

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOLOGÍA

RELACIÓN ENTRE LA TECTÓNICA Y SEDIMENTACIÓN DEL JURÁSICO, SANTO DOMINGO TIANGUISTENGO, OAXACA

TESIS QUE PARA OPTAR POR EL GRADO DE MAESTRA EN CIENCIAS DE LA TIERRA PRESENTA

María de los Ángeles Verde Ramírez

TUTORA

Dra. Elena Centeno García

MIEMBROS DEL COMITÉ TUTOR

Dr. Martín Guerrero Suastegui-Universidad Autónoma de Guerrero Dr. Rafael Antonio López Martínez-Instituto de Geología, UNAM Dr. Michelangelo Martini-Instituto de Geología, UNAM Dra. Claudia Cristina Mendoza Rosales-Facultad de Ingeniería, UNAM

México D.F., Diciembre 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Agradezco sinceramente el apoyo de mi directora de tesis Dra. Elena Centeno García quien gracias a su interés y paciencia hizo posible la culminación de este estudio. Gracias por la confianza en mis capacidades y alentarme a continuar con mi crecimiento profesional.

Quiero expresar un reconocimiento especial a mi sinodal y maestro Dr. Michelangelo Martini quien mostró siempre un interés constante en el buen desarrollo de este trabajo. A la Dra. Claudia Cristina Mendoza Rosales le agradezco su exhaustiva revisión del borrador que ayudó a mejorar la calidad de esta tesis. Gracias al Dr. Rafael Antonio López Martínez, quien me brindó su apoyo en momentos de duda y me motivo constantemente para concluir esta etapa. Agradezco al Dr. Martín Guerrero Suastegui por sus valiosas aportaciones y comentarios.

Mi sincero agradecimiento a los pobladores de Santo Domingo Tianguistengo, por brindarme la oportunidad de estudiar su extraordinario y desafiante entorno. Gracias por recibir con los brazos abiertos a tantas generaciones de estudiantes del Instituto de Geología.

A mis profesores del posgrado cuya pasión por su trabajo nos invita a esforzarnos continuamente y superarnos.

Un reconocimiento especial a mis compañeros Betania Palacios García, Mildred del Carmen Zepeda Martínez, Bernardo García Amador y Alejandro Ortega Nieto por su apoyo durante el trabajo de campo. Gracias por hacerlo una experiencia gratificante, llena de emociones y descubrimientos.

Agradezco a Hilda López Soria por el apoyo brindado durante mi posgrado, por su comprensión, amabilidad y disposición a ayudarme sin reservas.

Al M. en C. Emiliano Campos Madrigal le agradezco el préstamo de mapas y láminas de la zona para la realización de esta tesis.

Doy las gracias al Instituto de Geología y a la Universidad Nacional Autónoma de México por brindarme la oportunidad de desarrollarme como ser humano y profesionista, por ser mi segundo hogar, donde encontré conocimiento y esas ansias inagotables de aprender y cultivarme.

DEDICATORIA

A mis padres Isabel y Benjamín, porque sin su apoyo nada de esto sería posible. Gracias por ser un ejemplo de amor, esfuerzo y dedicación. Estaré agradecida eternamente con ustedes, es un privilegio ser su hija.

A Claudia, porque con su fortaleza me ha demostrado que todo es posible y que podemos encontrar belleza en el mundo que nos rodea.

A Israel, porque me ha enseñado que el trabajo tiene frutos dulces y que no debemos darnos por vencidos ante nuestros sueños.

A Daniel, por ayudarme a descubrir la naturaleza y mostrarme el camino que seguiré por siempre.

A mis sobrinos Brianda, Christopher, Imanol, Fernanda, Yahir, Gael y Regina por ser una fuente de inspiración, espero convertirme en una para ustedes.

A mis cuñadas Yamiled y Georgina, por alentarme a finalizar esta etapa y confiar en mis capacidades, gracias por ser parte de mi familia.

A mis tíos Elvia y Luis, por todo el apoyo y cariño que he recibido desde siempre.

A Alejandra y su familia, por el aliento brindado durante el desarrollo de este trabajo.

A mis profesores y compañeros del posgrado por hacer de esta una experiencia inolvidable. El conocimiento es más hermoso cuando se comparte.

A la familia Gamboa por recibirme con calidez en su hogar y hacerme sentir un miembro más del clan.

A mi familia montañera, con quienes comparto el apasionante mundo subterráneo, gracias por traer alegría a mi vida y por brindarme experiencias que me han marcado por siempre.

A Ramsés por ser mi compañero y fortaleza en momentos de duda, por su nobleza y bondad. Gracias por hacer de mí una mejor persona. Contigo de la sima a la cima.

RESUMEN

"Relación entre la tectónica y sedimentación del jurásico, Santo Domingo Tianguistengo, Oaxaca"

La cuenca Otlaltepec está localizada en el centro de la Sierra Mixteca, al sureste de México. En esta área se encuentra expuesto un basamento cristalino polideformado de edad paleozoica, representado por el Complejo Acatlán, esta unidad se encuentra sobreyacida por una sucesión sedimentaria Mesozoica, dividida en cinco formaciones sedimentarias informales, que de la base a la cima son las formaciones Tianguistengo (Triásico Superior-Jurásico Inferior), Piedra Hueca (Jurásico Inferior-Medio) y Otlaltepec (Jurásico Medio-Superior), y las formaciones cretácicas Magdalena y Caliza Coyotepec.

El presente trabajo tiene como objetivo la caracterización de la unidad sedimentaria clástica más antigua expuesta en la región, correspondiente a la formación Tianguistengo, así como determinar si existió actividad tectónica durante su depósito.

Dicha unidad se compone de una alternancia de limolita y arenisca de grano medio a fino, en las que predomina el cuarzo, feldespato y líticos ígneos. Estas rocas tienen una característica coloración rojiza o verdosa. Las estructuras sedimentarias más comunes son las laminaciones de tipo paralela, planar, festonada y convoluta, así como estratificación cruzada, grietas de desecación y rizaduras hacia la cima de los estratos. Hay presencia de marcas de carga, nódulos, lentes de limo e intraclástos. Su contenido fósil comprende marcas de raíces, troncos, moldes de troncos y plantas, intensa bioturbación, icnofósiles y ostrácodos. También pueden encontrarse horizontes de conglomerados con estratificación lenticular. De los análisis de facies y microfacies realizados, se concluyó que la sedimentación ocurrió en un ambiente de depósito aluvial que formó una planicie de inundación.

Se realizaron fechamientos de circones detríticos por el método U-Pb en dos muestras pertenecientes a la formación Tianguistengo, las cuales presentan un amplio rango de edades que comprenden desde el Mesoproterozoico hasta el Triásico Inferior-Medio. La información geocronológica y las relaciones estratigráficas observadas en campo sugieren que la edad de la formación Tianguistengo es Triásico Superior-Jurásico Inferior.

Dada la presencia de discordancias y fallas sinsedimentarias, se interpretó que la sucesión triásica-jurásica fue depositada en una cuenca tectónicamente activa, bajo un régimen extensional o transtensional. Se reconocieron dos campos de esfuerzos con diferentes orientaciones. De acuerdo con los análisis estructurales realizados se determinó: A) Un campo de esfuerzos que actuó durante el depósito de la formación Tianguistengo con orientación aproximada E-W y NE-SW que ocasionó la formación de fallas sinsedimentarias. B) Un segundo campo de esfuerzos con orientaciones N-S y NW-SE que causó el basculamiento de la formación Tianguistengo y actuó durante el depósito de las formaciones Piedra Hueca y Otlaltepec. A este campo de esfuerzos se le considera la causa de las discordancias que dividen estas unidades. Las rotaciones y discordancias que presenta el paquete sedimentario triásico-jurásico son muy similares a aquellas asociadas a una actividad de falla lístrica sinsedimentaria. De acuerdo a los estudios estructurales realizados en este trabajo, la estructura que controló el relleno de la cuenca Otlaltepec es la Falla Ameyaltepec.

Este cambio de orientación del régimen extensional podría representar el registro de una evolución tectónica relacionada al rompimiento del supercontinente Pangea y formación del Golfo de México.

CONTENIDO

Resumen	Ι
Capítulo 1. Introducción	1
1.1 Planteamiento del problema	1
1.2 Objetivos	3
1.3 Localización y vías de acceso	3
Capítulo 2. Marco geológico regional	5
2.1 Estratigrafía local	7
2.1.1 Paleozoico	8
Complejo Acatlán	8
Plutón Totoltepec	12
2.1.2 Mesozoico	16
Formación Tianguistengo	16
Formación Piedra Hueca	17
Formación Otlaltepec	21
Formación Magdalena	24
Caliza Coyotepec	26
2.1.3 Cenozoico	28
Unidad Pozo Hondo	28
2.1.3.1 Rocas y sedimentos cenozoicos	29
Sedimentos del Pleistoceno	29
Rocas intrusivas	31
2.2 Rasgos estructurales mayores del área de estudio	31

Capítulo 3. Metodología	36
3.1 R ecopilación bibliográfica	36
3.2 Trabajo de campo	36
3.3 Análisis petrográfico	37
3.4 Fechamiento de circones detríticos	37
3.5 Análisis estructural	39
3.6 Trabajo de gabinete	39
Capítulo 4. Análisis de facies, microfacies y petrografía	40
4.1 Facies de la formación Tianguistengo	40
4.1.1 Facies de limo y arena con laminación paralela (Fl)	48
4.1.2 Facies de limo y arena con raíces (Fr)	48
4.1.3 Facies de limo y arena con estratificación cruzada planar (Sp)	48
4.1.4 Facies de arenas con estratificación cruzada curva (St)	50
4.1.5 Facies de arena con rizaduras y estratificación cruzada (Sr)	52
4.1.6 Facies de arenas masivas (Sm)	53
4.1.7 Facies de grava matriz soportadas masivas (Gmm)	54
4.1.8 Facies de grava con gradación incipiente (Gmg)	54
4.1.9 Facies de grava clásto soportadas con gradación inversa (Gci)	55
4.1.10 Facies de arenas con intraclástos (Bi)	56
4.1.11 Facies de carbón (C)	57
4.1.12 Facies lacustres (LMF6)	57
4.2 Microfacies de la formación Tianguistengo	57
4.2.1 Microfacies LMF6	58
4.2.2 Edad de contenido fósil	61

4.3 Asociaciones de facies	62
4.3.1 Asociaciones de facies AF1: Diques (Levee)	62
4.3.2 Asociaciones de facies AF2: Depósitos de avenida (canal) (Crevasse	
Chanel)	63
4.3.3 Asociaciones de facies AF3: Depósito de avenida (lóbulo) (Crevasse	
Splay)	63
4.3.4 Asociaciones de facies AF4: Planicie de inundación	63
4.3.5 Asociaciones de facies AF6: Flujos de sedimentos por gravedad	67
4.3.6 Asociaciones de facies AF7: Canales	67
4.4 Correlación sedimentaria de las columnas medidas	68
4.5 Análisis petrográfico	70
4.5.1 Resultados del análisis petrográfico	83
Capítulo 5. Tectónica sinsedimentaria	84
5.1 Discordancias entre las formaciones Tianguistengo, Piedra Hueca y	8.5
Otlaltepec	00
5.1.1 Modelo de sedimentación sintectónica basado en datos de estratificación	86
5.1.2 Resultados obtenidos del análisis de datos de estratificación	93
5.2 Fallas sinsedimentarias en la formación Tianguistengo	96
5.2.1 Análisis estructural de fallas sinsedimentarias en la formación	
Tianguistengo	96
5.3 Discordancias internas en la formación Tianguistengo	99
5.4 Familias de fallas en las formaciones Tianguistengo, Piedra Hueca y	
Otlaltepec	102
5.5 Brechas y deformación sinsedimentaria	104

Capítulo 6. Geocronología U-Pb de Circones detríticos	105						
6.1 Análisis geocronológico muestra P.50	105						
6.2 Análisis geocronológico muestra P.53							
6.3 Conclusiones del análisis geocronológico							
6.4 Edad de la formación Tianguistengo	115						
Capítulo 7. Discusión de los resultados	117						
7.1 Modelo de paleoambiente de depósito de la formación Tianguistengo	117						
7.2 Edad de la formación Tianguistengo	118						
7.3 Tectónica sinsedimentaria	119						
7.4 Ambiente tectónico	120						
Capítulo 8. Conclusiones y recomendaciones	123						
Referencias	125						
Apéndice I. Tectónica sinsedimentaria	135						
Apéndice II. Análisis geocronológico de circones detríticos	162						
Mapa Geológico anexo							

TABLAS

Tabla 1.1. Coordenadas de los vértices que delimitan la zona de estudio				
Tabla 2.1. Tabla estratigráfica comparativa que muestra las unidades propuestas por autores anteriores en la región de estudio y las definidas en este trabajo	7			
Tabla 4.1. Lista de columnas estratigráficas medidas	40			

Tabla 4.2. Alcance estratigráfico específico de las superfamilias que conforman el orden Podocopida y sus preferencias ambientales	61
Tabla 4.3. Características de las asociaciones de facies reconocidas en la formación Tianguistengo	68
Tabla 5.1. Valores promedio de rumbo y buzamiento para las sucesiones Tianguistengo, Piedra Hueca y Otlaltepec en cada uno de los cinco sectores	90
Tabla 5.2. Estratificación, planos de falla y esfuerzos que influyeron en la inclinación de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec	94
Tabla. 5.3. Datos de rumbo y echado colectados en el afloramiento Xiotillo- Magdalena y sus orientaciones originales al restaurarlos a la paleohorizontal	100

FIGURAS

Fig. 1.1. Imagen satelital de la cuenca Otlaltepec	2
Fig. 1.2. Mapa de localización del área de estudio y vías de acceso principales	4
Fig. 2.1. Mapa de terrenos tectonoestratigráficos del sur de México	6
Fig. 2.2. Imágenes de afloramientos de la Formación Tecomate	10
Fig. 2.3. Contactos tectónicos entre los esquistos de bajo grado y los de alto grado de metamorfismo diferenciados en el Complejo Acatlán	11
Fig. 2.4. Contactos tectónicos entre el Plutón Totoltepec y el Complejo Acatlán	12
Fig. 2.5. Relación de intrusión entre las rocas de composición félsica y composición gabroica presentes en el Plutón Totoltepec	14
Fig. 2.6. Estructuras sedimentarias en conglomerados y areniscas de la formación Piedra Hueca	19
Fig. 2.7. Areniscas de grano medio con fallas normales sinsedimentarias	20
Fig. 2.8. Relación de discordancia entre las formaciones Piedra Hueca y Otlaltepec	21
Fig. 2.9. Alternancia de areniscas y lodolitas en la formación Otlaltepec	24
Fig. 2.10. Depósitos de la formación Magdalena	26
Fig. 2.11. Esquema estructural de la zona de estudio	34
Fig. 4.1. Simbología utilizada en las columnas estratigráficas	41

Fig. 4.2. Columna I Santo Domingo	42
Fig. 4.3. Columna II Magdalena	43
Fig. 4.4. Columna III Cazahuate	44
Fig. 4.5. Columna IV Tedigno	45
Fig. 4.6. Columna V Alegría	46
Fig. 4.7. Características sedimentológicas de la facies Fl	49
Fig. 4.8. Evidencias de crecimiento de vegetación en la facies Fr	50
Fig. 4.9. Características sedimentológicas de la facies Sp	51
Fig. 4.10. Estratificación cruzada curva	52
Fig. 4.11. Características sedimentológicas de la facies Sr	53
Fig. 4.12. Características sedimentológicas de las facies Sm y Gmm	54
Fig. 4.13. Características sedimentológicas de las facies Gmg y Gci	55
Fig. 4.14. Características sedimentológicas de las facies Ai, C y la microfacies LMF6	56
Fig. 4.15. Características petrológicas de las rocas carbonatadas de la formación Tianguistengo Textura 1	59
Fig. 4.16. Características petrológicas de las rocas carbonatadas de la formación Tianguistengo Textura 2	60
Fig. 4.17. Distribución esquemática de los tipos de microfacies comunes de calizas lacustres de agua dulce	65
Fig. 4.18. Correlación estratigráfica de las columnas I, II, III, IV y V	69
Fig. 4.19. Fotomicrografías de muestras de roca de la facies Fl	71
Fig. 4.20. Fotomicrografía de la muestra SDT-56 de la facies Fr	73
Fig. 4.21. Fotomicrografías de la facies Sp	73
Fig. 4.22. Muestras de clástos en los lentes conglomeráticos de la facies Sp	75
Fig. 4.23. Fotomicrografías de la facies St	76
Fig. 4.24. Fotomicrografías de la facies Sr	77
Fig. 4.25. Areniscas de grano medio pertenecientes a la facies Sm	78
Fig. 4.26. Areniscas de grano grueso presentes en la facies Gmm	79

Fig. 4.27. Clástos de los conglomerados de la facies Gmg	81
Fig. 4.28. Muestra petrográfica de la facies Gci	82
Fig. 4.29. Fotomicrografía de la facies Bi	82
Fig. 5.1. Modelo experimental de falla lístrica mostrando el secuencial desarrollo de grabens y sucesiva inclinación de las capas	85
Fig. 5.2. Sectores 1, 2, 3, 4 y 5 ubicados en el mapa geológico de área de estudio	87
Fig. 5.3. Diagramas estereográficos en los que se observan de los datos estructurales de cada una de las sucesiones sedimentarias jurásicas	89
Fig. 5.4. Polos que representan las variaciones promedio de los datos de rumbo y buzamiento para las formaciones Tianguistengo, Piedra Hueca y Otlaltepec al ser restauradas a la horizontal	92
Fig. 5.5. Mapa geológico con las orientaciones de la falla asociada al depósito de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec en los Sectores 1, 2, 3, 4 y 5.	95
Fig. 5.6. Esquema de una falla sinsedimentaria	96
Fig. 5.7. Afloramientos que muestran la presencia de fallas sinsedimentarias	97
Fig. 5.8. Diagramas de densidad de polos que muestran los esfuerzos asociados al desarrollo de las fallas sinsedimentarias	98
Fig. 5.9. Afloramiento Xiotillo-Magdalena, los números indican la zona de colecta de los datos de rumbo y echado	99
Fig. 5.10. Diagramas estereográficos del afloramiento Xiotillo-Magdalena	101
Fig. 5.11. Sistemas de fallas presentes en la formación Tianguistengo	102
Fig. 5.12. Sistemas de fallas observados en las rocas de la formación Tianguistengo	102
Fig. 5.13. Sistemas de fallas presentes en las rocas jurásicas de la cuenca Otlaltepec	103
Fig. 5.14. Brechas tectónicas sinsedimentarias y pliegues sinsedimentarios	104
Fig. 6.1. Imagen de catodoluminiscencia de los cristales de la muestra P.50	106
Fig. 6.2. Diagrama acumulativo de las edades U-Pb y diagrama de concordia Tera- Wasserburg que muestra las edades U-Pb obtenidas para los cristales de la muestra P. 50	107
Fig. 6.3. Poblaciones principales de circones de la muestra P.50	108

Fig. 6.4. Tabla que relaciona las morfologías y las edades presentes en la muestra P. 50	109
Fig. 6.5. Imagen de catodoluminiscencia de los cristales de la muestra P.53	111
Fig. 6.6. Diagrama acumulativo de las edades U-Pb y diagrama de concordia Tera- Wasserburg que muestra las edades U-Pb obtenidas para los cristales de la muestra P. 53	112
Fig. 6.7. Poblaciones principales de circones de la muestra P.53	114
Fig. 6.8. Tabla que relaciona las morfologías y las edades presentes en la muestra P. 53	115
Fig. 7.1. Modelo de facies esquemático para la formación Tianguistengo, depositada en un sistema aluvial asociado a una falla sinsedimentaria	118
Fig. 7.2. Modelo esquemático que representa el relleno sedimentario de la cuenca Otlaltepec del Triásico Superior al Jurásico Superior. Región de Santo Domingo Tianguistengo	121

CAPÍTULO 1

INTRODUCCIÓN

En este estudio se presentan el análisis de facies y microfacies, así como datos petrográficos, geocronológicos y estructurales de la formación Tianguistengo, la cual está expuesta en las cercanías del poblado de Santo Domingo Tianguistengo, Oaxaca. Dichos datos fueron obtenidos con la finalidad de determinar el contexto de depósito de la unidad anteriormente mencionada, la cual representa el registro estratigráfico sedimentario mesozoico más antiguo de la cuenca Otlaltepec.

En el relleno sedimentario de la cuenca Otlaltepec se han reconocido tres discordancias mayores que sugieren la existencia de actividad tectónica sinsedimentaria. El entendimiento de los procesos geológicos que influyeron en el relleno de esta cuenca puede ayudar a determinar el ambiente tectónico prevaleciente durante la acumulación de sus sedimentos y hacer inferencias acerca de si existe una relación entre la formación de la cuenca Otlaltepec y la apertura del Golfo de México.

1.1 PLANTEAMIENTO DEL PROBLEMA

El sur de México se encuentra compuesto por un mosaico de terrenos tectono-estratigráficos (Campa y Coney, 1983), diferenciados por su estratigrafía e historia tectónica. El Terreno Mixteca forma parte de esta región, considerada como una zona compleja con problemas geológicos sin resolver y cuya evolución tectónica aún no ha sido comprendida totalmente (Elías-Herrera, *et al.*, 2005).

La cuenca Otlaltepec se encuentra en el sector norte-centro del Terreno Mixteca, y en ella aflora una sucesión clástica depositada desde Triásico hasta el Jurásico Superior (Ortega-Guerrero 1989; Ramos-Leal, 1989) que sobreyace al basamento metamórfico representado por el Complejo Acatlán y que es a su vez está cubierta por depósitos marinos cretácicos (Fig. 1.1).

En 1993, Morán-Zenteno propone una evolución paleogeográfica del Terreno Mixteca basada en la información estratigráfica y sedimentológica de diversos autores. En dicho trabajo se reporta que la sedimentación presente durante el Jurásico Medio en la zona central del Terreno Mixteca es de tipo fluvial (incluyendo la región de Santo Domingo Tianguistengo). En la zona de estudio la sucesión sedimentaria triásica-jurásica está subdividida por tres discordancias mayores que se paran a las formaciones Tianguistengo, Piedra Hueca y Otlaltepec (Ortega-Guerrero, 1989; Ramos-Leal, 1989). Estas rocas presentan variaciones litológicas y composicionales que reflejan cambios en el ambiente sedimentario y en la procedencia de las mismas. La presencia de las discordancias ha sido reportada con anterioridad (Ortega-Guerrero, 1989; Ramos-Leal, 1989) sin embargo, no existe una cartografía detallada de ellas ni de las unidades clásticas que dividen y por lo tanto su significado geológico no se ha comprendido plenamente. El ambiente tectónico prevaleciente durante el depósito de las rocas triásicas y jurásicas tampoco ha sido discutido en los trabajos realizados en la región.

Fig. 1.1. Imagen satelital de la cuenca Otlaltepec, se observa la ubicación de los depósitos jurásicos mencionados en este trabajo (área central) y los depósitos jurásicos expuestos al norte. Modificado de Google Earth.

El presente estudio es una investigación a detalle de la unidad denominada como formación Tianguistengo la cual fue propuesta por Ramos-Leal (1989) en su tesis de licenciatura de manera informal para referirse a litarenitas y limolitas de grano fino de color rojizo y pardo expuestas en la región de Santo Domingo Tianguistengo. En dicho trabajo se consideró que estas rocas tenían una posible edad triásica. El interés por esta unidad surge del desconocimiento de su estratigrafía, composición y ambiente depósito, que son claves para determinar la naturaleza de la formación e historia geológica de la cuenca Otlaltepec.

1.2 OBJETIVOS

El presente trabajo tiene como objetivo principal caracterizar la evolución tectonosedimentaria de la formación Tianguistengo, ubicada en la cuenca Otlaltepec, con base en sus características sedimentológicas, estratigráficas, estructurales y petrográficas.

Objetivos específicos

• Definir la estratigrafía general de la región e integrarla con los datos estratigráficos previos.

• Proponer un modelo de facies y paleoambiental para los depósitos de la formación Tianguistengo.

• Conocer la relación espacio-temporal entre las unidades jurásicas depositadas en la cuenca Otlaltepec.

• Entender la relación entre la sedimentación y la deformación en la zona de estudio.

• Proponer una edad máxima de depósito para la formación Tianguistengo con base en análisis de circones detríticos.

• Proponer el tipo de tectónica existente durante el relleno sedimentario de la cuenca.

1.3 LOCALIZACIÓN Y VÍAS DE ACCESO

La zona de estudio se ubica al norte del estado de Oaxaca, en el límite con el Estado de Puebla, al sur de México. Comprende una superficie de 320 km², la cual queda incluida dentro de las cartas San Juan Ixcaquixtla (E14B74) y Petlalcingo (E14B84) escala 1:50,000 de INEGI (2012, a y b).

Vintion	Coordena	adas UTM
veruce	m E	m N
Α	612000	2031000
В	632000	2031000
С	612000	2015000
D	632000	2015000

• Elipsoide GRS80. Datum ITRF92.

Tabla 1.1. Coordenadas de los vértices que delimitan la zona de estudio (Figura 1.2).

Esta área es accesible desde la Ciudad de México por la autopista N° 150D "México-Puebla" hasta la desviación hacia Tepexi de Rodríguez, Puebla, en donde se toma la carretera federal 455 hacia el sur. Pasando el poblado de Ixcaquixtla, Puebla, se continúa hacia el sur para arribar al área de estudio. También es posible llegar por la carretera 190, hacia Acatlán de Osorio, Puebla, poblado del cual se toma la carretera estatal 455 en dirección noreste hacia Ixcaquixtla (Fig. 1.2).

Fig. 1.2. Ubicación del área de estudio y vías de acceso principales desde la Ciudad de Puebla.

CAPÍTULO 2

MARCO GEOLÓGICO REGIONAL

El territorio mexicano ha sido considerado desde mediados de 1980's como el resultado de la acreción de distintos bloques corticales. Dicha acreción ocurrió durante gran parte de la historia mesozoica, paleozoica y proterozoica del país (Campa y Coney, 1983; Sedlock *et al.*, 1993; Centeno-García *et al.*, 2008). A fin de entender la relación espacio-temporal entre estos bloques han sido propuestas algunas subdivisiones de terrenos tectonoestratigráficos, que se definen como bloques corticales con una estratigrafía e historia tectónica particular, separados entre sí por estructuras de carácter regional y diferenciados especialmente por la edad y evolución tectónica de sus basamentos. Debido a la gran cantidad de estudios al respecto, se ha replanteado continuamente la ubicación y tipo de algunos límites de los terrenos, así como el carácter alóctono de los mismos, lo cual ha suscitado un intenso debate alrededor de estos tópicos.

En particular, el sur de México se caracteriza por ser una región con una gran cantidad de problemas geológicos sin resolver, compuesta por cinco principales terrenos, que son: Guerrero, Mixteca, Oaxaca, Juárez y Xolapa (según Campa y Coney, 1983), que en conjunto conservan el registro de la historia geológica de más de 1,000 Ma, en los cuales han ocurrido eventos tectónicos importantes como la formación del sistema orogénico Greenvilliano, la interacción entre Gondwana y Laurencia y el rompimiento y dispersión del supercontinente Pangea. Estos procesos se reflejan en la deformación, exhumación y sepultamiento de las rocas que conforman esta región (Elías-Herrera *et al.*, 2005, Centeno-García, 2005) (Fig. 2.1).

El Terreno Mixteca es diferenciado, por su basamento cristalino paleozoico, el Complejo Acatlán (Ortega-Gutiérrez, 1978). En sus limites se encuentran los terrenos Oaxaca, Guerrero y Xolapa (Campa y Coney, 1983), cuyos contactos son la falla Caltepec (Elías-Herrera *et al.*, 2005), la falla Papalutla (Sedlock *et al.*, 1993) y la falla La Venta, respectivamente (Ortega-Gutiérrez, 1981; Ruíz *et al.*, 1988; Yáñez *et al.*, 1991) (Fig. 2.1).

El basamento cristalino de este terreno ha sido descrito como un complejo metamórfico polideformado que incluye esquistos pelíticos, esquistos verdes, metagranitoides, migmatitas y

porciones ofiolíticas eclogitizadas (Ortega-Gutiérrez, 1981; Ruíz *et al.*, 1988; Yáñez *et al.*, 1991); y está sobreyacido discordantemente por sucesiones marinas y continentales expuestas en diversas localidades de la región. El alcance estratigráfico de estas unidades comprende desde el Paleozoico (e.g. formaciones Matzizi y Patlanoaya) (Vachard *et al.*, 2000; Centeno-García *et al.*, 2009), el Mesozoico (e.g. formaciones Tecomazúchil y Tianguistengo) (Caballero-Miranda *et al.*, 1990; Ramos-Leal, 1989) y el Cenozoico.

Fig. 2.1. I) Ubicación del mapa II en el territorio nacional. II) Terrenos tectonoestratigráficos y complejos cristalinos del sur de México, de acuerdo a la subdivisión propuesta por Campa y Coney (1983). Las regiones representadas incluyen los terrenos Guerrero (GR), Mixteca (MX), Xolapa (XP), Oaxaca (OX), Juárez (JU) y Maya (MY). La zona de estudio se encuentra al norte del Terreno Mixteca, cuyo basamento es el Complejo Acatlán. Modificado de Tolson (2005).

2.1 ESTRATIGRAFÍA LOCAL

Las unidades estratigráficas que afloran en el área de estudio comprenden desde rocas metamórficas e ígneas, que conforman el basamento de la cuenca Otlaltepec, hasta rocas sedimentarias, cuerpos intrusivos y sedimentos (Tabla 2.1). A continuación se presenta un resumen de las características estratigráficas más sobresalientes de cada unidad expuesta en la región.

		En	osión o no depó	sito	ESTRATIGRAFÍA CUENCA OTLALTEPEC				
			BEATRIZ ORTEGA GUERRERO 1989	JOSÉ ALFREDO RAMOS LEAL 1989		ES	ESTE TRABAJO Y SUS REFERENCIAS 2015		
ERATEMA	SISTEMA	SERIE	PISO	EDAD [Ma]	UNIDADES	UN	IDADES		UNIDADES
		Holoceno	- 10	0.0117		Aluvión	Caliche	-	Aluvión
ico	Cuaternario	Pleistoceno		2.588	Aluvión			Dep	ósitos Cuaternarios y erpos intrusivos no diferenciados.
OZ		Plioceno		5.332					: : : : : : : : : : : : : : : : : : : :
sno	Neogeno	Mioceno		23.03					
č		Oligoceno		33.9	Formación Agua de Luna				
	Paleogeno	Eoceno		55.8 ± 0.2					
		Paleoceno		65.5 ± 0.3	Unidad Pozo Hondo			U	nidad Pozo Hondo
			Maestrichtiano	70.6 + 0.6				:	
			Campaniano	83.5+0.7					
			Santeniano	85.8 ± 0.7					
		Superior	Santoniano	03.0 I V./					
			Coniaciano	00.0					
			Turoniano	93.6 ± 0.8		· · · · · · · · · · · · · · · ·			
	Cretácico		Cenomaniano	99.6 ± 0.9			ipiapa	::::	
			Albiano	112 ± 1	Caliza Coyotepec			: (Caliza Coyotepec
			Aptiano	125 ± 1	Unidad Magdalena	Formaciór	n San Juan Raya	For	mación Magdalena
		Information	Barremiano	130 ± 1.5		Formación A	Agua del Corder		
		Interior	Hauteriviano	133.9					
			Valanginiano	140.2 ± 3					
			Berriasiano	145.5 ± 4					
			Titoniano	150.8 ± 4					
0		Superior	Kimmeridaiano	155.6	_:	Miambro Otlaltanas			
oio			Q.C. I	103.0				P	E Cult
)Z(Oxfordiano	161.2 ± 4	IL:1.1011	whemb	to Ouattepec	PO	rmacion Otiaitepec
ese			Calloviano	164.7 ± 4	Unidad Otiaitepec			-	
Μ		Medio	Bathoniano	167.7 ± 3.5	Unidad Piedra Hueca	1000	2		
	Jurásico		Bajociano	171.6 ± 3		Miembr	o Santa Cruz	1000	0.01.00
			Aeleniano	175.6 ± 2				For	mación Piedra Hueca
			Toarciano	183 ± 1.5					
			Pliensbaquiano	189.6 ± 1.5		Miembro	Piedra Hueca		
		Interior	Sinemuriano	196.5 ± 1					
			Hettangiano	199.6 ± 0.6				-	
			Rhaetiano			· · · · · ·		Form	ación Tianguistengo
		Superior	Noriano						8
			Camiano						
	Takalar		Ladinianc			Formación	Tianquisteras		
	Iriásico	Medio	Anisiano			Formación	r ranguistengo		
			Anisiano		Tronco de Totoltepec				
		Inferior	Olenikiano						
		0.000.0000.0000 1	Induano	252 ±0.06				1.1.1	
	Pérmico	4	-	299 ±0.8					Plutón de Totoltepec
0	Carbonífero			359.2 ± 2.5				án	
ozoicc	Devónico			416 ± 2.8			ningo vtoltepec	ejo Acatl	
Pale	Silúrico	·		443.7 ± 1.5	Acatlán	Acatlán	nto Don co de To	Comple	
	Ordovicico	м. Т		488.3 ± 1.7	mplejo 4	mplejo / iabro Sal			
	Cámbrico			542 ± 1	Coi	Cor	9		

Tabla2.1.Tablae s t r a t i g r á fi c acomparativaquemuestralasunidadespropuestasporotrosautores y lasdefinidasenestetrabajoenlaregiónde estudio.

2.1.1 PALEOZOICO

Complejo Acatlán

Antecedentes

El nombre de Formación Acatlán fue utilizado por Ordóñez (1905, 1906) para designar a las rocas metamórficas que afloran en las cercanías del poblado de Acatlán, Puebla; las cuales fueron consideradas por este autor como "arcaicas". Estos trabajos son una de las primeras referencias que se tienen de estas rocas y hacen hincapié en su diferencia con otros afloramientos metamórficos ubicados en el estado de Oaxaca, que actualmente corresponden a los complejos Oaxaqueño y Xolapa, posteriormente, fueron descritas y renombradas (Esquistos Acatlán, Complejo Acatlán) por diversos autores (Salas, 1949; Fries y Rincón-Orta, 1965; Ortega-Gutiérrez, 1970) hasta que finalmente Ortega-Gutiérrez (1978) propone formalmente el rango litodémico de complejo y las subdivide en los subgrupos litoestratigráficos Petlalcingo y Acateco, y en tres unidades intrusivas conocidas como Diques San Miguel, Granitoides Esperanza y el Tronco de Totoltepec. Este último intrusivo fue considerado por Ortega-Gutiérrez (1978) como un cuerpo ajeno al Complejo Acatlán, sin embargo estudios recientes (Kirsch, 2012; Kirsch *et al.*, 2012; Kirsch *et al.*, 2013), han propuesto su integración al complejo. En este trabajo se considera a estas rocas intrusivas como parte del Complejo Acatlán, pero se describen de manera independiente debido a su importancia geológica en el área de estudio.

Localidad tipo

Su localidad tipo son los afloramientos expuestos en la Mixteca en los estados de Puebla y Oaxaca y su sección tipo va a lo largo de las carretera federal 190 México-Oaxaca en el segmento ubicado entre el entronque con el camino a Tecomatlán y el poblado Chila de las Flores (Ortega-Gutiérrez, 1978).

Distribución

El Complejo Acatlán aflora en el área de estudio hacia el oeste, donde ha sido descrito por Morales-Gámez (2011). Puede accederse a esta región por la carretera 455 que va de Ixcaquixtla a Acatlán. También aflora al este del área de estudio donde puede observarse en la terracería que va del poblado Santo Domingo Tianguistengo a Santo Tomas Otlaltepec y en las cañadas aledañas a esta región, especialmente sobre el lecho del Río Magdalena. Hacia el sureste aflora en las cañadas cercanas al Cerro Amarillo y en el camino al rancho El Limón, donde fue descrito por Sánchez-Zavala (2008).

Descripción litológica

El Complejo Acatlán es un complejo cristalino compuesto por rocas polideformadas que incluye: esquistos pelíticos, esquistos verdes, meta-granitoides, migmatitas y porciones ofiolíticas eclogitizadas (Ortega-Gutiérrez, 1978; Ortega-Gutiérrez *et al.*, 1999; Talavera *et al.*, 2005), cuya evolución geológica y subdivisión es aún un tema de debate.

En la región oeste del área de estudio Morales-Gámez (2011) subdividió al complejo en litodemas y los describió como paquetes de rocas limitados por fallas N-S formados por a) metapsamitas y metapelitas en facies metamórficas de esquistos verdes (Unidad Huerta); b) psamitas y arcosas en facies de esquisto verde-anfibolita (Unidad Amate); c) mármoles y areniscas y conglomerados de bajo grado metamórfico (Formación Tecomate) y d) metapsamitas, metapelitas y diques máfico toleíticos con metamorfismo en facies de esquistos verdes (Unidad Salada).

Hacia el sureste de la región de estudio el Complejo Acatlán se presenta en dos unidades, reconocidas como la Formación Tecomate (Sánchez-Zavala, 2008) y la Unidad Amarillo (Keppie *et al.*, 2012). La Formación Tecomate ha sido descrita como una sucesión turbidítica metasedimentaria compuesta por arcosa, grauvaca, litarenita, pizarra, conglomerado, caliza y rocas volcanoclásticas (Sánchez-Zavala, 2008) (Fig. 2.2).

La Unidad Amarillo, recientemente propuesta por Keppie *et al.* (2012), se caracteriza por ser una sucesión de rocas metasedimentarias de grado medio a alto, localmente intrusionadas por diques de anfíbolita, estos últimos muy similares a los documentados por Morales-Gámez, *et al.* (2009) en la Unidad Salada. Estudios recientes de circones detríticos indican una edad máxima de deposición de 337±4 Ma (Mississipico). El contacto entre los litodemas Unidad Amarillo y Tecomate se presenta como una cabalgadura en la cual las rocas de alto grado de metamorfismo (Unidad Amarillo) sobreyace a las de bajo grado (Formación Tecomate) (Fig. 2.3).

Fig. 2.2. Imágenes de afloramientos de la Formación Tecomate. A) Esquistos verdes de clorita. Afloramiento en el lecho de la Barranca El Amate. B) Metaconglomerados expuestos en las cercanías del Cerro Tencolamani, aún se observan algunos de los clástos (línea azul). Dimensión del martillo 41 cm. Localidad ubicada a 1 km al E del poblado de Santo Domingo Tianguistengo, ver Mapa Geológico anexo. Fotografía: Adriana Miranda Martínez.

Relaciones estratigráficas y edad

En el área de estudio, el Complejo Acatlán se encuentra sobreyacido discordantemente por la formación Otlaltepec y los depósitos cenozoicos no diferenciados de la región. El contacto con la formación Otlaltepec es observable hacia el noreste del área de estudio en el Cerro La Cruz, sin embargo también se encuentra en contacto por falla normal (Falla Tianguistengo) con esta misma unidad hacia el borde nororiental sobre la Barranca Mogote Colorado. El contacto discordante con los depósitos cuaternarios es observable sobre el lecho del Río Magdalena al suroeste del poblado de Santo Tomas Otlaltepec.

El Complejo Acatlán también se encuentra en contacto tectónico con el Plutón Totoltepec por medio de una cabalgadura (Fig. 2.4), por falla lateral izquierda y falla normal (Falla Tianguistengo). La cabalgadura es el contacto estructural más antiguo, sin embargo se ha reportado que existe un contacto de tipo intrusivo entre el paquete metamórfico y los cuerpos ígneos. También se encuentra en contacto tectónico por falla normal (Falla Tianguistengo) con la formación Tianguistengo sobre el lecho del Río Magdalena. La Falla Ameyaltepec a su vez representa el límite tectónico entre el basamento y las <image>

unidades Tianguistengo y Piedra Hueca.

Fig. 2.3. Contactos tectónicos entre los esquistos de bajo grado y los de alto grado de metamorfismo diferenciados en el Complejo Acatlán, reconocidos como la Formación Tecomate y Unidad Amarillo respectivamente. A) Cabalgadura. Afloramiento en la Barranca El Amate. B) Cabalgadura. Localidad ubicada en la Barranca Salto El Agua a 1 km al SE del poblado de Santo Domingo Tianguistengo, ver Mapa Geológico anexo. Fotografías: Betania Palacios García.

Hacia el norte del área de estudio se encuentra en contacto por falla lateral izquierda (Falla Gavilán) con las formaciones Piedra Hueca y Magdalena. Esta última unidad también cubre discordantemente al basamento paleozoico.

La edad del Complejo Acatlán ha sido ampliamente discutida por diversos autores (Ortega-Gutiérrez *et al.*, 1999; Keppie *et al.*, 2004; Talavera-Mendoza *et al.*, 2005) los cuales la sitúan de manera general entre el Cámbrico y Devónico (Ortega-Gutiérrez *et al.*, 1999) y el Ordovícico y Pérmico (Morales-Gámez, 2011).

Historia tectónica

Estudios recientes (e.g. Barley, 2006; Nance *et al.*, 2006; Keppie *et al.*, 2008; Morales-Gámez, 2011) han permitido una reconstrucción más detallada de la evolución tectónica de las rocas del Complejo Acatlán que se han interpretado como el registro de un rift del Odovícico-Silúrico y del

consecuente cierre del océano Reico.

De acuerdo con Nance *et al.* (2006), los eventos orogénicos que influenciaron la formación del Complejo Acatlán están relacionados a una interacción entre los supercontinentes Laurencia y Gondwana antes y durante la conformación del super continente Pangea.

Fig. 2.4. Contactos tectónicos entre el Plutón Totoltepec y el Complejo Acatlán (línea). A) Cabalgadura. Localidad ubicada en el camino de terracería entre Santo Domingo Tianguistengo y el rancho El Limón, ver Mapa Geológico anexo. B) Falla normal. Afloramiento en la Barranca Salto El Agua. Fotografías: Betania Palacios García.

Plutón Totoltepec

Antecedentes

Fries *et al.*, (1970) definieron con el nombre de Tronco de Totoltepec al batolito granítico expuesto en los alrededores del poblado de Totoltepec de Guerrero, en el estado de Puebla. Este intrusivo fue considerado como una unidad independiente al Complejo Acatlán durante muchos años (Ortega-Gutiérrez, 1978), sin embargo estudios recientes (Kirsch, 2012; Kirsch *et al.*, 2012; Kirsch *et al.*, 2013) han demostrado que es el resultado de una intrusión sintectónica, por lo cual lo incorporan al complejo metamórfico y cambian su nombre a Plutón Totoltepec. Ramos-Leal (1989) lo dividió en dos unidades: Tronco de Totoltepec y Gabrodiorita Santo Domingo, debido a que en su porción norte el intrusivo presenta una franja de rocas de composición esencialmente gabroica que presentan diques de

composición granítica (Tabla 2.1). En este trabajo se considera a las rocas máficas como parte del Plutón Totoltepec, sin embargo algunas porciones de las mismas han sido delimitadas en el Mapa Geológico anexo. Para fines puramente descriptivos en este trabajo se exponen las características del Plutón Totoltepec de manera independiente al Complejo Acatlán.

Distribución

Este plutón se encuentra expuesto al sur del área de estudio, su eje mayor es de aproximadamente 15 km y su eje menor de 5 km, cubriendo un área de 75 km² (Kirsch, 2012). Su región norte expone rocas gabrodioríticas. Puede accederse a sus afloramientos por la carretera 455 que va de Ixcaquixtla a Acatlán y por las cañadas hacia la parte sur del área de estudio, algunos de los afloramientos importantes se observan a lo largo de la terracería hacia el poblado El Limón y en las barrancas Agua del Coco y Tehuixtle.

Descripción Litológica

La composición de este cuerpo es muy variada y diversos autores lo clasificaron de manera diferente; Calderón-García (1956) lo describió como una cuarzodiorita, Fries *et al.*, (1970) como una tonalita. Sin embargo, estudios recientes han mostrado que su composición es muy variada, pues posee rocas con las siguiente composiciones: gabro de hornblenda, diorita, tonalita, trondhjemita, granodiorita y monzogranito (Kirsch, 2012). En campo es posible encontrar diques félsicos y gabro-dioríticos intrusionando a las rocas de composición máfica (Fig. 2.5), lo cual sitúa a las rocas graníticas como más jóvenes.

Gran parte del plutón está afectado por asimilaciones de la roca encajonante, procesos de fraccionamiento y mezcla de magmas. De acuerdo a las observaciones de campo de Sánchez-Zavala (2008), es posible que el plutón se haya emplazado como un cuerpo tabular inclinado hacia el norte, por lo que se observa en su parte norte una deformación frágil-dúctil, que se incrementa hacia el sur.

Relaciones estratigráficas y edad

El contacto de este intrusivo con la formación Tianguistengo se reconoció como una inconformidad en una cañada adyacente al Cerro La Matanza, donde se encontró un paleosuelo que indica que las rocas sedimentarias de la formación Tianguistengo se depositaron sobre rocas gabroicas del Plutón Totoltepec, y que por ende, éste actuó como un límite de la cuenca Otlaltepec. El contacto estratigráfico original fue posteriormente afectado por la Falla Totoltepec que tiene un rumbo aproximado N70°W.

Fig. 2.5. Relación de intrusión entre las rocas de composición félsica y composición gabroica presentes en el Plutón Totoltepec (línea). Afloramiento de la Barranca Tedigno, localidad ubicada a 5 km al NW del poblado de Totoltepec de Guerrero, ver Mapa Geológico anexo. Dimensión del martillo 41 cm. Fotografía: Adriana Miranda Martínez. Hacia el sureste del poblado de Santo Domingo Tianguistengo, el Plutón Totoltepec se encuentra en contacto por inconformidad con depósitos de la formación Otlaltepec que lo cubren discordantemente.

El contacto con el Complejo Acatlán se presenta en varias formas: 1) por cabalgadura al sureste del área de estudio, que varía en orientación de S10°W-46° a NS-28° al W (Fig. 2.6); 2) por medio de fallas normales (Falla Tianguistengo y otras fallas menores no denominadas); 3) fallas laterales izquierdas; y 4) fallas laterales izquierdas con las unidades Tianguistengo y Piedra Hueca sobre el lecho del Río Magdalena.

Respecto a su edad, Ramos-Leal (1989) menciona que en la zona de estudio existen evidencias de intrusión con el Complejo Acatlán y Sánchez-Zavala (2008) reporta metareniscas del Complejo Acatlán intrusionadas por cuerpos pegmatíticos, que sugerirían una relación primaria de intrusión. Estas evidencias sugieren una edad Post-Devónico.

Estudios recientes de fechamientos de U-Pb en circones por ablación láser (LA-Q-ICPMS) han arrojado edades concordantes de intrusión para las rocas ultramáficas de 306 ± 2 Ma (Carbonífero Superior) y 289 ± 2 Ma (Pérmico Inferior) para la cristalización de las rocas félsicas (Kirsch *et al.*, 2012).

Significado tectónico

Este plutón ha sido considerado como parte de un arco magmático continental Permo-Carbonífero a lo largo de la margen occidental de Pangea que se extiende desde Guatemala hasta California y con base en su comparación con arcos magmáticos contemporáneos, se sugiere que fue emplazado en una corteza delgada. Otra interpretación indica que una falla actuó como conducto del magma derivado del manto. Se estima que el plutón sufrió un levantamiento y exhumación entre 287 y 283 Ma (Kirsch *et al.*, 2012).

2.1.2 MESOZOICO

Formación Tianguistengo

Definición

La formación Tianguistengo fue propuesta por Ramos-Leal (1989) en su tesis de licenciatura de manera informal para referirse a litarenitas y limolitas de grano fino de color rojizo y pardo expuestas en la región de Santo Domingo Tianguistengo. En dicho trabajo se consideró que estas rocas tenían una posible edad triásica. Ramos-Leal (1989) estipuló que la unidad estaba en contacto tectónico con el intrusivo Plutón Totoltepec y en contacto discordante con la formación Piedra Hueca del Jurásico Temprano. Ortega-Guerrero (1989) en su tesis de licenciatura estudió esta región e interpretó a las rocas continentales de la formación Tianguistengo como parte de la Unidad Piedra Hueca.

Distribución y localidad tipo

Esta formación aflora al sur y centro del área de estudio sobre el lecho del río Magdalena, en el tramo que va desde las cercanías del poblado de Santo Domingo Tianguistengo, de donde toma su nombre, hasta el Cerro La Matanza. Hacia el suroeste la formación Tianguistengo aflora sobre el tramo carretero entre Ixcaquixtla y Totoltepec de Guerrero y sus alrededores. Al oeste de la región se ubica en las cercanías del rancho La Huertilla (ver Mapa Geológico anexo). Hacia el este del área de estudio hay un pequeño afloramiento ubicado en el norte del poblado de Santo Tomás Otlaltepec.

La localidad tipo fue propuesta informalmente por Ramos-Leal (1989) y se encuentra en la sección que aflora a lo largo del Río Magdalena al suroeste del poblado de Santa Cruz Nuevo.

Descripción litológica y espesor

La formación Tianguistengo se compone de una alternancia de areniscas de tipo arcosa laminadas de grano medio a fino en las que predomina el cuarzo y el feldespato y limolitas. Tienen una coloración general rojiza y se presentan en estratos delgados y medianos. Sus estructuras sedimentarias típicas son: laminación paralela, cruzada planar, lenticular y convoluta, grietas de desecación y rizaduras hacia la cima de los estratos, así como marcas de carga, nódulos, lentes de limolita, intraclástos de lutita e

intensa bioturbación. Su contenido fósil comprende marcas de raíces, troncos, moldes de troncos y plantas e icnofósiles. Presenta discordancias internas. En esta sucesión sedimentaria se encuentran lentes de 10 cm de espesor de calizas micríticas con ostrácodos. Hacia el occidente del área de estudio consiste en conglomerados masivos con matriz de arenas gruesas y clástos redondeados y subredondeados de gabro, esquisto, granito y arenisca. Ramos-Leal (1989) estimó un espesor aproximado de 200 m.

Relaciones estratigráficas y edad

El contacto inferior es una inconformidad con las gabrodioritas del Plutón Totoltepec en los alrededores del Cerro La Matanza, esta discordancia registra una sección de la cuenca Otlaltepec; también puede encontrarse en contacto por falla normal con este mismo cuerpo ígneo por medio de la Falla Totoltepec sobre el lecho del Río Magdalena. El contacto superior es de tipo discordante con los conglomerados de la formación Piedra Hueca y la formación Otlaltepec sobre el lecho del Río Magdalena. También puede encontrarse en contacto por fallas laterales izquierdas con las unidades mencionadas anteriormente. Los sedimentos cuaternarios la cubren discordantemente. Claramente se observa que el contacto con el Complejo Acatlán es tectónico (Falla Ameyaltepec). Su edad fue estimada por Ramos-Leal (1989) como Triásico, sin embargo en este trabajo se concluyó que su posible edad es Triásico Superior-Jurásico Inferior, en el Capítulo 5 referente a geocronología se explica a detalle esta conclusión.

Formación Piedra Hueca

Definición

Ramos-Leal (1989) nombró informalmente como Miembro Piedra Hueca de la Formación Tecomazúchil a la sucesión compuesta de conglomerados y areniscas que aflora en la región de Santo Domingo Tianguistengo. Mientras que Ortega-Guerrero (1989) denominó informalmente como "Unidad Piedra Hueca" a los conglomerados, areniscas y limolitas y lutitas de color predominantemente rojo que cubren discordantemente al Complejo Acatlán y el Plutón Totoltepec, en esta misma región (Tabla 2.1). La diferencia esencial entre estas dos descripciones es que Ramos-Leal (1989) no consideró a los depósitos de areniscas y lutitas rojizas de la base como parte del Miembro Piedra Hueca, a estas rocas las llamó formación Tianguistengo; mientras que Ortega-Guerrero (1989) las agrupó en una misma unidad. Cruz-Cruz (2012) en su tesis de licenciatura nombra informalmente a las formaciones Tianguistengo y Piedra Hueca, por lo que retoma la división propuesta por Ramos-Leal (1989) debido a las diferencias litológicas, paleontológicas y composicionales notables entre las dos unidades mencionadas. Sin embargo, en este trabajo no se considera a la Unidad Piedra Hueca como una parte de la Formación Tecomazúchil, ni como depósitos de edad paleozoica.

Distribución y localidad tipo

La formación Piedra Hueca se encuentra distribuida hacia el suroeste de la región de estudio en las barrancas Piedra Hueca y Cazahuate; también se ubica hacia el centro del área de estudio sobre el lecho del Río Magdalena (ver Mapa Geológico anexo). Esta formación también aflora al norte de la Falla Gavilán (Ortega-Guerrero, 1989).

La localidad tipo propuesta para la formación Piedra Hueca se ubica en la barranca del mismo nombre, donde aflora un espesor importante de la formación y se observan sus contactos primarios discordantes con otras unidades.

Descripción litológica y espesor

Esta sucesión en su parte basal consiste en un conglomerado y arenisca de grano muy grueso intercalada con lodolita. Los estratos de conglomerado presentan una textura clásto soportada y tienen un espesor variable de 0.4 a 1.2 m; presentan fragmentos subredondeados de líticos de granito, esquisto, cuarzo lechoso, gabrodiorita y arenisca de grano fino de diámetro variable entre 1 y 20 cm. Puede presentar algunos horizontes de arena y lodolita de coloración castaña claro y verdoso. Este conglomerado tiene un espesor variable de 30 a 80 m (Ortega-Guerrero, 1989). Los conglomerados se presentan como estratos subparalelos con estratificación cruzada, gradación normal y marcas de carga a la base de color castaño claro al fresco. Los clástos de granito posiblemente correspondan a fragmentos del Plutón Totoltepec, ya que su composición es similar, mientras que los fragmentos de esquistos

podrían proceder del Complejo Acatlán, lo cual sitúa las fuentes de procedencia de estas rocas cercanas al lugar de depósito. Las lodolitas tienen un espesor máximo de 0.30 m (Fig. 2.6).

Fig. 2.6. A) Conglomerados de la formación Piedra Hueca, se observan los clástos de granito (g) areniscas (a) y líticos metamórficos (m) que lo conforman. B) Conglomerados con líticos de areniscas (a) y limolitas (l) de composiciones variadas. Sobre la línea se observa una disminución en el tamaño de grano con respecto a la parte inferior de la fotografía que presenta gradaciones sucesivas. Afloramientos sobre el lecho del Río Magdalena. C) Areniscas conglomeráticas con estratificación cruzada, algunos de los clástos se encuentran alineados. D) Areniscas de grano medio con estratificación cruzada amplia. Afloramientos ubicados en la Barranca Rincón El Coco localidad ubicada a 1 km al NE del poblado de Santo Domingo Tianguistengo, ver Mapa Geológico anexo. Dimensión del martillo 41 cm.

Sobre estos depósitos basales descansa un paquete de areniscas de grano grueso a medio de composición cuarzo feldespática. Sus granos se presentan como angulosos y subredondeados en una textura moderadamente clasificada. Los estratos tienen máximo 2 m de espesor, son de cima y base irregulares y su coloración varía de castaño claro a castaño obscuro. Sus estructuras sedimentarias son: estratificación cruzada simple y planar; concreciones de arena, bioturbación, canales de corte y relleno; y lentes de conglomerados compuestos de fragmentos de granito, cuarzo lechoso, esquisto y gneis (Fig. 2.6). En las areniscas se encuentran pequeñas fallas normales sinsedimentarias, como evidencia de actividad tectónica durante la sedimentación. Su espesor ha sido estimado en 800 m (Ortega-Guerrero, 1989) (Fig. 2.7).

Fig. 2.7. Areniscas de grano medio con fallas normales sinsedimentarias. Afloramiento en la Barranca Piedra Hueca, localidad ubicada a 2 km al W del poblado de Santa Cruz Nuevo, ver Mapa Geológico anexo. Dimensión del martillo 41 cm.

Relaciones estratigráficas y edad

Esta unidad sobreyace de manera discordante a la formación Tianguistengo y es a su vez sobreyacida discordantemente por la formación Otlaltepec (Fig. 2.8). Ramos-Leal (1989) reportó estos contactos sedimentarios como fallas. Se encuentra en contacto tectónico por fallas laterales izquierdas

con el Plutón Totoltepec y la formación Tianguistengo y con el basamento de la región por la Falla Ameyaltepec.

La edad de la formación Piedra Hueca ha sido estimada como Jurásico Inferior-Medio, de acuerdo a sus relaciones estratigráficas con la formación Otlaltepec del Jurásico Medio-Superior, sin embargo no se ha encontrado información paleontológica concluyente.

Fig. 2.8. La línea indica la discordancia entre las formaciones Piedra Hueca y Otlaltepec. Afloramiento sobre el lecho del Río Magdalena, ver Mapa Geológico anexo.

Ambiente de depósito

De acuerdo con Ortega-Guerrero (1989) estas rocas fueron depositadas probablemente como abanicos y corrientes entrelazadas en un sistema fluvial trenzado, mientras que los depósitos más finos podrían corresponder a pequeñas planicies de inundación.

Formación Otlaltepec

Definición

La Unidad Otlaltepec fue propuesta informalmente por Ortega-Guerrero (1989) y fue descrita como una sucesión alternante de areniscas, lutitas y limolitas expuesta en la región de Santo Domingo Tianguistengo. Ramos-Leal (1989) nombra a estas rocas como Miembro Santa Cruz y Miembro Otlaltepec de la Formación Tecomazúchil (Tabla 2.1). Recientemente, Cruz-Cruz (2012), en su tesis de licenciatura, hizo un análisis estratigráfico de esta unidad, la cual separó en dos miembros que no

corresponden a los propuestos en este trabajo. Posiblemente, los límites entre las unidades propuestas en este trabajo (formaciones Tianguistengo, Piedra Hueca, Otlaltepec) y los limites marcados por los autores mencionados no correspondan entre sí con exactitud (Tabla 2.1).

Ramos-Leal, 1989 dividió a la sucesión sedimentaria como formación Tianguistengo y formación Tecomazúchil (que comprende Miembro Piedra Hueca, miembro Santa Cruz y miembro Otlaltepec). Mientras que Ortega-Guerrero, 1989 dividió a la sucesión como unidad Piedra Hueca y unidad Otlaltepec.

Distribución y localidad tipo

La formación Otlaltepec se encuentra distribuida en el norte y noroeste del área de estudio; sus afloramientos son accesibles por la carretera que va de Ixcaquixtla a Acatlán y por las cañadas aledañas a esta vía de comunicación. Esta formación también aflora al norte de la Falla Gavilán (Ortega-Guerrero, 1989).

Descripción litológica, espesor y registro fósil

La formación Otlaltepec consta de dos miembros (Ortega-Guerrero, 1989 consideró a Otlaltepec como una Unidad), que se describen a continuación:

• Miembro Otlaltepec Inferior. Esta sucesión se compone de una alternancia de subarcosa y lodolita. Las areniscas son de color castaño claro, de grano medio a grueso de forma subangular a angular. Se presentan en estratos que se acuñan, cuyo espesor varía de 2.5 a 0.5 m. Los límites inferiores de los estratos pueden llegar a presentar marcas de carga; también pueden encontrarse gradaciones normales, estratificación cruzada y lentes de arenisca conglomerática. En ocasiones se encuentran clástos de granitoide y gabrodiorita. Su composición promedio es de 80% cuarzo, 15% de feldespatos y 5% de líticos obscuros no identificados (Fig. 2.9).

Las lodolitas son de coloración gris, morada y verdosa en estratos que se acuñan con un espesor entre 1.5 y 0.5 m. Se encontraron diversos restos de hojas, tallos y plantas. Las vegetación fósil encontrada en este miembro es muy similar a aquella que reportó Ortega-Guerrero (1989) en la unidad Piedra Hueca como representantes de cicadofitas del género Otozamites, de posible edad
jurásica; *Otozamites hespera* Wieland del Jurásico Medio y restos de *Ptilophylum acutifolium* Morris del Jurásico Inferior y Medio (los límites entre las unidades descritas anteriormente y las unidades descritas en este trabajo pueden variar).

• Miembro Otlaltepec Superior. El miembro superior se compone de areniscas de coloración rojiza de grano grueso compuesta principalmente de cuarzo y feldespatos. Se presenta en estratos de 0.5 m, en promedio, cuya superficie es uniforme. Estas areniscas se encuentran alternadas con horizontes conglomeráticos. Su clasificación es mala. En ocasiones pueden encontrarse estratos delgados de arena fina de coloración verdosa.

Este miembro presenta estratificación cruzada planar; tiene abundantes nódulos de arena gruesa de 12 a 3 cm de diámetro e impresiones de troncos.

Ambos miembros en promedio tienen N68°W-25° de rumbo y echado y su espesor total se ha estimado en 1500 m (Ortega-Guerrero, 1989).

El contenido fósil de está unidad ha sido reportado por diversos autores y consiste esencialmente en restos de plantas, tales como hojas, ramas, troncos y corteza. Existen reportes de contramoldes de icnitas de saurópodos y de terópodos (Mendoza-Rosales y Silva-Romo, 1998) en la unidad, pero se desconoce a qué miembro pertenecen estas icnitas. También se ha colectado un ejemplar de *Williamsonia nezahualcoyotli* Wieland reportada como del Jurásico Inferior-Medio (Ramos-Leal, 1989). Cruz-Cruz (2012), reporta restos de Bennetitales, ramas de Brachyphyllum, helechos del genero Todites y restos de *Williamsonia Tlazolteotl* Wieland y otros fósiles no identificados de cícadas, impresiones de madera y semillas.

Relaciones estratigráficas y edad

Descansa en discordancia angular sobre los depósitos de las formaciones Tianguistengo (al norte de Santo Tomás Otlaltepec) y Piedra Hueca (Barranca Piedra Hueca), así como del Complejo Acatlán (Loma Encinera y Cerro La Cruz). Al sureste del poblado de Santo Domingo Tianguistengo se ubica un pequeño afloramiento de conglomerados y areniscas compuestos principalmente de cuarzo en que descansan horizontalmente sobre Plutón Totoltepec .

La edad de la formación Otlaltepec ha sido estimada como Jurásico Medio-Superior, de acuerdo a su contenido paleontológico (Ramos-Leal, 1989).

Fig. 2.9. Alternancia de areniscas (A) y lodolitas (L) la formación Otlaltepec afectadas por una falla normal. Nótese la variación en los espesores y las marcas de carga en la base de los estratos de areniscas. Camino entre los poblados de Santa Cruz Nuevo y Santo Domingo Tianguistengo, ver Mapa Geológico anexo.

Ambiente de depósito

Esta unidad por sus estructuras sedimentarias y características texturales se ha interpretado como los depósitos de un ambiente fluvial o de un ambiente aluvial (Ortega-Guerrero, 1989). Cruz-Cruz (2012) concluyó en su tesis de licenciatura que el depósito de esta unidad se llevó a cabo en un ambiente fluvial dentro de un graben orientado en dirección NW-SE, donde se generaron depósitos aluviales que pasaron a un ambiente de fluvial de tipo trenzado.

Formación Magdalena

Definición

Ortega-Guerrero (1989) denominó informalmente como Unidad Magdalena a los conglomerados, areniscas, lutitas y margas que afloran en el arroyo Magdalena a 3.5 km al noreste de Santo Tomás Otlaltepec y en las cercanías de San Felipe Otlaltepec.

Distribución y localidad tipo

Se ubica al norte y noreste de área de estudio y es accesible por la carretera que va de Ixcaquixtla hacia Acatlán. También puede accederse a sus afloramientos desde los poblados de San Felipe Otlaltepec y San Pablo Ameyaltepec y por las numerosas cañadas de la región. No se ha propuesto localidad tipo para esta unidad.

Descripción litológica, espesor y registro fósil

Esta formación hacia la base consta de cuerpos conglomeráticos de color blanco y rosáceos con clástos de granodiorita, esquisto, cuarzo blanco y negro; todos subredondeados, intercalados con horizontes arenosos. Hacia la parte media se vuelve predominantemente arenosa con sublitarenitas con clástos de rocas volcánicas subangulares, intercaladas con horizontes de conglomerados de 0.2 m de espesor y con horizontes bentoníticos de 0.3 m de espesor. Las areniscas se clasifican como sublitarenitas con fragmentos de rocas volcánicas. Finalmente, hacia la cima predominan las margas. Tiene un espesor total de 200 m. No se ha reportado hasta ahora la presencia de fósiles (Ortega-Guerrero, 1989) (Fig. 2.10).

Relaciones estratigráficas y edad

Descansa en discordancia angular sobre las unidades jurásicas Piedra Hueca y Otlaltepec. Ortega-Guerrero (1989) reportó que en la región de Temoapa se observa claramente la naturaleza discordante de este contacto. También descansa discordante sobre el Complejo Acatlán; se infiere que el contacto con la Caliza Coyotepec pudiera ser transicional, por la naturaleza de la litología (margas vs. calizas), aunque actualmente es por falla inversa, mediante un *detachment*.

La edad ha sido estimada, de acuerdo a sus relaciones estratigráficas, como Aptiano-Albiano, por relaciones de contacto, dado que subyace a la Caliza Coyotepec de edad Albiano-Cenomaniano. No hay registro paleontológico que sustente o contradiga esta teoría.

Fig. 2.10. Depósitos de la Formación Magdalena en las cercanías del poblado San Felipe Otlaltepec.

Caliza Coyotepec

Definición

Se conoce como Caliza Coyotepec a los afloramientos de carbonatos expuestos al sur y oeste del poblado de San Vicente Coyotepec que Ortega-Guerrero (1989) propuso informalmente en su tesis de maestría. Otros autores la han denominado como Formación Cipiapa (Aguilera, 1906; Calderón-García, 1956; Morán-Zenteno, 1987; Ramos-Leal, 1989). Ortega-Guerrero (1989) decidió denominarla como una unidad nueva y no utilizar los nombres de otras formaciones de carbonatos (Cipiapa, Caliza Petlalcingo, Formación Morelos) de la zona por no poder demostrar la continuidad física entre esas unidades y la Caliza Coyotepec.

Distribución y localidad tipo

En la zona de estudio se encuentra florando al norte y noreste, donde puede accederse por la carretera que va de Ixcaquixtla hacia Acatlán. También puede accederse a sus afloramientos desde el poblado de San Felipe Otlaltepec y por las numerosas cañadas de la región. No existe una localidad tipo establecida para esta unidad.

Descripción litológica, espesor y registro fósil

La Caliza Coyotepec consta de tres miembros, no siempre diferenciables, que Ortega-Guerrero (1989) denominó y describió como:

•Miembro Inferior. Consta de estratos de 0.3 a 1 m de espesor de color beige de biomicríta. Esta presenta nódulos, lentes de pedernal, restos de ostreas y bancos de rudistas. También existen reportes de miliólidos, fragmentos de moluscos y equinodermos identificados en lámina delgada (Ramos-Leal, 1989). Se estimó un espesor de 150 m.

•Miembro Medio. Está constituido por estratos de caliza de 0.5 a 2 m de espesor de color beige. Presenta horizontes dolomitizados, brechas intraformacionales y coquinas con restos de gasterópodos, pelecípodos y miliólidos identificados como *Nummoloculina heimi* Bonet. Además, en lámina delgada se identificaron miliólidos, foraminíferos bentónicos, fragmentos de moluscos y equinodermos (Ramos-Leal, 1989). En la carretera que va de Santa Cruz Nuevo a Ixcaquixtla se identificaron rizadura. Su espesor estimado es de 150 m.

•Miembro Superior. Compuesto por calizas en estratos de 0.05 a 0.3 m con intercalaciones de horizontes de margas de 0.2 m de espesor promedio. La cima se encuentra cubierta por caliche. Presenta pedernal rosa. No hay contenido fósil reportado para esta unidad. Se estimó un espesor mínimo de 100 m.

Se le ha calculado que el espesor total de los tres miembros es de 400 m mínimo (Ortega-Guerrero, 1989; Ramos-Leal, 1989). Parte de estos depósitos pudieron haberse perdido por la acción de la erosión.

Relaciones estratigráficas y edad

Sobreyace por contacto tectónico (*detachment*) a la Formación Magdalena y está sobreyacida discordantemente por los depósitos cuaternarios. Se encuentra en contacto discordante y por falla normal con la Unidad Pozo Hondo.

De acuerdo a su contenido fósil se han establecido las siguientes edades para algunos de los miembros de la Caliza Coyotepec: A) Miembro Inferior: Albiano Tardío-Cenomaniano. B) Miembro Medio: Albiano-Cenomaniano (Ortega-Guerrero, 1989).

Ambiente de depósito

Basada en la presencia de bancos de rudistas en su Miembro Inferior, Ortega-Guerrero (1989) interpretó estos depósitos como bancos de arrecifes en una plataforma carbonatada.

2.1.3 **CENOZOICO**

Unidad Pozo Hondo

Definición

La Unidad Pozo Hondo fue propuesta informalmente por Ortega-Guerrero (1989) para nombrar a los conglomerados y areniscas que descansan discordantemente sobre los depósitos de la Caliza Coyotepec al noreste del área de estudio.

Distribución y localidad tipo

Se ubica entre los poblados de San Vicente Coyotepec, Santa Catarina Tehuixtla y San Martín Atexcal. Es posible acceder a sus afloramientos por las terracerías entre estos poblados y sus cañadas aledañas. No existe una localidad tipo propuesta para estos depósitos. Descripción litológica, espesor y registro fósil

La Unidad Pozo Hondo está compuesta de conglomerados con clástos de cuarzo, pedernal, arenisca rojiza, caliza micrítica y caliza biomicrítica con miliólidos. El diámetro de los clástos varía de 30 a 0.2 cm que van de subangulares a subredondeados. La matriz es de arcilla y arena. Las areniscas de esta unidad son conglomeráticas de coloración verdosa y rosácea, cuyos clástos son de cuarzo, esquisto y arenisca rojiza. El espesor total se ha estimado en 600 m (Ortega-Guerrero, 1989). No existe registro fósil reportado en esta unidad.

Relaciones estratigráficas y edad

Sobreyace discordantemente a los depósitos de la Caliza Coyotepec. Ortega-Guerrero (1989) reportó además un contacto tectónico entre estas unidades por medio de una falla normal. El contacto superior se desconoce.

Debido a la falta de registro paleontológico no ha sido posible establecer la edad de esta unidad. Se ha considerado como un depósito formado posterior a los eventos tectónicos de deformación del Cretácico y principios del Cenozoico, por lo cual se le ha asignado una posible edad paleógena.

2.1.3.1 ROCAS Y SEDIMENTOS CENOZOICOS

En este apartado se hace una breve descripción de tres unidades rocosas que no han sido estudiadas a fondo en el área de estudio. 1) Sedimentos arenosos (ubicados en los alrededores del poblado de Santo Domingo Tianguistengo) y 2) Intrusivos de composición riolítica (ubicados en la cima del Cerro La Cuchara). En el Mapa Geológico sólo se diferenció entre las rocas ígneas y los sedimentos.

Sedimentos del Pleistoceno

Definición

Los sedimentos pleistocénicos son muy abundantes en la República Mexicana y albergan el registro fósil de grandes vertebrados, sin embargo una buena parte de estos depósitos permanecen sin

ser estudiados y reportados (Ferrusquía y Cruz, 2003). Los sedimentos cuaternarios en la región han sido objeto de poca atención en la geología (Ortega-Guerrero, 1989) y se han descrito simplemente como aluvión cuaternario. Ferrusquía y Cruz (2003) realizaron un estudio paleontológico de los depósitos cuaternarios en la región entre Tepexi y Coyotepec, Ahuatempan, Atexcal y de Santa Cruz. En 2005, Tovar-Liceaga realizó un estudio paleontológico a detalle de los sedimentos pleistocénicos de la región de Santa Cruz Nuevo, que tenía como objetivo analizar el cambio faunístico entre el Pleistoceno Tardío y el Reciente en la región, como complemento a su trabajo registró en una columna estratigráfica la sedimentología de estos depósitos.

Distribución y localidad tipo

Los depósitos cuaternarios se encuentran distribuidos entre los poblados de Santo Domingo Tianguistengo y Santa Cruz Nuevo, sobre el lecho del Río Magdalena y en las cercanías del poblado de Santo Tomás Otlaltepec. No existe una localidad tipo propuesta para estos sedimentos. En este trabajo se sugieren los depósitos estudiados por Tovar-Liceaga (2005) que corresponden a las cercanías de Santa Cruz Nuevo.

Descripción litológica, espesor y registro fósil

Esta unidad consiste en limos arenosos con estratificación incipiente y estratificación cruzada. Presenta mala clasificación y lentes de gravas de poca extensión con matriz de limo y arena, cuyas gravas corresponden a fragmentos subredondeados a subangulares de esquisto y cuarzo lechoso. Su espesor ha sido reportado entre 30 y 40 m (Ferrusquía y Cruz; 2003, Tovar-Liceaga, 2005). La fauna fósil encontrada en estos sedimentos comprende restos de anfibios, mamíferos, gasterópodos y bivalvos de agua dulce.

Relaciones estratigráficas y edad

Las relaciones de esta unidad son de tipo discordante, por ser la más joven de la región esta cubre a todas las otras unidades y no está afectada por fallas. Se encuentra en contacto con el Complejo Acatlán, el Plutón Totoltepec, las formaciones Tianguistengo, Piedra Hueca y Otlaltepec. Su edad calculada por su contenido fósil se ha establecido como Pleistoceno.

Ambiente de depósito

Estos sedimentos se han interpretado como depósitos de tipo fluvio-lacustre, formados por efecto de subsidencia y por la formación de una barrera topográfica que retuvo las aguas en un valle. En los casi 40 m de espesor de esta formación se encuentra de manera uniforme fósiles por lo que se interpreta como un cuerpo de agua permanente.

Rocas intrusivas

Definición

Se reporta por primera vez en este trabajo una serie de domos e intrusivos de composición riolítica ubicados al norte de San Jerónimo Xayacatlán.

Descripción litológica

Los domos se componen de rocas ígneas de textura porfídica de composición riolítica. La relación de corte con las rocas circundantes es evidente, por lo que se considera que estas rocas corresponden a un intrusivo de edad cenozoica que probablemente represente la estructura de un cuello volcánico. En esta localidad pueden encontrarse varios cuerpos similares en forma de domos. Dichos cuerpos se encuentran intrusionando los depósitos jurásicos de la formación Piedra Hueca y sedimentos cuaternarios.

2.2 RASGOS ESTRUCTURALES MAYORES DEL ÁREA DE ESTUDIO

La cuenca Otlaltepec se caracteriza por la presencia de fallas normales desarrolladas en el basamento, que la delimitan por sus flancos N, S y W. Estas estructuras de carácter regional presentan un rumbo general de NE-SW y E-O que ponen en contacto la cubierta sedimentaria mesozoica con las rocas paleozoicas cristalinas de la región; dentro de la cuenca también se documentó la presencia de una falla normal NW-SE con características similares.

El Complejo Acatlán también presenta cabalgaduras y estructuras menores en sus afloramientos. Además, se observó un pliegue sinclinal hacia el norte que puede estar relacionado a una de las fallas normales que limitan la cuenca. Hacia el centro del área de estudio se reconoció un sistema de fallas laterales izquierdas que cortan al basamento y a las unidades basales del relleno sedimentario (véase Mapa Geológico anexo).

Finalmente, al norte del área de estudio se registró la presencia de una falla lateral izquierda con orientación preferencial NE-SW.

Con base en el trabajo de campo y la búsqueda bibliográfica, se identificaron en el área de estudio una serie de estructuras regionales (Fig. 2.11) que se describen brevemente y en orden cronológico a continuación:

Cabalgaduras. Esta estructura geológica se encuentran al NE del área de estudio y desplaza al Plutón Totoltepec sobre el resto del Complejo Acatlán. Esta cabalgadura varía en orientación de S10°W-46° en la barranca occidental paralela a la Barranca El Amate, pero en la terracería entre Santo Domingo Tianguistengo y El Limón puede observarse con una dirección NS-28°. Kirsch *et al.*, (2012) infieren que durante el magmatismo que generó el Plutón Totoltepec una componente de movimiento fue transferida hacia el borde oriental del intrusivo, que provocó las cabalgaduras y la exhumación de cuerpo magmático. Esta se estima que ocurrió entre 287 y 283 Ma.

▶ Falla Tianguistengo. La Falla Tianguistengo se ubica al este del área de estudio y tiene un rumbo entre N11°W y N28°W y una longitud aproximada de 12 km. La falla se ha documentado como de tipo normal con el bloque de techo hacia el oeste y está dividida en dos segmentos desplazados a la altura de la Barranca Rincón El Coco. Al norte esta estructura pone en contacto afloramientos del Complejo Acatlán con depósitos de la formación Otlaltepec, los cuales presentan un pliegue sinclinal hacia el oeste de la falla que se asocia al movimiento de esta. El segmento sur corta al Complejo Acatlán y lo pone en contacto con el Plutón Totoltepec. Se le considera una falla normal de tijera que a su vez fue sinsedimentaria y activa durante el Jurásico, dicha condición se determinó al observar que los depósitos de las formaciones Tianguistengo y Otlaltepec cubren al bloque de techo y al bloque de piso en la Barranca Rincón El Coco y al norte del poblado se Santo Tomás Otlaltepec. Hacia el norte del área de estudio la falla se encuentra

completamente cubierta por depósitos jurásicos. Silva-Romo (2010) considera que es una falla normal asociada al desplazamiento lateral izquierdo de la Falla El Gavilán, por lo que se infiere que también tuvo actividad en el Eoceno Medio?-Tardío. Por estar sobreyacida por depósitos reciente en su sector sur, se considera que su actividad cesó previo al Cuaternario.

▶ Falla Totoltepec o Falla Matanza. Esta falla ha sido reportada en diversas ocasiones (Ortega-Gutiérrez, 1989; Silva-Romo, 2010; Kirsch, 2012). Se ubica al sur del área de estudio y pone en contacto las rocas intrusivas del Plutón Totoltepec con la formación Tianguistengo. Su rumbo principal es de N70°W y tiene una longitud aproximada de 13 km aproximadamente. Ha sido descrita como una falla normal (Kirsch, 2012) con bloque de techo hacia el norte y se encuentra cortada por el sistema de seis fallas laterales izquierdas que cruza el centro de la región. Hacia el oeste del área la falla se encuentra limitada por una falla posterior de orientación N-S. Se desconoce el período completo de actividad de esta falla, sin embargo, debido a que existen depósitos de la formación Otlaltepec en el bloque de piso (afloramiento en el poblado de Santo Domingo Tianguistengo) se considera que su actividad fue previa al depósito de esta formación y probablemente sea una falla asociada al depósito e inclinación de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec, por lo cual durante el Jurásico habría actuado como una falla inversa. Su actividad más antigua se ha estimado como Jurásico Inferior.

▶ Falla Ameyaltepec. Esta estructura no fue reportada anteriormente como una falla, sino como un límite discordante. Está constituida por varios segmentos que dan lugar a una traza irregular. Tiene aproximadamente 12 km de longitud y su orientación preferencial es hacia el N35°E. Los indicadores cinemáticos (estrías) indican que se trata de una falla normal con bloque de techo hacia el este. Su buzamiento aumenta su valor de sur a norte, pasando de 26° a 65°. La traza de esta falla fue establecida por medio de el análisis fotogeológico, por su posición con respecto a las formaciones jurásicas que rellenan parte de la cuenca Otlaltepec, se considera que está falla actuó como la falla lístrica que controló el relleno de dicha cuenca durante el Jurásico.

Falla El Gavilán. Este rasgo estructural fue reportado por Ortega-Guerrero (1989) como una falla lateral izquierda con rumbo general N65°E, tiene una longitud aproximada de 30 km. Esta pone en contacto los depósitos de la formación Piedra Hueca ubicados al norte del área de estudio con el Complejo Acatlán, además de cortar a las formaciones Magdalena y Caliza Coyotepec. Silva-Romo (2010) en su tesis de doctorado reporta que la Falla El Gavilán disloca al basamento de la región en sentido izquierdo al menos en 7 km y que su desplazamiento provocó al norte de área de estudio pliegues sinclinales (NW-SE) y anticlinales (NE-SW) en los depósitos mesozoicos de la región. Por medio de observaciones de campo se determinó que la falla estuvo activa previo a los depósitos de las unidades Magdalena y Caliza Coyotepec (Aptiano-Albiano) debido a que estas formaciones cubren al basamento dislocado por esta falla, sin embargo en la Barranca El Encino se observan a los depósitos cretácicos dislocados por la falla, por lo que se infiere que tuvo una reactivación en el Cretácico. Por otro lado, las unidades cenozoicas depositadas en la cuenca Tehutzingo-Tepexi, ubicada al norte del área de estudio, indican que la estructura tuvo un desplazamiento lateral izquierdo en el Eoceno Tardío y quizás experimentó una extensión norte-sur de poca intensidad en el Oligoceno (Silva-Romo, 2010).

Fig. 2.11. Esquema estructural del área de estudio.

▶ Fallas menores. Hacia el sureste del área de estudio se registró la existencia de fallas de pequeñas dimensiones, de tipo lateral izquierda (N10°E y N10°W) y normal (N50°W) en el Plutón Totoltepec y el Complejo Acatlán, observadas en las cercanías de la Barranca El Amate. Esta falla desplaza a la Falla Tianguistengo entre el complejo metamórfico y el intrusivo. Por otro lado, hacia el suroeste del área de estudio Morales-Gámez *et al.*, (2008) estableció la presencia de fallas laterales derechas con orientaciones (N-S) dentro del Complejo Acatlán.

 Sistema de fallas laterales. Hacia el centro del área de estudio sobre el lecho del Río Magdalena se observa un sistema de fallas laterales izquierdas con una orientación preferencial N-S y NW-SE que cortan al Plutón Totoltepec y a las tres sucesiones sedimentarias clásticas reportadas en este estudio.

CAPÍTULO 3

METODOLOGÍA

El método de investigación para elaborar este trabajo puede dividirse en tres partes fundamentales: trabajo de campo, análisis de laboratorio y trabajo de gabinete. A continuación se describen cronológicamente las etapas de desarrollo de esta tesis.

3.1 RECOPILACIÓN BIBLIOGRÁFICA

Se llevó a cabo una búsqueda exhaustiva de los trabajos geológicos y paleontológicos realizados en la región y de la información geográfica disponible. La recopilación de esta información puede consultarse en los Capítulos 1 y 2 de este trabajo.

3.2 TRABAJO DE CAMPO

Se elaboró un mapa geológico preliminar a partir de fotografías aéreas a escala 1:50,000 con la finalidad de distinguir unidades litológicas con base en su relieve, patrón de drenaje y coloración, para lo cual se utilizó la base cartográfica vectorial de INEGI con el Datum ITRF92 en coordenadas UTM y geográficas. Este mapa fotogeológico se utilizó como base para el diseño de transectos para el levantamiento de secciones geológicas, las cuales se procuró que intersectaran la mayor cantidad de discontinuidades tectónicas y contactos haciendo especial énfasis en las zonas donde afloraba la sucesión sedimentaria de interés. En términos generales el trabajo de campo consistió en la elaboración del mapa geológico escala 1:50,000, la descripción detallada de afloramientos con los cuales se reconocieron las distintas unidades geológicas, sus contactos y las estructuras geológicas mayores de la región.

Durante el trabajo de campo se llevó a cabo la toma de sesenta muestras: treinta y nueve para análisis petrográficos, cuatro para estudios paleontológicos y dos para análisis geocronológicos de circones detríticos. Se levantaron cinco columnas estratigráficas detalladas en afloramientos, utilizando el Báculo de Jacob y la metodología propuesta por Tucker (2003) y Silva-Romo y Mendoza-Rosales

(2011). La suma de los espesores totales de la columnas es de 590 m. Las columnas estratigráficas levantadas fueron digitalizadas y resumidas para su presentación en este texto. Durante el levantamiento estratigráfico se identificaron facies y asociaciones de facies para determinar el ambiente sedimentario de la formación Tianguistengo.

3.3 ANÁLISIS PETROGRÁFICO

Las treinta y cuatro muestras colectadas fueron enviadas al Taller de Laminación del Instituto de Geología de la UNAM y el análisis petrográfico de las láminas delgadas resultantes se llevó a cabo en el Laboratorio de Microscopios Francisco J. Fabregat de la misma institución. Se utilizó un microscopio polarizado marca Leica DM4500 P. Con estos estudios de identificó la textura, componentes mineralógicos y/o fosilíferos principales de las muestras. Las descripciones pueden encontrarse en el Capítulo 4 referente a facies sedimentarias y petrología. Se utilizó la clasificación de Dott (1964) y Pettijohn *et al.* (1972) para las rocas clásticas. Los carbonatos fueron descritos de acuerdo a las clasificaciones de Dunham y Flügel (2004).

En el análisis de microfacies se identificó contenido fósil (ostrácodos) cuyo estudio fue realizado Dr. Lizeth Pérez Alvarado del Instituto de Geología de la UNAM y del Dr. Benjamín Sames de la Universidad de Wien en Austria.

3.4 FECHAMIENTO DE CIRCONES DETRÍTICOS

Con el análisis petrográfico se ubicaron aquellas muestras que contienen circones detríticos, minerales útiles para definir la procedencia y edad máxima de sedimentación de rocas sedimentarias. En el Taller de Molienda del Instituto de Geología se utilizó la metodología estándar (Morton, 1985) para la obtención de circones detríticos en dos muestras, la cual consiste en:

 Trituración. Este procedimiento inició con la limpieza exhaustiva del Taller de Molienda para evitar la contaminación de las muestras. Se limpiaron las zonas donde se llevó a cabo la manipulación de los materiales, así como la maquinaria, las herramientas y utensilios que estuvieron en contacto con las muestras, esto se realizo con agua destilada y acetona. Esta limpieza rigurosa se realizó entre la molienda de cada una de las muestras. Una vez limpia el área se procedió a triturar la muestra con la prensa hasta dejarla con un tamaño de grano de arena fina y fue colocada en bolsas previamente etiquetadas. Al finalizar el uso del equipo, este se aseó nuevo para dejarlo listo para el siguiente usuario.

- Cribado. El material previamente triturado se sometió a un proceso de tamizado para separar la muestra en diferentes tamaños de partículas, se usaron las mallas de número 80 y 100. La limpieza de las mallas se realizó con aire comprimido, un baño ultrasónico, acetona y aguja para evitar contaminación. Se utilizó una máquina vibradora RO-TAP. El equipo fue aseado entre muestra y muestra. El material separado por tamaños se dispuso en bolsas etiquetadas.
- *Mesa Concentradora*. Este equipo consiste en una mesa vibradora que utiliza un flujo de agua laminar para separar minerales de diferente densidad. Esta mesa puede descartar hasta un 85% de la muestra total, el cual corresponde a minerales ligeros (Morton, 1985). Fueron procesadas en este equipo las fracciones granulométricas < 100 μ m y < 80 μ m >100 μ m. El material resultante se etiqueto para ser utilizado en el siguiente proceso.
- Separador Magnético Isodinámico. Este equipo somete a los minerales a la acción de un campo magnético controlado por un amperímetro para concentrarlos en minerales magnéticos y no magnéticos, estos últimos a su vez pueden ser separados de acuerdo a su susceptibilidad magnética. Este separador fue utilizado en posición vertical (Handmag). En las muestras se separaron únicamente los minerales susceptibles al 0.2 amp para evitar la pérdida de minerales magnéticos de interés como la turmalina (Morton, 1985).
- Separación por densidad con líquidos pesados. Los minerales tienen una densidad específica que puede fluctuar en un rango muy pequeño, que puede ser aprovechada para separar los minerales, en este método se usan líquidos pesados de densidad conocida. Los concentrados de minerales de las fracciones granulométricas < 100 μm y <80 μm >100 μm se sumergieron en Bromoformo, lo que permitió separar las minerales de mayor densidad a 2.89 g/cm³, entre ellos el circón.
- Separación manual. Finalmente del concentrado de minerales se separaron los circones con ayuda de un microscopio estereoscópico Olympus ZD31, se describió su morfología y coloración, se reconocieron las distintas poblaciones. Posteriormente, se montaron en resina epóxica y fueron pulidos con abrasivo de diamante en suspensión para su posterior análisis.

En los circones seleccionados y montados se realizaron análisis de catodoluminiscencia con un luminoscopio ELM3R montado sobre un microscopio binocular conectado con una cámara digital. De acuerdo con la información obtenida por las fotografías de catodoluminiscencia se seleccionaron 100 circones por muestra (200 en total). Análisis de U-Pb fueron realizados en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la UNAM utilizando el método de ablación láser y espectrometría de masas de plasma inducido acoplado (Laser ablation-muticollector inductivelly coupled plasma mass spectrometry) bajo el procedimiento descrito en Solari *et al.* (2010), la información técnica puede encontrarse en <u>http://www.geociencias.unam.mx/~solari/index_files/LEI/LA-ICPMS.html</u>. La reducción de datos fue realizada con la metodología descrita en Solari y Tanner (2012). La ubicación estratigráfica de las muestras de circones puede observarse en las Columnas I y V. Los resultados pueden encontrarse en el Capítulo 6 y el Apéndice II.

3.5 ANÁLISIS ESTRUCTURAL

Se colectaron 585 datos de rumbo y buzamiento de las unidades Tianguistengo, Piedra Hueca y Otlaltepec para establecer un modelo de sedimentación sintectónica. Dichos datos fueron ingresados en el software OSX Stereonet Versión 2.1, a fin de realizar inferencias acerca de la tectónica imperante en la región durante el depósito de las formaciones sedimentarias. Asimismo se colectaron datos de fallas sinsedimentarias identificadas en la formación Tianguistengo y fueron rotadas a la paleohorizontal para definir el campo de esfuerzos asociado a su depósito.

3.5 TRABAJO DE GABINETE

Finalmente, toda la información obtenida en el trabajo de campo y laboratorio se procesó para la redacción de los resultados y conclusiones en los Capítulos 7 y 8 de este trabajo.

CAPÍTULO 4

ANÁLISIS DE FACIES, DE MICROFACIES Y PETROGRÁFICO

4.1 FACIES DE LA FORMACIÓN TIANGUISTENGO

Con el objetivo de caracterizar a la formación Tianguistengo se realizó un registro detallado de sus estructuras sedimentarias y contenido fósil. Se midieron cinco columnas estratigráficas (Tabla 4.1) (Figs. 4.1-4.6). La numeración de las columnas va de acuerdo a su posición geográfica de Este a Oeste (véase Mapa Geológico anexo). La simbología utilizada se encuentra en la Fig. 4.1. La selección de las zonas de medición se realizó de acuerdo a la calidad y continuidad de los afloramientos. Con la intención de registrar los contactos de la formación Tianguistengo con unidades adyacentes y resaltar sus diferencias sedimentológicas, en las columnas estratigráficas I, II y III, se midieron algunos metros de las formaciones Piedra Hueca y Otlaltepec.

Como resultado del trabajo de campo se identificaron once facies sedimentarias en la formación Tianguistengo, diez de ellas basadas en la clasificación de Miall (2006), y una microfacies basada en la descripción de microfacies lacustres de presentada por Flügel (2004) y la clasificación de Dunham. De acuerdo a la interpretación de facies fluviales presentada en Miall (2006) en este trabajo se presenta una adaptación que incluye seis asociaciones de facies.

Nombre	LOCALIDAD	LONGITUD (M)
Columna I Santo Domingo	Santo Domingo Tianguistengo, lecho Río Magdalena	172
Columna II Magdalena	Cerro la Matanza, lecho Río Magdalena	192
Columna III Cazahuate	Barranca Cazahuate	120
Columna IV Tedigno	Barranca Tedigno	36
Columna V Alegría	Ranchería La Huertilla	60

Tabla 4.1. Listado de columnas estratigráficas medidas en este trabajo.

LEYENDA COLUMNAS ESTRATIGRÁFICAS

Litología	Estru	icturas Sedimenta	arias	Fósiles	
Lutitas		Laminación paralela		Ostrácodos	
	77777	Laminación cruzada p	lanar	Impresiones de hoias	
Limolitas	<u>/////</u>	Laminación lenticular			
Areniscas	m	Laminación convoluta		A Raices	
Areniscas		Laminación burda		Troncos	
con estratificación cruzada	Set	Estratificación cruzada	a hamacad	da 🛛 💮 Impresiones de troncos	
Areniscas con laminación	11	Rizaduras		Moldes de plantas	
Conglomarados	\mathcal{T}	Marcas de carga		\mathbf{A} y troncos en la cima de	
Congromerados	00	Nódulos de arena		los estratos	
Conglomerados con estratificación cruzada	000	Imbricación		C Icnofósiles	
Brecha	0000	Gravas		Litología de Clastos	
Dicena	0000	Gradación normal		Litologia de Clastos	
Muestras	0000	Gradación inversa		Subredondeados a redondeados	
SDT-17 Muestra petrográfica		Horizonte con raíces		Arenisca	
	~~	Intraclastos de lutita		 Cuarzo lechoso 	
SD1-05 Muestra de circones detriticos	ŶŶŶ	Grietas de desecación		 Intrusivos 	
SDT-08 Muestra de paleontología	0	Lentes de limo		Metamórfico	
Límites de estratos	0:0	Lentes de arenas		O Volcánicos	
Paralelos	4300	Lentes de gravas		Angulares a subangulares	
		Lentes de calcáreos		Arenisca	
\neg Marcas de vegetación	555	Bioturbación intensa		S Ígneos	
				- ignood	
Facies			Micro	ofacies	
Fl Limo y arena con laminación para	Limo y arena con laminación paralela		LMF6	Facies Lacustres	
Fr Limo o arena con raíces	Limo o arena con raíces		Asoci	aciones de facies	
Sp Arena con estratificación cruzada	Arena con estratificación cruzada planar		Asociaciones de lactes		
St Arena con estratificación cruzada	t Arena con estratificación cruzada curva		AF1	Levee	
Sr Arena con rizaduras y estratificación cruzada		AF2	Crevasse chanel		
Sm Arena masivas	Arena masivas		AF3	Crevasse splay	
Ai Arena con intraclastos	Arena con intraclastos		AF4	Planicie de inundación	
Gci Grava con gradación inversa	i Grava con gradación inversa		AF5	Flujos de intraclastos	
Gmm Grava matriz soportadas masivas	Grava matriz soportadas masivas		AF6	Flujos de sedimentos por gravedad	
Gmg Grava con gradación incipiente	te		AF7	Rellenos de canal	

Fig. 4.1. Simbología utilizada en las columnas estratigráficas.

Fig. 4.2. Columna I Santo Domingo, medida sobre el lecho del Río Magdalena en las cercanías del poblado de Santo Domingo Tianguistengo, hacia la cima de la columna se observa el contacto con los depósitos de la formación Piedra Hueca.

Fig. 4.3. Columna II Magdalena medida sobre el lecho del Río Magdalena en las cercanías del Cerro La Matanza. El límite inferior de la columna es la Falla Totoltepec, hacia la cima de la columna se observa el contacto con los depósitos de la formación Piedra Hueca.

Fig. 4.4. Columna III Cazahuate medida en la barranca del mismo nombre. El límite inferior de la columna es la Falla Totoltepec. Hacia la cima puede observarse el contacto con los depósitos de la formación Piedra Hueca.

Fig. 4.5. Columna IV Tedigno medida en las cercanías de la Barranca Tedigno.

Fig. 4.6. Columna V Alegría medida en las cercanías del poblado La Huertilla, en las faldas del Cerro Alegría. El límite inferior de la columna es la Falla Totoltepec.

La medición total de las columnas estratigráficas fue de 580 m, de los cuales 420 m corresponden a la formación Tianguistengo. El mayor espesor registrado en este trabajo para dicha unidad fue de 132 m (Columna III Magdalena).

En la Columna I Santo Domingo se midieron 86 m de la formación Tianguistengo, donde se reconocieron las facies Fl, Fr, Sp, St, Sr y Sm (código y clasificación de Miall, 2006). El tipo de contacto y la unidad subyacente en esta columna se desconoce pues se encuentra cubierto por depósitos recientes, aunque por el trabajo de cartografía se infiere que se trata del Plutón Totoltepec. El contacto superior es discordante con los conglomerados de la formación Piedra Hueca de acuerdo con las mediciones de rumbo y echado de ambas unidades (Fig. 4.2).

En la Columna II Magdalena se midieron 132 m de la formación Tianguistengo y se registraron seis facies clásticas sedimentarias y una microfacies: Fl, Fr, Sp, St y Sr (código y clasificación de Miall, 2006), una facies de intraclástos Bi y una microfacies de carbonatos con ostrácodos, cuya nomenclatura se definió como LMF6 (código presentado por Flügel, 2004). El contacto inferior es tectónico con el Plutón Totoltepec (Falla Totoltepec) y se registró en la base de la columna un par de metros de brecha de falla asociada a este contacto. El contacto superior se considera como una discordancia con la formación Piedra Hueca. En los niveles 98 m y 101 m de esta columna se encontraron un par de pequeñas fallas sinsedimentarias que cortan la sección (Fig. 4.3).

En la Columna III Cazahuate se midieron 106 m de esta unidad Tianguistengo, donde se llevó a cabo el registro de las facies Fl, Sp y St (código y clasificación de Miall, 2006). El contacto inferior de la columna es tectónico con el Plutón Totoltepec. El contacto superior es discordante con la formación Piedra Hueca (Fig. 4.4).

La Columna IV Tedigno mide 36 m donde se registraron las facies Fl, Fr, Sr, Sm, Gci y Gmm. No se registraron los contactos inferior y superior, pero por el trabajo de campo se determinó que se trata de las mismas unidades registradas en las columnas anteriores (Fig. 4.5).

La Columna V Alegría mide 60 m y se reconocieron las facies Fl, Sp, Sm, Gci, Gmm y Gmg. Al igual que en la columna anterior, no se llevó a cabo el registro en la columna de los contactos inferior y superior de la unidad Tianguistengo, pero de acuerdo a las observaciones de campo las unidades en contacto son el Plutón Totoltepec y la formación Piedra Hueca (Fig. 4.6).

4.1.1 FACIES DE LIMO Y ARENA CON LAMINACIÓN PARALELA (FL)

Consiste en limolita y arenisca de grano fino de coloración rojiza y verdosa en estratos continuos y paralelos con límites rectos y en ocasiones sinuosos. El espesor de los estratos de arenisca varía de 0.05 a 1.2 m. Las estructuras sedimentarias predominantes son laminación paralela, laminación convoluta (Fig. 4.7 A); grietas de desecación y rizaduras en la cima de los estratos (Fig. 4.7, B y C) y marcas de carga hacia la base. En ocasiones se encuentran una incipiente gradación normal y nódulos de arena. Estas rocas pueden presentar una intensa bioturbación que afecta las estructuras sedimentarias causando una pérdida parcial de las mismas, que es especialmente frecuente en la base de los estratos (Fig. 4.7 D); pueden encontrarse impresiones de madera.

4.1.2 FACIES DE LIMO Y ARENA CON RAÍCES (FR)

La facies Fr se compone por sedimento del tamaño de arena fina y en ocasiones de limo, se presenta en estratos que van de 7 a 40 cm de espesor, su coloración general es de rojiza a verdosa; esta facies presenta evidencias de crecimiento de vegetación, tales como impresiones de raíces en posición de crecimiento (Fig. 4.8, A y B) y moldes de troncos en la cima de los estratos de diversos tamaños (Fig. 4.8, C y D), que van desde 0.2 hasta 8 cm de diámetro y que parecen corresponder a las marcas de troncos en posición de crecimiento. Las estructuras sedimentarias como laminación paralela y lenticular, se encuentran difusas y parecen haber sido perturbadas por crecimiento de vegetación e intensa bioturbación. Pueden encontrarse nódulos de arena e intraclástos de lutita.

4.1.3 FACIES DE LIMO Y ARENA CON ESTRATIFICACIÓN CRUZADA PLANAR (SP)

La facies Sp se compone de arena muy fina a media en estratos de 0.2 a 1 m de espesor con límites planares. Puede ser de color rojizo o castaño claro. La facies presenta estratificación cruzada planar (Fig. 4.9 A), laminación flaser, nódulos de arena de 1 a 2 cm, intraclástos rojizos de sedimento más fino (limos o arcillas), moldes de los intraclástos, (Fig. 4.9 B) y en ocasiones, troncos bien preservados (Fig. 4.9 C). En la cima de los estratos puede encontrarse bioturbación y galerías de organismos (Fig. 4.9, D y E). Hacia la región occidental del área de estudio, esta facies presenta un incremento en el tamaño de grano (arena de grano medio) y lentes de gravas con gradación normal

(Fig. 4.9 F).

Fig. 4.7. Características sedimentológicas de la facies Fl. A) Laminación convoluta cubierta por laminación paralela. Corresponde al nivel estratigráfico 3 m de la Columna I. B) Grietas de desecación hexagonales en la cima de los estratos y C) Marcas de corriente simétricas onduladas en la cima de los estratos sobre el lecho de la Barranca Tedigno. D) Intensa bioturbación en la base de los estratos; la intensa actividad orgánica afectó las estructuras primarias y sólo quedan algunos relictos de las mismas. Corresponde al nivel estratigráfico 22 m de la Columna I. Dimensiones de la lupa y navaja 4 cm y 9 cm respectivamente.

Fig. 4.8. Evidencias de crecimiento de vegetación en la facies Fr. A y B) Impresiones de raíces en posición de crecimiento. C) Orificios en la cima de los estratos que coinciden con las raíces en posición de crecimiento. Imágenes que corresponden del nivel estratigráfico 67 m de la Columna I. D) Molde de tronco en cima de un estrato, correspondiente al nivel estratigráfico 97 m de la Columna II. Dimensión de la navaja 9 cm.

4.1.4 FACIES DE ARENA CON ESTRATIFICACIÓN CRUZADA CURVA (ST)

Esta facies se encuentra como estratos de 1 m de espesor, paralelos, ocasionalmente con rizaduras en la cima. Su granulometría varía de arena conglomerática a arena media. Su coloración principal es castaño claro. Presenta estratificación cruzada curva, lentes de arenas más finas, gradación inversa y fragmentos de troncos (Fig. 4.10). Hacia oeste del área de estudio puede presentar algunos clástos de granito y muestra un incremento en el tamaño de grano, así como lentes de conglomerado.

Fig. 4.9. Características sedimentológicas de la facies Sp. A) Estratificación cruzada planar. Corresponde al nivel estratigráfico 31 m de la Columna I. Dimensión de la navaja 9 cm. B) Intraclástos de lutita en sedimentos arenosos de la facies Sp. Afloramiento sobre el lecho del Río Magdalena. Dimensión de la lupa 3 cm. C) Molde de fragmento de madera preservado en los sedimentos, diámetro 0.5 cm, en su superficie se observa la textura de la corteza. Corresponde al nivel estratigráfico 7 m de la Columna I. Dimensión de la lupa 4 cm. D) Bioturbación en la cima de los estratos, se encuentra en el nivel estratigráfico 32 m de la Columna I. Dimensión del lápiz 8 cm. E) Galería de alimentación de

organismo en la cima de los estratos. Afloramiento sobre el lecho del Río Magdalena. Dimensión de la brújula 9 cm. F) Se observa la estratificación cruzada planar de bajo ángulo y los lentes de gravas con gradación. Corresponde al nivel estratigráfico 23 m de la Columna V. Dimensión del martillo 41 cm.

Fig. 4.10. Estratificación cruzada curva. Afloramiento en las faldas del cerro Alegría al occidente del área de estudio.

4.1.5 FACIES DE ARENA CON RIZADURAS Y ESTRATIFICACIÓN CRUZADA (SR)

La facies Sr se compone de arena de grano medio a fino y presenta rizaduras simétricas y asimétricas en la cima de los estratos. Los estratos de esta facies tienen de 20 a 50 cm de espesor y son paralelos. La coloración de estas rocas es rojiza o castaña. Además de las rizaduras puede encontrarse laminación paralela discontinua y lenticular (Fig. 4.11).

Fig. 4.11. Características sedimentológicas de las facies Sr. A) Rizaduras asimétricas onduladas con bifurcaciones. B) Rizaduras simétricas onduladas. C) Laminación lenticular. Afloramientos sobre el lecho del Río Magdalena. D) Laminación ondulada indicando la formación de rizaduras simétricas en la cima del estrato, afloramiento sobre el lecho de la Barranca Tedigno. Dimensión de las escalas: 13, 41, 4 y 9 cm respectivamente.

4.1.6 FACIES DE ARENA MASIVA (SM)

La facies Sm está representada por areniscas de coloración rojiza y verdosa de grano medio que forman depósitos masivos, cuyo espesor varía de 0.4 a 1 m. Pueden encontrarse icnofósiles de 15 cm de largo por 2 cm de ancho del tipo Scoyenia (Fig. 4.12 A).

Fig. 4.12. Características sedimentológicas de las facies Sm y Gmm. A) Icnofósil encontrado en las areniscas de la facies Sm. Afloramiento en las inmediaciones del Cerro La Matanza. Tamaño de la lupa 4 cm. B) Conglomerado matriz soportado, los clástos en esta región (Barranca Tedigno) son de mayor tamaño y menor redondez con respecto a otras zonas que muestran la facies Gmm. Afloramiento perteneciente al nivel estratigráfico 12 m de la Columna IV. Tamaño del martillo 40.5 cm.

4.1.7 FACIES DE GRAVAS MATRIZ SOPORTADAS MASIVAS (GMM)

La facies Gmm está constituida por conglomerado polimíctico masivos, matriz soportado, con matriz de arenas gruesas a muy gruesas conformada principalmente de cuarzo y feldespato. El porcentaje de matriz promedio es de 50%. Las gravas constan de clástos de granito de coloración crema que van de subangulares a angulares, de 8 a 15 cm en su eje más largo; fragmentos de esquistos verdosos, subredondeados de 2 a 5 cm; clástos de arenisca rojiza y verdosa, subangular a angular de máximo 35 cm; fragmentos volcánicos de composición intermedia de 1 a 5 cm de tamaño, subredondeados; y cuarzo lechoso subangular de máximo 3 cm. La falta organización interna en esta facies es evidente. La coloración de los afloramientos es de castaño claro a obscuro. Presenta sílice como cementante (Fig. 4.12 B).

4.1.8 FACIES DE GRAVA CON GRADACIÓN INCIPIENTE (GMG)

Esta facies conglomerática está representada por conglomerado con gradación normal. La matriz es de arena gruesa compuesta de cuarzo, feldespato y líticos de granito y esquisto. El porcentaje de matriz es de 30%. La composición de las gravas es de fragmentos de granito subredondeado de 2 mm a 5 cm; rocas intrusivas básicas (gabro) subredondeadas de 3 a 4 cm; cuarzo lechoso subredondeado de 2 a 2.5 cm; rocas volcánicas de composición intermedia subredondeadas de 5 a 8 cm de diámetro; arenitas arcósicas y cuarzoarenitas de grano medio y fino subredondeadas de 2.5 a 3 cm. Como estructuras sedimentarias pueden encontrarse lentes de arenas y estratificación cruzada curva (Fig. 4.13 A).

4.1.9 FACIES DE GRAVA CON GRADACIÓN INVERSA (GCI)

La facies Gci se caracteriza por estar soportada por clástos. Su composición es variable, hacia el centro del área de estudio en la Barranca Tedigno se compone principalmente de cuarzo angular y subangular, fragmentos de granito subangulares. Hacia el poniente su composición se diversifica y contiene fragmentos de granito subangulares, de 4 cm de diámetro; areniscas de grano fino y medio de 2 cm; gabro subangular de 6 cm en promedio; esquistos subredondeados de 2 cm y cuarzo lechoso subangular. Como estructuras sedimentarias se encuentra gradación inversa, imbricación y lentes de arenas.

Fig. 4.13. Conglomerados de la facies Gmg en el nivel estratigráfico 15 m de la Columna V. La flecha amarilla indica el aumento del tamaño de grano. Tamaño del martillo 40.5 cm.

4.1.10 FACIES DE ARENA CON INTRACLÁSTOS (AI)

En muestra de mano esta facies consiste en arenisca con intraclástos de limolita y arena en matriz de arena finas a medias. Su coloración general es rojiza. Los intraclástos van de angulares a subangulares y son de forma alargada, su diámetro va de 0.2 a 5 cm en su eje más largo. El espesor de los estratos es de máximo 1 m y sus límites son erosivos. Se encuentra en contacto con la facies Fl (Fig. 4.14 A y B).

Fig. 4.14. Características sedimentológicas de las facies Ai, C y LMF6. Facies Ai. A) Se observan los intraclástos que conforman la brecha en la matriz de arenas finas, pueden encontrarse zonas de la facies Fl en la que se distingue laminación paralela. Dimensión de la navaja 9 cm. B) Intraclástos indicando un límite erosivo entre las facies Fl y Bi. Imágenes que representan el nivel estratigráfico 63 m de la Columna II. Dimensión de la escala 15 cm. C) Afloramiento sobre el lecho del Río Magdalena que muestra dos horizontes de carbón de 0.5 m de espesor. D) Horizontes de calizas con ostrácodos. Dimensión de la libreta 19 cm. Corresponde al nivel estratigráfico 29 m de la Columna II.

4.1.11 FACIES DE CARBÓN (C)

La litofacies C no se registró en ninguna columna, pero se observó en numerosos afloramientos. Esta formada por estratos lenticulares de carbón, de 0.4 a 0.6 m de espesor, que se presentan intercalados con areniscas y limolitas. Su coloración es negra o castaña obscura y puede presentar laminación paralela burda (Fig. 4.14 C).

4.1.12 FACIES LACUSTRES (LMF6)

Consisten en calizas de coloración grisácea y castaño claro en estratos delgados de 8 a 20 cm de espesor con estratos de límites ligeramente irregulares. Presenta laminación difusa y ondulada y se observan algunos microfósiles diseminados en la muestra de mano (Fig. 4.14 D).

4.2. MICROFACIES DE LA FORMACIÓN TIANGUISTENGO

El análisis de microfacies se define como el uso de los criterios petrográficos y paleontológicos en el estudio de una muestra en lámina delgada. Es una herramienta de gran utilidad en las Ciencias de la Tierra que permite elaborar interesantes hipótesis acerca de las condiciones de depósito de una roca calcárea.

En este trabajo se realizó el análisis de cuatro muestras petrográficas tomadas de dos horizontes en el nivel 29 m de la Columna II. Las muestras SDT-62 A y SDT-62 B corresponden al nivel inferior y las muestras SDT-62 C y SDT-62 D al nivel superior (Fig. 4.4). No se realizaron más muestreos pues estos dos horizontes son los únicos en su tipo que se pudieron observar. Se utilizó la clasificación de Dunham para describir las litologías y la clasificación presentada en Flügel (2004) que incorpora los estudios de otros autores, para las microfacies. La nomenclatura LMF (siglas en inglés) hace referencia a las microfacies mas comunes presentes en los lagos (Lacustrine Microfacies Type) que se dividen en 13 tipos. En este trabajo se identificó dos texturas de microfacies LFM 6, propuesta por Flügel (2004) aunque se considera que los depósitos que contienen a los ostrácodos no representan a un lago de grandes proporciones, sino estanques pequeños.

4.2.1 MICROFACIES LFM6

Textura 1: Wackestone con matriz de micrita neomorfizada a microesparita y una gran cantidad de valvas de ostrácodos de 0.2 a 0.7 mm en su eje más largo; estas pueden presentarse articuladas o desarticuladas y pueden ser delgadas o gruesas. Las valvas articuladas presentan un mosaico de ortoesparita como relleno secundario y en ocasiones pueden presentar cierta orientación. Otros fragmentos esqueletales que se encuentran son bioclástos de forma alargada y delgada (0.2 mm de largo), algunos de ellos en forma de placas aún articuladas (10 mm de largo) y posibles calciesferas sin borde de 0.03 mm de diámetro. También pueden encontrarse rastros de bioturbación rellena con material micrítico más fino (Figs. 4.15).

Textura 2: Packstone con textura granosoportada, matriz de micrita neomorfizada y con valvas de ostrácodos desarticuladas y desorganizadas de entre 0.2 y 0.6 mm en su eje más largo. Se identificó un ejemplar de algas verdes del tipo Charofitas de 2.5 mm de diámetro (Figs. 4.16)

Es poco común estudiar ostrácodos en lámina delgada debido a que no siempre se tienen secciones adecuadas, sin embargo gracias a la colaboración del Dr. Benjamin Sames de la Universität de Wien fue posible identificar ejemplares de tres superfamilias identificadas como Darwinuloidea, Cypridoidea y Cytheroidea.

Aunque ambas texturas presentan sedimentos clásticos diseminados del tamaño de limo y arena fina, la mayoría se concentra en los packstone. Estos sedimentos corresponden a:

• Cuarzo monocristalino subangular-angular con extinción recta. En ocasiones se encuentra en forma rectangular. Muy abundante. Puede presentarse dentro y fuera de los ostrácodos.

- Micas de forma tabular, algunas a un costado de los granos de cuarzo. Tipo Moscovita.
- Piroxenos subredondeados, poco abundantes.
- Plagioclasas subangulares, poco abundantes.
- Circones subredondeados, poco abundantes.

Las muestras presentan horizontes oxidados como evidencia de disolución por presión, óxidos y cuarzo reemplazado por CaCO₃.

Fig. 4.15. Características petrológicas de las rocas carbonatadas de la formación Tianguistengo, Textura 1: A) Sección de valvas de ostrácodos articuladas en matriz micrítica. En la porosidad intrapartícula de los ostrácodos se desarrolló un mosaico de ortoesparita de grano grueso. Muestra SDT-62 A. Nícoles cruzados. 4 x. T B) a) Secciones de ostrácodos en matriz de micrita. En la porosidad intrapartícula de los ostrácodos se desarrolló un mosaico de ortoesparita. En la porosidad

cuarzo monocristalino del tamaño de limo, subangular, es el material detrítico más abundante en la muestra aunque hay otros dispersos en la imagen. c) Relictos de valvas articuladas de ostrácodos reemplazadas por micrita, granos de cuarzo al centro. Muestra SDT-62 A. Nícoles cruzados. 4 x. C) Fragmento de bioclásto en matriz de micrita. Muestra SDT-62 C. Nícoles cruzados. 20 x. D) Fragmento de bioclásto en matriz de micrita. Muestra SDT-62 B. Nícoles cruzados 4 x. E) a) Valva de ostrácodo desarticulada. b) Calciesfera. c) Cuarzo monocristalino cuarzo monocristalino del tamaño de limo, subangular con reemplazamiento de CaCO₃. Muestra SDT-62 A. Nícoles cruzados. 10 x. F) Sección de valvas de ostrácodos articuladas y desarticuladas en el centro y sección de alga Charofita de bordes irregulares. Se observa la textura lodosoportada de la muestra. Muestra SDT-62 A. Nícoles cruzados. 10 x.

Fig. 4.16. Características petrológicas de las rocas carbonatadas de la formación Tianguistengo, Textura 2: A) Valvas articuladas de ostrácodos rellenas de ortoesparita. Se observa la textura granosoportada de la muestra. Muestra SDT-62 D. Nícoles cruzados. 4 x. B) a) Cuarzo monocristalino del tamaño de limo, angular con reemplazamiento de CaCO₃. b) Sección de ostrácodo relleno de

ortoesparita. Muestra SDT-62 B. Nícoles cruzados. 10 x. C) a) Horizontes de óxidos como evidencia de disolución por presión. b) Cristal de moscovita detrítica embebido en la matriz de micrita. c) Grano de cuarzo monocristalino subredondeado del tamaño de limo. Muestra SDT-62 A. Nícoles cruzados. 10 x. D) Bioturbación rellena de material micrítico más fino, que el de los alrededores. Muestra SDT-62 C. Nícoles cruzados. 4 x.

4.2.2 EDAD DEL CONTENIDO FÓSIL

Los ostrácodos son crustáceos microscópicos con valvas que poseen bajas cantidades de calcita de magnesio. Habitan en diversos tipos de hábitats acuáticos, tanto marinos como terrestres, por ejemplo: estanques, lagos, ríos, arroyos, estuarios y océanos. Los ostrácodos extraídos de sedimentos lacustres son uno de los componentes más útiles para estimar variaciones del clima pasado, ya que pueden proveer de información acerca del ambiente donde habitaban, por ejemplo: temperatura, salinidad y cambios de nivel del lago (Pérez-Alvarado *et al.*, 2008; Thorp y Covich, 2010).

El orden Podocopida está formado por las superfamilas Darwinuloidea, Cypridoidea y Cytheroidea, de las cuales se identificaron diversos ejemplares en los sedimentos calcáreos de la formación Tianguistengo, específicamente de ostrácodos no-marinos. El registro fósil indica que el alcance estratigráfico de estas superfamilias va desde el Paleozoico hasta el Cenozoico (Tabla 4.2), lo cual no permite establecer una edad específica para los estratos que contienen a las muestras estudiadas, pues la edad del material paleontológico supera el rango de edad obtenido por medio del análisis de circones detríticos (Capítulo 6).

SUPERFAMILIA	ALCANCE ESTRATIGRÁFICO (MA)	Sistema	AMBIENTE
Cytheroidea	450-0	Ordovícico Tardío- Cuaternario	Continental, Marino,
Darwinuloidea	360-0	Devónico Tardío- Cuaternario	Continental
Cypridoidea	400-0	Devónico Temprano- Cuaternario	Continental, Marino, Transicional

Tabla 4.2. Alcance estratigráfico específico de las superfamilias que conforman el orden Podocopida y sus preferencias ambientales (Thorp y Covich; 2010; Horne *et al.*, 2012).

Sin embargo, los ejemplares corresponden a un ambiente continental y de acuerdo con Thorp y Covich (2010) aunque el orden Podocopia comenzó siendo un grupo de organismos marinos, se ha estimado que la invasión de los hábitats terrestres comenzó a finales del Paleozoico y específicamente la superfamilia Cypridoidea tuvo una gran presencia en ambientes continentales desde el Jurásico Medio.

4.3 ASOCIACIONES DE FACIES

De acuerdo a las observaciones de campo y a la metodología propuesta por Miall (2006), en los depósitos de la formación Tianguistengo se identificaron seis asociaciones de facies, cuyos elementos e interpretación se enlistan a continuación (Tabla 4.3).

4.3.1 Asociaciones de facies AF1: Levee

Esta asociación se compone de la facies de limo y arena con laminación paralela (Fl). Tiene un espesor máximo de 12 m y mínimo de 5 m. El espesor total puede deberse a distintos eventos. Puede encontrarse en las columnas I, II, III, y IV. De Este a Oeste disminuye su presencia en el área de estudio. Se encuentra en contacto con las asociaciones AF2, AF3, AF4 y AF6. Esta asociación se encuentra con frecuencia en planicies de inundación. Forma un elemento arquitectónico que se conoce como levee, que son particiones elevadas entre canales y planicies de inundación. Debido a su carácter y posición los levee pueden proporcionar un control crítico sobre los procesos que determinan la distribución de agua y sedimentos en los sistemas fluviales (Brierley *et al.*, 1997). Los levee se forman cuando el flujo de agua en un ambiente fluvial de un canal sobrepasa los límites de éste y deposita sobre los costados sedimentos finos y gruesos, los de arena suelen ser muy comunes. Después de repetidas inundaciones, el sedimento acumulado aumenta su espesor y forma bordes que limitan el o los canales. La variación en el espesor de los estratos depende de la disponibilidad de sedimento, distancia con respecto al canal que aporta el sedimento, estilo fluvial y velocidades de subsidencia de la cuenca (Miall, 2006).

4.3.2 ASOCIACIONES DE FACIES AF2: DEPÓSITO DE AVENIDA (CANAL) (CREVASSE CHANEL)

La AF2 se compone de arenas con estratificación cruzada planar (Sp), arenas con estratificación cruzada curva (St) y arenas con rizaduras y estratificación cruzada (Sr). Tiene un espesor máximo de 8 m y se identificó en las columnas I, II y III. Se encuentra en contacto con las asociaciones AF1, AF3 y AF4. La asociación se interpretó como creveasse chanel, que son canales que atraviesan levees y otros depósitos y forman un sistema distributario tipo delta (*crevasse splay*) poco profundo, a un costado del canal principal. El flujo de agua en estos elementos eventualmente se une a un canal principal (Miall, 2006).

4.3.3 ASOCIACIONES DE FACIES AF3: DEPÓSITO DE AVENIDA (LÓBULO) (CREVASSE SPLAY)

Formada por facies de limos y arenas con laminación paralela (Fl), arenas con estratificación cruzada planar (Sp), arenas con estratificación cruzada curva (St) y arenas con rizaduras y estratificación cruzada (Sr), la asociación de facies se encuentra presente en las columnas I, II y III. Tiene un espesor promedio de 14 m y se encuentra en contacto con las asociaciones AF1, AF2 y AF4. Una vez que se forma un *crevasse chanel*, este da lugar a una progradación tipo delta hacia la planicie de inundación, a esta se le conoce como *crevasse splay*. Una vez que el levee se ha roto el agua sale de su cauce y medida que el agua se extiende sobre la planicie de inundación ocurre el depósito de los sedimentos en suspensión. La deposición resultante puede crear depósitos gradados. Estos depósitos varían en tamaño, los más grandes pueden tener 6 m de espesor en el borde y extenderse hasta 2 km. Usualmente estos depósitos están cortados por elementos *crevasse chanel* e intercalados con depósitos de planicies de inundación.

4.3.4 ASOCIACIONES DE FACIES AF4: PLANICIE DE INUNDACIÓN

La asociación de facies AF4 se compone de las facies de limos y arenas con laminación paralela (Fl), limos o arenas con raíces (Fr), arenas con rizaduras y estratificación cruzada (Sr), arenas masivas (Sm), facies lacustres (LMF6), arenas con intraclástos (Ai) y facies de carbón (C). Su espesor máximo es de 40 m y se identificó en las columnas I, II, III, IV y V. Está en contacto con las asociaciones AF1, AF2, AF3, AF5 y AF6. La facies Fl representa depósitos que se producen en zonas

planas conocidas como planicies de inundación, adyacentes a márgenes fluviales. En general, están formadas por limos y cuando llegan a encontrarse litofacies de arenas (Sr y Sm) pueden representar un aumento de energía en la planicie de inundación, como los depósitos de *crevasse* (Miall, 2006). Fl se encuentra intercalada con la facies Fr en esta asociación, la cual representa horizontes con raíces y moldes de vegetación en posición de crecimiento que afectan a las estructuras sedimentarias. Este tipo de horizontes son evidencia de episodios de estabilidad en la planicie de inundación donde crece vegetación, sin embargo se infiere que estos ocurrieron por periodos de corta duración y que la sedimentación fue relativamente rápida. El depósito en la planicie de inundación se produce con bajas tasas, comúnmente en el orden de 1/10 mm/año (Marriott, 1996). Dichos depósitos tienden a ser finos y granodecrecientes a medida que nos alejamos del canal activo.

Los depósitos de carbón ocurren en una amplia gama de ambientes sedimentarios, pero suelen ser asociados a planicies de inundación donde la acumulación de materia orgánica es muy frecuente (Miall, 2006).

Finalmente, encontramos en esta asociación la microfacies LMF6, que tiene un espesor total de 0.16 m en los 131 m medidos de la formación Tianguistengo en la Columna II y se encuentra intercalada con la facies Fl. Aunque su espesor sea poco representativo, su presencia nos ayuda a establecer un importante aspecto de la AF4: la presencia de cuerpos someros de agua o pozas.

Esta microfacies fue descrita como Packstone-Wackestone de Ostrácodos LMF6 debido al alto contenido de valvas de ostrácodos. Las valvas pueden encontrarse en dos modalidades:

• Articuladas, en una textura lodosoportada, lo cual indica que los organismos fueron depositados en un ambiente tranquilo, sin perturbaciones. Las corrientes de aire y el oleaje pocas veces afectaron el fondo de las pozas.

• No articuladas, dentro de una textura granosoportada con una orientación incipiente los cuales se han interpretado como producto de corrientes o remoción de sedimentos, puesto que la desarticulación se debe a que los organismos postmortem sufrieron la desintegración del ligamento orgánico que mantenía juntas sus valvas y fueron dejados expuestos a la acción de corrientes de fondo que arrastraron el material. Algunas de las valvas son gruesas lo cual indica que los ostrácodos tuvieron que desarrollar una protección bajo un ambiente de alta energía.

Ambas texturas pueden asociarse fácilmente a la microfacies LMF6, que es típica de lagos o

estanques de agua dulce y tiene una amplia distribución que incluye las costas, litorales y zonas profundas de cuerpos de agua dulce (Fig. 4.17) (Flügel, 2004). Los valvas articuladas pudieron haberse ubicado en el fondo de pozas, donde las corrientes no las alcanzaban con facilidad, mientras que las no articuladas pudieron ser removidas por corrientes.

Fig. 4.17. Distribución esquemática de los tipos de microfacies comunes de calizas lacustres de agua dulce. En rojo se muestra el rango de alcance interpretado para las microfacies de la formación Tianguistengo (FT). Modificado de Flügel (2004). Basado en Clausing (1990), Stapf (1989), Arp (1995), Schweigert (1996) y otros autores.

Por otro lado, los sedimentos de tipo algal y la acumulación de material biogénico, son muy comunes en las zonas someras y costeras de los lagos debido a que las algas requieren de luz solar para desarrollarse, sin embargo en las muestras sólo se observa un ejemplar de algas verdes del tipo Charofitas. En los carbonatos depositados en agua dulce las laminaciones regulares y la bioturbación rellena de material micrítico más fino en los depósitos de pequeños lagos son una fábrica común.

Las valvas de ostrácodos de las superfamilias Darwinuloidea, Cypridoidea y Cytheroidea son representativas de ambientes de agua dulce. Se ha documentado que los organismos de la superfamilia Darwinuloidea tienen preferencia por los lagos o estanques con gran cantidad de sedimentación terrígena y bajas concentraciones de carbonatos (Molostovskaya, 2000).

El material clástico presente en las laminas delgadas corresponde a sedimentos del tamaño de limos y arenas finas de los minerales: cuarzo, moscovitas, piroxenos, plagioclasas y circones que son indicativos de que la poza recibía un flujo de terrígenos.

Todas estas características permiten establecer las microfacies LMF6 de la formación Tianguistengo como indicativas de pozas o estanques de agua dulce de poca profundidad que se mantenían en la planicie de inundación, hasta ser cubiertas por el sedimento acarreado por una nueva inundación. Aunque la clasificación para calizas lacustres de Flügel (2004) no considera lagos de poca profundidad en ambientes fluviales, esta configuración puede utilizarse como referencia para las microfacies de la asociación AF4 (Fig. 4.17)

En esta asociación también se observan arenas con intraclástos (Ai) que tienen un espesor total de 3 m en la Columna II. Los intraclástos son fragmentos retrabajados de sedimentos finos (limos) débilmente consolidados, transportados por la acción de corrientes o deslizamientos. Este tipo de sedimentación obedece a aumentos bruscos de energía que retrabaja los sedimentos y los deposita en la misma cuenca, indicando una acción erosiva eventual. Se observó que estos flujos contienen fragmentos de las calizas descritas como packstone y wackestone de ostrácodos LMF6, lo cual es un indicativo de su carácter sinsedimentario.

El conjunto de elementos mencionados permite interpretar que la facies AF4 corresponde a planicies de inundación con crecimiento de vegetación, estanques y acumulación de materia orgánica (pequeños pantanos) que se veían interrumpidas por la llegada de sedimentos acarreados por el aumento periódico del nivel de agua en la zona.

4.3.5 ASOCIACIONES DE FACIES AF5: FLUJOS DE SEDIMENTOS POR GRAVEDAD

La asociación de las facies de arenas masivas (Sm); gravas matriz soportadas masivas (Gmm) y gravas clásto soportadas con gradación inversa (Gci) se ha interpretado como flujos de sedimentos por gravedad, los cuales son producto de eventos de depósito catastróficos. Se reportó en las columnas IV y V con un espesor máximo de 12 m; se encuentra en contacto con AF4 y AF6. Los flujos de sedimentos por gravedad suelen ser parte de depósitos fluviales en partes proximales de abanicos aluviales y en ríos trenzados; estos ocurren cuando grandes masas de sedimentos son movilizados en una superficie con pendiente, comúnmente ocurren bajo acción del agua, típicamente en época de lluvias. El flujo puede comenzar como un deslizamiento de tierra y posteriormente continuar en una corriente fluvial, el movimiento cesa al llegar a una superficie con poca o nula pendiente y al perder el agua que actúa como lubricante. Como resultado, se tiene un depósito sin aparente orden y mal clasificado de brechas y/o conglomerados (Miall, 1992). Usualmente los eventos de flujos ocupan canales erosionados previamente o rellenan la topografía irregular. Se ha descrito esta facies como este elemento por la angulosidad de sus clástos (Columna IV), y la poca o nula presencia de estructuras sedimentarias.

4.3.6 ASOCIACIONES DE FACIES AF6: CANALES

Esta asociación de facies se compone de la facies de arenas con estratificación cruzada planar (Sp), gravas clásto soportadas con gradación inversa (Gci) y gravas matriz soportadas con gradación incipiente (Gmg), que se reportan en las columnas IV y V, donde se encuentra en contacto con las asociaciones AF1, AF4 y AF5. Su espesor máximo es de 12 m. Es común encontrar las facies arenosas intercaladas con las conglomeráticas, como estratos o lentes. Se interpretó como depósitos de relleno de canales debido a las estructuras sedimentarias registradas en el trabajo de campo. Su presencia es mayor hacia el Oeste del área de estudio. Los canales suelen cortar depósitos de planicie de inundación. La geometría de los canales no fue observada en campo.

ASOCIACIÓN DE FACIES	FACIES PRESENTES	ELEMENTO ARQUITECTÓNICO	INTERPRETACIÓN	AMBIENTE DE DEPÓSITO
AF1	Fl	Levee	Inundación de overbank	Planicie de inundación
AF2	Sp, St, Sr	Depósito de avenida (canal)	Ruptura de margen del canal principal	Planicie de inundación
AF3	Fl, Sp, St, Sr	Depósito de avenida (lóbulo)	Progradación tipo delta desde el depósito de avenida hacia la planicie de inundación	Planicie de inundación
AF4	Fl, Fr, Sr, Sm, LMF6, C, Ai	Planicie de inundación	Depósitos de overbank, flujos de lámina, estanques y pantanos.	Planicie de inundación
AF5	Sm, Gmm, Gci	Flujos de sedimentos por gravedad	Eventos de depósito catastrófico.	Abanico aluvial- fluvial
AF6	Sp, Sm, Gci, Gmg	Rellenos de canal	Formación de canales asociados a un abanico aluvial	Abanico aluvial- fluvial

Tabla 4.3. Características de las asociaciones de facies reconocidas en la formación Tianguistengo de acuerdo a Miall (2006) y Flügel (2004).

4.4 CORRELACIÓN SEDIMENTARIA DE LAS COLUMNAS MEDIDAS

Las cinco columnas medidas en la región (I, II, III, IV y V) (Figs. 4.2 a 4.6) fueron dispuestas para realizar una correlación estratigráfica de las facies que componen a la formación Tianguistengo, en la figura 4.18 se muestra el arreglo de las mismas.

La escala vertical es la misma para todas las columnas, sin embargo su disposición horizontal no es proporcional a su posición verdadera. En I, II y III se estableció un nivel estratigráfico en común que es el límite entre las formaciones Piedra Hueca y Tianguistengo, sin embargo para las IV y V no se encontró un nivel que sirviera de referencia con respecto a las otras columnas. Todas tienen su base cercana a la Falla Totoltepec.

Al realizar esta correlación se observó la predominancia hacia el Este de asociaciones de facies de rocas de grano fino (AF1, AF2, AF3 y AF4), mientras que al Oeste pueden encontrarse areniscas intercaladas con conglomerados (AF1, AF4, AF5 y AF6). Lo cual se considera un indicativo importante

del arreglo de los sedimentos de acuerdo con sus procesos de transporte y ambiente de depósito (Fig. 4.18).

Fig. 4.18. Correlación estratigráfica de las columnas I, II, III, IV y V. El orden de las columnas se indica en la parte superior. Su posición geográfica puede consultarse en el Mapa Geológico anexo.

4.5 ANÁLISIS PETROGRÁFICO

Se colectaron veintinueve muestras representativas para la elaboración de láminas delgadas, cuya posición estratigráfica se indica en cada columna descrita en la sección referente a facies (Figs. 4.1-4.6); ocho muestras corresponden a clástos presentes en facies conglomeráticas y arenosas.

Descripción petrográfica de la facies Fl

Fl es la facies más común y se encuentra presente en todas las columnas. Se analizaron siete muestras, cuya posición estratigráfica está indicada en las figuras 4.2, 4.3, 4.4, 4.5 y 4.6 de este capítulo. Dichas muestras son el SDT-36 y SDT-64 (Columna II); SDT-54, SDT-55, SDT-57 (Columna I); TD-5 (Columna IV) y HIG-52 (Columna V).

En las muestras puede observarse laminación paralela bien desarrollada, delimitada por horizontes de óxidos en las láminas delgadas. En ocasiones, los minerales se encuentran orientados, sus ejes mayores se encuentran paralelos a la laminación, especialmente las micas y pueden llegar a presentar gradación normal. En ocasiones se encuentra calcita de substitución y los óxidos rellenando las fracturas y los espacios intrapartícula. El tamaño de grano en las muestras va de limo grueso a limo fino y su clasificación en general es buena. Los granos van de subredondeados a subangulares. Los contactos son principalmente tangenciales y cóncavo-convexos por lo que presenta una fábrica compacta, lo cual sugiere un proceso de compactación importante en estas rocas. La porosidad es baja e intergranular. La composición de las muestras incluye al cuarzo y al feldespato como los minerales más abundantes. El cuarzo monocristalino se presenta subangular y angular, con extinción recta y ondulante; el feldespato potásico va de subangular a angular y en ocasiones presenta substituciones de minerales arcillosos; el cuarzo policristalino es subredondeado y escaso; las plagioclasas son angulares y en ocasiones presentan substituciones de minerales arcillosos; hay variedades de moscovita y clorita. Los líticos presentes corresponden a fragmentos de esquisto, intraclástos de lutitas con deformación de sedimento suave. Los minerales accesorio más comunes son los circones. Los óxidos de hierro enfatizan los contornos de los granos. Las muestras fueron clasificadas como limolitas (Fig. 4.19).

Fig. 4.19. Fotomicrografías de muestras de roca de la formación Tianguistengo, facies Fl. A) Limolita compuesta principalmente por cuarzo monocristalino y feldespato (muestra SDT-36) con óxidos rellenando los espacios interpartícula. Nivel estratigráfico 4 m de la Columna II. B) Ejemplar de limolita con buena clasificación, de granos subredondeados; al centro un grano de plagioclasa angular (muestra SDT-57). Nivel estratigráfico 83 m de la Columna I. C) Limolita de granos subangulares

mostrando contactos cóncavocóncavo-convexos entre los granos, debido a esto se infiere que esta roca ha sufrido compactación (muestra SDT-54). Nivel estratigráfico 22 m de la Columna I. D) Roca compuesta de limo fino, donde se observa una alineación de las micas paralelas a la laminación presente en el ejemplar (muestra SDT-64). Nivel estratigráfico 98 m de la Columna II. E) Limolita de grano fino donde se observan una gradación grano decreciente (flecha amarilla indica aumento del tamaño de grano) (muestra SDT-55). Nícoles cruzados. Nivel estratigráfico 48 m de la Columna I. F) Imagen obtenida con luz paralela, se observa la gran cantidad de óxidos presentes en la muestra HIG-52, a los que se atribuye la característica coloración rojiza de esta facies. Nivel estratigráfico 53 m de la Columna V. Todas la fotomicrografías fueron tomadas con el objetivo 4x.

Descripción petrográfica de la facies Fr

De la facies Fr se colectó la muestra SDT-56 (Columna I) (Fig. 4.2). El tamaño de grano es de arena fina. Los granos son subangulares. En general, la clasificación de la muestra es buena. La composición es cuarzo monocristalino, feldespato potásico alterado (ortoclasa y microclina), plagioclasas, óxidos de hierro, líticos de lutitas, moscovita y circones detríticos. Los contactos entre granos son suturados en su mayoría, aunque pueden encontrarse algunos tangenciales, por lo que se supone que esta roca ha sufrido compactación. Esta roca se clasificó como una arenita arcósica (Fig. 4.20).

Descripción petrográfica de la facies Sp

Las muestras que se recolectaron de la facies Sp son: la SDT-71 (Columna III) y la HIG-51 (Columna V) (Figs. 4.5 y 4.6) y son de areniscas de grano medio a muy fino. En la muestra SDT-71 los granos son subangulares. Su composición es de cuarzo monocristalino subangular, feldespato potásico, en ocasiones alterado, plagioclasa, cuarzo policristalino, moscovita, clorita, óxidos de hierro, líticos de esquisto y circones. La clasificación es buena. Los contactos son esencialmente puntuales. Esta muestra por su composición puede considerarse de acuerdo a la clasificación de Dott (1964) y Pettijohn *et al.* (1972) como una arenita arcósica. Por otro lado, la muestra HIG-51 es una arenisca compuesta por fragmentos subangulares de feldespato potásico, cuarzo policristalino, cuarzo monocristalino y líticos de esquisto y gabro embebidos en una matriz de limo. Fue clasificada como una arenita arcósica (Fig.

4.21).

Fig. 4.20. Muestra SDT-56 de la facies Fr. Se puede observar la clasificación media y la predominancia de cuarzo monocristalino y feldespato con substitución de minerales arcillosos, por lo que se clasificó como una arenita arcósica. Nivel estratigráfico 67 m de la Columna I. Imagen obtenida con nícoles cruzados y con el objetivo 4x.

Fig. 4.21. Fotomicrografías de la facies Sp. A) Se observa el bajo grado de clasificación del ejemplar SDT-71, cuya composición predominante es de cuarzo monocristalino de diversos tamaños y feldespato potásico. Los espacios intergranulares están ocupados por calcita. Nivel estratigráfico 63 m de la Columna III. B) La muestra HIG-51 es de grano más grueso, pero tiene una composición similar a

la muestra anteriormente descrita. Nivel estratigráfico 42.5 m de la Columna V. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Clástos de los conglomerados en la facies Sp

En la facies Sp es muy frecuente encontrar lentes de conglomerado, cuyos clástos reflejan la diversidad de fuentes de esta roca sedimentaria. A fin de comprender mejor la composición y procedencia de estas rocas, se tomaron cuatro muestras que a continuación se describen.

Muestra HIG-70-A. Roca ígnea de textura fanerítica de composición granítica. La composición de los cristales corresponde a cuarzo, feldespato potásico, plagioclasas y micas. La matriz es de plagioclasas (Fig. 4.22 A).

HIG-70-B. Roca ígnea de textura porfídica de composición granítica. La composición de los fenocristales en la muestra corresponde a cuarzo, feldespato potásico, plagioclasas, micas y circones embebidos en una matriz de plagioclasas. Algunos de los fenocristales presentan texturas magmáticas (Fig. 4.22 B).

HIG-70-C. La muestra es una roca ígnea de textura fanerítica de composición granítica. La composición de los cristales corresponde a cuarzo, feldespato potásico, plagioclasas y micas (Fig. 4.22 C).

HIG-70-D. Roca ígnea de textura porfídica de composición gabroica. La composición de los fenocristales corresponde a plagioclasas y feldespato potásico embebidos en una matriz de plagioclasas. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x (Fig. 4.22 D).

Descripción petrográfica de la facies St

Las muestras de la facies St son SDT-53 (Columna I), SDT-61 (Columna II), SDT-69 y SDT-70 (Columna III) (Figs. 4.2, 4.3 y 4.4). Son areniscas conformadas por granos de arena gruesa a fina, en las que a simple vista se observa laminación. Sus granos van de subredondeados a subangulares. La clasificación puede es buena. Su composición es cuarzo policristalino, feldespato potásico, en ocasiones alterado; plagioclasa, moscovita, biotita, líticos de limolitas, cuarzoarenitas, rocas volcánicas

con microlitos, rocas volcánicas de composición básica, líticos metamórficos metasedimentarios, rocas intrusivas ácidas, lutitas e intraclástos de caliza con esparita; también pueden encontrarse óxidos, clorita y circones en menor proporción. Las micas suelen presentarse orientadas paralelas a la laminación burda. Los contactos son tangenciales y cóncavo-convexos que indican un proceso de compactación importante. Hay calcita rellenando las fracturas y los espacios intrapartícula y en ocasiones puede encontrarse crecimiento de cuarzo sintaxial previo al crecimiento de calcita. Estas muestras por su composición puede considerarse de acuerdo a la clasificación de Dott (1964) y Pettijohn *et al.* (1972) como arenitas arcósicas (Fig. 4.23).

Fig. 4.22. Muestras de clástos en los lentes conglomeráticos de la facies Sp. A) Muestra HIG-70-A. B) HIG-70-B. C) HIG-70-C. D) HIG-70-D. Nivel estratigráfico 23 m de la Columna V. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Descripción petrográfica de la facies Sr

La muestra SDT-52 se encuentra en la base de la Columna I (Fig. 4.2). Su textura general es masiva y se compone de granos de arena gruesa que van de subangulares a subredondeados. La clasificación es media. Su composición es la siguiente: cuarzo monocristalino, feldespato potásico que en ocasiones se encuentra alterado, plagioclasas, algunas de ellas con substitución de minerales arcillosos, cuarzo policristalino, líticos de esquisto (cuarzo policristalino con micas), rocas ígneas volcánicas, lutitas, micas (clorita y moscovita) y circones. Los contactos entre los granos son predominantemente tangenciales y suturados. La textura en general muestra una roca muy compactada. Este ejemplar por su composición se clasifica como una arenita arcósica (Fig. 4.24).

Fig. 4.23. Fotomicrografías de la facies St. A) Arenita arcósica de grano medio con alto porcentaje de feldespato potásico con substitución por minerales arcillosos. Los granos se encuentran

suturados. La calcita rellena los espacios intrapartícula. Muestra SDT-53 ubicada en el nivel estratigráfico 7 m de la Columna I. B) Clásto redondeado de lítico cuarzoarenita de grano muy fino (SDT-61). Nivel estratigráfico 7 m de la Columna II. C) Cristales de biotita y moscovita al centro. Muestra SDT-69 ubicada en el nivel estratigráfico 2 m de la Columna III. D) Granos suturados de cuarzo monocristalino y policristalino; feldespato y plagioclasa que indican que la roca ha sufrido un proceso de compactación importante (SDT-70). Nivel estratigráfico 65 m de la Columna III. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Fig. 4.24. Fotomicrografía de la facies Sr. Arenisca de grano medio, hacia la derecha se observa un lítico redondeado de arenisca de grano fino rodeado de granos de cuarzo monocristalino, feldespato y plagioclasas. Muestra SDT-52 ubicada en el nivel estratigráfico 11 m de la Columna I. Nícoles cruzados. 4x.

Descripción petrográfica de la facies Sm

Las muestras se ubican en las Columnas VI (TD-6) y V (HIG-68) (Figs. 4.5 y 4.6) y se trata de areniscas arcósicas de grano medio a fino de granos subredondeados y subangulares. La clasificación es de media a mala. La composición de la muestra HIG-68 es: cuarzo monocristalino, feldespato potásico subangular sustituido por minerales arcillosos, plagioclasa, moscovita y óxidos. Los contactos entre

granos son tangenciales o cóncavo-convexos. Hay fracturas rellenas de calcita. La muestra TD-6 tiene cuarzo monocristalino, algunos granos de origen volcánico, granos de feldespato potásico subangular con subtitución de minerales arcillosos, plagioclasas subangulares alargadas, cuarzo policristalino subredondeado, líticos de lutitas, rocas ígneas volcánicas, intraclástos de caliza micrítica, óxidos y circones. Los contactos entre los granos son predominantemente tangenciales y suturados. La textura en general muestra una roca compactada. El cementante corresponde a hematita. Se clasificaron como arenitas arcósicas (Fig. 4.25).

Fig. 4.25. Areniscas de grano medio mal clasificadas pertenecientes a la facies Sm, muestran contactos tangenciales. A) Muestra HIG-68 3 ubicada en el nivel estratigráfico 2 m de la Columna V. B) Muestra TD-6 ubicada en el nivel estratigráfico 32 m de la Columna IV. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Descripción petrográfica de la facies Gmm

De la facies Gmm se obtuvieron tres muestras: TD-2, TD-3 y TD-4 (Columna IV) (Fig. 4.5). Estas muestras corresponden a la matriz de los conglomerados de la facies Gmm. Se trata de areniscas de grano grueso en las cuales los granos van de subredondeados a subangulares. Están compuestas de fragmentos de cuarzo policristalino, cuarzo monocristalino, feldespato potásico, plagioclasas, líticos de rocas ígneas intrusivas y extrusivas, fragmentos metasedimentarios y óxidos. La clasificación es mala. Los tipos de contactos predominantes son los tangenciales y suturados. Presentan relleno de calcita en las fracturas y óxidos bordeando a los minerales. Estas muestras por su composición se clasificaron

como arenitas arcósicas (Fig. 4.26).

Fig. 4.26. Areniscas de grano grueso presentes en la facies Gmm, se muestra el alto grado de compactación y la composición de cuarzo, cuarzo monocristalino, feldespato y plagioclasas. A) Muestra TD-4, compuesta de fragmentos de cuarzo policristalino, feldespato potásico y plagioclasas. Los tipos de contactos predominantes son los tangenciales y suturados. Presenta relleno de calcita en las fracturas y óxidos bordeando a los minerales. Nivel estratigráfico 7 m de la Columna IV. B) Muestra TD-2, Grano de plagioclasa en contacto con fragmentos de cuarzo policristalino. Nivel estratigráfico 3 m de la Columna IV. C) Muestra TD-3, compuesta por fragmentos subangulares de cuarzo monocristalino, feldespato potásico, plagioclasas y líticos de arenisca embebidos en una matriz de arena media. Presenta mala clasificación. D) Muestra TD-3, feldespato con susbtitución de minerales arcillosos rodeado de granos cuarzo y feldespato subangular. Nivel estratigráfico 6.5 m de la Columna IV. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Descripción petrográfica de la facies Gmg

En la facies conglomerática Gmg se tomaron cuatro muestras de los clástos presentes, todas se ubican en la Columna V (Fig. 4.6).

Las muestras HIG-69-A e HIG-69-C son fragmentos redondeados de rocas metamórficas compuesta de cuarzo policristalino, plagioclasa y feldespato potásico que se clasificaron como esquistos debido a su textura foliada (Fig. 4.27 A y C).

La muestra HIG-69 B es una arenisca conformada por granos de arena media que a simple vista muestra laminación burda. Sus granos son subangulares. La clasificación es buena. Su composición es de cuarzo monocristalino, plagioclasas y óxidos. La matriz es de arena fina y limo y los contactos son puntuales. Esta muestra por su composición puede considerarse de acuerdo a la clasificación de Dott (1964) y Pettijohn *et al.* (1972) como una cuarzoarenita (Fig. 4.27 B).

La muestra HIG-69 D es una roca ígnea de textura porfídica de composición gabroica. La composición de los fenocristales en la muestra corresponde a plagioclasas y anfíboles y estos se encuentran embebidos en una matriz de plagioclasas (Fig. 4.27 C).

Descripción petrográfica de la facies Gci

La muestra HIG-50 se encuentra en la Columna V (Fig. 4.8) y corresponde a la matriz arenosa de los conglomerados de la facies Gci. Es una arenisca de grano muy grueso con mala clasificación, compuesta por fragmentos subangulares de cuarzo policristalino y líticos de gabro, granito y arenisca de grano fino, embebidos en una matriz de arena media. Los granos van de subredondeados a subangulares. Los contactos son esencialmente puntuales. Esta muestra por su composición puede considerarse de acuerdo a la clasificación de Dott (1964) y Pettijohn *et al.* (1972) como una arenita lítica (Fig. 4.28).

Fig. 4.27. Clástos de los conglomerados de la facies Gmg. A) Foliación en clásto metamórfico. Muestra HIG-69-A. B) Clásto de cuarzoarenita de arena media. Muestra HIG-69-B. C) Cuarzo policristalino presente en muestra de clásto metamórfico. Muestra HIG-69-C. D) Roca ígnea de composición básica con textura porfídica. Muestra HIG-69-D. Nivel estratigráfico 15 m de la Columna V. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Descripción petrográfica de la facies Ai

La muestra SDT-63 se encuentra en la Columna II (Fig. 4.4) y ha sido descrita como arenisca de granos muy gruesos y subangulares. La muestra presenta una matriz de arena fina y está muy mal clasificada. Está compuesta de fragmentos de caliza micrítica con restos de ostrácodos y sedimentos, cuarzoarenita de grano fino, limolita, arenita arcósica de grano medio, granito, cuarzo monocristalino, cuarzo policristalino, feldespato potásico y moscovita. Los tipos de contactos son puntuales, aunque pueden presentarse algunos tangenciales. Presenta relleno de calcita en las fracturas y óxidos. Esta muestra por su composición puede clasificarse de acuerdo a la clasificación de Dott (1964) y Pettijohn

et al. (1972) como una arenita lítica (Fig. 4.29).

Fig. 4.28. Muestra petrográfica HIG-50 de la facies Gci. A) Lítico de intrusivo granítico en el que se identifican cristales de plagioclasa, cuarzo y feldespato. B) Lítico de arenisca de grano muy fino. Nivel estratigráfico 18 m de la Columna V. Imágenes obtenidas con nícoles cruzados y con el objetivo 4x.

Fig. 4.29. Fotomicrografía de la muestra SDT-63 compuesta de intraclástos de caliza micrítica con restos de ostrácodos y sedimentos rodeado de fragmentos de cuarzoarenita de grano fino, plagioclasas y cuarzo. Nivel estratigráfico 63 m de la Columna II. Imagen obtenida con nícoles cruzados y con el objetivo 4x.

4.5.1 RESULTADOS DEL ANÁLISIS PETROGRÁFICO

Se colectaron veintinueve muestras, de las cuales ocho corresponden a clástos de conglomerados y veintiuno a rocas de origen clástico. La clasificación por medio del análisis petrográfico permitió distinguir en las rocas de origen clástico siete limolitas, doce arenitas arcósicas y dos arenitas líticas. Por otro lado en los clástos de conglomerados fueron identificados cinco ejemplares de rocas ígneas, dos de rocas metamórficas y una arenisca.

En la composición de las rocas clásticas se observó la presencia constante de varios componentes como el cuarzo, feldespatos. Los líticos presentes son de origen ígneo: granítico y gabroico; cuarzoarenitas de grano fino, limolitas, arenita arcósica y caliza micrítica con restos de ostrácodos.

Las limolitas se encuentran distribuidas a lo largo de las cinco columnas registradas en este estudio y su composición no refleja una variación importante o que obedezca a un arreglo específico; en cambio, en las areniscas arcósicas se observó que su contenido de líticos aumenta en aquellas que se encuentran hacia el Oeste del área de estudio, así mismo, las dos muestras de arenitas líticas se encuentran confinadas en las regiones occidental y central de la zona de interés.

Se observó que de los ocho clástos estudiados tres pertenecen a rocas ígneas de composición granítica, dos a rocas gabroicas, dos a esquistos y uno a areniscas de grano medio.

No se realizó un muestreo de amplio espectro debido a que la procedencia no es uno de los objetivos de este trabajo.

Los líticos encontrados en las facies de arenas con intraclástos (AI) se infiere por su contenido biogénico que son un retrabajo de material perteneciente a la cuenca Otlaltepec. Sin embargo, se desconoce la procedencia de los clástos volcánicos y de arenisca.

CAPÍTULO 5

TECTÓNICA SINSEDIMENTARIA

La actividad tectónica ejerce un control fundamental durante el relleno sedimentario una cuenca. El producto de esta interacción es complicado debido a los factores adicionales que pueden influir en los depósitos, incluyendo aquellos como la erosión, el transporte sedimentario, el ambiente de depósito, el clima imperante durante la sedimentación y la distancia de la cuenca con respecto a las regiones marinas.

Como producto de la actividad tectónica sinsedimentaria puede presentarse deformación estructural o arreglos particulares en los sedimentos (Tom McCann y Aline Saintot, 2003). Las evidencias de la deformación sinsedimentaria son variadas y pueden incluir desde pliegues, discordancias, fallas de crecimiento, rotaciones, formación de brechas sinsedimentarias y existencia de ciertos ambientes de depósito (e.g. ambientes fluviales y/o aluviales) relacionados con el desarrollo de grandes estructuras como fallas normales, fallas lístricas, o grabens en el caso de una tectónica extensional.

En este capítulo se presentaran las evidencias de la existencia de actividad tectónica durante el relleno de la cuenca Otlaltepec durante el Jurásico. Cada tipo de estructura fue analizada por separado para determinar los principales esfuerzos asociados a su formación. Se hace un énfasis especial en aquellas estructuras presentes en las rocas de la formación Tianguistengo debido a que esta es el objeto principal de este estudio. Las evidencias estudiadas se presentan en el siguiente orden en este capítulo:

- Discordancias entre las formaciones Tianguistengo, Piedra Hueca y Otlaltepec.
- Fallas sinsedimentarias en la formación Tianguistengo.
- Discordancias internas en la formación Tianguistengo.
- Familias de fallas en las formaciones Tianguistengo, Piedra Hueca y Otlaltepec.
- Brechas y deformación sinsedimentaria en la formación Tianguistengo.

5.1 DISCORDANCIAS ENTRE LAS FORMACIONES TIANGUISTENGO, PIEDRA HUECA Y OTLALTEPEC

Las fallas lístricas se puede definir como fallas normales curvas que se caracterizan por hacerse subhorizontales a profundidad. Estas fallas ocurren en regímenes extensionales (Wernicke and Burchfiel, 1981) (Fig. 5.1).

La importancia de las fallas lístricas en la formación de cuencas sedimentarias ha sido reconocida progresivamente gracias al uso de técnicas geofísicas aplicadas al estudio del subsuelo, afortunadamente también es posible detectar su existencia por observaciones de campo en superficie (Bally *et al.*, 1981; Shelton, 1984).

Fig. 5.1. Modelo experimental de falla lístrica mostrando el secuencial desarrollo de grabens y sucesiva inclinación de las capas. El graben 1 es el más antiguo y el 4 es el más joven (Naylor, *et al.*, 1994).

De las fallas listricas se han distinguido cuatro tipos generales de acuerdo a información obtenida por secciones sísmicas: 1) Fallas que involucran el basamento de una región asociadas a la formación de rifts que preceden la existencia de márgenes continentales pasivas, 2) fallas desarrolladas en sedimentos no consolidados relacionados con sistemas deltaicos o subsidencia en márgenes continentales pasivas, 3) fallas asociadas a la génesis de prismas de acreción en márgenes continentales activas y 4) las asociadas a fallamiento post y sinorogénico (Bally *et al.*, 1981; Shelton, 1984).

La progresiva horizontalidad de la falla refleja un incremento en la ductilidad de las rocas a profundidad. Estudios de laboratorio y modelos teóricos sugieren que este tipo de fallas se forma en rocas frágiles que descansan sobre rocas dúctiles en un régimen extensional o transtensional (Shelton, 1984).

Las fallas lístricas sinsedimentarias usualmente son fallas de crecimiento, anteriormente se creía que este tipo de fallas sólo ocurría en rocas sedimentarias, pero estudios posteriores demostraron que también pueden ocurrir en el basamento de una región. Es posible que se desarrollen fallas lístricas pequeñas y estructuras en echelon (Shelton, 1984).

Aunque la mejor evidencia de la existencia de una falla lístrica son las imágenes de tomografías sísmicas, hay otro tipo de datos que pueden ser de utilidad, por ejemplo el incremento del valor del echado en los estratos que se encuentran en el bloque de techo conforme aumenta la profundidad (o la edad) de los mismos, mientras que aquellos que se encuentran sobre el bloque de piso muestran una mínima o nula rotación (Shelton, 1984; Spahic, *et al.*, 2011) la zona de estudio presenta este tipo de arreglo.

5.1.1 MODELO DE SEDIMENTACIÓN SINTECTÓNICA BASADO EN DATOS DE ESTRATIFICACIÓN

Cuando una o más fallas se encuentran activas durante el depósito en una cuenca sedimentaria es posible que estas generen algunas características distintivas, por ejemplo la presencia de discordancias angulares en el registro sedimentario (en diversas escalas). En la cuenca Otlaltepec, en la región de Santo Domingo Tianguistengo, se han documentado al menos dos discordancias mayores que podrían ser consideradas como una evidencia de tectónica sinsedimentaria.

Teniendo en cuenta estos factores es posible que a partir de la variación en los valores de rumbo y echado de los estratos de las tres sucesiones sedimentarias (formaciones Tianguistengo, Piedra Hueca y Otlaltepec) identificadas en la cuenca Otlaltepec, pueda obtenerse una orientación aproximada de la o las fallas que influyeron en la geometría de la sedimentación de estas unidades.

La metodología para generar este modelo de sedimentación sintectónica consistió en tomar datos estructurales de estratificación de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec en quince

localidades en el área de estudio. Las localidades fueron agrupadas en cinco sectores (Sector 1, 2, 3, 4 y 5) para facilitar el procesamiento de la información (Fig. 5.2).

Fig. 5.2. Sectores 1, 2, 3, 4 y 5 ubicados en el mapa geológico de área de estudio.

El listado de los datos estructurales pueden encontrarse en el Apéndice I (Tablas AI.I, AI.II, AI.II, AI.IV y AI.V). Todos los datos fueron tomados de acuerdo con la regla de la mano derecha y se procuró que estuvieran distanciados de zonas de falla, aunque en algunas zonas no fue del todo posible.

El Sector 1 se encuentra al norte del área de estudio y comprende datos tomados a lo largo de la Barranca El Chorrillo donde aflora la Formación Otlaltepec. En el Sector 2 afloran las formaciones Piedra Hueca y Otlaltepec y comprende los datos tomados en la Barranca Agua León y las inmediaciones el Poblado Santa Cruz Nuevo. El Sector 3 está compuesto de las localidades Barranca Magdalena 1, Barranca Magdalena 2, Barranca Rincón El Coco, Cerro Xiotillo y Poblado de Santo Domingo Tianguistengo, en las cuales afloran las tres sucesiones. El Sector 4 consta de las localidades Cerro La Matanza, Barranca Piedra Hueca y Barranca Cazahuate, donde afloran las tres sucesiones sedimentarias. Finalmente, el Sector 5 en la región occidental del área de estudio comprende los datos obtenidos en la Barranca Tedigno 1, Barranca Tedigno 2 y el Cerro Alegría donde se encuentran las formaciones Tianguistengo y Piedra Hueca.

Posteriormente, estos valores se ingresaron al software OSXStereonet Versión 2.1 para obtener la representación gráfica de los planos de estratificación en una proyección estereográfica equiangular (Red de Wulff). Las sucesiones son representadas por diferentes colores y como polos para evidenciar la evolución de la sedimentación y diferenciarlas con mayor facilidad (Fig. 5.3).

En general, se observó que los datos tomados en la Formación Tianguistengo se encuentran mas cercanos a un plano vertical que aquellos obtenidos en las formaciones Piedra Hueca y Otlaltepec. Es notorio que los planos de estratificación migran hacia el plano horizontal conforme es más joven la sucesión (Fig. 5.3, A.1.1 y A.1.2 del Apéndice I).

Para facilitar la interpretación de la información y realizar la corrección a la horizontal de las formaciones sedimentarias se calculó el valor de rumbo y buzamiento promedio de las sucesiones Tianguistengo, Piedra Hueca y Otlaltepec en cada sector. Estos valores se obtuvieron con el software OSXStereonet Versión 2.1 con diagramas de densidad y calculando el vector Fisher de cada una de las formaciones basados en el método propuesto por Ramsay, 1967 y Fisher *et al.*, 1987. Los resultados de este procesamiento se presentan en la tabla 5.1.

Fig. 5.3. Diagramas estereográficos en los que se observan los datos (Apéndice I. Tablas AI.I, AI.II, AI.II, AI.IV y AI.V) de cada una de las sucesiones en los cinco sectores. Se optó por representar los valores como polos en la Red de Wulff y diferenciados por colores (OSXStereonet Versión 2.1) A) Sector 1. B) Sector 2. C) Sector 3. D) Sector 4. E) Sector 5. En negro se presentan los valores de rumbo y buzamiento promedio de cada formación.

			CANTIDAD DE	RUMBO Y
SECTOR	FORMACIONES	LOCALIDAD	DATOS	BUZAMIENTO
			ESTRUCTURALES	PROMEDIO
1	Otlaltepec	Barranca El Chorrillo	101	292°/24°
	Piedra Hueca	Poblado Santa Cruz Nuevo	13	229°/31.7°
2	Otlaltepec	Barranca Agua León y Poblado Santa Cruz Nuevo	27	209.5°/18.7°
	Tianguistengo	Barranca Magdalena 1, Barranca Magdalena 2, Cerro Xiotillo y Poblado de Santo Domingo Tianguistengo	121	265.3°/67.6°
3	Piedra Hueca	Barranca Magdalena 1, Cerro Xiotillo y Poblado de Santo Domingo Tianguistengo	122	264°/45°
	Otlaltepec	Barranca Magdalena 1, Barranca Rincón El Coco y Poblado de Santo Domingo Tianguistengo	77	294.6°/24.4°
	Tianguistengo	Cerro La Matanza y Barranca Cazahuate,	35	260°/66°
4	Piedra Hueca	Cerro La Matanza, Barranca Piedra Hueca y Barranca Cazahuate,	73	246°/32°
	Otlaltepec	Barranca Piedra Hueca	13	291°/9°
5	Tianguistengo	Barranca Tedigno 1, Barranca Tedigno 2 y el Cerro Alegría	72	259.3°/66.7°
	Piedra Hueca	Barranca Tedigno 2	11	271.4°/42.7°

Tabla 5.1. Valores promedio de rumbo y buzamiento para las sucesiones Tianguistengo, Piedra Hueca y Otlaltepec en cada uno de los cinco sectores.

Una vez obtenidos los rumbos y buzamientos promedio de las unidades sedimentarias en cada sector se procedió a realizar una restauración a la paleohorizontal de los paquetes sedimentarios presentes. Se les denominó a estos estadios como T_3 , T_2 , T_1 y T_0 (Fig. 5.4).

• T_{3.} Representa el momento donde las formaciones Tianguistengo (T), Piedra Hueca (PH) y Otlaltepec (O) se encuentran depositadas e inclinadas, es decir Post-Jurásico. • T_2 . Representa el momento de depósito de la formación Otlaltepec (O'), es decir donde esta se encontraba horizontal. Tianguistengo (T') y Piedra Hueca (PH') se encontraban ya depositadas e inclinadas, Jurásico Superior.

• T₁. Representa el momento de depósito de la formación Piedra Hueca (PH"), es decir donde está se encuentra horizontal. Tianguistengo (T") se encontraba depositada e inclinada. Otlaltepec aún no se había depositado, Jurásico Medio.

• T₀. Representa el momento de depósito de la formación Tianguistengo (T'''). Piedra Hueca y Otlaltepec aún no se habían depositado, Jurásico Inferior.

Las variaciones en los rumbos y buzamientos promedio de cada una de las poblaciones pueden asociarse a un posible cambio de orientación del plano de falla y por lo tanto un cambio en el polo de rotación de cada formación en cada sector. Los estratos con diversas orientaciones e inclinaciones son probablemente el resultado de una rotación originada por una o varias fallas. Teniendo en cuenta esto último se estableció que cada población, en cada sector, contaría con un plano perpendicular que representaría el plano de falla que controló la rotación de los depósitos, este plano de falla contiene al polo correspondiente al plano de rumbo y buzamiento promedio de cada unidad sedimentaria. A continuación se describe el proceso para cada una de las sucesiones, en cada sector, en los estadios T₃, T₂, T₁ y T₀. Los valores obtenidos se presentan en la Tabla 5.1 y las figuras A.1.3, A.1.4, A.1.5 y A.1.6 del Apéndice I. En el caso del Sector 5 se consideró el valor promedio de Otlaltepec del Sector 4 para la rotación la paleohorizontal.

El método realizado en cada sector puede resumirse de la siguiente manera:

i. La orientación de falla asociada al depósito de cada formación se obtuvo llevando el valor polo promedio de cada sucesión a un plano perpendicular para obtener el plano de falla. A este momento de depósito se le llamo T₃.

ii. Se restauró a la horizontal la formación Otlaltepec con lo cual otras sucesiones regresaron a su posición original cuando inicio el depósito de Otlaltepec; a estas se les llamo T', PH' y O' (correspondientes a las unidades Tianguistengo, Piedra Hueca y Otlaltepec). A este momento de depósito se le llamo T_2 .

iii. Se calculó el plano de falla perpendicular a T', PH' y O' de la misma manera que en el puntoi.

iv. La sucesión PH' también se llevó a la horizontal con lo que se obtuvo T" y PH". El depósito de la sucesión O' no había ocurrido. A este momento de depósito se le llamo T₁.

v. Se calculó el plano de falla perpendicular a T" y PH".

vi. La sucesión T" se llevó a la horizontal, con lo que se obtuvo la T". Las sucesiones PH" y O' aún no están depositadas. A este momento de depósito se le llamo T₀.

Fig. 5.4. Polos que representan las variaciones promedio de los datos de rumbo y buzamiento para las formaciones Tianguistengo, Piedra Hueca y Otlaltepec al ser restauradas a la horizontal en los estadios T₃, T₂, T₁ y T₀. Las flechas indican las nuevas orientaciones obtenidas en cada corrección estructural. A) Sector 1. B) Sector 2. C) Sector 3. D) Sector 4. 5) Sector 5.

5.1.2 RESULTADOS OBTENIDOS DEL ANÁLISIS DE DATOS DE ESTRATIFICACIÓN

Los resultados obtenidos se presentan en la Tabla 5.3. Se observó que algunos de los resultados son similares en diversos sectores, a continuación un resumen de los mismos:

• Formación Tianguistengo. En el estadio T₃ (Post-Jurásico), la falla asociada a la inclinación de esta unidad sedimentaria tuvo una orientación de $85.3^{\circ}/22.4^{\circ}$ (Sector 3), $80^{\circ}/24^{\circ}$ (Sector 4) y 79.3°/23.3° (Sector 5). Para el estadio T₂, (Jurásico Superior), la falla tuvo una orientación de $76.3^{\circ}/43^{\circ}$ (Sector 3), $77.3^{\circ}/31.6^{\circ}$ (Sector 4) y 77°/31° (Sector 5). Para el estadio T₁ (Jurásico Medio), la falla tuvo una orientación de $92.3^{\circ}/67.5^{\circ}$ (Sector 3), $90^{\circ}/54.6^{\circ}$ (Sector 4) y $66.3^{\circ}/64^{\circ}$ (Sector 5) (Figs. A.1.3, A. 1.4, A.1.5 y A.1.6 del Apéndice I).

• Formación Piedra Hueca. En el estadio T₃ (Post-Jurásico), la falla asociada a la rotación de esta unidad sedimentaria tuvo una orientación de 49°/58.3° (Sector 2), 84°/45° (Sector 3), 66°/58° (Sector 4) y 91.4°/47.3° (Sector 5). En el estadio T₂ (Jurásico Superior), la falla asociada a la rotación de ésta unidad sedimentaria tuvo una orientación de 71.5°/74.7° (Sector 2), 60.6°/63.4° (Sector 3), 53.4°/63.7° (Sector 4) y 87.3°/55.6° (Sector 5) (Figs. A.1.3, A.1.4 y A.1.5 del Apéndice I).

• Formación Otlaltepec. En el estadio T₃ (Post-Jurásico), la falla asociada a la rotación de esta unidad sedimentaria tuvo una orientación de $112^{\circ}/66^{\circ}$ (Sector 1), $29^{\circ}/71.3^{\circ}$ (Sector 2), $114.6^{\circ}/65.8^{\circ}$ (Sector 3) y $111^{\circ}/81^{\circ}$ (Sector 4) (Figs. A.1.3 y A.1.4 del Apéndice I).

Los esfuerzos σ 3 asociados a los respectivos planos de falla de cada sector puede observarse en la Tabla 5.3 y en la figura 5.5. De acuerdo con los resultados obtenidos se observa que en general los esfuerzos distensivos σ 3, relacionados con el aumento en el valor de buzamiento de las formaciones Tianguistengo y Piedra Hueca, tiene una orientación aproximada N-S, mientras que para la Formación Otlaltepec tienen una orientación aproximada 21° y 201°. Específicamente en el Sector 2 se observa una orientación de 119°/299° para la formación Otlaltepec, pero esta diferencia se atribuye a la acción de la Falla Tianguistengo en la zona.

El calculó de las fallas que controlaron la sedimentación y orientaciones de los esfuerzos σ 3 durante los Estadios T₃, T₂ y T₁ se utilizó para proponer un modelo de depósito de la cuenca Otlaltepec en la región de Santo Domingo Tianguistengo, el cual se presenta en el Capítulo 7 de este trabajo.

Domensio	D • moo	SECTOR 1	SECT	0R 2		SECTOR 3			SECTOR 4			SECTOR 5	
L'SI ADIO	DAIUS	0	0	Ηd	0	Ηd	T	0	Ηd	Т	0	Hd	Т
	Estratificación	292 %24°	209.5°/18.7°	229°/31.7°	294.6°/24.4°	264°/45°	265.3 %67.6°	291°/9°	246°/32°	260°/66°	°01°10°	271.4°/42.7°	259.3°/66.7°
$\mathbf{T3}$	Falla	112 %66°	29°/71.3°	49°/58.3°	114.6°/65.8°	84°/45°	85.3°/22.4°	111°/81°	°82/°∂∂	80°/24°	111°/81°	91.4°/47.3°	79.3°123.3°
	03	22° y 202°	119° y 299°	139° y 319°	24° y 204°	174° y 354°	175° y 355°	21°y 201°	156° y 336°	170° y 350°	21° y 201°	1° y 181°	169° y 344°
		0,	0,	'Hq	0,	'Hq	τ.	0,	۶H4	τ,	0,	PH?	Τ,
	Estratificación	.0/.0	°0%0	251.5°/15.3°	.0/.0	240.6°/26.6°	256.6°/47°	.0/.0	233.4°/26.3°	257.3°/58.4°	.0/.0	267.3°/34.4°	257°/59°
T2	Falla			71.5°/74.7°		60.6°/63.4°	76.3°/43°		53.4°/63.7°	77.3 %31.6°		87.3°/55.6°	77°/31°
	03			161° y 341°		151° y 331°	166° y 346°		143°y 323°	167° y 347°		177° y 357°	167° y 347°
				PH"		PH"	τ.		PH"	Τ"		PH"	Τ"
	Estratificación			.0/.0		.0/.0	272.3 %22.5%		.0/.0	270°/35.4°		.0/.0	246.3 % 26°
Τl	Falla						92.3°167.5°			90°/54.6°			66.3°/64°
	σ3						2° y 182°			180° y 360°			156° y 336°
							τ"			τ			τ
	Estratificación						0/،0			0%0			.0/.0
T0	Falla												
	σ3												

Tabla 5.2. Estratificación, planos de falla y esfuerzos que influyeron en la inclinación de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec.

Fig. 5.5. Mapa geológico con las orientaciones de la falla asociada a la inclinación y depósito de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec en los Sectores 1, 2, 3, 4 y 5, además se muestran las orientaciones de los esfuerzos σ 3 asociados a la formación de dichas fallas. Red de Wulff (OSXStereonet Versión 2.1).

5.2 FALLAS SINSEDIMENTARIAS EN LA FORMACIÓN TIANGUISTENGO

De acuerdo con la literatura (Middleton, 2003; Nichols, 2009), las fallas de crecimiento son estructuras sinsedimentarias, es decir, que tienen lugar durante el depósito de un estrato. El fallamiento ocurre en uno o varios estratos y se propaga sólo en ciertos niveles estratigráficos. Las fallas de crecimiento pueden ser distinguidas de fallamiento post-deposicional porque la falla sólo afecta a una parte de la sucesión sedimentaria, por lo que las capas superiores se depositan horizontalmente sobre las capas afectadas.

Los patrones de deformación en una sucesión sedimentaria pueden proveer información acerca de esfuerzos tectónicos presentes durante el depósito. Así pues, las fallas sinsedimentarias son evidencia de actividad tectónica durante la sedimentación. Este tipo de estructuras, que actúan como fallas normales, son evidencia de un ambiente tectónico extensional (Nichols, 2009) (Fig. 5.6).

Fig. 5.6. Esquema que muestra la apariencia de una falla sinsedimentaria. Modificado de Nichols, 2009.

5.2.1 ANÁLISIS ESTRUCTURAL DE FALLAS SINSEDIMENTARIAS EN LA FORMACIÓN Tianguistengo

Durante el trabajo de campo se reconoció la existencia de fallas sinsedimentarias en las rocas de la formación Tianguistengo (Fig. 5.7). A fin de determinar los esfuerzos presentes durante el depósito de los sedimentos en el Estadio T_0 (Jurásico Inferior) y el desarrollo de las fallas sinsedimentarias, se colectaron datos de rumbo y buzamiento de sesenta y un fallas distribuidas en treinta afloramientos en el área de estudio. La ubicación de dichos afloramientos y los datos colectados se indican en la Tabla AII.I (Apéndice I).

Fig. 5.7. Afloramientos que muestran la presencia de fallas sinsedimentarias. Localidades sobre el lecho del Río Magdalena. A) Afloramiento 4. B) Afloramiento 3. C y D) Afloramiento 5. E) Afloramiento 6. F) Afloramiento 8. Dimensión del martillo 41 cm.

El método utilizado para realizar este análisis consistió en obtener los datos estructurales de los planos de falla, de los estratos afectados y de las superficies S0, todos de acuerdo con la regla de la mano derecha. Estos valores se ingresaron al software OSXStereonet Versión 2.1 para obtener la representación gráfica de los planos de falla y superficies de estratificación en una proyección estereográfica equiangular (Red de Wulff) (Figs. A.2.1, A.2.2 y A.2.3, Apéndice I). Posteriormente, se realizó la restauración a la paleohorizontal de los estratos contenedores de acuerdo a los datos

estructurales promedio de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec en los Sectores 3 y 4 para obtener la orientación original de las fallas sinsedimentarias (Fig. A.2.4, Apéndice I). Una vez rotadas las fallas a la horizontal, se procedió a obtener los esfuerzos σ 3 asociados a la formación de las fallas sinsedimentarias. Estas direcciones de esfuerzos fueron procesadas en la Red de Wulff como datos de líneas para obtener su representación gráfica (Figs. A.2.5, A.2.6 y A.2.7; Apéndice I).

La orientación de los esfuerzos σ 3 de cada falla fue ploteada y por medio de un diagrama de densidad se demostró que los esfuerzos tienen direcciones preferenciales de 87° y 267°; 95° y 275°; y 97° y 277° en las localidades Barranca Magdalena 2, Barranca Cazahuate y Cerro Xiotillo, respectivamente (Fig. 5.8). Es decir, hay claramente una orientación preferencial E-W, aunque se observó un sesgo de 40° los datos hacia el NE y SW. Se infiere que este campo de esfuerzos tendría acción exclusivamente durante depósito de la formación Tianguistengo (Estadio T₀) y sería previo al

5.3 DISCORDANCIAS INTERNAS EN LA FORMACIÓN TIANGUISTENGO

Se midieron diecinueve datos de rumbo y echado de estratificaciones, distribuidas en el afloramiento ubicado en las coordenadas 14 Q 625599 m E 2021648 m N a un costado del Cerro Xiotillo ubicado en el Sector 3 (Fig. 5.9; Tabla 5.3). Así mismo se colectaron los datos estructurales de la discordancia presente en este afloramiento. Se decidió realizar esta colecta de información debido a que en esta localidad pueden observarse un decremento progresivo (de más antiguo a más joven) en el buzamiento de las capas sedimentarias.

Fig. 5.9. Afloramiento Xiotillo-Magdalena, los números indican la zona de colecta de los datos de rumbo y echado. Como puede observarse los números aumentan hacia los estratos más antiguos. Ambas imágenes son contiguas y muestran algunas de las fallas sinsedimentarias analizadas en este capítulo.

Todos los datos fueron tomados de acuerdo con la regla de la mano derecha y estos valores se ingresaron al software OSXStereonet Versión 2.1 para obtener la representación gráfica de los planos de estratificación en una proyección estereográfica equiangular (Red de Wulff). Todos los datos de rumbo y buzamiento se restauraron a la paleohorizontal con los datos promedio del Sector 3 (Fig. A. 2.4, Apéndice I), los resultados de esta corrección estructural se muestran en la Tabla 5.3.

NUMERACIÓN EN EL AFLORAMIENTO FIG. 5.9	RUMBO Y BUZAMIENTO ESTRATO	Rumbo y buzamiento de estratos rotados a la horizontal	
1	300°/28°	48.6°/31.7°	Estrato
2	274°32°	62.8°/19.6°	Estrato
3	268°/40°	61°/11°	Estrato
4	258°/40°	96.4°/10.4°	Estrato
5	274°/40°	45.8°/13°	Estrato
6	246°/44°	139.5°/13°	Estrato
7	274°/40°	45.8°/13°	Estrato
8	258°/46°	117.3°/5°	Estrato
9	256°/48°	146.2°/5°	Estrato
10	298°/66°	335°/34°	Discordancia
11	274°/78°	286°/30°	Estrato
12	278°/65°	308.6°/20°	Estrato
13	288°/66°	323.6°/27°	Estrato
14	286°/78°	305.8°/35°	Estrato
15	286°/84°	300.8°/40.3°	Estrato
16	285°/83°	300°/39°	Estrato
17	286°/86°	299.3°/42°	Estrato
18	296°/88°	310°/49°	Estrato
19	292°/88°	305.3°/46.7°	Estrato
20	279°/89°	288°/42°	Estrato

Tabla. 5.3. Datos de rumbo y echado colectados en el afloramiento Xiotillo-Magdalena y sus orientaciones originales al restaurarlos a la paleohorizontal.

Como puede observarse en la Figura 5.10, al realizar la corrección estructural los estratos que están sobre la discordancia, es decir aquellos que son más jóvenes que esta discontinuidad, obtienen una orientación subhorizontal, mientras que aquellos que están por debajo de la discordancia presentan echados entre 5° y 31°. Gracias a este arreglo puede interpretarse que la discordancia se había formado previo al depósito de las formaciones Piedra Hueca y Otlaltepec. Esta discordancia debe su formación a esfuerzos extensionales ocurridos durante la sedimentación de la formación Tianguistengo, cuyos esfuerzos σ 3 debieron hacer tenido una orientación aproximada de 65°-245°. Esta conclusión es compatible con los resultados obtenidos de la corrección estructural de las fallas sinsedimentarias analizadas en este capítulo.

Fig. 5.10. Diagramas estereográficos del afloramiento Xiotillo-Magdalena. A) Datos de estratificación representados como círculos máximos, aquellos que están sobre la discordancia se presentan con un color naranja, en azul los que están debajo de la misma. La discordancia se presenta en rojo. B) Datos de estratificación después de aplicarles la corrección estructural (OSXStereonet Versión 2.1).

5.4 FAMILIAS DE FALLAS EN LAS FORMACIONES TIANGUISTENGO, PIEDRA HUECA Y OTLALTEPEC

Las fallas sinsedimentarias analizadas con anterioridad son datos obtenidos exclusivamente en la formación Tianguistengo, pero adicional a estos sistemas de fallas con orientación N-S y SE-NW se registró la presencia de otras discontinuidades que cortaban a las fallas sinsedimentarias (Figs. 5.11 y 5.12).

Fig. 5.11. Sistemas de fallas presentes en la formación Tianguistengo. A) Se observan dos sistemas con orientaciones aproximadamente perpendiculares, claramente se distingue que las fallas normales de rumbo N60°E son posteriores al desarrollo de las fallas con orientación S158°E. Afloramiento sobre el lecho del Río Magdalena. B) Vista lateral del afloramiento donde se observa el desplazamiento de las fallas normales de rumbo N60°E. Dimensión del martillo 41 cm.

Fig. 5.12. Sistemas de fallas observados en las rocas de la formación Tianguistengo.La falla con orientación N24°E claramente es posterior a la de rumbo S134°E.

En este ejercicio se observó, en la formación Tianguistengo, que las fallas claramente sinsedimentarias tienen una orientación preferencial N-S y NW-SE, mientras que las fallas posteriores están orientadas E-W, NE-SW y NW-SE. Se observó que las fallas de orientaciones E-W y NE-SW corresponden a sistemas de fallas que cortan a las fallas sinsedimentarias. Por otro lado, en las otras dos formaciones, se observó una tendencia al E-W en la orientación de las fallas, por lo que se concluye que el sistema de fallas de orientación preferencial E-W ocurrió en las posterior al depósito de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec (Fig. 5.13).

Fig. 5.13. Sistemas de fallas presentes en las rocas jurásicas de la cuenca Otlaltepec. Los puntos representan los polos de los datos estructurales. A) Diagrama de roseta que muestra la orientación promedio de las fallas sinsedimentarias en la formación Tianguistengo. B) Diagrama de roseta de las fallas posteriores a las fallas sinsedimentarias en la formación Tianguistengo. C) Diagrama de roseta de las fallas presentes en la formación Piedra Hueca. D) Diagrama de roseta de las fallas presentes en la formación Otlaltepec.

5.5 BRECHAS Y DEFORMACIÓN SINSEDIMENTARIA

Se registró la presencia de brechas tectónicas sinsedimentarias en las rocas de la formación Tianguistengo compuestas del fragmentos de arenisca de grano medio de coloración rojiza de bordes suaves que evidencian el desarrollo de las brechas mientras los sedimentos aún no estaban consolidados. Así mismo se encontraron afloramientos con pliegues con deformación suave, este tipo de estructuras son una expresión de actividad tectónica sinsedimentaria (Fig. 5.14).

Fig. 5.14. A y B) Brechas tectónicas sinsedimentarias. Afloramiento ubicado sobre el lecho del Río Magdalena en las cercanías de la Falla Tianguistengo. Tamaño de la brújula: 10x15 cm. C) Clásto localizado en la formación Piedra Hueca, presenta deformación en estado suave. Afloramiento ubicado las cercanías del cerro Xiotillo. D) Pliegues sinsedimentarios sobre el lecho del Río Magdalena en las cercanías del Cerro Xiotillo. Longitud del martillo 41 cm. Formación Tianguistengo.

CAPÍTULO 6

GEOCRONOLOGÍA U-PB DE CIRCONES DETRÍTICOS

Durante el trabajo de campo se realizó la colecta de dos muestras de areniscas (P.50 y P.53) para estudios de circones detríticos, con el objetivo de constreñir la edad máxima de depósito de la formación Tianguistengo. Debido a este interés, el proceso de selección de los circones utilizados en los análisis de U-Pb no fue aleatorio, pues se dio preferencia a los cristales euhedrales sobre aquellos que presentaban formas redondeadas con la suposición de que estos fueran los más jóvenes (Gehrels, 2012). Por lo tanto, los resultados de este muestreo dirigido pueden no reflejar la procedencia de las rocas de la formación Tianguistengo. La posición estratigráfica de estas muestras se observa en las figuras 4.2 y 4.8 del Capítulo 4. El listado de los resultados de los análisis por el método U-Pb se presenta en el Apéndice II de este trabajo.

6.1 ANÁLISIS GEOCRONOLÓGICO MUESTRA P.50

La muestra P.50 fue colectada en las cercanías de la ranchería La Huertilla, al oeste de área de estudio. Corresponde a la matriz de arena gruesa de un conglomerado polimíctico matriz-soportado con mala clasificación. Los clástos corresponden a fragmentos de granito, gabro, areniscas rojizas de grano fino, areniscas de grano medio color castaño, esquistos, cuarzo lechoso y rocas volcánicas, cuyo eje más largo varía de 2 hasta 12 cm. En general los clástos están bien redondeados y tienen baja esfericidad. La matriz de este conglomerado tiene una composición muy similar a la de los clástos.

Se efectuaron 99 análisis puntuales en 92 circones; en 6 granos se realizaron de 2 a 3 análisis, tanto en el centro como en el borde de los cristales, para determinar la existencia de un núcleo heredado, en el resto (86 circones) sólo se realizó un análisis por cada cristal (Tabla AII-I, Apéndice II) (Fig. 6.1).

Las edades obtenidas están en el rango de 1231 ± 61 a 248 ± 3 Ma y se presentan en tres grupos principales: i) Un rango de 248 a 340 Ma con un pico principal en ~276 Ma; ii) la segunda población con un rango de 466 a 597 Ma y iii) un tercer conjunto con un rango entre 878 a 1269 Ma (pico principal en ~956 Ma) (Fig. 6.2).

Fig. 6.1. Imagen de catodoluminiscencia de los cristales de la muestra P.50. Los círculos indican el análisis por ablación láser realizado (~23 micras). Puede observarse la distribución de las edades en las morfologías presentes en esta muestra que van desde edades proterozoicas hasta mesozoicas, en este caso predominan los circones de edad paleozoica.

Morfologías

Los cristales presentes en esta muestra pueden clasificarse en cinco poblaciones generales, basadas en características tales como la morfología, coloración, transparencia, alteración, grado de redondez y tamaño (criterios de clasificación en Corfu *et al.*, 2003) (Fig. 6.3). La relación entre las morfologías de circones y las edades se muestra en la figura 6.4.

Fig. 6.2. A) Diagrama acumulativo de las edades U-Pb , donde se observan el pico principal de densidad en 276 Ma y otros rangos de edades importantes en la muestra. B) Diagrama de concordia Tera-Wasserburg que muestra las edades U-Pb obtenidas para los cristales de la muestra P.50.

Población 50.1. Circones euhedrales de forma prismática, elongados. Su coloración va de rosada a transparente. Tamaño promedio de 80 μm. La imagen de catodoluminiscencia muestra algunos cristales con zoneamiento, aunque otros cristales se muestran con una coloración amarilla natural. Las edades obtenidas en los ejemplares de esta población son: 248, 261, 267, 269, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281,282, 283, 284, 285, 286, 287, 288, 292, 295, 303 y 304 Ma (Fig. 6.3 A).

Población 50.2. Circones redondeados y subesféricos. Su coloración va de rosada a transparente. Su tamaño va de 40 a 100 μ m. La imagen de catodoluminiscenciamuestra zoneamiento ocasional. Las edades obtenidas en ejemplares de esta población son: 274, 275, 277, 278, 288, 291, 582, 586 y 748 Ma (Fig. 6.3 B).

Población 50.3. Cristales subangulares a subredondeados con fracturamiento común. Su coloración va de rosada a transparente. Tamaño promedio de 70 μm. La imagen de catodoluminiscencia muestra zoneamiento ocasional. Hay presencia de inclusiones. Las edades obtenidas en ejemplares de esta población son: 270, 271, 274, 276, 278, 279, 280, 282, 283, 285, 287, 292, 294, 295, 297, 298, 299, 313, 321, 533, 899, 965, 1024, 1032, 1119, 1137, 1136y 1042 Ma (Fig. 6.3 C).

107

Fig. 6.3. Poblaciones principales de circones de la muestra P.50. Se muestran a la izquierda imágenes tomadas con el microscopio estereográfico e imágenes de catodoluminiscencia a la derecha.A) Población 50.1. B) Población 50.2. C) Población 50.3. D) Población 50.4. E) Población 50.5.

Fig. 6.4. Tabla que relaciona las morfologías y las edades presentes en la muestra P.50.

Población 50.4. Cristales subeuhedrales de forma prismática, muy redondeados. Su coloración es violeta. Su tamaño varía de 50 a 120 μ m. La imagen de catodoluminiscencia los muestra uniformes. Hay presencia de inclusiones. Las edades obtenidas en ejemplares de esta población son: 340, 748, 954, 1136, 1137 y 1231 Ma (Fig. 6.3 D).

Población 50.5. Cristales euhedrales de forma prismática. Su coloración es castaño muy obscuro. Tamaño promedio de 80 µm. La imagen de catodoluminiscencia muestra algunos cristales con zoneamiento, en algunos casos aparece desarrollada alrededor de núcleos xenocrísticos. Otra característica importante es que el zoneamiento parece estar interrumpido por discontinuidades. No se obtuvieron edades de estos circones debido a que se consideraron inapropiados para el análisis U-Pb (Fig. 6.3 E).

6.2 ANÁLISIS GEOCRONOLÓGICO MUESTRA P.53

Este ejemplar fue colectado sobre el lecho del Río Magdalena en las cercanías del poblado de Santo Domingo Tianguistengo. Se trata de una arenisca de grano fino a medio en estratos de 0.2 a 1 m de espesor con límites planares bien definidos. Es de color rojizo o castaño claro. Se compone principalmente de cuarzo, feldespatos y líticos de granito y esquisto. Se realizaron 98 análisis puntuales a 94 granos de circón. En 4 cristales se realizaron 2 análisis (centro y borde) con el fin de detectar la existencia de núcleos heredados, en los 90 restantes sólo se efectúo un análisis (Tabla AII-II, Apéndice II) (Fig. 6.5).

El rango de edades que comprende esta muestra va de 1536 ± 48 a 237 ± 4 Ma. Se observan dos grupos de principales: i) la primera con un rango que va de 237 a 318 Ma (pico principal en 285 Ma) y ii) con rango de 914 a 1536 Ma (pico principal en ~950 Ma) (Fig. 6.6).

Morfologías

Los circones montados en esta muestra se clasifican en 7 poblaciones, de acuerdo a sus características físicas (criterios de clasificación en Corfu *et al.*, 2003) (Fig. 6.7). Cinco de las poblaciones son muy similares a las definidas en la muestra P.50. La relación entre las morfologías de circones y las edades principales se muestra en la figura 6.8.

Población 53.1. Circones euhedrales de forma prismática, elongados. Su coloración natural es rosada, violeta o transparente. Su tamaño varía de 120 a 50 μm. La imagen de catodoluminiscencia muestra algunos cristales con zoneamiento. Las edades obtenidas en ejemplares de esta población son: 275, 276, 284, 285, 286, 290, 293, 295, 298, 303, 401 482 y 1321 Ma (Fig. 6.7 A).

Población 53.2. Circones subredondeados y subesféricos. Su coloración natural va de rosada a transparente. Su tamaño va de 100 a 25 µm, la variación de tamaño de esta población es de las más notorias en la muestra. La imagen de catodoluminiscencia zoneamiento ocasional, presencia de núcleos xenocrísticos e inclusiones. Las edades obtenidas en algunos ejemplares de esta población son: 273, 275, 281, 286, 292, 298, 914, 947, 958, 973, 974, 1064, 1086, 1090, 1111, 1114, 1130, 1133, 1155, 1224, 1228, 1229, 1333, 1334, 1335 y 1463 Ma (Fig. 6.7 B).

Fig. 6.5. Imagen de catodoluminiscencia de los cristales de la muestra P.53. Los círculos indican el análisis por ablación láser realizado (~23 micras). Puede observarse la distribución de las edades en las morfologías presentes en esta muestra que van desde edades proterozoicas hasta mesozoicas, en este

caso predominan los circones de edad paleozoica y los proterozoicos.

Fig. 6.6. A) Diagrama acumulativo de las edades U-Pb de la muestra P.53, donde se observan los picos principales de densidad en 286 y 949 Ma. B) Diagrama de concordia que muestra las edades U-Pb obtenidas para los cristales de la muestra P.53.

Población 53.3. Cristales subangulares a subredondeados con fracturamiento común. Su coloración natural es rosada, amarilla o transparente. Su tamaño promedio es de 80 μm. La imagen de catodoluminiscencia zoneamiento ocasional, presencia de núcleos xenocrísticos e inclusiones. Las edades obtenidas en ejemplares de esta población son: 273, 274, 275, 276, 282, 283, 285, 286, 287, 288, 291, 292, 293, 295, 296, 297, 301, 303, 307, 309, 310, 316, 318, 950, 965, 996,1012, 1061, 1069, 1107 y 1269 Ma (Fig. 6.7 C).

Población 53.4. Cristales subeuhedrales de forma prismática, muy redondeados. Su coloración natural es violeta y su tamaño promedio es de 100 μ m. La imagen de catodoluminiscencia los muestra con zoneamiento o uniformes. Las edades obtenidas en ejemplares de esta población son: 1013, 1035, 1073, 1109, 1240, 1243 y 1536 Ma (Fig. 6.7 D).

Población 53.5. Cristales subeuhedrales de forma prismática. Su coloración natural es violeta muy obscuro. Tamaño promedio de 80 µm. La imagen de catodoluminiscencia los muestra de color

negro uniforme. No se obtuvieron edades de estos circones debido a que se consideraron inapropiados para el análisis U-Pb (Fig. 6.7 E).

Población 53.6. Circones redondeados y esféricos. Su coloración natural va de rosada a violeta intenso. Su tamaño va de 500 a 10 μ m. La imagen de catodoluminiscencia zoneamiento ocasional, presencia de núcleos xenocrísticos e inclusiones. Las edades obtenidas en algunos ejemplares de esta población son: 1084, 1164 y 1227 Ma (Fig. 6.7 F).

Población 53.7. Cristales subeuhedrales de forma subprismática. Su coloración natural es transparente o amarilla y su tamaño promedio es de 70 μm. La imagen de catodoluminiscencia los muestra de color amarillo uniforme, con zonación o con núcleos xenocrísticos. Las edades obtenidas en algunos ejemplares de esta población son: 237, 272, 284, 287, 301, 314, 522, 963 y 976 Ma (Fig. 6.7 G).

6.3 CONCLUSIONES DEL ANÁLISIS GEOCRONOLÓGICO

Algunos estudios (Corfu *et al.*, 2003) concluyen que los circones de apariencia alargada son comunes en casos de cristalización rápida en granitos, grabros o en intrusiones de tipo subvolcánico. Además la presencia de zoneamiento bien desarrollado en los cristales es una característica típica de circones de origen magmático, así como ocurrencia de circones con núcleos xenocrísticos es una característica frecuente en las rocas ígneas.

Por lo cual se infiere que un gran porcentaje de los cristales analizados en ambas muestras procede fuentes de origen magmático. Además, como puede observarse en las Tablas AII-I y AII-II, la razón Th/U es mayor a 0.1 en la mayoría de los cristales de ambas muestras, lo cual ha sido reportado como una característica de circones de origen magmático (Rubatto, 2002) (en 88 circones en la muestra P.50 y 91 circones en la muestra P.53).

Por otro lado, el redondeamiento de algunos cristales se atribuye a procesos de transporte, por lo que los circones bien redondeados podrían podrían registrar multiples ciclos de sedimentación y reciclaje. Sin embargo, las poblaciones morfológicas no coinciden exactamente con poblaciones de edad.

Fig. 6.7. Poblaciones principales de circones de la muestra P.53. Se muestran a la izquierda imágenes tomadas con el microscopio estereográfico e imágenes de catodoluminiscencia a la derecha.A) Población 53.1. B) Población 53.2. C) Población 53.3. D) Población 53.4. E) Población 53.5. F)Población 53.6. G) Población 53.7.

Muestra P.53								
Edad	Poblaciones							
	53.1	53.2	53.3	53.4	53.6	53.7		
Triásico						0		
Pérmico		0				00		
Carbonífero Pensilvánico			۲			(3)		
Devónico	0							
Cámbrico						()		
Ordovícico	00							
Neoproterozoico			6			۵		
Mesoproterozoico	c 2		S	0				

Fig. 6.8. Tabla que relaciona las morfologías y las edades presentes en la muestra P.53.

6.4 EDAD DE LA FORMACIÓN TIANGUISTENGO

Los circones detríticos analizados en ambas muestras (P.50 y P.53) presentan un amplio rango de edades que comprenden desde el Triásico hasta el Mesoproterozoico (Figs. 6.1 y 6.4). Se distinguieron los siguientes grupos en ambas muestras (Figs. 6.2 y 6.6):

• Circones proterozoicos con edades de ~914 a ~1536 Ma (pico principal en ~950 Ma) (muestra P.50) y de ~878 a ~1269 Ma (pico principal en ~956 Ma) (muestra P.53).

Circones paleozoicos del Cámbrico, Ordovícico, Devónico, Carbonífero (Mississipico) de ~340 y ~483 Ma (dos cristales en la muestra P.50); ~401, ~482 y ~522 Ma (3 cristales muestra P. 53).

• Circones paleozoicos del Pérmico y Carbonífero (Pensilvánico) de ~261 a ~321 Ma con un máximo en ~276 Ma (muestra P.50) y circones de ~268 a ~318 Ma (pico principal en ~285 Ma) (muestra P.53).

Además de estos tres grupos cronológicos, cada muestra presentó un cristal de edad triásica (~248 Ma, Triásico Inferior y ~237 Ma, Triásico Medio-Superior), la cual es la edad más joven encontrada en estos estudios y es considerada como la edad máxima de depósito para la formación Tianguistengo.

La información geocronológica y las relaciones estratigráficas observadas en campo sugieren que la edad de la formación Tianguistengo es Triásico Superior-Jurásico Inferior. La unidad que la sobreyace (formación Piedra Hueca) es considerada como Jurásico Inferior-Medio y las edades de los circones más jóvenes estudiados son esencialmente pérmicos y del Triásico Inferior-Medio.

En este trabajo no se realizó un análisis de procedencia de las poblaciones de circones detríticos, sin embargo debe mencionarse que los resultados son muy similares a aquellas edades reportadas por Silva-Romo *et al.* (2015) en la Formación La Mora (Muestra TEZ-21), ubicada al sur del área de estudio de esta tesis. Estudios posteriores podrían develar una posible correlación entre las formaciones La Mora y Tianguistengo.

CAPÍTULO 7

DISCUSIÓN DE LOS RESULTADOS

7.1 MODELO DE PALEOAMBIENTE DE DEPÓSITO DE LA FORMACIÓN TIANGUISTENGO

De acuerdo con la información obtenida en campo (columnas estratigráficas, muestras, descripción de afloramientos, etc.) y su respectivo análisis se interpretó un ambiente de depósito de tipo aluvial-fluvial para las rocas de la formación Tianguistengo.

Los depósitos de conglomerados y arenas del borde occidental de la cuenca han sido interpretados como canales, flujos de sedimentos por gravedad intercalados con depósitos de llanura de inundación (Columnas IV Tedigno y V Alegría). Al hacer el recorrido hacia el Este los depósitos de planicie de inundación son más abundantes y muestran vestigios de crecimiento de vegetación y formación de estanques de agua dulce donde hubo proliferación de ostrácodos (Columnas I Santo Domingo, II Magdalena y III Cazahuate). La vegetación y los estanques se consideran rasgos efímeros pues con cada nueva inundación se veían cubiertos por material clástico que evitó el crecimiento de las plantas y la conservación de sitios de reproducción de los ostrácodos y otros organismos. Las características observadas en las láminas delgadas que contienen microfósiles nos permiten inferir que el ambiente en el que se desarrollaron los ostrácodos y algas era un estanque de baja energía con influencia de sedimentos terrígenos en el ocasionalmente había flujos de alta energía.

Las asociaciones de facies observadas indican la existencia de elementos arquitectónicos propios de un ambiente aluvial-fluvial. Asimismo se registró un decremento en la granulometría de los sedimentos de Oeste a Este, por lo que el abanico estaría orientado hacia el Este. Dicho arreglo sugiere que la zona de canales se encontraba en la zona de la ranchería La Huertilla, mientras que la planicie de inundación se extendió hasta las cercanías del poblado de Santo Domingo Tianguistengo.

De acuerdo a estos resultados se elaboró un modelo esquemático que muestra la posición del los canales principales y la planicie de inundación mostrado en la Fig. 7.1.

Fig. 7.1. Modelo de facies esquemático para la formación Tianguistengo, depositada en un sistema aluvial-fluvial asociado a una falla sinsedimentaria. Los números indican las asociaciones de facies presentes: 1) Levee, 2) Crevasse chanel, 3) Crevasse splay, 4) Planicie de inundación, 5) Arenas con intraclástos, 6) Flujos de sedimentos por gravedad y 7) Canales. Modificado de Miall (2006).

7.2 EDAD DE LA FORMACIÓN TIANGUISTENGO

El contenido paleontológico ofrece un rango muy amplio de edad, sin embargo la información geocronológica y las relaciones estratigráficas observadas en campo sugieren que la edad de la formación Tianguistengo es Triásico Superior-Jurásico Inferior.

7.3 TECTÓNICA SINSEDIMENTARIA

El análisis estructural en campo permitió determinar la existencia de rasgos tales como brechas, pliegues sinsedimentarios, fallas sinsedimentarias y discordancias que indican que el depósito de la formación Tianguistengo ocurrió en una cuenca tectónicamente activa, bajo un régimen extensional o transtensional. Se determinó que el campo de esfuerzos correspondiente tendría orientaciones E-W y NE-SW durante el Triásico Superior-Jurásico Inferior.

Sin embargo, hay evidencias de que posterior a este régimen hubo un cambio en el campo de esfuerzos. Este cambio se determinó por medio del análisis de datos de estratificación y por la existencia de fallas que cortan perpendicularmente a las fallas sinsedimentarias de la formación Tianguistengo.

El segundo régimen se considera extensional o transtensional pero con un campo de esfuerzos con direcciones N-S y NW-SE y fue el causante del basculamiento (con eje E-W) de la formación Tianguistengo, previo al depósito de la formación Piedra Hueca, y continuó hasta el depósito de la formación Otlaltepec dando lugar a la serie de discordancias regionales que dividen estas unidades del Jurásico Inferior al Jurásico Superior. Este tipo de rotaciones y discordancias son muy similares a aquellas asociadas a una actividad de falla lístrica sinsedimentaria, cuya posición se ubica al norte del paquete sedimentario y podría corresponder a la Falla Ameyaltepec (Figs. 7.1 y 7.2).

Los límites de a cuenca Otlaltepec se desconocen hacia el Norte y Noreste de la región, ya que se encuentran cubiertos por depósitos del Cretácico, sin embargo en la región de Santo Domingo Tianguistengo se han delimitado con precisión. Los datos estructurales nos permiten establecer que en esta zona los sedimentos están alojados en el graben formado por las Fallas Ameyaltepec, Tianguistengo y Totoltepec (Fig. 7.2).

Las evidencias de la actividad de las fallas Ameyaltepec, Tianguistengo y Totoltepec durante el relleno de la cuenca Otlaltepec son:

• Los depósitos subhorizontales de la formación Tianguistengo, ubicados en al cercanías del poblado de Santo Tomás Otlaltepec, no presentan las rotaciones observadas dentro del graben delimitado por las fallas Ameyaltepec, Tianguistengo y Totoltepec, los cuales son un indicativo

de la actividad sinsedimentaria de la falla Tianguistengo. Asimismo la ausencia de los depósitos de la formación Piedra Hueca en esta zona nos permiten establecer que la falla Tianguistengo se encontraba de etapas tempranas aumentó su desplazamiento a partir del Jurásico Inferior (véase Mapa Geológico anexo).

• En las cercanías del poblado de Santo Domingo Tianguistengo se ubicó un depósito de la formación Otlaltepec subhorizontal, el cual es indicativo de la actividad pre-Jurásico Medio de la Falla Totoltepec, y por lo tanto, es otra evidencia que indica la rotación previa de las unidades Tianguistengo y Piedra Hueca (véase Mapa Geológico anexo).

Asimismo se ha reconocido una asimetría en la sedimentación que indica que el depocentro de la cuenca Otlaltepec se encuentra al norte, cercano a la Falla Ameyaltepec (Fig. 7.2).

7.4 AMBIENTE TECTÓNICO

Durante el periodo estimado para el depósito de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec se ha establecido con relativa certeza la ocurrencia de un evento tectónico de escala global: la ruptura de Pangea; fenómeno que inició hace 230 Ma y que precedió la formación del Golfo de México y del Océano Atlántico (McHone, 2000; Bird and Burke, 2006).

Aunque muchos modelos han sido propuestos, para describir la fragmentación de Pangea la mayoría de los autores coincide en que la apertura del Golfo de México fue producto de la rotación hacia la izquierda del Bloque de Yucatán con respecto a Norteamérica que necesariamente requería de un límite transforme para su desarrollo. Así mismo se ha sugerido que la rotación ocurrió entre 160 Ma y 140 Ma (Pindell, 1985, 1994; Marton and Buffler, 1994; Bird and Burke, 2006). Simultáneamente a este proceso ocurría la separación de Gondwana de Norteamérica (Pindell, 1994; Michalzik, 1991; Marton y Buffler, 1993; Bird *et al.*, 2005). Dicha apertura permitió el desarrollo de dos trazas donde ocurrió la formación de piso oceánico y que corresponden a los limites de Norteamérica y Gondwana, incluyendo el rift que limito el bloque de Yucatán (Bird and Burke, 2006).

Una gran cantidad de autores coincide con que los esfuerzos de extensión están orientados

aproximadamente N-S a NW-SE (Anderson y Schmidt, 1983; Pindell, 1985; Salvador, 1991; Marton y Buffler, 1994; Dickinson and Lawton, 2001). Existe una gran variedad de modelos para la apertura del Golfo de México, sin embargo, de acuerdo con Mendoza-Rosales *et al.* (2010) el modelo conformado por dorsales separadas por fallas transformes es uno de los más probables de acuerdo con el registro geológico preservado en la cuenca de tipo extensional de Chivillas (zona ubicada al este del área de estudio) que aunque es más joven (~126 Ma) que la cuenca Otlaltepec presenta un estado de esfuerzos N-S asociado al proceso de rifting de la apertura del Golfo de México. A este modelo se le conoce como Intersección Dorsal-Transforme (Fig. 7.2).

Fig. 7.2. Modelo esquemático que representa el relleno sedimentario de la cuenca Otlaltepec del Triásico Superior al Jurásico Superior. Región de Santo Domingo Tianguistengo.

En conclusión, la cuenca Otlaltepec podría corresponder al tipo de cuencas descrito en el modelo tectónico Intersección Dorsal-Transforme, así como el estado de esfuerzos que actuó en los depósitos de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec.

CAPÍTULO 8

CONCLUSIONES Y RECOMENDACIONES

1. Se reconoció la existencia de nueve unidades estratigráficas en la zona de estudio que comprenden: rocas metamórficas e ígneas que conforman el basamento regional (Complejo Acatlán); una sucesión sedimentaria triásica-jurásica dividida en las formaciones Tianguistengo, Piedra Hueca y Otlaltepec; una cubierta sedimentaria cretácica deformada compuesta por la formación Magdalena, Caliza Coyotepec y Unidad Pozo Hondo; sedimentos pleistocénicos, domos e intrusivos de composición riolítica.

2. Se realizó el análisis de facies en los depósitos de la formación Tianguistengo, en las columnas se identificaron seis asociaciones de facies depositadas en un ambiente de depósito de tipo aluvial-fluvial, específicamente uno de tipo llanura de inundación, que se determinó de acuerdo a las estructuras primarias, fósiles, textura y distribución de las diferentes facies.

3. De acuerdo a los resultados geocronológicos obtenidos y a las relaciones estratigráficas observadas en campo se infiere que la edad de la formación Tianguistengo es Triásico Superior-Jurásico Inferior.

4. Se recomienda hacer un análisis de las edades de los circones detríticos y los resultados petrográficos de la formación Tianguistengo, a fin de concluir la procedencia de los sedimentos de esta unidad y establecer la correlación con otras formaciones similares ubicadas en el Terreno Mixteca.

5. Se determinó que cuenca Otlaltepec se encontraba tectónicamente activa durante el depósito de las unidades triásica y jurásicas bajo un régimen extensional o transtensional. Se determinó que existieron dos campos de esfuerzos, uno durante el depósito del la formación Tianguistego con orientaciones E-W y NE-SW (Triásico Superior-Jurásico Inferior) y otro posterior al depósito de la unidad mencionada con orientaciones N-S y NW-SE que provocó el basculamiento progresivo de las unidades sedimentarias Tianguistengo, Piedra Hueca y Otlaltepec y la formación de las discordancias entre ellas (Jurásico Inferior-Jurásico Superior).

6. Parte de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec se depositaron dentro del graben formado por las fallas Ameyaltepec, Tianguistengo y Totoltepec, sin embargo existen depósitos

de estás unidades fuera de los límites del graben, el área total de la cuenca Otlaltepec no se ha definido con certeza.

7. Con base en las reconstrucción de la historia geológica de Mexico de diversos autores, se reconoce que durante el depósito de la sucesión jurásica de interés, se estaba llevando durante las etapas previas de la apertura del Golfo de México cuyo campo de esfuerzos N-S pudo ser el que generara las discordancias mayores entre las unidades Tianguistengo, Piedra Hueca y Otlaltepec.

REFERENCIAS

- Aguilera, J. G., 1906, Excursión de Tehuacán a Zapotitlán y San Juan Raya, México. Décimo Congreso Geológico Internacional, Guía de excursiones: México, 7, 27 p.
- Alencaster-de Cserna, G. y Buitrón-Sánchez, B. E., 1965. Estratigrafía y Paleontología del Jurásico Superior de la parte centromeridional del estado de Puebla. Fauna del Jurásico Superior de la Región de Petlalcingo, estado de Puebla: Paleontología Mexicana, Inst. de Geología, UNAM. Núm. 21, 53 p.
- Anderson, T.H., Schmidt, V.A. 1983. The evolution of the Gulf of Mexico-Caribbean Sea region during Mesozoic time. Geological Society of America Bulletin, 94, p. 941-966.
- Arp, G., 1995. Lacustrine bloherms, spring nlounds, and marginal carbonates of the Ries-Impact-Crater (Miocene, Southern Germany), Facies, 33, p. 35-90.
- Bally, A. W., Bernoulli D., Davis, G. A., and Montadert, L., 1981. Listric normal faults:
 Oceanológica Acta, 26th International Geological Congress Proceedings, Paris, 1980, p.
 87-101 in American Association of Petroleum Geologists, Treatise of Petroleum Geology Reprint Series No. 11, Structural concepts and techniques III, p. 1–15.
- Bird, D. E., Burke, K., Hall, S.A., Casey, J. F., 2005. Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution: American Association of Petroleum Geologists Bulletin, 89, p. 311-328.
- Bird, D.E., Burke, K., Hall, S.A., Casey, J.F., 2005. Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution. American Association of Petroleum Geologists Bulletin, 89: p. 311-328.
- Bird, D. E., and Burke, K., 2006. Pangea breakup: Mexico, Gulf of Mexico, and Central Atlantic Ocean: in, Expanded Abstracts of the Technical Program: Society of Exploration Geophysicists 76th Annual International Meeting and Exposition, p. 1013-1016.
- Boggs, S., 2006. Principles of Sedimentology and Stratigraphy. Ed. Pearson Prentice Hall, 662 p.
- Caballero-Miranda, C., Morán-Zenteno, D. J., Urrutia- Fucugauchi, J., Bohnel, H., Jurado-Chichay,
 Z., Cabral-Cano, E., Silva-Romo, G., 1990. Paleogeography of the northern portion of the Mixteca Terrane, Southern Mexico during the Middle Jurassic: Journal of South American Earth Sciences, V.3, N. 4, p. 195-211.

- Calderón-García., A., 1956. Bosquejo geológico de la región de San Juan Raya, Puebla: Congreso Geológico Internacional XX Sesión, México, Libreto-guía, Exc. A-11, p. 9-27.
- Campa, M. F. y Coney, P. J., 1983. Tectonostratigraphic Terranes and Mineral Resource Distributions in Mexico: Canadian Journal Earth Science, 20, p. 1040-1051.
- Centeno-García, E., 20055. Review of Upper Paleozoic and Lower Mesozoic stratigraphy and depositional environments of central and west Mexico: Constraints on terrane analysis and paleogeography. In Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, p. 233–258.
- Centeno-García, E., Guerrero, S. M., Talavera, M. O., 2008. The Guerrero Composite Terrane of western Mexico: Collision and subsequent rifting in a supra-subduction zone en Drauft, A., Clift, P. D. Scholl, W., Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Paper 436, p. 279-308.
- Centeno-García, E., Mendoza-Rosales, C. C., Silva Romo, G., 2009. Sedimentología de la formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla: Revista Mexicana de Ciencias Geológicas, 26 (1), p. 18-36.
- Clausing, A., 1990. Mikrofazies lakustriner Karbonat- horizonte des Saar-Nahe-Beckens (Unterperm, Rot- liegend, SW-Deutschland): Facies, 23, p. 121-140.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., 2003. Atlas of zircon textures: Reviews in Mineralogy and Geochemistry, v. 53, p. 469–500.
- Cruz-Cruz, Miguel Ángel., 2012. Análisis estratigráfico de la secuencia jurásica de la región de Santo Domingo Tianguistengo, Oaxaca Santa Cruz Nuevo, Puebla: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de Licenciatura, 109 p.
- Dott, R. H., 1964, Wacke, greywacke and matrix-what approach to immature sandstone classification?: Journal of Sedimentary Petrology 34, p. 625-632.
- Dickinson, W.R., Lawton, T.F., 2001. Carboniferous to Cretaceous assembly and fragmentation of Mexico. Bulletin of the Geological Society of America, 113 (9): p. 1142-1160.

- Elías-Herrera, M., Ortega-Gutiérrez, F., Sanchés-Zavala, J. L., Macías-Romo, C., Ortega-Rivera, A., Iriondo, A., 2005. La Falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre continentes del sur de México: Boletín de la Sociedad Geológica Mexicana, Volumen Conmemorativo del Centenario, Grandes Fronteras Tectónicas de México, Tomo 42 (1), p. 83-109.
- Ferrusquía, V. I. y Cruz, G. V., 2003. Advances in the study of Puebla's Pleistocene mammals; the Santa Cruz local fauna: Geological Society of america, Cordilleran Section, 99th Annual Meeting. Abstracts with Programs-Geological Society of America 35 (4), 69 p.
- Fisher, N.I., Lewis, T.L., and Embleton, B.J., 1987. Statistical analysis of spherical data. Cambridge University Press, 329 p.
- Flügel, E., 2004. Microfacies of carbonate rocks. Analysis, interpretation and application: Springer, Berlin, 976 p.
- Fries, C. Jr., Rincón-Orta, C., 1965, Nuevas aportaciones geocronológicas y técnicas empleadas en el laboratorio de geocronometría: Universidad Nacional Autónoma de México, Instituto de Geología, 73, p. 57-133.
- Fries, Carl, J., Rincón-Orta, C., Solorio-Munguía, J., Schmitter-Vilada, E. and Cserna, Z. d., 1970. Una edad radiométrica ordovícica de Totoltepec, Estado de Puebla: Libro-guía de la excursión México-Oaxaca, Sociedad Geológica Mexicana, México D.F., pp. 164–166.
- Gehrels, G., 2012. Detrital zircon U-Pb geochronology: current methods and new opportunities: in Busby, C. and Azor-Pérez, A., Tectonics of Sedimentary Basins, Recent Advances: Chichester, UK, John Wiley and Sons, p. 47-62.
- Hatcher, R. D., 1990. Structural Geology. Principles, Concepts, and Problems. Ed. Merrill Publishing Company. 531 p.
- Horne, D. J., Holmes, J., Rodríguez-Lazaro, J. and Viehberg, F. A., 2012. Ostracoda as proxies for quaternary climate change. Ed. Elsevier. 366 p.
- Instituto Nacional de Estadística y Geografía (INEGI), 2012a. Carta topográfica E14-B74, San Juan Ixcaquixtla. Escala 1:50,000.
- Instituto Nacional de Estadística y Geografía (INEGI), 2012b. Carta topográfica E14-B84, Petlalcingo. Escala 1:50,000.
- Keppie, J. D., Sandberg, C. A., Miller, B. V., Sánchez-Zavala, J. L., Nace, R. D. and Poole, F. G., 2004. Implications of Latest Pennsylvanian to Middle Permian Paleontological and U-

Pb SHRIMP Data from the Tecomate Formation to Re-dating Tectonothermal Events in the Acatlán Complex, Southern Mexico. International Geology Review 46, 8, p. 745-753.

- Keppie, J. D., Dostal, J., Murphy, J. B., and Nance, R. D., 2008. Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: from rifted Rheic margin to active Pacific margin: In Pereira M.F., Bozkurt E., Strachan R., and Quesada C. (Eds.), The Foundations and Birth of the Rheic Ocean: Avalonian– Cadomian Orogenic Processes and Early Palaeozoic Rifting at the Northern Gondwana Margin. Tectonophysics. 461, p. 277–290.
- Keppie, J. D., Galaz-Escamilla, G., Helbig, M. and Kirsch, M., 2012. Amalgamation and Breakup of Pangæa: the type example of the supercontinent Cycle, 108th Annual Meeting, Fieldtrip Guidebook 1, Geological Society of America, 17 p.
- Kirsch, M., 2012. Estudio de la Geoquímica, la Estructura y el Metamorfismo en el Este del Complejo Acatlán: Implicaciones Tectonicas y Paleogeográficas: Juriquilla, Querétaro, México, Universidad Nacional Autónoma de México, Centro de Geociencias, Tesis de Doctorado, 155 p.
- Kirsch, M., Keppie J. D., Murphy B., and Solari L., 2012, Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico: Geological Society of America Bulletin, v. 124, no. 9-10, p. 1607-1628.
- Kirsch, M., Keppie, J. D., Murphy, J. B., Lee, J. K. W., 2013. Arc plutonism in a transtensional regime: the late Palaeozoic Totoltepec pluton, Acatlán Complex, southern Mexico: International Geology Review. Volume 55, Issue 3. p. 263-286.
- Kraus, M. J., 1999. Paleosols in clastic sedimentary rocks: their geologic applications. Earth Science Reviews. Vol. 47, 41-70.
- Laboratorio de Estudios Isotópicos (LEI), 2012, Universidad Nacional Autónoma de México, Mexico, Centro de Geociencias, consultado en Junio de 2013). http:// www.geociencias.unam.mx/~solari/index_files/LEI/LA-ICPMS.html
- Lisle, R., 2013. Shear zone deformation determined from sigmoidal tension gashes. Journal of Structural Geology. Volume 50. p. 35-43.
- Macías-Romo, C., 2008. Manual de procedimientos para la técnica de separación de minerales. Instituto de Geología, Universidad Nacional Autónoma de México, 39 p.

- Marriott, S. B., 1996. Analysis and modelling of overbank deposits. En: Floodplain Processes. Ed. Anderson. M.G., Walling, D.E., Bates, P.D. Wiley, Chichester, p. 63-93.
- Marton, G., Buffler, R., T., 1994, Jurassic reconstruction of the Gulf of Mexico Basin: International Geology Review, 36, p. 545–586.
- McCann, T. and Saintot, A., 2003. Tracing tectonic deformation using the sedimentary record: an overview: Geological Society, London, Special Publications, 208, p. 1-28.
- McHone, J. G., 2000. Non-plume magmatism and tectonics during the opening of the central Atlantic Ocean. Tectonophysics, 316, p. 287-296.
- Mendoza-Rosales, C.C., y Silva-Romo, G. 1998. Icnitas de dinosaurios en la región mixteca, sur de Puebla, Mex: Libro de Resúmenes. Primera Reunión Nacional de Ciencias de la Tierra, México, D. F. p. 149.F
- Miall, A. D., 2006. The geology of fluvial deposits: Ed. Springer 4a impresión, Canadá, Toronto, 582 p.
- Michalzik, D., 1991. Facies sequence of Triassic-Jurassic red beds in the Sierra Madre Oriental (NE Mexico) and its relation to the early opening of the Gulf of Mexico: Sedimentary Geology, 71, 3-4, 243-259.
- Middleton, V. (Ed.), 2003. Encyclopedia of Sediments and Sedimentary Rocks. Series: Encyclopedia of Earth Sciences Series. Ed. Springer. 928 p.
- Molostovskaya, I. I., 2000. The evolutionary history of Late Permian Darwinulocopina Sohn, 1988 (Ostracoda) from the Russian Plate in Horne, D. J. and Martens, K., 2000. Evolutionary Biology and Ecology of Ostracoda. Ed. Kluwer Academic Publishers, 130 p.
- Morales-Gámez M, Keppie, J.D., Norman, M., 2008. Ordovician–Silurian rift-passive margin on the Mexican margin of the Rheic Ocean overlain by Carboniferous–Permian periarc rocks: Evidence from the eastern Acatlán Complex, southern Mexico Tectonophysics 461, 1-4, p. 291-310.
- Morales-Gámez M., Keppie, J.D., Dostal J., 2009. Carboniferous tholeiitic dikes in the Salada unit, Acatlán Complex, southern Mexico: A record of extension on the western margin of Pangea. Revista Mexicana Mexicana de Ciencias Geológicas 26, 1, p. 133-142.
- Morales-Gámez, M., 2011. Estudio geológico-estructural téctónico del área de Xayacatlán del Complejo Acatlán, Puebla, Sur de México: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de Doctorado, 132 p.

- Morán-Zenteno, D. J., 1987. Paleografia y paleomagnetismo precenozoicos del terreno mixteco. Universidad Nacional Autónoma de Mexico, Facultad de Ciencias, Tesis Maestria, 180 p.
- Morán-Zenteno, D. J., Caballero-Miranda, C. C., Silva-Romo, G., Ortega-Guerrero, B. y González-Torres, E., 1993. Jurassic-Cretaceous paleogeographic evolution of the northern Mixteca terrane, Southern Mexico. Geofísica Internacional, vol. 32, núm 3, p. 453-473.
- Nance, R. D., Miller, B. V., Keppie, J. D., Murphy, J. B., Dostal, J., 2006. Acatlán Complex, southern Mexico: Record spanning the assembly and breakup of Pangea: Geology, 34, p. 857–860.
- Naylor, M. A., Larroque, J.M., Gauthier, B.D.M., 1994. Understanding extensional tectonics: insights from sand-box models, Roure F., Geodynamic Evolution of Sedimentary Basins, International Symposium, Moscow, 1994, 69 - 83, Editions Technif, Paris.
- Nichols, G., 2009. Sedimentology & Stratigraphy, Wiley-Blackwell, Malden, MA. 419 p.
- Ordóñez, E., 1905. Las rocas arcaicas de México: Memoria y Revista de la Sociedad Científica "Antonio Alzate" (México), 22, p. 315-331.
- Ordóñez, E., 1906. L 'Archaique du Cañon de Tomellin, en X Congress Geologique Internationale, Guide d 'excursion: México, El Congreso 5, 30 p.
- Ortega-Guerrero, B., 1989. Paleomagnetismo y Geología de las unidades clásticas Mesozoicas del área Totoltepec-Ixcaquixtla, estados de puebla y Oaxaca: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de Maestría, 155 p., inédita.
- Ortega-Gutiérrez, F., 1970. Geología del cuadrángulo suroccidental de la hoja Tehuacán, estados de Puebla y Oaxaca. Universidad Nacional Autónoma de México, Facultad de Ingeniería, Tesis de licenciatura, 130 p.
- Ortega-Gutiérrez, F., 1978. Estratigrafía del Complejo Acatlán en la Mixteca Baja, Estados de Puebla y Oaxaca. Revista Mexicana de Ciencias Geológicas. 2, p. 112-131.
- Ortega-Gutiérrez, F., 1981. Metamorphic belts in southern Mexico and their tectonic significance: Geofisica Internacional, v. 20, p. 112-131.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Reyes-Salas, M., Macías Romo, M. C. and López, R., 1999. Late Ordovician-Early Silurian continental collisional orogeny in Southern Mexico and its bearing on Gondwana-Laurentia connections: Geology, v. 27, p. 719-722.
- Retallack, G.J., 2001. Soils of the Past: An Introduction to Paleopedology: Oxford, R.U., Blackwell Science, 404 p.
- Pérez-Alvarado, L., Alfaro, G., Palmieri, M., Dix, M., Maldonado, M., Islebe, G., Scharf, B., Schwalb, A., 2008. Paleoclima y paleoecología de las tierras bajas del norte de losneotrópicos: investigación limnológica y extracción de sedimentos del lago Petén Itzá (Guatemala): Revista Universidad del Valle de Guatemala, 18, p. 65-83.
- Pérez-Ibargüengoitia, J. M., Hokuto-Castillo, A. y De Cserna, Z., 1965. Estratigrafía y Paleontología del Jurásico Superior de la parte centromeridional del estado de Puebla.
 Reconocimiento geológico del área de Petlalcingo-Santa Cruz, Municipio de Acatlán, estado de Puebla. Pelontología Mexicana, Inst. de Geología, UNAM Núm. 21, 22 p.
- Pettijohn, F. J., Potter, P. E., Siever, R., 1972. Sand and sandstone: Springer, Berlín, 618 p.
- Pindell, J. L., 1985. Alleghanian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean, Tectonics 4, p. 1–39.
- Pindell, J. L., 1994. Evolution of the Gulf of Mexico and the Caribbean, en S.K. Donovan, T.A. Jackson, eds., Caribbean geology: An introduction: Kingston, University of the West Indies Publishers Association, p. 13–39.
- Ramos-Leal, J. A., 1989. Estratigrafía y evolución Paleoambiental del área de San Juan Ixcaquixtla, Edo. de Puebla: México, D.F., Universidad Nacional Autónoma de México, Facultad de Ingeniería, Tesis de Licenciatura, 70 p. inédita.
- Ramsay, J.G., 1967. Folding and fracturing of rocks. McGraw-Hill Book Company, 568 p.
- Rubatto, D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism: Chemical Geology, v. 184, p. 123–138.
- Ruíz, J., Patchett, P. J., Ortega-Gutiérrez, F. 1988. Proterozoic and Phanerozoic basement terranes of Mexico from Nd isotopic studies: Geological Society of America Bulletin, 100, p. 274–281.
- Salas, G. P., 1949. Bosquejo geológico de la cuenca sedimentaria de Oaxaca: Boletín de la asociación mexicana de geológos petroleros. V. 1, p. 79-156.
- Salvador, A., 1991. Origin and development of the Gulf of Mexico Basin. En A. Salvador, ed., The Gulf of Mexico Basin: Geological Society of America. The Geology of North America, J: 389–444.

- Sánchez-Zavala, J. L., 2008. Estratigrafía, sedimentología y análisis de procedencia de la Formación Tecomate y su papel en la evolución del Complejo Acatlán, Sur de México: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de Doctorado, 201 p.
- Sánchez-Zavala, J. L., Ortega-Gutiérrez, F., Duncan Keppie, J., Jenner, G. A., Belousova, E. and Macías-Romo, C., 2004. Ordovician and Mesoproterozoic Zircons from the Tecomate Formation and Esperanza Granitoids, Acatlán Complex, Southern Mexico: Local Provenance in the Acatlán and Oaxacan Complexes. International Geology Review 46, 11, p.1005-1021.
- Schweigert, G., 1996. Vergleichende Faziesanalyse, Palao- okologie und, palaogeographisches Umfeld tertiiirer SiiB- wasserkarbonate auf der westlichen Schwabischen Alb und im Hegau (Baden-Wiirttemberg), Profil, 9, p. 1-100.
- Sedlock, R. L., Ortega–Gutiérrez, F., Speed, R. C. 1993. Tectonostratigraphic terranes and tectonic evolution of Mexico. Geological Society of America, Special Paper 278. 153 p.
- Silva-Romo, G., Mendoza-Rosales, C. C., 2000. La Unidad Piedra Hueca secuencia clástica Paleozoica (sur de Puebla). Resúmenes y Programa de la 2da. Reunión Nacional de Ciencias de la Tierra. GEOS Boletín informativo Unión Geofísica Mexicana, A. C. Época II. 20.
- Silva-Romo, G., 2010. Origen tectónico y evolución de la Cuenca Tehuitzingo-Tepexi, Estado de Puebla: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de Doctorado, 196 p.
- Silva-Romo, G. y Mendoza-Rosales, C. C., 2011. Manual para el Trabajo Geológico de Campo. México, UNAM, Facultad de Ingeniería. Primera edición, 372 p.
- Silva-Romo G. Mendoza-Rosales C. C., Campos-Madrigal E., Centeno-García E., Peralta-Salazar R. 2015. Early Mesozoic Southern Mexico–Amazonian connection based on U–Pb ages from detrital zircons: The La Mora Paleo-River in the Mixteca Terrane and its paleogeographic and tectonic implications. Gondwana Research 28, p. 689-701.
- Shelton, J. W., 1984. Listric Normal Faults: An Illustrated Sumary. The American Association of Petroleum Geologists Bulletin, Vol 68, No 7, p. 801-015 in American Association of Petroleum Geologists, Treatise of Petroleum Geology Reprint Series No. 11, Structural concepts and techniques III, p. 17–31.

- Solari, L. A., Gómez-Tuena, A., Bernal, J. P., Pérez-Arvizu, O., Tanner, M., 2010. U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. Geostandards and Geoanalytical Research. Volume 34, Issue 1, p. 5–18.
- Solari, L. and Tanner, M., 2011. UPb age, a fast data reduction script for LA-ICP-MS U-Pb geochronology, Revista Mexicana de Ciencias Geológicas 28 (1), p. 83–91.
- Solari, L. A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R., and Hames, W. E., 2003. 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: Roots of an orogen: Tectonophysics, V. 365, no. 1–4, p. 257–282.
- Spahic, D., Exner, U., Behm, M., Grasemann, B., Haring, A. and Pretsch, H., 2011. Listric versus planar normal fault geometry: an example from the Eisenstadt-Sopron Basin (E Austria), International Journal of Earth Sciences (Geologische Rundschau), 100, p. 1685-1695.
- Stapf, K. R. G., 1989. Biogene fluvio-lakustrineSedimenta- tion im Rotliegend des permokarbonen Saar-Nahe- Beckens (SW-Deutschland), Facies 20, p. 169-198.
- Talavera-Mendoza, O., Ruíz, J., Gehrels, G. E., Meza-Figueroa, D. M., Vega-Granillo, R., Campa-Uranga, M. F., 2005. U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico: Earth and Planetary Science Letters, v. 235, p. 682–699.
- Tera, F., and Wasserburg, G.J., 1972. U-Th-Pb systematic in three Apollo 14 basalts and the problem of initial Pb in lunar rocks: Earth and Planetary Science Letters, v. 14, p. 281–304.
- Thorp, J. T. and Covich A. P., 2010. Ecology and classification of North American freshwaters invertebrates. Ed. Academic Press. 1021 p.
- Tolson, G., 2005. La falla Chacalapa en el sur de Oaxaca: Boletín de la Sociedad Geológica Mexicana. Volumen Conmemorativo del Centenario Grandes Fronteras Tectónicas de México. V. 57, p. 111-122.
- Tovar-Liceaga, R. E., 2005. Fauna pleistocénica de Santa Cruz Nuevo, Puebla: México, D.F., Universidad Nacional Autónoma de México, Posgrado en Ciencias de la Tierra, Tesis de licenciatura, 120 p.

- Vachard, D., de Dios, A. F., Buitrón, B. E., and Grajales, M., 2000. Biostratigraphie par fusulines des calcaires Carbonifères et Permiens de San Salvador Patlanoaya (Puebla, Mexique): Geobios, v. 33, no. 1, p. 5–33.
- Wernicke, B., and Burchfiel, B. C., 1981. Modes of extensional tectonics: Journal of Structural Geology, v. 4, no. 2, p. 105-115.
- Yañez, P., Ruíz, J., Patchett, J. P., Ortega-Gutiérrez, F., and Gehrels, G. E., 1991. Isotopic studies of the Acatlán Complex, southern Mexico: implications for Paleozoic North American tectonics. Geological Society of America Bulletin 103, p. 817–828.

APÉNDICE I

TECTÓNICA SINSEDIMENTARIA

I.I. DATOS ESTRUCTURALES PARA MODELO DE SEDIMENTACIÓN SINTECTÓNICA

Tabla AI.I. Datos de rumbo y echado de los planos de estratificación de las sucesiones sedimentarias mayores identificadas en el Sector 1, la localidad de medición se ubica sobre la Barranca El Chorrillo al noreste del área de estudio.

	SECTOR 1											
FORMACIÓN OTLALTEPEC LOCALIDAD: BARRANCA EL CHORRILLO												
Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad				
1	310	20			23	330	38					
2	315	20			24	310	25					
3	290	25			25	300	20					
4	300	20			26	290	20					
5	318	18			27	310	24					
6	318	20			28	270	32					
7	305	32			29	330	24					
8	270	18			30	300	22					
9	295	28			31	300	25					
10	305	28			32	302	22					
11	318	20	Barranca		33	306	28	Barranca				
12	290	20	El Chorilio		34	292	24	El Chorilio				
13	268	20			35	270	45					
14	295	28			36	280	50					
15	258	30			37	246	30					
16	276	22			38	250	26					
17	292	24			39	280	50					
18	292	4			40	240	28					
19	284	20			41	258	28					
20	295	30			42	284	24					
21	315	26			43	290	17					
22	310	22			44	268	31					

lición	Rumbo (°)	Echado (°)	Localidad	Medición	Rumbo (°)	Echado (°)
15	264	20		87	314	36
46	268	20		88	290	30
47	264	19	-	89	316	10
48	278	27		90	288	22
49	271	20		91	280	40
50	295	12	-	92	294	24
51	294	37		93	290	32
52	298	24		94	294	18
53	303	22		95	305	38
54	326	25		96	288	32
55	339	25		97	292	24
56	317	22		98	310	20
57	277	29		99	298	34
58	289	26		100	300	30
59	299	12		101	302	32
60	261	19				
61	262	20				
62	274	26				
63	289	14				
64	293	33				
65	291	29	Barranca			
66	293	29	El Chorilio			
67	298	19				
68	300	22				
69	300	20				
70	295	20				
71	280	22				
72	292	18				
73	294	22				
74	290	18				
75	275	20				
76	278	24				
77	300	22				
78	302	40				
79	282	22				
80	276	24				
81	282	24				
82	300	24				
83	304	38				
84	324	24				
85	298	36				
86	308	38				

Tabla AI.II. Datos de rumbo y echado de los planos de estratificación de las sucesiones sedimentarias mayores identificadas en el Sector 2, la localidad de medición se ubica sobre la Barranca Agua León y en las cercanías del Poblado Santa Cruz Nuevo al noreste del área de estudio.

	SECTOR 2												
Formación Piedra Hueca Localidad: Poblado Santa Cruz Nuevo				Formación Otlaltepec Localidades: Barranca Agua León y Poblado Santa Cruz Nuevo									
Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad					
1	225	27			1	227	9						
2	220	30			2	273	19						
3	220	35			3	280	8						
4	220	35			4	225	19						
5	218	40			5	236	16						
6	230	28	Poblado		6	270	3	Barranca					
7	232	30	Santa Cruz		7	240	35	Agua León					
8	235	32	Nuevo	Nuevo	8	228	10						
9	240	40			9	236	20						
10	242	33			10	240	18						
11	245	34			11	236	22						
12	224	26			12	240	21						
13	226	27			13	180	35						
					14	190	45						
					15	210	30						
					16	195	10						
					17	200	20						
					18	180	32						
					19	190	30	Poblado					
					20	200	20	Santa Cruz					

Nuevo

Tabla AI.III. Datos de rumbo y echado de los planos de estratificación de las sucesiones sedimentarias mayores identificadas en el Sector 3, la localidad de medición se ubica sobre la Barranca Agua León y en las cercanías del Poblado Santa Cruz Nuevo al noreste del área de estudio.

			SE	CTO	R 3							
Formación Tianguistengo Localidades: Barranca Magdalena 1, Barranca Magdalena 2, Poblado Santo Domingo Tianguistengo y Cerro Xiotillo												
Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad				
1	240	80			32	268	68					
2	238	80			33	270	70					
3	254	84			34	270	64					
4	244	76			35	270	62					
5	254	80			36	266	72					
6	300	75			37	262	70					
7	300	80			38	256	65					
8	260	64			39	272	55					
9	260	70			40	257	69					
10	252	50			41	265	71					
11	260	76			42	280	80					
12	250	70			43	273	69					
13	260	48			44	270	69					
14	222	64			45	270	58					
15	232	60	Barranca		46	271	70	Barranca				
16	276	62	Magdalena 1		47	258	72	Magdalena 1				
17	272	60			48	263	72					
18	274	76			49	260	70					
19	260	76			50	262	62					
20	270	62			51	258	72					
21	258	74			52	268	76					
22	262	68			53	272	70					
23	266	66			54	264	62					
24	256	74			55	268	74					
25	290	76			56	282	72					
26	262	76			57	274	82					
27	260	60			58	264	74					
28	270	70			59	266	72					
29	262	70			60	260	82					
30	268	74			61	242	74					
31	266	70			62	258	70					

Medición	Rumbo (°)	Echado (°)	Localidad	Medición	Rumbo (°)	Echado (°)	Localidad
63	264	78		93	270	90	Barranca
64	262	72		94	290	90	Magdalena 2
65	168	78		95	245	64	
66	170	78	Barranca Magdalena 1	96	270	68	
67	258	68	inaguaiena i	97	250	68	
68	266	78		98	268	60	
69	266	72		99	265	68	
70	300	28		100	279	62	Poblado Santo
71	274	32		101	270	70	Domingo Tianguistengo
72	258	40		102	255	65	
73	246	44		103	256	63	
74	258	46		104	257	64	
75	248	40		105	260	65	
76	274	40		106	270	69	
77	260	32		107	255	70	
78	254	46		108	254	70	
79	274	78		109	255	70	
80	262	62	Barranca	110	240	51	
81	268	78	Magdalena 2	111	250	85	
82	288	50		112	265	55	
83	286	78		113	275	51	
84	284	82		114	265	70	Cerro Xiotillo
85	276	74		115	266	70	
86	286	86		116	268	66	
87	296	89		117	271	67	
88	279	80		118	272	80	
89	252	66		119	273	65	
90	280	86		120	269	60	
91	284	89		121	258	70	
92	276	50					

Formación Piedra Hueca Localidades: Barranca Magdalena 1, Poblado Santo Domingo Tianguistengo y Cerro Xiotillo

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
1	267	47			6	272	62	
2	268	38		Barranca agdalena 1	7	265	65	_
3	266	50	Barranca Magdalena 1		8	260	50	Barranca Magdalena 1
4	256	56	guurenu r		9	235	60	8
5	258	65			10	262	58	

Medición	Rumbo (°)	Echado (°)	Localidad	Medición	Rumbo (°)	Echado (°)	Localidad
11	248	55		53	252	50	
12	245	20		54	234	50	
13	284	40		55	240	82	
14	270	34		56	264	38	
15	286	49		57	266	42	
16	289	45		58	264	50	
17	274	44		59	256	54	
18	270	52		60	246	70	
19	276	50		61	248	74	
20	270	48		62	252	66	
21	280	44		63	268	50	
22	280	30		64	260	50	
23	300	30		65	256	54	
24	290	32		66	252	38	
25	272	20		67	300	20	
26	268	30		68	254	60	
27	280	28		69	242	40	
28	274	40		70	256	66	
29	290	36		71	250	64	
30	262	40		72	254	60	
31	258	35	Barranca	73	242	50	Barranca
32	260	30	Magdalena 1	74	254	56	Magdalena 1
33	284	30		75	262	72	
34	310	30		76	254	48	
35	280	24		77	278	44	
36	276	32		78	254	54	
37	309	48		79	266	20	
38	290	30		80	270	32	
39	332	22		81	270	34	
40	254	20		82	270	30	
41	270	60		83	252	48	
42	258	48		84	260	52	
43	281	27		85	264	44	
44	284	30		86	260	64	
45	287	20		87	258	50	
46	262	32		88	255	62	
47	250	54		89	252	68	
48	262	50		90	268	58	
49	268	70		91	260	60	
50	250	38		92	264	70	
51	268	48		93	264	46	
52	264	34		94	260	70	

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
95	268	75			109	272	44	
96	260	58			110	250	40	Poblado Santo
97	252	62			111	260	45	Tianguistengo
98	256	36	Barranca		112	268	42	
99	240	50	Magdalena 1	llena 1	113	285	60	
100	270	30			114	270	33	
101	270	50			115	255	56	
102	258	46			116	255	40	
103	270	45			117	260	36	Cerro
104	272	40			118	269	37	Xiotillo
105	268	41	Poblado Santo		119	268	40	
106	267	38	Tianguistengo		120	259	41	
107	250	39	Ū Ū		121	258	42	
108	270	44			122	260	59	

Formación Otlaltepec Localidades: Barranca Magdalena 1, Poblado Santo Domingo Tianguistengo y Rincón El Coco

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
1	259	30			22	290	25	
2	253	15			23	300	20	
3	293	22			24	318	18	
4	278	32			25	318	20	
5	290	25			26	305	32	
6	252	38			27	270	18	
7	293	28			28	295	28	
8	330	25			29	305	28	
9	316	25			30	318	20	
10	303	26			31	290	20	
11	310	25	Barranca Magdalena 1		32	268	20	Barranca Magdalena 1
12	324	23	Wagdalena 1		33	295	28	widguatena 1
13	292	24			34	258	30	
14	90	10			35	276	22	
15	120	22			36	292	24	
16	116	30			37	292	4	
17	126	20			38	284	20	
18	98	22			39	295	30	
19	128	20			40	315	26	
20	310	20			41	310	22	
21	315	20			42	330	38	

Medición	Rumbo (°)	Echado (°)	Localidad
43	310	25	
44	300	20	
45	290	20	
46	310	24	
47	270	32	
48	330	24	
49	300	22	
50	300	25	
51	302	22	Barranca Magdalena 1
52	306	28	inagautona 1
53	292	24	
54	270	45	
55	280	50	
56	246	30	
57	250	26	
58	280	50	
59	240	28	
60	320	24	Poblado Santo
61	322	21	Domingo
62	318	16	Tianguistengo

Medición	Rumbo (°)	Echado (°)	Localidad
63	320	19	
64	317	15	
65	321	25	Poblado Santo
66	323	18	Domingo
67	325	20	Tianguistengo
68	322	20	
69	318	14	
70	278	46	
71	302	48	
72	290	44	
73	288	42	Rincón El
74	286	41	Coco
75	291	42	
76	292	44	
77	290	30	

Tabla AI.IV. Datos de rumbo y echado de los planos de estratificación de las sucesiones sedimentarias mayores identificadas en el Sector 4, la localidad de medición se ubica sobre la Barranca Cazahuate, Barranca Piedra Hueca y sobre el lecho del Río Magdalena en las cercanías del Cerro La Matanza.

	SECTOR 4												
	FORMACIÓN TIANGUISTENGO LOCALIDADES: BARRANCA CAZAHUATE Y CERRO LA MATANZA												
Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad					
1	266	62			19	250	62						
2	267	60			20	240	60						
3	256	60			21	240	63						
4	267	71			22	250	76						
5	265	69			23	262	68						
6	267	70			24	260	68						
7	263	72			25	258	76						
8	262	70	Barranca Cazabuate		26	270	70						
9	262	60	Cuzundule		27	260	60	Cerro La Matanza					
10	260	69			28	240	60	Eu Muunzu					
11	285	71			29	260	49						
12	266	79			30	243	54						
13	283	79]		31	245	60						
14	282	83			32	240	55						
15	260	75]		33	257	62						
16	270	62			34	259	70						
17	258	74	Cerro La Matanza		35	256	72						
18	250	50	La matanza										

FORMACIÓN PIEDRA HUECA LOCALIDADES: BARRANCA CAZAHUATE, CERRO LA MATANZA Y BARRANCA PIEDRA HUECA

Medición	Rumbo (°)	Echado (°)	Localidad
1	250	49	
2	236	52	_
3	257	59	Barranca Cazahuate
4	258	52	Culturate
5	242	53	

Medición	Rumbo (°)	Echado (°)	Localidad
6	243	68	
7	241	59	_
8	273	48	Barranca Cazahuate
9	253	28	Culturate
10	269	26	

Medición	Rumbo (°)	Echado (°)	Localidad	Medición	Rumbo (°)	Echado (°)	Localidad	
11	273	39		43	200	58		
12	224	33		44	201	40		
13	300	26		45	208	26		
14	238	25		46	245	70		
15	314	30		47	240	38		
16	273	30			48	242	54	
17	276	35		49	194	20		
18	255	29		50	164	18		
19	278	24		51	160	16		
20	306	24		52	250	10		
21	330	49	Barranca Cazabuate	53	190	26		
22	262	20	Cazanuate	54	220	20		
23	350	20		55	240	20		
24	247	22		56	258	50		
25	300	24		57	260	52		
26	259	30		58	248	50	Barranca Piedra Hueca	
27	253	15		59	233	44		
28	293	22		60	235	35		
29	278	32		61	243	47		
30	290	25		62	252	45		
31	252	38		63	230	61		
32	252	38		64	195	42		
33	250	34		65	190	44		
34	248	49		66	209	36		
35	245	25		67	232	35		
36	226	30		68	210	39		
37	240	27	Cerro La Matanza	69	244	12		
38	230	25	La matanza	70	225	11		
39	240	50		71	225	31		
40	245	27		72	240	44		
41	255	48		73	255	24		
42	253	39						

FORMACIÓN OTLALTEPEC LOCALIDAD: BARRANCA PIEDRA HUECA

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
1	300	5			4	300	8	
2	255	15	Barranca Piedra Hueca	Barranca Piedra Hueca	5	292	10	Barranca Piedra Hueca
3	295	5	Theata Hueea		6	290	15	r leana Hueea

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
7	300	6			11	300	8	
8	301	7	Barranca Piedra Hueca	Barranca	12	295	8	Barranca Piedra Hueca
9	299	10			13	290	11	T leura Tideca
10	298	11	1					

Tabla AI.V. Datos de rumbo y echado de los planos de estratificación de las sucesiones sedimentarias mayores identificadas en el Sector 5, la localidad de medición se ubica sobre la Barranca Cazahuate, Barranca Piedra Hueca y sobre el lecho del Río Magdalena en las cercanías del Cerro La Matanza.

			SE	CTO	R 5			
	Localidade	F es: Cerro Ale	ORMACIÓN GRÍA, BAR	I TIAN RANC	iguisten a Tedign	GO 10 1 y Barran	CA TEDIGNO 2	
Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
1	276	70			30	265	76	
2	279	69			31	260	75	
3	278	66			32	255	38	
4	270	48			33	270	53	
5	272	65			34	258	74	
6	258	69	Cerro		35	230	54	
7	266	70	Alegría		36	208	48	
8	268	71			37	250	50	
9	273	71			38	240	51	
10	274	69			39	250	62	
11	278	64			40	240	60	
12	269	73			41	230	58	
13	244	80			42	240	63	
14	243	85			43	250	76	
15	244	90			44	262	68	Barranca
16	237	88			45	216	68	Teurgno I
17	226	80			46	260	68	
18	242	80			47	262	64	
19	252	68			48	269	62	
20	261	85			49	278	60	
21	254	69	Barranca		50	265	62	
22	228	60	Teargno T		51	256	64	
23	259	53			52	225	60	
24	263	79			53	270	84	
25	274	73			54	261	70	
26	273	68			55	258	76	
27	288	77			56	270	70	
28	284	78			57	270	78	
29	275	75			58	270	79	

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
59	260	78			66	270	75	
60	250	44			67	269	72	
61	250	45			68	265	55	
62	264	70	Barranca Tedigno 2	rranca ligno 2	69	270	60	Barranca Tedigno 2
63	265	51	Tougho 2		70	259	61	Tourgino 2
64	269	63			71	269	59	
65	268	90			72	268	72	

Formación Piedra Hueca Localidad: Barranca Tedigno 2

Medición	Rumbo (°)	Echado (°)	Localidad		Medición	Rumbo (°)	Echado (°)	Localidad
1	278	42			7	273	45	
2	275	40	Barranca Tedigno 2	Barranca Tedigno 2	8	275	45	
3	260	46			9	280	45	Barranca Tedigno 2
4	273	50			10	280	42	i cuigito 2
5	255	40			11	281	39	
6	254	40				-	^ 	-

Fig. A.1.1. A, C y E) Diagramas estereográficos en los que se observan los polos de los valores promedio de las estratificaciones de las sucesiones sedimentarias documentadas en este trabajo, en los Sectores 1, 2 y 3. B, D y E) Representación de los planos promedio de estratificación de las sucesiones sedimentarias en vista 3D (OSXStereonet Versión 2.1).

Fig. A.1.2. A, C y E) Diagramas estereográficos en los que se observan los polos de los valores promedio de las estratificaciones de las sucesiones sedimentarias documentadas en este trabajo, en los Sectores 4 y 5. B, D y E) Representación de los planos promedio de estratificación de las sucesiones sedimentarias en vista 3D (OSXStereonet Versión 2.1).

Fig. A.1.3. En línea continua: planos representados por círculos máximos que indican el promedio de las estratificaciones de las formaciones Tianguistengo, Piedra Hueca y Otlaltepec. En línea discontinua: planos de falla asociados a la rotación sinsedimentaria de dichas unidades sedimentarias en el estadio T₃. A) Sector 1; B) Sector 2; C) Sector 3; D) Sector 4 y E) Sector 5 (OSXStereonet Versión 2.1).

Fig. A.1.4. En línea continua: planos representados por círculos máximos que indican el promedio de las estratificaciones de las unidades sedimentarias Tianguistengo, Piedra Hueca y Otlaltepec. En línea discontinua: planos de falla asociados a la rotación sinsedimentaria de dichas formaciones en el estadio T_2 . A) Sector 1; B) Sector 2; C) Sector 3; D) Sector 4 y E) Sector 5 (OSXStereonet Versión 2.1).

Fig. A.1.5. En línea continua: planos representados por círculos máximos que indican el promedio de las estratificaciones de las unidades sedimentarias Tianguistengo y Piedra Hueca. En línea discontinua: planos de falla asociados a la rotación sinsedimentaria de dichas formaciones en el estadio T_1 . A) Sector 2; B) Sector 3; C) Sector 4 y D) Sector 5 (OSXStereonet Versión 2.1).

Fig. A.1.6. En línea continua: planos representados por círculos máximos que indican el promedio de las estratificaciones de las formación Tianguistengo. En línea discontinua: planos de falla asociados a la rotación de dicha unidad posterior a su depósito en T_0 A) Sector 3; B) Sector 4 y C) Sector 5 (OSXStereonet Versión 2.1).

I.II. ANÁLISIS ESTRUCTURAL DE FALLAS SINSEDIMENTARIAS EN LA FORMACIÓN TIANGUISTENGO

Tabla AII.I Datos estructurales de las fallas sinsedimentarias, su ubicación y los resultados de su corrección estructural.

AFLORAMIENTO	LOCALIDAD	COORDENADAS	RUMBO Y ECHADO DE LOS ESTRATOS CONTENEDORES	N° de Falla	RUMBO Y ECHADO FALLAS	RUMBO Y ECHADO DE FALLAS ROTADAS A LA HORIZONTAL	Orientación de esfuerzos o 3		
						Otlaltepec -	291°/9°		
	PLANOS DE RO	VTACIÓN PARA CORREC	CIÓN ESTRUCTURAL (SE	CTOR 4)		Piedra Hueca	- 246°/32°		
						Tianguistengo - 260°/66°			
1	Barranca	14 Q 623789 m E	250°/40°	1	140°/62°	128.3°/80.4°	38° y 218°		
	Magdalena 2	2019855 m N		2	160°/52°	134,4°/61.9°	44° y 224°		
2	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	250°/40°	3	302°/82°	315.2°/60.1°	45° y 225°		
3	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	262°/84°	4	320°/88°	345.9°/58°	76° y 256°		
4	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	264°/58°	5	320°/78°	343°/55°	73° y 253°		
				6	170°/50°	137.3°/86°	47° y 227°		
5	Barranca Magdalena 2	14 Q 623889 m E 2019848 m N	278°/64°	7	182°/68°	158.1°/85.6°	68° y 248°		
				8	239°/71°	183.1°/36.6°	93° y 273°		
6	Barranca Magdalena 2	14 Q 623913 m E 2019857 m N	262°/52°	9	224°/38°	129.4°/29.3°	39° y 219°		
				10	180°/78°	169.8°/76.9°	80° y 260°		
				11	208°/70°	187.4°/53.6°	97° y 277°		
				12	195°/50°	158.5°/47.5°	68° y 248°		
				13	202°/58°	171.7°/48.6°	82° y 262°		
7	Barranca Magdalena 2	14 Q 623972 m E 2019878 m N	264°/38°	14	202°/64°	177.1°/52.9°	87° y 267°		
				15	208°/58°	176.4°/44.8°	86° y 266°		
				16	202°/78°	187.7°/63.5°	98° y 278°		
				17	201°/70°	181.1°/57.9°	91° y 271°		
				18	178°/76°	166.9°/76.6°	77° y 257°		

Afloramiento	LOCALIDAD	COORDENADAS	RUMBO Y ECHADO DE LOS ESTRATOS CONTENEDORES	N° de Falla	RUMBO Y ECHADO FALLAS	RUMBO Y ECHADO DE FALLAS ROTADAS A LA HORIZONTAL	Orientación de esfuerzos 0 3
8	Barranca Magdalena 2	14 Q 624085 m E 2019982 m N	250°/45°	19	190°/60°	157.3°/48.8°	67° y 247°
9	Barranca	14 Q 624088 m E	240°/54°	20	300°/70°	333.4°/54.4°	63° y 243°
	Magdalena 2	2019995 m N	210 /31	21	290°/70°	327.1°/46.4°	57° y 237°
10	Barranca	14 Q 623789 m E	238°/70°	22	134°/66°	305.2°/86.1°	35° y 215°
	Magdalena 2	2019855 m N		23	266°/75°	326.3°/27.2°	56° y 236°
11	Barranca	14 Q 623789 m E	268°/62°	24	135°/88°	327.7°/54.2°	58° y 238°
	Magdalena 2	2019855 m N		25	147°/80°	328.6°/68.5°	59° y 239°
12	Barranca Magdalena 2	14 Q 623889 m E 2019848 m N	272°/66°	26	182°/68°	155.6°/81.2°	66° y 246°
				27	346°/90°	76.3°/84.7°	166° y 346°
				28	3°/87°	176.6°/81.4°	87° y 267°
12	Barranca	14 Q 623789 m E 2019855 m N	2629/649	29	18°/81°	189.5°/71.3°	100° y 280°
15	Magdalena 2		202 /04	30	354°/81°	358°/87.8°	88° y 268°
				31	350°/89°	348.9°/87.8°	78° y 258°
				32	357°/83°	177.5°/88.6°	89° y 269°
				33	323°/84°	348.1°/54.8°	78° y 258°
				34	337°/90°	346°/70°	76° y 256°
14	Barranca	14 Q 623789 m E	268°/74°	35	141°/84°	333.7°/56.9°	64° y 244°
	Magdalena 2	2019855 m N		36	359°/81°	1°/88.5°	91° y 271°
				37	357°/80°	1.4/°86.3	91° y 271°
				38	2°/81°	181.9°/88.7°	91° y 271°
15	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	267°/48°	39	324°/52°	8.6°/42.9°	99° y 279°
16	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	298°/78°	40	186°/84°	0.6°/70°	91° y 271°
17	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	272°/70°	41	10°/84°	183.7°/84.5°	94° y 274°

Afloramiento	LOCALIDAD	COORDENADAS	RUMBO Y ECHADO DE LOS ESTRATOS CONTENEDORES	N° de Falla	RUMBO Y ECHADO FALLAS	RUMBO Y ECHADO DE FALLAS ROTADAS A LA HORIZONTAL	ORIENTACIÓN DE ESFUERZOS O 3			
18	Barranca	14 Q 623818 m E	252°/68°	42	190°/62°	142.2°/55.9°	52° y 232°			
	Magdalena 2	2019870 m N		43	202°/62°	143.7°/45.3°	54° y 234°			
				44	174°/50°	133°/57.2°	43° y 223°			
19	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	250°/52°	45	140°/60°	125.5°/85.8°	36° y 216°			
				46	134°/62°	303.3°/89.1°	33° y 213°			
20	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	278°/62°	47	175°/50°	139.7°/81.4°	50° y 230°			
21	Barranca Magdalena 2	14 Q 623789 m E 2019855 m N	254°/74°	48	294°/72°	351.8°/38.8°	82° y 262°			
22	Barranca Cazahuate	14 Q 622450 m E 2019713 m N	270°/70°	49	298°/64°	12.3°/26.4°	102° y 282°			
	PLANOS DE RO	TACIÓN PARA CORREC	CIÓN ESTRUCTURAL (SEC	CTOR 3)		Piedra Hueca - 264°/45° Tianguistengo - 265.3°/67.6°				
23	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	250°/46°	50 51	140°/56° 120°/66°	131.5°/79.4° 303.9°/81.9°	42° y 222° 34° y 214°			
24	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	250°/52°	52	190°/70°	171°/54.5°	81° y 261°			
25	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	250°/42°	53	150°/48°	132.1°/65.8°	42° y 222°			
26	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	278°/48°	54	2°/88°	5.9°/84.2°	96° y 276°			
27	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	258°/36°	55	308°/82°	324.4°/60.9°	54° y 234°			
28	Cerro Xiotillo	14 Q 625740 m E	290°/82°	56	164°/38°	312.3°/75.6°	42° y 222°			
		2021756 m N		57	172°/40°	316.6°/78.9°	47° y 227°			
		11.0 (05510) -		58	328°/82°	343.7°/68.6°	74° y 254°			
29	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	262°/40°	59	320°/52°	3.8°/42.3°	94° y 274°			
				60	330°/60°	2.5°/53.8°	93° y 273°			
30	Cerro Xiotillo	14 Q 625740 m E 2021756 m N	252°/54°	61	160°/78°	160.1°/84.6°	70° y 250°			

Fig. A.2.1. Diagramas estereográficos de los Afloramientos 1 a 10 en los que se observan de los datos estructurales de las fallas sinsedimentarias y sus estratos contenedores (S0) en rojo (OSXStereonet Versión 2.1).

Fig. A.2.2. Diagramas estereográficos de los Afloramientos 11 a 20 en los que se observan de los datos estructurales de las fallas sinsedimentarias y sus estratos contenedores (S0) en rojo (OSXStereonet Versión 2.1).

Fig. A.2.3. Diagramas estereográficos de los Afloramientos 21 a 30 en los que se observan de los datos estructurales de las fallas sinsedimentarias y sus estratos contenedores (S0) en rojo (OSXStereonet Versión 2.1).

Fig. A.2.4. Diagramas estereográficos que muestran datos estructurales de rumbo y echado considerados para realizar la corrección estructural de las fallas sinsedimentarias. Se optó por representar los valores como círculos máximos en la Red de Wulff y diferenciarlos por colores de acuerdo a la unidad sedimentaria que representan. A) Datos de la localidad Barranca Magdalena 2 y Barranca Cazahuate (Sector 4). B) Datos de la localidad Cerro Xiotillo (Sector 3) (OSXStereonet Versión 2.1).

Fig. A.2.5. Diagramas estereográficos de los Afloramientos 1 a 10 en los que se observan los resultados de rotar a la horizontal a los estratos contenedores (S0) de las fallas sinsedimentarias (OSXStereonet Versión 2.1).

Fig. A.2.6. Diagramas estereográficos de los Afloramientos 11 a 20 en los que se observan los resultados de rotar a la horizontal a los estratos contenedores (S0) de las fallas sinsedimentarias (OSXStereonet Versión 2.1).

Fig. A.2.7. Diagramas estereográficos de los Afloramientos 21 a 30 en los que se observan los resultados de rotar a la horizontal a los estratos contenedores de las fallas sinsedimentarias. (OSXStereonet Versión 2.1).

APÉNDICE II

ANÁLISIS GEOCRONOLÓGICO DE CIRCONES DETRÍTICOS

Tabla AII.I. Resultados de análisis geocronológico U-Pb de circones detríticos de la formación Tianguistengo. Muestra P.50 colectada en las cercanías de la ranchería la Higuerilla al pie del Cerro La Alegría. Coordenadas UTM: 14Q0617251 m E, 2018924 m N.

			Relaciones isotópicas Edades aparentes (Ma								Ia)										
	U	T2	¹⁰ 75	±	¹⁰ 75	±	¹⁰ 75	±	²¹⁹ РЬ	±		¹⁰¹ 75		¹⁰ 75		¹⁰ 75		²¹⁹ РЬ		Mejor edad	±
Analisis	(ppm)	U	200 200	(%)	ⁱⁿ U	(%)	** U	(%)	ть	(%)	Error	** U	±	¹⁶ U	±	201 205	±	10 Tb	±	(Ma)	(Ma)
1	239	0.37	0.05563	0.296	0.33194	1.881	0.04352	0.084	0.01333	0.074	0.34	275	5	291	14	438	112	268	15	275	5.0
2	691	1.05	0.05346	0.189	0.33249	1.284	0.04523	0.07	0.01317	0.067	0.4	285	4	291	10	348	76	264	13	285	4.0
3	169	0.40	0.05198	0.245	0.32246	1.635	0.04519	0.084	0.01527	0.086	0.37	285	5	284	13	285	102	306	17	285	5.0
4	66	0.62	0.07042	0.438	0.43301	2.845	0.04509	0.095	0.01481	0.091	0.32	284	6	365	20	941	121	297	18	284	6.0
5	525	0.10	0.05088	0.184	0.2986	1.172	0.04262	0.066	0.01413	0.086	0.39	269	4	265	9	235	78	284	17	269	4.0
6	275	0.35	0.05192	0.203	0.31427	1.32	0.04412	0.068	0.01356	0.074	0.37	278	4	277	10	282	85	272	15	278	4.0
7	240	0.57	0.05671	0.239	0.34995	1.582	0.04485	0.073	0.01424	0.074	0.36	283	5	305	12	480	88	286	15	283	5.0
8	304	0.47	0.05217	0.216	0.32074	1.41	0.04474	0.066	0.01404	0.075	0.34	282	4	282	11	293	93	282	15	282	4.0
9	169	0.42	0.05077	0.206	0.28886	1.263	0.04137	0.067	0.01188	0.065	0.37	261	4	258	10	230	92	239	13	261	4.0
11	79	0.60	0.05277	0.348	0.32071	2.211	0.04388	0.089	0.01365	0.086	0.29	277	5	282	17	319	146	274	17	277	5.0
12	92	0.59	0.05254	0.332	0.31999	2.106	0.04439	0.082	0.01393	0.084	0.28	280	5	282	16	309	140	280	17	280	5.0
13	265	0.66	0.05234	0.213	0.31121	1.361	0.04314	0.07	0.01273	0.067	0.37	272	4	275	11	300	91	256	13	272	4.0
14	502	0.43	0.05275	0.194	0.31561	1.252	0.04347	0.064	0.01324	0.07	0.37	274	4	279	10	318	82	266	14	274	4.0
15	395	0.51	0.05531	0.242	0.34382	1.591	0.04519	0.067	0.01406	0.076	0.33	285	4	300	12	425	96	282	15	285	4.0
16	130	0.54	0.05769	0.338	0.35712	2.187	0.04545	0.081	0.01426	0.078	0.29	287	5	310	16	518	127	286	16	287	5.0
17	196	0.49	0.05158	0.23	0.30536	1.443	0.04312	0.067	0.0129	0.069	0.33	272	4	271	11	267	100	259	14	272	4.0
18	97	0.47	0.05282	0.258	0.32745	1.703	0.04509	0.08	0.01366	0.079	0.34	284	5	288	13	321	109	274	16	284	5.0
19	112	0.43	0.05949	0.266	0.36891	1.773	0.04533	0.08	0.01434	0.08	0.37	286	5	319	13	585	95	288	16	286	5.0
20	124	0.33	0.05597	0.348	0.3478	2.251	0.04554	0.081	0.01475	0.083	0.28	287	5	303	17	451	136	296	17	287	5.0
21	171	0.46	0.04804	0.235	0.29062	1.497	0.0443	0.072	0.01387	0.077	0.31	279	4	259	12	101	106	278	15	279	4.0
22	460	0.22	0.05325	0.221	0.3157	1.386	0.04329	0.063	0.01253	0.07	0.33	273	4	279	11	339	92	252	14	273	4.0
23	377	0.26	0.05277	0.219	0.31433	1.38	0.04341	0.063	0.01279	0.07	0.33	274	4	278	11	319	93	257	14	274	4.0
24	286	0.44	0.06225	0.248	0.39985	1.709	0.04689	0.073	0.01801	0.097	0.36	295	4	342	12	683	83	361	19	295	4.0
25	389	0.44	0.05872	0.234	0.31518	1.332	0.03921	0.055	0.01313	0.07	0.33	248	3	278	10	557	88	264	14	248	3.0
26	401	0.43	0.05175	0.187	0.3034	1.179	0.0426	0.062	0.01294	0.068	0.37	269	4	269	9	274	84	260	14	269	4.0
27	303	0.26	0.05127	0.216	0.29976	1.341	0.04232	0.063	0.01419	0.078	0.34	267	4	266	10	253	97	285	16	267	4.0
28	797	0.11	0.0525	0.165	0.32804	1.127	0.04523	0.063	0.01436	0.078	0.4	285	4	288	9	307	72	288	16	285	4.0
29	135	0.54	0.05131	0.221	0.32592	1.483	0.04629	0.068	0.01425	0.078	0.32	292	4	286	11	255	99	286	16	292	4.0
30	690	0.23	0.05264	0.182	0.32088	1.2	0.04427	0.062	0.01358	0.072	0.38	279	4	283	9	313	79	273	14	279	4.0
31	788	0.12	0.05369	0.182	0.32606	1.198	0.0441	0.061	0.01392	0.076	0.39	278	4	287	9	358	77	279	15	278	4.0
32	113	0.65	0.05688	0.24	0.36556	1.724	0.04681	0.098	0.01465	0.079	0.45	295	6	316	13	487	94	294	16	295	6.0
33	218	0.60	0.04701	0.226	0.28583	1.456	0.04406	0.075	0.01288	0.069	0.33	278	5	255	11	50	104	259	14	278	5.0
34	203	0.51	0.05328	0.238	0.32258	1.525	0.04389	0.068	0.0137	0.074	0.33	277	4	284	12	341	102	275	15	277	4.0
35	409	0.73	0.05279	0.194	0.31371	1.242	0.0432	0.063	0.01297	0.067	0.37	273	4	277	10	320	84	260	13	273	4.0
36	211	0.50	0.05113	0.25	0.32073	1.668	0.04574	0.081	0.01407	0.084	0.34	288	5	282	13	247	113	282	17	288	5.0

		Relaciones isotópicas										Edades aparentes (Ma)									
			10.00	±	10°	±	101-00	±	29 au	±		10.00		10° ma		10° ma		11 m		Mejor edad	±
Análisis	(ppm)		25		10		10.10		10.00		Error	10.10	±	10.11	±	210 00.	±	10 yr.	±		
	41 /	0	- 29	(%)	0	(%)	0	(%)	1.P	(%)		v		v		19		1.6		(Ma)	(Ma)
37	64	0.25	0.05687	0.328	0.37688	2.284	0.04815	0.089	0.01591	0.117	0.31	303	5	325	17	487	129	319	23	303	5.0
38	250	0.61	0.0536	0.226	0.33736	1.509	0.04575	0.068	0.01476	0.076	0.33	288	4	295	11	354	96	296	15	288	4.0
39	399	0.62	0.05229	0.208	0.30981	1.316	0.04304	0.064	0.01341	0.07	0.35	272	4	274	10	298	92	269	14	272	4.0
40	306	0.44	0.05325	0.208	0.33299	1.391	0.04541	0.067	0.01447	0.078	0.35	286	4	292	11	339	89	290	16	286	4.0
41	299	0.52	0.06255	0.274	0.3767	1.743	0.04371	0.065	0.01454	0.078	0.32	276	4	325	13	693	94	292	16	276	4.0
42	110	0.38	0.05473	0.326	0.32374	2.01	0.0433	0.077	0.01228	0.074	0.28	273	5	285	15	401	129	247	15	273	5.0
43	236	0.50	0.05592	0.241	0.34032	1.556	0.04431	0.069	0.01454	0.078	0.33	279	4	297	12	449	92	292	16	279	4.0
44	221	0.41	0.05421	0.216	0.33317	1.433	0.0446	0.072	0.01411	0.077	0.38	281	4	292	11	380	86	283	15	281	4.0
45	661	0.11	0.05071	0.176	0.30807	1.157	0.0441	0.064	0.01367	0.073	0.38	278	4	273	9	228	76	274	15	278	4.0
46	313	0.82	0.06729	0.216	1.1595	4.39	0.12305	0.248	0.03093	0.16	0.53	748	14	782	21	847	64	616	31	748	14.0
47	109	0.55	0.04863	0.255	0.29564	1.627	0.0444	0.075	0.01389	0.076	0.3	280	5	263	13	130	112	279	15	280	5.0
48	146	0.48	0.05276	0.227	0.35874	1.659	0.04971	0.084	0.01571	0.085	0.37	313	5	311	12	318	94	315	17	313	5.0
49	775	0.11	0.06953	0.206	1.4352	4.686	0.14963	0.203	0.04626	0.235	0.42	899	11	904	20	915	58	914	45	899	11.0
50	493	0.39	0.05244	0.189	0.31297	1.219	0.04336	0.064	0.01365	0.071	0.38	274	4	276	9	305	79	274	14	274	4.0
51	148	0.51	0.05454	0.434	0.34894	3.08	0.0464	0.09	0.01449	0.028	0.33	292	6	304	23	393	172	291	6	292	6.0
52	108	0.34	0.05244	0.226	0.34158	1 58	0.04733	0.08	0.01506	0.089	0.36	298	5	298	12	305	94	302	18	298	5.0
52	402	0.82	0.05447	0.197	0.38307	1.504	0.05101	0.079	0.01500	0.083	0.30	321	5	320	11	301	78	323	17	321	5.0
55	320	0.52	0.05246	0.197	0.36507	1.304	0.03101	0.075	0.01542	0.005	0.39	212	-	217	11	249	20	200	17	321	5.0
54	320	0.59	0.05546	0.201	0.30039	1.498	0.04982	0.081	0.01545	0.081	0.59	515	5	517	11	348	81	309	16	515	5.0
55	204	1.04	0.07052	0.357	0.41995	2.331	0.04399	0.1	0.01246	0.071	0.41	278	6	356	17	944	100	250	14	278	6.0
56	259	0.68	0.05273	0.21	0.3205	1.37	0.04414	0.068	0.0135	0.069	0.36	278	4	282	11	317	87	271	14	278	4.0
57	166	0.41	0.0515	0.213	0.39048	1.785	0.05412	0.105	0.01594	0.088	0.43	340	6	335	13	263	93	320	18	340	6.0
58	366	1.14	0.05052	0.205	0.32226	1.393	0.04639	0.069	0.01396	0.072	0.34	292	4	284	11	219	92	280	14	292	4.0
59	225	0.66	0.05495	0.219	0.33927	1.442	0.04485	0.066	0.01447	0.079	0.35	283	4	297	11	410	88	290	16	283	4.0
60	113	0.81	0.05129	0.264	0.32867	1.767	0.04664	0.072	0.01269	0.066	0.29	294	4	289	14	254	116	255	13	294	4.0
61	543	0.38	0.0597	0.184	0.7783	2.658	0.09453	0.139	0.02858	0.147	0.43	582	8	585	15	593	65	570	29	582	8.0
62	237	0.61	0.05173	0.19	0.31117	1.234	0.04384	0.065	0.01268	0.066	0.38	277	4	275	10	273	83	255	13	277	4.0
63	375	0.70	0.05079	0.187	0.30403	1.195	0.04334	0.06	0.01286	0.065	0.35	274	4	270	9	231	84	258	13	274	4.0
64	126	0.70	0.0518	0.24	0.33077	1.624	0.04677	0.076	0.01422	0.077	0.33	295	5	290	12	277	105	285	15	295	5.0
65	108	0.57	0.05536	0.314	0.33074	1.968	0.04372	0.078	0.01402	0.077	0.3	276	5	290	15	427	125	281	15	276	5.0
66	578	0.45	0.05132	0.178	0.30705	1.15	0.04349	0.062	0.01354	0.068	0.38	274	4	272	9	255	78	272	14	274	4.0
67	89	0.73	0.05147	0.32	0.30165	1.974	0.04301	0.087	0.01297	0.072	0.31	271	5	268	15	262	138	260	14	271	5.0
68	151	0.70	0.05597	0.223	0.33759	1.452	0.04409	0.071	0.01305	0.069	0.38	278	4	295	11	451	87	262	14	278	4.0
69	139	0.65	0.05418	0.247	0.34788	1.689	0.0467	0.079	0.01421	0.077	0.34	294	5	303	13	379	101	285	15	294	5.0
70	103	0.56	0.05535	0.275	0.34157	1.804	0.04465	0.079	0.01285	0.072	0.34	282	5	298	14	426	109	258	14	282	5.0
71	541	0.60	0.05321	0.188	0.34009	1.295	0.04638	0.066	0.01477	0.075	0.37	292	4	297	10	338	79	296	15	292	4.0
72	114	0.72	0.06013	0.347	0.37408	2.267	0.04521	0.084	0.01475	0.083	0.31	285	5	323	17	608	124	296	17	285	5.0
73	246	1.17	0.05193	0 1 9 9	0.32601	1 338	0.04553	0.067	0.01402	0.071	0.36	287	4	287	10	282	86	281	14	287	4.0
74	08	0.49	0.06071	0.276	0.36459	1 78	0.04361	0.077	0.01300	0.081	0.36	275	5	316	13	629	98	201	16	275	5.0
74	104	0.49	0.00071	0.270	0.30433	1.70	0.04501	0.071	0.01399	0.001	0.30	2/5	1	206	15	420	20	201	10	2/5	5.0
75	184	0.66	0.05541	0.208	0.35149	1.428	0.04615	0.0/1	0.00995	0.065	0.58	291	4	202	11	429	84	200	15	291	4.0
/6	201	0.54	0.05523	0.238	0.33449	1.529	0.0441	0.068	0.01406	0.075	0.33	2/8	4	293	12	422	96	282	15	2/8	4.0
77	106	0.63	0.05437	0.275	0.32486	1.734	0.04334	0.073	0.01263	0.071	0.32	274	5	286	13	386	114	254	14	274	5.0
78	408	0.06	0.058	0.193	0.75897	2.748	0.09508	0.135	0.02985	0.169	0.39	586	8	573	16	530	73	595	33	586	8.0
79	173	0.67	0.05941	0.256	0.3752	1.735	0.04574	0.078	0.01465	0.081	0.36	288	5	324	13	582	94	294	16	288	5.0
80	113	0.64	0.05283	0.305	0.33949	2.058	0.04726	0.088	0.01451	0.077	0.3	298	5	297	16	322	131	291	15	298	5.0
81	128	1.03	0.05222	0.26	0.33223	1.724	0.0464	0.069	0.01425	0.075	0.28	292	4	291	13	295	113	286	15	292	4.0
82	199	0.36	0.05023	0.229	0.32758	1.582	0.04723	0.077	0.0141	0.079	0.33	297	5	288	12	206	104	283	16	297	5.0
83	185	0.43	0.05602	0.26	0.34715	1.704	0.04429	0.072	0.01551	0.085	0.33	279	4	303	13	453	103	311	17	279	4.0
84	152	0.60	0.04871	0.226	0.31973	1.562	0.04754	0.074	0.01521	0.08	0.31	299	5	282	12	134	104	305	16	299	5.0
85	273	0.80	0.05362	0.271	0.31478	1.66	0.04271	0.063	0.01328	0.068	0.29	270	4	278	13	355	115	267	14	270	4.0

						Relacio	ones isotój	picas													
Análisis	U (ppm)	<u>Th</u>	²⁰ 75	±	25 25	±	²⁰ 75	±	²⁰ Pb	±	Error	¹⁰¹ 76 10111	±	8776 18.11	±	²⁰ 75	±	²¹⁴ Pb	±	Mejor edad	±
		~	10	(%)	v	(%)	0	(%)	10	(%)		~		v		14		L B		(Ma)	(Ma)
86	88	0.61	0.05925	0.347	0.36117	2.204	0.04469	0.076	0.01509	0.086	0.28	282	5	313	16	576	128	303	17	282	5.0
87	340	0.35	0.07367	0.231	1.6962	5.825	0.16706	0.232	0.04987	0.254	0.41	996	13	1007	22	1032	63	984	49	1032	63.0
88	494	0.22	0.07692	0.237	1.8923	6.526	0.1786	0.276	0.05339	0.274	0.45	1059	15	1078	23	1119	61	1051	53	1119	61.0
89	125	0.16	0.07126	0.262	1.6869	6.675	0.17218	0.25	0.05008	0.275	0.37	1024	14	1004	25	965	75	988	53	1024	14.0
90	191	0.70	0.05471	0.21	0.58702	2.425	0.07777	0.12	0.02337	0.121	0.37	483	7	469	16	400	85	467	24	483	7.0
91	441	0.51	0.07083	0.231	0.83301	3.645	0.08626	0.251	0.0141	0.081	0.67	533	15	615	20	953	65	283	16	533	15.0
92	427	0.32	0.07401	0.224	1.8017	5.973	0.17655	0.24	0.05266	0.268	0.41	1048	13	1046	22	1042	60	1037	51	1042	60.0
93	323	0.16	0.07289	0.229	1.6231	5.574	0.16153	0.224	0.05166	0.268	0.4	965	12	979	22	1011	62	1018	52	965	12.0
94	151	0.32	0.05404	0.232	0.33522	1.541	0.04519	0.073	0.01347	0.076	0.36	285	5	294	12	373	95	270	15	285	5.0
95	189	0.22	0.05054	0.238	0.29496	1.458	0.04253	0.063	0.01284	0.073	0.3	268	4	262	11	220	105	258	15	268	4.0
96	458	0.24	0.07757	0.239	1.9989	6.751	0.18697	0.258	0.05408	0.275	0.41	1105	14	1115	23	1136	60	1065	53	1136	60.0
97	93	0.14	0.07103	0.272	1.5592	6.401	0.15951	0.236	0.04955	0.3	0.36	954	13	954	25	958	77	977	58	954	13.0
98	135	0.59	0.05689	0.283	0.34412	1.8	0.04379	0.071	0.01328	0.072	0.31	276	4	300	14	487	108	267	14	276	4.0
99	177	0.47	0.05193	0.236	0.30921	1.493	0.0432	0.07	0.01329	0.072	0.34	273	4	274	12	282	102	267	14	273	4.0
100	223	0.20	0.07762	0.239	2.1501	7.35	0.20111	0.297	0.05992	0.31	0.43	1181	16	1165	24	1137	60	1176	59	1137	60.0

Tabla AII.II. Resultados de análisis geocronológico U-Pb de circones detríticos de la formación Tianguistengo. Muestra P.53 colectada en el lecho del río Magdalena en la cercanías del poblado de Santo Domingo Tianguistengo. Coordenadas UTM: 14Q0626542 m E, 2021770 m N.

			Relaciones isotópicas									Edades aparentes (Ma)									
Análisis	U	T2	10.39	±	10.29	±	¹⁰⁴ 76	±	²¹⁴ Pb	±	Error	²⁰⁴ 76	+	10.29	+	²⁰ 75	+	²⁹ РЬ	+	Mejor edad	ł ±
	(ppm)	U	209 ²⁰¹ 205	(%)	"" U	(%)	"" U	(%)	"ть	(%)		"" U	_	"" U		209 ²⁰¹ 205		10 ТЬ		(Ma)	(Ma)
1	104	0.48	0.05457	0.282	0.33393	1.851	0.04486	0.089	0.01376	0.065	0.36	283	5	293	14	395	114	276	13	283	5.0
2	143	0.30	0.06025	0.238	0.70006	2.981	0.08426	0.136	0.02588	0.114	0.37	522	8	539	18	613	84	516	22	522	8.0
3	117	0.48	0.07262	0.229	1.5933	5.65	0.15877	0.258	0.04642	0.208	0.46	950	14	968	22	1003	63	917	40	950	14.0
4	57	0.68	0.05802	0.419	0.36099	2.7	0.04552	0.087	0.01378	0.065	0.26	287	5	313	20	531	156	277	13	287	5.0
5	70	0.72	0.05486	0.36	0.34969	2.392	0.0463	0.089	0.01344	0.066	0.28	292	5	304	18	407	145	270	13	292	5.0
6	150	0.68	0.05441	0.247	0.34745	1.688	0.04653	0.08	0.01426	0.063	0.36	293	5	303	13	388	100	286	13	293	5.0
7	268	0.43	0.07237	0.208	1.7179	5.606	0.17178	0.265	0.05045	0.216	0.47	1022	15	1015	21	996	57	995	42	996	57.0
8	387	0.29	0.05518	0.222	0.33319	1.45	0.04373	0.072	0.01429	0.069	0.38	276	4	292	11	420	88	287	14	276	4.0
9	80	0.32	0.05271	0.366	0.37013	2.66	0.0506	0.094	0.01545	0.082	0.26	318	6	320	20	316	154	310	16	318	6.0
10	202	0.35	0.0547	0.23	0.32937	1.493	0.04353	0.075	0.01389	0.066	0.37	275	5	289	11	400	93	279	13	275	5.0
11	66	0.35	0.05475	0.313	0.3519	2.102	0.04676	0.08	0.0148	0.079	0.29	295	5	306	16	402	126	297	16	295	5.0
12	62	0.57	0.06016	0.295	0.36168	1.914	0.04348	0.087	0.01281	0.08	0.38	274	5	313	14	609	104	257	16	274	5.0
13	370	0.92	0.05259	0.203	0.27098	1.133	0.03738	0.06	0.01125	0.048	0.38	237	4	243	9	311	85	226	10	237	4.0
14	783	0.70	0.05498	0.162	0.37063	1.224	0.04877	0.073	0.01518	0.064	0.45	307	4	320	9	411	64	305	13	307	4.0
15	232	0.34	0.08523	0.263	2.4557	8.452	0.20855	0.32	0.06066	0.257	0.44	1221	17	1259	25	1321	58	1190	49	1321	58.0
16	171	0.24	0.05461	0.22	0.34047	1.49	0.04534	0.078	0.01375	0.066	0.39	286	5	298	11	396	88	276	13	286	5.0
17	378	0.29	0.07645	0.21	1.8745	5.892	0.17755	0.272	0.05283	0.227	0.49	1054	15	1072	21	1107	53	1041	44	1107	53.0
18	199	0.06	0.07502	0.226	1.816	6.176	0.1752	0.277	0.05636	0.323	0.46	1041	15	1051	22	1069	59	1108	62	1069	59.0
19	73	0.41	0.06029	0.339	0.38379	2.292	0.04615	0.092	0.01331	0.068	0.34	291	6	330	17	614	119	267	14	291	6.0
20	283	0.45	0.05505	0.195	0.3798	1.479	0.05019	0.082	0.01738	0.08	0.42	316	5	327	11	414	77	348	16	316	5.0
21	156	0.53	0.05966	0.574	0.40178	4.259	0.04884	0.098	0.01509	0.029	0.34	307	6	343	31	591	208	303	6	307	6.0
22	96	0.90	0.05062	0.347	0.31068	2.21	0.04478	0.086	0.01426	0.066	0.27	282	5	275	17	224	151	286	13	282	5.0
23	101	0.24	0.05399	0.269	0.35724	1.901	0.04819	0.089	0.0159	0.089	0.35	303	5	310	14	371	110	319	18	303	5.0
24	207	0.55	0.05623	0.203	0.36355	1.445	0.04692	0.078	0.01401	0.064	0.42	296	5	315	11	461	78	281	13	296	5.0
25	179	0.48	0.05877	0.237	0.39903	1.733	0.04927	0.08	0.01644	0.077	0.37	310	5	341	13	559	86	330	15	310	5.0
26	67	0.78	0.0559	0.33	0.36712	2.281	0.04786	0.092	0.01413	0.064	0.31	301	6	318	17	448	129	284	13	301	6.0
27	147	0.96	0.0554	0.223	0.34444	1.507	0.04509	0.077	0.01403	0.062	0.39	284	5	301	11	428	87	282	12	284	5.0
28	62	0.51	0.05744	0.366	0.35863	2.374	0.04546	0.081	0.01397	0.072	0.27	287	5	311	18	509	138	280	14	287	5.0
29	139	0.47	0.0519	0.236	0.32177	1.552	0.04507	0.073	0.01352	0.068	0.33	284	5	283	12	281	104	271	14	284	5.0
30	97	0.39	0.05219	0.27	0.34238	1.889	0.04782	0.092	0.0146	0.077	0.35	301	6	299	14	294	118	293	15	301	6.0

			Relaciones isotópicas											Edades aparentes (Ma)							
A (1:-:	U	T2	¹⁰ 75	±	¹⁰ 75	±	¹⁰¹ 75	±	²¹⁴ Pb	±	E	²⁰¹ 75		¹⁰ 75		³⁰ 75		^{an} Pb		Mejor edad	±
Analisis	(ppm)	U	200 PG	(%)	"" U	(%)	** U	(%)	16 ТЬ	(%)	Error	*** U	±	"" U	±	200 PG	±	$^{\rm in}\tau b$	±	(Ma)	(Ma)
31	150	0.53	0.05351	0.225	0.33733	1.515	0.04564	0.073	0.01426	0.063	0.35	288	5	295	12	350	95	286	13	288	5.0
32	181	0.73	0.05472	0.288	0.34135	1.889	0.04516	0.077	0.01429	0.065	0.31	285	5	298	14	401	119	287	13	285	5.0
33	165	0.29	0.05174	0.222	0.3571	1.639	0.0499	0.082	0.01483	0.072	0.36	314	5	310	12	274	99	298	14	314	5.0
34	148	0.30	0.05481	0.225	0.32498	1.456	0.04303	0.077	0.01352	0.065	0.4	272	5	286	11	404	92	271	13	272	5.0
35	287	0.60	0.05827	0.192	0.63137	2.575	0.07764	0.186	0.02499	0.126	0.59	482	11	497	16	540	72	499	25	482	11.0
36	417	0.42	0.05687	0.171	0.50856	1.713	0.06426	0.097	0.01727	0.078	0.45	401	6	417	12	487	66	346	15	401	6.0
37	118	0.41	0.05456	0.272	0.33913	1.797	0.04505	0.08	0.01413	0.066	0.34	284	5	297	14	394	112	284	13	284	5.0
38	147	0.76	0.05513	0.265	0 34527	1.75	0.04526	0.072	0.01361	0.062	0.32	285	4	301	13	417	108	273	12	285	4.0
39	114	0.70	0.03313	0.251	0.30248	1.654	0.04527	0.081	0.01317	0.059	0.32	285	5	268	13	124	115	264	12	285	5.0
40	234	0.93	0.05627	0.564	0.36114	4.08	0.04655	0.086	0.013448	0.023	0.38	203	5	313	30	463	226	201	4	293	5.0
41	144	0.95	0.055527	0.224	0.36114	1.606	0.04035	0.083	0.01440	0.066	0.39	202	5	217	12	424	90	291	13	303	5.0
42	154	1.05	0.05355	0.218	0.307	1.495	0.04526	0.078	0.0148	0.05	0.42	303	5	217	11	434	81	297	10	286	5.0
43	87	0.70	0.05905	0.289	0.36707	1.826	0.04336	0.084	0.01065	0.062	0.32	280	5	317	14	201	127	214	12	276	5.0
44	221	0.70	0.05213	0.189	0.31152	1.346	0.04373	0.077	0.01365	0.063	0.42	2/6	5	2/5	10	291	80	2/4	13	295	5.0
45	295	0.93	0.05343	0.213	0.34494	1.472	0.04688	0.074	0.01406	0.068	0.4	295	5	301	11	347	84	282	14	290	5.0
46	151	0.63	0.05652	0.397	0.35825	2.622	0.04606	0.072	0.01489	0.029	0.42	290	4	311	20	473	150	299	6	275	4.0
47	126	0.23	0.05538	0.432	0.33325	3.145	0.04364	0.085	0.01361	0.027	0.39	275	5	292	24	428	166	273	5	298	5.0
48	160	0.50	0.05462	0.217	0.35688	5.918	0.04739	0.267	0.0148	0.22	0.46	298	15	310	22	397	55	297	42	1035	55.0
49	654	0.48	0.07375	0 196	1.7863	5 4 4 7	0.17543	0.266	0.05202	0.228	0.49	1042	15	1040	20	1035	51	1025	44	1013	51.0
50	122	0.09	0.07298	0.24	1.764	7 701	0.17477	0.32	0.05306	0.255	0.47	1038	17	1032	20	1013	53	1045	49	1240	53.0
50	27	0.38	0.08176	0.24	2.3126	7.742	0.20483	0.32	0.05942	0.200	0.47	1201	16	1216	24	1240	94	1167	77	047	16.0
51	27	0.09	0.07418	0.331	1.6135	7.745	0.15832	0.282	0.0407	0.399	0.57	947	10	975	30	1046	64	806	20	54/	10.0
52	813	0.33	0.08578	0.225	2.3375	7.333	0.19711	0.338	0.04559	0.198	0.55	1160	18	1224	22	1333	47	901	38	1333	47.0
53	250	0.48	0.05787	0.219	0.38186	1.564	0.04787	0.076	0.01629	0.073	0.38	301	5	328	11	525	77	327	15	301	5.0
54	234	0.35	0.08127	0.218	2.289	7.217	0.20313	0.336	0.05954	0.255	0.53	1192	18	1209	22	1228	49	1169	49	1228	49.0
55	124	0.69	0.05588	0.274	0.343	1.781	0.04462	0.077	0.01437	0.066	0.33	281	5	299	13	448	102	288	13	281	5.0
56	401	0.26	0.09179	0.246	3.2861	10.139	0.25882	0.393	0.07751	0.332	0.5	1484	20	1478	24	1463	47	1509	62	1463	47.0
57	198	0.63	0.05744	0.226	0.37329	1.615	0.0473	0.084	0.01522	0.069	0.42	298	5	322	12	509	81	305	14	298	5.0
58	205	0.23	0.07831	0.22	2.119	6.748	0.19568	0.293	0.0574	0.246	0.47	1152	16	1155	22	1155	52	1128	47	1155	52.0
59	196	1.17	0.07484	0.22	1.8307	6.176	0.17714	0.293	0.05095	0.219	0.49	1051	16	1057	22	1064	55	1004	42	1064	55.0
60	299	0.09	0.0811	0.204	2.08033	6.232	0.18604	0.277	0.05555	0.083	0.49	1100	15	1142	21	1224	46	1093	16	1224	46.0
61	160	0.19	0.07674	0.216	1.9026	6.114	0.17948	0.28	0.0551	0.24	0.48	1064	15	1082	21	1114	54	1084	46	1114	54.0
62	145	0.52	0.05195	0.205	0.33331	1.419	0.04634	0.075	0.01463	0.064	0.38	292	5	292	11	283	87	294	13	292	5.0
63	508	0.24	0.07106	0.204	1.4958	4.86	0.15233	0.231	0.02232	0.097	0.47	914	13	929	20	959	56	446	19	914	13.0
64	444	0.41	0.08122	0.218	2.3302	7.173	0.20759	0.312	0.0617	0.261	0.49	1216	17	1222	22	1227	51	1210	50	1227	51.0
65	544	0.07	0.07277	0.195	1.646	5.075	0.16353	0.248	0.07166	0.316	0.49	976	14	988	19	1008	52	1399	60	976	14.0
			Relaciones isotópicas										Edades aparentes (Ma)								
-----------	-------	------	-----------------------	-------	------------------	-------	------------------	-------	-------------------	-------	-------	------------------	-----------------------	------------------	----	------------------	-----	--------------------	----	------------	------
Análisis	U	T2	10 75	±	¹⁰ 75	±	¹⁰ 75	±	^{ан} рь	±	Ennon	¹⁰ 75	+	¹⁰ 75	+	¹⁰ 75	+	^{ан} рь		Mejor edad	±
Attailsis	(ppm)	U	²¹⁴ 25	(%)	** U	(%)	** U	(%)	$^{\rm in}\tau b$	(%)	EII0I	1 T	Τ	^{10}U	Τ	200 205	Ŧ	$^{10}\mathrm{Tb}$	Τ	(Ma)	(Ma)
66	75	0.33	0.0756	0.267	1.8069	7.098	0.17403	0.298	0.05328	0.242	0.44	1034	16	1048	26	1084	68	1049	46	1084	68.0
67	162	0.26	0.07142	0.236	1.5921	5.853	0.16113	0.261	0.04851	0.217	0.44	963	14	967	23	969	65	957	42	963	14.0
68	199	0.85	0.05289	0.217	0.33065	1.465	0.04533	0.075	0.01409	0.061	0.38	286	5	290	11	324	90	283	12	286	5.0
69	438	0.45	0.05344	0.168	0.35335	1.255	0.04779	0.078	0.01481	0.064	0.47	301	5	307	9	348	68	297	13	301	5.0
70	170	0.27	0.07868	0.226	2.231	7.543	0.20473	0.365	0.0626	0.276	0.53	1201	20	1191	24	1164	55	1227	52	1164	55.0
71	109	1.15	0.07515	0.221	1.6997	5.664	0.16347	0.256	0.04937	0.206	0.47	976	14	1008	21	1073	57	974	40	1073	57.0
72	339	0.74	0.05097	0.164	0.29945	1.073	0.04249	0.066	0.01111	0.048	0.44	268	4	266	8	239	71	223	10	268	4.0
73	238	0.19	0.07655	0.21	1.9865	6.308	0.18773	0.299	0.05767	0.254	0.5	1109	16	1111	21	1109	53	1133	49	1109	53.0
74	285	0.62	0.0819	0.225	2.1975	6.984	0.19417	0.311	0.06037	0.274	0.5	1144	17	1180	22	1243	52	1185	52	1243	52.0
75	66	0.74	0.05781	0.304	0.36533	2.047	0.04609	0.089	0.01569	0.076	0.35	290	5	316	15	523	112	315	15	290	5.0
76	829	0.22	0.09538	0.251	3.0901	9.58	0.23417	0.386	0.07239	0.31	0.53	1356	20	1430	24	1536	48	1413	58	1536	48.0
77	159	0.46	0.08132	0.228	2.4055	7.712	0.21379	0.33	0.06325	0.271	0.48	1249	18	1244	23	1229	53	1240	52	1229	53.0
78	60	0.38	0.06092	0.293	0.41789	2.134	0.0497	0.085	0.01612	0.09	0.34	313	5	355	15	636	106	323	18	313	5.0
79	147	0.13	0.07147	0.225	1.5771	5.556	0.16015	0.252	0.0497	0.232	0.45	958	14	961	22	971	66	980	45	958	14.0
80	45	0.09	0.07323	0.265	1.6474	6.538	0.16312	0.268	0.05589	0.329	0.41	974	15	989	25	1020	75	1099	63	974	15.0
81	194	0.54	0.08585	0.247	2.72	8.918	0.22907	0.361	0.06939	0.293	0.48	1330	19	1334	24	1335	57	1356	55	1335	57.0
82	148	0.32	0.07581	0.228	1.9242	7.031	0.18391	0.381	0.05389	0.245	0.57	1088	21	1090	24	1090	62	1061	47	1090	62.0
83	256	0.21	0.07661	0.22	1.9564	6.615	0.18472	0.329	0.05916	0.261	0.53	1093	18	1101	23	1111	59	1162	50	1111	59.0
84	185	0.97	0.07747	0.223	1.9849	6.453	0.18522	0.281	0.05562	0.235	0.46	1095	15	1110	22	1133	59	1094	45	1133	59.0
85	181	0.18	0.07564	0.208	1.7975	5.883	0.17207	0.306	0.05587	0.254	0.54	1024	17	1045	21	1086	57	1099	49	1086	57.0
86	89	0.22	0.07179	0.206	1.619	5.279	0.16287	0.251	0.04769	0.217	0.47	973	14	978	20	980	60	942	42	973	14.0
87	99	0.61	0.05865	0.267	0.35107	1.705	0.04359	0.075	0.01477	0.072	0.35	275	5	306	13	554	102	296	14	275	5.0
88	231	0.55	0.05661	0.209	0.35332	1.427	0.04531	0.074	0.01514	0.067	0.41	286	5	307	11	476	84	304	13	286	5.0
89	397	0.49	0.05279	0.163	0.3556	1.224	0.04876	0.075	0.01556	0.067	0.44	307	5	309	9	320	72	312	13	307	5.0
90	240	0.41	0.0858	0.241	2.6931	8.669	0.22713	0.357	0.06397	0.282	0.49	1319	19	1327	24	1334	56	1253	54	1334	56.0
91	91	0.53	0.05308	0.265	0.31771	1.699	0.04328	0.083	0.01384	0.071	0.36	273	5	280	13	332	116	278	14	273	5.0
92	132	0.33	0.05521	0.227	0.35992	1.603	0.04721	0.081	0.01726	0.086	0.38	297	5	312	12	421	94	346	17	297	5.0
93	364	0.81	0.05386	0.17	0.36526	1.281	0.04911	0.075	0.01519	0.064	0.44	309	5	316	10	365	73	305	13	309	5.0
95	123	0.35	0.05691	0.215	0.37741	1.565	0.04779	0.082	0.01611	0.078	0.41	301	5	325	12	488	88	323	16	301	5.0
96	117	0.21	0.08299	0.357	2.5325	11.48	0.22174	0.319	0.06734	0.39	0.32	1291	17	1281	33	1269	83	1317	74	1269	83.0
97	167	0.30	0.07294	0.238	1.8429	6.568	0.18355	0.262	0.05396	0.279	0.4	1086	14	1061	23	1012	65	1062	54	1012	65.0
98	213	0.65	0.06909	0.217	1.5377	5.317	0.16153	0.233	0.04673	0.236	0.42	965	13	946	21	901	64	923	46	965	13.0
99	151	0.39	0.07472	0.254	1.8683	6.89	0.18114	0.259	0.0568	0.3	0.39	1073	14	1070	24	1061	67	1117	57	1061	67.0

