

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

Evaluación de propiedades físicas y de flujo en harina de trigo, maíz y frijol de forma individual y en mezcla

TESIS QUE PARA OBTENER EL TÍTULO DE

PRESENTA Alejandra Moreno Melo

Asesores
I.B.Q. Norma Beatriz Casas Alencaster
M.I. Fernando Beristain

CUAUTITLÁN, EDO. DE MÉXICO, 2016

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Índice	ágina
--------	-------

Resumen	1
Introducción	3
1. Antecedentes	5
1.1Propiedades fisicoquímicas de los polvos	5
1.1.1 Tamaño y distribución de tamaño de partícula.	6
1.1.2 Forma de la partícula	8
1.1.3 Densidad	9
1.1.3.1 Densidad de la partícula	9
1.1.3.2 Densidad del polvo	11
1.1.4 Porosidad	13
1.1.5 Propiedades superficiales	13
1.1.6 Adhesividad	14
1.1.7 Humedad	14
1.2 Propiedades de flujo y expresión de la fluidez	17
1.2.1 Velocidad de flujo	17
1.2.2 Índice de Carr	18
1.2.3 Índice de Hausner	19
1.2.4 Ángulo de reposo	20
1.2.5 Propiedades de fluidez en celda de cizalla	24
1.2.6 Función de flujo por compresión uniaxial	25
1.2.6.1 Pruebas de esfuerzo de cedencia no confinado utilizando analizador de	30
textura	
1.2.6.2 Propiedades físicas y de fluidez de polvos alimenticios	31
1.3 Lubricantes y antiaglomerantes	36
1.4 Almacenamiento de polvos	38
1.5 Controles de calidad en polvos	39
1.6 Harinas	40

1.6.1 Harina de trigo	41
1.6.2 Harina de maiz nixtamalizado	41
1.6.3 Harina de frijol	42
1.7 Almacenamiento de la harina	42
1.8 Control de la calidad de la harina	43
1.9 Empleo de harinas en la elaboración de botanas	43
1.10 Almidón	44
1.10.1 Almidones modificados	45
2. Materiales y métodos	47
2.1 Objetivo general	47
2.2 Objetivos particulares	47
2.3 Materiales	48
2.3.1 Harina de maíz	48
2.3.2 Harina de trigo	48
2.3.3 Harina de frijol	48
2.3.4 Almidón	48
2.4 Preparación de muestras	48
2.5 Métodos	48
2.5.1 Humedad	48
2.5.2 Densidad aparente, global y compactada	49
2.5.3 Distribución de tamaño de partícula por tamizado	50
2.5.4 Velocidad de flujo	52
2.5.5 Índice de Carr	53
2.5.6 Índice de Hausner	54
2.5.7 Angulo de reposo estático drenado	54
2.5.8 Función de flujo	56
2.6 Variables utilizadas durante la experimentación	59
2.7 Tratamiento de datos	59
3. Resultados	61
3.1 Objetivo 1. Harinas solas	61
3.1.1 Humedad, densidad aparente y compactada	61
3.1.2 Tamaño de partícula	62
3.1.3 Índice de Hausner, índice de Carr y ángulo de reposo	64
3.1.4 Velocidad de flujo	65

3.1.5 Función de flujo	66
3.2 Objetivo 2. Mezclas maíz - trigo	67
3.2.1 Humedad, densidad aparente y compactada	67
3.2.2 Tamaño de partícula	68
3.2.3 Indice de Hausner, índice de Carr y ángulo de reposo	70
3.2.4 Función de flujo	71
3.3 Objetivo 3. Mezclas frijol - maíz	72
3.3.1 Humedad, densidad aparente y compactada	72
3.3.2 Tamaño de partícula	73
3.3.3 Indice de Hausner, índice de Carr y ángulo de reposo	75
3.3.4 Función de flujo	76
3.4 Objetivo 4. Mezclas frijol-trigo	78
3.4.1 Humedad, densidad aparente y compactada	78
3.4.2 Tamaño de partícula	79
3.4.3 Indice de Hausner, índice de Carr y ángulo de reposo	81
3.4.4 Función de flujo	82
Conclusiones	84
Bibliografía	86

Índice de figuras	
Figura 1. Formas de las partículas de polvo	9
Figura 2. Poros abiertos y cerrados	10
Figura 3. Diagrama esquemático de puentes líquidos.	15
Figura 4. Angulo de reposo	21
Figura 5. Angulo de reposo estático	22
Figura 6. Ángulo de reposo. a) drenado y b) derramado	23
Figura 7. Cono irregular a) y cono definido b)	24
Figura 8. Celda de cizalla	25
Figura 9. Prueba de compresión uniaxial	26
Figura 10. Densidad aparente ρb y esfuerzo no confinado σc	29
Figura 11. Función de flujo a diferentes tiempos de consolidación	29
Figura 12. Dispositivo para medición de esfuerzo de cedencia no confinado	30
Figura 13. Termobalanza OHAUS MB45	49
Figura 14. Medida de la densidad aparente y compactada	50
Figura 15. Agitador de tamices	52
Figura 16. Tamiz	52
Figura 17. Dimensiones del flujómetro	53
Figura 18. Disco del flujómetro con orificios para el paso del material	53
Figura 19. Material pasando a través del flujómetro	54
Figura 20. Medidor de ángulo de reposo	55
Figura 21. Medición del ángulo de reposo	55
Figura 22. Vista superior de la matriz para confinación del polvo	56
Figura 23. Celda para compresión de polvos	56
Figura 24. Formación de compactados	57
Figura 25. Compresión del compactado fuera de la matriz	58
Figura 26. Ruptura del compactado	58
Figura 27. Gráfica de esfuerzo de cedencia en función de esfuerzo de	59

Figura 28. Gráfica de distribución de tamaño para las harinas solas	63
Figura 29. Gráfica comparativa del acumulado que pasa para cada una de las	60
harinas	63
Figura 30. Gráfica de esfuerzo de cedencia en función del esfuerzo de	67
compactación para harinas solas	67
Figura 31. Gráfica de distribución de tamaño para las mezclas de maíz-trigo	69
Figura 32. Gráfica comparativa del acumulado que pasa para las mezclas de	00
harinas maíz - trigo	69
Figura 33. Gráfica de esfuerzo de cedencia en función del esfuerzo de	70
compactación para mezclas de harina de maíz - trigo	72
Figura 34. Gráfica de distribución de tamaño para las mezclas de frijol – maíz	74
Figura 35. Gráfica comparativa del acumulado que pasa para las mezclas de	7.4
harinas frijol – maíz	74
Figura 36. Gráfica de esfuerzo de cedencia en función del esfuerzo de	77
compactación para mezclas de harina de frijol - maíz y maíz sola	77
Figura 37. Gráfica de esfuerzo de cedencia en función del esfuerzo de	77
compactación para mezclas de harina de frijol - maíz	77
Figura 38. Gráfica de distribución de tamaño para las mezclas de frijol - trigo	80
Figura 39. Gráfica comparativa del acumulado que pasa para las mezclas de	00
harinas frijol – trigo	80
Figura 40. Gráfica de esfuerzo de cedencia en función del esfuerzo de	00
compactación para mezclas de harina de frijol - trigo y trigo sola	82
Figura 41. Gráfica de esfuerzo de cedencia en función del esfuerzo de	00
compactación para mezclas de harina de frijol – trigo	83

ndice de cuadros		
Cuadro 1. Factores que afectan las propiedades de flujo de los polvos	5	
Cuadro 2. Clasificación del tipo de polvo según la malla por la que pasa	6	
Cuadro 3. Principios de medida de tamaño de partícula	7	
Cuadro 4. Intervalos aproximados de tamaños medios de algunos polvos	8	
alimenticios comunes		
Cuadro 5. Densidades reales de polvos alimenticios comunes	12	
Cuadro 6. Contenido de humedad y cohesión de distintos polvos alimenticios	15	
Cuadro 7. Clasificación del flujo de polvos de acuerdo a su porcentaje de	20	
compresibilidad	20	
Cuadro 8. Clasificación de la fluidez de acuerdo al índice de Hausner	20	
Cuadro 9. Ángulo de reposo de alimentos granulados.	21	
Cuadro 10. Ángulo de reposo de algunos polvos alimenticios	23	
Cuadro 11. Cuadro de datos de propiedades físicas y de fluidez reportados para	32	
harina de maíz y trigo	32	
Cuadro 12. Ejemplos de estudios realizados en polvos alimenticios	33	
Cuadro 13. Propiedades físicas y de fluidez de algunos polvos alimenticios	36	
Cuadro 14. Clasificación de Harinas	40	
Cuadro 15. Tabla de datos necesarios para obtener diámetro promedio. ¡Error!	F.4	
Marcador no definido.	51	
Cuadro 16. Variables dependientes, independientes y de respuesta utilizadas	00	
durante la experimentación	60	
Cuadro 17. Humedad, densidad aparente y compactada para harinas solas	61	
Cuadro 18. Valores del diámetro Sauter medio para harinas solas	64	
Cuadro 19. Índice de Hausner, índice de Carr y ángulo de reposo para harinas		
solas	65	
Cuadro 20. Velocidad de flujo de harina de frijol	66	

Cuadro 21. Función de flujo para harinas solas	67
Cuadro 22. Humedad, densidad aparente y compactada para mezclas de harina	68
de maíz y trigo	00
Cuadro 23. Diámetro Sauter medio para mezclas de harina maíz – trigo	70
Cuadro 24. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de	71
harina de maíz – trigo ¡Error! Marcador no definido.	/ 1
Cuadro 25. Función de flujo para mezclas de harina maíz – trigo	72
Cuadro 26. Humedad, densidad aparente y compactada para mezclas de harina	73
frijol – maíz	73
Cuadro 27. Diámetro Sauter medio para mezclas de harina frijol - maíz	75
Cuadro 28. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de	76
harina de frijol – maíz	70
Cuadro 29. Función de flujo para mezclas de harina frijol - maíz	78
Cuadro 30. Humedad, densidad aparente y compactada para mezclas de harina	79
de frijol - trigo	19
Cuadro 31. Diámetro Sauter medio para mezclas de harina frijol - trigo	81
Cuadro 32. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de	81
harina de frijol–trigo	ΟI
Cuadro 33. Función de flujo para mezclas de harina frijol - trigo	83

Resumen

En la industria de elaboración de botanas fritas u horneadas a base de harinas, se utilizan comúnmente harinas de maíz, frijol, trigo, así como almidones, entre otros. La fluidez de las harinas solas y en mezcla, es determinante en las diferentes operaciones del proceso como mezclado, dosificación y transporte. La fluidez de las harinas está relacionada con sus propiedades como humedad, densidad, distribución de tamaño de partícula, entre otras.

Para la realización de este trabajo se efectuaron pruebas físicas y de fluidez a harinas de trigo, maíz y frijol solas y en mezcla a 3 diferentes porcentajes (30-70%, 50-50%, 70-30%); así mismo se evaluó un almidón de maíz ceroso entrecruzado, por ser un ingrediente muy común en la elaboración de botanas fritas u horneadas. Los materiales se mantuvieron almacenados en botes de plástico y antes de cada prueba se rodaron veinte veces ida y vuelta a una distancia aproximada de 40 cm para disminuir el apelmazamiento y partir siempre de un polvo en el mismo estado. A las harinas solas y en mezcla se les realizaron las siguientes pruebas: humedad por termobalanza, densidad aparente, global y compactada (probeta graduada de 100 ml); distribución de tamaño de partícula por tamizado; velocidad de flujo (Flujómetro marca DIDACTA); índice de Carr e índice de Hausner (con los valores obtenidos de densidad aparente, global y compactada), ángulo de reposo (medidor de ángulo) (Schulze, 2008) y función de flujo (Texturómetro Stable Micro System modelo TA - XT2i), por medio de la medición del esfuerzo de cedencia en muestras compactadas a diferentes esfuerzos de compresión (Polizzi y col, 2011). Se realizó un análisis de varianza, para establecer si existe diferencia significativa entre cada una de las harinas y las mezclas. La harina de trigo, al tener mayor contenido de humedad y tamaño de partícula más pequeño, presentó baja fluidez, con valores más elevados de ángulo de reposo y de los índices de Hausner y Carr así como menor función de flujo. En el caso de la harina de frijol, el menor porcentaje de humedad y una distribución de tamaño de partícula amplia, en conjunto con sus demás características

(menores índices de Hausner y Carr, menor ángulo de reposo), facilitaron la fluidez, pues fue a la única harina a la que se le pudo evaluar la velocidad de flujo en el flujómetro sin que éste se taponara; debido a su alta fluidez, no se pudo evaluar la función de flujo ya que sus compactados cedían por la fuerza de gravedad. La harina de maíz presentó propiedades intermedias entre las de trigo y frijol. El almidón en cuanto a índice de Carr, índice de Hausner, humedad y ángulo de reposo dió un comportamiento entre el trigo y el maíz pero presentó una función de flujo más baja lo cual indica que se compacta más fácilmente.

Se pudo observar en las mezclas la influencia de cada harina, como el caso de las harinas de trigo y maíz que al ser mezcladas con la de frijol permitían formar los compactados para obtener el esfuerzo de cedencia y con este la función de flujo y por otro lado, impedían la medición de la velocidad de flujo en el flujómetro. Así mismo, en las mezclas de harinas de trigo con frijol se pudo observar que entre mayor porcentaje de harina de frijol, los valores de humedad, ángulo de reposo e índices de Hausner y Carr disminuían indicando mayor fluidez. En las mezclas maíz trigo se pudo observar que hasta que se agrega 70 % de harina de trigo a la de maíz se observa un incremento en los índices de Hausner y Carr mientras que en la función de flujo de la harina de maíz disminuye al mezclarse en 50% con harina de trigo. La adición de almidón a la mezcla frijol maíz 50-50% en cuanto a índice de Carr, Hausner y ángulo de reposo no hubo influencia al agregarlo pero disminuyó la función de flujo considerablemente, haciendo la mezcla más susceptible a compactarse bajo presión.

Introducción

Actualmente en la industria de alimentos la mayor parte de los ingredientes se manejan en forma de polvo, que pueden constituir el producto final o ser parte de los ingredientes para elaborar otros productos.

Los polvos son grupos de partículas individuales que forman una masa y están en combinación con el aire (Fernández, 2009). Una adecuada fluidez de los polvos es fundamental en operaciones de pesado, dosificación, mezclado y transporte para evitar problemas de apelmazamiento, flujo discontinuo y segregación. La fluidez se ve afectada por las propiedades físicas de los polvos como el tamaño y forma de partícula, densidad, humedad, composición, fuerzas de interacción de las partículas, angulosidad, textura superficial y porosidad (Ortega, 2006). Otro factor importante que influye en la fluidez de los polvos son los puentes líquidos, éstos se forman debido a la adhesión entre dos superficies y la cohesión entre superficies similares en materiales en polvo; los puentes líquidos mantienen las partículas sólidas juntas provocando la formación de aglomerados que dificultan la fluidez (Adhikari y col., 2001; Freeman, 2013).

Harinas como la de trigo, maíz y frijol son ampliamente empleadas en la elaboración de botanas fritas u horneadas, pueden ser utilizadas individualmente o en mezcla, y por sus características físicas (tamaño de partícula pequeño, cohesión, densidad, humedad) pueden ocasionar problemas de fluidez durante el procesamiento; además es frecuente adicionar almidones a las botanas a base de cereales con la finalidad de mejorar su apariencia y textura (*K*ent, 1987; Francisco 2014). La fluidez de las harinas puede ser medida mediante distintos métodos como velocidad de flujo, índice de Carr, índice de Hausner, ángulo de reposo, función de flujo, entre otros, aunque se debe tener en cuenta que estos métodos no son absolutos por lo que los resultados obtenidos dependerán de las condiciones a las cuales se realicen las pruebas y del acondicionamiento del polvo (USP-NF 24, 2005). Sin embargo, hay muy poca información disponible sobre las propiedades físicas y de fluidez de harinas solas o en mezcla. Las medidas de la fluidez sirven de guía sobre cuales materiales auxiliares se pueden utilizar para

mejorar el flujo y también para tomar medidas para que el flujo de los polvos sea el óptimo (Fitzpatrick, 2004).

En el presente trabajo se evaluarán propiedades físicas y de fluidez de harinas de trigo, maíz y frijol con la finalidad de conocer su comportamiento individual y como éste se modifica al mezclarlos en diferentes proporciones, así mismo se evaluarán las propiedades físicas y de fluidez del almidón de maíz ceroso entrecruzado y pregelatinizado sólo y en una mezcla de harinas maíz-frijol 50-50% ya que es común la adición de almidones en botanas fritas, generando información que ayude a prever problemas de flujo, seleccionar los equipos y condiciones adecuados para su manejo durante las operaciones de proceso y almacenamiento.

1. Antecedentes

1.1 Propiedades fisicoquímicas de los polvos

Se puede definir un polvo como una masa de partículas sólidas o gránulos, éstas partículas suelen estar rodeados de aire (u otro fluido) y es la combinación de sólidos más fluido la que determina en gran medida las propiedades a granel del polvo.

Los polvos son probablemente el menos predecible de todos los materiales en relación con su fluidez, debido a la gran cantidad de factores que pueden cambiar sus propiedades reológicas. Las características físicas que afectan a las propiedades de flujo de las partículas, son el tamaño, forma, angulosidad, textura superficial, porosidad, dureza, fuerzas de atracción interpartícula, densidad y humedad.

Entre los factores externos más comunes que afectan la fluidez, están la humedad, el medio ambiente, el transporte y las vibraciones. En el Cuadro 1 se resumen las variables que afectan las propiedades de flujo de los polvos (Freeman, 2013).

Cuadro 1. Factores que afectan las propiedades de flujo de los polvos

Características de los polvos	Factores externos	
Tamaño de partículas	Caudal	
Distribución del tamaño	Condición de compactación	
Forma	Vibración	
Textura de la superficie	Temperatura	
Cohesividad	Humedad	
Recubrimiento de la superficie	Carga electro-estática	
Interacción de partículas	Aireación	
Desgaste o características de desgaste	Tiempo de almacenamiento	
Propensión a la carga electro-estática	Efecto de la superficie de los contenedores	
Dureza de las partículas		
Rigidez de las partículas		
Resistencia a la fractura de las partículas		
P 5 1. 5 G 1 G 6	(F 0010	

(Freeman, 2013)

Los polvos son a menudo inestables en relación con su flujo. Esta inestabilidad se hace más evidente cuando un material que fluye libremente deja de fluir, esta

transición puede ser iniciada por la adherencia a las superficies o por cualquier otro evento que pueda promover la compactación del polvo. La tendencia a modificar esta propiedad no sólo puede variar de un polvo a otro, sino que incluso puede ser pronunciada entre lotes del mismo material (Freeman, 2013).

1.1.1 Tamaño y distribución de tamaño de partícula

La granulometría de un polvo constituye parte fundamental de su caracterización, ya que está íntimamente ligada al comportamiento del material y/o a las propiedades físicas del producto. En la industria alimentaria se utilizan numerosos polvos como materias primas y como productos terminados. Algunas de las propiedades que se ven afectadas por la granulometría de los polvos son la capacidad de flujo y la compresibilidad. Un polvo posee una gama de tamaños, pero se requiere de un tamaño único que se utiliza para clasificarlo o categorizarlo como tal. Un tamaño promediado que se utiliza para clasificar a los polvos de acuerdo a sus grados de finura o grosor, a este tamaño se le conoce como "tamaño medio". Para que un sistema de partículas sea considerado un "polvo", su tamaño medio aproximado debe ser menor a 1 mm. Es común referirse a polvos "finos" y "gruesos", en el Cuadro 2 se presenta la clasificación de polvos gruesos a muy finos según la malla por la cual pasan (Ortega, 2006).

Cuadro 2. Clasificación del tipo de polvo según la malla por la que pasa

	Número de malla	
Tipo de polvo	Todo pasa	No más del
	por	40% pasa por
Grueso	10	44
Moderadamente	22	60
grueso		
Moderadamente fino	44	85
Fino	85	-
Muy fino	120	-

(Ortega, 2006)

Para poder analizar la distribución de tamaño de las partículas de un polvo existen diferentes métodos que dependen del tipo de material que se quiera trabajar. En el Cuadro 3 se muestra la clasificación de los métodos a utilizar según las condiciones del material y tamaño de muestra que se trabajará, el método a seleccionar depende del tamaño de partícula y la cantidad de muestra de que se dispone. En el Cuadro 4, se muestran los tamaños de partícula para diferentes materiales alimenticios.

Debe cuidarse la fiabilidad de los datos, se debe realizar un mismo acondicionamiento previo para cada muestra antes de realizar las pruebas, y asegurarse que las muestras sean representativas, adquirirlas después de someterlas a movimiento bajo condiciones estandarizadas (Fernández, 2009).

Cuadro 3. Principios de medida de tamaño de partícula

Principio y método	Rango aproximado (µm)	Tipo de diámetro	Tipo de distribución
Microscopía óptica	1-50	$X_{F,} X_{M}$	Por número
Microscopía electrónica	0.001-5	Хсн	Por número
Tamizado convencional	40-100	XA	Por masa
Tamices electroformados	5-120	X _A	Por masa
Sedimentación	2-100	X _{st}	Por masa
Centrifugación	0.05-25	X _{st}	Por masa
Fotosedimentación	2-100	X_{st} , X_f	Por superficie
Difracción laser	2-500	X _{sv}	Por volumen
Conteo electrosensible	0.5-300	X _v	Por número

(Ortega, 2006)

En general los polvos con partículas >100 µm serán no cohesivos, permeables, es probable que fluyan, tengan baja compresibilidad y relativamente baja resistencia al corte; por el contrario, los polvos finos <10 µm es probable que sean compresibles, cohesivos, con un contenido menor de aire atrapado, presenten características pobres de aireación, alta resistencia de corte (mezclado), alta energía para el flujo, baja permeabilidad y sean afectados por el proceso de consolidación cuando el aire atrapado se excluye (Freeman,2013).

Cuadro 4. Intervalos aproximados de tamaños medios de algunos polvos alimenticios comunes

Polvo	Malla (estándares británicos)	Micras
Granos de arroz y cebada	6-8	2800-2000
Azúcar granulada	30-34	500-355
Sal común	52-72	300-210
Cocoa	200-300	75-53
Azúcar pulverizada	350	45

(Ortega, 2006)

1.1.2 Forma de partícula. Las formas de los polvos alimenticios son muy diversas, incluyendo desde las más complejas (especias molidas), pasando por las cristalinas (sal y azúcar granulada), y hasta las relativamente esféricas (almidón y levadura seca). La forma de la partícula puede ser medida por microscopía. El mezclado puede alterar la forma por erosión y fragmentación produciendo partículas de forma irregular. La forma es la variable más crítica que afecta las características de flujo y el grado de empaquetamiento de las partículas. Las formas esféricas u ovaladas fluyen más fácilmente, mientras que las formas rugosas y fracturadas fluyen poco; las partículas aciculares forman un enrejado que dificultan el flujo. Los diámetros equivalentes serán tanto más diferentes entre sí cuanto más se aleje la partícula de la esfericidad. En la Figura 1 se muestran

algunas de las formas más comunes que tienen las partículas de polvos (Ortega, 2006).

Figura 1. Formas de las partículas de polvo

(Fernández, 2009).

1.1.3 Densidad

1.1.3.1 Partícula

La densidad de una partícula se define como su masa total dividida entre su volumen, se considera de gran relevancia para determinar otras propiedades como estructura y forma de las partículas. Dependiendo de cómo se mide el volumen, se pueden considerar varios tipos de densidades: la densidad real, densidad global aparente y densidad global compactada. Debido a que las partículas contienen normalmente fisuras, irregularidades o poros, tanto abiertos como cerrados, todas estas definiciones resultan diferentes (Ortega, 2006).

Los poros abiertos son accesibles debido a que tienen salida a la superficie de la partícula y pueden estar interconectados entre sí, con varias salidas hacia la superficie, con una sola salida a la superficie o pueden atravesar la partícula, mientras que los poros cerrados son inaccesibles debido a que son internos y no tienen contacto con la superficie como se muestra en la Figura 2 (Ortega, 2006).

El volumen total de una partícula (VT) está dado por la ecuación 1.

$$VT = Vm + Vpc + Vpa$$

Ecuación 1

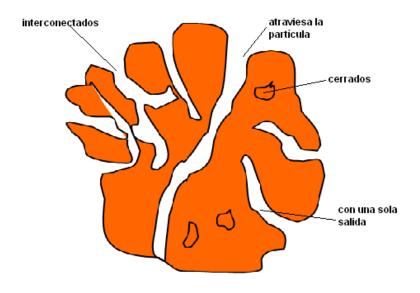


Figura 2. Poros abiertos y cerrados

(Schulze, 2008)

Donde:

VT= Volumen total

Vm= Volumen de la masa del material

Vpc= Volumen ocupado por poros cerrados

Vpa= Volumen ocupado por poros abiertos

La densidad real representa la masa de la partícula dividida por su volumen (ecuación 2) excluyendo los poros tanto abiertos como cerrados, siendo la densidad del material sólido del cual se forman las partículas.

$$Densidad \ real = \frac{M}{Vm}$$
 Ecuación 2

Donde:

M=masa

La densidad efectiva de partícula es su masa dividida entre el volumen total (ecuación 3)

$$densidad\ efectiva = \frac{M}{VT}$$
 Ecuación 3

La densidad aparente es la masa dividida entre el volumen aparente excluyendo los poros abiertos (ecuación 4)

Densidad aparente =
$$\frac{M}{Vap}$$
 Ecuación 4

$$Vap = Vm + Vpc$$
 Ecuación 5

Donde: Vap= volumen aparente

1.1.3.2. Densidad del polvo

Cuando un polvo llena un recipiente de un volumen conocido V y la masa del polvo es m, la densidad del polvo será m/V. Sin embargo, si el recipiente se expone a algún tipo de vibración o sacudida, en la mayoría de los casos se observará que el volumen del polvo se reduce dentro del recipiente, a esto se le conoce como densidad global compactada y será necesario agregar más polvo para rellenar y completar el volumen. Si la masa es ahora m', la densidad ajustada será m'/V > m/V. Este cambio de densidad ha sido causado por la influencia de la fracción volumen que dentro de un lecho de partículas es ocupado por un gas (generalmente aire). Esta fracción se denomina "porosidad del polvo" y afecta directamente las propiedades de empacado de los polvos.

El cociente de la masa (kg) dividida por un volumen (m³) constituye la densidad real. Esta densidad se puede obtener con un picnómetro de gas (Helio) y es un parámetro característico para cada tipo de material. En el cuadro 5 se muestra la densidad real de algunos polvos alimenticios.

Cuadro 5. Densidades reales de polvos alimenticios comunes

Polvo	Densidad (kg/m³)
Glucosa	1560
Sacarosa	1590
Almidón	1500
Celulosa	1270-1610
Proteína (globular)	≈1400
Grasa	900-950
Sal	2160
Acido Cítrico	1540

(Ortega 2006)

La densidad original del polvo se conoce como densidad a granel o global aparente (propiedad secundaria) y se encuentra relacionada a la porosidad y a la densidad de la partícula mientras que la densidad después de someter el polvo a vibración se le conoce como densidad global compactada (ecuación 6).

$$\rho_{ga} = \rho_p(1-\varepsilon) + \rho_a \varepsilon$$
 Ecuación 6

Donde:

 ρ_{ga} = Densidad global aparente

 ho_p = Densidad de la partícula

 ε = Porosidad

 ρ_a = Densidad del aire

Ya que ρ_a es despreciable

$$\varepsilon = \frac{\rho_p - \rho_{ga}}{\rho_p}$$
 Ecuación 7

La densidad global aparente depende fuertemente de las características de empaquetamiento. El valor de densidad global aparente del polvo depende de la

densidad real de la partícula, elasticidad, propiedades de superficie, método de medida, tamaño, distribución y forma de la partícula.

Los polvos con baja densidad global aparente y de volumen aparente alto se catalogan como polvos ligeros y viceversa (Helman, 1982).

Tanto la densidad global aparente como la compactada dependen de las condiciones en que el polvo se virtió o compactó, respectivamente, por lo que es fundamental estandarizar y controlar las condiciones de prueba para obtener resultados reproducibles (Ortega, 2006).

1.1.4 Porosidad y segregación

En un polvo, las partículas no ocupan la totalidad del volumen. Aparte de la película que las rodea (aire, gas, agua), de la eventual atracción o repulsión electrostática, la forma y textura superficial influyen para que el tipo de relleno sea tal que existan espacios vacios (poros). Los polvos tienen dispersión de tamaño de modo que las partículas más pequeñas rellenan los espacios entre las más grandes reduciendo así la porosidad; para mezclar polvos existe la necesidad de que los distintos materiales de una mezcla tengan aproximadamente el mismo tamaño, de no ser así, por los poros del lecho formado por las partículas mayores, irán cayendo las menores, produciéndose una segregación gravitacional (Helman 1982).

1.1.5 Propiedades superficiales

La cohesión entre las partículas de polvo es la tendencia de éstas a permanecer adheridas entre sí, depende en primer término de la naturaleza química del material y en segundo término del tamaño de la partícula. De manera secundaria influyen la presencia de gases y vapores, sea como película o bien como líquido aglomerante por tensión superficial (humedad), también puede ser debida a fuerzas de Van Der Waals. Bajo tal denominación se agrupan distintas fuerzas de cohesión entre las moléculas. Como son debidas a una distribución electrónica desigual entre los átomos de las moléculas y como el campo eléctrico exterior así producido varía en magnitud y dirección en función del tiempo, es que se les denomina también fuerzas electrodinámicas. Cuando estas fuerzas de Van Der

Waals actúan entre dos moléculas que son dipolos inducidos se les llama fuerzas de London. Otro tipo de fuerzas que intervienen en la cohesión son las derivadas de la fricción, fundamentalmente carga electrostática y cuando el tamaño se acerca al micrón, las fuerzas de quimiosorción, son en especial enérgicas para las partículas muy pequeñas y anisótropas que se unen así de manera firme por orientación de campo (Helman 1982).

1.1.6 Adhesividad

Mientras que la cohesión cuantifica la fuerza de las interacciones partículapartícula, la adhesividad es una medida de la propensión de las partículas a pegarse a una superficie diferente o a un material, a menudo la superficie del equipo de procesamiento. Este es un problema importante cuando se trata de procesamiento, ya que los residuos de polvo pueden dar lugar a heterogeneidad en la mezcla, por lo que requiere una limpieza más a fondo, ya que aumenta el riesgo de la contaminación entre lotes, y puede ser un importante iniciador de bloqueos (Freeman, 2013).

La adhesividad de los polvos no se conoce suficientemente bien, pero se sabe que es una propiedad de la superficie y que origina numerosos problemas industriales de almacenamiento y transporte. Un polvo untuoso puede convertirse en otro de flujo libre mediante deshidratación o desengrasado.

La harina y el almidón son ejemplos de polvos untuosos; si se extraen con éter y se deshidratan se transforman en polvos de flujo libre con baja densidad global.

La adhesividad puede también estimarse añadiendo al polvo untuoso una cantidad de arena fina suficiente para que la mezcla mantenga un flujo fijo a través de un pequeño orificio practicado en el recipiente (Muller, 1973).

1.1.7 Humedad

La humedad es un factor clave, ya que influye fuertemente en el crecimiento microbiano. Por otra parte, la mayoría de los materiales orgánicos en polvo son de naturaleza higroscópica y ganan o pierden humedad cuando se exponen a diversas condiciones. La absorción de humedad es a menudo, junto con el

aumento de la cohesión, la principal causa de la formación de puentes entre las partículas y afecta la estabilidad de los polvos. El contenido de humedad afecta por lo tanto la fuerza cohesiva como la adherencia. Incluso un pequeño cambio en el contenido de humedad puede afectar sustancialmente las propiedades de fricción (Fitzpatrick, 2004). En el cuadro 6 se presenta la cohesión de algunos polvos alimenticios.

Cuadro 6. Contenido de humedad y cohesión de distintos polvos alimenticios

Material	Contenido de	Cohesión
	humedad	(g/cm²)
Almidón de maíz	18.5	13
Gelatina	10.0	1
Jugo de toronja	2.6	10-11
deshidratado	2.0	10-11
Leche deshidratada	4.4	10
Cebolla en polvo	3.6	8-15
Harina de soya	8.0	1

(Ortega 2006)

Puentes líquidos

Los puentes líquidos se forman debido a la adhesión entre dos superficies y la cohesión entre superficies similares en materiales en polvo. La función principal de los puentes líquidos es mantener las partículas sólidas juntas. Estos puentes líquidos pueden estar divididos en dos principales grupos: móviles e inmóviles (Adhikari, 2001).

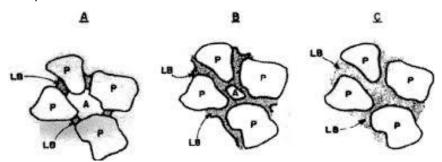


Figura 3. Diagrama esquemático de puentes líquidos. a) estado pendular; b) estado funicular; c) estado capilar. (p, partícula; LB, puente liquido; A, aire)

Puentes líquidos móviles

Los aglomerados presentes en las tortas húmedas se mantienen unidos por fuerzas procedentes de líquido móvil entre las partículas. Basado en el grado de ocupación de porosidad por el agua, estos puentes pueden subdividirse en tres grupos: pendular, funicular y capilar (Figura 3) (Adhikari, 2001).

Estado pendular

El estado pendular es aquel en el que el líquido ha ocupado sólo una parte de la porosidad total entre las partículas. En este estado el puente líquido tiene la fuerza resultante de la caída de presión desarrollada a través de la curvatura del menisco de líquido y también de la tensión interfacial ejercida por el líquido a lo largo del perímetro mojado (Adhikari, 2001).

Estado capilar

Cuando el espacio vacío entre las partículas de polvo se llena completamente por agua que se extiende hasta el borde del poro con la formación de una superficie cóncava, una presión capilar negativa se ejerce en todo el espacio para líquido, aumentando la resistencia a la tracción del aglomerado húmedo, que se conoce como un estado capilar (Adhikari, 2001).

Estado funicular

El estado funicular es la transición entre el estado pendular y el estado capilar, en este estado, el gas todavía ocupa una pequeña fracción en el continuo de agua. La resistencia a la atracción proporcionada por el agua funicular se encuentra entre las previstas en el capilar y el agua pendular (Adhikari, 2001).

Puentes líquidos inmóviles

Estos puentes líquidos se forman cuando los ligantes viscosos se introducen entre las partículas. El puente líquido inmóvil crea una gran fuerza de unión entre las partículas a través del aglomerante viscoso, y son mucho más fuertes que los

puentes líquidos móviles. El puente líquido inmóvil se puede observar en el secado por pulverización. Los materiales termoplásticos (azúcares), en o por arriba de la temperatura de transición vítrea, forman puentes líquidos inmóviles dando lugar a la formación de grumos indeseados. Este tipo de puente líquido conserva una capacidad de transformarse en puentes sólidos en el secado posterior. El mecanismo de este tipo de formación de puente es el flujo viscoso impulsado por energía superficial (Adhikari, 2001).

1.2 Propiedades de flujo y expresión de la fluidez

La fluidez es la habilidad de fluir de los sólidos granulares y polvos, el comportamiento del flujo es multidimensional en naturaleza y depende de muchas de sus características físicas. De hecho, la fluidez es la consecuencia de la combinación de las propiedades físicas de los materiales; debido a esto no hay una sola prueba que pueda cuantificar plenamente la fluidez de un producto. Las medidas de la fluidez nos sirven de guía sobre cuales materiales auxiliares se pueden utilizar para mejorar el flujo y también para tomar medidas para que el flujo de los polvos sea el óptimo, aunque se debe mencionar que la fluidez no es una medida absoluta, por lo cual, dependiendo de los diferentes métodos con que se mida, se obtendrán distintos valores (Fitzpatrick, 2004).

1.2.1 Velocidad de flujo

Es el tiempo necesario para que fluya una cantidad específica de polvo, a través de un recipiente colocado a una determinada altura.

La velocidad de flujo de un polvo es un índice directo de la fricción entre las partículas que lo componen (Mauzu y col., 2011).

La velocidad de flujo a través de un orificio se mide generalmente como la masa por unidad de tiempo, que fluye desde cualquiera de una serie de tipos de contenedores (cilindros, embudos, tolvas) (Ecuación 8).

$$Vf = \frac{masa(g)}{tiempo(s)}$$
 Ecuación 8

Métodos básicos para medir el flujo a través de un orificio

El método más común para determinar la velocidad de flujo a través de un orificio puede ser clasificado sobre la base de tres variables experimentales importantes:

- 1. El tipo de recipiente utilizado para contener el polvo. Contenedores comunes son cilindros, embudos y tolvas de los equipos de producción.
- 2. El tamaño y la forma del orificio utilizado. El diámetro del orificio y la forma son factores críticos en la determinación de la velocidad de flujo de polvo.
- 3. El método para medir la velocidad de flujo de polvo. La velocidad de flujo se puede medir de forma continua utilizando una balanza electrónica con algún tipo de dispositivo de grabación (tira, registrador gráfico, ordenador). También se puede medir en muestras discretas, por ejemplo, el tiempo que toma para que 100 g de polvo pasen a través del orificio (a la décima de segundo más cercana), o la cantidad de polvo que pasa a través del orificio en 10 segundos (a la décima más cercana de un gramo).

El flujómetro es un equipo que mide el flujo dinámico de los polvos; consiste de un recipiente que posee orificios móviles de diferentes diámetros. Para materiales cohesivos conviene utilizar los orificios con diámetros grandes; se debe tomar el tiempo (con un cronómetro) que tarda en caer una muestra bien conocida del granulado a una placa de vidrio (USP-NF 24, 2005).

Se deben mantener constantes las condiciones a las cuales se realizan las pruebas ya que la velocidad de flujo se afecta por el diámetro del orificio del embudo, fricción con las paredes de éste, el tamaño de partícula del material, el estado del polvo (% de humedad, aireación) (Mauzu y col., 2011).

1.2.2 Índice de Carr

La densidad global aparente se obtiene por la relación masa-volumen y la relación entre las densidades aparentes global y compactada se conoce como el índice de Carr o de compresibilidad. Carr manifestó que entre más se compacte un polvo, más pobres serán sus propiedades de flujo. Matemáticamente se expresa por la ecuación 9

$$\%C = \frac{\left[(\rho_{gc} - \rho_{ga})x100\% \right]}{\rho_{gc}}$$

Ecuación 9

En donde:

 ρ_{gc} = densidad global compactada

 ρ_{ga} = densidad global aparente

El porcentaje de compresibilidad indirectamente suministra una idea de la cohesión, contenido de humedad, uniformidad de forma, tamaño, y área superficial del polvo.

Algunos autores sostienen que entre mayor sea la densidad global aparente, menores serán las propiedades de flujo. De esta forma, se tiene que a mayor compactación menores propiedades de flujo tiene el material. Otros autores enuncian que los materiales con buen flujo alcanzan más rápido la densidad compactada (Mauzu y col., 2011). En el cuadro 7 se muestra la clasificación del flujo de polvos según su porcentaje de compresibilidad.

1.2.3 Índice de Hausner

Existe otra expresión, la proporción o índice de Hausner que es el cociente entre la densidad global compactada respecto a la aparente, la densidad global compactada se obtiene al poner en agitación la muestra logrando que las partículas se acomoden compactando el material y entre más alto el índice de Hausner, menor será el flujo de los polvos (Mauzu y col., 2011). En el cuadro 8 se muestra la interpretación de la fluidez de los polvos según el valor del índice de Hausner, que matemáticamente se expresa por la ecuación 10

$$IH = \frac{densidad\ global\ compactada}{densidad\ global\ aparente}$$
 Ecuación 10

Rajesh, (2014) comenta que las medidas de índice de Hausner en algunos casos dan resultados de fluidez no confiables como los que se describen a continuación:

Si la fuerza de cohesión es mayor que la fuerza de golpeteo, la disposición inicial de empaquetado puede no cambiar, dando un IH pequeño que indica buena capacidad de flujo cuando en realidad la capacidad de flujo es pobre. Ejemplo: celulosa microcristalina (MCC 103)

Las partículas angulares no cohesivas pueden empacar ligeramente al principio, pero las pequeñas perturbaciones resultan en importantes re-empaquetados, dando así un IH grande, indicando escasa fluidez, cuando en realidad la capacidad de flujo es buena. Ejemplo: almidón pregelatinizado (Rajesh, 2014).

Cuadro 7. Clasificación del flujo de polvos de acuerdo a su porcentaje de compresibilidad

% Compresibilidad	Tipo de flujo
5-15	Excelente
16-18	Bueno
18-25	Regular
25-33	Pobre
33-38	Muy pobre
>40	Pésimo

(Rajesh, 2014)

Cuadro 8. Clasificación de la fluidez de acuerdo al índice de Hausner

Índice de	Fluidez
Hausner	1 luidez
1.09-1.10	Excelente
1.10-1.14	Muy buena
1.14-1.19	Buena
1.19-1.25	Regular
>1.25	Pobre

(Rajesh, 2014)

1.2.4 Ángulo de reposo

Los sólidos particulados alcanzan el reposo con una protuberancia superficial cónica. El ángulo que forma la superficie lateral del cono con la horizontal es distinto en los diferentes sólidos y se conoce como ángulo de reposo. En la figura

4 se muestra un ejemplo de la representación del ángulo de reposo que forman los materiales en polvo (Muller, 1973).

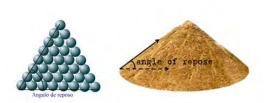


Figura 4. Angulo de reposo

Toda partícula que caiga fuera de la pendiente en cuestión se deslizará hacia abajo. En la superficie, y por debajo de ella, las partículas se encuentran en equilibrio: la atracción gravitacional se ve contrarrestada por la interacción entre las partículas; el ángulo de reposo tiene por tanto un significado similar al del valor de deformación plástica, separa dos tipos de comportamiento reológico.

En el cuadro 9 se muestran los ángulos de reposo de diversos polvos alimenticios, cabe señalar que se ven afectados por la densidad, el tamaño, la distribución por tamaños y las características superficiales de las partículas (Muller, 1973).

Cuadro 9. Ángulo de reposo de alimentos granulados.

Ángulo de reposo de alimentos granulados (°)			
Arroz	20	Azúcar granulado	35
Maíz	21	Chocolate en polvo	40
Cebada	23	Harina	45
Sal en grano	31		

(Muller, 1973)

Existen diferentes maneras de formar el ángulo de reposo (Figura 5).

Ángulo estático: Es el ángulo de la pendiente formada por el cono producido respecto al plano horizontal cuando se deja caer libremente un material desde un embudo de vidrio (Figura 5a).

Por deslizamiento o cuando el polvo contenido en un cilindro abierto, forma una pila cónica al levantar el cilindro (figura 5b). Entre menor sea el ángulo de reposo,

mayor será el flujo del material y viceversa. Este tipo de ángulo mide la capacidad de movimiento o flujo del polvo (Schulze, 2008).

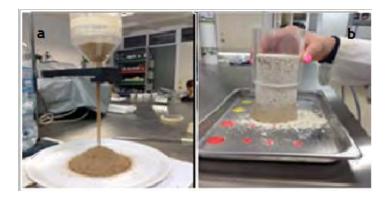


Figura 5. Angulo de reposo estático. a) flujo por caída libre b) flujo por deslizamiento

Éstos a su vez pueden ser clasificados como ángulo estático derramado o drenado.

Ángulo derramado: es el ángulo medido en la pila formada cuando el polvo se vacía libremente sobre una superficie plana (Figura 6b).

Ángulo drenado: es el ángulo medido en la superficie del polvo cónico que se deja sobre un recipiente de fondo plano (caja de petri), si el polvo se hace pasar a través de un orificio por arriba de la base del recipiente o se obtiene por deslizamiento (Figura 6a) (USP-NF 24, 2005).

Si un mismo material se examina por los dos sistemas anteriores, lo más seguro es que el ángulo derramado sea mucho mayor que el drenado.

En términos generales, el ángulo de reposo se utiliza para evaluar las propiedades de los lubricantes y para caracterizar el flujo de los granulados. En el cuadro 10 se muestra la caracterización del flujo de polvos según su ángulo de reposo (USP-NF 24, 2005).

Figura 6. Ángulo de reposo. a) drenado y b) derramado

Cuadro 10. Ángulo de reposo de algunos polvos alimenticios

Ángulo de reposo (°)	Caracterización del flujo
Mayor de 50	Sin flujo libre
30- 50	Baja fluidez
Menor de 30	Flujo fácil

(USP-NF 24, 2005)

Entre los factores que afectan el ángulo de reposo se encuentran los siguientes:

Forma. Las partículas esféricas tienen muy buen flujo, contrario a lo que sucede con las partículas que son muy irregulares, por esta razón, es de esperarse que los granulados formados por partículas lisas o esféricas presenten ángulos de reposo muy aplanados y viceversa.

Tamaño. Si se toma el tamaño independiente de la forma y densidad de la partícula, se puede esperar que las partículas con tamaños inferiores a 75 μm no fluyan debido a su alta cohesión, y que las partículas con tamaños en el rango de 250 a 2000 μm tengan muy buen flujo (USP-NF 24, 2005).

La fuerza de cohesión y de rozamiento influye considerablemente en la forma del cono especialmente en las partículas finas resultando un cono muy irregular (Figura 7a). Para disminuir esta cohesión y rozamiento, se utilizan unas sustancias llamadas lubricantes que se adicionan al granulado en cantidades muy pequeñas.

Otros mecanismos que se pueden utilizar para disminuir las fuerzas de cohesión son:

- -La eliminación en el material de toda la humedad de equilibrio superior al 5%.
- -Tamizando las partículas menores a 50 μm, siempre y cuando la proporción de éstas en el granulado no sea muy alta (USP-NF 24, 2005).

Figura 7. Cono irregular a) y cono definido b)

1.2.5 Propiedades de fluidez en celda de cizalla

En un esfuerzo por realizar el estudio de flujo de polvos y diseño de tolvas con bases fundamentales, se han desarrollado una amplia variedad de instrumentos de cizalla de polvos y los métodos que permitan una evaluación completa y precisa de las propiedades de flujo de polvo. La metodología de la celda de cizalla ha sido utilizada ampliamente en el estudio de polvos farmacéuticos. De estos métodos, se puede obtener una amplia variedad de parámetros incluyendo el espacio de cedencia, (yield locus, en idioma inglés) ángulo de fricción interna, el esfuerzo de cedencia no confinado y parámetros derivados como el factor de flujo y los índices de fluidez. Debido a la posibilidad de un control experimental más preciso, las propiedades de flujo pueden también ser determinadas como función de la carga de consolidación, el tiempo, y otras condiciones ambientales. Los

métodos han sido utilizados con éxito para determinar los parámetros críticos de la tolva y silos. Un tipo de celda de cizallamiento es la celda de corte cilíndrico que se divide horizontalmente, formando un plano de cizallamiento entre la base estacionaria inferior y la porción movible superior del anillo de la celda de cizallamiento (Figura 8). Después de la consolidación del lecho de polvo en la celda de cizallamiento (usando un procedimiento bien definido), se determina la fuerza necesaria para cizallar el lecho de polvo moviendo el anillo superior. Los diseños de celdas anulares de cizalla ofrecen algunas ventajas sobre el diseño de la celda de cizallamiento cilíndrica, incluyendo la necesidad de una menor cantidad de material. Una desventaja, sin embargo, es que debido a su diseño, el lecho de polvo no se cizalla de manera más uniforme; es decir, el material en el exterior de la corona circular se corta más que el material en la región interior. Un tercer tipo de celda de cizallamiento (de tipo placa) se compone de un sándwich delgado de polvo entre una superficie rugosa estacionaria inferior y una superficie rugosa superior que es móvil (USP-NF 24, 2005).

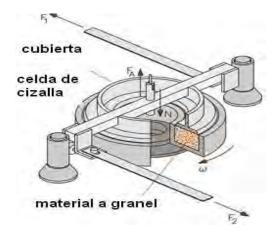


Figura 8. Celda de cizalla

1.2.6 Función de flujo por compresión uniaxial

El término "buen comportamiento al flujo" generalmente significa que un sólido a granel fluye fácilmente o sea que no se consolida mucho y fluye a través de un silo o una tolva solamente por efecto de la fuerza de gravedad y no se requieren dispositivos para promover el flujo. Los productos presentan "flujo pobre" si experimentan obstrucciones al flujo o se consolidan durante el transporte o

almacenamiento. En contraste a estas descripciones cualitativas, una descripción cuantitativa de la fluidez es posible si se utiliza un valor objetivo característico que tome en cuenta aquellas características físicas del sólido a granel que son responsables de su comportamiento de flujo.

"Fluidez" significa que un sólido a granel es deformado plásticamente debido a las cargas que actúan sobre él (por ejemplo la falla de un sólido a granel previamente consolidado). La magnitud de la carga necesaria para fluir es una medida de la fluidez. Esto puede ser demostrado con las pruebas de compresión uniaxial. La Figura 9 muestra un cilindro hueco llenado con un sólido a granel finamente dividido (el área de la sección transversal A; las paredes externas del cilindro perforado se suponen sin fricción). El sólido a granel es sometido a un esfuerzo σ1 (esfuerzo de consolidación) en la dirección vertical. Entre mayor es la reducción del volumen del sólido a granel mas compresible será (Schulze, 2008).

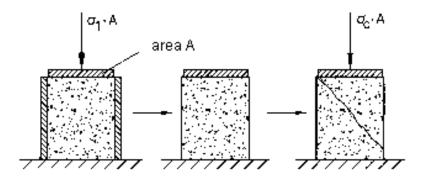


Figura 9. Prueba de compresión uniaxial

Además del aumento en la densidad debido al esfuerzo de consolidación se observa también un aumento en la fuerza del material. Por lo tanto el material ha sido tanto consolidado como comprimido por el efecto de consolidación. Después de la consolidación, el espécimen comprimido es liberado del esfuerzo de consolidación y el cilindro perforado es removido. Si posteriormente el espécimen del material a granel consolidado es sometido a un esfuerzo compresivo vertical, el espécimen se romperá (fallará) a un determinado esfuerzo. El esfuerzo que causa la falla es conocido como esfuerzo de cedencia no confinado, σ_c (o f_c).

En la tecnología de sólidos a granel se le conoce a la falla como "flujo incipiente", debido a que en la falla el espécimen del material a granel consolidado empieza a

fluir. De este modo el sólido a granel se dilata algo en la región de la superficie de la fractura, puesto que las distancias entre las partículas individuales aumenta. Por lo tanto el flujo incipiente es una deformación plástica con una disminución de la densidad a granel. Puesto que el sólido a granel falla solamente a un esfuerzo vertical suficientemente grande, debe existir un límite de cedencia específico para el material. Solamente cuando este límite de cedencia específico es alcanzado, el material empezará a fluir (Schulze, 2008).

Los límites de cedencia de muchos materiales (metales por ejemplo) son dependientes del material y se encuentran listados en tablas. Sin embargo el límite de cedencia de un sólido a granel depende también de su historia de esfuerzos o sea la previa consolidación. Entre mayor sea el esfuerzo de consolidación σ_1 mayores serán la densidad y el esfuerzo de cedencia no confinado.

Las pruebas de compresión uniaxial (Figura 9) efectuadas a diferentes esfuerzos de consolidación, dan lugar a diferentes pares de valores (σ_c , σ_1) y (ρ_b , σ_1). (ρ_b = densidad aparente, σ_1 = esfuerzo de consolidación, σ_c = límite elástico no confinado). Graficando estos pares de valores como puntos en diagramas (σ_c , σ_1) y (ρ_b , σ_1), respectivamente y dibujando en cada diagrama una curva que pase a través de estos puntos usualmente produce curvas como las del producto A en la Figura 10, en las cuales la densidad a granel y el esfuerzo de cedencia no confinado típicamente incrementan con el esfuerzo de consolidación. Rara vez un cambio progresivo de pendiente como en la parte izquierda de la curva B es observado. La curva de σ_c (σ_1) es conocida como la función de flujo. Mayor inclinación mayor consolidación del sólido y el inverso de la pendiente es conocido como la función de flujo (Schulze, 2008).

Algunos sólidos a granel aumentan en fuerza si se almacenan en reposo durante más tiempo bajo un esfuerzo de compresión constante, este efecto se llama tiempo de consolidación o apelmazamiento. El tiempo de consolidación puede ser determinado con la prueba que se muestra en la Figura 9, con el fin de simular el almacenamiento a largo plazo en un silo. Para esto, la muestra se carga con el esfuerzo de consolidación, σ_1 , no sólo por un momento corto, sino por un período

definido de tiempo t₁. A continuación, la resistencia a la fluencia no confinada se determina siguiendo el principio explicado anteriormente (Figura 9).

La Figura 11 muestra la función de flujo σ_c (σ_1) del producto A como se muestra anteriormente en la Figura 10 (la resistencia a la fluencia no confinada sin la influencia del tiempo de consolidación, para un período de almacenamiento t=0) Adicionalmente, se dibujan ejemplos de curvas σ_c (σ_1) para períodos de almacenamiento t>0 (curvas A_1 , A_2). Las curvas σ_c (σ_1) para los períodos de almacenamiento t>0 se llaman función de flujo de tiempo. Aquí cada curva surge de la conexión de varios pares de valores (σ_c , σ_1), que se midieron en períodos de almacenamiento idénticos, t, pero a diferentes tensiones de consolidación, σ_1 .

Para el ejemplo de sólidos a granel, la resistencia a la fluencia no confinada, σ_c , aumenta al extender el tiempo de almacenamiento. Este resultado es cierto para muchos sólidos a granel, pero no para todos. Hay algunos sólidos a granel los cuales al someterlos a ninguno o sólo muy leve tiempo de consolidación, σ_c no aumenta, o lo hace sólo ligeramente con la extensión de tiempo de almacenamiento, t. Otros sólidos se someten a un gran aumento de la resistencia a la fluencia no confinada después de períodos de almacenamiento de sólo unas pocas horas, mientras que después de largos períodos de almacenamiento su resistencia a la fluencia no confinado no aumenta aún más. Estas diferencias se deben a las diferentes características físicas, químicas, o efectos biológicos que son las causas de la consolidación en el tiempo, procesos químicos, cristalizaciones entre las partículas, la ampliación de las áreas de contacto a través de la deformación plástica, la condensación capilar, o procesos biológicos tales como el crecimiento de hongos (Schulze, 2008).

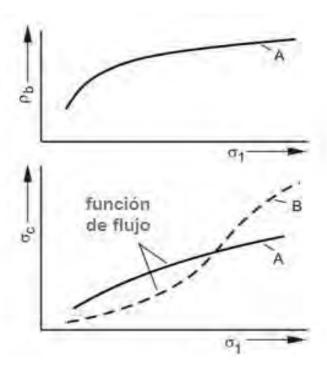


Figura 10. Densidad aparente ρ_b y esfuerzo no confinado σ_c

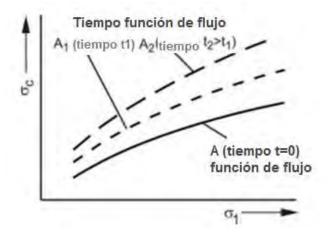


Figura 11. Función de flujo a diferentes tiempos de consolidación

Con la medida de la consolidación en el tiempo, el "efecto de intervalo de tiempo" no se puede percibir, a menos que el sólido a granel se almacene al esfuerzo de consolidación, σ_1 , exactamente por el período de tiempo durante el que a uno le gustaría obtener datos sobre la consolidación con el tiempo. Sin esa prueba, ninguna declaración cuantitativa se puede hacer con respecto a la consolidación con el tiempo.

1.2.6.1. Pruebas de esfuerzo de cedencia no confinado utilizando analizador de textura

El esfuerzo de cedencia no confinado (UYS, por sus siglas en inglés) es una medida de la fuerza requerida para causar la falla de un polvo compactado no confinado y es una herramienta útil para evaluar el comportamiento de flujo de polvos y apoyar a la industria en la comprensión de la tendencia a apelmazarse, problemas de flujo en silos (arqueo o formación de "hoyos de ratón), flujo errático, distribución heterogénea de componentes, entre otros problemas (Schulze, 2008). El esfuerzo de cedencia no confinado de polvos ligeramente consolidados se mide generalmente con la celda de cizalla, mientras que en los polvos altamente consolidados, con pruebas similares a la evaluación de dureza de tabletas. En el caso de polvos moderadamente compactados, Polizzi y col., (2011), describen un método para la medición del esfuerzo de cedencia no confinado, utilizando el texturómetro Texture Analizer TA XTPlus, utilizando un dispositivo diseñado para tal fin. El dispositivo (Figura 12) consta de una base de acrílico (a), el cuerpo principal dentro del cual se compacta el polvo (b), una base removible (c), una placa de compactación (d) y un cilindro para realizar la medición del esfuerzo de cedencia (e).

Figura 12. Dispositivo para medición de esfuerzo de cedencia no confinado

La prueba consta de dos etapas. En una primera etapa, el cuerpo principal con la base removible colocada, se llena con el polvo (alrededor de 10 g) y se compacta a un volumen fijo durante 10 s con la placa de compactación. En seguida se retira la base removible de manera que el polvo compactado queda suspendido en un soporte y el disco de polvo compactado es sometido a punción con el cilindro, midiendo la fuerza para romperlo, el cociente de la fuerza sobre el área de contacto constituye el esfuerzo de cedencia. En un estudio realizado con diferentes tipos farmacéuticos de Avicel (celulosa microcristalina) por Polizzi y col., (2011) no se encontró una buena correlación entre el esfuerzo de cedencia no confinado y propiedades como tamaño de partícula, densidad global y contenido de humedad, concluyendo que es más bien una propiedad intrínseca del polvo. El orden de clasificación de los polvos con base en el UYS fue consistente con el obtenido con base en las propiedades de flujo evaluadas en la celda de cizalla, también encontraron que cambios en la formulación incluyendo coadyuvantes como celulosa microcistalina, tuvieron efecto en el UYS de la formulación y que éste puede ser predicho con base en el UYS de los componentes individuales. Texture Technologies, marca fabricante de texturómetros para alimentos y productos farmacéuticos, distribuye el dispositivo utilizado por Polizzi y col., (Texture Technologies, 2011). La diferencia entre la medición del UYS descrita por Polizzi y col., (2011) y la obtención de la función de flujo por medio de una prueba de compresión uniaxial, antes descrita en este trabajo, radica en que en la primera, el polvo se compacta a un volumen fijo y la confinación es parcial, pues aún está restringido por las paredes laterales, mientras que en la segunda, se compacta a diferentes esfuerzos (y por lo tanto a diferentes volúmenes), de manera que se obtiene información a distintos niveles de compresión, además de que el polvo está totalmente no confinado (Schulze, 2008).

1.2.6.2. Propiedades físicas y de fluidez de polvos alimenticios

Para los polvos empleados en la industria farmacéutica, existe publicada gran cantidad de información científica, en particular sobre el desempeño de coadyuvantes de fluidez, compactación y disolución. En el caso de los polvos alimenticios, la información está muy limitada y aislada. En el Cuadro 11, se

muestran ejemplos de algunos de los trabajos realizados en polvos alimenticios. Como puede notarse, los métodos empleados para la determinación de propiedades físicas y de fluidez son muy diversos, pues éstas son medidas utilizando diferentes métodos, equipos y procedimientos. Los materiales más estudiados son harina de trigo o maíz, sal, azúcar, almidones, maltodextrinas, cocoa y en muy pocos casos, mezclas de varios ingredientes.

En el cuadro 11 se muestran algunas de las pruebas más comunes realizadas a la harina de trigo y maíz.

Cuadro 11. Cuadro de datos de propiedades físicas y de fluidez reportados para harina de maíz y trigo

Harina	Ángulo reposo (°)	Índice de Hausner	Tamaño de partícula (µm)	Función de flujo	Densidad (g/cm³)	Velocidad de flujo (s)	Referencia
Maíz	32	1.62	49	1.5	1.49	3.23	Fitzpatrick y col., 2004
Trigo	53	1.48	51	2.39	1.48		Ricks y col., 2002

Destaca entre estos trabajos, por la cantidad y diferentes características de polvos utilizados, el realizado por Ricks y col., (2002), en polvos empleados en mezclas de condimentos para recubrir alimentos. El objetivo de su estudio fue analizar la relación entre las propiedades de los polvos y la cantidad de recubrimiento que se adhiere, así como la mejora en la adhesión, la disminución de desperdicio y los polvos en el ambiente por efecto del incremento de la carga electrostática en las partículas. Midieron el tamaño de partícula por analizador lasser (Malvern Master Sizer), la carga electrostática del polvo, la cohesión y función de flujo por medio de la celda de cizalla, el ángulo de reposo estático drenado por medio de caída a través de un embudo y la densidad global no compactada con un volunómetro (AG, J. Engelsman). El Cuadro 13, muestra las propiedades de los polvos evaluados.

Cuadro 12. Ejemplos de estudios realizados en polvos alimenticios

Referencia	Objetivo	Materiales estudiados	Pruebas realizadas	Equipos y/o métodos empleados
Peleg y col., 1982	propiedades globales de un Sal, azucar, formula C		Humedad, densidad global aparente, compresibilidad, cohesión, ángulo de fricción interna, trabajo no recuperable, módulo asintótico de relajación,	Instron Universal Testing Machine, Jenike Flow Factor Tester
Barletta y Barbosa- Cánovas, 1993	Barbosa- alimentos instantáneos en		Distribución de tamaño de partícula después de diferentes intervalos de número de golpeteos	Medidor de densidad por golpeteo
Barletta y Barbosa- Cánovas, 1993b Empleo del análisis fi para determinar camb rugosidad por atrició polvos aglomerado		Café instantáneo aglomerado, leche en polvo instantánea aglomerada	Tamaño de partícula, dimensión fractal	Vibrador de tamices, análisis de imágenes
Tenou y col., 1999	Determinar la relación entre propiedades físicas y fluidez de polvos alimenticios	Harina de trigo, leche descremada parcialmente aglomerada, polvo fino de té, permeado de suero secado por aspersión	Distribución de tamaño de partícula, densidad global compactada, densidad de partícula, ángulo de reposo y de resbalado, humedad, función de flujo, punto de fusión, temperatura de transición vítrea, humedad relativa crítica de apelmazamiento	Vibrador de tamices, picnómetro de gas, método de vaciado para ángulo de reposo, estufa de desecación, celda de cizalla, calorímetro TA Instrument
Ricks y col., 2002	Determinar la relación entre las propiedades físicas y la adhesión de polvos alimenticios y su mejora por medio del incremento de la carga de la partícula	Azúcar, sal, harinas de maíz y soya, maltodextrinas, almidón, cocoa, polvo de celulosa, leche descremada	Tamaño de partícula, la carga electrostática del polvo, cohesión y función de flujo, ángulo de reposo estático drenado y densidad global no compactada	Analizador lasser (Malvern Master Sizer), celda de cizalla, velocidad de caída a través de un embudo, volunométro (AG, J. Engelsman).
Fitzpatrick y col., 2004	Determinar si las propiedades físicas de 13 polvos alimenticios, pueden relacionarse con su fluidez e investigar el efecto de las propiedades de fluidez en el diseño de tolvas utilizando la celda de Jenike	Polvo de tomate, sal, coca, harinas de maíz, trigo y soya, azúcar, almidón de maíz, té, leche descremada, maltodextrina, celulosa	Distribución de tamaño de partícula, humedad, densidad global compactada, densidad de partícula, función de flujo, ángulos de fricción interna y en la pared,	Difracción láser (Malvern Master Sizer), desecación en estufa, golpeteador mecánico Engelsman, picnómetro de gas, celda anular de cizalla

Continua Cuadro 12

Referencia	Objetivo	Materiales estudiados	Pruebas realizadas	Equipos y/o métodos empleados
Molenda y col., 2006	Comparar los resultados de propiedades de granos y harinas realizadas en dos diferentes laboratorios	Trigo, lentejas azúcar, harina de trigo	Ángulo de fricción interna, cohesión, módulo de elasticidad	Celda de cizalla, compresión uniaxial
Eduardo y Lannes, 2007 Analizar propiedades físicas y de compactación de mezclas comerciales de polvos para preparar bebidas de chocolate		13 mezclas comerciales de polvos para preparar bebidas de chocolate en Brazil	omerciales de polvos ara preparar bebidas Fuerza de compactación, densidad global, tamaño de partícula	
Cerezal y col., 2008.	Determinación de propiedades físicas, químicas y reológicas de un suplemento alimenticio a base de mezcla de harinas de quinua y lupino	Harinas solas de quinua y lupino y mezclas de estas con sal, azúcar y saborizante de pollo.	Densidad aparente y compactada, tiempo y velocidad de flujo, ángulo de reposo	Método de vaciado de embudo
Cerezal y col., 2011	Evaluar propiedades físicas y químicas de mezclas de harinas (dulce y salada) libres de gluten	Mezclas dulces y saladas de harinas y harinas solas de arroz, maíz, lupino y quinua	Humedad, densidad global aparente y compactada, ángulo de reposo, tiempo y velocidad de vaciado	Desecación es estufa, vaciado por embudo
Opalinski y col., 2012	Investigar el efecto del contenido de humedad en las propiedades de flujo de polvos alimenticios de diferente tamaño de partícula	Semolina, harina de trigo gruesa y común, harina de maíz, almidón de papa, leche entera en polvo	Humedad, tamaño de partícula, función de flujo, curvas fuerza desplazamiento a esfuerzo constante de consolidación	Secado en estufa, difracción láser (Malvern Master Sizer), Celda de cizalla Jenike
Lumay y col., 2012	Aplicar tres técnicas para caracterizar materiales granulares en tres estados: estático, quasiestático y dinámico	Harinas	Ángulo de reposo, índice de Hausner, ángulo de flujo y fluctuación de flujo (avalancha)	GranuHeap (ángulo de reposo estático drenado) GranuPaq (densidad aparente y compactada por golpeteo, GranuDrum (tambor rotatorio)
Texture Technologies, 2014	Evaluar la influencia del tamaño de partícula, humedad y densidad global aparente en el esfuerzo de cedencia de polvos, moderadamente compactados	8 tipos de Avicel (celulosa microcristalina)	Esfuerzo de cedencia no confinado de las muestras compactadas moderadamente a volumen constante	Texturómetro Stable Microsystems TA XT Plus, con dispositivo para esfuerzo de cedencia no confinado

Continua Cuadro 12

Referencia	Objetivo	Materiales estudiados	Pruebas realizadas	Equipos y/o métodos empleados
Colín y col., 2010	Estudiar el efecto del proceso, la concentración de coadyuvantes y el tipo de café sobre las propiedades físicas y mecánicas de compactados de café. Estudiar el efecto del proceso, Mezcla de café, ca y azúcar con coadyuvantes d compactación y flu		Ángulo de reposo, índice Hausner, humedad, tamaño de partícula, trabajo recuperable después de compactar, función de flujo, color de los cubos	Cilindro acrílico (ángulo de reposo estático), equipo para compactación, tamizado, texturómetro Texture Analyser, TA-XT2i, colorímetro Minolta CR300
Palacios y col., 2013	Evaluar las propiedades físicas de los ingredientes y coadyuvantes solos y su efecto sobre las propiedades físicas y texturales de las mezclas de polvos y compactados de café capuchino	Mezcla para café capuchino (café, leche, azúcar, suero de leche)	Ángulo de reposo, índice Hausner, humedad, tamaño de partícula, trabajo recuperable después de compactar, función de flujo	Termobalanza, densidad compactada y aparente por golpeteo, angulo de reposo estatico, texturómetro Texture Analyser TA-XT2i, compactador
De la Rosa y col., 2012	Evaluar el efecto del tiempo y presión de compactación y del empleo de coadyuvantes, sobre las propiedades físicas de mezclas de chiles y especias antes de compactar y compactados.	Mezcla de chiles secos en polvo y especias, sorbitol, almidón modificado	Ängulo de reposo, índice Hausner, humedad, tamaño de partícula, trabajo recuperable después de compactar, función de flujo	Compactador (diseñado y construido en laboratorio), texturómetro Texture Analyser TA-XT2i tamizado serie estándar, agitación, densidad compactada por golpeteo
Rojas y col., 2015	Evaluar el efecto de diversos coadyuvantes de fluidez y de compactación sobre las propiedades de fluidez y compactación de mezclas de polvos para preparar una bebida de chocolate a partir de los compactados.	Mezcla para preparar compactados de café moka (café, leche, suero, azúcar, cocoa, maltodextrina, sorbitol)	Ángulo de reposo, índice Hausner, humedad, tamaño de partícula, trabajo recuperable después de compactar, función de flujo	Compactador (diseñado y construido en laboratorio), texturómetro Texture Analyser TA-XT2i tamizado, agitación, densidad compactada por golpeteo, ángulo de reposo estatico

Cuadro 13. Propiedades físicas y de fluidez de algunos polvos alimenticios

Material	Tamaño partícula (µm)	Carga (%)	Índice flujo	Cohesividad (kPa)	Ángulo de reposo (grados)	Índice Hausner	Densidad partícula (g/cm³)
Sal C	98.86	0.53	5.97	0.149	37	1.2	2.20
Harina de maíz	49.36	62	1.50	0.262	61	1.62	1.49
Maltodextrina D	130.3	2.5	6.12	0.036	42	1.3	1.30
Leche descremada	43.3	24	3.77	0.039	49	1.29	1.31
Polvo de celulosa B	58.41	45	7.93	0.077	54	1.41	1.55
Maltodextrina C	82.36	7.6	18.8	0.016	43	1.23	1.41
Maltodextrina B	55.53	10	4.92	0.058	42	1.27	1.39
Azúcar pulverizada	13.73	2.8	1.91	0.207	59	1.63	1.63
Harina de trigo	51.43	3.7	2.39	0.275	53	1.48	1.48
Maltodextrina A	33.48	52	3.38	0.082	46	1.33	1.28
Sal A	5.20	7.1	1.60	0.365	46	1.47	2.21
Sal B	5.79	6.7	1.19	0.365	48	1.40	2.21
Polvo de celulosa A	35.26	86	18.7	0.041	60	1.50	1.55
Harina de soya	20.47	43	2.02	0.160	52	1.49	1.43
Cocoa	7.64	61	1.52	0.287	53	1.46	1.45
Almidón de maíz	11.90	47	2.15	0.261	64	1.50	1.51

(Ricks y col., 2002)

1.3 Lubricantes y antiaglomerantes

Existe un gran número de alimentos deshidratados: huevo, azúcar, sal, harinas, leche, vegetales, quesos, sopas y muchos otros, así como varias especias molidas y diversos aditivos, como sales de curación, saborizantes, colorantes y mezclas preparadas para diversos usos, que sí no se manejan en forma adecuada, tienden a crear aglomerados mediante la unión de muchas partículas pequeñas. Dicha aglomeración se puede presentar por someter el polvo a una alta presión, por la presión de un líquido propio, como grasa o agua, que sirve de agente ligante; por atracciones electrostáticas como consecuencia de frotamientos; por reacciones químicas entre los constituyentes y por la adsorción de la humedad del aire. Estos dos últimos mecanismos son los más importantes y comunes, y por esta razón, los polvos higroscópicos deben conservarse en empaques y embalajes adecuados así como en lugares con una baja humedad atmosférica (Multon, 1988).

Cuando los alimentos secos se humedecen, se provoca una disolución de las sales y de los azúcares superficiales alrededor de las partículas, facilitando su aglomeración; posteriormente, si llega a existir un aumento de temperatura o este producto apelmazado se almacena en una atmósfera de baja humedad, se induce

la deshidratación y las sales y los azúcares se solidifican, y crean una unión más rígida entre las partículas aglomeradas. Además de que la apariencia y la fluidez de los alimentos en estas condiciones son malas, se presentan problemas para su manejo y envasado ya que cambia su densidad aparente.

Para evitar que ésto ocurra, se utilizan los antiapelmazantes. La diferencia entre un antiapelmazaste y un antiaglomerante es que el antiapelmazante evita que el producto se haga una masa y el antiaglomerante debe anular la acción del ligante, de hecho los antiapelmazantes son siempre antiaglomerantes y recíprocamente, no hay pues modo de distinguirlos (Multon, 1988).

Un antiaglomerante será definido como un aditivo inerte nutricionalmente, incorporado con la finalidad de impedir la formación de grumos de harinas o de los aglomerados, también se les conoce como lubricantes.

Por lo anterior es importante usar los antiaglomerantes para evitar el apelmazamiento de los productos en polvo; en esta categoría destacan el dióxido de silicio (SiO₂) y todos sus derivados; el silicato de aluminio (Al₂SiO₅); el silicoaluminato de sodio, (Na₂Al₂Si₂O₈); los estearatos de calcio, (CH₃ (CH₂)₁₆COO)₂Ca y de magnesio; los almidones; el fosfato tricálcico, Ca₃ (PO₄)₂; y la celulosa microcristalina.

Los estearatos de calcio y de magnesio lubrican los polvos y reducen la fricción entre partículas, haciendo que éstas fluyan más fácilmente. El ferrocianuro de potasio actúa muy específicamente, alterando la cristalografía del cloruro de sodio; sí la sal se hidrata y después se seca, el tipo de cristal que se produce es tan frágil que se rompe de inmediato y no se crean aglomerados rígidos (Multon, 1988).

Los antiaglomerantes tienen una densidad aparente de 0.05-0.60 g/cm³, un área específica de 60-400 m²/g y un tamaño de partícula de 3 a 100 µm; esto hace que absorban líquidos sin aglomerarse en una relación de 2-3 veces su peso; generalmente se emplean en una concentración de hasta 2 %, que es suficiente para cubrir las superficies de los sólidos que se desea proteger, la cantidad de lubricante a adicionar debe ser muy controlada, ya que sí se agrega en exceso el

flujo del granulado tenderá a disminuir por que se aumentarían las fuerzas de cohesión del material (Multon, 1988).

Modo de acción. Los antiaglomerantes actúan por uno o más de los siguientes mecanismos:

- -Cubren la superficie rugosa de las partículas haciendo que se disminuya la fricción y rugosidad de éstas.
- -Aumentan la adsorción de gases y vapores de las partículas.
- -Evitan la cohesión y fricción entre las partículas al reducir las fuerzas de interacción de Van Der Walls.

Selección del lubricante. En términos generales los factores a tener en cuenta para seleccionar los lubricantes son la afinidad física y química por el polvo, grado de mezclado, proporción y contenido de humedad de los materiales.

Factor de flujo y deslizamiento. Otra de las formas para medir el flujo de los polvos es calculando el factor de flujo de éstos cuando se le adiciona una cantidad conocida de lubricante y se compara éste con el flujo natural del material (Ecuación 11).

$$factor\ de\ flujo\ y\ de\ deslizamiento = \frac{g\ (granulado+fluente)}{g\ (granulado\ sin\ fluente)}$$
 Ecuación 11

En este tipo de análisis se toman 150 g de muestra y se deja pasar en el embudo que se utiliza para el ángulo de reposo estático. A los 10 segundos se toma el peso y se obtiene el cociente del peso antes y después de la adición del lubricante escogido.

Si da >1= mejoraron las propiedades de flujo

Si da < 1= disminuyeron las propiedades de flujo (Multon, 1988).

1.4 Almacenamiento de polvos

En las industrias de alimentos existen muchos materiales que pueden deteriorarse sí son almacenados en el exterior sin protección. Los contenedores para almacenar productos son llamados generalmente silos. Los silos poseen en el fondo una tolva de descarga, la cual debe diseñarse con cuidado para lograr una descarga del producto controlada. Normalmente estos recipientes son llenados por el tope y descargados por el fondo.

Muchos polvos y partículas no fluyen uniformemente debido a sus propiedades físicas y de fluidez causando aglomeración y dificultades tales como la falta de flujo, segregación, caudales de descarga inestable, etc. (*K*ent, 1987).

El flujo de alimentos en polvo es definido como el movimiento relativo de un grupo de partículas vecinas a lo largo de la superficie de la pared de un recipiente contenedor. Para asegurar flujos continuos es importante caracterizar de forma precisa el comportamiento del flujo del polvo. Las fuerzas involucradas en el movimiento son la gravedad, la fricción, la cohesión (atracción partícula-partícula) y la adhesión (atracción partícula-pared). Las propiedades de la superficie de las partículas, la distribución en cuanto a forma y tamaño de las mismas así como la geometría del sistema, son factores que afectan el flujo de un polvo dado. Para el diseño de los silos y tolvas de descarga, es necesario conocer las propiedades de flujo de los polvos. Con el empleo de la celda de cizalla y los reómetros para polvos, se miden propiedades de los mismos que sirven de base para el diseño de tolvas y silos (cohesión, ángulo de fricción interna, ángulo de fricción en la pared) (Alvarado y Aguilera, 2001).

1.5 Controles de calidad en polvos

Dependiendo de sus orígenes, a la materia prima que llega en forma de polvo se le hacen los controles de calidad que se especifiquen. Entre los análisis más comunes se encuentran identificación (infrarrojo, ultravioleta o calorimétrico), cenizas (si el material proviene de una fuente vegetal), propiedades organolépticas, y el ensayo de pureza. Como análisis en proceso se encuentran: ángulo de reposo, índice de Carr, distribución de tamaño de partícula y humedad (Jiménez, 2014).

1.6 Harinas

Se conoce como harina al polvo fino que se obtiene del cereal molido y de otros alimentos ricos en almidón (leguminosas, tubérculos, raíces). El denominador común de las harinas vegetales es el almidón, que es un carbohidrato complejo (Barriga, 2003).

Se puede obtener harina de distintos cereales. Aunque la más habitual es harina de trigo, también se utilizan harina de centeno, cebada, avena, maíz o arroz. Existen harinas de leguminosas (garbanzos, judías) e incluso en Australia se elaboran harinas a partir de semillas de varias especies de acacias (harina de acacia). El cuadro 14 muestra una clasificación de harinas comunes (Ranken, 1993).

Cuadro 14. Clasificación de Harinas

Criterio	Tipo de harina	Ejemplos	
		Trigo, maíz, avena,	
	Cereales	arroz, centeno,	
		cebada	
Origen	Tubérculos	Рара	
	Leguminosas	Garbanzo, judías,	
	Leguminosas	soya, frijol	
	Semillas	Acacias	
	Otros	Nopal	
	Refinada	Trigo, maíz, espelta	
Refinación	Morena	Trigo, avena, centeno	
	Integral	Trigo, avena, centeno	
Tamaño de partícula	Fina	Trigo, maíz, espellta	
ramano de particula	Gruesa	Sémola	
Otros procesos del grano	Nixtamalización	Maíz	
Otros procesos del giano	Malteado	Trigo, cebada	

(Ranken, 1993)

1.6.1 Harina de trigo

La harina de trigo es el material más importante en la industria de panificación, ya que afecta la funcionalidad y las características del producto terminado. La funcionalidad es impartida principalmente por el contenido de proteína y o fuerza de gluten (Othón, 1996). Contiene entre un 65 y un 70% de almidones, pero su valor nutritivo fundamental está en su contenido de proteína: (9-14%); las más importantes son la gliadina y la gluteína. Otros componentes como la celulosa, grasas y azúcar ocupan sólo un 4%. El 98% o más de la harina deberá pasar a través de un tamiz (No. 70) de 212 micras (NMX 152-1985, 1985).

1.6.2 Harina de maiz nixtamalizado

La harina de maíz nixtamalizado se refiere al producto deshidratado que se obtiene de la molienda de los granos del maíz nixtamalizado. El proceso para la nixtamilazación se puede describir como el cocimiento del maíz en una solución alcalina elaborada con cal u óxido de calcio. El maíz se cuece en presencia de cal para lograr la remoción del pericarpio, suavizar la estructura del grano e impartir el sabor característico a los productos nixtamalizados. Una vez cocido el grano, se moltura en húmedo y se seca bajo condiciones controladas hasta remover casi toda la humedad y molerlo por segunda vez en molinos de martillo. Las partículas de masa seca son clasificadas por tamaño y mezcladas para la formulación de distintas harinas comerciales y elaborar distintos productos como tortillas, botanas, pan, etc. La harina de maíz es de consistencia suave y de fácil digestión. Además este alimento no contiene gluten, por lo que es recomendado para todas aquellas personas que son intolerantes al gluten (Othon, 1996).

Se sabe que cuando el maíz amarillo se somete a la nixtamalización pierde de 15 a 28% de su contenido de caroteno. La tiamina (vitamina B1), que en promedio está presente en el maíz en 0.7 miligramos por 100 gramos de materia seca, se reduce hasta en 60%, mientras que la riboflavina (vitamina B2) y la niacina (vitamina B3) se pierden hasta en 70 y 40% respectivamente (Paredes y col., 2009).

1.6.3 Harina de frijol

Para la obtención de la harina de frijol, éstos, son puestos a remojo durante 24 horas para después someterlos a cocción, posteriormente se dejan enfriar a temperatura ambiente y a un proceso de secado solar durante 24 horas, por último se muele en un molino de café y es tamizado en una malla del número 100 (150 µm) (Ortiz, 2006)

No hay normas específicas para la harina de frijol. Ortiz (2006), reporta la siguiente composición para la harina de frijol negro: El contenido de humedad de la harina de frijol es de 1.12%, este valor es bajo comparado con el de otras harinas como la de maíz y trigo debido a que la harina de frijol se somete a un secado solar después de la cocción; con respecto al contenido de lípidos la harina de frijol contiene 1.46 g, el contenido de carbohidratos tiene un intervalo de 50 a 60% del peso de frijoles secos.

Las leguminosas contienen una cantidad importante de proteínas por lo que la harina de frijol presentó un alto valor en proteínas, a pesar de ser sometido a un proceso de pre cocción para elaborar la harina de frijol, muchas de sus proteínas se conservan.

El alto contenido de proteínas de la harina de frijol favorece a la creación de productos con un alto valor nutritivo y así coadyuvar la alimentación de la población rural, el bajo nivel de lípidos que tiene la harina de frijol permite tener productos que pueden ser recomendados para personas con diabetes (Ortiz, 2006).

1.7 Almacenamiento de la harina

Comercialmente, la harina se almacena en sacos o en recipientes a granel. Los sacos se apilan con frecuencia en varios pisos de altura. La harina almacenada está expuesta a los mismos peligros que el trigo, a saber: infección por hongos y bacterias y ataques de los insectos, también por oxidación se produce un enranciamiento y el deterioro de la calidad panadera.

El contenido óptimo de humedad de la harina para su almacenamiento, debe interpretarse en relación con la duración prevista con la temperatura y humedad

relativa del ambiente, recordando que la harina ganará o cederá humedad al aire ambiente a menos que se envase en condiciones herméticas (*K*ent, 1987).

1.8 Control de la calidad de la harina

Una vez obtenida la harina se deben guardar una serie de normas para su correcta conservación.

- Vigilar la humedad de la zona: éste es el mayor peligro, la humedad hace que se altere el gluten y el almidón, que la harina fermente y se endurezca y deteriora el flujo
- Tener cuidado con las plagas, larvas, gusanos, cucarachas, etc. Para ello siempre hay que conservar la harina metida en sacos, no muy juntos y sobre tarimas de madera.
- Al aumentar la temperatura, hay que ventilar las harinas, cambiándolas de lugar, el calor favorece el enranciamiento de las grasas, formándose ácidos grasos libres de cadena corta responsable del mal olor y sabor (Kent, 1987).

1.9 Empleo de harinas en la elaboración de botanas

Además de su principal uso en la elaboración de productos de panificación, las harinas son ampliamente utilizadas en la elaboración de botanas fritas u horneadas, en particular las elaboradas a base de trigo y maíz en sus muy diversas presentaciones (churritos, fritos, doritos, chetos, totopos).

Generalmente las botanas fritas a base de harinas son elaboradas por extrusión y en este caso es común adicionar almidones que ayudan a mejorar la textura final de la botana.

A pesar de que las botanas son altamente populares, debido a su alto contenido de sal y grasa, los fabricantes han tenido que luchar durante un largo tiempo con la imagen de "alimentos chatarra", aunque el término sea algo injusto, ya que es utilizado para identificar a aquellos productos con alto contenido de carbohidratos simples o azúcares refinados, ricos en grasas y con cantidades elevadas de sodio. Además, las botanas pueden ser rediseñadas para ser nutritivas, conteniendo

micronutrientes, fitoquímicos y vitaminas antioxidantes, ingredientes que los hacen atractivos al consumidor, reuniendo los requerimientos de regulación. También se pueden elaborar algunas mezclas de granos con frutas, vegetales y algunos extractos y concentrados para la elaboración de productos que posean un alto valor nutricional, otra forma de mejorar el valor nutritivo de las botanas de cereales es agregando harinas con mayor contenido de proteínas como las de leguminosas (Amador, 2011).

Además es frecuente adicionar almidones a las botanas a base de cereales con la finalidad de mejorar su apariencia y textura (*K*ent, 1987). Francisco (2014), agregó almidón de maíz céreo entrecruzado pregelatinizado en botanas fritas a base de maíz-frijol en proporción 50-50, la concentración con 15% de almidón proporcionó cohesión a la masa, permitiendo el freído de las botanas y proporcionándole las propiedades físicas y texturales más favorables.

1.10 Almidón

Es un polisacárido de glucosa, insoluble en agua fría, pero aumentando la temperatura experimenta un ligero hinchamiento de sus granulos (Badui, 2006).

El almidón nativo obtenido a partir del proceso de molienda húmeda es industrialmente transformado por procesos fisicoquímicos en los llamados almidones modificados.

Los gránulos de almidón de maíz, incluso los de una misma fuente, tienen formas diferentes: unas son casi esféricas, otras angulares y otras en forma de diente. Los de trigo son de forma lenticular, y tiene una distribución de tamaños bi- o trimodales (>14 μ m, 5-14 μ m, 1-5 μ m). Los de arroz, como medida, son los más pequeños de todos los almidones comerciales (1,5-9 μ m), aunque es cierto que los más pequeños de los de trigo son casi del mismo tamaño (Fennema, 2000).

El almidón está constituido por dos tipos de cadenas una cadena lineal (amilosa) y una ramificada (amilopectina) cuyo contenido varía dependiendo del origen del almidón, pero generalmente predomina la amilopectina (≈ 70% en promedio).

1.10.1 Almidones modificados

A diferencia del almidón nativo, los modificados tienen propiedades funcionales específicas para aplicaciones especiales como estabilizantes en productos congelados, base para empanizados, agentes espesantes en la industria de enlatados y como adhesivos o pegamentos (Othon, 1996). Sirven para mejorar la textura, impartir viscosidad, ligar agua, proveer cohesión, y mantener la tolerancia al proceso necesaria y requerida para la manufactura. Los almidones alimenticios modificados son usados para proveer la calidad que el consumidor demanda con la vida útil necesaria para llevar el alimento al mercado.

Algunos alimentos en donde pueden encontrarse los almidones modificados son los batidos y repostería, dulcería, rellenos, saborizados, bebidas, salsas y espesantes, sopas, glaseados, carnes, alimentos para mascotas, alimentos snacks, coberturas para ensaladas, derivados lácteos, etc. (Ellis y col.,1998).

En la elaboración de botanas se utilizan almidones especiales para expandir y dar características crujientes a productos extruídos, horneados y fritos, otros funcionan como adherentes de condimentos y sazonadores para botanas. Para botanas como cacahuate japonés se utilizan almidones especiales que ayudan a expandir la cubierta otorgando una comestibilidad ideal y mejora la crujencia, para productos extruídos, el almidón proporciona uniformidad en la superficie del producto terminado, controla la expansión y la textura, en botanas sazonadas se utilizan almidones que ayudan a sustituir gomas para proporcionar un recubrimiento crujiente y brillante para fijar aderezos y sabores (Quiminet, 2008).

Almidón de maíz cereo pregelatinizado

Estos almidones solubles en frío, espesan cuando se añade agua fría o templada, proporcionando una excelente textura a alimentos procesados en frío o instantáneos. Se utiliza un proceso de pregelatinización especializado que consiste en gelatinizar el almidón natural, se calienta hasta formar la pasta y luego se procede a secarlo hasta conseguir un polvo fino, haciendo pasar la pasta

con agua entre rodillos calientes. Este proceso permite que la estructura granular del almidón se mantenga. Los almidones pregelatinizados conservan la textura de los almidones tradicionales cocidos y muestran una reducida tendencia a formar grumos (Stute, 1992). El almidón de maíz cereo es aquel que contiene muy poca cantidad de amilosa, alrededor de 1%, los normales contienen entre 18% - 30% de amilosa y los altos en amilosa que contienen 70% o más de este polímero (Cheftel, 1976).

2. Materiales y métodos

2.1 Objetivo general

Evaluar el comportamiento de harinas de trigo, maíz y frijol solas y en mezcla, así como almidón, mediante pruebas físicas y de fluidez generando información que contribuya a prever problemas de flujo durante el proceso y almacenamiento de los polvos comúnmente empleados en la industria de la elaboración de botanas fritas u horneadas.

2.2 Objetivos particulares

- 1.- Determinar las propiedades físicas (tamaño de partícula, humedad, densidad aparente y compactada) y de fluidez (ángulo de reposo, índices de Hausner y Carr, velocidad de flujo y función de flujo) de harina de trigo, maíz y frijol solas para conocer su comportamiento durante el proceso y almacenamiento.
- 2.- Evaluar el efecto de la mezcla de harina de trigo y maíz (50-50%, 70-30%, 30-70%) sobre las propiedades físicas (tamaño de partícula, humedad, densidad aparente y compactada) y de fluidez (ángulo de reposo, índices de Hausner y Carr, velocidad de flujo y función de flujo) para conocer su comportamiento durante el proceso y almacenamiento.
- 3.- Evaluar el efecto de la mezcla de harinas de maíz y frijol (50-50%, 70-30%, 30-70%) y la adición de 15% de almidón a la mezcla (50-50%) sobre las propiedades físicas (tamaño de partícula, humedad, densidad aparente y compactada) y de fluidez (ángulo de reposo, índices de Hausner y Carr, velocidad de flujo y función de flujo) para conocer el comportamiento durante su proceso y almacenamiento.
- 4.- Evaluar el efecto de la mezcla de harina de trigo y frijol (50-50%, 70-30%, 30-70%) sobre las propiedades físicas (tamaño de partícula, humedad, densidad aparente y compactada) y de fluidez (ángulo de reposo, índices de Hausner y Carr, velocidad de flujo y función de flujo) para conocer su comportamiento durante el proceso y almacenamiento.

2.3 Materiales

- **2.3.1** Harina de maíz marca MASECA, masa instantánea de maíz nixtamalizado adicionada con vitaminas y restituida con minerales; envases de 1kg. Harina color amarillo.
- **2.3.2** Harina de trigo marca SELECTA, adicionada de ácido fólico, zinc y hierro, restituida con vitamina B1, B2 y B3; envases de 1kg. Harina color blanca.
- **2.3.3.** Harina de frijol marca FRIJOL AL MINUTO, frijoles cocidos deshidratados negros; ingredientes: frijol, sal yodatada, bicarbonato de sodio, envases de 400 g. Harina color café, y tendencia a la segregación.
- **2.3.4 Almidón** de maíz ceroso entre cruzado y pregelatinizado marca: NATIONAL STARCH.

2.4 Preparación de muestras

Los materiales no requirieron ninguna preparación previa a la experimentación sólo se prepararon las mezclas en los casos necesarios añadiendo la cantidad de harina necesaria con una espátula. Se mantuvieron almacenados en botes de plástico bien cerrados para evitar que ganaran o perdieran humedad y antes de cada prueba se rodaron veinte veces ida y vuelta a una distancia aproximada de 40 cm, para disminuir el apelmazamiento y homogeneizar la muestra, en particular en el caso de la harina de frijol cuyo tamaño de partícula fue muy heterogéneo a la vista.

2.5 Métodos

2.5.1 Humedad

Se utilizó la termobalanza marca Ohaus, modelo: MB45 (país de origen Suiza)

El analizador de humedad halógeno de Ohaus puede utilizarse para determinar el contenido de humedad de prácticamente cualquier sustancia. El equipo funciona sobre la base del principio termogravimetrico: al comienzo de la medida, el analizador de humedad determina el peso de la muestra, a continuación, la muestra se calienta rápidamente por medio de la unidad halógena desecadora y la humedad se evapora. Durante la operación de desecación, el equipo determina continuamente el peso de la muestra y presenta el resultado. Cuando la desecación termina, el resultado se muestra como % de contenido de humedad, % sólidos, o peso (Ohaus, 2001). en la Figura 13 se muestra la termobalanza marca Ohaus.

Se utilizaron 0.5 g y el perfil de desecación rápido, recomendado para muestras con un contenido de humedad entre 5 al 15%, la temperatura de desecación de 105°C con un criterio de finalización A 60 (menos de 1 mg de pérdida en 60 s). Se realizaron 3 repeticiones para cada prueba y se determinó el promedio, desviación estándar y coeficiente de variación en porcentaje.

Figura 13. Termobalanza OHAUS MB45

2.5.2 Densidad aparente, global y compactada

Densidad global aparente. Se utilizó una probeta de 100 ml, previamente pesada, se agregaron 50 ml de muestra (vi) y se pesó nuevamente para conocer el peso de la muestra (m). La densidad global aparente se calculó dividiendo la masa de la

muestra entre su volumen. En la figura 14 a) se muestra la medida de la densidad global aparente.

Densidad global compactada. La muestra en la probeta utilizada para determinar la densidad global aparente fué sometida a golpeteo levantando la probeta 50 veces a una altura de 20 cm y golpeándola sobre la mesa, de modo que las partículas se acomodaran llenando los espacios que inicialmente quedaron vacíos compactándose el material, para así medir el volumen final (vf). En la figura 14 b) se muestra la medición de la densidad de materiales en polvo por este método. Se realizaron 3 repeticiones para cada muestra, una vez obtenido el volumen final (vf) y el peso de cada muestra se calcula la densidad con las ecuaciones 12 y 13.

Densidad global aparente =
$$\frac{m}{vi}$$
 (12)

Densidad global compactada =
$$\frac{m}{vf}$$
 (13)

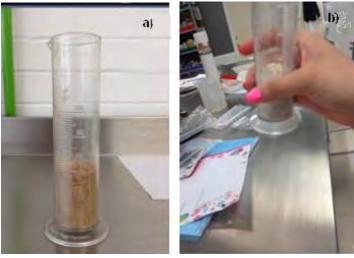


Figura 14. Medida de la densidad aparente y compactada. a) probeta llena con el material; b) golpeteo de la muestra para determinar la densidad compactada

2.5.3 Distribución de tamaño de partícula por tamizado

Se utilizó un agitador de tamices (sin marca ni modelo) y tamices de acero inoxidable de 7 cm. de diámetro. Consiste en separar partículas sólidas de acuerdo a su tamaño. Prácticamente es utilizar tamices colocados en orden decreciente de acuerdo al tamaño de la apertura de la malla (ver anexo). Es decir, las mallas de mayor apertura se encuentran en la parte superior y las más

pequeñas en la inferior. Se seleccionó previamente mediante pruebas preeliminares el número y apertura de los tamices a utilizar para cada tipo de harina. En las Figuras 15 y 16 se muestra un tamiz y los tamices acomodados en el agitador. Se utilizó una muestra de 5 g y se sometió a vibración por 10 minutos, al término de los cuales se pesó la cantidad de muestra retenida en cada tamiz, el cual fue previamente pesado sin muestra; cada uno de los tamices contenía un cubo de hule de aproximadamente 4 x 4 mm el cual evitaba la formación de aglomerados durante la vibración.

La fracción retenida en cada tamiz se calculó dividiendo la masa retenida entre la masa total inicial de la muestra (ecuación 14), se realizaron 3 repeticiones para cada muestra. Los datos se registraron en un cuadro (como se muestra en el cuadro 15) para construir las curvas de distribución de tamaño. Las ecuaciones 14 a 19 muestran la secuencia de cálculo para obtener el diámetro Sauter medio.

Cuadro 15. Tabla de datos necesarios para obtener diámetro promedio.

	Malla	Abertura	Dpi	Fracción	Fracción	Acumulado		Xi/Dpi	Diámetro
		(mm)	(mm)	retenida	pasa	pasa	retenido (%)		Sauter
						(%)			medio
ŀ									

Abertura: obtenida por tabla

ab1= abertura del tamiz

ab2 = abertura del tamiz anterior

$$fraccion retenida = \frac{g \text{ retenidos}}{g \text{ total muestra}}$$
 (14)

$$Dpi = \frac{ab1 + ab2}{2} \tag{15}$$

acumulado que pasa = 100 - acumulado retenido (16)

acumulado retenido =

$$\frac{Xi}{Dpi} = \frac{fraccion \, retenida}{diametro \, promedio} \tag{18}$$

$$diametro Sauter medio = \frac{1}{\sum (\frac{Xi}{Dpi})}$$
 (19)

Diámetro sauter medio Existe toda una distribución de tamaño de partículas, por esta razón se toma un diámetro promedio de las partículas llamado Sauter medio; éste es el diámetro de una esfera que tiene la misma relación volumen/superficie que la partícula de interés (Quezada, 2008).

Figura 15. Agitador de tamices

Figura 16. Tamiz

2.5.4 Velocidad de flujo

Se utilizó un Flujómetro marca DIDACTA (Italia) que mide la velocidad del flujo a través de una apertura de diámetro conocido, dependiendo de la capacidad de

flujo del material se puede seleccionar el diámetro de apertura. Mide directamente el tiempo necesario para que fluya una cantidad específica de polvo a través del orificio de un recipiente colocado a una determinada altura. Se deben mantener constantes las condiciones a las cuales se realizan las pruebas ya que la velocidad de flujo se afecta por el diámetro del orificio del embudo, fricción con las paredes de éste, el tamaño de partícula del material, el estado del polvo (% de humedad, aireación) y la cantidad de material. El flujómetro utilizado consiste de un recipiente de acrílico de forma cilíndrica con fondo cónico con dimensiones de 9.2 cm de diámetro, altura total de 42.8 cm, altura de la parte cónica de 18.8 cm, ángulo del cono de 45°, el cual se ilustra en la Figura 17. El recipiente está montado sobre una base que tiene una rueda de acrílico con 4 orificios con diámetros de 0.8 cm, 1 cm, 1.2 cm y 1.5 cm (Figura 18) (Muller, 1973).

Se midió el tiempo necesario para que fluyeran 220 g de muestra por cada uno de los 4 orificios, a través del cilindro colocado a una altura de 24 cm. Se tomó el tiempo (con un cronómetro) que tarda en caer todo el polvo para, con estos datos, calcular la velocidad promedio para cada una de las harinas. En la Figura 19 se muestra el funcionamiento del flujómetro al realizar una prueba con harina de frijol.

2.5.5 Índice de Carr

A partir de las densidades globales aparente y compactada se obtuvo el índice de Carr con la ecuación 9 (pág. 19)

Una vez obtenido el índice de Carr se puede interpretar el tipo de flujo del material

con el cuadro 7, (pág. 20).

Figura 18. Dimensiones del flujómetro

Figura 17. Disco del flujómetro con orificios para el paso del material

Figura 19. Material pasando a través del flujómetro

2.5.6 Índice de Hausner

Existe otra expresión que es el índice de Hausner el cual es el cociente entre la densidad global aparente respecto a la compactada, entre más alto sea éste, menor será el flujo de los polvos. Ecuación 10 (pág.19)

Después de obtener el valor del índice de Hausner podremos saber la calidad de la fluidez según el cuadro 8 (pág. 20)

2.5.7 Ángulo de reposo estático drenado.

Se utilizó un cilindro hueco de acrílico con 5.34 cm de diámetro y 8.2 cm de altura que se colocó sobre un tapón de hule de 5.7 cm de diámetro y 3 cm de altura, el cilindro se llenó al ras con el material, una vez que se ha llenado se levanta el cilindro y el material fluye dejando sobre el tapón una pila de material de forma cónica; con un localizador de ángulos (marca El águila) se midió el ángulo de la pila. Dependiendo de sus propiedades físicas se forma un ángulo el cual nos permite conocer sí las propiedades de flujo del material son buenas o pobres. En las Figuras 20 y 21 se muestra un medidor de ángulo y las etapas de la medición

del ángulo de reposo. Después de realizar 3 repeticiones para cada muestra se obtuvo el promedio para cada una y después se pudo conocer la clasificación de la fluidez de cada material de acuerdo al cuadro 10, (pág. 23).

Figura 20. Medidor de ángulo de reposo

Figura 21. Medición del ángulo de reposo. a) cilindro lleno con el polvo; b) y c) el cilindro se levanta dejando fluir el polvo; d) pila del polvo formando el ángulo de reposo; e) medición del ángulo

2.5.8 Función de flujo

La prueba tiene como finalidad medir el esfuerzo de cedencia de compactados de harinas formados a diferentes esfuerzos de compresión y se hizo por medio de la medición del esfuerzo de cedencia no confinado.

Se utilizó el Texturómetro Stable Micro System modelo TA - XT2i (Inglaterra) con la celda de 50 kg y la matriz y punzón para compactar.

La matriz para confinación del polvo consta de un cubo de fierro de 8.9 x 8.9 cm y 5.3 cm de altura, con un hueco central en forma de prisma cuadrangular de 2.0 x 2.0 cm y 5.3 cm de altura (Figura 22). Cuenta con un tornillo que permite abrirla lateralmente. El punzón es un prisma cuadrangular de 2.0 x 2.0 cm y 5.5 cm. de altura. La base desmontable es un prisma rectangular de 2.0 x 2.0 cm y 0.8 cm de altura como se ilustra en la Figura 23.

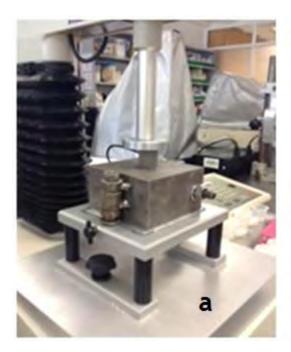


Figura 22. Vista superior de la matriz para confinación del polvo

Figura 23. Celda para compresión de polvos a) Matriz, b) Punzón, c) Base

La prueba consta de dos etapas; en la primera, se forman los compactados en la matriz como se ilustra en la Figura 24a.

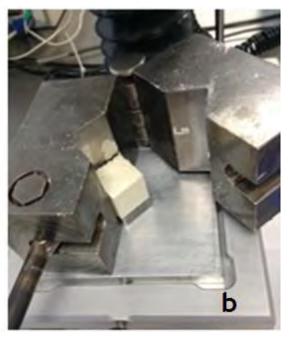


Figura 24. Formación de compactados. a) Compactación del polvo b) apertura de la matriz para dejar libre el compactado

En la segunda etapa, se abre la matriz y se retira para dejar libre el compactado (figura 24b) y se determina el esfuerzo de cedencia como se muestra en las Figuras 25 y 26.

Las condiciones de prueba utilizadas en las dos etapas se describen a continuación:

Etapa1.- Formación de compactados.

Se adicionaron 5 g de muestra en la matriz y se colocó el punzón.

Con una placa de 4.8 cm de diámetro se empujó el punzón y se formaron compactados a diferentes fuerzas de 100 a 500 N a una velocidad de 2 mm/s, manteniendo las fuerzas durante 10 s y se retiró la fuerza.

Etapa 2.- Determinación de fuerzas de cedencia. Los compactados se comprimen con la placa a una distancia de 10 mm y velocidad de 2 mm/s. De la curva fuerza –

distancia se calcularon la fuerza de cedencia (fuerza máxima) y la distancia de cedencia (distancia a la fuerza máxima). Para cada fuerza se realizaron 3 repeticiones.

Para la construcción de la función de flujo se calcularon los esfuerzos de compresión y cedencia, dividiendo las fuerzas correspondientes entre el área sobre la cual actúan (0.0044 m²). Se construyó una grafica de esfuerzo de cedencia en función del esfuerzo de compresión, se ajustó a una línea recta y del inverso de la pendiente se calculó la función de flujo (Figura 27) (Casas, 2014).

Figura 25. Compresión del compactado fuera de la matriz

Figura 26. Ruptura del compactado

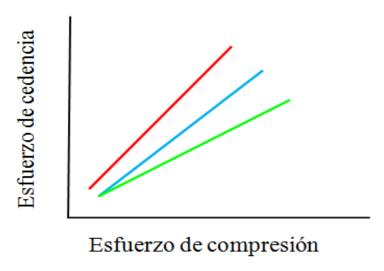


Figura 27. Gráfica de esfuerzo de cedencia en función de esfuerzo de compresión

2.6 Variables utilizadas durante la experimentación

En el cuadro 16 se muestran las variables independientes, dependientes y de respuesta para cada una de las harinas y sus mezclas así como la técnica o instrumento de medición.

2.7 Tratamiento de datos

Se realizó para cada objetivo un análisis estadístico ANOVA para determinar si hay diferencia significativa entre las harinas y cada una de las mezclas.

El objetivo principal de muchos experimentos consiste en determinar el efecto sobre alguna variable dependiente, Y, tienen distintos niveles de algún factor, X, (variable independiente y discreta). El factor puede ser la temperatura, la empresa que ha producido el bien, el día de la semana, etc. Esencialmente, el diseño para el análisis simple de la varianza consistirá en obtener muestras aleatorias e independientes del valor de Y asociado a cada uno de los distintos niveles del factor X1, X2,..., Xn. Entonces podremos determinar si los diferentes niveles del factor tienen un efecto significativo sobre el valor de la variable dependiente, (Terrádez, 2010). En caso de que el análisis de varianza indique que la variable X tiene efecto significativo sobre la variable dependiente Y, se aplicará la prueba de

Tukey de comparación de medias para determinar que niveles de X producen diferencia significativa.

El cuadro 16 resume las variables dependientes, independientes y de respuesta.

Cuadro 16. Variables dependientes, independientes y de respuesta utilizadas durante la experimentación

Variable independiente	Nivel de variación	Repetición o replica	Variable dependiente	Variable de respuesta	Técnica o instrumento de medición
Tipo de harina	Maíz Frijol Trigo	3	Cantidad retenida en cada tamiz	Distribución de tamaño de partícula,	Tamizado
Concentración de harina (trigo-maíz)	30-70 50-50 70-30	3	Eliminación de agua por calentamiento	Humedad	Termobalanza
Concentración de harina (maíz- frijol)	30-70 50-50 70-30	3	Volumen de una masa de 50ml de muestra antes y después de la compactación	Densidad global, aparente y compactada Índice de Hausner Índice de Carr	Probeta 100 ml Balanza analitica
			Masa de polvo por tiempo	flujo	Flujómetro
Concentración de harina (trigo-frijol)	30-70 50-50 70-30	3	Caída del polvo	Ángulo de reposo	Medidor de ángulo
Adición de almidón a la mezcla (maíz-frijol) 50-50%	15%	3	Fuerza de cadencia a diferentes esfuerzos de compactación	Función de flujo Densidad aparente Densidad compactada	Compresión uniaxial en Texturómetro

3. Resultados

3.1 Objetivo 1. Harinas solas

3.1.1 Humedad, densidad aparente y compactada

Como se puede observar en el cuadro 17 la harina que presentó un mayor contenido de humedad fué la de trigo y la menor la de frijol, ésto nos permite saber que la harina de trigo podría tener más problemas de fluidez ya que la humedad es uno de los principales factores que afecta la fluidez de los materiales en polvo, también se puede observar que la harina de frijol presenta menor diferencia entre la densidad aparente y compactada y el trigo es en donde hay mayor diferencia entre éstas, lo cual también es un indicador de que presentará problemas de fluidez ya que entre más se compacte un material su capacidad de flujo será menor. Como podemos ver, el estadístico nos indica que entre la humedad del almidón y la harina de maíz no existe diferencia significativa pero si hay diferencia significativa en humedad entre las otras harinas.

Cuadro 17. Humedad, densidad aparente y compactada para harinas solas

Harina	Humedad %	C.V. %	Densidad aparente g/cm ³	C.V.	Densidad compactada g/cm ³	C.V. %
Trigo	11.42 °	2	0.50 b	3	0.73 a	3
Maíz	8.92 ^a	4	0.45 ^c	4	0.59 ^c	1
Frijol	7.29 b	1	0.64 ^a	2	0.71 ^{ab}	2
Almidón	9.3 ^a	2	0.52 ^b	2	0.67 b	2

Nota. Los valores con la misma letra son estadísticamente iguales al aplicar la prueba de Tukey con α = 0.05

3.1.2 Tamaño de partícula

Se construyeron las curvas de distribución diferencial (Figura 28) y se puede observar el comportamiento que presenta cada una de las harinas y como se distribuyen en los tamices según su tamaño de partícula; la harina de trigo presenta un comportamiento monomodal y una distribución con muy poca amplitud, observándose que a una abertura menor a 0.2 mm se retiene la mayor parte del material.

La harina de maíz presenta un comportamiento monomodal y con una amplitud mayor lo cual indica que sus partículas se distribuyen más a través de los tamices, la mayor fracción que se retiene de muestra está en un diámetro entre 0.2-0.4 mm. En cuanto a la harina de frijol, presenta un comportamiento bimodal y con una amplitud aún mayor a la de la harina de maíz debido a que las partículas están más distribuidas entre los tamices pero la mayoría de las partículas se retienen a una abertura entre 0.6 y 0.8 mm. Se puede observar que el almidón es el que tiene un menor diámetro ya que el mayor porcentaje de muestra se retiene a una abertura menor a 0.2 mm; debido a que no se contaba con tamices con abertura menor a la malla 270 la distribución de tamaño del almidón no se completó.

En la figura 29 se muestran las curvas acumulativas de la fracción que pasa por las diferentes aberturas y se puede observar que en el caso del almidón, el 80% de la mezcla se distribuyó en aberturas menores a 0.20 mm, y solamente el 20% en aberturas mayores; para la harina de frijol, el 80% de la muestra se distribuyó en aberturas menores de 0.85 mm. En la harina de maíz el 80% de la muestra se distribuyó en aberturas menores a 0.45 mm y en la de trigo en aberturas menores de 0.2 mm.

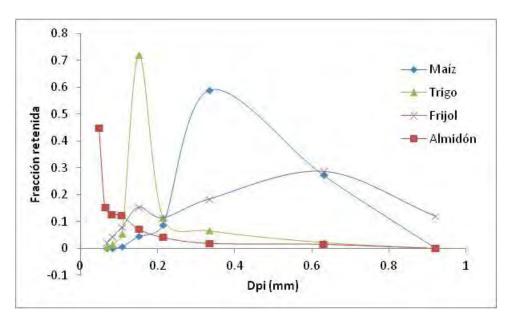


Figura 28. Gráfica de distribución de tamaño para las harinas solas

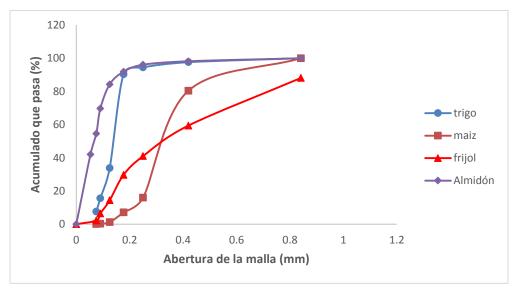


Figura 29. Gráfica comparativa del acumulado que pasa para cada una de las harinas

En el cuadro 18 se presentan los diámetros Sauter medio para las harinas solas y se puede observar que la harina de maíz es la que tiene un diámetro sauter medio más alto (0.336 mm) y el almidón un diámetro sauter medio menor (0.067 mm); según el estadístico realizado entre cada una de las harinas y el almidón existe diferencia significativa.

Cuadro 18. Valores del diámetro Sauter medio para harinas solas

Tino do harina	Sauter medio	C.V.
Tipo de harina	(mm)	(%)
Trigo	0.147 ^a	12
Maíz	0.336 b	6
Frijol	0.234 ^c	1
Almidón	0.067 ^d	2

Nota. El diámetro promedio del almidón no es un dato confiable por lo que solo se usa con fines comparativos.

3.1.3 Índice de Hausner, índice de Carr y ángulo de reposo

Como se puede observar en el cuadro 19, según los resultados de índice de Hausner, índice de Carr y ángulo de reposo la harina de trigo es la que presenta una menor fluidez en comparación con el almidón y las harinas de maíz y frijol; de acuerdo con la clasificación del ángulo de reposo para el flujo de los materiales en polvo, todos se consideran materiales sin flujo libre a excepción de la harina de frijol que es la única que presenta un valor menor a 50, lo cual la coloca como un material con alta fluidez. El estadístico nos indica que para el índice de Hausner, el índice de Carr y el ángulo de reposo no existe diferencia significativa entre el almidón y la harina de maíz, pero entre la harina de frijol y trigo si existe diferencia significativa; para el ángulo de reposo, no existe diferencia significativa entre el almidón y las harinas de trigo y maíz, pero si entre estas últimas y la harina de frijol. En las tres pruebas, la harina de trigo fue la que presentó la menor fluidez y la de frijol la mayor.

Cuadro 19. Índice de Hausner, índice de Carr y ángulo de reposo para harinas solas

					Ángulo	
Llorino	Índice de	C.V.	Índice de	C.V.	de	C.V.
Harina	Hausner	(%)	Carr	(%)	reposo	(%)
					(°)	
Trigo	1.46 ^c	1	31.6 ^c	1	60.0 b	9
Maíz	1.32 a	5	24.1 a	17	53.7 a	4
Frijol	1.10 b	3	9.3 b	25	44 ^c	2
Almidón	1.29 ^a	3	22.4 ^a	10	57.3 a b	3

3.1.4 Velocidad de flujo

La prueba de velocidad de flujo sólo se pudo realizar con la harina de frijol (cuadro 20) pues los demás materiales no fluyeron a través de ningún orificio o algunos solo lo hacían estimulando el flujo por medio de la introducción de una espátula a través del orificio y de manera irregular, ya que debido a que a medida que un polvo es más fino, las fuerzas de atracción ínter particulares son muy grandes al compararse con el peso de las partículas individuales, por lo que se dice que son cohesivos, y presentan problemas graves de flujo que se agravan con polvos alimenticios, los cuales tienden a ser más sensitivos a alteraciones químicas y físicoquímicas que pueden afectar sus propiedades y composición. Tales características pueden complicar seriamente las propiedades de flujo, ya que los polvos alimenticios pueden humectarse o liberar sustancias pegajosas por efecto de la presión, la temperatura o la humedad relativa entre otros factores (Ortega, 2006). Como se puede observar en el cuadro 20 entre mayor era el diámetro por el cual pasaba la harina su velocidad también era mayor y conforme fue disminuyendo el diámetro tardó más tiempo en pasar. Las mezclas de harinas, las harinas de trigo y maíz y el almidón no lograron pasar por ninguno de los orificios del flujómetro. Aun cuando el diámetro Sauter medio del maíz fue más grande que el del frijol, este último, al tener una distribución de tamaño más amplia presentó mayor fluidez, permitiéndole pasar a través de todos los orificios del flujómetro.

Cuadro 20. Velocidad de flujo de harina de frijol

Diámetro 1	Diámetro 2	Diámetro 3	Diámetro 4
(1.5 cm)	(1.2 cm)	(1.0 cm)	(0.8 cm)
15.03 g/s	7.91 g/s	4.78 g/s	3.64 g/s

3.1.5 Función de flujo

Cabe mencionar que esta prueba no se pudo realizar para la harina de frijol debido a que como se ha visto en pruebas anteriores presenta una mayor fluidez por si sola y por tanto, baja capacidad de compactación por lo que no se lograban mantener los compactados y se deshacían por la fuerza de gravedad indicando poca tendencia a la compactación bajo presión (mayor fluidez). En el caso del almidón sobresale el hecho de que a pesar de tener el menor tamaño de partícula, presentó un índice de Hausner bajo (1.21) y un ángulo de reposo medio (57.3°), lo cual podría atribuirse a la forma de la partícula. Sin embargo, al ser sometido a presión presentó la menor función de flujo.

En la Figura 30 se presentan las curvas de esfuerzo de cedencia en función del esfuerzo de compactación; la harina de maíz es la que presentó una menor pendiente lo que significa que tiene una mayor fluidez ya que necesita de menos fuerza para poder romper el comprimido formado, a diferencia del almidón que fue el que presentó una mayor pendiente lo cual indica que necesita una fuerza mayor para romper el compactado por ser un material más cohesivo ya que al ser compactado forma uniones interparticulares que hacen más difícil su flujo libre. El cuadro 21 presenta la función de flujo (inversa de la pendiente) y se puede observar que la función de flujo del almidón es menor a la de la harina de trigo y maíz ya que los materiales con una mayor pendiente tienden a compactarse más bajo presión y por lo tanto tendrán menor fluidez (menor función de flujo), y los materiales con menor pendiente tienden a compactarse menos bajo presión y por

lo tanto tendrán una mayor fluidez (mayor función de flujo), de acuerdo con el estadístico entre los tres materiales existe diferencia significativa.

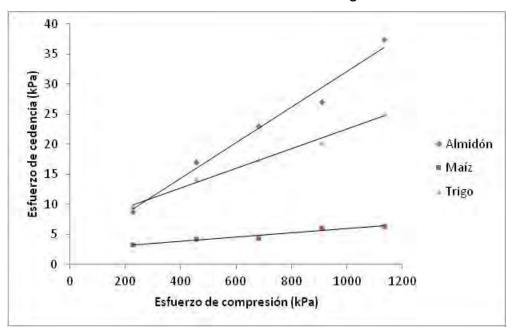


Figura 30. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para harinas solas

Cuadro 21. Función de flujo para harinas solas

Harina	Función de fluie	C.V.
паппа	Función de flujo	(%)
Trigo	61.4 ^a	8
Maíz	285.8 b	3
Almidón	34.2 ^c	8

Nota. Los valores con la misma letra son estadísticamente iguales al aplicar la prueba de Tukey con α = 0.05

3.2 Objetivo 2. Mezclas maíz - trigo

3.2.1 Humedad, densidad aparente y compactada

Como se puede observar en el cuadro 22, la mezcla que presentó mayor contenido de humedad fue maíz-trigo 30-70 %, ésto es debido a que contiene un porcentaje mayor de harina de trigo la cual por si sola contiene mayor humedad

que las otras harinas y presenta mayor diferencia entre su densidad aparente y su densidad compactada (mayor compactación) lo cual indica que es la proporción de maíz- trigo que presenta menor fluidez. Se observa que entre la mezcla con proporción maíz-trigo 50-50% y maíz-trigo 30-70%, no existe diferencia significativa en cuanto a su contenido de humedad. La adición de harina de maíz a la de trigo produjo diferencia significativa en densidad aparente y compactada hasta 70 y 50% respectivamente.

Cuadro 22. Humedad, densidad aparente y compactada para mezclas de harina de maíz y trigo

Harina o mezcla	Humedad %	C.V. %	Densidad aparente g/cm ³	C.V.	Densidad compactada g/cm ³	C.V. %
Trigo	11.42 ^a	2	0.5 ^a	3	0.73 a	3
Maíz-trigo 30-70%	10.51 b	5	0.47 ^{ab}	2	0.71 ^a	2
Maíz-trigo 50-50%	10.37 b	1	0.48 ^{ab}	3	0.65 b	1
Maíz-trigo 70-30%	9.43 ^c	2	0.45 b	3	0.64 b	2
Maíz	8.92 ^c	4	0.45 ^b	4	0.59 °	1

Nota. Los valores con la misma letra son estadísticamente iguales al aplicar la prueba de Tukey con α = 0.05

3.2.2 Tamaño de partícula

En la Figura 31 se puede observar que para las mezclas de harinas maíz-trigo, las tres presentan un comportamiento bimodal con un pequeño pico en 0.15 mm atribuido a la harina de trigo, ya que coincide con su moda, aún cuando predomina la forma de la distribución de la harina de maíz con una amplitud muy similar; sin embargo se puede observar que en la mezcla maíz-trigo 30-70 % es retenida un poco mas de muestra en los tamices de menor apertura en comparación con las otras pero en las tres mezclas la mayoría se retuvo en un diámetro menor a 0.4

mm. En la figura 32 se observa un comportamiento muy similar de las mezclas con 50 y 70% de harina de trigo, mientras que la que contiene 30% de harina de trigo, alcanza el 80% de acumulado a una menor abertura (<0.45 mm).

En el cuadro 23 se muestran los diámetros promedio de las 3 mezclas, las cuales resultaron ser estadísticamente iguales entre ellas y con la harina de maíz, lo anterior coincide con el comportamiento observado en las curvas de distribución diferenciales y acumulativa, que reflejan mejor el comportamiento de las mezclas que el valor promedio.

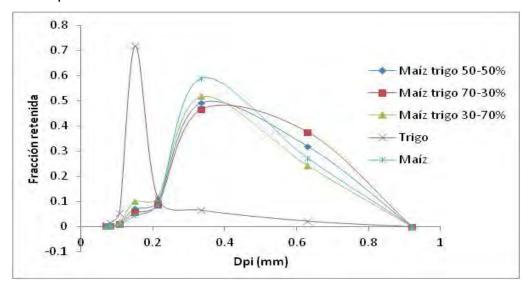


Figura 31. Gráfica de distribución de tamaño para las mezclas de maíz-trigo

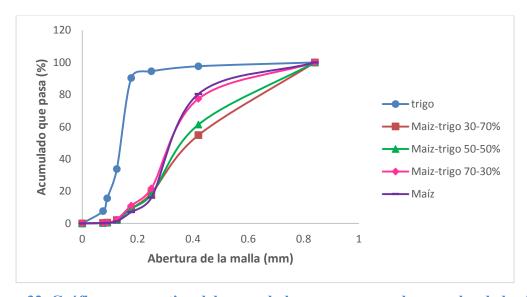


Figura 32. Gráfica comparativa del acumulado que pasa para las mezclas de harinas maíz - trigo

Cuadro 23. Diámetro Sauter medio para mezclas de harina maíz – trigo

Tipo de harina o	Diámetro promedio	C.V.
mezcla	(mm)	(%)
Trigo	0.147 b	12
Maíz-trigo 30-70%	0.320 ^a	7
Maíz-trigo 50-50%	0.332 a	2
Maíz-trigo 70-30%	0.337 ^a	10
Maíz	0.336 ª	6

3.2.3 Indice de Hausner, índice de Carr y ángulo de reposo

Como se puede observar en el cuadro 24, la mezcla maíz-trigo 30–70 % es la que da un mayor índice de Hausner, índice de Carr y ángulo de reposo, ésto debido a que contiene una mayor proporción de harina de trigo lo cual afecta sus propiedades de flujo debido a las características físicas propias de esta; el estadístico indica que para el índice de Hausner no existe diferencia significativa entre la mezcla maíz-trigo 30–70 % y maíz-trigo 70-30 % pero sí la mezcla maíz-trigo 50–50 %; la mezcla maíz-trigo 50–50 % no presenta diferencia significativa con maíz-trigo 70–30 % pero si con maíz-trigo 30–70 %. Para el ángulo de reposo no se obtuvo diferencia significativa entre las mezclas y entre ésta con la harina de trigo.

Cuadro 24. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de harina de maíz – trigo

Harina o mezcla	Índice de Hausner	C.V. (%)	Índice de Carr	C.V. (%)	Ángulo de reposo (°)	C.V. (%)
Trigo	1.46 ab	1	31.6 ^{ab}	1	60 a	9
Maíz-trigo 30-70%	1.50 ^a	3	33.46 ^a	7	60.33 ^a	2
Maíz-trigo 50-50%	1.35 bc	3	26.01 bc	10	59.67 ^a	1
Maíz-trigo 70-30%	1.43 ^{abc}	4	30.19 ^{abc}	10	58.67 ^a	3
Maíz	1.32 ^c	5	24.1 ^c	17	53.7 b	4

3.2.4 Función de flujo

En la figura 33 se puede observar que la mezcla maíz-trigo 70–30% es la que presenta una menor pendiente con relación a las otras mezclas o sea una mayor función de flujo (cuadro 25) esto debido a que contiene una mayor proporción de harina de maíz lo cual ayuda a que, aún cuando la harina de trigo sea un material con baja fluidez, presente un mayor flujo debido a las características físicas propias de la harina de maíz y a su porcentaje en la mezcla. Al ir disminuyendo la proporción de harina de maíz en la mezcla, aumenta su pendiente y disminuye su función de flujo; el estadístico nos indica que no existe diferencia significativa entre ninguna de las mezclas a pesar de que a simple vista pareciera que si existe diferencia pero ésto se le puede atribuir a que sus coeficientes de variación son altos, en particular en la mezcla con mayor proporción de harina de maíz, o de trigo.

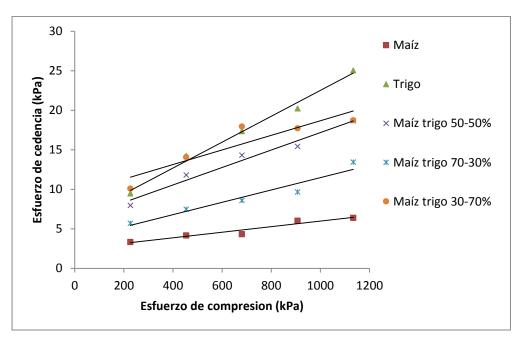


Figura 33. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para mezclas de harina de maíz - trigo

Cuadro 25. Función de flujo para mezclas de harina maíz - trigo

Harina o	Eupoión do fluio	C.V.
mezcla	Función de flujo	(%)
Trigo	61.4 ^b	8
Maíz-trigo	93.9 b	
30-70%	33.3	24
Maíz-Trigo	113.0 b	6
50-50%	113.0	0
Maíz-Trigo	185.1 ^{ab}	9
70-30%	105.1	3
Maíz	285.8 ^a	3

3.3 Objetivo 3. Mezclas frijol - maíz

3.3.1 Humedad, densidad aparente y compactada

En el cuadro 26 se puede ver que la mezcla que contiene mayor proporción de harina de maíz, es la que presenta un mayor contenido de humedad sin embargo no existió diferencia significativa en el contenido de humedad. La mezcla que

contiene almidón es la que se compacta más lo cual nos indica que añadir el almidón presenta mayores problemas de fluidez.

Cuadro 26. Humedad, densidad aparente y compactada para mezclas de harina frijol – maíz

Harina o mezcla	Humedad %	C.V. %	Densidad aparente g/cm³	C.V.	Densidad compactada g/cm³	C.V.
Maíz	8.92 a	4	0.45 ^a	4	0.59 ^e	1
Frijol-Maíz 30-70%	8.21 ^a	1	0.46 ^a	1	0.62 ^{de}	2
Frijol-Maíz 50-50%	7.63 ^a	2	0.52 °	2	0.64 ^{cd}	2
Frijol-maíz almidón 50-50%	8.43 ^a	2	0.52 °	3	0.70 bc	5
Frijol-Maíz 70-30%	8.03 a	14	0.57 bc	5	0.67 bc	2
Frijol	7.29 ^a	1	0.64 b	2	0.71 ^{ab}	2

Nota. Los valores con la misma letra son estadísticamente iguales al aplicar la prueba de Tukey con α = 0.05

3.3.2 Tamaño de partícula

En la Figura 34 se observa para las mezclas con 50 y 70% de harina de frijol un comportamiento con un pico de alrededor de 0.15 mm y una distribución amplia, característico de la harina de frijol. Cuando se tiene 70% de harina de maíz, el comportamiento de ésta predomina. Al comparar la mezcla 50-50% con almidón y sin almidón, para ambas su mayor fracción retenida está en un diámetro promedio menor de ≈0.16 mm y presentan un comportamiento bimodal pero está más marcado en la mezcla con almidón, en su distribución predomina el comportamiento de la harina de frijol; en la figura 35 se observa que el 80% de acumulado que pasa se alcanza a una abertura mayor en la harina de frijol,

seguido de la mezcla con 70% de harina de maíz. En el cuadro 27 se puede observar que no existe diferencia significativa entre las mezclas frijol-maíz 50–50% y frijol-maíz 70–30% y tampoco por el efecto de la adición de almidón; la mezcla con menor contenido de frijol presenta mayor diámetro Sauter medio.

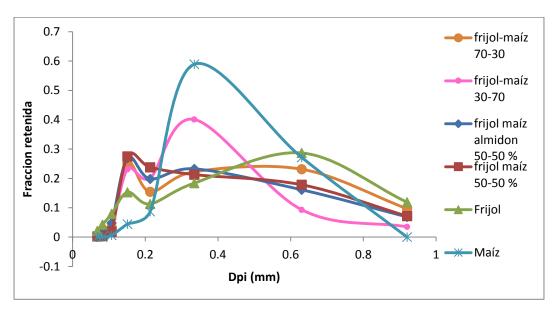


Figura 34. Gráfica de distribución de tamaño para las mezclas de frijol – maíz

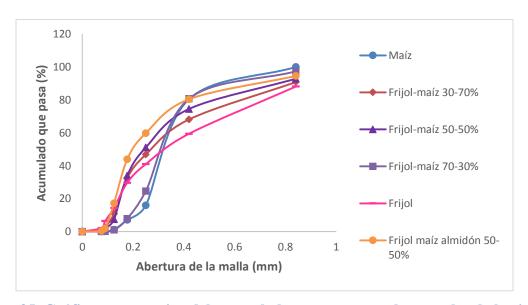


Figura 35. Gráfica comparativa del acumulado que pasa para las mezclas de harinas frijol — maíz

Cuadro 27. Diámetro Sauter medio para mezclas de harina frijol - maíz

Llarina a mazala	Diámetro promedio	C.V.
Harina o mezcla	(mm)	(%)
Maíz	0.336 ^a	6
Frijol-Maíz 30-70%	0.322 ^{ab}	6
Frijol-Maíz 50-50%	0.251 °	12
Frijol-Maíz almidón 50-50%	0.221 bc	10
Frijol-Maíz 70-30%	0.248 ^c	5
Frijol	0.234 bc	1

3.3.3 Índice de Hausner, índice de Carr y ángulo de reposo

En el cuadro 28 se puede observar que la adición de frijol a la harina de maíz disminuye el índice de Hausner e índice de Carr, pero solamente hasta que se agrega 70%, la diferencia es significativa. Las mezclas con 30 y 50% de harina de frijol presentaron mayor ángulo de reposo que la harina de maíz y de frijol. En la mezcla con 50% de ambas harinas, la adición de almidón no produjo diferencia significativa. La mezcla con 70% de frijol presentó índice de Hausner e índice de Carr estadísticamente iguales a la harina de frijol.

Cuadro 28. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de harina de frijol – maíz

Harina o mezcla	Índice de Hausner	C.V. (%)	Índice de Carr	C.V. (%)	Ángulo de reposo (°)	C.V. (%)
Maíz	1.32 ^{ab}	5	24.1 ^{ab}	17	53.7 b	4
Frijol-Maíz 30-70%	1.34 ^a	3	25.3 ª	9	61.7 ª	2
Frijol-Maíz 50-50%	1.23 ^{abc}	3	18.7 ^{abc}	12	63.0 ^a	3
Frijol-Maíz almidón 50-50%	1.34 ^a	3	25.3 ^a	9	60.7 ^a	1
Frijol-Maíz 70-30%	1.27 ^{bc}	6	14.7 ^{bc}	31	55.3 ^b	1
Frijol	1.1 °	3	9.3 °	25	44.0 °	2

3.3.4 Función de flujo

En la Figura 36 se puede observar que existe mucha diferencia en la función de flujo entre la harina de maíz sola con las mezclas de frijol-maíz, mostrando la gran influencia de la harina de frijol en la disminución de las pendientes. En la figura 37 se observa que la mezcla con mayor proporción de harina de frijol (frijol-maíz 70–30 %) es la que presenta la menor pendiente y la mezcla frijol- maíz 30–70 % la mayor pendiente, debido a que la harina de maíz presenta más problemas de fluidez que la harina de frijol; ésto también se ve reflejado en el cuadro 29 en

donde la función de flujo de la mezcla frijol-maíz 30-70% es considerablemente menor a la de las otras mezclas.

Entre las mezclas 50-50% con y sin almidón se puede observar que la que no contiene almidón presenta una menor pendiente por lo que necesita de un menor esfuerzo para poder romper el compactado y por lo tanto su función de flujo es mayor (cuadro 29) y de acuerdo con el estadístico existe diferencia significativa entre la mezcla que contiene almidón y la que no contiene.

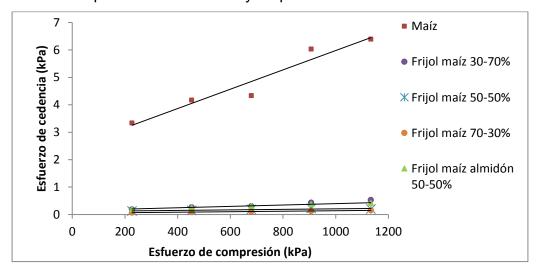


Figura 36. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para mezclas de harina de frijol - maíz y maíz sola

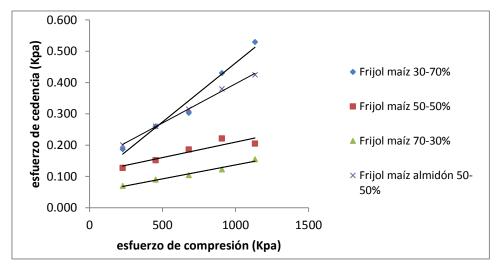


Figura 37. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para mezclas de harina de frijol - maíz

Cuadro 29. Función de flujo para mezclas de harina frijol - maíz

Harina o	Función de flujo	C.V.	
mezcla	Funcion de hajo	(%)	
Maíz	285.8 ^c	3	
Frijol-maíz	2333.3 b	12	
30-70%	2555.5	12	
Frijol-maíz	11428.6 a	11	
50-50%	11420.0	''	
Frijol-maíz			
almidón	3888.9 b	0	
50-50%			
Frijol-Maíz	11203.7 a	11	
70-30%	11203.7	11	
Frijol			

3.4 Objetivo 4. Mezclas frijol-trigo

3.4.1 Humedad, densidad aparente y compactada

Como se observa en el cuadro 30, la mezcla que contiene mayor humedad es la de frijol-trigo 30–70 % y la mezcla frijol-trigo 70–30 % la menor, ésto debido a la influencia de la harina de frijol que presenta menor humedad, lo cual se refleja en cada una de las mezclas; en los datos de densidad aparente se observa que a medida que aumenta la cantidad de harina de frijol aumenta también la densidad; de acuerdo con el estadístico existe diferencia significativa entre la humedad de todas las mezclas y la que contiene mayor porcentaje de frijol es igual a la harina de frijol sola; entre la densidad compactada de las mezclas no existe diferencia significativa.

Cuadro 30. Humedad, densidad aparente y compactada para mezclas de harina de frijol - trigo

Harina o mezcla	Humedad %	C.V. %	Densidad aparente g/cm ³	C.V. %	Densidad compactada g/cm ³	C.V. %
Trigo	11.42 a	4	0.50 ^d	3	0.73 b	3
Frijol-Trigo 30-70%	10.36 b	3	0.53 ^{c d}	4	0.80 a	3
Frijol-Trigo 50-50%	9.19 °	3	0.57 bc	3	0.83 ^a	4
Frijol-Trigo 70-30%	8.17 ^d	2	0.65 ^a	3	0.80 a	1
Frijol	7.29 ^d	1	0.64 ^{a b}	2	0.71 b	2

3.4.2 Tamaño de partícula

En la figura 38 se muestran los resultados obtenidos de las mezclas de harina de frijol-trigo; como se observa, la mezcla con el mayor contenido de frijol (frijol-trigo 70-30%) muestra un comportamiento bimodal, con un pico de fracción retenida en un diámetro de alrededor de 0.15 mm, que fue donde ambas harinas solas presentaron un importante porcentaje de retenido (70% retenido de trigo, 15% retenido de frijol). Cuando las harinas de frijol y trigo se encuentran en la misma proporción, el retenido en diámetro promedio de 0.15 mm disminuye.

En la figura 39 se puede observar que a una abertura entre 0.2 y 0.4 el acumulado que pasa de las mezclas de harina frijol- trigo 70-30% y 30-70% está alrededor de 50%, pero en la mezcla de harina de frijol- trigo 50-50% en ese mismo intervalo de abertura de la malla el porcentaje de acumulado de harina que pasa es menor, (≈ 20%). Se puede observar también que en la mezcla con mayor proporción de frijol, el 80% de la mezcla se distribuyó en aberturas por debajo de 0.8 mm, muy similar al comportamiento del frijol solo. En la mezcla con mayor proporción de trigo, el 80% se distribuyó en aberturas por debajo de 0.6 mm. De acuerdo con el cuadro

31 la adición de harina de frijol a la de trigo, incrementa el diámetro Sauter medio de la mezcla frijol-trigo 30-70%, que es estadísticamente igual al de las mezclas 50-50% y 70-30%, pero entre estas últimas hay diferencia significativa.

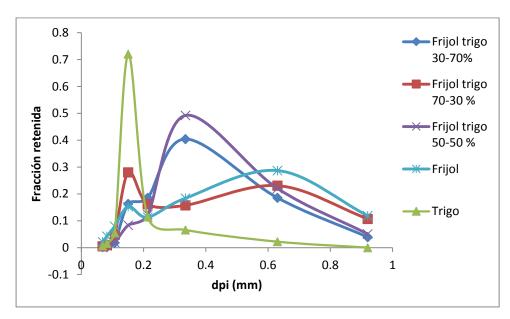


Figura 38. Gráfica de distribución de tamaño para las mezclas de frijol - trigo

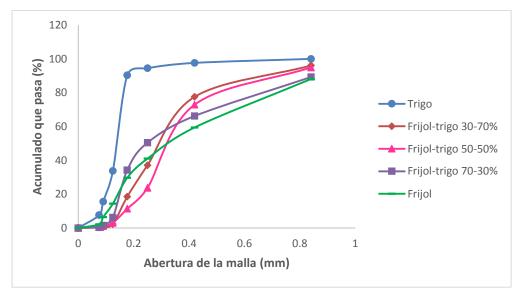


Figura 39. Gráfica comparativa del acumulado que pasa para las mezclas de harinas frijol – trigo

Cuadro 31. Diámetro Sauter medio para mezclas de harina frijol - trigo

Harina o mezcla	Diámetro promedio	C.V.
Tialilia O filezcia	(mm)	(%)
Trigo	0.147 ^c	12
Frijol-trigo 30-70%	0.251 ^{ab}	7
Frijol-trigo 50-50%	0.284 a	5
Frijol-trigo 70-30%	0.232 b	3
Frijol	0.234 ^{ab}	1

3.4.3 Indice de Hausner, índice de Carr y ángulo de reposo

En el cuadro 32 se puede observar que hasta que se adiciona 70% de harina de frijol a la de trigo se obtiene una reducción estadísticamente significativa de los índices de Hausner y Carr. Para el ángulo de reposo es la mezcla frijol- trigo 50-50 % la que presenta un mayor ángulo pero de acuerdo con el estadístico no existe diferencia significativa entre las mezclas y la harina de trigo pero todas son diferentes a la de frijol.

Cuadro 32. Índice de Hausner, índice de Carr y ángulo de reposo para mezclas de harina de frijol-trigo

Harina o mezcla	Índice de Hausner	C.V (%)	Índice de Carr	C.V (%)	Ángulo de reposo (°)	C.V (%)
Trigo	1.46 ^a	1	31.6 a	1	60 b	9
Frijol-trigo 30-70%	1.5 ª	4	33.33 ª	7	60 b	3
Frijol-trigo 50-50%	1.45 ^a	7	30.67 ª	15	64.67 b	2
Frijol-trigo 70-30%	1.23 b	3	18.67 b	12	59.67 b	1
Frijol	1.1 ^b	3	9.3 b	25	44 ^a	2

Nota. Los valores con la misma letra son estadísticamente iguales al aplicar la prueba de Tukey con α = 0.05

3.4.4 Función de flujo

Como se observa en la Figura 40, al comparar la función de flujo de las mezclas frijol-trigo con la harina de trigo sola se puede observar la influencia de la harina de frijol ya que su adicion disminuye notablemente la pendiente debido a que su capacidad de flujo es mayor a la de la harina de trigo. En la Figura 41 se puede notar que la mezcla frijol-trigo 30–70 % presenta una mayor pendiente y por lo tanto una menor función de flujo (cuadro 33); mientras que la mezcla frijol-trigo 70–30 % presenta una pendiente menor y una función de flujo mayor; de acuerdo con el estadístico (cuadro 33) entre la mezcla frijol-trigo 30–70 % y frijol-trigo 50–50 % no existe diferencia significativa. La inclusión de harina de frijol, mejora el flujo de la harina de trigo de manera significativa, haciéndola menos susceptible a la compactación bajo presión.

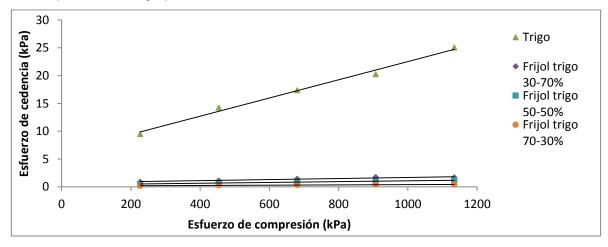


Figura 40. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para mezclas de harina de frijol - trigo y trigo sola

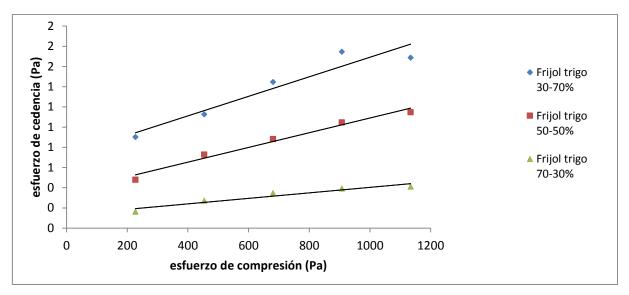


Figura 41. Gráfica de esfuerzo de cedencia en función del esfuerzo de compactación para mezclas de harina de frijol – trigo

Cuadro 33. Función de flujo para mezclas de harina frijol - trigo

Harina o	Función de flujo	C.V.
mezcla	,	(%)
Trigo	61.4 ^c	8
Frijol-trigo	1006.7 b	
30-70%	1000.7	10
Frijol-trigo	1369.0 b	8
50-50%	1309.0	0
Frijol-trigo	4444.4 ^a	22
70-30%	7777.7	
Frijol		

Conclusiones

De acuerdo con los resultados obtenidos durante la experimentación se puede concluir que existen distintos factores tanto externos como propios del material como la interacción partícula-partícula, el tamaño de partícula y la humedad que pueden afectar la fluidez de los materiales en polvo.

Para el uso de harinas en la elaboración de botanas y otros productos se debe conocer el comportamiento individual de cada harina y la proporción en que se usará para poder tener una idea de la fluidez que tendrá la mezcla. Como se pudo observar durante la experimentación, por sus características físicas la harina de frijol, no presenta problemas de fluidez a diferencia de la harina de trigo que es un material cohesivo con un tamaño de partícula más pequeño (y el mayor contenido de humedad en este caso), lo cual favorece el apelmazamiento y provoca problemas de fluidez.

La harina de frijol al contener menor humedad, distribución más amplia de tamaño de partícula, diámetro promedio más alto y valores más bajos de ángulo de reposo e índices de Hausner y Carr, en comparación con las otras harinas presentó mayor fluidez y no tendrá mayores problemas de apelmazamiento y compactación. La harina de maíz mostró un comportamiento intermedio de fluidez entre las de frijol y trigo.

Al realizar las mezclas se pudo observar que cada harina, dependiendo de la proporción en la mezcla, aportaba sus características como en el caso del tamaño de partícula ya que al agregar mayor porcentaje de harina de frijol, la distribución era más amplia comparada con las mezclas que tenían mayor porcentaje de harina de trigo o maíz.

Los coeficientes de variación de la función de flujo fueron bajos en las harinas solas y altos en las mezclas, lo que se puede atribuir a la heterogeneidad de las muestras y las diferentes propiedades mecánicas de las partículas que las constituyen (dureza, elasticidad) que responden de manera diferente a la compresión.

El almidón y la harina de trigo, debido a su alta cohesión son muy susceptibles a ser compactadas bajo presión, lo cual se refleja en su muy baja función de flujo, pudiendo ocasionar serios problemas durante su almacenamiento y dosificación, si se mantienen por tiempos prolongados en silos o tolvas. La inclusión de harina de trigo disminuye la fluidez de las harinas de frijol y maíz impartiéndoles mayor cohesividad y haciéndolas más susceptibles a la compactación bajo presión. Si bien la adición de almidón a la mezcla maíz frijol 50-50% no tuvo efecto en en ángulo de reposo y los índices de Hausner y Carr, disminuyó notablemente su función de flujo haciendo a la mezcla más susceptible de compactarse bajo presión.

Bibliografía:

Adhikari, B., Howes, T., Bhandari, R.B., Truong, V. 2001. Stickiness in foods: a review of mechanisms and test methods. International Journal of Food Properties, 4(1), 1-33.

Alvarado, J., Aguilera, J. 2001. Métodos para medir propiedades físicas en industrias de alimentos. Acribia. España.

Amador, J. 2011. Botanas de frijol, el futuro contra la comida chatarra. Zacatecas, México. Consultado en:

http://www.zacatecasonline.com.mx/noticias/local/13842-botanas-frijol-comida.html

Badui, S., 2006. Química de los alimentos. 4ed. Pearson. México.

Barletta, B., Barbosa- Cánovas G. 1993a. An attrition index to assess fines formation and particle size reduction in tapped agglomerated food powders. Powder Techology. Washington. 77: 89-96.

Barletta, B., Barbosa-Cánovas G. 1993b. Fractal analysis to characterize ruggedness changes in tapped agglomerated food powders. Journal of Food Science. 58: 1030-1046.

Barriga, X. 2003. La importancia de la harina. Montagud. Mexico. 16 pp.

Casas, N. 2014. Propiedades texturales en alimentos. Apuntes de Taller Multidisciplinario de Reología y Textura. México: Laboratorio de Propiedades Reológicas y Funcionales en Alimentos, FESC-UNAM.

Cerezal, P., Carrasco, A., Pinto, K., Arcos, R. 2008. Suplemento alimenticio de alto contenido protéico para niños de 2-5 años II. Propiedades Físicas, Químicas, Reológicas y Color. Interciencia. 33: 301-307.

Cerezal, P., Urtuvia, V., Ramirez, V.. Arcos, R. 2011. Desarrollo de productos sobre la base de harinas de cereales y leguminosas para niños celiacos entre 6 y 24 meses; II: Propiedades de las Mezclas. Nutricion Hospitalaria. Chile. 26:161-169.

Cheftel, J., 1976. Introducción a la bioquímica y tecnología de los alimentos. España. Acribia 229- 233 pp.

Colín, G., Casas, N., Beristain, F., Romero, J. 2010. Efecto de coadyuvantes y condiciones de proceso en las propiedades fisicas de compactados de café. Memorias del XXXI Encuentro Nacional de la AMIDIQ. México.

De la Rosa, B., Casas, N., Beristain, F. 2012. Efecto de condiciones de proceso y coadyuvantes en las propiedades físicas de compactados de chile y especias (mole). Memorias del XXXIII Encuentro Nacional y II Congreso Internacional AMIDIQ. México.

Eduardo y Lannes., 2007. Use of texture analysis to determine compaction. Force of Powders. Journal of Food Engineering. 80: 568-572.

Ellis, R., Cochrane, M., Finlay, M., Duffs, C., Lynn, A., Morrison, I., Prentice, R., Stuart, J., Sierpe, S. 1998. Starch production and industrial use. Journal of the Science of Food and Agriculture. (77) 289-311.

Fennema, O., 2000, Introducción a la química de los alimentos. Acriba. Madison, USA.

Fernández, A. 2009. Sólidos pulverulentos, España. Consultado en: (http://personal.us.es/mfarevalo/recursos/tec_far/polvos.pdf).

Fitzpatrick, J., Barringer, S., Iqbal, T. 2004. Flow properties measurement of food powders and sensitivity of jenike's hopper design methodology to the measured values. Journal of Food Engineering, 61, 1-33.

Francisco, C. 2014. Efecto del tratamiento térmico, adición de aceite y almidón en la reología de masa y textura de aperitivos de maíz y frijol. Tesis Licenciatura de Ingeniería en Alimentos, FES- Cuautitlan UNAM. Cuautitlán, Edo. de México, 95pp.

Freeman T., 2013. An Introduction of Powders. Freeman Technology. USA. 4-34 consultado en:

(http://www.freemantech.co.ku/es/la-naturaleza-del-polvo.html#about-powders).

Helman J. 1982. Farmacotecnia teórica y práctica, Continental, México.

Jiménez, C. 2014. Polvos como forma de dosificación. Tecnología Farmacéutica. México.

Kent, N.L. 1987. Tecnología de los cereales. Pergamont Press. Zaragoza, España.

Lumay, G., Boschini, F., Traina, K., Bontempi, S., Remy, J., Cloots, R., Vandewalle, N. 2012. Measuring the flowing properties of powders and grains. Powder Technology. 224: 19-27.

Mauzu, J., Musa, H., Isah, A.B., Bhatia, P.G., Tom, G. M. 2011.Extraction and characterization of kaffir potato starch: a potential source of pharmaceutical raw material, Journal of Natural Products and Plant Resources, 1(2), 41-49.

Molenda, M., Stasiak, M., Moya, M., Ramirez, A., Horabik, J., Ayuga, F. 2006. Testing mechanical properties of food powders in two laboratories-degree of consistency of results. International Agrophysics. 20: 37-45.

Muller, H.G. 1973. Introducción a la reología de los alimentos. Acriba. Zaragoza, España.

Multon, J.L. 1988. Aditivos y auxiliares de fabricación en las industrias agroalimentarias. Acriba. Zaragoza, España.

NMX.152.1985. 1985. Norma del codex para la harina de trigo. México.4p.

Ohaus., 2001 Manual de instrucciones, analizador de humedad MB45, Suiza.

Opalinski, I., Chutkouski, M., Stasiak, M. 2012. Characterizing moist food- powder flowability using a jenike shear- tester. Journal of Food Engineering. 108: 51-58.

Ortega E. 2006. Manejo y procesamiento de polvos y granulados, Universidad Autónoma de Chihuahua. Consultado en:

(http://www.fcq.uach.mx/index.php/documentos/category/6-operaciones-unitarias-i?download=26:material-del-curso.pdf).

Ortiz, F. 2006. Aprovechamiento e industrialización del frijol, Fundación Produce de Guerrero, Guerrero, México.

Othon, R. 1996. Química, almacenamiento e industrialización de los cereales, AGT editor, México.

Palacios, A., Casas, N., Beristain, F. 2013. Efecto de coadyuvantes en las propiedades físicas de una mezcla de polvos para compactados de café Capuchino. Memorias del XXXIV Encuentro Nacional y III Congreso Internacional de la AMIDIQ. México.

Paredes L., Lara F., Bello P. 2009. La nixtamalización y el valor nutritivo del maíz. *Ciencias* 92, octubre-marzo, 60-70.

Peleg, M., Moreyra, R., Scoville, E. 1982. Reological characteristics of food powders. Department of Food Engineering University of Massachusetts. The American Institute of Chemical Engineers. Amherst, USA.

Polizzi, M., Yuan, X., Hancock, B. 2011. Direct measurement of the unconfined yield strength of moderately compressed pharmaceutical powders. Poster at AAPS. Annual Meeting. October.

Quezada, S. 2008. Distribución de tamaño de partícula en un reactor de lecho fluidizado. Tesis Licenciatura en Ingeniería en Energía. Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana. México. 73pp.

Quiminet., 2008. El uso alimenticio del almidón. Adisa. México. Consultado en: http://www.tecnovam.com/botanas.html

Rajesh N. 2014. Particle and powder flow properties, Center for Engineered Particulates, España consultado en:

(https://pharmahub.org/resources/364/download/particle_and_powder_flow_charac terization.pdf)

Ranken M.D. 1993, Manual de industrias de los alimentos, ACRIBA, Zaragoza, España.

Ricks. N.P., Barringer, S.A., Fitzpatrick. J.J. 2002. Food powder characteristics important to nonelectrostatic and electrostatic coating and dustiness, Journal of Food Science, 67 (6). 2256-2263.

Rojas, L., Casas, N., Beristain, F. 2015. Efecto de coadyuvantes en la fluidez y compacxtabilidad de mezclas de polvos para preparar una bebida instantanea de chocolate caliente. Memorias del XXXVI Encuentro Nacional AMIDIQ. México.

Schulze, D. 2008. Flow Properties of Powders and Bulk Solids. Behavior, Characterization, Storage and Flow, Springer, New York, USA.

Stute, R. 1992. Hydrothermal modification of starches: the difference between annealing and heat/ moisture treatment. Starch/ Staerke, 44, 205-214.

Terrádez, M. 2010, Proyecto e-Math, Secretaría de Estado de Educación y Universidades, Barcelona, España.

Teunou, E., Fitzpatrick, J., Synnott, E. 1999. Characterization of food powder flowability. Journal of Food Engineering. Vol. 39, 31-37 pp.

USP-NF24. US Pharmacopeia NF-24. 2005. General chapters (1174) powder flow, 3017. www.texturetechnologies.com

Anexos

Maiz

Maíz	2								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0	0	1	0	100	0	
40	0.42	0.6305	0.996	0.19544741	0.80455259	19.544741	80.455259	0.30998796	
60	0.25	0.335	3.287	0.6450157	0.3549843	84.0463108	15.9536892	1.92542	
80	0.177	0.2135	0.452	0.08869702	0.91130298	92.9160126	7.08398744	0.4154427	
120	0.125	0.151	0.298	0.05847724	0.94152276	98.7637363	1.23626374	0.38726647	
170	0.09	0.1075	0.048	0.00941915	0.99058085	99.7056515	0.29434851	0.08762002	
200	0.075	0.0825	0.008	0.00156986	0.99843014	99.8626374	0.13736264	0.01902859	0.31597387
base	0	0.0685	0.007	0.00137363	0.99862637	100	0	0.02005294	
			0					3.16481868	
suma			5.096	1					

Maíz		4								
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
	18	1								
	20	0.841	0.9205	0	0	1	0	100	0	
	40	0.42	0.6305	1.064	0.21314103	0.78685897	21.3141026	78.6858974	0.33805079	
	60	0.25	0.335	2.521	0.50500801	0.49499199	71.8149038	28.1850962	1.50748661	
	80	0.177	0.2135	0.714	0.14302885	0.85697115	86.1177885	13.8822115	0.66992434	
	120	0.125	0.151	0.607	0.12159455	0.87840545	98.2772436	1.72275641	0.80526193	
	170	0.09	0.1075	0.073	0.0146234	0.9853766	99.7395833	0.26041667	0.1360316	
	200	0.075	0.0825	0.007	0.00140224	0.99859776	99.8798077	0.12019231	0.01699689	0.28642638
base		0	0.0685	0.006	0.00120192	0.99879808	100	0	0.01754632	
				0					3.49129848	
suma				4.992	1					
	230	0.062								
Maíz		5								
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
	18	1								
	20	0.841	0.9205	0	0	1	0	100	0	
	40	0.42	0.6305	1.361	0.27154828	0.72845172	27.1548284	72.8451716	0.43068721	
	60	0.25	0.335	2.954	0.58938547	0.41061453	86.0933759	13.9066241	1.75935963	
	80	0.177	0.2135	0.437	0.08719074	0.91280926	94.8124501	5.18754988	0.40838755	
	120	0.125	0.151	0.223	0.04449322	0.95550678	99.2617717	0.73822825	0.29465706	
	170	0.09	0.1075	0.031	0.00618516	0.99381484	99.8802873	0.11971269	0.05753633	
	200	0.075	0.0825	0.001	0.00019952	0.99980048	99.9002394	0.09976057	0.00241844	0.33697152
base		0	0.0685	0.005	0.00099761	0.99900239	100	0	0.01456359	
				0					2.9676098	
suma				5.012	1					

Trigo										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
	18	1	·	Ü				·		
	20	0.841	0.9205	0	0	1	0	100	0	
	40	0.42	0.6305	0.119	0.02378098	0.97621902	2.378097522	97.62190248	0.03771765	
	60	0.25	0.335	0.157	0.0313749	0.9686251	5.51558753	94.48441247	0.09365642	
	80	0.177	0.2135	0.209	0.04176659	0.95823341	9.692246203	90.3077538	0.19562804	
	120	0.125	0.151	2.828	0.56514788	0.43485212	66.20703437	33.79296563	3.7427012	
	170	0.09	0.1075	0.911	0.18205436	0.81794564	84.41247002	15.58752998	1.6935289	
	200	0.075	0.0825		0.07953637	0.92046363	92.36610711	7.633892886	0.96407722	0.12752261
base		0	0.0685	0.382	0.07633893	0.92366107	100	0	1.11443692	
	230									
suma				5.004	1				7.84174635	
Trigo										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
	18	1								
	20	0.841					-			
	40	0.42	0.6305			0.97786353		97.78635256		
	60	0.25	0.335					91.20633631		
	80	0.177	0.2135					79.75223396		
	120	0.125	0.151	3.548	0.7205524	0.2794476	92.30300569	7.696994314	4.77187018	
	170	0.09	0.1075					2.193338749		
	200	0.075	0.0825	0.078	0.01584078	0.98415922	99.39073924	0.609260764	0.19200945	0.15790777
base		0	0.0685	0.03	0.00609261	0.99390739	100	0	0.08894318	
	230								6.33281047	
suma				4.924	1					
Trigo										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
	18	1				·		·		
	20	0.841		0	0	1	0	100	0	
	40	0.42		0.197	0.0397498			96.02502018	0.06304488	
	60	0.25	0.335	0.284	0.05730428	0.94269572	9.705407587	90.29459241	0.17105755	
	80	0.177	0.2135					81.71912833		
	120	0.125	0.151			0.27542373	90.73849879	9.261501211		
	170	0.09	0.1075	0.304	0.06133979		96.8724778	3.127522195	0.5706027	
	200	0.075	0.0825	0.098	0.01977401	0.98022599	98.84987893	1.150121065	0.23968499	0.15594614
base		0				0.98849879	100			
	230								6.41247043	
suma				4.956	1					

frijol										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
	18	1	·		0			·		
	20	0.841	0.9205	0.607	0.11885647	0.88114353	11.8856472	88.1143528	0.12912164	
	40	0.42	0.6305	1.465	0.28686117	0.71313883		59.4282358	0.4549741	
	60	0.25		0.94	0.18406109			41.0221265	0.5494361	
	80	0.177	0.2135	0.578	0.11317799	0.88682201	70.2956726	29.7043274	0.53010769	
	120	0.125	0.151	0.781	0.15292735	0.84707265	85.5884081	14.4115919	1.01276394	
	170	0.09	0.1075	0.406	0.07949873	0.92050127	93.5382808	6.46171921	0.73952304	
	200	0.075	0.0825	0.219	0.04288232	0.95711768	97.8265126	2.17348737	0.51978568	0.23512761
base		0	0.0685	0.111	0.02173487	0.97826513	100	0	0.31729743	
									4.25300961	
suma				5.107	1					
frijol										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
	18	1			0					
	20	0.841	0.9205	0.699	0.13770686	0.86229314	13.7706856	86.2293144	0.14960006	
	40	0.42	0.6305	1.454	0.28644602	0.71355398	42.4152876	57.5847124	0.45431566	
	60	0.25	0.335	0.884	0.17415288	0.82584712	59.8305753	40.1694247	0.51985933	
	80	0.177	0.2135	0.559	0.11012608	0.88987392	70.8431836	29.1568164	0.51581304	
	120	0.125	0.151	0.75	0.14775414	0.85224586	85.6185973	14.3814027	0.97850422	
	170	0.09	0.1075	0.364	0.07171001	0.92828999	92.7895981	7.21040189	0.66706984	
	200	0.075	0.0825	0.247	0.04866036	0.95133964	97.6556344	2.34436564	0.58982258	0.23712259
base		0	0.0685	0.119	0.02344366	0.97655634	100	0	0.34224316	
									4.21722788	
suma				5.076	1					
frijol										
Malla		abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
	18	1	· ·		0	·		·		
	20	0.841		0.637	0.12646417	0.87353583	12.6464165	87.3535835	0.13738638	
	40	0.42		1.493	0.29640659			57.7129244	0.47011355	
	60	0.25		0.868	0.1723248			40.4804447	0.51440238	
	80	0.177		0.548					0.50957807	
	120	0.125	0.151	0.719	0.1427437	0.8572563	84.6734167	15.3265833	0.94532249	
	170	0.09	0.1075	0.351	0.06968434			8.35814969	0.64822638	
	200	0.075		0.237	0.04705182	0.95294818	96.347032	3.65296804	0.57032505	0.23101975
base		0		0.184	0.03652968	0.96347032	100	0	0.53328001	
									4.3286343	
suma				5.037	1					

Almidón

Ammuoi	1								
ALMIDÓN									
malla	abertura (mm	dp (mm)	g retenidos	fracción retenida		Aumulado retenido	Acumulado pasa	xi/dpi	Diámetro promedio (mm)
20	0.84	0.92		0	1	0	100		
40	0.42	0.63	0.09	0.018085316	0.98	1.808531551	98.19146845	0.03	
60	0.25	0.34	0.11	0.020837429	0.98	3.892274425	96.10772557	0.06	
80	0.177	0.21	0.21	0.042068017	0.96	8.099076076	91.90092392	0.20	
120	0.125	0.15	0.39	0.076272852	0.92	15.72636131	84.27363869	0.51	
170	0.088	0.11	0.74	0.145665422	0.85	30.29290348	69.70709652	1.37	0.068
200	0.074	0.08	0.77	0.150973069	0.85	45.39021034	54.60978966	1.86	
270	0.053	0.06	0.64	0.125614311	0.87	57.95164144	42.04835856	1.98	
base	0	0.05	2.14	0.420483586	0.58	100	0	8.67	
			5.09	1				14.67	
		5.09	9						
ALMIDÓN	- h - at (-l ()		f	f:	A	Aila da vata aida	: /- :	Diámatas anamadia (man)
malla	abertura (mm			fracción retenida		Aumulado pasa	Acumulado retenido	xi/dpi	Diámetro promedio (mm)
20	0.84	0.92		0	1	0	100		J
40	0.42	0.63	0.08	0.015694633		1.569463282	98.43053672	0.02	_
60	0.25	0.34	0.10	0.019182329		3.487696183	96.51230382	0.06	_
80	0.177	0.21	0.22	0.041658593		7.653555512	92.34644449	0.20	_
120	0.125	0.15	0.38	0.072854098		14.93896532	85.06103468	0.48	
170	0.088	0.11	0.64	0.123038171	0.88	27.24278241	72.75721759	1.16	0.066
200	0.074	0.08	0.65	0.126138345	0.87	39.85661693	60.14338307	1.56	
270	0.053	0.06	0.79	0.153458632	0.85	55.20248014	44.79751986	2.42	
base	0	0.05	2.31	0.447975199	0.55	100	0	9.24	
			5.16	1				15.13	1
ALMIDÓN									
malla	abertura (mm	dp (mm)		fracción retenida	fracción pasa	Aumulado pasa	Acumulado retenido	xi/dpi	Diámetro promedio (mm)
20	0.84	0.92		0	1	0	100		
40	0.42	0.63	0.09	0.017251405	0.98	1.725140531	98.27485947	0.03	
60	0.25	0.34	0.10	0.019383601		3.663500678	96.33649932	0.06	
80	0.177	0.21	0.20	0.038185695		7.482070169	92.51792983	0.18	-
120	0.125	0.15	0.35	0.067648769		14.24694708	85.75305292	0.45	
170	0.088	0.11	0.66	0.127156426		26.96258965	73.03741035	1.19	0.066
200	0.074	0.08	0.62	0.120178329		38.98042256	61.01957744	1.48	-
270	0.053	0.06	0.87	0.168443497		55.82477224	44.17522776	2.65	-
	0.055	0.05	2.28	0.441752278		100	0	9.11	
base									

1								
abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
		0					7 - 1	
			0	1	0	100	0	
0.42		1.951	0.3859545	0.6140455	38.59545		0.61214037	
0.25		2.203	0.43580613	0.56419387	82.1760633			
0.177							0.40584021	
0.125	0.151	0.359	0.07101879	0.92898121	97.9426311	2.05736894	0.47032313	
0.09		0.081						
		0.011						0.33341031
		0.012						
			1					
		3.000	_					
							.,,.	
	-	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
							-	
0.42		1.643	0.31952548		31.9525476		0.50678109	
0.25	0.335	2.535	0.49299883	0.50700117	81.252431	18.747569	1.47163831	
0.177	0.2135	0.505	0.09821081	0.90178919	91.0735123	8.92648775	0.46000381	
0.125	0.151	0.372	0.07234539	0.92765461	98.3080513	1.69194866	0.47910855	
0.09	0.1075	0.075	0.01458576	0.98541424	99.7666278	0.23337223	0.13568153	
0.075	0.0825	0.01	0.00194477	0.99805523	99.9611046	0.03889537	0.02357295	0.32441575
0	0.0685	0.002	0.00038895	0.99961105	100	0	0.00567816	
		0					3.08246439	
		5.142	1					
2								
		a rotonidos	fracción rota	fracción nas-	acumulada ==	acumulada	vi/dni	
	-	g receilluos	iraccion reter	maccion pasa	acumulado re	acumulauo pa	xi/upi	
			^	4	0	100	0	
		2 226	-	_	-		-	
								0.33674513
0	0.0685		0.00156894	0.99843106	100	0		
		0					2.9696049	
	abertura 1 0.841 0.42 0.25 0.177 0.125 0.09 0.075 0 abertura 2 abertura 1 0.841 0.42 0.25 0.177 0.125 0.09 0.075 0 3 abertura 1 0.841 0.42 0.25 0.177 0.125 0.09 0.075	1 0.841 0.9205 0.42 0.6305 0.25 0.335 0.177 0.2135 0.195 0.195 0.075 0.0825 0 0.0685 2 abertura dp 1 0.841 0.9205 0.42 0.6305 0.42 0.6305 0.25 0.335 0.177 0.2135 0.125 0.151 0.09 0.1075 0.075 0.0825 0 0.0685	abertura dp	abertura dp	abertura dp	abertura dp	abertura dp gretenidos fracción reter fracción pasa acumulado re acumulado pa (1.10) 0.841	Bentura December Precion Pre

Maíz trigo 70-30	1								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado na	xi/dni	
18	1	· ·	greteriidos	Traccion recei	пасстоп раза	acamaiaao re	acamaiaao pe	лі, арі	
20	0.841			0	1	0	100	0	
40	0.42		1.156		0.774395	22.5604996			
60	0.25		2.852	0.55659641	0.44340359	78.2201405		1.66148182	
80	0.177		0.55	0.10733802	0.89266198	88.9539422		0.50275418	
120	0.125		0.443	0.08645589	0.91354411	97.5995316		0.57255559	
170	0.09		0.097	0.01893052	0.98106948	99.4925839		0.17609789	
200	0.075		0.016		0.99687744	99.80484		0.03784922	0.29966602
base	0.073		0.01	0.0019516	0.9980484	100	0.13310003	0.02849052	0.23300002
base	0	0.0003	0.01	0.0013310	0.5500404	100	U	3.33704839	
suma			5.124	1				3.33704033	
230			5.124						
230									
Maíz trigo 70-30	2								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado na	xi/dni	
18	1		g reterilidos	Haccionifeter	пасстоп раза	acumulado re	acumulado pe	λίγαρι	
20	0.841			0	1	0	100	0	
40	0.42		1.919	0.37575876	0.62424124	37.5758762			
60	0.42		2.378	0.4656354	0.5343646	84.1394165		1.38995643	
80	0.23		0.447	0.4030334	0.91247308	92.8921089		0.40996217	
120	0.177		0.447	0.05600157	0.91247308	98.4922655		0.40330217	
170	0.123		0.280	0.03000137	0.98844723	99.6475426		0.10746763	
200			0.039	0.0019581	0.98844723	99.8433523			0.24226946
	0.075							0.02373451	0.34236846
base	0	0.0685	0.008	0.00156648	0.99843352	100	0	0.02286828	
			0					2.92082981	
suma			5.107	1					
230									
Maíz trigo 70-30	3								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841			0	1	0	100	0	
40	0.42		2.419	0.47007384				0.74555725	
60	0.25		1.998						
80					0.91391372				
120									
170									
200	0.075					99.8834046			0.36825384
base	0.073		0.006			100			3.0002000
2000		0.0003	0.000	3.33110333	3.33303403	100	0	2.71551817	
suma			5.146	1				2.71331317	

Maiz-trigo 3)-70								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18			0					, - 1	
20		0.9205		0	1	0	100	0	
4(2.319	0.45169459	0.54830541	_	54.8305415	0.71640695	
60			1.853	0.36092715	0.63907285		18.7378263	1.07739448	
80			0.493	0.09602649	0.90397351		9.13517725	0.44977279	
120			0.365	0.07109466	0.92890534		2.02571095	0.47082558	
170			0.078	0.01519283	0.98480717		0.50642774	0.14132867	
200			0.013	0.00253214	0.99746786		0.25321387	0.03069259	0.34206902
base	0		0.013	0.00253214	0.99746786		0	0.03696553	
		5.000	0				_	2.9233866	
suma			5.134	1					
Maiz-trigo 30	0-70								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	3 1								
20	0.841	0.9205		0	1	0	100	0	
40	0.42	0.6305	1.889	0.36537718	0.63462282	36.5377176	63.4622824	0.57950385	
60	0.25	0.335	2.14	0.4139265	0.5860735	77.9303675	22.0696325	1.23560149	
80	0.177	0.2135	0.591	0.11431335	0.88568665	89.3617021	10.6382979	0.53542551	
120	0.125	0.151	0.445	0.0860735	0.9139265	97.9690522	2.03094778	0.57002319	
170	0.09	0.1075	0.082	0.01586074	0.98413926	99.5551257	0.44487427	0.14754172	
200	0.075	0.0825	0.013	0.00251451	0.99748549	99.8065764	0.1934236	0.03047887	0.3198146
base	0	0.0685	0.01	0.00193424	0.99806576	100	0	0.02823702	
			0					3.12681164	
suma			5.17	1					
Maiz-trigo 30	0-70								
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	3 1								
20		0.9205		0	1		100	0	
40	0.42		1.257	0.24285162	0.75714838	24.2851623	75.7148377	0.38517307	
60	0.25	0.335	2.682	0.51816074	0.48183926	76.1012365	23.8987635	1.54674848	
80	0.177	0.2135	0.595	0.11495363	0.88504637	87.5965997	12.4034003	0.53842451	
120	0.125	0.151	0.528	0.10200927	0.89799073	97.797527	2.20247295	0.6755581	
170	0.09	0.1075	0.089	0.01719474	0.98280526	99.5170015	0.48299845	0.15995112	
200	0.075	0.0825	0.014	0.00270479	0.99729521	99.7874807	0.21251932	0.03278535	0.29676537
base	0	0.0685	0.011	0.00212519	0.99787481	100	0	0.03102472	
			0					3.36966535	
suma			5.176	1					

maiz frijol 50-50%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18			8				,	,	
20		0.9205	0.361	0.07132978	0.92867022	7.13297767	92.8670223	0.07749025	
40		0.6305	0.93					0.2914483	
60		0.335							
80		0.2135		0.17091484			34.0051373		
120		0.151						1.75736806	
170		0.1075	0.288		0.94309425	98.2216953			
200		0.0825		0.01225054				0.14849143	0.22811238
base	0			0.0055325	0.9944675	100			0.22011200
buse	J	0.0003	0.020	0.0055525	0.5544075	100	U	4.38380407	
suma			5.061	1				4.38380407	
Juliu			3.001	-					
maiz frijol 50-50%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18			J						
20		0.9205	0.359	0.07140016	0.92859984	7.14001591	92.8599841	0.07756671	
40		0.6305	0.897						
60		0.335							
80		0.2135			0.76173429				
120		0.151						1.82290432	
170		0.1075			0.98190135				
200		0.0825		0.00338107	0.99661893				0.23943244
base	0.075			0.00338107	0.99781225	100	0.21077100		0.233 132 1 1
buse	J	0.0003	0.011	0.00210773	0.55761225	100	U	4.17654357	
suma			5.028	1				4.17054557	
maiz frijol 50-50%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.434	0.08464989	0.91535011	8.46498927	91.5350107	0.09196077	
40		0.6305		0.19641116					
60	-	0.335	1.608	0.3136337	0.6863663			0.93622001	
80		0.2135		0.2927638				1.37125901	
120		0.151		0.09498732			1.75541252		
170		0.1075		0.01306807	0.98693193		0.44860542	0.12156345	
200		0.0825		0.0025356				0.0307345	0.28402771
base	0.075		0.01	0.00195046			0.1330 1301		
		2.2303	3.01	2.00200010	2.0000 .001	100	Ü	3.52078321	
suma			5.127	1				3.32370321	

Maiz-frijol 30-70%

maiz frijol 30-70%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.457	0.09167503	0.90832497	9.16750251	90.8324975	0.09959264	
40	0.42	0.6305	1.132	0.22708124	0.77291876	31.8756269	68.1243731	0.36016058	
60	0.25	0.335	1.062	0.21303912	0.78696088	53.1795386	46.8204614	0.63593766	
80	0.177	0.2135	0.706	0.14162487	0.85837513	67.3420261	32.6579739	0.66334836	
120	0.125	0.151	1.082	0.21705115	0.78294885	89.0471414	10.9528586	1.43742486	
170	0.09	0.1075	0.413	0.08284855	0.91715145	97.331996	2.66800401	0.77068415	
200	0.075	0.0825	0.105	0.02106319	0.97893681	99.4383149	0.56168506	0.25531139	0.23231732
base	0	0.0685	0.028	0.00561685	0.99438315	100	0	0.08199782	
								4.30445745	
suma			4.985	1					
maiz frijol 30-70%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.48	0.09663781	0.90336219	9.66378095	90.336219	0.10498404	
40	0.42	0.6305	1.149	0.23132676	0.76867324	32.7964566	67.2035434	0.36689414	
60		0.335	1.107	0.22287095	0.77712905	55.0835514	44.9164486	0.66528641	
80		0.2135	0.769	0.15482182		70.5657338	29.4342662	0.72516077	
120		0.151	1.254			95.8123616	4.18763841	1.6719621	
170	0.09	0.1075	0.173	0.03482988		99.2953493	0.70465069	0.32399886	
200		0.0825	0.028	0.00563721	0.99436279	99.8590699	0.14093014	0.06832976	0.2533448
base	0		0.007	0.0014093	0.9985907	100	0	0.02057374	
								3.94718983	
suma			4.967	1					
maiz frijol 30-70%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20		0.9205	0.483	0.09781288		9.78128797	90.218712	0.1062606	
40	0.42	0.6305	1.146	0.23207776	0.76792224	32.9890644	67.0109356	0.36808527	
60		0.335	1.114	0.22559741	0.77440259	55.5488052	44.4511948	0.6734251	
80		0.2135	0.776	0.15714864	0.84285136	71.2636695	28.7363305	0.73605922	
120	0.125	0.151	1.297	0.26265695	0.73734305	97.5293641	2.47063588	1.73944997	
170	0.09	0.1075	0.106	0.02146618	0.97853382	99.6759822	0.32401782	0.1996854	
200	0.075	0.0825	0.012	0.00243013	0.99756987	99.9189955	0.08100446	0.02945617	0.25878262
base	0	0.0685	0.004	0.00081004	0.99918996	100	0	0.01182547	
								3.8642472	
suma			4.938	1					

maiz-frijol 70-30%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
18	1								
20	0.841	0.9205	0.134	0.02669855	0.97330145	2.669854553	97.33014545	0.02900439	
40	0.42	0.6305	0.836	0.16656705	0.83343295	19.32655908	80.67344092	0.26418247	
60	0.25	0.335	2.814	0.56066946	0.43933054	75.39350468	24.60649532	1.67364017	
80	0.177	0.2135	0.839	0.16716477	0.83283523	92.10998207	7.890017932	0.78297318	
120	0.125	0.151	0.346	0.06893804	0.93106196	99.00378561	0.996214385	0.45654328	
170	0.09	0.1075	0.043	0.00856744	0.99143256	99.86052999	0.139470014	0.07969715	
200	0.075	0.0825	0.004	0.00079697	0.99920303	99.94022714	0.059772863	0.00966026	0.30262434
base	0	0.0685	0.003	0.00059773	0.99940227	100			
								3.30442687	
suma			5.019	1					
maiz-frijol 70-30%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
18	1								
20	0.841	0.9205	0.18	0.03582803	0.96417197	3.582802548	96.41719745	0.03892235	
40	0.42	0.6305	0.799	0.15903662	0.84096338	19.48646497	80.51353503	0.2522389	
60	0.25	0.335	3.409	0.67854299	0.32145701	87.34076433	12.65923567	2.02550147	
80	0.177	0.2135	0.429		0.91460987	95.87977707	4.12022293	0.39995376	
120	0.125	0.151	0.181	0.03602707	0.96397293	99.48248408	0.517515924	0.23858987	
170	0.09	0.1075	0.026	0.00517516	0.99482484	100	0	0.04814102	
200	0.075	0.0825	0	0	1	100	0	0	0.33296182
base	0		0	0	1	100	0	0	
								3.00334736	
suma			5.024	1					
maiz-frijol 70-30%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado retenido	acumulado pasa	xi/dpi	
18			_						
20	0.841	0.9205	0.182	0.03673058	0.96326942	3.673057518	96.32694248	0.03990285	
40			0.912						
60			3.098				15.39858729		
80			0.522				4.863773966		
120			0.208		0.9580222		0.665993946		
170			0.028		0.99434914		0.100908174		
200			0		1		0.100908174		0.3292827
base	0		0.005						
		112300	2.303			100		3.03690353	
suma			4.955	1					

frijol maiz y almidón 50-50%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18									
20		0.9205	0.31	0.05451987			94.5480127		
40		0.6305	0.805	0.1415758	0.8584242		80.3904326	0.22454528	
60		0.335	1.171	0.20594442	0.79405558	40.2040098	59.7959902	0.61475948	
80	0.177	0.2135	0.9	0.1582835	0.8417165	56.0323602	43.9676398	0.74137472	
120	0.125	0.151	1.52	0.26732325	0.73267675	82.7646852	17.2353148	1.77035265	
170	0.09	0.1075	0.867	0.15247977	0.84752023	98.0126627	1.98733732	1.41841651	
200	0.075	0.0825	0.088	0.01547661	0.98452339	99.5603236	0.4396764	0.18759526	0.19683262
base	0	0.0685	0.025	0.00439676	0.99560324	100	0	0.06418634	
								5.08045878	
suma			5.686	1					
frijol maiz y almidón 50-50%	-1	4.		f	6			/	
Malla	abertura	dp	g retenidos	traccion reter	tracción pasa	acumulado re	acumulado pa	хі/арі	
18									
20		0.9205	0.331	0.06518314			93.4816857	0.07081276	
40		0.6305	0.82	0.1614809	0.8385191		77.3335959	0.25611562	
60		0.335	1.388			50	50	0.81592824	
80	0.177	0.2135	1.183				26.7034265	1.0911744	
120	0.125	0.151	1.159	0.22823946	0.77176054	96.1205199	3.87948011	1.51151963	
170	0.09	0.1075	0.148	0.02914533	0.97085467	99.0350532	0.96494683	0.27111937	
200	0.075	0.0825	0.034	0.00669555	0.99330445	99.7046081	0.29539189	0.08115817	0.24149042
base	0	0.0685	0.015	0.00295392	0.99704608	100	0	0.0431229	
								4.1409511	
suma			5.078	1					
frijol maiz y almidón 50-50%				6	6 ./			./	
Malla	abertura 1	dp	g retenidos	tracción reter	tracción pasa	acumulado re	acumulado pa	xi/dpi	
18			0.040	0.0000000	0.00400675	6 06000404	00.4006754	0.07460600	
20		0.9205	0.348	0.06869325			93.1306751	0.07462602	
40		0.6305	0.817				77.0035531	0.25578306	
60		0.335	1.179	0.23272799		46.269246	53.730754		
80		0.2135	1.004	0.19818397			33.9123569	0.92826216	
120		0.151	1.363	0.26904856		92.992499	7.00750099	1.78177854	
170		0.1075	0.243	0.04796684			2.21081721	0.44620314	
200		0.0825	0.087	0.01717331		99.506514	0.49348598	0.20816136	0.22413653
base	0	0.0685	0.025	0.00493486	0.99506514	100	0		
								4.46156645	

frijol trigo 50-50%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.252	0.05069403	0.94930597	5.06940253	94.9305975	0.05507227	
40	0.42	0.6305	1.095	0.22027761	0.77972239	27.0971635	72.9028365	0.34936972	
60	0.25	0.335	2.446	0.49205391	0.50794609	76.3025548	23.6974452	1.46881765	
80	0.177	0.2135	0.61	0.12271173	0.87728827	88.5737276	11.4262724	0.57476219	
120	0.125	0.151	0.417	0.08388654	0.91611346	96.9623818	3.03761819	0.55554001	
170	0.09	0.1075	0.095	0.01911084	0.98088916	98.8734661	1.1265339	0.17777528	
200	0.075	0.0825	0.032	0.00643734	0.99356266	99.5171998	0.48280024	0.07802832	0.30031408
base	0	0.0685	0.024	0.004828	0.995172	100	0	0.07048179	
								3.32984724	
suma			4.971	1					
frijol									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1		0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			, - 1-	
20	0.841	0.9205	0.314	0.0614722	0.9385278	6.14722005	93.85278	0.06678132	
40		0.6305	0.912		0.82145654		75.9984338	0.28317758	
60	0.25	0.335	2.165		0.57615505	66.3860611	33.6139389	1.2652088	
80		0.2135	0.972			85.4150352	14.5849648	0.89128685	
120			0.627		0.87725137	97.6898982	2.3101018	0.81290483	
170		0.1075	0.084				0.66562255	0.15297481	
200		0.0825	0.018		0.99647612	99.6867659	0.31323414	0.04271375	0.2808377
base	0.075		0.016		0.99686766	100	0.31323111	0.04572761	0.2000377
buse	Ū	0.0003	0.010	0.00313231	0.33000700	100	Ü	3.56077554	
suma			5.108	1				3.30077334	
Suma			3.100	1					
frijol									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18			<u> </u>		p. 190			- •	
20		0.9205	0.269	0.05302582	0.94697418	5.3025823	94.6974177	0.05760546	
40		0.6305	0.813	0.1602602	0.8397398		78.6713976	0.25417954	
60			2.159		0.57441356	63.8872462	36.1127538	1.27040728	
80			0.948		0.81312833		17.4255864	0.87527716	
120	0.125	0.151	0.771		0.84801892	97.7725212	2.22747881	1.00649719	
170		0.1075	0.083		0.98363887	99.4086339	0.59136606	0.15219654	
200		0.0825	0.016		0.99684605	99.7240292	0.27597083	0.03822972	0.27065939
base	0.075		0.014		0.99724029	100	0.27537003	0.04028771	5.2,00000
	0	0.0003	0.014	0.002/33/1	3.33724023	100	U	3.6946806	
suma			5.073	1				3.0340000	

frijol trigo 70-30%									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.548	0.10717778	0.89282222	10.7177782	89.2822218	0.11643431	
40	0.42	0.6305	1.18	0.23078428	0.76921572	33.7962058	66.2037942	0.36603374	
60	0.25	0.335	0.806	0.15763739	0.84236261	49.5599452	50.4400548	0.47055939	
80	0.177	0.2135	0.826	0.16154899	0.83845101	65.7148445	34.2851555	0.75666976	
120	0.125	0.151	1.433	0.28026599	0.71973401	93.7414434	6.25855662	1.85606615	
170	0.09	0.1075	0.244	0.04772149	0.95227851	98.5135928	1.4864072	0.44392088	
200	0.075	0.0825	0.051	0.00997457	0.99002543	99.5110503	0.48894974	0.12090393	0.23798374
base	0	0.0685	0.025	0.0048895	0.9951105	100	0	0.07137952	
								4.20196768	
suma			5.113	1					
frijol Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18								· ·	
20		0.9205	0.577	0.11358268	0.88641732	11.3582677	88.6417323	0.12339237	
40				0.23011811		34.3700787			
60						50.7874016			
80						64.488189			
120				0.26673228		91.1614173			
170						97.9133858			
200				0.01417323		99.3307087			0.23341613
base	0			0.00669291		100			0.200 .202
		0.0000	0.00.	0.000003232	0.555507.05	100		4.28419448	
suma			5.08	1				1.20 113 110	
Jama			3.00	_					
frijol									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.521	0.10219694	0.89780306	10.219694	89.780306	0.11102329	
40	0.42	0.6305	1.155	0.22655944	0.77344056	32.8756375	67.1243625	0.35933297	
60	0.25	0.335	0.785	0.15398195	0.84601805	48.2738329	51.7261671	0.45964762	
80	0.177	0.2135	0.716	0.14044723		62.3185563			
120				0.2710867					
170						96.7438211			
200				0.02432326		99.1761475			0.2232729
base	0			0.00823852		100			
								4.47882387	
suma			5.098	1					

frijol trigo 30-70									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.199	0.03915011	0.96084989	3.91501082	96.0849892	0.04253135	
40	0.42		0.942			22.4473736	77.5526264	0.29393121	
60	0.25	0.335	2.055	0.40428881	0.59571119	62.8762542	37.1237458	1.20683226	
80	0.177		0.944		0.8142829	81.4479638	18.5520362	0.8698693	
120	0.125	0.151	0.828	0.16289593	0.83710407	97.7375566	2.26244344	1.07878098	
170	0.09		0.092		0.98190045	99.5475113	0.45248869	0.16836788	
200	0.075		0.011	0.00216408	0.99783592	99.7639189	0.23608105	0.02623123	0.26874434
base	0		0.012	0.00236081	0.99763919	100	0	0.03446439	
								3.7210086	
suma			5.083	1					
frijol trigo 30-70									
Malla	abertura	dp	g retenidos	fracción retor	fracción naca	acumulado ro	acumulado pa	vi/dni	
18	1	•	g reternuos	maccioni reter	maccion pasa	acumulau0 re	acumulauo pa	λi/ upi	
20	0.841		0.188	0.03663289	0.96336711	3.66328917	96.3367108	0.03979673	
40			0.188			19.7194076	80.2805924	0.03979073	
60	0.42		1.912	0.3725643		56.9758379		1.11213225	
80	0.23					77.0265004		0.9391411	
120	0.177		1.029			96.8823071	3.11769291		
					0.80144193			1.31495409	
170			0.126			99.3374903	0.66250974	0.22838913	
200	0.075		0.02			99.7272019	0.27279813	0.04723777	0.25150067
base	0	0.0685	0.014	0.00272798	0.99727202	100	0	0.03982454	
								3.97613253	
suma			5.132	1					
frijol trigo 30-70									
Malla	abertura	dp	g retenidos	fracción reter	fracción pasa	acumulado re	acumulado pa	xi/dpi	
18	1								
20	0.841	0.9205	0.207	0.04055643	0.95944357	4.05564263	95.9443574	0.04405913	
40	0.42	0.6305	0.653	0.12793887	0.87206113	16.8495298	83.1504702	0.20291653	
60	0.25		1.677			49.7061129		0.98079352	
80	0.177		1.052	0.20611285	0.79388715	70.3173981	29.6826019	0.96539978	
120	0.125		1.335			96.4733542	3.52664577	1.73218252	
170	0.09		0.15			99.4122257	0.58777429	0.27338339	
200	0.075		0.017			99.7452978	0.25470219	0.04037238	0.23384756
base	0		0.013		0.99745298	100	0	0.0371828	
			31328					4.27629005	
suma			5.104	1					