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Conoceréis la verdad; y la verdad os hará libres.

Juan 8.32

El principio de la sabidurı́a es el temor a Dios;
Los insensatos desprecian la sabidurı́a y la enseñanza.

Proverbios 1.7

En Dios siempre hay esperanza.
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sustento económico a toda nuestra familia, sino también para ser un hombre fuerte, completo y
feliz, y ası́ poder transmitirle a ella lo mejor de mi, y ayudar a que ella también sea feliz. Te amo
hija mı́a.

A mi hijo Ariyan, por recibirme con los brazos abiertos y ser el primero en apoyar la unión
de su mami y un servidor. Ariyan ha sido un gran apoyo en esta etapa de la historia de nuestra
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d
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aspectos. Muchas gracias a mi suegra la Sra América, por la gran ayuda que nos brindo ese dı́a tan
dificı́l, sin duda Dios nos ayudo a través de ella, nunca lo olvidaré. Mi cuñada Karina (Margara !!)
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el profesor Fico haya aceptado ser mi sinodal en mi examen profesional de maestrı́a y luego
ser uno de mis cotutores durante mi doctorado. Todas las veces que tuve la oportunidad de
platicar con el profesor Fico y escuchar sus enseñanzas y recomendaciones aprendı́ mucho
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Abstract for Part I

In the first part of this thesis, we build a basic foundation to develop a theory of computability
on topological manifolds. We propose a definition for the abstract term “computable manifold”
(with boundary) by introducing computability as a structure that we impose to a given topo-
logical manifold, just in the same way as differentiability or piecewise linearity are defined for
smooth and PL manifolds respectively. Using the framework of computable topology and Type-2
theory of effectivity, we develop computable versions of all the basic concepts needed to define
manifolds, like computable atlases and (computably) compatible computable atlases. We prove that
given a computable atlas Φ defined on a set M, we can construct a computable topological space
(M, τΦ, βΦ, νΦ), where τΦ is the topology on M induced by Φ and that the equivalence class of
this computable space characterizes the computable structure determined by Φ. The concept of
computable submanifold is also investigated. We show that any compact computable manifold with
boundary which satisfies a computable version of the T2-separation axiom, can be embedded as a
computable submanifold of some euclidean space Rq, with a computable embedding, where Rq

is equipped with its usual topology and some canonical computable encoding of all open rational
balls.





Abstract for Part II

The theory of distributed computing shares a deep and fascinating connection with combinatorial
and algebraic topology. One of the key ideas that facilitates the development of the topological
theory of distributed computing is the use of iterated shared memory models. In such a model
processes communicate through a sequence of shared objects. Processes access the sequence of
objects, one-by-one, in the same order and asynchronously. Each process accesses each shared
object only once. In the most basic form of an iterated model, any number of processes can crash,
and the shared objects are snapshot objects. A process can write a value to such an object, and gets
back a snapshot of its contents. It is known that the consensus task and the (n, k)-set agreement
task cannot be implemented in the iterated model.

In the second part of this thesis, we first introduce the basic iterated shared memory model of
distributed computing and explain how its runs can be described in a topological manner with sim-
plicial complexes. Then we define and describe in detail, what we call an extension of the iterated
model based on the safe-consensus task (Afek, Gafni and Lieber, DISC’09). In a safe-consensus task,
the validity condition of consensus is weakened as follows. If the first process to invoke an object
solving a safe-consensus task returns before any other process invokes it, then the process gets
back its own input; otherwise the value returned by the task can be arbitrary. As with consensus,
the agreement requirement is that always the same value is returned to all processes. In the new
iterated model with safe-consensus, the processes repeatedly: write their information to a (fresh)
shared memory array, invoke safe-consensus boxes and snapshot the contents of the shared ar-
ray. We show with examples that the topology of simplicial complexes representing executions of
protocols in the iterated model with safe-consensus is very different from the case of the basic iter-
ated model. Also, we investigate the solvability of the (n, k)-set agreement task and the consensus
task in the iterated model with safe-consensus. Our main results are (1) The consensus task can
be implemented in the iterated model with safe-consensus, using (n

2) safe-consensus invocations;
(2) The (n

2) upper bound is tight: Any implementation of consensus in the iterated model with
safe-consensus tasks needs at least (n

2) safe-consensus invocations. The lower bound proof uses
an intricate bivalency argument and also some combinatorial arguments based on connectivity of
subgraphs of Johnson graphs.





Introduction

In this thesis, we develop new connections between two mathematical fields: the theory of compu-
tation and topology. Our results can be divided into two main parts, the first part deals specifically
with the development of a theory of computability on topological manifolds; while in the second
part we apply results from topology and combinatorics to obtain new results in the theory of dis-
tributed systems. All the results presented in the second part of this thesis were published for the
first time in [CR12, CR14].

Part I: Computable manifolds

Computability theory over continuous structures began formally in 1936 with the landmark paper
of Alan Turing [Tur36] where he defined the notion of a single computable real number: x ∈ R

is computable if its decimal expansion can be calculated in the discrete sense, that is, output by a
Turing machine. Since then, other authors have developed definitions and results to try to build
a reasonable theory of computability in the continuous setting. There are two main approaches to
modeling computations with real number inputs. The first approach is given by the framework
of Computable Analysis studied in many papers and some books, e.g., [Lac55, Grz57, PER89, Ko91,
Wei00]. The second approach is the algebraic one, its development goes back to the 1950s and
focuses on the algebraic operations needed to perform tasks [BM75, BCS97]. The most influential
model is the so called BSS model developed by Blum, Shub and Smale [BSS89, BCSS98].

Computable Analysis reflects the fact that computers can only store finite amounts of informa-
tion. Since real numbers and other objects in analysis are “infinite” in nature, a Turing machine can
only use finite objects to approximate them and perform the actual computations on these finite
pieces of information, thus we have that topology plays an important role in computable analy-
sis [Wei00]. The representation approach and the framework of Type-2 Theory of Effectivity (TTE)
[KW85], a generalization of ordinary computability theory, has provided a solid background to
formalize the theory of computable analysis [Wei00]. TTE has been extensively studied and de-
veloped as a standalone topic in computability theory [Wei08]. Also, it has been generalized to a
more general model of computability for analysis [TW11]. Computable metric spaces (also known as
recursive metric spaces) [Wei93, Bra03] have been defined in computable analysis and play a most
important role in the subject, as many results of computability over euclidean spaces can be gen-
eralized to the broader world of computable metric spaces. For an overview of basic computable
analysis, see the tutorial given in [BHW08].

In recent years, as a product of various publications [Wei00, Sch03, GW05, GSW07] trying
to consider computable topology as a foundation of computable analysis, Weihrauch and Grubba
[WG09] developed a solid foundation for computability over more general spaces, where the main
objects of study are called computable topological spaces. Roughly speaking, a computable topolog-
ical space is a T0-space (X, τ) in which a base β ⊆ τ is provided with an encoding with strings
from Σ∗, such that the set of all valid strings that encode elements of β is computable and under
this encoding, intersection of base elements is computable (in a formal sense, see Definition 2.1.1).
This framework has been used to prove many important results in computable topology, like the
following:

• Dini’s Theorem states that if X is a compact topological space and { fn} is a monotonically
increasing sequence (i.e., fn(x) 6 fn+1(x) for all n and x) of continuous functions on X
which converges pointwise to a continuous function f , then the convergence is uniform. In
the paper [GW05], a computable version of Dini’s Theorem is proven.
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• A celebrated result in general topology and the theory of metric spaces states that every
second-countable regular topological space (X, τ) is metrizable, that is, X is homeomorphic
to a metric space (M, d). In [GSW07], it is proven that every computable topological space
satisfying a “computably regular” condition, has a computable embedding in a computable
metric space (which topologically is its completion). Also, a computable Urysohn Lemma is
proven.

• A computable version of the Stone-Weierstrass approximation Theorem is constructed in
[GWX08] for computable topological space which satisfy computable versions of the Haus-
dorff and locally compact properties.

The paper [WG09] is an effort to put in one place the most general and basic facts about com-
putable topology, because these facts were scattered throughout many papers (e.g., [Wei00, GW05,
GSW07, GWX08] among others). Computable versions of topological properties and separation
axioms are an important tool to obtain computable versions of important topological theorems
and the paper [Wei10] gives definitions of many computable versions of each separation axiom
and proves the relations between these computable separation axioms. More recent results of
computable topology include [RW13], where Rettinger and Weihrauch study computability as-
pects of finite and infinite products of computable topological spaces and they prove computable
versions of Tychonoff’s Theorem.

With the advent of computable topological spaces and the solid foundation of computability
in euclidean spaces provided by computable analysis, the stage is set to introduce computabil-
ity properties in a very popular class of topological spaces: Topological manifolds. A space M is a
topological manifold (with boundary) if and only if each point x ∈ M has a neighborhood homeo-
morphic to an open set of euclidean half space Rn

+ for fixed n (this integer is called the dimension of
M). Manifolds are one of the most important types of topological spaces, many problems related
to manifolds have been inspiration for some of the most beautiful mathematical constructions,
using very sophisticated and advanced techniques, as it can be seen in the foundational work of
Kirby and Siebenmann [KS77] and more recently, in the paper [Man13], where Manolescu shows
that there exist high-dimensional topological manifolds which cannot be triangulated as simpli-
cial complexes, thus refuting the Triangulation conjecture [GS80]. But despite the fact that there is a
lot of knowledge about topological manifolds, there are still unanswered questions and hard open
problems related to them. As a result of this, manifold theory is always intensively studied by the
mathematicians doing research in topology.

Additional structure can be imposed to a topological manifold, giving rise to special classes of
manifolds, like smooth manifolds [Whi36, BC70], analytic manifolds [Hör90] and piecewise linear (PL)
manifolds [Hud69, RS82]. The relationships between manifolds equipped with any or all of these
structures and standard topological manifolds are revised in many papers [Whi36, Ker60, Sma61,
KS77, Fre82].

Our contributions. In this thesis, computability enters the world of topological manifolds, we
propose a definition of the abstract term “computable manifold” by introducing computability as
a structure that we impose to a given topological manifold, just in the same way as differentiability
or piecewise linearity are defined for smooth and PL manifolds respectively. Using the framework
of computable topology and TTE, we develop effective versions of the constructs needed to define
manifolds e.g., charts and atlases. Namely, the following concepts are worked out:
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• The definition of computable atlas Φ on a set M;

• the computable topological space induced by Φ on M;

• the definition of computably compatible computable atlases;

• the definition of computable structure, which is only a equivalence class of computably com-
patible computable atlases (characterized by the equivalence class of a computable topolog-
ical space, see Definition 2.2.12).

A computable manifold is just a set M endowed with a computable structure. We present many ex-
amples of computable manifolds and their respectively computable topological spaces. We study
the relationships of computable manifolds and computable functions (with respect to the rep-
resentations induced by computable atlases) and prove that computable homeomorphisms and
computable structures behave nicely when working together. We also prove some simple (but
very useful) basic properties of computable manifolds.

Submanifolds, that is, manifolds which are inside other manifolds are an important tool to inves-
tigate manifolds. We define computable submanifolds and present some properties about them. Fi-
nally, we use all the previous definitions and results about computable manifolds to give an effec-
tive version of the following well known result concerning topological manifolds [Gau74, Mun00]:
Every compact Hausdorff topological manifold embeds in some high dimensional euclidean space. We show
that any compact computable manifold M which is also computably Hausdorff (see Definition
2.3.1) can be embedded in some euclidean space Rq, where q depends on M and we equip Rq

with its usual topology and some standard computable encoding of all open rational balls. Thus
every compact computable manifold that is computably Hausdorff can be seen as a computable
submanifold of some euclidean space.

Related work. In [CM09], Calvert and Miller give another definition for the term “computable
manifold”. Using the BSS model [BCSS98], R-computable manifolds are defined in [CM09]. Infor-
mally, a R-computable manifold is a topological manifold M, together with a finite collection of
R-computable functions (e.g. computable in the BSS sense), called the inclusion functions, which
describe the inclusion relations of all the domains of the charts of a specific atlas {ϕi : Ui → Rd}i∈N

on M. This definition is used to prove some results (in the BSS model) about the undecidability of
nullhomotopy and simple connectedness in R-computable manifolds and also how to determine
a presentation of the fundamental group of such manifolds. However, it is hard to interpret these
undecidability results in terms of practical computing, because in the BSS model, simple subsets
of R2 which can be easily “drawn”, such as the Koch snowflake and the graph of y = ex are unde-
cidable1 in the BSS model[BCSS98], thus it would seem that in general, uncomputability results in
the BSS model do not match real world computations.

In [Ilj13], Iljazović studies the computability (in the sense of TTE and computable analysis)
of compact subsets of computable metric spaces. They use these results to show that each semi-
computable compact manifold with computable boundary is computable, as a subset of a metric
space. In [BI14], the authors prove similar results for 1-manifolds, not necessary compact. In this
thesis, our focus is to develop the basic concepts and results necessary to build an effective theory
of manifolds.

1If a set C ⊆ Rn is decidable in the BSS model, then it must be a countable disjoint union of semi-algebraic sets. This
is the reason why simple sets such as the graph of y = ex are not decidable in the BSS model.
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Part II: Distributed systems

A distributed system consists of n processes (computers, small sensors, network nodes, etc.) which
communicate using some sort of communication device (shared memory, message passing, ...)
that satisfies properties about timing and failure. These processes execute a protocol (i.e., an algo-
rithm) to try to solve a specific task. The theory of distributed computing is an actively developed
field of computer science that shares a deep and fascinating connection with combinatorial and
algebraic topology. One of the key ideas that facilitates the development of the topological theory
of distributed computing is the use of iterated shared memory models, introduced in [BG97]. In
such a model, processes communicate through a sequence of shared objects. Processes access the
sequence of objects, one-by-one, in the same order and asynchronously. Each process accesses
each shared object only once.

In the most basic form of an iterated model, any number of processes can crash and the shared
objects are snapshot objects [AAD+93]. A process can write a value to such an object, and gets
back a snapshot of its contents. It is known that this model is equivalent to the standard wait-free
read/write shared memory model [BG97, GR10a], but its runs are more structured and easier to
analyze than the runs in the standard shared memory model. The recursive nature of the iterated
shared memory model was instrumental for the results in [BG97] and for the proof of the Asyn-
chronous computability theorem of [HS99]. This theorem uncovered the intimate connection that
exists between topology and distributed computing. Extensions of the basic iterated model have
also been studied, where the processes communicate through a sequence of objects more powerful
than snapshot objects [GRH06] or where the asynchrony of the system is limited to model failure
detectors [RRT08b]. For an overview of the iterated approach, the reader can refer to [Raj10].

Our purpose in this thesis is to enrich the theory of iterated models. Using as a basis the current
knowledge about iterated models and the connections with combinatorial topology, we define a
new extension of the iterated model, by adding to the basic model the ability to invoke shared
objects more powerful than the snapshot objects. Specifically, the new shared objects are based on
the properties of the safe-consensus task of [AGL09], a recently proposed variation of the consensus
task.

In the consensus task, each process receives as input a private value such that all correct pro-
cesses eventually output a value (Termination); all the processes output the same value (Agree-
ment); and the output value must be a value proposed by some process (Validity). The consen-
sus task is of fundamental importance in distributed computing, it is one of the most studied
distributed task. In the paper [Her91] Herlihy examined the power of different synchronization
primitives for wait-free computation, e.g., when computation completes in a finite number of steps
by a process, regardless of how fast or slow other processes run, and even if some of them halt
permanently. He showed that consensus is a universal primitive, in the sense that a solution to
consensus (with read/write registers) can be used to implement any synchronization primitive in
a wait-free manner. Also, consensus cannot be wait-free implemented from read/write registers
alone [FLP85, LAA87]; indeed, all modern shared-memory multiprocessors provide some form of
universal primitive.

The impossibility of solving consensus using a shared memory composed of read/write reg-
isters is one of the most important discoveries in distributed systems. This result holds even in
systems where only one process may crash [FLP85, LAA87]. Given the huge practical importance
of consensus, many situations have been studied to ameliorate the implications of this impossi-
bility result, from stronger models of distributed computing, to weaker versions of consensus. A
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popular example of this is the (n, k)-set agreement task [Cha93], a weakening of consensus. In
this task, n processes receive private input values and they output values such that Termination
and Validity of consensus are satisfied, but the Agreement property is replaced by k-Agreement:
The set of output values of all correct processes must be of size no bigger than k. It was proven in
STOC’93 by three independent teams [BG93a, HS93, SZ93] and using topological methods, than
(n, k)-set agreement cannot be solved in the iterated model with snapshot objects. This result
holds even when k = n− 1. Because the iterated model of distributed computing is equivalent to
the standard wait-free shared memory model [BG97, GR10a], this result is also true in the standard
model. The impossibility of set agreement in shared memory systems was a surprising discovery,
because it is also known that the set agreement task is strictly weaker that the consensus task.

Afek, Gafni and Lieber introduced the safe-consensus task in [AGL09], which seemed to be a
synchronization primitive much weaker than consensus. In the safe-consensus task, the processes
agree on an unique output value that must satisfy the Termination and Agreement properties of
consensus, but the validity requirement becomes the following: if the first process to invoke the
task returns before any other process invokes it, then it outputs its input; otherwise, when there
is concurrency, the consensus output can be arbitrary, not even the input of any process. In any
case, all processes must agree on the same output value. Trivially, consensus can implement safe-
consensus. Surprisingly, Afek et all [AGL09] showed that the converse is also true, by presenting
a wait-free implementation of consensus using safe-consensus black-boxes and read/write regis-
ters. Thus, consensus and safe-consensus are wait-free equivalent, because one can use one task
as a black box to implement the other. Why is it then, that safe-consensus seems a much weaker
synchronization primitive?

Our contributions. We use the iterated model of [BG97] and the safe-consensus task of [AGL09]
to define a new model of distributed computing and we investigate some of the topological prop-
erties of this new model and the solvability of the consensus and set agreement tasks. The iterated
model defined in this thesis, is an extension of the iterated model of [BG97] with the power of
safe-consensus objects. A safe-consensus object is a shared object that receives input values from the
processes and returns to the processes output values consistent with the safe-consensus task spec-
ification. The new model allows the processes to communicate by using a sequence of snapshot
objects and safe-consensus objects. As with any iterated model, computation proceeds in rounds,
accessing copies of the objects, asynchronously, and in the same order. In each iteration, each pro-
cess first writes to the shared memory, then it invokes a safe-consensus object and finally it takes
a snapshot of the shared memory.

First, we define in detail the new iterated model of distributed computing, enriched with the
safe-consensus shared objects, we call it the iterated model with safe-consensus objects. Once we have
introduced to the reader the new model, we begin to investigate some of its properties. In general,
it is difficult to work with shared objects more powerful than shared memory, because even if
our protocols are specified in an iterated form, the model can lose its recursive nature because
of the invocations made to the shared objects, thus it can be very difficult to prove something
useful about the new model, all because of the power added by the new shared objects. Thus, our
strategy to begin our work with the iterated model with safe-consensus objects is the following.
We will put a (temporally) additional restriction in the iterated model with safe-consensus:

RSC Each safe-consensus object in the sequence must be invoked by all the processes.
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(In the general iterated model with safe-consensus, the processes can invoke different safe-
consensus objects in each round of a protocol). We call this model of computation the iterated
shared memory with full safe-consensus objects (IFSC) model. It has good advantages to begin our re-
search of the iterated model with safe-consensus objects with the addition of the restriction RSC,
it will allow us to introduce basic techniques in an easy way and also it will be easier to study the
topological properties of the new model, so that we will be able to obtain a good deal of informa-
tion on the new model, even with the restriction RSC. Indeed, we obtain our first contributions in
the IFSC model, by analyzing the topology of this model and the solvability of the (n, n− 1)-set
agreement and the consensus tasks. Specifically, the first results we present are:

• The (n, n − 1)-set agreement task can be implemented in the IFSC model using only one
safe-consensus object (with a simple one-round protocol, Theorem 6.3.2);

• It is impossible to solve the consensus task for n processes in the IFSC model (Theorem 6.3.6).

These results say that the IFSC model is indeed more powerful than the basic iterated model, be-
cause (n, n− 1)-set agreement cannot be solved using only shared memory [BG93a, HS93, SZ93].
But the IFSC model still has limitations as it cannot solve consensus (while consensus is solvable
using safe-consensus objects [AGL09] without restrictions). We will see that this impossibility
does not come from the fact that we are working in an iterated model, rather, it is caused by the
restriction RSC of the IFSC model.

Also, in connection with the topological theory of distributed computing to represent execu-
tions of protocols in the iterated model (and in the extended IFSC model), we will have something
to say about Theorem 6.3.6. It is known that the protocol complexes in the iterated shared memory
model are connected and because of this, it is impossible to solve consensus [BMZ90, HS99]. In
this thesis, we argue that the protocol complexes in the IFSC model are disconnected, yet, these
protocols cannot solve consensus. In summary, our aims with the IFSC model, include explaining:

1. How to analyze protocol complex connectivity in an iterated model;

2. how does the power of the communication objects affect the connectivity of a protocol com-
plex;

3. and what are the consequences of connectivity for task solvability.

After we have completed our work with the IFSC model, we are ready to remove the restriction
RSC and turn back to the iterated model with safe-consensus objects without restrictions. In this
model, we focus entirely our attention at the solvability of the consensus task. Our results with
the iterated model with safe-consensus objects are the following:

• We present a simple protocol to solve the consensus task in the iterated model with safe-
consensus objects, using (n

2) safe-consensus shared objects. This protocol is based on the
new g-2coalitions-consensus task, a new distributed task that we propose, which may be of
independent interest.

• We prove that any wait-free implementation of consensus for n processes in the iterated
model with safe-consensus requires (n

2) safe-consensus black-boxes (Theorem 9.3.6 and
Corollary 9.3.7).
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Thus, we show that while consensus and safe-consensus are wait-free equivalent, safe-consensus
is a weaker communication primitive than consensus, as long as complexity is concerned. These
results also say that the impossibility to solve the consensus task in the IFSC model comes precisely
because of restriction RSC and not from the fact that we are working in an iterated model.

Our main result is the lower bound on the number of safe-consensus objects needed to solve
consensus. It uses connectivity arguments based on subgraphs of Johnson graphs [DL98], and an
intricate combinatorial and bivalency argument, that yields a detailed bound on how many safe-
consensus objects of each type (fan-in) are used by the implementation protocol. To our knowl-
edge, this is the first time in which an attempt is made to study an iterated model by adding
objects as powerful as the consensus task and also it is the first time that Johnson graphs are used
in distributed computing.

Related work. Researchers in distributed computing theory have been concerned from early on
with understanding the relative power of synchronization primitives. The wait-free context is
the basis to study other failure models e.g. [BGLR01], and there is a characterization of the wait-
free, read/write solvable tasks [HS99]. As we have said before, the weakening of consensus, set
agreement, where n processes may agree on at most n− 1 different input values, is still not wait-free
solvable [BG93a, HS99, SZ00] with read/write registers only. The renaming task where n processes
have to agree on at most 2n − 1 names has also been studied in detail e.g. [ABND+90, CRR11,
CnHR12, CnR12b].

Iterated models e.g. [BG97, HR10b, HR13, Raj10, RRT08a, RRT08b] are an important and useful
tool in distributed systems, they facilitate impossibility results, and (although more restrictive)
facilitate the analysis of protocols [GR10b]. We follow in this thesis the approach of [GRH06] that
used an iterated model to prove the separation result that set agreement can implement renaming
but not vice-versa, and expect our result can be extended to a general model using simulations , as
was done in [GR10a] for the separation result of [GRH06]. For an overview of the use of topology
to study computability, including the use of iterated models and simulations see [HKR13].

Afek, Gafni and Lieber [AGL09] presented a wait-free protocol that implements consensus
using (n

2) safe-consensus black-boxes (and read/write registers). Since our implementation uses
the weaker, iterated form of shared-memory, it is easier to prove correct. The safe-consensus task
was used in [AGL09] to show that the g-tight-group-renaming task [AGL+08] is as powerful as
consensus for g processes.

The idea of the classical consensus impossibility result [FLP85, LAA87] is (roughly speaking)
that the executions of a protocol in such a system can be represented by a graph which is always
connected. The connectivity invariance has been proved in many papers using the critical state
argument introduced in [FLP85], or sometimes using a layered analysis as in [MR02]. Connectivity
can be used also to prove time lower bounds e.g. [ADLS94, DM90, MR02]. We extend here the
layered analysis to prove a lower bound on the number of objects needed to implement consensus.

Outline of the thesis

This thesis is organized as follows. Part I is devoted to the study of computable manifolds and is
divided into four chapters. Chapter 1 gives a brief introduction to the basic definitions and results
on topology and standard computability theory. Extended material on these topics can be found
on any standard textbook about each subject [Arm83, KW85, Eng89, Sip96, Koz97, Mun00, Coo04].
It is in this chapter where we introduce to the reader the world of Type-2 theory of effectivity (TTE)
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[Wei00, BHW08, Wei08], an extension of basic theory of computability. TTE will allow us to build
programs which can manipulate objects represented by an infinite amount of information. In
Chapter 2 we give a short overview of the field of Computable topology. The essential definition of
computable topological space is constructed and many definitions and results related to this concept
are presented. The framework of TTE is used to build ways to represent points, open, closed and
compact subsets of a computable space. The concept of computable function between computable
topological spaces is defined, together with other useful constructs, like computable subspaces,
computable homeomorphisms and embeddings. Many technical results are proven in this chapter.
In Chapter 3 we put at work all the definitions and results of previous chapters to build our
definition of computable manifold. We do this by first introducing computable charts and computable
atlases and with these concepts at hand, we can formulate the definition of computable structure
(an equivalence class of computable atlases on a given set). We show that a computable structure
on a set X is characterized by a computable topology on X (just in the same way a manifold
structure on X is characterized by a corresponding topology on X). A computable manifold will
be defined as a set M together with a computable structure. We also prove many basic results
about computable manifolds, which are computable versions of well known results of standard
manifold theory. In Chapter 4 we introduce computable submanifolds and we present the main result
of the first part of this thesis, which is an embedding theorem for compact computable manifolds:
Any compact n-dimensional computable manifold (satisfying a computable Hausdorff axiom) can
be embedded in Rq with a computable embedding, where q is sufficiently large and depends on
n. Our conclusions for the first part can be found in Section 10.1 of Chapter 10.

Part II is concerned with the iterated shared memory model of distributed computing ex-
tended with the power of safe-consensus tasks and contains five chapters. In Chapter 5, we begin
our study of distributed system, first we introduce the most basic definitions needed to work
with distributed systems, (i.e. processes, registers, protocols, events, executions, distributed tasks
[BG93a, HS99, SZ00, BGLR01, AR02, Gaf09, Raj10]) and after that, we define the basic iterated
shared memory model of distributed computing (called simply the iterated model). The remainder of the
chapter deals with the properties of the iterated model. We show how the recursive nature of the
protocols written in the iterated model allow us to interpret the executions of a protocol (evolving
in time) as simplicial complexes (protocol complexes). At the end of the chapter, it is argued that
the connectivity of complexes representing executions of a protocol, is a fundamental property to
determine if a protocol in the iterated model (or any other model) will be able to solve a given
task. The last result of the chapter is a short proof of the impossibility to solve the consensus task
[FLP85, LAA87] with a protocol in the iterated model. In Chapter 6 we give extended versions of
many definitions of Chapter 5, so that we are able to define a new model of distributed comput-
ing, which we call the iterated model with safe-consensus shared objects, this new model extends the
operations of reading and writing to the shared memory of the system, with the ability to invoke
shared objects that satisfy the properties of the safe-consensus task. We show how the topology
of the protocol complex of a protocol in the iterated model with safe-consensus, is very different
from the topology of the protocol complex of a protocol in the basic iterated model, being the
connectivity of the complexes the big difference. We end this chapter with two interesting results:
(1) We prove the existence of a correct protocol in the iterated model with safe-consensus objects,
which can solve the (n, n− 1)-set agreement task (in one round !!); (2) The last result is the impos-
sibility to solve the consensus task in the iterated model with safe-consensus objects, if we restrict
the use of the safe-consensus tasks in the extended iterated model in the following way: In each
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iteration of a protocol, all processes must invoke the same safe-consensus object. in Chapter 7,
we show that in the general iterated model with safe-consensus (without the previous restriction),
we can solve the consensus task with an iterated protocol that uses (n

2) safe-consensus objects.
Although the given protocol is a bit complicated in its formal specification, the intuitive ideas be-
hind its execution are easy to understand and we explain them in detail. The correctness proof of
the protocol is well structured, thanks to the recursive nature of the iterated model. It is in this
chapter where we introduce the g-2coalitions-consensus task, an intermediate task that we use in
the formal specification of the protocol that solves consensus. In Chapter 8, we begin our road to
prove the main result of the second part of this thesis: A (matching) lower bound on the num-
ber of safe-consensus objects needed to solve the consensus task with a protocol in the iterated
model with safe-consensus. This lower bound shows that although consensus and safe-consensus
are wait-free equivalent, complexity-wise they are very different, being safe-consensus a weaker
communication primitive than consensus. Our lower bound result will be obtained by counting
in how many different ways the processes must be able to invoke safe-consensus shared objects in
the executions of a protocol. Chapter 8 contains many technical results that describe the structure
of the iterated protocols with safe-consensus objects. This results give us information about the
1-dimensional connectivity of the protocol complexes of iterated protocols with safe-consensus.
Thus we do not use the framework of topology and simplicial complexes explicitly, instead we
rely on simple combinatorics and graph theory. In Chapter 9 we obtain the lower bound result, by
combining the results from Chapter 8 with some results regarding the connectivity of subgraphs
of Johnson graphs [DL98]. Our conclusions for the second part can be found in Section 10.2 of
Chapter 10.
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Part I:
Computable manifolds





The “computable” numbers may be described briefly as the real numbers whose expressions as a decimal
are calculable by finite means. Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions of an integral variable or a real or
computable variable, computable predicates, and so forth. The fundamental problems involved are, however,
the same in each case, and I have chosen the computable numbers for explicit treatment as involving the
least cumbrous technique. I hope shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development of the theory of functions of a real
variable expressed in terms of computable numbers. According to my definition, a number is computable if
its decimal can be written down by a machine.

Alan M. Turing.





1
Basic topology and computability theory

We begin our study of computable manifolds. In this chapter, we summarize many basic defini-
tions, facts and technical details about topological manifolds and computability theory that will
be used throughout this thesis. The reader can check the references for more complete information
on these topics.

The chapter is organized as follows. Section 1.1 contains many basic definitions and results
concerning topological manifolds (with boundary). In Section 1.2, we present basic definitions of
standard computability theory. In Section 1.3, we give a short introduction to the Type-2 theory of
effectivity (TTE for short). We first define Type-2 machines as a natural extension of standard Turing
machines and define computable string functions in TTE. The next step will be to define standard
topologies on Σ∗ and Σω, the sets of finite and infinite strings respectively and prove some basic
results concerning the relationship between computability in TTE and topology. Finally, Multi-
representations are defined and many useful basic results are proven.

1.1 Topology

We assume that the reader has a basic knowledge about general topology. Our references are
[Arm83, Eng89, Mun00], but any standard textbook can be used as a reference.

Definitions 1.1.1. The power set of any set A will be denoted by P(A). A function f : A → B
between the sets A, B, which is defined on a subset of A, is called a partial function and is denoted
by f : ⊆ A→ B. When f is defined on the entire set A, f is called a total function and we omit the
“⊆” symbol. The identity function on A is 1A : A → A. For a topological space (X, τ), we denote
byA the set of closed subsets of X and K will denote the set of compact subsets of X. A set Z ⊆ X
is a Gδ-set if Z is a countable intersection of open sets in X. The symbols N, Z, Q and R are used to
represent the set of natural numbers; the set of integers; the set of rational numbers and the set of real
numbers respectively. Let Rn = {(x1, . . . , xn) | xi ∈ R} denote euclidean space of dimension n > 0.
If (M, d) is a metric space with metric d : M×M→ R, then for any x ∈ M and 0 < r ∈ R, let

B(x, r) = {y ∈ M | d(x, y) < r} and B(x, r) = {y ∈ M | d(x, y) 6 r}
denote the open and closed ball with center x and radius r.

We endow the euclidean space Rn with its standard topology, which is induced by the metric
d(x, y) = ‖x − y‖; Dn = B(0, 1) is the n-disk (or unit ball), its topological boundary is known as
the (n− 1)-sphere Sn−1, Rn

+ = {x ∈ Rn | xn > 0} is called the upper half space and ∂Rn
+ = {x ∈

Rn | xn = 0} is the boundary of Rn
+. All the previous subsets of Rn are equipped with subspace

topology.
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CHAPTER 1. TOPOLOGY AND COMPUTABILITY THEORY

1.1.1 Topological manifolds

Our main objects of study are topological manifolds [KS77, Gau74, BC70, Fre82]. We first present
one of the most common approaches to define them.

Definition 1.1.2. By a topological n-manifold (or just manifold) we mean a space M such that every
point in M has an open neighborhood which is homeomorphic to an open subset of euclidean
space Rn. The integer n is called the dimension of the manifold and is denoted by dim M.

Accordingly to this definition, a topological manifold is just a locally euclidean space in which
all the points have the same local dimension. A manifold M of dimension n is also denoted by
Mn. Most authors require their manifolds to satisfy further topological properties. At the least,
manifolds are usually paracompact and Hausdorff. We will not assume any of these properties
until we explicitly require them. It is easy to prove that the next result holds.

Proposition 1.1.3. The following are equivalent for a space M.

i) M is a topological manifold.

ii) Every point of M has a neighborhood homeomorphic to an open ball in Rn.

iii) Every point of M has a neighborhood homeomorphic to Rn itself.

A neighborhood in M homeomorphic to an open ball in Rn is called an euclidean ball. The set
of all euclidean balls in M form a basis for the topology of M. Being a topological manifold is a
topological property. If M is a manifold and f : M → X is a homeomorphism, then X is also a
topological manifold. We now present some examples.

Example 1.1.4. Euclidean space Rn is the prototypical n-manifold. Each point x ∈ Rn has the
open neighborhood Ux = Rn, which is clearly homeomorphic to Rn.

Example 1.1.5. Any discrete space X is a 0-manifold. For i ∈ X, the open set Ui = {i} is homeo-
morphic to 0-dimensional euclidean space.

Example 1.1.6. Any open subset U ⊆ M of a n-manifold M is a n-manifold with the subspace
topology. For let x ∈ U, then as M is a manifold, there exists an open neighborhood Vx ⊆ M with
x ∈ Vx and Vx is homeomorphic to an open set of Rn. Then U ∩ Vx is an open set in U (and M)
and clearly U ∩Vx is homeomorphic to an open set in Rn, so that U is an (open) n-manifold.

Example 1.1.7. Let I be an index set and for each α ∈ I, suppose that Mα is a manifold with
dim Mα = n. Then the disjoint union M =

⋃
α∈I Mα is a n-manifold.

Lemma 1.1.8. If M is a m-manifold and N is a n-manifold, the topological product M× N is a manifold
such that dim(M× N) = m + n.

Proof. Let (x, y) ∈ M×N. We need to show that (x, y) has an open neighborhood on M×N which
is homeomorphic to an open set of Rm ×Rn = Rm+n. Because M and N are manifolds, there exist
open neighborhoods U ⊆ M, V ⊆ N of x and y respectively, such that f : U → Rm, g : V → Rn are
homeomorphisms of U and V onto open subsets of Rm and Rn respectively. Then the product

f × g : U ×V → Rm ×Rn

is an homeomorphism of U ×V onto an open subset of Rm ×Rn. As U ×V is an open neighbor-
hood of (x, y) in M× N and (x, y) is any point, Definition 1.1.2 holds for M× N, so that M× N is
a topological manifold of dimension m + n.
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1.1. TOPOLOGY

We will see more examples later.

1.1.2 Charts and atlases

We can also define topological manifolds without any explicit reference to some topology. This is
done via the concepts of chart and atlas.

Definition 1.1.9. Let X be a set. A coordinated chart (or just chart) on X is a pair (ϕ, U) where U ⊆ X
and ϕ is a bijective function of U onto an open subset of Rm. An n-dimensional (topological) atlas
on X is a collection {(ϕi, Ui)}i∈I of coordinated charts on X such that

a) the sets Ui’s cover X;

b) for each i, j ∈ I, ϕi
[
Ui ∩Uj

]
and ϕj

[
Ui ∩Uj

]
are open subsets of X;

c) Each map (called a transition function) ϕj ϕ
−1
i : ϕi

[
Ui ∩ Uj

]
→ ϕj

[
Ui ∩ Uj

]
is a homeomor-

phism between open subsets of Rn.

Suppose that Φ = {(ϕi, Ui)}i∈I is a topological atlas on X. Define the set τΦ ⊂ 2X as follows:
V ∈ τΦ if and only if ϕi

[
V ∩Ui

]
is open in Rn for each i ∈ I.

Proposition 1.1.10. For any topological atlas Φ on X, τΦ is a topology in X.

Proof. We first check that ∅, X ∈ τΦ. As it holds for any i ∈ I that

ϕi
[
∅
]
= ∅ and ϕi

[
X ∩Ui

]
= ϕi

[
Ui
]
,

then clearly ∅, X ∈ τΦ. To check that arbitrary unions and finite intersections of elements of τΦ
are also members of τΦ, notice that as ϕi is bijective for any i, then

ϕi
[
(
⋃

l Vl) ∩Ui
]
=
⋃

l ϕi
[
Vl ∩Ui

]
;

ϕi
[
(
⋂

l Vl) ∩Ui
]
=
⋂

l ϕi
[
Vl ∩Ui

]
;

so that τΦ is closed under arbitrary unions and finite intersections. Therefore τΦ is a topology in
X.

Thus, an atlas Φ induces a topology τΦ in X. This topology has two very important properties:

• Each set Ui is open in X.

• Each map ϕi : Ui → ϕi
[
Ui
]

is a homeomorphism.

This says that the set X, equipped with the topology τΦ becomes a topological manifold as in
Definition 1.1.2. However, a set X may have several different atlases defined on it and two such
atlases need not induce the same topology on X. We need to be able to say when two distinct
atlases induce the same topology on X. This can be achieved with the following concept.

Definition 1.1.11. Two n-dimensional atlases {(ϕi, Ui)}, {(ψj, Vj)} on X are compatible if their
union is an atlas on X.

7



CHAPTER 1. TOPOLOGY AND COMPUTABILITY THEORY

This means that all the extra maps ψj ϕ
−1
i must be homeomorphisms on their respective do-

mains.

Lemma 1.1.12. Let X be a set and Φ1, Φ2 two n-dimensional atlases on X. Then Φ1 and Φ2 are compatible
if and only if they induce the same topology on X.

Proof. (⇒) Suppose that Φ1 = {(ϕi, Ui)}, Φ2 = {(ψj, Vj)} are compatible atlases on X and let
U ∈ τΦ1 . By hypothesis, Φ1 and Φ2 are compatible and that means, by Definition 1.1.11, that
Φ1 ∪Φ2 is an atlas on X. Using property b) of Definition 1.1.9, we can prove that Vj ∈ τΦ1 for each
j and as U ∈ τΦ1 , U ∩Vj is open in the topology τΦ1 and that implies that ϕi

[
U ∩Vj ∩Ui

]
is open

in Rn for all i. By c) of Definition 1.1.9, the function

ψj ϕ
−1
i : ϕi

[
Vj ∩Ui

]
→ ψj

[
Vj ∩Ui

]

is an homeomorphism, thus an open map, so that it sends the open set ϕi
[
U ∩ Vj ∩ Ui

]
onto

the open set ψj
[
U ∩ Vj ∩ Ui

]
. Now we know that ψj

[
U ∩ Vj

]
= ψj

[
(U ∩ X) ∩ Vj

]
= ψj

[
(U ∩

(
⋃

i Ui))∩Vj
]
= ψj

[
(
⋃

i(U ∩Ui))∩Vj
]
= ψj

[⋃
i(U ∩Ui ∩Vj)

]
=
⋃

i ψj
[
U ∩Ui ∩Vj

]
. In conclusion,

ψj
[
U ∩ Vj

]
=
⋃

i ψj
[
U ∩ Ui ∩ Vj

]
and this says that ψj

[
U ∩ Vj

]
is open in Rn for each j, so that

U ∈ τΦ2 . We have proven that τΦ1 ⊆ τΦ2 and to prove the other inclusion, the argument is
symmetric. Hence, τΦ1 = τΦ2 and the two atlases induce the same topology on X.

(⇐) Since τΦ1 = τΦ2 , it is straightforward to prove that Φ1 ∪Φ2 is a n-dimensional atlas on X,
so that Φ1 and Φ2 are compatible atlases, according to Definition 1.1.11.

Thus, two atlases induce the same topological properties on a set X precisely when they are
compatible. The compatibility of atlases is clearly an equivalence relation on the set1 of all atlases
of dimension n on X.

Definition 1.1.13. Let M be a set. An equivalence class [Φ] of atlases on M is called a TOP structure
on M.

If M has a topology τ and an atlas defined on it, then the topology induced by the atlas is
the same as τ if and only if each chart ϕ : U → Rn is a homeomorphism in the topology τ. In
summary, a TOP structure [Φ] on X is characterized by the topology induced by every atlas that
belongs to [Φ].

Lemma 1.1.14. A set M is a topological n-manifold if and only if it has a TOP structure of dimension n.

Proof. (⇒) Assume that M is a n-manifold, according to Definition 1.1.2. For each point x ∈ M,
let Ux be an open neighborhood of x in M, homeomorphic to an open set of Rn, via the homeo-
morphism fx. Then the set

Φ = {( fx, Ux) | x ∈ M},
is a topological atlas for M, with dimension n. Therefore M has a TOP structure induced by Φ.
(⇐) If M has an atlas Φ, then this atlas induces a topology τΦ on M, and by the properties of Φ,
M becomes a topological manifold with dim M = n.

1The collection of all n-dimensional atlases on X can be seen as a subset of P((Rn)X ×P(X)), by identifying a chart
with a pair ( f : ⊆ X → Rn, U), where U ⊂ X is the domain of f .
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1.1. TOPOLOGY

Notice that by the comment at the end of Definition 1.1.13, The topology τ of M as a topological
manifold and the topology τΦ induced by the atlas Φ (and every atlas compatible with it) are the
same.

Example 1.1.15. We construct an atlas for the 1-sphere S1 ⊂ R2. Let U+, U− be defined as

U+ = {(x, y) ∈ S1 | y > 0} and U− = {(x, y) ∈ S1 | y < 0},

and let f+ : U+ → R, f− : U− → R be given by f+(x, y) = f−(x, y) = x, these two functions are
injections of U+, U− onto (−1, 1) ⊂ R, thus the pairs ( f+, U+), ( f−, U−) can be seen to be charts
on S1, but still U+ ∪U− 6= S1. Now let

V+ = {(x, y) ∈ S1 | x > 0} and V− = {(x, y) ∈ S1 | x < 0},

and define g+ : V+ → R, g− : V− → R as g+(x, y) = g−(x, y) = y. We claim that the set

Φ = {( f+, U+), ( f−, U−), (g+, V+), (g−, V−)}

is an 1-dimensional atlas on S1. We need to show that conditions a)-c) of Definition 1.1.9 are
satisfied by Φ. Part a) is clearly true; to show part b), notice that the sets ϕ

[
U ∩ V

]
(ϕ ∈

{ f+, f−, g+, g−}; U, V ∈ {U+, U−, V+, V−}) are

f+
[
U+ ∩U−

]
= f−

[
U+ ∩U−

]
= ∅;

f+
[
U+ ∩V+

]
= g+

[
U+ ∩V+

]
= (0, 1);

f+
[
U+ ∩V−

]
= (−1, 0);

g−
[
U+ ∩V−

]
= (0, 1);

f−
[
U− ∩V+

]
= (0, 1);

g+
[
U− ∩V+

]
= (−1, 0);

f−
[
U− ∩V−

]
= g−

[
U− ∩V−

]
= (−1, 0);

g+
[
V+ ∩V−

]
= g−

[
V+ ∩V−

]
= ∅;

and the sets ∅, (0, 1), (−1, 0) are open sets of R, thus b) is true for Φ. Finally, to prove part c), we
only show that one of the transition maps is an homeomorphism, the other cases are similar. Take
the composition f+g−1

− : g−
[
U+ ∩V−

]
→ f+

[
U+ ∩V−

]
, a small computation shows that

f+g−1
− (y) = −

√
1− y2, y ∈ (0, 1),

and with the given parameters, it is easy to check that f+g−1
− is an homeomorphism of g−

[
U+ ∩

V−
]
= (0, 1) onto f+

[
U+ ∩V−

]
= (−1, 0). Φ fulfills Definition 1.1.9, so that it is an atlas for S1.
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CHAPTER 1. TOPOLOGY AND COMPUTABILITY THEORY

Manifolds with boundary

The concept of manifold (Definition 1.1.2) does not include some simple sets like the n-disk Dn

and Rn
+ among others. We now extend the definition of topological manifold to encompass a

broader range of topological spaces. Basically, we extend the concepts of charts and atlases given
in Definition 1.1.9.

Definition 1.1.16. A coordinated chart on set X is a pair (ϕ, U) where U ⊆ X and ϕ is a bijective
function of U onto an open subset of Rm

+. An n-dimensional atlas on X is a collection {(ϕi, Ui)}i∈I
of coordinated charts on X such that

a) X =
⋃

i Ui;

b) for each i, j ∈ I, ϕi
[
Ui ∩Uj

]
is open in Rn

+;

c) Each transition function ϕj ϕ
−1
i : ϕi

[
Ui ∩ Uj

]
→ ϕj

[
Ui ∩ Uj

]
is a homeomorphism between

open subsets of Rn
+.

Everything that we said previously about atlases applies to the new atlases on a set X. Defini-
tion 1.1.11 of compatibility of atlases is also valid. A n-dimension manifold with boundary is a set M
together with a equivalence class [Φ] of topological atlases (in the new sense).

Definition 1.1.17. Let (M, [Φ]) be a n-manifold with boundary. We define the boundary ∂M and
the interior Int M of M as follows.

∂M = {x ∈ M | (∃(ϕ, U) ∈ Φ)(x ∈ U ∧ ϕ(x) ∈ ∂Rn
+)};

Int M = M− ∂M.

By the Invariance of domain theorem, ∂M is well defined, i.e., it does not depend on the chart.
It is easy to see that ∂M is a manifold of dimension n − 1 and Int M is a n-manifold, such that
∂∂M = ∅ and ∂

(
Int M

)
= ∅. A manifold N with ∂N = ∅ is called a manifold without boundary (or

with empty boundary). Thus, Definition 1.1.2 correspond to manifolds with empty boundary. Here
are some examples of manifolds with boundary.

• The half space Rn
+ is a n-manifold with boundary ∂Rn

+;

• The unit ball Dn is a manifold and its boundary is the (n− 1)-sphere Sn−1;

• The Möbius band is a 2-dimension manifold with boundary the 1-sphere;

• The cylinder I × S1 is a 2-manifold with boundary the union of two disjoint circles.

The last example is a special case of a known result, which generalizes Lemma 1.1.8.

Lemma 1.1.18. Let M, N be manifolds such that dim M = m, dim N = n. Then M× N is a (m + n)-
manifold, such that

∂
(

M× N
)
= (∂M× N) ∪ (M× ∂N).

More examples will come in the next chapters and there are even more in the references [BC70,
Gau74, Mun00]. The most common way to define topological manifolds is using locally euclidean
spaces. The definitions of charts and atlases are very handy in the context of differentiable and PL
manifolds [BC70, Hud69], where the transition maps are required to have the additional properties
of being Ck (k ∈ N ∪ {∞}) and/or piecewise linear (PL) functions respectively. Atlases will be
very useful in Chapter 3 for our work too, when we define computable manifolds using charts
and atlases.
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1.1.3 Submanifolds and embeddings

Manifolds which are subsets of other manifolds are an important tool to study topological man-
ifolds and their properties. A topological manifold N is a submanifold of the manifold M if and
only if N ⊂ M and N is a subspace of M (that is, the topology of N is subspace topology). An
easy example of a submanifold is any open set U ⊆ M of any given manifold. The n-disk Dn is a
compact submanifold of Rn+1.

There are many facts [KS77] in the theory of manifolds (topological, differentiable and/or PL)
which can be shown to be true using the well known result that every Hausdorff n-manifold
M (of any kind) embeds in some high dimensional euclidean space Rq, where q depends on n.
Numerous versions of this embedding theorem exist, the big difference between them being the
dimension of the space Rq. It was proven by Whitney [Whi36] that if M is smooth (C∞), then it
embeds in R2n and this is the best result possible. The same is true for the piecewise linear case
using similar constructs to those used in the smooth case. If M has no additional structure, it can
be embedded in R2n+1 and again, this is the lowest possible dimension for the euclidean space.
This last result can be proven by means of dimension theory [HW48, Eng95, Mun00].

We will study submanifold and embeddings from the computational point of view in chapter
4, where we will prove an effective (i.e. computable) version of the next Theorem.

Theorem 1.1.19. Let Mn be a compact Hausdorff manifold. Then for some q, there is an embedding
e : M ↪→ Rq.

A simple proof of Theorem 1.1.19 can be found in [Gau74]. We remark that this result is the
“easy version” of the embedding theorem for topological manifolds.

1.2 Computability theory

In this section, we give a brief summary of definitions and terminology that we will be using. The
reader that wishes to check a full introduction to basic computability theory and Type-2 theory of
effectivity (TTE) can see the references [KW85, Koz97, Sip96, Coo04, Wei00, Wei08].

1.2.1 Basic notions of computability theory

To define a computable theory for continuous structures, our first step is to introduce the concept
of multi-function [Wei00, Wei08]. This notion generalizes the definition of function and although
multi-functions are very similar to set relations, they are not the same. The idea of multi-functions
is fundamental in TTE, many computational problems themselves are more naturally expressed
as multi-functions (i.e., multiple values assigned to a single element) rather than as standard func-
tions.

Definition 1.2.1. Let A, B be sets. A multi-function from A to B is a triple f = (A, B, R f ) such
that R f ⊆ A× B (this is the graph of f ). We will denote it by f : A ⇒ B. The inverse of f is the

multi-function f−1 def
= (B, A, R f−1), where R f−1

def
= {(b, a) | (a, b) ∈ R f } ⊆ B× A. For X ⊆ A, let

f
[
X
] def
= {b ∈ B | (∃a ∈ X)(a, b) ∈ R f }, dom

(
f
) def
= f−1[B

]
and range

(
f
) def
= f

[
A
]
. For a ∈ A, let

f (a) def
= f

[
{a}
]
.

11



CHAPTER 1. TOPOLOGY AND COMPUTABILITY THEORY

If it happens that for every a ∈ A, f (a) contains at most one element, f can be treated as a
usual partial function denoted by f : ⊆ A → B. In contrast to relational composition, for multi-
functions f : A ⇒ B and g : B ⇒ C, we define the composition g ◦ f : A ⇒ B by [Wei08, Section
3]

a ∈ dom
(

g ◦ f
)
⇔ f (a) ⊆ dom

(
g
)

and g ◦ f (a) def
= g

[
f (a)

]
.

Definition 1.2.2. For a multi-function f : X ⇒ Y and Z ⊆ Y, define f |Z : X ⇒ Z by f |Z(x) def
=

f (x) ∩ Z for all x ∈ X.

The multi-function f |Z of the previous definition is given in terms of the sets f |Z(x), if we
want to define it in terms of Definition 1.2.1, then we have that f |Z = (X, Z, R f |Z), where R f |Z =

{(x, z) ∈ X × Z | z ∈ f (x)}. Notice that when f is a function, then the multi-funcion f |Z from
Definition 1.2.2 is simply the usual restriction of f to the set f−1[Z

]
.

An alphabet is any non-empty finite set Σ = {a1, . . . , an}. We assume that any alphabet that we
use contains at least the symbols 0, 1. We denote the set of finite words over Σ by Σ∗, the empty
string by λ ∈ Σ∗ and with Σω the set of infinite sequences p : N→ Σ over Σ. It is customary (and
convenient) to treat an element p of Σω as an “infinite word”

p(0)p(1)p(2) · · · .

For w, y ∈ Σ∗ and p ∈ Σω, we say that y starts with w if y = wz for some z ∈ Σ∗ (the notation “wz”
means concatenation, that is, write the word z after w). Similarly, p starts with w if p = wq, where
q ∈ Σω.

Definition 1.2.3. Let Σ be an alphabet. The wrapping function ι : Σ∗ → Σ∗, is defined by

ι(a1a2 · · · ak)
def
= 110a10a20 · · · 0ak011.

The wrapping function is used for coding words in such a way that ι(u) and ι(v) cannot over-
lap. We will be using standard functions for finite or countable tupling on Σ∗ and Σω, all of them
are denoted by 〈·〉. The precise definitions of these functions are

〈u1, . . . , un〉 def
= ι(u1) · · · ι(un);

�� ��1.1

〈u, p〉 def
= ι(u)p

�� ��1.2

〈p, q〉 def
= p(0)q(0)p(1)q(1) · · · ;

�� ��1.3

〈p0, p1, . . .〉〈i, j〉 def
= pi(j);

�� ��1.4

for all u, u1, . . . , un ∈ Σ∗ and p, q, pi ∈ Σω (i = 0, 1, . . .). Each of the above functions is injective
and even bijective, if the arguments are in Σω. For u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω, u � w if and only if
ι(u) is a subword of w.

1.2.2 Turing machines

We now define Turing machines, one of the most popular formal models of computation in stan-
dard computability theory [Wei87, HU90, Sip96, Koz97, Coo04]. Turing machines are used to
define Type-2 machines in Section 1.3, which are a special type of Turing machines, with addition
rules and some extensions.

12



1.2. COMPUTABILITY THEORY

Multi-tape Turing machines

There are many ways to define Turing machines, we will use one of the most useful definitions:
The multi-tape Turing machine. We first give an informal description of what is a multi-tape Turing
machine M and the way it works (Figure 1.1). Intuitively, M has k > 1 tapes, each tape is semi-
infinite to the right and is divided into cells. The k tapes is the work space of the machine. Each
head controls one tape of M and each head can perform the following actions on the tape:

• Scan the contents of the current cell in the tape;

• modify the symbol of the current cell in the tape;

• move to the left or right of the tape to scan another cell. Also, the head can stay in the current
cell without moving.

In one or more tapes, M receives input strings, which represent the input data which M uses to
perform its work. When the machine starts the execution of its program, it is in a “start” state
s, with the heads of the input tapes scanning the first symbol of each of the input strings. In
each step of M, depending on the current state of the machine and the symbols scanned by the k
read/write heads, M changes the current state, writes a symbol on the current cell of each tape,
and finally M determines for each read/write head if it must be moved to scan the contents of
another cell or if the head must stay in the same cell. The full program of M is specified by means
of a transition function. When the machine enters into a special state t, called the “accept” state,
it stops all actions and the computation is successful. On the other hand, if M enters into another
special state r, called the “reject” state, it stops but with failure. It can also happen that M never
enters one of the states t, r, in this case, we say that M is in a infinite loop.

· · ·

· · ·

· · ·M

⊥
⊥

⊥

Figure 1.1: A Turing machine with three tapes.

The formal definition of multi-tapes Turing machines is as follows.

Definition 1.2.4. A deterministic multi-tape Turing machine is a tuple

M = (Q, Σ, Γ, δ, s, t, r),

where

• Q is a finite non-empty set; elements of Q are called states;

• Σ is the input alphabet;

13
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• Γ is the work alphabet, where Σ ∪ {t} ⊆ Γ;

• δ : Q× Γk → Q× Γk × {L, R, S}k, is the transition function (the program);

• s ∈ Q, is the start state;

• t ∈ Q, is the accept state;

• r ∈ Q, is the reject state, r 6= t.

The symbols L, R and S stand for left, right and stay, respectively.

Intuitively, a transition of the form δ(q, ai1, ai2, . . . , aik) = (p, bi1, bi2, . . . , bik, D1, D2, . . . , Dk) has
the following meaning: If the machine M is in the state q, scanning the symbol ai1 on the first tape,
the symbol ai2 on the second tape, . . . , the symbol aik on the k tape, then the machine must switch
the current state to p, write on the first tape the symbol bi1 (replacing ai1), on the second tape the
symbol bi2, . . . , on the k tape the symbol bik (replacing aik) and finally, move the head of the first
tape in direction D1, move the head of the second tape in direction D2, . . . , move the head of tape
k in direction Dk. When the machine enters in one of the two special states t or r, it is not allowed
to do any more transitions or state changes, we say that M halts. The alphabet Γ always contains a
special symbol “t”, called the blank symbol, which is used to indicate that the corresponding tape
cell is empty.

Two way infinite tapes

We have given the definition of Turing machine using one way infinite tapes. If we modify Defini-
tion 1.2.4 to allow the use of two way infinite tapes, it can be proved that we do not add any extra
power to the model [Sip96, Koz97]. Thus, we can build Turing machines with one way infinite
tapes, two way infinite tapes, and machines with both types of tapes, all these variations of the
Turing machine model have the same computational power. In Section 1.3, we use this fact to
specify Type-2 machines as multi-tape Turing machines with both types of tapes.

1.2.3 Tarsky’s decision method for the elementary algebra of the reals

In order to prove some results in the next chapters, we will be using a celebrated result from A.
Tarsky [Tar48]. We first give the definition of elementary expression.

Definition 1.2.5. An elementary expression in the algebra of the real numbers, is an expression build
with the following objects:

• Variables over the real numbers.

• Constants c ∈N.

• The symbols +,−, ·,÷ which denote sum, subtraction, multiplication and division of real
numbers respectively.

• The symbols >,= that denote the relations “greater than” and “equal to” respectively, of
real numbers.

• The logic connectives ∨ (disjunction), ∧ (conjunction), ¬ (negation) and⇒ (implication).

14
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• The universal (∀) and existential (∃) quantifiers.

Notice that in general, it is impossible to say something about sets of real numbers with ele-
mentary expressions. Although we can give expressions for sets like {5, 7, 10000} (with the ele-
mentary expression x = 5∨ x = 7∨ x = 10000), it is impossible to write down with an elementary
expression the statement “x is an integer”, that is, the expression x ∈ Z is not elementary, neither
is the following expression about integer equations

(∃x, y, z ∈ Z)(x3 + y3 = z3).

If such expressions were to be elementary, that would imply that all sentences of elementary num-
ber theory, are elementary expressions, and that would mean that Theorem 1.2.6 below is false
[Tar48], thus the previous expressions about elements of Z are not elementary. However, all basic
properties of order, sum and multiplication of the field R can be expressed as elementary expres-
sions. Also, many useful properties of the ring R [x1, . . . , xn] (n > 1) can be given with elementary
expressions. We are now ready to introduce Tarsky’s result.

Theorem 1.2.6. There exists an algorithm to decide, given an elementary expression in the algebra of the
real numbers, whether it is true or false.

More details on Tarsky’s method can be found in [Tar48]. From now on, in this thesis, when-
ever we need to apply the Tarski’s decision method, we assume that we have an appropriate
encoding of polynomial functions with rational coefficients as strings of Σ∗.

1.3 Type-2 theory of effectivity

It is time to begin our short introduction to the computability theory of Type-2 Theory of Effectivity
(TTE for short). The main tool is the Type-2 machines, which are some sort of generalized Turing
machines, which can operate on infinite strings. This will be our first definition of TTE. Later, we
define computability with Type-2 machines for finite and infinite strings, multi-functions defined
on strings and sets, generalizing the same notions presented in ordinary computability theory.
Another important tool of TTE is the idea of representations and notations, which are (roughly
speaking) codifications of abstract objects with strings of some alphabet, these encodings are used
to transfer computability notions of TTE to arbitrary sets. We give some of the most useful results
regarding representations of computable functions.

1.3.1 Type-2 machines and computable string functions

For k > 0 and Y0, . . . , Yk ∈ {Σ∗, Σω}, let Y = ∏i=1 Yi. We define the computable functions f : ⊆
Y → Y0 by means of Turing machines with k one-way input tapes, finitely many work tapes and a
single one-way output tape. Figure 1.2 shows such a Turing machine.

Definition 1.3.1. A Type-2 machine is a multi-tape Turing machine M = (Q, Σ, Γ, δ, s, t, r) with
N + 1 tapes, which satisfies the following additional rules:

• The tapes 1, . . . , k are the input tapes of M (k < N);

• the tapes k + 1, . . . , N are the work tapes of M;
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• the tape 0 is the output tape of M

• the tuple (Y1, . . . , Yk, Y0) (Yi ∈ {Σ∗, Σω}) is called the type specification of M. For each i =
1, . . . , k, Yi denotes the type of input strings for input tape i and Y0 specifies the type of
strings for the output tape.

· · ·y0

· · ·

· · ·

...





input tapes 1, . . . , k

y1

yk

...





work tapes k + 1, . . . , N

· · ·· · ·

· · ·· · ·

M

Figure 1.2: A Type-2 machine computing y0 = fM(y1, . . . , yk).

The machine M must satisfy the following restrictions:

• The head of an input tape cannot be moved to the left, neither can modify a symbol of the
input string.

• The head of the output tape can move only to the right, writing a new symbol in each move.

• Any symbol written to the output tape must be an element of Σ.

The restrictions of Type-2 machines guarantee that the input tapes are one-way read-only tapes
and that on the output tape, only symbols from Σ can be written and no written symbol can be
erased (one-way output). For the rest of the section, set Y = ∏k

i Yi. We now define the string
function f : ⊆ Y → Y0 computed by a Type-2 machine M.

Definition 1.3.2. The initial tape configuration for input (y1, ..., yk) ∈ Y is as follows: for each
input tape i, the (finite or infinite) sequence yi ∈ Yi is placed on the tape immediately to the right
of the head, all other tape cells contain the symbol t; on all the other tapes, all cells contain the
symbol t. For all y0 ∈ Y0, (y1, ..., yk) ∈ Y, we define the function fM : ⊆ Y → Y0 computed by M
as:

Case Y0 = Σ∗:
fM(y1, . . . , yk) = y0 ∈ Σ∗, if and only if M halts (on its accept state) on input (y1, . . . , yk) with
y0 on the output tape.
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Case Y0 = Σω:
fM(y1, . . . , yk) = y0 ∈ Σω if and only if M computes forever on input (y1, ..., yk) and writes y0
on the output tape, i.e., the machine M never halts and keeps computing the infinite string
y0 symbol by symbol.

We call a string function f : ⊆ Y → Y0 computable, if it is computed by some Type-2 machine M.

In case that M halts on the reject state or M never halts, but writes only finitely many symbols
on the output tape, then we say that fM(y1, . . . , yk) is undefined, that is, (y1, . . . , yk) /∈ dom fM. We
do not use the “partial” results of such computations in our definition of semantics. Since Type-2
machines are essentially Turing machines, they are as realistic and powerful as Turing machines.
Clearly, infinite inputs or outputs do not exist and infinite computations cannot be finished in
reality. But finite computations on finite initial parts of inputs producing finite initial parts of the
outputs can be realized on physical devices as long as enough time and memory are available.

Of course, Type-2 machines can be simulated by digital computers. Therefore, infinite com-
putations of Type-2 machines can be approximated by finite physical computations with arbitrary
precision. The restriction to one-way output guarantees that any partial output of a finite initial
part of a computation cannot be erased in the future and, therefore, is final. For this reason, models
of computation with two-way output would not be very useful.

Definition 1.3.2 includes the standard definition of computable string functions (choose Y0 =
. . . = Yk = Σ∗). We define computable elements of Σ∗ and Σω as follows:

Definition 1.3.3. Let w ∈ Σ∗, p ∈ Σω and y = (y1, y2, . . . , yk) ∈ Y.

1. The finite string w is computable.

2. The sequence p is computable, if and only if p = f (λ) for some computable function
f : Σ∗ → Σω

3. The tuple y is computable, if and only if each component yi is computable.

We illustrate the definitions by several examples.

Example 1.3.4. A constant function f : Y → Y0 is computable, if and only if its value c ∈ Y0 is
computable. Also, every projection pri : Y → Yi is computable.

Example 1.3.5. Define f : ⊆ Σω → Σ∗ by,

f (p) =

{
1 if p 6= 0ω,
undef otherwise.

There is a Type-2 machine M which reads the infinite input string a0a1 . . . ∈ Σω and writes 1 and
halts, as soon as some i with ai 6= 0 has been found. Therefore M computes f .

Example 1.3.6. The function f : Σω → Σ∗ defined by,

f (p) =

{
1 if p 6= 0ω,
0 otherwise.

is not computable. To see this, assume that some Type-2 machine M computes f . On input 0ω =
00 . . ., M halts with result 0 within t steps for some t. Then M halts with result 0 also on input

q def
= 0t1ω ∈ Σω. But f (q) = 1, a contradiction. Thus f is not computed by any Type-2 machine.
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We will be using throughout this thesis the tupling functions defined earlier in Section 1.2.1.
As in ordinary recursion theory, these functions are used to represent functions with several argu-
ments by functions with a single argument. The next result will be applied in an implicit way in
many proofs and arguments.

Theorem 1.3.7 ([Wei00]). Let Σ be an alphabet. The following statements are true:

• Each of the tupling functions defined in Equations
�� ��1.1 ,

�� ��1.2 and
�� ��1.3 is computable, and every

projection of its inverse is computable.

• For the infinite tupling function of
�� ��1.4 , the function (0i, q) 7→ pri ◦ 〈〉−1 (uniform projection of the

inverse) is computable.

More examples and preliminary results concerning TTE can be found in [Wei87, Wei00]. Com-
putability on Σ∗ and Σω can be reduced to computability on {0, 1}∗ and {0, 1}ω, respectively, by
encoding the symbols of the alphabet Σ∗ = {a1, . . . , an} as follows: ai 7→ 1i−10 for i < n and
an 7→ 1n. The computable functions on Σ∗ and Σω are closed under composition and even under
programming [Wei00, Wei08, TW11]. The composition of computable functions has a computable
extension. With the following definition, the notions of computable enumerable and computable from
ordinary computability theory [Koz97, Coo04] is generalized to TTE.

Definition 1.3.8. Let W, Z ⊆ Y, the set W is called computable enumerable (c.e.) in Z if W =
Z ∩ dom f for some computable function f : ⊆ Y → Σ∗. W is called computable if W and Z −W
are both c.e. When Z = Y, we omit “in Z”.

For k = 1 and Z = Y1 = Σ∗, we obtain the ordinary definition of c.e. and computable sets
[Koz97, Coo04]. The following characterization of c.e. subsets of Σ∗ will be used later in Chapter
3, its proof can be found in standard textbooks, e.g., [Coo04].

Lemma 1.3.9. Let A ⊆ Σ∗. Then A is a c.e. set if and only if A = ∅ or there exists a total computable
function h : Σ∗ → Σ∗ such that range h = A. Moreover, if A is infinite, then h can be chosen to be
injective.

Finally, Definition 1.3.10 resembles Oracle Turing machines from the standard theory [Sip96,
Koz97, Coo04].

Definition 1.3.10. Let M be a Type-2 machine with k + 1 input tapes and let fMp(y) def
= fM(p, y),

where p is fixed and (p, y) ∈ Y1 × Y2 × · · · × Yk × Yk+1. We say that M is an oracle Type-2 machine
and fMp is the function computed by the machine M with the oracle p.

Remark. In some proofs or arguments, we will need to show that some multi-functions are com-
puted by Type-2 machines and prove some sets to be computably enumerable. Giving the full
specification of such machines can be a rather long and tedious task. To avoid this, we will only
write these Type-2 machines using a simple description or with pseudocode, which will contain
the main steps to compute the function we are proving to be computable and of course, we justify
the computability of each one of these steps. In this way, our proofs will not become needlessly
long and boring. We can content ourselves with a overall description or pseudocode because,
as we have said before, the multi-functions computed by Type-2 machines are closed under pro-
gramming, this is stated by the main results of [Wei08, TW11].
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1.3.2 Topologies for Σ∗ and Σω

In order to define computability on topological spaces, it is convenient to define topologies for the
sets Σ∗ and Σω.

Definition 1.3.11. We equip Σ∗ with its discrete topology τ∗. For each z ∈ Σ∗, we define the set

zΣω = {p ∈ Σω | p starts with z} ⊂ Σω.

Lemma 1.3.12. The set βC = {zΣω | z ∈ Σ∗} is a basis of a topology on Σω.

Proof. We will show that βC satisfies the two properties:

1. Σω is covered by the elements of βC.

2. For z1Σω, z2Σω ∈ βC and y ∈ z1Σω ∩ z2Σω, there exists z3Σω ∈ βC such that y ∈ z3Σω ⊂
z1Σω ∩ z2Σω.

Property 1 is clearly true, as for any p ∈ Σω, p = λp, so that p ∈ λΣω and this implies that
Σω ⊆ λΣω and λΣω ∈ βC. For property 2, let z1, z2 ∈ Σ∗, given the sets z1Σω, z2Σω ∈ βC, we have
that

z1Σω ∩ z2Σω =





z1Σω if z2 starts with z1,
z2Σω if z1 starts with z2,
∅ otherwise.

Thus, for any y ∈ z1Σω ∩ z2Σω, y ∈ z1Σω = z1Σω ∩ z2Σω or y ∈ z2Σω = z1Σω ∩ z2Σω. In any case,
βC fulfills property 2. Therefore, βC is a base of a topology on Σω.

0 00 01 1 11 0 0 0 0 1111

0 1

0

0
0

1

1 1

0

0 0

1

11

...
...

...
...

Figure 1.3: The topological space ({0, 1}ω, τC).

The topology generated on Σω by the base βC is called the Cantor topology on Σω and is denoted
by τC. It can be checked that τC is defined as

τC = {AΣω | A ⊆ Σ∗},
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where AΣω = {p ∈ Σω | (∃y ∈ A)(p starts with y)} = ⋃
z∈A zΣω. The set Σω of infinite sequences

over Σ can be visualized by a tree where every p ∈ Σω is represented by an infinite descending
path from the root. Figure 1.3 shows this tree for the alphabet Σ = {0, 1} with two elements. A
basis element zΣω ∈ βC is represented by a full subtree and an open subset of Σω is represented
by a set of full subtrees. Figure 1.4 shows four subtrees representing the open set 001Σω ∪ 011Σω ∪
10Σω ∪ 11Σω.

0 01 1 0 0 0 0 1111

0 1

0 1

1 1

0

0 0

1

11

001Σω 011Σω 10Σω 11Σω

Figure 1.4: The subtrees representing the open set 001Σω ∪ 011Σω ∪ 10Σω ∪ 11Σω.

Definition 1.3.13. For the product Y = ∏k
i Yi with Yi ∈ {Σ∗, Σω} for each i = 1, . . . , k, we equip

Y with the product topology τY generated by the topologies of Y1, . . . , Yk. Also, consider the set
βY = {y ◦Y | y = (y1, . . . , yk) and yi ∈ Σ∗}, where (y1, . . . , yk) ◦Y = U1 × · · · ×Uk with

Ui =

{
{yi} if Yi = Σ∗,
yiΣω if Yi = Σω.

It is not hard to see that βY is a basis for τY. With the topologies defined on Σ∗ and Σω, we can
prove a result which gives a nice connection between topology and computability in TTE theory.

Theorem 1.3.14. Let f : ⊆ Y → Y0 be a computable function. Then f is continuous.

Proof. Let M be a Type-2 machine computing f . Assume that y = (y1, . . . , yk) ∈ dom f ⊆ Y =
Y1 × · · · ×Yk. We have two cases.

Case Y0 = Σ∗. It suffices to show that f−1[{w}
]

is open for every baseelement {w} of τ∗.
Assume f (y1, . . . , yk) = w. Since the machine M halts on this input, during its computation
from every input tape i with Yi = Σω, it can read only a prefix ui ∈ Σ∗ of yi ∈ Σω. If
Yi = Σ∗, then define ui = yi. Then y ∈ (u1, . . . , uk) ◦ Y and f

[
(u1, . . . , uk) ◦ Y

]
⊆ {w}.

The set (u1, . . . , uk) ◦ Y is an open neighborhood of y = (y1, . . . , yk) contained in f−1[{w}
]
.

Therefore, f−1[{w}
]

is open.

Case Y0 = Σω. It is enough to show that f−1[wΣω
]

is open for every base element wΣω

of τC. Assume f (y1, . . . , yk) ∈ wΣω. Since on this input the machine M needs only finitely
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many computaton steps for producing the prefix w of the result, during this computation,
from every input tape i with Yi = Σω, it can read only a prefix ui ∈ Σ∗ of yi ∈ Σω. If Yi = Σ∗,
then define ui = yi. Then y ∈ (u1, . . . , uk) ◦ Y and f

[
(u1, . . . , uk) ◦ Y

]
⊆ wΣω. The set

(u1, . . . , uk) ◦ Y is an open neighborhood of (y1, . . . , yk) contained in f−1[wΣω
]
. Therefore,

f−1[wΣω
]

is open.

We have proven all the required cases, thus f is a continuous function from Y to Y0.

The domains of computable functions have nice topological properties, this is stated in the
following

Lemma 1.3.15. The following statements are satisfied:

1. If f : ⊆ Y → Σ∗ is computable, then dom f is an open set.

2. If f : ⊆ Y → Σω is computable, then dom f is a Gδ-set.

Proof. 1. In the proof of Theorem 1.3.14, we have shown that every element (y1, . . . , yk) ∈ dom f
has an open neighborhood (u1, . . . , uk) ◦Y ⊆ dom f .Therefore, dom f is open. 2. Let M be a Type-
2 machine which computes f . Then, for each n ∈ N, there is a machine Mn which on input y ∈ Y
halts, if M on input y writes at least n symbols on the output tape, and does not halt otherwise.
By Property 1, dom fMn is open for each n, therefore,

dom f =
∞⋂

i=0

dom fMi

is a Gδ-set.

It can also be proven [Wei00] that a function f : ⊆ Y → Y0 is continuous if and only if for some
Type-2 machine M and some oracle p ∈ Σω, fMp extends f . Finally, W ⊆ Y is open if and only if
for some Type-2 machine M with output set Σ∗ and some oracle p, W = dom

(
fMp
)
. Regarding

Definition 1.3.8, there is a striking similarity to topological concepts, where “c.e.” corresponds to
“open”: By definition,

1. X is open in Z, if and only if X = U ∩ Z for some open set U ⊆ Y;

2. X is open and closed in Z, if and only if X and Z− X are open in Z.

1.3.3 Multi-representations and representations

In TTE, computability on finite or infinite sequences of symbols is transferred to other sets by
means of notations and representations, where elements of Σ∗ or Σω are used as “concrete name”
of abstract objects. We will need the more general concept of realization via multi-representations
(see [Wei08, Section 6] for a detailed discussion, and also [Sch03, WG09]).

Definition 1.3.16. A multi-representation of a set M is a surjective multi-function γ : ⊆ Z ⇒ M
where Z ∈ {Σ∗, Σω}. If γ is single-valued, it is called a representation and if in addition, Z = Σ∗,
then γ : ⊆ Σ∗ → M is called a notation of the set M. Given m ∈ M, an element z ∈ Z such that
m ∈ γ(z) is called a name of m.
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Example 1.3.17. For any alphabet Σ, we define νΣ∗
def
= 1Σ∗ , the trivial notation for Σ∗.

Example 1.3.18. Let Σ = {0, 1} and νN : ⊆ Σ∗ → N be the usual binary notation of natural
numbers. Using the standard bijection2 〈·, ·〉 : N2 →N defined by

〈x, y〉 def
=

(x + y)(x + y + 1)
2

+ y

and the derived bijections 〈· · · 〉 : Nk+1 → N defined by 〈x1, . . . , xk, xk+1〉 def
= 〈〈x1, . . . , xk〉, xk+1〉

for k > 2, we define notations νNn : Σ∗ →Nn for the set Nn (n > 1) by

νNn(w) = (x1, . . . , xn)⇐⇒ νN(w) = 〈x1, . . . , xn〉.
�� ��1.5

Example 1.3.19. By the previous example with k = 3, the bijection 〈· · · 〉 : N3 →N can be used to
build a surjection gQ : N→ Q defined by

gQ(〈i, j, k〉) def
=

k + 1
i− j

.

We define a notation νQ : ⊆ Σ∗ → Q of the set Q such that dom
(
νQ

)
= dom

(
νN

)
and νQ makes

the following diagram

N
gQ
// Q

Σ∗

νN

OO

νQ

>>

commute, i.e., νQ(w) = q ⇐⇒ q = gQ(νN(w)). In words, νQ(w) = q if and only if w represents a
natural number nq = 〈i, j, k〉 such that q = k+1

i−j .

Example 1.3.20. Let gn
Q : Nn → Qn be defined by gn

Q(m1, . . . , mn) = (gQ(m1), . . . , gQ(mn)). Gener-
alizing Example 1.3.19, we define notations νQn : ⊆ Σ∗ → Qn for n > 1 (Q1 = Q) by the following
rules: dom

(
νQn
)
= dom

(
νNn

)
and the diagram

Σ∗
νQn
//

νNn

��

Qn

Nn
gn

Q

==

is commutative, or equivalently,

νQn(w) = (q1, . . . , qn)⇐⇒ νNn(w) = (m1, . . . , mn) and (∀i ∈ {1, . . . , n})(qi = gQ(mi)).
�� ��1.6

In words, νQn(w) = (q1, . . . , qn) if and only if w represents a tuple (m1, . . . , mn) ∈Nn such that the
number mi encodes the rational qi, in the way described in Example 1.3.19.

2Notice how we use the same notation 〈·, ·〉 to denote the bijections between Nk and N and the tupling functions
between strings from Σ∗ and Σω (see Equations

�� ��1.1 ,
�� ��1.4 ,

�� ��1.2 and
�� ��1.3 ). This is customary in computability theory

and one can deduce from the context the precise meaning of the notation 〈·, ·〉.
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Example 1.3.21. The usual decimal representation of R can be defined precisely so that it is a re-
presentation ρ10 : ⊆ Σω → R in the sense of Definition 1.3.16, Let Σ = {−, ., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
The set dom ρ10 contains all infinite strings from Σω which represent real numbers in decimal form.
For example, some elements of dom ρ10 are

ρ10(1.414 . . .) =
√

2;

ρ10(1.000 . . .) = 1;

ρ10(3.141516 . . .) = π;

ρ10(0.5000 . . .) = 1
2 ;

ρ10(−0.999 . . .) = −1;

whereas the following examples are not valid elements of dom ρ10

−00..00111 . . .;

2.000.001.22 . . .;

etc. Similarly, one can define representations to any other base b ∈N with b > 2.

Example 1.3.22. We define the Cauchy representation ρ : ⊆ Σω → R of the real numbers [Wei00] as
follows: Let Σ = {0, 1, #}, the domain of ρ contains all infinite strings in Σω such that

#w1#w2#w3# · · · (wi ∈ dom νQ),

that is, a string #w1#w2# · · · ∈ dom ρ encodes an infinite sequence (νQ(wi))
∞
i=0 of rational numbers

(the # symbol is just a delimiter) and this sequence must converge to a real number x ∈ R, in
symbols

ρ(#w1#w2# · · · ) = x ⇐⇒ d(x, νQ(wi)) < 2−i, for all i ∈N.
�� ��1.7

For example, if νQ(zm) = 1
2m for all m > 1, then ρ(#z1#z2# · · · ) = 0. If νQ(yk) = ∑k

j=1
3

10k with
k > 1, then ρ(#y1#y2# · · · ) = 0.333 · · · . The Cauchy representation can be easily generalized to a
representation ρn : ⊆ Σω → Rn of n-dimensional euclidean space for all n ≥ 0.

Mathematical examples of multi-representations will be given later. If ν : ⊆ Σ∗ → X is a
notation and δ : ⊆ Σω ⇒ Y is a multi-representation for X and Y respectively, sometimes we will
denote ν(w) ∈ X and δ(p) ⊆ Y by νw and δp (see Section 1.3.4).

Definition 1.3.23. For multi-representations γi : Yi ⇒ Mi (0 6 i 6 n), let Y = ∏n
i=1 Yi, M =

∏n
i=1 Mi and γ : Y ⇒ M, γ(y1, . . . , yn) = ∏i γi(yi). A partial function h : ⊆ Y → Y0 realizes the

multi-function f : M⇒ M0 if

f (x) ∩ γ0 ◦ h(y) 6= ∅whenever x ∈ γ(y) and f (x) 6= ∅.
�� ��1.8

Equation
�� ��1.8 means that h(y) is a name of some z ∈ f (x) if y is a name of x ∈ dom f . This

situation is depicted in Figure 1.5. If f : ⊆ M → M0 is single-valued, then h(y) is a name of f (x)
if y is a name of x ∈ dom f . If only the representations are single-valued, then γ0 ◦ h(y) ∈ f (x)
when γ(y) = x. For the case when f and the representations are all functions, the situation is the
usual equation given by the following commutative diagram
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M
f−−−→ M0

γ

x γ0

x

Y h−−−→ Y0

f ◦ γ(y) = γ0 ◦ h(y).

With realizations, we can induce computability and continuity concepts on the represented
sets M, M0.

M
γ(y)

x

Y

y

Y0

h(y)

M0

f(x)

γ0 ◦ h(y)

γ

f

h

γ0

z

Figure 1.5: The function h : ⊆ Y → Y0 realizes the multi-function f : ⊆ M⇒ M0.

Definition 1.3.24. Let f , γ0, . . . , γn be as above.

1. The multi-function f is called (γ1, . . . , γn, γ0)-computable if it has a computable realization.

2. f is called (γ1, . . . , γn, γ0)-continuous if it has a continuous realization.

If the multi-representations are fixed, we occasionally say that f is relatively continuous (rela-
tively computable). The relatively continuous (computable) functions are closed under composition
, even more, they are closed under GOTO-programming with indirect addressing [Wei08, TW11].

Computable enumerable sets and reducibility

Now we extend the definition of computable elements of Σ∗, Σω, and c.e. sets [Wei00] to arbitrary
sets via multi-representations.

Definition 1.3.25. With γi and γ from Definition 1.3.23, a point x ∈ M1 is γ1-computable if and
only if x ∈ γ1(p) for some computable p ∈ dom γ1. A set S ⊆ M is (γ1, . . . , γn)-c.e. if there is a
c.e. set W ⊆ Y such that

x ∈ S⇔ y ∈W

for all x, y with x ∈ γ(y).
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Therefore, S ⊆ M is (γ1, . . . , γn)-c.e. if and only if there is a Type-2 machine that halts on input
y ∈ dom γ if and only if y is a name of some x ∈ S.

Definition 1.3.26. Let γ0, γ1 be as in Definition 1.3.23. We say that γ1 is reducible to γ0 (denoted by
γ1 ≤ γ0) if M1 ⊆ M0 and the inclusion iM1 : M1 ↪→ M0 is (γ1, γ0)-computable.

This means that some computable function h translates γ1-names to γ0-names, that is, γ1(p) ⊆
γ0 ◦ h(p). When γ0 and γ1 are singled-valued, the situation is the usual equation γ1(p) = γ0 ◦ h(p).
Reducibility can be used to define computable equivalences between multi-representations.

Definition 1.3.27. The multi-representations γ0, γ1 are called computably equivalent if γ1 ≤ γ0 ∧
γ0 ≤ γ1. When such an equivalence exists, we denote it by γ1 ∼ γ0.

Two multi-representations induce the same computability on a set if and only if they are com-
putably equivalent. For X ⊆ M1, if X is γ0-c.e. and γ1 ≤ γ0, then X is γ1-c.e.

Open sets and continuous reducibility

As each one of the sets Σ∗, Σω has a topology, we can take the open sets in this topological spaces
and give similar definitions to those given previously for c.e. sets.

Definition 1.3.28. Let γi and γ be as in Definition 1.3.23. A set S ⊆ M is (γ1, . . . , γn)-open if there
is an open set W ⊆ Y such that

x ∈ S⇔ y ∈W

for all x, y with x ∈ γ(y).

Thus, S is (γ1, . . . , γn)-open if and only if there is a Type-2 machine with oracle that halts on
input w ∈ dom γ if and only if w is a name of some z ∈ S. Notice that γγ−1[S

]
= S if S is γ-open.

Definition 1.3.29. Let γ0, γ1 be as in Definition 1.3.23. We say that γ1 is continuously reducible to γ0
(denoted by γ1 ≤t γ0) if M1 ⊆ M0 and the inclusion iM1 : M1 ↪→ M0 is (γ1, γ0)-continuous.

This means that some continuous function h translates γ1-names to γ0-names, that is, γ1(p) ⊆
γ0 ◦ h(p). As we have done for the case of computable reducibility, continuous reducibility can be
used to define continuous equivalences between multi-representations.

Definition 1.3.30. The multi-representations γ0, γ1 are called continuously equivalent if γ1 ≤t γ0 ∧
γ0 ≤t γ1. When such an equivalence exists, we denote it by γ1 ∼t γ0.

Two multi-representations induce the same continuity on a set if and only if they are continu-
ously equivalent. For X ⊆ M1, if X is γ0-open and γ1 ≤t γ0, then X is γ1-open.

Some useful notations and multirepresentations

Definition 1.3.31. Let γi : Yi ⇒ Mi (Yi ∈ {Σ∗, Σω}, i = 1, 2) be multi-representations. The multi-
representation [γ1, γ2] of the product M1 ×M2 is defined by

[γ1, γ2] 〈y1, y2〉 def
= γ1(y1)× γ2(y2).
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Since the function (x1, x2) 7→ (x1, x2) is (γ1, γ2, [γ1, γ2])-computable and the projection
(x1, x2) 7→ xi is ([γ1, γ2] , γi)-computable (i = 1, 2), a multi-function g : M1 × M2 ⇒ M0 is
(γ1, γ2, γ0)-computable if and only if g is ([γ1, γ2] , γ0)-computable. A set is (γ1, γ2)-open if and
only if it is [γ1, γ2]-open, etc.

In this thesis, we will be using the canonical notations given in [WG09] of finite and of count-
able subsets of a given set.

Definition 1.3.32. For the notation µ : ⊆ Σ∗ → M and representation γ : ⊆ Σω → Y, define the
notation µfin and representations µcs, γfin, γcs of finite or countable subsets of M and Y as follows.
Consider w ∈ Σ∗, q, pi ∈ Σω and ai ∈ Σ, i = 0, 1, . . ., then

µfin(w) = W ⇐⇒
{
(∀v� w)(v ∈ dom

(
µ
)
),

W = {µ(v) | v� w};
�� ��1.9

µcs(q) = W ⇐⇒
{
(∀v� q)(v ∈ dom

(
µ
)
),

W = {µ(v) | v� q};
�� ��1.10

γfin(q) = Z ⇐⇒





(∃n)(∃p1, . . . , pn ∈ dom
(
γ
)
)

q = 〈1n, p1, . . . , pn〉,
Z = {γ(p1), . . . , γ(pn)};

�� ��1.11

γcs〈a0 p0, a1 p1, · · · 〉 = Z ⇐⇒
{
(∀i)(ai = 0⇒ pi ∈ dom

(
γ
)
)

Z = {γ(pi) | ai = 0}.
�� ��1.12

If ai 6= 0 for all i, then γcs〈a0 p0, a1 p1, · · · 〉 = ∅.

The next lemma is easy to prove and it will be applied in proofs without further mentioning.

Lemma 1.3.33 ([WG09]). For the notation µ and notations or representations β, γ,

1. The set dom
(
µfin) is computable if dom

(
µ
)

is computable,

2. The function (x, y) 7→ {x, y} is (γ, γ, γfin)-computable,

3. γ′ ≤ γfin ≤ γcs, where γ′(w) = {γ(w)},

4. βfin ≤ γfin and βcs ≤ γcs if β ≤ γ.

Remark. In some cases, the notation µfin will be used to give abstract names to finite unions or
intersections of a collection C of subsets of a set X, where µ : Σ∗ → C. To avoid confusion about
which set operation we refer to with the notation µfin, we will denote µfin as

⋃
fin µ when we

want to encode the finite union of elements of C and when we want to use µfin to describe finite
intersections of the members of C, we write

⋂
fin µ instead of µfin.
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1.3.4 The smn and utm properties

To obtain a powerful and elegant theory, in [Wei00], representations ηab : Σω → Fab of sets of
continuous functions f : ⊆ Σa → Σb are introduced for a, b ∈ {∗, ω}. The definitions of the
represented sets Fab are given as follows.

F∗∗ = { f | f : ⊆ Σ∗ → Σ∗};

F∗ω = { f | f : ⊆ Σ∗ → Σω};

Fω∗ = { f | f : ⊆ Σω → Σ∗ is continuous and dom f is open};

Fωω = { f | f : ⊆ Σω → Σω is continuous and dom f is a Gδ-set }.

Notice that the sets F∗∗, F∗ω contain all continuous partial functions of each kind, because as every
subset of Σ∗ is open, every function f : ⊆ Σ∗ → Σb is continuous. Also, each set F∗b (b ∈ {∗, ω})
has the same cardinality as Σω or R. Therefore these sets can be represented.

For the case of continuous functions of the form f : Σω → Σb, things are a bit complicated.
Let g : Σω → Σb be a constant function. Clearly, g and its restrictions are all continuous functions
and the set of all these restrictions has the cardinality of the power set of Σω. Thus, the set of
all partial continuous functions from Σω to Σb cannot be represented. The problem is solved by
considering only continuous functions with natural domains, which in some sense represent all
partial continuous functions.

Remember that by Lemma 1.3.15, the domain of every computable function from Fω∗ is open
and the domain of every computable function from Fωω is a Gδ-set. The following theorem may
serve as further justification for the definitions of Fω∗ and Fωω. Roughly, it says that the sets Fω∗

and Fωω represent essentially all partial continuous functions f : ⊆ Σω → Σ∗ and f : ⊆ Σω → Σω,
respectively. The second part of the theorem is a special case of a well known extension theorem
for continuous functions on metric spaces [Kur66].

Theorem 1.3.34 ([Wei00]). The following statements hold.

1. Every continuous partial function f : ⊆ Σω → Σ∗ has an extension in Fω∗.

2. Every continuous partial function f : ⊆ Σω → Σω has an extension in Fωω.

This is why the set Fω∗ contains only partial continuous functions with open domains and Fωω

contains only partial continuous functions with domains equal to Gδ-sets.
The representations ηab have two important and useful properties. First of all, computable

string functions have computable names3 [Wei00].

Lemma 1.3.35. For a, b ∈ {∗, ω}, a partial function f : ⊆ Σa → Σb is computable if and only if
ηab(p) = ηab

p = f for some computable p ∈ dom
(
ηab).

Also, each representation ηab satisfies the following [Wei00, Theorem 2.3.13]

Theorem 1.3.36. For each a, b ∈ {∗, ω}, the next statements are satisfied:

utm There is a computable (universal) function U : ⊆ Σω × Σa → Σb with U(p, x) = ηab
p (x).

3Remember that we denote ηab(p) as ηab
p .
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smn For every computable function f : ⊆ Σω × Σa → Σb there is a total computable function
r : Σω → Σω such that f (p, x) = ηab

r(p)(x).

The representations ηab can be used to build multi-representations of multi-functions of rep-
resented sets. For multi-representations γ1 : ⊆ Σa ⇒ M1 and γ2 : ⊆ Σb ⇒ M1, a, b ∈ {∗, ω},
a multi-representation denoted by [γ1 ⇒ γ2] of the (γ1, γ2)-continuous multi-functions f : M1 →
M2 is defined by:

f ∈ [γ1 ⇒ γ2] (p)⇐⇒ ηab
p realizes f with respect to γ1 and γ2.

See [Wei08]. The restriction of [γ1 ⇒ γ2] to the single-valued functions is called
[
γ1 →p γ2

]
in

[Wei08] or [γ1 → γ2]set in [Wei00]. The restriction of [γ1 ⇒ γ2] to the total (γ1, γ2)-continuous
functions is denoted by [γ1 → γ2] ([Sch02, Wei08, KW85, Wei00, Sch02]).

The generalization of Theorem 1.3.36 to represented sets is known as the type conversion the-
orem, [Wei00, Theorem 3.3.15] for single-valued representations and total functions and [Wei08,
Theorem 33] as the most general version.

The reader that wishes to learn or review in more depth the concepts and results about com-
putability and Type-2 theory of effectivity, is encouraged to consult the references [Koz97, Sip96,
Coo04, Wei00, Wei08]. In the next chapter, we will use TTE to develop a theory of computability
for general T0 topological spaces with countable bases.
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2
Computable topology

In this chapter, we introduce the basic concepts of computable topology that we need in order to
define computable manifolds. We use the framework of Type-2 theory of effectivity to introduce
computability in T0 topological spaces with countable bases. We will define Computable topolog-
ical spaces and study many basic constructions that we will be using in later chapters to define
computable manifolds. Also, we will study computability of continuous functions between com-
putable topological spaces and a constructive version of the Hausdorff property.

The chapter is organized as follows. In Section 2.1, we introduce the definition of Computable
topological space [WG09] and present many of their important properties. We also define com-
putable subspaces and products of computable topological spaces. In Section 2.2, Computable
functions are defined by using representations of continuous functions between topological spaces.
Also, computable homeomorphisms and embeddings are studied. In Section 2.3, we present a com-
putable version of the Hausdorff (T2) property. This property will be used in Chapter 4 to prove
our last result. Our main references for this chapter are [Wei00, WG09, Wei10].

2.1 Computability inside topological spaces

With the study of computable real numbers and functions, came Computable Analysis, which
provided a solid theory of computability for basic continuous structures, like euclidean spaces,
metric and normed vector spaces [Wei00, Bra98, PER89]. All these developments were the start-
ing point of what is called Computable Topology, where computability is introduced in more gen-
eral topological spaces. In this section, we give the concept of computable topological space and
workout many examples. After that, we present some simple (but very useful) ways to construct
computable topological spaces from simple computable assumptions and we give the computable
versions of the concepts of subspaces and products of computable topological spaces.

2.1.1 Computable T0 spaces

Roughly speaking, a computable topological space is a T0-space (X, τ) in which a base β ⊆ τ is
provided with an encoding with strings from Σ∗, such that the set of all valid strings that encode
elements of β is computable and under the given encoding, the intersection of base elements is
computable. The formal way to say this is as follows.

Definition 2.1.1 ([GWX08, WG09]). An effective topological space is a 4-tuple X = (X, τ, β, ν) such
that (X, τ) is a T0-space and ν : ⊆ Σ∗ → β is a notation of a base β ⊆ τ. X is a computable
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topological space if dom ν is computable and there exists a c.e. set S ⊆ (dom ν)3 such that

ν(u) ∩ ν(v) =
⋃
{ν(w) | (u, v, w) ∈ S} for all u, v, w ∈ dom ν,

�� ��2.1

Since the base β has a notation, it must be countable. Topological spaces with countable bases
are called second countable [Eng89, Mun00]. Equation

�� ��2.1 says that in a computable topological
space the intersection of base elements is computable1. For every effective topological space there
is some (not necessarily c.e.) set S such that

�� ��2.1 is true.

Example 2.1.2 (Computable euclidean space). Let Σ = {0, 1}. Define Rn def
= (Rn, τn, βn, µn) such that

τn is the usual topology on Rn and µn : Σ∗ → βn is a notation of the set βn of all open balls in Rn

with rational radii and center, defined as follows: dom
(
µn) = dom

(
νQn+1

)
and

µn(w) = B(q, r)⇐⇒ νQn+1(w) = (q1, . . . , qn, r), q = (q1, . . . , qn),

(See Example 1.3.20). The inclusion of a rational ball B(q1, r1) in the intersection of two rational
balls B(q2, r2)∩ B(q3, r3) can be decided by a Turing machine (uniformly on the input parameters),
because it can be expressed as

(∀x)(d(x, q1) < r1 ⇒ d(x, q2) < r2 ∧ d(x, q3) < r3),

and this predicate can be reformulated as an elementary expression, so that we can apply Theorem
1.2.6 and we can use this fact to prove that

�� ��2.1 of Definition 2.1.1 is satisfied. Thus, Rn is a
computable topological space. Since this computable space is very important throughout all the
thesis, we fix once and for all the notation used in this example to denote the elements of Rn.
When n = 1, R1 = R is the computable real line.

Example 2.1.3. Let λ be a notation of a set A. Define an effective topological space A = (A, τ, β, ν)

by ν(w)
def
= {λ(w)}, β

def
= range

(
ν
)

and τ is the discrete topology on A. If the set

{(u, v) | u, v ∈ dom λ, λ(u) = λ(v)}

is c.e., then we can easily show that the set S = {(u, v, w) | λ(u) = λ(v) = λ(w)} ⊆ (dom ν)3 is
c.e. and S fulfills

�� ��2.1 for A. By Definition 2.1.1, A is a computable topological space.

Example 2.1.4. Let Σ = {0, 1} and νQ : ⊆ Σ∗ → Q be the notation for the set Q from Example

1.3.19. Define the effective space R<
def
= (R, τ<, β<, ν<) as follows: dom ν< = dom νQ, ν<(w)

def
=

(νQ(w), ∞), β<
def
= range

(
ν<
)

and τ<
def
= {(x, ∞) | x ∈ R} ∪ {∅, R}. Since we have that the

expression
ν<(w) ⊆ ν<(u1) ∩ ν<(u2)

is equivalent to the elementary expression

(∀x)(νQ(w) < x ⇒ νQ(u1) < x ∧ νQ(u2) < x),

then we can use Theorem 1.2.6 to find a c.e. set S ⊆ (dom ν<)3 which satisfies Definition 2.1.1.
Therefore R< is a computable topological space.

1Using the representation θ of open sets given in Definition 2.1.6, the function which maps two base elements to
their intersection is (ν, ν, θ)-computable (see Definition 1.3.24).
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Example 2.1.5. Let E = (Σω, τC, βC, νC), where βC = {wΣω | w ∈ Σ∗} and νC : Σ∗ → βC is defined
by νC(w) = wΣω. The topology τC is the Cantor topology generated by the base βC (Section
1.3.2). Now, wΣω ⊆ uΣω ∩ vΣω ⇔ w is a prefix of both strings u and v and this can be checked
algorithmically, thus we can enumerate a set S ⊆ (dom νC)

3 which satisfies Equation
�� ��2.1 , so that

the effective space E is a computable topological space.

More examples of computable topological spaces can be found in [Wei00] and [WG09]. The
definition of computable topological space allows us to define several multi-representations of
the points of X and many classes of subsets (open, closed, compact, etc) [WG09]. All these rep-
resentations are an important piece to define computability inside computable spaces. We will
use the notations

⋃
fin ν and

⋂
fin ν of the finite unions and finite intersections respectively, of the

base sets of a computable topological space X = (X, τ, β, ν), see Definition 1.3.32 for details on the
definition of the notations

⋃
fin ν and

⋂
fin ν. As usual, we assume that

⋂
∅ = X and

⋃
∅ = ∅.

Definition 2.1.6 (Positive information representations). Let X = (X, τ, β, ν) be an effective topo-
logical space. Define a representation δ : ⊆ Σω → X of X, a representation θ : ⊆ Σω → τ of the
set of open sets, a representation ψ : ⊆ Σω → A of the set of closed sets, a multi-representation
ψ̃ : ⊆ Σω ⇒ P(X) of the power set and a multi-representation κ : ⊆ Σω ⇒ K of the set of compact
subsets of X as follows:

x = δ(p)⇐⇒ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν and x ∈ ν(w)),
�� ��2.2

W = θ(p)⇐⇒
{

w� p⇒ w ∈ dom ν,
W =

⋃
w�p ν(w),

�� ��2.3

A = ψ(p)⇐⇒ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν and A ∩ ν(w) 6= ∅),
�� ��2.4

B ∈ ψ̃(p)⇐⇒ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν and B ∩ ν(w) 6= ∅),
�� ��2.5

K ∈ κ(p)⇐⇒ (∀z ∈ Σ∗)(z� p⇔ z ∈ dom
(⋃

fin
ν
)

and K ⊆
⋃

fin
ν(z)),

�� ��2.6

The previous representations give us information about the represented object, that is, about
its contents. We now define representations that complement the previous ones, in the sense
that these representations can say something about the “complements” of the objects that the
representations δ, θ and ψ are encoding.

Definition 2.1.7 (Negative information representations). Let X = (X, τ, β, ν) be an effective
topological space. Define a representation δ− : ⊆ Σω → X of the points, a representation
θ− : ⊆ Σω → τ of the set of open sets, a representation ψ− : ⊆ Σω → A of the set of closed
sets by

δ−(p) = x ⇐⇒ θ(p) = X− {x},
�� ��2.7

θ−(p) def
= X− ψ(p),

�� ��2.8

ψ−(p) def
= X− θ(p).

�� ��2.9
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A δ-name of a point x ∈ X is a list of all names of all of its basic neighborhoods, while a δ−-

name is a list of base elements exhausting the complement of the singleton {x}. Therefore, δ is
the “inner representation” supplying positive information and δ− is the “outer representation”
supplying negative information. A θ-name of an open set W is a list of base elements exhausting
W, while a θ−-name is a list of all names of all basic sets intersecting its complement (which is
closed in X). Thus, θ is the “inner representation” supplying positive information and θ− is the
“outer representation” supplying negative information. For the closed sets, ψ (the complement
of θ−) is the “inner representation” and ψ− (the complement of θ) is the “outer representation”.
Finally, for the multi-representation κ, K ∈ κ(q) if and only if q is a list of all names of all finite
unions of base elements that cover K. κ is the “cover representation” of the compact sets. Also,
it can be proven [WG09, Lemma 6] that all the inner and outer representations are well defined
and that in general, the positive information cannot be obtained from the negative information
and vice-versa, that is, δ �t δ− ∧ δ− �t δ; θ �t θ− ∧ θ− �t θ and ψ �t ψ− ∧ ψ− �t ψ [WG09,
Theorem 7]. Notice that the names in Definitions 2.1.6 and 2.1.7 must not be “polluted” by words
w /∈ dom ν since implicitly w ∈ dom ν if w � p ∈ dom

(
δ
)
, w ∈ dom ν if w � p ∈ dom

(
ψ
)

and
w ∈ dom

(⋃
fin ν

)
= dom

(
νfin) if w � p ∈ dom

(
κ
)
. If dom ν is computable, these conditions can

be checked easily.

Example 2.1.8. Let Rn be computable euclidean space from Example 2.1.2. For any point x ∈ Rn,
δ(p) = x if and only if p represents a sequence of all open rational balls (µn(w))w�p such that x ∈
µn(w) for all w� p. ψ(q) = Sn−1 if and only if for all w� q, µn(w) ∩ Sn−1 6= ∅, that is, q encodes
a sequence of all open rational balls that intersect Sn−1. As in example 2.1.2, we fix the following
convention for all the representations induced by the space Rn: Each representation δ, θ, ψ, ψ̃, κ
and δ−, θ−, ψ− from Definitions 2.1.6 and 2.1.7 respective, will be denoted as δn, θn, ψn, ψ̃n, κn and
(δ−)n, (θ−)n, (ψ−)n.

Remember from Definition 1.3.25 that given a multi-representation γ : ⊆ Σω → M of a set M
and x ∈ M, x is γ-computable if and only if x ∈ γ(p) for some computable p ∈ dom γ.

Lemma 2.1.9. For any n > 1, the closed set Rn
+ is ψn,(ψ−)n-computable in Rn.

Proof. To see that Rn
+ is ψn-computable, a Type-2 machine needs to output all strings w ∈ dom

(
µn)

such that
µn(w) ∩Rn

+ 6= ∅.
�� ��2.10

For each w, this can be checked by a Turing machine in finite time using Theorem 1.2.6, therefore
the set Rn

+ is ψn-computable. By definition, Rn
+ is (ψ−)n-computable if anf only if the open set

Rn − Rn
+ is θn-computable, which happens if and only if for all w ∈ dom

(
µn), the expression

µn(w) ⊂ Rn −Rn
+ can be proven algorithmically. This last expression is the negation of

�� ��2.10 , so
that the complement of Rn

+ is θn-computable, thus Rn
+ is (ψ−)n-computable.

Using similar techniques, we can show that ∂Rn
+ is also ψn,(ψ−)n-computable and Int Rn

+ is
θn, (θ−)n-computable in Rn.

Remark. It is not hard to prove that the inner representation δn of Rn is equivalent to the Cauchy
representation ρn of Rn (the generalization of the representation defined in equation

�� ��1.7 ). How-
ever, if n = 1, δ1 is not equivalent to the inner representation δ< [BHW08] induced by the com-
putable topological space R< of Example 2.1.4.
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Lemma 2.1.10. In the computable real line R, the irrational numbers π, e ∈ R are δ1-computable points.

Proof. We show that e is δ1-computable, the case of π is very similar. We know that we can write
the number e as

e =
∞

∑
n=0

1
n!

,
�� ��2.11

we claim that using this infinite series, we can find for each m > 4, a rational em ∈ Q, such that
e ∈ B(em, 2−m) (i.e., d(e, em) < 2−m, this is called a 2−m-approximation of e). To do this, it is enough
to sum up to m + 1 terms of the series in Equation

�� ��2.11 . Indeed, assuming that m > 4, we have
that

d
(
e, ∑m+1

n=0
1
n!
)
=
∣∣e−

m+1

∑
n=0

1
n!

∣∣ 6
∣∣

∞

∑
n=m+1

1
n!

∣∣ 6
∞

∑
n=m+1

1
n!

<
∞

∑
n=m+1

1
2n+1 = 2−(m+1) < 2−m.

So that we can take em as em = ∑m+1
n=0

1
n! . Let Me be a Type-2 machine with the following program:

1. For each pair (w, m) ∈ dom
(
µ1)×N, execute the following steps:

1.1 Compute em.

1.2 If B(em, 2−m) ⊂ µ1(w), then write ι(w) on the output tape.

1.3 Continue with the next pair.

Intuitively, for each pair (w, m), Me computes a 2−m-approximation of e and then it checks if
B(em, 2−m) is inside the open interval represented by the string w ∈ dom

(
µ1), if so, Me prints the

string ι(w) on its output tape, thus Me computes a infinite string pe ∈ Σω.
We now show that δ1(pe) = e. First notice that pe ∈ dom

(
δ1), because for every w � pe, w

was output by Me in Line 1.2, and every string output by Me is the first element of a pair from the
set dom

(
µ1)×N (Line 1 of Me). Thus w ∈ dom

(
µ1). Second, every w� pe satisfies the property

e ∈ µ1(w), this is true because in Line 1.2, w is written on the output tape only if

B(em, 2−m) ⊂ µ1(w).
�� ��2.12

But we know that d(em, e) < 2−m, thus e ∈ B(em, 2−m), so that e ∈ µ1(w). Notice also that pe
contains all w ∈ dom

(
µ1) such that e ∈ µ1(w), because for every such string w, there exists an

m ∈N which satisfies Equation
�� ��2.12 . We have proven that

(∀w ∈ Σ∗)(w� pe ⇔ w ∈ dom
(
µ1) and e ∈ µ1(w)).

By Definition 2.1.6, δ1(pe) = e.

Definition 2.1.11 ([KW85, Wei00, Sch02, Sch03]). A representation γ : Σω → X of a topological
space (X, τ) is called admissible (with respect to τ) if it is continuous and γ′ ≤t γ for every conti-
nuous function γ′ : Σω → X.

Proposition 2.1.12 ([Wei00]). If X = (X, τ, β, ν) is an effective topological space, then the representation
δ is admissible with respect to the topology τ.
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It can be proven that all the other (single-valued) representations of Definitions 2.1.6 and 2.1.7

are admissible with respect to appropriated topologies [Sch03]. We now present a result which
gives some nice properties of the representations of a computable topological space X and the
union and intersection operation between subsets of X, the proof can be found in [WG09].

Theorem 2.1.13 ([WG09], Theorem 11). Let X = (X, τ, β, ν) be a computable topological space.

1. Finite intersection on open sets is (νfin, θ)-computable and (θfin, θ)-computable.

2. Union on open sets is (θcs, θ)-computable.

3. On closed sets, finite union is ((ψ−)fin, ψ−)-computable and intersection is ((ψ−)cs, ψ−)-
computable.

4. On the at most countable collection B of closed sets, the function B 7→ ⋃B is (ψcs, ψ)-computable.

5. On the compact sets, finite union is (κfin, κ)-computable.

6. The function (K, A) 7→ K ∩ A for compact K and closed A is (κ, ψ−, κ)-computable.

The following result tell us something about the computability of some basic decision prob-
lems in a computable topological space and the representations given in Definition 2.1.6. The
result is also proven in [WG09] and will be useful in this thesis.

Lemma 2.1.14 ([WG09], Corollary 14). Let X = (X, τ, β, ν) be a computable topological space. Then for
all points x ∈ X, open sets W, closed sets A and compact sets K of X,

1. “x ∈W” is (δ, θ)-c.e.

2. “K ⊆W” is (κ, θ)-c.e.

3. “A ∩W 6= ∅” is (ψ, θ)-c.e.

4. “K ∩ A = ∅” is (κ, ψ−)-c.e.

2.1.2 Predicate spaces

Predicate spaces are used to build an important class of computable topological spaces from very
simple assumptions. In particular, we will show in Chapter 3, how to construct the concept of
computable manifold using predicate spaces.

Let X be any set and σ ⊆ P(X). We may say “x has property U” if x ∈ U. For each x ∈ X, let

Px(X) = {U ∈ σ | x ∈ U},

Definition 2.1.15. Let X be any set.

1. An effective predicate space is a triple Z = (X, σ, λ) such that σ ⊆ P(X) is countable and
X =

⋃
U∈σ U, λ : ⊆ Σ∗ → σ is a notation of σ and the following assertion holds

(∀x, y ∈ X)(x = y⇐⇒ Px(X) = Py(X)).
�� ��2.13

Z is a computable predicate space if dom λ is computable.
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2. Define the representation δZ : ⊆ Σω → X of X by

δZ(p) = x ⇐⇒ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom λ and x ∈ λ(w)).

3. Let T(Z) = (X, τλ, βλ, νλ) where βλ is the set of all finite intersections of sets from σ, νλ
def
=⋂

fin λ : ⊆ Σ∗ → βλ and τλ is the set of all unions of subsets from βλ.

Each element U ∈ σ is called an atomic predicate. By definition, βλ is the base generated by σ
and τλ is the topology in the base βλ. The notation νλ(ι(u1) · · · ι(uk)) = λ(u1)∩ · · · ∩ λ(uk) can be
called the notation by formal finite intersection.

Lemma 2.1.16 ([WG09]). Let Z = (X, σ, λ) be an effective predicate space.

1. T(Z) is an effective topological space, which is computable if Z is computable (that is, if dom
(
λ
)

is
computable).

2. Let δλ be the inner representation of points for T(Z). Then δλ ∼ δZ.

3. For every representation γ0 of a subset Y ⊆ X, the set {(x, U) ∈ Y × σ | x ∈ U} is (γ0, λ)-c.e. if
and only if {(x, V) ∈ Y× βλ | x ∈ V} is (γ0, νλ)-c.e.

Proof. 1. Clearly, βλ is a base of the topology τλ on X and νλ is a notation of βλ that has com-
putable domain if λ has computable domain. If x 6= y, then by

�� ��2.13 there is some U ∈ σ
such that (x ∈ U ∧ y /∈ U) or (x /∈ U ∧ y ∈ U). Since σ ⊆ τλ, (X, τλ) is a T0-space. Condition�� ��2.1 holds for S def

= {(u, v, uv) | u, v ∈ dom νλ}.

2. By Definition 1.3.27, to prove that δZ ∼ δλ, we need to show that δZ ≤ δλ and δλ ≤ δZ. We
begin with the first case. There is a machine M that on input p ∈ Σω does the following

1. For all k ∈N and all subsets {v1, . . . , vk} such that vi � p for all i 6 k:

1.1 write ι(ι(v1) · · · ι(vk)) on the output tape

In words, M computes an infinite string q such that every z� q has the form

z = ι(v1) · · · ι(vk) (k > 1 and vi � p).

When p ∈ dom δZ, δZ(p) = x for some x ∈ X and each vi � p has the property vi ∈
dom λ and x ∈ λ(vi). Using these facts, we can see that for the string q computed by M,
each z� q represents a base element λ(v1)∩ · · · ∩ λ(vk) ∈ βλ of (X, τλ) (k > 1) and because
for each i, x ∈ λ(vi), x ∈ λ(v1) ∩ · · · ∩ λ(vk). Because of the format in which M writes the
string q, it is immediate that z ∈ dom νλ. All these facts together imply that for the string q,

(∀z ∈ Σ∗)(z� q⇔ z ∈ dom νλ and x ∈ νλ(z)).

By Definition 2.1.6, δλ(q) = x. Therefore, the function fM computed by M translates δZ-
names into δλ-names. We conclude that δZ ≤ δλ.

To see that δλ ≤ δZ, we first construct a Type-2 machine N with the following program. On
the input q ∈ Σω:
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1. For all v� q:

1.1 For each u� v
1.1.1 Write ι(u) on the output tape.

Basically, N takes the string q and extracts each string v � q. Then N extracts all string
u � v and outputs all strings of the form ι(u). If the input string q lies in the domain of δλ,
then δλ(q) = y for y ∈ X and N will take all the strings u ∈ Σ∗ such that

u� v� q (v ∈ dom νλ),

and by the definition of v, we have that each u� v is such that u ∈ dom λ and y ∈ λ(u). In
summary, the output string of N, say p, satisfies the condition

u� p⇔ u ∈ dom λ and y ∈ λ(u).

Therefore p ∈ dom δZ and δZ(p) = y, so that the function fN computed by N translates
δλ-names into δZ-names, that is, δλ ≤ δZ. We have proven that δZ ≤ δλ and δλ ≤ δZ, by
Definition 1.3.27, δZ ∼ δλ.

3. Let γ0 : ⊆ Σω → Y, where Y ⊆ X, Eσ = {(x, U) ∈ Y × σ | x ∈ U} and Eβλ
= {(x, V) ∈

Y × βλ | x ∈ V}. (⇒) Suppose that the set Eσ is (γ0, λ)-c.e., by Definition 1.3.25 (and the
comment after this definition), there is a machine M which halts on input (p, u) if and only
if γ0(p) ∈ λ(u). Using the machine M, we build a machine N which halts on input (q, v)
if and only if (γ0(q), νλ(v)) ∈ Eβλ

and this will imply that the set Eβλ
is (γ0, νλ)-c.e. On the

input (q, v), the machine N executes the following code:

1. For each u� v,

1.1 Execute M with the input (q, u).

2. Halt.

We now show that N halts on input (q, v) if and only if (γ0(q), νλ(v)) ∈ Eβλ
. Assume that

N halts on (q, v). Then, in Line 1.1, for each string u � v, M halted on the input (q, u), by
hypothesis, this happens if and only if (γ0(q), λ(u)) ∈ Eσ. This means that q ∈ dom γ0 and
that u ∈ dom λ. Also, this implies that

γ0(q) ∈
⋂

u�v
λ(u),

so that v ∈ dom νλ and γ0(q) ∈ νλ(v). Therefore we have that (γ0(q), νλ(v)) ∈ Eβλ
.

Now suppose that (γ0(q), νλ(v)) ∈ Eβλ
. Then v = ι(u1) · · · ι(us), where ui ∈ dom λ for some

s > 1. As γ0(q) ∈ νλ(v) = λ(u1) ∩ · · · ∩ λ(us), it holds for all i = 1, . . . , s, that γ0(q) ∈ λ(ui),
so that the machine M will halt on all the input tuples (q, ui). This says that if the machine
N is given the input (q, v), it will reach Line 2 in finite time, thus N will halt on (q, v). This
proves that the machine N is correct and that Eβλ

is (γ0, νλ)-c.e.

(⇐) The argument to show that Eσ is (γ0, λ)-c.e. if Eβλ
is (γ0, νλ)-c.e. is very similar to the

previous case, thus we omit it.
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Roughly speaking, a δZ-name of a point is a list of all of its atomic predicates, while a δλ-name
is a list of all finite intersections of such sets. Clearly, the two representations are equivalent.

Example 2.1.17. Define Z def
= (R, σ, λ) such that dom λ = dom νQ, λ(w)

def
= (νQ(w), νQ(w) + 1) ⊂

R and σ
def
= range

(
λ
)
. For each w ∈ dom λ, λ(w) is the open interval in R with the endpoints

νQ(w) and νQ(w) + 1. We claim that Z is a computable predicate space. By definition, the set
dom λ is a computable subset of Σ∗, because dom νQ is computable. Now we need to show that
property

�� ��2.13 is satisfied by Z, to do this, we will prove that for x, y ∈ R,

x 6= y⇒ Px(R) 6= Py(R).

So, assume that we have x, y ∈ R such that x 6= y. Without loss of generality, suppose that x < y.
Then we can find q ∈ Q such that x < q < y and d(q, y) < 1

2 . This implies that y ∈ Q, where
Q = (q, q + 1), so that Q ∈ Py(R). Also, as x < q, we have that x /∈ Q, thus Q /∈ Px(R), therefore
Px(R) 6= Py(R). So that Z fulfills Definition 2.1.15. By Lemma 2.1.16, T(Z) = (R, τ1, βλ, νλ) is
a computable topological space. The computable space T(Z) and the computable space R from
Example 2.1.2 are equivalent as we shall see in Definition 2.2.12. This example can be generalized
to show that for any n ∈ N, Rn has the structure of a computable predicate space Zn such that
T(Zn) is equivalent to Rn.

Subspaces of computable topological spaces

We need to consider restrictions and products of effective topological spaces [WG09]. Let X =
(X, τ, β, ν) be an effective topological space. For a subspace B ⊆ X, define the restriction BX =

(B, τB, βB, νB) of X to B by dom
(
νB
) def

= dom ν, νB(w)
def
= ν(w) ∩ B, βB

def
= range

(
νB
)

and τB
def
=

{W ∩ B | W ∈ τ}. Let δB, θB, . . . , ψ−B be the representations for BX from Definitions 2.1.6 and 2.1.7.
Remember from Definition 1.2.2 that for a multi-function f : X ⇒ Y and Z ⊆ Y, the multi-function

f |Z : X ⇒ Z is defined by f |Z(x) def
= f (x) ∩ Z for all x ∈ X. The next result is proven in [WG09,

Lemma 26].

Lemma 2.1.18. BX is an effective topological space, which is computable if X is computable. Also, the
following properties are satisfied:

1. δB = δ|B,

2. θB(p) = θ(p) ∩ B for all p ∈ dom
(
θB
)
= dom θ,

3. ψ−B (p) = ψ−(p) ∩ B for all p ∈ dom
(
ψ−B
)
= dom ψ−,

4. ψB|C = ψ|C for C = {C ⊆ B | C closed in X},

5. κB|L = κ|L for L = {K ⊆ B | K compact in X}.

Example 2.1.19. In the same spirit of Example 2.1.2, We define the Computable half space Rn
+ =

(Rn
+, τn

+, βn
+, µn

+) as the computable subspace (Rn
+)Rn . Each one of the induced representations

δn
Rn

+
, θn

Rn
+

, ψn
Rn

+
, ψ̃n

Rn
+

, κn
Rn

+
and (δ−)n

Rn
+

, (θ−)n
Rn

+
, (ψ−)n

Rn
+

from Definitions 2.1.6 and 2.1.7 respectively,

will be denoted by δn
+, θn

+, ψn
+, ψ̃n

+, κn
+ and (δ−)n

+, (θ−)n
+, (ψ−)n

+ respectively. Another good ex-
ample is the computable subspace (∂Rn

+)Rn , induced by the boundary of Rn
+. We denote this
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space by ∂Rn

+ = (∂Rn
+, ∂τn, ∂βn, ∂µn) and the induced representations by ∂δn, ∂θn, ∂ψn, ∂ψ̃n, ∂κn

and ∂(δ−)n, ∂(θ−)n, ∂(ψ−)n. As Rn, the computable subspaces Rn
+ and ∂Rn

+ will be very useful
throughout the rest of the thesis.

The product of computable topological spaces

For i = 1, 2 let Xi = (Xi, τi, βi, νi) be effective topological spaces with representations δi, θi, . . . , ψ−i
from Definitions 2.1.6 and 2.1.7. To convert the space X1 × X2 with the product topology into an
effective topological space define the product

X = (X1 × X2, τ, β, ν)

of X1 and X2, where dom ν = {〈u1, u2〉 | (u1, u2) ∈ dom ν1 × dom ν2}, ν(〈u1, u2〉) = ν1(u1) ×
ν2(u2), β = range

(
ν
)

and τ is the product topology generated by β. The basic properties of X are
proven in [WG09] and are given by the following

Lemma 2.1.20. X is an effective topological space, which is computable if X1 and X2 are computable. Let
δ, θ, . . . , ψ

− be the representations for X from Definitions 2.1.6 and 2.1.7. Then

1. δ ∼ [δ1, δ2]2.

2. The function (x1, x2) 7→ (x1, x2) is (δ1, δ2, δ)-computable and each projection (x1, x2) 7→ xi is
(δ, δi)-computable.

3. For open sets, the product (W1, W2) 7→W1×W2 is (θ1, θ2, θ)-computable. Furthermore, the product
is (θ−1 , θ−2 , θ

−
)-computable if the set Zi = {w ∈ Σ∗ | νi(w) 6= ∅} is c.e. for each i = 1, 2.

4. For open sets, the projection W1 ×W2 7→ W1 is (θ, θ1)-computable if the set Z2 is c.e. The analogue
is true if we replace W1 and Z2 by W2 and Z1 respectively.

5. For closed sets, the product (A1, A2) 7→ A1 × A2 is (ψ1, ψ2, ψ)-computable and (ψ−1 , ψ−2 , ψ
−
)-

computable.

6. For compact sets, the operation (K1, K2) 7→ K1 × K2 is (κ1, κ2, κ)-computable and the projection
K1 × K2 7→ Ki is (κ, κi)-computable (i = 1, 2).

The generalization to finite products3 is straightforward. Some examples of computable topo-
logical spaces which are subspaces or products of other computable topological spaces will be
given later.

2.2 Computable functions between computable topological spaces

In order to have a complete and solid theory of computable topology, it is necessary to work with
functions between computable topological spaces which preserve computability. These functions
are precisely computable functions. To define when a function f : X → Y of the topological spaces
X and Y is computable, representations and realizations via computable functions f : Σω → Σω

2For the explicit definition of the representation [δ1, δ2], see Definition 1.3.31
3In this thesis, we do not need to consider computability for infinite products of computable topological spaces

[RW13].
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will be very important. In this section we introduce several ways to define computable functions
among computable topological spaces. An important property of computability of functions is
that it implies continuity. This is reminiscent of the basic facts which state that differentiability
and piecewise-linearity imply continuity too. We also introduce two types of equivalences of
computable topological spaces by using computable homeomorphisms and at the end of the section,
we study computable embeddings.

2.2.1 Multi-representations for continuous functions

In the work of Weihrauch and Grubba [WG09], a number of multi-representation for the set
CP
(
X, Y

)
of partial continuous functions between the effective topological spaces X = (X, τ, β, ν)

and Y = (Y, τ′, β′, ν′) are introduced. In fact, up to eight different multi-representations for con-
tinuous functions are defined and their various equivalences are proven in [WG09]. As we will be
dealing with computable functions between computable topological spaces, we need to use some
of these multi-representations.

A partial function f : ⊆ X → Y is continuous if and only if for every W ∈ τ′, f−1[W
]

is open
in dom f , that is, f−1[W

]
= V ∩ dom f for some V ∈ τ. The following conditions are equivalent:

C1 f is continuous,

C2 (∀x ∈ dom f , W ∈ τ′)( f (x) ∈W ⇒ (∃V ∈ τ)(x ∈ V ∧ f
[
V ∩ dom f

]
⊆W)),

C3 f
[
clsdom f (C)

]
⊆ f

[
C
]

for every C ⊆ dom f ,

The equivalences of C1, C2 and C3 are well-known [Eng89, Mun00]. Type-2 theory gives us a sur-
prising connection between topology and computability, this is another equivalence for continuity
in terms of continuous functions from Σω to itself [Wei00, Theorem 3.2.11].

Theorem 2.2.1. Let X = (X, τ, β, ν) and Y = (Y, τ′, β′, ν′) be effective topological spaces. Then a map
f : ⊆ X → Y is continuous if and only if f has a continuous (δ, δ′)-realization.

This is the “main theorem” for admissible representations, since for an effective topological
space X = (X, τ, β, ν), by Proposition 2.1.12, the representation of points δ is admissible with
respect to the topology τ. We use these and other characterizations to define a number of multi-
representations of the set of partial continuous functions CP

(
X, Y

)
.

Definition 2.2.2. For the effective topological spaces X = (X, τ, β, ν) and Y = (Y, τ′, β′, ν′) with
inner representations δ, θ, ψ, κ and δ′, θ′, ψ′, κ′ respectively, define the multi-representations

−→
δi : ⊆

Σω ⇒ CP
(
X, Y

)
(i = 1, 2, 3, 4, 5) as follows4:

1. f ∈ −→δ1 (p)⇐⇒ f ◦ δ(q) = δ′ ◦ ηωω
p (q) for all q ∈ dom

(
f ◦ δ

)
,

2. f ∈ −→δ2 (p)⇐⇒ f−1[θ′(q)
]
= θ ◦ ηωω

p (q) ∩ dom f for all q ∈ dom
(
θ′
)
,

3. f ∈ −→δ3 (p)⇐⇒ f−1[ν′(w)
]
= θ ◦ η∗ωp (w) ∩ dom f for all w ∈ dom

(
ν′
)
,

4. f ∈ −→δ4 (p)⇐⇒ f
[
C
]
= ψ′ ◦ ηωω

p (q) if C ⊆ dom f and C = ψ(q),

4The representations ηab (a, b ∈ {∗, ω}) are introduced in Section 1.3.4.
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CHAPTER 2. COMPUTABLE TOPOLOGY
5. f ∈ −→δ5 (p)⇐⇒ f

[
K
]
∈ κ′ ◦ ηωω

p (q) if K ⊆ dom f and K ∈ κ(q).

We remark that in [Wei00, Wei08],
−→
δ1 is denoted by

[
δ→p δ′

]
, but in this thesis, we will not use

this notation. If we call the infinite string p a “program” to compute the function ηab
p on any input,

then in part 1. of Definition 2.2.2, a name p of f is a program to compute f with respect to the inner
representations δ and δ′; in 2. a name p is a program for computing the function W 7→ f−1[W

]

with respect to θ and θ′, etc. It is shown in [WG09] that if X, Y are computable, then
−→
δ1 ∼

−→
δ2 ∼

−→
δ3 ∼

−→
δ4 ∼

−→
δ5 ,

�� ��2.14

and that each class
−→
δi is closed under restriction. Also, if we restrict each multi-representation−→

δi to a class of continuous functions with fixed domain, they become singled-valued. This is true
because of the following result, which is proven in [WG09].

Theorem 2.2.3. Let X1, X2 be computable topological spaces. Then for every i with 1 6 i 6 5 and every
p ∈ dom

(−→
δi
)
, f (x) = g(x) if f , g ∈ −→δi (p) and x ∈ dom f ∩ dom g.

Definition 2.2.4. Let X and Y be as in Definition 2.2.2. A (partial) continuous function f : ⊆
X → Y is computable if there exists a Type-2 machine M f , such that M f can compute an element

p ∈ dom
(−→

δi
)

for some i ∈ {1, 2, 3, 4, 5}.

Notice that if p ∈ dom
(−→

δi
)

is computable, then by Lemma 1.3.35, the function ηab
p is com-

putable (a, b ∈ {∗, ω}), so that combining this fact with Definition 2.2.2 and Equation
�� ��2.14 , we

deduce that f is a computable function between the spaces X and Y if and only if one of the
following equivalent conditions hold:

• f is (δ, δ′)-computable.

• The function W 7→ f−1[W
]

is (θ′, θ)-computable.

• The function B 7→ f−1[B
]

is (ν′, θ)-computable.

• The function C 7→ f
[
C
]

is (ψ, ψ′)-computable.

• The function K 7→ f
[
K
]

is (κ, κ′)-computable.

We present the following results as examples of computable functions. Let R = (R×R, τ, β, ν),
where the computable topology of R is induced by the computable real line R.

Lemma 2.2.5. In the computable topological spaces R and R, the following statements hold.

(a) The sum (x, y) 7→ x + y and multiplication (x, y) 7→ xy are computable.

(b) The square root function √ : ⊆ R→ R is computable.

Proof. (a) We show that sum is a computable function from R to R, the case of multiplication
follows from a similar argument. We first prove that there exists a Type-2 machine M such that
given any p ∈ dom

(
δ1) and m ∈N, M can output a rational q ∈ Q that satisfies the equation

δ1(p) ∈ B(q, 2−m).
�� ��2.15

Let M be the machine with the following program. On input (p, m):
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2.2. COMPUTABLE FUNCTIONS

1. For each u� p,

1.1 Let µ1(u) be the ball Bu = B(q, r). If Bu ⊂ B(q, 2−m) then write q on the output tape and
halt.

1.2 Otherwise, continue with the next iteration.

Notice that each step of M can be computed in finite time, as the if’s test can be done using
Theorem 1.2.6. Now we need to show that if the input pair lies in the set dom

(
δ1)×N, M always

halts and the output value satisfies Equation
�� ��2.15 . Suppose that (p, m) ∈ dom

(
δ1)×N. Then p

is a list of all the intervals in R which contain the real number x = δ1(p). Thus there must exists
u� p such that µ1(u) = B(q, r) ⊂ B(q, 2−m). Therefore M will halt in finite time with the rational
q written on its output tape. As x ∈ B(q, r), it follows that δ1(p) = x ∈ B(q, 2−m), so that M is
correct and always halts if the input lies in the set dom

(
δ1)×N.

We are ready to show that the sum function + : R × R → R is computable. Let M+ be a
machine which on input s ∈ dom δ (δ(s) = (x, y)) does the following:

1. For all (v, m) ∈ dom
(
µ1)×N, execute the following steps

1.1 Compute q+ ∈ Q such that d(q+, x + y) < 2−m.

1.2 If B(q+, 2−m) ⊂ µ1(v), then write ι(v) on the output tape.

1.3 Continue with the next pair.

The argument to show that M+ is correct is almost the same argument that we used in Lemma
2.1.10, except for Step 1.1 of M+. To prove that this step can be carried on in finite time by M+, we
only need to show that from the input string s ∈ dom δ, we can compute the rational q+, which is
a 2−m-approximation of x + y. as δ(s) = (x, y) ∈ R×R and R is a computable product space, we
can use the string s and apply part 2 of Lemma 2.1.20 to compute strings px, py ∈ dom δ1 such that
δ1(px) = x and δ1(y) = y. We can then use the machine M on the input pairs (px, m + 1), (py, m +

1) to obtain two rationals qx, qy ∈ Q such that qx and qy are 2−(m+1)-approximations of x and y
respectively. We claim that qx + qy is a 2−m-approximation of x + y. Indeed,

d(x + y, qx + qy) =
∣∣(x + y)− (qx + qy)

∣∣ 6
∣∣x− qx

∣∣+
∣∣y− qy

∣∣ < 2 · 2−(m+1) = 2−m,

thus q+ = qx + qy is a 2−m-approximation of x + y. Therefore, step 1.1 of M+ can be executed in
finite time and it depends only on the input string s ∈ dom δ. So that the function F+ : ⊆ Σω → Σω

computed by M+, is a computable realization of the sum function. We conclude that sum is (δ, δ1)-
computable, by Definition 2.2.4, sum is computable.

(b) The argument to show that the square root is computable, is very similar to the previ-
ous case. Using the machine M to compute 2−m-approximations of x ∈ R, we can find 2−m-
approximations of

√
x by using the expression

√
x =

∞

∑
n=0

(−1)n(2n)!
(1− 2n)(n!)24n (x− 1)n.

We omit the details.
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CHAPTER 2. COMPUTABLE TOPOLOGY
More examples of computable functions exist. Almost all known real functions are com-

putable, like the trigonometric functions and their inverses, the exponential and logarithm func-
tions (with computable bases) [Wei00, Bra05]. We will present many more examples in Chapter
3.

Lemma 2.2.6. Let X, Y and Z be computable topological spaces. If f : ⊆ X → Y and g : ⊆ Y → Z are
computable maps such that range

(
f
)
∩ dom

(
g
)
6= ∅, then g ◦ f : ⊆ X → Z is a computable map from

X to Z.

Proof. Let δ, δ′ and δ′′ be the inner representations for X, Y and Z respectively. If f , g are com-
putable maps, then by Definition 2.2.4, f is (δ, δ′)-computable and g is (δ′, δ′′)-computable. This
means that there exist F, G : ⊆ Σω → Σω such that F is a computable realization of f and G is a
computable realization of g, that is,

f ◦ δ = δ′ ◦ F and g ◦ δ′ = δ′′ ◦ G.

The composition G ◦ F ⊆ Σω → Σω is computable [Wei00, Wei08, TW11], thus for any p ∈ dom
(
δ
)

such that f (δ(p)) ∈ dom g,

(g ◦ f ) ◦ δ(p) = g ◦ ( f ◦ δ)(p) = g ◦ (δ′ ◦ F)(p) = (g ◦ δ′) ◦ F(p) = (δ′′ ◦G) ◦ F(p) = δ′′ ◦ (G ◦ F)(p),

and we conclude that (g ◦ f ) ◦ δ = δ′′ ◦ (G ◦ F), so that G ◦ F is a computable realization of g ◦ f ,
that is, it is (δ, δ′′)-computable, by Definition 2.2.4, g ◦ f is a computable function between X and
Z. This concludes the proof.

2.2.2 Equivalences between computable topological spaces

We will be using two types of equivalences between computable topological spaces. The first one
is that of computable homeomorphism.

Definition 2.2.7. Let X = (X, τ, β, ν) and X′ = (X′, τ′, β′, ν′) be computable topological spaces . A
computable homeomorphism is a map h : X → X′ such that h is a homeomorphism and also h and
h−1 are computable functions . When such a map h exists, we say that X and X′ are computably
homeomorphic . This fact is denoted by X ∼=ct X′.

Sometimes, if there is no confusion about which (computable) topologies we are considering
in the sets X, X′, we will just say that X and X′ themselves are computably homeomorphic.

Example 2.2.8. Let X = (X, τ, β, ν) be any computable topological space. Then X ∼=ct X because
the identity map 1X : X → X is clearly a computable homeomorphism.

Example 2.2.9. Let B = B(0, 1) ⊂ Rn be the open unit ball with the (computable) subspace topolo-
gy (see Lemma 2.1.18). The function h : B→ Rn defined by h(x) = x

1−‖x‖2 is a (δB, δn)-computable

map and its inverse is the function h−1 : Rn → B, given by

h−1(y) =
2y

1 +
√

1 + 4‖y‖2
,

which is (δn, δB)-computable. According to Definition 2.2.4, h is a computable homeomorphism
between BRn and Rn.
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2.2. COMPUTABLE FUNCTIONS

Example 2.2.10. Let Sn = Sn
Rn+1 denote the n-sphere Sn equipped with the computable subspace

topology induced by Rn+1. An important example of a computable homeomorphism is the stere-
ographic projection s : SP → Rn (SP = Sn − {P}, P = (0, . . . , 0, 1)) onto euclidean space Rn given
by the equation

s(x, t) =
x

1− t
with x = (x1, . . . , xn).

Because s is computable, we have that (SP)Sn ∼=ct Rn. The homeomorphism s has been fundamen-
tal for the work in [Zho96].

The following result about half spaces will be needed later.

Lemma 2.2.11. Let n, m > 1, X = Rn
+ ×Rm

+ and X = (X, τ, β, ν) be the computable topological space
induced by the product X. Then the computable topological spaces X and Rn+m

+ are computably homeomor-
phic.

Proof. Throughout this proof, all the topological product spaces have the obvious computable
topologies. First notice that for any n > 1, Rn

+ and Rn−1 ×R+ are computably homeomorphic by
means of the map (x1, . . . , xn) 7→ ((x1, . . . , xn−1), xn). Second, for any n, m > 1,

Rn
+ ×Rm

+
∼=ct Rn−1 ×R+ ×Rm−1 ×R+

∼=ct Rn+m−2 ×R+ ×R+.

Therefore, to complete the proof, we only need to show that R+ ×R+ is computably homeomor-
phic to R×R+. Let Q = R+ ×R+ and H = R×R+. Define f : Q→ H and g : H → Q as

f (a, b) = (a2 − b2, 2ab);

g(c, d) =
(√ c+

√
c2+d2

2 ,
√
−c+

√
c2+d2

2

)
.

It is routine to check that f , g are continuous and they are inverse to each other, thus f is a homeo-
morphism of Q onto H. Now we need to prove that f and g are computable, to see that this is true,
first notice that the coordinate functions of f and g are given in terms of compositions of sums,
multiplications and square roots. So that in order to see that f and g are computable, it is enough to
show that the respective coordinate functions are computable. This can be done by using Lemma
2.2.5, which tell us that the functions sum, multiplication and square root are computable and
these facts can be combined with Lemma 2.2.6 which shows that function composition is com-
putable, thus the machines that compute f and g are made up of various subprograms which are
build by using Lemmas 2.2.5 and 2.2.6, giving the full specification of these machines and proving
their correctness is very similar to previous results, thus we omit the details. Therefore Q ∼=ct H
and finally

Rn+m−2 ×R+ ×R+
∼=ct Rn+m−2 ×R×R+

∼=ct Rn+m−1 ×R+
∼=ct Rn+m

+

and the proof is completed.

Our second equivalence between computable topological spaces is as follows.

Definition 2.2.12 ([WG09]). The computable topological spaces X = (X, τ, β, ν) and X′ = (X, τ, β′,
ν′) are equivalent if and only if ν ≤ θ′ and ν′ ≤ θ.
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The equivalence given in the previous definition identifies when the two notations ν, ν′ of the

bases β and β′ respectively, induce the same computability on the space (X, τ). Example 2.1.17
shows two equivalent computable topological spaces. The computability concepts introduced in
Definitions 2.1.6 and 2.1.7 can be called “computationally robust”, since they are the same for
equivalent computable topological spaces. Usually, non-robust concepts [Wei00, BW99, BP03]
have only few applications. The next result, which can be found in [WG09, Theorem 22.2] is very
useful in practice.

Theorem 2.2.13. Let X = (X, τ, β, ν) and X′ = (X, τ, β′, ν′) be computable topological spaces. The
following statements are equivalent:

• X and X′ are equivalent;

• δ ∼ δ′;

• θ ∼ θ′

Moreover, if X and X′ are equivalent, then γ ∼ γ′ for every representation γ from Definitions 2.1.6 and
2.1.7, where γ′ is the representation for X′ corresponding to γ.

Corollary 2.2.14. Let X = (X, τ, β, ν) and X′ = (X, τ, β′, ν′) be computable topological spaces. Then X
and X′ are equivalent if and only if 1X : X → X is a computable homeomorphism.

Proof. Let δ, δ′ denote the inner representation of points of X in X and X′ respectively. The identity
1X is a computable homeomorphism if and only if, by Definition 2.2.4, 1X is (δ, δ′)-computable
and also (δ′, δ)-computable. This happens if and only if δ ≤ δ′ and δ′ ≤ δ, i.e., δ ∼ δ′ (Definition
1.3.27), which is equivalent, by Theorem 2.2.13, to X and X′ being equivalent spaces.

The induced effective topological space

Let X = (X, τ, β, ν) be an effective topological space and Y a set and suppose that there exists a
bijective function f : X → Y. Because (X, τ) is a topological space, f induces a topology τf on Y
given by the base

β f = { f
[
V
]
| V ∈ β}.

We define a notation ν f : ⊆ Σ∗ → β f of the base β f as ν f (w) = f
[
ν(w)

]
(dom ν f = dom ν). The

4-tuple (Y, τf , β f , ν f ) will be denoted by Y f . It is easy to see that f becomes a homeomorphism
between the two spaces (X, τ) and (Y, τf ). The following results tell us that this fact still holds in
a computable way.

Lemma 2.2.15. Let X = (X, τ, β, ν) be an effective topological space and Y a set. If f : X → Y is a bijective
function, then

a) Y f is an effective topological space, which is computable if X is computable. Also, for any w ∈
dom ν f , ν f (w) = f

[
ν(w)

]
.

b) f becomes a computable homeomorphism between X and Y f .

c) Let γ be any of the representations given in Definitions 2.1.6 and 2.1.7 induced by X and let γ f be
the respective representation induced by Y f . Then
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1. dom γ f = dom γ.

2. If γ ∈ {δ, δ−}, then γ f = f ◦ γ.

3. If γ ∈ {θ, θ−, ψ, ψ−}, then γ f (p) = f
[
γ(p)

]
.

4. If γ ∈ {ψ̃, κ}, then γ f (p) = { f
[
D
]
| D ∈ γ(p)}.

Proof. a) It is clear that Y f is an effective topological space. If X is computable, then dom ν is
computable and there exists a c.e. set S ⊆ dom ν × dom ν × dom ν such that equation

�� ��2.1 of
Definition 2.1.1 is satisfied. As dom ν f = dom ν, dom ν f is computable and the same c.e. set S
can be used to fulfill

�� ��2.1 for the effective space Y f in Definition 2.1.1. Thus Y f is a computable
topological space.

b) We can show that f is a computable homeomorphism between X and Y f by proving that
the functions

B 7→ f−1[B
]

and A 7→ ( f−1)−1[A
]
, (B ∈ β, A ∈ β f ),

are (ν f , θ)-computable and (ν, θ f )-computable respectively. The proof is straightforward, thus we
omit it.

c) We argue by cases on the induced representations γ and γ f :

Case γ = δ. Let p ∈ Σω, if δ(p) = x ∈ X, then f (x) ∈ Y and

δ(p) = x ⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν ∧ x ∈ ν(w))

⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν f ∧ f (x) ∈ f
[
ν(w)

]
)

⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν f ∧ f (x) ∈ ν f (w))

⇔ δ f (p) = f (x).

Thus dom δ = dom δ f and also δ f (p) = f (x) = f (δ(p)) = f ◦ δ(p) for any p ∈ dom δ f .
Therefore, δ f = f ◦ δ.

Case γ = δ−. This case is similar to the previous one.

Case γ = θ. Given p ∈ Σω, we have that

θ(p) = W ⇔
{

w� p⇒ w ∈ dom ν,
W =

⋃{ν(w) | w� p},

⇔
{

w� p⇒ w ∈ dom ν f ,
f
[
W
]
=
⋃{ f

[
ν(w)

]
| w� p},

⇔
{

w� p⇒ w ∈ dom ν f ,
f
[
W
]
=
⋃{ν f (w) | w� p},

⇔ θ f (p) = f
[
W
]
,

so that dom θ = dom θ f and θ f (p) = f
[
W
]
= f

[
θ(p)

]
for any p ∈ dom θ f .
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Case γ = ψ. For p ∈ Σω,

ψ(p) = A ⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν ∧ A ∩ ν(w) 6= ∅)
⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν f ∧ f

[
A
]
∩ f
[
ν(w)

]
6= ∅)

⇔ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom ν f ∧ f
[
A
]
∩ ν f (w) 6= ∅)

⇔ ψ f (p) = f
[
A
]
.

And we conclude this case with the same arguments we use in all previous cases.

Cases γ = θ−, ψ−. These cases follow immediately from the definitions of the representations
θ− and ψ− and the two previous cases.

Case γ = κ. Let p ∈ Σω, notice first that if κ(p) is defined, then κ(p) is in general a set of
compact subsets of X and accordingly to

�� ��2.6 ,

K ∈ κ(p)⇐⇒ (∀z ∈ Σ∗)(z� p⇔ K ⊆
⋃

fin
ν(z)),

and
⋃

fin ν(z) = ν(w1) ∪ · · · ∪ ν(ws) with wi ∈ dom ν ∧ wi � z for all i = 1, . . . , s (see
Definition 1.3.32 and the remark after Lemma 1.3.33). As each wi ∈ dom ν f , we have
that f

[⋃
fin ν(z)

]
= f

[
ν(w1) ∪ · · · ∪ ν(ws)

]
= f

[
ν(w1)

]
∪ · · · ∪ f

[
ν(ws)

]
= ν f (w1) ∪ · · · ∪

ν f (ws) =
⋃

fin ν f (z). Thus for a compact set K ∈ κ(p),

K ∈ κ(p) ⇔ (∀z ∈ Σ∗)(z� p⇔ K ⊆
⋃

fin
ν(z)),

⇔ (∀z ∈ Σ∗)(z� p⇔ f
[
K
]
⊆ f

[⋃
fin

ν(z)
]
),

⇔ (∀z ∈ Σ∗)(z� p⇔ f
[
K
]
⊆
⋃

fin
ν f (z)),

⇔ f
[
K
]
∈ κ f (p).

This shows that dom κ = dom κ f and also that κ f (p) = { f
[
K
]
| K ∈ κ(p)}.

Case γ = ψ̃. This is similar to the case γ = κ.

This concludes all the cases for the induced representations on X and Y f and finishes the proof.

This result tell us that the only essential difference between X and Y f is the “abstract symbol”
f . But more can be said if Y already possesses a computable topology.

Corollary 2.2.16. Let X = (X, τX, βX, νX), Y = (Y, τY, βY, νY) be computable topological spaces. If
f : X → Y is a computable homeomorphism, then Y and Y f are equivalent.

Proof. Let δX, δY be the inner representations induced by X and Y respectively. We will show that
δ f ∼ δY. Because f and f−1 are computable functions between the computable spaces X and Y,
they are computable with respect to δX and δY, thus there exist computable functions F, G : ⊆
Σω → Σω such that the two inner squares in the following diagram

X
f−−−→ Y

f−1

−−−→ X

δX

x δY

x δX

x

Σω F−−−→ Σω G−−−→ Σω

�� ��2.16
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commute. By part (c) of Lemma 2.2.15 and the first square, δ f = f ◦ δX = δY ◦ F, that is, δ f ≤ δY.
By the second square, f−1 ◦ δY = δX ◦G, so that δY = f ◦ δX ◦G = δ f ◦G, thus δY ≤ δ f . This proves
that δY ∼ δ f and then we can apply Theorem 2.2.13 to deduce that Y and Y f are equivalent

For a computable predicate space Z = (X, σ, λ), we have the computable space T(Z) =
(X, τ, βλ, νλ) of Lemma 2.1.16, where νλ(ι(u1) · · · ι(uk)) = λ(u1) ∩ · · · ∩ λ(uk), τ is the topology
generated by the subbase σ and δλ ∼ δZ. If σ is not only a subbase, but a base of τ, then we can

construct the effective space Y def
= (X, τ, σ, λ), which may be computable. For the topology τ we

have on the one hand, the basis βλ with the notation νλ (defined via formal intersection of subbase
elements) and on the other hand, the basis σ with notation λ. The question is: Are T(Z) and Y
equivalent ? The answer is right here [WG09, Lemma 23].

Lemma 2.2.17. Let Y = (X, τ, σ, λ) be an effective topological space such that Z = (X, σ, λ) is a com-
putable predicate space. Then T(Z) and Y are equivalent if and only if Y is a computable topological space.

2.2.3 Computable embeddings

Sometimes it is useful to have a space X inside another (probably bigger) space Y, that is, when
X is embedded in Y. This idea is formalized with the concept of embedding. A continuous function
h : X → Y is a (topological) embedding if h is a homeomorphism of X onto h

[
X
]
⊂ Y, where h

[
X
]

is
equipped with the subspace topology induced by Y. Such an embedding is denoted by

h : X ↪→ Y or X
h
↪→ Y.

In this way, we can view X as a subspace of Y. The corresponding definition for computable
topological spaces is that of computable embedding.

Definition 2.2.18. Let X = (X, τX, βX, νX), Y = (Y, τY, βY, νY) be computable topological spaces. A
computable embedding of X into Y is a topological embedding h : X ↪→ Y such that h is a computable
homeomorphism of X onto the computable subspace X′Y, where X′ = h

[
X
]
.

By Corollary 2.2.16, the computable topological spaces X′h = (h
[
X
]
, τh, βh, νh) and X′Y are equi-

valent.

Example 2.2.19. For any effective topological space X = (X, τ, β, ν) and any Z ⊆ X, the com-
putable topological space ZX is embedded in X via the inclusion map i : Z ↪→ X. In fact, any
computable homeomorphism is a computable embedding.

Example 2.2.20. Let h : B → Rn (B = B(0, 1)) be the computable homeomorphism of example
2.2.9 and p0 : Rn → Rn+1 be such that p0(x1, . . . , xn) = (0, x1, . . . , xn). Clearly p0 is a com-
putable embedding of Rn into Rn+1. We can compose h with p0 to obtain a computable embedding
B(0, 1) ↪→ Rn+1 of BRn into Rn+1.

2.3 Computably Hausdorff spaces

In the theory of computable topology, computable versions of the standard separation axioms Ti
(i = 0, 1, 2) has been proposed [GWX08, Wei10]. Some of the relationships between these com-
putable axioms and many examples are studied in [Wei10]. One of this axioms will be used in this
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thesis, which is one of the computable variants of the T2 (Hausdorff) separation axiom. A space
(X, τ) is T2 or Hausdorff if and only if the following condition holds:

(∀x, y ∈ X)(x 6= y⇒ (∃U, V ∈ τ)U ∩V = ∅∧ x ∈ U ∧ y ∈ V).

Many examples of Hausdorff spaces exist in the literature [Arm83, Eng89, Mun00]. The next
definition is a constructive version of the Hausdorff property.

Definition 2.3.1. A computable topological space X = (X, τ, β, ν) is called computably Hausdorff if
there exists a c.e. set H ⊆ dom ν× dom ν such that

(∀(u, v) ∈ H)(ν(u) ∩ ν(v) = ∅),
�� ��2.17

(∀x, y ∈ X)(x 6= y⇒ (∃(u, v) ∈ H)(x ∈ ν(u) ∧ y ∈ ν(v))).
�� ��2.18

Example 2.3.2. The computable euclidean space Rn is a computably Hausdorff space. We claim
that the set H defined as

H def
= {(u, v) ∈ Σ∗ × Σ∗ | µn(u) ∩ µn(v) = ∅}

is c.e. and satisfies Equations
�� ��2.17 and

�� ��2.18 . By definition, H fulfills
�� ��2.17 , to prove that H is

c.e., we can use Theorem 1.2.6. To see that H satisfies
�� ��2.18 , we proceed as follows. As Rn is

Hausdorff, then given any two points x, y ∈ Rn with x 6= y, there exist open sets U, V ∈ τn such
that U ∩ V = ∅ and x ∈ U, y ∈ V. Thus we can find two base elements B1, B2 ∈ βn such that
x ∈ B1 ⊆ U and y ∈ B2 ⊆ V. As µn is a notation, it is surjective, so that there exist u1, u2 ∈ dom µn

with µn(ui) = Bi, i = 1, 2. Because U ∩V = ∅, µn(u1) ∩ µn(u2) = ∅, so that u1, u2 ∈ H. Therefore
H satisfies Definition 2.3.1 and Rn is a computably Hausdorff space.

The computable Hausdorff axiom of Definition 2.3.1 is the strongest of all the computable
separation axioms of [Wei10]. Of course, A computably Hausdorff space is a Hausdorff space in
the usual sense. We list some properties of computably Hausdorff topological spaces [GWX08,
Wei10].

Theorem 2.3.3. Let X = (X, τ, β, ν) be a computable topological space.

1. If X is Hausdorff and the set {(u, v) ∈ dom ν × dom ν | ν(u) ∩ ν(v) = ∅} is c.e., then X is
computably Hausdorff.

2. If X is computably Hausdorff and A ⊆ X, then the computable subspace AX is computably Hausdorff.

3. The following are equivalent

a) X is computably Hausdorff.
b) The set {(x, y) ∈ X× X | x 6= y} is (δ, δ)-c.e.
c) δ ≤ δ−.

4. If X is computably Hausdorff then κ ≤ ψ−.

5. If Y = (Y, τ′, β′, ν′) is another computable topological space and X, Y are computably Hausdorff,
then the computable product space X = (X×Y, τ, β, ν) is computably Hausdorff.

More information about Computably Hausdorff spaces and many other computable separa-
tion axioms, results, examples and counterexamples can be found in [Wei10]. The computable
Hausdorff property will be very important for our work on Computable manifolds, as it is impor-
tant the standard Hausdorff property for topological manifolds.
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3
Computable manifolds

In this chapter, we present the concept of computable manifold. The first thing to do is to give the
definition of what we call computable structure. This is very similar to the way smooth and PL
manifolds are defined, by constructing smooth and PL structures for topological manifolds. Once
we have defined computable manifolds, we will talk about computable functions between two
computable manifolds and prove some properties about them.

In Section 3.1, we begin introducing one of the key components of the definition of computable
manifolds: Computable atlases. This important definition is given in terms of predicate spaces (see
Section 2.1.2) and give many examples of topological spaces equipped with computable atlases
and after that, we use computable atlases to define computable structures. We show how a com-
putable structure is characterized by a computable topology and then we define computable man-
ifolds. Examples of computable manifolds are given at the end of the section. In Section 3.2, we
show that computable functions are well suited to be used as morphisms between computable
manifolds and also we study computable homeomorphisms between computable manifolds. Fi-
nally, in Section 3.3, we prove basic properties of computable manifolds. While some of these
properties are only valid for computable manifolds (e.g., Lemmas 3.3.2 and 3.3.3), other proper-
ties are computable versions of known basic properties of topological manifolds, like Theorem
3.3.5.

3.1 Computable structures on topological manifolds

We first introduce the concept of computable atlas and prove some facts about it. We show that, as
an ordinary topological atlas on a set X induces a topology on X, a computable atlas on X induces a
computable topology on X and we prove that this topology characterizes the computable structure
determined by the computable atlas. Throughout this section, we workout many examples of
computable atlases and computable manifolds. We also show that the product of two computable
manifold is a computable manifold, and the computable topology of the product manifold is the
product topology of the two factor manifolds.

3.1.1 The computable predicate space induced by a topological atlas

Assume that X is a non-empty set and that Φ = {(ϕi, Ui)}i∈I is an n-dimensional atlas on X with
index set I ⊆ Σ∗ (so that Φ is countable). If ϕi : Ui → ϕi

[
Ui
]

is a chart, then by Definition 1.1.16,
ϕi
[
Ui
]
⊆ Rn

+ is an open set,thus
ϕi
[
Ui
]
=

⋃

w∈Si

µn
+(w),
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where Si = {w ∈ dom

(
µn
+

)
| µn

+(w) ⊂ ϕi
[
Ui
]
}. Applying ϕ−1

i we get that Ui =⋃
w∈Si

ϕ−1
i

[
µn
+(w)

]
⊂ X. Let AΦ be the set AΦ = {(i, w) | i ∈ Σ∗ and w ∈ dom

(
µn
+

)
} ⊆ Σ∗ × Σ∗

and define the set of strings ΛΦ ⊆ Σ∗ as

ΛΦ = {〈i, w〉 | (i, w) ∈ AΦ},

that is, ΛΦ is just the image of the set AΦ under the function 〈·, ·〉 (see Definition 1.2.3 and Equation�� ��1.1 ). For each 〈i, w〉 ∈ ΛΦ, define the set B〈i,w〉 ⊆ X by

B〈i,w〉 =

{
ϕ−1

i

[
µn
+(w)

]
if i ∈ I and µn

+(w) ⊆ ϕi
[
Ui
]
,

∅ otherwise.

�� ��3.1

Each set B〈i,w〉 with 〈i, w〉 ∈ ΛΦ is called a computable ball (with boundary, if B〈i,w〉 6= ∅ and µn
+(w) ∩

∂Rn
+ 6= ∅). Notice that unlike an ordinary ball, a computable ball can be empty. Because the set

{Ui}i∈I covers X, we can see that the set BΦ = {Bj | j ∈ ΛΦ} also covers X. Let the notation
λΦ : ⊆ Σ∗ → BΦ be given as follows: dom λΦ = {z ∈ Σ∗ | z = 〈i, w〉 and 〈i, w〉 ∈ ΛΦ} and

λΦ(〈i, w〉) = B〈i,w〉.

Proposition 3.1.1. The triple ZΦ = (X,BΦ, λΦ) is a computable predicate space.

Proof. Clearly, the set dom λΦ = ΛΦ is a computable set, because Σ∗ × dom
(
µn
+

)
is computable,

so we only need to prove that for x, y ∈ X

Px(X) = Py(X)⇒ x = y.

Assume that Px(X) = Py(X), so that there is a string 〈j, u〉 ∈ Σ∗ such that x, y ∈ B〈j,u〉. For
z ∈ {x, y}, define the set

P j
z = {B〈j,w〉 | B〈j,w〉 ∈ Pz(X)}

and using ϕj we can define the set

ϕj(P j
z) = {µn

+(w) | µn
+(w) ⊂ ϕj

[
Uj
]
∧ ϕj(z) ∈ µn

+(w)} ⊂ βn,

then using our hypothesis, we can prove that P j
x = P j

y and clearly this implies that ϕj(P j
x) =

ϕj(P j
y).

Let Zn
+ = (Rn

+, βn
+, µn

+) be the standard computable predicate space1 associated with Rn
+ (see

Example 2.1.17) and V ∈ Pϕj(x)(R
n
+). V is an open neighborhood of ϕj(x) and for a suitable

u ∈ dom
(
µn
+

)
, we can choose µn

+(u) ∈ ϕj(P j
x) such that ϕj(x), ϕj(y) ∈ µn

+(u) ⊆ V ∩ ϕj
[
Uj
]
, thus

V ∈ Pϕj(y)(R
n
+). This shows that Pϕj(x)(R

n
+) ⊂ Pϕj(y)(R

n
+) and a similar argument can be used to

check that the other inclusion holds. Therefore in the predicate space Zn
+,

Pϕj(x)(R
n
+) = Pϕj(y)(R

n
+),

implying that ϕj(x) = ϕj(y) and since ϕj is injective, x = y. We have proven that the triple
ZΦ = (X,BΦ, λΦ) is a computable predicate space.

1This predicate space is defined for Rn
+ in a similar way as Zn is contructed for Rn in Example 2.1.17.
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Remark. Since an atlas Φ on a set X induces a computable predicate space ZΦ on X, Φ induces a
structure of computable topological space on X. By Lemma 2.1.16, the effective space

TΦ(X) = T(ZΦ)

is a computable topological space, such that the topology induced by ZΦ is precisely the topology
τΦ induced by Φ. But the set BΦ of computable balls is not only a subbase, but a base of τΦ, so that
we have another effective topological space XΦ = (X, τΦ,BΦ, λΦ) associated with X. We define
the computable topological space associated to Φ (and induced on X) as the space TΦ(X). In general,
we cannot use the effective space XΦ, because it could happen that it is not computable. But if it is
the case that XΦ is computable, then by Lemma 2.2.17, XΦ is equivalent to TΦ(X). If δ : ⊆ Σω → X
is the inner representation of X induced by TΦ(X), then by part 2. of Lemma 2.1.16, δ ∼ δZΦ , hence
for computability matters, we can interchange δ with δZΦ . Moreover, we will use the symbol δΦ
to denote any of the representations δ and δZΦ . In fact, because the computable space TΦ(X)
depends on the atlas Φ, all the elements of TΦ(X) and all notations and representations induced
by this space will be denoted with a “Φ” subindex, so that TΦ(X) = (X, τΦ, βΦ, νΦ), where τΦ is
the topology induced by Φ on X; βΦ is the set of all finite intersections of elements of BΦ; νΦ is the
notation of βΦ induced by λΦ and δΦ, θΦ, ψΦ, κΦ, etc., are the representations given in Definitions
2.1.6 and 2.1.7 respectively, for the computable space TΦ(X).

3.1.2 Computable atlases

We are now ready to formulate our definition of computable manifold. We start by defining what
we call computable atlas. Remember that the computable topological spaces Rn = (Rn, τn, βn, µn)
and Rn

+ = (Rn
+, τn

+, βn
+, µn

+) from Examples 2.1.2 and 2.1.19 are called computable euclidean space
and computable half space respectively, of dimension n, and that each standard representation
induced by Rn (Rn

+) is denoted by γn (γn
+).

Definition 3.1.2. An n-dimensional computable atlas on a set X is a topological atlas2 Φ = {(ϕi,
Ui)}i∈I (I ⊆ Σ∗) such that the following properties are satisfied:

(a) For i ∈ I, the map ϕi : Ui ⊆ X → Rn
+ is a (δZΦ , δn

+)-computable function and the inverse
ϕ−1

i : ϕi
[
Ui
]
→ Ui is (δn

+, δZΦ)-computable.

(b) Each set ϕi
[
Ui
]
⊆ Rn

+ is a θn
+-computable subset of Rn

+.

Notice that we have formulated our formal definition of computable atlases, using as a basis
the concept of atlases that are specified in Definition 1.1.16, which use open subsets of the half
space Rn

+. We need to do this in order to be able to define computable atlases and computable
structures for general topological manifolds with boundary. However, when we deal with man-
ifolds with empty boundary, any chart ϕ : U → Rn

+ of a manifold M has its image ϕ
[
U
]

entirely
contained in the interior of Rn

+ and can be thought as an open set of euclidean space Rn. Thus,
if we are using manifolds without boundary, we can replace the computable half space Rn

+ with
computable euclidean space Rn in all the definitions and results that we will obtain for computable
manifolds. Therefore, from now on, we adopt the following convention: If we work with topo-
logical manifolds without boundary, we will use the computable space Rn instead of Rn

+ to apply
definitions and results of computable manifolds. We now present some examples of computable
atlases.

2See Subsection 1.1 and Definition 1.1.16.
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Example 3.1.3. Let n > 0. The identity 1Rn : Rn → Rn is a (δn, δn)-computable function which
covers Rn and this is clearly a θn-computable open set, thus it determines an n-dimensional com-
putable atlas Φ = {(1Rn , Rn)} on Rn.

Example 3.1.4. The map ϕ1 : R → R defined by ϕ1(x) = x + a (a ∈ R) is a homeomorphism of
the line onto itself. We now prove that Ψ = {(ϕ1, R)} is a computable atlas on R. Clearly, R is a
θ1-computable open set in R, now we need to show that ϕ1 and its inverse are computable with
respect to δΨ and δ1. ϕ1 is (δΨ, δ1)-computable, because given x ∈ R and p ∈ dom δΨ such that
δΨ(p) = x, we have that

δΨ(p) = x ⇐⇒ (∀w ∈ Σ∗)(w� p⇔ w ∈ dom λΨ and x ∈ λΨ(w)),

So, for each w � p, x ∈ λΨ(w) = ϕ−1
1

[
µ1(z)

]
with w = 〈1, z〉. Therefore, ϕ1(x) ∈ µ1(z) for all

w� p. Let M be a TTE machine with the following program. On the input p ∈ Σω

1. For each w = 〈1, z〉 � p

1.1 output ι(z)

By the previous argument, the machine M outputs a string q ∈ Σω such that (∀z ∈ Σ∗)(z � q ⇔
z ∈ dom

(
µ1) and ϕ1(x) ∈ µ1(z)). By definition 2.1.6, δ1(q) = ϕ1(x), thus M computes a function

which realizes ϕ1 with respect to δΨ and δ1. To show that ϕ−1
1 is (δ1, δΨ)-computable, the argument

is very similar, we omit it. We have shown that Ψ is a 1-dimensional computable atlas on R.

Notice that the computability of the atlas Ψ is independent of the computability of the real
number a (with respect to δ1), given in the definition of ϕ1. We will come back to this example
later.

Example 3.1.5. We prove that the atlas Φ for S1 ⊂ R2 given in Example 1.1.15 is computable. Φ is
defined by the pairs

Φ = {( f+, U+), ( f−, U−), (g+, V+), (g−, V−)}.
To check that Φ is computable, we need to show that each chart ϕ : U → R in Φ is a (δZΦ , δ1)-
computable function with (δ1, δZΦ)-computable inverse and the sets ϕ

[
U
]

are θ1-computable open
subsets of R. Each set ϕ

[
U
]

is clearly a θ1-computable open subset of R, because we have that
ϕ
[
U
]
= (−1, 1) and the latter set is θ1-computable. Now we give the full proof of the computabil-

ity of f+ and its inverse, the other cases f−, g+ and g− are very similar.
Let f1 = f+, f2 = f−, f3 = g+ and f4 = g− To see that f1 is (δZΦ , δ1)-computable, consider the

following Type-2 machine F1. On input p ∈ dom δZΦ (δZΦ(p) = (x, y) ∈ S1):

1. For each z = 〈i, w〉 � p,

1.1 if i = 1, then output ι(w);

1.2 Otherwise, execute the following:

1.2.1 Compute ay, by such that y ∈ (ay, by) ⊂ (−1, 1);

1.2.2 compute ax =
√

1− a2
y;

1.2.3 compute bx =
√

1− b2
y;

52



3.1. COMPUTABLE STRUCTURES

1.2.4 compute w′ such that (bx, ax) ⊆ µ1(w′) ⊂ (−1, 1);
1.2.5 output ι(w′).

We claim that F1 computes a function F1 : ⊆ Σω → Σω which realizes f1. We first check that each
step of F1 can be done in finite time. Step 1.1 is clearly computable, and for step 1.2, we only need
to check that steps 1.2.1-1.2.5 can be calculated in finite time by F1. First of all, if F1 is executing step
1.2, then we have that i 6= 1, so that the string z = 〈i, w〉 represents a computable ball f−1

i

[
µ1(w)

]

such that fi 6= f1. Remember that f1 is defined on the set U+ = {(x, y) ∈ S1 | y > 0}, so that if
fi 6= f1 = f+, then fi = f3 or fi = f4. Without loss of generality, assume that fi = f3.

Step 1.2.1 can be computed in finite time, because since (x, y) = δZΦ(p) ∈ f−1
3

[
µ1(w)

]
, then

f3(x, y) = g+(x, y) = y ∈ µ1(w) ⊂ (−1, 1). Using the string w ∈ dom
(
µ1), F1 can compute

ay, by ∈ Q with y ∈ (ay, by) ⊂ µ1(w), thus step 1.2.1, can be done in finite time by F1. Steps 1.2.2
and 1.2.3 are computable, because ay, by are rationals and by part (b) of Lemma 2.2.5, the square
root is a computable function. Step 1.2.4 can be calculated by F1, because by the previous steps,
ax and bx are computable points in R and the given set inclusions can be tested by using Theorem
1.2.6. Step 1.2.5 is clearly computable.

Now we prove the correctness of F1. Let (x, y) = δZΦ(p) ∈ dom f1. and take 〈i, w〉 � p, so
that (x, y) ∈ f−1

i

[
µ1(w)

]
. If i = 1 then f1(x, y) ∈ µ1(w) and in this case, F1 outputs ι(w) in the

output tape. When i 6= 1, i = 3 or i = 4, thus fi(x, y) = y ∈ µ1(w). There exist ay, by ∈ Q such
that y ∈ µ1(w) = (ay, by). Since fi is bijective, ax = f−1

i (ay) and bx = f−1
i (by) are defined and they

satisfy the equations

ax =
√

1− a2
y;

bx =
√

1− b2
y;

(notice that bx < ax, because ay < by) and it is immediate to show that bx < f1(x, y) < ax.
There exist rational numbers a, b such that f1(x, y) ∈ (bx, ax) ⊆ (a, b) ⊂ (−1, 1) and the set (a, b)
is represented by a string w′ ∈ dom

(
µ1), this string is computed by F1 in step 1.2.5, thus the

output ι(w′) is correct. Therefore the machine F1 computes a function F such that on the input
p ∈ dom δZΦ , F(p) satisfies

(∀w′ ∈ Σ∗)(w′ � F(p)⇔ w′ ∈ dom
(
µ1) and f1(x, y) ∈ µ1(w′)).

Therefore δ1(F(p)) = f1(x, y) and F realizes f1 with respect to δZΦ and δ1, so that f1 is (δZΦ , δ1)-
computable.

It only remains to prove that f−1
1 is (δ1, δZΦ)-computable. There exists a Type-2 machine G1

that, on input q ∈ dom δ1, does the following: For each z � q, G1 checks if µ1(z) ⊆ (−1, 1), if so,
then it writes ι(〈1, z〉) on the output tape; otherwise G1 ignores the string z. It is easy to see that
G1 computes a function G : ⊆ Σω → Σω which realizes f−1

1 with respect to δ1 and δZΦ .
Therefore, the atlas Φ fulfills Definition 3.1.2 so that it is a 1-dimensional computable atlas for

the circle.

We now show that with a computable atlas, the transition functions satisfy the expected com-
putability properties inside the induced computable topological space TΦ(X).

Lemma 3.1.6. Let Φ = {(ϕi, Ui)}i∈I be an n-dimensional computable atlas on X. Then for the computable
spaces TΦ(X) and Rn

+:
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(i) For all i ∈ I, the chart ϕi : Ui → ϕi

[
Ui
]
⊆ Rn

+ is a computable homeomorphism (with respect to δΦ
and δn

+) and Ui is a θΦ-computable open set in X.

(ii) For each i, j ∈ I, Ui ∩Uj is θΦ-computable open in X and ϕi
[
Ui ∩Uj

]
is θn

+-computable open in Rn
+.

(iii) Each transition function ϕi ϕ
−1
j is a computable homeomorphism between θn

+-computable subsets of
Rn

+.

Proof. (i) By Proposition 1.1.10, each ϕi is an homeomorphism onto its image ϕi
[
Ui
]

and that
ϕi (ϕ−1

i ) is computable is true because ϕi (ϕ−1
i ) is (δZΦ , δn

+)-computable ((δn
+, δZΦ)-computable)

and by Lemma 2.1.16, δZΦ ∼ δΦ. Ui is θΦ-computable because since ϕi is computable, the map
W 7→ ϕ−1

i

[
W
]

is (θn
+, θΦ)-computable (Definition 2.2.4); (ii) Follows by combining (i) and part

1. of Theorem 2.1.13 with Definition 2.2.4; (iii) is immediate because composition of computable
functions between computable topological spaces is again, computable.

We continue with more examples of computable atlases.

Example 3.1.7. It is easy to see that the topology induced by the computable atlas {(1Rn , Rn)} on
Rn of Example 3.1.3 is of course, the usual euclidean topology and clearly TΦ(R

n) is equivalent to
Rn. Consider now the atlas Φ = {( f+, U+), ( f−, U−), (g+, V+), (g−, V−)} on S1 of Example 3.1.5.
We have proven that it is computable. But which is the topology that Φ induces on S1 ? Let S1 be
the computable 1-sphere of R2 introduced in Example 2.2.10.

Lemma 3.1.8. The computable topological spaces TΦ(S
1) and S1 are equivalent.

Proof. Notice that for suitable a, b, c, d, e, f ∈ Q and ϕ, ψ, α ∈ { f+, f−, g+, g−} the condition

ϕ−1[(a, b)
]
⊆ ψ−1[(c, d)

]
∩ α−1[(e, f )

]
,

can be verified algorithmically. For example, g−1
−
[
(a, b)

]
⊆ f−1

+

[
(c, d)

]
∩ g−1

+

[
(e, f )

]
is equivalent

to the condition

(∀(x, y) ∈ R2)(x2 + y2 = 1∧ x < 0∧ y ∈ (a, b) ∧ (a, b) ⊂ (−1, 1)⇒ y > 0∧ x ∈ (c, d)
∧ (c, d) ⊂ (−1, 1) ∧ x > 0∧ y ∈ (e, f ) ∧ (e, f ) ⊂ (−1, 1)).

By Theorem 1.2.6, all expressions of this kind can always be checked in finite time by a Turing
machine. Hence, the effective space3 S1

Φ = (S1, τΦ,BΦ, λΦ) becomes a computable topological
space and by Lemma 2.2.17, S1

Φ is equivalent to TΦ(S
1). We now show that S1

Φ is equivalent to the
computable subspace S1. By Definition 2.2.12, we need to show that λΦ ≤ θ2

S1 and µ2
S1 ≤ θΦ.

To see that λΦ ≤ θ2
S1 , it is enough to build a Type-2 machine M which, on input z ∈ dom λΦ,

enumerates all string w ∈ dom
(
µ2) and for each w, M checks if

µ2
S1(w) = µ2(w) ∩ S1 ⊆ λΦ(z),

�� ��3.2

if so, then M outputs ι(w) on the output tape; otherwise it continues with the next enumerated
string of dom

(
µ2). For each w, M can perform the test given in Equation

�� ��3.2 by generating an
elementary expression equivalent to

�� ��3.2 . For example, if µ2(w) = B(q, r) (q = (q1, q2)) and

3See the remark after the proof of Proposition 3.1.1.
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λΦ(z) = g−1
+

[
µ1(z1)

]
, with µ1(z1) = (a, b) ⊆ (−1, 1), then an elementary expression equivalent to�� ��3.2 is the following

(∀x, y)(x2 + y2 = 1 and (x− q1)
2 + (y− q2)

2 < r2 ⇒ a < y and y < b).

By Theorem 1.2.6, M can check this expression in finite time. All other cases are very similar. Thus
the function computed by M outputs an infinite string q ∈ Σω such that

θ2
S1(q) =

⋃

w�q
µ2

S1(w) = λΦ(z),

and the output of the machine is correct, thus λΦ ≤ θ2
S1 . The argument for the case µ2

S1 ≤ θΦ is
almost identical, so we omit it. Therefore S1

Φ is equivalent to the computable subspace S1 and
since S1

Φ is equivalent to TΦ(S
1), we have that S1 is equivalent to TΦ(S

1), so that the computable
topology on S1 induced by Φ is the computable subspace topology of S1.

Example 3.1.9. An atlas can be defined for the sphere Sn ⊂ Rn+1 with the stereographic projection.
Let P1 = (0, . . . , 0, 1), P−1 = (0, . . . , 0,−1) and define Ur = Sn − {Pr} with r = 1,−1. U1 ∪U−1 =
Sn and if we define s1 : U1 → Rn, s1(x, t) = x

1−t and s−1 : U−1 → Rn, s−1(x, t) = x
1+t with x =

(x1, . . . , xn). Then Ψ = {(s1, U1), (s−1, U−1)} is a topological atlas for Sn. We prove that Ψ is a
computable atlas for Sn as follows: The atlas Ψ induces the effective spaces3 Sn

Ψ = (Sn, τΨ,BΨ, λΨ)
and TΨ(S

n), being the latter computable. Now, since the maps s1, s−1 are rational functions with
coefficients in Q, we can apply Theorem 1.2.6 to deduce that the decision problem

s−1
r
[
B1
]
⊆ s−1

t
[
B2
]
∩ s−1

u
[
B3
]
, Bi ∈ βn, r, t, u ∈ {1,−1},

is computable, thus Sn
Ψ = (Sn, τΨ,BΨ, λΨ) is a computable topological space and by Lemma 2.2.17,

it is equivalent to TΨ(S
n). Our next step is to show that Sn

Ψ and Sn = Sn
Rn+1 are equivalent com-

putable spaces. This can be done easily using Definition 2.2.12 and Theorem 1.2.6, just as we did
in Lemma 3.1.8. If µn+1

Sn is the notation for base elements of Sn and θΨ is the representation for
open sets of Sn

Ψ, then to prove that µn+1
Sn ≤ θΨ, we have that s−1

r
[
µn(z)

]
⊆ µn+1

Sn (w) (z ∈ dom
(
µn)

and w ∈ dom
(
µn+1)) is equivalent to the expression

(∀y ∈ Rn+1)(y ∈ Sn and sr(y) ∈ µn(z)⇒ y ∈ Sn ∩ µn+1(w))
�� ��3.3

and this expression can be easily translated into an elementary expression. With all this data, a
Type-2 machine can be constructed such that, on input w ∈ dom

(
µn+1

Sn

)
, enumerates all pairs (r, z)

(r ∈ {−1, 1}, z ∈ dom
(
µn)) and test if w, r and z satisfies

�� ��3.3 , if this is the case, then the machine
outputs ι(z) on the output tape. This machine computes a function which translates µn+1

Sn -names
into θΨ-names, that is, µn+1

Sn ≤ θΨ. To prove that λΨ ≤ θn+1
Sn , the argument is almost the same. Thus

Sn
Ψ and Sn are equivalent, therefore TΨ(S

n) and Sn are equivalent computable spaces.
Now to show that the atlas Ψ is computable, the argument is the following: Since TΨ(S

n) and
Sn are equivalent, δΨ ∼ δn+1

Sn , so that to check that s1, s−1 and their inverses are computable with
respect to δΨ and δn, it is enough to show that they are computable with respect to δn+1

Sn and δn. But
δn+1

Sn is simply the representation δn+1 of Rn+1, restricted to Sn (see Definition 1.2.2). In summary,
we only need to show that the charts are computable with respect to δn+1 and δn. But the maps
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s1, s−1 and their inverses are defined in terms of sums, multiplications and square roots, thus we
only need to apply Lemma 2.2.5 and we are done.

To finish the proof, we need to show that the sets si
[
Ui
]

are θn-computable in Rn. But this is
immediate, because si

[
Ui
]
= Rn. Therefore Ψ is a computable atlas for Sn.

Example 3.1.10. Let RPn be n-dimensional real projective space, the set of all 1-dimensional vector
subspaces of Rn+1. Each subspace is spanned by a non-zero vector v = (x1, . . . , xn+1). Formally

RPn = (Rn+1 − {0})/ ∼,

where x ∼ y ⇔ (∃α ∈ R− {0})(x = αy). We define for i = 1, . . . , n + 1 the set Ui = {[v] ∈
RPn | xi 6= 0}. Clearly RPn is covered by U1, . . . , Un+1. For each [v] ∈ Ui, we can choose a unique
v1 ∼ v such that the ith component of v1 is 1 and then Ui is in one-to-one correspondence with
the hyperplane {x ∈ Rn+1 | xi = 1}, which can be projected onto Rn via the map pi given by
(x1, . . . , xi, . . . , xn+1) 7→ (x1, . . . , xi−1, xi+1, . . . , xn+1). This is therefore a coordinate chart ϕi : Ui →
Rn and the set of all these charts is an atlas Γ on RPn. It is rather easy to show that each function
ϕi, ϕ−1

i is computable with respect to δΓ and δn. We conclude that Γ is a computable atlas on RPn.
The set BΓ = {ϕ−1

i

[
µn(w)

]
| i = 1, . . . , n + 1; w ∈ dom

(
µn)} is a base for the topology induced

by Γ and also the property

ϕ−1
i

[
µn(w1)

]
⊆ ϕ−1

j

[
µn(w2)

]
∩ ϕ−1

k

[
µn(w3)

]

is equivalent to

(∀x ∈ Rn+1)(xi 6= 0∧ pi(x) ∈ µn(w1)⇒ xj 6= 0∧ pj(x) ∈ µn(w2) ∧ xk 6= 0∧ pk(x) ∈ µn(w3)),

and using Theorem 1.2.6, the latter expression can be checked algorithmically. The effective space
RPn

Γ = (RPn, τΓ,BΓ, λΓ) is a computable topological space, which is equivalent to the computable
space TΓ(RPn) induced by Γ.

All the previous examples are cases in which we can replace the canonical computable space
TΦ(X) with the somewhat simpler effective space XΦ, but according to Lemma 2.2.17, this can be
done only when the latter is computable.

As with standard topological manifolds, it can happen that a set X has more that one com-
putable atlas defined on it. We would like to consider two computable atlases that define the
same computable topology as equivalent.

Definition 3.1.11. Two n-dimensional computable atlases Φ = {(ϕi, Ui)}, Ψ = {(ψj, Vj)} on X are
computably compatible if and only if Φ and Ψ are topologically compatible (Definition 1.1.11) and
δΦ ∼ δΨ.

Computable compatibility of computable atlases is an equivalence relation on the set of all
computable atlases on X.

Proposition 3.1.12. Let Φ = {(ϕi, Ui)}, Ψ = {(ψj, Vj)} be two computable atlases on X. Then Φ and Ψ
are computably compatible if and only if TΦ(X) and TΨ(X) are equivalent computable topological spaces.

Proof. (⇒) That Φ and Ψ are computably compatible means that the following is true:

(1) Φ and Ψ are topologically compatible;
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(2) δΦ ∼ δΨ.

By (1) we have that τ = τΦ = τΨ, thus TΦ(X) = (X, τ, βΦ, νΦ) and TΨ(X) = (X, τ, βΨ, νΨ).
Combining (2) with part 2. of Lemma 2.1.16 and Theorem 2.2.13, TΦ(X) and TΨ(X) are equivalent.

(⇐) If TΦ(X) and TΨ(X) are equivalent computable topological spaces, then τΦ = τΨ, thus
Φ and Ψ induce the same topology on X, so that by Lemma 1.1.12 Φ and Ψ are topologically
compatible. Also, by Theorem 2.2.13, δΦ ∼ δΨ. Therefore, by Definition 3.1.11, Φ and Ψ are
computably compatible.

Example 3.1.13. There is an example [BC70] of two atlases Φ, Φ′ with the same underlying set E,
which are not topologically compatible. We describe E, Φ and Φ′ now and we will also show that
Φ and Φ′ are computable atlases on E, but they are not computably compatible. Let E ⊂ R2 be the
set {(sin 2s, sin s) | s ∈ R}. E is known as the Figure eight. The injection f1 : E→ R defined by

f1(sin 2s, sin s) = s, s ∈ (0, 2π)

is onto a θ1-computable open interval of R (namely, the set (0, 2π)) and so it is a chart whose
domain is the whole set E. We claim that f1 is (δΦ, δ1)-computable and its inverse f−1

1 is (δ1, δΦ)-
computable. Let M be a Type-2 machine with the following program: On the input p ∈ dom δΦ,
M enumerates all strings 〈1, w〉 � p and for each such string, M discards the symbol “1” and then
it outputs ι(w) on the output tape, and then it continues with the next string inside p. The function
computed by M realizes f1 with respect to δΦ and δ1, thus f1 is (δΦ, δ1)-computable. To prove that
the inverse f−1

1 is (δ1, δΦ)-computable, we define a Type-2 machine N with the following program.
On the input q ∈ dom δ1 with δ1(q) = s ∈ (0, 2π):

1. For each string w� q, such that s ∈ µ1(w),

1.1 For each n ∈N,

1.1.1 Compute qn ∈ Q such that d(qn, 2π) < 2−n;
1.1.2 if µ1(w) ⊆ (0, qn − 2−n), then output ι(〈1, w〉) and go back to step 1;
1.1.3 Otherwise, if 0 ∈ µ1(w) or (qn − 2−n, qn + 2−n) ⊆ µ1(w), then go back to step 1;
1.1.4 Continue with next iteration in step 1.1.

Let A = (0, 2π). For each string w � q, the main task of N is to find out if µ1(w) ⊆ A and
when that occurs, output the string ι(〈1, w〉), where 〈1, w〉 ∈ dom λΦ on the output tape. To
determine if the open interval µ1(w) is a subset of A, N computes the rational qn, which is a 2−n-
approximation4 of 2π, that is, 2π ∈ B(qn, 2−n) = (qn − 2−n, qn + 2−n). Then N performs the test
µ1(w) ⊆ (0, qn− 2−n); if this is successful, then it is true that µ1(w) ⊂ A, because (0, qn− 2−n) ⊂ A
and in this case, λΦ(〈1, w〉) = f−1

1

[
µ1(w)

]
is defined and contains the point f−1

1 (s), thus the output
of N in step 1.1.2 is correct. But if µ1(w) * (0, qn − 2−n), then N tries to find out if µ1(w) * A
with the if’s test in step 1.1.3. If 0 ∈ µ1(w), then it must exists r ∈ µ1(w) such that r < 0 and that
would imply that r /∈ A. On the other hand, if B(qn, 2−n) ⊆ µ1(w), then there is some r′ ∈ µ1(w)
with 2π < r′, thus r′ /∈ A. Either the if’s test in step 1.1.2 is successful or the test in step 1.1.3 is
successful, the behavior of N is correct with respect to the string w and then N goes back to step 1
to process the next string in q.

4See the proof of Lemma 2.1.10.
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If none of the test in steps 1.1.2 and 1.1.3 are successful with the rational qn, then N cannot

determine yet what to do with the string w and it must go back to step 1.1 to compute a better
approximation of 2π to execute steps 1.1.2-1.1.4. Given w � q, N only needs to compute a finite
number of approximations of 2π, because it is true that

µ1(w) ⊆ A⇔ (∃n0)(µ1(w) ⊆ (0, qn0 − 2−n0));

µ1(w) * A⇔ 0 ∈ µ1(w) or (∃n0)((qn0 − 2−n0 , qn0 + 2−n0) ⊆ µ1(w)).

Therefore the output of N is correct for every w, thus the function computed by N realizes f−1
1

with respect to δ1 and δΦ.
To prove that every step of N can be done in finite time and in an algorithmic way, we only

need to prove that steps 1.1.1-1.1.4 are computable. Step 1.1.1 can be done by N because by Lemma
2.1.10, π is δ1-computable, so that 2π is δ1-computable too. Steps 1.1.3 and 1.1.4 involve some set
operation with open sets defined in terms of rational numbers. These operations can be done
using some inequality between rational numbers and the string ι(〈1, w〉) is clearly computable.
We conclude that all the steps of N are computable in finite time.

Thus the function f1 and its inverse are computable with respect to δΦ and δ1. Therefore Φ is
a 1-dimensional computable atlas of E. Another computable atlas Φ′ of E consisting of a single
chart can be constructed by using the function g : E→ R defined by

g(sin 2s, sin s) = s, s ∈ (−π, π).

The proof of the computability of g and its inverse with respect to δΦ′ and δ1 is almost identical
to that of the computability of f1 and its inverse. So that Φ and Φ′ are two computable atlases
on the set E. But these two atlases of E are not compatible, since the change of coordinates g ◦
f−1
1 : f1

[
E
]
→ g

[
E
]

is given by

g ◦ f−1
1 (s) =





s if 0 < s < π

0 if s = π

s− 2π if π < s < 2π

�� ��3.4

and this function is not even continuous, thus Φ and Φ′ are not topologically compatible, so that
they cannot be computably compatible.

The fact that the two atlases of example 3.1.13 are not computably compatible comes from the
fact that these atlases are not topologically compatible. We now show two computable atlases
which are compatible, but not computably compatible.

Example 3.1.14. Let Φ = {(1R, R)} and Ψ = {(ϕ1, R)}, where ϕ1 : R → R is defined as
ϕ1(x) = x + a. Ψ is the atlas of Example 3.1.4, where we saw that the computability of Ψ does
not depend on the computability of the number a with respect to δ1. We now prove that if a is
not δ1-computable, then Φ and Ψ are not computably compatible (notice that the two atlases are
topologically compatible).

Suppose then that a is not computable with respect to δ1 and that Φ and Ψ are computably
compatible. By Definition 3.1.11, δΦ ∼ δΨ and as Φ is the atlas induced by the identity on R,
it is true that δΦ ∼ δ1, thus we have that δΨ ∼ δ1. Because Ψ is computable, we have that ϕ1
is (δΨ, δ1)-computable. Since δΨ ∼ δ1, we can conclude that ϕ1 is (δ1, δ1)-computable. But ϕ1 is
computable with respect to δ1 if and only if a is a computable real number. Therefore Φ and Ψ
cannot be computably compatible.
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Example 3.1.14 give us a desirable consequence of our definitions. If the map ϕ1 is not com-
putable in R with the usual manifold structure, then we do not want the atlas Ψ to be compatible
with Φ.

Definition 3.1.15. A computable structure on X is an equivalence class [Φ] of computable atlases on
X.

Definition 3.1.16 (Computable manifold). An n-dimensional computable manifold is a set M to-
gether with a computable structure [Φ].

Thus, a computable n-manifold is a pair (M, [Φ]). As each computable atlas determines a
unique computable structure, we can also simply write (M, Φ) and forget about the brackets and
sometimes, if no confusion arises, we will omit the explicit reference to the computable atlas Φ.
The integer n, the dimension of the manifold, is denoted in the usual form as dim M. All the
previous examples about sets with computable atlases are actually computable manifolds, we
now give more examples.

Example 3.1.17. We show that for n > 1, the n-disk Dn ⊂ Rn is a computable n-manifold with
boundary. A topological atlas for Dn can be build as follows. Let U be the topological interior
of Dn (U = B(0, 1)) and f : U → Rn

+ be the map (x1, . . . , xn) 7→ (x1, . . . , xn + 1), this is clearly a
bijective map from U onto a θn

+-computable open set of Rn
+. Let r ∈ {1,−1}, Pr = (0, . . . , r) and

Vr = Dn − {Pr}. Define gr : Vr → Rn as

gr(x) = Pr +
x− Pr

‖x− Pr‖2 .

The map gr sends Vr onto a subspace of Rn, homeomorphic to Rn
+ and we can use the gr’s to define

charts fr : Vr → Rn
+ as follows:

f1(x) = g1(x) + P1;

f−1(x) = r(g−1(x) + P−1);

where r : Rn → Rn is given by r(x1, . . . , xn) = (x1, . . . ,−xn). Notice that fr
[
Vr
]

= Rn
+,

thus the image of each fr is θn
+-computable in Rn

+. Using f , f1 and f−1, we obtain an atlas
Ψ = {( f , U), ( f1, V1), ( f−1, V−1)} on Dn. To prove that Ψ is computable, we can use the same
technique that we used in Example 3.1.9, i.e., we first show that TΨ(Dn) and Dn

Rn are equivalent
computable topological spaces with the aid of Theorem 1.2.6; second we prove that f , f1, f−1 and
their inverses are computable with respect to δn

Dn and δn
+, by using Lemma 2.2.5. Thus, the charts of

Ψ are (δΨ, δn
+)-computables and their inverses are (δn

+, δΨ)-computables. The pair (Dn, Ψ) is a com-
putable n-manifold with boundary. We know from standard manifold theory that Int Dn = B(0, 1)
and ∂Dn = Sn−1.

Example 3.1.18. A computable 0-manifold is just a discrete computable topological space.

Proposition 3.1.19. Let (M1, Φ1), (M2, Φ2) be computable manifolds such that dim M = n and
dim N = m. Then there exists a (n + m)-dimensional computable atlas Φ for the set M1 × M2 with
the following properties:

(a) λΦ = λΦ1 × λΦ2 ;
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(b) δΦ ∼ [δΦ1 , δΦ2 ];

(c) TΦ(M1 × M2) = T, where T is the computable topological space of Lemma 2.1.20 induced by the
computable spaces TΦ1(M1) and TΦ2(M2).

Proof. Let X = (Rn
+ ×Rm

+, τ, β, ν) be the computable product space induced by Rn
+ and Rm

+. Then
by Lemma 2.2.11, there exists a computable homeomorphism g : Rn

+ ×Rm
+ → Rn+m

+ and with the
map g, the set M1 ×M2 endowed with the atlas

Φ = {(g ◦ (ϕ× ψ), U ×V) | (ϕ, U) ∈ Φ1, (ψ, V) ∈ Φ2}
is a topological manifold of dimension n + m, such that the topology induced in M1 × M2 by Φ
is the product topology of the spaces M1 and M2. We show that Φ is computable and we prove
(a)-(c). Notice that since X and Rn+m

+ are computably homeomorphic computable spaces, in Rn+m
+

we can replace the base βn+m
+ by the base

βg = {g
[
µn
+(w)× µm

+(z)
]
| (w, z) ∈ dom

(
µn
+

)
× dom

(
µm
+

)
},

(see Lemma 2.2.15 and Corollary 2.2.16), thus the elements of the computable predicate space
ZΦ = (M1 ×M2,BΦ, λΦ) are defined as

BΦ = {(g ◦ (ϕi × ψj))
−1[B

]
| B = g

[
µn
+(w)× µm

+(z)
]
∧ (〈i, w〉, 〈j, z〉) ∈ dom νΦ1 × dom νΦ2};

λΦ : Σ∗ → BΦ, λΦ(〈〈i, j〉, 〈w, z〉〉) = (g ◦ (ϕi × ψj))
−1[g

[
µn
+(w)× µm

+(z)
]]

.

Hence, we have that λΦ(〈〈i, j〉, 〈w, z〉〉) = (g ◦ (ϕi × ψj))
−1[g

[
µn
+(w) × µm

+(z)
]]

= (ϕ−1
i ×

ψ−1
j ) ◦ g−1[g

[
µn
+(w)× µm

+(z)
]]

= (ϕ−1
i × ψ−1

j )
[
µn
+(w)× µm

+(z)
]
= ϕ−1

i

[
µn
+(w)

]
× ψ−1

j

[
µm
+(z)

]
=

λΦ1(〈i, w〉) × λΦ2(〈j, z〉) = (λΦ1 × λΦ2)(〈i, w〉, 〈j, z〉) and this implies that δΦ ∼ [δΦ1 , δΦ2 ]; this
proves (a) and (b). It is easy to verify that the computable topological space TΦ(M1 × M2) =
(M1 × M2, τΦ, βΦ, νΦ) induced in M1 × M2 by Φ is precisely the computable product space of
TΦ1(M1) and TΦ2(M2), so that (c) is true.

To finish the proof of the Lemma, we only need to show that Φ is a computable atlas on M1 ×
M2, we have to prove that each chart g ◦ (ϕi×ψj) : Ui×Vj → Rn+m

+ ∈ Φ is (δΦ, δn+m
+ )-computable

with (δn+m
+ , δΦ)-computable inverse and that each set ϕi

[
Ui
]
× ψj

[
Vj
]

is θn+m
+ -computable. To do

this, we will use the computable space X and the representations δ, θ of points and open sets
of Rn

+ × Rm
+ induced by X. By (b), δΦ ∼ [δΦ1 , δΦ2 ] and by part 2. of Lemma 2.1.20, ϕi × ψj

is (δΦ, δ)-computable with (δ, δΦ)-computable inverse. Using part 3. of Lemma 2.1.20, the set
ϕi
[
Ui
]
× ψj

[
Vj
]

is a θ-computable open subset of Rn
+ ×Rm

+. Combining these facts with the com-
putable homeomorphism g between X and the computable half space Rn+m

+ , we deduce that Φ is
a computable atlas on M1 ×M2.

We can generalize this result to arbitrary finite products of computable manifolds M1, . . . , Mr.

Example 3.1.20. Following Proposition 3.1.19, we can prove that the n-dimensional torus

Tn =
n

∏
i=1

S1

is a computable n-manifold, where we equip S1 with any of the atlases given in Examples 3.1.7
and 3.1.9 (they are computably compatible).

60
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3.2 Morphisms between computable manifolds

In the case of general topological manifolds, relationships between two given manifolds can be
studied by means of continuous functions. In this section, we will show that (as expected) com-
putable functions, as we have defined them in Section 2.2, are just adequate to be used as mor-
phisms between computable manifolds.

3.2.1 Computable functions

To define morphisms between two computable manifolds (M, Φ) and (N, Ψ), we have two possi-
ble choices. The first uses the induced computable topological spaces TΦ(M) and TΨ(N), a mor-
phism between M and N is just a computable continuous function between TΦ(M) and TΨ(N).
The second approach uses the representations δΦ, δΨ of M and N respectively, induced by the com-
putable predicate spaces ZΦ and ZΨ. The two options are equivalent thanks to Definition 2.2.4 and
part 2. of Lemma 2.1.16. As our formal definition, we adopt the second approach.

Definition 3.2.1. Let (M, Φ), (N, Ψ) be computable manifolds of dimensions n and m respectively.
A morphism f : ⊆ (M, Φ) → (N, Ψ) between computable manifolds is a (δΦ, δΨ)-computable
function f : ⊆ M→ N, where δΦ, δΨ are the representations induced by ZΦ and ZΨ respectively.

Lemma 3.2.2. Let (M, Φ), (N, Ψ) be computable manifolds and f : ⊆ M → N a function. Then f is
a morphism of computable manifolds if and only if f is a computable map between the computable spaces
TΦ(M) and TΨ(N).

Proof. (⇒) If f is a morphism of computable manifolds, then f is (δΦ, δΨ)-computable. But we
know from part 2 of Lemma 2.1.16 that δΦ is equivalent to the inner representation of points of the
computable space TΦ(M) = T(ZΦ). A similar statement is true for δΨ and TΨ(N). Therefore f is
a computable function with respect to the inner representations of TΦ(M) and TΨ(N), so that by
Definition 2.2.4, f is a computable map between TΦ(M) and TΨ(N).

(⇐) If f is a computable map between TΦ(M) and TΨ(N), then by Definition 2.2.4, f is com-
putable with respect to the inner representations of points of TΦ(M) and TΨ(N) and these repre-
sentations are equivalent to the representations δΦ and δΨ respectively (by 2 of Lemma 2.1.16), so
that by Definition 3.2.1, f is a morphism between the computable manifolds M and N.

Remember that computable function are continuous. Of course, we would like computable
homeomorphisms to be the standard equivalence between computable manifolds. We now prove
some results about this topic. First, we have an analog of Lemma 2.2.15 for computable manifolds.

Lemma 3.2.3. Let (M, [Φ]) be a computable n-manifold and X a set. If f : M → X is a bijective
function, then there exists a computable structure

[
Φ f
]

on X induced by f and Φ, such that for all
z ∈ dom λΦ f , λΦ f (z) = f

[
λΦ(z)

]
and δΦ f = f ◦ δΦ.

Proof. Let Φ = {(ϕi, Ui)}i∈I . By Lemma 2.2.15, X f becomes a computable topological space and
f is a computable homeomorphism between TΦ(M) and X f . Now, the atlas induced by f on X is
given by

Φ f = {(ψi, Vi) | ψi = ϕi ◦ f−1 and Vi = f
[
Ui
]
, (ϕi, Ui) ∈ Φ}i∈I ,

which induces the computable predicate space ZΦ f = (X,BΦ f , λΦ f ), where
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BΦ f = {(ϕi ◦ f−1)−1[µn(w)

]
| (i, w) ∈ Σ∗ × dom

(
µn
+

)
},

λΦ f : ⊆ Σ∗ → BΦ f , λΦ f (〈i, w〉) = (ϕi ◦ f−1)−1[µn
+(w)

]
,

and clearly λΦ f (j) = f
[
λΦ(j)

]
, so that δΦ f (p) = f ◦ δΦ(p) for all p ∈ dom δΦ f . For each i ∈ I,

the open set ψi
[
Vi
]
= (ϕi ◦ f−1)

[
f
[
Ui
]]

= ϕi
[
Ui
]

is θn
+-computable open in Rn

+ and the map ψi
is (δΦ f , δn

+)-computable with (δn
+, δΦ f )-computable inverse. It follows that Φ f satisfies Definition

3.1.2, thus it induces a computable structure
[
Φ f
]

on X.

Corollary 3.2.4. With the hypothesis of Lemma 3.2.3, TΦ f (X) = X f , where X f is the computable topolog-
ical space of Lemma 2.2.15.

Proof. The topology of TΦ f (X) is generated by the base

βΦ f = { f
[
B
]
| B ∈ βΦ},

and this is exactly the set β f ; and we have that νΦ f = ν f . In other words, TΦ f (X) = X f .

Corollary 3.2.5. Let (M, Φ) be a computable manifold and let X = (X, τ, β, ν) be a computable topological
space. If f : M → X is a computable homeomorphism between TΦ(M) and X, then TΦ f (X) is equivalent
to X.

Proof. An immediate consequence of Lemma 2.2.16 and Corollary 3.2.4.

Corollary 3.2.6. Let (M, Φ), (N, Φ′) be computable manifolds. If f : M → N is a computable homeo-
morphism, then the computable structure of N and the computable structure induced by f on N are the
same.

Proof. By Corollary 3.2.5, TΦ f (N) and TΦ′(N) are equivalent computable topological spaces, so
that we can use Proposition 3.1.12 to conclude that Φ f and Φ′ are computably compatible (Defini-
tion 3.1.11), therefore

[
Φ f
]
= [Φ′].

With this last result, we can see that two computably homeomorphic computable manifolds
are “essentially” the same manifold, just in the same way that happens with homeomorphic topo-
logical manifold.

Example 3.2.7. Let h = s−1 : Rn → SP (SP = Sn − {P}) be the inverse of the stereographic pro-
jection of Example 2.2.10. If we give Rn with the (canonical) manifold structure of Example 3.1.3,
then by Lemma 3.2.3 and Corollary 3.2.5, SP becomes a computable n-manifold with a computable
structure Γ such that TΓ(SP) is equivalent to QSn , where Q = SP.

Example 3.2.8. In example 3.1.13, we showed two non-compatible computable atlases Φ =
{( f , E)}, Φ′ = {(g, E)} on the set E = {(sin 2s, sin s) | s ∈ R} known as the Figure eight. The
function h : E → E of the the set E equipped with the computable topology induced by Φ, onto
the same set using the computable topology induced by Φ′ given by

h(sin 2s, sin s) = (sin(2(s− π)), sin(s− π))

is a computable homeomorphism from TΦ(E) onto TΦ′(E). So that although Φ, Φ′ are not com-
putably compatible, the two manifolds (E, Φ) and (E, Φ′) are computably homeomorphic, that is,
they are essentially the same manifold.
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Example 3.2.9. In Example 3.1.14, we proved for the real line R, the atlases Φ = {(1R, R)} and
Ψ = {(ϕ1, R)} are not computably compatible, if the map ϕ1 : R→ R defined as ϕ1(x) = x + a is
not (δ1, δ1)-computable, which is equivalent to non-computability of the number a. However, the
two manifolds (R, Φ) and (R, Ψ) can be seen to be computably homeomorphic, as the map ϕ1 is
(δΨ, δ1)-computable and its inverse is (δ1, δΨ)-computable (Example 3.1.4), thus it is a computable
homeomorphism. This tell us that although the atlases Φ and Ψ are not computably compatible
(whenever a is not δ1-computable), we can transform one manifold into the other in a computable
way and that means that everything that is computable in one manifold, is computable in the
other.

We will have more to say about computable functions between computable manifolds in Chap-
ter 4, where we introduce computable submanifolds and study computable embeddings of manifolds.

3.3 Properties of computable manifolds

We now present some properties of computable manifolds. First, we analyze which topological
properties are satisfied by the induced topology on a computable manifold M, then we present
some results about computability in M. Finally, we construct the computable versions of some
classical results about special atlases on M.

3.3.1 Topological and computable properties

By definition, a computable topological space is a T0-space and thus, every computable manifold
is a T0-space. However, a manifold also satisfies all the local topological properties of euclidean
space Rn. Here is a list of some basic properties that the induced topology on a computable
manifold fulfills. The induced topology on a computable manifold satisfies:

• The T1 separation axiom;

• the second axiom of countability (because every computable manifold has a countable atlas);

• it is locally connected;

• it is locally compact.

See [Gau74] for details and even more topological properties that a computable manifold sat-
isfies. But despite the fact that Rn is a (computably) Hausdorff space, it is not true that every
computable manifold is (computably) Hausdorff. We now prove that a well known example of a
non-Hausdorff topological manifold is in fact, an example of a non-Hausdorff computable mani-
fold.

Example 3.3.1. Let H ⊂ R2 be defined by H = {(s, 0) | s ∈ R} ∪ {(0, 1)}. H is called the
line with two origins. Let U be the subset of H of all points of the form (s, 0) with s ∈ R and
U′ = (U − {(0, 0)}) ∪ {(0, 1)}. Define charts f : U → R and f ′ : U′ → R of H into R by

f (s, 0) = s

f ′(s, 0) = s for s 6= 0 and f ′(0, 1) = 0
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It is very easy to show that Φ = {( f , U), ( f ′, U′)} is an atlas on H and that each chart is (δΦ, δ1)-
computable with (δ1, δΦ)-computable inverse. Since f

[
U
]
= f ′

[
U′
]
= R, each of these sets is

θ1-computable open in the computable space R. The atlas Φ satisfies Definition 3.1.2 so that the
pair (H, Φ) becomes a computable 1-manifold. The proof that H is a non-Hausdorff space with
the topology induced by Φ can be found in [Gau74, BC70].

Recall from Section 3.1.1 that given a computable n-manifold (M, Φ) using the atlas Φ, we
constructed the computable predicate space ZΦ = (M,BΦ, λΦ) where BΦ is the set of all com-
putable balls in M. This predicate space depends on Φ and it can happen that BΦ contains empty
elements. If the subset E ⊆ dom λΦ defined by

E = {l ∈ dom λΦ | λΦ(l) 6= ∅}
�� ��3.5

is c.e., then (M, Φ) will be called a computable manifold with non-empty computable balls. The next
lemma states that if the set of non-empty computable balls is c.e., then the empty elements of BΦ
can be removed from the computable spaces ZΦ and TΦ(M)5.

Lemma 3.3.2. Let (M, Φ) be a computable n-manifold with non-empty computable balls. Then there
exists a computable topological space T′(M) = (M, τΦ, β′, ν′) such that TΦ(M) is equivalent to T′(M)
and β′ ⊂ βΦ is the set of all finite intersections of non-empty computable balls of M.

Proof. Let E = λΦ(E). Because the set E ⊆ dom λΦ is c.e. (and infinite), we can apply Lemma
1.3.9 to obtain an injective total computable function h : Σ∗ → Σ∗ such that range h = E. Define
the notation λh : Σ∗ → E by λh(w) = λΦ ◦ h(w). Then the triple Zh = (M, E , λh) is a computable
predicate space and as λh = λΦ ◦ h and λΦ = λh ◦ h−1, we have that λΦ ∼ λh, and this fact implies
that δΦ ∼ δh = δZh . The computable topological space induced by Zh is

T′(M) = (M, τΦ, β′, ν′),

where β′ is the base generated by all finite intersections of the elements of E ⊆ BΦ, thus β′ ⊂ βΦ.
Since δ ∼ δΦ ∼ δh ∼ δ′, where δ, δ′ are the inner representations of M induced by TΦ(M) and
T′(M) respectively, we conclude that TΦ(M) and T′(M) are equivalent computable topological
spaces, hence the result follows.

In a computable n-manifold, the computable points can be characterized by the computability
of points in the computable euclidean space Rn. We present a simple result from which other
characterizations can be derived.

Lemma 3.3.3. Let (M, Φ) be a computable n-manifold and x ∈ M. Then x is a δΦ-computable point in M
if and only if there exists a δn-computable point y ∈ Rn and a computable function f : ⊆ Rn → M such
that f (y) = x.

Proof. (⇒) Let x ∈ M be a δΦ-computable point. There exists a chart (ϕ, U) ∈ Φ such that x ∈ U
and ϕ is a computable homeomorphism between U and an open subset of Rn

+. In particular, ϕ
and ϕ−1 are computable with respect to δn

+ and δΦ, which implies that ϕ and ϕ−1 preserve the

5This result is reminiscent of Lemma 25 of [WG09], which says that for a computable topological space X, the empty
base elements can be ignored if the set of non-empty base elements is c.e.
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computability of points between U and ϕ
[
U
]
. Let y = ϕ(x) and f = ϕ−1. Then y is a δn

+-
computable point in Rn

+ (thus, y is a δn-computable point in Rn) and f is a computable map such
that f (y) = x.

(⇐) Because f is computable, it takes the δn-computable point y ∈ Rn onto a δΦ-computable
point in M, thus f (y) = x must be δΦ-computable in M.

3.3.2 Some special computable atlases

In Theorem 3.3.5, we deal with the existence of two very useful computable atlases. To show
that one of these atlases exists, our computable manifolds will need the property of non-empty
computable balls and a technical result about computable homeomorphisms between rational
open balls B(q, ε) ⊂ Rn and Rn.

Lemma 3.3.4. In the computable euclidean space Rn, the following statements hold:

(1) For each w ∈ dom
(
µn) such that µn(w) = Bw = B(q, ε), there exists a computable homeomorphism

hw : Bw → Rn from (Bw)Rn to Rn.

(2) For each z ∈ dom
(
µn
+

)
such that µn

+(z) ∩ ∂Rn
+ 6= ∅, there exists a computable homeomorphism

gz : µn
+(z)→ Rn

+ from µn
+(z)Rn to Rn

+.

(3) The sets
{(v, w, z) ∈ (dom

(
µn))3 | µn(v) ⊂ h−1

w
[
µn(z)

]
}

�� ��3.6

{(s, w, z) ∈ (dom
(
µn
+

)
)3 | µn

+(s) ⊂ g−1
w
[
µn
+(z)

]
}

�� ��3.7

are computable, where hw and gw are the computable homeomorphisms of part (1) and (2) respectively.

Proof. (1) Let h : B(0, 1) → Rn be the computable homeomorphism of Example 2.2.9 and let
Sε, Ta : Rn → Rn (a ∈ Rn, 0 < ε ∈ R) be homeomorphisms of Rn defined as

Ta(x) = x− a and Sε(x) = εx.

If (a, ε) ∈ Qn × Q+, then Ta, Sε are computable homeomorphisms of Rn onto itself. Now, if
µn(w) = B(q, ε), then we can define hw : B(q, ε) → Rn as hw = h ◦ Sε−1 ◦ Tq, clearly hw is a com-
putable homeomorphism of Bw onto Rn.

(2) We can define the homeomorphism gz by gz = hz|µn
+(z). It is easy to see that gz is a com-

putable homeomorphism between µn
+(z) and Rn

+.
(3) Using the computable homeomorphisms hw of (1), we can express the property µn(v) ⊂

h−1
w
[
µn(z)

]
in terms of polynomial functions in n variables and rational coefficients, this is true

because we know that

µn(v) ⊂ h−1
w
[
µn(z)

]
⇔ (∀x ∈ Rn)(x ∈ µn(v)⇒ hw(x) ∈ µn(z))

�� ��3.8

and it can be seen that the right side of
�� ��3.8 is equivalent to the expression

(∀x ∈ Rn)(d(x, qv) < εv ⇒ d(hw(x), qz) < εz),
�� ��3.9

where µn(v) = B(qv, εv) and µn(z) = B(qz, εz). Now, using the formula to compute the function
hw, which is defined as

hw(x) =
ε−1(x− q)

1− ‖ε−1(x− q)‖ , (µn(w) = B(q, ε))
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for the distance d(hw(x), qz), we have that

d(hw(x), qz) = d
(

ε−1(x− q)
1− ‖ε−1(x− q)‖ , qz

)

=
1

1− ‖ε−1(x− q)‖d(ε−1(x− q), (1− ‖ε−1(x− q)‖)qz).

Using the last expression, we can deduce that

d(hw(x), qz) < εz ⇔ d(ε−1(x− q), (1− ‖ε−1(x− q)‖)qz) < εz(1− ‖ε−1(x− q)‖).
�� ��3.10

Let y = ε−1(x− q). Now we can write Equation
�� ��3.9 as

(∀x, y ∈ Rn)(y = ε−1(x− q) ∧ d(x, qv) < εv ⇒ d(y, (1− ‖y‖)qz) < εz(1− ‖y‖)).

Now let r = 1− ‖y‖ ∈ R, then ‖y‖2 = (1− r)2 and the above equation becomes

(∀x, y ∈ Rn, ∀r ∈ R)(y = ε−1(x− q) ∧ ‖y‖2 = (1− r)2 ∧ d(x, qv) < εv ⇒ d(y, rqz) < εzr).
�� ��3.11

This last expression can be easily converted into an elementary expression and it can be seen that
given v, w, z ∈ dom

(
µn) the polynomial expression defining Equation

�� ��3.11 can be constructed
algorithmically, so that the decidability of

�� ��3.6 can be verified by a single Turing machine (using
Theorem 1.2.6) uniformly in (v, w, z) ∈ (dom

(
µn))3. To show that the set of Equation

�� ��3.7 is
computable, the argument is very much the same as for the set of Equation

�� ��3.6 , thus we omit
it.

Theorem 3.3.5 (Special computable atlases). Let (M, Φ) be a computable n-manifold.

(a) There exists a computable atlas Γ on M, computably compatible with Φ and such that for every chart
h : V → Rn

+ ∈ Γ, h
[
V
]
= B(q, ε) ∩Rn

+ for some (q, ε) ∈ Qn ×Q+.

(b) If (M, Φ) has the property of non-empty computable balls and ∂M = ∅, there exists a computable
atlas Ψ on M, computably compatible with Φ and such that for every chart ψ : V → Rn of Ψ,
ψ
[
V
]
= Rn.

Proof. (a) For the computable atlas Φ, remember that an element Bj ∈ BΦ is defined as Bj =

ϕ−1
i

[
µn
+(w)

]
, where j = 〈i, w〉 and ϕi is a chart of Φ. If Bj 6= ∅, then we can define a chart

hj : Bj → Rn
+ by hj = ϕi|Bj . Let Γ be the set of all such charts, Γ is clearly a computable atlas on

M. Now we have to show that Φ and Γ are computably compatible. Notice that if z = 〈j, w〉 =
〈〈i, u〉, w〉 ∈ dom λΓ is such that λΓ(z) 6= ∅, then

λΓ(z) = h−1
j

[
µn
+(w)

]
= (ϕi|Bj)

−1[µn
+(w)

]
= ϕ−1

i

[
µn
+(w)

]
= Bj = λΦ(j).

and if v = 〈i, u〉 ∈ dom λΦ with λΦ(v) 6= ∅, then

λΦ(v) = ϕ−1
i

[
µn
+(u)

]
= (ϕi|Bv)

−1[µn
+(u)

]
= λΓ(〈v, u〉).

There is a Type-2 machine T that on input p ∈ dom δΓ, extracts each string z = 〈〈i, u〉, w〉 � p,
computes the string l = 〈i, w〉 ∈ dom λΦ and prints ι(l) on the output tape. The function fT
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calculated by T translates δΓ-names into δΦ-names. A Type-2 machine which translates δΦ-names
into δΓ-names is build similarly. This proves that δΦ ∼ δΓ, thus Φ and Γ are computably equivalent.

(b) If (M, Φ) is a computable manifold with empty boundary, we can replace the space Rn
+ with

Rn to apply definitions and results. Suppose that M has the property of non-empty computable
balls, then we can assume that for all k ∈ dom λΦ, λΦ(k) 6= ∅. For each Bj ∈ BΦ (j = 〈i, w〉),
define a chart ψj : Bj → Rn as ψj = hw ◦ ϕi|Bj , where hw is the computable homeomorphism
hw : µn(w) → Rn of Lemma 3.3.4. The set of charts Ψ = {ψl : Bl → Rn} is a topological atlas
on M, compatible with Φ. Moreover, Ψ is computable, because the ψl’s and their inverses are
computable with respect to δΨ and δn. Also, Rn is trivially a θn-computable open set. We claim
that (M, Ψ) is a computable manifold with non-empty computable balls. If u ∈ dom λΨ, then
λΨ(u) = ψ−1

j

[
µn(z)

]
, where u = 〈j, z〉 and j = 〈i, w〉 ∈ dom λΦ. Now,

λΨ(u) 6= ∅ ⇔ ψ−1
j

[
µn(z)

]
6= ∅

⇔ (hw ◦ ϕi)
−1[µn(z)

]
6= ∅

⇔ j = 〈i, w〉 ∈ dom λΦ ∧ µn(z) ⊂ hw
[
ϕi
[
Bj
]]

⇔ j = 〈i, w〉 ∈ dom λΦ ∧ µn(z) ⊂ hw
[
µn(w)

]

⇔ j ∈ dom λΦ ∧ µn(z) ⊂ Rn

⇔ j ∈ dom λΦ.

This shows that the set {u ∈ dom λΨ | λΨ(u) 6= ∅} is c.e., so that (M, Ψ) is a computable manifold
with non-empty computable balls.

To finish the proof of the theorem, we only need to prove that Φ and Ψ are computably com-
patible. By Proposition 3.1.12, we can do this by proving that TΦ(M) and TΨ(M) are equivalent
computable spaces, which means that we have to show that νΦ ≤ θΨ and νΨ ≤ θΦ.

Case νΦ ≤ θΨ. An element B of βΦ is a finite intersection of the form

B = νΦ(ι(j1) · · · ι(jk)) =
⋂

j∈F

λΦ(j) F ⊂ dom λΦ,

where F = {j1, . . . , jk}. Notice that for any j ∈ F, we have that

λΦ(j) = ϕ−1
i

[
µn(w)

]
(j = 〈i, w〉)

= ϕ−1
i

[
h−1

w
[
Rn]]

= ϕ−1
i

[
h−1

w
[⋃

z∈dom µn µn(z)
]]

=
⋃

z∈dom
(

µn
)(hw ◦ ϕi)

−1[µn(z)
]

=
⋃

z∈dom
(

µn
)ψ−1

j

[
µn(z)

]

=
⋃

z∈dom
(

µn
) λΨ(〈j, z〉),
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therefore

B = νΦ(ι(j1) · · · ι(jk))

=
⋂

j∈F

λΦ(j)

=
⋂

j∈F

( ⋃

zr∈dom
(

µn
) λΨ(〈j, zr〉)

)

=
⋃

zr∈dom
(

µn
)
(⋂

j∈F

λΨ(〈j, zr〉)
)

=
⋃

zr∈dom
(

µn
)

jl∈F

νΨ(ι(〈ji1 , z1〉) · · · ι(〈jik , zk〉)).

With all this data, we can construct a Type-2 machine that, on input u = ι(j1) · · · ι(jk) ∈
dom νΦ, computes an element pu ∈ Σω such that pu is a list of all strings ι(〈ji1 , z1〉) · · ·
ι(〈jik , zk〉) where zl ∈ dom

(
µn) and ji1 , . . . , jik ∈ F. This reduction works because (M, Φ) and

(M, Ψ) have the property of non-empty computable balls (it allows us to avoid having to
translate the name of an empty base element of βΦ into a non-empty element of τΦ = τΓ).
We conclude that νΦ ≤ θΨ.

Case νΨ ≤ θΦ. An argument similar to the previous one can be used to prove this case,
because for any l = 〈j, z〉 ∈ dom λΨ,

λΨ(〈j, z〉) = ψ−1
j

[
µn(z)

]

= (hw ◦ ϕi)
−1[µn(z)

]
(j = 〈i, w〉)

= ϕ−1
i

[
h−1

w
[
µn(z)

]]

=
⋃

u∈Cwz

ϕ−1
i

[
µn(u)

]
(Cwz = {v ∈ dom

(
µn) | µn(v) ⊂ h−1

w
[
µn(z)

]
})

=
⋃

u∈Cwz

λΦ(〈i, u〉),

where Cwz is a computable subset of dom
(
µn) (uniformly in w, z, apply part (3) of Lemma

3.3.4). Using this fact, we can construct the Type-2 machine which computes the function that
translates λΨ-names into θΦ-names. Again, the property of non-empty computable balls is
being used to avoid translate the name of an empty element into a non-empty element.

We have proven that TΨ(M) and TΦ(M) are equivalent computable topological spaces. By Propo-
sition 3.1.12, Φ and Ψ are computably compatible atlases on M. The result follows.

Notice that as every compact computable manifold admits a finite computable atlas, every
such manifold has the property of non-empty computable balls, thus (b) of Theorem 3.3.5 is valid
for these manifolds. This fact will play an important role in Chapter 4, where we build a com-
putable version of Theorem 1.1.19, which gives an embedding for compact topological manifolds
in euclidean spaces.
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4
Computable embeddings of manifolds in Rq

In this chapter, we define computable submanifolds and prove the computable versions of some ba-
sic tools and results that are needed when working with submanifolds. Our main result is a tool
that will be most useful when working with computable manifolds. We will construct an embed-
ding theorem for computable manifolds in euclidean spaces. Specifically, we will show that any compact
computable manifold that is also a Computably Hausdorff manifold, is computably homeomor-
phic to a computable submanifold of a computable euclidean space Rq, where q depends on the
dimension of the manifold. Many versions of embedding theorems exist for all the other types
of manifolds, and besides being a powerful tool for proving other stronger results in manifold
theory, the embedding theorems show that there is no real difference between abstract manifolds
and submanifolds of euclidean spaces.

In Section 4.1, we define computable submanifolds. We prove computable versions of some clas-
sical results regarding submanifolds (e.g., an open subset of a manifold, is a submanifold; the in-
terior and boundary of a manifold are submanifolds) and then we study computable embeddings
of computable manifolds. Section 4.2 contains the main result of this chapter: Any compact com-
putably Hausdorff computable manifold can be embedded in some computable euclidean space.
This result is the computable version of the theorem which states that any compact Hausdorff
topological manifold can be embedded in some euclidean space.

4.1 Submanifolds and embeddings

One of the most important concepts in the theory of manifolds is that of submanifold, that is, a
manifold which is a subset of another manifold. In this section, we will develop the corresponding
concept of computable submanifold and the relations with computable embeddings.

4.1.1 Computable submanifolds

Definition 4.1.1. A computable manifold (M, Φ) is a computable submanifold of (N, Ψ) if and only
if M ⊂ N and the inclusion i : M ↪→ N is a computable embedding of TΦ(M) into TΨ(N).

A computable submanifold is just a subset of a computable manifold N, which is also a com-
putable manifold in its own right, with computable subspace topology. A simple example of a
computable submanifold is the computable n-sphere Sn ⊂ Rn+1. From the definition, it is clear
that the computable topology of a subspace characterizes the computable structure of a com-
putable submanifold. The following result shows an important example of a computable sub-
manifold of a computable manifold.
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Proposition 4.1.2. Let (M, Φ) be a computable manifold and ∅ 6= W ⊂ M a θΦ-computable open subset
of M. Then there exists a computable atlas Ψ on W which converts W into a computable submanifold of M.

Proof. Let W ⊆ M be any non-empty θΦ-computable open subset of (M, Φ). We give W a com-
putable structure induced by that of M. As W is a θΦ-computable open set in TΦ(M), there exists
a computable infinite string qW ∈ Σω such that

θΦ(qW) = W.

For each j � qW such that νΦ(j) = Vj and Vj 6= ∅, there exists a chart (ϕi, Ui) ∈ Φ such that
Vj ⊂ U and ψ〈i,j〉 = ϕi|Vj : Vj → Rn is a homeomorphism onto an open subset of Rn, so that the
pair (ψ〈i,j〉, Vj) is a chart on W. Let ΦW be defined by

ΦW = {(ψ〈i,j〉, Vj) | j� qW ∧Vj 6= ∅∧Vj ⊂W ∩Ui ∧ ψ〈i,j〉 = ϕi|Vj ∧ (ϕi, Ui) ∈ Φ}.
ΦW is a topological atlas on W, and it can be verified that all charts ψ〈i,j〉 with their respective
inverses are computable with respect to δΦW and δn and the sets ψ〈i,j〉

[
Vj
]

are θn-computable in
Rn. By Definition 3.1.2, ΦW is a computable atlas on W, thus the pair (W, ΦW) is a computable
n-manifold. Let T = TΦ(M), we now prove that WT and TΦW (W) are equivalent computable
topological spaces by showing that δW ∼ δΦW .

δΦW ≤ δW . For any k = 〈j, z〉 ∈ dom λΦW with j = 〈i, w〉 and λΦW (k) 6= ∅, it holds that

λΦW (k) = ψ−1
j

[
µn(z)

]
= (ϕi|Vj)

−1[µn(z)
]
= ϕ−1

i

[
µn(z)

]
= λΦ(〈i, z〉) ⊂W.

Using the equality λΦW (k) = λΦ(〈i, z〉), it is easy to build a Type-2 machine which translates
δΦW -names into δW-names.

δW ≤ δΦW . This is the part of the proof where the computability of W comes into play, we also
need to use a “time-sharing” technique. A Type-2 machine M can be build with the following
program: On input p ∈ dom δW , M starts enumerating all strings z ∈ Σ∗ such that z = wy;
w � qW and y � p. This enumeration can be computed by M, because qW can be calculated.
Notice also that w ∈ dom νΦ, y ∈ dom νW = dom νΦ, so that z ∈ dom νΦ and the open set νΦ(z)
is θΦ-computable. Let x = δW(p) = δΦ(p), for each enumerated string z, M tries to determine if
x ∈ νΦ(z), if so, then M prints the string ι(z′) on the output tape, where

z′ = ι(〈〈i1, e1〉, e1〉) · · · ι(〈〈is, es〉, es〉)ι(〈〈j1, f1〉, f1〉) · · · ι(〈〈jr, fr〉, fr〉) ∈ dom νΦW

and w = ι(〈i1, e1〉) · · · ι(〈is, es〉) and y = ι(〈j1, f1〉) · · · ι(〈jr, fr〉). The machine M must execute
simultaneously this step for multiple enumerated strings z, and from time to time, M must begin
executing new tests. This completes the specification of M.

By part 1 of Lemma 2.1.14, the decision problem “x ∈ νΦ(z)” is (δΦ, θΦ)-c.e., thus if x ∈ νΦ(z),
M will finish executing this step for the string z. But if x /∈ νΦ(z), M might not be able to finish this
part of its program in finite time. This is the reason why M must run multiple tests “x ∈ νΦ(z)”
simultaneously, advancing each test a few steps at a time. Because x ∈ W, it cannot happen that
all of the test executed by M do not succeed. Therefore the output of the machine M is non-trivial,
it is an infinite string p′ ∈ Σω such that

(∀z′ ∈ Σ∗)(z′ � p′ ⇔ z′ ∈ dom νΦW ∧ δΦW (p′) ∈ νΦW (z
′)),

and x = δW(p) = δΦW (p′). Therefore δW ≤ δΦW .
We have shown that δW ∼ δΦW , this says the inclusion i : W ↪→ M is a computable embedding

of TΦW (W) onto TΦ(M). By Definition 4.1.1, W is an (open) computable submanifold of M.
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When W is not θΦ-computable, we do not know if (W, ΦW) is a computable submanifold of M,
we only can assure that νW ≤ θΦW , that is, everything that is computable in TΦW (W) is computable
in WT. Our next result is an expected and pleasant behavior from the interior and boundary of a
computable manifold.

Proposition 4.1.3. Let (M, Φ) be a computable n-manifold with boundary. Then ∂M and Int M are
computable submanifolds of M.

Proof. We first prove that Int M is a computable submanifold of M. From Lemma 2.1.9, we know
that Int Rn

+ is θn-computable and (θn)−-computable in Rn (where θn and (θn)− are the positive
and negative information representations of open subsets of Rn, see Definitions 2.1.6 and 2.1.7)
and this can be used to build a Type-2 machine T that does the following: T enumerates all the
elements of dom λΦ; for each string j = 〈i, w〉 ∈ dom λΦ, T determines if µn

+(w) ⊂ Int Rn
+ (µn

+

is the notation for base elements of Rn
+, see Example 2.1.19). If the test succeed, T outputs ι(j).

Clearly, T computes a string q ∈ Σω such that θΦ(q) = Int M, so that the interior of M is θΦ-
computable. By Proposition 4.1.2, Int M is a computable submanifold of M.

Now to show that ∂M is a computable submanifold. Let ∂Rn
+ = (∂Rn

+, ∂τn, ∂βn, ∂µn) be the
computable space of Example 2.1.19, p : Rn → Rn−1 the computable projection (x1, . . . , xn) 7→
(x1, . . . , xn−1) and p0 = p|∂Rn

+
the canonical computable homeomorphism from ∂Rn

+ to Rn−1.
Using the homeomorphism p0, we can replace the standard base βn−1 of Rn−1 with the base
βp0 = {p0

[
B
]
| B ∈ ∂βn} of the computable space Rp0 = (Rn−1, τn−1, βp0 , νp0) induced by p0

(see Corollary 2.2.16). Let Φ′ be the atlas

Φ′ = {(gi, Vi) | Vi = Ui ∩ ∂M 6= ∅∧ gi = p0 ◦ ϕi|Vi ∧ (ϕi, Ui) ∈ Φ}.

The pair (∂M, Φ′) becomes a submanifold (without boundary) of M, of dimension n− 1. We only
need to show that it is a computable submanifold. It is easy to check that Φ′ satisfies definition
3.1.2, because Φ is computable and the set ∂Rn

+ is ψn-computable in Rn. Let T = TΦ(M). We
now prove that the spaces ∂MT and TΦ′(∂M) are equivalent. If z = 〈i, w〉 ∈ dom λΦ′ is such that
λΦ′(z) 6= ∅, then notice that

λΦ′(z) = g−1
i

[
p0
[
µn
+(w)

]]

= (p0 ◦ ϕi)
−1[p0

[
µn
+(w)

]]

= ϕ−1
i ◦ p−1

0
[
p0
[
µn
+(w)

]]

= ϕ−1
i

[
µn
+(w)

]

= λΦ(z).

Using this property, we deduce that, for the representations δ∂M, δΦ′ and p ∈ Σω, x ∈ ∂M,

δΦ′(p) = x ⇐⇒ (∀w ∈ Σ∗)(w� p⇒ w ∈ dom λΦ′ ∧ x ∈ λΦ′(w))

⇐⇒ (∀w ∈ Σ∗)(w� p⇒ w ∈ dom λΦ ∧ x ∈ λΦ(w))

⇐⇒ δΦ(p) = x,

and this implies that δ∂M ∼ δΦ′ , so that applying Theorem 2.2.13, we have that ∂MT and TΦ′(∂M)
are equivalent, that is, the inclusion of ∂M is a computable embedding of TΦ′(∂M) onto ∂MT, so
that ∂M is a computable submanifold of M.
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Example 4.1.4. If we give S1 and D2 the computable structures defined in Examples 3.1.9
and 3.1.17 respectively, then using Proposition 3.1.19, the solid torus N = S1 × D2 is a com-
putable manifold of dimension 3, it has a boundary ∂N, which by Lemma 1.1.18, is equal to
(∂S1 × D2) ∪ (S1 × ∂D2) = S1 × S1, thus the boundary of N is the torus. By Proposition 4.1.3,
∂N has a computable structure of dimension 2. It can be seen that the computable structure of ∂N
induced by the computable structure of N, is the same structure imposed to the torus in Example
3.1.20.

4.1.2 Embeddings of computable manifolds

In Section 2.2, we introduced computable embeddings of computable topological spaces, the next
lemma shows their relationship with computable manifolds. Informally, it says that every com-
putable manifold that is computably imbedded in another computable manifold, can be thought
as a computable submanifold of the latter.

Lemma 4.1.5. Let (Mn, Φ), (Nm, Ψ) be computable manifolds and h : M ↪→ N be a computable em-
bedding. Then the subset M′ = h

[
M
]

has the structure of a computable submanifold of N, such that
M ∼=ct M′.

Proof. Let T = TΨ(N). By Corollary 3.2.5, the computable homeomorphism h : M → M′ induces
a computable structure Φh on M′ such that TΦh(M′) is equivalent to M′T, therefore the inclusion
of M′ into N is a computable embedding of TΦh(M′) into T, so that (M′, Φh) is a computable
submanifold of (N, Ψ). As TΦ(M) ∼=ct TΦh(M′), we are done.

Example 4.1.6. In example 3.1.20, if we take n = 2, the 2-dimensional Torus T2 = S1 × S1 is a
computable submanifold of R4. But it is known from standard topology that the map h : T2 ↪→ R3

given by
h(xu, yu, xv, yv) = ((2 + yv)yu, (2 + yv)xu, xv),

is a homeomorphism of T2 onto the set T′ = h
[
T2] (that is, it is an embedding). Clearly, h is a

computable embedding of TΦ(T2) into R3. By Lemma 4.1.5, h induces a computable structure on
T′, such that T′R3 is equivalent to TΦh(T

′), that is, (T′, Φh) becomes a computable submanifold of
R3.

Lemma 4.1.7. Every computable submanifold of a computably Hausdorff computable manifold is a com-
putably Hausdorff manifold.

Proof. This is an immediate consequence of Theorem 2.3.3 and Definition 4.1.1.

4.2 Embedding computable manifolds in euclidean spaces

There are many facts [KS77] in the theory of manifolds (topological, differentiable and/or PL)
which can be shown to be true using the well known result that every Hausdorff n-manifold M
(of any kind) embeds in some high dimensional euclidean space Rq, where q depends on n. Many
versions of this embedding theorem exist, being the big difference between them the dimension of
the space Rq. It was proven by Whitney [Whi36] that if M is smooth, then it embeds in R2n and this
is the best possible result. The same is true for the piecewise linear case using similar constructions
to those used in the smooth case. If M has no additional structure, it can be embedded in R2n+1
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and again, this is the lowest possible dimension for the euclidean space. This last result can be
proven by means of dimension theory [HW48, Eng95, Mun00].

Our aim now is to prove a computable version of an embedding theorem for compact com-
putable manifolds which are computably Hausdorff. We will show that every such manifold can
be imbedded in computable euclidean space Rq (where q must be large enough, we will not try to
optimize q) with a computable embedding. The question remains open if a compact computably
Hausdorff computable manifold can be computably embedded in a lower dimensional euclidean
space. Notice that by Lemma 4.1.7, any computable manifold embedded in computable euclidean
space must have the property of being computably Hausdorff.

4.2.1 A simple embedding theorem

From now on, all computable manifold are assumed to be computably Hausdorff. We now show
that every compact computably Hausdorff computable manifold has an embedding in some eu-
clidean space of sufficiently high dimension. We develop a computable version of the proof of
Theorem 1.1.19 which can be found in [Gau74].

Let (M, Φ) be a compact computable manifold of dimension n and suppose that Φ is the atlas
given in part (a) of Theorem 3.3.5. Let (ϕ, U) ∈ Φ, where ϕ

[
U
]
= µn

+(z) ∩ Rn
+ for some z ∈

dom
(
µn
+

)
. Let the map fz : µn

+(z)→ Rn be given as follows: fz = hz if µn
+(z) ⊂ Int Rn

+ and fz = gz
if µn

+(z) ∩ ∂Rn
+ 6= ∅, where hz, gz are the computable homeomorphisms of Lemma 3.3.4. Let

s : Sn−{P} → Rn (P = (0, . . . , 0, 1)) be the computable stereographic projection given in Example
2.2.10. Define a function g : M→ Sn by

g(x) =

{
s−1 ◦ fz ◦ ϕ(x) if x ∈ U,
P if x ∈ M−U.

It is not hard to show that g is continuous. We now prove that

Lemma 4.2.1. The function g is computable.

Proof. We prove that g is a computable map from TΦ(M) to Sn by showing that the map B 7→
g−1[B

]
is (νSn , θΦ)-computable (See Definition 2.2.4). There is a Type-2 machine M that on input

V = B ∩ Sn (B = B(r, ε) ⊂ Rn+1), does the following:

1. If V contains the point P, then execute the following steps:

1.1 Calculate the compact set K = Sn −V;

1.2 compute the compact set K′ = g−1[K
]
;

1.3 output the set V ′ = M− K′.

2. If V does not contains P, output the open set g−1[V
]
.

First, we show that each step can be executed by M. The test P ∈ V in steps 1 and 2 can be done by
M in finite time, because P ∈ Qn and V = B∩ Sn is specified by rational numbers. To construct the
set K in step 1.1, M needs to compute an element p ∈ Σω such that K ∈ κSn(p) and this can be done
by M because the map V 7→ Sn−V is (νSn , κSn)-computable. Step 1.2 can be accomplished because
in the subset U ⊂ dom g = M, g−1 = ϕ−1 ◦ f−1

z ◦ s exists and it is a computable function, thus
the function K 7→ g−1[K

]
is (κSn , κΦ)-computable. To execute step 1.3, M can use the computable
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function f : ⊆ Σω → Σω of the reduction κΦ ≤ ψ−Φ . This reduction exists because TΦ(M) is
computably Hausdorff (part 4 of Theorem 2.3.3). The construction of the set g−1[V

]
in step 2 can

be executed by M because as P /∈ V, V ⊂ Sn − {P}, thus in V, g is a computable function. This
proves that each step of M can be done in finite time, so that M is a valid Type-2 machine.

We now prove the correctness of this pseudocode. Assume that P ∈ V, then M goes on to
execute step 1.1 and compute the set K = Sn − V. Notice that as P ∈ V, K ⊂ g

[
U
]
, so that in

K, g = s−1 ◦ fz ◦ ϕ and M can use s, fz and ϕ−1 to compute the compact set K′ = g−1[K
]
⊂ U

in step 1.2. Finally, in step 1.3, M computes the open set V ′ = M − K′, and this set is such that
V ′ = g−1[V

]
. Suppose that P /∈ V. Then V ⊂ Sn − {P} and M uses g to compute the open set

g−1[V
]
⊂ U.

This proves that the machine M computes a function which realizes the map V 7→ g−1[V
]

with
respect to νSn and θΦ. Therefore, the map V 7→ g−1[V

]
is (νSn , θΦ)-computable, thus by Definition

2.2.4, g is a computable function from M to Sn.

We are ready to prove the main result of this chapter.

Theorem 4.2.2. For any compact computable manifold Mn, there exists a computable embedding of M into
Rq for q sufficiently large.

Proof. Let M be a compact computable manifold of dimension n and assume that Sn has the com-
putable subspace topology induced by Rn+1. By compactness of M and part (a) of Theorem 3.3.5,
we can find a finite atlas {(ϕ1, U1), . . . , (ϕl , Ul)} such that ϕi

[
Ui
]
= µn

+(zi)∩Rn
+ for all i = 1, . . . , l.

Using Lemma 4.2.1, we construct computable functions gi : M→ Sn. Now let

X = Sn × · · · × Sn
︸ ︷︷ ︸

l times

and X = (X, τ, β, ν)

and define G : M → X of TΦ(M) into X by G = (g1, . . . , gl). We now prove that G is injective.
Take x, y ∈ M with x 6= y. If there is a chart Ui such that x, y ∈ Ui then gi(x) 6= gi(y) because gi
is inyective in Ui. If x and y are not in the same chart, then x ∈ Ui for some i and y /∈ Ui, hence
gi(x) 6= P and gi(y) = P. Since M is compact and X is Hausdorff, then G is closed, therefore G is
a topological embedding. Because each gi is computable, G is computable (use part 2. of Lemma
2.1.20). To see that the inverse function G−1 is computable, let M′ be a Type-2 machine that on
input x ∈ range h, executes the following steps:

1. Compute each component xi ∈ Sn (i = 1, . . . , l) of x.

2. Find j such that xj ∈ Sn − P.

3. Output y = g−1
j (xj).

Step 1 can be computed because by Lemma 2.1.20, the map x 7→ xi is (δ, δSn)-computable for each
i; step 2 is terminated in finite time because each xi ∈ Sn ⊂ Rn+1 is δSn -computable, the set Sn − P
is θSn -computable open in Sn and by part 1 of Lemma 2.1.14, the decision problem “xi ∈ Sn − P”
is (δSn , θSn)-c.e. (xj 6= P for at least one index j); step 3 is easily calculated because g−1

j exists and it
is (δSn , δΦ)-computable in Sn − P. Hence, the function computed by M′ realizes g−1, that is, it is a
computable function.
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Thus G is a computable embedding of TΦ(M) into X, which is a computable subspace of
X
′
= (X′, τ′, β

′
, ν′) (X′ = ∏l

i Rn+1, each factor is to be understood as the computable space Rn+1),
which is equivalent to the computable euclidean space Rl(n+1), so that by combining G with the
computable inclusion of X into X

′
and the equivalence of X

′
with Rl(n+1), we obtain the desired

computable embedding of M into Rl(n+1).

With the computable embedding constructed in Theorem 4.2.2, we can deduce that abstract
compact computably Hausdorff computable manifolds and compact computable submanifolds of
euclidean spaces are essentially the same.

Conclusions for the first part of this thesis can be found in Chapter 10.
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Part II:
Distributed systems





With every choice we make, we literally create a world. History branches in two, creating a world where we
made the choice; and a second one, where we did not. That is the secret of the universe you know, billions of

people taking billions of choices, creating infinite worlds.

Owlman when talking to Batman in Justice League: Crisis in two earths.





5
The iterated shared memory model of distributed

computing

We begin the second part of this thesis. Here we give an introduction to the field of distributed
computability, a natural evolution of standard computability theory. Specifically, we will be talking
about solvability of tasks in some kind of distributed system and how we can derive results for
these systems using topology and combinatorics. To do this, a well known concept of distributed
computing is necessary: Iterated shared memory models. The word “iterated” comes from the fact
that in an iterated model, computations proceed in a round-based pattern and in each iteration of
the system, some communication objects are used and each object can be used at most once. In this
chapter, we explain the main ideas behind the concept of iterated models and show the beautiful
connection that distributed systems share with topology. Also, we use the iterated model and
topology to explain some popular results which are based on iterated models, topology and/or
combinatorics.

In Section 5.1, we introduce the basic definitions regarding models of distributed systems. In
Section 5.2 we define two widely used models of distributed computing: The standard model and
the iterated shared memory model, being the latter the model in which we will focus all our attention.
Section 5.3 describes how topology can be used to give a geometric description of the executions of
a protocol in the iterated model, using simplicial complexes. Section 5.4 introduces the definition
of the two distributed tasks studied in this thesis: The set agreement task and the consensus task.
At the end of the section, we give a proof that the consensus task cannot be implement in the
standard model of distributed computing, using combinatorics and the iterated model.

5.1 Basic definitions

Our formal model is standard, we follow the usual definitions given in [CR12], which are based
on concepts and ideas taken from [AR02].

5.1.1 Distributed systems

The first thing that we need to define formally is the concept of a system, which is, roughly, a set
of processes (computers, network nodes, sensors) and some communication media, in our case,
the communication media is a memory which is visible to all the processes.

Definition 5.1.1. A process is a deterministic state machine1, which has a (possible infinite) set of
local states, including a subset called the initial states and a subset called the output states.

1See [HU90] or [HS99, p. 863, Definition 2.2] for the formal definitions of state machines and I/O automata.
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Definition 5.1.2. A system is a pair (Π, MEM), which consists of a set Π = {p1, . . . , pn} of n > 1
processes and a set MEM = {R1, . . . , Rm} of m > 1 shared registers. Each register has a type, which
specifies the following data:

1. The values that can be taken on by the register.

2. The operations that can be performed on the register.

3. The value to be returned by each operation (if any).

4. The new value of the register resulting from each operation.

The domain of values of each register can include a special “undefined” value, which we de-
note by ⊥. Given a process pi ∈ Π, the subindex i is the id of process pi.

Intuitively, a register is an abstract object which can hold any element of a fixed set (the type of
the register). It is the formal way to represent a variable of some programming language (i.e., Java,
C, Fortran). The operations defined on the register allow us to change the element it is storing with
another member of the set of possible values (change the state of the register) or know the current
value of the element in the register. For example, an integer valued read/write register R can take
on all integer values and has operations R.read() and R.write(v). The read operation returns an
integer value u, which is stored in R and leaves R unchanged. The write operation takes an integer
input parameter v, returns no value, and changes R’s value to v. The word shared comes from the
fact that all processes can read and modify the contents of a shared register.

It is also customary to make no assumptions about the size of the registers of the shared mem-
ory, and therefore we may assume that each process pi can write its entire local state in a single
register.

Definition 5.1.3. Let (Π, MEM) be a system. A global state is a vector

S = 〈s1, . . . , sn; MEM〉,

where si is the local state of process pi ∈ Π. An initial state is a state in which every local state is
an initial local state and all register in the shared memory are set to ⊥. A decision state is a state in
which all local states are output states.

5.1.2 Events and round schedules

The occurrences that can take place in a system are modeled as events, these are basic actions which
are performed by the processes. The events affect the state of the shared memory of the system.
We now describe the main events to be consider in our work.

Let (Π, MEM) be a system. An event in the shared memory is performed by a single process
pi ∈ Π, which applies only one of the following actions: a write (W) or read (R) operation on a reg-
ister Rj ∈ MEM. Any of these operations may be preceded/followed by some local computation,
formally a change of the process to its next local state. We will need to consider events performed
concurrently by the processes. If E is any event and pi1 , . . . , pik ∈ Π are processes, then we denote
the fact that pi1 , . . . , pik execute concurrently the event E by E(X), where X = {i1, . . . , ik}.

We fix once and for all some notation. Let n = {1, . . . , n}, when convenient, we will denote
E(X) by E(i1, . . . , ik) and if i ∈ n is a process id, then E(n− {i}) is written simply as E(n− i).
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Definition 5.1.4. Given a system (Π, MEM), a round schedule π is a finite sequence of events of the
form

π : E1(X1), . . . ,Er(Xr),

that encodes the way in which the processes with ids in the set
⋃r

j Xj perform the events E1, . . . ,Er.

For example, the round schedule given by

W(1, 3),R(1, 3),W(2),R(2),

means that processes p1, p3 perform the write and read events concurrently; after that, p2 executes
in solo its shared memory events. Similarly, the round schedule W(1, 2, 3),R(1, 2, 3) says that
p1, p2, p3 execute concurrently the write and read events.

5.1.3 Protocols and executions

Definition 5.1.5. Let (Π, MEM) be a system. The state machine of each process pi ∈ Π is called a
local protocol Ai. A protocol is a collection A of local protocols A1, . . . ,An.

We assume that all local protocols are identical; i.e., processes have the same state machine. For
the sake of simplicity, we will give protocols specifications using pseudocode and we establish
the following conventions: A lowercase variable denotes a local variable, with a subindex that
indicates to which process it belongs; the shared memory (which is visible to all processes) is
denoted with uppercase letters. Intuitively, the local state si of process pi is composed of the
contents of all the local variables of pi.

Remarks. From now on, we focus all our attention on protocols, and when we say something about
a protocol A, we will omit an explicit reference to the system (Π, MEM) behind A, if there is no
confusion.

Definition 5.1.6. Let A be a protocol. An execution of A is a finite or infinite alternating sequence
of states and round schedules

S0, π1, . . . , Sk, πk+1, . . . ,

where S0 is an initial state and for each k > 1, Sk is the resulting state of applying the sequence
of events performed by the processes in the way described by the round schedule πk. An r-
round partial execution of A is a finite execution of A of the form S0, π1, . . . , Sr−1, πr, Sr, that is, an
execution of A until the end of round r.

If P is a state, P is said to be reachable in A if there exists an r-round partial execution of A
(r > 0) that ends in the state P and when there is no confusion about which protocol we refer
to, we just say that S is reachable. Also, we identify two special components of each process’
states: an input and an output. It is assumed that initial states differ only in the value of the input
component; moreover, the input component never changes. The protocol cannot overwrite the
output, it is initially ⊥; once a non-⊥ value is written to the output component of the state, it
never changes; when this occurs, we say that the process decides. The output states are those with
non-⊥ output value.
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Definition 5.1.7. Let A be a protocol and S, R global states, we say that R is a successor of S in A,
if there exists an execution α of A such that

α = S0, π1, . . . , Sr = S, πr+1, . . . , πr+k, Sr+k = R, . . . ,

i.e., starting from S, we can run the protocol A k rounds (for some k > 0) such that the system
enters state R.

If π is any round schedule and S is a state, the successor of S in A obtained by running the
protocol (starting in the state S) one iteration with the round schedule π is denoted by S · π.

Definition 5.1.8. Two states S, P are said to be adjacent if there exists a non-empty subset X ⊆ n
such that all processes with ids in X have the same local state in both S and P. That is, for each

i ∈ X, pi cannot distinguish between S and P. We denote this by S X∼ P. States S and P are connected,
if we can find a sequence of states (called a path)

p : S = P1 ∼ · · · ∼ Pr = P,

such that for all j with 1 6 j 6 r− 1, Pj and Pj+1 are adjacent.

Connectivity of global states are a key concept for many beautiful results in distributed sys-
tems, namely, impossibility proof. The indistinguishability of states between processes is the
building block to construct topological structures based on the executions of a given protocol and
is fundamental in many papers [LAA87, HS99, SZ00, BG93a, CR12].

5.1.4 Decision tasks

In distributed computing, a decision task is a problem that must be solved in a distributed sys-
tem. Each process starts with a private input value, communicates with the others, and halts
with a private output value. The nature of many tasks that arise often in asynchronous sys-
tems has suggested that the best way to model decision tasks formally is by using relations in-
stead of functions (In contrast with the case of deterministic single process Turing computability
[Sip96, Koz97, Coo04]). A given input value of a task in distributed systems may have more than
one acceptable output value from the processes. We now introduce the formal concept of a deci-
sion task and define how and when protocols solve decision task.

Definition 5.1.9. A decision task ∆ is a relation that has a domain I of input values and a domain
O of output values; ∆ specifies for each assignment of the inputs to processes on which outputs
processes can decide. A bounded decision task is a task whose number of input values is finite.

We also refer to decision task simply as tasks. Examples of tasks includes consensus [FLP85],
renaming [BG93b, AGL+08] and the set agreement task [Cha93] (to be defined later in Section 5.4).
One of the main goals in distributed computing, is to design efficient protocols that can solve
decision tasks like the examples given above and many others.

Definition 5.1.10. The protocol A solves a decision task ∆ if any finite execution α of A can be ex-
tended to an execution α′ in which all processes decide on values which are allowable (accordingly
to ∆) for the inputs in α.
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Because the outputs cannot be overwritten, if a process has decided on a value in α, it must
have the same output in α′. This means that outputs already written by the processes can be
completed to outputs for all processes that are permissible for the inputs in α.

Definition 5.1.11. A protocol A is wait-free if in any execution of A, a process either it has a finite
number of events or it decides. This implies that if a process has an infinite number of events, it
must decide after a finite number of events.

Roughly speaking, A is wait-free if any process that continues to run will halt with an output
value in a fixed number of steps, regardless of delays or failures by other processes. However,
in our formal model, we do not require the processes to halt; they solve the decision task and
decide by writing to the output component; processes can continue to participate. We typically
consider the behavior of a process until it decides, and therefore, the above distinction does not
matter. The study of wait-free shared memory protocols has been fundamental in distributed
computing, some of the most powerful results have been constructed on top of wait-free protocols
[BG93a, HS99, SZ00, Raj10]. Also, other variants of distributed systems can be reduced to the
wait-free case [BG93a, Gaf09, BGLR01].

5.2 Two popular models of distributed computing

Intuitively, a model of distributed computing describes a set of protocols that share some common
properties and/or restrictions in the way the processes can access the shared objects and these
restrictions affect the way in which the protocols can be specified. We will consider two shared
memory distributed computing models, the first one is the usual read/write model and the second
is an iterated read/write model. This model has nice properties, because protocols in this model
can be executed by the processes in a round-based fashion and the shared objects are used one
after the other and in the same order. We will have something very important to say about the
relationships between these two popular models. In later chapters, we will extend these models
with more powerful objects that shared memory.

5.2.1 The standard model

In the standard shared memory model of distributed computing [HW90, Her91], there are n processes
that communicate by reading and writing all the information they have (the entire state of each
process) in a shared memory. This shared memory is composed of single-writer, multi-reader reg-
isters, that is, any number of processes can read and write concurrently a single register of the
memory. For protocols defined in the standard model, there are no restrictions on the way the
processes can access the registers, thus it is the more general model, although some simple and
useful restrictions can be assumed without loss [AAD+93]. There are many examples of protocols
in the standard model in the literature [HW90, Her91, AAD+93, AW04, AGL09, GR10a].

A drawback of the standard model, is that while there is a lot of freedom to specify a protocol
to solve a distributed task, it is very hard to obtain impossibility results. This is because in general
protocols in the standard model are very wild and one cannot make assumptions about the way
the executions of a given protocol unfold in time, there is no way to assure that an execution will
follow some order or pattern in the way the processes execute the operations in the shared objects
and because of this, pursuing what happens with a protocol in a formal way is error prone. Subtle
mistakes in the impossibility proofs often can go unnoticed by researchers.
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5.2.2 The iterated model

Because of the difficulties to build impossibility proofs in the standard model, it is necessary to
impose some restrictions in the way the processes execute the operations on the shared objects, but
of course, we need to do this without losing the computational power of the standard model. This
is accomplish with the second model that we present in this section: The iterated model of distributed
computing. In this model of computation, the processes communicate asynchronously through a
sequence of shared objects, called snapshots, these objects can be accessed each one at most once
by each process and also all the snapshots are used in the same order by all the processes.

Definition 5.2.1. A one-shot snapshot object S is a shared memory array S [1, . . . , n] with one
entry per process. That array is initialized to [⊥, . . . ,⊥], where ⊥ is a default value that cannot be
written by a process. The snapshot object S provides two atomic operations that can be used by a
process at most once:

• S.update(v): when called by process pj, it writes the value v to the register S [j].

• S.scan(): returns a copy of the whole shared memory array S.

It is proven in [AAD+93, BG93b] that snapshot objects can be wait-free implemented using
only read/write shared registers. Snapshot objects are the principal shared objects that we use to
define our next distributed model.

Definition 5.2.2. Let (Π, SM) be a system, where the shared memory SM is structured as an
infinite sequence of one-shot snapshot objects SM [i] (i > 0). We say that the protocol A is a
protocol in the iterated read/write shared memory model if each local protocol Ai of A can be written in
the form given in Figure 5.1.

(1) init r ← 0; sm← input; dec← ⊥;

(2) loop forever
(3) r ← r + 1;
(4) SM [r] .update(sm);
(5) sm← SM [r] .scan();

(6) if (dec = ⊥) then
(7) dec← δ(sm);
(8) end if
(9) end loop

Figure 5.1: General form of a protocol in the iterated model

We now give an intuitive explanation of the pseudocode2 of Figure 5.1. Initially, r is zero
and sm is assigned the contents of the readonly variable input, which contains the input value
for process pi; all other variables are initialized to ⊥. In each iteration, pi increments by one the
loop counter r, accesses the current shared memory array SM [r], writing all the information it has

2Remember what we said in the paragraph following Definition 5.1.5 about pseudocodes: All the lowercase vari-
ables r, sm, input and dec are local to process pi and only when we analyze a protocol, we add a subindex i to a variable
to specify it is local to pi.
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stored in sm and after this, pi takes a snapshot of the shared array (which contains data from pi
and possibly from other running processes) and finally, pi checks if dec is equal to ⊥, if so, then
with all its information, it enters into a deterministic function δ to determine if it must return a
valid output value or ⊥, which is stored in dec. Once a non-⊥ value is assigned to dec, it is never
overwritten.

As in the case of the standard model, there are plenty of examples of protocols in the iterated
model [BG93b, BG97, Gaf09, GR10a]. In later chapters, we will present examples of iterated pro-
tocols in a new model of distributed computing, which is an extension of the basic iterated model
given in this section.

The equivalence of the iterated model with the standard model

We finish this section with some remarks about protocols in the iterated model. It would seem
that the iterated model that we have defined is too restrictive: a process cannot go back and read
again the same shared array. Moreover, all processes must access all the shared arrays in the same
order. Because of this, one may think that the iterated model does not have full generality when
compared with the more standard, non-iterated wait-free shared memory model, that does not
have the restrictions imposed to protocols in the iterated model. The crucial question is: Does
there exists a task that is solvable in the wait-free standard model and it is not solvable in the
iterated model? The answer is no. Every task that is solvable in the wait-free standard model is
also solvable in the iterated model. This is proved using an algorithm that simulates the standard
model in the iterated model, first in [BG97], and more recently in [GR10a].

Theorem 5.2.3 (Borowsky and Gafni). If a bounded decision task can be wait-free solved in the standard
model then it can be wait-free solved in the iterated model.

Of course, the other direction of the theorem is trivial. Therefore, the standard model and the
iterated model of distributed computing are equivalent, as long as task solvability is concerned,
so that there is no loss of generality (for computability purposes) in considering only protocols in
the iterated model.

Simulations are an active field in distributed computing, they have been used not only to
prove the equivalence of the iterated model and the standard model of distributed computing,
but also to extend impossibility results from one model of computation to another, e.g., [BGLR01].
A topological approach to simulations of models of distributed computing can be found in [HR12].

5.3 The geometry of the Iterated model

The framework we have described to study distributed algorithms can be given in geometric
terms, using simplicial complexes. The well behaved recursive nature of the executions of the
protocols in the iterated model allow us to define a sequence of simplicial complexes such that,
each member of this sequence represents all the possible ways in which the processes can execute
a protocol in a given round number. We assume that the reader is familiar with basic concepts
from combinatorial topology [Arm83, Ale98].
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5.3.1 The case of 3-process protocols

To introduce the ideas of the geometric approach to distributed algorithms, we begin with an
example, let n = 3 and suppose processes p1, p2 and p3 execute a protocol A in the iterated model
with their input values all equal to 0. In the first round of A, there are several possible ways for
the processes to execute their actions of reading and writing to the shared memory; one possibility
is that p1 and p2 execute concurrently the basic operations and later, p3 executes the same steps.
This is represented by the round schedule W(1, 2),R(1, 2),W(3),R(3). At the end of the round, the
local view of the shared memory of p1 and p2 only contains the values these processes wrote; they
cannot see the value written by process p3 because they executed faster than p3, which wrote its
information in the shared memory after p1 and p2 executed their reads (snapshots) operations3.
But p3’s local view of the memory contains the data of the three processes, so that p3 can see all the
information written by p1 and p2. This global state, which is reachable in A, can be represented
by a 2-simplex ∆2 as shown in the following figure.

p1 p2

p3
W(1, 2)
R(1, 2)
W(3)
R(3)

00⊥ 00⊥

000

Each vertex of ∆2 is labeled with the process id and the local state of that process (this includes the
local view of the memory). Now consider the case where the three processes execute the shared
operations concurrently (this is described with the round schedule W(1, 2, 3),R(1, 2, 3)) and the
views they have of the memory at the end of the first round. As in the previous case, we represent
this state as a 2-simplex ∆′2.

W(1, 2)
R(1, 2)
W(3)
R(3)

W(1, 2, 3)
R(1, 2, 3)

W(3)
R(3)
W(1, 2)
R(1, 2)

00000⊥

00⊥

000

000 ⊥⊥0
p1

p3p2

p2

p1

p3

This time, all the processes can see each other’s input values and because p1 and p2 have a different
local view of the memory, they can distinguish between the state given by ∆′2 and the previous one
(represented by ∆2); but p3 cannot tell the difference, because it has exactly the same information

3This models the possibility that p3 is just running slower that p1 and p2 and also it models the situation in which
p3 crashes and does not take any steps at all.

88



5.3. THE GEOMETRY OF THE ITERATED MODEL

in both states. This is the reason why the simplexes ∆2 and ∆′2 have the vertex with p3’s id as a
common face, p3 cannot distinguish between the two states, because in both of them it has the
same local state. In a similar way, the simplex that represents the reachable state in A obtained
by executing the first round of the protocol in the way described by W(3),R(3),W(1, 2),R(1, 2), is
adjacent to ∆′2 (this time, p1 and p2 cannot distinguish).

We can represent all the possible reachable states in the first round of A as 2-simplexes and
construct a simplicial complex, which we call the 1-round protocol complex of A (Figure 5.2 (a)). It
is just a subdivided triangle. Each simplex in this complex represents a state S that the system
can reach after the processes execute the first round of A with a round schedule that makes the
protocol enter into state S.

In the second round, processes start to execute the protocol with the state they had at the end
of the first round, and then all the possible round schedules of the first round can be repeated. If
we represent the state that the processes have at the beginning of round two as the corresponding
2-simplex of the 1-round protocol complex of A (that is, as a reachable state of the first round of
the protocol) then using the fact that we are working with an iterated model of computing, we
can encode all the possible states of the system at the end of round two as a subdivision of the
triangle that represents the state that the processes had at the end of round one. This subdivision
is identical to the protocol complex of round one, so that we can describe all the possible reachable
states in round two of A as the simplicial complex of Figure 5.2 (b), this is the 2-round protocol
complex of A. Notice that this complex is also a subdivided triangle, with several subcomplexes
isomorphic to the protocol complex of round one. This behavior is going to repeat itself for all
subsequent rounds– the k-round protocol complex for a protocol in the iterated model for three
processes will be a subdivision of the 2-simplex. To obtain the complex of a subsequent round,
we just take the complex of the previous round and replace each simplex in it with the complex
of Figure 5.2 (a) and we can see that the k-round protocol complex has a simple and elegant
recursive structure.

5.3.2 The protocol complex

In general, if we have n + 1 processes, each possible initial or final local state of a process is mod-
eled as a vertex v = (i, smi), a pair consisting of a process id i and the local state smi of process pi.
We say that the vertex is coloured with the process id. A set of n + 1 mutually compatible initial
or final local states is represented as an n-simplex ∆n and with this we model a possible system
state. Given a protocol A in the iterated model, where each process pi receives the input value vi
(i = 1, . . . , n + 1), for each round number r > 0 all the possible reachable states in A at the end of
round r are represented as a n dimensional complex, the r-round protocol complex (for brevity, we
just say the “protocol complex”), PA, in which each vertex is labeled with a process id and that
process state at the end of round r. Thus, each simplex in PA corresponds to an equivalence class
of executions of A that “look the same” to the processes at its vertices. It is argued in [BG97] that
PA is always a subdivided n-simplex.

There is more information about the protocol complex in [HS99]. In fact, the definition we
have presented of the r-round protocol complex PA (associated with the input values that the
processes have when they begin executing the protocol A) is closely related with the notion of a
span in [HS99, Definition 4.4, page 884]. Herlihy and Shavit define the protocol complex as a bigger
geometric structure which depends on all the possible input values of processes and all possible
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executions of a protocol A. However, for most cases, it is sufficient to work with the definition of
protocol complex we have given. We find our definition sufficient for this introductory note and
for the rest of this thesis.

The use of topological methods in distributed computing is growing and evolving everyday,
if the reader wishes to get to know the most up to date information and newest techniques (at the
time of writing this thesis) on this topic, some good references are [HR10a, Her10, HRR12, HKR13]
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Figure 5.2: The protocol complex for a 3-process protocol in the iterated model after the execution
of the first round (a) and the second round (b).

5.4 Consensus and the family of set agreement tasks

In the consensus task for n processes, each process starts executing with a private input value and
all processes must execute a finite number of steps to decide a unique output value v that must
be an input value of some correct process. The consensus task is fundamental in the theory of
distributed computing. Consensus is used to achieve overall system reliability in the presence of
faulty processes, and is used in databases for transaction commitment, agreeing on the identity of
a leader, state machine replication, and atomic broadcasts. The consensus task is usually described
in terms of three requirements: termination, agreement and validity. Each process proposes a value,
and each correct process (one that does not crash) has to decide a value (termination), in such a
way that there is a single decided value (agreement) and that value is a proposed value (validity).

A seminal result in the theory of distributed computing is the impossibility of solving con-
sensus using a shared-memory that consists of read/write registers with asynchronous processes
even if only one process may crash [FLP85, LAA87]. Given the huge practical importance of con-
sensus, many situations have been studied to ameliorate the implications of this impossibility
result, from stronger models of distributed computing, to weaker versions of consensus. It must
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be noticed that modern multi-processor systems include communication objects that are more
powerful than read/write registers.

5.4.1 The set agreement task

The (n, k)-set agreement task, where n is the number of processes and k < n, is one of the most
important generalization of consensus. This task was proposed the first time in [Cha93] and it has
been fundamental in the study of distributed computing.

The (n, k)-set agreement task. In this task, every process starts with some initial input value
taken from a set I of input values4 and must output a value such that:

• Termination: Each process must eventually output some value.

• k-Agreement: The set of output values from all processes must be of size at most k.

• Validity: If some process outputs v, then v is the initial input of some process.

We can define formally the consensus task for n processes as the (n, 1)-set agreement task and
the 1-Agreement condition is simply called Agreement. As we have said, before the set agreement
task was defined, it was well known that the consensus task is not solvable in the presence of even
only one faulty process [FLP85, LAA87]. Almost all consensus impossibility results use graph
connectivity arguments. But since the (n, k)-set agreement task was conceived, it was an open
question whether it could be solved in the wait-free shared memory model (with the parameters
2 6 k < n), connectivity of graphs was not enough to give an impossibility proof. It was until 1993
when three independent teams [BG93a, SZ93, HS93] showed that there is no wait-free protocol that
can solve set agreement.

Theorem 5.4.1 ([BG93a, SZ93, HS93]). For 1 6 k < n, the (n, k)-set agreement task has no wait-free
read/write solution in the iterated shared memory model.

The proof of Theorem 5.4.1 uses the topological framework given earlier to define the iterated
model and very popular results from topology, like Sperner’s Lemma. As the iterated model
is equivalent to the usual standard wait-free shared memory model, Theorem 5.4.1 implies the
impossibility to solve the set agreement task in the standard model. It is worth noticing that the set
agreement task is not the only distributed task in which topological techniques have been useful.
Other examples are musical benches [GR05], renaming [HS99, CnR08, CnHR12, CnR12b], loop
agreement [HR03] and the weak symmetry breaking task [CnR12a] among others. The consensus
impossibility results of [FLP85, LAA87] can be seen as special cases of the topological impossibility
proof of set agreement.

5.4.2 The impossibility of consensus in the iterated model

Theorem 5.4.1 tell us that the consensus task cannot be solved with a protocol in the iterated
model. We now present a variant of the proof of this impossibility result. We will show that
using simple connectivity arguments and some special properties of global states of a system, we
can show with a well structured proof that there is no protocol in the iterated model that can
implement the consensus task for n > 2 processes.

4It is customary to ask that |I| > n, although for consensus, which is the (n, 1)-set agreement task, we only ask that
|I| > 2.
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A 2-process example

To illustrate the basic ideas and the geometry behind the proof of the impossibility of consensus
in the iterated model, let us give an example with n = 2 processes, from which a generalization to
any n > 2 is straightforward. Suppose then that Π = {p1, p2} and A is a protocol that solves the
consensus task for 2 processes, without loss, assume that the input values of the processes are their
own ids, so that p1 has input value 1 and p2 input value 2, this is represented by an initial global
state I. If the processes execute the protocol A for one round, then we can see that the 1-round
protocol complex of A is the 1-dimensional simplicial complex P1 at the top of Figure 5.3. P1 rep-
resents all three possible executions ofA in the first round, each of the 1-simplexes ofP1 represents
a reachable state inA in the first iteration. All possible one round executions ofA are given by the
round schedules π1 : W(1),R(1),W(2),R(2); π∗ : W(1, 2),R(1, 2) and π2 : W(2),R(2),W(1),R(1).
π1 represents an execution of A in which p1 executes the write and read operations in solo and p2
awakes later and executes the same operations. The execution given by π2 is symmetric to π1, we
just interchange p1 and p2. The round schedule π∗ represents an execution of A in which both p1
and p2 execute concurrently the write and read operations of A. Thus, the three reachable states
represented by P1 are I1 = I ·π1, I∗ = I ·π∗ and I2 = I ·π2. The connectivity of the complex P1 tell

us that I1
2∼ I∗

1∼ I2. This is easy to show, p2 cannot distinguish between I1 and I∗, because in both
states, p2 sees the input value of p1 and its own input; similarly, p1 cannot distinguish between I∗
and I2, because it can see the input values of both processes in the two states.

...

Round 1

Round 2

Round 3

p1 p2 p1 p2

p1 p2 p1 p2

p1 p2 p1 p2

W(1)
R(1)
W(2)
R(2)

W(1, 2)
R(1, 2)

W(2)
R(2)
W(1)
R(1)

Figure 5.3: The k-round protocol complex for 2 processes and k ∈ {1, 2, 3}.

If the processes halt and decide a unique output value in the first round of A, then in the state
I1, p1 decides 1, because it executes in solo and it never sees p2’s input value and by the Agreement
property of consensus, p2 must decide 1 too. Now, as process p2 cannot distinguish between I1
and I∗ and p2 decides 1 in the state I1, p2 decides the same output value in I∗ and because of the
Agreement condition, p1 must decide 1 in I∗. Everything seems to be okay until this point, but
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what happens in the state I2 ? We know that process p2 executed faster that p1, so that the output
value decided by p2 is 2 and (again) by the Agreement property of consensus, p1 decides 2 in I2

On the other hand, we have that p1 decided the output value 1 in the state I∗ and as I∗
1∼ I2, p1

has to decide 1 in I2, but we just have argued that p1 outputs 2 as its decision in I2, thus we have
reached a contradiction. We conclude that the processes must execute at least one more round of
A.

If we now suppose that p1, p2 execute A until the end of round two and decide, then we can
build a similar contradiction. The 2-round protocol complex P2 of A is depicted in the middle
of Figure 5.3. Here we can see the recursive nature of the protocol complex of protocols in the
iterated model. P2 is obtained from P1 simply by replacing each 1-simplex of P1 by the complete
complex P1. Roughly speaking, each 1-simplex of P2 represents an execution of A in which the
processes start executing round two of A after finishing the first iteration in the global state Il
(l ∈ {1, 2, ∗}) and executing round 2 in the way specified by one of the round schedules π1, π2
and π∗. In summary, the simplexes of P2 represent reachable states in the second iteration of A
which have the form

Il · πs l, s ∈ {1, 2, ∗}.
Consider now the states I1 · π1 and I2 · π2. The first state represents and execution of A up to
round two in which, process p1 executes in solo the write and read operations in round 1 and 2
of A; the second state represents a similar execution of A for p2. The geometry of the complex P2
says that these two states are connected (this can be proven by an argument very similar to the one

that shows that I1
2∼ I∗

1∼ I2) and this can be used to reach a contradiction in the same way that
we did for the round one case. Using the recursive nature of the iterated model and the protocol
complex of A, we can reach the same contradiction in round three (see bottom of Figure 5.3) and
all subsequent rounds of A. A reachable state of an execution of A in which process p1 executes
every round in solo and p2 is delayed indefinitely, can be connected with a reachable state of an
execution of A where p2 executes faster that p1 forever.

The impossibility proof

We are ready to give the formal proof of the impossibility of consensus in the iterated model,
generalizing the intuitive ideas given in the previous example. We begin first by introducing
some definitions regarding consensus protocols.

Definition 5.4.2. Let A be a protocol (in any model) that implements consensus, v a valid input
value for consensus and S a state of the system. We say that S is v-valent if in every execution ofA
starting from S, there exists a process in Π that outputs v. S is univalent if in every execution of A
starting from S, processes always outputs the same value. If S is not univalent, then S is bivalent.

Fix i ∈ n and define the round schedules πi, π∗ and πn−i as

(πi) W(i),R(i),W(n− i),R(n− i),

(π∗) W(n),R(n),

(πn−i) W(n− i),R(n− i),W(i),R(i).

Lemma 5.4.3. Any two initial states of a protocol for consensus are connected.
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Proof. Let S, P be two initial states. If S and P differ only in the initial value inputi of a single
process pi, then S and P are adjacent (Only pi can distinguish between the two states, the rest
of the processes have the same initial values). In the case S and P differ in more that one initial
value, they can be connected by a path of initial states S = S1 ∼ · · · ∼ Sq = P such that Sj, Sj+1
differ only in the initial value of some process (we obtain Sj+1 from Sj by changing the input value
of some process pi, the result is a valid input of the consensus task), hence they are adjacent. In
summary, S and P are connected.

Lemma 5.4.4. Let n > 2, i ∈ n. IfA is a protocol in the iterated model and S is any reachable state in some
round r > 0 of A, then there exists the path

S · πi
n−i∼ S · π∗ i∼ S · πn−i,

�� ��5.1

of connected reachable states in round r + 1 of A.

Proof. Let S be a reachable state in A and i ∈ n. We show that the states S · πi and S · π∗ are
connected. In the first state, process pi first executed in solo and it could not see any other pro-
cess, but the rest of the processes executed concurrently, thus they can see the information from all
processes after executing the snapshot operation. For the state S · π∗, all processes executed con-
currently, so that they can see each other’s data after the snapshot, therefore all processes with ids
in the set n− i have the same local state in S · πi and S · π∗, thus they cannot distinguish between
these two global states. A similar argument proves that pi cannot distinguish between S · π∗ and
S · πn−i. It follows that the path

�� ��5.1 of connected reachable states in A exists.

Lemma 5.4.5. Let n > 2, i ∈ n. If A is a protocol in the iterated model and there exists a path

S0
X1∼ · · · Xl∼ Sl (l > 1)

of connected reachable states in A such that for all j with 1 6 j 6 l, Xj = n− i or Xj = {i}. Then there
exists a path

Q0
Z1∼ · · · Zs∼ Qs (s > 1)

of connected reachable states in A such that

(1) Every state Qt is a successor state of some Sj.

(2) For all m with 1 6 m 6 s, Zm is such that Zm = n− i or Zm = {i}.
Proof. We use induction on l, the round schedules πi, π∗, πn−i and Lemma 5.4.4 to construct the
path Q1, . . . , Qs of connected states with the desired properties. For the base case, consider the

states S0
X1∼ S1 where X1 = {i} ∨ X1 = n− i. It is easy to see that the state S0 · ρ is adjacent to the

state S1 · ρ, where ρ is πi if X1 = {i} and is πn−i if X1 = n− i. Assume that we have build the path

Q0
Z1∼ · · · Zs′∼ Qs′ ,

of connected successor states of S1, . . . , Sq (1 6 q < l) with Zm = n− i or Zm = {i} for all m 6 s′.
Each state Qm is of the form Qm = Sj · α, where α ∈ {πi, π∗, πn−i}. We now show how to connect
Qs′ (a successor state of Sq) with a successor state of Sq+1. Let Xq+1 be the set of processes that
cannot distinguish between Sq and Sq+1. We have to deal with cases.
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Case 1. Qs′ = Sq · πi. If Xq+1 = {i}, then we can connect Sq · πi with Sq+1 · πi (pi cannot
distinguish between these two states). Now, if Xq+1 = n − i, using Lemma 5.4.4 we can
build the path

Sq · πi
n−i∼ Sq · π∗ i∼ Sq · πn−i

n−i∼ Sq+1 · πn−i.

Case 2. Qs′ = Sq · π∗. Whether Xq+1 = {i} or Xq+1 = n− i we have the path of connected
states

Sq · π∗
Xq+1∼ Sq · πXq+1

Xq+1∼ Sq+1 · πXq+1 .

Case 3. Qs′ = Sq · πn−i. The argument here is very similar to Case 1, so we omit it.

We have built with induction the path of connected states Q1, . . . , Qs from the path S1, . . . , Sl sat-
isfying the demanded properties. The result follows.

Lemma 5.4.6. Let n > 2, i ∈ n. Suppose thatA is a protocol in the iterated model that solves the consensus

task and that S0
X1∼ · · · Xl∼ Sl (l > 1) is a path of connected reachable states inA that satisfies the hypothesis

of Lemma 5.4.5 and also assume that S0 is a v-valent state. Then Sl is v-valent.

Proof. It is enough to prove the lemma for l = 1, as the general case follows easily from this case.
Suppose (without loss of generality) that S = S0 is v-valent and that S′ = Sl is v′-valent (v 6= v′).
Since S is v-valent, in every execution starting from S, there is at least one process that outputs v
and by the Agreement condition of consensus, all processes must output v as the consensus value;
the same is true for S′, replacing v with v′. Let r be the round number of both S and S′ (this makes
sense, because S and S′ are adjacent, thus they must have the same round number, which is part
of the local state of each process), then combining Lemma 5.4.5 with an inductive argument, we
can find for all m > r and any two r-round partial executions

R0, π1, . . . , πr, Rr = S and P0, π′1, . . . , π′r, Pr = S′,

that end in S and S′ respectively, m-round partial executions

R0, π1, . . . , πr, Rr, πr+1, . . . , πm, Rm and P0, π′1, . . . , π′r, Pr, π′r+1, . . . , π′m, Pm,

such that Rm and Pm are adjacent states for all m > r. As the protocol solves the consensus task,
there must exists a k such that Ru and Pu are decision states for all u > k. Without loss, we can
assume that k > r. Since Ru is a successor state of S, which is a v-valent state, all processes decide
v in Ru; simillary, as Pu is a successor of S′ (a v′-valent state), processes must decide v′ in Pu. Let X
be the set of ids of processes that cannot distinguish between Ru and Pu. Then, for each j ∈ X the
local state of process pj in Pu and Ru must be the same and this includes its output component. But
this is a contradiction because in Ru, pj decides v while in the state Pu, pj decides v′. We conclude
that S′ must be v-valent, such as S.

Theorem 5.4.7. For n > 2, there is no protocol in the iterated model to solve consensus for n processes.

Proof. Assume that there exists a protocolA for consensus in the iterated model and (without loss
of generality) suppose that 0,1 are two valid input values. Let i be any process id and let O, U be
the initial states in which all processes have as input values 0s and 1s respectively. Clearly, O is
a 0-valent state and U is a 1-valent state. Let OU be the initial state in which pi has input value
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0 and all other processes have input value 1. Then in the first round of A, we have the following
path of connected reachable states in A:

O · πi
i∼ OU · πi

n−i∼ OU · π∗ i∼ OU · πn−i
n−i∼ U · πn−i.

Because O · πi is 0-valent, Lemma 5.4.6 tell us that the state U · πn−i is also 0-valent. But this
contradicts the fact that U · πn−i is a 1-valent state. Therefore no such protocol A can exists.

By Theorem 5.2.3, the consensus task for n processes is impossible to solve with a protocol in
the standard model. So, both the set agreement and the consensus tasks are impossible to solve
with a shared memory. To implement these tasks, more powerful objects are needed. In the next
chapters, we define what we call an extension of the iterated model, in which we add another kind
of shared objects, besides shared memories, and we will study the computational power of this
extension using set agreement and consensus.
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6
An enrichment of the iterated model

In the last chapter, we have introduce a basic framework to study distributed computing and with
it, we defined the basic iterated model, in which distributed protocols (algorithms) are executed by
the processes in a round-based pattern and the processes perform the write and read operations in
the shared memory with a well defined order and each operation is executed only once. Also, the
shared memory is renewed in each iteration, with the help of the snapshot objects. We also defined
the (n, k)-set agreement task and the consensus task for n processes and proved the impossibility
to solve consensus with a protocol in the iterated model.

In this chapter, we add more powerful shared objects to the iterated model, and we investigate
the solvability of the set agreement and consensus task in this extended model. To define shared
objects which are more powerful that a shared memory, we will use a technique very popular in
standard computability theory: Black boxes. We will take a distributed task, which is unsolvable
with shared memory and assume that we have a black box that can solve it. Then we define shared
objects that satisfy the properties of the unsolvable task and add them to the basic iterated model.
This kind of technique has been used in previous research to define extensions of the iterated
model and compare the computational power of the set agreement task and the renaming task
[GRH06, CnIRR12]. In our case, the task that we will use to define new shared objects stronger
that the shared memory, is called the safe-consensus task [AGL09], another variant of consensus.

In this new model, we will study the topology of the protocols in the extended model. We
will see that this topology is in general very different from the topology of protocols in the basic
iterated model (see Section 5.3), specifically, we will show with some graphical examples how
the protocol complexes of the protocols in the extended model can be disconnected, while the
protocol complexes of the protocols in the basic iterated model are always connected (in fact, they
are contractible). All this will affect the computational power obtained in the new model with the
aid of the new shared objects.

The outline of the chapter is the following. Section 6.1 defines the general extended iterated
model, which is a modification of the basic iterated model to allow the processes to access objects
more powerful than the shared memory and with this model, we define the distributed model of
interest for this thesis: the iterated model with safe-consensus. In Section 6.2, we study a restriction of
the iterated model with safe-consensus, we call it the IFSC (Iterated with Full Safe-Consensus) model
[CR12]. We use this model to show how the safe-consensus objects affect the protocol complexes
of the protocols of the iterated model with safe-consensus. In Section 6.3, we show that the (n, n−
1)-set agreement task can be implement in the IFSC model, but the consensus task cannot be
implemented. Throughout the chapter, we use many figures and examples to help the reader
understand the concepts and results.

97



CHAPTER 6. AN ENRICHMENT OF THE ITERATED MODEL

6.1 A new iterated model of distributed computing

In this section, we define an extension of the basic iterated model of distributed computing. We
define a new model in which, the processes proceed to solve a task by iterations and besides
being able to use a shared memory (a sequence of snapshot objects), they can use other type of
shared objects. Our definition of the new extend iterated model is general, almost any kind of
shared object can be used. To retain the ability of obtain interesting results (e.g., impossibility
results), we will impose some restrictions to the protocols of the extended iterated model (besides
making progress in rounds), these restrictions are very natural and are basically extensions of the
restrictions of the iterated model. Later, we will define an instantiation of the extended iterated
model, using shared objects which are defined on a variant of consensus: the safe-consensus task
[AGL09] and from that moment to the end of this thesis, the extended iterated model using safe-
consensus objects will be the main model to be investigated in this thesis.

6.1.1 The general extended iterated model

To define our new general model, we begin by extending some basic definition given in Section
5.1. The first definition of process, is the same. We begin with our new definition of a system.

Definition 6.1.1. An extended system is a triplet (Π, SM,T), where Π is a set of processes, SM is a
set of shared registers and T is a set of shared objects. Each shared object Ti ∈ T has a domain Di of
input values, and a domain D′i of output values. Ti provides a unique operation, Ti.exec(d), that
receives an input value d ∈ Di and returns instantaneously an output value d′ ∈ D′i .

For simplicity, we omit the word “extended” when we refer to an extended system. We assume
that for any system (Π, SM,T), the shared memory is structured as an infinite array of snapshot
objects and the set T is an infinite array of shared objects. Also, The exec operation of each member
of T can be used at most once by each process that invokes it.

The concepts of events, round schedules, protocols, executions and other miscellaneous defi-
nitions given in Section 5.1 remain the same. Of course, we need to add a new type of event to
denote a shared object invocation done by some set of processes. In Section 6.1.2, when we intro-
duce the safe-consensus task of [AGL09], we will add an explicit new event for the invocation of
shared objects which are based on the properties of the safe-consensus task.

Definition 6.1.2. Let (Π, SM,T) be a system andA the induced protocol. We say thatA is a proto-
col in the extended iterated model of distributed computing, if A can be specified in the form described
by Figure 6.1.

As stated in Definition 6.1.2, Figure 6.1 shows the general form of the protocols that we inves-
tigate in this thesis, that is, protocols in the extended iterated model. We now give an intuitive
explanation of the pseudocode in the Figure, to describe the details of how the processes use the
shared memory and the array of shared objects. Initially, r is zero and sm is assigned the contents
of the readonly variable input, which contains the input value for process pi; all other variables
are initialized to ⊥. In each iteration, pi increments by one the loop counter r, accesses the current
shared memory array SM [r], writing all the information it has stored in sm and val, and then pi
decides which shared object it is going to invoke by executing a deterministic function h that re-
turns an index l, based on the information pi passes on to h; then pi invokes the shared object T [l]
with some value v (which depends on pi’s local state) as parameter and stores the output value
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in the local variable val. After this, pi takes a snapshot of the shared array (which contains data
from pi and possibly from other running processes) and finally, pi checks if dec is equal to ⊥, if so,
then with all its information, it enters into a deterministic function δ to determine if it must return
a valid output value or ⊥, which is stored in dec. Once a non-⊥ value is assigned to dec, it is never
overwritten. The deterministic function h is the object selector.

(1) init r ← 0; sm← input; dec← ⊥; val ← ⊥;

(2) loop forever
(3) r ← r + 1;
(4) SM [r] .update(sm, val);
(5) val ← T [h(〈r, id, sm, val〉)] .exec(v);
(6) sm ← SM [r] .scan();

(7) if (dec = ⊥) then
(8) dec← δ(sm, val);
(9) end if
(10) end loop

Figure 6.1: General form of a protocol in the extended iterated model.

Shared objects represented as combinatorial sets

The main result of the second part of this thesis, presented in Chapter 9, is about counting the
ways in which the processes can use the shared objects of the array T, in all possible executions
of a protocol in the extended iterated model. We now introduce some combinatorial definitions
which will help us represent shared objects and the specific way in which the processes can invoke
these shared objects.

Definition 6.1.3. Let (Π, SM,T) be a system and A the induced protocol in the extended iterated
model. We define for each m 6 n the set ΓA(n, m) ⊆ P(n) as follows: b = {i1, . . . , im} ∈ ΓA(n, m)
if and only in some iteration of the protocol A, only the processes pi1 , . . . , pim invoke a shared
object of the array T.

Roughly speaking, each c ∈ ΓA(n, m) represents a set of processes which together can invoke
shared objects in A. For example, if m = 3 and c = {i, j, k} ∈ ΓA(n, 3), then in at least one round
of A, processes pi, pj and pk invoke an object T [l] (for some index l) and if in other iteration or
perhaps another execution of A, these processes invoke another shared object T [l′] (l 6= l′) in the
same way, then these two invocation are represented by the same set c ∈ ΓA(n, 3), that is, shared
objects invoked by the same set of processes are considered as the same element of ΓA(n, m). In
short, repetitions do not count.

Definition 6.1.4. Let A be a protocol in the extended iterated model. A set b ∈ ΓA(n, m) is called
an m-box or simply a box. Let the set ΓA(n) and the quantities νA(n, m), νA(n) be defined as
follows:

ΓA(n) =
⋃n

m=2 ΓA(n, m);

νA(n, m) = |ΓA(n, m)|;
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νA(n) = ∑n
m=2 νA(n, m).

Extended global states

We need to give a new Definition of global state, so that this definition can describe the information
obtained from the shared objects of the array T.

Definition 6.1.5. Let (Π, SM,T) be a system. An extended state is a vector

S = 〈s1, . . . , sn; SM; b1, . . . , bq; o1, . . . , oq〉,

where si is the local state of process pi, SM is the state of the shared memory, b1, . . . , bq are the
boxes that specify the way in which the processes invoked some shared objects from T to enter
the local states si (i = 1, . . . , n) and for j = 1, . . . , q, oj is the output value1 of the shared object
represented by the box bj.

Of course, the information represented by the boxes b1, . . . , bq and the output values o1, . . . , oq
of the shared objects represented by the boxes are included implicitly in the local states of the
processes. However, for practical purposes, it is very convenient to specify the boxes and the
output values of the shared objects explicitly in the definition of extended global state. As we did
in Chapter 5 for global states, for simplicity, we will refer to an extended state of a system simply
as a state. With this new concept of global state, the definition of initial state changes too: An initial
state is a state in which every local state is an initial local state, all registers in the shared memory
are set to ⊥, the invocation specification is empty and the set of output values is empty.

To begin working with the extend iterated model, one last definition is needed, this formalizes
the idea of using a task to implement another task.

Definition 6.1.6. Let S, T be distributed tasks. We say that S implements T, if there exists a protocol
AS (in the extended model) that solves T and uses shared objects that are instances of task S.

6.1.2 The extended iterated model with safe-consensus

With the definition of the general extended iterated model of distributed computing at hand, we
only need one more thing to introduce the new model that we want to study for the rest of this
thesis. We now define another variant of the consensus task, which is called the safe-consensus task
[AGL09]. This task is the basis to build the shared objects that we need to define an instantiation
of the general extended iterated model. First things first, here is the definition of safe-consensus.

The safe-consensus task. In this task, every process starts with some initial input value taken
from a set I and must output a value such that Termination and Agreement of consensus are
satisfied and also:

• Safe-Validity: (1) If a process pi starts invoking the task and outputs before any other process
starts executing the task, then the task’s output is pi’s proposed input value. (2) Otherwise,
if two or more processes initially access the safe-consensus task concurrently, then the task
can return any value from a countable set V such that I is a proper subset of V.

1For the purposes of this thesis, we assume that the tasks that are used as shared objects in our protocols, return a
unique output value. It is not hard to generalize this definition to include shared objects that can return different output
values to the processes.
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We ilustrate in Figure 6.2 the Safe-Validity condition of safe-consensus, with an example of
a three process execution. In part (1), process p3 begins invoking the safe-consensus task and it
outputs before p1 and p2 start some computation, thus the output value of all the processes must
be p3’s input value, accordingly to (1) of the Safe-Validity property. In part (2), p2 and p3 execute
concurrently and they invoke the safe-consensus task, therefore the output value of the task can
be arbitrary, as it is specified in (2) of Safe-Validity condition. The value of the consensus output
α can be u, v, w or any other value different from the previous three values and the later case can
only happen if there is a concurrent access to the task.

safe-consensus

p1, u p2, v

safe-consensus

p1, u p2, v

p1, w p2, w p3, w

safe-consensus

p1, u p2, v

safe-consensus

p1, u p2, v

p1, α p2, α p3, α

(1)

(2)

p3, w

p3, wp3, w

p3, w

p3, w

Figure 6.2: A graphical example of the Safe-Validity condition of the safe-consensus task.

The safe-consensus task is the result of weakening the validity condition of consensus. It was
first proposed by Yehuda, Gafni and Lieber [AGL09]; they use it to show that the g-tight-group-
renaming task [AGL+08] is as powerful as consensus for g processes. Clearly, n-consensus can
implement safe-consensus for n processes. It is shown in [AGL09] that consensus of n processes
can be implemented with read/write registers and safe-consensus objects. Two protocols are con-
structed in [AGL09] to solve consensus with safe-consensus, the first is somewhat simpler but
it requires Θ(2n) safe-consensus black boxes; the second protocol is more involved but it only
needs Θ(n2) safe-consensus shared objects to implement consensus. This says that safe-consensus
is as powerful as consensus, as long as task solvability is concerned. Therefore by the results of
[AGL09] and Theorem 5.4.7, it is impossible to solve the safe-consensus task for n processes in the
basic iterated model and the same is true for the standard shared memory model of distributed
computing.
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We can now define new objects to extend the basic iterated model of Chapter 5.

Definition 6.1.7. A safe-consensus object is a shared object that can be invoked by any number of
processes. The object receives an input value from each process that invokes it, and returns to
all the processes an output value that satisfies the Agreement and Validity condition of the safe-
consensus task.

In other words, a safe-consensus object is like a “black box” that the processes can use to solve
instances of the safe-consensus task. The method of using distributed tasks as black boxes inside
protocols is a standard way to study the relative computational power of distributed tasks (i.e. if
one task is weaker than another, see [GRH06, AGL09, CnIRR12]). By the arguments given in the
paragraph just before Definition 6.1.7, safe-consensus shared objects are primitives more powerful
than the read/write shared memory registers.

Definition 6.1.8. Let (Π, SM, SC) be a system, where the shared objects in the array SC are safe-
consensus objects. A protocol A in the extended iterated model that uses the safe-consensus ob-
jects of SC is called a protocol in the iterated model with safe-consensus objects.

In the iterated model with safe-consensus, we denote the event of a call to a safe-consensus
object by the symbol S.

6.2 The Iterated model with Full Safe-consensus objects

In general, studying a distributed model with shared memory and shared objects is difficult. If the
shared objects of the array T in Figure 6.1 are equivalent to read/write registers in task solvability,
then the extended model is not a new model, it is equivalent to the ordinary standard model of
distributed computing. But if the shared objects in T are more powerful that shared memory (like
the safe-consensus shared objects) then we have indeed a new extended model, but we may lose
some of the nice features of the basic iterated model, like its repeated recursive structure in the
protocol complex. Loosing the simplicity of the iterated model is a necessary condition if we want
to obtain a distributed model in which the protocols can solve a wider range of tasks and this
can be seen in a geometric way using the protocol complex. The main obstacle which does not
allow a protocol in the iterated model to solve set agreement tasks is the high connectivity of its
protocol complex. Thus, if a protocol in a different model can implement a set agreement task,
then we must expect the connectivity of the protocol complex to diminish. In this section, we
introduce a distributed model that is a simple and elegant example that shows our arguments to
be true. Also, this model will be very useful to introduce some techniques that we will use in later
chapters, where we present our main results.

6.2.1 The IFSC model

We begin our research of the iterated model with safe-consensus objects with a distributed model
that lies somewhere between the basic iterated model and the iterated model with safe-consensus.
Besides the restrictions imposed to protocols in the extended iterated model given in Section 6.1.1,
we also assume two additional properties:

E1 In each iteration, all the processes invoke the same safe-consensus object, that is, there is
only one safe-consensus object in each round and it is invoked by all processes.
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E2 The input value that processes feed to the safe-consensus objects is their own2 ids.

We call this model of computation the Iterated shared memory with full safe-consensus objects
(IFSC) model (Figure 6.3). It is not hard to see that we can assume E2 true without loss of gen-
erality. A safe-consensus shared object of arbitrary input domain, can be emulated with a safe-
consensus object of input domain n and shared memory.

(1) init r ← 0; sm← input; dec← ⊥; val ← ⊥;

(2) loop forever
(3) r ← r + 1;
(4) SM [r] .update(sm, val);
(5) val ← sa f e-consensus [r] .exec(id);
(6) sm← SM [r] .scan();

(7) if (dec = ⊥) then
(8) dec← δ(sm, val);
(9) end if
(10) end loop

Figure 6.3: General form of a protocol in the IFSC model

6.2.2 The protocol complex with safe-consensus

What happens to the protocol complex in the iterated model with safe-consensus ? Are the topo-
logical properties unchanged ? In order to answer this question, we use the IFSC model. The first
thing that we must do, is to formally define the protocol complex for protocols in the new IFSC
model. If A is a protocol in the IFSC model for n processes, the protocol complex SA of A is defined
in the same way as we defined protocol complexes in Section 5.3, the only thing that changes is
the view associated to a vertex (which represents a local state of some process). A vertex of SA is
a tuple

v = (i, smi, val),

where i is the id of process pi, smi is the local state of pi and val is the return value of the
safe-consensus object invoked by all processes. In Figure 6.4 we have a drawing of a part of
the protocol complex SA of a one-round execution of a protocol A for three processes in the
IFSC model. The complete complex is a disconnected space with an infinite number of con-
nected components. Clearly, this complex is not the same complex of Figure 5.2. Each con-
nected component is associated with an output value of the safe-consensus task. To see why
this is true, let us take a closer look at the subcomplex, say T3, on top of Figure 6.4, it has a 2-
simplex that represents a state in the first round of A that is reachable by means of the round
schedule W(3),S(3),R(3),W(1, 2),S(1, 2),R(1, 2). In this execution, process p3 is faster that p1
and p2, thus it executed the safe-consensus object in solo, hence by the Safe-Validity condition
of the safe-consensus task, the shared object returns the valid input value of 3 to all processes.
Now, if we consider the 2-simplex of T3 representing the state reachable through the schedu-
le W(2, 3), S(2, 3),R(2, 3),W(1),S(1),R(1) then we know that p2 and p3 were faster that p1 and

2In all our pseudocodes, the symbol ”id“ contains the id of the process which is executing the code.
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Figure 6.4: Part of the one round Protocol complex of a protocol in the IFSC model. The entire
complex contains a countable number of copies of the subcomplex at the bottom.

executed the safe-consensus object concurrently and by the Safe-Validity condition of the safe-
consensus task, the shared object can return any value to all processes, so that there exists the
possibility that the return value of the safe-consensus object is 3. With a similar analysis of the
other simplexes in T3, we can conclude that the safe-consensus value given in the vertices of ev-
ery 2-simplex of T3 is precisely 3. This subcomplex cannot have simplexes with a safe-consensus
value other that 3. For example, it is easy to show that the simplex representing the state obtained
with the execution of A given by W(1), S(1),R(1),W(2, 3),S(2, 3),R(2, 3) cannot be adjacent to
any simplex of T3 (because of the different safe-consensus values). If we now take the subcomplex
T1 in the leftmost part of the figure and the subcomplex T2 in the rightmost part (both of them are
isomorphic to T3), we can prove that T1 contains only simplexes with vertices of safe-consensus
value equal to 1 and all the simplexes of T2 have vertices with 2 as the safe-consensus value.

What about the subcomplex Bx at the bottom of the figure ? It contains simplexes that represent
states in which the safe-consensus object returns an invalid output value x 6= 1, 2, 3. All the states
represented in Bx come from executions in which at least two processes invoke the safe-consensus
task concurrently and the value the processes obtain from the shared object is precisely x. But
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accordingly to the definition of the safe-consensus task presented in Section 6.1.2, there can be
a countable number of invalid output values that the task can return to the processes, so that
there should be in the complex of Figure 6.4 a subcomplex Bβ (isomorphic to Bx) for each possible
invalid value β. For simplicity, we only show one of these subcomplexes. In summary, the protocol
complex SA of the first round of the protocol is disconnected, with an infinite number of connected
subcomplexes, one for each possible output value of the safe-consensus task.

We have described the one-round protocol complex of a protocol in the IFSC model. Because
we work in an iterated model, in the second (third, fourth and so on) round, the protocol complex
is composed of many subcomplexes like T1, T2, T3 and Bx, each simplex of the previous round
transforms into a subcomplex like SA.

It is not hard to prove that the behavior we have described for 3-processes protocols in the
IFSC model, generalizes to protocols with any number of processes n 6= 3. The protocol complex
of any protocol in the IFSC model is a disconnected complex with an infinite number of con-
nected subcomplexes. In general, the structure of the protocol complex in the IFSC model is not
as uniform as the well behaved structure of the protocol complex in the basic iterated model. The
topology of the protocol complex depends on the way the safe-consensus objects are invoked by
the processes (e.g., how many objects are used in the same round and which processes invoke each
object). Thus, the structure of the protocol complex of a given round, can be very different from
the structure of the previous or next round, even it could happen that there is no relation between
these complexes. The case of the IFSC model is one case that allows some simple analysis to be
carried on, the general case will require more sophisticated tools for its study.

6.3 Solving set agreement tasks in the IFSC model

We now show that the difference between protocols in the basic iterated model and protocols in
the iterated model with safe-consensus is not only about geometric shapes. In this section, we
prove that in the IFSC model we can solve the (n, n− 1)-set agreement task for n > 2 processes,
the simplest set agreement task that we know is unsolvable in the iterated model [HS93, SZ93,
BG93a, HS99, SZ00]. But we also prove that we cannot solve every set agreement task, because
n-consensus ((n, 1)-set agreement) is impossible to solve in the IFSC model, when n > 3.

6.3.1 A protocol for (n, n− 1)-set agreement

The protocol in Figure 6.5 solves (n, n− 1)-set agreement for n > 2 processes in one round with
only one snapshot object and one safe-consensus object. We proceed to prove its correctness.

Lemma 6.3.1. For any process pi that executes line 9 of the protocol in Figure 6.5,

(a) The cardinality of the set Ai = {α | smi [α] 6= ⊥} is at least 2 and min Ai 6= n.

(b) If n /∈ Ai then min Ai 6= n− 1.

Proof. (a) Suppose that process pi executes line 9 of the if/else block, then it must be true that
vali /∈ n ∨ smi [vali] = ⊥, so either the safe-consensus object returned an invalid process id or
process pvali did not write its proposed value to the shared memory before pi executed the snap-
shot operation (pvali could be slow or perhaps it crashed). In any case, by (2) of the Safe-Validity
condition of the safe-consensus task, there must exists two processes pr, ps that called the safe-
consensus object concurrently. These processes wrote their input values to the shared memory
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before accessing the safe-consensus object, so that when pi takes a snapshot of the memory, the
local array smi contains at least two non-⊥ values and with this we have that |Ai| > 2. Now sup-
pose that αi = min Ai is such that αi = n. There must exists j ∈ Ai with j 6= n, but then j < n = αi
which is a contradiction. Hence, αi 6= n. (b) Given that n /∈ Ai, we can use a similar argument to
that used in (a) and obtain this case.

(1) init dec, val, sm← ⊥;

(2) begin
(3) SM.update(input);
(4) val ← sa f e-consensus.exec(id);
(5) sm ← SM.scan();
(6) if val ∈ n and sm [val] 6= ⊥ then
(7) dec← sm [val];
(8) else
(9) dec← sm [α] with α = min{α | sm [α] 6= ⊥};
(10) end if
(11) decide dec;
(12) end

Figure 6.5: A (n, n− 1)-set agreement protocol in the IFSC model

Theorem 6.3.2. Let n > 2. The (n, n− 1)-set agreement task is solvable in the IFSC model in one round
using one safe-consensus object.

Proof. We prove that the protocol in figure 6.5 solves (n, n− 1)-set agreement. Trivially, the proto-
col satisfies the Termination condition of the (n, n− 1)-set agreement task. Let pi be any process;
after pi writes to the shared memory its input value, it invokes the unique safe-consensus object
and takes a snapshot of the memory, pi executes the if/else block at lines 6-10. First suppose that
vali ∈ n and smi [vali] 6= ⊥. Then process pvali wrote to the shared memory its input value before
pi took the snapshot and this implies that smi [vali] contains a valid proposed input value and this
is the decided value of process pi. On the other hand, if smi [vali] = ⊥ or vali /∈ n, pi goes on to
execute line 9. By (a) of Lemma 6.3.1, the set Ai = {α | smi [α] 6= ⊥} is not empty, so that there
exists a minimum element αi ∈ Ai and then when pi assigns to deci the contents of the local regis-
ter smi [αi], it has a valid proposed input value, so that the decided value of process pi is correct.
Hence, the Validity condition of the (n, n− 1)-set agreement task is fulfilled by the protocol.

We now show that the set of values decided by the processes in any execution of the protocol
has size no bigger that n− 1. Suppose that processes pi1 , . . . , pir (r 6 n, some processes may crash
or be delayed) finish an execution of the protocol and let D be the set of values decided by the
processes. We argue by cases.

Case 1. Two or more processes executed line 7 of the protocol. Then |D| 6 n− 1, because all
processes invoked the same safe-consensus object and by the Safe-Validity property of the
safe-consensus task, the return value of the shared object is the same for all processes, so that
if at least two processes executed line 7, they decided the same value.

Case 2. Only one process pl executed line 7 of the protocol. Let v be the value that the safe-
consensus object returned to all participating processes. Then for process pl we have that
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vall = v and sml [v] (which is non-⊥) is the value decided by pl . If v ∈ {1, . . . , n− 1} then
|D| 6 n− 1, because for every process pi with i 6= l, pi executed the second part of the if/else
block and by (a) of Lemma 6.3.1, pi could not decide the value proposed by process pn. On
the other hand, if v = n, then for all i 6= l, vali = n and smi [vali] = ⊥ and these two facts
imply that Ai ⊆ {1, . . . , n− 1}. With (b) of Lemma 6.3.1 we have that min Ai 6= n− 1, so that
all other processes with ids not equal to l decided at most n− 2 values, which together with
the value decided by pl , make up for at most n− 1 different values, therefore |D| 6 n− 1.

Case 3. No process executed line 7 of the protocol. By (a) of Lemma 6.3.1, for every process
pi we have that αi ∈ {1, . . . , n− 1}, so all processes decided at most n− 1 values.

In any case, we conclude that the set of decided values has size at most n− 1, thus the protocol
satisfies the (n− 1)-Agreement condition of the (n, n− 1)-set agreement task, hence the protocol
is correct.

6.3.2 Impossibility of consensus in the IFSC model

Theorem 6.3.2 tell us that the IFSC model is more powerful that the basic iterated model, because
in the new model we can solve the (n, n− 1)-set agreement task. But now we will show that in
the IFSC model, we cannot solve consensus, i.e., (n, 1)-set agreement.

Trying to solve consensus in distributed systems

The impossibility results for consensus in various models of distributed computing [FLP85,
LAA87, BMZ90] and the impossibility results for set agreement in the iterated model [HS99,
BG93a, SZ00], have shown that solving consensus in distributed environments is related to con-
nectivity of graphs (0-connectivity of simplicial complexes). Roughly speaking, consensus is not
solvable in a given model if for each valid input of the consensus task, the protocol complex (as-
sociated with that input3) is connected.

In Theorem 6.3.6 we will prove that it is not possible to solve the consensus problem for n > 3
processes in the IFSC model, despite the fact that the protocols in this model have disconnected
protocol complexes (see Figure 6.4). We remark that this impossibility comes from the restriction
in the use of the safe-consensus objects (all processes invoke the same object in each round) of the
IFSC model, and not from the fact that we are working in an iterated model. In Chapter 7, we will
build a protocol in the iterated model with safe-consensus that implements n-consensus with (n

2)
safe-consensus shared objects.

If A is a protocol for the consensus task in the IFSC model and its protocol complex SA is
disconnected: Why is it impossible for A to solve consensus? We can always find an execution
of A in which when all the processes have decided their output values, there are at least two
processes that decided two distinct values, contradicting the Agreement property of the consensus
task. Now, this “bad execution” exists because we can choose i ∈ n and two simplexes ∆i, ∆n−i in
the complex SA such that

• ∆i represents an execution in which process pi can see only his own input value (that is, an
execution in solo of pi).

3Remember our discussion at the end of Section 5.3 about our definition of protocol complexes and its relation with
the definition of a span of [HS99].
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• ∆n−i represents an execution in which the other processes never see pi’s input value.

• The simplexes ∆i and ∆n−i lie inside a connected component of SA.

As a consequence of the last point, there is a (graph) path from any vertex of ∆i to any vertex
in ∆n−i. Using one of these paths and an argument involving non-distinguishable states, we can
prove that the bad execution exists, so that A cannot solve consensus. Thus we see that this
impossibility is due to some kind of “local connectivity” (between a specific pair of vertices) of
SA.

There is something that the reader will notice immediately in the impossibility proof of con-
sensus in the IFSC model and it is that this proof for the IFSC model is very much the same proof
given in Section 5.4.2 about consensus and the impossibility to solve it in the iterated model with
shared memory. We will only need to modify one result, namely Lemma 5.4.4 and the used round
schedules πi, π∗ and πn−i, all other ingredients will remain exactly the same, as they are valid
also for protocols in the IFSC model. Before the formal impossibility proof, we will workout an
example with three processes. Let i ∈ n, we redefine the round schedules πi, π∗ and πn−i for the
IFSC model in the following way:

(πi) W(i), S(i),R(i),W(n− i),S(n− i),R(n− i),

(π∗) W(n),S(n),R(n),

(πn−i) W(n− i), S(n− i),R(n− i),W(i),S(i),R(i).

These round schedules are almost the same as their counterparts in the proof of Theorem 5.4.7
of Chapter 5, the only difference being that we have added the call to the unique safe-consensus
shared object between the write and read shared memory operations.

An example with three processes

If we take the case of n = 2 processes, then by Theorem 6.3.2, consensus of 2 processes ((2, 1)-
set agreement task) is solvable with safe-consensus objects. As we have seen in this section, the
protocol complexes of protocols in the IFSC model are disconnected, so that one would expect to
be able to solve consensus in this model, but our next results argue otherwise.

Let A be a protocol for three processes in the IFSC model and assume that A can solve the
consensus task and for simplicity, suppose that the processes receive as input values their own
ids. Let I be the initial state in which the processes begin to execute the protocol. If the processes
run A only one round and then decide a (unique) output value, then we know that the protocol
complex SA is the space shown in Figure 6.4. One of the subcomplexes of SA is depicted at the
top of Figure 6.6, it represents all the reachable states in the first round of A for which the output
value of the safe-consensus object is 1. The round schedules π1, π∗ and π3−1 give three possible
ways to execute the first round of A and they take the protocol into the states I · π1, I · π∗ and
I · π3−1 respectively and these states are represented in the complex of Figure 6.6. Because the
value returned by the safe-consensus object to all processes in the three states is 1, it is easy to
see that p2 and p3 cannot distinguish between I · π1 and I · π∗ and p1 cannot distinguish between
I · π∗ and I · π3−1, thus we have the path of connected states

I · π1
{2,3}∼ I · π∗ 1∼ I · π3−1.
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Figure 6.6: Subcomplexes of the first and second round protocol complexes of a protocol in the
IFSC model.

If the processes solve consensus in just one round, then these states are decision states. As in the
state I · π1 process p1 can see only itself, it has to decide its own input value, which is 1 and by the
Agreement property of consensus, p2 and p3 are forced to decide 1; while in the state I · π3−1, p2
and p3 cannot see the input value of p1 and this implies that p2, p3 decide a unique element u of
the set {2, 3} and p1 also decides u. As we have said before, p2 and p3 cannot distinguish between
the states I · π1 and I · π∗ and they decide 1 in the state I · π1, then they also decide 1 in I · π∗. On
the other hand, p1 cannot distinguish between I ·π∗ and I ·π3−1 and in the later state p1 decides u,
thus p1 also decides u in I ·π∗. We conclude that in the execution in whichA enters the state I ·π∗,
p2 and p3 decide 1 but p1 decides u 6= 1. This constitutes a violation of the Agreement condition
of the consensus task, then the protocol cannot end in one iteration. If the processes execute A
for one more round and decide, then because we work in an iterated model, we can prove that
SA will contain the subcomplex given at the bottom of Figure 6.6; it has simplexes representing
reachable states in the second round of A of the form

(I · ρ) · σ ρ, σ ∈ {π1, π∗, π3−1},
and it can be verified that this complex contains a path of states that connect (I · π1) · π1 with
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(I · π3−1) · π3−1 and this fact can be used to show that there is an execution of the second round
of A in which processes decide two different values, again violating the Agreement property of
consensus. As we work in an iterated model, we can repeat the same argument in every round of
A and that would imply that A cannot solve the consensus task for three processes.

The formal results

We now formalize the main ideas of the example above to prove that it is impossible to solve
n-consensus (n > 3) in the IFSC model. Our first result is the IFSC-version of Lemma 5.4.4

Lemma 6.3.3. Let n > 3, i ∈ n. If A is a protocol in the IFSC model and S is any reachable state in some
round r > 0 of A, then there exists the path

S · πi
n−i∼ S · π∗ i∼ S · πn−i,

�� ��6.1

of connected reachable states in round r + 1 of A. Moreover, the value of the safe-consensus object is the
same in all three states.

Proof. Let S be a reachable state in A and i ∈ n. We first show that there exists executions of A in
which the return value of the safe-consensus object is the same in the three states S · πi, S · π∗ and
S · πn−i respectively. If this fact is true, then it will be clear that the given states can be connected
in the way described by

�� ��6.1 .
In the state S · πi, the value of the safe-consensus object is i, because pi executes the shared

object before any other process executes it and by the Validity condition of the safe-consensus
task, the return value must be the value proposed by pi. For the states S · π∗ and S · πn−i, the
value of the safe-consensus can be arbitrary. This is true because in each round, all processes
invoke the same safe-consensus object and by hypothesis n > 3 (this implies that |n|, |n− i| > 2).
Thus in the executions ofA (given by the round schedules π∗ and πn−i) that take the protocol into
the states S · π∗ and S · πn−i, at least two processes execute the safe-consensus object concurrently.
By the Validity property, the return value of the object can be arbitrary. Therefore there exists the
possibility that the value returned by the safe-consensus object to all processes is precisely i in the
states S · πi, S · π∗ and S · πn−i. It follows that the path

�� ��6.1 of connected reachable states in A
exists.

Lemma 6.3.4. Let n > 3, i ∈ n. If A is a protocol in the IFSC model and there exists a path

S0
X1∼ · · · Xl∼ Sl (l > 1)

of connected reachable states in A such that for all j with 1 6 j 6 l, Xj = n− i or Xj = {i}. Then there
exists a path

Q0
Z1∼ · · · Zs∼ Qs (s > 1)

of connected reachable states in A such that

(1) Every state Qt is a successor state of some Sj.

(2) For all m with 1 6 m 6 s, Zm is such that Zm = n− i or Zm = {i}.
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Proof. This proof is identical to the proof of Lemma 5.4.5, we only need to replace the use of
Lemma 5.4.5 with Lemma 6.3.4.

Lemma 6.3.5. Let n > 3, i ∈ n. Suppose that A is a protocol in the IFSC model that solves the consensus

task and that S0
X1∼ · · · Xl∼ Sl (l > 1) is a path of connected reachable states inA that satisfies the hypothesis

of Lemma 6.3.4 and also assume that S0 is a v-valent state. Then Sl is v-valent.

Proof. Again, the proof is the same as that of Lemma 5.4.6, replacing any reference to Lemmas
5.4.4 and 5.4.5 by Lemmas 6.3.3 and 6.3.4.

Theorem 6.3.6. For n > 3, there is no protocol in the IFSC model to solve consensus for n processes.

Proof. Replace Lemma 5.4.6 with Lemma 6.3.5 in the proof of Theorem 5.4.7 to obtain this one and
we are done.

The results that we have obtained in Theorems 6.3.2 and 6.3.6 tell us two important facts: (1)
that the IFSC model is indeed more powerful that the basic iterated model, because we can solve
the (n, n − 1)-set agreement task, which is the simplest set agreement instance that is known to
be impossible to solve in the iterated model [BG93a, HS93, SZ93]; (2) The IFSC model is not that
powerful, because although (n, n − 1)-set agreement is solvable, the consensus task cannot be
implemented in the IFSC model. Thus, the IFSC model is still limited in computational power, for
task solvability. In the next chapter, we will prove that the limitations of the IFSC model comes
from the restriction on the way the processes invoke the only safe-consensus object available in
each iteration. We will show that in the general extended iterated model with safe-consensus
objects, the consensus task can be implemented with safe-consensus, with an iterated protocol
with very nice combinatorial features.

An interesting open question concerning the IFSC model is the following: Is the (n, n− 2)-set
agreement task solvable in the IFSC model ? We conjecture that the answer is no. We believe
that topological methods (different from tools like Sperner’s Lemma) will be necessary to give an
answer to this question.
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7
Implementing consensus in the iterated model

with safe-consensus

In this chapter, we implement the consensus task using safe-consensus objects, with a protocol
in the iterated model with safe-consensus. Although the formal specification of this protocol is
a bit complicated (see Section 7.2.2), the intuitive idea behind it is quite simple and this idea can
be depicted in a graphical way. This is a nice property of our consensus protocol and it is a
consequence of working in an (extended) iterated model of computation. As a byproduct of the
work in this chapter, we define a new distributed task, which is a new kind of “consensus task”.
More details can be found in Section 7.1.

From this chapter to the end of this thesis, we focus our attention entirely on the consensus
task and the iterated model with safe-consensus objects.

7.1 Coalitions consensus tasks

In order to give the complete specification of the consensus iterated protocol presented in Section
7.2.2, we first introduce an “intermediate” task, the g-2coalitions-consensus task, in it, g processes
try to decide a consensus value from two proposed input values, but there are exactly g− 2 pro-
cesses which know the two input values, while each of the two remaining processes know only
one input value. As a first result towards proving the correctness of the consensus protocol of Sec-
tion 7.2.2, we show that the g-2coalitions-consensus task can be implemented with a one round
iterated protocol using only one safe-consensus shared object.

7.1.1 Definition of the g-2coalitions-consensus task

To introduce formally the 2coalitions-consensus task, we need to define the set of valid input
values for this new task. Let I be a non-empty set and N = I ∪ {⊥} (⊥ /∈ I). If x = 〈v1, v2〉 ∈
N ×N , x.le f t denotes the value v1 and x.right is the value v2.

Definition 7.1.1. An ordered g-tuple C = (x1, . . . , xg) ∈ (N ×N )g is a g-coalitions tuple if and only
if the following conditions are fulfilled.

(a) For all xi in C, xi.le f t 6= ⊥ or xi.right 6= ⊥.

(b) If xi, xj are members of C such that xi.le f t 6= ⊥ and xj.le f t 6= ⊥, then xi.le f t = xj.le f t. A
similar rule must hold if xi.right 6= ⊥ and xj.right 6= ⊥.

Let l(C) = {i ∈ g | xi.le f t 6= ⊥} and r(C) = {j ∈ g | xj.right 6= ⊥}. Then we also require that
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(c) |l(C)− r(C)| = 1 and r(C)− l(C) = {g}.

A more general task can be defined if we omit1 property (c), but for our purposes, this
definition of the g-2coalitions-consensus task is enough. Notice that property (a) implies that
l(C) ∪ r(C) = g. The set of all g-coalitions tuples is denoted by Cg. Some examples can help us
understand better the concept of a coalition tuple. Let N = {0, 1,⊥}. The following tuples are
examples of elements of the set C4,

C1 = (〈1,⊥〉, 〈1, 0〉, 〈1, 0〉, 〈⊥, 0〉);

C2 = (〈1, 0〉, 〈1, 0〉, 〈1,⊥〉, 〈⊥, 0〉).

Clearly, C1, C2 ∈ C4 and also we have that l(C1) = {1, 2, 3} and r(C1) = {2, 3, 4}. Notice
that l(C1) ∪ r(C1) = 4 and also l(C1) ∩ r(C1) = {2, 3}. For C2, it is true that l(C2) − r(C2) =
{1, 2, 3} − {1, 2, 4} = {3}, r(C2)− l(C2) = {1, 2, 4} − {1, 2, 3} = {4} and l(C2) ∩ r(C2) = {1, 2}.
The following tuples are not elements of any coalitions tuples set:

C3 = (〈⊥,⊥〉, 〈1, 0〉, 〈1, 0〉, 〈1, 0〉);

C4 = (〈1,⊥〉, 〈1, 0〉, 〈⊥, 1〉, 〈⊥, 0〉).

For C3, properties (a) and (c) of Definition 7.1.1 are not satisfied and for C4, condition (b) is not
fulfilled. Thus we conclude that C3, C4 /∈ C4. We can now define a new distributed task.

The g-2coalitions-consensus task. We have g processes p1, . . . , pg and each process pi starts with
a private input value of the form xi ∈ N ×N such that C = (x1, . . . , xg) ∈ Cg, and C is called a
global input. In any execution, Termination and Agreement must be satisfied, and in addition:

• g-2coalitions-Validity: If some process outputs c, then there must exists a process pj with
input xj such that xj = 〈c, v〉 or xj = 〈v, c〉 (c ∈ I, v ∈ N ).

Notice that the sets Cg (g > 2) encapsulate the intuitive ideas given at the beginning of this
chapter about the coalition-consensus task that we need: With an input C ∈ Cg, there are two
processes that known exactly one of the input values, while the rest of the processes do known
the two input values. These processes could easily reach a consensus, but they still need the other
two processes with unique input values to agree on the same value, and this is the difficult part of
the g-2coalitions-consensus task.

7.1.2 Safe-consensus implements g-2coalitions-consensus

We now need to justify that we can implement the task g-2coalitions-consensus with a single-
round protocol using one snapshot object and one safe-consensus object. For this purpose, we
have the protocol given in Figure 7.1. Each process pi receives as input a tuple with values satisfy-
ing the properties of the 2coalitions-consensus task and then in lines 3-5, pi writes its input tuple
in shared memory using the snapshot object SM; invokes the safe-consensus object with its id as
input, storing the unique output value u of the shared object in the local variable val and finally, pi
takes a snapshot of the memory. Later, what happens in Lines 6-10 depends on the output value

1The condition (c) in the definition of coalitions tuple is needed because, without it, safe-consensus cannot imple-
ment g-2coalitions-consensus with one safe-consensus object. It is not hard to prove this fact, so that we omit it.

114



7.1. COALITIONS CONSENSUS TASKS

u of the safe-consensus object. If u = g, then by the Safe-Validity property, either pg invoked
the object or at least two processes invoked the safe-consensus object concurrently and as there
is only one process with input tuple 〈v,⊥〉, pi will find an index j with sm [j] .right 6= ⊥ in line
7, assign this value to dec and in line 11 pi decides. On the other hand, if u 6= g, then again by
the Safe-Validity condition of the safe-consensus task, either process pu is running and invoked
the safe-consensus object or two or more processes invoked concurrently the shared object and
because all processes with id not equal to g have input tuple 〈z, y〉 with z 6= ⊥, it is guaranteed
that pi can find an index j with sm [j] .le f t 6= ⊥ and assign this value to dec to finally execute line
11 to decide its output value. All processes decide the same value because of the properties of the
input tuples of the 2coalitions-consensus task and the Agreement property of the safe-consensus
task.

(1) procedure g-2coalitions-consensus(v1, v2)
(2) begin
(3) SM.update(〈v1, v2〉);
(4) val ← sa f e-consensus.exec(id);
(5) sm ← SM.scan();
(6) if val = g then
(7) dec← choose any sm [j] .right 6= ⊥;
(8) else
(9) dec← choose any sm [j] .le f t 6= ⊥;
(10) end if
(11) decide dec;
(12) end

Figure 7.1: A g-2coalitions-consensus protocol with one safe-consensus object.

Lemma 7.1.2. The protocol of Figure 7.1 solves the g-2coalitions-consensus task using one snapshot object
and one safe-consensus object.

Proof. Let pi ∈ {p1, . . . , pg}; after pi writes the tuple 〈v1, v2〉 to the snapshot object SM, it invokes
the safe-consensus object and takes a snapshot of the shared memory, pi enters into the if/else
block at lines 6-10. Suppose that the test in line 6 is successful, this says that the safe-consensus
object returned the value g to process pi. By the Safe-Validity condition of the safe-consensus
task, either process pg invoked the shared object or at least two processes pj, pk invoked the safe-
consensus object concurrently (and it could happen that j, k 6= g). In any case, the participating
processes wrote their input tuples to the snapshot object SM before accessing the safe-consensus
object, so that pi can see these values in its local variable smi, and remember that the coalitions
tuple C consisting of all the input values of processes p1, . . . , pg satisfies the properties

|l(C)− r(C)| = 1 and r(C)− l(C) = {g}.
Thus, the equation |l(C)− r(C)| = 1 tell us that only one process has input tuple 〈x,⊥〉 (x 6= ⊥),
then when pi executes line 7, it will find a local register in smi such that smi [j] .right 6= ⊥ and this
value is assigned to deci. Finally, pi executes line 11, where it decides the value stored in deci and
this variable contains a valid input value proposed by some process.

If the test at line 6 fails, the argument to show that deci contains a valid proposed input value
is very similar to the previous one. This proves that the protocol satisfies the 2coalitions-Validity
condition of the g-2coalitions-consensus task.
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The Agreement condition is satisfied because by the Agreement condition of the safe-
consensus task, all participating processes receive the same output value from the shared object
and therefore all processes have the same value in the local variables vali (1 6 i 6 g), which means
that all participating processes execute line 7 or all of them execute line 9. Then, for every process
pr, decr contains the value smr [jr] .right or the value smr [j′r] .le f t where jr (j′r) depend on pr. But
because the input pairs of the processes constitute a coalitions tuple C, they satisfy property (b)
of Definition 7.1.1 of coalitions tuple, which implies that smr [jr] .right = smr

[
jq
]

.right whenever
smr [jr] .right and smr

[
jq
]

.right are non-⊥ (a similar statement holds for the left sides). We con-
clude that all processes assign to the variables deci (1 6 i 6 g) the same value and thus all of them
decide the same output value, that is, the Agreement property of the g-2coalitions-consensus tasks
is fulfilled. The Termination property is clearly satisfied.

7.2 An iterated consensus protocol

In this section, we build an iterated protocol that solves the consensus task using safe-consensus
objects. The full specification of such protocol is in Figure 7.3, but before trying to understand
the pseudocode of the protocol, it is a good idea to describe which are the intuitive actions which
allow the protocol to solve consensus with the safe-consensus task. We first give an informal
short description of how the protocol works and after that, we present the full pseudocode of the
protocol in Figure 7.3 (using the g-2coalitions-consensus task).

7.2.1 Basic properties of the consensus protocol

A simple way to describe the protocol that solves consensus is by seeing it as a protocol in which
the processes use a set of (n

2) shared objects, where each of these objects represent a g-2coalitions-
consensus task, which by Lemma 7.1.2, can be implemented using one snapshot object and one
safe-consensus object.

2CC1 2CC2 2CC3

2CC4 2CC5

2CC6

p1 p2 p2 p3 p3 p4

Figure 7.2: The structure of the 4-consensus protocol using 2coalitions-consensus tasks.

Using the task g-2coalitions-consensus, the protocol in Figure 7.3 can be described graphically
as shown in Figure 7.2, for the case of n = 4. In each round of the protocol, some processes invoke
a 2coalitions-consensus object, represented by the symbol 2CCi. In round one, p1 and p2 invoke the
object 2CC1 with input values 〈v1,⊥〉 and 〈⊥, v2〉 respectively, (where vi is the initial input value
of process pi) and the consensus output u1 of 2CC1 is stored by p1 and p2 in some local variables.
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In round two, p2 and p3 invoke the 2CC2 object with inputs 〈v2,⊥〉 and 〈⊥, v3〉 respectively and
they keep the output value u2 in local variables. Round three is executed by p3 and p4 in a similar
way, to obtain the consensus value u3 from the 2coalition-consensus object 2CC3. At the beginning
of round four, p1, p2 and p3 gather the values u1, u2 obtained from the objects 2CC1 and 2CC2
to invoke the 2CC4 2coalition-consensus object with the input values 〈u1,⊥〉, 〈u1, u2〉 and 〈⊥, u2〉
respectively (Notice that p2 uses a tuple with both values u1 and u2) and they obtain a consensus
value u4. Similar actions are taken by the processes p2, p3 and p4 in round five with the shared
object 2CC5 and the values u2, u3 to compute an unique value u5. Finally, in round six, all processes
invoke the last shared object 2CC6, with the respective input tuples

〈u4,⊥〉, 〈u4, u5〉, 〈u4, u5〉, 〈⊥, u5〉,
and the shared object returns to all processes a unique output value u, which is the decided output
value of all processes, thus this is the final consensus of the processes. The case of 4 processes easily
generalizes to any value of n.

7.2.2 The protocol

The formal spec of the iterated consensus protocol with safe-consensus objects is given in Figure
7.3. This is a protocol that implements consensus using only (n

2) 2coalitions-consensus tasks. If
we suppose that the protocol is correct, then we can use the g-2coalitions-consensus protocol pre-
sented in Section 7.1 (Figure 7.1) to replace the call to the 2coalitions-consensus objects in Figure
7.3 to obtain a full iterated protocol that solves the consensus task using (n

2) safe-consensus ob-
jects. We use the 2coalitions-consensus tasks in the protocol only to make it simpler and easier to
understand.

We now give a short description of how the protocol works. There are precisely (n
2) rounds

executed by the processes and in each round, some subset of processes try to agree in a new
consensus value among two given input values. The local variables step, f irstid and lastid are used
by the processes to store information that tell them which is the current set of processes that must
try to reach a new agreement in the current round, using a 2coalitions-consensus object. The local
array agreements contains enough local registers used by the processes to store the agreements
made in each round of the protocol and two distinct processes can have different agreements
stored in the registers of the array agreements. Each consensus value v stored in a register of
agreements is associated with two integers i1, ir ∈ n (r > 1), which represent a set of processes
pi1 , . . . , pir (with i1 < · · · < ir) that have invoked a 2coalitions-consensus object to agree on the
value v, thus we can say that v is an agreement made by the coalition of processes represented
by the pair (i1, ir). To be able to store v in the array agreements, the processes use a deterministic
function tup : N ×N → N, which maps bijectively N ×N onto N. This map can be easily
constructed, for example, here is a simple definition for tup

tup(i, j) =
(

i + j + 1
2

)
+ j.

�� ��7.1

Using all the elements described above, the processes can use the protocol of Figure 7.3 to
implement consensus using (n

2) 2coalitions-consensus objects, building in the process the structure
depicted in Figure 7.2. From the first round and up to round n − 1, all the processes use their
proposed input values to make new agreements in pairs, in round one, p1, p2 invoke a 2coalitions-
consensus shared object to agree on a common value, based on their input values; in round 2, p2
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(1) init step, f irstid, lastid← 1;
C, D, dec, newagreement← ⊥;
agreements [tup(id, id)]← input;

(2) begin
(3) for r ← 1 to (n

2)
(4) lastid← f irstid + step;
(5) if f irstid 6 id 6 lastid then
(6) C ← agreements [tup( f irstid, lastid− 1)];
(7) D ← agreements [tup( f irstid + 1, lastid)];
(8) newagreement← 2coalitions-consensus [r] (C, D);
(9) agreements [tup( f irstid, lastid)] = newagreement;
(10) end if
(11) if lastid < n then
(12) f irstid = f irstid + 1;
(13) else if f irstid > 1 then
(14) f irstid = 1;
(15) step = step + 1;
(16) end if
(17) end for
(18) dec← agreements [tup(1, n)];
(19) decide dec;
(20) end

Figure 7.3: An iterated consensus protocol using g-2coalitions-consensus objects.

and p3 do the same with another 2coalitions-consensus object and their own input values; later,
the turn comes to p3 and p4 to do the same with another shared object and their input values and
so on until the round number n− 1, where pn−1 and pn agree on a common value in the way that
we have already described. All the agreements obtained in these n− 1 rounds are stored on the
local registers

agreements1 [tup(1, 2)] , agreements2 [tup(1, 2)] , agreements2 [tup(2, 3)] ,
agreements3 [tup(2, 3)] , agreements3 [tup(3, 4)] , agreements4 [tup(3, 4)] ,

. . . ,

agreementsn−1 [tup(n− 1, n)] , agreementsn [tup(n− 1, n)] .
�� ��7.2

In this way, the processes build the first part of the structure shown in Figure 7.2. At the end
of round n − 1, in lines 14-15, each process updates the values of the local variables step and
f irstid and proceeds to round n. What happens in the next n − 2 rounds, is very similar to the
case of the previous n− 1 rounds, but instead of making agreements in pairs, the processes reach
new agreements in groups of three processes (see Figure 7.2) invoking new 2coalitions-consensus
shared objects and the consensus values obtained in the first n − 1 rounds and when a process
reaches round n− 1 + n− 2 = 2n− 3, it updates the values of its local variables step and f irstid
and then that process proceeds to round 2n− 2.

In general, when the processes are about to begin executing round (∑m
j=1 n− j) + 1 (m < n),

they will try to make n − (m + 1) new agreements in groups of size m + 2, with the aid of the
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2coalitions-consensus objects and the agreements they obtained from the previous n−m rounds
and store the new consensus values in their local arrays agreements, using the tup function. When
a process finishes round (∑m+1

j=1 n − j), the values of step and f irstid are updated to repeat the
described behavior for the next n− (m + 2) rounds, until the (n

2) round, where the last agreement
is made and this value is the output value of all the processes.

7.3 Correctness of the consensus protocol

We are ready to prove the correctness of our iterated protocol for consensus. The first step is to
introduce some technical definitions.

Definition 7.3.1. With respect to the protocol of Figure 7.3, let F = {i1, . . . , ir} ⊆ n be elements
such that i1 < · · · < ir. The set F will be called a coalition and will be denoted by F = [i1, . . . , ir]. Let
pi be a process such that i ∈ F. We say that pi belongs to the coalition F if and only if the following
condition is fulfilled:

(1) agreementsi [tup(i1, ir)] = v, where v 6= ⊥ is a valid input value proposed by some partici-
pating process.

We ask the following agreement property to be satisfied by F:

(2) if pi, pj are processes which belong to F and v, v′ are the values which satisfy (1) for pi and
pj respectively, then v = v′.

The value v of the first condition is called the name of the coalition. The second condition
says that all processes that belong to the same coalition must agree on the coalition’s name. For
n > m > 0, let γ(n, m) be defined by

γ(n, m) =

{
0 if m = 0,
γ(n, m− 1) + n−m if m > 0.

Notice that γ(n, m) = ∑m
i=1 n− i for m > 0 and γ(n, n− 1) = (n

2).

7.3.1 Invariants of the protocol

Before proving that the protocol in Figure 7.3 implements consensus, We prove some useful in-
variants of the protocol that will be most helpful.

Lemma 7.3.2. Let 1 6 m 6 n− 1 and 1 6 c 6 n−m. If pi is executing the protocol at the beginning of
round number r = γ(n, m− 1) + c (before line 11) then stepi = m and f irstidi = c.

Proof. We prove this by induction on m. An easy analysis of the code in Figure 7.3 shows that
the base case holds (when m = 1, in the first n − 1 rounds). Assume that for m < n − 1, the
lemma is true. We first prove the following claim: When pi starts executing round γ(n, m) + 1,
stepi = m + 1 and f irstidi = 1. Proof of the claim: By the induction hypothesis, when process pi
executed the protocol at round r′ = γ(n, m) = γ(n, m − 1) + c = γ(n, m − 1) + (n − m) before
line 11, the local variables stepi and f irstidi had the values of m and n − m respectively. When
pi reached line 11, it executed the test of the if statement, but before that, pi executed line 4 of
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the protocol, so that lastidi = f irstidi + stepi = (n − m) + m = n; thus the test in line 11 failed
and pi executed lines 14-15 of the else statement ( f irstidi > 1 because m < n− 1) and then stepi
was incremented by one and f irstidi was set to 1 at the end of round r′. Therefore, when pi starts
executing round γ(n, m) + 1, stepi = m + 1 and f irstidi = 1.

Now suppose that pi executes the protocol at the beginning of round number r = γ(n, m) + c
where 1 6 c 6 n− (m + 1). If c = 1 then by the preceding argument, stepi = m + 1 and f irstidi =
1 = c. Using this as a basis for an inductive argument, we can prove that for c ∈ {1, . . . , n− (m +
1)}, f irstidi = c and stepi = m + 1.

Lemma 7.3.3. Let 0 6 m 6 n − 2. Suppose that process pi is about to begin executing the protocol at
round r = γ(n, m) + c (1 6 c 6 n − (m + 1)). If c 6 i 6 c + m + 1 and pi belongs to the coalition
P = [c, . . . , c + m] or it belongs to the coalition Q = [c + 1, . . . , c + m + 1], then at the end of round r, pi
belongs to the coalition [c, . . . , c + m + 1].

Proof. Let pi be any process that begins executing round r. By Lemma 7.3.2, we know that stepi =
m + 1 and f irstidi = c, which implies that lastidi = c + m + 1. If i ∈ {c, . . . , c + m + 1}, the if’s
test at line 5 is successful and after that what happens in lines 6,7 depends on i. If c 6 i 6 c + m,
then pi is in the coalition P and if c + 1 6 i 6 c + m + 1, pi is in the coalition Q, thus a valid
input value is assigned to at least one of the variables Ci or Di, so pi invokes in line 8 the (m + 2)-
2coalitions-consensus object with the input xi = 〈Ci, Di〉. We now pause for a moment to argue
that the tuple

J = (xc, . . . , xc+m+1)

composed of the inputs of processes pc, . . . , pc+m+1 is a valid global input for the (m + 2)-
2coalitions-consensus task. Indeed, from the hypothesis, it is easy to see that J satisfies the require-
ments (a)-(c) of Definition 7.1.1 and notice that r(J)− l(J) = {c + m + 1} and l(J)− r(J) = {c}.

Now back to the execution of process pi. After pi invokes the (m + 2)-2coalitions-consensus
task, the output value of the shared object, say v, is assigned to the local variable newagree-
menti. Finally, pi stores the contents of newagreementi in the local array agreementsi at position
tup( f irstidi, lastidi), where f irstidi = c and lastidi = c + m + 1. Because of the Agreement condi-
tion of the 2coalitions-consensus task, every process with id in the set {c, . . . , c + m + 1} obtained
the same value v as return value from the shared object and by the 2coalitions-Validity, this is a
valid input value proposed by some process. Therefore properties (1) and (2) of Definition 7.3.1
are satisfied, thus R = [c, . . . , c + m + 1] is a valid coalition and process pi belongs to the coalition
R at the end of round r.

On the other hand, if i /∈ {c, . . . , c + m + 1}, pi does not executes the body of the if statement
(lines 6 to 9) and it goes on to execute the if/else block at lines 11-16 and then round r ends for pi,
thus it does not try to make a new coalition with other processes.

Lemma 7.3.4. Let m ∈ {0, . . . , n − 2} be fixed. Suppose that process pj has executed the protocol for
γ(n, m) rounds and that there exists i ∈ {1, . . . , n − (m + 1)} such that pj belongs to the coalition
[i, . . . , i + m] or it belongs to the coalition [i + 1, . . . , i + m + 1]. Then after pj has executed the proto-
col for n− (m + 1) more rounds, pj belongs to the coalition [i, . . . , i + m + 1].

Proof. We apply Lemma 7.3.3 in each round γ(n, m) + c, where c ∈ {1, . . . , n− (m + 1)}.
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7.3.2 2Coalitions-consensus implements consensus

We are ready to give the proof of the last result that we need to obtain the main theorem of this
chapter.

Theorem 7.3.5. The protocol in Figure 7.3 implements the consensus task using (n
2) (g, h)-2coalitions-

consensus objects.

Proof. The protocol clearly satisfies the Termination condition of the consensus task (the only loop
is finite). We prove that it fulfills the Agreement and Validity conditions. Let pj be any process
that executes the protocol. Just at the beginning of the first round (line 2), process pj belongs to
the coalition [j] (because of the assignments made to the local array agreementsj in line 1, so that
if pj executes the protocol for γ(n, 1) = n− 1 rounds, we can conclude using Lemma 7.3.4, that
process pj belongs to some of the coalitions [i, i + 1] (1 6 i 6 n− 1). Starting from this fact and
using induction on m, we can prove that for all m = 1, . . . , n− 1; at the end of round γ(n, m), pj
belongs to some of the coalitions [i, . . . , i + m] (1 6 i 6 n−m). In the last round (when m = n− 1),
after executing the main for block, process pj belongs to the coalition T = [1, . . . , n], thus when
pj executes line 18, it will assign to the local variable deci a valid proposed input value and this
is the value decided by pj at line 19. All processes decide the same value because all of them are
in the coalition T. Therefore the protocol satisfies the Agreement and Validity conditions of the
consensus task.

Replacing the call to the 2coalitions-consensus objects in the protocol of Figure 7.3 with the
code of the protocol of g-2coalitions-consensus which is shown in Figure 7.1, we obtain a working
iterated protocol for consensus using safe-consensus objects.

Theorem 7.3.6. There exists an iterated protocol that solves the consensus task for n processes using (n
2)

safe-consensus objects.

In the next chapters, we prove that this protocol is sharp on the number of safe-consensus
objects invoked by the processes. We will show that it is impossible to implement consensus in
the iterated model with safe-consensus objects using less that (n

2) safe-consensus shared objects.
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8
The structure of iterated protocols with

safe-consensus

In this chapter, we present a series of results that describe the structure of executions of protocols in
the iterated model with safe-consensus objects. The main objective here is to prove Theorem 8.2.5,
which give us valuable information on the way two arbitrary successor states of a given reachable
state in a iterated protocol with safe-consensus can be connected, by using a path of connected
states which has very interesting properties related to the way in which the processes invoke the
safe-consensus shared object in the protocol. To prove Theorem 8.2.5, we need to develop a very
specific method to build the path connecting two given states of the protocol. We call this method
the Stairway method, we describe it in full detail in Section 8.2 with many examples and the formal
proofs of the related results. The Stairway method and Theorem 8.2.5 are fundamental to obtain
the lower bound result of Chapter 9.

8.1 Preliminaries

Before proceeding to give the formal proofs of the results of this chapter, we need to introduce
new definitions regarding the iterated model with safe-consensus objects. Some of these concepts
will be used not only in this chapter, but also in the rest of this thesis.

8.1.1 Further terminology of the iterated model with safe-consensus

Remember from Chapter 6, that for 2 6 m 6 n and a given protocol A in the iterated model
with (safe-consensus) shared objects, a set b ⊆ n is an element of ΓA(n, m) if and only if |b| = m
and there is at least an execution of A in which, in some round, only the processes with ids in
the set b invoke a safe-consensus shared object. The symbol νA(n, m) represents the cardinality of
ΓA(n, m) and we define the set ΓA(n) and the quantity νA(n) as follows: ΓA(n) =

⋃n
m=2 ΓA(n, m);

νA(n) = ∑n
i=2 νA(n, m). A set b ∈ ΓA(n) representing a safe-consensus shared object invoked by

some processes is called a m-box or simply a box (m = |b|). Notice that for the consensus protocol
A of Chapter 7, we have that

νA(n, m) = n−m + 1 for m ∈ {2, . . . , n};

νA(n) = (n
2).

We now introduce some technical definitions and ideas regarding properties of states, that will
aid us to prove some lemmas that are needed for the proof of Theorem 8.2.5.
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Definition 8.1.1. LetA be a protocol. For any path q : Q1 ∼ · · · ∼ Ql of connected states, define the
set of states States(q); the set of indistinguishability sets iSets(q); and the degree of indistinguishability
deg q, of q as follows:

States(q) = {Q1, . . . , Ql};

iSets(q) = {X ⊆ n | (∃Qi, Qj ∈ States(q))(Qi
X∼ Qj)};

deg q = min{|X| | X ∈ iSets(q)}.

The degree of indistinguishability of the path q guarantees that we can find for any pair of
states Qi, Qj ∈ States(q) with Qi ∼ Qj, a set of processes P ⊂ Π that cannot distinguish between
Qi and Qj of size at least deg q. The degree of indistinguishability of a path is usually of non-
importance in the standard and well known bivalency proofs of the impossibility of consensus
in various systems [FLP85, LAA87], but in the main results of this chapter and also Chapter 9,
measuring the degree of indistinguishability will be a recurring action in all the proofs.

Definition 8.1.2. Let A be an iterated protocol with safe-consensus objects and

S = 〈s1, . . . , sn; SM; b1, . . . , bq; o1, . . . , oq〉

a reachable state in the protocol A (See Definition 6.1.5). The set of boxes b1, . . . , bq of the state S
will be denoted by Inv(S), we call it the invocation specification of S. Let b = bj = {l1, . . . , ls} ∈
Inv(S), we define the safe-consensus value of b in S, denoted by scval(b, S) as the value oj, that is,
the output value of the safe-consensus shared object represented by b, which was invoked by the
processes pl1 , . . . , pls to enter state S.

The following technical lemma is a result concerning invocation specifications of successor
states of a given reachable state in an iterated protocol. It will be used later.

Lemma 8.1.3. Let A be an iterated protocol for n > 2 processes with safe-consensus objects, S a reachable
state in A. Then for any two round schedules π1, π2, Inv(S · π1) = Inv(S · π2).

Proof. In Figure 6.1, notice that process pi calls the object selector h with the local state it has from
the previous round, so that if r is the round number of S and pi starts executing the protocol A
in round r + 1 with the local state it had in S, the input to the object selector function h is given
by the tuple (r + 1, i, smS, valS), where smS, valS depend only on S. Thus in both successor states
S · π1 and S · π2, pi feeds the same input to h, therefore

Inv(S · π1) = Inv(S · π2)

and the lemma is true.

Definition 8.1.4. A path s of connected states of A is said to be C-regular if and only if Inv(S) =
Inv(Q) for all S, Q ∈ States(s).

In other words, s is C-regular if and only if, all the states in the set States(s) have the same
global invocation specification. We will see examples of C-regular paths throughout the chapter.
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A special round schedule

A basic building block of the proofs presented in this chapter and Chapter 9, is to define vari-
ous ways in which the processes execute a protocol A. For this action, we define a set of round
schedules that will be very useful.

LetA be an iterated protocol, q > 1 and A1, . . . , Aq ⊂ n disjoint sets. Define the round schedule
ξ(A1, . . . , Aq, Y) for A as:

W(A1),S(A1),R(A1),W(A2),S(A2),R(A2), . . . ,W(Aq),S(Aq),R(Aq),W(Y),S(Y),R(Y),
�� ��8.1

where Y = n− (
⋃q

i=1 Ai). When there is no confusion, we omit the set Y from the notation and
just write ξ(A1, . . . , Aq). Thus, in a given iteration of A, the round schedule ξ(A1, . . . , Aq, Y) just
tell us that the processes with ids in the set A1 perform the write-invoke safe-consensus-snapshot
operations first (concurrently); then the processes with ids in A2 do the same and so on until at
the end, the processes with ids in Aq perform the main events of A, followed by all the remaining
processes. For any state S and u > 0, define the state

S · ξu(A1, . . . , Aq) =

{
S if u = 0,
(S · ξu−1(A1, . . . , Aq)) · ξ(A1, . . . , Aq) otherwise.

I.e. S · ξu(A1, . . . , Aq) is the state that we obtain after we run the protocol A (starting from S) u
rounds with the round schedule ξ(A1, . . . , Aq) in each iteration.

8.2 The local structure of iterated protocols with safe-consensus: The
Stairway method

We are ready to prove all the results of this chapter. We will prove three lemmas which are the
basic building blocks to be able to show Theorem 8.2.5, these results describe (roughly) for a given
iterated protocol, how two previously chosen reachable states can be connected in a very specific
way, applying a construction process that we call the Stairway method. There are other simpler
ways that we could use to prove there is a path between two chosen reachable states of an iterated
protocol, and it would seem at first glance that using the Stairway method is unnecessarily diffi-
cult. But we have been able to prove Theorem 8.2.5 and the lower bound of the next chapter, only
by applying the properties that can be obtained by using the Stairway method. We describe it in
full detail in this section with the formal results that support it and also with many examples.

8.2.1 The construction of the Stairway method

The Stairway method is the key ingredient in the construction of a path of connected states (in
a given iterated protocol) which will connect two previously chosen reachable states. The best
way to describe the intuitive details of the method is by means of examples. Our strategy will be
the following: We present with an example the problem that we want to solve with the Stairway
method and then with a series of related examples, we explain the properties of the solution that
we obtain with the Stairway method. Thus, our first example will be in fact, divided into four
examples that will be presented throughout the rest of the chapter, together with the formal proof
of the three lemmas that formalize the Stairway method.
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The main example

Assume that n = 7 and thatA is an iterated protocol with safe-consensus shared objects. We begin
executing A until it enter some reachable state S. Let α be this partial execution of A which ends
in the state S. Two possible one-round successor states of S are the following states

P = S · ξ({1, 2, 3, 4}, {5, 6, 7}) and Q = S · ξ({5, 6, 7}, {1, 2, 3, 4}),
�� ��8.2

that is, P is the successor state of S obtained when the processes p1, p2, p3 and p4 execute concur-
rently the write, invoke safe-consensus and snapshot operations, followed by p5, p6 and p7 and to
obtain the state Q, processes p5, p6, p7 execute concurrently first, followed by p1, p2, p3 and p4. For
the purposes of this example, assume also the following properties for P and Q:

Inv(P) = {b1, b2, b3}, where b1 = {1, 2}, b2 = {3, 4, 5} and b3 = {5, 6, 7};
scval(b1, P) = 2, scval(b2, P) = 3 and scval(b3, P) = 7;
scval(b1, Q) = 2, scval(b2, Q) = 5 and scval(b3, Q) = 7.

�� ��8.3

Notice that by Lemma 8.1.3, Inv(P) = Inv(Q). Our main goal is to connect the state P with Q
with a path q : P ∼ · · · ∼ Q. There are many simple ways to obtain a path q between P and Q. For
example, one possibility is the following path

q1 : P
{5,6,7}∼ S · ξ(7) {1,2}∼ Q,

where (let R = S · ξ(7)) Inv(R) = Inv(P) (Lemma 8.1.3), scval(b1, R) = 2, scval(b2, R) = 3 and
scval(b3, R) = 7. As P and R have the same safe-consensus values for the three boxes, the processes
can only distinguish these states by the contents of the shared memory, thus p5, p6 and p7 are
the only processes that cannot distinguish between P and R. But we have that scval(b2, R) 6=
scval(b2, Q), thus only p1, p2 cannot distinguish between R and Q (notice that by the contents of
the memory, only p5, p6, p7 can distinguish between R and Q). The degree of indistinguishability
of q1 is deg q1 = 2. If we consider the possibility that scval(b2, R) = 5 (using the Safe-Validity of
the safe-consensus task), then we obtain the path q2 given by

q2 : P
{6,7}∼ R

{1,2,3,4}∼ Q,

so that only p6, p7 cannot distinguish between P and R, while the rest of the processes can dis-
tinguish either by the contents of the shared memory or because of the different safe-consensus
values of the box b2 in both states. We have also that deg q2 = 2.

Can we obtain a path between P and Q with a higher degree of indistinguishability ? The
answer is yes, we can find a path q such that deg q = 4 = 7− |b2|. In the next examples, we build
the path q with the desired degree of indistinguishability and other useful properties, by applying
the Stairway method.

Phase 1

In Lemma 8.2.2, we prove the first phase of the Stairway method. But before doing this, we present
a short example of the results given in Lemma 8.2.2. We continue to develop the previous example.
We have an iterated protocol A with safe-consensus objects, which is executed by the processes,

126



8.2. THE STAIRWAY METHOD

accordingly to the specification of the partial execution α, until it enters into the reachable state S
(Figure 8.1, we represent the boxes b1, b2, b3 with colors). We try to connect the states P and Q with
a path q, such that deg q = 7− |b2| = 4. The first part of the path q is constructed with phase one
of the Stairway method, as follows: The partial execution α can be extended to a partial execution
α1, by applying the round schedule ξ({1, 2, 3, 4}, {5, 6, 7}) in the next iteration of A to obtain the
state P, as shown in Figure 8.1. A second partial execution α2 can be obtained by extending α in

b1 : p1, p2

b2 : p3, p4, p5

b3 : p6, p7

A
α

S
α1 α2

p1, p2

p3, p4

p5 p6, p7

S · ξ({1, 2}, {3, 4}, {5, 6, 7})

p1, p2 p3, p4

p5 p6, p7

S · ξ({1, 2, 3, 4}, {5, 6, 7})

Figure 8.1: Phase one of the Stairway method for n = 7 processes, X = {1, 2, 3, 4} and box b2.

the next iteration by using the round schedule ξ1 = ξ({1, 2}, {3, 4}, {5, 6, 7}) so that the system
enters the state S1 = S · ξ1. Notice that by Lemma 8.1.3, Inv(P) = Inv(S1), thus the processes
invoke the same safe-consensus shared objects in P and S1. We choose the safe-consensus values
of the boxes bi in the state S1 in the following way,

scval(bi, S1) = scval(bi, P) for all i ∈ {1, 2, 3}.
�� ��8.4

In short, we want that the safe-consensus shared objects output the same values in both states
P and S1. This can be accomplished thanks to the Safe-Validity property of the safe-consensus
task and the way the processes invoke the shared objects in P and S1. For example, we know
that scval(b1, P) = 2, then as both p1 and p2 execute concurrently the safe-consensus shared object
represented by b1 in the state S1, then by the Safe-Validity condition, the output value of the shared
object can be arbitrary. In particular, there exists the possibility that this output value is 2, so that
we can make the safe-consensus value of b1 in S1 to be precisely 2, thus scval(b1, P) = scval(b1, S1).
Similar arguments are used to prove the other equalities. Now, because all the safe-consensus
objects invoked by the processes in P and S1 output the same values on both states, the processes
can distinguish between these states only by the contents of the shared memory. An easy analysis
will show that P and S1 are indistinguishable for p3, p4, p5, p6 and p7 (p1 and p2 have a different
view of the shared memory), thus the path p1 connecting the states P and S1 satisfies the inequality

deg p1 > 5 = 7− 2.

This inequality is one of the main properties of p1, and by Lemma 8.1.3, p1 is a C-regular path.
Also, notice how in the state S1, the round schedule ξ1 arranges the processes p1, p2, p3 and p4
by first executing the processes that belong to b1, followed by the processes p3, p4 that invoke the
object represented by b2. We can say that these processes are placed in the levels of a small ladder,
where the processes p3, p4, which invoke the safe-consensus object represented by b2, are at the
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bottom level of the ladder, while the processes p1, p2, invoking the safe-consensus object given by
b1 take the top level. For this example, we have completed phase one of the stairway method.

We are ready to begin the construction of the Stairway method. The following definition plays
an important role in describing the Stairway method.

Definition 8.2.1. Let A be a protocol with safe-consensus objects for n-processes, X ⊆ n, R a
state of some round r > 0 and b ∈ Inv(R). We say that R is a ladder state for X with base b, if
R = S · ξ(C1, . . . , Cu, B) (u > 0), where S is a reachable state in A and

• X = (
⋃u

j Cj) ∪ B;

• for j = 1, . . . , u, 0 6 |Cj| 6 2;

• (
⋃u

j Cj) ∩ b = ∅;

• B = b ∩ X.

The state S1 = S · ξ({1, 2}, {3, 4}, {5, 6, 7}) = S · ξ({1, 2}, {3, 4}) of the previous example is a
ladder state for X = {1, 2, 3, 4} with base b2. For each box bi and W ⊆ n, let the set W(i) be defined
as

W(i) = W ∩ bi.

Lemma 8.2.2 (The Stairway method, Phase 1). Let n > 2, ∅ 6= X ⊆ n, A an iterated protocol with
safe-consensus objects, S a state that is reachable in A in some round r > 0 and bj ∈ Inv(SX), where
SX = S · ξ(X). Then there exists a state L, such that L is a ladder state for X with base bj, such that SX
and L are connected in round r + 1 with a path of states p with deg p > n− 2.

Proof. Let Inv(SX) = {b1, . . . , bq} (q > 1). By Lemma 8.1.3, for any one-round successor state Q
of S, Inv(Q) = Inv(SX) and we can write InvS instead of Inv(SX). Without loss, assume that
b1 = bj. If q = 1, then b1 = n and the result is immediate, because SX is a ladder state for X with
base n. So that we suppose that q > 1. Partition X as X = X(1) ∪ · · · ∪X(q) and build the following
path of connected states

SX
n−Λ2(1)∼ S · ξ(Λ2(1), X−Λ2(1))

n−Λ2(2)∼ S · ξ(Λ2(1), Λ2(2), X− (Λ2(1) ∪Λ2(2)))
n−Λ2(3)∼ · · · n−Λ2(α2)∼

S · ξ(Λ2(1), Λ2(2), . . . , Λ2(α2), X− X(2)),
�� ��8.5

where X(2) =
⋃α2

i=1 Λ2(i) is a partition of X(2) such that |Λ2(j)| = 1 for j = 2, . . . , α2. The set Λ2(1)
has cardinality given by

|Λ2(1)| =
{

2 if |X(2)| > 1,
|X(2)| otherwise,

and we choose the safe-consensus value of every box in the set InvS to be the same in each state
of the previous path. This can be done because of the way we partition X(2), the election of the
elements of the set Λ2(1) and the properties of the safe-consensus task (Safe-Validity). We execute
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similar steps with box b3, so that we obtain the path

S · ξ(Λ2(1), . . . , Λ2(α2), X− X(2))

n−Λ3(1)∼ S · ξ(Λ2(1), . . . , Λ2(α2), Λ3(1), X− (X(2) ∪Λ3(1)))
n−Λ3(2)∼ S · ξ(Λ2(1), . . . , Λ2(α2), Λ3(1), Λ3(2), X− (X(2) ∪Λ3(1) ∪Λ3(2)))

n−Λ3(3)∼ · · · n−Λ3(α3)∼
S · ξ(Λ2(1), . . . , Λ2(α2), Λ3(1), . . . , Λ3(α3), X− (X(2) ∪ X(3))),

�� ��8.6

where the Λ3(i)’s and α3 depend on b3 and X(3), just in the same way the sets Λ2(j) and α2 depend
on b2 and X(2) - and each box has safe-consensus value equal to the value it has in the path of

�� ��8.5 .
We can repeat the very same steps for b4, . . . , bq to obtain the path

S · ξ(Λ2(1), . . . , Λ3(α3), X− (X(2) ∪ X(3)))

n−Λ4(1)∼ S · ξ(Λ2(1), . . . , Λ3(α3), Λ4(1), X− (X(2) ∪ X(3) ∪Λ4(1)))
n−Λ4(2)∼ · · · n−Λq(1)∼

S · ξ(Λ2(1), . . . , Λq(1), X− (Λq(1) ∪
⋃q−1

i=2
X(i)))

n−Λq(2)∼ · · · n−Λq(αq)∼ S · ξ(Λ2(1), . . . , Λq(αq), X(1)).
�� ��8.7

It is easy to prove that L = S · ξ(Λ2(1), . . . , Λq(αq), X(1)) is a ladder state for X with base b1 and
that each of the paths of equations

�� ��8.5 ,
�� ��8.6 and

�� ��8.7 has indistinguishability degree no less that
n− 2. Combining all these paths, we obtain a new path

p : SX ∼ · · · ∼ L

with deg p > n− 2.

Phase 2

Lemma 8.2.3 presents formally the second phase of the Stairway method. Now we continue to
develop the example in which we presented phase one. Remember that the main goal of the
example is to connect the two states P, Q of Equation

�� ��8.2 of a reachable state S in an iterated
protocol A with safe-consensus objects. The path connecting P and Q must have the highest
possible degree of indistinguishability, which is 7− |b2| = 4, where b2 ∈ Inv(P) and b2 = {3, 4, 5}
(see Equation

�� ��8.3 ). In our first example, we built a path which connects the state P and the state
S1 = S · ξ({1, 2}, {3, 4}, {5, 6, 7}), which is a ladder state for X = {1, 2, 3, 4}with base b2 = {3, 4, 5}
(Definition 8.2.1). The purpose of the second phase of the Stairway method, is to interchange
the processes p3, p4 with process p5 in the state S1, formally, this is done in the following way:
We extend the path p1 of our first example with a path p2, that connects S1 with the state S3 =
S · ξ({1, 2}, {5}, {3, 4, 6, 7}) (Figure 8.2). Notice that by Definition 8.2.1, S3 is a ladder state for
X′ = {1, 2, 5} with base b2.

In the example of phase one, we extended the partial execution α of A (that ends in the state
S), to a partial execution α2 using the round schedule ξ({1, 2}, {3, 4}, {5, 6, 7}) to obtain the state
S1. Consider the two round schedules ξ ′, ξ ′′ given as
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ξ ′ = ξ({1, 2}, {3, 4, 5, 6, 7}),

ξ ′′ = ξ({1, 2}, {5}, {3, 4, 6, 7}).

b1 : p1, p2

b2 : p3, p4, p5

b3 : p6, p7

A
α

S
α2 α4

p1, p2

p3, p4

p5 p6, p7

S · ξ({1, 2}, {3, 4}, {5, 6, 7})

p1, p2

p3, p4, p5 p6, p7

S · ξ({1, 2}, {3, 4, 5, 6, 7})

p1, p2

p5

p3, p4 p6, p7

S · ξ({1, 2}, {5}, {3, 4, 6, 7})

α3

Figure 8.2: Phase two of the Stairway method for n = 7 processes, X = {1, 2, 3, 4}, Y = {5, 6, 7}
and b2.

We use ξ ′ and ξ ′′ to extend α to new partial executions α3, α4 by using ξ ′ to extend α to α3 with the
state S′ = S · ξ ′ and with ξ ′′ we obtain α4 with the state S′′ = S · ξ ′′, see Figure 8.2. Notice that the
difference between the states S1 and S′, is only that the processes p3, p4 executed in S1 faster that
in S′, as in the later state, p3 and p4 execute concurrently together with p5, p6, p7. From S′ to S′′,
the difference is that we “lifted” process p5, making it execute faster that p3, p4, p6, p7. We claim
that the following C-regular path of connected states exists.

p2 : S1
7−{3,4}∼ S′ 7−Z∼ S′′.

where the set Z ⊆ 7 is defined as

Z =

{
b2 if scval(b2, S′) 6= scval(b2, S′′)
{5} otherwise.

�� ��8.8

We first remark that by Lemma 8.1.3, Inv(S1) = Inv(S′) = Inv(S′′), thus p2 is indeed a C-regular
path. Second, we can make the equalities scval(bi, S1) = scval(bi, S′) hold true for all i ∈ {1, 2, 3}.
This is done by using the Safe-Validity property of the safe-consensus task and the way the pro-
cesses invoke the shared objects (either there are at least two processes invoking a safe-consensus
object or the processes access a shared object in the same way in both states), so that the output
values of the safe-consensus objects cannot help the processes to distinguish between S1 and S′.
The only two processes with a different view of the shared memory in S1 and S′ are p3 and p4, thus

S1
7−{3,4}∼ S′. For the case of the states S′ and S′′, notice that while in S′, p3 and p4 invoked con-

currently the safe-consensus object, in S′′ p5 is the first process to invoke the safe-consensus object
and it outputs before p3, p4 access the object (Figure 8.2), hence by the Safe-Validity condition, we
have that

scval(b2, S′′) = 5
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and for our examples, we have that scval(b2, S′) = 3 6= 5. This is where the cases of Equation
�� ��8.8

come into play. If it was true that scval(b2, S′′) = scval(b2, S′), then the processes could distinguish
S′ and S′′ only by the contents of the shared memory and the only process with a different view of
memory would be p5, thus Z = {5}. But for our example, we have that scval(b2, S′′) 6= scval(b2, S′),
then not only p5 has a different view of the shared memory in S′ and S′′, but also all the processes
that invoke the shared object represented by b2 see a different safe-consensus value in S′ and S′′

and only these processes can see a difference, thus Z = b2 and we conclude that S′ 7−b2∼ S′′. We
have proven that the path p2 does exist and it satisfies the property

deg p2 =

{
7− 2 if scval(b2, S′) = scval(b2, S′′)
7− |b2| otherwise.

In the second case of the previous argument, when scval(b2, S′′) 6= scval(b2, S′), we have that
7− b2 ∈ iSets(p2). This says that the complement of a box, representing a safe-consensus shared
object invoked by p3, p4, p5, can be made the set of ids of processes that cannot distinguish between
two states of the path p2 (in this case, between S′ and S′′). This property plays an important role
to prove the main results of the next chapter and it is a consequence of the Stairway method. We
are now ready to prove the correctness of the second phase of the Stairway method for the general
case.

Lemma 8.2.3 (The Stairway method, Phase 2). Let n > 2, X, Y ⊆ n, A an iterated protocol with safe-
consensus objects and S an state that is reachable in A in some round r > 0. Assume also that bj is a box
representing a safe-consensus object used by some processes such that bj ∈ Inv(L1) = Inv(L2), where
L1 = S · ξ(C1, . . . , Cu, X(j)) is a ladder state for X with base bj and L2 = S · ξ(C1, . . . , Cu, Y(j)) is a ladder
state for (X − X(j)) ∪ Y(j) with base bj. Finally, suppose that if bj = n, scval(bj, L1) = scval(bj, L2).
Then L1 and L2 are connected in round r + 1 with a C-regular path of states p that satisfies the following
properties:

i) If scval(bj, L1) = scval(bj, L2) then deg p > n− 2.

ii) If scval(bj, L1) 6= scval(bj, L2) then deg p > n− |bj| and n− bj ∈ iSets(p).

Proof. Let n be the disjoint union n = X− ∪ (X ∩Y) ∪Y− ∪W, where

X− = X−Y;

Y− = Y− X;

W = n− (X− ∪ (X ∩Y) ∪Y−).

What we need to do to go from L1 to L2 is to “interchange” X(j) with Y(j). We first construct a path
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of connected states p1 given by

S · ξ(C1, . . . , Cu, X(j), Y− ∪W)

n−Λj(1)∼ S · ξ(C1, . . . , Cu, Λj(1), X(j) −Λj(1), Y− ∪W)

n−Λj(2)∼ S · ξ(C1, . . . , Cu, Λj(1), Λj(2), X(j) − (Λj(1) ∪Λj(2)), Y− ∪W)

n−Λj(3)∼ · · · n−Λj(αj−1)∼ S · ξ(C1, . . . , Cu, Λj(1), Λj(2), . . . , Λj(αj), Y− ∪W)

n−Λj(αj)∼ S · ξ(C1, . . . , Cu, Λj(1), Λj(2), . . . , Λj(αj − 1), Λj(αj) ∪Y− ∪W)

n−Λj(αj−1)∼ · · · n−Λj(1)∼ S · ξ(C1, . . . , Cu, X(j) ∪Y− ∪W),

where the following properties hold:

• X(j) =
⋃αj

i=1 Λj(i) is a partition of X(j) such that |Λj(l)| = 1 for l = 2, . . . , αj;

• |Λj(1)| = 2 if |X(j)| > 1 and |Λj(1)| = |X(j)| otherwise;

• p1 is a C-regular path (Lemma 8.1.3) with deg p1 > n− 2;

• the safe-consensus value of every box bi is the same in each state of p1. This can be archived
by a proper election of elements of the set Λj(1) and the Validity property of the safe-
consensus task.

Now, as X(j) ∪Y− = Y(j) ∪X−
(j) ∪ (Y−−Y−

(j)), we can write the state S · ξ(C1, . . . , Cu, X(j) ∪Y− ∪W)

as S · ξ(C1, . . . , Cu, Y(j) ∪ X−
(j) ∪ (Y− −Y−

(j)) ∪W). We need to build a second path p2 as follows:

S · ξ(C1, . . . , Cu, Y(j) ∪ X−
(j) ∪ (Y− −Y−

(j)) ∪W)

n−Z∼ S · ξ(C1, . . . , Cu, Ωj(1), (Y(j) −Ωj(1)) ∪ X−
(j) ∪ (Y− −Y−

(j)) ∪W)

n−Ωj(2)∼ · · · n−Ωj(εj−1)∼
S · ξ(C1, . . . , Cu, Ωj(1), . . . , Ωj(εj) ∪ X−

(j) ∪ (Y− −Y−
(j)) ∪W)

n−Ωj(εj)∼ S · ξ(C1, . . . , Cu, Ωj(1), . . . , Ωj(εj), X−
(j) ∪ (Y− −Y−

(j)) ∪W)

n−Ωj(εj−1)∼
S · ξ(C1, . . . , Cu, Ωj(1), . . . , Ωj(εj − 1) ∪Ωj(εj), X−

(j) ∪ (Y− −Y−
(j)) ∪W)

n−Ωj(εj−2)∼ · · · n−Ωj(1)∼ S · ξ(C1, . . . , Cu, Y(j), X−
(j) ∪ (Y− −Y−

(j)) ∪W).

Let L2 be the last state of the previous path. The next assertions are true for the path p2:

• The sets Ωj(i) and εj are defined for Y(j) and bj in the same way as the Λj(i) and αj are
defined for X(j) and bj;

• The path p2 is C-regular (Lemma 8.1.3);
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• The safe-consensus value of every box c 6= bj is the same in every element of States(p2);

• scval(bj, Q) = scval(bj, P) for all Q, P ∈ States(p2)− {R}, where R = S · ξ(C1, . . . , Cu, Y(j) ∪
X−
(j) ∪ (Y− −Y−

(j)) ∪W);

• the set Z is defined by

Z =

{
bj if scval(bj, L1) 6= scval(bj, L2)

Ωj(1) otherwise;

Notice that by the last assertion, we can deduce that deg p2 > n − |bj| and n − bj ∈ iSets(p2) if
scval(bj, L1) 6= scval(bj, L2) and deg p2 > n − 2 when scval(bj, L1) = scval(bj, L2). Thus we can
use p1 and p2 to obtain a C-regular path p which fulfills properties i)-ii) of the lemma and that
concludes the proof.

Phase 3

The final phase of the Stairway method is the third one and it is also the easiest phase of all three.
From the two examples that we developed before the proofs of phases one and two (Lemmas 8.2.2
and 8.2.3), to be able to connect the two states P and Q of Equation

�� ��8.2 , successor states of a
reachable state S in the iterated protocol A, we have the following data:

A C-regular path p1 connecting P and S1 = S · ξ({1, 2}, {3, 4}, {5, 6, 7});

A C-regular path p2 connecting S1 and S′′ = S · ξ({1, 2}, {5}, {3, 4, 6, 7}) with the properties:

– If scval(b2, S1) = scval(b2, S′′) then deg p′ > 5 = 7− 2.

– If scval(b2, S1) 6= scval(b2, S′′) then deg p′ > 7− |b2| and 7− b2 ∈ iSets(p′).

(See the properties of P, Q and b2 in Equation
�� ��8.3 ). To finish the Stairway method for X =

{1, 2, 3, 4} and b2 = {3, 4, 5}, it only remains for us to connect the state S′′ with the state S2 =
S · ξ({1, 2, 5}, {3, 4, 6, 7}) using a C-regular path p3 with a high degree of indistinguishability, but
this can be done by applying phase one of the Stairway method to the state S2 and using S′′ as
the final ladder state. We can see the three paths p1, p2 and p2 combined into a single path q1
connecting the states P and S2 in Figure 8.3. By the previous examples, this path has the following
properties

• q1 is a C-regular path.

• If scval(b2, P) = scval(b2, S2) then deg q1 > 7− 2.

• If scval(b2, P) 6= scval(b2, S2) then deg q1 > 7− |b2| and 7− b2 ∈ iSets(q1).

This finishes the Stairway method for the sets X = {1, 2, 3, 4}, Y = {5, 6, 7} and the box b2 =
{3, 4, 5}. We have not been able to connect the states P and Q, we will do this in the final section
of this chapter, after we prove Theorem 8.2.5, which tell us that to be able to connect P and Q, we
only need to apply the Stairway method to the remaining boxes b1 and b3.

Here is the proof of the full Stairway method for an arbitrary iterated protocol and any pair of
subsets X, Y ⊆ n.
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Lemma 8.2.4 (The complete Stairway method). Let n > 2, X, Y ⊆ n, A an iterated protocol with
safe-consensus objects, S a state that is reachable inA in some round r > 0 and bj a box representing a safe-
consensus object used by some processes in round r + 1 such that bj ∈ Inv(Q1) = Inv(Q2), where Q1 =
S · ξ(X) and Q2 = S · ξ(Y(j) ∪ (X − X(j))). Assume also that if bj = n, scval(bj, Q1) = scval(bj, Q2).
Then the states Q1 and Q2 are connected in round r + 1 with a C-regular path of states p that satisfies the
following properties:

a) If scval(bj, Q1) = scval(bj, Q2) then deg p > n− 2.

b) If scval(bj, Q1) 6= scval(bj, Q2) then deg p > n− |bj| and n− bj ∈ iSets(p).

b1 : p1, p2

b2 : p3, p4, p5

b3 : p6, p7

A
α

S

α1 α5

p1, p2

p3, p4

p5 p6, p7

S · ξ({1, 2}, {3, 4}, {5, 6, 7})

p1, p2

p3, p4, p5 p6, p7

S · ξ({1, 2}, {3, 4, 5, 6, 7})

p1, p2

p5

p3, p4 p6, p7

S · ξ({1, 2}, {5}, {3, 4, 6, 7})

α3

p1, p2 p3, p4

p5 p6, p7

S · ξ({1, 2, 3, 4}, {5, 6, 7})

p1, p2 p5

p3, p4 p6, p7

S · ξ({1, 2, 5}, {3, 4, 6, 7})

α2
α4

Figure 8.3: The Stairway method for n = 7 processes, X = {1, 2, 3, 4}, Y = {5, 6, 7} and b2.

Proof. By Lemma 8.2.2, The state Q1 can be connected with a state of the form QX(j) = S ·
ξ(B1, . . . , Bs, X(j)) with a C-regular path q1 such that deg q1 > n− 2. Using Lemma 8.2.3, QX(j) can
be connected with QY(j)

= S · ξ(B1, . . . , Bs, Y(j)) by means of a C-regular path q2 : QX(j) ∼ · · · ∼ QY(j)

such that q2 satisfies properties i) and ii) of that Lemma. And we can apply Lemma 8.2.2 to connect
QY(j)

with Q2 with the C-regular path q3 which has indistinguishability degree no less that n− 2.
Therefore the path of connected states built by first gluing together the paths q1 and q2, followed
by q3, is a C-regular path q such that the requirements a)-b) are satisfied.

8.2.2 Local connectivity of iterated protocols with safe-consensus

In this section, we use the Stairway method of Lemma 8.2.4 to prove the main result of this chapter,
Theorem 8.2.5. It will allow us to connect two given states of an iterated protocol with safe-
consensus with a path q of connected state with a high degree of indistinguishability and also
the important property that the complements of some boxes representing safe-consensus shared
objects of the protocol, belong to the set iSets(q). After we have proven Theorem 8.2.5, we will be
able to finally finish the example that we begun to develop at the beginning of Section 8.2.1 and it
will help us to exemplify with specific data what is what can be done with Theorem 8.2.5.

Before proceeding to the proof of the main result of this chapter, we need one last technical
definition. Let Q1, Q2 be two reachable states in round r of an iterated protocol A for n processes
with safe-consensus objects. The set Dr

A(Q1, Q2) is defined as
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Dr
A(Q1, Q2) = {b ∈ ΓA(n) | b ∈ Inv(Q1) ∩ Inv(Q2) and scval(b, Q1) 6= scval(b, Q2)}.

�� ��8.9

For our long lasting example and the states P, Q given in
�� ��8.2 and accordingly to the properties

of P and Q presented in
�� ��8.3 , we have that Dr

A(P, Q) = {b2}, where r is the round number of both
P and Q.

Theorem 8.2.5. Let n > 2 and X, Y ⊆ n,A an iterated protocol with safe-consensus objects, S a reachable
state of A in some round r > 0 and let Q1 = S · ξ(X) and Q2 = S · ξ(Y) be such that n /∈ Dr+1

A (Q1, Q2).
Then Q1 and Q2 are connected in round r + 1 with a C-regular path of states p such that

(A) If Dr+1
A (Q1, Q2) = ∅, then deg p > n− 2.

(B) If the set Dr+1
A (Q1, Q2) is not empty, then

1. deg p > min{n− |b|}b∈Dr+1
A (Q1,Q2)

;

2. for every Z ∈ iSets(p) with |Z| < n− 2, there exists an unique b ∈ Dr+1
A (Q1, Q2) such that

Z = n− b.

Proof. By Lemma 8.1.3, Dr
A(P1, P2) = {b ∈ ΓA(n) | b ∈ InvS and scval(b, P1) 6= scval(b, P2)},

where Pl is a one-round successor state of S and InvS = Inv(Pl), l = 1, 2. Let InvS = {b1, . . . , bq}.
By Lemma 8.2.4, we can connect the state Q1 with R1 = S · ξ(Y(1) ∪ (X − X(1))) using a C-regular
path p1 : Q1 ∼ · · · ∼ R1 such that

(A1) If b1 /∈ Dr+1
A (Q1, R1), then deg p1 > n− 2.

(B1) If b1 ∈ Dr+1
A (Q1, R1), then deg p1 > n− |b1| and n− b1 ∈ iSets(p1).

Notice that if there is a set Z ∈ iSets(p1) with size strictly less that n− 2, then it must be true that
b1 ∈ Dr+1

A (Q1, R1), because if b1 /∈ Dr+1
A (Q1, R1), the by (A1), |Z| > n− 2 and this is impossible.

Thus the conclusion of property (B1) holds for p1, which means that n− b1 ∈ iSets(p1). Examining
the proof of Lemma 8.2.4 we can convince ourselves that every W ∈ iSets(p1) such that W 6=
n− |b1| has cardinality at least n− 2, thus Z = n− b1.

Applying Lemma 8.2.4 to the states R1 and R2 = S · ξ(Y(1) ∪ Y(2) ∪ (X − (X(1) ∪ X(2)))), we
find a C-regular path p2 : R1 ∼ · · · ∼ R2 such that p2 and b2 enjoy the same properties which p1
and b1 have. We can combine the paths p1 and p2 to obtain a C-regular path p12 : Q1 ∼ · · · ∼ R2
from Q1 to R2 satisfying the properties

(A2) If {b1, b2} ∩Dr+1
A (Q1, R2) = ∅, then deg p12 > n− 2.

(B2) If {b1, b2} ∩Dr+1
A (Q1, R2) is not empty, then

1. deg p12 > min{n− |b|}b∈{b1,b2}∩Dr+1
A (Q1,R2)

;

2. for every Z ∈ iSets(p12) with |Z| < n − 2, there exists an unique b ∈ {b1, b2} ∩
Dr+1
A (Q1, R2) such that Z = n− b.
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We can repeat this process for all s ∈ {1, . . . , q}. In general, if Rs = S · ξ((⋃s
i Y(i))∪ (X− (

⋃s
i X(i)))),

we can construct a C-regular path
p1s : Q1 ∼ · · · ∼ Rs,

with the properties

(As) If {b1, . . . , bs} ∩Dr+1
A (Q1, Rs) = ∅, then deg p1s > n− 2.

(Bs) If {b1, . . . , bs} ∩Dr+1
A (Q1, Rs) is not empty, then

1. deg p1s > min{n− |b|}b∈{b1,...,bs}∩Dr+1
A (Q1,Rs)

;

2. for every Z ∈ iSets(p1s) with |Z| < n − 2, there exists an unique b ∈ {b1, . . . , bs} ∩
Dr+1
A (Q1, Rs) such that Z = n− b.

As Rq = S · ξ((⋃q
i Y(i)) ∪ (X − (

⋃q
i X(i)))) = S · ξ(Y) = Q2, the path p1q is the desired C-regular

path from Q1 to Q2, fulfilling conditions (A) and (B) (because {b1, . . . , bq} ∩ Dr+1
A (Q1, Rq) =

InvS ∩Dr+1
A (Q1, Q2) = Dr+1

A (Q1, Q2)). The result follows.

S · ξ({1, 2, 5}, {3, 4, 6, 7}) ∼ S · ξ({5}, {1, 2}, {3, 4, 6, 7}) ∼ S · ξ({5}, {1, 2, 3, 4, 6, 7})

p1, p2 p5

p3, p4 p6, p7

p5

p1, p2

p3, p4 p6, p7

p5

p1, p2 p3, p4 p6, p7

S · ξ({5}, {1, 2, 3, 4, 6, 7}) ∼ S · ξ({5}, {6, 7}, {1, 2, 3, 4}) ∼ S · ξ({5, 6, 7}, {1, 2, 3, 4})

p5

p1, p2 p3, p4 p6, p7

p5

p6, p7

p1, p2 p3, p4

p5 p6, p7

p1, p2 p3, p4

(a)

(b)

(c)

b1 : p1, p2

b2 : p3, p4, p5

b3 : p6, p7

S · ξ({1, 2, 3, 4}, {5, 6, 7}) ∼ S · ξ({1, 2}, {3, 4}, {5, 6, 7}) ∼ S · ξ({1, 2}, {3, 4, 5, 6, 7}) ∼ S · ξ({1, 2}, {5}, {3, 4, 6, 7}) ∼ S · ξ({1, 2, 5}, {3, 4, 6, 7})

p1, p2 p3, p4

p5 p6, p7

p1, p2

p3, p4

p5 p6, p7

p1, p2

p3, p4, p5 p6, p7

p1, p2

p5

p3, p4 p6, p7

p1, p2 p5

p3, p4 p6, p7

Figure 8.4: The path of the proof of Theorem 8.2.5, for n = 7 processes, the sets X = {1, 2, 3, 4}, Y =
{5, 6, 7} and the boxes b1, b2, b3.

As an example of the result proved in Theorem 8.2.5, we connect the states P, Q presented in
the examples of Section 8.2.1. By applying Theorem 8.2.5, we obtain a C-regular path q, which
is given in Figure 8.4. It is divided into three parts for the sake of space. The first section of the
path q is the five-state path q1 specified in part (a) of the figure, this is precisely the path that we
constructed in the previous section using the Stairway method (Lemma 8.2.4) applied to the sets
X = {1, 2, 3, 4}, Y = {5, 6, 7} and box b2 = {3, 4, 5}. The middle path q2 of part (b) of Figure 8.4,
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is obtained by using the Stairway method1 for the sets X′ = {1, 2, 5}, Y′ = {5} and the box b1 =
{1, 2}. The last path q3 in part (c) of Figure 8.4 is obtained again with the Stairway method used
for the sets X′′ = {5}, Y′′ = {5, 6, 7} and box b3. Joining the three paths we obtain the desired C-
regular path q connecting P and Q. For simplicity, we have omitted the elements of the set iSets(X)
from the drawings of Figure 8.4, but it is easy to see that deg q > 4 = 7− 3 = 7− |b2|. Also, as
scval(b2, P) = 3 6= 5 = scval(b2, Q), we have that {1, 2, 6, 7} = 7− {3, 4, 5} = 7− b2 ∈ iSets(q).

In the next chapter, we use Theorem 8.2.5 to prove the main result of the second part of this
thesis: A matching lower bound on the number of safe-consensus shared objects needed to solve
the consensus task with an iterated protocol with safe-consensus shared objects. Thus we will
prove that the consensus protocol of Chapter 7 is sharp.

1Of course, it can happen that in a given situation, it is not necessary to apply all the steps of the Stairway method.
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9
A Tight lower bound to implement consensus in

the iterated model with safe-consensus

In this Chapter, we present the main result of the second part of this thesis: A matching lower
bound on the number of safe-consensus objects needed to solve consensus with any iterated pro-
tocol, as we have defined them in Chapter 6. Our lower bound proof is based on standard biva-
lency arguments [FLP85], but in order to be able to apply them, a careful combinatorial work is
necessary. We give a brief analysis and describe all the details in the following pages.

The combinatorial results which we develop in this chapter, tell us something about the con-
nectivity of simple graphs, specifically, connectivity of subgraphs of Johnson graphs. In Section 9.1,
we introduce the necessary concepts regarding graph theory and Johnson graphs and then we
prove Theorem 9.1.10, one of the results that we need to be able to show the lower bound result.
Later, in Section 9.2, we give an intuitive overview of the main details behind the proof of the
lower bound. We use the consensus protocol of Chapter 7 to show how the processes execute the
protocol and invoke the safe-consensus shared objects against a path of connected initial states,
in such a way that in each iteration of the protocol, the path of initial states is transformed into a
path with decreasing degree of indistinguishability, until the paths connecting states vanish and
the processes can make a decision on the consensus output. We also modify this protocol to obtain
a “bad protocol” with few safe-consensus objects and we show how this protocol is unable to solve
consensus, because it cannot disconnect two specific reachable states, which are connected with
a path. Thus, this bad protocol will provide us with an example exhibiting the key ingredients
of the lower bound proof. In the last section, we present the formal proof of the lower bound on
the number of safe-consensus objects needed by any iterated protocol with safe-consensus objects
that solves consensus.

9.1 The combinatorics of iterated protocols with safe-consensus

In this section, we present definitions and results regarding graph theory and in particular, John-
son graphs and the connectivity of their subgraphs, which are needed to prove Theorem 9.1.10,
the combinatorial result needed in the lower bound proof. We also gives a brief analysis of how
our lower bound result was born, together with the formulation of Theorem 9.1.10. To do this
analysis, we use the consensus protocol presented in Chapter 7 and examining its combinatorial
properties.
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9.1.1 Subgraphs of Johnson graphs

Our graph terminology is standard, see for example [Bol98], all the graphs that we use are simple
graphs. For any set A and E ⊆ P(A), we denote the union of all the elements of every set in E as⋃

E.

Definition 9.1.1. For 1 6 m 6 n, the Johnson graph Jn,m has as vertex set all subsets of n of cardi-
nality m, two vertices b1, b2 are adjacent if and only if |b1 ∩ b2| = m− 1. The set V(Jn,m) will be
denoted by Vn,m.

Johnson graphs are closely related to coding theory, in particular, they have a deep relationship
with Johnson schemes [DL98]. Both Johnson graphs and Johnson schemes are named after Selmer
M. Johnson. Examples of Johnson graphs include all complete graphs on n vertices, isomorphic to
Jn,1; the octahedral graph is the graph J4,2; J5,2 is isomorphic to the complement of the Petersen graph.

Definition 9.1.2. Let 1 6 m 6 n and U ⊆ Vn,m. Define the set ζ(U) as

ζ(U) = {c ∪ d | c, d ∈ U and |c ∩ d| = m− 1}.
�� ��9.1

Notice that each f ∈ ζ(U) has size m + 1 because, if f = c ∪ d for c, d ∈ U, then |c| = |d| = m
and it is known that |c ∩ d| = m− 1⇔ |c ∪ d| = m + 1. Thus ζ(U) ⊆ Vn,m+1.

Definition 9.1.3. For any U ⊆ Vn,m and v = 0, . . . , n−m, the iterated ζ-operator ζv is given by

ζv(U) =

{
U if v = 0,
ζ(ζv−1(U)) otherwise.

�� ��9.2

As U ⊆ Vn,m, we can check that ζv(U) ⊆ Vn,m+v. A simple, but useful property of the ζ-
operator is that ⋃

ζv(U) ⊆
⋃

U.
�� ��9.3

9.1.2 Combinatorial properties of a consensus protocol

Before proving Theorem 9.1.10, we give a short description of how the main statement of the lower
bound result and Theorem 9.1.10 were conceived. We use as a guiding example the consensus
protocol of Chapter 7.

In view of the representation of invocations of safe-consensus shared objects as boxes (that
is, as subsets of n, see Definitions 6.1.3 and 6.1.4) in a protocol with safe-consensus, we can use
the framework introduced in the previous section to identify combinatorial properties of iterated
protocols with safe-consensus that solve the consensus task. Let A be the consensus protocol of
Chapter 7 and suppose that n = 4. It is easy to see that for all m ∈ {2, 3, 4},

νA(4, m) = 4−m + 1 and νA(4) =
(

4
2

)
= 6.

In part (a) of Figure 9.1, we can see the same figure that we studied for the first time in Sec-
tion 7.2. This is a graphical representation of the invocations of shared object performed by the
processes when they execute the protocol A to solve consensus, for the case of four processes. By
the results of Chapter 7, we can identify a 2coalitions-consensus object 2CCi with a safe-consensus
shared object and each safe-consensus object can be identified with a box bi, accordingly to which
processes are invoking the shared object. This new representation of the execution of A using
boxes is depicted in part (b) of Figure 9.1, so that we have that
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ΓA(4, 2) = {{1, 2}, {2, 3}, {3, 4}};

ΓA(4, 3) = {{1, 2, 3}, {2, 3, 4}};

ΓA(4, 4) = {4}.

It is not hard to see that if we modify the protocol A in such a way that the processes p3, p4 never
invoke a safe-consensus object only the two of them, then the modified protocol will fail to solve
the consensus task and the same is true if the processes p2, p3 never invoke a safe-consensus object,
or any other choice of removal of invocations of safe-consensus objects done by the processes in
A and represented in Figure 9.1.

2CC1 2CC2 2CC3

2CC4 2CC5

2CC6

p1 p2 p2 p3 p3 p4

{1, 2} {2, 3} {3, 4}

{1, 2, 3} {2, 3, 4}

{1, 2, 3, 4}

p1 p2 p2 p3 p3 p4

(a) (b)

Figure 9.1: The combinatorial representation of the invocations of safe-consensus objects in a 4-
process consensus protocol.

The question that we must try to answer is this: What happens combinatorially when we
remove one safe-consensus invocation (i.e., a box) from A ? In order to give an answer, we can
use the framework of Johnson graphs previously defined.

Let Um = ΓA(4, m) (m ∈ {2, 3, 4}). We can identify each set Um of A as a subset of vertices of
J4,m, thus, Um ⊂ V4,m. Um induces a subgraph Gm of J4,m, m ∈ {2, 3, 4}. Now, Figure 9.1 suggest
that, in some manner, the processes obtain the set of 3-boxes U3 by applying the ζ-operator to the
set U2; and the singleton U4 is obtained with one application of ζ to U3. In short,

ζ(U2) = U3 and ζ(U3) = U4.
�� ��9.4

But using the two equalities with the iterated ζ-operator we have also that

ζ2(U2) = ζ(ζ(U2)) = ζ(U3) = U4,
�� ��9.5

therefore, ζ2(U2) = U4 = {4} and the consensus protocol of Chapter 7 satisfies these equalities
with the ζ-operator and the sets of boxes Um. Notice also that the graphs Gm, induced by the boxes
of A, are all connected and each Gm has order 4−m + 1.

What happens if we remove one vertex, for example, b = {3, 4} from the graph G2 ? Or
equivalently, what happens if we forbid processes p3, p4 to invoke together a safe-consensus object
in A ? In this case, we obtain a new subgraph G′2 of J4,2, induced by the set of vertices U′2 =
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{{1, 2}, {2, 3}} of cardinality 4− 2 = 2. The equalities of
�� ��9.4 and

�� ��9.5 are no longer true for the
sets U′2, U3 and U4, as

ζ(U′2) = {{1, 2, 3}} ⊂ U3 and ζ2(U′2) = ζ({{1, 2, 3}}) = ∅ 6= U4.

If instead of considering the graph induced by U′2, we consider the graph G′′2 induced by the set
U′′2 = {{1, 2}, {3, 4}} (again, we forbid the invocations of safe-consensus objects represented by
the box {2, 3}), then the result is basically the same, because ζ(U′′2 ) = ∅, so that ζ2(U′′2 ) = ∅ 6=
ΓA(4, 4). Notice also that while G′2 is connected, G′′2 is disconnected, but both graphs have only
4− 2 = 2 vertices. We can generate similar results if we remove one vertex from any of the sets
U3, U4.

All these examples suggest that for any iterated protocol for four processes that solves the
consensus task, the equalities given in

�� ��9.4 and
�� ��9.5 must be fulfilled and a necessary condition

for this to be true is that νA(4, m) > 4− m for all m = 2, 3, 4. With a little effort, we can repeat
this experiment for the consensus protocol of Chapter 7 for any n > 4 and the results would be
the same. In summary, these examples lead us to conjecture that for any n > 2 and any iterated
protocol A that solves n-consensus, it must be true that

νA(n, m) > n−m for all m ∈ {2, . . . , n},

that is, the protocol A must allow the processes to invoke safe-consensus shared objects by sets
of m processes in at least n−m + 1 different ways. Thus, in order to show true our lower bound
result, our main objective is to prove that if νA(n, m) 6 n−m for some m, then A cannot solve the
consensus task. And what happens in general to the combinatorics of A when νA(n, m) 6 n−m
? Our 4-process example says that ζ2(U′2) = ∅, which can be interpreted in the following way: It
is impossible to obtain the set ΓA(4, 4) = {4} if the number of 2-boxes is at most 4− 2 = 2. This
can be expressed in the general setting as follows:

If νA(n, m) 6 n−m, then ζn−m(ΓA(n, m)) = ∅.

{2, 4}

{4, 7}

{4, 6}

{3, 5}

{1, 3}

{1, 3, 5}

{2, 4, 7}

{4, 6, 7}

{2, 4, 6}

{2, 4, 6, 7} ∅

U ζ(U)

ζ2(U) ζ3(U) = ζ5(U)

Figure 9.2: A subgraph of J7,2 with 7− 2 = 5 vertices such that ζ7−2(U) = ∅.

But this is nothing more that an application of Theorem 9.1.10. We will take any subset U ⊆
Vn,m such that |U| 6 n − m and prove that ζn−m(U) = ∅. We can see a graphical example of
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Theorem 9.1.10 in Figure 9.2. In Section 9.3, we will confirm that this combinatorial property is
indeed necessary to solve n-consensus with any iterated protocol with safe-consensus objects.

9.1.3 The connectivity of subgraphs of Jn,m

We are ready to prove all the combinatorial results that we need. Besides the inequalities with
respect to the quantity n−m, we will see in the results of this section that connectivity also plays
an important role in the development of Theorem 9.1.10.

Lemma 9.1.4. Let U ⊆ Vn,m and G = G [U]. The following properties are satisfied.

(i) If G is connected, then
∣∣⋃U

∣∣ 6 m− 1 + |U|.

(ii) If U1, . . . , Ur are connected components of G, then ζ(
⋃r

i=1 Ui) =
⋃r

i=1 ζ(Ui).

Proof. (i) can be proven easily using induction on |U| and (ii) is an easy consequence of the defini-
tions, thus we omit the proof.

Lemma 9.1.5. Let U ⊆ Vn,m with |U| 6 n−m. If G [U] is connected then
⋃

U 6= n.

Proof. Suppose that with the given hypothesis
⋃

U = n. As G [U] is connected, we can use part
(i) of Lemma 9.1.4 to obtain the inequality n 6 m + |U| − 1. But this implies that |U| > n−m + 1
and this is a contradiction. Therefore

⋃
U 6= n.

The following lemma is about subgraphs of Jn,2, it is a small result needed to give the full proof
of our lower bound (see Theorem 9.3.5). However, this result is far easier to prove than Theorem
9.1.10.

Lemma 9.1.6. Let U ⊂ Vn,2 with |U| 6 n− 2. Then there exists a partition n = A ∪ B such that

(∀b ∈ U)(b ⊆ A or b ⊆ B).

Proof. If
⋃

U 6= n, then setting A = n− {i} and B = {i} where i /∈ ⋃U we are done. Otherwise,
by Lemma 9.1.5, the induced subgraph G = G [U] of Jn,2 is disconnected. There exists a partition
V1, V2 of V(G) = U with the property that there is no edge of G from any vertex of V1 to any vertex
of V2. Let

A =
⋃

V1 and B =
⋃

V2.

It is easy to show that n = A ∪ B is the partition of n that we need.

Lemma 9.1.7. Let U ⊂ Vn,m with |U| > 1 and G = G [U] a connected subgraph of Jn,m. Then the graph
G′ = G [ζ(U)] is connected and

⋃
ζ(U) =

⋃
U.

Proof. We show that G′ is connected. If G contains only two vertices, then G′ contains only one
vertex and the result is immediate. So assume that |U| > 2 and take b, c ∈ ζ(U). We need to show
that there is a path from b to c. We know that b = b1 ∪ b2 and c = c1 ∪ c2 with bi, ci ∈ U for i = 1, 2.
As G is connected, there is a path

v1 = b2, v2, . . . , vq = c2,
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and we use it to build the following path in G′,

b = b1 ∪ v1, v1 ∪ v2, . . . , vq−1 ∪ vq, c = vq ∪ c1,

thus b and c are connected in G′, so that it is a connected graph.
Now we prove that

⋃
ζ(U) =

⋃
U. By Equation

�� ��9.3 ,
⋃

ζ(U) ⊆ ⋃
U, so it only remains to

prove the other inclusion. Let x ∈ ⋃U, there is a vertex b ∈ U such that x ∈ b and as |U| > 1
and G is connected, there exists another vertex c ∈ U such that b and c are adjacent in G. Then
b ∪ c ∈ ζ(U), thus

x ∈ b ⊂ b ∪ c ⊂
⋃

ζ(U),

therefore
⋃

U ⊆ ⋃ ζ(U) and the equality holds. This concludes the proof.

Lemma 9.1.8. Let U ⊆ Vn,m, G = G [U] , G′ = G [ζ(U)] and U be the set of connected components of the
graph G. Then the following conditions hold:

1. For any connected component V of G′, there exists a set O ⊆ U such that

V = ζ(
⋃
O) =

⋃

Z∈O
ζ(Z).

2. If V, V ′ are two different connected components of G′ and O,O′ ⊆ U are the sets which fulfill
property 1 for V and V ′ respectively, then O ∩O′ = ∅.

Proof. Part 2 is clearly true, so we only need to prove part 1. Define the graphH = (V(H), E(H))
as follows:

V(H) = U ;

Two vertices Z, Z′ form an edge in E(H) if and only if there exist b, c ∈ Z and d, e ∈ Z′ such
that

– |b ∩ c| = m− 1 and |d ∩ e| = m− 1

–
∣∣(b ∪ c) ∩ (d ∪ e)

∣∣ > m.

Roughly speaking, H describes for two connected components Z, Z′ of G, whether ζ(Z), ζ(Z′) lie
in the same connected component of G′ or not. Let V be a connected component of G′, if b ∈ V,
then b = b1 ∪ b2, where b1, b2 are in some connected component Zb ⊆ U of G. In H, there exists a
component O such that Zb ∈ O. By Lemma 9.1.7, G [ζ(Zb)] is connected and b ∈ ζ(Zb) ∩ V, so it
is clear that ζ(Zb) ⊆ V. Suppose that Z′ ∈ O with Z′ 6= Zb and these components form an edge in
H. This means that G [ζ(Zb)] and G [ζ(Z′)] are joined by at least one edge in G′, thus every vertex
of ζ(Z′) is connected with every vertex of ζ(Zb), and as ζ(Zb) ⊆ V, ζ(Zb) ∪ ζ(Z′) ⊆ V. We can
continue this process with every element of the set O − {Zb, Z′} to show that

ζ
(⋃
O
)
=

⋃

Z∈O
ζ(Z) ⊆ V.

(The first equality comes from part (ii) of Lemma 9.1.4). We prove the other inclusion, if V = {b},
we are done. Otherwise, let c ∈ V − {b}, if c ∈ ζ(Zb), then c ∈ ζ

(⋃O
)
. In case that c /∈ ζ(Zb),
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there must exists some connected component Zc of G such that c ∈ ζ(Zc) and Zc 6= Zb. In G′, we
can find a path b = v1, . . . , vq = c where vi ∈ V for i = 1, . . . , q. The set Q ⊂ U defined as

Q = {X ∈ U | (∃j)(1 6 j 6 q and vj ∈ ζ(X))},

can be seen to have the property that every pair of vertices X, X′ ∈ Q are connected by a path in
H. Since Zb, Zc ∈ Q, they are connected in H and as Zb ∈ O, then Zc ∈ O, so that c ∈ ζ(

⋃O).
Therefore V ⊆ ζ(

⋃O) and the equality V =
⋃

Z∈O ζ(Z) holds. This proves part 1 and finishes the
proof.

Lemma 9.1.9. Let U ⊆ Vn,m and U be the set of connected components of G [U]. Then for all s ∈
{0, . . . , n−m} and Gs = G [ζs(U)], the following conditions are satisfied.

H1 For every connected component V of the graph Gs, there exists a set O ⊆ U such that
∣∣⋃V

∣∣ 6 m− 1 + ∑
Z∈O

∣∣Z
∣∣.

�� ��9.6

H2 If V, V ′ are two different connected components of Gs and O,O′ ⊆ U are the sets which make true
the inequality given in

�� ��9.6 for V and V ′ respectively, then O ∩O′ = ∅.

Proof. We prove the lemma by using induction on s. For the base case s = 0, G0 = G [U], we use
Lemma 9.1.4 and we are done. Suppose that for 0 6 s < n−m, H1 and H2 are true. We prove the
case s + 1, let W be a connected component of the graph Gs+1. By part 1 of Lemma 9.1.8, we know
that there is a unique set Q of connected components of Gs such that

W =
⋃

Q∈Q
ζ(Q)

and because ζ(Q) 6= ∅, |Q| > 1, so that by Lemma 9.1.7,
⋃

ζ(Q) =
⋃

Q for all Q ∈ Q, thus it is
true that

⋃
W =

⋃( ⋃

Q∈Q
ζ
(
Q
))

=
⋃

Q∈Q

(⋃
ζ
(
Q
))

=
⋃

Q∈Q

(⋃
Q
)
.

By the induction hypothesis, |⋃Q| 6 m− 1 + ∑Z∈OQ
|Z|, where OQ ⊆ U for all Q ∈ Q and when

Q 6= R, OQ ∩OR = ∅. With a simple induction on |Q|, it is rather forward to show that

∣∣⋃W
∣∣ 6 m− 1 + ∑

Z∈O

∣∣Z
∣∣,

where O =
⋃

Q∈QOQ, thus property H1 is fulfilled. We now show that condition H2 holds. If
W ′ is another connected component of Gs+1, then applying the above procedure to W ′ yields
W ′ =

⋃
S∈S ζ(S),

⋃
W ′ =

⋃
S∈S
(⋃

S
)

and
∣∣⋃W ′

∣∣ 6 m− 1 + ∑X∈O′
∣∣X
∣∣, with O′ = ⋃

S∈S OS. By 2
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of Lemma 9.1.8,Q∩S = ∅, so that if Q ∈ Q and S ∈ S , then Q 6= S and the induction hypothesis
tell us that OQ ∩OS = ∅, thus

O ∩O′ =
( ⋃

Q∈Q
OQ
)
∩
(⋃

S∈S
OS
)

=
⋃

(Q,S)∈Q×S

(
OQ ∩OS

)

= ∅,

and property H2 is satisfied, so that by induction we obtain the result.

We can now prove the main result of the combinatorial part of the proof of the lower bound.

Theorem 9.1.10. Let U ⊂ Vn,m such that |U| 6 n−m. Then ζn−m(U) = ∅.

Proof. For a contradiction, suppose that ζn−m(U) 6= ∅, then G [ζn−m(U)] is the graph Jn,n and
contains the unique connected component C = {n}, thus by Lemma 9.1.9, for some set O of
connected components of G [U],

n =
∣∣⋃C

∣∣ 6 m− 1 + ∑
Z∈O

∣∣Z
∣∣ 6 m− 1 +

∣∣U
∣∣,

and we conclude that |U| > n − m + 1, a contradiction. So that ζn−m(U) 6= ∅ is impossible.
Therefore ζn−m(U) has no elements.

9.2 The combinatorics of the lower bound

In this section, we give a general overview of the lower bound proof, by using the consensus pro-
tocol of Chapter 7 to present two examples that illustrate the combinatorial interactions between
the sets of processes that invoke safe-consensus shared objects (represented by boxes) and the sets
of processes that cannot distinguish between states of a path of connected reachable states in the
protocol. These examples will help us to understand the intuitive details of the lower bound proof.

9.2.1 The degree of indistinguishability of a path and safe-consensus invocations

Roughly, a typical consensus impossibility proof shows that a protocol A cannot solve consensus
because, given one execution of A in which processes decide a consensus value v, and a second
execution of A where the consensus output is v′ (v 6= v′), the global states of these executions can
be connected with paths of connected states, implying that some processes decide distinct output
values [FLP85, LAA87, CR12], violating the Agreement requirement of consensus. Any protocol
that is able to solve consensus, must prevent the existence of such paths of connected states.

For the case of our lower bound proof, the main circumstance that will preventA from solving
consensus is that for some m ∈ {2, . . . , n}, it is true that νA(n, m) 6 n − m, i.e., at most n − m
subsets of processes of size m can invoke safe-consensus shared objects in A.

We introduce two examples using the consensus protocol of Chapter 7. The first example
explains how the protocol works its way to separate connected global states so that the processes
can reach consensus; while in the second example we modify the protocol to obtain a bad protocol
which we use to explain how the lower bound proof finds a path of connected states which cannot
be separated by the modified protocol and because of this, the processes fail to make a consensus.
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Example: Reaching consensus.

We use the consensus protocol A from Chapter 7 to illustrate how a working protocol is able to
destroy a path of connected states using the invocations of the safe-consensus objects. Suppose
that n = 4 and let I0, I1 be the two initial states of A such that, all processes have as input values
0’s in I0 and 1’s in I1. Using Lemma 5.4.3, we can show easily that I0, I1 are connected with a path
of initial states

p0 : I0
{1,2,3}∼ J1

{1,2,4}∼ J2
{1,3,4}∼ J3

{2,3,4}∼ I1,
�� ��9.7

and now assume that the processes begin executing A (part (a) of Figure 9.3). After the proto-
col has been executed for three rounds, the processes have invoked three safe-consensus shared
objects represented by the 2-boxes {1, 2}, {2, 3}, {3, 4} ∈ ΓA(4, 2). With the invocations of these
safe-consensus objects, the processes can “weaken” the path p0 in part (b) of Figure 9.3. Notice
how the sets b1 = {3, 4}, X1 = {1, 2, 3} and X2 = {1, 2, 4} satisfy the following combinatorial
property

|b1 ∩ X1| = 1 and |b1 ∩ X2| = 1.
�� ��9.8

This important property allows the safe-consensus object invoked by p3 and p4 to be able to
weaken the path p0. It can be checked that if b1 does not fulfill

�� ��9.8 , then we can find an execution
of A in which the shared object represented by b1 is “useless”, it does not help us to weaken p0,
because we can use the Safe-Validity property of the safe-consensus task to find executions of A
in which the value returned to the processes by the shared object represented by b1 is the same in
all these executions, thus this value cannot help the processes to distinguish global states.

It can be seen that b2 = {2, 3}, X2 and X3 = {1, 3, 4} satisfy similar statements and the same
is true for b3 = {1, 2}, X3 and X4 = {2, 3, 4}. In summary, after three rounds of A, using the
safe-consensus objects represented by b1, b2 and b3, the processes are able to weaken the path
p0, and the result is a new path p1 (Figure 9.3 (c)), which is a path connecting the states I3

0 , I3
1 ,

which are successor states of I0 and I1. A fundamental property of p1 is that deg p1 = 2, being
X5 = {1, 2}, X6 = {1, 4} and X7 = {3, 4} the only elements in iSets(p1) with cardinality 2, while
in p0, all the sets Xl (l = 1, 2, 3, 4) have size three, thus deg p0 = 3. It is in this sense that the new
path p1 is weaker that p0 and there is no way to find a path of successor states of I0, I1 which does
not satisfy this property. The set of 2-boxes which satisfy property

�� ��9.8 for the path p0 is very
important, let

βA(p0; 2) = {b ∈ ΓA(4, 2) | (∃X, Y ∈ iSets(p0))(|X ∩ b| = 1∧ |Y ∩ b| = 1)},

thus, βA(p0; 2) = {{1, 2}, {2, 3}, {3, 4}} and this is the set of boxes which can weaken the path p0,
in the sense described above.

Now back to the execution ofA. If the processes continue to execute the protocol, they have to
work their way through the path p1 (part (c) of Figure 9.3). The shared objects that they will invoke
in the next two rounds are represented by b4 = {2, 3, 4} and b5 = {1, 2, 3} (b4, b5 ∈ ΓA(4, 3)) in part
(d) of Figure 9.3. A simple analysis will show us that b4 satisfies Equation

�� ��9.8 with the sets X5, X6
and the same is true for b5, X6 and X7. Again, it can be checked that if these conditions are not
fulfilled, then the path p1 cannot be weakened by the shared objects represented by the boxes b4, b5
and then the processes will not make any progress to reach a consensus. The result of applying
the safe-consensus objects represented by b4, b5 is the path p2 (Figure 9.3 (e)) with deg p2 = 1. As
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A

(a)

I0
{1,2,3}∼ J1

{1,2,4}∼ J2
{1,3,4}∼ J3

{2,3,4}∼ I1p0:

A

(b)

I0
{1,2,3}∼ J1

{1,2,4}∼ J2
{1,3,4}∼ J3

{2,3,4}∼ I1p0:

A

(c)

I30 ∼ · · ·
{1,2}∼ · · · {1,4}∼ · · · {3,4}∼ · · · ∼ I31p1:

{3, 4} {2, 3} {1, 2}

{2, 3, 4} {1, 2, 3}
A

(d)

I30 ∼ · · ·
{1,2}∼ · · · {1,4}∼ · · · {3,4}∼ · · · ∼ I31p1:

A

(e)

I50 ∼ · · ·
{1}∼ · · · {4}∼ · · · ∼ I51p2:

{1, 2, 3, 4}
A

(f)

I50 ∼ · · ·
{1}∼ · · · {4}∼ · · · ∼ I51p2:

Figure 9.3: The combinatorial interactions between paths of connected states of an iterated proto-
col A and the safe-consensus objects invoked by the processes.

with the path p0, the set of boxes which can weaken p1 is given by βA(p1; 3) = {{1, 2, 3}, {2, 3, 4}}
(this set is defined in a similar way as βA(p0; 2) is defined) and notice that βA(p0; 2) and βA(p1; 3)
are subsets of vertices of J4,2 and J4,3 respectively and they satisfy the relation

βA(p1; 3) ⊆ ζ(βA(p0; 2)).

Following the same argument, in the last round of A, all the processes invoke a safe-consensus
object represented by the set b6 = {1, 2, 3, 4} ∈ ΓA(4, 4), as shown in part (f) of Figure 9.3. We can
prove easily that

|b6 ∩ X8| = |b6 ∩ X9| = 1,
�� ��9.9

where X8 = {2} and X9 = {4}. Thus βA(p2; 4) = {{1, 2, 3, 4}} and we can also prove that b6 is the
unique set that can satisfy

�� ��9.9 . As a result of this action, there cannot be a new path connecting
successor states of I0 and I1. Thus the set of paths {p0, p1, p2} has been destroyed by the processes
and they finally take a decision on a unique consensus value. Finally, we have the relations

∅ 6= βA(p2; 4) ⊆ ζ(βA(p1; 3)) ⊆ ζ2(βA(p0; 2)).
�� ��9.10

A general form of Equations
�� ��9.8 and

�� ��9.10 play an important role in the lower bound proof. We
will prove that given any path s of connected states of a protocol, we can build a sequence of paths
of successor states such that Equation

�� ��9.10 is satisfied. Also, the proof of the lower bound shows

148



9.2. THE COMBINATORICS OF THE LOWER BOUND

that the general form of the condition βA(p2; 4) 6= ∅ of the previous example must be satisfied for
any iterated protocol that solves consensus using safe-consensus objects.

We remark that as we have proven in Chapter 7 that the protocol A is a correct consensus
protocol, it will do the same thing to any path of initial states that we propose, using only the
invocations of safe-consensus objects that the processes do.

Example: The lower bound proof.

To illustrate the lower bound proof,we now present a modified protocol, which is unable to solve
consensus and explain why. Suppose that we modify the protocol of Chapter 7 in such a way that
the only invocations of safe-consensus objects done by two processes are the 2-boxes c1 = {3, 4}
and c2 = {1, 2}. We obtain a new protocol A′ with the property that

νA′(4, 2) = 2 = 4− 2.

Assume now that the processes begin the execution of A′ and take the path p0 of Equation
�� ��9.7 .

When the processes try to weaken the path p0 (Figure 9.4 (b′)), with the safe-consensus objects
represented by the boxes c1, c2 ∈ ΓA′(4, 2), we can prove that there are executions ofA in which we
can obtain successor states I′0, I′1 of I0 and I1 respectively, connected with a path p′1 which is shown
in part (b′) of Figure 9.4. The most important property of p′1 is the following: The sets Y1 = {1, 2}
and Y2 = {3, 4} are the smallest sets of ids of processes that cannot distinguish between some pairs
of states of p′1, thus deg p′1 = 2 and for the set βA′(p0; 2), we have that βA′(p0; 2) = {{1, 2}, {3, 4}}
and these are the only boxes which can weaken the path p0.

A′

(b′)

I0
{1,2,3}∼ J1

{1,2,4}∼ J2
{1,3,4}∼ J3

{2,3,4}∼ I1p0 :

{3, 4} {1, 2}
A′

(c′)

I ′0 ∼ · · ·
{1,2}∼ · · · {3,4}∼ · · · ∼ I ′1p′1 :

Figure 9.4: The obstruction {p0, p′1, . . .} to reach consensus for the case νA′(4, 2) 6 2.

If now we try to mimic the behavior of the previous example with the execution of the protocol
A′, then to weaken the connectivity of p′1, some processes must invoke a safe-consensus object,
represented by a box c, such that

|c ∩Y1| = 1 and |c ∩Y2| = 1,
�� ��9.11

or, in other words, we must find a box c ∈ βA′(p′1; 3). But it can be proven that, as in the previous
example

βA′(p
′
1; 3) ⊆ ζ(βA′(p0; 2))

But using Definition 9.1.2, it is easy to check that ζ(βA′(p0; 2)) = ∅, thus there is no set c ⊆ n
that can satisfy Equation

�� ��9.11 with Y1 and Y2. This fact can be used to find executions of A in
which the output value of all the safe-consensus shared objects represented by all the boxes of
size m > 3 is fixed for all these executions, thus these shared objects will not help the processes to
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distinguish between some specific global states. As a result of this, we will be able to build a new
path p′2 with the same properties as p′1 and such that

deg p′2 > deg p′1.

Moreover, we can find a path p′u (u > 2) for any subsequent round of A and such that deg p′u >
deg p′1. This fact can be used to build a bivalency argument to show that A′ cannot solve consen-
sus. We can say that the infinite sequence of paths p0, p′1, . . . , p′u, . . . is an “obstruction” for A′ to
solve the consensus task.

The main circumstance that prevents the protocol A′ from solving consensus, is that
ΓA′(4, 2) = βA′(p0; 2) = {{1, 2}, {3, 4}}, which implies, for this example, that ζ(βA′(p0; 2)) = ∅
and this will imply that

βA′(pl ; 4) = ∅, pl ∈ {p0, p′1, . . . , p′u, . . .} and l > 2

In the general setting, we will use the fact that when for some m0 ∈ n, νA′(n, m0) =
|ΓA′(n, m0)| 6 n − m0, then ζn−m0(ΓA′(n, m0)) = ∅ (Theorem 9.1.10) and this will allow us to
find executions ofA′ in which we can find an infinite sequence of paths of connected states,where
these paths connect successor states of some initial states with different valencies.

9.3 The formal results

We have gathered all the elements needed to prove our lower bound result. As we have said
before, we will show that if A is an iterated protocol for n-consensus, such that for some m,
νA(n, m) 6 n − m, then there exists an execution of A in which two processes decide distinct
output values. Before proving our lower bound, we need a series of technical results that de-
scribe the global structure of iterated protocols with safe-consensus shared objects. One of these
results formalizes all the ideas described in the previous section with the two given examples of
an executing protocol and paths of connected reachable states.

9.3.1 Results for 3 6 m 6 n

Before proving the lower bound, for technical reasons, we need to divide our results in two cases.
The first case covers the inequality νA(n, m) 6 n − m for any iterated protocol A with safe-
consensus and m ∈ {3, . . . , n}. The main result in this case is Theorem 9.3.3. For a given path
s of connected states of an iterated protocol A, consider the set

βA(s) = {b ∈ ΓA(n) | (∃X, Y ∈ iSets(s))(|X ∩ b| = 1∧ |Y ∩ b| = 1)}.
The set βA(s) contains all boxes of the protocol A which can potentially weaken the path s, in the
sense of the two examples of Section 9.2. For example, given the consensus protocol of Chapter 7
for four processes and the path p0 of Figure 9.3, we have that βA(p0) = {{3, 4}, {2, 3}, {1, 2}}. If
m ∈ n, let

βA(s; m) = βA(s) ∩ ΓA(n, m).

Notice that βA(s; m) ⊆ Vn,m (see Section 9.1).
The next lemma is the basic tool in proving Theorem 9.3.3, we start with a path s of connected

states with various useful properties, related to the sets ΓA(n, m) (specifically, the complements of
some boxes of A are elements of the set iSets(s)) and as result, a new path q is built (in the next
iteration of A) such that q extends the properties of s.
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Lemma 9.3.1. Let n > 3 and 1 6 v 6 s 6 n− 2 be fixed. Suppose that A is an iterated protocol with
safe-consensus objects and there exists a path

s : S0
X1∼ · · · Xq∼ Sq (q > 1),

of connected states of round r > 0 such that

Λ1 deg s > v.

Λ2 For every Xi with v 6 |Xi| < s, there exists bi ∈ ΓA(n, n− |Xi|) such that Xi = n− bi

Λ3 n /∈ β(s).

Then in round r + 1 there exists a path

q : Q0 ∼ · · · ∼ Qu,

of connected successor states of all the Sj, such that the following statements hold:

Ψ1 If βA(s; n− v + 1) = ∅, then deg q > v.

Ψ2 If βA(s; n− v + 1) is not empty, then deg q > v− 1.

Ψ3 For every Z ∈ iSets(q) with |Z| = v− 1, there exist X, X′ ∈ iSets(s) and a unique b ∈ βA(s; n−
v + 1) such that Z = n− b = X ∩ X′ and b = c1 ∪ c2, ck ∈ ΓA(n, n− v).

Ψ4 For every Z ∈ iSets(q) with v 6 |Z| < s, there exists a unique b ∈ ΓA(n, n − |Z|) such that
Z = n− b.

Ψ5 βA(q; n− l + 1) ⊆ ζ(βA(s; n− l)) for v 6 l < s.

Proof. In order to find the path q that has the properties Ψ1-Ψ5, first we need to define a set of states
of round r + 1 of A, called Φr+1

A (s), which we will use to construct the path q. The key ingredient
of Φr+1

A (s) is the safe-consensus values of the boxes used in each member of Φr+1
A (s). Define the

set of states Φr+1
A (s) as

Φr+1
A (s) = {R | R = S · ξ(X) ∧ (S, X) ∈ States(s)× iSets(s)}.

Each element of Φr+1
A (s) is a state in round r+ 1 ofAwhich is obtained when all the processes with

ids in some set X ∈ iSets(s) execute concurrently the operations of A, followed by all processes
with ids in n− X. The safe-consensus values of each box for the states of Φr+1

A (s) in round r + 1
are defined using the following rules: Let b ∈ ΓA(n) be any box such that b /∈ β(s).

• If |X ∩ b| 6= 1 for every X ∈ iSets(s), then we claim that we can choose any element j ∈ N

such that j is the safe-consensus value of b in every state R ∈ Φr+1
A (s) such that b ∈ Inv(R).

• If there exists exactly one set X ∈ iSets(s) such that X ∩ b = {x}, then b has x as its safe-
consensus value in every state Q ∈ Φr+1

A (s) with b ∈ Inv(Q).
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We establish rules to define the safe-consensus values of every element of the set βA(s), using the
order on the set iSets(s) induced by the path s, when we traverse s from S0 to Sq. So that iSets(s)
is ordered as

X1, . . . , Xq.
�� ��9.12

For each b ∈ βA(s), suppose that Xi, Xi+z1 , . . . , Xi+zk , (1 6 i < i + z1 < i + z2 < · · · < i + zk 6
q; zj > 0 and k > 1) is the (ordered) subset of iSets(s) of all X ∈ iSets(s) with the property
|X ∩ b| = 1. Take the set Xi. If xi ∈ Xi ∩ b, then xi is the safe-consensus value of b for all the
elements of Φr+1

A (s) of the form Pj = S · ξ(Xj) where b ∈ Inv(Pj) and 1 6 j 6 i + z1 − 1. Next,
in all states Ru ∈ Φr+1

A (s) such that Ru = S · ξ(Xu) with b ∈ Inv(Ru) and i + z1 6 u 6 i + z2 − 1,
b has safe-consensus value equal to xi+z1 ∈ Xi+z1 ∩ b. In general, in all states Tv ∈ Φr+1

A (s) of the
form Tv = S · ξ(Xv) where b ∈ Inv(Tv) and i + zl 6 v 6 i + zl+1 − 1 and 1 6 l 6 k − 1, b has
safe-consensus value equal to xi+zl ∈ Xi+zl ∩ b. Finally, in each state Lw = S · ξ(Xw) ∈ Φr+1

A (s)
with b ∈ Inv(Lw) and i + zk 6 w 6 q, b has safe-consensus value equal to xi+zk ∈ Xi+zk ∩ b.

Using the Safe-Validity property of the safe-consensus task, it is an easy (but long) routine task
to show that we can find states of A in round r + 1 which have the form of the states given in
Φr+1
A (s) and with the desired safe-consensus values for every box.

We are ready to build the path q of the Lemma1. We use induction on q > 1. For the base case

when q = 1, we have that s : S0
X1∼ S1, with |X1| > v. Here we easily build the path S0 · ξ(X1)

X1∼
S1 · ξ(X1) which clearly satisfies properties Ψ1-Ψ5. Assume that for 1 6 w < q we have a path

q′ : Q0 ∼ · · · ∼ Ql (l > 1),

Satisfying conditions Ψ1-Ψ5 and such that Q0 = S0 · ξ(X1), Ql = Sw · ξ(Xw). We now connect the
state Ql with Q = Sw+1 · ξ(Xw+1). By Theorem 8.2.5, there is a C-regular path

v : Ql ∼ · · · ∼ Q′

such that Q′ = Sw · ξ(Xw+1) and v, Ql and Q′ satisfy conditions (A)-(B) of that theorem. Clearly
Dr+1
A (Ql , Q′) ⊆ βA(s), because the only boxes used byA in the states Ql and Q′with different safe-

consensus value, are the boxes which intersect two different sets X, X′ ∈ iSets(s) in one element.

Joining the path q′ with v, followed by the small path t : Q′
Xw+1∼ Q (of degree at least v), we obtain

a new path q : Q0 ∼ · · · ∼ Q. We now need to show that q satisfies properties Ψ1-Ψ5.

Ψ1 Notice that every box in β(s) has size no bigger that n− v + 1. Suppose that βA(s; n− v +
1) = ∅. In particular, this implies that Dr+1

A (Ql , Q′) ∩ ΓA(n, n− v + 1) = ∅. If it happens
that Dr+1

A (Ql , Q′) is void, then as condition (A) of Theorem 8.2.5 holds for v, deg v > v. But
if Dr+1

A (Ql , Q′) 6= ∅ we have that |b| 6 n − v for all b ∈ Dr+1
A (Ql , Q′), thus by part 1. of

property (B) of Theorem 8.2.5,

deg v > min{n− |b|}b∈Dr+1
A (Ql ,Q′)

> v.

By the induction hypothesis, deg q′ > v and also deg t > v, so that deg q > v.

1Notice that the order given to Φr+1
A (s) in equation 9.12 is the precise order in which the states of this set will appear

in the path q.
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Ψ2 If βA(s; n− v + 1) 6= ∅, then either deg q′ > v− 1 (by the induction hypothesis) or deg v >
v − 1. This last assertion is true, because by (B) of Theorem 8.2.5, we have that deg v >
min{n− |b|}b∈Dr+1

A (Ql ,Q′)
> v− 1. Therefore deg q > v− 1.

Ψ3 We remark first that iSets(q) = iSets(q′) ∪ iSets(v) ∪ iSets(t). If we are given Z ∈ iSets(q)
such that |Z| = v− 1, then Z ∈ iSets(q′) or Z ∈ iSets(v). When Z ∈ iSets(q′), we use our
induction hypothesis to show that Z = Y ∩ Y′ = n− d for some Y, Y′ ∈ iSets(s) and unique
d ∈ βA(s; n − v + 1) such that d = d′ ∪ d′′, d′, d′′ ∈ ΓA(n, n − v). On the other hand, if
Z ∈ iSets(v), it must be true that Dr+1

A (Ql , Q′) 6= ∅ (if not, then deg v > n− 2 by property
(A) of Theorem 8.2.5 for v and this contradicts the size of Z). As v − 1 < n − 2, we can
apply part 2 of the condition (B) of Theorem 8.2.5 to deduce that Z = n − b for a unique
b ∈ Dr+1

A (Ql , Q′). Because |Z| = v− 1, |b| = n− v + 1. Now, b ∈ Dr+1
A (Ql , Q′) ⊆ βA(s),

thus there exists X, X′ ∈ iSets(s) such that |X ∩ b| = 1∧ |X′ ∩ b| = 1 and this clearly implies
that |X| = |X′| = v and n− b = X ∩ X′, that is,

Z = n− b = X ∩ X′,

and finally, we apply Λ2 of the path s to X, X′ to find two unique boxes c, c′ ∈ ΓA(n, n− v)
with X = n− c ∧ X′ = n− c′, so that

n− b = X ∩ X′ = (n− c) ∩ (n− c′) = n− (c ∪ c′),

then b = c ∪ c′ and condition Ψ3 is satisfied by q.

Ψ4 The path q fulfills this property because of the induction hypothesis on q′, condition Λ2 for
s and (B) of Theorem 8.2.5 for v.

Ψ5 Let l ∈ {v, . . . , s}. This property is satisfied by q if βA(q; n − l + 1) = ∅. Suppose that
c ∈ βA(q; n− l + 1), there exist X, Y ∈ iSets(q) such that |X ∩ c| = |Y ∩ c| = 1. Then |X| =
|Y| = l, so that we use property Ψ3 (or Ψ4) on X, Y to find two boxes bX, bY ∈ βA(s; n− l)
such that X = n − bX ∧ Y = n − bY. Also, X ∩ Y = n − c, thus n − c = X ∩ Y = (n −
bX) ∩ (n− bY) = n− (bX ∪ bY). Therefore c = bX ∪ bY and this says that c ∈ ζ(βA(s; n− l)).
Condition Ψ5 is fulfilled by q.

We have shown with induction that we can build the path q from the path s, no matter how many
states s has. This proves the Lemma.

The following Lemma is a weaker version of Lemma 9.3.1, and it can be proven mostly as a
consequence of that result.

Corollary 9.3.2. Let n > 3 and 1 6 s 6 n − 2 be fixed. Suppose that A is an iterated protocol with
safe-consensus objects and there exists a path

s : S0
X1∼ · · · Xr∼ Sq (q > 1),

of connected states of round r > 0 such that deg s > s and n /∈ βA(s). Then in round r + 1 there exists a
path

q : Q0
Z1∼ · · · Zu∼ Qu,

such that the following statements hold:
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Ψ1 If βA(s; n− s + 1) = ∅, then deg q > s.

Ψ2 If βA(s; n− s + 1) is not empty, then deg q > s− 1.

Ψ3 For every Z ∈ iSets(q) with |Z| = s− 1, there exist X, X′ ∈ iSets(s) and a unique b ∈ βA(s; n−
s + 1) such that Z = n− b = X ∩ X′.

Ψ5 βA(q; n− s + 2) ⊆ ζ(βA(s; n− s + 1)).

We have gathered all the required elements to prove Theorem 9.3.3. This result uses the prop-
erties of Lemma 9.3.1 to find an infinite sequence of paths of connected reachable states, all these
paths enjoy many of the properties of the resulting path of Lemma 9.3.1. To prove Theorem 9.3.3,
we need to apply Theorem 9.1.10 from Section 9.1.

Theorem 9.3.3. Let n > 3 and 3 6 m 6 n be fixed. Suppose that A is an iterated protocol with safe-
consensus objects such that νA(n, m) 6 n − m. If Sr, Qr are two reachable states in A for some round
r > 0, connected with a path q : Sr ∼ · · · ∼ Qr such that deg q > n− m + 1, then for all u > 0, there
exist successor states Sr+u, Qr+u of Sr and Qr respectively, in round r + u of A, such that Sr+u and Qr+u

are connected.

Proof. Let A be a protocol with the given hypothesis, set q0 = q and m = n − s + 1. Because
3 6 m 6 n, s ∈ {1, . . . , n− 2}. Using the path q0 and applying Corollary 9.3.2, we build a path
q1 : Sr+1 ∼ · · · ∼ Qr+1, connecting the successor states Sr+1, Qr+1 of Sr and Qr respectively, such
that

Ψ1,1 If βA(q0; n− s + 1) = ∅, then deg q1 > s− 1.

Ψ1,2 If βA(q0; n− s + 1) is not empty, then deg q1 > s− 1.

Ψ1,3 For every Z ∈ iSets(q1) with |Z| = s − 1, there exist X, X′ ∈ iSets(q0) and a unique b ∈
βA(q0; n− s + 1) such that Z = n− b = X ∩ X′.

Ψ1,5 βA(q1; n− s + 2) ⊆ ζ(βA(q0; n− s + 1)).

Starting from q1 and using induction together with Lemma 9.3.1, we can prove that for each u ∈
{1, . . . , s− 1}, there exist successor states Sr+u, Qr+u of the states Sr and Qr respectively, and a path

qu : Sr+u ∼ · · · ∼ Qr+u,

satisfying the properties:

Ψu,1 If βA(qu−1; n− s + u) = ∅, then deg qu > s− u.

Ψu,2 If βA(qu−1; n− s + u) is not empty, then deg qu > s− u.

Ψu,3 For every Z ∈ iSets(qu) with |Z| = s − 1, there exist X, X′ ∈ iSets(qu−1) and a unique
b ∈ βA(qu−1; n− s + 1) such that Z = n− b = X ∩ X′.

Ψu,4 For every Z ∈ iSets(qu) with s− u 6 |Z| < s− 1, there exist X, X′ ∈ iSets(qu−1) and a unique
b ∈ βA(qu−1; n− |Z|) such that Z = n− b = X ∩ X′ and b = c1 ∪ c2, ck ∈ βA(qu−1; n− |Z| −
1).
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Ψu,5 βA(qu; n− l + 1) ⊆ ζ(βA(qu−1; n− l)) for s− u 6 l < s.

When u = s− 1, we obtain a path qs−1 : Sr+s−1 ∼ · · · ∼ Qr+s−1 that connects the states Sr+s−1 and
Qr+s−1, such that

Ψs−1,1 If βA(qs−2; n− 1) = ∅, then deg qs−1 > 1.

Ψs−1,2 If βA(qs−2; n− 1) is not empty, then deg qs−1 > 1.

Ψs−1,3 For every Z ∈ iSets(qs−1) with |Z| = s− 1, there exist X, X′ ∈ iSets(qs−2) and a unique
b ∈ βA(qs−2; n− s + 1) such that Z = n− b = X ∩ X′.

Ψs−1,4 For every Z ∈ iSets(qs−1) with 1 6 |Z| < s− 1, there exist X, X′ ∈ iSets(qs−2) and a
unique b ∈ βA(qs−2; n− |Z|) such that Z = n− b = X∩X′ and b = c1 ∪ c2, ck ∈ βA(qs−2; n−
|Z| − 1).

Ψs−1,5 βA(qs−1; n− l + 1) ⊆ ζ(βA(qs−2; n− l)) for 1 6 l < s.

Our final goal is to show that for all v > s− 1, we can connect in each round r + v of A, successor
states of Sr and Qr. We first claim that for any w = 0, . . . , s− 1 and z > 0,

ζz(βA(qw; n− s + 1)) ⊆ ζz(ΓA(n, n− s + 1)),

(this is true because ζ preserves⊆) and combining this fact with the properties Ψu,5 and induction,
we can show that for 1 6 l < s

βA(qs−1; n− l + 1) ⊆ ζs−l(βA(ql−1; n− s + 1)) ⊆ ζs−l(ΓA(n, n− s + 1)).
�� ��9.13

And because |ΓA(n, n− s + 1)| = νA(n, n− s + 1) 6 s− 1 and m = n− s + 1, we use Theorem
9.1.10 to check that ζs−1(ΓA(n, n− s + 1)) = ∅, implying that

βA(qs−1; n) = ∅.

With all this data, Lemma 9.3.1 and an easy inductive argument (starting at the base case v =
s − 1), we can find for all v > s − 1, states Sr+v, Qr+v of round r + v of A, which are successor
states of Sr and Qr respectively and connected with a path qv such that

Ψ′v,1 deg qv > 1.

Ψ′v,2 For every Z ∈ iSets(qv) with |Z| = s − 1, there exist X, X′ ∈ iSets(qv−1) and a unique
b ∈ βA(qv−1; n− s + 1) such that Z = n− b = X ∩ X′.

Ψ′v,3 For every Z ∈ iSets(qv) with 1 6 |Z| < s− 1, there exist X, X′ ∈ iSets(qv−1) and a unique b ∈
βA(qv−1; n− |Z|) such that Z = n− b = X ∩ X′ and b = c1 ∪ c2, ck ∈ βA(qv−1; n− |Z| − 1).

Ψ′v,4 βA(qv; n− l + 1) ⊆ ζs−l(ΓA(n, n− s + 1)) for 1 6 l < s.

It is precisely these four properties of the path qv which allow us to find the path qv+1, applying
Lemma 9.3.1, such that qv+1 enjoys the same properties. Therefore, starting from round r, we can
connect in all rounds of A, successor states of Sr and Qr. The Theorem is proven.
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9.3.2 Results for m = 2

Now we will prove some technical results which cover the last case m = 2. The main result here
is Theorem 9.3.5. Our strategy is basically the same that we used for the previous case. Given
an iterated protocol with safe-consensus and a path of connected states with some properties, we
prove the existence of a new path in the next iteration of A, connecting successor states of the
states from the first path. Then we show that if νA(n, 2) 6 n− 2, we can build an infinite sequence
of paths of connected reachable states. It is in this section where Lemma 9.1.6 comes into play.
Our first lemma is very simlar to Lemma 9.3.1.

Lemma 9.3.4. Let A be an iterated protocol with safe-consensus objects. Suppose that there exists a parti-
tion n = A ∪ B and a path

p : S0 ∼ · · · ∼ Sl (l > 0)

of connected states in round r > 0 of A, with the following properties

I) iSets(p) = {A, B};

II) (∀b ∈ ΓA(n, 2))(b ⊆ A ∨ b ⊆ B).

Then in round r + 1 of A there exists a path

q : Q0 ∼ · · · ∼ Qs (s > 1)

of connected states and the following properties hold:

a) Each state Qk is of the form Qk = Sj · ξ(X), where X = A ∨ X = B;

b) iSets(q) = {A, B}.

Proof. This proof is very similar in spirit to the proof of Lemma 9.3.1, so we omit it.

Theorem 9.3.5. Let n > 2. If A is an iterated protocol for n processes using safe-consensus objects with
νA(n, 2) 6 n− 2 and S is a reachable state in A for some round r > 0, then there exists a partition of the
set n = A ∪ B such that for all u > 0, the states S · ξu(A) and S · ξu(B) are connected.

Proof. This proof is analogous to the proof of Theorem 9.3.3. We use Lemma 9.1.6 to find the
partition of n and then we apply induction combined with Lemma 9.3.4. We omit the details.

9.3.3 The lower bound proof

With Theorems 9.3.3 and 9.3.5 at hand, the stage is set to prove the principal result of the second
part of this thesis: The tight lower bound on the number of safe-consensus objects needed to solve
the consensus task, with any iterated protocol with safe-consensus shared objects. The lower
bound will be an easy corollary of Theorem 9.3.6, which says that any iterated protocol with safe-
consensus for n-consensus, must provide the processes with at least n− m + 1 m-boxes for each
m ∈ {2, . . . , n}, i.e., the processes must be able to invoke safe-consensus shared objects in groups
of size m in at least n−m + 1 different manners.

Theorem 9.3.6. Let n > 2. If A is an iterated protocol for n-consensus using safe-consensus objects, then
for every m ∈ {2, . . . , n}, νA(n, m) > n−m.
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9.3. THE FORMAL RESULTS

Proof. Assume that there exists a protocolA for consensus such that there is some m with 2 6 m 6
n with νA(n, m) 6 n−m. Let O, U be the initial states in which all processes have as input values
0s and 1s respectively. We now find successor states of O and U in each round r > 0, which are
connected. We have cases:

Case m = 2. By Theorem 9.3.5, there exists a partition of n = A ∪ B such that for any state S
and any r > 0, S · ξr(A) and S · ξr(B) are connected. Let OU be the initial state in which all
processes with ids in A have as input value 0s and all processes with ids in B have as input
values 1s. Then for all r > 0 we have that

O · ξr(A)
A∼ OU · ξr(A) and OU · ξr(B) B∼ U · ξr(B)

and the states OU · ξr(A) and OU · ξr(B) are connected. Thus, for any r-round partial exe-
cution of A, we can connect the states Or = O · ξr(A) and Ur = U · ξr(B).

Case 3 6 m 6 n. It is not hard to see that using Lemma 5.4.3, we can connect O and U with a
path q of initial states of A, such that deg q > n− 1 > n−m + 1. By Theorem 9.3.3, for each
round r > 0 of A, there exist successor states Or, Ur of O and U respectively, such that Or

and Ur are connected.

In this way, we have connected successor states of O and U in each round of the protocol A. Be-
cause A is a protocol that solves consensus, there exists u such that Uu, Ou are connected decision
states in round u of A. Since O is a 0-valent state and Ou is a successor state of O, all processes
decide 0 in Ou; and for similar reasons, all processes decide 1 in Uu. But the states Uu and Ou

are connected, thus if processes decide 0 in Ou, they must decide 0 in Uu, so we have reached a
contradiction. Therefore νA(n, m) > n−m.

Theorem 9.3.6 gives us precise information about the number of different invocations of safe-
consensus shared objects that the processes must perform when they are executing an iterated
protocol to solve the consensus task. This result is far stronger that proving that any iterated
protocol A with safe-consensus must satisfy the inequality νA(n) > (n

2) to be able to solve n-
consensus. Theorem 9.3.6 tell us that all inequalities νA(n, m) > n − m must be satisfied if the
protocolA is to solve consensus. For example, if n = 10 andA is a protocol to solve the consensus
task for ten processes, using safe-consensus shared objects, and such that

νA(10, m) = (10
m) for m 6= 7;

νA(10, 7) 6 10− 7 = 3.

This protocol A has in total νA(10) = ∑10
m=2 νA(10, m) = 45 + 120 + 210 + 252 + 210 + 3 + 45 +

10 + 1 = 896 different ways to invoke safe-consensus shared objects !! The consensus protocol
of Chapter 7 has only 45 boxes and is able to solve consensus. However, Theorem 9.3.6 allow
us to conclude that A cannot solve the consensus task, because νA(10, 7) 6 10− 7 = 3. So that
any iterated protocol that solves consensus, must satisfy all the inequalities given in Theorem
9.3.6. And the consensus protocol of Chapter 7 satisfies this result in the best way possible, as it is
confirmed in the following corollary.

Corollary 9.3.7. For n > 2 and any iterated protocolA that solves n-consensus with safe-consensus objects
, νA(n) > (n

2).
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CHAPTER 9. A LOWER BOUND TO IMPLEMENT CONSENSUS

Proof. Applying Theorem 9.3.6 we obtain the following

νA(n) =
n

∑
m=2

νA(n, m) >
n

∑
m=2

n− (m− 1) =
n(n− 1)

2
=

(
n
2

)
.

Therefore, the protocol of Chapter 7 which implements the consensus task is sharp and there
cannot be an iterated protocol with safe-consensus objects that solves the consensus task for n
processes with less that (n

2) safe-consensus objects.
The conclusions for the second part of this thesis can be found in Chapter 10.
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10
Conclusions

In this chapter, we gather all our conclusions about our research work, presenting a short review
of each part of this thesis and some open problems and further work that can be done to extend
our results.

In Section 10.1, we present our conclusions for the first part of this thesis and Section 10.2
contains our conclusions for the second part.

10.1 Computable manifolds

In the first part of this thesis, we have proposed a starting point to build a computable theory
for topological manifolds, viewing computability as a structure that we impose to topological
manifolds. We have provided the most basic constructs needed to give computable versions of
standard definitions and also proved many useful results. We also studied computable functions
between computable manifolds and defined computable submanifolds. Finally, we proved an
embedding theorem for compact computably Haussdorf computable manifolds, which is a com-
putable version of the result which states that every compact manifold embeds in some euclidean
space.

10.1.1 Further work and open problems

Starting from our computable theory of manifolds, there are many steps that can be taken to enrich
this theory, here is a small list of some possibilities.

• Investigate which computability properties of computable euclidean spaces generalizes to
computable manifolds.

• Try to improve the dimension of the euclidean space Rq in Theorem 4.2.2.

• Study specific computable classes of manifolds (e.g. computability in Cr or piecewise lineal
manifolds).

• Find out which computable separation axioms [Wei10] fulfill computable manifolds.

• Inquire the computability properties of spaces of continuous functions between computable
manifolds.

• Prove computable versions of important results about manifolds (e.g. the product structure
theorem [KS77, Rud01]).
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CHAPTER 10. CONCLUSIONS
10.1.2 Structures on topological manifolds and computability

The computable theory of topological manifolds that we present in this thesis could also be used
as a new part of the “standard” theory of manifolds. It is known that the most popular struc-
tures (topological, smooth and piecewise linear) coincide in dimension at most three and they
are different in dimensions at least four1 [Ker60, KS77, Rud01]. Also, it was recently proven in
[Man13] that in dimensions at least 5, topological manifolds cannot be triangulated as simpli-
cial complexes. We have introduced computability as a structure that we impose to topological
manifolds. Which is the relationship of computable structures with the classical structures and
simplicial triangulations? An important open question (among many others) in this direction,
concerning the computable theory and the standard one is the following: Does there exists a sec-
ond countable topological manifold E such that E does not admit a computable structure ?

10.2 The iterated model extended with safe-consensus

In the second part of this thesis, we have described the iterated model of distributed computing, a
useful tool to study and understand the behavior of distributed systems. Also, we described how
the runs of protocol in this model can be represented with simplicial complexes and we presented
some standard tools (i.e. connectivity of states, valency, etc.) commonly used to investigate dis-
tributed systems. And we described the set agreement task, one of the most important distributed
problems.

10.2.1 The IFSC model, consensus and set agreement

With the basic iterated model at hand, we defined in detail an extension of this model, using the
safe-consensus task of [AGL09]. To show to the reader what sort of results can be achieved with
the extended iterated model with safe-consensus and the topological approach, we introduced
a restricted version of the iterated model with safe-consensus, called the iterated shared memory
with full safe-consensus objects (IFSC) model. We first showed how to analyze protocol complexes
in the IFSC model, and we discovered that the protocol complexes of protocols in the IFSC model
are (globally) disconnected. We explained why local connectivity between some pairs of vertices
of the protocol complex is sufficient to prove that consensus is unsolvable in the IFSC model.
Thus we see that connectivity of the protocol complex (which is related to the notion of non-
distinguishable states) is indeed fundamental in the study of distributed computing.

But we also proved that in the new IFSC model, we can solve (n, n− 1)-set agreement. As this
problem cannot be solved in the basic iterated model [BG93a, SZ93, HS93], we can conclude that
the IFSC model is indeed more powerful that the basic iterated model.

Even when the IFSC model is a simple extension of the basic iterated model, there are several
questions which remain open. For example,

• Is the IFSC model equivalent (for task solvability) to the standard model of distributed
computed extended with safe-consensus shared objects, with the restriction that each safe-
consensus object is invoked by all processes ?

• Is the (n, n− 2)-set agreement task solvable in the IFSC model ?

1For the case of dimension four, smooth and piecewise linear structures coincide, but there exists a topological
4-manifold which has no smooth or picewise linear structure.
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10.2. THE ITERATED MODEL EXTENDED WITH SAFE-CONSENSUS

We conjecture that the answer to the second question is no.

10.2.2 The iterated model with safe-consensus, the consensus task and the lower
bound

After working with the IFSC model, we investigated the computational power of safe-consensus
to solve the consensus task. In the extended iterated model with safe-consensus tasks, we con-
structed a protocol which can solve n-consensus using (n

2) safe-consensus objects. To make our
protocol more readable and easier to understand, we introduced a new group consensus problem:
The g-2coalitions-consensus.

The most important result that we have obtained was Theorem 9.3.6, which describes the (n
2)

lower bound on the number of safe-consensus objects necessary to implement n-consensus in the
iterated model with safe-consensus. The proof of this lower bound is somewhat complicated. At
the very end, it is bivalency [FLP85], but in order to be able to use bivalency, an intricate con-
nectivity argument must be developed, in which we relate the way that the processes invoke the
safe-consensus shared objects with subgraphs of the Johnson graphs. As connectivity of graphs
appear again in the scene for consensus, this suggest that topology will play an important role
to understand better the behavior of protocols equipped with shared objects more powerful that
read/write memory registers (similar conclusions can be obtained from the work of [GRH06]).
The proofs developed to obtain the lower bound say that the connectivity of the topological struc-
tures given by the shared objects used by the processes, can affect the connectivity of the protocol
complex. In the case of the lower bound proof (Theorem 9.3.6), which can be consider as a 1-
dimensional topological case, the connectivity of the graphs build with the boxes representing
invocations of safe-consensus objects, affected the connectivity of the paths of global states, it was
the exploiting of this fact that allowed us to obtain our lower bound result.

Concerning the topology of protocols in the iterated model with safe-consensus, here are some
open questions and further work that can be done to extend the results presented in this thesis.

• Is the iterated model extended with safe-consensus objects equivalent (for task solvability) to
the wait-free standard model extended with safe-consensus objects ? This is a generalization
of the IFSC case and is a highly non-trivial question. We believe that a topological approach
like the one in [HR12] could be used to answer this question.

• Find a lower bound for νA(n), for any protocol A in the iterated model with safe-consensus
objects that can solve (n, k)-set agreement (e.g., generalize Theorem 9.3.6 to the case of the
set agreement task).

• Find out the precise connectivity (in the topological sense) of protocol complexes of protocols
in the iterated model with safe-consensus.

With this we conclude this work.
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