

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA MAESTRÍA EN INGENIERÍA CIVIL – GEOTECNIA

INFLUENCIA DE LA COMPACIDAD RELATIVA Y EL ESFUERZO EFECTIVO EN EL COMPORTAMIENTO ESFUERZO-DEFORMACIÓN DE JALES SATURADOS

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

> PRESENTA: MAURICIO BERNAL LÓPEZ

TUTOR PRINCIPAL DR. OSVALDO FLORES CASTRELLÓN INVESTIGADOR INSTITUTO DE INGENIERÍA

MÉXICO, D. F. MARZO 2016

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

Presidente:	DR. OVANDO SHELLEY EFRAÍN
Secretario:	DR. RIVERA CONSTANTINO RIGOBERTO
Vocal:	DR. FLORES CASTRELLÓN OSVALDO
1 ^{er.} Suplente:	DR. OROZCO SANTOYO RAÚL VICENTE
2 ^{do.} Suplente:	M.I. CASTILLA CAMACHO JORGE EFRAÍN

Lugar o lugares donde se realizó la tesis: INSTITUTO DE INGENIERÍA, UNAM.

TUTOR DE TESIS:

DR. FLORES CASTRELLÓN OSVALDO

FIRMA

AGRADECIMIENTOS

Agradezco de manera especial a la Universidad Nacional Autónoma de México y al Instituto de Ingeniería por la formación profesional brindada y por el apoyo durante la realización de este trabajo.

Al Doctor Osvaldo Flores Castrellón por su apoyo, disposición y sugerencias en cada etapa del trabajo. Gracias por su paciencia, su trato amistoso y respetuoso.

A los miembros del jurado por sus observaciones y correcciones durante la revisión de este trabajo. A los Doctores Efraín Ovando Shelley, Rigoberto Rivera Constantino y Raúl Vicente Orozco, así como al maestro en ingeniería Jorge Efraín Castilla, mis más sinceros agradecimientos.

A los laboratoristas German Aguilar Ramírez y Javier Hernández Lemus, por su valiosa ayuda durante la realización de las pruebas de laboratorio.

A mi compañero Víctor Luis Hernández Bartolo por su apoyo en todo el trabajo experimental y al doctor Luis Osorio Flores por sacar parte de su tiempo para revisar y darme su opinión sobre este trabajo.

A la empresa Great Panther Silver Limited y de forma especial al Ing. Javier M. Ramírez Vargas, Gerente de la Unidad El Rosario (Topia, Dgo.) por su valioso apoyo en la selección y envío de los jales, motivo de este estudio.

A mi familia por enseñarme a luchar y siempre darme su voz de aliento para continuar. Gracias porque a pesar de la distancia estuvieron presentes en cada momento.

A los que compartieron esta maravillosa etapa de mi vida y me dieron su apoyo incondicional, más que amigos se convirtieron en mi familia. María Elena Sánchez Rodríguez, María Elena Vega Sánchez, Carlos Isidoro Coyolt y Juan Carlos Málaga Baxin.

Finalmente a mis compañeros de la maestría y amigos, gracias por los momentos compartidos y por hacer de esta una muy buena experiencia.

RESUMEN

Para el diseño y la revisión de depósitos de jales se requiere contar con la geometría del depósito, las características mecánicas (ángulo de fricción, cohesión y módulo de elasticidad) y volumétricas (peso específico del suelo) de los materiales que conforman el basamento y el propio depósito. Debido a que este tipo de estructuras en su gran mayoría se construyen con el propio jal (arcilla arenosa o limo arenoso), es muy importante definir la influencia de los parámetros que gobiernan su comportamiento: porcentaje de finos, compacidad relativa y esfuerzo efectivo de consolidación.

En este trabajo se presenta la caracterización física y mecánica de un residuo minero proveniente del Municipio de Topia en el Estado de Durango, México. En la etapa experimental se realizaron pruebas de compactación utilizando la técnica de amasado para determinar la relación de vacíos máxima y mínima, así como el comportamiento del suelo variando el contenido de agua entre 8 y 20% y el peso de pisón entre 0.1 y 3.0 kg. Posteriormente, se realizaron pruebas triaxiales tipo CU para evaluar los parámetros de resistencia (cohesión y ángulo de fricción interna, en términos de esfuerzos totales y efectivos) a partir de un análisis paramétrico variando el contenido de las pruebas triaxiales se requirió conocer la instrumentación con que cuenta el equipo, realizar el proceso de calibración y verificación de los sensores con los que se registró la carga y el desplazamiento axial y las diferentes etapas del ensaye, desde el montaje hasta la falla.

Los resultados de esta investigación permitirán conocer los intervalos de variación de los parámetros mecánicos mencionados, para diferentes condiciones de compacidad y esfuerzo efectivo, que serán de enorme utilidad a los ingenieros de diseño que requieren de estos parámetros, sobre todo cuando se está proyectando una estructura nueva, de la cual no se cuenta con información geotécnica para su análisis.

ÍNDICE

n	
Рас	าเทก
, ug	,

SÍM	IBOLO	OS Y N	OTACIÓNiv
ÍND	DICE D	DE TAB	sLAS vi
ÍND	DICE D	DE FIGI	URAS vii
PLA	NTEA	AMIEN	ITO DEL PROBLEMA xii
Ju	ustific	ación.	xii
0	bjetiv	vos	xiii
	Obje	tivo gen	neralxiii
	Obje	tivos es	pecíficosxiii
1.	INTI	RODU	CCIÓN Y ESTUDIOS PREVIOS1
1.	.1.	Introd	lucción1
	1.1.1	. D	epósitos de jales en México1
	1.1.2	. Fi	uente de jales
	1.1.3	. C	aracterísticas físicas de los jales 4
	1.1.4	. D	isposición de jales5
	1.1.5	5. Pi	ropiedades fundamentales de un depósito de jales7
1.	.2.	Aspec	tos básicos del comportamiento de arenas7
	1.2.1	D	escripción del comportamiento en condiciones no drenadas7
	1.2.2	. D	iagramas de estado12
1.	.3.	Estudi	os previos13
2.	DES	CRIPCI	IÓN DEL EQUIPO 26
2.	.1.	Antec	edentes de la cámara triaxial de alambres26
2.	.2.	Sistem	na de aplicación de carga 26
2.	.3.	Instru	mentación del equipo 28
2.	.4.	Sistem	na de adquisición de datos 29
	2.4.1	C	alibración y verificación

	2.4.2	2.	Operación	32
2.	.5.	Cali	bración y verificación de las cámaras triaxiales de alambres TA-1 y TA-2	36
	2.5.1	1.	Calibración cámara TA-2	37
	2.5.2	2.	Verificación cámara TA-2	40
3.	DES	SCRI	PCIÓN DE LOS MATERIALES Y PROCEDIMIENTO DE ENSAYE	43
3.	.1.	Des	cripción del material	43
3.	.2.	For	mación de la probeta	46
3.	.3.	Pro	cedimiento de ensaye	49
	3.3.1	1.	Pruebas de compactación	49
	3.3.2	2.	Pruebas triaxiales	50
3.	.4.	Cálo	culo de parámetros	58
	3.4.1	1.	Relación de vacíos máxima y mínima	58
	3.4.2	2.	Parámetros de resistencia	59
4.	PRE	SEN	TACIÓN Y ANÁLISIS DE RESULTADOS	62
4.	.1.	Pru	ebas de compactación	62
	4.1.1	1.	Variación del peso volumétrico húmedo y seco en función del contenido de agua y peso	de
			pisón	62
	4.1.2	2.	Curvas de compactación	64
	4.1.3	3.	Relación de vacíos	66
	4.1.4	1.	Relaciones de vacíos máxima y mínima de otras arenas	66
	4.1.5	5.	Concentración de sólidos	69
4.	.2.	Pru	ebas triaxiales	70
	4.2.1	1.	Relaciones volumétricas iniciales y finales	71
	4.2.2	2.	Corrección de cambio volumétrico por aplicación de vacío durante la etapa de montaje	74
	4.2.3	3.	Comportamiento de las curvas esfuerzo-deformación y presión de poro-deformación	77
	4.2.4	1.	Determinación de los parámetros de resistencia utilizando el criterio de Mohr-Coulomb	89
	4.2.5	5.	Determinación del ángulo de fricción interna movilizado en la falla a partir de las trayector	rias
			de esfuerzos	94
	4.2.6	5.	Trayectorias de esfuerzos	98
	4.2.7	7.	Determinación del módulo de elasticidad 1	100
	4.2.8	3.	Diagrama de estado 1	105

4.3.	Influencia de la compacidad relativa106
4.4.	Influencia del contenido de agua 109
4.5.	Influencia del esfuerzo efectivo 110
5. CO	NCLUSIONES Y RECOMENDACIONES 111
5.1.	Reconocimiento, calibración y verificación de la cámara triaxial de alambres 111
5.2.	Caracterización física 111
5.3.	Pruebas de compactación 112
5.4.	Caracterización mecánica 113
REFERE	NCIAS
ANEXO	A: RESULTADOS PRUEBAS DE COMPACTACIÓN119
ANEXO	B: RESULTADOS PRUEBAS TRIAXIALES 117

SÍMBOLOS Y NOTACIÓN

В	Parámetro B de Skempton
С	Cohesión
c'	Cohesión en términos de esfuerzos efectivos
Cd	Cohesión drenada
С	Compacidad o concentración de sólidos
CD	Prueba triaxial consolidada drenada
CU	Prueba triaxial consolidada no drenada
D ₅₀	Diámetro de partícula correspondiente al 50% que pasa en peso
D _{máx}	Diámetro máximo de partícula
Dr	Densidad relativa
δ	Desplazamiento
E	Módulo de elasticidad
E ₅₀	Módulo de elasticidad al 50% de la resistencia máxima
е	Relación de vacíos
e _{máx}	Relación de vacíos máxima
e _{mín}	Relación de vacíos mínima
3	Deformación unitaria axial
E50	Deformación unitaria axial al 50% de la resistencia máxima
Emáx	Deformación unitaria axial correspondiente al máximo esfuerzo desviador
φ	Ángulo de fricción interna
φ'	Ángulo de fricción interna en términos de esfuerzos efectivos
φd	Ángulo de fricción interna drenado
Gs	Densidad relativa de sólidos
Gw	Grado de saturación
γd	Peso volumétrico seco
γdmáx	Peso volumétrico seco máximo
γsat	Peso volumétrico saturado
IP	Índice de plasticidad
λ_{ss}	Pendiente de la línea del estado estable
М	Pendiente de la línea de falla o envolvente de colapso
MC	Análisis utilizando el criterio de Mohr-Coulomb

$\sigma^{'}$	Esfuerzo efectivo
$\sigma_1^{'}$	Esfuerzo principal efectivo mayor
$\sigma_3^{'}$	Esfuerzo principal efectivo menor
Р	Carga
PP	Peso del pisón
p'	Esfuerzo efectivo octaédrico
q	Esfuerzo desviador
q _{máx}	Esfuerzo desviador máximo (resistencia pico)
q residual	Esfuerzo desviador residual
q ₅₀	Esfuerzo desviador al 50% de la resistencia máxima
R ²	Coeficiente de correlación
ρнց	Densidad del mercurio
TEE	Análisis en términos de esfuerzos efectivos
TET	Análisis en términos de esfuerzos totales
UU	Prueba triaxial no consolidada no drenada
u	Presión de poro
V	Voltaje
W	Contenido de agua
Wop	Contenido de agua óptimo
WL	Límite líquido
Wp	Límite plástico
Wnat	Contenido natural de agua

ÍNDICE DE TABLAS

Tabla 1.1: Rango de valores para las propiedades geotécnicas de los jales (Villavicencio et al., 2011)	19
Tabla 1.2: Parámetros de resistencia obtenidos a partir de pruebas triaxiales (Haiming et al., 2011)	22
Tabla 1.3: Resultados pruebas de permeabilidad (Fengxia, 2014)	23
Tabla 1.4: Resultados de pruebas triaxiales tipo CD (Fengxia, 2014)	24
Tabla 2 1: Constantes de calibración – cámara TA-1	36
Tabla 2 2: Constantes de calibración – cámara TA_2	30
Tabla 3.1: Granulometría del material ensayado	43
Tabla 3.2: Determinación del contenido de agua inicial del material	44
Tabla 3.3: Determinación de la densidad relativa de sólidos	44
Tabla 3.4: Determinación del límite líquido utilizando el cono sueco	46
Tabla 3.5: Dimensiones del molde para las pruebas de compactación	50
Tabla 4.1: Resumen de las relaciones volumétricas iniciales	71
Tabla 4.2: Resumen de las relaciones volumétricas finales	72
Tabla 4.3: Determinación de la compacidad relativa por aplicación de vacío	76
Tabla 4.4: Resumen de resultados resistencia máxima y residual (PP=100 g)	78
Tabla 4.5: Resumen de resultados resistencia máxima y residual (PP=1500g)	79
Tabla 4.6: Resumen de resultados resistencia máxima y residual (PP=3000g)	80
Tabla 4.7: Resultados parámetros de resistencia, criterio de Mohr-Coulomb	90
Tabla 4.8: Resumen de los resultados obtenidos para la pendiente de la línea de falla	95
Tabla 4.9: Resultados ángulo de fricción interna utilizando trayectorias de esfuerzos	95
Tabla 4.10: Resumen de resultados para el módulo de elasticidad al 50% de la resistencia máxima	101
Tabla 4.11: Resumen de resultados para el módulo de elasticidad, deformación unitaria igual a 0.0045	103
Tabla A.1: Resultados pruebas de compactación para w=8%	113
Tabla A.2: Resultados pruebas de compactación para w=10%	114
Tabla A.3: Resultados pruebas de compactación para w=12%	114
Tabla A.4: Resultados pruebas de compactación para w=14%	115
Tabla A.5: Resultados pruebas de compactación para w=16%	115
Tabla A.6: Resultados pruebas de compactación para w=18%	116
Tabla A.7: Resultados pruebas de compactación para w=20%	116

ÍNDICE DE FIGURAS

Figura 1.1: Producción de minerales y obtención de jales a partir de los procesos de trituración, molienda y	Y
flotación (Dold, 2010)	3
Figura 1.2: Descarga de jales en un solo punto (Fell, 2015)	5
Figura 1.3: Descarga por espigoteo (Fell, 2015)	6
Figura 1.4: Cicloneo de jales (Fell, 2015)	6
Figura 1.5: Trayectorias de esfuerzos efectivos de compresión triaxial, ensayes CU y CD (Ovando y Segovia	١,
1996)	9
Figura 1.6: Comportamiento no drenado de arenas en compresión triaxial (Ovando y Segovia, 1996) 10	D
Figura 1.7: comportamiento no drenado de una muestra suelta en la que se presenta el estado cuasi-estable	e
(Ovando y Segovia, 1996)	1
Figura 1.8: Línea de relación de vacíos crítica (Ovando y Segovia, 1996)12	2
Figura 1.9: Distribución granulométrica del material original y producto del cicloneo (Shamsai et al., 2007) 17	7
Figura 1.10: Determinación del ángulo de fricción interna en función de la resistencia del cono normalizada	а
(Villavicencio <i>et al.</i> , 2011)	D
Figura 1.11: Curvas granulométricas de jales (Haiming <i>et al.</i> , 2011)	2
Figura 1.12: Resultados obtenidos para las pruebas de corte directo (Fengxia, 2014) 24	4
Figura 2.1: Sistema de carga, cámara triaxial de alambres (Santoyo, 1969)	7
Figura 2.2: Instrumentación de la cámara triaxial de alambres 29	9
Figura 2.3: Menú principal del módulo de calibración	D
Figura 2.4: Calibración experimental de transductores	D
Figura 2.5: Curva de calibración experimental	1
Figura 2.6: Módulo de verificación	2
Figura 2.7: Características del módulo de operación32	2
Figura 2.8: Ingreso de datos para configuración de la prueba	3
Figura 2.9: Etapa de saturación por contrapresión	3
Figura 2.10: Medición del parámetro B de Skempton34	4
Figura 2.11: Adquisición de datos - etapa de falla	5
Figura 2.12: Módulo de transductores	5
Figura 2.13: Curva de calibración sensor de desplazamiento	7
Figura 2.14: Curva de calibración sensor de presión (confinamiento)	8
Figura 2.15: Curva de calibración sensor de presión (contrapresión)	9

Figura 2.16: Curva de calibración sensor de carga	39
Figura 2.17: Verificación sensor de desplazamiento	40
Figura 2.18: Verificación sensor de presión (confinamiento)	41
Figura 2.19: Verificación sensor de presión (contrapresión)	41
Figura 2.20: Verificación sensor de carga	42

Figura 3.1: Curva granulométrica del material utilizado	43
Figura 3.2: Curva de liquidez para determinar el límite líquido utilizando el cono sueco	45
Figura 3.3: Homogeneización del material en seco	46
Figura 3.4: Preparación del material para compactación	47
Figura 3.5: Detalles del molde de compactación	47
Figura 3. 6: Implementos utilizados para la formación de la probeta en pruebas de compactación	48
Figura 3.7: Preparación del molde para formar probetas – prueba triaxial	48
Figura 3.8: Secuencia de apisonado	49
Figura 3.9: Preparación de los elementos utilizados para formar la probeta	52
Figura 3.10: Secuencia del montaje de la muestra en la cámara triaxial	53
Figura 3.11: Esquema del montaje de la probeta en la cámara triaxial	54
Figura 3.12: Secuencia del procedimiento de montaje de la cámara	55
Figura 3.13: Secuencia al final del montaje	55
Figura 3.14: Módulo denominado "etapa de ensaye" del sistema de adquisición de datos	58
Figura 3.15: Variación de la relación de vacíos en función del contenido de agua	59
Figura 3.16: Determinación del módulo de elasticidad al 50% de la resistencia máxima	60
Figura 3.17: Trayectorias de esfuerzo en términos de esfuerzos efectivos	61

Figura 4.1: Variación del peso volumétrico húmedo en función del peso de pisón	63
Figura 4.2: Variación del peso volumétrico seco en función del peso de pisón	64
Figura 4.3: Curvas de compactación del material ensayado	65
Figura 4.4: Variación del grado de saturación en función del contenido de agua	65
Figura 4.5: Variación de la relación de vacíos en función del peso de pisón	66
Figura 4.6: e _{máx} vs. contenido de finos (Cubrinovski e Ishihara, 2002)	67
Figura 4.7: emín vs. contenido de finos (Cubrinovski e Ishihara, 2002)	68
Figura 4.8: e _{máx-} e _{mín} vs. D ₅₀ (Cubrinovski e Ishihara, 2002)	68
Figura 4.9: Variación de la compacidad en función del peso del pisón	69
Figura 4.10: Comparación relación de vacíos inicial y final	73

Figura 4.11: Comparación porosidad inicial y final	73
Figura 4.12: Comparación peso volumétrico seco inicial y final	73
Figura 4.13: Variación de la compacidad relativa inicial con aplicación de vacío (Flores, 2008)	75
Figura 4.14: Relación entre las compacidades relativas antes y después de aplicar el vacío a la muestra (Fl	ores,
2008)	75
Figura 4.15: Relación entre las compacidades relativas antes y después de aplicar el vacío a la muestra	77
Figura 4.16: Comparación entre las resistencias máximas y la residual (PP=100 g)	78
Figura 4.17: Comparación entre las resistencias máximas y la residual (PP=1500g)	79
Figura 4.18: Comparación entre las resistencias máximas y la residual (PP=3000g)	80
Figura 4.19: Resumen de resultados para la resistencia máxima y residual	81
Figura 4.20: Curvas esfuerzo-deformación (PP=100g, w=16%)	83
Figura 4.21: Curvas presión de poro-deformación (PP=100g, w=16%)	83
Figura 4.22: Curvas presión de poro normalizadas (PP=100g, w=16%)	84
Figura 4.23: Trayectorias de esfuerzo (PP=100g, w=16%)	84
Figura 4.24: Curvas esfuerzo-deformación (PP=1500g, w=8%)	85
Figura 4.25: Curvas presión de poro-deformación (PP=1500g, w=8%)	86
Figura 4.26: Curvas presión de poro normalizadas (PP=1500g, w=8%)	86
Figura 4.27: Trayectorias de esfuerzo (PP=1500g, w=8%)	87
Figura 4.28: Curvas esfuerzo-deformación (PP=3000g, w=16%)	87
Figura 4.29: Curvas presión de poro-deformación (PP=3000g, w=16%)	88
Figura 4.30: Curvas presión de poro normalizadas (PP=3000g, w=16%)	88
Figura 4.31: Trayectorias de esfuerzo (PP=3000g, w=16%)	89
Figura 4.32: Determinación de los parámetros de resistencia utilizando el criterio de Mhor-Coulomb	89
Figura 4.33: Cohesión aparente en términos de esfuerzos totales	91
Figura 4.34: Cohesión aparente en términos de esfuerzos efectivos	91
Figura 4.35: Ángulo de fricción interna en función del peso volumétrico saturado (MC)	92
Figura 4.36: Ángulo de fricción interna en función del peso volumétrico seco (MC)	92
Figura 4.37: Correlación entre peso volumétrico seco y ángulo de fricción interna	93
Figura 4.38: Comparación entre los valores experimentales y los calculados en TET	94
Figura 4.39: Comparación entre los valores experimentales y los calculados en TEE	94
Figura 4.40: Ángulo de fricción interna en función del peso volumétrico saturado (TE)	96
Figura 4.41: Ángulo de fricción interna en función del peso volumétrico seco (TE)	96
Figura 4.42: Comparación de resultados para el ángulo de fricción interna determinado a partir del anális	sis de
resistencia de Mohr-Coulomb y la pendiente de la línea de estado crítico	97

Figura 4.43: Correlación obtenida entre los valores promedio del ángulo de fricción interna determinados a
partir de las trayectorias de esfuerzos y con el análisis de resistencia de Mhor-Coulomb
Figura 4.44: Trayectorias de esfuerzos normalizadas (PP=100g)99
Figura 4.45: Trayectorias de esfuerzos normalizadas (PP=1500g)
Figura 4.46: Trayectorias de esfuerzos normalizadas (PP=3000g)100
Figura 4.47: Módulo de elasticidad (PP=100g)101
Figura 4.48: Módulo de elasticidad (PP=1500g)102
Figura 4.49: Módulo de elasticidad (PP=3000g)102
Figura 4.50: Módulo de elasticidad (PP=100g)104
Figura 4.51: Módulo de elasticidad (PP=1500g)104
Figura 4.52: Módulo de elasticidad (PP=3000g)104
Figura 4.53: Diagrama de estado105
Figura 4.54: Determinación de la pendiente del estado estable106
Figura 4.55: Variación de la compacidad relativa en función del contenido de agua
Figura 4.56: Ángulo de fricción interna en función de la compacidad relativa
Figura 4.57: Propuesta de correlación entre la compacidad relativa y el ángulo de fricción interna 108
Figura 4.58: Comparación entre los resultados obtenidos y los calculados para el ángulo de fricción interna er
TET
Figura 4.59: Comparación entre los resultados obtenidos y los calculados para el ángulo de fricción interna er
TEE

Figura B.1: Resultados pruebas triaxiales (PP=100g, w=8%)	. 118
Figura B.2: Resultados pruebas triaxiales (PP=100g, w=16%)	. 119
Figura B.3: Resultados pruebas triaxiales (PP=100g, w=20%)	. 120
Figura B.4: Resultados pruebas triaxiales (PP=1500g, w=8%)	. 121
Figura B.5: Resultados pruebas triaxiales (PP=1500g, w=16%)	. 122
Figura B.6: Resultados pruebas triaxiales (PP=1500g, w=20%)	. 123
Figura B.7: Resultados pruebas triaxiales (PP=3000g, w=8%)	. 124
Figura B.8: Resultados pruebas triaxiales (PP=3000g, w=16%)	. 125
Figura B.9: Resultados pruebas triaxiales (PP=3000g, w=20%)	. 126
Figura B.10: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=8%)	. 127
Figura B.11: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=16%)	. 127
Figura B.12: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=20%)	. 127
Figura B.13: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=8%)	. 128
Figura B.14: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=16%)	. 128

Figura B.15: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=20%)	128
Figura B.16: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=8%)	129
Figura B.17: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=16%)	129
Figura B.18: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=20%)	129

PLANTEAMIENTO DEL PROBLEMA

Justificación

El crecimiento industrial y demográfico en los últimos años ha ocasionado que sectores como la minería generen a diario un gran volumen de residuos que pueden ser peligrosos para el equilibrio ecológico y el ambiente. De acuerdo con la normatividad vigente estos residuos deben disponerse de tal manera que se garantice la seguridad de la población, las actividades económicas y sociales y el equilibrio ecológico.

En este contexto, la disposición de los residuos mineros en la actualidad se realiza en depósitos denominados "depósitos de jales", construidos por diferentes métodos y estrategias de disposición. En este tipo de depósitos no solo se deben tener en cuenta aspectos ambientales, también se debe verificar la estabilidad aplicando los principios de la ingeniería geotécnica, ya que se deben considerar aspectos como la elevación, sistemas de drenaje, estabilidad de los taludes, etc.

Según lo anterior, algunos métodos para la construcción de depósitos de jales requieren grandes espacios, equipos de acuerdo con la estrategia de disposición y un incremento en los costos según la distancia a la que se ubique el depósito de la mina donde se realiza el beneficio de los minerales de interés; es por esto que en esta investigación se propone evaluar la influencia de la compacidad relativa y el esfuerzo efectivo en el comportamiento esfuerzo-deformación de jales en condiciones saturadas, con el fin de que sirva de apoyo para la caracterización de los jales y sea una herramienta en la ingeniería práctica, donde no es común la ejecución de ensayes en jales saturados, en condiciones no drenadas, con medición de presión de poro.

Objetivos

Objetivo general

Caracterizar el comportamiento esfuerzo-deformación de jales saturados, observando la influencia de la compacidad relativa inicial y el esfuerzo efectivo de consolidación.

Objetivos específicos

- Seleccionar un material proveniente del proceso de molienda para el beneficio de minerales.
- Realizar un proceso de formación de probetas por amasado para obtener la curva de compactación del suelo para diferentes pesos de pisón.
- Formar series de tres probetas con las mismas condiciones de compacidad y contenido de agua iniciales, de 3.6 cm de diámetro y 9 cm de altura.
- Saturar, verificar la saturación total, consolidar y llevar a la falla cada una de las probetas en condiciones no drenadas. Con estos resultados obtener las curvas esfuerzo desviador vs deformación unitaria axial y presión de poro vs deformación unitaria axial, además de los ángulos de fricción y la cohesión, en términos de esfuerzos totales y efectivos.
- Hacer un análisis paramétrico de la influencia de la compacidad relativa inicial y el esfuerzo efectivo en los parámetros mecánicos de los jales saturados.

1. INTRODUCCIÓN Y ESTUDIOS PREVIOS

1.1. Introducción

1.1.1 Depósitos de jales en México

En México desde la época de la Colonia, la minería ha sido una actividad importante en la economía del país, pero a su vez es una fuente potencial en la generación de residuos, los cuales pueden contener elementos potencialmente peligrosos o ser peligrosos y representar un alto riesgo a la población, al ambiente o a los recursos naturales.

Los jales, llamados en México a los residuos mineros del proceso de molienda en una planta concentradora de mineral, son suelos de comportamiento viscoelástico muy complejo y de alta susceptibilidad a fenómenos como la erosión pluvial, la tubificación y la licuación provocada por un sismo o una explosión (Orozco, 2010).

Según Orozco (2014), anteriormente, muchos depósitos para jales se construían empíricamente e incluso, el agua corriente de los arroyos o ríos lavaban el material haciendo desaparecer la obra. Ahora ya se exigen estudios previos y proyectos de diversa índole: geotécnicos, geofísicos, geoquímicos, geohidrológicos, hidrológicos, hidráulicos, ambientales, entre otros, tanto antes, durante y después de la construcción y operación simultaneas, así como para el cierre de estas obras.

La disposición de los jales se llevó a cabo durante mucho tiempo en los alrededores de las minas de acuerdo con lineamientos que no establecían criterios ambientales. Por tal razón, se convirtieron en fuentes potenciales de contaminación de sitios mineros que operaban sin medidas adecuadas de control y que han afectado los suelos y sedimentos de los alrededores, ya sea por su contenido de elementos potencialmente tóxicos y/o por su capacidad de generar drenaje ácido (Briseño, 2010).

Fue en la década de los ochenta en México, cuando las empresas mineras iniciaron la disposición de residuos en la construcción de los depósitos de jales diseñados para

asegurar la estabilidad estructural, realizándose en algunos casos los estudios de caracterización del sitio.

Orozco (2010), plantea que fue en 1993 cuando se dio la importancia suficiente al tratamiento de los residuos mineros y a la construcción de obras para su almacenamiento, por tanto, en la época se publicó la primera versión en español del "Manual de Presas y Depósitos de Jales" por la Asociación de Minas y Metalurgistas y Geólogos de México A.C., AIMMGM.

En 2003, se publicó la norma actual por la Secretaria del Medio Ambiente y Recursos Naturales – SEMARNAT, denominada NOM-141, la cual establece el procedimiento para caracterizar los jales, así como las especificaciones y criterios para la caracterización y preparación del sitio, proyecto, construcción, operación y postoperación de depósitos de jales. Esta norma fue elaborada por un comité conformado por las Secretarias de Desarrollo Urbano y Ecología, Energía, Minas e Industria y otras instituciones, entre las cuales se encuentra la UNAM, la SMIG, la AI, la CFE y la CNA, por citar algunas.

Adicionalmente, como parte del aporte al estudio de los jales, en el instituto de Ingeniería de la UNAM, se han realizado investigaciones sobre el comportamiento estático y dinámico de los mismos (Flores y Romo, 1996 y 2008; Flores *et al.*, 2002 a 2008, Ovando 2001 y 2005).

De acuerdo con lo anterior, antes de que existiera una normatividad sobre la disposición de los jales, se generaron afectaciones ambientales como la contaminación de suelos y sedimentos, por la dispersión de jales con altos contenidos de elementos tóxicos, debido a fallas de construcción y operaciones de las presas, y por la acción de la lluvia y el viento; así como por la formación y el transporte de drenaje ácido (Briseño, 2010).

En general, tanto a nivel nacional como internacional, dentro de los principales accidentes mineros, se encuentran las deficiencias en la ingeniería, por la pérdida de bordo libre debido a la capacidad insuficiente para regular los escurrimientos pluviales hacia la presa y rotura de conductos que transportan o están en contacto con jales en suspensión.

Otros incidentes presentados en México tienen que ver con los deslizamientos masivos de jales por sismos intensos, con epicentros cercanos a los depósitos, y otros por la presencia de flujos internos de agua que provocan arrastre de partículas hacia la parte exterior de los taludes sin protección. Según Briseño (2010), las fallas pueden ocasionar impactos como: interrupción generalizada de la producción, pérdida de vidas, daños a los ecosistemas, así como consecuencias económicas y legales.

1.1.2. Fuente de jales

De acuerdo con su definición, los *jales* son residuos mineros generados durante los procesos de recuperación de metales, en los cuales el material es extraído de la minas, generalmente usando explosivos; posteriormente se transporta a la superficie para someterlo a molienda; una vez alcanzado el tamaño deseado, las partículas se mezclan con agua y pequeñas cantidades de reactivos químicos que facilitan la liberación de los metales; durante este proceso la mezcla se lleva a tanques especiales y por flotación se recuperan los minerales de interés; los residuos obtenidos se transportan por medio de tuberías al lugar de almacenamiento denominado "*depósito de jales*". En la Figura 1.1, se presenta el esquema del proceso descrito.

Figura 1.1: Producción de minerales y obtención de jales a partir de los procesos de trituración, molienda y flotación (Dold, 2010)

El método de transporte más común entre la planta y la presa es como lodo líquido, generalmente con un contenido de sólidos de 20 a 65% (ANCOLD, 1999); este contenido es función de la gravedad específica, la cantidad de sólidos al final del proceso, el espesor de los filtros usados para recuperar agua o residuos químicos, así como la reducción del volumen de bombeo de jales, de las propiedades reológicas y los costos involucrados.

1.1.3. Características físicas de los jales

La mayoría de los jales tienen tamaños de arenas finas, limos y arcillas, y son transportados al sitio de almacenamiento en forma de lodos. Una vez depositados en el almacenamiento las partículas pueden segregarse y asentarse según el tamaño y la interacción con el agua.

Las gravas, arenas o limos pueden asentarse relativamente rápido y forman una masa de baja densidad, los limos y arcillas finas se asientan lentamente para formar una masa suave de baja densidad en la cual continúa el asentamiento (por consolidación) bajo peso propio con un tiempo que depende de la velocidad de salida del agua.

En el punto de descarga del almacenamiento, se presenta una mezcla de diferentes tamaños donde las partículas más grandes se sedimentan cerca de la salida, las partículas más finas son transportadas a una parte más lejana, para formar las denominadas playas.

Los jales depositados con bajas densidades y con posibles efectos químicos, eventualmente se pueden comportar de manera análoga a suelos de tamaño y forma similar, en tanto que, los materiales con tamaño de grano más fino pueden permanecer como un fluido por largos periodos.

Algunos jales son producidos en forma de arenas húmedas, gravas, ceniza o materiales prensados que pueden ser manejados y colocados en estado sólido o semisólido. Estos materiales pueden no requerir la construcción de una presa de jales, pero se deben tener en cuenta las condiciones de filtración y manejo ambiental (ANCOLD, 1999).

Dentro del comportamiento de los jales se debe considerar si los sólidos aparentes pueden ser susceptibles a licuación durante un sismo o si los depósitos de estos materiales pueden ser inestables bajo tormentas o peso de maquinaria en movimiento.

1.1.4. Disposición de jales

Un solo punto de descarga

En esta técnica, la descarga de los jales se realiza desde el extremo abierto de una tubería (ver Figura 1.2), se emplea a menudo en la construcción de presas con el método "aguas arriba" y no es apropiado cuando el estanque debe mantenerse lejos del depósito. Un solo punto de descarga se puede utilizar para descargar suspensión en la presa, pero este punto de descarga debe moverse periódicamente para evitar que las secciones de la presa se formen de una manera desigual.

Figura 1.2: Descarga de jales en un solo punto (Fell, 2015)

Espigoteo (descarga múltiple)

Es la técnica de descarga de jales a través de pequeñas tuberías (espigas) que dan origen a múltiples puntos, en intervalos igualmente espaciados a lo largo de una línea (ver Figura 1.3). Este método es utilizado para lograr un flujo más o menos uniforme de jales, en el cual teóricamente se logran playas uniformes. El espigoteo forma una playa de poca profundidad, donde la fracción más gruesa se asienta cerca al punto de descarga y la fracción fina se deposita progresivamente lejos de estos puntos; como resultado de esta graduación variable, el peso volumétrico, la resistencia al corte y la permeabilidad de los sólidos disminuye al aumentar la distancia desde el punto de descarga.

Figura 1.3: Descarga por espigoteo (Fell, 2015)

Cicloneo

Esta técnica permite separar la fracción gruesa de la fracción fina de los jales, con el fin de usarlos para construir la presa (ver Figura 1.4). Además, permite reducir el volumen de residuos depositados en el embalse, ya que parte de la fracción gruesa se ha utilizado en la construcción de la cortina contenedora.

Figura 1.4: Cicloneo de jales (Fell, 2015)

Los ciclones son dispositivos mecánicos utilizados para separar las partículas gruesas y finas de una suspensión a través de la acción centrífuga. La suspensión al moverse bajo presión entra en el ciclón y las partículas finas suben a la salida superior, mientras que las partículas gruesas descienden a través de una sección cónica y salen en la parte inferior. La fracción fina se conoce como material desbordado y la fracción gruesa como flujo inferior. El material utilizado para construir los terraplenes es el obtenido del flujo inferior, mientras que el material desbordado se descarga a través de una tubería al embalse.

1.1.5. Propiedades fundamentales de un depósito de jales

En primera instancia, se debe recordar que los jales son residuos mineros producto del proceso de molienda en una planta concentradora de mineral, son suelos de comportamiento viscoelástico muy complejo y de alta susceptibilidad a fenómenos como la erosión pluvial, la tubificación y la licuación provocada por un sismo o una explosión (Orozco, 2010).

Una de las propiedades básicas de los depósitos de jales es la permeabilidad en la cortina contenedora, en contraste con las presas convencionales donde su función principal es la retención de agua por medio de un núcleo impermeable.

Es importante mencionar que los depósitos de jales son obras ingenieriles que se construyen y operan de manera simultánea, en este tipo de obras se busca en primer lugar la seguridad, tanto física como ambiental, durante la construcción, operación y después del cierre. Cada parte del depósito debe cumplir algunas propiedades, entre ellas las más importantes para la cortina contenedora son: resistencia a la licuación, tubificación, deslizamiento de los taludes (por erosión) y derramamiento por descuido en la operación.

1.2. Aspectos básicos del comportamiento de arenas

1.2.1. Descripción del comportamiento en condiciones no drenadas

Si se impide el cambio de volumen durante la aplicación de esfuerzos cortantes, es decir, que se impide el drenaje, el agua contenida en los poros experimentará cambios de presión. Si el suelo es contractivo, la presión de poro aumentará; si es dilatante el valor de la presión de poro disminuirá. Cuando el suelo se encuentra en un estado muy suelto, los aumentos de presión de poro pueden anular a los esfuerzos efectivos. En este momento se presenta la licuación estática (Troncoso, 1985), pues el material habrá perdido toda su capacidad para resistir esfuerzos cortantes y se comportará como un fluido (Ovando y Segovia, 1996).

Para propósitos ingenieriles, el comportamiento de los suelos se describe mediante variables esfuerzo-deformación apropiadas. En arenas, ensayadas en cámaras triaxiales, se utilizan las curvas de esfuerzo desviador o presión de poro contra deformación unitaria axial; asimismo, es conveniente emplear las trayectorias de esfuerzos, las cuales se representan en diagramas p' - q:

$$p' = \frac{\sigma_1 + 2\sigma_3}{3}; q = \sigma_1 - \sigma_3$$

Donde:

- p': Esfuerzo efectivo octaédrico
- q: Esfuerzo desviador
- σ_1 : Esfuerzo principal efectivo mayor
- σ_3 : Esfuerzo principal efectivo menor

Se debe tener en cuenta que en pruebas de compresión el esfuerzo principal mayor es el vertical y el menor, el horizontal.

Las trayectorias de esfuerzos se pueden obtener en condiciones drenadas o no drenadas, en el primer caso, si una probeta se consolida a una presión p_0 y después se le aplican esfuerzos cortantes su trayectoria es una línea recta con pendiente 3:1 en el espacio p'-q. Las trayectorias no drenadas se obtienen al aplicar esfuerzos cortantes sin drenaje después de la consolidación, se genera presión de poro y la trayectoria de esfuerzos se desvía de la que se obtiene para condiciones drenadas. La distancia horizontal entre la trayectoria de esfuerzos drenada y la no drenada es el exceso de presión de poro, Δu .

En la Figura 1.5, se presentan las trayectorias de esfuerzos en pruebas triaxiales consolidadas y después llevadas a la falla con y sin drenaje (pruebas CD y CU).

Figura 1.5: Trayectorias de esfuerzos efectivos de compresión triaxial, ensayes CU y CD (Ovando y Segovia, 1996)

Ovando y Segovia (1996), de acuerdo con observaciones experimentales plantean que al ensayar probetas sin permitir el drenaje, el comportamiento de una arena es como el que se presenta en la Figura 1.6. La muestra densa genera presiones de poro negativas mientras que la muestra ensayada en un estado muy suelto, solo genera presión de poro positiva. En la curva esfuerzo deformación de esta última se define un máximo, después del cual la presión de poro continúa aumentando, hasta que a deformaciones grandes tiende a mantenerse constante. Después del esfuerzo cortante máximo, los aumentos de presión de poro posteriores, producen reducciones en los esfuerzos cortantes, observándose que hacia el final de la prueba se alcanza un esfuerzo cortante residual que incluso puede ser nulo.

El comportamiento de una arena que no esté muy suelta puede ser contractivo y puede ocurrir que experimente una pérdida de resistencia después de sobrepasar el esfuerzo cortante máximo. Como se presenta en la Figura 1.7, la probeta moviliza una resistencia reducida que permanece aproximadamente constante durante un intervalo más o menos grande de deformaciones y después recupera parte de su capacidad para resistir esfuerzos cortantes. La presión de poro aumenta inmediatamente después de sobrepasar la resistencia pico (punto A); cuando la probeta moviliza la resistencia reducida, alcanza su máximo, con poca variación; finalmente, la presión de poro disminuye, dando lugar al incremento de resistencia y rigidez que se observa al final de la prueba.

b) Trayectoria de esfuerzos

Figura 1.7: comportamiento no drenado de una muestra suelta en la que se presenta el estado cuasi-estable (Ovando y Segovia, 1996)

Los incrementos de presión de poro que ocurren durante la movilización de la resistencia reducida pueden producir disminuciones significativas en los esfuerzos efectivos y las deformaciones también pueden ser de gran magnitud. Por ello, esta condición es una licuación parcial en la que la muestra pasa por el estado estable dentro de un rango limitado de deformaciones (Alarcón *et al*, 1988). Las reducciones de presión de poro, junto con el incremento de rigidez dan lugar a que la trayectoria de esfuerzos efectivos cambie de dirección y comience a subir a lo largo de la envolvente de falla. El cambio de comportamiento contractivo a dilatante constituye una transformación de fase (Ishihara, 1993) y los puntos en donde ocurre ésta, definen la línea de transformación de fase que, en general, no coincide con la envolvente de falla aunque también pasa por el origen.

1.2.2. Diagramas de estado

El espacio de relación de vacíos contra presión efectiva media (e-p' o e-logp') puede utilizarse para dibujar las trayectorias que siguen las muestras durante su etapa de falla (ver Figura 1.8). En el caso de ensayes no drenados, las trayectorias son líneas horizontales pues no hay cambio de volumen. Para muestras puramente contractivas las trayectorias siempre se desplazan hacia la izquierda hasta llegar al estado estable. Uniendo los estados estables de todas las probetas, se define la línea de estado estable (steady state line – SSL).

Figura 1.8: Línea de relación de vacíos crítica (Ovando y Segovia, 1996)

Los diagramas de estado pueden emplearse para predecir cualitativamente el comportamiento de cualquier probeta, dadas su relación de vacíos inicial y su presión

efectiva de consolidación (Ovando y Segovia, 1996). Los estados iniciales que quedan arriba y a la derecha de la línea de estado estable, representan a materiales contractivos susceptibles de licuarse o de sufrir deformaciones de flujo. Si el estado inicial queda por debajo y a la izquierda de la línea de estado estable, el comportamiento del material será dilatante cuanto más alejado esté de dicha línea.

1.3. Estudios previos

Durante el desarrollo de la presente investigación se llevó a cabo una revisión bibliográfica, con el fin de recopilar trabajos enfocados a la determinación de los parámetros mecánicos de jales reconstituidos en condición saturada; en cada caso es necesario tener en cuenta el método de compactación utilizado para formar la probeta y las propiedades físicas de los materiales utilizados.

Rodríguez y Ovando (2001), evaluaron el comportamiento bajo carga estática de un residuo minero variando el contenido de finos con una distribución granulométrica bien graduada; asimismo, compararon los resultados obtenidos con los encontrados para residuos mineros de diferentes procedencias.

El material integral utilizado corresponde a un residuo proveniente de la mina de "Charcas" localizada en el Estado de San Luis Potosí, compuesto por arenas finas con tamaños comprendidos entre las mallas No. 40 y No. 200, con un contenido de finos no plásticos de 14% y una densidad relativa de sólidos de 3.02.

Para estudiar la influencia del contenido de finos en el comportamiento del material, determinaron las curvas granulométricas correspondientes a porcentajes de finos de: 0, 3, 6, 9, y 28%. La formación de la probeta la llevaron a cabo utilizando el procedimiento propuesto por Flores (1996), con un intervalo de contenidos de agua de 5 a 13% y pesos de pisón de 0.1 a 5.0 kg.

En cuanto a las pruebas de compactación realizadas encontraron que la variación en la relación de vacíos para pesos de pisón de 3000 g y 5000 g es muy baja, por tanto, la mínima relación de vacíos obtenida es 0.764 correspondiente a un contenido de agua del 5% y un

peso de pisón de 3000 g. La relación de vacíos máxima se tiene para una humedad de 9% y un peso de pisón de 100 g, con un valor de 1.531.

El diseño experimental para la realización de pruebas triaxiales estáticas tipo CU contempló 6 pruebas en el material integral y 20 pruebas para evaluar la influencia del contenido de finos con variaciones de 0, 3, 6, 9, 14 y 28%;en todos los casos el contenido de agua inicial para la formación de la probeta fue de 9%. Previo a la etapa de saturación por contrapresión se realizó circulación de CO₂ y agua. Los esfuerzos efectivos de consolidación variaron entre 0.75 y 1.54 kg/cm², mientras que la relación de vacíos en la falla varió entre 0.89 y 1.536.

Los ensayes los efectuaron bajo condiciones no drenadas con aplicación de carga a deformación controlada la cual se aplicó a una velocidad de 0.1 mm/min. Durante la prueba se midió la presión de poro generada por la aplicación de la carga. Los análisis realizados incluyeron las curvas esfuerzo-deformación, presión de poro-deformación, trayectorias de esfuerzos p'-q y diagramas de estado, para todos los casos planteados.

Para el material con un 28% de finos encontraron que la curva esfuerzo-deformación presenta un comportamiento de un material suelto, con valores para el esfuerzo desviador máximo entre 0.20 y 0.97 kg/cm², para valores de esfuerzo efectivo de consolidación entre 1.0 y 1.5 kg/cm². Adicionalmente, el esfuerzo máximo se alcanza para valores de deformación axial menores de 2%. Las presiones de poro generadas durante el ensaye, alcanzaron los valores del esfuerzo efectivo de consolidación en todos los casos; por tanto, se presentó la licuación estática del material. Las trayectorias de esfuerzos presentan el comportamiento de un material suelto con una pendiente para la envolvente de 1.5217. En el diagrama de estado se observó que todas las probetas ensayadas presentaban un comportamiento contractivo y la pendiente de la línea de estado estable fue de 2.48.

El material ensayado con un contenido de finos de 14%, presentó valores de esfuerzo desviador máximo entre 0.20 y 0.90 kg/cm², para valores de esfuerzo de consolidación de 0.75 a 1.6 kg/cm², presentó comportamiento de un material suelto a medianamente denso, con excepción de un probeta ensayada con un peso de pisón de 5 kg, donde encontraron el comportamiento de un material denso. En cuanto a la presión de poro, el comportamiento

es contractivo y para la probeta de mayor densidad dilatante, en el primer caso se alcanzó la licuación del material durante la etapa de falla. En las trayectorias de esfuerzos la pendiente de la línea de falla obtenida fue de 1.5217 y es independiente del comportamiento del material así como del esfuerzo efectivo de consolidación. La pendiente de la línea de estado estable fue de 2.48.

Para el material con un contenido de finos del 9%, el esfuerzo desviador máximo varió entre 0.25 y 1.3 kg/cm², para valores de esfuerzo de consolidación de 0.9 a 1.525 kg/cm²; en este caso la deformación correspondiente al esfuerzo máximo fue menor de 2% y algunos de los ensayes realizados presentaron colapso, ya que el esfuerzo desviador fue casi nulo. La presión de poro en todos los casos reveló un comportamiento contractivo y el material alcanzó la licuación estática. En las trayectorias de esfuerzo obtenidas se presenta el comportamiento de un material suelto y la pendiente de la línea de falla fue de 1.4706. La pendiente de la línea de estado estable fue de 2.337.

Los ensayes realizados en el material con 6% de finos, presentaron un esfuerzo desviador máximo entre 0.2 y 0.8 kg/cm², para valores de esfuerzo de consolidación de 0.98 a 1.54 kg/cm². La deformación axial correspondiente al máximo esfuerzo desviador fue inferior a 2%; el comportamiento obtenido corresponde a un material suelto a medianamente denso. La presión de poro exhibió un comportamiento contractivo en todos los casos. La pendiente de la línea de falla obtenida fue de 0.9167 y la pendiente de la línea de estado estable de 1.23.

El material con 3% de finos, presentó un comportamiento típico de un material suelto a medianamente denso, con esfuerzos desviadores máximos entre 0.3 y 1.0 kg/cm², para esfuerzos efectivos de consolidación de 1.025 y 1.54 kg/cm², y deformaciones inferiores al 2%. La presión de poro en todos los casos presentó un comportamiento contractivo y el material alcanzó la licuación estática. La pendiente de la línea de falla en las trayectorias de esfuerzos fue de 1.2658 y la pendiente de la línea del estado estable de 0.86.

Para un porcentaje de finos del 0% se exhibe un comportamiento muy similar al anterior, la pendiente de la envolvente en las trayectorias de esfuerzo fue de 1.2941 y la del estado estable de 0.111.

Los ángulos de fricción interna obtenidos a partir de la pendiente de la línea de falla, en términos de esfuerzos efectivos, variaron entre 23.43 y 37.37 grados; los valores más grandes se obtuvieron para materiales con mayor contenido de finos. Asimismo, se tuvo que la resistencia máxima disminuyó conforme aumenta el porcentaje de finos, con excepción del material con un contenido de 14%. En cuanto a la pendiente de la línea de estado estable se vio que disminuyó al disminuir el contenido de finos.

Flores, *et al.* (2010), ensayaron probetas de jales reconstituidos en pruebas triaxiales UU y CU, para realizar el diseño geotécnico de una presa de jales en el estado de Hidalgo; el material utilizado se clasificó según el SUCS como un limo arenoso de baja plasticidad (ML), con 66.9% de finos y 33.1% de arenas, y límites líquido (w_L) y plástico (w_P) de 31.2 y 25%, respectivamente, lo que representa un índice de plasticidad (PI) de 6.2%, y una densidad relativa de sólidos (G_s) de 2.725.

La formación de las probetas se realizó utilizando un método de compactación estática, variando el contenido de agua entre 5 y 12% y pesos de pisón ente 150 y 1040 g, con lo cual se logran relaciones de vacíos en condiciones medianamente sueltas a densas.

Ejecutaron dos series de pruebas triaxiales CU con medición de presión de poro, para una condición suelta (e=0.94); se obtuvieron ángulos de fricción interna en condición de esfuerzos totales y efectivos de 12.54 y 17.87°, y cohesiones de 0.227 y 0.186 kg/cm², respectivamente. Para la condición más densa (e=0.86), los ángulos de fricción en condiciones de esfuerzos totales y efectivos de 14.05 y 20.33°, y las cohesiones de 0.105 y 0.186 kg/cm², respectivamente.

Shamsai, *et al.* (2007) analizaron los jales provenientes de la mina de cobre "Sarcheshmeh" en Irán. Dentro de la investigación realizada, llevaron a cabo pruebas de laboratorio para obtener la distribución granulométrica, límites de Atterberg, densidad relativa de sólidos, parámetros de resistencia al corte, coeficiente de consolidación y conductividad hidráulica.

En cuanto a la distribución granulométrica analizaron 154 muestras del residuo original, de las cuales encontraron que el total de los jales presentan tamaños relativamente gruesos con un porcentaje de finos de aproximadamente el 45%. El tamaño de los jales depende del proceso de molienda del mineral extraído.

Los jales tomados del cicloneo, dependen de la alimentación del material, la presión del hidrocicloneo, la densidad inicial de la mezcla y de la posibilidad de adicionar agua al proceso. En general, la clasificación SUCS obtenida para los jales producto del cicloneo es SP – arena mal graduada. La distribución granulométrica de los materiales ensayados se presenta en la Figura 1.9.

Figura 1.9: Distribución granulométrica del material original y producto del cicloneo (Shamsai et al., 2007)

La densidad relativa de sólidos determinada *in situ* fue de 2.79, el rango para la relación de vacíos osciló entre 0.4 y 1.0 y el peso volumétrico de sólidos obtenido fue de 1.78 t/m³. A partir de la realización de pruebas de compactación en 25 muestras utilizando el método AASHTO estándar, determinaron el peso volumétrico seco máximo y el contenido de agua óptimo; los valores obtenidos fueron 1.8 t/m³ y 14.18%, respectivamente. El intervalo obtenido para los límites de Atterberg, fue de 26 a 39% para el límite líquido y de 4 a 12% para el índice de plasticidad.

Para la determinación de los paramentos de resistencia, se realizaron pruebas de corte directo saturadas y parcialmente saturadas, así como pruebas triaxiales CU y CD. Dichas

pruebas las llevaron a cabo en el material original no procesado y en el material producto del cicloneo. Los resultados obtenidos los presentan en función de la compactación relativa (R_c) obtenida a partir de pruebas de compactación siguiendo el método AAHSTO.

Los parámetros de resistencia obtenidos a partir de las pruebas CU, para el material no procesado, mostraron que la cohesión tiene un intervalo de valores entre 0.3 y 1.0 kg/cm²; asimismo, el ángulo de fricción interna resulto entre 20 y 30°, los valores anteriores para una compacidad relativa entre 70 y 100%, tanto la cohesión como el ángulo de fricción interna crecieron al aumentar la compacidad relativa.

Para el material procesado, se presenta un comportamiento similar al anterior. La cohesión disminuyó al incrementar la compacidad relativa y el intervalo de valores estuvo entre 0.21 y 0.08 kg/cm²; asimismo, el ángulo de fricción interna aumentó al incrementar la compacidad relativa con valores entre 22 y 35°, en los dos casos para una compacidad relativa entre 80 y 100%.

A partir de las pruebas ejecutadas, se proponen correlaciones para determinar la cohesión y el ángulo de fricción interna en función de la compacidad relativa. Dichas correlaciones se presentan a continuación:

Para el material no procesado

c = 2.7Rc - 1.7 para Rc > 63% $\phi = 39Rc - 4.7$ para Rc > 12%

Para el material procesado (producto del cicloneo)

c = 0 $\phi = 58.8Rc - 14.7$ para Rc > 25%

Donde:

c : Cohesión

Rc: Compacidad relativa
Villavicencio *et al.* (2011) plantearon un modelo probabilístico para predecir las propiedades índice de residuos mineros que constituyen los depósitos, basados en análisis estadísticos; asimismo, plantearon el uso de pruebas dinámicas de penetración para estimar en campo el ángulo de fricción interna y sus rangos de variación. Los métodos propuestos fueron aplicados en tres depósitos de jales y residuos producidos en minas de cobre en Chile.

La primera parte del trabajo presenta un análisis de las causas de la variabilidad en los jales y las características de los depósitos. Dicho trabajo se llevó a cabo mediante la caracterización estadística de las propiedades físicas, a partir de la realización de pruebas de cono con el fin de lograr un modelo probabilístico de estos parámetros. Además, compilaron datos de la literatura y de pruebas llevadas a cabo en tres depósitos de jales representativos en Chile. En la tercera parte, proponen un único modelo para todos los depósitos de jales, con el fin de establecer una ley de probabilidad asociada a la estimación del ángulo de fricción interna en términos de esfuerzos efectivos. Finalmente, aplican el modelo desarrollado al proceso de rehabilitación de un depósito de jales.

Según lo anterior, en la Tabla 1.1, se presenta el análisis estadístico realizado a los datos recopilados en la bibliografía y los obtenidos a partir de las pruebas ejecutadas en los tres depósitos de jales mencionados.

					Dato	s experimer	ntales			
Broniodad	Rango de	Depć	ósito de jales	6 No. 1	Depć	sito de jales	6 No. 2	Depó	sito de jales	5 No. 3
geotécnica	datos (bibliografía)	Número de datos	Promedio	Coeficiente de variación (%)	Número de datos	Promedio	Coeficiente de variación (%)	Número de datos	Promedio	Coeficiente de variación (%)
γs	2.68-3.88	108	3.09	4.6	45	3.36	8.02	40	3.07	2.2
D _{máx} (mm)	0.60-2.0	3266	0.721	27.3	262	0.285	82.2	2.958	1.831	42.4
D ₅₀ (mm)	0.05-0.25	3266	0.127	19	262	0.111	15.2	2.958	0.251	8.7
% Finos	12-25	3266	28	28.7	262	33	26.3	2.958	17	10
IP (%)	0	12	0	0	8	0	0	12	0	0
γ _{dmáx} (KN/m³)	15-22	392	18.2	6.2	262	20.8	8	495	18.5	2.3
w _{op} (%)	-	392	15.2	9.4	262	14.4	10.3	495	14.3	6.2
γ_d (KN/m ³)	15.8-17.0	3266	17.5	6.6	275	20.1	8.2	2958	18.1	2.9
w _{nat} (%)	7.0-13.0	3266	11	22.3	275	3.3	43.1	2958	7.5	27.3
γ_h (KN/m ³)	16.9-18.4	3266	19.4	6.7	275	20.7	8.2	2958	19.5	3.5
qd (Mpa)	-	275	4.8	50.6	75	2.87	45.9	100	1.95	52.8
N ₆₀	-	38	22	62.5	11	12	58.8	-	-	-
φ'(°)	28-40	5	33	-	4	31	-	5	35	-

Tabla 1.1: Rango de valores para las propiedades geotécnicas de los jales (Villavicencio *et al.*, 2011)

Dentro de los datos presentados, se destaca el rango de valores de algunas propiedades físicas y mecánicas de los jales, entre los más importantes se encuentran la densidad de sólidos con valores entre 2.68 y 3.88, contenido natural de agua entre 7.0 y 13%; en pruebas

de compactación, peso volumétrico seco máximo entre 1.5 y 2.2 g/cm³ y contenido de agua óptimo cercano a 15%; Finalmente, el ángulo de fricción interna en términos de esfuerzos efectivos entre 28 y 40°. Cabe aclarar que las pruebas de compactación las realizaron siguiendo el procedimiento Proctor estándar.

Finalmente, plantean la determinación del ángulo de fricción interna en función de la resistencia del cono a partir de los datos experimentales obtenidos de las pruebas realizadas en los tres depósitos mencionados. En la Figura 1.10, se presenta de manera gráfica la correlación obtenida.

Figura 1.10: Determinación del ángulo de fricción interna en función de la resistencia del cono normalizada (Villavicencio *et al.*, 2011)

A partir de lo anterior, la expresión propuesta para determinar el ángulo de fricción interna en función de la resistencia del cono normalizada, es:

$$\phi' = 14.79 + 5.54 \ln(qd_{N1})$$
 para $10.0 \le qd_{N1} \le 280$

Donde:

 ϕ' : Ángulo de fricción interna en términos de esfuerzos efectivos

 $qd_{\scriptscriptstyle N1}$: Resistencia del cono normalizada

La resistencia del cono normalizada obtenida, se puede expresar de la siguiente manera:

$$qd_{N1} = C_q \cdot qd \operatorname{con} C_q = \left(\frac{Pa}{\sigma_v}\right)^c$$

Donde:

- C_a: Coeficiente de normalización
- c: Exponente de normalización
- Pa: Presión atmosférica (1.0 atm \approx 0.1 MPa)
- σ_v : Esfuerzo vertical efectivo

Según estudios realizados por diferentes autores y de acuerdo con las consideraciones observadas en los depósitos de jales, los valores usados para el exponente de normalización fueron 0.5 y 0.75. Adicionalmente, se comenta que la normalización a la resistencia del cono, se realiza para tener en cuenta el efecto del esfuerzo vertical efectivo y el incremento de la rigidez con la profundidad.

Dentro del artículo se resalta que el ángulo de fricción interna es uno de los parámetros de entrada y de mayor importancia en análisis para la estabilidad de taludes en los depósitos de jales, tanto en condiciones estáticas como dinámicas. Además, es un parámetro que está influenciado por el origen y la mineralogía de las partículas, por las características físicas y la disposición de los granos determinada por la compactación y por el estado de esfuerzos *in situ*, de ahí la dificultad en su estimación.

Haiming *et al.* (2011) realizaron un estudio sobre la resistencia en condiciones estáticas y dinámicas de jales sueltos y su aplicación en ingeniería. Los residuos fueron extraídos de la presa de jales correspondiente a una mina de cobre ubicada en la provincia de Dexing en China. La disposición de los jales en la presa es por medio del proceso de cicloneo. La toma de muestras para realizar la caracterización física y mecánica de los materiales, se realizó por medio de 17 sondeos ubicados en diferentes zonas del depósito.

En la Figura 1.11 se presentan las curvas granulométricas de los materiales ensayados, donde se tiene que los jales en condición suelta son mal graduados. Las demás

propiedades físicas determinadas muestran que la densidad de sólidos tiene un rango entre 2.79 y 2.82, el contenido natural de agua entre 16.8 y 18.9% y el peso volumétrico seco entre 1.53 y 1.63 g/cm³.

Figura 1.11: Curvas granulométricas de jales (Haiming et al., 2011)

La caracterización mecánica la realizaron por medio de pruebas triaxiales tipo CU y evaluaron la influencia del esfuerzo efectivo de consolidación aplicando esfuerzos mayores y menores a 700 kPa. Los resultados obtenidos para la cohesión y el ángulo de fricción interna en términos de esfuerzos totales y efectivos se presentan en la Tabla 1.2.

	Prue	bas triaxia	les ejecut	adas con b	ajas y alta	spresione	es		
Número	Bajas p	resiones d (menos d	le confina e 700 kPa)	miento	Altas presiones de confinamiento (más de 700 kPa)				
	С	¢	c'	¢'	С	¢	c'	φ'	
	kPa	0	kPa	•	kPa	0	kPa	•	
Grupo 1	4.3	20.9	1.9	24.8	86.1	12.9	60.2	15.6	
Grupo 2	5.4	21.3	3.1	25.7	120.5	13.3	85.0	16.2	
Grupo 3	6.6	22.2	3.5	26.4	132.9	13.8	112.2	17.3	

Tabla 1.2: Parámetros de resistencia obtenidos a partir de pruebas triaxiales (Haiming et al., 2011)

De acuerdo con los resultados presentados, se observó que para bajas presiones de confinamiento la resistencia máxima se alcanza para una deformación cercana al 5%; al

aumentar la presión de confinamiento la deformación máxima es de aproximadamente el 15%; así mismo, se observa que al aumentar la presión de confinamiento, disminuye el ángulo de fricción interna y aumenta la cohesión. El rango de valores obtenidos para el ángulo de fricción interna considerando un confinamiento bajo, está entre 20 y 22°, en términos de esfuerzos totales y entre 24 y 26°, en términos de esfuerzos efectivos, asimismo, se observa que la cohesión disminuye cuando se considera el análisis en términos de esfuerzos efectivos, cuyos resultados presentan un comportamiento similar al encontrado en la presente investigación.

Fengxia (2014), realizó la caracterización física y mecánica de un residuo minero proveniente de una mina de oro en la provincia de Jilin en China. Dicho estudio se realizó con base en pruebas de cono de penetración, consolidación, pruebas de compresión triaxial y determinación del módulo de corte y relación de amortiguamiento.

Las probetas ensayadas en todas las pruebas fueron preparadas con pesos volumétricos de 1.49 y 1.58 g/cm³. Los resultados obtenidos para el coeficiente de permeabilidad se presentan en la Tabla 1.3; las pruebas fueron ejecutadas por dos métodos, el de carga variable y presión negativa.

Peso volumétrico	Coeficio permeabili	ente de dad (cm/s)		
seco (g/cm ³)	carga Presić			
	variable	negativa		
1.49	2.24x10 ⁻⁶	1.36x10 ⁻⁶		
1.58	6.21x10 ⁻⁷	7.30x10 ⁻⁷		

Tabla 1.3: Resultados pruebas de permeabilidad (Fengxia, 2014)

Las pruebas de consolidación las realizaron bajo condiciones parcial y totalmente saturada, con el fin de determinar el módulo de compresibilidad, con incrementos de esfuerzo de 25, 50, 100, 200 y 400 kPa; en los resultados obtenidos se observa que el módulo decrece cuando se considera la condición saturada.

Como parte del análisis mecánico de los jales, realizaron pruebas de corte directo considerando un peso volumétrico seco de 1.49 g/cm³, en condiciones parcialmente

saturada y saturada, los resultados se presentan en la Figura 1.12. Se tiene que en condiciones saturadas disminuye el ángulo de fricción interna y la cohesión.

Figura 1.12: Resultados obtenidos para las pruebas de corte directo (Fengxia, 2014)

Las pruebas triaxiales ejecutadas fueron tipo CD, con diámetro y altura de 39.1 y 80 mm respetivamente, formadas utilizando una compactación artificial. En el desarrollo de la prueba, la etapa de saturación la realizaron por contrapresión, en la consolidación aplicaron esfuerzos efectivos de 100, 200, 300 y 400 kPa; finalmente, la etapa de falla la llevaron a cabo bajo una velocidad de deformación controlada.

Los resultados de las pruebas triaxiales ejecutadas se presentan en la Tabla 1.4, donde se observa que al aumentar la compacidad del material, aumenta el ángulo de fricción interna y disminuye la cohesión.

Peso volumétrico	Paráme resist	etros de cencia
seco	Cd	фd
g/cm ³	kPa	0
1.49	12.1	29.6
1.58	108	32.6

Tabla 1.4: Resultados de pruebas triaxiales tipo CD (Fengxia, 2014)

De acuerdo con la recopilación de información realizada, a nivel nacional existen pocos trabajos sobre la caracterización física y mecánica de jales, los más relevantes se han realizado en el Instituto de Ingeniería de la UNAM. A nivel internacional hay un gran número de trabajos que se enfocan en el análisis de casos particulares durante las etapas de diseño

u operación de los depósitos de jales, otros sobre la caracterización física, mecánica y dinámica de los jales obtenidos de procesos como el cicloneo y la disposición con espigas, así como correlaciones obtenidas entre los parámetros mecánicos y pruebas de campo.

En este contexto se abre la posibilidad de continuar con el estudio de jales provenientes de diferentes procesos como el prensado o cicloneo, así como la obtención de muestras directamente de los depósitos que están en operación. Otro aspecto importante es la correlación entre las mediciones realizadas en el laboratorio y las pruebas de campo como el cono de penetración. Todo esto con el fin de conocer sobre el intervalo de variación de las diferentes propiedades físicas y mecánicas, así como el comportamiento bajo diferentes condiciones para apoyar los procesos de diseño, operación y mantenimiento de este tipo de obras.

Los resultados presentados en la mayoría de los trabajos recopilados muestran que hay una tendencia en el intervalo de valores que puede tomar el ángulo de fricción interna entre 25° y 40°; en especial este parámetro depende de la compacidad relativa del material, la cual se encuentra en función de la distribución de las partículas y el método de compactación utilizado.

2. DESCRIPCIÓN DEL EQUIPO

Durante el desarrollo del presente trabajo y para dar cumplimiento a los objetivos propuestos, se llevaron a cabo pruebas para determinar las propiedades índice y mecánicas de un residuo minero proveniente del estado de Durango, México. De acuerdo con las particularidades de las pruebas ejecutadas, la medición de las propiedades mecánicas requiere del uso de una cámara triaxial; por lo tanto, a continuación se describen los antecedentes, el sistema de aplicación de carga y la instrumentación de la cámara triaxial de alambres.

2.1. Antecedentes de la cámara triaxial de alambres

En 1969, en el Instituto de Ingeniería de la UNAM se presentó la cámara triaxial de precisión denominada INING 2, también conocida como cámara triaxial de alambres; la característica principal de este equipo es la sencillez del mecanismo de carga axial, en el que la carga se transmite a la muestra por medio de un sistema de alambres de tensión (Santoyo, 1969).

Como se mencionó previamente, la diferencia principal de esta cámara en comparación con otros diseños tradicionales se basa en la forma de aplicación de la carga axial. En una cámara convencional la carga se transmite a través de un elemento (pistón) trabajando a compresión, mientras que en la cámara triaxial de alambres la carga se transmite mediante elementos que trabajan a tensión; este sistema fue concebido y aplicado por Marsal (1965) en el diseño de una cámara triaxial para ensaye de enrocamientos.

Las características principales de la cámara triaxial de alambres son: a) la fricción en el sistema de transmisión de carga es muy baja; b) dicha fricción es poco sensible a la presión confinante, la velocidad de deformación y el tiempo de reposo; y c) la magnitud de la fricción, se puede determinar mediante calibración.

2.2. Sistema de aplicación de carga

El sistema de carga de la cámara triaxial de alambres se muestra en la Figura 2.1. La carga se aplica en la parte superior de la muestra mediante una placa (a), a la cual se conectan

un alambre central (b), que aplica carga hacia arriba y tres alambres periféricos (c), que aplican cargas hacia abajo. El alambre conectado por arriba al centro de la placa pasa, después de salir de la cámara, por una polea montada en baleros (d), y está ligado finalmente a un portapesas (g), los tres alambres que salen de la periferia de la placa de carga hacia abajo se ligan fuera de la cámara a otra placa similar (e), de la cual sale la barra de un portapesas del sistema de carga inferior (f). Los alambres de carga salen al exterior de la cámara a través de pequeños bujes de teflón y bisulfuro de molibdeno (h). El sistema de carga se acciona utilizando un módulo de carga que permite mantener la velocidad con deformación controlada.

Figura 2.1: Sistema de carga, cámara triaxial de alambres (Santoyo, 1969)

Inicialmente, el sistema de medición de la deformación axial estaba constituido por dos micrómetros (i y j, ver Figura 2.1), uno de ellos se apoyaba en la placa que une los alambres del sistema de carga inferior. El otro sobre una placa (k), fija al alambre de carga superior. Cabe destacar que este sistema de medición, fue remplazado por un sensor de desplazamiento como se comentará más adelante.

En cuanto al sistema de aplicación de carga durante la realización de un ensaye, el diseño inicial contemplaba quitar o agregar pesas solo en uno de los dos sistemas de carga, de acuerdo con el tipo de prueba a realizar, ya fuera de compresión o extensión axial. En cualquier caso, uno de los dos sistemas está sometido a tensión constante durante toda la prueba y, por tanto, los elementos de este sistema no sufren elongaciones durante el proceso. Actualmente, las pruebas se realizan utilizando un módulo de carga ubicado en el portapesas del sistema de carga superior, evitando así, quitar o agregar pesas.

2.3. Instrumentación del equipo

En la actualidad el Instituto de Ingeniería de la UNAM cuenta con tres cámaras triaxiales de alambres, las cuales fueron instrumentadas con sensores de carga, presión y desplazamiento, así como con un sistema de adquisición de datos que permite realizar seguimiento y registro de cada una de la etapas de la prueba.

Para el desarrollo de esta investigación se utilizaron las cámaras denominadas como TA-1 y TA-2; la instrumentación de estas cámaras está compuesta por una celda de carga externa ubicada en el sistema de carga superior, un transductor de desplazamiento ubicado en el sistema de carga inferior y dos sensores de presión que permiten medir los esfuerzos de confinamiento y contrapresión respectivamente (ver Figura 2.2). Las presiones se aplican a partir de dos manómetros conectados a los sensores de confinamiento y contrapresión respectivamente.

Estas cámaras no cuentan con un sensor de medición de cambio volumétrico, para tal efecto se utiliza una bureta graduada que permite medir la cantidad de agua que entra a la muestra durante la saturación por contrapresión; asimismo durante la etapa de consolidación se registra el volumen expulsado.

En las cámaras mencionadas se pueden llevar a cabo pruebas triaxiales de tipo UU, CU y CD; en este caso fue necesario acondicionar las cámaras para aplicar vacío a la muestra en el momento de realizar el montaje, ya que se trabajaron muestras reconstituidas de jales (con tañamos de arenas y contenido de finos no plásticos) que no mantienen su forma.

Figura 2.2: Instrumentación de la cámara triaxial de alambres

2.4. Sistema de adquisición de datos

El sistema de adquisición de datos está compuesto por un módulo de calibración y verificación y un módulo de operación. A continuación se presentan las características de cada uno:

2.4.1. Calibración y verificación

El proceso de calibración se realiza con el fin de establecer la relación entre una señal de salida (voltaje dado por el instrumento de medición) y una variable física o patrón. Se lleva

a cabo utilizando el módulo de calibración y verificación en el software de adquisición de datos, donde se encuentra el menú que se presenta en la Figura 2.3.

Figura 2.3: Menú principal del módulo de calibración

Una vez que se activa el menú denominado "calibración experimental de transductores", se despliega una ventana como la que indica la Figura 2.4, donde se puede ver el resumen de las constantes de calibración de cada uno de los transductores instalados. Para llevar a cabo una nueva calibración se selecciona el número de la cámara y el sensor correspondiente y se da un click en el botón "continuar".

Cámara		Cámara 1		
Transductor		Desplazamie	nto	
atos de la última (Fecha de Calibra	calibración ación lunes.	24 de noviembre	de 2014	
Pendiente	-5.746	Ordenada 🛛	38.985	Continuar
Parámetros del pati	rón Unidades	mm		
Pendiente 🔒	1.00000	Ordenada	0.000	

Figura 2.4: Calibración experimental de transductores

La Figura 2.5, muestra el proceso de adquisición de datos para obtener las constantes de calibración a partir de un elemento patrón de medición, como un tornillo micrométrico en el

caso del desplazamiento, la columna de mercurio para la calibración de los sensores de presión y masas conocidas en el caso de la celda de carga. El proceso consiste en tomar una lectura de voltaje dada por el transductor y asignarla a una magnitud física dada por el elemento patrón; este proceso se lleva a cabo tomando varios puntos que cubran por lo menos el 60% del rango de medición del instrumento. Con los datos experimentales se construye una curva de calibración de la magnitud física medida en función del voltaje y se determinan las constantes de calibración (pendiente y ordenada), mediante una regresión de tipo lineal.

Figura 2.5: Curva de calibración experimental

Una vez obtenidas las constantes de calibración para cada uno de los transductores. Se procede con la verificación, en cada caso, se compara la lectura registrada por el transductor y la del elemento patrón; posteriormente, se grafican los resultados en un sistema de ejes coordenados, donde la pendiente obtenida debe ser aproximadamente igual a 1.0.

El procedimiento descrito se realiza ingresando en la pestaña "verificación de transductores" del módulo de calibración que se muestra en la Figura 2.3, posteriormente se activa la ventana que muestra la Figura 2.6, donde se registran las lecturas obtenidas por los transductores ya sean de desplazamiento, carga o presión.

INSTITUTO DE INGENIERÍA INSTRUMENTACIÓN-GEOTECNIA	martes, 04 de agosto de 2015, 05:40:28 p			
34.645-				
34.64-	🗧 Cámara 1			
34.635 -	🔴 Desplazamiento			
E ^{34.63-}				
트 34.625 - 말 34.625 -	34.626			
34.62-				
≪ 34.615-				
34.61 -	Seleccione el equipo y presione para continuar			
34.605 -				

Figura 2.6: Módulo de verificación

Cabe recalcar que la verificación se debe realizar para un rango de lecturas igual o similar al utilizado para la calibración y que el error obtenido en este proceso debe ser menor o igual al 1%.

2.4.2. Operación

El módulo de operación está compuesto por diferentes menús que permiten configurar la prueba y realizar seguimiento durante el desarrollo de la misma. En la Figura 2.7, se presenta la pantalla principal de operación.

Configurar de Prueba Transductores Esf. Confinami	ento Sat. por contrapresión B Skempton	Consolidación Etapa de Ensaye						
Salir								

Figura 2.7: Características del módulo de operación

Para dar inicio se debe activar el menú "configurar la prueba", donde se ingresan los datos de identificación de la muestra, características físicas, almacenamiento de datos, condiciones para la falla y tipo de prueba (ver Figura 2.8). A continuación se activan los

demás menús, en el caso de una prueba triaxial CU: transductores, saturación por contrapresión, B de Skempton, consolidación y etapa de ensaye.

Figura 2.8: Ingreso de datos para configuración de la prueba

Una vez configurada la prueba, se da inicio a la etapa de saturación por contrapresión, donde se van incrementando los esfuerzos de confinamiento y contrapresión, respectivamente, con un esfuerzo efectivo de 0.1 kg/cm²; en cada incremento se registra el volumen ingresado a la muestra por medio de las lecturas de la bureta. En la Figura 2.9, se presenta el módulo del software de adquisición de datos para esta etapa.

С	ambio Vo	olumen	final [c	m3]	1.466	Carga Desplaz	[kg] amiento [r	1m]	81.070 6.530	P. Poro Confinam	[kg/cm2] iiento [kg/c	m2]	3.482 3.482	Contra Cam. Vo	presión (olum. (mi	kg/cm2] m]	3	3.51 1.46
c.	Confinamiento	Contrapre	L. Ini, C.Vol	L. Fin. C. Vol	Cambio Volumen								Cambio o	le volum	en vs Esf	f. Confina	miento	
	0.610	0.507	2.834	2.839	-0.005	0.0-								-				Ţ
1	1.111	1.011	2.600	2.607	-0.007													
1	1.609	1.509	2.369	2.374	-0.005													
1	2.106	2.009	2.140	2.141	-0.001													
1	2.615	2.516	1.908	1.914	-0.006													
1	3.109	3.009	1.680	1.683	-0.003	_												
	3.604	3.504	1.455	1.466		ĩ												
	sione el bot 1bio de volu	tón de cor umen.	ıtinuar par	a tomar le	tura final de	-1'0- Cambio de Volumen,	6 0.8	1.0	1.2	1.4 1 ca	.6 1.8	2.0 5. G 3 (ki	2.2 a/cm2)	2.4	2.6	2.8	3.0	

Figura 2.9: Etapa de saturación por contrapresión

Para definir la saturación del suelo, es necesario medir el parámetro B de Skempton; por tanto, se incrementa el esfuerzo de consolidación en aproximadamente 1.0 kg/cm² y sin permitir el drenaje en la muestra se mide la presión de poro para tal incremento. Cabe destacar que para considerar las muestras saturadas el parámetro B debe ser mayor o igual a 0.96. En la Figura 2.10 se presenta un ejemplo de medición.

ISTRUM	ENTACIÓN-GEO	TECNIA					
sión de I	Poro Final [kg/o	cm2] 4.	952 Carry Pres	ga [kg] sión Poro [kg/cm2] trapresión [kg/cm2]	41.028 Desplazamie 4.952 Confinamier 4.952 Cam. Volum	ento [mm] nto [kg/cm2] . [mm]	12.577 5.098 -0.204
	Confinamiento	Presión Poro					
Valor inic	ial 4.101	3.979		Medicion:	2		A
Valor fin	al 5.102	4.952		Hora:	20/06/2015 11:56 a.m.		
Incremen	nto 1.001	0.973			22.00 0.00		
					Confinamiento	P. Poro	
				Valor Inicial:	4.101	3.979	
				Valor Final:	5.102	4.952	_
Δσ	1.001	kg/cm2		Inc. P. Poro:	0.973		
				B Skemtom:	0.972		
A 11	0.073	ka/cm2					
Δu	0.973	kg/cm2					7
B	0.972	2					
				Guardar	S	lir	
					52		

Figura 2.10: Medición del parámetro B de Skempton

Luego de lograr la saturación de la muestra, se lleva a cabo la etapa de consolidación; en este caso no se puede utilizar el software de adquisición de datos, ya que no se cuenta con un transductor de cambio volumétrico; por tanto, esta etapa se lleva a cabo tomando las lecturas de manera manual utilizando la bureta graduada.

Finalmente, y después de la consolidación, se lleva a cabo la etapa de falla; en esta etapa se registra la curva carga *vs* desplazamiento, así como el desplazamiento, presión de poro y carga en función del tiempo. Cabe mencionar que la falla se lleva a cabo en 6 horas para una deformación total de 20 mm; en la Figura 2.11 se presenta el módulo correspondiente del software de adquisición de datos.

El menú "transductores" permite ver en cualquier momento de la prueba e incluso durante la etapa de montaje el valor real que cada uno de los transductores registra; en la Figura 2.12 se presenta la ventana donde se registran las lecturas de desplazamiento, carga, esfuerzo de confinamiento, esfuerzo de contrapresión o presión de poro.

Figura 2.11: Adquisición de datos - etapa de falla

Figura 2.12: Módulo de transductores

2.5. Calibración y verificación de las cámaras triaxiales de alambres TA-1 y TA-2

Como se mencionó, las cámaras triaxiales de alambres están instrumentadas con sensores de presión, carga y desplazamiento; por tanto, fue necesario realizar la calibración y verificación de dichos sensores, con el fin de garantizar la calidad y confiabilidad de los resultados obtenidos.

El objetivo durante el proceso de calibración es obtener las constantes de calibración (pendiente y ordenada), a partir de una regresión de tipo lineal aplicada a los datos experimentales obtenidos para el voltaje y su correspondiente magnitud física (dada por un elemento patrón).

Después de obtener las constantes de calibración, se capturan en el software de adquisición de datos y luego se realiza el proceso de verificación, donde se compara la magnitud física emitida por el elemento patrón y la registrada por el sensor en consideración; el error obtenido en este proceso debe ser menor al 1% admisible en sensores electrónicos.

En las Tablas 2.1 y 2.2, se presenta el resumen de las constantes de calibración obtenidas para las cámaras TA-1 y TA-2, así como el error obtenido en la verificación de cada sensor.

En este contexto, la calibración y verificación se llevó a cabo para las dos cámaras utilizadas, pero considerando que es un proceso repetitivo, dentro de este documento solo se presentarán a modo de ejemplo los resultados obtenidos para la cámara denominada TA-2.

	•	Cámara TA	A-1	•	•		
Transductor	Rango de	Unidad de	Constar calibr	ntes de ación	Verificación		
mansauctor	calibración	medida	Pendiente	Ordenada	Pendiente	error (%)	
Desplazamiento	0-30	mm	-5.5776	-0.3193	1.0044	0.44	
Presión - Confinamiento	0-4	kg/cm ²	-1.1406	9.8707	0.9996	0.04	
Presión - Contrapresión	0-4	kg/cm ²	1.1492	10.431	0.9963	0.37	
Carga	0-40	kg	-10.395	-1.8809	1.003	0.3	

Tabla 2.1: Constantes de calibración - cámara TA-1

		Cámara T/	A-2				
Transductor	Rango de	Unidad de	Constar calibr	ntes de ación	Verificación		
Tansuuctor	calibración	medida	Pendiente	Ordenada	Pendiente	error (%)	
Desplazamiento	0-30	mm	-4.401	30.302	1.0009	0.09	
Presión - Confinamiento	0-4	kg/cm ²	-1.1495	0.6147	0.9978	0.22	
Presión - Contrapresión	0-4	kg/cm ²	-1.144	10.538	0.9985	0.15	
Carga	0-80	kg	-34.118	20.764	1.0001	0.01	

Tabla 2.2: Constantes de calibración – cámara TA-2

2.5.1. Calibración cámara TA-2

Calibración del sensor de desplazamiento

En la Figura 2.13, se presenta la curva de calibración para el sensor de desplazamiento, en este caso el elemento patrón es un tornillo micrométrico.

Figura 2.13: Curva de calibración sensor de desplazamiento

El proceso de calibración inicia con el montaje del sensor en la base del tornillo, a continuación se dan incrementos de desplazamiento constantes y se registra el voltaje correspondiente en el software de adquisición de datos, con los datos obtenidos se construye la curva de calibración y las constantes se determinan a partir de una regresión de tipo lineal.

Calibración de los sensores de presión

En cuanto a los sensores de presión, la cámara triaxial de alambres está instrumentada con un sensor para el confinamiento y uno para contrapresión o presión de poro, el proceso de calibración se lleva a cabo utilizando el software de adquisición de datos y el elemento patrón es la columna de mercurio.

La calibración se realiza dando incrementos de presión con el regulador correspondiente y registrando en el software de adquisición de datos la altura equivalente de mercurio; para cada una de las alturas se toma el valor del voltaje y los diferentes datos se registran para obtener las constantes de calibración.

En las Figuras 2.14 y 2.15, se presentan las curvas de calibración para los sensores de presión, tanto de confinamiento como de contrapresión; se puede ver que los valores obtenidos presentan un buen ajuste, ya que el coeficiente de correlación (R²) es muy cercano a 1. En este caso se pueden presentar algunos errores en la lectura de los datos en la columna de mercurio por falta de experiencia y familiaridad con el equipo.

Cabe destacar que la densidad del mercurio se tomó igual a $\rho_{Hg} = 13.56 \ g^{\prime}/_{cm^3}$ para una temperatura de 18°C; con base en esta información se tiene que la altura en la columna para un incremento de 1.0 kg/cm² es igual a 73.75 cm.

Figura 2.14: Curva de calibración sensor de presión (confinamiento)

Figura 2.15: Curva de calibración sensor de presión (contrapresión)

Calibración del sensor de carga

La calibración para el sensor de carga se llevó a cabo en el módulo correspondiente del software para la adquisición de datos; este proceso inicia dando incrementos de carga en el portapesas (utilizando masas conocidas) y registrando para cada uno de estos valores el voltaje correspondiente, el objetivo es obtener las constantes de calibración (pendiente y ordenada) a partir de una regresión de tipo lineal (ver Figura 2.16).

Figura 2.16: Curva de calibración sensor de carga

2.5.2. Verificación cámara TA-2

La verificación se realiza con el fin de validar el proceso de calibración previamente ejecutado, donde las lecturas medidas por cada uno de los sensores deben corresponder con la magnitud física aplicada; matemáticamente la pendiente de la recta trazada entre las mediciones realizadas debe ser igual a 1. Cabe notar que las lecturas registradas por los sensores se toman utilizando el software de adquisición de datos en el módulo correspondiente.

Verificación del sensor de desplazamiento

El elemento patrón utilizado para realizar la verificación del sensor de desplazamiento fue el tornillo micrométrico, igual que en el caso anterior, se aplicaron incrementos aleatorios de desplazamiento y se registran los valores correspondientes con el software de adquisición de datos. La precisión en esta calibración fue muy buena, ya que la pendiente de la recta que une los puntos experimentales es igual a 1.0009 y el error obtenido en esta verificación es de 0.09% (ver Figura 2.17).

Figura 2.17: Verificación sensor de desplazamiento

Verificación de los sensores de presión

La verificación de los sensores de presión (confinamiento y contrapresión) se realizó tomando como elemento patrón la columna de mercurio y registrando las lecturas correspondientes en el software de adquisición de datos.

En la Figura 2.18, se presenta la gráfica de verificación para el sensor de confinamiento; en este caso, se obtiene una pendiente igual a 0.9978, lo que indica que el error entre la magnitud física aplicada con el elemento patrón y la lectura registrada es de aproximadamente 0.22% menor al 1% admisible para este tipo de sensores.

Figura 2.18: Verificación sensor de presión (confinamiento)

En cuanto al sensor de contrapresión, se obtiene un error igual a 0.15% con una pendiente de 0.9985 (ver Figura 2.19), en los dos casos; se concluye que la calibración realizada es buena, ya que los valores medidos de manera aleatoria son muy cercanos a los obtenidos con el elemento patrón.

Figura 2.19: Verificación sensor de presión (contrapresión)

Verificación del sensor de carga

La verificación del sensor de carga se realizó aplicando masas conocidas en el portapesas como elemento patrón y tomando las correspondientes lecturas en el software de adquisición de datos. En la Figura 2.20, se presenta la gráfica de verificación, donde se puede ver que la pendiente de la recta que une los puntos experimentales es igual a 1.0001, obteniéndose así un error de 0.01%; por tanto, se concluye que las constantes de calibración obtenidas permiten medir de manera adecuada las magnitudes aplicadas en el momento en que se ejecuten las pruebas.

Figura 2.20: Verificación sensor de carga

3. DESCRIPCIÓN DE LOS MATERIALES Y PROCEDIMIENTO DE ENSAYE

3.1. Descripción del material

El material utilizado corresponde a un residuo minero proveniente de una mina ubicada en el Municipio de Topia en el Estado de Durango, México. Es un material granular producto de la trituración de mineral, clasificado según el SUCS (ASTM D2487) como *SM-arena limosa*, con un contenido de finos no plásticos de aproximadamente el 31% (ver Tabla 3.1 y Figura 3.1).

Tai	miz	Peso recipiente + suelo seco	Peso recipiente	Peso retenido	Porcentaje retenido	Porcentaje retenido acumulado	Porcentaje que pasa
No.	mm	g	g	g	%	%	%
4	4.76	126.1	121	5.1	0.855	0.855	99.145
10	2	126.8	125.3	1.5	0.252	1.107	98.893
20	0.85	125	122.9	2.1	0.352	1.459	98.541
40	0.425	159.4	117.1	42.3	7.094	8.553	91.447
60	0.25	347	214.4	132.6	22.237	30.790	69.210
80	0.18	202.3	123.7	78.6	13.181	43.971	56.029
100	0.15	266.3	122	144.3	24.199	68.170	31.830
200	0.075	127.7	123.3	4.4	0.738	68.908	31.092
For	ndo	374.4	189	185.4	31.092	100.000	0.000
		Total		596.3			

Tabla 3.1: Granulometría del material ensayado

Figura 3.1: Curva granulométrica del material utilizado

Este residuo minero fue tomado de la playa, inmediatamente después de la cortina del depósito. Presenta partículas con aristas predominantemente angulosas y tenía un contenido de agua de aproximadamente 15.59% en el momento de llegar al laboratorio; en la Tabla 3.2, se presentan las mediciones realizadas.

Recipiente	Peso recipiente	Peso recipiente + muestra húmeda	Peso recipiente + muestra seca	Contenido de agua
No.	g	500	g	%
15	117.00	152.80	148.10	15.11
87	124.90	156.60	152.10	16.54
77	122.20	150.20	146.60	14.75
19	117.80	166.50	159.80	15.95
			Promedio	15.59

Tabla 3.2: Determinación del contenido de agua inicial del material

En cuanto a la densidad relativa de sólidos se obtuvo un valor promedio de 2.86 (ASTM D854-10), a partir de dos determinaciones realizadas en matraces calibrados previamente (ver Tabla 3.3); el resultado obtenido es característico de este tipo de materiales, ya que pueden presentar tamaños de arena, pero su densidad relativa de sólidos es un poco mayor a los valores típicos. Según Das (2001), la mayoría de los minerales tienen una densidad relativa de sólidos que caen dentro de un rango general de 2.6 a 2.9. La densidad de sólidos de arenas, formadas principalmente por cuarzo, se estima aproximadamente igual a 2.65, para suelos arcillosos y limosos, varía entre 2.6 y 2.9.

Ensaye	Matraz	Peso matraz + agua + suelo	Temp.	Tara	Peso matraz + agua	Peso cápsula	Peso suelo + cápsula	Peso de sólidos	Volumen de sólidos	Densidad de sólidos
No.	No.	g	ိ	No.	g	g	gg	g	cm ³	Gs
1	1	736.6	22.2	MS-8	662.3	165.4	279.9	114.5	40.2	2.85
2	4	763.5	22.23	MS-10	682.1	163.4	288.3	124.9	43.5	2.87
									Promedio	2.86

Tabla 3.3: Determinación de la densidad relativa de sólidos

De acuerdo con la distribución granulométrica, el material presenta un contenido de finos no plásticos de 31%, por tal razón, no fue posible realizar la determinación del límite líquido por el método tradicional utilizando la copa de Casagrande; como método alternativo se utilizó un cono sueco, el cual tiene un ángulo de 60° y 60 g de peso; consta de un pedestal

con un brazo ajustable verticalmente donde se coloca el cono y que permite que éste apenas toque la superficie del suelo; la penetración del cono en la masa de suelo es posible medirla y apreciarla con una lupa, con una aproximación de 0.1 mm. El límite líquido se define como el contenido de agua que tiene el suelo cuando el cono penetra 10 mm (Mendoza y Orozco, 1995).

Para determinar el límite líquido se tomaron aproximadamente 100 g de suelo con su contenido natural de agua; a partir de éste, se agregó agua destilada hasta lograr una pasta homogénea con una penetración del cono cercana a 5 mm, una vez definido cada punto como bueno, se determinó el contenido de agua correspondiente para construir la curva de liquidez, este procedimiento se repitió para lograr dos puntos abajo y dos puntos arriba de una penetración de 10 mm.

Una vez construida la curva de liquidez a partir de los puntos coordenados (penetración del cono *vs.* contenido de agua), se considera el límite líquido como el contenido de agua para el cual el cono penetró 10 mm, los resultados correspondientes se presentan en la Figura 3.2 y Tabla 3.4.

Figura 3.2: Curva de liquidez para determinar el límite líquido utilizando el cono sueco

Juego	Peso recipiente	Penetración del cono	Peso recipiente + muestra húmeda	Peso recipiente + muestra seca	Contenido de agua	Límite Líquido
No.	g	mm	g	540	%	%
12	71.211	3.2	81.110	79.370	21.326	
13	70.086	7.0	82.990	80.523	23.637	26 070
27	67.765	10.5	79.625	77.056	27.650	20.978
36	67.900	14.5	80.149	77.365	29.414	

Tabla 3.4: Determinación del límite líquido utilizando el cono sueco

3.2. Formación de la probeta

La formación de las probetas, se llevó a cabo siguiendo el procedimiento propuesto por Flores (1996), el cual consiste en compactar el material en diez capas con doce apisonadas en cada una, utilizando un pisón de diámetro un poco mayor al radio de la muestra. El pisón se ubica sobre la superficie del suelo, generando así una densificación del material debido al peso propio.

Para formar las probetas, es necesario secar el material al horno, homogeneizar los grumos en seco y posteriormente aplicar un contenido de agua predefinido, pesar 10 cápsulas con la misma cantidad de material, ubicarlas en una charola metálica y cubrirlas con un trapo húmedo para evitar la pérdida de humedad durante el proceso. La cantidad de material en cada capa depende del contenido de agua y el peso del pisón seleccionados.

El procedimiento descrito para la preparación del material se presenta a continuación en las imágenes de las Figuras 3.3 y 3.4.

Figura 3.3: Homogeneización del material en seco

Figura 3.4: Preparación del material para compactación

La probeta se forma en un molde partido con dimensiones de 3.5 cm de diámetro y 9 cm de altura, aproximadamente, tanto en las pruebas de compactación como en las triaxiales; la diferencia principal radica en la disposición del molde, a continuación se presentan los detalles en cada caso.

En pruebas de compactación el molde está asegurado por dos abrazaderas; además va soportando sobre una base fija y cuenta con una extensión para garantizar mejor el proceso de compactación en las últimas capas, para evitar que el material se adhiera a las paredes se ubica un acetato tanto en la base como en la periferia; los detalles se muestran en las Figuras 3.5 y 3.6.

Figura 3.5: Detalles del molde de compactación

Figura 3. 6: Implementos utilizados para la formación de la probeta en pruebas de compactación

En el caso de las pruebas triaxiales, sobre el molde se ubica una membrana de látex, luego el conjunto se lleva sobre una base equipada con una piedra porosa donde se ubica un papel filtro, con el objeto de permitir el flujo de agua hacia adentro y fuera de la muestra en las etapas de saturación y consolidación. Para la formación de la probeta se aplica vacío al molde en la parte central y se inicia la compactación (ver Figura 3.7).

Figura 3.7: Preparación del molde para formar probetas – prueba triaxial

Como se indicó previamente, tanto en las pruebas de compactación como en las triaxiales, una vez preparado el molde y el suelo, se procede con la compactación de la probeta en 10 capas con 12 apisonadas en cada una, la secuencia de apisonado se ilustra en la Figura 3.8.

Figura 3.8: Secuencia de apisonado

3.3. Procedimiento de ensaye

3.3.1. Pruebas de compactación

En general, la compactación es el proceso por de cual se incrementa la densidad del suelo a través de mecanismos como amasado, vibración, presión o impacto, haciendo que se reduzca el volumen de aire contenido en la estructura del suelo (Flores, 1996).

El peso volumétrico obtenido depende de factores como el contenido de agua del suelo, la energía de compactación y el tipo de suelo, en características como: la distribución granulométrica, la forma de los granos, la densidad de sólidos, y la cantidad y tipo de minerales arcillosos presentes.

Según lo anterior, la formación de las probetas se llevó a cabo siguiendo el procedimiento propuesto por Flores (1996). Para el presente trabajo las pruebas de compactación se realizaron utilizando la técnica de amasado, variando el contenido de agua entre 8 y 20%, así como el peso del pisón entre 0.1 y 3.0 kg.

La ejecución de la prueba consiste en tomar entre 180 y 200 g de suelo seco, adicionar el contenido de agua predefinido y mezclar hasta generar una pasta homogénea; luego se pesan 10 cápsulas con la misma cantidad de material, se ubican dentro de una charola y se cubren con un trapo húmedo para evitar la pérdida de humedad durante el proceso. A continuación, se procede a formar la probeta en 10 capas con doce apisonadas en cada una. Posteriormente, se toma el peso del molde con la probeta, se desmolda y se toman dos fracciones de la misma para determinar el contenido de agua. Cabe destacar que la cantidad de material a utilizar en cada prueba varía de acuerdo con el peso del pisón y el contenido de agua.

Finalmente, a partir de las dimensiones y peso del molde, y el contenido de agua de la probeta, se determinan las relaciones volumétricas para construir las curvas de compactación y demás análisis correspondientes. En la Tabla 3.5 se presentan las dimensiones del molde utilizado para realizar las pruebas de compactación.

Diámetro	cm	3.55
Altura	cm	9.02
Volumen del molde	cm ³	89.28
Peso del molde	g	1033.30
Densidad de sólidos	-	2.86

Tabla 3.5: Dimensiones del molde para las pruebas de compactación

3.3.2. Pruebas triaxiales

Para llevar a cabo la medición de los parámetros de resistencia en condiciones saturadas se propuso la realización de pruebas triaxiales CU, tomando como variables del análisis paramétrico propuesto: el contenido de agua, el peso del pisón y el esfuerzo efectivo de consolidación. En total se ejecutaron 27 pruebas, distribuidas en 9 series de 3 pruebas cada una, con esfuerzos efectivos de consolidación iguales a 0.5, 1.0 y 1.5 kg/cm², contenidos de agua de 8, 16 y 20%, y pesos de pisón de 0.1, 1.5 y 3.0 kg.

De acuerdo con lo descrito en el capítulo 2, estas pruebas se llevaron a cabo utilizando la cámara triaxial de alambres, donde se puede lograr con mayor precisión la medición de la

carga aplicada a la muestra, como se pudo observar en probetas con compacidad relativa baja, ya que reduce la fricción en el vástago de carga.

La realización de una prueba triaxial CU consta de cuatro etapas, montaje, saturación, consolidación y falla. A continuación se describe el procedimiento seguido para la ejecución de cada etapa:

Montaje

Antes de realizar el montaje de la muestra es necesario preparar la cámara para que esté en condiciones de continuar la prueba una vez finalizado el mismo; por lo tanto, se requiere verificar el flujo de agua en las líneas que permiten realizar la saturación por contrapresión ubicadas en la parte superior e inferior de la muestra; esta verificación se realiza circulando un volumen aproximado de 20 cm³ en cada línea. Adicionalmente, se debe realizar el mantenimiento de los filtros ubicados en el pedestal y cabezal de la cámara, para permitir el flujo libre de agua durante las etapas de saturación y consolidación.

Luego de verificar el flujo de agua en las líneas superior e inferior, se debe habilitar en la parte inferior de la cámara la aplicación del vacío para mantener la forma de la muestra una vez se libere el molde; en este paso es necesario revisar que el conducto esté libre de agua para evitar daños en el regulador de vacío. Adicionalmente, se deben ajustar las dimensiones de la membrana de látex, para evitar daños o dificultades durante el montaje.

Posteriormente a la preparación de la cámara, se debe preparar el molde para formar la probeta; por tanto, sobre la parte inferior del molde se deben colocar tres arosellos previamente aceitados y la membrana de látex; el conjunto se lleva sobre una base equipada con una piedra porosa sobre la cual se ubica un papel filtro para permitir el paso de agua sin que haya pérdida de material durante las etapas de saturación y consolidación. Adicionalmente, se deben colocar dos arosellos sobre un anillo de mayor diámetro que el molde, los cuales se ubican en la parte superior de la muestra. Los detalles del equipo utilizando se presentan en la Figura 3.9.

Una vez preparado el molde con la membrana, los arosellos y la base se lleva al lado de la cámara triaxial, donde se conecta a la línea de vacío para que la membrana se adhiera a

las paredes y se da inicio a la formación de la probeta siguiendo, el procedimiento descrito en el apartado 3.2.

b) Preparación de la base y el molde

Al finalizar la compactación se coloca el papel de filtro en la parte superior de la probeta (ver Figura 3.10a)) y se extiende una pequeña capa de pasta de silicón en el pedestal y cabezal de la cámara para evitar fugas; posteriormente, se traslada la probeta y se ubica sobre el pedestal de la cámara; en este paso se debe garantizar que la base utilizada para formar la probeta encaje perfectamente en el pedestal. A continuación se ajustan los opresores de la base para evitar movimientos de la muestra y garantizar la verticalidad de

la misma (ver Figura 3.10b)). Posteriormente, se coloca una fracción de cinta adhesiva sobre la base para cubrir los opresores y evitar que al aumentar la presión la membrana se inserte en los orificios y se rompa (ver Figura 3.10 c)). Cabe destacar que en este paso se debe colocar sobre el molde en la parte superior el anillo con los dos arosellos preparados previamente.

Figura 3.10: Secuencia del montaje de la muestra en la cámara triaxial

Posteriormente, se realiza el contacto del cabezal con la muestra, generando una pequeña rotación en el sistema de pesas y se ubica una calza en la parte posterior del sistema de carga superior, para evitar desplazamientos y daños a la muestra durante el resto del montaje; luego se sitúa el transductor de desplazamiento en el sistema inferior de carga para monitorear la integridad de la muestra (con ayuda del módulo de transductores del sistema de adquisición de datos). En la Figura 3.11 se presentan los detalles del montaje antes de retirar el molde.

Después, se coloca la membrana en el pedestal y cabezal con sus correspondientes arosellos. En seguida, se quita el vacío aplicado en el molde para la formación de la probeta y se aplica el vacío en la parte inferior de la cámara directamente a la muestra para que mantenga su forma durante el resto del montaje.

Figura 3.11: Esquema del montaje de la probeta en la cámara triaxial

Una vez aplicado el vacío a la muestra, se retira el molde cuidadosamente y se procede a rellenar con pasta de silicón los bujes de teflón por donde pasan los alambres del sistema de carga inferior; posteriormente, se extiende una pequeña capa de pasta de silicón en la parte inferior de la camisa y se ajusta en la base de la cámara; a continuación se repite el proceso en la parte superior. Adicionalmente, se debe remoldear la grasa del alambre central del sistema de carga superior. En seguida, se baja la tapa de la cámara y se realiza el cambio de varillas (este cambio se realiza ya que la cámara está equipada con unas varillas auxiliares para mantener las piezas durante el montaje y otras para ajustar la tapa durante la prueba). En la Figura 3.12 se presenta la secuencia del procedimiento.

A continuación, se procede al llenado de la cámara con agua destilada, se ajusta la tapa con la herramienta requerida y se cierra la válvula superior (ver Figura 3.13). En este momento, se verifica que la muestra esté totalmente aislada (válvulas de confinamiento y contrapresión cerradas), se quita el vacío aplicado previamente a la muestra, se fija y aplica un confinamiento bajo (aproximadamente 0.3 kg/cm²).
Después de finalizar el montaje, se inicia el software de adquisición de datos y se configura la prueba como se describió en el capítulo 2. En este momento se procede con la etapa de saturación por contrapresión.

Figura 3.12: Secuencia del procedimiento de montaje de la cámara

Figura 3.13: Secuencia al final del montaje

Saturación por contrapresión

En las pruebas realizadas, la saturación del suelo se llevó a cabo por contrapresión, con un esfuerzo efectivo de 0.1 kg/cm² en cada incremento, con el fin de no afectar la estructura del suelo durante esta etapa. Este proceso se lleva a cabo utilizando el módulo correspondiente del software de adquisición de datos, donde se registran las lecturas para las presiones aplicadas de confinamiento y contrapresión.

En la etapa de saturación, el volumen de agua ingresado a la muestra se controla a partir de una bureta graduada, por lo que se deben registrar las lecturas inicial y final en cada incremento en el formato correspondiente, ya que las cámaras triaxiales de alambres no cuentan con sensores de cambio volumétrico.

Para dar inicio a la saturación se debe verificar en primera instancia que la muestra esté aislada (válvulas de confinamiento y contrapresión cerradas), para evitar afectaciones a la estructura del suelo. A continuación se ajusta un esfuerzo de confinamiento igual a 0.6 kg/cm² y un esfuerzo de contrapresión igual a 0.5 kg/cm², utilizando los reguladores de presión correspondientes. Posteriormente, se aplica a la muestra el esfuerzo de confinamiento (abriendo la válvula correspondiente), se registra la lectura inicial de la bureta en el formato y luego se abre lentamente la válvula inferior de contrapresión, controlando la velocidad con la que el agua ingresa a la muestra; una vez que se mantenga constante el nivel en la bureta se abre la válvula superior y se espera nuevamente hasta que el volumen en la bureta sea constante, en ese momento se registra la lectura final de la bureta.

El procedimiento anterior se repite dando incrementos de esfuerzo iguales a 0.5 kg/cm², hasta llegar a un esfuerzo de confinamiento de 3.6 kg/cm² y un esfuerzo de contrapresión de 3.5 kg/cm²; bajo esta condición y dependiendo de las características preestablecidas (contenido de agua y peso de pisón), se realizó la medición del parámetro B de Skempton a las 24 ó 48 horas. El suelo se consideró saturado cuando el parámetro B alcanzó un valor igual o mayor que 0.96 (ASTM D4767-11); en caso contrario se aplicó un incremento adicional y nuevamente se midió este parámetro a las 24 horas. Después de considerar que el suelo está saturado se procede con la etapa de consolidación.

Cabe destacar que las presiones aplicadas en la etapa de saturación y consolidación no pueden ser mayores a 6 kg/cm², ya que es la capacidad disponible con la que cuenta el laboratorio de Geotecnia del Instituto de Ingeniería – UNAM. Asimismo, para cada una de las series ejecutadas, los esfuerzos aplicados durante la etapa de saturación fueron iguales para evitar la incertidumbre asociada con este factor.

Consolidación

La etapa de consolidación se realiza una vez que el suelo fue saturado; por lo tanto, después de medir el parámetro B de Skempton, se aisla la muestra y se ajustan las presiones de confinamiento y contrapresión, de acuerdo con el esfuerzo efectivo de consolidación predefinido de 0.5, 1.0 ó 1.5 kg/cm².

A continuación se ajusta el nivel de agua en la bureta, se aplica el esfuerzo de confinamiento, se abren las válvulas de drenaje inferior y superior, y se inicia la toma de lecturas de la bureta en función del tiempo, hasta las 24 horas, con el fin de construir la curva de consolidación y obtener el cambio volumétrico total de la muestra bajo este esfuerzo. Al finalizar las 24 horas de la consolidación, se da inicio a la etapa de falla.

Falla

La etapa de falla para las muestras ensayadas se llevó a cabo para una deformación total de 20 mm en un tiempo de 6 horas, el ensayo se realiza bajo una velocidad de deformación de 0.0555 mm/min.

Para dar inicio a la etapa de falla es necesario cerrar la válvula superior de drenaje, así como la válvula que conecta las líneas de contrapresión con la bureta, esto con el objeto de realizar la medición de presión de poro únicamente por la parte inferior de la muestra. Posteriormente, utilizando el módulo "transductores" del software de adquisición de datos se verifica el contacto del cabezal con la muestra utilizando el módulo de aplicación de carga con la velocidad de deformación bajo la cual se desarrollará la prueba; cabe destacar que el contacto no puede generar un esfuerzo mayor a 0.3 kg/cm².

Después de realizar el contacto y preparar el equipo, se inicia el módulo "etapa de ensaye" del software de adquisición de datos (ver Figura 3.14), se presiona el botón "iniciar" y a continuación se acciona el módulo de aplicación de carga ubicado en el portapesas del sistema superior de carga de la cámara. Transcurridas las 6 horas de la etapa de falla, se presiona el botón "finalizar" en el software de adquisición de datos, se detiene el módulo de aplicación de carga, se aísla la muestra, se liberan las presiones de la cámara y se procede con el desmonte de la probeta para realizar la medición del contenido de agua final.

Figura 3.14: Módulo denominado "etapa de ensaye" del sistema de adquisición de datos

3.4. Cálculo de parámetros

3.4.1. Relación de vacíos máxima y mínima

La determinación de la relación de vacíos máxima y mínima se efectuó a partir de las pruebas de compactación, variando el peso de pisón y el contenido de agua. En este contexto se observó que la relación de vacíos máxima se logra para un peso de pisón de 0.1 kg; asimismo, la relación de vacíos mínima se obtuvo para un peso de pisón de 3 kg (ver Figura 3.15). Adicionalmente, se pudo ver que para contenidos de agua y pesos de

pisón altos el material en el momento de compactar tiende a desplazarse, lo que evita que se logre una estructura más cerrada.

Cabe destacar que la determinación de la relación de vacíos máxima y mínima, se llevó a cabo utilizando el método de compactación por amasado; por tanto, las compacidades relativas reportadas son referidas a este método específico y pueden diferir de los resultados obtenidos por otros métodos.

3.4.2. Parámetros de resistencia

Determinación del ángulo de fricción interna y la cohesión aparente a partir del criterio de Mohr-Coulomb

A partir de las pruebas triaxiales se determinaron los parámetros de resistencia, cohesión aparente "c" y ángulo de fricción interna " ϕ ", en términos de esfuerzos totales y efectivos utilizando el criterio de Mohr-Coulomb. Para el cálculo de estos parámetros fue necesario determinar el esfuerzo desviador máximo en las curvas esfuerzo-deformación, así como el exceso de presión de poro en el mismo punto; además, se debe tener en cuenta que en pruebas triaxiales tipo CU, el esfuerzo efectivo de consolidación es equivalente al esfuerzo principal menor.

Determinación del módulo de elasticidad

El módulo de elasticidad "E" se obtiene a partir de la curva esfuerzo-deformación, en este caso se determinó para el 50% de la resistencia máxima. Se define como la pendiente del tramo inicial de carga y se calcula aplicando la ecuación (3-4).

$$E_{50} = \frac{q_{50}}{\varepsilon_{50}}$$
(3-1)

Donde:

 q_{50} : 50% del esfuerzo desviador máximo.

 \mathcal{E}_{50} : deformación unitaria equivalente al 50% del esfuerzo desviador máximo.

En la Figura 3.16, se presenta de manera gráfica la determinación del módulo de elasticidad para el 50% de la resistencia máxima.

Figura 3.16: Determinación del módulo de elasticidad al 50% de la resistencia máxima

Determinación del ángulo de fricción interna a partir de las trayectorias de esfuerzo

Las trayectorias de esfuerzo se obtienen graficando el esfuerzo efectivo octaédrico "p" vs. el esfuerzo desviador "q", en términos de esfuerzos totales o efectivos (ver Figura 3.17). En

esta investigación sólo se tendrán en cuenta los parámetros obtenidos a partir de las trayectorias en términos de esfuerzos efectivos, ya que en términos de esfuerzos totales no son representativos del comportamiento del suelo.

Para determinar el ángulo de fricción interna a partir de las trayectorias de esfuerzo, en primera instancia se debe obtener la pendiente de la línea de falla "M", la cual se determina a partir de la siguiente expresión:

$$M = \frac{\Delta q}{\Delta p'} \tag{3-2}$$

La relación entre la pendiente "M" y el ángulo de fricción interna obtenido utilizando el criterio de resistencia de Mohr-Coulomb, se plantea en la ecuación (3-2).

$$M = \frac{6sen\phi'}{3-sen\phi'} \tag{3-3}$$

Por tanto,

$$sen\phi' = \frac{3M}{6+M} \tag{3-4}$$

Figura 3.17: Trayectorias de esfuerzo en términos de esfuerzos efectivos

4. PRESENTACIÓN Y ANÁLISIS DE RESULTADOS

Como se mencionó en el capítulo 3, para el residuo minero seleccionado se realizaron pruebas de compactación y triaxiales, las primeras con el fin de determinar la relación de vacíos máxima y mínima, así como el comportamiento del material, al variar el contenido de agua y peso de pisón, utilizando la técnica de amasado.

A partir de los resultados obtenidos en las pruebas de compactación se realizó el diseño experimental para las pruebas triaxiales, con el objeto de determinar los parámetros mecánicos (cohesión y ángulo de fricción interna) en términos de esfuerzos totales y efectivos a partir de pruebas tipo CU, teniendo en cuenta la influencia de la compacidad relativa inicial y el esfuerzo efectivo de consolidación.

4.1. Pruebas de compactación

Las pruebas de compactación se llevaron a cabo variando el contenido de agua entre 8 y 20% y el peso de pisón entre 100 y 3000 g; en total se ejecutaron 49 pruebas de las cuales se pudo determinar el comportamiento del material al ser remoldeado con la técnica de amasado. Las principales propiedades físicas a evaluar durante estas pruebas fueron el peso volumétrico húmedo y seco, relación de vacíos y grado de saturación. En el anexo A, se presenta el resumen de todas las determinaciones realizadas.

4.1.1. Variación del peso volumétrico húmedo y seco en función del contenido de agua y peso de pisón

En la Figura 4.1, se presenta la variación del peso volumétrico húmedo en función del peso de pisón, en todos los casos se observa que hay un incremento de este valor cuando aumenta el peso de pisón y el contenido de agua, adicionalmente el cambio más significativo se presenta entre los pesos de pisón de 100 y 500 g. En general se tiene que el menor peso volumétrico húmedo obtenido es de 1.25 g/cm³, correspondiente a un peso del pisón de 100 g y un contenido de agua de 10%; asimismo, el mayor peso volumétrico húmedo es de 1.89 g/cm³ para un peso de pisón de 3000 g y un contenido de agua de 20%.

La selección del rango en el contenido de agua y peso de pisón para ejecutar las pruebas de compactación se realizó teniendo en cuenta las condiciones iniciales del material en la mina y su disposición en el depósito; adicionalmente, se observó en el laboratorio que al incrementar el contenido de agua más allá de 20% y el peso del pisón en más de 3000 g, separa las partículas sólidas del agua y no se logra una probeta homogénea. Por tal razón, se concluyó que bajo estas condiciones y para que la técnica de amasado sea aplicable a este material, el contenido de agua máximo seria del 20% y el peso de pisón de 3000 g, de igual manera, el contenido de agua mínimo de 8% y el peso de pisón de 100 g para fines prácticos durante la formación de la probeta.

Figura 4.1: Variación del peso volumétrico húmedo en función del peso de pisón

En cuanto al peso volumétrico seco, se obtiene un rango de variación muy bajo para cada peso de pisón y contenido de agua, de igual manera que para el peso volumétrico húmedo, el cambio más significativo se presenta entre los pesos de pisón de 100 y 500 g. La Figura 4.2 muestra la variación del peso volumétrico seco en función del peso del pisón, donde se observa que para contenidos de agua entre 8 y 14% el rango de variación es muy bajo y los valores obtenidos son muy similares entre sí; el mismo comportamiento se puede observar para los contenidos de agua de 18 y 20%. El mínimo peso volumétrico seco

obtenido es de 1.13 g/cm³ para un peso de pisón de 100 g y un contenido de agua de 10%; asimismo, el máximo peso volumétrico seco es de 1.59 g/cm³, correspondiente a un peso de pisón de 3000 g y un contenido de agua de 20%.

Figura 4.2: Variación del peso volumétrico seco en función del peso de pisón

4.1.2. Curvas de compactación

Las curvas de compactación obtenidas para el material ensayado se presentan en la Figura 4.3, claramente se observa que no muestran un comportamiento típico como el que se puede obtener de una prueba convencional tipo Proctor en materiales con finos cohesivos, en este caso no se puede identificar el peso volumétrico seco máximo y el contenido de agua óptimo. Se presenta un comportamiento muy homogéneo para el peso volumétrico seco, aumentando ligeramente para pesos de pisón entre 1500 y 3000 g.

En cuanto al grado de saturación, se observa que aumenta con el contenido de agua y peso de pisón, los valores obtenidos se encuentran entre 17.27 y 69.11%. En la Figura 4.4, se presenta la variación del grado de saturación en función del contenido de agua, el mayor incremento se da entre los pesos de pisón de 100 y 1000 g, para pesos de pisón entre 1500

y 3000 g el comportamiento es muy similar. En todos los casos al incrementar el contenido de agua aumenta el grado de saturación.

Figura 4.3: Curvas de compactación del material ensayado

4.1.3. Relación de vacíos

La variación de la relación de vacíos en función del peso del pisón se muestra en la Figura 4.5, donde se observa que al aumentar el peso del pisón y el contenido de agua hay una reducción en la relación de vacíos, logrando así una estructura más densa. Como se comentó previamente, la relación de vacíos máxima igual a 1.53 se obtuvo para un peso de pisón de 100 g y un contenido de agua de 10%; asimismo, la relación de vacíos mínima fue de 0.8, para un peso de pisón de 3000 g y un contenido de agua de 20%.

Figura 4.5: Variación de la relación de vacíos en función del peso de pisón

4.1.4. Relaciones de vacíos máxima y mínima de otras arenas

Cubrinovski e Ishihara (2002), realizaron la caracterización de 300 arenas naturales, incluyendo arenas limpias y arenas con finos, con el objetivo de analizar la influencia de los finos, la composición granulométrica y la angulosidad de las partículas en la relación de vacíos máxima, e_{máx}, mínima, e_{mín}, y en el rango de relaciones de vacíos, e_{máx}-e_{mín}.

Tomaron algunas muestras de arena como base, a las cuales les agregaron porcentajes de finos entre 10 y 80%, en su mayoría no plásticos. Utilizaron tres métodos diferentes para determinar e_{máx} y e_{mín}, el procedimiento estipulado por la Sociedad Japonesa de Geotecnia

(JGS) para arenas con menos del 5% de finos, el procedimiento de la Sociedad Americana para Ensaye de Materiales (ASTM) para suelos con contenido de finos mayor al 15% y procedimientos no estandarizados (NS).

En las Figuras 4.6 y 4.7, se muestra la comparación de los resultados obtenidos en esta investigación y los reportados por los autores en mención, para la relación de vacíos máxima y mínima, en función del porcentaje de finos. Se observa que los valores obtenidos en cada caso, utilizando el método de compactación por amasado, caen dentro del rango reportado y corresponden a arenas con porcentajes de finos cercanos al 30%.

De igual manera, se realizó la comparación con el intervalo de relaciones de vacíos $(e_{máx} - e_{min})$ en función del diámetro de partícula correspondiente al 50% que pasa (D_{50}) (Figura 4.8), donde al igual que para el porcentaje de finos, el intervalo obtenido en esta investigación cae dentro de los valores reportados por Cubrinovski e Ishihara.

A partir de lo anterior, se puede concluir que el método de compactación utilizando para la formación de las probetas de arenas es aplicable para la determinación de las relaciones de vacíos máxima y mínima, así como para el cálculo de la compacidad relativa a partir de las mismas.

Figura 4.6: emáx vs. contenido de finos (Cubrinovski e Ishihara, 2002)

Figura 4.7: emín vs. contenido de finos (Cubrinovski e Ishihara, 2002)

Tamaño de partícula, D 50 (mm)

Figura 4.8: emáx-emín vs. D50 (Cubrinovski e Ishihara, 2002)

4.1.5. Concentración de sólidos

Una propiedad importante a tener en cuenta dentro de la compactación de los jales es la concentración de sólidos "C" o compacidad, definida por Orozco (1978) como la relación entre el volumen de sólidos y el volumen total de un material, se puede expresar también como:

$$C = \frac{V_s}{V_T} = \frac{1}{1+e}$$
(4-1)

Donde:

e : relación de vacíos

Adicionalmente, Orozco (2010) plantea que un jal puede tener valores de C=50% ó más, según su acomodo. De acuerdo con lo anterior, la compacidad del material ensayado se encuentra entre 40 y 56%, aumenta con el contenido de agua y peso de pisón (ver Figura 4.9).

Figura 4.9: Variación de la compacidad en función del peso del pisón

Finalmente, se puede plantear que la concentración de solidos obtenida en cada una de las pruebas de compactación realizadas es muy similar, se presenta una menor dispersión para pesos de pisón entre 1500 y 3000 g. Se pueden distinguir además tres comportamientos con variaciones muy bajas, el primero para contenidos de agua de 8 a 14%, el segundo para 16% y el tercero para contenidos de 18 y 20%.

4.2. Pruebas triaxiales

Como se indicó previamente, para evaluar los parámetros de resistencia de los jales en condición saturada, se propuso la realización de pruebas triaxiales tipo CU (consolidadas no drenadas). Estas pruebas se llevaron a cabo utilizando la cámara triaxial de alambres, donde se puede lograr con mayor precisión la medición de la carga aplicada a la muestra, este comportamiento se observó en probetas con compacidad relativa baja, ya que reduce la fricción en el vástago de carga.

A partir de los resultados obtenidos en las pruebas de compactación y con el fin de realizar un análisis paramétrico teniendo en cuenta el efecto de la compacidad relativa inicial y el esfuerzo efectivo, la formación de las probetas se llevó a cabo para pesos de pisón de 100, 1500 y 3000 g, con contenidos de agua de 8, 16 y 20%, así como esfuerzos efectivos de consolidación de 0.5, 1.0 y 1.5 kg/cm². Cabe destacar que en las pruebas ejecutadas no se tuvo en cuenta el efecto del porcentaje de finos, ya que se mantuvo la misma granulometría.

De las pruebas ejecutadas, se determinaron las relaciones volumétricas iniciales y finales, teniendo en cuenta las dimensiones del molde, la densidad de sólidos, el contenido de agua inicial, el volumen de agua ingresado en la saturación y el volumen expulsado durante la etapa de consolidación.

En general, la determinación de los parámetros de resistencia (cohesión y ángulo de fricción interna), se llevó a cabo utilizando el criterio de Mohr-Coulomb en términos de esfuerzos totales y efectivos; asimismo, utilizando la pendiente de la línea de falla se determinó el ángulo de fricción interna en términos de esfuerzos efectivos, ya que en términos de esfuerzos totales no es representativo del comportamiento del material.

Adicionalmente, se determinaron los módulos de elasticidad para cada una de las pruebas ejecutadas tanto para el 50% de la resistencia máxima, así como para una deformación de

0.0045 mm/mm. De igual manera se analiza el comportamiento de las curvas esfuerzodeformación y presión de poro-deformación.

4.2.1. Relaciones volumétricas iniciales y finales

En la Tabla 4.1, se presenta el resumen de las relaciones volumétricas iniciales de cada una de las probetas ensayadas, cabe destacar que esta condición sólo se presenta durante la etapa de montaje, ya que las propiedades de la probeta cambian durante las etapas de saturación y consolidación. En general, los resultados obtenidos son muy similares a los que se determinaron en las pruebas de compactación.

Relaciones volumétricas iniciales										
Peso de pisón	Esfuerzo efectivo de consolidación	Peso de la muestra húmeda	Contenido de agua inicial	Volumen inicial de la muestra	Peso volumétrico húmedo	Peso volumétrico seco	Relación de vacíos	Porosidad	Grado de saturación	Compacidad relativa inicial
g	kg/cm ²	g	%	cm ³	g/cm ³	g/cm ³	-	%	%	%
	0.5	105.00	7.90	85.08	1.23	1.14	1.50	60.01	15.06	11.89
100	1	101.60	8.49	85.08	1.19	1.10	1.60	61.51	15.19	12.34
	1.5	105.00	7.58	85.08	1.23	1.15	1.49	59.89	14.52	12.79
	0.5	120.00	16.17	85.08	1.41	1.21	1.36	57.55	34.11	29.51
100	1	120.00	16.03	85.08	1.41	1.22	1.35	57.50	33.89	29.85
	1.5	116.00	15.88	85.08	1.36	1.18	1.43	58.86	31.74	20.37
	0.5	129.00	19.94	85.08	1.52	1.26	1.26	55.80	45.17	40.85
100	1	129.00	20.40	85.08	1.52	1.26	1.27	55.97	45.90	39.79
	1.5	126.30	19.88	85.08	1.48	1.24	1.31	56.70	43.41	35.11
	0.5	139.60	7.08	87.79	1.59	1.48	0.93	48.08	21.87	81.77
1500	1	137.30	8.15	87.79	1.56	1.45	0.98	49.44	23.84	75.46
	1.5	137.40	7.93	87.79	1.57	1.45	0.97	49.30	23.33	76.13
	0.5	151.80	15.73	87.79	1.73	1.49	0.91	47.76	49.21	83.19
1500	1	153.00	16.89	87.79	1.74	1.49	0.92	47.87	52.61	82.70
	1.5	152.50	16.00	87.79	1.74	1.50	0.91	47.64	50.29	83.72
	0.5	163.00	20.26	87.79	1.86	1.54	0.85	46.02	67.97	90.70
1500	1	163.00	20.04	87.79	1.86	1.55	0.85	45.92	67.50	91.11
	1.5	163.00	20.14	87.79	1.86	1.55	0.85	45.96	67.71	90.92
	0.5	141.50	7.86	87.79	1.61	1.49	0.91	47.75	24.60	83.23
3000	1	143.00	8.72	87.79	1.63	1.50	0.91	47.62	27.44	83.83
	1.5	142.30	7.48	87.79	1.62	1.51	0.90	47.27	23.86	85.35
	0.5	158.00	16.08	87.79	1.80	1.55	0.84	45.79	54.44	91.65
3000	1	158.00	16.16	87.79	1.80	1.55	0.85	45.83	54.63	91.49
	1.5	158.00	15.94	87.79	1.80	1.55	0.84	45.72	54.11	91.92
	0.5	168.00	18.83	87.79	1.91	1.61	0.78	43.69	69.40	98.36
3000	1	168.00	19.48	87.79	1.91	1.60	0.79	44.00	70.91	98.82
	1.5	168.00	19.98	87.79	1.91	1.59	0.79	44.23	72.04	97.91

Tabla 4.1: Resumen de las relaciones volumétricas iniciales

El resumen de las relaciones volumétricas finales se muestra en la Tabla 4.2, estos valores se determinaron teniendo en cuenta el cambio volumétrico que sufre la probeta durante las etapas de saturación y consolidación.

Relaciones volumétricas finales												
Peso de pisón	Esfuerzo efectivo de consolidación	Peso final de la muestra	Contenido de agua inicial	Volumen ingresado en saturación	Cambio de volumen durante la consolidación	Volumen final de la muestra	Contenido de agua final	Peso volumétrico saturado	Peso volumétrico seco	Relación de vacíos	Porosidad	Grado de saturación
g	kg/cm ²	g	%	cm ³	cm ³	cm ³	%	g/cm ³	g/cm ³	-	%	%
	0.5	105.00	7.90	30.95	1.49	71.17	38.18	1.89	1.37	1.09	52.19	100.00
100	1	101.60	8.49	31.98	3.84	68.83	38.54	1.88	1.36	1.10	52.43	100.00
	1.5	105.00	7.58	30.24	4.85	66.91	33.59	1.95	1.46	0.96	49.00	100.00
	0.5	120.00	16.17	24.18	2.50	74.50	37.16	1.90	1.39	1.06	51.52	100.00
100	1	120.00	16.03	26.37	3.73	75.38	37.92	1.89	1.37	1.08	52.03	100.00
	1.5	116.00	15.88	26.42	5.75	71.57	36.53	1.91	1.40	1.04	51.09	100.00
	0.5	129.00	19.94	20.72	1.95	77.82	37.39	1.90	1.38	1.07	51.68	100.00
100	1	129.00	20.40	19.91	3.30	75.93	35.90	1.92	1.41	1.03	50.66	100.00
	1.5	126.30	19.88	20.61	3.90	74.50	35.75	1.92	1.41	1.02	50.55	100.00
	0.5	139.60	7.08	34.45	0.65	87.15	33.01	1.99	1.50	0.91	47.69	100.000
1500	1	137.30	8.15	34.04	1.68	86.11	33.64	1.97	1.47	0.94	48.45	100.000
	1.5	137.40	7.93	30.07	2.10	82.57	29.90	2.00	1.54	0.86	46.09	100.00
	0.5	151.80	15.73	19.31	2.33	83.48	28.68	2.02	1.57	0.82	45.06	100.00
1500	1	153.00	16.89	19.75	1.08	86.54	31.15	1.98	1.51	0.89	47.12	100.00
	1.5	152.50	16.00	18.29	1.80	83.50	28.55	2.02	1.57	0.82	44.95	100.00
	0.5	163.00	20.26	14.55	0.57	87.22	30.58	2.03	1.55	0.84	45.67	100.000
1500	1	163.00	20.04	14.75	1.99	85.80	29.44	2.05	1.58	0.81	44.66	100.000
	1.5	163.00	20.14	16.10	2.30	85.49	30.31	2.07	1.59	0.80	44.51	100.000
	0.5	141.50	7.86	33.32	1.12	86.67	32.40	2.00	1.51	0.89	47.08	100.000
3000	1	143.00	8.72	30.80	1.41	86.39	31.07	2.00	1.52	0.88	46.76	100.000
	1.5	142.30	7.48	32.37	1.96	85.83	30.45	2.01	1.54	0.85	46.06	100.000
	0.5	158.00	16.08	21.42	0.54	87.25	31.42	2.05	1.56	0.83	45.45	100.000
3000	1	158.00	16.16	19.95	1.18	86.61	29.96	2.04	1.57	0.82	45.09	100.000
	1.5	158.00	15.94	20.08	1.68	86.11	29.44	2.05	1.58	0.81	44.66	100.000
	0.5	168.00	18.83	13.13	0.65	87.15	27.66	2.07	1.62	0.76	43.28	100.000
3000	1	168.00	19.48	13.63	1.23	86.56	28.30	2.08	1.62	0.76	43.20	100.000
	1.5	168.00	19.98	15.37	1.52	86.28	29.87	2.11	1.62	0.76	43.25	100.000

Tabla 4.2: Resumen de las relaciones volumétricas finales

Al comparar los resultados obtenidos para las relaciones volumétricas iniciales y finales, como es de esperar, se tiene un incremento para la relación de vacíos, porosidad y peso volumétrico seco (ver Figuras 4.10 a 4.12); esto por el efecto del esfuerzo efectivo de consolidación aplicado. Adicionalmente, se tiene que para las probetas sueltas (formadas con peso de pisón de 100 g), el cambio en dichas propiedades es mayor, debido a la densificación de la probeta al utilizar vacío en la etapa de montaje, este efecto hace que la compacidad relativa aumente y la muestra se lleve a las etapas de saturación, consolidación y falla, con características físicas diferentes a las planteadas inicialmente; a continuación en el numeral 4.2.2, se explica la corrección por aplicación de vacío realizada.

Figura 4.10: Comparación relación de vacíos inicial y final

Figura 4.11: Comparación porosidad inicial y final

Figura 4.12: Comparación peso volumétrico seco inicial y final

En cuanto al grado de saturación calculado, se tiene que las probetas formadas con pesos de pisón de 1500 y 3000 g, alcanzaron el 100%, sin aplicar ningún tipo de corrección. En el caso de las probetas formadas con un peso de pisón de 100 g, como se mencionó previamente, fue necesario realizar la corrección por aplicación de vacío durante la etapa de montaje. Cabe destacar que experimentalmente, la saturación de la muestra se verificó a partir de la medición del parámetro B de Skempton, para un valor igual o mayor a 0.96.

El contenido de agua final disminuye al aumentar el peso de pisón y el contenido de agua inicial, lo que permite reducir la cantidad de vacíos presentes en la probeta y lograr así una estructura con mayor concentración de sólidos; este comportamiento se puede corroborar con el volumen de agua que ingresa a la muestra durante la etapa de saturación, para contenidos de agua inicial de 8 y 20% la diferencia puede ser hasta de 50%.

4.2.2. Corrección de cambio volumétrico por aplicación de vacío durante la etapa de montaje

Flores (2008), planteó la metodología para evaluar cuanto se densifica una muestra en las diferentes etapas del ensaye, desde la formación del espécimen hasta el inicio de la etapa de falla. Las probetas fueron formadas utilizando el método de compactación por amasado con un diámetro de 10.14 cm y una altura de 25.80 cm, con diez capas y doce apisonadas en cada una. La diferencia principal con el presente estudio radica en las dimensiones de la probeta, ya que las demás condiciones durante la formación y montaje de la muestra en la cámara son prácticamente iguales.

Al momento de formar la probeta se puede estimar la compacidad relativa tomando como volumen de la misma el correspondiente al molde en el que se formó, a este valor inicial se le denominó compacidad relativa sin vacío, Dr_{sv} . Durante la etapa de montaje de la muestra en la cámara triaxial, para evitar que se destruya antes de retirar el molde, se aplica 14.7 kPa (0.15 kg/cm²) de vacío, este vacío genera una reducción de su volumen y con esto una densificación. Una vez se retira el molde, se toman las dimensiones de la probeta y se calcula la compacidad relativa con vacío, Dr_{cv} (Flores, 2008). Con las compacidades relativas obtenidas, se estima el valor de $\beta_1=Dr_{cv}/Dr_{sv}$, que corresponde al incremento de la compacidad relativa al aplicar el vacío al espécimen.

En las Figuras 4.13 y 4.14, se presentan los resultados obtenidos por Flores (2008), donde se aprecia que la aplicación de vacío no afecta a probetas con compacidades relativas iniciales iguales o mayores a 60%, y que para probetas con compacidades relativas iniciales cercanas al 20%, el incremento puede llegar a ser hasta el doble del inicial.

Figura 4.13: Variación de la compacidad relativa inicial con aplicación de vacío (Flores, 2008)

Figura 4.14: Relación entre las compacidades relativas antes y después de aplicar el vacío a la muestra (Flores, 2008)

De acuerdo con lo anterior y debido a la dificultad que se presentó para determinar las dimensiones de la probeta una vez aplicado el vacío (en probetas con compacidad baja, formadas con peso del pisón de 100 g); en este trabajo la corrección por vacío, se llevó a cabo suponiendo que la muestra se encontraba saturada, de acuerdo con el parámetro B de Skempton obtenido y las curvas de presión de poro normalizadas respecto al esfuerzo efectivo de consolidación. Por tanto, el volumen de aire que no fue ocupado por agua en la etapa de saturación se supone que es el correspondiente al cambio volumétrico por aplicación de vacío; a partir de esta consideración se determinó la compacidad relativa con vacío (ver Tabla 4.3).

Peso de pisón	Esfuerzo efectivo de consolidación	Peso de la muestra húmeda	Contenido de agua inicial	Volumen ingresado en saturación	Volumen de agua al final de la saturación	Volumen de vacíos corregido	Volumen total de la muestra al final de la saturación	Relación de vacíos	Porosidad	Grado de saturación	Compacidad relativa por aplicación de vacío
g	kg/cm ²	g	%	cm ³	cm ³	cm ³	cm ³	-	%	%	%
	0.5	105.00	7.90	30.95	38.64	38.64	72.66	1.14	53.17	100.00	56.28
100	1	101.60	8.49	31.98	39.93	39.93	72.68	1.22	54.94	100.00	46.08
	1.5	105.00	7.58	30.24	37.64	37.64	71.76	1.10	52.45	100.00	60.25
	0.5	120.00	16.17	24.18	40.88	40.88	77.00	1.13	53.09	100.00	56.72
100	1	120.00	16.03	26.37	42.95	42.95	79.11	1.19	54.29	100.00	49.94
	1.5	116.00	15.88	26.42	42.32	42.32	77.32	1.21	54.73	100.00	47.35
	0.5	129.00	19.94	20.72	42.17	42.17	79.77	1.12	52.86	100.00	58.02
100	1	129.00	20.40	19.91	41.77	41.77	79.23	1.11	52.72	100.00	58.79
	1.5	126.30	19.88	20.61	41.55	41.55	78.39	1.13	53.01	100.00	57.19
	0.5	139.60	7.08	34.45	43.68	42.21	87.79	0.93	48.08	100.00	81.77
1500	1	137.30	8.15	34.04	44.39	43.40	87.79	0.98	49.44	100.00	75.46
	1.5	137.40	7.93	30.07	40.17	40.17	84.68	0.90	47.43	100.00	84.64
	0.5	151.80	15.73	19.31	39.94	39.94	85.81	0.87	46.55	100.00	88.46
1500	1	153.00	16.89	19.75	41.86	41.86	87.62	0.91	47.77	100.00	83.15
	1.5	152.50	16.00	18.29	39.32	39.32	85.29	0.86	46.11	100.00	90.33
	0.5	163.00	20.26	14.55	42.01	40.40	87.79	0.85	46.02	100.00	90.70
1500	1	163.00	20.04	14.75	41.96	40.31	87.79	0.85	45.92	100.00	91.11
	1.5	163.00	20.14	16.10	43.42	40.35	87.79	0.85	45.96	100.00	90.92
	0.5	141.50	7.86	33.32	43.63	41.92	87.79	0.91	47.75	100.00	83.23
3000	1	143.00	8.72	30.80	42.27	41.80	87.79	0.91	47.62	100.00	83.83
	1.5	142.30	7.48	32.37	42.27	41.50	87.79	0.90	47.27	100.00	85.35
	0.5	158.00	16.08	21.42	43.31	40.20	87.79	0.84	45.79	100.00	91.65
3000	1	158.00	16.16	19.95	41.93	40.23	87.79	0.85	45.83	100.00	91.49
	1.5	158.00	15.94	20.08	41.80	40.14	87.79	0.84	45.72	100.00	91.92
	0.5	168.00	18.83	13.13	39.75	38.36	87.79	0.78	43.69	100.00	98.36
3000	1	168.00	19.48	13.63	41.02	38.63	87.79	0.79	44.00	100.00	98.82
	1.5	168.00	19.98	15.37	43.35	38.83	87.79	0.79	44.23	100.00	97.91

Tabla 4.3: Determinación de la compacidad relativa por aplicación de vacío

En la Figura 4.15, se presenta la comparación de los resultados obtenidos para este trabajo y los reportados por Flores (2008), donde se puede ver que para las muestras medianamente densas (formadas con peso de pisón de 1500 g) y densas (formadas con peso de pisón de 3000 g), no hay un cambio importante en la compacidad relativa por aplicación de vacío. En el caso de las muestras sueltas (formadas con peso de pisón de

100 g), presentan un aumento en la compacidad relativa entre 1.5 y 4 veces, respecto de la inicial.

Figura 4.15: Relación entre las compacidades relativas antes y después de aplicar el vacío a la muestra

4.2.3. Comportamiento de las curvas esfuerzo-deformación y presión de poro-deformación

En las tablas 4.4 a 4.6, se presenta el resumen de los puntos coordenados obtenidos para la resistencia máxima y la resistencia residual (determinada para una deformación del 20%) correspondientes a cada prueba ejecutada. En general, se obtiene que al aumentar la compacidad del material (dada por el incremento en el peso del pisón), aumenta el esfuerzo desviador y así mismo la deformación unitaria axial. Se observa además que la deformación correspondiente al esfuerzo desviador máximo para las probetas formadas con un peso de pisón de 100 g es menor a 2%, para pesos de pisón de 1500 y 3000 g, la deformación alcanza valores entre 5 y 20%, siendo mayor para probetas formadas con contenidos de agua cercanos a 20%; adicionalmente, el esfuerzo desviador máximo obtenido se encuentra entre 0.17 y 6.43 kg/cm².

La Tabla 4.4 y Figura 4.16, muestran los resultados obtenidos para la resistencia máxima y residual correspondientes a las probetas formadas con pesos de pisón de 100 g, se observa que el esfuerzo desviador máximo alcanzado presenta valores entre 0.167 y 0.807 kg/cm², para deformaciones inferiores a 2%; en contraste, el esfuerzo desviador residual entre 0.064 y 0.367 kg/cm²; la reducción entre el esfuerzo desviador y residual es aproximadamente del 50 al 60%.

PP=100g											
w=8%											
σ'	٤ _{max}	q _{max}	q _{residual}	Tipo de falla	Comportamiento presión de poro						
kg/cm ²	cm ² mm/mm kg/		kg/cm ²	-	-						
0.5	0.00345	0.16695	0.06405	1	Contractivo						
1	0.01164	0.59329	0.42531	1	Contractivo						
1.5	0.01637	0.88825	0.45054	1	Contractivo						
			w=16%								
0.5	0.01040	0.39738	0.26680	1	Contractivo						
1	0.01394	0.56173	0.24159	1	Contractivo						
1.5	0.01407	0.80745	0.36727	1	Contractivo						
w=20%											
0.5	0.01038	0.20811	0.08124	1	Contractivo						
1	0.01160	0.38778	0.16552	1	Contractivo						
1.5	0.01163	0.68727	0.31727	1	Contractivo						

Tabla 4.4: Resumen de resultados resistencia máxima y residual (PP=100 g)

Figura 4.16: Comparación entre las resistencias máximas y la residual (PP=100 g)

Para las probetas formadas con peso de pisón de 1500 g se obtiene el comportamiento de un material suelto a denso, con un esfuerzo desviador entre 1.089 y 3.898 kg/cm², para una deformación entre 7 y 19%. El esfuerzo residual máximo presentó valores entre 0.785 y 3.871 kg/cm². La diferencia entre el esfuerzo desviador máximo y el residual depende en este caso del contenido de agua inicial, ya que para un contenido de 8% se obtuvo una reducción aproximada del 20%, para un contenido de 16% la reducción es de 6% y para un contenido de 20%, la reducción es cercana al 1% (ver Tabla 4.5 y Figura 4.17).

PP=1500g											
w=8%											
ъ	ε _{max}	q _{max} q _{residual}		Tipo de falla	Comportamiento presión de poro						
kg/cm ²	mm/mm	kg/cm ²	kg/cm ²	-	-						
0.5	0.07863	1.08964	0.86615	1	Dilatante						
1	0.03419	1.27783	0.78482	1	Contractivo						
1.5	0.04102	1.67583	1.27511	1	Contractivo						
			w=16%								
0.5	0.12535	1.54407	1.42456	2	Dilatante						
1	0.14130	2.01599	1.88537	2	Dilatante						
1.5	0.11395	2.99337	2.84742	2	Dilatante						
w=20%											
0.5	0.16611	3.05993	3.04064	2	Dilatante						
1	0.19030	3.88794	3.87141	2	Dilatante						
1.5	0.14788	3.89891	3.84862	2	Dilatante						

Tabla 4.5: Resumen de resultados resistencia máxima y residual (PP=1500g)

Figura 4.17: Comparación entre las resistencias máximas y la residual (PP=1500g)

El comportamiento de las probetas formadas con un peso de pisón de 3000 g es típico de un suelo denso, con esfuerzos desviadores máximos entre 1.381 y 6.429 kg/cm², para deformaciones de 10 al 19%; asimismo, el esfuerzo residual presentó valores entre 1.226 y 6.416 kg/cm². La diferencia obtenida entre el esfuerzo desviador máximo y el residual en todos los casos es menor a 10% (ver Tabla 4.6 y Figura 4.18).

PP=3000g											
w=8%											
σ'	σ' ε _{max}		q _{residual}	Tipo de	Comportamiento						
				falla	presion de poro						
kg/cm ²	mm/mm	kg/cm ² kg/cm ²		-	-						
0.5	0.10536	1.38094	1.22609	2	Dilatante						
1	0.11737	1.89936	1.82813	2	Dilatante						
1.5	0.08660	1.91480	1.77011	2	Dilatante						
			w=16%								
0.5	0.17219	2.60738	2.60096	2	Dilatante						
1	0.16751	3.36196	3.27878	2	Dilatante						
1.5	0.16979	3.65888	3.60246	2	Dilatante						
w=20%											
0.5	0.16067	5.01907	4.42928	2	Dilatante						
1	0.18941	5.59250	5.58551	2	Dilatante						
1.5	0.18536	6.42953	6.41653	2	Dilatante						

Tabla 4.6: Resumen de resultados resistencia máxima y residual (PP=3000g)

Figura 4.18: Comparación entre las resistencias máximas y la residual (PP=3000g)

A partir de las observaciones realizadas, en la Figura 4.19 se presentan de manera gráfica los puntos coordenados obtenidos para la resistencia máxima y la residual de cada una de las probetas ensayadas, se tiene que para pesos de pisón de 1500 y 3000 g la deformación máxima es aproximadamente igual, pero se obtienen valores mayores para el esfuerzo desviador máximo cuando se considera el peso del pisón de 3000 g.

Comparando los resultados obtenidos para el esfuerzo desviador máximo y el residual, la menor reducción se presenta para las muestras formadas con pesos de pisón de 1500 y 3000 g, con contenidos de agua de 16 y 20%; dichas muestras exhibieron el comportamiento de un material denso. Las muestras formadas con peso de pisón de 1500 g y un contenido de agua de 8%, se obtiene el comportamiento de un material suelto a denso. Para las muestras formadas con peso de pisón de 100 g se presenta el comportamiento de un material suelto, ya que se define de manera clara un esfuerzo desviador máximo que decrece al aumentar la deformación, hasta un esfuerzo residual del 50 al 60% de la resistencia máxima.

Figura 4.19: Resumen de resultados para la resistencia máxima y residual

Adicionalmente, para las pruebas ejecutadas se muestra el resumen del tipo de falla y el comportamiento para el exceso de presión de poro. De una manera general y de acuerdo con las curvas esfuerzo-deformación obtenidas, se definen dos tipos de falla. En la primera se obtiene un valor máximo para el esfuerzo desviador a partir del cual la presión de poro

continúa aumentando y tiende a permanecer constante para deformaciones grandes. Después que se presenta el esfuerzo desviador máximo, los aumentos de presión de poro posteriores producen reducciones en los esfuerzos normales efectivos, observándose que hacia el final de la prueba se alcanza un esfuerzo desviador residual, a este tipo de falla se denominó "falla 1".

En el segundo tipo de falla observado se presenta un esfuerzo desviador máximo para una deformación relativamente grande que se mantiene aproximadamente constante hasta el final de la prueba, la presión de poro presenta un máximo que decrece al aumentar la deformación; este comportamiento da lugar a un incremento de resistencia y rigidez; a este tipo de falla se le denominó "falla 2".

En la mayoría de las probetas ensayadas se obtuvo que para la falla tipo 1, el comportamiento de la presión de poro es contractivo (crece hasta un punto máximo y permanece aproximadamente constante al aumentar la deformación); para la falla tipo 2, se obtuvo un comportamiento dilatante (se presenta un punto máximo que decrece al aumentar la deformación).

De acuerdo con lo anterior, a continuación se presentan las curvas esfuerzo-deformación, presión de poro-deformación y las trayectorias de esfuerzos para tres series de las nueve ensayadas; se seleccionó una serie para cada uno de los pesos de pisón trabajados. En el anexo B, se presentan los resultados para todas las series.

Peso del pisón de 100 g y contenido inicial de agua de 16%

La Figura 4.20 muestra las curvas esfuerzo-deformación obtenidas, se observa que el esfuerzo desviador máximo aumenta al incrementar el esfuerzo efectivo de consolidación y en todos los casos se define de manera clara un punto máximo a partir del cual el esfuerzo desciende al incrementar la deformación.

En la Figura 4.21, se presentan las curvas obtenidas para el exceso de presión de poro en función de la deformación, en cada caso se tiene que el exceso de presión de poro crece hasta un punto en el cual se mantiene aproximadamente constante. De acuerdo con varios autores el comportamiento obtenido es típico de arenas sueltas y es de tipo contractivo.

Figura 4.20: Curvas esfuerzo-deformación (PP=100g, w=16%)

Figura 4.21: Curvas presión de poro-deformación (PP=100g, w=16%)

En cuanto a la presión de poro normalizada contra el esfuerzo efectivo de consolidación, para cada probeta ensayada se obtiene un comportamiento muy similar, con valores máximos cercanos a 0.90, lo que indica que al aumentar el exceso de presión de poro con la deformación, el suelo pierde resistencia y se acerca a una condición de licuación estática (ver Figura 4.22).

Las trayectorias en términos de esfuerzos efectivos, se presentan en la Figura 4.23, donde se obtiene un comportamiento similar al de una arena suelta con un exceso de presión de

poro positivo, lo que genera que el esfuerzo efectivo octaédrico (p') disminuya al aumentar la deformación.

Figura 4.22: Curvas presión de poro normalizadas (PP=100g, w=16%)

Figura 4.23: Trayectorias de esfuerzo (PP=100g, w=16%)

Peso del pisón de 1500 g y contenido inicial de agua de 8%

El comportamiento esfuerzo-deformación obtenido para las probetas formadas con un peso de pisón de 1500 g y un contenido de agua inicial de 8% se muestra en la Figura 4.24, donde se observa que el esfuerzo desviador en cada caso presenta un valor máximo y disminuye al aumentar la deformación. En contraste con los resultados obtenidos para las

probetas formadas con peso de pisón de 100 g, la reducción en el esfuerzo desviador es menor.

Figura 4.24: Curvas esfuerzo-deformación (PP=1500g, w=8%)

Cabe destacar que las probetas formadas con un peso de pisón de 1500 g y contenidos iniciales de agua de 16 y 20%, presentan una curva esfuerzo-deformación con un comportamiento como el descrito para la falla 2, donde se presenta un valor máximo para el esfuerzo desviador y la variación es muy baja al aumentar la deformación.

El exceso de presión de poro medido en la etapa de falla para la probeta con un esfuerzo efectivo de consolidación de 0.5 kg/cm² muestra un comportamiento de tipo dilatante, donde este parámetro disminuye al aumentar la deformación. Para las probetas falladas con esfuerzos efectivos de consolidación de 1.0 y 1.5 kg/cm², el comportamiento obtenido es contractivo, ya que el exceso de presión de poro aumenta ligeramente al aumentar la deformación (ver Figura 4.25).

Las curvas de presión de poro normalizadas (ver Figura 4.26) muestran de manera clara el efecto del esfuerzo efectivo de consolidación en el comportamiento del material, ya que al aumentar se presenta un cambio de dilatante a contractivo. En comparación con los resultados obtenidos para las probetas formadas con peso de pisón de 100 g, la relación entre el exceso de presión de poro y el esfuerzo efectivo de consolidación es menor, con

un valor máximo aproximado de 0.70, lo que genera que el suelo sea más estable que en el caso anterior.

Figura 4.25: Curvas presión de poro-deformación (PP=1500g, w=8%)

Figura 4.26: Curvas presión de poro normalizadas (PP=1500g, w=8%)

Las trayectorias en términos de esfuerzos efectivos se presentan en la Figura 4.27, donde se observa que hay un buen ajuste de las pruebas realizadas a línea de falla o envolvente; así mismo, se tiene que para la probeta ensayada con un esfuerzo efectivo de consolidación de 0.5 kg/cm², hay un incremento en el esfuerzo efectivo octaédrico (p') por el efecto dilatante que se muestra al generarse un exceso de presión de poro negativo.

Figura 4.27: Trayectorias de esfuerzo (PP=1500g, w=8%)

Peso del pisón de 3000 g y contenido inicial de agua de 16%

Las probetas ensayadas con pesos de pisón de 3000 g mostraron un comportamiento como el definido para la falla 2, en la curva esfuerzo-deformación, donde el esfuerzo desviador crece hasta un punto máximo y decrece ligeramente al aumentar la deformación (ver Figura 4.28).

Figura 4.28: Curvas esfuerzo-deformación (PP=3000g, w=16%)

El exceso de presión de poro para las probetas formadas con pesos del pisón de 3000 g, en todos los casos exhibe un comportamiento dilatante, ya que al aumentar la deformación presenta un punto máximo y decrece. En cuanto a las curvas normalizadas respecto del esfuerzo efectivo de consolidación, la relación máxima obtenida para el caso analizado se encuentra entre 0.4 y 0.6; dicha relación se incrementa al aumentar el esfuerzo efectivo de consolidación (Ver Figuras 4.29 y 4.30).

Figura 4.29: Curvas presión de poro-deformación (PP=3000g, w=16%)

Figura 4.30: Curvas presión de poro normalizadas (PP=3000g, w=16%)

En la Figura 4.31, se presentan las trayectorias en términos de esfuerzos efectivos, se observa que el esfuerzo efectivo octaédrico (p') disminuye en la primera etapa cuando el exceso de presión de poro se hace positivo, una vez alcanza el punto máximo decrece y se hace negativo lo que aumenta el esfuerzo efectivo octaédrico (p'). De la misma forma que para los casos anteriores, los ensayes realizados se ajustan a la línea de falla, manteniendo una trayectoria similar.

Figura 4.31: Trayectorias de esfuerzo (PP=3000g, w=16%)

4.2.4. Determinación de los parámetros de resistencia utilizando el criterio de Mohr-Coulomb

La determinación de los parámetros de resistencia se realizó a partir de los resultados obtenidos para las series ejecutadas, con esfuerzos efectivos de consolidación de 0.5, 1.0 y 1.5 kg/cm², pesos de pisón de 100, 1500 y 3000 g, y contenidos iniciales de agua de 8, 16 y 20%. En cada caso se determinaron los parámetros en condiciones de esfuerzos totales y efectivos graficando los círculos de Mohr, a partir del esfuerzo desviador máximo y el exceso de presión de poro; un ejemplo de cálculo se muestra en la Figura 4.32. De igual manera, en el Anexo B, se presentan los círculos obtenidos para todos los casos analizados.

Figura 4.32: Determinación de los parámetros de resistencia utilizando el criterio de Mhor-Coulomb

En la Tabla 4.7 se presenta el resumen de los resultados obtenidos para los parámetros de resistencia (cohesión y ángulo de fricción interna) en términos de esfuerzos totales y efectivos, en función del contenido de agua, peso de pisón y esfuerzo efectivo de consolidación.

PP=100g											
w	γ_{sat}	γ _d	c (TET)	c' (TEE)	φ (TET)	φ' (TEE)					
%	g/cm ³	g/cm ³	kg/cm ²	kg/cm ²	grados	grados					
8	1.908	1.395	0.000	0.030	13.210	23.200					
16	1.901	1.386	0.075	0.065	10.110	19.470					
20	1.912	1.402	0.000	0.000	10.810	19.650					
PP=1500g											
w	γ_{sat}	γd	c (TET)	c' (TEE)	φ (TET)	φ' (TEE)					
%	g/cm ³	g/cm ³	kg/cm ²	kg/cm ²	grados	grados					
8	1.988	1.504	0.310	0.090	13.340	30.280					
16	2.01	1.553	0.260	0.000	24.700	35.970					
20	2.049	1.575	0.700	0.000	26.570	34.610					
			PP=3000g								
w	γ_{sat}	γ_{d}	c (TET)	c' (TEE)	φ (TET)	φ' (TEE)					
%	g/cm ³	g/cm ³	kg/cm ²	kg/cm ²	grados	grados					
8	2.004	1.526	0.310	0.000	19.650	36.500					
16	2.047	1.571	0.550	0.000	26.570	34.990					
20	2.088	1.623	1.400	0.000	24.230	35.940					

Tabla 4.7: Resultados parámetros de resistencia, criterio de Mohr-Coulomb

En cuanto a los valores obtenidos para la cohesión aparente del material en términos de esfuerzos totales, se observa que para las probetas formadas con el peso de pisón de 100 g es aproximadamente igual a cero, para pesos de pisón de 1500 y 3000 g aumenta con el contenido de agua inicial, logrando mayores valores para las probetas formadas con peso de pisón de 3000 g. En la Figura 4.33 se muestra el comportamiento de la cohesión aparente en función del peso volumétrico saturado.

La Figura 4.34, muestra los resultados obtenidos para la cohesión aparente en términos de esfuerzos efectivos, en función del peso del peso volumétrico saturado, en este caso se obtiene que para pesos de pisón de 1500 y 3000 g, la cohesión es aproximadamente cero cuando no se tiene en cuenta el efecto del exceso de presión de poro y es más congruente con el comportamiento real del suelo ensayado, debido a que los finos presentes son no plásticos.

Figura 4.33: Cohesión aparente en términos de esfuerzos totales

Figura 4.34: Cohesión aparente en términos de esfuerzos efectivos

Los resultados obtenidos para el ángulo de fricción interna utilizando el criterio de Mohr-Coulomb se presentan en la Figura 4.35, en cada caso la resistencia del material es mayor para los análisis en términos de esfuerzos efectivos, además, al aumentar el peso de pisón hay una mayor concentración de sólidos, lo que se refleja en un aumento del ángulo de fricción interna, como se puede ver para los pesos de pisón de 1500 y 3000 g; asimismo, los resultados son muy similares entre sí para estos dos últimos casos.

Para lograr un ángulo de fricción interna en campo como el obtenido en laboratorio, el peso volumétrico saturado debe tener un rango entre 2.0 y 2.1 g/cm³, teniendo en cuenta que la

resistencia aumenta con la concentración de sólidos; la mejor condición es tener un peso volumétrico saturado entre 2.0 y 2.1 g/cm³, con un contenido de agua inicial entre 16 y 20%.

Figura 4.35: Ángulo de fricción interna en función del peso volumétrico saturado (MC)

De igual manera que para el peso volumétrico saturado, la mejor condición en cuanto a la resistencia del suelo se logra para pesos volumétricos secos entre 1.4 y 1.6 g/cm³, ya que en términos de esfuerzos efectivos los ángulos de fricción interna obtenidos presentan valores entre 30 y 40° (ver Figura 4.36).

Figura 4.36: Ángulo de fricción interna en función del peso volumétrico seco (MC)

En la Figura 4.37, se muestran las correlaciones obtenidas entre el peso volumétrico seco y el ángulo de fricción interna, en términos de esfuerzos totales y efectivos. En general, los

valores que presentan un mejor ajuste son los determinados en términos de esfuerzos efectivos con un coeficiente de correlación R²=0.8821. Se destaca que el valor utilizado para el peso volumétrico seco es el promedio de las tres probetas formadas en cada serie.

Figura 4.37: Correlación entre peso volumétrico seco y ángulo de fricción interna

Las correlaciones propuestas son un primer ejercicio que debe ser verificado experimentalmente con un mayor número de pruebas y condiciones similares en cuanto a características físicas del material, formación de probetas y método de ensaye.

Al graficar los valores para el ángulo de fricción interna determinados de manera experimental y los calculados con las correlaciones propuestas, se tiene que el error en el caso del análisis en términos de esfuerzos totales es de 1.88% y en términos de esfuerzos efectivos es de 0.58%, en las Figuras 4.38 y 4.39, se ilustran de manera gráfica los resultados obtenidos.

Cabe mencionar que se plantearon varias propuestas de correlación entre el ángulo de fricción interna y propiedades como el peso volumétrico húmedo y la relación de vacíos, pero los resultados que presentaron una mejor correlación fueron los obtenidos para el peso volumétrico seco.

Figura 4.38: Comparación entre los valores experimentales y los calculados en TET

Figura 4.39: Comparación entre los valores experimentales y los calculados en TEE

4.2.5. Determinación del ángulo de fricción interna movilizado en la falla a partir de las trayectorias de esfuerzos

Como se explicó en el capítulo 3, el ángulo de fricción interna del suelo se puede determinar a partir de la pendiente de la línea de falla o para la envolvente de colapso (resistencia pico) denominada con la letra "M"; por tanto, para cada uno de los ensayes realizados se determinó dicha pendiente trazando la trayectoria de esfuerzos correspondiente y su envolvente de colapso. Los resultados se presentan en la Tabla 4.8. En general los valores obtenidos se encuentran entre 0.453 y 1.458, siendo mayores para las probetas formadas con pesos de pisón de 1500 y 3000 g.

En la Tabla 4.9, se muestran los resultados para el ángulo de fricción interna obtenidos a partir de la pendiente de la línea de falla, en términos de esfuerzos efectivos, ya que en términos de esfuerzos totales no son representativos.

11-1008		IVI	
w(%)	0.5	1	1.5
8	0.4533	1.0078	0.9726
16	1.1398	0.9432	0.9007
20	0.7099	0.6247	0.7489
PP=1500g		М	
w(%)	0.5	1.5	
8	1.4638	1.3787	1.3571
16	1.2848	1.3278	1.4494
20	1.3912	1.4051	1.4008
PP=3000g		М	
w(%)	0.5	1	1.5
8	1.4699	1.494	1.4193
16	1.3928	1.4177	1.4278
20	1.4588	1.4197	1.442

Tabla 4.8: Resumen de los resultados obtenidos para la pendiente de la línea de falla
PP=100g
M

Tabl	a 4.9: Resu	Itados	ángulo	de	fricción	interna	utilizar	ndo tra	yector	ias de	e esfue	erzos

	Determinación del ángulo de fricción interna - TEE												
	PP=100g			φ'									
w(%)	γ_{sat} (g/cm ³)	γ_{d} (g/cm ³)	0.5	1	1.5								
8	1.908	1.395	12.17	25.56	24.74								
16	1.901	1.386	28.61	24.05	23.05								
20	1.912	1.402	18.51	16.43	19.44								
	PP=1500g			φ'									
w(%)	γ_{sat} (g/cm ³)	γ_{d} (g/cm ³)	0.5	1	1.5								
8	1.988	1.504	36.04	34.09	33.60								
16	2.01	1.553	31.94	32.93	35.71								
20	2.049	1.575	34.38	34.70	34.60								
	PP=3000g			φ'									
w(%)	γ_{sat} (g/cm ³)	γ _d (g/cm³)	0.5	1	1.5								
8	2.004	1.526	36.18	36.73	35.02								
16	16 2.047 1.571		34.42	34.99	35.22								
20	2.088	1.623	35.93	35.03	35.54								

Cuando se considera la envolvente de colapso, se obtiene un ángulo para cada trayectoria correspondiente; por tanto, se determinaron 27 ángulos, de los cuales se presenta mayor dispersión en las probetas formadas con una compacidad baja (peso de pisón de 100 g).

En contraste, se obtienen resultados con menor dispersión para pesos de pisón de 1500 y 3000 g. Adicionalmente, se verificó que la determinación del ángulo de fricción interna utilizando la línea de estado crítico no depende del esfuerzo efectivo de consolidación al que se someta el suelo durante la etapa de falla, ya que al aplicar diferentes esfuerzos el resultado obtenido es aproximadamente igual (ver Figuras 4.40 y 4.41).

Figura 4.40: Ángulo de fricción interna en función del peso volumétrico saturado (TE)

Figura 4.41: Ángulo de fricción interna en función del peso volumétrico seco (TE)

Al comparar los resultados obtenidos a partir de la pendiente de la línea de falla y los determinados con el análisis de resistencia de Mohr-Coulomb (Ver Figuras 4.40 y 4.41), se tiene que para las probetas formadas con peso de pisón de 100 g los ángulos en casi todos los casos son mayores. Para las probetas formadas con pesos de pisón de 1500 y 3000 g,

los valores obtenidos se encuentran en el rango entre 30 y 40 grados, con menor dispersión las determinaciones realizadas para las probetas formadas con peso de pisón de 3000 g. En la Figura 4.42, se presenta la correlación planteada entre los valores del ángulo de fricción interna obtenidos con el análisis de resistencia de Mhor-Coulomb y la pendiente del estado crítico. Para cada esfuerzo efectivo de consolidación aplicado, se planteó una correlación; los resultados muestran que se presenta una menor dispersión y un mejor ajuste a los valores determinados para un esfuerzo efectivo de consolidación de 1.5 kg/cm², ya que se obtuvo un coeficiente de correlación de 0.9508 y un mejor ajuste de los datos a una regresión de tipo lineal.

Figura 4.42: Comparación de resultados para el ángulo de fricción interna determinado a partir del análisis de resistencia de Mohr-Coulomb y la pendiente de la línea de estado crítico

De acuerdo con el análisis planteado anteriormente, se determinó el promedio de los valores obtenidos para el ángulo de fricción interna a partir de la envolvente de colapso, correspondientes a cada uno de los esfuerzos efectivos de consolidación. Al aplicar una regresión de tipo lineal a los datos, se obtiene un coeficiente de correlación de 0.8476. Adicionalmente, se observa que hay una mejor correlación para los valores determinados en probetas densas como las formadas con pesos de pisón de 1500 y 3000 g (ver Figura 4.43).

Figura 4.43: Correlación obtenida entre los valores promedio del ángulo de fricción interna determinados a partir de las trayectorias de esfuerzos y con el análisis de resistencia de Mhor-Coulomb

4.2.6. Trayectorias de esfuerzos

En este apartado se presentan las trayectorias normalizadas respecto al esfuerzo efectivo de consolidación, cabe recordar que se realizaron pruebas triaxiales tipo CU y las probetas se formaron para pesos de pisón de 100, 1500 y 3000 g, con contenidos de agua iniciales de 8, 16 y 20%, y se consolidaron bajo esfuerzos efectivos de 0.5, 1.0 y 1.5 kg/cm².

En la Figura 4.44, se muestran las trayectorias para las probetas formadas con peso de pisón de 100 g; en todos los casos se obtiene un comportamiento de tipo contractivo, ya que el exceso de presión de poro durante la etapa de falla aumenta hasta un punto máximo después del cual se mantiene aproximadamente constante. Dichas trayectorias se agrupan hacia la misma envolvente de falla independientemente del esfuerzo efectivo de consolidación aplicado.

Dentro del análisis realizado, se observa que algunas trayectorias no se ajustan a la envolvente de falla trazada; este comportamiento puede deberse a la dificultad que se tiene en el laboratorio para formar, saturar, consolidar y fallar muestras de suelos arenosos sueltos. De acuerdo con las observaciones realizadas experimentalmente, las principales dificultades se presentan durante el montaje al colocar la camisa y ajustar la tapa de la cámara, así como en el contacto previo para dar inicio a la etapa de falla.

Figura 4.44: Trayectorias de esfuerzos normalizadas (PP=100g)

Las trayectorias obtenidas para las probetas formadas con pesos de pisón de 1500 g, muestran que se presenta un comportamiento contractivo cuando se tiene un contenido de agua inicial de 8%, con esfuerzos efectivos de consolidación de 1.0 y 1.5 kg/cm². En el resto de las pruebas realizadas, se obtiene un comportamiento dilatante, debido a que el exceso de presión de poro durante la falla decrece (ver Figura 4.45).

Figura 4.45: Trayectorias de esfuerzos normalizadas (PP=1500g)

Para las probetas formadas con peso de pisón de 3000 g se obtienen un comportamiento dilatante, en todos los casos el exceso de presión de poro crece hasta un punto máximo después del cual decrece al aumentar la deformación y las trayectorias de esfuerzos crecen hacia la derecha aumentando el esfuerzo efectivo octaédrico (p') (ver Figura 4.46).

Figura 4.46: Trayectorias de esfuerzos normalizadas (PP=3000g)

De las probetas formadas con pesos de pisón de 1500 y 3000 g se observa claramente que las trayectorias de esfuerzos normalizadas se agrupan bajo la misma envolvente; estas trayectorias no dependen del esfuerzo efectivo de consolidación, en este caso dependen de la compacidad (dada por el peso de pisón y contenido de agua inicial).

4.2.7. Determinación del módulo de elasticidad

La determinación del módulo de elasticidad se llevó a cabo para el 50% de la resistencia máxima y para una deformación de 0.0045 mm/mm; los resultados se resumen a continuación:

Determinación del módulo de elasticidad para el 50% de la resistencia máxima

En la Tabla 4.10, se muestra el resumen de los resultados obtenidos para el módulo de elasticidad al 50% de la resistencia máxima; en general se tiene que al aumentar el peso del pisón y el contenido de agua inicial el módulo disminuye. Para las probetas formadas con un peso de pisón de 100 g, los valores obtenidos no son congruentes con el comportamiento del suelo, ya que al aumentar el esfuerzo efectivo de consolidación el módulo debe incrementarse debido a que la deformación correspondiente al esfuerzo desviador máximo es mayor (Ver Figura 4.47).

De acuerdo con lo anterior, experimentalmente se observó que la realización de pruebas en muestras de suelos granulares saturados con compacidad baja es muy compleja, ya que se requiere de un equipo con mayor precisión al utilizado, especialmente para la medición del desplazamiento, porque al iniciar las lecturas el instrumento utilizado no es muy preciso y la falla de este tipo de muestras se da para una deformación inferior a 2%. Otra opción para definir mejor la curva esfuerzo-deformación puede ser tomar mayor cantidad de datos al inicio de la prueba y espaciarlos conforme aumenta la deformación.

PF	P=100g	Módulo d	e elasticidad	d (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	1.908	75.89	148.32	77.92
16	1.901	180.63	82.61	175.53
20	1.912	94.60	57.03	171.82
PP	=1500g	Módulo d	e elasticidad	d (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	1.988	95.58	138.89	147.00
16	2.01	45.15	58.95	131.29
20	2.049	40.80	53.26	68.64
PP	=3000g	Módulo d	e elasticidad	d (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	2.004	67.04	67.83	70.92
16	2.047	33.43	64.16	76.55
20	2.088	48.94	60.01	72.08

Tabla 4.10: Resumen de resultados para el módulo de elasticidad al 50% de la resistencia máxima

Figura 4.47: Módulo de elasticidad (PP=100g)

Para las probetas formadas con peso de pisón de 1500 y 3000 g se observa que al aumentar el contenido de agua inicial el módulo decrece, de igual manera para un mismo contenido de agua, al aumentar el esfuerzo efectivo de consolidación el módulo se incrementa (ver Figuras 4.48 y 4.49).

Figura 4.48: Módulo de elasticidad (PP=1500g)

Figura 4.49: Módulo de elasticidad (PP=3000g)

Comparando los resultados obtenidos para las probetas formadas con 1500 y 3000 g, el módulo decrece, ya que se obtiene una estructura con mayor concentración de sólidos, donde probablemente, el esfuerzo desviador es mayor así como la deformación correspondiente.

Determinación del módulo de elasticidad para una deformación unitaria de 0.0045 mm/mm

La determinación del módulo de elasticidad para una deformación de 0.0045 mm/mm, se realizó teniendo en cuenta que en este valor coinciden la mayoría de las curvas esfuerzodeformación en su etapa inicial. El resumen, de los resultados obtenidos se presenta en la Tabla 4.11.

PP	=100g	Módulo d	e elasticidad	l (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	1.908	36.12	110.72	61.73
16	1.901	75.27	77.77	130.00
20	1.912	39.38	55.36	124.53
PP	=1500g	Módulo d	e elasticidad	d (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	1.988	93.19	153.37	170.27
16	2.010	48.94	96.58	168.19
20	2.049	55.74	119.54	114.59
PP:	=3000g	Módulo d	e elasticidad	d (kg/cm²)
w(%)	γ_{sat} (g/cm ³)	0.5	1.0	1.5
8	2.004	94.21	59.22	46.84
16	2.047	72.01	116.93	153.17
20	2.088	114.08	147.31	164.10

Tabla 4.11: Resumen de resultados para el módulo de elasticidad, deformación unitaria igual a 0.0045

Según los resultados obtenidos se tiene que para un mismo contenido de agua, al incrementar el esfuerzo efectivo de consolidación el módulo aumenta, con excepción del comportamiento observado para un contenido de agua de 8% y pesos de pisón de 100 y 3000 g (ver Figuras 4.50 a 4.52).

Comparativamente, se tiene que los resultados obtenidos para pesos de pisón de 100, 1500 y 3000 g, con contenidos de agua de 16 y 20% son más congruentes con el comportamiento del material; adicionalmente, se observa que para un peso de pisón de 100 g, el módulo decrece al aumentar el contenido de agua; en contraste, para pesos de pisón de 1500 y 3000 g, el módulo es mayor para contenidos de agua inicial de 20%.

Figura 4.50: Módulo de elasticidad (PP=100g)

Figura 4.51: Módulo de elasticidad (PP=1500g)

Figura 4.52: Módulo de elasticidad (PP=3000g)

4.2.8. Diagrama de estado

Como se comentó en el capítulo 1, el diagrama de estado se utiliza para dibujar las trayectorias que siguen las muestras durante su etapa de falla. En esta investigación se llevaron a cabo ensayes estáticos no drenados, donde no hay cambio de volumen durante la etapa de falla, por tanto, las trayectorias son horizontales.

El diagrama de estado obtenido se presenta en la Figura 4.53. En la parte superior derecha se localizan las muestras con comportamiento contractivo, para las cuales las trayectorias se desplazan a la izquierda hasta la línea de estado estable, a partir del punto dado por el esfuerzo efectivo octaédrico inicial y la relación de vacíos al final de la consolidación.

Figura 4.53: Diagrama de estado

Las trayectorias que se ubican en la parte inferior hacia la izquierda de la línea de estado estable, representan las probetas con comportamiento dilatante, dichas probetas se formaron con pesos de pisón de 1500 y 3000 g; por tanto presentan menores relaciones de vacíos con valores entre 0.75 y 0.95.

La línea de estado estable se obtuvo a partir de una regresión de tipo lineal tomando los estados estables de todas las probetas ensayadas y presenta una pendiente λ_{ss} de 0.185 (ver Figura 4.54).

Figura 4.54: Determinación de la pendiente del estado estable

4.3. Influencia de la compacidad relativa

A partir de los resultados obtenidos en las pruebas de compactación, se determinó la compacidad relativa; su variación con respecto al contenido de agua se presenta en la Figura 4.55, y se observa que aumenta al incrementar el peso de pisón. Asimismo, se tiene una variación de aproximadamente de 10% para contenidos de agua entre 14 y 16%; dicha variación es menos significativa para pesos de pisón de 2000 a 3000 g.

El comportamiento obtenido para la compacidad relativa es muy similar al logrado en las curvas de compactación, se observa que hay un cambio de aproximadamente 50% en cuanto a la compacidad al pasar de un peso de pisón de 100 a 500 g, lo que modifica considerablemente la estructura del suelo. Finalmente, se tiene que para pesos de pisón de 1500 a 3000 g, la variación es baja con compacidades entre 80 y 100%.

De acuerdo con las pruebas triaxiales ejecutadas, se determinó la relación entre la compacidad relativa y el ángulo de fricción interna obtenido en términos de esfuerzos totales y efectivos, utilizando el criterio de Mohr-Coulomb (ver Figura 4.56). Se obtiene que al incrementar la compacidad relativa aumenta la resistencia del suelo, para compacidades

entre 80 y 100%, el ángulo de fricción interna en términos de esfuerzos totales varía entre 20 y 30°; en contraste, en términos de esfuerzos efectivos varía entre 30 y 40%.

Figura 4.55: Variación de la compacidad relativa en función del contenido de agua

Figura 4.56: Ángulo de fricción interna en función de la compacidad relativa

Según lo anterior, se obtuvo una propuesta de correlación entre la compacidad relativa y el ángulo de fricción interna determinado con el análisis de resistencia de Mohr-Coulomb (Figura 4.57). Para el análisis en términos de esfuerzos totales se obtiene un coeficiente de

correlación (R²) de 0.8096 y en términos de esfuerzos efectivos 0.9054; por tanto, se obtiene un mejor ajuste considerando el análisis en términos de esfuerzo efectivos.

Aplicando las correlaciones obtenidas, se determinó el ángulo de fricción interna y se graficaron los valores experimentales contra los calculados. En términos de esfuerzos totales el error obtenido es de 2.45% (Figura 4.58) y en términos de esfuerzos efectivos de 0.47% (Figura 4.59), por tanto, el mejor ajuste de los datos se da para el análisis en términos de esfuerzos efectivos.

Figura 4.57: Propuesta de correlación entre la compacidad relativa y el ángulo de fricción interna

Figura 4.58: Comparación entre los resultados obtenidos y los calculados para el ángulo de fricción interna en TET

Figura 4.59: Comparación entre los resultados obtenidos y los calculados para el ángulo de fricción interna en TEE

4.4. Influencia del contenido de agua

Dentro de los resultados obtenidos en las pruebas de compactación y triaxiales ejecutadas, se puede ver que el contenido de agua inicial juega un papel importante en el comportamiento del material. Las pruebas de compactación muestran que al aumentar el contenido de agua y el peso del pisón, hay un incremento en el peso volumétrico húmedo, peso volumétrico seco y grado de saturación; asimismo, hay una reducción de la relación de vacíos y porosidad. En cuanto a la concentración de solidos al aumentar el contenido de agua se logra una estructura más densa y por tanto un aumento en la resistencia del suelo.

Es importante mencionar que para definir el contenido de agua máximo a utilizar en pruebas de compactación estática, se debe tener en cuenta el límite líquido, determinado por métodos como la copa de Casagrande si el material contiene finos plásticos o por métodos alternativos, si el contenido de finos es no plástico, ya que al compactar el suelo con contenidos de agua muy cercanos al límite líquido la compactación no es representativa, porque para pesos de pisón altos los sólidos tienden a separarse del agua.

Los resultados de las pruebas triaxiales ejecutadas muestran que al aumentar el contenido de agua inicial, hay un aumento en la resistencia del suelo, como se observó en los ángulos de fricción interna obtenidos, así como en las curvas esfuerzo-deformación y presión de

poro-deformación; esto por los resultados comparativos para probetas formadas con pesos de pisón de 100, 1500 y 3000 g.

4.5. Influencia del esfuerzo efectivo

Los resultados obtenidos para las pruebas triaxiales en cuanto al comportamiento esfuerzodeformación, muestran que al aumentar el esfuerzo efectivo de consolidación hay un incremento en el esfuerzo desviador, dicho incremento es significativo en probetas formadas con peso de pisón de 100 g.

Las curvas obtenidas para el exceso de presión de poro *vs.* deformación, muestran que al aumentar el esfuerzo efectivo de consolidación hay un incremento aproximado del exceso de presión de poro entre 85 y 90% para las probetas formadas con peso de pisón de 100 g y comportamiento contractivo. En el caso de las probetas formadas con pesos de pisón de 1500 y 3000 g, el exceso de presión de poro presenta valores máximos entre el 20 y 80% del esfuerzo efectivo de consolidación, y su comportamiento es dilatante, incrementando así la resistencia del suelo al aumentar la deformación.

Los resultados obtenidos para el ángulo de fricción interna a partir de las trayectorias de esfuerzos muestran que esta determinación es independiente del esfuerzo efectivo de consolidación, ya que todas las trayectorias se agrupan bajo la misma envolvente cuando el suelo es sometido a la falla. Cabe destacar que los mejores resultados se obtienen para muestras con compacidad relativa entre 80 y 100% como los obtenidos para las probetas formadas con pesos de pisón de 1500 y 3000 g.

Los valores obtenidos para el módulo de elasticidad al 50% de la resistencia máxima, muestran que al aumentar el esfuerzo efectivo de consolidación hay un incremento en el módulo; este comportamiento se observó en las probetas formadas con pesos de pisón de 1500 y 3000 g.

5. CONCLUSIONES Y RECOMENDACIONES

El trabajo realizado contempló varias etapas entre las que se encuentran la calibración y verificación experimental de los traductores que componen la cámara triaxial, así como el proceso de montaje y operación; la determinación de las propiedades físicas, las curvas de compactación y la caracterización mecánica a partir de pruebas triaxiales tipo CU, para un residuo minero proveniente del Municipio de Topia en el Estado de Durango, México.

A continuación se presentan las principales conclusiones obtenidas para cada una de las etapas mencionadas:

5.1. Reconocimiento, calibración y verificación de la cámara triaxial de alambres

 El proceso de calibración de los transductores que componen las cámaras triaxiales es básico para la realización de las pruebas, ya que el éxito en los resultados depende de los datos registrados, en este caso se obtuvo que el error en la calibración y verificación fue menor a 1%, lo que indica que las mediciones realizadas por los transductores son prácticamente iguales a las magnitudes físicas aplicadas.

5.2. Caracterización física

- Los resultados obtenidos para las propiedades físicas del material, presentan similitudes con las determinaciones realizadas previamente por otros autores, especialmente se observa que la densidad relativa de sólidos puede alcanzar un rango de valores que varía entre 2.7 y 3.4. De igual manera, la mayoría de los materiales presentan contenidos de finos cercanos o inferiores a 30%, con muy baja o nula plasticidad.
- La determinación del límite líquido se llevó a cabo utilizando el cono sueco como método alternativo, ya que los finos que componen el material son no plásticos y no se aplica el uso de la copa de Casagrande. De igual manera no fue posible determinar el límite

plástico, por tanto, la clasificación del suelo se realizó a partir de la identificación visual y al tacto.

 De acuerdo con el comportamiento observado en el laboratorio, la determinación del límite líquido utilizando el cono, presenta buenos resultados, ya que al intentar compactar el suelo con un contenido de agua cercano al límite líquido las partículas sólidas se separan del agua, evitando que se forme una estructura homogénea.

5.3. Pruebas de compactación

- Las curvas de compactación obtenidas muestran que el peso volumétrico seco aumenta al incrementar el contenido de agua; no se obtiene un comportamiento típico como las pruebas convencionales donde se define la rama seca y húmeda; por tanto, no se define un peso volumétrico seco máximo y un contenido de agua óptimo.
- Un parámetro importante a considerar dentro del análisis de los jales es la compacidad o concentración de sólidos, la cual aumenta al incrementar el peso del pisón. En el material estudiado se encontraron valores entre 0.4 y 0.56, lo que coincide con los reportes realizados por autores como Flores *et al.* (2010) y las consideraciones de Orozco (2010), quien plantea que los jales pueden tener valores de concentración de sólidos cercanos a 0.5.
- De las pruebas de compactación realizadas se obtuvo la relación de vacíos máxima y mínima, a partir de las cuales se determinó la compacidad relativa del material. Cabe destacar que el método empleado es la compactación estática, por medio del cual se logra la densificación del material por el peso propio del pisón utilizando. A pesar de haber utilizado solo un método de compactación, se tiene que los resultados obtenidos coinciden con los reportados por Cubrinovski e Ishihara (2002), quienes determinaron estos parámetros para más de 300 muestras de arenas, utilizando varios métodos de formación de probetas.

5.4. Caracterización mecánica

- La realización de las pruebas triaxiales tuvo algunas complicaciones como el montaje y saturación de las probetas formadas con un peso de pisón de 100 g, ya que al tener una compacidad muy baja, son susceptibles a sufrir deformaciones durante las maniobras para ajustar la camisa y la tapa de la cámara; asimismo, la saturación de este tipo de probetas requirió mayor tiempo y la aplicación de mayores esfuerzos de confinamiento y contrapresión.
- Los resultados obtenidos para el ángulo de fricción interna utilizando el criterio de Mohr-Coulomb, muestran que la mayor resistencia se alcanza para las probetas que presentan un comportamiento dilatante y por tanto tienen una mayor compacidad, en este caso al aumentar la deformación aumenta la rigidez y resistencia del suelo en la curva esfuerzo-deformación.
- En esta investigación se plantearon correlaciones para determinar el ángulo de fricción interna en términos de esfuerzos totales y efectivos, en función del peso volumétrico seco y de la compacidad relativa del material. Dichas correlaciones deben ser complementadas con un mayor número de pruebas que contemplen compacidades intermedias a las que se trabajaron, teniendo en cuenta el método de formación de la probeta y las condiciones del ensaye.
- La determinación del ángulo de fricción interna a partir de las trayectorias de esfuerzos y el análisis de Mohr-Coulomb, mostró que hay una mejor correlación entre los valores obtenidos para esfuerzos efectivos de consolidación de 1.5 kg/cm². Adicionalmente, para una compacidad baja, se presenta una mayor dispersión en las determinaciones, al aumentar la compacidad el rango de valores se encuentra entre 30 y 40° para los dos métodos analizados.
- Las trayectorias de esfuerzos obtenidas para las probetas formadas con diferentes pesos de pisón muestran que independientemente del esfuerzo efectivo de consolidación aplicado, todas tienden a la misma envolvente o línea de falla.

- La determinación del módulo de elasticidad mostró que depende del criterio utilizado para su análisis. En general, para el 50% de la resistencia máxima, se tiene que para las probetas formadas con pesos de pisón de 1500 y 3000 g, el módulo decrece al aumentar el contenido de agua inicial; asimismo, aumenta al incrementar el esfuerzo efectivo de consolidación.
- A partir de los resultados obtenidos se plantea que la mejor condición para el aprovechamiento de los residuos, es disponer los materiales en el deposito con un peso volumétrico saturado entre 1.98 y 2.1 g/cm³, esta condición garantiza que se obtenga un ángulo de fricción interna entre 30 y 40° (en términos de esfuerzos efectivos); además, con estas características el material resiste mayores deformaciones.
- En una nueva etapa, para validar los resultados obtenidos en la caracterización mecánica del material en estudio, es conveniente iniciar con un análisis de las condiciones reales del depósito de jales en operación y con un muestreo que permita caracterizar las propiedades volumétricas y mecánicas, así como la realización de pruebas de campo de ser posible. Con los resultados obtenidos, platear la validación de los métodos de compactación en laboratorio que reproduzcan de la mejor manera las condiciones de campo.

REFERENCIAS

ALARCÓN, A., LEONARDS, G.A. y CHAMEAU J.L. (1988). *Undrained monotonic and cyclic strength of sands*. Proc. ASCE. Journal of Geotechnical Engineering. Volume 114, Issue 10, pp 1089-1109.

ASTM D2487-00 (2014). Standard practice for classification of soils of engineering purposes (Unified soil classification system).

ASTM D854-10 (2014). Standard test methods for specific gravity of solids by water picnometer.

ASTM D4767-11 (2014). Standard test method for consolidated undrained triaxial compression test for cohesive soils.

AUSTRALIAN NATIONAL COMMITTEE ON LARGE DAMS - ANCOLD (1999). *Guidelines on tailings dam design, construction and operation.* Australia.

BRISEÑO, O. (2010). *La normatividad ambiental en material de presas de jales*. Memorias de la XXV Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica. Acapulco – Guerrero. México.

CUBRINOVSKI, M., e ISHIHARA, K. (2002). *Maximum and minumum void ratio characteristics of sands. Soils and Foundation.* Vol. 42, No. 6, December, pp 65-78.

DAS, B. (2001). *Fundamentos de Ingeniería Geotécnica*. Primera edición. Editorial Mc Graw Hill. California. USA.

DOLD, B. (2010). *Basic concepts in environmental geochemistry of sulfidic mine-waste management*. Instituto de geología económica aplicada. Universidad de Concepción. Chile.

ENVIRONMENTAL PROTECTION AGENCY (1994). *Technical Report: Design and Evaluation of Tailings Dams*. Washington DC. USA.

ESPINOSA, I. (2005). *Análisis del comportamiento de residuos mineros a partir de estudios experimentales*. Tesis para optar al grado de Maestro en Ingeniería (Geotecnia). División de estudios de posgrado Facultad de Ingeniería. Universidad Nacional Autónoma de México - UNAM. México DF. México.

FENGXIA, L. (2014). *The research on tailings dam material physical and mechanical properties*. Applied Mechanics and Materials. Vols. 448-453, pp 1265-1268.

FELL, R. (2015). *Geotechnical engineering of dams*. Second edition. Taylor & Francis Group. Boca Raton - California, USA.

FLORES, O. (1996). *Propiedades dinámicas de jales*. Tesis para optar al grado de Maestro en Ingeniería (Mecánica de Suelos). División de estudios de posgrado Facultad de Ingeniería. Universidad Nacional Autónoma de México - UNAM. México DF. México.

FLORES, O. (2008). *Módulo de rigidez y relación de poisson dinámicos obtenidos en la franja del tercio medio en probetas de suelo granular*. Tesis para optar al grado de Doctor en Ingeniería. División de estudios de posgrado. Facultad de Ingeniería. Universidad Nacional Autónoma de México. México D.F., México.

FLORES, O., AGUILAR, H., REYES, L., y OROZCO, R. (2010). *Diseño geotécnico de una presa de jales en el estado de Hidalgo*. Memorias de la XXV Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica. Acapulco– Guerrero, México.

HAI-MING, L., CHUN-HE, Y., CHAO, Z., y HAI-JUN M. (2011). *Study on static and dynamic strength characteristics of tailings silty sand and its engineering application*. The First International Symposium on Mine Safety Science and Engineering. Beijing. China.

ISHIHARA, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique. Volume 43, Issue 3, pp 351-415.

KUJAWA, C. (2011). Cycloning of tailing to the production of sand as TSF construction material. Tailings and Mine Waste 2011 – Proceedings of the 15th International Conference on Tailings and Mine Waste. Vancouver, BC, Canada.

MARSAL, R., MORENO, E., NUÑEZ, A., CUELLAR, R., y MORENO, R. (1965). Research on the behavior of granular soils and rockfill samples. Publicación CFE. Febrero. México D.F., México.

MENDOZA, M., y OROZCO, M. (1995). *Técnicas alternativas para la determinación del límite líquido de suelos*. Publicaciones Instituto de Ingeniería. Universidad Nacional Autónoma de México. México D.F., México.

OROZCO, R. (1999). La seguridad de los depósitos de residuos mineros – Algunas reflexiones sobre experiencias mexicanas (presas de jales), Ingeniería Civil, Vol. 368, págs. 18-23, Colegio de Ingenieros Civiles de México, México D.F., México.

OROZCO, R. (2010). *La ingeniería geotécnica en las presas de jales mexicanas*. Memorias de la XXV Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica. Acapulco – Guerrero, México.

OROZCO, R. (2014). *Depósitos de jales mineros en México. Reflexiones para mejorar su calidad*. Memorias de la XXVII Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica. Puerto Vallarta – Jalisco, México.

OVANDO, E., y SEGOVIA, J. (1996). *Licuación de arenas*. Editorial TGC. México, DF. México.

RODRIGUEZ, I. (2001). *Influencia del contenido de finos en el comportamiento no drenado de un residuo minero procedente de San Luis Potosí*. Tesis para optar al grado de Maestro en Ingeniería (Mecánica de Suelos). División de estudios de posgrado Facultad de Ingeniería. Universidad Nacional Autónoma de México - UNAM. México DF, México.

SALAS, E. (2014). *Geoquímica y mineralogía de jales en mina Aurora, Xichú, Guanajuato.* Tesis para optar al grado de maestro en ciencias de la tierra. Programa de posgrado en ciencias de la tierra – centro de geociencias. Universidad Nacional Autónoma de México -UNAM. México DF. México.

SANTOYO, E. y RESÉNDIZ, D. (1969). *Una cámara triaxial de precisión*. Publicaciones Instituto de Ingeniería. Universidad Nacional Autónoma de México – UNAM. México D.F., México.

SECRETARIA DE MEDIO AMBIENTE Y RECURSOS NATURALES. Norma oficial mexicana (NOM-141-SEMARNAT-2003), Que establece el procedimiento para caracterizar los jales, así como las especificaciones y criterios para la caracterización y preparación del sitio, proyecto, construcción, operación y postoperación de presas de jales. México.

SHAMSAI, A., PAK, A., BATENI, S., y AYATOLLAHI, S. (2007). *Geotechnical characteristics of copper mine tailings: a case study.* Geotechnical and Geologic Engineering. Volume 25, Issue 5, October, pp 591-602.

TRONCOSO, J., y VERDUGO, R. (1985). *Silt content and dynamic behavior of tailings sands.* In proceedings of the 11th International Conference on Soils Mechanics and Foundation Engineering. San Francisco, Calif., Agosto, Vol. 3 pp 1311-1314.

VILLAVICENCIO, G., BREUL, P., BACCONNET, C., BOISSIER, D., y ESPINACE A. (2011). *Estimation of the variability of tailings dams properties in order to perform probabilistic assessment*. Geotechnical and Geologic Engineering. Volume 29, Issue 6, November, pp 1073-1084.

VICK, S.G. (1990). Planning, Design and Analysis of Tailings Dams. BiTech Publishers Ltd.

ANEXO A: RESULTADOS PRUEBAS DE COMPACTACIÓN

En este anexo, se presentan los resultados obtenidos en las pruebas de compactación (ver Tablas A.1 a A.7). En cada caso, para un mismo contenido de agua, se varío el peso del pisón entre 0.1 y 3.0 kg; como resultado de este proceso se determinaron las relaciones volumétricas utilizando las dimensiones y peso del molde, y el valor obtenido para la densidad relativa de sólidos.

Es importante recalcar que a partir las relaciones volumétricas obtenidas, se construyeron las gráficas incluidas en el capítulo 4.

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	11/6 50	113.00	1 27	56	148.90	146.60	119.90	8.61	Q Q1	1 16	1.46	50 22	17 27
1	100	1140.30	115.00	1.27	9	150.50	147.80	117.80	9.00	0.01	1.10	1.40	39.33	17.27
2	500	1165 00	132 /0	1 / 9	75	161.60	158.70	126.10	8.90	0 00	1 36	1 10	57 28	23.00
2	500	1105.50	132.40	1.40	86	159.70	156.90	125.30	8.86	0.00	1.50	1.10	52.56	23.05
3	1000	1172 80	139 30	1 56	12	151.90	149.00	117.00	9.06	9.02	1 /3	1.00	19 96	25.85
5	1000	11/2.00	155.50	1.50	19	145.80	143.50	117.90	8.98	5.02	1.45	1.00	45.50	23.05
4	1500	1177 50	144.00	1.61	53	158.80	155.50	117.90	8.78	8 87	1 /18	0.93	18 20	27.25
4	1500	11/7.50	144.00	1.01	74	162.40	159.40	125.90	8.96	0.07	1.40	0.95	40.20	27.25
5	2000	1170 80	1/6 30	1.64	119	151.90	149.30	119.90	8.84	8 80	1 51	0.90	17 31	28.00
5	2000	1179.00	140.30	1.04	84	157.60	155.00	125.30	8.75	0.00	1.51	0.90	47.54	28.00
6	2500	1182 30	1/18 80	1.67	32	161.90	158.40	117.10	8.47	8 35	1 54	0.86	46.22	27.81
0	2300	1102.50	140.00	1.07	151	166.50	163.00	120.50	8.24	0.55	1.34	0.00	40.22	27.01
7	2000	1102 20	140 70	1 69	56	155.20	152.30	119.90	8.95	8.06	1 54	0.96	46 10	20.9E
	3000	1105.20	149.70	1.00	86	158.10	155.40	125.30	8.97	6.90	1.54	0.60	40.19	23.03

Tabla A 1.	Resultados	nruehas	de com	nactación	nara	w=8%
	Nesullauus	pruebas			para	VV-0/0

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	11/15 20	111 70	1 25	84	145.20	143.30	125.30	10.56	10.61	1 13	1 53	60.45	19.85
-	100	1143.20	111.70	1.25	151	145.40	143.00	120.50	10.67	10.01	1.15	1.55	00.45	15.05
2	500	1166 20	132 70	1 /0	32	145.10	142.60	117.10	9.80	0 00	1 35	1 11	52 71	25 /1
2	500	1100.20	132.70	1.49	74	152.30	149.90	125.90	10.00	5.50	1.55	1.11	52.71	23.41
2	1000	1174 60	1/1 10	1 5 8	89	164.80	160.90	121.50	9.90	10.01	1 44	0.99	10 77	28.80
5	1000	1174.00	141.10	1.56	99	151.80	149.20	123.50	10.12	10.01	1.44	0.99	49.77	20.05
4	1500	1178 30	1// 80	1.67	9	148.40	145.60	117.80	10.07	10.16	1 47	0.94	18 52	30.83
4	1500	1178.50	144.00	1.02	3	148.60	145.70	117.40	10.25	10.10	1.47	0.94	40.32	30.85
5	2000	1191 00	147 50	1 65	119	152.80	149.70	119.90	10.40	10.17	1 50	0.01	17 57	22.06
5	2000	1181.00	147.30	1.05	84	157.00	154.00	123.80	9.93	10.17	1.50	0.91	47.37	52.00
6	2500	1102 00	1/0 20	1.67	20	157.70	154.30	118.00	9.37	0.64	1 52	0 00	16 67	21 50
0	2300	1102.00	149.30	1.07	80	162.00	158.60	124.30	9.91	9.04	1.55	0.00	40.07	51.50
7	2000	1195 20	151.90	1 70	98	149.60	146.70	117.00	9.76	0.02	1 55	0.95	AE 96	22.14
/	5000	1105.30	151.80	1.70	12	174.10	169.60	124.00	9.87	9.82	1.55	0.85	45.80	55.14

Tabla A.2: Resultados pruebas de compactación para w=10%

Tabla A.3: Resultados pruebas de compactación para w=12%

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	11/18 60	115 10	1 20	119	151.60	148.30	119.90	11.62	11 50	1 16	1 /18	50.61	22 /17
T	100	1140.00	115.10	1.25	9	144.80	142.00	117.80	11.57	11.55	1.10	1.40	55.01	22.47
2	500	1170.00	136 50	1 52	74	172.10	167.40	126.00	11.35	11.26	1 37	1.08	51 05	20 70
2	500	1170.00	130.30	1.55	32	157.90	153.80	117.10	11.17	11.20	1.57	1.08	51.55	23.75
2	1000	1177 90	144 20	1.62	86	151.70	149.00	125.30	11.39	11 20	1 45	0.07	10.26	22 52
5	1000	1177.80	144.50	1.02	99	151.90	149.00	123.50	11.37	11.50	1.45	0.97	49.20	55.55
4	1500	1101 50	1/10 00	1 66	56	148.60	145.60	119.90	11.67	11 / 2	1 40	0.02	17 09	25 42
4	1300	1101.30	146.00	1.00	89	159.30	155.50	121.50	11.18	11.42	1.49	0.92	47.56	55.42
5	2000	1183 /0	1/10 00	1.68	3	158.10	154.00	117.40	11.20	11 21	1 51	0.80	47 21	35.85
5	2000	1105.40	149.90	1.08	98	158.70	155.20	124.00	11.22	11.21	1.51	0.89	47.21	55.65
6	2500	1196 50	152.00	1 71	96	144.90	142.50	120.60	10.96	11 11	1 54	0.95	46.07	27 10
0	2300	1180.50	133.00	1.71	106	163.60	159.40	122.10	11.26	11.11	1.34	0.85	40.07	37.19
7	2000	1197.60	154 10	1 72	80	158.00	154.60	124.30	11.22	11 17	1 55	0.94	15 71	27 02
/	5000	1107.00	134.10	1.75	12	148.00	144.90	117.00	11.11	11.17	1.55	0.64	45.71	37.95

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	1151 20	117 70	1 32	86	153.00	149.50	125.30	14.46	14.46	1 15	1 /18	59 73	27.89
-	100	1151.20	117.70	1.52	9	145.50	142.00	117.80	14.46	14.40	1.15	1.40	35.75	27.05
2	500	1172 70	139.20	1 56	56	149.90	146.10	119.90	14.50	1/1 69	1 36	1 10	52 /17	38.06
2	500	11/2.70	135.20	1.50	98	152.00	148.40	124.20	14.88	14.05	1.50	1.10	52.47	50.00
3	1000	1180.90	1/17/10	1.65	80	156.40	152.30	124.30	14.64	14.66	1 44	0.99	19 66	12 52
5	1000	1100.50	147.40	1.05	12	149.80	145.60	117.00	14.69	14.00	1.44	0.55	45.00	42.32
4	1500	1185.00	151 50	1 70	89	151.60	147.80	121.50	14.45	14 45	1 48	0.93	48 16	44 48
-	1500	1105.00	131.50	1.70	74	156.90	153.00	126.00	14.44	14.45	1.40	0.55	40.10	
5	2000	1187 00	154.40	1 73	75	159.70	155.50	126.10	14.29	14.46	1 51	0.80	47 17	46 31
5	2000	1107.50	134.40	1.75	53	151.60	147.30	117.90	14.63	14.40	1.51	0.89	47.17	40.31
6	2500	1180 70	156.20	1 75	23	154.30	149.70	117.80	14.42	1/1 32	1 52	0.87	16 19	17 13
0	2300	1105.70	150.20	1.75	47	164.80	159.20	119.80	14.21	17.52	1.55	0.87	40.45	47.15
7	3000	1101 /0	157.00	1 77	96	154.50	150.30	120.50	14.09	1/1 2/1	1 55	0.85	15 85	17 98
	5000	1191.40	137.90	1.77	20	163.50	157.80	118.00	14.32	14.21	1.55	0.85	40.00	47.56

Tabla A.4: Resultados pruebas de compactación para w=14%

Tabla A.5: Resultados pruebas de compactación para w=16%

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	1153.80	120 30	1 25	32	139.70	136.60	117.20	15.98	15.0/	1 16	1.46	50 37	21 21
1	100	1155.00	120.30	1.55	22	137.70	134.90	117.30	15.91	13.94	1.10	1.40	39.37	51.21
2	500	1178 00	145 40	1.63	151	149.20	145.30	120.50	15.73	15 70	1 /1	1.03	50.82	43 70
2	500	1178.90	143.40	1.05	144	148.20	144.30	119.70	15.85	15.75	1.41	1.05	50.82	43.70
2	1000	1185 70	152.20	1 70	23	150.40	145.90	117.80	16.01	16 11	1 47	0.95	48.66	48 61
5	1000	1185.70	132.20	1.70	89	150.90	146.80	121.50	16.21	10.11	1.47	0.95	48.00	40.01
4	1500	1100 20	156 70	1 76	102	152.50	149.00	126.30	15.42	15.60	1 5 2	0.88	46.91	50 50
4	1500	1150.20	130.70	1.70	108	154.60	150.40	123.80	15.79	15.00	1.52	0.88	40.91	30.30
5	2000	1191 60	158 10	1 77	99	159.80	155.00	123.50	15.24	15 31	1 54	0.86	46 30	50.78
5	2000	1191.00	138.10	1.77	121	160.20	154.80	119.70	15.38	15.51	1.54	0.80	40.30	50.78
6	2500	1102 50	160.00	1 70	53	147.40	143.50	117.90	15.23	15 / 2	1 55	0.94	AE 71	E2 20
0	2000	1193.30	100.00	1.79	56	151.00	146.80	119.90	15.61	13.42	1.55	0.04	45.71	52.55
7	2000	110E 40	161.00	1 01	7	149.60	145.30	116.70	15.03	15.07	1 59	0.91	44.00	E2 90
	5000	1195.40	101.90	1.01	73	157.50	153.00	123.20	15.10	15.07	1.30	0.01	44.90	52.69

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	1156 50	123.00	1 38	98	147.10	143.60	124.00	17.86	17.68	1 17	1 44	59.07	35.04
-	100	1150.50	125.00	1.50	80	147.80	144.30	124.30	17.50	17.00	1.17	1.44	35.07	55.04
2	500	1183 30	1/19 80	1.68	16	142.30	138.50	117.00	17.67	17 69	1 /3	1 01	50 15	50.28
2	500	1105.50	145.00	1.00	12	158.90	152.60	117.00	17.70	17.05	1.45	1.01	50.15	50.20
3	1000	1190 30	156.80	1 76	9	150.90	146.00	117.80	17.38	17 29	1 50	0.91	47.65	54 35
5	1000	1150.50	130.00	1.70	89	150.10	145.90	121.50	17.21	17.25	1.50	0.51	47.05	54.55
4	1500	1193 50	160.00	1 79	53	150.70	145.90	117.90	17.14	17 28	1 53	0.87	46 57	56 69
-	1500	1155.50	100.00	1.75	56	151.60	146.90	119.90	17.41	17.20	1.55	0.07	40.57	50.05
5	2000	1195 20	161 70	1 81	23	153.40	148.20	117.80	17.11	17 13	1 55	0.85	15 93	57.66
5	2000	1155.20	101.70	1.01	99	155.60	150.90	123.50	17.15	17.15	1.55	0.85	43.33	57.00
6	2500	1107 50	164.00	1.84	20	145.70	141.70	118.00	16.88	17.00	1 57	0.82	45 10	50 18
0	2300	1197.50	104.00	1.04	86	163.60	158.00	125.30	17.13	17.00	1.57	0.82	45.10	55.18
7	3000	1100 /0	165.00	1 86	19	149.10	144.50	117.90	17.29	17.01	1 50	0.80	11 17	60 74
	5000	1199.40	103.90	1.80	32	149.20	144.60	117.10	16.73	17.01	1.39	0.80	44.47	00.74

Tabla A.6: Resultados pruebas de compactación para w=18%

Tabla A.7: Resultados pruebas de compactación para w=20%

Prueba	Peso del pisón	Peso molde + muestra húmeda	Peso de la muestra	Peso volumétrico húmedo	Recipiente	Peso muestra húmeda + recipiente	Peso muestra seca + recipiente	Peso recipiente	Contenido de agua	Prom. Contenido de agua	Peso volumétrico seco	Relación de vacios	Porosidad	Grado de saturación
No.	g	g	g	g/cm ³	No.	g	g	g	%	%	g/cm ³	-	%	%
1	100	1161.90	128.40	1.44	53	143.20	138.90	117.90	20.48	20.47	1.19	1.40	58.26	41.95
					56	145.80	141.40	119.90	20.47					
2	500	1185.70	152.20	1.70	99	156.80	151.20	123.50	20.22	20.21	1.42	1.02	50.42	56.86
					23	152.30	146.50	117.80	20.21					
3	1000	1193.40	159.90	1.79	86	162.40	156.20	125.30	20.06	19.97	1.49	0.92	47.80	62.36
					12	153.20	147.20	117.00	19.87					
4	1500	1197.60	164.10	1.84	102	160.10	154.40	126.30	20.28	20.21	1.53	0.87	46.54	66.40
					20	153.80	147.80	118.00	20.13					
5	2000	1199.20	165.70	1.86	7	152.20	146.20	116.60	20.27	20.00	1.55	0.85	45.92	67.35
					108	166.90	159.80	123.80	19.72					
6	2500	1202.10	168.60	1.89	151	160.10	153.60	120.50	19.64	19.61	1.58	0.81	44.79	69.11
					144	159.40	152.90	119.70	19.58					
7	3000	1202.30	168.80	1.89	121	158.80	152.50	119.70	19.21	19.25	1.59	0.80	44.56	68.49
					47	163.70	156.60	119.80	19.29					

ANEXO B: RESULTADOS PRUEBAS TRIAXIALES

Este anexo muestra los resultados analizados en el capítulo 4, en cada caso se presentan seis graficas que incluyen las curvas esfuerzo-deformación, presión de poro-deformación, presión de poro normalizada por el esfuerzo efectivo de consolidación, trayectorias en términos de esfuerzos efectivos, diagrama de estado, y finalmente los círculos de Mohr a partir de los cuales se determinaron la cohesión (c) y el ángulo de fricción interna (ϕ), en términos de esfuerzos totales (TET) y términos de esfuerzos efectivos (TEE) (ver Figuras B.1 a B.18).

Se resumen los resultados experimentales obtenidos en pruebas triaxiales tipo CU, para mostrar la influencia de la compacidad relativa y el esfuerzo efectivo en el comportamiento esfuerzo-deformación de jales saturados.

Cabe recordar que los resultados presentados incluyen las pruebas realizadas en probetas formadas con contenidos de agua inicial de 8, 16 y 20%, para pesos de pisón de 100, 1500 y 3000 g, así como esfuerzos efectivos de consolidación de 0.5, 1.0 y 1.5 kg/cm².

c). Curvas de presión de poro-deformación

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.1: Resultados pruebas triaxiales (PP=100g, w=8%)

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.2: Resultados pruebas triaxiales (PP=100g, w=16%)

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.3: Resultados pruebas triaxiales (PP=100g, w=20%)

b). Trayectorias de esfuerzos en TEE

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.4: Resultados pruebas triaxiales (PP=1500g, w=8%)

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.5: Resultados pruebas triaxiales (PP=1500g, w=16%)

b). Trayectorias de esfuerzos en TEE

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.6: Resultados pruebas triaxiales (PP=1500g, w=20%)

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.7: Resultados pruebas triaxiales (PP=3000g, w=8%)

d). Diagrama de estado

e). Trayectorias de esfuerzos normalizadas

Figura B.8: Resultados pruebas triaxiales (PP=3000g, w=16%)

c). Curvas normalizadas presión de poro

d). Trayectorias de esfuerzos en TEE

e). Trayectorias de esfuerzos normalizadas

Figura B.9: Resultados pruebas triaxiales (PP=3000g, w=20%)

Figura B.10: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=8%)

Figura B.11: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=16%)

Figura B.12: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=100g, w=20%)

Figura B.13: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=8%)

Figura B.14: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=16%)

Figura B.15: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=1500g, w=20%)

Figura B.16: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=8%)

Figura B.17: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=16%)

Figura B.18: Círculos de Mohr en términos de esfuerzos totales y efectivos (PP=3000g, w=20%)