www.universidad Nacional Autónoma de México

FACULTAD DE QUÍMICA

SÍNTESIS DE LOS PIGMENTOS Ni_xCo_{1-x}Al₂O₄ Y LiNi_xCo_{1-x}PO₄ POR EL MÉTODO DE COMBUSTIÓN DE GELES

TESIS

QUE PARA OBTENER EL TÍTULO DE

QUÍMICA

PRESENTA

LAURA ESMERALDA MENDOZA RAMOS

MÉXICO, D.F.

AÑO 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor: María de Lourdes Chávez García
VOCAL:	Profesor: Gustavo Tavizón Alvarado
SECRETARIO:	Profesor: Baldomero Gómez Reyes
1er. SUPLENTE:	Profesor: José Martín Enrique Carreto Cortes
2° SUPLENTE:	Profesor: Alfonso Ramón García Márquez

SITIO DONDE SE DESARROLLÓ EL TEMA: LABORATORIO DE CERÁMICA, EDIFICIO B 4° PISO. FACULTAD DE QUÍMICA, CIUDAD UNIVERSITARIA

ASESOR DEL TEMA:

Dra. María de Lourdes Chávez García

SUPERVISOR TÉCNICO:

M.C. Tania Ariadna García Mejía

SUSTENTANTE:

Laura Esmeralda Mendoza Ramos

ÍNDICE

LISTA DE FIGURAS	6
LISTA DE TABLAS	7
HIPÓTESIS	8
OBJETIVOS	9
CAPITULO 1	10
1.0 Introducción	10
1.1 Pigmentos cerámicos azules, con estructura del tipo espinela	12
1.1.1 Estructura de la espinela	13
1.1.2 Espinela de cobalto, CoAl ₂ O ₄	14
1.1.3 Espinela de níquel, NiAl ₂ O ₄	16
1.2 Pigmentos cerámicos AMPO ₄ , con estructura del tipo fosfolivinos	20
1.2.1 Pigmentos violetas con estructura de fosfolivino de cobalto, LiCoPO ₄	21
1.2.2 Estructura del LiCoPO ₄	22
1.2.3 Fosfolivino de níquel, LiNiPO ₄	23
1.3 Síntesis por combustión de geles	25
1.4 Caracterización	27
1.4.1 Difracción de rayos X (DRX)	27
1.4.2 Método de polvos	27
1.4.3 Cálculo del tamaño del cristalito, método Scherrer	28
1.4.4 Método de Vegard	29
1.4.5 Espectroscopía de uv-Visible (uv-Vis)	29
1.4.7 Espectroscopía de infrarrojo por reflectancia difusa (FT-IR)	30
CAPITULO 2	31
2.0 Metodología experimental	31
2.1 Reactivos	31
2.2 Equipo	31
2.3 Síntesis de las espinelas MAI ₂ O ₄ (M=Co ²⁺ , Ni ²⁺) y Ni _x Co _{1-x} AI ₂ O ₄ , (X=0 a 1.0)	31
2.4 Síntesis de los fosfolivinos LiMPO ₄ (M=Co ²⁺ , Ni ²⁺) y LiNi _x Co _{1-x} PO ₄ (X=0 a 1.0)	33
CAPITULO 3	35
3.0 Resultados	35
3.1 Espinela CoAl ₂ O ₄	35

3.1.1 Difracción de rayos X	37
3.1.2 Espectroscopía de uv-Visible	39
3.1.3 Espectroscopía de FT-IR	40
3.2 Espinela NiAl ₂ O ₄	41
3.2.1 Difracción de rayos	41
3.2.3 Espectroscopía de FT-IR	43
3.3 Composiciones $Ni_xCo_{1-x}Al_2O_4$, (X=0.0 a 0.8) y $Co_xNi_{1-x}Al_2O_4$ (X=0.8 a 1.0)	44
3.3.1 Difracción de rayos X	45
3.3.2 Espectroscopía de uv-Visible	47
3.3.3 Espectroscopía de FT-IR	49
3.4 Fosfolivino de LiCoPO ₄	51
3.4.1 Difracción de rayos X	52
3.4.3 Espectroscopía de FT-IR	54
3.5 Fosfolivino LiNiPO ₄	55
3.5.1 Difracción de rayos X	55
3.5.3 Espectroscopía de FT-IR	58
3.6 Composiciones LiNi _x Co _{1-x} PO ₄ , (0 <x<1.0)< td=""><td> 59</td></x<1.0)<>	59
3.6.1 Difracción de rayos X	60
3.6.2 Espectroscopía de uv-Vis	63
3.6.3 Espectroscopía de FT-IR	64
CAPITULO 4	65
4.0 Discusión de resultados	65
4.1 Espinela CoAl ₂ O ₄	65
4.1.1 Formación	65
4.2 Serie de composiciones Ni _x Co _{1-x} Al ₂ O ₄ , (0 <x<1)< td=""><td> 66</td></x<1)<>	66
4.2.1 Composición X=0, espinela CoAl ₂ O ₄	66
4.2.2 Composición X=1.0: espinela de NiAl ₂ O ₄	67
4.2.3 Composiciones 0.1 <x<0.8: ni<sub="">xCo_{1-x}Al₂O₄</x<0.8:>	67
4.2.4 Composición X de 0.8 <x<1.0< td=""><td> 69</td></x<1.0<>	69
4.3 Fosfolivinos LiCoPO ₄ , LiNiPO ₄ y LiNi _x Co _{1-x} PO ₄ (0.1 <x<0.9)< td=""><td> 70</td></x<0.9)<>	70
4.3.1 Composiciones 0 <x<1.0: lini<sub="">xCo_{1-x}PO₄</x<1.0:>	70
4.3.2 Fosfolivino de cobalto LiCoPO ₄ , composición X=0	70
4.3.3 Fosfolivino de níquel LiNiPO ₄ , composición: X=1.0	72

4.2.4 Fosfolivinos LiNi _x Co _{1-x} PO ₄ , composiciones: 0.1 <x<0.9< th=""><th>73</th></x<0.9<>	73
CAPITULO 5	76
5.0 Conclusiones	76
BIBLIOGRAFÍA	
ANEXO A	86
ANEXO B	

Figura	Título de figura	Página
1	Estructura de la espinela CoAl ₂ O ₄	14
2	Estructura de la espinela inversa NiAl ₂ O ₄	
3	Estructura general del fosfolivino LiMPO ₄	
4	Estructura del LiCoPO ₄	
5	Difracción de rayos X para la formación de la espinela CoAl ₂ O ₄ en función de la temperatura de síntesis	
6	Difracción de rayos X de la espinela CoAl ₂ O ₄ .	
7	Espectro de uv-Visible del CoAl ₂ O ₄	39
8	Espectro de FT-IR de la espinela de CoAl ₂ O ₄ .	40
9	Difracción de rayos X de la espinela NiAl ₂ O ₄ .	41
10	Espectro de UV-Visible de NiAl ₂ O ₄	42
11	Espectro de FT-IR de la espinela de NiAl ₂ O ₄	43
12	 a) DRX de las composiciones del tipo Ni_xCo_{1-x}Al₂O₄ (0 <x<0.7).< li=""> b) DRX de las composiciones del tipo Co_xNi_{1-x}Al₂O₄ (0.8<x<1.0).< li=""> </x<1.0).<></x<0.7).<>	46 47
13	 a) Espectros de uv-Vis de las composiciones del tipo Ni_xCo_{1-x}Al₂O₄ (0<x<0.7).< li=""> b) Espectros de uv-Vis de las composiciones del tipo Co_xNi_{1-x}Al₂O₄ (0.8<x<1.0).< li=""> </x<1.0).<></x<0.7).<>	48 49
14	 a) Espectros de FT-IR de para Ni_xCo_{1-x}Al₂O₄. (0<x<0.7)< li=""> b) Espectros de FT-IR de para Co_xNi_{1-x}Al₂O₄. (0.8<x<1.0).< li=""> </x<1.0).<></x<0.7)<>	50 51
15	DRX del fosfolivino LiCoPO₄	53
16	Espectro de uv-Vis del pigmento morado de LiCoPO ₄	54
17	Espectro de FT-IR del pigmento LiCoPO ₄	55
18	DRX del fosfolivino LiNiPO ₄	56
19	Espectro de uv-Vis del pigmento amarillo de LiNiPO ₄	57
20	Espectro de FT-IR del pigmento LiNiPO ₄	58
21	 a) Difracción de rayos X para LiNi_xCo_{1-x}PO₄. (0<x<0.5).< li=""> b) Difracción de rayos X para LiNi_xCo_{1-x}PO₄. (0.6<x<1.0).< li=""> </x<1.0).<></x<0.5).<>	60 61
22	a) Gráfica de Vegard, LiCo _{1-x} Ni _x PO ₄ en función de la composición del níquel	62
	(% moi Ni).vs Parametros de red a₀ b) Gráfica de Vegard, LiCo _{1-x} Ni _x PO₄ en función de la composición del níquel (% mol Ni) vs Parámetros de red b₀.	
23	Espectros de uv-Vis de las composiciones del tipo LiNi _x Co _{1-x} PO ₄ (0 <x<1.0).< td=""><td>63</td></x<1.0).<>	63
24	Espectros de FT-IR para LiNi _x Co _{1-x} PO ₄ , (0 <x<1.0).< td=""><td>64</td></x<1.0).<>	64
	Diagramas	
1	Procedimiento experimental de síntesis de las espinelas MAI ₂ O ₄ (M=Co ²⁺ , Ni ²⁺) y Ni _X Co _{1-X} Al ₂ O ₄ , (X=0.1 a 0.9)	32
2	Procedimiento experimental de síntesis de los fosfolivinos LiMPO ₄ (M=Co ²⁺ , Ni ²⁺) y LiNi _x Co _{1-x} PO ₄ , (X=0.1 a 0.9)	34
	Fotografías	
1	Pigmento azul de CoAl ₂ O ₄	38
2	Pigmento azul turquesa de NiAl ₂ O ₄	42
3	Pigmento morado de LiCoPO ₄	53
4	Pigmento amarillo LiNiPO4	56

LISTA DE FIGURAS

Tabla	Título de tabla	Página
1	Nomenclatura espinela	13
2	Tamaño del cristalito en función de la temperatura en la	37
3	Distancias interplanares d _{hkl} y asignación de los planos para	86
	CoAl ₂ O ₄	
4	Distancias interplanares d _{hkl} y asignación de los planos para	86
	NiAl ₂ O ₄	
5	Tonos de color para Ni _x Co _{1-x} Al ₂ O ₄ (0.1 <x<0.9)< th=""><th>44</th></x<0.9)<>	44
6	Tamaño del cristalito y parámetro de red a ₀ para la serie de	87
	composiciones $Co_x Ni_{1-x} Al_2 O_4$ (0.1 <x<0.9)< th=""><th></th></x<0.9)<>	
7	Distancias interplanares <i>d</i> _{hkl} y asignación de los planos para la	88
	serie de composiciones Ni _x Co _{1-x} Al ₂ O ₄	
8	Distancias interplanares d _{hkl} y asignación de los planos para	89
	LiCoPO ₄	
9	Principales d_{hkl} y sus índices de Miller de la fase de LiNiPO ₄	90
10	Colores de los pigmentos de la serie $LiCo_xNi_{1-x}PO_4$,	59
	(0.1 <x<0.9)< th=""><th></th></x<0.9)<>	
11	Tamaño del cristalito y parámetro de red a ₀ de la LiCo _x Ni _{1-x} PO ₄	91
12	Distancias interplanares d_{hkl} y asignación de los planos para la	92
	serie de composiciones LiNi _x Co _{1-x} PO ₄	

LISTA DE TABLAS

HIPÓTESIS

En esta tesis se propone la sustitución de Ni²⁺ por Co²⁺ en las estructuras de espinela CoAl₂O₄ en los sitios tetraédricos y en la de fosfolivino LiCoPO₄ en los sitios octaédricos, para formar las soluciones sólidas de Ni_xCo_{1-x}Al₂O₄, (0<X<1) y LiNi_xCo_{1-x}PO₄,(0<X<1), respectivamente, con un efecto directo en el color. La síntesis propuesta por el método de combustión proporcionará homogeneidad, pureza y tamaño nanométrico a los compuestos.

OBJETIVOS

Objetivo general

Sintetizar y desarrollar color en las espinelas Ni_XCo_{1-X}Al₂O₄, (0<X<1) y en los fosfolivinos LiNi_XCo_{1-X}PO₄, (0<X<1).

Objetivos específicos

- Estudiar la síntesis por combustión de las espinelas y fosfolivinos de cobalto con níquel.
- Estudiar el efecto de la coordinación de los iones Co²⁺ y Ni²⁺ para las estructuras de las espinelas y fosfolivinos en el color.
- Caracterizar las composiciones Ni_xCo_{1-x}Al₂O₄, y LiNi_xCo_{1-x}PO₄, (0<X<1), por medio de difracción de rayos X (DRX), espectroscopía de uv-Visible y espectroscopía de absorción infrarroja (FT-IR).

CAPITULO 1

1.0 Introducción

Los pigmentos cerámicos son compuestos inorgánicos cristalinos, que se utilizan para impartir color a diversos materiales. Los pigmentos poseen una serie de características físicas y químicas, tales como: la estabilidad térmica alta; proveen una coloración homogénea en el medio de dispersión debido a su tamaño de partícula (1 y 10 µm) [1], presentan resistencia mecánica a la abrasión [2], al agrietamiento [3], a los agentes atmosféricos [4], y a los ácidos y bases [5]. Se utilizan en pinturas [6], joyería [7], vidrios [8], plásticos [9], en la industria del papel [1], sensores [10] y textiles [11]. Los pigmentos cerámicos se presentan como compuestos del tipo de calcogenuros, halogenuros, entre otros, en cuyas estructuras cristalinas se integra un metal de transición como agente colorante o cromóforo [12].

Una clasificación de los pigmentos los cataloga en función de la ubicación del cromóforo en la estructura: en idiocromáticos y alocromáticos [13].

Los pigmentos alocromáticos son aquellos, en los que el agente cromóforo aporta color a sustancias incoloras. Se dividen en dos grupos: a) los de sustitución, en donde los iones de la estructura son remplazados por otros, con la misma valencia y con el tamaño similar. Y b) los de inclusión, que se caracterizan porque el agente cromóforo se encuentra encapsulado y aislado [13].

Los pigmentos idiocromáticos o autocoloridos contienen en su estructura iones metálicos de la primera serie de transición y su color se debe a varios factores; a la geometría individual que adoptan en la estructura cristalina [13]; a la concentración del catión del metal de transición, al tamaño de partícula, a las transiciones electrónicas que se llevan a cabo en las capas d [13]. Por lo tanto la intensidad del color depende de la energía del desdoblamiento del campo cristalino en los metales de transición [14]. Algunos ejemplos de pigmentos

idiocromáticos son los de tipo espinela [15], fosfolivino [16] y perovskita [17], entre otros [18].

La investigación en síntesis química para encontrar pigmentos cerámicos, con coloraciones y tonalidades distintas, de tamaño nanocristalino, ha desencadenado un interés especial en los pigmentos que contienen cobalto (II ó III) debido a las propiedades físicas y químicas desarrollados por sus compuestos; y por la versatilidad para ser incorporados en distintos tipos de materiales [19-23]. Los pigmentos cerámicos con base a Co^{2+} se caracterizan por su resistencia a la luz (no se degradan por efecto de la luz), al medio ambiente, temperatura y químicos. Los pigmentos de cobalto se utilizan, principalmente, en la industria cerámica para recubrimientos de pisos y paredes, y en la coloración de porcelanas pulidas sin esmaltar, debido a las diferentes coloraciones producidas por la coordinación del Co^{2+} en la estructura cristalina, el tamaño de partícula (10 µm a 10 nm), su resistencia a la degradación química y ambiental, y por su compatibilidad con el medio de dispersión ya sea inorgánico u orgánico [24]. La paleta de sus colores es un abanico de azules, verdes, amarillos, violetas, ocres y negros [25].

Los pigmentos de cobalto son químicamente interesantes, debido a que el color depende de la coordinación y el estado de oxidación del cobalto en las estructuras cristalinas. Es común que los azules sean generados por el ion Co^{2+} en sitios tetraédricos (**T**) como en el caso de la espinela de cobalto, CoAl_2O_4 , mientras que al encontrarse el ion Co^{2+} en coordinación octaédrica (**O**) desarrolla tonalidades de rosa al púrpura como en el fosfolivino, LiCoPO₄ [25].

Los espectros de UV-Vis de los compuestos que contienen iones Co²⁺ en sitios T se caracterizan por lo general, con una banda de absorción ancha alrededor de los 560 nm, asignada al desdoblamiento múltiple de la transición en ${}^{4}T_{1q}(t^{5}_{2q}e^{2}_{q}) \leftarrow {}^{4}T_{1q}(t^{4}_{2q}e^{3}_{q}).$ ${}^{4}T_{1g}(t^{5}_{2g}e_{g}^{2}) \leftarrow {}^{4}A_{2g}(t^{3}_{2g}e_{g}^{4})$ Las transiciones y ${}^{4}T_{1a}(t_{2a}^{5}e_{a}^{2}) \leftarrow {}^{4}T_{2a}(t_{2a}^{3}e_{a}^{4})$ no contribuyen en el color debido a que éstas se localizan en el infrarrojo cercano [26], por lo tanto las muestras con Co²⁺ en sitios T exhiben tres bandas de absorción características aproximadamente en: 550, 580 y 620 nm [27].

En esta tesis se pretenden estudiar los efectos del cobalto, Co^{2+} , y sus sustituciones en posiciones **T** y **O**. Para lo cual se propone su estudio en dos estructuras: en la de espinela para su efecto en los sitios **T**, y la de fosfolivino para los, **O**. Para lo cual las estructuras de $CoAl_2O_4$ y LiCoPO₄ se modificarán al introducir Ni²⁺ en sustitución de Co^{2+} . La síntesis que se propone para la obtención, de los pigmentos es el método de combustión, lo que deberá proporcionar homogenidad, pureza y tamaño nanométrico a los pigmentos.

1.1 Pigmentos cerámicos azules, con estructura del tipo espinela

El color azul, en la antigüedad, se obtenía de diferentes minerales, entre los que destacan la azurita, el lapislázuli y lazulita [28]. Los egipcios iniciaron la síntesis, del hoy conocido, azul egipcio en el año 3000 A.C., a través de la reacción de arcillas con óxidos de calcio y cobre [29]. El azul maya se sintetizó a base de arcilla de tipo paligorskita y el índigo proveniente de la planta de añil, para obtener tonalidades de azules a verdes [30].

En el nivel industrial, los pigmentos azules contienen cobalto, a excepción del zirconato de vanadio [(Zr,V)SiO₄], que da una coloración azul menos intensa, aunque, estable y reproducible [31]. Dentro de la gama de los pigmentos azules sobresalen la estructura de la espinela de cobalto CoAl₂O₄ de coloración azul [32] y la espinela inversa NiAl₂O₄ de tonalidad azul turquesa [33]. Las espinelas que contienen níquel, han ido cobrando un interés creciente, en su uso como pigmentos en reemplazo a las ferrocromitas de cobalto, debido a que los materiales con cobalto son costosos [34]. El estudio, síntesis y aplicación de las espinelas representan un reto para el área de la química de los materiales cerámicos (pigmentos, cerámicas), en la optimización de los procesos de producción y síntesis, y el desarrollo de propiedades físicas y químicas nuevas [35].

1.1.1 Estructura de la espinela

Las espinelas son un grupo amplio de compuestos inorgánicos, isoestructurales con el mineral de la espinela MgAl₂O₄ [36,37]. La estructura de la espinela es cúbica, integrada por iones metálicos electropositivos y de no-metales electronegativos. La celda unitaria consiste de 32 aniones empacados en una celda cúbica centrada en las caras. El empaque contiene 64 sitios **T** y 32 sitios **O** distorsionados [38], de los cuales sólo se ocupan 8 **T** y 16 **O** [38]. Los cationes que ingresan en estos sitios, cumplen con los requerimientos de radio iónico y de compensación de carga. La estructura de la espinela AB₂O₄ es estable para radios iónicos en los intervalos siguientes $0.6 < \Gamma_A < 1.0$ Å y $0.55 < \Gamma_B < 1.0$ Å. Muchos de los elementos de la primera serie de transición, incluyendo el Ni²⁺, cubren estos requerimientos [39].

Las espinelas se describen con las fórmulas: AB_2X_4 , A_2BX_4 y A_2X_3 [40]. La primera combinación, AB_2X_4 , se conoce como espinela normal 2-3, en dónde A y B denotan cationes di- y trivalentes, respectivamente. Estas composiciones se muestran en la **tabla 1**, su inspección revela que la nomenclatura no es consistente del todo, de acuerdo con los estados de ionización. En el caso de la espinela normal 2-4 debiera, probablemente, llamarse espinela normal 4-2. La segunda fórmula, A_2BX_4 , representa a la espinela inversa 2-4 en donde A y B son cationes di- y tetravalentes. Y la tercera es un caso especial de la espinela inversa, A_2X_3 , formada por cationes de un elemento que se presenta en dos estados ionizados en el cristal [40].

Nomenclatura	Fórmula	Estados de Ionización
Normal 2-3	AB_2X_4	A ²⁺ B ³⁺ X ²⁻
Normal 2-4	AB_2X_4	A ⁴⁺ B ²⁺ X ²⁻
Inversa 2-3	A_2BX_4	A ³⁺ B ²⁺ X ²⁻
Inversa 2-4	A_2BX_4	A ²⁺ B ³⁺ X ²⁻
Inversa 2-3-3	A_2X_3	A ²⁺ A ³⁺ X ²⁻

 Tabla 1. Nomenclatura de la espinela.

La forma simbólica para representar en la espinela los sitios **T** es por medio de los paréntesis curvos (), y para los sitios **O**, los paréntesis cuadrados []. Así para la espinela normal la distribución de los cationes es $(A)[B_2]O_4$ y para los, de la espinela inversa $(B)[AB]O_4$ [41,42].

1.1.2 Espinela de cobalto, CoAl₂O₄

El azul de cobalto, CoAl₂O₄, es un compuesto con estructura de espinela normal AB₂O₄, consiste de un empaque cúbico de oxígeno, casi perfecto, con el grupo espacial Fd3m ($F^4_{1/d}3_{2/m}$; O_h⁷ tablas internacionales), y ocho unidades fórmula AB₂X₄ por celda unidad (Z=8) [41]. En donde los cationes Co²⁺ residen en un octavo de los sitios T (tetraedros verdes) y los Al³⁺ se localizan en la mitad de los O (octaedros rojos) [43], **figura 1**.

Figura 1. Estructura de la espinela CoAl₂O₄

El Co²⁺ (d^7), favorece la coordinación **T**, con relación a la **O**, por la diferencia en la energía de estabilización del ligando en menor medida, que para la mayoría de las configuraciones d^n de los otros iones de los metales de transición. El ion Co²⁺ en coordinación **T** induce transiciones electrónicas d-d de densidad óptica fuerte entre los óxidos, por esta razón, el cobalto se usa en pigmentos y colorantes, debido a

que sus bandas en el espectro visible son intensas y absorben la mayor parte de las longitudes de onda naranja, lo que produce tonos azules. La coordinación **T** del Co^{2^+} se detecta a concentraciones bajas, ~1 ppm. Incluso este límite pequeño en su detección ha convertido al ion Co^{2^+} en una sonda adecuada, la cual ayuda a revelar el ambiente local del ligando en una gama de fases cristalinas por medio de espectroscopía óptica [27, 30, 44].

La estabilidad estructural de la espinela CoAl₂O₄, la dota de propiedades peculiares como: un índice de refracción y estabilidad térmica altos; resistencia química, a la luz, y a la intemperie [45]. Por estas razones el azul de cobalto es utilizado de forma amplia como pigmento en cerámicos, esmaltes, vidrios, cubiertas de fluorocarbón, ingeniería de plásticos, en fósforos y otros campos [46,47].

La espinela de cobalto posee un color azul intenso, conocido desde tiempos prehistóricos [48], y fue descubierta por Gahn-Wenzel, en 1777 [50]. Louis Jaques Thénard (1802) logró sintetizarla por reacción en estado sólido, con arseniato de cobalto y fosfato de cobalto en presencia de alúmina, veinticinco años más tarde. Así, Thénard se considera el inventor del azul brillante o aluminato de cobalto [50]. El cual se continúa usando de forma extensa como agente pigmentante [25,51].

La síntesis de la espinela de cobalto se ha desarrollado por rutas diversas y alternas como: a) sol-gel, para la obtención de membranas, a través de formación de un sol de alúmina derivado de la peptización con ácido nítrico en un baño de agua y adición de cloruro de cobalto en disolución, a continuación se secó a 100 °C y se cristalizó a 600 °C [52]; b) la síntesis por descomposición de sales se realizó con LiAlO₂ y KCoCl₃ en un molino a velocidad de calentamiento controlada de 150 °C/h para obtener la espinela, CoAl₂O₄ a 500 °C por 12 h en forma de polvos aglomerados con granos de tamaño entre 20 - 50 nm [53]; c) la síntesis hidrotermal asistida por microondas se llevó a cabo con CoCl₂•2H₂O y AlCl₃•6H₂O a 220 °C y 14 atm, el producto se calcinó a 110 °C, y se obtuvo con un tamaño menor a 100 nm [54]; d) la técnica de Pechini se llevó a cabo con reacción de un citrato metálico y etilenglicol en solución acuosa con un polialcohol

y calentamiento continuo a 100 °C hasta la formación de un poliéster, el producto se lavó, filtró, secó y cristalizó a 750 °C, con partículas de tamaño de 40 nm [55], y e) la síntesis de la espinela de cobalto por el método de combustión se realizó con los nitratos de aluminio y cobalto, y el combustible orgánico, desde los 200 a 550 °C, para obtener partículas de tamaño de 10 a 40 nm [56-59].

1.1.3 Espinela de níquel, NiAl₂O₄

El compuesto de NiAl₂O₄, presenta una estructura de espinela inversa de tipo $(A_{1-x}B_x)_T[A_xB_{2^-x}]_OO_4$, en dónde A es Ni²⁺ y B es Al³⁺ y X representa el grado de inversión, que está en función de la temperatura de síntesis y la difusión del ion Ni²⁺ hacia los sitios **T** y **O** (B)[AB]O₄; en este caso X=2/3 [61]. La estructura consiste en un empaque cúbico de oxígeno, en donde los cationes Ni²⁺ y los Al³⁺ se distribuyen de manera aleatoria en los sitios **O** y **T** [61], **figura 2**.

La espinela inversa de níquel, NiAl₂O₄, pertenece a la clase de pigmentos azules claro o azul turquesa, debido a sus transiciones electrónicas v₁ (${}^{3}T_{1} \rightarrow {}^{3}A_{2}$) y v₂ (${}^{3}T_{1} \rightarrow {}^{3}T_{2}$) asociadas al ion Ni²⁺ en coordinación **T**, que provocan absorciones entre 598 a 643 nm [60].

Figura 2. Estructura de la espinela inversa $NiAl_2O_4$. Octaedros azules= NiO_6 y AlO_6 y Tetraedros rojos= AlO_4

La espinela con Ni²⁺ encuentra aplicaciones como pigmento resistente a temperatura alta [62]; en recubrimientos resistentes a la acción de la luz, la atmósfera y químicos [63]; en electrodos, celdas combustibles y en catálisis [64].

La NiAl₂O₄ se ha obtenido por síntesis de: a) coprecipitación asistida por microondas, por medio del butóxido de aluminio con los nitratos de aluminio y níquel en disolución acuosa, hasta la formación del aluminato de níquel, el producto se dividió en dos fracciones, una se calentó a 100 °C, y la otra en microondas por 75 min. El análisis de UV-Vis indicó que los iones Ni²⁺ en coordinación **T** se vio favorecida [66]; b) coprecipitación por reacción de níquel y amonio en disolución, con una base fuerte orgánica, seguida de calcinación a 750 °C para obtener partículas uniformes esféricas con tamaños de 0.3 nm [67].

1.1.4 Espinelas CoAl₂O₄ y NiAl₂O₄

El desarrollo de pigmentos azules nuevos, con estructura de espinela, del tipo M_xCo_{1-x}Al₂O₄, ha presentado dificultades con la sustitución de los cationes, dado que el Co^{2+} es centrosimético, en coordinación **T**, lo cual asegura la intensidad del color, consecuencia de las transiciones electrónicas del sistema 3d⁷. Otro ion capaz de producir coloración azul en las espinelas es el Ni²⁺, el cual da tonalidades de azul cielo, en un campo ligante no centrosimétrico, con preferencia hacia la coordinación **O**. El paso siguiente de la investigación es la elección de una estructura estable en donde el ion Ni²⁺ se acomode en coordinación **T**, a través de la sustitución del ion Co²⁺ en la espinela, el inconveniente es que la estructura de la espinela normal de CoAl₂O₄, con el ion aluminio en los sitios **O** y el ion cobalto en los T. Mientras que NiAl₂O₄, posee una estructura de tipo espinela inversa con el ion Ni²⁺ en coordinación **O**. De ahí el reto en la sustitución del Ni²⁺ por el Co²⁺ en la estructura de la espinela normal. Estudios espectroscópicos han demostrado que el ion Ni²⁺, se encuentra en coordinación **T** en estructuras de cloruros y bromuros; en semiconductores del tipo ZnS y ZnSe; en el ZnO el ion Ni²⁺ se ha identificado que ocupa sitios T distorsionados [68]. Y el reemplazamiento exitoso del Co²⁺ por Ni²⁺ en la estructura de la willemita, Co_xZn_{1-x}SiO₄, para producir

 $Ni_XZn_{1-X}SiO_4$; y el reemplazamiento de Zn^{2+} por Ni^{2+} en la de gahnita, $ZnAl_2O_4$, produjo tonalidades turquesas en ambos casos [69,70]

Eppler (1980) inició el uso del Ni²⁺ en pigmentos, al reemplazar el Co²⁺ por Ni²⁺ en estructuras de ferrocromita de cobalto. Posteriormente estudió el desarrollo de espinelas negras, en los sistemas de cromitas, manganitas y ferritas de níquel, níquel-zinc y níquel-cobalto. En donde, sintetizó la composición Ni_{0.5}Co_{0.5}Al₂O₄ en el sistema de la espinela níquel cobalto por medio de la reacción en estado sólido, a partir de carbonato de níquel con óxidos de alúmina y cobalto, los cuales fueron mezclados y pulverizados, para su posterior calcinación a temperaturas entre 1175 y 1320 °C, por 3 h. Finalmente los polvos, de color azul oscuro, fueron micro pulverizados a tamaños de partícula de 18 a 20 nm, y analizados por DRX. El diagrama de fases ternario, para la espinela con cromo, hierro y manganeso, mostró la formación de una región de fase para la composición Ni_{0.5}Co_{0.5}Al₂O₄. En el artículo no se presentó el registro del DRX, ni del valor de su parámetro de red [71].

Ye y col., (2013) en su investigación de pigmentos azules de cobalto, estudiaron el ingreso de los iones: Y³⁺, Zn²⁺, Mg²⁺ y Ni²⁺ en la estructura de la espinela de cobalto. Preparados por precipitación homogénea, con la intensión de reducir la cantidad de cobalto en los pigmentos, para estudiar el efecto en el color; capacidad de sombreado y resistencia térmica. En el sistema de níquel cobalto, se sintetizaron las composiciones Ni_{0.1}Co_{0.9}Al₂O₄, Ni_{0.3}Co_{0.7}Al₂O₄ y Ni_{0.5}Co_{0.5}Al₂O₄, por medio de la reacción de los sulfatos de cobalto y aluminio con nitrato de níquel, disueltos en agua desionizada con HCl (para alcanzar 0.3 mol L⁻¹). Posteriormente por goteo, se agregó urea al 0.1 molL⁻¹ y se llevó a reflujo 100 °C por 5 h, para adicionar NaOH, 2 molL⁻¹ hasta la formación de un precipitado, el cual se lavó dos veces en etanol; se secó a 100 °C, por 5 h; se calcinó desde temperatura ambiente hasta 1100 °C, por 1 h, y finalmente, se enfrió a temperatura ambiente. Las muestras se caracterizaron por DRX y análisis térmicos [47]. Sus difractogramas mostraron que el ingreso del Ni²⁺ en la espinela

ingreso del Ni²⁺ tuvo un efecto mínimo, con la disminución de la constante de celda. El valor promedio de su constante de celda fue 8.093 Å para la composición Co_{.5}Ni_{.5}Al₂O₄. Explicaron que la disminución de la celda, con la incorporación del Ni²⁺, se debió a lo que llamaron la brecha tetraédrica de los O²⁻ en el remplazo de los iones Co²⁺. Debido al tamaño del radio iónico efectivo del Co²⁺ es 72 pm, en la coordinación cuatro para un estado de espín alto; mientras que para el Ni²⁺ es 69 pm. Lo cual, según los autores hizo que la celda cristalina se distorsionara con el ingreso del Ni²⁺, de tal forma la coordinación tetraédrica del ion Co²⁺ central se aplanara; la estructura cristalina se contrajera, y la constante de celda disminuyera [47]. Los autores sugirieron que el ingreso de Ni²⁺ en la estructura de la espinela de cobalto, formó un tipo de pigmento mixto de cobalto del tipo Co_xNi_{1-x}Al₂O₄. Explicaron que debido al Ni²⁺, la modificación observada del color de la espinela de cobalto a un azul oscuro verdoso, se debió a que el ion Ni²⁺ alteró el estado de la coordinación del Co²⁺, y dividió la energía del campo ligante necesaria para la transición electrónica $3d^7$ del cobalto, resultando el cambio de su absorción de luz y sus propiedades de barrido. Manifestaron, también, que el Ni²⁺, en sí, es un ion generador de color, el cual, se vio afectado significativamente, por el cambio de ligante y las propiedades del ion adyacente. Mencionaron que estos efectos mutuos de los dos tipos de color, fueron generados por los iones en la estructura, los que causaron el cambio de color y el poder colorante del composito preparado. De sus estudios térmicos concluyeron que la solución sólida formada, presentó estabilidad térmica buena. No obstante, sus difractogramas son imágenes pequeñas, poco visibles, y con un contenido del ruido de fondo alto. Por lo cual la información no es clara y dificulta la interpretación de los mismos [47].

El interés de esta investigación reside en el estudio de la espinela de cobalto, con la serie de composiciones $Ni_xCo_{1-x}Al_2O_4$, con X =0 a 1.0, variando X en intervalos de 0.1, por el método de combustión, registrando el efecto de la temperatura de síntesis y cristalización sobre la estructura, el tamaño de partícula y el color. Con el fin de sustituir el níquel por cobalto en el intervalo completo de composición, para validar la obtención de la solución sólida $Ni_xCo_{1-x}Al_2O_4$, (0<X<1).

1.2 Pigmentos cerámicos AMPO₄, con estructura del tipo fosfolivinos

Los compuestos del tipo AMPO₄ (donde A= Li⁺, Na⁺, M=Fe²⁺, Mg²⁺, Mn²⁺, Ni²⁺, Co²⁺) provienen de la familia de los olivinos con grupos fosfato, denominados fosfolivinos [72]. La estructura de los fosfolivinos pertenecen al sistema ortorrómbico con grupo espacial *Pnma*; su empaque es hexagonal distorsionado formado por oxígenos [73]. Los iones del fósforo se coordinan tetraédricamente con él oxígeno para formar enlaces de tipo covalente-polar [73] (tetraedros amarillos). Los iones A⁺ y M²⁺ se localizan en los sitios **O**. Los cuales forman unidades de tipo AO₆ y MO₆ (octaedros grises) en donde los primeros se unen por las aristas, por medio de sus oxígenos para formar redes tridimensionales de octaedros que se disponen a lo largo del plano *ab* [73]. Los segundos se unen por medio de los oxígenos de sus vértices y se disponen en forma de zigzag a lo largo del eje *c*, **figura 3**.

Figura 3. Estructura general del fosfolivino LiMPO₄

Los fosfolivinos son estables térmicamente, con capacidad para resistir voltajes de $\approx 170 \text{ mAh/g}$. Las aplicaciones de los compuestos del tipo LiMPO₄ (M=Fe²⁺, Co²⁺, Mn²⁺ y Ni²⁺) son amplias en el sector de la química analítica; en electrocatálisis; en baterías de ion litio para el almacenamiento de energía electroquímica [74,75], y por sus propiedades magnetoeléctricas [76]. Las que han dejado de lado su

estudio en el campo de los pigmentos cerámicos [77], en dónde, los fosfolivinos no han sido estudiados de forma extensa; a pesar del hecho de que los pigmentos en base a fosfatos presentan propiedades decorativas excelentes [78].

1.2.1 Pigmentos violetas con estructura de fosfolivino de cobalto, LiCoPO₄

El fosfolivino de LiCoPO₄ de color violeta se utiliza en la industria de los pigmentos, y como base en las baterías recargables de ion litio [79,80].

Históricamente, el término violeta de cobalto no se refiere a un compuesto con cobalto en específico, sino a un grupo de compuestos que exhiben un intervalo de tonalidades, desde un rosa hasta un violeta púrpura oscuro [81]. Algunos de ellos han sido importantes en la historia de las pinturas, otros han sido usados para decoración en trabajos cerámicos o producción de cerámica vidriada. El arseniato de cobalto, Co₃(AsO₄)₂, y el fosfato de cobalto, Co₃(PO₄)₂, conocidos como violeta de cobalto oscuro y claro, fueron los primeros sintetizados en el siglo 19; de éstos, la última variedad sobrevivió por no ser venenosa. El fosfato de cobalto, es un pigmento claro semiopaco que se fabricaba en tonalidades rojizas y azuladas. Se empezó a preparar a principios del siglo 19, a partir de un mineral y posteriormente su fabricación artificial se perfeccionó hasta desarrollar un auténtico violeta. El primer pigmento violeta de cobalto, Co₃(PO₄)₂, lo obtuvo Salvetat en 1859, era químicamente estable, de costo elevado y de poder tintóreo bajo, por lo que fue reemplazado por el violeta de manganeso. A parte de éste, los pigmentos violetas sobresalientes y conocidos son el fosfato de cobalto o violeta brillante (CoNH₄PO₄•H₂O), y el violeta oscuro (Co₃(PO₄)₂). El CoNH₄PO₄•H₂O ha sido identificado en pinturas desde mediados del siglo 20, aunque su descripción química data desde 1864 [82,45]. El fosfato de cobalto y litio, LiCoPO₄ es relativamente un pigmento reciente, descubierto en 1941 el cual no ha sido identificado, hasta ahora en trabajos de arte [45]. Hay sólo dos pigmentos cerámicos en base a fosfatos según la clasificación de la DCMA (por sus siglas en inglés: Dry Color Manufacturer's Association), uno es el de cobalto (8-11-1 DCMA) y el otro es el de cobalto y litio (8-12-1 DCMA) [83]. Los violetas de cobalto se consideran permanentes, aunque la variedad luminosa cambia en la pintura al óleo, en general, los violetas de cobalto son compatibles con los medios de pintura, aunque su transparencia, su poder tintóreo bajo y su costo alto limitan su uso, actualmente se ha mejorado su solidez a la luz, lo que hace que sean más recurridos que los violetas orgánicos [84].

1.2.2 Estructura del LiCoPO₄

La estructura del LiCoPO₄ se describe como un empaque hexagonal distorsionado formado por O²⁻, con los sitios octaédricos ocupados por los cationes Li⁺ y Co²⁺. Los sitios son distintos y permiten el orden de ambos cationes, debido a sus diferentes radios iónicos, 90 y 88.5 pm, respectivamente [85]. Este orden es responsable de la distorsión de la estructura. Mientras que los cationes fósforo, son más pequeños y ocupan los sitios **T**, estos se sitúan en un octavo de los sitios **T**, mientras que el Co²⁺ y el Li⁺ en la mitad de los **O**. La estructura, así consiste de octaedros de CoO₆ y tetraedros de PO₄³⁻ unidos por las aristas y los vértices. Las unidades de LiO₆ se unen a través de las aristas para formando túneles a lo largo del eje *c* [86], **figura 4**.

Figura 4. Estructura del LiCoPO₄.

El LiCoPO₄ ha sido preparado por métodos alternos a la de la síntesis tradicional, como son: a) la mecanoquímica, en donde la molienda en cantidades estequiométricas de LiOH, Co(NO₃)₂•6H₂O y H₂NH₄PO₄, seguido de tratamientos térmicos a 300 °C y a 650 °C cada uno por 1h; molienda y calentamiento a 850 °C por 20 h, para el empleo del fosfolivino en dispositivos magnéticos [87]; b) el método solvotermal, se propuso para reducir el tiempo y temperatura, se realizó con oleilamina como surfactante, como agente el CoCl₂•6H₂O, H₃PO₄ y acetil acetonato, con agitación por 30 min, la espinela de níquel se lavó y se calentó a 400 °C, a 40 MPa por 4 min. El tamaño de sus partículas fue de 50 a 100 nm, para su uso en electrodos [88].

1.2.3 Fosfolivino de níquel, LiNiPO₄

Los fosfatos de níquel son materiales cerámicos, que se utilizan en catálisis, sustancias dieléctricas, tratamientos metálicos superficiales, detergentes, aditivos de alimentos, celdas de combustible, pigmentos entre otros. En el caso de los pigmentos, estos materiales tienen buenas propiedades anticorrosión para la reacción de oxidación y adecuados como recubrimientos. Un punto débil es un cierto grado de solubilidad en soluciones acidas y básicas [89].

1.2.4 Estructura del LiNiPO₄

El fosfolivino de níquel, LiNiPO₄, de color amarillo ha sido estudiado en el campo de la química analítica [90], por su aplicación como recubrimiento de cátodos y baterías [90,91]. El LiNiPO₄ está formado por un empaque hexagonal de O^{2^-} . Los iones PO₄³⁻ ocupan un octavo de los sitios tetraédricos, mientras que los iones Ni²⁺ y Li⁺ ocupan la mitad de los sitios octaédricos, **figura 3**. Las unidades de LiO₆ se unen, por las aristas al compartir sus oxígenos, para formar redes tridimensionales de octaedros dispuestos a lo largo del plano *ab.* Y los NiO₆ comparten sus vértices con los oxígenos para disponerse en forma de zigzag a lo largo del eje *c* de la celda [92].

El LiNiPO₄ se ha obtenido por: a) reacción en estado sólido de Li₂CO₃, NiO y $NH_4H_2PO_4$, molienda por 30 min, calentamiento posterior a 80 °C por 1 h, y a 375

°C por 12 h, seguido de molienda, calcinación a 800 °C por 24 h y un enfriamiento de 25 h. El producto cristalino de color verde-amarillo correspondió a una mezcla de tres fases: LiNiPO₄/NiO/Li₃PO₄ para su uso en cátodos recargables [93]; b) combustión de la mezcla estequiométrica LiNO₃, Ni(NO₃)₂•6H₂O, con ácido cítrico (C₆H₈O₇), en disolución acuosa con NH₄H₂PO₄. El producto se sinterizó a 800 - 850 °C y se identificó la fase pura de LiNiPO₄ para su aplicación en dispositivos magnéticos [94].

El interés en la síntesis de los fosfolivinos de tipo LiMPO₄ (M=Co, Ni), ha sido el estudio en la obtención de sus propiedades eléctricas y ópticas, más que en su poder pigmentante [95].

1.2.5 Fosfolivinos de LiCoPO₄ y LiNiPO₄

Los fosfatos tienen una gran capacidad para formar soluciones sólidas y aceptan fácilmente sustituciones. La modificación de las propiedades físicas de las soluciones sólidas se asocia con los cationes que ingresan y con los cambios que se den o no en la estructura. El desarrollo de color de los pigmentos de cobalto depende de su estabilidad, su reactividad y la coordinación del ion Co²⁺ [96].

En la estructura de los fosfolivinos de LiCoPO₄ y LiNiPO₄, una característica es la posición que ocupan los cationes Co²⁺ y Ni²⁺ en coordinación **O** [97]. En esta posición ambos cationes presentan características químicas similares, como son sus radios iónicos (r_{Co}^{2+} = 88.5 pm, r_{Ni}^{2+} = 83 pm) [97], y su valencia de 2⁺ [98].

El interés, en el estudio de los fosfatos de litio y metales de transición (M), ha sido para su uso en baterías de ion litio y electrodos. Con el objetivo de aumentar la difusión de la carga del litio, autores como Wolfenstine y Allen (2004), investigaron el ingreso de metales de transición (M), en la estructura ordenada del olivino LiMPO₄. Para lo cual estudiaron el sistema LiCoPO₄ - LiNiPO₄, en donde prepararon las composiciones LiNi_xCo_{1-x}PO₄ (X=0, 0.2, 0.5, 0.8, 1.0), por medio de la reacción de estado sólido. Primero, mezclaron cantidades estequiométricas de los óxidos de cobalto y níquel con LiH₂PO₄, por 2 h, y calentaron a 375 °C por 20

h. Posteriormente, formaron pastillas con los polvos obtenidos y calentaron a 775 °C, por 48 h. Finalmente, pulverizaron la muestra a tamaños menores a los 45 nm y caracterizaron por DRX. Las composiciones se indexaron con base a una fase principal ordenada de tipo olivino, asignaron una fase secundaria conformada por NiO/Co₃O₄/Li₂PO₄, menor al 5% en total de todos los compuestos [99].

En este trabajo de tesis, se propone la síntesis de la solución sólida de $LiNi_xCo_{1-x}PO_4$ (0<X<1), por el método de combustión con el objetivo de mejorar las condiciones de síntesis, color y tamaño de partícula.

1.3 Síntesis por combustión de geles

Las dimensiones cristalinas de los pigmentos le imparten propiedades particulares al material en el que se encuentran dispersos. En el caso del pigmento de la espinela de alúmina, cuando su tamaño es micrométrico es opaco, posee poder cubriente bueno, y se clasifica como pigmento grado cerámico. Mientras que, cuando el pigmento es de tamaño nanométrico, disperso en una matriz, evidencia transparencia junto con la generación de color [100].

Los métodos de síntesis utilizados en la preparación de los pigmentos de cobalto como la espinela de cobalto y el fosfolivino de cobalto son variados. El método convencional en la preparación de estos pigmentos es por reacción de estado sólido o método cerámico, a través de las sales de los metales correspondientes, tales como son los óxidos, carbonatos, nitratos y otros. Con requerimientos de temperatura alta (1000 a 1400 °C) y tiempos de procesos extensos (de varias horas a días), para producir partículas gruesas, del orden de las micras. La obtención de partículas finas requiere, procesamiento posterior de molienda húmeda o seca. Otras técnicas han sido desarrolladas, las cuales reducen los tiempos de procesamiento y disminuyen las temperaturas, como son: el sol-gel [101,102], el hidrotermal [56], la deposición de películas [32], la coprecipitación [133], la glicolisis [16], la combustión [57-60], la reacción por doble descomposición de sales fundidas [54], entre otras.

La síntesis por combustión (SC) es una de las técnicas consideradas suaves, accesibles, rápidas y económicas para la síntesis de óxidos simples y mixtos, la cual produce sólidos con cristalinidad y pureza altas [101,102]. La SC es una reacción de óxido-reducción, inducida térmicamente entre un oxidante y un combustible, que se autopropaga; utiliza equipo sencillo, y reactivos de costo bajo. El rendimiento de la reacción de combustión en la síntesis de óxidos metálicos está asociado con sus características estructurales especiales, a saber: dimensiones nanométricas, morfología particular y microestructura única [103,104].

En la SC, la naturaleza de los precursores es un factor importante a considerar, por lo que se utilizan nitratos hidratados, debido a su carácter oxidante, lo que ayuda a superar la barrera de la energía de activación de la reacción. Los nitratos hidratados son solubles en agua para garantizar la disolución total y homogénea de los precursores y la formación de un gel en un medio acuoso, lo que facilita la síntesis a una temperatura inferior a la descomposición del combustible [105,106].

La elección del combustible, en el proceso de activación en la SC, deberá cumplir con las características siguientes: no reaccionar violentamente ante el calor; liberación mínima de gases durante la descomposición [107]; poseer poder reductor [108]; actuar como agente complejante en la disolución [109], y proporcionar la energía de activación suficiente para lograr el proceso de autoignición y autocombustión [110]. Estos factores afectan la morfología, las fases y el arreglo de las partículas del producto final [111]. La urea ha sido empleada como combustible dado que es de costo bajo y suministra una energía de activación con otros combustibles (hidracidas, sacarosa), por lo que se utiliza para la obtención de estructuras cristalinas cuya temperatura de formación inicie desde los 550 °C [112].

1.4 Caracterización

La identificación de los compuestos se realizó por las siguientes técnicas:

1.4.1 Difracción de rayos X (DRX)

La difracción de rayos X es una de las técnicas más eficientes para el análisis cualitativo y cuantitativo de las fases cristalinas de pigmentos cerámicos a través de la determinación de las fases cristalinas, transiciones de fase y disoluciones sólidas; y para determinar ciertas propiedades estructurales nivel de pureza; morfología y tamaño de la partícula; los parámetros de red; la naturaleza de los átomos, y las posiciones que ocupan los átomos o iones en la red [113].

1.4.2 Método de polvos

DRX por el método de polvos, es una técnica eficiente y rápida para el análisis y cuantificación de las fases presentes en una muestra. A partir del arreglo periódico de los átomos es posible construir conjuntos de planos paralelos entre sí, cuyas distancias son constantes entre las posiciones atómicas. Cuando incide el haz monocromático de rayos X, sobre una muestra policristalina, se generan reflexiones a través de todos los planos. Cada reflexión con una cierta intensidad se encuentra separada por una distancia *d* a un ángulo θ , generando así un patrón único de intensidades relativas asociadas a cada reflexión, que se interpretan aplicando la Ley de Bragg. Los valores de la distancia *d*_{hkl} para cada reflexión, permiten su identificación por comparación con los datos registrados en el Centro Internacional de datos de difracción, ICDD, por sus siglas en inglés [114,115].

1.4.3 Cálculo del tamaño del cristalito, método Scherrer

El tamaño del cristalito es un parámetro importante que influye en las propiedades de los sólidos. El método Scherrer, en difracción de rayos X y cristalografía, se utiliza en la determinación del tamaño de partícula de los cristales en forma de polvos. Scherrer demostró que las señales de DRX contienen información adicional y valiosa, y no se limitan sólo a la identificación de fases. Su método se basa en la ecuación que lleva su nombre, la fórmula relaciona el tamaño del cristalito en un sólido al ancho de la señal en el patrón de difracción. La forma del ancho de la señal o del pico es una medida de la amplitud de las oscilaciones térmicas de los átomos en sus sitios regulares en la celda. Varios factores afectan la distribución de los espaciamientos en la distancia interplanar, d_{hkl}, como son impurezas, defectos, deformaciones plásticas y efectos del instrumento, entre otros [116].

Scherrer demostró que el tamaño del cristalito influye en el ancho de la señal, y explicó su amplitud en términos del rayo incidente divergente, el cual satisface la condición de Brägg para planos de difracción no adyacentes. Una vez excluido el efecto del instrumento, y tomando en consideración que las contribuciones de los defectos (dislocaciones, límites de grano, apilamiento, otros) sean cero, el tamaño del cristalito se calcula fácilmente, en función del ancho del pico (especificado como: el ancho total a la mitad de la señal más intensidad), la posición de la misma, y su longitud de onda [117,118].

El método de Scherrer es útil para partículas a escala nanométrica, en el intervalo de 3 a 100 nm, por lo que, no es aplicable para granos cristalinos mayores. El tamaño del cristalito se calcula con la fórmula de Scherrer [119], ecuación 1:

$$(2\theta) = \frac{0.9\lambda}{L\cos\theta}$$
 Ecuación... 1

En donde λ es la longitud de onda

θ es el ángulo de difracción

 β es la medida a la mitad del ancho de la señal más intensa.

L es el tamaño del cristal

1.4.4 Método de Vegard

El método de la ley de Vegard es una regla empírica que propone una relación lineal, a temperatura constante, entre el parámetro de red de la celda cristalina y la concentración de los elementos que la constituyen [121].

La Ley de Vegard establece que los parámetros cristalográficos de una solución sólida (continua y sustitucional) varíen linealmente con la concentración, lo cual se da a temperatura constante y cuando la naturaleza del enlace es similar al de las fases constituyentes. Se supone que los átomos o iones de sustitución se distribuyen estadísticamente. El parámetro de la celda estará controlado por los tamaños relativos de los átomos o especies intercambiados. Se afirma que la ley es válida para sales y compuestos iónicos [122].

La ley de Vegard es una expresión matemática sencilla, ecuación 2, para una solución sólida binaria del tipo A-B es:

$$a_0 = a_{0A} (1-X) + a_{0B} (X)$$
 Ecuación... 2

En donde X=XB, es la fracción mol del componente B, a_{0A} y a_{0B} son los parámetros de celda de los componentes A y B respectivamente [123].

1.4.5 Espectroscopía de uv-Visible (uv-Vis)

La espectroscopía de uv-Vis es el resultado de la absorción de radiación electromagnética en las regiones del espectro visible y del ultravioleta (333 nm a 1000 nm) [124]. Los pigmentos que contienen en su estructura metales de transición de la primera serie son coloridos, debido a que absorben energía radiante en la región visible del espectro. El color en estos compuestos se genera por medio de la promoción de los electrones en los orbitales *3d*ⁿ del estado basal hacia el estado excitado que da lugar a diferentes transiciones electrónicas [125].

En una muestra su absorción dependerá de la energía del desdoblamiento del campo cristalino; de la geometría, y el estado de oxidación de los metales de transición [125].

1.4.7 Espectroscopía de infrarrojo por reflectancia difusa (FT-IR)

La espectroscopía de FT-IR se utiliza en el análisis de muestras con grado alto de absorción, como son los sólidos dispersos o las emulsiones [123]. La FT-IR para un sólido se origina por las vibraciones de los átomos o los iones, las que se realizan alrededor de sus posiciones de equilibrio. Las cuales son observadas en la región del infrarrojo lejano del espectro electromagnético [124]. El espectro de infrarrojo de un material resulta de la superposición de bandas de absorción de los enlaces específicos que son sensibles a los cambios de la estructura del sólido [125]. Para los sólidos, las energías de vibración son del orden de 0 a 60 kJ/mol, lo cual equivale a la radiación, con número de onda entre 100 y 5000 cm⁻¹. Las frecuencias de vibración en una muestra sólida, se determinan por la masa de los átomos o iones que la conforman; las fuerzas que los unen, y la geometría del grupo estructural, y la red cristalina [125]. Por lo que la energía de radiación debe coincidir con la diferencia de energía entre el estado excitado y normal del sólido. El sólido absorberá la energía radiante aumentando la vibración natural acompañada de un cambio en el momento dipolar eléctrico [126]. La región del infrarrojo de 1000 a 200 cm⁻¹ contiene las vibraciones: de tensión y de flexión. En la vibración de tensión ocurren movimientos rítmicos a lo largo del enlace modificándose la distancia entre los átomos. Y la vibración de flexión se caracteriza por un cambio en el ángulo entre dos enlaces y son de cuatro tipos: tijereteo, balanceo, aleteo y de torsión vibraciones en la zona del infrarrojo se origina por la excitación de los niveles de vibración de los enlaces presentes en la muestra [126].

CAPITULO 2

2.0 Metodología experimental

2.1 Reactivos

Los reactivos grado analítico (99.9%), fueron para las espinelas: $Ni(NO_3)_2 \cdot 6H_2O$, $Co(NO_3)_2 \cdot 6H_2O$, $Al(NO_3)_3 \cdot 9H_2O$, CH_4N_2O y H_2O destilada. Para los fosfolivinos: $Ni(NO_3)_2 \cdot 6H_2O$, $Co(NO_3)_2 \cdot 6H_2O$, $LiNO_3$, $(NH_4)_2HPO_4$, CH_4N_2O y H_2O destilada.

2.2 Equipo

La caracterización de los compuestos se llevó a cabo por difracción de rayos X (DRX), con un difractómetro modelo D8ADVANCE marca Bruker, radiación $\lambda_{Cu K\alpha}$ filtrada con Ni, con un tamaño de paso 0.02, ángulo 2 Θ y un tiempo de 0.6 s. La espectroscopía de uv-Visible (uv-Vis) se realizó en un espectrofotómetro marca Cary modelo 5000 uv-Vis-NIR de 250 a 2500 nm. La espectroscopía por reflectancia difusa, con un espectrofotómetro marca Perkin Elmer Spectrum modelo 400, FT-IR/FT-FIR en un intervalo de 400-4000 cm⁻¹.

2.3 Síntesis de las espinelas MAI_2O_4 (M=Co²⁺, Ni²⁺) y Ni_xCo_{1-x}AI₂O₄, (X=0 a 1.0)

La síntesis de las espinelas por el método de combustión de geles consistió en pesar las cantidades estequiométricas de los reactivos para obtener 3 g de producto. Según las reacciones 1, 2 y 3, para: $CoAI_2O_4$, $NiAI_2O_4$ y $Ni_xCo_{1-x}AI_2O_4$, (X=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), respectivamente:

Reacción 1

$$3Co(NO_3)_2 \cdot 6H_2O + 6AI(NO_3)_3 \cdot 9H_2O + 20CH_4N_2O \rightarrow 3CoAI_2O_4 + 20CO_2 + 112H_2O + 32N_2$$

Reacción 2

 $Ni(NO_3)_2 \bullet 6H_2O + 6Al(NO_3)_3 \bullet 9H_2O + 20CH_4N_2O \rightarrow 3NiAl_2O_4 + 20CO_2 + 112H_2O + 32N_2$

Reacción 3

$$3(X)Ni(NO_3)_2 = 6H_2O + 3(1-X)Co(NO_3)_2 = 6H_2O + 6AI(NO_3)_3 = 9H_2O + 20CH_4N_2O$$

 $\rightarrow 3Ni_xCo_{1-x}AI_2O_4 + 20CO_2 + 148H_2O + 28NH_3 + 40N_2$

Los nitratos y la urea se disolvieron en diferentes cantidades de agua destilada, estos se transfirieron a una cápsula de porcelana. Esta disolución se calentó con agitación continua a temperaturas y tiempos diferentes, hasta la formación de un gel. Después la cápsula se trasladó a flama directa, sobre un mechero Fischer, para alcanzar la temperatura de ignición de la urea (550 °C). Se observó una reacción espontánea exotérmica producto de la descomposición de los nitratos y el combustible, con la expulsión de (N₂, CO₂ y vapor de H₂O). La reacción, de combustión se completó en 10 minutos, formando una espuma de color azul metálico esponjosa y voluminosa en naturaleza. El producto se molió durante 5 minutos homogeneizando el tamaño de partícula; se probaron diferentes temperaturas y tiempos hasta alcanzar su cristalización, y se caracterizó por DRX, UV-Vis y FT-IR, **diagrama 1**.

2.4 Síntesis de los fosfolivinos LiMPO₄ (M=Co²⁺, Ni²⁺) y LiNi_xCo_{1-x}PO₄ (X=0 a 1.0)

La síntesis de los olivinos: LiCoPO₄, LiNiPO₄ y LiNi_XCo_{1-X}PO₄ (X=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), por el método de combustión, consistió en pesar las cantidades estequiométricas molares de los reactivos para obtener tres gramos de producto, según las reacciones 4, 5 y 6:

Reacción 4

$$2Co(NO_3)_2 = 6H_2O + 2LiNO_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiCoPO_4 + 3CO_2 + 27H_2O_3 + 8N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O_3 + 2(NH_4)_2HPO_4 + 3(NH_4)_2HPO_4 + 3(NH_4)_2O_3 + 2(NH_4)_2O_3 + 2(NH_$$

Reacción 5

 $2Ni(NO_3)_2 \bullet 6H_2O + 2LiNO_3 + 2(NH_4)_2HPO_4 + 3CH_4N_2O \rightarrow 2LiNiPO_4 + 3CO_2 + 27H_2O + 8N_2$

Reacción 6

$$\begin{split} 2(X) \text{Ni}(\text{NO}_3)_2 &\stackrel{\bullet}{=} 6\text{H}_2\text{O} + 2(1\text{-}X)\text{Co}(\text{NO}_3)_2 &\stackrel{\bullet}{=} 6\text{H}_2\text{O} + 2\text{Li}\text{NO}_3 + 2(\text{NH}_4)_2\text{HPO}_4 + 2\text{CH}_4\text{N}_2\text{O} \\ & \longrightarrow 2\text{Li}\text{Ni}_X\text{Co}_{1\text{-}X}\text{PO}_4 + 3\text{CO}_2 + 39\text{H}_2\text{O} + 12\text{N}_2 \end{split}$$

Los nitratos, el difosfato y la urea se disolvieron en diferentes cantidades de agua destilada. La disolución se transfirió a una cápsula de porcelana y se calentó con agitación continua a temperaturas y tiempos diferentes, hasta la formación de un precipitado. La cápsula se expuso a flama directa con un mechero Fischer hasta la temperatura de 550 °C, con la descomposición de la urea, del difosfato y los nitratos, mediante la expulsión de gases (N₂, CO₂ y vapor de H₂O), produciendo un sólido de color rosa. El cual se molió por 5 minutos, se calentó para su cristalización a temperaturas y tiempos diferentes y se caracterizó por DRX, UV-Vis y FT-IR, **diagrama 2.**

Diagrama 2. Procedimiento experimental de síntesis de los fosfolivinos LiMPO₄ (M=Co²⁺, Ni²⁺) y LiNi_xCo_{1-x}PO₄, (X=0.1 a 0.9)

CAPITULO 3

- 3.0 Resultados
- 3.1 Espinela CoAl₂O₄

Condiciones de síntesis y de cristalización

La investigación de las condiciones óptimas de reacción para la síntesis de las espinelas por el método de combustión de geles, se describen a continuación:

-Condiciones de la disolución: en la elaboración de las disoluciones se probaron cantidades diferentes de agua destilada y temperaturas. Las disoluciones se prepararon con una cantidad de agua mínima, desde los 20 mL hasta los 5 mL, desde 21 hasta 30 °C. Se determinó, que la cantidad de agua adecuada para la disolución es 10 mL a una temperatura de 30 °C y agitación constante.

-Condiciones de reacción: la primera etapa de síntesis de la espinela se desarrolló por medio de un gel. Las condiciones adecuadas para su formación, fueron desde los 30 hasta los 65 °C, con aumentos de temperatura de 5 °C, durante 30 minutos, con desprendimiento de CO_2 y H₂O.

-Condiciones de ignición y combustión: el gel se expuso a flama directa por 10 minutos con un mechero Fischer, para alcanzar la temperatura de combustión, con la descomposición de los nitratos y la urea en forma de NO_x a una temperatura de 550 °C; cuyo producto de reacción es una espuma sólida.

-Condiciones de cristalización: se investigaron diferentes tiempos y temperaturas para la cristalización de las espinelas, desde los 500 °C por 4 h hasta los 900 °C por 16 h. Las condiciones adecuadas de cristalización se establecieron a los 900°C durante 16 h. Después de molturar las muestras para obtener polvos de color azul, se identificaron por DRX, FT-IR, UV-Vis.

Espinela CoAl₂O₄

La espinela de cobalto, $CoAl_2O_4$, se sometió a diferentes temperaturas para lograr las condiciones adecuadas de cristalización. En la **figura 5**, se observan los patrones de difracción obtenidos en cada etapa de la formación de $CoAl_2O_4$.

Figura 5. Difracción de rayos X para la formación de la espinela CoAl₂O₄ en función de la temperatura de síntesis.

Para la espinela de cobalto se muestra la dimensión del cristalito y su evolución durante la cristalización en la **tabla 2**.

Tiempo (h)	Tamaño (nm)	Temperatura (°C)	Color	Fases
10 minutos	10.78	550	Negro	Co ₂ O ₃ CoAl ₂ O ₄
4	18.63	600	Verde	Co ₂ O ₃ CoAl ₂ O ₄
4	21.64	700	Azul verdoso	CoAl ₂ O ₄
4	30.28	800	Azul oscuro	CoAl ₂ O ₄
4	47.17	900	Azul	CoAl ₂ O ₄

Tabla 2. Tamaño del cristalito en función de la temperatura en la formación de CoAl₂O₄.

Las condiciones adecuadas para la cristalización de la espinela de cobalto, $CoAl_2O_4$; la espinela de níquel Ni Al_2O_4 , y la serie de composiciones Ni_xCo_{1-x}Al₂O₄, (0.1<X<0.9) se establecieron a 900 °C, durante 16 h. Los resultados de la caracterización para todas las muestras están dadas a estas condiciones, y se presentan a continuación.

3.1.1 Difracción de rayos X

La espinela azul de cobalto, CoAl2O₄, se muestra en la **fotografía 1**, junto con su difractograma, **figura 6**. Las líneas principales se indexaron con la fase de la espinela CoAl₂O₄ cúbica (ICDD 00-044-0160, **Anexo B**), **tabla 3 (Anexo A)**, lo cual sugiere la obtención de una fase pura. Con un tamaño de cristalito de 47.17 nm (DIFFRACT-EVA) y un parámetro de red calculado a_0 = 8.098 Å. Se observa una señal adicional, casi imperceptible, indicativa de la espinela inversa de cobalto, Co₂O₃ (ICDD 00-042-1467), en cantidad traza <2% en peso.

Figura 6. Difracción de rayos X de la espinela CoAl₂O₄.

Fotografía 1. Pigmento azul de CoAl₂O₄

3.1.2 Espectroscopía de uv-Visible

El espectro de uv-Vis para la espinela azul de cobalto muestra 3 señales de absorción en: 548 nm (región verde-amarillo), 586_{max} nm (región amarillo-naranja) y a 637 nm (región naranja), **figura 7**. Las absorciones son el resultado del desdoblamiento de los niveles energéticos de las tres transiciones electrónicas: v_1 :⁴ T_1 \leftarrow ⁴ T_2 , v_2 : ⁴ T_1 \leftarrow ⁴ A_1 , y v_3 :⁴ T_1 \leftarrow ⁴ T_1 [13] para el Co²⁺ en coordinación **T**, responsable de la coloración azul de la espinela, **fotografía 1**.

Figura 7. Espectro de uv-Visible del CoAl₂O₄.

3.1.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR, **figura 8**, muestra las bandas de absorción de estiramiento en: 660, 540, 463 y 481 cm⁻¹ [45]. Las dos primeras se asocian al enlace AI-O en coordinación **O**. Y las señales en 463 y 481 cm⁻¹ se relacionan con el enlace Co-O, en coordinación **T** [48].

Figura 8. Espectro de FT-IR de la espinela de CoAl₂O₄.

3.2 Espinela NiAl₂O₄

3.2.1 Difracción de rayos

La espinela de níquel, NiAl₂O₄, de color azul turquesa, **fotografía 2**, muestra un difractograma **figura 9**, cuyas señales se indexaron para la fase cúbica de espinela inversa de níquel, (ICDD 010-0339) **tabla 4 (Anexo A)**. Hay líneas adicionales relacionadas a la formación de la fase NiO (ICDD 0044-1159). La NiAl₂O₄ presentó un tamaño de cristalito de 27.01 nm (DIFFRACT-EVA) y un a_0 =8.033 Å.

Figura 9. Difracción de rayos X de la espinela NiAl₂O₄.

Fotografía 2. Pigmento azul turquesa de NiAl₂O₄.

3.2.2 Espectroscopía de uv-Visible

El espectro de UV-Vis para la espinela de níquel muestra las absorciones siguientes en: 601 nm (región naranja) y 642 nm (región rojo), relacionadas a la transiciones electrónicas: v₁ (${}^{3}T_{1} \leftarrow {}^{3}A_{2}$) y v₂ (${}^{3}T_{1} \leftarrow {}^{3}T_{2}$) [4] en forma doble en la región del visible, las cuales indican la coordinación **T** del níquel, responsable del color turquesa en la espinela [65], **figura 10**.

Figura 10. Espectro de UV-Visible de NiAl₂O₄.

3.2.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR de la espinela NiAl₂O₄, **figura 11**, muestra la banda de absorción en 525 cm⁻¹ asociada al enlace Al-Ni-O **T** [66]. Las señales en 650 y 595 cm⁻¹ se relacionan a Al-O en coordinación **O** [6]. Las bandas en 704 cm⁻¹ en coordinación **T**, las bandas en 465 y 425 cm⁻¹ corresponden al enlace Ni-O, en coordinación **T** y **O** [67].

Figura 11. Espectro de FT-IR de la espinela de NiAl₂O₄.

Las composiciones de la serie $Ni_xCo_{1-x}Al_2O_4$, (0<X<1.0, en intervalos de 0.1), presentan diferentes tonalidades de azul en función de su composición, **tabla 5**.

Composición	Fotografía	Composición	Fotografía
X=0		X=0.6	
X=0.1		X=0.7	
X=0.2		X=0.8	
X=0.3		X=0.9	
X=0.4			
X=0.5		X=1.0	

3.3.1 Difracción de rayos X

El patrón de DRX de los productos de la serie $Ni_XCo_{1-X}Al_2O_4$, (0<X<1.0; en intervalos de 0.1) se muestran en las figuras **12a** y **12b.** El parámetro de red, a_0 , para cada composición junto con el tamaño del cristalito se despliegan en la **tabla 6** (Anexo A).

Los difractogramas se indexaron, como se describe a continuación:

Las composiciones X desde 0 hasta 0.7, se indexaron sobre la base de una celda cúbica de tipo espinela de cobalto, $CoAl_2O_4$, **tabla 7 (Anexo A)**, debido a la sustitución del níquel por cobalto, con la formación de la solución sólida de fórmula: Ni_xCo_{1-x}Al₂O₄, **figura 12a**.

Las composiciones de X desde 0.8 hasta 1.0 se realizó con base en la fase espinela $NiAl_2O_4$, por la sustitución del cobalto por níquel para dar la solución sólida con composición: $Co_XNi_{1-X}Al_2O_4$ figura 12b.

Figura 12a). DRX de las composiciones del tipo Ni_xCo_{1-x}Al₂O₄ (0<X<0.7).

Figura 12b). DRX de las composiciones del tipo Co_XNi_{1-X}Al₂O₄ (0.8<x<1.0).

3.3.2 Espectroscopía de uv-Visible

La espectroscopía de uv-Vis para la serie de composiciones, $Co_xNi_{1-x}Al_2O_4$ (0.1<X<0.9; con intervalos de 0.1), están agrupadas en dos **figuras**, **13a** y **13b**, debido a la tendencia que muestran las señales en función de la composición [8]:

Los compuestos con X=0.1 hasta 0.7, manifiestan el solapamiento de las señales asociadas a la coordinación **T** del Co²⁺ y el Ni²⁺. Debido al ingreso de cobalto en sustitución de níquel, las bandas de absorción muestran los desplazamientos siguientes: i) 545-548 nm (región verde-amarillo), ii) 585- 589 nm (región amarillonaranja) y iii) 646-648 nm (región naranja-rojo), relacionadas a las transiciones electrónicas: Ni^{2+ 3}T₁ \leftarrow ³A₂ y Co²⁺ v₁:⁴T₁ \leftarrow ⁴T₂, v₂: ⁴T₁ \leftarrow ⁴A₁, y v₃:⁴T₁ \leftarrow ⁴T₁ para la coordinación **T** para Co²⁺ y el Ni²⁺ [9,10].

La composiciones X=0.8 a 1.0, $Co_XNi_{1-X}Al_2O_4$, despliega dos bandas de absorción similares a las del espectro de la espinela de níquel, **figura 10**, en 601 nm y 640 nm (región naranja), las transiciones atribuidas a esta composición son

 v_1 :⁴ $T_1 \leftarrow {}^4T_2$, v_2 : ⁴ $T_1 \leftarrow {}^4A_1$, y v_3 :⁴ $T_1 \leftarrow {}^4T_1$ para el Co²⁺ más las de Ni²⁺ v_1 (³ $T_1 \leftarrow {}^3A_2$) y v_2 (³ $T_1 \leftarrow {}^3T_2$) [11]. El cobalto y el níquel se encuentran en coordinación **T** y son responsables del color azul en el pigmento.

Figura 13a). Espectros de uv-Vis de las composiciones del tipo Ni_xCo_{1-x}Al₂O₄ (0<X<0.7).

Figura 13a). Espectros de uv-Vis de las composiciones del tipo Co_xNi_{1-x}Al₂O₄ (0.8<X<1.0).

3.3.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR de las composiciones de $Ni_XCo_{1-x}Al_2O_4$ y $Co_XNi_{1-x}Al_2O_4$ muestran las bandas de absorción de los enlaces de: Ni-O (435-439 cm⁻¹, 489-496 cm⁻¹ y 702-703 cm⁻¹); Co-O (469-471 cm⁻¹); Al-O (545-548cm⁻¹, 591-593 cm⁻¹), y Al-O-M (M=Co²⁺ y Ni²⁺) (649-679 cm⁻¹) [32, 64], desplazados en función de la concentración de níquel, **figuras 14a** y **14b**.

Figura 14 a) Espectros de FT-IR de para Ni_xCo_{1-x}Al₂O₄. (0<X<0.7)

Figuras 14 b). Espectros de FT-IR de para Co_XNi_{1-X}Al₂O₄. (0.8<X<1.0)

3.4 Fosfolivino de LiCoPO₄

Condiciones de síntesis y de cristalización

La investigación de las condiciones óptimas de reacción para la síntesis de los fosfolivinos por el método de combustión de geles, se describen a continuación:

-Condiciones de la disolución: en la elaboración de las disoluciones se probaron cantidades de agua destilada y temperaturas distintas. Las disoluciones se prepararon con una cantidad de agua mínima desde los 20 mL hasta los 5 mL, desde los 21° hasta los 30 °C. De dónde se determinó que la cantidad de agua para la disolución es 10 mL a una temperatura de 65 °C con agitación constante.

-Condiciones de reacción: la primera etapa de síntesis del fosfolivino se desarrolló por medio de un precipitado. Las condiciones adecuadas para su formación fueron

desde los 65 °C hasta los 92°C con aumentos de temperatura de 5 °C hasta la formación del precipitado a los 45 minutos, con desprendimiento de CO_2 y H₂O.

-Condiciones de combustión: en la segunda etapa de síntesis, el precipitado se expuso a flama directa por 10 minutos con un mechero Fischer para alcanzar la precipitación hasta llegar a la temperatura de combustión y descomposición de los nitratos y la urea en forma de NO_x a una temperatura de 550 °C; cuyo producto de reacción es un sólido.

-Condiciones de cristalización: se investigaron tiempos y temperaturas diferentes para la cristalización de los fosfolivinos, desde los 500 °C por 4 h hasta los 800 °C por 16 h. Las condiciones adecuadas de cristalización se establecieron a los 800°C durante 16 h. Finalmente se molieron las muestras para obtener polvos con coloraciones, con tonalidades desde el violeta - morado hasta el naranja - amarillo para su identificación por DRX, FT-IR, uv-Vis.

Derivado de los experimentos de síntesis, las condiciones adecuadas para la cristalización del fosfolivino de cobalto, LiCoPO₄; el fosfolivino de níquel LiNiPO₄, y la serie de composiciones LiNi_XCo_{1-X}PO₄, (0.1<X<0.9), se establecieron a 800 °C, durante 16 h. Los resultados de la caracterización para todas las muestras están dadas a estas condiciones, y se presentan a continuación.

3.4.1 Difracción de rayos X

El fosfolivino violeta - morado de cobalto, LiCoPO₄, se muestra en la **fotografía 3**, junto con su difractograma, **figura 15**. Las líneas principales se indexaron con la fase del fosfolivino LiCoPO₄ ortorrómbica (ICDD 032-0552, **Anexo B**), lo que sugiere una fase pura. Su tamaño de cristalito es 80.03 nm y los parámetros de red calculados para una celda ortorrómbica $a_0 = 5.917$ Å, $b_0 = 10.19$ Å y $c_0 = 4.69$ Å. Los datos de las distancias interplanares, d_{hkl} junto con sus índices de Miller se resumen en la **tabla 8 (Anexo A)**.

Figura 15. Difracción de rayos X del fosfolivino LiCoPO₄

Fotografía 3. Pigmento morado de LiCoPO₄

3.4.2 Espectroscopía de uv-Visble

El espectro de uv-Vis del fosfolivino de cobalto, muestra tres señales de absorción en: 487 y 519 nm (región del verde) y otra en 578 nm (región amarillo), **figura 16**, correspondientes a las transiciones electrónicas v₁: (${}^{4}T_{1} \leftarrow {}^{4}T_{2}$), v₂: (${}^{4}T_{1} \leftarrow {}^{4}A_{2}$) y v₃: (${}^{4}T_{1} \leftarrow {}^{4}T_{1}$), características de la coordinación **O** del cobalto [72].

Figura 16. Espectro de uv-Vis del pigmento morado de LiCoPO₄

3.4.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR, **figura 17**, muestra las bandas de absorción en 1146, 1100, 1039 y 939 cm⁻¹ relacionadas a los enlaces de tensión P-O-P, mientras que las bandas en 464, 544 y 573 cm⁻¹ se asocian a la absorción estiramiento asimétrico y antisimétrico de los enlaces O-P-O en coordinación T. Y la señal en 642 cm⁻¹ se relaciona con la banda de absorción de tensión del enlace Co-O en coordinación **O** [82].

Figura 17. Espectro de FT-IR del pigmento LiCoPO₄.

3.5 Fosfolivino LiNiPO₄

3.5.1 Difracción de rayos X

El fosfolivino de níquel, LiNiPO₄, produce un pigmento de color amarillo, f**otografía 4**. El difractograma, **figura 18**, se indexó para la fase de fosfolivino de níquel (ICDD 032-0578, **Anexo B**), lo que indica una fase pura. Los datos de las d_{hkl} y sus índices de Miller respectivos se resumen en la **tabla 9 (Anexo A)**. Los valores para sus parámetros de red son: a_0 = 10.0241 Å, b_0 = 5.846 Å y c_0 = 4.670 Å. Con un tamaño de cristalito de 63.42 nm.

Fotografía 4. Pigmento amarillo LiNiPO₄

Figura 18. DRX del fosfolivino LiNiPO₄

3.5.2 Espectroscopía de uv-Visible

El espectro de uv-Vis para el fosfolivino de níquel muestra dos absorciones en 428 nm (región del morado), y una débil en 471 nm (región azul), estas se relacionan a las transiciones electrónicas: v₁: (${}^{3}T_{1} \leftarrow {}^{3}A_{2}$) y v₂: (${}^{3}T_{1} \leftarrow {}^{3}A_{2}$), para la coordinación **O** del Ni²⁺ [88], **figura 19**.

Figura 19. Espectro de UV-Vis del pigmento amarillo de LiNiPO₄.

3.5.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR, **figura 20**, muestra las bandas de absorción en 1181, 1147, 1097, 1052 y 954 cm⁻¹, corresponde al enlace de tensión: P-O-P. Mientras que las bandas en 579, 522 y 469 cm⁻¹, se asocian al estiramiento del O-P-O en coordinación **T**. Y la señal en 645 cm⁻¹ corresponde al enlace de tensión del Ni-O en coordinación **O** [90].

Figura 20. Espectro de FT-IR del pigmento LiNiPO₄.

3.6 Composiciones LiNi_xCo_{1-x}PO₄, (0<X<1.0)

Las composiciones de la serie $LiNi_xCo_{1-x}PO_4$, (0<X<1.0, en intervalos de 0.1), presentan colores, con tonalidades de violeta-morado hasta el anaranjadoamarillo, en función de la composición y la coordinación de los cationes Co²⁺ y Ni²⁺, **tabla 10**.

Composición	Fotografía	Composición	Fotografía
X=0		X=0.6	
X=0.1		X=0.7	
X=0.2		X=0.8	
X=0.3		X=0.9	
X=0.4		X=1.0	
X=0.5			

Tabla 10. Colores de los pigmentos de la serie LiCo_xNi_{1-x}PO₄, (0<X<1.0)

3.6.1 Difracción de rayos X

El patrón de DRX de los productos de la serie $LiNi_{X}Co_{1-X}PO_{4}$, (0<X<1.0) se muestran en las **figuras 21a** y **21b**. Los cuales se indexaron sobre la base de una fase ortorrómbica de tipo fosfolivino de cobalto y níquel **tabla 11 (Anexo A)**.

21 a) Difracción de rayos X para LiNi_XCo_{1-X}PO₄. (0<X<0.7).

21 b). Difracción de rayos X para $LiNi_{X}Co_{1-X}PO_{4-}$ (0.8<X< 1.0).

Para cada composición de la serie LiNi_xCo_{1-x}PO₄, (0.1<X<0.9), se calcularon los parámetros de red a_0 , b_0 y c_0 . En las **figuras 22a** y **22b**, se muestra la tendencia constante del parámetro c_0 con respecto a la tendencia lineal de los parámetros de red a_0 y b_0 de la celda ortorrómbica en función de la concentración de Ni²⁺ desde la composición X=0.1 hasta 0.9, con base a la ley de Vegard. Los valores del parámetros de red a_0 , b_0 y c_0 y el tamaño del cristalito, para LiCo_{1-x}Ni_xPO₄, (0.1<X<0.9) se encuentran en la **tabla 12 (Anexo A)**.

22 a) Gráfica de Vegard, $LiCo_{1-X}Ni_XPO_4$ en función de la composición del níquel (% mol Ni). vs Parámetros de red a_0

22 b) Gráfica de Vegard, $LiCo_{1-X}Ni_XPO_4$ en función de la composición del níquel (% mol Ni). vs Parámetros de red b_0

3.6.2 Espectroscopía de uv-Vis

Los espectros de uv-Vis para LiNi_xCo_{1-x}PO₄ (0.1<X<0.9), se han agrupado en la **figura 23**, debido a la tendencia que muestran las señales en función de la composición. Las bandas de absorción, para cada una de las composiciones, se asignan de acuerdo a la suma de las transiciones electrónicas Ni²⁺ v₁: (³T₁ \leftarrow ³A₂) y v₂: (³T₁ \leftarrow ³A₂) y Co²⁺ v₁: (⁴T₁ \leftarrow ⁴T₂), v₂: (⁴T₁ \leftarrow ⁴A₂) y v₃: (⁴T₁ \leftarrow ⁴T₁) relacionadas a los iones Co²⁺ y Ni²⁺ en coordinación **O**. Las señales se encuentran desplazadas con relación al ingreso del Ni²⁺, como sigue: i) 429 - 439 nm (región morado a morado-lila), ii) 477 - 487 nm (región azul a azul-verde) y iii) 574 - 583 nm (región amarillo a amarillo-naranja) [95,138].

Figura 23. Espectros de uv-Vis de las composiciones del tipo LiNi_xCo_{1-x}PO₄ (0<X<1.0).

3.6.3 Espectroscopía de FT-IR

La espectroscopía de FT-IR, de las composiciones de LiNi_xCo_{1-x}PO₄, (0<X<1.0), revela que las bandas de absorción para cada una de las composiciones son similares a las señales del LiCoPO₄, las cuales se desplazan en función de la concentración del Ni²⁺. Las bandas que se observan en 1037 cm⁻¹ y 957- 963 cm⁻¹, están relacionadas al enlace de tensión P-O-P. Las señales en 575 - 579 cm⁻¹, 543 - 549 cm⁻¹ y 463 - 472 cm⁻¹ se asignan al estiramiento simétrico y antisimétrico del enlace O-P-O. Y en 642 - 649 cm⁻¹ las bandas, de absorción de tensión, pertenecen a la unión Al-O-M (M=Co²⁺ y Ni²⁺), **figura 24** [32, 88,90].

Figura 24. Espectros de FT-IR para LiNi_xCo_{1-x}PO₄. (0<X<1.0)

CAPITULO 4

- 4.0 Discusión de resultados
- 4.1 Espinela CoAl₂O₄
- 4.1.1 Formación

La evolución en la formación de la espinela de cobalto por el método de combustión se hizo por medio de la formación de un gel, la temperatura de ignición de la urea (550 °C) desarrolló una espuma de color negro, debido a los residuos de carbón, producto de la combustión de la urea. El seguimiento de la reacción se realizó por DRX, figura 5. Los difractogramas a 550 y 600 °C muestran señales anchas y con ruido de fondo, lo que indica que la muestra se encuentra amorfa, con un contenido mínimo de cristalitos (tamaño de 10.78 nm) de las fases identificadas como CoAl₂O₄ y Co₂O₃, y una cantidad mínima de carbón. La fase Co₂O₃ es estable en el intervalo de temperaturas de 550°C hasta antes de los 700°C, lo que proporciona a las muestras de un color verde, debido a la coordinación octaédrica del Co³⁺ presente en el compuesto [46,45]. A partir de los 700 °C los compuestos empiezan a tomar una coloración azul, hasta los 900 °C, con la evolución de las señales de sus difractogramas, que muestran un aumento en la intensidad de las señales, con disminución del ruido de fondo, debidas a: la disminución de la fase amorfa; el aumento en el tamaño del cristalito, tabla 2, y la desaparición de Co_2O_3 , por la probable reducción de $Co^{3+} \rightarrow Co^{2+}$, y la consecuente difusión de los cationes Co²⁺ hacia los sitios tetraédricos [39], esto conduce a la ocupación de los sitios tetraédricos por el cobalto, para dar lugar a la formación de la fase CoAl₂O₄, confirmada por las diferentes tonalidades desde verde-azuloso hasta el azul intenso [5]. A los 900 °C y un tiempo de 16 h, las señales de DRX, de los polvos están definidas, se identifica una fase pura de tipo espinela de aluminio cobalto, CoAl₂O₄. Lo que coincide con Kurajika y col., (2012), en su estudio de la evolución del color de la espinela CoAl₂O₄, preparada por solgel.

Por lo que, el método por combustión de geles proporciona temperaturas de síntesis (formación de fases desde 500 °C), tiempos (de formación inicial ≈10 min) y tamaño del cristalito (inicialmente 10.78 nm, hasta los 47.17 nm para la cristalización), menores en comparación con el método de estado sólido o cerámico, en donde se requieren temperaturas (de formación inicial a los 1000 °C o superiores), tiempos largos de retención (mayores a las 4 h), y tamaños de partícula del orden de las micras (Eppler, 1983). El tamaño del cristalito de la espinela cristalizada de 47.17 nm es similar al obtenido por sol-gel de 40 nm [67]; por descomposición de sales, entre 20 a 50 nm [65], y síntesis hidrotermal ≈100 nm [66], entre otros métodos de síntesis.

4.2 Serie de composiciones Ni_XCo_{1-X}Al₂O₄, (0<X<1)

4.2.1 Composición X=0, espinela CoAl₂O₄

La espinela de cobalto muestra un parámetro de red a_0 = 8.098 Å, el cual coincide con los valores del intervalo de 8.95 hasta 8.104 Å para la espinela CoAl₂O₄ sintetizada por estado sólido [71], sol-gel [24], combustión [57].

La síntesis de todas las composiciones de la serie $Ni_XCo_{1-X}Al_2O_4$, con 0<X<1.0, las cuales se detallan a continuación, se sintetizaron por el método de combustión de geles, y se cristalizaron a 900 °C por 16 h.

El color en la espinela de cobalto, ha sido estudiada de forma amplia [9-17], se sabe que el Co²⁺ se sitúa en la posición tetraédrica en la estructura de CoAl₂O₄ [21], lo que se verifica por su análisis de UV-vis, relacionada a las transiciones *d-d*: v_1 :⁴T₁ \leftarrow ⁴T₂, v_2 : ⁴T₁ \leftarrow ⁴A₁, y v_3 :⁴T₁ \leftarrow ⁴T₁. Las tres bandas de absorción características de la coordinación **T** del Co²⁺ están en: 548 nm, con una λ_{max} = 586 nm y 637 nm, **figura 7**, y se asignan al desdoblamiento del campo cristalino tetraédrico del cobalto. Estos valores están de acuerdo con los resultados espectroscópicos de de Weidong y col. 2003 (545, 585 y 625 nm); Ouadhi y col. 2008 (500-640 nm); Ahmed y col., 2008 (500-650 nm).

4.2.2 Composición X=1.0: espinela de NiAl₂O₄

La espinela de níquel, tratada a 900 °C presenta la fase correspondiente a la de NiAl₂O₄, dado que la mayoría de las señales de difracción corresponden a esta fase; producidas por trazas de NiO no significativas [61], ésto no afectan el color azul turquesa [83]. Por DRX se confirmó la obtención de un material cristalino con partículas de tamaño nanométrico. El compuesto de coloración azul turquesa presenta el desdoblamiento de los orbitales moleculares $3d^8$ del Ni², originados por la fuerza electrostática que ejercen los O²⁻ alrededor del níquel, cuando este se encuentra en posiciones octaédricas [83]. La fuerza del enlace covalente Ni-O provoca un cambio energético en los orbitales $3d^8$ del níquel [83], compensada con la coordinación **O**. El espectro de uv-Vis confirma, con un máximo de absorción en la zona del naranja por lo que el color emitido por el pigmento es turquesa [65].

Por medio del análisis de FT-IR, muestra la presencia de dos tipos de enlace para el ion Ni²⁺ los cuales son NiO₄ y el NiO₆. El enlace NiO₄ se encuentra en la banda ~704 cm⁻¹ [64, 65]. Y se confirman las publicaciones sobre el ingreso del Ni²⁺ en sitios **T** y **O** en la espinela inversa de níquel [62, 63, 68].

4.2.3 Composiciones 0.1<X<0.8: Ni_xCo_{1-x}Al₂O₄

La serie de compuestos de la serie $Ni_XCo_{1-X}Al_2O_4$ (0.1<X<0.9) identificados por DRX, presentan fases puras, indexadas en base a la fase cúbica de CoAl₂O₄, **figuras 12a y 12b**, con tonalidades de azul diferentes, **tabla 7**.

Los difractogramas de las composiciones $Co_{1-X}Ni_XAl_2O_4$, sintetizadas en el intervalo 0.1<X<0.7, muestra las señales características de la fase de la espinela de cobalto, $CoAl_2O_4$, sin diferencias significativas. Lo que sugiere que esta estructura es la anfitriona para el ingreso del ion Ni²⁺. El parámetro de red a₀ varía en función de la concentración del contenido de Ni²⁺, **tabla 12**, Lo cual es consecuencia directa del volumen menor que presenta el Ni²⁺ en comparación con el del Co²⁺, según los tamaños relativos de los radios de los cationes de Co²⁺ (72

pm) y Ni²⁺ (69 pm) [15-16]. Ésto sugiere la incorporación del ion Ni²⁺ en la estructura $CoAl_2O_4$ en sustitución del Co^{2+} en las posiciones **T**, y provee de evidencia para la formación de una solución sólida del tipo espinela Ni_xCo_{1-x}Al₂O₄, con composición: 0.1<X<0.8.

Los resultados del presente trabajo muestran la obtención de la solución sólida $Ni_xCo_{1-x}Al_2O_4$ en el intervalo de 0.1 < X < 0.8 molar. Lo cual corrobora y amplía los resultados obtenidos por Eppler (1982) y por Ye y col., (2013). Y está de acuerdo con el reemplazamiento exitoso de Co^{2+} por Ni^{2+} en la estructura de la willemita de cobalto, $Co_xZn_{1-x}SiO_4$, para producir $Ni_xZn_{1-x}SiO_4$, dando tonalidades azul turquesa. En donde el Zn^{2+} y el Si⁴⁺ están en coordinación tetraédrica con oxígeno y en donde el ion Ni²⁺ adopta la misma coordinación [69]; en la estructura de la gahnita, $ZnAl_2O_4$, en donde la coloración azul de la gahnita de níquel se relaciona a su posición tetraédrica, a concentraciones pequeñas de Ni²⁺, en dónde se propuso, que la distribución del Ni²⁺ en sitios **T** y **O** se afecta, por la concentración y la naturaleza de los iones implicados [62,68]; y en la incorporación de Ni²⁺ en la estructura de la mecanismo cromático se debe a la incorporación de Ni²⁺ en coordinación **T** [33], entre otras.

El ion Ni²⁺ manifiesta una preferencia por la coordinación **O**, y se ha sugerido la coordinación **T** forzada por restricciones externas [68]. En el caso presente el Ni²⁺ en la espinela de CoAl₂O₄ adquiere una coordinación **T** confirmada en el espectro de uv-Vis, con el desdoblamiento de la energía en forma triple debido a las transiciones electrónicas asociadas al enlace **T** del Ni²⁺ y las correspondientes del Co²⁺, **figura 13a**. El cambio de color en Ni_xCo_{1-x}Al₂O₄ es proporcional a la concentración de Ni²⁺ ya que varían las tonalidades de azul en función de la composición. A una cantidad mayor de Ni²⁺, la intensidad del color será menor, **tabla 5**. Lo cual se refleja en el desplazamiento de las bandas de absorción de las transiciones electrónicas, y corresponde a cada una de las composición en 545.33 nm (región verde) se trasladada hacia 548.95 nm (región verde-amarillo);

la segunda en 585.71 nm (región del amarillo) se mueve a 589.29 nm (región amarillo-naranja), y la tercera en 646 nm (región naranja-rojo) se corre hacia 648.17 nm (región naranja-rojo).

En el espectro de IR, para la serie de composiciones Ni_xCo_{1-x}Al₂O₄, la posición e intensidad de las señales se modifican para los enlaces tetraédricos de Co-O, la señal en 469 cm⁻¹ se mueve a 471 cm⁻¹, **figura 14a**. Las dos bandas débiles de absorción características de los enlaces octaédricos de Ni-O, son desplazadas desde 489 hasta 496 cm⁻¹ y la de 702 hasta 703 cm⁻¹. La banda de absorción característica del enlace tetraédrico de Ni-O en 435 cm⁻¹ se desplaza hasta 439 cm⁻¹, y se ensancha con el aumento en la concentración de Ni²⁺. Lo cual confirma la ocupación de los sitios **T**, tanto del Co²⁺ y el Ni²⁺, en la serie de composiciones para Co_{1-x}Ni_xAl₂O₄ para X de 0.1 a 0.7; con tonalidades de azul intenso hacia el azul turquesa, respectivamente.

4.2.4 Composición X de 0.8<X<1.0

El difractograma para las composiciones 0.8 < X < 1.0, muestra sus señales en función de las fases de NiAl₂O₄ con NiO en menos de un 8% en peso, mientras que la relacionada a la espinela de cobalto o alguna otra señal atribuida al cobalto están ausentes. Esto sugiere la incorporación de cobalto en la estructura de la espinela de níquel, a través de la sustitución del Ni²⁺ por el Co²⁺, adoptando la fórmula siguiente Ni_{1-X}Co_XAl₂O₄.

El espectro de uv-Vis, **figuras 13b**, muestra las absorciones del Ni²⁺ **T** esta predomina sobre las absorciones del Co²⁺ **T**, en la misma posición. Las absorciones de las transiciones electrónicas en 601.57 y 640.26 nm (región naranja), son responsables del color turquesa del pigmento e indican la coordinación **T** del Ni²⁺. El espectro de FT-IR muestra los enlaces octaédricos de NiO₆, con las bandas intensas en 439 cm⁻¹, 496 cm⁻¹ y 703 cm⁻¹; mientras que la banda del Co-O aparece en 471 cm⁻¹. Estos resultados ratifican la sustitución del Co²⁺ por el Ni²⁺ para Co_xNi_{1-x}Al₂O₄ 0.8<X<1.0.

La síntesis de la serie de composiciones $Ni_XCo_{1-X}Al_2O_4$, con 0< X< 1, por medio de reacción de combustión de geles, confirma la formación de dos soluciones sólidas:

- Ni_XCo_{1-X}Al₂O₄, 0.1<X<0.7, por medio de la sustitución del Co²⁺ por Ni²⁺ en los sitios **T** de la estructura de espinela de cobalto, con tonalidades de azul intenso hacia el turquesa, en función del ingreso del Ni²⁺ a la espinela de cobalto.

- $Co_X Ni_{1-x} Al_2 O_4$, 0.8<X<1.0, con la sustitución del Co^{2+} por Ni^{2+} en los sitios **T**, de tonalidad similar al azul turquesa de la espinela de níquel.

4.3 Fosfolivinos LiCoPO₄, LiNiPO₄ y LiNi_XCo_{1-X}PO₄ (0.1<X<0.9)

4.3.1 Composiciones 0<X<1.0: LiNi_xCo_{1-x}PO₄

La síntesis para la serie de composiciones LiCo_{1-x}Ni_xPO₄ para 0<X<1.0 se desarrolló en dos etapas, en la primera con los reactivos en disolución acuosa, mediante agitación vigorosa, por 20 min, se formó un precipitado. El combustible tiene una función complejante, capaz de mantener una homogeneidad composicional entre los constituyentes, los cuales deberán reaccionar a la temperatura de ignición [88], en el trabajo presente sólo se desarrolló la combustión sin ignición. En la segunda etapa, la reacción se continuó con agitación y se sometió desde temperatura ambiente hasta 500 °C, por 10 min para llevar el precipitado a combustión, sin presencia de residuos orgánicos. Los sólidos obtenidos, presentaron una variedad de colores: lila, rosáceo, amarillo. Después de su molienda, los polvos se cristalizaron a 800 °C, por 16 h, produciendo pigmentos de colores brillantes, desde el violeta, al morado hasta alcanzar los naranjas y amarillos, **tabla 11**; con un tamaño de partícula fina, **tabla 12**.

4.3.2 Fosfolivino de cobalto LiCoPO₄, composición X=0

El fosfolivino de cobalto se analizó por DRX, **figura 15**. El difractograma se identificó como una fase pura isoestructural del tipo fosfolivino. Los parámetros de la estructura se calcularon para la celda ortorrómbica, con: a_0 = 10.191 Å, b_0 =
5.917Å *y* c_0 = 4.693 Å. Estos valores están de acuerdo con los publicados para LiCoPO₄ sintetizado por estado sólido, por Amine y col., 2000 (a_0 = 10.202 Å, b_0 = 5.922 Å, c_0 = 4.699 Å); y los de Bramnik y col., 2007 (a_0 = 10.195 Å; b_0 = 5.9198 Å y c_0 = 4.6971 Å), [85, 3]. También, los parámetros coinciden con los del fosfolivino de cobalto por rutas alternas de síntesis, como son la de Koleva y col., 2010, quienes lo prepararon a través de soluciones precursoras con formatos y fosfatos (a_0 = 5.922 Å, b_0 = 10.205 Å, c_0 = 4.700 Å) [96]; con los de Saint- Martin y col., 2008 para el crecimiento de cristal solo (a_0 = 10.211 Å, b_0 = 5.922 Å, c_0 = 4.704 Å) [129]; con los de Manzi y col., 2015, sintetizado por el método solvotermal (a_0 = 10.206 Å, b_0 = 5.922 Å, c_0 = 4.701 Å) [130]. Y con los de Zhou y col., 2004, calculados por métodos de cómputo (a_0 = 10.33 Å, b_0 = 5.93 Å, c_0 = 4.75 Å) [131].

Las propiedades del LiCoPO₄ han sido y continúan siendo importantes en el estudio de la conducción de iones [72, 75, 79] y las magneto electrónicas [95], aunque la determinación de sus propiedades espectroscópicas son casi nulas [72]. En el espectro de uv-Vis del LiCoPO₄, de las tres bandas características relacionadas a las transiciones electrónicas del Co²⁺ en coordinación octaédrica **figura 16**, la de absorción con λ_{max} = 578 nm, en la región del espectro visible amarillo, se asocia a la transición electrónica ${}^{4}T_{1g} \leftarrow {}^{4}T_{1g}$ [84], responsable del color violeta del pigmento. La cual coincide con Meseguer y col., 2007, para la coordinación **O** del ion Co²⁺ con λ_{max} = 582 nm en su estudio del pigmento tipo forsterita, Co_{3-x}Fe_xP₂O_{8+x/2} [84], y con las observaciones de Koleva y col., 2010, con una λ_{max} = 580 nm.

El espectro de la FT-IR del LiCoPO₄, muestra las señales en 1039 y 939 cm⁻¹ asociadas a los enlaces tetraédricos de tensión del P-O-P; en 464, 544 y 573 cm⁻¹ relacionadas a los estiramiento asimétrico y antisimétrico de O-P-O, y en 642 cm⁻¹ para la coordinación **O** del CoO₆, **figura 17**. Los modos de vibración que se asignan para los grupos tetraédricos PO_4^{3-} se basan en dos tipos de enlaces P-O [127]: los que se encuentran en el intervalo de frecuencia en 650 a 400 cm⁻¹, relacionados al O-P-O, y en 1139 a 945 cm⁻¹ para P-O-P [128]. La asignación de las señales para CoO₆ depende de la geometría y de la simetría del enlace Co-O

en el LiCoPO₄ [129]. Por lo que, sus bandas de vibración aparecen desde 650 cm⁻¹ hasta los 550 cm⁻¹ desplazadas bajo la influencia de los grupos PO₄³⁻ sobre los octaedros, en donde, también, residen las señales para P-O-P [129]. Esto coincide con Jiang y col., (2013) en la caracterización de su compuesto LiCo_{0.5}Mn_{0.5}PO₄, por IR, en donde asignaron al intervalo de 650 cm⁻¹ a 500 cm⁻¹ al enlace **O** para CoO₆ [130].

El desarrollo del color en los pigmentos, en general, y en particular los de cobalto, está en función de su estabilidad térmica; de su reactividad química en el medio de aplicación, y de la coordinación y la intensidad del campo cristalino del ion cobalto [84]. Las tonalidades en diferentes olivinos, de tipo forsterita y fosfolivinos de cobalto se le atribuyen a la coordinación octaédrica del ion Co^{2+} con el oxígeno. En este trabajo se confirma la síntesis del LiCoPO₄ puro, con un tamaño de partícula 80.13 nm. Y con FT-IR y uv-Vis se comprueba la coordinación del metaloxígeno CoO_6 , responsable de su color violeta distintivo [131, 78].

4.3.3 Fosfolivino de níquel LiNiPO₄, composición: X=1.0

El fosfolivino de níquel LiNiPO₄ de color amarillo, se sintetizó como una fase pura por SC. En el LiNiPO₄ el color amarillo se le atribuye al Ni²⁺ en coordinación **O** [132]. El ion Ni²⁺ es un 3*d*⁸, en el LiNiPO₄ se considera que está presente, sólo, en un ambiente octaedral con tres transiciones permitidas por espín. La primera transición se ha relacionado a la región del infrarrojo cercano y no es responsable para el color [91]. Mientras que las otras dos transiciones aparecen, por lo general, en la región visible del rojo-naranja y del azul-violeta, y producen color verde o amarillo naranja en función de la intensidad del campo cristalino y la distorsión de los sitios **O** [91]. En el trabajo presente, en el espectro de uv-Vis del LiNiPO₄, **figura 19**, el ion Ni²⁺ muestra la absorción en $\lambda_{max} = 428$ nm. Llusar y col., (2015), para la karrooita Mg_{1-X}Ni_XTi₂O₅, asignan las características del Ni²⁺ en coordinación **O**, con una primera banda estrecha en la región del azul en el intervalo de 490 a 560 nm para colores que van desde el amarillo hasta el naranja; y relaciona el color amarillo con la influencia de la transición electrónica v₁: $({}^{3}T_{1} \rightarrow {}^{3}A_{2})$ del enlace **O** de Ni²⁺.

El espectro de la FT-IR del LiNiPO₄ confirma el enlace octaédrico de NiO₆ en 645 cm⁻¹, **figura 20**. En coincidencia con el valor para NiO₆ de Minakshi, y col., (2011), que lo asignan al intervalo de 650 a 663 cm⁻¹ [93] y con el Vijayan, y col., (2014), en 655 cm⁻¹ [88].

El estudio del LiNiPO₄ por sus propiedades pigmentantes son casi nulas, el interés ha sido por sus propiedades electroquímicas [131-135]. Los resultados de DRX, corroboran la obtención de una fase pura del fosfolivino, y por uv-Vis y FT-IR, el color amarillo y su intensidad, los cuales dependen de la coordinación octaédrica del Ni²⁺.

4.2.4 Fosfolivinos LiNi_xCo_{1-x}PO₄, composiciones: 0.1<X<0.9

El interés creciente en el uso de metales de transición en los fosfato, con estructuras de tipo olivino, LiMPO₄ (M = Ni, Co), ha sido en aplicaciones como cátodos potenciales para baterías de ion litio [136-138, 17,89]. Mientras que sus propiedades pigmentantes han sido dejadas de lado. Dentro de las estrategias para mejorar el desempeño electroquímico las investigaciones se han enfocado, entre otras, en la disminución del tamaño de partícula y la formación de soluciones sólidas entre los fosfato de los metales de transición [89]. Estas estrategias se desarrollaron en la investigación presente, con el objetivo de aumentar la paleta de color entre los fosfatos de cobalto y níquel. Para la primera, la disminución del tamaño de partícula se realizó por la síntesis de combustión. Y para la segunda, se diseñó la síntesis de LiCo_{1-x}Ni_xPO₄, con 0.1 <X< 0.9.

Los difractogramas de la serie de composiciones $LiCo_{1-X}Ni_XPO_4$, en el intervalo 0<X<1.0, **figuras 21a y 21b**, muestran la formación de una fase de tipo fosfolivino LiMPO₄, sin la formación de otro tipo de fase, similar a los patrones de DRX para los fosfolivinos de LiCoPO₄ y de LiNiPO₄. Las señales de DRX cambian ligeramente a valores mayores de 2 Θ conforme la concentración de Ni²⁺ aumenta, lo que está de acuerdo con el reemplazamiento de los iones de Co²⁺ por los de

Ni²⁺, de tamaño menor en la estructura del fosfolivino [Ni²⁺ ($r_{iónico}$ = 83 pm) por Co²⁺ ($r_{iónico}$ = 88.5 pm), [97]. Lo cual confirma la formación de una solución sólida pura en todo el intervalo de composición completo (desde 0<X<1.0, en intervalos de 0.1), con el ingreso de los iones Co²⁺ y Ni²⁺ en la estructura LiMPO₄, **figuras 22a y 22b**; sin fases adicionales que impurifiquen la disolución. A diferencia de los resultados ofrecidos por Wolfenstine y Allen, (2004), quienes estudiaron la solución sólida LiNiPO₄, LiNi_{0.5}CO_{0.5}PO₄ y LiNi_{0.8}CO_{0.2}PO₄, por reacción en estado sólido. Con la indexación de sus difractogramas de rayos X, demostraron la formación de una fase sencilla, con una fase secundaria, menor al 5% en peso, conformada por la mezcla de NiO/Co₃O₄/Li₃PO₄ [99].

La formación de la solución sólida sustitucional LiNi_xCo_{1-x}PO₄ para todo el intervalo de composición 0<X<1.0, se confirma por el comportamiento lineal de los parámetros de red en función de la composición de níquel, tabla 10, figuras 22a, 22b. En donde se aprecia una disminución gradual y casi constante de los parámetros a_0 y b_0 . Los cuales están gobernados por el tamaño relativo de los cationes [97], y por la distorsión de los sitios octaédricos en la estructura, ocasionada por el cambio energético del campo cristalino. La distorsión de los sitios **O**, es el resultado de la diferencia energética que existe para el Co²⁺ con electrones de espín alto (campo bajo), el cual al ser sustituido por el ion Ni²⁺ con electrones de espín bajo (campo alto), se produce un cambio en la absorción de la luz, lo cual está de acuerdo con los estudios espectroscópicos de Shinagawa, K. (2005) y Brik et al., 2014, para Co²⁺ y Ni²⁺, respectivamente, los cuales investigaron su ambiente octaédrico [95, 137]. En el trabajo presente se verifica lo que Islampour y col., (2013) demostraron para compuestos con orbitales moleculares distintos, que las señales y su intensidad es la suma de las transiciones electrónicas [35]. En el caso de la serie de composiciones LiNi_xCo₁₋ xPO₄, 0<X<1.0, su contribución al cambio energético es la suma de las transiciones electrónicas del Co²⁺ más las del Ni²⁺ lo cual se verifica por su cambio de color y tonalidades en función de la concentración de los cationes [95, 137,75].

La solución sólida de LiNi_xCo_{1-x}PO₄, 0 <X< 1.0, desarrolló colores y tonalidades, según se describe a continuación, tabla 9: Las composiciones con X desde 0 hasta 0.5, las cuales inician con LiCoPO4 hasta LiNi_{0.5}Co.₅PO₄, despliegan coloraciones desde el violeta hasta el morado, bajo la influencia del Co²⁺. La banda ancha que se desplaza desde 574 nm (en el LiCoPO4) hasta 583 nm (para LiNi_{0.5}Co_{.5}PO₄), en la región del amarillo – naranja, figura 23, está relacionada a las transiciones electrónicas del Co²⁺: v₁: (${}^{4}T_{1} \leftarrow {}^{4}T_{2}$), v₂: (${}^{4}T_{1} \leftarrow {}^{4}A_{2}$) y v₃: (${}^{4}T_{1} \leftarrow {}^{4}T_{1}$), debido a la concentración alta del cobalto en estas muestras y la influencia de la energía de su campo cristalino octaédrico [95, 137]. Para las composiciones con X con 0.6 hasta 1.0, para LiNi_{0.6}Co₄PO₄ hasta LiNiPO₄, se observan colores que van del naranja hasta el amarillo, respectivamente, influenciados por la concentración del Ni²⁺. Las banda se desplaza desde 429 nm (para LiNi_{0.6}Co₄PO₄) hasta 439 nm (en el LiNiPO₄), correspondiente a la región morado - morado-lila, se relacionan a las transiciones electrónicas del Ni²⁺, v₁: $({}^{3}T_{1}\leftarrow {}^{3}A_{2})$ y v₂: $({}^{3}T_{1}\leftarrow {}^{3}A_{2})$. Por lo tanto, se confirma la influencia de la energía del campo cristalino **O** del Ni²⁺, en los cambios de absorción y de color.

Los enlaces característicos para LiNi_xCo_{1-x}PO₄ de cada una de las composiciones sintetizadas, en los espectros de FT-IR, se identificaron por comparación con los de los compuestos puros de LiCoPO₄ (**figura 18**) y LiNiPO₄ (**figura 21**). En donde se verificó la existencia de los enlaces, por medio del desplazamientos ligeros de los valores del fosfolivino de cobalto: en 1037 cm⁻¹ y 957-963 cm⁻¹ para el enlace de tensión P-O-P; en 575-579 cm⁻¹, 543-549 cm⁻¹ y 463-472 cm⁻¹, para el enlace O-P-O de estiramiento simétrico y antisimétrico, y en 642 - 649 cm⁻¹ para los enlaces del CoO₆ y NiO₆, respectivamente, **figura 24**. Los valores de la solución sólida, en el intervalo de composiciones desde 0 hasta 1.0 fueron casi idénticos, con desplazamientos mínimos, lo que confirma que los iones de Co²⁺ y Ni²⁺ ocupan los sitios **O** en el fosfolivino del tipo LiNi_xCo_{1-x}PO₄.

CAPITULO 5

5.0 Conclusiones

En este estudio se sintetizaron por el método de combustión las espinelas $(Ni_{X}Co_{1-X}Al_{2}O_{4} \text{ y } Co_{X}Ni_{1-X}Al_{2}O_{4} 0 < X < 1) \text{ y los fosfolivinos } (LiNi_{X}Co_{1-X}PO_{4}, 0 < X < 1) de cobalto con níquel. El desarrollo de color está en función de la coordinación de los iones de Co²⁺ y Ni²⁺. Los estudios se condujeron por medio de DRX, uv-Vis y FT-IR, con los resultados siguientes:$

Se determinaron las condiciones de síntesis para:

I. Sistema de las espinelas:

Las condiciones de síntesis en el sistema de las espinelas se desarrolló, por medio de la formación de un gel, combustión e ignición a 500 °C, por 10 min, y su cristalización a 900 °C y 16 h. Mediante el análisis, con DRX, UV-Vis y FT-IR, y el método de Scherrer, se propone en este trabajo la formación de dos soluciones sólidas para el sistema de las espinelas, mediante dos mecanismos:

- La sustitución del ion níquel en los sitios tetraédricos del cobalto en la espinela $CoAl_2O_4$ para las composiciones de X, desde 0.1 hasta 0.7, se plantea la formación de la solución sólida del tipo Ni_xCo_{1-x}Al₂O₄, en el intervalo 0<X<0.7.

- La sustitución en los sitios octaédricos del ion Co^{2+} por el ion Ni^{2+} en la espinela NiAl_2O_4 para las composiciones de X, desde 0.8 hasta 1.0, se formula la solución sólida $\text{Ni}_{1-x}\text{Co}_x\text{Al}_2\text{O}_4$ para el intervalo 0.9<X<1.0.

En la síntesis del sistema de las espinelas, la combustión de geles favoreció el desarrollo de las fases con la formación de dos soluciones sólidas en todo el intervalo de composiciones; el tamaño nanométrico (27.01-47.17 nm), y el desarrollo de las tonalidades desde el azul intenso hasta el turquesa, característicos de la espinela de cobalto aluminio y de la espinela de níquel aluminio, respectivamente. La pureza de las nanopartículas en las muestras permitió el aumento en la paleta de tonalidades.

II. Sistema de los fosfolivinos:

Para el sistema de los fosfolivinos, las condiciones de síntesis se desarrollaron a través de la formación de un precipitado, combustión sin ignición a 500 °C, por 10 min, y su cristalización a 800 °C y 16 h. El análisis, por DRX, UV-Vis y FT-IR, permite expone para este sistema, el desarrollo de una solución sólida de tipo LiNi_xCo_{1-x}PO₄, en todo el intervalo de composiciones: 0<X<1, con la formación de una fase pura de fosfolivino de cobalto y níquel.

La síntesis por combustión favoreció la reacción, sin fases secundarias, con tamaño de partícula nanométrico (63.42 – 91.64 nm), y el aumento de la paleta de color desde el violeta pasando por los lilas, morados, anaranjados, hasta el amarillo del fosfolivino de níquel. Se verificó la formación de la solución sólida, a través del mecanismo de sustitución de los iones Co²⁺ y Ni²⁺ en los sitios octaédricos en la estructura de fosfolivino.

BIBLIOGRAFÍA

[1] Debnath, N., Vaidya, S. (2006). Application of X-ray diffraction technique for characterization of pigments and control of paints quality. Progress in Organic Coatings. 56, 159-168.

[2] Kim, W., Lee, S., Kim, S., Yoon, S., Kim, C. (2000). Magnetic properties of Y-, La-, Nd-, Gd, and Bi-doped ultrafine $CoFe_2O_4$ spinel grown by using a sol-gel method. Journal of Magnetism and Magnetic Materials. 215-216, 217-220.

[3] Hanzlíĉek, T., Steinerová, M., Straka, P., Perná, I., Siegl, P., Švarcova, T. (2009). Reinforcement of the terracotta sculpture by geopolymer composite. Materials and Design. 30, 3229-3234.

[4] DCMA Complex Inorganic Color Pigment and Ceramic Colors Commite. Classification and Chemical Description of the Mixed Metal Oxide Inorganic Colour Pigments. 3a edition. DCMA, 1991.

[5] Manfredini, T., Bondioli, F., (2000). Inorganic pigments. Ceramic Industry. 53-58.

[6] Weihui, J., Xiayi, X., Ting, Chen, Jianmin, L., Xiaojun, Z., (2015). Preparation and chromatic properties of CaZrSiO4 inclusion pigment via non-hidrolytic sol-gel method. Dyes and Pigments. 114, 55-59.

[7] Monros, G., Carda, J., Tena, Escribano, P. (1990). Preparación de pigmentos cerámicos por métodos sol-gel. Boletín de la Sociedad Española de Cerámica y Vidrio. 29, 1, 25-27.

[8] Neumann, M., Kuepper, K. (2009). X-ray spectroscopic techniques are powerful tools for electronic structure investigations of transition metal oxides. Surface Science 603, 1613-1621.

[9] de Souza, L., Zamian, J., da Rocha, G., Soledade, L., dos Santos, I., Souza, A., Scheller, T., Angélica, R., da Costa C. (2009). Blue pigments based on $Co_XZn_{1-X}Al_2O_4$ spinels synthesized by the polimeric precursor method. Dyes and Pigments. 81, 187-192.

[10] Carmona, N., Bouzas, V., Jiménez, F., Plaza, M., Pérez, L., García, M., Villegas, M., Llopis, J. (2010). Cobalt (II) environment characterization in sol-gel thermochromic sensors. Sensors and Actuators B. 145, 139-145.

[11] Visinescu, D., Paraschiv, C., Ianculescu, A., Jurca, B., Vasile, B., Carp. (2010). The environmentally bening synthesis of nanosized $Co_X Zn_{1-X} Al_2 O_4$ blue pigments. Dyes and Pigments. 1-7.

[12] Ahmed, I., Dessouki, H., Ali, A. (2008). Synthesis and characterization of new nano-particles as blue ceramic pigment. Spectrochimica Acta part A, 71, 616-620.

[13] Bartecki, A., Burgess, J., Kurzak, K. Colour of metal compounds. CRC Press. 2000. Amsterdam. 209 p.

[14] Tokura, Y. (1998). Optical and magnetic properties of transition metal oxides. Current Opinion in Solid State & Materials Science. 3, 175-80.

[15] Wang, C., Liu, S., Liu, L., Bai, X. (2006). Synthesis of cobalt-aluminate spinels via glycine chelated precursors. Materials Chemistry and Physics. 96, 361-370.

[16] Köntje, M., Memm, M., Axmann, P., Wohlfahrt-Mehrens, M. (2014). Substituted transition metal phospho olivines LiMM'PO₄ (M=Mn, M'=Fe, Co, Mg): Optimisation routes for LiMnPO₄. Progress in Solid Chemistry. 1-12.

[18] Hosecroft, C., Sharpe, A. Química inorgánica. Pearson Prentice Hall. 2006. Madrid. 546 p.

[17] Wang, S., Schwarz, W. (1997). On oxides of monovalent transition metals. Journal of Alloys and Compounds. 246, 131-138

[18] Hafez, H., El-Fadaly, E. (2012). Synthesis, characterization and color performance of novel Co²⁺-doped alumina/titania nanoceramic pigments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 95, 8-14.

[19] Bayal, N., Jeevanandam, P. (2012). Synthesis of metal aluminate nanoparticles by sol-gel method and studies on their reactivity. Journal of Alloys and Compounds. 516, 27-32.

[22] Fangli, Y., Jiangfeng, Y., Jinyun, M., Jun, D., Yongqiang, Z. (2009). Preparation of nanosized $CoAl_2O_4$ powders by sol-gel and sol-gel hidrotermal methods. Journal of Alloys and compounds. 468, 443-446.

[23] Fernández, A., Hernández, D., Pineda, E. (2010). Synthesis of nanocrystalline (Zn_{1-X}Co_X)Al₂O₄ solid solution: structural and optical properties. NSTI-Nanotech. 1, 448-451.

[24] Tongjun, L., dean, Y., Lizhi, D., Xu, L. (2007). Influence of Ba²⁺ on the optical property of cobalt blue. Materials and Design. 28, 341-344.

[25] Calvacante, P., Dondi, M., Guarini, G., Raimondo, M., Baldi, G. (2009). Colour performance of ceramic nano-pigments. Dyes and Pigments. 80, 226-232.

[26] Jonynaitė, D., Jasaitis, D., Sensaitienė, J., Kareiva, A. (2008). Synthesis of CoNH₄PO₄ pigment by co-precipitation method. CHEMIJA. 19, 3-4, 23-26.

[27] Gaudon, M., Deniard, P., Voisin, L., Lacombe, G., Darnat, F., Demourgues, A., Perillon, J., Jobic, S. (2012). How to mimic the thermo-induced red to Green transition of ruby with control of the temperature via use of an inorganic materials blend?. Dyes and pigments. 95, 344-350.

[28] Darchuk, L., Gatto, G., Swaenen, M., Worobiec, A., Tsybrii, Z., Makarovska, Y., Van, R. (2011). Composition of prehistoric rock-painting pigments from Egypt (Gilf Kébir area). Spectrochimica Acta Part A. 83, 34-38.

[29] Barnett, J., Miller, S., Pearce, E. (2006). Colour and art: A brief history of pigments. Optics & Laser Technology. 38, 445-453.

[30] Doménech-Carbó, A. (2010). El azul maya, un antecesor de los materiales híbridos. Materiales Avanzados. 15, 9-15.

[31] Schabbach, L., Bondioli, F., Ferrari, A., Manfredini, T., Petter, C., Fredel, M. (2007). Influence of firing temperature on color developed by a (Zr,V)SiO₄ pigmented opaque ceramic glaze. Journal of the European Ceramic Society. 27, 179-184.

[32] Melo, D., Cunha, J., Fernandes, J., Bernardi, M., Melo, M., Martinelli, A. (2003). Evaluation of $CoAl_2O_4$ as ceramic pigments. Materials Research Bulletin. 38, 1559-1564.

[33] Gaudon, M., Robertson, L., Lataste, E., Duttine, M., Ménétrier, M., Demourges, A. (2014). Cobalt and nickel aluminate spinels: Blue and cyan pigments. Ceramics International. 40, 5201-5207.

[34] Dondi, M., Zanelli, C., Ardit, M., Cruciani, G., Mantovani, L., Tribaudino, M., Andreozzi, G. (2013). Ni-free, black ceramic pigments based on Co-Cr-Fe-Mn spinels: A reappraisal of cristal structure, color and technological behaviour. Ceramics International. 39, 9533-9547.

[35] Carter, B., Norton, G. Ceramic Materials: Science and Engineering. Springer. 2007. United State of America. 727 p.

[36] Ball, J., Murphy, S., Grimes, R., Bacorisen, D., Smith, R., Uberuaga, B., Sickafus, K. (2008). Defect processes in MgAl₂O₄ spinel. Solid State Sciences. 10, 717-724.

[37] Ianoş, R., Lazāu, R., Barvinschi, P. (2011). Synthesis of $Mg_{1-X}Co_XAl_2O_4$ blue pigments via combustion route. Advanced Powder Technology. 22, 396-400.

[38] Furohashi, H., Inagaki, M., Naka, S. (1973). Determination of cation distribution in spinels by X-ray diffraction method. Journal of Inorganic Nuclear Chemistry. 35, 3009-3014.

[39] Sickafus, K., Wills, J. (1999). Structure of spinel. Journal of American Society. 82, 12, 3279-3292.

[40] Krimmel, A., Tsurkan, V., Sheptyakov, D., Loidl, A. (2006). Spin liquid versus solid in A-site spinels. Physica B. 378-380, 583-584.

[41] Armijo, J. (1969). The kinetics and mechanism of solid-state spinel formation- A reviewand critique. Oxidation of Metals, 1, 2, 171-198.

[42] O'Neill, H., Navrotsky, A. (1983). Simple spinels: crystallographic parameters, catión radii, lattice energies, and cation distribution. American Mineralogist. 68, 181-184.

[43] Morioka, M. (1981). Cation diffusion in olivine II. Ni-Mg, Mn-Mg, Mg and Ca. Gechimica and Cosmochimica Acta. 45, 1573-1580.

[44] Bosi, F., Hålenius, U., D'Ippolito, V., Andreozzi, G. (2012). Blue spinel crystals in the $MgAl_2O_4$ -Co Al_2O_4 series: Part II. Cation ordering over short-range and long-range scales. American Mineralogist. 97, 1834-1840.

[45] Casadio, F., Bezúr, A., Fiedler, I., Muir, K., Trad, T., Maccagnola, S. (2012). Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments. Journal of Raman Spectroscopy. 43, 11, (1761-.1768)

[46] Kurajica, S., Popović, J., Tkalčec, E., Gržeta, B., Mandić, V. (2012). The effect of annealing temperature on the structure and optical properties of sol-gel derived nanocrystalline cobalt aluminate spinel. Materials Chemistry and Physics 135, 587-593.

[47] Ye, M., Han, A., Liu, Z., Wang, C. (2012). Metal ions doped complex cobalt blue pigment research. Advanced Materials Research. 415-417, 194-199.

[48] Gong, L., Dong, L., Hong, K., Yoo, K. (2010). The power preparation of blue cobalt aluminate at 210 °C using the malonate method. Bulletin of Korean Chemistry Society. 31, 1, 47-51.

[49] Edwards, H., Newton, E., Russ, J. (2000). Raman spectroscopic analysis of pigments and substrata in prehistoric rock art. Journal of Molecular Structure. 550-551, 245-256.

[50] Mindru, I., Marinescu, G., Gingasu, D., Patron, L., Ghica, C., Giurnica, M. (2010). Blue CoAl₂O₄ spinel via complexation method. Materials Chemistry and Physics. 122, 491-497.

[51] Sakthivel, S., Venkatesh, R. (2012) Solid state synthesis of nano-mineral particles. International Journal of Mining Science and Technology. 22, 651-655.

[52] Hafez, H., El-Fadaly, E. (2012). Synthesis, characterization and color performance of novel Co²⁺-doped alumina/titania nanoceramic pigments. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 95, 8-14.

[53] Chemlal, S., Larbot, A., persin, M., Sarrazin, J., Sghyar, M., Rafiq, M. (2000). Cobalt spinel $CoAl_2O_4$ via sol – gel process elaboration and surface properties. Materials Research Bulletin. 35, 2515-2523.

[54] Ouahdi, N., Guillement, S., Durand, B., Ouatib, R., Er Rakho, L., Moussa, R., Samdi, A. (2008) Synthesis of $CoAl_2O_4$ by double decomposition reaction between $LiAlO_2$ and molten $KCoCl_3$. Journal of European Ceramic Society. 28, 1987-1994.

[55] Fangli, Y., Jianfeng, Y., Jingyun, M., Jun, D., Yongqiang, Z. (2009). Preparation of nanosized CoAl₂O₄ powders by sol-gel and sol-gel hydrothermal methods. Journal of Alloys and Compounds. 468, 443-446.

[56] Durrani, S., Hussain, S., Saeed, K., Khan, Y., Arif, M., Ahmed, N. (2012). Hydrothermal synthesis and characterization of nanosized transition metal spinels. Turkish Journal Chemistry. 36,111-120.

[57] Mimani, T., Ghosh, S. (2000). Combustion synthesis of cobalt pigments: Blue and pink. Current Science. 78, 7, 892-896.

[58] Salem, S. (2014). Effect of calcination temperature on colorant behavior of cobalt-aluminate nano-particles synthesized by combustion technique. Journal of Industrial and Engineering Chemistry. 20, 818-823.

[59] Weidong, L., Jiazhi, L., Jingkun, G. (2003). Synthesis and characterization of nanocrystalline CoAl₂O₄ spinel powder by low temperature combustion. Journal of European Ceramic Society. 23, 2289-2295.

[60] Stella, K., Nesaraj, A. (2010). Low temperature soft chemical synthesis of bright blue CoAl₂O₄ spinel particles. Journal of Nepal Chemistry Society. 25, 62-69.

[61] Ragupathi, C., Vijaya, J., Surendhar, P., Kennedy, L. (2014). Comparative investigation of nickel aluminate (NiAl₂O₄) nano and microstructures for the structural, optical and catalytic properties. Polyhedron. 72, 1-7.

[62] Cooley, R., Reed, J. (1972). Equilibrium cation distribution in NiAl₂O₄, Cu Al₂O₄, and ZnAl₂O₄ spinels. Journal of the American Ceramic Society. 55, 8, 395-398.

[63] O'Neill, H., Dollase, W., Ross, C. (1991). Temperature dependence of the cation distribution in Nickel aluminate (NiAl₂O₄) spinel: power XRD study. Physics and chemistry of minerals. 18, 302-319.

[64] Bolt, P., habraken, F., Geus, J. (1998). Formation of nickel, cobalt, copper, and iron aluminates from α - and γ -alumina-supported oxides: a comparative study. Journal of Solid State Chemistry. 135, 59-69.

[65] Otero, C., Peñarroya, M., López, A., Parra, J. (2001). High Surface area nickel aluminate spinels prepared by a sol-gel method. Colloids and Surfaces. 180, 253-258.

[66] Amini, M., Torkian, L. (2002). Preparation of nickel aluminate spinel by microwavw heating. Materials Letters. 57, 639-642.

[67] Pashkov, G., Saikova, S., Panteleeva, M., Linok, E., Korol'kova, I. (2014). Anion - exchange synthesis of nickel – containing spinel –type pigments. Glass and Ceramics. 71, 1-3.

[68] Yong, S., Jian, B., Xiao, S., Bo, C. (2005). Temperature dependence of cation distribution in nickel aluminate spinel from thermodynamics and X-Rays. Journal of American Ceramic Society. 88, 12, 3455-3457.

[69] Forés, A. Llusar, M., Badenes, J., Calbo, J., Tena, A., Monrós, G. (2000). Cobalt minimization in willemite (Co_xZn_{2-x}SiO₄) ceramic pigments. The Royal Society of Chemistry. 2, 93-100.

[70] Lorenzi, G., Baldi, G., Benedetto, F., Faso, V., Lattanzi, P., Romanelli, M. (2006). Spectroscopic study of Ni-bearing gahnite pigment. Journal of the European Ceramic Society. 26, 317-321.

[71] Eppler, R. (1982). Nickel spinels. Ceramic Bulletin. 61, 8, 847-850.

[72] Köntje, M., Memm, M., Axmann, P., Wolhlfahrt-Mehres, M. (2014). Substitud transition metal phospho olivines LiMM'PO₄ (M=Mn, M'=Fe, Co, Mg): Optimisation routes for LiMnPO₄. Progress in Solid State Chemistry. 1-12.

[73] Boulineau, A., Gutel, T. (2015). Revealing electrochemically induced antisite defects in LiCoPO₄: Evolution upon cycling. American Chemical Society. 27, 802-807.

[74] Kurzweii, P., Brandt, K. (2009). Secondary batteries-lithium rechargeable systems. Elsevier. 1-26.

[75] Huang, H., Faulker, Barker, J., Saidi, M. (2009). Lithium metal phosphates, power and automotive applications. Journal of Power Sources. 189, 748-751.

[76] Trócoli, R. (2012). Preparación y estudio de fosfato de hierro y litio con diferentes morfologías y su aplicación en baterías de ión-litio. (Tesis doctoral). Universidad de Córdoba. España.

[77] Milović, M., Jugović, D., Cvjetićanin, N., Uskoković, D., Miloševic, A., Popović, Z., Vukajlović, F. (2013). Crystal structure analysis and first principle investifgation of F doping in LiFePO₄. Journal of Power Sources. 241, 70-79.

[78] El Jazouli, A., Tbib, B., Demourgues, A., Gaudon, M. (2014) Structure and color of diphosphate pigments with square pyramid environment around chromophore ions (Co²⁺, Ni²⁺, Cu²⁺). Dyes and Pigments. 104, 67-74.

[79] Priya, S., Jyothsa, U., Praveen, P., Balakrishnan, A., Subramanian, K., Shantikumar, V., Nair, V., Sivakumar, N. (2013). Synthesis and characterization of electrophoretically deposited nanostructured LiCoPO₄ for rechargeable lithium ion batteries. ISRN Nanotechnology. 2013, 1-5.

[80] Glaum, R., Gerber, K., Schulz-Dobricck, M., Herklotz, M., Scheiba, F. Ehrenberg, H. (2012). Synthesis, structures and properties of new lithium cobalt (II) phosphate Li₄Co(PO₄)₂. Journal of Solid State Chemistry. 188, 26-31.

[81] Jonynaitė, D., Senvaitiene, J., Kiuberis, J., Kareiva, Jušėnas, R., Ramanauskas, R. (2009). XRD characterization of cobalt-based historical pigments and glazes. CHEMIJA. 20, 10-18.

[82] Corbeil, M., Charland, J., Moffatt, E. (2002). The characterization of cobalt violet pigments. Studies in Conservation. 47, 237-249.

[83] Llusar, M., Zielinska, A., Tena, M., Badenes, J., Monrós, G. (2010). Blue-violet ceramic pigments base on Co and $Co_{2-x}Mg_xP_2O_7$ diphosphates. Journal of the European Ceramic Society. 30, 1887-1896.

[84] Meseguer, S., Tena, M., Gargori, C., Badenes, J., Llusar, M., Monrós, G. (2007). Structure and color of cobalt ceramic pigments from phosphates. Ceramics International. 33, 843-849.

[85] Amine, K. Yasuda, H., Yamachi, M. (2000). Olivine LiCoPO₄ as 4.8 V electrode material for lithium batteries. Electrochemical and Solid- State letters. 3, 179-179.

[86]] Kurzweii, P., Brandt, K. (2009). Secondary batteries-lithium rechargeable systems. Elsevier. 1-26.

[87] Devaraju, M., Rangappa, D., Honma, I. Controlled synthesis of plate-like LiCoPO₄ nanoparticles via supercritical method and their electrode property. Electrochimica Acta. 85, 548-553.

[88] Vijayan, L., Cheruku, R., Govindaraj, G. (2014). Electrical, optical and magnetic investigations on LiNiPO_4 based olivines synthesized by solution combustion technique. Materials Research Bulletin. 50, 341-347.

[89] Wolfenstine, J., Allen, J. (2005).Ni³⁺/Ni²⁺ redox potential in LiNiPO₄. Journal of Power Sources. 142, 389-390.

[90] Brunold, T., Güdel, H., Cavalli, E. (1997) Optical spectroscopy of Ni²⁺ doped crystals of Zn_2SiO_4 . Chemical Physics Letters. 268, 413-420.

[91] Llusar, M., García, E., García, M., Gargori, C., Badenes, J., Monrós, G. (2015). Synthesis, stability and coloring properties of yellow-orange pigments based on Ni-doped karrooite (Ni,Mg)Ti₂O₅. Journal of European Ceramic Society. 35, 357-376.

[92] Sivaprakash, S., Majumder, S., Nieto, S., Katiyar, R. (2007). Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. Journal of Powers Sources. 170, 433-440

[93] Minakshi, M., Singh, P., Appadoo, D., Martin, D. (2011). Synthesis and characterization of olivine LiNiPO₄ for aqueous rechargeable battery. Electrochimica Acta. 56, 4356-4360.

[94] Santoro, R. (1966). Magnetic properties of LiCoPO₄ and LiNiPO₄. Journal of Physics and Chemistry of Solids. 27, 6-7, 1192-1193.

[95] Goñi, A., Lezama, L., Barberis, G., Pizarro, J., Arriortua, M., Rojo, T. (1996). Magnetic properties on the LiMPO₄ (M=Co, Ni) compounds. Journal of Magnetism and Magnetic Materials. 164, 251-255.

[96] Koleva, V., Zhecheva, E., Stoyanova, R. (2010). Ordered olivine- type lithium-cobalt and lithium-nickel phosphates by a new precursor method. European Journal Inorganic Chemitry. 2010, 4091-4099.

[97] Shannon, R. (1976). Acta Crystalograpphy. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. A32, 751-767.

[98] Julien, C., (2003). Local structure and electrochemistry of lithium cobalt oxides and their doped compounds. Solid State Ionics. 157, 57-71.

[99] Wolfenstine, J., Allen, J. (2004). LiNiPO₄-LiCoPO₄ solid solutions as cathodes. Journal of power Sources.136, 150153.

[100] Patil, K., Aruna, S., Mimani, T. (2002). Combustion synthesis: an update. Current Opinon in Solid State and materials Science. 6, 507-512

[101] Rosa, R., Veronesi, P., Leonelli, C. (2013). A review on combustion synthesis intensification by means of microwave energy. Chemical Engineering and Processing: Process Intensification. 71. 2-18.

[102] Rogachev, A., Mukasyan, A., (2010). Combustion of heterogeneos nanostructural systems (review). Combustion, Explosion, and shock Waves. 46, 3, 1-25.

[103] Guanghua, L., Jiangtao, L. (2013). High-gravity combustion synthesis: A fast and furnace-free way for preparing bulk ceramic materials. Journal of Asian Ceramic Societies. 1, 134-142.

[104] Reitz, R. (2013). Directions in internal combustion engine research. Combustion and Flame. 160. 1-8.

[105] Aruna, S., Mukasyan, A. (2008). Combustion synthesis and nanomaterials. Current Opinion in Solid State and Materials Science. 12, 44-50.

[106] Pereira, D., Fraga, C., Caldas, V. (2015). Influence of fuel on morphology of LSM powders obtained by solution combustion synthesis. Powder Technology. 269, 481-487.

[107] Mukasyan, A., Rogachev, A., Thippa, J., Reddy, S. (2015). Combustion synthesis in nanostructured reactive systems. Advanced Powder Technology. 1-23.

[108] Baneshi, J., Haghighi, M., Jodeiri., N., Abdollahifar, M., Ajamein, H. (2014). Urea-nitrate combustion synthesis of ZrO_2 and CeO_2 doped CuO/Al_2O_3 nanocatalyst used in steam reforming ob biomethanol for hydrogen production. Ceramics International. 40, 14177-14184.

[109] Lissianski, V., Zamansky, V., Maly, P. (2001). Effect of metal-containing additives on NO_X reduction in combustion and reburning. Combustion and Flame. 125, 1118-1127.

[110] Stadler. H., Toporov, D., Förster, M., Kneer, R. (2009). On the influence of the char gasification reactions on NO formation in flameless coal combustion. 156, 1755-1763.

[111] Seungmoon, L., Kwinam, P., Jin-won, P., Byung-Hwan, K. (2005). Characteristics of reducing NO using and alkaline additives. Combustion and Flame. 141. 200-203.

[112] Ozutsumi, K., Taguchi, Y., Kawashim, T. (1995). Thermodynamics of formation of urea complex with manganese (II), nickel (II) and zinc (II) ions in N,N-dimethylformamide. PubMed. 42, 535-541.

[113] Debnath, N., Vaidya, S. (2006). Application of X-ray diffraction technique for characterization of pigments and control of paits quality. Progress in Organic Coatings. 56, 159-168.

[114] Cullity, B., Stock, S. Elements of X-Ray Diffraction. 2001. 3a ed. Prentice-Hall. 678 p.

[115] Sears, F., Zemansky, M., Young, H., Freedman, R. Física universitaria con física moderna. Vol. 2, 2005. 11a ed. Pearso Educación. 1714 p.

[116] Patterrson, A. (1939). The Scherrer formula for X-ray particle size determination. Physical Review. 56, 978-982.

[117] Vargas, R., Landáez, H., Vélez, M. (1983). Determinación de la morfología de cristalitos por difracción de rayos X: El métodod de las superficies proyectadas. Latin American Journal of Metallurgy and Materials. 3, 2, 76-80.

[118] Vargas, R., Landáez, H., Vélez, M. (1983). Determinación de la morfología de cristalitos por difracción de rayos X: El métodod de las superficies proyectadas. Latin American Journal of Metallurgy and Materials. 3, 2, 76-80.

[119] Ramos, R. (2005). Síntesis y caracterización por estructural por difracción de rayos-X del material sólido $Fe_{2-2X}Mn_{2X}GeSe_4$ con composiciones X=0.5, 0.6 y 0.7 pertenecientw a la familia de compuestos semiconductores del tipo II₂ IV VI. (Tesis doctoral). Universidad Industrial de Santander. Bucaramanga.

[120] Williams, D., Carter, C. Transmission electron microscopy A textbook for materials science. 2009. Springer. 757 p.

[121] Atkins, P., Rourke, J., Weller, M., Armstrong, F. Química inorgánica. 2008.4a ed. Mc Graw Hill. 822 p.

[122] Housecroft, C., Sharpe, A. Química inorgánica. 2006. 2a ed. Pearson. 953 p.

[123]. Skoog, D., West, D., Holler, F., Crouch, S. Fundamentos de química analítica. 2005. 8a ed. Thomson. 1065 p.

[124] Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds. 1986. 4a ed. John Wiley & Sons. 245 p.

[125] Carter, B., Norton, M. Ceramic materials science and engineering. 2007. Springer. 757 p.

[126] Saint- Martin, R., Franger, S. (2008). Growth of LiCoPO₄ single crystals using and optical floating-zone technique. Journal of Crystal Growth. 310, 861-864.

[127] Manzi, J., Vitucci, F., Paolone, A., Trequattrini, F., Di Lecce, D., Panero, S., Brutti, S. (2015). Analysis of the self-discharge process in LiCoPO₄ electrodes: bulks. Electrochimica Acta. 1-7.

[128] Zhou, F., Cococciioni, M., Kang, K., Ceder, G. (2004). The Li intercalation potential of LiMPO₄ and LiMSiO₄ olivines with M= Fe, Mn, Co, Ni. Electrochemistry Communications. 6, 1144-1148.

[129] Farmer, V. (1974). (1974). The infrared spectra of minerals Mineralogical Society Monograph. Mineralogical Society. 4, 384-407.

[130] Julien, C., Jozwiak, P., Garbarczyk, J., (2004). Vibrational spectroscopy of electrode materials for reachargable lithium batteries IV. Lithium phosphates. Proceedings of the International Workshop, Advanced Techniques for Energy Sources Investigation and testing. 4-9.

[131] Nyquist, R., Kagel, R. (1971). Infrared spectra of inorganic compounds. Academic Press. 176-177.

[132] Jiang, F., Yuhai, H., Jianzhong, L., Haibo, W., Lijun, G. (2013). Improving electrochemical properties of LiCoPO₄ by Mn substitution: A case research on LiCo_{0.5}Mn_{0.5}PO₄. ECS Electrochemistry Letters. 2, A3-A-5.

[133] Corberil, M., Charland, J., Moffatt, E. (2002). The characterization of cobalt violet pigments. Studies in Conservation. 237-249

[134] Brik, M., Srivastava, A., Avram, N., Suchocki, A. (2014). Empirical relation between covalence and energy position of the Ni^{2+ 1}E state in octahedral complexes. Journal of Luminiscence. 148, 338-341.

[135] Tabassam, L., Giuli, G., Moretti, A., Nobili, F., Marassi, R., Minucucci, M., Gunnella, R., Olivi, L., Di Cicco, A.(2012). Structural study of LiFePO₄-LiNiPO₄ solid solutions. Journal of Power Sources. 213, 287-295.

[136] Makhtar, G., Abdou, D., Modou, F., Mor, D., Poillrat, G. (2007). Preaparation of nickel – cobalt spinel oxides $Ni_{X}Co_{3-X}O_{4}$ comparision of two physical properties stemming from four different preparation methods and using carbon paste electrode. Bulletin of Chemical Society of Ethiopia. 21 (2), 255-262.

[137] Glaum, R., Gerber, K., Schulz-Dobricck, M., Herklotz, M., Scheiba, F. Ehrenberg, H. (2012). Synthesis, structures and properties of new lithium cobalt (II) phosphate Li₄Co(PO₄)₂. Journal of Solid State Chemistry. 188, 26-31

[138] Sivaprakash, S., Majumder, S., Nieto, S., Katiyar, R. (2007). Crystal chemistry modification of lithium nickel cobalt oxide cathodes for lithium ion rechargeable batteries. Journal of Powers Sources. 170, 433-440.

ANEXO A

Distancia	%	
(20)	Intensidad	(hkl)
d _{hkl}		
4.685	4.3	(111)
2.863	64.2	(220)
2.441	100.0	(311)
2.023	16.8	(400)
1.858	9.2	(331)
1.652	15.1	(422)
1.558	32.2	(511)
1.431	34.6	(440)
1.279	9.5	(620)
1.234	7.8	(533)

Tabla 3. Distancias interplanares d_{hkl} y asignación de los planos para CoAl₂O₄.

Tabla 4. Distancias interplanares d_{nkl} y asignación de los planos para NiAl₂O₄.

Distancia	%	(hkl)
(2θ)	Intensidad	
d _{hkl}		
4.647	19.4	(111)
2.843	21.3	(220)
2.425	100.0	(311)
2.330	4.3	(101)
2.089	4.5	(012)
2.010	67.2	(400)
1.641	8.0	(422)
1.547	32.1	(511)
1.477	11.2	(110)
1.421	62.4	(440)
1.359	4.8	(531)
1.271	4.5	(620)
1.226	12.4	(533)
1.212	6.6	(622)

Pigmento	Tamaño del cristalito	Parámetro de red a ₀
	(nm)	(Å)
CoAl ₂ O ₄	47.17	8.099
Ni _{0.1} Co _{0.9} Al ₂ O ₄	45.27	8.098
Ni _{0.2} Co _{0.8} Al ₂ O ₄	41.10	8.092
Ni _{0.3} Co _{0.7} Al ₂ O ₄	40.62	8.081
Ni _{0.4} Co _{0.6} Al ₂ O ₄	39.77	8.077
Ni _{0.5} Co _{0.5} Al ₂ O ₄	38.94	8.065
Ni _{0.6} Co _{0.4} Al ₂ O ₄	35.41	8.063
Ni _{0.7} Co _{0.3} Al ₂ O ₄	30.46	8.059
Ni _{0.8} Co _{0.2} Al ₂ O ₄	24.96	8.045
Ni _{0.9} Co _{0.1} Al ₂ O ₄	21.76	8.038
NiAl ₂ O ₄	27.01	8.033

Tabla 6. Tamaño del cristalito y parámetro de red a_0 calculado para la serie de
composiciones $Co_x Ni_{1-x} Al_2 O_4$ (0.1<X<0.9).</th>

	Muestra									
1.235	1.281	Ni _{0.1} Co _{0.9} Al ₂ O ₄								
1.234	1.279	1.430	1.557	1.651	2.023	2.440	2.703	2.862	4.668	Ni _{0.2} Co _{0.8} Al ₂ O ₄
1.232	1.278	1.422	1.555	1.650	2.020	2.4377	2.704	2.858	4.672	Ni _{0.3} Co _{0.7} Al ₂ O ₄
1.232	1.277	1.427	1.554	1.648	2.019	2.434	2.698	2.855	4.663	Ni _{0.4} Co _{0.6} Al ₂ O ₄
4.649	1.230	1.275	1.426	1.552	1.646	2.016	2.431	2.851	4.649	Ni _{0.5} Co _{0.5} Al ₂ O ₄
1.230	1.275	1.362	1.425	1.552	1.646	2.016	2.432	2.851	4.659	Ni _{0.6} Co _{0.4} Al ₂ O ₄
1.229	1.274	1.362	1.424	1.550	1.644	2.014	2.430	2.849	4.654	Ni _{0.7} Co _{0.3} Al ₂ O ₄
1.227	1.260	1.423	1.478	1.549	1.643	2.011	2.427	2.847	4.650	Ni _{0.8} Co _{0.2} Al ₂ O ₄
4.669	1.233	1.279	1.430	1.557	1.651	2.022	2.438	2.859	4.669	Ni _{0.9} Co _{0.6} Al ₂ O ₄
(533)	(620)	(440)	(511)	(422)	(331)	(400)	(311)	(220)	(111)	(h k l)

Distancia (2θ),	%	(h k l)
d _{hkl}	Intensidad	
5.089	47.5	(020)
4.268	77.8	(011)
3.865	36.5	(120)
3.680	13.9	(101)
3.465	100.0	(111)
2.961	72.0	(200)
2.743	24.3	(031)
2.506	93.8	(131)
2.435	39.3	(211)
2.334	10.3	(140)
2.302	7.8	(012)
2.248	10.0	(221)
2.243	16.5	(041)
2.296	10.8	(012)
2.136	3.9	(112)
1.947	9.5	(240)
2.004	9.4	(122)
1.867	8.1	(202)
1.787	6.3	(241)
1.785	23.9	(151)
1.731	8.4	(222)
1.499	8.6	(113)
1.475	12.5	(260)
1.381	5.4	(332)

Tabla 8. Distancias interplanares d_{hkl} y asignación de los planos para LiCoPO₄.

Distancia(2θ),	%	(h k l)
d _{hkl}	Intensidad	
5.022	45.2	(020)
4.243	77.9	(011)
3.812	36.2	(120)
3.656	13.3	(101)
3.434	100.0	(111)
2.928	71.6	(200)
2.721	24.4	(031)
2.467	94.9	(131)
2.409	39.6	(211)
2.306	10.7	(140)
2.278	7.4	(012)
2.223	10.5	(221)
2.121	16.8	(041)
2.086	10.5	(012)
1.993	3.8	(112)
1.904	10.0	(122)
1.827	9.2	(202)
1.772	8.2	(241)
1.759	6.6	(151)
1.719	24.3	(222)
1.642	8.1	(113)
1.608	8.0	(260)
1.585	12.6	(331)
1.540	5.3	(340)

Tabla 9. Principales d_{hkl} y sus índices de Miller de la fase de LiNiPO4

Pigmento	Tamaño del	Ра	rámetro de r	ed (Å)
	cristalito	a ₀	b ₀	C ₀
	(nm)			
LiCoPO ₄	80.13	10.191	5.917	4.693
LiNi _{0.1} Co _{0.9} PO ₄	81.15	10.182	5.908	4.692
LiNi _{0.2} Co _{0.8} PO ₄	84.32	10.164	5.896	4.692
LiNi _{0.3} Co _{0.7} PO ₄	91.64	10.147	5.887	4.691
LiNi _{0.4} Co _{0.6} PO ₄	85.31	10.123	5.874	4.689
LiNi _{0.5} Co _{0.5} PO ₄	86.02	10.102	5.866	4.689
LiNi _{0.6} Co _{0.4} PO ₄	86.27	10.090	5.859	4.688
LiNi _{0.7} Co _{0.3} PO ₄	87.63	10.087	5.849	4.679
LiNi _{0.8} Co _{0.2} PO ₄	84.48	10.065	5.834	4.679
LiNi _{0.9} Co _{0.1} PO ₄	90.26	10.048	5.823	4.669
LiNiPO ₄	63.42	10.024	5.846	4.670

Tabla 11. Tamaño del cristalito y parámetro de red a₀ de la LiCo_xNi_{1-x}PO₄.

	Distancia (2θ), d _{hkl}																Muestra		
1.555	1.599	1.731	1.787	1.867	2.004	2.014	2.242	2.288	2.338	2.429	2.552	2.751	3.012	3.457	3.677	3.857	4.265	5.092	LiNi _{0.1} Co _{0.9} PO ₄
1.597	1.643	1.229	1.784	1.845	2.009	2.112	2.239	2.288	2.335	2.427	2.527	2.749	3.011	3.455	3.676	3.853	4.265	5.086	LiNi _{0.2} Co _{0.8} PO ₄
1.599	1.627	1.227	1.779	1.836	2.007	2.131	2.237	2.287	2.331	2.425	2.489	2.746	3.010	3.454	3.675	3.849	4.264	5.081	LiNi _{0.3} Co _{0.7} PO ₄
1.595	1.624	1.724	1.776	1.835	2.005	2.105	2.231	2.285	2.328	2.423	2.486	2.742	3.008	3.451	3.672	3.843	4.260	5.073	LiNi _{0.4} Co _{0.6} PO ₄
1.594	1.621	1.721	1.774	1.833	2.006	2.118	2.228	2.284	2.323	2.420	2.482	2.737	3.005	3.448	3.670	3.838	4.257	5.064	LiNi _{0.5} Co _{0.5} PO ₄
1.593	1.619	1.720	1.769	1.832	2.004	2.127	2.225	2.283	2.320	2.418	2.479	2.735	2.961	3.025	3.666	3.832	4.253	5.056	LiNi _{0.6} Co _{0.4} PO ₄
1.591	1.615	1.718	1.766	1.831	1.998	2.125	2.222	2.281	2.316	2.416	2.476	2.730	2.476	3.440	3.663	3.826	4.249	5.044	LiNi _{0.7} Co _{0.3} PO ₄
1.589	1.613	1.718	1.763	1.829	1.996	2.123	2.218	2.280	2.312	2.412	2.472	2.726	2.472	3.437	3.659	3.819	4.244	5.032	LiNi _{0.8} Co _{0.2} PO ₄
1.587	1.610	1.716	1.761	1.827	1.994	2.122	2.215	2.278	2.308	2.410	2.469	2.723	2.928	3.434	3.656	3.813	4.241	5.026	LiNi _{0.9} Co _{0.1} PO ₄
(331)	(160)	(222)	(241)	(202)	(122)	(112)	(041)	(012)	(140)	(211)	(131)	(031)	(200)	(111)	(101)	(120)	(011)	(020)	(h k l)

ANEXO B

Tarjeta ICDD de la espinela CoAl₂O₄

Status Brimony OM: Star Brassure/Temper		
Empirical Formula: Al2 Co O4 Weight %: Al3(Compound Name: Cobalt Aluminum Oxide	ature: Ambient Chemic 0.51 Co33.32 O36.18 At	al Formula: Co Al2 O4 omic %: Al28.57 Co14.29 O57.14
Radiation: CuKα λ: 1.5406Å Filter: Graph I/Ic: 2.6	Mono d-Spacing: Diff.	Cutoff: 15.00 Intensity: Diffractometer
SYS: Cubic SPGR: Fd-3m (227) Author's Cell [AuthCell a: 8,104(1)Å AuthCel Density [Dcalc: 4.415g/cm ³] SS/FOM: F(23 Temp: 298.000K (Ambient temperature assigned b	II Vol: 532.23ų AuthC) = 103.7(0.0089, 25) y ICDD editor)	ell Z: 8.00 AuthCeil MolVol: 66.53]
Space Group: Fd-3m (227) Molecular Weight: Crystal Data [XtiCell a: 8.104Å XtiCell b: 8.11 XtiCell y: 90.00° XtiCell Vol: 532.23Å3 XtiCell coll for the state of the	176.89 04Å XtiCell c: 8.104Å Cell Z: 8.00] Crystal I 5.730Å RedCell c: 5.7 ell Vol: 133.06Å ³]	XtlCell α: 90.00° XtlCell β: 90.00° Data Axial Ratio [a/b: 1.000 c/b: 1.000] 30Å RedCell α: 60.00°
Atomic parameters are cross-referenced from PD Crystal (Symmetry Allowed): Centrosymmetric SG Symmetry Operators:	DF entry 04-008-8383	ADP Type: U Origin: 01
Seg Operator Seg Operator	Seg Operator	Seg Operator
1 x,y,z 13 -x,y,-z 2 z,x,y 14 -z,x,-y 3 y,z,x 15 -y,z,-x 4 x,z,y 16 -x,z,-y	25 -x+1/4,-y+1/4,-z+1/4 26 -z+1/4,-x+1/4,-y+1/4 27 -y+1/4,-z+1/4,-x+1/4 28 -x+1/4,y+1/4,z+1/4	37 -x+1/4,-z+1/4,-y+1/4 38 -y+1/4,-x+1/4,-z+1/4 39 -z+1/4,-y+1/4,-x+1/4 40 -x+1/4,z+1/4,y+1/4
5 y,x,z 17 -y,x,-z 6 z,y,x 18 -z,y,-x 7 x,-y,-z 19 -x,-y,z 8 z,-x,-y 20 -z,-x,y 9 y,-z,-x 21 -y,-z,x	29 -z+1/4,x+1/4,y+1/4 30 -y+1/4,z+1/4,x+1/4 31 x+1/4,-y+1/4,z+1/4 32 z+1/4,-x+1/4,y+1/4 33 y+1/4,-z+1/4,x+1/4	$\begin{array}{rrrr} 41 & -y+1/4, x+1/4, z+1/4 \\ 42 & -z+1/4, y+1/4, x+1/4 \\ 43 & x+1/4, -z+1/4, y+1/4 \\ 44 & y+1/4, -x+1/4, z+1/4 \\ 45 & z+1/4, -y+1/4, x+1/4 \end{array}$
10 x,-z,-y 22 -x,-z,y 11 y,-x,-z 23 -y,-x,z 12 z,-y,-x 24 -z,-y,x Atomic Coordinates:	34 x+1/4,y+1/4,-z+1/4 35 z+1/4,x+1/4,-y+1/4 36 y+1/4,z+1/4,-x+1/4	46 x+1/4,z+1/4,-y+1/4 47 y+1/4,x+1/4,-z+1/4 48 z+1/4,y+1/4,-x+1/4
Atom Num Wyckoff Symmetry x y	z SOF Uiso	AET
Co 1 8a -43m 0.0 0.0 Al 2 8a -43m 0.0 0.0 Co 3 16d -3m 0.625 0.625 Al 4 16d -3m 0.625 0.625 Al 4 16d -3m 0.625 0.625	0.0 0.845 0.00431 0.0 0.155 0.00431 0.625 0.078 0.00386 0.625 0.922 0.00386	4-a 4-a 6-a 6-a
Anisotronic Displacement Parameters	5 0.36875 1.0 0.00693	4-8
Atom Num Uani11 Uani22 Uani33 Uani12 L	Jani13 Uani23	
Co 1 0.00431 0.00431 0.00431 0.0 0	0.0 0.0	
Al 2 0.00431 0.00431 0.00431 0.0 0 Co 3 0.00386 0.00386 0.00386 -1.7E-4 -	1.7E-4 -1.7E-4	
Al 4 0.00386 0.00386 0.00386 -1.7E-4 - O 5 0.00693 0.00693 0.00693 -9.0E-6 -	1.7E-4 -1.7E-4 9.0E-6 -9.0E-6	
Pearson: cr50.00 Prototype Structure: Mg Al Subfile(s): Common Phase, Pigment/Dye, Primary Last Modification Date: 01/11/2013	Pattern, Inorganic Entry	y Date: 03/01/1993
Cross-Ref PDF #'s: 00-010-0458 (Alternate), ✓ 04- 04-006-7443 (Alternate), ✓ 04	-005-7075 (Primary), 🗸 04-0 -006-8196 (Alternate), 🗸 04	006-3962 (Alternate), ✓ 04-006-7264 (Alternate), ✓ -008-3508 (Alternate), ✓ 04-008-8383 (Alternate)
References:		A REAL PROPERTY AND A REAL PROPERTY AND
Type DOI Reference		
Primary Reference Sailer, R., McCarthy, G., North Crystal Structure Crystal Structure Source: LPF.	Dakota State University, Fargo,	North Dakota, USA. ICDD Grant-in-Aid (1992).

Database Comments:	Additional Patterns: To replace 00-010-0458. Color: Deep blue. General Comments: Average relative standard deviation in intensity of the ten strongest reflections for three specimen mounts = 2,4%. Validated by a calculated pattern. Sample source or Locality: Sample was obtained from Johnson Mathey Electronics. Unit Cell Data Source: Powder Diffraction.
--------------------	--

00-044-0160 d-Spacings (23) - 00-044-0160 (Fixed Slit Intensity) - Cu Ka1 1.54056Å

29 65.0415 68.4342 73.8941 77.1083 78.1738 82.3668 85.5155 90.6836 **26** 18.9836 31.1927 36.7424 38.4550 44.6918 48.9402 55.4974 59.1898 29 93.7935 98.9980 102.1380 107.5173 110.8154 111.9133 116.4870 d(Å) I h k 1 * d(Å) T * d(Å) h 4.671000 2.865000 2.444000 2.339000 2.026000 1.859600 1.654400 1.559700 **1.432800** 1.369800 1.281500 1.235900 1.221700 1.169800 1.134600 1.082900 1.055000 1.013000 0.990200 0.955050 0.935700 0.929600 0.905900 331451114 8 65 100 2 14 4 13 27 45656476 43232414 01032412 6211411 7876768 12324345 12120321 10120121

Sep 17, 2014 4:14 PM (5HB8C5J) *

3036564 1030120

Tarjeta ICDD de la espinela inversa de níquel, NiAl₂O₄

00-010-0339

Aug 12, 2014 12:08 PM (5HB8C5J)

 Status
 Primary
 QM:
 Star (S)
 Pressure/Temperature:
 Ambient
 Chemical Formula:
 Ni Al2 04

 Empirical Formula:
 Al2 Ni 04
 Weight %:
 Al30.55 Ni33.22 O36.23
 Atomic %:
 Al28.57 Ni14.29 O57.14

 Compound Name:
 Nickel Aluminum Oxide
 Other
 Nickel Aluminum Oxide
 Nickel Aluminum Oxide

Radiation: CuKα1 λ: 1,5405Å Filter: Ni Beta Intensity: Diffractometer I/Ic: 1.6

 SYS:
 Cubic
 SPGR:
 Fd-3m (227)

 Author's Cell [AuthCell a:
 8.048Å
 AuthCell Vol:
 521.27Å³
 AuthCell Z:
 8.00
 AuthCell MolVol:
 65.16]

 Dcalc:
 4.502g/cm³
 SS/FOM:
 F(18) = 28.0(0.021, 30)
 AuthCell Z:
 8.00
 AuthCell MolVol:
 65.16]

Space Group: Fd-3m (227) Molecular Weight: 176.66 Crystal Data [XtlCell a: 8.048Å XtiCell b: 8.048Å XtiCell c: 8.048Å XtiCell a: 90.00° XtiCell 6: 90.00° Crystal Data Axial Ratio [a/b: 1.000 XtiCell y: 90.00° XtiCell Vol: 521.27Å³ XtiCell Z: 8.00] c/b: 1.000] Reduced Cell [RedCell a: 5.691Å RedCell b: 5,691Å RedCell c: 5.691Å RedCell a: 60.00° RedCell B: 60.00° RedCell y: 60.00° RedCell Vol: 130.32Å3]

πωβ: =1.825

Crystal (Symmetry Allowed): Centrosymmetric

Pearson: cF56.00 Subfile(s): Educational Pattern, Common Phase, Inorganic, NBS Pattern, Primary Pattern Last Modification Date: 01/14/2012

Cross-Ref PDF #'s: 00-001-1299 (Alternate), ✓ 04-002-2700 (Alternate), ✓ 04-002-3379 (Alternate), ✓ 04-005-6872 (Primary), ✓ 04-006-5350 (Alternate), ✓ 04-006-8997 (Alternate), ✓ 04-007-5978 (Alternate)

References:

Type Reference

Primary Reference Natl. Bur. Stand. (U.S.), Circ. 539 9, 42 (1960).

Database Comments: Analysis: Spectroscopic analysis showed <1.0% Na; <0.1% Co, Si; <0.01% Cr, Fe, Mg; <0.001% Ca, Mn. Color: Blue. Sample Preparation: Sample prepared at NBS, Gaithersburg, Maryland, USA, by heating coprecipitated hydroxides at 1300 C. Temperature of Data Collection: Pattern taken at 298 K. Unit Cell Data Source: Powder Diffraction.

d-Spacin	Spacings (18) - 00-010-0339 (Fixed Slit Intensity) - Cu Ko1 1.54056A																			
20	d(Å)	I	h	k	1	*	20	d(Å)	I	h	k	1	*	20	d(Å)	I	h	k	1	*
19.0702	4.650000	20	1	1	1		65.5350	1.423200	60	4	4	0		91.5062	1.075300	4	6	4	2	
31.4063	2.846000	20	2	2	0		68,9909	1.360100	<1	5	3	1		94,6619	1.047600	12	7	3	1	
37.0090	2.427000	100	3	1	1		74.4092	1.273900	<1	6	2	0		99,9225	1.006100	8	8	0	0	
44.9962	2.013000	65	4	0	0		77.7422	1.227400	10	5	3	3		112.0047	0.929100	8	7	5	1	
55.9717	1.641500	8	4	2	2		78.8120	1.213400	<1	6	2	2		117,7534	0.899800	8	8	4	0	
59.6611	1.548500	30	5	1	1		83.1027	1.161300	8	4	4	4		139.3590	0.821400	16	8	4	4	

Tarjeta ICDD del fosfolivino de cobalto, LiCoPO₄

00-032-0552

Aug 18, 2014 12:10 PM (5HB8C5J)

 Status
 Primary
 QM: Star (S)
 Pressure/Temperature: Ambient
 Chemical Formula: Li Co P 04

 Empirical Formula:
 Co Li O4 P
 Weight %: Co36.64 Li4.32 O39.79 P19.26
 Weight %: Co36.64 Li4.32 O39.79 P19.26

 Atomic %:
 Co14.29 Li14.29 O57.14 P14.29
 Compound Name: Lithium Cobalt Phosphate

Radiation: CuKα λ: 1,5418Å Filter: Graph Mono Intensity: Diffractometer

SYS: Orthorhombic SPGR: Pmnb (62)

 Author's Cell [AuthCell a: 5.922(1)Å
 AuthCell b: 10.206(3)Å
 AuthCell c: 4.701(1)Å
 AuthCell Vol: 284.13Å³

 AuthCell Z: 4.00
 AuthCell MolVol: 71.03]
 Author's Cell Axial Ratio [c/a: 0.794 a/b: 0.580 c/b: 0.461]

 Dcalc: 3.76g/cm³
 SS/FOM: F(30) = 86.8(0.0089, 39)

 Space Group: Pmnb (62)
 Molecular Weight: 160.85

 Crystal Data [XtiCell a: 5.922Å
 XtiCell b: 10.206Å
 XtiCell c: 4.701Å
 XtiCell α: 90.00°
 XtiCell β: 90.00°

 XtiCell γ: 90.00°
 XtiCell Vol: 284.13Å³
 XtiCell Z: 4.00]
 Crystal Data Axial Ratio [c/a: 0.794 a/b: 0.580 c/b: 0.461]
 Reduced Cell [RedCell a: 4.701Å
 RedCell b: 5.922Å
 RedCell c: 10.206Å
 RedCell α: 90.00°

 RedCell β: 90.00°
 RedCell v: 5.922Å
 RedCell c: 10.206Å
 RedCell α: 90.00°

Crystal (Symmetry Allowed): Centrosymmetric

Pearson: oP28.00 Subfile(s): Battery Material, Inorganic, Primary Pattern Last Modification Date: 01/14/2012 Cross-Ref PDF #'s: doi:10.1016/journal.pythtml (Alternate), doi:10.1016/journal.pythtml (Alternate), doi:10.1016/journal.pythtm (Alternate), doi:10.1016/journal.pythtm (Alternate), doi:10.1016/journal.pythtm (Alternate), doi:10.1016/journal.pythtm"/doi:0.1016/journal.pythtm">doi:10.1016/journal.pythtm (Alternate), doi:10.1016/journal.pythtm (Alternate), doi:10.1016/journal.pythtm (Alternate: doi:10.1016/journal.pythtm (Alternate: doi:10.1016/journal.pythtm"/doi:0.1016/journal.pythtm"/doi:0.1016/journal.pythtm"/doi:0.1016/journal.pythtm"/doi:0.1016/j

References;

 Type
 Reference

 Primary Reference
 Krabbenhoft, D., McCarthy, G., North Dakota State University, Fargo, North Dakota, USA. ICDD Grant-in-Aid (1980).

Database Comments: Color: Violet. Sample Preparation: "Li2 C O3" + "Co3 O4" + "(N H4)2 H P O4" heated slowly to 350 C, reground, pelletized and heated to 780 C for 18 hours in air. Unit Cell Data Source: Powder Diffraction.

d-Spacir	Spacings (51) - 00-032-0552 (Fixed Slit Intensity) - Cu Ka1 1.54056Å																		
20	d(Å)	I	h	k	1	*	20	d(Å)	I	h	k	1	*	20	d(Å)	I	h	k	1
17.4083	5.090000	85	0	2	0		45.0907	2.009000	5	1	2	2		59,1106	1.561600	8	3	4	0
20.7854	4.270000	80	0	1	1		46.9676	1.933000	3	2	4	0		61.8521	1,498800	10	1	1	3
22.9675	3,869000	30	1	2	Ó		49.4676	1.841000	9	2	0	2		62.0128	1,495300	5	3	1	2
24.1578	3,681000	10	1	0	1		49.5538	1,838000	4	1	3	2		62,1884	1,491500	5	1	5	2
25.6887	3.465000	95	1	1	1		50.0775	1.820000	3	3	Ó	1		62.6225	1.482200	15	3	4	1
29.8986	2.986000	25	1	2	1		50.3139	1.812000	2	2	1	2		62,7026	1,480500	15	4	0	0
30.1361	2.963000	85	2	0	0		50.9305	1.791500	12	3	1	1		62,9631	1,475000	16	2	6	Ō
32.4598	2.756000	40	0	3	1		51.0465	1.787700	8	2	4	1		64.0631	1,452300	4	1	2	3
35.0081	2.561000	2	.2	2	0		51.1201	1.785300	6	1	5	1		66.8263	1,398800	4	4	1	1
35.8910	2.500000	100	1	3	1		52.8291	1.731500	40	2	2	2		67.1468	1.392900	8	0	7	1
36.8988	2.434000	35	2	1	1		52.9213	1.728700	7	0	4	2		67.6199	1.384300	6	1	3	3
38.3698	2.344000	25	1	4	0		53.4009	1.714300	5	3	2	1		67.7811	1,381400	3	3	3	2
39.2756	2.292000	10	0	1	2		55.3086	1.659600	14	1	4	2		70.0444	1.342200	5	1	6	2
40.0584	2.249000	25	2	2	1		56.2102	1.635100	16	1	6	0		70.3691	1.336800	8	2	2	3
40.1702	2.243000	25	0	4	1		56.8158	1.619100	1	2	3	2		72.5044	1.302600	7	1	4	3
42.2763	2.136000	25	1	1	2		57.3610	1.605000	18	3	3	1		73.4200	1.288600	8	3	6	0
44.9021	2.017000	5	2	3	1		57.5728	1.599600	2	0	6	1		75.3579	1.260200	7	2	7	1

95

*

Tarjeta ICDD del fosfolivino de níquel, LiNiPO₄

00-032-0578

Aug 18, 2014 12:13 PM (5HB8C5J)

 Status
 Primary
 QM: Star (S)
 Pressure/Temperature:
 Ambient
 Chemical Formula:
 Li Ni P 04

 Empirical Formula:
 Li Ni O4 P
 Weight %:
 Li4.32 Ni36.54 O39.85 P19.29
 Atomic %:
 Li14.29 Ni14.29 O57.14 P14.29

 Compound Name:
 Lithium Nickel Phosphate
 Phosphate
 Phosphate
 Phosphate

Radiation: CuKa A: 1.5418Å Filter: Graph Mono Intensity: Diffractometer

 SYS:
 Orthorhombic
 SPGR:
 Pmnb (62)

 Author's Cell [AuthCell a:
 5.855(1)Å
 AuthCell b:
 10.068(1)Å
 AuthCell c:
 4.682(1)Å
 AuthCell Vol:
 276.00Å³

 AuthCell Z:
 4.00
 AuthCell MolVol:
 69.00]
 Author's Cell Axial Ratio [c/a:
 0.800
 a/b:
 0.582
 c/b:
 0.465]
 Deale:
 3.865g/cm³
 SS/FOM:
 F(30) = 70.8(0.0109, 39)
 Author's Cell Axial Ratio [c/a:
 0.800
 a/b:
 0.582
 c/b:
 0.465]
 Deale:
 3.865g/cm³
 SS/FOM:
 F(30) = 70.8(0.0109, 39)
 Deale:
 3.865g/cm³
 SS/FOM:
 F(30) = 70.8(0.0109, 39)
 Deale:
 Mathematical Ratio [c/a:
 0.800
 a/b:
 0.582
 c/b:
 0.465]
 Deale:
 3.865g/cm³
 SS/FOM:
 F(30) = 70.8(0.0109, 39)
 Deale:
 3.865g/cm³
 Deale:
 3.865g/cm³

Molecular Weight: 160.61 Space Group: Pmnb (62) Crystal Data [XtiCell a: 5.855Å XtiCell b: 10.068Å XtlCell c: 4.682Å XtiCell a: 90.00° XtiCell B: 90.00° XtiCell y: 90.00° XtiCell Vol: 276.00Å3 XtiCell Z: 4.00] Crystal Data Axial Ratio [c/a: 0.800 a/b: 0.582 c/b: 0.465] RedCell b: 5.855Å RedCell c: 10.068Å Reduced Cell [RedCell a: 4.682Å RedCell a: 90.00° RedCell 8: 90.00° RedCell y: 90.00° RedCell Vol: 276.00Å3]

Crystal (Symmetry Allowed): Centrosymmetric

 Pearson:
 oP28.00
 Subfile(s):
 Inorganic, Primary Pattern
 Last Modification Date:
 01/14/2012

 Cross-Ref PDF #'s:
 ✓ 04-002-3619 (Alternate), ✓ 04-002-7423 (Alternate), ✓ 04-006-9063 (Alternate), ✓ 04-007-4336 (Alternate), ✓ 04-007-5495 (Primary), ✓ 04-008-6624 (Alternate)

References:

Type Reference

Primary Reference Krabbenhoft, D., McCarthy, G., North Dakota State University, Fargo, North Dakota, USA. ICDD Grant-in-Aid (1980).

Database Comments: Color: Yellow. Sample Preparation: "Li2 C O3" + NiO + "(N H4)2 H P O4" heated slowly to 350 C reground, pelletized and heated to 780 C for 18 hours in air. Unit Cell Data Source: Powder Diffraction.

d-Spacings (53) - 00-032-0578 (Fixed Slit Intensity) - Cu Ka1 1.54056Å																				
20	d(Å)	I	h	k	1	*	20	d(Å)	I	h	k	L	*	20	d(Å)	I	h	k	1	*
17.6175	5.030000	60	0	2	0	100	49.8433	1.828000	10	2	0	2	110	62.8586	1.477200	7	1	5	2	
20.8843	4.250000	60	0	1	1		49,9308	1.825000	3	1	3	2		63,4959	1,463900	8	4	0	0	
3.2971	3.815000	30	1	2	0		50,6127	1.802000	2	3	0	1		63.8712	1,456200	12	2	6	Ō	
4.3323	3.655000	10	1	õ	1		50,7031	1,799000	1	2	1	2		64,4307	1,444900	3	1	2	3	
5.9016	3.437000	100	1	1	1		51,4695	1.774000	10	3	1	1		65,9419	1,415400	1	Ó	3	3	
0.1883	2.958000	18	1	2	1		51.6664	1.767700	9	2	4	1		67,6310	1.384100	2	4	1	1	
0.5157	2.927000	65	2	0	0		51,7891	1,763800	10	1	5	1		68,1285	1.375200	6	Ó	7	1	
2.8147	2,727000	25	0	3	1		53,2501	1.718800	30	2	2	2		68,4968	1.368700	3	3	3	2	
5.4367	2.531000	6	2	2	Ó		53,3908	1.714600	20	Ō	4	2		68,7199	1.364800	2	2	1	3	
6.2964	2.473000	100	1	3	1		54.0375	1.695600	3	3	2	1		70.0264	1.342500	2	3	5	1	
7.2636	2.411000	35	2	1	1		54.6406	1.678300	2	0	6	Ó		70.8808	1.328400	7	2	2	3	
8.9046	2.313000	12	1	4	0		55.8496	1,644800	12	1	4	2		70 9915	1 326600	3	ō	4	3	
9,4909	2.280000	8	Ó	1	2		57.0426	1.613200	18	1	6	õ		73 0835	1,293700	4	1	4	3	
0.4713	2.227000	16	2	2	1		57.3220	1.606000	7	2	3	2		73.3273	1,290000	4	4	3	1	
0.6619	2,217000	18	Ō	4	1		58,0692	1.587100	20	3	3	1		74 5118	1 272400	5	3	6	Ó	
2.5267	2.124000	16	1	1	2		58.3553	1.580000	1	Ō	6	1		76.4786	1,244500	5	2	7	1	
5.4247	1,995000	6	1	2	2		59,9211	1.542400	7	3	4	Ó		76 7043	1 241400	3	4	ò	2	
17.5942	1.909000	2	2	4	0		62.2023	1,491200	7	1	1	3		0.000.000		-	201		-	