□ = 90°. □ = 90°. □ = 90°.
6643 [R(int) = 0.0328] 99.7 % Full-matrix least-squares on F ²	
6643 / 0 / 304	
1.076 R1 = 0.0322, wR2 = 0.0586 R1 = 0.0551, wR2 = 0.0658 n/a	
0.880 and -0.798 e.Å ⁻³	

Table 2.	Atomic coordinates ($x\;10^4)$ and equivalent isotropic displacement parameters (Å $^2x\;10^3)$
for khc2.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	X	у	Z	U(eq)
Au(1)	6435(1)	2762(1)	1095(1)	46(1)
C(1)	3974(4)	3604(2)	1514(2)	61(1)
C(2)	3131(5)	3048(3)	1557(2)	73(1)
C(3)	2605(4)	2763(3)	1123(2)	74(1)
C(4)	2896(4)	3027(3)	648(2)	78(2)
C(5)	3739(4)	3579(3)	598(2)	67(1)
C(6)	4300(4)	3877(2)	1032(2)	50(1)
C(7)	5097(4)	4519(2)	984(1)	49(1)
C(8)	4403(5)	5131(2)	917(2)	66(1)
C(9)	4993(5)	5768(3)	867(2)	75(1)
C(10)	6309(5)	5814(2)	875(2)	68(1)
C(11)	7022(5)	5216(2)	941(2)	59(1)
C(12)	6458(4)	4564(2)	997(1)	45(1)
C(13)	8612(4)	3774(2)	508(2)	61(1)
C(14)	7752(6)	3861(4)	37(2)	114(2)
C(15)	9735(6)	4304(3)	508(3)	117(2)
C(16)	9237(4)	3056(2)	477(2)	67(1)
C(17)	8311(4)	3922(2)	1729(2)	51(1)
C(18)	7216(4)	3932(2)	2125(2)	66(1)
C(19)	9172(5)	3291(2)	1829(2)	70(1)
C(20)	9103(5)	4587(3)	1792(2)	78(1)
C(21)	4936(4)	1474(2) 141	1668(2)	53(1)

S(1)	5545(1)
Table 3. Bond lengths [A	A] and angles [°] for khc2.
Au(1)-P(1)	2.2728(9)
Au(1)-S(1)	2.3024(11)
C(1)-C(2)	1.384(6)
C(1)-C(6)	1.389(6)
C(1)-H(1)	0.9300
C(2)-C(3)	1.358(7)
C(2)-H(2)	0.9300
C(3)-C(4)	1.358(7)
C(3)-H(3)	0.9300
C(4)-C(5)	1.380(7)
C(4)-H(4)	0.9300
C(5) - C(6)	0.0200
$C(5) - \Pi(5)$	1 400(6)
C(7) - C(8)	1 388(6)
C(7) - C(12)	1 412(5)
C(8)-C(9)	1.375(7)
C(8)-H(8)	0.9300
C(9)-C(10)	1.365(7)
C(9)-H(9)	0.9300
C(10)-C(11)	1.377(6)
C(10)-H(10)	0.9300
C(11)-C(12)	1.390(6)
C(11)-H(11)	0.9300
C(12)-P(1)	1.832(4)
C(13)-C(14)	1.513(7)
C(13)-C(16)	1.525(6)
C(13) - C(15)	1.546(7)
C(13)-F(1) C(14)-H(14A)	0.9600
C(14)-H(14R)	0.9600
C(14)-H(14C)	0.9600
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-C(18)	1.524(6)
C(17)-C(20)	1.527(6)
C(17)-C(19)	1.528(6)
C(17)-P(1)	1.884(4)
C(18)-H(18A)	0.9600
C(18) - H(18B)	0.9600
$C(10) - \Pi(10C)$	0.9600
C(19) - H(19R)	0.9000
C(19)-H(19C)	0.9600
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(20)-H(20C)	0.9600
C(21)-C(26)	1.386(6)
C(21)-C(22)	1.389(6)
C(21)-S(1)	1.740(4)
C(22)-F(1)	1.333(5)
C(22)-C(23)	1.369(7)

P(1)	7494(1)	- 3
S(1)	5545(1)	1

C(22)	3868(4)	1041(2)	1711(2)	64(1)
C(23)	3361(5)	845(3)	2180(2)	82(2)
C(24)	3885(6)	1067(3)	2636(2)	91(2)
C(25)	4929(6)	1498(2)	2607(2)	81(2)
C(26)	5429(5)	1695(2)	2141(2)	66(1)
F(1)	3326(3)	796(2)	1278(1)	96(1)
F(2)	2317(4)	424(2)	2181(2)	131(1)
F(3)	5480(5)	1734(2)	3047(1)	126(1)
F(4)	6475(3)	2113(2)	2153(1)	99(1)
P(1)	7494(1)	3798(1)	1081(1)	40(1)
S(1)	5545(1)	1665(1)	1054(1)	63(1)

C(23)-F(2)	1.350(6)					
C(23)-C(24)	1.360(8)					
C(24)-C(25)	1.364(7)					
C(24)-H(24)	0.9300					
C(25)-F(3)	1.346(6)					
C(25)-C(26)	1.359(7)					
C(26)-F(4)	1.348(5)					
P(1)-Au(1)-S(1) G(2)-C(1)-H(1) G(3)-C(2)-C(1)-H(1) G(3)-C(2)-H(2) C(1)-C(2)-H(2) C(1)-C(2)-H(2) C(4)-C(3)-C(2) C(4)-C(3)-C(2) C(4)-C(3)-H(3) C(2)-C(3)-H(3) C(2)-C(3)-H(3) C(3)-C(4)-H(4) C(5)-C(4)-H(4) C(4)-C(5)-C(6) C(4)-C(5)-H(5) C(5)-C(6)-C(1) C(5)-C(6)-C(7) C(1)-C(6)-C(7) C(1)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(10)-C(1)-H(10) C(11)-C(12)-P(1) C(10)-C(1)-H(10) C(11)-C(12)-P(1) C(11)-C(12)-P(1) C(11)-C(12)-P(1) C(11)-C(13)-C(15) C(14)-C(13)-P(1) C(13)-C(14)-H(14A) C(13)-C(14)-H(14A) C(13)-C(14)-H(14B) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(15)-H(15B) C(13)-C(15)-H(15B) C(13)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15B) C(13)-C(16)-H(16B) H(16A)-C(16)-H(16B) H(16A)-C(16)-H(16B)	$\begin{array}{c} 173.69(4)\\ 121.1(4)\\ 119.5\\ 119.5\\ 119.9(5)\\ 120.0\\ 120.0\\ 120.0(5)\\ 120.0\\ 120.0(5)\\ 120.0\\ 120.8(5)\\ 119.6\\ 120.6(5)\\ 119.7\\ 119.7\\ 119.7\\ 119.7\\ 119.7\\ 117.6(4)\\ 120.6(4)\\ 121.5(4)\\ 121.5(4)\\ 118.0(4)\\ 122.3(4)\\ 122.3(4)\\ 122.3(4)\\ 122.3(4)\\ 122.3(4)\\ 122.3(4)\\ 122.3(4)\\ 120.0\\ $					
H(16A)-C(16)-H(16C)	109.5					
H(16B)-C(16)-H(16C)	109.5					
H(16B)-C(16)-H(16C)	109.5					
C(18)-C(17)-C(20)	108.5(4)					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
-------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------
Au(1)	41(1)	49(1)	49(1)	0(1)	-2(1)	0(1)
C(1)	53(2)	79(3)	50(2)	-8(2)	7(2)	-2(2)
C(2)	55(3)	85(3)	79(3)	4(3)	17(3)	-3(3)
C(3)	41(2)	82(3)	97(4)	-9(3)	8(3)	-3(2)
C(4)	51(3)	101(4)	83(4)	-35(3)	-11(3)	-2(3)
C(5)	54(3)	96(3)	50(2)	-11(2)	-4(2)	8(2)
C(6)	36(2)	65(2)	49(2)	-6(2)	4(2)	10(2)
C(7)	48(2)	67(2)	34(2)	-2(2)	-1(2)	14(2)
C(8)	58(3)	75(3)	66(3)	0(2)	-2(2)	22(2)
C(9)	84(4)	67(3)	75(3)	3(3)	-11(3)	30(3)
C(10)	85(4)	53(3)	67(3)	6(2)	-14(3)	9(2)
C(11)	61(2)	53(2)	62(3)	11(2)	-5(2)	3(2)

Table 4 Anisotropic displacement parameters $(Å^2 x 10^3)$ for khc2. The anisotropic

C(18)-C(17)-C(19)	109.4(3)
C(20) C(17) C(10)	109 A(A)
C(18)-C(17)-P(1)	105.0(3)
C(20)-C(17)-P(1)	116 2(3)
C(19)-C(17)-P(1)	108 1(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A) - C(18) - H(18B)	109.5
C(17) - C(18) - H(18C)	109.5
$H(18A)_{-}C(18)_{-}H(18C)$	109.5
H(18B) - C(18) - H(18C)	109.5
$C(17)_{-}C(10)_{-}H(100)$	109.5
C(17) - C(10) + U(10R)	100.5
$H(10A)_{C}(10)_{H}(10B)$	109.5
C(17) C(10) H(10C)	109.5
H(10A) C(10) H(10C)	109.5
H(10R) C(10) H(10C)	109.5
$\Gamma(19D) - C(19) - \Gamma(19C)$ C(17) C(20) H(20A)	109.5
C(17) - C(20) - H(20R)	109.5
U(20A) C(20) U(20B)	109.5
$\Pi(20A) - G(20) - \Pi(20B)$	109.5
$U(17)-U(20)-\Pi(200)$	109.5
$\Pi(20R) - G(20) - \Pi(20C)$	109.5
$\Pi(20B) - G(20) - \Pi(20C)$	109.5
C(20) - C(21) - C(22)	114.0(4)
C(20) - C(21) - S(1)	120.0(3)
C(22) - C(21) - S(1)	119.2(3)
F(1)-G(22)-G(23)	110.0(4)
F(1)-G(22)-G(21)	10.7(4)
C(23)-C(22)-C(21)	122.7(5)
F(2) - C(23) - C(24)	120.4(5)
F(2)-G(23)-G(22)	10.2(0)
C(24)-C(23)-C(22)	121.4(3)
C(23) - C(24) - C(25)	1014
$C(25) - C(24) - \Pi(24)$	121.4
$C(25)-C(24)-\Pi(24)$	121.4
F(3) - C(23) - C(24)	119.1(5)
C(26) C(25) C(24)	121 2(5)
C(20)-C(23)-C(24)	121.3(3)
F(4)-C(20)-C(20) F(4)-C(26)-C(21)	110.0(4)
C(25) C(26) C(21)	122 2(4)
C(23) - C(20) - C(21)	106 94(19)
C(12) - F(1) - C(13)	100.04(10)
C(12) - P(1) - C(17)	105.30(17)
C(13)-P(1)-C(17)	114.9(2)
C(12) - F(1) - Au(1) C(12) - D(1) Au(1)	106 76(15)
C(13) - F(1) - Au(1) C(17) - D(1) - Au(1)	100.70(13)
C(17) - F(1) - Au(1)	100.20(12)
G(2 + 1) - G(+ 1) - Au(+ 1)	107.24(13)
Symmetry transformations used	to generate equivalent atoms:

C(12)	47(2)	54(2)	35(2)	3(2)	-1(2)	9(2)	
C(13)	60(2)	74(3)	50(2)	9(2)	17(2)	6(2)	
C(14)	132(5)	170(6)	39(2)	15(3)	12(3)	80(5)	
C(15)	122(5)	98(4)	132(6)	-3(4)	76(5)	-29(4)	
C(16)	52(2)	87(3)	64(3)	-5(2)	12(2)	15(2)	
C(17)	53(2)	55(2)	44(2)	1(2)	-11(2)	-2(2)	
C(18)	74(3)	83(3)	39(2)	-3(2)	-6(2)	1(2)	
C(19)	67(3)	81(3)	61(3)	7(2)	-20(2)	13(3)	
C(20)	77(3)	85(3)	71(3)	0(3)	-20(3)	-23(3)	
C(21)	55(2)	39(2)	63(3)	2(2)	-11(2)	2(2)	
C(22)	63(3)	59(3)	71(3)	10(2)	-13(2)	-9(2)	
C(23)	80(4)	73(3)	93(4)	26(3)	-1(3)	-11(3)	
C(24)	126(5)	81(4)	66(3)	18(3)	9(3)	2(3)	
C(25)	133(5)	54(3)	57(3)	8(2)	-24(3)	0(3)	
C(26)	84(3)	45(2)	68(3)	10(2)	-22(3)	-9(2)	
F(1)	96(2)	103(2)	88(2)	14(2)	-28(2)	-50(2)	
F(2)	113(3)	144(3)	137(3)	58(3)	1(2)	-56(2)	
F(3)	224(4)	89(2)	64(2)	7(2)	-37(2)	-15(3)	
F(4)	124(3)	86(2)	85(2)	17(2)	-46(2)	-42(2)	
P(1)	38(1)	48(1)	36(1)	5(1)	0(1)	3(1)	
S(1)	67(1)́	57(1)́	67(1)́	-10(1́)	1(1)	-1Ò(Í)	

$[Au(SC_6H_3F_2-3,5)(C_{20}H_{27}P)]$

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group	shelx C26 H30 Au F2 P S 640.49 130(2) K 0.71073 Å Triclinic P -1 2 = 9.8864(6) Å	□= 75 206(5)°
	a = 5.5664(0) Å b = 11.9819(7) Å c = 21.5082(11) Å	$\square = 82.287(5)^{\circ}.$ $\square = 85.619(5)^{\circ}.$
Volume Z	2438.7(2) Å ³ 4	
Density (calculated)	1.744 Mg/m ³	
Absorption coefficient F(000)	6.210 mm ⁻¹ 1256	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	0.570 x 0.430 x 0.060 mm ³ 3.410 to 29.447°. -13<=h<=13, -16<=k<=16, -27<=l<= 21726 11357 [R(int) = 0.0433] 99.7 %	=29
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 11357 / 0 / 571	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	0.972 R1 = 0.0343, wR2 = 0.0580 R1 = 0.0497, wR2 = 0.0646 n/a	
Largest diff. peak and hole	1.058 and -1.868 e.Å ⁻³	

Table 2.	Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å ² x 10^3)	
for khc5.	U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.	

	Х	у	Z	U(eq)
C(1)	-790(5)	3136(4)	4631(2)	20(1)
C(2)	-1657(5)	4114(4)	4595(2)	24(1)
C(3)	-2079(5)	4712(4)	4004(2)	23(1)
C(4)	-1640(5)	4328(4)	3463(2)	24(1)
C(5)	-766(5)	3353(4)	3495(2)	23(1)
C(6)	-313(4)	2761(4)	4081(2)	18(1)
C(7)	559(5)	1662(4)	4111(2)	18(1)
C(8)	-101(5)	696(4)	4079(2)	20(1)

C(9)	594(5)	-344(4)	4098(2)	23(1)
C(10)	1962(5)	-461(4)	4174(2)	21(1)
C(11)	2632(5)	482(4)	4206(2)	21(1)
C(12)	1963(5)	1569(4)	4168(2)	17(1)
C(13)	3587(5)	2576(4)	4932(2)	17(1)
C(14)	4532(5)	3550(4)	4906(2)	21(1)
C(15)	2294(5)	2656(4)	5398(2)	22(1)
C(16)	4321(5)	1405(4)	5192(2)	26(1)
C(17)	4419(5)	2805(4)	3438(2)	19(1)
C(18)	5657(5)	1970(4)	3598(2)	28(1)
C(19)	3763(5)	2548(4)	2879(2)	$\frac{-3}{28(1)}$
C(20)	4961(5)	4027(4)	3187(2)	27(1)
C(21)	2238(5)	7293(4)	3246(2)	18(1)
C(22)	3570(5)	7012(4)	3420(2)	18(1)
C(23)	4564(5)	7777(4)	3178(2)	21(1)
C(24)	4386(5)	8849(4)	2767(2)	26(1)
C(25)	3061(6)	0104(4)	2608(2)	20(1)
C(26)	2009(5)	8383(4)	2820(2)	27(1) 21(1)
Au(1)	1841(1)	4550(1)	2023(2)	21(1)
	104 I(I) 5856(2)	4009(1)	3032(1)	22(1)
$\Gamma(1)$	2810(2)	10165(2)	2206(1)	33(T) 40(1)
F(2) D(1)	2019(3)	10100(2)	2200(1)	40(1)
F(1) S(1)	2990(1)	2013(1)	4112(1)	13(1)
S(1)	6040(F)	0393(1)	3331(1)	22(1)
C(27)	6040(5)	3300(4)	0307(2)	21(1)
C(28)	6742(5)	4305(4)	8201(2)	25(1)
C(29)	6825(5)	4872(4)	8/6/(2)	28(1)
C(30)	6215(5)	4355(4)	9385(2)	25(1)
C(31)	5510(5)	3355(4)	9492(2)	21(1)
C(32)	5400(4)	2805(4)	8982(2)	17(1)
C(33)	4702(5)	1754(4)	9089(2)	18(1)
C(34)	5563(5)	764(4)	9060(2)	29(1)
C(35)	5049(6)	-304(4)	9151(2)	32(1)
C(36)	3677(6)	-451(4)	9284(2)	29(1)
C(37)	2808(5)	500(4)	9311(2)	25(1)
C(38)	3290(5)	1607(4)	9206(2)	18(1)
C(39)	1077(5)	2786(4)	8448(2)	23(1)
C(40)	13(6)	1860(5)	8594(3)	41(2)
C(41)	2173(5)	2619(5)	7904(2)	33(1)
C(42)	356(5)	3960(4)	8217(2)	29(1)
C(43)	947(5)	2626(4)	9942(2)	21(1)
C(44)	1838(5)	2911(4)	10404(2)	26(1)
C(45)	-288(5)	3493(4)	9868(2)	27(1)
C(46)	402(6)	1406(4)	10257(2)	34(1)
C(47)	2401(5)	7401(4)	8305(2)	17(1)
C(48)	1103(5)	7035(4)	8276(2)	19(1)
C(49)	207(5)	7800(4)	7929(2)	23(1)
C(50)	512(6)	8926(4)	7600(2)	28(1)
C(51)	1802(6)	9239(4)	7644(2)	31(1)
C(52)	2740(5)	8526(4)	7982(2)	24(1)
Au(2)	2922(1)	4622(1)	8922(1)	16(1)
F(3)	-1048(3)	7439(3)	7906(1)	35(1)
F(4)	2163(4)	10321(2)	7315(2)	53(1)
	2020(1)	2837(1)	01/1/1)	16(1)
P(2)	2030(1)	2037(1)	3144(1)	10(1)

Table 3.	Bond lengths	[Å]	and angles	l°.	for khc5.

C(1)-C(6)	1.383(6)
C(1)-C(2)	1.389(6)
C(1)-H(1)	0.9300
C(2)-C(3)	1.392(6)
C(2)-H(2)	0.9300
C(3)-C(4)	1.363(6)
C(3)-H(3)	0.9300
C(4)-C(5)	1.392(6)
C(4)-H(4)	0.9300
C(5)-C(6)	1.392(6)
C(5)-H(5)	0.9300
C(6)-C(7)	1.510(6)
C(7)-C(8)	1.393(6)

	4 400(0)
U(7) - U(12)	1.403(6)
C(8)-C(9)	1.371(6)
C(8)-H(8)	0.9300
C(0) C(10)	4.077(0)
C(9)-C(10)	1.377(0)
C(9)-H(9)	0.9300
C(10)-C(11)	1 373(7)
$C(10) \sqcup (10)$	0.0200
	0.9300
C(11)-C(12)	1.403(6)
C(11)-H(11)	0 9300
C(12) D(1)	1 837(5)
G(12)- $F(1)$	1.037(3)
C(13)-C(15)	1.528(6)
C(13)-C(14)	1.536(6)
C(13)	1 537(6)
O(10) - O(10)	1.007(0)
C(13)-P(1)	1.881(4)
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14) = U(14C)	0.0600
	0.9000
C(15)-H(15A)	0.9600
C(15)-H(15B)	0.9600
C(15) H(15C)	0.0600
	0.9000
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17) C(20)	1 527(7)
C(17) - C(20)	1.557(7)
C(17)-C(18)	1.539(6)
C(17)-C(19)	1.546(6)
C(17) - P(1)	1 884(5)
$O(17)^{-1}(1)$	0.0004(3)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0 9600
C(10) - H(10A)	0.9600
	0.9000
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(20)-H(20A)	0.9600
$C(20) \sqcup (200)$	0.0600
	0.9000
C(20)-H(20C)	0.9600
C(21)-C(26)	1.404(6)
ci21i ci22i	1 410(6)
O(21) - O(22)	1.410(0)
C(21)-S(1)	1.752(5)
C(22)-C(23)	1.353(6)
C(22)-H(22)	0.9300
$\dot{c}\dot{i}23\dot{i}_{1}\dot{c}\dot{i}24\dot{i}$	1 374(6)
O(20) = O(24)	1.07 4(0)
C(23)-F(1)	1.376(5)
C(24)-C(25)	1.390(7)
C(24)-H(24)	0.9300
C(25)-C(26)	1 360(7)
	1.000(7)
G(25)-F(2)	1.307(5)
C(26)-H(26)	0.9300
Au(1)-P(1)	2.2784(11)
$A_{11}(1) = S(1)$	2 3003(11)
Au(1)-S(1)	2.5055(11)
U(27) - U(28)	1.383(7)
C(27)-C(32)	1.392(6)
C(27)-H(27)	0.9300
C(28) - C(20)	1 380(7)
C(20) - C(29)	1.309(7)
C(28)-H(28)	0.9300
C(29)-C(30)	1.391(7)
C(29)-H(29)	0.9300
C(30) C(31)	1 396(7)
	1.300(7)
C(30)-H(30)	0.9300
C(31)-C(32)	1.389(6)
C(31)-H(31)	0.9300
c(32) - c(33)	1 /08/7)
C(22) C(20)	1.400(7)
U(33)-U(38)	1.401(6)
C(33)-C(34)	1.416(6)
C(34)-C(35)	1 370(7)
C(34) - H(34)	0 0300
U(35)-U(36)	1.364(7)
C(35)-H(35)	0.9300
C(36)-C(37)	1.382(6)
C(36)-H(36)	0 0300
	0.9300

$\begin{array}{l} C(37)-C(38)\\ C(37)-H(37)\\ C(38)-P(2)\\ C(39)-C(42)\\ C(39)-C(41)\\ C(39)-C(40)\\ C(39)-P(2)\\ C(40)-H(40A)\\ C(40)-H(40B)\\ C(40)-H(40B)\\ C(40)-H(40C)\\ C(41)-H(41B)\\ C(41)-H(41B)\\ C(41)-H(41B)\\ C(41)-H(41B)\\ C(41)-H(42C)\\ C(42)-H(42A)\\ C(42)-H(42A)\\ C(42)-H(42B)\\ C(43)-C(44)\\ C(43)-C(45)\\ C(43)-C(46)\\ C(43)-C(45)\\ C(43)-C(46)\\ C(43)-P(2)\\ C(44)-H(44A)\\ C(44)-H(44B)\\ C(44)-H(44B)\\ C(44)-H(44B)\\ C(45)-H(45B)\\ C(45)-H(45B)\\ C(45)-H(45B)\\ C(45)-H(45B)\\ C(45)-H(45B)\\ C(46)-H(46B)\\ C(46)-H(46B)\\ C(46)-H(46B)\\ C(47)-C(52)\\ C(47)-C(52)\\ C(48)-C(49)\\ C(49)-F(3)\\ C(49)-F(3)\\ C(50)-H(50)\\ C(50)-H(50)\\ C(51)-F(4)\\ C(51)-F(4)\\ C(51)-C(52)\\ C(52)-H(52)\\ Au(2)-P(2)\\ Au(2)-$	$\begin{array}{c} 1.398(7)\\ 0.9300\\ 1.839(4)\\ 1.522(6)\\ 1.527(6)\\ 1.527(6)\\ 1.532(7)\\ 1.893(4)\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 0.9600\\ 1.529(6)\\ 1.539(6)\\ 1.539(6)\\ 1.550(7)\\ 1.869(5)\\ 0.9600\\ 0.900\\$
$\begin{array}{l} C(6)-C(1)-C(2)\\ C(6)-C(1)-H(1)\\ C(2)-C(1)-H(1)\\ C(1)-C(2)-C(3)\\ C(1)-C(2)-H(2)\\ C(3)-C(2)-H(2)\\ C(4)-C(3)-C(2)\\ C(4)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(3)-C(4)-C(5)\\ C(3)-C(4)-H(4)\\ C(5)-C(4)-H(4)\\ C(5)-C(4)-H(4)\\ C(4)-C(5)-H(5)\\ C(6)-C(5)-H(5)\\ C(6)-C(5)-H(5)\\ C(1)-C(6)-C(7)\\ C(6)-C(5)-H(5)\\ C(1)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(5)-C(6)-C(7)\\ C(8)-C(7)-C(6)\\ C(12)-C(7)-C(6)\\ C(12)-C(7)-C(6)\\ C(12)-C(7)-C(6)\\ C(9)-C(8)-H(8)\\ C(7)-C(8)-H(8)\\ C(7)-C(8)-H(8)\\ C(8)-C(9)-C(10)\\ C(8)-C(9)-H(9)\\ \end{array}$	120.7(4) 119.6 $120.0(4)$ 120.0 120.0 120.0 120.3 120.3 $120.8(4)$ 119.6 $120.3(4)$ 119.6 $120.3(4)$ 119.8 119.8 119.8 119.8 119.8 119.8 $119.4(4)$ $121.9(4)$ $119.4(4)$ $124.1(4)$ $124.1(4)$ $121.3(4)$ 119.3 $120.0(5)$ 120.0

C(10)-C(9)-H(9) C(11)-C(10)-C(9) C(11)-C(10)-H(10) C(9)-C(10)-H(10) C(10)-C(11)-C(12) C(10)-C(11)-H(11) C(12)-C(11)-H(11) C(12)-C(12)-P(1) C(11)-C(12)-P(1) C(15)-C(13)-C(14) C(15)-C(13)-C(16) C(15)-C(13)-P(1) C(16)-C(13)-P(1) C(16)-C(13)-P(1) C(16)-C(13)-P(1) C(13)-C(14)-H(14B) H(14A)-C(14)-H(14B) C(13)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14B)-C(14)-H(14C) H(14B)-C(14)-H(14C) C(13)-C(15)-H(15B) C(13)-C(15)-H(15B) C(13)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(15A)-C(16)-H(16B) C(13)-C(16)-H(16B) C(13)-C(16)-H(16B) C(13)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16A)-C(16)-H(16C) H(16B)-C(17)-P(1) C(20)-C(17)-P(1) C(20)-C(17)-P(1) C(17)-C(18)-H(18B) H(18A)-C(18)-H(18B) H(18A)-C(18)-H(18B) C(17)-C(18)-H(18B) C(17)-C(18)-H(18C) H(18B)-C(18)-H(18C) H(18B)-C(18)-H(18C) H(18B)-C(18)-H(18B) C(17)-C(18)-H(18C) H(18B)-C(18)-H(18C) H(18A)-C(18)-H(18C) H(18A)-C(18)-H(18C) H(18B)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20A)-C(20)-H(20C) H(20B	120.0 119.5(4) 120.2 122.0(4) 119.0 117.6(4) 123.5(3) 118.6(3) 110.3(4) 107.4(4) 109.5(3) 108.2(3) 116.2(3) 109.5 100.5 100.5 100.5 100.5 100.5 100.5 100.5
$\begin{array}{l} C(26)-C(21)-S(1)\\ C(22)-C(21)-S(1)\\ C(23)-C(22)-C(21)\\ C(23)-C(22)-H(22)\\ C(21)-C(22)-H(22)\\ C(22)-C(23)-C(24)\\ C(22)-C(23)-C(24)\\ C(22)-C(23)-F(1)\\ C(24)-C(23)-F(1)\\ C(23)-C(24)-C(25)\\ C(23)-C(24)-H(24)\\ C(25)-C(24)-H(24)\\ \end{array}$	118.4(3) 124.4(3) 119.8(4) 120.1 125.0(4) 118.1(4) 116.9(4) 113.9(4) 123.0 123.0

C(26)-C(25)-C(24)	118.8(4)
C(26)-C(25)-C(24)	
	124.6(4)
F(2)-C(25)-C(24)	116.6(4)
C(25)-C(26)-C(21)	119.5(4)
C(25)-C(26)-H(26)	120.2
C(21)-C(26)-H(26)	120.2
D(1) Au(1) C(1)	174 02(4)
P(1)-Au(1)-S(1)	174.03(4)
C(12)-P(1)-C(13)	105.44(19)
C(12)-P(1)-C(17)	106.5(2)
C(13)-P(1)-C(17)	113.8(2)
C(12)-P(1)-Au(1)	114.43(14)
C(13)-P(1)-Au(1)	109.94(14)
C(17)-P(1)-Au(1)	106 83(14)
$C(21)-S(1)-\Delta u(1)$	104 75(15)
C(29) C(27) C(22)	120 1(4)
C(20) - C(27) - C(32)	120.1(4)
C(28)-C(27)-H(27)	119.9
C(32)-C(27)-H(27)	119.9
C(27)-C(28)-C(29)	120.4(5)
C(27)-C(28)-H(28)	119.8
C(29)-C(28)-H(28)	119.8
C(28) - C(29) - C(30)	119.5(5)
C(28)-C(29)-H(29)	120.3
C(30)-C(20)-H(20)	120.3
C(31) C(30) C(20)	120.0
C(31)-C(30)-C(29)	120.2(3)
C(31)-C(30)-H(30)	119.9
C(29)-C(30)-H(30)	119.9
C(30)-C(31)-C(32)	120.2(4)
C(30)-C(31)-H(31)	119.9
C(32)-C(31)-H(31)	119.9
C(31)-C(32)-C(27)	119.6(5)
C(31)-C(32)-C(33)	121.3(4)
C(27)-C(32)-C(33)	119.0(4)
C(38)-C(33)-C(34)	117.4(5)
C(38)-C(33)-C(32)	126.4(4)
C(34)-C(33)-C(32)	116.2(4)
C(35)-C(34)-C(33)	121.9(5)
C(35)-C(34)-H(34)	119.1
C(33)-C(34)-H(34)	119 1
C(36)-C(35)-C(34)	120.6(5)
C(36)-C(35)-H(35)	110.7
C(34) C(35) H(35)	110.7
$C(34) - C(35) - \Gamma(35)$	119.7
C(35)-C(30)-C(37)	110.9(5)
C(35)-C(36)-H(36)	120.5
C(37)-C(36)-H(36)	120.5
C(36)-C(37)-C(38)	122.1(5)
C(36)-C(37)-H(37)	118.9
C(38)-C(37)-H(37)	118.9
C(37)-C(38)-C(33)	119.0(4)
C(37)-C(38)-P(2)	118.4(4)
C(33)-C(38)-P(2)	122.4(3)
C(42)-C(39)-C(41)	107.6(4)
C(42)-C(39)-C(40)	108.1(4)
C(41)-C(39)-C(40)	110.9(4)
C(42)-C(39)-P(2)	108.5(3)
C(41)-C(39)-P(2)	1054(3)
C(40)-C(39)-P(2)	116.0(3)
$C(39)-C(40)-H(40\Delta)$	109.5
C(30) C(40) H(40R)	100.5
U(40A) C(40) U(40B)	109.5
C(20) C(40) U(40C)	109.5
$C(39)-C(40)-\Pi(40C)$	109.5
H(40A)-C(40)-H(40C)	109.5
H(40B)-C(40)-H(40C)	109.5
C(39)-C(41)-H(41A)	109.5
C(39)-C(41)-H(41B)	109.5
H(41A)-C(41)-H(41B)	109.5
C(39)-C(41)-H(41C)	109.5
H(41A)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C)	109.5
H(41B)-C(41)-H(41C) C(39)-C(42)-H(42A)	109.5 109.5

$\begin{array}{l} H(42A)-C(42)-H(42B)\\ C(39)-C(42)-H(42C)\\ H(42A)-C(42)-H(42C)\\ H(42B)-C(42)-H(42C)\\ C(44)-C(43)-C(45)\\ C(44)-C(43)-C(46)\\ C(44)-C(43)-C(46)\\ C(44)-C(43)-C(2)\\ C(45)-C(43)-P(2)\\ C(45)-C(43)-P(2)\\ C(46)-C(43)-P(2)\\ C(43)-C(44)-H(44B)\\ H(44A)-C(44)-H(44B)\\ H(44A)-C(44)-H(44B)\\ C(43)-C(44)-H(44B)\\ C(43)-C(44)-H(44B)\\ C(43)-C(44)-H(44C)\\ H(44B)-C(44)-H(44C)\\ H(44B)-C(44)-H(44C)\\ C(43)-C(45)-H(45B)\\ C(43)-C(45)-H(45B)\\ C(43)-C(45)-H(45C)\\ H(45B)-C(45)-H(45C)\\ H(45B)-C(45)-H(45C)\\ H(45B)-C(45)-H(45C)\\ H(46B)-C(46)-H(46B)\\ C(43)-C(46)-H(46B)\\ C(43)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ H(46B)-C(46)-H(46C)\\ C(52)-C(47)-C(2)\\ C(48)-C(47)-C(2)\\ C(48)-C(47)-C(2)\\ C(48)-C(47)-C(50)\\ C(48)-C(49)-C(50)\\ C(51)-C(50)-C(48)\\ F(3)-C(50)-C(48)\\ F(3)-C(50)-C(50)\\ C(51)-C(50)-C(49)\\ C(51)-C(50)-C(50)\\ C(51)-C(50)-C(50)\\ C(51)-C(50)-C(50)\\ C(51)-C(50)-C(50)\\ C(51)-C(50)-C(47)\\ C(51)-C(50)-C(47)\\ C(51)-C(50)-C(47)\\ C(51)-C(50)\\ C(51)-C(50)-C(47)\\ C(51)-C(50)\\ C(51)-C(50)-C(47)\\ C$	$\begin{array}{c} 109.5\\ 109.5\\ 109.5\\ 109.5\\ 109.5\\ 109.1(4)\\ 107.6(4)\\ 107.6(4)\\ 107.9(4)\\ 105.6(3)\\ 108.8(3)\\ 117.5(3)\\ 109.5\\ 10$
C(47)-C(52)-H(52)	120.4
P(2)-Au(2)-S(2)	175.56(4)
C(38)-P(2)-C(43)	107.3(2)
C(38)-P(2)-C(39) C(43)-P(2)-C(39) C(38)-P(2)-Au(2) C(42)-P(2)-Au(2)	104.8(2) 113.9(2) 115.97(16)
C(43)-P(2)-Au(2)	107.00(16)
C(39)-P(2)-Au(2)	107.92(16)
C(47)-S(2)-Au(2)	106.40(16)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc5. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	19(2)	23(3)	15(2)	-1(2)	-1(2)	0(2)
C(2)	22(3)	25(3)	24(3)	-7(2)	-3(2)	2(2)
C(3)	21(3)	13(2)	33(3)	-6(2)	-4(2)	1(2)
C(4)	19(3)	31(3)	21(3)	0(2)	-7(2)	-1(2)
C(5)	22(3)	30(3)	18(2)	-6(2)	-5(2)	2(2)
C(6)	15(2)	16(2)	24(3)	-8(2)	0(2)	-6(2)

-							
$\begin{array}{c} C(7) \\ C(8) \\ C(9) \\ C(10) \\ C(11) \\ C(12) \\ C(13) \\ C(14) \\ C(15) \\ C(16) \\ C(17) \\ C(18) \\ C(19) \\ C(20) \\ C(21) \\ C(22) \\ C(23) \\ C(24) \\ C(25) \\ C(24) \\ C(25) \\ C(26) \\ Au(1) \\ F(1) \\ F(2) \\ P(1) \\ S(1) \\ C(27) \\ C(28) \\ C(29) \\ C(30) \\ C(31) \\ C(32) \\ C(33) \\ C(33) \\ C(33) \\ C(33) \\ C(33) \\ C(34) \\ C(35) \\ C(36) \\ C(37) \\ C(38) \\ C(39) \\ C(34) \\ C(35) \\ C(36) \\ C(37) \\ C(38) \\ C(39) \\ C(40) \\ C(41) \\ C(42) \\ C(43) \\ C(44) \\ C(45) \\ C(44) \\ C(45) \\ C(46) \\ C(47) \\ C(48) \\ C(46) \\ C(51) \\ C(52) \\ Au(2) \\ F(3) \\ F(4) \\ P(2) \\ S(2) \\ \hline \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	18(2) 15(2) 32(3) 29(3) 22(3) 21(2) 20(2) 19(2) 23(3) 35(3) 18(2) 21(3) 35(3) 18(2) 21(3) 26(3) 25(3) 16(2) 28(3) 39(3) 22(3) 15(1) 20(2) 48(2) 14(1) 16(1) 20(2) 48(2) 14(1) 15(2) 18(3) 15(2) 13(2) 25(3) 20(3) 47(4) 47(4) 31(3) 20(2) 23(3) 50(4) 40(3) 23(3) 20(3) 47(4) 47(4) 31(3) 20(2) 23(3) 50(4) 40(3) 23(3) 21(3) 20(3) 47(4) 47(4) 31(3) 20(2) 23(3) 50(4) 40(3) 23(3) 20(3) 43(3) 20(2) 23(3) 50(4) 40(3) 23(3) 20(3) 43(3) 20(2) 24(3) 26(3) 20(3) 43(3) 20(2) 24(3) 26(3) 20(3) 41(3) 50(4) 41(3) 50(4) 32(3) 15(1) 29(2) 71(3) 16(1) 20(2) 71(3) 16(1) 20(1)	23(3) 21(3) 17(2) 14(2) 20(2) 17(2) 15(2) 31(3) 24(3) 23(3) 22(3) 31(3) 38(3) 13(2) 11(2) 27(3) 23(3) 17(3) 20(2) 12(1) 47(2) 16(2) 13(1) 15(1) 23(3) 44(3) 28(3) 34(3) 29(3) 22(2) 22(3) 30(3) 22(2) 22(3) 34(3) 29(3) 22(2) 22(3) 30(3) 22(2) 22(3) 17(2) 30(3) 45(4) 44(3) 44(3) 18(2) 31(3) 38(3) 26(3) 17(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 15(1) 40(2) 15(2) 15(1) 40(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 14(2) 15(2) 29(3) 21(3) 16(3) 16(3) 16(3) 17(2) 15(2) 29(3) 21(3) 16(3) 17(2) 15(2) 29(3) 21(3) 16(3) 17(2) 15(2) 29(3) 21(3) 16(3) 16(3) 17(2) 15(2) 29(3) 21(3) 16(3) 17(2) 15(2) 29(3) 21(3) 16(3) 17(3) 20(3) 17(3) 20(3) 17(3) 20	$\begin{array}{c} 13(2)\\ 24(3)\\ 22(3)\\ 19(2)\\ 22(2)\\ 11(2)\\ 18(2)\\ 16(2)\\ 19(2)\\ 22(3)\\ 18(2)\\ 30(3)\\ 20(3)\\ 22(3)\\ 16(2)\\ 20(3)\\ 19(2)\\ 20(3)\\ 19(2)\\ 20(3)\\ 19(2)\\ 20(3)\\ 19(2)\\ 20(3)\\ 19(2)\\ 20(3)\\ 15(2)\\ 14(2)\\ 35(3)\\ 28(3)\\ 17(2)\\ 25(3)\\ 24(3)\\ 23(3)\\ 17(2)\\ 20(3)\\ 35(3)\\ 19(2)\\ 25(3)\\ 24(3)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 13(2)\\ 16(2)\\ 23(3)\\ 19(2)\\ 23(3)\\ 13(2)\\ 16(2)\\ 23(3)\\ 10(2)\\ 24(3)\\ 24(3)\\ 24(3)\\ 24(3)\\ 24(1)\\ 24$	-6(2) -5(2) -5(2) -6(2) -9(2) -2(2) -7(2) -7(2) -7(2) -7(2) -7(2) -7(2) -7(2) -7(2) -6(2) -8(2) -11(2) -5(2) -6(2) -7(2) -3(1) -7(1) 6(1) -4(1) -3(1) -7(1) 6(1) -4(1) -3(1) -7(1) 6(1) -4(2) -1(2) 0(2) -9(2) -2(2) -1(2) -5(2) -5(2) -5(2) -5(2) -5(2) -5(2) -13(2) -12(2) -7(2) -5(1) -5(1) -	1(2) -1(2) 0(2) 6(2) -2(2) 0(2) -4(2) -4(2) 0(2) -11(2) 2(2) 4(2) 2(2) -2(2) -5(2) -3(2) 8(2) 3(2) -2(2) -3(2) 8(2) 3(2) -2(2) -4(1) -5(1) 6(2) -2(2) -4(1) -5(1) 6(2) -2(2) -4(1) -5(1) 6(2) -2(2) -4(2) -6(2) -8(2) -7(2) -10(2) -4(2) -6(2) -3(2) -7(2) -10(3) -5(3) -6(2) -3(2) -3(2) -10(3) -5(3) -6(2) -3(2) -10(3) -5(3) -6(2) -3(2) -10(2) -	0(2) -7(2) -9(2) -1(2) 2(2) -3(2) 2(2) -4(2) -7(2) 8(2) -2(2) 3(2) -6(2) 0(2) -1(2) 3(2) -9(2) -3(2) 4(2) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(1) -1(2) 3(2) -1(2) 3(2) -1(2) -3(2) 4(2) -1(2) -3(2) -1(2) -3(2) -1(2) -3(2) -1(2) -1(2) -3(2) -1(2)	
D-HA		d(D-H)		d(HA)	d(DA)	<(DHA)	
C(19)-H(19B C(15)-H(15B	6)S(2)#1 6)F(1)#1	0.96 0.96		3.02 2.54	3.978(5) 3.418(5)	175.5 152.9	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

[Au(SC₆H₃F₂-2,4)(C₂₀H₂₇P)]

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shelx C26 H30 Au F2 P S 640.49 298(2) K 0.71073 Å Monoclinic P 21/n a = 13.3235(8) Å b = 12.9471(6) Å c = 15.1958(10) Å	a= 90°. b= 106.518(7)°. g = 90°.
Volume Z	2513.1(3) Å ³ 4	0
Density (calculated)	1.693 Mg/m ³	
Absorption coefficient F(000)	6.026 mm ⁻¹ 1256	
Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242°	0.340 x 0.280 x 0.050 mm ³ 3.444 to 29.329°. -18<=h<=17, -17<=k<=12, -11<= 13387 5974 [R(int) = 0.0343] 99.7 %	= <=20
Refinement method Data / restraints / parameters	Full-matrix least-squares on F ² 5974 / 0 / 286	
Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient	1.029 R1 = 0.0346, wR2 = 0.0551 R1 = 0.0699, wR2 = 0.0667 n/a	
Largest diff. peak and hole	0.645 and -0.655 e.Å ⁻³	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for khcop. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
C(1)	2971(4)	3472(4)	1371(4)	54(1)
C(2)	3606(5)	3643(5)	811(4)	72(2)
C(3)	4374(5)	2956(7)	721(5)	91(2)
C(4)	4502(6)	2101(6)	1227(6)	97(2)
C(5)	3943(5)	1879(5)	1810(5)	82(2)
C(6)	3184(4)	2549(4)	1894(4)	65(2)
C(7)	-1507(4)	1670(3)	735(3)	46(1)
C(8)	-1269(4)	1655(3)	-99(3)	44(1)
C(9)	-399(4)	2214(3)	-312(3)	45(1)
C(10)	529(4)	1719(4)	-286(4)	59(1)
C(11)	1303(5)	2218(5)	-563(4)	75(2)
C(12)	1161(5)	3223(5)	-862(4)	73(2)
C(13)	264(5)	3712(4)	-895(4)	70(2)
C(14)	-530(4)	3224(3)	-629(3)	57(1)
C(15)	-1918(5)	1084(4)	-828(4)	64(1)
C(16)	-2764(5)	547(4)	-722(5)	81(2)
C(17)	-2999(5)	554(4)	88(5)	80(2)
C(18)	-2381(4)	1106(4)	811(4)	64(1)
C(19)	-108(4)	1349(4)	2599(4)	57(1)
C(20)	621(5)	1866(4)	3450(4)	90(2)
C(21)	555(5)	713(4)	2133(4)	81(2)
C(22)	-865(5)	633(5)	2895(5)	104(2)
C(23)	-1639(4)	3276(3)	2089(4)	56(1)
C(24)	-2223(5)	3850(5)	1220(4)	91(2)
C(25)	-2423(6)	2793(5)	2530(6)	105(2)
C(26)	-984(5)	4066(5)	2771(5)	99(2)
Au(1)	631(1)	3334(1)	1529(1)	46(1)
F(1)	3465(3)	4514(3)	314(3)	109(1)
F(2)	5258(4)	1422(4)	1133(4)	164(2)
P(1)	-714(1)	2376(1)	1738(1)	43(1)
S(1)	2012(1)	4363(1)	1453(1)	64(1)

Table 3. Bond lengths [Å] and angles [°] for khcop.

C(1)-C(2)	1 379(7)
C(1) C(6)	1 / 1 8(7)
C(1) - C(0)	1.410(7)
C(1)-S(1)	1.752(5)
C(2)-F(1)	1.341(6)
C(2) $C(2)$	1 202(0)
C(2) - C(3)	1.392(9)
C(3)-C(4)	1.331(9)
C(3)-H(3)	0.9300
O(4) O(5)	1.240(0)
C(4)-C(5)	1.340(9)
C(4)-F(2)	1.374(7)
C(5) = C(6)	1 366(7)
	1.500(7)
C(5)-H(5)	0.9300
C(6)-H(6)	0.9300
C(7) - C(8)	1 301(6)
O(7) = O(0)	1.001(0)
C(7)-C(18)	1.408(6)
C(7)-P(1)	1.833(5)
C(8) - C(15)	1 406(7)
O(0) = O(13)	1.400(7)
C(8) - C(9)	1.479(6)
C(9)-C(10)	1.382(6)
C(0) - C(14)	1 386(6)
C(3) - C(14)	1.300(0)
C(10)-C(11)	1.382(7)
C(10)-H(10)	0.9300
C(11) C(12)	1 372(7)
	1.572(7)
C(11)-H(11)	0.9300
C(12)-C(13)	1.342(8)
$C(12) \sqcup (12)$	0.0200
$C(12)$ - $\Pi(12)$	0.9300
C(13)-C(14)	1.387(7)
C(13)-H(13)	0.9300
$C(14) \sqcup (14)$	0.0200
$C(14) - \Pi(14)$	0.9300
C(15)-C(16)	1.372(8)
C(15)-H(15)	0.9300
C(16) C(17)	1 254(0)
C(10)-C(17)	1.334(6)
C(16)-H(16)	0.9300
C(17) - C(18)	1 372(7)
$C(17) \cup (17)$	0.0200
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(19)-C(21)	1 522(7)
C(10) C(21)	1.022(7)
C(19) - C(22)	1.529(7)
C(19)-C(20)	1.532(8)
C(19) - P(1)	1 879(5)
	0.0000
C(20)-H(20A)	0.9600
C(20)-H(20B)	0.9600
C(2n) - H(2nC)	0.9600
O(20) - I(200)	0.0000
C(21)-H(21A)	0.9600
C(21)-H(21B)	0.9600
	0.9600
	0.0000
C(22)-H(22A)	0.9600
C(22)-H(22B)	0.9600
\dot{c}	0.9600
	0.3000
C(23)-C(24)	1.523(8)
C(23)-C(25)	1.527(7)
C(23) C(26)	1 539(9)
C(23) - C(20)	1.000(0)
C(23)-P(1)	1.880(4)
C(24)-H(24A)	0.9600
$C(24) \sqcup (24R)$	0.0600
C(24)-I (24D)	0.9000
C(24)-H(24C)	0.9600
C(25)-H(25A)	0.9600
$C(25) \cup (250)$	0.0600
C(23)-FI(23B)	0.9000
C(25)-H(25C)	0.9600
C(26)-H(26A)	0.9600
$C(26) \cup C(26P)$	0.0600
	0.9000
C(26)-H(26C)	0.9600
Au(1)-P(1)	2,2755(11)
	2.2.1.00(11)
Au(1)-3(1)	2.2994(13)
C(2)-C(1)-C(6)	114,9(5)
C(2) C(1) C(3)	101 7(4)
U(2) - U(1) - O(1)	121.7(4)
C(6)-C(1)-S(1)	123.3(4)
F(1)-C(2)-C(1)	118.1(6)
F(1) - C(2) - C(3)	118 1(6)
· (·)-O(2)-O(3)	10.1(0)

$\begin{array}{l} C(1)-C(2)-C(3)\\ C(4)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(2)-C(3)-H(3)\\ C(3)-C(4)-C(5)\\ C(3)-C(4)-F(2)\\ C(5)-C(4)-F(2)\\ C(5)-C(6)-F(2)\\ C(4)-C(5)-H(5)\\ C(6)-C(5)-H(5)\\ C(5)-C(6)-H(6)\\ C(1)-C(6)-H(6)\\ C(1)-C(6)-H(6)\\ C(1)-C(6)-H(6)\\ C(8)-C(7)-P(1)\\ C(7)-C(8)-C(18)\\ C(7)-C(18)\\ C(7)-C(8)-C(9)\\ C(15)-C(8)-C(9)\\ C(15)-C(8)-C(9)\\ C(15)-C(8)-C(9)\\ C(15)-C(8)-C(9)\\ C(15)-C(8)-C(9)\\ C(10)-C(9)-C(14)\\ C(10)-C(9)-C(8)\\ C(11)-C(10)-H(10)\\ C(9)-C(11)-H(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-C(10)\\ C(12)-C(11)-L(10)\\ C(12)-L(11)-L(10)\\ C(12)-L(11)\\ C(12)-L(11)-L(10)\\ C(12)-L(11)\\ C(12)-L(11)-L$	123.7(6) $116.9(6)$ 121.5 121.5 $123.8(7)$ $116.7(8)$ $119.5(8)$ $119.4(6)$ 120.3 120.3 $121.2(6)$ 119.4 119.4 $118.5(4)$ $122.6(3)$ $119.0(4)$ $118.4(4)$ $126.1(4)$ $115.5(4)$ $121.1(4)$ $120.5(4)$ $120.8(5)$ 119.6 119.6 $120.0(5)$ 120.0
C(12)-C(11)-H(11) C(10)-C(11)-H(11) C(13)-C(12)-C(11) C(13)-C(12)-H(12) C(11)-C(12)-H(12) C(12)-C(13)-C(14) C(12)-C(13)-H(13) C(14)-C(13)-H(13) C(9)-C(14)-H(14) C(16)-C(15)-H(15) C(16)-C(15)-H(15) C(16)-C(15)-H(15) C(17)-C(16)-H(16) C(15)-C(16)-H(16) C(15)-C(16)-H(16) C(16)-C(17)-H(17) C(16)-C(17)-H(17) C(16)-C(17)-H(17) C(17)-C(18)-H(18) C(7)-C(18)-H(18) C(7)-C(18)-H(18) C(21)-C(19)-C(22) C(21)-C(19)-C(20) C(22)-C(19)-C(20) C(22)-C(19)-C(20) C(21)-C(10)-C(10)	120.0 120.0 119.8(5) 120.1 120.1 121.3(5) 119.3 119.3 119.9(5) 120.0 120.0 121.1(5) 119.4 119.4 119.4 120.8(6) 119.6 119.6 119.4(6) 120.3 121.7(5) 119.1 119.1 109.2(4) 109.2(5) 104.5(3) 104.5(5) 104.5(5) 104.5(3) 104.5(5) 104.5(5) 104.5(3) 104.5(5) 104.5(5) 104.5(3) 104.5(5) 104.5(5) 104.5(3) 104.5(5) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(5) 104.5(3) 104.5(3) 104.5(5) 104.5(3) 104.5(3) 104.5(5) 104.5(3) 104.5(3) 104.5(5) 104.5(3) 104.5(3) 104.5(5) 104.5(3) 104.
$\begin{array}{l} C(22)-C(19)-P(1)\\ C(20)-C(19)-P(1)\\ C(19)-C(20)-H(20A)\\ C(19)-C(20)-H(20B)\\ H(20A)-C(20)-H(20C)\\ H(20A)-C(20)-H(20C)\\ H(20B)-C(20)-H(20C)\\ C(19)-C(21)-H(21A)\\ C(19)-C(21)-H(21B)\\ H(21A)-C(21)-H(21B)\\ H(21A)-C(21)-H(21C)\\ H(21B)-C(21)-H(21C)\\ H(21B)-C(21)-H(21C)\\ H(21B)-C(21)-H(21C)\\ H(21B)-C(22)-H(22A)\\ C(19)-C(22)-H(22B)\\ H(22A)-C(22)-H(22B)\\ \end{array}$	$\begin{array}{c} 116.4(4)\\ 108.8(3)\\ 109.5\\ 109$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	41(3)	61(3)	56(3)	-8(2)	7(3)	-10(2)
C(2)	60(4)	85(4)	66(4)	3(3)	12(3)	-19(3)
C(3)	55(4)	141(6)	87(5)	-39(5)	33(4)	-11(4)
C(4)	72(5)	103(5)	105(6)	-27(5)	9(5)	29(4)
C(5)	75(5)	76(4)	82(5)	-11(3)	-2(4)	11(4)
C(6)	58(4)	60(3)	65(4)	-5(3)	-2(3)	1(3)
C(7)	40(3)	45(2)	53(3)	-2(2)	12(2)	1(2)
C(8)	48(3)	36(2)	45(3)	0(2)	8(2)	9(2)
C(9)	49(3)	48(3)	40(3)	0(2)	15(2)	0(2)
C(10)	58(4)	57(3)	68(4)	1(3)	27(3)	7(3)
C(11)	67(4)	92(4)	78(4)	-9(3)	39(4)	5(3)
C(12)	78(5)	88(4)	63(4)	-3(3)	37(3)	-17(4)
C(13)	84(5)	64(3)	65(4)	14(3)	27(4)	-7(3)
C(14)	61(4)	57(3)	56(3)	8(2)	20(3)	9(3)
C(15)	73(4)	61(3)	51(3)	-6(3)	7(3)	0(3)
C(16)	73(5)	67(4)	89(5)	-16(3)	0(4)	-15(3)
C(17)	62(4)	79(4)	94(5)	-6(4)	14(4)	-20(3)
C(18)	53(4)	72(3)	71(4)	-1(3)	24(3)	-11(3)
C(19)	57(4)	57(3)	55(3)	12(2)	12(3)	2(3)
C(20)	104(6)	98(4)	59(4)	19(3)	6(4)	-8(4)
C(21)	81(5)	73(4)	81(4)	15(3)	9(4)	28(3)
C(22)	81(5)	97(4)	131(6)	64(4)	27(4)	-11(4)
C(23)	59(3)	52(3)	69(4)	-1(3)	39(3)	6(3)
C(24)	96(5)	84(4)	102(5)	14(4)	41(4)	44(4)
C(25)	105(6)	96(4)	151(7)	1(4)	97(6)	6(4)
				156		

Table 4.	Anisotropic displacement parameters ($Å^2x \ 10^3$) for khcop.	The anisotropic
displacer	nent factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + +$	2 h k a* b* U ¹²]

C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(24)-C(23)-C(25)	109.6(5)
C(24)-C(23)-C(26)	108.2(5)
C(25)-C(23)-C(26)	107.7(5)
C(24)-C(23)-P(1)	105.7(3)
C(25)-C(23)-P(1)	117.2(3)
C(26)-C(23)-P(1)	108.1(4)
C(23)-C(24)-H(24A)	109.5
C(23)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(23)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(23)-C(25)-H(25A)	109.5
C(23)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(23)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(23)-C(26)-H(26A)	109.5
C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
P(1)-Au(1)-S(1)	174.63(5)
C(7)-P(1)-C(19)	104.9(2)
C(7)-P(1)-C(23)	106.0(2)
C(19)-P(1)-C(23)	115.3(2)
C(7)-P(1)-Au(1)	116.48(15)
C(19)-P(1)-Au(1)	106.48(17)
C(23)-P(1)-Au(1)	107.93(15)
C(1)-S(1)-Au(1)	103.43(16)
Symmetry transformations	used to generate equivalent atoms:

C(26) 1 Au(1) 4 F(1) 1 F(2) 8 P(1) 4	05(6) 40(1) 04(3) 89(3) 42(1)	94(4) 47(1) 125(3) 172(4) 46(1)	112(6) 52(1) 107(3) 229(6) 47(1)	-40(4) -1(1) 21(2) -65(4) 2(1)	54(5) 17(1) 43(3) 45(4) 20(1)	7(4) -4(1) -23(2) 44(3) -1(1)
S(1) 4	47(1)́	51(1)	94(1)	5(1)	22(1)	-5(1)
Table 5. Torsio	on angles [°] for	khcop.				
$\frac{1}{C(6)-C(1)-C(2)}$ $\frac{1}{C(6)-C(1)-C(2)}$ $S(1)-C(1)-C(2)$ $S(1)-C(1)-C(2)$ $S(1)-C(1)-C(2)$ $F(1)-C(2)-C(3)$ $C(1)-C(2)-C(3)$ $C(2)-C(3)-C(4)$ $C(3)-C(4)-C(5)$ $F(2)-C(4)-C(5)$ $F(2)-C(4)-C(5)$ $C(4)-C(5)-C(6)$ $C(2)-C(1)-C(6)$ $S(1)-C(1)-C(6)$ $C(1)-C(1)-C(6)$ $C(1)-C(7)-C(8)$ $C(1)-C(7)-C(8)$ $C(1)-C(7)-C(8)$ $C(7)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(15)-C(8)-C(9)$ $C(10)-C(1)-C(1)$ $C(10)-C(1)-C(1)$ $C(10)-C(9)-C(11)$ $C(10)-C(9)-P(1)$ $C(20)-C(19)-P(1)$ $C(20)-C(20)-P(1)$ $C(20)-C(2$	$\begin{array}{c} -F(1) \\ -F(1) \\ -F(1) \\ -F(1) \\ -F(1) \\ -C(3) \\ -C(3) \\ -C(3) \\ -C(4) \\ -C(5) \\ -F(2) \\ -C(6) \\ -C(6) \\ -C(1) \\ -C(5) \\ -C(5) \\ -C(5) \\ -C(5) \\ -C(5) \\ -C(5) \\ -C(10) \\ -C(10) \\ -C(14) \\ 0) -C(11) \\ 1) -C(12) \\ (13) -C(13) \\ (13) -C(14) \\ 10) -C(13) \\ (13) -C(14) \\ 10) -C(13) \\ (14) -C(13) \\ (13) -C(14) \\ 10) -C(13) \\ (14) -C(13) \\ (13) -C(14) \\ 10) -C(16) \\ 0) -C(17) \\ 0) -C(18) \\ (13) -C(17) \\ 0) -C(19) \\ -C(23) \\ -Au(1) \\ 0) -C(23) \\ -Au(1) \\ 1) -Au(1) \\ (1) -C(7) \\ (1) -C(19) \\ (1) -Au(1) \\ (1) -Au$			$\begin{array}{c} -178\\ -0.\\ 2.0\\ -179\\ 179\\ -1.4\\ -0.5\\ 179\\ 0.9\\ -1.79\\ 0.9\\ -1.79\\ 0.9\\ -2.\\ -179\\ 0.9\\ -2.\\ -179\\ 0.9\\ -2.\\ -179\\ 0.9\\ -2.\\ -179\\ 0.9\\ -2.\\ -179\\ 0.9\\ -2.\\ -99\\ -82\\ -87\\ 91.\\ 0.1\\ -179\\ 0.1\\ -0.\\ -0.\\ -0.\\ -0.\\ -0.\\ -0.\\ -0.\\ -0.$	$\overline{(77)}$ $\overline{(7)}$ $\overline{(58)}$ $\overline{(77)}$ $\overline{(56)}$ $\overline{(10)}$ $\overline{(11)}$ $\overline{(11)}$ $\overline{(11)}$ $\overline{(11)}$ $\overline{(11)}$ $\overline{(26)}$ $\overline{(11)}$	

C(6)-C(1)-S(1)-Au(1)

-41.7(4)

Symmetry transformations used to generate equivalent atoms:

Table 6. Hydrogen bonds for khcop [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(21)-H(21B)S(1)#1	0.96	2.93	3.771(6)	147.6

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,y-1/2,-z+1/2

$[Au(SC_6H_4F-2)(C_{20}H_{27}P)]$		
Identification code	shelx	
Empirical formula	C26 H31 Au F P S	
Formula weight	622.50	
Temperature	403(2) K	
Wavelength	0.71073 A	
Crystal system	Monoclinic	
Space group	P 21/c	•••
Unit cell dimensions	a = 8.4347(8) A	a= 90°.
	D = 17.9915(15) A	$D = 101.120(8)^{\circ}$.
	C = 10.2240(13) A	g = 90 .
Volume	2415.8(4) A ³	
Z	4	
Density (calculated)	1.712 Mg/m ³	
Absorption coefficient	6.261 mm ⁻¹	
F(000)	1224	
Crystal size	0.530 x 0.400 x 0.180 mm ³	
Theta range for data collection	3.418 to 29.503°.	
Index ranges	-11<=h<=11, -24<=k<=24, -20<=	= <=20
Reflections collected	25924	
Independent reflections	6060 [R(int) = 0.0575]	
Completeness to theta = 25.242°	99.7 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6060 / 0 / 277	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0335, wR2 = 0.0764	
R indices (all data)	R1 = 0.0425, wR2 = 0.0829	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.673 and -1.847 e.Å ⁻³	

	Х	У	Z	U(eq)
C(1)	4228(5)	293(2)	1851(2)	18(1)
C(2)	4641(5)	-387(2)	2238(2)	22(1)
C(3)	3939(5)	-1049(2)	1920(3)	25(1)
C(4)	2783(6)	-1037(3)	1195(3)	30(1)
C(5)	2357(6)	-369(2)	795(3)	28(1)
C(6)	3058(5)	304(2)	1100(2)	20(1)
C(7)	2503(5)	967(2)	583(2)	19(1)
C(8)	3108(6)	1120(3)	-137(3)	30(1)
C(9)	2480(7)	1689(3)	-665(3)	41(1)
C(10)	1222(7)	2119(3)	-491(3)	44(2)
C(11)	611(6)	1973(3)	214(3)	38(1)
C(12)	1247(5)	1410(3)	755(3)	27(1)
C(13)	7462(Š)	992(3)	2316(3)	26(1)
C(14)	7548(7)	666(4)	1459(4)	60(2)
C(15)	8365(́6)́	491(3)	3017(4)	48(2)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for khc6. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(16)	8301(5)	1744(3)	2398(3)	29(1)
C(17)	4772(5)	1209(2)	3393(2)	21(1)
C(18)	5078(6)	524(3)	3963(3)	29(1)
C(19)	5706(6)	1869(2)	3849(3)	27(1)
C(20)	2947(5)	1369(3)	3243(3)	29(1)
C(21)	1924(5)	3550(2)	1157(3)	25(1)
C(22)	1435(6)	3370(3)	1907(3)	32(1)
C(23)	-87(7)	3535(3)	2052(4)	43(1)
C(24)	-1174(7)	3892(4)	1450(4)	50(2)
C(25)	-755(7)	4090(3)	706(4)	53(2)
C(26)	773(7)	3923(3)	575(3)	38(1)
S(1)	3848(1)	3342(1)	948(1)	24(1)
P(1)	5256(1)	1137(1)	2313(1)	15(1)
Au(1)	4473(1)	2213(1)	1610(1)	17(1)
F(1)	1160(5)	4116(3)	-145(2)	81(1)

Table 3. Bond lengths [Å] and angles [°] for khc6.

$\overline{C(1)-C(2)}$	1,390(6)
C(1) - C(6)	1 /12(5)
C(1) - C(0)	1.925(4)
C(1)- $F(1)$	1.033(4)
C(2)-C(3)	1.386(6)
C(2)-H(2)	0.9300
C(3)-C(4)	1.375(6)
C(3)-H(3)	0.9300
C(4)-C(5)	1 380(6)
C(4) = U(3)	0.0300
	0.9300
C(5)-C(6)	1.396(6)
C(5)-H(5)	0.9300
C(6)-C(7)	1.480(6)
C(7)-C(8)	1.389(6)
C(7) - C(12)	1 396(6)
C(8) - C(9)	1 374(7)
C(0) - C(0)	0.0200
	0.9300
C(9)-C(10)	1.385(9)
C(9)-H(9)	0.9300
C(10)-C(11)	1.367(8)
C(10)-H(10)	0.9300
C(11)-C(12)	1 380(6)
$C(11) \sqcup (11)$	0.0300
$C(11) - \Gamma(11)$	0.9300
$C(12) - \Pi(12)$	0.9300
C(13)-C(16)	1.521(6)
C(13)-C(14)	1.522(7)
C(13)-C(15)	1.533(7)
C(13)-P(1)	1.878(4)
C(14)-H(14A)	0.9600
C(14)-H(14B)	0.9600
C(14)-H(14C)	0.9600
$C(15) \sqcup (15A)$	0.0000
	0.9000
C(15)-H(15B)	0.9600
C(15)-H(15C)	0.9600
C(16)-H(16A)	0.9600
C(16)-H(16B)	0.9600
C(16)-H(16C)	0.9600
C(17)-C(18)	1 532(6)
C(17) - C(19)	1 535(6)
C(17) = C(10)	1,530(6)
O(17) - O(20)	1.559(0)
C(17)-P(1)	1.877(4)
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0,9600
$C(20) - H(20\Delta)$	0.0000
C(20) = H(20R)	0.0000
	0.0000
	0.9600
U(21)-U(26)	1.389(6)
C(21)-C(22)	1.396(6)
C(21)-S(1)	1.761(5)

C(22)-C(23)	1.381(7)
C(22)-H(22)	0.9300
C(23)-C(24)	1.364(8)
C(23)-H(23)	0.9300
C(24)-C(25)	1.369(9)
C(24)-H(24)	0.9300
C(25)-C(26)	1.379(8)
C(25)-H(25)	0.9300
C(26)-F(1)	1.319(6)
S(1)-Au(1)	2.3113(11)
P(1)-Au(1)	2.2790(10)
C(2)-C(1)-C(6) C(2)-C(1)-P(1) C(3)-C(2)-H(2) C(1)-C(2)-H(2) C(1)-C(2)-H(2) C(4)-C(3)-C(2) C(4)-C(3)-H(3) C(2)-C(3)-H(3) C(2)-C(3)-H(3) C(3)-C(4)-H(4) C(3)-C(4)-C(5) C(3)-C(4)-H(4) C(4)-C(5)-C(6) C(4)-C(5)-H(5) C(5)-C(6)-C(7) C(5)-C(6)-C(7) C(6)-C(7)-C(6) C(1)-C(6)-C(7) C(8)-C(7)-C(6) C(1)-C(6)-C(7) C(9)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(7)-C(8)-H(8) C(1)-C(10)-H(10) C(8)-C(9)-H(9) C(11)-C(10)-H(10) C(10)-C(11)-H(11) C(10)-C(11)-H(11) C(10)-C(11)-H(11) C(12)-C(11)-H(11) C(12)-C(11)-H(11) C(12)-C(11)-H(12) C(10)-C(13)-P(1) C(13)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14A)-C(15)-H(15B) C(13)-C(15)-H(15B) H(15A)-C(15)-H(15C) H(15B)-C(15)-H(15C) H(15B)-C(15)-H(15C) H(15B)-C(15)-H(15C) H(15B)-C(15)-H(15C) H(15A)-C(16)-H(16B) H(16A)-C(16)-H(16B) H(16A)-C(16)-H(16B) H(16A)-C(16)-H(16B) H(16A)-C(16)-H(16B)	$\begin{array}{c} 118.4(4)\\ 119.1(3)\\ 122.5(3)\\ 122.5(4)\\ 118.8\\ 118.8\\ 119.1(4)\\ 120.4\\ 120.4\\ 120.4\\ 120.2\\ 120.2\\ 122.3(4)\\ 118.8\\ 118.8\\ 118.1(4)\\ 115.6(3)\\ 126.3(4)\\ 121.0(4)\\ 120.6(4)\\ 121.0(4)\\ 120.6(5)\\ 119.6\\ 120.5(5)\\ 119.7\\ 10.6(4)\\ 110.3(5)\\ 108.6(3)\\ 105.9(3)\\ 115.7(3)\\ 109.5\\ 10$

H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(18)-C(17)-C(19)	108.7(3)
C(18)-C(17)-C(20)	107.0(4)
C(19)-C(17)-C(20)	109.6(4)
C(18)-C(17)-P(1)	117.8(3)
C(19)-C(17)-P(1)	108.6(3)
C(20)-C(17)-P(1)	104.8(3)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(17)-C(19)-H(19A)	109.5
C(17)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(17)-Ć(19)-́H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(17)-C(20)-H(20A)	109.5
H(20A)-C(20)-H(20B) C(17)-C(20)-H(20B)	109.5 109.5 109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(26)-C(21)-C(22)	114.8(4)
C(26)-C(21)-S(1)	121.4(4)
C(22)-C(21)-S(1)	123.9(4)
C(23)-C(22)-C(21)	122.6(5)
C(23)-C(22)-H(22)	118.7
C(21)-C(22)-H(22)	118.7
C(24)-C(22)-C(22)	110.0(5)
C(24)-C(23)-U(23) C(24)-C(23)-H(23) C(22)-C(23)-H(23)	120.1 120 1
C(23)-C(24)-C(25)	120.1(5)
C(23)-C(24)-H(24)	119.9
C(25)-C(24)-H(24)	119.9
C(24)-C(25)-C(26)	119.1(5)
C(24)-C(25)-H(25)	120.4
C(26)-C(25)-H(25)	120.4
E(1) C(26) C(25)	118.5(5)
F(1)-C(26)-C(21)	118.0(5)
C(25)-C(26)-C(21)	123.5(5)
C(21)-S(1)-Au(1)	103.46(15)
C(1)-P(1)-C(17)	105.51(18)
C(1)-P(1)-C(13)	105.95(19)
C(17)-P(1)-C(13)	113.65(19)
C(1)-P(1)-Au(1)	115.44(13)
C(17)-P(1)-Au(1)	108.36(13)
C(13)-P(1)-Au(1)	108.09(15)
P(1)-Au(1)-S(1)	175.91(4)

Table 4. Anisotropic displacement parameters ($^{A2}x 10^{3}$)for khc6. The anisotropic displacement factor exponent takes the form: $^{-2p^{2}}[h^{2}a^{*2}U^{11} + ... + 2 h k a^{*} b^{*} U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	18(2)	17(2)	19(2)	-1(2)	8(2)	-4(2)
C(2) C(3)	19(2) 29(2)	24(2) 15(2)	20(2) 29(2)	-1(2) 0(2)	2(2) 3(2)	1(2) -5(2)
C(4)	31(2)	23(2)	32(2)	-5(2)	-2(2)	-12(2)
C(5) C(6)	30(2) 18(2)	25(2) 23(2)	26(2) 20(2)	-2(2) -1(2)	-2(2) 7(2)	-7(2) -2(2)
C(7)	18(2)	23(2)	16(2) 21(2)	0(2)	-1(1) 7(2)	-9(2)
U(0)	43(3)	Z1(Z)	Z I (Z)	-3(2)	1(2)	-0(2)

C(9)	63(4)	36(3)	19(2)	2(2)	-2(2)	-17(3)	
C(10)	48(3)	33(3)	40(3)	15(2)	-20(3)	-16(3)	
C(11)	26(3)	26(3)	56(3)	6(2)	-11(2)	-7(2)	
C(12)	24(2)	25(2)	32(2)	4(2)	4(2)	-2(2)	
C(13)	17(2)	24(2)	38(2)	-9(2)	9(2)	-2(2)	
C(14)	37(3)	78(5)	74(4)	-48(4)	37(3)	-27(3)	
C(15)	18(2)	35(3)	91(4)	11(3)	6(3)	3(2)	
C(16)	20(2)	31(3)	37(2)	-4(2)	6(2)	-6(2)	
C(17)	24(2)	20(2)	19(2)	-1(2)	9(2)	0(2)	
C(18)	41(3)	24(2)	22(2)	1(2)	7(2)	-1(2)	
C(19)	37(3)	23(2)	21(2)	-2(2)	6(2)	-4(2)	
C(20)	29(2)	32(3)	30(2)	2(2)	16(2)	0(2)	
C(21)	32(2)	20(2)	23(2)	-1(2)	4(2)	-2(2)	
C(22)	39(3)	24(2)	37(2)	-1(2)	16(2)	2(2)	
C(23)	51(3)	27(3)	56(3)	3(2)	28(3)	2(2)	
C(24)	33(3)	51(4)	68(4)	-16(3)	14(3)	1(3)	
C(25)	47(3)	49(4)	52(3)	-9(3)	-14(3)	26(3)	
C(26)	54(3)	36(3)	21(2)	1(2)	-2(2)	18(3)	
S(1)	32(1)	20(1)	21(1)	4(1)	8(1)	-1(1)	
P(1)	14(1)	15(1)	17(1)	-1(1)	3(1)	-2(1)	
Au(1)	20(1)	15(1)	16(1)	1(1)	3(1)	-2(1)	
F(1)	107(3)	105(3)	34(2)	29(2)	20(2)	65(3)	
Table 5.	Hydrogen bond	s for khc6 [Å and °].				
D-HA		d(D-H)	d(HA)	d(DA)		
C(20)-H(2	20C)F(1)#1	0.96		2.55	3.376(6)	144.5	
J(_ J) ((5.00					

Symmetry transformations used to generate equivalent atoms: #1 x,-y+1/2,z+1/2

Au(SC ₆ H ₄ F-3)(C ₂₀ H ₂₇ P)] Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	shelx C26 H31 Au F P S 622.50 173(2) K 0.71073 Å Triclinic P -1 a = 11.0004(6) Å b = 14.5902(6) Å c = 16.9126(8) Å C = 91.213(4)°.
Volume	2467.6(2) Å ³
Z	4
Density (calculated)	1.676 Mg/m ³
Absorption coefficient	6.129 mm ⁻¹
F(000)	1224
Crystal size	0.500 x 0.310 x 0.300 mm ³
Theta range for data collection	3.428 to 29.496°.
Index ranges	-14<=h<=15, -20<=k<=19, -21<=l<=21
Reflections collected	32793
Independent reflections	11912 [R(int) = 0.0488]
Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	11912 / 0 / 553
Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0338, wR2 = 0.0686
R indices (all data)	R1 = 0.0470, wR2 = 0.0765
Extinction coefficient	n/a
Largest diff. peak and noie	1.320 and -1.925 e.A °

Table 2. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for khc8. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

	Х	У	Z	U(eq)
Au(2)	7566(1)	8308(1)	3563(1)	18(1)
S(2)	6615(1)	8145(1)	4581(1)	24(1)
P(2)	8603(1)	8409(1)	2582(1)	18(1)
F(2)	10940(3)	7158(2)	5831(2)	56(1)
C(50)	10263(5)	9834(4)	3868(3)	40(1)
C(35)	6508(4)	9981(3)	2887(3)	19(1)
C(33)	8127(4)	9308(3)	2045(3)	19(1)
C(34)	7285(4)	9991(3)	2292(2)	18(1)
C(30)	5527(4) 8500(5)	9234(3)	2046(3)	ZI(I) 41(1)
C(31)	6934(5)	7057(4)	1195(4)	55(2)
C(30)	5821(4)	10794(4)	4153(3)	31(1)
C(30)	9707(5)	7746(4)	6800(3)	43(1)
C(37)	4712(4)	9276(3)	3156(3)	24(1)
C(51)	11178(5)	9023(5)	2680(4)	55(2)
C(40)	6641(4)	10768(3)	3650(3)	26(1)
C(27)	7827(4)	7963(3)	5417(3)	24(1)
C(45)	8331(4)	7177(3)	1705(3)	26(1)
C(38)	4863(4)	10058(3)	3911(3)	28(1)
C(52)	10851(5)	8157(5)	3671(5)	70(2)
C(41)	7123(4)	10733(3)	1923(3)	22(1)
C(28)	8951(4)	7604(3)	5282(3)	28(1)
C(44)	8708(4)	9380(3)	1419(3)	23(1)
C(42)	7734(4)	10806(3)	1327(3)	26(1)
C(47)	8522(6)	6410(3)	2146(3)	44(1)
C(43)	8521(4)	10118(3)	1070(3)	28(1)
C(49)	10306(4)	8854(3)	3206(3)	27(1)
C(32)	7663(5)	8211(3)	6242(3)	32(1)
C(29)	9842(4)	7501(4)	5980(3)	36(1)
C(48)	9133(5)	7004(4)	1076(3)	43(1)
Au(1)	2102(1)	3270(1)	757(1)	22(1)
D(1)	3445(1)	1670(1)	2546(1)	23(1)
F(1)	-2737(3)	4052(1)	786(2)	67(1)
C(20)	3946(6)	5046(4)	1171(3)	50(2)
C(15)	6943(4)	3664(4)	2844(4)	44(1)
C(16)	7744(5)	4483(4)	3379(4)	49(2)
C(12)	3768(4)	837(3)	978(3)	33(1)
C(24)	3306(6)	4424(5)	4042(4)	54(2)
C(10)	4392(4)	2105(3)	2365(3)	29(1)
C(7)	5138(4)	4562(3)	2876(3)	23(1)
C(21)	1935(5)	5552(5)	1473(4)	62(2)
C(25)	3543(7)	6176(4)	4201(4)	66(2)
C(11)	3834(4)	1172(3)	1850(3)	32(1)
C(26)	1501(5)	5125(5)	3332(4)	57(2)
C(1)	-634(4)	2204(3)	369(3)	23(1)
C(22)	3956(8)	6559(4)	2386(4)	73(2)
C(8)	5633(4)	3669(3)	2580(3)	25(1)
C(9)	4897(4)	2719(3)	2017(3)	24(1)
C(14)	4629(4)	2000(0)	719(2)	31(1) 21(1)
C(5)	-2000(4)	1000(4)	-7 10(3)	31(1) 31(1)
C(2)	_1085(A)	3062(3)	755(3)	37(1)
C(2)	-1003(4)	1514(3)	-373(3)	3∠(1) 27(1)
C(18)	5979(<u>4</u>)	5380(3)	3419(3)	$\frac{27(1)}{32(1)}$
C(23)	2955(4)	5169(3)	3579(3)	30(1)
C(13)	4268(5)	1434(3)	622(3)	36(1)
C(17)	7265(5)	5349(4)	3666(3)	42(1)
C(4)	-3124(4)	2547(4)	-324(3)	37(1)
C(3)	-2313(5)	3201(4)́	392(3)	38(1)
. /		· · /	. ,	

Table 3. Bond lengths [Å] and angles [°] for khc8.

Au(2)-P(2)	2.2799(11)
Au(2)-S(2)	2.3017(11)
S(2)-C(27)	1.770(4)
P(2)-C(33)	1.836(4)

$\begin{array}{l} P(2)-C(49)\\ P(2)-C(45)\\ F(2)-C(29)\\ C(50)-H(50A)\\ C(50)-H(50B)\\ C(50)-H(50B)\\ C(50)-H(50C)\\ C(35)-C(40)\\ C(35)-C(36)\\ C(35)-C(34)\\ C(33)-C(34)\\ C(33)-C(34)\\ C(33)-C(34)\\ C(34)-C(41)\\ C(36)-C(37)\\ C(36)-H(36)\\ C(31)-C(32)\\ C(31)-C(32)\\ C(31)-C(30)\\ C(31)-H(31)\\ C(46)-H(46B)\\ C(46)-H(46B)\\ C(46)-H(46B)\\ C(46)-H(46B)\\ C(46)-H(46C)\\ C(39)-C(38)\\ C(39)-C(38)\\ C(39)-C(40)\\ C(39)-H(39)\\ C(30)-C(29)\\ C(30)-H(30)\\ C(37)-C(38)\\ C(37)-H(37)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(51)-H(51B)\\ C(52)-C(48)\\ C(45)-C(47)\\ C(38)-H(38)\\ C(52)-C(49)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(52)-H(52B)\\ C(44)-C(43)\\ C(44)-H(44)\\ C(42)-C(43)\\ C(44)-H(44)\\ C(42)-C(43)\\ C(44)-H(47)\\ C(47)-H(47B)\\ C(47)-H(47B)\\ C(47)-H(47B)\\ C(47)-H(47B)\\ C(47)-H(47B)\\ C(43)-H(43)\\ C(32)-H(32)\\ C(48)-H(48B)\\ C(48)-H(48B)$	1.881(4) 1.885(4) 1.368(6) 1.516(6) 0.9800 0.9800 0.9800 1.395(6) 1.399(6) 1.42(6) 1.398(6) 1.412(5) 1.406(6) 1.381(6) 0.9500 1.381(6) 0.9500 1.532(6) 0.9800 0.9800 0.9800 0.9800 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.364(7) 0.9500 1.382(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 1.377(6) 0.9500 0.9500 1.377(6) 0.9500 0.9800 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9800
C(47)-H(47B) C(47)-H(47C) C(43)-H(47C) C(43)-H(43) C(32)-H(32) C(48)-H(48B) C(48)-H(48B) C(48)-H(48C) Au(1)-P(1) Au(1)-S(1) S(1)-C(1) P(1)-C(2	0.9800 0.9800 0.9500 0.9500 0.9800 0.9800 2.2797(12) 2.3051(11) 1.757(4) 1.831(4) 1.883(5) 1.891(5) 1.370(5) 1.527(7) 0.9800 0.9800 0.9800

C(15)-C(16) C(15)-C(16) C(15)-H(15) C(16)-H(15) C(16)-H(16) C(12)-C(17) C(16)-H(16) C(12)-C(13) C(12)-H(12) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(24)-H(24A) C(21)-C(19) C(21)-C(19) C(21)-C(18) C(21)-H(21A) C(21)-H(21A) C(21)-H(21B) C(21)-H(21B) C(21)-H(21B) C(21)-H(21B) C(21)-H(21B) C(21)-H(21B) C(25)-C(23) C(25)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(26)-H(26B) C(22)-H(22A) C(22)-H(22A) C(22)-H(22A) C(22)-H(22A) C(22)-H(22A) C(22)-H(22C) C(1)-C(6) C(22)-H(22C) C(3)-C(4) C(14)-C(13) C(14)-H(14) C(5)-C(4) C(5)-C(6) C(5)-C(6) C(5)-H(5) C(2)-H(2) C(13)-H(13) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-C(3) C(17)-H(17) C(4)-H(4)	$\begin{array}{c} 1.369(7)\\ 1.396(6)\\ 0.9500\\ 1.369(7)\\ 0.9500\\ 1.378(7)\\ 1.382(7)\\ 0.9500\\ 1.534(7)\\ 0.9800\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.384(6)\\ 1.395(6)\\ 0.9500\\ 1.391(6)\\ 1.412(6)\\ 1.526(7)\\ 0.9800\\ 0.1380(6)\\ 1.479(6)\\ 1.399(6)\\ 1.372(7)\\ 0.9500\\ 1.382(6)\\ 0.9500\\ 1.382(6)\\ 0.9500\\ 0.9500\\ 1.374(6)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.354(7)\\ 0.9500\\ $
P(2)-Au(2)-S(2) C(27)-S(2)-Au(2) C(33)-P(2)-C(49) C(33)-P(2)-C(45) C(49)-P(2)-C(45) C(49)-P(2)-Au(2) C(49)-P(2)-Au(2) C(49)-C(50)-H(50A) C(49)-C(50)-H(50B) H(50A)-C(50)-H(50C) H(50A)-C(50)-H(50C) H(50B)-C(50)-H(50C) H(50B)-C(50)-H(50C) C(40)-C(35)-C(36) C(40)-C(35)-C(34) C(36)-C(35)-C(34)	176.35(3) 106.36(16) 103.6(2) 107.45(19) 115.1(2) 116.36(13) 106.85(15) 107.82(15) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 118.3(4) 120.7(4) 120.5(4)

C(44)-C(33)-C(34) C(44)-C(33)-P(2) C(34)-C(33)-P(2) C(41)-C(34)-C(35) C(33)-C(34)-C(35) C(33)-C(34)-C(35) C(37)-C(36)-H(36) C(35)-C(36)-H(36) C(35)-C(36)-H(36) C(35)-C(36)-H(36) C(32)-C(31)-H(31) C(30)-C(31)-H(31) C(45)-C(46)-H(46B) H(46A)-C(46)-H(46B) H(46A)-C(46)-H(46C) H(46B)-C(46)-H(46C) H(46B)-C(46)-H(46C) C(38)-C(39)-H(39) C(40)-C(39)-H(39) C(30)-C(31)-H(31) C(33)-C(30)-H(30) C(31)-C(30)-H(30) C(31)-C(30)-H(30) C(31)-C(30)-H(30) C(38)-C(37)-H(37) C(36)-C(37)-H(37) C(36)-C(37)-H(51B) H(51A)-C(51)-H(51B) H(51A)-C(51)-H(51B) H(51A)-C(51)-H(51C) H(51B)-C(51)-H(51C) H(51B)-C(51)-H(51C) H(51B)-C(51)-H(51C) H(51B)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(51A)-C(51)-H(51C) H(52A)-C(45)-C(46) C(47)-C(45)-P(2) C(48)-C(45)-P(2) C(48)-C(45)-P(2) C(48)-C(45)-P(2) C(49)-C(52)-H(52B) H(52A)-C(52)-H(52B) H(52A)-C(52)-H(52B) H(52A)-C(52)-H(52C) H(52B)-C(52)-H(52C) H(52B)-C(52)-H(52C) H(52B)-C(52)-H(52B) C(42)-C(41)-H(41) C(33)-C(44)-H(44) C(43)-C(42)-C(41)-H(44) C(33)-C(44)-H(44) C(33)-C(44)-H(44) C(33)-C(44)-H(44) C(33)-C(44)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(44)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(41)-H(44) C(43)-C(42)-C(4	118.3(4) $118.6(3)$ $122.8(3)$ $118.0(4)$ $116.1(3)$ $125.8(4)$ $120.7(4)$ 119.6 119.6 $119.6(5)$ 120.2 109.5 $109.$
$\begin{array}{l} C(29)-C(26)-R(26)\\ C(27)-C(28)-R(28)\\ C(43)-C(44)-C(33)\\ C(43)-C(44)-R(44)\\ C(33)-C(44)-R(44)\\ C(33)-C(42)-C(41)\\ C(43)-C(42)-R(42)\\ C(41)-C(42)-R(42)\\ C(41)-C(42)-R(42)\\ C(45)-C(47)-R(47R)\\ R(47A)-C(47)-R(47B)\\ R(47A)-C(47)-R(47C)\\ \end{array}$	121.0 121.9(4) 119.1 119.1 118.9(4) 120.6 120.6 109.5 109.5 109.5 109.5

C(12)-C(11)-C(10) C(12)-C(11)-H(11) C(10)-C(11)-H(11) C(23)-C(26)-H(26A) C(23)-C(26)-H(26B) H(26A)-C(26)-H(26C) H(26B)-C(26)-H(26C) H(26B)-C(26)-H(26C) C(2)-C(1)-C(6) C(2)-C(1)-S(1) C(19)-C(22)-H(22B) H(22A)-C(22)-H(22B) H(22A)-C(22)-H(22C) H(22B)-C(22)-H(22C) H(22B)-C(22)-H(22C) H(22B)-C(22)-H(22C) H(22B)-C(22)-H(22C) C(15)-C(8)-C(9) C(15)-C(8)-C(9) C(10)-C(9)-C(14) C(10)-C(9)-C(14) C(10)-C(9)-C(14) C(10)-C(9)-C(14) C(10)-C(9)-C(14) C(10)-C(9)-C(14) C(11)-C(14)-H(14) C(9)-C(14)-H(14) C(9)-C(14)-H(14) C(9)-C(14)-H(14) C(4)-C(5)-H(5) C(22)-C(19)-C(21) C(22)-C(19)-C(20) C(22)-C(19)-P(1) C(21)-C(19)-C(20) C(22)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(21)-C(19)-P(1) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(4)-C(2)-C(3)-C(2) C(4)-C(3)-P(1) C(4)-C(13)-H(13) C(10)-C(13)-H(13) C(10)-C(17)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(11)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12)-C(13)-H(17) C(12	120.1(5) 120.0 120.0 120.0 109.5 117.8(4) 126.5(4) 117.8(4) 120.9(5) 119.5 120.0(4) 120.0 109.7(5) 109.7(5) 108.1(4) 116.2(3) 108.0(4) 105.4(3) 118.6(4) 120.7 120.7 120.7 121.4(4) 118.8 119.3 122.4(4) 118.8 109.9(5) 107.122.4(4) 118.8 109.0(4) 109.9(5) 106.7(5) 117.7(4) 104.8(3) 108.1(3) 120.5(5) 119.7 119.3(5) 120.3 120.3 120.3 120.5 120.3 120.3 120.5 120.3 120.3 120.5 120.3 120.5 120.3 120.3 120.5 120.3 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120.3 120.5 120
C(12)-C(13)-H(13) $C(16)-C(17)-C(18)$ $C(16)-C(17)-H(17)$ $C(18)-C(17)-H(17)$ $C(3)-C(4)-C(5)$ $C(3)-C(4)-H(4)$ $C(5)-C(4)-H(4)$ $C(4)-C(3)-F(1)$ $C(4)-C(3)-C(2)$ $E(1)-C(3)-C(2)$	119.7 119.3(5) 120.3 120.3 117.5(4) 121.2 121.2 118.0(4) 124.5(5) 117.5(4)
	、 /

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc8. The anisotropic displacement factor exponent takes the form: $-2\Box^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(2) S(2)	18(1) 23(1)	19(1) 32(1)	16(1) 19(1)	5(1) 9(1)	4(1) 8(1)	3(1) 5(1)
P(2)	17(1)	17(1)	18(1)	5(1)	5(1)	4(1)
F(2)	35(2)	66(2)	69(2)	32(2)	2(2)	17(2)
C(50) C(35)	30(3) 15(2)	43(3) 21(2)	35(3) 20(2)	1(2) 7(2)	3(2)	-10(2) 6(2)
C(33)	17(2)	20(2)	22(2)	10(2)	8(2)	3(2)
C(34)	19(2)	21(2)	13(2)	5(2)	4(2)	2(2)
C(36)	16(2)	23(2)	21(2)	7(2)	3(2)	9(2)
C(46)	41(3)	36(3)	49(3)	-19(3)	-10(3)	-1(3)
C(39)	33(2)	36(3)	20(2)	2(2)	12(2)	8(2)
C(30)	52(3)	37(3)	34(3)	22(2)	-11(2)	-3(3)
C(37) C(51)	19(2) 23(3)	20(2) 86(5)	32(2) 48(3)	10(2)	13(2)	o(∠) -1(3)
C(40)	27(2)	22(2)	30(2)	8(2)	11(2)	5(2)
C(27)	26(2)	18(2)	23(2)	5(2)	3(2)	-2(2)
C(45) C(38)	31(2) 27(2)	22(2) 42(3)	23(2)	4(2) 20(2)	13(2) 17(2)	4(2) 15(2)
C(52)	32(3)	68(4)	110(6)	62(4)	-20(3)	-3(3)
C(41)	24(2)	18(2)	26(2)	9(2)	10(2)	7(2)
C(28)	31(2)	24(2)	26(2)	9(2) 8(2)	2(2)	-3(2) 8(2)
C(44) C(42)	34(2)	24(2)	25(2)	12(2)	11(2)	8(2)
C(47)	80(4)́	19(3)	37(3)	9(2)	24(3)	12(3)
C(43)	30(2)	31(3)	25(2)	7(2)	16(2)	0(2)
C(49) C(32)	46(3)	31(3)	24(2)	9(2) 13(2)	4(2)	2(2) 7(2)
C(29)	25(2)	34(3)	46(3)	18(2)	1(2)	1(2)
C(48)	72(4)	28(3)	31(3)	4(2)	26(3)	9(3)
S(1)	20(1)	22(1)	20(1)	5(1)	2(1) 2(1)	2(1)
P(1)	24(1)	20(1)	22(1)	5(1)	4(1)	5(1)
F(1)	47(2)	42(2)	88(3)	0(2)	2(2)	14(2)
C(20) C(15)	69(4) 25(2)	25(3)	44(3) 70(4)	28(3)	30(3) 2(2)	$\frac{27(3)}{4(2)}$
C(16)	23(2)	36(3)	75(4)	19(3)	-5(3)	-5(2)
C(12)	27(2)	21(2)	42(3)	7(2)	1(2)	0(2)
C(24) C(10)	72(4) 26(2)	62(4) 24(2)	44(3) 34(3)	28(3)	29(3)	18(3) 5(2)
C(7)	25(2)	24(2)	21(2)	9(2)	2(2)	-1(2)
C(21)	49(3)	86(5)	82(5)	68(4)	18(3)	28(4)
C(25)	94(5) 31(2)	44(4) 19(2)	46(4)	-12(3)	34(3)	-13(3)
C(26)	42(3)	86(5)	45(3)	16(3)	22(3)	24(3)
C(1)	19(2)	28(2)	24(2)	12(2)	6(2)	2(2)
C(22)	137(7)	32(3)	39(3)	18(3)	1(4)	-22(4)
C(8) C(9)	20(2)	23(2) 16(2)	20(2) 35(3)	8(2)	6(2)	8(2)
C(14)	29(2)	27(3)	37(3)	15(2)	4(2)	4(2)
C(5)	29(2)	40(3)	27(2)	16(2)	5(2)	-7(2)
C(19) C(2)	41(3) 28(2)	20(2) 29(3)	30(3)	9(2)	7(2) 1(2)	9(2) 2(2)
C(6)	28(2)	30(3)	22(2)	9(2)	7(2)	1(2)
C(18)	31(2)	24(2)	37(3)	7(2)	6(2)	-1(2)
C(23) C(13)	37(3) 45(3)	29(3) 29(3)	23(2) 26(3)	6(2) 4(2)	10(2) 3(2)	5(2) 6(2)
C(17)	30(3)	35(3)	45(3)	8(2)	-4(2)	-13(2)
C(4)	26(2)	43(3)	44(3)	26(3)	1(2)	3(2)
C(3)	38(3)	26(3)	51(3)	13(2)	13(2)	10(2)

Table 5. Torsion angles [°] for khc8.

C(49)-P(2)-C(33)-C(44) C(45)-P(2)-C(33)-C(44) Au(2)-P(2)-C(33)-C(44) C(49)-P(2)-C(33)-C(34) C(45)-P(2)-C(33)-C(34) 64.9(4) -57.3(4) -178.2(3) -109.1(4) 128.7(3)

$A_{11}(2) = B(2) = C(2A)$	\overline{z}
Au(2)-P(2)-C(33)-C(34)	7.7(4)
C(44)-C(33)-C(34)-C(41)	-2 9(6)
	474 0(0)
P(2)-C(33)-C(34)-C(41)	171.2(3)
C(44)-C(33)-C(34)-C(35)	174,7(4)
	11 2(6)
F(2) - C(33) - C(34) - C(33)	-11.2(0)
C(40)-C(35)-C(34)-C(41)	-61.7(5)
C(36) $C(35)$ $C(34)$ $C(41)$	110 0(1)
C(30) - C(30) - C(34) - C(41)	110.9(4)
C(40)-C(35)-C(34)-C(33)	120.7(5)
C(36) $C(35)$ $C(34)$ $C(33)$	66 7(5)
C(30) - C(33) - C(34) - C(33)	-00.7(3)
C(40)-C(35)-C(36)-C(37)	0.0(6)
C(34) - C(35) - C(36) - C(37)	-172 8(4)
	11 2:0(+)
C(32)-C(31)-C(30)-C(29)	0.9(8)
C(35)-C(36)-C(37)-C(38)	-0.3(6)
	0.0(0)
C(38)-C(39)-C(40)-C(35)	-0.5(7)
C(36)-C(35)-C(40)-C(39)	0.5(6)
	172 2(4)
C(34) - C(35) - C(40) - C(39)	173.2(4)
Au(2)-S(2)-C(27)-C(32)	155.5(3)
$\Delta u \dot{c} \dot{c} \dot{c} \dot{c} \dot{c} \dot{c} \dot{c} \dot{c}$	-22 0(1)
Au(2)-0(2)-0(2))	-22.3(4)
C(33)-P(2)-C(45)-C(48)	65.7(4)
C(49) - P(2) - C(45) - C(48)	-49 1(4)
	400.0(0)
Au(2)-P(2)-C(45)-C(48)	-168.2(3)
C(33)-P(2)-C(45)-C(47)	-171 2(3)
C(A) = C(A) = C(A)	74 1(4)
C(49) - P(2) - C(43) - C(47)	74.1(4)
Au(2)-P(2)-C(45)-C(47)	-45.0(4)
	55 7(A)
C(33) - F(2) - C(43) - C(40)	-55.7(4)
C(49)-P(2)-C(45)-C(46)	-170.4(4)
$\Delta \dot{\mu}(2) = P(2) = C(A5) = C(A6)$	70 5(4)
Au(2)-1 (2)-C(+0)-C(+0)	70.5(4)
C(40)- $C(39)$ - $C(38)$ - $C(37)$	0.2(6)
C(36)-C(37)-C(38)-C(39)	0.2(6)
	0.2(0)
C(33)-C(34)-C(41)-C(42)	1.0(6)
C(35)-C(34)-C(41)-C(42)	-176.8(4)
	0.9(7)
C(32) - C(21) - C(23)	0.0(7)
S(2)-C(27)-C(28)-C(29)	179.2(4)
C(34) - C(33) - C(44) - C(43)	2 8(6)
	2.0(0)
P(2)-U(33)-U(44)-U(43)	-171.5(3)
C(34)-C(41)-C(42)-C(43)	1 0(7)
C(41) $C(42)$ $C(42)$ $C(44)$	1 0(7)
C(41)-C(42)-C(43)-C(44)	-1.2(7)
C(33)-C(44)-C(43)-C(42)	-0.8(7)
C(22) $B(2)$ $C(40)$ $C(50)$	62 0(4)
C(33) - F(2) - C(49) - C(30)	03.9(4)
C(45)-P(2)-C(49)-C(50)	-179.2(3)
$A_{11}(2) - P(2) - C(10) - C(50)$	-59 5(3)
	-00.0(0)
C(33)-P(2)-C(49)-C(52)	-178.4(4)
C(45)-P(2)-C(49)-C(52)	-61 4(5)
	EQ 2(4)
Au(2)-P(2)-C(49)-C(52)	36.3(4)
C(33)-P(2)-C(49)-C(51)	-53.9(4)
C(A5) - D(2) - C(A0) - C(51)	63 0(4)
C(+3)-1(2)-C(+3)-C(31)	03.0(4)
Au(2)-P(2)-C(49)-C(51)	-177.3(4)
C(28) - C(27) - C(32) - C(31)	0.5(7)
	477.0(4)
S(2)-G(27)-G(32)-G(31)	-177.9(4)
C(30)-C(31)-C(32)-C(27)	-1.4(8)
	178 3(4)
C(31) - C(30) - C(23) - 1(2)	170.0(4)
C(31)-C(30)-C(29)-C(28)	0.5(8)
C(27) - C(28) - C(29) - C(30)	-14(7)
	170.0(1)
C(27)-C(28)-C(29)-F(2)	-179.2(4)
C(8)-C(15)-C(16)-C(17)	-0.8(9)
C(22) D(1) C(7) C(10)	E9 4(4)
U(23)-P(1)-U(7)-U(18)	-58.4(4)
C(19)-P(1)-C(7)-C(18)	63.5(4)
$A_{ij}(1) = P(1) = C(7) = C(18)$	-179 3(3)
Au(1) - F(1) - O(7) - O(10)	-179.3(3)
C(23)-P(1)-C(7)-C(8)	123.2(4)
C(19)-P(1)-C(7)-C(8)	-114 9(4)
$A_{11}(1) D(1) C(7) C(9)$	0.0(4)
Au(1)-7(1)-0(1)-0(0)	2.3(4)
C(13)-C(12)-C(11)-C(10)	0.4(7)
C(0) - C(10) - C(11) - C(12)	0.2(6)
	-0.2(0)
Au(1)-S(1)-C(1)-C(2)	-20.4(4)
Au(1)-S(1)-C(1)-C(6)	162 4(3)
C(16) C(15) C(0) C(7)	
U(10)-U(13)-U(8)-U(1)	υ.δ(δ)
C(16)-C(15)-C(8)-C(9)	-178.8(5)
C(18) - C(7) - C(8) - C(15)	0 8(7)
	-0.0(7)
P(1)-C(7)-C(8)-C(15)	177.6(4)
C(18)-C(7)-C(8)-C(9)	178 7(5)

P(1)-C(7)-C(8)-C(9)	-2 8(6)
C(11)-C(10)-C(9)-C(14)	-0.4(6)
C(11)-C(10)-C(9)-C(8)	-172.3(4)
C(15)-C(8)-C(9)-C(10)	93.5(6)
C(7)-C(8)-C(9)-C(10)	-86.1(5)
C(15)-C(8)-C(9)-C(14)	-78.2(5)
C(7) - C(8) - C(9) - C(14)	102.2(5)
C(10)-C(9)-C(14)-C(13)	0.8(6)
C(8)-C(9)-C(14)-C(13)	172.8(4)
C(7)-P(1)-C(19)-C(22)	-65.5(5)
C(23)-P(1)-C(19)-C(22)	50.6(5)
Aù(1)-P(1)-C(19)-C(22)	171.9(4)
C(7)-P(1)-C(19)-C(21)	171.5(4)
C(23)-P(1)-C(19)-C(21)	-72.4(4)
Au(1)-P(1)-C(19)-C(21)	48.9(4)
C(7)-P(1)-C(19)-C(20)	56.2(4)
C(23)-P(1)-C(19)-C(20)	172.2(3)
Au(1)-P(1)-C(19)-C(20)	-66.5(4)
$C(\hat{6})-C(\hat{1})-C(\hat{2})-C(\hat{3})$	-0.4(7)
S(1)-C(1)-C(2)-C(3)	-177.6(4)
C(4)-C(5)-C(6)-C(1)	-0.8(7)
C(2)-C(1)-C(6)-C(5)	0.7(7)
S(1)-C(1)-C(6)-C(5)	178.1(4)
C(8)-C(7)-C(18)-C(17)	0.8(7)
P(1)-C(7)-C(18)-C(17)	-177.7(4)
C(7)-P(1)-C(23)-C(25)	63.7(4)
C(19)-P(1)-C(23)-C(25)	-51.0(5)
Au(1)-P(1)-C(23)-C(25)	-171.3(4)
C(7)-P(1)-C(23)-C(24)	-57.5(4)
C(19)-P(1)-C(23)-C(24)	-172.2(4)
Au(1)-P(1)-C(23)-C(24)	67.4(4)
C(7)-P(1)-C(23)-C(26)	-171.0(4)
C(19)-P(1)-C(23)-C(26)	74.3(4)
Au(1)-P(1)-C(23)-C(26)	-46.1(4)
C(9)-C(14)-C(13)-C(12)	-0.7(7)
C(11)-C(12)-C(13)-C(14)	0.0(7)
C(15)-C(16)-C(17)-C(18)	0 7(9)
C(7)-C(18)-C(17)-C(16)	-0 7(8)
C(6)-C(5)-C(4)-C(3)	0.7(7)
C(5)-C(4)-C(3)-F(1)	179 7(5)
C(5)-C(4)-C(3)-C(2)	-0.5(8)
C(1)-C(2)-C(3)-C(4)	0.4(8)
C(1)-C(2)-C(3)-F(1)	-179 9(4)
3(1) 3(2) 3(3) 1 (1)	110.0(4)
$Au(SC_6H_4F-4)(C_{20}H_{27}P)]$	
Identification code	shelx
Empirical formula	C26 H31 Au F P S
Formula weight	622.50
Temperature	173(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P -1
Unit cell dimensions	a = 11.0004(6) Å
	b = 14.5902(6) A
	c = 16.9126(8) Å □ :
Volume	2467 6(2) Å ³
7	2 101.0(2) / (4
Z Dopsity (calculated)	1 676 Ma/m ³
Absorption coefficient	6.129 mm ⁻ '
F(000)	1224
Crystal size	0.500 x 0.310 x 0.300 mm ³
Theta range for data collection	3.428 to 29.496°.
Index ranges	-14<=h<=15, -20<=k<=19, -21<=l<=21
Reflections collected	32793
Independent reflections	11912 [R(int) = 0.0488]
Completeness to theta = 25.242°	99.7 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	11912 / 0 / 553
· · · · · · · · · · · · · · · · · · ·	171

□= 108.771(4)°. □= 104.898(4)°. □ = 91.213(4)°.

Goodness-of-fit on F ²	1.064
Final R indices [I>2sigma(I)]	R1 = 0.0338, wR2 = 0.0686
R indices (all data)	R1 = 0.0470, wR2 = 0.0765
Extinction coefficient	n/a
Largest diff. peak and hole	1.320 and -1.925 e.Å ⁻³

Table 2. Atomic coordinates ($x\,10^4$) and equivalent isotropic displacement parameters (Å $^2x\,10^3$) for khc8. U(eq) is defined as one third of the trace of the orthogonalized U^{jj} tensor.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		х	У	Z	U(eq)
S(2) 6615(1) 8145(1) 4581(1) 224(1) F(2) 10940(3) 7158(2) 5831(2) 56(1) C(50) 10265(5) 9334(4) 3388(3) 40(1) C(33) 8127(4) 9308(3) 2292(2) 18(1) C(34) 7285(4) 9991(3) 2292(2) 18(1) C(36) 5527(4) 9234(3) 2648(3) 41(1) C(36) 5527(4) 9234(3) 2648(3) 41(1) C(31) 8593(5) 7157(4) 1195(4) 55(2) C(30) 9707(5) 7746(4) 6800(3) 43(1) C(37) 4712(4) 976(3) 3156(3) 24(1) C(40) 6641(4) 10768(3) 3650(3) 26(1) C(41) 11178(5) 9023(5) 2880(4) 352(2) 26(1) C(42) 7734(4) 7063(3) 5417(3) 22(1) C(43) 4863(4) 10058(3) 3191(3) 22(1) C(44) 7764(4)	Au(2)	7566(1)	8308(1)	3563(1)	18(1)
P(2) 8603(1) 8409(1) 2582(1) 18(1) C(50) 10263(5) 9834(4) 3868(3) 40(1) C(35) 6506(4) 9881(3) 2287(3) 19(1) C(33) 8127(4) 9308(3) 2045(3) 19(1) C(34) 7285(4) 991(3) 2282(2) 18(1) C(36) 5527(4) 9234(3) 2648(3) 21(1) C(31) 8590(5) 8116(4) 6935(3) 41(1) C(46) 6934(5) 7057(4) 1135(4) 552(2) C(30) 9707(5) 7746(4) 6800(3) 43(1) C(51) 11176(5) 9023(5) 2680(4) 552(2) C(40) 6641(4) 10768(3) 3650(3) 24(1) C(52) 10851(5) 8157(5) 3671(5) 70(2) C(41) 7123(4) 10056(3) 3213(3) 28(1) C(42) 7733(4) 1004(3) 246(3) 320(1) C(42) 7734(4) 10606(3) </td <td>S(2)</td> <td>6615(1)</td> <td>8145(1)</td> <td>4581(1)</td> <td>24(1)</td>	S(2)	6615(1)	8145(1)	4581(1)	24(1)
F(2) 10940(3) /158(2) 9831(2) 5631(2) 5641(2) C(50) 10263(5) 9834(4) 3668(3) 40(1) C(33) 6508(4) 9981(3) 2287(3) 19(1) C(34) 7285(4) 9991(3) 2292(2) 18(1) C(31) 8590(5) 8118(4) 6935(3) 41(1) C(31) 8590(5) 8118(4) 6935(3) 41(1) C(30) 9707(5) 7746(4) 4600(3) 42(1) C(37) 4712(4) 9276(3) 3565(3) 24(1) C(51) 11178(5) 9023(5) 2680(4) 55(2) C(40) 6641(4) 10768(3) 3561(3) 24(1) C(42) 7627(4) 7663(3) 5417(3) 28(1) C(44) 8081(4) 10058(3) 3911(3) 28(1) C(44) 8708(4) 9380(3) 1419(3) 23(3) C(44) 8708(4) 9380(3) 1419(3) 23(1) C(44) 8708(4) 9380(3) 1419(3) 23(1) C(44) 8708(1)	P(2)	8603(1)	8409(1)	2582(1)	18(1)
C(3b) (1225(5) 9534(4) 9505(3) 44(1) C(33) 8127(4) 9308(3) 2045(3) 19(1) C(34) 7255(4) 9921(3) 22648(3) 21(1) C(36) 5527(4) 9234(3) 22648(3) 21(1) C(36) 5527(4) 9234(3) 22648(3) 31(1) C(30) 9707(5) 7057(4) 1195(4) 455(3) 31(1) C(37) 4712(4) 9276(3) 3156(3) 24(1) C(37) 4717(3) 1705(3) 26(1) 26(1) C(47) 6641(4) 10768(3) 3650(3) 24(1) C(45) 8331(4) 717(3) 1705(3) 26(1)	F(2)	10940(3)	/158(2)	5831(2)	56(1)
$\begin{array}{c cccc} C(33) & C100(47) & 930(13) & 2205(13) & 18(1) \\ C(34) & 7285(4) & 9991(3) & 2292(2) & 18(1) \\ C(36) & 5527(4) & 9234(3) & 2248(3) & 22(1) \\ C(31) & 8590(5) & 8118(4) & 6935(3) & 41(1) \\ C(31) & 8590(5) & 8118(4) & 6935(3) & 41(1) \\ C(46) & 6934(5) & 7057(4) & 1195(4) & 55(2) \\ C(39) & 5821(4) & 10794(4) & 4153(3) & 31(1) \\ C(30) & 9707(5) & 7746(4) & 6800(3) & 43(1) \\ C(37) & 4712(4) & 9276(3) & 3156(3) & 24(1) \\ C(51) & 11178(5) & 9023(5) & 2880(4) & 55(2) \\ C(40) & 6641(4) & 10768(3) & 33550(3) & 26(1) \\ C(27) & 7827(4) & 7963(3) & 5417(3) & 22(1) \\ C(45) & 8331(4) & 7177(3) & 1705(3) & 26(1) \\ C(45) & 8331(4) & 7177(3) & 1705(3) & 26(1) \\ C(45) & 8331(4) & 71073(3) & 1923(3) & 22(1) \\ C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 23(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 36(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 36(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 36(1) \\ C(44) & 9133(5) & 7004(4) & 1076(3) & 36(1) \\ C(45) & 7683(5) & 8211(3) & 6242(3) & 32(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 36(1) \\ C(41) & 3768(4) & 837(3) & 978(3) & 33(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 2244(4) & 44(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(11) & 3634(4) & 1172(3) & 1360(3) & 23(1) \\ C(22) & 3966(6) & 5046(4) & 1171(3) & 50(2) \\ C(11) & 3634(4) & 1172(3) & 1360(3) & 23(1) \\ C(21) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(21) & 1335(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & 3334(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & 3634(4) & 2719(3) & 2266(3) & 27(1) \\ C(22) & 3966(6) & 6559(4) & 2386(4) & 77(2) \\ C(11) & 3634(4) & 2719(3) & 2617(3) & 31(1) \\ C(22) & -3065(4) & 1568(3) & 3579(3) & 31(1) \\ C(23) & 2955(4) & 5189(3) & 3579(3) & 31(1) \\ C(24) & -005(4) & 1564(3) & 3579$	C(50) C(25)	10203(5)	9834(4)	3808(3)	40(1)
$\begin{array}{c cccc} 0.1 & 0.121(4) & 0.00(5) & 0.14(4) & 0.10(5)$	C(33)	0000(4) 8127(4)	9901(3)	2007(3)	19(1)
$\begin{array}{c cccc} & -527(4) & -9234(3) & 2648(3) & 21(1) \\ C(31) & 8590(5) & 8118(4) & 6935(3) & 41(1) \\ C(31) & 8590(5) & 8118(4) & 6935(3) & 41(1) \\ C(30) & 9707(5) & 7746(4) & 4153(3) & 31(1) \\ C(37) & 4712(4) & 9276(3) & 3156(3) & 24(1) \\ C(51) & 11178(5) & 9023(5) & 2680(4) & 55(2) \\ C(40) & 6641(4) & 10768(3) & 3650(3) & 24(1) \\ C(27) & 7827(4) & 7963(3) & 5417(3) & 24(1) \\ C(45) & 8331(4) & 7177(3) & 1705(3) & 26(1) \\ C(38) & 4863(4) & 10058(3) & 3911(3) & 26(1) \\ C(52) & 10851(5) & 8157(5) & 3671(5) & 702(2) \\ C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 24(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 24(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 24(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 21(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 26(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 21(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 26(1) \\ C(44) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ C(15) & 6943(4) & 3366(4) & 2184(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 492(2) \\ C(15) & 6943(4) & 3366(4) & 2184(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 492(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(21) & 3334(6) & 5542(5) & 1473(4) & 622(2) \\ C(11) & 3334(4) & 1172(3) & 1850(3) & 23(1) \\ C(22) & 3366(6) & 6594(4) & 2386(4) & 778(3) \\ C(11) & 3334(4) & 152(5) & 3332(4) & 57(2) \\ C(1) & -634(4) & 2264(3) & 366(3) & 23(1) \\ C(22) & 3666(6) & 6594(4) & 2386(4) & 778(3) \\ C(11) & -6334(4) & 262(3) & 366(3) & 23(1) \\ C(22) & -085(4) & 154(3) & 3579(3) & 30(1) \\ C(23) & 2956(4) & 5184(3) & 3579(3) & 30(1) \\ C(23) & 2956(4) & $	C(34)	7285(4)	9991(3)	2292(2)	18(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(36)	5527(4)	9234(3)	2648(3)	21(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(31)	8590(5)	8118(4)	6935(3)	41(1)́
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(46)	6934(5)	7057(4)	1195(4)	55(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(39)	5821(4)	10794(4)	4153(3)	31(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(30)	9707(5)	7746(4)	6800(3)	43(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(37)	4712(4)	9276(3)	3156(3)	24(1)
$\begin{array}{c cl} C(40) & 0001(4) & 10706(3) & 3003(3) & 20(1) \\ C(45) & 8331(4) & 7177(3) & 1705(3) & 26(1) \\ C(38) & 4863(4) & 10056(3) & 3911(3) & 28(1) \\ C(52) & 10851(5) & 8157(5) & 3671(5) & 70(2) \\ C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ C(42) & 8951(4) & 7604(4) & 9380(3) & 1419(3) & 23(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(43) & 8521(4) & 1018(3) & 3206(3) & 27(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 775(1) & 25(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 492(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 622(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(25) & 3543(7) & 6176(4) & 2201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(10) & 4392(4) & 2205(3) & 2876(3) & 23(1) \\ C(25) & 5633(4) & 3669(3) & 2580(3) & 25(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2685(4) & 1580(3) & 3579(3) & 32(1) \\ C(16) & -1455(4) & 502(3) & 755(3) & 32(1) \\ C(17) & -265(5) & 5349(4) & 366(3) & 42(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 226(5) & 1434(3) & 622(3) & 366(3) & 42(1) \\ C(17) & -265(5) & 5349(4) & 3666($	C(51)	11178(5)	9023(5)	2680(4)	55(Z) 26(1)
$\begin{array}{c cccc} C(45) & 100(4) & 1705(3) & 371(3) & 26(1) \\ C(38) & 4863(4) & 10058(3) & 3911(3) & 28(1) \\ C(52) & 10851(5) & 8157(5) & 3671(5) & 70(2) \\ C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ C(28) & 8951(4) & 7604(3) & 5282(3) & 28(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(47) & 8522(6) & 6410(3) & 2146(3) & 44(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(32) & 7663(5) & 8211(3) & 6242(3) & 32(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1688(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 546(2) \\ C(10) & 43392(4) & 2105(3) & 2365(3) & 29(1) \\ C(11) & 3036(6) & 4424(5) & 4042(4) & 546(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 546(2) \\ C(11) & 3384(4) & 1172(3) & 1850(3) & 23(1) \\ C(25) & 5543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 23(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(10) & 4392(4) & 2204(3) & 369(3) & 23(1) \\ C(24) & 3306(6) & 5554(3) & 2386(3) & 23(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(25) & 3543(7) & 6176(4) & 2204(3) & 369(3) & 23(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & -3056(8) & 6559(4) & 2386(4) & 73(2) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(15) & -2055(5) & 5349(4) & 3666(3) & 42(1) \\ C(16) & -1455(4) & 5144(3) & 622(3) & 36(1) \\$	C(40)	7827(4)	7963(3)	5050(3)	20(1)
$\begin{array}{c cccc} C(38) & 4833(4) & 10058(3) & 3911(3) & 28(1) \\ C(52) & 10851(5) & 8157(5) & 3671(5) & 70(2) \\ C(28) & 8951(4) & 7604(3) & 5282(3) & 28(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 23(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(47) & 8522(6) & 6410(3) & 2146(3) & 44(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1686(1) & 22(1) \\ 876(1) & 1876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(15) & 6943(4) & 4562(3) & 2366(3) & 29(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(17) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(20) & 3946(6) & 5045(4) & 1171(3) & 50(2) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(10) & 4392(4) & 2105(3) & 2386(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 662(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3334(5) & 5528(5) & 1473(4) & 62(2) \\ C(11) & 3334(5) & 5528(3) & 1131(3) & 31(1) \\ C(24) & 3306(6) & 4524(3) & 359(3) & 25(1) \\ C(7) & 5138(4) & 366(3) & 2580(3) & 25(1) \\ C(10) & 4392(4) & 2358(3) & 1131(3) & 31(1) \\ C(25) & 3543(7) & 6176(4) & 2204(3) & 369(3) & 25(1) \\ C(7) & 5138(4) & 366(3) & 755(3) & 25(1) \\ C(8) & 5633(4) & 366(3) & 357(3) & 32(1) \\ C(25) & -6085(4) & 168(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(14) & 4289(4) & 358(3) & 341(3) & 32(1) \\ C(15) & -2085(4) & 5169(3) & 357(3) & 32(1) \\ C(16) & -1455(4) & 5164(3) & 357(3) & 32(1) \\ C(17) & -265(5) & 1473(4) & 622(3) & 366(3) & 42(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 357(3) & 30(1) \\ C(1$	C(27) C(45)	8331(4)	7177(3)	1705(3)	24(1)
$\begin{array}{c cccc} \hline C(52) & 10851(5) & 8157(5) & 3671(5) & 70(2) \\ \hline C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ \hline C(42) & 8951(4) & 7604(3) & 5282(3) & 28(1) \\ \hline C(44) & 8708(4) & 9380(3) & 1419(3) & 23(1) \\ \hline C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ \hline C(43) & 8521(6) & 6410(3) & 2146(3) & 44(1) \\ \hline C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ \hline C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ \hline C(32) & 7663(5) & 8211(3) & 6242(3) & 32(1) \\ \hline C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ \hline Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ \hline S(1) & 876(1) & 1878(1) & 757(1) & 256(1) \\ \hline C(14) & 876(1) & 1878(1) & 757(1) & 251(1) \\ \hline C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ \hline C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ \hline C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ \hline C(12) & 3788(4) & 837(3) & 978(3) & 33(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 29(1) \\ \hline C(7) & 5138(4) & 4562(3) & 2365(3) & 23(1) \\ \hline C(2) & 109 & 3334(5) & 5528(3) & 1131(3) & 31(1) \\ \hline C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ \hline C(1) & -4354(4) & 2204(3) & 369(3) & 23(1) \\ \hline C(1) & -4354(4) & 2204(3) & 369(3) & 23(1) \\ \hline C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ \hline C(1) & -435(4) & 1514(3) & -373(3) & 27(1) \\ \hline C(1) & -435(4) & 1514(3) & -373(3) & 27(1) \\ \hline C(11) & -435(4) & 5144(3) & 622(3) & 361(1) \\ \hline C(12) & -1085(4) & 5144(3) & 622(3) & 361(1) \\ \hline C(13) & 4268(5) & 1434(3) & 622(3) & 361(1) \\ \hline C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ \hline C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ \hline \end{array}$	C(38)	4863(4)	10058(3)	3911(3)	28(1)
$\begin{array}{cccc} C(41) & 7123(4) & 10733(3) & 1923(3) & 22(1) \\ C(28) & 8951(4) & 7604(3) & 5282(3) & 28(1) \\ C(44) & 8708(4) & 9380(3) & 1419(3) & 23(1) \\ C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(47) & 8522(6) & 6410(3) & 2146(3) & 44(1) \\ C(43) & 8521(4) & 1018(3) & 1070(3) & 28(1) \\ C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1686(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3986(8) & 6569(4) & 2386(4) & 73(2) \\ C(6) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3986(8) & 6569(4) & 2386(3) & 25(1) \\ C(9) & 4887(4) & 2718(3) & 2117(3) & 24(1) \\ C(14) & 4829(4) & 2386(3) & 1131(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1131(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1131(3) & 31(1) \\ C(14) & 4829(4) & 2386(4) & -718(3) & 31(1) \\ C(15) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2386(3) & 3773(3) & 27(1) \\ C(18) & 5979(4) & 5380(3) & 3479(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 366(3) & 42(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 7265(5) & 53349(4) & 366(3) & 42(1) \\ \end{array}$	C(52)	10851(5)	8157(5)	3671(5)	70(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(41)	7123(4)	10733(3)	1923(3)	22(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(28)	8951(4)	7604(3)	5282(3)	28(1)
$\begin{array}{ccccc} C(42) & 7734(4) & 10806(3) & 1327(3) & 26(1) \\ C(47) & 8522(6) & 6410(3) & 2146(3) & 44(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(32) & 7663(5) & 8211(3) & 6242(3) & 32(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ S(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2376(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2366(3) & 23(1) \\ C(25) & 3543(7) & 61176(4) & 4201(4) & 66(2) \\ C(11) & 3334(4) & 1172(3) & 1850(3) & 32(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(8) & 5633(4) & 3669(3) & 2580(3) & 25(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2885(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2885(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2885(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2885(4) & 1688(3) & 3419(3) & 32(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2855(4) & 5143(3) & 622(3) & 36(1) \\ C(13) & 24255(5) & 5349(4) & 3666(3) & 421(3) & 621(3) \\ C(13) & 2455(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 7255(5) & 5349(4) & 3666(3) & 421(5) \\ \end{array} \right)$	C(44)	8708(4)	9380(3)	1419(3)	23(1)
$\begin{array}{c} C(4') & 8522(6) & 6410(3) & 2146(3) & 44(1) \\ C(43) & 8521(4) & 10118(3) & 1070(3) & 28(1) \\ C(29) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(32) & 7663(5) & 8211(3) & 6242(3) & 32(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1244(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(8) & 5633(4) & 3669(3) & 2280(3) & 25(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(13) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 366(3) & 42(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 366(3) & 42(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 366(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & -726(5) & 5$	C(42)	7734(4)	10806(3)	1327(3)	26(1)
$\begin{array}{cccc} C(49) & 10306(4) & 8854(3) & 3206(3) & 27(1) \\ C(32) & 7663(5) & 8211(3) & 6242(3) & 32(1) \\ C(32) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ P(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 3850(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & -1085(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 366(3) & 27(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 726(5) & 5339(4) & 562(3) & 366(3) & 42(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 726(5) & 53$	C(47)	8522(6)	6410(3)	2146(3)	44(1)
$\begin{array}{c} C(43) & 1030(47) & 0034(3) & 3200(3) & 27(1) \\ C(32) & 7663(5) & 8211(3) & 6224(3) & 32(1) \\ C(29) & 9842(4) & 7501(4) & 5980(3) & 36(1) \\ C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(1) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(1) & -634(4) & 2204(3) & 369(3) & 25(1) \\ C(24) & 3334(5) & 5552(3) & 1131(3) & 31(1) \\ C(24) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(24) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 369(3) & 22(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17)$	C(43)	0021(4)	10110(3)	1070(3)	20(1)
$\begin{array}{ccccc} C(22) & 1050(0) & 0211(0) & 0221(0) & 021(1) \\ C(28) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(21) & 1935(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(8) & 5633(4) & 3669(3) & 2580(3) & 25(1) \\ C(9) & 4897(4) & 2719(3) & 2017(3) & 24(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 369(3) & 22(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 30(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(18) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(18) & 2055(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 725(5) & 5349(4) & 366(3) & 42(1) \\ C(18) & 2055(4) & 5169(3) & 3579(3) & $	C(49)	7663(5)	8211(3)	6242(3)	27(1)
$\begin{array}{c} C(48) & 9133(5) & 7004(4) & 1076(3) & 43(1) \\ Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(25) & 3543(7) & 6176(4) & 4201(4) & 66(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(23) & 5633(4) & 3669(3) & 2580(3) & 25(1) \\ C(9) & 4897(4) & 2719(3) & 2017(3) & 24(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 32(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 32(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ C(17) & 7265(5) & 5349(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265(5) & 5449(4) & 366(3) & 42(1) \\ C(17) & 7265($	C(29)	9842(4)	7501(4)	5980(3)	36(1)
$\begin{array}{c ccccc} Au(1) & 2182(1) & 3276(1) & 1668(1) & 22(1) \\ S(1) & 876(1) & 1878(1) & 757(1) & 25(1) \\ P(1) & 3445(1) & 4682(1) & 2546(1) & 23(1) \\ F(1) & -2737(3) & 4059(2) & 786(2) & 67(1) \\ C(20) & 3946(6) & 5046(4) & 1171(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3966(8) & 6559(4) & 2386(4) & 73(2) \\ C(29) & 4897(4) & 2719(3) & 2017(3) & 24(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(5) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(5) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(5) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(15) & -2685(4) & 168(4) & -718(3) & 31(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 27(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 367(3) & 32(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 421(1) \\ \end{array}$	C(48)	9133(5)	7004(4)	1076(3)	43(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Aù(1)	2182(1)	3276(1)	1668(1)́	22(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S(1)	876(1)	1878(1)	757(1)	25(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	3445(1)	4682(1)	2546(1)	23(1)
$\begin{array}{ccccccc} C(20) & 3946(6) & 5046(4) & 1177(3) & 50(2) \\ C(15) & 6943(4) & 3664(4) & 2844(4) & 44(1) \\ C(16) & 7744(5) & 4483(4) & 3379(4) & 49(2) \\ C(12) & 3768(4) & 837(3) & 978(3) & 33(1) \\ C(24) & 3306(6) & 4424(5) & 4042(4) & 54(2) \\ C(10) & 4392(4) & 2105(3) & 2365(3) & 29(1) \\ C(7) & 5138(4) & 4562(3) & 2876(3) & 23(1) \\ C(21) & 1935(5) & 5552(5) & 1473(4) & 62(2) \\ C(11) & 3834(4) & 1172(3) & 1850(3) & 32(1) \\ C(26) & 1501(5) & 5125(5) & 3332(4) & 57(2) \\ C(11) & -634(4) & 2204(3) & 369(3) & 23(1) \\ C(22) & 3956(8) & 6559(4) & 2386(4) & 73(2) \\ C(8) & 5633(4) & 3669(3) & 2560(3) & 25(1) \\ C(9) & 4897(4) & 2719(3) & 2017(3) & 24(1) \\ C(14) & 4829(4) & 2358(3) & 1131(3) & 31(1) \\ C(5) & -2685(4) & 1688(4) & -718(3) & 31(1) \\ C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ \end{array}$	F(1)	-2737(3)	4059(2)	786(2)	67(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(20)	3946(6)	5046(4)	1171(3)	50(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15) C(16)	0943(4) 7744(5)	3004(4) 4483(4)	2044(4) 3370(4)	44(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	3768(4)	837(3)	978(3)	33(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(24)	3306(6)	4424(5)	4042(4)	54(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	4392(4)	2105(3)	2365(3)	29(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	5138(4)	4562(3)	2876(3)	23(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	1935(5)	5552(5)	1473(4)	62(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(25)	3543(7)	6176(4)	4201(4)	66(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	3834(4)	1172(3)	1850(3)	32(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	1501(5)	5125(5)	3332(4)	57(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	-034(4) 3956(8)	2204(3)	2386(4)	Z3(1) 73(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	5633(4)	3669(3)	2580(3)	25(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(9)	4897(4)	2719(3)	2017(3)	24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(14)	4829(4)	2358(3)	1131(3)	31(1)
$\begin{array}{ccccccc} C(19) & 3334(5) & 5528(3) & 1893(3) & 31(1) \\ C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(6) & -1455(4) & 1514(3) & -373(3) & 27(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ \end{array}$	C(5)	-2685(4)	1688(4)	-718(3)	31(1)́
$\begin{array}{ccccccc} C(2) & -1085(4) & 3062(3) & 755(3) & 32(1) \\ C(6) & -1455(4) & 1514(3) & -373(3) & 27(1) \\ C(18) & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ \end{array}$	C(19)	3334(5)	5528(3)	1893(3)	31(1)
$\begin{array}{ccccc} C(6) & & -1455(4) & 1514(3) & -373(3) & 27(1) \\ C(18) & & 5979(4) & 5380(3) & 3419(3) & 32(1) \\ C(23) & & 2955(4) & 5169(3) & 3579(3) & 30(1) \\ C(13) & & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ \end{array}$	C(2)	-1085(4)	3062(3)	755(3)	32(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	-1455(4)	1514(3)	-373(3)	27(1)
$\begin{array}{ccccccc} C(23) & & 2953(4) & 5169(3) & 5579(3) & 30(1) \\ C(13) & & 4268(5) & 1434(3) & 622(3) & 36(1) \\ C(17) & & 7265(5) & 5349(4) & 3666(3) & 42(1) \\ & & & & & & \\ & & & & & & \\ & & & & $	U(18) C(23)	5979(4) 2055(4)	538U(3)	34 19(3) 3570(2)	32(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(23)	2900(4) 4268(5)	1434(3)	622(3)	30(1) 36(1)
172	C(17)	7265(5)	5349(4)	3666(3)	42(1)
116	- ()	. 200(0)	172		

C(4) C(3)	-3124(4) -2313(5)	2547(4) 3201(4)	-324(3) 392(3)	37(1) 38(1)
Table 3. Bond lengths [Å] and a	ngles [°] for khc8.			
Au(2)-P(2)	2.2799(11)	· · · · · · · · · · · · · ·		
Au(2)-S(2)	2.3017(11)			
S(2)-C(27)	1.770(4)			
P(2) - C(33)	1.836(4)			
P(2)-C(45)	1.001(4)			
F(2)-C(29)	1.368(6)			
C(50)-C(49)	1.516(6)			
C(50)-H(50Å)	0.9800			
C(50)-H(50B)	0.9800			
C(50)-H(50C)	0.9800			
C(35)-C(40)	1.395(6)			
C(35)-C(30)	1.399(0)			
C(33)-C(44)	1 398(6)			
C(33)-C(34)	1.412(5)			
C(34)-C(41)	1.406(6)			
C(36)-C(37)	1.381(6)			
C(36)-H(36)	0.9500			
C(31)-C(32)	1.388(6)			
C(31)-C(30) C(31)-H(31)	0.9500			
C(46)-C(45)	1.532(6)			
C(46)-H(46A)	0.9800			
C(46)-H(46B)	0.9800			
C(46)-H(46C)	0.9800			
C(39)-C(38)	1.3/1(/)			
C(39)-C(40) C(39)-H(39)	0.9500			
C(30)-C(29)	1 364(7)			
C(30)-H(30)	0.9500			
C(37)-C(38)	1.380(6)			
C(37)-H(37)	0.9500			
C(51)-C(49)	1.531(7)			
C(51)-H(51A) C(51)-H(51B)	0.9800			
C(51)-H(51C)	0.9800			
C(40)-H(40)	0.9500			
C(27)-C(32)	1.385(6)			
C(27)-C(28)	1.398(6)			
C(45)-C(48)	1.516(7)			
C(45)-C(47) C(38)-H(38)	0.9500			
C(52)-C(49)	1.521(7)			
C(52)-H(52A)	0.9800			
C(52)-H(52B)	0.9800			
C(52)-H(52C)	0.9800			
C(41)-C(42)	1.377(6)			
C(28)-C(29)	1.379(6)			
C(28)-H(28)	0.9500			
C(44)-C(43)	1.382(6)			
C(44)-H(44)	0.9500			
C(42)-C(43)	1.376(6)			
C(42)-H(42)	0.9500			
C(47)-H(47R)	0.9800			
C(47)-H(47C)	0.9800			
C(43)-H(43)	0.9500			
C(32)-H(32)	0.9500			
C(48)-H(48A)	0.9800			
C(48)-H(48B)	0.9800			
-Π(4οC) Δμ(1)-Ρ(1)	0.9000			
Au(1)-S(1)	2.3051(11)			

$\begin{split} & \text{S}(1)\text{-C}(1) \\ & \text{P}(1)\text{-C}(23) \\ & \text{P}(1)\text{-C}(23) \\ & \text{P}(1)\text{-C}(19) \\ & \text{F}(1)\text{-C}(3) \\ & \text{C}(20)\text{-H}(20A) \\ & \text{C}(20)\text{-H}(20A) \\ & \text{C}(20)\text{-H}(20B) \\ & \text{C}(20)\text{-H}(20B) \\ & \text{C}(20)\text{-H}(20C) \\ & \text{C}(15)\text{-C}(16) \\ & \text{C}(16)\text{-C}(17) \\ & \text{C}(16)\text{-H}(16) \\ & \text{C}(12)\text{-C}(13) \\ & \text{C}(12)\text{-C}(13) \\ & \text{C}(12)\text{-H}(12) \\ & \text{C}(24)\text{-H}(24A) \\ & \text{C}(24)\text{-H}(24B) \\ & \text{C}(21)\text{-C}(19) \\ & \text{C}(10)\text{-C}(11) \\ & \text{C}(10)\text{-C}(18) \\ & \text{C}(7)\text{-C}(8) \\ & \text{C}(21)\text{-C}(19) \\ & \text{C}(21)\text{-H}(21A) \\ & \text{C}(21)\text{-H}(21B) \\ & \text{C}(22)\text{-H}(25A) \\ & \text{C}(25)\text{-H}(25A) \\ & \text{C}(25)\text{-H}(25B) \\ & \text{C}(25)\text{-H}(25B) \\ & \text{C}(25)\text{-H}(25B) \\ & \text{C}(25)\text{-H}(25B) \\ & \text{C}(26)\text{-H}(26B) \\ & \text{C}(26)\text{-H}(26B) \\ & \text{C}(26)\text{-H}(26B) \\ & \text{C}(22)\text{-H}(22B) \\ & \text{C}(22)\text{-H}(21) \\ & \text{C}(11)\text{-H}(11) \\ & \text{C}(5)\text{-C}(4) \\ & \text{C}(5)\text{-C}(6) \\ & \text{C}(18)\text{-C}(17) \\ & \text{C}(18)\text{-H}(18) \\ & \text{C}(13)\text{-H}(13) \\ & \text{C}(17)\text{-H}(17) \\ & \text{C}(4)\text{-C}(3) \\ & \text{C}(4)\text{-H}(4) \\ \\ \end{array}$	1.757(4) 1.831(4) 1.831(4) 1.831(4) 1.831(5) 1.370(5) 1.527(7) 0.9800 0.9800 0.9800 1.369(7) 1.369(7) 1.369(7) 0.9500 1.378(7) 1.382(7) 0.9500 1.534(7) 0.9500 1.384(6) 1.395(6) 0.9500 1.391(6) 1.412(6) 1.526(7) 0.9800 1.540(7) 0.9800 0.9800 1.384(6) 1.403(6) 1.510(7) 0.9800 0.9800 1.380(6) 1.403(6) 1.372(7) 0.9500 1.382(6) 0.9500 1.382(6) 0.9500 1.374(6) 0.9500 1.354(7) 0.9500 1.354(7) 0.9500 1.354(7) 0.9500 1.354(7) 0.9500 0.9500 1.354(7) 0.9500 0.9500 1.354(7) 0.9500 0.9500 1.354(7) 0.9500 0.9500 1.354(7) 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 1.354(7) 0.9500
P(2)-Au(2)-S(2)	176.35(3)
C(27)-S(2)-Au(2)	106.36(16)
C(33)-P(2)-C(49)	103.6(2)
C(33)-P(2)-C(45)	107.45(19)
C(49)-P(2)-C(45)	115.1(2)
C(33)-P(2)-Au(2)	116.36(13)
C(49)-P(2)-Au(2)	106.85(15)
C(45)-P(2)-Au(2)	107.82(15)

C(49)-C(50)-H(50A)	109.5
C(AQ) = C(5Q) = H(5QR)	100 5
	100.0
H(50A)-C(50)-H(50B)	109.5
C(49)-C(50)-H(50C)	109 5
	100.0
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109 5
	100.0
C(40)-C(35)-C(36)	118.3(4)
C(AO) = C(35) = C(3A)	120 7(4)
C(40) - C(33) - C(34)	120.7(4)
C(36)-C(35)-C(34)	120.5(4)
C(AA) = C(3A)	118 3(1)
C(++) - C() - C()	110.5(4)
C(44)-C(33)-P(2)	118.6(3)
C(34) - C(33) - P(2)	122 8(3)
0(04)-0(00)-1 (2)	122.0(0)
C(41)-C(34)-C(33)	118.0(4)
$C(A_1) = C(3_1) = C(3_5)$	116 1(3)
0(41)-0(04)-0(00)	110.1(0)
C(33)-C(34)-C(35)	125.8(4)
C(37)-C(36)-C(35)	120 7(4)
	120.7(4)
C(37)-C(36)-H(36)	119.6
C(35)-C(36)-H(36)	119.6
	110.0
C(32)-C(31)-C(30)	119.6(5)
C(32)_C(31)_H(31)	120 2
0(02)-0(01)-11(01)	120.2
C(30)-C(31)-H(31)	120.2
C(A5) = C(A6) = H(A6A)	100 5
0(40)-0(40)-11(40A)	103.5
C(45)-C(46)-H(46B)	109.5
	100 5
TI(40A)-C(40)-TI(40D)	109.5
C(45)-C(46)-H(46C)	109.5
	100 5
$\Pi(40A) - U(40) - \Pi(40U)$	109.5
H(46B)-C(46)-H(46C)	109.5
	121 0(4)
C(30) - C(39) - C(40)	121.0(4)
C(38)-C(39)-H(39)	119.5
င်ဖွဲ့ကို ငှင့်စွက် မျှင့်စက်	110 5
0(40)-0(39)-11(39)	119.5
C(29)-C(30)-C(31)	117.6(4)
ငှိုးကို ငှိုးကို မျိုးကို	121 2
0(29)-0(30)-11(30)	121.2
C(31)-C(30)-H(30)	121.2
	120 1(4)
C(30) - C(37) - C(30)	120.1(4)
C(38)-C(37)-H(37)	119.9
	110.0
$C(30) - C(37) - \Gamma(37)$	119.9
C(49)-C(51)-H(51A)	109.5
	100 5
C(49)-C(31)-H(31B)	109.5
H(51A)-C(51)-H(51B)	109.5
	100 5
$C(49)-C(51)-\Pi(51C)$	109.5
H(51A)-C(51)-H(51C)	109.5
	100 5
	103.5
C(39)-C(40)-C(35)	120.1(4)
	120 0 (
0(00)-0(40)-11(40)	120.0
C(35)-C(40)-H(40)	120.0
C(32) - C(27) - C(28)	118 9(4)
	110.0(+)
C(32)-C(27)-S(2)	
C(28) - C(27) - S(2)	118.4(3)
	118.4(3) 122 7(3)
O(20) - O(27) - O(2)	118.4(3) 122.7(3)
C(48)-C(45)-C(47)	118.4(3) 122.7(3) 108.7(4)
C(48)-C(45)-C(47) C(48)-C(45)-C(46)	118.4(3) 122.7(3) 108.7(4) 108.9(4)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(48)-C(45)-C(46)	118.4(3) 122.7(3) 108.7(4) 108.9(4)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(47)-C(45)-C(46) C(48)-C(45)-P(2)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(47)-C(45)-C(46) C(48)-C(45)-P(2)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(47)-C(45)-P(2)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3)
C(26)-C(27)-C(27) C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(48)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2) C(46)-C(45)-P(2)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3)
C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-C(46) C(48)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2) C(46)-C(45)-P(2) C(39)-C(38)-C(37)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4)
C(26)-C(27)-C(27) C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2) C(39)-C(38)-C(37) C(39)-C(38)+C(38)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-C(46)\\ C(48)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(39)-C(38)-H(38)\\ C(39)-C(39)-H(38)\\ C(39)-C(39)-H(39)\\ C(39)-H(39)\\ C(39)-H(39)\\ C(3$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1
C(25)-C(27)-C(27) C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2) C(39)-C(38)-C(37) C(39)-C(38)-H(38) C(37)-C(38)-H(38)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1
C(25)-C(27)-C(27) C(48)-C(45)-C(47) C(48)-C(45)-C(46) C(47)-C(45)-P(2) C(47)-C(45)-P(2) C(46)-C(45)-P(2) C(46)-C(45)-P(2) C(39)-C(38)-H(38) C(37)-C(38)-H(38) C(49)-C(52)-H(52A)	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(40)-C(52)-H(52A)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5
$\begin{array}{l} C(2)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-C(46)\\ C(48)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ C(40)-C(52)-H(52C)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52A)-C(52)-H(52C)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52A)-C(52)-H(52)\\ H(52$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5
$\begin{array}{l} C(26)-C(27)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ C(49)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 122.6(4)
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7
$\begin{array}{l} C(2)-C(21)-C(27)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52A)-C(52)-H(52C)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ C(34)-C(41)-H(41)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7 118.7
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ C(34)-C(41)-H(41)\\ C(34)-C(38)-C(32)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-C(37)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(49)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ C(49)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ C(34)-C(41)-H(41)\\ C(29)-C(28)-C(27)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7 118.7 118.0(4)
$\begin{array}{l} C(2)-C(2)-C(2)\\ C(48)-C(45)-C(47)\\ C(48)-C(45)-C(46)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(47)-C(45)-P(2)\\ C(46)-C(45)-P(2)\\ C(39)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(38)-H(38)\\ C(37)-C(52)-H(52A)\\ C(49)-C(52)-H(52B)\\ H(52A)-C(52)-H(52B)\\ H(52A)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ H(52B)-C(52)-H(52C)\\ C(42)-C(41)-C(34)\\ C(42)-C(41)-H(41)\\ C(34)-C(41)-H(41)\\ C(29)-C(28)-C(27)\\ C(29)-C(28)-C(27)\\ C(29)-C(28)-H(28)\\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7 118.0(4) 121.0
$\begin{array}{l} C(2) - C(2) - C(2) \\ C(48) - C(45) - C(47) \\ C(48) - C(45) - C(46) \\ C(47) - C(45) - P(2) \\ C(39) - C(38) - H(38) \\ C(37) - C(38) - H(38) \\ C(37) - C(38) - H(38) \\ C(37) - C(38) - H(38) \\ C(49) - C(52) - H(52A) \\ C(49) - C(52) - H(52B) \\ H(52A) - C(52) - H(52C) \\ H(52A) - C(52) - H(52C) \\ H(52B) - C(52) - H(52C) \\ C(42) - C(41) - C(34) \\ C(42) - C(41) - H(41) \\ C(34) - C(41) - H(41) \\ C(29) - C(28) - H(28) \\ C(27) - C(28) - H(28) \\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7 118.7 118.0(4) 121.0
$\begin{array}{l} C(2) - C(2) - C(2) \\ C(48) - C(45) - C(47) \\ C(48) - C(45) - C(46) \\ C(47) - C(45) - P(2) \\ C(39) - C(38) - C(37) \\ C(39) - C(38) - H(38) \\ C(37) - C(38) - H(38) \\ C(37) - C(38) - H(38) \\ C(49) - C(52) - H(52A) \\ C(49) - C(52) - H(52B) \\ C(49) - C(52) - H(52B) \\ C(49) - C(52) - H(52C) \\ H(52A) - C(52) - H(52C) \\ H(52A) - C(52) - H(52C) \\ H(52B) - C(52) - H(52C) \\ H(52B) - C(52) - H(52C) \\ H(52B) - C(52) - H(52C) \\ C(42) - C(41) - C(34) \\ C(42) - C(41) - H(41) \\ C(34) - C(41) - H(41) \\ C(29) - C(28) - C(27) \\ C(29) - C(28) - H(28) \\ C(27) - C(28) - H(28) \\ C(27) - C(28) - H(28) \\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 122.6(4) 118.7 118.7 118.7 118.0(4) 121.0 121.0
$\begin{array}{l} C(20)^{-C(21)^{-C(21)}} \\ C(48)^{-C(45)^{-}-C(47)} \\ C(48)^{-}C(45)^{-}-C(46) \\ C(47)^{-}C(45)^{-}P(2) \\ C(47)^{-}C(45)^{-}P(2) \\ C(47)^{-}C(45)^{-}P(2) \\ C(46)^{-}C(45)^{-}P(2) \\ C(39)^{-}C(38)^{-}H(38) \\ C(39)^{-}C(38)^{-}H(38) \\ C(39)^{-}C(38)^{-}H(38) \\ C(39)^{-}C(52)^{-}H(52A) \\ C(49)^{-}C(52)^{-}H(52B) \\ H(52A)^{-}C(52)^{-}H(52C) \\ H(52A)^{-}C(52)^{-}H(52C) \\ H(52B)^{-}C(52)^{-}H(52C) \\ H(52B)^{-}C(52)^{-}H(52C) \\ H(52B)^{-}C(52)^{-}H(52C) \\ C(42)^{-}C(41)^{-}C(34) \\ C(42)^{-}C(41)^{-}H(41) \\ C(34)^{-}C(41)^{-}H(41) \\ C(29)^{-}C(28)^{-}C(27) \\ C(29)^{-}C(28)^{-}H(28) \\ C(27)^{-}C(28)^{-}H(28) \\ C(43)^{-}C(44)^{-}C(33) \\ \end{array}$	118.4(3) 122.7(3) 108.7(4) 108.9(4) 108.3(5) 117.5(3) 107.9(3) 105.2(3) 119.7(4) 120.1 120.1 109.5 100

C(43)-C(44)-H(44) C(33)-C(42)-C(41) C(43)-C(42)-H(42) C(41)-C(42)-H(42) C(45)-C(47)-H(47A) C(45)-C(47)-H(47B) H(47A)-C(47)-H(47C) H(47A)-C(47)-H(47C) H(47B)-C(47)-H(47C) C(42)-C(43)-C(44) C(42)-C(43)-H(43) C(42)-C(43)-H(43) C(44)-C(43)-H(43) C(50)-C(49)-C(51) C(50)-C(49)-C(51) C(50)-C(49)-C(51) C(50)-C(49)-P(2) C(52)-C(49)-P(2) C(52)-C(49)-P(2) C(52)-C(49)-P(2) C(51)-C(32)-H(32) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-F(2) C(30)-C(29)-C(28) F(2)-C(48)-H(48C) H(48A)-C(48)-H(48C) H(48A)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(48B)-C(48)-H(48C) H(1)-S(1)-Au(1) C(7)-P(1)-C(23) C(7)-P(1)-Au(1) C(7)-P(1)-Au(1) C(7)-P(1)-Au(1) C(19)-P(2)-H(20A) C(19)-C(20)-H(20B) H(20A)-C(20)-H(20B) H(20A)-C(20)-H(20C) H(20B)-C(20)-H(20C) H(20B)-C(20)-H(20C) H(20B)-C(20)-H(20C) H(20B)-C(20)-H(20C) H(20B)-C(20)-H(20C) C(16)-C(15)-H(15) C(17)-C(16)-H(16) C(15)-C(16)-H(16) C(15)-C(16)-H(16) C(15)-C(16)-H(16) C(11)-C(12)-H(12) C(23)-C(24)-H(24A) C(23)-C(24)-H(24A) C(23)-C(24)-H(24B) H(24A)-C(24)-H(24B) H(24A)-C(24)-H(24C) H(24B)-C(24)-H(24C) H(24B)-C(24)-H(24C) H(24A)	119.1 119.1 118.9(4) 120.6 120.6 109.5 109.5 109.5 109.5 109.5 109.5 109.5 120.3(4) 119.9 109.8(4) 107.1(4) 109.3(4) 104.6(3) 109.7(3) 116.1(3) 121.7(5) 119.2 119.0(4) 124.2(5) 116.7(5) 109.5
C(19)-C(21)-H(21B)	109.5
H(21A)-C(21)-H(21B)	109.5

C(19)-C(21)-H(21C)	109.5
H(21A)-C(21)-H(21C)	109.5
H(21B)-C(21)-H(21C)	109.5
C(23)-C(25)-H(25A)	109.5
C(23)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(23)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C) C(12)-C(11)-C(10) C(12)-C(11)-H(11) C(12)-C(11)-H(11) C(10)-C(11)-H(11)	109.5 120.1(5) 120.0 120.0
C(23)-C(26)-H(26A)	109.5
C(23)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(23)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(2)-C(1)-C(6)	118.0(4)
C(2)-C(1)-S(1)	125.2(3)
C(6)-C(1)-S(1)	116.7(3)
C(19)-C(22)-H(22A)	109.5
C(19)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(19)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(15)-C(8)-C(7)	117.8(4)
C(15)-C(8)-C(9)	115.8(4)
C(7)-C(8)-C(9)	126.5(4)
C(10)-C(9)-C(14)	117.8(4)
C(10)-C(9)-C(8)	121.3(4)
C(14)-C(9)-C(8) C(13)-C(14)-C(9) C(13)-C(14)-H(14) C(9)-C(14)-H(14) C(9)-C(14)-H(14)	120.5(4) 120.9(5) 119.5 119.5
C(4)-C(5)-C(6) C(4)-C(5)-H(5) C(6)-C(5)-H(5) C(22)-C(19)-C(21) C(22)-C(19)-C(22)	120.0(4) 120.0 120.0 109.1(5)
C(22)-C(19)-C(20)	109.7(5)
C(21)-C(19)-C(20)	108.1(4)
C(22)-C(19)-P(1)	116.2(3)
C(21)-C(19)-P(1)	108.0(4)
C(20)-C(19)-P(1)	105.4(3)
C(2)-C(1)-C(2)-C(3) C(1)-C(2)-H(2) C(3)-C(2)-H(2) C(5)-C(6)-C(1)	103.4(3) 118.6(4) 120.7 120.7 121.4(4)
C(5)-C(6)-H(6)	119.3
C(1)-C(6)-H(6)	119.3
C(17)-C(18)-C(7)	122.4(4)
C(17)-C(18)-H(18)	118.8
C(7)-C(18)-H(18) C(25)-C(23)-C(24) C(25)-C(23)-C(26) C(24)-C(23)-C(26) C(24)-C(23)-C(26)	118.8 109.0(4) 109.9(5) 106.7(5)
C(25)-C(23)-P(1) C(24)-C(23)-P(1) C(26)-C(23)-P(1) C(26)-C(23)-P(1) C(14)-C(13)-C(12)	117.7(4) 104.8(3) 108.1(3) 120.5(5)
C(14)-C(13)-H(13)	119.7
C(12)-C(13)-H(13)	119.7
C(16)-C(17)-C(18)	119.3(5)
C(16)-C(17)-H(17)	120.3
C(18)-C(17)-H(17)	120.3
C(3)-C(4)-C(5)	117.5(4)
C(3)-C(4)-H(4)	121.2
C(5)-C(4)-H(4)	121.2
C(4)-C(3)-F(1)	118.0(4)

C(4)-C(3)-C(2)	124.5(5)
F(1)-C(3)-C(2)	117.5(4)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(2)	18(1)	19(1)	16(1)	5(1)	4(1)	3(1)
S(2)	23(1)	32(1)	19(1)	9(1)	8(1)	5(1)
F(2)	35(2)	66(2)	69(2)	32(2)	2(2)	4(1) 17(2)
C(50)	30(3)	43(3)	35(3)	1(2)	3(2)	-10(2)
C(35)	15(2)	21(2)	20(2)	7(2)	6(2)	6(2) [´]
C(33)	17(2)	20(2)	22(2)	10(2)	8(2)	3(2)
C(34)	19(2)	21(2)	13(2)	5(2)	4(2)	2(2)
C(36)	16(2)	23(2)	21(2)	7(2)	3(2)	9(2)
C(31) C(46)	41(3)	36(3)	22(3) 49(3)	-19(3)	-10(3)	2(3) -1(3)
C(39)	33(2)	36(3)	20(2)	2(2)	12(2)	8(2)
C(30)	52(3)́	37(3)	34(3)	22(Ź)	-11(2́)	-3(3)
C(37)	19(2)	28(2)	32(2)	13(2)	11(2)	8(2)
C(51)	23(3)	86(5)	48(3)	10(3)	13(2)	-1(3)
C(40)	27(2)	22(2) 18(2)	30(Z) 23(2)	8(Z) 5(2)	3(2)	⊃(Z) _2(2)
C(27) C(45)	31(2)	22(2)	23(2)	4(2)	13(2)	4(2)
C(38)	27(2)	42(3)	27(2)	20(2)	17(2)	15(2)
C(52)	32(3)	68(4)	110(6)	62(4)	-20(3)	-3(3)
C(41)	24(2)	18(2)	26(2)	9(2)	10(2)	7(2)
C(28)	31(2)	24(2)	26(2)	9(2)	2(2)	-3(2) 8(2)
C(44) C(42)	34(2)	24(2)	25(2)	12(2)	11(2)	8(2)
C(47)	80(4)	19(3)	37(3)	9(2)	24(3)	12(3)
C(43)	30(2)	31(3)	25(2)	7(2)	16(2)	0(2)
C(49)	16(2)	32(3)	32(3)	9(2)	4(2)	2(2)
C(32)	46(3)	31(3)	24(2)	13(2)	12(2)	7(2)
C(29) C(48)	23(2) 72(4)	34(3) 28(3)	40(3) 31(3)	10(2) 4(2)	1(2) 26(3)	9(3)
Au(1)	20(1)	22(1)	20(1)	5(1)	2(1)	2(1)
S(1)	22(1)	26(1)	23(1)	6(1)	2(1)	2(1)
P(1)	24(1)	20(1)	22(1)	5(1)	4(1)	5(1)
F(1)	47(2)	42(2)	88(3)	0(2)	2(2)	14(2) 27(3)
C(20) C(15)	25(2)	25(3)	70(4)	20(3)	2(2)	$\frac{27(3)}{4(2)}$
C(16)	23(2)	36(3)	75(4)	19(3)	-5(3)	-5(2)
C(12)	27(2)	21(2)	42(3)	7(2)	1(2)	0(2)
C(24)	72(4)	62(4)	44(3)	28(3)	29(3)	18(3)
C(10)	26(2)	24(2)	34(3)	7(2)	9(2)	5(2)
C(7)	25(2) 49(3)	24(2) 86(5)	21(2) 82(5)	9(Z) 68(4)	2(2) 18(3)	-1(Z) 28(4)
C(25)	94(5)	44(4)	46(4)	-12(3)	34(3)	-13(3)
C(11)	31(2)	19(2)́	47(3)́	12(2)	11(2)	6(2)
C(26)	42(3)	86(5)	45(3)	16(3)	22(3)	24(3)
C(1)	19(2)	28(2)	24(2)	12(2)	6(2)	2(2)
C(22)	137(7) 20(2)	32(3) 23(2)	39(3)	18(3)	1(4)	-ZZ(4) 1(2)
C(9)	19(2)	16(2)	35(3)	8(2)	6(2)	8(2)
C(14)	29(2)	27(3)	37(3)	15(2)	4(2)	4(2)
C(5)	29(2)	40(3)	27(2)	16(2)	5(2)	-7(2)
C(19)	41(3)	20(2)	30(3)	10(2)	7(2)	9(2)
C(2)	28(2) 28(2)	29(3) 30(3)	3∠(3) 22(2)	9(2)	1(2) 7(2)	2(2)
C(18)	31(2)	24(2)	37(3)	7(2)	6(2)	-1(2)
C(23)	37(3)	29(3)	23(2)	6(2)	10(2)	5(2)
C(13)	45(3)	29(3)	26(3)	4(2)	3(2)	6(2)
C(17)	30(3)	35(3)	45(3)	8(2)	-4(2)	-13(2)

Table 4. Anisotropic displacement parameters (Å²x 10³)for khc8. The anisotropic displacement factor exponent takes the form: $-2\Box^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(4) C(3)	26(2) 38(3)	43(3) 26(3)	44(3) 51(3)	26(3) 13(2)	1(2) 13(2)	3(2) 10(2)
Table 5.	Torsion angles [°]	for khc8.				
C(49)-P(2 C(45)-P(2 Au(2)-P(2)-C(33)-C(44))-C(33)-C(44))-C(33)-C(44)				54.9(4) 57.3(4) 78.2(3)	
C(49)-P(2 C(45)-P(2 Au(2)-P(2 C(44)-C(3)-C(33)-C(34))-C(33)-C(34))-C(33)-C(34) 3)-C(34)-C(41)			-1	28.7(3) 7.7(4) 2.9(6)	
P(2)-C(33 C(44)-C(3 P(2)-C(33)-C(34)-C(41) (3)-C(34)-C(35) ()-C(34)-C(35)			1 1 -	71.2(3) 74.7(4) 11.2(6)	
C(40)-C(3 C(36)-C(3 C(40)-C(3	5)-C(34)-C(41) 5)-C(34)-C(41) 5)-C(34)-C(33)			-(1 1.	61.7(5) 10.9(4) 20.7(5)	
C(36)-C(3 C(40)-C(3 C(34)-C(3 C(32)-C(3	5)-C(34)-C(33) 5)-C(36)-C(37) 5)-C(36)-C(37)			-1	0.0(6) 72.8(4) 9.9(8)	
C(35)-C(3 C(38)-C(3 C(36)-C(3	6)-C(37)-C(38) 9)-C(40)-C(35) 5)-C(40)-C(39)			-	0.3(6) 0.5(7) 0.5(6)	
C(34)-C(3 Au(2)-S(2 Au(2)-S(2	5)-C(40)-C(39))-C(27)-C(32))-C(27)-C(28)			1 1, 	73.2(4) 55.5(3) 22.9(4)	
C(33)-P(2 C(49)-P(2 Au(2)-P(2	2)-C(45)-C(48) 2)-C(45)-C(48) 2)-C(45)-C(48) 2)-C(45)-C(47)			 1 -1	65.7(4) 49.1(4) 68.2(3) 71.2(2)	
C(33)-P(2 C(49)-P(2 Au(2)-P(2 C(33)-P(2)-C(45)-C(47))-C(45)-C(47))-C(45)-C(47)				71.2(3) 74.1(4) 45.0(4) 55.7(4)	
C(49)-P(2 Au(2)-P(2 C(40)-C(3)-C(45)-C(46))-C(45)-C(46) 9)-C(38)-C(37)			-1 7	70.4(4) 70.5(4) 0.2(6)	
C(36)-C(3 C(33)-C(3 C(35)-C(3	37)-C(38)-C(39) 34)-C(41)-C(42) 34)-C(41)-C(42)			-1	0.2(6) 1.0(6) 76.8(4)	
C(32)-C(27 C(34)-C(37 P(2)-C(37	(-C(28)-C(29)) (-C(28)-C(29)) (-C(28)-C(29)) (-C(28)-C(29)) (-C(28)-C(29))			1	0.0(7) 79.2(4) 2.8(6) 71.5(3)	
C(34)-C(4 C(41)-C(4 C(33)-C(4	41)-C(42)-C(43) (42)-C(43)-C(44) (44)-C(43)-C(42)			-	1.0(7) 1.2(7) 0.8(7)	
C(33)-P(2 C(45)-P(2 Au(2)-P(2	2)-C(49)-C(50) 2)-C(49)-C(50) 2)-C(49)-C(50)			6 -1 -4	63.9(4) 79.2(3) 59.5(3)	
C(33)-P(2 C(45)-P(2 Au(2)-P(2	2)-C(49)-C(52) 2)-C(49)-C(52) 2)-C(49)-C(52) 2)-C(49)-C(52)			-1 -(5	78.4(4) 61.4(5) 58.3(4) 53.9(4)	
C(45)-P(2 Au(2)-P(2 C(28)-C(2)-C(49)-C(51))-C(49)-C(51))-C(49)-C(51) 27)-C(32)-C(31)			 6 -1	33.0(4) 77.3(4) 0.5(7)	
S(2)-C(27 C(30)-C(3 C(31)-C(3)-C(32)-C(31) (31)-C(32)-C(27) (30)-C(29)-F(2)			-1 - 1	77.9(4) 1.4(8) 78.3(4)	
C(31)-C(3 C(27)-C(2 C(27)-C(2	80)-C(29)-C(28) 28)-C(29)-C(30) 28)-C(29)-F(2)			-1	0.5(8) 1.4(7) 79.2(4)	
C(8)-C(15 C(23)-P(1 C(19)-P(1)-C(16)-C(17))-C(7)-C(18))-C(7)-C(18)				0.8(9) 58.4(4) 33.5(4) 70.2(2)	
Au(1)-P(1 C(23)-P(1 C(19)-P(1)-C(7)-C(18))-C(7)-C(8))-C(7)-C(8)			-1 1. -1	79.3(3) 23.2(4) 14.9(4)	
Au(1)-P(1)-C(7)-C(8)	2.3(4)					
--	---					
C(13)-C(12)-C(11)-C(10)	0.4(7)					
C(9)-C(10)-C(11)-C(12)	-0.2(6)					
Au(1)-S(1)-C(1)-C(2)	-20.4(4)					
Au(1)-S(1)-C(1)-C(6)	162.4(3)					
C(16)-C(15)-C(8)-C(7)	0.8(8)					
C(16)-C(15)-C(8)-C(9)	178.8(5)					
C(18)-C(7)-C(8)-C(15)	-0.8(7)					
P(1)-C(7)-C(8)-C(15)	177.6(4)					
C(18)-C(7)-C(8)-C(9)	178.7(5)					
P(1)-C(7)-C(8)-C(9)	-2.8(6)					
$\begin{array}{l} C(11)-C(10)-C(9)-C(14)\\ C(11)-C(10)-C(9)-C(8)\\ C(15)-C(8)-C(9)-C(10)\\ C(7)-C(8)-C(9)-C(10)\\ C(15)-C(8)-C(9)-C(14)\\ \end{array}$	-0.4(6) -172.3(4) 93.5(6) -86.1(5) -78.2(5)					
C(7)-C(8)-C(9)-C(14)	102.2(5)					
C(10)-C(9)-C(14)-C(13)	0.8(6)					
C(8)-C(9)-C(14)-C(13)	172.8(4)					
C(7)-P(1)-C(19)-C(22)	-65.5(5)					
C(23)-P(1)-C(19)-C(22)	50.6(5)					
Au(1)-P(1)-C(19)-C(22)	171.9(4)					
C(7)-P(1)-C(19)-C(21)	171.5(4)					
C(23)-P(1)-C(19)-C(21)	-72.4(4)					
Au(1)-P(1)-C(19)-C(21)	48.9(4)					
C(7)-P(1)-C(19)-C(20)	56.2(4)					
C(23)-P(1)-C(19)-C(20)	172.2(3)					
Au(1)-P(1)-C(19)-C(20)	-66.5(4)					
C(6)-C(1)-C(2)-C(3)	-0.4(7)					
$\begin{array}{l} S(1)-C(1)-C(2)-C(3)\\ C(4)-C(5)-C(6)-C(1)\\ C(2)-C(1)-C(6)-C(5)\\ S(1)-C(1)-C(6)-C(5)\\ C(8)-C(7)-C(18)-C(17) \end{array}$	-177.6(4) -0.8(7) 0.7(7) 178.1(4) 0.8(7)					
P(1)-C(7)-C(18)-C(17) C(7)-P(1)-C(23)-C(25) C(19)-P(1)-C(23)-C(25) Au(1)-P(1)-C(23)-C(25) Au(1)-P(1)-C(23)-C(25)	-177.7(4) 63.7(4) -51.0(5) -171.3(4)					
C(7)-P(1)-C(23)-C(24)	-57.5(4)					
C(19)-P(1)-C(23)-C(24)	-172.2(4)					
Au(1)-P(1)-C(23)-C(24)	67.4(4)					
C(7)-P(1)-C(23)-C(26)	-171.0(4)					
C(19)-P(1)-C(23)-C(26)	74.3(4)					
Au(1)-P(1)-C(23)-C(26)	-46.1(4)					
C(9)-C(14)-C(13)-C(12)	-0.7(7)					
C(11)-C(12)-C(13)-C(14)	0.0(7)					
C(15)-C(16)-C(17)-C(18)	0.7(9)					
C(7)-C(18)-C(17)-C(16)	-0.7(8)					
C(6)-C(4)-C(3) C(5)-C(4)-C(3)-F(1) C(5)-C(4)-C(3)-F(1) C(1)-C(2)-C(3)-C(2) C(1)-C(2)-C(3)-C(4) C(1)-C(2)-C(3)-F(1)	0.7(7) 179.7(5) -0.5(8) 0.4(8) -179.9(4)					