

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIA E INGENIERÍA DE MATERIALES INSTITUTO DE INVESTIGACIONES EN MATERIALES

"OBTENCIÓN Y CARACTERIZACIÓN DE ALEACIONES AL-NI NANOESTRUCTURADAS"

TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIA E INGENIERÍA DE MATERIALES

PRESENTA: MANUEL ALEJANDRO MARTÍNEZ VILLALOBOS

TUTOR: DR. IGNACIO ALEJANDRO FIGUEROA VARGAS INSTITUTO DE INVESTIGACIONES EN MATERIALES

COMITÉ TUTOR: DR. GABRIEL ÁNGEL LARA RODRÍGUEZ INSTITUTO DE INVESTIGACIONES EN MATERIALES DR. MIGUEL ÁNGEL HERNÁNDEZ GALLEGOS FACULTAD DE INGENIERÍA

MÉXICO D.F.

NOVIEMBRE 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Dedicado a Ivonne, José Luis y Elischéva

"Mire mi cara en el espejo para saber quién soy, para saber cómo me portaré dentro de unas horas, cuando me enfrente con el fin. Mi carne puede tener miedo; yo, no. -¿Por qué?-, porque hoy este fuerte viento que sopla es para mí."

AGRADECIMIENTOS

Agradezco a la vida el haberme permitido despertar cada día y seguir hacia adelante hasta la conclusión de este objetivo.

A mis padres, Ivonne Villalobos y José Luis Martínez, por todo el apoyo y cariño que me han brindado desde siempre. A Jessica Elischéva, por iluminar mi camino desde el día en que te conocí, por tus palabras, tú apoyo y los momentos compartidos, por hacerme crecer como persona solo con tu presencia, por ser mi inspiración y alguien muy importante en mi vida durante los últimos años. A Diana Lara, que a pesar de haber llegado a mi vida hace poco tiempo ha llenado mi vida de alegría y por su apoyo, cariño y confianza incondicional en todo momento. A Luis Gerardo, hermano siempre hay que seguir adelante e ir por más.

A los miembros de mi jurado: Dr. Abel Camacho Galván, Dr. Ignacio Alejandro Figueroa Vargas, Dr. Lauro Bucio Galindo, Dr. Jorge Alejandro Verduzco Martínez y M. en M. Sergio García Galán, por s u dedicación a la revisión de mi trabajo, así como por sus valiosos consejos y sugerencias para mejorarlo.

Quiero agradecer al Dr. Ignacio Alejandro Figueroa Vargas, mi tutor, por haberme incluido en su grupo de trabajo, dándome la gran oportunidad de desarrollarme de manera profesional a lo largo de este par de años. Gracias por todos los consejos, las risas y los regaños. Quiero expresar también mi más sincero agradecimiento a todas las personas del IIM-UNAM que me brindaron su ayuda durante la parte experimental de mi trabajo, sin algún orden en particular los menciono a continuación: Dr. Gabriel A. Lara Rodríguez por colaboración en los procesos de fundición y solidificación rápida, Dr. Omar Novelo Peralta por su colaboración en el microscopio electrónico de barrido, M. en C. Adriana Tejeda Cruz por su colaboración en la difracci6n de rayos X, Ing. Ernesto Sánchez Colín por su ayuda en el proceso de extrusión. A la Lic. Oralia L. Jiménez Álvarez por su apoyo en los prestamos interbiblioterarios, Ing. F. Silvar, C. Flores, E. Sanchez, J. Morales, R. Reyes, C. Delgado, J. Romero, S. García Galán, V. Torres Mendoza, G. Aramburú y M. Garcia de León por su apoyo y colaboración técnica. Agradezco a los proyectos SEP-CONACYT "178289" por el financiamiento brindado para llevar a cabo la presente investigación.

Al Dr. Miguel Ángel Hernández Gallegos, por ser parte de mi comité tutor, gracias por su tiempo y sus consejos. Agradezco de manera muy especial a todos mis colegas del laboratorio de materiales metálicos avanzados: Dr. Miguel Suarez, M. en C. Jonathan Zamora , M. en C. Javier Cadena, Ing. Eliezer Mecinas, Ing. Mauro Velasco, por todo su apoyo dentro y fuera del laboratorio, y por todos los momentos compartidos.

RESUMEN

En el presente trabajo se analiza el comportamiento de la aleación Al-Ni eutéctica (6.1wt%Ni) a través de la unión de los procesos de fundición, melt spinning, con tres velocidades de la rueda (20, 30 y 40 m/s) en una atmósfera de helio, compactado y extrusión. La inclusión del proceso de melt spinning tiene como objetivos la obtención de cintas que presenten una geometría con bordes regulares, así como el cambio en la morfología de los intermetálicos Al₃Ni presentes en esta aleación al final de la fundición de acicular a globular. A través de la combinación de estos procesos de busca que la aleación Al-Ni eutéctica presente una distribución homogénea de intermetálicos Al₃Ni dentro de la matriz de aluminio, y que estos a su vez funcionen como material de refuerzo y sean capaces de incrementar la resistencia y ductilidad de la aleación.

Las muestras obtenidas después de cada proceso fueron analizadas por Microscopía Electrónica de Barrido (SEM, por sus siglas en inglés) para observar los cambios suscitados en la microestructura, por Espectrometría de Fluorescencia de Rayos X (XRF, por sus siglas en ingles) para corroborar que la composición de las muestras obtenidas corresponde a la zona eutéctica de la aleación (6.1wt%Ni). También se realizaron análisis de Difracción de Rayos X (DRX, por sus siglas en inglés), tanto a la aleación de fundición como a las cintas obtenidas con cada una de las velocidades para la identificación de las fases presentes. Aunado a esto se hizo Microscopía Electrónica de Transmisión (TEM, por sus siglas en inglés) como técnica de caracterización complementaria para la identificación de fases con presencia menor al 2% y precipitados finos.

Para evaluar las propiedades mecánicas de la aleación, se realizaron ensayos de tracción, tanto a probetas obtenidas de los lingotes de fundición, como a probetas producidas con las cintas generadas por melt spinning. A su vez, se hizo el diseño de los dados y las piezas de la prensa necesarias, para someter las muestras obtenidas por compactado a un proceso de extrusión, buscando que la microestructura del material producida por melt spinning se conservara.

Por último, se realizaron pruebas de microdureza, esto para evaluar la aportación al cambio en la dureza del material de cada uno de los procesos aplicados.

ÍNDICE

LISTA DE FIGURAS

LISTA DE TABLAS

INTRODUCCIÓN

HIPÓTESIS

OBJETIVOS

Objetivo general

Objetivos particulares

CAPÍTULO I ANTECEDENTES

	I.1 Aluminio, propiedades y aleaciones	. 1
	I.2 Níquel, propiedades y aleaciones	. 5
	I.3 Materiales compuestos y endurecimiento	. 8
	I.4 Diagrama de fases Al-Ni	13
	I.4.1 Compuesto intermetálico Al ₃ Ni	16
	I.5 Fundición	17
	I.5.1 Horno de inducción	19
	I.6 Solidificación rápida	21
	I.6.1 Melt spinning	24
	I.7 Compactado y extrusión	27
CAPÍT	ULO II DESARROLLO EXPERIMENTAL	
	II.1 Preparación de la aleación maestra	29
	II.2 Fundición	30
	II.3 Melt spinning	32

II.4	4 Compactado y extrusión	35
II.:	5 Microscopía Electrónica de Barrido (SEM)	40
II.	6 Espectrometría de Fluorescencia de Rayos X (XRF)	44
II.	7 Microscopía Electrónica de Transmisión (TEM)	.44
II.	8 Difracción de Rayos X (DRX)	47
II.	9 Ensayo de tracción	51
II.	10 Ensayo de dureza Vickers	53
CAPÍTUI	LO III ANÁLISIS DE RESULTADOS	
III	I.1 Productos de fundición	56
III	1.2 Productos de melt spinning	56
III	1.3 Productos de compactado y extrusión	57
III	I.4 Microscopía Electrónica de Barrido (SEM)	59
	III.4.1 Fundición	59
	III.4.2 Melt spinning	61
	III.4.2.1 Vista lateral de las cintas (zona en contacto con el disco).	61
	III.4.2.2 Vista de perfil de las cintas	64
	III.4.3 Compactado y extrusión	66
III	1.5 Espectrometría de Fluorescencia de Rayos X (XRF)	71
III	I.6 Microscopía Electrónica de Transmisión (TEM)	73
III	I.7 Difracción de Rayos X (DRX)	76
III	1.8 Ensayo de tracción	82
III	1.9 Ensayo de dureza Vickers	85
CAPÍTUI	LO IV CONCLUSIONES	

APÉNDICES

Apéndice A Sistemas cristalinos

Apéndice B Distancias interplanares para cada sistema cristalino

Apéndice C Diseños para extrusión

Apéndice D Fichas JCPDS utilizadas para indexación del patrón

obtenido por TEM

Apéndice E Fichas JCPDS utilizadas para indexación de patrones

de Difracción de Rayos X

REFERENCIAS

LISTA DE FIGURAS

Figura 1 Solidificación rápida por melt spinning Figura 2 Combinación de melt spinning, compactado y extrusión **CAPÍTULO I** Figura 1.1 Módulo de Young en función de la fracción volumétrica de refuerzo9 Figura 1.3 Diagrama esquemático del compuesto Al-Ni producido por "friction stir Figura 1.4 Imagen de la matriz de aluminio con intermetálicos Al₃Ni y Al₃Ni₂ obtenida por Figura 1.5 Curvas de esfuerzo-deformación de 1060 Al y 1060 Al+Ni producidos por Figura 1.9 Procesos de a) " free jet melt spinning" y b) "chill block melt spinning" 24 CAPÍTULO II Figura 2.2 Balanza de precisión VELAB VE-300 (IIM-UNAM) con gránulos de níquel y

Figura 2.6 Equipo para realizar melt spinning (IIM-UNAM)	
Figura 2.7 Configuración de la cámara de melt spinning	
Figura 2.8 Prensa automática HERZOG HP 40 (IIM-UNAM) y posición del dado	
Figura 2.9 Montequipo 140 TON (IIM-UNAM)	
Figura 2.10 Dado de extrusión inicial	
Figura 2.11 Horno Thermolyne 46100	
Figura 2.12 Posición del dado sin y con soporte	
Figura 2.13 Prensa INSTRON (IIM-UNAM)	39
Figura 2.14 Bases para acoplamiento a) celda de carga-punzón, b) plataforma de t pistón de la prensa	trabajo- 39
Figura 2.15 Configuración dispuesta para el proceso de extrusión en la prensa INS	STRON 40
Figura 2.16 Esquema de un microscopio electrónico de barrido	41
Figura 2.17 Microscopio Electrónico de Barrido JEOL 7600F (IIM-UNAM)	42
Figura 2.18 Muestras para realizar SEM de a) fundición, b) melt spinning, c) encap de cintas de canto y d) extrusión	psulado 43
Figura 2.19 Pistola para Espectrometría de Fluorescencia de Rayos X (IIM-UNAM).	44
Figura 2.20 Equipo para realizar ion milling (IIM-UNAM)	
Figura 2.21 Microscopio Electrónico de Transmisión JEOL JEM 1200-EX (IIM-UN	AM)46
Figura 2.22 Efecto de interferencia a) constructiva, b) destructiva	47
Figura 2.23 Geometría del fenómeno de Difracción de Rayos X	
Figura 2.24 Esquema de Difractómetro de Rayos X	49
Figura 2.25 Difractómetro Bruker D8 Advance (IIM-UNAM)	50
Figura 2.26 a) Muestra para realizar DRX, b) medida de las muestras	50
Figura 2.27 Probeta estándar E-8 ASTM para ensayo de tracción	51

Figura 2.28 Probetas de tensión a) cintas Al-6.1Ni, b) fundición	2
Figura 2.29 Configuración del ensayo de tracción	2
Figura 2.30 Indentador y huella de dureza Vickers	3
Figura 2.31 Microdurómetro Shimadzu HMV-G (IIM-UNAM)	4
CAPÍTULO III	
Figura 3.1 Lingotes de aleación maestra	6
Figura 3.2 Cintas de Al-6.1Ni (20 gramos) obtenidas por melt spinning a 20 m/s	7
Figura 3.3 Compactados de Al-Ni eutéctico	7
Figura 3.4 Muestra obtenida por extrusión encapsulada, cortada por la mitad y después de metalografía	e 7
Figura 3.5 Gráficas de carga-desplazamiento a una velocidad del pistón de a) 10^{-3} mm, s (6x10 ⁻² mm/minuto), b) de 2x10 ⁻¹ mm/minuto, primer experimento y c 2x10 ⁻¹ mm/minuto, segundo experimento	/ ;) 8
Figura 3.6 Morfología de la aleación Al-6.1Ni tomada a 1 000x, matriz de α -Al alternada con intermetálicos Al ₃ Ni aciculares	a 9
Figura 3.7 Imagen de la morfología de la aleación Al-6.1Ni y espectro de la misma obtenido por EDS	a 0
Figura 3.8 Micrografías de las cintas obtenidas a 20 m/s, tomadas con a) 10 000x, b) 23 000x, c) 50 000x y d) 100 000x	5 2
Figura 3.9 Micrografías de las cintas obtenidas a 30 m/s, tomadas con a) 25 000x y b) 50 000x	0 3
Figura 3.10 Micrografías de las cintas obtenidas a 40 m/s, tomadas con a) 10 000x, b) 23 000x	5 4
Figura 3.11 Cintas puestas de perfil obtenidas con velocidades de a) 20 m/s, b) 30 m/s y c) 40 m/s	4

Figura 3.12 Globulización del intermetálico, vista de perfil de a) 30 m/s, b) 30 m/s y c) 40 m/s
Figura 3.13 a) Micrografía de las cintas después del compactado, b) frontera formada entre cintas después del compactado
Figura 3.14 Zonas de la muestra de extrusión tomadas con SEM
Figura 3.15 Zona A, a) fronteras formadas entre cintas, b) intermetálicos dentro de la matriz tomados a 10 000x
Figura 3.16 Zona B, morfología presente tomada con a) 1 000x, b) 5 000x y c) 10 000x 68
Figura 3.17 Zona C, morfología presente tomada con a) 1 000x, b) 2 500x y c) 5 000x 69
Figura 3.18 Zona D, morfología presente tomada con a) 1 000x, b) 2 500x y c) 5 000x 70
Figura 3.19 Zona E, morfología presente tomada con a) 500x y b) 1 000x
Figura 3.20 Zona F, morfología presente tomada con a) 1 000x y b) 5 000x
Figura 3.21 Muestra de cinta (producida a 20 m/s), tomada a 100 000x con microscopio electrónico de transmisión
Figura 3.22 Patrón de difracción de electrones obtenido e indexado
Figura 3.23 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 20 m/s
Figura 3.24 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 30 m/s
Figura 3.25 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 40 m/s
Figura 3.26 Ensanchamiento en los picos de difracción como efecto de la solidificación rápida
Figura 3.27 Gráfica esfuerzo-deformación para cintas obtenidas a 20 m/s

Figura 3.28 Gráfica esfuerzo-deformación para cintas obtenidas a 30 m/s
Figura 3.29 Gráfica esfuerzo-deformación para probetas de fundición
Figura 3.30 Indentación sobre la superficie de la muestra de fundición
Figura 3.31 Vista frontal tomada a 40x de las indentaciones en cintas de Al-6.1Ni obtenidas
a a) 20 m/s, b) 30 m/s y c) 40 m/s
Figura 3.32 Imágenes tomadas a 40x de las cintas de Al-6.1Ni colocadas de perfil y obtenidas con a) 20 m/s, b) 30 m/s, c) 40 m/s, así como cintas de aluminio puro obtenidas con d) 20 m/s, e) 30 m/s, f) 40 m/s
Figura 3.33 Ensayos de dureza a) y b) en la base del compactado, así como c) y d) de
manera transversal
Figura 3.34 Zonas de la muestra de extrusión para la medición de microdureza
Figura 3.35 Cambio de dureza en la muestra obtenida por extrusión

LISTA DE TABLAS

CAPÍTULO I

Tabla 1.1 Máxima solubilidad de componentes aleantes en aluminio sólido y principales fases de endurecimiento en aleaciones comerciales de aluminio 3
Tabla 1.2 Máxima solubilidad de algunos metales de transición y tierras raras en aluminio,y microdureza de las fases intermetálicas formadas en sus aleaciones4
Tabla 1.3 Elementos aleantes en las aleaciones base níquel y su efecto 6
Tabla 1.4 Características de las fases presentes en el sistema Al-Ni 15
Tabla 1.5 Reacciones invariantes del sistema Al-Ni 15
Tabla 1.6 Velocidades de enfriamiento y tamaños de grano asociados a diversos procesos de solidificación 22
CAPÍTULO II
Tabla 2.1 Velocidades de la rueda en m/s y rpm 34
CAPÍTULO III
Tabla 3.1 Comparación entre el porcentaje teórico y porcentajes obtenidos por EDS de lasfases presentes en la aleación60
Tabla 3.2 Espesor promedio medido con cada velocidad 65
Tabla 3.3 Resultados de la Espectrometría de Fluorescencia de Rayos X realizada amuestras de fundición72
Tabla 3.4 Distancias interplanares utilizadas para la indexación del patrón de electrones . 75
Tabla 3.5 Ángulos 2θ del aluminio para cada condición 80
Tabla 3.6 Medida del parámetro reticular en la matriz de aluminio para cada condición 81
Tabla 3.7 Resultados del ensayo de tracción realizado a muestras de 20 m/s

Tabla 3.8 Resultados del ensayo de tracción realizado a muestras de 30 m/s	84
Tabla 3.9 Resultados del ensayo de tracción realizado a muestras de fundición	85
Tabla 3.10 Valores de dureza en la muestra de fundición	86
Tabla 3.11 Valores de dureza de las cintas de Al-6.1Ni colocadas de manera frontal	. 87
Tabla 3.12 Valores de dureza registrada en cintas de aleación y aluminio puro	88
Tabla 3.13 Valores de dureza en la muestra de compactado	. 89
Tabla 3.14 Valores de dureza medida en la muestra de extrusión	. 89

INTRODUCCIÓN

La cantidad de necesidades, y por consiguiente de aplicaciones específicas, que surgen a nivel industrial en la actualidad y la velocidad con que lo hacen, han obligado a que, tanto la misma industria como la comunidad científica dedicada a la ciencia e ingeniería de materiales se encuentren desarrollando nuevas aleaciones a través de métodos innovadores o mediante la combinación de métodos ya existentes. Estos nuevos métodos de desarrollo de materiales buscan superar los límites asociados a los procesos actuales para obtener aleaciones y materiales compuestos con un incremento en su ductilidad y baja densidad. Lo que en el caso de la industria automotriz, aeronáutica y de transporte significa un enorme beneficio en cuanto a combustible se refiere. Se busca también que estos materiales debe presentar resistencia a la corrosión, al desgaste y mayor tenacidad. A estas características podemos agregar que debe ser reciclable [1].

A pesar de que la velocidad de desarrollo de aleaciones por métodos convencionales en los últimos cincuenta años ha sido alta, esta no ha sido suficiente para cubrir las necesidades que producen los requerimientos específicos actuales, por lo que muchas de estas aleaciones han sido marcadas ya como obsoletas a pesar de tener pocos años siendo comerciales. Para poder ir más allá, se ha optado por la investigación y desarrollo de nuevos métodos de síntesis, producción y obtención de materiales que, de otra manera, serían imposibles de conseguir. Surgiendo así una nueva generación de aleaciones y materiales compuestos que tienen como base una mejora en la gama de sus propiedades mecánicas, un costo de fabricación relativamente bajo, así como una reducción en la generación de contaminantes debidos al proceso de producción [2]. Estas investigaciones buscan ofrecer alternativas que sean diferentes al acero y a otras aleaciones ferrosas, que si bien se producen con cierta facilidad y economía, tienen desventajas como una conductividad eléctrica baja, poca resistencia a la corrosión en atmósferas comunes y una densidad relativamente alta. Los resultados de estos esfuerzos han demostrado que elementos como cobre, titanio, magnesio y aluminio son capaces de alcanzar un mejor desempeño al ser combinados con bajas cantidades de elementos aleantes como niobio, zinc, níquel y cromo [3].

Entre estos nuevos materiales con baja densidad, alta resistencia y bajo costo de manufactura se han destacado aquellos hechos con base en resina epoxi y en base a aluminio, estos últimos resultan aún más atractivos debido a la cantidad de industria ya existente que se dedica a la producción de aluminio y a su disponibilidad como materia prima [4]. La implementación de métodos no convencionales en el desarrollo de los materiales ha permitido crear nuevos procesos, renovar aleaciones comerciales, así como utilizar nuevas composiciones y beneficiar la fabricación de materiales de mayor rigidez y baja densidad, además de tolerancias más pequeñas en piezas de precisión y alta resistencia a la tracción. Dentro de estos métodos se encuentran: el electroformado, metalurgia de polvos, solidificación rápida por melt spinning, refinación por zonas, maquinado por haz de alta energía y maquinado por rayo láser, entre otros [5].

Como se ha mencionado, el aluminio tiene una densidad relativamente baja $(2.7 \frac{g}{cm^3})$, comparada con la del acero $(7.9 \frac{g}{cm^3})$ y algunas de sus aleaciones presentan una buena resistencia mecánica. Además de una buena resistencia a la corrosión debido a la película de alúmina (Al₂O₃) que se forma en su superfície de forma espontánea. Estas características permiten que ciertas aleaciones de aluminio sustituyan no solo al acero en la industria automotriz y de transporte, sino también al titanio en la industria aeronáutica donde la ligereza y la resistencia mecánica son factores muy importantes para la seguridad estructural y el ahorro de combustible, sumado a esto, el aluminio también cumple con el requerimiento de ser un metal fácil de reciclar.

Las propiedades mecánicas de las aleaciones de aluminio varían enormemente según los elementos aleantes y tratamientos térmicos a los que sean sometidas. Para el caso de producción de piezas complejas, estos tratamientos son generalmente largos, lo que significa gastos de energía y tiempo importantes, pero que a su vez permiten la formación de precipitados de tamaño nanométrico, incrementando la dureza y resistencia mecánica. El uso de la solidificación rápida permite generar estas estructuras nanométricas sin tener que recurrir a los costosos y largos tratamientos térmicos. Además de generar un alto contenido de elementos aleantes en la solución sólida sobresaturada, la solidificación rápida también ayuda a elevar el rendimiento de las propiedades mecánicas. Otra forma de aumentar la resistencia y reducir el peso específico es mediante la adición de refuerzos de tipo cerámico

en forma de partículas o fibras. Generalmente estos refuerzos no son tan pequeños como para producir un aumento notable en la resistencia sin provocar fragilidad, agrietamientos y una disminución en la resistencia a la fractura. Debido a este efecto se sabe que las propiedades mecánicas de los materiales compuestos que poseen matriz metálica dependen fuertemente de la interface generada entre esta y el elemento utilizado como refuerzo. Desde el punto de vista experimental, entonces, podemos considerar a las aleaciones Al-Ni como un material compuesto, donde la matriz de aluminio aporta ductilidad, mientras los intermetálicos presentes producen un aumento en la resistencia y el grado de fragilidad debido a su morfología en forma de agujas, estas concentran los esfuerzos internos en sus vértices siendo el punto de partida de grietas y fisuras al aplicar una deformación [6].

Tomando como base lo anterior, en el presente trabajo se optó por la aleación Al-Ni eutéctica (6.1wt%Ni) como material de estudio, en donde, si bien se ha dicho que con esta cantidad de níquel se fragiliza el material y por tanto se pierde rigidez, también se gana en dureza y se incrementan tanto la temperatura de recristalización como la resistencia al desgaste. Para aumentar el grado de ductilidad se ha optado por el proceso de melt spinning (Figura 1), ya que permite cambiar la morfología de los intermetálicos Al₃Ni presentes con forma acicular a globular, eliminando así los vértices que producen agrietamiento [7].

Figura 1 Solidificación rápida por melt spinning [8]

En función de lo anterior, si bien el melt spinning permite cambiar la morfología de los intermetálicos, a un costo relativamente bajo y prácticamente sin generación de contaminantes, tiene como desventaja que los productos obtenidos son cintas, lo que no permite su aplicación tecnológica directa y hace que sean necesarios procesos adicionales para poder consolidar el material en piezas con mayores dimensiones. Se piensa que esta consolidación es posible, ya que aunque existe una capa de alúmina en la superficie y que como se sabe de la metalurgia de polvos en base a aluminio, esta capa dificulta la unión de las partículas del material. Para el caso de las cintas obtenidas por solidificación rápida esta capa es sumamente delgada [9]. Teniendo en cuenta lo anterior, se piensa que la unión de los procesos de melt spinning bajo atmósfera controlada, compactado y extrusión (Figura 2) puede ser capaz de producir un material que conserve la morfología de solidificación rápida y que posea mayores dimensiones, que hagan posible la evaluación de sus propiedades mecánicas y su posterior aplicación.

Figura 2 Combinación de melt spinning, compactado y extrusión [10]

Por lo tanto, este trabajo busca desarrollar la metodología antes mencionada, así como hacer un análisis de los productos obtenidos a través de su caracterización estructural mediante pruebas de microscopía electrónica de barrido, de transmisión y rayos X. La parte mecánica se hará con ayuda de ensayos de tracción y microdureza. De esta forma se busca contribuir al estudio y desarrollo de este tipo de materiales nanoestructurados para su pronta aplicación.

El presente estudio se ha estructurado de la siguiente manera:

Capítulo I, se da un panorama sobre el aluminio y el níquel, sus propiedades y aleaciones, así como una descripción de los materiales compuestos y de los procesos utilizados.

Capítulo II, se expone el desarrollo experimental realizado por medio de los procesos antes mencionados. Se tratan también las técnicas de caracterización utilizadas para evaluar el desempeño del material obtenido.

Capítulo III, se muestran los resultados obtenidos y se hace un análisis de los mismos.

La exposición de las conclusiones se presenta en el Capítulo IV.

Adicional a estas cuatro secciones se anexa al final una serie de apéndices, donde se encuentran información complementaria, tal como las hojas de datos usadas y los diseños generados en la producción de este trabajo. Por último se presenta una sección de referencias donde se encuentran los datos bibliográficos de libros y artículos consultados.

HIPÓTESIS

Mediante el proceso de melt spinning, y a diferentes velocidades de la rueda (20, 30 y 40 m/s), es posible producir la aleación Al-Ni eutéctica (6.1wt%Ni) nanoestructurada con intermetálicos Al₃Ni de forma globular.

A través del cambio en la morfología de los intermetálicos Al_3Ni se puede obtener un desempeño superior en las propiedades mecánicas de la aleación Al-Ni eutéctica, que el alcanzado en aleaciones producidas de manera convencional.

El uso combinado de los procesos de fundición, melt spinning, compactado y extrusión permitirán la obtención de un material con una distribución homogénea de intermetálicos Al₃Ni dentro de una matriz de aluminio.

OBJETIVOS

Objetivo general

Obtener la aleación Al-Ni eutéctica (6.1wt%Ni) con intermetálicos globulares del tipo Al₃Ni distribuidos de forma homogénea al final de todo el proceso.

Objetivos particulares

Evaluar el efecto de la velocidad de la rueda (20, 30 y 40 m/s) en la morfología y distribución del intermetálico Al_3Ni .

Analizar la resistencia en tensión de la aleación antes y después de la solidificación rápida.

Evaluar si los procesos de compactado y extrusión son capaces de consolidar las cintas obtenidas por medio de melt spinning.

Obtener el cambio en la dureza del material después de cada uno de los procesos.

CAPÍTULO I

ANTECEDENTES

I.1 Aluminio, propiedades y aleaciones

El aluminio cristaliza en celda cúbica centrada en las caras que es estable desde - 269 °C y hasta el punto de fusión a 661 °C, su número de coordinación es de 12 y posee 4 átomos por celda unitaria. Dicho arreglo tiene un parámetro de red de 4.05×10^{-10} m y un radio atómico de 1.43×10^{-10} m. El aluminio es identificado por su excelente conductividad térmica y eléctrica, alta reflectividad de luz, buena resistencia a la corrosión debido a la capa de alúmina que se forma en su superfície de forma espontánea, así como su baja densidad ($2.7 \frac{B}{cm^3}$), su buena ductilidad y que no es tóxico. La conductividad eléctrica del aluminio puro representa un 61% de la conductividad eléctrica del cobre, mientras que su conductividad térmica lo ha llevado a ser un material indispensable en la fabricación de aletas para radiadores, utilizadas en unidades de calefacción y aire acondicionado. Su alta reflectividad de luz y resistencia a la corrosión lo hacen excelente para fabricación de reflectores ópticos de alto grado. Su ductilidad y naturaleza no tóxica lo hacen ser un excelente material para fabricación de envolturas y empaques con contenidos para consumo humano [11,12].

Si bien el aluminio tiene muchas propiedades útiles, en cuanto a propiedades mecánicas no posee un comportamiento excepcional, sobre todo cuando de resistencia mecánica y dureza se trata [13]. Para producir una mejora en estas propiedades el aluminio puede endurecerse mediante solución sólida, endurecimiento por precipitación y trabajo en frío. De hecho, se sabe que el primer sistema investigado de endurecimiento por precipitación fue el Al-Cu, y que las primeras aleaciones comerciales endurecidas por precipitación fueron a base aluminio. Dentro de los elementos agregados para su endurecimiento por precipitación, y con una alta solubilidad dentro del sistema, se encuentran el manganeso, que además ayuda a incrementar la resistencia a la corrosión, zinc, magnesio, cobre y el silicio [3,12].

Las aleaciones comerciales de aluminio, por tanto, tienen una base importante en estos elementos, el resultado ha sido la formación de sistemas como Al-Si-Cu, Al-Si-Mg, Al-Mg-Cu, Al-Si-Mg-Cu. Dentro de las aleaciones Al-Si-Cu el silicio proporciona excelentes características de moldeo, mientras que el cobre eleva la resistencia, aunque esto produce una reducción de la ductilidad y la resistencia a la corrosión. Aleaciones como 319 (6%Si-3.5%Cu) y 380 (8.5%Si-3.5%Cu) son las utilizadas de manera general para la fabricación de piezas fundidas de aluminio. Las aleaciones 308, 383 y 384, así como sus variantes, las cuales pueden contener hasta 3% de zinc, son ideales para la fundición en moldes permanentes, al igual que la aleación 333 (9%Si-3.5%Cu). Este tipo de aleaciones puede mejorar su dureza, resistencia y estabilidad de propiedades mediante un tratamiento térmico T6 completo.

Las aleaciones pertenecientes al sistema Al-Si-Mg se endurecen por medio del siliciuro de magnesio (Mg₂Si), de estas aleaciones la más utilizada es la 356 (7%Si-0.3%Mg) y A356 la de mayor pureza. Estas aleaciones presentan una excelente resistencia a la corrosión, moldeabilidad y soldabilidad. La 357 es similar a la 356, con una diferencia en el contenido de magnesio (0.5%Mg) y puede tratarse térmicamente para obtener un nivel de resistencia más elevado. Las aleaciones A356 y A357 son las versiones de alta dureza, poseen mayor ductilidad y se encuentran dentro de los materiales de primera calidad para aplicaciones militares y de aviación. Otras aleaciones pertenecientes a este grupo son la 359 (9%Si-0.6%Mg) y 360 (10.5%Si-0.5%Mg) que son mejores para aplicaciones que requieren alta resistencia a la corrosión comparadas con las aleaciones 319 y 380 de sistema Al-Si-Cu. En el grupo de las aleaciones formadas por Al-Si-Mg-Cu la combinación del magnesio y el cobre ofrece un aumento en la resistencia mayor que con el cobre o magnesio solos. Sin embargo, con este aumento en la resistencia se pierde en ductilidad y resistencia a la corrosión. De estas aleaciones la 355 (5%Si-1.3%Mg-0.5%Cu) y su versión de alta resistencia C355 son utilizadas para moldeo de primera calidad, a través de este proceso se pueden obtener propiedades de resistencia a la tensión aún mejores que la 354 (9%Si-1.8%Mg-0.5%Cu) tratada térmicamente. Aleaciones como la número 332 (9.5%Si-35Mg-1%Cu) que tiene un buen desempeño a alta temperatura, se utilizan en la fabricación de pistones para motor de combustión interna a través de moldes permanentes [2,14].

Como se ha dicho, estos elementos tienen una alta solubilidad en aluminio, misma que decrece con la temperatura. El resultado del enfriamiento en este tipo de aleaciones es una segregación de fases formadas por intermetálicos. Esta transformación de fase, la única que se presenta en el aluminio, ha hecho que sean posibles cambios en la estructura y por tanto en las propiedades de estas aleaciones usando tratamientos térmicos. Al final de este proceso, la aleación estará compuesta por una solución sólida como matriz, reforzada con partículas finas de intermetálico segregadas durante la precipitación. La Tabla 1.1 muestra los intermetálicos formados en estos sistemas de aleaciones comerciales, así como su estequiometría y microdureza [15].

 Tabla 1.1 Máxima solubilidad de componentes aleantes en aluminio sólido y principales fases de endurecimiento en aleaciones comerciales de aluminio [15]

Sistema	Máxima solubilidad en aluminio sólido (sistemas binarios)	Fase	Microdureza (HV, kgf/mm ²)
Al-Mg-Cu	17.4%Mg	$S(Al_2MgCu)$	560
	5.7%Cu	θ (Al ₂ Cu)	400-600
Al-Si-Mg	1.65%Si	Mg ₂ Si	530
Al-Si-Mg-Cu	1.65%Si	$W(AlSi_4Mg_5Cu_4)$	580

Las segregaciones secundarias finas de estas fases determinan el alto nivel de resistencia que alcanzan estas aleaciones y que las hacen elegibles para aplicaciones donde la seguridad estructural es crítica, tal como en la industria aérea. Estos intermetálicos no se han convertido en las principales fases de endurecimiento en aleaciones de aluminio solo por su alta dureza y solubilidad, sino porque se ha encontrado un método simple y efectivo para su refinamiento, el templado y envejecimiento. El efecto endurecedor de estos componentes puede depender de distintos parámetros, tales como: el grado de refinamiento, la fracción en volumen de la fase presente en el sistema, la dureza de la fase, así como la coherencia entre las segregaciones estables y metaestables con la matriz. Las investigaciones sobre los avances del endurecimiento por precipitación durante el siglo XX han definido el nivel de desarrollo de las aleaciones estructurales de aluminio, los estudios apuntan a que el uso de elementos con alta solubilidad en aluminio seguirá dando importantes resultados pero ya no aumentará el nivel de las propiedades de forma

importante, debido a que las posibilidades de alear al aluminio con dichos elementos y de mejorar el tratamiento térmico están prácticamente agotadas [2, 15].

Una nueva y prometedora manera de ampliar la gama de estudios sobre el endurecimiento por precipitación en dichas aleaciones y por tanto de seguir mejorando su rendimiento es agregar elementos poco solubles o virtualmente insolubles en aluminio solido capaces de formar fases intermetálicas de alta dureza. Para este propósito se han considerado en primer plano algunos metales de transición y tierras raras, tal como se muestra en la Tabla 1.2 [15]. Los elementos listados en esta tabla como aleantes no han sido explotados, tal como como se argumenta en los trabajos de V. I. Dobatkin, V. I. Elagin y G. A. Mudrenko. Esto debido a que no hay métodos simples para refinar los intermetálicos formados. Se puede observar en Tablas 1.1 y 1.2 que la dureza de los intermetálicos formados por aluminio con metales de transición y tierras raras supera a la producida por los intermetálicos en aleaciones comerciales, esto quiere decir, que con el método de refinamiento apropiado los intermetálicos de la Tabla 1.2 pueden llegar a ser componentes de endurecimiento sumamente eficaces en aleaciones de aluminio [15,16].

Sistema	Máxima solubilidad de componentes en aluminio sólido	Fase intermetálica	Microdureza (HV, kgf/mm ²)
Al-Cr	0.9%Cr	Al ₇ Cr	500 - 700
Al-Ti	0.26%Ti	Al ₃ Ti	600 - 700
Al-Zr	0.28%Zr	Al ₃ Zr	420 - 740
Al-Sc	0.40%Sc	Al ₃ Sc	260
Al-Co	0.02%Co	Al ₉ Co ₂	650 - 750
Al-Ni	0.04%Ni	Al ₃ Ni	700 - 770
Al-Fe	0.05%Fe	Al ₃ Fe	800 - 1100
Al-Fe-Si	0.05%Fe	α(Al-Fe-Si)	1100
Al-Nd	0.05%Nd	Al ₁₁ Nd ₃	350
Al-Ce	0.05%Ce	Al ₄ Ce	-

 Tabla 1.2 Máxima solubilidad de algunos metales de transición y tierras raras en aluminio, y microdureza de las fases intermetálicas formadas en sus aleaciones [15]

Apoyado en estas ideas, y en estudios realizados como los de G. González [17], donde se logró elevar la dureza de la aleación Al-4at%Ni aplicando la técnica de melt spinning a distintas velocidades, y J. Miranda [10], quien realizo un trabajo sobre las aleaciones Al-4.1Ni, Al-6.1Ni y Al-8.1Ni, logrando caracterizarlas mediante calorimetría diferencial de barrido, difracción de rayos X y microscopía electrónica de barrido[10], se ha decidido continuar en el presente trabajo con el estudio de las aleaciones Al-Ni, en particular con la aleación Al-6.1Ni, buscando un material que conjugue una alta resistencia, buena dureza y un elevado nivel de ductilidad, así como una buena capacidad de trabajo a altas temperaturas. La caracterización no solo estará compuesta por estudios de rayos X y microscopía electrónica de barrido, sino también por pruebas de tensión, microscopía electrónica de transmisión y ensayos de microdureza. A continuación, de la misma forma que se trató el aluminio, se dará un panorama general sobre el níquel.

I.2 Níquel, propiedades y aleaciones

El níquel presenta una estructura cristalina cúbica centrada en las caras, por tanto, 4 átomos por celda, un radio atómico de 1.24×10^{-10} m, un parámetro de red de 3.52×10^{-10} m, posee una densidad de $8.9 \frac{g}{cm^3}$ y su temperatura de fusión se encuentra en los 1455 °C [18].

Se utiliza principalmente como elemento de aleación en aceros inoxidables, 57% del consumo total de níquel, mientras que un 9.5% se utiliza en aceros de baja aleación termotratables. Las aleaciones en base níquel, a las cuales se destina alrededor de 13% del total, se emplean principalmente por su resistencia al calor y a la corrosión. Tal como el titanio, cobre y aluminio, el níquel se utiliza comercialmente puro. Las aleaciones base níquel son soluciones sólidas que contienen cobre, hierro, cromo, tántalo, tungsteno o molibdeno, las cuales presentan una estructura cubica centrada en las caras [12, 19]. Debido a que estos elementos son formadores de carburos, excepto el cobre, no solo favorecen al endurecimiento por solución sólida, sino también, con el carbono residual forman partículas de carburo para generar un efecto de endurecimiento por dispersión. Estas partículas, así como la dispersión de óxidos también son muy eficaces para aumentar de manera extraordinaria la resistencia al calor de estas aleaciones [19].

Las aleaciones a base de níquel presentan un gran número de elementos aleantes, así como cambios en sus propiedades, tal como se muestra en la Tabla 1.3 [2, 19].

Elementos aleantes	Efecto
Co, Cr, Fe, Mo, W, Ta	Endurecedores por solución sólida
Mo, W, Ta, Ti, Nb	Formadores de carburo tipo MC
Cr	Formadores de carburo tipo M ₇ C ₃
Cr, Mo, W	Formadores de carburo tipo M ₂₃ C ₆
Mo, W	Formadores de carburo tipo M ₆ C
C , N	Carbonitruros tipo M(CN)
Al, Ti	Forma Ni ₃ (Al, Ti) γ
Со	Eleva la temperatura de solvus de la γ
Al, Ti, Nb	Precipitados o intermetálicos endurecedores
Nb	Forma (Ni ₃ Nb) γ
Al, Cr	Resistencia a la oxidación
La, Th	Mejora la resistencia a la corrosión en
	caliente
Cr	Resistencia a la sulfuración
B, Zr	Aumento de la ductilidad a la ruptura
B, C, Zr	Causa segregación en el límite de grano

Tabla 1.3 Elementos aleantes en las aleaciones base níquel y su efecto [2, 19]

El níquel comercialmente puro y aleaciones con bajo contenido de aleantes presentan entre 94 y 99.5% de níquel como mínimo. Ejemplos de ello son la serie 200 (99.5%Ni), indispensable en las industrias procesadoras de alimentos y productos químicos, y la 301 (4~4.75% Al-0.25~1.00%Ti).

Dichas aleaciones presentan una excelente resistencia a la corrosión en ambientes reductores, así como buenas características de trabajo a alta temperatura y transferencia de calor. Su principal uso se encuentra en la evaporación de soluciones causticas y para trabajo con soluciones alcalinas a diferentes concentraciones [19]. Dentro de las aleaciones de alto contenido de níquel se encuentra la serie níquel-cobre o monel, la cual es muy similar a los aceros inoxidables en apariencia y resistencia a la corrosión. Las aleaciones pertenecientes a esta serie son difíciles de maquinar, pero la soldadura no las sensibiliza a la corrosión, como sucede con los aceros inoxidables austeníticos. Además de presentar una excelente resistencia a la corrosión en ambientes reductores, estas aleaciones también tienen una buena resistencia a la corrosión en agua de mar permitiendo su uso en submarinos nucleares y embarcaciones. La 400 (66%Ni-33%Cu) es la base de esta serie y puede ser magnética

según su tratamiento previo. La R-405 es una versión con contenido controlado de azufre, que mejora su maquinabilidad, así como la K-500, que es una variable endurecible por precipitación con presencia de titanio y aluminio, además de no magnética.

Por tratarse de soluciones sólidas homogéneas de níquel y cobre, estas aleaciones presentan mejor resistencia a la corrosión que el níquel y cobre por si solos. Con algunas excepciones, son más resistentes que el cobre en ambientes oxidantes y que el níquel en ambientes reductores. Estas aleaciones son capaces de soportar ácido fluorhídrico en concentraciones hasta el 92% y 110°C, la aleación más común de esta serie puede soportar ácido sulfúrico al 80% de concentración y ácido clorhídrico hasta 20%. Otro grupo importante de las aleaciones de níquel son los formados por níquel-cromo y níquel-cromo-hierro. La presencia de al menos 15% de cromo ofrece resistencia tanto a la oxidación como a la carburización a temperaturas por encima de 760°C, además de favorecer la formación de un oxido superficial protector [19].

La interacción de aleaciones níquel-cromo con atmosferas reductoras para el níquel y reductoras para el cromo puede producir oxidación interna, para reducir este efecto se agrega hierro. Estas aleaciones con alto contenido en níquel se utilizan como resistencia eléctrica para calentamiento en hornos, tal como la 80Ni-20Cr o Nichrome que posee gran resistividad eléctrica y puede utilizarse a temperaturas de hasta 1175°C. La 60Ni-24Fe-16Cr y 35Ni-45Fe-20Cr son capaces de trabajar a temperaturas menos rigurosas de 950°C a 1150°C además de ser más económicas. Los miembros más antiguos de este grupo de aleaciones son la 600 (76Ni-8Fe-15Cr), el material utilizado por excelencia en la fabricación de tuberías para vapor en centrales nucleoeléctricas, y la aleación Nimónica (80Ni-20Cr + Ti/Al). La aleación Nimónica y sus variantes, tales como 601, X750, 718 y Waspalloy son idóneas para muchas de las secciones más calientes de los motores de turbina de gas para aviación [12, 19].

Las aleaciones principales del grupo níquel-molibdeno son la Hastelloy B y B2, que es su versión pobre en carbono. Al tener como máximo un 1% de cromo en su contenido estas aleaciones se limitan a trabajo en ambientes reductores. La aleación Hastelloy B fue diseñada para soportar ácido clorhídrico a todas las concentraciones y temperaturas elevadas, sin embargo debido a su alto contenido en carbono (1%) y a la diferencia de

concentración entre el grano y las zonas cercanas a los límites de grano, producida por la formación de carburos de molibdeno con el calor durante la soldadura, se forman celdas galvánicas, por lo que la Hastelloy B presenta el mismo efecto de susceptibilidad a la corrosión que los aceros inoxidables [2, 19].

Tal como se observa en la Tabla 1.3, la unión de aluminio y níquel forma precipitados o intermetálicos endurecedores, además de mejorar la resistencia a la oxidación de la aleación. La formación de dos fases dentro de la aleación, es decir, la matriz de aluminio y los intermetálicos, permite analizar dicho material como un material compuesto, en donde los intermetálicos se pueden tomar como elementos de refuerzo, capaces de aumentar la resistencia del material. Debido a esto, se explicará a continuación el concepto de materiales compuestos, así como el efecto que producen los intermetálicos en la matriz de aluminio.

I.3 Materiales compuestos y endurecimiento

Aunque no existe una definición formal, universalmente aceptada, para materiales compuestos, debido a que en la literatura difieren ampliamente unas definiciones de otras, no se puede negar que un material compuesto siempre está formado por al menos dos fases distintas. Se puede decir entonces que un material compuesto es la combinación de dos o más materiales, de tal manera que cierta propiedad o propiedades deseadas mejoren su desempeño por medio de su combinación.

Dentro de un material compuesto se encuentra una fase dispersa o refuerzo, generalmente en forma de fibras o partículas, a lo largo de un medio continuo conocido como matriz, esto incluye los compuestos "in situ", es decir, aquellos en los que el refuerzo no se agrega en una etapa posterior a la formación de la matriz, sino que se desarrollan al mismo tiempo [20, 21]. Las propiedades de los materiales compuestos serán, por tanto, función de los componentes originales, de su proporción relativa dentro del sistema, así como de la distribución, orientación y geometría de la fase de refuerzo, además de la interacción en la interfaz matriz-refuerzo [21, 22].

La matriz tiene un gran peso en la ductilidad final del material, tal como el refuerzo lo tiene en la resistencia mecánica y dureza, independientemente de tratarse de una matriz polimérica, metálica o cerámica. Esta mejora se puede observar de manera general en el módulo de Young de los materiales compuestos, ya que se eleva a medida que aumenta la fracción volumétrica de refuerzo en el compuesto (Figura 1.1). Una ventaja adicional es que debido a la gran cantidad de elementos que se pueden utilizar como matriz y/o refuerzo, así como la gran cantidad de métodos para generarlos, se produce una disminución en la energía necesaria para obtener materiales compuestos comparada con la utilizada para generar materiales convencionales [23].

Figura 1.1 Módulo de Young en función de la fracción volumétrica de refuerzo [23]

En un sentido estricto la gran mayoría de los materiales metálicos en ingeniería son materiales compuestos, ya que son multifásicos o bien presentan distribución de partículas dentro de su microestructura, no se les considera como tal debido a que el término "material compuesto" se reserva para aquellos materiales que contienen macrocomponentes, es decir, los elementos de refuerzo se pueden ver a simple vista o con un aumento máximo de 10X. Por otro lado el reforzamiento debido a la dispersión de fases o partículas endurecedoras dentro de la matriz metálica puede tratarse como un continuo, razón suficiente para que una aleación pueda ser considerada y estudiada como un material compuesto. La influencia de cada uno de los constituyentes iniciales sobre las propiedades finales se puede aproximar mediante la regla de las mezclas:

$$P_{c} = \sum_{1}^{n} (P_{i} \cdot f_{i})$$

Donde P_c es la propiedad del material compuesto, P_i es la propiedad del componente iésimo y f_i es la fracción del componente i-ésimo de un sistema que contiene n fases.

El reforzamiento producido por las partículas, que pueden ser coherentes o incoherentes según sea su estructura con respecto a la estructura de la matriz (Figura 1.2), se estudia como una interacción entre estas y las dislocaciones. Dicho de otra forma, el efecto de las partículas consiste en retardar o impedir el avance de las dislocaciones a lo largo de la matriz. Tratándose de partículas coherentes, las dislocaciones avanzan o cortan a través de ellas como si formaran parte de la red original de la matriz. Sin embargo, esto se logra con una fuerza mucho más grande que cuando las dislocaciones de desplazan a través de una matriz sin partículas extrañas, por lo que se produce un incremento en la resistencia del material.

Para el caso de las partículas no coherentes, estas actúan como anclaje impidiendo el paso de las dislocaciones elevando la resistencia. Este fenómeno está gobernado por el tamaño y la distribución, ya que a un menor tamaño de partícula mayor será el grado de reforzamiento, del mismo modo que para una distribución más homogénea del refuerzo dentro de la matriz se producirá un mayor impacto en la resistencia del material [2, 23].

Figura 1.2 a) Partículas incoherentes, b) Partículas coherentes [2]

Este reforzamiento por partículas coherentes con la matriz, es parecido al que se obtiene con solutos sustitucionales dentro de una solución sólida, la diferencia es que en este caso, las partículas precipitan dentro de la solución, este proceso es también conocido como endurecimiento por precipitación [23].

Una fase de refuerzo capaz de producir este efecto positivo en la resistencia mecánica para el caso de las aleaciones de aluminio y que ha sido poco estudiada, haciendo referencia a las Tablas 1.2 y 1.3, es la formada por el intermetálico Al₃Ni ya que presenta una alta dureza, pero también una alto grado de fragilidad. Ejemplo de los esfuerzos por convertir esta fase intermetálica en un buen elemento de refuerzo dentro de una matriz de aluminio son los estudios realizados por Liming Kea y colaboradores, donde en una placa de aluminio 1060 con polvo de níquel y a través de friction stir processing, que consiste en producir deformaciones intensas y localizadas en la superficie del material (Figura 1.3), se obtuvieron de forma satisfactoria compuestos intermetálicos de Al-Ni [24].

Figura 1.3 Diagrama esquemático del compuesto Al-Ni producido por "friction stir processing" [24]

El conformado del material compuesto obtenido consistió en una matriz de aluminio con una distribución de partículas Al₃Ni, adicional a la formación de cristales de Al₃Ni₂ rodeados de Al₃Ni (Figura 1.4). El refinamiento de grano y el endurecimiento por precipitación, efectos ocasionados debido a la presencia del Al₃Ni, llevaron a un importante incremento de las propiedades en tracción del material comparada con el aluminio 1060 sin polvo de níquel (Figura 1.5), así como un aumento en su microdureza promedio ya que inicialmente con la placa de aluminio sin partículas se reportó una microdureza promedio de 53 HV mientras que en la placa con matriz de aluminio y distribución de fases intermetálicas se observa que el Al₃Ni tiene una microdureza promedio de 841 HV y el Al₃Ni₂ presenta 1283 HV [24].

Figura 1.4 Imagen de la matriz de aluminio con intermetálicos Al₃Ni y Al₃Ni₂ obtenida por medio de microscopio óptico [24]

Figura 1.5 Curvas de esfuerzo-deformación de 1060 Al y 1060 Al+Ni producidos por "friction stir processing" [24]

Corroborando el efecto producido en la resistencia de las aleaciones de Al-Ni por segundas fases, se tienen los ya mencionados trabajos realizados por G. González y colaboradores, donde se logró elevar la rigidez y por tanto la dureza de la aleación Al-

4at%Ni de 58 a 371 HV aplicando la técnica de melt spinning a velocidades de 21, 37 y 52 m/s [17]. Estudios también importantes en este campo, son los realizados por Uan y colaboradores, quienes reportaron un aumento en la resistencia mecánica de las aleaciones Al-Ni producido por la presencia de la fase intermetálica Al₃Ni. El compuesto estudiado estaba formado por Al-Al₃Ni producido de una aleación eutéctica Al-6.08Ni-0.2Fe-0.05Si-0.01Mg. Además de esto, también se ha analizado si las fibras hechas de Al₃Ni y solidificadas direccionalmente son capaces de restringir el flujo de una matriz dúctil para esfuerzos en compresión que no sean paralelos al eje de las fibras. Dichos autores concluyeron que el punto de cedencia en dicho material compuesto, que tiene como base la aleación Al-Ni eutéctica (6.1%Ni), está regido por los esfuerzos de corte en la matriz, así como por los ángulos formados entre las fibras de Al₃Ni y el eje de la carga aplicada [25, 26].

Con lo anterior, se sabe que para producir el mejor efecto en la resistencia del material compuesto es preciso tener una buena unión entre la matriz y el refuerzo, es decir, la interacción en la interfase entre ambos debe ser la óptima. Esto se dificulta para el caso del intermetálico Al₃Ni, ya que, si bien produce un aumento en la rigidez, también produce un grado de fragilidad en el material, debido a que presenta una forma acicular que promueve la concentración de esfuerzos en las puntas, y por tanto son el punto de partida de grietas. Para inhibir este efecto y tener una mejor interacción en la interfase matriz-refuerzo se busca cambiar la morfología acicular de los intermetálicos Al₃Ni a una globular por medio de la solidificación rápida por melt spinning. En la siguiente sección se describen las características de las fases presentes en el diagrama Al-Ni, así como las características generales de las aleaciones aluminio-níquel.

I.4 Diagrama de fases Al-Ni

Sistemas en base a aluminio presentan una ligera proporción de níquel debido a ciertas características específicas. Dentro de las aleaciones Al-Cu se agrega níquel para promover una buena resistencia en trabajo a altas temperaturas. En el caso de las aleaciones Al-Fe, sometidas a altas presiones de vapor y atmosferas agresivas, se utiliza el níquel para producir un incremento en la resistencia a la corrosión [27, 28]. Las aleaciones Al-Ni presentan alta resistencia al desgaste y buena resistencia a la corrosión, condiciones que por
sí solos aluminio y níquel no pueden alcanzar, tienen también una alta resistencia mecánica, producida por la segregación de fases secundarias duras, además de una buena resistencia a altas temperaturas [28, 29].

El diagrama de fases Al-Ni (Figura 1.6) consta de dos soluciones sólidas, (Al) y (Ni), ambas presentan una estructura cúbica centrada en las caras, además de 4 compuestos intermetálicos no estequiométricos, llamados así debido a que su relación de átomos no es fija ya que presentan un intervalo de composiciones, se trata de: Al₃Ni₂, AlNi, Al₃Ni₅, AlNi₃, y un compuesto intermetálico estequiométrico, ya que presenta una relación fija de 3 átomos de Al por cada átomo de Ni, Al₃Ni. Recientemente se tiene un gran interés en el compuesto Al-Al₃Ni eutéctico, que se forma aproximadamente en 6% Ni y 639.9 °C, tanto por su alta dureza como por sus buenas propiedades en trabajo a alta temperatura [27, 28].

Figura 1.6 Diagrama de fases Al-Ni [30]

En la solución sólida de aluminio a la temperatura eutéctica, la solubilidad sólida de níquel es de 0.05%, misma que decrece a 0.03%Ni a 626.9°C y hasta 0.006%Ni a 526.9°C. El níquel, por otro lado, presenta un amplio rango como solución sólida (γ), alcanzando una solubilidad de aluminio de hasta 11% a 1385 °C. En la Tabla 1.4 se muestran algunas de las características de las fases formadas en el diagrama Al-Ni, mientras que en la Tabla 1.5 se presentas las reacciones invariantes de dicho sistema [28].

Fase	Composición peso %Ni	Estructura	Grupo espacial
(Al)	0 a 0.05	Cubica centrada en las caras	Fm3m
Al ₃ Ni	42	Ortorrómbica	Pnma
Al ₃ Ni ₂	55.9 a 60.7	Trigonal	P3m1
AlNi	61.2 a 83	Tipo CsCl	Pm∃m
Al ₃ Ni ₅	79 a 82	Ortorrómbica	Cmmm
AlNi ₃	86 a 87.5	Tipo AuCu ₃	Pm3m
(Ni)	89 a 100	Cubica centrada en las caras	Fm3m

Tabla 1.4 Características de las fases presentes en el sistema Al-Ni [30]

Tabla 1.5 Reacciones invariantes del sistema Al-Ni [30, 31]

Reacción	Temperatura °C	Tipo de
	U	reaccion
$L \leftrightarrow (Ni) + AlNi_3$	1385	Eutéctica
$L + AlNi \leftrightarrow AlNi_3$	1395	Peritéctica
$AlNi + AlNi_3 \leftrightarrow Al_3Ni_5$	700	Peritectoide
$L + AINi \leftrightarrow Al_3Ni_2$	1133	Peritéctica
$L + Al_3Ni_2 \leftrightarrow Al_3Ni$	854	Peritéctica
$L \leftrightarrow Al_3Ni + (Al)$	639.9	Eutéctica

Este trabajo tiene como material de estudio un compuesto $Al-Al_3Ni$, por lo que en el siguiente apartado se hará referencia a las características dicho compuesto, así como a estudios previos basados en el mismo.

I.4.1 Compuesto intermetálico Al₃Ni

La fase Al₃Ni se forma aproximadamente a una temperatura de 853°C por medio de una reacción peritectica entre líquido con 28%Ni y Al₃Ni₂ con 55.9%Ni. El Al₃Ni se puede observar en el diagrama de fases como una línea recta exactamente en 42%Ni. Presenta además una estructura cristalina ortorrómbica (Figura 1.7), las relaciones axiales y ángulos correspondientes a este tipo de estructuras se incluyen en el Apéndice A, y pertenece al grupo espacial Pnma con 16 átomos por celda. Los parámetros de red para este compuesto son: a=6.611x10⁻¹⁰ m, b=7.366x10⁻¹⁰ m y c= 4.812x10⁻¹⁰ m, tiene una densidad de $3.95 \frac{g}{cm^3}$. Este compuesto se caracteriza por tener una alta dureza que medida en escala Vickers puede ir de los 714 a 785.4 kgf/mm² y presenta un calor de formación de -40 $\frac{kJ}{g \cdot mol}$ [28].

Figura 1.7 Estructura ortorrómbica del intermetálico Al₃Ni [32]

Los estudios para caracterizar y mejorar el rendimiento de la fase Al₃Ni como material de refuerzo muestran, tal como se encuentra reportado por Uan y colaboradores, que un material compuesto Al-Al₃Ni sometido a un proceso de extrusión en caliente (550 °C a 570 °C) presenta un comportamiento superplástico que permite al material tener deformaciones de hasta el 300% [25, 26]. Asimismo se ha demostrado que tanto la morfología, como el tamaño, la orientación y distribución de la fase Al₃Ni dentro de una matriz de aluminio afectan de manera importante las propiedades mecánicas de la aleación eutéctica Al-Ni. Se encontró también que el refinamiento de las estructuras Al₃Ni produce

un aumento en la resistencia a la corrosión en piezas producidas por canal angular, así como un aumento en la rigidez y por tanto en la dureza [33].

Se sabe también que compuestos Al-Al₃Ni producidos por infiltración de aluminio líquido en una preforma de níquel, y utilizados en la fabricación de anillos para pistones, han incrementado su resistencia al desgaste debido a la presencia del compuesto intermetálico [34]. Del mismo modo, Kita y colaboradores han estudiado las propiedades mecánicas de aleaciones Al-Ni producidas por evaporación de haz continuo de electrones, encontrando que depósitos de Al-Ni conformados por Al-Al₃Ni con un tamaño de grano menor a 100 nm, han presentado un incremento en la dureza en función del contenido de níquel, hasta valores de 320 HV con un contenido aproximado de 20% atómico de níquel. Dichos valores de dureza permanecieron prácticamente constantes aun aumentando el contenido de níquel. Se concluyó que tanto el refinamiento en el tamaño de grano como el reforzamiento producido por la dispersión de la fase intermetálica Al₃Ni contribuyeron a incrementar la dureza del material [35].

Con conocimiento de estas investigaciones, se ha escogido la composición eutéctica Al-6.1Ni como material de estudio, ya que en dicha composición se forma la fase intermetálica Al_3Ni dentro de la matriz de aluminio, lo que le da el potencial para ser una aleación, que además de ligera, presente también una buena ductilidad, elevada dureza, buena resistencia a la corrosión y al desgaste.

Por otro lado, los materiales cuya composición se encuentra en una zona eutéctica muestran ventajas tales como estabilidad microestructural y estabilidad en sus propiedades a largo plazo y temperaturas elevadas. Para las aleaciones Al-Ni, el crecimiento alineado de sus estructuras, que puede provocarse mediante la aplicación de campos magnéticos durante la solidificación, produce un incremento de las propiedades en tracción que no se presenta en las muestras con una morfología no alineada [36, 37].

I.5 Fundición

La gran mayoría de los materiales se producen partiendo de una fundición, que es el calentamiento de un material por encima de su temperatura de fusión durante un tiempo determinado. Esto debido a que es mucho más fácil alcanzar una composición homogénea

en el estado líquido, para su posterior vaciado dentro de un molde y solidificación. Después de alcanzar la temperatura de fusión, y una vez fundido todo el sólido, al líquido obtenido se le conoce como fundición. El líquido presenta una estructura más abierta para alojar los solutos y una menor viscosidad, lo que hace más fácil el mezclado. Por otro lado, las inclusiones o elementos indeseables dentro de los materiales también son más fáciles de eliminar en el estado líquido, previniendo afectar propiedades como la tenacidad.

La diferencia más sobresaliente entre la fase líquida y la fase sólida, que comienza a formarse con la disminución de la temperatura, es la perdida de fluidez del líquido. Asimismo, para la mayoría de los metales, se produce una contracción una vez solidificado el material, ya que el líquido presenta un volumen de 2 a 8% mayor que el sólido, las excepciones a este fenómeno son el plutonio, galio y bismuto. La fluidez y falta de rigidez permiten que la estructura del líquido este más abierta y pueda disolver átomos extraños con mayor facilidad. La fluidez también permite que el material fundido se agite por el flujo convectivo producido por la alta energía dentro del sistema en el calentamiento, con lo que de forma inherente se obtiene una mejor distribución del soluto y por tanto una composición más homogénea.

Para comenzar la solidificación debe producirse un cambio de energía libre negativo, después de esto ocurrirá un proceso de nucleación, homogénea o heterogénea según las condiciones en las que se encuentre el sistema, y crecimiento. La nucleación es el agrupamiento de los átomos en el orden de la nueva fase para formar núcleos dentro de la fase antigua, los núcleos estables crecerán en tamaño por el movimiento y reordenamiento de los átomos. Ya que es necesario alcanzar una energía de activación A para que se dé la formación de los núcleos, entonces la probabilidad de formar núcleos estará dada por:

$$n = N \exp(-\frac{A}{kT})$$

Donde N es el número de sitios donde pueden formarse los núcleos, k es la constante de Boltzmann y T la temperatura (K). Cuando la probabilidad de formar núcleos es la misma en todas partes dentro del sistema se dice que es una nucleación homogénea, sin embargo es sumamente complicado encontrar este tipo de nucleación. En la mayoría de los casos de solidificación se tienen lugares dentro del sistema donde la nucleación se da en forma preferente, debido a que en estos lugares la energía de activación es menor que en otros, a esto se le conoce como nucleación heterogénea. El sentido negativo de la energía necesaria para el inicio de la nucleación viene de la termodinámica, en donde un cambio de las propiedades de un sistema es producido por el estado final menos el estado inicial. El sentido negativo muestra entonces que en un principio había un exceso, en este caso de energía, la cual está libre o disponible para utilizarse como trabajo.

A pesar de la dificultad para alcanzar una nucleación homogénea, podemos obtener de esta dos principios fundamentales, el primero, que los núcleos deben alcanzar un tamaño crítico, si esto no ocurre entonces los núcleos vuelven a disolverse en el líquido. Segundo, la temperatura del líquido debe ser menor a la temperatura de solidificación para poder iniciar la solidificación. La diferencia entre la temperatura de solidificación y la temperatura de nucleación se conoce como subenfriamiento, y cuanto mayor es este menor es la energía de activación. El subenfriamiento del líquido mencionado en la nucleación homogénea generalmente no se observa, ya que en la práctica se vierte el líquido dentro de un molde que tiene una temperatura mucho más baja. Por lo tanto, la parte del líquido que entra en contacto con la superficie del molde alcanza rápidamente el subenfriamiento necesario, con lo que se favorece la nucleación en las paredes del molde.

Además de las paredes, las impurezas no metálicas presentes en la fase líquida también sirven como punto de inicio de la nucleación, a estos procesos se les conoce como nucleación heterogénea. Algunos de los numerosos núcleos formados siguen solidificando hacia el interior en forma perpendicular a las paredes del molde y opuesta a la dirección de extracción de calor. Este proceso de enfriamiento líquido-sólido sigue a lo largo de toda la solidificación [2, 5].

1.5.1 Horno de inducción

El equipo utilizado para la fundición del material de estudio en este trabajo fue un horno de inducción. Se trata de un dispositivo en el cual el calor es generado por inducción electromagnética a través de un conductor, cobre en este caso, el cual forma una bobina alrededor del crisol que contiene el material a fundir (Figura 1.8). La rápida generación de calor hace del horno de inducción un método para fundir no solo muy limpio, sino también

muy eficiente debido a que suministra un incremento de temperatura de forma rápida y localizada, producto de la geometría de la bobina utilizada, características que no pueden ser reproducidas por otros métodos de fundición. Otra ventaja que presenta este proceso es que en ningún momento entra en contacto con el material fundido, evitando así su contaminación [38].

El intercambio de calor propio del fenómeno de inducción puede ser controlado de manera eficaz, debido a que como se ha dicho, el modo y velocidad de calentamiento son reflejo de la geometría de la bobina, su forma es primordial en el diseño del sistema de calentamiento, ya que determina la eficiencia, versatilidad y volumen de material que puede ser tratado durante el proceso.

Figura 1.8 Bobina para horno de inducción [39]

La geometría de las bobinas de inducción varía según la aplicación y los requerimientos del material a tratar, por lo que se diseñan según los requerimientos de cada caso. Se puede decir entonces que no hay limitaciones en la forma o dimensiones de la bobina, lo cual supone otra gran ventaja, ya que no solo es posible calentar y fundir el material, sino que además, se puede calentar solo la porción deseada, incluso es posible calentar diferentes zonas y con diferentes temperaturas con un diseño adecuado de la bobina. Los componentes de un sistema de calentamiento por inducción en operación son: bobina, fuente de alimentación, etapa de soporte de la carga, estación de enfriamiento, crisol y un forro de material refractario que protege a la bobina de una eventual salida de líquido debido a la agitación. Actualmente para hacer fundición se utilizan con mayor

frecuencia este tipo de sistemas que los altos hornos, debido a que estos últimos generan demasiados contaminantes. La capacidad de los hornos de inducción va desde medio kilogramo hasta cien toneladas y son utilizados para fundir metales como cobre, hierro y aluminio, además de metales preciosos.

La frecuencia de operación va desde 50 Hz hasta 10 kHz, dependiendo del metal que se desea fundir, la capacidad del horno y la velocidad de fundición. Un horno de frecuencia elevada, más de 3000 Hz, presenta una velocidad de calentamiento mayor, y son utilizados generalmente en la fundición de aceros, dado que con una elevada frecuencia disminuye la turbulencia y se evita la oxidación. Durante su operación un horno de inducción emite un zumbido, esto es debido a la magnetostricción, cuya frecuencia puede ser utilizada por los operarios con experiencia para saber si el horno funciona correctamente o a qué potencia lo está haciendo. [38, 39]

I.6 Solidificación rápida

Los materiales metálicos solidificados rápidamente están constituidos hoy en día por un gran números de combinaciones de metales, así como de sus propiedades, siendo ya una alternativa seria para desplazar a las aleaciones obtenidas de forma convencional, es decir, aquellas producidas mediante la tecnología de lingotes y tratamientos térmicos posteriores. Los términos "Tecnología de solidificación rápida" y "Procesado por solidificación rápida" hacen referencia a técnicas y procesos utilizados en el laboratorio o la industria en los que la velocidad de enfriamiento del metal fundido excede los 10⁴ K/s y frecuentemente sobrepasa los 10⁸ K/s. A mediados de 1960 Pol Duwez, un científico en el área de desarrollo de materiales y colaboradores, examinaron por primera vez el efecto de altas velocidades de enfriamiento en metales fundidos durante su solidificación.

El interés de dichas investigaciones se centró en las consecuencias metalúrgicas producidas por el enfriamiento rápido en sistemas de aleaciones binarias como: platagermanio, oro-silicio, oro-germanio, cobre-plata y plata-silicio, concluyendo que mediante la solidificación rápida se producía: refinamiento extremo de tamaño de grano, una extensión de la solubilidad en estado sólido de un metal en otro, formación de nuevas fases cristalinas metaestables, así como una reducción considerable de la microsegregación en las aleaciones solidificadas y retención del metal fundido en la condición de líquido subenfriado o vítreo, es decir, se encontró que a través de dicho proceso se pueden forman vidrios metálicos [9, 40]. A partir de estas investigaciones se desarrollaron una gran variedad de procesos de solidificación rápida, los cuales se pueden clasificar en: métodos de pulverizado, de soldadura y de enfriamiento. Estos métodos tienen como principio que el metal fundido entre contacto, ya sea por convección o conducción, con un disipador de calor eficaz, con lo que se produce un material con una sección transversal muy pequeña. Las formas primarias de los productos obtenidos pueden ser partículas casi esféricas o en forma de escamas, filamentos, cintas o láminas planas [9].

En los métodos de pulverizado se dispersa el metal fundido mediante el uso de atomizadores a presión en gotas que solidifican sobre placas de un material con buena conductividad térmica. En los métodos de soldadura tanto la fusión como la solidificación se producen "in situ" en la superficie de contacto utilizada para la extracción de calor, mientras que en los métodos de enfriamiento se preserva la continuidad de la masa del metal fundido durante proceso de solidificación. Estos métodos no solo han producido un incremento en las velocidades de enfriamiento, sino también una disminución en el tamaño de grano, logrando mejorar las propiedades estructurales de los productos. La Tabla 1.6 muestra el cambio en la velocidad de enfriamiento y tamaño de grano obtenidos por solidificación rápida comparados con los alcanzados por métodos convencionales [9, 40].

Tabla 1.6 Velocidades de enfriamiento y tamaños de grano asociados a diversos procesos de
solidificación [9]

Velocidad de enfriamiento (K/s)	Designación	Procesos y productos	Espesor	Tamaño de grano
		A. PROCESADO POR		
		SOLIDIFICACIÓN NORMAL		
$10^{-6} - 10^{-3}$	Muy baja	Grandes fundiciones en	6 m	0.5-5 mm
		arena y lingotes		(500-5000 µm)
$10^{-3} - 10^{0}$	Baja	Fundiciones estándar y	0.2 - 6 m	50-500 μm
		lingotes		
$10^0 - 10^3$	Media	Cintas delgadas, fundición	6-20 mm	5-50 μm
		en dado y atomización		
		normal		

Velocidad de enfriamiento (K/s)	Designación	Procesos y productos	Espesor	Tamaño de grano
		B. PROCESADO POR		
		SOLIDIFICACIÓN RÁPIDA		
$10^3 - 10^6$	Alta	Atomización de polvo fino,	0.2-6 mm	0.5-5 μm
		melt extrusion y melt	(200-6,000	
		extraction	μm)	
$10^{6} - 10^{9}$	Ultra alta	Melt spinning, depositación	6-200 μm	0.05-0.5 μm
		por atomización, electro y		
		laser beam glazing		

 Tabla 1.6 Velocidades de enfriamiento y tamaños de grano asociados a diversos procesos de solidificación (continuación) [9]

Los métodos utilizados para estimar dichas velocidades de enfriamiento se dividen en directos e indirectos. Los directos implican la medición de las relaciones de temperatura/tiempo por medio de microtermopares o pirometría óptica, mientras que los métodos indirectos se relacionan con la medición de los espaciamientos dendríticos secundarios [41].

Dentro de los métodos de pulverizado se encuentran el de atomización de gas, atomización con agua, depositación por plasma, atomización de gas ultrasónico y atomización centrifuga, por mencionar algunos. En la sección de métodos de enfriamiento, los cuales requieren una fuente continua de metal fundido, se encuentran los procesos de "free jet melt spinning" y "chill block melt spinning", donde la masa de metal fundido es extruida a través de un orificio en la parte inferior de un crisol por una sobrepresión de gas inerte. Están también los procesos de colada de flujo plano o "planar flow casting" y que permiten la producción de cintas más anchas. Todos estos métodos son variantes del proceso de "melt spinning", en el cual el material solidifica al entrar en contacto con un disco hecho de un material con buena conductividad térmica, dicho método es utilizado en el presente trabajo y será descrito con mayor detalle en el siguiente apartado [9, 42].

I.6.1 Melt spinning

El "melt spinning" constituye hoy en día el método de solidificación rápida más utilizado para la producción de cintas largas o continuas de metal. Forma parte no solo de las bases, sino también del progreso de los métodos por solidificación rápida en desarrollo. Puede ser dividido en dos categorías: con o sin orificio, esto según sea vertido el líquido al momento de solidificar, y a su vez estas categorías pueden ser divididas en solidificado en vuelo o superficie. El proceso desarrollado en superficie es aquel en el que el material fundido, después de haber sido lanzado a presión del crisol por un gas inerte, choca contra una superficie la cual extrae el calor de forma casi instantánea, mientras que en vuelo la extracción de calor es realizada por el medio con el cual el material fundido entra en contacto. De estos procesos los más característicos son el "free jet melt spinning" y el "chill block melt spinning" (Figura 1.9) [40, 41].

Figura 1.9 Procesos de a) "free jet melt spinning" y b) "chill block melt spinning" [9]

El "free jet melt spinning" consiste en eyectar el material fundido a través de un orificio, el metal entra en contacto con un medio, ya sea líquido o gas, el cual funge como extractor de calor. Típicamente los orificios utilizados en esta técnica para expulsar el material van de los 50 a los 1250 μ m, se presenta además un aumento en la presión de eyección del gas con la disminución del orificio. Se ha encontrado que los mejores materiales para usar a manera de crisol y que presentan facilidad para producir orificios sin romperse son la alúmina y el sílice cristalizado. Las velocidades de eyección de esta técnica van de los 2 a los 5 m/s, mientras que la velocidad de enfriamiento es de hasta 10⁵ K/s [9, 40]. Por otro lado, el chill block melt spinning utiliza una bobina que conectada a una

fuente de poder genera inducción, el material se calienta y se funde para después ser lanzado a presión a través de un orificio en la base del crisol, en este caso el material no es solidificado por el medio, sino por un disco de cobre, el cual gira hasta 10,000 r.p.m. [40, 41].

Masumoto y colaboradores utilizaron esta técnica para fundir y solidificar rápidamente niobio, cromo y aleaciones de titanio en una cámara con atmosfera de argón (Figura 1.10), dichas muestras fueron utilizadas para evaluar el efecto de la solidificación rápida en las propiedades de tensión [42].

Aunque el cobre es el material más utilizado para la fabricación de la rueda con la cual se solidifica el material, ya que tiene una buena conductividad térmica (385 W/mK), se sabe que también se han utilizado otros materiales, como acero, cromo y molibdeno. De manera general, se produce una disminución en el grosor de la sección transversal de la cinta con el aumento en la velocidad de rotación de la rueda, tal como encontraron Liebermann y colaboradores, quienes estudiaron una aleación Fe₄₀Ni₄₀B₂₀ solidificada en una rueda de cobre de 250 mm en la cual a 26.6 m/s se obtuvieron cintas con 37 μ m de espesor, mientras que a 46.5 m/s se redujo a 22 μ m.

La cámara donde se lleva a cabo tanto la fusión como la solidificación puede encontrarse en vacío o bien presentar una atmosfera con un gas inerte, comúnmente argón o helio, dependiendo de las características físicas de la carga a tratar. Materiales susceptibles a la oxidación son trabajados en atmosferas con gas inerte, lo cual no solo reduce la oxidación, sino que provee mejores características de textura en la superficie y definición en los bordes de las cintas [9, 40].

La eyección del material fundido a través de la punta del crisol es lograda mediante la presurización de gas. La presión de eyección esta por lo general entre 5 y 70 kPa, según las exigencia del material o las características de geometría deseadas ya que a mayor presión se produce una mayor dispersión de cintas, generándose fibras cortas y partículas [9].

Figura 1.10 Ilustración esquematica de equipo para "melt spinning" [42]

Como se ha visto, existen muchos factores que afectan el desempeño de un material trabajado con melt spinning, tales como la velocidad de enfriamiento, la velocidad de rotación del disco, la atmósfera en la que se lleva a cabo o la presión de eyección. Una ligera variación de estos parámetros puede provocar una gran variación en la microestructura y las propiedades de las cintas obtenidas. Por esta razón, es necesario tener un buen control sobre los parámetros del sistema. El parámetro más importante en el desarrollo microestructural es tener una alta velocidad en la interfase sólido-líquido, debido a esto un problema asociado al melt spinning es que una acumulación de material sobre el disco reducirá la eficiencia en la transferencia de calor afectando la velocidad en la interfase y provocando que se formen microestructuras muy gruesas [9,41].

Investigaciones, como la realizada por la Universidad de Sheffield, han mostrado que el melt spinning posee un gran potencial para lograr ser una de las técnicas capaces de mejorar de manera significativa las propiedades mecánicas de los materiales. La investigación de este grupo de trabajo se centró en el desarrollo de instalaciones de laboratorio para producir aleaciones de aluminio y estudiar sus propiedades [43, 44]. En el presente trabajo y después de hacer melt spinning en el material Al-6.1Ni, se realizó una consolidación a través de compactado y extrusión, procesos que son analizados en la siguiente sección.

I.7 Compactado y extrusión

El compactado es un proceso mecánico con el cual se busca consolidar un material que presenta buenas propiedades mecánicas pero que no cuenta con una geometría útil para su aplicación. Tal es el caso de las cintas producidas por melt spinning las cuales son compactas de modo que la consolidación de sus constituyentes permitan obtener una muestra cuya forma y dimensiones favorezcan la distribución homogénea de las propiedades mecánicas además de provocar un grado de endurecimiento por deformación.

Los dados de compactación son producidos según los requerimientos de cada caso, siendo diferentes en su forma según el material a ser tratado y la presión que sea aplicada. El compactado puede llevarse a cabo en prensas hidráulicas o automáticas, alcanzando presiones de 50 toneladas, y realizarse en uno o varios pasos según sea necesario, durante un tiempo de compactación determinado. El compactado es típicamente un proceso intermedio ya que solo busca unir de forma sencilla el material, es decir en piezas tales como cilindros, las cuales aunque ya presentan una forma definida, tienen aún un grado de porosidad en el interior. Debido a esto se busca un proceso secundario el cual aplique deformaciones más severas, tal es el caso de la extrusión [2, 5].

La extrusión es un proceso de deformación plástica en el que un bloque de metal es forzado a fluir por medio de un pistón o un punzón a través de un dado, el cual presenta una reducción en su área transversal de la entrada a la salida, dicha reducción de área se presenta de manera paulatina de modo que se favorezca la fluencia del material evitando el atascamiento y reduciendo la fricción mediante lubricantes. Mediante el proceso de

extrusión se busca conformar el material de modo que la deformación plástica severa logre una buena distribución en el interior del material reduciendo la porosidad al mínimo. Según la forma en que se desarrolla el proceso la extrusión se puede considerar como directa, si el metal extruido fluye en la dirección de avance del punzón o indirecta, si se presenta el caso contrario, además de en frío o caliente. Los principales elementos de una prensa para realizar extrusión son: el cabezal fijo, cámara de compresión o camisa, dado y soportes, pistón con cambios para diferentes geometrías de punzones, sistema hidráulico y sistema de control (Figura 1.11) [45]. En cuando a las reducciones producidas se tienen reportadas desde razones simples como 1:2 hasta deformaciones muy severas que presentan 1:400 en aleaciones muy suaves [5].

Figura 1.11 Esquema del proceso de extrusión [45]

Habiendo expuesto los procesos utilizados para el desarrollo de este trabajo, se continuará ahora con el capítulo II, donde se expone el desarrollo experimental, además de los métodos utilizados para la caracterización de las muestras obtenidas.

CAPÍTULO II

DESARROLLO EXPERIMENTAL

II.1 Preparación de la aleación maestra

El material de estudio en este trabajo es la aleación Al-Ni eutéctica, 6.1% en peso de níquel, dicha composición se encuentra entre las fases α -Al y Al₃Ni, tal como se muestra en la Figura 2.1. Para la producción de la misma se prepararon 4 lotes, cada uno con un peso total de 300 g, es decir 281.7 g de aluminio y 18.3 g de níquel.

Figura 2.1 Zona eutéctica de la aleación Al-Ni [30, 46]

Una vez calculados los pesos correspondientes se llevó a cabo el pesaje, tanto del aluminio (gránulos irregulares de 15 mm en promedio y 99.9% de pureza, Alfa Aesar), como del níquel (gránulos regulares de 3-25 mm de diámetro y 99.95% de pureza, Alfa Aesar) en una balanza con un límite de 300 gramos y una precisión de 0.001 gramos (Figura 2.2).

Figura 2.2 Balanza de precisión VELAB VE-300 (IIM-UNAM) con gránulos de níquel y aluminio

II.2 Fundición

Realizado el pesaje de cada uno de los lotes, se procedió a revestir el interior del crisol de grafito con una capa de nitruro de boro, esto para prevenir una posible contaminación de la aleación por efecto de partículas de carbono provenientes del crisol. Una vez cubierta esta zona del crisol, se colocó al interior de una mufla a una temperatura de 70 °C durante 30 minutos para favorecer el secado. El vaciado del metal líquido se realizó en una lingotera de acero, a la cual se le removió el óxido de fundiciones anteriores y se le adapto un embudo, fibra de vidrio en las orillas y cable recocido alrededor, esto para evitar fugas al momento de colar (Figura 2.3).

Figura 2.3 Lingotera

La fundición se llevó a cabo en un horno de inducción Leybold-Heraeus, el cual está constituido por la fuente de radiofrecuencia, cámara de fundición, bobina, sistema de vacío, sistema de enfriamiento y sistema de control (Figura 2.4). En la base de la bobina se colocó un ladrillo refractario y encima una capa de fibra de vidrio, a manera de soporte para el crisol, del mismo modo las paredes interiores de la bobina fueron forradas con fibra de vidrio, esto para evitar el contacto del molde con la bobina. De igual manera se hizo una cama de ladrillos refractarios al interior de la cámara sobre la base, con el fin de sostener la lingotera y de modo que tampoco entrara en contacto con la bobina para evitar un corto.

Teniendo certeza de que el material, una vez fundido, sería colado sin problema al interior de la cámara, se dispuso la carga de aluminio y níquel correspondiente a uno de los lotes preparados al interior del crisol. Preparado lo anterior se cerró la cámara del horno y se hizo vacío, una vez alcanzados los 0.013 mBar (10^{-2} Torr) se llenó la cámara con argón, esto se hizo 3 veces para remover el oxígeno de la cámara, previniendo así la oxidación del metal.

Figura 2.4 Horno de inducción Leybold-Heraeus (IIM-UNAM)

Una vez lograda la atmósfera deseada, se encendió la fuente de radiofrecuencia y se puso en marcha el horno, alcanzando una frecuencia de 1.5 kHz, esto para calentar el crisol de la manera más homogénea posible, para después llegar a los 2.8 kHz y se fundiera de forma correcta el material. Ahí se mantuvo la frecuencia alrededor de 10 minutos, para permitir que las corrientes de convección producidas mezclaran de forma homogénea el níquel y el aluminio en estado líquido. Logrado lo anterior, se vacío por completo el metal líquido en la lingotera, se extrajeron los gases producidos por la fundición y se esperó hasta un par de horas para poder abrir la cámara y extraer la lingotera. Este proceso se realizó para cado uno de los lotes. Por lo tanto, al tratarse de 4 lotes, se obtuvieron 4 lingotes de la aleación aluminio-níquel eutéctico.

II.3 Melt spinning

Para esta técnica se emplearon crisoles de cuarzo de una pulgada de diámetro y 4 pulgadas de largo, con un orificio en la punta de 0.8 mm. Cada uno de los crisoles, 12 en total, fue revestido por dentro en la base con nitruro de boro, para evitar la reacción de la aleación con el cuarzo. Se emplearon 300 gramos de la aleación maestra producida en lingotes por fundición para cada una de las velocidades de disco (20, 30 y 40 m/s). Dichos lingotes fueron cortados en piezas más pequeñas de modo que pudieran entrar en el crisol y que cada carga fuera de al menos 8 gramos. El equipo de melt spinning funde el material dentro del crisol con el calor generado por la inducción en una bobina, la cual se fabricó de 4 espiras con tubo de cobre de ¹/₄, además se forro con cinta de fibra de vidrio y se le colocaron boquillas para acoplarla al sistema de enfriamiento del equipo (Figura 2.5).

El equipo para hacer melt spinning está formado por la cámara de fundición, tubo colector de cintas, fuente de radiofrecuencia y bobina, sistema de vacío, sistema de enfriamiento, sistemas de control de potencia y de velocidad, sistema de gas de eyección y por una rueda de cobre de 200 mm de diámetro y 3 cm de ancho (Figura 2.6), en la cual se impacta el material fundido produciendo la solidificación rápida.

Figura 2.5 Bobina

Una vez colocada la carga de material dentro del crisol, este se sujetó en la parte superior de la cámara, permaneciendo rodeado por la bobina con una inclinación de 10° con respecto a la normal de la tangente a la rueda, esto para favorecer no solo el proceso de enfriamiento, permitiendo un mayor tiempo de contacto entre la rueda y el líquido eyectado, sino también la obtención de cintas de mayor longitud.

Figura 2.6 Equipo para realizar melt spinning (IIM-UNAM)

La distancia entre la rueda y la punta del crisol, por donde es eyectado el material, fue de 5 mm (Figura 2.7). Debido a que la velocidad de la rueda solo puede controlarse con la ayuda de un tacómetro, se realizó el cálculo de las revoluciones por minuto correspondientes a cada una de las velocidades empleadas (20, 30 y 40 m/s), para esto se utilizaron las siguientes relaciones:

$$v = \omega \cdot r \tag{1}$$

$$\omega = 2\pi \cdot f \tag{2}$$

Donde v es la velocidad, ω velocidad tangencial, r el radio de la rueda y f el número de vueltas o revoluciones por unidad de tiempo. Sustituyendo la ecuación (2) en (1):

$$v = 2\pi \cdot f \cdot r$$

Teniendo en cuenta que se trata de revoluciones por minuto:

$$v = \frac{2\pi \cdot (rpm) \cdot r}{60}$$

Aislando el término (rpm) y sabiendo que el radio de la rueda es de 100 mm (0.1 m), se tiene entonces:

$$(rpm) = \frac{v \cdot 60}{2\pi \cdot 0.1}$$

Dicha ecuación se utilizó para calcular las revoluciones por minuto para cada velocidad, tal como se muestra en la Tabla 2.1.

Velocidad de la rueda (m/s)	Velocidad de la rueda (rpm)
20	1909.85
30	2864.78
40	3819.71

Tabla 2.1 Velocidades de la rueda en m/s y rpm

La velocidad se ajustó al inicio de cada experimento con el control y un tacómetro manual. Habiendo colocado el crisol y ajustado la velocidad, se cerró la cámara para después alcanzar un vacío de 0.011 kPa, entonces se llenó la cámara con helio, el cual favorece la textura en la superficie y la definición en los bordes de las cintas, además de prevenir la oxidación. La presión en la cámara con helio alcanzo el valor de la presión atmosférica, este procedimiento se realizó en tres ocasiones para cada experimento antes de fundir el material. Para eyectar el material, el gas utilizado también fue helio, cuya presión de salida fijó en 23.7 kPa. Esta presión de eyección se obtuvo mediante prueba y error, logrando que el material no se atascara en la punta del crisol y que, por otro lado, se solidificara en forma de cintas y no de polvo.

Figura 2.7 Configuración de la cámara de melt spinning

Teniendo todos los parámetros anteriores preparados, y con el sistema de enfriamiento trabajando, se encendió la fuente de radiofrecuencia, llevándola solo a un 10% de su capacidad, permaneciendo en dicho valor por 10 minutos. Después de esto se inyecto el material líquido abriendo la válvula de eyección y apagando la fuente de manera simultánea, solidificando el material al contacto con la rueda de cobre y terminando en forma de cintas al fondo del carril. Al final del experimento, se ventilaron todos los gases producidos en la cámara durante el mismo, para después abrir la apertura del colector y recoger las cintas. Lo anterior se realizó con 300 gramos de aleación para cada una de las velocidades, 10 gramos a la vez. Además de 30 gramos de aluminio puro con las mismas velocidades.

II.4 Compactado y extrusión

Debido a que la geometría de cintas hace difícil la caracterización del material en cuanto a pruebas mecánicas, se decidió consolidarlo en dos etapas. La primera consiste en una consolidación sencilla a través de su compactado, mientras que la segunda en una deformación severa a través del proceso extrusión. Para el primer proceso se utilizó una prensa HERZOG HP 40 automática, con capacidad máxima 400 kN y 30 minutos de trabajo a compresión continua. El dado empleado para este fin está fabricado de acero D2, debido a sus buenas propiedades mecánicas en este tipo de procesos, se utilizó disulfuro de molibdeno como lubricante en las paredes interiores del dado. La configuración del experimento se dispuso tal como se muestra en la Figura 2.8.

Figura 2.8 Prensa automática HERZOG HP 40 (IIM-UNAM) y posición del dado

Los parámetros de la prensa utilizados para comprimir las cintas se fijaron en 100 kN y 30 minutos de trabajo. Ajustado esto, se introdujeron las cintas de la aleación Al-Ni eutéctica (correspondientes a una sola velocidad de "melt spinning" para cada experimento) en el dado previamente lubricado. Las cintas al interior del dado alcanzaron una altura de 20 mm. Después de esto, se colocó el dado en la prensa y se aplicó una carga de 20 kN durante 3 segundos, esto solo para reducir el volumen de las cintas, permitiendo de esta manera introducir más material antes de realizar el compactado final, el cual se realizó una vez alcanzada la altura de 35 mm de cintas en el interior del dado, con los parámetros de carga y tiempo antes mencionados de 100 kN y 30 minutos.

Los compactados tienen las dimensiones de 15 mm de diámetro y aproximadamente 30 mm de largo, debido a que posteriormente serían introducidos en el dado de extrusión, el cual presenta un carril de 40 mm y 16 mm de diámetro. Habiendo compactado las cintas de cada una de las tres velocidades de "melt spinning", se utilizaron los compactados correspondientes a 20 m/s para ser procesados por extrusión, esto debido a que presentan la mayor cantidad del intermetálico Al₃Ni distribuido de forma homogénea en la matriz. La prensa utilizada fue una Montequipo para laboratorio de 140 toneladas y 7.5 HP (Figura 2.9) [46].

Figura 2.9 Montequipo 140 TON (IIM-UNAM)

Para realizar el primer experimento se utilizó un dado de extrusión compuesto por: camisa exterior, dado interior con orificios de extracción y reducciones de carburo (Figura 2.10), el cual se introdujo al interior de una camisa de soporte (diámetro exterior 22.7 cm, diámetro interior de 7 cm y altura de 21.7 cm) fabricada con acero D2 para evitar la expansión severa del dado con el avance de la extrusión.

Figura 2.10 Dado de extrusión inicial [10]

La prensa tiene una carrera de 16 pulgadas las cuales no fueron suficiente para producir un efecto del punzón sobre la muestra. Por lo tanto se elaboraron dos soportes para levantar el dado dentro de la camisa y permitir que la carrera del pistón sumada a la del punzón permitiera realizar el proceso. Para estos soportes se escogió acero 1048, ya que es comúnmente utilizado como soporte en procesos de extrusión o compresión. Se hizo un temple a dichos soportes, buscando elevar su dureza, calentándolos en un horno Thermolyne 46100 (Figura 2.11) hasta 780 ° C durante 2 horas, para finalmente enfriarlos súbitamente en agua. Una vez hecho lo anterior, se dio un maquinado ligero a la superficie de los soportes buscando una textura más lisa que redujera la fricción al insertarlo en la camisa de acero que soportaría el experimento.

Figura 2.11 Horno Thermolyne 46100

37

Realizado lo anterior se redujo el espacio entre el dado y el punzón que sería sujetado por el pistón de la prensa, alcanzando la configuración mostrada en la Figura 2.12. Además se colocó la camisa de apoyo al centro de la mesa de trabajo de la prensa, lubricando la pared interior con disulfuro de molibdeno. Después de esto, se insertó el dado de extrusión en la camisa de apoyo, la camisa exterior y el dado con orificios fueron acoplados y lubricados (también con disulfuro de molibdeno) previamente, se colocaron las bases del pistón, acoplando el punzón con la base superior y se puso en marcha la prensa bajando lo más lento posible el punzón, se hicieron tres experimentos con esta configuración.

Figura 2.12 Posición del dado sin y con soporte

Dicho experimento se tomó como una base para hacer el rediseño de punzón, dado y camisa exterior, sumado a esto se decidió rectificar las reducciones de carburo de 0.625" a 0.622", buscando una mayor sujeción al interior del dado y evitando deformaciones que pudieran fracturar el carburo. De este rediseño se obtuvieron dos sistemas punzón-dadocamisa exterior fabricados de acero K-340 (templado y doble revenido) y acero 4140 respectivamente, de los cuales el primero se trabajó de la manera antes descrita en la prensa Montequipo (dichos diseños se muestran en el Apéndice C). La prensa Montequipo se opera de modo manual, por lo que no es posible cuantificar las longitudes recorridas por el punzón, velocidades o cargas producidas a lo largo del experimento. Debido a esto se recurrió a una prensa Instron con una carga menor a la anterior (25 toneladas) pero con controles de desplazamiento, velocidad y carga (Figura 2.13).

Figura 2.13 Prensa INSTRON (IIM-UNAM)

Para esto se diseñaron dos bases que funcionaran como acopladores, entre la celda de carga y el punzón, y otra entre la plataforma de trabajo y el pistón de la prensa (Figura 2.14).

Figura 2.14 Bases para acoplamiento a) celda de carga-punzón, b) plataforma de trabajo-pistón de la prensa

Hecho lo anterior se fijaron los parámetros de la extrusión, para lo cual se midió la longitud inicial y final (-38.10 mm y -27.039 mm) a la cual subiría el pistón, a una velocidad de 10^{-3} mm/s ($6x10^{-2}$ mm/minuto) y una carga máxima de 24.5 toneladas. Se utilizó el segundo dado rediseñado en la configuración mostrada en la Figura 2.15 para este experimento, el cual se realizó a lo largo de seis horas.

Figura 2.15 Configuración dispuesta para el proceso de extrusión en la prensa INSTRON

Concluido lo anterior, y con las mismas medidas de longitud inicial y final, se fijó una nueva velocidad del pistón ($2x10^{-1}$ mm/minuto), con la cual se realizaron dos experimentos más, de 2 y 4 horas respectivamente, cabe señalar que los experimentos realizados con la prensa INSTRON utilizaron un carburo con reducción de 1:2.

II.5 Microscopía Electrónica de Barrido (SEM)

Es una técnica muy utilizada en la caracterización superficial de materiales ya que conjuga una gran cantidad de aumentos con una buena resolución. Los requerimientos necesarios para que un material sea analizado por SEM son: la preparación de las muestras, ya que estas deben presentar una superficie pulida a espejo, tener un grado mínimo de conductividad eléctrica en el material y que sus dimensiones no sobrepasen las del portamuestras.

El principio de operación de esta técnica se basa en la recolección y análisis de la emisión de electrones retrodispersados o secundarios provenientes de una muestra conductora previamente excitada con un haz de electrones. El haz de electrones se enfoca mediante un condensador electromagnético, el cual redirige el haz en una línea recta que incide de forma perpendicular sobre la muestra. Al llegar el haz a la muestra se dispersa en función de la energía imprimida sobre el haz y los elementos constituyentes de la muestra.

Este proceso se ejemplifica en la Figura 2.16, en donde el haz producido por el cañón de electrones viaja a través de la columna del microscopio por un sistema de lentes magnéticas condensadoras, primaria y secundaria, y bobinas deflectoras o de rastreo para incidir en la superficie de la muestra. Después de esto se recolectan y analizan los electrones desprendidos de la muestra mediante un colector y un amplificador, los cuales al responder de manera instantánea permiten hacer mapeos de la superficie de forma rápida (Figura 2.16) [47, 48].

Figura 2.16 Esquema de un microscopio electrónico de barrido [47]

Para el análisis de microscopía electrónica de barrido se utilizó el equipo JEOL 7600F, con una capacidad de operación de 100 V hasta 30 kV. El sistema de detección de este aparato presenta dos sistemas de sensores para emisión de electrones secundarios y uno para electrones retrodispersados (Figura 2.17). Se sometieron muestras a este estudio para poder visualizar el cambio en la microestructura de la aleación Al-Ni eutéctica al final de cada uno de los procesos aplicados, además se obtuvieron espectros de rayos X por EDS (energy dispersive X-ray spectroscopy) para hacer el análisis químico de las muestras.

La técnica EDS utiliza el espectro de rayos X emitido por la muestra, el cual se produce al bombardear el material con un haz de electrones enfocado, lo que permite obtener un análisis químico localizado. Con este método el análisis cualitativo implica la identificación de elementos que componen la muestra mediante los picos presentes en el espectro, mientras que el análisis cuantitativo requiere la medición de intensidades de los picos para cada elemento en la muestra, lo cual permite la determinación de las concentraciones de los elementos y fases presentes.

Figura 2.17 Microscopio Electrónico de Barrido JEOL 7600F (IIM-UNAM)

Las muestras de fundición por colada (dos por cada lingote) fueron cortadas con dimensiones de 2 cm x 0.8 cm x 0.8 cm. Se desbastaron los vértices con lija del número 100 y a continuación se les hizo metalografía, la cual empezó con lijas del 400 y siguió con 600, 1000, 1200, 1500 y 2000, en ese orden, para favorecer el pulido de las muestras. Después de esto, las muestras fueron trabajaras con una pulidora a 350 rpm y una solución de alúmina de 0.05 µm. Este proceso ceso al haber alcanzada un acabado espejo sobre la superficie de la muestra. Para terminar, se removieron los residuos de alúmina en cada una de las probetas sometiéndolas de manera individual a ultrasonido con un equipo COLE PALMER 8890 en acetona durante 15 minutos, posteriormente fueron secadas.

Las cintas obtenidas por melt spinning (20, 30 y 40 m/s) no requirieron ningún tratamiento previo en su superficie para ser estudiadas por SEM, mientras que para el análisis de estas cintas en la zona de los bordes, tanto para la composición eutéctica como para cintas de aluminio puro, se utilizó resina epóxica y un molde para poder encapsularlas, colocando varias cintas de la misma velocidad de proceso separadas, y de canto sobre una

base de cobre ranurada, esto para provocar que el encapsulado presentara las condiciones de conductividad necesarias.

Se encapsuló la aleación eutéctica colada a 20, 30 y 40 m/s, además de las cintas de aluminio puro producidas con las mismas velocidades. Una vez consolidada la resina, se sacó del molde y se desbastaron ambas bases, probando con un multímetro que había conductividad. La superficie de cada uno de los consolidados que sería sometida a SEM fue sometida al mismo proceso de metalografía que las muestras de fundición, excepto en el ultrasonido, el cual se realizó con alcohol isopropílico para evitar que la resina reaccionara con la acetona. De este mismo modo, se prepararon las muestras obtenidas por compactado, tanto la muestra a ser analizada en la base como la de perfil. Por último, la muestra producida por extrusión, también fue encapsulada para poder ser vista por SEM. Sin embargo, debido a su geometría, fue seccionada por la mitad con una cortadora de diamante ALLIED TECHCUT 4 a 150 rpm. Una vez cortada, se trabajó con la muestra que presentaba la geometría más completa y se desbastó la resina que cubría la base de modo que presentara conductividad (Figura 2.18).

Figura 2.18 Muestras para realizar SEM de a) fundición, b) melt spinning, c) encapsulado de cintas de canto y d) extrusión

II.6 Espectrometría de Fluorescencia de Rayos X (XRF)

Esta técnica consiste en bombardear un material con rayos X, el cual debido a esta excitación emite rayos X secundarios o fluorescentes característicos los cuales al ser recolectados y analizados permiten cuantificar los elementos que componen dicho material. Este fenómeno es aprovechado para análisis elemental y análisis químico, siendo capaz de detectar elementos desde magnesio hasta uranio. Se utiliza particularmente en la investigación de metales, vidrios y cerámicos. Las ventajas de esta técnica incluyen el ser una técnica no destructiva, entregar resultados de las composiciones en segundos, identificar si la muestra pertenece a una aleación comercial y trabajar en ambientes a alta temperatura [49, 50].

Se empleó esta técnica para corroborar la composición de los lingotes obtenidos por fundición utilizando las probetas preparadas para hacer SEM aunque no es necesaria una preparación especial. Se colocó cada probeta sobre la ventana del lente, sin tocarlo (Figura 2.19), entonces se procedió a su análisis y se obtuvieron las lecturas correspondientes a las composiciones.

Figura 2.19 Pistola para Espectrometría de Fluorescencia de Rayos X (IIM-UNAM)

II.7 Microscopía Electrónica de Transmisión (TEM)

Un microscopio electrónico de transmisión emplea un fino haz de electrones acelerados, generados por un cañón, el cual al impactar con la superficie de la muestra genera una serie

de señales relacionadas con la estructura atómica de los constituyentes que forman la muestra. Estas señales se colectan y analizan por separado para generar distintos tipos de imágenes con excelente definición, además de permitir obtener datos analíticos.

Los electrones transmitidos con y sin dispersión se utilizan para crear imágenes de campo oscuro, de transmisión convencionales y alta resolución, revelando la estructura interna de la muestra, tamaño y distribución de partículas, red cristalina y defectos puntuales de la red atómica, o en caso de serlo, si es vítrea. Los rayos X recolectados son utilizados para estudiar la composición química de la muestra, pudiendo analizar aisladamente zonas de muy pocas micras e incluso nanométricas.

Los microscopios electrónicos de transmisión tienen una capacidad de resolución de hasta 0.23 nm entre puntos y 0.14 nm entre líneas, lo que permite aplicarlo en múltiples campos de investigación: biología, nuevos materiales, medicina, farmacología, arqueología, control de calidad, investigación forense, catálisis, combustibles fósiles, energía solar, biodegradación de materiales, etc. [51].

La muestra analizada con esta técnica fue una cinta de Al-6.1Ni obtenida por melt spinning a 20 m/s, de la cual previamente se midió su espesor por medio de SEM (40 μ m). Al no ser menor a 20 μ m (espesor mínimo para hacer TEM) fue necesario realizar una preparación y desgaste, previos a la entrada al microscopio. Para ello se cortaron 3 muestras de cinta de 4 mm x 4 mm, se calentó un cilindro de aluminio a 100°C y se le coloco una gota de termoplástico en la base, después se colocó una de las muestra de cinta. Después se tomó el cilindro de aluminio y se procedió a desbastar en una lija del número 2000 en seco, para después retirar la muestra con alcohol isopropílico. Esto se hizo con cada muestra analizada.

Se tomó entonces una de las muestras y se sujetó a una rejilla de oro acoplada a un soporte, este arreglo se introdujo dentro de una de las cámaras del ion milling (Figura 2.20), el cual hace posible adelgazar las muestras hasta que permitan el paso de la luz y entonces poder observar la muestra con el microscopio electrónico de transmisión. Para adelgazar la muestra con el ion milling primero se alcanza un vacío de 10^{-4} Torr, una vez alcanzado se

introduce argón, se baja la muestra y se suben los cañones los cuales atacarán la superficie del material con un haz de iones a ciertos ángulos, según vaya avanzando el desbaste.

Figura 2.20 Equipo para realizar ion milling (IIM-UNAM)

Una vez encendido, la muestra tiene un giro, en este caso de 3 rpm con una intensidad de 4.5 KeV y se observa el avance en el desgaste de la muestra a través de un juego de lentes de 2x y 4x. El tiempo requerido para este procedimiento depende de los constituyentes de la muestra y de su grosor previo, para este trabajo se ocuparon 7 horas. Después de esto se utilizó el microscopio electrónico de transmisión JEOL JEM 1200EX, el cual posee un filamento de tungsteno, para realizar el análisis (Figura 2.21).

Figura 2.21 Microscopio Electrónico de Transmisión JEOL JEM 1200-EX (IIM-UNAM)

El microscopio se utilizó a 120 kV, se introdujo la muestra previamente desbastada dentro el equipo y se tomaron fotografías de las zonas deseadas a 100,000x, así como patrones de difracción de las mismas.

II.8 Difracción de Rayos X (DRX)

Los rayos X son una forma de radiación electromagnética constituida por ondas de alta energía y longitud de onda corta, las cuales se difractan o proyectan al incidir en un material en todas direcciones a razón de los átomos ubicados en su trayectoria. La difracción de rayos X se produce entonces cuando las ondas encuentran una serie de obstáculos, planos de átomos, separados a intervalos regulares equiparables a la longitud de onda del haz. Las ondas recorren diferentes distancias hasta encontrarse con los planos de átomos, estas distancias producen una interferencia reforzante o constructiva cuando las ondas siguen estando en fase después de ser proyectadas.

Por el contrario, estas distancias recorridas hasta los planos pueden producir un desfase en las ondas anulándolas (Figura 2.22) [1].

Figura 2.22 Efecto de interferencia a) constructiva, b) destructiva

Analizando este fenómeno se tiene un haz de rayos X con longitud de onda λ , paralelo, monocromático y en fase, que impacta contra planos paralelos con los mismos índices de Miller (*h*, *k*, *l*) a un ángulo θ , se presenta interferencia constructiva siempre que

las diferencias de trayectorias de las ondas dispersadas equivalgan a un número entero n de longitudes de onda (Figura 2.23):

Figura 2.23 Geometría del fenómeno de Difracción de Rayos X

Con dicho análisis se tiene que:

$$n\lambda = ML + LN$$

O bien, en función de θ :

$$n\lambda = d_{hkl}sen\theta + d_{hkl}sen\theta$$
$$n\lambda = 2d_{hkl}sen\theta$$

Esta ecuación es conocida como la ley de Bragg, donde n es el orden de reflexión y puede ser cualquier número entero siempre que sen θ no exceda la unidad. La ley de Bragg relaciona la longitud de onda de los rayos X y el espacio interatómico con el ángulo de incidencia del haz difractado.

Por otro lado la distancia entre dos planos contiguos y paralelos depende de los índices de Miller y parámetros de red que son diferentes para cada sistema cristalino, de tal manera que las expresiones para la distancia interplanar también será diferente, tal como se muestra en el Apéndice B.

El equipo utilizado para esta técnica es un difractómetro, en el cual (Figura 2.24) se coloca una muestra S con una superficie plana y paralela al portamuestras, que se ajusta de forma mecánica, de modo que este gire alrededor de un eje O. El punto T genera el haz de rayos X y la intensidad de los haces difractados se detecta a través del contador C, debe mencionarse que la fuente de rayos X, la muestra y el contador se encuentran en el mismo plano. En la trayectoria del haz se incorporan colimadores para tener un haz bien definido y enfocado, además del uso de un filtro que asegura un haz casi monocromático [1,52].

Figura 2.24 Esquema de Difractómetro de Rayos X

Al final del experimento se obtiene un patrón de difracción en el cual se registran intensidades contra ángulos 20. Estos valores se utilizan para determinar la estructura cristalina mediante la identificación de las familias de planos particulares de cada fase presente en el material. Por lo tanto, una de las principales aplicaciones de la difracción de rayos X consiste en la determinación de estructuras cristalinas y sus parámetros de red mediante las posiciones angulares de los picos de difracción presentes en el difractograma, así como la identificación de las fases constituyentes, esto en caso de tratarse de un material cristalino, ya que esta técnica también permite identificar amorfos [1, 52].

El equipo utilizado para este análisis fue un difractómetro Bruker D8 Advance (Figura 2.25), con parámetros ajustados a: haz monocromático K α 1 Cu (λ = 0.15406 nm) a
30 kV y 30 mA, con ángulos de barrido de 15° a 100° y con una rotación de la muestra de 15 rpm.

Figura 2.25 Difractómetro Bruker D8 Advance (IIM-UNAM)

Con esta técnica se analizaron muestras obtenidas por fundición y melt spinning a cada velocidad aplicada, para la identificación de las fases presentes. Las muestras de fundición por colada utilizadas fueron las mismas que las preparadas para SEM, mientras que las muestras de melt spinning fueron dispuestas en 3 portaobjetos diferentes, cortadas y colocadas de modo tal que se formara una superficie amplia para favorecer la incidencia del haz. Las dimensiones de las muestras fueron de 23 mm x 20 mm (Figura 2.26).

Figura 2.26 a) Muestra para realizar DRX, b) medida de las muestras

II.9 Ensayo de tracción

El ensayo de tensión tiene como una de sus principales aplicaciones la determinación del esfuerzo de fluencia y el esfuerzo máximo en tensión, así como de la medición del grado de ductilidad en los materiales ensayados. El ensayo estándar E-8 de la ASTM inicia con la preparación de la muestra o probeta a ensayar, la cual debe ser plana y tener una sección de trabajo de 50 mm (Figura 2.27) [2].

Figura 2.27 Probeta estándar E-8 ASTM para tracción [2]

El ensayo comienza sujetando los extremos de una de las probetas a las mordazas de la máquina, es decir, uno de los extremos de la probeta estará sujeto al cabezal fijo, mientras el otro se encuentra en el cabezal móvil del equipo.

Una vez en funcionamiento, la mordaza móvil comienza a deformar la probeta, y al mismo tiempo, por medio de un software, se registran los valores de esfuerzo correspondientes a la deformación aplicada [2]. Para este ensayo se utilizó la máquina para pruebas de tracción Shimadzu AGS-X de 5 kN. Se prepararon 3 probetas, bajo la norma E-8 de la ASTM, por cada una de las velocidades de melt spinning empleadas, con excepción de 40 m/s debido a que su geometría no lo permitió. También se prepararon 2 probetas con la aleación obtenida por fundición.

Después se eliminaron las irregulares de los bordes en las probetas fabricadas con las cintas, esto mediante un portamuestras de vidrio y un cortador, para después sujetar ambos extremos de las cintas delineadas a bases de neopreno, ya que el espesor de las cintas es tan pequeño (40 μ m) que no pueden ser sujetadas por las mordazas de la máquina de tracción sin ser dañadas. Por tanto, se dieron 50 mm como longitud estándar de trabajo, además de 7.5 mm en cada uno de los extremos para servir como unión entre la base de neopreno y la longitud de trabajo de la probeta. Para las probetas de fundición se dieron 50 mm de longitud de trabajo y 2.5 mm para la unión entre la longitud de trabajo y la base, el grosor de estas probetas fue el mínimo que se pudo maquinar, es decir 2 mm (Figura 2.28).

Figura 2.28 Probetas de tensión a) cintas Al-6.1Ni, b) fundición

Una vez teniendo todas las muestras estandarizadas la configuración del ensayo para cada una de las probetas se muestra en la Figura 2.29.

Figura 2.29 Configuración del ensayo de tracción

II.10 Ensayo de dureza Vickers

Por lo general se describe a la dureza como la resistencia a la penetración que presenta un material, esta penetración es resultado de la compresión producida con una carga dada en la superficie del material por un objeto duro o indentador el cual posee una forma definida. Al aplicar la carga de forma perpendicular a la superficie, el indentador deforma plásticamente el material dejando una marca que aumenta su área a razón de la penetración y permite a través de la medición de sus dimensiones o profundidad obtener la medida de dureza.

Cabe señalar que la carga se aplica de forma constante y a una velocidad controlada, además de enfocarse en el área de estudio mediante un sistema de aumentos según el equipo con el que se trabaje. El ensayo de dureza termina cuando la presión ejercida por el indentador llega a un punto de equilibrio con la resistencia de la muestra [2].

Existen varios tipos de ensayos para medir dureza: Brinell, Vickers, Knoop, Rockwell, entre otros. En este trabajo se utilizó el ensayo de dureza Vickers bajo la norma ASTM E-92, el cual de manera estandar dicta el uso de una máquina (microdurometro) correctamente calibrada, la cual debe hacer incidir durante dicho ensayo un indentador con forma piramidal y fabricado de diamante sintético con ángulos en la punta de 136° (Figura 2.30), asi como una aplicación de carga de entre 1 y 1000 gramos-fuerza, es decir 9.81 mN a 9.8 N, a una velocidad de 1 mm/min en condiciones libres de vibracion, durante 10 a 15 segundos [2,53].

Figura 2.30 Indentador y huella de dureza Vickers [45]

El ensayo de dureza Vickers analiza la penetración producida en el material a través de las diagonales producidas en la superficie de la muestra por el indentador según la siguiente expresión:

$$HV = 1.854 \frac{P}{d^2} [kg/mm^2]$$

Donde P es la carga aplicada (kilogramos) y d es la longitud de la diagonal (milímetros). Para llevar a cabo este ensayo se utilizó un microdurómetro Shimadzu HMV-G (Figura 2.31), el cual para su manejo cuenta con un sistema de lentes de 10x y 40x que permite enfocar la zona del material a ensayar, además de un indentador para Vickers y un software de operación.

Figura 2.31 Microdurómetro Shimadzu HMV-G (IIM-UNAM)

El microdurómetro se fijó en una carga de 245.2 mN para las muestras obtenidas por fundición y 98.07 mN para las muestras obtenidas por los procesos subsecuentes, a un tiempo de aplicación de la carga de 15 segundos, con estos parámetros se hicieron 15 experimentos para cada medición, favoreciendo de esta manera que los resultados fueran más confiables que solo haciendo una lectura por zona.

Las muestras a las cuales se les realizó este estudio fueron: probetas obtenidas por fundición, utilizando las probetas preparadas para SEM, cintas de cada una de las tres velocidades tanto de aleación eutéctica como de aluminio puro, las cuales fueron colocadas en una superficie plana para ser ensayadas y evitar errores en las lecturas, además de cintas de aleación eutéctica y aluminio puro obtenidas con cada una de las tres velocidades encapsuladas de canto, también se aplicó esta prueba a muestras obtenidas por compactado tanto en la base como en la zona de perfil. Por último se hizo microdureza a la muestra obtenida por extrusión.

CAPÍTULO III

ANÁLISIS DE RESULTADOS

III.1 Productos de fundición

Del proceso de fundición se obtuvieron 4 lingotes de la aleación Al-6.1Ni (Figura 3.1), cada uno con un peso de 297 gramos (3 gramos de escoria remanente).

Figura 3.1 Lingotes de aleación maestra

III.2 Productos de melt spinning

Se obtuvieron 300 gramos de cintas de Al-6.1Ni por cada una de las velocidades de disco utilizadas en el proceso de melt spinning (20, 30 y 40 m/s), además de 10 gramos de cintas de aluminio puro, también por cada una de dichas velocidades. Cabe señalar que las cintas mostraron variaciones en sus bordes como efecto de la velocidad del disco, presentando una forma de regular a menor velocidad, y favoreciendo la aparición de muescas a velocidades mayores. Siendo, por lo tanto, 20 m/s la velocidad que permitió obtener los bordes más regulares (Figura 3.2). Es importante mencionar que, a pesar de la aparición de muescas en los bordes de las cintas a velocidades de 30 y 40 m/s, este efecto se vio disminuido debido al empleo de la atmosfera de helio al interior de la cámara del equipo de melt spinning, en comparación a los bordes obtenidos en una aleación de la misma composición y con las mismas velocidades sin el uso de atmosfera controlada [10].

Figura 3.2 Cintas de Al-6.1Ni (20 gramos) obtenidas por melt spinning a 20 m/s

III.3 Productos de compactado y extrusión

Se produjeron 10 compactados de Al-6.1Ni por cada una de las velocidades de disco, siendo 30 en total, cada uno con un diámetro de 15 mm y 30 mm de largo (Figura 3.3).

Figura 3.3 Compactados de Al-Ni eutéctico

De los experimentos de extrusión realizados con la prensa Montequipo y el dado rediseñado 1 (fabricado de K-340) se obtuvo la muestra de la Figura 3.4.

Figura 3.4 Muestra obtenida por extrusión encapsulada, cortada por la mitad y después de metalografía

Por otro lado las pruebas de extrusión realizadas en la prensa INSTRON, con el rediseño de dado 2 (fabricado en acero 4140), arrojaron las gráficas mostradas en la Figura 3.5 para cada experimento.

Figura 3.5 Graficas de carga-desplazamiento a una velocidad del pistón de a) 10^{-3} mm/s (6x10⁻² mm/minuto), b) de 2x10⁻¹ mm/minuto, primer experimento y c) 2x10⁻¹ mm/minuto, segundo experimento

Como se puede observar en las gráficas anteriores, se presenta un incremento en el desplazamiento, producido por el pistón a lo largo del proceso de extrusión, así como un aumento en la carga, debido a que esta se eleva con respecto a la distancia recorrida del punzón dentro del dado al empujar el material a través de la reducción. Lo anterior se observa hasta llegar a los 235 kN, donde se alcanza el equilibrio entre la carga aplicada por

la prensa y la resistencia del material a fluir a través del dado, provocando que la carga permanezca constante debido a que el equipo ya no es capaz de seguir extruyendo el material.

III.4 Microscopía Electrónica de Barrido (SEM)

Las imágenes obtenidas con microscopía electrónica de barrido de la morfología presente en la aleación después de cada proceso se presentan a continuación.

III.4.1 Fundición

Las imágenes tomadas de los lingotes producidos por colada muestran una matriz rica en α -Al, intercalada con intermetálicos del tipo Al₃Ni, los cuales presentan una forma acicular (Figura 3.6), de los cuales se sabe son las estructuras responsables del aumento en la resistencia y el grado de fragilidad en esta aleación.

Figura 3.6 Morfología de la aleación Al-6.1Ni tomada a 1 000x, matriz de α-Al alternada con intermetálicos Al₃Ni aciculares

Dichas imágenes muestran también una distribución homogénea de Al₃Ni con tamaños menores a 5 μ m. Por otro lado el análisis con EDS de las probetas de fundición arrojó un espectro en el cual se corrobora la presencia de aluminio y níquel (Figura 3.7), así como los porcentajes de cada una de las fases encontradas (Tabla 3.1).

Figura 3.7 Imagen de la morfología de la aleación Al-6.1Ni y espectro de la misma obtenido por EDS

Tabla 3.1 Comparación entre el porcentaje teórico y porcentajes obtenidos por EDS de las fases presentes en la aleación

Fases	Teórico (%)	Probeta 1 (%)	Probeta 2 (%)	Probeta 3 (%)	Probeta 4 (%)
α-Al	85.58	90.42	89.77	82.04	88.87
Al ₃ Ni	14.42	9.58	10.23	17.96	11.13

Tabla 3.1 Comparación entre el porcentaje teórico y porcentajes obtenidos por EDS de las fasespresentes en la aleación (continuación)

Fases	Teórico (%)	Probeta 5	Probeta 6	Probeta 7	Probeta 8
		(%)	(%)	(%)	(%)
a-Al	85.58	90.40	88.70	89.07	88.78
Al ₃ Ni	14.42	9.60	11.30	10.93	11.22

Realizando un análisis de la tabla anterior, se puede calcular un porcentaje de error promedio entre las fases obtenidas por EDS y las fases calculadas de forma teórica. En la fase α -Al este porcentaje de error promedio es de ±4.44%, mientras que para la fase

intermetálica Al₃Ni este tiene un valor de $\pm 26.43\%$. Con ayuda de estos porcentajes se pueden calcular entonces las cantidades de níquel entre las cuales se encuentran dichas composiciones, obteniendo de esta manera que dichas cantidades corresponden a 4.5 y 7.1wt%Ni. Con estos resultados se puede concluir que, según el análisis de EDS, las composiciones presentes en las muestras de fundición se encuentran en las zonas hipoeutéctica e hipereutéctica de la aleación Al-Ni. Es importante mencionar en este punto que, debido a que el análisis por EDS es un análisis puntual, se ha optado por hacer un análisis más global de las muestras por medio de espectrometría de fluorescencia de rayos X, esto para conocer de forma más exacta los porcentajes tanto de aluminio como de níquel presentes en las muestras al final de la fundición.

III.4.2 Melt spinning

Las imágenes de la morfología de las cintas producidas por melt spinning se tomaron del lado de la cinta que estuvo en contacto con el disco, así como de perfil, tal como se muestran a continuación.

III.4.2.1 Vista lateral de las cintas (zona en contacto con el disco)

Las imágenes de la Figura 3.8 se obtuvieron por medio de electrones retrodispersados, en dichas imágenes se observa la morfología de los intermetálicos encontrada en las cintas que se obtuvieron a una velocidad de disco de 20 m/s, en diferentes zonas y aumentos. La Figura 3.8 a) muestra una distribución homogénea de intermetálicos Al₃Ni dentro de la fase α -Al a lo largo de la zona analizada, mientras que la Figura 3.8 b) muestra la presencia de estos intermetálicos formando el límite de grano, así como un tamaño de grano de entre 0.2 y 1 µm.

De estas imágenes se puede observar entonces que hubo un cambio en la morfología de los intermetálicos debido al efecto producido por la solidificación rápida, esto debido a que la fase intermetálica solidifica primero que la matriz, provocando que el intermetálico sirva como punto de nucleación para el resto de líquido. No obstante, el tiempo requerido para la solidificación es tan corto que se inhibe el crecimiento natural del intermetálico, provocando que, en lugar de formarse como estructuras aciculares, se generen pequeños

cúmulos de Al_3Ni . En la Figura 3.8 c), a un aumento mayor que en las imágenes anteriores, se conserva la distribución homogénea del intermetálico Al_3Ni , mientras que en la Figura 3.8 d) se observa que el tamaño de los intermetálicos globulares se encuentra entre los 20 y 100 nm.

Figura 3.8 Micrografías de las cintas obtenidas a 20 m/s, tomadas con a) 10 000x, b) 25 000x, c) 50 000x y d) 100 000x

Continuando con el análisis de las imágenes obtenidas por SEM, se tiene la Figura 3.9, en la cual se observa la cinta generada con una velocidad de 30 m/s. La imagen 3.9 a) muestra el cambio en la morfología del intermetálico Al₃Ni de acicular a globular después de la solidificación rápida, así como su distribución por zonas, generando espacios en los cuales hay una presencia mínima de intermetálicos en la matriz α -Al. Por otro lado, la micrografía 3.9 b) muestra la presencia de precipitados globulares con dimensiones

menores a 100 nm, tanto al interior como en el límite de grano, como en la muestra producida a 20 m/s.

Figura 3.9 Micrografías de las cintas obtenidas a 30 m/s, tomadas con a) 25 000x y b) 50 000x

Las micrografías de la Figura 3.10 muestran la cinta producida a 40 m/s. En la imagen 3.10 a) se puede observar que también se produjo un cambio en la morfología del intermetálico Al₃Ni debido a la solidificación rápida. Se observa también la presencia de granos alargados con dimensiones de 1 a 2 μ m, así como una distribución de intermetálicos heterogénea, produciendo que en ciertas zonas la presencia del intermetálico se vea reducida. Producto de la distribución heterogénea de intermetálico en esta zona, se muestra en la imagen 3.10 b) la formación de espacios de la fase α -Al con reducida proporción de intermetálicos, así como un tamaño de los mismo menores a 100 nm, en las zonas que presentan la distribución más abundante.

Tanto la cintas de melt spinning a 30, como las de 40 m/s, presentan zonas con una distribución de intermetálico heterogénea, con esto se corrobora que una alta velocidad de giro en la rueda favorece la presencia del intermetálico Al_3Ni en ciertas zonas. Concluyendo que la cinta producida a 20 m/s, es la cinta que presenta la distribución de intermetálicos Al_3Ni más homogénea.

Figura 3.10 Micrografías de las cintas obtenidas a 40 m/s, tomadas con a) 10 000x, b) 25 000x

III.4.2.2 Vista de perfil de las cintas

Las cintas presentaron en general un perfil con la forma mostrada en la Figura 3.11, así como un espesor entre 29 y 40 μ m (dependiendo de la velocidad). Siendo 20 m/s la velocidad que presento las cintas con mayor espesor (Tabla 3.2). Así mismo, las cintas obtenidas a 20 y 30 m/s presentaron una geometría con dimensiones de 5 mm de ancho y una longitud promedio de 25 cm. Esto a diferencia de las cintas obtenidas a 40 m/s, las cuales presentaron geometrías irregulares entre pequeñas cintas y hojuelas, con dimensiones promedio de 2 a 3 mm de ancho y de 3 a 7 cm de longitud.

Figura 3.11 Cintas puestas de perfil obtenidas con velocidades de a) 20 m/s, b) 30 m/s y c) 40 m/s

Velocidad de disco (m/s)	Espesor (µm)
20	40 ± 5
30	33 ± 5
40	29 ± 5

Tabla 3.2 Espesor promedio medido con cada velocidad

Con lo anterior se puede decir, entonces, que las velocidades de 20 y 30 m/s favorecen la obtención de cintas con geometrías más regulares y mejor definición en los bordes. Por otro lado, el estudio de las cintas de perfil también permite observar el grado de globulización del intermetálico. Este se presenta de manera más fina en la zona de la cinta que estuvo en contacto directo con el disco al momento del enfriamiento, tal como se puede ver en las micrografías de la Figura 3.12, en las cuales la parte inferior presenta una distribución más fina y homogénea de intermetálico, la cual va disminuyendo en la zona superior de la cinta.

Figura 3.12 Globulización del intermetálico, vista de perfil de a) 20 m/s, b) 30 m/s y c) 40 m/s

III.4.3 Compactado y extrusión

Las micrografías de la Figura 3.13 muestran la unión de las cintas de 20 m/s después del compactado. En ellas se puede observar que el conformado del material después del proceso da lugar a la combinación de las cintas colocadas, tanto de manera lateral como transversal, permitiendo la formación de zonas con mayor longitud que presenten una distribución homogénea de intermetálicos (Figura 3.13 a)). Se puede observar también, que con este proceso aún no se puede alcanzar el conformado deseado en el material, ya que aún son identificables las fronteras formadas entre una cinta y otra (Figura 3.13 b)).

Figura 3.13 a) Micrografía de las cintas después del compactado, b) frontera formada entre cintas después del compactado

Por otra parte, las imágenes obtenidas con SEM de la muestra generada por extrusión fueron tomadas por zonas, con espacios de 5mm entre cada una (Figura 3.14). En estas zonas se puede observar el acomodo de las cintas con respecto al aumento en la deformación del material.

Figura 3.14 Zonas de la muestra de extrusión tomadas con SEM

La Figura 3.15 muestra la zona A, previa a la deformación severa por extrusión, por lo que presenta aún la unión entre cintas alcanzada durante el proceso de compactado, como se observa en la Figura 3.15 a), diferenciando aún entre diferentes cintas. Se puede observar también que, el tamaño (100 nm) y la morfología (globular) en los intermetálicos, obtenidos por solidificación rápida, se conservan (Figura 3.15 b)). La Figura 3.16, correspondiente a la zona B de la muestra de extrusión, presenta ya una deformación mayor en las cintas, y por tanto una unión más fuerte entre las mismas, esto debido a que es el inicio de la reducción. Se puede observar en las micrografías 3.16 a) y 3.16 b) como las cintas comienzan a aglomerarse y por tanto a formar zonas con alto contenido de intermetálicos distribuidos de forma homogénea. Dicha unión comienza a dificultar la identificación de cintas individuales en la muestra, tal como se observa en la imagen 3.16 c). La zona C de la muestra aún no ha alcanzado el total de la deformación posible con este proceso, pese a esto, muestra una mejor cohesión entre las cintas que la presente en la zona B, además de una mejor distribución de intermetálico en la matriz de aluminio, tal como se observa en las micrografías de la Figura 3.17 a) y b). La unión de las cintas y la formación de zonas más homogéneas se pueden ver también en dichas imágenes. Por otro lado, la micrografía 3.17 c) permite observar el tamaño de los intermetálicos presentes, alcanzando tamaños de hasta 10 nm. Este tamaño de partícula tan pequeño, se espera sea el que favorezca el endurecimiento de la aleación, así como él grado de ductilidad, debido a su forma globular.

Figura 3.15 Zona A, a) fronteras formadas entre cintas, b) intermetálicos dentro de la matriz tomados a 10 000x

Figura 3.16 Zona B, morfología presente tomada con a) 1 000x, b) 5 000x y c) 10 000x

Figura 3.17 Zona C, morfología presente tomada con a) 1 000x, b) 2 500x y c) 5 000x

Con un grado de deformación mayor, la Figura 3.18 muestra la morfología alcanzada en la zona D. Se puede observar entonces, que el grado de unión en la muestra incrementa de forma paulatina conforme a la deformación producida por la reducción. Aquí, al igual que en la zona C, la identificación de las fronteras entre cintas ya no es posible, de la misma manera que se mantiene la distribución homogénea de ambas fases (α -Al y Al₃Ni). La zona E ya ha alcanzado toda la deformación posible con la reducción utilizada en este proceso de extrusión (1:2). Por tanto, las micrografías de la Figura 3.19 muestran la morfología del material, en la cual, ya no es posible distinguir las cintas de manera individual. Es en este punto donde se puede decir que, con el rediseño de dado y reducción utilizados durante la extrusión, así como con la morfología de la aleación obtenida por fundición y procesada después por melt spinning, se ha alcanzado una unión

superior de las cintas en la muestra de extrusión, de la aleación Al-6.1Ni, que la reportada por Miranda [10] en un trabajo previo.

Figura 3.18 Zona D, morfología presente tomada con a) 1 000x, b) 2 500x y c) 5 000x

Figura 3.19 Zona E, morfología presente tomada con a) 500x y b) 1 000x

Este efecto en la unión de las cintas se conserva en la zona F, mostrada en la Figura 3.20 a), en la cual se presentan zonas con intermetálicos finos en la matriz de aluminio, así como la imagen 3.20 b), en la cual se observa la distribución del intermetálico alcanzada al final del proceso de extrusión. Esta cohesión y morfología alcanzadas al término de la extrusión son producto no solo de la deformación severa, sino también del proceso de solidificación rápida, ya que al enfriar rápidamente la aleación, la capa de alúmina formada en la superficie de las cintas presenta un espesor menor que en los procesos convencionales, tales como fundición, y por tanto se permite que la unión entre las cintas se lleve a cabo de forma más eficaz.

Figura 3.20 Zona F, morfología presente tomada con a) 1 000x y b) 5 000x

III.5 Espectrometría de Fluorescencia de Rayos X (XRF)

Los porcentajes (en peso), de los elementos presentes en las muestras producidas mediante fundición por colada, obtenidos después del análisis por medio de Espectrometría de Fluorescencia de Rayos X (XRF por sus siglas en ingles) se muestran a continuación en la Tabla 3.3.

Elemento	Probeta 1 (%)	+/-	Probeta 2 (%)	+/-	Probeta 3 (%)	+/-	Probeta 4 (%)	+/-
Al	94.05	0.29	94.32	0.29	94.18	0.30	94.04	0.30
Со	0.26	0.13	0.27	0.13	0.27	0.13	0.29	0.13
Ni	5.40	0.03	5.19	0.03	5.49	0.03	5.49	0.03
Si	0.15	0,03	0.16	0.03	0.00	0.00	0.03	0.03
Fe	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01
Mn	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0.00

 Tabla 3.3 Resultados de la Espectrometría de Fluorescencia de Rayos X realizada a muestras de fundición

Tabla 3.3 Resultados de la Espectrometría de Fluorescencia de Rayos X realizada a muestras de
fundición (continuación)

Elemento	Probeta 5	+/-	Probeta 6	+/-	Probeta 7	+/-	Probeta 8	+/-
	(%)		(%)		(%)		(%)	
Al	94.20	0.29	94.21	0.30	94.01	0.30	93.91	0.30
Со	0.21	0.13	0.20	0.13	0.19	0.13	0.28	0.13
Ni	5.49	0.03	5.53	0.03	5.69	0.03	5.61	0.03
Si	0.03	0.03	0.00	0.03	0.04	0.03	0.03	0.03
Fe	0.04	0.01	0.04	0.01	0.04	0.01	0.04	0.01
Mn	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.00

Dichos valores, con un error inherente al equipo del 1%, permiten calcular la diferencia entre las fracciones teóricas y experimentales obtenidas tanto para el aluminio como para el níquel, por medio del porcentaje de error promedio, el cual, en el caso del aluminio tiene un valor de 0.22%, mientras que para el níquel es de 10.06%. En este punto, y debido al bajo porcentaje de error promedio calculado, para el caso del aluminio, se puede identificar que las composiciones de aluminio presentes en las muestras obtenidas por medio de fundición por colada corresponden a la composición eutéctica de la aleación Al-Ni. Además de la identificación del aluminio y níquel, se identificaron también trazas de cobalto, silicio, hierro y manganeso. Esto es debido a que el equipo de Espectrometría de Fluorescencia de Rayos X puede traslapar las intensidades correspondientes a elementos cercanos a los elementos presentes en el material, asignándoles un porcentaje menor comparado con el elemento que si se encuentra en la aleación, es decir, para el caso del silicio, su identificación en un bajo porcentaje dentro de la aleación se debe a la cercanía

que tiene con el aluminio, siendo el aluminio y el silicio los elementos 13 y 14 respectivamente en la tabla periódica. Lo anterior se aplica también para el caso de cobalto, hierro y manganeso, ya que su identificación por medio de Espectrometría de Rayos X en la aleación se debe a la cercanía que estos guardan con el níquel, siendo manganeso, hierro, cobalto y níquel los elementos 25, 26, 27 y 28 respectivamente. Si con lo anterior se redujera el porcentaje de error promedio calculado para el níquel, se podría decir que la composición de níquel también corresponde a la composición eutéctica de la aleación Al-Ni. Sin embargo, con el porcentaje de error existente para el níquel de 10.06% se puede decir que la composición en peso de este se encuentra en una zona hipoeutéctica.

Otra causa probable para explicar la presencia de cobalto, silicio, hierro y manganeso dentro de la aleación es la pureza del aluminio y níquel utilizados para la fundición. Siendo esta de 99.9% para el aluminio y 99.95% para el níquel, con lo cual se tiene un porcentaje mínimo de elementos aleantes no identificados, el cual podría corresponder a las fracciones encontradas por medio de XRF de estos elementos.

III.6 Microscopía Electrónica de Transmisión (TEM)

Las imágenes obtenidas mediante microscopio electrónico de transmisión de una muestra de cinta de aleación Al-6.1Ni, producida con melt spinning a 20 m/s, se muestran en la Figura 3.21. En dichas imágenes, se puede observar la matriz de aluminio en un color gris claro, también es posible identificar la fase intermetálica Al_3Ni dentro de la matriz, con precipitados que presentan dimensiones desde 5 nm.

Figura 3.21 Muestra de cinta (producida a 20 m/s), tomada a 100 000x con microscopio electrónico de transmisión

Mediante esta técnica se obtuvo también un patrón de difracción de electrones, para la identificación de fases que, debido a un bajo porcentaje dentro de la aleación, no fuera posible detectar mediante difracción de rayos X. Para esto se utilizó la siguiente relación:

$$d = \frac{\overline{\lambda L}}{D} [\text{Å}]$$

Donde λ es la longitud de onda de tungsteno, así como L la longitud de cámara del microscopio, y por tanto $\overline{\lambda L}$ es el valor promedio del producto de estos parámetros, el cual se obtuvo de manera experimental, registrando un valor de 3.334 [Å cm]. Una vez conocido este valor, se midieron las distancias (radios en cm) del punto central en el patrón de difracción a cada uno de los círculos concéntricos, para esto se hicieron 15 mediciones y se hizo un promedio con el propósito de minimizar el error. Estos valores calculados se encuentran enlistados en la Tabla 3.4 como "Distancia interplanar experimental", y fueron comparados con los valores reportados en hojas de datos JCPDS aluminio y Al₃Ni, asi como con lo reportando por González et al. (Apéndice D) [17]. La Tabla 3.4 enlista también la comparación entre las distancias interplanares teóricas y experimentales, así como las fases identificadas y los planos a los que pertenecen los círculos mostrados en el patrón de difracción (Figura 3.22).

Distancia interplanar	Distancia interplanar	Fase	Planos
teorica (d _{hkl}) [A]	experimental (d _{hkl}) [A]	identificada	(nki)
2.1041	2.1122	Al ₉ Ni ₂	(320)
1.7603	1.7980	Al ₃ Ni	(321)
1.2498	1.2499	Al ₉ Ni ₂	(433)
1.0740	1.0743	Al ₃ Ni	(601)
0.8266	0.8136	α-Al	(422)

Tabla 3.4 Distancias interplanares utilizadas para la indexación del patrón de electrones

Como resultado de este análisis se identificó la presencia de las fases α -Al y Al₃Ni, de la misma manera que en el análisis realizado con XRD. Además de esto, se logró la identificación de la fase Al₉Ni₂, la cual se sabe, según lo reportado por González et al., presenta una estructura monoclínica, con parámetros de red de a=8.63x10⁻¹⁰ m, b=6.22x10⁻¹⁰ m y c=6.18x10⁻¹⁰ m, así como una distribución homogénea en cúmulos de aproximadamente 5 nm y una morfología globular. Dicha fase, promueve un incremento en la dureza de la aleación, producida por el aumento en la densidad de dislocaciones, su distribución en la red y morfología [17].

Figura 3.22 Patrón de difracción de electrones obtenido e indexado

III.7 Difracción de Rayos X (DRX)

En este apartado se presentan los difractogramas obtenidos mediante difracción de rayos X de los procesos de fundición y solidificación rápida por melt spinning, en cuyo caso se presentan las tres velocidades de disco utilizadas (20, 30 y 40 m/s). Así mismo, se presenta

una comparación entre los difractogramas correspondientes a melt spinning y el difractograma de la muestra de colada para observar el efecto de la solidificación rápida en la red de la matriz de aluminio. La indexación de dichos patrones se realizó con base a las fichas JCPDS de aluminio, Al₃Ni y Al₂O₃, las cuales se presentan en el Apéndice E. El difractograma mostrado en la Figura 3.23 muestra los patrones correspondientes a las muestras obtenidas por fundición y melt spinning a 20 m/s. A través de la indexación de dichos patrones, se pueden identificar las fases presentes en ambas condiciones. Las fases encontradas corresponden a α -Al, Al₃Ni y Al₂O₃, y tienen presencia tanto en la muestra de colada como la de melt spinning. Se puede observar que en ambos casos se identifican los picos correspondientes a la fase α -Al, los cuales se diferencian debido a que los picos presentes en melt spinning a 20 m/s presentativos de la fase intermetálica se presenta con valores de 2 Theta entre los 50 y 60°, en dicho intervalo la condición de colada permite identificar picos de Al₃Ni, mientras que en el difractograma de 20 m/s no se observan.

Figura 3.23 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 20 m/s

Es importante señalar también, que debido al proceso de melt spinning se generó un porcentaje de vitrificación en el material, aproximadamente en los primeros 100 nm del espesor de la cinta que estuvo en contacto directo con la rueda, lo cual se puede observar en el patrón de difracción correspondiente a "Melt spinning 20 m/s" entre los 15 y 35°. De la misma manera, la Figura 3.24 presenta los patrones de Difracción de Rayos X para las muestras de colada y melt spinning a 30 m/s. En estos patrones, nuevamente se identifica la presencia de las fases α -Al, Al₃Ni y Al₂O₃ para las dos condiciones. Al igual que en 20 m/s, no hay presencia de los picos correspondientes a la fase Al₃Ni entre los 50 y 60°, así como entre 80 y 90°. Por otra parte, la identificación de estos picos correspondientes a la fase intermetálica si se presentan para la muestra producida por melt spinning a 30 m/s con valores de 2 Theta entre los 35 y 55°. Se puede observar también la presencia de Al₂O₃en ambas muestras, representada a través de picos de muy baja intensidad entre los 35 y 40°. De igual manera, la identificación de la fase α -Al se obtiene en ambos difractogramas, siento la muestra obtenida por solidificación rápida la que presenta las mayores intensidades correspondientes a esta fase.

Figura 3.24 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 30 m/s

Así mismo, en Figura 3.25 se presentan los patrones de difracción de rayos X correspondientes a los procesos de colada y melt spinning a 40 m/s. Nuevamente se identifica la presencia de las fases α -Al, Al₃Ni y Al₂O₃ en ambas condiciones, siendo el patrón de difracción a 40 m/s el que presenta menor número de picos correspondientes a la fase Al₃Ni en comparación con las otras dos velocidades, esto debido a la menor cantidad de planos correspondientes a esta fase provocada por la alta velocidad de disco utilizada durante la producción de las cintas. De igual forma que en los patrones de melt spinning de 20 y 30 m/s, se tiene una ausencia de los picos correspondientes a la fase intermetálica Al₃Ni entre 50 y 60° en comparación con la muestra de fundición por colada.

Figura 3.25 Patrones de difracción de rayos X de la aleación Al-6.1Ni obtenida por colada y melt spinning a 40 m/s

Cabe señalar nuevamente que, tanto en el patrón de melt spinning de 30 m/s como el de 40 m/s, se tiene un porcentaje de vitrificación del material debido al proceso de solidificación rápida entre los 15 y 35°.

Otro parámetro importante, comparable entre el patrón de Difracción de Rayos X de colada y los distintos patrones pertenecientes a las muestras producidas por melt spinning, es el corrimiento de los ángulos 2 Theta correspondientes a las posiciones de las intensidades máximas de los picos de la fase α -Al. Tal desfasamiento se espera debido al efecto que tiene la solidificación rápida por melt spinning en las aleaciones, siendo capaz de aumentar de solubilidad de un elemento en otro [44]. La Tabla 3.5 muestra el valor teórico 2 θ , así como los valores 2 θ obtenidos para cada una de las condiciones de manera experimental.

Planos (hkl)	Valor teórico 20	Valor experimental 20 (colada)	Valor experimental 20 (20 m/s)	Valor experimental 20 (30 m/s)	Valor experimental 20 (40 m/s)
(111)	38.473	38.652	38.519	38.502	38.569
(200)	44.740	44.921	44.770	44.754	44.820
(220)	65.135	65.264	65.146	65.130	65.197
(311)	78.230	78.452	78.268	78.268	78.335
(222)	82.438	82.648	82.480	82.480	82.547
(400)	99.081	99.413	99.112	99.112	99.196

Tabla 3.5 Ángulos 20 del aluminio para cada condición

Por tanto, en base a la tabla anterior, se observa un desfasamiento en las posiciones de los picos de la fase α -Al hacia la derecha en cada una de las condiciones, corroborando, de esta manera, que existe una expansión en la red de la matriz α -Al producida por el aumento en la solubilidad de níquel en el aluminio, y provocada como se ha dicho, por la solidificación rápida. Este efecto se puede ver de manera más clara a través del cálculo del parámetro reticular del aluminio, obtenido por fundición y por melt spinning. De esta manera, a través de la ley de Bragg (para calcular la distancia interplanar) y de la ecuación de la distancia interplanar para una celda cubica, es posible calcular los parámetros reticulares obtenidos en cada condición. Para dicho cálculo se utilizaron los ángulos experimentales obtenidos de cada proceso, mostrados en la primera fila de la Tabla 3.5 correspondientes a la familia de planos [111], los resultados calculados se muestran en la Tabla 3.6.

Condición	Colada	Melt spinning (20 m/s)	Melt spinning (30 m/s)	Melt spinning (40 m/s)
Parámetro reticular calculado (nm)	0.4034	0.4048	0.4049	0.4043

Tabla 3.6 Medida del parámetro reticular en la matriz de aluminio para cada condición

Por último, se describirá el ensanchamiento de los picos de difracción como un efecto producido por el uso de la solidificación rápida. Para esto, se analizara el pico perteneciente a la familia de planos [111] de aluminio, tanto del patrón obtenido de la muestra de colada, como de los patrones obtenidos de las muestras producidas por melt spinning a 20, 30 y 40 m/s, tal como lo muestra la Figura 3.26. En dicha figura se puede observar un ensanchamiento pronunciado de los picos pertenecientes a las muestras de melt spinning, comparadas con la muestra de fundición por colada. Esto debido a que la solidificación rápida produce un tamaño de grano más fino que la fundición convencional. Otro efecto producido por la solidificación rápida, y que también es factor para el ensanchamiento de los picos de difracción, son las microdeformaciones en la red de la matriz de aluminio, las que, como se ha dicho antes, son producidas por el aumento en la solubilidad del níquel dentro del aluminio.

Figura 3.26 Ensanchamiento en los picos de difracción como efecto de la solidificación rápida

III.8 Ensayo de tracción

Los resultados obtenidos de las pruebas de tracción realizadas a probetas de melt spinning obtenidas a 20 y 30 m/s, además de a probetas maquinadas de los lingotes de colada, se presentan a continuación en gráficas esfuerzo-deformación y tablas de resultados, respectivamente. La primera de estas gráficas esfuerzo-deformación corresponde a las probetas de 20 m/s (Figura 3.27). En dicha grafica se puede observar el comportamiento de las cintas a lo largo del ensayo, en el cual el esfuerzo de fluencia alcanzo valores de hasta 113 MPa, así como esfuerzos máximos entre 229 y 274 MPa.

Figura 3.27 Gráfica esfuerzo-deformación para cintas obtenidas a 20 m/s

El módulo de Young para estas probetas se midió en dos puntos, para 20_1 entre 60-100 MPa, 20_2 en 40-120 MPa y 20_3 en 40 y 110 MPa, respectivamente. Los demás resultados obtenidos a través de esta prueba se muestran en la Tabla 3.7.

Probeta	Deformación	Tenacidad	$\sigma_{y0.2\%}$	σ_y	Esfuerzo	Módulo de
	máxima (%)	(J)	(MPa)	(MPa)	máximo	Young
					(MPa)	(MPa)
20_1	2.16	0.1028	195.29	97	229.65	12833.8
20_2	2.56	0.0517	203.69	113	252.22	12193.3
20_3	3.15	0.0656	231.77	102	274.27	9909.31

Tabla 3.7 Resultados del ensayo de tracción realizado a muestras de 20 m/s

A continuación se muestra la gráfica esfuerzo-deformación para las probetas de melt spinning trabajadas a 30 m/s (Figura 3.28),

Figura 3.28 Gráfica esfuerzo-deformación para cintas obtenidas a 30 m/s

En esta gráfica se puede observar, que el comportamiento de las cintas a 30 m/s es menor al mostrado por las cintas de 20 m/s, en cuanto a los valores de esfuerzo y deformación alcanzados a lo largo del ensayo. Los resultados de este ensayo se muestras en la Tabla 3.8.

Probeta	Deformación máxima (%)	Tenacidad (J)	σ _{y0.2%} (MPa)	σ _y (MPa)	Esfuerzo máximo (MPa)	Módulo de Young (MPa)
30_1	1.30	0.0261	152.98	95	173.70	11956.30
30_2	1.53	0.1670	143.80	94	153.81	11002.80
30_3	1.69	0.0184	132.93	92	135.12	8105.23

Tabla 3.8 Resultados del ensayo de tracción realizado a muestras de 30 m/s

De lo anterior se observa que, debido a que el desempeño de las cintas de 30 m/s es menor que el mostrado por las cintas de 20 m/s, se alcanzan valores de tenacidad más bajos. Esta diferencia en el comportamiento se debe a que existe una mejor distribución de la fase intermetálica en las muestras de 20 m/s, con lo que se mejora la ductilidad del material. Los puntos tomados en este caso para la medición del módulo de Young se ubicaron entre los 60 y 95 MPa. Por último, buscando una comparación de las propiedades en tensión entre las muestras de aleación obtenidas por melt spinning y las muestras de fundición por colada (a pesar de la diferencia de espesor entre unas y otras). A continuación se presenta la gráfica esfuerzo-deformación de las probetas de colada (Figura 3.29).

Figura 3.29 Gráfica esfuerzo-deformación para probetas de fundición

Se puede observar entonces que los valores de deformación alcanzados por las probetas de colada resultan mayores que los mostrados en las probetas de melt spinning, esto debido al porcentaje de la cinta que no mantuvo contacto directo con la rueda de cobre al momento de la eyección, generando una zona sin cambio de morfología de los intermetálicos, permaneciendo estos conforma acicular y con esto generando fragilidad en el material, lo anterior se puede observar en la Figura 3.12 con la diferencia en el grado de globulización de los intermetálicos en las cintas a lo largo del espesor. Sin embargo, los valores de esfuerzo soportado por las muestras de colada son mucho menores que los valores alcanzados por las cintas. La Tabla 3.9 muestras los valores medidos en el ensayo para estas probetas.

Tabla 3.9 Resultados del ensayo de tracción realizado a muestras de fundición

Probeta	Deformación	Tenacidad	$\sigma_{y0.2\%}$	σ_y	Esfuerzo	Módulo de
	máxima (%)	(J)	(MPa)	(MPa)	máximo	Young
					(MPa)	(MPa)
colada_1	4.16	2.096	81.25	44	120.19	10700.4
colada_2	7.08	3.481	61.85	42	148.46	8332.8

Con los resultados anteriores se puede corroborar que los esfuerzos máximos alcanzados por las probetas de colada son menores que los esfuerzos máximos alcanzados con las probetas de melt spinning.

Para el caso del módulo de Young la tendencia es la misma, siendo mayor el medido en las muestras producidas por solidificación rápida. Para el caso de las probetas de fundición por colada los puntos utilizados para la medición del módulo de Young se colocaron entre los 20 y 45 MPa.

III.9 Ensayo de dureza Vickers

A continuación se presentan los valores de dureza obtenidos después de cada proceso. En las tablas se presentan los valores máximos y mínimos de dureza de las muestras, así como el promedio de las 15 indentaciones realizadas para cada medición, con su desviación estándar. Dicho lo anterior, la Figura 3.30 muestra la huella dejada por el penetrador sobre
la superficie de una muestra de colada, mientras que la Tabla 3.10 muestra los valores de dureza obtenidos después del análisis.

Figura 3.30 Indentación sobre la superficie de la muestra de fundición

Tabla 3.10 Valores de dureza en la muestra de fundición

Condición	Valor	Valor Valor		Desviación
	máximo (HV)	mínimo (HV)	promedio (HV)	estándar
Colada	63.88	45.91	55.01	5.86

Las muestras obtenidas por melt spinning presentan indentaciones como las mostradas en la Figura 3.31, en dichas imágenes la zona donde se realizó el ensayo corresponde a la cara de la cinta que estuvo en contacto directo con el disco de cobre. En este caso los valores de dureza obtenidos se muestran en la Tabla 3.11.

Figura 3.31 Vista frontal tomada a 40x de las indentaciones en cintas de Al-6.1Ni obtenidas a a) 20 m/s, b) 30 m/s y c) 40 m/s

Condiciones de	ones de Valor Valor		Dureza	Desviación
melt spinning	máximo (HV)	mínimo (HV)	promedio (HV)	estándar
20 m/s	187.87	120.25	168.18	5.92
30 m/s	164.91	119.80	156.40	7.54
40 m/s	171.03	116.62	132.73	13.42

Tabla 3.11 Valores de dureza de las cintas de Al-6.1Ni colocadas de manera frontal

Comparando los promedios de dureza tanto de la muestra de colada, como de las cintas de melt spinning, ensayadas en la zona en contacto con el disco, se observa un aumento en la dureza del material de alrededor del 125%, siendo la muestra de 20 m/s la que presenta el mayor aumento, esto debido a que la distribución de intermetálicos Al₃Ni globulares dentro de la matriz de aluminio a esta velocidad es más homogénea. Además de estos ensayos, también se realizaron mediciones de microdureza a las cintas de Al-6.1Ni colocadas de perfil, debido a que, como se explicó en el apartado III.4.2, la globulización de los intermetálicos se da de forma preferencial en la zona en contacto con el disco, y disminuye hacia la zona de la cinta que solo tiene contacto con la atmosfera de helio. La Figura 3.32 muestra las indentaciones producidas tanto en cintas de Al-6.1Ni, como en las cintas de aluminio puro. Los resultados obtenidos para cada una de las condiciones se presentan en la Tabla 3.12.

Figura 3.32 Imágenes tomadas a 40x de las cintas de Al-6.1Ni colocadas de perfil y obtenidas con a) 20 m/s, b) 30 m/s, c) 40 m/s, así como cintas de aluminio puro obtenidas con d) 20 m/s, e) 30 m/s, f) 40 m/s

Condiciones de	ndiciones de Valor		Dureza	Desviación
melt spinning	máximo (HV)	mínimo (HV)	promedio (HV)	estándar
20 m/s(Al-6.1Ni)	82.44	56.29	69.05	6.31
30 m/s(Al-6.1Ni)	85.68	61.34	69.80	8.22
40 m/s(Al-6.1Ni)	76.48	54.55	66.18	5.90
20 m/s (Al)	33.30	21.98	25.55	2.61
30 m/s (Al)	40.86	23.19	30.33	4.56
40 m/s (Al)	37.74	22.13	26.84	3.23

Tabla 3.12 Valores de dureza registrada en cintas de aleación y aluminio puro

Los resultados de la tabla anterior muestran que existe un aumento de al menos 100% en la dureza de las cintas de aleación, comparadas con las cintas de aluminio puro. Esto es debido a la presencia de la fase intermetálica en el material. Por otra parte, las muestras obtenidas del compactado fueron ensayadas tanto en la zona de la base, como en la zona transversal. Las imágenes a) y b) de la Figura 3.33 muestran que las indentaciones en la base del compactado no presentan una forma regular, debido a que se trata de un solo plano de cintas y una fuerza de indentación mayor que la utilizada para las muestras de melt spinning. Contrario a esto, las imágenes c) y d) de la misma figura, presentan huellas del indentador bien definidas, efecto de la mejor unión de las cintas en este sentido, los valores de dureza obtenidos se presentan en la Tabla 3.13.

Figura 3.33 Ensayos de dureza a) y b) en la base del compactado, así como c) y d) de manera transversal

Zona del compactado	Valor máximo (HV)	Valor mínimo (HV)	Dureza promedio (HV)	Desviación estándar
Base	80.39	55.54	68.47	8.02
Transversal	77.43	62.02	70.72	4.31

Tabla 3.13 Valores de dureza en la muestra de compactado

Por último se realizó la medición de microdureza en la muestra obtenida por extrusión, la cual, de la misma manera que en SEM, se dividió en zonas para su análisis, tal como se muestra en la Figura 3.34, los resultados de la medición se muestran en la Tabla 3.14.

Figura 3.34 Zonas de la muestra de extrusión para la medición de microdureza

Zona de la muestra	Valor máximo (HV)	Valor mínimo (HV)	Dureza promedio (HV)	Desviación estándar
Α	148.44	102.22	117.90	5.63
В	171.04	87.95	126.50	4.64
С	184.312	111.501	139.87	4.09
D	174.21	125.97	144.76	8.45
E	203.30	116.62	159.25	4.70
F	225.19	145.95	189.53	6.31

Tabla 3.14 Valores de dureza medida en la muestra de extrusión

Para ejemplificar mejor el aumento de la dureza con respecto a la deformación sufrida por la muestra se presenta la Figura 3.35, en la cual se grafican los valores de dureza promedio de cada una de las zonas de la muestra. Se puede observar entonces, que la unión mecánica de las cintas producida por la deformación severa conduce a un aumento en la dureza del material. Para corroborar lo anterior, se generó un modelo y se graficó la línea de tendencia correspondiente en función de los valores de dureza promedio de la Tabla 3.14, esto junto con el cálculo del valor estadístico R², el cual al ser cercano a 1 permite concluir que la hipótesis que sostiene, que la elevación en la dureza del material aumenta con respecto a la deformación producida por la reducción de carburo, es confiable.

Figura 3.35 Cambio de dureza en la muestra obtenida por extrusión

CAPÍTULO IV

CONCLUSIONES

El uso de la técnica de solidificación rápida por melt spinning en la aleación Al-Ni eutéctica generó un cambio en la morfología de la fase intermetálica Al_3Ni , llevándola de una forma acicular a globular, favoreciendo el empleo de esta fase como refuerzo al interior de la matriz de aluminio. Con esta técnica también se dio la formación de la fase metaestable Al_9Ni_2 , debido a que el proceso se realiza fuera del equilibrio.

La presencia de atmósfera de helio durante el procesamiento de la aleación Al-Ni eutéctica por melt spinning a una velocidad de la rueda de 20 m/s resultó en una distribución más homogénea del intermetálico Al_3Ni , así como en una mejor definición en los bordes de las cintas.

Las propiedades en tracción de las cintas obtenidas por melt spinning aun no presentan una mejora en su desempeño, esto como consecuencia de la zona más alejada de las cintas que no entro en contacto directo con la rueda, y en la cual se tiene presencia de intermetálicos Al_3Ni sin globulizar, aportando así un aumento en la fragilidad a las cintas.

Los procesos de compactación y extrusión permitieron la consolidación de las cintas en un material con mayores dimensiones por medio de la unión mecánica. Siendo esta unión mayor que la alcanzada en un trabajo previo realizado en este mismo grupo de trabajo.

El aumento en la dureza del material se debe tanto a la cantidad de la fase intermetálica Al_3Ni , su distribución y cambio de morfología generadas mediante el proceso de solidificación rápida por melt spinning al interior de la matriz de aluminio, como a la deformación producida a través del proceso de extrusión.

La morfología globular de los intermetálicos Al_3Ni alcanzada por medio del proceso de melt spinning se conservó al final de los procesos de compactación y extrusión.

APÉNDICES

Apéndice A

Sistemas cristalinos [1].

Sistema cristalii	Relación no axial	Ángulos interaxiales	Geometría de la celdilla unidad
Cúbico	a = b = c	$\alpha = \beta = \gamma = 90^{\circ}$	
Hexagonal	$a = b \neq i$	$\alpha = \beta = 90^\circ, \gamma = 120^\circ$	
Tetragonal	$a = b \neq c$	$\alpha = \beta = \gamma = 90^{\circ}$	a
Romboédrico (Trigonal)	a = b = c	$\alpha = \beta = \gamma \neq 90^{\circ}$	a a a a
Ortorrómbico	a ≠ b ≠ c	$\alpha = \beta = \gamma = 90^{\circ}$	a b
Monoclínico	$a \neq b \neq c$	$\alpha = \gamma = 90^{\circ} \neq \beta$	
Triclínico	a ≠ b ≠ c	$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$	c a a

Apéndice B

Distancias interplanares para cada sistema cristalino [54].

System	$1/d_{hkl}^2$
Cubic	$(h^2 + k^2 + l^2)/a^2$
Tetragonal	$\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$
Orthorhombic	$\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$
Hexagonal and Trigonal (P)	$\frac{4}{3a^2}(h^2 + k^2 + hk) + \frac{l^2}{c^2}$
Trigonal (R)	$\frac{1}{a^2} \left(\frac{(h^2 + k^2 + l^2)\sin^2\alpha + 2(hk + hl + kl)(\cos^2\alpha - \cos\alpha)}{1 + 2\cos^3\alpha - 3\cos^2\alpha} \right)$
Monoclinic	$\frac{h^2}{a^2 \sin^2 \beta} + \frac{k^2}{b^2} + \frac{l^2}{c^2 \sin^2 \beta} \frac{2hl \cos \beta}{ac \sin^2 \beta}$ $(1 \cos^2 \alpha \cos^2 \beta \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma)^{-1}$
Triclinic	$\left(\frac{h^2}{a^2}\sin^2\alpha + \frac{k^2}{b^2}\sin^2\beta + \frac{l^2}{c^2}\sin^2\gamma + \frac{2kl}{bc}(\cos\beta\cos\gamma - \cos\alpha)\right)$
	$+\frac{2lh}{ca}(\cos\gamma\cos\alpha\cos\beta)+\frac{2hk}{ab}(\cos\alpha\cos\beta\cos\gamma)\bigg)$

Apéndice C

Diseños para extrusión.

Los diseños de dados y piezas para extrusión aparecen en el siguiente orden:

Rediseño 1, fabricado en acero K-340:

- Dado
- Tapa
- Camisa
- Ensamble 1
- Ensamble 2

Rediseño 2, fabricado en acero 4140:

- Dado
- Camisa
- Ensamble

Piezas de la prensa

- Punzón, piezas fabricadas de acero K-340 y 4140 respectivamente
- Acoplador prensa-punzón, acero 1048
- Poste base de la prensa, acero 1048

Apéndice D

Fichas JCPDS utilizadas para indexación del patrón obtenido por TEM. En el siguiente orden:

- Aluminio
- Al₃Ni
- Al₉Ni₂ [17]

Pattern : 00-004-0787				Radi	iation = 1.54	40600				Quality : High		
Al Aluminum Aluminum, syn					d (Å) 2 33800 2 02400 1 43100 1 22100 1 0240 1 01240 0 90550 0.82660	100 472 24 7 28 8 8	h 100304344	k 102120322	100120102			
Lattice : Face-centered cubic S.G. : Fm-3m (225) a = 4.04940	Z = 4		Mol. weight = 26.98 Volume [CD] = 66.40 Dx = 2.699 Vicor = 3.62	-								
Color: Light gray metallic Sample preparation: The material used for the NBS sample was a melting point standard sample of aluminum prepared at NBS, Gaithersburg, Maryland, USA. Analysis: The chemical analysis (%): Si 0.011, Cu 0.008, Fe 0.007, Ti 0.0001, Zr 0.003, Ga 0.004, Mo 0.00002, S 0.0001, Al 99.9+ (by difference). Temperature of data collection: Pattern taken at 25 C. General comments: Mineral species of doubtful validity, Am. Mineral., 65 205 (1980). Additional pattern: See ICSD 64700 (PDF 01-085-1327). Data collection flag: Ambient.												
Swanson, Tatge., Natl. Bur. Stand. (U.S.), Circ. 539, volume I, page 11 (1953) CAS Number: 7429-90-5												
Radiation : CuKa1 Lambda : 1.54056 SS/FOM : F9= 92(0.0109,9)		Filter : Be d-sp : Not	eta t given									

Pattern : 03-065-2418		Radiation = 1.540600	Quality : Calculated	
Al ₃ Ni Aluminum Nickel <i>Lattice :</i> Orthorhombic	Mol. weight = 139.64	d (Å) i h 4.02812 311 0 3.86016 593 1 3.66310 535 0 3.30570 19 2 3.01593 511 2 2.72456 53 2 2.55537 234 2 2.46012 426 2 2.45050 167 0 2.26061 75 1 2.19038 639 0 2.16113 776 1 2.07639 910 1	k I d (Å) i h k 1 1 1.14665 11 3 3 0 1 1.14337 16 0 2 2 0 1.13718 103 4 1 1 1 1.13778 48 2 4 0 0 1.13154 54 5 3 1 0 1.13578 48 2 4 0 0 1.13154 54 5 3 1 0 1.13578 48 2 4 0 1.13154 54 5 3 3 1 0 1.16655 7 1 2 0 1 1.10535 74 5 2 1 1.09978 26 4 2 2 1 1.09552 22 0 6 1 2 1.09145 55 3<	343314400300000000
S.G. : Pnma (62) a = 6.61140 b = 7.36620 c = 4.81120 a/b = 0.89753 C/b = 0.65315 NIST M&A collection code: N AL0706 506	Volume [CD] = 234.31 Dx = 3.959 Mcor = 0.92	2.00361 921 3 1.97113 709 2 1.94509 39 2 1.93336 279 3 1.92656 677 1 1.86063 290 2 1.84155 315 0 1.82399 8 2 1.76003 159 3 1.71997 2 2 1.66310 78 1 1.65285 48 4 1.65285 48 4 1.65285 11 2 1.56664 33 3 1.56772 29 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	41134134012143131
NIST M&A collection code: N AL0706 506 Temperature factor: IB=AI,Ni Data collection flag: Ambient.		1.56318 80 4 1.55854 38 1 1.55854 38 1 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52913 95 4 1.52917 180 2 1.50797 5 4 1.46227 73 0 1.44290 27 2 1.43894 66 4 1.4359 62 2 1.40868 55 0 1.37714 77 4 1.36585 241 3 1.33585 241 3 1.33585 13 2 1.33728 13 2 1.31584 18 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>4 7 1 7 4 0 0 4 4 4 0 1 1 1 4 4 7 8 4 4 4 4 4 4 4 5 4 5 0</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 7 1 7 4 0 0 4 4 4 0 1 1 1 4 4 7 8 4 4 4 4 4 4 4 5 4 5 0
A.J.Bradley & A.Taylor, Philos. Mag., volume 23, page 1049 (1937) Calculated from NIST using POWD-12++		1.27768 31 4 "1.27768 31 3 1.27500 24 5 1.25632 16 5 1.244000 12 2 1.23427 140 1 1.23005 77 4 1.22770 76 0 1.22313 97 3 1.20485 115 5 1.20280 65 0 1.19173 4 4 "1.19173 4 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	554511225450154
Radiation : CuKa1 Lambda : 1.54080 SS/FOM : F30=246(0.0038,34)	<i>Filter</i> : Not specified <i>d-sp</i> : Calculated spacings	1.16592 38 3 1.18338 48 1 1.17440 50 2 1.17078 29 1 1.15839 64 1 1.15877 1 5 1.15098 7 2	5 1 0.91199 5 4 6 0 4 0.91079 18 5 5 5 2 0.90079 18 5 5 6 1 0.90700 51 4 5 1 4 0.90700 51 4 5 0 2 0.90420 30 4 3 0 2 0.90136 9 6 1 0 3 0.89678 2 7 2 6 0 0.89678 27 2 5	22 33 43 1 4

Table 2 Al ₉ Ni ₂ p	– Measured hase	an fitte	d X-ray	diffraction	n lines of
hkl	d exp (A)	$2\theta \exp$	2θ calc	∆2 <i>θ</i>	Intensity
(1 1 0)	5.0381	17.589	17.587	0.002	24
(0 1 1)	4.3721	20.295	20.293	0.002	29
(1 1 1)	3.7844	23.489	23.484	0.005	49
(2 1 0)	3.5338	25.181	25.172	0.009	27
(2 0 1)	3.3573	26.528	26.5	0.028	22
(0 2 0)	3.1184	28.602	28.678	-0.076	35
(1 2 0)	2.9242	30.546	30.542	0.004	27
(-202)	2.6382	33.953	34.022	-0.069	20
(1 1 2)	2.5548	35.097	35.086	0.011	31
(-311)	2.4857	36.106	36.166	-0.060	20
(-212)	2.4291	36.977	37.046	-0.069	35
(2 0 2)	2.3846	37.693	37.686	0.007	53
(2 2 1)	2.2831	39.435	39.442	-0.007	98
(2 1 2)	2.226	40.492	40.474	0.018	73
(-122)	2.1569	41.847	41.84	0.007	35
(3 2 0)	2.1041	42.95	42.89	0.060	33
(-312)	2.0871	43.318	43.352	-0.034	58
(4 0 1)	1.9654	46.149	46.157	-0.008	49
(3 2 1)	1.9479	46.589	46.59	-0.001	100
(1 3 1)	1.9034	47.744	47.792	-0.048	29
(4 1 1)	1.8744	48.531	48.546	-0.015	20
(-421)	1.7379	52.621	52.593	0.028	15
(4 0 2)	1.6814	54.533	54.567	-0.034	24
(-521)	1.4932	62.11	62.129	-0.019	22
(0 4 2)	1.3873	67.458	67.437	0.021	29
(-602)	1.3527	69.425	69.396	0.029	20
(-612)	1.3221	71.271	71.262	0.009	22
(-342)	1.2726	74.502	74.507	-0.005	24
(-433)	1.2498	76.101	76.092	0.009	22
(0 2 5)	1.1433	84.718	84.705	0.013	22
(-604)	1.1069	88.204	88.208	-0.004	20
(-443)	1.1037	88.52	88.528	-0.008	20
(-731)	1.057	93.57	93.57	0.000	20
(0 0 6)	1.0246	97.496	97.496	0.000	16

Lattice parameters are compatible with a monoclinic cell a=8.6393 A, b=6.2206 A, c=6.1811 A and $\beta=95.98^{\circ}$

Apéndice E

Fichas JCPDS utilizadas para indexación de patrones de Difracción de Rayos X.

En el siguiente orden:

- Aluminio
- Al₃Ni
- Al₂O₃

Pattern : 00-004-0787			Radiation = 1.5	540600				Quality : High		
AI			2th 38 473 44.740 85 135	i 100 47	h 1 2	k 1 0	1			
Aluminum Aluminum, syn			130 78 230 82 438 99.081 112 048 118 574 137.463	24 7 2 8 8 8	204344	120322	1 2 0 1 0 2			
Lattice : Face-centered cubic		Mol. weight = 26.98								
S.G.: Fm-3m (225)		Volume [CD] = 66.40								
a = 4.04940		Dx = 2.699								
Z =	4	<i>Mcor</i> = 3.62								
			-							
Color: Light gray metallic Sample preparation: The material used for the NBS sample was a melting point standard sample of aluminum prepared at NBS, Gaithersburg, Maryland, USA. Analysis: The chemical analysis (%): Si 0.011, Cu 0.006, Fe 0.007, Ti 0.0001, Zr 0.003, Ga 0.004, Mo 0.00002, S 0.0001, Al 99.9+ (by difference). Temperature of data collection: Pattern taken at 25 C. General comments: Mineral species of doubtful validity, Am. Mineral., 65 205 (1980). Additional pattern: See ICSD 64700 (PDF 01-085-1327). Data collection flag: Ambient.										
Swanson, Tatge., Natl. Bur. Stand. (U.	.S.), Circ. 539, volume I,	page 11 (1953)								
CAS Number: 7429-90-5										
Radiation : CuKa1	Filter :	Beta								
Lambda : 1.54056	d-sp : 1	Not given								
SS/FOM : F9= 92(0.0109,9)										

Pattern : 03-065-9648			Radiation = 1.540600	0		Quality : Calculated		
Al ₃ Ni Aluminum Nickel		Mol woight = 120.84	22.092 33 22.886 6 24.193 52 25.931 9 27.005 29.656 5 32.912 3 35.160 2 36.570 4 37.425 1 39.924 4 41.265 6 41.265 6 41.846 7	i h 114 0 104 1 137 0 199 1 200 2 150 2 152 2 130 2 152 2 152 2 152 2 152 2 152 2 152 2 152 2 155 1 1 155 1 1 155 1 1 155 1 1 1 1 1 1 1 1 1 1 1 1 1 1	k / 1 101100 2101011122 0022211 20022311 2002231	2th 84.612 85.4907 85.484 85.614 86.017 86.474 87.385 88.575 88.528 89.146 "89.146 "89.145 89.617 89.791 90.007	i h 9 3 14 0 86 4 41 2 45 5 6 1 9 2 62 5 41 6 222 4 41 6 222 4 41 18 0 45 3	k 32143212052465
S.G. : Pnma (62) a = 6.59820 b = 7.35150 c = 4.80210 a/b = 0.89753 c/b = 0.65321 Z =	4	Noi. weight = 139.64 Volume [CD] = 232.93 Dx = 3.982 Ncor = 0.88	43,643 8 45,054 4 45,315 8 46,105 6 46,755 47,058 2 47,230 6 48,459 2 49,559 3 50,068 52,021 1 53,324 55,301 *55,301 *55,676 55,676 55,676	777 1 774 2 774 2 768 3 769 1 772 2 769 1 772 2 773 1 773 1 773 1 773 1 773 1 45 4 20 0	1 2 1 0 2 1 2 2 0 1 1 2 0 2 0 2 3 0 1 2 1 2 2 0 2 4 3 0 0 4 5 0 0 1 1 2 1 2 0 2 4 5 0 0 4 5 0 0 4 5 0 0 4 5 0 0 5 0 5 0	90.187 90.694 91.161 91.352 91.878 92.095 92.256 92.256 93.429 93.429 93.941 93.941 94.833 94.833 94.833 95.007 95.203	34 6 11 0 20 2 10 1 6 6 30 4 55 1 22 3 31 5 31 5 655 3 31 5 655 3 24 3	03421134134012147
NIST M&A collection code: A 50139 ST514 1 Temperature factor: TF TF was not given, B set to 1.000 for calc. Data collection flag: Ambient.		57.546 58.206 59.011 59.364 59.630 60.630 60.815 1 *60.815 1 61.574 63.716 64.877 65.055 66.487 65.445 66.455 66.448 68.141 68.055 66.448 68.216 69.021 70.125 1 70.363 71.653 71.653 71.653 71.823 73.109	10 23 27 27 27 27 27 27 27 27 27 27	3 N 3 1 3 1 1 3 N 0 N 0 3 1 3 N 3 1 1 0 N 1 N 3 3 N N 1 3 3 . 1 1 0 0 3 1 1 3 N 0 N 4 0 N N 4 1 5 5 3 0 4 3 N 3 1 4 3 3 0 .	5.325 96.958 97.320 97.472 98.315 98.898 99.898 99.589 100.063 100.661 101.007 101.653 102.070 103.099 103.320 103.677 103.806 103.985 104.514 105.349 105.349 105.349 105.349 106.349 106.349	- 6 2 0 2 5 1 3 5 0 6 2 4 1 6 4 6 2 5 3 4 3 3 6 4 4 5 2 0 1 . 215712343411 3 113319141851911 8 4 1 1 10 9 4 6 6 3 7 7 .	3 1 3 1 4 3 1 4 3 4 0 0 2 4 2 0 1 1 2 2 3 3 4 2 1 4 1 4 5 2 3 4 2 5 4 1 5 3 7 4 6 4 5 3 2 6 1 5 4 1 7 1	
Bradley, A.J., Taylor, A., Philos. Mag., volume 23, page 1049 (1937) Calculated from NIST using POWD-12++		73.109 74.325 74.325 74.509 75.811 76.692 77.412 1 77.729 77.907 78.248 79.674 79.827 80.731 *80.731 *80.895	55 2 28 4 28 3 21 5 14 5 10 2 11 5 10 2 11 6 66 0 84 3 99 5 55 0 4 4 4 4 5 1	5 2 1 0 1 3 5 4 6 2 2 0 4 3 4	108.289 109.428 110.014 110.326 111.265 111.265 112.630 113.006 113.006 113.554 113.554 113.554 113.581 113.912 114.147 114.680	4 1 9 2 5 10 4 10 2 715 6 13 2 15 6 13 2 33 17 1 20 0 7 2	503431122545015 043267437052811	
Radiation : CuKa1 Lambda : 1.54060 SS/FOM : F30=250(0.0035,34)	Filter : N d-sp : C	lot specified alculated spacings	81.126 81.411 82.175 82.485 83.529 84.220 "84.220	33 3 43 1 43 2 54 1 54 1 54 5 6 4 6 2	5 1 0 4 5 2 1 4 0 3 6 0	114.838 115.625 115.866 116.339 116.631 117.203 117.802 118.356	4 3 4 4 11 5 11 6 23 4 7 6 2 7	46505312

Pattern : 00-031-0026			Radiation = 1.540600					Quality : Questionable				
Al ₂ O ₃			2th 10 998 11.335 12 268	75 45 55	h	k	1					
Aluminum Oxide			12 970 13 869 18.666 20 400 20 935 21 765 22.724 24.435 24 921	10 10 45 35 100 35 10 30 40								
Lattice : Not assigned		Mol. weight = 101.96	25 354 25 852 26.111	20 20 35								
S.G.: (0)			26 268 27 165 27 947 29,889 30 721 31 949 32 778 33,267 35 108 37 507 39 223 40,472 40 914 41 385 44 531 46 309	15 20 40 5 9 10 4 15 20 15 20 10 10 8								
General comments: Dispersible alumina gel. Data collection flag: Ambient.		46 789 50.167	10 8									
Guilliatt, Brett., J. Mater. Sci., volume 9, page 2067 (1974)												
Radiation :		Filter : Not specified d-sp : Not given										

REFERENCIAS

[1] Callister W. D., et al., Fundamentals of Materials Science and Engineering: An Integrated Approach, 4a ed., pp. 372-375, 2011.

[2] Mangonon P. L., The Principles of Materials Selection for Engineering Design, 1^a ed.,
Pearson Education, pp. 429-437, 2001.

[3] Vasudevan A. K., Doherty R. D., Aluminum Alloys-Contemporary Research and Applications, Treatise on Materials Science and Technology, Volume 31, Academic Press, Inc. 1989.

[4] Lavernia E. J., Grant N. J., J. Master Sci. 22, 1521, 1987.

[5] Schey J. A., Procesos de Manufactura, Mc Graw-Hill interamericana, 2002.

[6] Vourlias G., Pistofidis N., Pavlidou E., Stergioudis G., Reinforcement of Al–Fe–Ni Alloys with the *in situ* Formation of Composite Materials, pp. 178-181, 2009.

[7] Roik A.S., X-ray Diffraction Study of the Structure of Al–Ni Melts, Russian Metallurgy, Vol. 3, pp. 208–210, 2006.

[8] http://www.physik.uni-augsburg.de/~ferdi/skript/teil1/node50.html

[9] Anantharaman T.R., Suryanarayana C., Rapidly Solidified Metals: A Technological Overview, Centre of Advanced Study in Metallurgy, India, 1987.

[10] Miranda J., Tesis "Obtención de Aleaciones Al-Ni Nanoestructuradas por Solidificación Rápida. Instituto de Investigaciones en Materiales", UNAM, 2014.

[11] American Society for Metals, Aluminum: Properties and Physical Metallurgy, pp. 3-19, 1984.

[12] Doyle Lawrence E., Manufacturing Processes and Materials for Engineers, pp.121-124, 1984.

[13] Altenpohl D. Aluminum Viewed from Within: An Introduction into the Metallurgy of Aluminum Fabrication, 1a ed., Aluminium-Verlag, Düsseldorf, Deutschland, 1982.

[14] American Society for Metals, Aluminum and Aluminum Alloys, ASM Specialty Handbook, 1993.

[15] Elagin V. I., Ways of Developing High-Strength and High-Temperature Structural Aluminum Alloys in the 21st Century, Metal Science and Heat Treatment Vol. 49, Nos. 9 – 10, Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 3 – 11, 2007.

[16] Dobatkin V. I., Elagin V. I., Mudrenko G. A., Processes of Treatment of Light and High-Temperature Alloys [in Russian], Nauka, Moscow, pp. 82 – 90, 1981.

[17] González G., et al., The Influence of Cooling Rate on the Microstructure of an Al–Ni Hypereutectic Alloy, Elsevier, Materials Characterization, pp. 1607 – 1612, 2008.

[18] Shackelford J. F., Introduction to Materials Science for Engineers, 6th ed., 2004.

[19] Nonferrous Materials, Vol. 2, Metals Handbook, 10a ed. ASM International, 2007.

[20] Tjong S. C., Mang Z. A., Microstructural and Mechanical Characteristics of *in situ* Metal Matrix Composites, pp. 49-113, 2000.

[21] Peters S. T., Handbook of Composites, 2nd ed., Springer-Verlag, New York, USA, 2000.

[22] Balasubramanian M., Composite Materials and Processing, 2014.

[23] Chawla K. K. Composite Materials Science and Engineering, 2nd edition, Springer-Verlag, New York, USA, 1998.

[24] Liming Kea, et al., Al–Ni Intermetallic Composites Produced *in situ* by Friction Stir Processing, Elsevier, Journal of Alloys and Compounds, pp. 494–499, 2010.

[25] Uan J.Y., et al., A Study on the Subgrain Superplasticity of Extruded Al-Al₃Ni Eutectic Alloy, Metallurgical and Materials Transactions A, Vol. 28A, pp. 401-409, 1997.

[26] Uan J. Y., Chen L.H., Lui T.S., On the Extrusion Microstructural Evolution of Al-Al₃Ni *in situ* Composite, Acta Materialia, pp. 313–320, 2001. [27] Varley P. C., The Technology of Aluminium and Its Alloys, Newnes/ Butterworth, London, England, 1970.

[28] Mondolfo L. F., Aluminium Alloys: Structure and Properties, Butterworths, pp. 338-342, 1976.

[29] Ragab M. et al., Effect of Milling Energy on the Structural Evolution and Stability of Nanostructured Al-5.7 wt. % Ni Mechanically Alloyed Eutectic Alloy, Powder Technology, pp. 108–116, 2012.

[30] Massalski A. V., Murray J. L., Bennet K. H., Baker H., Binary Alloy Phase Diagrams, American Society for Metals: Metals Park, pp. 140-142, 1986.

[31] ASM Specialty Handbook: Aluminum and Aluminum Alloys, 1993.

[32] Saksl K. et al., In situ XRD Studies on Al–Ni and Al–Ni–Sr Alloys Prepared by Rapid Solidification, Journal of Alloys and Compounds, pp. 95–100, 2008.

[33] Zhang Z., et al., Effect of α -Al/Al₃Ni Microstructure on the Corrosion Behaviour of Al–5.4wt % Ni Alloy Fabricated by Equal-Channel Angular Pressing, Elsevier, Corrosion Science, pp. 2962–2972, 2007.

[34] Lee S., et al., Fracture Behavior of Squeeze-Cast Aluminum-Nickel Composites for Diesel Engine Piston Rings, Metallurgical and Materials Transactions, pp. 2773-2779, 1997.

[35] Kita K, et al., Microstructure and Mechanical Properties of Al-Ni Alloys Fabricated by Continuous Electron Beam Evaporation, Japan Society of Powder Metallurgy, pp. 406-411, 2000.

[36] Xi Li, et al., Alignment Behavior of the Primary Al₃Ni Phase in Al–Ni Alloy under a High Magnetic Field, Elsevier, Journal of Crystal Growth, pp. 3488– 3497, 2008.

[37] Rohatgi P. K., et al., Wrought Aluminum-Nickel Alloys for High Strength-High Conductivity Applications, Metallurgical Transactions, Vol. 6, 1975.

[38] Rudnev V., Handbook of Induction Heating, 2003.

[39] González L., Winder A., Lászlo J. M., Design and Construction of Coils for Electromagnetic Induction Heating, 2013.

[40] Suryanarayana C., Jones H., Rapid Quenching from the Melt: An Annotated Biography 1958-72, pp. 705-753, 1973.

[41] Cahn R. W., Haasen P., Physical Metallurgy: Alloys Rapidly Quench from the Melt,
Vol. 2, 3rd ed., pp. 1779-1852, 1983.

[42] Masumoto T., Inoue A., Sakai S., Trans. Japan Inst. Metals, pp. 112-115, 1980.

[43] Katgerman L., Dom F., Rapidly Solidified Aluminum Alloys by Melt Spinning, Materials Science and Engineering, pp. 1212–1216, 2004.

[44] Jones H., Microstructure Rapidly Solidified Materials, pp. 145–56, 1984.

[45] Dieter G. E., Mechanical Metallurgy, 3rd ed., McGraw-Hill, 1986.

[46] http://montequipo.com/prensaslab.html

[47] Verhoeven J. D., Fundamentos de Metalurgia Física, 1987.

[48] http://www.jeol.co.jp/en/applications/pdf/sm/sem_atoz_all.pdf

[49]https://www.bruker.com/es/products/x-ray-diffraction-and-elementalanalysis/handheld-xrf/metal-analysis.html

[50] Beckhoff B., Kanngießer B., Langhoff N., Wedell R., Wolff H., Handbook of Practical X-Ray Fluorescence Analysis, Springer-Verlag, Deutschland, 2006.

[51] Egerton R. F., Physical Principles of Electron Microscopy: An introduction to TEM, SEM and AEM, Springer-Verlag, pp. 57-88, Deutschland, 2005.

[52] Cullity B. D., Stock R. S., Elements of X-Ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, NJ. USA, 1998.

[53] Annual Book of ASTM Standards, Standard Test Method for Microindentation Hardness of Materials, Vol. 3, pp. 384-399, 2000. [54] Dinnebier R. E., Power Diffraction: Theory and Practice, RSC Publishing, 2008.