

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Maestría y Doctorado en Ciencias Bioquímicas

Generación y caracterización de versiones truncadas de la enzima tirosinasa MelAc de *Rhizobium etli* expresada en *Escherichia coli*

TESIS

QUE PARA OPTAR POR EL GRADO DE: Maestro en Ciencias

> PRESENTA: María Alejandra Mejía Caballero

TUTOR PRINCIPAL Dr. Guillermo Gosset Lagarda Instituto de Biotecnología

MIEMBROS DEL COMITÉ TUTOR Dra. Gloria Saab Rincón Dr. Lorenzo Segovia Instituto de Biotecnología

MÉXICO, D. F. Octubre, 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

El presente trabajo fue realizado en el Departamento de Ingeniería Celular y Biocatálisis del Instituto de Biotecnología de la Universidad Nacional Autónoma de México bajo la asesoría del Dr. Guillermo Gosset Lagarda. Durante la realización de este trabajo se contó con la beca para estudios de maestria de CONACyT. Además se contó con el apoyo del Programa de Apoyo a los Estudios de Posgrado (PAEP).

Índice

ÍndiceI
Índice de figuras Ill
Índice de tablasV
Resumen1
Introducción2
Tirosinasas2
Tirosinasas bacterianas4
Aplicaciones biotecnológicas de las tirosinasas6
Melanina7
Melanina en plantas9
Melanina en mamíferos9
Melanina en bacterias9
Antecedentes11
Expresión y caracterización de la enzima MelA en <i>E. coli</i> 11
Evaluación de las condiciones óptimas para la producción de eumelanina utilizando una cepa de <i>E. coli</i> que expresa el gen <i>melA</i> 12
Generación y caracterización de mutantes del gen <i>melA</i> 12
Justificación
Hipótesis
Objetivo general
Objetivos particulares16

Metodología	17
Cepas y plásmidos	17
Técnicas genéticas y de DNA recombinante	18
Reacción en cadena de la polimerasa (PCR)18	
Purificación de DNA	
Reacciones de restricción23	
Reacciones de ligación	
Transformación bacteriana24	
Medios de cultivo y condiciones de crecimiento	24
Medios de cultivo24	
Condiciones de cultivo	
Caracterización de las clonas obtenidas	25
Extracción de ácidos nucleicos totales25	
Evaluación cuantitativa de producción de eumelanina de las clonas de la biblioteca 25	
Cuantificación de proteína por el método de Bradford26	
Predicción de la estructura terciaria de la proteína MelA	26
Construcción del árbol filogenético para la proteína MelAc	27
Resultados y discusión	28
Predicción de la estructura terciaria de la proteína MelA	28
Deleciones en el gen melA utilizando la técnica "Delete primer"	33
Evaluación cuantitativa de producción de melanina de las clonas de la biblioteca 37	
Conclusiones	42
Perspectivas	43
Referencias	44

Índice de figuras

Figura 1. Centro de unión a cobre tipo 3 de las tirosinasas 2
Figura 2. Reacciones catalizadas por la enzima tirosinasa (EC 1.14.18.1)
Figura 3. Configuración de los átomos de cobre y oxígeno del centro catalítico de la enzima 4
Figura 4. Estructuras cristalizadas de tirosinasas5
Figura 5. Mecanismo de síntesis de Eumelanina y Feomelanina8
Figura 6. Alineamiento múltiple del extremo N-terminal de MelA con otras tirosinasas13
Figura 7. Esquema de la mutante MelAc 14
Figura 8. Ejemplo de oligonucleótidos utilizados para generar el banco de versiones truncadas del gen <i>melA</i> c
Figura 9. Alineamiento de las primeras cuatro secuencias utilizadas como molde para el modelo de la estructura de la proteína MelA
Figura 10. Árbol filogenético de las secuencias de tirosinasas
Figura 11. Modelo de la proteína MelA generado por el programa I-TASSER
Figura 12. Generación de la biblioteca de versiones truncadas
Figura 13. Evaluación cualitativa de producción de eumelanina en las clonas del banco35
Figura 14. Extracción de ácidos nucleicos totales
Figura 15. Secuencias de las clonas seleccionadas

Página | III

Figura 16. Evaluación cuantitativa de producción de eumelanina	.38
Figura 17. Velocidad específica de reacción	39

Índice de tablas

Tabla 1. Clasificación de las melaninas de acuerdo a su precursor
Tabla 2. Propiedades bioquímicas de la tirosinasa MelA 11
Tabla 3. Cepas y plásmidos utilizados y construidos17
Tabla 4. Mezcla de reacción y condiciones utilizadas para la amplificación del primer banco deversiones truncadas de la enzima MelAc18
Tabla 5. Mezcla de reacción y condiciones utilizadas para la amplificación del segundo bancode versiones truncadas de la enzima MelAc19
Tabla 6. Mezcla de reacción y condiciones utilizadas para la amplificación del tercer banco deversiones truncadas de la enzima MelAc19
Tabla 7. Mezcla de reacción y condiciones utilizadas para la amplificación de los genes <i>melAc</i> , <i>melAc</i> 31-0 y <i>melAc</i> 2-0 de versiones truncadas de la enzima MelAc20
Tabla 8. Secuencia de los oligonucleótidos utilizados en este trabajo
Tabla 9. Mezcla de reacción del vector e inserto con las enzimas de restricción Ndel y Xmal
Tabla 10. Reacciones de ligación para CR, CL, proporción 1:1 y proporción 1:3
Tabla 11. Medios de cultivo empleados24
Tabla 12. C-score para los primeros 5 modelos de la proteína MelA generados por el programa I-TASSER

Tabla 13. Proteínas utilizadas como molde estructural para la generación del modelo de la
proteína MelA
Tabla 14. Tirosinasas utilizadas para la elaboración del árbol filogenético, obtenidas por el
programa BLAST, del NCBI
Tabla 15. Velocidad específica de reacción de las proteínas MutMelA, MelA, MelAc, MelAc1-0,
MeIAc y MeIAc31-040
Tabla 16. Fenotipo observado de las mutantes del segundo y tercer banco41

Resumen

Las tirosinasas son proteínas de unión a cobre tipo 3, involucradas en la síntesis de melanina. Se han descrito en varios grupos filogenéticos, entre los que se encuentra la bacteria Rhizobium etli (Cubo et al., 1988). El gen melA de Rhizobium etli CFN42, que codifica para la proteína MelA de 609 aminoácidos, con actividad de tirosinasa (González et al., 2003), se clonó y expresó en E. coli (Cabrera-Valladares et al., 2005). Posteriormente, se encontró una mutante espontánea (MelAc) con un cambio que introduce un codón de paro, dando como resultado una proteína trunca 106 aminoácidos más corta que MelA, la cual mantiene la actividad. En un análisis computacional se predijo la presencia de un posible péptido señal de 31 aminoácidos en la mutante MelAc (Echeverría, 2010). En este estudio, se construyó una biblioteca de mutantes con versiones truncadas de la enzima MelAc, con el objetivo de identificar la secuencia mínima que codifigue para una proteína con actividad de tirosinasa. La biblioteca se construyó utilizando el método PCR delete-primer, el cual consiste en una mezcla de oligonucleótidos que difieren en tamaño por un codón, por lo que es posible obtener una librería de mutantes con hasta16 deleciones secuenciales en el extremo amino y carboxilo de la proteína. Las primeras deleciones realizadas fueron en la secuencia de 31 aminoácidos predicha como posible péptido señal, posteriormente se deletaron 16 aminoácidos del extremo amino y carboxilo. Los genes truncados resultantes se clonaron en la cepa E. coli MC1061 y se probaron alrededor de 2000 colonias en el medio de producción de eumelanina (LB, Tir 0.4 g/L, CuSO₂ 40 µg/mL). Se seleccionaron y secuenciaron 40 clonas al azar. De estas clonas se midió su actividad específica a partir de un extracto celular. De todas las mutantes secuenciadas solo MelAc1-0 mantuvo el nivel de actividad de la proteína MelAc, a todas las demás no se les detectó actividad. Sin embargo, se detectaron mutantes que mostraban un nivel bajo de actividad de tirosinasa. En este estudio se concluye que la proteína con una deleción en el extremo amino de MelAc (MelAc1-0) es la versión mínima con actividad para su aplicación biotecnológica. Debido a que la eliminación de la secuencia de 30 aminoácidos, que fue predicha como un posible péptido señal, causó la pérdida de la actividad de la enzima, se concluye que esta secuencia no codifica para un péptido señal. La caracterización molecular, bioquímica y funcional obtenida contribuirá a comprender de mejor manera la relación estructura-función en esta proteína.

Introducción

Tirosinasas

Las tirosinasas (monofenol monooxigenasa EC 1.14.18.1) se encuentran ampliamente distribuidas en todas las escalas filogenéticas. Es la enzima clave en el oscurecimiento de vegetales, frutas y hongos. En mamíferos son las responsables de la melanización en piel, ojos, cabello e interior del oído, de igual forma se ha reportado que esta enzima se encuentra vinculada en el desarrollo de la enfermedad de Parkinson y otras enfermedades neurodegenerativas (Fenoll *et al.*, 2001). Pertenece a la familia de proteínas de unión a cobre tipo 3, junto con las catecol oxidasas y las hemocianinas. Estas contienen un par de iones de cobre en su sitio activo, cada uno coordinado por tres residuos de histidina altamente conservados, llamados CuA y CuB (Figura 1). Estos se encuentran en un grupo de cuatro α -hélices; estas enzimas se caracterizan por estar involucradas en el transporte o activación de O₂ (Claus *et al.*, 2006; Decker *et al.*, 2007).

Figura 1. Centro de unión a cobre tipo 3 de las tirosinasas. (A) Estructura del sitio de unión a cobre tipo 3 encontrado en las tirosinasas, formado por 6 residuos de histidina y dos átomos de cobre. (B) Motivos conservados de unión a cobre [Modificado Fairhead *et al.*, 2012].

Las tirosinasas catalizan la hidroxilación de compuestos monofenólicos a *o*-difenoles (actividad de cresolasa), y la subsecuente oxidación a *o*-quinonas (actividad de catecolasa), ambas reacciones requieren oxígeno molecular para llevarse a cabo (Fenoll, 2001; Chávez-Béjar, 2013). Para la reacción de hidroxilación un átomo del O₂ se incorpora en el anillo aromático del compuesto monofenólico, y el otro átomo se reduce para formar una molécula de H₂O, donde

el monofenol dona el átomo de hidrógeno (Figura 2) (Claus *et* al., 2006; Decker *et* al., 2007). Las *o*- quinonas son moléculas altamente reactivas y pueden someterse a una polimerización no enzimática para formar diferentes tipos de melanina, dependiendo de su precursor (Ito, 2003).

Figura 2. Reacciones catalizadas por la enzima tirosinasa (EC 1.14.18.1). (A) Actividad de cresolasa, hidroxilación del compuesto monofenólico en la posición *orto*. (B) Actividad de catecolasa, oxidación del compuesto difenólico para formar una *o*-quinona [Modificado Claus *et al.*, 2006].

Durante el ciclo catalítico el centro de unión a cobre tipo 3 puede adoptar diferentes formas funcionales: 1) el estado *oxy* [Cu(II)- $O_2^{2^-}$ -Cu(II)], 2) estado *deoxy* [Cu(I) Cu(I)], 3) estado *half met* [Cu(I) Cu(II)] y 4) el estado *met* [Cu(II)-OH⁻-Cu(II)]. En ausencia de cualquier sustrato, más del 85 % de la enzima se encuentra en la configuración *met*, denominado estado de reposo de la enzima. Los estados *met* y *oxy* de la tirosinasa son capaces de realizar la oxidación de los compuestos difenólicos, mientras que la reacción de hidroxilación de los compuestos monofenólicos solo puede ser llevada a cabo por el estado *oxy* de la proteína. En la Figura 3 se muestra la configuración *oxy* y *met* de los átomos de cobre y oxígeno del centro catalítico de la proteína (Claus *et al.*, 2006; Matoba *et al.*, 2006; Fairhead *et al.*, 2012).

Las tirosinasas no son específicas para un solo sustrato y pueden catalizar las dos reacciones con diferentes tipos de compuestos fenólicos y difenólicos; sin embargo, se ha demostrado que los compuestos fenólicos sustituidos en la posición 2 del anillo aromático, pueden actuar como inhibidores de la enzima. Los sustratos típicos de estas enzimas incluyen a la L-tirosina, a la L-dihidroxifenilalanina (L-DOPA), a la tiamina, al fenol y al pirocatecol. Cuando la L-tirosina reacciona con la tirosinasa se oxida produciendo L-DOPA y, posteriormente sufre la oxidación

a dopaquinona. Este último compuesto después de una serie de reacciones de oxidoreducción no enzimáticas se polimeriza para formar un tipo de melanina denominada eumelanina (García-Borrón *et al.*, 2002; Fairhead *et al.*, 2012).

Figura 3.Configuración de los átomos de cobre y oxígeno del centro catalítico de la enzima. (A) Estado *oxy* de la enzima tirosinasa (cataliza la hidroxilación del compuesto monofenólico). (B) Estado *met* de la enzima tirosinasa (cataliza la oxidación de compuestos difenólicos) [Modificado Fairhead *et al.*, 2012].

Tirosinasas bacterianas

Las tirosinasas y su capacidad para sintetizar melanina se han descrito en bacterias Gramnegativas y Gram-positivas. Entre estas bacterias se encuentran: *Pseudomonas maltophila, Rhizobium etli, Rhizobium leguminosarum, Rhizobium phaseoli, Shewanella colwelliana, Marinomonas mediterránea* MMB-1, *Bacillus thuringiensis* subsp Kurstaki, además de muchas especies del género Vibrio (Wang, 2000; Faccio *et al.*, 2012; Zaidi *et al.*, 2014).

Las primeras tirosinasas bacterianas fueron purificadas a partir de extractos celulares de *Streptomyces nigrifaciens* y *Streptomyces glaucescens*. Al contrario de las tirosinasas eucariotas, la forma activa de la proteína de *S. glaucescens* es un monómero, con un peso molecular de 29 KDa y su máxima actividad es a un pH de 6.8 (Claus *et al.*, 2006). De igual forma fue purificada la tirosinasa de *Streptomyces michiganensis* la cual mostró actividad con varios monofenoles (tirosina, ester-tirosina y ácido *p*-cumárico) y difenoles (L-DOPA, ácido cafeico y catecol). Se ha identificado la tirosinasa inducible con calor de *Bacillus thuringiensis*, con un peso molecular de 14 kDa, y una de las tirosinasas más pequeñas conocidas hasta el momento (Nosanchuk *et al.*, 2003).

En las bacterias Gram-negativas se encuentra la tirosinasa termoestable de *Thermomicrobium roseum*, con un máximo de actividad a 70 °C y un pH de 9.5, su forma activa parece ser la de un homodímero de 43 kDa cada subunidad. También se identificó a la tirosinasa intracelular de *Marinomonas mediterránea*, la cual es un ejemplo de la presencia de esta enzima en bacterias marinas (Nosanchuk *et al.*, 2003; Claus *et al.*, 2006).

Hasta el momento se han reportado solo dos estructuras de tirosinasas bacterianas, la tirosinasa de *Streptomyces castaneoglobisporus* (PDB id: 1WX4) y la tirosinasa de *Bacillus megaterium* (PDB id: 3NM8). Estas estructuras se muestran en la Figura 4, donde se indica el sitio activo de ambas proteínas, el cual está conformado por seis residuos conservados de histidina coordinando dos átomos de cobre. El plegamiento general de las dos proteínas resulta ser muy similar, siendo predominante la estructura secundaria de α -hélice, el sitio activo de ambas proteínas está conformado por seis residuos conservados de tirosinasas reporteínas está conformado por seis residuos de histidina coordinando dos por seis residuos conservados de histidina coordinando dos proteínas está conformado por seis residuos conservados de histidina coordinando dos por seis residuos conservados de histidina coordinando dos por seis residuos conservados de histidina coordinando dos átomos de cobre. A nivel de secuencia también se pueden encontrar similitudes entre distintas tirosinasas reportadas, por ejemplo se puede encontrar el motivo PYWDW, el cual se ha propuesto que está involucrado en la unión con el oxígeno molecular (Fairhead *et al.*, 2012).

Figura 4. **Estructuras cristalizada de tirosinasas.** (A) Estructura de la tirosinasa de *Streptomyces castaneoglobisporus* (PDB id: 1WX4). (B) Estructura de la tirosinasa de *Bacillus megaterium* (PDB id: 3NM8) [Modificado Fairhead *et al.*, 2012].

Para la mayoría de las tirosinasas bacterianas no se ha reportado la existencia de alguna modificación post-traduccional y aún no se conoce si son expresadas constitutivamente o no; sin embargo, se encontró que la expresión de las tirosinasas de *S. antibioticus* y *S.*

castaneoglobisporus son inducidas por metionina. La expresión de la tirosinasa de *S. michiganesis* por la presencia de cobre y reprimida por amonio (Nosanchuk *et al.*, 2003; Zaidi *et al.*, 2014). De igual forma se demostró que la tirosinasa de *M. mediterranea* se encuentra sujeta a una regulación coordinada, ya que durante el crecimiento del organismo en un medio de cultivo complejo, la expresión de la enzima es inducida hasta la fase estacionaria. Se encontró que la cinasa PpoS, la cual actúa como sensor, tiene una regulación positiva en la expresión de la tirosinasa, sin embargo, las señales ambientales detectadas por esta cinasa aún no se conocen. A nivel de proteína, las tirosinasas de *M. mediterranea* y de *B. thuringiensis* son activadas por la presencia de SDS, ya que el detergente puede inducir cambios conformacionales que dan como resultado una mejor accesibilidad del sustrato al sitio catalítico de la enzima (Lucas-Elío *et al.*, 2002; Nosanchuk *et al.*, 2003; Zaidi *et al.*, 2014).

Aplicaciones biotecnológicas de las tirosinasas

El estudio de las tirosinasas lo motivó el deseo de entender y prevenir el pardeamiento enzimático que ocurre en la presencia de oxígeno cuando los hongos, las frutas o los vegetales se cortan. Este fenómeno está estrechamente ligado a la acción de las tirosinasas y causa pérdidas económicas significativas en la industria de los alimentos. A partir de estos estudios, las investigaciones se han orientado a aplicaciones ambientales y biotecnológicas, por ejemplo para la producción de melanina (Cubo *et al.*, 1988; Henson *et al.*, 2001; Durán *et al.*, 2002). A continuación se describe la aplicación de las tirosinasas en diferentes áreas de investigación.

- Producción de fármacos. Un uso potencial de las tirosinasas es en la producción del fármaco L-DOPA, que se utiliza mayormente en el tratamiento contra la enfermedad de Parkinson. Se ha probado que es posible producir L-DOPA utilizando una cepa de Bacillus sp., con tirosina como sustrato. Otro fármaco que se obtiene a partir de la actividad de la tirosinasa es la lincomicina, este antibiótico se produce a partir de una cepa de Streptomyces lincolnensis. La tirosinasa activa a la L-tirosina, lo que da inicio a la biosínteiss del antibiótico (Faccio et al., 2012; Zaidi et al., 2014).
- Bioremediación. Se ha probado que las tirosinasas pueden oxidar compuestos como clorofenol y fluorofenol, los cuales son tóxicos. La oxidación de estos compuestos, lleva a su subsecuente polimerización, y seguido de una precipitación es posible eliminar estos contaminantes durante el tratamiento de aguas residuales (Faccio *et al.*, 2012).

 Biosensores. Por medio de este sistema pueden detectarse en un gran número de mono y difenoles. La desventaja obvia es que la baja especificidad por los diferentes sustratos que tiene la enzima, vuelve complicado distinguir su actividad en presencia de dos o más sustratos. Sin embargo, se ha utilizado efectivamente la tirosinasa de *Streptomyces antibioticus* para detectar bajas concentraciones de los sustratos (5 nM), como son el catecol, L-DOPA y la adrenalina (Faccio *et al.*, 2012).

Melanina

Las melaninas constituyen un amplio grupo de polímeros aromáticos que conservan propiedades similares y se encuentran distribuidos en todos los reinos biológicos. Estos compuestos se forman por la polimerización oxidativa de compuestos fenólicos o indólicos En general, se han descrito a las melaninas como pigmentos oscuros, negros o cafés, aunque también pueden presentar otros colores. Las melaninas derivadas de 3,4-dihidroxi-L-fenilalanina (L-DOPA) son llamadas eumelaninas y son generalmente negras o café oscuros; las melaninas amarillas o rojizas son llamadas feomelaninas e incorporan cisteína con L-DOPA; las piomelaninas son otro tipo de melaninas de color café, están formadas por compuestos del ácido homogentísico; y las melaninas de dihidroxinaftaleno (alomelanina) son pigmentos derivados a partir de acetatos y, generalmente, son de color negro o café (Tabla 1) (Ito, 2003; Cano, 2008). En la Figura 5 se resume la vía de síntesis de la eumelanina y la feomelanina (Ito, 2003).

Precursor	Nombre	Color
L-tirosina		
L-3,4-dihidroxifenilalanina (L-DOPA)	Eumelaninas	Negro
Cisteína y glutatión	Feomelaninas	Café, amarillo o rojo
Catecol y acetatos	Alomelaninas	Café
Ácido homogentísico	Piomelaninas	Café o rojo

 Tabla 1. Clasificación de las melaninas de acuerdo a su precursor.

Figura 5. Mecanismo de síntesis de Eumelanina y Feomelanina. El primer paso es la oxidación de la tirosina por la tirosinasa, hasta la formación de dopaquinona. (A) Formación de eumelanina: en ausencia de cisteína, a la dopaquinona se le adiciona un grupo amino, formando ciclodopa (leucodopacromo). El intercambio redox entre leucodopacromo y dopaquinona da como resultado dopacromo. Dopacromo se descompone gradualmente para dar como resultado principalmente 5,6-dihidroxindol (DHI) y en menor proporción ácido 5,6-dihidroxindol (DHICA). Finalmente estos compuestos son oxidados hasta formar eumelanina. (B) Formación de feomelanina: en presencia de cisteína, dopaquinona reacciona con la cisteína para formar principalmente 5-*S*-cisteinildopa y en menor proporción 2-*S*-cisteinildopa. Estos compuestos son posteriormente oxidados para formar intermediarios de benzotiasina. Finalmente se produce feomelanina [Modificado Ito, 2003].

Las melaninas son moléculas de alto peso molecular muy estables, hidrofóbicas, amorfas, cargadas negativamente y resistentes a la degradación con ácidos pero susceptibles a degradarse con bases fuertes. (Riley, 1997; Cano, 2008). Su propiedad más sobresaliente es la capacidad de absorber luz, por ejemplo, las eumelaninas absorben todo el espectro visible y el ultravioleta (200 a 700 nm), debido al alto nivel de enlaces conjugados de la molécula (López-Serrano *et al.*, 2004; Cano, 2008; Roulin, 2011).

Otra de las propiedades de interés de las melaninas, es la protección que ejercen frente a agentes oxidantes. Las melaninas tienen una fuerte afinidad por los metales, especialmente por metales de transición, por lo que actúan como quelantes con alta afinidad por los radicales libres; además de sus propiedades de transferencia de electrones, estabilizan radicales libres en sistemas biológicos y atrapan electrones no apareados neutralizando su potencial dañino. Por resonancia paramagnética de electrones se encontró que las melaninas estabilizan la transferencia de electrones libres del superóxido (Roulin, 2011). Las funciones biológicas de las melaninas, están relacionadas con protección al estrés ambiental y virulencia en bacterias (Fairhead *et al.*, 2012).

• Melanina en plantas

Los pigmentos de origen vegetal, desde rojos, cafés, hasta negros, generalmente se producen por sustancias no nitrogenadas. Estas sustancias en las plantas se denominan alomelaninas o melaninas DHN, por su precursor el dihidroxinaftaleno. Es posible aislar tirosina, L-DOPA, tiramina, dopamina y epinefrina de las legumbres y frutas, por ejemplo en plantas como *Sarothamnus scoparius* y *Vicia faba* se encuentra gran cantidad de estos compuestos melanogénicos. En todas las plantas, las polifenoloxidasas son muy comunes, pero no siempre participan en la formación de melanina. Las enzimas que participan en su síntesis están distribuidas a lo largo de toda la planta (Cano, 2008).

• Melanina en mamíferos

En los animales, la melanina está localizada en vacuolas especializadas denominadas melanosomas. Gracias a todos estos pigmentos los animales pueden camuflarse, mimetizarse, usarlos para las manifestaciones sexuales y el apareamiento. En humanos, la melanina se encuentra en la piel, el cabello, la retina, la médula, la zona reticular de la glándula suprarrenal y el oído interno. En la mancha azul del cerebro se produce neuromelanina que se sintetiza químicamente por la oxidación de las catecolaminas dopamina y norepinefrina (Cano, 2008).

• Melanina en bacterias

Entre las bacterias, la producción de melanina se ha descrito en muchos géneros, incluyendo *Aeromonas, Alteromonas, Bacillus, Legionella, Mycobacterium, Proteus, Pseudomonas, Streptomyces, Vibrio* y *Rhizobium*, en todos los casos el gen que codifica para la tirosinasa se encuentra en plásmidos. En *R. etli*, el gen *melA* está presente en el plásmido simbiótico p42d y codifica para la única tirosinasa del género *Rhizobium* caracterizada hasta el momento. Esta

localización y el tipo de regulación genética que comparte con algunos genes simbióticos sugieren que esta enzima está involucrada de alguna manera en la simbiosis (Piñero *et al.*, 2007).

Debido a la importancia que tienen estas moléculas, actualmente son utilizadas en cosméticos, como son tintes para cabello, cremas con antioxidantes, lentes de sol con protección para rayos UV y bloqueadores de sol. Aunque las melaninas pueden obtenerse a partir de fuentes naturales, es difícil controlar su composición química y su grado de polimerización, lo que resulta en un problema cuando se desea caracterizar o cuantificar. Una forma de controlar la producción de melanina, así como su composición química es a partir de cultivos de bacterias, por ejemplo, el uso de *E. coli* recombinante expresando el gen heterólogo de la tirosinasa (Cabrera-Valladares *et al.*, 2006; Fairhead *et al.*, 2012; Chávez-Béjar *et al.*, 2013).

Antecedentes

González *et al.*, 2003, reportan la secuencia completa del plásmido simbiótico p42d de *Rhizobium etli* CFN42. En una región de 125 Kb de este plásmido se encuentran los genes involucrados en la nodulación y la fijación de nitrógeno. Es en esta región en donde se encuentra el gen *melA* (número de acceso U80928.5 en NCBI), el cual codifica para una proteína con posible actividad de fenoloxidasa (González *et al.*, 2003).

Expresión y caracterización de la enzima MelA en E. coli

El gen *melA* de *R.etli* CFN42 (González *et al.*, 2003) se clonó en el vector pTrc99A y se expresó en la cepa de *E. coli* W3110. Se encontró que la proteína codificada por este gen tiene actividad de tirosinasa, la cual cataliza la síntesis de eumelanina usando L-tirosina como sustrato. Se evaluó la capacidad de producción de eumelanina en medio mínimo suplementado con IPTG, CuSO₄, glucosa y L-tirosina, a distintos valores de pH y temperatura. El rendimiento máximo se obtuvo incubando a una temperatura de 30 °C y un pH de 7. Posteriormente se realizó la purificación parcial de esta enzima y se evaluó el efecto del pH y la temperatura sobre su actividad y estabilidad; también se determinó su actividad sobre distintos compuestos fenólicos (Tabla 2) (Cabrera-Valladares *et al.*, 2006).

Temperatura (°C)	Vida media (h)	рН
30	24	
37	3.9	6.5-7.5
50*	1.87	
Sustratos	L-tirosina, L-tirosina etil éster, tirosina, L-DOPA, ácido cafeico y d	N-acetil- catecol

Tabla 2. P	ropiedades	bioo	uímicas	de l	la t	irosinasa	MelA
	ropieuaues	Diog	unnicas	uc i	αι	1103111030	mein.

Evaluación de las condiciones óptimas para la producción de eumelanina utilizando una cepa de *E. coli* que expresa el gen *melA*

Lagunas-Muñoz *et al.* (2006) desarrollaron un proceso fermentativo para la producción de eumelanina, basado en un estudio paramétrico donde se definieron las condiciones óptimas para obtener mayor productividad usando una cepa de *E. coli* que expresa el gen *melA* (200 µg/mL de ampicilina, 0.1 mmol/L de IPTG, 30 °C y pH 7.5). Durante la clonación se encontró una mutante espontánea que presentaba un cambio de un residuo de aspártato por glicina en la posición 535, que fue llamada MutMelA; al inocular esta mutante en medio sólido con L-tirosina presentó una coloración negra en menor tiempo que la cepa de *E. coli* que expresa el gen silvestre *melA*, indicando una mayor productividad en la síntesis de eumelanina. También se determinó que la síntesis de eumelanina inicia justo cuando el cultivo entra en fase estacionaria, o dicho de otra forma, cuando la glucosa en el medio se agota (Lagunas-Muñoz *et al.*, 2006).

Posteriormente se determinó que la cepa de *E. coli* que expresa el gen mut*melA* presenta mejores parámetros de producción de eumelanina en comparación con la cepa que expresa el gen silvestre *melA*. Este resultado refleja que el cambio de color debido a la producción de eumelanina puede utilizarse de forma simple y directa para visualizar la identificación de mutantes con aumento o disminución en su actividad de tirosinasa (Lagunas-Muñoz *et al.*, 2006).

Generación y caracterización de mutantes del gen melA.

Se generó una biblioteca de mutantes del gen *melA* mediante mutagénesis al azar (Robledo-Arratia, 2008). Se seleccionaron las clonas de la biblioteca capaces de polimerizar sustratos distintos a la tirosina (ácido cumárico y ácido para-hidroxibenzóico). Se identificó una mutante con una sustitución del residuo de glutamato por uno de glicina en la posición 335, dentro de la región CuB. Además de este cambio, se encontró una mutación que introduce un codón de paro, el cual da como resultado un nuevo inicio de traducción a 318 bp del comienzo reportado del gen *melA*, el cual codifica para una proteína con 106 aminoácidos menos en el extremo amino terminal. Para comprobar que el nuevo marco abierto de lectura diera como resultado una proteína funcional, a *melA* se le deletaron 106 aminoácidos y se clonó en el vector pTrc99A. Se determinó que la expresión de la nueva mutante en *E. coli* aumentaba la productividad en la conversión de L-tirosina en eumelanina. A esta mutante se le llamó MelA-VC (Echeverría, 2010), para fines de este trabajo se le llamará MelAc. Con el fin de caracterizar proteína truncada se llevaron a cabo algunas predicciones bioinformáticas. A través del programa *SignalP* 3.0 se realizó un análisis de la posible presencia de un péptido señal (SP) en la región N-terminal de la proteína, se reporta un péptido señal de 31 aminoácidos, con una probabilidad de 0.994. Se realizó un alineamiento múltiple de la secuencia de MelA y de las tres proteínas con las que comparte mayor identidad en su secuencia (*Nitrobacter hamburgensis, Nitrobacter winogradskyi y Ralstonia solanacearum*). Se encontró que la secuencia de la proteína truncada MelAc comparte con las otras proteínas tanto el inicio del gen como la presencia de un péptido señal (Figura 6).

melA melA-VC Nham_2941 Nwi 0968	 5 MPWLVGKPSL	15 ERSWNAILSF	25 PESGFQLECR	 35 NTIGSSVFSS	45 HFTLHFRVAR	 55 RLLHFSCRRF
Rsc0337						
	65	 75	85	95	 105	 115
melA-VC	IEIQKEFIQA	LWWCELFTAF	APARAGIGLA	AALILAKDNS	MSIT	RRHVIVQGGV
Nham_2941 Nwi_0968 Rsc0337					MTTT MVVR	RRTVLLQGGA RRTVLLQGSA RTVLKAIAGT
		135				
melA melA-VC Nham_2941 Nwi_0968	IAAGLLASGL IAAGLLASGL IGAGLIAANV IGAGLIAANM	PGTKAFAQIP PGTKAFAQIP SAVRALAATK SAVRALAAPK	S-IPWRRSLQ S-IPWRRSLQ T-TPVRRSLQ T-PPVRRSLQ	GLAWNDPIIE GLAWNDPIIE GLAWNDPIVA GLAWNDPIVA	TYRDAVRLLN TYRDAVRLLN TYRDAVGIMK TYRDAVGIMK	ALPASDKFNW ALPASDKFNW QKPANDKFNW QKATNDKFNW SKNTODLSW

Figura 6. Alineamiento múltiple del extremo N-terminal de MelA con otras tirosinasas. MelA-VC (MelAc), Nham_2941 (*Nitrobacter hamburgensis*), Nwi_0968 (*Nitrobacter winogradskyi*) y Rsc0337 (*Ralstonia solanacearum*). En rojo se muestra la secuencia de 31 aminoácidos que pertenecen a un péptido señal, además de compartir una metionina en la posición 106 de MelA y al inicio de las otras tirosinasas.

Se realizó un análisis de la presencia de un sitio de unión a ribosoma (RBS) asociado al marco abierto de lectura del gen *melAc*. Se encontró un posible RBS, el cual se encuentra situado en la posición -6, mientras que en el caso de *melA*, el posible RBS se encuentra en la posición -19. La posición reportada como consenso se encuentra de 6 a 7 nucleótidos antes del inicio del gen. En la Figura 7 se muestra el esquema del MelAc comparándola con MelA.

Figura 7. Esquema de la mutante MelAc. Se muestra la comparación entre la versión MelA y MelAc, se muestra la mutación que genera un codón de paro haciendo a la proteína 106 aminoácidos menor que MelA.

En este proyecto se utilizó un acercamiento mutagénico para generar y caracterizar la secuencia mínima de la tirosinasa MelA que conserve actividad. Se generó una librería de versiones truncadas de la enzima MelAc expresadas en *E. coli* y se seleccionaron de acuerdo a su actividad en la producción de eumelanina.

Justificación

Dentro de los objetivos de nuestro laboratorio, se encuentra el desarrollo y la optimización de cepas sobreproductoras de compuestos aromáticos, utilizando metodologías de ingeniería metabólica en cepas de *E. coli*. Por ejemplo, se realizó la expresión del gen heterólogo *melA* para la producción de eumelanina (Cabrera-Valladares *et al.*, 2006). Sin embargo, aunque estas herramientas han sido muy efectivas en aumentar el rendimiento de producción, dentro de las estrategias de optimización de la producción de estos compuestos, es necesario utilizar otras técnicas que nos permitan comprender la relación estructura-función en las proteínas y en un futuro poder optimizar las enzimas de mayor importancia dentro de cada vía.

Con la información obtenida en otros trabajos desarrollados dentro del grupo (Echeverría, 2010), en este proyecto se aplicó una metodología para la eliminación de hasta 16 codones en los extremos 5´ y 3´ del gen que codifica para la enzima con actividad de tirosinasa MelA, en una sola reacción de PCR, y se evaluaron las clonas generadas de forma cualitativa, mediante la producción de eumelanina en medio sólido, además de determinar la actividad específica de las mutantes, lo que permitió hacer un barrido en menor tiempo de diferentes versiones truncadas de la enzima MelA.

Hipótesis

Existen residuos de aminoácidos en los extremos amino y carboxilo terminal en la tirosinasa MelAc que son dispensables para su actividad enzimática y para la integridad de la estructura de la proteína.

Objetivo general

Determinar cuál es el derivado más pequeño de la enzima tirosinasa MelAc de *R. etli* expresada en *E. coli* que aun conserve su actividad.

Objetivos particulares

- 1. Generar una librería de versiones truncadas de los extremos amino y carboxilo de la enzima MelAc.
- 2. Determinar cualitativamente su actividad mediante la producción de eumelanina, y determinar las secuencias nucleotídicas de cada una de ellas.
- 3. Determinar la actividad de tirosinasa en el extracto celular de la cepa que exprese la versión mínima de MelAc.
- 4. Determinar la capacidad de producción de eumelanina en cultivos líquidos con cepas de *E. coli* que expresan mutantes truncadas de MelAc con alta actividad.

Metodología

Cepas y plásmidos

Las cepas de *E. coli* y plásmidos utilizados en este trabajo se describen en la Tabla 3. La cepa MC1061 se utilizó como hospedera de la biblioteca de versiones truncadas del gen *melAc*. Las versiones truncas de *melAc* obtenidas de esta biblioteca se nombraron de acuerdo al número de aminoácidos deletados, el primer número indica la deleción en el extremo amino y el segundo número la deleción en el extremo carboxilo, separados por un guion. Todas estas versiones se clonaron en el plásmido pTrc99A2.

Cepas	Características	Referencia
W3110 Trp⁺	F ⁻ , λ ⁻ , INV (<i>rnnD-rnnE</i>)1, RecA ⁺ , Lac ⁺ , Trp ⁺ por transducción generalizada con el fago P1.	Jensen, K., 1993
MC1061	Δ <i>lacX</i> 74, <i>hsdR</i> 2, <i>mcrB</i> , <i>araD</i> 139, Δ (<i>araABC-leu</i>)7679, <i>galU</i> , <i>galK</i> , <i>rpsL</i> , <i>thi</i>	Casadaban y Cohen, 1979
Plásmidos	Características	Referencia
pCR-Blunt II- TOPO	Promotor <i>lac</i> , promotor T7, gen letal <i>ccdB</i> , gen de resistencia <i>kan</i> y resistencia a Zeocina.	Cat. K2800-02, Invitrogen
pTrc99A2	Derivado del plásmido pTrc99A, Amp ^R , porta los genes γ , β y <i>exo</i> de la recombinasa Red del fago λ bajo regulación de P _{araB} y con las funciones de replicación termosensibles del plásmido pSC101, con el cambio del sitio de restricción de Ncol por Ndel del sitio de clonación múltiple.	Muñoz, I., 2013
pTrc <i>melA</i>	Derivado del plásmido pTrc99A2, que expresa el gen <i>melA</i> bajo regulación del P _{trc} .	Cabrera <i>et al</i> ., 2006
pTrcMut <i>melA</i>	Derivado del plásmido pTrc99A2, que expresa el gen Mut <i>melA</i> bajo regulación del P _{trc} .	Lagunas-Muñoz et al., 2006
pTrc <i>melA</i> c	Derivado del plásmido pTrc99A2, que expresa el gen <i>melA</i> c bajo regulación del P _{trc} .	Este trabajo
pTrc <i>melAc</i> 31-0	Derivado del plásmido pTrc99A2, que expresa el gen <i>melAc</i> 31-0 bajo regulación del P _{trc} .	Este trabajo
pTrc <i>melAc</i> 2-0	Derivado del plásmido pTrc99A2, que expresa el gen <i>melAc</i> 2-0 bajo regulación del P _{trc} .	Este trabajo

Tabla 3. Cepas y plásmidos utilizados y construidos.

Técnicas genéticas y de DNA recombinante

Reacción en cadena de la polimerasa (PCR)

Para la amplificación de la biblioteca generada en este trabajo, se utilizó la enzima KAPA HiFi DNA polimerasa (KAPA Biosystems[®]). Para la amplificación de la biblioteca de versiones truncas de la enzima MelA se utilizó el mix de oligonucleótidos Fw y Rv correspondientes a cada banco, en la Tabla 4, 5 y 6 se muestra la mezcla y condiciones de reacción para el primer, segundo y tercer banco, respectivamente. Para la amplificación de los genes *melAc*, *melAc*31-0 y *melAc*2-0 se utilizó la enzima Kapa HiFi (Kapa Biosystems[®]). La mezcla de reacción se presenta en la Tabla 7.

Tabla 4. M	ezcla de	reacción y	condiciones	utilizadas	para la	amplificación	del prime	r banco de
versiones t	runcadas	s de la enzir	ma MelAc.					

			Condiciones d	e reacción	
Mezcla de reacción			Temperatura		
Componente	Volumen	Concentración final	(°C)	Tiempo	No. Ciclos / etapa
Buffer con Mg ²⁺ (1X)	10 µL	1X	95	3 min	1 /desnaturalización inicial
dNTP Mix (10 mM)	1.5 µL	0.3 mM	98	20 seg	
mix Fw (10 µM)	1.25 µL	0.3 µM	58	15 seg	25 / amplificación
mix Rv (10 μM)	2.5 µL	0.3 µM	72	2 min	
Templado (~20 ng)	1.0 µL		72	3 min	1 / extensión final
Enzima Kapa HiFi	1.0 µL	0.5 U/ μL reacción			
(1 U/ µL)					
Agua	c.b.p 50 µL				

			Condiciones de reacción		
Mezcla de reacción			Temperatura	Tiempo	No. Ciclos / etapa
Componente	Volumen	Concentración final	(°C)		
Buffer con Mg ²⁺ (1X)	10 µL	1X	95	3 min	1 /desnaturalización inicial
dNTP Mix (10 mM)	1.5 µL	0.3 mM	98	20 seg	
mix Fw (10 μM)	1.25 µL	0.3 µM	70	15 seg	25 / amplificación
mix Rv (10 μM)	2.5 µL	0.3 µM	72	2 min	
Templado (~20 ng)	1.0 µL		72	3 min	1 / extensión final
Enzima Kapa HiFi (1 U/ μL)	1.0 µL	0.5 U/ μL reacción		•	
Agua	c.b.p 50 µL		1		

Tabla 5. Mezcla de reacción y condiciones utilizadas para la amplificación del segundo bancode versiones truncadas de la enzima MelAc.

Tabla 6. Mezcla de reacción y condiciones utilizadas para la amplificación del tercer banco de versiones truncadas de la enzima MelAc.

			Condiciones de reacción			
Mezcla de reacción	Mezcla de reacción					
Componente	Volumen	Concentración final	(°C)	Tiempo	No. Ciclos / etapa	
Buffer con Mg ²⁺ (1X)	10 µL	1X	95	3 min	1 /desnaturalización inicial	
dNTP Mix (10 mM)	1.5 µL	0.3 mM	98	20 seg		
mix Fw (10 μM)	1.5 µL	0.3 µM	62	15 seg	25 / amplificación	
mix Rv (10 μM)	1.5 µL	0.3 µM	72	2 min		
Templado (~20 ng)	1.0 µL		72	3 min	1 / extensión final	
Enzima Kapa HiFi						
(1 U/ μL)	1.0 µL	0.5 U/ μL reacción				
Agua	c.b.p 50 µL					

			Condiciones de reacción			
Mezcla de reacción	Mezcla de reacción					
Componente	Volumen	Concentración final	(°C)	Tiempo	No. Ciclos / etapa	
Buffer con Mg ²⁺ (1X)	10 µL	1X	95	3 min	1 /desnaturalización inicial	
dNTP Mix (10 mM)	1.5 µL	0.3 mM	98	20 seg		
mix Fw (10 μM)	1.5 µL	0.3 µM	73	15 seg	25 / amplificación	
mix Rv (10 μM)	2.5 µL	0.3 µM	72	2 min		
Templado (~20 ng)	1.0 µL		72	3 min	1 / extensión final	
Enzima Kapa HiFi					·	
(1 U/ μL)	1.0 µL	0.5 U/ μL reacción				
Agua	c.b.p 50 µL		1			

Tabla 7. Mezcla de reacción y condiciones utilizadas para la amplificación de los genes *melA*c, *melAc*31-0 y *melAc*2-0.

De acuerdo al antecedente de Echeverría, 2010, se realizó un alineamiento con las secuencias de proteínas homólogas a MelAc, y se encontró una secuencia de 31 aminoácidos que codifica para un posible péptido señal; por lo anterior se decidió generar tres bancos. En el primer banco se realizaron deleciones a partir del codón que codifica para el primer aminoácido hasta el aminoácido 15, en el segundo banco, además de esos primeros 15 aminoácidos, se deletaron los aminoácidos 16 al 31, y por último en el tercer banco se realizaron las deleciones a partir del aminoácidos del extremo carboxilo de la proteína, para evaluar qué efecto tienen estas deleciones en la actividad de la enzima.

Para realizar las deleciones en el gen *melAc* se utilizó una mezcla de 15 oligonucleótidos Fw, estos oligonucleótidos diferían en tamaño de tres bases para mantener el marco abierto de lectura (Figura 8). El oligonucleótido Rv amplificó al gen sin ninguna deleción en el extremo carboxilo para el primer y segundo banco, en el caso del tercer banco se utilizó de igual forma una mezcla de 16 oligonucleótidos. Los oligonucleótidos conservan dos secuencias en común, la que forma parte del gen estructural y la que tendrá la secuencia para cada una de las enzimas de restricción (*Ndel y Xmal*). Todos los oligonucleótidos utilizados en este trabajo se sintetizaron en la Unidad de Síntesis y Secuenciación del Instituto de Biotecnología (IBt) a cargo del Dr. Paul Gaytán. Los oligonucleótidos utilizados para amplificar mediante PCR el

DNA cromosomal, plasmídico, así como para realizar la secuenciación de los genes, se describen en la Tabla 9.

Forward set

		5 'T TTCATTTCC	CCATATG	AATG TATACATCAT GGCAGACAAA O	31	Fw1
	5'1	TTCA TTTCCCATA	ATG cac	AATG TATACATCAT GGCAGACAAA O	3'	Fw2
	5 ' TTTCA	ATTTCCCATATG t	ca cac	AATG TATACATCAT GGCAGACAAA O	31	Fw3
	5 'TTTCATTTC	CCATATG aac t	ca cac	AATG TATACATCAT GGCAGACAAA O	31	Fw4
	5'TTTCATTTCCCAI	MATG tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA O	31	Fw5
5'T	TTCATTTCCCATATG	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA O	3'	Fw6
5'TTTCA	TTTCCCATATG tac	aac tat aac t	cca cac	AATG TATACATCAT GGCAGACAAA (3'	Fw7
5 'TTTCATTTC	CCATATG gaa tac	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA (3'	Fw8
5 ' TTT CATTTCCCAT	ATG ctg gaa tac	aac tat aac t	cca cac	AATG TATACATCAT GGCAGACAAA (3'	Fw9
5 ' TTTCATT TCCCATATG	aaa ctg gaa tac	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA O	3'	Fw10
5'TTTCATTTCCCATATG cac	aaa ctg gaa tac	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA (3'	Fw11
5'TTTCATTTCCCATATG gga cac	aaa ctg gaa tac	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA (3'	Fw12
5'TTTCATTTCCCATATG ctg gga cac	aaa ctg gaa tac	aac tat aac t	ca cac	AATG TATACATCAT GGCAGACAAA O	3'	Fw13

Reverse set

Rv1	3 'GCTGAA GTTCCTTCTGCCGTTGTAG	ATTGAGCTCGGCAGCAA 5'
Rv2	3 'GCTGAA GTTCCTTCTGCCGTTGTAG	gac ATTGAGCTCGGCAGCAA 5'
Rv3	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct ATTGAGCTCGGCAGCAA 5'
Rv4	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ATTGAGCTCGGCAGCAA 5'
Rv5	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt ATTGAGCTCGGCAGCAA 5'
Rv6	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cet gtg ttt gae ATTGAGCTCGGCAGCAA 5'
Rv7	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt gac ctt ATTGAGCTCGGCAGCAA 5'
Rv8	3'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cet gtg ttt gac ett atg ATTGAGCTCGGCAGCAA 5'
Rv9	3 'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt gac ctt atg ttg ATTGAGCTCGGCAGCAA 5'
Rv1 0	3'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cet gtg ttt gac ett atg ttg ata ATTGAGCTCGGCAGCAA 5'
Rv11	3'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt gac ctt atg ttg ata ttg ATTGAGCTCGGCAGCAA 5'
Rv1 2	3'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt gac ctt atg ttg ata ttg agt TTGAGCTCGGCAGCAA 5'
Rv1 3	3'GCTGAAGTTCCTTCTGCCGTTGTAG	gac cct gtg ttt gac ctt atg ttg ata ttg agt gtg ATTGAGCTCGGCAGCAA 5

Figura 8. Ejemplo de oligonucleótidos utilizados para generar la biblioteca de versiones truncadas del gen *melAc*. Los oligonucleótidos difieren en tamaño por tres nucleótidos y cada mezcla está integrada por un máximo de 16 oligonucleótidos.

Tabla 8. Secuencia de los diferentes oligonucleótidos utilizados en este trabajo.

Oligonucleótido	Secuencia nucleotídica (5´ - 3´)

Generación de bibliotecas

Pr-Ser2/Ala16	5'atatctcagctccatatg AGC ATC ACA CGC AGA CAT GTC ATC GTT CAG GGT GGC
Forward	GTC ATT GCA gca ggc ctg ctc gcc agc ggc ct 3'
Pr-Ala17/Ala31	5'atatctcagctccatatg GCA GGC CTG CTC GCC AGC GGC CTA CCG GGG ACA
Forward	AAA GCC TTC GCG cag ata ccg tca atc cct tgg cgg 3'
MelAcFw	5'atatctcagctccat ATG CAG ATA CCG TCA ATC CCT TGG CGG CGC TCA CTG
	CAG GGC TTG GCC tggaacgacccgatcatcgagacc 3
MelAcRv	5'cagcatgttcccgggtta GGC GGA CAC TAT GGC TAT TTC TAG CTT TGC GGG CTC
	TAC GGC GCC GGG tttgcccgctcccgatccgacagg 3'
MelAcReverse	ATA ATC CCC GGG CTA TTA GGC GGA CAC TAT GGC TA

Clonación melAc

MelAcForward	CCAAGGGAGAGTCATATGAGCATCACACGC
MelAcReverse	ATA ATC CCC GGG CTA TTA GGC GGA CAC TAT GGC TA
Clonación melA30	-0
MelApepF	ACAAAAGCC CATATG CAGATACCGTCAATC
MelAcR	ATAATC CCCGGG CTATTAGGCGGACACTATGGCTA
Clonación melA2-0	0
MelAc-2Fw	TTGGCCTGGCATATGACACGCAGACATGTCA
MelAcR	ATAATC CCCGGG CTATTAGGCGGACACTATGGCTA
Secuenciación	
pTrcFw	CAT CCG GCT CGT ATA ATG TG
pTrcRv	ACC GCT TCT GCG TTC TGA TT
MeIA500Fw	AAC ACC ATC CTA ACG GCG AA
MelA1000Fw	TTT CGC TGC CGA TCA AGA TC

*En el caso de los oligonucleótidos utilizados para generar las deleciones se muestra en negritas la secuencia con identidad con el gen *melAc*. En la secuencia de los oligonucleótidos utilizados para la clonación de los genes *melAc*, *melA*30-0 y *melA*2-0 los sitios de restricción de las enzimas *Ndel* (Forward) y *Xma*l (Reverse) se muestran en negritas.

Purificación de DNA

Se realizó la extracción de los plásmido utilizados para la clonación y el análisis de las clonas recombinantes por el método de lisis alcalina, este método se basa en la lisis alcalina de las células y la precipitación selectiva del DNA de alto peso molecular a pH 12 con acetato de potasio, mientras que las moléculas de DNA plasmídico permanecen en doble cadena. Después de la extracción, se realizó la cuantificación de DNA en el equipo NanoDrop (Thermo Scientific). El DNA cromosomal, se extrajo usando el kit MO BIO para aislamiento de DNA microbiano. Para la purificación de los productos de PCR, se utilizó el kit PCR MO BIO (Thermo scientific®).

Reacciones de restricción

Se realizaron las reacciones de restricción del vector pTrc99A2 y de los productos de PCR, cada reacción se realizó utilizando las enzimas de restricción *Nde*l y *Xma*l (Fermentas®), de forma simultánea en el buffer 4 (New England Biolabs®). Las reacciones se incubaron a 37 °C por 14 h, posteriormente se inactivaron a 65 °C por 20 minutos (Tabla 9).

	PCR <i>melA</i> 31-0 (μL)	pTrc99A2 (μL)
Agua mQ	6	15
DNA (~2 μg)	12	3
BSA (10X)	2.5	2.5
Buffer 4 (10X)	2.5	2.5
Enzima <i>Nde</i> l (10 U)	1	1
Enzima <i>Xma</i> l (10 U)	1	1
Volumen total	25	25

Tabla 9. Mezcla de reacción con las enzimas de restricción Ndel y Xmal del vector e inserto.

Reacciones de ligación

Para las reacciones de ligación se utilizó la enzima T4 DNA ligasa (Thermo Scientific[®]), se realizaron cuatro reacciones de ligación: 1) Control de la reacción de digestión (CR), 2) Control de la reacción de ligación (CL), 3) Ligación con una proporción vector/inserto 1:1 y 4) Ligación con una proporción vector/inserto 1:3 (Tabla 10); para conocer la concentración de vector e inserto necesarias para estas reacciones, se utilizó el programa en línea REviewer, de Thermo Scientific (<u>http://www.thermoscientificbio.com/webtools/reviewer/).</u> Las reacciones se incubaron a 22 °C durante 12 h.

Componente de la mezcla de reacción	CR (µL)	CL (µL)	1:1 (μL)	1:3 (µL)
Agua mQ	13	12	10	7
Buffer T4 ADN ligasa (10X)	2	2	2	2
DTT (100mM)	2	2	2	2
pTrc99A2 / <i>Nde</i> l, <i>Xma</i> l (50 ng)	3	3	3	3
PCR melAp / Ndel, Xmal	-	-	2 (18.3 ng)	5 (54.9 ng)
T4 DNA ligasa (1 U)	-	1	1	1
Volumen total	20	20	20	20

Tabla 10. Reacciones de ligación para CR, CL, proporción 1:1 y la proporción 1:3.

Transformación bacteriana

Para la incorporación del DNA a las células de *E.coli* se empleó el método de electroporación, utilizando un electroporador marca Eppendorf[®] modelo 2510 a 2500 volts. Para la preparación de las células electrocompetentes de un cultivo A continuación, las células se recuperaron en medio líquido SOC+ glucosa a 37 °C por una hora.

Medios de cultivo y condiciones de crecimiento

Medios de cultivo

A continuación se describen los medios de cultivo utilizados en este trabajo:

Medio de cultivo	Componentes				
Medio Lisogeny Broth	10 g/L de triptona, 5 g/L de extracto de levadura y 5 g/L de NaCl				
(LB)					
	6 g/L de Na ₂ HPO ₄ , 0.5 g/L de NaCl, 3 g/L de KH ₂ HPO ₄ , 1 g/L de				
Medio mineral M9	NH ₄ Cl, 246.5 mg/L de MgSO ₄ , 14.7 mg/L de CaCl ₂ , 10 μ g/mL de				
	vitamina B1 y 2 g/L de glucosa.				
Medio bajo en sales	7.5 g/L de extracto de levadura y 8 g/L de caldo nutritivo.				
YENB					
	20 g/L de bactotriptona, 5 g/L de extracto de levadura, 2.5 g/L de				
Medio SOC+glucosa	MgSO ₄ , 2 g/L de MgCl ₂ , 0.58 g/L NaCl, 93.18 mg/L de KCl y 2 g/L				
	de glucosa.				

 Tabla 11. Medios de cultivo empleados.

Condiciones de cultivo

Para el crecimiento rutinario de todas las cepas utilizadas en este trabajo se utilizó el medio LB líquido o sólido, para seleccionar las clonas generadas y asegurar la presencia del plásmido

deseado en *E. coli*, se utilizaron los antibióticos ampicilina o carbenicilina (200/100 µg/mL). Todas las cepas se incubaron a 37 °C, excepto en el caso que se buscaba la producción de eumelanina, que fue a 30 °C. Para la evaluación cualitativa de la actividad de las diferentes clonas, se sembraron en cajas con medio sólido LB para la producción de eumelanina, el cuál contenía 0.2 g/L glucosa, 0.4 g/L tirosina, 40 µg/mL CuSO₄, 0.1 mmol/L IPTG y 100 µg/mL de carbenicilina. Se incubaron a 30 °C por 3 días.

Caracterización de las clonas obtenidas

Extracción de ácidos nucleicos totales

Se obtuvieron ácidos nucleicos totales por medio de una extracción con fenol/ cloroformo y se analizaron en geles de agarosa como se describe en Beuken, 1997.

- Se inoculó con una asada de cada una de las clonas de la biblioteca almacenadas a -70 °C en glicerol 40%, 3 mL de medio LB, suplementado con 100 μg/mL cb100, contenidos en un tubo de ensaye de 16x150mm y se incubó a 37 °C, a 300 rpm por 12 h.
- De este cultivo se tomaron 500 µL y se colocaron en un tubo para centrífuga de 2 mL. Se centrifugó a máxima velocidad durante 2 minutos, se eliminó el sobrenadante con ayuda de una micropunta.
- Se resuspendieron las células en 40 μL de buffer de carga (azul de bromofenol 0.1 %, sacarosa 6 %). Se añadieron 14 μL de una mezcla de fenol /cloroformo 1:1, homogenizando con vórtex.
- 4. Se centrifugó por 10 minutos para lograr la separación de la fase orgánica de la fase acuosa (la cual contiene los ácidos nucleicos).
- 5. Se tomaron 10 μ L de la fase acuosa y se cargaron en un gel de agarosa al 0.8 %.

Evaluación cuantitativa de producción de eumelanina de las clonas de la biblioteca

Para evaluar la actividad de las versiones truncadas de la biblioteca de forma cuantitativa se siguió el siguiente protocolo:

- Se inoculó con una asada de cada una de las clonas de la biblioteca almacenadas a -70 °C en glicerol 40%, 4 mL de medio LB, suplementado con 40 μg/mL CuSO₄, 0.1 mmol/L IPTG y 100 μg/mL cb100, contenidos en un tubo de ensaye de 16x150mm y se incubó a 30°C, a 300 rpm por 12 h.
- Se ajustó la concentración de células a 10 g/L, a un volumen final de 1.5 mL de buffer de fosfatos pH 7 (P7). Se pesaron 0.5 g de perlas de vidrio (400-500 micras) y se colocaron en un tubo para centrífuga de 2 mL.
- 3. Se lisaron las células en vortex con 4 ciclos, cada ciclo de 1 minuto en vortex y un minuto en hielo. Se centrifugaron a 13000 rpm/ 4 °C por 5 minutos.
- Se colocaron en una celda para espectrofotómetro 600 μL de buffer P7, 200 μL del extracto crudo de las células y 200 μL de una solución 5 mM de tirosina.
- 5. Se incubaron a 30 °C y se midió la absorbancia a 400 nm cada hora durante 7 horas.

Se utilizó la cepa de *E. coli* W3110/pTrc*melA* como control positivo, y a la cepa silvestre *E. coli* W3110/pTrc99A2 como control negativo.

Cuantificación de proteína por el método de Bradford

Para el cálculo de la velocidad específica de reacción (mg de Eumelanina/g proteína*h) de los extractos celulares se cuantificó la proteína total del extracto celular por el método de Bradford. Se utilizó el kit de la marca BioRad[®] y se siguieron las especificaciones del proveedor para la cuantificación.

Predicción de la estructura terciaria de la proteína MelA

Se utilizó el servidor en línea I-TASSER, el cual utiliza un método jerárquico para la predicción de la estructura y la función de proteínas. Los templados estructurales son identificados del Protein Data Bank (PDB) por medio de un segundo programa del servidor (LOMETS). A partir de estos templados, se genera un modelo con la energía libre más baja, estos modelos son comparados de nuevo con la base de datos del PDB, y se identifica la función más probable de la proteína problema (Zhang, 2008; Roy *et al.*, 2010; Roy *et al.*, 2012).

Construcción del árbol filogenético para la proteína MelAc

Se analizó la secuencia de la proteína MelAc mediante el programa BLAST (Basic Local Alignment Search Tool) de la página del NCBI (Nacional Center for Biotechnology Information, <u>http://blast.ncbi.nlm.nih.gov/</u>), para encontrar las regiones de similitud de las secuencias biológicas contenidas en la base de datos de esta página, donde se observó el porcentaje de identidad, el valor de expectancia y el porcentaje de cobertura. Se eligieron y compararon 14 secuencias, estas secuencias junto con la secuencia de MelAc se alinearon utilizando el programa ClustalW y con ayuda del programa MEGA (Molecular Evolutionary Genetics Analysis, <u>http://www.megasoftware.net/</u>) se realizó un árbol filogenético por medio del método Neighbor-Joining utilizando el algoritmo Jukes Cantor.

Resultados y discusión

Predicción de la estructura terciaria de la proteína MelA

Debido a que la proteína MelA de *R. etli* no se ha cristalizado fue necesario realizar un modelo de dicha proteína para poder tener una idea de las regiones que se eliminarían durante las deleciones secuenciales. Por medio del programa I-TASSER se obtuvieron 5 modelos de la estructura terciaria de MelA, el programa proporcionó diferentes valores con los que se puede elegir el modelo proteico más probable. El valor "C-score" indica el nivel de confianza, el modelo con mayor valor en un rango de -5 a 2, será el más confiable. En la Tabla 12 se muestra el "C-Score" obtenido para los primeros 5 modelos. Se eligió el modelo con el "C-Score" más alto.

 Tabla 12. C-score para los primeros 5 modelos de la proteína MelA generados por el programa

Modelo	C-score
1	-2.98
2	-3.20
3	-3.23
4	-3.41
5	-3.52

I-TASSER.

En la Tabla 13 se muestran las 10 proteínas que presentaron mayor identidad, tomadas de la base de datos del PDB. Se encontró mayor porcentaje de identidad con la tirosinasa MelB del hongo *Aspergillus oryzae*, con lo cual se puede tener más confianza en el modelo ya que la proteína MelB es de la misma familia de tirosinasas que MelA. Las otras proteínas que se muestran son proteínas involucradas en el transporte de oxígeno, las cuales contienen un sitio de unión a cobre tipo 3, al igual que la tirosinasa MelA. Aunque resulta interesante resaltar que, a pesar que las proteínas MelA y MelB (PDB Id: 3w6qA) tienen un tamaño similar aproximado de 600 aminoácidos (Tabla 13), la región de 106 aminoácidos que se perdió en la mutante MelAc (Echeverría, 2010) es muy diferente a la encontrada en la proteína MelB (Figura 9), lo que indica que esta región no se encuentra conservada entre las tirosinasas, como es el caso

de los sitios de unión a cobre CuA y CuB. En el caso de las demás proteínas el tamaño varía de 300 a 400 aminoácidos, por lo que tampoco se encuentra esta región en su secuencia.

Proteína	ld	Aminoácidos	PDB Id	Descripción
				Proteína multimérica involucrada en el transporte de
Hemocianina 1	0.18	491	316wA	oxígeno, sitios de unión a cobre tipo 3
Catecol oxidasa				
(Ipomoea batatas)	0.17	345	1bugA	Centro dinuclear de cobre
Protirosinasa MelB				
(Asperugillus oryzae)	0.21	620	3w6qA	
Catecol oxidasa				
(Ipmoea batatas)	0.17	345	1bugA	Centro dinuclear de cobre
Hemocianina				
deoxigenada (<i>Rapana</i>	0.15	408	1InIA	Proteína involucrada en el transporte de oxígeno
thomasiana)				
				Proteína multimérica las cuales contienen varias
Hemocianina	0.16	394	1js8A	copias de su sitio activo, involucrada en el transporte
				de oxígeno unido por átomos de cobre
				Proteína involucrada en el transporte de oxígeno,
Hemocianina	0.16	394	1js8A	coordinado por átomos de cobre en el sitio activo.
				Encontrada en artrópodos y moluscos.
				Proteína involucrada en el transporte de oxígeno,
Hemocianina	0.16	394	1js8A	coordinado por átomos de cobre en el sitio activo.
				Encontrada en artrópodos y moluscos.
Protirosinasa MelB				
(Asperugillus oryzae)	0.21	620	3w6qA	
Protirosinasa MelB	0.21	620	3w6qA	

Tabla 13. Proteínas utilizadas como molde estructural para la generación del modelo de laproteína MelA.

Rank	PDB Hit	Iden1 Iden2	2 Cov.	Norm. Z- score	Download Align.			20 	40 	60 	80 	100 	120
						Sec.Str	ссссссссснннннн	HHCCCCCCSSSSS	sccccccccsssss	SSCCCCCCHHHCCCCCCC			cccccccccc <mark>ssssc</mark> cccc
		0.47.0.40	0.07	4.40		Seq	MPWLVGKPSLERSWNA	ILSFPESGFQLECR	RNTIGSSVFSSHFTLHFR	VARRLLHFSCRRFTETQKE	PTQALWWCELPTAPAPR	RGTGLKAALILAKDNS	NPRESKMSITRRHVIVQGGV1
1	<u>316wA</u>	0.17 0.18	0.67	1.48	Download								
2	1bugA	0.22 0.17	0.51	1.23	Download							APIQAPEIS	KCVVPPADLPPGAV
3	<u>3w6qA</u>	0.17 0.21	0.67	2.92	Download								
4	<u>IbugA</u>	0.24 0.17	0.50	3.40	Download							APIQAPEIS	KCVVPPADLPPGAV
		140			160		180	200	220	240	260	2	80 300
							l.	l I			I		
		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC		HHCCCC OGLAWN	HHHHHHHHH DPIIETYRDA	HHHHHHC VRLLNAL	CCCCCCCHHHHHHHCCCC		HHHHHHHHHHHHHHHH PWHRAYTAMYERIVRHVTK				CCCCCCCCCHHHHCCCCCCCCC
		·····I	LVRKNI	- HSLSHH	IEAEELRDA	LYKLQND	ESHGGYEHIAGFHGYF	PNLCPCCVHGMSIFP	HWHRLHTIQFERALKKH	GSHLGIPYWDWTQTISSLPT	FFADSGNNNPFFKYHIRS	INQDTVRDVNEAIFFSSI	FYLAL
VVDNC	CPPVASI	VIVDYKLPAVT	TMKVRP	ААНТМО	KDAIAKFAKA	VELMKAL	PADDPRNFYQQALVHCA	CNGGYQVHNSWLFF	PFHRWYLYFYERILGKLIG	DPSFGLPFWNWDNPGGMVLP		ILPPVVVDLGYNGADTDV	TDQNLALMYKQMVTNAGTELFL
	-SPYLI	FGIPKDPKHPL	PIRKDI	DDWYSN	RIQLTLFVEA	LTVIQNR	PLNDQLSYFRLAGIHGAP	PWPTGFCVHNNYTFP	TWHRVYVTLYEQVIYEAML	DKQWRLPYWDFARFARHGDE	LRLPILVTMPMVKVLVPG	QQSTTKYGLLENYNADVW	ADGGQNWLRANLALNEHPWYQNI
VVDNC	CPPVASI	VIYKLPAVTTM	K <mark>VR</mark> PAAI	HTMD	KDAIAKFAKA	VELMKAL	PADDPRNFYQQALVHCA	CNGGYQVHNSWLFF	PFHRWYLYFYERILGKLIG	DPSFGLPFWNWDNPGG	MVLPDFLNDSTSSLYDSN	NQSHLPPVVVDLGYNGA	DTDNLALMYKQMVTNAGTELFL(
		320			340		360	380	400	420 	440 	4	60 480
cccc	cccccc	ccccsssccc	снсннн		сссссссннн	нннннн	ннннннннссссссс		сссссссннссссссссс		ннннннсссссссссссссс		ccccccccccccccccccccccccccccccccccccccc
SLDPS	WVTTSSG	TQGALEYTPH	VQVHNNI	EGGWMP	EMSSPRDPIF	FMHHCNI	DRIWATWNLRNANSTDRL	WADMPFTDNFYDVD	GNFWSPKVSDLYVPEELGY	'NYGFRTYFKVAAASAKTLAL	NDKLTSVIAATATDAAIA	SVTTTSTDNSKAATENVP	LSLPIKIPAGALQEIVRQPPLP:
QAL	EEDNYCD	FEVQYE-ILH	VEVHALI	EGGMST	LEYSAFDPYF	MIHHASLI	DKIWIIWQELQKRRVAGD	DIMHVPLHPFNYEDD	FTRENSLPNAVVDSHRFNY	KYDNLNLHGHNIEELEEV	LRSLRLKSRVFA	FVLSGIRTTAVVKVYIK	SGTSDDEYAGSFVILGGAKEMP
GKAYR	AGDAPSP	GAGSIETSPHI	EPIHRWV	/GDPRNI	FYSAGRDIAF	YCHHSNV	DRMWTIWQQLARDYTDSD	WLNATFL FYDEN	GQAVKVRIGDSLDNQKMGY	KYAKTPLPWL			
EDGWD:	SVRYDAP			GGPISS	VPVAAYDPIF						RKEISDLYGQRIKEVYKDI		
UKATR	AGDAPSP	GAUSIEISPHI	LPINKWV	ODPRIN	FYSAURDIAF	TCHINSING		WENATELEYDEN	OQAVKVRIGDSEDNQKHOY	KTAKTPEPWE			
		50	90			520		540	560	580		600	
			1			1		I.	l I	1		l l	
CCCC SGMD			SSSS	SSSSS: FLRDV	SCCCCCCS	SSSSSS SVRVFL			CCCCCCCSSSSCHHHH GDHHRKPSFVLDLTDA	HHHHHHHCCCCCCCSS	SSSSSCCCCCSSSC DLQLIPVGSGAGKPG/	SSSSSSSSSSSSSCC	
WAYE		ITETVHNLM	4		LTDDHV	FRFDL	KKYDHTELDASVLPA	PIIVRRPNNA	AVFDIIEIPI	GKDVNLPPKV	VVKRGTKIMFMSVDE	VTTPMLNLGSYTA	
		GEE	DYILS	SIRYS	RYALGKPF	QINIFF	DVDGKDFYDARSQN	FVGSVFNFSG	VLSVSQLPARL	AVHYYKKQNKGEVPTP	RYVVVNSQGKAEAEV	VEVALHKTEG	

Figura 9. Alineamiento de las 4 primeras secuencias utilizadas como molde para el modelo de la estructura de la proteína MeIA. Sec. Str indica la estructura secundaría predicha por el programa para MeIA, y Seq. Indica la secuencia de aminoácidos reportada de MeIA. Todos los residuos se muestran en color negro, a excepción de aquellos aminoácidos que son idénticos a la secuencia de MeIA, los cuales se resaltan en colores. Ident1 representa el porcentaje de identidad con la secuencia del templado plegada. Ident2 representa el porcentaje de identidad de toda la secuencia del templado con la secuencia de MeIA. Cov. representa la cobertura del alineamiento y es igual al número de los residuos alineados dividido entre el tamaño de la proteína. En el alineamiento se destaca la identidad que tienen todas las secuencias en la región CuA (~ aminoácido 200) y CuB (~ aminoácido 320).

Debido a las diferencias de tamaño se decidió realizar una comparación con la secuencia de otras tirosinasas reportadas, y verificar cual es el tamaño promedio de estas proteínas. En la Tabla 14 se muestra el número aminoácidos de las tirosinasas que se utilizaron para la elaboración del árbol filogenético (Figura 10), se puede observar que las proteínas que se encuentran más cercanas a MelA de *R. etli* tienen aproximadamente el mismo número de aminoácidos que MelAc, además que MelA es la proteína con actividad de tirosinasa más grande que se ha reportado en microorganismos, con lo que surge la hipótesis de que MelAc pudiera ser la versión silvestre, o que bajo ciertas condiciones de la célula puedan ser expresadas ambas versiones de la proteína; es necesario realizar otros experimentos para comprobarlo. Por otro lado se observa que las tirosinasas del género *Rhizobium* son más similares a las del género *Nitrobacter*, lo cual tiene sentido ya que ambas bacterias se encuentran clasificadas como fijadoras de nitrógeno, y como alfa-proteobacterias.

Figura 10. Árbol filogenético de las secuencias de tirosinasas. Elaborado por el método de Neighbor-Joining, empleando el algoritmo de comparación Jukes Cantor.

Organismo	Aminoácidos
	/
Mesorhizobium sp.	543
Terriglobus saanensis	540
Acinetobacter sp.	508
Delftia acidovorans	493
Chroococcidiopsis thermalis	503
Streptomyces sp.	478
Nisea denitrificans	506
Ralstonia solanacearum	496
Rhizobium etli	609 (503)
Rhizobium leguminosarum	503
Nitrobacter winogradskyi	514
Nitrobacter hamburgensis	515
Acaryochloris marina	488
Burkholderia phymatum	503

 Tabla 14. Tirosinasas utilizadas para la elaboración del árbol filogenético, obtenidas por el

programa	BLAST,	del NCBI.
----------	--------	-----------

En la Figura 11 se muestra el modelo de la proteína MelA, en rosa se resaltan los aminoácidos que se perdieron en la mutante MelAc (Echeverría, 2010), a partir de esta estructura se observa que los 106 aminoácidos perdidos en la proteína MelAc no cuentan con una estructura periódica, ya sea hojas beta o alfas hélices y estos aminoácidos no se encuentran interactuando directamente con los aminoácidos del sitio activo. A partir del modelo de la proteína, se decidió realizar la deleción de 46 aminoácidos en el extremo amino (remarcados en azul), los cuales incluye la secuencia predicha como péptido señal en MelAc, por el programa SignalP 3.0. Estos aminoácidos se encuentran formando estructuras no periódicas de asas, además que no se encuentran cerca del sitio activo de la proteína (Rojo: CuA, Blanco: CuB). De igual forma, en el extremo carboxilo se decidió deletar los últimos 16 aminoácidos (remarcados en verde). Con el antecedente de Echeverría (2010), se infiere que estas estructuras no periódicas en el extremo de la proteína, al no interactuar de forma directa con el sitio activo de la proteína pueden generar una estructura más estable, y en consecuencia aumentar su actividad. O por otro lado, no tener influencia directa en la actividad y mantener la actividad observada de la proteína MelAc.

Figura 11. Modelo de la proteína MeIA generado por el programa I-TASSER. En rosa se resaltan los 106 aminoácidos perdidos en la mutante MeIAc. En azul se remarcan los 46 aminoácidos deletados en el extremo amino, los cuales incluyen la secuencia de 31 aminoácidos predicha como péptido señal, por el programa SignalP. En verde se muestran los 16 aminoácidos deletados en el extremo carboxilo de la proteína. En rojo se muestra la región conservada CuA (H-x(n)-H-x(8)-H). En blanco se muestra la región CuB (H-x(3)-H-x(n)-H).

Deleciones en el gen melA utilizando la técnica "Delete primer"

El primer paso para la construcción de la biblioteca de versiones truncadas del gen *melA* fue generar una población de productos de PCR utilizando los oligonucleótidos sintetizados por el Dr. Paul Gaytán en la Unidad de síntesis y secuenciación, del Instituto de Biotecnología (UNAM) (Tabla 9). Se deletaron 46 aminoácidos del extremo amino y 16 del extremo amino, en total en los tres bancos. Al observar el gel de agarosa con el producto de PCR se encontró una banda de 1.5 Kbp aproximadamente, debido a que este tipo de gel no tiene la resolución necesaria para identificar productos de amplificación que difieren en 100 pb o menos, se consideró que en esta banda estaban incluidos los productos diferentes fragmentos generados en el PCR (Figura 12).

Se clonó estos fragmentos en el plásmido pTrc99A2, el cual es un derivado del plásmido pTrc99A, se utilizó la cepa MC1061 como hospedera de la biblioteca. Los controles se

encuentran clonados en el plásmido pTrc99A y transformados en la cepa de *E. coli* W3110. Para comprobar que el fondo genético de la cepa MC1061 no influyera en la actividad de las mutantes, se comparó la producción de eumelanina de la cepa MC1061 con la cepa W3110, ambas transformadas con el plásmido pTrcMeIAc, se encontró que no hay diferencia entre las dos cepas utilizadas (datos no mostrados).

Figura 12. Generación de la biblioteca de versiones truncadas. Electroforesis para los productos de PCR de los tres bancos de versiones truncadas del gen *melAc*. Gel de agarosa 0.8% + Bromuro de etidio 0.05%, 100 V.

Las colonias seleccionadas al azar de los tres bancos se inocularon en medio de producción de melanina, junto con un control positivo (*E. coli* W3110 / pTrc*melA*) y con un control negativo (*E. coli* W3110/pTrc99A2). Se comparó el cambio de coloración de las clonas seleccionadas y los dos controles, solo en el primer banco se encontraron colonias con actividad. Por el contrario en el segundo y tercer banco no se encontró ninguna colonia que presentara cambio de color significativo con respecto al control positivo. En la Figura 13 se muestra una de las cajas inoculada con 50 colonias seleccionadas al azar del primer banco, y otra con colonias del tercer banco.

Figura 13. Evaluación cualitativa de producción de eumelanina en las clonas de la banco. Inoculadas en medio de cultivo para la producción de eumelanina, con un control positivo y negativo. *Izquierda:* clonas obtenidas de la clonación del tercer banco, al secuenciar las clonas que presentaron el fenotipo positivo de producción de eumelanina, se encontró que es la versión MelAc1-0. *Derecha*: clonas obtenidas de la clonación del primer banco.

Debido a que la mayoría de las colonias obtenidas del banco no presentaron actividad, se escogieron colonias al azar sin actividad para evaluar si el plásmido contenía el gen de interés, utilizando la técnica de extracción de ácidos nucleicos totales. Posteriormente, aquellas colonias que contenían el inserto se mandaron a secuenciar, para evaluar si la pérdida de actividad fue debida a las deleciones generadas, o por mutaciones puntuales dentro del gen. En la Figura 14 se muestra un ejemplo del gel de agarosa en donde se corrieron las muestras de la extracción de las clonas seleccionadas al azar en la evaluación cualitativa, con esto se pudieron seleccionar aquellas colonias que presentaron un patrón en el gel similar al control con inserto (*E. coli* W3110/ pTrc*melA*).

Se obtuvo la secuencia de las 50 clonas seleccionadas al azar de los tres bancos generados, se utilizaron los oligonucleótidos pTrcFw y pTrcRv (Tabla 9) los cuales tienen identidad con el plásmido pTrc99A2, por lo cual únicamente se obtuvo la secuencia de los extremos 5' y 3'. Se encontró que todos los genes que se secuenciaron presentaban deleciones en alguno o ambos de los extremos 5' y 3', además que por la diversidad encontrada se puede inferir que en el banco se encontraban representadas todas las deleciones esperadas. Por otro lado, se secuenció totalmente el gen de 20, utilizando los oligonucleótidos pTrcFw, MelA500Fw y MelA1000Fw (Tabla 8), con el objetivo de verificar que durante la clonación no se haya

generado ninguna mutación al azar que pudiera cambiar la actividad de la proteína o cambiar el marco abierto de lectura; de las 20 clonas secuenciadas se encontró que no había ningún cambio dentro del marco de lectura del gen. En la Figura 15 (A, B y C) se muestra un ejemplo del alineamiento de las secuencias obtenidas con las mutantes del primer y tercer banco contra la construcción pTrc*melA*c generada *in silico*.

Figura 14. Extracción de ácidos nucleicos totales. Electroforesis para la extracción de ácidos nucleicos totales de clonas seleccionadas al azar del tercer banco generado, con un control negativo (*E. coli* W3110/pTrc99A2) y un control positivo (*E. coli* W3110/pTrc*melA*). Gel de agarosa 0.8% + Bromuro de etidio 0.05%, 100 V.

	_																															
А	•			10			20			3	0			40		1.		50		1.		60				70				80	[.	
melAc		atgag	cato	aca	cgca	aga	cat	gtca	itc	jtt	cag	ggt	gg	cgt	cat	:tg	cag	ca	ggo	ct	gct	cg	cca	igo	gg	cct	ac	cgg	gga	caa	aago	:c
melA0-0		ATGAG	CATO	ACA	CGCI	AGA	CAT(STC/	TCO	TT	CAG	GGI	GG	CGT	СМТ	TG	CAG	CA	GGC	CT	GC:	CG	CCI	ALC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA0-0		ATGAG	CATO	ACA	CGCI	AGA	CAT(GTC/	\TCO	TT	CAG	GGI	GG	CGT	CAT	TG	CAG	CA	GGC	CT	GC:	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA1-0		AT	GATC	ACA	CGCI	AGA	CAT(GTC/	\TCO	TT	CAG	GGI	GG	CAT	CAT	ΤG	CAG	CA	GGC	СТ	GC:	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA1-0		AT	GATC	ACA	CGCI	AGA	CAT(STC/	TCO	ΤT	CAG	GGI	GG	CGT	CAT	ΤG	CAG	CA	GGC	CT	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA3-0				ATG	CGCI	AGA	CAT(STC/	TCO	TT	CAG	GGI	GG	CGT	CAT	TG	CAG	CA	GGC	CT	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA5-0					7	ATG	CAT(STC/	ALC-	TΤ	CAG	GGI	GG	CGT	CAT	ΤG	CAG	CA	GGC	CT	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA5-0					7	ATG	CAT(STC/	TC(ΤT	CAG	GGT	GG	CGT	CAT	ΤG	CAG	CA	GGC	CT	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA6-0						i	ATG(STC/	TCO	ΤT	CAG	GGI	GG	CGT	CAT	ΤG	CAG	CA	GGC	CT	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA6-0)	ATG(GTC/	TC0	TT	CAG	GGT	GG	CGT	CAT	TG	CAG	CA	GGC	СТ	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA6-0)	ATG(STC/	TC(TT	CAG	GGT	GG	CGT	CAT	'TG	CAG	CA	GGC	СТ	GC	CG	CCZ	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA7-0							7	\TG/	TC6	TT	CAG	GGT	GG	CGT	CAT	'TG	CAG	CA	GGC	CT	GC!	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA11-0												ATC	GGG	CGT	CAT	ΤG	CAG	CA	GGC	CT	GC:	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA11-0												ATC	GGG	CGT	CAT	TG	CAG	CA	GGC	СТ	GC:	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA12-0													AT	GGT	CAT	TG	CAG	CA	GGC	СТ	GC	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA12-0													AT	GGT	CAT	'TG	CAG	CA	GGC	CT	GC	CG	CCZ	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
melA15-0																-A	TGG	CA	GGC	СТ	GC:	CG	CCI	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C
me1A15-0																-A	TGG	CA	GGC	CT	GCI	CG	CCZ	\GC	GG	ССТ	AC	CGG	GGA	CAA	AAGC	:C

]														
l B															•
	•	2	170	280	290	300	310	320	330	340	350	360	370	380	390
Contro	l melA	CAGCATATG	AGCATCAC	ACGCAGAC	ATGTCATCGT	TCAGGGTGGC	GTCATTGCAG	CAGGCCTGCT	CGCCAGCGGC	CTACCGGGGGA	CAAAAGCCI	TCCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	2										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	7										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	13										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	30										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	15										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	25										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	31										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCI	CACTGCAG
Clona	38										7	TGCAGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	10											ATGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	17											ATGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	34											ATGATACC	GTCAATCCCTT	GGCGGCGCT	CACTGCAG
Clona	37												-ATGATCCCTT	GGCGGCGCT	CACTGCAG
Clona	1												-ATGATCCCTT	GGCGGCGCT	CACTGCAG
Clona	11												ATGCCTT	GGCGGCGCT	CACTGCAG
Clona	21												ATGCCTT	GGCGGCGCT	CACTGCAG
Clona	39												ATGT	GGCGGCGCT	CACTGCAG
Clona	5												ATGT	GGCGGCGCT	CACTGCAG
Clona	27												A	TGCGGCGCT	CACTGCAG
Clona	16													ATGCGCT	CACTGCAG
Clona	19													ATGCGCI	CACTGCAG
Clona	23													ATGCGCI	CACTGCAG

	٦														
l c							li i i i i i i i i i i i i i i i i i i	linni			linii				0
Ľ	•	1820	1830	1840	1850	1860	1870	1880	1890	1900	1910	1920	1930	1940	
Contr	ol mel#	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCCGCC	TAATAGCCC	3GGGATCCTC	TAG
Clona	2	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGTAA					
Clona	7	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCATAA					
Clona	13	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTATA	AAAA				
Clona	30	AGGGGGCAGACGGA	FGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCC	TAA		
Clona	15	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTATA	AAAA				
Clona	25	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGTAA					
Clona	31	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	ATAA			
Clona	38	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	TAA					
Clona	10	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCTA	A			
Clona	17	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTG	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTATA	AAAA				
Clona	34	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAA				
Clona	37	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCC	TAA		
Clona	1	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCCGCC	TAA		
Clona	11	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCC	TAA		
Clona	21	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	ATAA			
Clona	39	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTG	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTATAA						
Clona	5	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTAA			
Clona	27	AGGGGGCAGACGGA	IGGGGAGGCCA	TGGACCTGO	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCC	TAA		
Clona	16	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTG	AGCTCATTCC	rgTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCC	TAA		
Clona	19	AGGGGGCAGACGGA	IGGCGAGGCCA	TCGACCTGC	AGCTCATTCC	IGTCGGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTAA			
Clona	23	AGGGGGCAGACGGA	rggcgaggcca	TCGACCTGO	AGCTCATTCC	rgrcgGATC(GGGAGCGGGCA	AACCCGGCGC	CGTAGAGCCO	CGCAAAGCTAGA	AATAGCCAT	AGTGTCCGCC	TAA		

Figura 15. Secuencias de las clonas seleccionadas. Alineamiento realizado con el programa BioEdit, de las secuencias obtenidas del extremo 5´ y 3´ de las clonas del primer y tercer banco contra pTrc*melA*. (A) Secuencia del extremo 5´ de las clonas obtenidas del tercer banco. (B) Secuencia del extremo 5´ de las clonas obtenidas del primer y segundo banco. (C) Secuencia del extremo 3´ de las clonas obtenidas del primer y segundo banco.

Evaluación cuantitativa de producción de eumelanina de las clonas de la biblioteca

Para realizar el cálculo de la actividad de tirosinasa específica de las clonas se midió la absorbancia a 400 nm utilizando tirosina como sustrato, a partir de los extractos crudos de las

cepas que expresan las proteínas MelA, MelAc, MelAc1-0, MelAc2-0 y MelAc3-0 y como control negativo se utilizó a la cepa W3110/pTrc99A2, cada ensayo se realizó por triplicado. Se graficó la absorbancia medida a 400 nm contra el tiempo por el cual se siguió la producción de melanina (Figura 12). En el caso de las clonas con 3 deleciones o mas no fue posible detectar su actividad por este método, por lo que no fueron incluidas en este análisis. La pérdida de actividad puede deberse a que la deleción de estos aminoácidos desestabiliza a la proteína lo que la hace más susceptible a degradación, o la estructura es estable pero no tiene actividad al tener una conformación diferente.

Para calcular la concentración de eumelanina, la Abs_{400 nm}/h se convirtió a peso seco de eumelanina utilizando la relación 1 Abs₄₀₀ = 0.0676 g/L eumelanina (Lagunas, 2004), debido a que el control negativo presentó absorbancia a la longitud de onda utilizada, a las pendientes calculadas de MelA, MelAc, MelA1-0, MelA2-0 y MelA3-0 se les restó la pendiente de la cepa W3110 con el plásmido pTrc99A2. A partir de este valor y de la concentración de proteína total del extracto celular se calculó la velocidad específica de reacción (Figura 16, Tabla 15).

Figura 16. Evaluación cuantitativa de producción de eumelanina. Medida por absorbancia a 400 nm de las proteínas MelA, MelAc, MelAc1-0, MelAc2-0 y MelAc3-0, en función del tiempo.

En la Figura 17 se puede observar que la velocidad específica de reacción de la mutante MelAc es mayor que la versión silvestre de la proteína MelA. Este resultado indica que la mutación en

MelAc aunque no es en el sitio catalítico de la enzima, aumenta la conversión de tirosina en melanina. Por otro lado, a partir de los antecedentes (Echeverría, 2010), este resultado sugiere que en *R. etli*, el gen que se expresa es *melA*c o que bajo ciertas condiciones en la célula puedan ser expresadas tanto MelA como MelAc; ya que al perder 106 aminoácidos su actividad aumenta, pero cuando se eliminan dos aminoácidos más su actividad llega prácticamente a cero. Sin embargo, es necesario realizar otros experimentos para poder comprobar que versión de tirosinasa es la que se expresa en *R. etli*. En el caso de MelAc1-0, MelAc2-0 y MelAc3-0, se puede observar que la deleción de dos aminoácidos da como resultado la pérdida de actividad de tirosinasa en las condiciones probadas, demostrando que el cambio de actividad entre las mutantes generadas en los tres bancos no es gradual, si no que al deletar dos aminoácidos, es suficiente para perder su actividad de forma significativa. Con estos resultados se puede inferir que, aunque estos aminoácidos no se encuentran en el sitio activo, pueden estar implicados en la estabilidad de la estructura de la proteína. Otra hipótesis es que estos aminoácidos pueden estar involucrados en el reconocimiento inicial del sustrato, antes de que llegue al sitio activo.

Figura 17. Velocidad específica de reacción. Expresada en g de Eumelanina / g proteína * h, de los extractos celulares de las clonas MelA, MelAc y MelAc1-0. Se muestran las medias aritméticas más desviación estándar de tres experimentos independientes (n=3). Los asteriscos indican que no hay diferencia significativa entre la actividad de las proteínas MelAc1-0 y MelAc.

Tabla 15. Velocidad específica de reacción de las proteínas MutMelA, MelA, MelAc, MelAc1-0, MelAc2-0 y MelAc3-0.

	Velocidad específica de reacción (mg Eu / g proteína*h)	Porcentaje relativo de actividad	Secuencia
MelA	5.31	64 %	10 20 30
MelAc	8.34 *	100 %	melAc melAO-0 ATGAGCATCACACGCAGACATGTCATCGTTCA
MelA1-0	7.21 *	86 %	melA0-0 ATGAGCATCACACGCAGACATGTCATCGTTCA melA1-0ATGATCACACGCAGACATGTCATCGTTCA
MelA2-0	ND	ND	melA1-0ATGATCACACGCAGACATGTCATCGTTCA melA3-0ATGCGCAGACATGTCATCGTTCA
MelA3-0	ND	ND	

*No existe diferencia significativa entre estos valores.

A partir de este resultado se decidió aumentar el tiempo de incubación de las mutantes obtenidas, con el fin de poder descartar actividad residual de la enzima que no se pudiera cuantificar con la metodología que se describió anteriormente. Se incubaron las cajas a 4 °C para que el crecimiento de las células no interfiriera con la evaluación cualitativa de producción de eumelanina, los resultados se muestran en la Tabla 16.

A pesar que la actividad de todas las mutantes evaluadas es alrededor de 100 veces menor que el control (MelAc), después de 25 días de incubación a 4 °C algunas cepas presentaron actividad. Cabe señalar que, el cambio de la actividad entre estas mutantes no es lineal con respecto al número de aminoácidos perdidos. Por ejemplo la mutante que tiene 16 deleciones en el extremo amino y cero en el carboxilo (MelA16-0) presenta actividad residual, pero la mutante con 15 deleciones en el extremo amino y cero en el extremo carboxilo no se observa actividad; lo mismo se ocurrió con las mutantes MelA33-0 y MelA33-1. Los resultados anteriores sugieren que los aminoácidos que se deletaron estabilizan la estructura de la proteína y son determinantes para la funcionalidad catalítica; o bien, si presentan actividad pero son degradadas rápidamente dentro de la célula. Las mutantes que presentaron actividad residual podrían tener una versión de MelA estable y con baja actividad catalítica, la cual no puede detectarse cuantitativamente con los métodos utilizados en este estudio.

Tabla 16. Fenotipo observado de las mutantes del segundo y tercer banco incubadas en mediosólido LB / Tyr, a 4 °C / 25 días.

Es necesario realizar experimentos complementarios para demostrar qué cambios en la estructura terciaria de la proteína generan las mutaciones realizadas. Sin embargo, los resultados obtenidos en este trabajo representan un acercamiento a la descripción de la tirosinasa MelA de *R. etli*, la cual tiene gran importancia biotecnológica. Por otro lado es importante destacar que a partir de la pérdida de 106 aminoácidos en la mutante MelAc, a partir de dos deleciones en el extremo amino, o cualquier deleción en el extremo carboxilo, genera la pérdida de actividad de la enzima. Sin embargo, se demostró que aunque no se puede cuantificar su actividad, existen mutantes que conservan actividad residual que se puede observar después de varios días de incubación a 4 °C.

Conclusiones

- La deleción de dos aminoácidos en el extremo amino, o un cualquier deleción en el extremo carboxilo de la proteína MelAc, es suficiente para generar la pérdida de actividad de tirosinasa.
- Al eliminar la secuencia de los primeros 30 aminoácidos en la versión MelAc, la proteína pierde actividad de tirosinasa bajo las condiciones probadas. Por lo tanto, los aminoácidos 1-31 no forman un péptido señal, y son esenciales para la actividad de tirosinasa en esta enzima.
- Las deleciones realizadas en el extremo carboxilo de la proteína tienen un mayor impacto en la pérdida de actividad.
- La proteína MelAc es la versión mínima con actividad para fines de aplicación biotecnológica.

Perspectivas

- Realizar la purificación de MelA y las mutantes MelAc y MelA1-0 y obtener su estructura terciaria para comprobar qué cambios hubo en su estructura que generaron los cambios en actividad específica.
- Realizar la purificación de las mutantes MelAc, MelA1-0 y aquellas que presentaron actividad residual en medio sólido de producción de eumelanina, para evaluar su actividad y poder descartar que los cambios no son debidos a la expresión o estabilidad de cada una de las mutantes.
- Realizar experimentos de proteómica en *R. etli* formando nódulos para comprobar que versión de la tirosinasa MelA es la que se expresa bajo estas condiciones.

Referencias

- Cabrera-Valladares, N., Martínez, A., Piñero, S., Lagunas-Muñoz, V. H., Tinoco, R., De Anda, R., Gosset, G. (2006). Expression of the melA gene from Rhizobium etli CFN42 in Escherichia coli and characterization of the encoded tyrosinase. *Enzyme and Microbial Technology*, 38(6), 772–779.
- **Cano, L. E.** (2008). Melanina : implicaciones en la patogénesis de algunas enfermedades y su capacidad de evadir la respuesta inmune del hospedero to evade the host immune response, (574).
- Chávez-Béjar, M. I., Balderas-Hernandez, V. E., Gutiérrez-Alejandre, A., Martinez, A., Bolívar, F., & Gosset, G. (2013). Metabolic engineering of Escherichia coli to optimize melanin synthesis from glucose. *Microbial Cell Factories*, *12*, 108.
- Claus, H., & Decker, H. (2006). Bacterial tyrosinases. *Systematic and Applied Microbiology*, 29(1), 3–14.
- Cubo, M. T., Buendia-Claveria, a. M., Beringer, J. E., & Ruiz-Sainz, J. E. (1988). Melanin production by Rhizobium strains. *Applied and Environmental Microbiology*, *54*(7), 1812–1817.
- Decker, H., Schweikardt, T., Nillius, D., Salzbrunn, U., Jaenicke, E., & Tuczek, F. (2007). Similar enzyme activation and catalysis in hemocyanins and tyrosinases. *Gene*, *398*(1-2 SPEC. ISS.), 183–191.
- Durán, N., Rosa, M. a., D'Annibale, A., & Gianfreda, L. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: A review. *Enzyme and Microbial Technology*, 31(7), 907–931.
- Echeverría, A. (2010). Tesis, S. D. E., & Lagarda, G. G. (n.d.). FACULTAD DE CIENCIAS Caracterización de mutantes del gen melA de Rhizobium etli expresadas en Escherichia coli.

- Faccio, G., Kruus, K., Saloheimo, M., & Thöny-Meyer, L. (2012). Bacterial tyrosinases and their applications. *Process Biochemistry*, 47(12), 1749–1760.
- Fairhead, M., & Thöny-Meyer, L. (2012). Bacterial tyrosinases: Old enzymes with new relevance to biotechnology. New Biotechnology, 29(2), 183–191.
- Fenoll, L. G., Rodríguez-López, J. N., García-Sevilla, F., García-Ruiz, P. A., Varón, R., García-Cánovas, F., & Tudela, J. (2001). Analysis and interpretation of the action mechanism of mushroom tyrosinase on monophenols and diphenols generating highly unstable o-quinones. *Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology*, 1548(1), 1–22.
- García-Borrón, J. C., & Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. *Pigment Cell Research / Sponsored by the European Society for Pigment Cell Research and the International Pigment Cell Society*, *15*(3), 162–173.
- González, V., Bustos, P., Ramírez-Romero, M. a, Medrano-Soto, A., Salgado, H., Hernández-González, I., Dávila, G. (2003). The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. *Genome Biology*, *4*(6), R36.
- Henson JM. (2001) Melanin. In: Hofrichter M, Steinbuchel A, editors. Biopolymers. Weinheim: Wiley-VCH. p. 229–47.
- Ito, S. (2003). A Chemist 's View of Melanogenesis. Pigment Cells Res, 16, 230–236.
- Lagunas-Muñoz, V. H., Cabrera-Valladares, N., Bolívar, F., Gosset, G., Martínez, A. (2006). Optimum melanin production using recombinant Escherichia coli. *Journal of Applied Microbiology*, *101*(5), 1002–1008.
- López-Serrano, D., Solano, F., & Sanchez-Amat, A. (2004). Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. *Gene*, 342(1), 179–187.

- Lucas-Elío, P., Solano, F., & Sanchez-Amat, A. (2002). Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. *Microbiology*, *148*(8), 2457–2466.
- Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H., & Sugiyama, M. (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. *Journal of Biological Chemistry*, 281(13), 8981–8990.
- **Nosanchuk, J. D., & Casadevall, A.** (2003). The contribution of melanin to microbial pathogenesis. *Cellular Microbiology*, *5*(4), 203–223.
- Piñero, S., Rivera, J., Romero, D., Cevallos, M. A., Martínez, A., Bolívar, F., & Gosset, G. (2007). Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosisassociated stress resistance. *Journal of Molecular Microbiology and Biotechnology*, 13(1-3), 35–44.
- Riley, P.A. 1997. Melanin. Int. J. Biochem. Cell Biology. Vol. 29, No. 11, pp 1235-1239.
- Roulin, A., Almas, B., Meichtry, S., Jenni, L. 2011. Eumelanin- and pheomelanin- based colour advertise resistance to oxidative stress in opposite ways. Journal of Evolutionary Biology. 24, pp2241-2247.
- Urán, E, Cano, L. 2008. Melanin: implications in some disease pathogenesis and its capacity to evade the host immune response. Vol. 12-2.
- Zaidi, K. U., Ali, A. S., Ali, S. a., & Naaz, I. (2014). Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. *Biochemistry Research International*, 2014.