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Resumen

En este estudio se presenta un análisis numérico de la dinámica de burbujas y gotas
para diferentes condiciones de flujo. La tesis está enfocada a desarrollar herramientas
numéricas eficientes para analizar el flujo generado por burbujas y gotas en un fluido
viscoso y los mecanismos de transferencia de calor y masa en este tipo de flujos. La
implemetación numérica desarrollada en este trabajo está basada en los métodos de fron-
teras inmersas, particularmente usando el método de “front-tracking” para representar
una interfase entre dos fluidos inmiscibles, encontrando las fuerzas interfaciales y calcu-
lando las propiedades materiales de cada fluido en todo el dominio, esto permite resolver
un solo conjunto de ecuaciones de conservación. En el primer Caṕıtulo, se presentan la
formulación matemática de los métodos de fronteras inmersas, su acoplamiento con las
ecuaciones de Navier-Stokes y la estrategia de integración numérica. En el Caṕıtulo 2, se
reportan los resultados de las simulaciones numéricas en dos dimensiones del flujo gener-
ado por el ascenso de una burbuja, aśı como la comparación con resultados experimentales
en una celda Hele-Shaw que fueron realizados como parte del proyecto. Los resultados de-
muestran que a pesar de que el modelo bidimensional logra capturar cualitativamente las
principales carateŕısticas del flujo de una burbuja en una celda Hele-Shaw, existen difer-
encias cuantitativas muy significativas en las diferentes variables que gobiernan el flujo.
El código numérico fue extendido a tres dimensiones y diferentes simulaciones numéricas
se presentan en el Caṕıtulo 3. En la primera parte se muestran los resultados obtenidos
para bajos números de Reynolds, en la segunda parte se reportan simulaciones numéricas
de burbujas de aire en agua en donde la relación de densidades es del orden de 103 y en
donde el número de Reynolds es del orden 102-103. Además se muestra la comparación
con experimentos reportados en la literatura. En la parte final de este caṕıtulo se pre-
sentan simulaciones del flujo generado por múltiples burbujas ascendiendo en un fluido,
demostrando la capacidad de la implementación numérica desarrollada para la solución
de flujos más complejos. En el Caṕıtulo 4 se muestran los resultados para simulaciones
del flujo de burbujas en un canal, analizando principalmente el efecto sobre la transfer-
encia de calor debido a la presencia de las burbujas. En el Caṕıtulo 5, se describe el
desarrollo e implementación de un modelo de evaporación para gotas usando el método
de “front-trackin”. El modelo se valida mediante una solución anaĺıtica de las ecuaciones
de conservación para el fenómeno de evaporación en un contenedor parcialmente lleno de
ĺıquido. En la segunda parte del caṕıtulo se presentan diferentes simulaciones numéricas
de la evaporación de gotas. Finalmente, en el Caṕıtulo 6 se presenta la implementación del
método de fronteras inmersas y resultados preliminares de la simulación de una Turbina
de eje vertical.
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Abstract

In this study, the dynamics of bubbles and drops is explored numerically for different
flow conditions. The thesis is focused on the development of efficient numerical tools
to analyze the flow generated by the motion of bubbles and drops in viscous fluids and
by the heat and mass transfer mechanisms. The numerical implementation is based on
the immersed boundary methods, specially, the front-tracking method to represent the
interface between two fluids and calculate the material properties of each fluid into the
domain. With this strategy, the solution of only one set of the conservation equations is
required. In the first chapter, the mathematical formulation of the immersed boundary
methods, the coupling with the Navier-Stokes equations and the strategy for the numerical
integration are presented. In Chapter 2, the results of the numerical simulations of the flow
generated by the ascent of a single bubble are reported and compared with experiments in
a Hele-Shaw cell. The results showed that even when the two-dimensional model captures
qualitatively the main features of the flow generated by a bubble rising in a Hele-Shaw
cell, significant quantitative differences exist. The numerical code was extended to three
dimensions and simulations for different flow conditions are presented in Chapter 3. In the
first part, simulations at low Reynolds numbers are shown; in the second part, simulations
of air bubbles in water are reported. In the cases analyzed, the density ratio is about
103 and the Reynolds numbers are in the range of 102-103. Also, the comparison with
experimental data reported in the literature is shown. In the final part of the chapter,
simulations of the flow generated by multiple air bubbles ascending in water are presented
to test the robustness of the numerical implementation for solving more complex flows.
In Chapter 4, the results of the simulations of non-isothermal bubbly flows in a channel
are shown, paying attention on the effect of the presence of the bubbles on the heat
transfer. In Chapter 5, the development and implementation of an evaporation model
for falling drops are described. The model is validated by an analytical solution of the
conservation equations for the evaporation phenomenon in a container partially filled with
liquid. In the second part of the chapter, different simulations of the evaporation of a
single and multiple droplets are presented. Finally, in Chapter 6, the implementation of
the immersed boundary method and preliminary results of the simulation of the motion of
a Vertical Axis Wind Turbine (VAWT) is presented to demonstrate the versatility of the
code to solve problems of fluid-solid interactions with entirely different physical conditions
than those described in previous chapters.
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Introduction

Multi-fluid systems are of fundamental importance in many natural processes and in a
host of industrial activities such as combustion, chemical reaction, petroleum refining and
boiling. One of the simplest, yet most important of multi-fluid systems is the rising of
bubbles in a viscous liquid due to buoyancy which has been studied extesively. However,
even for the flow generated for a single bubble a comprehensive knowledge of the flow
behavior and mechanism of such multi-fluid systems in full flow regimes is still lacking,
although a number of experimental, theoretical analysis and numerical studies have ad-
dressed this problem. The first recorded observation of the rise of bubbles is to be found
in the writings of Leonardo da Vinci. About five centuries ago, Da Vinci summarized his
observations on the motion of air bubbles in a liquid in the following manner:

”The air that submerged itself with the water which percussed upon the other water, re-
turns to the air, penetrating the water in sinuous movement, changing its substance into a
great number of forms. And this happens because ”the light thing cannot remain under the
heavy”; rather it is continuously pressed by the part of the liquid which rests upon it; and
because the water that stands there perpendicular is more powerful than the other in its
decent, this water is always driven away by the part of the water that form its coverings,
and so moves more continually sideways where it is less heavy and in consequence offers
less resistance, according to the 5th [proposition] of the 2nd [book]; and because this ”has
to make its movement by the shortest way”, it never spreads itself out from its path except
the extent which it avoids the water which covers it above.”

Leonardo da Vinci’s words are translated in the picture presented in Figure 1 contained
in the Codex Leicester and dates from approximately 1510. In modern times, many
experimental works have reported several results about the behavior of a single rising
bubble, Bhaga & Weber (1981), Sanada et al. (2007), de Vries (2001) and Mingming &
Morteza (2002) are some examples. A comprehensive compilation of experimental results
is available in the book Clift et al. (1978) where bubble shapes and terminal velocities of
the bubbles for different flow conditions have been reported in the experimental works.
It is now well known and documented that bubbles rise in axi-asymmetric trajectories,
straight, spiral or zigzag. However, the mechanism of these motions of bubbles is not yet
fully understood and this remains as an open question Mougin & Magnaudet (2002). For
low Reynolds number the bubbles follow a straight path with a stable and axi-symmetric
wake. When the Reynolds number is increased the wake of the bubble becomes unstable

14
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of view of Aristotelian mechanics or the impetus theory, the
deviation from a straight path posed a puzzle because ‘‘Ev-
ery natural and continuous movement desires to preserve its
course on the line of its inception, that is, however its local-
ity varies, it proceeds according to its beginning’’ !ms. I, 6820
r, Ref. 59, Vol. 1, p. 76".62

Leonardo’s attempt at an explanation can be found in the
Codex Leicester !formerly Hammer; see Ref. 63"; Figure 18
shows fol. 25 r of this manuscript. The sketch in the upper
right corner, enlarged in Fig. 19, shows the spiralling motion
of a bubble and is accompanied by the following text:

‘‘The air which is submerged together with the water
... returns to the air, penetrating the water in sinuous
movement . . . . And this occurs because the light
thing cannot remain under the heavy . . . ; and be-
cause the water that stands there perpendicular is
more powerful than the other in its descent, this wa-
ter is always driven away by the part of the water
that forms its coverings, and so moves continually
sideways where it is less heavy and in consequence
offers less resistance . . . . And because this has to
make its movement by the shortest way it never
spreads itself out from its path except to the extent
to which it avoids that water which covers it above’’
!Ref. 59, Vol. 1, p. 112".64

A similar explanation is given in a passage in ms. F 37 r ,
accompanied by a sketch reproduced, among others, in Fig.
14 of Ref. 37:

‘‘Whether the air escapes from beneath the water by
its nature or through its being pressed and driven by
the water. The reply is that since a heavy substance
cannot be supported by a light one this heavy sub-
stance will proceed to fall and seek what may sup-
port it, because every natural action seeks to be at
rest; consequently that water which surrounds this
air above, on the sides and below finds itself all
spread against the air enclosed by it, and all that
which is above d e n m , #the reference is to the
sketch reproduced in Ref. 37$ pushes this air down-
wards, and would keep it below itself if it were not
that the laterals a b e f and a b c d which sur-
round this air and rest upon its sides came to be a
more preponderant weight than the water which is
above it; consequently this air escapes by the angles
n m either on one side or on the other, and goes
winding as it rises’’ !Ref. 59, Vol. 1, p. 557".
The ascending bubble was not the only phenomenon of

non-rectilinear propagation to attract Leonardo’s prodigious
observational powers. In ms. F 52 r , he writes

‘‘If every movable thing pursues its movement along
the line of its commencement, what is that causes
the movement of the arrow or thunderbolt to swerve
and bend in so many directions whilst still in the air?
What has been said may spring from two causes,
one of which . . . is as in the third #section$ of the
fifth #book$ concerning water, where it is shown
how sometimes the air issuing out of the beds of

FIG. 18. !Color" Fol. 25 r of Leonardo’s manuscript known as Codex
Leicester. The small sketch in the upper right-hand corner, enlarged in Fig.
19, shows the spiralling motion of a rising bubble. !Reproduced from Ref.
63 with the kind permission of the Armand Hammer Foundation."

FIG. 19. Detail of Fig. 18 showing Leonardo’s sketch of the spiralling
motion of a rising bubble. !Reproduced from Ref. 63 with the kind permis-
sion of the Armand Hammer Foundation."
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FIG. 1 
Sinuous motion of a gas bubble in a liquid. Drawing by Leonardo da Vinci. The original text 

containing his writings are available on CD-ROM, Leonardo da Vinci, Corbis Corporation, 1996. 

consequence offers less resistance, according to the 5th [proposition] o f  the 2nd [Book]; and because this 

"has to make its movement by the shortest way" it never spreads itself out f rom its path except to the 

extent to which it avoids the water which covers it above. '" Leonardo da Vinci's sketch of the bubble rise 

trajectory in water is reproduced in Fig. 1. Five hundred years on, we have attempted to simulate the 

motion of single gas bubbles in a liquid using the volume-of-fluid (VOF) technique developed by Hirt 

and Nichols [1]. Our objective is to see how far the VOF technique can be used for a priori simulations 

of bubble trajectories. A further objective of this paper is to examine bubble-bubble interactions in 

swarms using the VOF technique. 

VOF Simulation Method and Results 

The VOF model (Hirt and Nichols [1], Delnoij et al. [2]; Tomiyama et al. [3,4]) resolves the 

transient motion of the gas and liquid phases using the Navier-Stokes equations, and accounts for the 

topology changes of the gas-liquid interface induced by the relative motion between the dispersed gas 

bubble and the surrounding liquid. The finite-difference VOF model uses a donor-acceptor algorithm, 

originally developed by Hirt and Nichols [1], to obtain, and maintain, an accurate and sharp 

representation of the gas-liquid interface. The VOF method defines a fractional volume or "colour" 

function c(x,t) that indicates the fraction of the computational cell filled with liquid. The colour function 

varies between 0, if the cell is completely occupied by gas, and 1, if the cell consists only of the liquid 

phase. The location of the bubble interface is tracked in time by solving a balance equation for this 

function: 

Oc(x,t) + V • (uc(x, t)  = 0 (1) 
Ot 

The liquid and gas velocities are assumed to equilibrate over a very small distance and essentially Uk = u 

for k = L, G at the bubble interface. The mass and momentum conservation equations can be considered 

to be homogenous: 

Figure 1: Leonardo’s manuscript known as Codex Leicester. The small sketch in the
right-hand side shows the spiraling motion of a rising bubble.

and the bubbles start to rise in a zigzag path or turn into a spiral trajectory. For the case
of multiple bubbles, the dynamics is almost unexplored. Even when many experimental
and theoretical studies have been reported in the literature that are focused in bubbly
flows, there are many aspects in the dynamics and interactions of multiple bubbles that
are still not understood. See for instance Sanada et al. (2005), Pfleger et al. (1999), Lu
& Tryggvason (2008) and Drew & Passman (1999).
In real conditions it is very common that the multiphase flows are involved with other
phenomena as heat and mass transfer and it is important to understand how the dynam-
ics is affected due to the presence of such mechanisms and vice versa. In the case of
the heat transfer in bubbly flows, it is well known that the presence of a disperse phase
increases the heat transfer into the flow, but additional detailed studies for general flow
conditions are necessary to understand the effect of the bubbles in the flow in order to
take advantage of an specific system condition for a particular application. For the case of
the mass transfer, evaporation and condensation processes appear in many cases into the
flows with drops and bubbles. Although these mechanisms have been explored from the
experimental point of view and there exist some analytical models, a detailed theoretical
description is still lacking.
Considering the difficulties in experimental and theoretical investigations, numerical simu-
lations provide an effective alternative approach to attain a better insight into the bubbles
rising behavior, the development of bubble shape evolution and the heat and mass transfer
in bubbly flows. In recent years, significant progress has been made in understanding and
modeling bubbles rising in a column of fluid by advanced numerical simulations, particu-
larly, using the immersed boundary methods (Hua & Lou (2007), Ohta et al. (2005), Chen
et al. (1999), Bunner & Tryggvason (2002a), Lu & Tryggvason (2006)). In contrast with
the average models (e.g. two-fluids models), the immersed boundary methods provide
detailed information about the interface of the fluids; in these methods, the conservation
equations are solved without any modeling assumptions.
The most popular methods based on this formulation are the volume-of-fluid, level-set,
marker-particle, shock-capturing and front-tracking, to name a few. The numerical sim-
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ulations of bubbles using the volume-of-fluid method have been widely used to try to
understand the behavior of bubbles at different flow conditions, see for instance Scar-
dovelli & Zaleski (1999). However, many problems are presented when this method is
implemented, the most critical one being that artificial coalescence or rupture of bubbles
can occur as discussed by van Sint Annaland et al. (2005). Another approach used to
simulate multiphase flows is the level-set method (see Sussman et al. (1994) for details).
The implementation of this method is very simple in two and three dimensions but its
accuracy is limited because in most of the implementations disperse phases lose mass
during the simulation and artificial coalescence and break up of the bubbles also occur.
The front-tracking method is yet another alternative to compute multi-fluid systems as
the rising of bubbles as described by Tryggvason et al. (2001), Hua & Lou (2007), Gun-
sing (2004). This method is extremely accurate because the interface is tracked explicitly
using marker points connected to each other. Then, artificial coalescence does not occur
due to the fact that a separate mesh is used to track the interface, but this method is
difficult to implement since the interface of the fluids requires a remeshing algorithm each
time step.
In the present project, a numerical study of the rising of bubbles in a column of fluid is
presented, also heat and mass transfer mechanisms were implemented into the numeri-
cal simulations in order to explore more complex bubbly flows. The implementation is
based on the solution of the Navier-Stokes equations using the standard finite volume
method coupled with a front-tracking technique. The dynamics of bubbles was studied
in two dimensions and the results are presented in Chapter 2. Also here, the simulations
are compared with experiments that were carried out in a Hele-Shaw cell. The finite
volume/front-tracking method was generalized for three dimensional flows and in Chap-
ter 3, the dynamics of bubbles are presented in three parts; the first one is devoted to the
analysis of the motion of bubbles at low Reynolds number, and a detailed study of the
rising of bubbles at this flow conditions. The shape of the bubbles, terminal velocities and
external flows are calculated. In the second part, the bubbles rising at high Reynolds are
studied, the features of the oscillatory motion of the bubble and the unstable wake are ex-
plored. Finally in the third part, numerical simulations of multiple bubbles are presented
and discussed in order to show the capabilities of the numerical code developed during
this project. In chapter 4, the energy equation was solved in addition to the mass and
momentum conservation equations in order to explore the heat transfer in bubbly flows in
laminar and turbulent channels and interesting results are reported when the channel is
inclined at different angles. In Chapter 5, an evaporation model of drops is described and
implemented with the finite volume/front-tracking code; the complete implementation
was validated with an analytical solution and it was used to explore the evaporation of
drops falling by gravity. It is important to note that the main objective of this project
was to have a robust numerical tool to explore in general the behavior of two-phase flows
with disperse phases in realistic conditions using direct numerical simulations. Finally, in
Chapter 6, the implementation of the immersed boundary method to simulate the flow
around a Vertical Axis Wind Turbine is presented, the main objective of such numerical
implementation was to demonstrate that the model and code developed in this thesis can
be easily adapted to very different physical phenomena.



Chapter 1

Mathematical and numerical models

1.1 Mathematical Model

There are several ways to simulate multiphase flows; some classical examples are averaged
models, boundary integral and Lattice Boltzmann methods. Other alternatives include
immersed boundary methods for fluid interfaces. Commonly the immersed boundary
methods are applied to simulate systems in which elastic structures interact with fluid
flows Peskin (1977). However it is possible to extend this theory to the cases where fluid
interfaces exist. The immersed boundary methods for multiphase flows have been widely
applied in many different systems and various techniques based on that formulation such
as volume of fluid, level set and the front tracking are available.
The mark-and-cell method can be conceived as the oldest version of the immersed bound-
ary methods in which marker particles are used to identify each phase. Specifically, this
method was used at Los Alamos National Laboratory in the early 1960s and allowed the
first successful simulation of the finite Reynolds number motion of free surfaces and fluid
interfaces. On the other hand, in the volume of fluid method, a marker function is used to
find the interface between the two fluids, see Scardovelli & Zaleski (1999). This function
is advected using the velocity field found when the momentum equations are solved in the
domain. The level set is a widely used method, where a marker function is used to identify
the different fluids in the domain and no assumption is made on the connectivity of the
interface. This method allows an accurate computation of two phase flows including topo-
logical changes in the interface, like break up or coalescence of bubbles (Sussman et al.
(1994)). However, in flow fields with appreciable vorticity or in cases where the interface
is significantly deformed, level set methods suffer from loss of mass (volume) and hence
loss of accuracy (van Sint Annaland et al. (2005)). The front tracking method avoids
solving an equation for a marker function, but the interface between the fluids must be
tagged using an unstructured mesh with connected marker points that are advected with
the flow and then the surface tension and the material properties are computed from the
new location of the interface. For a detailed discussion on this point, see Prosperetti &
Tryggvason (2007).
In the present study, a fully three dimensional front tracking model that can be efficiently
used to perform numerous computational experiments was implemented. The front track-
ing method was chosen because of its excellent capability to calculate the surface tension
force, which significantly affects the bubble shape and dynamics. Other methods, like
the classical volume of fluid, level set and mark-and-cell models, do not allow for such
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an accurate and detailed representation of the surface tension force and the mass of the
bubble is not conserved during the simulations. Even in the front-tracking method the
volume of the bubble is not intrinsically conserved exactly, the volume slowly changes in
time. This is caused by the strategy used to move the interface, the applied filters and the
remeshing of the interface mesh, but the loss of mass is less than that obtained with the
other methods. The markers that span the surface elements are moved with their local
velocities; and these local marker velocities are interpolated from the velocity field on
the Cartesian grid. These interpolated velocities introduce minor small-scale anisotropy
(Gunsing (2004)), but, using a finer computational grid this problem can effectively be
suppressed.

Figure 1.1: One fluid approach illustration in two dimensions.

In the immersed boundary methods it is possible to solve a single set of conservation
equations using the “one fluid approach”. When a multiphase system is being analyzed,
it is necessary to take into account the differences between the material properties of the
fluids and the forces concentrated in the interface as the surface tension force. These
forces can be represented as delta functions in the interface, and a Heaviside function is
used in order to identify the different fluids in the domain 1 as illustrated in Figure 1.1
(Prosperetti & Tryggvason (2007)).

1The various fluids can be identified by a step (Heaviside) function H, which is 1 where one particular
fluid is and 0 elsewhere Tryggvason et al. (2001).
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Considering that the two fluids are incompressible, the mass conservation is given in terms
of the velocity u, by:

∇·u = 0. (1.1)

The momentum conservation equation must take into account the different fluid properties
of the two fluids and also the jump at the interface represented by the term of the surface
tension.

∂ρu

∂t
+∇· ρuu = −∇p+∇·µ(∇u +∇Tu)

+
∫
σκfnfδ

β(x− xf )dSf + (ρ− ρl)g.
(1.2)

The pressure is denoted by p, µ is the viscosity, g is the gravity vector, ρl is the density
of the continuous phase, σ is surface tension and κf is the curvature. The presence of the
interface is incorporated by the term δβ(x− xf ) = δ(x− xf )δ(y − yf )δ(z − zf ), where
x is the point at which the equations are evaluated and xf is a point in the interface.
Formally, the integral is over the entire front, thereby adding the delta functions together
to create a force that is concentrated at the interface, but is smooth along the interface.
It is important to note that this equation is valid for the whole field even when the density
ρ and viscosity µ fields change discontinuously.

1.2 Front-tracking method in three-dimensions

1.2.1 Structure of the front

The front is constructed by points that are connected by triangular elements in order to
form a non-unstructured grid. For each point, the only information stored is its coordi-
nates. The triangular elements are characterized by its centroid coordinates and special
arrays assigned to each element are used to store information on the points that connect
the element itself, as well as the local structure of the front, including its neighboring
elements. The elements also contain information about the physical properties associated
with the interface, such as the surface tension, change in the value of the marker function
across the front, and any other quantities that are needed for a particular simulation.
Figure 1.2 shows the key variables that are stored for each of the three-dimensional front
elements. The front motion is dictated by the velocity field on the regular grid properly
interpolated at each front point. The surface tension force is calculated in the front points
and interpolated to the regular grid to compute the conservation equations.

1.2.2 Remeshing the front

In general, an interface will stretch and deform as a result of the fluid motion. When
marker points are used to track the interface, stretching results in an increased separation
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Fig. 6.5. The structure of a three-dimensional front. The points only “know” their
coordinates. The elements, on the other hand, carry all information about the
structure of the front, including pointers to the corner points and to the adjacent
elements.

point outside the boundary and connect it to the point on the wall by a ghost

element. These ghost objects are not included in the front that describes

the fluid interface, but the front element connected to the wall point sees

the ghost element as its neighbor. The ghost objects form a (usually small)

linked list that allows us to access them in the same way as the regular front

objects. The position of the ghost point is adjusted in such a way that the

front tangent at the wall point has the desired value. In Fig. 6.4 we show

a two-dimensional front used to represent two blobs of the same material

and another blob whose properties are sufficiently different so that it must

be treated as a different interface. The second interface intersects a domain

boundary and the boundary conditions are enforced using ghost elements.

Three-dimensional fronts are built in the same way as two-dimensional

fronts, except that three points are now connected by a triangular element.

The points, again, only know their coordinates but the elements know about

their corner points and the elements that share their edges. Each element

has an “outside” and an “inside” and all elements on a given interface must

be oriented in the same way. The corners of each element and the edges are

numbered counter-clockwise (or clockwise—it is the consistency that mat-

ters!) when viewed from the “outside.” Figure 6.5 shows the key variables

that are stored for a three-dimensional front.

As for two-dimensional fronts it is often necessary to assume the shape

of the interface between the points. And, as for two-dimensional fronts,

linear interpolation is sometimes acceptable. In most cases, however, more

Figure 1.2: The structure of a three-dimensional front triangular element (Reprinted from
Tryggvason et al. (2001)).

of the points and eventually it becomes necessary to insert new points to resolve the
interface adequately. When the interface is compressed, the points are crowded together
and although it is, in principle, not necessary to remove points, in practice it is generally
better to do this, in order to avoid the formation of elements much smaller than the grid
size.

When the interface is a surface embedded in a three- dimensional flow, this aspect literally
takes on a whole new dimension. The regridding procedure consists of three basic steps:
(a) node addition (for elements that become too large); (b) node deletion (when elements
become small); and (c) reconnection or restructuring (to eliminate bad “aspect ratios”,
i.e., elements that have a small area but a large perimeter). Figure 1.3 depicts these three
basic regridding operations schematically.

1.2.3 Interpolating the front properties from the non-structured
grid to the Cartesian grid

Since the Navier-Stokes equations are solved in the fixed grid and the interface forces
like the surface tension are solved in the front, it is necessary to convert a quantity that
exists in the front to a grid value. Since the front represents a delta function, the transfer
corresponds to the construction of an approximation to this delta function on the fixed
grid. The discrete expression required for the conversion of a quantity from the front to
the fixed grid is given by:

φijk =
∑

φlω
l
ijk

∆sl
h3

(1.3)

where φijk is an approximation to the grid value, φl is an approximation to the front value,
∆sl is the area of the element l and ωlijk is the discrete form of the Dirac delta function
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Figure 1.3: The basic operations in dynamic restructuring of the three- dimensional in-
terface grid.

and is the weight of grid point ijk with respect to element l. The weighting functions can
be expressed as a product of one-dimensional functions. In three dimensions the weight
on the grid point (i, j, k) of the smoothing from Xp = (xp, yp, zp) is given by:

ωlijk = d(xp − ih)d(yp − jh)d(zp − kh) (1.4)

In the present work, the following form of the weighting function developed by Peskin
(1977) is used in order to construct d(r):

d(r) =

{
(1/4h)(1 + cos(πr/2h)), |r| < 2h

0, |r| ≥ 2h.
(1.5)

It is important to note that using the weighting function given by Peskin, sixty four
points of the finite volume grid are affected for the quantity calculated on the front and
the transition of the properties between the front and the regular grid is smooth compared
with other weighting functions reported in the literature.
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1.2.4 Computing the properties of the fluids

When the front-tracking method is used, the boundary between the different fluids is
moved according to the previously stated steps, but the fluid properties such as the
density and viscosity, are not advected directly, and it is therefore necessary to reset these
quantities at every time step. In order to make a consistent calculation, we first define
a indicator field I(x) that is a constant within a fluid, but different for each fluid and
then use it to set the physical properties. To construct the indicator field we use the fact
that the front marks the jump in the density and that this jump is translated into a steep
gradient on the fixed grid. The gradient of the indicator field in the one fluid formulation
can be expressed as:

∇I =

∫

S

∆Infδ(x− xf )dSf , (1.6)

and the integration is made over the surface of the front S. In a discrete form the indicator
field can be written as:

∇Iijk =
∑

l

∆Iωlijknl∆sl, (1.7)

where nl is the unit normal vector to each front element. Once the grid gradient of the
indicator field has been constructed, the field can be recovered. Taking the numerical
divergence of the grid indicator field gradient results in:

∇2I = ∇ · ∇Iijk. (1.8)

The left-hand side is approximated by standard central differences, and solving the re-
sulting Poisson equation with the appropriate boundary conditions yields the indicator
field everywhere.

The field distribution φ(x, t) of the fluid properties can be calculated with the indicator
field using a linear interpolation,

φ(x, t) = φbI(x, t)− φl(1− I(x, t)), (1.9)

where the subscripts b and f represent properties of the bubble and the surrounding fluid,
respectively.
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1.2.5 Advecting the front

The front advancement must be found by interpolating from the fixed grid field velocity,
using the same weighting function that was used to transfer the properties from the front
to the fixed grid. Once the velocity of each front point is known, its new position can be
found by a simple first order explicit Euler integration:

xn+1
f = xnf + vnf∆t, (1.10)

where xf is the front position, vf is the front velocity, and ∆t is the time step. It is
important to comment that the front velocity is computed using the Peskin weighting
function, i.e., the velocity of the sixteen closer points of the fixed grid to one point of the
front are used to find its velocity.

1.2.6 Surface tension force

One of the most important elements in the immersed boundary methods implementation
is the surface tension force calculation. This property depends of the curvature of the
interface, and since the interface is deformed during the simulation, the curvature must
be calculated in every time step. For three-dimensional problems, we use the fact that
the mean curvature κf of a surface can be written as:

κfnf = (nf ×∇)× nf . (1.11)

Recalling that σ is the surface tension coefficient, the force on a surface element is there-
fore:

δFσ = σ

∫

∆S

κfnfdSf = σ

∫

∆S

(nf ×∇)× nfdSf (1.12)

The Stokes theorem can be used to convert the area integral into a line integral along
the edges of the element as suggested by Tryggvason et al. (2001). Here, t is a vector
tangent to the edge of the element, and n is a normal vector to the surface. The cross
product is a vector that lies on the surface and is normal to the edge of the element. The
product of the surface-tension and this vector gives the “pull” on the edge and the net
pull is obtained by integrating around the perimeter of the element.

δFσ = σ

∮

S

t× ndSf (1.13)
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1.2.7 Volume conservation of the front

As discussed previosuly, the flow inside the gas bubble is assumed to be incompressible. A
consequence of this assumption is that the volume of the bubble should remain constant
throughout the simulations; however, the mesh needs to be adapted at every time step
and the motion of the interface can violate the incompressibility condition. Then it is
necessary to enforce in a geometric manner that the volume of the gas bubble remains
constant in the total time of the computational simulation. In Figure 1.4,the volume of
the bubble as a function of time is plotted. The red line is the simulation without any
correction of the volume of the bubble; it is clear that even when is a short simulation at
least 2% of the volume is lost; On the other hand when the geometric correction is used
the volume of the bubble is conserved (as indicated by the black line in Figure 1.4).
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Figure 1.4: Volume conservation with and without geometric correction.

1.3 Numerical integration of the conservation equa-

tions

One of the main objectives of the present investigation was to simulate the motion of air
bubbles in water. This requires the consideration of large density ratios (ρl/ρb ∼ 103) and
high Reynolds numbers. Before embarking in constructing the code, for integrating the
conservation equations to simulate the motion of gas bubbles immersed in a liquid, we
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made a through literature review to find the different strategies reported by the authors
to avoid the numerical problems that appear under certain flow conditions. The most
recent work that was found in the literature was Stene (2010). In his thesis, this author
presents simulations of a bubble using front-tracking method highlighting the cases where
the density ratio is very large. Other authors have made simulations at high Reynolds
numbers but not at high density ratios. For example van Sint Annaland et al. (2006)
reported simulations of water-air systems in which the density of the air is artificially
considered to be 10 kg/m3 to be able to properly perform the integration. In some other
works the authors try to justify the use of small density ratios by asserting that the results
are not sensitive to this property when density ratio are larger than approximately 50.

The following Navier-Stokes equations:

ρ

(
∂u

∂t
+∇·uu

)
= −∇p+∇·µ(∇u +∇Tu)

+
∫
σκfnfδ

β(x− xf )dSf + (ρ− ρl)g
(1.14)

are solved in their non-conservative form using a standard finite volume discretization.
Typically the error introduced when the density on the left hand side of the equation is
evaluated explicitly is below 0.5% using an appropiate time step Gunsing (2004). The
conservation equations can be solved with the projection method using a conventional
first-order scheme (Tryggvason et al. (2011)). The temporal integration is splitted in two
parts. The first part is a prediction step where the effect of the pressure is ignored,

u∗ − un

∆t
= − 1

ρn
(∇ · ρnunun +∇ · µn(∇un +∇Tun) + Fσ + Fbuoyancy). (1.15)

The second part is a correction step in which the pressure term is included:

un+1 − u∗

∆t
= − 1

ρn+1
∇p. (1.16)

The pressure is calculated in such a way that the velocity at the new time step satisfies
the mass conservation equation:

∇ · un+1 = 0. (1.17)

Replacing Eq.(1.17) in Eq.(1.16) the pressure can be calculated as follows:

∇ 1

ρn+1
· ∇p =

1

∆t
∇ · u∗, (1.18)

For solving the resulting pressure equation a special treatment is required since the density
is not a constant in the interface. In early formulations of the front-tracking method,
a simple successive over relaxation (SOR) method was used, but the results were not
satisfactory in the cases which the material properties of the fluids are very different.
Specially when the density ratio between the two fluids is large. Under these conditions,
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the SOR method takes a large computational time to solve the pressure Poisson equation,
since the resulting linear system of equations is ill conditioned, this in turn occurs because
some of the coefficients in the matrix are divided by the density of the bubble and others
by the density of the continuous phase. However, with a high order discretization in the
advection terms and a robust preconditioned solver the system can converge.

In this work, we used a Krylob preconditioned conjugate gradient to solve the pressure
equation in a GPU, in order to solve large Reynolds numbers and large density ratios.
The details about computational implementation will be presented in the next section. To
compute the momentum advection, the pressure term, and the viscous forces, any number
of standard discretization schemes can be used. Note however, that a robust discretization
for the advection terms can be the key to solve correctly flows at high Reynolds numbers.
In the present study, the calculation of the convection terms was improved significantly by
using a third-order upwind-biased polynomial called QUICK(quadratic upstream inter-
polation for convective kinematics). In Figure 1.5, the diagram of how the interpolation
must be done in the QUICK scheme for a regular finite volume grid is presented. As in
the upwind first order scheme, the polynomial interpolation depends on the direction of
the flow in the corresponding face of the control volume; using the notation of Figure
1.5 an example of a polynomial to calculate the variable φ in one of the faces can be
constructed as follows:

φw =

{
1/8(3φP + 6φW,j,k + φWW ) cw > 0

1/8(3φW + 6φP + φE) cw < 0
(1.19)

In our discretization the Navier-Stokes equations are solved in a staggered grid, the
QUICK scheme must be modified to calculate the three dimensional components of the
velocity in the faces of the control volumes. For example, the interpolation required to
calculate the component u of the velocity using the QUICK scheme is given by:

ui,j,k =

{
1/8(3ui+1/2,j,k + 6ui−1/2,j,k + ui−3/2,j,k) cw > 0
1/8(3ui−1/2,j,k + 6ui+1/2,j,k + ui+3/2,j,k) cw < 0,

(1.20)

where:

cw =
1

2
(ui−1/2,j,k + ui+1/2,j,k). (1.21)

1.4 Computational details

The first version of the code was developed in FORTRAN and works sequentially. In
order to accelerate the numerical computations the code was adapted to use the GPU
architecture. Most of the computational time is consumed in the solution of the pressure
and indicator Poisson equations. Then, an efficient and parallel library to solve large
sparse linear systems was used. There are many libraries to solve iteratively sparse linear
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Figure 1.5: Interpolation for the QUICK scheme in a finite volume regular 1D grid.

systems, so we decided to take advantage of the GPU architecture to accelerate the
solution of the linear systems obtained with our discretization. In many cases it is possible
to get considerably speed up when the linear systems are solved in the GPU with respect
to the CPU implementations. Currently, there are two tools available for this purpose:
CUSPARSE a part of NVIDIA’s CUDA, or the external library, CUSP. The CUSP library
was developed by several NVIDIA employees with minimal software dependencies and
released freely under an open-source license. We chose to use the CUSP library for several
reasons: it is in continuous development and separate from the main CUDA distribution,
allowing for faster addition of new features (such as new pre-conditioners, solvers, etc.);
and, all objects/methods from the library are usable on both CPU and GPU.
While the use of a more robust solver offers more stability in the numerical solutions even
in the cases of high density ratios, the use of the CUSP library implemented in the GPU
gives a considerable speed up time in our simulations, since the linear systems of equations
that results from the discretization of the pressure and indicator equations are solved in
parallel in the GPU. In order to use an open source language to developed the new front-
tracking code we decided to translate it from FORTRAN to CUDA C efficiently. As it is
well known, one of the important limitation in the GPU implementation is the amount of
memory available; then, the first improvement in this sense was to use a diagonal sparse
matrix format to store the coefficient matrices of the linear systems. To solve the indicator
and pressure equations we decided to use a conjugate gradient method with Jacobi pre-
conditioner. Using such strategy of the solution we were able to solve bubbly-flows with a
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density ratio up to 2000 which is twice as large as that required for an air-water system.
In Figure 1.6 , the comparison of the computational time required to solve the first time
step of the front-tracking code with the two different implementations is shown. In both
cases we use a projection method to solve the Navier-Stokes equations described in the
previous section. It is demonstrated that the CUSP implementation is faster than the
FORTRAN code, however, it is important to highlight that since the linear systems of
the serial code are solved with the SOR method an important speed up of the CUSP code
is obtained by using a more robust solver as it is the pre-conditioned conjugate gradient.
Then a fairer comparison has to be done by using a robust solver in the FORTRAN like
the MathKernel from intel. Avoiding such details, the speed up between the CPU and
GPU implementations are notable, even if we use a basic GPU as GeForce GT 430 with
96 CUDA cores. Running the code in a better GPU as the NVIDIA GTX 660 with 986
CUDA cores the speed up increased and we were able to solve huge domains with over 15
millions of control volumes.

105 106 107

100

101

102

103

N

tim
e 

[s
]

Figure 1.6: Calculation time for the CPU-SOR and GPU-CG codes, N is the number of
control volumes. The black curve represents the FORTRAN implementation and the blue
and red dashed lines the CUSP implementation computed in two different GPU’s.



Chapter 2

Dynamics of two dimensional
bubbles1

2.1 Background

The study of the dynamics of bubbles in Hele-Shaw cells have been proposed as an effort
to simplify the study of ascending bubbles by restricting the motion in one horizontal
direction. In this way, the available degrees of freedom are reduced since the description
can be made in terms of the position and deformation in two spatial coordinates. Under
these conditions, it is recognized that low velocity flows (small Reynolds numbers) can
be described with linear equations of the Darcy type. For large Reynolds numbers, the
inertial effects are important and the full Navier-Stokes equations are required to describe
the motion. Experiments were conducted for bubble diameters larger than the cell gap by
Maxworthy (1986), Kelley & Wu (2005) and recently by Roig et al. (2012). Under these
conditions, the squashed bubble is more like a cylinder than a sphere. The qualitative
properties of the dynamics of the bubbles and the flow around them can be described in
terms of nondimensional parameters like the Archimedes (Ar) and Eötvos (Eo) numbers
(for the definition of these parameters used in the present work see Section 2.3). Observe
however that the terminal Reynolds number is a result of the balance of the buoyancy
and drag forces and is not externally fixed. Roig et al. performed experiments using
air bubbles in water moving in a cell with a gap between the plates of 1 mm and found
a linear relationship between the Archimedes and terminal Reynolds numbers; namely
Re = 0.5Ar. For later reference, it is convenient to remark that the characteristic length
of the bubble used in the definition of the Archimedes and Reynolds numbers is the ap-
parent diameter of the bubble as seen from the perpendicular direction of the plates.
Kelley and Wu used a tilted Hele-Shaw cell with a gap of 1.6 mm and determined that
the wake formed in the surrounding fluid due to the motion of the bubbles was similar
to that observed behind solid cylinders, despite the different boundary conditions at the
interface. The onset of vortex shedding for large enough terminal Reynolds numbers was
found to be described as a supercritical bifurcation Kelley & Wu (2005). Beyond this
transition, the bubbles followed a zigzag path due to the non-symmetric pressure field at
the surface generated by the vortex shedding. It is important to emphasize that the vor-
tex distribution behind a bubble in a Hele-Shaw cell is completely different from the wake

1Preliminary results are presented in Piedra & Ramos (2012). A more complete description is given
in Piedra, Ramos & Herrera (2015)
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for an unconfined sphere or bubble formed by an elongated horseshoe vortex Horowitz &
Williamson (2010).
In this investigation, bubbles rising at moderate and high Reynolds numbers are stud-
ied, the features of the oscillatory motion of the bubble and the wake are explored. The
implementation is based on the solution of the Navier-Stokes equations coupled with
a front tracking method described in the previous chapter. However, in this case, the
pressure-velocity decoupling was accomplished with the SIMPLEC algorithm Versteeg &
Malalasekera (1995) which was demonstrated to be superior to the projection method for
problems with markedly different densities Hua & Lou (2007). Also, the diffusive and
convective terms were discretized with a second-order centered scheme and the time inte-
gration was done with a first-order scheme, the details of the numerical implementation
are reported in Piedra (2011). The results are presented using the Eötvos (ratio of buoy-
ancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces).
For formal definitions of these parameters, see subsection 2.3.1. Also, the results of the
numerical simulations are compared with experiments in a Hele-Shaw cell. This is an
interesting physical situation that approximates the motion of bubbles in two dimensions.
In order to be able to compare the results of the simulation with experimental obser-
vations, a robust code has been developed capable to solve the conservation equations
considering air bubbles in water where the ratio of densities is approximately 103 for a
total duration of the simulation long enough to allow the bubble to move 420 diameters.

2.2 Experimental device

The experimental observations reported in section 2.3, were made using a Hele-Shaw
cell which consisted of two parallel rectangular glass plates (50 cm × 25 cm × 0.2 cm),
separated by 0.1, 0.2 or 0.25 cm thick spacers and sealed with an o-ring. The plates were
fixed in a vertical position with an aluminum frame and clamps. Distilled water filled the
gap between the two glass plates. A needle is used to inject the bubbles at the bottom of
the cell. Figure 2.1 shows the experimental arrangement. In order to accurately fix the
volume of the bubbles and systematize the injection process, we used the methodology
proposed by Tomiyama et al. (2002). The air bubble is fed into the needle through a thin
hose whose other end is fitted to a Y type hose connector. The hose is filled with water
but an air bubble with a known volume generated with a syringe pump is introduced in
the hose via one leg of the connector (see detail in Figure 2.1). A static pressure nearly
equal to that occurring at the bottom of the cell is put at the other end of the connector
with a hydrostatic pressure head system. A small increase of the hydrostatic pressure
gently moves the bubble through the hose to the needle and into the cell. The syringe
pump used to inject a controlled amount of volume into the cell can introduce 0-100µl
with a precision of 0.1µl. This allows us to inject bubbles for the three different cell gaps
from 2 to 7.3 mm of apparent diameter.

The trajectory and shape of bubbles were recorded at 240 fps with a high-speed camera
with resolution of 640 × 480 pixels and an image analysis algorithm is used to detect
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Figure 2.1: Hele-Shaw cell used to obtain the experimental results of Section 2.4. The
amplified detail shows the arrangement to inject a bubble with controlled volume and
negligible initial velocity. a) feeding needle, b) feeding hose, c) Y connector, d) pressure
head hose, e) syringe pump, f) pressure head reservoir. The observation area is indicated
by the broken line.

the pixels that correspond to the boundary of the bubble on the plane of the cell. The
algorithm determines the time evolution of the bubble, its shape and locates the centroid
of the bubble in all frames. Using this information the apparent diameter is found as
D =

√
4A/π, where A is the projected area of the bubble on the plane of the cell. The

velocity of the bubble as a function of time can be computed using the trajectory of its
centroid. All observations were made at least 14 cm above the feeding needle where the
details of the bubble formation and departure are negligible. The observation window is
indicated by the broken line in figure 2.1. The goal in the image processing was to find
the interface to calculate the area and the centroid of the bubbles. For large bubbles
that do not have elliptical shape, the interface was tracked using an internal function of
Matlab, the images were converted from gray scale to black and white and compared with
a base image in which no bubbles are present. For smaller bubbles, an ellipse fit function
was used to find the interface, the resulting images after the processing for both cases are
illustrated in Figure 2.2.

2.3 Results

In the first part of this section, we present an overview of the phenomenon by making
a parametric study in the (Eo,Ar) space to establish the general properties of the sin-
gle bubble dynamics. Then, we describe the motion of the centroid, geometry and flow
patterns of individual bubbles and then, we compare the numerical results with the ob-
servation of bubble dynamics in a Hele-Shaw cell which is an approximation of a two
dimensional bubble dynamics.
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and locate the centroid of the bubble for all frames. Using these information
the equivalent diameter is found as D =

�
4A/π, where A is the projected

area of the bubble on the plane of the cell, also the velocity of the bubble as
a function of time can be computed using the trajectory of its centroid. The
goal in the image processing was to find the interface to calculate the area
and the centroid of the bubbles. For large bubbles that do not have elliptical
shape, the interface were tracking using an internal function of Matlab, the
images were converted from gray scale to black and white and compared with
a base image in which not bubbles are presented. For smaller bubbles, an
ellipse fit function were used to find the interface, the resulting images after
the processing for both cases are illustrated in Figure ??.

4 Alternate project: Numerical simulations

of a VAWT

References

[1] Esmaeeli, A. and Tryggvason G., Direct numerical simulations of bubbly
flows. Part 1. Low Reynolds number arrays. J. Fluid Mech. 377, 313-345,
1998.

Figure 2.2: Images processed to find the geometrical features of the bubble. On the left
side, the images taken from the high speed camera are presented. On the right side, the
results after the image processing algorithm are shown.

2.3.1 General properties

It is convenient to make the description of the geometry and trajectories of the bubbles
in terms of the Eötvos and Archimedes numbers which represent the ratio of buoyancy
forces to surface tension and the ratio of buoyancy to viscous forces respectively and are
defined by

Eo =
D2g∆ρ

σ
and Ar =

(
gD3ρl∆ρ

µ2
l

)1/2

, (2.1)

where ∆ρ = ρl − ρb and ρl and ρb are the density of the fluid and bubbles respectively.
The viscosity of the continuous phase is µl and D is the initial diameter of the bubble.
Observe that frequently, the Morton number defined by Mo = Eo3/Ar4, has been used in
the literature to describe the features of the bubble motion. Note that the this parameter
depends only on the physical properties of the bubbles and surrounding fluid.

A useful dimensionless parameter to characterize the flow is the Reynolds number, defined
by

Re =
ρlUTD

µl
. (2.2)

Note however that this Reynolds number depends on the terminal vertical velocity of the
centroid of the bubbles UT and cannot be prescribed a priori in the problem, but is the
result of the interaction of buoyancy and drag forces.
The Re vs Eo chart that describes the geometry and dynamics of two dimensional bubbles
constructed from our numerical simulations is shown in Figure 2.3. The examples analyzed
are represented by small circles in the chart. Regarding the shape of the bubbles, the
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following regions, separated by continuous black lines, can be distinguished: a) Circular
bubbles are found at the left bottom region of the (Eo, Re) map where surface tension
dominates. b) Intermediate region where shear and surface tension effects have a similar
influence leading to oblate ellipses and c) Region with relatively large Eötvos numbers
where shear effects are large and bubbles develop flat bottom shapes. The aspect ratio
(length of minor axis/length of major axis) has small variations as the bubble ascends,
but its average value gets smaller as the Eötvos number grows. The boundary between
the elliptical flat bubbles is diffuse since the evolution is gradual and it is difficult to
determine the precise parameters when the lower part of the ellipse develops a flat region.
Cases calculated with constant Archimedes numbers are joined by broken lines. As it can
be observed, bubbles with equal Archimedes number reach a larger terminal Reynolds
number for smaller Eötvos number. i.e. all red broken lines are monotonously decreasing.
This effect is due to the modification of the bubble shapes since, as commented before,
the aspect ratio of bubbles becomes smaller for larger Eötvos numbers. Regarding the
motion of bubbles, it is found that cases under the black broken line follow straight
ascending trajectories, while those above it ascend following zigzag trajectories due to
vortex shedding. In the next subsection we present a more detailed discussion on this
feature, here we only observe that the critical Reynolds number for circular bubbles is
44.2 approximately coinciding with the critical Reynolds number for vortex shedding by a
fixed, rigid cylinder of 45 Williamson (1996). In contrast, for elliptical shapes, the critical
Reynolds number is a decreasing function of the Eötvos number, i.e. the critical Reynolds
number is dependent on the aspect ratio of the elliptical bubbles. This phenomenon was
observed for rigid elliptical bodies Johnson et al. (2001). The case Eo = 0.84, Ar = 392
is described somewhat in detail in the next sections.

An interesting property of the dynamics of individual bubbles with fixed Morton number
is displayed in Figure 2.4 where the terminal Reynolds number is plotted as a function
of the Archimedes number for Mo = 2.5 × 10−11. As can be appreciated, the terminal
Reynolds number is approximately equal to the Archimedes number in the range 2×102 <
Ar < 2× 103. In the interval of validity, the approximation is better for the larger values
of Archimedes numbers. In the specific example of this figure, Re = Ar. It should
be noticed that this property is verified for both circular and elliptic bubbles shedding
vortices, where the vertical velocity pulsates and we report the average, (see Section 2.3.2).
The linear relation between the terminal Reynolds number and the Archimedes number
was experimentally discovered by Roig et al. (2012) for air bubbles in a Hele-Shaw cell filled
with water. In their observations, they found Re = 0.5Ar. The difference between the
proportionality constant obtained with the two-dimensional model and the observations
in the Hele-Shaw cell is further discussed in Section 2.4. The relation between the terminal
Reynolds and the Archimedes numbers is important since the terminal Reynolds number
is very informative with respect to the flow around the bubbles and cannot be set a priori
in an experiment.

As commented before, the cases above the black broken line in Figure 2.3 ascend in zigzag
with a characteristic frequency f . It is found that the non dimensional frequency (Strouhal
number St = fD/UT ) of the ascending bubbles is a monotonic increasing function of
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Figure 2.3: Map of qualitative behavior of the two dimensional bubble motion. The black
broken line indicates the critical Reynolds number. Below this line, the bubbles follow
straight trajectories (circles) and above it the bubbles ascend in zigzag (filled circles).
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Figure 2.4: Terminal Reynolds number as a function of Archimedes number. The Morton
number is 2.5× 10−11. The line represents Re= Ar.
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Figure 2.5: Strouhal number as a function of terminal Reynolds number (blue points)
for Mo = 2.5 × 10−11. This case correspond to air bubbles in water. The line is
St=A/Re+B+CRe with A= -31.1, B= 0.213, C= 1.5×10−5.

the terminal Reynolds number, as it is demonstrated in Figure 2.5. The points plotted
correspond to those presented in Figure 2.4. The data can be fitted with a function of the
form St=A/Re+B+CRe which was proposed as a universal curve to describe the vortex
shedding in the wake of rigid, fixed cylinders Williamson (1988). This curve also describes
the Strouhal number of air bubbles ascending in a a Hele-Shaw cell Kelley & Wu (2005).
Note however, that the Reynolds number ranges in the two cases are different. For air
bubbles in water the range is 200 < Re < 2000 while for fixed cylinders and experimental
bubbles it is approximately 45 < Re < 180. Also, the coefficients A,B and C in the
expression are different. It would be tempting to compare the coefficients A, B and C in
the two cases. We find that the first coefficient is an order of magnitude larger in the two
dimensional bubble model, the second coefficient is 20% larger and the third is an order
of magnitude smaller. The coefficients for cylinders are taken from Williamson (1988).
Now, it should be emphasized that the comparison is not direct since there are three major
differences in the two physical conditions. One is the boundary condition at the interface;
while the no-slip condition for the rigid cylinders is imposed, for the bubbles, we use the
slip condition. The second one is that the ratio of the density of the surrounding fluid
to the density of the body is about 103 for the bubbles and essentially zero for the rigid
obstacle since by definition, the cylinder remains motionless in spite of the forces acting
on its surface. Finally, the bubbles deform due to the interaction with the surrounding
fluid and the cylinder does not. These effects account for the differences in the Reynolds
numbers where vortices are shed and consequently for the different coefficients obtained.
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2.3.2 Trajectory of the centroid

Representative trajectories of the centroids of individual bubbles with Eo = 0.84, Ar =
14, 28, 70 and 392 are shown in Figure 2.6. In order to present the results in a non-
dimensional form the variables were normalized using the diameter D as a characteristic
length and (D/g)0.5 as the characteristic time. The scaled variables are x∗ = x/D,
y∗ = y/D and t∗ = t/(D/g)0.5. All trajectories display initial straight vertical lines where
the motion is accelerated. For the case with smaller Archimedes number (Ar = 14), the
bubble ascends in a straight line with a Reynolds number smaller than the critical one
for vortex shedding as established in Figure 2.3. For the cases with larger Archimedes
numbers, the short vertical segment where the bubbles have a monotonously accelerated
motion, is followed by a zigzag oscillation in which the amplitude and frequency depend on
the Reynolds number (see Figure 2.7). The point where the zigzag motion starts is where
the bubble begins shedding vortices and forms a complex wake similar to a von Karman
vortex street (a more complete description of the bubble wake is presented in sub-section
3.4.1). It is found that except in the region near the departure position at the bottom of
the cell, the transversal oscillation of a bubble with Ar = 28 increases monotonically its
amplitude as the bubble ascends to reach a terminal value of approximately 3.5 bubble
diameters. In the flow regime where the bubble exhibits elliptical shapes, (Archimedes
numbers 70 and 392), the trajectories display a zigzag motion with almost a constant
amplitude along their trajectories, as it is shown in Figure 2.6. The amplitude of the
oscillation in this range is an increasing function of the Archimedes number that saturates
at about 5.5 diameters. Besides the oscillations described in the previous lines, we also
observe transient oscillations with much lower frequency, that die out after approximately
300 bubble diameters for the range of Archimedes numbers explored.

In Figure 2.7, we show the instantaneous Reynolds numbers calculated with the horizontal
(Rex) and vertical (Rey) components of the velocity as functions of time for Eo = 0.84,
Ar = 392 and Mo = 2.5 × 10−11 which correspond to one of the trajectories presented
in Figure 2.6. Since the kinematic viscosity and diameter of the bubble are constant, the
Reynolds number can be considered as a non dimensional velocity. The large oscillation in
the horizontal component is expected from the zigzag motion, as the red broken line in the
figure indicates, but it is found that the vertical motion also displays a small oscillation
superposed to its average value, with an amplitude of approximately 1/6 of the horizontal
oscillation. The fact that the average vertical Reynolds number is much larger than the
its horizontal counterpart (almost zero) is a consequence of the ascending motion of the
bubble. The maximum Reynolds numbers attained by the two components are similar,
but the frequency of the vertical velocity is twice as that of the horizontal component with
the maxima of the vertical velocity coinciding with the zeroes of the vertical velocity trace.
An analogous behavior was found in a fluttering solid ellipse that falls due to gravity as
it is explained in Andersen et al. (2005). This phenomenon is generic to periodic and
side-to-side oscillations superimposed to a constant average ascent or descent speed. It is
interesting to note that the origin of this dynamic behavior is found in the small amplitude
solutions of the Kirchhoff equations (see Andersen et al. (2005)). Although the comments
above refer to the dominant harmonics of the velocity traces, it is important to observe
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Figure 2.6: Trajectory of the centroid of individual bubbles for Eo = 0.84 and Ar = 14
(red), 28 (black), 70 (blue) and 392 (cyan). Note that the horizontal dimension has been
amplified.
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Figure 3. The measured velocities (solid lines) for fluttering with h = 0.081 cm and β = 1/14,
and the best fits (dotted lines) of the velocity expressions derived from equations (4.1) and
(4.2). (a) The horizontal velocity component vx , (b) the vertical velocity component vy , and
(c) the angular velocity ω. Both vx and vy are well-described by a single harmonics, whereas
three harmonics are needed to capture the main features of ω with three local extrema for
each half-period.

The frequency of the oscillatory component of the vertical velocity is twice the fre-
quency of the oscillatory horizontal velocity component because of the symmetry of
the fluttering motion. Any solution with periodic and symmetric side-to-side oscilla-
tions and constant average descent speed will therefore in general contain terms like
(4.1) and (4.2). A special example of such motion is that of a rigid object with elliptical
cross-section in a two-dimensional inviscid flow without gravity and circulation (Lamb
1945). The problem is described by Kirchhoff ’s equations, and the small-amplitude
analytical solution consists of symmetric side-to-side oscillations. However, the phase
difference between the two oscillatory components and the rotational motion in the
ideal fluid problem are different from the fluttering trajectory of a thin plate falling
in a viscous fluid.

4.2. Tumbling

Figure 2(c) shows the trajectory and figure 5 the velocity components as functions of
time for the tumbling plate with h = 0.162 cm and β = 1/5. The plate is released at
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The fluttering with I ∗ = 1.1 and the tumbling with I ∗ = 1.4 alternate between gliding
at low angle of attack and fast rotational motion and centre of mass elevation at the
turning points in agreement with the direct numerical simulations by Pesavento &
Wang (2004) and the experiment by Andersen et al. (2005). We find a period-
doubling bifurcation between I ∗ =1.4 and I ∗ =1.45, and we note that the typical
tumbling motion has a period-two structure as illustrated by the direct numerical
solution shown in figure 1(d).

With I ∗ = 1.6 we find a periodic solution in which the card displays a mixture of flut-
tering and tumbling, and with I ∗ =2.2 we find a chaotic solution with a maximum Lya-
punov exponent of λmax = 0.13 ± 0.01. Chaotic solutions, for which the solution with
I ∗ = 2.2 is a typical example, are found with µ1 = µ2 = 0.2 and I ∗ in the range between
1.8 and 2.8 as shown in figure 4(b) below. The card in figure 3(f ) oscillates about
the broadside-on fixed point. The broadside-on fixed point becomes stable and the
oscillations are damped out if the dissipative torque is increased and the characteristic
dissipative time scale for the decay of angular momentum is decreased. In the following
we describe this bifurcation and the bifurcation between fluttering and tumbling.

6. Fixed points and bifurcations
6.1. Transition between steady descent and oscillatory motion

The differential equations have four steady solutions in which the card falls vertically
and gravity is balanced by drag, i.e. two fixed points for which the card falls edge on:
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and two fixed points for which the face of the card is normal to the direction of
motion:
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 (6.2)

Figure 4(a) illustrates the edge-on and the broadside-on steady solutions. We use
V and W to denote the edge-on descent speed and the broadside-on descent speed,
respectively. In the following we obtain the phase diagram for the system (5.1)–(5.3)
in the I ∗ versus µ1 plane and show that the transition between steady descent and
oscillatory motion and the transition between fluttering and tumbling are related to
the fixed points.

Figure 4(b) shows the phase diagram in the I ∗ versus µ1 plane with fluttering,
tumbling, and steady broadside-on descent as we vary I ∗, µ1, and µ2 while keeping
µ1 = µ2 and CT , CR , A, and B fixed. The transition between steady broadside-on
descent and oscillatory motion takes place as the broadside-on fixed point goes from
being stable to being unstable via a Hopf bifurcation at the bifurcation curve:

µ1 =
1

4

√
3

5π

2I ∗ + 1

I ∗ − 1
. (6.3)
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Figure 2.7: Horizontal and vertical Reynolds numbers as functions of time after the
initial transient has died out. The blue trace is the Reynolds number defined with the
vertical component of the velocity. The red trace is the Reynolds number defined with
the horizontal component of the velocity. Eo = 0.84, Ar = 392 and Mo = 2.5× 10−11.

that the vertical velocity is clearly not a simple harmonic and displays small variations
in the amplitude. These relatively small effects can be attributed to the interaction of
the bubble with the surrounding fluid. Due to viscosity and deformation, the interaction
becomes much more complex (see section 3.4.1).

2.3.3 Shape and orientation of bubbles

As explained in the description of the chart in Figure 2.3, the geometry of the bubbles
varies from essentially circular at small Eötvos numbers to ellipses and to deformed ellipses
with flat bottom. The shape of the bubbles results from the interaction of the surface
tension at the interface and the shear flow outside the bubbles which in turn depends on
the phase of the zigzag oscillation. The shape of bubbles with small Eötvos numbers, is
circular and they ascend in straight trajectories, accelerating at the initial stages and up to
the point where a terminal velocity is attained. If the terminal Reynolds number is smaller
than the critical one (black broken line in Figure 2.3), no vortices are shed and the stress
at the surface is symmetric and not large enough to deform the bubble. In contrast, in the
region of the map where the bubble acquires a zigzag motion, its shape and inclination is
changing periodically during the whole ascending trajectory. This behavior is illustrated
in Figure 2.8. In the left panel of the upper row, the inclination of the major axis of the
elliptical bubble with respect to the horizontal during one cycle is shown as a function of
its position in the horizontal coordinate. The time evolution of the inclination is indicated
by the arrow. The shapes of the bubble at points A) and B) are shown in the mid row of
this figure. In the right panel of the upper row, the aspect ratio of the bubble is plotted
as a function of the horizontal position for one cycle of the bubble trajectory. As can
be appreciated, under these conditions, the shape of the bubble is always elliptical, but



2.3. Results 41

there is a small (10%) change in the aspect ratio as the bubble ascends. The aspect ratio
has a maximum and minimum value when it changes its direction in the zigzag motion.
In the middle row of Figure 2.8, snapshots of the shape of the bubble are presented, the
dynamical features of the motion can be also interpreted in terms of the inclination of the
bubble as it ascends. In the left panel of the middle row, the inclination of the major axis
of the bubble with respect to the horizontal in one cycle of oscillation is approximately
-40◦. The bubble has a positive inclination in position A) and a negative inclination
in position B). The pressure fields near the bubble are also plotted for these positions.
This oscillation in the inclination is consistent with an oscillatory, non-symmetric pressure
field around the surface of the bubble. The vorticity field corresponding to the pressure
fields of the mid row of Figure 2.8 are given in the lower row. Vorticity is generated
more efficiently at the region of the bubble where the radius of curvature is minimum
and two zones of concentrated vorticity appear. Vorticity is swept downstream by the
relative velocity and evolves to form the wake. The dynamic behavior described above is
summarized in Figure 2.9. The orientation of the bubble swings from - 45◦ to + 55◦ and
the largest inclinations are found in the mid-line of the zigzag motion of the horizontal
oscillation while the smallest inclinations are found where the bubble is in the extremes
of the zigzag trajectory.

2.3.4 Forces and Torque on the bubble

As part of the post-processing of the data obtained, it is important to comment that the
velocity of the centroid of the bubble was obtained by interpolating the velocity in the
regular grid using the weighting function given by Peskin (1977). The hydrodynamical
total force and the torque were calculated around the bubble, the force was computed
integrating the stress tensor over a surface that surrounds the bubble. Such surface is
constructed with the points X′ = Xp + hn, where Xp are the points of the interface and
n is the unit normal vector to the interface. The main reason due to which the force was
not integrated directly over the interface of the bubble is to avoid the pressure jump that
exists through the surface of the bubble and then constructing a new surface out of the
bubble the calculation of the force is more accurate. The expression to compute the force
is given by:

F =

∫

s

[
−pI + µ

(
∇u + (∇u)T

)]
· ndS, (2.3)

the integration was done by interpolating the values of the pressure and the tangential
terms of the stress tensor to the surface using the Peskin weighting function. Once the
components of the force given in the laboratory reference frame were computed, the force
was projected to a reference frame (x′, y′) that moves with the bubble and it is oriented
in accordance with the angle of inclination of the bubble.

The description of the forces exerted on the bubble that result in the trajectories presented
in section 2.3.2, can be done in terms of two sets of axes of coordinates. The first one (x, y)
is fixed in the laboratory frame of reference and the gravity force runs anti-parallel to the
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Figure 2.8: Orientation and aspect ratio of a bubble rising during one oscillation cycle
with Eo = 0.84, Ar = 392 and Mo = 2.5 × 10−11. Upper row left: Inclination of the
major axis of the elliptical bubble with respect to horizontal as a function of the horizontal
coordinate. Time evolves in the direction of the arrow. The shape and orientation of the
bubble at points labeled A) and B) are illustrated in the graphs in the lower rows. Upper
row right: Aspect ratio as a function of the horizontal coordinate. Middle row: Shape and
orientation of the bubble at points A) and B). The major axis is denoted by a double arrow
line, the horizontal axis and the inclination angle θ are explicitly shown for reference. The
lines denote isochores and their relative values near the bubble indicate the zones where
pressure contributes to the deformation of the originally circular bubble. Lower row:
vorticity field for positions A) and B).
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FIG. 3. Strouhal number as a function of terminal Reynolds
number. M = 2.5 × 10−11. This case correspond to air bub-
bles in water.

t∗ = t(g/D)0.5. All trajectories display initial straight
vertical lines where the motion is accelerated. For the
smaller Ar, the bubble ascends in a straight line with
a Reynolds number is smaller than the critical value for
vortex shedding. See the chart in Figure 1. For larger
Archimedes numbers, the short vertical segment where
the bubbles have a monotonously accelerated motion,
and is followed by a zigzag oscillation in which the ampli-
tude and frequency depends on the Reynolds number (see
Figure 3). The point where the zigzag motion starts is
where the bubble starts shedding vortices, the discussion
about the bubble wake is presented in the sub-section
V D. It is found that except in the region near the de-
parture position, the transversal oscillation of a bubble
with Ar = 28 increases monotonically its amplitude as
the bubble ascends. The maximum amplitude of the os-
cillation is approach 3.5 bubble diameters.

The trajectories for the cases with larger Archimedes
numbers (70 and 392) display a zigzag motion with al-
most a constant amplitude along their trajectories, in the
flow regime when the bubble exhibit elliptical shapes, as
it is shown in Figure 4 the amplitude of the oscillation is
proportional to the Archimedes number.

In Figure 5 we show the Reynolds numbers calculated
from the horizontal and vertical components of the ve-
locity as a function of time for one of the trajectories
plotted in Figure 4. As can be appreciated, the hori-
zontal velocity is comparable with the vertical velocity
and the frequency of oscillation is double, however, the
average of the Reynolds number based on the horizontal
velocity is almost zero. The frequency of the oscillatory
component of the vertical Reynolds number is twice the
frequency of the oscillatory horizontal Reynolds number
component because of the symmetry of periodic motion
of the bubble, this behavior was found by [1] for a flut-
tering solid ellipse that falls.
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FIG. 4. Trajectory of the centroid of individual bubbles for
Eo = 0.84 and Ar = 14 (red), 28 (black), 70 (blue) and 392
(cyan curve). Note that the horizontal dimension is amplified
for clarity in the presentation
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FIG. 5. Reynolds number as a function of time. The blue
trace is the vertical component of the Reynolds number. The
red trace is the horizontal (Eo = 0.84, Ar = 392 and M =
2.5 × 10−11) blue frequency twice as red .

C. Shape and orientation of bubbles

As explained in the description of the chart in Figure 1,
the geometry of the bubbles varies from essentially circu-
lar at small Eotvos numbers to ellipses and to deformed
ellipses with flat bottom. The shape of the bubbles re-

5

separated by continuous black lines, can be distinguished:
a) Circular bubbles are found at the left bottom region
of the (Eo, Re) map where surface tension dominates.
b) Intermediate region where shear and surface tension
effects have a similar influence leading to oblate ellipses
and c) Region with relatively large Eotvos numbers where
shear effects are large and bubbles develop flat bottom
shapes. The aspect ratio (length of minor axis/length
of major axis) of bubbles gets smaller with the Eotvos
number. The boundary between the elliptical flat bub-
bles is diffuse since the evolution is gradual and it is diffi-
cult to determine the precise parameters when the lower
part of the ellipse develops an infinitesimal flat region.
Cases calculated with the same Archimedes number are
joined by broken lines. As it can be observed, bubbles
with equal Archimedes number reach a larger terminal
Reynolds number for smaller Eotvos number. i.e. all red
broken lines are monotonously decreasing; this effect is
due to the modification of the bubble shapes since, as
commented before, the aspect ratio of bubbles becomes
smaller for larger Eotvos numbers. Regarding the mo-
tion of bubbles, it is found that cases under the black
broken line follow straight ascending trajectories, while
those above it ascend following zigzag trajectories due
to vortex shedding. In the next subsection we present
a more detailed discussion on this feature, here we only
observe that the critical Reynolds number for circular
bubbles is 44.2 coinciding with the the critical Reynolds
number for vortex shedding by a fixed, rigid cylinder of
approximately 45 [39]. In contrast, for elliptical shapes,
the the critical Reynolds number is a linearly decreasing
function of the Eotvos number, i.e. the critical Reynolds
number is dependent on the aspect ratio of the elliptical
bubbles, this phenomena was observed for rigid elliptical
bodies by [9]. The case Eo = 0.84, Ar = 392 is described
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An interesting property of the dynamics of individual
bubbles with fixed Morton number in a Hele-Shaw cell is
displayed in Figure 2 where the terminal Reynolds num-
ber is plotted as a function of the Archimedes number for
Mo = 2.5 × 10−11. As can be appreciated, the terminal
Reynolds number is approximately proportional to the
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In the interval of validity, the approximation is better for
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fD/UT ) of the vortices shed by ascending bubbles is a
monotonic increasing function of the terminal Reynolds
number, this is demonstrated in Figure 3, the points plot-
ted are the same as the simulated in Figure 2, correspond-
ing to the case of a single air bubbles rising in water. The
qualitative behavior of the Strouhal number as a function
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FIG. 2. Terminal Reynolds number as a function of
Archimedes number. Morton number is 2.5 × 10−11

of Reynolds number is very similar to the vortex shedding
on the wake of a rigid cylinder [39].

B. Trajectory of the centroid

Typical trajectories of the centroid of individual bub-
bles with Eo = 0.84, Ar = 14, 28, 70 and 392 are
shown in Figure 4. In order to present the results in
a non-dimensional form the variables were normalized
using the equivalent diameter as a characteristic length
x∗ = x/D, y∗ = y/D and the time were normalized as
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FIG. 3. Strouhal number as a function of terminal Reynolds
number. M = 2.5 × 10−11. This case correspond to air bub-
bles in water.

t∗ = t(g/D)0.5. All trajectories display initial straight
vertical lines where the motion is accelerated. For the
smaller Ar, the bubble ascends in a straight line with
a Reynolds number is smaller than the critical value for
vortex shedding. See the chart in Figure 1. For larger
Archimedes numbers, the short vertical segment where
the bubbles have a monotonously accelerated motion,
and is followed by a zigzag oscillation in which the ampli-
tude and frequency depends on the Reynolds number (see
Figure 3). The point where the zigzag motion starts is
where the bubble starts shedding vortices, the discussion
about the bubble wake is presented in the sub-section
V D. It is found that except in the region near the de-
parture position, the transversal oscillation of a bubble
with Ar = 28 increases monotonically its amplitude as
the bubble ascends. The maximum amplitude of the os-
cillation is approach 3.5 bubble diameters.

The trajectories for the cases with larger Archimedes
numbers (70 and 392) display a zigzag motion with al-
most a constant amplitude along their trajectories, in the
flow regime when the bubble exhibit elliptical shapes, as
it is shown in Figure 4 the amplitude of the oscillation is
proportional to the Archimedes number.

In Figure 5 we show the Reynolds numbers calculated
from the horizontal and vertical components of the ve-
locity as a function of time for one of the trajectories
plotted in Figure 4. As can be appreciated, the hori-
zontal velocity is comparable with the vertical velocity
and the frequency of oscillation is double, however, the
average of the Reynolds number based on the horizontal
velocity is almost zero. The frequency of the oscillatory
component of the vertical Reynolds number is twice the
frequency of the oscillatory horizontal Reynolds number
component because of the symmetry of periodic motion
of the bubble, this behavior was found by [1] for a flut-
tering solid ellipse that falls.
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for clarity in the presentation
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C. Shape and orientation of bubbles

As explained in the description of the chart in Figure 1,
the geometry of the bubbles varies from essentially circu-
lar at small Eotvos numbers to ellipses and to deformed
ellipses with flat bottom. The shape of the bubbles re-
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As explained in the description of the chart in Figure 1,
the geometry of the bubbles varies from essentially circu-
lar at small Eotvos numbers to ellipses and to deformed
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vertical coordinate. The second (x′, y′), is fixed on the bubble and the axes of coordinates
coincide with the major and minor axes of the ellipse that best approximates the shape of
the bubble. In Figure 2.10, we show the projections of the resultant instantaneous force
on the two axes of coordinates for four cycles in the case Eo = 0.84, Ar = 392 and M
= 2.5 × 10−11, together with the corresponding x-position of the bubble. All forces in
the figure have been scaled with ρgD2π. As can be observed, the frequency of the Fy is
twice that of Fx. This feature is consistent with the observation that the oscillation of
the bubble trajectory oscillates in the y direction with the double frequency than that in
the x direction. See Figure 2.7. The force in the horizontal direction alternates between
positive and negative values to generate the zigzag motion. The force in the vertical
direction Fy is always negative and it can be interpreted as a drag force that is balanced
with the buoyancy force. The buoyancy force is a constant equal to g(ρl − ρb)πD

2/4,
the sum of the vertical force and the buoyancy force must oscillate around zero when
the bubble reaches an average vertical velocity. On the right hand scale of figure 2.10
c), the sum of the buoyancy and the calculated force is shown. The forces projected in
directions parallel and perpendicular to the instantaneous displacement vector Fx′ and
Fy′ respectively show a similar behavior as the forces in the laboratory reference frame,
however, Fx′ is in phase with the bubble position x and the maximum absolute value of F′y
coincides always with the point in which Fx′ is zero. The trace of the torque as a function
of time is composed of a small amplitude smooth oscillation and periodic positive and
negative pulses that occur at the extreme positions of the zigzag motion where the tilt of
the bubble changes sign.
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2.3.5 Bubble Wake

The motion of individual bubbles has been discussed focusing on the description of bubble
trajectories, shape and orientation, but as it will be described in this section the dynamics
of the rising bubble is also related to its wake structure. When the bubble ascending
velocity is small, a wake with symmetric, closed recirculation rings is formed, and a low
pressure zone is generated at the recirculation centers (Piedra 2011). For larger vertical
Reynolds numbers, the attached vortical pocket becomes unstable and the wake detaches
from the bubble. This phenomenon was found when the bubbles exceed the critical
Reynolds number reported with a black broken line in the chart of Figure 2.3. In order
to illustrate the flow generated by the motion of the bubble, a snapshot of the velocity,
pressure and vorticity fields in the wake of the ascending bubble are shown in Figure
2.11 for the case Eo = 0.84, Ar = 392 and Mo = 2.5 × 10−11. The most conspicuous
feature observed is that vortices are created on the lee side of the bubble and detach
periodically from either side. As commented in the previous section, vorticity is generated
more efficiently at the regions of the bubble with the smallest radius of curvature and as
the bubbles pitch as they ascend, the regions of concentrated vorticity move up and
down in the frame of reference moving with the vertical average velocity of the bubble.
When the translation velocity is large enough, slender regions of concentrated vorticity
are swept and trail behind the bubble. Inside the elongated vortex regions the vorticity
is not uniform and the fluid rotates around locations with maximum vorticity forming
localized vortices. This picture is similar to the one presented by Perry et al. (1982) to
describe the wake formation behind a fixed rigid cylinder where the alternate position of
the vortices shed by the cylinder is brought about by a different mechanism, namely, the
symmetry breaking of the attached vorticity bubble. The collection of vortices shed by
the bubbles is similar to the von Karman vortex street generated by a rigid cylinder in
relative motion with respect to a fluid. Alternate single vortices with vorticity of opposite
sign are shed (2S in the terminology introduced by Williamson & Roshko (1988)). The
geometry of the wake can be characterized by the separation between adjacent vortices
in the streamwise and traversal directions as indicated in Figure 2.11. As expected, the
local minima in the pressure field correspond to the maximum concentration of vorticity.
We find that streamwise and traversal distances between vortices normalized with the
bubble diameter, a and b are 10.3 and 4.4 respectively. We find that these parameters
are approximately constant for the range of terminal Reynolds numbers explored. This
vortex distribution yields b/a = 0.43 which is almost twice as large as that reported by
von Karman (b/a = 0.28) for a stable distribution of an infinite row of alternate vortices
(see Williamson (1996)). Due to the asymmetric wake structure, the forces acting on the
bubble will also become unbalanced, and the bubble tilt changes periodically. This effect
adds to the oscillation induced by the geometry discussed in the previous sections.
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Figure 2. The velocity components vx ′ and vy ′ in the laboratory reference frame are defined
with respect to the coordinate system following the rotation of the card, whereas vx and vy

are defined with respect to the fixed coordinate system in the laboratory reference frame.

aim to identify the bifurcation between fluttering and tumbling in the ODE model
and to quantify the divergence of the period of oscillation at the transition point.

We model the two-dimensional dynamics of a rigid card falling in a fluid by ordinary
differential equations with fluid force contributions from added mass, lift, and drag.
We apply a quasi-steady approximation in which the fluid forces are expressed in
terms of the kinematic variables of the card alone. The Reynolds number based on
the semi-major axis and the average descent velocity of a paper card falling in air
is of the order of 103. The quadratic lift and drag terms in the model are designed
to describe the aerodynamics at such intermediate Reynolds numbers between 102

and 103. We assume that the card has elliptical cross-section with half-major axis,
a, and half-minor axis, b. We write the model in the coordinate system co-rotating
with the card, and we define the angle θ and the components of the centre of
mass velocity vx ′ and vy ′ as shown in figure 2. We have vx = vx ′ cos θ − vy ′ sin θ and
vy = vx ′ sin θ + vy ′ cos θ , where vx is the horizontal velocity component and vy is the
vertical velocity component.

Our model consists of the following set of coupled ordinary differential equations:

(m + m11)v̇x ′ = (m + m22)θ̇vy ′ − ρf Γ vy ′ − π(ρs − ρf )abg sin θ − F ν
x ′, (3.1)

(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + ρf Γ vx ′ − π(ρs − ρf )abg cos θ − F ν
y ′, (3.2)

(I + Ia) θ̈ = (m11 − m22)vx ′vy ′ − τ ν . (3.3)

The lift is orthogonal to the direction of motion and proportional to the circulation,
Γ = Γ (vx ′, vy ′, θ̇), the drag, Fν = Fν(vx ′, vy ′, θ̇), is opposite to the direction of motion,
and the dissipative torque, τ ν = τ ν(vx ′, vy ′, θ̇), is opposite to the direction of rotation.

We let m and I denote the mass and the moment of inertia per unit length:

m = πρsab, I = 1
4πρsab(a2 + b2). (3.4)
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Figure 2. The velocity components vx ′ and vy ′ in the laboratory reference frame are defined
with respect to the coordinate system following the rotation of the card, whereas vx and vy

are defined with respect to the fixed coordinate system in the laboratory reference frame.

aim to identify the bifurcation between fluttering and tumbling in the ODE model
and to quantify the divergence of the period of oscillation at the transition point.

We model the two-dimensional dynamics of a rigid card falling in a fluid by ordinary
differential equations with fluid force contributions from added mass, lift, and drag.
We apply a quasi-steady approximation in which the fluid forces are expressed in
terms of the kinematic variables of the card alone. The Reynolds number based on
the semi-major axis and the average descent velocity of a paper card falling in air
is of the order of 103. The quadratic lift and drag terms in the model are designed
to describe the aerodynamics at such intermediate Reynolds numbers between 102

and 103. We assume that the card has elliptical cross-section with half-major axis,
a, and half-minor axis, b. We write the model in the coordinate system co-rotating
with the card, and we define the angle θ and the components of the centre of
mass velocity vx ′ and vy ′ as shown in figure 2. We have vx = vx ′ cos θ − vy ′ sin θ and
vy = vx ′ sin θ + vy ′ cos θ , where vx is the horizontal velocity component and vy is the
vertical velocity component.

Our model consists of the following set of coupled ordinary differential equations:

(m + m11)v̇x ′ = (m + m22)θ̇vy ′ − ρf Γ vy ′ − π(ρs − ρf )abg sin θ − F ν
x ′, (3.1)

(m + m22)v̇y ′ = −(m + m11)θ̇vx ′ + ρf Γ vx ′ − π(ρs − ρf )abg cos θ − F ν
y ′, (3.2)

(I + Ia) θ̈ = (m11 − m22)vx ′vy ′ − τ ν . (3.3)

The lift is orthogonal to the direction of motion and proportional to the circulation,
Γ = Γ (vx ′, vy ′, θ̇), the drag, Fν = Fν(vx ′, vy ′, θ̇), is opposite to the direction of motion,
and the dissipative torque, τ ν = τ ν(vx ′, vy ′, θ̇), is opposite to the direction of rotation.

We let m and I denote the mass and the moment of inertia per unit length:

m = πρsab, I = 1
4πρsab(a2 + b2). (3.4)

Figure 2.11: Vortex shedding around a single bubble, velocity, pressure and vorticity
fields for Eo = 0.84, Ar = 392 and Mo = 2.5× 10−11. a= 10, b= 4.4.

2.4 Comparison with experimental results in a Hele-

Shaw cell

Here, we compare the results obtained with the two dimensional model described in the
previous sections with experimental observations. No two dimensional bubbles can be
generated in the laboratory but a reasonable approximation can be achieved by feeding
bubbles in a liquid filled Hele-Shaw cell where the motion in one of the horizontal di-
rections is restricted by the plates that form the cell. The most important difference
between the idealized two dimensional model and a bubble dynamics is the flow and bub-
ble interaction with the vertical parallel walls of the cell. A very informative study of the
dynamics of individual bubbles in a Hele-Shaw cell is that of Roig et al. (2012) where air
bubbles were observed ascending in water in a cell with a 1 mm gap. The observations
were reported in terms of the apparent diameter of bubbles D. A crucial observation is
that the terminal Reynolds number is a linear function of the Archimedes number, with
the constant of proportionality being 1/2. Inspection of Figure 2.12 indicates that the
two dimensional model does predict the linearity between the Reynolds and Archimedes
numbers but with the proportionality constant of unity. We set to explore the dynamics
of the ascending bubbles, but using Hele-Shaw cells with different gaps where bubbles
of the same apparent diameter but different actual volume could be formed. In spite
of having the same apparent diameter, the different gaps make the total volume of the
bubbles different and consequently different buoyancy force.

Experiments were carried out for three different cells with gaps of 1 mm, 2 mm and 2.5
mm, and in a range of Archimedes number of 2 × 102 < Ar < 2 × 103, with apparent
diameter of the bubbles from 2 mm to 7.3 mm. In Figure 2.12, the relation between the
Archimedes and Reynolds numbers resulting for the experiments of the three different
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gaps is shown. In all cases, the linear behavior of the Reynolds respect to the Archimedes
number can be observed. However, we find that the slope of the line changes as a function
of the gap. For the cell with a gap of 1 mm (black circles), the slope of the line is 0.5
confirming the value reported by Roig et al. (2012); in the case of the cell with gap of 2
mm (blue squares), the slope of the line that describes the Reynolds number results is 0.6,
and in the cell with a gap of 2.5 mm the slope is 0.65. In Figure 2.12 we also plot the result
of the numerical simulations, i.e. the Reynolds number is a linear function proportional
to the Archimedes number with slope equal to 1 (red stars). We conclude that even when
the simulations cannot be compared in quantitative form with the experiments in a Hele-
Shaw cell, they can give us all the qualitative information of the dynamics of bubbles as
the linear dependency of the Reynolds number respect to the Archimedes number. In
Figure 2.13, the experimental trajectory of the bubble in the Hele-Shaw cell with gap of 2
mm is shown (left hand side) and the trajectory computed from the numerical simulation
for Ar = 392, Eo = 0.84 and Mo = 2.5× 10−11 is plotted on the right hand side. In both
experiment and simulation, the bubble has a diameter of 2.5 mm. As can be observed, the
qualitative agreement with the simulations is satisfactory, but the model overestimates
the trajectory swing yielding an oscillation with amplitude larger by a factor of four and
smaller frequency (factor of two). These estimates were also observed for the other two
cases explored (gaps with 1 and 2.5 mm). The Strouhal numbers found for the different
gaps can be represented by the expression A/Re + B+C Re with A= -3.3, B= 0.34 ± 0.05
and 5×10−4 <C< 10−3 which differ from the two dimensional theoretical calculation (see
Section 2.3.1) and are consistent to those found by Kelley and Wu Kelley & Wu (2005)
with a similar experimental arrangement.

In the experiments as well as in the simulations, the vertical position of the bubble as
a function of time is a wavy line that can be approximately represented by a straight
line; the slope of this line is the average vertical velocity. The quantitative mismatch
is again interpreted as the failure of the model to incorporate the effect of the glass
plates. The side by side oscillation of the trajectory is better described in the frame of
reference of a system that travels with the average vertical velocity. A result obtained
in this way is given in Figure 2.14 where the orbit of the centroid of the bubble in the
(x, y − yave) space is shown. The results of the simulation are in qualitative agreement
with the experimental data with quantitative differences similar to those that have been
discussed previously. Another feature that can be captured by the two dimensional model
is the instantaneous Reynolds number. In Figure 2.15, the Reynolds numbers calculated
with the vertical and horizontal velocity components as functions of time were found from
the experimental observations. The results are very similar to those computed with the
numerical simulations plotted in Figure 2.7. Specifically, we observe that the frequency of
the oscillation of the vertical velocity is twice that of the horizontal velocity. Experimental
observations of the external flow generated by the motion of the bubble are illustrated
in Figure 2.16. Visualization of the wake of the bubbles ascending in cells with different
gaps was done using Kalliroscope speckles. Figure 2.16 shows that the wake of bubbles
with the same apparent diameter (2.5 mm) in cells of 2 and 2.5 mm are formed by
alternating vortices shed by the bubbles. The vortices conform a structure very similar to
the von Karman vortex street, in qualitative agreement with the corresponding numerical
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Figure 2.12: Relation between the Reynolds and Archimedes numbers for the Hele-Shaw
cells with the three different gaps and the numerical simulations. The black circles, blue
squares and cyan squares correspond to the experiments with gaps 1 mm, 2 mm and 2.5
mm, respectively. Red stars correspond to the results from the numerical simulations.
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Figure 2.13: Comparison of the numerical trajectory of the bubble with experiment in a
Hele-Shaw cell. The left panel presents the numerical simulation (Ar = 392, Eo = 0.84
and Mo = 2.5× 10−11) and the right panel corresponds to the experimental observation
in a cell with a gap of 2 mm .



2.4. Comparison with experimental results in a Hele-Shaw cell 49

2.0 mm 2.5 mm (near) 2.5 (far) Numerical

a 5.5 3.6 8.6 10.3
b 2.5 2.9 3.3 4.4

b/a 0.45 0.81 0.38 0.44

Table 2.1: Geometrical parameters in the wake of bubbles
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Figure 2.14: Position of the centroid of a single bubble as recorded in a frame of ref-
erence ascending with the average vertical velocity. On the left side is the numerical
simulation result (Ar = 392, Eo = 0.84 and Mo = 2.5 × 10−11) and on the right side is
the experimental observation.

results. However, there are important quantitative discrepancies. In order to illustrate
the differences, the inter-vortex spacing in one row (a) and the distance between vortex
rows (b) and their ratio are given in Table 2.1 for two representative cases of bubbles with
apparent diameter of 2.5 mm. In the case of the 2 mm gap cell, the ratio b/a does not
depend on the distance to the bubble and, is approximately equal to that obtained with
the numerical calculation. This feature can be understood since the vertical velocity of
the model is twice as that of the experiment (see Figures 2.7 and 2.15) and the oscillation
frequency of the model is half that of the experiment (see Figures 2.13). In contrast, for
the 2.5 mm gap cell, the ratio b/a is a function of the distance from the bubbles and
notably reduces for vortices located further downstream. Although the wake is clearly
composed of alternate, opposite sign vortices characteristic of the von Karman wake, the
evolution of the vortices in wake is an indicative that the flow is not totally confined by
the plates of the Hele-Shaw since the diameter of the bubble and the distance between
the plates is the same.



50 Chapter 2. Dynamics of two dimensional bubbles

0 10 20 30 40 50 60 70400

300

200

100

0

100

200

300

400

Re

t∗

280 300 320 340 360 380 400800

600

400

200

0

200

400

600

800

Rex

Rey
72 A. Andersen, U. Pesavento and Z. J. Wang

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–50

–25

0

25

50

(a)

v x
 (c

m
 s–

1 )

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–30

–20

–10

0

10

(b)

v y
 (c

m
 s–

1 )

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
–15

–10

–5

0

5

10

15

(c)

t (s)

ω 
(ra

d 
s–

1 )

Figure 3. The measured velocities (solid lines) for fluttering with h = 0.081 cm and β = 1/14,
and the best fits (dotted lines) of the velocity expressions derived from equations (4.1) and
(4.2). (a) The horizontal velocity component vx , (b) the vertical velocity component vy , and
(c) the angular velocity ω. Both vx and vy are well-described by a single harmonics, whereas
three harmonics are needed to capture the main features of ω with three local extrema for
each half-period.

The frequency of the oscillatory component of the vertical velocity is twice the fre-
quency of the oscillatory horizontal velocity component because of the symmetry of
the fluttering motion. Any solution with periodic and symmetric side-to-side oscilla-
tions and constant average descent speed will therefore in general contain terms like
(4.1) and (4.2). A special example of such motion is that of a rigid object with elliptical
cross-section in a two-dimensional inviscid flow without gravity and circulation (Lamb
1945). The problem is described by Kirchhoff ’s equations, and the small-amplitude
analytical solution consists of symmetric side-to-side oscillations. However, the phase
difference between the two oscillatory components and the rotational motion in the
ideal fluid problem are different from the fluttering trajectory of a thin plate falling
in a viscous fluid.

4.2. Tumbling

Figure 2(c) shows the trajectory and figure 5 the velocity components as functions of
time for the tumbling plate with h = 0.162 cm and β = 1/5. The plate is released at 280 300 320 340 360 380 400800
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The fluttering with I ∗ = 1.1 and the tumbling with I ∗ = 1.4 alternate between gliding
at low angle of attack and fast rotational motion and centre of mass elevation at the
turning points in agreement with the direct numerical simulations by Pesavento &
Wang (2004) and the experiment by Andersen et al. (2005). We find a period-
doubling bifurcation between I ∗ =1.4 and I ∗ =1.45, and we note that the typical
tumbling motion has a period-two structure as illustrated by the direct numerical
solution shown in figure 1(d).

With I ∗ = 1.6 we find a periodic solution in which the card displays a mixture of flut-
tering and tumbling, and with I ∗ =2.2 we find a chaotic solution with a maximum Lya-
punov exponent of λmax = 0.13 ± 0.01. Chaotic solutions, for which the solution with
I ∗ = 2.2 is a typical example, are found with µ1 = µ2 = 0.2 and I ∗ in the range between
1.8 and 2.8 as shown in figure 4(b) below. The card in figure 3(f ) oscillates about
the broadside-on fixed point. The broadside-on fixed point becomes stable and the
oscillations are damped out if the dissipative torque is increased and the characteristic
dissipative time scale for the decay of angular momentum is decreased. In the following
we describe this bifurcation and the bifurcation between fluttering and tumbling.

6. Fixed points and bifurcations
6.1. Transition between steady descent and oscillatory motion

The differential equations have four steady solutions in which the card falls vertically
and gravity is balanced by drag, i.e. two fixed points for which the card falls edge on:
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and two fixed points for which the face of the card is normal to the direction of
motion:
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Figure 4(a) illustrates the edge-on and the broadside-on steady solutions. We use
V and W to denote the edge-on descent speed and the broadside-on descent speed,
respectively. In the following we obtain the phase diagram for the system (5.1)–(5.3)
in the I ∗ versus µ1 plane and show that the transition between steady descent and
oscillatory motion and the transition between fluttering and tumbling are related to
the fixed points.

Figure 4(b) shows the phase diagram in the I ∗ versus µ1 plane with fluttering,
tumbling, and steady broadside-on descent as we vary I ∗, µ1, and µ2 while keeping
µ1 = µ2 and CT , CR , A, and B fixed. The transition between steady broadside-on
descent and oscillatory motion takes place as the broadside-on fixed point goes from
being stable to being unstable via a Hopf bifurcation at the bifurcation curve:

µ1 =
1

4

√
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2I ∗ + 1

I ∗ − 1
. (6.3)
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Figure 2.15: Experimental Reynolds number as a function of time. The blue trace is the
vertical Reynolds number. The red trace is the horizontal Reynolds number.
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Figure 2.16: Vortex shedding in the wake of the bubble. Left, the numerical velocity
field. In the center, the experimental visualization in the cell with a gap of 2.0 mm and on
the right, the experimental visualization in the cell with a gap of 2.5 mm are presented.



Chapter 3

Dynamics of three dimensional
bubbles

3.1 Background

The dynamics of bubbles has been studied from the experimental, theoretical and numer-
ical points of view for many years due to its importance in many applications. However,
it is only in recent years that direct numerical simulations have been developed in order to
understand in detail the physical effects that determine the motion of bubbles at different
flow conditions (see for instance Hua & Lou (2007), Ohta et al. (2005), Chen et al. (1999)
and van Sint Annaland et al. (2005)). Some authors reported numerical studies of the
interaction of multiple bubbles at different flow conditions paying attention to the average
behavior of the flow and the influence of the presence of the bubbles in the flow. Exam-
ples of specific flows are given in Bunner & Tryggvason (2002a), Bunner & Tryggvason
(2002b), Lu et al. (2005) Lu & Tryggvason (2006) and Lu & Tryggvason (2008). Although
this has then a major improvement in understanding the dominant physical effects of the
bubble dynamics, there is a prevalent problem in most of the studies available in the
literature, namely that in most of the cases the flow conditions considered are at low to
moderate Reynolds numbers and, consequently, that the systems are very far from the real
experimental conditions. In this work, the finite volume/front-tracking method described
in the second chapter was implemented to simulate the motion of bubbles in a stagnant
fluid considering real conditions for air bubbles in water and we will try to compare some
features of the flow with experimental data reported in the literature. In the first part
of the chapter the results of the simulations for single bubbles at low and high Reynolds
numbers are presented. In the last part, the simulations of the interaction of multiple
bubbles are shown in order to demonstrate the applicability of the code developed in this
project to model bubbles at different conditions. The main objective is to simulate real
systems of air bubbles and water and have a numerical tool to study the bubble dynamics
in a large range of flow conditions and for a single and multiple bubbles.

3.2 General comments

In the early literature, bubbles rising in a viscous fluid were grouped in three categories:
“Spherical”, where the surface tension and viscous forces are much more important than

52
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the inertia forces. “Ellipsoidal”; the name usually given to bubbles which are oblate with a
convex interface around the entire surface, and “Spherical cap” or “Ellipsoidal cap”, that
are large bubbles that tend to adopt flat or indented bases and that lack any semblance
of fore-and-aft symmetry. If the bubble has an indentation at the rear, it is often called
“dimpled”. Large spherical- or ellipsoidal-cap bubbles may also trail thin envelopes of
dispersed fluid referred to as “skirts”. The qualitative classification of bubble shapes and
dynamics are based on non dimensional numbers which reflect the dominant physical
effects. Recall that the definition of those non-dimensional numbers was introduce in the
previous chapter (Equations 2.1 and 2.2).

Figure 3.1: Shape regime for bubbles through liquids (Clift et al. 1978).

Many efforts to experimentally observe individual bubbles rising in a viscous fluid have
been done for a wide range of flow conditions. The results presented in Sanada et al.
(2007), Bhaga & Weber (1981), Veldhuis et al. (2008) and Mingming & Morteza (2002)
are some examples of them. However, the best known reference in the bubbles research
is the work of Clift et al. (1978) where a comprehensive chart of the qualitative shape of
the bubbles for a wide range of flow conditions as function of the non dimensional param-
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eters was reported (see Figure 3.1), shapes of the bubbles are separated by continuous
lines). While the boundaries between the principal shape regimes are plotted somewhat
arbitrarily it is clear that bubbles are ellipsoidal at relatively high Reynolds numbers and
intermediate Eötvos numbers and spherical-cap and ellipsoidal-cap bubbles appear when
both, Eötvos and Reynolds are large.

3.3 Numerical Simulations of single bubbles at low

terminal Reynolds number

In this section, the results for the simulation of individual bubbles for different flow
conditions are presented. We focus on cases with low Reynolds numbers in which the wake
behind the bubbles is axis-symmetric and the bubbles follows a straight trajectory. The
numerical solutions were obtained in a periodic parallelepiped domain with a quadrilateral
base whose size is 6 bubble diameters in the horizontal sides and 24 bubble diameters
of height, such domain was discretized in a grid of 100 × 100 × 300 control volumes.
Notice that a spherical shape of the bubble was imposed as an initial condition for all the
numerical simulations.

Examples of the bubble shapes predicted by our calculations are shown in Figure 3.2 for
the flow conditions marked in the chart and as can be observed, the qualitative shape
of the bubbles obtained with our numerical simulations coincides in all cases with the
chart. As we increase the Eötvos number, the bubble shape changes from the spherical to
the ellipsoidal and dimpled form. This is because the increment of this non-dimensional
parameter is equivalent to decrease the surface tension.

a) Eo = 0.39; Mo = 9.5× 10−5 b) Eo = 2.34; Mo = 2.3× 10−4 c) Eo = 15.8; Mo = 6.2× 10−2

d) Eo = 60; Mo = 2.3× 10−1 e) Eo = 102.4; Mo = 1048

Figure 3.2: Bubble shapes for different flow conditions.

The velocity of the centroid or, equivalently, its Reynolds number, is an important pa-
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rameter for the description of the bubble dynamics. The Reynolds number depends on
the vertical velocity, which is computed with the expression:

wb =
1

Vb

∫

Vb

wdv. (3.1)

The velocity of the centroid of the bubble is calculated at each time step in our simulations.
With such velocity, the instantaneous Reynolds number was computed; in Figure 3.3 the
Reynolds numbers are plotted as functions of time for the simulations of the Table below.
As it is shown, in cases with Eo ≤ 60, the Reynolds number increases until it reaches
a constant value, called the terminal Reynolds number; this is the value plotted in the
shape chart given by Clift et al. (1978). For Eo = 102, the evolution of the Reynolds
number displays subsequent maxima before attaining the terminal velocity value. This is
caused by the extra drag produced due to the deformation of the bubbles at those large
Eötvos numbers. In the first stage of the rising, the bubble initializes with spherical shape
and it accelerates until a maximum value; however, as the bubble deforms the drag force
is larger and produces a decrement in the velocity of the bubble until it reaches a steady
state and its shape does not change anymore.

The flow around the bubble is presented in Figure 3.4, for Eo = 15.8 , Mo = 6.2×10−2 and
terminal Re = 8.9, where a slice of the velocity field is also plotted. As can be observed,
the flow formed around the bubble is a dipole vortex, the features of which depend on the
non-dimensional numbers. The axisymmetric nature of the wake of the bubbles causes
that the bubbles at low Reynolds numbers rise in a rectilinear path. Additionally, to
illustrate the disturbance that the transit of a bubble causes on the pressure field of the
fluid, Figure 3.4 displays the pressure field for the parameters given in case c) of Figure
3.3. The hydrostatic pressure field can be identified as a gentle constant background
pressure gradient. The surface tension forces on the bubble keep the pressure inside it
nearly constant and higher than the ambient pressure. Also the center of the vortices
move away from the bubble and the low pressure zones intensify behind the bubble.
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d)
e)

Case Eo Mo Resim
a) 0.39 9.5× 10−5 1.58
b) 2.34 2.3× 10−4 10.59
c) 15.8 6.2× 10−2 8.9
d) 60 2.3× 10−1 17.06
e) 102.4 1048 1.67

Figure 3.3: Temporal evolution of the Reynolds number, and a Table indicating the
parameters used in the simulations shown in the plot.
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Figure 3.4: Velocity and pressure fields around the bubble for Eo = 15.8 and Mo =
6.2× 10−2.
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3.4 Numerical Simulations of single bubbles at high

Reynolds number

Experimental conditions of interest in many industrial applications indicate that the ter-
minal Reynolds numbers based on the ascending velocity in a column of fluid are on the
order of 102 or larger. As will be explained in detail below, the dynamics of the bub-
bles and their wakes are very different from those described in the previous section. For
this reason, we proposed as one of the main objectives of this project to simulate bubble
dynamics under conditions similar to those found in industrial applications where quali-
tative changes in their motion patterns are found. In this section the simulations at high
Reynolds numbers of an individual bubble motion are presented. In the chart given by
Clift et al. (1978) (Figure 3.1), the shape of the bubbles for different flow conditions can
be observed. The resulting shape of our numerical simulations for high Reynolds numbers
are plotted in green color in Figure 3.1, and as it can be seen the numerical results are in
agreement with those reported in the chart. The simulations correspond to air bubbles
in water; the Reynolds number varies from about 102 to 103. Since the simulations corre-
spond to the same pair of fluids the Morton number is constant and equal to 2.5× 10−11

for all cases presented in this section. The shape of the bubbles changes from spherical
to ellipsoidal as we increase the Eötvos and Reynolds numbers and the motion of the
bubbles is more complex than the cases shown in the previous section.

The results presented in this section correspond to air bubbles in water, the simulations
were performed in a large liquid column with dimensions 8 × 8 × 80 bubble diameters
discretized by a uniform mesh of 128×128×1280. For the lateral walls, non-slip boundary
conditions were imposed and the domain is periodic in the vertical direction. The bubble
path and the wake behind the bubble are analyzed for single bubbles and also, the results
are compared with the experiments reported in the literature in order to validate the
code.

3.4.1 Wake and its influence on the bubble path

When the bubbles rising in a viscous fluid exceed a critical Reynolds number they do not
rise in a rectilinear path, but in zig zag or a spiral path. The cause of this instability
in the motion of the bubbles is not well understood and there are many differences of
the value of the critical Reynolds number in the experimental studies reported in the
literature (see Table 3.1). Mingming & Morteza (2002) and some experimental works
in the literature report that for the same bubble size but different initial conditions the
motion of the bubble is very different (Mingming & Morteza (2002)). Then it is very
difficult to validate the numerical simulations with experimental data at this flow regime.
Direct numerical simulations of bubbles have been presented in Esmaeeli & Tryggvason
(1999a), Esmaeeli & Tryggvason (1999b), Gunsing (2004) and Hua & Lou (2007). Most
numerical simulations are restricted to low Reynolds numbers or short time simulations or
both. Experimentally, the rising of single bubbles has been studied and the three different
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capillary tubes of two different inner diameters. In the upper
row of images, the inner diameter of the capillary is 0.0267
cm, which is much smaller than the bubble diameter. The
curvature at the bubble detachment point exhibits a local
maximum. Such deformation gives rise to a strong axisym-

metric surface wave, which in turn propels the bubble to a
large initial speed. In the lower row of images, the inner
diameter of the capillary is 0.120 cm, which is similar to the
bubble diameter. The bubble keeps its spherical shape due to
the weak perturbations from the detachment process. By ana-
lyzing consecutive images in Fig. 3, we obtain a final vertical
rising velocity of 18.5 cm/s at t!20 ms for the spherical
bubble. An intermediate velocity of 30.0 cm/s is reached at
t!30 ms for the ellipsoidal bubble, while its final velocity is
33.4 cm/s.

Figure 4 shows bubble trajectories for spherical and el-
lipsoidal bubbles of various bubble diameters. For ellipsoidal
bubbles, a straight path of the bubble switches to a spiral
path !see rows "a# and "b# of Fig. 4$ when the bubble diam-
eter exceeds %0.15 cm or aspect ratio exceeds %1.6. For
nearly spherical bubbles, the straight path of the bubble
switches to a zigzag path !see rows "c# and "d# of Fig. 4$
when the bubble diameter exceeds %0.15 cm or Reynolds
number exceeds %280. The details of the transitions are be-
ing investigated and will be reported in a later publication.

One interesting observation is the resemblance between
the zigzagging instabilities of spherical bubbles and vortex
shedding phenomena in the wake of a solid sphere. For rising
air bubbles, we find that the critical Reynolds number for
path instability is Rec!275"25, and Strouhal number St
!0.087"0.003, drag coefficient CD!0.80"0.06 at Re
!300. For the wake of a solid sphere, it is reported that Rec
for vortex shedding is 280, and St!0.12, CD!0.65 at Re

FIG. 3. Images of bubbles at detachment. The size of each image is
0.32 cm#0.88 cm. Bubbles are generated by the gentle-push method using
capillary tube of di!0.0267 cm in the upper row, and di!0.120 cm in the
lower row. The bubble diameter is 0.195 cm "0.188 cm# in the upper "lower#
row. The right most image in the upper "lower# row is taken at %6 cm "20
cm# above the capillary tip.

FIG. 4. Row a "c#: Top view of the
measured spiral "zigzag# trajectories.
Row b "d#: 3D rendition of the spiral
"zigzag# trajectories. The diameter of
the bubble d is labeled on each 2D
plot.
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Figure 3.5: Motion patterns for different bubble sizes.

Shew et al. (2006), in Figure 3.5 the path of three different bubbles found experimentally
are illustrated with the reconstruction of the position of the centroid of the bubble as a
function of time Mingming & Morteza (2002).

Simulations were performed using the numerical implementation described in the previous
chapters in order to find the instability in the path of the bubbles that produce the change
in the motion pattern. One of the main objectives of the study was to demonstrate that
our code is able to capture this dramatic change in the path of the individual bubbles.
In Figure 3.6, the two dimensional projections of the trajectories for three different sim-
ulations with D = 0.8, 2.5, 3.5 and 4 mm are shown. As can be observed, for the bubble
of 0.8 mm of diameter the trajectory is almost a straight line, for the bubble 2.5 mm in
diameter, the trajectory exhibits an irregular oscillation and for the bubble of 3.5 mm
and 4 mm in diameter the trajectory of the bubble oscillates in the x and y direction
with a well defined frequency. As it has been reported in the literature, the numerical
simulations reproduce the instability in the path of the bubbles when the Reynolds num-
ber exceeds a critical value. For the case of the bubble of 3.5mm of diameter, in Figure
3.7, the three dimensional trajectory of the centroid of the bubble is plotted. As can be
observed, the trajectory describes a spiral motion that has been reported by several au-
thors in the experimental studies. After the initial vertical rectilinear motion, the lateral
motion appears and the bubble rotates forming a (non-perfect) spiral trajectory.

After the computation of the centroid of the bubbles as a function of time it is possible to
calculate the velocity of the centroid; for the case where the bubbles follows a rectilinear
path, the velocity of the bubbles at those Reynolds numbers was presented in the previous

a) b) 

c) 

Figure 3.5: Motion patterns for different bubble sizes (Mingming & Morteza (2002)).

Authors Rec
Clift et al. (1978) 450
Veldhuis et al. (2008) 500
Mingming & Morteza (2002) 275± 25

Table 3.1: Different values of the critical Reynolds number reported in the literature.

motion patterns of the bubble are reported in the literature (Mingming & Morteza (2002),
de Vries (2001) and Shew et al. (2006)). In Figure 3.5 the path of three different bubbles
found experimentally is illustrated with the reconstruction of the position of the centroid
of the bubble as a function of time.

Simulations were performed using the numerical implementation described in the previous
chapters in order to find the instability in the path of the bubbles that produces the change
in the motion pattern. One of the main objectives of the study was to demonstrate that
our code is able to capture this dramatic change in the path of the individual bubbles.

In Figure 3.6, the two dimensional projections of the trajectories for three different sim-
ulations with D = 0.8, 2.5, 3.5 and 4 mm are shown. The trajectories are presented in
a non-dimensional form and the variables were normalized using the diameter D as the
characteristic length. As can be observed, for the bubble of 0.8 mm in diameter the trajec-
tory is almost a straight line, for the bubble of 2.5 mm in diameter, the trajectory exhibits
an irregular oscillation and for the bubble of 3.5 mm and 4 mm in diameter the trajectory
of the bubble oscillates in the x and y directions with a well defined frequency. As it
has been reported in the literature, the numerical simulations reproduce the instability
in the path of the bubbles when the Reynolds number exceeds a critical value. For the
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case of the bubble of 3.5mm in diameter, in Figure 3.7 the three dimensional trajectory
of the centroid of the bubble is plotted. As can be observed, the trajectory describes a
spiral motion that has been reported by several authors in the experimental studies. After
the initial vertical rectilinear motion, the lateral motion appears and the bubble rotates
forming a (non-perfect) spiral trajectory.

After the computation of the centroid of the bubbles as a function of time, it is possible
to calculate the velocity of the centroid; for the case where the bubbles follow a rectilinear
path, the velocity of the bubbles at those Reynolds numbers was presented in the previous
section. In Figure 3.8, the vertical velocity as a function of time is shown for the case of the
bubble of 3.5mm in diameter. It is clear that as the path of the bubble, its vertical velocity
oscillates with a constant frequency after the initial period of time in which the bubble is
accelerated. It is possible to calculate an average vertical velocity and a Reynolds number
for this case that is equal to 921. On the right side of Figure 3.8, the components of the
velocity in the x and y coordinates are plotted, the lateral velocities oscillate around zero
and are out of phase approximately half period from each other. Also, it is important to
highlight that as in the two dimensional results, the frequency of the vertical velocity is
twice the frequency of the lateral motion of the bubble.

The trigger of the instability in the path of a single bubble rising can be explained when
the nature of the wakes for different flow conditions is explored. For bubbles when the
Reynolds number does not exceed the critical value for the vortex shedding, we found
an axisymmetric wake behind the bubbles. In the left side of Figure 3.9 the flow around
a single air bubble of 0.8mm in diameter is plotted. In order to visualize the wake, we
used streamwise vorticity isosurfaces and it is clear that the wake is conformed by two
elongated and symmetric vortices; since the pressure field is axisymmetric, the bubble
follows a rectilinear path as it was shown in the first trajectories of Figure 3.6. The
vortices formed in this case are similar to the vortices generated by the flow around a
solid sphere (see for example Ormieres & Provansal (1999)). On the other hand, when
the Reynolds number is increased and exceeds a threshold, the qualitative pattern of the
vortices in the wake of the bubble changes dramatically. In the right side of Figure 3.9,
a snapshot of the flow around an air bubble of 3.5mm in diameter is represented using
again the isosurfaces of the streamwise vorticity. Unlike the smaller bubbles, in this case
the vortices in the wake of the bubble exhibit an irregular behavior; at a certain instant
of time the two vortices break down and near the bubble two new vortices are generated
and detached with a regular frequency. For the case plotted in Figure 3.9, the frequency
of the vortex shedding calculated from our simulations was about 6.4Hz. Since the flow
is non-axisymmetric, new components of the forces over the bubble are produced and the
bubble is accelerated along the horizontal axes. Also, the acceleration in these directions
is periodic due to the vortex shedding and the bubble moves in a spiral trajectory.

3.4.2 Comparison with experiments

The numerical code was validated using experimental data found in the literature. There
are several experimental results for air-water systems, but, as commented before, from



3.4. Numerical Simulations of single bubbles at high Reynolds number 61

2 1 0 1 2
0

10

20

30

40

50

60

70

80

x∗, y∗

z
∗

1 0.5 0 0.5 1
0

10

20

30

40

50

60

70

80

90

x∗, y∗

z
∗

1 0.5 0 0.5 1
0

10

20

30

40

50

60

70

80

x∗, y∗

z
∗

2 1 0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

x∗, y∗

z
∗

Figure 3.6: Two dimensional projections of the non-dimensional trajectory of an air bubble
in water. The red curve is the trajectory in the x direction and the blue one is in the y
direction, a) D =0.8mm, b) D =2.5mm, c) D =3.5mm and D =4mm (M = 2.5 × 10−11

and Eo =0.086, 0.84, 1.64 and 2.5, respectively).
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Figure 3.7: Helical trajectory followed by an air bubble in water, D =3.5mm (Eo = 1.64,
Ar = 720 and Re = 921).
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Figure 3.8: Velocity of the centroid of the bubble, left side: vertical velocity, right side:
horizontal velocity components (Eo = 1.64, Ar = 720 and Re = 921).
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Figure 3.9: Isosurfaces ωx = ±30 of the streamwise vorticity for two different bubble
diameters, left side: D =0.8mm, right side: D =3.5mm.

Table 2. Comparison of the bubble velocity computed and experimental data Veldhuis
et al. (2008).

D (mm) Reexp Recalc error %
3 899 844 6.11
3.4 973 912 6.16
3.6 1018 946 7.07
4.0 1096 1029 6.11
4.5 1162 1121 3.57

the density ratio of the fluids is about 1/1000. Using our implementation we were able
to solve efficiently systems with these parameters. Even when it was demonstrated that
the simulations can reproduce the qualitative behavior of the path of the bubbles, it is
necessary to validate the code in quantitative form, then, we tried to compare the path of
the bubbles calculated with the numerical code and the experiments reported by Veldhuis
et al. (2008), in Table 2, this comparison is described. Experiments for five different bub-
ble diameters were done by Veldhuis et al. (2008) and we compute the same bubble sizes,
to be compared the average Reynolds number and the frequency of the path of the bubbles.

As can be appreciated from Table 2, the numerical results are in quantitative agreement
with the experimental data, the maximum error in the Reynolds number calculated with
our code was about 7 %.
In order to continue the validation of our numerical code and knowing the importance of

X

Z

Y
X

Z

Figure 3.9: Velocity field slice and isosurfaces ωx = ±30 of the streamwise vorticity for
two different bubble diameters, left side: D =0.8mm, right side: D =3.5mm.

the numerical point of view simulations of air bubbles in water are very difficult since
the density ratio of the fluids is about 1/1000. Using our implementation we were able
to solve efficiently systems with these parameters. Even when it was demonstrated that
the simulations can reproduce the qualitative behavior of the path of the bubbles, it is
necessary to validate the code in quantitative form. Then, we tried to compare the path of
the bubbles calculated with the numerical code and the experiments reported by Veldhuis
et al. (2008). In Table 3.2, this comparison is described. Experiments for five different
bubble diameters were done by Veldhuis et al. (2008) and we computed the same bubble
sizes, to compare the average Reynolds number of the bubbles.

As can be appreciated from Table 3.2, the numerical results are in quantitative agreement

D (mm) Reexp Recalc error %
3 899 844 6.11
3.4 973 912 6.16
3.6 1018 946 7.07
4.0 1096 1029 6.11
4.5 1162 1121 3.57

Table 3.2: Comparison of the bubble velocity computed and experimental data Veldhuis
et al. (2008).
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Figure 3.10: Terminal velocity of air bubbles in water, the yellow points are the results
of our numerical simulations.

with the experimental data, the maximum error in the Reynolds number calculated with
our code was about 7 %.

In order to continue the validation of our numerical code and knowing the importance of
the experimental results given by Clift et al. (1978), the vertical velocity of the bubble
resulting from our simulations was compared with the compendium of such experiments
condensed in Figure 3.10 . The curve drawn with a solid line represents an empirical model
proposed for the terminal velocity of bubbles and the scattered points are experiments,
the red dots represent our simulations and as can be observed, there is a good quantitative
comparison between the experimental points and our numerical results. In Table 3.3, the
Reynolds numbers and terminal velocities for the simulations plotted in Figure 3.10 are
shown. The terminal velocity as a function of equivalent diameter has not a monotonic
behavior; for small bubbles when they rise in straight path, the terminal velocity is linearly
proportional to the equivalent diameter. However, when the size of the air bubble exceeds
certain value the terminal velocity decrease as the bubble diameter increase, this coincides
with the bubble diameter in which the path instability appears and the bubble wake starts
to shed vortices. As it can be seen in Figure 3.10, the numerical simulations reproduced
this behavior although the maximum terminal velocity has an offset to the right. The
main reason of the difference between our numerical simulations and the experimental
data might be the boundary conditions of the lateral walls that can affect the dynamics
of the bubbles. Also the small sub estimation of the terminal velocity can be caused by
the same reason. To avoid this effect a larger computational domain must be used in the
simulations, but, it would require more computer memory which was not available during
the project.
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D (mm) VT (cm/s) ReT
0.8 13.06 116
1.0 19.12 212
1.2 22.36 298
1.5 26.41 440
2.0 28.07 624
2.5 27.07 752
3.0 25.32 844
3.4 24.18 912
3.5 23.68 921
3.6 23.65 946
4.0 23.15 1029
4.5 22.41 1121

Table 3.3: Comparison of the bubble velocity computed and experimental data Clift et al.
(1978).

3.4.3 Simulations of multiple bubbles

The numerical implementation of the front-tracking method in three dimensions was ex-
tended in order to simulate multiple bubbles ascending in a viscous fluid. The main idea
is to have a computational tool to study the interactions of bubbles at different flow con-
ditions. In such implementation the bubbles are initialized one by one at the bottom
of the column of fluid with certain frequency trying to emulate the injection process of
multiple bubbles. At the onset of the simulation one bubble is created and this first bub-
ble motion is similar to that described in the previous subsection for individual bubbles,
however, after some time, another bubble is generated at the same initial position of the
first bubble. The bubbles evolve as a chain and the dynamics of such arrangement and
the flow around the bubbles depends on the dimensionless parameters as the Reynolds,
Archimedes and Eötvos numbers, and also on the number of bubbles and frequency of
the injection.

We present the results of the simulation of a collection of eight bubbles of air in water of
1mm in diameter, released with a frequency of 40 Hz. The Reynolds number calculated
for a single bubble with these properties is 212, and the trajectory is linear in the entire
domain. In contrast, the behavior of a chain of bubbles is quite different. In Figure
3.11 the trajectories and the vertical velocities of the bubbles are plotted, and as can be
observed, the first bubble (purple curve) follows a mostly rectilinear path as occurs for
the single bubble case, which is obvious because the first bubble does not interact with
the wakes of any other bubble and its dynamics is not altered. However, the first bubble
produces low pressure zones in its wake and the disturbances last until the vorticity is
dissipated. When the second bubble is injected those low pressure zones have strong
influence on its dynamics and the second bubble follows initially an straight path but in
a certain place its path changes dramatically; the vorticity produced by the wake of the
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first bubble generate a lateral motion of the second bubble, as is observed in Figure 3.11.
Once the bubble is far from the wake of the first bubble the path becomes rectilinear again
during its ascension. An interesting feature of this flow is that the path of all bubbles
changes at the same spot, but each bubble moves in a different direction. The explanation
of this phenomenon can be given in the following terms: the vortices behind the bubbles
interact with the bubbles and depending on the strength be the motion of the bubbles
can altered or not. The interaction between multiple bubbles is extremely complex and
is far from being fully characterized.

The vertical velocity of each bubble was calculated as a function of time and in the right
side of Figure 3.11 the curves are shown. For the case of the first bubble again, the velocity
behaves as in the single bubble motion; after an initial period of acceleration the velocity
of the bubble reaches a constant value known as terminal velocity. For the case of the other
bubbles, an over-acceleration can be observed before they reach the terminal velocities
due to the low pressure zones generated in the wakes of the preceding bubbles. It is clear
that the dynamics of the flow are dominated by the interactions between the bubbles and
their wakes and then, it is crucial to determine the structures behind the bubbles as a
function of the dimensionless numbers, the number of bubbles and the frequency of the
injection. For the simulation presented above, the flow around the bubbles is visualized
using vorticity isosurfaces and a snapshot of the flow is plotted in Figure 3.12. As it
was commented, the bubbles follow the same path like a chain, but in certain zone the
trajectory of the bubbles diverges and each one follows its own rectilinear motion. The
flow generated behind each bubble consists of two elongated vortices very similar to the
vortices generated at moderate Reynolds numbers around and behind a rigid sphere.

If the size of the bubbles is increased (larger Reynolds number), it is well established that
in the case of a single bubble, the path of the bubble changes to a helical motion. This
qualitative change in the pattern was well reproduced by our code when the simulations
for single bubbles were carried out. We performed the simulation of sixteen bubbles of air
in water of 3.6 mm in diameter; the bubbles are injected with a frequency of 20 Hz, the
Reynolds number calculated for a single bubble flow is about 946 where the simulation
for a single bubble featured a helical motion. In the simulation of sixteen bubbles, the
interactions between the wakes and the bubbles are more complex. In the left side of
Figure 3.13 the trajectories of the first eight bubbles are shown, the natural path of the
bubbles is helical, unlike the simulations of smaller bubbles. In this case the general
helical motion of the bubbles is not changed; this is because larger bubbles have more
inertia and the vortices generated behind the bubbles are not sufficiently strong to change
the path of the bubbles in a qualitative way. However, the disturbances in the motion
of the bubbles can be appreciated in the rise velocities. In the right side of Figure 3.13,
the vertical velocities of the bubbles are presented. Again, the first bubble follows its
natural path and then its vertical velocity is quasi-periodic around an average value after
an initial acceleration (purple curve), but the other bubbles rise with velocities with many
fluctuations that are promoted by the interactions between the bubbles and the wakes
generated by other bubbles. To visualize the flow around the bubbles we used again
isosurfaces of one component of the vorticity. In Figure 3.14 a snapshot of the flow is
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Figure 3.11: Trajectories and vertical velocities of eight bubbles of air in water of 1mm
of diameter (Eo = 0.134, Ar = 110 and Re = 212).

presented and it is clear that it is more complex than in the case of moderate Reynolds
numbers; vortex shedding appears in the wakes of the bubbles and the vortices join each
other forming other structures more difficult to identify.

The interactions of multiple bubbles in this range of Reynolds numbers are more much
complex, the characterization of the dynamics is very complicated to understand and
many simplifications are done when engineering models are applied to bubbly flows. With
direct numerical simulations as the developed in this project, we can find general aspects
to include them in the engineering models; however, systematic simulations and post-
processing must be done in order to characterize these flows. For example, if the purpose
of the injection of the bubbles is to mix the continuous phase, from the results of the
direct numerical simulations, it seems that injecting large bubbles is much more efficient
than small bubbles, since the wakes generated by large bubbles when the vortex shedding
appears interact in a larger zone of the column than the wakes produced by small bubbles
that follow straight paths.
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Figure 3.12: Isosurfaces ωx = ±50 of the streamwise vorticity of eight bubbles of air in
water of 1mm of diameter.
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Figure 3.13: Trajectories and vertical velocities of eight bubbles of air in water of 3.6mm
of diameter (Eo = 1.74, Ar = 751 and Re = 946).
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Figure 3.14: Left side: Isosurfaces ωx = ±50 of the streamwise vorticity of sixteen bubbles
of air in water of 3.6mm of diameter. Right side: Snapshot of the sixteen bubbles flow
rendered with BLENDER.



Chapter 4

Numerical study of the flow and
heat transfer of bubbly flows in

inclined channels1

4.1 Background

The study of multiphase systems has a great relevance for many industrial and natural
processes. In many cases the multiphase processes involve not only fluid flow but other
mechanisms, such as heat transfer, mass transfer and chemical reactions, as well. Compu-
tations of the large-scale motion of bubbly flows are usually done using averaged models (
see for instance Drew & Passman (1999), Chahed et al. (2003), Troshko & Hassan (2001)
and Zhang et al. (2006)), which require closure terms to account for the effect of the
unresolved fluid motion. The closures are usually based on experimental results, but re-
cently direct numerical simulations (DNS) have emerged as a powerful way to examine
the dynamics of the small-scale motion and how the small-scales interact with the larger
scales. DNS have, in particular, been used to examine bubbly flows in channels. The
dynamics of several bubbles in a laminar flow was examined in Bunner & Tryggvason
(2002a), Bunner & Tryggvason (2002b) and in Lu et al. (2005) Lu & Tryggvason (2006)
and Lu & Tryggvason (2008), the study was extended to turbulent flows. The results
have shed considerable light on how the dynamics depends on the size of the bubbles and
the flow direction. Industrial processes often involve heat transfer in bubbly flows and
since the bubbles change the flow in significant ways, compared with single-phase flows,
the heat transfer is also modified. It is, in particular, known that the presence of bubbles
can enhance the heat transfer. Direct numerical simulations of heat transfer in turbulent
single phase channel flow were reported by Kawamura et al. (1998) and Kozuka et al.
(2009), but direct numerical simulations of heat transfer in bubbly flows are more recent.
Studies of the modification of heat transfer in a quiescent fluid due to rising bubbles,
(Deen et al. (2006) and Deen & Kuipers (2013)), have shown that the local heat transfer
coefficient between the liquid and a hot wall at constant temperature has a maximum in
the vicinity of the bubbles and this maximum increases when the bubbles coalesce. The
heat transfer in bubbly flows in a turbulent channel was studied in Dabiri & Tryggvason
(2015), using the same front tracking/finite volume method used here. The results of
several simulations for vertical turbulent channel flows with bubbles were reported and

1This chapter is based on Piedra, Lu, Ramos & Tryggvason (2015)
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a significant increase in the average heat transfer coefficient due to the presence of the
bubbles was found, specially when the bubbles retain a spherical shape and accumulate
near the walls. The heat transfer in bubbly flows has also been studied experimentally. In
general, experimental results show that the heat transfer is improved by the presence of
a dispersed phase. For the case of laminar natural convection, it has been found that the
injection of sub-milimeter bubbles enhances the heat transfer due to mixing and advec-
tion effects (Kitagawa & Murai (2013)). This effect is maximized when bubbles impact
and slide along hot walls (Donnelly et al. (2009)). More recently, experiments of bubble
flows in vertical and inclined channels have shown that, for high void fraction of gas and
low friction Reynolds numbers the effect on the heat transfer coefficient and the wall
shear stress are strongly dependent on the inclination angle (Kashinsky et al. (2013) and
Kashinsky et al. (2014)). In the present work, the dependency of the flow and the heat
transfer in low void fraction bubbly flows on the inclination angle of a channel are studied
using direct numerical simulations. It is important to highlight that the results presented
in this section were computed modifying the finite volume/front-tracking code from the
group of the University of Notre Dame and not from the code developed in our group of
UNAM.

4.2 Problem setup and numerical implementation of

the heat transfer equation

The computational domain is an inclined channel, bounded by two parallel plates, shown
in Figure 4.1. The size of the domain is π × 2 × π/2 in the streamwise, wall-normal
and spanwise direction, respectively. The flow is driven by imposing a constant pressure
gradient in the x direction and the gravity acceleration depends on the inclination angle
of the channel (γ). For the horizontal channel, gravity acts in the y direction and in the
x direction for the vertical channel. Periodic boundary conditions are imposed in the
streamwise and spanwise directions and no-slip boundary conditions are enforced at the
walls.

The numerical simulations were carried out using a finite volume/front-tracking method
described in the first chapter. Also, the energy equation is solved using the same strategy
as in Dabiri & Tryggvason (2015) to account for the periodic boundary conditions in the
streamwise direction. The energy equation, in terms of the temperature for the whole
domain, can be written as:

ρcp

(
∂T

∂t
+∇ · (uT )

)
= ∇ · (k∇T ), (4.1)

where cp and k are the specific heat and conductivity, respectively. In this case the bulk
temperature 〈Tm〉, increases linearly with the streamwise coordinate due to the uniform
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Figure 2: Slice of a temperature field, the isolines of the streamwise velocity and the
bubble distribution into the channel, left: γ = 0, right: γ = 60.
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Figure 3: Averaged wall shear as a function of time for different inclinations of the channel
at steady state.

7

Figure 4.1: Sketch of the problem configuration.

heat flux at the walls (Kawamura et al. (1998)). Thus, the instantaneous temperature is
split in two parts:

T =
d〈Tm〉
dx1

x1 − θ, (4.2)

where, θ is the transformed temperature in the channel and the streamwise gradient of
the bulk temperature is given by:

d〈Tm〉
dx1

=
2qw∫ 2δ

0
〈ρcpu1〉dy

. (4.3)

Substituting equation (4.2) into (4.1), the energy equation written for the transformed
temperature θ is:

∂θ

∂t
+ uj

∂θ

∂xj
− u1

d〈Tm〉
dx1

=
1

ρcp

∂

∂xj

(
k
∂θ

∂xj
− kd〈Tm〉

dx1

δj

)
. (4.4)

This equation is solved along with the mass and momentum conservation equations, de-
scribed in chapter 1.

The simulations are done using computational units, but the flow is determined by the
characteristics dimensionless parameters described below. The fluid density is ρl = 1 and
the kinematic viscosity is νl = 0.000333. The density of the bubbles was one-fortieth
the density of the liquid, and the kinematic viscosity of the bubbles was forty times that
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of the liquid. The bubble diameter is 0.25, the surface tension coefficient is σ = 0.01
and the gravity acceleration is g = 0.05. For the simulations reported the dimensionless
parameters are M = 5.93× 10−10 and Eo = 0.3125. Two sets of simulations were carried
out for two different pressure gradients in the channel. For all the simulations we define
a friction Reynolds number as Reτ = huτ/νl, where h is the half-width of the channel,
the friction velocity is uτ =

√
(τw/ρl), and τw is the averaged wall shear stress. For the

first set of simulations the friction Reynolds number is Reτ = 150 and the bulk Reynolds
number based on the bulk velocity, Ub = 0.7638, of the single phase flow and the width
of the channel is Re = 4582. For the second set of simulations the friction Reynolds
number is Reτ = 49 and the bulk Reynolds number is Re = 1600. For the first set the
initial flow field is turbulent but for the second set it is laminar. The flow is driven by a
specified pressure gradient, which is modified as the inclination of channel is changed in
such a way that the imposed pressure gradient and the average weight of the mixture are
constant. Thus, if the flow structure remained the same, the inclination angle would have
no influence on the flow rate. In reality, however, the buoyancy changes the flow structure
in two ways as the inclination angle changes. First of all, buoyancy drives the bubbles
to the top of the horizontal channel and this effect decreases as the inclination angle is
increased. Secondly, buoyancy causes the bubbles to move faster than the liquid in the
vertical channel, but the slip velocity decreases as the inclination angle is decreased.
To characterize the heat transfer we used the Prandtl number (Pr = cpµl/k) and the
Nusselt number, defined by:

Nu =
2h

k
=

2PrReτ
〈θm〉 − 〈θw〉

. (4.5)

Here h is the heat transfer coefficient, 〈θm〉 is the bulk temperature and 〈θw〉 is the average
wall temperature. Since we expect that bubbles will accumulate near the top wall, because
the direction of the gravity force, the Nusselt number was calculated separately for each
wall.

The equations were discretized using a mesh with 192 × 160 × 96 grid points that are
uniformly spaced in the x and z directions but non-uniformly in the y direction with
∆y ranging from 0.0062 to 0.0172. This is similar to the discretization used in Lu &
Tryggvason (2006). The initial velocity for the simulations where the flow is turbulent
was taken from simulations of single phase turbulent flow in a channel, solved with a
spectral method (Gibson (2014)) with 128× 65× 64 modes, and interpolated to the grid
used for the bubbly flows.

4.3 Results

We have examined the turbulent channel flow for several different inclinations. The pa-
rameters for both cases are listed in Table 4.1. The cases reported in this paper are for
inclination angles of 0◦, 30◦, 60◦ and 90◦, with respect to the horizontal coordinate.



76
Chapter 4. Numerical study of the flow and heat transfer of bubbly flows in

inclined channels

Average Void fraction 3%
Friction Reynolds number (Reτ ) 150, 49
Bulk Reynolds number (Re) 4582, 1600
Kinematic viscosity ratio(νb/νl) 40
Density ratio (ρl/ρb) 40
Prandtl number (Pr) 2

Table 4.1: Flow conditions for the simulations.

4.3.1 Simulations of flow and heat transfer in a turbulent chan-
nel

For the first set of simulations, in which Reτ=150, the temperature field in a plane
cutting through the channel and the bubble distributions are presented for three cases
(γ = 0◦, 60◦, 90◦) in Figure 4.2, after the flow has reached an approximate average steady
state. The bubbles remain spherical and for the horizontal and inclined channels they are
concentrated near the top wall. For the vertical channel the bubbles form one layer near
each wall. The isocontours of the streamwise velocity are also plotted in the same plane
as the temperature field and it is clear that the flow is perturbed near the top wall due
to the presence of the bubbles.

Figure 4.2: The isocontours of a plane of the temperature field, the isolines of the stream-
wise velocity and the bubble distribution into the channel with Reτ=150, left: γ = 90◦,
center: γ = 60◦, right: γ = 0◦.

In order to guarrantee that the flow is at steady state, the average wall shear is plotted as
a function of the non-dimensional time (t∗ = tg

1
2/D

1
2 ) in Figure 4.3. At steady state the

averaged theoretical value of the wall shear is equal to the sum of the constant pressure
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gradient and the weight of the mixture. For the simulations reported here, this value is
0.0025 and is shown by a horizontal line. It can be seen that the wall shear obtained from
the simulations matches well with the theoretical value for γ = 0◦ and γ = 30◦ after time
500 or so. For γ = 60◦ and γ = 90◦, it takes longer to reach the steady state.
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Figure 4.3: Averaged wall shear as a function of time for different inclinations of the
channel at steady state, Reτ=150.

The dynamics of the bubbles is shown in Figure 4.4, where the y coordinates of the
bubble centroids are plotted as a function of time. For γ=0◦ the bubbles migrate rapidly
to the wall and form bubble layers, although bubble-bubble interactions also result in
some bubbles moving slightly away from the wall. Almost the same behavior is found
for γ=60◦, but the time that the bubbles take to migrate to the wall is longer, since the
gravity force is weaker. However, in this case, as can be seen in Figure 4.2, the bubbles
hug the wall as a mono-layer. This is also seen in the middle panel of the left hand side
of Figure 4.4, where the trajectories are almost straight lines near the top wall. For the
vertical channel (γ=90◦) it is well-known that the bubbles migrate to both walls due to
the lift force and two wall-layers are formed (Dabiri & Tryggvason (2015)).

In the right frame of Figure 4.4 the void fraction is plotted for the different simulations.
For the vertical channel the void fraction peak is similar at both walls. In the other cases,
as we incline the channel, the maximum of the void fraction at the top wall increases and
the bubbles are constrained to move along the wall due to the lift force.

The averaged velocity profile and the Reynolds stress are plotted in Figure 4.5, for the
different simulations, and compared with the single phase flow. The liquid velocities for
all the bubbly flows are smaller than the velocity without bubbles, and unlike the single
phase flow the profiles are not symmetric for the inclined channels, since the velocity
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Figure 4.4: Left: Trajectories of the the bubbles in the y-coordinate, a) γ=0◦, b) γ=60◦,
c) γ=90◦. Right: Void fraction across the channel for different inclination angles for the
set of simulations with Reτ=150.

decreases near the wall where the bubbles are concentrated. The velocity near the top
wall is minimum for the horizontal channel but increases rapidly outside the bubble layer.
As we incline the channel, the velocity increases near the top wall as the buoyancy in the
streamwise direction becomes larger, but the averaged velocity in the core region decreases
due to the mixture weight.

The off-diagonal components of the Reynolds stresses, non-dimensionalized with the
square of the friction velocity, are plotted in the right frame of Figure 4.5, as functions of
the wall-normal coordinate. For the single phase flow we find the classical linear behavior
and for the horizontal channel the Reynolds stress is very similar near the bottom wall.
However, the maximum value close to the top wall is larger than in single phase flow. The
extra turbulent stress in this part of the channel can be attributed to increased mixing
due to the presence of the bubbles and the fact that they do not form a single layer sliding
smoothly along the wall.

To analyze the effect of the bubbles on the heat transfer, the Nusselt number at the top
wall is shown in Figure 4.6, for the different inclination angles. It is clear that the Nusselt
number does not change much as the channel is inclined, although for completely vertical
channel it decreases slightly. This can be explained by the fact that the bubbles go to
both walls and the void fraction at the top wall is lower than for the other cases, thus
reducing the efficiency of the bubble induced mixing. Compared with the single phase
flow the Nusselt number increases for all the bubbly flows by about 25 %.

The temperature profiles for the different cases are plotted in Figure 4.7, where the differ-
ence of the temperature averaged over the streamwise and spanwise directions and the top
wall temperature is shown. For the bubbly flows the difference from the wall temperature
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Figure 4.5: Average velocity profiles and Reynolds stresses for different angles of inclina-
tion of the channel, Reτ=150.

is smaller near the top wall than in the single phase flow, indicating that the bubbles cause
heat to be transported more efficiently from the wall to the fluid. The temperature pro-
files also suggest that the heat is transported most efficiently for the channel with a slope
of γ=60◦. This effect is explained by the fact that at this inclination angle the reduction
of the velocity due to the wall friction near the top wall is less than for the horizontal
channel since the lift force in the wall-normal direction stabilizes the wall-layer, resulting
in a more constant convective mixing. To illustrate this effect, slices of the temperature
field are plotted in Figure 4.8 for the different cases and compared with flow without
bubbles. For the single phase flow it is clear that the high temperature zones are near
the walls but local turbulent convection transports heat from the wall to the interior of
the channel. For the inclined channels the bubbles concentrated at the top wall mix the
fluid and promote an efficient heat transport in a larger region of the channel than in the
single phase flow. This is specially the case when the angle of inclination is 60◦ and the
hot zone near the top is thickest. This effect is produced near both walls for the vertical
channel where the efficient mixing zones suggest that the average heat transfer coefficient
along both walls is larger than for the other cases.
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Figure 4.6: Nusselt number at the top wall versus time for the different inclinations of
the channel, Reτ=150.
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∇ · u = 0, (1)

the one fluid momentum equations are:74

∂ρu

∂t
+ ∇· ρuu = −∇p + ∇· µ(∇u + ∇Tu) (2)

+

�
σκ�n�δβ(x − x�)ds� + ρg,

where ρ, u, p, µ and g are the density, velocity, pressure, viscosity and75

gravity vector, respectively. The integral term in the momentum equations76

represents the surface tension force that is concentrated at the interface of the77

fluids, here, σ is the surface tension coefficient, κ is the curvature of the inter-78

face, n is the unit normal vector to the interface and δ is a three-dimensional79

Dirac delta function formed by the multiplication of one-dimensional delta80

functions. The energy equation were also solved using the same strategy81

as [DABIRI] to take into account the periodic boundary conditions in the82

streamwise direction. The energy equation in terms of the temperature for83

the whole domain can be written as:84

ρcp

�
∂T

∂t
+ ∇ · (uT )

�
= ∇ · (k∇T ), (3)

whhere cp and k are the specific heat and the conductivity, respectively. In85

this case the bulk temperature �Tm�, increases linearly with the streamwise86

coordinate due to the consideration of uniform heat flux at the walls [7].87

Then the instantaneous temperature can be split in two parts:88

T =
d�Tm�
dx1

x1 − θ, (4)

here, θ is the temperature variance in the channel and the streamwise gradient89

of the bulk temperature for this system is given by:90

d�Tm�
dx1

=
2qw� 2δ

0
�ρcpu1�dy

. (5)

Substituting the equation (4) into (3), the energy equation written for91

the temperature variance θ is:92

4

Figure 4.8: Temperature field slices for different inclination angles compared with the
single phase flow, a) single phase flow in a horizontal channel, b) γ=0◦, c)γ=60◦ and d)
γ=90◦, Reτ=150.
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4.3.2 Simulations of flow and heat transfer in a laminar channel

For the second set of simulations, where Reτ=49 and the flow is laminar, the temperature
fields in a plane cutting through the channel and the bubble distributions are presented
in Figure 4.9 for three angles of inclination (γ = 0◦, 60◦, 90◦). For sloping and horizontal
channels it is clear that the temperature is higher at the bottom wall, since the bubbles
are concentrated near the top and the convection produced by the bubbles transports the
heat from the wall more efficiently. The distribution of the bubbles in the channel is very
similar to the turbulent flow, but since the driving force is comparable with the buoyancy,
the lift force that pushes the bubbles to the walls is much smaller. As a result, in the
vertical channel the bubbles are distributed more uniformly with only a slightly larger
concentration in the walls. For the sloping and horizontal channels, the bubbles migrate
to the top wall due to the component of the gravity force in the wall-normal direction.
In Figure 4.9, isolines of the streamwise velocity, in the same plane as the temperature
field, are also plotted, and it is clear that the flow in the horizontal channel is laminar,
especially in the bottom part of the channel where there are no bubbles and the isolines of
the velocity are almost straight. In the top part of the channel, however, the bubbles alter
the flow by creating a layer with strong velocity fluctuations that promote mixing of the
fluid. The flow in the sloping channels looks similar, but in these cases the buoyancy force
in the streamwise direction produces stronger fluctuations in the flow where the bubbles
are packed together.

Figure 4.9: The isocontours of a plane of the temperature field, the isolines of the stream-
wise velocity and the bubble distribution into the channel for Reτ=49, left: γ = 90◦,
center: γ = 60◦, right: γ = 0◦.

In Figure 4.10, the averaged velocity and void fraction profiles for the different inclination
angles are shown, along with the velocity for the single phase flow. In the horizontal
channel the velocity decreases near the top wall, where the void fraction is maximum.
The figure shows that the redistribution of the bubbles leads to dramatic changes in the
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flow. For the horizontal and vertical channels the average velocity is positive but for the
inclined channels where the bubbles are forced to the top wall, the liquid is sufficiently
heavy so that it flows backward. While this effect is due to the particular ratio of mixture
weight and pressure gradient used here, we include this case to show how non-trivial
the effect of the inclination angle can be. The velocity for the sloping channels becomes
negative in the zones without presence of bubbles since the total pressure gradient (the
sum of the imposed pressure gradient and the weight of the mixture) is smaller than the
weight of the liquid phase. However, this effect was not observed for the vertical channel
since the bubbles in this case are distributed more uniformly and the weight of the fluids
in the entire channel is always compensated with the total pressure gradient. Unlike in
the turbulent flows, the void fraction of the bubbles decreases near the top walls as the
inclination of the channel is increased (see left side of Figure 4.10). This is due to the lift
force not being strong enough to keep the bubbles in a layer near the top wall as for the
turbulent channel.
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Figure 4.10: Velocity and void fraction profiles across the channel for different inclination
angles, Reτ=49.

The global effect of the inclination angle on the heat transfer in the channels was analyzed
by computing the Nusselt number. In Figure 4.11, the evolution of the Nusselt number for
the top wall is plotted for the single phase and bubbly flows for the different inclination
angles. Once the flow reaches a steady state, the Nusselt number remains approximately
constant, as for the turbulent flows. For all cases the Nusselt number in the bubbly flows
inscreases compared to the single phase flow. However, in contrast to the turbulent flows
where the Nusselt number is almost independent of the inclination angle, for laminar
flows, it was found that the Nusselt number for sloping channels is considerably larger
than for the horizontal and vertical channels. For the channel inclined 60◦ the Nusselt
number increases about 3.7 times with respect to the single phase flow.

The temperature profiles for the laminar flows are presented in Figure 4.12, in the same
way as for the first set of simulations. It can be seen, that the average temperature profile
for those flows is very dependent on the inclination angle. When the channel is inclined
to 30◦ and 60◦, the temperature decreases, but for the vertical channel the temperature
is larger than in the sloping channels but still lower than in the horizontal channel.
In order to illustrate better the effect of the inclination angle on the heat transfer, slices
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Figure 4.11: Nusselt number at the top wall versus time for the different inclinations of
the channel, Reτ=49.

of the temperature field are shown in Figure 4.13 (as Figure 4.8 shows for the turbulent
flows). In the single phase flow the heat accumulates near the walls, and for the bubbly
flow in the horizontal channel it is clear that the heat is transported from the top wall
to the fluid due to convection flow by the bubbles. However, for the channel inclined
60◦ this effect is amplified by the buoyancy force in the streamwise direction and the
mixing is much better than in the other cases. Finally in the vertical channel, the lower
concentration of bubbles near the walls produces mixing that decreases the heat transfer
near the walls.
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Figure 4.12: Profiles of the difference of the average temperature and the top wall tem-
perature across the channel for different inclination angles, Reτ=49.
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4

Figure 4.13: The temperature field in the center plane of the channel for different inclina-
tion angles, compared with single phase flow, a) single phase flow in a horizontal channel,
b) γ=0◦, c)γ=60◦ and d) γ=90◦, Reτ=49.



Chapter 5

Evaporation of droplets using the
front-tracking method

5.1 Background

Heat and mass transfer phenomena in two-phase flows have been studied due to their
importance in many processes. The evaporation of raindrops or fuel droplets during
the combustion in engines are two examples in which mass and heat transfer appear
in multiphase flows. Using the formulation developed in this project, the front-tracking
method was extended to simulate the evaporation of droplets at non-isothermal conditions.
It is important to emphasize that the direct numerical simulation with phase change is
in its infancy and there are only few examples available in the literature. For instance,
boiling flows and solidification have been studied using DNS (e.g. Esmaeeli & Tryggvason
(2004a), Esmaeeli & Tryggvason (2004b) and Tryggvason et al. (2011)). Tanguy et al.
(2007) developed a model to simulate the evaporation of a single droplet using the level-set
method. They presented and validated simple cases where the droplet is static and the
mass flux at the interface is constant, and even when they considered the case of a moving
droplet, the falling velocity of the drop is considered constant. Schlottke & Weigand
(2008) reported a complete model for the evaporation of droplets using the volume of
fluid method, described some features of the implementation to improve the accuracy of
the solution and presented the mass fraction, temperature and velocity fields of the flow
around a droplet that evaporates at high Reynolds number. Safari et al. (2014), presented
an evaporation model and numerical simulations using the lattice Boltzmann method to
study the non-isothermal evaporation of a stationary droplet and the effects of an external
flow. There are some papers in which the results DNS of the evaporation phenomenon are
reported using commercial software, for instance, in the work of Banerjee (2013) and Zhao
et al. (2014) , the evaporation of droplets is explored using ANSYS FLUENT, and results
of velocity, mass fraction and temperature fields for different flow conditions are shown.
However, in the opinion of the author of this thesis, the use of commercial software is not
the best way to study in detail this kind of problems due to inaccuracy of the solution
and the limitations of the numerical implementation into the software.

It is important to mention that even when there are some developments of the mass trans-
fer in two-phase flows using the front-tracking method (Aboulhasanzadeh et al. (2012),
Aboulhasanzadeh et al. (2013)), as far as the author of this thesis knows the implemen-
tation described in this chapter is the first one in which the evaporation phenomenon
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is completely solved using the front-tracking method. Some illustrative results of the
numerical simulations are presented in order to show the capabilities of the evaporation
model developed.

5.2 Evaporation model

Consider a drop immersed in an atmosphere of a mixture of the liquid vapor and a gas, the
drop is pulled downwards by the effect of the gravity and evaporates as it falls (see Figure
5.1). The mass reduction in the drop is influenced by the local thermodynamics condi-
tions which in turn are modified by the dynamics of the drop motion. The evaporation
model is based on the simultaneous solution of the mass, momentum, energy and species
conservation equations for incompressible fluids properly adapted to incorporate the pos-
sibility of the mass transfer at the boundary between the phases. The set of equations
are defined in the whole domain including the interface. It is convenient to start with the
vapor mass equation to introduce the model. The transport equation for the vapor mass
fraction can be described with the equation of a single component in a multicomponent
gas mixture as:

∂ρYv
∂t

+∇ · (ρuYv) = ∇ · (ρDvg∇Yv) + ṁ, (5.1)

where ρ is the local density, Yv is the mass vapor fraction, u is the velocity field and
Dvg is the binary diffusion coefficient, the volumetric source of the mass vapor (ṁ) is
concentrated at the interface and it can be calculated through the integration of the mass
flux at the surface. The mass conservation equation must take into account the vapor mass
generated by the evaporation at the interface of the two-phases. This is accomplished by
inserting an expression for the velocity difference across the surface on the right hand side
of the equation as follows (Tryggvason et al. 2011):

∇ · u = −
(

1

ρv
− 1

ρl

)∫

S

δβ(x− xf )ṁ′′dSf . (5.2)

The momentum conservation equations solved for this model are unchanged as those
presented in Chapter 1. Taking into account the latent heat generated by the phase
change and neglecting the viscous dissipation, the energy equation can be written as:

ρcp

(
∂T

∂t
+∇ · (uT )

)
= ∇ · (k∇T ) + Lṁ, (5.3)

where cp and k are the specific heat and the conductivity, respectively, T is temperature
and L is the latent heat of the evaporating fluid. From the jump condition at the interface
for the species conservation equation it is possible to calculate the mass flux as (Schlottke
& Weigand (2008)):
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ṁ′′ =
Dvgρg∇Yv · nΓ

1− Y Γ
v

. (5.4)

The vapor mass fraction depends on the saturated vapor pressure (pΓ
v ), which can be

computed through the Clausius-Clapeyron relation:

pΓ
v = p exp

(
−Lmv

R

(
1

T Γ
− 1

TB

))
, (5.5)

then, the vapor mass fraction at the interface is given by:

Y Γ
v =

pΓ
vmv

(p− pΓ
v )mg + pΓ

vmv

, (5.6)

where mv and mg are the molar masses of vapor and gas respectively, R is the perfect gas
constant, TB is the liquid boiling temperature for the ambient pressure condition and T Γ

is the temperature at the interface.
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5.3 Validation of the code: Evaporation of a planar

surface

In order to validate the model developed, a simple case was solved analytically and com-
pared with the numerical solution. The one-dimensional case in which a planar surface is
evaporated was analyzed. A sketch of the physical problem is shown in Figure 5.1, The
test problem consists in a open container partially filled with liquid and surrounded by
a gas. Since the vapor mass fraction in the surrounding gas is less than the vapor mass
fraction at the liquid-gas interface, the vapor diffuses from the interface to the gas while
the evaporation occurs.

Figure 5.1: Sketch of the problem.

The problem described above can be solved analytically, first, from the mass conservation
equation in steady-state, we have:
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fraction at the liquid-gas interface, the vapor diffuses from the interface to the gas while
the evaporation occurs.
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The problem described above can be solved analytically. First, from the mass conservation
equation in steady-state, we have (Safari et al. (2014)):

dṁ

dx
=
d(ρu)

dx
= 0, (5.7)

then the mass flux through the interface in this isothermal evaporation of the surface is
constant:

ṁ = ρu = ṁ′′v + ṁ′′g = constant, (5.8)

where ṁ′′v and ṁ′′g are the vapor and gas mass fluxes through the surface respectively.
Since the mass flux of gas is equal to zero, the vapor mass fraction equation can be
written as:

ṁ′′v = Yvṁ′′v − ρDvg
dYv
dx

, (5.9)

where Yv is the local vapor mass fraction that depends on the x direction and Dvg is
the binary mass diffusivity of the gas and vapor. Equation 5.9 must be solved for the
boundary conditions:

Yv(h) = Y Γ
v ; Yv(L) = Y∞, (5.10)
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where Y Γ
v is the vapor mass fraction at the interface and and Y∞ is the vapor mass fraction

at the gas phase (related to the relative humidity). Solving the differential equation 5.9
from h→∞, it is possible to find a solution for the vapor mass flux through the interface:

ṁ′′v = − ρDvg

L− h ln(1 +By), (5.11)

where By is the so called mass transfer number (Safari et al. (2014)) and is given by:

By =
Y Γ
v − Y∞
1− Y Γ

v

. (5.12)

The vapor mass fraction profile Yv(x) can be found by the integration of the equation 5.9
from h→ x; namely

Yv(x) = 1− (1− Y Γ
v ) exp

(
ln(1 +By)

x− h
L− h

)
. (5.13)

The evaporation model described in the first section of this chapter was solved numerically
using the finite-volume/front-tracking method in one dimension and compared with the
analytical solution (eq. 5.13) in order to validate part of the evaporation model. In
this case, the vapor mass fraction at the interface is kept constant due to the system is
considered istohermal. In Figure 5.3, the vapor mass fraction is plotted as a function
of the x direction, with the interface located at the middle of the container. As can be
observed, the numerical and analytical solutions are practically indistinguishable. The
maximum value of the vapor mass fraction is at the interface and reduces to attain the
value of Y∞ at the top wall of the container which in this case is zero.
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Figure 5.3: Vapor mass fraction profile.
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It is also possible to compare the solution of the vapor mass flux through the interface
calculated from the numerical solution of equation 5.4 and the analytical solution (eq.
5.11) for different mass transfer numbers. In Figure 5.4, such comparison is shown and
we concluded that the numerical solution is reproducing very well the analytical solution
of the model.
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Figure 5.4: Vapor mass flux through the interface as a function of the evaporation number.
The analytical solution corresponds to equation 5.11.

5.4 Evaporation of a droplet

Once the evaporation model was validated with a simple problem, the complete model
described in section 5.2 was implemented in the front-tracking code in order to simulate
the evaporation of droplets in two-dimensions. In Figure 5.5, a sketch of the problem
for a single droplet is shown. The droplet is initially near the top of the computational
domain and falls due to the acceleration of gravity. For the momentum equations periodic
boundary conditions are imposed on the top and bottom wall and outflow boundaries
in the lateral walls of the domain. Such outflow conditions are necessary due to the
generation of volume of vapor during the evaporation process. For the vapor mass fraction
equation, periodic boundary conditions are used again in the top and bottom wall and
a constant vapor mass fraction is imposed in the lateral walls as boundary conditions.
For all the simulations the temperature of the droplet and the surrounding gas phase is
always less than the boiling vaporization temperature of the liquid phase.
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Figure 3. The measured velocities (solid lines) for fluttering with h = 0.081 cm and β = 1/14,
and the best fits (dotted lines) of the velocity expressions derived from equations (4.1) and
(4.2). (a) The horizontal velocity component vx , (b) the vertical velocity component vy , and
(c) the angular velocity ω. Both vx and vy are well-described by a single harmonics, whereas
three harmonics are needed to capture the main features of ω with three local extrema for
each half-period.

The frequency of the oscillatory component of the vertical velocity is twice the fre-
quency of the oscillatory horizontal velocity component because of the symmetry of
the fluttering motion. Any solution with periodic and symmetric side-to-side oscilla-
tions and constant average descent speed will therefore in general contain terms like
(4.1) and (4.2). A special example of such motion is that of a rigid object with elliptical
cross-section in a two-dimensional inviscid flow without gravity and circulation (Lamb
1945). The problem is described by Kirchhoff ’s equations, and the small-amplitude
analytical solution consists of symmetric side-to-side oscillations. However, the phase
difference between the two oscillatory components and the rotational motion in the
ideal fluid problem are different from the fluttering trajectory of a thin plate falling
in a viscous fluid.

4.2. Tumbling

Figure 2(c) shows the trajectory and figure 5 the velocity components as functions of
time for the tumbling plate with h = 0.162 cm and β = 1/5. The plate is released at
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The fluttering with I ∗ = 1.1 and the tumbling with I ∗ = 1.4 alternate between gliding
at low angle of attack and fast rotational motion and centre of mass elevation at the
turning points in agreement with the direct numerical simulations by Pesavento &
Wang (2004) and the experiment by Andersen et al. (2005). We find a period-
doubling bifurcation between I ∗ =1.4 and I ∗ =1.45, and we note that the typical
tumbling motion has a period-two structure as illustrated by the direct numerical
solution shown in figure 1(d).

With I ∗ = 1.6 we find a periodic solution in which the card displays a mixture of flut-
tering and tumbling, and with I ∗ =2.2 we find a chaotic solution with a maximum Lya-
punov exponent of λmax = 0.13 ± 0.01. Chaotic solutions, for which the solution with
I ∗ = 2.2 is a typical example, are found with µ1 = µ2 = 0.2 and I ∗ in the range between
1.8 and 2.8 as shown in figure 4(b) below. The card in figure 3(f ) oscillates about
the broadside-on fixed point. The broadside-on fixed point becomes stable and the
oscillations are damped out if the dissipative torque is increased and the characteristic
dissipative time scale for the decay of angular momentum is decreased. In the following
we describe this bifurcation and the bifurcation between fluttering and tumbling.

6. Fixed points and bifurcations
6.1. Transition between steady descent and oscillatory motion

The differential equations have four steady solutions in which the card falls vertically
and gravity is balanced by drag, i.e. two fixed points for which the card falls edge on:
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and two fixed points for which the face of the card is normal to the direction of
motion:
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Figure 4(a) illustrates the edge-on and the broadside-on steady solutions. We use
V and W to denote the edge-on descent speed and the broadside-on descent speed,
respectively. In the following we obtain the phase diagram for the system (5.1)–(5.3)
in the I ∗ versus µ1 plane and show that the transition between steady descent and
oscillatory motion and the transition between fluttering and tumbling are related to
the fixed points.

Figure 4(b) shows the phase diagram in the I ∗ versus µ1 plane with fluttering,
tumbling, and steady broadside-on descent as we vary I ∗, µ1, and µ2 while keeping
µ1 = µ2 and CT , CR , A, and B fixed. The transition between steady broadside-on
descent and oscillatory motion takes place as the broadside-on fixed point goes from
being stable to being unstable via a Hopf bifurcation at the bifurcation curve:

µ1 =
1

4

√
3

5π

2I ∗ + 1

I ∗ − 1
. (6.3)
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Figure 5.5: Sketch of the computational domain solved for the droplet evaporation prob-
lem.

The simulations reported in this thesis were performed using two-hypothetical fluids with
material properties reported in Table 5.1. The conservation equations were discretized in
an uniform mesh of 256 × 256 grid points. In the first simulation of the evaporation of
a single droplet, the initial temperature in all the domain is fixed T = 0.5, the lifetime
of the droplet can be calculated by the decreasing of the area of the droplet. In Figure
5.6, the evolution of the area of the droplet as a function of time is plotted; it can be
observed that the first stage of the evaporation consists of a rapid evaporation in which
the area as a function of time decreases almost linearly. In a second stage, the mass flux
at the interface reduces since the air near the droplet is saturated with the vapor and the
evaporation process is slower than in the first stage.

Kinematic viscosity ratio(νl/νg) 10
Density ratio (ρl/ρg) 10
Thermal diffusivity ratio (αg/αl) 10
Latent heat of vaporization (L) 2
Acceleration of gravity (g) 2
Surface tension (σ) 0.1
Binary diffusion coefficient (Dvg) 0.001

Table 5.1: Flow conditions for the simulations.

In Figure 5.7, the vapor mass fraction fields are shown at the different times marked
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Figure 5.6: Evolution of the area of the droplet as a function of time.

with a black dot in Figure 5.6. The droplet falls by the acceleration of gravity and
starts to evaporate, and as it was expected, the highest concentration of the vapor mass
fraction is at the interface. Also, the elongated dipolar vortex form in the wake behind
the droplet concentrates more vapor mass fraction in the recirculation zones of the wake
of the droplet. Then the evaporation is much more intense in the front of the drop where
the gradients of vapor mass fraction are stronger than behind the drop, where the vapor
plume is formed. In the first stages of the simulation, the droplet deforms from circular
to an ellipse. However, as the drop loses mass, the shape is restored to a circle by the
surface tension force. Due to the periodic boundary conditions imposed in the vertical
direction, the vapor mass fraction accumulates at the central part of the computational
domain. This can be observed in the lower panels of Figure 5.7. The last panel shows the
vapor mass fraction field when the mass of the droplet is about 6% of the initial mass and
the code runs until the mass is about 4% without any problems. However, it is important
to highlight that once the size of the droplet is comparable with the mesh size, numerical
errors appear and a wrong solution is obtained from the simulation.

The temperature fields for different stages of the evaporation process are plotted in Figure
5.8. Note that the constant temperature boundary conditions were imposed in the lateral
walls of the domain for the energy equation (eq. 5.3). As it is shown, since the evaporation
process requires energy, the gas that surrounds the droplet is cooled and the temperature
at the surface of the droplet decreases. This effect is taken into account in the last term
of the energy equation that is the latent heat required to evaporate a certain quantity of
liquid at the interface of the droplet. Also, in the wake generated by the droplet the zones
of low temperature mix with the zones of high temperature producing a temperature
plume behind the droplet.
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From eqs. 5.5 and 5.6, the vapor pressure and then the vapor mass fraction at the
interface depends on the temperature difference between the local temperature and the
boiling temperature. In Figure 5.9 the area of the droplet as a function of time is plotted
for different initial temperatures. Also, in the left panel of the Figure, the average mass
flux is plotted as a function of time for the same three cases. The average mass flux at
the interface was calculated as:

ṁav =
1

S

∫

S

ṁ′′ds. (5.14)

As it can be observed, the lifetime of the droplet decreases as the initial temperature of
the gas is increased. Also, as it was expected, the average mass flux depends directly on
the initial temperature, as the temperature increases the average flux. After an initial
short time the average mass flux remains almost constant during the simulations; this can
be explained by the fact that the gradients of the vapor mass fraction decreases because
the gas that surrounds the droplet is saturated by the vapor and the average of vapor
mass fraction at the interface is almost constant.

5.5 Evaporation of multiple droplets

In order to analyze the influence of the droplet-droplet interactions during the evaporation
process, the code was extended to simulate multiple droplets. In Figure 5.10, the results
of a simulation of three droplets is presented. Initially the droplets are at the top of the
computational domain separated by a distance of two diameters. Snapshots of the vapor
mass fraction field are shown. In this case, the initial temperature is T = 0.75 and the
material properties of the fluids are the same as shown in Table 5.1, but the simulation
was done in a larger domain and using a mesh with 512 × 512 grid points. When the
vapor plume behind the front droplet saturates of vapor the region to be occupied by
the middle and back droplets, the vapor mass fraction gradient at the interface of those
droplets decreases and the evaporation is slower than in the front droplet. Since the front
droplet evaporates faster than the others, the middle droplet reaches and deviates it from
its natural path (see panel d) of Figure 5.10). This is caused by two effects: first, because
of the low pressure zone created by the front droplet that produces an over-acceleration
to the other droplets and second, since the front droplet loses mass much faster than the
others, the velocity of the first droplet also decreases much faster than the velocity of the
other droplets as it evaporates. However, once the middle droplet takes the front position
the evaporation rate increases and it losses mass quickly such that its falling velocity is
reduced and the back droplet is able to reach it (see panel f) of Figure 5.10).

The same description can be appreciated from Figure 5.11 where the area of the droplets
as a function of time is plotted. The strongest interaction is between the middle and back
droplet. As can be seen, the evaporation rate is slower in the middle droplet since the
vapor generated by the others saturates the surrounding gas and the mass flux decreases.
However, once the middle droplet reaches the front one, the evaporation process is faster
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at the interface of such droplet than at the back droplet. Finally, once the back droplet
change the path of the middle one, the evaporation rate seems to be equal at the two
droplets since the the curves of the evolution of the areas are approximately parallel.

As was commented, the extension of the evaporation model to three dimensions is almost
straightforward. The model is able to capture the physical effects that occurs during
the evaporation of droplets and it can be used to analyze the parameters that govern
the evaporation process at different flow conditions. In the case of the evaporation of
multiple droplets, systematic simulations in a larger domain are required in order to
study the interactions of the droplets and analyze in a quantitative way the effect on the
evaporation process.
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Figure 5.7: Temporal evolution of the vapor mass fraction field a) t = 0.25, b) t = 1, c)
t = 1.75, d) t = 3.25, e) t = 4.75 and f) t = 6. The vapor mass fraction is color coded
according to the color scale shown at the upper right side.
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Figure 5.8: Temporal evolution of the temperature field a) t = 0.25, b) t = 1, c) t = 1.75,
d) t = 3.25, e) t = 4.75 and f) t = 6.
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Figure 5.10: Temporal evolution of the vapor mass fraction field a) t = 0.25, b) t = 1.25,
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Chapter 6

Simulation of a VAWT using the
immersed boundary method

In order to demonstrate the versatility of the immersed boundary methods, the implemen-
tation of direct numerical simulations of a Vertical Axis Wind Turbine (VAWT) is carried
out. The mathematical model to include solid bodies as immersed boundaries was devel-
oped adapting the front-tracking method described in the previous chapters of this thesis.
The code was written in CUDA C in order to take the advantages of the GPU architec-
ture to parallelize the solution of the linear systems. Here only the implementation of the
model and preliminary results are reported, since the main objective of this chapter is
to demonstrate that the model and code can be used in a totally different physical context.

6.1 Mathematical and numerical models

Consider a fluid in which one or more solids can be immersed with an arbitrary shape, if
we use a regular grid to discretize the domain, some of the control volumes will be in the
fluid region and others inside the solids. In order to identify cells inside and outside the
solid, we define an indicator field as follows (Tryggvason et al. (2011)):

I(x) =

{
1 inside the fluid,

0 inside the solid.
(6.1)

The velocity in any cell of the computational domain is given by:

u(x) = I(x)uf (x) + (1− I(x))us(x), (6.2)

where uf is the velocity in the fluid region and us is the velocity of the solid. The
velocity in the fluid is dictated by the mass and momentum conservation equations for
incompressible flows:

∇·uf = 0. (6.3)
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∂uf
∂t

+∇·ufuf = −∇p
ρ

+ ν∇2uf , (6.4)

where p is pressure and ν is the kinematic viscosity of the fluid. The motion of the rigid
body is modeled by the Newton-Euler equations (Glowinski et al. (2001)):

F = m
dus
dt

, (6.5)

τ = I
dω

dt
, (6.6)

where m is the mass and I is the moment of inertia of the solid body. The coupling
between the equations in the fluid and the solid regions is the hydrodynamical force (F )
and the torque (τ) acting over the solid. In order to calculate the hydrodynamical force,
the integral of the stress tensor over the surface of the body is calculated (see equation
2.3 of Chapter 2). The strategy of the solution of the set of equations presented above
is practically the same as that developed in the case of the rising of bubbles. Also, the
same parallelization technique was implemented in order to accelerate the computations.

6.2 Results

6.2.1 Cylinder rotating around a circle

Before simulating the flow around a VAWT, the model was applied to a simpler problem
in which a cylinder rotates around a circle. In Figure 6.1, a sketch of the problem is
shown. A uniform flow from left to right interacts with a cylinder that is constrained to
move around a circle marked with a dashed line in the figure. The computational domain
consists in a rectangle with free slip boundary conditions at the upper and bottom walls,
inlet flow on the left and outflow on the right wall. The domain was discretized with a
regular grid of 384 X 192 control volumes in the x and y directions, respectively. The
model described in the previous section is used to simulate this problem, according to
the following steps. First, the Navier-Stokes equations are solved using the standard
finite-volume method; then the hydrodynamical force and torque are calculated and used
in the Newton-Euler equations to calculate the translational and angular velocities of
the solid body. In general, for an arbitrary motion of a solid body immersed in a fluid,
both Newton-Euler equations must be solved to calculate the velocity of the solid body;
however, in the case described in Figure 6.1, those equations are simplified by using the
constraint that the motion is limited to a circle. Then, the translational velocity of the
cylinder can be calculated as (Juarez & Glowinski (2003)):

us = lω(cosφ, sinφ), (6.7)
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Figure 6.1: Sketch of the problem.

where l is the distance from the center of the cylinder to the center of rotation and φ
is the angle formed by the position of the cylinder respect to the horizontal. With this
simplification, only equation 6.6 is required to calculate the velocity of the rigid body.

In Figure 6.2, the vorticity field at two instants of time is plotted for the flow around
a cylinder with Re = 250. The simulation starts with the cylinder at the position of
panel a) and as is shown the classic vortex street is developed in the wake of the cylinder.
After a certain period of time, the cylinder is released and is free to rotate around the
circle. At this point, the hydrodynamical torque with respect to the center of the circle
moves the cylinder to the position shown in panel b). In Figure 6.3, the position of the
centroid of the cylinder as a function of time was plotted. As can be observed, the initial
position of the cylinder is at φ = π/2; once the cylinder is released, the position changes
quickly to φ = 0. The simulation correctly predicts the motion of the cylinder when the
vector of the hydrodynamical force and the vector of the position of the cylinder taking
as reference the center of rotation produce a torque. However, once the position is φ = 0,
those vectors are parallel and the torque is zero, then the cylinder stays at this position
oscillating with a tiny frequency due to the non-axisymmetric pressure field behind the
cylinder.

6.2.2 Numerical simulation of a VAWT

The VAWT is a wind turbine where the main rotor shaft and the airfoils are set transversal
to the wind. On the left side in Figure 6.4, the configuration of a three blades VAWT is
shown. The most important advantage of these wind turbines is that they do not need
to face into the wind to be useful, no matter which direction the wind is coming from,
it will rotate the blades. However, the efficiency of such wind turbines is very low, and
a detailed understanding of the aerodynamics of the wind-blade interaction is useful for
optimizing the performance. In order to simplify the mathematical model, the simulations
were performed in two dimensions. This simplification is suitable since the height of the
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a) 

b) 

Figure 6.2: Vorticity field around a cylinder at two instants of time during its rotation
over a fixed circle.
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Figure 6.4: Sketch of the physical model for the VAWT.

turbine is very large compared with the core of the aerodynamical profile. On the right
hand side of Figure 6.4, the physical model is presented; the characteristic length of the
problem is the core of the airfoil (C) and the computational domain consists of three
airfoils separated uniformly by an angle of 3π/2 from each other within a rectangular
region. The distance from the centroid of the airfoil to the center of rotation of the wind
turbine is 4.8C. A uniform flow comes from left to right and interacts with the three blades
of the VAWT. Any blade profile can be simulated in the code, but the simulation was
made using the NACA0010 profile. For the solution of the Navier-Stokes equations, outlet
boundary condition in the right edge of the computational domain and free-slip boundaries
in the top and bottom walls were imposed. The computational domain presented in Figure
6.4 was discretized in a mesh with 2944 × 2048 grid points in which the Navier-Stokes
and the second Newton-Euler equation (equations 6.3, 6.4 and 6.6) were solved.

In Figure 6.5, a snapshot of the vorticity field around the blades of the VAWT is shown
and the circle and center of rotation of the blades are also plotted. In this simulation, the
Reynolds number based on the length of the core of a blade is 500. As can be observed, the
wake behind each airfoil depends on the position that is changing as the VAWT rotates.
However, vortex shedding occurs behind the three airfoils. The vortices detached in the
wake of the blade, that is in the upstream position, affects the flow over the blade in the
downstream position. Such interactions can alter the torque on the downstream blade and
the efficiency of the VAWT can be strongly affected. The main idea of this project in the
near future, is to study in detail the blade-wake interactions in order to find the optimum
configuration of the VAWT at different flow conditions. It is important to mention, that
in the simulation of Figure 6.5, the VAWT does not revolve with a uniform velocity; the
turbine moves certain angle, stops and again moves back. This oscillatory motion can be
caused by the interactions of the vortices detached by the blades affecting the others.

In order to quantify the momentum transmitted from the flow to the VAWT, the torques
over each blade and the total torque are plotted in Figure 6.6. It can be observed that the
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Figure 6.5: Vorticity field of the flow generated by the VAWT.

torque in all cases oscillates around zero, and it is clear that in many instants of time the
torque over one airfoil has an opposite direction with respect to the torque over another
one of the blades. This means that at those instants of time the torques act against each
other. This combination of forces and torques directly affects the behavior and efficiency
of the VAWT. With an adequate configuration, those losses of energy can be suppressed
or minimized.



6.2. Results 109

10 20 30 40 50 60 70
3

2

1

0

1

2

3

τt

10 20 30 40 50 60 70
3

2

1

0

1

2

3

τ3

10 20 30 40 50 60 70
3

2

1

0

1

2

3

τ2

10 20 30 40 50 60 70
3

2

1

0

1

2

3

τ1
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The left-hand side is approximated by standard central differences, and solving the re-
sulting Poisson equation with the appropriate boundary conditions yields the indicator
field everywhere.

The field distribution φ(x, t) of the fluid properties can be calculated with the indicator
field using a linear interpolation,

φ(x, t) = φbI(x, t) − φl(1 − I(x, t)), (1.9)

where the subscripts b and f represent properties of the bubble and the surrounding fluid,
respectively.

1.2.5 Advecting the front

The front advancement must be found by interpolating from the fixed grid field velocity,
using the same weighting function that was used to transfer the properties from the front
to the fixed grid. Once the velocity of each front point is known, its new position can be
found by a simple first order explicit Euler integration:

xn+1
f = xn

f + vn
f∆t, (1.10)

where xf is the front position, vf is the front velocity, and ∆t is the time step. It is
important to comment that the front velocity is computed using the Peskin weighting
function, i.e., the velocity of the sixteen closer points of the fixed grid to one point of the
front are used to find its velocity.

1.2.6 Surface tension force

One of the most important elements in the immersed boundary methods implementation
is the surface tension force calculation. This property depends of the curvature of the
interface, and since the interface is deformed during the simulation, the curvature must
be calculated in every time step.

Figure 6.6: Hydrodynamical torque generated at the center of rotation of the VAWT by
each blade and the Total torque.
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The front-tracking method coupled with the solution of the conservation equations was
implemented in order to compute bubbly flows in two and three dimensions adding the
heat and mass transfer phenomena. The analysis of bubble dynamics were carried out in
two and three dimensions separately and the results showed the differences in the motion
of the bubbles and the wake developed behind the bubbles. Also, the numerical imple-
mentation was optimized using the advantage of the architecture of the GPU’s in order to
accelerate the solution of the conservation equations. The pressure and indicator function
Poisson equations were solved using the CUSP library from CUDA that allows an efficient
storage of sparse diagonal matrices and contains robust solvers that allow us to simulate
air-water systems.
In the first part of this project the detailed study of the bubble dynamics in two dimen-
sions were described by means of a numerical solution of the finite volume/front-tracking
method. The analysis was focused on examples where the ratio of the density of the
fluid to the density of the gas in the bubble is 103 and the simulations were made for
a long enough time to consider that the dynamics are not influenced by the initial con-
ditions. Also, we compared the numerical results with the observations of the ascent of
bubbles in a Hele-Shaw cell which constitutes a physical model that approximates the
conditions considered in the calculations. The bubble dynamics in two dimensions can be
conceptually decomposed in four parts: vertical and horizontal motions, bubble rotation
and the deformation of the shape of the bubble. The vertical displacement is promoted
by buoyancy and is resisted or assisted by the vertical components of the force on the
bubble. The asymmetric forces acting on the bubble due to vorticity generation promote
forces with components non parallel to the instantaneous displacement vector. Besides
the two translational motions, the bubble also rotates. Finally, there is the deformation
of the bubble surface due to the interplay between the stresses and surface tension forces.
For the water-air case where we have put the emphasis of our analysis, we find that the
surface tension is dominant and the originally circular shape of the bubbles undergoes
only a small deformation to take the shape of an ellipse. The most relevant consequence
of the deformation is that vorticity is generated more efficiently than in a circular bubble
since there are zones with smaller radius of curvature. The present study provides an
interesting example of the advantages and limitations of using a two dimensional sim-
ulation for interpreting the three dimensional phenomenon that occurs in a Hele-Shaw
cell. Specifically, it is remarkable to conclude that the two dimensional model correctly
predicts the linear relation between the Archimedes number and the terminal Reynolds
number. It is also interesting to find that the slope increases (thereby reducing the differ-
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ence between experiment and the two dimensional model) as the gap is larger. The vortex
pattern in the wake behind a bubble when the diameter of the bubble is larger than the
gap coincides with those of a von Karman vortex street, but when the diameter of the
bubble is equal to the gap, the vortex distribution is a distorted von Karman distribution.
This phenomenon may be of relevance in the design of parallel plate heat exchangers.
In the second part of the thesis, the results of the fully-three dimensional model implemen-
tation was presented. The results of the simulations for a single bubble at low Reynolds
numbers for different flow conditions were shown and the qualitative shape of the bubbles
were in agreement with the experimental results reported by Clift et al. (1978). The wake
behind the bubbles is formed by two elongated vortices and the flow at these conditions is
axis-symmetric. When the Reynolds number increases, the numerical results showed that
the vortices in the wake break down due to the instabilities that appear in the pressure
field. The consequence of the vortices breaking in the wake of the bubble is the continu-
ous vortex shedding behind the bubble which produces horizontal forces that promote a
lateral motion. Under these conditions, the bubble follows a spiral trajectory. Also, the
rising velocity oscillates around an average value with a frequency that is twice the fre-
quency of the oscillation of the motion of the bubble. The rising velocity calculated from
the numerical simulations was compared for different flow conditions with experimental
data reported for two different authors and the values obtained are in agreement within
an error that is less than 7% for all cases. It is important to highlight that very few
authors have reported the quantitative comparison of the direct numerical simulations
of bubble dynamics with experiments due to the difficulties to simulate bubbly flows in
which the density ratio is 1/1000. With our implementation, the comparison is direct and
all the parameters used to perform the simulations correspond to the material properties
of air-water systems.
The model was extended to simulate a system with multiple bubbles. We used the code
to solve two cases and the results correctly showed that small bubbles ascend in a straight
path and that the bubble-wake interactions can cause a dramatic changes in the trajecto-
ries. In the case of larger bubbles, we found spiral paths. Only some local alterations in
the trajectories of the bubbles can be observed due to the bubble-wake interactions and
the qualitative behavior of the flow is not globally affected. The dynamics of multiple
bubbles is very complex and systematic studies can be carried out with the code devel-
oped in this thesis in order to try to understand some features of such phenomenon, but
we only displayed representative examples.
With the purpose of studying the heat transfer in bubbly flows, the energy equation was
added to the finite volume/front-tracking code and a detailed study of bubbly flows in
inclined channels was carried out. The main objective of such study was to quantify
the effect of the angle of inclination on the flow and the heat transfer. From the results
we conclude that for the turbulent flows some alterations were found in the flow as one
changes the inclination angle. For sloping channels the bubbles migrate to the top wall
and form layers that improve the mixing of the fluid but reduce the fluid velocity com-
pared to the single phase flow. The results also show that even when the flow structure
is dependent on the angle of inclination, it has little effect on the global heat transfer
into the channel. However, some local changes in the heat transport are observed in the
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average temperature profiles across the channel. On the other hand, for laminar flows it
was found that the flow and also the heat transfer depends strongly on the angle of the
channel. The Nusselt number measured on the top wall of the channel increases as we
change the angle until it reaches a maximum between 30◦ and 60◦. Then, the Nusselt
number decreases as the inclination angle goes to 90◦. This effect was also clarified by
analyzing the temperature profiles for the different cases. For the sloping channels it
was observed that the mixing generated by the bubbles near the top wall of the channel
decreases the temperature since the heat is better transported from the wall to the core
of the fluid for those cases.
In order to implement the mass transfer in two-phase flows, a two-dimensional model for
the evaporation phenomenon was developed and coupled with our two dimensional finite
volume/ front-tracking code. The first results for the evaporation of a planar surface
were validated with a simple analytical model. Simulations of the evaporation of a single
and multiple droplets were carried out and the results showed that the implementation
captures the main physical effects that occur during the evaporation process. Also, it is
important to highlight that the extension to the three dimensional code is straightforward.
Finally, the mathematical model and the numerical implementation to simulate a Vertical
Axis Wind Turbine was developed and some preliminary results of the simulations were
presented.
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