

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

Estudio Comparativo en la predicción de la densidad de líquido de mezclas de sistemas multicomponentes de compuestos no polares y polares con cuatro Ecuaciones Cúbicas de Estado (PR, PR-f, PR-f-mod y PR-f-prop).

Т	E	S		I	S	5
QUE	PARA	OBTENER	EL	TÍTUL	o de	Ξ
ΙΝΟ	GΕΝ	IERO	QU	ĺΜ)

Р	R	Е	S	Е	Ν	Т	Α
GAY	ΌΝ	L	OMBA	ARDO		ANDF	REA

MÉXICO, DF

AÑO 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor:	Dr. ENRIQUE RODOLFO BAZUA RUEDA
VOCAL:	Profesor:	Dr. JOSÉ FERNANDO BARRAGÁN AROCHE
SECRETARIO:	Profesor:	Dr. HUMBERTO HINOJOSA GÓMEZ
1er. SUPLENTE:	Profesor:	Dr. GERARDO OMAR HERNÁNDEZ SEGURA
2° SUPLENTE:	Profesor:	Dr. MILTON THADEU GARCIA MEDEIROS DE OLIVEIRA

SITIO DONDE SE DESARROLLÓ EL TEMA:

Grupo SSC México

ASESOR DEL TEMA:

Dr. Humberto Hinojosa Gómez

SUSTENTANTE: Andrea Gayón Lombardo

ÍNDICE

Objetiv	٧٥	3
Introdu	JCCión	4
1. Ecu	aciones de Estado cúbicas	6
1.1.	Peng-Robinson (PR)	9
1.2.	Peng-Robinson-fitted (PR-f)	10
1.3.	Peng-Robinson-fitted-modificada (PR-f-mod)	10
1.4.	Peng-Robinson-fitted-propuesta (PR-f-prop)	12
1.5.	Regla de mezclado de Van der Waals	17
1.6.	Coeficiente de fugacidad	18
1.7.	módulo computacional en FORTRAN	19
2. Res	sultados del cálculo de la densidad del líquido	20
2.1.	Mezclas Binarias de compuestos no polares	21
2.2.	Mezclas de compuestos cíclicos a distintas temperaturas	40
2.3.	Densidad Del líquido saturado de mezclas binarias de compuestos no polares	50
2.4. – No	Análisis de Resultados: Sistemas de mezclas binarias de componentes No Polo Polar	ar 62
2.5.	Ternarios a distintas Temperaturas y composición constante	65
2.6.	Mezclas de alcanos a distintas presiones y temperaturas	70
2.7.	Mezcla cuaternaria a distinta Temperatura y presión, y composición constante	79
2.8. com	Análisis de Resultados: Sistemas de mezclas ternarias y cuaternarias de ponentes No Polares	.83
2.9.	Mezclas binarias de compuestos polares con no polares	85
2.10). Mezclas binarias de compuestos polares	10
2.11	. Mezcla Ternaria de compuestos polares	20
2.12	 Análisis de Resultados: Sistemas No polares – Polares, y Polares – Polares 	24
2.13	B. Ajuste de Densidad	26
3. Res	sultados del Equilibrio Líquido Vapor para mezclas binarias	32
3.1.	Análisis de Resultados: Equilibrio Líquido Vapor	39
4. Cor	nclusiones	40
5. Bib	liografía	42

U

•

ANEXO I. Diagrama del cálculo de la Densidad de líquido Comprimido	. 145
ANEXO II. Diagrama de cálculo de la Presión de Burbuja	. 146

Utilizar las Ecuaciones de Estado Cúbicas de Peng-Robinson (PR), Peng-Robinson-Fitted (PR-f), Peng-Robinson-Fitted-modificada (PR-f-mod) y Peng-Robinson-Fitted-propuesta (PR-f-prop), en el cálculo y predicción de la densidad en las regiones de líquido subenfriado y líquido saturado de mezclas de sistemas multicomponentes de compuestos polares y no polares a partir de parámetros de componente puro. Los componentes mayoritarios encontrados en el petróleo y el gas natural son los hidrocarburos, por lo que su estudio y el conocimiento, representación e inclusive predicción de sus propiedades termodinámicas es de gran interés en áreas de investigación y desarrollo así como de aplicación a nivel industrial. En el aspecto de aplicaciones industriales, los procesos de extracción, acondicionamiento, transporte y procesamiento de las mezclas de hidrocarburos dependen en gran medida del conocimiento de las propiedades termodinámicas de los mismos (1). Bajo este contexto surge la necesidad de la existencia de Ecuaciones de Estado con las cuales se pueda representar y predecir información termodinámica de los hidrocarburos, tanto puros como en mezclas.

Con el fin de obtener una descripción precisa y confiable de las propiedades termodinámicas de los sistemas multicomponentes, se utilizan las Ecuaciones Cúbicas de Estado de tipo *van der Waals*, debido a la gran flexibilidad y al bajo esfuerzo computacional requeridos para su uso ya que ofrecen un medio para obtener predicciones sobre las propiedades volumétricas y termodinámicas. Una de las propiedades volumétricas de mayor importancia es la densidad, ya que es esta propiedad, junto con la viscosidad, las que determinan el dimensionamiento de equipos y procesos e intervienen en los cálculos hidráulicos como caídas de presión en líneas de transporte. El presente trabajo tiene como objetivo el análisis del cálculo de la densidad de líquido de mezclas multicomponentes de compuestos polares y no polares, en la región del líquido subenfriado y en algunos casos en la región de líquido saturado con la ecuación de estado de Peng-Robinson (PR) y tres variantes, Peng-Robinson-fitted (PR-f), Peng-Robinson-fitted-modificada (PR-f-mod) y Peng-Robinson-fitted-propuesta (PR-f-prop), así como el análisis en la representación del Equilibrio Líquido – Vapor (ELV) de algunos sistemas binarios..

En el capítulo 1 se describen las ecuaciones utilizadas, así como los parámetros que componen a estas ecuaciones. Igualmente se muestran los diagramas de flujo en base a los cuales se desarrolló un programa en FORTRAN para el cálculo de las densidades de las mezclas binarias, ternarias y cuaternarias estudiadas, tanto para el líquido saturado como para el líquido subenfriado.

El capítulo 2 muestra los resultados gráficos de las densidades calculadas con cada una de las cuatro ecuaciones cúbicas de estado: PR, PR-f, PR-f-mod y PR-f-prop, así como los datos experimentales de las mezclas analizadas. En primer lugar se realiza el estudio comparativo sobre sistemas binarios, ternarios y cuaternarios de mezclas de componentes no polares; en segundo lugar se analizan sistemas binarios de componentes no polares con componentes polares; y finalmente se realiza una comparación entre sistemas binarios y ternarios de componentes polares. Al final del capítulo, se muestra un ajuste sobre los parámetros de interacción binaria *l_{ij}* de la mezcla benceno-nonano, como propuesta para el ajuste de la predicción de la densidad con las ecuaciones PR-f-mod y PR-f-prop.

Finalmente, el capítulo 3 muestra los resultados de la comparación del cálculo del Equilibrio Líquido – Vapor para sistemas binarios, con las cuatro ecuaciones cúbicas de estado, así como los datos experimentales del equilibrio reportados en la bibliografía consultada.

1. ECUACIONES DE ESTADO CÚBICAS

Una Ecuación de Estado cúbica es una expresión matemática que relaciona Presión (P), Volumen (V) y Temperatura (T) definidos para una cantidad de material (N). Estas ecuaciones permiten la descripción del comportamiento volumétrico y de fases para componentes puros y mezclas y requieren solo un conjunto de propiedades de cada componente para ser utilizadas, dependiendo de la ecuación de estado cúbica seleccionada. La misma ecuación se usa para calcular las propiedades de todas las fases y encuentran aplicación en problemas que van desde la descripción de fluidos contenidos en yacimientos petroleros, en inundamiento con CO₂ a baja temperatura e incluso el comportamiento de fases de sistemas Hidrocarburo/Agua.

El comportamiento volumétrico se calcula al resolver una ecuación cúbica expresada en términos del factor de compresibilidad (Z) (2):

$$Z^3 + A_0 Z^2 + A_1 Z + A_2 = 0 \tag{1.1}$$

Donde:

$$Z = \frac{pv}{RT}$$
(1.2)

$$v = \frac{V}{N} \tag{1.3}$$

v, es el volumen molar definido como el cociente entre el volumen y el número de moles totales del sistema; P es la presión del sistema, T es la temperatura y R es la constante universal de los gases.

Las constantes A_0 , A_1 y A_2 son funciones de la presión, temperatura y composición de la fase en cuestión y su forma depende de la ecuación de estado seleccionada.

Para calcular el equilibrio entre fases con una EOS se parte por satisfacer la condición de igualdad de potencial químico. En el caso de un sistema bifásico en equilibrio, como es el caso del Equilibrio Líquido – Vapor, el potencial químico de cada componente en la fase líquida debe ser igual al potencial químico de cada componente en la fase vapor, es decir:

$$\hat{\mu}_i^L = \hat{\mu}_i^V \tag{1.4}$$

Donde el subíndice *i* indica el componente en cuestión, y los superíndices *L* y *V* corresponden a la fase líquida y vapor respectivamente.

El potencial químico se expresa en términos de fugacidad \hat{f}_i de la siguiente manera:

$$\hat{\mu}_{i} = \hat{\mu}_{i}^{0} + RT \ln \frac{\hat{f}_{i}}{P_{0}}$$
(1.5)

Donde el término μ_i^0 es el potencial químico del componente *i* como gas ideal a la temperatura del sistema T y a la presión de referencia P₀. Al sustituir la ecuación (1.5) en la condición de equilibrio, ecuación (1.4), se obtiene la siguiente condición de equilibrio en términos de la fugacidad \hat{f}_i en cada fase:

$$\hat{f}_i^L = \hat{f}_i^V \tag{1.6}$$

La fugacidad se calcula mediante la siguiente expresión (3) (4):

$$\ln \hat{\varphi}_{i} = \ln \frac{\hat{f}_{i}}{Px_{i}} = \int_{\infty}^{V} \left(\frac{1}{V} - \frac{1}{RT} \left(\frac{\partial P}{\partial N_{i}} \right)_{T,V,N_{j\neq i}} \right) dV - \ln Z$$
(1.7)

Donde el término $\hat{\varphi}_i$ es el coeficiente de fugacidad del componente i en la mezcla. Cabe mencionar que para evaluar la fugacidad \hat{f}_i es necesario resolver la integral del lado derecho de la ecuación (1.7), por lo tanto se necesita una Ecuación de Estado, que puede ser una ecuación cúbica, de tipo $P = P(T, V, N_i)$ donde la presión se encuentra explícita, para poder calcular la derivada. Los modelos de Ecuaciones de Estado han ido evolucionando a lo largo de los años, desde la ecuación del gas ideal basada en observaciones empíricas, hasta ecuaciones con estructura matemática compleja que involucran mecánica estadística, requieren un gran número de parámetros, e implican un costo numérico alto para su implementación, como las ecuaciones del tipo SAFT (Statistical Associating Fluid Theory).

Desde la introducción de la ecuación de van der Waals (1.8), (5) muchas ecuaciones cúbicas han sido propuestas, las cuales retienen el término repulsivo original de la ecuación de van der Waals y modifican el denominador del término atractivo.

$$P = \frac{RT}{v-b} - \frac{a}{v^2} \tag{1.8}$$

Actualmente existen varias aplicaciones de ingeniería que se basan en las ecuaciones de PR, o sus modificaciones; sin embargo estas ecuaciones son conocidas por una mala predicción de la densidad de la fase líquida (2). En base a estudios comparativos sobre la aplicación de Ecuaciones de Estado "simples" y "complejas" para el cálculo del Equilibrio Líquido – Vapor de mezclas de hidrocarburos se obtiene que, a excepción de los sistemas altamente polares o con interacciones de puentes de hidrógeno, las ecuaciones "simples" muestran una gran ventaja sobre las ecuaciones "complejas". Más aún, la ecuación cúbica de estado Peng–Robnison–Fitted con parámetros de interacción binaria k_{ij} igual a cero muestra resultados altamente satisfactorios en el cálculo del equilibrio de fases de sistemas multicomponentes (6).

Una de las modificaciones realizadas a la ecuación de PR-f es la ecuación de PRf-prop (7), la cual muestra una predicción de la densidad del líquido saturado para componentes puros mejor que las ecuaciones de PR y PR-f, sin embargo para el estudio de mezclas multicomponentes no se han realizado análisis ni comparaciones.

Para este trabajo se utilizan cuatro Ecuaciones de Estado Cúbicas a fin de realizar un estudio comparativo sobre la capacidad predictiva de la densidad de mezclas binarias, ternarias y cuaternarias de hidrocarburos, de tipo alcano-alcano, alcano-alcohol, alcoholalcohol, además de analizar su desempeño en la representación de algunos datos de Equilibrio Líquido-Vapor (ELV) de sistemas binarios, todo a partir de los parámetros del componente puro. Las Ecuaciones de Estado Cúbicas utilizadas son las siguientes:

- Peng-Robinson (PR).
- Peng-Robinson-fitted (PR-f)
- Peng-Robinson-fitted-modificada (PR-f-mod).
- Peng-Robinson-fitten-propuesta (PR-f-prop).

1.1. PENG-ROBINSON (PR)

La ecuación de Peng – Robinson está dada por la siguiente expresión (8):

$$P = \frac{RT}{v-b} - \frac{a}{v(v+b) + b(v-b)}$$
(1.9)

Donde la P es la presión, V es el volumen molar, T es la temperatura del sistema, R es la constante universal de los gases, a(T) es el parámetro atractivo, y b es el parámetro del co-volumen del flujido.

El parámetro b es independiente de la temperatura y se calcula utilizando la temperatura crítica (T_c) y presión crítica (P_c) del fluido de la siguiente manera:

$$b = 0.07780 \frac{RT_c}{P_c}$$
(1.10)

El parámetro de atracción dependiente de la temperatura, a(T), está dado por una expresión semejante a la propuesta por Soave (9):

$$a(T) = a_c \left[1 + m \left(1 - \sqrt{\frac{T}{T_c}} \right) \right]^2$$
 (1.11)

Donde:

$$a_c = 0.457235 \frac{(RT_c)^2}{P_c} \tag{1.12}$$

Peng y Robinson correlacionan el parámetro m con el factor acéntrico ω para componentes no polares, hidrocarburos hasta el decano y algunos compuestos aromáticos mediante la siguiente expresión:

$$m = 0.37464 + 1.54226\omega - 0.26992\omega^2 \tag{1.13}$$

Stryjek y Vera (10) también correlacionaron el parámetro *m* con el factor acéntrico utilizando el mismo método que Peng y Robinson con la expresión:

$$m = 0.378893 + 1.4897153\omega - 0.17131848\omega^2 + 0.0196554\omega^3$$
(1.14)

La expresión anterior será utilizada en todos los cálculos de este trabajo.

1.2. PENG-ROBINSON-FITTED (PR-F)

La Ecuación de Estado de PR-f (6) (11) es la EOS de PR (8) donde las propiedades críticas y el factor acéntrico de los componentes puros son tratados como parámetros de regresión, denotados como T_c ', P_c ' y ω '. Estos parámetros se obtienen mediante el ajuste simultáneo de la presión de vapor y densidad del líquido saturado de la sustancia pura, con lo cual la T_c ' y P_c ' no corresponden a los valores experimentales del punto crítico, sino que se convierten en parámetros de ajuste. La regresión de Tc', Pc' y m' (en lugar de ω ') se lleva a cabo mediante la minimización de la siguiente función objetivo (1):

$$\min f(T'_{c}, P'_{c}, m') = \sum_{i}^{ndp} \left(\frac{\rho(i)_{calc}^{liq} - \rho(i)_{exp}^{liq}}{\rho(i)_{exp}^{liq}} \right)^{2} + \sum_{i}^{ndp} \left(\frac{P(i)_{calc}^{sat} - P(i)_{exp}^{sat}}{P(i)_{exp}^{liq}} \right)^{2}$$
(1.15)

1.3. PENG-ROBINSON-FITTED-MODIFICADA (PR-F-MOD)

La principal diferencia entre la EOS de PR-f y la EOS de PR-f-mod radica en que los parámetros de ajuste de la segunda son dependientes de la temperatura, a fin de mejorar la predicción de la densidad del líquido. Hinojosa-Gómez et al. proponen el siguiente procedimiento de tres pasos para obtener dichos parámetros (7):

- i. Regresión de datos por partes.
- ii. Correlación de los parámetros de ajuste.
- iii. Regresión de los datos dependientes de la temperatura Tc'.

Durante el primer paso se dividen los datos de la densidad del líquido saturado para un intervalo de temperatura en secciones de al menos tres datos experimentales, y se realiza una regresión de los parámetros del componente puro (T_c ', P_c ', ω ') mediante la minimización de la siguiente función objetivo:

$$\min f(T'_{c}, P'_{c}, \omega') = \sum_{i}^{ndp} \frac{\left|\rho(i)_{calc}^{liq} - \rho(i)_{exp}^{liq}\right|}{\rho(i)_{exp}^{liq}} + \sum_{i}^{ndp} \frac{\left|P(i)_{calc}^{sat} - P(i)_{exp}^{sat}\right|}{P(i)_{exp}^{sat}} \quad (1.16)$$

El segundo paso surge como resultado de la regresión anterior, con la cual se obtiene una correlación de los parámetros P_c ', ω ' en función de la temperatura T_c ', representados en las siguientes ecuaciones:

$$P_c' = \eta_P + \mu_P T_c' \tag{1.17}$$

$$\omega' = \eta_w + \mu_w T_c' \tag{1.18}$$

Donde $\mu_{P_1} \mu_{w_1} \eta_{P_2}$, η_{w} son parámetros lineales de ajuste.

Finalmente como tercer paso se busca la dependencia de los parámetros ajustados (T_c ', P_c ', ω ') con respecto a la temperatura T del sistema. Dado que P_c ', y ω ' son dependientes de T_c ', se requiere establecer a T_c ' como función de la temperatura, por lo que se utiliza la siguiente relación:

$$T_c'(T) = j_1 + j_2 T + j_3 T^2$$
(1.19)

Donde j_1 , j_2 y j_3 son parámetros de ajuste. Estos nuevos parámetros son ajustados a todos los datos de presión de vapor y densidad del líquido saturado mediante la minimización de la siguiente función objetivo:

$$\min f(j_1, j_2, j_3) = \sum_{i}^{ndp} \frac{\left|\rho(i)_{calc}^{liq} - \rho(i)_{exp}^{liq}\right|}{\rho(i)_{exp}^{liq}} + \sum_{i}^{ndp} \frac{\left|P(i)_{calc}^{liq} - P(i)_{exp}^{liq}\right|}{P(i)_{exp}^{liq}}$$
(1.20)

1.4. PENG-ROBINSON-FITTED-PROPUESTA (PR-F-PROP)

La ecuación de PR-f-prop (7) surge en base a la dependencia con la temperatura de los parámetros de ajuste (T_c ', P_c ', ω ') de la ecuación de PR-f-mod, ya que se utilizan dichos resultados para obtener parámetros a y b como funciones de la temperatura, a(T) y b(T). Dicha ecuación está representada por las siguientes ecuaciones:

$$P = \frac{RT}{\nu - b(T)} - \frac{a(T)}{\nu(\nu + b(T)) + b(T)(\nu - b(T))}$$
(1.21)

Donde:

$$a(T) = a_c \alpha'(T) \tag{1.22}$$

$$b(T) = b_c \xi(T) \tag{1.23}$$

$$a_c = 0.457235 \frac{(RT_c^*)^2}{P_c^*} \tag{1.24}$$

$$b_c = 0.077796 \frac{RT_c^*}{P_c^*} \tag{1.25}$$

En el caso de $\alpha'(T)$:

Para T \leq Tc*(7):

$$\alpha'(T) = 1 + C_1 \left(1 - \frac{T}{T_c} \right) + C_1 \left(1 - \frac{T}{T_c} \right)^2$$
(1.26)

Para T > Tc * (12):

$$\alpha'(T) = \exp\left[C_a\left(1 - \frac{T}{T_c}\right)\right]$$
(1.27)

En el caso de $\xi(T)$:

Para T \leq *Tc*^{*}(7):

$$\xi(T) = 1 + C_3 \left(1 - \frac{T}{T_c} \right) + C_4 \left(1 - \frac{T}{T_c} \right)^2$$
(1.28)

Para T > Tc * (12):

$$\xi(T) = \exp\left[C_b\left(1 - \frac{T}{T_c^2}\right)\right]$$
(1.29)

Los parámetros de los componentes puros T_c^* , P_c^* , C_1 , C_2 , C_3 y C_4 se obtienen mediante ajuste de presión de vapor y densidad de líquido saturado de componente puro al minimizar una función objetivo similar a la propuesta por Ting (1). Por otra parte, los parámetros *Ca* y *Cb* fueron obtenidos mediante un estudio previo realizado por Mario Cruz (12), en el que se igualan las primeras derivadas de las funciones subcríticas y supercríticas evaluadas a Tr^{*} = 1, tal y como es propuesto por Mathias (13). De esta manera se obiene que:

$$C_a = C_1 \tag{1.30}$$

$$C_b = \frac{-(1+C_3)}{2} \tag{1.31}$$

En la tabla 1, se muestran los parámetros de la ecuación PR-f-prop junto con los parámetros de PR, PR-f, y PR-f-mod obtenidos por Hinojosa-Gómez et al. (7) para diversos componentes. En la tabla 2 se muestran los parámetros de las ecuaciones de PR, PR-f y PR-f-prop obtenidos por Mario Cruz (12) para nuevos componentes.

	PR			PR-f			PR-f mod							PR-f prop					
	$T_c(\mathbf{K})$	P_{ϵ} (bar)	ω	$T_{\varepsilon}'(K)$	$P_e'(bar)$	ω'	η_P	μp	η_w	µ.w	h	j 2	J3	$T_c^*(K)$	$P_{\epsilon}^{*}(bar)$	C1	C2	C3	C4
Methane	190.6	46.0	0.0115	189.6	43.5	0.0082	-210.48	1.3441	0.8430	-4.376E-03	194.67	-0.1626	7.958E-04	193.3	489	0.8467	-	0.7028	-0.6869
Ethane	305.3	48.7	0.0995	304.6	47.4	0.1012	-251.24	0.9827	1.0734	-3.179E-03	311.78	-0.1 346	4.01 5E-04	308.2	51.9	0.9845	-	0.6215	-0.6645
Propane	369.8	42.5	0.1523	369.8	41.8	0.1552	-223.39	0.7200	1.2768	-3.018E-03	390.42	-0.2244	4.890E-04	376.1	46.8	1.1101	1	0.7642	-0.9289
n-Butane	425.1	38.0	0,2002	424.4	37.2	0.2034	-208.08	0.5790	1.4027	-2.819E-03	452.48	-0.2308	4.238E-04	432.6	42.0	1,1724	-	0.7483	-0.9673
n-Pentane	469.7	33.7	0.2515	469,4	33.6	0.2567	-196.75	0,4912	1.5338	-2.716E-03	493.10	-0.1822	3.106E-04	475.3	37.4	1.2760	-	0.6696	-0.8512
n-Hexane	507.6	30.3	0.3013	509.1	30.6	0.2976	-184.19	0.4226	1.6769	-2.702E-03	537.87	-0.1934	2.951E-04	514.2	34.0	1.3553	-	0.6693	-0.8957
n-Heptane	540.2	27.4	0.3495	541.4	28.1	0.3541	-178.24	0.3814	1.8045	-2.677E-03	571.26	-0.1833	2.602E-04	544.8	31.0	1.4651	-	0.6513	-0.8980
n-Octane	568.7	24.9	0.3996	573.6	26.2	0.3839	-168.56	0.3401	1.9341	-2.696 E-03	604.33	-0.1758	2.27 3E-04	573.6	28.0	1,4803	-	0.5622	-0.8285
n-Nonane	594.6	22.9	0.4435	598.8	24.3	0.4383	-16094	0.3098	2.0956	-2.762E-03	631.53	-0.1771	2.185E-04	598.6	26.1	1.5937	-	0.5871	-0.8905
n-Decane	617.7	21.1	0.4923	623.0	22.6	0.4805	-156.99	0.2886	2.1740	-2.715E-03	660.46	-0.1845	2.120E-04	624.5	242	1.6176	-	0.5872	-0.9633
n-Undecane	639.0	19.5	0.5303	645.3	21.1	0.5164	-147.19	0.2609	2.3205	-2.794E-03	688.75	-0.1942	2.080E-04	646.9	22.4	1.6243	-	0.5360	-0.9478
n-Dodecane	658.0	18.2	0.5764	665.7	19.9	0.5555	-143.67	0.2460	2.4332	-2.8 17 E-03	710.93	-0.1960	2.019E-04	666.8	21.1	1.6979	-	0.5449	-0.9892
n-Tridecane	675.0	16.8	0.6174	683.1	18.7	0.5994	-137.27	0.2284	2.5741	-2.889E-03	743.92	-0.2446	2.371E-04	688.0	19.8	1,7090	-	0.6088	-1.2233
n-Tetradecane	693.0	15.7	0.6430	701.0	17.7	0.6342	-134.14	0.2167	2.6387	-2.859E-03	748.78	-0.1862	1.763E-04	700.1	18.5	1,7883	-	0.4773	-0.9551
n-Pentadecane	708.0	14.8	0.6863	717.5	169	06673	-12968	0.2043	2,7718	-2.932E-03	765.88	-0.1855	1.708E-04	715.9	17.5	1.8480	-	0.4740	-09635
n-Hexadecane	723.0	14.0	0.7174	732.7	161	07004	-12604	0.1940	2.8716	-2.715E-03	787.39	-0.1999	1.772E-04	732.4	167	1.8730	1	0.4856	-1.0437
n-Hentadecane	736.0	134	0.7697	746.7	153	07394	-121.86	01838	30184	-3051E-03	799.99	-0.1893	1.629E-04	7456	15.8	1 9 2 2 8	- C	0.4445	-09904
n-Octadecane	747.0	127	0.8114	7589	14.6	07717	- 11988	0 1772	3.0893	-3053E-03	798.85	-0 1336	1.08.8E-04	7548	148	1.8920	-	0.2626	-06824
n-Nonadecane	758.0	12.1	0.8522	7705	13.9	08090	-11579	0.1684	32417	-3157E-03	830.46	-0.1978	1.603E-04	7694	144	1.9866	2	0.4200	-10401
n-Eicosane	768.0	11.6	0.9069	7815	133	08506	-11396	0.1629	3 3727	-3227E-03	839.69	-0.1878	1.487E-04	7790	136	2 047 1		03909	-10056
n-Heneicosane	778.0	11.1	0.9420	7940	129	0.8685	-110.58	0.1554	34205	-3226E-03	848 30	-01672	1 26 35 -04	7906	130	20110		0.2896	-0.8601
n-Docosane	787.0	10.6	0.9722	8046	12.4	0.8883	-107.02	0 1483	3,486.8	-3231E-03	851.45	-0.1346	9 548E-05	799.0	123	1 9881	3	01598	-0.6448
n-Tricosane	707.0	10.2	10062	8113	11.9	0.0003	-10659	0 1460	37338	-3.426E-03	860.05	-0.1340	1 200F_04	807.6	12.0	2,1560		03064	-00323
n-Tatracorana	004.0	0.0	1 0710	01105	11.5	00031	104.41	0.1413	2,000.2	34005 03	077 57	0.1607	1 2235 04	DIEE	11.5	21000		0.2820	00087
n-Tetraco sane	812.0	0.5	1 1053	870.5	11.0	1.0124	-104/41	0.1913	30433	-3499E-03	077.37	-0.1657	0.0655.05	834.1	11.0	21509	2	0.2820	-0.9067
n-Ventaco sane	910.0	9.5	1 15.44	9366	10.7	1.0602	100.31	0.1336	40097	-3633E-03	001.00	-0.1430	1.203E-04	8320	107	2 2745		0.7605	-0.7 309
n-Hentacosane	826.0	0.0	1,2136	8435	10.7	1.1007	- 100.51	0.1320	43176	-3.855E-03	000.34	-0.1735	1 1065 04	937 A	102	2 3563	12	0.2003	-0.9333
n-neptacosane	020,0	0.0	1 3376	051 3	10.0	1.1.214	-36.31	0.1230	42444	37885 03	010.73	0.1590	1.0535.04	DARE	00	2 2 2 2 2 0 0	- S	01203	0.0733
n-Octaco sane	0.32.0	0.0	1.2373	001.0	0.7	1.1.214	-93.71	0.1241	4.3999	-3.7886-03	910.72	-0.1 389	7 9565 05	043.3	99	2.3329	-	0.1892	-0.6 360
n-Nonacosine	0.36.0	0.0	1.2033	00124	0.4	1 1 6 4 0	-92.02	0.1109	4.3203	-3.7222-03	913.23	-0,1290	1.000E 04	009.2	0.7	2.2231	1.5	0.1300	-0.0039
n-Irracontane	0.440	2.6	1.3072	007.3	2.4	1.1049	-92.47	0.11/9	4,4630	-3.8286-03	929.87	-0.1399	7.2055 05	80.3.0	9,3	2,2910	-	0.1399	-0,8202
n-Dornacontane	835.0	1.5	1.3700	07 933	0.0	1.2097	-00.14	0.0005	40000	-3.9296-03	932.40	-0.1257	7.2956-06	07 1.3	0.0	2.3400	-	0134	-0.5616
n-Hexatriacontane	8/4.0	0.8	1.5260	905.5	1.9	1.28//	-81.32	1 49 69	49652	-4.065E-03	955.97	-0.1074	5.388E-05	8960	1010	2.3350	0.0604	-0.1211	-0/40/2
Methanol	512.5	80.8	0.5658	531.2	98.4	0.4595	-690.69	1.4858	2.0447	-2.983E-03	541.40	-0.0635	9.314E~05	524.9	101.0	1.4424	0.2624	0.2532	-0.3495
Emanol	514.0	61.4	0.6436	520.0	67.0	0.6113	-509.89	1.1100	2.53/1	-3.702E-03	535.88	-0.1072	1.668E-04	525.6	7.3.0	1.5757	0.8272	0.5114	-0.6.392
1-Propanol	536.8	51.7	0.6204	534.1	53.7	0.6747	-424.58	0.8962	2.7413	~3.866E-03	565.77	-0.19/8	2.855E-04	543,1	61.7	1,9218	0.7417	08815	-1.1848
1-Butanol	563.0	44.1	0.5895	557.7	45.6	0.6779	-358.09	0.7250	2.8000	-3.799E-03	596.72	-0.2352	3,234E-04	575.6	53.6	1.7544	1.0860	1.0461	-1.4493
1-Pentanol	588.1	39.0	0.5731	581.2	39.4	0.6667	-306.27	0.5959	2,7743	-3.619E-03	627.31	-0.2577	3.320E-04	600.4	46.5	1.7857	0.8547	1.0557	-1.5103
1-Hexanol	610.3	34.2	0.5764	609.5	36.1	0.6478	-284.10	0.5276	2,7044	-3.358E-03	653.23	-0.2525	3.133E-04	630.5	42.3	1.5835	1.2831	1.0812	-1.5222
1-Heptanol	632.6	30.6	0.5670	629,7	32.1	0.6554	-255.16	0.4578	2,7058	-3.243E-03	679.69	-0.2650	3,106E-04	651.9	37.3	1,6032	1.0992	1.0816	-1.6300
1-Octanol	652.5	27.8	0.5829	649.0	29.1	0.6687	-234.61	0.4072	2.7059	-3.1 30E-03	705.69	-0.2747	3.04 8E-04	675.6	33.8	1.5527	0.9930	1.0552	-1.6843
1-Nonnanol	670.7	25.3	0.5997	670.4	27.3	0.6654	-215.16	0.3623	2.7357	-3.081E-03	719.56	-0.2395	2.625E-04	690.8	31.0	1.5892	1.0912	0.9417	- 1.4190
1-Decanol	687.3	23.2	0.6219	687.0	24.7	0.6900	-196.39	0.3224	2.8082	-3.078 E-03	744.19	-0.2557	2.635E-04	698.5	27.3	1.8486	0.5668	0.8964	-1.4851
1-Undecanol	703.6	21.5	0.62.47	703.9	23.0	0.6876	-184.35	0.2954	2.8275	-3.029E-03	768.03	-0.2735	2.694E04	720.6	25.7	1.6392	0.8363	0.8970	-1.5750
1-Dodecanol	719.4	19.9	0.6664	7224	21.7	0.7082	-170.59	0.2667	29105	-3042E-03	790.85	-0.2838	2.71 3E-04	730.3	23.5	19719	0.3221	0.9006	-1.5926

Tabla 1.- Parámetros de ajuste para las ecuaciones de estado en estudio. (7)

Tabla 1.- (Continuación)

1	PR			PR-f			PR-f mod							PR-f prop					
	$T_c(K)$	P_c (bar)	ω	$T_{c'}(\mathbf{K})$	$P_c^{,i}$ (bar)	ω [*]	η_p	μ_p	η_w	μ_w	Ji	h	h	$T_c^*(\mathbf{K})$	$P_c^*(bar)$	¢1	Q	C3	C4
1-Tridecanol	734.0	19.4	0.7124	737.9	20.3	0.7214	-160.61	0.2454	2.9599	-3.030E-03	803.89	-0.2590	2.397E-04	746.2	22.0	1.9214	0.3228	0.7927	-1.4472
1-Tetradecanol	747.0	18.1	0.7432	748.8	18.8	0.7583	-152.71	0.2292	3.0617	-3.074E-03	824.14	-0.2829	2.545E-04	758.4	20.5	2.0541	0.1155	0.8401	-1.5895
1-Pentadecanol	759.0	17.0	0.7797	765.1	17.9	0.7721	-142.33	0.2100	3.2199	-3.191E-03	840.96	-0,2804	2.439E-04	769.7	19.2	2.1168	-0.0391	0.7852	-1.5642
1-Hexadecanol	770.0	16.1	0.8163	774.8	16.8	0.8071	-138.02	0.1999	3.2450	-3.144E-03	851.65	-0.2689	2.284E-04	780.2	18.0	2.1 326	0.0023	0,7363	-1.5050
1-Heptadecanol	780.0	15.0	0.8492	786.5	15.8	0.8251	-130.89	0,1865	3.3215	-3.173E-03	874.85	-0.2946	2.392E-04	787.9	16.7	2.2576	-0.3578	0.7163	-1.6209
1-Octadecanol	790.0	14.4	0.8886	798.5	15.1	0.8431	-127.26	0.1784	3.3684	-3.160E-03	879.42	-0.2678	2.155E-04	797.2	16.0	2.3018	-0.2606	0.6707	-1.4888
1-Nonadecanol	799.0	13.8	0.9082	807.0	14.4	0.8634	-121.23	0.1681	3,4889	-3.251E-03	902.12	-0.3053	2.391E-04	805.2	15.1	2.4615	-0.7227	0.7196	-1.6951
1-Eicosanol	809.0	13.0	0.9183	817.2	13.8	0.8810	-117.43	0.1606	3.5289	-3.239E-03	911.01	-0.2957	2.280E-04	817.0	14.5	2.3573	-0.4290	0.6877	-1.6367
Acetone	508.2	47.0	0.3065	519.5	54.5	0,2739	-325.52	0.7316	1.5474	-2.452E-03	531.56	-0.0686	9.151E-05	520.1	55.3	0.9053	0.2508	0,1602	-0.2870
Methyl Ethyl Cetone	535.5	41.5	0.3234	543.2	45.6	0.3014	-279.88	0.5993	1,6195	-2.425E-03	562.94	-0.1065	1.344E-04	544.6	46.6	1.0074	0.1833	0.2489	-0.4563
2-Pentanone	561.1	36.9	0.3433	566.0	39.7	0.3393	-246.90	0.5069	1.7731	-2.530E-03	598.07	-0.1835	2.401E-04	571.0	42.8	1.3229	0.0208	0,5767	-0.8687
3-Pentanone	561.0	37.4	0.3448	565.2	39.7	0.3380	-244.69	0.5037	1.7903	-2.566E-03	597.32	-0.1767	2.246E-04	568.9	42.1	1.2638	0.0292	0.4969	-0.8052
2-Hexanone	587.6	32.9	0.3846	593.4	35.2	0.3726	-223.89	0.4372	1.8714	-2.521E-03	625.65	-0, 17 46	2.158E-04	598.8	37.7	1.3165	0.1188	0.5406	-0.8340
3-Hexanone	582.8	33.2	0.3801	587.8	35.3	0.37 18	-227.82	0.4483	1.8474	-2.507E-03	617.91	-0.1707	2.173E-04	594.5	38.1	1.3112	0.1745	0.5716	-0.8452
2-Heptanone	611 <i>A</i>	29.4	0.4190	615.9	31.3	0.4158	-206.88	0.3871	19782	-2.535E-03	656.35	-0.1974	2.267E-04	621.8	33.5	1.4099	0.0182	0.5660	-0.9498
3-Heptanone	606.6	29.2	0.4076	612.2	31.8	0,4152	-208.11	0.3929	2.0353	-2.638E-03	648.39	-0.1945	2.332E-04	621.6	34.6	1.3099	0.3353	0.6190	-0.9481
4-Heptanone	602.0	29.2	0.4120	608.1	31.2	0.3943	-203.38	0.3862	1.9253	-2.514E-03	644.59	-0.1823	2.109E-04	611.3	33.0	1.3483	0.0582	0.5043	-0.8585
2-Octanone	632.7	26.4	0.4549	637.3	28.5	0.4560	-192.74	0.3476	2.1219	-2.610E-03	684.11	-0.2187	2.387E-04	642.1	30.4	1.4971	0.0229	0.6062	-1.0609
3-Octanone	627.7	27.0	0.4406	633.5	29.2	0,4394	-195.33	0.3550	2.0557	-2.547E-03	668.89	-0.1835	2.14 3E-04	641.3	31.6	1,3990	0.3005	0.6140	-09233
4-Octanone	623.8	27.0	0.4204	624.9	28.6	0.4625	-191.93	0.35.37	2.1627	-2.714E-03	670.71	-0.2346	2.722E-04	637.9	31.6	1.3736	0.4298	0.7491	-1.1787
2-Nonanone	652.5	24.1	0.4979	656.5	26.3	0.5079	-183.25	0.3196	2.2885	-2.708E-03	704.31	-0.2173	2.320E-04	662.6	28.3	1.5650	0.1617	0.6387	-1.0936
3-Nonanone	648.1	24.5	0.4629	651.6	26,4	0.4840	-179.17	0.3161	2.2265	-2.669E-03	697.32	-0.2164	2.362E-04	661.9	28.7	1.4105	0.3573	0.6518	-1.0787
4-Nonanone	643.7	24.5	0.4988	647.1	25.8	0.5038	-176.36	0.3128	2.2972	-2.767E-03	699.82	-0.2366	2.494E-04	652.9	27.5	1.5298	0.0712	0.6198	-1.1431
5-Nonanone	640.0	23.2	0.5137	651.1	26.1	0.4827	-179.41	0.3159	2.1889	-2.619E-03	681.96	-0.1406	1.509E-04	656.4	27.4	1.3092	0.3814	0.3955	-0.6874
Ciclohexane	553.8	40.8	0.2081	550.9	39.7	0.2260	-239.72	0.5079	1.3825	-2.096E-03	580.85	-0.1970	2.881E-04	560.5	45.2	1.2527	+	0.7566	-0.9397
Benzene	562.1	49.0	0.2103	563.8	49.3	0.2119	-277.23	0.5817	1.4586	-2.198E-03	586.73	-0.1690	2.426E-04	568.0	53.7	1.1750	-	0.6109	-0.7661
Sulfur Dioxide	430.8	78.8	0.2454	429.0	79.1	0.2762	-467.96	1.2783	1.5971	-3.071E-03	455.44	-0.2077	3.689E-04	435.9	88.1	1.2523	-	0.6708	-09350
Diethyl Ether	466.7	36.4	0.2811	468.0	37.2	0.2902	-222.46	0.5567	1.6523	-2.899E-03	490.49	-0.1815	3.058E-04	470.6	40.7	1.3603	+	0.6407	-0.8157

		PR			PR-f		PR-f-Prop								
Componente	Tc (K)	Pc (bar)	ω	Tc '(K)	Pc' (bar)	ω'	Tc* (K)	Pc* (bar)	C ₁	C ₂	C ₃	C ₄			
Metano	190.6	46	0.0115	189.6	43.5	0.0082	193.3	48.9	0.8467	-	0.7028	-0.6869			
Etano	305.3	48.7	0.0995	304.6	47.4	0.1012	308.2	51.9	0.9845	-	0.6215	-0.6645			
Etileno*	282.34	50.41	0.0862	280.22	48	0.1011	285.9	54.19	0.9756	-	0.688	-0.7712			
CO ₂ *	304.22	73.8	0.2236	306.4	74.97	0.1915	308.68	81.32	1.2073	-	0.7535	-1.0732			
Nitrógeno*	126.2	34	0.0372	125.51	31.47	0.0337	128.69	36.47	0.9095	-	0.8251	-0.9209			
Metanol	512.5	80.8	0.5658	531.2	98.4	0.4595	524.9	101	1.4424	0.2624	0.2532	-0.3495			
Butano	425.1	38	0.2002	424.4	37.2	0.2034	432.6	42	1.1724	-	0.7483	-0.9673			
Decano	617.7	21.1	0.4923	623	22.6	0.4805	624.5	24.2	1.6176	-	0.536	-0.9478			
Heptano	540.2	27.4	0.3495	541.4	28.1	0.3541	544.8	31	1.4651	-	0.6513	-0.898			
Acetonitrilo *	545.5	48.3	0.3379	585.94	75.52	0.2074	574.25	70.62	0.6946	-0.2337	0.2613	-0.0318			
Cloroformo*	536.4	54.72	0.2219	526.33	52.11	0.272	543.72	59.84	1.2602	-	0.8031	-1.0262			
CS ₂ *	552	79	0.1107	551.31	73.75	0.0991	558.31	79.98	0.9007	-	0.536	-0.6173			
Tolueno*	591.8	41.1	0.264	593.44	41.94	0.2694	600.92	46.24	1.2484	-	0.6418	-0.866			

Tabla 2.- Parámetros de componente puro de PR, PR-f y PR-f-prop.

Nota: * - Parámetros obtenidos por Mario Cruz (12).

•

1.5. REGLA DE MEZCLADO DE VAN DER WAALS

Las cuatro ecuaciones anteriores surgen como modificaciones de la Ecuación de Estado de Van der Waals, la cual puede ser extendible para mezclas reemplazando el parámetro atractivo *A* y el parámetro de co-volumen *B* con las siguientes expresiones:

$$A_{mix} = \sum_{i}^{nc} \sum_{j}^{nc} x_i x_j A_{ij}$$
(1.32)

$$B_{mix} = \sum_{i}^{nc} \sum_{j}^{nc} x_i x_j B_{ij}$$
(1.33)

Las ecuaciones (1.32) y (1.33) son conocidas como *regla de mezclado de Van der Waals*, donde A_{ij} y B_{ij} con (i = j) son los parámetros correspondientes al componente puro "i", mientras que A_{ij} y B_{ij} con $(i \neq j)$ son los parámetros de interacción entre los componentes "i" y "j". A_i y B_i están definidos por las siguientes ecuaciones:

$$A_i = \frac{a_i p}{(RT)^2} \tag{1.34}$$

$$B_i = \frac{b_i p}{RT} \tag{1.35}$$

Los parámetros de interacción binaria entre componentes están dados por la media geométrica y la media aritmética de los parámetros A_i y B_i para componentes puros, obteniéndose las siguientes expresiones:

$$A_{ij} = \sqrt{A_i A_j} \left(1 - k_{ij} \right) \tag{1.36}$$

$$B_{ij} = \frac{B_i + B_j}{2} \left(1 - l_{ij} \right) \tag{1.37}$$

Donde x_i es la fracción mol del componente "i" en la fase vapor o líquida, y k_{ij} es el parámetro de interacción binaria entre los componentes "i" y "j" (14). Así mismo se utiliza un segundo parámetro de interacción binaria, l_{ij} , para el ajuste del parámetro de covolumen B_{ij} (15). Dado el caso en el que l_{ij} sea cero, se sustituye la ecuación (1.37) en la ecuación (1.33), y se obtiene la siguiente expresión del parámetro *b* de la mezcla:

$$B_{mix} = \sum_{i}^{nc} x_i B_i \tag{1.38}$$

Para fines de este trabajo se utilizó la regla de mezclado de Van der Waals para sistemas binarios, ternarios y cuaternarios, con los parámetros de interacción binaria, k_{ij} y I_{ij} igual a cero. Únicamente se realizó un ajuste del parámetro I_{ij} para la mezcla de nonanobenceno a distintas temperaturas.

1.6. COEFICIENTE DE FUGACIDAD

La ecuación (1.7) integrada para Peng – Robbinson (3), (4), (16), es:

$$\ln \hat{\varphi}_{i} = -\ln(Z - B) + \frac{\overline{B}_{i}}{B}(Z - 1) + \frac{A}{B}\left[\frac{\overline{B}_{i}}{B} - \frac{\overline{A}_{i}}{A}\right]L$$
(1.39)

Donde el parámetro L para las ecuaciones de PR, PR-f, PR-f-mod, y PR-fprop es:

$$L = \frac{1}{2\sqrt{2}} \ln \left[\frac{Z + B(1 + \sqrt{2})}{Z - B(1 + \sqrt{2})} \right]$$
(1.40)

Donde A y B están dadas por las ecuaciones (1.32) y (1.33) y el factor de compresibilidad Z se obtiene al resolver la ecuación cúbica correspondiente, y los parámetros \overline{A}_i y \overline{B}_i están dados por las siguientes expresiones (2):

$$\overline{A}_{i} = \frac{1}{N} \left(\frac{\partial a N^{2}}{N_{i}} \right) \frac{P}{\left(RT \right)^{2}} = \frac{1}{N} \left(\frac{\partial A N^{2}}{\partial N_{i}} \right)$$
(1.41)

$$\overline{B}_{i} = \frac{1}{N} \left(\frac{\partial bN}{N_{i}} \right) \frac{P}{RT} = \frac{1}{N} \left(\frac{\partial bN}{\partial N_{i}} \right)$$
(1.42)

Al sustituir las reglas de mezclado indicadas en las ecuaciones (1.32) y (1.33), en las ecuaciones (1.41) y (1.42) se obtienen las siguientes ecuaciones:

$$\overline{A}_i = 2\sum_{j=1}^{nc} x_j A_{ij}$$
(1.43)

$$\overline{B}_i = B_i. \tag{1.44}$$

1.7. MÓDULO COMPUTACIONAL EN FORTRAN

Con el objetivo de tener una infraestructura de cálculo rápida para obtener la densidad de líquido subenfriado y de líquido saturado de varios sistemas de mezclas multicomponentes con cuatro Ecuaciones de Estado (PR, PR-f, PR-f-mod, PR-f-prop), se desarrollaron rutinas en FORTRAN que procesaran los datos para la resolución de las ecuaciones descritas en el primer capítulo.

Las dos rutinas en base a las cuales se desarrollaron los cálculos de densidad para cada uno de los sistemas analizados son: la rutina del cálculo de densidad de líquido subenfriado y la rutina del cálculo de densidad de líquido saturado. Cabe mencionar que el funcionamiento de cada una de estas rutinas depende de la Ecuación de Estado que se desee utilizar, ya que requieren la introducción de los parámetros necesarios para cada ecuación para poder realizar el cálculo requerido.

Las rutinas desarrolladas para el cálculo de la densidad de líquido subenfriado se basan en el procedimiento explicado con diagramas de flujo en el ANEXO I (Diagrama 1).

Las rutinas desarrolladas para el cálculo de la densidad del líquido saturado se basan en el procedimiento explicado con diagramas de flujo en el ANEXO II (Diagrama 2).

2. RESULTADOS DEL CÁLCULO DE LA DENSIDAD DEL LÍQUIDO

En este trabajo se evalúa la predicción de la densidad del líquido para mezclas de hidrocarburos no polares, de alcanos y compuestos cíclicos, en intervalos de temperatura donde todos los componentes son subcríticos y en intervalos donde por lo menos uno de los componentes se encuentra en estado supercrítico, a diferentes presiones, con las ecuaciones de estado PR, PR-f, PR-f-mod, PR-f-prop. A continuación se presentan de manera gráfica los resultados de la densidad de la mezcla a distintas composiciones para establecer una comparación entre la densidad calculada con las cuatro ecuaciones de estado y los datos experimentales reportados en diversas fuentes (15-30).

En primer lugar se analizan las mezclas de componentes no polares binarias, ternarias y cuaternarias. Posteriormente se analizan las mezclas de componentes polares con no polares, en las cuales únicamente se tienen mezclas binarias, y finalmente se analizan las mezclas de componentes polares, las cuales involucran mezclas binarias y ternarias.

En base a los resultados obtenidos se calcula la Desviación Porcentual Absoluta Promedio (%AAD) en densidad para los cuatro modelos utilizados, los cuales se reportan en las tablas 3, 6, 8, 10, 11, 12 y 15 al final de cada serie de datos analizados. El %AAD representa el error promedio sobre todos los datos calculados con respecto a los datos experimentales de cada modelo, y se calcula con la siguiente expresión:

$$\% AAD\rho = \frac{100}{n} \sum_{i=1}^{n} \frac{\left|\rho_{i,calc}^{fase1} - \rho_{i,exp}^{fase1}\right|}{\rho_{i,exp}^{fase1}}$$
(2.1)

Donde n es el número de datos de densidades calculados para la mezcla.

Figura 1. Densidad de la mezcla Hexano-Heptano (17) a T = 298.15 K y P = 1 atm

Figura 2 densidad de la mezcla Hexano-Octano (17) a t = 298.15 K y P = 1 atm

Figura 3. Densidad de la mezcla Hexano-Nonano (17) a T = 298.15 K y P = 1 atm

Figura 4. Densidad de la mezcla Hexano-Decano (17) a T = 298.15 K y P = 1 atm

Figura 5. Densidad de la mezcla Hexano-Dodecano (17) a T = 298.15 K y P = 1 atm

Figura 6. Densidad de la mezcla Hexano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Figura 7. Densidad de la mezcla Hexano-Tetradecano (17) a T = 298.15K y P = 1 atm

•

Figura 8. Densidad de la mezcla Heptano-Octano (17) a T = 298.15 K y P = 1 atm

Figura 9. Densidad de la mezcla Heptano-Nonano (17) a T = 298.15 K y P = 1 atm

•

Figura 10. Densidad de la mezcla Heptano-Decano (17) a T = 298.15 K y P = 1 atm

Figura 11. Densidad de la mezcla Heptano-Dodecano (17) a T = 298.15 K y P = 1 atm

Figura 12. Densidad de la mezcla Heptano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Figura 13. Densidad de la mezcla Heptano-Hexadecano (17) a T = 298.15 K y P = 1 atm

Figura 14. Densidad de la mezcla Octano-Nonano (17) a T = 298.15 K y P = 1 atm

Figura 15. Densidad de la mezcla Octano-Decano (17) a T = 298.15 K y P = 1 atm

Figura 16. Densidad de la mezcla Octano-Dodecano (17) a T = 298.15 K y P = 1 atm

Figura 17. Densidad de la mezcla Octano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Figura 18. Densidad de la mezcla Octano-Hexadecano (17) a T = 298.15 K y P = 1 atm

•

Figura 19. Densidad de la mezcla Nonano-Decano (17) a T = 298.15 K y P = 1 atm

Figura 20. Densidad de la mezcla Nonano-Dodecano (17) a T = 298.15 K y P = 1 atm

Figura 21. Densidad de la mezcla Nonano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Figura 22. Densidad de la mezcla Nonano-Hexadecano (17) a T = 298.15 K y P = 1 atm
Decano – Alcanos

Figura 23. Densidad de la mezcla Decano-Dodecano (17) a T = 298.15 K y P = 1 atm

Figura 24. Densidad de la mezcla Decano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Ξ

Figura 25. Densidad de la mezcla Decano-Hexadecano (17) a T = 298.15 K y P = 1 atm

•

Dodecano – Alcanos

Figura 26. Densidad de la mezcla Dodecano-Tetradecano (17) a T = 298.15 K y P = 1 atm

Figura 27. Densidad de la mezcla Dodecano-Hexadecano (17) a T = 298.15 K y P = 1 atm

35

Tetradecano – Hexadecano

Figura 28. Densidad de la mezcla Tetraecano-Hexadecano (17) a T = 298.15 K y P = 1 atm

•

Cíclicos – Alcanos

Figura 29. Densidad de la mezcla Ciclohexano-Hexadecano (17) a T = 298.15 K y P = 1 atm

Figura 30. Densidad de la mezcla Benceno-Decano (17) a T = 298.15 K y P = 1 atm

Figura 32. Densidad de la mezcla Tolueno-Decano (17) a T = 298.15 K y P = 1 atm

Tolueno – Tetradecano

Figura 33. Densidad de la mezcla Tolueno-Tetradecano (17) a T = 298.15 K y P = 1 atm

Tolueno – Octano

Figura 34. Densidad de la mezcla Tolueno-Octano (18) a T = 293.15 K y P = 1 atm

Figura 35. Densidad de la mezcla Tolueno-Octano (18) a T = 298.15 K y P = 1 atm

Figura 36. Densidad de la mezcla Tolueno-Octano (18) a T = 308.15 K y P = 1 atm

Figura 37. Densidad de la mezcla Tolueno-Octano (18) a T = 313.15 K y P = 1 atm

Tolueno – Decano

Figura 38. Densidad de la mezcla Tolueno-Decano (18) a T = 293.15 K y P = 1 atm

Figura 39. Densidad de la mezcla Tolueno-Decano (18) a T = 298.15 K y P = 1 atm

Figura 40. Densidad de la mezcla Tolueno-Decano (18) a T =308.15 K y P = 1 atm

Figura 41. Densidad de la mezcla Tolueno-Decano (18) a T =313.15 K y P = 1 atm

Tolueno – Dodecano

Figura 42. Densidad de la mezcla Tolueno-Dodecano (18) a T =293.15 K y P = 1 atm

Figura 43. Densidad de la mezcla Tolueno-Dodecano (18) a T =298.15 K y P = 1 atm

Figura 44. Densidad de la mezcla Tolueno-Dodecano (18) a T =308.15 K y P = 1 atm

Figura 45. Densidad de la mezcla Tolueno-Dodecano (18) a T =313.15 K y P = 1 atm

Tolueno – Tetradecano

Figura 46. Densidad de la mezcla Tolueno-Tetradecano (18) a T =293.15 K y P= 1 atm

Figura 47. Densidad de la mezcla Tolueno-Tetradecano (18) a T =298.15 K y P = 1 atm

Ξ

Figura 48. Densidad de la mezcla Tolueno-Tetradecano (18) a T =308.15 K y P = 1 atm

Figura 49. Densidad de la mezcla Tolueno-Tetradecano (18) a T =313.15 K y P = 1 atm

Tolueno – Hexadecano

Figura 50. Densidad de la mezcla Tolueno-Hexadecano (18) a T =293.15 K y P = 1 atm

Figura 51. Densidad de la mezcla Tolueno-Hexadecano (18) a T =298.15 K y P = 1 atm

Ξ

Figura 52. Densidad de la mezcla Tolueno-Hexadecano (18) a T =308.15 K y P = 1 atm

Figura 53. Densidad de la mezcla Tolueno-Hexadecano (18) a T =313.15 K y P = 1 atm

2.3. DENSIDAD DEL LÍQUIDO SATURADO DE MEZCLAS BINARIAS DE COMPUESTOS NO POLARES

Hexano – Heptano

Figura 54. Densidad del líquido saturado de la mezcla Hexano-Heptano (19) a T =333.15K

Figura 55. Densidad del líquido saturado de la mezcla Hexano-Heptano (19) a T =343.15K

Ciclohexano – Octano

Figura 56. Densidad del líquido saturado de la mezcla Ciclohexano-Octano (19) a T = 333.15K

Figura 57. Densidad del líquido saturado de la mezcla Ciclohexano-Octano (19) a T = 353.15K

Ciclohexano – Nonano

Figura 58. Densidad del líquido saturado de la mezcla Ciclohexano-Nonano (19) a T =333.15K

Figura 59. Densidad del líquido saturado de la mezcla Ciclohexano-Nonano (19) a T =353.15K

Heptano – octano

Figura 60. Densidad del líquido saturado de la mezcla Heptano-Octano (19) a T =333.15K

Figura 61. Densidad del líquido saturado de la mezcla Heptano-Octano (19) a T =353.15K

53

•

Benceno – Nonano

Figura 62. Densidad del vapor saturado de la mezcla Benceno-Nonano (20) a T =333.15K

Figura 63. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =333.15K

54

Ξ

Figura 64. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =353.15K

Figura 65. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =353.15K

Figura 66. Densidad de la mezcla Nonano-Benceno (20) T =313.15k y P = 1 atm

li.			Referencia	Error: %AADp				F aaa an	Comparacion	
Sistema (X ₁ -X ₂)	Т (К)	Núm. Datos		PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	1.6500	0.2089	1.3187	0.1691	-	0.1691	PR-f-prop
Heveno-Henteno	333.15	11	Kun-Jung, L., Wei-Kuan, Ch.,	2.2218	2.2272	2.2320	2.2288	V	2.2218	PR
nexuno-neptano	333.15	11	Jing-Wei K., Liang-Sun L., Chieh-	0.8356	0.1475	2.3822	0.2239	L	0.1475	PR-f-mod
	343 15	11	Ming J. Ch. / J. of the Taiwan	4 1426	4 1778	4 1071	4 1657	V	4 1071	PR-f
	242.15	11	Institute of Chem. Eng. 40	1.0427	1 1507	2 6606	1 4269		1 1507	DB f mod
<u>.</u>	545.15	11	(2009) 573–579 Chovalian B. Castan	1.9437	1.1597	3.0000	1.4300	L	1.1597	FK-I-IIIUu
Hexano-Octano	298.15	11	Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	0.5888	0.1795	1.6205	0.1182	-	0.1182	PR-f-prop
Hexano-Nonano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	2.7395	0.1598	0.7862	0.1693	-	0.1598	PR-f-mod
Hexano-Decano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	3.9174	0.4614	0.8871	0.4981	-	0.4614	PR-f-mod
Hexano- Dodecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	6.3086	1.3624	2.0178	1.4016	-	1.3624	PR-f-mod
Hexano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	10.0134	1.1315	3.6562	1.9429	-	1.1315	PR-f-mod
Hexano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.2053	3.0435	4.1428	3.2587	-	3.0435	PR-f-mod
	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	2.2693	0.1979	1.1005	0.0407		0.0407	PR-f-prop
Hontano-Octano	333.15	11	Kun-Jung, L., Wei-Kuan, Ch.,	16.7697	16.7576	16.7315	16.7556	V	16.7315	PR-f
heptano-octano	333.15	11	Jing-Wei K., Liang-Sun L., Chieh-	1.3538	0.1812	2.0965	0.1468	L	0.1468	PR-f-prop
	353 15	11	Ming J. Ch. / J. of the Taiwan	14 8335	14 8161	14 7649	14 8106	V	14 7649	PR-f
	353 15	11	Institute of Chem. Eng. 40	1 2255	0 1617	2 2663	0 1276	·	0 1276	PR-f-prop
Hexadecano Heptano-Octano	298.15 333.15 333.15 353.15 353.15	11 11 11 11 11	DATA, 35(1990), No. 2 Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2 Kun-Jung, L., Wei-Kuan, Ch., Jing-Wei K., Liang-Sun L., Chieh- Ming J. Ch. / J. of the Taiwan Institute of Chem. Eng. 40 (2009) 573–579	2.2693 16.7697 1.3538 14.8335 1.2255	0.1979 16.7576 0.1812 14.8161 0.1617	1.1005 16.7315 2.0965 14.7649 2.2663	0.0407 16.7556 0.1468 14.8106 0.1276	V L V L	0.0407 16.7315 0.1468 14.7649 0.1276	PR-f-pr PR-f PR-f-pr PR-f PR-f-pı

Tabla 3. Resultados del error %AAD_P y comparación de las densidades calculadas con las ecuaciones de PR, PR-f-mod, PR-f, PR-f-prop en mezclas binarias de compuestos no polares.

	Т (К)	Núm. Datos	Referencia	Error: %AADp				Easo on	Comparacion	
Sistema (X ₁ - X ₂)				PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
Heptano-Nonano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	3.3663	0.1489	0.5949	0.1909	-	0.1489	PR-f-mod
Heptano-Decano	298.15	10	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	4.6014	0.5203	0.8242	0.5879	-	0.5203	PR-f-mod
Heptano- Dodecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	6.6069	1.2942	1.9565	1.3441	-	1.2942	PR-f-mod
Heptano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	9.3337	1.3249	3.0109	2.0855	-	1.3249	PR-f-mod
Heptano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.3152	2.8820	4.0543	3.1258	-	2.8820	PR-f-mod
Octano-Nonano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	4.3829	0.3663	0.3766	0.1558	-	0.1558	PR-f-prop
Octano-Decano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	5.4325	0.7326	0.7060	0.5381	-	0.5381	PR-f-prop
Octano-Dodecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	7.5017	1.4750	1.9084	1.3050	-	1.3050	PR-f-prop
Octano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	10.2711	0.2470	3.1480	1.7395	-	0.2470	PR-f-mod
Octano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	12.0008	2.9864	3.9393	3.0397	-	2.9864	PR-f-mod

0)*		Núm. Datos	Referencia	Error: %AADp				Face on	Comparacion	
Sistema (X ₁ -X ₂)	T (K)			PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
Nonano-Decano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	6.2741	0.6634	0.7501	0.7010	-	0.6634	PR-f-mod
Nonano- Dodecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	8.2640	1.3809	1.9516	1.4155	-	1.3809	PR-f-mod
Nonano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.0035	1.6190	3.1935	1.8424	-	1.6190	PR-f-mod
Nonano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	12.5982	2.8560	3.9117	3.1126	-	2.8560	PR-f-mod
Decano- Dodecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	9.0953	1.6854	2.5161	1.7319	-	1.6854	PR-f-mod
Decano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.7386	1.8980	3.7175	2.1283	-	1.8980	PR-f-mod
Decano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	13.2646	3.0909	4.3988	3.3661	-	3.0909	PR-f-mod
Dodecano- Tetradecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	13.2477	2.5296	4.6605	2.7438	-	2.5296	PR-f-mod
Dodecano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	14.6599	3.6499	5.2853	3.9278	-	3.6499	PR-f-mod
Tetradecano- Hexadecano	298.15	5	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	16.7372	3.7808	6.2465	4.2324	-	3.7808	PR-f-mod
	333.15	11	Kun-Jung, L., Wei-Kuan, Ch.,	6.6347	6.6657	6.6350	6.6639	V	6.6347	PR
Ciclohexano-	333.15	11	Jing-Wei K., Liang-Sun L., Chieh-	1.9934	0.1935	2.3947	0.2209	L	0.1935	PR-f-mod
Octano	353.15	11	Ming J. Ch. / J. of the Taiwan	7.2048	7.2266	7.1868	7.2232	V	7.1868	PR-f
	353.15	11	(2009) 573–579	1.8254	0.4415	2.4155	0.4049	L	0.4049	PR-f-prop

Sistema (X 1-X 2)		Núm. Datos	Referencia	Error: %AADp				Fase en	Comparacion	
	T (K)			PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
2	333.15	7	Kun-Jung, L., Wei-Kuan, Ch.,	22.9854	23.0101	22.9705	23.0049	V	22.9705	PR-f
Ciclohexano-	333.15	7	Jing-Wei K., Liang-Sun L., Chieh-	3.3990	0.7646	1.3409	0.5878	L	0.5878	PR-f-prop
Nonano	353.15	7	Institute of Chem Eng 40	15.0013	15.0022	14.9613	14.9951	V	14.9613	PR-f
	353.15	7	(2009) 573–579	3.1177	1.0017	1.4599	0.7601	L	0.7601	PR-f-prop
Ciclohexano- Hexadecano	298.15	7	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.9570	3.1908	4.3489	3.4270	-	3.1908	PR-f-mod
Benceno-Decano	298.15	11	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	4.3166	0.5338	1.1175	0.5518	-	0.5338	PR-f-mod
Benceno- Ciclohexano	298.15	7	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	3.9673	-	0.1133	3.0186	-	0.1133	PR-f
Toluono Ostano	293.15	12	Abdul-Fattah A. A., Mohammad H. S./ J. CHEM. ENG. DATA, 35(1990), No. 2	2.2576	-	1.0535	0.1368	-	0.1368	PR-f-prop
	298.15	12		2.3221	-	1.0699	0.0960	-	0.0960	PR-f-prop
Toldeno-Octano	308.15	12		1.8026	-	1.5555	0.1218	-	0.1218	PR-f-prop
·/	313.15	12		1.7675	-	1.5933	0.0730	-	0.0730	PR-f-prop
	298.15	7	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	4.4883	-	0.9102	0.6245	-	0.6245	PR-f-prop
Tolueno-Decano	293.15	12		4.8851	-	0.9222	0.8219	-	0.8219	PR-f-prop
	298.15	12	Abdul-Fattah A. A., Mohammad	4.7520	-	0.8822	0.6752	-	0.6752	PR-f-prop
	308.15	12	35(1990), No. 2	4.3593	-	0.7256	0.6189	-	0.6189	PR-f-prop
	313.15	12		4.5388	-	0.7553	0.2077	-	0.2077	PR-f-prop
	293.15	12		7.5608	-	2.3517	1.6785	-	1.6785	PR-f-prop
Tolueno-	298.15	12	Abdul-Fattah A. A., Mohammad	7.4719	-	2.2210	1.6286	-	1.6286	PR-f-prop
Dodecano	308.15	12	35(1990). No. 2	7.1435	-	2.0136	1.2026	-	1.2026	PR-f-prop
	313.15	12		6.9398	-	1.8422	1.0851	-	1.0851	PR-f-prop

Sistema (X ₁ -X ₂)		Núm. Datos	Referencia	Error: %AADp				Easo on	Compa	racion
	Т (К)			PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
	298.15	7	Chevalier, P., Gaston - Bonhomme./ J. CHEM. ENG. DATA, 35(1990), No. 2	10.2715	-	3.6605	1.8578	-	1.8578	PR-f-prop
Tolueno-	293.15	12		11.1209	-	3.9542	2.1419	-	2.1419	PR-f-prop
Tetradecano	298.15	12	Abdul-Fattah A. A., Mohammad H. S./ J. CHEM. ENG. DATA, 35(1990), No. 2	11.0321	-	3.8205	2.0069	-	2.0069	PR-f-prop
	308.15	12		10.7346	-	3.5646	1.5606	-	1.5606	PR-f-prop
	313.15	12		10.6381	-	3.4437	1.3440	-	1.3440	PR-f-prop
	293.15	12	Abdul-Fattah A. A., Mohammad H. S./ J. CHEM. ENG. DATA, 35(1990), No. 2	13.4321	-	5.0572	3.7041	-	3.7041	PR-f-prop
Tolueno-	298.15	12		13.0384	-	4.7577	3.4400	-	3.4400	PR-f-prop
Hexadecano	308.15	12		12.7089	-	4.4119	3.0112	-	3.0112	PR-f-prop
	313.15	12		12.7059	-	4.3971	2.6055	-	2.6055	PR-f-prop
	313.15	13		3.5759	1.0071	0.8832	1.0349	-	0.8832	PR-f
Nonano-Benceno	333.15	13	Wei-Kuan, Ch., Kun-Jung, L., Jing-Wei, K., et. al. / Fluid Phase Equilibria, 287(2010), 126-133	1.2679	1.2352	1.2672	1.237	V	1.2352	PR-f-mod
	333.15	13		4.0829	2.4388	1.7157	2.3914	L	1.7157	PR-f
	353.15	12		1.2368	1.2812	1.2273	1.2773	V	1.2273	PR-f
	353.15	12		4.1129	2.6034	1.3511	2.4715	L	1.3511	PR-f

2.4. ANÁLISIS DE RESULTADOS: SISTEMAS DE MEZCLAS BINARIAS DE COMPONENTES NO POLAR – NO POLAR

Como puede observarse en la tabla 3, la predicción de la densidad de las mezclas de hidrocarburos de tipo no polares en fase líquida presenta la menor AAD al utilizar las ecuaciones de PR-f-prop y PR-f-mod. La única mezcla que presentó un menor AAD con la ecuación de PR-f fue la mezcla benceno-nonano, antes del ajuste de l_{ij}.

En las mezclas binarias de alcanos puede observarse en las gráficas que, al incrementar el número de carbonos de las cadenas, la desviación del valor de la densidad del compuesto puro calculada con las ecuaciones de PR-f-mod y PR-f-prop con respecto a la experimental aumenta. Esto se debe a que el valor de temperatura al cual se encuentra el sistema está fuera del intervalo de temperaturas para el cual se obtuvieron los parámetros de ajuste de estas ecuaciones, sin embargo, la predicción es aceptable. La tabla 4 muestra el intervalo de temperatura dentro del cual se realizó la regresión para la obtención de parámetros de los compuestos puros. (7) Se observa que, a partir del nonano, la T_{min} está por arriba de la temperatura a la cual se encontraron los datos experimentales.

Compuesto	T _{min} [K]	T _{max} [K]	Т _{ехр} [K]
n-Hexano	263.2	477.6	298.15, 333.15, 343.15,
n-Heptano	273.2	513.2	298.15, 333.15, 343.15, 353.15
n-Octano	333.2	553.2	298.15, 333.15, 353.15
n-Nonano	310.9	581.2	298.15, 313.15, 333.15, 353.15
n-Decano	323.2	603.2	293.15, 298.15, 303.15, 308.15, 313.15, 323.15, 333.15, 343.15, 344.3, 353.15, 363.15
n-Dodecano	373.2	643.2	293.15, 298.15, 308.15, 313.15
n-Tetradecano	383.2	658.2	293.15, 298.15, 308.15, 313.15

Tabla 4. Intervalo de temperatura de regresión para obtención de parámetros

Compuesto	T _{min} [K]	T _{max} [K]	T _{exp} [K]		
n-Hexadecano	418.2	703.2	293.15, 298.15, 308.15, 313.15		
Tolueno [*]	250	600	293.15, 298.15, 308.15, 313.15		
Benceno	278.7	561.15	313.15, 333.15, 353.15		
Ciclohexano	280.15	529.15	298.15, 333.15, 353.15		

En base a los resultados obtenidos de densidad de líquido se puede decir que, para las mezclas revisadas, cuando el sistema se encuentra a una temperatura dentro del intervalo de temperaturas en el cual se realizó el ajuste de los parámetros de los componentes puros, el valor del AAD de la densidad de la mezcla calculada con las ecuaciones de PR-f-mod y PR-f-prop es menor a 1%, lo cual indica una predicción de la densidad de líquido de las mezclas es buena.

Así mismo, en el caso de mezclas de alcanos donde la temperatura del sistema se encuentra fuera del intervalo de las temperaturas dentro de las cuales se realizó la regresión para el ajuste de parámetros de la ecuación de PR-f-prop, el AAD de la densidad de la mezcla calculada con las ecuaciones de PR-f-mod y PR-f-prop es mayor a 1%, pero menor a 5%, y presentan superioridad al compararlas con los resultados obtenidos al calcular la densidad de las mezclas con las ecuaciones de PR y PR-f, lo cual indica que la extrapolación de los parámetros de la ecuación de PR-f-prop de los compuestos puros a estas temperaturas podría considerarse razonable.

Al analizar las gráficas de las densidades de la fase líquida de la mezcla benceno – nonano a distintas temperaturas, puede observarse que la densidad calculada con las ecuaciones PR-f-prop y PR-f-mod para los compuestos puros cae sobre el valor experimental, sin embargo la mezcla presenta desviaciones. Estas desviaciones serán trabajadas posteriormente en el capítulo 2.13. En las mezclas donde se cuenta con datos de Equilibrio Líquido-Vapor se observa que la densidad de la fase vapor no presenta una diferencia importante en el AAD al calcularse con las cuatro Ecuaciones de Estado (PR, PR-f, PR-f-mod y PR-f-prop), por lo tanto ninguna ecuación presenta superioridad sobre otras en la predicción de la densidad de mezclas en la fase vapor a las condiciones analizadas.

2.5. TERNARIOS A DISTINTAS TEMPERATURAS Y COMPOSICIÓN CONSTANTE

Figura 67. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.1072, x_2 = 0.7957, P = 1 atm

Figura 68. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.1089, x_2 = 0.1011, P = 1 atm

Figura 69. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.1868, x_2 = 0.6439, P = 1 atm

Figura 70. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.1889, x_2 = 0.1753, P = 1 atm

Figura 71. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.2658, x_2 = 0.4933, P = 1 atm

Figura 72. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.2673, x_2 = 0.2481, P = 1 atm

Figura 73. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.3528, x_2 = 0.3274, P = 1 atm

Figura 74. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.5216, x_2 = 0.2420, P = 1 atm

Figura 75. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.6694, x_2 = 0.1673, P = 1 atm

Figura 76. Densidad de la mezcla Benceno-Ciclohexano-Hexano (21) con temperatura variable y composición constate x_1 = 0.8135, x_2 = 0.0944, P = 1 atm

2.6. MEZCLAS DE ALCANOS A DISTINTAS PRESIONES Y TEMPERATURAS

A continuación se muestran los resultados del cálculo de la densidad de sistemas de mezclas ternarias y cuaternarias de alcanos a temperatura y presión variable, y composición constante.

Como se puede observar en los datos experimentales reportados, la densidad experimental se mantiene constante al variar la temperatura y la presión del sistema, de manera que a un valor específico de composición, temperatura y densidad, corresponde un único valor de presión. Dichas temperaturas y presiones son reportadas en las tablas anteriores a las gráficas.

En algunos casos se tienen los valores de temperatura, presión y densidad de líquido saturado de la mezcla.

Butano – Heptano – Hexadecano

Т (К)	P (bar)	Densidad (mol/m ³)
447.9 ^s	7.73 ^s	4802.7 ^s
451.07	18	4801.9
455.65	32.86	4800.7
460.25	47.83	4799.4
460.33	48.08	4799.4
464.86	62.74	4798.2
469.47	77.74	4797

Tabla 5.1. Datos experimentales de temperatura, presión y densidad experimental de la mezcla butano(1), heptano(2), hexadecano(3) con x(1) = 0.0904, y x(2) = 0.7358 (15)

El superíndice "s" indica la condición de saturación (punto de burbuja)

FIGURA 77. Densidad de la mezcla Butano-Heptano-Hexadecano (15) con temperatura y presión variables, y composición constate x_1 = 0.0904, x_2 = 0.7358

 (_),	(-,	·····, , ·····························
Т (К)	P (bar)	Densidad (mol/m ³)
418.8 ^s	6.34 ^s	5185.9 ^s
423.52	25	5185.5
427.51	41.27	5183.4
432.63	60.61	5181.9
441.11	94.72	5179.5
441.81	96.39	5179.3
450.98	132.08	5176.6
460.23	167.81	5174
469.38	202.97	5171.3

Tabla 5.2. Datos experimentales de temperatura, presión y densidad experimental de la mezcla butano(1), heptano(2), hexadecano(3) con x(1) = 0.1564, y x(2) = 0.6825 (15)

El superíndice "s" indica la condición de saturación (punto de burbuja)

Figura 78. Densidad de la mezcla Butano-Heptano-Hexadecano (15) con temperatura y presión variables, y composición constate x_1 = 0.1564, x_2 = 0.6825

<u> </u>	p (bar)	Densidad (mol/m³)
404.4 ^s	5.57 ^s	5376.2 ^s
404.74	7.03	5376
409.35	26.88	5374.6
413.9	46.42	5373.3
418.5	66.12	5371.9
423.11	85.84	5370.6
427.78	105.71	5369.2
432.41	125.3	5367.8
437.06	145.09	5366.4
441.65	164.52	5365
446.27	183.93	5363.7
450.75	202.75	5362.3
450.85	203.14	5362.3
455.44	222.35	5360.9
460.1	241.71	5359.5

Tabla 5.3. Datos experimentales de temperatura, presión y densidad experimental de la mezcla butano(1), heptano(2), hexadecano(3) con x(1) = 0.1856, y x(2) = 0.6588 (15)

El superíndice "s" indica la condición de saturación (punto de burbuja)

Figura 79. Densidad de la mezcla Butano-Heptano-Hexadecano (15) con temperatura y presión variables, y composición constate x_1 = 0.1856, x_2 = 0.6588

Metano – Butano – Hexadecano

T (K)	P (bar)	Densidad (mol/m ³)
		Densidad (mowin)
317.44	169.08	8291.3
322.06	202.39	8289.2
326.58	235.06	8287.1
331.13	267.76	8285
335.69	300.31	8282.9
340.15	332.1	8280.9
344.65	363.87	8278.8
349.11	395.28	8276.7

Tabla 5.4. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), hexadecano(3) con x(1) = 0.0185, y x(2) = 0.8680 (22)

Figura 80. Densidad de la mezcla Metano-Butano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.0185, x_2 = 0.8680

Т (К)	P (bar)	Densidad (mol/m ³)
318.35	224.04	8439.1
318.36	224.15	8439.1
322.56	255.26	8437.1
327.08	288.58	8435
331.72	322.7	8432.8
336.31	356.3	8430.7
340.89	389.52	8428.5
344.73	417.28	8426.7
349.24	449.82	8424.6

Tabla 5.5. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), hexadecano(3) con x(1) = 0.0358, y x(2) = 0.8527 (22)

Figura 81. Densidad de la mezcla Metano-Butano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.0358, x_2 = 0.8527

Т (К)	P (bar)	Densidad (mol/m ³)
295.27	83.37	8555.6
317.1	248.97	8545.3
317.84	254.64	8545
322.51	289.75	8542.8
327.16	324.63	8540.6
331.72	358.66	8538.4
336.31	392.8	8536.2
340.9	426.63	8534
345.45	459.99	8531.8
349.99	493.05	8529.7

Tabla 5.6. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), hexadecano(3) con x(1) = 0.0478, y x(2) = 0.8422 (22)

Figura 82. Densidad de la mezcla Metano-Butano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.0478, x_2 = 0.8422

Sistema		Núm.	Referencia		Error: %AADp				Comparacion	
$(X_1 - X_2 - X_3)$	Composicion	Datos		PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación	
	x ₁ = 0.1072,	10		3 0421	0 3403	2 7737	0 4588	0 3403	PR-f-mod	
	x ₂ = 0.7957	10		5.5421	0.5405	2.1151	0.4500	0.5405	i ix-i-iiiou	
	x ₁ = 0.1089,	10		3 8885	1 2081	3 7388	1 30/5	1 2081	PP_f_mod	
	$x_2 = 0.1011$	10		5.0005	1.2001	5.7500	1.5045	1.2001	i ix-i-iiiou	
	x ₁ = 0.1868,	10		3 5859	0 3989	2 7934	0 4974	0 3989	PR-f-mod	
	x ₂ = 0.6439	10	Nasiru M. T., Shafkat A. B. / Fluid Phase Equilibria, 132(1997), 247-252	0.0000	0.0000	2.1004	0.4074	0.0000	1 IX I IIIOG	
	$x_1 = 0.1889$,	10		3 1673	0 7405	3 1742	0 8292	0 7405	PR-f-mod	
	x ₂ = 0.1753	10		0.1010	0.1100	0.11 12	0.0202	0.1100	i i i i i i i i i i i i i i i i i i i	
Benceno-	$x_1 = 0.2658$,	10		3.2986	0.4495	2.8269	0.5298	0.4495	PR-f-mod	
Ciclohexano-	$x_2 = 0.4933$									
Hexano	x ₁ = 0.2673,	10		2.9597	0.5415	2.9034	0.6105	0.5415	PR-f-mod	
	$x_2 = 0.2481$									
	$x_1 = 0.3528$,	10		3.0843	0.5286	2.8996	0.5914	0.5286	PR-f-mod	
	$x_2 = 0.3274$									
	$x_1 = 0.5216$,	10		3.0608	0.5682	2.9767	0.6087	0.5682	PR-f-mod	
	$x_2 = 0.2420$									
	$x_1 = 0.0094$,	10		2.9240	0.4782	782 2.9503	0.4997	0.4782	PR-f-mod	
	$x_2 = 0.1073$									
	$x_1 = 0.0135$,	10		2.8465	0.4067	3.0523	0.3988	0.3988	PR-f-prop	
	x ₂ = 0.0944									

Tabla 6. Resultados del error porcentual promedio del cálculo de densidades de mezclas ternarias de alcanos para las ecuaciones PR, PR-f-mod, PR-f, PR-f-prop

Tabla 6. (Continuación)

Sistema		Núm. Datos	Referencia	Error: %AADρ				Comparacion	
$(X_1 - X_2 - X_3)$	Composicion			PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
Butano-Heptano- Hexadecano	x ₁ = 0.0904, x ₂ = 0.7358	7	Fenghour, A., Trusler, J.P.M. , Wakeham, W.A. /Fluid Phase Equilibria, 185(2001), 349-358	5.4054	3.3126	0.6425	2.2183	0.6425	PR-f
	x ₁ = 0.1564, x ₂ = 0.6825	9		4.1700	3.7052	1.4182	2.9529	1.4182	PR-f
	$x_1 = 0.1856,$ $x_2 = 0.6588$	15		3.7880	3.7137	1.6152	3.0946	1.6152	PR-f
Metano-Butano- Hexadecano	$x_1 = 0.0185,$ $x_2 = 0.8680$	8	Fenghour, A, Trusler, J.P.M. , Wakeham, W.A. /Fluid Phase Equilibria, 182(2001), 111-119	1.9056	4.0714	1.3174	3.4288	1.3174	PR-f
	$x_1 = 0.0358,$ $x_2 = 0.8527$	9		1.8153	4.2809	1.3487	3.4661	1.3487	PR-f
	$x_1 = 0.0478,$ $x_2 = 0.8422$	10		1.8720	4.3253	1.2596	3.4158	1.2596	PR-f

2.7. MEZCLA CUATERNARIA A DISTINTA TEMPERATURA Y PRESIÓN, Y COMPOSICIÓN CONSTANTE

Metano – Butano – Heptano – Hexadecano

Tabla 7.1. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), heptano(3), hexadecano(4) con x(1) = 0.1210, x(2) = 0.1632, x(3) = 0.5791 (22)

Т (К)	P (bar)	Densidad (mol/m ³)
372.48 ^s	36.06 ^s	6125.6 ^s
376.92	58.83	6124
386.12	104.81	6121
390.75	126.95	6119.5
395.4	151.04	6117.9
404.66	197.17	6114.7
413.77	242	6111.6
418.34	263.78	6110.1
422.96	287	6108.5
432.05	330.62	6105.3
445.89	397.33	6100.5
459.67	462.93	6095.7

El superíndice "s" indica la condición de saturación (punto de burbuja)

Figura 83. Densidad de la mezcla Metano-Butano-Heptano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.1210, x_2 = 0.1632, x_3 = 0.5791

	()	
Т (К)	P (bar)	Densidad (mol/m ³)
356.72 ^s	48.71 ^s	6505.9 ^s
358.99	61.23	6505.1
368	110.29	6501.9
377.09	159.65	6498.7
386.25	209.03	6495.4
395.48	258.3	6492.1
404.69	307.33	6488.7
413.81	355.46	6485.4
422.99	403.46	6482
432.16	450.98	6478.6
441.28	497.45	6475.2

Tabla 7.2. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), heptano(3), hexadecano(4) con x(1) = 0.1717, x(2) = 0.1537, x(3) = 0.5457 (22)

El superíndice "s" indica la condición de saturación	(punto d	e burbuja)
--	----------	------------

Figura 84. Densidad de la mezcla Metano-Butano-Heptano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.1717, x_2 = 0.1537, x_3 = 0.5457

		() ()
T (K)	P (bar)	Densidad (mol/m ³)
340.89 ^s	61 ^s	6901.2 ^s
349.96	114.85	6897.8
359.06	168.26	6894.4
368.14	221.37	6890.9
377.24	274.37	6887.4
386.31	326.66	6884
395.45	378.91	6880.4
404.65	431.04	6876.8
413.79	481.98	6873.3

Tabla 7.3. Datos experimentales de temperatura, presión y densidad experimental de la mezcla metano(1), butano(2), heptano(3), hexadecano(4) con x(1) = 0.2186, x(2) = 0.1450, x(3) = 0.5148 (22)

El superíndice "s" indica la condición de saturación (punto de burbuja)

Figura 85. Densidad de la mezcla Metano-Butano-Heptano-Hexadecano (22) con temperatura y presión variables, y composición constate x_1 = 0.2186, x_2 = 0.1450, x_3 = 0.5148

Sistema (X ₁ -X ₂ -X ₃ -X ₄)	Composición	Núm. Datos	Referencia –	Error: %AADp				Comparación	
				PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
	x ₁ = 0.1210,								
Metano-Butano- Heptano- Hexadecano	x ₂ = 0.1632,	12		3.5661	4.8215	1.4428	2.2517	1.4428	PR-f
	x ₃ = 0.5791		Fenghour, A., Trusler, J.P.M. , Wakeham, W.A. /Fluid Phase						
	$x_1 = 0.1717,$		Equilibria, 182(2001), 111-119						
	x ₂ = 0.1537,	11		3.6746	5.1068	1.2556	1.8920	1.2556	PR-f

 $x_3 = 0.5457$

Tabla 8. Resultados del error porcentual promedio del cálculo de densidades de mezclas ternarias de alcanos para las ecuaciones PR, PR-f-mod, PR-f, PR-f-prop

2.8. ANÁLISIS DE RESULTADOS: SISTEMAS DE MEZCLAS TERNARIAS Y CUATERNARIAS DE COMPONENTES NO POLARES

En los sistemas ternarios se presentan dos tendencias de líquido: una en el sistema benceno-ciclohexano-hexano, en el cual el cálculo de la densidad del sistema a distintas temperaturas presenta un AAD más pequeño (menor a 1%) con las ecuaciones PR-f-mod y PR-f-prop; y otra para los sistemas butano-heptano-hexadecano y metano-butano-hexadecano, en los cuales la ecuación que presenta mejor la densidad de la mezcla es la ecuación de PR-f.

En el caso del sistema cuaternario, las gráficas presentan la misma tendencia que las mezclas ternarias butano-heptano-hexadecano y metano-butano-hexadecano, y por lo tanto el cálculo de la densidad de la mezcla presenta un AAD más pequeño con la ecuación de PR-f.

Al analizar los resultados del cálculo de las densidades obtenidas con las ecuaciones de PR-f-mod y PR-f-prop para estos últimos tres sistemas, se puede decir lo siguiente: en primer lugar, en los tres sistemas el metano y, en algunos casos el butano, se encuentran en estado supercrítico, es decir, la temperatura y la presión del sistema son superiores a las temperaturas y presiones críticas del metano y del butano puros. Por otra parte, la temperatura del sistema analizado se encuentra fuera del intervalo de temperatura reportado por Hinojosa-Gómez et. al., dentro del cual se realizó la regresión para la obtención de los parámetros de ambas ecuaciones para los compuestos metano y butano puros, como se puede observar en la tabla 9.

Compuesto	T _{crítica} [K]	T _{min} [K]	T _{max} [K]	T _{exp} [K]
Metano	190.6	90.7	188	295.27 - 459.67
Butano	425.1	240	400	295.27 - 459.67

 Tabla 9. Intervalo de temperatura para la obtención de parámetros y temperatura crítica del metano y butano.

Por otra parte, al analizar las tendencias de la densidad de líquido calculada con las cuatro ecuaciones cúbicas, se observa que, para las cuatro ecuaciones, la tendencia de la gráfica es creciente en todos los casos, mientras que los datos experimentales muestran una densidad constante. Cabe mencionar que, para cada valor experimental de

densidad, existe una temperatura y una presión distintas, y, con el fin de mantener constante el valor de la densidad de la mezcla, al realizar un incremento en la temperatura del sistema es necesario realizar también un incremento en la presión. Como se observa en las figuras 77, 78, 79, 80, 81, 82, 83, 84, 85, conforme aumentan la temperatura y la presión del sistema, la densidad del líquido comienza a incrementar. Dicho comportamiento creciente se debe a que el aumento en la presión tiene mayor impacto sobre el cálculo del factor de compresibilidad en el cálculo de la densidad que el aumento en la temperatura. Por lo tanto, la diferencial de la densidad con respecto a la temperatura es menor que la diferencial de la densidad con respecto a la presión, y dado que el valor de la densidad es inversamente proporcional a la temperatura (la densidad disminuye al aumentar la temperatura del sistema) y es directamente proporcional a la presión (la densidad aumenta al aumentar la presión), se puede decir que las cuatro ecuaciones cúbicas tienen mayor sensibilidad a un gradiente de presión que a un gradiente de temperatura en el cálculo de la densidad de líquido.

2.9. MEZCLAS BINARIAS DE COMPUESTOS POLARES CON NO POLARES

Figura 86. Densidad de la mezcla Hexano-Butanol (23) a T = 298.15 K y P = 1 atm

Figura 87. Densidad de la mezcla Hexano-Hexanol (23) a T = 298.15 K y P = 1 atm

85

Figura 88. Densidad de la mezcla Hexano-Octanol (23) a T = 298.15 K y P = 1 atm

Figura 89. Densidad de la mezcla Octano-Butanol (24) a T = 298.15 K y P = 1 atm

Figura 91. Densidad de la mezcla Octano-Octanol (24) a T = 298.15 K y P = 1 atm

Ciclohexano – Etanol

Figura 93. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 283.15 K, x_1 = 0.5002, y presión variable

Figura 94. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 283.15k, x_1 = 0.7002, y presión variable

Figura 95. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 293.15 K, x_1 = 0.2999, y presión variable

Figura 96. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 293.15 K, x_1 = 0.5002, y presión variable

Figura 97. Densidad de la mezcla Ciclohexano-Etanol (25) a t = 293.15 K, x_1 = 0.7002, y presión variable

Figura 98. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 313.15 K, x_1 = 0.2999, y presión variable

Figura 99. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 313.15 K, x_1 = 0.5002, y presión variable

Figura 100. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 313.15 K, x_1 = 0.7002, y presión variable

Figura 101. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 333.15 K, x_1 = 0.2999, y presión variable

Figura 102. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 333.15 K, x_1 = 0.5002, y presión variable

Figura 103. Densidad de la mezcla Ciclohexano-Etanol (25) a T = 333.15 K, x_1 = 0.7002, y presión variable

Decano – Alcoholes

Figura 104. Densidad de la mezcla Decano-Pentanol (26) a T = 293.15 K y P = 1 atm

Figura 105. Densidad de la mezcla Decano-Pentanol (26) a T = 303.15 K y P = 1 atm

Figura 106. Densidad de la mezcla Decano-Pentanol (26) a T = 313.15 K y P = 1 atm

Figura 107. Densidad de la mezcla Decano-Pentanol (26) a T = 323.15 K y P = 1 atm

Figura 108. Densidad de la mezcla Decano-Pentanol (26) a T = 333.15 K y P = 1 atm

Figura 109. Densidad de la mezcla Decano-Pentanol (26) a T = 343.15 K y P = 1 atm

Figura 110. Densidad de la mezcla Decano-Pentanol (26) a T = 353.15 K y P = 1 atm

Figura 111. Densidad de la mezcla Decano- Pentanol (26) a T = 363.15 K y P = 1 atm

Decano – Hexanol a diferentes temperaturas

Figura 112. Densidad de la mezcla Decano-Hexanol (26) a T = 293.15 K y P = 1 atm

Figura 113. Densidad de la mezcla Decano-Hexanol (26) a T = 303.15 K y P = 1 atm

Figura 114. Densidad de la mezcla Decano-Hexanol (26) a T = 313.15 K y P = 1 atm

Figura 115. Densidad de la mezcla Decano-Hexanol (26) a T = 323.15 K y P = 1 atm

Figura 116. Densidad de la mezcla Decano-Hexanol (26) a T = 333.15 K y P = 1 atm

Figura 117. Densidad de la mezcla Decano-Hexanol (26) a T = 343.15 K y P = 1 atm

Figura 118. Densidad de la mezcla Decano-Hexanol (26) a T = 353.15 K y P = 1 atm

Figura 119. Densidad de la mezcla Decano-Hexanol (26) a T = 363.15 K y P = 1 atm

Decano – Hexanol a diferentes temperaturas

Figura 120. Densidad de la mezcla Decano-Heptanol (26) a T = 293.15 K y P = 1 atm

Figura 121. Densidad de la mezcla Decano-Heptanol (26) a T = 303.15 K y P = 1 atm

Figura 122. Densidad de la mezcla Decano-Heptanol (26) a T = 313.15 K y P = 1 atm

Figura 123. Densidad de la mezcla Decano-Heptanol (26) a T = 323.15 K y P = 1 atm

Figura 124. Densidad de la mezcla Decano-Heptanol (26) a T = 333.15 K y P = 1 atm

Figura 125. Densidad de la mezcla Decano-Heptanol (26) a T = 343.15 K y P = 1 atm

Figura 126. Densidad de la mezcla Decano-Heptanol (26) a T = 353.15 K y P = 1 atm

Figura 127. Densidad de la mezcla Decano-Heptanol (26) a T = 363.15 K y P = 1 atm

 Tabla 10.1 Resultados del error porcentual promedio del cálculo de densidades de mezclas binarias alcano-alcohol con las ecuaciones PR, PR-f-mod, PR-f, PR-f-prop

					Error: %/	AADρ		Comparacion	
Sistema (X ₁ - X ₂)	Т (К)	Núm. Datos	Referencia	PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
Hexano-Butanol	298.15	13	Franjo, C., Jiménez, E., Iglesias, T.P., et. al. / J. Chem. Eng. Data, 40(1995), 68-70	0.8805	0.7705	3.0285	0.8397	0.7705	PR-f-mod
Hexano-Hexanol	298.15	13	Franjo, C., Jiménez, E., Iglesias, T.P., et. al. / J. Chem. Eng. Data, 40(1995), 68-70	1.0333	1.6372	3.3382	1.8704	1.0333	PR
Hexano-Octanol	298.15	13	Franjo, C., Jiménez, E., Iglesias, T.P., et. al. / J. Chem. Eng. Data, 40(1995), 68-70	1.9280	2.7732	1.7714	3.4142	1.7714	PR-f
Octano-Butanol	298.15	13	Franjo, C., Menaut, C. P., Jimenez, E., et. al. / J. Chem. Eng. Data, 40(1995), 992-994	2.3533	0.8081	2.1710	0.5998	0.5998	PR-f-prop
Octano-Hexanol	298.15	13	Franjo, C., Menaut, C. P., Jimenez, E., et. al. / J. Chem. Eng. Data, 40(1995), 992-994	2.6551	1.7578	2.4488	1.5668	1.5668	PR-f-prop
Octano-Octanol	298.15	13	Franjo, C., Menaut, C. P., Jimenez, E., et. al. / J. Chem. Eng. Data, 40(1995), 992-994	3.8368	2.7910	0.9801	3.0963	0.9801	PR-f

Tabla 10.2 Resultados del error porcentual promedio del cálculo de densidades de la mezcla ciclohexano-etanol con las ecuaciones PR, PR-f-mod, PR-f, PR-f-prop

Sistema						Error: %	ΑΑDρ		Comparacion		
$(X_1 - X_2)$	Т (К)	Composición	Núm. Datos	Referencia	PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación	
		x ₁ = 0.2999	7	Vega-Mazaa, D., Martína, M.C., Martin Truslerb, J.P.,	1.3362	0.4403	2.0424	0.3823	0.3823	PR-f-prop	
283.1	283.15	x ₁ = 0.5002	7	Segovia, J. J. / Ther Journal of Chemical	0.9488	0.5088	2.3075	0.4145	0.4145	PR-f-prop	
		x ₁ = 0.7002	7	Thermodynamics, 57(2013), 550-557	2.7245	0.5003	2.4506	0.3895	0.3895	PR-f-prop	
293.15 Ciclohexano-		x ₁ = 0.2999	7	Vega-Mazaa, D., Martína, M.C., Martin TrusIerb, J.P.,	1.1974	0.3492	2.1876	0.3486	0.3486	PR-f-prop	
	293.15	x ₁ = 0.5002	7	Segovia, J. J. / Ther Journal of Chemical	1.1369	0.3962	2.4963	0.3818	0.3818	PR-f-prop	
		x ₁ = 0.7002	7	Thermodynamics, 57(2013), 550-557	2.9534	0.3928	2.6761	0.3687	0.3687	PR-f-prop	
Etanol		x ₁ = 0.2999	7	Vega-Mazaa, D., Martína, M.C., Martin Truslerb, J.P.,	0.9583	0.2657	2.4409	0.3472	0.2657	PR-f-mod	
	313.15	x ₁ = 0.5002	7	Segovia, J. J. / Ther Journal of Chemical	1.4820	0.3144	2.8429	0.4308	0.3144	PR-f-mod	
_	×	x ₁ = 0.7002	7	Thermodynamics, 57(2013), 550-557	3.3878	0.3346	3.1028	0.4529	0.3346	PR-f-mod	
		x ₁ = 0.2999	7	Vega-Mazaa, D., Martína, M.C., Martin Truslerb, J.P.,	3.3878	0.3346	3.1028	0.4529	0.3346	PR-f-mod	
	333.15	x ₁ = 0.5002	7	Segovia, J. J. / Ther Journal of Chemical	1.7057	0.3497	3.0674	0.5548	0.3497	PR-f-mod	
		x ₁ = 0.7002	7	Thermodynamics, 57(2013), 550-557	3.7136	0.4153	3.4197	0.6311	0.4153	PR-f-mod	

Tabla 10.3 Resultados del error porcentual promedio del cálculo de densidades de mezclas binarias alcano-alcohol con las ecuaciones PR, PR-f-mod, PR-f, PR-f-prop

					Error: %	AADρ		Comparacion		
Sistema (X 1-X 2)	Т (К)	Núm. Datos	Referencia	PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación	
	293.15	11		4.7189	1.6760	0.9525	1.5205	0.9525	PR-f	
	303.15	11		4.4331	1.2768	0.8613	1.1410	0.8613	PR-f	
	313.15	11	Estrada-Baltazar, A. Bravo-	4.1644	0.9175	0.8188	0.8047	0.8047	PR-f-prop	
Decano-Pentanol	323.15	11	G.A., et. al. / Chinese Journal of	3.9069	0.6051	0.8750	0.5161	0.5161	PR-f-prop	
	333.15	11	Chemical Engineering,	3.6679	0.3400	1.0423	0.2736	0.2736	PR-f-prop	
	343.15	11	23(2015),Issue 3, 559-571	3.4528	0.1273	1.2818	0.1115	0.1115	PR-f-prop	
	353.15	11		3.2435	0.1305	1.5331	0.1632	0.1305	PR-f-mod	
	363.15	11		3.0687	0.1995	1.7488	0.2266	0.1995	PR-f-mod	
	293.15	11		5.2064	1.9390	1.4270	2.1261	1.4270	PR-f	
	303.15	11		4.9168	1.5143	1.4795	1.7279	1.4795	PR-f	
	313.15	11	Estrada-Baltazar, A. Bravo-	4.6293	1.1435	1.5963	1.3863	1.1435	PR-f-mod	
Docano-Hovanol	323.15	11	Sanchez, M. G., Iglesias-Silva, G.A., et. al. / Chinese Journal of Chemical Engineering.	4.3535	0.8174	1.7701	1.0898	0.8174	PR-f-mod	
Decano-nexanor	333.15	11		4.0903	0.5364	1.9976	0.8365	0.5364	PR-f-mod	
	343.15	11	23(2015),Issue 3, 559-571	3.8419	0.2991	2.2587	0.6230	0.2991	PR-f-mod	
	353.15	11		3.5808	0.1457	2.5558	0.4773	0.1457	PR-f-mod	
	363.15	11		3.3608	0.1081	2.8103	0.3571	0.1081	PR-f-mod	
	293.15	11		5.7690	2.3842	0.8661	2.6479	0.8661	PR-f	
	303.15	11		5.4768	1.8994	0.8482	2.1449	0.8482	PR-f	
	313.15	11	Estrada-Baltazar, A. Bravo-	5.1748	1.4787	0.9339	1.7155	0.9339	PR-f	
Docano Hontanol	323.15	11	Sanchez, M. G., Iglesias-Silva,	4.8956	1.0882	1.0873	1.3227	1.0873	PR-f	
Decano-neplanoi	333.15	11	Chemical Engineering.	4.6083	0.7621	1.3280	0.9981	0.7621	PR-f-mod	
	343.15	11	23(2015),Issue 3, 559-571	4.3360	0.4769	1.6133	0.7156	0.4769	PR-f-mod	
	353.15	11		4.0682	0.2446	1.9160	0.4851	0.2446	PR-f-mod	
	363.15	11		3.8352	0.1379	2.1824	0.2887	0.1379	PR-f-mod	

Figura 128. Densidad de la mezcla Butanol-Pentanol (27) a T = 308.15 K y P = 1 atm

Figura 129. Densidad de la mezcla Butanol-Pentanol (27) a T = 313.15 K y P = 1 atm

۳

Propanol – Butanol

Figura 130. Densidad de la mezcla Propanol-Butanol (27) a T = 308.15 K y P = 1 atm

Figura 131. Densidad de la mezcla Propanol-Butanol (27) a T = 313.15 K y P = 1 atm

Propanol – Pentanol

Figura 132. Densidad de la mezcla Propanol-Pentanol (27) a T = 308.15 K y P = 1 atm

Figura 133. Densidad de la mezcla Propanol-Pentanol (27) a T = 313.15 K y P = 1 atm

112

Figura 134. Densidad de la mezcla Octanol-Metanol (28) a T = 298.15 K y P = 1 atm

Octanol – Etanol

Figura 135. Densidad de la mezcla Octanol-Etanol (28) a T = 298.15 K y P = 1 atm

113

Metanol – Propanol

Figura 136. Densidad de la mezcla Metanol-Propanol (29) a T = 303.15 K y P = 1 atm

Etanol – Propanol

Figura 137. Densidad de la mezcla Etanol-Propanol (29) a T = 303.15 K y P = 1 atm

Figura 138. Densidad de la mezcla Metanol-Etanol (29) a T = 283.15 K y P = 1 atm

Figura 139. Densidad de la mezcla Metanol-Etanol (29) a T = 293.15 K y P = 1 atm

Figura 140. Densidad de la mezcla Metanol-Etanol (29) a T = 303.15 K y P = 1 atm

Figura 141. Densidad de la mezcla Metanol-Etanol (29) a T = 313.15 K y P = 1 atm

Figura 142. Densidad de la mezcla Metanol-Etanol (29) a T = 323.15 K y P = 1 atm

Tabla 11. Resultados del error porcentual promedio del cálculo de densidades de mezclas binarias de alcoholes con las ecuaciones PR- PR-f-mod, PR-f, PR-f-prop

	T (12)	Ném Datas	Defenseie		Error: %	AADρ		Compa	ración
Sistema (X ₁ -X ₂)	I (K)	NUM. Datos	Referencia —	PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
Butanol-Pentanol	308.15	8	Zhengjun S., Abdul-Fattah A. A. / Fluid Phase Equilibria,	0.8078	1.0345	2.9187	0.9275	0.8078	PR
	313.15	8	143(1998), Issues 1-2, 253-262	0.7594	0.7738	2.9726	0.7015	0.7015	PR-f-prop
Propanol-Butanol	308.15	8	Zhengjun S., Abdul-Fattah A. A. / Fluid Phase Equilibria,	1.5753	0.2797	3.1298	0.3426	0.2797	PR-f-mod
	313.15	8	143(1998), Issues 1-2, 253-262	1.5687	0.0861	3.1376	0.1734	0.0861	PR-f-mod
Propanol-	308.15	8	Zhengjun S., Abdul-Fattah A. A. / Fluid Phase Equilibria,	0.8868	1.2571	2.8471	1.0509	0.8868	PR
Pentanol	313.15	8	143(1998), Issues 1-2, 253-262	0.8661	1.0534	2.9113	0.8863	0.8661	PR
Octanol-Metanol	298.15	20	Awe, A., Blanco, A., Soto, A., Vidal, I. / J. Chem. Eng. Data, 38(1993), 336-340	8.9517	2.2743	0.7776	3.1216	0.7776	PR-f
Octanol-Etanol	298.15	21	Awe, A., Blanco, A., Soto, A., Vidal, I. / J. Chem. Eng. Data, 38(1993), 336-340	5.8329	2.6455	0.3038	3.4456	0.3038	PR-f

Tabla 11. (Continuación)

Sistema (X X)	T (K)	Núm. Datos	Referencia —		Error: %	Comparación			
	I (N)			PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
Metanol-Propanol	303.15	13	Dlzechl, M., Marschall, E. / J. Chem Eng. Data, 27(1982), 358- 383	7.3147	0.1709	1.5734	0.2100	0.1709	PR-f-mod
Etanol-Propanol	303.15	12	Dlzechl, M., Marschall, E. / J. Chem Eng. Data, 27(1982), 358- 383	4.0329	0.0604	1.9813	0.0642	0.0604	PR-f-mod
	283.15	21		10.6566	0.1230	0.5991	0.1993	0.1230	PR-f-mod
	293.15	20	Dizechi M. Marschall F. / I	10.4228	0.0777	0.8078	0.1189	0.0777	PR-f-mod
Metanol-Etanol	303.15	21	Chem Eng. Data, 27(1982), 358-	10.4168	0.0698	0.9447	0.0645	0.0645	PR-f-prop
	313.15	21	363	10.3715	0.0773	1.0450	0.0565	0.0565	PR-f-prop
	323.15	21		10.3651	0.0802	1.1095	0.0705	0.0705	PR-f-prop

Metanol – Etanol – Propanol

Figura 143. Densidad de la mezcla Metanol-Etanol-Propanol (29) a T = 303.15 K y P = 1 atm

Figura 144. Amplificación de la gráfica: densidad de la mezcla Metanol-Etanol-Propanol (29) T = 303.15 K y P = 1 atm, de x(1)= 0.15 a 0.19

U

Figura 145. Amplificación de la gráfica: densidad de la mezcla Metanol-Etanol-Propanol (29) T = 303.15 K y P = 1 atm, de x(1)= 0.29 a 0.34

Figura 146. Amplificación de la gráfica: densidad de la mezcla Metanol-Etanol-Propanol (29) T = 303.15 K y P = 1 atm, de x(1)= 0.43 a 0.47

Ξ

Figura 147. Amplificación de la gráfica: densidad de la mezcla Metanol-Etanol-Propanol (29) T = 303.15 K y P = 1 atm, de x(1)= 0.53 a 0.57

Figura 148. Amplificación de la gráfica: densidad de la mezcla Metanol-Etanol-Propanol (29) T = 303.15 K y P = 1 atm, de x(1)= 0.628 a 0.631

т

Tabla 12. Resultados del error porcentual promedio del cálculo de densidades de la mezcla ternaria de alcoholes con las ecuaciones PR- PR-f-mod, PR-f, PR-f-prop

Sistema (X ₁ -X ₂ -X ₃)	Т (К)		Referencia –		Error: %	Comparación			
		Núm. Datos		PR	PR-f-mod	PR-f	PR-f-prop	Error mínimo	Ecuación
Metanol-Etanol- Propanol	303.15	24	Dizechi, M., Marschali, E. / J. Chem Eng. Data, 27(1982), 358- 383	8.2171	0.1798	1.2894	0.2101	0.1798	PR-f-mod

2.12. ANÁLISIS DE RESULTADOS: SISTEMAS NO POLARES – POLARES, Y POLARES – POLARES

Como puede observarse en las tablas 10.1, 10.2, 10.3, 11 y 12, las ecuaciones PR-f-mod y PR-f-prop muestran superioridad en la predicción de la densidad de mezclas de compuestos polares con no polares y de compuestos exclusivamente polares, exceptuando algunos sistemas que a continuación se mencionan.

Al analizar la influencia de la temperatura sobre la predicción de la densidad puede verse que, al incrementar la temperatura del sistema, las ecuaciones de PR-f-mod y PR-fprop muestran el AAD más pequeño al predecir la densidad de la mezcla, mientras que a temperaturas menores, las ecuaciones de PR y PR-f muestran mejor predicción.

Al observar las gráficas de estos sistemas se puede ver que principalmente esta variación se presenta cuando uno de los componentes es octanol, heptanol, hexanol o pentanol, y que la tendencia de las gráficas de PR-f-prop y PR-f-mod se desvía de los datos experimentales conforme aumenta la fracción mol de estos componentes en la mezcla. Esto indica que los compuestos pentanol, hexanol y octanol puros no están representados correctamente por los parámetros de ajuste de ambas ecuaciones a bajas temperaturas (menores a 320K).

Compuesto	T _{min} [K]	T _{max} [K]	T _{exp} [K]
			293.15, 303.15, 308.15, 313.15,
Pentanol	320	560	323.15, 333.15, 353.15, 343.15,
			353.15, 363.15
			293.15, 303.15, 313.15, 323.15,
Hexanol	333.2	603.2	333.15, 353.15, 343.15, 353.15,
			363.15
			293.15, 303.15, 313.15, 323.15,
Heptanol	333.2	623.2	333.15, 353.15, 343.15, 353.15,
			363.15
Octanol	360	640	298.15

Tabla 13. Intervalo de temperatura para la obtención de parámetros de las ecuaciones PRf-mod y PR-f-prop del pentanol, hexanol y octanol Esta tendencia en la predicción de la densidad de la mezcla se ve claramente reflejada en la tabla 10, donde se indica el error porcentual promedio de la mezcla decano-pentanol y decano-hexanol a distintas temperaturas. Cuando se tienen las mezclas a temperaturas de 298.15K y 308.15K, las ecuaciones que presentan menor AAD son PR y PR-f, mientras que a partir de 313.15K hasta 363.15K, las ecuaciones que presentan un AAD más pequeño (menor a 1%) son PR-f-mod y PR-f-prop.

El análisis anterior no puede realizarse sobre las mezclas que contienen octanol ya que todas las mezclas de octanol estudiadas se encuentran a una temperatura de 298.15K. No obstante al analizar la Figura 134 y la Figura 135 se observa que la tendencia de la gráfica de los datos experimentales tiene la misma forma que la tendencia de las ecuaciones de PR-f-mod y PR-f-prop, mientras que la gráfica de las densidades obtenidas por PR-f, a pesar de que presenta un AAD menor, tiene una tendencia distinta. Estos resultados indican que, aunque la densidad de componente puro calculada con PR-f-mod y PR-f-prop se desvíe del dato experimental, estas dos ecuaciones representan la tendencia de la densidad del líquido en función de la composición.

En este apartado se realiza un ajuste del parámetro de interacción binaria I_{ij} de la mezcla nonano – benceno a distintas temperaturas, con la finalidad de minimizar el AAD en la predicción de la densidad de dicha mezcla.

Como puede observarse en las gráficas de nonano-benceno a distintas temperaturas (20) (Figura 62, Figura 63, Figura 64, Figura 65, Figura 66), los extremos de la gráfica en los que se tiene $x_1 = 0$, y $x_1 = 1$, es decir el nonano y el benceno se encuentran como compuestos puros, el error del valor de la densidad calculada con respecto al valor experimental es muy pequeño. Sin embargo, al mezclarse ambos componentes la gráfica de datos de densidades experimentales presenta una curvatura cóncava hacia arriba que ninguno de los modelos logra predecir. Dicha curvatura indica que la densidad experimental es mayor que la densidad calculada, lo cual implica que el volumen ocupado por las moléculas disminuye al mezclarse y por lo tanto existe un incremento en la densidad.

Dado que el factor del co-volumen *b* está relacionado con el espacio ocupado por las propias moléculas, al disminuir este factor se puede obtener una corrección en el valor calculado de la densidad de la mezcla, ocasionando que éste valor incremente. A fin de realizar una corrección al factor *b*, se introduce el parámetro de ajuste I_{ij} como se indica en la ecuación (3.2)

$$b_{ij} = \frac{b_i + b_j}{2} \left(1 - l_{ij} \right) \tag{2.2}$$

De esta manera, al incrementar el parámetro I_{ij} el factor del co-volumen b_{ij} disminuye, ocasionando que la densidad incremente, y viceversa.

Los parámetros de ajuste I_{ij} obtenidos para la mezcla nonano-benceno a distintas temperaturas se muestran en la tabla 14.

Mezcla	Temperatura [K]	I _{ij}
Benceno-nonano	313.15	0.0347
Benceno-nonano	333.15	0.07
Benceno-nonano	353.15	0.073

Tabla 14. Valores de parámetros de ajuste *l_{ij}* a distintas temperaturas

Por consiguiente, los resultados gráficos de las densidades calculadas con respecto a las densidades experimentales son las siguientes:

Figura 149. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =333.15 K sin ajuste de ${\sf I}_{ij}$

Figura 150. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T = 333.15 K con ajuste de l_{ij}

Figura 151. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =353.15 K sin ajuste de l $_{\rm ij}$

Figura 152. Densidad del líquido saturado de la mezcla Benceno-Nonano (20) a T =353.15 K con ajuste de ${\rm l}_{\rm ij}$

Figura 153. Densidad de la mezcla nonano-benceno (20) t =313.15k y p = 1 atm sin ajuste de l_{ij}

Figura 154. Densidad de la mezcla Nonano-Benceno (20) T =313.15 K y P = 1 atm con ajuste de I_{ij}

Igualmente se calculó el error porcentual de la densidad calculada con el parámetro de ajuste l_{ij} , con respecto a la densidad experimental, y se comparó con el error experimental que se tenía anteriormente. Los resultados se muestran en la tabla 15.

	- (14)		Error:	%AADp	AADρ Fase en		Comparacion		
Sistema (X $_1$ -X $_2$)	T (K)	Num. Datos	PR-f-mod	PR-f-prop	equilibrio	I ij	Error mínimo	Ecuación	
	313.15	13	1.0071	1.0349	-	0	1.0071	PR-f-mod	
Nonano-Benceno	333.15	13	2.4388	2.3914	L	0	2.3914	PR-f-prop	
	353.15	12	2.6034	2.4715	L	0	2.4715	PR-f-prop	
	313.15	13	0.1834	0.2022	-	0.035	0.1834	PR-f-mod	
Nonano-Benceno	333.15	13	0.1048	0.0934	L	0.07	0.0934	PR-f-prop	
	353.15	12	0.1966	0.1975	L	0.073	0.1966	PR-f-mod	

Tabla 15. Comparación del error porcentual de la densidad de la mezcal nonano-benceno con y sin parámetros de ajuste *l_{ij}* a distintas temperaturas

Ū

3. RESULTADOS DEL EQUILIBRIO LÍQUIDO VAPOR PARA MEZCLAS BINARIAS

Como parte de este trabajo, se realizó un estudio sobre el Equilibrio Líquido Vapor de los siguientes sistemas binarios a diferentes temperaturas: Hexano-Heptano (19), Ciclohexano-Octano (19), Ciclohexano-Nonano (19), Heptano-Octano (19), Benceno-Nonano (20).

A continuación se muestran los resultados gráficos del Equilibrio Líquido Vapor (ELV) de los sistemas binarios, donde se comparan los datos experimentales de presión de saturación de las mezclas con los resultados del cálculo de la presión de saturación con los modelos de PR, PR-f, PR-f-mod, PR-f-prop.

En base a los resultados obtenidos se calcula la Desviación Porcentual Absoluta Promedio (%AAD) en presión de saturación para los cuatro modelos utilizados, los cuales se reportan en la tabla16. El %AAD representa el error promedio sobre todos los datos calculados con respecto a los datos experimentales de cada modelo, y se calcula con la siguiente expresión:

$$\% AAD\rho = \frac{100}{n} \sum_{i=1}^{n} \frac{\left| P_{sat\,i,calc}^{fase1} - P_{sat\,i,exp}^{fase1} \right|}{P_{sat\,i,exp}^{fase1}}$$
(3.1)

Donde n es el número de datos de densidades calculados para la mezcla.

Hexano – Heptano

Figura 155. Equilibrio líquido vapor de la mezcla Hexano-Heptano (19) a T = 333.15 K

Figura 156. Equilibrio líquido vapor de la mezcla Hexano-Heptano (19) a T = 343.15 K

Ciclohexano – Octano

Figura 157. Equilibrio líquido vapor de la Mezcla Ciclohexano-Octano (19) a T = 333.15 K

Figura 158. Equilibrio líquido vapor de la mezcla Ciclohexano-Octano (19) a T = 353.15 K

Ciclohexano – Nonano

Figura 159. Equilibrio líquido vapor de la mezcla Ciclohexano-Nonano (19) a T = 333.15 K

Figura 160. Equilibrio líquido vapor de la mezcla Ciclohexano-Nonano (19) a T = 353.15 K

Heptano – Octano

Figura 161. Equilibrio líquido vapor de la mezcla Heptano-Octano (19) a T = 333.15 K

Figura 162. Equilibrio líquido vapor de la mezcla Heptano-Octano (19) a T = 353.15 K

Benceno – Nonano

Figura 163. Equilibrio líquido vapor de la mezcla Benceno-Nonano (20) a T = 333.15 K

Figura 164. Equilibrio líquido vapor de la mezcla Benceno-Nonano (20) a T = 353.15K

137

Sistema	T (17)	Núm Deter	Deferencia		Error: %	6AADP		Fase en	Comparacion	
(X ₁ -X ₂)	I (K)	NUM. Datos	Referencia	PR	PR-f-mod	PR-f	PR-f-prop	equilibrio	Error mínimo	Ecuación
Hexano- Heptano	333.15	11	Kun-Jung, L., Wei-Kuan, Ch., Jing- Wei K., Liang-Sun L., Chieh-Ming J. Ch. / J. of the Taiwan Institute of	0.9049	1.8677	3.7252	1.3785	ELV	0.9049	PR
343.15 11	Chem. Eng. 40 (2009) 573–579	0.8704	1.4627	3.4835	1.1442	ELV	0.8704	PR		
Heptano- Octano	333.15	11	Kun-Jung, L., Wei-Kuan, Ch., Jing- Wei K., Liang-Sun L., Chieh-Ming J. Ch. / J. of the Taiwan Institute of Chem. Eng. 40 (2009) 573–579	1.6208	1.748	2.7004	1.6548	ELV	1.6208	PR
	353.15	11		1.1161	1.9977	4.1033	1.5105	ELV	1.1161	PR
Ciclohexano- Octano	333.15	11	Kun-Jung, L., Wei-Kuan, Ch., Jing- Wei K., Liang-Sun L., Chieh-Ming J. Ch. / J. of the Taiwan Institute of	7.3007	2.6847	3.2417	4.1641	ELV	2.6847	PR-f-mod
	353.15	11	Chem. Eng. 40 (2009) 573-579	4.8643	1.9408	2.4624	2.7171	ELV	1.9408	PR-f-mod
Ciclohexano- Nonano	333.15	7	Kun-Jung, L., Wei-Kuan, Ch., Jing- Wei K., Liang-Sun L., Chieh-Ming J. Ch. / J. of the Taiwan Institute of	6.7077	9.621	10.8277	9.1765	ELV	6.7077	PR
	353.15 7	7	Chem. Eng. 40 (2009) 573-579	6.7005	9.1415	10.191	8.4592	ELV	6.7005	PR
Nonano- Benceno	333.15	13	Wei-Kuan, Ch., Kun-Jung, L., Jing- Wei, K., et. al. / Fluid Phase	6.091	8.1106	10.216	8.1073	ELV	6.091	PR
-	353.15	12	Equilibria, 287(2010), 126-133	7.1799	10.2636	12.4492	10.1219	ELV	7.1799	PR

Tabla 16. Error promedio porcentual del cálculo de presión de saturación para mezclas binarias de compuestos no polares

3.1. ANÁLISIS DE RESULTADOS: EQUILIBRIO LÍQUIDO VAPOR

La finalidad del ejercicio del cálculo de Equilibrio Líquido – Vapor fue verificar que la capacidad predictiva de la densidad de líquido subenfriado y líquido saturado mostrada con anterioridad por las ecuaciones de PR-f-mod y PR-f-prop no afectara su capacidad para predecir el Equilibrio Líquido – Vapor. En la tabla 16 se reporta el AAD sobre la presión de saturación calculada con las 4 ecuaciones utilizadas en este trabajo (PR, PR-f, PR-f-mod y PR-f-prop) para algunos sistemas. Los resultados sugieren que las ecuaciones de PR-f-mod y PR-f-prop permiten calcular el Equilibrio Líquido – Vapor con capacidades predictivas similares a PR y PR-f.

En la primera parte del trabajo se demuestra que los modelos de PR-f-prop y PR-fmod ofrecen una mejor predicción en el cálculo de densidad de sistemas binarios con componentes no polares en estado líquido, obteniéndose AAD menores o cercanas a 1%. Para mezclas tanto ternarias como cuaternarias de compuestos no polares se puede decir que, para los sistemas en la región del líquido saturado y del líquido subenfriado, las ecuaciones que muestran una mejor predicción son las ecuaciones de PR-f-prop y PR-fmod. Sin embargo cuando se tienen mezclas en estado supercrítico, la ecuación que presenta un mejor ajuste es la ecuación de PR-f. Cabe mencionar que, a pesar de que la ecuación de PR-f muestra un menor AAD en el cálculo de densidades de mezclas supercríticas, ninguna ecuación presenta una tendencia parecida a los datos experimentales, por lo cual se sugiere un estudio posterior sobre la extrapolación de estas cuatro Ecuaciones Cúbicas a sistemas de mezclas supercríticas.

Para las mezclas binarias en las que se tienen componentes polares con no polares, y las mezclas binarias y ternarias de componentes polares, cuando el sistema se encuentra a condiciones de temperatura bajo las cuales se realizó el ajuste de parámetros para las ecuaciones de PR-f-mod y PR-f-prop, ambas ecuaciones presentan un AAD pequeño en la predicción de la densidad. No obstante, cuando se tienen sistemas a temperaturas menores al intervalo dentro del cual se realizó el ajuste de parámetros, la extrapolación de dichas ecuaciones se desvía de los datos experimentales en mayor medida que la ecuación de PR-f. Sin embargo, los cálculos sugieren que como una primera aproximación, la densidad calculada con PR-f-mod y PR-f-prop es razonable. Para una mejor representación de la densidad en estas regiones, un ajuste de los parámetros de PR-f-mod y PR-f-prop para bajas temperaturas puede ser realizado.

Para el cálculo de densidades de mezclas binarias y ternarias de compuestos no polares y polares las ecuaciones de PR-f- mod y PR-f-prop mostraron sistemáticamente los mejores resultados.

Cabe mencionar que existe un aumento de la complejidad en el cálculo de propiedades con las ecuaciones de PR-f-prop y PR-f-mod con respecto a PR y PR-f, ya que se requieren los parámetros de componente puro j_1 , j_2 , j_3 , η_w , $\eta_p \ \mu_w$, μ_p , para la ecuación de PR-f-mod, y C₁, C₂, C₃ y C₄ para el cálculo de las funciones $\alpha'(T)$ y $\xi(T)$ de la

ecuación de PR-f-prop. Sin embargo, el esfuerzo adicional es pequeño comparado con la sustancial mejora en el cálculo de la densidad de líquido.

Los resultados del Equilibrio Líquido – Vapor de los sistemas analizados sugieren que la capacidad predictiva de la densidad de líquido subenfriado y líquido saturado mostrada por las ecuaciones de PR-f-mod y PR-f-prop no afecta su capacidad para predecir el Equilibrio Líquido – Vapor.

Como continuación de este trabajo, se recomienda un estudio sobre el ajuste de parámetros de componentes puros para las ecuaciones de PR-f-mod y PR-f-prop para temperaturas menores al intervalo de temperaturas dentro del cual se obtuvieron los parámetros originales. Así mismo se requiere un estudio sobre la extrapolación de las ecuaciones estudiadas a sistemas de mezclas en estado supercrítico, con un enfoque en la predicción de la densidad de dichas mezclas.

1. *Phase equilibrium modeling of mixtures of long-chain and short-chain alkane using Peng-Robinson and SAFT.* **Ting, P. D., et al.** 206, 2003, Fluid Phase Equilibria, pp. 267-286.

2. **Hinojosa-Gómez, H.** *Caracterización y obtención de propiedades termodinámicas de Petróleos Pesados Mexicanos.* Departamento de Ingeniería Química, Facultad de Química, UNAM. 2013. Tesis de Doctorado.

3. **Barragán-Aroche, J.F.** *Desarrollo de Programas de Cálculo de Equilibrio de Fases en Sistemas Multicomponentes.* Departamento de Ingeniería Química, Facultad de Química, UNAM. 1995. Tesis de Maestría.

4. **Bazúa-Rueda, E.R.** *Equilibrio Físico.* Departamento de Ingeniería Química, Facultad de Química, UNAM. 1994. Notas del Curso.

5. **van der Waals, J.D.** *Continuity of the Gaseous and Liquid State of Matter.* Leiden, Netherlands : s.n., 1873. PhD Dissertation.

6. Vapor liquid equilibrium modeling of alkane systems with Equations of State: "Simplicity versus Complexity". **Voustas, E. C., et al.** 2006, Fluid Phase Equilibria, Vol. 240, pp. 127-139.

7. *A modification to the Peng-Robinson-fitted equation of state for pure substances.* **Hinojosa-Gómez, H., Barragán-Aroche, J. F. and Bazúa-Rueda, E. R.** 2010, Fluid Phase Equilibria, Vol. 298, pp. 12-23.

8. *A new two constant equation of state.* **Peng, D. Y. and Robinson, D. B.** 1976, Ind. Eng. Chem. Fund., Vol. 15, pp. 59-63.

9. *Equilibrium constants from a modified Redlich-Kwong equiation of state.* **Soave, G.** 1972, Chem. Eng. Sci., Vol. 27, pp. 1197-1203.

10. *PRSV: and improved Peng-Robinson equation of state for pure compounds and mixtures.* **Stryjek, R. and Vera, J. H.** 1986, Ca. J. Chem. Eng, Vol. 64, pp. 323-333.

11. Voustas, E., et al. 2007, Fluid Phase Equilibria, Vol. 261, pp. 343-350.

12. **Cruz, M.E.** *Estudio Comparativo en la predicción de la densidad del Metano, Etano, Etileno y CO2 con tres Ecuaciones Cúbicas de Estado (PR, PR-f, PR-f, PR-f-prop), así como un análisis del ELV de sistemas binarios asimétricos.* Departamento Ingeniería Química, UNAM. Ciudad de México : s.n., 2012. Tesis de Ingeniero Químico.

13. *A versatile phase equilibrium equation of state*. **Mathias, P. M.** 1983, Ind. Eng. Chem. Process Dess. Dev., Vol. 22, pp. 385-391.

14. Van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modeling. Kwak, T. Y. and Mansoori, G. A. 5, 1986, Chemical Engineering Science, Vol. 41, pp. 1303-1309.

15. Densities and bubble points of binary mixtures of carbon dioxide and n-heptane and ternary mixtures of n-butane, n-heptane and n-hexadecane. **Fenghour, A., Trusler, J.P. M. and Wakeham, W. A.** 1-2, 2001, Fluid Phase Equilibria, Vol. 185, pp. 349-358.

16. **Smith, J.M., Van Ness, H.C. and Abbot, M.M.** *Introduction to Thermodynamics in Chemical Engineering.* 7. New York : McGraw Hill, 2005.

17. Viscosity and Density of Some Aliphatic, Cyclic, and Aromatic Hydrocarbons Binary Liquid Mixtures. **Chevalier, P. and Bonhomme, G.** 2, 1990, Journal of Chemical Engineering Data, Vol. 35.

 Density – Composition Data for Eight Binary Systems containing Toluene or Ethylbenzene and C8-C16 n-Alkanes at 293.15, 298.15, 308.15, 313.15 K. Abdul-Fattah,
A. A. and Mohammad, H. S. 2, 1990, Journal of Chemical Engineerng Data, Vol. 35.

19. *Isothermal vapor–liquid equilibria for binary mixtures of hexane, heptane, octane, nonane and cyclohexane at 333.15 K, 343.15 K and 353.15 K.* **Kun-Jung, L., et al.** 2009, J. of the Taiwan Institute of Chem. Eng, Vol. 40, pp. 573-579.

20. Vapor–liquid equilibria and density measurement for binary mixtures of toluene, benzene, o-xylene, m-xylene, sulfolane and nonane at 333.15 K and 353.15 K. Wei-Kuan, Ch., Kun-Jung, L. and Jing-Wei, K., et. al. 2010, Fluid Phase Equilibria, Vol. 287, pp. 126-133.

21. Densities of ternary mixtures of benzene + cyclohexane + hexane between 298.15 and 473.15 K,. T., Nasiru M. and B., Shafkat A. 1997, Fluid Phase Equilibria, Vol. 132, pp. 247-252.

22. Densities and bubble points of ternary mixtures of methane, n-butane and nhexadecane and quaternary mixtures of methane, n-butane, n-heptane and n-hexaecane. **Fenghour, A., Trusler, J.P.M. and Wakeham, W.A.** 2001, Fluid Phase Equilibria, Vol. 182, pp. 111-119.

23. Viscosities and Densities of Hexan + Butano – 1 – ol, + Hexan – 1 – ol, and + Octan – 1 – ol at 298.15K. Franjo, C., Jiménez, E. and Iglesias, T.P., 1995, J. Chem. Eng. Data, Vol. 40, pp. 68-70.

24. Viscosities and Densities of Octane + Butan – 1 – ol, Hexan – 1 – ol, and Octano – 1 – ol at 298.15K, Franjo, C., Menaut, C. P. and Jimenez, E. 1995, J. Chem. Eng, Vol. 40, pp. 992-994.

25. *Heat capacities and densities of the binary mixtures containing ethanol, cyclohexane or 1-hexene at high pressures.* **Vega-Mazaa, D., et al.** 2013, The Journal of Chemical Thermodynamics, Vol. 57, pp. 550-557.

26. Densities and viscosities of binary mixtures of n-decane + 1-pentanol, + 1-hexanol, + 1-heptanol at temperatures from 293.15 to 363.15 K and atmospheric pressure. Estrada-Baltazar, A., Bravo-Sanchez, M. G. and Iglesias-Silva, G.A. 3, 2015, Chinese Journal of Chemical Engineering, Vol. 23, pp. 559-571.

27. Viscosities and densities of eight binary 1-alkanol systems at 308.15 and 313.15 K. S., **Zhengjun and A., Abdul-Fattah A.** 1-2, 1998, Fluid Phase Equilibria, Vol. 143, pp. 253-262.

28. Densities, Refractive Indices, and Excess Molar Volumes of the Ternary Systems Water + Methanol + 1 – Octanol and Water + Ethanol + 1 – Octanol and Their Binary Mixtures at 298.15K. Arce, A., et al. 1993, J. Chem. Eng. Data, Vol. 38, pp. 336-340.

29. *Viscosity of Some Binary and Ternary Liquid Mixtures*. **Dizechl, M. and Marschall, E.** 1982, J. Chem. Eng. Data, Vol. 27, pp. 358-383.

30. An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions: data for carbon dioxide + decane. **Shaver, R.D., et al.** 2001, Fluid Phase Equilibria, Vol. 179, pp. 43-66.

ANEXO I. DIAGRAMA DEL CÁLCULO DE LA DENSIDAD DE LÍQUIDO COMPRIMIDO

DIAGRAMA 1. CÁLCULO DE LA DENSIDAD DE LÍQUIDO COMPRIMIDO

ANEXO II. DIAGRAMA DE CÁLCULO DE LA PRESIÓN DE BURBUJA

DIAGRAMA 2. CÁLCULO DE LA PRESIÓN DE BURBUJA