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Chapter 1

Introduction

1.1 Motivation

Adaptive control of dynamical systems with linear parameterizations has been extensively

studied and its theoretical framework is formally well established [1, 2]. If the parameters

of the system are non linear, it is often possible to introduce additional variables by means

of nonlinear transformations in order to obtain linear uncertain systems. However, there

is no systematic way to find such transformations and they may imply certain loss of

robustness or can cause stricter convergence conditions [3]. Many control problems of

practical importance ([3–6] and the references cited therein) and potential applications

in interdisciplinary fields (e.g. bio-chemical processes [7, 8], biology and neuroscience

[9, 10]) are written in terms of complex and nonlinearly parameterized dynamics. Adaptive

control of such kind of systems is currently a challenging problem and an active area of

research.

1.2 State of the art

When the nonlinear functions describing the system dynamics have some particular fea-

tures in the parameters (e.g., convexity/concavity or monotonicity), important progress

in developing new algorithms for direct adaptive control has been accomplished. For con-

cave/convex functions of the parameters, a Min-max optimization procedure combined

with a switching mechanism between regions of convexity/concavity was presented in [11]

relying on the basic ideas of [12, 13]. Such switching approach was recently removed in

1



Chapter 1. Introduction 2

[4–6], where monotonicity and general parameterizations were studied. These works share

a common strategy to deal with nonlinear parameterizations: an additional proportional

term, which serves as an interaction between the tracking dynamics and the adaptation

law, is added to the conventional integral Lyapunov-based adaptive algorithm. The im-

mersion and invariance methodology [4] relies upon the idea of system projection into

an invariant asymptotically attractive manifold with specified properties. In this case,

a mapping, directly related with the nonlinearity, is required to be monotone in the pa-

rameters or in a particular parameterization. The main goal of the proportional action

is to make the off-manifold variable (basically the estimation error) asymptotically con-

vergent. Based on the Lyapunov analysis of a ’linear-like’ error model, [5] introduces the

same degree of freedom in order to make a matrix, related to tracking and estimation

error, negative definite. In [6] the scheme is founded on an operator formalism where

monotonicity, w.r.t. the parameterization, is needed to satisfy certain growth nonlinear

requirements.

If convex, concave or monotone conditions are not satisfied, it is possible to ’convexify’

[8] or ’monotonize’ [14] the parameterization. In [8] a transformation was built to impose

a convex parameterization on a plant otherwise non-convex. In [14], derived from the

results of [4], monotonicity is not assumed a priori but can be enforced by means of the

aforementioned proportional term.

In contrast with the numerous results for direct adaptive control, reports of adaptive esti-

mation (or indirect control) for nonlinearly parameterized systems are few in the literature.

Regarding to general nonlinear parameterizations, a methodology based on a hierarchical

strategy was proposed in [15]. In [14], direct and indirect methodologies are obtained

from the same approach, i.e. the overall system is viewed and analyzed as the cascade of

a convergent estimator and a perturbed controlled system. This means that, even in the

direct version, a nonlinear condition of persistent excitation is implicitly involved but not

clearly established. In recent results [16, 17], adaptive control and estimation have been

considered for uncertainties within a nonlinear function of linear parameterizations.

On the other hand, nonlinear contraction theory [18, 19] has been recently developed as

a nonlinear analysis and design tool (see [20, 21] and the references therein). Contraction

is an incremental form of stability which studies convergence in terms of the proximity

among trajectories of a nonlinear system. A particular concept in contraction analysis

is the partial contraction introduced in [19]. In virtue of such concept, a key step in

contraction based adaptive design is to find a virtual system which has as particular

solutions the trajectories of the target and those of the closed-loop systems. Contraction
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of the virtual system implies that trajectories of the system under study, initialized within

the contraction region, converge exponentially to those of the target system.

1.3 Objectives and methodology

The main objectives of this work are

• To develop a general scheme of adaptive control for systems with nonlinear param-

eterizations based on contraction.

• To generalize the strong (classical) and the existing relaxed conditions for contrac-

tion with the objective of formulating a stability analysis for adaptive problems

completely immersed in the contraction framework.

• To establish relationships between the extended conditions for contraction and well

known results of conventional adaptive control.

• To apply the algorithms to a wide variety of academic examples and practical ap-

plications and verify performance by means of numerical simulations.

These objectives are accomplished by proposing an averaged condition for contraction and

by formulating a top-down approach of adaptive control which consists in two stages. At

the top-level, the actual system, the closed-loop system formed by the tracking (or esti-

mation) error dynamics and an adaptive algorithm, is proposed. At this stage, the adap-

tive algorithm may depend on the unknown parameters and hence is non-implementable.

Based on the structure of the actual system and the design objectives written as a desired

system, a virtual system, which has as particular solutions the trajectories of the under-

lined actual system and those of the desired system, is established. Averaged contraction

properties of the virtual system are then searched through a proper selection of the de-

sign degrees of freedom. Once the desired contraction requirements are established, at

the down-level, the adaptive algorithms are realized through a proportional-integral (PI)

scheme. The main advantages of this methodology include the design flexibility in the

proposal of the adaptive algorithms, the transparency in selecting the design degrees of

freedom, and simplicity of the resulting adaptive control designs, as compared to those

obtained by using Lyapunov techniques.
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1.4 Contributions

The contributions of this work are summarized in the following:

• A contraction characterization which extends the strong (classical) results given in

[18, 19] and strictly weaker than those relaxed conditions reported in [18, 22] is

formulated, as far as we know, for the first time in this work. Such extension, called

averaged condition for contraction, is instrumental for the convergence and stability

analysis of the proposed methodology.

• A general adaptive control framework, composed by schemes of estimation and

direct-indirect adaptive control, is derived for nonlinear systems with nonlinear pa-

rameterizations with stability and convergence analysis founded on averaged con-

traction conditions.

• A strategy to design adaptive controllers and identification schemes capable of deal-

ing with a large class of systems with nonlinear parameterizations that is based

on a top-down approach in which boundedness of trajectories is analyzed indepen-

dently of the algorithm implementation. Therefore, design is modular, simpler and

more transparent than those adaptive controllers developed under the Lyapunov

techniques.

• A properly designed virtual system which allows to conclude exponential conver-

gence of the tracking (or estimation) and parameters trajectories to the desired

ones is also provided. Similarly to the problem of finding an appropriate Lyapunov

function, the virtual system proposal is crucial to improve clearness when dealing

with contraction based adaptive problems.

• Nonlinear parameters models with practical significance such as fermentation dy-

namics, nonlinear friction systems and electro hydraulic mechanisms are successfully

controlled and/or identified by means of the proposed methodology. The main fea-

tures of the scheme are shown for each case and performance is verified by means

of numerical simulations.
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1.5 Notation and thesis structure

The gradient of scalar functions g(x) : Rn → R, x = [x1 x2 . . . xn]T ∈ Rn is denoted by

row vectors, i.e.
∂g(x)

∂x
=

[
∂g(x)

∂x1

∂g(x)

∂x2

. . .
∂g(x)

∂xn

]
.

The derivative of vector functions h(x) : Rn → Rm, h(x) = [h1(x) h2(x) . . . hm(x)]T ,

hi(x) : Rn → R, i = 1, . . . ,m w.r.t a scalar variable xi is a column vector given by

∂h(x)

∂xi
=




∂h1(x)
∂xi

∂h2(x)
∂xi
...

∂hm(x)
∂xi



.

The m× n Jacobian matrix of h(x) is denoted by

∂h(x)

∂x
=

[
∂h(x)

∂x1

∂h(x)

∂x2

. . .
∂h(x)

∂xn

]
.

Arguments of functions are omitted when clear in the context. Throughout the work, As,

λ(A), λ(A) and σ(A) stand for the symmetric part, largest eigenvalue, smallest eigen-

value, and largest singular value of matrix A, respectively. R≥t0 = {t ∈ R| t ≥ t0 ≥ 0} and

I represents the identity matrix. Symbol ‖·‖ will refer to the Euclidean norm of vectors and

‖ · ‖2 will denote the induced 2-norm for transfer functions. A function dependent on vir-

tual variables will be denoted by a subindex v, i.e. f(x,θv, t) , fv, R(ϕv, ϕd,x,θv) , Rv,

α(x)Tθv , ξv, fα(x, ξv, t) , fvα , αi(x)Tθvi , ξvi , fi(x, ξvi , t) , fvi , and (ϕv,θv) , zv.

Symbol (̂·) is used for estimated variables: f(x, θ̂, t) , f̂ , R(ϕ, ϕd,x, θ̂) , R̂, α(x)T θ̂ ,

ξ̂, fα(x, ξ̂, t) , f̂α, αi(x)T θ̂i , ξ̂i, fi(x, ξ̂i, t) , f̂i, and (ϕ, θ̂) , ẑ. For the desired vari-

ables the functions are referred as f(x,θ, t) , f , R(ϕd, ϕd,x,θd) , R, α(x)Tθ , ξ,

fα(x, ξ, t) , fα, αi(x)Tθi , ξi, fi(x, ξi, t) , fi, and (ϕd,θd) , zd.

The theoretical preliminaries necessary to develop the adaptive control algorithm for sys-

tems with nonlinear parameterizations and a formulation of the averaged condition for

contraction are depicted on Chapter 2. Averaged condition is instrumental for analyzing

the stability of the direct adaptive control scheme which is developed in Chapter 3 where

the main features of the methodology are exposed. Through a parallel analysis to that

done in Chapter 3, an identification framework is developed in Chapter 4 where parame-

terizations are restricted to those which motivate relationships with conventional results
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of adaptive control theory. For completing the adaptive control framework, the prob-

lem of indirect adaptive control is solved in Chapter 5. Finally, conclusions and future

perspectives are outlined in Chapter 6.



Chapter 2

Theoretical preliminaries

2.1 Contraction theory

Consider a nonlinear system

ẋ = f(x, t), x(t0) = x0, (2.1)

where x ∈ Rn is the state vector, t is the time, and f : Rn × R≥t0 → Rn is a nonlinear

vector field assumed continuously differentiable. Contraction theory focuses its analysis

on infinitesimal displacements δx of the state x at fixed time. The time evolution of these

displacements is obtained from (2.1) by computing its first variation, i.e.

δẋ =
∂f(x, t)

∂x
δx. (2.2)

A state-dependent change of coordinates can be introduced by means of a nonsingular

uniformly invertible matrix P(x, t). New coordinates are defined by δz , P(x, t)δx which

lead to

δż = J(x(t), t)δz, (2.3)

where J is given in the following definition.

Definition 2.1. [18] The dynamical system (2.1) is said to be contracting if there exists

a constant β > 0, called the contraction rate of (2.1), such that the generalized Jacobian

is uniformly negative definite, i.e.

J ,

(
Ṗ + P

∂f(x, t)

∂x

)
P−1 ≤ −βIn×n, ∀x ∈ X ⊂ Rn, ∀t ≥ t0, (2.4)

7
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where X is the contraction region. 4

If X = Rn, the contraction is global and if β = 0, system (2.1) is semi-contracting. The

following Lemma is the core of the concept of partial contraction.

Lemma 2.1. [19] Consider a nonlinear system of the form ẋ = f(x,x, t), and assume

that the virtual system ẋv = f(xv,x, t) is contracting with respect to xv. If a particular

solution of the virtual system verifies a smooth specific property, then all trajectories of

the original x system will verify this property exponentially.

By Definition 2.1, a system is contracting if the generalized Jacobian matrix is uniformly

negative definite ∀t ≥ t0. However, in many problems concerning adaptive systems, con-

traction analysis needs to rely on weaker conditions [22]. The following lemma, proposed

as part of the results of this work, gives a condition for contraction strictly weaker than

those in [18, 22]. It states that the system (2.1) is contracting if the symmetric part of

the generalized Jacobian matrix is uniformly negative definite in an averaged sense.

Lemma 2.2. Suppose that Js(x(t), t) is uniformly semi-negative definite (USND) and

assume that there exist T > 0 and λ > 0 such that

∫ t+T

t

Js(x(τ), τ)dτ ≤ −λIn×n, (2.5)

uniformly ∀t ≥ t0, and for all x ∈ X . Then (2.1) is contracting.

Proof. It will be shown that (2.1) is contracting by showing that, under the given as-

sumptions, δz(t) = 0 is a local exponentially stable trajectory of (2.3). By assumption

Js(x(t), t) is USND then, from d
dt
‖δz(t)‖2 = δzT (t)Js(x(t), t)δz(t), we conclude that δz(t)

and δż(t) are uniformly bounded. Hence, uniform boundedness of J is obtained from (2.3).

This argument allows us to use the approach of [23]. By [23], Theorem 1, the first variation

(2.3) will be locally exponentially stable in the particular solution δz(t) = 0 if there exists

an increasing sequence of times tk (k ∈ Z), tk →∞ as k →∞, where tk+1−tk ≤ T, T > 0,

such that the positive definite function V (δz(t)) = 1
2
δzT (t)δz(t) , V (t) satisfies

V (tk+1)− V (tk) ≤ −ν‖δz(tk)‖2, (2.6)

for some ν > 0, ∀k ∈ Z, for all x ∈ X . The time derivative of V (t) along trajectories of

(2.3) is equal to V̇ (t) = δzT (t)Js(x(t), t)δz(t). By integrating both sides of the previous

equation in the time interval [tk, tk+1], it is clear that (2.6) is equivalent to show that
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∫ tk+1

tk
δzT (τ)Js(x(τ), τ)δz(τ)dτ ≤ −ν‖δz(tk)‖2. By [23], Theorem 2, eq. (14) particular-

ized to linear, not time scaled (α = 1) systems (2.3), the previous inequality will hold if

condition (2.5) is true. The result follows by taking [tk, tk+1] = [t, t+ T ].

The dynamics in (2.1) is said to be contracting toward a flow-invariant linear subspace

M⊂ Rn if all its trajectories converge toward M exponentially. This is stated below.

Lemma 2.3. [24] Let p be the dimension of M and V be an (n− p)× n matrix, whose

rows are an orthonormal basis of M⊥. If PV ∂f
∂x

VTP−1 is uniformly negative definite for

some constant invertible matrix P in Rn−p, then system (2.1) is contracting toward M.

2.2 Tools on matrix theory

When two contracting systems are feedback interconnected [19], the overall dynamics

leads to a generalized Jacobian whose symmetric part can be written as

− Js =




J1s GT

G J2s


 . (2.7)

The right hand side of (2.7) is uniformly positive definite (UPD) if and only if J1s and

J2s are UPD and J2s > GTJ−1
1s G ([25], p. 472), this condition is satisfied if

λ(J1s)λ(J2s) > σ2(G), ∀x ∈ X ⊂ Rn, ∀t ≥ t0. (2.8)

Let some matrix M ∈ Rp×p, p ≥ 2, be such that it can be partitioned as

M =

[
A b

bT d

]
, (2.9)

where A ∈ R(p−1)×(p−1), b ∈ Rp−1, d ∈ R. Define A0 = dA − bbT . By means of the

identity [
A b

bT d

][
dIp−1×p−1 0

−bT 1

]
=

[
A0 b

0 d

]
,

it is clear that det(M) = det(A0)
dp

, hence, if d > 0, det(M) ≥ 0 if and only if det(A0) ≥ 0.
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2.3 Persistent excitation

Let us make explicit the parameters dependence on system (2.1)

ẋ = f(x,θ, t), x(t0) = x0, (2.10)

where θ ∈ Rp is the vector of unknown parameters. The following definition is established.

Definition 2.2. [26] Let the function α(x, t) : Rn×R≥t0 → Rp be bounded and globally

Lipschitz in x uniformly in t. Define x(ζ, t) as one solution of (2.10) where ζ = (x0,θ0, t0),

and θ0 ∈ Rp stands for initial conditions in tuning parameters. Function α(x(ζ, t), t) is

uniformly persistently exciting if and only if there exist εα > 0 and δ > 0 such that for

all t ≥ t0, x0 ∈ Rn, θ0 ∈ Rp,

∫ t+δ

t

α(x(ζ, τ), τ)αT (x(ζ, τ), τ)dτ ≥ εαIp×p. (2.11)

4



Chapter 3

Direct adaptive control

In this chapter, a direct adaptive control scheme for dynamical systems with nonlinear

parameterizations is developed and the main features of such methodology are described.

The design is based on a top-down approach in which establishment of the tracking error

dynamics and proposal of the (non-implementable) adaptive algorithms are at the top

stage of the procedure. Based on the resulting closed-loop (actual) system structure and

the design objectives expressed as a desired system, a virtual system, whose particular

solutions are the trajectories of the actual and desired dynamics, is proposed. Contractive

properties of the virtual system are then looked for through an appropriate selection of the

design degrees of freedom. At the down stage of the design, the adaptive algorithms are

realized through a proportional-integral (PI) scheme. It will be shown that, when the pa-

rameterization is linear, the proposed controller recovers gradient-like adaptive algorithms

with certain improved convergence property. Several nonlinearly parameterized models

in practical applications and academic examples are simulated to illustrate theoretical

features and performance of the methodology.

3.1 Motivating example

The following example from [5] motivates the design of the top-down methodology. Con-

sider

ẋ = −x− (1 + x2)θ + xθ2 − 1

3
θ3 + u, (3.1)

where x ∈ R is the state, u ∈ R is the control input and the parameter θ ∈ R belongs to an

interval [θ, θ] whose bounds are known. The main objective is to drive the tracking error

11
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ϕ(t) = x(t) − xr(t) exponentially to zero, where xr(t) is a known smooth reference with

|xr(t)| < xr, xr > 0, and, if possible, to reconstruct the nominal parameter while all the

closed-loop signals remain bounded. Suppose that over parameterization is not allowed

so θ is the only parameter to be adapted. By taking the notation fp(x, u) = −x+ u and

g(x, θ) = (1+x2)θ−xθ2 + 1
3
θ3, the control input u(x, θ̂) = −λϕϕ+g(x, θ̂)+ ẋr+x, λϕ > 0,

renders the tracking dynamics as

ϕ̇ = −λϕϕ+ g(x, θ̂)− g(x, θ). (3.2)

Consider, at the top-level of the design, the following (non-implementable) adaptive al-

gorithm
˙̂
θ = R(ϕ, ϕd, x, θ̂) + Γ(x)

(
g(x, θ̂)− g(x, θ)

)
, (3.3)

where ϕd denotes the desired tracking error of the controlled system, Γ(x) : R → R and

R(ϕ, ϕd, x, θ̂) : R × R × R × R → R, with R(ϕd, ϕd, x, θd) = 0, are design functions.

Subindex d will stand for desired trajectories, i.e. the behavior that the actual system

(3.2)-(3.3) would ideally have in absence of the parameter mismatch. The rationale of the

adaptive algorithm is that the adaptation of the parameter must be proportional to the

the parameter mismatch and have sufficient freedom for meeting the desired (contraction)

properties. Structure of (3.2)-(3.3) suggests that the desired dynamics can be written as

ϕ̇d =−λϕϕd + g(x, θd)− g(x, θ), (3.4a)

θ̇d=R(ϕd,ϕd,x,θd)+Γ(x)(g(x, θd)−g(x, θ)), θd(0)=θ. (3.4b)

From Lemma 2.1, it follows that a virtual system common to the actual and the desired

systems can be defined. The core of our methodology is based on rendering this virtual

system contracting in the generalized sense of Lemma 2.2 which guarantees mutual expo-

nential convergence among particular solutions. Towards this aim, the virtual system for

the actual (3.2)-(3.3) and the desired (3.4) dynamics is found to be

ϕ̇v = −λϕϕv + g(x, θv)− g(x, θ), (3.5a)

θ̇v = R(ϕv, ϕd, x, θv) + Γ(x) (g(x, θv)− g(x, θ)) . (3.5b)

To study its contraction properties under the approach of Lemma 2.2, the time integral

of the symmetric part of its Jacobian is calculated as (see (2.7))

−
∫ t+T

t

Js(τ)dτ =

∫ t+T

t

[
λϕ G(τ)

G(τ) J2s(τ)

]
dτ,
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where1 G = −1
2

(
∂Rv
∂ϕv

+ 1 + (x− θv)2
)

and J2s = −∂Rv
∂θv
−Γ(x) (1 + (x− θv)2). The objec-

tive now is to choose Rv and Γ(x) such that the sufficient conditions

J2s > λθ, λθ > 0, (3.6)

λϕλθ > G2, (3.7)

hold. In the following two different Rv functions, which show the flexibility of this method-

ology, are considered.

i) Rv = 0. With the choice Γ(x) = −γ, γ > 0, and by noticing that 1 + (x− θv)2 ≥ 1,

(3.6) is satisfied with λθ = γ. To verify (3.7) let wv , [x θv]
T , and consider

B = {wv ∈ R2 | |x− xr| ≤ rx, |θv − θ| ≤ rθ}, (3.8)

where rx, rθ are positive constants. Condition (3.7) turns into |x − xr| + |θv − θ| <√
4λϕγ − 1 − k, with k = |xr − θ|, which has to be fulfilled for wv evaluated in

wd = [x θd]
T and ŵ = [x θ̂]T . If wv = wd, the second term in the left hand side

of the previous inequality is constant and initial conditions on the state x can be

adjusted for satisfying it. When wv = ŵ, the condition turns into

|x− xr|+ |θ̂ − θ| <
√

4λϕγ − 1− k, (3.9)

which gives, in addition, the region of initial conditions for the estimate θ̂.

ii) Rv = −(ϕv − ϕd)(1 + (x − θv)
2). With this selection G is equal to zero. Hence

only (3.6) has to be verified. By taking Γ(x) = −γ, γ > 0, (3.6) can be written as

2|ϕv −ϕd|
(
|x− xr|+ |θv − θ|+ |xr − θ|

)
< γ which must be fulfilled for zv = zd and

zv = ẑ. It is clear that in the former case the condition is trivially satisfied. For the

later case, the region is restricted to |ϕ− ϕd| ≤ ϕ, ϕ > 0 and condition (3.6) is such

that

|x− xr|+ |θ̂ − θ| ≤
γ

2ϕ
− k. (3.10)

By choosing the design functions Rv and Γ(x) as above and under conditions (3.9) or

(3.10), semi-global contraction of the virtual system is concluded. The next step, in the

down-level of the design, is to realize the adaptive algorithm (3.3). For this purpose, the

1See the Notation section for definition of variables.
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following PI form of adaptive algorithms is considered

θ̂ = θ̂I(t) + θ̂P (x, ϕ), (3.11)

and its time derivative along (3.2) is fitted with (3.3). We obtain that ∂θ̂P (x,ϕ)
∂ϕ

= Γ(x) =

−γ, and

θ̂P (x, ϕ) = −γϕ, (3.12)

˙̂
θI(t) = R(ϕ, ϕd, x, θ̂)− γλϕϕ. (3.13)

The adaptive control scheme was applied to system and tested in simulation. The pa-

rameter was adjusted by (3.11)-(3.13). The initial conditions were chosen as x0 = 2 and

θ̂0 = 1. The nominal parameter was selected as θ = 1.5 and θ = 2 was considered. The

reference was taken as xr(t) = sin(t), then xr = 1. R(ϕ, ϕd, x, θ̂) was selected as in the

aforementioned analysis: i) R̂ = 0 with λϕ = 4, γ = 2, ii) R̂ = −ϕ(1 + (x− θ̂)2) by con-

sidering ϕd(0) = 0 and ϕ = |ϕ(0)| = x0, for γ = 15. For the given selections, conditions

(3.9) and (3.10) are fulfilled with k = 1. Tracking and estimated parameter errors are

depicted in Figure 3.1.

0 1 2 3 4

0

1

2

t[s]

Tracking error

 

 

0 1 2 3 4

−0.4

−0.2

0

t[s]

Parameter error

 

 

R̂ = 0
R̂ 6= 0

R̂ = 0
R̂ 6= 0

Figure 3.1: Tracking and parameter errors for the system (3.1) in closed-loop with
the adaptive control scheme, the parameter θ is adjusted with (3.11)-(3.13). Responses

for R̂ = 0 and R̂ 6= 0 are depicted in blue and green, respectively.
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3.2 Problem statement

Consider the dynamical system

ẋ = fp(x,u, t) + g(x,θ, t), x(t0) = x0, (3.14)

where x ∈ Rn denotes the plant state assumed accessible for measurement and u ∈ Rq

stands for the control input. θ ∈ Rp is the unknown parameters vector which belongs to a

compact set Ωθ ⊂ Rp. Functions fp : Rn×Rq×R≥t0 → Rn and g : Rn×Rp×R≥t0 → Rn are

assumed to have all the continuity and differentiability requirements needed. In addition,

it is supposed that all the solutions of (3.14) are well defined for all initial conditions and

∀t ≥ t0. The problem this chapter addresses consists in designing an adaptive control law

u = u(x, θ̂, t),

˙̂
θ = Ψ(x, θ̂, t),

such that all trajectories of the closed-loop system remain bounded and the state converges

to

Ω0 = {x ∈ Rn|ϕ(x(t), t) = 0} ,

where ϕ : Rn × R≥t0 → R is a C1 class error function which defines the target set.

Furthermore, if possible, to find conditions to reconstruct the unknown parameters vector

θ.

3.3 Adaptive controller design

The design of the adaptive control law starts by considering the time evolution of ϕ along

the trajectories of (3.14)

ϕ̇ =
∂ϕ

∂x
fp(x,u, t) +

∂ϕ

∂x
g(x,θ, t) +

∂ϕ

∂t
. (3.15)

The following assumptions are in order.

Assumption 3.1. There exists an ideal control ui(x,θ, t), such that in closed-loop with

(3.15) achieves the control objective according to the target dynamics

ϕ̇ =
∂ϕ

∂x
fp(x,ui(x,θ, t), t) +

∂ϕ

∂x
g(x,θ, t) +

∂ϕ

∂t
= −ψ(ϕ).
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4

Assumption 3.2. ψ : R→ R is a C1 class contracting function, i.e. there exists λψ > 0

such that −∂ψ(ϕ)
∂ϕ
≤ −λψ. 4

The (certainty-equivalence) adaptive control ui(x, θ̂, t) in closed-loop with (3.15) gives

ϕ̇ = −ψ(ϕ) + f(x, θ̂, t)− f(x,θ, t), (3.16)

where the definition ∂ϕ
∂x

fp(x,ui(x,θ, t), t) ,f(x,θ, t) was taken, analogously for f(x, θ̂, t).

Assumption 3.3. The first and the second partial derivatives of f(x,θ, t) with respect

to θ exist and are bounded in Ωθ. 4

For the error dynamics (3.16), the following (non-implementable) adaptive algorithm is

proposed

˙̂
θ = R(ϕ, ϕd,x, θ̂) + Γ(x)

(
f(x, θ̂, t)− f(x,θ, t)

)
, (3.17)

where R̂ and Γ(x) are the degrees of freedom needed to satisfy the generalized contraction

conditions.

Assumption 3.4. Functions Γ : Rn → Rp and R : R× R× Rn × Rp → Rp are C1 class

such that ∂ψ(ϕv)
∂ϕv

λ̄ (J2s) ≥ σ2 (G) for zv evaluated in zd and ẑ, where matrices J2s , G are

given by

J2s = −
[
∂Rv

∂θv
+ Γ(x)

∂fv
∂θv

]

s

, (3.18)

G = −1

2

(
∂Rv

∂ϕv
+
∂fTv
∂θv

)
. (3.19)

4

3.3.1 Stability analysis

The main goal of the adaptive control law can be written in terms of desired system

trajectories, namely

ϕ̇d = −ψ(ϕd), θ̇d = 0, θd(t0) = θ,
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which, suggested by the structure of (3.16) and (3.17), can be written as

ϕ̇d = −ψ(ϕd) + f(x,θd, t)− f(x,θ, t), (3.20a)

θ̇d = R(ϕd, ϕd,x,θd) + Γ(x) (f(x,θd, t)− f(x,θ, t)) , θd(t0) = θ, (3.20b)

where R(ϕd, ϕd,x,θd) = 0 is assumed. Based on this representation, the virtual system

ϕ̇v = −ψ(ϕv) + f(x,θv, t)− f(x,θ, t), (3.21a)

θ̇v = R(ϕv, ϕd,x,θv) + Γ(x) (f(x,θv, t)− f(x,θ, t)) , (3.21b)

is proposed. It can be readily verified that this virtual system has the trajectories of

the actual system (3.16)-(3.17) and that of the desired system (3.20) as two particu-

lar solutions. Therefore the design objectives are accomplished if this virtual system is

contracting under the approach of Lemma 2.2.

Theorem 3.1. Consider the system (3.14) in closed loop with the control ui(x, θ̂, t) and

the adaptive algorithm (3.17). Suppose that Assumptions 3.1-3.4 are satisfied. Let Γ(x)

and Rv be such that ∀t ≥ t0, ∀x ∈ X ,

∫ t+T

t

J2s(τ)dτ ≥ λθIp×p, (3.22)

σ2

(∫ t+T

t

G(τ)dτ

)
< λψλθT, (3.23)

for some λθ > 0, T > 0, for zv = zd and zv = ẑ, where J2s and G are defined in (3.18)

and (3.19), respectively. Then all the trajectories of (3.16) and (3.17) tend exponentially

to those of (3.20), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. The Jacobian of the virtual system (3.21) leads to a matrix −Js as in (2.7) with

J1s = ∂ψ(ϕv)
∂ϕv

, J2s and G as in (3.18) and (3.19), respectively. −Js is USPD by Assumptions

3.2 and 3.4. Hence the approach of Lemma 2.2 can be applied. By Assumption 3.2

and condition (3.22),
∫ t+T
t

J1s(τ)dτ and
∫ t+T
t

J2s(τ)dτ are UPD. Requirement (3.23) is

equivalent to (2.8). The result follows by reversing (2.5) of Lemma 2.2 and by taking

λ ≤ λ
(
−
∫ t+T
t

Js(τ)dτ
)

.

By taking advantage of the choice of Rv, it is possible to make the off-diagonal element G

equal to zero. Therefore, −Js can be written as a block diagonal matrix whose elements are

J1s and J2s . The analysis of tracking and parameters error is decoupled and requirements
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(3.22)-(3.23) are reduced to check only the positivity property (3.22). These ideas are

established in the following corollary.

Corollary 3.1. Under Assumptions 3.1-3.3, let R̂ be given by

R̂ = −(ϕ− ϕd)
∂f̂T

∂θ̂
. (3.24)

Consider the matrix

J2s =

[
(ϕv − ϕd)

∂2fv

∂θ2
v

− Γ(x)
∂fv
∂θv

]

s

. (3.25)

Let Γ(x) be such that J2s is USPD and condition (3.22) is satisfied for zv = zd and zv = ẑ,

∀t ≥ t0, ∀x ∈ X .

(P1) If λθ = 0 then all the trajectories of (3.16)-(3.17) are bounded and limt→∞ ϕ(t) =

ϕd(t).

(P2) If λθ > 0 then all the trajectories of (3.16)-(3.17) tend exponentially to the trajec-

tories of (3.20), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. Given the selection of R̂, the corresponding Rv is such that G = 0 in (3.19). Hence,

the diagonal elements of −Js are J1s = ∂ψ(ϕv)
∂ϕv

and J2s as in (3.25). By Assumption 3.2

and the properties of Γ(x), −Js is USPD. By Assumption 3.2, we have
∫ t+T
t

J1s(τ)dτ ≥
λψT . If (3.22), i.e.

∫ t+T
t

J2s(τ)dτ ≥ λθIp×p, is satisfied for λθ = 0,
∫ t+T
t

J2s(τ)dτ is

positive semidefinite and all the trajectories started in X × Ωθ will remain therein for

all t ≥ t0. Let M , {(ϕ, θ̂)|ϕ = 0, f̂ − f = 0, ∀t ≥ t0, ∀x ∈ X} ⊂ R × Rp and

V = [1 0 ... 0] ∈ R1×(p+1). Notice that M is flow-invariant. It follows from the fact

that V
∫ t+T
t

Js(τ)dτ VT = −
∫ t+T
t

J1s(τ)dτ ≤ −λψT and Lemma 2.3 that all trajectories

will converge to M. This proves (P1). If λθ > 0 then (P2) follows by reversing (2.5) of

Lemma 2.2 and taking λ ≤ min(λψT, λθ).

3.4 Implementation of the adaptive algorithm

Realization schemes will be searched through different PI based estimation vectors θ̂(t)

proposed accordingly to the available signals. By adjusting the time derivative of θ̂(t)

along (3.16) with (3.17), implementation expressions will be obtained. To this aim, let

θ̂(t) = θ̂I(t) + θ̂P (x, ϕ, t) + ρ(x, t), (3.26)
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be, where θ̂I : R≥t0 → Rp is a continuous and differentiable function, θ̂P : Rn×R×R≥t0 →
Rp is a degree of freedom responsible for introducing interactions between tracking and

parameter error dynamics, and ρ : Rn × R≥0 → Rp is continuous and differentiable in its

arguments designed to avoid ẋ coefficients. By comparing (3.17) and temporal evolution

of (3.26) along (3.16) we have

Γ(x) =
∂θ̂P (x, ϕ, t)

∂ϕ
, (3.27)

˙̂
θI = R(ϕ, ϕd,x, θ̂) +

∂θ̂P
∂ϕ

ψ(ϕ)− ∂ρ

∂t
− ∂θ̂P

∂t
, (3.28)

and ρ(x, t) is such that

∂ρ(x, t)

∂x
= −∂θ̂P

∂x
. (3.29)

The key condition to exclude ẋ influence (3.29) will have solutions if and only if the

Poincaré Lemma [6]

∂

∂x

(
∂θ̂P
∂x

)
=

(
∂

∂x

(
∂θ̂P
∂x

))T

, (3.30)

is satisfied. If (3.30) does not hold or if signal ẋ is available, the following strategy is

adopted. By setting ρ(·) to 0 in (3.26), a term proportional to the partial derivative of

θ̂P (x, ϕ, t) w.r.t. x arises in (3.17). This term can be canceled by means of modifying

θ̂I(t), namely

˙̂
θI = R(ϕ, ϕd,x, θ̂) +

∂θ̂P
∂ϕ

ψ(ϕ)− ∂θ̂P
∂x

ẋ− ∂θ̂P
∂t

. (3.31)

Integral action (3.31) can be readily implemented if ẋ is available. Otherwise precise

estimations of ẋ must be obtained from derivative observers (see e.g. [27], [28]). In-

stead of excluding ẋ theoretically, realization (3.31) includes its signal explicitly in the

implementation which avoids complexities in the verification of (3.30). However, if ẋ is

unknown, design becomes more intricate since it has to be considered in combination with

an observation scheme.

3.5 Particular forms of parameterization

If nothing is said about the structure specifying the plant dynamics in (3.14), or equiv-

alently f(x,θ, t) in (3.16), it is hard, if not impossible, to go further than conditions

(3.22)-(3.23) or (3.22) with matrix (3.25) to analyze contraction of the overall system. In

these conditions, the role of persistent excitation of closed-loop signals in the convergence
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of estimated parameters is unclear. To address this issue and considering the large class

of practical problems of interest, particular structures describing the plant dynamics are

considered in the following.

3.5.1 Nonlinear function of linear parameterization

Let the function f(x,θ, t) describe the error dynamics in (3.16) be of the form

f(x,θ, t) , fα(x,αT (x)θ, t), (3.32)

i.e. a nonlinear function of a linear parameterization, where α : Rn → Rp is the regressor,

assumed to be bounded and continuous function of the state x.

The structure of (3.32) leads to the following partial derivatives

∂fα
∂θv

=

(
∂fα(x, ξv, t)

∂ξv

∣∣∣∣
ξv=αT θv

)
αT (x),

∂2fα

∂θ2
v

=

(
∂2fα(x, ξv, t)

∂ξ2
v

∣∣∣∣
ξv=αT θv

)
α(x)αT (x).

Consider R̂ as in (3.24) and the implementation condition (3.27) with

θ̂P (α(x), ϕ) = −Γ̄ sign


 ∂fα(x, ξ̂, t)

∂ξ̂

∣∣∣∣∣
ξ̂=αT θ̂


α(x)ϕ, (3.33)

where Γ̄ = Γ̄T ∈ Rp×p is a constant gain matrix. J2s takes the particular form

J2s =
[
Eαα(x)αT (x)

]
s
, (3.34)

where

Eα =

(
(ϕv − ϕd)

∂2fvα
∂ξ2

v

Ip×p +

∣∣∣∣
∂fvα
∂ξv

∣∣∣∣ Γ̄
)∣∣∣∣

ξv=αT θv

. (3.35)

In this case, due to the particular choices of R̂ and θ̂P (α(x), ϕ), the design of the algorithm

depends only on the nonlinear function of the linear parameterization. Here is when the

condition of persistent excitation of the regressor naturally arises. The result is established

in the following theorem.

Theorem 3.2. Consider the class of systems given by (3.14) resulting in the tracking

error dynamics (3.16) whose nonlinearity is given by (3.32), in closed-loop with the control
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ui(x, θ̂, t) and the adaptive algorithm (3.26)-(3.29), where R̂ and θ̂P (α(x), ϕ) are given

in (3.24) and (3.33), respectively. Suppose that Assumptions 3.1-3.3 are valid. Assume

that there exists a matrix gain Γ̄ = Γ̄T ∈ Rp×p given in (3.35) such that ∀t ≥ t0, ∀x ∈ X

Eα ≥ λEIp×p, (3.36)

for some λE > 0, and for zv = zd and zv = ẑ.

(P3) Then, all trajectories of (3.16)-(3.17) are bounded and limt→∞ ϕ(t) = ϕd(t).

(P4) If, in addition, the regressor α(x) is uniformly persistently exciting in the sense of

Definition 2.2, then all the trajectories of (3.16)-(3.17) tend exponentially to those

of (3.20), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. Under the given selections of design functions, the diagonal blocks of matrix −Js

are J1s = ∂ψ(ϕv)
∂ϕv

and J2s as in (3.34) which, by condition (3.36), is USPD. By this fact and

Assumption 3.2, −Js is USPD. If the regressor is not UPE then
∫ t+T
t

J2s(τ)dτ ≥ λθIp×p

with λθ = 0, for any T > 0. Hence, all the trajectories started in X × Ωθ will remain

therein for all t ≥ t0. Moreover, by (P1) Corollary 3.1, they will tend exponentially to the

flow-invariant setM , {(ϕ, θ̂)|ϕ = 0, f̂α−fα = 0, ∀t ≥ t0,∀x ∈ X} ⊂ R×Rp. Then (P3)

follows. Now consider the case when the regressor is UPE and take T = δ. By Assumption

3.2,
∫ t+T
t

J1s(τ)dτ ≥ λψT . By inequality (3.36) and considering that there exists εα > 0

given in Definition 2.2, the lower diagonal block is such that
∫ t+T
t

J2s(τ)dτ ≥ λEεαIp×p.

The result follows by taking λθ ≤ λEεα, reversing (2.5) of Lemma 2.2 and selecting

λ ≤ min(λψT, λθ).

3.5.2 Linear parameterization

Consider the case when the function in (3.32) is linear in the parameterization, i.e.,

fα(x,αT (x)θ, t) = kαT (x)θ,

where k 6= 0 is known, α(x) = [α1(x) α2(x) . . . αp(x)]T ∈ Rp, and θ = [θ1 θ2 . . . θp]
T ∈

Rp. Take the target dynamics as ϕ̇d = −λϕϕd, λϕ > 0, R̂ as in (3.24), ρ(x, t) satisfying2

(3.29), θ̂P = −Γ̄ sign(k)α(x)ϕ, and
˙̂
θI as in (3.28). It is easy to verify that this adaptive

2The adaptive algorithm (3.31) can be equivalently used if (3.29) is not achieved.
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law is equivalent to the composite adaptation scheme [29] (Section 9.2, p. 411) with an

error dynamics
˙̃θ = −|k|Γ̄α(x)αT (x)θ̃ − kα(x)ϕ.

This composite adaptation law was shown to have an improved convergence property [30].

3.6 Extension of the stability analysis for a general-

ized Jacobian

Conditions (3.22)-(3.23) in Theorem 1 may be stated in terms of a generalized Jacobian by

introducing a transformation matrix P whose influence is established in Definition 1, see

(2.4). Throughout this thesis, we will work with constant, block-diagonal transformation

matrices P = diag (pψ,Pθ) , where pψ > 0 and Pθ = PT
θ ∈ Rp×p is nonsingular. Elements

of matrix −Js are modified as

J2m , −
[
Pθ

(
∂Rv

∂θv
+ Γ(x)

∂fv
∂θv

)
P−1
θ

]

s

, (3.37)

Gm = −1

2

(
1

pψ
Pθ
∂Rv

∂ϕv
+ pψP−1

θ

∂fTv
∂θv

)
. (3.38)

The contraction properties of the corresponding virtual system are stated in the following

Theorem.

Theorem 3.3. Under Assumptions 3.1-3.3, take the design function

R̂ = −(ϕ− ϕd)(pψP−1
θ )2∂f̂

T

∂θ̂
. (3.39)

Let Γ(x), pψ > 0, and non singular Pθ = PT
θ be such that

J2m =

[
Pθ

(
(pψP−1

θ )2∂
2fv

∂θ2
v

(ϕv − ϕd)− Γ(x)
∂fv
∂θv

)
P−1
θ

]

s

,

is USPD and

∫ t+T

t

J2m(τ)dτ ≥ λmIp×p, (3.40)

for some λm > 0, T > 0, ∀t ≥ t0, ∀x ∈ X , and for zv = zd, zv = ẑ.
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(P5) If λm = 0 then all the trajectories of (3.16)-(3.17) are bounded and limt→∞ ϕ(t) =

ϕd(t).

(P6) If λm > 0 then all the trajectories of (3.16)-(3.17) tend exponentially to the trajec-

tories of (3.20), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. The proof follows the same lines as in Corollary 3.1 with the generalized Jacobian.

Remark 3.1. In comparison with J2s in (3.25), the presence of the non-identity metric

leads to an extra factor (pψP−1
θ )2 in the second partial derivative term, which gives more

flexibilities to deal with convex/concave parameters. As the second partial derivative has

fixed sign, the factor due to the metric allows to make this term sufficiently large, while

Γ(x) is used to reduce the first partial derivative term. The same idea can be used to

deal with convex/concave parameterizations as will be seen in the following. 4

3.6.1 Generalization of the system parameterization: one linear-

one nonlinear forms

In practice, the uncertain parameters may appear in both linear and nonlinear forms dis-

tributed in several nonlinearities. To deal with this situation, the tracking error dynamics

(3.16) is extended to

ϕ̇ = −ψ(ϕ) + αT
0 (x)θ̃0 +

Np∑

j=1

(f̂j − fj), (3.41)

where θ̃0 = θ̂0 − θ0 ∈ Rp0 , and f̂j, fj are defined in the Notation section. To clarify the

notation, in this subsection we take Np = 1 and the nonlinearity is

f(x,θ, t) = αT
0 (x)θ0 + f1(x,αT

1 (x)θ1, t), (3.42)

where θi ∈ Rpi stands for the linear (i = 0) and the nonlinear (i = 1) parameters vectors.

Let θ = [θT0 θT1 ]T ∈ Rp, with p0 +p1 = p, be the compiled vector of parameters. Functions

αi(x) : Rn → Rpi , i = 0, 1 are the regressors considered bounded functions of the state x

and

α(x) = [αT
0 (x) αT

1 (x)]T ∈ Rp. (3.43)

In this case, matrix Pθ is subdivided as Pθ = diag (P0,P1) where matrices Pi = PT
i ∈

Rpi×pi , i = 0, 1 are nonsingular. By following the steps of Theorem 3.2, the functions R̂
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and θ̂P (α(x), ϕ) are established and the analysis is carried out depending on the intrinsic

properties of the system parameterization. Take R̂ as in (3.39) and define the gain matrix

of (3.33) as Γ̄ = diag (Γ0,Γ1) ,where Γi = ΓT
i ∈ Rpi×pi , i = 0, 1. Define the following

matrix

E1 =
∂2fv1
∂ξ2

v1

(ϕv − ϕd)(pψP−1
1 )2 +

∣∣∣∣
∂fv1
∂ξv1

∣∣∣∣Γ1. (3.44)

Matrix J2m of (3.40) is given by

∫ t+T

t

J2m(τ)dτ =

∫ t+T

t

[
F11 F12

FT
12 F22

]
dτ, (3.45)

where

F11 =
[
P0Γ0α0α

T
0 P−1

0

]
s
, (3.46)

F22 =
[
P1E1α1α

T
1 P−1

1

]
s
, (3.47)

F12 =
1

2
(∂fv1P0Γ0α0α

T
1 P−1

1 + sfP
−1
0 α0α

T
1 Γ1P1), (3.48)

and ∂fv1 ,
∂f1(x,ξv1 ,t)

∂ξv1
, sf , sign(∂fv1). Stability in this section is established by analyzing

the USPD condition for J2m and UPD of (3.45). A relationship with the persistent

excitation condition for the complete regressor (3.43) will arise.

Theorem 3.4. Consider the class of systems (3.14) which lead to error functions of the

form (3.41), with Np = 1, in closed loop with the control ui(x, θ̂, t) and the adaptive

algorithm (3.26)-(3.29) where θ̂P (α(x), ϕ) and R̂ are given in (3.33) and (3.39), respec-

tively. Assume that the compiled regressor (3.43) is persistently exciting in the sense of

Definition 2.2 for some positive constants δ, εα. In addition, suppose that there exist

pψ > 0, Γi = ΓT
i ∈ Rpi×pi, and nonsingular matrices Pi = PT

i ∈ Rpi×pi , i = 0, 1, such

that E1 ≥ λE1Ip1×p1, for some λE1 > 0, and the following requirements are simultaneously

achieved ∀t ≥ t0, ∀x ∈ X and for zv = zd and zv = ẑ

D11 =

∫ t+T

t

(
F11(τ)− ε′α0(τ)αT

0 (τ)
)
dτ > d0Ip0×p0 , (3.49)

D22 =

∫ t+T

t

(
F22(τ)− ε′α1(τ)αT

1 (τ)
)
dτ > d1Ip1×p1 , (3.50)

λ̄(D11)λ̄(D22) > σ2(D12), (3.51)

where

D12 =

∫ t+T

t

(
F12(τ)− ε′α0(τ)αT

1 (τ)
)
dτ,
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for some ε′ > 0, T > 0, di > 0, i = 0, 1. Then all the trajectories of (3.41) and (3.17)

tend exponentially to those of (3.20), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. From (3.41), (3.21a) can be reformulated as ϕ̇v = −ψ(ϕv) + αT
0 (x)θ̃v0 + fv1 − f1.

Analogously, the virtual parameters error is θ̇v = Rv + Γ(x)(αT
0 (x)θ̃v0 + fv1 − f1). The

symmetric generalized Jacobian −Js of this new virtual system is block diagonal whose

elements are J1m = ∂ψ(ϕv)
∂ϕv

and J2m given by

J2m =

[
F11 F12

FT
12 F22

]
.

It will be shown that J2m is USPD by demonstrating that there exists some βN > 0 such

that M = J2m − βNααT is USPD, where α = [αT
0 αT

1 ]T ∈ Rp for any p. By proceeding

by induction take p = 2 and αi ∈ R, i = 0, 1, i.e. scalar functions αi. Define Γi = γi,

Pi = pi > 0, i = 0, 1, γ′ = 1
2

(
∂fv1

p0
p1
γ0 + sf

p1
p0
γ1

)
. In this case

M =

[
(γ0 − βN)α2

0 (γ′ − βN)α0α1

(γ′ − βN)α0α1 (λE1 − βN)α2
1

]
,

which is USPD if 0 < βN < γ0 and βN ≤ γ0λE1
−γ′2

γ0λE1
−2γ′

.

Let us suppose the result valid when α = [αT
0 αT

1 . . . αT
Np

]T ,
∑Np

i=0 pi = p = k. This means

that there exists βNk > 0 such that Mk = J2m−βNkααT is USPD, where J2m given in the

general matrix (4.50) with j = k. The result must be shown for p = k + 1. Without loss

of generality take P = Ik+1×k+1, Γi = γiIpi×pi , i = 0, . . . , k + 1 and one scalar additional

term, i.e. αk+1 ∈ R. Matrix Mk+1 can be defined under the definition (2.9) with A = Mk,

b = 1
2
[γ′0α

T
0 αk+1 . . . γ′kα

T
kαk+1]T , where γ′l = ∂fvlγk+1 + sfk+1

γl − 2βNk+1
, βNk+1

> 0, l =

0, ..., k, and d = (λEk+1
−βNk+1

)α2
k+1. The conclusion follows if it is possible to find γi such

that det(A0) ≥ 0. In summary, by Assumption 3.2 and the previous argument, matrix

−Js is USPD. On the other hand, by taking T = δ of Definition 2.2, and if requirements

(3.49)-(3.51) are satisfied, then

∫ t+T

t

J2m(τ)dτ > ε′
∫ t+T

t

α(x(τ))αT (x(τ))dτ ≥ εαε
′Ip×p. (3.52)

The result follows by defining λm ≤ εαε
′, reversing (2.5) of Lemma 2.2 and taking λ ≤

min(λψT, λm).
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In general, the metric selection is not obvious. In the following, a systematic approach

for choosing the metric and a sufficient condition for positivity of (3.45) are obtained.

Let A and B be two positive definite matrices of the same dimensions. Then there exists

some positive constant ε′ such that A−ε′B is PD. By the previous fact, if Γi, i = 0, 1 and

P are selected such that (3.45) is positive definite, then such ε′ which satisfies (3.49)-(3.51)

exists. If linear regressor is of persistent excitation,
∫ t+T
t

α0(x(τ))αT
0 (x(τ))dτ ≥ ε0Ip0×p0

for some ε0 > 0. By simple calculations it can be shown that

∫ t+T

t

F11(τ)dτ ≥ ε0
[
P0Γ0P

−1
0

]
s
. (3.53)

On the other hand, matrix E1 in (3.44) is symmetric because P1 (equivalently P−1
1 ) and

Γ1 are symmetric. Assume that pψ, P1, and Γ1 can be chosen such that

E1 ≥ λE1Ip1×p1 , (3.54)

for some λE1 > 0, uniformly in t and x, for zv = zd and zv = ẑ.

By condition (3.54), matrix
∫ t+T
t

F22(τ)dτ is bounded by

∫ t+T

t

F22(τ)dτ ≥ λE1

[
P1

∫ t+T

t

α1(x(τ))αT
1 (x(τ))dτP−1

1

]

s

.

If regressor α1(x) is persistently exciting then
∫ t+T
t

α1(x(τ))αT
1 (x(τ))dτ ≥ ε1Ip1×p1 , for

some ε1 > 0. The previous calculations lead to

∫ t+T

t

F22(τ)dτ ≥ λE1ε1Ip1×p1 , (3.55)

valid for any matrix P1 = PT
1 . By the use of the monotonicity result for symmetric

matrices ([31], p. 469) in (3.53) and (3.55), and considering that the largest eigenvalues

are positive constants, it is possible to write

λ̄

(∫ t+T

t

F11(τ)dτ

)
λ̄

(∫ t+T

t

F22(τ)dτ

)
≥ λE1ε0ε1λ̄

([
P0Γ0P0

−1
]
s

)
. (3.56)
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On the other hand, by defining

Λf ,
∫ t+T

t

∂fv1α0(x(τ))αT
1 (x(τ))dτ, (3.57)

Λα ,
∫ t+T

t

sfα0(x(τ))αT
1 (x(τ))dτ, (3.58)

the off-diagonal element can be written as

∫ t+T

t

F12(τ)dτ =
1

2

[
P0Γ0 P−1

0

]
Λ

[
P−1

1

Γ1P1

]
,

where Λ , diag(Λf ,Λα). Due to the fact that for no necessarily square matrices of

appropriate dimensions A and B, the inequality σ(AB) ≤ σ(A)σ(B) holds ([32], p. 178),

by using it successively for a product of three matrices, and by squaring both sides of the

inequality, we have

σ2

(∫ t+T

t

F12(τ)dτ

)
≤ 1

4
σ2
([

P0Γ0 P−1
0

])
σ2 (Λ)σ2

([
P−1

1

Γ1P1

])
. (3.59)

By using (3.56) and (3.59) in condition (2.8), the complete matrix (3.45) will be positive

definite if matrices Pi and Γi can be designed such that the sufficient condition

σ2(Λ) <
4λE1ε0ε1λ̄

([
P0Γ0P

−1
0

]
s

)

σ2
([

P0Γ0 P−1
0

])
σ2

([
P−1

1

Γ1P1

]) , (3.60)

is satisfied uniformly in t, ∀x ∈ X , and for zv = zd and ẑ.

From Definition 2.2, it is clear that if α(x) = [αT
0 (x) αT

1 (x)]T is UPE then each regressor

αi(x, t) is UPE, but the converse is in general not true. That is, to produce a compiled

UPE regressor it requires that not only each regressor is UPE separately, but also the

correlation between them, involved through σ2(Λ), must satisfy (3.60). The contraction

requirement (3.60) ensures parameter convergence hence, may be viewed as an extended

UPE condition: it is fulfilled if each regressor αi(x, t) is UPE and the correlation in terms

of (3.57)-(3.58), is sufficiently small to satisfy it. This is important in practice to guide

how to select the input signals in order to guarantee the parameter estimates convergence

in some applications. To clarify this statement, the following example, an extension of

that developed in [33], is analyzed3

3All related values for all implementations are given in Table 4.1.
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3.6.1.1 Examples: regressors dependent on internal and external signals

The academic system is given by

ẋ1 = x2,

ẋ2 = −λgx2 + αT
0 (t)θ0 + exp(−αT

1 (t)θ1) + u, λg > 0, (3.61)

where x = [x1 x2]T is the state, the scalar signal u is the control input, and αi(t) ∈
R2, θi ∈ R2, are the linear (i = 0) and nonlinear (i = 1) regressors and parameters,

respectively. To show the importance of the persistent excitation of α(t) = [αT
0 (t) αT

1 (t)]T

and its relationship with nonlinear parameters convergence, the time-dependent regressors

αi(t) = [sin(ωi1t) cos(ωi2t)]
T , i = 0, 1 are taken.

The tracking error is ϕ = x2 + λϕx1, λϕ > 0, and the adaptive control law is u = −λtϕ+

x2(λg−λϕ)−α0(t)T θ̂0−exp(−α1(t)T θ̂1), λt > 0. Tracking error dynamics takes the form

(3.41), with j = 1, with differences on signs of the last three terms. In this example θ̂I(t) is

given by (3.31) (since we consider that ẋ is available), where R̂ as in (3.39) and θ̂P (α(t), ϕ)

as in (3.33). All Assumptions 3.1-3.3 and definitions (3.44)-(3.48) are valid and uniform

semi-positive definiteness of J2m is verified. In this case, regressors αi(t), i = 0, 1 are

persistently exciting separately and their corresponding levels of excitation, denoted by

εi, are obtained off-line from numerical analysis. Condition (3.60) is verified as follows.

Matrix (3.44) is E1 = exp(−αT
1 (t)θv1)

(
Γ1 − (ϕv − ϕd)

(
pψP−1

1

)2
)

which has to fulfill

(3.54) for some λE1 > 0. As all the signals in the closed-loop system are bounded, there

exists k0 > 0 such that αT
1 θ̂1 < k0, ∀t ≥ 0. By inverting this inequality and applying

exponential function in both sides, it is clear that exp(−αT
1 θ̂1) > exp(−k0) , k1. The

previous bound is also valid if θv1 = θd1 . Assume that there exists k2 > 0 such that

Γ1 − (ϕv − ϕd)
(
pψP−1

1

)2
> k2I2×2 for ϕv = ϕ (fulfillment for the case ϕv = ϕd is trivial).

Set ϕd(0) = 0 and suppose that |ϕ| < ϕ for some ϕ > 0. The previous inequality is

fulfilled if (
pψP−1

1

)2
ϕ < Γ1. (3.62)

Hence, E1 > λE1I2×2, ∀t ≥ 0, where λE1 ≤ k1k2 which, by construction, gives an estimate

of λE1 . Gains Γi and metric values Pi were calculated such that the right hand side of

(3.60), restricted to (3.62), was maximum. Finally, values of the linear and nonlinear

frequencies ωi1 , ωi1 , i = 0, 1 were set in order to minimize the largest singular value of

matrix Λ, which is composed by (3.57)-(3.58). Such singular value was obtained on-line

because the factor ∂fv1 depends on internal simulation variables. As a verification of

uniform positive definiteness of (3.45), the difference between product of diagonal largest
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Figure 3.2: Linear and nonlinear parameters errors for system (3.61) under the adap-
tive control scheme. The difference between product of diagonal largest eigenvalues and
off-diagonal squared largest singular value of matrix (3.45) was obtained from simula-
tions and it is denoted by PD condition. Tracking error tends to zero within the first

10s, the subplot depicts its behavior on the time interval [10s, 20s].

eigenvalues and off-diagonal squared largest singular value, equivalent to condition (2.8),

was plotted.

The responses are depicted in Figure 3.2. First row shows the linear and nonlinear param-

eters errors, while the second row shows the condition for uniform positive definiteness of

(3.45) and tracking error.

3.6.1.2 Regressors dependent on the state

The case when regressors of (3.61) are dependent on the state is analyzed. The regressors

are α0(x) = [x1 x2]T and α1(x) = [x2
2 x3

2]T . The control objective here is to make

the tracking error ϕ = (x2m − x2) + λϕ(x1m − x1) → 0, λϕ > 0, asymptotically where

xm = [x1m , x2m ]T is the state of the second order oscillator

ẋ1m = x2m , (3.63a)

ẋ2m = −ω2
nx1m − 2ζωnx2m + ω2

nr(t), (3.63b)

with ζ, ωn positive constants, and r(t) a smooth, bounded, input signal. By defining

F̂ = αT
0 (x)θ̂0 + exp(−αT

1 (x)θ̂1), and D(xm) = −ω2
nx1m + x2m(λϕ − 2ζωn) + ω2

nr(t), the

adaptive control is given by ua(x,xm, θ̂) = λtϕ+D(xm) + x2(λg − λϕ)− F̂ , with λt > 0.
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Figure 3.3: Linear and nonlinear parameter errors and tracking error of the system
(3.61) with regressors dependent on the state x under the adaptive control scheme. Sub-
plots represent the tracking error behavior in the time intervals [0s, 2s] and [700s, 800s].

The dynamics error has the form (3.41) and the same selections as the preceding example

were considered for θ̂I(t), R̂, θ̂P (α(x), ϕ), adaptive gains, and metric parameters. In

the previous case it was possible to select the frequency parameters in order to minimize

singular values of (3.60) left hand side. In the present example, we do not have a quantified

control over that singular values. However, it is possible to reach parametric convergence

even in this situation because (3.60) is only a sufficient condition. The form of verifying

positive definiteness as we did in the previous example is not conclusive either. This

argument shows that more general procedures of gains and metric values selection are

needed. Parametric and tracking errors for this example are shown in Figure 3.3.

3.7 Application examples: direct control of fermen-

tation and friction systems

In this section, the developed methodology is applied to two systems with nonlinearly

parameterized uncertainties. First example is a fermentation process model whose pa-

rameters are in the argument of a nonlinear function of linear parameterization (Theorem

3.2). Second example is a friction model which can be written in terms of the error equa-

tion (3.41) (Theorem 3.4). In both cases the control objective is to track the state of a

reference model, hence controller and target dynamics involved in verification of Assump-

tions 3.1 and 3.2 are easily found. Comments on validation of Assumption 3.3 are given
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in each case. Control objectives are reached and parameters are reconstructed under the

generalized PE condition4.

3.7.1 Fermentation process model.

The generic model of a fermentation process can be written as [7]

ẋ =
x2

θ1 + θ2x
+ u. (3.64)

The state of the plant is x ∈ R+, ∀t ≥ 0, and each component of θ = [θ1 θ2]T ∈ R2

is restricted to belong to an interval where θi and θi are the lower and upper bounds,

respectively, i = 1, 2. The control input is denoted by u with the objective to make the

tracking error ϕ(x, xm) = x − xm → 0 asymptotically according to the target dynamics

ϕ̇d = −λmϕd, λm > 0. xm is the state of the reference model ẋm = −λmxm + bmr(t),

with bm > 0 and r(t) a smooth bounded reference trajectory. By defining α(x) = [1 x]T

and θ = [θ1 θ2]T , the adaptive controller u = −λmx + bmr(t) + f̂α, where f̂α = − x2

αT (x)θ̂
,

is such that (3.16) is obtained. Assumption 3.3 is satisfied because θi > 0. By (3.33),

θ̂P (α(x), ϕ) = −Γ̄α(x)ϕ, Γ̄ = γI2×2, γ > 0, and R̂ as in (3.24) was taken. Condition

(3.30) for existence of function ρ(x, xm(t)) is satisfied, hence, by solving (3.29), we have

ρ(x, xm) = γ

[
0

x2

2
− xxm

]
. (3.65)

Finally θ̂I(t) as in (3.28) and θ̂ as in (3.26) are taken. Condition (3.36) conduces to the

inequality
x2

(αTθv)2

(
2(ϕv − ϕd)

αTθv
+ γ

)
≥ λE, (3.66)

which has to be fulfilled for zv evaluated in zd and ẑ. A complete verification of (3.66) is

widely explained in [16] and [17].

Responses of estimated parameters, levels of excitation (denoted by PE condition), and

tracking error are shown in Figure 3.4. The excitation level d , δ
∫ t+δ
t

x(τ)2dτ−
(∫ t+δ

t
x(τ)dτ

)2

was numerically implemented for two different references r(t). If r(t) = 10 + 15 sin(2πt),

the excitation level does not tend to zero and parametric convergence is reached (Figure

3.4, first column). In contrast, if reference is r(t) = 2, excitation level tends to zero and

parameters do not converge to their nominal values (Figure 3.4, second column).

4Values of all the constants involved in this section are defined in Table 4.1.
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Figure 3.4: Estimated parameters with (a) and without (b) parametric convergence.
Nominal values are denoted by ’+’. Levels of excitation (denoted by PE condition) with
(c) and without (d) persistent excitation. If persistent excitation is present, parametric
convergence is reached, otherwise parameters do not converge to their nominal values.

Tracking error is depicted in (e).

3.7.2 Friction model

In the range of low velocities, frictional force changes nonlinearly as it is proposed in the

model of [34], which describes the force as F = Fc sign(ẋ)+(Fs−Fc) sign(ẋ) exp(−ẋ/vs)2+

Fvẋ, where x is the angular position of the motor shaft, Fc represents the Coulomb

friction, Fv stands for the viscous friction coefficient, and vs is the Stribeck parameter. In

order to have uncertainties of similar order of magnitude, we redefine the meter unit as

m′ = 0.054m and rewrite the original parameters under this normalization.

The equation of motion can be written as ẍ = F + u where u is the control input

(torque) to be determined. If x , x1 and ẋ , x2, the definitions α0(x2) = [sign(x2) x2]T ,

θ0 = [Fc Fv]
T , α1(x2) = [x2

2 1]T , θ1 = [η ln( 1
σ
)]T where η = 1/v2

s , and σ = Fs − Fc, lead

to the following model written in the appropriate form

ẋ1 = x2, (3.67)

ẋ2 = αT
0 (x2)θ0 + sign(x2) exp(−αT

1 (x2)θ1) + u.

t : : I t :: t 

~ re=] 
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The control objective is to track the state of the reference model (3.63) under the target

dynamics ϕd = −λtϕd, λt > 0, where ϕ = x2 − x2m + λϕ(x1 − x1m), λϕ > 0. In this

case, by defining F̂ = αT
0 (x2)θ̂0 + sign(x2) exp(−αT

1 (x2)θ̂1) and D(xm) = −ω2
nx1m −

2ζωnx2m +ω2
nr(t), the expression of the adaptive controller is ua(x,xm, θ̂) = −λtϕ− F̂ +

D(xm) − λϕ(x2 − x2m). Assumption 3.3 is clearly satisfied by the exponential function.

Since condition for existence of ρ(·) is not satisfied, θ̂I(t) is taken as in (3.31) where R̂ is

as in (3.39). θ̂P (α(x), ϕ) = Γ̄α(x)ϕ is given by (3.33), where Γ̄ = diag(Γ0,− sign(x2)Γ1).

Initial conditions and gains are calculated as in the illustrative example (3.61). Some

additional details can be seen in [35]. Results of simulation are shown in Figure 3.5 where

linear and nonlinear parameters errors and tracking error are depicted. Response in the

subplot corresponds to tracking error in the final time interval of simulation. One main

feature of our development is pointed out: while the work done in [11] was focused in

identifying the complete function F or the methodology in [36] allowed to identify the

linear parameters in the model, our scheme is capable to reconstruct individually each

nominal parameter of the plant. To the best of our knowledge, this is the first report of

parametric convergence of uncertainties with these characteristics.
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Figure 3.5: Linear and nonlinear parameters errors and tracking error for the system
(3.67) under the adaptive control scheme. Subplot depicts the tracking error behavior

in the time interval [35min, 60min].
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Regressors dependent on sin(·) and cos(·)
Plant Γ, P, λt, λϕ θ̂(0) Additional par.

x0 = [0 0.5]T

λg = 5

θ0 = [0.7 1.2]T

θ1 = [1.3 1.5]T

Γ0 = diag(4, 1)

Γ1 = diag(2.5, 3.5)

P0 = diag(0.4, 0.4)

P1 = diag(2, 2)

pψ = 3

λt = 3

λϕ = 3

θ̂0(0) = [1 1]T

θ̂1(0) = [1 1]T

[ω01 ω02 ]
T = [35 126.6]T

[ω11 ω12 ]
T = [8 48]T

δ = 0.5

Regressors dependent on x1 and x2

x0 = [0 1]T

λg = 5

θ0 = [0.7 1.2]T

θ1 = [1.3 1.5]T

Γi as in previous case.

P0 = diag(3, 5)

P1 = diag(2, 5)

pψ = 3

λt = 20

λϕ = 10

θ̂0(0) = [1 1]T

θ̂1(0) = [1 1]T

r(t) = 1 + sin(t)

ωn = 5 ζ = 0.707

x1m0 = 0 x2m0 = 1.5

Fermentation process model

Plant par. Model par. θ̂(0)

x0 = 4

θ = [1 2]T

xm(0) = 3

bm = 1

λm = 2

θ̂(0) = [0.5 1.5]T
r(t) = 10 + 15 sin(2πt)

r(t) = 2

γ = 1

Friction model

x0 = [0 1.3]T

Fc = 1N

Fv = 0.4Ns/m

vs = 0.018m/s

Fs = 1.5N

x1m(0) = 0

x2m(0) = 1

ωn = 0.5

ζ = 0.70

θ̂0(0) = [1 1]T

θ̂1(0) = [1 10]T

F ′c = 18.52N ′

F ′v = 0.4N ′s/m′

v′s = 1
3
m′/s

F ′s = 27.77N ′

λϕ = 50

λt = 60

γ = diag(1, 1)

r(t) = sin(t) + sin(4t+ 1.5)

Table 3.1: Simulation parameters for system (3.61), fermentation and friction models
(3.64) and (3.67), respectively.
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Identification of systems with

nonlinear parameterization

The direct adaptive control scheme developed on Chapter 3 was based on the analysis of a

virtual system which involves generic interactions between tracking and parameters errors.

Averaged conditions for contraction of such system led to closed-loop stability properties

in which convexity, concavity, or monotonicity in the parameters or in parameterization

were not assumed. When parameterizations were particularized, such conditions became

more accurate and motivated relationships with well known results on parametric conver-

gence (uniform persistent excitation).

In the present chapter, we formulate an identification algorithm for nonlinearly parame-

terized systems by focusing only on nonlinear functions of linear parameterizations. Al-

though analysis in this chapter is parallel to that done in the previous one, further results

are proposed. Given that parameterization is specified, the formulation facilitates to focus

on the selection flexibility of Γ(x) which is related with implementation schemes through

the estimation proportional term (see (3.27)). Such selection freedom will show that the

realization procedures of Chapter 3 can be extended and an approach based on filtering,

which makes use only of available signals, can be proposed. In contrast with the previous

chapter, where the introduction of a non-conventional metric let to deal with systems

with one linear-one nonlinear blocks of uncertainties, in this chapter parameterization

extension consists in many nonlinear blocks of uncertainties which are identified through

the same metric change.

35
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4.1 Problem statement

Consider the nonlinear system

ẋ = fp(x,u, t) + g(x,αT (x, t)θ), x(0) = x0, (4.1)

where x ∈ Rn denotes the plant state assumed accessible for measurement and u ∈ Rq

stands for a bounded input signal. θ ∈ Rp is the unknown parameters vector which belongs

to a compact set Ωθ ⊂ Rp and α(x, t) is detailed later in Assumption 4.2. Functions

fp : Rn×Rq×R≥t0 → Rn and g : Rn×R→ Rn are assumed to have all the continuity and

differentiability requirements needed. In addition, it is supposed that all the solutions of

(4.1) are well defined for all initial conditions and ∀t ≥ t0. The following Assumptions

over (4.1) are made.

Assumption 4.1. The system (4.1) is input to state stable (ISS). 4

Assumption 4.2. Function α : Rn × R≥t0 → Rp is continuous, differentiable in its

arguments and uniformly bounded ∀t ≥ t0, for all x ∈ X , i.e. ‖α(x, t)‖ ≤ ᾱ, for some

ᾱ > 0. 4

The identification model of (4.1) is

˙̂x = fp(x̂,u, t) + g(x,αT (x, t)θ̂), (4.2)

where x̂ ∈ Rn is the estimated state and θ̂ ∈ Rp denote the estimated parameters vector.

If c ∈ Rn is a non-trivial constant vector, output signals of (4.1) and (4.2) can be defined

as y = cTx and ŷ = cT x̂, respectively. Time evolution of estimation error ϕ = ŷ − y is

written under the following assumption.

Assumption 4.3. There exists some c ∈ Rn such that cT fp(x̂,u, t) − cT fp(x,u, t) =

−ψ(ϕ) where ψ : R → R is a C1 class contracting function, i.e. −∂ψ(ϕ)
∂ϕ
≤ −λψ for some

λψ > 0. 4

By defining cTg(x,αT (x, t)θ) = f(x,αTθ), similarly for the estimated variables, estima-

tion error dynamics is

ϕ̇ = −ψ(ϕ) + f(x,αT θ̂)− f(x,αTθ). (4.3)
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Assumption 4.4. The first and second partial derivatives of f : Rn × R → R w.r.t θ

exist and are bounded ∀θ ∈ Ωθ, in particular,
∥∥∥∂f(x,αT θ)

∂θ

∥∥∥ ≤ maxθ∈Ωθ

∥∥∥∂f(x,αT θ)
∂θ

∥∥∥. 4

The problem this Chapter is concerned is identification of the plant nonlinear parame-

ters from available measurements. Identification, in terms of a desired estimation error

dynamics, can be written as

ϕ̇d = −ψ(ϕd), θ̇d = 0, θd(0) = θ. (4.4)

4.2 Identification algorithm

At the top level design, the non-implementable identification algorithm

˙̂
θ = R(ϕ, ϕd,x, θ̂) + Γ(x, t)(f(x,αT θ̂)− f(x,αTθ)), (4.5)

is proposed, where R : R × R × Rn × Rp → Rp and Γ : Rn × R≥t0 → Rp are degrees of

freedom related with the realization of (4.5) through generalized contraction analysis.

4.2.1 Parametric convergence analysis

The identification objective, expressed as a dynamics in (4.4), is rewritten as

ϕ̇d = −ψ(ϕd) + f(x,αTθd)− f(x,αTθ), (4.6a)

θ̇d = R(ϕd, ϕd,x,θd) + Γ(x, t)(f(x,αTθd)− f(x,αTθ)), (4.6b)

where θd(0) = θ, and R(ϕd, ϕd,x,θd) = 0 ∈ Rp. Actual system (4.3), (4.5) and desired

system (4.6) are particular solutions of the virtual system

ϕ̇v = −ψ(ϕv) + f(x,αTθv)− f(x,αTθ), (4.7a)

θ̇v = R(ϕv, ϕd,x,θv) + Γ(x, t)(f(x,αTθv)− f(x,αTθ)). (4.7b)
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Given the specific parameterization, it is possible to write1 ∂fv
∂θv

= ∂fv
∂ξv

αT . Hence, Jacobian

symmetric part of (4.7), −Js, is constituted by matrices (see (2.7))

J1s =
∂ψ(ϕv)

∂ϕv
, (4.8)

J2s = −
[
∂Rv

∂θv
+
∂fv
∂ξv

Γ(x, t)αT

]

s

, (4.9)

G = −1

2

(
∂Rv

∂ϕv
+
∂fv
∂ξv

α

)
. (4.10)

The generalized contraction of system (4.7) and the consequent identification of param-

eters conditions for plant (4.1), for a specific choice of R̂, are stated in the following

theorem.

Theorem 4.1. Consider the system (4.1) and its identification model (4.2) where θ̂ is

adjusted by (4.5). In addition to Assumptions 4.1-4.4, suppose that R̂ is given by

R̂ = −∂f̂
∂ξ̂

(ϕ− ϕd)α(x, t). (4.11)

Let Γ(x, t) be such that J2s is USPD, where

J2s =

[
∂2fv
∂ξ2

v

(ϕv − ϕd)ααT − ∂fv
∂ξv

Γ(x, t)αT

]

s

, (4.12)

and such that, for some T > 0 and λθ > 0,

∫ t+T

t

J2s(τ)dτ ≥ λθIp×p, (4.13)

∀t ≥ t0, ∀x ∈ X , for zv = zd and zv = ẑ. Then, the actual system trajectories (4.3), (4.5)

tend to the desired system trajectories (4.6), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) =

θ.

Proof. By the selection (4.11), the corresponding Rv will make G = 0 ∈ Rp in (4.10).

Then −Js = diag(J1s ,J2s) where J1s given in (4.8) and J2s as in (4.12). By Assumption

4.3 and the given properties of Γ(x, t), −Js is USPD and usage of Lemma 2.2 is justified.

By Assumption 4.3 and condition (4.13), requirement (2.5) of Lemma 2.2 will be satisfied

if λ ≤ min(λψT, λθ) and the conclusion follows.

1See the Notation section for definition of variables.
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Instead of considering general parameterizations, as was done in Corollary 1 of Chapter 3,

Theorem 4.1 focuses only on parameters structures of the form (4.1). The main advantage

of restricting to the underlined parameterizations arises when showing the flexibility in

choosing Γ(x, t). This claim is detailed as follows.

By means of a proper definition of Γ(x, t), a term ααT can be factored and certain

structure can be imposed in J2s (4.12). Such structure leads to the property of persis-

tent excitation and a clear relationship between parametric convergence and averaged

contraction analysis will arise. To formalize this affirmation, define the matrix

Eα =
∂2fv
∂ξ2

v

(ϕv − ϕd)Ip×p +

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ Γ̄, (4.14)

where Γ̄ = Γ̄T ∈ Rp×p is a constant gain matrix. The following corollary is established.

Corollary 4.1. Under the same Assumptions of Theorem 4.1, consider Γ(x, t) is given

by

Γ(x, t) = −Γ̄ sign

(
∂f̂

∂ξ̂

)
α(x, t). (4.15)

Let Γ̄ = Γ̄T ∈ Rp×p be such that

Eα ≥ λEIp×p, (4.16)

for some λE > 0, ∀t ≥ t0, for all x ∈ X , and for zv = zd and zv = ẑ. Furthermore, assume

that the regressor α(x, t) is uniformly persistently exciting in the sense of Definition 2.2,

for some εα, δ > 0. Then all the trajectories of (4.3), (4.5) tend exponentially to those

of (4.6), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. By selection (4.15), −Js = diag(J1s ,J2s) has elements given by J1s as in (4.8) and

J2s =
[
EαααT

]
s
. Under condition (4.16), J2s is USPD which, together with Assumption

4.3, guarantee that −Js is USPD. Given that there exist εα and δ for α(x, t) of uniform

PE, take T = δ. By (4.16), J2s satisfies
∫ t+T
t

J2s(τ)dτ ≥ λEεαIp×p. Then, (4.13) is

fulfilled if λθ ≤ λEεα. By Assumption 4.3 and the previous considerations, condition (2.5)

of Lemma 2.2 will be satisfied if λ ≤ min(λψT, λθ).

The condition λθ = 0 is not allowed in the studied cases of Corollary 4.1 since the algo-

rithm would not be able to reach the identification objective. This is the main difference

between previous Corollary and Theorem 2 of Chapter 3 where λθ = 0 implies convergence

to the invariant manifold where tracking error tends to zero but nominal parameters may

not be reconstructed.
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An alternative definition of Γ(x, t) can be established by imposing a dependence on a

filtered version of the regressor α(x, t), denoted in the large by αf (x, t). Filtered variable

is such that

α̇f = Q(α−αf ), (4.17)

where Q ∈ Rp×p is a PD constant matrix. By simplification purposes, take Q = qIp×p, q >

0. The following Lemma establishes, for fixed frequencies, an asymptotic convergence

property between αf and α.

Lemma 4.2. Let ω be a fixed value of the frequency and define G(s) = s
s+q

. For any

ε > 0 there exists a sufficiently large q > 0 such that ‖G(s)‖2 < ε. Moreover, for such q,

the relationship ‖α−αf‖ ≤ ε‖α‖, ∀α ∈ Rp holds.

Proof. By direct application of induced 2-norm definition we have ‖G(s)‖2 = ω√
ω2+q2

. If q

is chosen such that ω
√

1
ε2
− 1 < q the result in first part follows. To show the second part

of the Lemma, from (4.17) we have αf = q
s+q

α, hence ‖α − αf‖ = ‖(1 − q
s+q

)Ip×pα‖ ≤
‖G(s)‖2‖α‖. By using the first part of the result, the conclusion follows.

Remark 4.1. If ε� 1, then ω
√

1
ε2
− 1 < q can be approximated by ω

ε
< q. If q increases, ε

must decrease in order to preserve the inequality. This means that, by increasing q value,

the difference ‖α−αf‖ tends to be smaller proportionally with ε. 4

Stability for the case when Γ(x, t) depends on filtered signals is stated in the following

corollary.

Corollary 4.2. Under the same Assumptions of Theorem 4.1, define

Γ(x, t) = −Γ̄ sign

(
∂f̂

∂ξ̂

)
αf (x, t). (4.18)

Suppose that the regressor α(x, t) is uniformly persistently exciting in the sense of Defini-

tion 2.2, for some εα, δ > 0. Let Γ̄ = Γ̄T ∈ Rp×p be such that bound Eα ≥ λEIp×p holds,

for some λE > 0, and let q > 0 of Lemma 4.2 be such that

λEεα − λ̄(Γ̄) max

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ εᾱ2T > λθ, (4.19)

for some ε > 0, T > 0 and λθ > 0, ∀t ≥ t0, for all x ∈ X and for zv = zd and

zv = ẑ. Then all the trajectories of (4.3), (4.5) tend exponentially to those of (4.6), i.e.

limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.
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Proof. By selection (4.18), elements of −Js = diag(J1s ,J2s) are J1s as in (4.8) and

J2s =

[
EαααT + Γ̄

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ (αf −α)αT

]

s

.

By Assumption 4.3, given that filtering is a linear operator, and by the structure of J2s ,

matrix −Js is USPD. By Assumptions 4.2 and 4.4, ‖ ∂fv
∂θv
‖ ≤

∣∣∣∂fv∂ξv

∣∣∣ ‖α‖ ≤ max
∣∣∣∂fv∂ξv

∣∣∣ ᾱ. By

this fact, Lemma 4.2, Assumption 4.2, and by noting that Γ̄ ≤ λ̄(Γ̄)Ip×p for any symmetric

matrix Γ̄, then

[
Γ̄

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ (α−αf )α
T

]

s

≤ λ̄(Γ̄) max

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ εᾱ2Ip×p.

Given that there exist εα, δ > 0 for α(x, t) of uniform PE, take T = δ. By this property,

the previous calculations, and (4.16),
∫ t+T
t

J2s(τ)dτ ≥ (λEεα − λ̄(Γ̄) max
∣∣∣∂fv∂ξv

∣∣∣ εᾱ2T )Ip×p.

By (4.19) and Assumption 4.3, Lemma 2.2 will be satisfied if λ ≤ min(λψT, λθ).

Remark 4.2. By Remark 4.1, second term of J2s can be made appropriately small through

a proper selection of sufficiently large q. This point is shown in the example of Section

4.4.5. 4

4.3 Identification algorithm implementation

Realization of the identification algorithm can be accomplished by choosing different forms

of estimation schemes. In this section, equivalent implementation procedures to those de-

veloped in Chapter 3, for the particular parameterizations being considered, are explicitly

calculated. It will be shown that, due to the selection flexibility of Γ(x, t), an additional

implementation procedure, based on a filtering approach, can be added to the list of

realization schemes.

4.3.1 State time derivative based implementation

As a first case, a theoretical cancellation of ẋ factors will be carried out by means of an

additional design function in the PI estimation. To begin with, θ̂(t) is defined as

θ̂(t) = θ̂I(t) + θ̂P (α, ϕ) + ρ(x, x̂), (4.20)
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where ρ : Rn × Rn → Rp is designed to avoid ẋ action through an appropriate algebraic

condition. The objective of shaping the time derivative of (4.20) along (4.3) to obtain

(4.5), is achieved if

Γ(x, t) =
∂θ̂P
∂ϕ

, (4.21)

∂ρ

∂x
= −∂θ̂P

∂α

∂α

∂x
, (4.22)

˙̂
θI(t) = R̂ + ψ(ϕ)

∂θ̂P
∂ϕ
− ∂ρ

∂x̂
˙̂x− ∂θ̂P

∂α

∂α

∂t
. (4.23)

By considering the definition of Γ(x, t) in (4.15) and condition (4.21), implementation

concludes by taking

θ̂P (α, ϕ) = −Γ̄ sign

(
∂f̂

∂ξ̂

)
αϕ. (4.24)

The key condition to exclude ẋ influence (4.22) will have solutions if and only if the

corresponding Poincaré Lemma [6]

∂

∂x

(
∂θ̂P
∂α

∂α

∂x

)
=

(
∂

∂x

(
∂θ̂P
∂α

∂α

∂x

))T

, (4.25)

holds. If signal ẋ is available, or observable, ρ(x, x̂) = 0 is set and θ̂(t) = θ̂I(t)+ θ̂P (α, ϕ)

whose time derivative along (4.3) will fit in (4.5) if (4.21) is satisfied, proportional term

is as in (4.24), and

˙̂
θI(t) = R̂ + ψ(ϕ)

∂θ̂P
∂ϕ
− ∂θ̂P

∂α

∂α

∂x
ẋ− ∂θ̂P

∂α

∂α

∂t
. (4.26)

From (4.26) it is clear that, when necessary time derivatives are available, integral action

facilitates the implementation and complexities in verifying (4.25) are avoided. In Section

4.3.3, an example in which the required time derivative is known and implementable is

developed.

4.3.2 Adaptive algorithm implementation by filtering approach

If the measurable signal αf (x, t) is introduced to the estimation vector, we have

θ̂(t) = θ̂I(t) + θ̂P (αf , ϕ). (4.27)
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Time derivative of estimation (4.27) along (4.3) is adjusted to (4.5) if

˙̂
θI(t) = R̂ + ψ(ϕ)

∂θ̂P
∂ϕ
− ∂θ̂P
∂αf

Q(α−αf ). (4.28)

As Γ(x, t) = ∂θ̂P
∂ϕ

is required, implementation in this section can be concluded by taking

θ̂P (αf , ϕ) = −Γ̄ sign

(
∂f̂

∂ξ̂

)
αfϕ. (4.29)

4.3.3 Example: identification of non convex, non concave, non

monotone scalar parameter

The problem consists in identifying a neither convex, concave nor monotone scalar pa-

rameter. The system is given by (see [33])

ẋ = −λgx+ exp(− sin(t)θ) + u, λg > 0. (4.30)

The state is x ∈ R, and u ∈ R stands for a smooth, bounded input signal. Parameter θ

belongs to the set Ωθ = {θ ∈ R| θ ≤ θ ≤ θ} whose bounds are known. Jacobian of the

open loop (u = 0) system is J = −λg hence, all the solutions tend global and exponentially

to the equilibrium trajectory xe(t) = exp(α(t)θ), where α(t) = − sin(t). If θ ∈ Ωθ, the

equilibrium trajectory will remain limited within exp(−θ) ≤ xe(t) ≤ exp(θ), ∀t ≥ 0.

The previous argument justify that the system satisfies Assumption 4.1. Assumptions

4.2-4.4 are readily verified. By following the approach of Corollary 4.1, R̂ is taken such

that Rv = −(ϕv − ϕd)α(t) exp(α(t)θv) and Γ(x, t) = γ sin(t), γ > 0, results from (4.15).

In this case Eα = exp(− sin(t)θv) (ϕv − ϕd + γ). If θ̂ is initialized within the region Ωθ,

the bound exp(−θ) ≤ exp(− sin(t)θv) holds for θv = θ̂. If θv = θd the bound is trivially

satisfied. On the other hand if estimation error is restricted to |ϕv − ϕd| < ϕ < γ for

some ϕ > 0 and for ϕv = ϕ (if ϕv = ϕd, it holds trivially), then there exists some γb > 0

such that γb ≤ ϕ − ϕd + γ, ∀t ≥ 0. In summary, condition Eα ≥ λE is satisfied if

γb exp(−θ) ≥ λE. Implementation procedure results in θ̂(t) = θ̂I(t) + θ̂P (ϕ, t) where

θ̂P (ϕ, t) = γ sin(t)ϕ, (4.31)

˙̂
θI(t) = R̂ + λgϕ

∂θ̂P
∂ϕ
− ∂θ̂P

∂t
. (4.32)
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Figure 4.1: Estimation error and comparative responses of the parameter identified
by (4.31)-(4.32) and the scheme of [33] denoted by θ̂C and θ̂G, respectively. Piecewise

constant nominal parameter is denoted by ’*’.

As the regressor is a function dependent only on t, the third term of (4.32) is available

and implementable. Hence it is not necessary to check condition of existence of solutions

(4.25).

The identification scheme (4.31)-(4.32) was applied on the example and the following

parameters were taken. Initial conditions: x0 = 4.5, x̂0 = 5, and θ̂0 = 1. λg = 2 and

adaptive gain was γ = 3. For comparative purposes with the methodology reported in

[33], our scheme is applied to estimate a piecewise constant parameter. The comparison

is shown in Figure 4.1, top row. Estimation with methodology of [33] is denoted by θ̂G

and θ̂C stands for the estimation response with scheme (4.31)-(4.32).

4.4 Extension of convergence analysis for generalized

Jacobian

Introduction of a constant non-identity metric P = diag(pψ,Pθ), where pψ > 0 and

Pθ = PT
θ ∈ Rp×p is non-singular, will lead to a methodology capable to deal with more

general parameterizations. Since J1s is scalar, this element remains without changes and

is given by (4.8). On the other hand, J2s and G, defined in (4.9) and (4.10), respectively,

1(-
-
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are changed to

J2s = −
[
Pθ

(
∂Rv

∂θv
+
∂fv
∂ξv

Γ(x, t)αT

)
P−1
θ

]

s

, (4.33)

G = −1

2

(
pψ
∂fv
∂ξv

P−1
θ α +

1

pψ
Pθ
∂Rv

∂ϕv

)
. (4.34)

In order to establish the main stability theorem for generalized Jacobian, define the matrix

Em = p2
ψ

∂2fv
∂ξ2

v

(ϕv − ϕd)
(
P−1
θ

)2
+

∣∣∣∣
∂fv
∂ξv

∣∣∣∣ Γ̄. (4.35)

Theorem 4.3. Consider the system (4.1) and its identification model (4.2) where θ̂ is

adjusted by the non-implementable algorithm (4.5). In addition to Assumptions 4.1-4.4,

suppose Γ(x, t) is given by (4.15) and R̂ is taken as

R̂ = −p2
ψ

∂f̂

∂ξ̂
(ϕ− ϕd)

(
P−1
θ

)2
α. (4.36)

Let pψ > 0, non singular Pθ = PT
θ ∈ Rp×p, and Γ̄ = Γ̄T ∈ Rp×p be such that Em ≥ λmIp×p,

for some λm > 0, uniformly ∀t ≥ t0, for all x ∈ X , and for zv = zd and zv = ẑ.

Moreover, assume that the regressor α(x, t) is uniformly persistently exciting in the sense

of Definition 2.2, for some εα, δ > 0. Then all the trajectories of (4.3), (4.5) tend

exponentially to those of (4.6), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. By selection (4.36), the corresponding Rv will make (4.34) equals 0 ∈ Rp, then

−Js = diag(J1s ,J2s) where J1s is the same as in (4.8) and J2s =
[
PθEmααTP−1

θ

]
s
. By

Assumption 4.3 and the given bound of Em, −Js is USPD. Given that there exist εα, δ > 0

from Definition 2.2, take T = δ. By the given bound on Em, due to Pθ is constant, and

uniform PE of α(x, t), the following is obtained
∫ t+T
t

J2s(τ)dτ ≥ λmεαIp×p. Hence, by

Assumption 4.3 and if λθ < λmεα, Lemma 2.2 will be satisfied for λ ≤ min(λψT, λθ).

4.4.1 Generalization of the system parameterization: one linear-

one nonlinear in the parameters function

Nonlinearity f(x,αTθ) consists in one single nonlinear function of linear parameterization.

Introduction of non-conventional metric allows to deal with more general parameteriza-

tions e.g. f †(x,αT
0 θ0,α

T
1 θ1). With the purpose of clarifying such extension, the class of
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functions given by

f †(x,αT
0 θ0,α

T
1 θ1) = αT

0 θ0 +

Np∑

j=1

fj(x,α
T
j θj), (4.37)

with Np = 1 is considered. Parameters of (4.37) are arranged in a vector θ = [θT0 θT1 ]T ,

where θi ∈ Rpi , i = 0, 1, and p0 + p1 = p. The compiled regressor

α(x, t) = [αT
0 (x, t) αT

1 (x, t)]T , (4.38)

is composed by bounded and continuous functions αi : Rn × R≥t0 → Rpi , i = 0, 1.

Extension (4.37) implies that the partial derivative w.r.t. the parameter is

∂f †v
∂θv

=

[
∂fv0
∂ξv0

αT
0

∂fv1
∂ξv1

αT
1

]
, (4.39)

where fv0 = α0(x, t)Tθv0 , hence
∂fv0
∂ξv0

= 1. By doing the same contraction analysis for

nonlinearities (4.37) and by following the steps of Theorem 4.3, particular Γ(x, t) and

R̂, appropriately extended for the class of uncertainties being considered, will be selected

with the objective of imposing certain structure on the resulting J2s . Such matrix will be

written in terms of a generalized metric P = diag(pψ,Pθ), with pψ > 0 and Pθ = diag(Pi)

with nonsingular Pi = PT
i ∈ Rpi×pi , i = 0, 1. Define the matrix

E1 = p2
ψ(ϕv − ϕd)

(
P−1

1

)2 ∂2fv1
∂ξ2

v1

+ Γ1

∣∣∣∣
∂fv1
∂ξv1

∣∣∣∣ , (4.40)

where the adaptive gains of Γ(x, t) are Γ̄ = diag(Γi), with Γi = ΓT
i ∈ Rpi×pi , i = 0, 1.

Structure searched in J2s and its relationship with the persistent excitation of compiled

regressor (4.38) are emphasized if the calculation is stopped before taking the sym-

metric part. Under the appropriate choices of R̂ and Γ(x, t), it will be shown that

J2 = −Pθ

(
∂Rv

∂θv
+ Γ(x, t) ∂f

†
v

∂θv

)
P−1
θ will result in

J2 =

[
P0Γ0α0α

T
0 P−1

0 h01P0Γ0α0α
T
1 P−1

1

h10P1Γ1α1α
T
0 P−1

0 P1E1α1α
T
1 P−1

1

]
, (4.41)

where hij = sign
(
∂fvi
∂ξvi

)
∂fvj
∂ξvj

, i, j ∈ {0, 1}. The stability theorem for nonlinearities (4.37)

is enunciated.

Theorem 4.4. Consider the system (4.1) and its identification model (4.2) where θ̂ is
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adjusted by (4.5) whose nonlinearities are of the form (4.37). In addition to Assumptions

4.1-4.4, suppose that R̂ and Γ(x, t) are taken as

R̂ = −p2
ψ(ϕ− ϕd) col

[
∂f̂i

∂ξ̂i
(P−1

i )2αi

]
, (4.42)

Γ(x, t) = − diag(Γi) col

[
sign

(
∂f̂i

∂ξ̂i

)
αi

]
, i = 0, 1, (4.43)

where f̂0 = αT
0 θ̂0 hence ∂f̂0

∂ξ̂0
= 1. Let the elements of the metric pψ > 0 and Pθ = diag(Pi)

with nonsingular Pi = PT
i ∈ Rpi×pi, and the adaptive gains Γi = ΓT

i ∈ Rpi×pi , i = 0, 1 be

such that E1 ≥ λ1Ip1×p1 for some λ1 > 0, and

∫ t+T

t

J2s(τ)dτ ≥ ε′
∫ t+T

t

α(x, τ)αT (x, τ)dτ, (4.44)

where J2s given by the symmetric part of (4.41) and α(x, t) defined in (4.38), for some T >

0 and ε′ > 0, uniformly for all t ≥ t0, ∀x ∈ X , and for zv = zd and zv = ẑ. Furthermore,

assume that α(x, t) is uniformly persistently exciting in the sense of Definition 2.2, for

some εα, δ > 0. Then all the trajectories of (4.3), (4.5) tend exponentially to those of

(4.6), whose nonlinearities given in (4.37), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. Upper diagonal element of matrix −Js = diag(J1s ,J2s) is, as in previous cases,

given by (4.8). On the other hand, J2s is the symmetric part of (4.41). By Assumption

4.3, J1s is UPD and a demonstration that J2s is USPD is given in the proof of Theorem

3.4, Chapter 3. Hence −Js is USPD. By uniform persistent excitation of α(x, t) and

by (4.44), it follows that
∫ t+T
t

J2s(τ)dτ ≥ ε′εαIp×p, where T = δ. If λθ < ε′εα and by

Assumption 4.3, Lemma 2.2 will be fulfilled if λ ≤ min(λψT, λθ).

As is shown by condition (4.44), linear and nonlinear parameters can be simultaneously

identified if compiled regressor is of uniform persistent excitation. This point is illustrated

in Section 4.4.4 where the problem of estimating the linear-nonlinear scalar parameters

of a system by taking the state time derivative implementation (Section 4.3.1), is solved.
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4.4.2 Approach based on filtering for extended parameteriza-

tion

Filtered signals of the compiled regressor (4.38) are obtained in terms of its components,

i.e. αf (x, t) = [αT
f0

(x, t) αT
f1

(x, t)]T , where αfi(x, t) = q
q+s

αi(x, t), q > 0, i = 0, 1.

By following the filtering approach of Section 4.3.2 to identify uncertainties with the

extended parameterization, a function Γ(x, t) depending on the compiled αf (x, t) will be

proposed. The following Theorem changes the selection of Γ(x, t) given in Theorem 4.4

and establishes stability and convergence when the approach of filtering is examined.

Theorem 4.5. Consider the system (4.1) and its identification model (4.2) where θ̂ is

adjusted by (4.5) whose nonlinearities are of the form (4.37). In addition to Assumptions

4.1-4.4, suppose that R̂ is given by (4.42) but Γ(x, t) is changed to

Γf (x, t) = − diag(Γi) col

[
sign

(
∂f̂i

∂ξ̂i

)
αfi

]
, i = 0, 1. (4.45)

Assume that α(x, t) in (4.38) is uniformly persistently exciting in the sense of Definition

2.2, for some εα, δ > 0. Additionally, suppose that the elements of the metric pψ > 0 and

Pθ = diag(Pi) with nonsingular Pi = PT
i ∈ Rpi×pi, and the adaptive gains Γ̄ = diag(Γi),

Γi = ΓT
i ∈ Rpi×pi , i = 0, 1 are such that E1 ≥ λ1Ip1×p1, for some λ1 > 0, and that (4.44)

hold. Let q > 0 of Lemma 4.2 be such that for all t ≥ t0, ∀x ∈ X , and for zv = zd and

zv = ẑ

ε′εα − λ̄
(
Γ̄
)
εᾱmax

∥∥∥∥
∂f †v
∂θv

∥∥∥∥T > λθ, (4.46)

is true for some ε > 0, T > 0, and λθ > 0.

Then all the trajectories of (4.3), (4.5) tend exponentially to those of (4.6), whose non-

linearities given in (4.37), i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. Matrix −Js = diag(J1s ,J2s) is given by J1s as in (4.8) and, due to the selection of

Γf (x, t), J2s = [J2 − J?2]s where J2 defined in (4.41) and J?2 given by

J?2 =



∣∣∣∂fv0∂ξv0

∣∣∣P0Γ0(α0 −αf0)α
T
0 P−1

0 h01P0Γ0(α0 −αf0)α
T
1 P−1

1

h10P1Γ1(α1 −αf1)α
T
0 P−1

0

∣∣∣∂fv1∂ξv1

∣∣∣P1Γ1(α1 −αf1)α
T
1 P−1

1


 . (4.47)
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Matrix (4.47) can be written as J?2 = PθΓ̄ col
[
sign

(
∂fvi
∂ξvi

)
(αi −αfi)

]
∂f†v
∂θv

P−1
θ , i = 0, 1

with ∂f†v
∂θv

defined in (4.39). By Lemma 4.2 and Assumptions 4.2 and 4.4, the follow-

ing bound holds J?2 ≤ λ̄(Γ̄)εᾱmax
∥∥∥ ∂f

†
v

∂θv

∥∥∥. By uniform persistent excitation of com-

piled α(x, t) and given that (4.44) is true, we have
∫ t+T
t

[J2(τ) − J?2(τ)]sdτ ≥ (ε′εα −
λ̄(Γ̄)εᾱmax

∥∥∥ ∂f
†
v

∂θv

∥∥∥T )Ip×p. By Assumption 4.3 and (4.46), it is guaranteed that Lemma

2.2 is satisfied by taking λ ≤ min(λψT, λθ).

The extension of the filtering approach for the generalized parameterization lead to

θ̂P (αf , ϕ) given by

θ̂P (αf , ϕ) = − diag(Γi) col

[
sign

(
∂f̂i

∂ξ̂i

)
αfi

]
ϕ, i = 0, 1. (4.48)

4.4.3 Generalization of the system parameterization: several

nonlinear forms.

In the following, several nonlinear forms are considered in (4.37), i.e. Np > 1. In

this case, θi ∈ Rpi , and
∑Np

i=0 pi = p. Metric Pθ is written as Pθ = diag(Pi), where

Pi = PT
i ∈ Rpi×pi , i = 0, . . . , Np are non-singular. The next assumption simplifies the

partial derivatives with respect to the parameters vector.

Assumption 4.5. The function fk = fk(x,α
T
k (x, t)θk) depends only on vector θk, i.e.

∂fk
∂θl
6= 01×pl if and only if k = l. k, l ∈ [1, . . . , Np]. 4

State the following matrix

Ej =
∂2fvj
∂ξ2

vj

(ϕv − ϕd)(pψP−1
j )2 +

∣∣∣∣
∂fvj
∂ξvj

∣∣∣∣Γj, j = 1, . . . , Np. (4.49)

Recall that
∂fv0
∂ξv0

= 1 where fv0 = αT
0 (x, t)θv0 = ξv0 and sign (∂fv0/∂ξv0) = 1. Define the

matrix Hk,l = hklPkΓkαkα
T
l P−1

l , hkl = sign
(
∂fvk
∂ξvk

)
∂fvl
∂ξvl

, k, l ∈ [0, . . . , Np]. The lower

block of the diagonal matrix −Js is

J2s =

[
[P0Γ0α0α

T
0 P−1

0 ]s G

GT [PjEjαjα
T
j P−1

j ]s

]
, (4.50)

where j = 1, . . . , Np, G = Hk,l + HT
l,k, and (l + 1) and (k + 1) indicates the row and

column number respectively.
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Theorem 4.6. Consider the system (4.1) and its identification model (4.2) where θ̂ is

adjusted by (4.5) whose nonlinearities are of the form (4.37) with Np > 1. In addition to

Assumptions 4.1-4.4, suppose that R̂ is given by (4.42) and Γ(x, t) is as in (4.43) with i =

0, . . . , Np. Assume that the compiled regressor α(x, t) = [αT
0 (x, t) . . .αT

Np
(x, t)]T is persis-

tently exciting i.e. it satisfies Definition 2.2 for some positive constants δ, εα. In addition,

suppose that there exist pψ > 0, Γi = ΓT
i , and nonsingular Pi = PT

i ∈ Rpi×pi , i = 0, ..., Np

such that J2s in (4.50) is USPD and
∫ t+T
t

J2s(τ)dτ ≥ ε′
∫ t+T
t

α(x(τ), τ)αT (x(τ), τ)dτ, for

some T > 0, ε′ > 0, ∀t ≥ t0, ∀x ∈ X , and for zv evaluated in zd and ẑ.

Then all the trajectories of (4.3), (4.5) tend exponentially to those of (4.6), whose non-

linearities given in (4.37) with Np > 1, i.e. limt→∞ ϕ(t) = ϕd(t) and limt→∞ θ̂(t) = θ.

Proof. A demonstration that (4.50) is USPD is given in the proof of Theorem 3.4, Chapter

3. The proof follows the same lines of Theorem 4.4.

4.4.4 Example: identification of one linear-one nonlinear scalar

parameters by taking ẋ known

The model

ẋ1 = x2,

ẋ2 = −λψx2 −αT
0 (x)θ0 + exp(−αT

1 (x)θ1) + u, λψ > 0, (4.51)

is based on [33]. Scalar parameters and regressors are taken in first place, in particular

α0(x) = x1, and α1(x) = x2
2. In addition to the fact that (4.51) is Lipschitz ∀x = [x1 x2]T ∈

R2, the open loop equilibrium point namely, xe = ( 1
θ1
, 0), is globally asymptotically stable,

hence, Assumption 4.1 holds. Identification error is given by ϕ = x̂2− x2 where x̂2 comes

from the identification model (4.2). The algorithm is implemented based on selections

of Theorem 4.4, i.e. R̂ and Γ(x, t) as in (4.42) and (4.43), respectively. Estimation

vector is given by PI scheme (4.20) (with ρ = 0). θ̂I(t) is as in (4.26) and θ̂P (α, ϕ) is

as in (4.24). By the fact that parameters are scalars we take pψ > 0, Pi = pi > 0, and

Γi = γi > 0, i = 0, 1. Factor E1 = exp(−α1θv1)
[
p2ψ
p21

(ϕv − ϕd) + γ1

]
is uniformly bounded

below if there exists λ1 > 0 such that
p2ψ
p21

(ϕv − ϕd) + γ1 > λ1, ∀t ≥ 0 and for ϕv = ϕ

(fulfillment for the case ϕv = ϕd is trivial). Set ϕd(0) = 0 and suppose that |ϕ| < ϕ for
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Figure 4.2: Linear and nonlinear estimated parameters given by the identification
algorithm applied to the plant (4.51). Nominal parameters are denoted by ’+’. The

first and second leader principal minors of
∫ t+T
t J2s(τ)dτ are denoted by d1 and d2,

respectively.

some ϕ > 0. The previous inequality holds if γ1, pψ, and p1 are such that

p2
ψ

p2
1

ϕ < γ1. (4.52)

Initial conditions on the plant, identification model, and estimated parameters were chosen

to met (4.52). All their values are given in Table 4.1. A sufficient condition for the

existence of such ε′ which satisfies (4.44) is that
∫ t+T
t

J2s(τ)dτ is UPD (see the selection

of the metric procedure given in Section 3.6.1). Adaptive gains and metric elements

were chosen guided by this criterion subordinated to (4.52). Responses of estimated

parameters and the two leading principal minors of
∫ t+T
t

J2s(τ)dτ (denoted by d1 and d2)

are depicted in Figure 4.2. Parametric convergence is shown in this example due to the

persistent excitation of regressor α(x) = [x1 x
2
2]T obtained through an appropriate input

u(t).

4.4.5 Example: identification of two linear-two nonlinear pa-

rameters by filtering approach

The model (4.51) is now extended to consider two linear-two nonlinear parameters. In

this case α0(x) = [x1 x2]T and α1(x) = [x2
2 x

3
2]T . By an argument similar to that given

in the previous example, Assumption 4.1 is fulfilled. In this case the term R̂ is as in

(4.42) and Γf (α, ϕ) as in (4.45), which leads to the implementation function θ̂P (αf , ϕ)

.± 

+ + 
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Figure 4.3: Linear and nonlinear parameters errors and comparative responses of the
error θ̃01 for each increasing value of q in the time interval [14.5 min, 14.6 min]. The
reference error is obtained when estimation considers ẋ available. This is denoted by

NF.

given in (4.48). Estimation vector is given by (4.20) with ρ = 0 and θ̂I(t) is taken

as in Section 4.3.2. In this case we have E1 = exp(−αT
1 θv1)

(
Γ1 − (ϕv − ϕd)(pψP−1

1 )2
)

which is bounded below by a simple extension of condition (4.52). Implementation values

for this example are given in Table 4.1. In this case it was not possible to calculate

analytically adaptive gains and metric elements which ensure that
∫ t+T
t

J2s(τ)dτ is UPD.

However, it was possible to accomplish parametric convergence because that is only a

sufficient condition. On the other hand, sufficiently large q > 0 values were chosen

such that ε of Lemma 4.2 was sufficiently small. Parameters errors obtained through

the identification algorithm implemented by filtering with q = 2500 are shown in Figure

4.3. The comparative responses between errors θ̃01 = θ̂01 − θ01 obtained by filtering with

increasing values of q are depicted in the time interval [14.5 min, 14.6 min], Figure 4.3.

The reference error (denoted by NF ) is obtained by considering the implementation with

availability of ẋ.

4.5 Application example: identification of electro hy-

draulic valve system (EHVS)

The electro hydraulic valvetrain system (EHVS) consists in two coupled hydraulic actua-

tors which replace the conventional mechanical camshaft on engines. EHVS’s have been
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recently studied as a flexible alternative to control fuel intake-waste exhaust timings for

improving full load torque and to reduce exhaust emissions [37]. It has been shown that

a nonlinear adaptive control improves performance over a non-adaptive scheme [38]. In

the work of [39], a model-based on-line parameter identification scheme for EHVS based

on a least squares approach was developed. Difficulties for identifying certain nonlinear

parameter are overcome by taking a Taylor expansion about such value. In the following,

we show that such approximation is not necessary in our methodology since the model

can be written the one linear-one nonlinear blocks form. EHVS model consists in a fluid

dynamics part

Q1 = Cd1w1xv1 sign (Ps − P1)
√

2|Ps−P1|
ρ

, V1 = V01 + Ap1x1,

Q2 = Cd2w2xv2 sign (P1 − Pr)
√

2|P1−Pr|
ρ

, Q1 −Q2 = V̇1 + V1
βe
Ṗ1,

(4.53)

where xvi , i = 1, 2 denotes the discrete input signals of the solenoid valves. These are

depicted in Figure 4.4, ’Input signal’, and represent the available input to the designer.

Qi, i = 1, 2 denotes flux, V1 and V01 are volume and initial value of volume, while P1 and

Pr are the chamber pressure and reservoir pressure, respectively. βe is a coefficient related

with pressure and ρ is density. Constants Cdi are the discharge coefficients for solenoid

valves i = 1, 2, and wi are area gradients2. All the constants involved in this part of the

model are assumed known and are defined in Table 4.1. The remaining parameters are

also implicated in the mechanical part of the model which is given by

ẋ1 = x2,

Mtẋ2 = Ap1P1 − Ap2Ps − F0 −Bx2 −RB(x1, x2), (4.54)

with Mt, x1, x2, Ap1 , and Ap2 the mass, position, velocity, areas of the top and of the

bottom of the valve piston, respectively. Ps is the supply pressure. F0 is the dead force

on valve and B is the damping of valve piston. Finally, RB(x1, x2) is a variable damping

present only immediately before the valve closes. Model of RB(x1, x2) is obtained under

a phenomenological basis and is formulated as

RB(x1, x2) =
D

2

(x2 − |x2|)(
Db + x2k

1

) , (4.55)

where k, D, and Db are dimensionless. Unknown parameters are B, D and Db. By

simple algebraical manipulations it is clear that RB(x1, x2) = k1
x2−|x2|

2
1

αT1 θ1
, where α1 =

[1 x2k
1 ]T and θ1 = [k1Db

D
k1
D

]T in which a scaling factor k1 > 0 was introduced to obtain

2For more details on the EHVS model, see [39].
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uncertainties of the same order of magnitude. By defining α0 = x2
Mt

, θ0 = B, u =
1
Mt

(Ap1P1 − Ap2Ps − F0), and κ(x2) = k1
x2−|x2|

2Mt
, the system (4.54) can be written as

ẋ1 = x2,

ẋ2 = −α0θ0 − κ(x2)
1

αT
1 θ1

+ u, (4.56)

which clearly shows the one linear-one nonlinear parameterization structure. Identi-

fication algorithm was implemented under the approach of Theorem 4.4 and Section

4.3.1 where measurements of all derivatives needed are assumed available. In this case

E1 = − κ(x2)

(αT1 θv1 )2

(
2p2ψ(ϕv−ϕd)

αT1 θv1
(P1

−1)2 + Γ1

)
. Note that, by definition, κ(x2) ≤ 0, ∀x2. By

limiting the estimation error in |ϕv − ϕd| ≤ ϕ̄, ϕ̄ > 0, for ϕv = ϕ and ϕv = ϕd, con-

sidering that 0 ≤ x1 ≤ x̄1, for some x̄1 > 0, and assuming that each component of

nonlinear parameters vector is bounded by θ1i ≤ θ̂1i ≤ θ̄1i for known θ1i, θ̄1i, i = 1, 2,

then E1 ≥ λ1I2×2 for some λ1 ≥ 0 if

2p2
ψϕ̄

θ11

(P−1
1 )2 < Γ1. (4.57)

Initial conditions and all the parameters involved in implementation are given in Table

4.1. Input signals to the EHVS and responses of piston position x1, piston velocity x2,

and parameters errors are depicted in Figure 4.4 in which parametric convergence, due to

the persistent excitation of input, is shown.

0 1 2
0

Cycle
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0 1 2
0

2

Cycle

x
1

Piston position

0 1 2

−10
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10
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x
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0 1 2 3

−150

−100

−50

0

t[min]

Parameters error

 

 

B̃

θ̃11

θ̃12

Figure 4.4: Parameters errors, input signal, piston position and piston velocity for
the EHVS.
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Identification one linear-one nonlinear parameters by taking ẋ known

x0 and θ Γ̄, P, and λψ x̂0 and θ̂0 Additional par.

x0 = [0.5 1]T

θ = [1.8 1.2]T

Γ̄ = diag(2, 5)

P = diag(2.5, 5, 2)

λψ = 5

x̂0 = [0 1.5]T

θ̂0 = [1 0.5]T

u(t) = 5 sin(3πt) + 2 sin(t)

+3 cos(πt/15)

Identification two linear-two nonlinear parameters by the approach of filtering

x0 = [0.5 1]T

θ = [0.7 1.2 1.3 1.5]T

Γ0 = diag(2, 2)

Γ1 = diag(5, 5)

P = I5×5

λψ = 8

x̂0 = [0 1.5]T

θ̂0 = [1 1 1 1]T

q = 500, 1000, 2500

u(t) = 1 + 10 sin(t)

+ cos(3πt) + 0.5 cos(t+ 10)

+5 sin(πt/10 + 2)

Identification of the EHVS

x0 = [0 0]T

P10 = 125

B = 50

D = 60

Db = 0.01

Γ0 = diag(5, 5)

Γ1 = diag(7, 7)

P0 = I2×2

P1 = diag(3, 3.1)

pψ = 1

λψ = 50

x̂0 = [0 0.7]T

θ̂0 = [1 0.9 9]T

θ11 = 0.5 Mt = 1

Ap1 = 20 Ap2 = 10

Ps = 250 k = 2

k1 = 10000 F0 = 3

V01 = 5 Pr = 10

Cdi = 10 wi = 5, i = 1, 2

ρ = 10 βe = 250.

Table 4.1: Simulation parameters for identification of one linear-one nonlinear and two
linear-two nonlinear generalized parameterizations and identification of EHV system.





Chapter 5

Indirect adaptive control

Nonlinearly parameterized systems identification formulated in Chapter 4 can be applied

on the on-line calculation of an estimated plant model. From the input-output mea-

surements of the actual and the estimated models, the on-line computation of specific

controller parameters is possible. Such adaptive control strategy is the so called indi-

rect control scheme which is developed in the present chapter for systems with nonlinear

parameterizations.

It will be shown that closed-loop time evolution of the system with the adaptive controller

leads to a tracking error composed by an exponentially stable term perturbed by a factor

dependent on the mismatch between nominal and adjusted parameters. If the input signals

are sufficiently exciting and the identification algorithm reaches its objective, estimated

parameters tend to the true ones and the perturbation will tend exponentially to zero.

Therefore, the perturbed tracking dynamics will not lose its convergence properties and

control purposes will be achieved.

5.1 Problem statement

Indirect adaptive control consists of designing a suitable identification model which gen-

erates asymptotic estimates of the plant parameters. These parameters are substituted in

the expression of a controller, under the certain-equivalence principle, whose objective is

to track some desired signal while maintaining bounded all trajectories of the closed-loop

system. Recall the nonlinear dynamics

ẋ = fp(x,u, t) + g(x,θ, t), x(0) = x0, (5.1)

57



Chapter 5. Indirect adaptive control 58

under the same definitions of system (3.14). Let e(x, t) denote the tracking error function,

where e : Rn×R≥t0 → R is continuous and differentiable in its arguments. The existence

of an ideal controller and the main features of the target dynamics are stated in the

following assumptions.

Assumption 5.1. Suppose that there exists an ideal control ui(x,θ, t) such that the con-

trol objective (tracking or regulation) is accomplished under the target dynamics

∂e

∂x
(fp(x,ui(x,θ, t), t) + g(x,θ, t)) +

∂e

∂t
= −Φ(e). (5.2)

4

Assumption 5.2. Function Φ : R→ R is a C1 class contracting function, i.e. −∂Φ(e)
∂e
≤

−λΦ for some λΦ > 0. 4

It is clear that Assumption 5.2 implies that

ėd = −Φ(ed), (5.3)

is a contracting dynamics whose particular solutions tend to e(x, t) = 0 exponentially. By

implementing the adaptive control law

ua = ui(x, θ̂, t), (5.4)

and defining ∂e
∂x

(fp(x,ui(x,θ, t), t)) = f(x,θ, t), similarly for the estimated parameters,

dynamics (5.2) turns into

ė = −Φ(e) + f(x, θ̂, t)− f(x,θ, t). (5.5)

To make use of the estimation algorithm developed in Chapter 4, let establish the following

Assumption.

Assumption 5.3. Assume that f(·) is uniformly Lipschitz in θ ∈ Ωθ for all t ≥ t0 and

∀x ∈ X with Lipschitz constant lf . 4

5.2 Closed loop stability analysis

The following Lemma states the stability of the overall closed loop system.
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Lemma 5.1. Consider the plant (5.1) in closed loop with the estimator (4.3), (4.5),

and the adaptive control (5.4). Suppose that conditions of Theorem 4.1 and Assumptions

5.1-5.3 hold. Then e(t)→ ed(t) exponentially.

Proof. By following the analysis of perturbed systems given in [18], the distance R(t) ,

‖e(t) − ed(t)‖ satisfies Ṙ + λΦR(t) ≤ ‖f(x, θ̂, t) − f(x,θ, t)‖. In virtue of Assumption

5.3, ‖f(x, θ̂, t) − f(x,θ, t)‖ ≤ lf‖θ̂(t) − θ‖, lf > 0. By Theorem 4.1, limt→∞ θ̂(t) = θ

exponentially, which means that ‖θ̂(t)− θ‖ ≤ ‖θ̂(0)− θ‖ exp(−βt), β > 0, ∀θ̂(0) ∈ Ωθ.

Then, the distance between trajectories e(t) and ed(t) tends exponentially to zero and the

conclusion follows.

5.3 Indirect control of fermentation and friction sys-

tems

Identification of fermentation and friction systems is not directly applicable since ISS

property is not verified. To overcome such obstacle, the indirect control scheme is used

and plant parameters are estimated on-line with the aid of an appropriate control law.

Model expressions and control objectives are those given in Section 3.7 but the additional

implementation of the identification guidelines given in Chapter 4 are considered.

Fermentation process model is established in (3.64). The existence of the ideal control

required by Assumption 5.1 is fulfilled since such controller was explicitly found (see

Section 3.7) and led to the target dynamics ė = −λme, λm > 0, e = x − xm, which

verifies the requirements of Assumption 5.2. Estimation starts by taking (4.2) and is built

relying on the Corollary 4.2 and all its conditions. Realization comes from the framework

explained in Section 4.3.2 with q sufficiently large (q = 170). Persistent excitation is

crucial to reach the control goal so the signal r(t) which gave parameter convergence

was taken (r(t) = 10 + 15 sin(2πt)). Estimation expressions were given by θ̂(t) as in

(4.27),
˙̂
θI(t) as in (4.28) where R̂ as in (4.11) and θ̂P (αf , ϕ) that given in (4.29). All the

remaining values involved in the implementation are the same as those given in Table 4.1.

Results for estimated parameters and tracking error are shown in Figure 5.1.

Friction model rewritten in the one linear-one nonlinear parameterization form is given in

(3.67). This is taken as a practical example of indirect adaptive control for the extended

parameterization. Ideal control was already set up (Section 3.7) resulting in a control

target dynamics equal to ϕd = −λtϕd, λt > 0, where ϕ = x2−x2m+λϕ(x1−x1m), λϕ > 0,
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Figure 5.1: Global responses of parameters errors (a) and tracking error (c) for the
fermentation plant under the indirect adaptive control. Subplot (b) shows parameters
errors in the time interval [0, 20]min. Subplots (d) and (e) show the tracking error

response in the time intervals [0, 3]min, [50, 60] min, respectively.

xm = [x1m x2m ]T is the state of the reference model (3.63), and x = [x1 x2]T is the

state of (3.67). Since desired controller exists and control target dynamics is contracting,

Assumptions 5.1 and 5.2 are guaranteed.

Identification model (4.2) is applied to (3.67) and estimation is based on the filtering

approach for extended parameterization justified in Theorem 4.5 and all its Assumptions,

and considers general choices given in Section 4.4.2. Estimation expressions are given by

θ̂(t) as in (4.27),
˙̂
θI(t) as in (4.28) where R̂ as in (4.42) and θ̂P (αf , ϕ) that given in

(4.48). Results for parameters and tracking errors are shown in Figure 5.2.
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(3.67) in closed loop with the indirect adaptive control. Subplot shows the tracking

error response in the time interval [30, 55] min.





Chapter 6

Conclusions and future perspectives

Necessity of weaker conditions for contraction for analyzing stability and convergence in

adaptive control problems is clear in the literature. Until now, parametric convergence

conclusions have been obtained by mixing contraction tools of analysis and Lyapunov

based techniques, such as the Barbalat Lemma. In this work, we proposed an extended

condition for contraction which naturally associates the persistent excitation property

with the contraction theory framework. Such condition, called averaged condition for

contraction, was instrumental for studying the boundedness of closed loop trajectories

on the three different areas of adaptive control: direct and indirect adaptive control, and

identification. It allowed to design a top-down adaptive methodology which consisted in

two main stages of design: at the top-level, stability and convergence were established by

means of the averaged contraction analysis. At the down-level, diverse realization methods

of the non-implementable adaptive law were suggested by means of the proportional-

integral adaptive algorithms. Since these two stages are designed independently and

PI is not the only methodology appropriate for the algorithm implementation, it can

be concluded that the adaptive control scheme developed in this work is endowed with

modularity properties which improved flexibility and transparency. A wide variety of

examples were tested and performance was analyzed by means of numerical simulations. It

is relevant to mention that, to the best of our knowledge, parameters given in two different

blocks of parameterization, such as one linear-one nonlinear, had not been successfully

identified. Our methodology reached such objective by a simple extension of the one block

results.

Future perspectives are diverse and widely recognized. Many control problems of practi-

cal importance or identification of systems in interdisciplinary areas such as bio-chemical
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processes or biology and neuroscience, are written in terms of complex and nonlinearly pa-

rameterized dynamics. Adaptive control of such kind of systems is currently a challenging

problem and an active area of research.
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