

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA

Diseño conceptual de un sistema de gestión de energía en un microsatélite

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

LICENCIADO EN TECNOLOGÍA

P R E S E N T A

MÓNICA APARICIO ESTRADA

Director de Tesis: DR. SAÚL DANIEL SANTILLÁN GUTIÉRREZ

Campus Juriquilla, Querétaro

Junio de 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A mis padres y hermana.

UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO

CENTRO DE FÍSICA APLICADA Y TECNOLOGÍA AVANZADA LICENCIATURA EN TECNOLOGÍA

Votos Aprobatorios

COMITÉ ACADÉMICO Licenciatura en Tecnología PRESENTE

En cumplimiento del Artículo 26 del Reglamento General de Exámenes, nos permitimos comunicar a usted que revisamos la Tesis con título: **Diseño conceptual de un sistema de gestión de energía en un microsatélite**, que realizó la pasante **Mónica Aparicio Estrada** con número de cuenta: **40906690-6**, bajo la opción de titulación por Tesis y Examen profesional en la carrera de Licenciatura en Tecnología.

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el EXAMEN PROFESIONAL correspondiente, otorgamos nuestro VOTO APROBATORIO.

Atentamente "POR MI RAZA HABLARÁ EL ESPÍRITU" Campus UNAM-Juriquilla, Qro a 26 de Junio de 2015

	NOMBRE	EIRMA
PRESIDENTE	Dr. Saúl Daniel Santillán Gutiérrez	autit
SECRETARIO	Dr. Remy Fernand Ávila Foucat	Ruyy
VOCAL	Dr. Carlos Romo Fuentes	(Hour
1er. SUPLENTE	Dr. Achim Max Loske Mehling	Juliis Joshe
2° SUPLENTE	Dr. José Alberto Ramírez Aguilar	- Aller

Cada oportunidad que te da la vida es motivo de agradecimiento...

Agradezco a Dios por permitirme cerrar este ciclo, a mi familia por todo su amor, apoyo y confianza depositados en mí. A mis amigos de toda la vida y a aquellos que he tenido la oportunidad de conocer en este trayecto: Alberto García, Rafa, Emilio y Ale, quienes me apoyaron cuando más lo necesité mostrando su cariño e incondicionalidad.

A todos los académicos del Centro de Alta Tecnología y del Centro de Física Aplicada y Tecnología Avanzada, quienes contribuyeron en mi formación: el Dr. Carlos Romo Fuentes, el Dr. Alberto Ramírez Aguilar, el Dr. José Antonio Pérez Guzmán, a mi asesor, el Dr. Saúl Santillán Gutiérrez, quien a pesar de todos los incidentes, me brindó su apoyo hasta el último momento.

Y finalmente, a aquellos quienes físicamente no están, pero los llevo en el corazón...

ÍN	DI	CE
	ν	UL

AGRADECIMIENTOS	4
ÍNDICE	5
ÍNDICE DE FIGURAS	6
ÍNDICE DE TABLAS	7
CAPÍTULO 1. INTRODUCCIÓN	
1.1. ANTECEDENTES	9
1.1.1. CONFIGURACIÓN DEL SATÉLITE	10
1.1.1.1 Sistema de Telecomunicaciones	10
1.1.1.2 Sistema de Telemetría	10
1.1.1.3 Sistema de Regulación Térmica	10
1.1.1.4 Sistema de Orientación y Estabilización	10
1.1.1.5 Sistema de Navegación	12
1.1.1.6 Instrumentación de la carga útil	12
1.1.1.7 Computadora a bordo: Sistema de comando y manejo de información (SCMI)	12
1.1.1.8 Sistema Estructural	12
1.1.1.9 Sistema de Potencia	13
1.2 OBJETIVO DE LA TESIS	15
1.3 ESTRUCTURA DE LA TESIS	
CAPÍTULO 2. MARCO TEÓRICO	17
2.1. FUNDAMENTOS PARA LA GESTIÓN ENERGÉTICA EN UN SATÉLITE	17
2.1.1. CELDAS FOTOVOLTAICAS	17
2.1.2. BATERÍAS	19
2.2. FUNDAMENTOS PARA LA SIMULACIÓN	23
2.2.1. PARÁMETROS ORBITALES	23
2.2.2. STK	
2.2.3. LABVIEW	
2.2.3.1 Panel Frontal	
2.2.3.3 Programación el LabVIEW	
2.2.3.4 Estructuras en LabVIEW	
CAPÍTULO 3. METODOLOGÍA DE LA SIMULACIÓN	45
3.1. SIMULACIÓN EN LABVIEW	
3.2. GENERACIÓN DE REPORTES	50
3.3. DEFINICIÓN DE MODOS DE OPERACIÓN	51
CAPÍTULO 4. ANÁLISIS DE RESULTADOS	52
4.1. PERIODOS DE INCIDENCIA Y ECLIPSE	
4.2. CELDAS	54
4.3. BATERÍAS	
4.4. MODOS DE OPERACION	
CAPÍTULO 5. CONCLUSIONES Y TRABAJO FUTURO	60
BIBLIOGRAFÍA	62
ANEXO I- HOJA DE DATOS CELDA AZURSPACE	64
ANEXO II- CÓDIGO DE PROGRAMACIÓN EN LABVIEW	66
ANEXO III- REPORTES GENERADOS EN LABVIEW	69

Índice de Figuras

FIGURA 1. Subsistemas del microsatélite Quetzal	10
FIGURA 2. Vista en explosivo del Quetzal	13
FIGURA 3. Curva característica de una célula fotovoltaica con sus principales elementos	17
FIGURA 4. Carga de la batería / perfil de la tensión de descarga	21
FIGURA 5. (a) Aumento en voltaje. (b) Aumento en capacidad. (c) Voltaje/ Aumento de Capacidad	22
FIGURA 6. Tamaño de la órbita	23
FIGURA 7. Forma de la órbita	24
FIGURA 8. Inclinación	25
FIGURA 9. Nodo ascendente	
FIGURA 10. Argumento del Perigeo	27
FIGURA 11. Anomalía verdadera	27
FIGURA 12. Tipos de órbita de acuerdo a su altitud	
FIGURA 13. Definición de los parámetros de la misión en STK	31
FIGURA 14. Barra de menús de STK	32
FIGURA 15. Insertar objetos en STK.	32
FIGURA16. Panel 'Report & Graph Manager'	
FIGURA 17. Ejemplo de un reporte en SKT	
FIGURA 18. Ventana "Access".	
FIGURA 19. Ejemplo de un reporte usando la aplicación 'Access'	35
FIGURA 20. Ejemplo de una gráfica de los accesos a estaciones terrenas	
FIGURA 21. Mapa en 2D de la simulación Quetzal	
FIGURA 22. Ejemplo de un Panel Frontal.	
FIGURA 23. Diagrama de Bloques	
FIGURA 24. Paleta de Funciones de LabVIEW	40
FIGURA 25. Estructura Case.	41
FIGURA 26. Sequence Structure	41
FIGURA 27. Sequence local: paso de un dato de la hoja 0 a la 1	42
FIGURA 28. Ciclo For	42
FIGURA 29. Ciclo While	42
FIGURA 30. Ejemplo de implementación de ecuación usando bloques de lenguaje G	43
FIGURA 31. Ejemplo empleando fórmula node	43
FIGURA 32. Esquema general del proyecto de tesis	45
FIGURA 33. Diagrama de Flujo para la simulación en LabVIEW	45
FIGURA 34. Apartado de consumo en la simulación de LabVIEW	46
FIGURA 35. Apartado de disponibilidad en la simulación de LabVIEW	47
FIGURA 36. Apartado de resultados de la interfaz con STK	
FIGURA 37. Simulación en LabVIEW	
FIGURA 38. Casos a considerarse para establecer los modos de operación	
FIGURA 39. Gráfica con periodos de incidencia, eclipse y accesos del 09/03/2015	
FIGURA 40. Gráfica con periodos de incidencia, eclipse y accesos del 06/02/2015	
FIGURA 41. Gráfica con periodos de incidencia, eclipse y accesos del 02/12/2015	

Índice de Tablas

TABLA 1. Componentes por compartimiento.	13
TABLA 2. Requerimientos de potencia nominal por cada subsistema	15
TABLA 3. Comparación de diferentes materiales expuestos a diferentes temperaturas y niveles de radiación.	19
TABLA 4. Eficiencia de distintos materiales	19
TABLA 5. Características de ciertas baterías secundarias.	21
TABLA 6. Tipos de órbitas atendiendo a la inclinación.	26
TABLA 7. Resumen de los parámetros orbitales	28
TABLA 8. Clasificación de una órbita satelital.	29
TABLA 9. Comparación de tiempos de incidencia y eclipse en días considerados	52
TABLA 10. Comparación de tiempos y pases por estaciones terrenas en los 6 días considerados	52
TABLA 11. Valores máximos y mínimos de periodos de incidencia y eclipse en 1 año	53
TABLA 12. Comparación de tiempos y pases por estaciones terrenas en los 3 días críticos del año	53
TABLA 13. Comparación entre banco de 4 y 6 baterías.	54

CAPÍTULO I INTRODUCCIÓN

1.1. Antecedentes

Un satélite es un cuerpo que gira alrededor de otro. Así, la Tierra tiene un satélite natural y cerca de nueve mil satélites artificiales. Centrándonos en éstos últimos, su clasificación dependerá del tipo de misión que tengan, de su masa y su tipo de órbita.

El uso de satélites espaciales se ha convertido en una parte importante para el desarrollo de la humanidad. Recientemente la mayoría de las telecomunicaciones se realizan mediante comunicación satelital; esto sin lugar a dudas ha permitido el desarrollo científico y tecnológico. Ejemplo de ello, son los avances en las tecnologías informáticas y los procesos de fabricación, de donde ha surgido la creación de componentes altamente sofisticados en plataformas compactas, mismos que son utilizados para diseñar y construir satélites a pequeña escala.

Gracias a estas ventajas, la Facultad de Ingeniería (FI) de la Universidad Nacional Autónoma de México (UNAM), a través del Centro de Alta Tecnología (CAT), en conjunto con instituciones internacionales han establecido vínculos para desarrollar microsatélites (satélites que van de los 10 a los 100 kg de masa).

Uno de esos proyectos es el microsatélite Quetzal, que se realiza en colaboración con el Instituto Tecnológico de Massachussets (MIT). Quetzal tiene un peso de 50 kg, se regirá en una órbita baja (LEO, Low Earth Orbit), con una propuesta de altitud de 700 km. Su misión es el monitoreo de gases contaminantes en la atmósfera sobre ciudades de México.

En el siguiente apartado (1.1.1), se describirán los subsistemas que lo integran, haciendo hincapié en los consumos energéticos de cada uno. Quetzal será el objeto de estudio para este proyecto, en el que se propondrán varios escenarios para realizar su correspondiente gestión energética.

1.1.1 Configuración del Satélite

Un satélite está integrado por un conjunto de tecnologías, mismas que se agrupan para cumplir un objetivo. Cada tecnología, o varias de ellas, constituyen un subsistema. El microsatélite Quetzal cuenta con los subsistemas mostrados en la figura 1.

Figura 1. Subsistemas del microsatélite Quetzal (Santillán, S.D., 2012).

Su vista en explosivo se muestra en la figura 2; en ésta última se pueden observar tres compartimientos con sus respectivos subsistemas. La descripción de cada subsistema se detalla a continuación.

1.1.1.1 Sistema de Telecomunicaciones

Permite la comunicación, transmisión y recepción de datos/comandos entre el satélite y la Estación Terrena. Su función la realiza a través de instrumentación de radiofrecuencia (antenas transmisoras y receptoras, moduladores, demoduladores, codificadores y decodificadores), la cual dependerá de los modos de operación establecidos. Quetzal utilizará un transmisor de 2 a 4 GHz. Su consumo de potencia es de 5 W @ 250 mA. (Santillán, S. D., 2012).

1.1.1.2 Sistema de Telemetría

El sistema de telemetría ayuda a monitorear el estado de los parámetros físicos del satélite (temperatura, voltajes, corrientes, modos de operación de los subsistemas, presión, humedad, desplazamiento, etc); mediante sensores que convierten las señales iniciales detectadas en señales digitales, las cuales son procesadas/almacenadas en un microprocesador y enviadas a la computadora a bordo o al sistema de telecomunicaciones.

Permite hacer reconfiguraciones y reprogramaciones en el software, en caso de presentarse algún problema. Su consumo máximo de potencia es de 2 W @ 250 mA. (Serna, J., 2012).

1.1.1.3 Sistema de Regulación Térmica

La superficie del satélite está expuesta tanto a periodos de incidencia solar como a periodos de eclipse, lo cual provoca que existan choques térmicos en todos sus elementos. Así, el satélite debe de soportar temperaturas extremas, que van desde los 150°C provocadas por el flujo solar hasta temperaturas de -100°C en presencia de sombra. En el caso de Quetzal se propone un sistema pasivo de regulación térmica, el cual consiste en una doble cubierta, externa e interna, que regulará los cambios de temperatura a los cuales estará sometido el satélite. (Otero, J. L. 2012).

1.1.1.4 Sistema de Orientación y Estabilización

El Sistema de Orientación y Estabilización (ADCS: Attitude Determination Control System); *determina* (a base de sensores y modelos matemáticos), *y controla* (a través de sensores, control pasivo, algoritmos de control y actuadores), la posición del satélite. Para la misión Quetzal, en el modelo numérico se consideran 6 ruedas inerciales en cada cara del satélite, teniendo un consumo de potencia máxima de 11.5 W @ 1A. (Flores, S., 2012)

1.1.1.5 Sistema de Navegación

Este subsistema determina la posición del satélite a lo largo de su trayectoria orbital, a través de un receptor de posicionamiento global (GPS o GLONASS). Tiene un consumo de potencia de 1.0 W @ 150 mA. (Santillán, S.D., 2012)

1.1.1.6 Instrumentación de la Carga Útil

La instrumentación consta de un espectrómetro y una cámara multiespectral. El espectrómetro tiene las siguientes características: permite monitorear las partículas de dióxido de azufre (SO₂), funciona con un rango de frecuencia UV FT, un rango de longitud de onda de 305-315 nm y un consumo de potencia de 3 W @ 300 mA . Por su parte, la cámara multiespectral funciona en banda S, con un filtro de 8 bandas espectrales, con un sensor remoto CMOS, y una resolución de 20-25 metros por pixel. Su consumo de potencia es de 2W @ 250 mA. (Santillán, S. D., 2012).

1.1.1.7 Computadora a Bordo: Sistema de Comando y Manejo de Información (SCMI)

Este subsistema controla y verifica que la carga útil funcione correctamente; obtiene la toma de lecturas, almacena, procesa y envía la información a la computadora central. Su consumo de potencia es de 1.5 W @200 mA. (Czernik, S., 2004).

1.1.1.8 Sistema Estructural

En este subsistema se define la configuración estructural del satélite: los compartimientos con los que cuenta, la distribución de los paneles solares, además del material con el que está construido. La distribución de los paneles y los subsistemas se aprecia en la figura 2. Cada compartimiento cuenta con una serie de componentes, los cuales se desglosan en la tabla 1.

PRIMER COMPARTIMIENTO				
Caja de Tarjetas	32x30x20.5 [cm]			
4 tarjetas	30x20x3.3 [cm]			
Segundo compartin	niento			
2 tanques de combustible	13x10x8.5 [cm]			
Sist. de Control y Distribución	19x18x10 [cm]			
2 Tarjetas	17x9x3.3 [cm]			
6 baterías	6x8x7.5 [cm]			
Caja de ruedas inerciales	10x10x8 [cm]			
Tercer compartim	iento			
Caja de la cámara	20x20x10 [cm]			
Transmisor	14x15x3 [cm]			
Receptor	14x15x3 [cm]			
Espectrómetro	32x25x10 [cm]			

Tabla 1.Componentes por Compartimiento.

Figura 2. Vista en explosivo del Quetzal (Gaviria, D., 2014).

1.1.1.9 Sistema de Potencia

El sistema de potencia cumple con las siguientes etapas: generar, almacenar, regular y distribuir la energía eléctrica para alimentar cada subsistema que lo integra. La descripción de cada etapa es la siguiente:

a) Generación de Energía

Mediante arreglos de celdas fotovoltaicas (paneles solares), se captan los fotones provenientes de la luz solar generando energía eléctrica. La potencia generada se ve afectada por diversos factores, como el deterioro por radiación, la temperatura, el ángulo de incidencia solar y los momentos de eclipse.

b) Almacenamiento de Energía

Para compensar la falta de captación de energía, se acumula la energía en baterías, permitiendo la operación del subsistema durante los eclipses.

c) Regulación

Mediante fuentes de regulación, se proporcionan los niveles de voltaje requeridos por cada subsistema. Se regula la carga y descarga de las baterías (etapa de almacenamiento).

d) Distribución de Energía

El subsistema reparte la cantidad del presupuesto energético disponible a cada uno de los subsistemas, garantizando la disponibilidad mínima de energía que permita la operación del satélite.

Este subsistema es un recurso clave, debido a que las necesidades de potencia eléctrica en un satélite son elevadas y la disponibilidad de superficie para los paneles solares es restringida. En el caso de Quetzal, la captación de energía será a partir de un arreglo de paneles solares de Arsenuro de Galio (GaAs), instalados en la superficie externa de la estructura del satélite. El almacenamiento de energía se hará en un banco de baterías de litio, la distribución de la energía será realizada con fuentes conmutadas, reguladas mediante las señales de PMW (modulación por ancho de pulsos, por sus siglas en inglés).

En base a la tabla 2, se contempla que en la misión Quetzal exista un consumo de potencia máximo de 33 W y una corriente máxima de 3.8 A. Los valores señalados fueron calculados por académicos del Centro de Alta Tecnología y del Instituto Tecnológico de Massachusetts (Santillán, S.D., 2012).

SUBSISTEMA	POTENCIA REQUERIDA	CORRIENTE REQUERIDA
Sistema de Telecomunicaciones	5.0 W	750 mA
Sistema de Telemetría	2.0 W	250 mA
Sistema de Orientación y Estabilización	11.5 W	1 A
Sistema de Navegación	1.0 W	150 mA
Instrumentación de la carga útil	5.0 W	550 mA
Computadora a bordo	1.5 W	200 mA
Sensores	5.0 – 7 W	550-900 mA

Tabla 2. Requerimientos de potencia nominal por cada subsistema

1.2. Objetivos de la tesis

Los objetivos de esta investigación son:

- Conocer los subsistemas que conforman una misión satelital desde un enfoque de funcionalidad y gasto energético.
- Proponer los arreglos de celdas y baterías, de acuerdo a la estructura de la misión y los requerimientos energéticos.
- Proponer los modos de operación en los que el satélite lleve a cabo su misión de manera óptima con el fin de obtener una adecuada gestión energética.

1.3. Estructura de la Tesis

El capítulo uno, concentra toda la parte introductoria de este trabajo, se da a conocer la misión Quetzal y cómo está integrada, describiendo la funcionalidad y los requerimientos energéticos de cada subsistema. Asimismo, se dan a conocer los objetivos y

una descripción de la etapa de diseño conceptual en la que se encuentra este trabajo.

En el segundo capítulo se desarrolla el marco teórico. En él se describen los fundamentos para la gestión energética en un satélite y los fundamentos para realizar la simulación en LabVIEW.

El capítulo 3, contiene la metodología de la simulación en donde se plantea el algoritmo utilizado y se describe la simulación que se hizo en LabVIEW.

En el capítulo 4 se realiza el análisis de los resultados obtenidos en la simulación en 9 casos, cada caso es un día del año: perihelio (3 de enero), afelio (3 de julio), solsticio de invierno (22 de diciembre), solsticio de verano (22 de junio), equinoccio de otoño (22 de septiembre) y equinoccio de primavera (21 de marzo). Los 3 días restantes (09 de marzo, 06 de febrero y 02 de diciembre), son fechas en donde se encontraron los máximos y mínimos de incidencia y eclipse. Por esta razón, en estos días se hace una propuesta de los modos de operación en la misión Quetzal.

Las conclusiones y trabajo futuro se detallan en el capítulo 5. Finalmente, el anexo contiene la hoja de datos de la celda Azurspace, el código de programación y los reportes generados en LabVIEW,

CAPÍTULO II MARCO TEÓRICO

2.1 Fundamentos para la Gestión Energética en un Satélite

2.1.1 Celdas Fotovoltaicas

Un arreglo de celdas fotovoltaicas constituye un panel solar. Básicamente, el funcionamiento de una celda es el siguiente: la luz está formada por partículas llamadas fotones, los cuales transportan energía. Cuando un fotón con suficiente energía golpea la celda, es absorbido por los materiales semiconductores y libera un electrón. El electrón una vez libre, deja detrás de sí una carga positiva, llamada hueco. Por lo tanto, cuando mayor sea la cantidad de fotones que golpean a la celda, tanto más numerosas serán las parejas electrón-hueco producidas por efecto fotovoltaico y por lo tanto, más elevada la cantidad de corriente producida. De esta manera, se da la conversión de la radiación solar en energía eléctrica.

La representación estándar de un dispositivo fotovoltaico es la característica corriente-tensión (figura 3). La curva representa las posibles combinaciones de corriente y voltaje para un dispositivo fotovoltaico bajo unas condiciones ambientales determinadas (radiación solar incidente y temperatura ambiente). El punto en concreto de corriente y voltaje en el que el dispositivo fotovoltaico trabajará vendrá determinado por la carga a la que esté conectado.

Figura 3. Curva característica de una célula fotovoltaica con sus principales elementos.

Los principales parámetros de la curva característica I-V son:

Potencia máxima (Pmáx): Es la máxima potencia que producirá el dispositivo en condiciones determinadas de iluminación y temperatura, correspondiente al par máximo I-V.

• *Corriente en el punto de máxima potencia (Ipmáx):* Es el valor de la corriente para Pmax en unas condiciones determinadas de iluminación y temperatura.

• *Voltaje en el punto de máxima potencia (Vpmáx):* Es el valor de voltaje para Pmax en unas condiciones determinadas de iluminación y temperatura.

• *Eficiencia:* Dependiendo del material con el que está conformado un panel, se puede conocer su eficiencia n, la cual comúnmente es un indicador utilizado para definir la calidad de una celda y que representa el porcentaje de potencia convertida en energía eléctrica, a partir de la luz solar absorbida. Cuando una celda está conectada a un circuito eléctrico, la eficiencia se calcula usando la relación del punto de potencia máxima, $P_{máx}$, dividido entre el nivel de *radiación solar incidente*, B; y la *superficie*, A_c , de la celda fotovoltaica en [m²].

$$\eta = \frac{Pm\dot{a}x}{BxAc} \qquad (Ec. 1)$$

La radiación solar incidente, B, medida a 1 UA (distancia media de la Tierra al Sol), es llamada *constante solar*, su valor es $1371 \pm 5 [W/m^2]$.

Los paneles para uso espacial, tienen una eficiencia de aproximadamente 28% (SMAD, 2012). Su alta eficiencia se debe a que deben cumplir con los requerimientos de alimentación del satélite, sin embargo su costo es mayor. En la siguiente tabla se muestra la comparación de diferentes materiales expuestos a diferentes temperaturas y niveles de radiación. (Polupan G., 2004).

Type SC materials	ials (%) Power, W Un-Irradiated 1M 3 x10 ¹⁴ e/cm ²		Power, W Un-Irradiated		Powe 1MeV Elect	Power, W MeV Electron Fluence	
Distance in the second				3 x10 ¹	⁴ e/cm ²	1x10 ¹⁵	e/cm ²
const.		28 °C	50 °C	28 °C	50 °C	28°C	50°C
Silicon	14.8	170.9	149.5	129.0	112.2	113.0	98.8
GaAs/Ge	18.5	218.1	208.2	188.1	179. <mark>6</mark>	166.8	159.3
GaInP/GaAs/Ge	21.5	253.5	242.8	223.0	211.9	192.7	183.0

Tabla 3. Comparación de diferentes materiales expuestos a diferentes temperaturas yniveles de radiación (Polupan G., 2004).

En ella podemos ver la variación que hay en la potencia que nos entregan ante la exposición de los materiales a diferentes flujos de radiación y a diferentes temperaturas. Se destaca una mayor estabilidad en las celdas de GaAs y una mayor pérdida de eficiencia en las basadas en Si ante los cambios de radiación y temperatura.

Por otro lado, en la tabla 4, se muestran resultados de eficiencia que han logrado algunos fabricantes en el mundo.

Tabla 4. Eficiencia de distintos materiales (Polupan G., 2004).

Structure	Efficiency	Production firms
InGaP /InGaAs/ Ge	29-30% (AMO)	Toyota Technological Inst
	31-32% (AM1.5)	Japan Energy Corporation [17].
InGaP / GaAs / Ge	32.3%	Spectrolab, USA
	Concentrator solar cell	Nation. Renew. Energy Lab. [18].
GaAs / GaSb	31.4%	Fraunhofer Inst. of Solar
	C=100, AM 1.5 at 25°C	Energy Systems, Germany [2].
InGaP / GaAs	30.28% (AM1.5)	Jap. Energy Corporation [21].
	25.7% (AMO)	
GaAs / InGaAs	28% (AM1.5)	Sumitomo Electric Ind. Ltd.
		Japan [19].

2.1.2 Baterías

La energía adquirida mediante los paneles solares se almacena en un banco de baterías para utilizarse cuando los paneles solares no sean capaces de suministrar la energía necesaria y de esta forma, el satélite tenga un buen funcionamiento. (Dominguez, M., 2014).

Las baterías se cargan durante el periodo de incidencia solar y se utilizan a bordo del satélite para cumplir los requisitos de energía cuando ésta no puede ser proporcionada por los paneles solares, esto es, durante los periodos de eclipse.

La densidad de energía y las características específicas de energía son parámetros clave para la selección de la batería para soportar el almacenamiento de energía para una misión. La elección de una batería adecuada para una misión, depende de varios factores:

- -Frecuencia de uso y duración de la misión
- -Magnitud de la carga
- -Profundidad de descarga
- -Órbita del Satélite
- -Temperatura
- -Resistencia a la etapa de lanzamiento (vibraciones, aceleración)

Existen dos tipos de baterías: primarias o secundarias. Las primarias convierten la energía química en energía eléctrica pero no puede revertir esta conversión, por lo que no se puede recargar. Éstas se aplican normalmente a misiones de corta duración (menos de un día) y cuando se usan en misiones de largo plazo se utilizan para alimentar dispositivos que utilizan muy poca energía, por ejemplo, como alimentación para el respaldo de memorias.

La tabla 5 muestra las características que destacan el rendimiento y el impacto del sistema de baterías aeroespaciales secundarias más comunes de hoy en día. A pesar de que las baterías secundarias tienen densidades de energía mucho menores que las baterías primarias, su capacidad de recarga las hace ideales como fuente de energía de respaldo en las naves espaciales dependen de la energía solar. (Larson, W., 2005).

Características de rendimiento de las baterías recargables	Ni-Cd	Ni-H2	Li-Ion
Densidad de energía (W-hr/Kg)	30	60	125
Eficiencia de energía (% por día)	72	70	98
Potencia térmica (escala de 1-10)	8	10	1
Auto descarga	1	10	0.3
Rango de temperatura [°C]	0-40	-20-50	10-25

Tabla 5. Características de ciertas baterías secundarias. (Larson, W., 2005).

Los pequeños satélites, usan en su mayoría, baterías de NiCd, sin embargo, los acumuladores de NiH2 están reemplazando poco a poco a éstas, debido a su alta energía específica y su mayor tiempo de vida.

2.1.2.1 Carga y descarga de las baterías

De acuerdo a la figura 4 se pueden apreciar las características de carga-descarga de un sistema normal de la batería. En el borde izquierdo, la tensión es baja debido a que la nave espacial acaba de salir de eclipse en el que utiliza energía de la batería. Cuando se encuentra en la fase de carga, hay corriente positiva del regulador, por lo que se eleva la tensión de la batería. En la fase de descarga (cuando se presenta un eclipse de nuevo), hay una corriente negativa, por lo que disminuye la tensión de la batería. La sobrecarga degrada rápidamente la mayoría de las baterías, y una clave para extender la vida de la batería es minimizar su sobrecarga. (Larson, W., 2005).

Figura 4. Carga de la batería / Perfil de la tensión de descarga. (Larson, W. 2005).

Con la siguiente ecuación podemos calcular el tiempo estimado de descarga en una batería:

$$Tiempo \ de \ descarga = \frac{Carga \ eléctrica \ de \ la \ batería \ [Ah]}{Consumo \ eléctrico \ del \ dispositivo \ [A]}$$
(Ec. 2)

Para poder mantener un buen funcionamiento es necesario estar monitoreando el banco de baterías ya que cuando los paneles solares no estén en funcionamiento por un eclipse entran de respaldo las baterías. Si el eclipse llega a durar mucho hay una caída de voltaje, cuando llega a suceder es necesario empezar a suspender algún subsistema para el ahorro de energía para evitar llegar a un estado donde la baterías no puedan recargarse y garantizar que siempre se pueda llegar al voltaje adecuado para el funcionamiento de todo el satélite. (Dominguez, M., 2014). Justamente este análisis se realizará en el capítulo 4.

Antes de finalizar este apartado, se hace hincapié en considerar la configuración de la conexión de las baterías, ya que mediante ésta, uno es capaz de aumentar la salida de voltaje, capacidad de salida o ambos si es necesario.

Para aumentar el voltaje, las baterías se conectan en serie, si se requiere aumentar la capacidad, las baterías se conectan en paralelo: Para aumentar la capacidad y voltaje, las baterías se conectan en serie-paralelo. La figura 4 muestra tales configuraciones.

Figura 5. (a) Aumento en voltaje. (b) Aumento en capacidad. (c) Voltaje/ Aumento de Capacidad.

2.2 Fundamentos para la Simulación

2.2.1 Parámetros Orbitales

Para realizar una simulación orbital en STK (apartado 2.2.2), el programa considera los siguientes parámetros orbitales:

• Tamaño de la órbita

Nos dice qué tan grande es una órbita (figura 6). Este parámetro depende de la velocidad con la que lancemos nuestro satélite a la órbita. Cuanto más rápido realicemos la inyección, más energía tiene la órbita y mayor es. Se expresa el tamaño orbital en términos de su semieje mayor. El eje mayor de una órbita elíptica es la distancia desde el punto más cercano (perigeo) y el más alejado (apogeo).

Figura 6. Tamaño de la órbita

Debido al principio de la conservación de la energía, en una órbita elíptica, la velocidad del satélite es mayor en el perigeo que en el apogeo.

Semieje mayor

Podemos expresar el semieje mayor en términos de la distancia desde el centro de la Tierra hasta el apogeo (Rapogeo) y el perigeo (Rperigeo). El semieje mayor [a] puede obtenerse aplicando:

$$a = \frac{R_{apogeo} + R_{perigeo}}{2}$$
 (Ec. 3)

Período

El período orbital P (es decir, cuánto tiempo tarda el satélite en describir una órbita completa), es proporcional al tamaño de la órbita y viene dado por la siguiente expresión:

$$P = 2\pi \sqrt{\frac{S^3}{G \cdot M_T}} \qquad (Ec. 4)$$

dónde:

a: semieje mayor $G = constante de gravitación universal = 6.67 \cdot 10^{-11} \text{ km}^2/\text{s}^3$ M_T = masa de la Tierra = 5.98 · 10¹⁵ kg

• Forma de la órbita

Excentricidad

Cuanto menos circular es una órbita, más excéntrica o "imperfecta" es. La excentricidad, *e*, describe la forma de la órbita con respecto a una circunferencia (figura 7).

Figura 7. Forma de la órbita

- Una circunferencia tiene una excentricidad de 0.
- Una órbita elíptica tiene una excentricidad inferior a la unidad.
- Una órbita parabólica tiene una excentricidad igual a 1.
- Una órbita hiperbólica tiene una excentricidad superior a la unidad.

• Orientación de la órbita

Inclinación

La inclinación, *i*, nos indica cuánto está inclinada una órbita. Una órbita que está justo en el plano del Ecuador tiene una inclinación de 0 grados y se conoce como órbita ecuatorial. Una órbita que pasa justo por los polos Norte y Sur debe tener una inclinación de 90 grados y se llama órbita polar.

Figura 8. Inclinación

En la figura 8, se muestra el ángulo entre el vector unidad, \hat{k} (que coincide con el eje de rotación de la Tierra), y otro vector unidad, \hat{h} , que es perpendicular al plano de la órbita.

Inclinación	Tipo de órbita	Diagrama	Inclinación	Tipo de órbita	Diagrama
i = 0 grados i = 180 grados	Ecuatorial	i=0°	0 < i < 90	Directa	Nodo ascendente
i = 90 grados	Polar	i=90°	90 < i < 180	Indirecta o retrógrada	Nodo ascendente

Tabla 6. Tipos de órbitas de acuerdo con la inclinación.

Nodo ascendente

Para medir lo "torcida" que está una órbita, se define el nodo ascendente como el punto en el que el satélite cruza el plano ecuatorial en dirección sur-norte. Este punto está referenciado a la dirección \hat{i} , que apunta al equinoccio vernal (figura 9). El equinoccio de vernal es el punto en el que se intersectan el ecuador y la eclíptica, esto ocurre en el equinoccio de primavera, el 21 de marzo). El ángulo entre la dirección \hat{i} y el nodo ascendente se conoce como la ascensión recta del nodo ascendente, Ω , (RAAN).

Figura 9. Nodo ascendente

Argumento del perigeo

La orientación de la órbita queda descrita localizando el perigeo con respecto al nodo ascendente. Este ángulo, ϖ , se conoce como el argumento del perigeo (figura 10) y se mide positivamente en el sentido de movimiento del satélite.

Anomalía verdadera

Finalmente, se describe la posición instantánea del satélite con respecto al perigeo usando otro ángulo conocido como anomalía verdadera, v. Es un ángulo que se mide positivamente en la dirección del movimiento, entre el perigeo y la posición del satélite. De los seis elementos orbitales, la anomalía verdadera es el único que cambia continuamente (ignorando perturbaciones).

Figura 11. Anomalía verdadera

NOMBRE	SÍMBOLO	DESCRIPCIÓN
Semieje mayor	S	Tamaño
Excentricidad	e	Forma
		e=0. Circular
		e<1. Elíptica
		e=1. Parabólica
		e>1. Hiperbólica
Inclinación	i	Inclinación de la órbita con respecto al ecuador.
Longitud del nodo	Ω	Giro de la órbita con respecto al punto de nodo
ascendente		ascendente.
Argumento del perigeo	ω	Localización del perigeo con respecto al nodo
		ascendente.
Anomalía verdadera	υ	Localización del satélite con respecto al perigeo.

Además de clasificar a las órbitas de acuerdo a su tipo de inclinación, también se pueden clasificar de acuerdo a la altitud en la que se encuentran.

Las órbitas bajas (LEO, Low Earth Orbit) están dentro de una región esférica que se extiende desde la superficie de la Tierra hasta a una altitud de 2,000 km. Debido a su reducida cobertura geográfica y a su rápido paso alrededor de la Tierra se requerirían de constelaciones de estos satélites si se quisiera tener una comunicación constante con un punto determinado en Tierra. Una órbita media (MEO, Medium Earth Orbit) es toda órbita situada por encima de la región de órbitas bajas y por debajo de la región geoestacionaria. Este tipo de órbitas también son conocidas como Órbita Intermedia Circular (ICO, Intermediate Circular Orbit) y se encuentran más comúnmente a una altura de 20,200km o de 20,650 km en donde el periodo orbital del satélite es de 12 horas. La órbita geoestacionaria (GEO, Geostationary Orbit) se encuentra dentro una región llamada región geoestacionaria ubicada entre los 35,586 km y los 35,986 km de altura sobre la superficie terrestre. Ésta órbita se encuentra precisamente a una altura de 35,786 km. En cuanto a las órbitas geoestacionarias podemos decir que pertenecen al tipo de órbitas geosíncronas. Una órbita geosíncrona es aquella cuyo periodo coincide con el periodo de rotación de la Tierra, lo cual equivale a 23 horas y 56 minutos. Una órbita geoestacionaria es una órbita que además de ser geosíncrona debe de ser circular ecuatorial y estar situada a una altura de 35,786km, con lo que se logra que un satélite ubicado en ella permanezca fijo sobre un punto determinado de la Tierra (Serrano, 2015).

Figura 12. Tipos de órbita de acuerdo a su altitud.

En la figura se ilustran los tipos de órbitas de acuerdo a diferentes altitudes y en la tabla 8, se concentran las clasificaciones orbitales de manera resumida, donde e significa excentricidad, i inclinación y h altura:

r

	CLASIFICACIÓN POR	TIPO DE ÓRBITA		
FORMA	Circular	e=0		
FORMA	Elíptica	$0 \le e \le 1$		
	Ecuatorial	i=0°		
INCLINACIÓN	Polar	i=90°		
	Inclinada	$0^{\circ} \le i \le 90^{\circ}$		
	Órbita Baja (LEO)	h < 2,000 km		
AL TUDA	Órbita Madia (MEO)	2,000 km < h < 35,586 km		
ALTUKA	Orbita Media (MEO)	Más comunes en h= 20,200 km y 20,650 km		
	Órbita Geoestacionaria (GEO)	h= 35,786 km		

Fabla 8.	Clasificación	de una	órbita	satelital
	Clasificación	uc una	UI DILA	Satura

• Propagador

Además de los parámetros orbitales antes descritos, STK considera en su menú de opciones diferentes propagadores. Un propagador es el medio a través del cual se

determinan la posición y velocidad de un satélite. En STK se consideran los siguientes:

Dos-Cuerpos

El propagador "Dos-Cuerpos" (*Two-Body*), o de movimiento Kepleriano, considera para la determinación de la órbita sólo la fuerza de la gravedad de La Tierra, la cual es modelada como un punto de masa.

Perturbación

Hay dos tipos de propagador de perturbación: J2, de primer orden; y J4, de segundo orden. Ambos propagadores de Perturbación tienen en cuenta las variaciones en la órbita debidas a la irregularidad geométrica de La Tierra. El propagador de primer orden no modela el roce atmosférico o las fuerzas gravitaciones solar o lunar.

SGP4

El propagador SGP4 (Simplified General Perturbations) es un estándar AFSPACECOM (NORAD) que emplea datos TLE (Two Line mean Element). Este propagador tiene en cuenta las variaciones periódicas y seculares debidas a la irregularidad terrestre, los efectos gravitacionales del Sol y de la Luna, los efectos de la resonancia gravitacional y el decaimiento orbital, gracias al empleo de un modelo del roce atmosférico.

De la misma manera, los parámetros orbitales fueron asignados por académicos del Centro de Alta Tecnología y del Instituto Tecnológico de Massachusetts (Santillán, S.D., 2012).

2.2.2 STK

STK (System Tool Kit), es un software comercial creado por AGI, destinado al diseño de aplicaciones espaciales y militares. AGI crea softwares tanto para la seguridad nacional como para profesionales dedicados al análisis de misiones en tierra, mar, aire o espacio. Para más información sobre AGI y sus productos, se puede consultar su página web en la siguiente dirección: <u>www.agi.com</u> (AGI, 2015).

La versión usada de STK será la educacional, que permite visualización en 2D y 3D y diversas funciones avanzadas. A continuación, se van a describir diversos conceptos que utiliza STK y se darán las nociones básicas para el trabajo con ellos.

Dentro de STK, se encuentra un "*escenario*", que es el elemento básico donde transcurre la simulación de una misión, y donde se almacenan todos los elementos (satélites, estaciones terrenas, etc.), de los que dicha misión se compone.

Al iniciar STK, éste solicita que se especifiquen los parámetros orbitales de la misión, mismos que se describieron en el apartado 2.2.1, la ventana que se abre ('Basic Orbit'), se puede observar en la figura 13:

🗂 quetzal1 : Basic Orbit			×
Basic Orbit * Attitude	Propagator: J2Perturbation	Initial State Tool	
Pass Break			
Eclipse Bodies			
Ground Ellipses	Interval: 🧕 QUETZAL1 AnalysisInterval		
Description			
D Graphics	Step Size: 60 sec		
Attributes			
Time Events	Orbit Epoch: 💧 22 Jun 2015 00:00:00.000 UTCG	👻 Semimajor Axis 🗸 7062.14 km 👜	
Pass	0 15 1 A 1 Inc 2000 11-59-55 916 UTCC		
- Contours	Coord Epoch: 0 1 Jan 2000 11.36.33.616 01CG	✓ Eccentricity	
Range	Coord Type: Classical	Inclination 98.1188 deg	
Lighting	1005		
Swath	Coord System: ICRF	Argument of Perigee 0 deg	
Ground Ellipses		RAAN 🚽 351.925 deg 🕎	
Darr Darr	Prop Specific: Special Options		
Orbit System		True Anomaly 🗸 359.927 deg 🕎	
Attitude Sphere			
Vector			
Proximity			
Droplines			
- Covariance			
- Model			
Offsets			
- Contours			
Range			
Model Pointing			
Data Display			
Vapor Trail			
Pacie			
OK Cancel	Apply Help		

Figura 13. Definición de los parámetros de la misión en STK

Una vez insertados los datos orbitales de la misión, se selecciona la opción 'Apply'. Si se desea insertar más objetos a la misión, se debe ir al menú 'Insert', ubicado en la barra de menús de SKT, que se muestra en la figura 14, y seleccionar la opción 'New'.

:8	<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	Insert	<u>A</u> nalysis	<u>S</u> cenario	<u>U</u> tilities	<u>W</u> indow	<u>H</u> elp
					4 4 D				

Figura 14. Barra de menús de STK

Se abrirá una ventana (figura 15), que contiene todos los posibles objetos que pueden considerarse en una misión desde satelital hasta aeronáutica o militar.

Figura 15. Insertar objetos en STK.

Para la simulación de Quetzal, se insertaron 6 estaciones terrenas, eligiendo la opción 'Facility' y posteriormente 'Define Properties', en donde se especifica la altitud, latitud y longitud de dónde estará situada. En este trabajo se asignaron las siguientes estaciones: Boston, Estambul, Kitakyushu, Querétaro, México y Tokio. El criterio para elegirlas se detalla en el apartado 3.1. Cabe destacar que una estación terrena permite comunicación directa con el satélite para mandar o recibir información.

Una vez teniendo completa la simulación con todos los elementos que integran a la misión satelital, se cuenta con la opción de visualizar y exportar tanto reportes como gráficas que el usuario desee obtener. Debido a la naturaleza de los archivos generados, se cuenta con la necesidad de generar una interfaz en LabVIEW que permita manipularlos (misma que se describe en el capítulo 3).

<u>≥</u> = ≥ = = = # < .*.* :: :::::::::::::::::::::::::::::::	 ■ ● □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
bject Browser	Christ Type: Al Types	Styles Styles
🔛 👷 🧐 🍨 🔮 🚆	Time Properties Use Object Time Fined Use Advanced Times Set: Times Specify Time Properties Setex: type: Specify Times Start: 22 Jun 2015 00:00:000 UTCG Step: 23 Jun 2015 00:00:000 UTCG Step: 23 Jun 2015 00:00:000 UTCG Use default time points Use step step step (time bound Step sup: 60 sec:	Image: Solar AER Imag

Figura 16. Panel 'Report & Graph Manager'.

Como se observa en la figura 16, la sección encerrada con rojo, es un panel que cuenta con las diferentes aplicaciones que STK maneja, de cada aplicación se puede obtener un reporte o gráfica. Para tener acceso a este panel, se tiene que ir al menú 'Analysis' (encerrado con azul) y seleccionar la opción 'Report & Graph Manager'.

En el caso de elegir generar un reporte, éste se puede exportar en formato .csv o .txt; en el caso de elegir una gráfica, ésta se puede exportar en formato .jpg o .png. La figura 17 muestra un ejemplo de cómo se muestra un reporte en STK.

<u>24</u> ⊡ 22 ⊒ 29 ±5 ♀ • .7 .7 50 0 0 . 14 41		3 Jul 2015 00:00:	00.000	e,		
bject Browser • # ×	Interval: & quetzal1 AvailabilityTimeSp	en 💌 St	To: Top ep: 60 sec @	1		
V C Estambul V C Estambul	FOR UNFUNDED EDUCATIONAL Satellite-quetzal1: Yaw,	USE ONLY Pitch, & Rol	20 Jun 2 11 Angles	015 13:44:41		
Boston	Time (UTCO)	Yaw (deg)	Pitch (deg)	Roll (deg)		
Q Queretaro			*********			
III N quetrall	3 Jul 2015 00:00:00.000	-93.750	-12.672	-68.795		
Tallan doctors	3 Jul 2015 00:01:00.000	-94.560	-12.408	-72.527		
	3 Jul 2015 00:02:00.000	-95.351	-12.093	-76.251		
	3 381 2015 00:03:00.000	-96.117	-11.729	-79.965		
	3 341 2015 00:04:00.000	-90.037	-11.317	-03.009		
	3 301 2015 00:05:00.000	-97.368	-10.357	-07.302		
	3 341 2015 00:06:00.000	-90.245	-10.337	-91.042		
	3 301 2015 00:07:00.000	-98.888	-9.013	-94.711		
	3 Jn1 2015 00-09-00 000	-100.059	-8 610	-102 011		
	3 Jul 2015 00:10:00.000	-100.582	-7.956	-105.642		
	3 Jul 2015 00-11-00 000	-101 062	-7 271	-109 262		
	3 Jul 2015 00:12:00.000	-101.497	-6.557	-112.870		
obe Manager 🔹 🔻 🛪 🛛	3 Jul 2015 00:13:00.000	-101.885	-5,817	-116,468		
ferrarding Danadas Oxfor Link (3 Jul 2015 00:14:00.000	-102.225	-5,055	-120.056		
Render Order KA	3 Jul 2015 00:15:00.000	-102.517	-4,272	-123.636		
= 42 9 % % % *	3 Jul 2015 00:16:00.000	-102.759	-3.474	-127,208		
	3 Jul 2015 00:17:00.000	-102.950	-2.661	-130.775		
There are no items to show.	3 Jul 2015 00:18:00.000	-103.090	-1.839	-134.336		
	3 Jul 2015 00:19:00.000	-103.179	-1.009	-137.894		
	3 Jul 2015 00:20:00.000	-103.216	-0.175	-141.451		
	3 Jul 2015 00:21:00.000	-103.202	0.660	-145.007		
	3 Jul 2015 00:22:00.000	-103.136	1.492	-148.564		
	3 Jul 2015 00:23:00.000	-103.018	2.318	-152.124		
	3 Jul 2015 00:24:00.000	-102.849	3.135	-155.688		
	3 Jul 2015 00:25:00.000	-102.629	3.941	-159.257		
	3 Jul 2015 00:26:00.000	-102.359	4.731	-162.834		
	3 Jul 2015 00:27:00.000	-102.040	5.503	-166.418		
	3 381 2015 00:28:00.000	-101.673	6.254	-170.011		
	3 341 2015 00:29:00.000	-101.250	6.900	-173.615		
	3 Jul 2015 00:30:00.000	-100.292	8 347	179 144		
	3 Jul 2015 00:32:00 000	-99.745	8.989	175.506		
	3 Jul 2015 00:33:00 000	-99.156	9.583	171.855		
	3 Jul 2015 00:34:00.000	-98.529	10,145	168.191		
	2 7-1 0015 00-25-00 000	-97.866	10.666	164 516		
	1 3 001 2013 00:33:00.000					

Figura 17. Ejemplo de un reporte en SKT

Los datos que nos interesa conocer son los correspondientes a los momentos de incidencia y eclipse, junto con los tiempos de pases del satélite sobre una estación terrena. Los reportes generados para este proyecto fueron adquiridos mediante las aplicaciones: "Ligthing", "Eclipse" y "Access".

Las dos primeras aplicaciones nos generan información sobre los momentos de incidencia y eclipse; la tercera aplicación, 'Access', nos da los accesos a las estaciones terrenas que tiene el satélite, es decir, se especifica la fecha, hora y duración de cada pase que tiene el satélite sobre determinada estación terrena.

La aplicación "Access" es la única que no se encuentra en el panel 'Report & Graph Manager'. La manera de tener acceso a ella es yendo al menú 'Analysis'.

Una vez elegida la opción 'Access', se abrirá una ventana como se muestra en la figura 18.

	and the second sec	and the second se	
닐 ᇊ 밖 C 및			
Ele Edit View Insert Analysis Satellite Utilities Window Help			
<u>≥</u> □ ≠ ■ ⊕ 16 ♀ • ■ • □ ; ● • ▼ 3 ; ● ;			
📲 🖑 🔁 💿 🧠 💂 🖊 📢 🍕 🚺 🕨 🕪 📚 🏠 🥸 🙆 21 Mar 2015	00:00:00.000	· .	
bject Browser • # ×			
🛅 💽 📈 🖇 🛍 🔍 🐥 🏹			
QUETZAL1			
- VaBoston			
Access for: quetzal1	Select Object		
Sector	Graphics		
Wexico Setambul	Show		
Contraction Contraction	V Inherit Settings from Scenario		
Queretaro	2 Show Line	idvanced	
Contraction Contraction	2 Animate Highlight		
Solution No. 1	[√] Static Highlight		
Mexico Oueretaro	Compute Time Period		
	Use Object Time Periods		
	🕐 Use Scenario Time Period		
	🗇 Use Time Intervals	Select	
	Specify Time Period		
Slobe Manager 👻 🖷 🗶	Start: 👌 22 Jun 2015 00:00:00.000 0		
Herarchy Render Order K0 * *	Stop: 🍐 23 Jun 2015 00:00:00.000 0	итса 🖾	
💥 🙊 😫 🦻 警 🗳			
	Reports Graphs		
There are no items to show.	Access	me Took	
	AER		
	· · · · · · · · · · · · · · · · · · ·		
	Report & Graph Manager 3D Graphics Displa	1/5	
	Close	Help	
Access		100 55000 100 5500	

Figura 18. Ventana "Access".

Ya sea que se seleccione obtener un reporte o una gráfica, se debe dar clic en 'Access' para poder generarlos. Las figuras 19 y 20, muestran ejemplos de reportes y gráficas de los accesos que tiene Quetzal a las estaciones terrenas.

		3 🖓 📓	Jump To: Top	•		
QUETZAL1	Start: 6 22 Jun 20 Stop: 6 23 Jun 20	15 00:00:00.000				
Estambul Estakyushu	FOR INFINITED FOR	CATTONAL D		06 3	Tun 2015 19:07:08	
Queretaro	Satellite-quetza	11-To-Faci	lity-Queretaro: Access Sum	ary Report		
Boston Ø O Mexico	quetzall-To-Quer	etaro				
Queretaro		Access	Start Time (UTCG)	Stop Time (UTCG)	Duration (sec)	
		1	22 Jun 2015 04:39:26.332	22 Jun 2015 04:43:13.627	227.295	
		2 3	22 Jun 2015 06:11:03.843 22 Jun 2015 07:51:07.737	22 Jun 2015 05:24:45.639 22 Jun 2015 07:59:48.130	520,393	
		4	22 Jun 2015 18:19:11.154	22 Jun 2015 18:32:34.260	803.107	
		5	22 Jun 2015 19:57:29.450	22 Jun 2015 20:08:20.176	650.728	
	Global Statistic					
	Min Duration	1	22 Jun 2015 04:39:26.332	22 Jun 2015 04:43:13.627	227.295	
	Max Duration	2	22 Jun 2015 06:11:03.843	22 Jun 2015 06:24:45.639	821,797	
anager 🔻 🕸 😒	Total Duration				3023.320	
Y Render Order xb * *						
2 9 9 9 5 "						
e are no items to show.						

Figura 19. Ejemplo de un reporte usando la aplicación 'Access'

Figura 20. Ejemplo de una gráfica de los accesos a estaciones terrenas

Finalmente, en la figura 21 muestra la simulación satelital en un mapa 2D, las franjas verdes indican los pases que tiene Quetzal sobre las estaciones terrenas que se asignaron. La línea morada indica la trayectoria que sigue Quetzal y la línea amarilla hace distinción entre la región donde existe incidencia y donde hay eclipse.

Figura 21. Mapa en 2D de la simulación Quetzal.

2.2.3 LabVIEW

LabVIEW es una plataforma y entorno de desarrollo para diseñar sistemas con un lenguaje de programación visual gráfico llamado *lenguaje G*. Los programas desarrollados con LabVIEW se llaman Instrumentos Virtuales (VI's), porque su apariencia y funcionamiento imitan a los de un instrumento real. Sin embargo, son análogos a las funciones creadas con los lenguajes de programación convencionales. Los VI's tienen una parte interactiva con el usuario (panel frontal) y otra parte de código fuente (diagrama de bloques). A continuación se procederá a realizar una breve descripción de estos conceptos.

2.2.3.1 Panel Frontal

Se trata de la interfaz gráfica del VI con el usuario. Esta interfaz recoge las entradas procedentes del usuario y representa las salidas proporcionadas por el programa. Un panel frontal está formado por una serie de botones, pulsadores, potenciómetros, gráficos, etc.

Cada uno de ellos puede estar definido como un control o un indicador. Los primeros sirven para introducir parámetros al VI, mientras que los indicadores se emplean para mostrar los resultados producidos, ya sean datos adquiridos o resultados de alguna operación. En la figura 22 se muestra un ejemplo de panel frontal, donde se indica la ventana de panel frontal (1), la barra de herramientas (2) y la paleta de controles (3).

Figura 22. Ejemplo de un Panel Frontal.

2.2.3.2 Diagrama de Bloques

El diagrama de bloques constituye el código fuente del VI. En él se realiza la implementación del programa del VI para controlar o realizar cualquier procesado de las entradas y salidas que se crearon en el panel frontal. El diagrama de bloques incluye funciones y estructuras integradas en las librerías que incorpora LabVIEW. En el lenguaje G las funciones y las estructuras son nodos elementales. Son análogas a los operadores o librerías de funciones de los lenguajes convencionales.

Los controles e indicadores que se colocaron previamente en el Panel Frontal, se materializan en el diagrama de bloques mediante terminales. A continuación se presenta un ejemplo de lo recién citado en la figura 23.

Figura 23. Diagrama de Bloques

El diagrama de bloques se construye conectando los distintos objetos entre sí, como si de un circuito se tratara. Los cables unen terminales de entrada y salida con los objetos correspondientes, y por ellos fluyen los datos.

LabVIEW posee una extensa biblioteca de funciones, entre ellas, aritméticas, comparaciones, conversiones, funciones de entrada/salida, de análisis, etc.

Las estructuras, similares a las declaraciones causales y a los ciclos en lenguajes convencionales, ejecutan el código que contienen de forma condicional o repetitiva (ciclo for, while, case, etc.). Los cables son las trayectorias que siguen los datos desde su origen hasta su destino, ya sea una función, una estructura, un terminal, etc. Cada cable tiene un color o un estilo diferente, lo que diferencia unos tipos de datos de otros.

2.2.3.3 Programación en LabVIEW

Con el entorno gráfico de programación de LabVIEW se comienza a programar a partir del panel frontal. En primer lugar se definirán y seleccionarán los controles (entradas que dará el usuario) e indicadores (salidas que presentará en pantalla el VI) que se emplearán para introducir los datos por parte del usuario y presentar en pantalla los resultados.

Una vez colocados en la ventana correspondiente al panel frontal todos los objetos necesarios, debe pasarse a la ventana Diagram (menú Windows > Show Diagram), que es donde se realiza la programación propiamente dicha (diagrama de bloques). Al abrir esta ventana, en ella se encuentran los terminales correspondientes a los objetos situados en el panel frontal, dispuestos automáticamente por LabVIEW.

Se deben ir situando las funciones, estructuras, etc. que se requieran para el desarrollo del programa, las cuales se unen a los terminales mediante cables.

Para facilitar la tarea de conexión de todos los terminales, en el menú "Help" puede elegirse la opción "Show Help", con lo que al colocar el cursor del ratón sobre un elemento aparece una ventana con información relativa a éste (parámetros de entrada y salida). Además, si se tiene seleccionado el cursor de cableado, al situar éste sobre un elemento se muestran los terminales de forma intermitente. Una vez se ha concluido la programación del VI se debe proceder a su ejecución.

2.2.3.4 Estructuras en LabVIEW

Figura 24. Paleta de Funciones de LabVIEW. En la paleta de funciones la primera opción es la de las estructuras (figura 24). Éstas controlan el flujo del programa, bien sea mediante la secuenciación de acciones, ejecución de ciclos, etc.

Las estructuras se comportan como cualquier otro nodo en el diagrama de bloques, ejecutando automáticamente lo que está programando en su interior una vez tiene disponibles los datos de entrada, y una vez ejecutadas las instrucciones requeridas, suministran los correspondientes valores a los cables unidos a sus salidas. Sin embargo, cada estructura ejecuta su subdiagrama de acuerdo con las reglas específicas que rigen su comportamiento, y que se especifican a continuación.

Un subdiagrama es una colección de nodos, cables y terminales situados en el interior del rectángulo que constituye la

estructura. El For Loop y el While Loop únicamente tienen un subdiagrama. El Case Structure y el Sequence Structure, sin embargo, pueden tener múltiples subdiagramas, superpuestos, por lo que en el diagrama de bloques únicamente será posible visualizar al tiempo uno de ellos. Los subdiagramas se construyen del mismo modo que el resto del programa. Las siguientes estructuras se hallan disponibles en el lenguaje G. (NI, 2015).

a) Case Structure

Al igual que otras estructuras posee varios subdiagramas, que se superponen entre sí. En la parte superior del subdiagrama aparece el identificador del que se está representando en pantalla. A ambos lados de este identificador aparecen unas flechas que permiten pasar de un subdiagrama a otro. En este caso el identificador es un valor que selecciona el subdiagrama que se debe ejecutar en cada momento. La estructura Case tiene al menos dos subdiagramas (True y False). Únicamente se ejecutará el contenido de uno de ellos, dependiendo del valor de lo que se conecte al selector. La figura 25 muestra un ejemplo de estructura case.

Figura 25. Estructura Case. (NI, 2015).

b) Sequence Structure

Este tipo de estructuras presenta varios subdiagramas superpuestos de modo que únicamente se puede visualizar una en pantalla (figura 26). También poseen un identificador del subdiagrama mostrado en su parte superior, con posibilidad de avanzar o retroceder a otros subdiagramas gracias a las flechas situadas a ambos lados del mismo.

Figura 26. Sequence Structure. (NI, 2015)

Esta estructura secuencia la ejecución del programa. Primero ejecutará el subdiagrama de la hoja 0 (frame), después el de la hoja 1, y así sucesivamente. Para pasar datos de una hoja a otra se pulsará el botón derecho del ratón sobre el borde de la estructura, seleccionando la opción "Add sequence local".

Figura 27. Sequence local: paso de un dato de la hoja 0 a la 1. (NI, 2015)

c) For Loop

Es el equivalente al ciclo for en los lenguajes de programación convencionales. Ejecuta el código dispuesto en su interior un número determinado de veces.

Figura 28. Ciclo For (NI, 2015)

Ejecutar el ciclo for es equivalente al siguiente fragmento de código:

For i = 0 to N – 1 Ejecutar el subdiagrama del interior del ciclo.

d) While Loop

Es el equivalente al ciclo while empleado en los lenguajes convencionales de programación. Su funcionamiento es similar al del ciclo for.

Figura 29. Ciclo While (NI, 2015).

El ciclo while es equivalente al código siguiente:

Do Se ejecuta lo que hay en el interior del bloque while terminal condicional is true

El programa comprueba el valor de lo que se halle conectado al terminal condicional al finalizar el ciclo. Por lo tanto, el ciclo siempre se ejecuta al menos una vez.

e) Formula Node

La estructura denominada Formula Node se emplea para introducir en el diagrama de bloques fórmulas de un modo directo. Resulta de gran utilidad cuando la ecuación tiene muchas variables o es relativamente compleja. Por ejemplo, se desea implementar la ecuación: $y = x^2 + x + 1$. Empleando bloques pertenecientes al lenguaje G quedaría:

Figura 30. Ejemplo de implementación de ecuación usando bloques de lenguaje G. (NI, 2015).

Si se utiliza la formula node, se obtiene:

Figura 314. Ejemplo empleando fórmula node (NI, 2015).

LabVIEW es el software utilizado para realizar el diseño conceptual de la plataforma de

simulación de este proyecto, el cual se compone por una interfaz con STK, una etapa de consumo y otra de disponibilidad.

Para realizar la *interfaz* se contempló la naturaleza de los reportes generados en STK, los cuales tiene el común de mostrar la fecha y hora tanto de inicio como de término, la duración y estado (incidencia, eclipse, acceso). Se optó por generar archivos en formato .csv (del inglés comma-separated values). Un archivo de este tipo, es un documento que sirve para representar datos en forma de tabla, en las que las columnas se separan por comas y las filas por saltos de línea.

En base a esto, se hizo un programa en LabVIEW donde se pudieran importar archivos y una vez importados, se generara un arreglo con esa información, del cual se pudiera extraer la información que más nos interesaba para vincularla con los cálculos en las otras etapas (consumo y disponibilidad), esa información a la que refiero son las duraciones de incidencia, eclipse y accesos. La programación en este apartado fue compleja debido a que STK arroja la información como cadena de caracteres, por lo que hubo que convertirla a datos numéricos para poder manipularlos.

En las etapas de *consumo* y *disponibilidad* se usaron ciclos while y case, con el objetivo de realizar los cálculos correspondientes y así el programa arrojará los resultados requeridos.

En el Anexo II de esta tesis se encuentra el diagrama de bloques de la simulación. Cabe destacar que toda la información generada en LabVIEW, se puede exportar a manera de reporte en formato .doc. Los reportes generados se encuentran en el Anexo III.

En el siguiente capítulo se describe la metodología empleada para realizar dicha simulación.

CAPÍTULO III METODOLOGÍA DE LA SIMULACIÓN

Para realizar la simulación en LabVIEW, se requirió conocer tanto los requerimientos y necesidades de la Misión Quetzal como los fundamentos descritos en el capítulo 2.

Figura 22. Esquema general del proyecto de tesis.

Como el esquema anterior lo sugiere (figura 32), en este capítulo se muestra el diagrama de flujo del funcionamiento de la simulación en LabVIEW.

Figura 33. Diagrama de Flujo para la simulación en LabVIEW.

3.1 Simulación en LabVIEW

El diseño conceptual de la plataforma de simulación aquí propuesta, cumple con los objetivos planteados. Su validación se da a partir de los valores energéticos de la misión Quetzal. Sin embargo, está adecuada para cualquier misión satelital, ya que en caso de no contar con los valores de consumo de cada subsistema, se da la opción al usuario de insertar dichos valores. Al ser el diseño conceptual, la simulación cuenta con las siguientes restricciones y consideraciones:

En el primer apartado *consumo* el usuario debe insertar los valores de corriente y voltaje de cada subsistema o dispositivo, desplegándose de lado derecho los valores globales de voltaje, potencia y corriente de la misión, obedeciendo la relación:

$$P = VI \tag{Ec. 5}$$

donde I es el valor instantáneo de la intensidad de corriente y V es el valor instantáneo del voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en watts (vatios).

Figura 34. Apartado de consumo en la simulación de LabVIEW.

El segundo apartado de la simulación (*disponibilidad*), ofrece al usuario insertar los valores de las celdas y baterías que se considerarán en la misión.

Figura 35. Apartado de disponibilidad en la simulación de LabVIEW.

En el caso de las celdas, se deben insertan los valores de Vmp (Voltaje en máxima potencia), la corriente en máxima potencia (Imp), la irradiancia según lo indica la hoja de datos de la celda, y sus dimensiones. Cabe destacar que se considerará que la incidencia solar es normal a la superfície del panel (en la realidad, esto se logra mediante el sistema de orientación y estabilización) y la temperatura especificada en la hoja de datos del fabricante.

En el caso de Quetzal, se propone utilizar las celdas AzurSpace TJ 3G28C. Comercialmente, AzurSpace proporciona los datos de Vmp y Imp que suministra el panel trabajando a 28° C, bajo una radiación solar estándar incidente de 1367W/m². De igual manera se especifican sus dimensiones.

Una vez insertados los valores, se desplegarán los resultados de la disponibilidad, es decir, la potencia máxima en la celda (Pmáx), su eficiencia (misma que debe coincidir con la que viene en la hoja de datos de la celda), el área y el número de celdas a utilizar. Como esa cantidad de celdas servirá para abastecer de energía a los dispositivos/subsistemas, se debe considerar el equivalente de celdas para suministrar de energía a las baterías.

En el caso de las baterías, se proponen 3 tipos de configuración para su conexión: serie, paralelo y serie-paralelo. Luego de que el usuario inserta los valores de voltaje,

amperaje y elige la configuración deseada, se brinda la información de la potencia, corriente y voltaje generados por el banco de baterías. Se debe considerar además el tiempo de carga-descarga de las mismas, tomando en cuenta los periodos de incidencia y eclipse.

Para las baterías se analizará una propuesta realizada por un estudiante del Centro de Alta Tecnología, a base de 6 baterías, cada una con 3.6 V @ 2.25 Ah. Esta propuesta se analizará en el capítulo 4, en base a ella, se verá la factibilidad que tiene ante la demanda energética y los tiempos de incidencia y eclipse a los que el satélite está sometido.

En el siguiente apartado de la simulación, se brindan los datos obtenidos de la *interfaz con el software STK*, los cuales son periodos de tiempo de incidencia, eclipse y accesos a estaciones terrenas que tiene Quetzal,

Cabe destacar que un periodo de eclipse está compuesto por un momento de umbra y otro de penumbra, en promedio, la penumbra (transición de luz a sombra o viceversa), dura alrededor de 8 segundos, al ser un tiempo muy corto en relación a la duración de los momentos de incidencia y umbra, se considerará como periodos de eclipse la suma de los tiempos de umbra y penumbra.

Respecto a los accesos a estaciones terrenas, se consideran para este trabajo 6 estaciones terrenas, las ubicaciones se han señalado previamente y se pueden observar en la figura 36.

	INTERFAZ CON STK					
FECHA:			ACCE	SO A ESTA	CIONES TERRENAS	
Importar Archivo Incidencia_Ecilpse	Times 3 ene csv		TOTAL DE HORAS_PASES	NO. PASES	DURACIÓN PROMEDIO [HRS]	[S]
Importar Archivo Accesos		BOSTON	1.08667	6	0.181111	3912
C:\imos\Satellite-quetzal1	τοκιο	1.07778	6	0.17963	3880	
	INCIDENCIA Y ECLIPSE	MÉXICO	0.811389	4	0.202847	2921
DURACIÓN [HRS]	NO. DE FERIODOS DURACIÓN DE CADA PERIODO [HRS]	QUERÉTAF	RO 0.818889	4	0.204722	2948
INCIDENCIA 15.5286	15 1.03524	KITAKYUS	HU 0.890833	5	0.178167	3207
ECLIPSE* 8.46139	0.564093	ESTAMBU	L 0.968889	6	0.161481	3488
*Los periodos de eclipse incluy	ren tiempos de umbra+penumbra.					

Figura 36. Apartado de resultados de la interfaz con STK

PLATAFORMA	
DISEÑO CONCEPTUAL DE U	S SISTEMA DE GESTIÓN ENERGÉTICA EN UN MICROSATÉLITE
	DISPOSITIVOS/SUBSISTEMAS
INSERTAR VALORES	CONSUMO GLOBAL
Descripción Potencia [W] Corri	ate [A] Voltaje [V] Potencia global [W]
Sistema da Talacomunicacionas	A 666667 A 33
Sistema de Telemetria	8
Sistema de Orientación y Estabilización $\frac{\Lambda}{T}$ 11.5 $\frac{\Lambda}{T}$ 1	11.5 Corriente global [A]
Sistema de Navegación $\frac{k}{v} \frac{k}{1} \frac{k}{v} 0.15$	E 6.66667 3.8 5 100
Instrumentación de la carga útil	9.09091
Computadora a bordo	7.5
	<u>-</u> <u>7.77778</u> -
CELDAS	BATERÍAS
INSERTAR VALORES DISPONIBILIDAD	INSERTAR VALORES DISPONIBILIDAD
Datos eléctricos Datos eléctricos celda	
Vmp celda [V] ▲ 2 371 1.15468	Configuracion P_banco [Wh] t carga [min] 15% (t carga [min])
n (eficiencia)	V baterier [7]
0.487 Dimensiones	A 3.6 2.25
Irradiancia [W/m2] Área de la celda [m2]	I haterias [Ah] V hanno [V] t descarga (min] 15% (t descarga (min])
v 1367 0.0032	2.25 14.4 35.5263 5.32895
Dimensiones 28.5794	No. baterias
Largo [m] Panel	
v 0.04 13.9182	
Ancho [m] Pmáx panel [W]	 Para tiempos de carga y descarga considerar tiempos incidencia-eclipse. No permitir que el almacenamiento en baterias sea inferior al 15 %
	3)Considerar la misma cantidad de celdas para solventar el almacenamiento en baterias.
INTERFAZ CON STK	
FECHA:	ACCESO A ESTACIONES TERRENAS
Importar Archivo Incidencia_Ecipse	TOTAL DE HORAS_PASES NO. PASES DURACIÓN PROMEDIO [HRS] [5]
Importar Archivo Accesos	BOSTON 1.08667 6 0.181111 3912
🖁 C:\imos\Satellite-quetzal1-To-Facilities Access_3 ene.csv	TOKIO 1.07778 6 0.17963 3880
INCIDENCIA V ECLIPSE	MÉXICO 0.811389 4 0.202847 2921
DURACIÓN [HRS] NO. DE PERIODOS DURACIÓN DE CADA F	ERIODO (HRS) OUERÉTARO 0.818889 4 0.204722 2948
INCIDENCIA 15.5286 15 1.03524	VIT A K VITSKIT 0 800833 5 0.178167 3207
0.564093	ESTANDET 0959899 6 0.161491 3488
ECLIPSE* 8.40139	
*Los periodos de eclipse incluyen tiempos de umbra+penumbra.	
GE	STIÓN: MODOS DE OPERACIÓN
Encender/apagar a elección del usuario	1) Observar los cambios en consumos totales vs disponibilidad.
000000000000	2) Importante: ningún sistema debe estar apagado. 3) A elección del usuario, se contempla el registro de consumos REPORTE
	minimos.

Figura 37. Simulación en LabVIEW.

Como se mencionó anteriormente, el objetivo de la misión Quetzal será monitorear gases contaminantes de ciudades de México, sin embargo, el criterio para seleccionar estas estaciones terrenas es ver posibles alianzas con más países, tomando en cuenta el número de pases y la duración que Quetzal tendrá sobre ellos. Energéticamente, esto se debe tomar en cuenta, ya que habrá que activar más subsistemas cuando Quetzal pase sobre esas ciudades.

La figura 37 muestra cómo se observa la plataforma de simulación. En la última parte de la simulación los 'leds' indican qué susbsistema/dispositivo se encuentra activo, con opción a desactivarlo y desplegándose así, el nuevo consumo total y la disponibilidad que se tiene ante éste.

3.2. Generación de reportes

Una vez insertados todos los datos, se generará un archivo en .doc que contiene el reporte con la información correspondiente. Para este trabajo, se generaron 9 reportes, cada uno de ellos se encuentra en el Anexo III. En base a esta información generada se decidió analizar las siguientes fechas: 3 de enero (perihelio), 3 de julio (afelio), 22 de diciembre (solsticio de invierno), 22 de junio (solsticio de verano), 22 de septiembre (equinoccio de otoño) y 21 de marzo (equinoccio de primavera). Se tomaron en cuenta estos días pues se desea saber qué ocurre en estos casos que pudieran considerarse días "extremos o críticos". Sin embargo, al correr la simulación en STK para un año, se observó en los datos que hay tres días que tienen periodos máximos y mínimos de incidencia y eclipse; mismos que no están dentro de fechas propuestas; esos días son 9 de marzo, 6 de febrero y 2 de diciembre.

Para analizar la gestión energética, se deben previamente conocer los requerimientos y necesidades de la misión, así pues para cualquier misión satelital en etapas tempranas de su desarrollo, existen varios escenarios. Si se requieren más celdas y baterías de las que se habían considerado, ya sea porque sobrepasan el peso, dimensiones o no solventan los requerimientos energéticos, se deben tomar decisiones al respecto, esto es, se tienen que proponer modos de operación que satisfagan los objetivos de la misión satelital.

Luego de haber generado los reportes en LabVIEW a partir de la información que el usuario ha insertado, se realiza el análisis de los resultados obtenidos, estableciendo modos de operación.

3.3 Modos de operación

Un modo de operación es la elección de las formas en que se requiere operar un conjunto de subsistemas siguiendo un mismo objetivo: la misión del sistema que conforman.

El establecimiento de los modos de operación en los subsistemas del satélite, permite indicar la forma de operar del sistema de potencia, es decir, en qué casos tiene que suministrar un mínimo de energía y en qué casos se debe considerar suministrar de forma completa. El siguiente diagrama describe éstos casos.

Figura 38. Casos a considerarse para establecer los modos de operación.

En el siguiente capítulo se analizarán los resultados obtenidos considerando los diferentes casos planteados previamente, haciendo una propuesta de modos de operación.

CAPÍTULO IV ANÁLISIS DE RESULTADOS

4.1 Periodos de incidencia y eclipse

Inicialmente se tuvo la siguiente hipótesis: los periodos de incidencia y eclipse más largos y más cortos se deben encontrar en cualquiera de los días 'extremos' del año: 3 de enero (perihelio), 3 de julio (afelio), 22 de diciembre (solsticio de invierno), 22 de junio (solsticio de verano), 22 de septiembre (equinoccio de otoño) y 21 de marzo (equinoccio de primavera). Se muestra una tabla comparativa entre los 6 días que primeramente se habían considerado:

	03/01/	2015	03/07/2	015	22/12/2	015	22/06/	2015	22/09/2	2015	21/03/	2015
	Duración por día (Hrs)	No. Period os	Duración por día (Hrs)	No. Period os	Duración por día (Hrs)	No. Period os	Duraci ón por día (Hrs)	No. Perio dos	Duración por día (Hrs)	No. Periodos	Duración por día (Hrs)	No. Periodos
	Duración por periodos (Hrs)		Duración por periodos (Hrs)		Duración por periodos (Hrs)		Duraci ón por period os (Hrs)		Duración por periodos (Hrs)		Duración por periodos (Hrs)	
Incidencia	15.53	15	15.48	15	15.31	15	15.63	15	15.45	15	15.40	15
	1.03		1.03		1.02		1.04		1.03		1.03	
Eclipse	8.47	15	8.51	15	8.67	15	8.36	15	8.54	15	8.60	15
	0.56		0.57		0.58		0.56		0.57		0.57	

Tabla 9. Comparación de tiempos de incidencia y eclipse en días considerados.

Tabla 10. Comparación de tiempos y pases por estaciones terrenas en los 6 días considerados.

	03/01/2015		03/07/2015		22/	22/12/2015		06/2015	22/	09/2015	21/	03/2015
	No. Pases	Duración por pase promedio (seg)										
Boston	6	3912	6	4001	6	3965	6	3725	6	3891	6	3940
Tokio	6	3880	4	3081	4	3081	6	3661	6	3876	6	3885
México	4	2921	5	3014	5	3003	5	3011	4	2914	4	2932
Querétaro	4	2948	5	3017	5	2979	5	3021	4	2941	4	2954
Kitakyushu	5	3207	6	3692	6	3731	6	3747	5	3238	5	3137
Estambul	6	3488	6	4084	6	4086	6	3902	5	3425	6	3532

Ambas tablas (tabla 9 y 10), fueron realizadas a partir los datos generados en la interfaz de LabVIEW con STK. En ellas se puede observar que no hay cambios relevantes entre los días propuestos, respecto a la duración ya sea de la incidencia, eclipse o inclusive, es similar la información en el número de pases por estaciones terrenas.

Para tratar de validar esta hipótesis, se corrió la simulación para 1 año completo, del 3 de julio de 2015 al 3 de julio de 2016, obteniendo lo siguiente:

	Fecha y hora	Fecha y hora	Duración (segundos)	Duración (minutos)	Duración (horas)
	de inicio	de término			
Incidencia Mínima Duración	9/03/2016	9/03/2016	1167.809	19.47	0.33
	02:36:36	02:56:03			
Incidencia Máxima Duración	06/02/2016	06/02/2016	3799.111	63.32	1.05
	19:58:27	21:01:46			
Eclipse Mínima Duración	09/03/2016	09/03/2016	405.057	6.75	0.11
	02:56:04	03:02:49			
Eclipse Máxima Duración	02/12/2015	02/12/2015	2119.328	35.32	0.59
	18:16:27	18:51:29			

Tabla 11. Valores máximos y mínimos de periodos de incidencia y eclipse en 1 año.

Las fechas 09/03/2016, 06/02/2016 y 02/12/2015; serán consideradas como días críticos pues contienen los valores máximos y mínimos de la duración de incidencia y eclipse.

Tabla 12. Comparación de tiempos y pases por estaciones terrenas en los 3 días críticos del año.

	(09/03/2016	(06/02/2016		02/12/2015
	No. Pases	Duración por pase promedio (seg)	No. Pases	Duración por pase promedio (seg)	No. Pases	Duración por pase promedio (seg)
Boston	6	4089	6	3822	6	4110
Tokio	6	3816	4	3070	6	3478
México	4	2967	6	3045	4	2903
Querétaro	4	2958	5	2954	4	2862
Kitakyushu	6	3064	6	3800	4	3034
Estambul	4	3629	6	4063	6	3970

Una vez teniendo en cuenta esta información, se analizará el número de celdas y baterías a utilizarse:

4.2 Celdas

Anteriormente se señaló la propuesta de usar las celdas AzurSpace TJ 3G28C. Para ello se necesitan 29 celdas de 4x8 cm cada una. El panel conformado por estas celdas, tendrá una corriente máxima (Imáx) de 14 A y una potencia máxima (Pmáx) de 33 W. Esto como se había comentado, servirá para solventar el consumo energético por parte de los subsistemas.

Por otro lado, se deben considerar más celdas que alimenten de energía a las baterías. Para ello, se verá que lo factible es otro panel con la misma cantidad de celdas, de esta forma se obtendrá la potencia que requiere la misión en los momentos de eclipse. A continuación se describirá el uso de dos bancos: uno con 6 baterías y otro con 4, dando a conocer las ventajas y desventajas en cada uno.

4.3 Baterías

Cada batería de litio propuesta, tiene un voltaje nominal de 3.6 V y una capacidad de carga típica de 2.25 Ah, su tiempo de vida es de 2 a 3 años, es decir, dura entre 500 y 1000 ciclos completos de carga y descarga (Gaviria, D., 2014.).

En la tabla 9 se puede observar la comparación entre un banco de 4 y otro de 6 baterías, con sus diferentes configuraciones.

Baterías	Configuración	Pmáx	Imáx	Voltaje	Tiempo de carga	Tiempo de
		[Wh]	[Ah]	[V]	[min]	descarga
						[min]
4	Serie	32.4	2.25	14.4	9.69955	35.5263
	Paralelo	32.4	9.00	3.6	38.7982	142.105
	Serie-Paralelo	32.4	4.5	7.2	19.3991	71.0526
6	Serie	48.6	2.25	21.6	9.69955	35.5263
	Paralelo	48.6	13.5	3.6	58.1973	213.158
	Serie-Paralelo	72.9	6.75	10.8	29.0956	106.579

Tabla 13. Comparación entre banco de 4 y 6 baterías.

La elección del número de baterías se dará a partir de las siguientes consideraciones:

Banco con 4 baterías

- ✓ El panel solar con las 29 celdas, alcanza a cubrir la potencia requerida (33 Wh).
- ✓ Considerando las duraciones máximas de incidencia y de eclipse, de ~1.05 hrs y 0.57 hrs (~34 min), respectivamente; eligiendo la configuración en *serie* el tiempo de carga es de aproximadamente 10 min y el tiempo de descarga de alrededor de 35 minutos, quiere decir que el banco se descargará totalmente durante el momento de eclipse, esto es una desventaja pues las baterías de litio se pueden dañar permanentemente si los niveles de voltaje llegan a niveles muy bajos, se recomienda no desciendan del 15 % de su nivel.
- ✓ Si se eligiera este banco, para evitar descender de ese 15%, se necesitaría poner en consumo mínimo algunos dispositivos o subsistemas, es decir, proponer modos de operación.

Banco con 6 baterías

- ✓ Se tiene que proponer un mayor número de celdas para cubrir la potencia requerida.
- Eligiéndose la configuración en *paralelo* (por el menor consumo de amperaje respecto a otras configuraciones), no hay inconveniente en los periodos de eclipse puesto que el tiempo de descarga es mayor al de eclipse.
- ✓ Se requiere más superficie para situar las celdas, se incrementa peso y costo de la misión.
- Esta propuesta es factible siempre y cuando, no sean desventaja las dimensiones, peso y costo.

Con el fin de proponer modos de operación, se ejemplificará el análisis con un banco de 4 baterías para las 3 fechas donde se encuentran los máximos y mínimos de incidencia y eclipse:

4.4 Modos de Operación

• Caso 1, fecha: 09/03/2016

Figura 39. Gráfica con periodos de incidencia, eclipse y accesos del 09/03/2015

a) Incidencia Mínima Duración (19.47 min)

Se da de las 02:36:36 a las 02:56:03. Se considerará este análisis a partir del periodo de eclipse que le antecede, el cual dura alrededor de 35 min (ver figura). Para este tiempo, si se venía consumiendo el máximo, las baterías quedarían completamente descargadas, sin embargo, el siguiente periodo de incidencia que dura 19.47 min, es tiempo suficiente para cargarse completamente. Para evitar que se descargue por completo y se conserve con un mínimo del 15 % se requiere un consumo mínimo por parte de los subsistemas. En este caso se aprecia en la gráfica que pasa sobre Boston, se sugiere poner en consumo mínimo a la carga útil, esto es, su consumo mínimo es de alrededor de 1W @ 150mA. La disminución de carga, repercute en el tiempo de descarga, el cual si era en 35.5263 min, ahora será de 41.6 min, es decir, a los 35 min estará entrando a la reserva de su ahora 15%

pero de forma paralela, entrará nuevamente al periodo de incidencia.

b) Eclipse Mínima Duración, 09/03/2016 02:56:04 -09/03/2016 03:02:49, duración 6.75 min

Este periodo viene inmediatamente después del periodo de incidencia descrito en el inciso a), al iniciar el eclipse las baterías están completamente cargadas, como este periodo dura 6.75 min, se descargará alrededor del 17%, mismo que se compensará en el siguiente periodo de incidencia.

• Caso 2, fecha: 06/02/2016

Incidencia Máxima Duración, 19:58:27 - 21:01:46, duración 63.32 min.

Figura 40. Gráfica con periodos de incidencia, eclipse y accesos del 06/02/2015

Al haber incidencias largas, se garantiza que los subsistemas del satélite puedan trabajar con consumos máximos.

• Caso 3, fecha: 2/12/2015

Figura 41. Gráfica con periodos de incidencia, eclipse y accesos del 02/12/2015

Eclipse Máxima Duración 18:16:27 - 18:51:29, duración 35.32 min

A pesar de ser el eclipse máximo durante el año, no hay estaciones terrenas por las cuales pase, esto favorece aún más, pues con mayor razón, la carga útil nuevamente se puede poner en consumo mínimo, el tiempo de descarga de prolongará a 41.6 min, es decir, a los 35 min estará entrando a la reserva de su ahora 15% pero de forma paralela entrará nuevamente al periodo de incidencia.

Como se puede observar en las gráficas (figuras 39-41), se presenta un común en ellas:

1) La mejor condición es que el satélite esté en pasando en un periodo de incidencia, lo cual significará que suministrará y almacenará la energía necesaria para el correcto

funcionamiento de cada uno de sus subsistemas.

2) Que el satélite esté pasando por un momento de incidencia y sobre una estación terrena o un lugar en específico de donde se requiera por ejemplo, capturar una imagen; lo cual no tendrá mayor problema puesto que se está considerando el consumo máximo de cada subsistema y se le está suministrando lo necesario para que funcione, es decir, que si se requiere capturar imagen, procesarla y transmitirla, a menos que el tiempo sobre la estación terrena sea breve para bajar la información, a nivel energético esto será posible realizarlo.

3) Que el satélite pase por un momento de eclipse, pero no sea necesario emplear la carga útil (espectrómetro o cámara) y los subsistemas estén en un consumo mínimo al pasar por la estación terrena.

4) La peor condición es que el satélite pase por un momento de eclipse y se requiera tomar imágenes, procesar la información y enviarla a la estación terrena. En este caso, se deberán tomar las consideraciones correspondientes, por ejemplo, sólo captar la imagen (consumo mínimo) y esperar a que en el siguiente pase, se envíe.

CAPÍTULO V CONCLUSIONES Y TRABAJO A FUTURO

Conclusiones:

- Los resultados obtenidos son una primera aproximación sobre los requerimientos del suministro energético de los subsistemas que integran al satélite Quetzal, asociado a condiciones de eclipse e incidencia en las estará expuesto.
- La simulación realizada presenta las condiciones para calcular consumos y disponibilidad de almacenamiento energético; además de tiempos de incidencia y eclipse, lo cual permite que la simulación funcione para cualquier misión satelital. Esto lleva a cumplir los objetivos planteados para una etapa de diseño conceptual.
- Es importante señalar que las características energéticas de los subsistemas, son propuestas, sujetas a cambios que dependerán directamente de la misión.
- Los días de equinoccios, solsticios, perihelio y afelio; no influyen directamente en los periodos máximos o mínimos tanto de incidencia como de eclipse.
- El tiempo de vida de las baterías deber ser menor al tiempo de incidencia solar. Asimismo, el tiempo de descarga debe ser mayor al tiempo de eclipse. Eso permitirá el óptimo desempeño de los subsistemas en el satélite.

Trabajo futuro:

- La simulación está limitada debido a que no considera ángulos de incidencia, temperaturas y ambiente espacial, por lo que en un futuro se plantea considerar estos parámetros. De la misma manera, proponer un escenario de celdas desplegables en el caso de que el gasto energético de la instrumentación de la carga útil sea mayor a lo esperado.
- Para establecer los modos de operación, se considera la misión, la disponibilidad y consumo energéticos, además del ambiente espacial en el que se encuentra el satélite.

BIBLIOGRAFÍA

[1] Roozenburg, N., Eeckels, J. Product Design: Fundamentals and Methods. British Library. England. (1995). P. 93-105

[2] Gilmore, D. Spacecraft Thermal Control Handbook. Volume 1: Fundamental Technologies. 2nd Ed. The Aerospace Press. USA. (2002).

[3] Chavira, E., Pedroza, A. Celdas solares fotovoltaicas de alta eficiencia con calidad especial para el SATEX, perteneciente a las Memorias de Ciencia y Tecnología Aeroespecial en América Latina. San Luis Potosí, México. (2012).

[4] Gómez, C., Cantú, R., Consideraciones para el diseño del sistema de potencia de un satélite de órbita baja, perteneciente a las Memorias de Ciencia y Tecnología Aeroespcial en América Latina. San Luis Potosí, México. (2012).

[5]Fortescue P., Stark J. Swinerd G. Spacecraft Systems Engineering, West Sussex, John Wiley & Sons Ltd. (2003).

[6] Sarafin, T. Spacecraft Structures and Mechanisms. From Concept to Launch. Space Technology Library. USA. (2007).

[7] Vonder Haar, T. H., and V.E. Suomi. Measurements of the Eart's radiation budget from satellites during a five-year period. J. Atmos. Sci. (1971).

[8] Czernik, S. Design of Thermal Control System for Compass-1. University of Applied Schience Aachen, Germany, 2004.

[9] Abd-Elaziz A., Farrage A., Ahmed A., Medhat H., Mahmoud M., El-Sirafy M., Zaki A. (2009). EgyCubeSat-1 First Egyptian Remote Sensing Pico-Satellite, Minimizing Cost and Enhancing Resolution. Aerospace Sciences and Aviation Technology, 8-11.

[10] Bekhti M., S. M. (2008). Power system design and in orbit performance of Algeria's first micro satellite Alsat-1. Electric Power Systems Research 78, 1175-1180.

[11] Bowles J. A., Cruise A. M., Goodall C. V. y Patrick T. J. (). Principles of Space Instrument Design.

[12]Cooper S. (Abril 2008). Control of a Satellite Based Photovoltaic Array for Optimum Power Draw. Tesis de maestría. Worcester Polytechnic Institute.

[13]Cooper, S. (2008). Control of a Satellite Based Photovoltaic Array for Optimum Power Draw. Tesis de maestría. Worcester Polytechnic Institute.

[14]. Craig C. (2002). A Universal Power System Architecture: One topology for earth and planetary orbits. European Space Agency, 502(135C), 1-6.

[15] Craig C., H. K. (s.f.). Power System Design And Performance On The World's Most Advanced In-Orbit Nanosatellite. 2-6.

[16] Craig S. Clark, A. L. (s.f.). Power system challenges for small satellite mission. 6.01 Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP Scotland.

[17]. De la Rosa Nieves S. (2011). Notas de —Fundamentos de diseño de Sistemas de Comando y Manejo de información a bordo de Satélites

[18] Dehbonel H, L. S. (Enero 2009). Direct Energy Transfer for High Efficiency Photovoltaic Energy Systems Part II: Experimental Evaluantions. IEEE Transactions on Aerospace and electronic systems Vol. 45. NO. 1.

[19] Dominguez Cruz M. (2011). Apuntes de Temas Selectos de electrónica.

[20]Dominguez, Miguel (2014). Tesis Propuesta de Diseño de sistema de potencia de un satélite. FI.UNAM.

[21] Dubourg V., K. V. (2006). The DEMETER micro satellite launch campaign: A cheap access to space. Advances in Space Research 37, 754-760.

[22]. Esram T., Chapman P.(). Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques.

[23]. Fong C., e. a. (s.f.). Lessons Learned of NSPO's Picosatellite Mission: YamSat - 1A, 1B & 1C. 16 th Annual AIAA/USU Conference on Small .

[24]. Friedman D.J. y Kurtz S.R. (1998). Concentrator and Space Applications of High-Efficiency Solar Cells—Recent Developments. Denver, EE. UU.

[25]. Gaviria, Dafne. (2014). Tesis Diseño del sistema térmico en un microsatelite. FI.UNAM.

[27] Kennedy F., C. I. (2006). Prometheus: Alow-cost microsatellite flyby mission of 4179 Toutatis. Acta Astronautica 59, 834-844.

[28]. Krödel M., D. C. (s.f.). SPIRALE – the first all-Cesic® telescopes orbiting Earth.

[29]. Larson W. J., Wertz J. R. (2005) .Space Mission Analysis and Design. 3 rd ed., USA, pp. 641-661.

[30]. Lier Ph., B. M. (2008). PARASOL a microsatellite in theA-Train for Earth atmospheric observations. Acta Astronautica 62, 257-263.

[31]. Oredsson M. (September 2010). Electrical Power System for the CubeSTAR NAnosatellite Tesis de maestría. University of Oslo.

[32]. Polupan G. y Torchynska T. V. (2004). High efficiency solar cells for space applications. Superficies y Vacío 17(3), 21-25.

[33]. Ramamurthy, A. (2009). Flexible Digital Electrical Power System Design and Modeling for Small Satellites. Tesis de maestría. North Carolina State University.

[34]. Rankin D., e. a. (2005). The CanX-2 nanosatellite: Expanding the science abilities of nanosatellites. Acta Astronautica 57, 167-174.

[35]. Santillan S., R. C. (2012). Proyecto satelital Quetzal UNAM-MIT. SOMECyTA, (pág. 2). San Luis Potosi.

[36]. Santillan S., R. C. (2013). Proyecto satelital Quetzal UNAM-MIT. 2nd IAA (International Academy of Astronautics) International Conference on University Satellite Missions and Cubesat Workshop, (pág. 2). Roma, Italia .

[37]. Sarda K., e. a. (2006). Canadian Advanced Nanospace Experiment 2: Scientific And Technological Innovation On A Three-Kilogram Satellite. IAC-05-B5.6.A.15 .

[38] Schulz S., R. U. (s.f.). Dlr-Tubsat: A Microsatellite For Interactive Earth Observation. 5-8.

[39] Underwood C.I., R. G. (2003). In-orbit results from the SNAP-1 nanosatellite and its future potential. The Royal Society , 199-203

[40]. Yanjun L., Weijun L. (Enero 2009). Small-signal Modeling and Analysis of the Weinberg Converter for High-Power Satellites Bus Application. Chinese Journal of Electronics, 18(1), 172-175.

[41] http://www.azurspace.com/index.php/en/products/products-space/space-solar-cells

[42] http://www.ni.com/labview/esa/

[43] https://www.agi.com/

ANEXO I- HOJA DE DATOS DE LA CELDA AZURSPACE 3G28C

	193	SG200						
	Design and Mech	anical Dat	a					
-	Base Material			Galr	P/GaAs/Ge on G	e substrate		
	AR-coating			TIO,	/Al ₂ O ₃			
	Dimensions			40 x	80 mm ± 0.1 mm	1		
	Cell Area			30.1	8 cm ²			
	Average Weight			≤ 86	mg/cm ²			
	Thickness (without conta	ects)		150	± 20 μm			
	Contact Metallization Thi	ckness (Ag/A	u)	4-	10 µm			
	Grid Design			Grid	system with 3 co	intact pads		
-	The state of the state							
	Electrical Data			BOL	2.5E14	5E14	1E15	1
_	Average Open Circuit V-		Im//I	2667	2560	2534	2480	
	Average Short Circuit L		ImAl	506.0	500.9	500.9	485.8	
	Voltage at max. Power V		ImVI	2371	2276	2228	2205	
	Current at max. Power L		[mA]	487.0	482.1	472.4	457.8	
	Average Efficiency news	1367 Wm ²)	[%]	28.0	26.6	25.5	24.5	
	Average Efficiency news	1353 Wilm ²)	1%1	28.3	26.9	25.8	24.7	
	Voltage V _{ee} Min. average current I _{ee} a	ng @ Vap	2300 m/	(higher l _{ap} (on demand)			1
	Min. individual current la	e min @ Vop	455 mA					
	Shadow protectio	415						6
	Integrated protection dio	te	Viewent (6	$(05 \text{ mA}) \le 2.5$	v			
	T=25°C±3°C		Innese (2	.8 V) ≤ 100µ/	V			0
-	Temperature Grad	tionts perc	- 80°C)					
4				BOL	2,5E14	5E14	1E15	
_	Open Circuit Voltage	ΔV _{oc} /ΔT†	[mV/*C]	- 6.0	- 6.4	-6.2	+ 6.3	
	Short Circuit Current	Δlac/ΔT†	ImAPC]	0.32	0.33	0.31	0.39	
	Voltage at max. Power	ΔV _{mu} /ΔT†	[mV/*C]	- 6.1	- 6.8	- 6.3	- 6.4	
	Current at max. Power	ΔΙ _{σφ} /ΔΤ†	[mA/*C]	0.28	0.36	0.20	0.29	
	The second second							
	Absorptivity		< 0.01 /u	ALC: UNK 100	AD			9
	Public Tost		20.010	at dE ⁴ wolding	a lost Auith 12 Eu	m An strings)		
	Puil lest		Qualifier	at 40 Weithin	g test (with 12.5µ	m Ag surpes)		
	olaius		unanner					-

ANEXO II- PROGRAMACIÓN EN LABVIEW

ANEXO III-REPORTES GENERADOS EN LABVIEW

PLATAFORMA DISPOSITIVOS SU	BSISTEMAS				
INSERTAR VALOR	ES		X X 1. 1 FX 73	CONSUMO GLO	BAL
Descripción	Potencia [W] Corrie	nte [A]	Voltaje [V]	Potencia global [W]	
Sistema de Telecom	inicaciones 5 0.7	5	6.66667	33	-
Sistema de Orientaci	$\frac{a}{2}$ 0.23	5	8	0 50	100
Sistema de Navegaci	ón 1 01	5	11.5	3.8	-
Instrumentación de la	a carga útil 5 0.5	5	9,09091	0 50	100
Computadora a bord	$\frac{1}{2}$	5	7.5	J	
Sensores	7 0.9		7.7778		
CELDAS			1.11110		
INSERTAR VALOR	ES	DISPONIBILIDA	D		
Datos eléctricos		Datos eléctricos			
Vmp Celda [V] 2.37	'1	P máx celda [W]	1.15468		
Imp Celda [A] 0.48	7	n (eficiencia) 0.26	3962		
Irradiancia [W/m2] 1	367	Dimensiones			
Dimensiones		Área de la celda [r	n2] 0.0032		
Largo [m] 0.04		No. de celdas a ut	ilizar 28.5794		
Ancho [m] 0.08		Panel	0100		
		Imáx panel [A] 13	3.9182		
		Pinax paner [w] 5	5		
BATERÍAS					
INSERTAR VALOR	ES D	ISPONIBILIDAD			
Configuración SERI	E P banco []	Wh] 32.4 t carga [min] 9.69955	15% (t carga [min])	1.45493
V_baterías [V] 3.6	I_banco	Ah] 2.25			
I_baterías [Ah] 2.25	V_banco [V	V] 14.4 t descar	ga [min] 35.5263	15% (t descarga [mi	n]) 5.32895
No. baterías 4	1) Para ti	empos de carga y des	carga considerar tiemp	os incidencia-eclipse.	
	2) No per	mitir que el almacen	amiento en baterías sea	inferior al 15 %	
	3) Consid	lerar la misma cantid	ad de celdas para solver	ntar el almacenamient	o en baterías.
INTERFAZ CON ST	ĨK				
FECHA: 03/01/2015	5				
INCIDENCIA Y EC	LIPSE				
	DURACIÓN [HRS]	NO. PERIODOS	DURACIÓN DE CA	ADA PERIODO [HRS	5]
INCIDENCIA	15.5286	15	1.03524		
ECLIPSE*	8.46139	15	0.564093		
*Los periodos de ecl	ipse incluyen tiempos de umbra+	penumbra.			
	IONES TERRENAS				
ACCESO A ESTAC	TOTAL DE HORAS PASES	NO PASES	DURACIÓN PROM	IEDIO [HRS]	[8]
BOSTON	1 08667	6	0 181111	intel [intel]	3912
TOKIO	1.07778	6	0.17963		3880
MÉXICO	0.811389	4	0.202847		2921
QUERÉTARO	0.818889	4	0.204722		2948
KITAKYUSHU	0.890833	5	0.178167		3207
ESTAMBUL	0.968889	6	0.161481		3488

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

Observar los cambios en consumos totales vs disponibilidad.
 Importante: ningún sistema debe estar apagado.
 A elección del usuario, se contempla el registro de consumos mínimos.

PLATAFORMA						
DISPOSITIVOS S	UBSISTEMAS					
INSERTAR VALO	DRES				CONSUMO GLO	OBAL
Descripción	Potencia	[W] Corrie	nte [A]	Voltaje [V]	Potencia global [W]	
Sistema de Telecor	nunicaciones	5 0.7	5	6.66667		-
Sistema de Teleme	tría	2 0.2	5	8	0 50	100
Sistema de Orienta	ción y Estabili	11.5 1		11.5	Corriente global [A]	
Sistema de Navega	ción	1 0.1	5	6.66667	3.8	100
Instrumentacion de	la carga util	5 0.5	5	9.09091		
Computadora a boi	'do	1.5 0.2		7.5		
Sensores		/ 0.9		7.7778		
CELDAS				_		
INSERTAR VALO	DRES		DISPONIBILIDA	D		
Datos electricos	271		Datos electricos	1 15469		
V mp Celda [V] 2	5/1 197		P max celda [w]	2062		
Imp Ceida [A] 0.4 Irradiancia [W/m2]	1367		Dimensiones	5902		
Dimensiones	1507		Área de la celda [r	n21.0.0032		
Largo [m] 0.04			No. de celdas a uti	ilizar 28.5794		
Ancho [m] 0.08			Panel			
			Imáx panel [A] 13	.9182		
			Pmáx panel [W] 3	3		
BATERÍAS	NDEC.	D				
INSEKTAK VALU	DKES	D banaa [Wh 22.4 toorgo	min] 0 60055	150/ (toorgo [min	1) 1 45402
V baterías [V] 3.6		I banco [whij 52.4 i caiga [Ahl 2.25	iiiiij 9.09933	1576 (t carga [iiiii	(j) 1.43493
L baterías [Ah] 2.2	25	V banco [VI144 t descars	pa [min] 35 5263	15% (t descarga [min1) 5 32895
No. baterías 4		1) Para ti	empos de carga y des	carga considerar tiemp	os incidencia-eclips	e.
		2) No per	rmitir que el almacena	amiento en baterías sea	inferior al 15 %	
		3) Consid	lerar la misma cantid	ad de celdas para solver	ntar el almacenamie	nto en baterías.
INTERFAZ CON	STK					
FECHA: 03/07/20	15					
INCIDENCIA Y E	CLIPSE			/		
BLODELICE	DURACION [HRS]]	NO. PERIODOS	DURACION DE CA	ADA PERIODO [HI	RS]
INCIDENCIA	15.4761		15	1.03174		
ECLIPSE*	8.51722 alinaa inaluwan tiamma	do umbro l	15 nonumbro	0.56/815		
Los periodos de e	enpse menuyen tiempos	s de umbra-	-penumora.			
ACCESO A ESTA	CIONES TERRENAS					
	TOTAL DE HORA	S_PASES	NO. PASES	DURACIÓN PROM	IEDIO [HRS]	[S]
BOSTON	1.11139	-	6	0.185231		4001
TOKIO	0.855833		4	0.213958		3081
MEXICO	0.837222		5	0.167444		3014
QUERETARO	0.838056		5	0.167611		3017
KITAKYUSHU	1.02556		6	0.170926		3692
ESTAMBUL	1.13444		0	0.1890/4		4084

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

1) Observar los cambios en consumos totales vs disponibilidad.

2) Importante: ningún sistema debe estar apagado.
 3) A elección del usuario, se contempla el registro de consumos mínimos.

PLATAFORMA DISPOSITIVOS SU INSERTAR VALOF Descripción Sistema de Telecomi Sistema de Telemetr	BSISTEMAS LES Potencia [W] Corrie inicaciones ia	nte [A]	Voltaje [V] 6.66667 8	CONSUMO GLOE	BAL
Sistema de Orientaci Sistema de Navegaci Instrumentación de l Computadora a bord	ón y Estabili 11.5 1 ón 1 0.1 a carga útil 5 0.5 b 1.5 0.2	5	11.5 6.66667 9.09091 7.5	Corriente global [A]	ióo
Sensores	7 0.9		7.77778		
CELDAS INSERTAR VALOF Datos eléctricos Vmp Celda [V] 2.37 Imp Celda [A] 0.48 Irradiancia [W/m2] 1 Dimensiones Largo [m] 0.04 Ancho [m] 0.08	RES 71 7 367	DISPONIBILIDA Datos eléctricos P máx celda [W] 1 n (eficiencia) 0.263 Dimensiones Área de la celda [m No. de celdas a util Panel Imáx panel [A] 13 Pmáx panel [W] 33	D .15468 3962 12] 0.0032 Jizar 28.5794 9182 3		
BATERÍAS INSERTAR VALOF Configuración SERI V_baterías [V] 3.6 I_baterías [Ah] 2.25 No. baterías 4	RES D E P_banco [I_banco [V_banco [1) Para ti 2) No per 3) Consid	ISPONIBILIDAD Wh] 32.4 t carga [r Ah] 2.25 V] 14.4 t descarg empos de carga y desc mitir que el almacena lerar la misma cantida	nin] 9.69955 a [min] 35.5263 carga considerar tiemp miento en baterías sea d de celdas para solver	15% (t carga [min]) 15% (t descarga [min os incidencia-eclipse. inferior al 15 % ntar el almacenamiento	1.45493 n]) 5.32895 o en baterías.
INTERFAZ CON ST FECHA: 22/12/201: INCIDENCIA Y EC INCIDENCIA	rk 5 LIPSE DURACIÓN [HRS] 15.3139	NO. PERIODOS 15	DURACIÓN DE CA 1.02093	ADA PERIODO [HRS]
ECLIPSE*	8.67583	15	0.578389		
*Los periodos de ecl	ipse incluyen tiempos de umbra+	-penumbra.			
ACCESO A ESTAC	IONES TERRENAS	NO PASES	DURACIÓN PROM	FDIO [HRS]	[\$]
BOSTON	1.10139	6	0.183565	· []	3965
TOKIO	0.855833	4	0.213958		3081
MÉXIÇO	0.834167	5	0.166833		3003
QUERÉTARO	0.8275	5	0.1655		2979
KITAKYUSHU	1.03639	6	0.172731		3731
ESTAMBUL	1.135	0	0.18916/		4086

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

Observar los cambios en consumos totales vs disponibilidad.
 Importante: ningún sistema debe estar apagado.
 A elección del usuario, se contempla el registro de consumos mínimos.

PLATAFORMA DISPOSITIVOS SU INSERTAR VALOF Descripción Sistema de Telecom Sistema de Telemetr Sistema de Orientaci Sistema de Navegaci Instrumentación de l Computadora a bord Sensores	BSISTEMAS Potencia [W] Corrie inicaciones (a ón y Estabili ón a carga útil o 11.5 1 5 0.5 0.5 1.5 0.2 7 0.9	nte [A] 5 5 5 5	Voltaje [V] 6.66667 8 11.5 6.66667 9.09091 7.5 7.77778	CONSUMO GLOE	BAL
CELDAS INSERTAR VALOF Datos eléctricos Vmp Celda [V] 2.37 Imp Celda [A] 0.48 Irradiancia [W/m2] 1 Dimensiones Largo [m] 0.04 Ancho [m] 0.08	RES 11 7 367	DISPONIBILIDAI Datos eléctricos P máx celda [W] 1 n (eficiencia) 0.263 Dimensiones Área de la celda [m No. de celdas a util Panel Imáx panel [A] 13. Pmáx panel [W] 33	D .15468 .962 2] 0.0032 izar 28.5794 9182		
BATERÍAS INSERTAR VALOF Configuración SERI V_baterías [V] 3.6 I_baterías [Ah] 2.25 No. baterías 4	E D E P_banco [I_banco [V_banco [1) Para ti 2) No per 3) Consid	ISPONIBILIDAD Wh] 32.4 t carga [n Ah] 2.25 V] 14.4 t descarga empos de carga y desc mitir que el almacenai lerar la misma cantidad	nin] 9.69955 a [min] 35.5263 arga considerar tiempo miento en baterías sea d de celdas para solver	15% (t carga [min]) 15% (t descarga [min os incidencia-eclipse. inferior al 15 % itar el almacenamiento	1.45493 n]) 5.32895 o en baterías.
INTERFAZ CON ST FECHA: 22/06/201: INCIDENCIA Y EC INCIDENCIA ECLIPSE* *Los periodos de ecl	FK 5 LIPSE DURACIÓN [HRS] 15.6308 8.35917 ipse incluyen tiempos de umbra+	NO. PERIODOS 15 15 penumbra.	DURACIÓN DE CA 1.04206 0.557278	.DA PERIODO [HRS]
ACCESO A ESTAC BOSTON TOKIO MÉXICO QUERÉTARO KITAKYUSHU ESTAMBUL	IONES TERRENAS TOTAL DE HORAS_PASES 1.03472 1.01694 0.836389 0.839167 1.04083 1.08389	NO. PASES 6 5 5 6 6	DURACIÓN PROM 0.172454 0.169491 0.167278 0.167833 0.173472 0.180648	EDIO [HRS]	[S] 3725 3661 3011 3021 3747 3902

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

Observar los cambios en consumos totales vs disponibilidad.
 Importante: ningún sistema debe estar apagado.
 A elección del usuario, se contempla el registro de consumos mínimos.
PLATAFORMA DISPOSITIVOS SU INSERTAR VALOF Descripción Sistema de Telecom Sistema de Telemetr Sistema de Orientaci Sistema de Navegaci Instrumentación de I Computadora a bord Sensores	BSISTEMAS RES Potencia [W] Corrier unicaciones 5 0.73 ía 2 0.23 íón 1 1.15 a carga útil 5 0.53 o 1.5 0.2 7 0.9	nte [A] 5 5 5 5	Voltaje [V] 6.66667 8 11.5 6.66667 9.09091 7.5 7.77778	CONSUMO GLOE	BAL
CELDAS INSERTAR VALOF Datos eléctricos Vmp Celda [V] 2.37 Imp Celda [A] 0.48 Irradiancia [W/m2] 1 Dimensiones Largo [m] 0.04 Ancho [m] 0.08	RES 71 77 1367	DISPONIBILIDAI Datos eléctricos P máx celda [W] 1 n (eficiencia) 0.263 Dimensiones Área de la celda [m No. de celdas a util Panel Imáx panel [A] 13. Pmáx panel [W] 33	D .15468 9962 2] 0.0032 izar 28.5794 9182		
BATERÍAS INSERTAR VALOF Configuración SERI V_baterías [V] 3.6 I_baterías [Ah] 2.25 No. baterías 4	RES D E P_banco [I_banco [V_banco [1) Para ti 2) No per 3) Consid	ISPONIBILIDAD Wh] 32.4 t carga [r Ah] 2.25 V] 14.4 t descarg empos de carga y desc mitir que el almacena lerar la misma cantida	nin] 9.69955 a [min] 35.5263 arga considerar tiempo miento en baterías sea d de celdas para solver	15% (t carga [min]) 15% (t descarga [min os incidencia-eclipse. inferior al 15 % ntar el almacenamiento	1.45493 n]) 5.32895 o en baterías.
INTERFAZ CON S' FECHA: 21/03/201 INCIDENCIA Y EC INCIDENCIA ECLIPSE* *Los periodos de ecl	FK 5 DURACIÓN [HRS] 15.3933 8.59806 ipse incluyen tiempos de umbra+	NO. PERIODOS 15 15 penumbra.	DURACIÓN DE CA 1.02622 0.573204	ADA PERIODO [HRS]
ACCESO A ESTAC BOSTON TOKIO MÉXICO QUERÉTARO KITAKYUSHU ESTAMBUL	IONES TERRENAS TOTAL DE HORAS_PASES 1.09444 1.07917 0.814444 0.820556 0.871389 0.981111	NO. PASES 6 4 4 5 6	DURACIÓN PROM 0.182407 0.179861 0.203611 0.205139 0.174278 0.163519	EDIO [HRS]	[S] 3940 3885 2932 2954 3137 3532

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

PLATAFORMA DISPOSITIVOS SU INSERTAR VALOF Descripción Sistema de Telecom Sistema de Telemetr Sistema de Orientaci Sistema de Navegac Instrumentación de l Computadora a bord Sensores	BSISTEMAS RES Potencia [W] Corrier unicaciones ía ión y Estabili ión a carga útil o 1.5 7 0.9	nte [A] 5 5 5 5	Voltaje [V] 6.66667 8 11.5 6.66667 9.09091 7.5 7.77778	CONSUMO GLOE	BAL
CELDAS INSERTAR VALOF Datos eléctricos Vmp Celda [V] 2.37 Imp Celda [A] 0.48 Irradiancia [W/m2] 1 Dimensiones Largo [m] 0.04 Ancho [m] 0.08	RES 71 7 1367	DISPONIBILIDAI Datos eléctricos P máx celda [W] 1 n (eficiencia) 0.263 Dimensiones Área de la celda [m No. de celdas a util Panel Imáx panel [A] 13. Pmáx panel [W] 33	D .15468 962 2] 0.0032 izar 28.5794 9182		
BATERÍAS INSERTAR VALOF Configuración SERI V_baterías [V] 3.6 I_baterías [Ah] 2.25 No. baterías 4	RES D E P_banco [I_banco [V_banco [1) Para ti 2) No per 3) Consid	ISPONIBILIDAD Wh] 32.4 t carga [n Ah] 2.25 V] 14.4 t descarga empos de carga y desc mitir que el almacenar lerar la misma cantidad	nin] 9.69955 a [min] 35.5263 arga considerar tiempo miento en baterías sea d de celdas para solver	15% (t carga [min]) 15% (t descarga [min os incidencia-eclipse. inferior al 15 % ttar el almacenamiento	1.45493 n]) 5.32895 o en baterías.
INTERFAZ CON S' FECHA: 21/03/201 INCIDENCIA Y EC INCIDENCIA ECLIPSE* *Los periodos de ecl	FK 5 DURACIÓN [HRS] 15.3933 8.59806 ipse incluyen tiempos de umbra+	NO. PERIODOS 15 15 penumbra.	DURACIÓN DE CA 1.02622 0.573204	.DA PERIODO [HRS]
ACCESO A ESTAC BOSTON TOKIO MÉXICO QUERÉTARO KITAKYUSHU ESTAMBUL	IONES TERRENAS TOTAL DE HORAS_PASES 1.09444 1.07917 0.814444 0.820556 0.871389 0.981111	NO. PASES 6 4 4 5 6	DURACIÓN PROM 0.182407 0.179861 0.203611 0.205139 0.174278 0.163519	EDIO [HRS]	[S] 3940 3885 2932 2954 3137 3532

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

PLATAFORMA					
DISPOSITIVOS SU	BSISTEMAS				
INSERTAR VALOF	RES			CONSUMO GLO	BAL
Descripción	Potencia [W] Corrie	ente [A]	Voltaje [V]		
Sistema de Telecom	unicaciones 5 0.7	5	6.66667	Potencia giobal [W]	-
Sistema de Telemetr	ía 2 0.2	5	8	0 50	100
Sistema de Orientaci	ón y Estabili 11.5 1		11.5	Corriente global [A]	
Sistema de Navegaci	ión 1 0.1	5	6.66667	3.8	100
Instrumentación de l	a carga útil 5 0.5	5	9.09091		100
Computadora a bord	0 1.5 0.2		7.5		
Sensores	7 0.9		7.77778		
CELDAS					
INSERTAR VALOF	RES	DISPONIBILIDA	D		
Datos eléctricos		Datos eléctricos			
Vmp Celda [V] 2.37	71	P máx celda [W] 1	.15468		
Imp Celda [A] 0.48	7	n (eficiencia) 0.26	3962		
Irradiancia [W/m2] 1	1367	Dimensiones			
Dimensiones		Area de la celda [n	n2] 0.0032		
Largo [m] 0.04		No. de celdas a uti	lizar 28.5794		
Ancho [m] 0.08		Panel	0102		
		Imax panel [A] 13	.9182		
		Pmax panel [w] 3.	3		
BATERÍAS					
INSERTAR VALOR	2FS Γ	ISPONIBII IDAD			
Configuración SERI	E P banco [Wh] 32.4 t carga [1	nin] 9.69955	15% (t carga [min])	1.45493
V baterías [V] 3.6		Ah] 2.25		ie, e (e euiga [iiiii])	1.10.000
I baterías [Ah] 2.25	V banco	V] 14.4 t descarg	a [min] 35.5263	15% (t descarga [m	in]) 5.32895
No. baterías 4	$\overline{1}$) Para ti	empos de carga y des	carga considerar tiemp	os incidencia-eclipse.	1/
	2) No per	rmitir que el almacena	miento en baterías sea	inferior al 15 %	
	3) Consid	derar la misma cantida	id de celdas para solver	ntar el almacenamient	o en baterías.
DITERRA CONTO	5.YZ				
INTERFAZ CON ST	IK				
FECHA: 09/03/2010	6				
INCIDENCIA V EC	T IPSE				
INCIDENCIA I EC	DURACIÓN [HRS]	NO PERIODOS	DURACIÓN DE CA	DA PERIODO [HRS	31
INCIDENCIA	15 5931	17	0.917241		
ECLIPSE*	8 39808	17	0 493416		
*Los periodos de ecl	ipse incluven tiempos de umbra-	⊦penumbra.	0.199110		
1	1 5 1	1			
ACCESO A ESTAC	IONES TERRENAS				
	TOTAL DE HORAS_PASES	NO. PASES	DURACIÓN PROM	IEDIO [HRS]	[S]
BOSTON	1.13583	6	0.189306		4089
TOKIO	1.06	6	0.176667		3816
MEXICO	0.824167	4	0.206042		2967
QUERETARO	0.821667	4	0.205417		2958
KITAKYUSHU	0.851111	6	0.212778		3064
ESTAMBUL	1.00806	4	0.168009		3629

GESTIÓN: MODOS DE OPERACIÓN

Encender/apagar a elección del usuario

- Observar los cambios en consumos totales vs disponibilidad.
 Importante: ningún sistema debe estar apagado.
 A elección del usuario, se contempla el registro de consumos mínimos.

PLATAFORMA DISPOSITIVOS SUBSISTEMAS INSERTAR VALORES Descripción Potencia [W] Corriente [A] Voltaje [V] Sistema de Telecomunicaciones Sistema de Telemetría 5 0.75 Sistema de Orientación y Estabili Sistema de Orientación y Estabili Sistema de Navegación 11.5 1 Instrumentación de la carga útil 5 0.55 Computadora a bordo 1.5 0.2 Sensores 7 0.9 7.7778
INSERTAR VALORESDISPONIBILIDADDatos eléctricosDatos eléctricosVmp Celda [V] 2.371P máx celda [W] 1.15468Imp Celda [A] 0.487n (eficiencia) 0.263962Irradiancia [W/m2] 1367DimensionesDimensionesÁrea de la celda [m2] 0.0032Largo [m] 0.04No. de celdas a utilizar 28.5794Ancho [m] 0.08PanelImáx panel [A] 13.9182Pmáx panel [W] 33
BATERÍAS INSERTAR VALORES Configuración SERIE V_baterías [V] 3.6 I_baterías [Ah] 2.25DISPONIBILIDADP_banco [Wh] 32.4 V_baterías [Ah] 2.25P_banco [Wh] 32.4 I_banco [Ah] 2.25t carga [min] 9.6995515% (t carga [min]) 1.45493No. baterías 4I_banco [Ah] 2.25V_banco [V] 14.4 I descarga (min] 35.526315% (t descarga [min]) 5.32895No. baterías 4I) Para tiempos de carga y descarga considerar tiempos incidencia-eclipse. 2) No permitir que el almacenamiento en baterías sea inferior al 15 % 3) Considerar la misma cantidad de celdas para solventar el almacenamiento en baterías.
INTERFAZ CON STK FECHA: 06/02/2016
INCIDENCIA Y ECLIPSEDURACIÓN [HRS]NO. PERIODOSDURACIÓN DE CADA PERIODO [HRS]INCIDENCIA15.7834151.05222ECLIPSE*8.2176150.54784*Los periodos de eclipse incluyen tiempos de umbra-
ACCESO A ESTACIONES TERRENAS TOTAL DE HORAS_PASES NO. PASES DURACIÓN PROMEDIO [HRS] [S] BOSTON 1.06167 6 0.176944 3822 TOKIO 0.852778 4 0.213194 3070 MÉXICO 0.845833 6 0.140972 3045 QUERÉTARO 0.820556 5 0.164111 2954 KITAKYUSHU 1.05556 6 0.175926 3800 ESTAMBUL 1.12861 6 0.188102 4063
GESTIÓN: MODOS DE OPERACIÓN Encender/apagar a elección del usuario

PLATAFORMA DISPOSITIVOS SU INSERTAR VALOF Descripción Sistema de Telecom Sistema de Telemetr Sistema de Orientaci Sistema de Navegaci Instrumentación de I Computadora a bord Sensores	BSISTEMAS Potencia [W] Corrie inicaciones ía ón y Estabili ión a carga útil o 11.5 1 0.5 0.5 0.5 1.5 0.7	nte [A] 5 5 5 5	Voltaje [V] 6.66667 8 11.5 6.66667 9.09091 7.5 7.77778	CONSUMO GLO	DBAL
INSERTAR VALOF Datos eléctricos Vmp Celda [V] 2.37 Imp Celda [A] 0.48 Irradiancia [W/m2] 1 Dimensiones Largo [m] 0.04 Ancho [m] 0.08	RES 71 7 1367	DISPONIBILIDA Datos eléctricos P máx celda [W] I n (eficiencia) 0.26 Dimensiones Área de la celda [n No. de celdas a uti Panel Imáx panel [A] 13 Pmáx panel [W] 3	D 1.15468 3962 n2] 0.0032 lizar 28.5794 .9182 3		
BATERÍAS INSERTAR VALOF Configuración SERI V_baterías [V] 3.6 I_baterías [Ah] 2.25 No. baterías 4	RES D E P_banco [I_banco [V_banco [1) Para ti 2) No per 3) Consid	ISPONIBILIDAD Wh] 32.4 t carga [1 Ah] 2.25 V] 14.4 t descarg empos de carga y des mitir que el almacena derar la misma cantida	min] 9.69955 ga [min] 35.5263 carga considerar tiemp amiento en baterías ser ad de celdas para solve	15% (t carga [min] 15% (t descarga [n pos incidencia-eclipse inferior al 15 % ntar el almacenamien) 1.45493 hin]) 5.32895 ito en baterías.
INTERFAZ CON ST FECHA: 02/12/201	ГК 5				
INCIDENCIA Y EC INCIDENCIA ECLIPSE* *Los periodos de ecl	LIPSE DURACIÓN [HRS] 15.2913 8.69826 ipse incluyen tiempos de umbra+	NO. PERIODOS 16 15 penumbra.	DURACIÓN DE C. 0.955706 0.579884	ADA PERIODO [HR	S]
ACCESO A ESTAC BOSTON TOKIO MÉXICO QUERÉTARO KITAKYUSHU ESTAMBUL	IONES TERRENAS TOTAL DE HORAS_PASES 1.14167 0.966111 0.806389 0.795 0.842778 1.10278	NO. PASES 6 4 4 4 6	DURACIÓN PRON 0.190278 0.161019 0.201597 0.19875 0.210694 0.183796	MEDIO [HRS]	[S] 4110 3478 2903 2862 3034 3970
GESTIÓN: MODOS	DE OPERACIÓN				
Encender/apagar a el	leccion del usuario				

