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ABSTRACT

The present thesis is about statistical clustering studied under a Bayesian nonparamet-
ric approach. I started with the general clustering problem, exploring the underlying
space where it takes place, and identified two particular situations which arise when the
grouping conditions change. Therefore, I concentrated on the study of some theoretical
properties of these situations, under a combinatorial and a statistical framework, as well
as on their practical application in Statistics.

The specific situations I studied can be encoded by different combinatorial classes: set
partitions, segmentations and ordered set partitions. After providing a brief account of
their properties and studying existent and novel probabilistic models defined over them,
I dedicated a space to propose statistical models.

The class of set partitions is adequate for the general clustering problem, and there is
a vast quantity of literature about it. In particular, I restricted my study to the theory of
random partitions and their relation with mixture models. While random partitions are
suitable to model discrete observations, mixture models are a natural extension for the
continuous case. Regarding this, I explored a recent mixture model and generalized it.
The results constitute an appealing alternative to standard nonparametric models.

For the class of segmentations, I found that it appears when the phenomena under
study evolves in such away that the observed data are indexed by some ordered set. There-
fore, the admissible groupings are those formed by consecutive observations with respect
to such a set. Given this and based on the random partition theory, I developed a novel
model for change-point detection.

Finally, I studied the relationship between the class of ordered set partitions and the
label-switching problem. This problem appears frequently in sampling schemes based on
mixture models, and there are many methodologies dealing with it. Thus, I presented a
proposal based on this class.





RESUMEN

La presente tesis versa sobre el problema de clustering estudiado bajo un enfoque Ba-
yesiano no paramétrico. Comenzando con este problema general y explorando el espacio
donde tiene lugar, dos situaciones específicas fueron identificadas, que surgen cuando las
reglas de agrupamiento cambian. Así, me concentré en el estudio de algunas de sus pro-
piedades teóricas, bajo un enfoque combinatorio y estadístico, y en su aplicación práctica
en Estadística.

Dichas situaciones de clustering se pueden codificar como clases combinatorias: set
partitions, segmentations y ordered set partitions. Luego de dar una breve exposición de sus
propiedades y estudiar existentes y nuevos modelos probabilísticos, dediqué un espacio
para proponer modelos estadísticos.

La clase set partitions es adecuada para el problema general de clustering y existe una
gran cantidad de literatura al respecto. En particular, me concentré en la teoría de par-
ticiones aleatorias y su relación con modelos de mezclas. Mientras que las particiones
aleatorias modelan observaciones discretas, los modelos de mezclas son una extensión
natural para el caso continuo. A este respecto, exploré un modelo de mezclas reciente y
lo generalicé. Los resultados representan una alternativa a los modelos no paramétricos
estándar.

Sobre la clase segmentations, encontré que aparece cuando el fenómeno bajo estudio
evoluciona de tal forma que los datos observados son indexados por un conjunto orde-
nado. Por tanto, los agrupamientos permitidos son aquellos que contienen observaciones
consecutivas con respecto a tal conjunto. Dado esto y basado en la teoría de particiones
aleatorias, desarrollé un novedoso modelo para detección de puntos de cambio.

Finalmente, estudié la relación entre la clase ordered set partitions y el problema de
label-switching. Este problema aparece frecuentemente en esquemas de simulación basa-
dos en modelos de mezclas, y existen muchas técnicas para resolverlo. Así, presento una
propuesta basada en esta clase.
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INTRODUCTION

This thesis studies statistical cluster modeling under a Bayesian nonparametric approach.
We aim to understand the underlying space where clustering takes place, as well as to
identify particular cluster situations—arising when the grouping conditions change—
in order to provide adequate probabilistic models dealing with the resulting problems.

Clustering is a problem where the principal objective is to group a collection of ob-
jects into subsets—or clusters—in such a way that objects within each cluster are more
similar to one another than those assigned to different clusters (Hastie et al. 2009). A
clustering model is completely specified after providing some method to measure such
similarity. Broadly speaking, these models can be categorized according to how similar-
ity is modeled: (i) unsupervised learning—term used in Machine Learning—where the
main rationale for grouping is based on distance metrics and algorithmic approaches,
and (ii) statistical clustering whichmakes use of stochastic methods to infer about the data
grouping structure. The counterpart of unsupervised learning is called supervised learn-
ing, and the main difference is that the number of clusters is known in the latter, either
they are previously fixed or are obtained after a training procedure. The analogous term
for supervised learning under the statistical perspective is known as discriminant analysis
or classification. The importance of this is that—historically—classification and statisti-
cal clustering were developed almost at the same time and, in some cases, referring to the
same problem.

Early statistical works on these topics date back to Pearson (1894) and Fisher (1936).
Fisher focused on the classification of observations into one of two groups through the
usage of a discriminant function. Based on Fisher’s work, we can find, for example, the ap-
proaches of Welch (1939), von Mises (1944) and Rao (1947) who defined different forms
to achieve correct classifications. With regard to clustering, Zubin (1938) and Tryon
(1939) can be considered the pioneers on this area. A more complete historical review is
provided, for example, by Hershberger (2005).

Under a probabilistic perspective, clustering methodologies have been extensively
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2 INTRODUCTION

studied by means of special random objects, called random partitions. First studies—
motivated by applications in population genetics—can be traced back to Ewens’ paper on
sampling theory of neutral alleles (Ewens 1972), and—in a more formal way—to King-
man’s works on partition structures (Kingman 1978a,b). Following this approach, special
attention has been placed on diverse representations of such structures, bringing pro-
cesses of fragmentation and coalescence (Kingman 1982) and models for species sam-
pling problems (Pitman 1996), among others. Random partitions are also important in
Bayesian Nonparametric Statistics. Theoretically, random partition distributions can be
obtained via de Finetti’s representation theorem, so this provides a natural way to address
the problem of clustering under a full Bayesian framework; see, for example, Hjort et al.
(2010) for an up-to-date survey about this connection and some applications. Hence, we
take as a starting point the random partition theory for the different problems we study
along this work.

The fact that we confine all the work presented here to a Bayesian perspective entails
some challenges. It is well known that—in order to perform any kind of analysis—every
Bayesianmodel requires to assign a prior probability distribution for all the unknown ele-
ments. For the case of clustering models, the principal uncertainty is about the grouping
structure. In other words, we need to define probability distributions over spaces which
describe all the possible ways to put together any set of objects given certain clustering
rules; it is important, thus, knowing well such spaces. We start studying the clustering
problem modeled by random partitions, and afterwards, we modify its clustering rules
in order to analyze the implications of these changes and investigate the possible appli-
cations of the resulting grouping structure. With the purpose of illustrate the different
clustering scenarios we are dealing with throughout this thesis, we make use of some urn
models next.

The first scenario corresponds to the one modeled by random partitions. Using an
urnmodel and fixing the number of urns, it consists on—given a set of 𝑛 labeled balls and
𝑚 unlabeled urns—thrown these balls into the different urns; we cannot leave empty urns.
A ball label is formed by two parts: an identifier and some information, i.e. a sampled
value. The clustering from this scheme is obtained by the urn contents—in terms of the
balls information—after ordering the urns according to their least ball identifier. Since
the number of urns is not known a priori, the space should contain all the groupings when
the number of urns ranges from 1 to 𝑛.

Based on this urn scheme, our next scenario uses unlabeled balls. The rest of the pro-
cedure remains unchanged. In this case, the resulting clustering is obtained by presenting
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the urn contents and labeling the balls left to right from 1 to 𝑛. This scheme resembles
Feller’s model known as stars and bars (Feller 1968).

Our last scenario is represented by the first urnmodel but using identified urns. Iden-
tifying urns changes how the clustering structure is presented, since it is done precisely
according to the urn identifier. Following this last scheme, there are some approaches
resulting by allowing empty urns, however, we will not pay much attention to them.

These three scenarios constitute our central object of study, and—in order to give a
mathematical treatment of all of them—wepresent inChapter I the combinatorial classes
encoding each of such scenarios. As already said, we start with random-partition-based
clustering problems, mainly because their popularity in applications has allowed to have
many literature on the topic. So we provide—in addition to some combinatorial charac-
teristics of this problem—a survey on various of themethodologies used to define proba-
bility distributions for random partitions. Afterwards, in this same chapter, we settle the
combinatorial classes and some of their characteristics for the second and third scenarios.
Further chapters deal with each scenario in a more detailed form.

The Chapter II is devoted to the study of segmentation models, arising from the sec-
ond scenario. In particular, we focus on a proposal dealing with change-point detection
problems. In this part, we perform a full Bayesian analysis providing different construc-
tions for probability distributions—specific for this cases—as well as a Markov chain
Monte Carlo sampling scheme. A simulation study is performed together with an appli-
cation using a real dataset. Most of the work included in this chapter can be also found in
Martínez & Mena (2014). We conclude this chapter giving some insights about possible
future works on the topic.

Turning back to random partitions, in Chapter III, we focus on the relationship be-
tween mixture models and clustering problems. Indeed, mixture models are natural can-
didates for clustering under a Bayesian nonparametric approach due to their construc-
tion. Thus, we will explain how cluster modeling takes place under these models. More-
over, this relationship broadens our panorama in many directions. On the one hand,
mixture models can be considered as an extension of random partitions in the sense that
they allow to cluster continuous observations. Then, by modifying some features of the
mixture model, we could obtain new methods or approaches applicable to random par-
tition models. On the other hand, mixture modeling theory has its own issues—like the
label-switching problem, therefore, some of them can be handled if we focus on the un-
derlying clustering structure of these models and work with it. In this same chapter, we
put special attention to this first direction exploring particular cases of mixture models
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with decreasing weights.
Finally, in Chapter IV, we continue studying mixture models. The first part presents

some applications of our third clustering scenario, in particular, we study the problem of
how observations can be allocated into mixture components. This problem is useful since
it leads us to the central topic of the chapter, which is the second direction explained in
the previous paragraph. Regarding this topic, we study why label-switching appears in
mixture models and provide some ideas about how to deal with it.

We conclude the thesis with some final remarks about our current work on each of
these topics, as well as possible future work and some related extensions. We also present,
in the appendices, specific simulation schemes used in different chapters.



CHAPTER I

COMBINATORIAL STRUCTURES IN
CLUSTERMODELING

In this first chapter, we introduce different combinatorial structures appearing in cluster
modeling. With the help of different clustering scenarios, we illustrate how the random
object of interest is affected as the grouping conditions change.

We start with, perhaps, the simplest scenario where a series of items is clustered into
nonempty groups. All the possibilities for grouping them are encoded by the combina-
torial class called set partitions, which is very well known in different probabilistic and
statistical models since it allows us to define random partitions. Throughout Section 1—in
addition to provide some properties of set partitions—we survey the theory of random
partitions which has become a main tool in Bayesian nonparametric models.

In the rest of the chapter, we present other clustering scenarios where set partitions
are not good candidates to encode the problem of interest. Section 2 gives an exam-
ple where observed data are indexed by an ordered set and we want to cluster them in
such a way that only consecutive indices can be put together. The possible groupings are
degenerated—if we compare them with set partitions—because of this additional con-
strain. We call segmentations to the combinatorial class encoding this scenario. Section 3
presents a third clustering scenario. The first part studies a similar scenario that the one
of set partitions, but—in this case—the groups are labeled or identified somehow. As
we can imagine, the possible groupings increase; they are encoded by the combinatorial
class known as ordered set partitions. This scenario is often stated slightly different, result-
ing actually a classification problem, but of interest because of their relationship with
ordered set partitions. The last part of this section studies the combinatorial class called
words and such a relationship. Hence, the material presented in this chapter serves as
motivation as well as theoretical background for the rest of the thesis.

5



6 COMBINATORIAL STRUCTURES IN CLUSTER MODELING I

In order to derive the expressions regarding combinatorial classes—specification,
generating function and counting sequence, among others—wemake use of the symbolic
method, a combinatorial counting technique developed by Flajolet & Sedgewick (2009).
To establish some notation, we denote by 𝒞 any combinatorial class, its generating func-
tion is a formal power series 𝑧 ↦ 𝐶(𝑧), and its counting sequence corresponds to a
sequence of nonnegative integers (𝐶1, … , 𝐶𝑛, …). Note that a combinatorial class is a
generic description, but if we want to indicate the set of items𝑋 we are working with to
obtain the class 𝒞, it will be denoted by 𝒞𝑋 . A further reference about this topic can be
found in the book by Flajolet & Sedgewick (2009).

Moreover, since combinatorial classes arise in many different—and apparently unre-
lated—contexts, there exists anOn-line Encyclopedia of Integer Sequences collecting diverse
information about them. Therefore—in the cases where there is an entry on this ency-
clopedia for the class under study—we indicate it using the label EIS followed by its id
number. An on-line version of this encyclopedia is found in oeis.org.

§ 1 SET PARTITIONS

The combinatorial class set partitions has become an attractive topic of study in Mathe-
matics and other sciences, for example, Combinatorics (Mansour 2013), Population Ge-
netics (Lijoi et al. 2007a), Economy (Aoki 2003), Probability (Berestycki 2009) and Statis-
tics (Hjort et al. 2010). We confine ourselves to their role in Probability and Statistics,
focusing on the study of random partitions and their applications in Bayesian clustering
models. In order to do it, we first illustrate the kind of problems where there appear.

CLUSTERING SCENARIO 1. Suppose there is a finite number of items—each one uniquely
identified, for example, though a label—and we want to gather them in groups, called
blocks, in such a way that each item belongs to only one block. There cannot be empty
blocks.

For the case of having three items, {𝑥1, 𝑥2, 𝑥3}, all the possible groupings satisfying
the above specification are

{{𝑥1, 𝑥2, 𝑥3}}, {{𝑥1}, {𝑥2, 𝑥3}}, {{𝑥1, 𝑥2}, {𝑥3}}, {{𝑥1, 𝑥3}, {𝑥2}}, {{𝑥1}, {𝑥2}, {𝑥3}}.

Thus, for example, {{𝑥1, 𝑥2, 𝑥3}} indicates that all the observations belong to the same
single block and {{𝑥1}, {𝑥2}, {𝑥3}} that each one belongs to its own block.

Notice that this scenario has an implicit assumption: there is no order restriction
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in the items, neither within groups nor among them, so—from the example above—
groupings like {{𝑥1, 𝑥2}, {𝑥3}}, {{𝑥2, 𝑥1}, {𝑥3}}, {{𝑥3}, {𝑥1, 𝑥2}} and {{𝑥3}, {𝑥2, 𝑥1}} are
treated as the same and only one of them is used. Therefore, this kind of grouping struc-
ture can be considered as the simplest problem in cluster analysis.

In Combinatorics, the combinatorial class which encodes the grouping structure un-
der this scenario is known as set partitions. Using the symbolic method, it is constructed
through a labeled combinatorial class as follows. Assuming, first, that the number of
blocks is fixed; all the possible ways of grouping any given set of items in exactly 𝑘 blocks
are encoded by the class

𝒫 (𝑘) = Set𝑘(Set≥1(𝒵)), (1)

for 𝒵 an atomic class. Hence, set partitions—denoted by 𝒫—are obtained by putting
together all the elements of 𝒫 (𝑘) as 𝑘 varies, that is

𝒫 = ⋃
𝑘≥0

𝒫 (𝑘) = Set(Set≥1(𝒵)).

Each element of 𝒫 is called a partition since its blocks are a partition of the whole set
of items 𝑋, that is, for any {𝜋1, … , 𝜋𝑘} ∈ 𝒫𝑋 , three conditions hold: (i) 𝜋𝑗 ≠ ∅ for all
𝑗 = 1, … , 𝑘, (ii) 𝜋𝑖 ∩ 𝜋𝑗 = ∅ for all 𝑖 ≠ 𝑗, and (iii) 𝜋1 ∪ ⋯ ∪ 𝜋𝑘 = 𝑋.

From the above specification, the counting sequence of 𝒫 is obtained from its expo-
nential generating function (EGF), which is given by

𝑃 (𝑧) = 𝑒𝑒𝑧−1 = 1
𝑒

∞

∑
𝑗=0

𝑒𝑗𝑧

𝑗! ,

(formula first deduced by Dobinski 1877) and its 𝑛th coefficient is, therefore,

𝑃𝑛 = 𝑛! [𝑧𝑛]𝑃 (𝑧) = 1
𝑒

∞

∑
𝑗=0

𝑗𝑛

𝑗! .

The resulting counting sequence (𝑃0, 𝑃1, …) is known as Bell numbers (EIS A000110)—
usually denoted by (𝐵𝑛)𝑛≥0 instead of (𝑃𝑛)𝑛≥0—and it satisfies the recurrence relation

𝑃𝑛+1 =
𝑛

∑
𝑘=0

(
𝑛
𝑘)𝑃𝑘,

with 𝑃0 = 1. A list of the first Bell numbers is shown in Table 1. These numbers are named
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𝑘
𝑛 0 1 2 3 4 5 6 7 8 9 10 𝐵𝑛

0 1 1
1 0 1 1
2 0 1 1 2
3 0 1 3 1 5
4 0 1 7 6 1 15
5 0 1 15 25 10 1 52
6 0 1 31 90 65 15 1 203
7 0 1 63 301 350 140 21 1 877
8 0 1 127 966 1 701 1 050 266 28 1 4 140
9 0 1 255 3 025 7 770 6 951 2 646 462 36 1 21 147

10 0 1 511 9 330 34 105 42 525 22 827 5 880 750 45 1 115 975

TABLE 1: (First columns) Stirling numbers of the second kind, 𝑆(𝑛, 𝑘), displayed in a triangular
array for 0 ≤ 𝑘 ≤ 𝑛 ≤ 10; note that 𝑆(𝑛, 𝑘) = 0 for all 𝑘 > 𝑛. (Last column) List of the first
Bell numbers, 𝐵𝑛, for 𝑛 = 0, … , 10.

after Eric Temple Bell because of his studies on Bell polynomials—where he called them
exponential numbers—but, actually, they appear in previous papers (e.g. Dobinski 1877).
On the other hand, an asymptotic form for Bell numbers is given by

𝑃𝑛 ∼ 𝑛! 𝑒𝑒𝑟−1

𝑟𝑛√2𝜋𝑟(𝑟 + 1)𝑒𝑟
,

where 𝑟 is the positive root of the equation 𝑟𝑒𝑟 = 𝑛 + 1.
The subsets 𝒫 (𝑘) of 𝒫 , 𝑘 = 0, 1, 2, …, are also of interest. From the specification given

in Equation (1), the EGF of 𝒫 (𝑘) is given by

𝑃 (𝑘)(𝑧) = 1
𝑘! (𝑒𝑧 − 1)𝑘 ,

from where—using the binomial theorem—its 𝑛th-coefficient is

𝑃 (𝑘)
𝑛 = 𝑛! [𝑧𝑛] 1

𝑘!

𝑘

∑
𝑗=0

(
𝑘
𝑗)(−1)𝑘𝑒(𝑘−𝑗)𝑧 = 1

𝑘!

𝑘

∑
𝑗=0

(
𝑘
𝑗)(−1)𝑘(𝑘 − 𝑗)𝑛.

For a fixed 𝑘, they have the asymptotic form 𝑃 (𝑘)
𝑛 ∼ 𝑘𝑛/𝑘!. The counting sequence (𝑃 (𝑘)

𝑛 )𝑛≥0
is known as Stirling numbers of the second kind (EIS A008277), usually denoted as 𝑆(𝑛, 𝑘).
These numbers were introduced by Stirling (1717) and became an important tool in the
calculus of finite differences and in probability theory. Table 1 shows the Stirling numbers
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for different values of 𝑛. Using them, Bell numbers can be computed easily since 𝐵𝑛 =
∑𝑛

𝑘=0 𝑆(𝑛, 𝑘).
Although set partitions can be obtained from any set of items, in most of the litera-

ture, probabilistic and statistical studies of set partitions deal only with the set partitions
of the set [𝑛] ∶= {1, … , 𝑛}, denoted by𝒫[𝑛]. This is done only to simplify notation. The set
partitions of [𝑛] are exactly the same—in quantity and form—as the set partition of any
other arbitrary set of 𝑛 items. In other words, both classes encode the same clustering
structure. On the other hand—as already said—set partitions do not impose any restric-
tion in the order among the blocks neither among the elements within each block; for
example, the partitions {{1, 2}, {3}}, {{2, 1}, {3}}, {{3}, {1, 2}} and {{3}, {2, 1}} could
be thought as different elements of 𝒫[3], but they are considered as the same. Thus, as
a convention, partitions will be listed in order of appearance, which means that, for any
partition {𝜋1, … , 𝜋𝑘}, the elements of each block 𝜋𝑗 will be listed in increasing order, and
the blocks will be listed in such a way that 𝜋1,1 < 𝜋2,1 < ⋯ < 𝜋𝑘,1 for 𝜋𝑗,1 = min𝜋𝑗 .
Thus, {{1, 2}, {3}} is the only element of 𝒫[3] that will be used from all the examples given
above.

Having said that, 𝒫[𝑛] corresponds to the induced support for the clustering scenario
described at the beginning of the section, and any related probabilisticmodel or statistical
inference should be based on it.

1.1 PROBABILITY DISTRIBUTIONS OVER SET PARTITIONS

Once set partitions have been introduced and their role in clustering has been established,
we are able to define probability models based on them.

DEFINITION 1. A random partition Π𝑛 is a 𝒫[𝑛]-valued random variable.

Before studying probability distributions for random partitions, notice that a ran-
dom variable implicitly defined in random partitions, denoted hereafter by𝐾𝑛, is the one
modeling the number of blocks. This is due to the fact that—under the framework as-
sumed in the whole thesis—when we ask for some probability P(Π𝑛 = 𝜋), for 𝜋 ∈ 𝒫[𝑛],
we are actually asking for the probability of the event [𝐾𝑛 = 𝑘] ∩ [Π𝑛 = 𝜋], since any par-
tition 𝜋 is formed by 𝑘 groups for some positive 𝑘 ≤ 𝑛. Hence, the marginal distribution
of 𝐾𝑛 is obtained by marginalizing Π𝑛 as follows

P(𝐾𝑛 = 𝑘) = ∑
𝜋∈𝒫 (𝑘)

[𝑛]

P(Π𝑛 = 𝜋), 𝑘 = 1, 2, … , 𝑛,
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where 𝒫 (𝑘)
[𝑛] is—as stated before—the set partitions of [𝑛] having exactly 𝑘 blocks. From

this fact, we can say that the random-partition approach for clustering modeling has an
advantage over other approaches which requires a fixed number of blocks in order to
perform clustering.

Additionally, the random variable𝐾𝑛 is very useful in the study of random partitions.
The set 𝒫[𝑛] is not an ordered set, so it is sometimes difficult to have a clear understanding
of how some distribution forΠ𝑛 behaves. Some light is shed by analyzing the behavior of
𝐾𝑛, for example, its probability distribution or its asymptotic results.

In the following sections, some approaches to define probability distributions over
𝒫[𝑛] are discussed. Special attention is placed in distributions known as exchangeable par-
tition probability functions, therefore, after presenting the general approaches, different
families of this kind of distributions are explained.

1.1.1 Distributions based on exchangeable sequences of random variables

A first approach to construct probability distributions for random partitions is based
on sequences of exchangeable random variables. Let (𝑋𝑛)𝑛≥1 be an infinite sequence of
randomvariables taking values in some complete and separable space𝕏 endowedwith the
Borel 𝜎-algebra 𝒳 . It is said that (𝑋𝑛)𝑛≥1 is exchangeable if, for all 𝑛 ≥ 1, the distribution
of (𝑋1, 𝑋2, … , 𝑋𝑛) is the same of (𝑋𝜌(1), 𝑋𝜌(2), … , 𝑋𝜌(𝑛)) for every finite permutation 𝜌
of [𝑛]. Due to de Finetti’s representation theorem (de Finetti 1937), the assumption of
exchangeability is equivalent to assume the existence of a probability distribution 𝑄 on
ℳ(𝕏)—the space of probability measures on 𝕏—such that, for every 𝑛 ≥ 1 and for all
𝐴𝑖 ∈ 𝒳 , 𝑖 = 1, … , 𝑛,

P[𝑋1 ∈ 𝐴1, 𝑋2 ∈ 𝐴2, … , 𝑋𝑛 ∈ 𝐴𝑛] = ∫ℳ(𝕏)

𝑛

∏
𝑖=1

̃𝑝(𝐴𝑖)𝑄(d ̃𝑝). (2)

The distribution 𝑄 is known as the de Finetti measure of the sequence (𝑋𝑛)𝑛≥1, and
it represents the prior distribution for the random probability measure (RPM) ̃𝑝. This
justifies Bayesian inference models, and whenever 𝑄 is infinite-dimensional, one speaks
of a Bayesian nonparametric inferential problem.

From de Finetti’s theorem, it is also said that the sequence (𝑋𝑛)𝑛≥1 is exchangeable if
and only if it is a mixture of sequences of independent and identically distributed (i.i.d.)
random variables. This property is expressed as conditionally independence, and some-
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times it is written in a hierarchical form as

𝑋𝑖| ̃𝑝 i.i.d.∼ ̃𝑝, 𝑖 ≥ 1

̃𝑝 ∼ 𝑄.

Further studies of exchangeability can be found, for example, in Aldous (1985), Schervish
(1995) and Kallenberg (2005).

Focusing on Bayesian nonparametric problems, there has been special interest in dis-
tributions 𝑄 which select discrete probability measures almost surely (a.s.). In general,
RPMs selected by these distributions are represented as

̃𝑝(⋅) =
∞

∑
𝑗=1

𝑤𝑗𝛿𝜉𝑗
(⋅), (3)

where 𝑤𝑗 > 0 for all 𝑗, with ∑𝑗≥1 𝑤𝑗 = 1 a.s., and (𝜉𝑗)𝑗≥1 is a sequence of i.i.d. 𝕏-valued
random variables—independent of (𝑤𝑗)𝑗≥1—from a non-atomic distribution 𝜈0.

After giving this background, probability distributions for random partitions are
constructed as follows. Suppose a sample (𝑋1, … , 𝑋𝑛) of size 𝑛 is taken conditionally
i.i.d. given ̃𝑝. Therefore, due to the discrete nature of ̃𝑝, there is a positive probability of
having ties within the sample, that is P[𝑋𝑖 = 𝑋𝑗] > 0 for 𝑖 ≠ 𝑗. In other words, the sample
contains 𝐾𝑛 distinct values, say (𝑋∗

1 , … , 𝑋∗
𝐾𝑛

), appearing with frequencies (𝑁1, … , 𝑁𝐾𝑛
).

Clearly 𝐾𝑛 ≤ 𝑛 and ∑𝑘 𝑁𝑘 = 𝑛 a.s. From (2), the joint distribution of the random vector
(𝐾𝑛, 𝑁1, … , 𝑁𝐾𝑛

) is given by

P(𝐾𝑛 = 𝑘, 𝑁1 = 𝑛1, … , 𝑁𝐾𝑛
= 𝑛𝑘) = ∫𝕏𝑘

E𝑄( ̃𝑝𝑛1(d𝑥1) ⋯ ̃𝑝𝑛𝑘(d𝑥𝑘)), (4)

and it can be read as the probability of observing 𝑘 distinct values in a sample from ̃𝑝 of
size 𝑛, each one having frequency 𝑛𝑗 .

Notice that the distinct values of the sample induce a partition {𝐴1, … , 𝐴𝑘} of [𝑛],
where the blocks are such that 𝐴𝑗 = {𝑖 ∶ 𝑋𝑖 = 𝑋∗

𝑗 } for 𝑗 = 1, … , 𝑘. Hence, there is a
one-to-one correspondence between each element of 𝒫[𝑛] and each possible realization
of the random vector (𝐾𝑛, 𝑁1, … , 𝑁𝐾𝑛

) and we can define a probability distribution for
some random partition Π𝑛 from (4).

This construction for random-partition distributions has, however, an undetermined
element: the distribution 𝑄. There exists a vast literature about how to construct 𝑄,
and according to the approach selected, different expressions are obtained. Section 1.2
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provides a study of someof such approaches. But before, twoproperties of (4) are studied:
consistency and exchangeability, which have played an important role in such approaches.

1.1.2 Consistent partition distributions

Kingman (1978a,b)—who developed the concept of partition structures to refer to what
we called random partitions—was the first in studying the property of consistency.

REMARK I.1. For any 𝜋 ∈ 𝒫[𝑛+1], 𝑛 ≥ 1, we said that 𝜋|[𝑛] is the restriction of 𝜋 to 𝒫[𝑛], and
it is defined as

𝜋|[𝑛] ∶= {𝛼 ∩ [𝑛] ∶ 𝛼 ∩ [𝑛] ≠ ∅, 𝛼 ∈ 𝜋} .

DEFINITION 2. A sequence (𝜈𝑛)𝑛≥1 of 𝒫[𝑛]-valued probability distributions is consistent if

𝜈𝑛(𝜋) = 𝜈𝑛+1(𝑅−1
𝑛+1𝜋), 𝜋 ∈ 𝒫[𝑛], (5)

for all 𝑛 ≥ 1; where 𝑅𝑛+1 ∶ 𝒫[𝑛+1] → 𝒫[𝑛] is the function induced by the operation of
restriction defined above. Moreover, a sequence of random partitions (Π𝑛)𝑛≥1 such that
Π𝑛 ∼ 𝜈𝑛 for 𝑛 ≥ 1, with (𝜈𝑛)𝑛≥1 a sequence of consistent distributions, is said to be consistent
in distribution.

This property essentially says that 𝜈𝑛 is the marginal distribution obtained from 𝜈𝑛+1
by deleting the element 𝑛 from the set [𝑛], and it guarantees the existence of a random
partition ofℕwhose finite restrictions are distributed as 𝜈𝑛. On the other hand, as already
said, probability distributions constructed using (4) are all consistent; see Aldous (1985)
for a proof.

As a side note, the definition of restriction provides an algorithmic construction for
set partitions of [𝑛 + 1] based on set partitions of [𝑛], 𝑛 ≥ 1. Indeed, given 𝜋 ∈ 𝒫[𝑛], the
inverse image of 𝑅𝑛+1 is the set

𝑒(𝜋) = {{𝛼1, … , 𝛼𝑗 ∪ {𝑛 + 1}, … , 𝛼𝑘} ∶ 𝛼𝑗 ∈ 𝜋, 𝑗 = 1, … , 𝑘} ∪ {𝜋 ∪ {{𝑛 + 1}}} ,

with 𝑘 = #𝜋 the number of blocks in 𝜋. Therefore, the set {𝑒(𝜋) ∶ 𝜋 ∈ 𝒫[𝑛]} corresponds
to the set partitions of [𝑛 + 1]. Figure 1 illustrates this approach.

1.1.3 Exchangeable partition probability functions

The second characteristic of the construction in (4) is known as exchangeability. This
term has been used, for example, in Kingman (1982) and Aldous (1985). However, it is
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1

12

123

1234 123|4

12|3

124|3
12|34

12|3|4

1|2

13|2

134|2
13|24

13|2|4

1|23

14|23
1|234

1|23|4

1|2|3

14|2|3
1|24|3

1|2|34
1|2|3|4

FIGURE 1: Tree showing a construction of set partitions. All the elements at the same depth, 𝑑,
form the set 𝒫[𝑑+1]. Partitions are displayed in a simplified way, so, for example, 13|2|4
corresponds to the partition {{13}, {2}, {4}}.

important to clarify that it does not refer to the property of exchangeability discussed
previously, but to the symmetry in the arguments of the distribution.

REMARK I.2. For any positive integer 𝑛, an integer composition of 𝑛 is a sequence of positive
integers (𝑛1, … , 𝑛𝑘) such that 𝑛1 + ⋯ + 𝑛𝑘 = 𝑛. Let

Δ𝑛,𝑘 ∶=
⎧⎪
⎨
⎪⎩

(𝑛1, … , 𝑛𝑘) ∶ 𝑛𝑗 ≥ 1,
𝑘

∑
𝑗=1

𝑛𝑗 = 𝑛
⎫⎪
⎬
⎪⎭

(6)

be the set of all integer compositions of 𝑛 with exactly 𝑘 summands.

DEFINITION 3. A randompartitionΠ𝑛 is exchangeable if, for anypartition𝜋 = {𝜋1, … , 𝜋𝑘} ∈
𝒫[𝑛],

P(Π𝑛 = 𝜋) = P(Π𝑛 = 𝜌(𝜋)), (7)

for all permutation 𝜌 in the symmetric group acting on [𝑛]. Equivalently,

P(Π𝑛 = {𝜋1, … , 𝜋𝑘}) = Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘), (8)

for some symmetric function Π(𝑛)
𝑘 ∶ Δ𝑛.𝑘 → [0, 1], with 𝑛𝑗 ∶= #𝜋𝑗 , 𝑗 = 1, … , 𝑘, and where

#𝜋𝑗 denotes the number of elements in 𝜋𝑗 . Furthermore, the function Π(𝑛)
𝑘 is called an

exchangeable partition probability function (EPPF).

The concept of EPPF—introduced by Pitman (1995)—constitutes an important tool
for the study of random partitions. Indeed, most of the literature about this topic has
been focused on exchangeable randompartitions. On the other hand, based ondeFinetti’s
representation theorem, we can see that all induced random partitions are exchangeable,
since it is clear that Equation (4) is a symmetric functionwith respect to (𝑛1, … , 𝑛𝑘). Thus,
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we can defined an EPPF by setting

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) ∶= P(𝐾𝑛 = 𝑘, 𝑁1 = 𝑛1, … , 𝑁𝐾𝑛

= 𝑛𝑘).

This characteristic makes EPPFs useful in Bayesian analyses when they are used as prior
distributions since: (i) the probability of any partition does not depend on the possible
values of the samples, but only on the size of each block, and (ii) the symmetry avoids to
favor any particular partition from all of them having the same block sizes.

Additionally, it is important to say that—when working with exchangeable random
partitions—the property of consistency (Equation 5) is satisfied if the addition rule holds
for the EPPF, that is

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = Π(𝑛+1)

𝑘+1 (𝑛1, … , 𝑛𝑘, 1) +
𝑘

∑
𝑗=1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘).

Note, however, that not all exchangeable randompartition is consistent. See, for example,
Zhou &Walker (2014); consider also the following example.

EXAMPLE 1. Let Π𝑛 be a random partition uniformly distributed, that is P(Π𝑛 = 𝜋) = 𝐵−1
𝑛

for any 𝜋 ∈ 𝒫[𝑛] and where 𝐵𝑛 is the 𝑛th Bell number. Clearly, Π𝑛 is exchangeable. To see
that it is not consistent, take the case 𝑛 = 2 and (𝑛1, 𝑛2) = (1, 1). According to the addition
rule, it would be satisfied that

Π(2)
2 (1, 1) = Π(3)

3 (1, 1, 1) + 2Π(3)
2 (2, 1),

however, the left side equals 1/2 whereas the right side equals 3/5.

1.2 FAMILIES OF EXCHANGEABLE PARTITION PROBABILITY FUNCTIONS

As explained in the previous sections—in order to define probability distributions for
random partitions—we have to specify the de Finetti measure 𝑄 in the exchangeability-
based construction given in Equation (4) or, equivalently, we have to provide an EPPF. In
this section, different methodologies to build EPPFs are presented; some of them make
use of specific forms of 𝑄 and others define the distribution in terms of the EPPF itself.
A first approach is based on normalized randommeasures with independent increments,
whereas a second one—known as Gibbs-type priors—is defined through the EPPF. Since
these constructions are based on completely randommeasures, a brief description of this
general class of measures is given first. Further details can be found, for example, in Lijoi
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& Prünster (2010) and in the references therein.

DEFINITION 4. Let𝕄 denote the space of 𝜎-finite measures on (𝕏, 𝒳)with corresponding
𝜎-algebra ℳ. Let ̃𝜇 be a measurable mapping taking values in (𝕄, ℳ) such that the ran-
dom variables ̃𝜇(𝐴1), … , ̃𝜇(𝐴𝑛) are independent for any 𝐴1, … , 𝐴𝑛 ∈ 𝒳 with 𝐴𝑖 ∩ 𝐴𝑗 = ∅,
𝑖 ≠ 𝑗. Then, ̃𝜇 is called a completely random measure (CRM).

Completely random measures have been introduced by Kingman (1967) and one of
their characteristics is that they are a.s. discrete. Indeed, any CRM ̃𝜇 in𝕏 can be written
as the sum of two components, i.e. ̃𝜇 ∶= ̃𝜇𝑐 + ̃𝜇𝑓 , where

1. ̃𝜇𝑐 is a measure written as

̃𝜇𝑐 =
∞

∑
𝑖=1

𝐽𝑖𝛿𝜉𝑖
,

with positive jumps (𝐽𝑖)𝑖≥1 and𝕏-valued locations (𝜉𝑖)𝑖≥1, where both sequences are
random and independent each other; and

2. ̃𝜇𝑓 is a measure with random masses at fixed locations, 𝑥1, … , 𝑥𝑀 ∈ 𝕏 for 𝑀 ≥ 1,
that is

̃𝜇𝑓 =
𝑀

∑
𝑖=1

𝑉𝑖𝛿𝑥𝑖
,

with the nonnegative random jumps (𝑉𝑖)𝑀
𝑖=1 independent each other and indepen-

dent of ̃𝜇𝑐 .

Furthermore, the measure ̃𝜇𝑐 is characterized by the Lévy-Khintchine representation,
corresponding to

E [exp{− ∫𝕏
𝑓(𝑥) ̃𝜇𝑐(d𝑥)}] = exp{− ∫ℝ+×𝕏

(1 − 𝑒−𝑠𝑓(𝑥)) 𝜈(d𝑠, d𝑥)} ,

where 𝑓 ∶ 𝕏 → ℝ is a measurable function such that ∫|𝑓|d ̃𝜇𝑐 < ∞ a.s. and 𝜈 is a measure
on ℝ+ × 𝕏 such that, for any 𝐵 ∈ 𝒳 ,

∫𝐵 ∫ℝ+
min{𝑠, 1}𝜈(d𝑠, d𝑥) < ∞.

The measure 𝜈 is known as the Lévy intensity. It characterizes ̃𝜇𝑐 since it contains all the
information about the distributions of the jumps (𝐽𝑖)𝑖≥1 and locations (𝜉𝑖)𝑖≥1.

For our purposes, we only consider CRMs with non-fixed locations, that is we will
work with CRMs such that ̃𝜇 = ̃𝜇𝑐 . Moreover, we restrict our study to Lévy intensities 𝜈
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which factorize the jump and location parts as

𝜈(d𝑠, d𝑥) = 𝜌𝑥(d𝑠)𝛼(d𝑥), (9)

where 𝛼 is a measure on (𝕏, 𝒳)—often called base measure—and 𝜌𝑥 is a transition kernel
on 𝕏 × ℬ(ℝ+), that is 𝑥 ↦ 𝜌𝑥(𝐴) is 𝒳-measurable for any 𝐴 ∈ ℬ(ℝ+) and 𝜌𝑥 is a measure
on (ℝ+, ℬ(ℝ+)) for any 𝑥 ∈ 𝕏 (c.f. Epifani et al. 2003). In the case when 𝜌𝑥 = 𝜌 for any
𝑥, then the distribution of the jumps of ̃𝜇𝑐 is independent of their locations and, then, 𝜈
and ̃𝜇𝑐 are called homogeneous, otherwise they are called non-homogeneous.

Two important CRMs are the gamma and the 𝜎-stable processes, since they induce
two canonical random probability measures widely used in applications: the Dirichlet
(Ferguson 1973) and the normalized 𝜎-stable (Kingman 1975) processes, respectively. The
gamma process is a homogeneous CRMwith Lévy intensity given by

𝜈(d𝑠, d𝑥) = 𝑒−𝑠

𝑠 d𝑠 𝛼(d𝑥).

The 𝜎-stable process—also known as the one-parameter Poisson-Dirichlet process—is a ho-
mogeneous CRMwith Lévy intensity

𝜈(d𝑠, d𝑥) = 𝜎
Γ(1 − 𝜎)𝑠1+𝜎 d𝑠 𝛼(d𝑥),

for a given 𝜎 ∈ (0, 1).

1.2.1 Normalized random measures with independent increments

Normalized randommeasures with independent increments are a wide class of de Finetti
measures. Based on the construction of the Dirichlet process (Ferguson 1973, Section 4)
through a gamma process, they were first studied in its general form by Regazzini et al.
(2003). Their approach is based on Lévy processes, however, a more general construction
based on CRMs is presented here.

DEFINITION 5. Let ̃𝜇 be a CRM on 𝕏 such that 0 < ̃𝜇(𝕏) < ∞ a.s. Then, the random
probability measure ̃𝑝 = ̃𝜇/ ̃𝜇(𝕏) is called a normalized random measure with independent
increments (NRMI).

In order to have a well defined measure ̃𝑝, the denominator ̃𝜇(𝕏) is constrained to be
positive and finite. These conditions are expressed in terms of the Lévy intensity (9), so
it satisfies 𝜌𝑥(ℝ+) = ∞ for every 𝑥 and 0 < 𝛼(𝕏) < ∞.
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At this point, we can introduce a first family of probability distributions for random
partitions. Since NRMIs induce exchangeable random partitions, an EPPF can be ob-
tained and it is given by

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = 1

Γ(𝑛) ∫
∞

0
𝑢𝑛−1𝑒−𝜓(𝑢)

𝑘

∏
𝑗=1 ∫𝕏

𝜏𝑛𝑗
(𝑢; 𝑥)𝛼(d𝑥)d𝑢, (10)

for a positive, finite and non-atomic measure 𝛼, and where 𝜓(𝑢) is the Laplace exponent,
i.e.

𝜓(𝑢) = ∫𝕏 ∫ℝ+
(1 − 𝑒−𝑢𝑡)𝜌𝑥(d𝑡)𝛼(d𝑥),

and 𝜏𝑚(𝑢; 𝑥) is defined for any 𝑚 ≥ 1 as

𝜏𝑚(𝑢; 𝑥) ∶= ∫ℝ+
𝑠𝑚𝑒−𝑢𝑠𝜌𝑥(d𝑠).

Some examples of NRMIs are presented below.

EXAMPLE 2 (Dirichlet process; Ferguson 1973). The Dirichlet process can be constructed
as an NRMI by taking the gamma process explained before. It is necessary that 0 < 𝜃 ∶=
𝛼(𝕏) < ∞ in order to have a well defined probability measure. Furthermore, the EPPF
associated to this process is given by

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = 𝜃𝑘

(𝜃)𝑛↑

𝑘

∏
𝑗=1

Γ(𝑛𝑗),

where (𝑥)𝑛↑ stands for the Pochhammer symbol defined as (𝑥)𝑛↑ ∶= ∏𝑛−1
𝑗=0(𝑥 + 𝑗) with

(𝑥)0↑ = 1. This expression coincides with the one obtained by Antoniak (1974).

EXAMPLE 3 (Normalized 𝜎-stable process; Kingman 1975). This process, like the previous
one, results from the normalization of the 𝜎-stable CRM. In this case, the EPPF is written
as

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = 𝜎𝑘−1Γ(𝑘)

Γ(𝑛)

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑,

for 0 < 𝜎 < 1.

EXAMPLE 4 (Normalized generalized gamma process; Lijoi et al. 2007b). A third example
of NRMI is based on the generalized gamma process which has Lévy intensity

𝜈(d𝑠, d𝑥) = exp(−𝜏𝑠)𝑠−(1+𝜎)

Γ(1 − 𝜎) d𝑠 𝛼(d𝑥),
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for 𝜏 ≥ 0 and 𝜎 ∈ (0, 1). In this case, its EPPF is given by

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = 𝜎𝑘−1𝑒𝛽

Γ(𝑛)

𝑛−1

∑
𝑖=0

(
𝑛 − 1

𝑖 )(−1)𝑖𝛽𝑖/𝜎Γ (𝑘 − 𝑖
𝜎 ; 𝛽)

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑.

where 𝛽 = 𝜏𝜎/𝜎 and Γ(𝑥; 𝑧) = ∫∞
𝑧 𝑡𝑥−1𝑒−𝑡d𝑡 is the incomplete gamma function.

This latter example is more general than the first two since it comprises different
RPMs. For example, the normalized inverse Gaussian process (Lijoi et al. 2005) is ob-
tained by setting 𝜎 = 1/2, the normalized 𝜎-stable process arises when 𝜏 = 0 and the
Dirichlet process corresponds to the case 𝜏 = 1 and 𝜎 → 0.

1.2.2 Poisson-Kingman models and Gibbs-type random partitions

Poisson-Kingmanmodels (Pitman 2003) provide a general construction for discrete ran-
dom probability measures. A particular case of them are the so calledGibbs-type priors—
introduced by Gnedin & Pitman (2005)—which is a generic term encompassing random
probability measures and their underlying random partition. Starting with a short ex-
planation of Poisson-Kingman models, we focus on Gibbs-type random partitions and
on their most representative example: the two-parameter Poisson-Dirichlet process.

Consider a homogeneous CRM ̃𝜇with Lévymeasure 𝜈(d𝑠, d𝑥) = 𝜌(d𝑠)𝛼(d𝑥) such that
𝜌(ℝ+) = ∞ and 𝛼 is non-atomic probabilitymeasure. Denote by (𝐽(𝑖))𝑖≥1 the ranked jumps
of ̃𝜇 and let 𝑇 = ∑𝑖≥1 𝐽(𝑖) be the total mass. Assume the probability distribution of 𝑇 is
absolutely continuous with respect to the Lebesgue measure on ℝ.

DEFINITION 6. Let 𝑃𝜌,𝑡 be the conditional distribution of the sequence of ranked random
probabilities ( ̃𝑝(𝑖))𝑖≥1 defined as ̃𝑝(𝑖) ∶= 𝐽(𝑖)/𝑇 generated from a CRM as explained above,
conditioned on 𝑇 = 𝑡. Let 𝜂 be a probability distribution on ℝ+. Then, the distribu-
tion ∫ℝ+ 𝑃𝜌,𝑡𝜂(d𝑡) on the simplex {(𝑝1, 𝑝2, …) ∶ 𝑝1 ≥ 𝑝2 ≥ ⋯ ≥ 0, ∑𝑖≥1 𝑝𝑖 = 1} is called a
Poisson-Kingman distribution with Lévy density 𝜌 and mixing distribution 𝜂.

For these distributions, conditioned on 𝑇 = 𝑡, the EPPF is given by

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘|𝑡) = ∫

𝑡

0

𝑓(𝑡 − 𝑣)
𝑡𝑛𝑓(𝑡) 𝑣𝑛+𝑘−1

∫𝒮𝑘

𝑘

∏
𝑖=1

𝜌(𝑣𝑢𝑖)𝑢
𝑛𝑖
𝑖 d𝑢1 ⋯ d𝑢𝑘−1d𝑣,
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where 𝑓 is the density function of 𝑇 and 𝒮𝑘 is the 𝑘 − 1 simplex, i.e.

𝒮𝑘 =
⎧⎪
⎨
⎪⎩

(𝑢1, … , 𝑢𝑘) ∶ 𝑢𝑖 ≥ 0, 𝑖 = 1, … , 𝑘,
𝑘

∑
𝑖=1

𝑢𝑖 = 1
⎫⎪
⎬
⎪⎭

.

Poisson-Kingmanmodels, as already said, provide a general construction of RPMs. In
fact, when the distribution of 𝑇 corresponds to 𝜂, their probability measures coincides
with NRMIs. On the other hand, these models generate a class of RPMs known asGibbs-
type RPMs which are characterized by their EPPF.

DEFINITION 7. Let ̃𝑝 be a discrete random probability measure as in (3). Then, it is said
that ̃𝑝 is a Gibbs-type probability measure if, for all 1 ≤ 𝑘 ≤ 𝑛 and any integer composition
(𝑛1, … , 𝑛𝑘) of 𝑛, its EPPF can be represented as

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) = 𝑉𝑛,𝑘

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑,

for some 𝜎 ∈ [0, 1). Moreover, its underlying random partition is called a Gibbs-type
random partition.

In order to define a probability measure, the weights 𝑉𝑛,𝑘 have to satisfy the forward
recursive equation

𝑉𝑛,𝑘 = (𝑛 − 𝜎𝑘)𝑉𝑛+1,𝑘 + 𝑉𝑛+1,𝑘+1,

for any 𝑛 ≥ 1 and 1 ≤ 𝑘 ≤ 𝑛, with 𝑉1,1 = 1.
An alternative way to define Gibbs-type priors from Poisson-Kingman models is also

provided by Gnedin & Pitman (2005). First, define a 𝜎-stable Poisson-Kingman model as
the Poisson-Kingman model with Lévy density

𝜌(𝑠) = 𝜎𝑠−1−𝜎

Γ(1 − 𝜎) .

Then, ̃𝑝 is a Gibbs-type prior if and only if it is a 𝜎-stable Poisson-Kingmanmodel. In this
case, the weights 𝑉𝑛,𝑘 take the form

𝑉𝑛,𝑘 = ∫
1

0

𝜎𝑘𝑡−𝑛

Γ(𝑛 − 𝑘𝜎)𝑓𝜎(𝑡) ∫
𝑡

0
𝑠𝑛−𝑘𝜎−1𝑓𝜎(𝑡 − 𝑠)d𝑠𝜂(d𝑡),

where 𝑓𝜎 is the density of a 𝜎-stable random variable.

EXAMPLE 5 (Two-parameter Poisson-Dirichlet process; Perman et al. 1992). The two-
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parameter Poisson-Dirichlet process is a 𝜎-stable Poisson-Kingman model with mixing
distribution

𝜂(d𝑡) = 𝜎Γ(𝜃)
Γ(𝜃/𝜎) 𝑡−𝜃𝑓𝜎(𝑡)d𝑡,

for some 𝜃 > −𝜎 and 𝑓𝜎 the density of a 𝜎-stable random variable. Alternatively, it can be
defined as a Gibbs-type random partition with weights

𝑉𝑛,𝑘 =
∏𝑘−1

𝑖=1 (𝜃 + 𝑖𝜎)
(𝜃 + 1)𝑛−1↑

, (11)

leading the EPPF

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) =

∏𝑘−1
𝑖=1 (𝜃 + 𝑖𝜎)

(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑.

This process—better known as Pitman-Yor process within the machine learning com-
munity—is one of the most important Gibbs-type random partitions. As 𝜎 → 0, the
Dirichlet process is recovered, and, when 𝜃 = 0, the normalized 𝜎-stable process is ob-
tained. Another feature of this process is that it is not an NRMI. Indeed, the only NRMI
which also belongs to the class of Gibbs type priors, for 0 < 𝜎 < 1, is the normalized
generalized gamma process (Lijoi et al. 2008).

1.2.3 Product partition distributions

Product partition distributions, better known as product partition models, were pro-
posed by Hartigan (1990) to tackle classification problems under a parametric Bayesian
setting. However, this class of distributions is of interest since it intersects with some
of the already studied approaches, as explained by Quintana & Iglesias (2003) and Lijoi
et al. (2007b).

DEFINITION 8. LetΠ𝑛 a𝒫[𝑛]-valued randompartition. A product partition distribution (PPD)
is the probability distribution of Π𝑛 given by

P(Π𝑛 = {𝜋1, … , 𝜋𝑘}) = 𝑀
𝑘

∏
𝑗=1

𝑐(𝜋𝑗),

for any {𝜋1, … , 𝜋𝑘} ∈ 𝒫[𝑛], and where 𝑐 ∶ [𝑛] → ℝ+ ∪ {0} is a cohesion function and 𝑀 is
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the normalizing constant, i.e.

𝑀−1 = ∑
𝜋∈𝒫[𝑛]

#𝜋

∏
𝑗=1

𝑐(𝜋𝑗),

with #𝜋 the number of blocks in the partition 𝜋.

A PPDwill be exchangeable or consistent according to the cohesion function chosen.
For example, if 𝑐(𝜋𝑗) = 𝜃Γ(#𝜋𝑗), for some 𝜃 > 0 and where #𝜋𝑗 is the number of elements
in 𝜋𝑗 , we recover the EPPF induced by the Dirichlet process.

1.2.4 Sequential construction via predictive distributions

The last construction discussed in this section is based on predictive distributions. Con-
sider a sample (𝑥1, … , 𝑥𝑛) from an a.s. discrete RPM ̃𝑝. Then, we can ask for the value
of a new observation 𝑋𝑛+1; there are two possibilities: (i) it is equal to one of the values
previously observed, or (ii) it is a new distinct value. We can compute the probability of
each event.

Notice that there is a stochastic process, (𝑋𝑖)𝑖≥1, behind. Hence, each one of the
possible trajectories of such stochastic process of length 𝑛, say (𝑥1, 𝑥2, … , 𝑥𝑛), induces
a partition {𝜋1, … , 𝜋𝑘} ∈ 𝒫[𝑛] where the blocks are given by 𝜋𝑗 = {𝑖 ∶ 𝑥𝑖 = 𝑥∗

𝑗 }, 𝑗 =
1, … , 𝑘, where {𝑥∗

1, … , 𝑥∗
𝑘} are the different states visited by the process. Furthermore,

the random-partition distribution is computed as follows

P(Π𝑛 = {𝜋1, … , 𝜋𝑘}) = P(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, … , 𝑋𝑛 = 𝑥𝑛)

=
𝑛

∏
𝑖=2
P(𝑋𝑖 = 𝑥𝑖|𝑋1 = 𝑥1, … , 𝑋𝑖−1 = 𝑥𝑖−1). (12)

This construction is related to the species samplingmodels introduced by Pitman (1996),
and notice that it is also related to the property of consistency of random partitions.
However, it important to say that it is not always possible to obtain expressions of the
underlying random partition from a species sampling model. In fact, the probability dis-
tribution constructed following this approach may be not exchangeable; see Lee et al.
(2013) for a related discussion.

NRMIs and Gibbs-type priors are two cases where we can find explicit expressions
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for (12). In these, the predictive distribution has the form

P(𝑋𝑛+1 ∈ ⋅|𝑋1, … , 𝑋𝑛) = 𝑤0𝜈0(⋅) +
𝑘

∑
𝑗=1

𝑤𝑗𝛿𝑋∗
𝑗
(⋅), (13)

where 𝜈0 is a non-atomic distribution such that 𝑋1 ∼ 𝜈0. Specifically, if an NRMI is
chosen, the weights (𝑤0, … , 𝑤𝑘) are given by

𝑤0 =
𝛼(ℝ)Π(𝑛+1)

𝑘+1 (𝑛1, … , 𝑛𝑘, 1)
𝑛Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘)
, and 𝑤𝑗 =

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘)

𝑛Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

, 𝑗 = 1, … , 𝑘,

with 𝜈0(⋅) = 𝛼(⋅)/𝛼(ℝ). On the other hand, for a Gibbs-type prior, they are given by

𝑤0 =
𝑉𝑛+1,𝑘+1

𝑉𝑛,𝑘
, and 𝑤𝑗 =

𝑉𝑛+1,𝑘
𝑉𝑛,𝑘

(𝑛𝑗 − 𝜎), 𝑗 = 1, … , 𝑘.

for 𝜈0 a non-atomic distribution.

1.3 PROBABILITY DISTRIBUTION OF THE NUMBER OF BLOCKS

As already explained, the random variable modeling the number of blocks, 𝐾𝑛, is implic-
itly defined when working with random partitions and it represents an important tool
in both, theory and applications. There are studies, for example, about the asymptotic
growing rate of such a variable as the sample size increases. Under the context of species
sampling models, on the other hand, inferences are made based on this random variable.
In practice, the study of 𝐾𝑛 allows to have a more clear picture about the prior cluster-
ing behavior of a random partition as well as to select the parameters of the partition
distribution adequately.

For Gibbs-type priors, the distribution of 𝐾𝑛 can be written as

P(𝐾𝑛 = 𝑘) =
𝑉𝑛,𝑘
𝜎𝑘 𝐺(𝑛, 𝑘, 𝜎), 𝑘 = 1, … , 𝑛,

where 𝐺(𝑛, 𝑘, 𝜎) denotes the generalized Stirling number—also known as generalized fac-
torial coefficient—defined as

𝐺(𝑛, 𝑘, 𝜎) = 1
𝑘!

𝑘

∑
𝑗=0

(
𝑘
𝑗)(−1)𝑗(−𝑗𝜎)𝑛↑.

EXAMPLE 2, CONTINUED. The distribution of 𝐾𝑛 for the Dirichlet process with parameter
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𝜃 > 0 is given by

P(𝐾𝑛 = 𝑘) = 𝑐(𝑛, 𝑘)𝜃𝑘

(𝜃)𝑛↑
, 𝑘 = 1, … , 𝑛,

where 𝑐(𝑛, 𝑘), 𝑘 = 1, … , 𝑛, denotes the unsigned Stirling number of the first kind (EISA132393).
Its expected value is

E(𝐾𝑛) =
𝑛

∑
𝑖=1

𝜃
𝜃 + 𝑖 − 1.

On the other hand, Korwar & Hollander (1973) obtain that

𝐾𝑛
log 𝑛 → 𝜃, 𝑛 → ∞.

EXAMPLE 3, CONTINUED. For the normalized 𝜎-stable process, we have

P(𝐾𝑛 = 𝑘) = Γ(𝑘)
𝜎Γ(𝑛)𝐺(𝑛, 𝑘, 𝜎), 𝑘 = 1, … , 𝑛,

and
E(𝐾𝑛) =

(1 + 𝜎)𝑛−1↑
Γ(𝑛) .

EXAMPLE 4, CONTINUED. The normalized generalized gamma process is an NRMI proba-
bility measure but—as explained—it can also be expressed as a Gibbs-type prior. Thus,
the distribution of 𝐾𝑛 is in this case

P(𝐾𝑛 = 𝑘) = 𝑒𝛽𝐺(𝑛, 𝑘, 𝜎)
𝜎Γ(𝑛)

𝑛−1

∑
𝑖=0

(
𝑛 − 1

𝑖 )(−1)𝑖𝛽𝑖/𝜎Γ (𝑘 − 𝑖
𝜎 ; 𝛽) 𝑘 = 1, … , 𝑛.

EXAMPLE 5, CONTINUED. For the two-parameter Poisson-Dirichlet process, the distribu-
tion of 𝐾𝑛 corresponds to

P(𝐾𝑛 = 𝑘) =
∏𝑘−1

𝑖=1 (𝜃 + 𝑖𝜎)
𝜎𝑘(𝜃 + 1)𝑛−1

𝐺(𝑛, 𝑘, 𝜎) 𝑘 = 1, … , 𝑛.

Furthermore,

E(𝐾𝑛) =
(𝜃 + 𝜎)𝑛↑

𝜎(𝜃 + 1)𝑛−1↑
− 𝜃

𝜎 ,

Regarding its asymptotic grown, Pitman (2006) shows that

𝐾𝑛
𝑛𝜎 → 𝑌𝜃/𝜎 a.s., 𝑛 → ∞,
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where 𝑌𝑞 has density given by

𝑓(𝑦) = Γ(𝑞𝜎 + 1)
𝜎Γ(𝑞 + 1)𝑦𝑞−1−1/𝜎𝑓𝜎(𝑦−1/𝜎),

for 𝑞 ≥ 0 and where 𝑓𝜎(⋅) is the density of a positive stable random variable with param-
eter 𝜎.

§2 SEGMENTATIONS

From the previous section, we can see that random partitions are a vast field for research-
ing. However, in some situations, there are additional constrains which make set parti-
tions, or random partitions, not adequate to be used in such scenarios. These constrains
change the kinds of valid groupings, and, as a consequence, different random objects are
required to tackle the problems of interest. In this and the next sections, we present other
clustering scenarios and study the latent combinatorial structures.

CLUSTERING SCENARIO 2. Suppose there is a set of items indexed by some ordered set 𝑇
andwewant to group the items in such a way that the items in the same block are formed
only by those having consecutive indices. Setting 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}, the valid groupings
are such that, if items 𝑦𝑡𝑖

and 𝑦𝑡𝑗
, for 𝑡𝑖 < 𝑡𝑗 , belong to the same block, then all the items

𝑦𝑡𝑙
, for all 𝑡𝑙 such that 𝑡𝑖 < 𝑡𝑙 < 𝑡𝑗 , also belong to the same block.

For the case 𝑛 = 3, we have {𝑦𝑡1
, 𝑦𝑡2

, 𝑦𝑡3
}, and their indices are such that 𝑡1 < 𝑡2 < 𝑡3.

Then, the valid groupings under this specification are

{{𝑦𝑡1
, 𝑦𝑡2

, 𝑦𝑡3
}}, {{𝑦𝑡1

}, {𝑦𝑡2
, 𝑦𝑡3

}}, {{𝑦𝑡1
, 𝑦𝑡2

}, {𝑦𝑡3
}}, {{𝑦𝑡1

}, {𝑦𝑡2
}, {𝑦𝑡3

}}.

Throughout this work, we call segmentations to the set conforming this kind of group-
ings. This is done by analogy with the way groupings are made: starting with the com-
plete set of items {𝑦𝑡1

, 𝑦𝑡2
, … , 𝑦𝑡𝑛

}, it is split into 𝑘 nonempty segments, for some positive
𝑘 ≤ 𝑛. Each segment becomes a block. It is worth saying that there is a unique way
to list segmentations, unlike set partitions where the order-of-appearance assumption is
necessary.

Using the symbolic method, segmentations are encoded by an unlabeled combinato-
rial class, whose specification is

𝒮 = Seq(Seq≥1(𝒵)).
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In this case, its counting sequence is given by the ordinary generating function (OGF)

𝑆(𝑧) = 1 − 𝑧
1 − 2𝑧,

from where its 𝑛th coefficient is 𝑆𝑛 = [𝑧𝑛]𝑆(𝑧) = 2𝑛−1, for 𝑛 ≥ 1, with the assumption
𝑆0 = 1 (EIS A000079).

Similarly to set partitions, it is possible to obtain the number of segmentations having
exactly 𝑘 blocks. This is encoded as

𝒮 (𝑘) = Seq𝑘(Seq≥1(𝒵)),

which has counting sequence

𝑆(𝑘)(𝑧) = 𝑧𝑘

(1 − 𝑧)𝑘 ,

and 𝑛th coefficient given by 𝑆(𝑘)
𝑛 = [𝑧𝑛]𝑆(𝑘)(𝑧) = (𝑛−1

𝑘−1), for 𝑛 ≥ 1, and 𝑆(0)
0 = 1 (cf.

EIS A007318). In this case, its asymptotic form is 𝑆(𝑘)
𝑛 ∼ 𝑛𝑘−1/(𝑘 − 1)!

As a side note, there is a relationship between the segmentations of [𝑛] with exactly
𝑘 blocks, 𝒮 (𝑘)

[𝑛] , and the set of integer compositions Δ𝑛,𝑘 defined in Equation (6). Actually,
we have that the cardinality of both sets is the same. On the other hand, we also have
that the class of segmentations is a subset of set partitions, that is 𝒮𝒳 ⊆ 𝒫𝒳 for any set of
items 𝒳 ; the contention is proper whenever #𝒳 ≥ 3. These are important facts that will
be used during the study of probability distributions over segmentations.

§ 3 ORDERED SET PARTITIONS

For the third clustering scenario, we generalize Scenario 1 as follows.

CLUSTERING SCENARIO 3. Suppose there is a finite set of labeled items which we want to
gather them into nonempty groups. In this case, groups are also labeled.

As an illustration, consider the case where we have three items: {𝑥1, 𝑥2, 𝑥3}. Then, all
the groupings satisfying the given specification are

{{𝑥1, 𝑥2, 𝑥3}}, {{𝑥1}, {𝑥2, 𝑥3}}, {{𝑥2}, {𝑥1, 𝑥3}}, {{𝑥3}, {𝑥1, 𝑥2}},

{{𝑥1, 𝑥2}, {𝑥3}}, {{𝑥1, 𝑥3}, {𝑥2}}, {{𝑥2, 𝑥3}, {𝑥1}}, {{𝑥1}, {𝑥2}, {𝑥3}},

{{𝑥1}, {𝑥3}, {𝑥2}}, {{𝑥2}, {𝑥1}, {𝑥3}}, {{𝑥2}, {𝑥3}, {𝑥1}},

{{𝑥3}, {𝑥1}, {𝑥2}}, {{𝑥3}, {𝑥2}, {𝑥1}}.
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The fact that the blocks are now distinguishable by a label—or ordered—forces us to
count partitions like {{𝑥1}, {𝑥2, 𝑥3}} and {{𝑥2, 𝑥3}, {𝑥1}} as different. The order in the
elements within the same block, however, continues to be irrelevant. Therefore, as we
expected, the number of groupings under this scenario is bigger than the ones of the first
scenario.

In order to obtain the combinatorial class which models this last clustering scenario,
the number of blocks is fixed first. Thus, for a fixed 𝑘, the labeled combinatorial class
defined as

𝒪(𝑘) = Seq𝑘(Set≥1(𝒵)),

encodes the desired groupings. Notice that the operator Seq𝑘 allows to identified the
blocks; see Flajolet & Sedgewick (2009) for a further discussion. The EGF of this class is

𝑂(𝑘)(𝑧) = (𝑒𝑧 − 1)𝑘, (14)

with 𝑛th coefficient given by

𝑂(𝑘)
𝑛 = 𝑛! [𝑧𝑛]𝑂(𝑘)(𝑧) =

𝑘

∑
𝑗=0

(
𝑘
𝑗)(−1)𝑘(𝑘 − 𝑗)𝑛,

(EIS A131689). Table 2 shows the counting sequence (𝑂(𝑘)
𝑛 )𝑛

𝑘=0 for some values of 𝑛.

Now, if we take all the possible values of 𝑘 in 𝒪(𝑘), the resulting class encodes all the
possible groupings as explained in Scenario 3. This class is known as ordered set partitions
and can be written as

𝒪 = ⋃
𝑘≥0
Seq𝑘(Set≥1(𝒵)) = Seq(Set≥1(𝒵)).

The counting sequence (𝑂𝑛)𝑛≥0 is, then, obtained from the EGF

𝑂(𝑧) = 1
2 − 𝑒𝑧 =

∞

∑
𝑗=0

𝑒𝑗𝑧

2𝑗+1 ,

by taking its 𝑛th coefficient, which is

𝑂𝑛 = 𝑛! [𝑧𝑛]𝑂(𝑧) =
∞

∑
𝑗=0

𝑗𝑛

2𝑗+1 .
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This sequence is known as the Fubini numbers or also ordered Bell numbers (EISA000670)
and are commonly denoted by (𝐹𝑛)𝑛≥1; Table 2 lists the first ten of them. An alternative
and simpler form to compute Fubini numbers is given by the sum 𝑂𝑛 = ∑𝑛

𝑘=0 𝑂(𝑘)
𝑛 , sim-

ilarly to Bell numbers. Moreover, their asymptotic form—found, for example, in Gross
(1962)—is 𝑂𝑛 ∼ 𝑛! /(2 log𝑛+1 2).

Fubini numbers received its name by Comtet (1974) because they count the number
of differentways to rearrange the ordering of integrals in Fubini’s theorem; however, they
appear in an early work of Cayley (1859) who counts a certain class of plain trees.

Similarly to segmentations, we have that ordered set partitions are a superset of set
partitions, i.e. 𝒫𝒳 ⊆ 𝒪𝒳 , where the contention is proper for all the non trivial cases #𝒳 ∈
{0, 1}. Indeed, we have the following relationship

𝑂(𝑘)
𝑛 = 𝑘! 𝑆(𝑘)

𝑛 = 𝑘! 𝑆(𝑛, 𝑘),

for all 0 ≤ 𝑘 ≤ 𝑛. Note that the term 𝑘! appears in order to differentiate the blocks. This
also gives another form to compute Fubini numbers in terms of Stirling numbers of the
secondkind, namely𝑂𝑛 = ∑𝑛

𝑘=0 𝑘! 𝑆(𝑛, 𝑘). Furthermore, due to their relationshipwith set
partitions—under some probabilistic model—we should be able to infer not only about
the clustering structure of certain dataset, but also about the number of groups.

3.1 WORDS

Classification is a problem very close to clustering. In this, the main interest is know-
ing to which category each item belongs. As we will see, the relationship between these
two problems can be explained bymeans of the relationship between their combinatorial
structure. We start describing classification in the following scenario.

CLUSTERING SCENARIO 4. Suppose we have a fixed number of categories, or blocks, each
one identified, for example, by a label. Given a set of items, we are interested in knowing
how the items are allocated into the different blocks. Unlike previous cases, there could
be empty groups.

As an example, consider the case where there are three items, {𝑥1, 𝑥2, 𝑥3}, and two
blocks to allocate them. Then, the induced groupings are

{{𝑥1, 𝑥2, 𝑥3}, {}}, {{𝑥1, 𝑥2}, {𝑥3}}, {{𝑥1, 𝑥3}, {𝑥2}}, {{𝑥1}, {𝑥2, 𝑥3}},

{{𝑥2, 𝑥3}, {𝑥1}}, {{𝑥2}, {𝑥1, 𝑥3}}, {{𝑥3}, {𝑥1, 𝑥2}}, {{}, {𝑥1, 𝑥2, 𝑥3}}.
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In this case, grouping {{𝑥1, 𝑥2}, {𝑥3}} indicates that items 𝑥1 and 𝑥2 belong to the first
block and 𝑥3 belongs to the second one, whereas in {{𝑥3}, {𝑥1, 𝑥2}}, the items are grouped
in the same way but they are assigned to opposite blocks. Additionally, groupings like
{{𝑥1, 𝑥2, 𝑥3}, {}} are valid now, since there can be empty blocks.

This new structure differentiates groups, but not the order of the items within each
group. Thus, from the example, the groupings {{𝑥1, 𝑥2}, {𝑥3}} and {{𝑥2, 𝑥1}, {𝑥3}} are
treated as the same, but both of them are different to {{𝑥3}, {𝑥1, 𝑥2}}.

The combinatorial class modeling this kind of grouping is known as words because
of its usage analyzing letters in words. Under this context, every word is represented
slightly different to the way showed in the example. Given a set of 𝑘 different letters
ℒ = {𝑤∗

1, … , 𝑤∗
𝑘}—called alphabet—a word of length 𝑛 ≥ 1 is represented by a sequence

of letters (𝑤1, 𝑤2, … , 𝑤𝑛). There could be repeated letters. Thus, in the example, the first
two groupings can be written as the words (1, 1, 1) and (1, 1, 2), assuming the alphabet is
{1, 2}.

Using the symbolic method, the words obtained from a finite alphabet ℒ are encoded
by the labeled class

𝒲ℒ = Seq|ℒ|(Set(𝒵)).

Setting 𝑘 = #ℒ, the EFG of the class is

𝑊 (𝑘)(𝑧) = 𝑒𝑘𝑧,

and its 𝑛th coefficient is, therefore, 𝑊 (𝑘)
𝑛 = 𝑛! [𝑧𝑛]𝑊 (𝑘)(𝑧) = 𝑘𝑛. Table 3 displays the

number of words for different values of 𝑛 and 𝑘.

There is an interesting relationship between the class of words and ordered set parti-
tions. Suppose we are interested in the class of words of a 𝑘-letter alphabet where each
letter appears at least 𝑟 times, 𝑟 ≥ 0. This is encoded by

𝒲ℒ
≥𝑟 = Seq|ℒ|(Set≥𝑟(𝒵)).

When 𝑟 = 0, the previous class of words is obtained, but for the case 𝑟 = 1, each letter of
the alphabet is forced to appear at least once. In this second case, the EFG is given by

𝑊 (𝑘)
≥1 (𝑧) = (𝑒𝑧 − 1)𝑘,

which is actually the same generating function obtained by the class of ordered set par-
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titions with exactly 𝑘 blocks, 𝒪(𝑘). We have already established the role of ordered set
partitions in clustering, and—in this section—we have seen how words can be used in
classification; but what is more interesting is that—under this latter restriction—both
problems become the same.

During this chapter, we have defined and studied different clustering scenarios with
particular emphasis on the combinatorial structure they induce. This fact results crucial
when we want to tackle any problem related to these scenarios. In further chapters, we
examine different and new methodologies to define probability distributions for each
structure, and study some specific problems where they can be applied.





CHAPTER II

SEGMENTATIONMODELS; AN
APPLICATION TO CHANGE-POINT

DETECTION

The study of segmentation models is the main focus of this chapter. By segmentation models
we refer to a particular class of clustering models where the data are indexed by covari-
ates. These covariates are points of some ordered set and play an important role in the
models since they restrict the set of the possible—or valid—groupings. In Chapter I, the
Clustering Scenario I.2 illustrates how segmentation models differ from the more gen-
eral clustering model. There, it was also studied how the combinatorial structure called
segmentations, denoted by 𝒮 , encodes all the valid groupings for these models. Hence,
throughout this chapter, we complete the study of this topic by providing different con-
structions of probability distributions over segmentations and illustrating their usage
under the context of change-point detection.

After presenting three different constructions of𝒮[𝑛]-valued probability distributions
in Section 1, the rest of the chapter studies a novel retrospective change-point detection
model. In this particular kind of classification models, the covariates are certain time
units and the main goal is to infer—in terms of time indices—about the abrupt changes
within the data. Thus, Section 2 presents with detail such a model. In this section, we
justify our approach to tackle this problem—focusing on the prior distribution and the
likelihood function—give an MCMC algorithm to draw samples from the posterior dis-
tribution, and illustrate its performance with simulated and real datasets. Finally, in Sec-
tions 3 and 4, we expose some of the current and future work in this research field: the
estimation of regime parameters and the prediction of change-points; both of them are
topics of interest in change-point analysis.

33
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It is worth mentioning that most of the material presented in Sections 1 and 2 has
been already published in Martínez &Mena (2014).

§ 1 PROBABILITY DISTRIBUTIONS FOR RANDOM SEGMENTATIONS

Let 𝑇 be an ordered set formed by 𝑛 distinct points: 𝑡1, … , 𝑡𝑛, 𝑛 ≥ 1, such that 𝑡𝑖 < 𝑡𝑗
for all 𝑖 < 𝑗. As explained in Section I.2, the combinatorial class of segmentations, 𝒮𝑇 ,
models all the possible groupings of 𝑇 where the blocks in each grouping are formed by
consecutive elements. To be precise, let {𝜏1, … , 𝜏𝑘} ∈ 𝒮𝑇 , 1 ≤ 𝑘 ≤ 𝑛, and let 𝑡𝑖, 𝑡𝑙 ∈ 𝜏𝑗 , for
some 𝑗 and 𝑖 < 𝑙, then all 𝑡𝑟 ∈ 𝑇 such that 𝑡𝑖 < 𝑡𝑟 < 𝑡𝑗 also belong to 𝜏𝑘; the case where
the block has only one element is trivial. Similar to the case of random partitions, it is
sufficient to only work with the segmentations of [𝑛], 𝒮[𝑛], instead of the segmentations
of 𝑇 , since both classes are isomorphic. Thus, we define a random segmentation, Υ𝑛, as an
𝒮[𝑛]-valued random variable.

In the next sections, three different constructions of 𝒮[𝑛]-valued probability distri-
butions are provided, all of them based on EPPFs. It is worth noting that—in addition
to providing the probability distribution for the random segmentation—the underlying
probability distribution for the number of blocks, denoted by 𝐵𝑛, is also studied.

1.1 DEGENERATION OF RANDOM-PARTITION PROBABILITY DISTRIBUTIONS

Based on the fact that 𝒮[𝑛] ⊆ 𝒫[𝑛] for all 𝑛—where the contention is proper for 𝑛 > 2—
Fuentes-García et al. (2010b) restrict 𝒫[𝑛]-valued distributions under a classification con-
text. Their approach consists in assigning probability zero to all partitions which are not
segmentations; the remaining values are, then, normalized in order to define a probabil-
ity distribution. Hence, the distribution of a random segmentation Υ𝑛 is given by

P(Υ𝑛 = 𝜏) = 𝑀P(Π𝑛 = 𝜏), 𝜏 ∈ 𝒮[𝑛], (1)

for Π𝑛 a random partition, and where𝑀 is the normalizing constant

𝑀−1 = ∑
𝜏∈𝒮[𝑛]

P(Π𝑛 = 𝜏).

Assuming Π𝑛 has EPPF Π(𝑛)
𝑘 , the distribution (1), denoted by 𝑝∗, can be written as

𝑝∗(𝑛1, … , 𝑛𝑘) = 𝑀Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘), (2)
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for any (𝑛1, … , 𝑛𝑘) ∈ Δ𝑛,𝑘, where Δ𝑛,𝑘 is the set of all integer compositions of 𝑛 with
exactly 𝑘 summands (see Equation I.6, page 13). Note that—similar to EPPFs—𝑝∗ is a
symmetric function.

Regarding the distribution of the number of blocks, 𝐵𝑛, it is obtained by marginaliz-
ing 𝑝∗ as follows

P(𝐵𝑛 = 𝑘) = ∑
𝜏∈𝒮𝑘

[𝑛]

P(Υ𝑛 = 𝜏) = ∑
(𝑛1,…,𝑛𝑘)∈Δ𝑛,𝑘

𝑝∗(𝑛1, … , 𝑛𝑘), 𝑘 = 1, … , 𝑛.

Notice that, if this distribution is compared with the corresponding distribution for
𝐾𝑛—where 𝐾𝑛 models the number of blocks in a 𝒫[𝑛]-valued approach—we have that

P(𝐾𝑛 = 𝑘) = ∑
𝜋∈𝒫𝑘

[𝑛]

P(Π𝑛 = 𝜋) = ∑
𝜋∈𝒮𝑘

[𝑛]

P(Π𝑛 = 𝜋) + ∑
𝜋∈(𝒫𝑘

[𝑛]⧵𝒮𝑘
[𝑛])
P(Π𝑛 = 𝜋)

= 𝑀−1P(𝐵𝑛 = 𝑘) + ∑
𝜋∈(𝒫𝑘

[𝑛]⧵𝒮𝑘
[𝑛])
P(Π𝑛 = 𝜋),

from where
P(𝐵𝑛 = 𝑘) = 𝑀P(𝐾𝑛 = 𝑘) − ∑

𝜋∈(𝒫𝑘
[𝑛]⧵𝒮𝑘

[𝑛])
𝑀P(Π𝑛 = 𝜋).

The relevance of this equality is that—even though 𝑝∗ is based on EPPFs and it is a sym-
metric function—the underlying distribution for 𝐵𝑛 changes drastically with respect to
the one for 𝐾𝑛. Such a change becomes greater as 𝑘 → 𝑛/ log 𝑛, where the cardinality of
𝒮𝑘

[𝑛] reaches its maximum.

1.2 MARKOV-CHAIN BASED APPROACH

A second approach to obtain probability distributions for random segmentations is based
on the Pólya urn scheme given in Equation (I.13). In such a scheme, we start from a se-
quence (𝑋𝑛)𝑛≥1—sampled from a discrete random probability measure—which induces
a Markov chain (𝐾𝑛)∞

𝑛=1 obtained by considering P(𝑋𝑛+1 = “new”|𝑋1, … , 𝑋𝑛) and its
complement. Indeed, this Markov chain models the dynamic of the number of blocks
in (𝑋𝑛)𝑛≥1. The probability of observing a new value indicates the appearance of a new
block, otherwise the number of blocks remains unchanged. Therefore, the one-step tran-
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sition probabilities of the Markov chain (𝐾𝑛)∞
𝑛=1 are given by

P(𝐾𝑛+1 = 𝑘 + 1|𝐾𝑛 = 𝑘) ∶= P(𝑋𝑛+1 ≠ 𝑥∗
𝑗 for all 𝑗 ≤ 𝑘|𝑋1 = 𝑥∗

𝑖1
, … , 𝑋𝑛 = 𝑥∗

𝑖𝑛
),

P(𝐾𝑛+1 = 𝑘|𝐾𝑛 = 𝑘) ∶= P(𝑋𝑛+1 = 𝑥∗
𝑗 for some 𝑗 ≤ 𝑘|𝑋1 = 𝑥∗

𝑖1
, … , 𝑋𝑛 = 𝑥∗

𝑖𝑛
),

where {𝑥∗
1, 𝑥∗

2, … , 𝑥∗
𝑘} are the 𝑘 distinct values observed in (𝑋𝑖)𝑛

𝑖=1, and (𝑖1, … , 𝑖𝑛) ⊂ [𝑘].
These probabilities can be written in terms of EPPFs as explained in Section I.1.2.4.

Let Π(𝑛)
𝑘 be an EPPF and (𝑛1, … , 𝑛𝑘) ∈ Δ𝑛,𝑘, then

P(𝐾𝑛+1 = 𝑘 + 1|𝐾𝑛 = 𝑘) =
Π(𝑛+1)

𝑘+1 (𝑛1, … , 𝑛𝑘, 1)
Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘)
, (3)

P(𝐾𝑛+1 = 𝑘|𝐾𝑛 = 𝑘) =
∑𝑘

𝑗=1 Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

, (4)

with 𝐾1 = 1. Note that this Markov chain is a non-homogeneous birth process. Fur-
thermore, each of its paths of length 𝑛 induces a segmentation of [𝑛]; see Figure 1 for
an illustration. Hence, it is possible to define a probability distribution for a random
segmentation Υ𝑛; specifically

P(Υ𝑛 = {𝜏1, … , 𝜏𝑘}) = P(𝐾1 = 𝑖1, 𝐾2 = 𝑖2, … , 𝐾𝑛 = 𝑖𝑛) (5)

=
𝑛−1

∏
𝑗=1
P(𝐾𝑗+1 = 𝑖𝑗+1|𝐾𝑗 = 𝑖𝑗),

for {𝜏1, … , 𝜏𝑘} ∈ 𝒮[𝑛], 1 ≤ 𝑘 ≤ 𝑛, and where the sequence (𝑖1, … , 𝑖𝑛) ⊂ [𝑘] is such that

𝑖1 = 𝑖2 = ⋯ = 𝑖𝑛1
= 1, (6)

𝑖𝑛1+1 = 𝑖𝑛1+2 = ⋯ = 𝑖𝑛1+𝑛2
= 2,

⋮

𝑖𝑠𝑘−1+1 = 𝑖𝑠𝑘−1+2 = ⋯ = 𝑖𝑛 = 𝑘,

with 𝑠𝑗 = 𝑛1 + ⋯ + 𝑛𝑗 , and where 𝑛𝑗 = #𝜏𝑗 for 𝑗 = 1, … , 𝑘. Notice that (5) depends on
a segmentation only through its blocks’ sizes (𝑛1, … , 𝑛𝑘), thus—using (3) and (4)—it can
be written as

𝑝⋆(𝑛1, … , 𝑛𝑘) =
𝑘−1

∏
𝑗=1

𝜅(𝑠𝑗 , 𝑗, 𝑗 + 1)
𝑘

∏
𝑗=1

𝑛𝑗−1

∏
𝑙=1

𝜅(𝑠𝑗−1 + 𝑙, 𝑗, 𝑗), (7)
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1
1

2

2

3

3

4

4

{{1}, {2, 3, 4}}

{{1, 2}, {3}, {4}}

{{1}, {2}, {3}, {4}}

FIGURE 1: Examples of the possible paths for theMarkov chain (𝐾𝑛)𝑛≥1 until time 𝑛 = 4. As shown
in the right side of the plot, every path induces a segmentation of {1, 2, 3, 4}.

where 𝜅(𝑟, 𝑘, 𝑘′) ∶= P(𝐾𝑟+1 = 𝑘′|𝐾𝑟 = 𝑘) and with 𝑠0 = 0. It is also important to note,
however, that the distribution 𝑝⋆ is not symmetric because of the term 𝑠𝑗 .

From the construction of the Markov chain (𝐾𝑛)∞
𝑛=1, the number of blocks, 𝐵𝑛, is im-

mediately obtained from the marginal distribution of 𝐾𝑛. Similar to the previous con-
struction, the probability distribution for𝐵𝑛 can be computed bymarginalizing (7), lead-
ing to

P(𝐵𝑛 = 𝑘) = ∑
(𝑖1,…,𝑖𝑛)

𝑛−1

∏
𝑗=1
P(𝐾𝑗+1 = 𝑖𝑗+1|𝐾𝑗 = 𝑖𝑗)

= ∑
(𝑛1,…,𝑛𝑘)∈Δ𝑛,𝑘

𝑘−1

∏
𝑗=1

𝜅(𝑠𝑗 , 𝑗, 𝑗 + 1)
𝑘

∏
𝑗=1

𝑛𝑗−1

∏
𝑙=1

𝜅(𝑠𝑗−1 + 𝑙, 𝑗, 𝑗), (8)

where the first sum is over all the sequences (𝑖1, … , 𝑖𝑛) like in (6)—that is, over all the
sequences of positive integers such that 1 = 𝑖1 ≤ 𝑖2 ≤ ⋯ ≤ 𝑖𝑛 = 𝑘 ≤ 𝑛, and 𝑖𝑗 − 𝑖𝑗−1 ≤ 1
for all 1 < 𝑗 ≤ 𝑛—and for the second sum, recall that 𝑠𝑗 = 𝑛1 + ⋯ + 𝑛𝑗 with 𝑠0 = 0.

As a side note, it is worth saying that this approach results of interest since it could be
considered as tantamount to the one obtained via infinite hidden Markov models, with
the state Markov process restricted to have upper triangular transition matrices (see, for
example, Ko et al. 2015, and the references therein). In species sampling problems, the
study of the marginal statistic 𝐵𝑛 could be also an appealing methodology to infer about
the number of species (Lijoi et al. 2007a).

1.3 DEGENERATION BASED ON INTEGER COMPOSITIONS

The last approach studied in this chapter to construct 𝒮[𝑛]-valued probability distribu-
tions is also a degeneration of 𝒫[𝑛]-valued probability distributions. However, such a
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degeneration is made according certain rules. The idea of this construction consists in
taking the mass of all the partitions having block sizes (𝑛1, … , 𝑛𝑘) regardless their order,
and uniformly distribute the whole mass into all the segmentations with the same block
sizes.

In order to obtain the corresponding probability distribution—given an integer com-
position (𝑛1, … , 𝑛𝑘) of 𝑛—define the set

Δ(𝑛1, … , 𝑛𝑘) ∶= {(𝑛𝜌(1), … , 𝑛𝜌(𝑘)) ∈ Δ𝑛,𝑘 for all the permutations 𝜌 of [𝑘]} ;

notice that the cardinality of this set is not 𝑘! since repeated elements are included only
once; for example, consider (1, 1, 2), then Δ(1, 1, 2) = {(1, 1, 2), (1, 2, 1), (2, 1, 1)}. Let Π(𝑛)

𝑘
be an EPPF. Due to the symmetry of Π(𝑛)

𝑘 , the probability of any element in Δ(𝑛1, … , 𝑛𝑘)
is the same, so

∑
𝑛′∈Δ(𝑛1,…,𝑛𝑘)

Π(𝑛)
𝑘 (𝑛′

1, … , 𝑛′
𝑘) = 𝑃𝑛1,…,𝑛𝑘

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘),

where 𝑃𝑛1,…,𝑛𝑘
is the number of all the partitions having block sizes in Δ(𝑛1, … , 𝑛𝑘). This

probability will be uniformly reassigned among all the segmentations with block sizes
in the same set; denote by 𝑆𝑛1,…,𝑛𝑘

the number of such segmentations. Therefore, the
probability distribution of interest is given by a function 𝑝′ ∶ Δ𝑛,𝑘 → [0, 1] such that

𝑝′(𝑛1, … , 𝑛𝑘) =
𝑃𝑛1,…,𝑛𝑘

𝑆𝑛1,…,𝑛𝑘

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘). (9)

The numbers 𝑃𝑛1,…,𝑛𝑘
and 𝑆𝑛1,…,𝑛𝑘

can be found by means of the symbolic method and
introducingmarkers in the specification of set partitions, 𝒫 , and segmentations, 𝒮 , given
in the previous chapter (Flajolet & Sedgewick 2009, Chapter 3).

Let (𝜒𝑗)𝑗≥1 be a sequence markers—where 𝜒𝑗 marks the number of blocks of size 𝑗—
and consider the following labeled combinatorial class

𝒫 = Set(𝜒1Set1(𝒵) + 𝜒2Set2(𝒵) + ⋯ + 𝜒𝑗Set𝑗(𝒵) + ⋯).

The EGF of this class is a function of 𝑧 and 𝑢 ∶= (𝑢1, 𝑢2, …) and it is given by

𝑃 (𝑧, 𝑢) = exp
{∑

𝑗≥1

𝑢𝑗𝑧𝑗

𝑗! }
= ∏

𝑗≥1
∑
𝑟≥0

𝑢𝑟
𝑗

𝑟!
𝑧𝑗𝑟

𝑗!𝑟 .
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For a fixed 𝑛, the number of partitions having 𝑚1 blocks of size 1, 𝑚2 blocks of size 2, and
so on, equalizes 𝑛! times the coefficient [𝑢𝑚1

1 ][𝑢𝑚2
2 ] ⋯ [𝑢𝑚𝑛

𝑛 ][𝑧𝑛] of 𝑃 (𝑧, 𝑢). Notice that it
should be satisfied 𝑛 = ∑𝑗≥1 𝑗𝑚𝑗 . Therefore, the number of partitions having block sizes
in Δ(𝑛1, … , 𝑛𝑘) is

𝑃𝑛1,…,𝑛𝑘
= 𝑛! [𝑢𝑚1

1 ][𝑢𝑚2
2 ] ⋯ [𝑢𝑚𝑛

𝑛 ][𝑧𝑛]𝑃 (𝑧, 𝑢) = 𝑛!
∏𝑛

𝑗=1 𝑚𝑗! 𝑗!𝑚𝑗
. (10)

Similarly, consider the following unlabeled class

𝒮 = Seq(𝜒1Seq1(𝒵) + 𝜒2Seq2(𝒵) + ⋯ + 𝜒𝑗Seq𝑗(𝒵) + ⋯),

where 𝜒𝑗 marks the number of blocks of size 𝑗; then, its OFG is

𝑆(𝑧, 𝑢) = ∑
𝑟≥0 {∑

𝑗≥1
𝑢𝑗𝑧𝑗

}

𝑟

.

In this case, it is necessary to find the 𝑘th coefficient of 𝑧 such that it has 𝑚1 blocks of
size 1, 𝑚2 blocks of size 2, and so on, in order to match it with the corresponding 𝑃𝑛1,…,𝑛𝑘

.
Therefore, such a coefficient is given by

𝑆𝑛1,…,𝑛𝑘
= [𝑢𝑚1

1 ][𝑢𝑚2
2 ] ⋯ [𝑢𝑚𝑛

𝑛 ][𝑧𝑘]𝑆(𝑧, 𝑢) = 𝑘!
𝑚1! ⋯ 𝑚𝑛! = (

𝑘
𝑚1, … , 𝑚𝑛

). (11)

Note that 𝑘 = ∑𝑛
𝑗=1 𝑚𝑗 is the total number of blocks.

Dividing (10) by (11), we have

𝑃𝑛1,…,𝑛𝑘

𝑆𝑛1,…,𝑛𝑘

= 𝑛!
𝑘! ∏𝑛

𝑗=1 𝑗!𝑚𝑗
.

However—in order to express this quantity in terms of the block sizes (𝑛1, … , 𝑛𝑘) instead
of the groups of size 𝑗 (𝑚1, … , 𝑚𝑛)—the following equivalence is used

𝑛

∏
𝑗=1

𝑗!𝑚𝑗 =
𝑘

∏
𝑗=1

𝑛𝑗! ,

which can be proved as follows. Expanding the factorials in the right side, we have

𝑘

∏
𝑗=1

𝑛𝑗! = 1𝑎12𝑎2 ⋯ 𝑛𝑎𝑛 ,
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where 𝑎𝑗 = ∑𝑘
𝑖=1 𝟏(𝑛𝑖 ≥ 𝑗), whereas the left side is written as

𝑛

∏
𝑗=1

𝑗!𝑚𝑗 = 1𝑚1+⋯+𝑚𝑛2𝑚2+⋯+𝑚𝑛 ⋯ 𝑛𝑚𝑛 ,

thus—since 𝑚𝑗 = ∑𝑛
𝑖=1 𝟏(𝑛𝑖 = 𝑗) for 𝑗 = 1, … , 𝑛—the exponent in each term is given by

𝑛

∑
𝑗=𝑟

𝑚𝑗 =
𝑛

∑
𝑗=𝑟

𝑛

∑
𝑖=1

𝟏(𝑛𝑖 = 𝑗) =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=𝑟

𝟏(𝑛𝑖 = 𝑗) =
𝑛

∑
𝑖=1

𝟏(𝑛𝑖 ≥ 𝑟) = 𝑎𝑟.

Hence, the probability distribution (9) for a random segmentation Υ𝑛 is given by

P(Υ𝑛 = {𝜏1, … , 𝜏𝑘}) = 𝑝′(𝑛1, … , 𝑛𝑘) = (
𝑛

𝑛1, … , 𝑛𝑘
)

1
𝑘!Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘), (12)

for {𝜏1, … , 𝜏𝑘} ∈ 𝒮[𝑛] and where 𝑛𝑗 = #𝜏𝑗 for 𝑗 = 1, … , 𝑛.
The distribution of the number of blocks, 𝐵𝑛, is obtained as usual. However—given

the way the EPPF was degenerated—there is a nice relation between 𝐵𝑛 and 𝐾𝑛. No-
tice first that, for a fixed 𝑘, there is a finite collection of disjoint sets Δ(𝑛1, … , 𝑛𝑘) whose
union isΔ𝑛,𝑘. LetΔ∗

𝑛,𝑘 be the set of the different sequences (𝑛1, … , 𝑛𝑘) generating such sets
Δ(𝑛1, … , 𝑛𝑘). Furthermore, denote by 𝒫𝑛1,…,𝑛𝑘

and 𝒮𝑛1,…,𝑛𝑘
the sets of all partitions and

segmentations, respectively, having block sizes (𝑛1, … , 𝑛𝑘); clearly—from (10) and (11)—
the cardinality of each set is #𝒫𝑛1,…,𝑛𝑘

= 𝑃𝑛1,…,𝑛𝑘
and #𝒮𝑛1,…,𝑛𝑘

= 𝑆𝑛1,…,𝑛𝑘
. Therefore

P(𝐵𝑛 = 𝑘) = ∑
𝜏∈𝒮𝑘

[𝑛]

P(Υ𝑛 = 𝜏) = ∑
Δ∗

𝑛,𝑘
∑

𝜏∈𝒮𝑛1,…,𝑛𝑘

P(Υ𝑛 = 𝜏)

= ∑
Δ∗

𝑛,𝑘

𝑆𝑛1,…,𝑛𝑘
P(Υ𝑛 = 𝜏∗) = ∑

Δ∗
𝑛,𝑘

𝑃𝑛1,…,𝑛𝑘
P(Π𝑛 = 𝜏∗)

= ∑
Δ∗

𝑛,𝑘
∑

𝜏∈𝒫𝑛1,…,𝑛𝑘

P(Π𝑛 = 𝜏) = ∑
𝜏∈𝒫𝑘

[𝑛]

P(Π𝑛 = 𝜏)

= P(𝐾𝑛 = 𝑘),

where 𝜏∗ is any element of 𝒮𝑛1,…,𝑛𝑘
, Π𝑛 is a random partition with EPPF Π(𝑛)

𝑘 , and the
second line follows from (9).

It is worth saying that—based on the notion of covariate proximity and covariate-
dependent weights, under a context of Dirichlet process mixture models for curve fit-
ting—Wade et al. (2014) work with a 𝒮[𝑛]-valued distribution having the form (12) with
the EPPF Π(𝑛)

𝑘 induced by the Dirichlet process. They also show that the distributions of



§2 PROBABILITY DISTRIBUTIONS FOR RANDOM SEGMENTATIONS 41

𝜋 𝑝′ 𝑝∗ 𝑝⋆

{{1, 2, 3, 4}} 0.029 0.041 0.029
{{1}, {2, 3, 4}} 0.066 0.047 0.092
{{1, 2}, {3, 4}} 0.039 0.019 0.046
{{1, 2, 3}, {4}} 0.066 0.047 0.033

{{1}, {2}, {3, 4}} 0.136 0.097 0.204
{{1}, {2, 3}, {4}} 0.136 0.097 0.136
{{1, 2}, {3}, {4}} 0.136 0.097 0.068

{{1}, {2}, {3}, {4}} 0.392 0.557 0.392
(A) Distribution of Υ4, P(Υ4 = 𝜋)

𝑘 𝑝′ 𝑝∗ 𝑝⋆ 𝑝
1 0.029 0.041 0.029 0.029
2 0.171 0.112 0.171 0.171
3 0.408 0.290 0.408 0.408
4 0.392 0.557 0.392 0.392

(B) Distribution of 𝐵4, P(𝐵4 = 𝑘)

TABLE 1: Distribution of Υ4 and 𝐵4 under the different approaches to construct probability
distributions on 𝒮[𝑛]: degenerated case 𝑝∗, Markov-chain approach, 𝑝⋆, and integer-
composition degenerated construction, 𝑝′. The parameters are (𝜎, 𝜃) = (0.35, 2.7) in all
cases. For the distribution of 𝐵4, it is also shown the 𝒫[𝑛]-valued case, 𝑝.

𝐵𝑛 and of 𝐾𝑛 coincide for this specific EPPF.

As an illustration of the performance of each one of these constructions, Table 1
displays them for the case where the EPPF is induced by the two-parameter Poisson-
Dirichlet process (Example I.5). The corresponding distributions for Υ𝑛 are, then, given
by

𝑝∗(𝑛1, … , 𝑛𝑘) =𝑀
∏𝑘−1

𝑖=1 (𝜃 + 𝑖𝜎)
(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑ (13a)

𝑝⋆(𝑛1, … , 𝑛𝑘) =
∏𝑘−1

𝑖=1 (𝜃 + 𝑖𝜎)
(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(𝑠𝑗−1 + 1 − 𝑗𝜎)𝑛𝑗−1↑, (13b)

𝑝′(𝑛1, … , 𝑛𝑘) = 𝑛!
𝑘!

∏𝑘−1
𝑖=1 (𝜃 + 𝑖𝜎)

(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑

𝑛𝑗! , (13c)

where𝑀 is the normalizing constant of 𝑝∗ given by

𝑀−1 = 1
(𝜃 + 1)𝑛−1↑

𝑛

∑
𝑘=1

𝑘−1

∏
𝑖=1

(𝜃 + 𝑖𝜎) ∑
(𝑛1,…,𝑛𝑘)∈Δ𝑛,𝑘

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑.
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§2 A RETROSPECTIVE CHANGE-POINT DETECTION MODEL FORMARKOVIAN DATA

One class of segmentationmodels are thewell known change-point detectionmodels. When
observing a phenomenon evolving in time, there might be some abrupt variations in the
measurements suggesting that something has altered its regular behavior. Change-point
detection models study these kinds of variations, and the main goal is to detect the num-
ber and the location of such changes.

First works can be traced back to Page (1954), Shiryaev (1963), Chernoff & Zacks
(1964), Kander & Zacks (1966) and Hinkley & Hinkley (1970). However, the interest
in these models continues because of their attractiveness in many different fields. For
example, we can find applications in genetics (in DNA segmentation, Braun et al. 2000,
and phylogenetic recombination detection, Minin et al. 2007), signal processing (for in-
stance, in EEG analysis, Kaplan& Shishkin 2000, and signal segmentation, Punskaya et al.
2002), environmental time series (for detecting changes in wind speed and direction,
Dobigeon & Toumeret 2007, and in hydrometeorological data, Perreault et al. 2000),
econometrics (detecting changes in variance for stock prices, Chen & Gupta 1997, and
analyzing inflation dynamics, Jochmann 2010) among others.

Fromamethodological perspective, the literature on this topic is also vast, eitherfrom
a frequentist or a Bayesian perspective. First models dealt mainly with the detection of
a single change-point (Chernoff & Zacks 1964, Kander & Zacks 1966, Hinkley & Hinkley
1970, Smith 1975) where such a change point was induced by a change in the regime
parameter within a parametric family modeling sequential observations. Later on, the
model of Smith (1975) was extended to a nonparametric regime distribution by Muliere
& Scarsini (1985) andMira & Petrone (1996) whomade use of the Dirichlet process as the
regime model.

For these first change-point detection models, we can see that the underlying sup-
port of the clustering is a subset of segmentations, specifically all those with at most
two blocks. However, the generalization to multiple change points—even though it
requires more demanding mathematical and computational treatments—has also been
studied. For instance, within the Bayesian parametric framework, Green (1995) makes
use of reversible jumpMarkov chainMonteCarlo (MCMC) techniques to drawposterior
inferences on the number of change points. In addition, and under a different rationale,
Barry & Hartigan (1992, 1993) proposed product partition models (cf. Section I.1.2.3)
and adjusted them properly in order to apply them in this scenario; works of Loschi et al.
(2003) and Loschi & Cruz (2005) follow this methodology. There are also Bayesian non-
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parametric approaches tackling this problem, for example, Quintana & Iglesias (2003),
Park & Dunson (2010) and Müller & Quintana (2011), by means of random-partition
methodologies.

Nowadays, multiple-change-point detection models seem to prevail, and a new cate-
gory emerged. All the previous approaches are now known as retrospective models, since
they estimate the change-points from a given dataset. But there is a different approach—
called on-line methods—where change-points locations are estimated as new observa-
tions are available. This kind of approach is commonly used in Computer Science, from
where the term on-line is borrowed; examples of on-line change-point detection models
are Fearnhead & Liu (2007) and Caron et al. (2012). Nevertheless, both approaches are
used in practice.

Hence, in this section, we present our novel retrospective model for detecting mul-
tiple change points, which can be found in Martínez & Mena (2014). Starting with a
series of dependent data 𝑦 = (𝑦𝑡1

, 𝑦𝑡2
, … , 𝑦𝑡𝑛

) observed at times 𝑡1, 𝑡2, … , 𝑡𝑛, such that
𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, our interest is in the posterior distribution

P(Υ𝑛|𝑦) ∝ P(Υ𝑛)P(𝑦|Υ𝑛), (14)

where Υ𝑛 is a random segmentation modeling all the possible change-point locations.

Notice that a random segmentation is a good candidate for modeling these loca-
tions. Consider the combinatorial class of all segmentations of the set 𝑇 , 𝒮𝑇 , where 𝑇
is the ordered set formed by the time points 𝑡1, … , 𝑡𝑛 where the data were observed. Let
{𝜏1, … , 𝜏𝑘} ∈ 𝒮𝑇 and let 𝑡𝑖,1 = min(𝜏𝑖), 𝑖 = 1, … , 𝑘. Then, from the definition of 𝒮𝑇
(Section I.2), every 𝑡𝑗 such that 𝑡𝑖,1 ≤ 𝑡𝑗 < 𝑡𝑖+1,1 for 𝑖 = 1, … , 𝑘 − 1, and 𝑡𝑘,1 ≤ 𝑡𝑗 ≤ 𝑡𝑛,
belongs to the set 𝜏𝑖. Therefore, the time constrain is preserved by every segmentation,
and furthermore, every possible sequence of change-point locations is encoded by only
one segmentation. This differs from other partition-based approaches, like the onesmen-
tioned above, which make use of random partitions to model the locations.

Providing some terminology and notation, it is said that all the observations (𝑦𝑡𝑗
) as-

sociated to the points 𝑡𝑗 ∈ 𝜏𝑖—for 𝜏𝑖 a block in some segmentation {𝜏1, … , 𝜏𝑘}—belong
to the same regime. Moreover, the points (𝑡1,1, 𝑡2,1, … , 𝑡𝑘,1), 1 ≤ 𝑘 ≤ 𝑛, defined in the
previous paragraph, correspond to the change-point locations of the dataset. However,
throughout this work, it will be assumed that the point 𝑡1,1 = 𝑡1 is not a change-point;
this allows us to have the case of no change points, which corresponds to the segmentation
{𝜏1} = {𝑇 }. As a consequence, the number of change points will range from zero to 𝑛 − 1.
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On the other hand—even thoughΥ𝑛 takes values in𝒮[𝑛]—the class of segmentations, 𝒮[𝑛],
is isomorphic to the set of all integer compositions of [𝑛], i.e. ∪𝑛

𝑘=1Δ𝑛,𝑘, therefore, we will
use both sets interchangeably when working withΥ𝑛. Finally, a sequence of change-point
locations will be denoted by ⟨𝑡∗

1, … , 𝑡∗
𝑘⟩, where 𝑡∗

𝑗 = 𝑡𝑗+1,1 for 𝑗 = 1, … , 𝑘 − 1—or equiva-
lently, 𝑡∗

𝑗 = 𝑡𝑠𝑗+1 where 𝑠𝑗 = 𝑛1 + ⋯ + 𝑛𝑗 and 𝑛𝑗 = #𝜏𝑗—and ⟨⟩ will indicate the case of no
change points.

2.1 PRIOR DISTRIBUTION AND LIKELIHOOD FUNCTION

Once Model (14) has been introduced and it makes sense for detecting change-point lo-
cations, it is necessary to provide specific forms to the prior P(Υ𝑛) and the likelihood
P(𝑦|Υ𝑛).

Regarding the prior forΥ𝑛, wewill workwith the third construction, 𝑝′, given in Sec-
tion 1.3. The reasons for this choice are that: (i) since we are workingwith a retrospective
model, the symmetry of 𝑝′ allows to be non informative in the sense that the same prior
probability will be assigned to any segmentation having the same blocks’ sizes—feature
not obtained with 𝑝⋆ for example—and (ii) the fact that the distribution for the number
of blocks is the same to the one in an EPPF approach inherits all the existing results to
our model, which is not true for 𝑝∗.

The likelihood function P(𝑦|Υ𝑛) has also some elements to consider. Our approach,
like many others in change-point detection, is model-based : data are modeled by some
stochastic process with law 𝐹 which is constant by regimes; thus, the ability for detect-
ing certain kind of changes is determined by this law. Approaches like product partition
models (PPMs) introduced by Barry & Hartigan (1992, 1993), work with a conditional
independent-and-identically-distributed law, that is, there is a finite-dimensional param-
eter 𝑥, not observed, of 𝐹 such that—conditional on it—observations within a regime
are independent and identically distributed according to 𝐹 (𝑥); moreover, observations
in different regimes are independent. The detection problem is, then, restated as finding
the time locations where parameter 𝑥 changes. Then, the likelihood function is written
as

P(𝑦|Υ𝑛 = (𝑛1, … , 𝑛𝑘), 𝑥 = (𝑥1, … , 𝑥𝑘)) =
𝑘

∏
𝑗=1

𝐹 (𝑦𝑡𝑗,1
, … , 𝑦𝑡𝑗,𝑛𝑗

; 𝑥𝑗) (15)

=
𝑘

∏
𝑗=1

𝑛𝑗

∏
𝑖=1

𝐹 (𝑦𝑡𝑗,𝑖
; 𝑥𝑗),



§2 A RETROSPECTIVE CHANGE-POINT DETECTION MODEL FOR MARKOVIAN DATA 45

where 𝑦𝑗,𝑖 denotes the 𝑖th observation in the 𝑗th regime, that is, 𝑦𝑗,𝑖 ∶= 𝑦𝑡𝑠𝑗 +𝑖
for 𝑗 =

1, … , 𝑘 and 𝑖 = 1, … , 𝑛𝑗 . In some cases, parameter 𝑥 is integrated out, so (15) becomes

P(𝑦|Υ𝑛 = (𝑛1, … , 𝑛𝑘)) =
𝑘

∏
𝑗=1 ∫𝕏

𝑛𝑗

∏
𝑖=1

𝐹 (𝑦𝑡𝑗,𝑖
; 𝑥𝑗)𝜈0(d𝑥𝑗), (16)

where 𝜈0 is the prior distribution of 𝑥𝑗 .

Our choice for P(𝑦|Υ𝑛) has the inter-regime independence property, like PPMs, but
it uses a different stochastic process to modeling data: we consider a strictly stationary
Markovian process, so, data are dependent within regimes. The choice of a specific pro-
cess is bounded by the nature of the phenomenon under study, but it is worth saying
that—although more complex process could be considered—the model-based nature of
these problems suggests that these processes do not necessarily need to be very compli-
cated; sudden changes, jumps or other kinds of distributional variations could simply be
part of a different regime under the selected model.

Hence—assuming theMarkovian process has invariant distribution 𝜋(𝑦𝑡; 𝑥) and tran-
sition density 𝑝(𝑦0, 𝑦𝑡; 𝑥), where 𝑥 denotes generically the driving parameter—the likeli-
hood function (15) is written as

P(𝑦|Υ𝑛 = (𝑛1, … , 𝑛𝑘), 𝑥 = (𝑥1, … , 𝑥𝑘)) =
𝑘

∏
𝑗=1

𝜋(𝑦𝑗,1; 𝑥𝑗)
𝑛𝑗−1

∏
𝑙=1

𝑝(𝑦𝑗,𝑙, 𝑦𝑗,𝑙+1; 𝑥𝑗). (17)

Some examples of strictly stationary Markovian processes having explicit invariant and
transition densities are studied next.

Ornstein-Uhlenbeck process. Assuming the nature of the phenomena producing 𝑦
evolves in continuous time, the above specification is completed by considering anOrnstein-
Uhlenbeck process (Uhlenbeck & Ornstein 1930). In particular, this process can be also
seen as the solution to the stochastic differential equation

d𝑌𝑡 = −𝛼(𝑌𝑡 − 𝜇)d𝑡 + √
2𝛼
𝜆 d𝑊𝑡,

for 𝜇 ∈ ℝ, 𝛼, 𝜆 > 0 and where (𝑊𝑡)𝑡≥0 denotes the standard Brownian motion. This
process, apart from being stationary, reversible andMarkovian is also Gaussian, allowing
to study the independent case through a suitable choice of its autocorrelation. Following
Karatzas & Shreve (1988), it can be easily seen that the invariant and transition densities
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for this process, setting 𝜙 ∶= 𝑒−𝛼 , are given by

𝜋(𝑦𝑡; 𝜇, 𝜆) = N(𝑦𝑡; 𝜇, 1/𝜆)

𝑝(𝑦0, 𝑦𝑡; 𝜇, 𝜆, 𝜙) = N(𝑦𝑡; 𝑦0𝜙𝑡 + 𝜇(1 − 𝜙𝑡), (1 − 𝜙2𝑡)/𝜆),

whereN(𝑦; 𝜇, 𝜎2)denotes the normal densitywithmean𝜇 and variance 𝜎2. Thus, itsmean
and variance are given by E[𝑌𝑡] = 𝜇 and Var[𝑌𝑡] = 1/𝜆 for all 𝑡, respectively. Moreover, its
correlation is given by Cor(𝑌𝑠, 𝑌𝑡) = 𝜙𝑡−𝑠 for all 0 ≤ 𝑠 ≤ 𝑡, with 0 < 𝜙 < 1. Therefore, the
parameter 𝜙 controls the correlation, and the case where observations are independent
and normally distributed is obtained when 𝜙 → 0. To refer to the law of such a Gaussian
process, the notation OU(𝜇, 𝜆, 𝜙) will be used.

Assuming data 𝑦 are observed at times 𝑡1, … , 𝑡𝑛, the likelihood function of Υ𝑛 and
𝑥𝑗 = (𝜇𝑗 , 𝜆𝑗 , 𝜙𝑗), 1 ≤ 𝑗 ≤ 𝑛, is given by

P(𝑦|Υ𝑛 = (𝑛1, … , 𝑛𝑘), 𝑥 = (𝑥1, … , 𝑥𝑘)) =
𝑘

∏
𝑗=1

𝜆𝑛𝑗 /2
𝑗

(2𝜋)𝑛𝑗 /2 exp{−
𝜆𝑗
2 (𝐲𝑗 − 𝝁𝑗)′𝐒𝜙,𝑗(𝐲𝑗 − 𝝁𝑗)′

} ,

for 𝐲𝑗 = (𝑦𝑗,1, 𝑦𝑗,2, … , 𝑦𝑗,𝑛𝑗
), 𝝁𝑗 = (𝜇𝑗 , … , 𝜇𝑗) ∈ ℝ𝑛𝑗 , and where 𝐒𝜙,𝑗 ∈ ℝ𝑛𝑗×𝑛𝑗 is such that

𝐒𝜙,𝑗 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1−𝜙2𝛿1

−𝜙𝛿1

1−𝜙2𝛿1 0 ⋯ 0 0
−𝜙𝛿1

1−𝜙2𝛿1
1−𝜙2𝛿2

1
(1−𝜙2𝛿1 )(1−𝜙2𝛿2 )

−𝜙𝛿2

1−𝜙2𝛿2
⋯ 0 0

⋮

0 0 0 ⋯ 1−𝜙2𝛿2𝑛𝑗−2

(1−𝜙2𝛿𝑛𝑗−2 )(1−𝜙2𝛿𝑛𝑗−1 )
−𝜙𝛿𝑛𝑗−1

1−𝜙2𝛿𝑛𝑗−1

0 0 0 ⋯ −𝜙𝛿𝑛𝑗−1

1−𝜙2𝛿𝑛𝑗−1
1

1−𝜙2𝛿𝑛𝑗−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and 𝛿2
𝑖 = 𝑡𝑖+2 − 𝑡𝑖. The model is completely specified after a prior 𝜈0

is assigned to parameters (𝜇𝑗 , 𝜆𝑗 , 𝜙𝑗), 𝑖 = 1, … , 𝑘, either to integrate them out or to infer
about them.

Cox-Ingersoll-Ross model. TheOrnstein-Uhlenbeck process is a good choice for mod-
eling ℝ-valued data. However, under certain contexts, it could be more convenient or
necessary using a different stochastic process. For example, a Cox-Ingersoll-Ross (CIR)
model (Cox et al. 1985) can be applied in interest-rate problems or others having ℝ+-
valued observations. A CIR model can be seen as the solution to the following stochastic
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differential equation

d𝑌𝑡 = 𝑐 (
𝑎
𝑏 + 𝑌𝑡) 𝑑𝑡 + √

2𝑐
𝑏 𝑌𝑡d𝑊𝑡,

for 𝑎, 𝑏, 𝑐 > 0 and where (𝑊𝑡)𝑡≥0 denotes the standard Brownian motion. This model can
also be expressed through a stationary Gamma-Poisson process (see, for example Mena
&Walker 2009), where its invariant and transition densities are

𝜋(𝑦𝑡; 𝑎, 𝑏) = Ga(𝑦𝑡; 𝑎, 𝑏)

𝑝(𝑦0, 𝑦𝑡; 𝑎, 𝑏, 𝑐) =
∞

∑
𝑥=0
Ga(𝑦𝑡; 𝑥 + 𝑎, 𝜙𝑡 + 𝑏)Poi(𝑥; 𝑦0𝜙𝑡)

=
exp{− (𝜙𝑡(𝑦𝑡 + 𝑦0) + 𝑏𝑦𝑡)}

(𝜙𝑡 + 𝑏)−(𝑎+1)/2𝜙(𝑎−1)/2
𝑡

{
𝑦𝑡
𝑦0 }

𝑎−1
2

𝐼𝑎−1 (2√𝑦𝑡𝑦0𝜙𝑡(𝜙𝑡 + 𝑏)) ,

for 𝜙𝑡 = 𝑏/(𝑒𝑐𝑡 − 1). Here, Ga(𝑦; 𝑎, 𝑏) denotes the gamma density with mean 𝑎/𝑏, Poi(𝑥)
denotes the Poisson density with parameter 𝑥, and 𝐼𝜈(𝑥) is the modified Bessel function
of the first kind with index 𝜈, that is

𝐼𝜈(𝑥) =
∞

∑
𝑚=0

1
𝑚! Γ(𝑚 + 𝜈 + 1) (

𝑥
2 )

2𝑚+𝜈
.

The autocorrelation is controlled by the parameter 𝜙𝑡.

Under this setting, the likelihood function (17) is given by

𝑛𝑗

∏
𝑗=1

𝑏𝑎𝑗
𝑗 (𝑦𝑡𝑗,1

𝑦𝑡𝑗,𝑛𝑗
)

Γ(𝑎𝑗) exp
⎧⎪
⎨
⎪⎩

−𝑏𝑗

𝑛𝑗

∑
𝑙=1

𝑦𝑗,𝑡𝑙
−

𝑛𝑗−1

∑
𝑙=1

𝜙′
𝑗,𝑙(𝑦𝑗,𝑡𝑙+1

+ 𝑦𝑗,𝑡𝑙
)
⎫⎪
⎬
⎪⎭

×

𝑛𝑗−1

∏
𝑙=1

(𝜙′
𝑗,𝑙 + 𝑏𝑗)(𝑎𝑗+1)/2

𝜙′(𝑎𝑗−1)/2
𝑗,𝑙

𝐼𝑎𝑗−1 (2√𝑦𝑗,𝑡𝑙+1
𝑦𝑗,𝑡𝑙

𝜙′
𝑗,𝑙(𝜙

′
𝑗,𝑙 + 𝑏𝑗)) ,

where the driving parameters are 𝑥𝑗 = (𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗), 1 ≤ 𝑘 ≤ 𝑛, and where

𝜙′
𝑗,𝑙 =

𝑏𝑗

𝑒𝑐𝑗 (𝑡𝑙+1−𝑡𝑙) − 1
.

Wright-Fisher model. Another stochastic process is the one known as the Wright-
Fisher model, an appealing option when modeling (0, 1)-valued data. This can be seen
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as the solution to

d𝑌𝑡 = 1
2 (𝑎(1 − 𝑌𝑡) + 𝑏𝑌𝑡) d𝑡 + √𝑌𝑡(1 − 𝑌𝑡)d𝑊𝑡,

for 𝑎, 𝑏 > 0 and where (𝑊𝑡)𝑡≥0 denotes the standard Brownian motion. In this case, we
have that its invariant and transition densities are given by

𝜋(𝑦𝑡; 𝑎, 𝑏) = Be(𝑦𝑡; 𝑎, 𝑏)

𝑝(𝑦0, 𝑦𝑡; 𝑎, 𝑏) =
∞

∑
𝑚=0

𝑒−𝑚(𝑚+𝑎+𝑏−1)𝑡/2𝜔𝑚(𝑦0)𝜔𝑚(𝑦𝑡)𝜋(𝑦𝑡; 𝑎, 𝑏),

where

𝜔𝑚(𝑦) = 𝑐𝑚(𝑎)𝑚↑

𝑚

∑
𝑗=0

(
𝑚
𝑗 )

(𝑚 + 𝑎 + 𝑏 − 1)𝑗↑
(𝑎)𝑗↑

(−𝑦)𝑗 ,

with

𝑐𝑚 = √
𝑎 + 𝑏 + 2𝑚 − 1
𝑎 + 𝑏 + 𝑚 − 1

(𝑎 + 𝑏)𝑚↑
(𝑎)𝑚↑(𝑏)𝑚↑

1
𝑚! ,

and (𝑥)𝑛↑ the Pochhammer symbol (Griffiths & Spanò 2010).

2.2 INFERENCES

Even when the number of segmentations 𝒮[𝑛] is much smaller than the number of parti-
tions 𝒫[𝑛], simulating from the posterior distribution ofΥ𝑛 becomes unfeasible for bigger
datasets. The need of an MCMC algorithm is evident. At this point, we focus on the
posterior distribution of Υ𝑛 given by

P(Υ𝑛|𝑦) ∝ (
𝑛

𝑛1, … , 𝑛𝑘
)

1
𝑘!Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘)
𝑘

∏
𝑗=1 ∫𝕏

𝜋(𝑦𝑗,1; 𝑥)
𝑛𝑗−1

∏
𝑙=1

𝑝(𝑦𝑗,𝑙, 𝑦𝑗,𝑙+1; 𝑥)𝜈0(d𝑥),

where Π(𝑛)
𝑘 is an EPPF and (𝜋, 𝑝, 𝜈0) are defined according to the selected stochastic pro-

cess. The case where the driving parameters are not integrated out will be discussed in
further sections. On the other hand, due to the nature of the support of Υ𝑛, estimates
like mean, variance or quantiles are not straightforward to obtain or they might have no
a clear interpretation. Then, it is also necessary to find an adequate estimate.
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2.2.1 MCMC algorithm

The identification of multiple change points might bring several computational issues.
For instance, Green (1995) makes use of reversible jumpMCMC to draw posterior infer-
ences on the number of change points. Concretely, he focuses on change points among
datamodeled through a non-homogeneous Poisson process with a step function as inten-
sity and where the number of steps, namely the number of regimes, is determined via a
birth and death mechanism. Therefore, this approach requires the construction of trans-
dimensional samplers which, depending on the choice of themodel, do not always lead to
a simple way to disentangle the prior and posteriormass assigned to a given change-point
structure.

However, an appealing MCMC algorithm which can be adapted for change-point
detection is the one used in Fuentes-García et al. (2010b). Concretely, their algorithm
belongs to the class of split-merge algorithms and updates the variables 𝑘 and (𝑛𝑗)𝑘

𝑗=1
by using Metropolis-Hastings steps. Note that unlike other split-merge MCMC algo-
rithms on the space of partitions, the split and merge steps make complete sense here
as the time-ordering restriction leaves no other sensible moves. More specifically, two
possible choices are available at each iteration: a split, which creates a new regime, or a
merge, which combines two consecutive existing regimes into a single one. After that, a
random pair of adjacent regimes is updated by proposing new sizes in order to speed the
sampler up. In next paragraphs, this complete procedure is explained in detail.

Let 𝑝(𝑘, 𝜓𝑘) ∶= 𝑝(𝑛1, … , 𝑛𝑘|𝑦), where 𝜓𝑘 is a segmentation of the data 𝑦 having 𝑘
blocks, and each block has size 𝑛𝑗 , 𝑗 = 1, … , 𝑘. Then, at each iteration, the MCMC al-
gorithm updates values for 𝑘 and 𝜓𝑘 as follows. The support for 𝑘 is {1, … , 𝑛}; when
updating it, the chain will change the segmentation from one with 𝑘(𝑖) blocks to another
with 𝑘(𝑖+1), involving perhaps a change in dimension. To avoid this latter issue, a series of
latent variables, 𝜓𝑗 for 𝑗 = 1, … , 𝑛 and 𝑗 ≠ 𝑘, is introduced (Godsill 2001). The resulting
density is written as

𝑝(𝑘, 𝜓) = 𝑝(𝑘, 𝜓𝑘)
𝑘−1

∏
𝑗=1

𝑝(𝜓𝑗|𝜓𝑗+1)
𝑛

∏
𝑗=𝑘+1

𝑝(𝜓𝑗|𝜓𝑗−1). (18)

Updating 𝑘 is, then, done via aMetropolis-Hastings step with target distribution 𝑝(𝑘|𝜓).
Let 0 < 𝑞 < 1 and let

̌𝑝(𝑘|𝑟) = 𝑞 𝟏(𝑘 = 𝑟 + 1) + (1 − 𝑞) 𝟏(𝑘 = 𝑟 − 1) (19a)
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be the proposal distribution of 𝑘, whenever 1 < 𝑟 < 𝑛, and

̌𝑝(2|1) = ̌𝑝(𝑛 − 1|𝑛) = 1, (19b)

otherwise. Thus, the acceptance probability to update 𝑘 is given by

𝛼 = min{
̌𝑝(𝑘|𝑘′)
̌𝑝(𝑘′|𝑘)

𝑝(𝑘′|𝜓)
𝑝(𝑘|𝜓) , 1} ,

with 𝑘′ simulated from the proposal (19).

For a given 𝑘, there are only two possible values for updating it: 𝑘 + 1 and 𝑘 − 1;
namely split and merge moves, respectively. These moves are related to the conditional
distributions in (18), since 𝑝(𝜓𝑘+1|𝜓𝑘) represents a split move and 𝑝(𝜓𝑘−1|𝜓𝑘) a merge. So
it is necessary to be able to simulate from them.

When a split is performed, one block with size greater than one is selected and then
split into two. These two choices are made uniformly, so

𝑝(𝜓𝑘+1|𝜓𝑘) = 1
𝑛𝑔,𝑘(𝑛𝑠 − 1) , (20)

where 𝑛𝑔,𝑘 is the number of blocks of size greater than one and 𝑛𝑠 the size of the selected
block. On the other hand—when amerge is performed—two adjacent blocks are selected
to be merged. Again, they are chosen uniformly, so

𝑝(𝜓𝑘−1|𝜓𝑘) = 1
𝑘 − 1. (21)

Therefore, updating 𝑘 is done as follows. When a split move is proposed, i.e. 𝑘′ = 𝑘 + 1,
Equations (18–21) simplify 𝛼 to

𝛼 = min{
1 − 𝑞

𝑞
𝑝(𝑘 + 1, 𝜓𝑘+1)

𝑝(𝑘, 𝜓𝑘)
𝑛𝑔,𝑘(𝑛𝑠 − 1)

𝑘 , 1} , (22a)

whenever 1 < 𝑘 < 𝑛, and

𝛼 = min{(1 − 𝑞) (𝑛 − 1)𝑝(2, 𝜓2)
𝑝(1, 𝜓1) , 1} , (22b)

if 𝑘 = 1. Otherwise, a merge move is proposed, i.e. 𝑘′ = 𝑘 − 1. Then two adjacent blocks
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are selected, say 𝑠 and 𝑠 + 1, and Equations (18–21) simplify 𝛼 to

𝛼 = min{
𝑞

1 − 𝑞
𝑝(𝑘 − 1, 𝜓𝑘−1)

𝑝(𝑘, 𝜓𝑘)
𝑘 − 1

𝑛𝑔,𝑘−1(𝑛𝑠 + 𝑛𝑠+1 − 1) , 1} , (23a)

whenever 1 < 𝑘 < 𝑛, and

𝛼 = min{𝑞 (𝑛 − 1)𝑝(𝑛 − 1, 𝜓𝑛−1)
𝑝(𝑛, 𝜓𝑛) , 1} , (23b)

when 𝑘 = 𝑛.
A second step—called shuffle—is included in the algorithm in order to improve it.

This step takes two adjacent blocks, say 𝑠 and 𝑠 + 1, and updates their sizes uniformly
splitting the combined block into two, of sizes 𝑛∗

𝑠 and 𝑛∗
𝑠+1, with 𝑛∗

𝑠 , 𝑛∗
𝑠+1 ≥ 1. In this case,

the acceptance probability is given by

𝛼 = min{
𝑝(𝑘, 𝜓∗

𝑘 )
𝑝(𝑘, 𝜓𝑘)

(𝑛∗
𝑠 + 𝑛∗

𝑠+1 − 1)
(𝑛𝑠 + 𝑛𝑠+1 − 1) , 1} = min{

𝑝(𝑘, 𝜓∗
𝑘 )

𝑝(𝑘, 𝜓𝑘) , 1} . (24)

After these steps, additional variables can be updated, e.g. those related to the prior dis-
tribution of Υ𝑛 or to the likelihood function. Figure 2 summarizes this MCMC scheme.

2.2.2 Point estimates

As explained at the beginning of this chapter, two estimates are of interest in change-
point analysis: the location of change points and their number. The former is a more
delicate issue, but the latter has already studied in Section 1. Therefore, the random vari-
able 𝐶𝑛—modeling the number of change points—is defined as

𝐶𝑛 ∶= 𝐵𝑛 − 1,

where 𝐵𝑛 models the number of blocks under an 𝒮[𝑛]-valued approach.

On the other hand—due to the the particular structure of the set 𝒮[𝑛]—providing an
estimate of the location of change points is not straightforward. As mentioned before,
estimates of the random segmentation Υ𝑛 like the mean might be difficult to obtain and
others like the variance or quantiles could not have an obvious interpretation. Among
this kind of statistics, the modemay be the most useful and easiest to interpret. However,
in the literature, there are some attempts to provide meaningful 𝒫[𝑛]- or 𝒮[𝑛]-valued esti-
mates. In particular, two estimates are explained below: the first one is related with the
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read 𝑦1, … , 𝑦𝑛 and hyper-parameters
initiate 𝑘 and (𝑛1, … , 𝑛𝑘)
repeat
with probability 𝑞 𝕀(1 < 𝑘 < 𝑛) + 𝕀(𝑘 = 1) ▷ split
choose 𝑗 uniformly from {𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑘, 𝑛𝑗 > 1}
choose 𝑙 uniformly from {1 … , 𝑛𝑗 − 1}
with probability 𝛼 in (22)

(𝑛1, … , 𝑛𝑘+1) ← (𝑛1, … , 𝑛𝑗−1, 𝑙, 𝑛𝑗 − 𝑙, 𝑛𝑗+1, … , 𝑛𝑘)
𝑘 ← 𝑘 + 1

end with
otherwise ▷merge
choose 𝑗 uniformly from {1, … , 𝑘 − 1}
with probability 𝛼 in (23)

(𝑛1, … , 𝑛𝑘−1) ← (𝑛1, … , 𝑛𝑗−1, 𝑛𝑗 + 𝑛𝑗+1, 𝑛𝑗+2, … , 𝑛𝑘)
𝑘 ← 𝑘 − 1

end with
end with
if 𝑘 > 1 then ▷ shuffle
choose 𝑖 uniformly from {1, … , 𝑘 − 1}
choose 𝑗 uniformly from {1, … , 𝑛𝑖 + 𝑛𝑖+1 − 1}
with probability 𝛼 in (24)

𝑛𝑖+1 ← 𝑛𝑖 + 𝑛𝑖+1 − 𝑗
𝑛𝑖 ← 𝑗

end with
end if
[simulate values for additional parameters]

until converge and have the required number of samples
write the sampled values of 𝑘 and (𝑛1, … , 𝑛𝑘) [and additional parameters]

FIGURE 2: Split-merge MCMC algorithm used for change point detection.

idea of a ‘mean partition’, whereas the second onemakes use of themarginal probabilities
that each instant is a change point.

Least-squares clustering. The least-squares clustering (Dahl 2006) emulates a ‘mean
partition’. It is defined as the partition 𝜌∗ minimizing the sum of squared deviations of
the association matrix 𝛿(𝜌) from ̂𝜌.

Let 𝜌 be a partition, then the association matrix 𝛿(𝜌) is such that its (𝑖, 𝑗) element,
𝛿𝑖,𝑗(𝜌), is the indicator of whether observations 𝑦𝑖 and 𝑦𝑗 , 𝑖, 𝑗 = 1, … , 𝑛, belong to the
same block in 𝜌. Given a sample 𝑃 = (𝜌(1), … , 𝜌(𝑚)) of 𝑚 partitions, ̂𝜌 is defined as the
element-wise mean of the association matrices 𝛿(𝜌(1)), … , 𝛿(𝜌(𝑚)). Thus, the least-squares
clustering 𝜌∗ is such that

𝜌∗ = argmin
𝜌∈𝑃 ∑

𝑖,𝑗
(𝛿𝑖,𝑗(𝜌) − ̂𝜌𝑖,𝑗)2.
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Even though this estimate is defined for 𝒫[𝑛]-valued partitions, it can be also used with
segmentations.

Marginal probability to be change point. Another method used by Loschi & Cruz
(2005) to obtain a posterior estimate ofΥ𝑛 is based on the posterior probability that each
time 𝑡𝑖, 𝑖 = 2, … , 𝑛, is a change point. It has already stated that every segmentation with
𝑘 blocks induces a unique sequence of change points ⟨𝑡1, … , 𝑡𝑘−1⟩. So, define 𝑇𝑖 as the
event where the 𝑖th instant 𝑡𝑖 is a change point for 𝑖 = 2, … , 𝑛, then

𝜁𝑖 ∶= ℙ(𝑇𝑖|𝑦) = ∑
⟨𝑗1,…,𝑗𝑘−1⟩∈𝑆

ℙ(Υ𝑛 = ⟨𝑗1, … , 𝑗𝑙 = 𝑡𝑖, … , 𝑗𝑘−1⟩|𝑦), (25)

with 𝑆 the sampled segmentations. Using this, Loschi and Cruz’s estimate, denoted by
Υ⋆

𝑛 , is given by all the times (𝑡𝑗1
, 𝑡𝑗2

, … , 𝑡𝑗𝑟
)whose probabilities 𝜁𝑗𝑖

, 𝑖 = 1, … , 𝑟, are greater
than certain threshold; hence Υ⋆

𝑛 = ⟨𝑡𝑗1
, … , 𝑡𝑗𝑟

⟩. While this approach might be appealing
in monitoring contexts, it is not clear how to define a threshold for change point deter-
mination. Having said this, within the context at issue, this estimate is useful to illustrate
the role prior specifications.

2.3 SENSITIVITY ANALYSIS

OnceModel (14) has been fully specified, it will be tested under different scenarios. There
are two important aspects to be studied: (i) the role of the parameters related to the
prior distribution of Υ𝑛 and the likelihood function, and (ii) the model’s ability to detect
different structural changes. These two aspects are closely related, so there might happen
that the ability to detecting certain type of changes depends on the prior specification.

The prior distribution for Υ𝑛 is the one induced by the two-parameter Poisson-Diri-
chlet process with 0 ≤ 𝜎 < 1 and 𝜃 > −𝜎, i.e.

𝑝′(𝑛1, … , 𝑛𝑘) = 𝑛!
𝑘!

∏𝑘−1
𝑖=1 (𝜃 + 𝑖𝜎)

(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑

𝑛𝑗!

(Equation 13c). The election of these parameter ranges corresponds to the case of always
having new change points as the sample increases (see De Blasi et al. (2015) for more de-
tails). Regarding the likelihood function, we consider themarginal likelihood induced by
the Ornstein-Uhlenbeck process where the observations were recorded at equally-spaced
times, using the simpler notation 𝑡𝑖 ∶= 𝑖 for 𝑖 = 1, … , 𝑛. The parameters (𝜇𝑗 , 𝜆𝑗) were in-
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tegrated out using a Normal-Gamma prior N(𝜇𝑗 ; 0, (𝑐𝜆𝑗)−1)Ga(𝜆𝑗 ; 𝑎, 𝑏) and using a single
correlation among regimes: 𝜙𝑗 = 𝜙. Therefore, the likelihood function is written as

ℙ(𝑦|Υ𝑛) =
𝑘

∏
𝑗=1

(2𝑏(1 − 𝜙2))𝑎Γ(𝑛𝑗 /2 + 𝑎)
𝜋𝑛𝑗 /2Γ(𝑎) (

𝑐(1 + 𝜙)(1 − 𝜙2)
𝑐 + 𝑛𝑗 − 𝜙(𝑛𝑗 − 𝑐 − 2))

1/2
×

⎛
⎜
⎜
⎜
⎝

y′
𝑗S𝑗y𝑗 −

(1 − 𝜙) (∑𝑛𝑗
𝑖=1 𝑦𝑗,𝑖 − 𝜙 ∑𝑛𝑗−1

𝑖=2 𝑦𝑗,𝑖)
2

𝑐 + 𝑛𝑗 − 𝜙(𝑛𝑗 − 𝑐 − 2) + 2𝑏(1 − 𝜙2)
⎞
⎟
⎟
⎟
⎠

−(𝑛𝑗 /2+𝑎)

, (26)

where y𝑗 = (𝑦𝑗,𝑖 ∶ 𝑖 = 1 … , 𝑛𝑗) and S𝑗 ∈ ℝ𝑛𝑗×𝑛𝑗 is given by

S𝑗 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −𝜙 0 … 0
−𝜙 1 + 𝜙2 −𝜙 … 0
0 −𝜙 1 + 𝜙2 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The structure of the simulated datasets involves changes in mean, in variance, in cor-
relation, as well as a combination of all them. First, to avoid errors introduced byMCMC
algorithms, small datasetswill be used and—in secondplace—bigger datasetswill be used
in order to study the performance of the proposedMCMCmethod. For the small dataset,
data are assumed to be independent and normally distributed—corresponding to the case
𝜙 = 0—since dependence is hard to reproduce with a few observations. For the bigger
datasets, however, there is not such an issue.

Consider a small dataset where 15 observations are simulated as follows:

𝑦𝑖 ∼ N(0, 0.5) 𝑖 = 1, … , 6; 𝑦𝑖 ∼ N(2, 0.5) 𝑖 = 7, … , 15

(see Figure 3). The prior specification for the likelihood function was fixed to 𝑎 = 𝑏 =
1, 𝑐 = 0.1 and 𝜙 = 0. Regarding the prior parameters for Υ𝑛, particular interest is in
parameter 𝜎; it was set to 0.0, 0.1, 0.3, 0.6 and 0.9 and then the corresponding values for
𝜃 were found such that the prior expected value for the number of change points, 𝐶𝑛,
matches 1, 5 and 11. The results are shown in Table 2.

The most illustrative results in this example are those when the prior guess at the
number of change points is far from the number that generated the data. As 𝜎 increases,
the probability assigned to the posterior mode of Υ𝑛 increases, and, at the same time, the
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FIGURE 3: (top) Small simulated dataset with change point at ⟨7⟩, indicated with a dashed line.
(bottom) Posterior probabilities that each time is a change point assuming E[𝐶𝑛] = 11
a priori and taking different values of 𝜎: 0.0, 0.1, 0.3, 0.6 and

0.9. Points are connected by straight lines for visual simplification.

E[𝐶𝑛] 𝜎 𝜃 Υ̃𝑛 prob. ̃𝐶𝑛 prob.
1 0.0 0.356 ⟨7⟩ 0.6985 1 0.7986

0.1 0.194 ⟨7⟩ 0.6788 1 0.7776
0.3 −0.114 ⟨7⟩ 0.6301 1 0.7254
0.6 −0.531 ⟨7⟩ 0.5026 1 0.5868
0.9 −0.890 ⟨⟩ 0.8229 0 0.8229

5 0.0 3.201 ⟨7⟩ 0.1457 2 0.3293
0.1 2.626 ⟨7⟩ 0.1749 2 0.3413
0.3 1.527 ⟨7⟩ 0.2507 2 0.3508
0.6 0.097 ⟨7⟩ 0.3923 1 0.4581
0.9 −0.822 ⟨⟩ 0.3564 1 0.3630

11 0.0 25.683 ⟨2, 3, 4, 5, 6, 7⟩ 0.0017 8 0.2168
0.1 22.670 ⟨2, 3, 4, 5, 6, 7⟩ 0.0025 8 0.2103
0.3 16.672 ⟨2, 3, 4, 5, 6, 7⟩ 0.0052 7 0.1951
0.6 7.832 ⟨2, 3, 4, 5, 6, 7⟩ 0.0176 6 0.1799
0.9 0.087 ⟨7⟩ 0.2512 1 0.3179

TABLE 2: Posterior results for the small dataset. The first three columns show the prior parame-
ters for Υ𝑛. Columns 4 and 5 show the posterior mode, Υ̃𝑛, together with its probability.
The last two columns show the mode for the number of change points, ̃𝐶𝑛, and its corre-
sponding probability.
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posterior mode of 𝐶𝑛 shifts towards smaller values. Also observe that the posterior mode
ofΥ𝑛 contains fewer groups as 𝜎 increases. In a similar way, the posterior probabilities 𝜏𝑖,
𝑖 = 2, … , 15 (Equation 25)—shown in Figure (3) for the case E[𝐶𝑛] = 11—decrease on all
times, except the correct one, as 𝜎 increases.

As a second part, the performance of the MCMC algorithm of Section 2.2.1 is stud-
ied using three simulated datasets. Concretely, the first dataset has changes in mean, the
second has changes in variance and the last one has changes in mean, variance and cor-
relation. Each of them consist of 150 observations and they are described next.

1. The first dataset has two changes in mean. This is sequentially simulated from dif-
ferent Ornstein-Uhlenbeck processes as follows:

𝑦𝑖 ∼ OU(0, 2, 0.4) 𝑖 = 1, … , 50

𝑦𝑖 ∼ OU(5, 2, 0.4) 𝑖 = 51, … , 85

𝑦𝑖 ∼ OU(2, 2, 0.4) 𝑖 = 86, … , 150.

So its change points are ⟨51, 86⟩ (Figure 4a).

2. The second dataset has two changes in variance. Like the previous dataset, it is
sequentially simulated as follows:

𝑦𝑖 ∼ OU(0, 1.5, 0.7) 𝑖 = 1, … , 50

𝑦𝑖 ∼ OU(0, 0.2, 0.7) 𝑖 = 51, … , 120

𝑦𝑖 ∼ OU(0, 0.8, 0.7) 𝑖 = 121, … , 150.

Its change points are ⟨51, 121⟩ (Figure 4b).

3. The third dataset has two change points and it is sequentially simulated as follows:

𝑦𝑖 ∼ OU(0, 0.5, 0.1) 𝑖 = 1, … , 50

𝑦𝑖 ∼ OU(−1, 2, 0.7) 𝑖 = 51, … , 100

𝑦𝑖 ∼ OU(0, 1, 0.2) 𝑖 = 101, … , 150.

Then, its change points are ⟨51, 101⟩ (Figure 4c). This is a more complex dataset
since has changes in mean, variance and also in correlation. Even when the model
uses a single parameter, 𝜙, to control the correlation in the data, this dataset is in-
cluded to test howwell themodel works. In particular, the number of change points
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is expected to be different from the above, as, in principle, more of these might be
needed to represent the above data under similar intra-regime dependency scenar-
ios.

Various simulations were done using different specifications, each of them consisted
of 20,000 iterations after 10,000 of burn-in with the likelihood’s prior parameters set
as 𝑎 = 𝑏 = 1 and 𝑐 = 0.1. The independent and dependent cases were considered by
letting 𝜙 = 0 and 𝜙 ∼ U(0, 1), respectively. Regarding the prior parameters for Υ𝑛, like
in the small dataset, parameter 𝜎 was set to 0.1, 0.3, 0.6 and 0.9 and their corresponding
values for 𝜃 were found such that the prior expected value for 𝐶𝑛 matches 2, 49 and 99.
Additionally, some specifications were considered where 𝜃|𝜎 ∼ Ga(1, 1, −𝜎) with 𝜎 ∼
Be(1, 1) or fixed taking the aforementioned values; see Appendix A for details about the
posterior distributions of these parameters and their inclusion in theMCMC algorithm.

The results are shown in Tables 4, 5 and 6. From these, changes in mean are correctly
detected for almost all configurations (Table 4). Both—the location and the number of
the change points—were correctly identified. The most notable difference related to the
performance of 𝜙 is that the independent case assigns lower probabilities than those cor-
responding to the dependent case. Regarding the parameter 𝜎, it can be seen that under
a complete misspecification of the prior, i.e. E[𝐶𝑛] = 49 and 𝜎 = 0.1, neither the nor the
number of change points were correctly identified. However, as 𝜎 increases the results
become more favorable. Indeed, by inspecting more extreme cases, e.g. E[𝐶𝑛] = 99, only
for 𝜎 = 0.9, the correct number of change points are recovered.

The second example, reported in Table 5, shows the improvement under amore robust
model, i.e. allowing for the dependency by setting 𝜙 ∼ U(0, 1). In such scenario, most
change points were correctly detected. Indeed, the small variations might be due to the
randomness inherent to the simulation. In the independent case, however, even when
the prior guess at the number of change points was close enough to the correct one, the
model was unable to correctly identify them. This clearly favors the use of a model able to
capture serial dependence. On the other hand, parameter 𝜎 shows a similar performance
as in the previous dataset. However, in this case the cost of placing a misspecified prior,
e.g. E[𝐶𝑛] = 49, tends to be higher.

For the third dataset, which has change points in mean, variance and correlation, the
results are favored under the dependent case. Having similar sensitivity conclusions for
the parameter 𝜎. See Table 6.

Throughout this analysis, the modal partition was used as indicative of change points,
however, as mentioned before, the least-squares clustering could be also employed. In-
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(C) Changes in mean, variance and correlation at times ⟨51, 101⟩.

FIGURE 4: Simulated datasets; change points are indicated with dashed lines.
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deed, evaluating these two statistics, the resulting change points coincided in almost all
scenarios; for the sake of completeness, Table 7 shows both estimates for some cases.

2.3.1 Comparison with a product partition model

In order to have a better picture of our proposed model, its results were compared with
the ones obtained by using an existing model for change-point detection. Concretely, a
PPM-based approachwith Yao’s cohesion function, independent inter- and intra-regimes
and Gaussian likelihood is used. This method—developed by Loschi & Cruz (2005)—
has been widely used in change-point detection in financial data; see, for example Zant-
edeschi et al. (2011). Within this approach, the prior distribution of Υ𝑛 is given by

P(Υ𝑛 = {𝜏1, … , 𝜏𝑘}) = 𝑝𝑘−1(1 − 𝑝)𝑛−𝑘,

for some 0 < 𝑝 < 1, whereas the distribution of the number of blocks is

P(𝐵𝑛 = 𝑘) = (
𝑛 − 1
𝑘 − 1)𝑝𝑘−1(1 − 𝑝)𝑛−𝑘, 𝑘 = 1, … , 𝑛

which corresponds to a binomial distribution with parameter 𝑝. It is worth saying that
this distribution over segmentations—according to Barry & Hartigan (1992)—belongs
to the second approach we studied in Section 1.2, therefore, it is also a segmentation
model. Furthermore—for the Gaussian case—the likelihood function can be written
as (26) with 𝜙 = 0. Sampling from the corresponding posterior distribution is done in
Loschi & Cruz (2005) by using an extension of the Gibbs sampling scheme proposed by
Barry & Hartigan (1993); see also Loschi et al. (2003). In our view, this is one of the most
competitive models for change point problems available in the literature, apart of having
certain features similar to our approach.

The simulations for thismodel were also done using different scenarios, taking 20, 000
iterations after a burn-in of 10, 000. Regime parameters and cohesion function’s hyper-
parameters, (𝛼, 𝛽), were taken as it is described in their paper. Furthermore, hyper-
parameters (𝛼, 𝛽) were fixed such that the expected number of change points matches
the same values as above: 2, 49 and 99.

The results are shown in Table 8. Their model performs well for the dataset with
changes inmean; hyper-parameters do not affect the results. For the datasetwith changes
in variances, an extra change point at 𝑡 = 4 is detected in all scenarios; additionally, there
are some scenarios including more change points. However, for the third dataset, their
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method could not detect any change point. This behavior might be due to the fact that
their prior distributionP(Υ𝑛) is function of 𝑛 and 𝑘 only, that is, giving the sameweight to
all compositions (𝑛1, … , 𝑛𝑘) for a given 𝑘. So, it could be said that the proposedmodel has
an advantage over theirs. The distribution ofΥ𝑛 based on EPPFs provides more flexibility
to detect change points. In particular, the parameter 𝜎 plays a key role since it enhances
the detection under more uncertain scenarios. Moreover, this distribution may be also
used as an alternative product distribution within PPMs restricted to 𝒮[𝑛].

2.4 APPLICATION TO REAL DATA

As mentioned before, one of the areas where change point models are of great inter-
est is financial econometrics. For example, they can help to establish financial markers
for global financial crisis (Allen et al. 2013), to detect the de facto exchange rate regime
in operation of a particular central bank (Reinhart & Rogoff 2004, Bubula & Ötker-
Robe 2002), to measure business cycles (Harding & Pagan 2008), etc. In order to illus-
trate our proposal, we analyze the exchange rate between US Dollars and Mexican Pesos
during the period of January 2007–December 2012 (Figure 5), available at the website
www.federalreserve.gov. Estimations are based on 20,000 iterations after a burn-in
of 10,000. Likelihood’s parameters were set as before—i.e. 𝑎 = 𝑏 = 1 and 𝑐 = 0.1—
and, for 𝜙, the dependent (𝜙 ∼ U(0, 1)) and independent (𝜙 = 0) cases were considered.
From the analysis made in the previous section, parameter 𝜎 was fixed to 0.9 to allow a
strong reinforcement and let 𝜃 ∼ Ga(1, 1, −0.9). For simplicity during the comparison,
the dependent and independent cases are called Model A and Model B, respectively.

ForModel A, themost probable change points, occurring with probability 0.0245, are
detected at: September 10, 2008,May 4, 2009, July 16, 2010, August 4, 2011 and August 3,
2012. For Model B, they occur with probability 0.116 and are at: April 1, 2008, October 7,
2008, January 14, 2009, April 2, 2009, November 24, 2009, January 3, 2011 and Septem-
ber 8, 2011. Figure 5 indicates all these change points for each model and Figure 6 shows
posterior probabilities 𝜏𝑖 for 𝑖 = 2, … , 1566 (Equation 25). Figure 7 exhibits the posterior
distributions of 𝜃, for both models, and 𝜙, for Model A. Additionally, Table 3 displays the
posterior distribution of the number of change points.

These results share change points around relevant events withMexico andUSA: 1) the
2008 financial crisis with a sharp downward in September, 2) the flu pandemic suffered
by Mexico in the period of March–May 2009, where pharmaceutical industry tried to
reactivate global economy, and 3) theUS debt-ceiling crisis in 2011. The rest of the change
points detected by Model A are also closed to other relevant events: 4) the so called cur-
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rency war in 2010 as a consequence of the 2008 financial crisis, and 5) the Mexican pres-
idential election.

On the other hand, Loschi and Cruz’s proposal was tested under a similar scenario.
This model will be called Model C. Its results are also shown in Figures 5 and 6 and in
Table 3. In addition, the modal change points were detected, with probability 0.08465,
at: September 9, 2008,March 11, 2009,March 18, 2011 and August 25, 2011.

§ 3 ESTIMATION OF REGIME PARAMETERS

After detecting the locations of the change points, there might be interest in additionally
providing some estimates regarding the regimes, for example, their governing parame-
ters. However, this is not a straightforward task. Assuming a model like (14) but with
the regime parameters, say 𝑥, included, the joint posterior of (Υ𝑛, 𝑥(𝑘)) is written as

P(Υ𝑛, 𝑥(𝑘)|𝑦) ∝ P(Υ𝑛)P(𝑥(𝑘)|Υ𝑛)P(𝑦|Υ𝑛, 𝑥(𝑘)).

Note that the dimension of parameter 𝑥 and the number of blocks inΥ𝑛 is the same, say 𝑘;
this is indicated with the superscript on 𝑥. However—if we only focus on the posterior
distribution of the regime parameters—we have

P(𝑥|𝑦) ∝ ∑
Υ𝑛∈𝒮[𝑛]

P(Υ𝑛, 𝑥(𝑘)|𝑦) ∝
𝑛

∑
𝑘=1

∑
Υ𝑛∈𝒮𝑘

[𝑛]

P(Υ𝑛)P(𝑥(𝑘)|Υ𝑛)P(𝑦|Υ𝑛, 𝑥(𝑘)),

which indicates that the parameter 𝑥 has different dimensions. This explains the need of
introducing methodologies like reversible jump MCMC or transdimensional samplers.
Moreover—even when the dimension 𝑘 is fixed, except for the trivial cases 𝑘 = 1 or
𝑘 = 𝑛—it is not possible to provide a point estimate of the regime parameters.

One approach to overcome this issue and provide estimates of regime parameters has
been proposed by Barry & Hartigan (1992, 1993). Let [𝑖, 𝑗] ∶= {𝑖, 𝑖 + 1, … , 𝑗} for any
0 < 𝑖 ≤ 𝑗. Under their PPM approach, they compute a ‘marginal’ posterior distribution
for parameter 𝑥𝑗 as follows

P(𝑥𝑗|𝑦) =
𝑗

∑
𝑖=1

𝑛

∑
𝑟=𝑗
P(𝑥𝑗|𝑦, [𝑖, 𝑗])𝑟([𝑖, 𝑗]|𝑦), 𝑗 = 1, … , 𝑛 (27)

where P(𝑥𝑗|𝑦, [𝑖, 𝑗]) corresponds to the posterior distribution of 𝑥𝑗 given the data 𝑦 and
given that the block [𝑖, 𝑗] is part of the segmentation, and 𝑟([𝑖, 𝑗]|𝑦)—known as the pos-
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FIGURE 5: Price of one US Dollar in Pesos. Change points are indicated with dashed lines for the
different models: A) proposal with 𝜙 ∼ 𝑈(0, 1), B) proposal with 𝜙 = 0,
and C) Loschi and Cruz’s approach.
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FIGURE 6: Posterior probabilities that each time is a change point for the different models: (top)
proposal with 𝜙 ∼ 𝑈(0, 1), (middle) proposal with 𝜙 = 0, and (bottom) Loschi and
Cruz’s approach.

Number of change points
Model 4 5 6 7 8 9

proposal with 𝜙 ∼ 𝑈(0, 1) — 0.23265 0.23015 0.49245 0.04365 0.00110
proposal with 𝜙 = 0 — — — 0.83290 0.15695 0.01015
Loschi and Cruz’s 0.00025 0.99975 — — — —

TABLE 3: Posterior probabilities for the number of change points, 𝐶𝑛, for each model.
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FIGURE 7: Posterior distributions for the proposed model with 𝜙 ∼ 𝑈(0, 1) (Model A) and 𝜙 = 0
(Model B).

terior relevance of the block [𝑖, 𝑗]—is defined as

𝑟([𝑖, 𝑗]|𝑦) = ∑
𝜏∈𝒮[𝑛]

P(Υ𝑛 = 𝜏|𝑦)𝟏([𝑖, 𝑗] ∈ 𝜏),

namely, the posterior distribution of the random segmentation restricted to the cases
where the block [𝑖, 𝑗] appears in the segmentations. Hence, a point estimate of 𝑥𝑗 is ob-
tained by taking the expectation of (27).

This estimation approach provides a point estimate for every time point 𝑡𝑗 which
allows to have a picture about the dynamics of the mean behavior of the parameters.
However, there is not yet a clear way to provide a regime estimate.

From this discussion, we can conclude that it is necessary to conditioning to a certain
segmentation in order to provide any regime estimate. Using the model of Section 2, this
can be done after an estimate for the change-point locations is provided, since observa-
tions within each regime are modeled by a specific stochastic process, and in addition,
these processes are independent among regimes. Therefore, it is only necessary to be able
to obtain the posterior distribution of the driving parameters for each induced regime.
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Although this procedure can be done as a second step—i.e. after performing the simu-
lation for obtaining the posterior segmentation—it is also possible to do it in the same
simulation based on the MCMC algorithm provided in Section 2.2.1.

Focusing on the second option for estimating regime parameters, we can provide
some insights with regard to how it can be done. The MCMC algorithm is summarized
in Figure 2. In this, we update the segmentation through the variables 𝑘 and 𝜓𝑘. If we
want to infer about regime parameters 𝑥 = (𝑥1, … , 𝑥𝑘), we need to sample from the pos-
terior distribution 𝑝(𝑘, 𝜓𝑘, 𝑥|𝑦). Therefore, we require samples from the full conditional
distributions 𝑝(𝑘, 𝜓𝑘|𝑥, 𝑦) and 𝑝(𝑥|𝑘, 𝜓𝑘, 𝑦). Sampling from the second distribution is eas-
ier than from the second one, it only depends on how each regime is modeled. The first
distribution, however, presents some details.

In order to sample from 𝑝(𝑥|𝑘, 𝜓𝑘, 𝑦), consider the likelihood function (15). Then—if
we assumed 𝑥𝑗 ∼ 𝜈0—the corresponding full conditional distribution is given by

𝑝(𝑥𝑗|𝑥−𝑗 , 𝑘, 𝜓𝑘, 𝑦) ∝ 𝜈0(𝑥𝑗)
𝑛𝑗

∏
𝑖=1

𝐹 (𝑦𝑡𝑗,𝑖
; 𝑥𝑗), 𝑗 = 1, … , 𝑘,

where 𝑥−𝑗 denotes the vector 𝑥without the 𝑗th entry.
For the other distribution, 𝑝(𝑘, 𝜓𝑘|𝑥, 𝑦), we can devise the following. As already ex-

plained, sampling the random segmentation is done by choosing from a split or a merge
move and, later, performing a shuffle; some of this steps are not affected by the inclusion
of the regime parameters. When performing a split, regime parameters are all known,
even for the proposed new group. Suppose group 𝑠 is selected to be split, then parameter
𝑥𝑠 should be used for both regimes; therefore Equation (22) can be easily adjusted. Sim-
ilarly for the case of a shuffle—since the number of groups does not change—all regime
parameters are also known. The merge move might not be straightforward to perform
tough. If groups 𝑠 and 𝑠+1 are chosen to bemerged, themain difficulty resides inwhether
which parameter—𝑥𝑠 or 𝑥𝑠+1—should be used as the parameter for the proposed regime
or it should be necessary to perform some change of dimension or other computation to
obtain such a parameter.

§4 ONE STEP PREDICTIONS

When taking about prediction under the context of change-point detection, it can be
understood in different ways. We might be interested in forecasting the next change
point, which is related to the distribution of the regimes’ lengths, or blocks’ sizes, or—
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given a time position 𝑡𝑛+1—we might want to provide a point prediction of 𝑌𝑡𝑛+1
.

If 𝑁𝑗 denotes the random variable modeling the length of the 𝑗th regime, any 𝒮[𝑛]-
valued distribution discussed in Section 1 define a joint distribution for the random vec-
tor (𝑁1, … , 𝑁𝑘). Moreover, predicting the next change point corresponds to give an esti-
mate of𝑁𝑘+1 based on the posterior predictive distribution P(𝑁𝑘+1|𝑦, 𝑛1, … , 𝑛𝑘). On the
other hand, predicting the value of a new observation, 𝑌𝑡𝑛+1

, can be obtained from our
proposed model, since

P(𝑌𝑡𝑛+1
|𝑦) = ∑

Υ𝑛∈𝒮[𝑛]

P(𝑌𝑡𝑛+1
|𝑦, Υ𝑛)P(Υ𝑛|𝑦).

Then, under quadratic loss, the point prediction of 𝑌𝑡𝑛+1
is given by the expectation with

respect to this distribution. Although both kinds of prediction could be useful under a
specific context, only the second form will be studied next.

Under the context of curve fitting, Wade et al. (2014) provide some developments in
prediction which can be used in our context. Following their proposal, the time indices
𝑡1, … , 𝑡𝑛 play the role of covariates, so the data (𝑦𝑡1

, … , 𝑦𝑡𝑛
) can be thought as a set of

pairs (𝑦𝑖, 𝑡𝑖) for 𝑖 = 1, … , 𝑛. Therefore, a point prediction of 𝑌𝑡𝑛+1
is defined as the point

prediction of 𝑌𝑛+1 at 𝑡𝑛+1 by

̂𝑦(𝑡𝑛+1) = E[𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡],

where 𝑦 = (𝑦1, … , 𝑦𝑛) and 𝑡 = (𝑡1, … , 𝑡𝑛). Note that the main role of the covariates 𝑡𝑗
is to make clear the location where the prediction is required: (i) outside the observed
range of time, i.e. 𝑡𝑛+1 < 𝑡1 or 𝑡𝑛+1 > 𝑡𝑛; or (ii) between two point times already observed,
𝑡𝑖 < 𝑡𝑛+1 < 𝑡𝑖+1 for some 𝑖 ≤ 𝑛. The posterior predictive distribution is, then, given by

P(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡) = ∑
Υ𝑛∈𝒮[𝑛]

P(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, Υ𝑛)P(Υ𝑛|𝑡𝑛+1, 𝑦, 𝑡)

= ∑
Υ𝑛∈𝒮[𝑛]

∑
𝑠𝑛+1∈𝑆𝑛

P(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, Υ𝑛, 𝑠𝑛+1)P(𝑠𝑛+1|Υ𝑛, 𝑡𝑛+1, 𝑦, 𝑡)P(Υ𝑛|𝑡𝑛+1, 𝑦, 𝑡), (28)

where the set 𝑆𝑛 is defined according to Υ𝑛 and 𝑡𝑛+1; details are provided next.

The auxiliary variable 𝑠𝑛+1 appears since it necessary to perform a kind of data aug-
mentation in the random segmentationΥ𝑛 in order to consider all the possible groupings
of 𝑛+1 items. Thus, the random segmentationΥ𝑛+1 can be defined in terms of the random
vector (Υ𝑛, 𝑠𝑛+1); any possible grouping induced by (Υ𝑛, 𝑠𝑛+1)—properly relabeled—will
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have associated a unique element of 𝒮𝑛+1. From this, the computation of the distribu-
tion (28) is done as follows.

1. Since 𝑠𝑛+1 and 𝑦 are conditionally independent given Υ𝑛, 𝑡𝑛+1, 𝑡, the second term in
the sum is rewritten as

P(𝑠𝑛+1|Υ𝑛, 𝑡𝑛+1, 𝑦, 𝑡) =
P(Υ𝑛, 𝑠𝑛+1|𝑡, 𝑡𝑛+1)
P(Υ𝑛|𝑡, 𝑡𝑛+1) =

P(Υ𝑛+1|𝑡, 𝑡𝑛+1)
P(Υ𝑛|𝑡, 𝑡𝑛+1) .

2. The third term, on the other hand, is rewritten as

P(Υ𝑛|𝑡𝑛+1, 𝑦, 𝑡) =
P(Υ𝑛|𝑡, 𝑡𝑛+1)
P(Υ𝑛|𝑡)

P(𝑦|𝑡)
P(𝑦|𝑡, 𝑡𝑛+1)P(Υ𝑛|𝑦, 𝑡).

Therefore, the distribution (28) can be re-expressed as

P(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡) =

∑
Υ𝑛∈𝒮[𝑛]

∑
𝑠𝑛+1∈𝑆𝑛

P(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, Υ𝑛+1)
P(Υ𝑛+1|𝑡, 𝑡𝑛+1)
P(Υ𝑛|𝑡)

P(𝑦|𝑡)
P(𝑦|𝑡, 𝑡𝑛+1)P(Υ𝑛|𝑦, 𝑡) (29)

Assuming the prior distribution for Υ𝑛 has the form (12) and for the specific cases
already explained, this predictive distribution simplifies as follows. Consider first the
case 𝑡𝑛+1 > 𝑡𝑛. It means that the new observation, 𝑌𝑛+1, either belongs to the last regime
or starts a new one, so the point prediction ̂𝑦(𝑡𝑛+1) is given by

̂𝑦(𝑡𝑛+1) =
𝑛

∑
𝑘=1

∑
(𝑛1,…,𝑛𝑘)∈Δ𝑛,𝑘

{
𝑛 + 1
𝑛𝑘 + 1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑘 + 1)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑘 + 1))

+ 𝑛 + 1
𝑘 + 1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑘, 1)
Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘)
E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑘, 1))

}
P(𝑦|𝑡)

P(𝑦|𝑡, 𝑡𝑛+1)P(𝑛1, … , 𝑛𝑘|𝑦, 𝑡).

Similarly for the case 𝑡𝑛+1 < 𝑡1, the point prediction ̂𝑦(𝑡𝑛+1) is

̂𝑦(𝑡𝑛+1) =
𝑛

∑
𝑘=1

∑
(𝑛1,…,𝑛𝑘)∈Δ𝑛,𝑘

{
𝑛 + 1
𝑛1 + 1

Π(𝑛+1)
𝑘 (𝑛1 + 1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1 + 1, … , 𝑛𝑘))

+ 𝑛 + 1
𝑘 + 1

Π(𝑛+1)
𝑘 (1, 𝑛1, … , 𝑛𝑘)
Π(𝑛)

𝑘 (𝑛1, … , 𝑛𝑘)
E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (1, 𝑛1, … , 𝑛𝑘))

}
P(𝑦|𝑡)

P(𝑦|𝑡, 𝑡𝑛+1)P(𝑛1, … , 𝑛𝑘|𝑦, 𝑡),

where Π(𝑛)
𝑘 is the underlying EPPF of the prior for Υ𝑛.
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The last case—where the new time point 𝑡𝑛+1 is located between two already observed
points 𝑡𝑖 and 𝑡𝑖+1, for some 𝑖 ≤ 𝑛—can be obtained similarly, but the resulting set𝑆𝑛 varies
as follows. Given a segmentation of [𝑛], there are four possible cases. The time points
𝑡𝑖 and 𝑡𝑖+1 belong to the same regime; then, the point 𝑡𝑛+1 must belong to such regime.
Otherwise, these points, 𝑡𝑖 and 𝑡𝑖+1, belong to different (adjacent) regimes; then, the point
𝑡𝑛+1 can belong to the regime of 𝑡𝑖 or to the regime of 𝑡𝑖+1 or it can form a new regime,
between the to existing ones. Putting together all these cases, the point prediction ̂𝑦(𝑡𝑛+1)
is given by

̂𝑦(𝑡𝑛+1) =
𝑛

∑
𝑘=1

∑
{𝜏1,…,𝜏𝑘}∈𝒮𝑘

[𝑛]

̂𝑦(𝑡𝑛+1; {𝜏1, … , 𝜏𝑘}) P(𝑦|𝑡)
P(𝑦|𝑡, 𝑡𝑛+1)P(𝑛1, … , 𝑛𝑘|𝑦, 𝑡).

where, for 𝑗 = 1, … , 𝑘, 𝑛𝑗 = #𝜏𝑗 as usual, and

̂𝑦(𝑡𝑛+1; {𝜏1, … , 𝜏𝑘}) =

𝑛 + 1
𝑛𝑗 + 1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘)),

if 𝑖, 𝑖 + 1 ∈ 𝜏𝑗 , and—for the case 𝑖 ∈ 𝜏𝑗 and 𝑖 + 1 ∈ 𝜏𝑗+1—

̂𝑦(𝑡𝑛+1; {𝜏1, … , 𝜏𝑘}) =

𝑛 + 1
𝑛𝑗 + 1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑗 + 1, … , 𝑛𝑘))+

𝑛 + 1
𝑛𝑗+1 + 1

Π(𝑛+1)
𝑘 (𝑛1, … , 𝑛𝑗+1 + 1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑗+1 + 1, … , 𝑛𝑘))+

𝑛 + 1
𝑘 + 1

Π(𝑛+1)
𝑘+1 (𝑛1, … , 𝑛𝑗 , 1, 𝑛𝑗+1, … , 𝑛𝑘)

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘)

E(𝑌𝑛+1|𝑡𝑛+1, 𝑦, 𝑡, (𝑛1, … , 𝑛𝑗 , 1, 𝑛𝑗+1, … , 𝑛𝑘)).

§ II.A SIMULATION RESULTS FOR THE RETROSPECTIVE MODEL

In this appendix, the simulation results of the models of Section 2.1. Tables 4–6 show the
MCMCresults of our proposedmodel presented in Section 2.2.1 for the synthetic datasets
explained in Section 2.3. Table 7 displays a comparison between the posterior mode and
the least-squares clustering estimate for the same datasets. Finally, Table 8 contains the
respective results of Loschi and Cruz’s method discussed in Section 2.3.1.
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𝜙 𝔼[𝐶𝑛] 𝜎 𝜃 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

0.0 2 0.1 0.1897 ⟨51, 86⟩ 0.7880 2 0.7966
0.3 −0.1634 ⟨51, 86⟩ 0.7379 2 0.7454
0.6 −0.5709 ⟨51, 86⟩ 0.6757 2 0.6757
0.9 −0.8979 ⟨51, 86⟩ 0.6130 2 0.6142

49 0.1 21.4127 ⟨2, 50, 51, 86, 87, 149, 150⟩ 0.0008 15 0.1195
0.3 13.0593 ⟨51, 86, 87⟩ 0.0035 9 0.1267
0.6 3.0021 ⟨51, 86⟩ 0.1969 3 0.2842
0.9 −0.7974 ⟨51, 86⟩ 0.6069 2 0.6069

99 0.1 113.4390 ⟨… ⟩40 0.0003 43 0.0700
0.3 80.8346 ⟨… ⟩37 0.0004 35 0.0891
0.6 34.2148 ⟨… ⟩10 0.0008 18 0.0866
0.9 0.4399 ⟨51, 86⟩ 0.4056 2 0.4127
0.1 r.v. ⟨51, 86⟩ 0.7234 2 0.7235
0.3 r.v. ⟨51, 86⟩ 0.6558 2 0.6603
0.6 r.v. ⟨51, 86⟩ 0.5905 2 0.5927
0.9 r.v. ⟨51, 86⟩ 0.5354 2 0.5359
r.v. r.v. ⟨51, 86⟩ 0.7030 2 0.7030

r.v. 2 0.1 0.1897 ⟨51, 86⟩ 0.8134 2 0.8134
0.3 −0.1634 ⟨51, 86⟩ 0.7908 2 0.7908
0.6 −0.5709 ⟨51, 86⟩ 0.7579 2 0.7579
0.9 −0.8979 ⟨51, 86⟩ 0.7631 2 0.7634

49 0.1 21.4127 ⟨… ⟩11 0.0004 13 0.1416
0.3 13.0593 ⟨51, 86⟩ 0.0071 8 0.1436
0.6 3.0021 ⟨51, 86⟩ 0.3486 2 0.3486
0.9 −0.7974 ⟨51, 86⟩ 0.7531 2 0.7534

99 0.1 113.4390 ⟨… ⟩32 0.0004 36 0.0946
0.3 80.8346 ⟨… ⟩24 0.0005 28 0.0893
0.6 34.2148 ⟨… ⟩18 0.0008 14 0.1205
0.9 0.4399 ⟨51, 86⟩ 0.6336 2 0.6339
0.1 r.v. ⟨51, 86⟩ 0.7414 2 0.7414
0.3 r.v. ⟨51, 86⟩ 0.7046 2 0.7046
0.6 r.v. ⟨51, 86⟩ 0.7139 2 0.7139
0.9 r.v. ⟨51, 86⟩ 0.7632 2 0.7632
r.v. r.v. ⟨51, 86⟩ 0.7162 2 0.7162

TABLE 4: Posterior results for the simulated dataset with changes in mean (Figure 4a). The first
four columns show the prior specifications; the label r.v.means that a prior distribution
was assigned. The last four columns show the modal change points, Υ̃𝑛, and the modal
number of change points, ̃𝐶𝑛, togetherwith their corresponding probabilities. Themodal
change points indicated as ⟨… ⟩𝑘 denote that there are 𝑘 of them.
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𝜙 𝔼[𝐶𝑛] 𝜎 𝜃 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

0.0 2 0.1 0.1897 ⟨50, 66, 75, 113, 121⟩ 0.0094 6 0.2164
0.3 −0.1634 ⟨53, 66, 76, 113, 121⟩ 0.0022 9 0.0927
0.6 −0.5709 ⟨54, 55, 111, 112, 113, 121⟩ 0.0014 19 0.0602
0.9 −0.8979 ⟨… ⟩10 0.0018 23 0.0376

49 0.1 21.4127 ⟨… ⟩21 0.0005 33 0.1058
0.3 13.0593 ⟨… ⟩29 0.0006 31 0.1034
0.6 3.0021 ⟨… ⟩26 0.0007 26 0.0887
0.9 −0.7974 ⟨53, 54, 112, 113, 121⟩ 0.0034 10 0.0418

99 0.1 113.4390 ⟨… ⟩67 0.0004 65 0.0818
0.3 80.8346 ⟨… ⟩58 0.0004 59 0.0827
0.6 34.2148 ⟨… ⟩55 0.0005 51 0.0767
0.9 0.4399 ⟨… ⟩15 0.0019 37 0.0583
0.1 r.v. ⟨49, 66, 75, 97, 99, 108, 121⟩ 0.0013 11 0.1011
0.3 r.v. ⟨… ⟩13 0.0008 15 0.1054
0.6 r.v. ⟨… ⟩24 0.0008 24 0.0814
0.9 r.v. ⟨… ⟩36 0.0014 33 0.0486
r.v. r.v. ⟨… ⟩11 0.0010 17 0.0746

r.v. 2 0.1 0.1897 ⟨53, 121⟩ 0.0559 2 0.4422
0.3 −0.1634 ⟨53, 121⟩ 0.0452 2 0.4258
0.6 −0.5709 ⟨53, 121⟩ 0.0434 2 0.4341
0.9 −0.8979 ⟨53, 121⟩ 0.0486 2 0.5111

49 0.1 21.4127 ⟨… ⟩23 0.0006 27 0.1013
0.3 13.0593 ⟨… ⟩21 0.0006 21 0.0891
0.6 3.0021 ⟨53, 123⟩ 0.0086 5 0.1640
0.9 −0.7974 ⟨53, 121⟩ 0.0413 2 0.4763

99 0.1 113.4390 ⟨… ⟩67 0.0005 66 0.0784
0.3 80.8346 ⟨… ⟩71 0.0005 60 0.0721
0.6 34.2148 ⟨… ⟩39 0.0008 49 0.0578
0.9 0.4399 ⟨53, 121⟩ 0.0290 2 0.3403
0.1 r.v. ⟨53, 121⟩ 0.0437 2 0.3218
0.3 r.v. ⟨53, 121⟩ 0.0340 2 0.2949
0.6 r.v. ⟨53, 121⟩ 0.0263 2 0.3730
0.9 r.v. ⟨53, 121⟩ 0.0379 2 0.4616
r.v. r.v. ⟨53, 121⟩ 0.0405 2 0.3407

TABLE 5: Posterior results for the simulated dataset with changes in variance (Figure 4b). The first
four columns show the prior specifications; the label r.v.means that a prior distribution
was assigned. The last four columns show the modal change points, Υ̃𝑛, and the modal
number of change points, ̃𝐶𝑛, togetherwith their corresponding probabilities. Themodal
change points indicated as ⟨… ⟩𝑘 denote that there are 𝑘 of them.
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𝜙 𝔼[𝐶𝑛] 𝜎 𝜃 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

0.0 2 0.1 0.1897 ⟨2, 51, 103⟩ 0.0168 5 0.3322
0.3 −0.1634 ⟨2, 51, 82, 91, 101⟩ 0.0107 5 0.1684
0.6 −0.5709 ⟨2, 51, 103⟩ 0.0291 3 0.1588
0.9 −0.8979 ⟨⟩ 0.9071 0 0.9071

49 0.1 21.4127 ⟨… ⟩32 0.0004 29 0.0929
0.3 13.0593 ⟨… ⟩19 0.0006 24 0.0817
0.6 3.0021 ⟨2, 3, 50, 51, 103, 150⟩ 0.0021 14 0.1111
0.9 −0.7974 ⟨2⟩ 0.5550 1 0.5682

99 0.1 113.4390 ⟨… ⟩71 0.0004 64 0.0756
0.3 80.8346 ⟨… ⟩60 0.0004 62 0.0731
0.6 34.2148 ⟨… ⟩42 0.0005 44 0.0798
0.9 0.4399 ⟨2⟩ 0.0943 7 0.1109
0.1 r.v. ⟨2, 51, 103⟩ 0.0075 6 0.1779
0.3 r.v. ⟨2, 51, 82, 91, 101⟩ 0.0088 6 0.1837
0.6 r.v. ⟨2⟩ 0.0107 8 0.1267
0.9 r.v. ⟨2⟩ 0.1454 1 0.1477
r.v. r.v. ⟨2, 51, 103⟩ 0.0129 6 0.1807

r.v. 2 0.1 0.1897 ⟨51, 108⟩ 0.0846 2 0.4178
0.3 −0.1634 ⟨51, 108⟩ 0.0450 2 0.3212
0.6 −0.5709 ⟨⟩ 0.3802 0 0.3802
0.9 −0.8979 ⟨⟩ 0.9946 0 0.9946

49 0.1 21.4127 ⟨… ⟩20 0.0008 24 0.0909
0.3 13.0593 ⟨… ⟩10 0.0006 18 0.0998
0.6 3.0021 ⟨51, 108, 118, 120⟩ 0.0056 7 0.1532
0.9 −0.7974 ⟨⟩ 0.5752 0 0.5752

99 0.1 113.4390 ⟨… ⟩67 0.0004 64 0.0811
0.3 80.8346 ⟨… ⟩55 0.0004 62 0.0649
0.6 34.2148 ⟨… ⟩23 0.0004 36 0.0612
0.9 0.4399 ⟨2⟩ 0.2874 1 0.3665
0.1 r.v. ⟨51, 108⟩ 0.0464 2 0.2493
0.3 r.v. ⟨51, 108⟩ 0.0357 2 0.2212
0.6 r.v. ⟨51, 108⟩ 0.0345 3 0.2274
0.9 r.v. ⟨⟩ 0.5786 0 0.5786
r.v. r.v. ⟨51, 103⟩ 0.0254 2 0.2599

TABLE 6: Posterior results for the simulated dataset with changes in mean, variance and corre-
lation (Figure 4c). The first four columns show the prior specifications; the label r.v.
means that a prior distribution was assigned. The last four columns show the modal
change points, Υ̃𝑛, and the modal number of change points, ̃𝐶𝑛, together with their cor-
responding probabilities. The modal change points indicated as ⟨… ⟩𝑘 denote that there
are 𝑘 of them.
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Dataset 𝔼[𝐶𝑛] 𝜎 𝜃 𝜙 mode co-cluster
A 49 0.3 13.0593 0.0 ⟨51, 86, 87⟩ ⟨4, 30, 50, 51, 86, 87⟩

r.v. ⟨51, 86⟩ ⟨5, 11, 15, 51, 86⟩
B 99 0.9 0.4399 0.0 ⟨50, 66, … , 113, 121⟩15 ⟨50, 66, … , 113, 121⟩30

r.v. ⟨53, 121⟩ ⟨52, 122⟩
C 99 0.9 0.4399 0.0 ⟨2⟩ ⟨2, 51, 103⟩

r.v. ⟨2⟩ ⟨2, 3⟩

TABLE 7: Posterior results for different datasets under distinct scenarios. Datasets used have
changes in: A) mean, B) variance, and C) mean, variance and correlation (Figure 4).
Columns 2 to 5 display the prior specifications; label r.v. means that a random vari-
able was assigned. Column 6 displays the posterior mode and Column 7 displays the
co-cluster; the subindex in the partition indicates its length.
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𝔼[𝐶𝑛] 𝛼 𝛽 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

2 1.00 73.50 ⟨51, 86⟩ 0.9900 2 0.9901
0.01 1.00 ⟨51, 86⟩ 0.9924 2 0.9925

49 1.00 2.04 ⟨51, 86⟩ 0.9848 2 0.9849
0.49 1.00 ⟨51, 86⟩ 0.9891 2 0.9892

99 1.00 0.51 ⟨51, 86⟩ 0.9847 2 0.9848
1.98 1.00 ⟨51, 86⟩ 0.9773 2 0.9774

75 1 1 ⟨51, 86⟩ 0.9847 2 0.9848
3 1 50 ⟨51, 86⟩ 0.9900 2 0.9891

14 5 50 ⟨51, 86⟩ 0.9660 2 0.9662
146 50 1 ⟨51, 86⟩ 0.6242 2 0.6244
136 50 5 ⟨51, 86⟩ 0.6347 2 0.6349

(A) Results for the dataset with changes in mean (Figure 4a).

𝔼[𝐶𝑛] 𝛼 𝛽 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

2 1.00 73.50 ⟨4, 53, 121⟩ 0.0456 3 0.3674
0.01 1.00 ⟨4, 53, 121⟩ 0.0463 4 0.3379

49 1.00 2.04 ⟨4, 53, 121⟩ 0.0280 4 0.3494
0.49 1.00 ⟨4, 53, 121⟩ 0.0365 4 0.3519

99 1.00 0.51 ⟨4, 53, 121⟩ 0.0275 4 0.3471
1.98 1.00 ⟨4, 53, 121, 123, 146⟩ 0.0335 4 0.3332

75 1 1 ⟨4, 53, 121, 123, 146⟩ 0.0275 4 0.3474
3 1 50 ⟨4, 53, 121⟩ 0.0362 4 0.3595

14 5 50 ⟨4, 50, 121, 123, 146⟩ 0.0257 5 0.3485
146 50 1 ⟨4, 53, 121, 123, 146, 149, 150⟩ 0.0143 7 0.2914
136 50 5 ⟨4, 53, 121, 123, 146, 149, 150⟩ 0.0152 7 0.2970

(B) Results for the dataset with changes in variance (Figure 4b).

𝔼[𝐶𝑛] 𝛼 𝛽 Υ̃𝑛 prob. ̃𝐶𝑛 prob.

2 1.00 73.50 ⟨⟩ 1.0000 0 1.0000
0.01 1.00 ⟨⟩ 1.0000 0 1.0000

49 1.00 2.04 ⟨⟩ 1.0000 0 1.0000
0.49 1.00 ⟨⟩ 1.0000 0 1.0000

99 1.00 0.51 ⟨⟩ 1.0000 0 1.0000
1.98 1.00 ⟨⟩ 0.9993 0 0.9993

75 1 1 ⟨⟩ 1.0000 0 1.0000
3 1 50 ⟨⟩ 1.0000 0 1.0000

14 5 50 ⟨⟩ 0.9971 0 0.9971
146 50 1 ⟨⟩ 0.6214 0 0.6214
136 50 5 ⟨⟩ 0.6050 0 0.6050

(C) Results for the dataset with changes in mean, vari-
ance and correlation (Figure 4c).

TABLE 8: Posterior results for the simulated datasets using Loschi and Cruz’s method. For each
table, the first three columns show the prior specifications and the last four columns
show the modal change points, Υ̃𝑛, and the modal number of change points, ̃𝐶𝑛, together
with their corresponding probabilities.



CHAPTER III

DECREASING-WEIGHTMIXTURE
MODELS

In this chapter, we explore the relationship between clustering and mixture models, fo-
cusing on a particular class ofmixture densities generated by discrete randomprobability
measures (RPMs). Among the great diversity of clustering methodologies, mixture mod-
els emerge as a natural extension of exchangeability to tackle this problem. As depicted
in the Clustering Scenario I.1, random partitions can be used for clustering, therefore, we
extend their usage to the case when observations are not generated from discrete distri-
butions.

In Section 1, an introduction to mixture models is given. Besides of motivating their
usage, we explain some of the specific problems where these models are applied as well
as some of their main drawbacks. It is worth saying that, in this chapter, we will concen-
trate on mixture densities with an infinite number of components. Thus, in this section,
we present some examples, starting with mixture densities whose mixing distribution
corresponds to the Dirichlet process. Afterwards, we introduce a recent construction of
discrete RPMs—the geometric process—which diminishes some of the weaknesses of
other models, when it is used under this context.

Due to the novelty of the geometric-weight approach—in Section 2—we present
some extensions to this process, preserving the same restriction in the mixing weights.
Specifically, these extensions are based on different power series distributions as well as
Lagrangian distributions. We also implement a Gibbs sampler in order to test their per-
formance in density estimation.

Finally, in Section 3, we study how it is possible to infer about the clustering structure
based on mixture models. In this section, we also explain our current work in this line:
the computation of the exchangeable partition probability function (EPPF) for discrete
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RPMs with decreasing weights.

§ 1 INFINITE-COMPONENT MIXTURE MODELS

Mixture models are of interest in many contexts due to their flexibility to model het-
erogeneity. In these, observations are assumed independent and identically distributed
according to a mixture density of the form

𝑓(𝑦) =
𝑀

∑
𝑗=1

𝑤𝑗𝜅𝑗(𝑦; 𝑥𝑗), (1)

where (𝑤1, … , 𝑤𝑀 ) are non-negative weights summing up to one, and 𝜅𝑗 is a kernel den-
sity function, for each 𝑗, with parameter 𝑥𝑗 . Early models assume a finite number of
components, but it can also be infinite. Moreover, the kernel density is commonly sim-
plified as 𝜅𝑗(⋅; 𝑥𝑗) = 𝜅(⋅; 𝑥𝑗), i.e. the same kernel is assumed for all components and only
its parameter 𝑥𝑗 varies.

The study of this topic goes back to Pearson (1894), and there are also several extensive
expositions about it in Titterington et al. (1985), McLachlan & Peel (2000), Marin et al.
(2005) and Frühwirth-Schnatter (2006) to mention just a few. One of the interpreta-
tions of mixture models—which makes them attractive in several and different fields—
was noted by Feller (1943). This assumes a population formed by𝑀 categories, also called
groups or subpopulations, each one with proportion𝑤𝑗 , 𝑗 = 1, … , 𝑀 . The term category
refers to the fact that the feature of interest—represented by parameter 𝑥𝑗—is homoge-
neous within groups but heterogeneous across them. Therefore, in practice, one of the
main interests has been trying to describe the latent subpopulations in terms of their
relative proportion, 𝑤𝑗 , and their characterizing property 𝑥𝑗 .

However, it has been noticed that such an interpretation hardly can be achieved due
to different reasons. Mixture models of the form (1) are known to be model-based, which
means that inferences might change drastically according the kernel 𝜅 we choose. As a
consequence, there are many different approaches dealing with this issue; a general as-
sumption has been to restrict the form of the kernel density to be unimodal. Another
characteristic of mixture models—which, in general, represents a problem for infer-
ences—is known as non-identifiability, and it appears when there are different combi-
nations of components—each one formed by a weight and its corresponding kernel pa-
rameter, (𝑤𝑗 , 𝑥𝑗)—resulting in the same density for a single observation. Furthermore,
the lack of identifiability also causes convergence problems inMonte CarloMarkov chain
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(MCMC)methods—known as the label-switching problem—where the labels associating
observations and components change between iterations.

Under a Bayesian nonparametric framework, when 𝑀 = ∞, the first approach to
define mixture models was given by Lo (1984) and it makes use of the Dirichlet pro-
cess in order to obtain expressions for the mixing weights and locations. But it was not
until Escobar & West (1995) proposed a computational implementation that the inter-
est in infinite-component mixture models increased. Among the current uses of these
mixture models, density estimation and clustering are the most predominant. Unfortu-
nately, we can find the same undesirable features of the finite-component case: (i) they
aremodel-based, (ii) we have seldom a non-identifiablemodel, and, for this reason (iii) la-
bel-switching appears in MCMC methods. Hence, during this chapter, we will focus on
this class of mixture models in order to study these issues and look for a way to deal with
them.

1.1 DIRICHLET PROCESS MIXTURE MODELS AND RELATED CONSTRUCTIONS

Themodel proposed by Lo (1984) can be written by means of a discrete RPM ̃𝑝 as mixing
distribution. Recalling, any discrete RPM ̃𝑝 can be expressed as

̃𝑝(⋅) =
∞

∑
𝑗=1

𝑤𝑗𝛿𝑥𝑗
(⋅), (2)

where 𝑤𝑗 is a (0, 1)-valued random variable for all 𝑗 ≥ 1, and the sequence (𝑤𝑗)𝑗≥1 is
such that ∑𝑗≥1 𝑤𝑗 = 1 a.s.; (𝑥𝑗)𝑗≥1 is a sequence of i.i.d. 𝕏-valued random variables—
independent of (𝑤𝑗)𝑗≥1—from a non-atomic distribution 𝜈0. We already studied these
measures in Section I.1. Hence, the resulting mixture density is such that

𝑓(𝑦) = ∫𝕏
𝜅(𝑦; 𝑥) ̃𝑝(d𝑥) =

∞

∑
𝑗=1

𝑤𝑗𝜅(𝑦; 𝑥𝑗), (3)

for a kernel density function 𝜅 with finite-dimensional parameter 𝑥𝑗 . When the distribu-
tion of ̃𝑝 coincides with the Dirichlet process, the model proposed by Lo—better known
as theDirichlet process mixture model—is obtained.

An alternative method to construct mixture models consists on using the so-called
stick-breaking representation to define the distribution of the mixing weights, (𝑤𝑗)𝑗≥1. The
locations (𝑥𝑗)𝑗≥1 are defined as before. From the stick-breaking representation (Halmos
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1944), mixing weights are defined as

𝑤1 = 𝑣1, 𝑤𝑗 = 𝑣𝑗 ∏
𝑙<𝑗

(1 − 𝑣𝑙) 𝑗 ≥ 2, (4)

for (𝑣𝑗)𝑗≥1 a sequence of independent (0, 1)-valued random variables. The only restriction
of this construction is that ∑𝑖≥1 logE(1 − 𝑣𝑖) = −∞; see, for example, Ghosal & van der
Vaart (2015) for more details. Several well knownmixture models can be defined follow-
ing this representation. For example, Sethuraman (1994) finds that the Dirichlet process

mixture model corresponds to the case 𝑣𝑗
i.i.d.∼ Be(1, 𝑐), for all 𝑗 ≥ 1. It is also possible to

recover the two-parameter Poisson-Dirichlet process by letting 𝑣𝑗
ind.∼ Be(1 − 𝜎, 𝜃 + 𝑗𝜎),

for some 0 < 𝜎 < 1 and 𝜃 > −𝜎 (cf. Example I.5). Further examples and a more extensive
discussion about this representation under the mixture-model framework can be found
in Ishwaran & James (2001). It is worth mentioning that—in some cases—it is not pos-
sible to use the RPM-based and the stick-breaking-based approaches interchangeably. In
other words, not all mixture models (3) built through (2) can be expressed using directly
the representation (4) and vice versa. One of these cases is given by the normalized gen-
eralized Gamma process (Example I.4), where it is necessary to break the assumption of
independence in (4) and make use of latent variables; see Lau & Cripps (2015) and Favaro
et al. (2015) for details.

1.1.1 Density estimation

As mentioned before, one of the main uses of mixture models is density estimation. Un-
der a Bayesian nonparametric framework, we can find a great number of methodologies.
These, in general, are based on one of the two aforementioned constructions and can be
classified according to whether—in order to implement anMCMCmethod— (i) the un-
derlying RPM is marginalized out, or (ii) it is used to sample from. Following the first
approach, Escobar &West (1995) were the firsts in implementing a sampling scheme for
the Dirichlet case through the very well known Pólya urn scheme. We also found some al-
ternatives for this idea in Neal (2000) and more general schemes presented by Ishwaran
& James (2001), Lijoi et al. (2007b) and Favaro & Teh (2013). Regarding the second ap-
proach, also Ishwaran & James (2001) propose a method to truncate the randommeasure
based on a certain deterministic distance. Later on, Walker (2007) and Kalli et al. (2011)
propose also a truncation of the randommeasure but it is done randomly; their proposal
is known as the slice sampler. More recently, Favaro & Teh (2013) propose an MCMC al-
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gorithm for a particular family of random distributions ̃𝑝 based on this sampler scheme.
For the sake of completeness, we summarize two of these methods: (i) the Pólya urn

scheme, and (ii) the slice sampler.

Pólya urn scheme. Writing the mixture model (3) in a hierarchical form, we have

𝑦𝑖|𝑥𝑖
ind.∼ 𝜅(𝑦𝑖; 𝑥𝑖), 𝑖 = 1, … , 𝑛 (5)

𝑥𝑖| ̃𝑝 i.i.d.∼ ̃𝑝

̃𝑝 ∼ 𝑄

where𝑄 is the distribution of ̃𝑝. Under the Pólya urn scheme, the random distribution ̃𝑝
is integrated out, leading the following model

𝑦𝑖|𝑥𝑖
ind.∼ 𝜅(𝑦𝑖; 𝑥𝑖), 𝑖 = 1, … , 𝑛

𝑥1, … , 𝑥𝑛 ∼ 𝜋(𝑥1, … , 𝑥𝑛),

where 𝜋 is a joint distribution. The key of this algorithm resides in the fact that ̃𝑝 needs
to have an explicit prediction rule (cf. Equation I.13). Thus, due to the exchangeability of
the sequence 𝑥 = {𝑥1, … , 𝑥𝑛}, the full conditional distribution for each 𝑥𝑗 is given by

𝑝(𝑥𝑖|𝑥−𝑖, 𝑦) = 𝑞∗
𝑖,0𝑝(𝑥𝑖|𝑦𝑖) +

𝑘𝑖,𝑛−1

∑
𝑗=1

𝑞∗
𝑖,𝑗𝛿𝑥∗

𝑖,𝑗
(𝑥𝑖), 𝑖 = 1, … , 𝑛,

with𝑥−𝑖 ∶= {𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛}, andwhere𝑥∗
−𝑖 = {𝑥∗

𝑖,1, … , 𝑥∗
𝑖,𝑘𝑖,𝑛−1

} are the𝑘𝑖,𝑛−1 dis-

tinct values of the vector 𝑥−𝑖. The weights (𝑞𝑖,𝑗)𝑘𝑖,𝑛−1
𝑗=0 are determined by the random distri-

bution of ̃𝑝; for example, if 𝑄 coincides with the two-parameter Poisson-Dirichlet pro-
cess, we have

𝑞𝑖,0 ∝(𝜃 + 𝑘𝑖,𝑛−1𝜎) ∫𝕏
𝑝(𝑦𝑖|𝑥)𝑔0(𝑥)d𝑥

𝑞∗
𝑖,𝑗 ∝(𝑛∗

𝑖,𝑗 − 𝜎)𝑝(𝑦𝑖|𝑥∗
𝑖,𝑗), 𝑗 ≥ 1

where 𝑔0 is the density function of the base measure 𝜈0, and (𝑛∗
𝑖,1, … , 𝑛∗

𝑖,𝑘𝑖,𝑛−1
) are the fre-

quencies of 𝑥∗
−𝑖. An additional step was introduced by MacEachern (1994) in order to

speed up the convergence. This consists on introducing a membership vector (𝑑1, … , 𝑑𝑛)
to identify which component the 𝑖th observation is associated to—that is, 𝑑𝑖 = 𝑗 if and
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only if 𝑥𝑖 = 𝑥∗
𝑗 , 𝑖 = 1, … , 𝑛, where 𝑥∗ = {𝑥∗

1, … , 𝑥∗
𝑘∗} are the 𝑘∗ different values of 𝑥—and

then, updating each parameter 𝑥∗
𝑗 as follows

𝑝(𝑥∗
𝑗 | ⋯) ∝ 𝑔0(𝑥∗

𝑗 ) ∏
𝑑𝑖=𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 ), 𝑗 = 1, … , 𝑘∗. (6)

Under this sampling scheme, the estimated density is given by

̃𝑓 (𝑦) = 1
𝑇

𝑇

∑
𝑡=1

𝑘∗(𝑡)

∑
𝑗=1

𝑤(𝑡)
𝑗 𝜅(𝑦; 𝑥∗(𝑡)

𝑗 ), (7)

where the mixing weights are given by𝑤(𝑡)
𝑗 = 𝑛∗(𝑡)

𝑗 /𝑛 and 𝑇 is the sample size. For the case
of the Dirichlet process, Escobar & West (1995) have provided a proof about its conver-
gence.

Slice sampler. Under the context of mixture modeling, Walker (2007) introduced a
MCMC sampling scheme which, in turn, was generalized by Kalli et al. (2011). This sec-
ond approach starts with the mixture density (3) and introduces latent variables 𝑢 and 𝑑
as well as a sequence of nonnegative numbers (𝜉𝑗)𝑗≥1 such that (3) is augmented as

𝑓(𝑦, 𝑢, 𝑑) = 𝟏(𝑢 < 𝑤𝑑)𝑤𝑑𝜉−1
𝑑 𝜅(𝑦; 𝑥∗

𝑑).

Therefore—given a sample 𝑦1, … , 𝑦𝑛—the MCMC draws samples from the parameters
(𝑥∗

𝑗 )𝑚
𝑗=1, (𝑤𝑗)𝑚

𝑗=1, (𝑢𝑖)𝑛
𝑖=1 and (𝑑𝑖)𝑛

𝑖=1—where 𝑚 = max{𝑑𝑖 ∶ 𝑖 = 1, … , 𝑛}—as follows.

1. For the kernel parameters, the full conditional distribution is the same as Equa-
tion (6) in the Pólya urn scheme.

2. Updating the mixing weights (𝑤𝑗) varies according to their prior distribution. If
the stick-breaking representation is used, updating (𝑤𝑗) is equivalent to updating the

random variables (𝑣𝑗). Assuming 𝑣𝑗
ind.∼ Be(𝑎𝑗 , 𝑏𝑗), the full conditional distribution

for each 𝑣𝑗 is also a Beta distribution with parameters (𝑎′
𝑗 , 𝑏′

𝑗) such that

𝑎′
𝑗 = 𝑎𝑗 +

𝑛

∑
𝑖=1

𝟏(𝑑𝑖 = 𝑗) and 𝑏′
𝑗 = 𝑏𝑗 +

𝑛

∑
𝑖=1

𝟏(𝑑𝑖 > 𝑗).
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3. For 𝑢𝑖, 𝑖 = 1, … , 𝑛, we have

𝑝(𝑢𝑖| ⋯) ∝ 𝟏(0 < 𝑢𝑖 < 𝜉𝑑𝑖
).

4. Indicator variables 𝑑𝑖, 𝑖 = 1, … , 𝑛, are updated as follows

P(𝑑𝑖 = 𝑘| ⋯) ∝ 𝟏(𝑘 ∶ 𝜉𝑘 > 𝑢𝑖)𝑤𝑘𝜉−1
𝑘 𝜅(𝑦𝑖; 𝑥∗

𝑘).

In this case, the estimated density is

̂𝑓 (𝑦) = 1
𝑇

𝑇

∑
𝑡=1

1
𝑚(𝑡)

𝑚(𝑡)

∑
𝑗=1

𝜅(𝑦; 𝑥(𝑡)
𝑗 ), (8)

1.2 GEOMETRIC MIXTURE MODELS

The Dirichlet process mixture model constitutes the most representative infinite-com-
ponent mixture model, and many other models have been conceived based on it. As a
consequence,many of the resultingmodels are, in general, more challenging to be applied;
for example, the required sampling schemes are oftenmore elaborated. This fact ismainly
related to their weight structure.

With respect to this, Fuentes-García et al. (2010a) propose a novel mixture model
with a particular structure in its mixing weights. In particular, they explain that a desir-
able property of a mixture model is that subpopulations are represented by the mixture
components—similar to Feller’s interpretation—but, additionally, the first component
should represent the largest subpopulation, the second component should represent the
second largest subpopulation and so on (cf. Mena 2013, Mena & Walker 2015). Hence,
they propose amixturemodel with a simple but remarkable structure in its weights: they
are decreasingly ordered, i.e. 𝑤𝑗 > 𝑤𝑗+1 a.s. for all 𝑗 ≥ 1. Note that stick-breaking based
weights do not satisfy this constrain.

A derivation of their proposed model is the following. Taking an infinite mixture
density (3), first Walker (2007) introduces a latent variable 𝑢 such that the joint density
has the following form

𝑓(𝑦, 𝑢) =
∞

∑
𝑗=1

𝟏(𝑢 < 𝑤𝑗)𝜅(𝑦; 𝑥𝑗).

Thus, given 𝑢, the mixture density has a finite number of components since it can be
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written as
𝑓(𝑦|𝑢) = 1

|𝐽𝑢| ∑
𝑗∈𝐽𝑢

𝜅(𝑦; 𝑥𝑗),

where 𝐽𝑢 = {𝑗 ∶ 𝑢 < 𝑤𝑗} is a finite set. Notice that—due to the structure of the weights
generated by the stick-breaking scheme or other similar methodologies—the random set
𝐽𝑢 usually contains a sequence of non-consecutive integers. Thus, Fuentes-García et al.
(2010a) consider the set 𝐽𝑢 = {1, … , 𝑟}, which is a set formed by the first 𝑟 integers, for a
random 𝑟 ≥ 1 a.s. The conditional mixture density is, then, written as

𝑓(𝑦|𝑟) = 1
𝑟

𝑟

∑
𝑖=1

𝜅(𝑦; 𝑥𝑖).

Marginalizing over 𝑟, an infinite mixture model is recovered, i.e.

𝑓(𝑦) =
∞

∑
𝑗=1

1
𝑗

𝑗

∑
𝑖=1

𝜅(𝑦; 𝑥𝑖)𝜋(𝑗; 𝜆),

with 𝜋(⋅; 𝜆) the prior distribution of 𝑟, however, unlike stick-breaking based approaches,
this new mixture density has decreasing weights since they are given by

𝑤𝑗 =
∞

∑
𝑟=𝑗

𝜋(𝑟; 𝜆)
𝑟 , 𝑗 = 1, 2, … , (9)

where, clearly, 𝑤𝑗 > 𝑤𝑗+1 for all 𝑗 = 1, 2, …. The specification is complete after assigning
a prior distribution to parameter 𝜆.

With this structure, Fuentes-García et al. (2010a) take 𝜋(𝑟; 𝜆) the negative binomial
with parameters (2, 𝜆), for 0 < 𝜆 < 1, so the weights are simplified to

𝑤𝑗 = 𝜆(1 − 𝜆)𝑗−1, 𝑗 = 1, 2, … . (10)

The underlying process generating such structure is called the geometric process and the
resulting RPM is known as the geometric RPM.

Although the weights generated by the geometric process look quite different to the
ones obtained with the Dirichlet process, there is an interesting relation between both
of them. Consider the stick-breaking representation (4) for the Dirichlet process with
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parameter 𝑐, and denote by 𝑤′
𝑗 its 𝑗th weight. Then, taking expectations, we have

E(𝑤′
𝑗) = E

(
𝑣𝑗 ∏

𝑙<𝑗
(1 − 𝑣𝑙))

= 1
1 + 𝑐 (

𝑐
1 + 𝑐 )

𝑗−1
,

where 𝑣𝑗
i.i.d.∼ Be(1, 𝑐) for 𝑐 > 0. If we set 𝜆 = 1/(1 + 𝑐), the weights (10) are recovered.

The randomization of the parameter 𝜆—for the geometric process—plays a similar role
to the randomization of the total mass parameter, 𝑐, for the Dirichlet process. In the
latter approach—this extra step is performed in order to remove the bias imposed over
the number of groups (cf. Escobar & West 1995), whereas—for the geometric process
mixture model—making random the parameter 𝜆 allows it to have full support, i.e. the
resulting random density 𝑓 is dense in the same space𝕏where the base measure 𝜈0 is de-
fined. Bissiri & Ongaro (2014) present some theoretical results about this topic, and also
explain—in their Section 3.3—why geometric-process mixturemodels have full support.

As a side note, the mixing weights obtained by the two-parameter Poisson-Dirichlet
process are also ordered inmean, even though its stick-breaking representation generates
unordered weights a.s. In this case, we have that

E(𝑤𝑗) =
(1 − 𝜎) ∏𝑗−1

𝑖=1 (𝜃 + 𝑖𝜎)
𝜎𝑗( 𝜃+1

𝜎 )𝑗↑
, 𝑗 = 1, 2, … ,

for some 0 ≤ 𝜎 < 1 and 𝜃 > −𝜎, and therefore

E(𝑤𝑗)
E(𝑤𝑗+1) = 1 + 1

𝜃 + 𝑗𝜎 > 1

for all the admissible values of 𝜎 and 𝜃.

§2 DECREASING-WEIGHT MIXTURE MODELS

The geometric process has become an appealing option for different problems. Besides
of density estimation (Fuentes-García et al. 2010a), it has been applied in regression
(Fuentes-García et al. 2009), dependent models (Mena et al. 2011), classification (Gutiér-
rez et al. 2014), and others. In the next sections, two families of sequences of decreasing
weights are studied. Both are based on the different constructions, already explained, of
this process.
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2.1 PARTIAL-SUM BASED WEIGHTS

From the derivation of the geometric process in the previous section, we can devise two
approaches to construct sequences of decreasing weights. In the first approach, we re-
quire a discrete probability distribution, 𝜋(𝑟; 𝜆)—supported onℕ—and compute the par-
tial sum in Equation (9). The second approach consists on selecting a random variable
𝑋—taking values also inℕ—with an𝐿-shape distribution, i.e. a probability distribution
satisfying

P(𝑋 = 𝑥) > P(𝑋 = 𝑥 + 1), 𝑥 = 1, 2, … ,

and, then, define the 𝑗th weight as 𝑤𝑗 ∶= P(𝑋 = 𝑗). This method comes from Equa-
tion (10) where𝑋 follows a geometric distribution. With regard to the first approach—
in this section—we work with the family of power series distributions.

DEFINITION 1. A distribution 𝐹 is a power series distribution if its probability density func-
tion can be written as

𝐹 (𝑘) = P(𝑋 = 𝑘) = 𝑎𝑘(𝜑)𝜃𝑘

𝑓(𝜃, 𝜑) , 𝑘 = 1, 2, …

for 𝜃 > 0 and where the coefficients 𝑎1(𝜑), … , 𝑎𝑘(𝜑), … are all positive and depend only
on 𝑘 and 𝜑. Using these coefficients, the function 𝑓 is defined as

𝑓(𝜃, 𝜑) =
∞

∑
𝑘=1

𝑎𝑘(𝜑)𝜃𝑘,

and it is positive, finite and differentiable for all the admissible values of 𝜃 and 𝜑.

This definition has been introduced by Patil (1964) as a two-parameter version of the
power series distribution generally credited to Noack (1950), which depends only on 𝜃.
Furthermore, notice that the value zero has been excluded from the support in order
apply Equation (9). However, it is straightforward to write any well known distribution
in terms of this definition.

Using this class of probability distributions, we can apply (9) to get

𝑤𝑗 =
∞

∑
𝑟=𝑗

𝑎𝑟(𝜙)𝜃𝑟

𝑟𝑓(𝜃, 𝜙) , 𝑗 = 1, 2, … . (11)

It is necessary to specify the form of the sequence (𝑎𝑟(𝜙))𝑟≥1 and their corresponding
function 𝑓(𝜃, 𝜙)—or equivalently—the power series distribution. We study, in the rest
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of this section, three examples of power series distributions: negative binomial, Poisson
and logarithmic.

EXAMPLE 1 (Negative binomial based case). Let 𝜃 = 1 − 𝜆, 𝑓(𝜆, 𝑠) = (1 − 𝜆)/𝜆𝑠 and

𝑎𝑘(𝑠) = (
𝑘 + 𝑠 − 2

𝑘 − 1 ), 𝑘 = 1, 2, … ,

for some 0 < 𝜆 < 1 and 𝑟 > 0. Then, a random variable 𝑋 has a negative binomial distri-
bution with parameters (𝑠, 𝜆), denoted by NB(𝑠, 𝜆), if its probability distribution can be
written as

P(𝑋 = 𝑥) = (
𝑥 + 𝑠 − 2

𝑥 − 1 )𝜆𝑠(1 − 𝜆)𝑥−1, 𝑥 = 1, 2, … . (12)

Furthermore, E(𝑋) = 1 + (1−𝜆)𝑠
𝜆 , and Var(𝑋) = (1−𝜆)𝑠

𝜆2 .

Therefore, if 𝑟 ∼ NB(𝑠, 𝜆), the weights (𝑤𝑗)𝑗≥1 in Equation (11) are given by

𝑤𝑗 = 1
𝑗 (

𝑗 + 𝑠 − 2
𝑗 − 1 )𝜆𝑠(1 − 𝜆)𝑗−1

2𝐹1(𝑗 + 𝑠 − 1, 1, 𝑗 + 1; 1 − 𝜆), 𝑗 = 1, 2, … , (13)

where

2𝐹1(𝑎, 𝑏, 𝑐; 𝑧) =
∞

∑
𝑘=0

(𝑎)𝑘↑(𝑏)𝑘↑
(𝑐)𝑘↑

𝑧𝑘

𝑘! ,

is the Gaussian hypergeometric function, and (𝑥)𝑛↑ denotes the Pochhammer symbol.

EXAMPLE 2 (Poisson based case). The Poisson distribution with parameter 𝜆, denoted by
Poi(𝜆), can be expressed as a power series distribution by letting 𝑓(𝜆) = 𝜆𝑒𝜆, for 𝜆 > 0,
and taking the coefficients (𝑎𝑘)𝑘≥1 from the series expansion of 𝑓 , i.e.

𝑎𝑘 = 1
(𝑘 − 1)! , 𝑘 = 1, 2, … .

Thus, if 𝑋 ∼ Poi(𝜆), its probability distribution is such that

P(𝑋 = 𝑥) = 𝜆𝑥−1𝑒−𝜆

(𝑥 − 1)! , 𝑥 = 1, 2, … . (14)

Moreover, E(𝑋) = 1 + 𝜆, and Var(𝑋) = 𝜆.

Letting 𝑟 ∼ Poi(𝜆) in Equation (11), the corresponding weights are

𝑤𝑗 = Γ(𝑗) − Γ(𝑗, 𝜆)
𝜆Γ(𝑗) , 𝑗 = 1, 2, … , (15)

where Γ(𝑎, 𝑧) is the (upper) incomplete Gamma function, which has the following repre-
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sentation

Γ(𝑎, 𝑧) = Γ(𝑎)
𝑒𝑧

𝑎−1

∑
𝑘=0

𝑧𝑘

𝑘! ,

for any positive integer 𝑎.

EXAMPLE 3 (Logarithmic based case). The logarithmic distribution is a power series dis-
tribution obtained from the Taylor expansion at zero of the function 𝑓(𝜆) = − log(1 − 𝜆),
for 0 < 𝜆 < 1. In this case, the coefficients are given by 𝑎𝑘 = 1/𝑘, 𝑘 = 1, 2, …. Then, a
randomvariable𝑋 having logarithmic distributionwith parameter 𝜆, denoted by Log(𝜆),
is such that

P(𝑋 = 𝑥) = 1
− log(1 − 𝜆)

𝜆𝑥

𝑥 , 𝑥 = 1, 2, … .

In this case,

E(𝑋) = 1
− log(1 − 𝜆)

𝜆
(1 − 𝜆) and Var(𝑋) = −𝜆(𝜆 + log(1 − 𝜆)

(1 − 𝜆)2 log2(1 − 𝜆)
.

Using this distribution for 𝑟 in Equation (11), the weights (𝑤𝑗)𝑗≥1 are such that

𝑤𝑗 = 𝜆𝑗Φ(𝜆, 2, 𝑗)
(− log(1 − 𝜆)) , 𝑗 = 1, 2, … , (16)

where

Φ(𝑧, 𝑠, 𝑎) =
∞

∑
𝑘=0

𝑧𝑘

(𝑘 + 𝑎)𝑠

is known as the Lerch transcendent.

The decreasing rate of these cases varies according to the value of their parameters.
Note that the geometric process is obtained from the negative binomial (NB) case when
𝑠 = 2, so we can say that the NB case is a generalization of the geometric. In Figure 1,
different examples for these three cases are displayed.

2.2 𝐿-SHAPE DISTRIBUTION BASED WEIGHTS

The second approach explained above to obtain sequences of decreasing weights requires
an 𝐿-shape probability distribution taking values in ℕ and with mode at 1, that is, a
probability function such that P(𝑋 = 𝑥) > P(𝑋 = 𝑥 + 1) for all 𝑥 ≥ 1. For the geometric
process (10), a geometric distribution shifted at one is used, but there are other distri-
butions satisfying these constrains, for example: the logarithmic and Zeta distributions
as well as others belonging to the Lagrangian family. The logarithmic distribution has
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(A) NB case for 𝜆 = 0.15 and different values of 𝑠:
1, 2, 5, 10 and 25.
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(B) NB case for 𝜆 = 0.4 and different values of 𝑠:
1, 2, 5, 10 and 25.
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(C) NB case for 𝜆 = 0.6 and different values of 𝑠:
1, 2, 5, 10 and 25.
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(D) NB case for 𝜆 = 0.85 and different values of 𝑠:
1, 2, 5, 10 and 25.
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(E) Poisson base weights for different values of
𝜆: 0.1, 1, 5, 10 and 20.
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(F) Logarithmic based weights for different
values of 𝜆: 0.1, 0.3, 0.5, 0.7

and 0.9.

FIGURE 1: Decreasing weights for the different constructions based on power series distributions.
Points are connected by straight lines for visual simplification.
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already been studied, and the rest of them are explained next.

EXAMPLE 4 (Zeta distribution). A random variable 𝑋 has a Zeta distribution with param-
eter 𝑠 > 1, if its probability distribution is given by

P(𝑋 = 𝑘) = 𝑘−𝑠

𝜁(𝑠) , 𝑘 = 1, 2, … ,

where 𝜁(𝑠) is the Riemann zeta function defined as

𝜁(𝑠) =
∞

∑
𝑘=1

1
𝑘𝑠 .

Lagrangian distributions are anotherwide family of discrete probability distributions
whose early examples include theOtter’smultiplicative process (Otter 1949) and the Borel
distribution (Haight & Breuer 1960). A comprehensive study of this methodology can
be found in Consul & Famoye (2006). Based on their classification, we focus on three
examples belonging to the class of basic Lagrangian distributions.

DEFINITION 2. Let 𝑔(𝑧) be a successively differentiable function such that 𝑔(1) = 1 and
𝑔(0) ≠ 0. Then a basic Lagrangian distribution is defined as

P(𝑋 = 𝑥) = 1
𝑥! [

d𝑥−1

d𝑧𝑥−1 (𝑔(𝑧))𝑥
]𝑧=0

, 𝑥 = 1, 2, … .

EXAMPLE 5 (Borel distribution). Let 𝑔(𝑧) = exp (𝜆(𝑧 − 1)) for 0 < 𝜆 < 1. A random
variable 𝑋 has a Borel distributionwith parameter 𝜆 if

P(𝑋 = 𝑥) = (𝑥𝜆)𝑥−1

𝑥! 𝑒−𝑥𝜆, 𝑥 = 1, 2, … .

EXAMPLE 6 (Consul distribution). Let 𝑔(𝑧) = (1 − 𝜃 + 𝜃𝑧)𝑚 for 0 < 𝜃 < 1 and 𝑚 ≥ 1. A
random variable 𝑋 has a Consul distribution with parameters (𝜃, 𝑚) if

P(𝑋 = 𝑥) = 1
𝑥(

𝑚𝑥
𝑥 − 1)𝜃𝑥−1(1 − 𝜃)(𝑚−1)𝑥+1, 𝑥 = 1, 2, … .

EXAMPLE 7 (Geeta distribution). Let 𝑔(𝑧) = (1 − 𝜃)𝑚−1(1 − 𝜃𝑧)1−𝑚 where 𝜃 and 𝑚 are such
that 0 < 𝜃 < 1 and 1 < 𝑚 < 𝜃−1. A random variable 𝑋 has a Geeta distribution with
parameters (𝜃, 𝑚) if

P(𝑋 = 𝑥) = 1
𝑚𝑥 − 1(

𝑚𝑥 − 1
𝑥 )𝜃𝑥−1(1 − 𝜃)(𝑚−1)𝑥, 𝑥 = 1, 2, … .
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These three Lagrangian distributions havemode at 𝑥 = 1 for all values of their respec-
tive parameters (see Consul & Famoye 2006, for a proof of each case).

2.3 PERFORMANCE IN DENSITY ESTIMATION

In this section, we test the two extensions of the geometric process studied above. First,
we explain the Gibbs sampler for each case, and then, we Illustrate their performance
with simulated datasets under the context of density estimation.

2.3.1 Partial-sum approach

Considering the partial-sum approach, we have the following mixture model

𝑓(𝑦𝑖|𝑟𝑖) = 1
𝑟𝑖

𝑟𝑖

∑
𝑗=1

𝜅(𝑦𝑖; 𝑥𝑗), (17)

for 𝑖 = 1, … , 𝑛. In order to derive a Gibbs sampler scheme, we introduce a latent variable
𝑑𝑖 associating each observation 𝑦𝑖 to a specific component, so 𝑓(𝑦𝑖|𝑟𝑖, 𝑑𝑖, 𝑥) = 𝜅(𝑦𝑖; 𝑥𝑑𝑖

).
Thus, written in hierarchical form, the mixture model is written as

𝑦𝑖|𝑥, 𝑟𝑖, 𝑑𝑖
ind.∼ 𝜅(𝑦𝑖; 𝑥𝑑𝑖

), 𝑖 = 1, … , 𝑛

𝑑𝑖|𝑟𝑖
ind.∼ U(1, 𝑟𝑖)

𝑟𝑖|𝜆
i.i.d.∼ 𝜋(𝜆)

𝑥𝑗
i.i.d.∼ 𝜈0(𝜃)

𝜆 ∼ 𝜙(𝜔)

where 𝑗 = 1, … ,max(𝑟1, … , 𝑟𝑛), 𝜈0 is a non-atomic distribution and 𝜃 and 𝜔 are finite di-
mensional parameters. Distributions 𝜋 and𝜙 are chosen according to one of the provided
examples. Therefore, the full conditional distributions are the following:

1. Assuming 𝜈0 has density function 𝑔0, the full conditional for the kernel parameter
is

𝑝(𝑥𝑗| ⋯) ∝ 𝑔0(𝑥𝑗 ; 𝜃) ∏
𝑑𝑖=𝑗

𝜅(𝑦𝑖; 𝑥𝑗),

for 𝑗 = 1, … ,max(𝑟1, … , 𝑟𝑛).
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2. For the membership variables, we have

𝑝(𝑑𝑖| ⋯) ∝ 𝜅(𝑦𝑖; 𝑥𝑑𝑖
)𝟏(1 ≤ 𝑑𝑖 ≤ 𝑟𝑖),

for 𝑖 = 1, … , 𝑛.

3. In the case of the number of components, the full conditional is given by

𝑝(𝑟𝑖| ⋯) ∝ 𝜋(𝑟𝑖; 𝜂)
𝑟𝑖

𝟏(𝑟𝑖 ≥ 𝑑𝑖).

4. Finally, parameter 𝜆 is updated by

𝑝(𝜆| ⋯) ∝ 𝜙(𝜆; 𝜔)
𝑛

∏
𝑖=1

𝜋(𝑟𝑖; 𝜆).

For the last two distributions, we use Examples 1–3 for 𝜋 and, then, 𝜙 becomes a
beta or a gamma distribution. The corresponding full conditional distributions are the
following.

Negative binomial based case. Assuming 𝑟𝑖 ∼ NB(𝑠, 𝜆) for 𝑖 = 1, … , 𝑛, and𝜆 ∼ Be(𝛼, 𝛽),
their conditional distributions are

𝑝(𝑟𝑖| ⋯) ∝ (
𝑟𝑖 + 𝑠 − 2

𝑟𝑖
)(1 − 𝜆)𝑟𝑖𝟏(𝑟𝑖 ≥ 𝑑𝑖),

that is, a negative binomial distribution with parameters (𝑠 − 1, 𝜆) truncated at 𝑟𝑖 ≥ 𝑑𝑖,
and

𝑝(𝜆| ⋯) ∝ 𝜆𝑠𝑛+𝛼−1(1 − 𝜆)∑𝑛
𝑖=1 𝑟𝑖+𝛽−𝑛−1,

which is a beta distribution with parameters (𝑠𝑛 + 𝛼, ∑𝑛
𝑖=1 𝑟𝑖 + 𝛽 − 𝑛). A simulation pro-

cedure from a truncated negative binomial distribution is presented in Appendix B.2.

Poisson based case. If it is assumed 𝑟𝑖 ∼ Poi(𝜆) for all 𝑖 = 1, … , 𝑛, and 𝜆 ∼ Ga(𝛼, 𝛽),
their corresponding conditional distributions are

𝑝(𝑟𝑖| ⋯) ∝ 𝜆𝑟𝑖

𝑟𝑖!
𝟏(𝑟𝑖 ≥ 𝑑𝑖),
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which is a Poisson distribution with parameter 𝜆 truncated at 𝑟𝑖 ≥ 𝑑𝑖, and

𝑝(𝜆| ⋯) ∝ 𝜆∑𝑛
𝑖=1 𝑟𝑖+𝛼−𝑛−1𝑒−(𝛽+𝑛)𝜆,

a gammadistributionwith parameters (∑𝑛
𝑖=1 𝑟𝑖+𝛼−𝑛, 𝛽+𝑛). In Appendix B.1, a procedure

is also described to simulate from a truncated Poisson distribution.

Logarithmic based case. The third option is when 𝑟𝑖 ∼ Log(𝜆), 𝑖 = 1, … , 𝑛. Then, the
conditional distribution, for all 𝑖, is

𝑝(𝑟𝑖| ⋯) ∝ 𝜆𝑟𝑖

𝑟2
𝑖

𝟏(𝑟𝑖 ≥ 𝑑𝑖),

and setting 𝜆 ∼ Be(𝛼, 𝛽), its conditional distribution is

𝑝(𝜆| ⋯) ∝ 𝜆∑𝑛
𝑖=1 𝑟𝑖+𝛼−1(1 − 𝜆)𝛽−1

(− log(1 − 𝜆))𝑛 .

Although neither of these distributions has a known form, it is possible to simulate from
them by introducing latent variables. For the distribution of 𝑟𝑖, let 𝑣 ∼ Ga(2, 𝑟𝑖), then

𝑝(𝑟𝑖, 𝑣| ⋯) ∝ 𝜆𝑟𝑖𝑣𝑒−𝑟𝑖𝑣𝟏(𝑟𝑖 ≥ 𝑑𝑖).

Note that 0 < 𝜆𝑒−𝑣 < 1, therefore

𝑝(𝑟𝑖|𝑣, ⋯) ∝ (𝜆𝑒−𝑣)𝑟𝑖𝟏(𝑟𝑖 ≥ 𝑑𝑖)

corresponds to a geometric distribution with parameter 1 − 𝜆𝑒−𝑣 truncated at 𝑟𝑖 ≥ 𝑑𝑖,
which is straightforward to simulate. Similarly for parameter 𝜆, let 𝑧 ∼ Ga(𝑛, 𝛾) for 𝛾 =
− log(1 − 𝜆). Then

𝑝(𝜆, 𝑧| ⋯) ∝ 𝜆𝛼′−1(1 − 𝜆)𝛽−1𝑧𝑛−1𝑒−𝛾𝑧,

for 𝛼′ = ∑𝑛
𝑖=1 𝑟𝑖 + 𝛼, thus

𝑝(𝜆|𝑧, ⋯) ∝ 𝜆𝛼′−1(1 − 𝜆)𝛽+𝑧−1.

which it is a beta distribution with parameters (∑𝑛
𝑖=1 𝑟𝑖 + 𝛼, 𝑧 + 𝛽).
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For all these cases, the Monte Carlo density estimator is given by

̂𝑓 (𝑦) = 1
𝑇

𝑇

∑
𝑡=1

1
𝑛

𝑛

∑
𝑖=1

1
𝑟(𝑡)

𝑖

𝑟(𝑡)
𝑖

∑
𝑗=1

𝜅(𝑦; 𝑥(𝑡)
𝑗 ), (18)

where 𝑇 is the MCMC sampling size and the superscript (𝑡) denotes the values sampled
at iteration 𝑡. Equivalently, this estimator can be written as

̂𝑓 (𝑦) = 1
𝑇

𝑇

∑
𝑡=1

𝑅(𝑡)

∑
𝑗=1

𝑤(𝑡)
𝑗 𝜅(𝑦; 𝑥(𝑡)

𝑗 ), (19)

with 𝑅(𝑡) = max𝑖(𝑟
(𝑡)
𝑖 ) and where the weights are given by

𝑤(𝑡)
𝑗 =

𝑛

∑
𝑖=1

𝟏(𝑟(𝑡)
𝑖 ≥ 𝑗)
𝑛𝑟(𝑡)

𝑖
= ∑

𝑟(𝑡)
𝑖 ≥𝑗

1
𝑛𝑟(𝑡)

𝑖
. (20)

We can also estimate these weights by substituting the sampled values of 𝜆 in the corre-
sponding equation: (13), (15) or (16). Under this second estimation, it is important to pay
attention to the sum of the mixing weights since it has to be one; if it is not the case, for
the missing proportion, its kernel parameter can be sampled from the prior.

2.3.2 L-shape approach

Using the approach of Section 2.2, we obtain a mixture density of the form

𝑓(𝑦) =
∞

∑
𝑗=1

𝑤𝑗𝜅(𝑦; 𝑥𝑗). (21)

Inferences can bemade through the slice sampler (Walker 2007, Kalli et al. 2011). Follow-
ing the more general approach of Kalli et al. (2011), a fixed sequence 𝜉 = (𝜉1, 𝜉2, …) and
two latent variables (𝑑, 𝑢) and are introduced such that𝑓(𝑦|𝑑, 𝑢, 𝜉, 𝑥) = 𝑤𝑑𝜅(𝑦; 𝑥𝑑)/𝜉𝑑𝟏(𝑢 <
𝜉𝑑). Thus, a Gibbs sampler can be implemented, where the full conditional distributions
are given by

1. Like in the previous model, the full conditional for the kernel parameter is

𝑝(𝑥𝑗| ⋯) ∝ 𝑔0(𝑥𝑗 ; 𝜃) ∏
𝑑𝑖=𝑗

𝜅(𝑦𝑖; 𝑥𝑗),
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where 𝑔0 is the density function of 𝜈0.

2. For the membership variables 𝑑𝑖, we have

𝑝(𝑑𝑖| ⋯) ∝ 𝑤𝑑𝑖
𝜅(𝑦𝑖; 𝑥𝑑𝑖

)/𝜉𝑑𝑖
𝟏(𝑑𝑖 ∶ 𝜉𝑑𝑖

> 𝑢𝑖),

for 𝑖 = 1, … , 𝑛.

3. In the case of the second latent variable, 𝑢𝑖,

𝑝(𝑢𝑖| ⋯) ∝ 𝟏(0 < 𝑢𝑖 < 𝜉𝑑𝑖
),

𝑖 = 1, … , 𝑛.

4. Finally, the sequence of weights is updated as follows

𝑝(𝑤𝑗| ⋯) ∝ 𝑝(𝑤𝑗)
𝑛

∏
𝑖=1

𝑤𝑑𝑖
𝟏(𝑑𝑖 = 𝑗).

As pointed out by the authors, the size of the sequences (𝑥1, 𝑥2, …) and (𝑤1, 𝑤2, …) is
determined by the maximum value of the membership variables (𝑑1, … , 𝑑𝑛).

Regarding the updating of the sequence of weights, the last step depends on how each
weight is defined. Consider for example, the Dirichlet process. Its sequence of weights

can be built using the stick-breaking representation (4) with 𝑣𝑗
i.i.d.∼ Be(1, 𝑐), for 𝑐 ≥ 0.

Therefore, the full conditional for each 𝑣𝑗 is a Beta distribution with parameters (1 +
∑𝑛

𝑖=1 𝟏(𝑑𝑖 = 𝑗), 𝑐+∑𝑛
𝑖=1 𝟏(𝑑𝑖 > 𝑗)). On the other hand—whenworkingwith the geometric

process—there is only one random variable, 𝜆 ∈ (0, 1), defining the whole sequence of
weights. If we assume 𝜆 ∼ Be(𝑎, 𝑏), its full conditional is also a beta distribution but with
parameters (𝑎 + 𝑛, 𝑏 + ∑𝑛

𝑖=1 𝑑𝑖 − 𝑛).
The Monte Carlo density estimator for this second model is given by

̂𝑓 (𝑦) = 1
𝑆

𝑆

∑
𝑠=1

1
𝑟(𝑠)

𝑟(𝑠)

∑
𝑗=1

𝜅(𝑦; 𝑥(𝑠)
𝑗 ),

where 𝑟(𝑠) is the size of the sequence of sampled kernel parameters 𝑥(𝑠)
𝑗 . We can use also the

estimator (19) togetherwith the corresponding construction for themixingweights. The
study of this second class of decreasingweightmixturemodels will be pursued elsewhere.
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2.3.3 Simulation examples

Along this section, we explore the performance of the models under study using the
partial-sum approach for the mixing weights. We use a Gaussian kernel with unknown
mean and variance, so 𝑥𝑗 = (𝑚𝑗 , 𝜏𝑗) and 𝜅(𝑦; 𝑥𝑗) = 𝑁(𝑦; 𝜇𝑗 , 1/𝜏𝑗). A normal–gamma prior
with parameters (𝑚, 𝑐, 𝑎, 𝑏) is used for the parameters (𝜇𝑗 , 𝜏𝑗), that is

𝑝(𝜇𝑗 , 𝜏𝑗) = N(𝜇𝑗 ; 𝑚, 𝑐/𝜏𝑗)Ga(𝜏𝑗 ; 𝑎, 𝑏). (22)

Thus, the posterior distribution is conjugate with parameters (𝑚′, 𝑐′, 𝑎′, 𝑏′) given by

𝑚′ =
𝑐𝑛𝑗 ̄𝑦𝑗 + 𝑚

𝑐𝑛𝑗 + 1 𝑎′ =
𝑛𝑗
2 + 𝑎

𝑐′ = 𝑐
𝑐𝑛𝑗 + 1 𝑏′ =

𝑛𝑗( ̄𝑦𝑗 − 𝑚)2

2(𝑐𝑛𝑗 + 1) +
𝑆𝑗
2 + 𝑏,

where ̄𝑦𝑗 = 1
𝑛𝑗

∑𝑑𝑖=𝑗 𝑦𝑖, 𝑆𝑗 = ∑𝑑𝑖=𝑗(𝑦𝑖 − ̄𝑦𝑗)2 and 𝑛𝑗 = ∑𝑛
𝑗=1 𝟏(𝑑𝑖 = 𝑗).

Given this data model, we test the different decreasing weight cases under different
scenarios. For this purpose we use two datasets. The first dataset is a sample of size 1 000
from the following mixture density

𝑓(𝑦) = 39
100N(𝑦; 3, 1) + 21

100N(𝑦; 5.5, 4) + 15
100N(𝑦; 15, 1)+ (23)

10
100N(𝑦; 20, 0.25) + 15

100N(𝑦; 22, 16).

The second dataset consists also on a sample of size 1 000 from the mixture density

𝑓(𝑦) =
10

∑
𝑗=1

1
10N(𝑦; 6𝑗 − 33, 1). (24)

For both datasets, 50 000 iterations of the MCMC scheme were obtained; the first 30 000
of them were discarded. For all the specifications, we assign vague priors by setting
(𝑚, 𝑐, 𝑎, 𝑏) = (0, 1000, 0.01, 0.01) for the kernel hyperparameters, and letting 𝜆 ∼ Be(1, 1)
for the NB case, and 𝜆 ∼ Ga(0.01, 0.01) for the Poisson case. Additionally, we fix the sec-
ond parameter in the NB case, 𝑠, taking the values 1, 2 (corresponding to the geometric
process), 5, 10 and 25.

In Figures 2–7, different results of the simulations are shown; for each dataset, the
estimated densities, the means of the posterior weights and the posterior distribution
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of the number of components, 𝑟, are displayed. Regarding the estimated weights, two
estimations were computed: the first one is given by (20), whereas the second one has
been obtained by plugging in the sampled values of 𝜆 in the corresponding definition of
the weights (Equations 13 or 15). We can see that both estimations are quite similar for
the two datasets (Figures 3 and 6).

Focusing on the estimated density, for the first dataset—drawn from the 5-compo-
nent mixture model (Equation 23)—it is displayed in Figure 2. Although there are some
variations, the prior specifications for the mixing weights almost do not affect the esti-
mations. However, the most interesting results to be considered are those of the second
dataset, drawn from the 10-component mixture model (Equation 24).

In this second case, the estimated densities are shown in Figure 5. It is clear that for
some prior specifications, the estimation is not good. Analyzing the posterior weights
(Figure 6) and the posterior distribution of the number of components (Figure 7), we
can say that the fact that themixturemodel (24) has the sameweight for each component
is reflected on the necessity of having many sampled components accumulated around a
single location in order to recover it. Therefore, the flexibility of the mixing weights’
structure plays a crucial role. We can see that—for the scenarios where the posterior
mixingweights have heavier tails (cf. Figure 6d)—the estimatedmixingweights replicate
better those of the data generating process. This gets closer to the desirable interpretation
of the estimated components of the mixture as being those replicating the true mixing
proportions.

For the NB case, this effect is achieved for big values of 𝑠; actually, it can be appreci-
ated that as it increases, the density estimator adjusts better to the original function. Fur-
thermore, the number of components, 𝑟𝑖, helps also to understand this idea. Heavier-tail
mixingweights allows formore components to be captured, which help us to concentrate
on its posterior distribution around the true value in examples like the one at issue, i.e.
with many components (cf. Figure 7). Conversely, for the case 𝑠 = 1, where more prior
mass is accumulated in fewer components, the sampler has to simulate more components
in order to attempt recovering each original mixture component, which still doing it fail.

These observations clearly ponder with the flexibility of the model to adapt their tail
behavior to the data structure. For example, in the Poisson case, where the bigger the 𝜆
the heavier the tails (cf. Figure 1e), placing a prior on 𝜆 allows the model to adapt to the
required tail behavior. Indeed—while, a priori, its weights’ structure was similar to that
of the NB case with 𝑠 = 1—we observe that a posteriori it replicates the required tail
behavior, being comparable with that of the NB case with 𝑠 = 25. If we let 𝑝 = 1− 𝜆

𝑠+𝜆 , for
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some 𝜆, 𝑠 > 0, then 0 < 𝑝 < 1. Hence, setting (𝑝, 𝑠) the parameters of the NB probability
function (12), we have

(
𝑥 + 𝑠 − 2

𝑥 − 1 )𝑝𝑠(1 − 𝑝)𝑥−1 = 𝜆𝑥−1

(𝑥 − 1)!
Γ(𝑥 + 𝑠 − 1)

(𝑠 + 𝜆)𝑥−1Γ(𝑠) (1 + 𝜆
𝑠 )

−𝑠
.

Taking its limit as 𝑠 → ∞, themiddle term converges to one, whereas for the last term, we
have (1 + 𝜆

𝑠 )
−𝑠 → 𝑒−𝜆. Thus, the probability function (14) is recovered. This tells us that

when randomizing the parameters we can achieve similar adaptation in the tails with
either model, NB or Poisson.

As a side note, the results for the Logarithmic based case (not shown) resulted worse
than the ones for the NB case with 𝑠 = 1. Therefore, we concentrated our discussion only
on the other two cases.

§ 3 CLUSTERING VIA MIXTURE MODELS

The mixture models we have studied along this chapter, as explained at the beginning
of Section 1.2, are obtained by fixing a kernel function 𝜅 and mixing over its parameter,
where the mixing distribution is a discrete RPM. This latter fact implies the existence
of a random partition which models the clustering structure of the data, but—unlike the
explanation ofChapter I—these clusters are formed by observationsmodeled by the same
kernel parameters. We can find some mixture models making use of random partitions,
for example, Neal (2000), Ishwaran & James (2001) and Lijoi et al. (2007b), which are
mainly based on Pólya urn schemes. However, as we will see, they also appear in the
models studied previously.

Assume we have a sample (𝑦1, … , 𝑦𝑛) of size 𝑛 from the mixture model (3) with a
discrete RPM ̃𝑝 as mixing distribution. Written in a hierarchical form—following (5)—
we have

𝑦𝑖|𝑥𝑖
ind.∼ 𝜅(𝑦𝑖; 𝑥𝑖), 𝑖 = 1, … 𝑛

𝑥𝑖| ̃𝑝 i.i.d.∼ ̃𝑝

̃𝑝 ∼ 𝑄.

As we can see, due to the discreteness nature of ̃𝑝, any sample (𝑥1, … , 𝑥𝑛)from ̃𝑝, of size 𝑛,
contains only 𝑘∗ ≤ 𝑛 different values, say (𝑥∗

1, … , 𝑥∗
𝑘∗), cf. Section I.1.1.1. In other words, a

random partition 𝜋∗ is induced. We can encode this random partition through the usage
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(A) Estimated density for the NB case with 𝑠 = 1, and 2.
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(B) Estimated density for the NB case with 𝑠 = 5, and 10.

0 10 20 30

0

0.05

0.1

0.15

0.2

(C) Estimated density for the NB case with 𝑠 = 25, and the Poisson case.

FIGURE 2: Estimated density of Model (23)—using estimator (19)—for each prior specification;
95% highest posterior density intervals are included (shaded areas). The data and the
real density function are shown in gray.
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(A) NB case. Estimations were computed using
Equation (13), for 𝑠 = 1 and 2, and

Equation (20), 𝑠 = 1 and 2.
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(B) NB case. Estimations were computed using
Equation (13), for 𝑠 = 5 and 10, and

Equation (20), 𝑠 = 5 and 10.
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(C) NB and Poisson cases. Estimations were
computed using Equation (13) with 𝑠 = 25,

Equation (15), and Equation (20), for
𝑠 = 25 and for the Poisson case.
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(D) Posterior mean using Equations (13) and (15):
NB case with 𝑠 = 1, 2, 5, 10 and

25 and the Poisson case. True mixing
weights are displayed in gray.

FIGURE 3: Posterior mean of the mixing weights for each prior specification with their 95% high-
est posterior density interval. Points are connected by straight lines for visual simplifi-
cation.
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FIGURE 4: Posterior distribution of the number of components, 𝑟: NB case with 𝑠 = 1, 2,
5, 10 and 25 and the Poisson case. Points are connected by straight lines

for visual simplification. The vertical line indicates the true number of components,
𝑟 = 5.
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(A) Estimated density for the NB case with 𝑠 = 1, and 2.
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(B) Estimated density for the NB case with 𝑠 = 5, and 10.
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(C) Estimated density for the NB case with 𝑠 = 25, and the Poisson case.

FIGURE 5: Estimated density of Model (24)—using estimator (19)—for each prior specification;
95% highest posterior density intervals are included (shaded areas). The data and the
real density function are shown in gray.
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(A) NB case. Estimations were computed using
Equation (13), for 𝑠 = 1 and 2, and

Equation (20), 𝑠 = 1 and 2.

0 5 10 15 20 25 30

0

0.05

0.1

0.15

0.2

(B) NB case. Estimations were computed using
Equation (13), for 𝑠 = 5 and 10, and

Equation (20), 𝑠 = 5 and 10.
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(C) NB and Poisson cases. Estimations were
computed using Equation (13) with 𝑠 = 25,

Equation (15), and Equation (20), for
𝑠 = 25 and for the Poisson case.
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(D) Posterior mean using Equations (13) and (15):
NB case with 𝑠 = 1, 2, 5, 10 and

25 and the Poisson case. True mixing
weights are displayed in gray.

FIGURE 6: Posterior mean of the mixing weights for each prior specification with their 95% high-
est posterior density interval. Points are connected by straight lines for visual simplifi-
cation.
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FIGURE 7: Posterior distribution of the number of components, 𝑟: NB case with 𝑠 = 1, 2,
5, 10 and 25 and the Poisson case. Points are connected by straight lines

for visual simplification. The vertical line indicates the true number of components,
𝑟 = 10.
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of membership sets {𝜋1, … , 𝜋𝑘} defined as

𝜋𝑗 = {𝑖 ∶ 𝑥𝑖 = 𝑥∗
𝑗 , 𝑖 = 1, … , 𝑛}, 𝑗 = 1, … , 𝑘∗. (25)

Notice that each unique value 𝑥∗
𝑗 is associated to at least one observation, that is #𝜋𝑗 > 0

for all 𝑗 = 1, … , 𝑘∗. Thus, {𝜋1, … , 𝜋𝑘∗} induces a partition of {1, … , 𝑛}, and then the
clusters—at the level of the data—are formed by sequences of observations

{𝑦𝑖1,1
, … , 𝑦𝑖1,𝑛1 }, {𝑦𝑖2,1

, … , 𝑦𝑖2,𝑛2 }, … , {𝑦𝑖𝑘∗,1
, … , 𝑦𝑖𝑘∗,𝑛𝑘∗ },

such that 𝑖𝑗,𝑙 ∈ 𝜋𝑗 for 𝑗 = 1, … , 𝑘∗.

This technique has been extensively employed by many authors (see, for example
MacEachern 1994, Bush&MacEachern 1996,Griffin&Holmes 2010), most of the cases to
improve sampling schemes—as we explained previously in this chapter—even though,
as we can see, it is immediate to obtain samples from the posterior distribution of the
random partition and of the number of groups.

In addition to this implicit usage of random partitions, we can state a hierarchical
mixture model where they appear explicitly. In this case, we have

𝑦𝑖|𝑥𝑖, 𝜋∗ ind.∼ 𝜅(𝑦𝑖; 𝑥𝑖) 𝑖 = 1, … , 𝑛 (26)

𝑥∗
𝑗 |𝜋 = 𝜋∗ i.i.d.∼ 𝜈0(𝑥∗

𝑗 ) 𝑗 = 1, … , 𝑘∗

𝜋 ∼ 𝑃 ,

with 𝜋∗ = {𝜋1, … , 𝜋𝑘∗} ∈ 𝒫[𝑛] for 𝑘∗ ≤ 𝑛 and 𝑃 is some prior distribution taking values
in 𝒫[𝑛], for example, an EPPF (Section I.1.1). The joint posterior distribution is given by

𝑝(𝑥∗, 𝜋∗|𝑦) ∝ 𝑝(𝜋∗)𝑝(𝑥∗|𝜋∗)𝑝(𝑦|𝑥∗, 𝜋∗)

∝ 𝑝(𝜋∗)
𝑘∗

∏
𝑗=1

𝑔0(𝑥∗
𝑗 ) ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 ),

where 𝑔0 is the density function of 𝜈0. Hence, if we are interested only in the posterior
distribution of the random partition, we integrate out parameters 𝑥∗

𝑗 , so

𝑝(𝜋∗|𝑦) ∝ 𝑝(𝜋∗)
𝑘∗

∏
𝑗=1 ∫𝕏 ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥)𝑔0(d𝑥).
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On the other hand, random partitions can be also used to provide an estimate of the
density 𝑓 . Let 𝑛∗

𝑗 = #𝜋𝑗 for 𝑗 = 1, … , 𝑘∗. Therefore, we have the Monte Carlo estimate

̃𝑓 (𝑦) = 1
𝑆

𝑆

∑
𝑠=1

𝑘∗(𝑠)

∑
𝑗=1

𝑤(𝑠)
𝑗 𝜅(𝑦; 𝑥∗(𝑠)

𝑗 ), (27)

where the mixing weights are given by 𝑤(𝑠)
𝑗 = 𝑛∗(𝑠)

𝑗 /𝑛. Notice that this estimation is ac-
tually the same obtained under a Pólya urn scheme, given in Equation (7). Moreover, it
can be used instead of the Monte Carlo estimates (8) and (18) for the approaches studied
before.

As a side note, in sampling schemes like the ones studied in the previous section, there
are some sampled values 𝑥∗

𝑗 not being associated to any observation 𝑦𝑖, 𝑖 = 1, … , 𝑛, so we
have 𝑛𝑗 = 0 for some values of 𝑗. However, this does not modify the estimator ̃𝑓 in (27).

3.1 NUMERICAL ILLUSTRATION

The performance of random partitions in mixture modeling is illustrated by considering
a small simulated dataset of size 10. We focus on the posterior distribution of the random
partition. For this purpose, we test two mixture models: those with underlying mixing
distribution given by the geometric and Dirichlet RPMs; samples were drawn using, in
both cases, the slice sampler (Section 1.1.1). We simulated datasets of size 10 from the
mixture model

𝑓(𝑦) = 0.5N(𝑦; −3, 1/6) + 0.2N(𝑦; 0, 1/6) + 0.3N(𝑦; 3, 1/6),

and obtained 5 000 iterations from the MCMC after discarding 3 000. All this procedure
was done 1 000 times. Regarding the hyperparameters, the Gaussian kernel (22) was used
with base-measure parameters (𝑚, 𝑐, 𝑎, 𝑏) = (0, 100, 0.1, 0.1), and for the RPMparameters,
we proceeded as follows. In the case of the geometric process, a beta prior distribution
with parameters (𝛼, 𝛽) was assigned to 𝜆, thus, such parameters were fixed such that the
prior expected number of groups, 𝑘∗, matches 2, 5 and 9 for a given variance. Afterwards,
for the Dirichlet process, its total mass parameter was given by 𝜃 = (1 − 𝜆)/𝜆, where
𝜆 = 𝛼/(𝛼 + 𝛽) for each pair (𝛼, 𝛽) found for the geometric process. These parameters are
presented in Table 1. The expressions for the expected value and for the variance, in the
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E(𝑘∗) 𝛼 𝛽 Var(𝑘∗) 𝜃
2 0.680 0.119 0.25 0.175
5 1.881 3.093 0.99 1.644
9 0.110 1.980 0.50 18.000

TABLE 1: Hyperparameters for the 10-data example. Columns 2–4 correspond to the geometric
case, whereas the last one is for the Dirichlet case.

geometric case, are the following:

E(𝑘∗) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽) ∫

1

0

𝑛

∑
𝑟=1

(
𝑛
𝑟)

(−1)𝑟−1𝜆𝛼+𝑟−1(1 − 𝜆)𝛽−1

1 − (1 − 𝜆)𝑟 d𝜆,

and
Var(𝑘∗

𝑛) = E(𝑘∗
2𝑛) − E(𝑘∗

𝑛) + 2Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽) ∫

1

0
𝐼(𝜆, 𝑛)𝜆𝛼−1(1 − 𝜆)𝛽−1d𝜆,

with

𝐼(𝜆, 𝑛) =
𝑛

∑
𝑟=1

(
𝑛
𝑟)

(−1)𝑟𝜆𝑟(1 − 𝜆)𝑟

1 − (1 − 𝜆)𝑟

⎛
⎜
⎜
⎝

𝑟−1

∑
𝑠=0

(
𝑟
𝑠)

1
(1 − 𝜆)𝑠 − (1 − 𝜆)𝑟 −

𝑛

∑
𝑠=0

(
𝑛
𝑠)

(−1)𝑠𝜆𝑠

1 − (1 − 𝜆)𝑟+𝑠

⎞
⎟
⎟
⎠

;

in this case, the subscript 𝑚 in 𝑘𝑚 indicates the sample size.

In Table 2, the results of these simulations are presented. From them, we can have
a picture about the effect of the prior specification for each model. In the scenario
E(𝑘∗) = 2, we assigned a very small variance, and as a consequence, both models detected
the correct partition in less cases. Under the second scenario, E(𝑘∗) = 5, both models
performed well, since there was more variability. Finally, for the misspecified scenario
E(𝑘∗) = 9, the geometric was better. However, it is worth emphasizing that, in all these
results, the geometric process recovered the true partition with higher probabilities than
the Dirichlet case. The posterior mean of the number of components, 𝑘∗, also displayed
in Table 2, helps to support this fact.

Finally, and for the sake of completeness, we compute the estimated density (27) for
the simulated datasets of the previous section. Figure 8 shows this estimator ̃𝑓 for the
data model (23), and Figure 9 shows it for the data model (24). In both cases, we can
see an improvement in the estimation. Complementing the discussion of the number of
groups, Figure 10 displays its posterior distribution. As it is expected—if we compare
these distributions with 3d and 6d—the distribution of 𝑘∗ is usually concentrated on
bigger values than its corresponding distribution of the number of components, 𝑟.
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(A) Estimated density for the NB case with 𝑠 = 1, and 2.
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(B) Estimated density for the NB case with 𝑠 = 5, and 10.
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(C) Estimated density for the NB case with 𝑠 = 25, and the Poisson case.

FIGURE 8: Estimated density of Model (24)—using estimator (27)—for each prior specification;
95% highest posterior density intervals are included (shaded areas). The data and the
real density function are shown in gray.
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(A) Estimated density for the NB case with 𝑠 = 1, and 2.
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(B) Estimated density for the NB case with 𝑠 = 5, and 10.
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(C) Estimated density for the NB case with 𝑠 = 25, and the Poisson case.

FIGURE 9: Estimated density of Model (24)—using estimator (27)—for each prior specification;
95% highest posterior density intervals are included (shaded areas). The data and the
real density function are shown in gray.
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E(𝑘∗) = 2 E(𝑘∗) = 5 E(𝑘∗) = 9
Process 𝜋 𝑝(𝜋) ̄𝑘∗ 𝜋 𝑝(𝜋) ̄𝑘∗ 𝜋 𝑝(𝜋) ̄𝑘∗

Geometric (10) 0.865 1.714 (5, 2, 3) 0.865 3.033 (5, 2, 3) 0.870 3.107
(5, 2, 3) 0.122

Dirichlet (10) 0.519 1.815 (5, 2, 3) 0.825 2.906 (5, 1, 1, 3) 0.130 5.359
(5, 2, 3) 0.061 (5, 2, 3) 0.104

TABLE 2: Monte Carlo results for the 10-data example under the different prior specifications. For
each process, the first row displays the modal partition, its probability and the posterior
mean of the number of components. In the cases were this modal partition is not the
true one, the second row displays the probability of the true partition. For simplicity,
the partitions are represented by their blocks sizes, so, for example, (5, 2, 3) corresponds
to the data partition {{𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}, {𝑦6, 𝑦7}, {𝑦8, 𝑦9, 𝑦10}}.
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(A) 5-component mixture case
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(B) 10-component mixture case

FIGURE 10: Posterior distribution of the number of components, 𝑘∗: NB case with 𝑠 = 1, 2,
5, 10 and 25 and the Poisson case. Points are connected by straight lines

for visual simplification. The vertical lines indicate the true number of components.
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3.2 EPPFS DERIVED FROM DECREASING-WEIGHT DISCRETE RPMS

As we see, mixture models are a natural tool to deal with the problem of clustering. The
latent RPM which serves as mixing distribution induces a random partition grouping
observations with the aid of the information provided by component parameters. This
has been noticed by several authors and it has been well established for some examples of
RPMs. However, the case of discrete RPMs with decreasing weights is so new that there
are much work to be done. In the best of our knowledge, we can only mention the work
of Mena &Walker (2012) on this direction.

From the definition of EPPF given in Equation I.4, we know that—given a discrete
RPM like in (2)—the EPPF of such random distribution is given by the expression

∑
𝑗1≠⋯≠𝑗𝑘

𝑤𝑛1
𝑗1

𝑤𝑛2
𝑗2

⋯ 𝑤𝑛𝑘
𝑗𝑘

,

where—for a given 𝑛 ≥ 1 and a fixed 𝑘 ≤ 𝑛—the sum is over all the 𝑘-tuples of distinct
positive integers (𝑗1, … , 𝑗𝑘). Besides of the possible difficulty in evaluating such expres-
sion, the approaches we present in this Chapter require to perform an integral before
computing the sum. Hence, obtaining the EPPFs for decreasing-weights RPMs forms
part of our ongoing research.





CHAPTER IV

ALLOCATION AND LABEL-SWITCHING
INMIXTURE MODELS

We have discussed in the previous chapter how random partitions are inherent objects
to mixture models, either they appear implicitly or explicitly. Along this chapter, we
continue the study of mixture models and their relationship with other combinatorial
structures. In particular, we focus on the combinatorial structures related to the Cluster-
ing Scenarios I.3 and I.4 presented in Chapter I.

We startwith the randomstructure derivedfromthe allocation variables, introduced in
the previous chapter under the name of membership variables. Although these variables
allow us to perform classification analyses and are also related to occupancy problems,
they are widely used in the context of mixture modeling. We elaborate on all these ideas
in Section 1.

As devised also in Chapter I (Section I.3), allocation variables can be encoded—after a
suitable modification—through another combinatorial class called ordered set partitions.
We explain—in Section 2—the importance of this structure in mixture models, since
they help us to understand why non-identifiability and label-switching appear. Further-
more, we provide some insights about how to make a mixture model interpretable, term
that goes beyond identifiability, since we aim to add a meaning to each mixture compo-
nent with respect to the whole population.

§ 1 ALLOCATION VARIABLES

Along this chapter, themixture densities we consider will have a finite number of compo-
nents, unless otherwise is indicated. Briefly recalling the motivation of mixture models,
given a set of categories, we assume an observation 𝑦 is modeled by some distribution

107
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with density 𝜅𝑑(𝑦; 𝑥𝑑), for 𝑥𝑑 some finite-dimensional parameter. The variable 𝑑 indi-
cates the category or subpopulation to where 𝑦 belongs. However, in almost all cases, it
is not possible to record this indicator variable 𝑑, so it is integrated out which yields the
mixture density

𝑓(𝑦) =
𝑚

∑
𝑗=1

𝑤𝑗𝜅𝑗(𝑦; 𝑥𝑗), (1)

for some positive 𝑚 and where 𝑤𝑗 = P(𝑑 = 𝑗). We call variable 𝑑 an allocation variable.

Allocation variables appear in different probabilistic and statistic problems. Themost
common example in Probability theory is the problemknown as occupancy problem, where
they are used to obtain the probability of having non-empty urns after throwing an arbi-
trary number of balls into them (see, for example, Charalambides 2005, Kolchin et al.
1978, Gnedin et al. 2007, Collet et al. 2013). Under a mixture modeling framework,
we have extensive expositions by, for example, Titterington et al. (1985), Richardson &
Green (1997), Marin et al. (2005) and Frühwirth-Schnatter (2006), and there are also
somemethodologies dealingwith their posterior distribution, such asNobile&Fearnside
(2007), Papaspiliopoulos & Roberts (2008) and Mena & Walker (2015). These variables
are used to improve sampling schemes and to encode the underlying random partition,
as explained in the previous chapter.

Before studying some of the applications of allocation variables, let us introduce some
notation and definitions. An allocation variable is defined as a discrete random variable
𝑑𝑗 taking values in the set [𝑘] = {1, … , 𝑘}, for some fixed 𝑘. An allocation vector 𝑑 =
(𝑑1, … , 𝑑𝑛) is a random vector whose entries 𝑑𝑖, 𝑖 = 1, … , 𝑛, are [𝑘]-valued allocation
variables.

It will be useful—in further sections—to identify the set where an allocation vector
takes values. Let 𝑘 be a fixed positive number and 𝑛 be the dimension of the allocation
vector. If we denote by𝒜(𝑘)

𝑛 the set of all the possible values that an allocation vector can
take, it is clear that #𝒜(𝑘)

𝑛 = 𝑘𝑛; indeed, this set can be defined as

𝒜(𝑘)
𝑛 = {(𝑑1, … , 𝑑𝑛) ∶ 𝑑𝑖 = 1, … , 𝑘, 𝑖 = 1, … , 𝑛} . (2)

In Section I.3.1, we studied a combinatorial class called words, denoted by 𝒲ℒ. There, it
has been said that the counting sequence of such a class is 𝑘𝑛, 𝑛 = 0, 1, …, where 𝑘 is
the number of available letters in the alphabet ℒ. Without loss of generality we can take
ℒ = [𝑘]. Since two combinatorial classes are isomorphic if and only if their counting
sequences are the same, we have that the class of words𝒲 [𝑘] and the class {𝒜(𝑘)

0 , 𝒜(𝑘)
1 , …}
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are isomorphic. Therefore, we can use any of these classes when working with allocation
vectors.

In subsequent paragraphs, a brief account of some applications of allocation vectors
are explained. They are focused on occupancy and mixture models.

1.1 ALLOCATION VARIABLES AND OCCUPANCY PROBLEMS

The occupancy problem is a classic problem in Probability Theory—which was studied
first by DeMoivre (1712)—and can be stated as follows. Given a fixed number 𝑚 of urns,
𝑛 balls are independently thrown into the urns; to deposit each ball, an urn is chosen uni-
formly. Let 𝑋𝑗 be the random variable counting the number of balls in the 𝑗th urn. The
randomvariables𝑋1, 𝑋2, … , 𝑋𝑚 are known as occupancy numbers, and their joint distribu-
tion is called an occupancymodel. Hence, in occupancy problems, it is of interestmodeling
the number of nonempty urns and the number of urns containing exactly 𝑟 balls.

Let 𝑈 be a random variable defined as

𝑈 =
𝑚

∑
𝑗=1

𝟏(𝑋𝑗 > 0),

and, similarly, define 𝑈𝑟 as

𝑈𝑟 =
𝑚

∑
𝑗=1

𝟏(𝑋𝑗 = 𝑟).

Therefore, 𝑈 models the number of non empty urns, whereas 𝑈𝑟 models the number of
urns with exactly 𝑟 balls. Furthermore, it is clear that they are related, since𝑈 = ∑𝑛

𝑟=1 𝑈𝑟.

Similarly to Chapter I, we can obtain the support of an occupancy model. Since the
balls are indistinguishable in this kind of models, we use the symbolic method for unla-
beled classes. Let 𝑚 be a fixed number of urns. Therefore, the class

𝒞(𝑚) = Seq𝑚(Seq(𝒵)),

encodes all the possible values of the joint vector (𝑋1, … , 𝑋𝑚). The generating function
of this class is, then, given by

𝐶 (𝑚)(𝑧) = 1
(1 − 𝑧)𝑚 =

∞

∑
𝑗=0

(
𝑗 + 𝑚 − 1

𝑚 − 1 )𝑧𝑗 ,
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from where it is clear that its 𝑛th coefficient is

𝐶 (𝑚)
𝑛 = [𝑧𝑛]𝐶 (𝑚)(𝑧) = (

𝑛 + 𝑚 − 1
𝑚 − 1 ).

This number is equal to the quantity given by Feller (1968) and used, for example, in Collet
et al. (2013) to define exchangeable occupancy models.

Allocation vectors are related to occupancy models as follows. Suppose there are
𝑚 urns available to collect 𝑛 balls. Let 𝑑𝑖 be the random variable indicating the urn in
which the 𝑖th ball has been thrown, 𝑖 = 1, … , 𝑛. Thus, it is immediate to see that the
allocation vector (𝑑1, … , 𝑑𝑛) takes values in 𝒜(𝑚)

𝑛 . Furthermore, the occupancy numbers
(𝑋1, … , 𝑋𝑚) can be obtained from this random vector by setting

𝑋𝑗 =
𝑛

∑
𝑖=1

𝟏(𝑑𝑖 = 𝑗), 𝑗 = 1, … , 𝑚.

1.2 USAGES OF ALLOCATION VARIABLES IN MIXTURE MODELING

Allocation variables are also important in mixture models. As already explained in the
introduction—given a sample 𝑦 = (𝑦1, … , 𝑦𝑛) from a mixture density (1)—an allocation
vector 𝑑 = (𝑑1, … , 𝑑𝑛) is introduced to indicate to which mixture component each ob-
servation belongs, that is 𝑓(𝑦𝑖, 𝑑𝑖) = 𝜅𝑑𝑖

(𝑦𝑖; 𝑥𝑑𝑖
) for 𝑖 = 1, … , 𝑛. Through this augmented

model, it is possible to infer about more features of the sample 𝑦; we elaborate on this
next.

In Section III.3, it has been explained how—in a mixture model—the induced ran-
dom partition is encoded due to the ties occurring when sampling kernel parameters.
The same procedure can be done using the allocation vector. Without loss of generality,
we can assume 𝜅𝑗(𝑦; 𝑥𝑗) = 𝜅(𝑦; 𝑥𝑗). Suppose we have the sequence of kernel parameters
(𝑥1, … , 𝑥𝑚) corresponding to a mixture density with 𝑚 components. Let us assume that
if an allocation variable 𝑑𝑗 takes the value 𝑟, 1 ≤ 𝑟 ≤ 𝑚, it means that the observation 𝑦𝑗
is associated to the kernel parameter 𝑥𝑟. Let

𝜋𝑗 = {𝑖 ∶ 𝑑𝑖 = 𝑗, 𝑖 = 1, … , 𝑛}, (3)

for 𝑗 = 1, … , 𝑚. Therefore, the set

𝜋′ = {𝜋𝑗 ∶ 𝜋𝑗 ≠ ∅},
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𝑥1 𝑥2 𝑥3 𝑥4

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

𝑥∗
1 𝑥∗

2 𝑥∗
3

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

FIGURE 1: Relabeling procedure for a sample of size 𝑛 = 5 with 𝑚 = 4 mixture components. (left)
Original association given by the allocation vector 𝑑 = (2, 4, 1, 4, 4). (right) Relabeled
association; in this case, we have the allocation vector 𝑑′ = (1, 2, 3, 2, 2)with component
parameters (𝑥∗

1, 𝑥∗
2, 𝑥∗

3) = (𝑥2, 𝑥4, 𝑥1).

induces a partition of the dataset 𝑦, where each group—or cluster—is given by

{𝑦𝑑 ∶ 𝑑 ∈ 𝜋𝑗}, 𝑗 = 1, … , #𝜋′;

in this case we have 𝑘 = #𝜋′ groups.

However, it is important to say that—although the previous associating assumption
might seem too obvious—it is often not followed in practice. The sequence of kernel
parameters is commonly relabeled following a kind of order-of-appearance listing with
respect to the data. To be more precise—if we denote by 𝑥𝑗 , 𝑗 = 1, … , 𝑚, the original
kernel parameters, and by 𝑥∗

𝑗 the relabeled values—the order-of-appearance relabeling is
such that 𝑥∗

1 = 𝑥𝑑1
, then 𝑥∗

2 corresponds to the first value in (𝑥𝑑2
, … , 𝑥𝑑𝑛

) different from
𝑥∗

1, and, following the same procedure, 𝑥
∗
3 is the first value in (𝑥𝑑3

, … , 𝑥𝑑𝑛
) different from

𝑥∗
1 and 𝑥∗

2, and so on. Note that in this relabeling procedure, it may happen that 𝑥∗
2 ≠ 𝑥𝑑2

,
since, in this case, we would have had 𝑥𝑑1

= 𝑥𝑑2
. Figure 1 illustrates this procedure.

Note that there are several implications of using the previous relabeling procedure.
On the one hand, the number of parameters 𝑥∗

𝑗 , say 𝑘∗, is at most equal to 𝑚, the number
of parameters 𝑥𝑗 , i.e. 𝑘∗ ≤ 𝑚. Consider, for example, the case 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑚, thus
we only have 𝑥∗

1, so 𝑘∗ = 1; in the example of Figure 1, we have 𝑚 = 4 but 𝑘∗ = 3. On
the other hand, we can obtain the induced random partition by building themembership
sets (III.25) or by using (3)with the relabeled allocation vector. In both cases, the resulting
random partition will be the same up to a permutation of its membership sets. These
observations will be used in further sections, since they are useful to understand non-
identifiability and label-switching.

A second usage of allocation variables is to improve computations. Updating kernel
parameters using these variables is a standard step in finite mixture models. In nonpara-
metric methods, it was introduced byMacEachern (1994) for the Pólya urn sampler, and,
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then, became also a standard step in these methods. Given a sample 𝑦 from (1) and the
allocation vector 𝑑, the posterior distribution of parameters 𝑥∗ = (𝑥∗

1, … , 𝑥∗
𝑘∗) is given by

𝑝(𝑥∗|𝑦, 𝑑) ∝
𝑘∗

∏
𝑗=1

∏
𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 )𝑝(𝑥∗

𝑗 ),

where 𝑝(𝑥∗
𝑗 ) is the prior distribution of 𝑥∗

𝑗 , for 𝑗 = 1, … , 𝑘∗, and {𝜋1, … , 𝜋𝑘∗} are the
membership sets (3). In this case, the posterior distribution for each parameter is

𝑝(𝑥∗
𝑗 |𝑦, 𝑑) ∝ ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 )𝑝(𝑥∗

𝑗 ).

A third usage of allocation variables—and one of the central topics in this chapter—
is their role distributing observations into the different mixture components, called here
the allocation problem. Given a sample 𝑦 = (𝑦1, … , 𝑦𝑛) from the mixture density (1) and
augmenting it with the allocator vector 𝑑 = (𝑑1, … , 𝑑𝑛), we can obtain the marginal pos-
terior distribution of 𝑑 given 𝑦, namely

𝑝(𝑑|𝑦) ∝ 𝑝(𝑦|𝑑)𝑝(𝑑), (4)

where

𝑝(𝑦|𝑑) =
𝑚

∏
𝑗=1 ∫ ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥𝑗)𝑝(d𝑥𝑗),

with {𝜋1, … , 𝜋𝑗} the membership sets, and

𝑝(𝑑) = ∫ 𝑝(𝑑|𝑤)𝑝(d𝑤)

with 𝑤 = (𝑤1, … , 𝑤𝑚). To obtain 𝑝(𝑑), allocation variables are assumed conditionally
independent given the mixing weights 𝑤, so

P(𝑑𝑖 = 𝑗|𝑤) = 𝑤𝑗 , 𝑖 = 1, … , 𝑛,

and, therefore,

𝑝(𝑑|𝑤) =
𝑚

∏
𝑗=1

𝑤𝑛𝑗
𝑗 ,

where 𝑛𝑗 = ∑𝑛
𝑖=1 𝟏(𝑑𝑖 = 𝑗). For example, Nobile & Fearnside (2007) assign a Dirichlet
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distribution with parameters (𝛼1, … , 𝛼𝑚) to the weights, and obtain

𝑝(𝑑) = Γ(𝛼0)
Γ(𝛼0 + 𝑛)

𝑚

∏
𝑗=1

Γ(𝛼𝑗 + 𝑛𝑗)
Γ(𝛼𝑗) , (5)

with 𝛼0 = ∑𝑚
𝑗=1 𝛼𝑗 . Another example for the prior distribution of the allocation vector 𝑑

is given by Mena & Walker (2015). In their approach, a single variable 𝜆 ∈ (0, 1) is used
to build the mixing weights (cf. Section III.1.2). Thus—fixing 𝜆—we have

𝑝(𝑑) ∝ 𝜆𝐷, (6)

with

𝐷 =
𝑛

∑
𝑖=1

𝑑𝑖.

Although both prior distributions, (5) and (6), have been defined for the same prob-
lem, their performance is quite different.

According to Nobile & Fearnside (2007), posterior samples of (4) using (5) as prior
do not help to avoid non-identifiability, and, as a consequence, the problem of label-
switching is still present. As pointed out by Jasra et al. (2005), non-identifiability—or in
their words, non-identifiability of the components—occurs when symmetric prior dis-
tributions are placed upon the mixing parameters; and in this specific case, the prior (5)
is symmetric.

Another important aspect to be considered in this models is the presence of gaps in
the samples of 𝑑. Supposewe have amixturewith𝑚 = 3 components andwant to allocate
𝑛 = 5 observations. The allocation vector 𝑑 = (1, 3, 1, 1, 3) is an element of𝒜(3)

5 , but it has
a gap, since the value 2 does not appear. This indicates that the second component has
no observations associated to it. In order to overcome these issues, the authors need to
perform some optimization post-process which involves also a relabeling procedure.

The approach ofMena&Walker (2015) considers the aforementioned drawbacks aim-
ing to work with an identifiable mixture model. Their main concern is to obtain an in-
terpretable mixture model. With interpretability, we refer to the early idea over which
mixture models have arose: each component should represent one subpopulation—re-
sembling the idea of identifiability—but, moreover, the first component should repre-
sent the largest subpopulation—where𝑤1 represents its relative proportion—the second
component should represent the second largest subpopulation—with relative proportion
𝑤2—and so on. Note that, in general, mixture models are not interpretable. Hence, even
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though the prior (6) is still defined in 𝒜(𝑚)
𝑛 , it assigns low probabilities to elements of

𝒜(𝑚)
𝑛 with gaps; this is cleverly done by the form of the prior. Furthermore, this prior

also favors, for example, the element 𝑑 = (1, 2, 1, 1, 2) over 𝑑 = (1, 3, 1, 1, 3), or the ele-
ment 𝑑 = (1, 1, 1, 1, 1) over 𝑑 = (2, 2, 2, 2, 2) and 𝑑 = (3, 3, 3, 3, 3), in this way, no relabeling
is required, and the mixture model continues being interpretable.

§2 ORDERED SET PARTITIONS

A combinatorial structure closely related to allocation variables is the one known as or-
dered set partitions. In fields like Combinatorics, they constitute an active subject of study
(Mansour 2013, Godbole et al. 2014, Ishikawa et al. 2008, Kasraoui & Zeng 2009), and
they have been also used in Computing for ranking problems (Truyen et al. 2011) and
in DNA sequencing (Crane 2014). However, in the best of our knowledge, there is not
literature regarding the usage of ordered set partitions in mixture modeling, except for
some sentences in the papers of Green & Richardson (2001), McCullagh & Yang (2008)
and Miller & Harrison (2014). In the following sections, we illustrate the appearance of
ordered set partitions in this context of mixture modeling.

In Section I.3.1, it has been explained the relationship between the support of allo-
cation vectors—the class of words, 𝒲 [𝑘]—and the class of ordered set partitions. Let
denote by 𝒪(𝑘) the class of ordered set partitions with exactly 𝑘 blocks, studied in Sec-
tion I.3. Both classes are labeled structures. Consider now the subclass of 𝒲 [𝑘] formed
only by words where each letter appears at least once. Then, its specification is

𝒲 [𝑘]
≥1 = Seq𝑘(Set≥1(𝒵)),

from where its EGF is given by

𝑊 (𝑘)
≥1 (𝑧) = (𝑒𝑧 − 1)𝑘.

Note that this function is actually the same as the EFG of 𝒪(𝑘), given in Equation (I.14).
As a consequence, both classes, 𝒪(𝑘) and𝒲 [𝑘]

≥1 , are isomorphic, which implies that we can
model the same problem using any of them.

2.1 CLUSTERING STRUCTURE IN MIXTURE MODELS AND LABEL-SWITCHING

In order to have a clear picture of the role of ordered set partitions in mixture models, we
start analyzing the model given in Section III.3 which is used to infer about the clustering
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structure through a random partition. In this section, we assume themixing distribution
is somediscreteRPM—hence, the number of components is potentially infinite—though
the results can be also applied for finite mixture densities.

Based on a mixture model—in Equation (III.26)—we define the following hierarchi-
cal model

𝑦𝑖|𝑥𝑖, Π𝑛
ind.∼ 𝜅(𝑦𝑖; 𝑥𝑖) 𝑖 = 1, … , 𝑛 (7)

𝑥∗
𝑗 |Π𝑛 = 𝜋𝑘∗

i.i.d.∼ 𝜈0(𝑥∗
𝑗 ; 𝜙) 𝑗 = 1, … , 𝑘∗

Π𝑛 ∼ 𝑃 ,

where Π𝑛 is a 𝒫[𝑛]-valued random partition with prior 𝑃 , and (𝑥∗
1, … , 𝑥∗

𝑘∗) are the 𝑘∗ dif-
ferent values of (𝑥1, … , 𝑥𝑛). We have already explained in the relationship between alloca-
tion vectors and randompartitions in Section 1.2. When the prior𝑃 belongs to some class
of EPPFs, its probability function, 𝑝, is defined as 𝑝 ∶ Δ𝑛 → [0, 1], where Δ𝑛 = ⋃𝑛

𝑘=1 Δ𝑛,𝑘
is the set of integer compositions of 𝑛 (Equation I.6). So, for example, we have

P(Π3 = {{1, 2}, {3}}) = P(Π3 = {{1, 3}, {2}}) = 𝑝(2, 1)

= P(Π3 = {{3}, {1, 2}}) = 𝑝(1, 2)

due to the symmetry of 𝑝 with respect to Δ𝑛. A similar symmetry is obtained a posteriori
but at a different level. Specifically, the posterior distribution of Π𝑛—from (7)—is given
by

𝑝(Π𝑛|𝑦) ∝ 𝑝(Π𝑛)𝑝(𝑦|Π𝑛), (8)

where the likelihood is written as

𝑝(𝑦|Π𝑛 = 𝜋) =
𝑘

∏
𝑗=1 ∫𝕏 ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥)𝑔0(d𝑥),

with 𝜋 = {𝜋1, … , 𝜋𝑘} ∈ 𝒫[𝑛] and 𝑔0 the density function of 𝜈0. This posterior distribution
is a symmetric function with respect to 𝒫[𝑛], that is Π𝑛 ↦ 𝑝(Π𝑛|𝑦) ∶ 𝒫[𝑛] → [0, 1] . Notice
that, in this case, we can obtain some point estimate Π̃𝑛, like the mode, but it does not
give us any precise allocation of the observations into the clusters. For example, if 𝑛 = 4,
supposewe obtain Π̃4 = {{1}, {2}, {3, 4}}. Let Π̃′

4 = {{1}, {3, 4}, {2}}, namely the last two



116 ALLOCATION AND LABEL-SWITCHING IN MIXTURE MODELS IV

blocks of Π̃4 have been permuted. Then—due to the symmetry—we have

𝑝(Π̃4|𝑦) = 𝑝(Π̃′
4|𝑦),

and this same probability is assigned to the 3! permutations of the blocks {1}, {2} and
{3, 4}. Therefore, we cannot assure, for example, that observation 𝑦1 belongs to the first
cluster, or to the second or to the third, we only know that 𝑦1 forms one group by itself.

Such a symmetry of the posterior distribution 𝑝(Π𝑛|𝑦) is acceptable whenwe just care
about of knowingwhich observations are grouped together; this is the essential clustering
problem. However, if we—additionally—want to infer about cluster governing param-
eters 𝑥∗, it is necessary to follow one of two methodologies: (i) compute 𝑝(𝑥∗|Π𝑛 = 𝜋, 𝑦),
or (ii) work with the joint posterior distribution 𝑝(𝑥∗, Π𝑛|𝑦), but it is not possible to use
the marginal posterior distribution 𝑝(𝑥∗|𝑦); under the model (7), it makes no sense. To
have a clear picture of this claim, notice that the joint posterior distribution of (𝑥∗, Π𝑛) is
given by

𝑝(𝑥∗, Π𝑛|𝑦) ∝ 𝑝(Π𝑛)𝑝(𝑥∗|Π𝑛)𝑝(𝑦|𝑥∗, Π𝑛), (9)

where, for 𝜋 = {𝜋1, … , 𝜋𝑘} ∈ 𝒫[𝑛], the prior for 𝑥∗ is given by

𝑝(𝑥∗|Π𝑛 = 𝜋) =
𝑘

∏
𝑗=1

𝑝(𝑥∗
𝑗 ),

with 𝑘 = #𝜋 and the likelihood function is

𝑝(𝑦|𝑥∗, Π𝑛 = 𝜋) =
𝑘

∏
𝑗=1

∏
𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 ).

Then, the marginal distribution of 𝑥∗ is

𝑝(𝑥∗|𝑦) ∝
𝑛

∑
𝑘=1

∑
𝜋∈𝒫𝑘

[𝑛]

𝑝(Π𝑛 = 𝜋)
𝑘

∏
𝑗=1

𝑔0(𝑥∗
𝑗 ) ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 ),

where 𝒫𝑘
[𝑛] is the set of all the set partitions with exactly 𝑘 groups. It is evident that

this distribution has a complicated form because the outer sum makes the parameter
vary its dimension. Even if this distribution is constrained to a fixed number of blocks—
except for the trivial cases 𝑘 = 1, 𝑛—it still has an odd form. Note that there are #𝒫𝑘

[𝑛] =
𝑆(𝑛, 𝑘) distinct possible groupings for the data for a given 𝑘, and—due to the order-of-
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appearance listing assumption we discussed before—we cannot think the sum as a mean
over the groupings, since, for example, observation 𝑦1will never appear in any block apart
from the first one.

All this discussion serves us as preamble to understand the origins of label-switching.
In most of the sampling schemes for mixture models, there is a step to update component
parameters and another to update the (latent) random partition, in terms of either the
allocation vector or the random partition itself. Hence, the label-switching problem lies
in the fact that component parameters 𝑥∗ and the random partition Π𝑛 are considered as
independent each other. This means that—even for a fixed partition 𝜋∗—samplers have
to consider all the 𝑘! permutations of the blocks, where 𝑘 = #𝜋∗, to associate the 𝑘 com-
ponent parameters (𝑥∗

1, … , 𝑥∗
𝑘) (cf. Rodríguez & Walker 2014), forgetting the fact that

such parameters—in that order—where used to obtain the partition. In other words,
the parameter 𝑥∗

𝑗 is linked to only one block: 𝜋𝑗 ; such a parameter can be considered as
the label of the block 𝜋𝑗 .

Mathematically—by linking parameters with blocks—we mean that the joint poste-
rior distribution (9) should be expressed as

𝑝(𝑥∗, Π𝑛 = {𝜋1, … , 𝜋𝑘}|𝑦) = 𝑝((𝑥∗
1, 𝜋1), … , (𝑥∗

𝑘, 𝜋𝑘)|𝑦). (10)

Using this form, we are able to infer about the 𝑗th cluster parameter, since the expression

𝑝(𝑥∗
𝑗 |𝜋𝑗 , 𝑦) ∝ ∏

𝑖∈𝜋𝑗

𝜅(𝑦𝑖; 𝑥∗
𝑗 )𝑝(𝑥∗

𝑗 )

is not affected anymore by permutations of the blocks; indeed, there is nothing to per-
mute. Note also that the joint distribution 𝑝(𝑥, Π𝑛|𝑦) becomes a function with a par-
ticular support. If we fix the number of blocks in Π𝑛 to 𝑘, we have that (𝑥∗, Π𝑛) ↦
𝑝(𝑥∗, Π𝑛|𝑦) ∶ 𝕏𝑘 × 𝒪(𝑘)

[𝑛] → [0, 1], where 𝒪(𝑘)
[𝑛] is the set of all ordered set partitions of [𝑛]

with exactly 𝑘 blocks. As an illustration, consider the partitions Π̃4 = {{1}, {2}, {3, 4}}
and Π̃′

4 = {{1}, {3, 4}, {2}}, as before, and the parameters 𝑥∗ = (𝑥∗
1, 𝑥∗

2, 𝑥∗
3). Therefore,

under (10), we have
𝑝(𝑥∗, Π̃4|𝑦) ≠ 𝑝(𝑥∗, Π̃′

4|𝑦),

since—unlike in the previous case—the likelihood is not the same. For the left-hand side,
we have that

𝑝(𝑦|𝑥∗, Π̃4) = 𝜅(𝑦1; 𝑥∗
1)𝜅(𝑦2; 𝑥∗

2)𝜅(𝑦3; 𝑥∗
3)𝜅(𝑦4; 𝑥∗

3),
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which is different to the right-hand side, namely

𝑝(𝑦|𝑥∗, Π̃′
4) = 𝜅(𝑦1; 𝑥∗

1)𝜅(𝑦2; 𝑥∗
3)𝜅(𝑦3; 𝑥∗

2)𝜅(𝑦4; 𝑥∗
2).

2.2 TOWARDS INTERPRETABLE MIXTURE MODELS

We have seen that the label-switching problem appears because standard mixture-model
methodologies usually are defined to work in the space of set partitions, 𝒫[𝑛], instead
of the complete space—given by the ordered set partitions, 𝒪[𝑛]—and as a consequence,
some information is lost. In this case, the information lost is the link between clusters and
their respective governing parameter. But remember that label-switching and the lack of
identifiability are related issues. Hence, this ordered-set-partition approach could also
be applied in mixture models to make them identifiable, or even more, to make them
interpretable.

Regarding identifiability, San Martín & Quintana (2002) explain that—given a sam-
pling probability𝑃 𝜃 indexed by a parameter 𝜃—aparametrization 𝜃 is said to be identified
if the mapping 𝜃 ↣ 𝑃 𝜃 is injective. Applying this definition to our context of mixture
modeling, we have that 𝑃 is amixture density and the parameter 𝜃 consists on component
parameters 𝑥∗

𝑗 , 𝑗 = 1, … , 𝑘, and the partition Π𝑛 = {𝜋1, … , 𝜋𝑘}. Thus, when a mixture-
model methodology is defined to work in the space of set partitions, 𝒫[𝑛], parameter 𝜃
takes the form

𝜃 = (𝑥∗
1, … , 𝑥∗

𝑘, 𝜋1, … , 𝜋𝑘) ,

and themapping obtained is not injective. This occurs due to the fact thatwe can permute
every component parameter 𝑥∗

𝑗 with every partition block 𝜋𝑗 , i.e. the label-switching
problem. Therefore, the mixture model is not identifiable. On the other hand, if 𝜃 takes
the form

𝜃 = ((𝑥∗
1, 𝜋1), … , (𝑥∗

𝑘, 𝜋𝑘)) ,

we are working with the space of ordered set partitions, 𝒪[𝑛] (cf. Equation 10), and the
mapping 𝜃 ↣ 𝑃 𝜃 is injective; in other words, we obtain an identifiable mixture model.

Concerning interpretability, recall the approach of Mena & Walker (2015) discussed
above. Such an approach aims to obtain identifiable mixture models by avoiding label-
switching, but, also tries to obtain interpretable mixture models by favoring certain ele-
ments in the set of allocations𝒜(𝑚)

𝑛 . Nevertheless, it also has some concerns to care about:
(i) the number of mixture components is fixed and finite, and (ii) there is a positive prob-
ability (although small) of having empty components.
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Notice that ordered set partitions also solves this second point. Under the approach
of words, 𝒲 [𝑘], as 𝑘 grows, the number of empty groups also increases; actually, given
any sample of size 𝑛, if 𝑘 > 𝑛 this always happens. But with ordered set partitions, 𝒪(𝑘)

[𝑛] ,
this number is bounded by 𝑛 (cf. Tables I.2 and I.3). This—besides of making allocation
problems more tractable—provides a more coherent model, because it is more logical to
have at most 𝑘 = 𝑛 groups to allocate 𝑛 observations than having an arbitrary number
of them. This philosophy is shared with the theory of random partitions; indeed, one
of their attractiveness in clustering is their ability to infer about the number of groups.
Furthermore, we can take advantage of the close relationship between set partitions and
ordered set partitions to overcome the fist limitation. If we could find a way to extend
the existent theory of random partitions to 𝒪[𝑛]-valued random objects—besides of pro-
viding a novel methodology to deal with clustering-related problems—we would obtain
an immediate approach to model also the number of groups.

Providing an extension to the 𝒫[𝑛]-valued theory, as explained, we would obtain iden-
tifiable mixture models. However, to go further, that is, to have interpretable mixture
models, we have to find a way to translate the prior (6) for 𝑑 to our new context of or-
dered set partitions or to provide an alternative proposal.

Recalling, Mena &Walker (2015) define 𝑝(𝑑) ∝ 𝜆𝐷, for some fixed 0 < 𝜆 < 1, where

𝐷 =
𝑛

∑
𝑖=1

𝑑𝑖,

which can be written as

𝐷 = 1 + 1 + ⋯ + 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛1 times

+ 2 + 2 + ⋯ + 2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛2 times

+ ⋯ + 𝑘 + 𝑘 + ⋯ + 𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛𝑘 times

=
𝑘

∑
𝑗=1

𝑗𝑛𝑗 ,

with 𝑛𝑗 , 𝑗 = 1, … , 𝑘, the size of the 𝑗th block. This distribution is exchangeable with
respect to𝒜(𝑚)

𝑛 , but its equivalent over 𝒪(𝑚)
[𝑛] is not, even though the sum 𝐷 is the same in

both cases. In the first case, exchangeability means that

P(𝛿 = (𝑑1, … , 𝑑𝑛)) = P(𝛿 = (𝑑𝜌(1), … , 𝑑𝜌(𝑛))),

for all permutation 𝜌 of [𝑛] = {1, … , 𝑛}, and it is satisfied by 𝑝(𝑑) ∝ 𝜆𝐷. On the other
hand, an exchangeable distribution over ordered set partitions should satisfy, based on
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Definition I.3,
P(𝜗𝑛 = 𝜋) = P(𝜗𝑛 = 𝜎(𝜋)),

for any 𝜋 = {𝜋1, … , 𝜋𝑘} ∈ 𝒪[𝑛] and all permutation 𝜎 in the symmetric group acting on
[𝑛], or equivalently,

P(𝜗𝑛 = 𝜋) = 𝑞(𝑛1, … , 𝑛𝑘),

where 𝑞 ∶ Δ𝑛,𝑘 → [0, 1] is a symmetric function, with 𝑛𝑗 = #𝜋𝑗 for 𝑗 = 1, … , 𝑘. However,
the function

𝑞(𝑛1, … , 𝑛𝑘) ∝ 𝜆∑𝑘
𝑗=1 𝑗𝑛𝑗 ,

for a fixed 𝜆 ∈ (0, 1), is not exchangeable. As an illustration, take 𝑛 = 3 and 𝑚 = 2. Then

𝒜(2)
3 = {(1, 2, 2), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 1), (2, 1, 2)},

and

𝒪(2)
[3] = { {{1}, {2, 3}} , {{2}, {1, 3}} , {{3}, {1, 2}} ,

{{1, 2}, {3}} , {{1, 3}, {2}} , {{2, 3}, {1}}},

with Δ3,2 = {(1, 2), (2, 1)}. Therefore,

P(𝛿 = (1, 1, 2)) = P(𝛿 = (1, 2, 1)) = P(𝛿 = (2, 1, 1)) = 𝑝(1, 1, 2) ∝ 𝜆4,

P(𝛿 = (1, 2, 2)) = P(𝛿 = (2, 2, 1)) = P(𝛿 = (2, 1, 2)) = 𝑝(1, 2, 2) ∝ 𝜆5,

as expected, but

P(𝜗3 = {{1}, {2, 3}}) = P(𝜗3 = {{2}, {1, 3}}) = P(𝜗3 = {{3}, {1, 2}}) = 𝑞(1, 2) ∝ 𝜆4,

P(𝜗3 = {{1, 2}, {3}}) = P(𝜗3 = {{1, 3}, {2}}) = P(𝜗3 = {{2, 3}, {1}}) = 𝑞(2, 1) ∝ 𝜆5,

so exchangeability is lost since it is required that 𝑞(1, 2) = 𝑞(2, 1). Hence, we require a
different approach.

A second option to achieve interpretable mixture models is working directly on the
subset of𝒜(𝑚)

𝑛 where this feature is preserved. In such a set, it is required that

𝑛1 ≥ 𝑛2 ≥ ⋯ ≥ 𝑛𝑘, (11)

where 𝑛𝑗 is the size of the 𝑗th group. Although it is not straightforward to give a symbolic
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𝑛 \ 𝑘 1 2 3 4 5 6 7 8 9 10 #Δ∗
𝑛

1 1 1
2 1 1 2
3 1 1 1 3
4 1 2 1 1 5
5 1 2 2 1 1 7
6 1 3 3 2 1 1 11
7 1 3 4 3 2 1 1 15
8 1 4 5 5 3 2 1 1 22
9 1 4 7 6 5 3 2 1 1 30

10 1 5 8 9 7 5 3 2 1 1 42

TABLE 1: Triangular array showing the counting sequences of the subset of Δ𝑛, denoted by Δ∗
𝑛, in

which the greatest part is 𝑛1 = 𝑟, for different values of 𝑟 and 𝑛 such that 1 ≤ 𝑟 ≤ 𝑛 and
𝑛 = 1, … , 10.

specification of such a combinatorial class, we can analyze the support of the prior distri-
bution for𝒪[𝑛]-valued random objects. Note that such a distribution should be restricted
to the subset of Δ𝑛,𝑘 where (11) is satisfied for every 𝑘 = 1, … , 𝑛; equivalently, we can fix
the size of the biggest group, 𝑛1, and obtain the elements in Δ𝑛 = ∪𝑛

𝑘=1Δ𝑛,𝑘 satisfying (11).
Let Δ∗

𝑛 be such a subset. As an illustration, consider the case 𝑛 = 5, so we have

Δ∗
5 = {(1, 1, 1, 1, 1), (2, 2, 1), (2, 1, 1, 1), (3, 2), (3, 1, 1), (4, 1), (5)} .

The counting sequence for the underlying combinatorial class has been found in the En-
cyclopedia of Integer Sequences with the entry A008284. In Table 1, some values of this
sequence are shown. Given this class, we can find the subset of 𝒪[𝑛] whose blocks sizes
belong to it. Furthermore, all the mixture densities with groups in bijection with such a
subset of 𝒪[𝑛] will be interpretable.





CONCLUDING REMARKS

Throughout this thesis, we have examined the importance of clustering and related ap-
proaches under a statistical perspective. There is a great number of methodologies deal-
ing with these problems, in part, due to their versatility and applicability in many and
different fields. In this respect, we have explained that randompartitions are suitable can-
didates to deal with clustering problems since their support is isomorphic to the space
where clustering is defined. Among the different available methodologies to work with
random partitions, we chose the Bayesian nonparametric approach—and constrained
the present thesis to follow such an approach—because—besides of justifying such an
approach—de Finetti’s representation theorem provides a direct form to model random
partitions.

As it is known, a crucial part to perform any Bayesian analysis involves the correct
choice of the prior distribution, which can be achieved through the study of all the pos-
sible values taken by the random object of interest. In the case of the clustering models,
such support is given by particular structures better understood under a combinatorial
perspective. Thus, we saw how set partitions,𝒫[𝑛], serve as support for randompartitions,
and—derived from this combinatorial class—we obtained two additional classes emerg-
ingwhen the clustering rules are changed: segmentations,𝒮[𝑛], and ordered set partitions,
𝒪[𝑛]. Moreover, we have that 𝒮[𝑛] ⊆ 𝒫[𝑛] ⊆ 𝒪[𝑛], fact that has made us think that random
partitions might not be enough or appropriate for particular clustering situations.

Indeed, the class of segmentations encodes clustering situations where observations
are indexed by covariates taking values in some ordered set; this eliminates groupings
with gaps. Chapter II was devoted to the study of these models—called segmentation
models—focusing on an application in the field of change-point detection. Based on
the theory of random partitions, we presented different approaches to build 𝒮[𝑛]-valued
prior distributions, and study their role in this kind of clustering. Furthermore, a sam-
pling scheme to draw values of the corresponding 𝒮[𝑛]-valued posterior distribution was
provided. All this work served to present a novel proposal for change-point detection,
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which happened to be an attractive alternative to the existing list of methodologies in
this topic.

Moving on to set partitions, it can be seen that there is a great interest on this topic.
Random partitions have been studied under different probabilistic approaches. Most of
Chapter I was a survey on this topic, focused just on the de Finetti’s theorem viewpoint.
Following the study of set-partition-based cluster analysis, a complementary study was
given in Chapter III. There, it has been pointed out the relationship between random
partitions and mixture models and why these models can be thought as an extension to
random partition models for continuous observations. We concentrated on the study
of specific mixture densities having decreasing weights. On the one hand, these densi-
ties intend to deal with some of the challenges of mixture modeling, like identifiability,
and—from the results obtained in this chapter—the generalization made of the geomet-
ric process mixture model promises to be a good starting point. On the other hand, the
underlying random probability measure in these densities could result on appealing al-
ternatives as random partition distributions.

The last clustering scenario corresponds to the one encoded by ordered set partitions.
In Chapter IV, we continued with the study of mixture models focusing on other of their
challenges which appears during simulations: the label-switching problem. In order to
do that, we started analyzing a related problem consisting on the allocation of observa-
tions among a given number of mixture components. Under a suitable modification, the
resulting space for this problem is encoded by ordered set partitions, but what was more
interestingwas the fact that if we study the equivalent clusteringmodel based onmixture
densities and consider a bigger space than set partitions, i.e. ordered set partitions, we
can see that there are no more label-switching problems. We concluded from this obser-
vation that label-switching appears because sampling schemes often work on a smaller
space. At this point, we have given the foundations of a different and new methodology
to deal with the label-switching problem. Furthermore—given the relationship between
label-switching and non identifiability—we could also dealwith non identifiability issues
by considering the complete space instead of the reduced one of set partitions. Another
important observation obtained from this study was the convenience of thinking on a
special class of mixture models where mixture components represent subpopulations in
a clear way. This would recover one of the original purposes of mixture models: inter-
pretability.

However, all these studies are not finished; there is more work to do in each of these
lines of research. Turning back to segmentation models and under the context of our
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proposed model, one of the main interests is the prediction. Actually, we have already
devised a possible procedure to perform it. As explained in Section II.4, we may be inter-
ested in one of three classes of prediction: (i) given a new observation, we want to know
whether it forms part of the current regime or it stars a new one, where in such a case
a change point appears, (ii) we might require an estimate of the length of the current
regime, that is, we want to known when the next change point will occur; or (iii) under
certain contexts, we could need to know if a change point occurred inside an unobserved
interval of time, namely between two consecutive observations.

On a different direction, segmentation models for multivariate data also represent
an attractive extension to our proposal. One possibility is simply using a multivariate
likelihood, but it could be too restrictive in the sense that the model would only detect
changes occurring in all the variables at the same point location. A more flexible model
should instead allow the detection of two types of changes: (i) those proper for each
variable, and (ii) those common for all of them.

Regarding to mixture models with decreasing weights, they might represent an ap-
pealing option to deal with the problem of identifiability. We have presented two ap-
proaches to extend the geometric process. We have analyzed one of them, whereas the
second one is part of our currentwork. On the other hand, the underlying randomproba-
bilitymeasure in thesemodels—used asmixing distribution—could be useful in contexts
like species sampling modeling. In this context, it is desirable to provide the probability
distribution for the induced random partition, which leaves a broad line of research to
explore.

Finally, the idea presented regarding to interpretable mixture models constitutes an
important advance in the context ofmixturemodeling. As explainedbefore, interpretabil-
ity represents the original idea for amixturemodel, however it seldom is achieved in prac-
tice. Thus, it is necessary to find an implementation for this model. Merging the studies
of ordered set partitions with decreasing-weights mixture models correctly would result
in a novelty in this context.





APPENDIX A

SAMPLING SCHEME FOR THE
PARAMETERS OF THE TWO-PARAMETER

POISSON-DIRICHLET PROCESS

When working with the two-parameter Poisson-Dirichlet process, it might be of inter-
est assigning prior distributions to its parameters. Under the case 𝜃 > −𝜎, this section
provides a simulation scheme to sample from the corresponding posterior distributions.

Assume a beta prior with parameters (𝛼, 𝛽), is assigned to 𝜎 and a shifted gamma
prior with parameters (𝛾, 𝛿, −𝜎), to 𝜃. A shifted gamma random variable 𝑋 is such that
its probability density function is given by

𝑓(𝑥; 𝑎, 𝑏, 𝑐) = (𝑥 − 𝑐)𝑎−1

Γ(𝑎)𝑏𝑎 𝑒−𝑏(𝑥−𝑐)𝟏(𝑥 > 𝑐).

Furthermore, assume that likelihood function of (𝜎, 𝜃) is taken from the EPPF of PD(𝜎, 𝜃)
given by

Π(𝑛)
𝑘 (𝑛1, … , 𝑛𝑘) =

∏𝑘−1
𝑖=1 (𝜃 + 𝑖𝜎)

(𝜃 + 1)𝑛−1↑

𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑. (1)

Simulating from the posterior of 𝜎 can be easily done via the ARMS method (Gilks
et al. 1995) since this is given by

𝑝(𝜎| … ) ∝ 𝜎𝛼−1(1 − 𝜎)𝛽−1(𝜃 + 𝜎)𝛾−1𝑒−𝛿𝜎
𝑘−1

∏
𝑖=1

(𝜃 + 𝑖𝜎)
𝑘

∏
𝑗=1

(1 − 𝜎)𝑛𝑗−1↑

with 𝜎 ∈ (max{−𝜃, 0}, 1). For the posterior distribution of 𝜃, the following result can be
used.
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PROPOSITION 1. The augmented full conditional distribution of 𝜃—with likelihood func-
tion (1) and prior distribution given by a shifted gamma distribution with parameters
(𝛾, 𝛿, −𝜎)—is given by

𝑝(𝜃|𝑦, 𝑧, … ) ∝
𝑘+1

∑
𝑗=0

𝑤𝑗Ga(𝜃; 𝛾 + 𝑗, 𝛿 + 𝑦 − log(𝑧), −𝜎),

where the weights (𝑤𝑗)𝑘+1
𝑗=0 are given by

𝑤𝑗 ∝ ((𝑛 − 𝜎)(𝑛 + 1 − 𝜎)𝑐𝑘−1,𝑗 + (2𝑛 + 1 − 2𝜎)𝜎𝑐𝑘−1,𝑗−1 + 𝜎2𝑐𝑘−1,𝑗−2)Γ(𝛾 + 𝑗)

(𝜎(𝛿 + 𝑦 − log(𝑧)))𝑗 ,

with 𝑘 and 𝑛 as in (1), 𝑧 ∼ Be(𝜃 + 2, 𝑛), 𝑦 ∼ Exp(𝜃 + 1) and 𝑐𝑘,𝑗 , 𝑗 = 1 … , 𝑘, the absolute
value of the Stirling number of the first kind, where 𝑐𝑘,𝑟 = 0 for 𝑟 ≤ 0 and 𝑟 > 𝑘 and
𝑐0,0 = 1.

Demostración
The posterior distribution of 𝜃 is given by

𝑝(𝜃| … ) ∝ (𝜃 + 𝜎)𝑐−1𝑒−𝑑𝜃

(𝜃 + 1)𝑛−1↑

𝑘−1

∏
𝑖=1

(𝜃 + 𝑖𝜎)𝟏(𝜃 > −𝜎). (2)

To derive the augmented full conditional distribution, notice that

𝑘−1

∏
𝑖=1

(𝜃 + 𝑖𝜎) = 𝜎𝑘−1
𝑘−1

∑
𝑗=0

𝑐𝑘−1,𝑗(
𝜃 + 𝜎

𝜎 )
𝑗
,

where 𝑐𝑘−1,𝑗 is the absolute value of a Stirling number of the first kind, and that

1
(𝜃 + 1)𝑛−1↑

= Γ(𝜃 + 1)
Γ(𝜃 + 𝑛) = (𝜃 + 𝑛)(𝜃 + 𝑛 + 1)

(𝜃 + 1)Γ(𝑛) 𝐵(𝜃 + 2, 𝑛),

where 𝐵 is the beta function. Therefore, the posterior distribution (2) can be rewritten
as

𝑘−1

∑
𝑗=0

𝑐𝑘−1,𝑗
𝜎𝑗

(𝜃 + 𝑛)(𝜃 + 𝑛 + 1)
(𝜃 + 1) 𝐵(𝜃 + 2, 𝑛)(𝜃 + 𝜎)𝑐+𝑗−1𝑒−𝑑𝜃𝟏(𝜃 > −𝜎).

Using data augmentation, let 𝑦 ∼ Exp(𝜃 +1) and—following the approach ofWest (1992)
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to update the Dirichlet process’s parameter—let 𝑧 ∼ Be(𝜃 + 2, 𝑛). Thus,

𝑝(𝜃|𝑦, 𝑧, … ) ∝
𝑘−1

∑
𝑗=0

𝑐𝑘−1,𝑗
𝜎𝑗 (𝜃 + 𝑛)(𝜃 + 𝑛 + 1)(𝜃 + 𝜎)𝑐+𝑗−1𝑒−(𝑑+𝑦−log(𝑧))𝜃𝟏(𝜃 > −𝜎).

Expanding the product (𝜃 + 𝑛)(𝜃 + 𝑛 + 1) as function of (𝜃 + 𝜎) and rearranging the terms
of the sum with respect to (𝜃 + 𝜎)𝑐+𝑗−1, 𝑗 = 0, 1, … , 𝑘 + 1, we have

𝑝(𝜃|𝑦, 𝑧, … ) ∝
𝑘+1

∑
𝑗=0

𝑤′
𝑗(𝜃 + 𝜎)𝑐+𝑗−1𝑒−(𝑑+𝑦−log(𝑧))𝜃𝟏(𝜃 > −𝜎),

where

𝑤′
𝑗 =

(𝑛 − 𝜎)(𝑛 + 1 − 𝜎)𝑐𝑘−1,𝑗 + (2𝑛 + 1 − 2𝜎)𝜎𝑐𝑘−1,𝑗−1 + 𝜎2𝑐𝑘−1,𝑗−2
𝜎𝑗 ,

with 𝑐𝑘,𝑟 = 0 for 𝑟 ≤ 0 and 𝑟 > 𝑘. Finally, completing the density in each term leads us to
the stated result.

In the best of my knowledge, other available implementations to simulate from the
posterior distribution of 𝜃 were limited to Metropolis-Hastings steps (see, for example,
Jara et al. 2010 and Nieto-Barajas & Contreras-Cristan 2014). Hence, the above Proposi-
tion could also be useful in other Bayesian nonparametric implementations based on the
two-parameter Poisson-Dirichlet process.





APPENDIX B

SIMULATION OF TRUNCATED
DISTRIBUTIONS

In this section, simulation schemes for truncated distributions are provided. Specifi-
cally, two cases are considered: Poisson and negative binomial distributions, both left-
truncated.

§ 1 TRUNCATED POISSON DISTRIBUTION

Suppose a randomnumber 𝑥froma truncated Poisson distribution is required. A random
variable𝑋 ∼ Poi(𝜆), with 𝜆 > 0, has probability mass function given by

𝑓(𝑥) = 𝜆𝑥

𝑥! 𝑒−𝜆𝟏(𝑥 ≥ 0).

If truncation is from the right, namely, there is a 𝜏 ∈ ℕ such that P(𝑋 > 𝜏) = 0, simu-
lation is straightforward since the resulting density has a finite support {1, 2, … , 𝜏}. On
the other hand, truncation from the left presents some issues, but these can be overcome
via data augmentation. Therefore, simulation is done using a Gibbs sampler.

Suppose 𝑋 is a random variable Poisson distributed with parameter 𝜆 and left-trun-
cated at 𝜏 ∈ ℕ, that is, P(𝑋 < 𝜏) = 0. Using a Gibbs sampler, it is required to sampling
from a density proportional to 𝜆𝑥/𝑥! 𝟏(𝑥 ≥ 𝜏). Notice first that

1
𝑥! = 1

(𝑥 − 𝜏)!
⎧⎪
⎨
⎪⎩

𝜏−1

∏
𝑖=0

(𝑥 − 𝑑 + 1 + 𝑖)
⎫⎪
⎬
⎪⎭

−1

= 1
(𝑥 − 𝜏)!

Γ(𝑥 − 𝜏 + 1)
Γ(𝑥 + 1)

Γ(𝜏)
Γ(𝜏) (1)

=𝛽(𝑥 − 𝜏 + 1, 𝜏)
Γ(𝜏)(𝑥 − 𝜏)! ,

where the expression between brackets is the Pochhammer symbol, (𝑥 − 𝜏 + 1)𝜏↑, and
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𝛽(𝑎, 𝑏) is the beta function, which additionally has the integral representation

𝛽(𝑎, 𝑏) = ∫
1

0
𝑧𝑎−1(1 − 𝑧)𝑏−1d𝑧.

Using data augmentation with 𝑧 ∼ Be(𝑥 − 𝜏 + 1, 𝜏), the sampler has to simulate from the
bivariate density

𝑝(𝑥, 𝑧) ∝ 𝜆𝑥

(𝑥 − 𝜏)!𝑧𝑥−𝜏(1 − 𝑧)𝜏−1𝟏(𝑥 ≥ 𝜏).

From this, the full conditional distribution for 𝑥 is given by

𝑝(𝑥|𝑧) ∝ (𝜆𝑧)𝑥−𝜏

(𝑥 − 𝜏)!𝟏(𝑥 ≥ 𝜏),

which corresponds to a Poisson distribution with parameter 𝜆𝑧 shifted at 𝜏. Therefore, a
Gibbs sampler draws values at iteration 𝑡 as follows:

𝑧(𝑡) ∼ Be(𝑥(𝑡−1) − 𝜏 + 1, 𝜏),

𝑥(𝑡) ∼ Poi(𝜆𝑧(𝑡)) + 𝜏,

for an initial value 𝑥(0) and given 𝜆 and 𝜏.

§2 TRUNCATED NEGATIVE BINOMIAL DISTRIBUTION

In a similar way to the truncated Poisson distribution, simulating from a right-truncated
distribution is straightforward, but not when it is left-truncated. The negative binomial
probability mass function is given by

𝑓(𝑥) = (
𝑥 + 𝑟 − 1

𝑥 )𝑝𝑟(1 − 𝑝)𝑥𝟏(𝑥 ≥ 0),

for 𝑟 > 0 and 0 < 𝑝 < 1.
Suppose that it is required to sample from a negative binomial distribution left-trun-

cated at 𝜏 ∈ ℕ. This can be also done using a Gibbs sampler. In order to do it, notice that
using (1),

𝑝(𝑥) ∝ 𝛽(𝑥 − 𝜏 + 1, 𝜏)Γ(𝑥 + 𝑟)
(𝑥 − 𝜏)! (1 − 𝑝)𝑥𝟏(𝑥 ≥ 𝜏).

If the beta an gamma functions are substituted by their integral expressions, the resulting
density is

𝑝(𝑥, 𝑧, 𝑣) ∝ (1 − 𝑝)𝑥

(𝑥 − 𝜏)! 𝑧𝑥−𝜏(1 − 𝑧)𝜏−1𝑣𝑥+𝑟−1𝑒−𝑣𝟏(𝑥 ≥ 𝜏),
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and the full conditional distribution of 𝑥 is

𝑝(𝑥|𝑧, 𝑣) ∝ ((1 − 𝑝)𝑣𝑧)𝑥−𝜏

(𝑥 − 𝜏)! 𝑒−(1−𝑝)𝑣𝑧𝟏(𝑥 ≥ 𝜏),

which is a Poisson distributionwith parameter (1−𝑝)𝑣𝑧 and shifted at 𝜏. Therefore, using
data augmentation, with 𝑧 ∼ Be(𝑥 − 𝜏 + 1, 𝜏) and 𝑣 ∼ Ga(𝑥 + 𝑟, 1), a Gibbs sampler draws
values at iteration 𝑡 as follows:

𝑧(𝑡) ∼ Be(𝑥(𝑡−1) − 𝜏 + 1, 𝜏),

𝑣(𝑡) ∼ Ga(𝑥(𝑡−1) + 𝑟, 1),

𝑥(𝑡) ∼ Poi((1 − 𝑝)𝑧(𝑡)𝑣(𝑡)) + 𝜏,

for an initial value 𝑥(0), and where 𝑟, 𝑝 and 𝜏 are given values.
Similarly to the simulation of parameter 𝜃 explained in the previous section, we have

only found one more procedure to sampling from these left-truncated distributions by
Geyer (2007), which is based on rejection sampling.
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