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Introducción

W. Hurewicz en [Hur26] introdujo una propiedad topológica del tipo cubierta y demostró
que esta propiedad es equivalente a la propiedad E introducida por M.K. Menger en
[Men24]. Dicha propiedad está localizada entre las propiedades de σ-compacidad y Lin-
delöf. W. Hurewicz conjeturó que la propiedad E de Menger caracterizaba la σ-compaci-
dad de los espacios métricos, sin embargo, A. W. Miller en [MF88] muestra la existencia de
un subespacio de los números reales de tamañoω1 con la propiedad E , contradiciendo de
esta manera la Conjetura de Hurewicz.

En los primeros artículos de investigación, los espacios (métricos) con la propiedad
E son llamados espacios Hurewicz por Lelek en [Lel69]. En la más reciente literatura,
M. Scheepers y M. Sakai han llamado a estos espacios espacios Menger o espacios con
la propiedad Menger [Sak09; Sch99a]. El presente trabajo continuará con la terminología
de estos dos últimos autores.

En la actualidad la propiedad Menger difícilmente es estudiada de manera singular, la
propiedad Menger, en conjunto con otras variaciones de esta misma propiedad, trajo con-
sigo la introducción de muchas otras propiedades del tipo cubierta. Marion Scheepers en
[Sch99a], y sus subsecuentes artículos, inició la era moderna de la combinatoria infinita
en topología, o bien principios de selección en matemáticas. En estos trabajos se hace una
generalización de la propiedad Menger mediante el uso de algunos “operadores de selec-
ción” (S f i n , S1 y U f i n). Cada uno de estos operadores generalizan algunas propiedades
del tipo cubierta ya conocidas como la propiedad Hurewicz, Rothberger, Gerlitz-Nagy y
γ-espacio, entre otras. Finalmente, entre los años 2008 y 2012, de los principios de selec-
ción de M. Scheepers fue extraida la clase de los espacios selectivamente separables. Dicha
clase fue extensamente estudiada dejando algunos problemas que permanecen abiertos
[Bel+08].
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INTRODUCCIÓN

En Cp -teoría uno de los grandes problemas sin resolver es caracterizar los espacios X
para los cuales Cp (X ) es Lindelöf. Debido a que la propiedad Menger implica Lindelöf es
natural plantear el siguiente problema: ¿bajo qué condiciones en X , Cp (X ) es Menger?
Este problema ya ha sido atendido. Hurewicz prueba que este último hecho sucede sólo
en el caso trivial; es decir, cuando X es finito [Arh92, Theorem II.2.10]. Sin embargo no se
puede decir lo mismo del subespacio Cp (X ,2) de Cp (X ), de hecho para cualquier espacio
discreto X , Cp (X ,2) es un espacio compacto y por tanto Menger. Otro ejemplo no tan
trivial es el conjunto de Cantor 2ω, Cp (2ω,2) es Menger ya que éste es numerable. Más aún,
Cp (X ,2) puede llegar a ser σ-compacto. En [CCTM03] A. Contreras-Carreto y Á. Tamariz-
Mascarúa prueban que si X es un subespacio de Cp (Y ), donde Y es compacto, y X ′ (el
conjunto de puntos no aislados de X ) es compacto, entonces Cp (X ,2) es σ-compacto.

El presente trabajo es una compilación de los resultados obtenidos durante mi es-
tancia doctoral los cuales hablan acerca de la propiedad Menger y Rothberger en el espa-
cio Cp (X ,2) cuando X pertenece a alguna de las siguientes clases: subespacios de Cp (Y ),
espacios simples, GO-espacios y Ψ-espacios (véase Chapter 2, Chapter 3 o bien, [BS15b;
BSTM15; BS15a]) .

El primer capítulo está basado en [Win95] (uno de mis artículos favoritos), éste pre-
senta una lista de propiedades básicas de los espacios Menger y ejemplos concernientes a
estos mismos, las pruebas de estos resultados, en su mayoría, fueron dadas por L. Wingers.
En la última sección del capítulo 1 se presentan dos temas importantes acerca de la pro-
piedad Menger. El primero, el producto de espacios Hurewicz, y el segundo, la conjetura
de Hurewicz.

R.Z. Buzyakova en [Buz04] prueba que Cp (X ) es Lindelöf para cada subespacio primero
numerable numerablemente compacto de ordinales X . En el capítulo 2 mostramos que
si X es un subespacio primero numerable de ordinales, entonces Cp (X ,2) es Menger si
y sólo si Cp (X ,2) es Lindelöf y X ′, el conjunto de puntos no aislados de X , es numerable-
mente compacto (Theorem 2.32). Este resultado en conjunto con el teorema de Buzyakova
antes mencionado tienen como consecuencia que Cp (X ,2) es Menger para cada sube-
spacio primero numerable numerablemente compacto de ordinales X . De manera más
general, haciendo uso de las técnicas usadas por Buzyakova en [Buz07] logramos probar
el siguiente resultado: Si L es un GO-espacio primero numerable sin puntos aislados, en-
tonces Cp (X ,2) es Menger si y sólo si Cp (L,2) es Lindelöf y L es numerablemente compacto
(Theorem 2.28).

Finalmente, el capítulo 3 (como el capítulo 2) contiene una sección dedicada a los Ψ-
espacios y el espacio de funciones Cp (Ψ(A ),2). A. Dow y P. Simon en [DS06] prueban dos
hechos, el primero es que si b>ω1, entonces Cp (Ψ(A ),2) no es Lindelöf para cada familia
casi ajena maximal (mad) A , y el segundo, que, asumiendo ♦, existe una familia mad A

para la cual Cp (Ψ(A ),2) es Lindelöf. Más adelante M. Huršák, P.J. Septycki y Á. Tamariz-
Mascarúa prueban, suponiendo la hipótesis del continuo (CH), la existencia de una fa-
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INTRODUCCIÓN

milia mad A para la cual Cp (Ψ(A ),2) es Lindelöf [HSTM05]. En el capítulo 3 logramos
mejorar este último resultado demostrando que si se supone CH, existe una familia mad
A para la cual Cp (Ψ(A ),2) es Rothberger (Theorem 3.35).

v
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Notation and terminology

In this doctoral thesis, all notation and terminology follow references [Eng89; Arh92]. All
spaces under consideration are assumed to be Tychonoff, i.e., T3 1

2
. The set of ordinals

strictly less than an ordinal α equipped with its order topology will be denoted simply by
α. AndN denotesω\{0}. For a subset A of a topological space X , clX (A) and intX (A) denote
the closure and interior in X of A, respectively. If there is no possibility of confusion, we
will simply write cl(A) and int(A). A subset A of a topological space is nowhere dense if
int(cl(A)) = ;. By βX we denote the Stone-Čech compactification of a space X . Given a
space X , X ′ denotes the set of non-isolated points of X . And by a cover of a set X we mean
a family of sets whose union contains X .

For spaces X and Y , Cp (X ,Y ) is the subspace of Y X consisting of the continuous func-
tions from X to Y (i.e., C (X ,Y ) endowed with the topology of pointwise convergence). As
usual, Cp (X ) will mean Cp (X ,R). For a space X , n ∈ω, points x0, . . . , xn ∈ X , f ∈Cp (X ) and
a positive real number δ, we will denote by [ f ; x0, . . . , xn ;δ] the set

{g ∈Cp (X ) : ∀i (0 ≤ i ≤ n →| f (xi )− g (xi )| < δ)}.

Recall that for every space X and every discrete space Y , there exists a zero-dimensional
space Z such that Cp (X ,Y ) is homeomorphic to Cp (Z ,Y ). So, where reference is made to
Cp (X ,Y ) where Y is discrete, we will assume that X is a zero-dimensional space.

Let i w(X ) be the minimal cardinal κ such that X has a weaker Tychonoff topology of
weight κ; evidently, the statement i w(X ) = ω is equivalent to saying that X has a weaker
separable metrizable topology. A family N of subsets of a space X is a network for X if
every open subset of X is a union of a subfamily of N . In other words, a network is like
a base, only its elements need not be open. The network weight of X , denoted by nw(X ),

1



NOTATION AND TERMINOLOGY

is the least cardinality of a network for X . The spaces with countable network weight are
called cosmic. A family P of non-empty subsets of a space X is said to be a π-network at
x ∈ X if every neighborhood of x contains some member of P .

A space X has countable tightness, which is denoted by t (X ) ≤ ω, if for any x ∈ X and
A ⊂ X with x ∈ cl(A), there is a countable set B ⊂ A such that x ∈ cl(B). For any space X ,
t∗(X ) = sup{t (X n) : n ∈ω}.
Given a metric space X with metric d and a subset A of X , the diameter of A is δ(A) =
sup{d

(
x, y

)
: x, y ∈ A}.

Given spaces X and Y and f : X → Y , the n-th power f n : X n → Y n of the map f is defined
by f n(x1, . . . , xn) = ( f (x1), . . . , f (xn)).
For any space X and every real valued function f : X → R, supp( f ) denotes the set cl({x ∈
X : f (x) 6= 0}).
We say that a space S is a Σ-product of spaces from a class of topological spaces C if there
is a family {X t : t ∈ T } of spaces in C and a point a ∈ X =∏

{X t : t ∈ T } such that S is equal
to the set {x ∈ X : |{t ∈ T : x(t ) 6= a(t )}| ≤ω}.

For any set X , [X ]<ω will denote the set of all finite subsets of X .
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CHAPTER

1
Menger spaces

A space X is said to have the Menger property (or simply X is Menger) if for every sequence
〈Un : n ∈ ω〉 of open covers of X , there exists a sequence of finite sets 〈Fn : n ∈ ω〉 such
that

⋃
n∈ωFn is a cover of X and Fn ⊂Un for every n ∈ω.

1.1 Basic properties on the Menger property

Similar to compactness, the Menger property does not depend on the universe in which it
is immersed; that is:

Proposition 1.1. Let Y be a subspace of X . Then Y is Menger if and only if for every sequence
〈Un : n ∈ω〉 of covers of Y consisting of open subsets of X , there exists a sequence 〈Fn : n ∈
ω〉 of finite sets such that

⋃
n∈ωFn is a cover of Y and Fn ⊂Un for each n ∈ω.

As we have already mentioned in the Introducción:

Proposition 1.2. Every σ-compact space is Menger and every Menger space is a Lindelöf
space.

Proof. Let X =⋃
n∈ωKn be a space where each Kn is a compact space and let 〈Un : n ∈ω〉

be a sequence of open covers of X . For each n ∈ ω we choose a finite subset Fn ⊂ Un

whose union contains Kn . Then the union of the sequence 〈Fn : n ∈ω〉 forms a cover for
X .
If X is a Menger space and U is a cover of X , then for the constant sequence 〈Un : n ∈ω〉,
where Un = U for each n ∈ ω, there is a sequence of finite sets 〈Fn : n ∈ ω〉 such that

3



1.1. Basic properties on the Menger property

X = ⋃
n∈ω

⋃
Fn and Fn ⊂ Un for each n ∈ ω. Then

⋃
n∈ωFn is a countable cover of X

contained in U .

The following two examples show that the classes of topological spaces mentioned in
Proposition 1.2 are pairwise contained properly. The first example shows a Lindelöf space
which is not Menger.

Example 1.3. The space of irrational numbers ωω is a non Menger Lindelöf space.

Proof. If we define, for each n ∈ ω and s ∈ ωn , U n
s = { f ∈ ωω : s ⊂ f }, then, for each n ∈N,

the collection Un = {U n
s : s ∈ ωn} is an open cover of ωω. Now, let Fn ⊂ Un be a finite

subset for each n ∈ N. Then, since the set {Im(s) : U n
s ∈ Fn} is finite, we can choose kn ∈

ω \ {Im(s) : U n
s ∈ Fn}. Then, the function f : ω→ω defined by f (n) = kn does not belong

to any element of
⋃

n∈ωFn .

The second example shows a Menger space which is not σ-compact.

Example 1.4. The one-point Lindelöfication of any uncountable discrete space is a non
σ-compact Menger space.

Proof. Letκ be an uncountable cardinal number and let D (κ) be the setκwith the discrete
topology. The Lindelöfication of D (κ) is the set Lκ = D (κ)∪ {∞}, where ∞ ∉ κ, with the
following topology: every point of D (κ) is isolated and the open neighborhoods of ∞ are
the subsets of Lκ that contain ∞ and have countable complement. Every compact subset
of Lκ is finite, and hence, Lκ is not σ-compact. If 〈Un : n ∈ ω〉 is a sequence of open
covers of Lκ, there exists an element U0 ∈U0 such that ∞∈U0. Then Lκ \U0 is countable.
In consequence we can choose, for each n ∈ N, an element Un ∈ Un such that Lκ \U0 ⊂⋃

k∈NUk . In this manner, 〈 {Un} : n ∈ω〉 is the required sequence.

Some other properties of Menger spaces are as follows.

Proposition 1.5 ([Win95]). Any closed subspace of a Menger space is a Menger space.

Proof. Let X be a Menger space and let S ⊂ X be a closed subspace of X . Let 〈U S
n : n ∈ω〉

be a sequence of open covers of S. We may assume that the members of U S
n are open in

X . If Un =U S
n ∪ {X \ S}, then 〈Un : n ∈ω〉 is a sequence of open covers in X and since X is

a Menger space, there is a sequence 〈Vn : n ∈ω〉 with Vn ∈ [Un]<ω such that X =⋃
n∈ω

⋃
Vn .

Then, if V S
n = Vn \ {X \ S}, 〈V S

n : n ∈ω〉 is the required sequence.

Proposition 1.6 ([Win95]). If X is Menger and f : X → Y is a continuous surjection, then Y
is Menger.

4



1. MENGER SPACES

Proof. Let 〈Un : n ∈ω〉 be a sequence of open covers of Y . If Vn = { f −1 [U ] : U ∈Un}, then
〈Vn : n ∈ ω〉 is a sequence of open covers of X . Since X is Menger, there is a sequence
〈Gn : n ∈ω〉 of finite sets such that

⋃
{Gn : n ∈ω} is a cover of X and Gn ⊂ Vn for each n ∈ω.

Let Fn = { f [V ] : V ∈Gn}. Then, Y =⋃
n∈ω

⋃
Fn and Fn ∈ [Un]<ω for each n ∈ω.

A surjective function f : X → Y is perfect if it is closed and f −1
(
y
)

is compact for each
y ∈ Y .

Proposition 1.7. If f : X → Y is a perfect function and Y is Menger, then X is Menger.

Proof. Let 〈Un : n ∈ω〉 be a sequence of open covers of X . We can suppose that each Un

is closed under finite unions; that is, if F is a finite subset of Un , then
⋃

F ∈Un . For any
n ∈ ω we define Vn = {Y \ f [X \U ] : U ∈ Un}. Then, since f is perfect, each Vn is an open
cover of Y . Indeed, since f is closed, each element of Vn is open. Given y ∈ Y , f −1(y) is a
compact subspace of X , then there is an element U ∈Un such that f −1(y) ⊂U and hence,
y ∈ Y \ f [X \U ] ∈ Vn .
Now, since Y is Menger, there is a sequence of finite sets 〈Gn : n ∈ω〉 with Y = ⋃

n∈ω
⋃

Gn

and Gn ⊂ Vn . We choose a finite subset Fn ⊂Un such that Gn = {Y \ f [X \U ] : U ∈Fn}. It
is not difficult to show that X =⋃

n∈ω
⋃

Fn .

Corollary 1.8. If X is Menger and Y is a compact space, then X ×Y is Menger.

Proof. Simply observe that the projection function over the first coordinateπX : X×Y → X
is a perfect function.

For the purposes of the next chapter, the following equivalent formulation of Menger
spaces will be useful.

Lemma 1.9. A space X is Menger if and only if for any sequence of open covers 〈Un : n ∈ω〉
such that, for every n ∈ω, Un+1 refines Un , there exists a sequence of finite sets 〈Fn : n ∈ω〉
such that

⋃
n∈ωFn is a cover of X and Fn ⊂Un for each n ∈ω.

Proof. We only have to show the sufficiency. Let 〈Un : n ∈ω〉 be a sequence of open covers
of X . By recursion we define a new sequence 〈U ′

n : n ∈ω〉 such that, for each n ∈ω, U ′
n+1

refines U ′
n and Un+1. Let U ′

0 =U0. Suppose that U ′
0, . . . ,U ′

n have been defined. We define
U ′

n+1 = {U ∩V : U ∈ Un ∧ V ∈ U ′
n}. Then the sequence 〈U ′

n : n ∈ω〉 satisfies the required
properties. Finally, note that every finite choice of this new sequence induce a finite choice
of original sequence.

A Gδ-set is a countable intersection of open sets. The following lemma shows that every
Menger space is contained in some Gδ-set.

5



1.1. Basic properties on the Menger property

Lemma 1.10 ([Win95]). A space X is Menger if and only if for each sequence 〈Un : n ∈ω〉 of
open covers of X there exists a sequence of finite subsets 〈Fn : n ∈ω〉 such that

X = ⋂
n∈ω

⋃
m≥n

⋃
Fm

and Fn ⊂Un for each n ∈ω.

Proof. Suppose that X is Menger and let 〈Un : n ∈ω〉 be a sequence of open covers of X .
For each n ∈ω, 〈Um : m ≥ n 〉 is a sequence of open covers of X . Since X is Menger, for each
n ∈ω, there is a sequence of finite subsets 〈F n

m : m ≥ n 〉 whose union forms a cover of X
and F n

m ⊂Um for each m ≥ n. For each m ∈ω, if Fm =⋃
k≤m F k

m , then Fm is a finite subset
of Um . And X =⋃

m≥n
⋃

F n
m ⊂⋃

m≥n
⋃

Fm for all n ∈ω; that is, X =⋂
n∈ω

⋃
m≥n

⋃
Fm .

The reciprocal is trivial.

Definition 1.11. If X is a space, then M (X ) is the set of all Menger subspaces of X .

Theorem 1.12 ([Win95]). A space X is a Menger space if and only if every cover {GH : H ∈
M (X )} of X , where H ⊂GH and GH is a Gδ-set, has a countable subcover.

Proof. The necessity is obvious. We will proceed to prove the sufficiency. Let 〈Un : n ∈
ω〉 be a sequence of open covers of X . For each M ∈ M (X ), by Lemma 1.10, there is a
sequence 〈F M

n : n ∈ ω〉 with F M
n ∈ [Un]<ω such that for all n ∈ ω, M ⊂ ⋃

m≥n V M
m , where

V M
m = ⋃

F M
m . If OM

n = ⋃
m≥n V M

m , then GM = ⋂
n∈ωOM

n is a Gδ-set containing M . By hypo-
thesis, the cover {GM : M ∈M (X )} has a countable subcover {GMn : n ∈ω}.

For each n ∈ ω, let F ′
n = ⋃

k≤n F
Mk
n . It is clear that F ′

n ∈ [Un]<ω and it is not difficult to
show that X =⋂

n∈ω
⋃

m≥n
⋃

F ′
m .

Corollary 1.13 ([Win95]). If X =⋃
n∈ω Xn and Xn is Menger for each n ∈ω, X is Menger.

We shall need the following results.

Corollary 1.14 ([Tel72]). If X is Menger and Y is a σ-compact space, then X ×Y is Menger.

Proof. By Corollary 1.8, X × Y is a countable union of Menger spaces and, by Corolla-
ry 1.13, X ×Y is Menger.

A space X is a P-space if all Gδ-sets in X are open.

Corollary 1.15 ([Win95]). Let f : X → Y be a closed, continuous and surjective function
such that f −1

(
y
)

is Menger for any y ∈ Y . If Y is a Lindelöf P-space, then X is Menger.

6



1. MENGER SPACES

Proof. Let M = { f −1
(
y
)

: y ∈ Y } ⊂ M (X ). For each M ∈ M , let GM be a Gδ-set in X con-
taining M . Since f is closed and Y is a P-space, there is an open set VM in Y such that
M ⊂ f −1 [VM ] ⊂ GM . Indeed, suppose that GM = ⋂

n∈ωOM
n , where every OM

n is an open
subset of X and M = f −1(y). Since f is closed, Y \ f

[
X \OM

n

]
is an open subset of Y con-

taining y for every n ∈ω, but Y is a P-space, then we can choice an open subset VM of Y
such that y ∈VM ⊂ Y \ f

[
X \OM

n

]
for every n ∈ω. In this manner, M ⊂ f −1 [VM ] ⊂GM .

Then, since f is surjective, the collection V = {VM : M ∈M } forms an open cover of Y , but
Y is Lindelöf and, hence, V has a countable subcover V ′ = {VMn : n ∈ ω}. In this manner,
the family { f −1

[
VMn

]
: n ∈ ω} is a cover of X and therefore, {GMn : n ∈ ω} covers X . The

conclusion follows from Theorem 1.12.

Corollary 1.16 ([Win95]). A P-space is Menger if and only if it is Lindelöf.

Proof. If X is a Menger space, by Proposition 1.2, X is Lindelöf. Now, if X is a Lindelöf
P-space, the identity function i : X → X satisfies the conditions of Corollary 1.15 and so X
is Menger.

Define a preorder ≤∗ onωω by f ≤∗ g if and only if f (n) ≤ g (n) for all but finitely many
n ∈ω. We write f <∗ g if f ≤∗ g and f 6= g . A subset D ⊂ωω is dominating if for each g ∈ωω
there is f ∈ D such that g ≤∗ f . And a subset B ⊂ ωω is unbounded if there is no g ∈ ωω
with f ≤∗ g for each f ∈ B . Also, we define the dominating and unbounded cardinals as
follows:

d= min{|D| : D ⊂ωω ∧ D is dominating},

b= min{|B | : B ⊂ωω ∧ B is unbounded}.

Since every dominating subset of ωω is unbounded, b ≤ d. The following result is a
generalization of Proposition 1.2.

Proposition 1.17 ([Win95]). If X = ⋃
α∈κ Xα is Lindelöf, Xα is Menger for each α ∈ κ and

κ< b, then X is Menger.

Proof. Let 〈Un : n ∈ω〉 be a sequence of open covers of X . Since X is Lindelöf, we can sup-
pose that every Un is countable, say {U n

m : m ∈ω}. For each α ∈ κ, since Xα is Menger, by
Lemma 1.10 we can choose a function fα :ω→ω such that Xα ⊂⋂

n∈ω
⋃

m≥n
⋃

k≤ fα(m)U m
k .

Given that κ< b, the family B = { fα : α ∈ κ} is not unbounded. Then, there exists a bound
f ∈ωω for B ; that is, g ≤∗ f for each g ∈ B . Let Fn = {U n

m : m ≤ f (n)}. If x ∈ X , x ∈ Xα for
some α ∈ κ. Since fα ≤∗ f , we can choose n ∈ω such that fα (s) ≤ f (s) for each s ≥ n. Now,
for each n ∈ ω, there is m ≥ n and k ≤ fα (m) such that x ∈ U m

k . Then choose m ≥ n and
k ≤ fα (m) for which x ∈U m

k . Hence U m
k ∈Fm and the union of the sequence 〈Fn : n ∈ω〉

forms a cover of X .
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1.1. Basic properties on the Menger property

Then, if |X | < b and X is Lindelöf, X is Menger. But the following proposition proves
more than this.

Proposition 1.18 ([Win95]). If X is Lindelöf and |X | < d, then X is Menger.

Proof. Let 〈Un : n ∈ ω〉 be a sequence of open covers of X . Since X is Lindelöf, we can
suppose that each Un can be written as {U n

m : m ∈ω}. For each x ∈ X , define fx :ω→ω as
fx (n) = min{k ∈ω : x ∈U n

k }. Then, since |X | < d, the family { fx : x ∈ X } is not dominating;
that is, there exists f ∈ ωω such that f 6≤∗ fx for each x ∈ X . In consequence, for each
x ∈ X , there is m ∈ ω such that fx (m) < f (m) and, by definition, x ∈ U m

fx (m). This shows

that X =⋃
n∈ω

⋃
k< f (n)U n

k .

The following example show the existence of a Lindelöf space of cardinality d not Men-
ger.

Example 1.19 ([Win95]). If D ⊂ωω is a dominating family, then D is not Menger.

Proof. For each x ∈ D and n ∈ ω, let U n
x = { f ∈ D : ∀i ∈ ω(i ≤ n → f (i ) = x (i ))}. If Un =

{U n
x : x ∈ D}, then 〈Un : n ∈ω〉 is a sequence of open covers of D . Let 〈Fn : n ∈ω〉 be any

sequence of finite sets where Fn ⊂ Un for each n ∈ ω. Without loss of generality assume
Fn 6= ;. If g ∈ ωω is defined by g (n) = max{x (n) : U n

x ∈ Fn}+1, then for any m ∈ ω, g ∉⋃
Fm , since for any x ∈ ⋃

Fm , x (m) < g (m). Given that D is dominating, there exists an
f ∈ D and N ∈ω such that f (i ) ≥ g (i ) for every i ≥ N . Then f ∉ ⋃

Fm for any m ≥ N and
hence, D 6=⋂

n∈ω
⋃

m≥n
⋃

Fm . By Lemma 1.10, D is not Menger.

The following proposition resolves the study of the Menger property on ω-powers of a
space.

Proposition 1.20. For any space X , Xω is Menger if and only if X is compact.

Proof. Suppose that Xω is Menger and X is not compact. Since X is Lindelöf, X is not
countably compact. Then X contains a closed countable discrete subspace D . In this
manner Dω is a closed subspace of Xω homeomorphic to ωω. But this is a contradiction
to Proposition 1.5 and to Example 1.3.

As it happens with the Lindelöf property, the Menger property is not productive. In
Section 1.3 we will show an example (assuming the Continuum Hypothesis) of a Menger
space X such that X 2 is not Menger.
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1. MENGER SPACES

1.2 Zero-dimensional Menger spaces

In this section we present some results regarding the zero-dimensional spaces and their
relations with dominating subsets of ωω are shown.

A space is zero-dimensional if it has a base consisting of clopen sets (open and closed
sets). The following theorem gives a characterization of zero-dimensional Lindelöf spaces
with the Menger property.

Theorem 1.21 ([Win95]). Let X be a zero-dimensional Lindelöf space. Then X is Menger if
and only if X cannot be mapped continuously onto a dominating subset of ωω.

Proof. The necessity is clear because of Example 1.19 and Proposition 1.6. Suppose that
X is not Menger. Since X is a zero-dimensional Lindelöf space, we can find a sequence of
countable open covers 〈Un : n ∈ ω〉 consisting of clopen sets such that for any sequence
of finite sets 〈Fn : n ∈ω〉, where Fn ⊂Un for each n ∈ω, X 6=⋂

n∈ω
⋃

m≥n
⋃

Fm . Let Un =
{U n

m : m ∈ω}.
For each x ∈ X , let fx ∈ωω be defined by fx (n) = min{m ∈ω : x ∈U n

m}. Let D = { fx : x ∈ X }
and F : X → D be defined by F (x) = fx . Clearly F is a surjection. If D is not dominating, by
similar arguments to those given in the proof of Proposition 1.18, we can find a sequence of
finite sets 〈Fn : n ∈ω〉 such that X =⋃

n∈ω
⋃

Fn and Fn ⊂Un for each n ∈ω, contradicting
the supposition. Then D is a dominating subset ofωω. We will finish the proof by showing
the continuity of F .
Let x ∈ X and let V be an open subset of D ⊂ωω containing F (x). We can suppose that V =
{ f ∈ D : ∀m ∈ ω(m ≤ n → f (m) = fx (m))} for some n ∈ ω. Let Um =U m

fx (m) \
⋃

k< fx (m)U m
k .

Then Ux = ⋂
m≤n Um is an open neighborhood of x. If x ′ ∈ Ux and m ≤ n, x ′ ∈ U m

fx (m) \⋃
k< fx (m)U m

k , and hence fx ′ (m) = fx (m). This shows that F [Ux] ⊂V .

The last theorem of this section characterizes the zero-dimensional metric separable
spaces with the Menger property.

Theorem 1.22 ([Win95]). A zero-dimensional metric separable space is Menger if and only
if it is not homeomorphic to a dominating subset of ωω.

Proof. The necessity is clear because of Example 1.19. Let X be a zero-dimensional met-
ric separable non Menger space. Since X is a zero-dimensional metric separable space,
we can find a sequence of open covers 〈Un : n ∈ ω〉 such that for any sequence of finite
sets 〈Fn : n ∈ ω〉 where Fn ⊂ Un for each n ∈ ω, X 6= ⋂

n∈ω
⋃

m≥n
⋃

Fm . We can suppose
without loss of generality that:

• Un = {U n
m : m ∈ω},

• U n
m is clopen and the diameter of U m

n , δ
(
U n

m

)
, is less than 1

n+1 for each n,m ∈ω.
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1.3. Product of Menger spaces and the Hurewicz Conjecture

For each x ∈ X , let fx ∈ωω be defined by fx (n) = min{m ∈ω : x ∈U n
m}. Let D = { fx : x ∈ X }

and F : X → D be defined by F (x) = fx . With the same arguments used in the proof of
Theorem 1.21 we can prove that D is dominating and F is a continuous surjection. We
next show that F is injective.

Let x, y ∈ X be two different points. Let n ∈ω be such that 1
n+1 < d(x,y)

2 . With this choice it
is not difficult to prove that U n

fx (n) ∩U n
fy (y) = ;. In this manner, fx (n) 6= fy (n) and hence,

F (x) 6= F
(
y
)
.

Finally, we prove that F is open. First we give a base at each point of X . Let Bx = {B x
n : n ∈

ω} be defined by recursion as follows:

B x
0 =U n

fx (0) \
⋃

m< fx (0)U
0
m

and B x
n+1 = (U n+1

fx (n+1) \
⋃

m< fx (n+1)U n+1
m )∩B x

n . We claim that Bx is a base at x. Indeed,

let r > 0 and n ∈ ω be such that 1
n < r . Since x ∈ B x

n ⊂ U n
fx (n) and δ(U n

fx (n)) < 1
n+1 < r ,

U n
fx (n) ⊂ B (x,r ) := {y ∈ X : d

(
x, y

)< r }. It follows that x ∈ B x
n ⊂ B (x,r ). So, Bx is a base at x.

For each x ∈ X and n ∈ω the set V x
n = { f ∈ D : ∀m ∈ω(m ≤ n → fx (m) = f (m))} is open in

D . Then, to prove that F is open it is enough to show that F
[
B x

n

] = V x
n for each x ∈ X and

each n ∈ω. But this is immediate since the following statements are equivalent:

• y ∈ B x
n ;

• y ∈U m
fx (m) \

⋃
k< fx (m)U m

k for each m ≤ n;

• fy (m) = fx (m) for each m ≤ n;

• F (y) ∈V x
y .

1.3 Product of Menger spaces and the Hurewicz Conjecture

This section is an analysis of two topics concerning the Menger property. The first is the
product of Menger spaces. It is well-known that the product of two Lindelöf spaces is not
necessarily Lindelöf; for example the Sorgenfrey line. In this section we present, assuming
the Continuum Hypothesis, an example of a Menger space whose square is not Menger.
The other topic is the Hurewicz Conjecture. We present two counter-examples of this con-
jecture. The first under Continuum Hypothesis and the second within ZFC.

Product of Menger spaces

In order to present a space with the Menger property whose square is not Menger, we need
the existence of a Luzin set in R.

10



1. MENGER SPACES

Definition 1.23. A subset L of R is a Luzin set if L is an uncountable dense set in R and for
each nowhere dense subset A in R, A∩L is countable.

Lemma 1.24 (CH). Every open interval U in R contains an uncountable subset whose in-
tersection with every closed nowhere dense subset in U is countable.

Proof. Let {Fα : α ∈ ω1} be the collection of all closed nowhere dense subsets of U . Since
U is homeomorphic to R, by Baire’s Theorem, U cannot be covered by a countable family
of closed nowhere dense subsets. Then, by recursion, we can choose, for each α ∈ ω1,
xα ∈U \ (

⋃
β∈αFβ∪ {xβ : β ∈ α}). Let X = {xα : α ∈ω1}. We claim that X is the required set.

Indeed, let M be a closed nowhere dense subset in U . Then M is equal to Fα for some
α ∈ω1, and hence M ∩X ⊂ {xβ :β ∈α} is countable.

Corollary 1.25 (CH). There is a Luzin set.

Proof. Let B be a countable base of R consisting of open intervals. For every U ∈ B, let
LU be a subset of U given by Lemma 1.24, and define L =⋃

U∈B LU . Since B is a base, L is
dense in R. Let M be a nowhere dense subset of R. Then for each U ∈ B, clR(M)∩U is a
closed nowhere dense subset in U . In consequence, clR(M)∩U has countable intersection
with LU . Therefore, L∩M ⊂⋃

U∈B(clR(M)∩LU ) is countable.

There are other models of ZFC, besides ZFC+CH, where Luzin sets exist. The following
theorem shows the existence of a Menger space whose square is not Menger in models of
ZFC+(there exists a Luzin set).

Theorem 1.26. The existence of a Luzin set implies the existence of a Menger space X whose
square X ×X is not Menger.

Proof. Let L be a Luzin set and let us define a space XL to be the set L with the topology
of subspace of the Sorgenfrey’s line. Let 〈Un : n ∈ ω〉 be a sequence of open covers of
XL . Fix a dense subset D = {dn : n ∈ ω} of the subspace L of R. For each n ∈ ω, let xn ∈ R
be such that XL ∩ [dn , xn) is contained in some element Un ∈ Un . In this manner, the set
Y =R\

⋃
n∈ω[dn , xn) is nowhere dense in R (because L is dense in R). Then Y ∩XL = Y ∩L

is countable. If Y ∩XL = {zn : n ∈ω}, we can choose Vn ∈Un containing zn for each n ∈ω.
Then 〈 {Un ,Vn} : n ∈ω〉 is the required sequence.
To prove that XL × XL is not Menger it is enough to see that XL × XL is not normal (every
Menger regular space is a Lindelöf regular space, and hence, is a normal space [Eng89]).
For this, simply note two facts: XL is separable and the set ∆= {(x,−x) : x ∈ XL} is a closed
discrete subspace of X 2. Therefore, by Jones’ Lemma [Eng89, Problem 1.7.12(c)], XL × XL

is not normal.

Example 1.27 (CH). There is a Menger space whose square is not Menger.
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1.3. Product of Menger spaces and the Hurewicz Conjecture

Proof. Use Corollary 1.25 and Theorem 1.26.

There is another construction, using Martin’s Axiom (MA), of a Menger space whose
square admits a mapping onto the irrational numbers (see [O’F86]). Therefore, under MA,
there exists a Menger space whose square is not Menger (see Proposition 1.6). We are not
aware of the existence of such example within ZFC.

The Hurewicz Conjecture

The W. Hurewicz conjecture is: A subset of the real line is Menger if and only if it is σ-
compact. In this part we present two counter-examples to this conjecture. By space of real
numbers we refer to some subspace of R. Remember that a subset A of a space X is perfect
if it is closed and without isolated points. We need to remember the following theorem
(see [Eng89, Problem 1.7.11]).

Theorem 1.28 (Cantor-Bendixson). In a second countable space every closed subspace can
be written as a union of a countable set and a perfect set.

Since every uncountable perfect subset of R contains a subspace homeomorphic to
the Cantor set 2ω [Eng89, Problem 4.5.5(b)], by Cantor-Bendixson’s Theorem, every closed
subspace of R is finite, countable or has size c. With this fact and, again, by Cantor-
Bendixson’s Theorem we have the following lemma.

Theorem 1.29. Every uncountable σ-compact space of real numbers has size c.

A space X is Rothberger if for each sequence of open covers 〈Un : n ∈ ω〉, there exists
Un ∈ Un for each n ∈ ω such that X = ⋃

n∈ωUn . Every closed subspace of a Rothberger
space is Rothberger and every Rothberger space is Menger. This and other basic proper-
ties are proved in Chapter 3.
The Cantor set 2ω is not Rothberger. Indeed, if πn : 2ω → 2 is the n-th projection func-
tion, then the sequence 〈 {π−1

n (0) ,π−1
n (1)} : n ∈ ω〉 witnesses the failure of the Rothberger

property (see also [Sch99a, Theorem 2.3]). With these facts we can prove the following
theorem.

Theorem 1.30 (CH). There is a Menger space of real numbers which is not σ-compact.

Proof. Let L be a Luzin set endowed with the topology of subspace of R. This space ex-
ists by Corollary 1.25. We will prove that L is Rothberger. Let D = {dn : n ∈ ω} be a dense
subset of L and let 〈Un : n ∈ ω〉 be a sequence of open covers of L. For each n ∈ ω we
choose U2n ∈U2n such that dn ∈U2n . Then A =R\

⋃
n∈ωU2n is nowhere dense. So, we can

write A ∩L = {xn : n ∈ ω}. Finally, choose U2n+1 ∈ U2n+1 containing xn . In this manner
L =⋃

n∈ωUn . This proves that L is Rothberger and hence Menger.
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1. MENGER SPACES

Now, L is not σ-compact. Indeed, otherwise, by Cantor-Bendixson’s Theorem, L contains
an uncountable perfect set, but every uncountable perfect set contains a copy of the Can-
tor set 2ω (see [Eng89, Problem 4.5.5(a)]). Since L is Rothberger, 2ω is Rothberger which is
impossible [Sch99a, Theorem 2.3].

Now we present the counter-example to the Hurewicz Conjecture within ZFC. This was
given by W. Miller and H. Fremlin in [MF88]. We need a characterization of the cardinal b.

Lemma 1.31 ([KV84]). Let b1 = min{|B | : B ⊂ωω is unbounded ∧ B is well-ordered by <∗

∧∀ f ∈ B(n < m → f (n) < f (m))}. Then b= b1.

Proof. Clearly b ≤ b1. Let F = { fα : α ∈ b} be an unbounded subset of ωω. Since the set S
of strictly increasing functions from ω into ω clearly is dominating we can with recursion
pick gβ ∈ S for β ∈ b such that f <∗ gβ for each f ∈ {gγ : γ ∈ β}∪ { fβ}. Then B = {gβ : β ∈ b}
shows that b≥ b1.

Theorem 1.32. There is a Menger space of real numbers which is not σ-compact.

Proof. If ω1 = c, the example is given by Theorem 1.30. Then, we can suppose that ω1 < c.
By Theorem 1.29, it is enough to prove the existence of a Menger subspace of R of size ω1.
But, if ω1 < b, by Proposition 1.18, any subset of size ω1 of R is Menger. Then, assume
ω1 = b.
First we will see some facts ofωω. Observe thatωω is homeomorphic to the subspace of ir-
rational numbers P of R [Eng89, Problem 4.3.G]. Let K ⊂ωω be a compact subspace. Then
the n-th projection πn[K ] over the n-th factor of ωω is compact and hence is finite. In this
manner, we can choose f ∈ ωω such that K ⊂ ∏

n∈ω[0, f (n)]. Then, if we define, for each
f ∈ωω, C f = {g ∈ωω : g <∗ f }, by the previous argument, for each compact K of ωω, there
is f ∈ωω such that K ⊂C f .
Another fact: if F ⊂ ωω is countable, F is not unbounded and hence there is f ∈ ωω such
that g <∗ f for each g ∈ F . As a consequence of the two previous facts, if E is a σ-compact
subspace of ωω, there is f ∈ωω such that E ⊂C f .
Now, we are going to construct the required space. Let B be an unbounded subset of ωω

well-ordered by <∗ with order type equal toω1 (see Lemma 1.31). Identifying B with some
subset of P, we define X to be the subspace B ∪Q of R where Q is the set of rational num-
bers. Recall that ω1 < c, and by Theorem 1.29, X is not a σ-compact subspace of R.
First we will prove an important property of X . Let U be an open subset of R containing
Q and E =R\U . Since every closed subset of R is σ-compact, E can be written as

⋃
n∈ωKn

where each Kn is compact. Note that Kn ⊂ P. By the previous paragraphs there is f ∈ ωω
such that

⋃
n∈ωFn ⊂C f . Since B is unbounded, C f contains only a countable subset of B .

Therefore X \U is countable. This shows that for every open subset U of R containing Q,
X \U is countable.
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1.3. Product of Menger spaces and the Hurewicz Conjecture

We will finish the proof by showing that X is Menger. Let 〈Un : n ∈ ω〉 be a sequence of
covers of X consisting of open subsets of R. We choose Un ∈ Un for each n ∈ ω such that
Q ⊂ ⋃

n∈ωUn . By the previous property of X , X \
⋃

n∈ωUn is countable and hence, we can
choose Vn ∈ Un in such a way that X \

⋃
n∈ωUn ⊂ ⋃

n∈ωVn . Then 〈 {Un ,Vn} : n ∈ ω〉 is the
required sequence.
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CHAPTER

2
The Menger property in Cp (X ,2)

A space X is said to have the Menger property (or simply X is Menger) if for every sequence
〈Un : n ∈ ω〉 of open covers of X , there exists a sequence of finite sets 〈Fn : n ∈ ω〉 such
that

⋃
n∈ωFn is a cover of X and Fn ⊂Un for every n ∈ω.

Recall that where reference is made to Cp (X ,Y ) where Y is discrete, we will assume
that X is a zero-dimensional space.

2.1 General results about the Menger property in Cp(X ,2)

First we give a consequence of tightness type in X when Cp (X ,2) is Menger or Lindelöf.
The following is shown in [Arh92, Theorem I.4.1]:

(?) If Cp (X ) is a Lindelöf space, then each finite power of X has countable tightness.

A family P of non-empty subsets of a space X is said to be a π-network at x ∈ X if every
neighborhood of x contains some member of P .

Definition 2.1. A space X has countable supertightness at x ∈ X if any π-network at x con-
sisting of finite subsets of X contains a countable π-network at x. If X has this property at
each of its points we say that X has countable supertightness, and we denote this fact by
st (X ) ≤ω.

Clearly, countable supertightness implies countable tightness. With this new notion of
tightness, we obtain the following result which was motivated by (?):

Proposition 2.2. If Cp (X ,2) is Lindelöf, then st (X n) ≤ω for any n ∈ω.
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2.1. General results about the Menger property in Cp (X ,2)

Proof. Fix k ∈ N, a point x = (x1, . . . , xk ) ∈ X k and a π-network P at x consisting of finite
subsets of X k . We take open neighborhoods U1, . . . ,Uk such that, for each i , j ∈ {1, . . . ,k},
xi ∈Ui , Ui =U j if xi = x j , and Ui ∩U j =; if xi 6= x j . Let U =U1 ×·· ·×Uk . We can suppose
that each member of P is contained in U . Since the space Cp (X ,2) is Lindelöf, the closed
subspace

Φ= { f ∈Cp (X ,2) : ∀i (1 ≤ i ≤ k → f (xi ) = 1)}

of Cp (X ,2) is Lindelöf. For each F ∈P , we define HF =⋃
{πi [F ] : i ∈ {1, . . . ,k}}, where πi is

the projection of X k over the i -th coordinate, and VF = { f ∈Cp (X ,2) : ∀x(x ∈ HF → f (x) =
1)}.
Given f ∈ Φ, for each i ∈ {1, . . . ,k}, there is an open subset Vi ⊂ Ui such that xi ∈ Vi and
f [Vi ] ⊂ {1}. Since P is a π-network, there is F ∈P such that F ⊂V1×·· ·×Vk . So, f [πi [F ]] ⊂
{1} for each i ∈ {1, . . . ,k} and consequently f ∈ VF . This shows that {VF : F ∈ P } is an open
cover ofΦ. Therefore, there is a countable subset P ′ of P such that {VF : F ∈P ′} forms an
open cover ofΦ. Let us prove that P ′ is a π-network at x.

Let W =W1 ×·· ·×Wk be an open subset of X k which contains x. We can assume that
Wi =W j if xi = x j and Wi ⊂Ui for each i , j ∈ {1, . . . ,k}. We choose f ∈Cp (X ,2) such that

f [X \
k⋃

i=1
Wi ] ⊂ {0}

and f (xi ) = 1 for each i ∈ {1, . . . ,k}. Thus f ∈Φ, and consequently, there is F ∈P ′ such that
f ∈ VF . Now, if (y1, . . . , yk ) ∈ F , since F ⊂U , yi ∈Ui for each i ∈ {1, . . . ,k}. Moreover, due to
the fact that f ∈ VF , y1, . . . , yk ∈ ⋃k

i=1 Wi . However, Ui ∩U j = ; if xi 6= x j , then yi ∈ Wi for
each i ∈ {1, . . . ,k}. This shows that F ⊂W .

A space X has countable fan tightness if for any x ∈ X and any sequence 〈 An : n ∈ω〉 of
subsets of X such that x ∈⋂

n∈ω cl(An), we can choose a finite set Bn ⊂ An for each n ∈ω in
such a way that x ∈ cl(

⋃
{Bn : n ∈ω}).

M. Sakai introduces the following notion.

Definition 2.3 ([Sak12]). A space X has countable fan tightness for finite sets if for each
point x ∈ X and each sequence 〈Pn : n ∈ω〉 of π-networks at x consisting of finite subsets
of X , there is, for each n ∈ ω, a finite subfamily Gn ⊂ Pn such that

⋃
{Gn : n ∈ ω} is a π-

network at x.

The following equivalent formulation for countable fan tightness for finite sets will be
useful.

Lemma 2.4. A space X has a countable fan tightness for finite sets if and only if for each
point x ∈ X and any decreasing sequence 〈Pn ⊂ [X ]<ω : n ∈ω〉 of π-networks at x, there are,
for each n ∈ω, finite subfamilies Gn ⊂Pn such that

⋃
{Gn : n ∈ω} is a π-network at x.
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2. THE MENGER PROPERTY IN Cp (X ,2)

Proof. The necessity is clear. We show the sufficiency. Let 〈Pn ⊂ [X ]<ω : n ∈ ω〉 be a se-
quence of π-networks at x ∈ X . For each n ∈ω, we define P ′

n =⋃
n≤k Pk . Then, by hypoth-

esis, there is a sequence of finite sets 〈F ′
n : n ∈ ω〉, where F ′

n ⊂ P ′
n , such that

⋃
n∈ωF ′

n is
a π-network at x. Hence, if we define Fn = (

⋃
k≤n F ′

k )∩Pn , 〈Fn : n ∈ ω〉 is the required
sequence.

Making a modification of the proof of Proposition 2.2 we have the following.

Proposition 2.5. If the space Cp (X ,2) is Menger, then X n has countable fan tightness for
finite sets for any n ∈ω.

Proof. We fix a k ∈ N, a point x = (x1, . . . , xk ) ∈ X k and a sequence 〈Pn : n ∈ ω〉 of π-
networks of X k at x consisting of finite subsets of X . We take open subsets U1, . . . ,Uk of X
such that, for each i , j ∈ {1, . . . ,k}, xi ∈Ui , Ui =U j if xi = x j , and Ui ∩U j =; if xi 6= x j . Let
U =U1 ×·· ·×Uk . We can suppose that, for every n ∈ω, each member of Pn is contained
in U . Since the space Cp (X ,2) is Menger, the closed subspace

Φ= { f ∈Cp (X ,2) : ∀i (1 ≤ i ≤ k → f (xi ) = 1)}

of Cp (X ,2) is Menger. For each F ∈ [X k ]<ω, we define HF = ⋃
{πi [F ] : i ∈ {1, . . . ,k}}, where

πi is the projection of X k over the i -th coordinate, and we set VF = { f ∈ Cp (X ,2) : ∀x(x ∈
HF → f (x) = 1)}. For each n ∈ω, let

Un = {VF : F ∈Pn}.

Given f ∈ Φ, for each i ∈ {1, . . . ,k}, there is an open subset Vi ⊂ Ui such that xi ∈ Vi

and f [Vi ] ⊂ {1}. Since Pn is a π-network, there is F ∈ Pn such that F ⊂ V1 × ·· · ×Vk . So
f [πi [F ]] ⊂ {1} for each i ∈ {1, . . . ,k}. Thus f ∈ VF ∈ Un . This implies that Un is an open
cover of Φ. Therefore, since Φ is Menger, there is a sequence of finite sets 〈Fn : n ∈ ω〉
such that

⋃
n∈ωFn forms a cover of Φ and Fn ⊂ Un for every n ∈ ω. Choosing a finite

subset P ′
n ⊂Pn such that Fn is equal to {VF : F ∈P ′

n} and using similar arguments to the
ones used in the proof of Proposition 2.2, we can prove that

⋃
n∈ωP ′

n is a π-network at
x.

The converses of Proposition 2.2 and Proposition 2.5 are false. The following example
can be found in [Arh92, Example II.1.7].

Example 2.6. Let X be the well-known “double arrow” compact space; that is, X is the
set [0,1]× 2 endowed with the topology generated by the lexicographic order. For each
a ∈ (0,1), we define fa : X → 2 as follows:

fa(x) =


0, if x ≤ (a,0);

1, if x ≥ (a,1).
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2.1. General results about the Menger property in Cp (X ,2)

Then, the subspace A = { fa : a ∈ (0,1)} is closed and discrete in Cp (X ,2). Hence, Cp (X ,2) is
not a Menger space. However, X n has countable fan tightness for finite sets (because X n

satisfies the first axiom of countability) for each n ∈ω.

Proposition 1.20 leaves out the possibility that Cp (X ,2)ω ∼= Cp (X ,2ω) has the Menger
property when X is not a discrete space.

Proposition 2.7. For any zero dimensional space X , Cp (X ,2)ω is Menger if and only if X is
a discrete space.

Proof. Since Cp (X ,2) is dense in 2X , then Cp (X ,2) is compact if and only if X is a discrete
space. The conclusion follows from Proposition 1.20.

We will only analyze finite powers of the spaces Cp (X ,2), and for this we have the fol-
lowing:

Proposition 2.8. For any space X , Cp (X ,2)n is Menger for any n ∈ω if and only if Cp (X ,k)
is Menger for any k ∈ω.

Proof. This is immediate of the fact that Cp (X ,2)n is homeomorphic to Cp (X ,2n) for any
n ∈ω and the fact that a closed subspace of a Menger space is Menger.

Definition 2.9. A space X is called an Eberlein-Grothendieck-space, or an EG-space, if it
is homeomorphic to a subspace of Cp (Y ) for some compact space Y . We say that X is
Eberlein compact if X is a compact EG-space.

M. Sakai [Sak12, Lemma 2.8] shows that Cp (X ) has countable fan tightness for finite
sets if and only if X n is Menger for each n ∈ ω. Making use of this fact, it is clear that,
indeed, all EG-spaces have countable fan tightness for finite sets. With everything we
have already said, it is natural to conjecture that the spaces X with Cp (X ,2) Menger are
subspaces of Cp (Y ) where Y n is Menger for each n ∈ ω. Corollary 2.12 shows that this is
true as long as X ′ is compact. Before we present this result some notation is needed.

Definition 2.10. We are going to say that a non-empty class of topological spaces S is
complete if the following conditions hold:

(a) every closed subspace of a member of S belongs to S ,

(b) every continuous image of a member of S belongs to S ,

(c) if Y is compact and X ∈S , then X ×Y ∈S , and

(d) if {Yn : n ∈ ω} is a sequence of subspaces of a space X and Yn ∈ S for each n ∈ ω,
then the subspace

⋃
n∈ωYn of X belong to S .

18



2. THE MENGER PROPERTY IN Cp (X ,2)

Some consequences of the following theorem will be useful in the next chapter.

Theorem 2.11. Let S be a complete class of topological spaces. Let X be a subspace of Cp (Y )
where Y k ∈S for each k ∈ω. If X ′ is compact, then Cp (X ,2)n ∈S for each n ∈ω.

Proof. We only show that Cp (X ,2) ∈ S ; the (n ≥ 2)-cases are shown similarly. For each
n ∈N, we define

Fn = {ϕ ∈ 2X : ∃(y1, . . . , yn) ∈ Y n∀ f ∈ X ′(ϕ[[ f ; y1, . . . , yn ;1/n]] = {ϕ( f )})},

where [ f ; y1, . . . , yn ;1/n] = {g ∈Cp (Y ) : ∀i (1 ≤ i ≤ n →| f (yi )− g (yi )| < 1/n)}.
Each Fn ∈S . Indeed, for each n ∈N, Fn coincides with π2[Sn], where π2 is the projection
of Y n ×2X over 2X and

Sn = {(y1, . . . , yn ,ϕ) ∈ Y n ×2X : ∀ f ∈ X ′(g ∈ [ f ; y1, . . . , yn ;1/n] →ϕ( f ) =ϕ(g ))}.

Now, note that Y n ×2X ∈ S . Then, to prove that Fn ∈ S , since all continuous images of
elements of S belong to S , it is sufficient to show that Sn ∈S . And to do this we proceed
as follows: Let (y0

1 , . . . , y0
n ,ϕ0) ∈ Y n ×2X \ Sn . This means that there are f0 ∈ X ′ and g0 ∈ X

such that g0 ∈ [ f0; y0
1 , . . . , y0

n ;1/n] and ϕ0( f0) 6=ϕ0(g0). Then, the open set

(
n∏

i=1
| f0 − g0|−1[[0,1/n)])× {ϕ ∈ 2X :ϕ( f0) =ϕ0( f0)∧ϕ(g0) =ϕ0(g0)}

of Y n ×2X contains the point (y0
1 , . . . , y0

n ,ϕ0) and does not intersect Sn . Therefore, Sn is a
closed subset of Y n ×2X . So, Sn ∈S .

Now we will show that Cp (X ,2) is equal to
⋃

n∈NFn and, since the countable union of
elements of S belongs to S , our theorem will be proved.

Claim 1. Cp (X ,2) ⊂ ⋃
n∈NFn . In fact, fix a function ϕ ∈ Cp (X ,2). Since ϕ is continuous,

for each f ∈ X ′ we can take a neighborhood U f of f in Cp (Y ) such that ϕ(g ) = ϕ( f ) if

g ∈U f ∩X . Now, for each f ∈ X ′ there are n f ∈ω and y f
1 , . . . , y f

n f
∈ Y for which

f ∈ [ f ; y f
1 , . . . , y f

n f
;1/n f ]∩X ⊂U f ∩X .

Since X ′ is a compact space, there are points f0, . . . , fk ∈ X ′ such that

X ′ ⊂ [ f0; y f0
1 , . . . , y f0

n f0
;1/(2n f0 )]∪·· ·∪ [ fk ; y fk

1 , . . . , y fk
n fk

;1/(2n fk )].

For each f ∈ X ′ we take

V f = [ f ; y f0
1 , . . . , y f0

n f0
, y f1

1 , . . . , y f1
n f1

, . . . , y fk
1 , . . . , y fk

n fk
;1/l ]∩X

with l = 2(n f0 +·· ·+n fk ). It is evident that the collection V = {V f : f ∈ X ′} covers X ′.
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2.1. General results about the Menger property in Cp (X ,2)

Claim 1.1. The collection V refines {U f ∩ X : f ∈ X ′}. Indeed, if f ∈ X ′, f must belong
to

[ f j ; y
f j

1 , . . . , y
f j
n f j

;1/(2n f j )]

for some j ∈ {1, . . . ,k}. Then, if g ∈V f we have

|g (y
f j

i )− f j (y
f j

i )| ≤ |g (y
f j

i )− f (y
f j

i )|+ | f (y
f j

i )− f j (y
f j

i )| < 1

l
+ 1

2n f j

≤ 1

n f j

.

Therefore, g ∈ [ f j ; y
f j

1 , . . . , y
f j
n f j

;1/(n f j )]∩X , and the later set is contained in U f j ∩X .

Now we prove thatϕ belongs to Fl . First note the following: if f ∈ X ′, g ∈ X and they satisfy

| f (x)− g (x)| < 1/l for all x ∈ {y f0
1 , . . . , y f0

n f0
, . . . , y fk

1 , . . . , y fk
n fk

}, then g ∈ V f and, consequently,

f , g ∈Uh ∩X for some h ∈ X ′. Because of the choice of Uh , ϕ(g ) =ϕ(h) =ϕ( f ). Therefore,

for each f ∈ X ′, if g ∈ [ f ; y f0
1 , . . . , y f0

n f0
, . . . , y fk

1 , . . . , y fk
n fk

;1/l ], ϕ( f ) = ϕ(g ). This shows that
ϕ ∈ Fl .

Claim 2. For each n ∈ N, Fn ⊂ Cp (X ,2). We will prove that each element of Fn is a con-
tinuous function. Let ϕ ∈ Fn and f ∈ X . If f is an isolated point of X , then ϕ is con-
tinuous at f . Suppose f ∈ X ′. By definition of Fn , there is (y1, . . . , yn) ∈ Y n such that
ϕ[[ f ; y1, . . . , yn ;1/n]∩X ] = {ϕ( f )}. Since [ f ; y1, . . . , yn ;1/n]∩X is an open subset of X con-
taining f , ϕ is continuous at f .

A countable open cover U of a space X is a γ-cover if it is infinite and for each x ∈ X the
set {U :∈U : x ∉U } is finite. The collection of all γ-covers of X is denoted by Γ.
The following notion was also introduced in [Sch99a].

U f i n(A ,B): For each sequence 〈Un : n ∈ ω〉 of members of A , there exists, for each
n ∈ω, a finite subset Fn ⊂Un such that {

⋃
Fn : n ∈ω} ∈B.

A space X is Hurewicz if it is Lindelöf and satisfies U f i n(Γ,Γ). It is not difficult to prove
that closed subspaces of Hurewicz spaces are Hurewicz, any countable union of Hurewicz
subspaces of a space is a Hurewicz subspace [Jus+96] and continuous images of Hurewicz
spaces are Hurewicz. And, in [Tal11, Theorem 8], it was shown that preimages of Hurewicz
spaces under perfect mappings are Hurewicz. Thus the class of Hurewicz is a complete
subclass of the class of topological spaces. The class of Menger spaces and the class of
Lindelöf spaces are also complete, so:

Corollary 2.12. Let X be a subspace of Cp (Y ) where Y k is Menger (resp., Hurewicz, Lindelöf)
for each k ∈ω. If X ′ is compact, then Cp (X ,2)n is Menger (resp., Hurewicz, Lindelöf) for each
n ∈ω.

20



2. THE MENGER PROPERTY IN Cp (X ,2)

Given a space X , C∗
p (X ,ω) denotes the subspace of Cp (X ) consisting of all bounded

functions with values in ω.

Corollary 2.13. Let X be a zero-dimensional space and suppose that X ′ is compact. Then
the following statements are equivalent:

(a) Cp (X ,2)n is Menger for each n ∈ω;

(b) X ⊂Cp (Y ) for some space Y such that Y n is Menger for each n ∈ω;

(c) C∗
p (X ,ω) is Menger.

Proof. By Proposition 1.5 and Corollary 1.13, the equivalence of (a) and (c) is immediate
from the facts that

C∗
p (X ,ω) = ⋃

n∈ω
Cp (X ,n)

and Cp (X ,2)n is homeomorphic to Cp (X ,2n) for each n ∈ ω. (b) implies (a) follows from
Corollary 2.12. And the proof of (a) implies (b) is as follows: For each x ∈ X , we define
x̃ : Cp (X ,2) → 2 as x̃( f ) = f (x). It is not difficult to show that the function x 7→ x̃ is an
embedding of X into Cp (Cp (X ,2)). Then Y =Cp (X ,2) is the required space.

A subspace Y of a space X is bounded in X if for every continuous function f : X →R,
f � Y is a bounded function, or equivalently, if every locally finite family O of non-empty
open subsets of X , where Y ∩O 6= ; for each O ∈O , is finite.

SinceQ andωω are second countable, Cp (Q,2) and Cp (ωω,2) are Lindelöf [Arh92, The-
orem I.1.3]. The following result rules out the possibility that Cp (Q,2) and Cp (ωω,2) satisfy
the Menger property.

Theorem 2.14. If Cp (X ,2) is Menger, then X ′ is bounded in X .

Proof. We proceed by contradiction. Suppose that there exists an infinite locally finite
family {On : n ∈ ω} of non-empty open subsets of X such that On ∩ X ′ 6= ; for each n ∈
ω. We can suppose without loss of generality that each element of the sequence is open
and closed, and that any two different elements of this sequence are disjoint. Let Y =
X \

⋃
n∈ωOn . Since the family {On : n ∈ω} is locally finite and every On is open and closed,

Y is open and closed. Moreover, the family {On : n ∈ ω}∪ {Y } forms a partition of X in
clopen subsets of X . Then Cp (X ,2) is homeomorphic to

(
∏

n∈ω
Cp (On ,2))×Cp (Y ,2).

For each n ∈ ω, since Cp (X ,2) is Menger, by Proposition 1.5, Cp (On ,2) is Menger, and
hence, Lindelöf. On the other hand, since each On contains a non-isolated point of X ,
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2.1. General results about the Menger property in Cp (X ,2)

Cp (On ,2) is a proper dense subspace of 2On . So, since Cp (On ,2) is Lindelöf, then Cp (On ,2)
is not countably compact; in particular, it contains a countable discrete closed subspace
Dn . In this manner,

∏
n∈ωDn is a closed subspace of Cp (X ,2), and given that Cp (X ,2)

is Menger,
∏

n∈ωDn is Menger, which is impossible since it is homeomorphic to ωω (see
Example 1.3).

Corollary 2.15. If X is a normal space and Cp (X ,2) is Menger, then X ′ is countably compact.

Proof. By Theorem 2.14, X ′ is bounded in X . Since X is a normal space and X ′ is a closed
subset of X , X ′ is pseudocompact. Again, by the normality of X , X ′ is countably compact.

Corollary 2.16. Let X be a Lindelöf space. Then Cp (X ,2)n is Menger for any n ∈ ω if and
only if X ′ is compact and X ⊂Cp (Y ) for some space Y such that Y n is Menger for each n ∈ω.

Proof. If Cp (X ,2)n is Menger for any n ∈ω, by Corollary 2.13, X ⊂Cp (Y ) for some space Y
such that Y n is Menger for each n ∈ω. Furthermore, applying Corollary 2.15, X ′ is count-
ably compact and hence compact since X is a Lindelöf space. The proof of the converse is
a consequence of Corollary 2.12.

The following is a consequence of Theorem III.4.23 in [Arh92].

Proposition 2.17. If X is separable, then every countably compact subspace of Cp (X ) is
compact.

Corollary 2.18. Let X be a space with i w(X ) =ω. Then the following statements are equiv-
alent.

(a) X ′ is compact and X ⊂Cp (Y ) for some space Y such that Y n is Menger for any n ∈ω;

(b) Cp (X ,2)n is Menger for any n ∈ω and X is a normal space.

Proof. By Corollary 2.12, (a) implies that Cp (X ,2)n is Menger for any n ∈ ω. Moreover,
since X is completely regular and X ′ is compact, then X is normal [GJ60, Problem 3D,5].
Now suppose (b), since X is homeomorphic to some subspace of Cp (Cp (X ,2)), to prove (a)
it is sufficient to show that X ′ is compact. The normality of X and Corollary 2.15 imply that
X ′ is a countably compact space. Given that i w(X ) =ω, Cp (X ,2) is separable (see proof of
Theorem I.1.5 in [Arh92]). By Proposition 2.17, X ′ is compact.

On metric spaces we have the following.

Theorem 2.19. Let X be a metrizable space. Then the following statements are equivalent.

(a) Cp (X ,2) is Menger;
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2. THE MENGER PROPERTY IN Cp (X ,2)

(b) Cp (X ,2)n is Menger for each n ∈ω;

(c) Cp (X ,2) is σ-compact;

(d) X ′ is compact.

Proof. Since every metrizable space is an EG-space (see [Arh92, Theorem IV.1.25]), X is
an EG-space. Then, if X ′ is countably compact, it is compact being X metrizable; so, X ′ is
Eberlein compact, and by Corollary 4.12 in [CCTM03], Cp (X ,2) is σ-compact. This proves
that (d) implies (c). Clearly (c) implies (b) and (b) implies (a). Finally, by Corollary 2.15, (a)
implies (d).

2.2 The Menger property in Cp(L,2) when L is a GO-space

A space L is a GO-space (Generalized Ordered space) if it is a subspace of a linearly or-
dered topological space (LOTS). Observe that if L is a countable GO-space, then L is zero-
dimensional, separable and metrizable (and Cp (L,2) is Lindelöf). Then, by Theorem 2.19
we obtain:

Proposition 2.20. Let L be a countable GO-space. Then the following statements are equi-
valent.

(a) Cp (L,2) is Menger;

(b) Cp (L,2) is σ-compact;

(d) L′ is compact.

Now we are going to characterize the Menger property in Cp (L,2) when L is an un-
countable GO-space (without isolated points). We will follow some notations, terminology
and constructions due to R.Z. Buzyakova in [Buz07]. First we will review a construction of
the Dedekind completion of a given GO-space L.

Definition 2.21. An ordered pair 〈 A,B 〉 of disjoint closed subsets of a GO-space L is called
a Dedekind section if A∪B = L, sup A does not exist, infB does not exist, and A is to the left
of B ; that is, for every a ∈ A and b ∈ B , a < b holds. A pair 〈L,;〉 (〈;,L 〉) is also a Dedekind
section if supL (infL) does not exist.

Definition 2.22. The Dedekind completion of a GO-space L, denoted by cL, is constructed
as follows. The set cL is the union of L and the set of all Dedekind sections of L. The order
on cL is natural: the order on cL among elements of L coincides with the order on L of
these elements. If x ∈ L and y = 〈 A,B 〉 ∈ cL \L then x is less (greater) than y if x ∈ A (x ∈ B).
If x = 〈 A1,B1 〉 and y = 〈 A2,B2 〉 are elements of cL \ L, then x is less than y if A1 is a proper
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2.2. The Menger property in Cp (L,2) when L is a GO-space

subset of A2. Consider now cL with the order topology generated by the order just defined.
We will denote by ∞ and −∞ the supremum and infimum, respectively, of cL.

Observe that for every GO-space L, cL is a compact linearly ordered topological space.
For a given GO-space L we consider the space T (L):

Definition 2.23. An element x ∈ cL is in T (L) if and only if x ∈ cL \ L, or x ∈ L and either x
is the smallest or the greatest element of L or x has an immediate successor in L. We en-
dowed T (L) with the following topology: points of T (L) that are in L are declared isolated.
The other points inherit base neighborhoods from the Dedekind completion cL, that is,
for every x ∈ T (L) \ L a neighborhood base at x is the family {U ∩T (L) : x ∈ U ∈ τ(cL)},
where τ(cL) is the topology of cL.

Observe that T (L) is a GO-space. Indeed, T (L) can be obtained from cL as follows. For
each x ∈ L that has an immediate succesor x+ in L, insert a new point px between x and
x+. If x ∈ L is the smallest element of L, we add a point p−∞ to the left of x; and if x ∈ L is
the greatest element of L, we add a point p∞ to the right of x. Denote by L′ the resulting
space. Then cL′ is a compact linearly ordered topological space containing cL as a closed
subspace. The subspace of cL′ that consists of all inserted points px ’s and cL \ L is a copy
of T (L). Thus we can think of T (L) as a GO-space with the order inherited from cL′.

Example 2.24.

• If L =Q is the subspace of rationals of R, then cL is the two-point compactification
of R. Since no point of L has an immediate successor in L, T (L) is the subspace
of cL consisting of P, the set of irrationals, with the two points at “infinity” of the
compactification cL.

• If L =ω1, then cL =ω1 +1. Observe that every ordinal in ω1 has an immediate suc-
cessor in ω1. Then T (L) is the Lindelöfication of the ω1-sized discrete space.

• For every ordinal τ, let τω = {α ≤ τ : cof(α) ≤ ω}. Then cτω is τ+1 and T (τω) is the
set τ+1 with the following topology: every point in τ+1 with cofinality less than or
equal to ω is an isolated point and and a local base for any of the remaining point α
is given by all neighborhoods of α in the LOTS τ+1.

• Let L be the “double arrows space of Alexandroff”; that is, L is the subspace A+∪A−,
where A+ = [0,1)×{0} and A− = (0,1]×{1}, of the space [0,1]×2 with the lexicographic
order topology. Let S any subset of (0,1) and LS = L \ ((S × {0})∪ (S × {1})). Note that
cLS is L and every point of ([0,1) \ S)× {0} has an immediate successor in LS . Then
T (LS) can be obtained from [0,1] by retaining the standard topology on points of
S ∪ {0} and declaring all others points isolated.
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R.Z. Buzyakova presents in [Buz07] more examples of T (L) for some particular GO-
spaces.

If x1, . . . , xn ∈ cL and −∞≤ x1 ≤ ·· · ≤ xn ≤∞, then by f = f 0
x1,...,xn

we denote the func-
tion from L to 2 defined by

f [(xi , xi+1]∩L] = {i mod 2},

for each i ∈ {1, . . . ,n}. The rightmost formula is simply {1} if n is odd and {0} otherwise.
The functions f 1

x1,...,xn
are defined similarly by switching places between {0} and {1} in the

above formulas.

Definition 2.25. A function f from X to 2 belongs to Sp (L,2) if and only if there exists
−∞≤ x1 ≤ ·· · ≤ xn ≤∞ in T (L) such that f = f 0

x1,...,xn
or f = f 1

x1,...,xn
.

Observe that [−∞, x1]∩L, (x1, x2]∩L, . . . , (xn ,∞]∩L are clopen subsets of L because
x1, . . . , xn ∈ T (L). Therefore f 0

x1,...,xn
is continuous and Sp (L,2) ⊂ Cp (L,2). The topology of

Sp (L,2) is the topology inherited from Cp (L,2). For each n ∈N, we define

Sn = { f ∈ Sp (L,2) : ∃x1, . . . , xn ∈ T (L)( f = f 0
x1,...,xn

∨ f = f 1
x1,...,xn

)}.

Observe that Sp (L,2) =⋃
n∈NSn , and Sp (L,2) =Cp (L,2) if L is countably compact.

We are going to denote by S∗ the subspace { f 1
x : x ∈ T (L)} of S1.

For any f , g ∈Cp (L,2), the addition f + g is taken mod 2.

Lemma 2.26 ([Buz07]). Let L be a GO-space. Then for any f ∈ Sp (L,2), there exist f1, . . . , fk ∈
S∗ such that f = f1 +·· ·+ fk .

More properties of S∗ are given in [Buz07]. One of these is the following:

Theorem 2.27 ([Buz07]). The subspace S∗ of Sp (L,2) is homeomorphic to T (L).

For a countably compact GO-space L, R.Z. Buzyakova proves in [Buz07] that Cp (L,2) is
Lindelöf if and only if T (L) is Lindelöf. We show that in fact this is a sufficient condition in
order to have Cp (L,2) Menger.

Theorem 2.28. Let L be a first countable GO-space without isolated points. The following
statements are equivalent.

(a) Cp (L,2) is Lindelöf and L is countably compact,

(b) T (L) is Lindelöf and L is countably compact,
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2.3. The Menger property in Cp (X ,2) when X is a subspace of ordinals

(c) T (L)n is Menger for each n ∈ω and L is countably compact,

(d) Cp (L,2)n is Menger for each n ∈ω,

(e) C∗
p (L,ω) is Menger,

(f) Cp (L,2) is Menger.

Proof. The equivalence (a) ↔ (b) is Theorem 4.1 in [Buz07]. We suppose (b) and we are
going to prove (c). Let us show that T (L) is a P-space. For each n ∈ ω, let Un be an open
subset of T (L). We are going to prove that F =⋂

n∈ωUn is open. Take any x in this intersec-
tion. If x ∈ L then x is isolated in T (L). If x ∉ L then, due to the countably compactness of L,
x is unreachable by nontrivial countable sequences in cL, and therefore, in T (L). In both
cases, we conclude that x is in the interior of F . This shows that T (L) is a P-space. Then
T (L)n is a P-space for n ∈ ω. Applying Noble’s theorem [Nob69] (i.e., a countable power
of a Lindelöf P-space is Lindelöf), T (L)ω is Lindelöf, and hence, T (L)n is Lindelöf for any
n ∈ω. But Lindelöf property agrees with Menger property in P-spaces (see Corollary 1.16).
Then T (L)n is Menger for any n ∈ω.

Now suppose (c). Given that T (L) is homeomorphic to S∗ (see Theorem 2.27) and
that the countable union of Menger spaces is Menger, the topological sum

⊕
k∈ω(S∗)k is

Menger. Moreover, every finite power of this space is Menger. Besides, if we define the con-
tinuous function F :

⊕
k∈ω(S∗)k → Sp (L,2) as F (F ) = f1 + ·· · + fk where F = ( f1, . . . , fk ) ∈

(S∗)k , then, by Lemma 2.26, F is surjective. Then, for each n ∈ ω, the function F n :
(
⊕

k∈ω(S∗)k )n → Sp (L,2)n defined by F n(F1, . . . ,Fn) = (F (F1), . . . ,F (Fn)) is a surjective con-
tinuous function. Thus, Sp (L,2)n =Cp (L,2)n is Menger. This shows that (c) implies (d).

(d) implies (e) is trivial. Since Cp (L,2) is a closed subspace of C∗
p (L,ω), by Proposi-

tion 1.5, (e) implies (f). Finally, if we suppose (f), then, by Corollary 2.15, L = L′ is countably
compact and clearly Cp (L,2) is Lindelöf. This proves that (f) implies (a).

Corollary 2.29. Let L be a first countable countably compact GO-space without isolated
points. Then, Cp (L,2) is Lindelöf if and only if Cp (L,2) is Menger.

Problem 2.30. Determine when Cp (L,2) is Menger assuming L is a first countable GO-
space (without any restriction about the isolated points in L).

2.3 The Menger property in Cp(X ,2) when X is a subspace
of ordinals

By a subspace of ordinals we are refering to a subspace of an ordinal α. As we have already
said, the set of ordinals lower than an ordinalα endowed with its order topology is denoted
by α. As a corollary of Proposition 2.20 we have the following.
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Corollary 2.31. Let α ∈ω1. Then the following statements are equivalent.

(a) Cp (α,2) is Menger,

(b) Cp (α,2) is σ-compact,

(c) α is a succesor ordinal.

If X is normal and Cp (X ,2) is Menger, then X ′ is countably compact and X has count-
able fan tightness (see Corollary 2.15 and Proposition 2.2). Then, when X is a subspace of
ordinals and Cp (X ,2) is Menger, X ′ must be countably compact, X is first countable and,
obviously, Cp (X ,2) is Lindeöf. In the following statements we see that these properties are
enough to obtain the Menger property in Cp (X ,2).

The proof of the following theorem was suggested to the referee of [BSTM15] by Pro-
fessor Piotr Szewczak. His proof is simpler than the one we gave in a previous version of
this work.

Theorem 2.32. Let X be a subspace of ordinals and n ∈N. Then Cp (X ,2)n is Menger if and
only if Cp (X ,2)n is Lindelöf and X ′ is countably compact.

Proof. Remember that Cp (X ,2)n is homeomorphic to Cp (X ,2n). We are going to show our
theorem when n = 1 (the proof for 2n instead of 2 is similar). It is obvious that if Cp (X ,2) is
Menger, then Cp (X ,2) is Lindelöf. Moreover, by Corollary 2.15, X ′ is countably compact.
Reciprocally, we suppose that Cp (X ,2) is Lindelöf and X ′ is countably compact. We will
show that Cp (X ,2) is Menger. We will prove this fact by induction over α = sup X . Let us
assume that the statement is true for every β<α, that is, if Z is a first countable subspace
of ordinals, Z ′ is countably compact, β = sup Z and Cp (Z ,2) is Lindelöf, then Cp (Z ,2) is
Menger. Let δ= sup X ′.

Case I. If δ < α, then X ′ ⊂ Z = X ∩ (δ+ 1), Z is clopen in X and X \ Z is clopen and
discrete in X. Therefore X = Z ⊕ (X \ Z ) and Cp (X ,2) ∼=Cp (Z ,2)×2X \Z . Given that Cp (Z ,2)
is a closed subspace of Cp (X ,2), we deduce that Cp (Z ,2) is Lindelöf. Note that Z ′ = X ′ so
it is countably compact. From the inductive hypothesis we have that Cp (Z ,2) is Menger
and by compactness of 2X \Z the space Cp (X ,2) is also Menger.

Case II. If δ=α and there is in X a strictly increasing countable sequence 〈αn : n ∈ω〉
which converges to α. Then by δ = α and countable compactness of X ′ we infer that α ∈
X ′. Let us observe that the family {X ∩ (αn ,α] : n ∈ω} forms a base for X at α. Since every
f ∈Cp (X ,2) is continuous at α and α ∈ X ′, there is k ∈ω such that f [(αk ,α]] = { f (α)}. Let

A j
n = { f ∈Cp (X ,2) : ∀x ∈ X (x ∈ (αn ,α] → f (x) = j )} for every n ∈ω and j ∈ 2. We have that

Cp (X ,2) =⋃
{A j

n : n ∈ω ∧ j ∈ 2}
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Every A j
n is homeomorphic to Cp (Zn ,2) where Zn = X ∩ (αn +1). Since Zn is clopen in X ,

we can easily verify that Cp (Zn ,2) is Lindelöf and Z ′
n is countably compact. Now it follows

from our inductive assumption that A j
n
∼= Cp (Zn ,2) is Menger. Because Cp (X ,2) = ⋃

{A j
n :

n ∈ω ∧ j ∈ 2} we conclude that Cp (X ,2) is Menger.

Case III. If δ = α and the cofinality of α in X is not countable. Let 〈Un : n ∈ ω〉 be a
sequence of countable open covers of Cp (X ,2) consisting of basic open sets. Let us observe
that each element U ∈ Un is of the form U = ∏

x∈X U (x)∩Cp (X ,2), where U (x) 6= 2 only if
x ∈ XU ⊂ X , where XU is finite. Let us observe that there is some β ∈ X ∩α such that⋃

{XU : ∃n (n ∈ω ∧ U ∈Un)} ⊂ X ∩ (β+1) = Z . Clearly β= sup Z . Then

(∗) ∀U ∀x (∃n (n ∈ω ∧ U ∈Un) ∧ x ∈ X \ Z →U (x) = 2).

It is easy to see that Z is a clopen subset of X and Z ′ = X ′∩ (β+ 1). Hence Z ′ is count-
ably compact being a closed subset of the countably compact space X ′. Since Cp (X ,2)
is homeomorphic to Cp (Z ,2) ×Cp (X \ Z ,2) we have that Cp (Z ,2) is a closed subspace
of Cp (X ,2) and so it is Lindelöf. By inductive assumption, Cp (Z ,2) is Menger. Now let
U ′

n = {U ∩Cp (Z ,2) : U ∈ Un} for every n ∈ ω. Then 〈U ′
n : n ∈ ω〉 is a sequence of open

cover of Cp (Z ,2). Therefore, there are V ′
n ∈ [U ′

n]<ω such that
⋃

{V ′
n : n ∈ω} covers Cp (Z ,2).

For every n ∈ω pick Vn ∈ [Un]<ω such that V ′
n = {U ∩Cp (Z ,2) : U ∈ Vn}. By (∗) we have that⋃

{Vn : n ∈ω} covers Cp (X ,2).

It is shown in [Buz04] that for every countably compact first countable subspace X of
ordinals, Cp (X ,2)n is Lindelöf for each n ∈ω. Therefore:

Corollary 2.33. For any countably compact first countable subspace X of ordinals, Cp (X ,2)n

is Menger for each n ∈ω.

It is shown in [Buz06] that for every first countable subspace X of ordinals with count-
able extent we have that Cp (X ,2)n is Lindelöf for each n ∈ω. So, we obtain:

Corollary 2.34. Let X be a first countable subspace of ordinals with countable extent. Then
Cp (X ,2)n is Menger for each n ∈ω if and only if X ′ is countably compact.

Corollary 2.15 shows that when X is normal, if Cp (X ,2) is Menger, then X ′ is countably
compact. With the same hypotheses we cannot imply the compactness of X ′. Indeed, by
Corollary 2.33, Cp (ω1,2) is Menger.

Observe, on the one hand, that the ordinal number X = ω ·ω is a countable, metriz-
able ordinal subspace such that Cp (X ,2) is Lindelöf but Cp (X ,2) is not Menger (see Theo-
rem 2.32). So, it is not possible to add the statement “Cp (X ,2) is Lindelöf" in the list of
equivalent statements neither in Theorem 2.19 nor in Proposition 2.20, nor in Corolla-
ry 2.31 (compare with Corollary 2.29). On the other hand, the converse of Corollary 2.33
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is not true. Indeed, Cp (ω,2)n is Menger for any n ∈ ω and ω is not countably compact.
A non discrete example of the same fact is the countable metrizable ordinal subspace
Y = (ω ·ω+1) \ {ω}.

Moreover, it is natural to conjecture that the class of subspaces of ordinals X for which
Cp (X ,2) is Menger is equal to the class of ordinal subspaces which are the topological
sum of two subspaces, one of them a discrete subspace and the other a first countable
countably compact ordinal subspace. This is not true. In fact, consider

X = {ω1 ·n : n ≤ω}∪ ⋃
n∈ω

{(ω1 ·n)+m : m ∈ω}.

We have that Cp (X ,2) is Menger but X cannot be expressed as the sum of a discrete sub-
space plus a countably compact first countable ordinal subspace. Indeed, if X is the
topological sum Z ⊕Y , where Z is a discrete space and Y is countably compact space.
First note that ω1 ·ω ∈ Y . Since Y is open in X and ω1 ·ω ∈ Y , there is n ∈ ω such that
[ω1 ·n,ω1 ·ω]∩ X ⊂ Y . Then {ω1 ·n +m : m ∈ ω} is an infinite closed discrete subspace of
Y , which is imposible. Using similar arguments to the ones used in the Case II of proof of
Theorem 2.32 we obtain that Cp (X ,2) is Menger (even σ-compact).
Also, it is natural to conjecture that Corollary 2.33 is valid for any GO-space (or LOTS) not
only for subspaces of ordinals, but Example 2.6 shows that this is false.

In [Buz06, Question 3.3] R. Z. Buzyakova asks if Cp (X ,2) is Lindelöf when X is a first
countable subspace of ordinals and X ′ have countable extend. Then, is natural asks if
Cp (X ,2) is Lindelöf when X is a first countable subspace of ordinals and X ′ is countably
compact. We ask this question in the following form (see Theorem 2.32):

Problem 2.35. Is there a first countable ordinal subspace X with X ′ countably compact
such that Cp (X ,2) is not Menger?

2.4 The Menger property in Cp(X ,2) when X is a countable
simple space

A space X is called simple if X has exactly one non-isolated point. For any filter F on ω,
we define the space ω∪ {F } as follows: any n ∈ω is declared isolated and the sets A∪ {F },
where A ∈F , form a base of neighborhoods of F . Any countable simple space is homeo-
morphic to ω∪ {F } for a filter F on ω.

It is proved in [Arh92, Proposition III.3.3] that if Aτ denotes the one-point compacti-
fication of the discrete space of cardinality τ, then Aτ is Eberlein compact. And therefore
Cp (Aτ,2) is Menger. It is also shown in [Arh92, Example III.1.7] that if F ∈ω∗,ω∪{F } is not
an EG-space; that is, ω∪ {F } cannot be embedded in a space Cp (Y ) where Y is compact.
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The following results shows that, under certain conditions, ω∪ {F } can be embedded in a
space Cp (Y ) for some space Y for which Y n is Menger for every n ∈ ω. These conditions
are set in the following definitions.

Definition 2.36 ([Laf89]). An ultrafilter F ∈ω∗ is a strong P-point if for any sequence 〈Cn :
n ∈ ω〉 of compact subspaces of F (considering F as a subset of 2ω with the product
topology) there is an interval partition 〈 In : n ∈ω〉 of 2ω such that for each choice of Xn ∈
Cn we have ⋃

n∈ω
(In ∩Xn) ∈F .

Given a filter F onωwe define F<ω to be the filter on [ω]<ω \{;} generated by {[F ]<ω \
{;} : F ∈F }. Note that the filter F<ω on [ω]<ω \ {;} is not an ultrafilter even if F is.

Definition 2.37 ([BHV13]). A filter F on a countable set S is a P+-filter if for any ⊂-des-
cending sequence 〈Xn : n ∈ ω〉 ⊂ F+, there is an X ∈ F+ such that X ⊂∗ Xn for all n ∈ ω,
where F+ = {X ⊂ S : S \ X ∉F }.

The elements of F+ are called positive sets (with respect to F ). Then, a filter F is a
P+-filter if every decreasing sequence of positive sets has a positive pseudointersection.
The definition of a strong P-point that we will use is the following.

Theorem 2.38 ([BHV13]). An ultrafilter F ∈ ω∗ is a strong P-point if and only if F<ω is a
P+-filter.

The following result was conjectured by M. Huršák and is the key to characterize the
Menger property in Cp (ω∪ {F },2).

Proposition 2.39. Let F be a filter onω. The space X =ω∪{F } has countable fan tightness
for finite sets if and only if F<ω is a P+-filter.

Proof. First note that P ∈ (F<ω)+ if and only if P is a π-network at F in X . Suppose
that F<ω is a P+-filter. Let 〈Pn ⊂ [X ]<ω : n ∈ω〉 be a decreasing sequence of π-networks
at F (see Lemma 2.4). Given that F<ω is a P+-filter, and 〈Pn ⊂ [X ]<ω : n ∈ ω〉 is a de-
creasing sequence of positive sets with respect to F<ω, 〈Pn : n ∈ ω〉 has a positive pseu-
dointersection P ∈ (F<ω)+. Since P \ P0 is finite, P ∩P0 is a π-network at F . Then,
if we suppose that

⋂
n∈ωPn = {pn : n ∈ ω}, and define Kn = (P ∩Pn \ Pn+1)∪ {pn} for

each n ∈ ω,
⋃

n∈ωKn = P ∩P0 is a π-network at F . Observe that Kn is finite because
(P ∩Pn \ Pn+1)∪ {pn} ⊆ (P \ Pn+1)∪ {pn} and P is a pseudointersection of the family
{Pn : n <ω}.

Reciprocally, suppose that ω∪ {F } has countable fan tightness for finite sets. Let 〈Pn :
n ∈ ω〉 be a decreasing sequence of positive sets. Since 〈Pn : n ∈ ω〉 is a sequence of
π-networks at F , there is a sequence of finite sets 〈Fn : n ∈ ω〉 such that P = ⋃

n∈ωFn
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is a π-network at F and Fn ⊂ Pn for each n ∈ ω. Then P is a positive set and, since
P \Pn+1 ⊂F0 ∪·· ·∪Fn , P is a pseudointersection of 〈Pn : n ∈ω〉.
Corollary 2.40. Let F ∈ ω∗. The subspace ω∪ {F } of βω has countable fan tightness for
finite sets if and only if F is a strong P-point.

Theorem 2.41. Let F be a filter on ω and X =ω∪ {F }. Then, the following statements are
equivalent:

(a) Cp (X ,2) is Menger;

(b) Cp (X ,2)n is Menger for any n ∈ω;

(c) C∗
p (X ,ω) is Menger;

(d) F<ω is a P+-filter.

Proof. If Cp (X ,2) is Menger, then, by Proposition 2.5 and Proposition 2.39, F<ω is a P+-
filter. Now assume that F<ω is a P+-filter in ω. We are going to show that Cp (X ,2) is
Menger (the proof for n instead of 2 is similar). For each k ∈ 2 and F ⊂ω, we define Ak

F =
{ f ∈ 2ω : ∀x(x ∈ F → f (x) = k)}. Note that Cp (X ,2) is homeomorphic to the subspace⋃

{Ak
F : F ∈ F ∧ k ∈ 2} of 2ω. Then, to see that Cp (X ,2) is Menger, by Corollary 1.13, it is

enough to show that
⋃

{Ak
F : F ∈ F } is Menger for each k ∈ 2. However,

⋃
{Ak

F : F ∈ F } is
homeomorphic to

⋃
{Am

F : F ∈F } for k,m ∈ 2. So, it is enough to prove that A =⋃
{A0

F : F ∈
F } is Menger. To simplify the notations, we write AF to mean A0

F and, if F is a single point
x, we write Ax instead of AF .

Let 〈Un : n ∈ω〉 be a sequence of countable covers of A such that Un+1 refines Un for
each n ∈ ω (see Lemma 1.9). We can suppose that each Un is closed under finite unions.
For each open subset of A, let YU = {H ∈ [ω]<ω : AH ⊂U }. And we define Zn =⋃

U∈Un YU for
each n ∈ω. In view of the fact that Un+1 refines Un , Zn+1 ⊂ Zn . Moreover, Zn is a positive
set. Indeed, if F ∈ F , since AF is compact, there is an element U ∈ Un containing AF .
Given that AF = ⋂

x∈F Ax and Ax is compact, there is H ∈ [F ]<ω such that AH = ⋂
x∈H Ax ⊂

U . Then [F ]<ω∩ Zn 6= ;. Now, since F<ω is a P+-filter, the sequence of positive sets 〈Zn :
n ∈ω〉 has a positive pseudointersection Z̃ ∈ (F<ω)+. Suppose that

⋂
n∈ω Zn = {bn : n ∈ω},

then we define, for each n ∈ω, Pn = (Z̃ ∩Zn \ Zn+1)∪ {bn}. In the same way as in Proposi-
tion 2.39 we infer that Pn is finite for every n ∈ω. In this manner Z =⋃

n∈ωPn = Z̃ ∩ Z0 ∈
(F<ω)+. For each n ∈ ω and H ∈ Pn , we choose UH ∈ Un such that AH ⊂UH . We define
Fn = {UH : h ∈ Pn} for each n ∈ ω. Given f ∈ A, there is F ∈ F such that f ∈ AF . Since Z
is a positive set, [F ]<ω \ {;} intersects Z and, hence, intersects some Pn . Consequently, if
H ∈ ([F ]<ω \ {;})∩Pn , then AF ⊂ AH ⊂UH . This proves that f ∈UH . That is,

⋃
n∈ωFn is a

cover of A.
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The implication (b)→ (c) is a consequence of Corollary 1.13 and the equality C∗
p (X ,ω) =⋃

n∈ωCp (X ,n). The implication (c) → (b) is a consequence of Proposition 1.5 and the fact
that each Cp (X ,n) is a closed subset of C∗

p (X ,ω).

As a consequence of Theorem 2.38 and Theorem 2.41 we conclude:

Corollary 2.42. Let F ∈ ω∗ and X the subspace ω∪ {F } of βω. Then the following state-
ments are equivalent

(a) Cp (X ,2) is Menger;

(b) Cp (X ,2)n is Menger for any n ∈ω;

(c) C∗
p (X ,ω) is Menger;

(d) F is a strong P-point.

As previously mentioned, Example III.1.7 in [Arh92] shows that ω∪ {F } is not an EG-
space and, by the Theorem 4.16 in [CCTM03], Cp (ω∪ {F },2) is not σ-compact. Then, by
Corollary 2.42, if F is a strong P-point, Cp (ω∪ {F },2) is a Menger space which is not σ-
compact.

2.5 The Menger property in Cp(Ψ(A ),2)

An almost disjoint family of subsets ofω is a collection A of subsets ofω such that each el-
ement in A is infinite, and if A,B ∈A , |A∩B | < ℵ0. An almost disjoint family A is maximal
if it is not proper subfamily of an another almost disjoint family. For an infinite maximal
almost disjoint family (mad) A on ω, a Ψ-space is a space Ψ(A ) whose underlying set is
ω∪A and the topology is given by: All points ofω are isolated, and the neighborhood base
at A ∈A consists of all sets {A}∪ A \ F where F is a finite subset of ω.

Definition 2.43. A mad family A is Mrówka if the Stone-Cěch compactification βΨ(A ) of
Ψ(A ) coincides with the one-point compactification ofΨ(A ).

A. Dow shows in [DS06] that if b>ω1, for each mad family A , Cp (Ψ(A ),2) is not Lin-
delöf and, hence, in this case, Cp (Ψ(A ),2) is not Menger. M. Hrušák, P.J. Szeptycki and
Á. Tamariz-Mascarúa show in [HSTM05], assuming the Continuum Hypothesis, the exis-
tence of a Mrówka mad family A such that Cp (Ψ(A ),2) is Lindelöf.

For a mad family A and j ∈ 2, we define the closed subspaceσ j
n(A ) = { f ∈Cp (Ψ(A ),2) :

| f −1( j )∩A | ≤ n} of Cp (Ψ(A ),2). If A is a Mrówka family, then

Cp (Ψ(A ),2) = ⋃
n∈ω, j∈2

σ
j
n(A ).
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For every n ∈ω, σ0
n(A ) is homeomorphic to σ1

n(A ). We are going to write σn(A ) instead
of σ1

n(A ). Thus, by Corollary 1.13:

Lemma 2.44. If A is a Mrówka mad family then Cp (Ψ(A ),2) is Menger if and only ifσn(A )
is Menger for each n ∈ω.

To characterize when σn(A ) is Menger, we need certain terminology and notation.
For a,b ∈P (ω), a4b will denote their symmetric difference; that is a4b = (a∪b)\(a∩b).
Given a mad family A and Y ⊂P (ω), we will say that A n is concentrated on Y [HSTM05],
if for each open U of the Cantor set 2ω containing χY = {χy : y ∈ Y }, there is a countable
B ⊂ A such that χ∪x ∈U for all x ∈ [A \ B]n . And we will say that A n + [ω]<ω is concen-
trated on Y if for each open subset U of 2ω containing χY , there is a countable subset
B ⊂A such that χ(∪x)4b ∈U for all x ∈ [A \B]n and for all b ∈ [ω]<ω.

Lemma 2.45. Let A be a mad family. If A n+1 + [ω]<ω is concentrated on [ω]<ω and σn(A )
is Menger, then σn+1(A ) is Menger.

Proof. The proof depends on two claims.

Claim 1. If V is an open subset of σn+1(A ) containing σn(A ), then there is a countable
subset B ⊂A such that f −1(1)∩B 6= ; for any f ∈σn+1(A ) \V .

Indeed, since σ0(A ) is a countable subset of σn(A ), we can choose a sequence of fi-
nite functions sk ⊂Ψ(A )×2 such that σ0(A )∩ [sk ] 6= ; and σ0(A ) ⊂⋃

k∈ω[sk ] ⊂V , where
[sk ] = { f ∈σn+1(A ) : sk ⊂ f } for each k ∈ω. Note that s−1

k (1) ⊂ω and sk �A is the constant
zero for each k ∈ω. We define the open subset U of 2ω to be

⋃
k∈ω{ f ∈ 2ω : sk �ω⊂ f } and

note that χ[ω]<ω ⊂ U . Then, by hypothesis, there is a countable subset B′ ⊂ A such that
χ⋃

x4b ∈U for all x ∈ [A \B′]n+1 and for all b ∈ [ω]<ω. Let B =B′∪⋃
k∈ω(s−1

k (0)∩A ) and
show that B is the required set by Claim 1. Let f ∈σn+1(A )\V and x = f −1(1)∩A . Since V
contains σn(A ), |x| = n+1. Proceed by contradiction, suppose that x ∩B =;. We choose
b ∈ [ω]<ω such that f −1(1)∩ω=⋃

x4b. By the choice of B, χ⋃
x4b ∈U and consequently,

there is k ∈ ω such that s−1
k (1) ⊂ ⋃

x4b = ω∩ f −1(1) and s−1
k (0)∩ω ⊂ ω \ (ω∩ f −1(1)) =

f −1(0)∩ω. Given that x ∩ s−1
k (0) = ;, s−1

k (0) ⊂ f −1(0). Then f ∈ [sk ] which is a contradic-
tion, and Claim 1 is proved.

Claim 2. If V is an open subset of σn+1(A ) containing σn(A ), then there is a countable
subset Y of σ1(A ) such that σn+1(A ) \ V ⊂ ⋃

h∈Y (h +σn(A )), where h +σn(A ) = {h + g :
g ∈σn(A )}.

Let B be a countable subset of A given by Claim 1, and define Y = { f ∈σ1(A ) : f −1(1)∩
A ⊂ B}. Then Y is countable. Let f ∈ σn+1(A ) \ V . Again, by the choice of B, there is an
element a ∈ f −1(1)∩B. We define a continuous function g :Ψ(A ) → 2 as follows
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g (x) =


1, if x ∈ a ∪ {a};

0, otherwise.

Then g ∈ Y and f + g ∈ σn(A ) and consequently f = g + ( f + g ) ∈ ⋃
h∈Y (h +σn(A )).

This concludes the proof of Claim 2.

Now, we are going to finish the proof of our lemma. Let 〈Uk : k ∈ ω〉 be a sequence
of covers of σn+1(A ). Since σn(A ) is Menger, there is a finite subset F ′

k ⊂ Uk for each
k ∈ ω such that σk (A ) ⊂ ⋃⋃

k∈ωF ′
k . Then, by Claim 2, there is a countable subset Y ⊂

σ1(A ) such that σk+1(A ) \
⋃⋃

k∈ωF ′
k ⊂⋃

h∈Y (h +σn(A )). Since σn(A ) is homeomorphic
to h+σn(A ) for each h ∈ Y and Y is countable,

⋃
h∈Y (h+σn(A )) is Menger. Then, there is

a finite subset F ′′
k ⊂Uk for each k ∈ω such that

⋃
k∈ωF ′′

k is a cover ofσn+1(A )\
⋃⋃

k∈ωF ′
k .

Therefore, the sequence 〈F ′
k ∪F ′′

k : k ∈ω〉 is the required choice.

As we have already mentioned in the previous paragraphs, σ0(A ) is countable. Then,
by Lemma 2.45, if A k + [ω]<ω is concentrated on [ω]<ω for each k ≤ n, then σn(A ) is
Menger. However, in [HSTM05, Corollary 4.3] M. Hrušák, M., P.J. Szeptycki and Á. Tamariz-
Mascarúa proves the following two results.

Proposition 2.46 ([HSTM05]). Let A be a mad family and n ∈ ω. Then, A n + [ω]<ω is
concentrated on [ω]<ω if and only if A n is concentrated on [ω]<ω.

Corollary 2.47 ([HSTM05]). Suppose that A is a mad family and n ∈ ω. Then, σn(A ) is
Lindelöf if and only if A k is concentrated on [ω]<ω for all k ≤ n.

These last two results with Lemma 2.45 imply the following result.

Proposition 2.48. Let A be a mad family and n ∈ ω. Then the following statements are
equivalent.

(a) σn(A ) is Lindelöf;

(b) σn(A ) is Menger;

(c) A k is concentrated on [ω]<ω for every k ≤ n.

Proof. It is clear that (b) implies (a) and by Corollary 2.47, (a) implies (c). Finally, Lem-
ma 2.45 and Proposition 2.46 prove that (c) implies (b).

A corollary of the previous result is:

Theorem 2.49. Let A be a Mrówka mad family. Then the following are equivalent.
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2. THE MENGER PROPERTY IN Cp (X ,2)

(a) Cp (Ψ(A ),2) is Lindelöf;

(b) Cp (Ψ(A ),2) is Menger;

(c) A n is concentrated on [ω]<ω for every n ∈ω.

In Chapter 3 appear a more general theorem of previous result. Theorem 4.5 in
[HSTM05] shows, assuming CH, the existence of a Mrówka mad family A for which A n is
concentrated on [ω]<ω for all n ∈ω. Then we have the following:

Theorem 2.50 (CH). There is a mad family A such that Cp (Ψ(A ),2) is Menger.

In [BSTM15] we ask the following: Let A be the Mrówka mad family whose existence
is guaranteed by Theorem 4.5 in [HSTM05]. Is Cp (Ψ(A ),2)n Menger for every n ≥ 2? But
in the next chapter we gives a positive answer to this question (see Theorem 3.35).

In general we have a problem as follow.

Problem 2.51. Are there a topological space X and a natural number n > 2 such that
Cp (X ,2) is Menger and Cp (X ,2)n is not Menger?

2.6 Other results and observations

Definition 2.52 ([Sch99b]). A space X is said to be selective separable if for every sequence
〈Dn : n ∈ω〉 of dense subsets of X , there is a sequence of finite sets 〈Fn : n ∈ω〉 such that⋃

n∈ωFn is dense in X and Fn ⊂ Dn for every n ∈ω.

For a space X , let PR(X ) be the space of all finite subsets of X with the Pixley-Roy
topology, that is, the topology whose base is the family of all sets of the form

[A : U ] = {B ∈ PR(X ) : A ⊂ B ⊂U },

where A ∈ PR(X ) and U is an open subset of X containing A. M. Sakai [Sak12] shows
that PR(X ) is selective separable if and only if X is countable and X n has a countable
fan tightness for any n ∈ω. Also he proved that the countable fan tightness for finite sets
property is preserved under finite products for simple spaces. As a corollary of Corolla-
ry 2.40 we have the following:

Corollary 2.53. Let F ∈ ω∗. Then PR(ω∪ {F }) is selective separable if and only if F is a
strong P-point.

Another result in this sense is the following.

Proposition 2.54. If F is a filter on ω of character less than d, then ω∪ {F } has countable
fan tightness for finite sets.
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2.6. Other results and observations

Proof. Let {Uα :α< κ} be a local base at F , where κ< d. Let 〈Pn : n ∈ω〉 be a sequence of
π-networks consisting of finite sets at F . We can suppose that Pn = {P n

m : m ∈ω} for each
n ∈ω. We define, for each α < κ, the function fα : ω→ω as fα(n) = min{k ∈ω : P n

k ⊂Uα}.
Then, the family { fα : α < κ} is not cofinal, that is, there is a function f ∈ ωω such that
f 6≤∗ fα for each α < κ. For each n ∈ ω, let Fn = {P n

m : m ≤ f (n)}. Then the sequence
〈Fn : n ∈ω〉 is the required sequence.

In [Bla10, Theorem 9.25] it is shown that all filter of character less than d is a P-point.
In view of Proposition 2.39 and Proposition 2.54 we have the following corollary.

Corollary 2.55. All ultrafilters on ω of character less than d are strong P-points.
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CHAPTER

3
The Rothberger property in Cp (X ,2)

A space X is said to have the Rothberger property (or simply X is Rothberger) if for every
sequence 〈Un : n ∈ ω〉 of open covers of X , there exists Un ∈ Un for each n ∈ ω such that
X =⋃

n∈ωUn . Some basic properties about Rothberger spaces are:

Proposition 3.1 ([Jus+96]).

(a) Every closed subspace of a Rothberger space is Rothberger.

(b) The continuous image of a Rothberger space is Rothberger.

(c) The countable union of Rothberger spaces is Rothberger.

A subset A of a space X is meager (or the first category) if it is the union of many
nowhere dense sets. Let M be the family of meager subsets of R. Then, we define the
cardinal cov(M ) = min{|M | : M ⊂ M ∧ R = ⋃

M }. Obviously cov(M ) ≤ c and, by the Ca-
tegory Baire Theorem [Eng89], ω1 ≤ cov(M ). Since the set of irrational numbers P and Q
are dense subspaces of R, Q is meager and P is homeomorphic to ωω, it is not difficult to
prove that cov(M ) = min{|M | :ωω =⋃

M ∧ ∀m(m ∈ M → m is meager in ωω)}.
A family of functions G ⊂ωω can be guessed by a function f ∈ωω if for each g ∈G , the set
{n ∈ω : f (n) = g (n)} is infinite.
Fix g ∈ωω and let Eg be the set { f ∈ωω : |{n ∈ω : g (n) = f (n)}| <ω}. If we define Dn = { f ∈
ωω : ∀k ∈ ω( f (k) = g (k) → k < n)} for each n ∈ ω. Then, each Dn is a closed nowhere
dense subset of ωω. Hence Eg is a meager subset of ωω. Moreover, if G ⊂ ωω cannot
be guessed, then ωω = ⋃

g∈G Eg . With this we have that cov(M ) ≤ min{|G| : G ⊂ ωω ∧
G cannot be guessed}. The other inequality is also true but the proof is more difficult
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3.1. Consequences of the Rothberger property in Cp (X ,2)

(see [Bar87, Theorem 1.7]) and therefore we have the following nice characterization of
cov(M ).

Theorem 3.2 ([Bar87]). cov(M ) = min{|G| : G ⊂ ωω ∧ ∀g ∈ ωω∃ f ∈ G(|{n ∈ ω : g (n) =
f (n)}| <ω)}.

With this characterization we can prove the following:

Theorem 3.3. If X is a Lindelöf space and |X | < cov(M ), then X is Rothberger.

Proof. Let 〈Un : n ∈ω〉 be a sequence of countable open covers of X , say Un = {U n
m : m ∈

ω}. For each x ∈ X , we define fx : ω→ ω defined by fx(n) = min{m : x ∈ U n
m}. Then the

family { fx : x ∈ X } can be guessed by function f ∈ ωω (see Theorem 3.2). It is not difficult
to prove that X =⋃

n∈ωU n
f (n).

There is an analogous analysis for the Rothberger property similar to Section 1.2 (see
[MF88, Theorem 5] and [Mil81; Bar87; Mil82]).

Recall that a space of reals X is null if for each positive real ε, there exists an open cover
{In : n ∈ ω} of X such that

∑
n∈ωδ(In) < ε. In his 1919 paper [Bor19], Borel introduced the

following stronger property: A set of reals X is strongly null (or has strong measure zero)
if, for each sequence 〈εn : n ∈ω〉 of positive reals, there exists an open cover {In : n ∈ω} of
X such that δ(In) < εn for each n ∈ω. But Borel was unable to construct a nontrivial (that
is, an uncountable) example of a strongly null set. He therefore conjectured that there is
no such example. Sierpiński (1928) observed that every Luzin set is strogly null, thus the
Continuum Hypothesis implies that the Borel Conjecture is false. Sierpiński asked whether
the property of being strongly null is preserved undertaking homeomorphic or even con-
tinuous images. The answer, given by Rothberger (1941) in [Rot41], is negative under the
Continuum Hypothesis. Then Rothberger introduced the topological version of strongly
null defining the Rothberger spaces which are preserved undertaking continuous images.
Clearly the Rothberger property implies strongly null. Moreover Fremlin and Miller in
[MF88] proved that for a metric space (X ,d), the Rothberger property is the same as hav-
ing strong measure zero with respect to all metrics which generate the same topology as
the one defined by d . The question of consistency of the Borel Conjecture was settled in
1976, when Laver in his work [Lav76] showed that the Borel Conjecture is consistent.

3.1 Consequences of the Rothberger property in Cp(X ,2)

Similar to Chapter 2 we only analyze the finite power of Cp (X ,2) (see Proposition 1.20).

Proposition 3.4. For any space X , Cp (X ,2)n is Rothberger for any n ∈ ω if and only if
Cp (X ,k) is Rothberger for any k ∈ω.
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3. THE ROTHBERGER PROPERTY IN Cp (X ,2)

Proof. This is immediate from the fact that Cp (X ,2)n is homeomorphic to Cp (X ,2n) for
any n ∈ω, and the fact that a closed subspace of a Rothberger space is Rothberger.

Observe that the class of Rothberger spaces is not complete. As we have already men-
tioned, the compact metrizable Cantor space is not Rothberger. So, the analogous result
of Corollary 2.12 for Rothberger spaces cannot be deduced from Theorem 2.11. See Pro-
blem 3.18, below.

We begin with some consequences of the Rothberger property in Cp (X ,2) concerning
some types of tightness. M. Sakai introduces the following notion.

Definition 3.5 ([Sak12]). A space X has strong countable fan tightness for finite sets if for
each point x ∈ X and each sequence 〈Pn ⊂ [X ]<ω : n ∈ω〉 of π-networks at x, there is, for
each n ∈ω, Pn ⊂Pn such that {Pn : n ∈ω} is a π-network at x.

Clearly, strong countable fan tightness for finite sets implies countable fan tightness.

Proposition 3.6. If the space Cp (X ,2) is Rothberger, then X n has strong countable fan tight-
ness for finite sets for any n ∈ω.

Proof. We fix a k ∈ N, a point x = (x1, . . . , xk ) ∈ X k and a sequence 〈Pn : n ∈ ω〉 of π-
networks at x consisting of finite subsets of X . We take open subsets U1, . . . ,Uk of X such
that, for each i , j ∈ {1, . . . ,k}, xi ∈ Ui , Ui = U j if xi = x j , and Ui ∩U j = ; if xi 6= x j . Let
U =U1 ×·· ·×Uk . We can suppose that, for every n ∈ω, each member of Pn is contained
in U . Since the space Cp (X ,2) is Rothberger, the closed subspace

Φ= { f ∈Cp (X ,2) : ∀i (1 ≤ i ≤ k → f (xi ) = 1)}

of Cp (X ,2) is Rothberger. For each F ∈ [X k ]<ω, we define HF = ⋃
{πi [F ] : i ∈ {1, . . . ,k}},

where πi is the projection of X k over the i -th coordinate, and we set VF = { f ∈ Cp (X ,2) :
∀x(x ∈ HF → f (x) = 1)}. For each n ∈ω, let

Un = {VF : F ∈Pn}.

Given f ∈ Φ, for each i ∈ {1, . . . ,k}, there is an open subset Vi ⊂ Ui such that xi ∈ Vi

and f [Vi ] ⊂ {1}. Since Pn is a π-network, there is F ∈ Pn such that F ⊂ V1 × ·· · ×Vk . So
f [πi [F ]] ⊂ {1} for each i ∈ {1, . . . ,k}. Thus f ∈ VF ∈ Un . This implies that Un is an open
cover of Φ. Therefore, since Φ is Rothberger, there is, for each n ∈ ω, Un ∈ Un such that
〈Un : n ∈ ω〉 forms a cover of Φ. Choose a Pn ∈ Pn such that Un = VPn . Let us prove that
{Pn : n ∈ ω} is a π-network at x. Let W = W1 ×·· ·×Wk be an open subset which contains
x. We can assume that Wi = W j if xi = x j and Wi ⊂Ui for each i , j ∈ {1, . . . ,k}. We choose
f ∈Cp (X ,2) such that

f [X \
k⋃

i=1
Wi ] ⊂ {0}
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3.1. Consequences of the Rothberger property in Cp (X ,2)

and f (xi ) = 1 for each i ∈ {1, . . . ,k}. Thus f ∈Φ, and consequently, there is n ∈ω such that
f ∈VPn . Now, if (y1, . . . , yk ) ∈ Pn , since Pn ⊂U , yi ∈Ui for each i ∈ {1, . . . ,k}. Moreover, due
to the fact that f ∈ VPn , we have that y1, . . . , yk ∈ ⋃k

i=1 Wi . However, Ui ∩U j = ; if xi 6= x j ,
then yi ∈Wi for each i ∈ {1, . . . ,k}. This shows that Pn ⊂W .

Theorem 3.7. If Cp (X ,2) is Rothberger, then X is pseudocompact.

Proof. We prove that X is bounded in X . We proceed by contradiction. Suppose that there
exists an infinite locally finite family {On : n ∈ω} of non-empty open subsets of X . We can
suppose without loss of generality that each element of the sequence is open and closed,
and that any two of its elements are disjoint. Let Y = X \

⋃
n∈ωOn . Since the sequence {On :

n ∈ ω} is locally finite and avery On is closed and open, Y is open and closed. Moreover,
the family {On : n ∈ω}∪ {Y } forms a partition of X in open and closed subsets of X . Then
Cp (X ,2) is homeomorphic to

(
∏

n∈ω
Cp (On ,2))×Cp (Y ,2).

For each n ∈ω, |Cp (On ,2)| ≥ 2. Th.en
∏

n∈ωCp (On ,2) contains a closed copy of 2ω. But 2ω

is not Rothberger (see [Sch99a, Theorem 2.3] or the arguments below Theorem 1.29).

Corollary 3.8. If Cp (X ,2) is Rothberger and X is a normal space, then X is countably com-
pact.

With this corollary we can characterize the Rothberger property in Cp (X ,2) when X is
a metrizable space.

Corollary 3.9. Let X be a metrizable space. Then the following statements are equivalent.

(a) Cp (X ,2)n is Rothberger for every n ∈ω;

(b) X is compact;

(c) Cp (X ,2) is countable.

Proof. Corollary 3.8 shows (a) implies (b). If X is compact, then X is second countable.
Then, Cp (X ,2) is countable. This shows (b) implies (c). And (c) implies (a) is obvious.

So, if X is the subspace {[(x,k)] : k ∈ω ∧ x ∈ {0}∪{1/n : n ∈N}} of the metrizable hedge-
hog J (ℵ0) (see [Eng89], Example 4.1.5), Cp (X ,2) is Menger (see Theorem 4.14 in [BS15b])
but it is not Rothberger. By the way, using the same Theorem 4.14 in [BS15b], if α is a
countable limit ordinal, then Cp (α,2) is Lindelöf and it is not Menger.
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3. THE ROTHBERGER PROPERTY IN Cp (X ,2)

3.2 The Rothberger property in Cp(X ,2) and
ω-monolithicity

Recall that the network weight of X , denoted by nw(X ), is the minimal cardinal of a net-
work for X . The spaces with a countable network weight are called cosmic.

Definition 3.10. Given a cardinal number κ, a space X is κ-monolithic if nw(cl(A)) ≤ κ for
any A ⊂ X with |A| ≤ κ.

The next theorem shows some examples of spaces X for which Cp (X ,2) is Rothberger.

Theorem 3.11. Let n ∈ω. If X is a countably compact ω-monolithic space and Cp (X ,2)n is
Lindelöf, then Cp (X ,2)n is Rothberger.

Proof. We only show that Cp (X ,2) is Rothberger; the (n ≥ 2)-cases are shown similarly. Let
〈Un : n ∈ ω〉 be a sequence of countable open covers of Cp (X ,2) consisting of canonical
open sets. For each n ∈ ω, suppose that Un = {[sn

m] : m ∈ ω} where sn
m ⊂ X × 2 is a finite

function and [sn
m] = { f ∈ Cp (X ,2) : sn

m ⊂ f }. Let A = ⋃
n,m∈ωdom(sm

n ). Since A is count-
able and X is ω-monolithic, cl(A) is cosmic, but X is countably compact, then cl(A) is a
compact cosmic space. Therefore, by Corollary 3.9, Cp (cl(A),2) is Rothberger.

Since cl(A) is a compact subspace of X , every continuous function h : cl(A) → 2 has
a continuos extension h̃ : X → 2. Therefore 〈Vn : n ∈ ω〉 is a sequence of open covers of
Cp (cl(A),2) where Vn = {V n

m : m ∈ ω} and V n
m = {h ∈ Cp (cl(A),2) : sn

m ⊂ h}. Thus, there is
g ∈ ωω such that

⋃
n∈ωV n

g (n) = Cp (cl(A),2). Let f ∈ Cp (X ,2). Then there is n ∈ ω such that
f � cl(A) ∈ V n

g (n). So, sn
g (n) ⊂ f � cl(A) ⊂ f . Hence, f ∈ [sn

g (n)]. This shows that
⋃

n∈ω[sn
g (n)] =

Cp (X ,2).

A space is Sokolov (or has the Sokolov property) if for any sequence 〈Fn : n ∈ω〉 where
Fn is a closed subspace of X n for any n ∈ω, there is a continuous function f : X → X such
that nw( f [X ]) ≤ω and f n[Fn] ⊂ Fn .

We compile some known facts about the Sokolov space in the following theorem. They
were proved by Sokolov in [Sok86; Sok93] or can easily be deduced from his results.

Lemma 3.12 ([Tka05]).

(a) Any closed subspace of a Σ-product of second countable spaces is Sokolov.

(b) If X is a Sokolov space and t∗(X ) ≤ω, then Cp (X ) is Lindelöf.

(c) Every Sokolov space is ω-monolithic.

(d) Every Sokolov space is normal.
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3.2. The Rothberger property in Cp (X ,2) and ω-monolithicity

By Theorem 3.7 and Proposition 3.6, if Cp (X ,2) is Rothberger, then X is pseudocom-
pact and t∗(X ) ≤ω. These last two properties plus the Sokolov property imply that Cp (X ,2)
is Rothberger:

Theorem 3.13. Let X be a Sokolov space. Then Cp (X ,2)n is Rothberger for any n ∈ω if and
only if X is pseudocompact and t∗(X ) ≤ω.

Proof. If Cp (X ,2) is Rothberger, by Proposition 3.6 and Theorem 3.7, t∗(X ) ≤ ω and X is
pseudocompact.
Reciprocally, if X is pseudocompact and t∗(X ) ≤ ω, by Lemma 3.12(b)-(d), Cp (X ) is Lin-
delöf and X is a countably compact ω-monolithic space. The conclusion follows from
Proposition 3.4, Proposition 3.1(a) and Theorem 3.11.

The compact subspaces of Σ-products of real lines are called Corson compact. More-
over, for any set A, Σ2A denotes the Σ-product of the two element discrete space around
the constant function zero; that is,

Σ2A = {x ∈ 2A : |{α ∈ A : x(α) 6= 0}| ≤ω}.

The space Cp (Σ2A) is a Lindelöf space [Arh92].

Corollary 3.14. For any Corson compact X , Cp (X ,2)n is Rothberger for any n ∈ω.

Proof. For any Σ-product of real lines Y , t∗(Y ) ≤ω (see [Arh92]). Then t∗(X ) ≤ω. Apply-
ing Lemma 3.12(a) and Theorem 3.13, Cp (X ,2)n is Rothberger for any n ∈ω.

Every Eberlein compact space is Corson compact [Arh92], so:

Corollary 3.15. For every Eberlein compact X , Cp (X ,2)n is Rothberger for every n ∈ω.

Let κ be a cardinal number. A space X is κ-stable if for each continuous image Y
of X , i w(Y ) ≤ κ if and only if nw(Y ) ≤ κ. We have the following relation between κ-
monolithicity and κ-stability:

Theorem 3.16 ([Arh92]). The space Cp (X ) is κ-monolithic if and only if X is κ-stable.

With this theorem and Theorem 3.11 we have the following.

Corollary 3.17. Let X be a subspace of Cp (Y ) where Y is ω-stable and Y k is Lindelöf for
each k ∈ω. If X is a compact space, then Cp (X ,2)n is Rothberger for each n ∈ω.

Proof. By Theorem 3.16, Cp (Y ) is ω-monolithic and, hence, X is ω-monolithic. Since Y k

is Lindelöf for each k ∈ω, by Corollary 2.12, Cp (X ,2)n is Lindelöf for each n ∈ω. The rest
of the proof follows the proof that we gave in Theorem 3.11.
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3. THE ROTHBERGER PROPERTY IN Cp (X ,2)

From the hypotheses of Corollary 3.17 and the structure of Corollary 2.12, the following
natural problem arises.

Problem 3.18. Let X be a compact subspace of Cp (Y ) where Y n is Rothberger for every
n ∈ω. Is Cp (X ,2) then Rothberger if X is compact?

In [Arh92, Theorem IV.8.16] the following theorem is proved with additional axioms.

Theorem 3.19 ([Arh92] MA+¬CH). Every zero-dimensional compact space X for which
Cp (X ) is Lindelöf, is ω-monolithic.

Corollary 3.20 (MA+¬CH). If X is a compact space with Cp (X ) Lindelöf, then Cp (X ,2)n is
Rothberger for any n ∈ω.

Proof. By Theorem 3.19, X is ω-monolithic. And since Cp (X ) is Lindelöf, Cp (X ,2)n is Lin-
delöf for any n ∈ω. The conclusion follows from Theorem 3.11.

E.A. Reznichenko showed that assuming MA+¬CH, every compact zero-dimensional
space X with Cp (X ,R) Lindelöf is ω-monolithic (see Theorem 3.19). This leads to the con-
jecture that, perhaps, strong covering properties of a suitable Cp (X ,Y ) might imply ω-
monolithicity of X . One might, e.g., ask whether Reznichenko’s result can be generalized:

Question 3.21. Assume X is a zero-dimensional compact space and that Cp (X ,2)n is Roth-
berger for every n ∈ω. Does this imply that X is ω-monolithic?

Theorem 3.36 gives a consistent counterexample.

3.3 The Rothberger property in Cp(X ,2) when X is a simple
space

Every simple space is normal. Then, if X is a simple space and Cp (X ,2) is Rothberger, by
Corollary 3.8, X is countably compact. But the only countably compact simple spaces are
the one-point compactifications of discrete spaces.
Given a set X , D(X ) denotes the set X with the discrete topology and A(X ) denotes the
one-point compactification of the discrete space D(X ). Of course, for any set X , A(X ) is
homeomorphic to A(|X |). Recall that the set of ordinals lower than an ordinal α endowed
with its order topology is denoted by α.

Theorem 3.22. Let X be a simple space. Then, the following statements are equivalent.

(1) X is the one point compactification of a discrete space;

(2) Cp (X ,2) is Rothberger;
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3.4. The Rothberger property in Cp (X ,2) when X is a GO-space

(3) Cp (X ,2)n is Rothberger for any n ∈ω.

Proof. The implication (3) → (2) is obvious. The implication (2) → (1) follows from the
remarks made in the paragraph preceding this theorem.
(1) → (3): Let κ be the cardinality of X . By Corollary 3.14, it is enough to see that A(κ) is a
Corson compact space. Indeed, for every α ∈ κ, we define fα : κ→ 2 as

fα(x) =


1, if x =α;

0, otherwise.

And let g : κ→ 2 be the constant function 0. Then K = { fα :α ∈ κ}∪{g } is a subspace of Σ2κ

homeomorphic to A(κ).

3.4 The Rothberger property in Cp(X ,2) when X is a
GO-space

For each ordinal α, we define αω = {β≤α : cof(β) ≤ω}. We consider αω with the topology
inherited from α.

Proposition 3.23. Any countably compact first countable subspace of ordinals is homeo-
morphic to αω for some ordinal α.

Proof. Let X be a countably compact first countable subspace of ordinals. Fix an ordinal
α such that |X | < |αω|. By recursion we define a sequence 〈xγ : γ ∈ αω 〉 of elements of X .
Let x0 = min X and for each γ ∈ αω define xγ = min Hγ where Hγ = {x ∈ X : ∀β(β < γ→
x > xβ)}, if Hγ 6= ;, and xγ = x0 in another case. Let δ be the minimal ordinal γ in αω such
that Hγ =;. By the countable compactness of X , δ is a successor ordinal; say ν+1. Then
X = {xβ :β≤ ν} and X is homeomorphic to νω.

In [Tka11], V.V. Tkachuk proved that any first countable countably compact subspace
of ordinals has the Sokolov property.

Theorem 3.24. Let X be a subspace of ordinals. Then the following statements are equiva-
lent.

(a) Cp (X ,2)n is Rothberger for each n ∈ω;

(b) X is first countable and countably compact;

(c) X is homeomorphic to αω for some ordinal α.
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Proof. If Cp (X ,2) is Rothberger, then X has countable tightness and, by Corollary 3.8, X
is countably compact. This proves (a) implies (b). By Proposition 3.23, (b) and (c) are
equivalent. Finally, Theorem 2.5 in [Tka11] shows that X is Sokolov and, by Theorem 3.13,
Cp (X ,2)n is Rothberger for every n ∈ω.

Now, we will characterize the Rothberger property in Cp (L,2) when L is any GO-space.
Before this we need some results. The first is about the space S∗ defined in Chapter 2.

Lemma 3.25 ([Buz07]). S∗ is closed in Cp (L,2).

For any notions (or classes) A and B, in [Sch99a], Marion Scheepers introduced two
general notions or selection principles:

S1(A ,B): For each sequence 〈Un : n ∈ ω〉 of members of A , there exists, for each
n ∈ω, Un ∈Un such that {Un : n ∈ω} ∈B.

Given an open cover U of space X , we say that U is aω-cover if for every finite subset F
there is an element U of U such that F ⊂U . The collection of all ω-covers of X is denoted
byΩ. In [Sak88] M. Sakai proved the following lemma.

Lemma 3.26. Let X be a space. Then X n is Rothberger for every n ∈ ω if and only if X
satisfies the selection principle S1(Ω,Ω).

An open cover U of a space X is called γ-cover if for each x ∈ X , the set {U ∈U : x ∉U }
is finite. The set of all γ-covers of X is denoted by Γ. The spaces that satisfy the principle
S1(Ω,Γ) are called γ-spaces by J. Gerlits and Zs. Nagy in [GN82]. Observe that

S1(Ω,Γ) → S1(Ω,Ω).

Corollary 1.16 shows that the Menger and Lindelöf properties agree in P-spaces. The next
lemma is proved in [GN82, p. 155] as a remark.

Lemma 3.27 ([GN82]). If X is a Lindelöf P-space, then X satisfies S1(Ω,Γ).

With this we can prove the following.

Theorem 3.28. Let L be a GO-space. The following statements are equivalent.

(a) T (L) is Lindelöf and L is countably compact;

(b) T (L)n is Rothberger for every n ∈ω and L is countably compact;

(c) Cp (L,2)n is Rothberger for every n ∈ω.

Proof.
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(a) implies (b). Let us show that T (L) is a P-space. Let S = ⋂
n∈ωUn , where each Un is

open in T (L). Fix x ∈ S. If x ∈ L, then {x} is open in T (L), hence x is in the interior of
S. Suppose that x ∈ cL. Assume x ∈ (−∞,∞). Since base neighborhoods at x in T (L) are
from the subspace topology on cL, for each n ∈ ω we can fix an interval (an ,bn) contai-
ning x such that (an ,bn) ⊂Un . We may assume that an ,bn ∈ L and the (n +1)-st interval
is inside the n-th interval. Then x ∈ ⋂

n∈ω(an ,bn) ⊂ S. If x is not in the interior of S then
either an → x or bn → x. Since x ∉ L, we arrived at a contradiction with the countable
compactness.
Since T (L) is a Lindelöf P-space, by Lemma 3.27, T (L) satisfies S1(Ω,Γ) and, hence,
S1(Ω,Ω). Then, by Lemma 3.26, every finite power of T (L) is Rothberger.

(b) implies (c). Given that T (L) is homeomorphic to S∗ (see Theorem 2.27) and the count-
able union of Rothberger spaces is Rotheberger (see Proposition 3.1(c)), the topological
sum

⊕
n∈ω(S∗)n is Rothberger. On the other hand, if we define the continuous function

F :
⊕

n∈ω(S∗)n → Sp (L,2) as F (F ) = f1 + ·· · + fk where F = ( f1, . . . , fk ), by Lemma 2.26,
F is surjective. Moreover, if we define Z = ⊕

n∈ω(S∗)n , then Z n is Rothberger for ev-
ery n ∈ ω. In this manner the n-th power function F n : Z n → Sp (L,2)2 of F defined
as F n(F1, . . . ,Fn) = (F (F1), . . . ,F (Fn)) is an onto continuous function. Then, by Proposi-
tion 3.1(b), Sp (L,2)n is Rothberger for every n ∈ω. But Sp (L,2) =Cp (L,2) if L is countably
compact. Therefore Cp (L,2)n is Rothberger for every n ∈ω.

(c) implies (a). If Cp (L,2) is Rothberger, by Corollary 3.8, L is countably compact. Since
Cp (L,2) is Rothberger, Cp (L,2) is Lindelöf and applying Lemma 3.25 and Theorem 2.27,
we conclude that T (L) is Lindelöf.

3.5 The Rothberger property in Cp(Ψ (A ) ,2)

In Chapter 2 the following was proved.

Theorem 3.29 ([BS15b]). Let A be a mad family and n ∈ω. Then, the following statements
are equivalent.

(a) Cp (Ψ(A ),2) is Lindelöf;

(b) Cp (Ψ(A ),2) is Menger;

(c) A k is concentrated on [ω]<ω for every k ≤ n.

We will enlarge this proposition with one more statement concerning the Rothberger prop-
erty in Cp (Ψ(A ),2). Before this we need some notations and terminology.
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3. THE ROTHBERGER PROPERTY IN Cp (X ,2)

For a mad family A , n ∈ω and j ∈ n, we define the subspace

nσ
j
m(A ) = { f ∈Cp (Ψ(A ),n) : ∀i ∈ n(i 6= j →| f −1(i )∩A | ≤ m)}

of Cp (Ψ(A ),n). It is not hard to see that this subspace is closed.

If A is a Mrówka mad family, then

Cp (Ψ(A ),n) = ⋃
m∈ω, j∈n

nσ
j
m(A ).

For every m ∈ω and i , j ∈ n, nσi
m(A ) is homeomorphic to nσ

j
m(A ). We are going to write

nσm(A ) instead of nσ0
m(A ). Thus, by Proposition 3.1(a) and Proposition 3.1(c):

Lemma 3.30. If A is a Mrówka mad family, then Cp (Ψ(A ),n) is Rothberger if and only if
nσm(A ) is Rothberger for each m ∈ω.

For each n ∈ω, we define
Q(n) = {g ∈ nω : |supp(g )| <ω}.

With this terminology we introduce the following property, which is a generalization of
when a mad family concentrates on [ω]<ω (see [HSTM05], the original definition is equiv-
alent to the caseF2

m(A )). For a mad family A and m,n ∈ω, we define

Fn
m(A ): For each open subset U of nω containing Q(n), there exists a countable subset

B ⊂A such that

{g ∈ nω : ∃ ĝ ∈Cp (Ψ(A ),n)( ĝ �ω= g ∧ supp(ĝ )∩A ∈ [A \B]m)} ⊂U .

The following generalized version of Theorem 4.2 in [HSTM05] holds:

Lemma 3.31. Let A be a mad family and n,m ∈ω. If nσm(A ) is Lindelöf, then the property
Fn

k (A ) is satisfied for all k ≤ m.

Proof. Suppose that the propertyFn
k (A ) is false for some k ≤ m. So, we may fix an open

set U in nω, a pairwise disjoint family {yα :α ∈ω1} ⊂ [A ]k and {gα :α ∈ω1} ⊂Cp (Ψ(A ),n)
such that

(i) Q(n) ⊂U , and

(ii) for each α ∈ω1, supp(gα)∩A = yα and gα �ω ∉U .
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Since {yα :α ∈ω1} are pairwise disjoint, any complete accumulation point of {gα :α ∈ω1}
must be in nσ0. Moreover, since U contains Q(n), there is an open subset V in nσm(A )
containing nσ0 such that f �ω ∈U for each f ∈V . Indeed, we can fix a set F consisting of
finite functions such that U = {g ∈ nω : ∃ s ∈F (s ⊂ g )}, then V = { f ∈ nσm(A ) : ∃ s ∈F (s ⊂
f )} is the required open set.
Thus, the open set V contains any complete accumulation point of {gα : α ∈ ω1} and, by
(ii), gα ∉ V for each α ∈ ω1. This means that the uncountable set {gα : α ∈ ω1} has no
complete accumulation points in nσm(A ) which is a contradiction.

We need the following terminology for the proof of the next lemma. For each n ∈ω and
each t ∈ωn we define

nσt (A ) = { f ∈Cp (Ψ(A ),n) : ∀i ∈ n(i 6= 0 →| f −1(i )∩A | ≤ t (i ))}.

The order ¹ will denote the lexicographic order on ωn . Observe that if m ∈ω and t ∈ωn is
the constant function m, then nσm(A ) = nσt (A ).

Lemma 3.32. Let A be a mad family, n ∈ω, t0 ∈ωn and p =∑n−1
i=1 t0(i ). IfFn

p (A ) is satisfied
and nσt (A ) is Rothberger for every t ≺ t0, then nσt0 (A ) is Rothberger.

Proof. We adapt, for our purposes, the respective part of the proof of Lemma 8.2 from
[BS15b]. The proof depends on two claims.

Claim 1. If V is an open subset of nσt0 (A ) containing nσt (A ) for each t ≺ t0, then there
is a countable subset B ⊂ A such that for any f ∈ nσt0 (A ) \ V , there is 1 ≤ i < n with
f −1(i )∩B 6= ;.

Indeed, since nσ0(A ) is a countable subset of nσt0 (A ), we can choose a sequence of
finite functions sk ⊂ Ψ(A )×n such that nσ0(A )∩ [sk ] 6= ; and nσ0(A ) ⊂ ⋃

k∈ω[sk ] ⊂ V ,
where [sk ] = { f ∈ nσt0 (A ) : sk ⊂ f } for each k ∈ ω. Note that s−1

k (i ) ⊂ ω for each 1 ≤ i < n
and, thus, sk �A is the constant zero function for each k ∈ω. We define the open subset
U of nω to be

⋃
k∈ω{ f ∈ nω : sk � ω ⊂ f } and note that Q(n) ⊂ U . Let B′ be a countable

subset of A given byFn
p (A ). Let B =B′∪⋃

k∈ω(s−1
k (0)∩A ) and let us show that B is the

required set in Claim 1. Let f ∈ nσt0 (A )\V and x = supp( f )∩A . Since V contains nσt (A )
for each t ≺ t0, |x| = p. Now, we proceed by contradiction supposing that x ∩B =;. Then
supp( f )∩A ∈ [A \ B]p . By the choice of B, f � ω ∈ U and consequently, there is k ∈ ω
such that sk � ω ⊂ f � ω and, since x ∩ s−1

k (0) = ; and sk �A is the constant zero, sk ⊂ f .
Thus f ∈V , which is impossible, and Claim 1 is proved.

Claim 2. If V is an open subset of nσt0 (A ) containing nσt (A ) for each t ≺ t0, then there
is a countable set Y ⊂ Cp (Ψ(A ),n) such that nσt0 (A ) \ V ⊂ ⋃

h∈Y ,t≺t0 (h + nσt (A )), where
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3. THE ROTHBERGER PROPERTY IN Cp (X ,2)

h +nσt (A ) = {h + g : g ∈ nσt (A )} and addition is taken mod n.

Let B be a countable subset of A given by Claim 1. Fix 1 ≤ j < n and let r j (i ) be 1 if
i = j and 0 otherwise. Define Y =⋃n−1

j=1 { f ∈ nσr j (A ) : f −1( j )∩A ⊂B}. It is not difficult to
show that Y is countable.
Let f ∈ nσt0 (A ) \ V . By the choice of B, there is 1 ≤ i < n and an element a ∈ f −1(i )∩B.
We define a continuous function g :Ψ(A ) → n as follows

g (x) =


n − i , if x ∈ a ∪ {a};

0, otherwise.

If t1 ∈ ωn is defined as t1(l ) = t0(l ) if l 6= i and t1(i ) = t0(i )−1, we obtain that f + g ∈
nσt1 (A ) and t1 ≺ t0. Let h ∈ Cp (Ψ(A ),n) be the additive inverse function of g . Observe
that h ∈ Y . Consequently, f = h+( f +g ) ∈⋃

h∈Y ,t≺t0 (h+nσt (A )). This concludes the proof
of Claim 2.

Now, we are going to finish the proof of our lemma. Let 〈Uk : k ∈ω〉 be a sequence of
covers of nσt0 (A ) and {Pt : t ¹ t0} a partition of ω into infinite sets. Since for each t ≺ t0,
nσt (A ) is Rothberger, there is, for each k ∈ Pt , Uk ∈Uk such that nσt (A ) ⊂⋃

k∈Pt Uk =Vt .
Then, by Claim 2, there is a countable set Y such that nσt0 (A ) \

⋃
t≺t0 Vt ⊂ ⋃

h∈Y ,t≺t0 (h +
nσt (A )). Since nσt (A ) is homeomorphic to h+nσt (A ) for each h ∈ Y and Y is countable,⋃

h∈Y ,t≺t0 (h + nσt (A )) is Rothberger (see Proposition 3.1(c)). Then, there is Uk ∈ Uk for
each k ∈ Pt0 such that

⋃
k∈Pt0

Uk covers nσt0 (A ) \
⋃

t≺t0 Vt . Therefore, the sequence {Uk :
k ∈ω} is the required choice.

With lemma we have the main theorem of this section.

Theorem 3.33. Let A be a mad family and n ∈ω. Then the following statements are equiv-
alent.

(a) Cp (Ψ(A ),2)n is Lindelöf;

(b) Cp (Ψ(A ),2)n is Menger;

(c) Cp (Ψ(A ),2)n is Rothberger;

(d) The propertyF2n

m (A ) is satisfied for all m ∈ω.

Proof. First observe that Cp (Ψ(A ),2)n is homeomorphic to Cp (Ψ(A ),2n). The implica-
tion (d) → (c) is proved as follows: by Lemma 3.30 it is sufficient to show that 2n

σm(A ) is
Rothberger for each m ∈ω. Indeed, fix m ∈ω and tm ∈ω2n

to be the constant function m.
Since 2n

σ0 is countable, this is Rothberger, and if we suppose that 2n
σt is Rothberger for
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each t ≺ t0 for some t0 ¹ tm , by hypothesis and Lemma 3.32, 2n
σt0 (A ) is Rothberger. By

induction, 2n
σtm (A ) = 2n

σm(A ) is Rothberger.
The implications (c) → (b) and (b) → (a) are clear. Finally, if Cp (Ψ(A ),2n) is Lindelöf, the
closed subspace 2n

σm(A ) of Cp (Ψ(A ),2n) is Lindelöf for each m ∈ω and, by Lemma 3.31,
F2n

m (A ) is satisfied for each m ∈ω. This proves that (a) → (d).

Evidently, A m + [ω]<ω is concentrated on [ω]<ω if and only if F2
m(A ) is satified. By

Proposition 2.46 and Theorem 3.33 we obtain:

Corollary 3.34. Let A be a mad family and n ∈ω. Then, the following statements are equi-
valent.

(a) Cp (Ψ(A ),2) is Lindelöf;

(b) Cp (Ψ(A ),2) is Menger;

(c) Cp (Ψ(A ),2) is Rothberger;

(d) A m is concentrated on [ω]<ω for every m ∈ω.

As was shown in [HSTM05], every finite power of Cp (Ψ(A ),2) is Lindelöf, where A is
the family constructed in Theorem 2.50 (and Theorem 4.5 in [HSTM05]). Theorem 3.33
then gives the following:

Theorem 3.35 (CH). There is a Mrówka mad family A such that Cp (Ψ(A ),2)n is Roth-
berger for each n ∈ω.

The following gives a consistent negative answer to Question 3.21.

Theorem 3.36 (CH). There is a Mrówka mad family A such that Cp (βΨ(A ),2)n is Roth-
berger for every n ∈ω.

Proof. It is sufficient to observe that the function

φ2n

m : 2n
σm(A ) → {g ∈Cp (βΨ(A ),2n) : ∀i ∈ 2n(i 6= 0 →|g−1(i )∩A | ≤ m)}

defined by φ2n

m ( f ) = f̃ is an onto continuous function where f̃ is the continuous extension
of f :Ψ(A ) → 2n to βΨ(A ).
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[Arh92] Topological Funtion Spaces, Mathematics and its Applications (Soviet Series),
Kluwer Academic Publishers, 1992.

D. BARMAN AND A. DOW

[BD11] Selective separability and SS+, Topology Proceedings, 37, 2011, pp. 181–204.

T. BARTOSZYŃSKI
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bounded subspace, 21

Cantor-Bendixson Theorem, 12
complete class, 18
concentrated, 33
cosmic space, 2
countable fan tightness, 16
countable fan tightness for finite sets, 16
countable supertightness, 15
countable tightness, 2

Dedekind completion, 23
Dedekind section, 23
dominating set, 7

Eberlein compact, 18

Generalized Ordered space, 23
GO-space, 23
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guessed set, 37

Hurewicz space, 20

LOTS, 23
Luzin set, 11

meager set, 37
Menger space, 3, 15
Mrówka mad family, 32

network, 1
network weight, 1
nowhere dense, 1
null set, 38

perfect function, 5
perfect set, 12
Pixley-Roy topology, 35
positive sets, 30
pseudointersection, 30

Rothberger space, 37

selective separable space, 35
simple space, 29
Sokolov space, 41
space of real numbers, 12
Stone-Čech compactification, 1
strong P-point, 30
strong countable fan tightness for finite

sets, 39
strong measure zero, 38
strongly null set, 38
subspace of ordinals, 26

unbounded set, 7

zero-dimensional space, 9
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