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Abstract

A challenging issue in photoacoustic image reconstruction is to take into account the presence of acousti-

cally heterogeneous media because it is present in many biomedical applications and it degrades the qual-

ity of reconstructed images. The methods for image reconstruction from projections, the most common

algorithms used in photoacoustic imaging, are based on a linear transport description. This doctoral the-

sis addresses the conjecture that the photoacoustic propagation obeys the Heaviside telegraph equation,

a consideration based on experimental observations where acoustic perturbations affect the structural

integrity of photoacoustic information. For the first time, both attenuation and acoustic dispersion are

considered in one photoacoustic transport model. The reconstruction of an image representing the pho-

toacoustic energy absorption map is an inverse problem. We approximate this inversion using a numerical

representation of a two-dimensional heterogeneous pressure distribution map of a coronal human breast

phantom and four distinct linear wave equations simulating different degrees of signal perturbations.

As a result, analytical expressions for blurring and reflection effects in the reconstructed images are

achieved. This projection-processing strategy results valuable to improve essentially the quality of the

reconstruction and is independent of the choice of method to restore image information from perturbed

photoacoustic signals. Based on our analysis, we consider that the proposed methodology has a great

potential in non-destructive biomedical imaging. Furthermore, it can be extended to other modalities of

waveform tomography, such as acoustical, seismic or optical tomography.





Resumen

Una cuestión desafiante en reconstrucción de imágenes fotoacústicas es tener en cuenta la presencia de

los medios de propagación acústicamente heterogéneos ya que están presentes en muchas aplicaciones

biomédicas y que degradan la calidad de las imágenes reconstruidas. Los métodos de reconstrucción

imágenes a partir de proyecciones, los algoritmos más comunmente utilizados en la creación de imá-

genes fotoacústicas, están buscando en una descripción de transporte lineal. Esta tesis doctoral aborda

la conjetura de que la propagación fotoacústica obedece a la ecuación del telégrafo Heaviside, una con-

sideración con base en las observaciones experimentales en las que las perturbaciones acústicas afectan

la integridad estructural de la información fotoacústica. Por primera vez, tanto la atenuación como la

dispersión acústica se consideran en un modelo de transporte fotoacústica. La reconstrucción de una

imagen que representa el mapa de absorción de enerǵıa fotoacústica es un problema inverso. Nosotros

aproximamos este proceso de inversión usando un cálculo numérico de un mapa bidimensional de la

distribución heterogénea de presión de una imagen de una maqueta que representa una sección coronal

de mama humano y cuatro ecuaciones lineales de onda distintas que simulan diferentes grados de per-

turbaciones de la señal. Como resultado, se obtienen expresiones anaĺıticas para la distorsión y diversos

efectos de reflexión en las imágenes reconstruidas. Esta estrategia de procesamiento de proyecciones ha

dado resultados rentables para mejorar esencialmente la calidad de reconstrucciones y es independiente

del método elegido para restaurar la información de imágenes fotoacústicas. Con base en nuestro análi-

sis, consideramos que la metodoloǵıa propuesta aqúı tiene un gran potencial en imagenoloǵıa biomédica

no-destructiva. Asimismo, se puede extender a otras modalidades de tomograf́ıa de forma de onda, tales

como la tomograf́ıa acústica, śısmicas u óptica.





Preface

Background of the study

This thesis reports on the results of my Ph.D. project on computer science carried out at both the

Centro de Ciencias Aplicadas y Desarollo Tecnológico (CCADET) and the Instituto de Investigaciones

en Matemáticas Aplicadas y en Sistemas (IIMAS) of the Universidad Nacional Autónoma de México

(UNAM). This project is the result of my interest in medical imaging and image processing techniques,

in particular in the newly proposed photoacoustic imaging and its application to early cancer detection

and therapy. As a result, I carried out my Ph.D. research under the supervision of Dr. Crescencio Garćıa

Segundo and Dr. Edgar Garduño Ángeles, experts in the fields of photoacoustic imaging and image

reconstruction from projections, respectively. My research covered some mathematical aspects of wave

transport models and different computational strategies for image reconstruction.

The rationale behind photoacoustic imaging

Since its discovery in 1880 by Alexander Graham Bell, the photoacoustic effect (in essence, the formation

of sound following light absorption) has made history in science. However, its non-invasive applications

to medical imaging are still in an early stage of development [1, 2]. After data acquisition, an impor-

tant step in photoacoustic imaging is the reconstruction of the pressure distribution; a process that

is obtained through a computational method. Currently, the most popular computational algorithms

employed in photoacoustic imaging are based on methodologies developed for other modalities, notably

for x-ray computerized tomography where the data acquired by the sensors are modeled as if the sig-

nal propagation is linear. In this thesis we follow closely current observations and results, i.a., [3] and
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its references, and claim that the photoacoustic phenomenon can be modeled as a linear process only

under very specific circumstances: all acoustic perturbations need an analytic description which has to

be (pseudo-) invertible. Nowadays, a challenging issue in photoacoustic imaging is to take into account

the presence of acoustically heterogeneous media in deeper tissues because after ∼2 mm the non-linear

signal propagation effects become more prevalent. Consequently, it is necessary to expand the waveform

model for heterogeneous media in order to be able to obtain good images of deeper layers of biological

tissues. The literature on photoacoustics, e.g., [4], reports on the presence of two well-known types of

image-degrading phenomena: blurring and internal reflections. However, the analytical description of the

acoustic perturbations is generally neglected. This thesis proposes a transport model to approximate

the distribution of the mechanical perturbation in the presence of physical heterogeneities that result

in degrading phenomena. From the viewpoint of computer science, this is important because it allows

the implementation of efficient strategies for image reconstruction, and hence better results; having

knowledge of the process that takes place during the data collection process permits reducing degrading

artifacts such as blurring.

The focus of this thesis is on suppressing blurring and internal reflections through extending a trans-

port model incorporating a non-linear distribution of information. We demonstrate the goodness of

our model using data from a photoacoustic imaging system with a large planar sensor that produces

two-dimensional images. The reasons for selecting this type of system are the abundant availability of

experimental data, the possibility to consider comparisons to already validated results by other laborato-

ries, and the fast reconstruction outcome because all transport calculations are obtained through signal

processing prior to reconstruction. However, it is worth noticing that the sensor shape is of little relevance

since diverse transformation equations and a universal reconstruction formula has been demonstrated in

[5] for three canonical geometries. Consequently, our proposal can be classified as of general use. The

proposed model can be easily extended to higher dimensions; this option is prescinded here, because the

experimental validation of the enhanced model for image reconstruction remains to be completed. Our

ongoing research addresses the application of the new model for biomedical photoacoustic tomography

with specialized sensors and image reconstruction of higher dimensions.
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Overview and features of this dissertation

Photoacoustic tomography is a novel promising modality for early breast cancer detection because it

provides functional information of physiological processes such as tissue hemoglobin oxygen saturation;

i.a., low oxygenation promotes the spreading of breast cancerous cells [6]. The current advancements in

the field are presented in Chapter 1. Most methods to produce images from photoacoustic measurements

assume a linear approximation of the hybrid transport model combining electromagnetic and ultrasonic

waves. The scientific details of forming computerized tomographic images are explained in Chapter 2. We

also explain in Section 2.2 the photoacoustic data acquisition process and the transformation of acoustic

signals into approximated projection data for near homogeneous transport.

This doctoral thesis focuses on the challenge to reconstruct photoacoustic images under the presence

of acoustic perturbations within inhomogeneous tissues. In Chapter 3, we elaborate numerical routines

based on linear transport models, capable to describe sufficiently accurately the impact of wave pertur-

bations and approximate photoacoustically acquired data as projections. These are basically analytical

approaches, promoting the employment of novel transform methods and algebraic reconstruction tech-

niques. Their algorithmic design is carried out in Chapter 4. By means of two-dimensional computer

simulations we demonstrate backprojection solutions to the linearized forward and inverse problems

that are inherent to photoacoustic tomography of heterogeneous media. Additional non-linear adjust-

ments on the transport assumptions are taken into account when iteratively reconstructing the source.

Empirically, it seems that the predictions of our linear model for heterogeneous media hold in case of

photoacoustic imaging of small animals and synthetic gelatinous phantoms with a diameter of a few

centimeters that may produce acoustic reflections and image blurring. The improved image transforma-

tions for the case of wave perturbations can be realized by projection processing strategies and further

rapid (spherical) Radon transform inversion. The proposed methodology turns out to be computational

efficient, both in computation time as well as memory requirements; extra costs are assigned only to the

preprocessing of measured signals. Additional improvements on artifact minimization are obtained by

our iterative reconstruction algorithm incorporating a detector sensitivity map, as demonstrated by an

entropy measure of a specific case study. Finally, we discuss the results obtained by our methods and

their potential biomedical applications in Chapter 5.
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Chapter 1

Introduction





1.1

Fundamentals of photoacoustics

Photoacoustic signals are the result of the photoacoustic effect, that is, ultrasound generation by pulsed

or modulated light absorption of visible to near-infrared wavelengths. This effect was discovered in the

nineteenth century and was first mentioned in 1880 by the Scottish researcher Alexander Graham Bell

in his work of the photophone [7], an optical communication instrument consisting of a voice-activated

mirror, a selenium cell, and an electrical telephone receiver; an illustration of a photophone receiver is

depicted in Figures 1.1.1 and 1.1.2.

Fig. 1.1.1: One part of Bell’s wireless optical communication system: a photophone receiver, circa 1880.
Detailed description of the construction can be found in [8]. (Image courtesy of the U.S. Library of
Congress, Photo Department.)

The physical mechanism behind the photoacoustic effect takes place through the following stages:

1. Emission of electromagnetic radiation.

2. Conversion of electromagnetic radiation into heat.

3. Temporary changes of temperature occur at the regions of absorption.

4. Thermal expansion and contraction due to pressure changes.



4 1.1 Fundamentals of photoacoustics

The terms optoacoustic, photothermal and thermoacoustic are synonyms for photoacoustic [3], hence

indicate the same physical characteristics, but their effect is possibly generated in distinctively defined

frequency ranges.

Fig. 1.1.2: Bell’s photophone used for talking with reflected sunlight. (Reproduction from the original,
received in Washington Post Library on March 4, 1947; image courtesy of the U.S. Library of Congress,
Photo Department.)

The model of the absorbed optical energy, when converted to heat, relates the optical absorption to

the light fluence [9]. The optical absorption coefficient µa quantifies how quickly and effectively radiation

is absorbed in a certain medium. Furthermore, the light fluence rate Φ (also referred to as radiant

exposure) at a given point x ∈ R3 and a given time t is a measurement of energy over an area segment.

Accordingly, the heating function H can be written as

H(x, t) = µa(x)Φ(x, t). (1.1.1)

Under simplifying assumptions [10] (i.e., considering only absorption effects), the heating function, de-

pendent on the angular frequency ω (or rather the ordinary frequency measured in Hertz times 2π), can

be expressed as the following product

H(x, t;ω) = µa(x)I0e−ı̂ωt , (1.1.2)
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where I0 is the initial intensity of light which varies in time in direct proportion to the generated pressure.

The changes in pressure originate sound waves that propagate within the sample tissue and can be

detected by a sensor coupled directly to it. Assuming a bounded region Ω of homogeneous media, such

as biological tissue, the pressure distribution p can be modeled by a linear operator L in conformity to

the following equation introduced in [3]

L p(x, t) := ∇
2 p(x, t)− 1

c2
∂ 2

∂ t2 p(x, t) =−Γ

c2
∂H
∂ t

, (1.1.3)

where c is the speed of sound and Γ is a dimensionless constant known as the Grüneisen parameter,

which indicates the efficiency of the conversion from heat to pressure and is defined as Γ = c2β/Cp; β is

the isobaric volume expansion coefficient and Cp is the specific heat [J / (K · kg)]. The forward solution

p(y, t) of the photoacoustic wave equation (1.1.3) at the boundary of the observed region y ∈ δΩ can

be analytically determined using the Green free-space function G, given the initial pressure distribution

f (x) =−Γ I0/c2µa(x), as follows

p(y, t) =−Γ I0

c2

∫
Rn

µa(x)
∂G(y−x, t)

∂ t
dx, (1.1.4)

with the initial conditions

L p(x, t) = 0, (1.1.5)

p(x,0) = f (x), (1.1.6)

∂t p(x,0) = 0, (1.1.7)

establishing a well-defined linear system. The initial sound pressure distribution f (x) stands in strong

relation to the map of light absorption according to the photoacoustic effect, i.e, dense pressure distri-

bution where light is highly absorbed. A typical application of the above model is to solve the following

inverse problem:

1. Given photoacoustic measurements at the boundary p(y, t).

2. Find the initial sound pressure distribution f (x) of the sample.

Its solution creates the conditions to enable photoacoustic spectroscopy and its derivations in imaging

systems (see Section 1.2). Photoacoustic spectroscopy permits quick and nondestructive testing without
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pretreatment or contact with the sample. The measurement sensitivity increases as the light source

intensity raises. Specially designed measurements allow the analysis of irregularly shaped samples or

surface treatments. Varying the modulation frequency and the wavelength of the probing radiation

results in depth profiling of layered or gradient composition.



1.2

Photoacoustic imaging systems

Based on the photoacoustic effect, photoacoustic imaging is classified as a hybrid (optical-acoustical)

imaging modality with a great potential for biomedical applications. Its main advantages are the use

of non-ionizing radiation to produce images of ultrasonic resolution and electromagnetic absorption

contrast. Presently, there are two main imaging systems using this principle: photoacoustic microscopy

and photoacoustic tomography. The experimental method to generate the acoustic wave field by pulsed

laser light follows the same principle in both systems but differs in the frequency range; consequently,

they differ in their penetration depth and their resolution. The scanning and reconstruction strategies

also vary between the two approaches.

Photoacoustic microscopy reflects information about the superficial light absorption (< 3 mm deep)

typically within the bandwidth from 1 to ∼ 50 MHz using a focused ultrasound sensor. Through linear

or sector scans, two-dimensional images are generated directly without the need of a reconstruction

algorithm. As soon as the light illuminates the sample tissue, ultrasonic scattering is two to three orders

of magnitude weaker than optical scattering. Because of the dimensions of the tissue samples studied in

photoacoustic microscopy, it is possible to obtain better spatial resolution than in pure optical imaging;

a typical lateral resolution is about 50 µm [11]. Figures 1.2.1 and 1.2.2 show a photoacoustic microscopy

scanner with an in vivo probe of a subcutaneously inoculated melanoma in an immunocompromised

naked mouse.

In photoacoustic tomography, one typically acquires signal information with an unfocused ultrasound

sensor and uses a radial scanning around the (three-dimensional) object of interest. By inversely solving

the transport equations (1.1.5)-(1.1.7) the absorption map of the sample can be computationally recon-

structed (typically with a depth up to 5 cm for an incidence frequency of 5 MHz). For this purpose,

many photoacoustic measurements (transformed as approximated projection data in accordance to the

methods presented in Section 2.2.1) for all mechanically realizable sensing directions are needed as an

input for image reconstruction algorithms, which inevitably are memory or time intensive. Due to these

computational costs, series of two-dimensional slice images are more common although losses in the

resolution represent a considerable drawback. Recently, methods of compressed sensing have also been
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Fig. 1.2.1: The experimental photoacoustic microscopy scanner equipment by Zhang et al. [11].
(Image courtesy of Ph.D. Lihong Wang, Washington University in St. Louis, USA.)

Fig. 1.2.2: In vivo imaging of a melanoma (M) 0.32 mm below the skin surface of a naked mouse
using photoacoustic microscopy [11]. Left: Photograph of the melanoma. Right: A maximum amplitude
projection image, where blood vessels are pseudo-colored red and the melanoma is pseudo-colored brown.
As many as six orders of vessel branching can be observed in the image as indicated by the numbers 1-6.
(Image courtesy of Ph.D. Lihong Wang, Washington University in St. Louis, USA.)
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introduced to photoacoustics to use less projections [12]. These are signal processing techniques that

efficiently acquire and reconstruct a signal from few samples (less than required by a traditional inter-

pretation of the Shannon-Nyquist sampling theorem), by finding optimal solutions to underdetermined

linear systems. We are aware that the detection problems due to acoustical perturbations become larger

as the penetration increases. The sensitivity of the system can be enhanced using specific biocompatible

contrast agents with greater optical absorption properties (e.g., nanoparticles). It has been shown in small

animals, e.g., a zebrafish [13], that photoacoustic tomographic methods are capable of resolving optical

molecular agents, fluorescent proteins, and other reporter agents, thus allowing the investigation of an

entire living organism. In Figure 1.2.3 we reproduce from [13] the results of a photoacoustic tomographic

procedure, applied on an adult zebrafish, that demonstrate the applicability of this technique.

Fig. 1.2.3: Non-invasive cross-sectional imaging of an one-year-old female zebrafish [13]. Comparision
between (A) x-ray computerized tomography, (B) ultrasound imaging and (C) photoacoustic tomography.
(Image courtesy of Ph.D. Daniel Razansky, Technische Universität München, Germany.)

Scientific studies show that photoacoustic imaging is suited to visualize morphological changes as

well as functional and molecular activities in biological tissues. Its applications (predominantly in soft

tissues) include cancer developmental biology, small animal imaging, cellular biology, stroke and diabetes

study (in particular ischemia). As a consequence, many scientists, such as those in the university of
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Twente in the Netherlands, have developed photoacoustic mamoscopes to improve early breast cancer

detection, see Figure 1.2.4 for some results obtained with such a device. The imaging possibilities are

essentially limited by the electromagnetic penetration and acoustic transport perturbations. In deeper

tissues, heterogeneous media acoustic reflection and scattering represent serious limitations because they

induce severe artifacts.

Fig. 1.2.4: Example images from the Twente photoacoustic mamoscope with annotations by the authors
of [14]. Left: The cranio-caudal x-ray mammogram of a human breast shows a 20 mm lesion with a calci-
fication. Right: A transversal cross-section with a slice-thickness of 0.24 mm through the photoacoustic
volume at the expected lesion. (Image courtesy of Susannah Lehman, The Optical Society of America,
and Ph.D. Michelle Heijblom, Universiteit Twente, Netherlands.)



Chapter 2

Mathematical methods of computerized tomography

In the present chapter we introduce the basic mathematical concepts of computerized

tomography and review the main image reconstruction strategies. Later on, we present the

prevailing model for photoacoustic image formation of small specimens in connection with

signal processing and specific integrating geometries.





2.1

Image reconstruction from projections

The problem of image reconstruction from projections has arisen independently in a large number of

scientific fields [15]; all have in common that they solve the problem using methods of computerized

tomography. The more popular tomographic modalities are defined via multiple x-ray projections, high-

energy photon emission (such as those produced by positron anhiliation), or magnetic resonance. Re-

cently, photoacoustic tomography has been demonstrated to be a version of this specific class of inverse

problems [16]. All these technologies have a general mathematical basis: the tomographic concept of

projections.

Technically speaking, a projection P is a mapping of a real-valued function f : Rn → R of some

physical property of bounded support, onto a subset S⊂S , where S is typically a set of hyperplanes; f

represents the image to reconstruct. For instance, when dealing with the classical computerized tomogra-

phy, f refers to the distribution of linear attenuation coefficients, or the Coulomb potential of molecules

in electron microscopy; in photoacoustic imaging, f is the initial sound pressure distribution, measured

with an acoustic detector (e.g., microphone), which in turn is related to the attenuation of light.

We can specify an (n−1)-dimensional hyperplane in spherical coordinates as S(r,φ) = {x∈Rn|〈x,φ〉=

r}, perpendicular to φ , an element of the unit sphere Φn−1 in Rn. More specifically, P is a linear

transformation of the form

(P f )(r,φ) =
∫

S(r,φ)
w(x,S) · f (x)dx, (2.1.1)

with a given weighting function (i.e., kernel) w : Rn×S→R. In the particular case of x-ray computerized

tomography, all projections for image reconstruction are assumed to be known line or plane integrals,

depending on the dimension of the density distribution. For simplicity, it is common to set the weighting

function to be constant (w = 1). The resulting linear operator is called the (classical) Radon transform,

(R f )(r,φ) :=
∫

S(r,φ)
f (x)dx≈ g(r,φ), (2.1.2)
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where g denotes the approximated projection for the orientation (r,φ) that we obtained as physical

measurements. For integration over curved hyperplanes we speak about the spherical Radon transform;

a close analysis of this transform is presented in [18].

The common tomographic aim is to produce the image f using a program that implements an

algorithm to calculate the approximate inversion of P−1g. It has been demonstrated in [15] that the

inverse Radon transform

(R−1g)(x) :=
∫

Φn−1
g(x ·φ ,φ)dφ (2.1.3)

is associated with P−1. The same authors also proved that R−1R f = f for any real continuous and

bounded image f , satisfying the physical reasonable condition of R f having a continuous first derivative.

Generally, there are two basic approaches to reconstruct the image f : transform methods and series

expansion methods. Both reconstruction families made their first appearance in the scientific literature

and in the computed tomography scanner industry around 1970. An essential difference between the

two families of methods lies in the discretization precedence. Transform methods replace the continuous

operators by their discrete counterparts at the very end of the process, whereas the series expansion

methods discretize the reconstruction problem from the very beginning, before further mathematical

analysis. All computational methods are based on digital assumptions which can be a source of error

and may lead to a very inaccurate reconstruction [17].

2.1.1 Transform methods

In practice, all numerical applications demand for discretization, either of the problem description or

their results. Transform methods do the latter and approximate the projection operation over Ω by the

Radon transform R, a discretized image f and a finite sequence of projection values g, both represented

by column-vectors. Thence, the reconstruction task is stated as

1. Given the physically obtained projection estimations g≈R f .

2. Find a good approximation f to the image f through the inverse operation R−1.

The image f is discretized by the spatial elements x j, in the range of 1 ≤ j ≤ J; in the following we

implement these elements by pixels. For the directions φ1,φ2, ...,φK of a discrete vector field at every x j

we may approximate the inversion operation by
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(R−1g)(x j)≈
K

∑
k=1

gk(x j ·φk,φk). (2.1.4)

The graph of projections (g1,g2, ...,gK) versus incidence direction is also referred to as the sinogram,

which represents the Radon transformed image at the corresponding orientations (φ1,φ2, ...,φK). Since

R−1R f = f , we expect that its discrete version R−1Rf = f′ should result in a good approximation f′ to

the original f .

Much of the theory of the Radon transform follows from its behavior under the Fourier transform

and convolution [19]. The central slice theorem provides the starting point to various analytic transform

methods, as summarized in [20]. Thus, the inverse Radon transform can alternatively be obtained, for

example, through the operation

R−1 =− 1
2π

BH D , (2.1.5)

by the backprojection (Bp)(r,φ) =
∫

π

0 p(r cos(θ − φ),θ) dθ of the Hilbert transform (H p)(r,φ) =

− 1
π

∫
∞

−∞
p(l,φ)/(r− l) dl (evaluated in the sense of the Cauchy principal value theorem) and partial dif-

ferentiation (D p)(r,φ) = limδ r→0(p(r + δ r,φ)− p(r,φ))/δ r. Depending on the imaging geometry as well

as on the quality and the quantity of the projection data, the replacement of the Radon operator and,

moreover, their discretizations may yield better reconstruction results in practice than with the operator

itself; further implications of possible replacements are discussed in [15].

Any pure transform method works well with noiseless data for all projections and hyperplanes. How-

ever, no real application satisfies this assumption for the experimentally obtained projection data. Trans-

form methods have to perform on finite and imperfect data using the limited capabilities of computers

[15]. Although computationally more time-efficient and straightforward to implement, the backprojec-

tion algorithms are unfortunately very prone to imaging artifacts; errors in the projections spread to the

overall reconstruction when no further correction procedures are implemented. In essence, what needs

to be done is to develop numerical procedures that are able to deal with noise and limited data.

2.1.2 Series expansion methods

Series expansion methods include methods such as the algebraic reconstruction techniques (ART), Kacz-

marz procedure, iterative algorithms, or optimization theory techniques which are immediately applicable

to many forms of data collection and have the advantage that can incorporate repeatedly correction pro-
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cedures (unlike transform methods). The basic principle behind these methods is that a discrete image

f⊗ of the original f can be approximated by a linear combination of basis functions b1,b2, ...,bJ ,

f⊗(r,φ) :=
J

∑
j=1

f̄ jb j(r,φ), (2.1.6)

where f̄ j is the average value of f on the support of the basis function b j; for piecewise basis functions

holds f⊗ ≈X⊗ f , the pointwise product of the continuous image f with a train of pulses X. A common

choice for a basis function, but by far not the only one, is the following

b j(r,φ) =


1 if (r,φ) is inside the j-th pixel,

0 else.

(2.1.7)

However, it has been argued that basis functions with such sharp transitions are not the most appropriate;

hence, other basis functions with smooth transitions from 1 to 0 have been proposed [15]. Later, we

suggest a novel non-linear photoacoustic implementation of a basis function in Section 4.4.

As easily deduced from (2.1.4), the Radon transform can be approximated by the series of (pseudo-)

invertible matrices (Rk) for every projection in direction φk. These Radon functionals present special

characteristics such as

� linearity, i.e., Rk(γ1f1 + γ2f2) = γ1Rkf1 + γ2Rkf2,

� continuity, i.e., for f1 ≈ f2 holds Rkf1 ≈Rkf2.

Accordingly, the translation of the continuous projection into a discrete one is as follows

Rkf
⊗ =

J

∑
j=1

f̄ jRkb j ≈ gk, (2.1.8)

where Rkb j can be efficiently calculated because the basis functions are defined a priori. The approxi-

mation in (2.1.8) due to inaccurate measurements leads to the summed error description e = ∑
K
k=1 ek of

the reconstruction, involving the error of each backprojection ek (including linear and nonlinear parts),

f⊗ = R∗kgk +ek. (2.1.9)

Usually, the discrete reconstruction task will not reveal a unique solution since the system of equations

(componentwise) (2.1.9) is undetermined. Hence, series expansion methods try to find the nearest esti-
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mation of R∗kgk to the discrete image f⊗. This approach requires the definition of a distance between two

images, which is also crucial for the problem of how to treat noise and limited data. The widely used

ART procedure chooses least squares as an appropriate measure d,

ek = d(R∗kgk, f
⊗) := ‖R∗kgk− f⊗‖2, (2.1.10)

where ‖ �‖ denotes the Euclidean norm. Others express the error in relation to an optimization criterion,

e.g., maximum likelihood estimation, total variation, and many more [15], and focus on its minimization.

All series expansion methods are iterative procedures and produce a sequence of images f1, f2, ...

that is supposed to converge to f⊗. The flexible ART procedure, operates sequentially on one of the K

orthogonal projections Pk onto the affine subspace Rkf
⊗ = gk in Rn, given by

Pkf
(l) := f(l) +R∗k(RkR

∗
k)−1(gk−Rkf

(l)), (2.1.11)

where f(l) is a previous estimation of the image f (which may be initially the zero image vector). One

iterative step is explicitly described by setting f
(l)
1 := f(l) and computing f

(l)
i , with 1≤ i≤ I, according to

f
(l)
i+1 := Pkf

(l)
i = f

(l)
i +

gki
−〈Rki , f

(l)
i 〉

〈Rki ,Rki〉
RT

ki
, 1≤ i≤ I (2.1.12)

(2.1.13)

where Rki is the i-th row of the matrix Rk, which in turn represents the projection in the k-th direction;

respectively, gki
is the i-th entry of the vector gk. Then, f(l+1) := f

(l)
I . This algorithm (without relaxation)

will converge (slowly, in comparison to transform methods), if the condition that the product of the

matrix and its complex conjugate RkR
∗
k > 0 is a positive definite matrix is fulfilled for all 1≤ k≤ K [19].

Hence, d(f(l+2), f(l+1))≤ d(f(l+1), f(l)), and the error ‖e‖ becomes smaller. Different convergence properties

can be observed by variations of the ART algorithm, e.g., relaxation (additive ART) may improve the

total count of iterative steps [15].





2.2

Prevailing photoacoustic image formation

It is possible to think of photoacoustic tomography as a modified computerized tomography modality that

is based on acoustic wave propagation instead of electromagnetic radiation. Such a wave is produced via

the photoacoustic effect within small specimens by pulsed laser light, e.g., a neodymium-doped yttrium

aluminum garnet (Nd:YAG) pulse at ∼ 5 ns time-width. Photoacoustic applications with a Nd:YAG

laser permit the variation of the frequency bandwidth from 1 to ∼ 50 MHz. The laser is typically placed

in front of a water basin containing the immersed object of interest, as illustrated in Figure 2.2.1. As in

common tomographic systems, the specimen is mounted on a turnable support frame.

Fig. 2.2.1: Schematic illustration of a typical photoacoustic imaging setup with its basic components.
The subject under study is a zebra fish which is commonly used because of its relative transparency and
because of its large usage as an animal model in biology research.

Photoacoustically visible are the sensor itself, specific fluorescence molecules [21], and other light

absorbing and sound emitting probes; biological light absorbing objects include, to a large extend, soft,

thin or homogeneous tissues. These objects respond to the laser pulses with almost planar ultrasound

waves. Their wavelengths response range from 0.03 mm to 1.5 mm with a temporal length of ∼ 200 ns.

The acoustic signals are captured by specific sensors, positioned on the perimeter of the sample and also

immersed in water. The magnitude of the photoacoustic signals mostly depends on the following three

factors: the composition and thickness of the probe as well as the bandwidth admittance of the sensors.

Larger admittance implies higher image quality; however, also more sensitivity to environmental noise.
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2.2.1 From acoustic signals to approximated projection data

No matter what tomographic image reconstruction technique, all require the acquisition of quasi ideal

projection data of the specimen. In photoacoustic sensing, the captured signals are oscillating acoustic

measurements, with positive and negative phases, as illustrated in Figure 2.2.2, that cannot be interpreted

as line-integrals (or curve-integrals) over the object. We demonstrated in [22] that signal analysis is

essential for further investigations. A processing strategy can be applied to convert the photoacoustic

response into a purely positive and normalized function, that, in turn, may be considered as projection

data. The decision of what strategy is best suited for photoacoustic signals and tomographic purposes is

still an open problem. Authors in [23] pointed out the convenience of the absolute Abel transformation

A of the pressure signal pk, defined as follows with the new discretization variable i ∈ {1, ..., I}, I ∈ N

(A pk(t))(i) =
∫ i

0

|pk(t)|√
i− t

dt ≈ gk(i), (2.2.1)

over the use of the envelope function (a smooth curve outlining the extremes), the mean effective pressure

(low-pass filtering) and rectifications (converting alternating to positive signals as is common practice

in electrical science). However, this observation requires further study in order to obtain stable rou-

tine conditions. All mentioned signal processing methodologies are conventional for the treatment of

data from any other waveform sources. How these affect unidimensional photoacoustic measurements

pk is illustrated in Figures 2.2.2-4. For further image reconstruction purposes we decide to approx-

imate projection data by the results of Algorithm 2.2.1 below. This computational method has as

input the photoacoustic signals S (a K × I data matrix, where Sk,· is the k-th row of S) registered

by an oscilloscope over the given discrete interval time = {start, ...,end} in Q (outside this interval

pk(t) = 0,∀k ∈ {1, ...,K},∀t ∈ {start, ...,end}). The projection data is approximated in line 7 of the pseu-

docode by the Abel transformed signal as given in equation (2.2.1). The output represents the projection

approximation G (a K× I data matrix) in every k direction. The procedure normalize represents the

standard min-max normalization, i.e., the amplitude is scaled with the maximum intensity value equal

to one and the minimum intensity value equal to minus one. The detrend procedure removes the mean

value or linear trend from the photoacoustic scan. This is done by computing the least-squares fit of a

straight line to the data and subtracting the resulting function from the data.
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Algorithm 2.2.1: Photoacoustic signal preprocessing (S, time)

1 main

2 for k ← 1 to K

3 s ← Sk,·

4 d ← normalize(s)

5 p ← detrend(d)

6 for i ← time(start) to time(end)

7 p′(i) ← ∑
i
t=0

|p(t)|√
i−t

8 g ← p′ * p′

9 Gk,· ← g

10 output G

2.2.2 Acquisition geometries

The aim of the photoacoustic imaging technique is to reconstruct the initial pressure distribution map

given projection information of the object. In this work we obtain projection data by one of the afore-

mentioned strategies, but we still need to figure out the acquisition geometry of information integration.

The shape of sensors determines how the approximate information integration takes place. When pro-

jections are obtained by integration over (flat) hyperplanes (like the large planar sensors sketched as

an oblong detector element in Figure 2.2.5a) the inverse problem gets solved by inverting the classical

Radon transform of the measured data gk as stated in Section 2.1. In fact, a similar approach has been

successfully used by the authors of [23] who use a cylindrical detector. In the case of an approximate

point sensor, as indicated by a circular detector element in Figure 2.2.5b, the reconstruction of the initial

pressure distribution map requires the integration over spheres. For this geometry, the forward projection

is modeled using the inversion of the spherical Radon transform reported in [18].

For the sake of illustrating reconstruction qualities and for further comparisons with a realistic case

study, we mimic in Figure 2.2.6a the two-dimensional schematic light absorption map of an axial cross-

section of the zebra-fish obtained in [23] by analog geometrical objects and simulate the plane wave

transport within this phantom; the assigned values from [0,1]∩Q+ are chosen to illustrate, by gray

scales, different absorption coefficients. Dark gray values (0.5,1] specify regions of high electromagnetic
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Fig. 2.2.2: Photoacoustic signal processing to obtain an approximation of projection data gk. Left: A
photoacoustic measurement of a real zebra-fish (raw data). Right: Absolute Abel transformed data.

Fig. 2.2.3: Photoacoustic signal processing of the measurement of Figure 2.2.2 using the envelope function
env(pk) = |pk − ı̂H (pk)| (left) and the mean effective pressure over an ε-neighborhood (right) as an
approximation of projection data gk.

Fig. 2.2.4: Photoacoustic signal processing of the measurement of Figure 2.2.2 using full rectification
gk ≈ |pk| (left) and half rectification gk ≈ pk if pk > 0, else 0 (right).
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(a) Large planar sensor (b) Point-like sensor

Fig. 2.2.5: Common integrating geometries in photoacoustic imaging using a fish as a specimen. We show
(a) a large planar sensor with a red oblong detector element, and (b) a point-like sensor with a circular
detector element (illustrated as a red point).

energy absorption, e.g., the pelvic fins, and light gray values [0,0.5] refer to poor absorption, e.g. in water.

The absorption map approximates the initial sound pressure distribution according to the photoacoustic

effect (see Section 1.1). We calculate a total of 180 projections, represented in the sinogram in Figure

2.2.6b, each with 400 parallel line integrals, equally distributed over the half-circle, e.g., using the Radon

transform of the phantom.

In this case, we try to reconstruct the phantom from the set of projections calculated by the computer

simulation. Transforming the sinogram with the inverse Radon operator yields an approximation of one of

its cross-sections. This algorithm is also known as Delay-and-Sum (alternative reconstruction approaches

have been discussed in Section 2.1). The result by backprojecting the data is displayed in Figure 2.2.7a.

By the signal analysis of biomedical photoacoustic measurements in time and frequency domains [48]

we understood that the sensed data contain an error that may be approximated by using an additive

Gaussian white noise. In our laboratory we have tested different piezoelectric sensors and measured their

ambient noise in water with a signal-to-noise ratio (SNR) of 14 dB, a mean of µ = 0.1 and a standard

deviation of ρ = 0.004. These numerical observations are very similar to what Mandelis et al. published

for time and frequency domains [48]. The reconstruction with this noise is shown in Figure 2.2.7b.
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(a) Zebra-fish phantom (b) Sinogram

Fig. 2.2.6: (a) A phantom digitalized by 400 × 400 pixels illustrating the musculoskeletal and digestive
atlas of an axial cross-section of a zebra-fish; dark gray levels represent regions of high electromagnetic
energy absorption. (b) Sinogram obtained from the phantom for 180 noise-free projections with 400 line
integrals and an angular displacement of 1 degree.

(a) Noise-free backprojection (b) Noisy backprojection

Fig. 2.2.7: (a) Reconstruction of the phantom given noise-free projections. (b) Backprojection of data
with a SNR of 14 dB.
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To test our methodology on real photoacoustic data, a group of physicists from the Karl-Franzens

Universität in Graz, Austria measured a cross-section of a zebra-fish with 400 photoacoustic scans with

an cylindrical detector (i.e. a parallel integrating geometry), every 0.9◦ over 360◦, and kindly provided

them to us. To obtain the reconstructed cross-section of the zebra-fish [23] we followed the procedure

described earlier: The pressure quantification is absolute Abel transformed to obtain the sinogram in

Figure 2.2.8a; by backprojecting this photoacoustic projection approximation we reconstruct the zebra-

fish cross-section in Figure 2.2.8b.

(a) Sinogram (b) Backprojection

Fig. 2.2.8: (a) Sinogram of photoacoustic measurements absolute Abel transformed. (b) Backprojection
of the zebra-fish cross-section





Chapter 3

Inverse problems in heterogeneous media

This chapter pays close attention to inverse problems in heterogeneous media. We provide

a series of four transport models for the broader domain of waveform tomography, which

comprises photoacoustic imaging. These models offer a way for analysing the nature of sig-

nal perturbations. Since the considerations involving heterogeneous media do not represent a

(linear) projection scheme, alternative solution strategies to the photoacoustic inverse prob-

lem are indispensable. We present three numerical approximations that lead to an intrinsic

representation of photoacoustic line integrals. In the final section we outline the specimen

manufacturing process that allows us to control experimental model conditions.





3.1

Transport models for waveform tomography

A challenging issue in photoacoustic imaging is to take into account the presence of acoustically het-

erogeneous media because such characteristic is present in many biomedical applications. In particular,

much attention is paid on reducing image artifacts in a reconstructed image resulting when imaging a

thick tissue representing acoustically heterogeneous and perturbing media. Much of the research about

this topic in recent years has focused on minimizing either blurring or defects related to reflections and

scattering of acoustic waves; all these imaging defects are non-linear in nature. Efforts range from exper-

imental procedures [3, 25, 26] to computational algorithms on error minimization, in particular, when

the plane wave transport is used as a first approximation [4, 27, 28]. Most algorithmic contributions are

focused on eliminating attenuation at the very beginning of the computational process, before managing

the image formation [29, 30].

Among all current works, one thing remains clear: the photoacoustic transport model still fails to

account satisfactorily for recorded artifacts caused by heterogeneous media when working with tissues

at considerable depth [26, 30]. Like in most imaging systems, even with contrast agents [31], attenuation

considerations or sophisticated reconstruction algorithms, it is still impossible to completely eliminate

artifacts and noise. It is worth noticing that sound dispersion is a factor which is generally neglected.

This is what led us to review waveform tomography concepts in search for adequate model extensions

that could explain the non-linear signal deviation, e.g., shifts and compressions in the frequency domain.

For the purpose of tomographic image reconstruction from physically-obtained measurements, we restrict

our work to signal-processing, linear transport approximations and model projections.

As mentioned in Section 1.1, the linear photoacoustic transport is well described by L p(x, t) = 0 in

(1.1.5), together with the Cauchy conditions p(x,0) = f (x) and ∂t p(x,0) = 0. This system of equations

represents a general model which is valid and defined for the broader domain of simple waveform transport

comprising acoustic, optical, and electromagnetic modalities. In what follows we provide a summary of

distinct waveform transport analyses for the specific linear operator L : Ω× [t1, t2]→R+ for non-negative

real-values t1, t2 that describes a linear differential equation of second order in the presence, or absence,

of minor derivatives.



30 3.1 Transport models for waveform tomography

Photoacoustic imaging of homogeneous and non-attenuating media, such as that of small animals or

breast tissue, is commonly based on a plane wave transport [3] and modeled by the linear d’Alembert

operator 2, a generalization of the Laplace operator ∇2, that includes the constant wave speed c,

L0 p0 := 2p0 = (∂
2
t − c2

∇
2)p0. (3.1.1)

From now on, we denote the linear operator L , the pressure distribution function p, the image data f

and the registered projection data g with an index in order to distinguish each model from the others.

The transport of ultrasound is closely related to the above model, generally described in terms of the

Helmholtz operator as in [32],

La pa := 2pa + a∗ pa, (3.1.2)

where ∗ denotes the convolution between two functions. Equation (3.1.2) expresses an augmented wave

by means of a weight function a(t) acting on the transport; for experimental applications, this weight

function can be estimated by optimizing the set

{a : [t1, t2]→ C | min
t
‖a(t)∗g(t)+ ∂

2
t g(t)‖}. (3.1.3)

The set in (3.1.3) is chosen to fulfill the system requirements and contains implicit information about

the presence of acoustic heterogeneities. The model (3.1.2) has served to include an acoustic attenua-

tion approximation into the photoacoustic transport [29] following the recognized need of incorporating

inhomogeneities into the model for various biomedical applications of photoacoustic tomography [33].

Optical tomography describes the radiation inside a body using the Boltzmann transport equation

[34, 35]. Under this model, the pressure distribution is a solution to the following wave equation

Ld pd := 2pd + d ∗∂t pd , (3.1.4)

where d is a weight function for the gradient transport. The importance of this dispersion approximation

becomes more evident when there are heterogeneities having considerable impact on the optical radiation

effects. Appropriate weights can be estimated by optimizing the set

{d : [t1, t2]→ C | min
t∈[0,T ]

‖d(t)∗∂tg(t)+ ∂
2
t g(t)‖}. (3.1.5)
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Because we are interested in photoacoustic tomography from heterogeneous media, we would like to

extend the diffusive wave equation of (3.1.4) by incorporating the attenuation approach of (3.1.2), as

described by the Heaviside telegraph equation [36], as follows

La,d pa,d := 2pa,d + d ∗∂t pa,d + a∗ pa,d . (3.1.6)

This operator combines wave enhancement with diffusive attenuation and we believe that it represents a

more realistic and universal transport description than the photoacoustic model of (3.1.1). Although it is

possible to choose the perturbation functions a and d from the finite sets (3.1.3) and (3.1.5), respectively,

so they meet some a priori criteria, e.g., constant perturbation, a more realistic alternative is to select

these functions by applying empirical methods; in Section 3.3 we give some examples.





3.2

Solution strategies in the presence of acoustic heterogeneities

In the presence of acoustic heterogeneities, the inversion of the photoacoustic perturbations within the

object of interest represents the main difficulty in the task of tomographic image reconstruction. Ammari

presented in [29] a practical strategy to numerically solve the photoacoustic inverse problem with an

attenuation approximation, in a similar way to the operator La of (3.1.2). His method describes a signal

preprocessing of the boundary measurements such that the impact of attenuation within the media tends

to disappear. In this way, the conventional image reconstruction algorithms, such as backprojection,

remain applicable for processed projection information.

We follow an analog approach to [29] by modeling the photoacoustic transport with a sound dispersion

approximation with the operators Ld of (3.1.4) and La,d of (3.1.6). Our reference is the wave equation of

(1.1.5) under the consideration of the initial conditions presented in (1.1.6) and (1.1.7) as well as under

the Duhamel’s principle. We proceed by taking its Fourier transform (symbolized by �̂ and defined as on

page XVI) in terms of the frequency-dependent pressure and consider the following four cases:

1. Plane wave transport (L = L0) in accordance to the model of (3.1.1),

(c2
∇

2 + ω
2)p̂0(x,ω)

L =L0=
ı̂ω√
2π

f (x). (3.2.1)

2. Plane wave transport with the presence of acoustic attenuation (L = La) in accordance to the model

of (3.1.2),

(c2
∇

2 + ω
2− â(ω))p̂a(x,ω)

L =La=
ı̂ω√
2π

f (x). (3.2.2)

3. Plane wave transport with the presence of acoustic dispersion (L = Ld) in accordance to model of

(3.1.4),

(c2
∇

2 + ω
2− ı̂ω d̂(ω))p̂d(x,ω)

L =Ld=
ı̂ω√
2π

f (x). (3.2.3)

4. Plane wave transport with the presence of attenuation and dispersion (L = La,d) in accordance to

the model of (3.1.6),
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(c2
∇

2 + ω
2− ı̂ω d̂(ω)− â(ω))p̂a,d(x,ω)

L =La,d
=

ı̂ω√
2π

f (x). (3.2.4)

In conformity with the previous equations, we derive the measurements at the boundary for y ∈ δΩ

in the Fourier space and consider the following system of equations comparing the homogeneous with

the heterogeneous case

ĝ0(ka(ω)) =
ka(ω)

ω
ĝa(ω), (3.2.5)

ĝ0(kd(ω)) =
kd(ω)

ω
ĝd(ω), (3.2.6)

ĝ0(ka,d(ω)) =
ka,d(ω)

ω
ĝa,d(ω), (3.2.7)

where g0(t) = p0(y, t), ga(t) = pa(y, t), gd(t) = pd(y, t), and ga,d(t) = pa,d(y, t) are valid in Rn and

ka(ω) :=
√

ω2− â(ω), (3.2.8)

kd(ω) :=
√

ω2− ı̂ω d̂(ω), (3.2.9)

ka,d(ω) :=
√

ω2− ı̂ω d̂(ω)− â(ω). (3.2.10)

A better projection approximation in the case of the presence of acoustic heterogeneities can be achieved

via one of the following estimations, depending on the physical considerations:

A1. In the presence of acoustic attenuation, we estimate g0 from ga using the relationship ga = Tag0,

where Ta is defined by

Tag0(t) =
1

2π

∫
R

ω

ka(ω)
eı̂ωt

∫ t2

t1
g0(t ′)e−ı̂ka(ω)t ′dt ′dω.

A2. In the presence of sound dispersion, we estimate g0 from gd using the relationship gd = Tdg0, where

Td is defined by

Tdg0(t) =
1

2π

∫
R

ω

kd(ω)
eı̂ωt

∫ t2

t1
g0(t ′)e−ı̂kd(ω)t ′dt ′dω.

A3. In the presence of both attenuation and dispersion, we estimate g0 from ga,d using the relationship

ga,d = Ta,dg0, where Ta,d is defined by

Ta,dg0(t) =
1

2π

∫
R

ω

ka,d(ω)
eı̂ωt

∫ t2

t1
g0(t ′)e−ı̂ka,d(ω)t ′dt ′dω.



3.3

Specimen manufacture and experimental model conditions

Our main objective is to use photoacoustic imaging on biomedical tissues which are complex systems.

It is well-known that test models (phantoms), either physical or virtual, are indispensable for the anal-

ysis of physical principles, the development of imaging tomographic technologies and image processing

techniques. Unfortunately, the topic of manufacturing realistic specimens for photoacoustic purposes

has been barely investigated [37]. Colleagues at the UNAM are involved in the investigation of how to

manufacture good physical phantoms and we rely on them to obtain models for our experiments. The

feasibility of developing reliable models depends on the availability of materials that simulate optical,

electrical, mechanical, and thermal properties, in particular, energy absorption and emission, of real bi-

ological systems. However, including all important characteristics in a physical phantom simultaneously

is difficult, that is why we limit the task to few specific physical properties associated with a particular

problem in mind: We focus our attention on early breast cancer detection, considering the world-wide

mortality rate by this disease; in 2001 it represented the second most common type of cancer in Mexico

[38]. It is worth while noticing that although the scope of our problem is very specific there are still

many unsolved questions.

Current breast cancer phantoms produced at the CCADET-UNAM are able to mimic optical (scat-

tering), acoustical (sound dispersion), and mechanical (attenuation due to varying viscosity) properties

of a mammary gland. The testing phantoms, like the one shown in Figure 3.3.1, are made of polyvinyl

alcohol (PVA) and optional nanoparticles or other electromagnetic energy-absorbing obstacles imitating

hemoglobin containing structures [37]. This material composition behaves similar to human breast tis-

sues when photoacoustically analyzing the phantom; due to the absorption of electromagnetic radiation,

acoustical disturbances are generated and propagated at sound speed. Therefore, these heterogeneous

phantoms are likely to provoke attenuation and sound dispersion to be considered within the sound

transport. A mathematical model that captures these perturbations is given in equation (3.1.6). Unfor-

tunately, the PVA breast phantom described above is not appropriate for investigating the hypothesis

that the sound transport approximated by plane waves suffers acoustic attenuation and dispersion since

our home-made detector performance has not been validated yet.
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Fig. 3.3.1: Left: The polyvinyl alcohol (PVA) phantom taken from [37] with a lesion made with silicon
dioxide (SiO2) nanoparticles. Right: The photoacoustic signals at three different locations of the phantom:
the top and bottom response represent lesion free tissue, the middle represents the photoacoustic signal
when the dummy lesion is targeted.

To overcome this situation, we inspected two PVA rectangular 3D samples, see the scheme of the

cubic samples in Figure 3.3.2, measuring 3.9 cm long (L), 4.5 cm wide, and 1.0 cm tall, and containing

a 1.5 mm thick slice of neoprene (labeled N), occupying almost the complete phantom cross-section. On

the phantoms’ opposite side, at a distance of 2.0 cm (D), we set the photoacoustic detector (S). The

detector used for our experiments of transport model validation and photoacoustic analysis is a low-noise

capacitive transducer of Polyvinylidene Fluoride (PVDF) in piezoelectric mode [39]. The laser source is

a pulsed Nd:YAG laser emitting pulses of ∼ 7 ns time-width at 1064 nm wavelength and repetition rate

of 10 Hz. At the initial experimental stage, the target N is set on the surface of the phantom in such a

way that the laser pulses impinge directly on it. Thus, the triggered photoacoustic signal travels ∼ 3.9

cm across the phantom length, plus 2.0 cm in water, before being read out by the detector S. The signal

output produced by this setup is presented as a solid line in Figure 3.3.3.

Fig. 3.3.2: Schematic drawings of the two PVA-phantoms with a 1.5 mm thick slice of neoprene (N)
inside. Left: N is positioned at the very extreme of the probe to gain superficial photoacoustic response.
Right: N is shifted 1 cm (P) inside.
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For a second experiment we place the phantom with N set at a distance (P) equal to 1.0 cm within

the PVA. Thus the photoacoustic signal travels ∼ 2.9 cm across the PVA and 2.0 cm in water before

reaching S. This signal output is presented as a dashed line in Figure 3.3.3. For all the experiments

the sensor and phantoms are kept immersed in water; see [39] and [40] for further experimental details.

On the left hand side of the figure we display the photoacoustic response in the time domain while on

the right hand side we display it in the frequency domain. Signal differences are apparent (for purposes

of visual comparison we normalized the response amplitude): We can appreciate the time shift due to

acoustic impedance and the difference in the photoacoustic signal path length. When analyzed in the

frequency domain, a distribution shift and a simultaneous bandwidth (∆ν) scaling are present. From the

frequency maxima νmax we estimate that the shift measures ∼ 3.4 MHz, and from the estimate of ∆ν1 ∼

18 MHz and ∆ν2 ∼ 9 MHz, we estimate that there is a factor of 2 between the frequency bandwidths.

Notice that all distances related to the incidence point and the sensor position (D+L) are kept constant

during the experiments. We made sure that the neoprene’s interaction area and the transducer’s sensing

area were parallel, while the laser excitation and, thus, the photoacoustic signal propagation were set to

be perpendicular to these areas.

Fig. 3.3.3: Experimental photoacoustic signals in the semilogarithmic time domain (left) and frequency
domain (right). We display the direct response when laser pulses impinge on a 1.5 mm thick slice of
neoprene within a PVA phantom; the continuous curve results from superficial neoprene sample and the
dashed curve from a 1 cm deep insertion. The bandwidth difference between both photoacoustic signals
is noticeable.
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Fig. 3.3.4: Model prediction for the absence and presence of attenuation and sound dispersion. The con-
sidered cases are: the continues curve ĝ0 expressing N on the phantom surface and the dashed curve ĝa,d
approximating N hidden within the phantom. The theoretical outcome for the photoacoustic frequency
response is phenomenologically in near correspondence with the experimental observations.

Evidently, the description of the heterogeneous transport requires the knowledge of the function

ka,d(ω). To define this function we made the following assumptions on the acoustic propagation. For

sound absorption in a homogeneous thermo-viscous medium, the wave number and frequency are related

by the following equation k(ω) = ω/
√

1− iαω, where α is the attenuation coefficient [42, 43]. Thus, to

be consistent with (3.2.10), we introduce a change of variables and define α = ā + iω d̄ with appropriate

weighting factors ā, d̄ ∈ R mimicking the occurring perturbations. Then, by approximating with a series

expansion of first order, we express (3.2.10) as

k(ω) = ω +
1
2
[
ı̂āω

2− d̄ω
3] . (3.3.1)

For our analysis, we assume that the superficial neoprene response approximates projection data of a

rectangular function, which should result in ĝ0 being an absolute sinc-function. Then, we discretize the

transport Ta,d of (3.2) and deduce with a line search algorithm the value of -0.01 for both parameters a

and b; these values best approximate the experimental photoacoustic signals. In Figure 3.3.4 we display

the corresponding perturbed model response ĝa,d which exhibits the close match between our model

prediction and the physically obtained photoacoustic data in Figure 3.3.3.
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This frequency analysis emphasizes the significance of attenuation and sound dispersion over the

transport of a photoacoustic signal before its detection and gives support to the mathematical model

extension of Section 3.1. By numerical approximations we establish a phenomenological interpretation

of the experimental phenomenon and analyze sound perturbations within the detector measurements.

We further develop the experimental model evaluation in the publication [44]; a copy of the article is

provided in the Appendix 5.2.





Chapter 4

Enhanced photoacoustic image reconstruction

In this chapter we present photoacoustic simulations for heterogeneous media producing

sound perturbations. The objective of these experimental simulations is to facilitate the eval-

uation of image reconstruction results. For our experiments we use a two-dimensional image

of a phantom resembling the absorption map in a cross section of a human breast. With our

description of the forward problem we calculate the phantom’s projections by line integrals

and produce acoustic perturbations, such as transport attenuation and dispersion. Then, we

approximately solve the inverse problem by applying the classical backprojection approach to

the simulated data. With our system of image formation we replicate common image artifacts

in the reconstruction, such as blurring and internal reflections. Importantly, when inverting

the acoustic perturbations we manage to minimize these artifacts. Finally, we also propose

an alternative reconstruction strategy that improves the reconstruction results by taking into

account non-linear transport considerations such as detector sensibility. The advantages of

the proposed algorithm are demonstrated by using realistic data of a zebra-fish provided by

the Karl-Franz UniversitÃ¤t in Graz, Austria.





4.1

Photoacoustic simulations

4.1.1 The forward problem

In order to demonstrate how the modeled sound perturbations affect the photoacoustic transport results,

we carried out a simulation of the two-dimensional propagation through the phantom in Figure 4.1.1. This

phantom resembles the anthropomorphic features of a cross section of a female human breast according

to [45]. It is discretized to offer a simple visualization of different constant geometries (i.a, indicated by

manual annotations of medical experts) and is here described as a collection of several overlapped circles

and one star displayed by gray scales at distinct values from [0,1]∩Q+. The data set was generated

with the open source vector graphics editor Inkscape in such a way that it captures the geometrical

properties of the characteristic biological breast components. Based on [45], we assign normalized optical

absorption coefficients to the different regions in this human tissue and use values in the range (0.5,1]

to specify sections of major absorption (dark gray picture elements), as it is the case of cancerous and

glandular tissue. On the other hand, values in the range [0,0.5] specify sections of lesser absorption

(brighter picture elements), such as fat and fibroadenoma. According to the photoacoustic effect, the

light absorption map resembles the initial pressure distribution (see Section 1.1). The soft tissues that

we include in the phantom appear typically in a common mammograph and similar values are expected

for photoacoustic tomography due to familiar energy absorption characteristics; as an example, see the

results shown in Figure 1.2.3. For testing our algorithms we used a digitized version of the phantom

using a 400×400 image, which allows enough resolution for the details of the specimen.

The three variants of our heterogeneous transport model of Section 3.2, equations (3.2.5)-(3.2.7),

require some knowledge of the function k(ω) (this is also identified as the complex wave-number). To

define this function, we made the following assumptions on the acoustic propagation in accordance to

both the thermo-viscous model of Nachman et al. [42] (by expanding Maclaurin series) and the mentioned

differences in equations (3.2.8)-(3.2.10):
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Fig. 4.1.1: A 400×400 digitization of a phantom representing structures in the coronal view of a breast
by geometrical shapes. The light gray circles (a),(b), and (c) represent bounded and unbounded fibroade-
nomas and the dark circles (d) and (e) represent small cancerous tumors; a larger tumor is here depicted
by a star (f). The expected absorption coefficients in the antropomorphic features are quantified with a
value arbitrarily assigned from the interval [0,1]∩Q+, while the expected absorption coefficients in the
breast glandular tissue (g) are assigned to a value equal to 0.8 and in fat (h) to 0.2 (in arbitrary units).

k(ω)←


ka(ω) = ω + 1

2 ı̂ācω2,

kd(ω) = ω− 1
2 d̄cω3,

ka,d(ω) = ω + 1
2 c(ı̂āω2− d̄ω3),

(4.1.1)

with appropriate weighting factors ā and d̄ mimicking perturbations in the probed soft tissues. The

experimental model conditions derived in Section 3.3 suggest that the values of ā and d̄ should be equal

to -0.01. Here, we simulate a photoacoustic scenario which is much larger (the diameter of the average

female human breast measures 25 cm), thus, probably is characterized by greater acoustic density than

the 5 cm long PVA-neoprene phantom. Accordingly, we set both perturbation weights on ā and d̄ to

-0.1. Moreover, these parameters are close to the model settings of [29] and keep all calculations stable.

The propagation velocity c is normalized and set to 1.

Once we decided on the corresponding attenuation and acoustic dispersion weights ā and d̄ for a

specific application, and on the complex wave number k(ω) of (4.1.1), the heterogeneous forward solutions

ga,gd , and ga,d can be easily derived by the homogeneous solution g0 according to the mathematical

expressions in A1-A3 of Section 3.2. For our experiments we use 180 parallel projections acquired every

degree with 400 lines each. The resulting projection integrations are approximated by g0 ≈ R f . The
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heterogeneous projection data is derived by the transformation T g0 as outlined in the strategies A1-A3,

respectively; in other words, in the case of acoustic attenuation ga ≈Tag0, in the case of sound dispersion

gd ≈Tdg0, and ga,d ≈Ta,dg0 in the case of both perturbation factors.

4.1.2 The classical backprojection results

The results produced by the classical backprojection algorithm are obtained by applying the inverse

Radon transform to the calculated projections g0,ga,gd and ga,d . After backprojecting every set of the

differently perturbed data, we managed to simulate familiar artifacts, such as internal reflections [4] and

image blurring [27, 28], as described in recent publications in the field, see Figure 4.1.2.

On first visual inspection, we can give the following observations: While the result in Figure 4.1.2a

is an almost error-free image of the original pressure distribution map f , it poorly represents a realistic

reconstruction of a breast by photoacoustic imaging in comparison to Figure 1.2.4. Backprojection of

La measurements in Figure 4.1.2b brings out a blurring effect increasing towards the upper half of the

image, generated in accordance to our attenuation approximation. On the other hand, backprojection of

Ld measurements in Figure 4.1.2c produces internal reflections, directed towards one side, as determined

by the transport propagation direction. As expected from the telegraph equation, Figure 4.1.2d describes

a reconstruction with both phenomena, blurring and less visible reflections; hence it represents a more

realistic photoacoustic transport. Besides, this last image shows that the induced blurring is dominant

over the reflections.

A task oriented figure-of-merit (FOM) is suitable for a qualitative evaluation of algorithm perfor-

mance. FOMs provide different measures of picture distances between a reconstruction and a phantom.

Below we list two standard measures in the reconstruction literature that we use in our qualitative eval-

uation [15, 46]. Many other FOMs, such as the pixel density comparision, the normalized mean absolute

distance, or the pointwise accuracy, are implemented and give in similar results. Again, for this com-

parison we define f to be the digitized phantom and f′ to be the backprojected data of R f ; f denotes

the average density of f. Without physical evidence, this observation seems to be consistent with the

real phenomenon of photoacoustic image artifacts, since blurring is significantly more mentioned in the

literature.
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(a) Backprojection f0 ≈R−1g0 (b) Backprojection fa ≈R−1ga

(c) Backprojection fd ≈R−1gd (d) Backprojection fa,d ≈R−1ga,d

Fig. 4.1.2: Reconstructions from the projection data g0,ga,gd and ga,d . In the absence of acoustic hetero-
geneities, no transport dependent artifacts are visible in (a); (b) shows image blurring, (c) shows internal
reflections, and (d) shows the combination of reflections and blurring in the same reconstructed image.

1. Normalized root mean squared distance measure (RMS):

This measure emphasizes the importance of large errors throughout every of the J pixels of the

discretized images,

dRMS(f, f′) :=

√√√√∑
J
j=1(f j− f′j)

2

∑
J
j=1(f j− f )2

. (4.1.2)



4.1.2 The classical backprojection results 47

A small value of dRMS(f, f′) indicates a small reconstruction error.

2. Structural accuracy (STR):

Let f̄ (m), f̄ ′(m)
be the average pixel value of f, respectively f′, of those pixels whose centers are within

structure m from the total of M structures. Then we define the structural accuracy as

dST R(f, f′) :=− 1
M

M

∑
m=1
| f̄ ′(m)− f̄ (m)|. (4.1.3)

In this study we compare a total number of six structures (M = 6) as can be distinguished in Figure

4.1.3.

Fig. 4.1.3: Six objects of the phantom of Figure 4.1.1 for a structural accuracy evaluation.

In Table 4.1.1 we show the numerical comparison of the heterogeneous backprojection results in Figure

4.1.2 using the above mentioned FOMs. We notice that dispersion deteriorates mainly the structural

accuracy and that acoustic dispersion increases the normalized root mean squared distance between

the digitized phantom and its reconstruction. Interestingly, in this specific reconstruction example, the

modeled acoustic perturbations are not linearly dependent. We consider that this case represents a

realistic situation because attenuation and dispersion have physically distinct origins and implications.
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Table 4.1.1: Mean distance and structural performance of heterogeneous noise-free backprojection.

Transport dRMS(f, f′) dST R(f, f′)

L0 0.1770 -0.0160
La 0.2990 -0.0623
Ld 0.4153 -0.0546
La,d 0.2944 -0.0588

We decided not to use a filtered version of the reconstruction algorithm (e.g., filtered backprojection,

FBP) for reasons of uncertainty what filter is suited for photoacoustic applications. Besides, we have no

guarantee that some filter procedure will not delete significant information. We rely on the fact, that

pure backprojection mathematically guarantees an approximate reconstruction, but actually does not

produce good images [15]. The backprojection method is studied, because it indicates the nature of the

more sophisticated reconstruction procedures. Of cause, in that manner blurriness is potentially more

present in the reconstruction, but actually this artifact can be treated by the proposed signal processing

strategy (pre-filtering).



4.2

Corrected photoacoustic projection data

The solution strategies elaborated in Section 3.2 give a hint about how to obtain an estimation of

the transport inversion. For further simulations in a computer we need to discretize the transport T

in propositions A1-A3 of Section 3.2 with the complex wave-number description in (4.1.1). However,

its analytical inversion cannot be guaranteed since the linear system is ill-conditioned because of the

heterogeneous description. An acceptable discretization T for the three propositions of A1-A3 can be

derived by numerical analysis. One such discretization is the singular value decomposition (SVD) which

approximates T by the matrix product UWVt where U and V are real or complex unitary matrices

(whose transpose is represented by Vt), and W is a rectangular diagonal matrix. For a positive real

number ε > 0 we can obtain an approximation of the inverse of T according to

T−1
1,εg =

J

∑
j=1

w j

w2
j + ε2 〈g,V

t
j〉U j, (4.2.1)

with U j,V
t
j representing the j-th row of matrices U,Vt , respectively, and all w j, for all pixel indices

1≤ j≤ J, are nonnegative real singular values (i.e., the square roots of the J eigenvalues). As a follow-up

study of the simulations in Section 4.1 we applied the inversion of the discretized transport description of

propositions A1-A3 to better approximate projection data; this strategy has also been used by [29]. The

SVD algorithm used for this purpose is known to become unstable when ε tends to zero. Hence, in order

to derive a local optimum for the inversion, we applied a simple line search strategy which converged at

ε = 20.

The inversion of the acoustic perturbations is realized by our procedure PAIP (the acronym for

photoacoustic inverse problem) in Algorithm 4.2.1. The PAIP input matrix G is the result of the

photoacoustic signal processing described by Algorithm 2.2.1. Besides, an acceptable discretization T

with respective to one of the transport propositions A1-A3 of Section 3.2 and the precision value ε > 0

are given. The SVD algorithm, according to equation (4.2.1), is calculated within the procedure svd in

line 2 of Algorithm 4.2.2. The output matrix G′ represents corrected photoacoustic projection data.
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Algorithm 4.2.1: Photoacoustic inverse problem

1 procedure PAIP (G ,T)

2 (U,W,V) ← svd(T)

3 for k ← 1 to K

4 g ← Gk,·

5 g ← ∑
J
j=1

w j

w2
j +ε2 〈g,Vt

j〉U j

6 G′k,· ← g

7 return G′

Algorithm 4.2.2: Photoacoustic computerized tomography (Φ , G, T, REC, PSF)

1 main

2 F ← zeros(
√

J,
√

J)

3 G′ ← PAIP(G,T)

4 (K, I) ← get limits(G′)

5 break ← condition(strategy)

6 while break

7 for k ← 1 to K

8 g ← G′k,·

9 i f REC == BP

10 F′ ← Bell-BP(g,Φ(k),F)

11 else i f REC == BP

12 for i ← 1 to I

13 F′ ← Bell-ART(g(i),Φ(k),F,PSF)

14 else

15 return input error

16 break ← update(REC)

17 output F′
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PAIP forms part of the computer program of two-dimensional photoacustic computerized tomogra-

phy (PACT), an implementation of Algorithm 4.2.2. As it can be seen in the main body of PACT, the

correction of the photoacoustic projection data occurs prior to any reconstruction strategy, either mode

BP (our implemented transform method in Section 4.3) or mode ART (our series expansion method

in Section 4.4). The resolution
√

J ∈ N of the reconstructed image in one dimension (i.e., the image is

discretized in a total of J pixels) is a global input variable of the program, i.e.,
√

J is also known in the

subroutines Bell-BP and Bell-ART. The K× I data matrix G holds the photoacoustic scans of the

oscilloscope and further G′ the projection approximations. The direction vector Φ holds all the K acqui-

sition angles. Predefined is the reconstruction condition (strategy), the point-spread function PSF (in the

case of mode ART ), and the transport proposition T. The procedure zeros(a,b) creates an a×b matrix

of zeros. The procedure get limits evaluates the support of the photoacoustic transport and returns the

number of the total integration directions K such as the number of projections I for each direction. The

procedure condition determines whether the stop-criterion of the computer program is fulfilled; this

criterion is modeled in consideration of a maximal iteration number and the desired image resolution,

but is also influenced by procedure update, that adjusts the stop-criterion after each iteration adapting

the reconstruction convergence conditioned by the choice of reconstruction algorithm. An error message

will be returned by the procedure input error, if the input data is false or incomplete.





4.3

An analytical approach

The classical backprojection method for our photoacoustic purposes is implemented in accordance to

Algorithm 4.3.1. Here, one photoacoustic signal (over time or frequency) corresponds to a sequence of

parallel line integrations, perpendicular to the light incidence direction. Since the procedure Bell-BP

follows the nature of the standard Delay-and-Sum strategy, it approximates the inverse Radon transform

R−1 and reconstructs the close match f′ of the original image f following equation (2.1.4), given parallel

beam projection data g. Algorithm 4.3.1 assumes that the center of rotation is the center point of the

projections, which is defined as (c,c), with c = d
√

J/2e defined as a function of the resolution
√

J. The

input variables are the discrete projection information g in one acquisition angle φ and the zero-matrix F

of size
√

J×
√

J. As output this procedure returns the discrete approximation F of the original image f .

Algorithm 4.3.1: Photoacoustic backprojection

1 procedure Bell-BP (g ,φ ,F)

2 x ← [sin(φ),cos(φ)]

3 for u ← 1 to
√

J

4 for v ← 1 to
√

J

5 dc ← (u− c)cos(θ)+(v− c)sin(φ)

6 i f bdc + cc ≥ 1 and ddc + ce ≤
√

J

7 F(u,v) ← F(u,v)+ |bdc + cc− (dc− c)| g(dc + c)+ |ddc + ce− (dc− c)| g(dc + c)

8 return F

4.3.1 Improved backprojection results

In this subsection we want to demonstrate that the corrected projection data in accordance with the

photoacoustic transport model leads to improved backprojection results.
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Since a qualitative evaluation is restricted to a computer simulation, as performed in Section 4.1, we

tried to incorporate a realistic error description into our mathematical model.

(a) Transport assumption Ta, SNR = 14 dB

(b) Transport assumption Td , SNR = 14 dB

(c) Transport assumption Ta,d , SNR = 14 dB

Fig. 4.3.2: The densities along the mid row in the
phantom and their reconstructions with a SNR of
14 dB.

(a) Transport assumption Ta, SNR = 8 dB

(b) Transport assumption Td , SNR = 8 dB

(c) Transport assumption Ta,d , SNR = 8 dB

Fig. 4.3.3: The densities along the mid row in the
phantom and their reconstructions with a SNR of
8 dB.
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(a) Reconstruction fa ≈R−1ga (b) Reconstruction f′a ≈R−1T −1
a ga

(c) Reconstruction fd ≈R−1gd (d) Reconstruction f′d ≈R−1T −1
d gd

(e) Reconstruction fa,d ≈R−1ga,d (f) Reconstruction f′a,d ≈R−1T −1
a,d ga,d

Fig. 4.3.1: Image reconstruction: (left) results of the common backprojection in the presence of additive
Gaussian white noise with a SNR of 14 dB; (right) backprojection after adjustments to th projection
data compensating the perturbation of acoustic heterogeneities.
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The signal-to-noise analysis in [48] provides a noise description of biomedical photoacoustic mea-

surements and indicates how to integrate this noise into our simulation. In the laboratories of the

CCADET we have tested different piezoelectric sensors and measured their ambient noise; consequently,

we added to our projections additive Gaussian white noise with mean µ = 50× 10−4 and standard

deviation σ1 = 2× 10−4. The resulting signal-to-noise ratio (SNR), as defined in [47], is equivalent to

µ/σ1 = 25 ≈ 14 dB which is similar to the case study of [48]. Additionally, we considered that light

scattering in deeper biological tissues impacts negatively on the photoacoustic SNR [49]. Therefore, we

looked at the scenario when the SNR is reduced to 25%; thus, we selected σ2 = 8×10−4, which results

in µ/σ2 = 6.25≈ 8 dB. This noise approximation is incorporated by G′←G′+noise(µ,σ) in the input

data of Algorithm 4.2.2 after the transport calculations in line 3.

We present various backprojection reconstructions in Figure 4.3.1 obtained by inverting the simulated

forward results following the three strategies A1-A3; in the left column we show the results of backpro-

jecting the perturbed data while in the right column we show the results after appropriate adjustments

that compensate for the perturbation of the modeled acoustic heterogeneities. A visual inspection of

these results suggests that our methodology was able to minimize both image blurring as well as internal

reflections; the latter problem seems to be particularly well resolved in this computer simulation.

For a more quantitative way of evaluating the image reconstructions we compared the plots of pixel

densities for a representative column in the phantom and the reconstruction, as shown in Figures 4.3.2

and 4.3.3. In all study cases the reconstruction error, defined as the sum of all differences between the

reconstruction using corrected photoacoustic projection data (green curve) and the ground truth (blue

curve), has been considerably reduced, in comparison with the standard Delay-and-Sum algorithm (red

curve). When the attenuation approximation perturbs the transport, the discrepancy between back-

projection and phantom are less noticeable. The sound dispersion approximation in turn brings out a

reduction of the error oscillations when applying our signal processing strategy.

In the presence of noise, we perform qualitative image reconstruction analysis taking into account the

previously mentioned FOMs of Section 4.1. The results of this analysis are listed in the Table 4.3.1 (av-

erage values) where the backprojection and the perturbation adjusted reconstructions are contrasted. It

is apparent that the application of transport inversion led to success in almost every transport study; the

exception is the case of La with the poor SNR of 8 dB. In particular, when the heterogeneities provoke in-

ternal reflections due to acoustic dispersion the proposed projection adjustment is highly recommended.
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Table 4.3.1: Mean distance and structural performance of heterogeneous noisy backprojection.

Transport RMS STR
dRMS(f,R−1g) dRMS(f,R−1T −1g) dST R(f,R−1g) dST R(f,R−1T −1g)

SNR = 14 dB

La 0.2874 0.2100 -0.0544 -0.0270

Ld 0.4220 0.1906 -0.0561 -0.0181

La,d 0.2863 0.2021 -0.0532 -0.0235

SNR = 8 dB

La 0.2822 0.2860 -0.0475 -0.0430

Ld 0.4174 0.2374 -0.0541 -0.0281

La,d 0.2852 0.2807 -0.0518 -0.0380

The sound dispersion correction achieved a noticeable error minimization (especially in the center of the

reconstruction) with respect to both quality measures dRMS and dST R when the SNR is high, while the

modeled Gaussian white noise has a mean value close to zero. This correction became less noticeable as

the SNR diminished. From these results we may infer that an inversion of the noisy projection information

under the specific circumstances does not adversely affect the image reconstruction. On the contrary,

the projection processing strategy provides a fundamental improvement on image reconstructions in the

presence of acoustic perturbations. We identified the model inconsistencies and corrected the projection

data at the stage prior to reconstruction. Hence, advanced algorithms using more detailed photoacoustic

paradigms, such as [4], might improve the quality of reconstructions even more.





4.4

An algebraic reconstruction technique

Backprojection algorithms have been, so far, widely used for image reconstruction in photoacoustic

tomography. These algorithms are based on closed-form inversion formulas expressed in two or three

dimensions and are analogues to the inverse Radon transform [21]. The underlying mathematical concept

only permits to approximate non-linear transport aspects to a certain degree. An alternative and even

more flexible solution approach may be found in the class of iterative procedures outlined in Section

2.1. For instance, a series expansion technique allows incorporating heterogeneous transport descriptions

during the iterative reconstruction process. The aim of this section is to investigate whether the use of the

algebraic reconstruction techniques (ART) for photoacoustic transport may provide results comparable

to, or even better than, those obtained by backprojection algorithms.

Similar to the work on model-based algorithms [50, 51], we consider the case of a suitable transfer

function to specify the sensitivity of a general acoustic detector and incorporate it in the definition of the

basis functions of the ART algorithm. A polar graph can describe how well a detector senses information

from different directions, such as the supercardiodal Sennheiser MKH-416 displayed in Figure 4.4.1 where

the colored curves indicate regions of equal frequencies [52].

Fig. 4.4.1: The acoustic response of the microphone Sennheiser MKH-416: The polar response pattern
for high frequencies (above 8 kHz) is shown in red. The mid-frequency (1-8 kHz) polar pattern of the
same microphone is shown in blue. The typical cardioid response is shown in green.
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For the following discussion we assume that a photoacoustic detector operates like the microphone

whose polar graph is shown in Figure 4.4.2. This hypothesis is based on several observations and mea-

surements of photoacoustic detectors manufactured by Dr. Bartolomé Reyes Ramirez [39, 40, 41] at

the CCADET-UNAM. The detector of our interest tends to be unidirectional, so that a satisfactory

microphone model describes a good sensitivity in the direction of 0 degrees. Its sensitivity decays mono-

tonically towards its sides: the faster its decay the greater the distance to the microphone. Based on

experimental observations, we intend to use basis functions for the ART algorithm of photoacoustcs that

behave like the polar graph in Figure 4.4.2 by defining them as

b j(r,φ) =



1 if the jth pixel is inside the φ -stripe of 100 % reception

0.8 if the jth pixel is inside a φ -stripe of 80 % reception

0.6 if the jth pixel is inside a φ -stripe of 60 % reception

0.4 if the jth pixel is inside a φ -stripe of 40 % reception

0.2 if the jth pixel is inside a φ -stripe of 20 % reception

0 otherwise.

(4.4.1)

The orientation of the stripes varies with the angle φ of the detector alignment. Since the sensitivity

transfer function is fixed on Ω , conditioned by the position of the detector, b j is invariant to r.

Fig. 4.4.2: Hypothetical response of a photoacoustic detector as used in [41]. Every colored stripe indicates
a region of equal sensitivity. The centered strip corresponds to 100 % efficiency; each graduation towards
the side corresponds to a potential loss of 20 %.
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The ART algorithm presented in Section 2.1 has been extended for our photoacoustic purposes as

indicated by the procedure Bell-ART in the pseudocode of Algorithm 4.4.1. Globally known are the

matrix P that indicates the polygon approximating the polar graph of the sensor as in Figure 4.4.2 and

the basis function b j of equation (4.4.1). The input variables are the projection vector g at the integra-

tion position i, the acquisition angle φ , a discrete approximation F of the original image f (initialized

with the zero-matrix of size
√

J×
√

J) and the point spread function (PSF). The transfer function of

the detector sensibility is represented by the boolean function PSF : the total of three modes PSF(1),

PSF(2) and PSF(3) manipulate the photoacoustic transport projections modeled by R and interfere

with the operation Rf≈ g, where f represents the image vector to be reconstructed and g the detected

photoacoustic response. Bell-ART inverts the discretized operation to approximate the image f≈R−1g

that is represented by the output matrix F′. Further, the Algorithm 4.4.1 makes use of the following

procedures: ones(a,b) creates a a× b matrix of ones; deblur(R) returns the Gaussian filtered data

matrix R; imrotate(R,φ) rotates the matrix R by the angle φ around its center in a counterclockwise

direction; reshape(A,a,b) gives a matrix of size a× b whose elements are taken columnwise from the

array A.

Algorithm 4.4.1: Photoacoustic ART

1 procedure Bell-ART (g(i) ,φ ,F ,PSF)

2 R ← zeros(
√

J,
√

J)

3 i f PSF(1) == true

4 Ri,· ← ones(1,
√

J)

5 else i f PSF(2) == true

6 (a,b) ← Ri,·∩P

7 dl ← ‖b−a‖

8 Ri,a:b ← ones(1,dl)

9 for j ← a to b

10 Ri, j ← b j(1,φ)

11 i f PSF(3) == true

12 R ← deblur(R)
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13 else

14 return input error

15 R ← imrotate(R,φ)

16 R ← reshape(R,1,
√

J ·
√

J)

17 f ← reshape(F,J,1)

18 f ← f+ g(i)−R·f
〈R,R〉 RT

19 F′ ← reshape(f,
√

J,
√

J)

20 return F′

All PSF modes can be understood as independent ways of acoustic expansions: PSF(1) refers to a

homogeneous propagation through equi-longitudinal lines and implements the basis function b j of (2.1.7),

PSF(2) implements b j of (4.4.1), and represents a weighted propagation from one in the center towards

zero at both ends following a linear decay, and PSF(3) assigns distortion to the projection lines using a

Gaussian kernel. The acoustic expansion of types PSF(2) and PSF(3) are of non-linear nature.

4.4.1 Iterative non-linear model-based results

In order to empirically evaluate the performance of the Bell-ART algorithm we considered once again the

experimental measurements provided by the group of scientists at the Karl-Franz Universität in Graz [23]

(see Section 2.2.2). The reference image by Gratt et al. as illustrated in Figure 4.4.3 (right) is the result of

the filtered backprojection algorithm iradon(R,θ) (inverse Radon transform) included in MATLAB,

an implementation of the function (2.1.4); its filter is designed directly in the frequency domain and

then multiplied by the Fourier transform of the projections. The routine iradon reconstructs the image

from projection data in the two-dimensional array R; θ describes the angles (in degrees) at which the

projections were taken. Further, to prevent any bias from additional image processing contributions on

reconstruction, we compare the Bell-ART output to the similar result of the backprojection implemen-

tation iradon of MATLAB in Figure 4.4.3a; the output of Bell-BP in Figure 4.4.3b presents a clearly

different histogram distribution compared to the ART reproductions. For all applications in this section

we use an image resolution of 100×100 pixels because of the higher computational requirements of the

Bell-ART algorithm as compared to those of backprojection. This resolution suffices our requirements

for this preliminary study.
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(a) MATLAB iradon (b) Bell-BP ≡ iradon without filtration

Fig. 4.4.3: Backprojection reconstructions: (a) result of the iradon algorithm by MATLAB, that is
further processed with an Ram-Lak filter; (b) result of the Bell-BP algorithm.

The results of iterative non-linear model-based photoacoustic reconstruction are demonstrated in

Figure 4.4.4 where we show the outcome of the Bell-ART algorithm taking into account the sensitivity

of a hypothetical detector. Figure 4.4.5 shows the outcome when this method is extended by an acoustic

distortion applying a Gaussian low-pass filter. By visually comparing the image reconstructions using

the Bell-ART method it is possible to detect small differences in the different outputs of the different

versions of Bell-ART. On the one hand, it seems that by incorporating a model of an acoustic detector it

is possible to decrease the artifacts produced by reflections on the fish’s outer borders. On the other hand,

we observe that the distortion operator suppresses the background noise without losing image resolution

inside the fish. Notwithstanding, the above observations are subjective. To account for an objective

criterion, without knowledge of the effective photoacoustic absorption map, we use the measure dS of

entropy, inspired by [53] on the obtained reconstructions. Hence, we define

dS(f′) :=−
Γ

∑
s=1

hf
′
(s)× log2(hf

′
(s)), (4.4.2)

where hf
′

: [1,Γ ]→ [0,J] is a histogram function (over N) that represents the histogram of the image f′

with J bins; the change of the definition set of values form [0,1] ∈ Q+ to [1,Γ ] ∈ N is required by the

definition of dS. In our representation in Figure 4.4.3 - Figure 4.4.5 the total number of bins Γ equals

255.
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(a) Bell-ART PSF(1) (b) Bell-ART PSF(2)

Fig. 4.4.4: Results of the Bell-ART algorithm: (a) linear photoacoustic transport considerations (mode
PSF(1)); (b) non-linear transport considerations taking into account the sensitivity of the detector (mode
PSF(2)).

(a) Bell-ART PSF(1) with PSF(3) (b) Bell-ART PSF(2) with PSF(3)

Fig. 4.4.5: Results of the Bell-ART algorithm under non-linear transport considerations: (a) the effect of
acoustic distortion (mode PSF(3)); (b) the effect of detector sensitivity influences and acoustic distortion
(mode PSF(2)+PSF(3)).
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Table 4.4.1: Measure of entropy on the obtained reconstructions.

iradon 2.9883

Bell-ART PSF(1) 3.0706

Bell-ART PSF(2) 3.1766

Bell-ART PSF(1) with PSF(3) 3.0716

Bell-ART PSF(2) with PSF(3) 3.1832

According to [53], high entropy using the definition (4.4.2) implies more reasonable images and better

fits to the original distribution map. This fact allows to interpret the results in Table 4.4.1 analytically.

We conclude that the apparently outstanding performance of Bell-ART in mode PSF(2) with PSF(3)

over backprojection methods looks promising to enhance photoacoustic imaging. In this comparison we

leave out the result of the Bell-BP algorithm since it produces a completely different value distribution

as illustrated in Figure 4.4.3b.





Chapter 5

Conclusions





5.1

Discussion of the obtained results

New photoacoustic waveform models have been studied and implemented at the UNAM along this

doctoral thesis. We focused on the complex scenario of acoustically heterogeneous media producing

sound perturbations which is of great importance for biomedical applications. After a review of the

literature, it was considered that transport adjustments, especially for sound perturbations, have to be

included when reconstructing photoacoustic images from projection data.

As exhibited by the frequency analysis of the shown experiments, attenuation and sound disper-

sion affect significantly the acoustic transport. Our studies have demonstrated that the photoacoustic

transport in heterogeneous media can be modeled by the Heaviside telegraph equation (3.1.6). This

propagation model is capable of simulating internal reflections and image blurring commonly present in

images produced from photoacoustic data. On observing the model output we deduce, that in general,

projection data identified as the Radon transform of the source lead to bad approximation of the absorp-

tion distribution. Moreover, we illustrated, by a computational simulation, how this misinterpretation

affects the reconstruction details. An approximate inversion of the considered sound perturbation is im-

plemented as a preprocessing of the acquired data. This compensation led to a significant improvement

in all study cases, using a quality and performance evaluation of the backprojection algorithm. It is

unlikely that this improvement occurs by chance alone.

The findings presented here show the applicability of common algorithms for reconstruction from

projections in photoacoustic imaging by making sure that the acquired data complies with an appropriate

perturbed transport model. As well as in [29], our work encourages the usage of recent improvements

on reconstruction algorithms to produce superior results. Besides our achievement on linear transport

adjustments, we also introduced some novel non-linear considerations along with our preliminary research

on photoacoustic ART. We noticed that especially the polar graph of the sensors sensitivity plays an

important role in computerized tomography which is worth taking into account while reconstruction.
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Consistent with most photoacoustic transport considerations, our model extension unifies actual the-

oretical and experimental findings of photoacoustics and provides support for a better tomographic image

analysis and diagnosis on the field. We developed a classification of the waveform transport, inspired on

photoacoustic methods, that potentially will benefit biological, geological and medical waveform imaging,

such as acoustical, seismic or optical tomography.

Finally, we consider that our proposed methodology can be extended to other modalities of waveform

tomography by simply estimating the model parameters for the specific inverse problem. Once the

appropriate values are selected, it is important to adjust the acquired photoacoustic data to the perturbed

transport model. It is important to notice that to advance the research in photoacoustic tomography

it is necessary to carry further work to characterize the noise present in the data acquired by different

kinds of detectors.



5.2

Future work

During the study of photoacoustic image reconstruction of heterogeneous media different physical-

mathematical considerations and computational implementations were acquired. In the following, I sum-

marize my personal point of view towards its state of the art and its worthwhile future work:

Concept: In this thesis, I present the mathematical concept of photoacoustic tomography as a

generalization of principles from acoustical, seismic, and optical tomography. This approach represents

a valid extension for all waveform modalities. It tends to reduce image artifacts such as wave reflections

and blurring and possibly facilitates photoacoustic image registration and fusion applications.

Model constraints: Linear model constrains are necessary for the projection approach of the image

reconstruction algorithms. I explored all classes of linear differential equations of second order that can

be represented by the Heaviside telegraph equation (3.1.6). The model coefficients imply a great variety

of experimental interpretations, that is left to discover. Onward performing a broad phantom study,

medical applications become viable. Ongoing research addresses further realistic phantoms of biological

tissues of different dimensions. Laboratory sessions with small animals, such as fishes, mice or scorpions,

are also considered at the CCADET-UNAM together with our international collaborators. Algorithmic

benefits are expected with the combination of the linear sound dispersion transport adjustments and

algebraic reconstruction techniques with non-linear adjustments.

Furthermore, the perturbed wave transport can be represented by higher order systems of equations,

as long as they fit the inverse problem with a manageable and linearizable set of solutions. It surely

arises my interests to search for even better perturbed wave equations for the purpose of photoacoustic

reconstructions of heterogeneous media.

Error studies: Error studies are essential for validating realistic models; this refers to noise approxi-

mations in Section 4.3.1 and the error on transforming photoacoustic measurements into a positive signal

in Section 2.2.1. They influence in large part the image resolution and contrast. The considerations in

the present thesis follow some observations of other authors from this field of research. But actually, no

explicit photoacoustic error studies are provided in the literature. Among others, I am looking forward

to work on this topic in the future.
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19. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM Monographs on Math-

ematical Modeling and Computation (2001)

20. Felsberg, M.: A novel two-step method for CT reconstruction. In: Tolxdorff, T., Braun, J., Deserno, ,T.M.,

Handels, H., Horsch, A., Meinzer H.P.: Bildverarbeitung für die Medizin, pp. 303–307. Informatik aktuell,

Springer, Berlin, Germany (2008)

21. Ntziachristos, V., Razansky, D.: Molecular imaging by means of multispectral optoacoustic tomography.

Chem. Rev. 110, pp. 2783–2794 (2010)
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Abstract—This study examines one of the open prob-
lems yet to solve in photoacoustic tomography: How to
prepare photoacoustic signals to ensure interpretation
as projection data? The main part of this difficulty
is related to the setting of the linear photoacoustic
transport model. Notably errors are due to the discrep-
ancy between the mathematical reconstruction and the
physical realization: Tomographic image reconstruction
from projections require a linear acquisition system.
However in practice, the physical reality presents dif-
ferent non-linear phenomena. In account of this incom-
patibility, it was our purpose to provide some advance-
ment in signal processing for dealing the projection
issue while considering different perspectives in the
interpretation of the transport model to be applied in
a broader manner. Numerical examples are analyzed
in detail and unveil the foundations for photoacoustic
signal processing methodologies focused on the task of
tomographic image reconstruction from projections.

Index Terms—Signal processing techniques for
acoustic inverse problems; remote sensing methods,
acoustic tomography; ultrasonographic imaging.

PACS numbers: 43.60.Pt; 43.60.Rw; 87.63.dh.

I. Introduction

In the last decade the development of photoacoustic
imaging methods has increased, particularly because
it is a promising tool for early non-invasive and non-
ionizing detection of breast cancer. Photoacoustic images
uniquely combine electromagnetic (EM) and ultrasonic
(US) information about (biological) objects, e.g. human
breast tissue. The operation principle specifies that
the object be exposed to infrared radiation with laser
pulses, thereby inducing the photoacoustic effect: The
absorption of light, while dissipating in a non-radiative
manner, produces mechanical disturbances expressed as
changes in the pressure distribution. This distribution
is confined in time and space and is expressed as a
mechanical impulse that is recorded by specific detectors
[1] outside the region of interest. Once photoacoustic data
is captured, the required projection information therein,
in correspondence to the transport model, is deduced
via signal processing techniques. Certainly, the common
usage of a homogeneous plane wave transport model for
photoacoustic applications, as outlined by Wang et al. in

[13], is over-simplified for most biomedical applications.
This is in view of assumptions on homogeneous media
and negligible influence of viscosity and diffusion. In
fact, these assumptions breakdown when imaging real
biological tissue such as breasts and corrections have to
be incorporated into the model. For instance, posterior
sound velocity corrections have to be involved in image
processing algorithms, as shown in [7]. Consequently, we
need a better analytical description of the photoacoustic
transport to reconstruct high-quality images and take
effective advantage of the US resolution and EM contrast
present in this imaging modality. Notwithstanding, for
computed tomography (CT) it is technically unavoidable
to approximate registered signals as linear projection
data; in accordance with the selected transport model.

This manuscript proposes a method that takes into
account viscous and scattering media properties for a
linear transport model. Departing from these considera-
tions, our contribution which is partitioned as follows: In
section II we describe image reconstruction as an inverse
source problem with the aim of identifying the role of
the linear transport operator and recall the necessary
boundary conditions. Then, in section III we present a
new classification of the different linear wave forms with
diffraction patterns; these will bring us closer to a more
realistic transport description, whenever in practice more
precise model conditions can be set up a priori. The main
section of this study is dedicated to the photoacoustic
signal processing methodologies that outline the key part
to combine mathematical reconstruction and physical re-
alization. Based on the understanding that reconstruction
principles are governed by the same rules that are followed
in the US-CT and photon detection from projections,
in section V we review the CT strategies designed for
modalities with diffraction. The literature in the field
of photoacoustic methods mainly utilize backprojection
strategies; despite, there are several other tomographic
methods; whence reconstruction can be done using many
different algorithms. Next we analyze several of these
methods, with the aim of determining possibly more effi-
cient reconstruction techniques for photoacoustic imaging.

+IEEE 
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II. Inverse source problem

The photoacoustic image reconstruction can be consid-
ered as an inverse source problem in the sense that the
initial pressure distribution f(x) = ψ(x, 0) acts as the
source; this is provided by electromagnetic absorption,
where ψ : Rn R+ R and n 3 is the spatial
dimension. The propagation of this pressure distribution
in a linear model allows a description as a homogeneous
wave equation in terms of a linear differential operator L
of second order with (temporal gradient) initial conditions,

Lψ(x, t) = 0 (1)

ψ(x, 0) = f(x) (2)

∂tψ(x, 0) = 0. (3)

This is applied to photoacoustic imaging, under the as-
sumption that there exists a trace of the forward problem
(1-3) that is in correspondence with the ultrasonic sensor
registering at the boundary of the observed region Ω,

ψ(x, t) = g(t), x ∂Ω. (4)

Given the photoacoustic signal g(t) as a damped wave
in a possibly inhomogeneous environment, one can make
inferences on the constituent terms of the wave equation.
The simplest and most used description in accordance with
[13] is given by the operator d’Alembert � acting on the
pressure distribution ψ(x, t); variable in space and time,

L1ψ(x, t) := (∂2
t − c2 2)ψ(x, t) =: �ψ(x, t), (5)

where ∂2
t represents the second temporal derivative. Ac-

cordingly 2 is the Laplace operator and c2 is a measure
of the sound speed. On applying the principle of Duhamel,
the inverse problem in (1-3), to derive the image data f(x),
appears as its equivalent version in terms of the following
inhomogeneous wave equation (see [10]),

Lψ(x, t) = f(x)∂tδ(t), (6)

∂tψ(x, 0) = 0, (7)

ψ(x, t−) = 0, t− < 0. (8)

Here, δ represents the temporal delta function related to
the illumination. For a physically homogeneous medium,
the forward solution of the above problem expressed by
the operator � in dimension n turns out to be specified in
terms of the spherical Radon transform

ψ(x, t) = g(t) R [f ](t). (9)

Since the spherical Radon transform has its known inverse
operator, analyzed in [5], the inverse problem gets solved.
The image data can be reconstructed numerically if suffi-
ciently measurements of the homogeneously illuminated
object of interest are taken. Notwithstanding, in prac-
tice the inverse problem is ill-conditioned. A physically
acceptable, approximate, solution can only be obtained,
when a priori information is taken into account, satisfying
additional constrains, considering instrumental aspects of
the acquisition system, as described in [2].

III. Generalization of the transport model

For miscellaneous biomedical applications of photoa-
coustic imaging it is of interest to achieve a more appropri-
ate linear model of the underlying transport than what the
operator � fulfills; which can include for example viscous
and/or scattering media properties. In order to maintain a
second order linear model for tomographic reconstructions
we present the following extensions:

L1 := �, (10)

L2 := � + v, � �, (11)

L3 := � + d, (12)

L4 := � + v, � �+ d. (13)

The literature focused on the photoacoustic transport
problem exhibits that the first instance (10) for plane
waves and frequently appears in systems assumed as
physically homogeneous. The Boltzmann operator1 (11)
involves a constant v, allowing wave attenuation as a
first approximation to the presence of viscosity in the
referred system. The Helmholtz operator (12) in turn
involves a constant d, accepting wave augmentation as a
first approximation for the presence of linear diffusion in
the system under study. Both additional contributions are
present in the fourth operator2, related to the Heaviside
telegraph equation (13). The latter model symbolizes the
most general second order linear photoacoustic transport
and is analyzed for the purpose of image reconstruction in
[12]. Although, the choice of the above operators will not
alter the signal processing routines below, it will somewhat
vary the reconstruction conditions.

IV. Photoacoustic signal processing

Photoacoustic signals can be captured by ultrasonic
detectors as a time sequence of voltage variations. Figure 1
shows a one-dimensional scan of a sample with two small
inhomogeneities over the interval [0, t1], t1 = 72 µs, at a
sample frequency of 80 MHz.

Fig. 1: D: Raw data captured by an US detector.

1To the best of our knowledge, physical models for photoacoustic
and photothermal applications by the presence of continuous condi-
tions present only one of two terms, vx o vt:

�+ �vx,∇� cont.≡ �+ vt∂t.
2Possibly there is an equivalence relation:

�+ �vx,∇�+ d
cont.≡ �+ vt∂t + d.
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In order to improve the low signal-to-noise ratio (SNR)
of the photoacoustic raw data is necessary to make some
preprocessing. It is already known that the dominant
initial peak is related to the voltage source and the direct
impact of momentum on the sensor [4]. Since there is little
contribution to the photoacoustic information of the region
of interest within the time interval [0, t0], t0 = 2.0 µs
this part was ignored for further processing. Linear trends
in the carrier signal were also removed and normalized
with respect to atmospheric pressure p0 2.0mV. For
this case study auto-correlation was considered as a useful
global technique to improve the SNR; see the result of
preprocessing in Figure 2.

Fig. 2: D0: Calibration by suppressing the influence of the
instrumentation device and auto-correlation.

The photoacoustic image data are provided by the
detector response and become readily accessible for
reconstruction after using a global signal processing
techniques; miscellaneous are described next:

1) Calculating the envelope function env(t) as in [11],

env(D0) = D0 iH(D0) , (14)

with respect to the normalized data D0 = D p0
and the Hilbert transform H, applied to the test data
in Figure 3.

2) Calculating the statistical measure of the amplitude
variation of the photoacoustic pressure, indicated by
the effective sound pressure eff(t), which is equal to
the root mean square (RMS) of the normalized signal
D0,

eff(D0) =

�� v/2
t+=� �v/2 D2

0(t + t+)

v
, (15)

where the size of the reference window v, considered
when calculating RMS, is set to 21 in the numerical
example presented in Figure 4.

3) Rectification of the measured signal [3]: Half wave as
well as full wave rectification may be chosen to point
out the absolute pressure distribution, see Figure 5.

Fig. 3: D+
0 = env(D0): Normalized envelope function.

Fig. 4: D+
0 = eff(D0): Normalized effective pressure.

Fig. 5: D+
0 : Normalized half wave rectification.

After successfully applying one of the above filtering
methodology, the processed data D+

0 was further enhanced
by thresholding in relation to the estimated value of the
SNR. The signal was additionally cleared by convolution
with the ideal impulse function, particularly with regard
to secondary sampling to carry out the requested image
resolution. When all mentioned signal processing is per-
formed, a set that approximates the data g is supplied for
finally solving the inverse problem.

, 
• , 
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V. Tomographic image reconstruction

The fundamentals of computerized tomography are
based on the reconstruction from projections. Given
the photoacoustic data, the geometry settings for the
tomographic reconstruction algorithm have to be in
accordance with the projection concept within the
photoacoustic model. Consequently, the transport model
is restricted to a linear system. Yet, the physical reality
may not fulfill the linearity condition. Hence, digital
processing routines would be needed to linearize the data
for reconstruction purposes.

Once processing true projection data, computerized to-
mography offers a multitude of reconstruction algorithms.
All tomographic methods for images reconstruction can be
classified into two groups according to [6]:

(A) Transform-based methods and
(B) Series expansion methods.

These groups particularly differ in the mathematical model
of their specification. Transform-based methods are very
efficient and fast in operating time. Besides, for linear
projections, these algorithms are exact if the system is
noise-free. The most intuitive and less complex algorithm
is the backprojection routine. Unfortunately, small errors
have severe influence on reconstruction results: multiple
artifacts in the reconstructed image make a digital biopsy
impossible. On the other hand, series expansion methods,
mainly typified by ART, also produce exact solutions
for the absence of noise. These methods consume more
computational resources, but are not restricted to linear
models. Corrections to the projection approach can be
considered iteratively.

In the following subsections, we show results of imple-
mentations of representative algorithms of both families
for photoacoustic methods. An adequate phantom for the
case study was made of agar where inhomogeneities have
been introduced. These local inhomogeneities of different
concentrations allow interpretations as tumor propaga-
tions. The colorized schema in Figure 6 illustrates the
geometric parameters of the experimental setup with a
passive element as a primary US source, carried out by
[7]. The intention of this figure is also to provide a clearer
idea of how the photoacoustic signals are interpreted.

A. Photoacoustic backprojection

Backprojection algorithms are very important tech-
niques for tomographic image reconstruction. The method-
ology can be considered as the direct numerical application
of the inversion formula for the (spherical) Radon trans-
form. Thus, we discretized in (9) the given photoacoustic
signal g received by the detector array to the vector g
and interpret that as the integral of the US waves along
the aperture, R f = g over L2(Ω), where f represents a

Fig. 6: Phantom, sensor and signal interpretation: high
pressure amplitude refers to mayor pressure distribution.

discrete estimate of the image vector. With the aim to get
a good approximation, we apply the signal processing as
mentioned in section IV and compare their strategies. The
reconstruction is performed via iteration over all detector
positions and carry out photoacoustic backprojection, very
similar to the program for X-rays in [6], but on spherical
geometries. The visible cone of each detector element is
estimated by the a half-angle of 15 in consideration of
[8]. The result with effective pressure signal processing, is
shown in Figure 7 for the image resolution of 200 200
pixels. Considerably, the presence of artifacts due to few
and erroneous projection data. Justified by the difference
between the phantom and test results that, we conclude for
backprojection reconstructions from a series of few scans,
it is particularly important to implement more accurate or
rather corrected signal processing for photoacoustic data.

Fig. 7: Examplary photoacoustic backprojection.
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B. Photoacoustic ART

ART represents a class of iterative algorithms, not only
for image reconstruction from a series of projections, but
for solving universal linear systems, and is also known as
the Kaczmarz method. In the retrieval of an approximate,
physically acceptable solution of the inverse problem ART
principally represents a good strategy to attack the ill-
posedness of the model. The following notation is consis-
tent with F. Natterer [9], except for changes of letters to
be consistent with the previous declaration. Let Ajf = gj
be a system with Aj : H Hj bounded linear operators
of Hilbert space H in the Hilbert space Hj , respective to
every projection j = 1, , ..., p. We resume the model to

A =



A1

...
Ap


 , g =



g1
...
gp


 , Af = g.

The orthogonal projection Pj in H on the affine subspace
Ajf = gj is given by Pjf = f + Aj (AjAj )

1(gj Ajf).
The Kaczmarz procedure with relaxation w (no relaxation
if w = 1) to solve Af = g is

fk+1 = Pwfk, (16)

with Pw = Pw
p ...Pw

1 , Pw
j = (1 w)I+wPj . The following

describes a step explicitly: set fk,0 = fk to compute fk,j

for j = 1, ..., p of according to

fk,j = fk,j 1 + ωAj (AjAj )
1(gj Ajf

k,j 1) (17)

= fk,j 1 + w
gj Ajf

k,j 1

Aj
2

At
j , (18)

for all j = 1, ..., p, and ultimately, we get fk+1 = fk,p.

The ultimate advantage of ART is its versatility. The
method of series expansion is suitable for all scanning
geometry and also for problems with incomplete data.
ART for 0 < w < 2 converges to a general solution or
to the minimum norm solution of Af = g, if the linear
system is consistent, see [9]. It should be perceived that
Pwfk < 1. Unfortunately, we examine that the actual
photoacoustic equation system is ill-posed.

VI. Discussion, conclusions and future work

The problem of how to prepare photoacoustic signals
to ensure by signal processing interpretation as projection
data for tomographic reconstruction was examined. The
contemplated digital methodologies unveil foundations for
further improvements on image reconstructions. Still, the
discrepancy between mathematical conditions and the
physical realization is not balanced so far. Certainly, a
proper treatment of photoacoustic signals requires more
a sophisticated processing. All presented routines are very
versatile tools for many different digital treatments; yet
many promising denoising strategies for US signals are left
to implement (e.g. wavelet analysis).

For the algorithmic task on image reconstruction (from
few projections) we still have to stabilize the conver-
gence on our ART reconstruction results, that suffer the
ill-posedness of the problem structure. A mathematical
acceptable solution of minimal norm will not solve the
reconstruction task in the physical sense. Further regu-
larization techniques (e.g. Tikhonov-Phillips) or similar
approximation methods supposably will produce better
results, as recommended by [9] for CT in general.

Acknowledgments

The authors gratefully acknowledge the Biomedical
Photonic Imaging (BMPI) group at the MIRA Institute
for Biomedical Technology and Technical Medicine at the
University of Twente for the valuable discussions and
their assistance with photoacoustic data from the Twente
Computer Tomograph system for our analysis. We ap-
preciate the administrative and financial support of the
Prosgrado en Ciencias e Ingenieŕıa de la Computación
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Photoacoustic Tomography with
Diffusion Approximation

Verena M. Moock, Edgar Garduño, Crescencio Garćıa-Segundo, and Fernando Arámbula Cosio

Abstract—A framework is presented for identify-
ing projection information in photoacoustic measure-
ments under a diffusion approximation for tomo-
graphic image reconstruction. We propose to solve
the inverse problem with respect to a thermoelastic
wave transport. By means of a numerical simulation,
we examine how our diffusion model relates to the
signal registration and deduce an adjustment on small
animal image reconstruction.

Index Terms—inverse problem, diffusion approxi-
mation, photoacoustic imaging.

I. Introduction

THERE is considerable interest on biomedical im-
age reconstruction with photoacoustic data due

to its non-invasive and non-ionizing testing utilization
opportunities. Photoacoustic tomography is a hybrid
image modality referring to electromagnetic (EM) energy
absorption and sound generation within the object of
interest. Ideally, acoustic detectors, positioned on the
perimeter of the object, register projection information
of the EM energy absorption map. In case of an acous-
tically homogeneous media the underlying transport is
commonly modeled in terms of a plane wave propaga-
tion [1]. This model approach facilitates the solution of
the inverse problem tremendously. One possible solution
is obtained by applying the inverse (spherical) Radon
transform to the measured data, and the source gets
backprojected. In a recent study [2], the author works
on a wave transport model incorporating an attenuation
approximation in such a way that the Radon inversion is
still a reliable solution. This efficient strategy no longer
uses the raw detector measurement, but treated data,
which approximates projection information under the
consideration of attenuation.

The thermoelastic expansion, intrinsic to the photoa-
coustic effect, generally constitutes the inhomogeneous
part of the wave equation. In this article we make the
conjecture, that the transport may correspond to the
thermoelastic wave equation, inspired by heat waves
[3], and as a consequence we present a novel approach
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on photoacoustic image reconstruction with a diffusion
approximation. Then, we analyze the model estimation in
accordance to the findings in [2] and we apply the results
on the photoacoustic section image reconstructions.

This paper is organized as follows: In section II, we
present a conceptual model linking of thermoelastic wave
transport to photoacoustic image reconstruction in terms
of an inverse problem. As the underpinning issue of this
work, we propose a model extension for photoacoustic
methods with a diffusion approximation. Along with the
suggested wave equation, we present in section III the
common backprojection approach applied on a phantom,
mimicking the zebra-fish case study of [4], referring to
both plane wave and thermoelastic wave model. Further-
more, we outline a strategy for a numerical inversion
with diffusion. In section IV, we deduce an adjustment of
the zebra-fish section image reconstruction and express
the visual results. Finally, we outline our conclusion in
section V and reveal implications for biomedical image
reconstruction.

II. The extended photoacoustic inverse
Problem

In this section, we present a conceptual model link-
ing of photoacoustic methods to tomographic image
reconstruction in its mathematical formulation as an
inverse problem. Thereby, we deduce a new photoacoustic
transport approximation inspired by heat waves [3], that
permits general interpretations in the broader domain of
diffraction tomography.

The photoacoustic transport can be described in terms
of a system of partial differential equations by modeling
a specific transport acting on the pressure distribution
function p : Rn × R → R+ over space and time. In
case that the source, or rather the initial distribution
f(x) = p(x, 0) is a weakly scattering or small object,
the occurring phenomena allow an approximation of the
transport in free space expressed by a linear integral
equation of second order with initial (functional and
temporal gradient) conditions, ∀x ∈ Rn and ∀t ∈ R,

Lp(x, t) = 0 (1)

p(x, 0) = f(x) (2)

∂tp(x, 0) = 0. (3)

The homogeneous linear differential equation (1) reveals
an acoustic homogeneous media under stress confine-
ment. By the principle of Duhamel the system (1-3) has
an equivalent inhomogeneous version [5],
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Lp(x, t) = f(x)∂tδ(t), (4)

∂tp(x, 0) = 0, (5)

p(x, t−) = 0, ∀t− < 0, (6)

where δ represents the temporal delta function related
to the illumination. In photoacoustic tomography it is
assumed that for any source f there exists a trace g of
the forward problem that corresponds to what sensors
register at the boundary of the observed region Ω over a
fixed time interval t ∈ [0, T ],

p(y, t) = g(t), y ∈ ∂Ω. (7)

Photoacoustic imaging in a homogeneous and non-
attenuating environment is usually based on a plane wave
transport according to [1], and is modeled by the linear
d’Alembert operator � (including the Laplace operator
∇2) and a constant wave speed c,

L0p0(x, t) := �p0(x, t) = (∂
2
t − c2∇2)p0(x, t). (8)

The associated inverse problem can be expressed in terms
of the (spherical) Radon transform

Rf = g, (9)

where the actual integrating geometry varies with the
detector shape. The inverse operator is known [6], hence
the problem can be solved numerically.
“Nowadays, there is a trend to incorporate more and

more modelling into photoacoustics” [7]. For miscella-
neous applications of photoacoustic methods on non-
homogeneous media we propose to consider the thermoe-
lastic wave equation:

Ldpd(x, t) := �pd(x, t) + d(t) ∗ ∂tpd(x, t), (10)

introducing the weight function d for the gradient trans-
port. This diffusion approach should not be ignored when
heat propagation is considerable in the experimental
analysis. A feasible approach to estimate the appropriate
weights is done by optimizing

{d : [0, T ]→ C | min
t∈[0,T ]

�d(t)∂tg(t) + ∂2
t g(t)�2}. (11)

From a point of view of the model description (4-6) we
can compare both waveform expressions in the Fourier
space,

(c2∇2 + ω2)p̂0(x, ω) =
iω√
2π

f(x), (12)

(c2∇2 + ω2 − iωd̂(ω))p̂d(x, ω) =
iω√
2π

f(x), (13)

and obtain the following relation on the measurements at
the boundary g0(t) = p0(x, t), gd(t) = pd(x, t) for x ∈ ∂Ω

ĝ0(K(ω)) =
K(ω)

ω
ĝd(ω), (14)

with K(ω) =

�
ω2 − iωd̂(ω). Hence, the issue is to

estimate g0 from gd using the relationship gd = T g0,
where T under the consideration of (14) is defined by

T g0(t) =
1

2π

�

R

ω

K(ω)
eiωt

� T

0

g0(t
�)e−iK(ω)t�dt�dω.

(15)

Figure 1: Schematic absorption map of a zebra fish.

We apply the strategy of [2] and solve the inverse problem
by performing the following instructions:

1) Given the measurement gd in a physical environ-
ment modelled by Ldpd = 0, estimate g0 = T −1gd.

2) Perform backprojection with respect to the ad-
justed projection data T −1gd.

We carry out the inversion of the integral in (15) using
an appropriate discretization and the Singular Value De-
composition (SVD) approach in the interest of succeeding
the inversion of the ill-conditioned matrix representing T .

III. Forward simulations and backprojection

We perform a numerical simulation of both plane wave
and thermoelastic wave transport on a two-dimensional
phantom, mimicking the zebra-fish case study of [4]
and predict the sinogram information (forward problem).
Moreover, we illustrate how errors, due to inappropriate
projection approximation, can affect the reconstruction
quality.
Figure 1 illustrates a simple musculoskeletal and diges-

tive atlas of a zebra-fish axial cross-section, representing
by different gray levels distinct regions of the EM energy
absorption. If the absorption map can be considered as
nearly acoustically homogeneous, we may simulate the
photoacoustic forward and inverse problem i.e. with a
cylindrical detector assuming a plane wave transport as
in (8). The result is demonstrated in Figure 2. In case
of a large number of projections, equally distributed
around the object of interest, reconstruction artifacts are
essentially insignificant. However, when diffusion alters
the transport, as indicated by the thermoelastic wave
equation (10), measurements approximate projections
whose information content is not correctly interpreted, or
rather the Radon transform is erroneously applied to the
source. Figure 3 illustrates sinogram and the backprojec-
tion result when K(ω) is approximated by ω − 1/2cdω3

with constant d = −0.02. Interference artifacts, appar-
ently weighted by the absorption coefficients, distort the
image reconstruction. However, we are able to correct
this impact by applying the inverse Radon transform on
the transformed data T −1gd. The reconstruction quality
is expected to be as good as in Figure 2.
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Figure 2: Projection approximation g0 and the inverse solution f0 = R−1g0 ≈ f under a plane wave transport.

Figure 3: Projection approximation gd and the inverse solution fd = R−1gd under a diffusive transport.

Figure 4: Backprojection R−1gd and its windowed image over the intervals [0.0, 0.3] and [0.7, 1.0].

Figure 5: Backprojection R−1(T −1gd) and its windowed image over the intervals [0.0, 0.3] and [0.7, 1.0].
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IV. Adjusted biological section image
reconstruction

The purpose of this section is to evaluate how an
adjusted projection approximation with the diffusion
approach simulated previously will alter the reconstruc-
tion result. Hence, we compare the registered sino-
gram of a real zebra-fish axial cross-section and its T -
Transformation and their normalized backprojection im-
ages in Figure 4 and Figure 5. Since both reconstructions
do not reveal the essential differences at a first sight, we
also visualize a windowed image and filter out normalized
signal values of the interval [0.3, 0.7] that are finally
mapped on the neutral value 0.5.

Visual results

We observe that by applying the projection adjustment
the well-defined body shape and the zebra-lines of the
fish become more fitted and clear. Nonetheless, it is no-
ticeable that poor absorption signals, e.g. from the pelvic
fins or the digestive region, suffer the signal processing
and disappear up to some extent.

V. Conclusions

We conclude from our results that a projection ad-
justment provide profitable advantages for small animal
tomographic experiments, when the scientific study in-
volves a (rough) segmentation problem. The particular
benefit of the present adjustment technique is that the
diffusion transformation is only applied once on the mea-
surement, hence it does not imply extra computational
reconstruction efforts.
We have demonstrated that the proposed photoacous-

tic transport model extension is a valid approach to im-
prove tomographic image reconstruction in the presence
of acoustic heterogeneities. Indeed, the present case study
is a first application approach that apparently does not
present a significant thermoelastic wave transport. That
is why the constant diffusion parameter d in (14) has to
be held small, and consequently backprojection results
in Figure 4 and Figure 5 look very similar. Probably this
adjustment strategy may interfere even better on photoa-
coustic tomography of more diffusive media. Our future
expectation is to apply the model to some larger volumes
and thus proceed refining the methodology. It remains
an open problem to complete the transport equation in
order to improve image reconstruction results.
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In photoacoustic imaging, the signal attenuation is a well-
known source of artifacts over the image reconstruction. It
is recognized that this is caused by optical absorption effects
and by the ultrasound broadband scattering. However, the
sound dispersion is generally neglected, although it appears
notably in thick or heterogeneous tissues. In the present
Letter, we give an experimental example in which both at-
tenuation and sound dispersion are dealt with as relevant
features to be taken into consideration. An analytic perspec-
tive of these perturbations leads us to a waveform transport-
model extension that provides a linear description of the
induced acoustic effects. We find a near match between
the theoretical predictions and the experimental results
in the frequency domain. These outcomes approximate pro-
jection data that represent forward solutions in photoacous-
tic image reconstruction. © 2015 Optical Society of America

OCIS codes: (060.2630) Frequency modulation; (070.7345) Wave

propagation; (110.5125) Photoacoustics; (260.2030) Dispersion.

http://dx.doi.org/10.1364/OL.40.004030

Efforts in photoacoustic (PA) image applications, such as com-
puterized tomography, are focused on reducing image blurring,
signal attenuation, and acoustic reflections, mainly because
these artifacts are notably present when reconstructing thick
or acoustically heterogeneous media, i.e., where the acoustic
impedance is not necessarily constant. Contributions range
from experimental procedures [1–3] to theoretical and compu-
tational algorithms, including the introduction of frequency-
domain PA imaging analysis [4–6] and error minimization,
in which the plane wave transport is used as a first approxima-
tion [7–9]. Further approaches compensate attenuation at a
stage prior to the image formation [10–13] or use a nonuni-
form sound speed [14]. However, little attention has been dedi-
cated for transport adjustments on sound dispersion of the PA
components. This dispersion can be due to depth of the PA

source (>1 cm) and by effective heterogeneities of the tissue.
In addition, since the bandwidth of PA signals, compared to
conventional medical ultrasound imaging, is substantially
broader, then dispersion features are likely to be unmasked.
Consequently, it is important incorporating sound dispersion
(or rather acoustic impedance) as an important factor in PA
models. Dealing with sound perturbations is particularly im-
portant when reconstructing images, because they produce ar-
tifacts, such as contour reflections and blurring. By using large
bandwidth admittance sensors for registering the PA signals,
the magnitude of these artifacts increases together with the
heterogeneity of the sample and its apparent thickness. PA
transport models using monochromatic plane waves fail to sat-
isfactorily account for the artifacts induced by the sound
dispersion; see [15]. By visualizing PA measurements in the
frequency domain, it is easier to understand the modulations
of the impulse response of a medium [9,10,16]. Accordingly,
we designed our experiments to produce PA data whose visu-
alization display both acoustic dispersion and attenuation.
Further, we design a waveform-transport model extension to
predict analytically these phenomena. As a consistency test,
we verify the match between the theoretical predictions and
the experimental results. To conclude the transport extension,
we propose a linear adjustment that applies at a stage prior to
solving the inverse problem of image reconstruction. This rep-
resents an improved approximation for the reconstruction of
the PA source out of the registered projections.

For our experiments, we used as targets neoprene slices, all
of them 1.5 mm in thickness (N ) and located inside of phan-
toms of polyvinyl alcohol (PVA) [17] immersed in still water.
For these phantoms, we created three cubic samples measuring
45 mm wide, 10 mm tall, and 9 mm, 14 mm and 19 mm long
(D), respectively; see the upper-right box of Fig. 1. To obtain
our measurements, we used a low-noise capacitive transducer
(S) of polyvinylidene fluoride (PVDF) operating in piezoelec-
tric mode that we placed on one side of the phantom, along its
length and at a distance (L) of 20 mm from the edge of the
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phantom. The laser source is a pulsed Nd:YAG laser-emitting
pulses of ∼7 ns time-width at a wavelength of 1064 nm and
rate repetition of 10 Hz. The triggered photo-acoustic signal
travels across the phantom length, plus 20 mm in water, before
being read out by the detector S [18]. In Fig. 1, we present the
response in the frequency domain of four experimental cases:
that from a neoprene slab of 1.5 mm thickness (N ), i.e., the
source free from dispersion and attenuation; the three remain-
ing cases are obtained from similar 1.5-mm-thick neoprene
slabs embedded right at the half of the length of the PVA phan-
toms, D∕2. The output curves are correspondingly labeled as
D9, D14, and D19. For schematic details see the inset in Fig. 1.
The experiments were made such that the sensor and the phan-
toms were kept immersed in water. Notice that the distance L
from the end face of the phantom to the sensor was kept con-
stant during the experiments. We took care that the neoprene’s
interaction area and the transducer’s sensing area were parallel,
while the laser excitation and, thus, the photoacoustic
signal propagation were set to be perpendicular to these
areas. Full experimental details can be seen in [18,19]. In
Fig. 1, we can appreciate frequency shifts and time-pulse-width
differences between the nondispersive and the dispersive cases.
The distinct bandwidth distributions are due to the dispersion
experienced by the PA signals; here, for purposes of visual pre-
sentation, the curves are normalized. The above description and
the examples in [18,19] suggest that acoustical attenuation and
dispersion are perturbations that necessarily appear in tomo-
graphic image reconstruction. At the following stage, we ana-
lyze how these can be included within the transport model.
A mathematically well-stated transport description through

weakly scattering media or small objects, as it is the case with
the probed phantoms, can be expressed by a linear integral
equation of second order with initial Cauchy conditions (re-
lated to the functional and to the temporal gradient): ∀ x ∈
R

n and ∀ t ∈ R,

Lpx; t  0; (1)

px; 0  f x; (2)

∂t px; 0  0: (3)

HereL is a linear wave operator acting on the acoustic pressure-
distribution function p:Rn × R → R over space and time. In
imaging, the forward problem refers to finding the projection
data of the PA source f

gt  py; t; y ∈ ∂Ω (4)

that is registered by sensors at the boundary of the observed
closed and bounded region Ω over a fixed time interval
t ∈ 0; T . For reconstructing images, this problem is stated
inversely: given gt of Eq. (4), find the initial pressure distri-
bution f . If the projection scheme holds, the inverse problem
can be solved by known computerized tomography strategies,
e.g., backprojection.
Upon reviewing transport models on the wider field of wave-

form tomography related to Eqs. (1)–(4) for compatible attenu-
ation and dispersion aspects, we recognize two distinct classes for
homogeneous and heterogeneous media under Duhamel’s
principle. These problem classes differ by their linear operator
L and analytical form of the involved differentials on the distri-
bution function p. Thus, PA imaging of homogeneous and
nonattenuatingmedia is commonly based on a plane wave trans-
port [3,10,16], which is modeled by 1∕c2∂2t − ∇2, where∇2 is
the Laplace operator and c the constant wave speed. When
c  1, the linear wave operator results in

L0p0 ≡ ∂2t − ∇2p0: (5)

In the current contribution, we work out an extension to the
dispersive waveform transport of optical tomography [20] by
incorporating the attenuation approach of ultrasound for PA
propagation in dispersive, acoustically perturbing media [10],
by means of the Heaviside telegraph equation,

La;d pa;d ≡ ∂2t − ∇2pa;d  d  ∂t pa;d  a  pa;d : (6)

Here  denotes the convolution between two functions. This
operator combines the wave enhancement with diffusive attenu-
ation and represents a more-realistic transport description. The
analytic estimation of the functions of attenuation, at, and
dispersion, d t, has to account for the limitations reviewed
in [1]. However, the resulting transport model including pertur-
bations La;d does not represent a projection scheme; therefore,
reconstruction algorithms from projections are not feasible. To
sort out this inconvenience, the authors of [2,10] provide
the strategy of inverting the attenuation to approximate the
projection data.
We follow an analog approach to [10] by modeling the

photoacoustic transport with a sound-dispersion approximation
and attenuation with the operatorLa;d in Eq. (6). Our reference
is the wave equation (5) under the consideration of the initial
conditions and the Duhamel’s principle (e.g., [21]). Taking
its Fourier transform (symbolized by ˆ) in terms of the
frequency-dependent pressure results in the following relations:

∇2  ω
2p̂0x;ω

iω
ffiffiffiffiffi

2π
p f x; (7)

∇2  ω
2
− iωd̂ ω − âωp̂a;d x;ω

iω
ffiffiffiffiffi

2π
p f x: (8)

In conformity with the previous equations, we derive the mea-
surements at the boundary for y ∈ δΩ in the Fourier space, in

Fig. 1. Experimental PA response in the frequency domain. The
bandwidths exhibit the differences between the PA signals for laser
pulses impinging on a 1.5-mm-thick neoprene slice (N ) alone (con-
tinuous line), and those for the same type of neoprene slab centered
within PVA phantoms measuring D  9 mm, 14 mm, and 19 mm
long (dashed, dash-dotted and dotted lines), respectively. The PA sen-
sor (S) was placed at fixed distance of 20 mm (L) from the phantom.
The inset curves correspond to the time domain PA response.
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the juxtaposition from the homogeneous to the heterogeneous
case

ĝ0kω
kω
ω

ĝ a;d ω; (9)

with g0t  p0y; t and ga;d t  pa;d y; t in the Euclidean
space and

kω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω
2
− iωd̂ ω − âω

q

: (10)

The novelty in obtaining a better projection approximation in
attenuating and dispersive media is now achieved via the
estimation of g0 from ga;d with respect to the relationship
ga;d  T g0, where T is defined by

T g0t
1

2π

Z

∞

−∞

ω

kω expiωtI tωdω; (11)

with I tω
R

T
0 g0t exp−ikωtdt. This solution strategy

is similar to this introduced in [22] and later generalized in
[10–12].

For a homogeneous (HM) thermo-viscous medium with
sound absorption, the wave number and frequency are related
as kω  ω∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − iαHMω
p

; with αHM the attenuation coeffi-
cient [10,23]. However, for heterogeneous (HT) medium, the
wave number has an additional term due to the first-order
derivative. Hence for consistency with the HM case, (10)
can be rearranged and series expanded at first order to recover
the mathematical structure. Though a coefficient αHTω ∈ C
is introduced, and for consistency with [10] and [23], we
change variables, such that d̂ ω  −ω

2ã and âω  ω
4d̃ ,

and after approximations, we get

kω  ω 1

2
iãω2

− d̃ω3; (12)

where ã, d̃ ∈ R are empirical factors. In relationship with the
experimental outcome, we suppose that the response of the
neoprene N approximates projection data of a rectangular
function, then in correspondence ĝ0 comes up to an absolute
sinc function. The solid line in Fig. 2 shows this output.
For the neoprene, N , hidden within the three PVA blocks

D9; D14; D19, we discretized the transport T in Eq. (11).
Given the PVA phantoms D9; D14; D19, we deduce the empir-
ical factors for the perturbation in the sample: ã9
d̃ 9  −0.001, ã14  d̃ 14  −0.005, and ã19  d̃ 19  −0.01.
These values are the results of a line search algorithm, which
gives the local minimal differences between the experimental
and theoretical curves. The resulting frequency PA outcome
is also presented in Fig. 2, being the dashed line for D9, the
dash-dotted line for D14, and the dotted line for D19. A com-
parative display between the experimental and the analytic
curves in terms of acoustic dispersion features is shown in
Fig. 3. The abscissa corresponds to the PVA length, recalling
that in each case, the hidden target is placed at the middle of
this length. The left ordinate in blue for frequency maxims has
to be distinguished from the right ordinate in red, referencing
the mean bandwidths. The dashed lines refer to the experimen-
tal results, while the continuous lines stand for the analytic
results.

The previous analysis allows the setup of an analytic descrip-
tion of how to invert the effect of acoustic perturbations within
the measurements and deduce less-erroneous projection data
to feed computerized tomographic algorithms. To prevent
an ill-conditioned linear system, the inversion of the transport
T can be carried out by numerical calculations such as the
singular value decomposition (SVD). SVD approximates T
by the matrix product T  USVt where U, V are real or com-
plex unitary matrices, (Vt symbolizes the transpose of the ma-
trix V), and S is a rectangular diagonal matrix. For a positive
real number ε > 0, we can obtain an approximation of its
inverse according to

g0 ≈ T −1
1;εga;d

X

j

σj

σ
2
j  ε

2 hga;d ; V jiUj; (13)

with Uj, V
t
j representing the jth row of matrices U, Vt , respec-

tively, and σj, for all pixel indexes 1 ≤ j ≤ J , are nonnegative
real singular values. In this way, it is immediate that by SVD,
one solves the forward problem, by approximating projections
g0  T −1ga;d , being that these fit better a linear PA transport
and contain attenuation and dispersion components.

The significance of attenuation and sound dispersion over
the transport of PA signals before their detection is clearly

Fig. 2. Theoretical outcome for the PA frequency response is phe-
nomenologically in near correspondence with the experimental obser-
vations. See main text for parametric details. The considered cases are:
ĝ0 (continuous line), approximating N , and three implementations of
ĝ a;d with distinct factors ã and d̃ ; ã9  d̃ 9  −0.001 model D9

(dashed line), ã14  d̃ 14  −0.005 model D14 (dash-dotted line),
and ã19  d̃ 19  −0.01 model D19 (dotted line).

Fig. 3. Frequency maxims (blue, right ordinate) and the mean
bandwidths (red, left ordinate) of the experimental results (dashed
line) and the model prediction (continuous line). The abscissa refers
to the PVA phantom length. For each case, the targetN is at the half of
this length (see inset in Fig. 1).
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exhibited from the frequency analysis of the experiments. This
lends support for the presented mathematical model with
numerical approximations to establish a phenomenological
interpretation and realistic output representation of the exper-
imental phenomenon. From the present analysis, it is unveiled
that PA common image reconstruction algorithms misinterpret
the sensor response as simple projection output. Our proposal
of modeling the PA transport with the Heaviside telegraph
equation (6) provides the conditions to ensure that the acquired
data have a close match with perturbed acoustic signals and are
further invertible. By means of using the numerical approxima-
tion to set up the coefficients ãj and d̃ j (j  9, 14 and 19), we
achieved to exhibit that indeed the change in depth of the
hidden target clearly induces acoustic dispersion and how it
can be described (see Fig. 3). This prompted us to manage
a better projection approximation, Eq. (11). The analytic
representation of these coefficients is matter of our current
research efforts.
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