

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

Análisis morfométrico del crecimiento posnatal del cráneo de los conejos zacatuche (*Romerolagus diazi*) y castellano (*Sylvilagus floridanus*)

T E S I S

PARA OBTENER EL TÍTULO DE BIÓLOGA

P R E S E N T A: ESTEFANÍA DE LA GARZA GONZÁLEZ

DIRECTOR DE TESIS: DR. FERNANDO ALFREDO CERVANTES REZA

MÉXICO, D. F. 2015

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

1.- Datos del alumno De la Garza González Estefanía 044 55 44 72 88 01 Universidad Nacional Autónoma de México Facultad de Ciencias Biología 307026118 2.- Datos del tutor Doctorado Cervantes Reza Fernando Alfredo 3. Datos del sinodal 1 Doctorado Kobelkowsky Díaz Abraham 4.- Datos del sinodal 2 M en C Pacheco Coronel Noé 5.-Datos del sinodal 3 Doctorado Cervantes Reza Fernando Alfredo 6.- Datos del sinodal 4 Doctorado Ochoa Olmos Carlos Alberto 7.- Datos del sinodal 5 M en C Escutia Sánchez Jorge Alberto 8.- Datos del trabajo escrito Análisis morfométrico del crecimiento posnatal del cráneo de los conejos zacatuche (Romerolagus diazi) y castellano (Sylvilagus floridanus) 68 p 2015

Dedicatoria y agradecimientos

Este trabajo se lo dedico a mis padres, por todo el apoyo y cariño que me han brindado.

A mi mamá, Irma: por la paciencia, el apoyo emocional y la tolerancia cuando yo sólo te llegaba a contar cosas de mi tesis. Porque no era sólo era yo echándole ganas a seguir adelante y que a pesar de los malos momentos, tú seguiste echándole ganas a todo y eso es una gran inspiración para mí.

A mi papá, Rubén: por los consejos de redacción y la paciencia de leer y volver a leer y darte cuenta de mi mala redacción y corregirme. Por darme cariño, apoyo incondicional y mucha paciencia. Los amo con todo mi corazón padres.

A mis hermanas, Emma e Irma: que si no bien a veces nos peleamos por cosas insignificantes como la ropa y después somos las más cariñosas de todo el mundo, como toda buena hermana. Las amo.

A Jonathan: Por estar durante todo el trayecto de mi tesis, escuchándome cada mes que ya casi la terminaría (Y bueno al fin llegó el día), por estar juntos en momentos tristes, en los momentos de alegría, en fin siempre estar presente. En verdad te agradezco por el apoyo, el tiempo, el cariño durante este tiempo, has cambiado parte de mi vida y realmente me haces muy feliz. Te amo.

A mis amigos: A Celia, por la gran amistad que me has brindado desde primaria hasta ahorita, me conoces perfectamente y gracias por el apoyo en todo momento, te quiero mucho. A mi amigo Hugo, Itzé y Erika por la gran amistad de ya de muchos años, los quiero mucho. A mis amigos de la prepa, Celia (otra vez tú), Tayde, Esmeralda, Michelle, Ana Gama y Hernández, Sandra, Rodrigo, Omar, Winter... entre otros que durante el trayecto de la prepa disfrute una gran amistad y momentos inolvidables. A mis compañeros y amigos de la Facultad María del Mar, Cipatli, Tonantzi, Jesus, Laura, Sacnité, Luis, Xochilt, Mitzy, Itzel, Miguel Ángel, Ivonne, Arturo, Perla, Sandra, Raúl, Haydee, Melisa, Raquel, Belem, Marco, Abigail, Gabriela, Ilse, Tania, Fernando, Angélica, Jonathan, Liz, Yoko, Paulina, Verónica, Isai, Nayelli, Jesyver, Ernesto, Dana... entre otros muchos, con los cuales les agradezco de haber convivido momentos de alegría, ya sea en laboratorio o prácticas de campo.

A mi familia: Ya sea de parte de mi papá o de mi mamá, hubo personas que siempre indirecta o directamente estuvieron apoyándome, tanto en el trayecto de mi carrera como en mis aptitudes y gustos. Mi abuelita Elena, mi tía Sonia, Lupe, Mari; mi tío José Luis, Carlos, Jorge, Don Jorge, mi prima Verónica, Alejandra, mi primo Manuel, Omar, Carlos, Jorge David, entre otros más. Y aunque no son de sangre propiamente pero si los considero parte de mi familia la familia Pérez de Teresa, en especial María Elena.

A mis profesores: Que más que profesores también me dieron una gran amistad y aprendizaje de toda la vida. A mi profesor, asesor y sinodal Dr. Fernando, por mostrarme el mundo de los mamíferos, su investigación y conservación. A M. en A. Arodi, quien afortunadamente llegó en el preciso momento en el que no sabía cómo seguir adelante en mi tesis (jeje). A mi sinodal el Dr. Abraham, por aprender muchas cosas relacionadas con la anatomía animal y además de ser una inspiración en el dibujo. A mi sinodal M. en C. Noé, por aprender mucho en las salidas a San Juan en el servicio social. A mi sinodal M. en C. Jorge, por orientarme dentro este proceso en cuestiones de estadística. A mi sinodal Dr. Carlos, gracias a ti tuve fe en la biología en primer semestre. Al Dr. Frank Raúl, por aprender muchás cos fósiles, una materia muy agradable. A la Dr. Graciela por aprender muchas

cosas durante la clase de etnozoología y servicio social. A la Dra. Lorena Caballero por sus conocimientos en evolución. A las profesoras M. en C. Julieta y Yolanda por aprender muchas cosas en colección.

A mi Universidad: Primero que nada me siento agradecida por todo lo que la universidad me ha inculcado, por la gran casa de estudios que es la UNAM. Que desde que entre a la prepa (Preparatoria núm. 9) hasta la Facultad de Ciencias, siempre he sido feliz, agradecida y orgullosa de pertenecer a esta universidad. Al Instituto de Biología y la Colección Nacional de Mamíferos, por la gran oportunidad y disponibilidad para poder realizar este trabajo.

CONTENIDO

LISTA DE CUADROS	6
LISTA DE FIGURAS	6
RESUMEN	
INTRODUCCIÓN	9
Morfometría	9
Antecedentes	10
Ejemplos de estudios de la ontogenia craneal utilizando métodos morfométricos geométricos.	'ineales y 10
Morfometría de lagomorfos	10
El conejo zacatuche (<i>Romerolagus diazi</i>) y el conejo castellano (<i>Sylvilagus flori</i>	lanus) 11
OBJETIVO GENERAL	
OBJETIVOS PARTICULARES	
MATERIALES Y MÉTODOS	14
Revisión de ejemplares	14
Morfometría lineal	
Métodos de medición	14
Porcentajes de crecimiento	
Alometría lineal	
Morfometría Geométrica	
Material fotografiado y digitalización de landmarks	
Obtención de tamaños centroides y análisis generalizado de procrustes	
Análisis de variación de forma	
Alometría: Relación tamaño - forma	
Comparación morfológica por edad entre especies	
RESULTADOS	22
Morfometría lineal	22

Asignación de categorías de edad	
Análisis estadístico exploratorio	
Porcentajes de Crecimiento	
Alometría lineal	
Morfometría Geométrica	
Variación en forma	
Alometría: relación tamaño y forma	
Comparación morfológica por edad entre especies	
DISCUSIÓN	
CONCLUSIONES	
RECOMENDACIONES	
LITERATURA CITADA	
APÉNDICES	45

LISTA DE CUADROS

Cuadro 1.- Número de ejemplares por categoría de edad y sexo de *Romerolagus diazi* y *Sylvilagus floridanus* de la CNMA del Instituto de Biología de la UNAM.

Cuadro 2.- Porcentajes (%) de crecimiento de acuerdo a las categorías de edad de *Romerolagus diazi* y *Sylvilagus floridanus* con cada una de las variables medidas, indicando el crecimiento que le falta para llegar a la siguiente categoría de edad.

Cuadro 3.- Valores obtenidos de la ecuación alométrica de *Romerolagus diazi* y *Sylvilagus floridanus,* donde **b** es una constante o intercepto de la función y α es el coeficiente alométrico (o pendiente) el cual determina el tipo de alometría.

Cuadro 4.- Porcentajes predichos (%) y valores de significancia de la regresión multivariada correspondientes a todas las vistas de *Romerolagus diazi* y *Sylvilagus floridanus*; ángulos en grados de las pendientes de la rectas de regresión y valor de significancia de la diferencia entre ángulos de las pendientes.

Cuadro 5.- Comparación morfológica entre categorías de edad de todas las vistas de *Romerolagus diazi* y *Sylvilagus floridanus*. Distancia de Mahalanobis obtenida del DFA, distribución estadística de Hotelling T² con valor P por 1000 permutaciones corridas. Nivel de significancia P<0.05.

LISTA DE FIGURAS

Figura 1.- Cráneo de *Rhipidomys fulviventer elatturus* (EBRG-15241), vista lateral mostrando landmarks (puntos rojos) empleados en morfometría geométrica.

Figura 2.- (A) Conejo zacatuche *Romerolagus diazi* en su hábitat natural. (B) Vista lateral del cráneo adulto de *Romerolagus diazi* (16932) procedente de la Colección Nacional de Mamíferos (CNMA).

Figura 3.- Conejo castellano *Sylvilagus floridanus*. (B) Vista lateral del cráneo adulto de *Sylvilagus floridanus* procedente de la CNMA (16922).

Figura 4.- Categorías de edad de los cráneos de *Sylvilagus floridanus* (Hoffmeister y Zimmerman, 1967). Vista posterior, flecha roja: relación de la sutura entre el exoccipital – supraoccipital de cada categoría de edad. (1): C1; (2): C2; (3): C3 y (4): C4.

Figura 5.- Variables craneales medidas con sus siglas y su descripción. Cráneo de *Romerolagus diazi* (16894) procedente de la CNMA.

Figura 6. Ubicación y descripción de landmarks de todas las vistas. Cráneo de *Romerolagus diazi*, 16906. Landmarks: puntos rojos. (A) vista dorsal, (B) vista ventral, (C) vista lateral y (D) vista lateral del dentario.

Figura 7. Regiones del cráneo empleadas en la explicación de la variación en forma. (A) vista dorsal, (B) vista ventral, (C) vista lateral y (D) vista lateral del dentario.

Figura 8. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista lateral del dentario y las formas asociadas al factor de escala.

Figura 9. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista lateral del dentario y las formas asociadas al factor de escala.

Figura 10. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista dorsal del cráneo y las formas asociadas al factor de escala.

Figura 11. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista dorsal del cráneo y las formas asociadas al factor de escala.

Figura 12. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista lateral del cráneo y las formas asociadas al factor de escala.

Figura 13. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista lateral del cráneo y las formas asociadas al factor de escala.

Figura 14. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista ventral del cráneo y las formas asociadas al factor de escala.

Figura 15. Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista ventral del cráneo y las formas asociadas al factor de escala.

Figura 16. Regresiones alométricas de tamaño-forma de la vista lateral del dentario.

Figura 17. Regresiones alométricas de tamaño-forma de la vista dorsal del cráneo.

Figura 18. Regresiones alométricas de tamaño-forma de la vista lateral del cráneo.

Figura 19. Regresiones alométricas de tamaño-forma de la vista ventral del cráneo.

RESUMEN

El conejo zacatuche Romerolagus diazi, especie endémica de México, pertenece a un género monotípico y se considera en peligro de extinción. Habita de manera simpátrica con el conejo castellano Sylvilagus floridanus y se ha confirmado que existen diferencias notables de tamaño entre adultos y formas craneales muy similares. Sin embargo, se sabe muy poco de la variación morfológica del crecimiento craneal posnatal de estas dos especies, así como del ritmo de crecimiento de sus variables craneales, ambas de utilidad para explicar diferencias entre ambas especies. Por lo tanto este estudio utilizó morfometría lineal para determinar la variación ontogénica, las relaciones alométricas, de proporción y de crecimiento de variables craneales entre categorías de edad de cada especie y se evaluó el ritmo de crecimiento de las variables craneales lineales. Además se utilizó morfometría geométrica para obtener la variación de forma de diferentes vistas del cráneo, así como para analizar la asociación de la forma con el tamaño y comparar las formas entre categorías de edad entre especies. Los resultados mostraron que existe una relación del tamaño con la forma, indicando alometría ontogénica entre las dos especies en los resultados lineales y geométricos, pero también se mostraron diferencias en las relaciones de crecimiento de sus variables craneales y proporciones de tamaño. También se encontraron patrones similares en las formas y promedios de las categorías juveniles, posiblemente tiene relación con la alometría ontogénica de cada especie. El crecimiento de distintas variables craneales podrían reflejar distintos cambios funcionales, como la respiración y la masticación durante la trayectoria ontogénica. La tendencia de cambio de la forma craneal en la trayectoria ontogénica de ambas especies, comparativamente es muy similar. No obstante hay algunas diferencias entre categorías de edad en esas especies. La vista ventral craneal de la categoría de edad juvenil resultó significativamente igual entre especies, posiblemente por consumir alimento similar como individuos lactantes. Se recomienda efectuar estudios adicionales, asociar la forma craneal a diferentes funciones biológicas con el empleo de semilandmarks y la división de regiones craneales o módulos funcionales: inclusive incluir otros lepóridos como las liebres. Finalmente es recomendable evaluar detalladamente los porcentajes de crecimiento, debido a que este enfoque marca una clara diferencia en el ritmo de crecimiento de las variables lineales entre ambas especies, además nos muestra el reflejo de posibles procesos biológicos que suceden durante el crecimiento posnatal.

INTRODUCCIÓN

La ontogenia o desarrollo, es el proceso a través del cual transita un embrión para convertirse en adulto y eventualmente morir (Caballero, 2006). Es evidente que a lo largo del desarrollo, los organismos van presentando diferentes cambios en sus estructuras, cambios como son de tamaño y forma. Uno de los ejemplos de estructuras es el cráneo de vertebrados, el cual por su complejidad funcional tiene diferentes cambios a lo largo de la ontogenia de los organismos. Los estudios de la dinámica ontogénica del tamaño y forma craneal pueden mostrar pistas importantes para entender las adaptaciones funcionales y morfológicas de las estrategias de las historias de vida de los organismos (Cardini y O' Higgins, 2005; Cardini y Thorington, 2006). Estas adaptaciones nos pueden brindan pistas de la información biológica funcional, ecológica e incluso evolutiva de las especies, como por ejemplo, en el caso de los mamíferos uno de los cambios importantes a lo largo del desarrollo, es el cambio de alimento líquido a sólido (Segura y Prevosti, 2012), este tipo de procesos puede ser el reflejo de un cambio producido en la estructura craneal, tanto de tamaño como de forma. La manera de estudiar estos cambios ontogénicos es utilizando métodos morfométricos.

Morfometría.- Uno de los métodos para cuantificar estos cambios de tamaño y forma a lo largo de la ontogenia craneal es la morfometría lineal, la cual se enfoca a la realización de mediciones como longitudes, anchuras, ángulos, entre otros, en las diferentes formas biológicas. Con el avance de la tecnología y estadística, se empezó a usar técnicas de análisis de formas más especializadas, como es la morfometría geométrica. Este método se centra en estudiar la forma, pero desde un aspecto en el que la escala, los ángulos, el largo, el ancho, alto y proporción de las formas, son variables importantes que determinan la comparación de los patrones de variación entre las distintas formas biológicas (Toro *et al.*, 2010). Está técnica permite el estudio de los cambios de la forma a partir de un plano o espacio, de un conjunto de puntos homólogos llamados landmarks (Bookstein, 1997). Estos landmarks nos permiten estudiar las formas biológicas dentro de un espacio en común y a través de su traslación y rotación, determinar el cambio en forma (Fig. 1).

Figura 1.- Cráneo de *Rhipidomys fulviventer elatturus* (EBRG-15241), vista lateral mostrando landmarks (puntos rojos) empleados en morfometría geométrica (García y Sánchez, 2013).

Con morfometría lineal se puede explorar las relaciones de crecimiento de las medidas entre diferentes edades a lo largo de la ontogenia craneal, mientras que con morfometría geométrica se pueden analizar todas las relaciones de la forma y tamaño. Un concepto importante dentro del estudio de la ontogenia, es el de alometría. Julian Huxley y George Teisser en 1936, definieron el concepto, el cual se refiere a

los cambios de la dimensión relativa de las partes corporales correlacionadas con los cambios de tamaño total (Gayon, 2000) o la relación entre los cambios de forma y el tamaño total (Levinton, 1988). El concepto de Huxley y Teisser se encuentra más relacionado con morfometría lineal, ya que está ligado a las medidas lineales, pero en morfometría geométrica este concepto tiene más relación con el concepto de Levinton, ya que menciona una relación con la forma y el tamaño, donde en morfometría geométrica se define como el cambio en forma correlacionado con el cambio en tamaño (Zelditch *et al.*, 2004b). El tamaño o size en morfometría geométrica es diferente al de las medidas lineales, pero este se toma en cuenta con la escala de la estructura que se analice. Este tamaño se puede correlacionar con los valores de la forma para poder sacar su alometría, en este caso la alometría ontogénica, es decir, los cambios ontogénicos de forma correlacionados con los cambios de tamaño (Zelditch *et al.*, 2004a).

Antecedentes

Ejemplos de estudios de la ontogenia craneal utilizando métodos morfométricos lineales y

geométricos.- Se han realizado diversos estudios de la ontogenia craneal en los que se emplean ambas herramientas, con el fin de examinar las variaciones del tamaño y forma a lo largo del desarrollo de diversos grupos de mamíferos. Entre ellos está el de los roedores del género *Marmota,* donde se determinaron las variaciones morfológicas de los cráneos de diversas especies de marmotas de distintas edades para analizar el papel ecológico y el entorno geográfico-ambiental que tienen, ya que este es muy similar entre las especies. No se encontró una gran variación intraespecífica posiblemente por las condiciones tan parecidas, además de que es muy probable que la ontogenia a etapas tempranas de estas especies tenga relación con la divergencia de este grupo de roedores y la relación con otros grupos de roedores dentro de su filogenia (Cardini y Thorington, 2006).

Otro caso utilizando morfometría geométrica es el de *Lycalopex culpaeus*, el cual es un zorro sudamericano, cuya ontogenia craneal fue estudiada en función a sus hábitos alimentarios y la comparación con otros carnívoros; considerando los cráneos de diversos ejemplares de distintas edades, se determinó un cambio morfológico al comparar las formas craneales a una cierta etapa de desarrollo de esta especie, por lo que posiblemente tiene que ver con la transición alimentaria entre los organismos que se alimentan de la leche materna hasta consumir alimento sólido (Segura y Prevosti, 2012), además de que se presentan cambios morfológicos a partir del primer año de madurez de esta especie (Segura, 2013). Uno de los trabajos utilizando morfometría lineal es el estudio posnatal del cráneo del león marino sudamericano *Otaria byronia*, donde estudian su desarrollo con alometría lineal con diversas variables craneales, así como su dimorfismo sexual craneal (Tarnawski *et al.*, 2014). Otro caso, es el estudio del didélfido omnívoro neotropical *Didelphis albiventris*, el cual de acuerdo con las velocidades alométricas resultaron cambios acelerados en los huesos del paladar, regiones frontales y occipitales y cambios menos acelerados en la anchura cigomática y partes del neurocráneo (Abdala *et al.*, 2001).

Morfometría de lagomorfos.- En el caso de los lagomorfos, se han realizado diversos estudios morfométricos craneales, de los cuales sólo se han enfocado a organismos adultos. Hay estudios con lagomorfos mexicanos como el de la liebre de Tehuantepec *Lepus flavilugaris*, donde se determinó que no existe un dimorfismo sexual craneal en los miembros de esta especie (Lorenzo *et al.*, 2004), sin embargo en otro estudio, en la mayoría de las medidas somáticas y craneales, las hembras de

Romerolagus diazi y *Sylvilagus floridanus*, son relativamente más grandes que los machos (Delgado, 1995; Vargas, 1992). Hasta el momento, sólo se ha registrado dentro de la literatura un estudio ontogénico craneal de lagomorfos utilizando morfometría geométrica, siendo el de la liebre asiática *Lepus capensis*, de la cual se estudió su ontogenia craneal posnatal con el fin de determinar las variaciones morfológicas de partes craneales para discernir posibles causas de divergencia en las tasas de crecimiento de estas partes (Deyan *et al.*, 2012). Son pocos los estudios dirigidos al crecimiento posnatal del cráneo en lagomorfos, ya que varios estudios se han limitado a separar categorías de edad (Hoffmeister y Zimmerman, 1967) y utilizar sólo categorías adultas (Cervantes y Vargas, 1998; Delgado, 1995; Vargas, 1992).

El conejo zacatuche (Romerolagus diazi) y el conejo castellano (Sylvilagus floridanus).- Una de las especies más estudiadas en el país por su importancia, es el conejo zacatuche Romerolagus diazi (Fig. 2A) es una especie endémica, su género es monotípico y por su estado de conservación se encuentra en peligro de extinción (NOM-059-ECOL-SEMARNAT, 2010). El conejo zacatuche tiene una distribución restringida a las montañas centrales del Eje Neovolcánico Transversal. Ocupa áreas con una cobertura vegetal de bosques abiertos, cuyos estratos inferiores están compuestos por una densa cobertura de zacatones, principalmente de *Festuca amplissima, Festuca rosei y Muhlenbergia macroura,* especies de las cuales se alimenta. De acuerdo a su morfología, Romerolagus diazi posee caracteres tanto craneales como dentales, que lo identifican como un lepórido primitivo ya que se le considera cercano a las pikas de la familia Ochotonidae (Ceballos y Oliva, 2005; Cervantes y Martínez, 1996). De manera general su cráneo posee el paladar no tan alargado como el de otras especies (Fig. 2B), tiene un proceso postorbital pequeño, una bula timpánica normal, igual al tamaño del foramen magnum y con un meato relativamente más grande que el resto de los lepóridos (Cervantes y Martínez, 1996).

Figura 2. (A) Conejo zacatuche *Romerolagus diazi* en su hábitat natural (Foto: Fernando A. Cervantes). (B) Vista lateral del cráneo adulto de *Romerolagus diazi* (16932) procedente de la Colección Nacional de Mamíferos (CNMA).

Una de las especies de lepórido simpátricas con *Romerolagus diazi* es *Sylvilagus floridanus* (Fig. 3A), aunque sus líneas evolutivas no son tan cercanas una con la otra, dentro de la familia leporidae (Cervantes y Vargas, 1998). El conejo castellano *Sylvilagus floridanus* habita en casi todo el territorio mexicano y es común observarlo en claros naturales y tierras agrícolas. Habita en valles, planicies,

pastizales, matorrales y montañas con bosque de coníferas. En general, su alimentación consta de leguminosas y gramíneas vivaces de escasa talla con tendencia a formar céspedes. En México existen 10 subespecies. No se encuentra en ninguna categoría de riesgo (Ceballos y Oliva, 2006). Posee el paladar alargado (Fig. 3B), el proceso postorbital delgado y una bulas timpánicas proporcionalmente más pequeñas que otros lepóridos (Elbroach, 2006).

Figura 3. Conejo castellano *Sylvilagus floridanus* (Foto: Dan Dzurisin, 2007). (B) Vista lateral del cráneo adulto de *Sylvilagus floridanus* procedente de la CNMA (16922).

Se han realizado estudios morfométricos comparativos entre estas dos especies, en donde se han determinado diferencias notables en tamaño entre adultos, aunque la forma craneal resultó muy similar entre especies (Cervantes y Vargas, 1998; Vargas 1992). Como se mencionó en los ejemplos, hay diferencias en tamaño craneal dada la edad, por lo que posiblemente estas diferencias puedan estar correlacionadas con diferencias en forma, es decir, que posiblemente exista alometría ontogénica craneal en cada especie. Además, dadas las diferencias de tamaño de cada especie y las diferencias de edad, podría haber cambios en el ritmo de crecimiento de las medidas de cada especie y esto podría repercutir en características que difieran entre especies. De acuerdo trabajos realizados con estas especies, cada una tiene su propia variación ontogénica craneal de tamaño y forma, por lo que de acuerdo a sus características, esta variación podría ser similar entre especies, dado que las formas adultas son muy parecidas. Sabiendo esto, es importante determinar su variación y compararla entre especies, ya que podría mostrar pistas de diferentes procesos, los cuales enmarquen diferencias en las características biológicas de las dos especies.

El uso de herramientas morfométricas como son la morfometría lineal y la morfometría geométrica, facilitan conocer todas estas relaciones de tamaño con la forma craneal durante la ontogenia entre las especies. Comparar es una forma de observar que tanto está representada esta variación, por lo que se propone analizar la variación de tamaño y forma de la ontogenia craneal posnatal de estas dos especies de lepóridos, utilizando herramientas morfométricas y plantear los posibles procesos biológicos que podrían estar correlacionados con estos cambios.

OBJETIVO GENERAL

Analizar la variación en tamaño y forma del cráneo durante el crecimiento posnatal de *Romerolagus diazi* y *Sylvilagus floridanus* utilizando morfometría lineal y geométrica

OBJETIVOS PARTICULARES

1.- Describir las diferencias entre categorías de edad de *Romerolagus diazi* y *Sylvilagus floridanus* en función del incremento de sus variables craneales

2.- Describir las relaciones alométricos lineales de variables craneales entre categorías de edad de *Romerolagus diazi* y *Sylvilagus floridanus*

3.- Conocer la variación de la forma asociada al tamaño entre categorías de edad de *Romerolagus diazi* y *Sylvilagus floridanus* utilizando morfometría geométrica

MATERIALES Y MÉTODOS

Revisión de ejemplares.- Se emplearon cráneos de ejemplares en buen estado y de sexo conocido de *R. diazi* y *S. floridanus,* procedentes de la Colección Nacional de Mamíferos (CNMA) del Instituto de Biología de la Universidad Nacional Autónoma de México (UNAM). Los ejemplares se organizaron por categorías de edad, de acuerdo al criterio de Hoffmeister y Zimmerman (1967), donde dependiendo de la sutura exoccipital – supraoccipital del cráneo y del desarrollo de los dientes, se organizaron en cuatro categorías de edad: Categoría 1 (C1), en la que no hay una fusión ni sutura entre los huesos exoccipitales y supraoccipital; Categoría 2 (C2), hay una sutura visible pero no hay una fusión a lo largo; Categoría 3 (C3), hay una sutura pero sólo es visible con microscopio estereoscópico y Categoría 4 (C4), donde la fusión es completa y no se logra observar ninguna sutura (Fig. 4).

Figura 4.- Categorías de edad de los cráneos de *Sylvilagus floridanus* (Hoffmeister y Zimmerman, 1967). Vista posterior, flecha roja: relación de la sutura entre el exoccipital – supraoccipital de cada categoría de edad. (1): C1; (2): C2; (3): C3 y (4): C4.

Morfometría lineal

Métodos de medición.- Se tomaron nueve medidas craneales o variables (Fig. 5) utilizando un vernier mecánico con un nivel de precisión de 0.1 mm. Se midieron una altura, dos anchuras y seis longitudes del cráneo y en las medidas que se encuentran en ambos lados del cráneo (LAC, LD, LMD y LN) se tomó la del lado derecho, bajo el criterio de que ambas partes son simétricas. Se anexan las medidas de las variables correspondientes a cada ejemplar (Apéndices III y IV).

Variable (abreviación)	Descripción
Anchura cigomática (AC)	Distancia mayor entre los arcos cigomáticos
Altura de la caja craneana (ACC)	Distancia que comprende el límite dorsal de la caja craneana en la unión de los huesos parietales hacia la porción ventral de las bulas timpánicas
Anchura parietal (AP)	Distancia entre los huesos parietales al nivel de la porción dorsal de la caja craneana
Longitud arco cigomático (LAC)	Distancia mayor desde la proyección más anterior hasta la posterior que cubre todo el arco cigomático
Longitud basilar (LB)	Distancia del extremo anterior del hueso premaxilar al punto exterior del borde inferior del foramen magnum
Longitud del dentario (LD)	Distancia mayor que abarca la porción del alvéolo inferior hasta la porción más distal del proceso condilar
Longitud mayor craneal (LMC)	Distancia mayor del extremo anterior de los nasales hasta la porción posterior del hueso occipital
Longitud molar del dentario (LMD)	Distancia mayor que abarca los dientes pertenecientes al hueso dentario
Longitud del nasal (LN)	Distancia mayor de los huesos nasales a lo largo de la sutura media

Figura 5.- Variables craneales medidas con sus siglas y su descripción (Delgado, 1995; Hoffmeister and Zimmerman, 1967; Ramírez, 2009; Vargas, 1992). Cráneo de *Romerolagus diazi* (16894) procedente de la CNMA.

Se calculó el promedio y variación de cada una de las medidas, utilizando parámetros de estadística univariada media, desviación estándar, intervalo mínimo y máximo ó mín - máx y el Coeficiente de Variación (CV) y se analizaron por categorías de edad. Además, con base en los promedios calculados se calcularon las proporciones de la variable LMC de la C1 a la C4, de la C2 a la C4 y C3 a la C4.

Porcentajes de crecimiento.- Se obtuvieron los promedios de cada una de las variables correspondientes por categoría de edad y hacer una regla de tres, donde se consideró como 100% al promedio de la C4, para designarlo como el máximo crecimiento que pudiera llegar a alcanzar cada variable. También se calcularon los porcentajes de las otras 3 categorías de edad tomando como referencia el porcentaje máximo de la C4, para calcular la velocidad de crecimiento de las variables, por lo que se calculó el porcentaje que tienen que alcanzar para llegar a la siguiente categoría de edad.

Alometría lineal.- Para determinar la velocidad de crecimiento de las variables a lo largo del desarrollo del cráneo se utilizó la ecuación alométrica. $y=bx^{\alpha}$, donde x pertenece a los valores de la variable independiente y los valores de y corresponden a los de las variables dependientes, **b** es una constante o intercepto de la ecuación, α es la pendiente de x - y o también llamado coeficiente alométrico. Cuando $\alpha=1$ se le denomina isometría, es decir, que la variable de interés crece al mismo ritmo que la variable independiente; cuando $\alpha>1$ indica que la variable dependiente crece a una mayor velocidad que la variable independiente, lo que significa que por cada unidad de la variable independiente hay más de una unidad de la variable dependiente; y cuando $\alpha<1$ nos indica que el crecimiento la estructura cuantificada es de menor velocidad que el de la variable independiente, indicando que por cada unidad de la variable independiente hay menos de una unidad de la variable dependiente (Klingenberg, 1996).

Diversos estudios utilizaron como variable independiente a la longitud mayor del cráneo (Abdala *et al.*, 2001; Flores *et al.*, 2003) ya que esta variable reveló un dimorfismo sexual en poblaciones. Se analizó la longitud mayor craneal de las poblaciones de machos y hembras de *R. diaz*i y *S. floridanus* para determinar si existe un dimorfismo sexual craneal, por lo que se realizó una prueba de Kolmogorov-Smirnov con el paquete estadístico PAST versión 2.17c (Hammer *et al.*, 2001). Una vez obtenida la variable independiente y asignadas las variables dependientes, se ajustaron a la ecuación alométrica para determinar los valores de **b** y *a* mediante regresiones lineales simples.

Morfometría Geométrica

Material fotografiado y digitalización de landmarks.- Obtenidas las categorías de edad y seleccionados los ejemplares, se utilizó una submuestra para fotografiar 28 ejemplares de *R. diazi* de los cuales 6 pertenecen a la C1, 6 a la C2, 6 a la C3 y 10 a la C4; mientras que *S. floridanus* se utilizó una muestra de 29 individuos de los cuales 6 pertenecen a la C1, 5 a la C2, 8 a la C3 y 10 a la C4. Se utilizaron 4 vistas para las fotografías: dorsal, ventral, lateral y lateral del dentario. En las vistas utilizadas se le dio preferencia a la del lado derecho del cráneo para fotografiarlas o en caso de que esta parte no fuera viable para la colocación de landmarks se utilizó la de lado izquierdo, bajo el criterio de simetría del cráneo. Las fotografías fueron tomadas con una cámara digital Nikon modelo Coolpix S2600, lente de 4.6 – 23.00 mm, y una calidad de imagen de 8 megapixeles. Tomando la foto de manera vertical y anotando la escala.

Una vez obtenidas las imágenes, se utilizó el programa TPS Util versión 1.58 (Rohlf, 2013a) para poder transformarlas a archivo TPS (TPS por sus siglas en inglés: Thin Plate Spline) y digitalizar los landmarks en 2D (espacio conformado por coordenadas x - y) en el programa TPS Dig. versión 1.40 (Rohlf, 2004). Los landmarks son puntos que se colocan en partes de la estructura donde toman un significado funcional o de crecimiento de las distintas formas biológicas que deben ser homólogas dentro de las poblaciones en estudio (Vázquez, 2011, Zelditch *et al.*, 2004a). Se colocaron 16 landmarks para la vista dorsal, 12 landmarks para la vista ventral, 12 landmarks para la vista lateral y 10 landmarks para la vista del dentario (Fig. 6), de acuerdo a otros estudios de morfometría geométrica de mamíferos (Deyan *et al.*, 2012; García y Sánchez, 2013; Vázquez, 2011).

Vistas	Landmarks	Descripción
Α	1	Punto extremo del rostro
	2	Punto de terminación del hueso premaxilar
	3	Punto posterior del nasal
	4	Punto anterior más ancho del rostro en la región maxilar
	5	Punto posterior más ancho del rostro en la región maxilar
	6	Borde posterior del proceso del arco cigomático
	7	Punto extremo del proceso supraorbital
	8	Punto del arco cigomático a la altura de la unión con el yugal
	9	Punto del borde anterior de la bula timpánica
	10	Punto del borde posterior de la bula timpánica
	11	Punto más posterior del parietal
	12	Punto extremo del supraoccipital en la línea media dorsal (mismo punto B11, ventral)
	13	Punto medio del supraoccipital en la línea media dorsal

	. Tandanaal	
Vist	tas Landmark	5 Descripción
	14	Punto de unión del parietal con el supraoccipital en la línea media dorsal
	16	Punto de unión entre el nasal y el frontal en la línea media dorsal
В	1	Coyuntura entre los incisivos del hueso premaxilar
	2	Punto posterior del foramen del incisivo superior
	3	Punto anterior del foramen del incisivo superior
	4	Punto anterior del primer premolar superior
	5	Punto posterior del último molar superior
	6	Unión del yugal y el arco cigomático (vista ventral)
	7	Punto más posterior del palatino en la línea media ventral
	8	Extremo anterior del basioccipital en la línea media ventral
	9	Punto anterior del borde del foramen magnum en la línea media ventral
	10	Punto posterior del borde del foramen magnum en la línea media ventral
	11	Punto extremo del supraoccipital en la línea media ventral (mismo punto A12, dorsal)
	12	Punto extremo del borde de las bulas timpánicas, a la altura de los forámenes anteriores de la bula timpánica
C	2 1	Punto anterior del hueso nasal
	2	Punto posterior entre el premaxilar y maxilar
	3	Punto más superior del frontal
	4	Punto superior del occipital
	5	Punto inferior del occipital
	6	Punto más inferior de las bulas timpánicas
	7	Proceso del hueso basisfenoides
	8	Base del punto posterior del último molar
	9	Punto anterior del primer premolar
	10	Base del punto anterior del primer premolar
	11	Punto posterior del alvéolo del incisivo superior
	12	Punto anterior del alvéolo del incisivo superior
D	1	Margen anterior del proceso coronoides
	2	Margen posterior del proceso coronoides
	3	Proceso angular
	4	Punto en la base inferior del proceso angular
	5	Punto más interno más profundo en la curvatura de la base del dentario
	6	Borde inferior del primer incisivo inferior
	7	Borde superior del primer incisivo inferior
	8	Punto anterior de la hilera molariforme
	9	Punto posterior de la hilera molariforme
	10	Punto inferior anterior del proceso coronoides

Figura 6.- Ubicación y descripción de landmarks de todas las vistas. Cráneo de *Romerolagus diazi*, 16906. Landmarks: puntos rojos. (A) vista dorsal, (B) vista ventral, (C) vista lateral y (D) vista lateral del dentario.

Obtención de tamaños centroides y análisis generalizado de procrustes.- Obtenidos los archivos TPS, con el programa TPSRewl 1.53 (Rohlf, 2013b) se obtuvieron los tamaños centroides o centroid sizes. El tamaño centroide es la raíz cuadrada de las distancias euclidianas de cada uno de los landmarks hacia el centroide (Adams *et al.*, 2013; Bookstein, 1997; Vázquez, 2011). Esta medida es matemáticamente independiente de la forma o shape, por lo que este valor se puede correlacionar con los valores de la forma. El tamaño centroide tiene una relación con la escala que se le puso a las imágenes, ya que depende del tamaño de los ejemplares. Utilizando el programa MorphoJ versión 1.6b (Kligenberg, 2011) se procedió a transformar los archivos para generar una matriz con las coordenadas de los landmarks, además archivos de los clasificadores del número de ejemplares y a la categoría de edad que pertenecen y el archivo de los tamaños centroides.

Toda la matriz de coordenadas de clasificadores y archivos de los tamaños centroides se cargó en el programa MorphoJ, donde se generó un Análisis Generalizado de Procrustes (GPA por sus siglas en inglés) como método de superposición. Este análisis nos permite agrupar todos los landmarks de todos los ejemplares tomando en cuenta su ubicación, traslación y rotación, los cuales los agrupa en un sistema de coordenadas dentro de un espacio en común, y que a su vez se generan los puntos promedio de todas las coordenadas de los landmarks dando una forma consenso (Zelditch *et al.*, 2004). Se anexaron las coordenadas de la forma consenso de cada especie (Apéndice VII). En este análisis se estandarizan los puntos, ya que el tamaño de las formas se escala al mismo para todas, es decir, el tamaño centroide es igual a 1 en todas las formas, por ello es importante la escala que se utilizó, ya que este se guardó para determinar la alometría de los ejemplares.

Análisis de variación de forma.- Para observar la variación de forma o shape se realizaron Análisis de Componentes Principales (PCA por sus siglas en inglés) de todas las categorías de edad de cada especie con el programa MorphoJ. Dado que tratamos con muchas variables, toda la matriz de coordenadas de los landmarks de toda esa interacción de valores habrá una que nos dé una mayor variación de manera resumida, es decir, la cual explique la mayor parte de la variación. El primer componente explica el mayor porcentaje de variación de forma asociada a la variación de tamaño. Se regionalizaron las partes del cráneo (Fig. 7) de manera de que sea más factible explicar los cambios en forma que se producen en las rejillas de deformación y diagramas de paletas de las formas de todas las vistas de cada especie.

Figura 7.- Regiones del cráneo empleadas en la explicación de la variación en forma. (A) vista dorsal, (B) vista ventral, (C) vista lateral y (D) vista lateral del dentario.

Alometría: Relación tamaño - forma.- Para determinar la relación alométrica de cada especie se realizaron regresiones multivariadas simples con el programa MorphoJ, donde se utilizan variables dependientes y uno o más variables independientes, de modo que se designó como variable independiente al tamaño centroide y como variables dependientes las configuraciones de los landmarks, bajo el criterio de predecir a la forma a través del tamaño (Klingenberg, 1996). El programa selecciona los valores de las formas más asociadas a nuestra variable independiente, en este caso el Componente Principal 1 (PC1 por sus siglas en inglés) posee el intervalo de valores asociados al tamaño, por lo que se aseguró que los PCA score1 (valores de cada ejemplar correspondientes al PC1) fueran los mismos valores de Regression score1 (los valores de los individuos que marcan la forma más asociada al tamaño en la regresión) y se correlacionaron con el tamaño centroide. Se anexan los valores correspondientes a los tamaños centroides (CS por sus siglas en inglés) y Regression scorel de ambas especies (Apéndice IX). Se obtuvieron los porcentajes predichos de cada vista de cada especie, los cuales resumen las distancias al cuadrado entre distancias de procrustes de la forma observada y la forma predicha o esperada (Zelditch et al., 2004). Este porcentaje muestra la asociación de la variable independiente con las variables dependientes. Se realizó una prueba de 10,000 rondas de permutaciones de cada vista para cada especie; donde la hipótesis nula de isometría, dice que las formas no cambian conforme el tamaño va cambiando. Para calcular la velocidad de cambio en forma con relación al cambio en tamaño, se obtuvieron los vectores de regresión y los ángulos de éstos, los cuales se compararon, donde la hipótesis nula menciona que los vectores tienen direcciones aleatorias en el

espacio tangente o espacio de Kendall (Zelditch *et al.*, 2004), es decir, que dentro de este espacio la dirección de los vectores puede ser diferente y dependiendo de esto, los ángulos resulten diferentes entre especies y por lo tanto la velocidad de cambio en forma no es igual entre especies.

Comparación morfológica por edad entre especies.- Para la comparación de cada forma de cada edad entre especies, se realizó un Análisis de Función Discriminante (DFA por sus siglas en inglés), comparando la forma de cada categoría de edad de *R. diazi* con la de *S. floridanus*. De la matriz de coordenadas de todos los ejemplares de cada especie, se extrajeron las coordenadas de los individuos por categoría de edad y por especie, agrupándolas por categoría de edad y vista, además de que se realizó un archivo nuevo de clasificadores donde se marcó la especie perteneciente a cada ejemplar, así mismo se realizó el GPA, para poder realizar el DFA. Se compararon las formas, con una prueba estadística de distribución de Hotelling T² considerando un nivel de significancia con una P<0.05.

RESULTADOS

Morfometría lineal

Asignación de categorías de edad.- Se organizaron los ejemplares de *R. diazi y S. floridanus* (Apéndices I y II) de acuerdo al sexo, tipo de preservación, lugar de captura y categoría de edad a la que pertenecen. Se agruparon el número de ejemplares por categoría de edad y sexo (Cuadro 1). En las dos especies, hay una gran muestra de ejemplares de la C4 y una menor de la C1. En total se utilizaron 85 ejemplares de *R. diazi* y 129 de *S. floridanus*.

Especie	Categoría de edad (C)	Número de hembras	Número de machos	Total
Romerolagus diazi	1	4	4	8
	2	13	11	24
	3	7	4	11
	4	19	23	42
	Total	43	42	85
Sylvilagus floridanus	1	3	7	10
	2	5	8	13
	3	11	21	32
	4	36	38	74
	Total	55	74	129

Cuadro 1.- Número de ejemplares por categoría de edad y sexo de *Romerolagus diazi* y *Sylvilagus floridanus* de la CNMA del Instituto de Biología de la UNAM.

Análisis estadístico exploratorio.- Se realizaron las medidas correspondientes de cada especie (Apéndices III y IV). Se obtuvieron los promedios, intervalos y coeficientes de variación (%) correspondientes a cada categoría de edad de cada especie (Apéndices V y VI). Generalmente los porcentajes del coeficiente de variación de la C1 son mayores a 10, con excepción de la variable AC en el caso de *R. diazi* y la variable ACC, AP y LMD en *S. floridanus*. Estos porcentajes en ambas especies, van en general decreciendo conforme se pasa a la siguiente categoría de edad, hasta llegar a la C4 donde los porcentajes son menores a 7. De acuerdo a los promedios de la variable LMC, las proporciones que se calcularon de *R. diazi* de la C1 a la C4 es de 1:2, de la C2 a la C4 es de 3:4 y de la C3 a la C4 es de 19:20 (aproximadamente), mientras que *S. floridanus* la proporción de la C1 a la C4 es de 3:5, de la C2 a la C4 es de 4:5 y de la C3 a la C4 es de 9:10 (aproximadamente).

Porcentajes de Crecimiento.- Los porcentajes de crecimiento más altos fueron los de la C1 a la C4 en ambas especies (Cuadro 2). De éstos se puede observar que el mayor es el de la variable LN con un 56.54% en *R. diazi* y un 49.18% para *S. floridanus*, mientras que el menor fue el de la variable AP con un 21.51% para *R. diazi* y un 16.25% para *S. floridanus*. Los porcentajes de crecimiento más bajos son los de la C3 a la C4 de los cuales las anchuras fueron las que tuvieron los porcentajes más bajos entre especies y en el caso de AP fue la variable con el porcentaje más pequeño en ambas especies. Aparentemente los valores de los porcentajes de todas las variables de la C1 a la C2 y C2 a la C3 de *R. diazi*, mantienen valores constantes, es decir, que valores no tienen una gran diferencia a comparación de los de *S. floridanus*, los cuales tienen una marcada diferencia entre sus valores, particularmente entre la C1 ala C2.

Variables	Variables Romerolagus diazi				Variables	Sylvilagus floridanus					
	Categorías		0.00				Categorías		J		
AC	de edad	1	2	3	4	AC	de edad	1	2	3	4
	1	-	24.22	34.54	38.58		1	-	18.39	22.66	26.8
	2	-	-	10.32	14.36		2	-	-	4.27	8.41
	3	-	-	-	4.04		3	-	-	-	4.14
	4	-	-	-	-		4	-	-	-	-
		I					I				
	Categorías	1	2	3	Δ		Categorías	1	2	3	Δ
Acc	1	-	17.41	24 74	28.74	Acc	1	-	16.54	20.95	24.61
	2	_	1/.41	7 33	11 33		2	-	10.54	20.95	24.01 8.07
	2	-	-	1.55	4.00		2	-	-	4.4	3.66
	3	-	-	-	4.00		3	-	-	-	5.00
	4	-	-	-	-		4	-	-	-	-
	Categorías						Categorías				
AP	de edad	1	2	3	4	AP	de edad	1	2	3	4
	1	-	14.31	19.12	21.51		1	-	11.57	13.08	16.25
	2	-	-	4.81	7.2		2	-	-	1.5	4.67
	3	-	-	-	2.38		3	-	-	-	3.17
	4	-	-	-	-		4	-	-	-	-
	G + (
LAC	Categorias de edad	1	2	3	4	LAC	Categorias de edad	1	2	3	4
	1	-	24.18	44.12	48.51		1	_	29.18	37.34	43.46
	2	-	-	19.94	24.32		2	-	-	8.15	14.27
	3	-	_	_	4.38		3	-	_	_	6.11
	4	-	_	_	_		4	-	_	_	_
	Categorías		_				Categorías		_		
LB	de edad	1	2	3	4	LB	de edad	1	2	3	4
	1	-	23.72	43.81	51.19		1	-	26.37	35.06	42.59
	2	-	-	20.09	27.46		2	-	-	8.68	16.21
	3	-	-	-	7.37		3	-	-	-	7.52
	4	-	-	-	-		4	-	-	-	-
	Categorías						Categorías				
LD	de edad	1	2	3	4	LD	de edad	1	2	3	4
	1	-	27.81	46.62	53.71		1	-	31.3	38.49	45.43
	2	-	-	18.8	25.89		2	-	-	7.19	14.13
	3	-	-	-	7.09		3	-	-	-	6.93
	4	-	-	-	-		4	-	-	-	-

Cuadro 2.- Porcentajes (%) de crecimiento de acuerdo a las categorías de edad de *Romerolagus diazi* y *Sylvilagus floridanus* con cada una de las variables medidas, indicando el crecimiento que le falta para llegar a la siguiente categoría de edad.

Variables	R	omer	olagus di	iazi		Variables	Syl	vilagu	s florida	inus	
LMC	Categorías de edad	1	2	3	4	LMC	Categorías de edad	1	2	3	4
	1	-	24.11	42.52	47.51		1	-	24.86	31.73	39
	2	-	-	18.4	23.39		2	-	-	6.87	14.14
	3	-	-	-	4.98		3	-	-	-	7.26
	4	-	-	-	-		4	-	-	-	-
LMD	Categorías de edad	1	2	3	4	LMD	Categorías de edad	1	2	3	4
	1	-	19.66	39	44.18		1	-	22.18	28.98	37.11
	2	-	-	19.34	24.51		2	-	-	6.79	14.92
	3	-	-	-	5.17		3	-	-	-	8.12
	4	-	-	-	-		4	-	-	-	-
LN	Categorías de edad	1	2	3	4	LN	Categorías de edad	1	2	3	4
	1	-	27.09	51.7	56.54		1	-	29.67	40.08	49.18
	2	-	-	24.6	29.44		2	-	-	10.41	19.51
	3	-	-	-	4.83		3	-	-	-	9.09
	4	-	-	-	-		4	-	-	-	-

Continuación Cuadro 2

Alometría lineal.- Comparando las muestras de machos y hembras de *R. diazi* se obtuvo una D=0.06478 con una P=0.9945 para y una D=0.16349 con una P=0.339 para *S. floridanus* con un nivel de significancia de P>0.05, por lo que no hay diferencias significativas entre los machos y hembras de cada especie, por lo que se designó a LMC como la variable independiente del modelo alométrico lineal. Los coeficientes alométricos (α) de las anchuras en ambas especies tienen valores inferiores a 1, una excepción es la variable LMD que tiene 0.277 en *R. diazi* y 0.893 para *S. floridanus*, mientras que la mayoría de la longitudes tienen valores mayores a 1 (Cuadro 3). La variable que tiene un coeficiente alométrico mayor es LN en ambas especies; 1.277 de *R. diazi* y 1.342 de *S. floridanus*, mientras que la variable AP fue la variable con coeficientes alométrico más bajo de todas las variables, 0.335 de *R. diazi* y 0.32 de *S. floridanus*.

	Romerold	ngus diazi	Sylvilagus floridanus		
Variable	b	α	b	a	
AC	1.555	0.720	2.344	0.625	
ACC	2.223	0.512	2.128	0.552	
AP	5.117	0.335	5.975	0.320	
LAC	0.265	1.132	0.218	1.155	
LB	0.435	1.133	0.468	1.107	
LD	0.356	1.182	0.321	1.186	
LMD	0.277	0.888	0.265	0.893	
LN	0.121	1.277	0.103	1.342	

Cuadro 3.- Valores obtenidos de la ecuación alométrica de *Romerolagus diazi* y *Sylvilagus floridanus, d*onde **b** es una constante o intercepto de la función y α es el coeficiente alométrico (o pendiente) el cual determina el tipo de alometría.

Morfometría Geométrica

Variación en forma.- Se obtuvieron los Análisis de Componentes Principales, donde sólo se muestran las formas resultantes del primer componente principal (PC1). Se anexan los eigenvalores y porcentajes de todos los componentes principales de todas las vistas del cráneo de ambas especies (Apéndice VIII).

Vista: Lateral del dentario.- La proyección bidimensional obtenida del PCA de la vista lateral del dentario de *R. diazi,* muestra el PC1 con un porcentaje de variación de 68.508% y el PC2 con un 10.049% (Fig. 8A). En el PC1 muestra con mayor fuerza de desplazamiento en los diagramas de paletas y rejillas de deformación a los landmarks correspondientes al borde la fosa masetérica (landmarks 1 - 5 y 10) y los que comprenden a la región anterior de la mandíbula (Fig. 7D) de la hilera molariforme hasta los alvéolos de los incisivos (landmarks 6 – 9). La C1 ocupa un intervalo amplio de dispersión abarcando valores negativos, mientras las otras tres categorías en mayor parte valores positivos, excepto la C2 (Fig. 8A). La escala del factor -0.15 muestra un desplazamiento del borde de la base de la fosa masetérica hacia el centro (Fig. 8B), además de que en la parte de los alvéolos de los incisivos se desplazan de forma ascendente y la hilera molariforme se desplaza de forma contraria; este cambio es característico de la C1 y la C2; conforme nos desplazamos a los valores positivos, la escala del factor 0.1 muestra un desplazamiento contrario, es decir, la fosa masetérica se dilata y los alvéolos de los incisivos se desplazan de forma descendente y la hilera molariforme se desplaza de forma ascendente, este cambio es característico de la C3 y C4.

Figura 8.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista lateral del dentario y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (60.508%) y PC2 (10.049%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 verde-agua, y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.15 y rejilla de deformación del factor de escala 0.1; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

La proyección bidimensional obtenida del PCA de *S. floridanus*, muestra un PC1 con un 55.627% y PC2 con 14.992% (Fig. 9A). El PC1 muestra una mayor fuerza de desplazamiento los landmarks correspondientes a la fosa masetérica (landmarks 1- 5 y 10) y a la región anterior de la mandíbula (Fig. 7D) en los alvéolos de los incisivos (landmarks 6 y 7), aunque también se muestra un desplazamiento de los de la hilera molariforme (landmarks 8 y 9). La C1 se dispersa ampliamente a lo largo del PC1 abarcando valores negativos y positivos, mientras que las otras tres categorías se concentran generalmente dentro de los valores positivos (Fig. 9A). La escala de factor -0.12 muestra a la fosa masetérica (Fig. 9B), la cual presenta una compresión pronunciada, además de que hay un alargamiento ascendente de los alvéolos de los incisivos y un estiramiento hacía los lados de la hilera molariforme, estos cambios son característicos de la C1 y algunos individuos de la C2; conforme nos desplazamos a los valores positivos, la escala del factor de 0.06 muestra cambios contrarios y éstos se caracterizan más por algunos miembros de la C2 y todos los de la C3 y C4.

Figura 9.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista lateral del dentario y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (55.627%) y PC2 (14.992%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua, y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.12 y rejilla de deformación del factor de escala 0.06; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

Vista: Dorsal.- La proyección bidimensional obtenida del PCA de la vista dorsal de *R. diazi* muestra al PC1 con un porcentaje de variación de 50.298% y el PC2 con un 18.497% (Fig. 10A). En el PC1 se muestra con mayor fuerza de desplazamiento a los landmarks correspondientes al perímetro de la bóveda craneana, refiriéndonos a la región dorsal de la misma y media dorsal del cráneo (landmarks 7 – 9 y 11 – 5), así como los del hueso nasal (landmarks 1 y 3) correspondientes a la región dorsal anterior del cráneo (Fig. 7A). La C1 se distribuye dentro de los valores positivos, seguido de la C2 que ocupa valores positivos y negativos, seguido de la C3 y la C4 las cuales sólo ocupan valores positivos (Fig. 10A). El factor de escala -0.06 muestra una compresión en la bóveda craneana, mientras que el hueso nasal se alarga (Fig. 10B), estos cambios son característicos de la C4 hacia la C3; conforme nos desplazamos hacia los valores positivos, el factor de escala 0.12 muestra un desplazamiento contrario, es decir, hay una dilatación de la bóveda craneana y un acortamiento del hueso nasal, cambios característicos de la C1 y C2.

Figura 10.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista dorsal del cráneo y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (50.298%) y PC2 (18.497%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.06 y rejilla de deformación del factor de escala 0.12; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

La proyección bidimensional obtenida del PCA de *S. floridanus* muestra al PC1 con un porcentaje de 64.924%, mientras que el PC2 con un 7.479% (Fig. 11A). En el PC1, muestra con mayor fuerza de desplazamiento a los landmarks correspondientes al perímetro de la bóveda craneana (landmarks 7-15) de la región de la misma y los landmarks correspondientes al hueso nasal (landmarks 1 y 3) de la región dorsal anterior del cráneo (Fig. 7A). La C1 se distribuye en los valores negativos, seguido de la C2 la cual se distribuye a lo largo de valores negativos y positivos, seguido la C3 y después la C4, los cuales se encuentran dentro de los valores positivos (Fig. 11A). El factor de escala -0.12 muestra una dilatación de la bóveda craneana y un acortamiento del hueso nasal (Fig. 11B), estos cambios son característicos de las C1 y C2, mientras que el factor de escala 0.06 muestra un cambio contrario, es decir, una compresión de la bóveda craneana y un alargamiento del hueso nasal, cambios característicos de la C3 y C4.

Figura 11.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista dorsal del cráneo y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (64.924%) y PC2 (7.479%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestra la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.12 y rejilla de deformación del factor de escala 0.06; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

Vista: Lateral.- La proyección bidimensional obtenida del PCA de la vista lateral del cráneo de *R. diazi,* muestra al PC1 con un porcentaje de variación del 71.627% y el PC2 con un 7.812% (Fig. 12A). En el PC1, los landmarks con mayor fuerza de desplazamiento son los de la parte lateral del perímetro de la bóveda craneana (landmarks 3 – 5) de la región latera de la misma y parte de la región lateral orbital, así como también en el perímetro que cubre los alvéolos de los incisivos superiores hasta la región lateral anterior del cráneo (Fig. 7C), en el premaxilar y maxilar (landmarks 1 y 2). La C1 se distribuye en los valores negativos y se encuentra más alejada de las otras tres categorías de edad. La C2 tiene algunos individuos los cuales abarcan valores tanto negativos como positivos, seguido de C3 y C4 las cuales sólo ocupan valores positivos (Fig. 12A). El factor de escala -0.09 muestra una dilatación de la región lateral de la bóveda craneana (Fig. 12B), así como un acortamiento de la parte anterior del cráneo de la C1; mientras que el factor de escala 0.03 muestra los cambios contrarios, lo cuales son característicos en menor grado de la C2 y mayor proporción en la C3 y C4.

Figura 12.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista lateral del cráneo y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (71.627%) y PC2 (7.812%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.09 y rejilla de deformación del factor de escala 0.03; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

La proyección bidimensional obtenida del PCA de *S. floridanus* muestra al PC1 con un 59.088%, mientras que el PC2 con un 16.769% (Fig. 13A). En el PC1, los landmarks con mayor fuerza de desplazamiento son los del borde lateral de la bóveda craneana (Fig. 7C) hasta la base de las bulas timpánicas (landmarks 3 - 6) en la región lateral de la misma y parte de la región lateral del orbital, así como también parte del perímetro que abarca de la parte posterior de la hilera molariforme hasta la punta anterior del hueso nasal (landmarks 1, 9 -12) en la región lateral anterior del cráneo. La C1 se distribuye dentro de los valores negativos, seguido de la C2 la cual se distribuye en los valores negativos y positivos, seguido de la C3 y la C4 en los valores positivos (Fig. 13A). El factor de escala - 0.12 muestra una dilatación de la bóveda craneana y base de la bula timpánica (Fig. 13B), además de que la parte anterior se acorta, estos cambios son característicos de la C1 y C2; conforme nos desplazamos a los valores positivos, en el factor de escala 0.06 el cambio es el contrario, se comprime más la bóveda craneana y se produce un alargamiento en la parte anterior del cráneo, estos cambios son característicos de la C3 y C4.

Figura 13.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista lateral del cráneo y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (59.088%) y PC2 (16.769%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua, y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.12 y rejilla de deformación del factor de escala 0.03; fas flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

Vista: Ventral.- La proyección bidimensional obtenida del PCA de la vista ventral del cráneo de *R. diazi,* muestra el PC1 con un porcentaje de variación del 70.623% y el PC2 con 10.013% (Fig. 14A). En el PC1, los landmarks con una mayor fuerza de desplazamiento son los correspondientes a la región ventral anterior del cráneo (landmarks 1 y 2) y los correspondientes a la región ventral de la bóveda craneana (Fig. 7B). En el PC1, la C1 ocupa una amplia distribución dentro de los valores negativos, mientras que las otras tres categorías ocupan valores positivos (Fig. 14A). El factor de escala -0.09 muestra una dilatación en la base craneal, además de un acortamiento en la región anterior del bóveda craneana, cambio característico de la C1 (Fig. 14B); conforme vamos a los valores positivo, el factor de escala 0.06 presenta una compresión en la base craneal y un estiramiento de la región anterior, cambio característico de las otras tres categorías de edad.

Figura 14.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Romerolagus diazi* de la vista ventral del cráneo y las formas asociadas al factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (70.623%) y PC2 (10.013%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 puntos verde-agua y C4 puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks del PC1, rejilla de deformación del factor de escala -0.09 y rejilla de deformación del factor de escala 0.06; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

La proyección bidimensional obtenida del PCA de *S. floridanus*, el PC1 tiene un 69.186%, mientras que el PC2 un 15.047% (Fig 15A). En el PC1, los landmarks con mayor fuerza de desplazamiento son los de la región ventral de la bóveda craneana en el borde la bula timpánica (landmarks 6, 8 - 12) y punta del alvéolo de los incisivos y punta del foramen incisivo en la región ventral anterior del cráneo (Fig. 7B). La C1 se distribuye a lo largo de los valores negativos, seguido de la C2 que abarca tanto valores negativos como positivos, seguido de la C3 y C4, los cuales sólo abarcan valores positivos (Fig. 15A). El factor de escala -0.12 muestra una dilatación de la bóveda craneana, mientras que la región anterior presenta un acortamiento, cambio característico de la C1 y C2; caso contrario para el factor de escala 0.05 donde se produce una compresión de la base craneal y un alargamiento de la región anterior, cambio característico de la C3 y C4.

Figura 15.- Proyección bidimensional del análisis de componentes principales correspondiente a las cuatro categorías de edad de *Sylvilagus floridanus* de la vista ventral del cráneo y las formas asociadas a un factor de escala. (A) Proyección bidimensional de las categorías de edad: PC1 (69.186%) y PC2 (15.047%) cada categoría con su elipse de dispersión; C1 puntos rojos, C2 puntos verdes, C3 los puntos verde-agua, y C4 los puntos morados. (B) Diagramas de paleta con rejillas de deformación donde muestran la fuerza de desplazamiento de los landmarks, rejilla del factor de escala -0.12 y rejilla de deformación del factor de escala 0.05; las flechas rojas muestran el cambio de dirección de los landmarks con mayor fuerza de desplazamiento.

Alometría: relación tamaño y forma.- Se obtuvieron las regresiones multivariadas, para el análisis de forma y tamaño de *R. diazi y S. floridanus* de todas las vistas del cráneo (Figs. 16, 17, 18 y 19). Los porcentajes de los valores predichos los cuales son relativamente similares entre las vistas de cada especie (Cuadro 4). Los menores porcentajes fueron los de la vista del dentario mientras que la vista ventral fue la mayor. Todos los valores de las vistas tuvieron una P< 0.001 de significancia, rechazando la hipótesis nula de isometría. Los ángulos de las pendientes productos de las regresiones, no hay diferencias significativas en la comparación de los ángulos entre especies. El ángulo menor fue el de la vista ventral (por cada unidad de tamaño hay menos de una unidad de cambio en forma), mientras que al ángulo mayor fue el de la vista lateral, el cual es relativamente similar al de la vista lateral del dentario (por cada unidad de tamaño hay más de una unidad de cambio en forma).

Cuadro 4.- Porcentajes predichos (%) y valores de significancia de la regresión multivariada correspondientes a todas las vistas de *Romerolagus diazi* y *Sylvilagus floridanus*; ángulos en grados de las pendientes de la rectas de regresión y valor de significancia de la diferencia entre ángulos de las pendientes.

	Romerolagus diazi		Sylvilagus florida	nus		
Vista	Porcentaje predicho	Р	Porcentaje predicho	Р	Ángulo (en grados)	Р
Dentario	36.0005	< 0.001	30.3981	< 0.001	42.083	0.00032
Dorsal	42.2073	< 0.001	47.8391	< 0.001	37.432	< 0.00001
Lateral	63.0186	< 0.001	50.4995	< 0.001	47.081	0.00034
Ventral	46.8268	< 0.001	53.0184	< 0.001	17.396	< 0.00001

Figura 16.- Regressiones alométricas de tamaño-forma de la vista lateral del dentario. CS: centroid size (tamaño centroide) como variable independiente; Regression score1: Valores más asociados al tamaño (variables de forma) como variables dependientes. (A) Regressión alométrica de *Romerolagus diazi*. (B) Regressión alométrica de *Sylvilagus floridanus*.

Figura 17.- Regressiones alométricas de tamaño-forma de la vista dorsal del cráneo. CS: centroid size (tamaño centroide) como variable independiente; Regression score1: Valores más asociados al tamaño (variables de forma) como variables dependientes. (A) Regressión alométrica de *Romerolagus diazi*. (B) Regressión alométrica de *Sylvilagus floridanus*.

Figura 18.- Regressiones alométricas de tamaño-forma de la vista lateral del cráneo. CS: centroid size (tamaño centroide) como variable independiente; Regression score1: Valores más asociados al tamaño (variables de forma) como variables dependientes. (A) Regressión alométrica de *Romerolagus diazi*. (B) Regressión alométrica de *Sylvilagus floridanus*.

Figura 19.- Regressiones alométricas de tamaño-forma de la vista ventral del cráneo. CS: centroid size (tamaño centroide) como variable independiente; Regression score1: Valores más asociados al tamaño (variables de forma) como variables dependientes. (A) Regressión alométrica de *Romerolagus diazi*. (B) Regressión alométrica de *Sylvilagus floridanus*.

Comparación morfológica por edad entre especies.- Se obtuvieron las distancias de Mahalanobis correspondientes a cada análisis de función discriminante. De manera general en todas las vistas, conforme pasamos a la siguiente categoría de edad, la distancia de mahalanobis va aumentando. La comparación entre las morfologías de cada categoría de edad de todas las vistas entre especies, resultó ser significativa para todas las edades de todas las vistas, con excepción de la vista ventral de la C1, por lo que ambas morfologías son muy similares (Cuadro 5).

Cuadro 5.- Comparación morfológica entre categorías de edad de todas las vistas de *Romerolagus diazi* y *Sylvilagus floridanus*. Distancia de Mahalanobis obtenida del DFA, distribución estadística de Hotelling T² con valor P por 1000 permutaciones corridas. Nivel de significancia P<0.05.

Categoría de edad	Vista	Distancia de Mahalanobis	T ²	Р
1	Dentario	9.335	< 0.001	0.001
	Dorsal	5.303	0.003	0.004
	Lateral	7.623	< 0.001	< 0.0001
	Ventral	4.232	0.017	0.077*
2	Dentario	15.361	0.001	0.001
	Dorsal	5.863	< 0.001	0.011
	Lateral	5.701	0.001	0.002
	Ventral	6.912	0.002	0.005
3	Dentario	27.701	< 0.0001	< 0.0001
	Dorsal	8.688	0.001	0.001
	Lateral	11.933	< 0.0001	< 0.0001
	Ventral	11.360	< 0.0001	0.002
4	Dentario	23.028	0.011	< 0.0001
	Dorsal	16.825	< 0.0001	< 0.0001
	Lateral	36.117	< 0.0001	< 0.0001
	Ventral	55.021	< 0.0001	< 0.0001

* No significativo con una P<0.05

DISCUSIÓN

Se identificaron las categorías de edad satisfactoriamente, de acuerdo al criterio empleado (Hoffmeister y Zimmerman, 1967). De manera general, la variación ontogénica de tamaño y forma presenta similitudes y diferencias entre especies y entre categoría de edad. Se obtuvo una buena muestra de ejemplares de ambas especies, para el uso de técnicas morfométricas, además de que fue más útil la disponibilidad de ejemplares jóvenes.

Las nueve medidas lineales craneales que se tomaron, se considera que abarcan la mayor parte del cráneo, esto con el fin de explorar de manera general la composición estructural. Una de las medidas utilizadas fue LAC, la cual se incorporó y que no se encuentra documentada en estudios lineales anteriores, pero se utilizó con el fin de analizar la parte orbital ubicada en la parte media del cráneo (Fig. 7), donde se ubican los arcos cigomáticos los cuales albergan músculos que conectan la mandíbula con el cráneo. Es de notar que en el estudio de morfometría geométrica de la liebre Lepus capensis (Devan et al., 2012) el arco cigomático sí se consideró para su análisis. Los coeficientes de variación de la C2, C3 y C4 coinciden con trabajos anteriores de ambas especies (Cervantes y Vargas, 1998; Vargas 1992) excepto los de la C1, los cuales son elevados (mayores a 10%) en la mayoría de las variables. Esto muestra una gran variación de la C1 con respecto de las otras tres categorías de edad, por lo que por el tamaño de la muestra podría tener cierta influencia, ya que comparamos una muestra de 8 ejemplares de la C1 contra 42 de la C4 de R. diazi y 10 ejemplares contra 74 de la C4 de S. floridanus (Cuadro 1). Cabe destacar, que en los análisis de morfometría geométrica en la variación de forma, la C1 tiene valores muy diferenciados de las otras tres categorías, y su forma es distinta a la de las otras 3 categorías de edad. En la muestra de la C1 de los análisis de morfometría geométrica, se trató de utilizar casi el mismo número de ejemplares que las otras categorías, con el fin de homogeneizar la muestra total de todas las categorías de edad. Bajo el criterio de que hay una correlación del tamaño con la forma, es relevante el cambio de las medidas lineales con el de las medidas geométricas, dadas las condiciones en que se encuentran las muestras, esto se debe manejar con precaución.

El método de porcentajes de crecimiento que se propuso no se encuentra documentado dentro de la literatura. Una diferencia de este método con el de alometría lineal, es que en éste vemos el incremento de tamaño de las variables por categoría de edad y no se correlaciona con otra variable, como en alometría lineal. Una de las diferencias entre especies, fueron los resultados de las proporciones de tamaño y porcentajes de crecimiento. Mientras que la proporción de tamaño de la C1 a la C4 de *R. diazi* es del doble, para *S. floridanus* la C1 es más grande en promedio que la mitad del promedio de la C4. Esto también se ve reflejado en los porcentajes de crecimiento de todas las variables, debido a que el crecimiento de las variables de *R. diazi* de la C1 a la C2 y de la C2 a la C3 es un crecimiento constante y de igual proporción en cada transición de categoría, mientras que *S. floridanus* en proporción crece más de la C1 a la C2 que en las otras categorías adultas. *R. diazi* en la C1, C2 y C3 tiene que seguir creciendo hasta llegar a su categoría adulta, mientras que *S. floridanus* crece en las primeras etapas aceleradamente, posteriormente su crecimiento se hace más lento, dado que le falta poco para alcanzar su talla adulta.

Este patrón puede ser reflejo de algún proceso biológico que sucede entre las especies y que las diferencia una de otra, aunque hasta el momento sólo se sabe que sucede en el cráneo, por lo que posiblemente también con el resto del cuerpo. Posiblemente alguna implicación ecológica esté afectando directa o indirectamente a lo largo del crecimiento, por ejemplo, como se mencionó, la distribución de las especies no es igual, por lo que la disponibilidad de recursos e incluso de depredadores varía, lo que podría influir diferenciadamente en el ritmo de crecimiento de las especies. Incluso podría ser por las diferencias de conectividad de los huesos del cráneo de cada especie, ya que el crecimiento de un hueso puede verse afectado por el crecimiento de otro hueso. Bajo un esquema modular la organización de todos los huesos durante el desarrollo puede reflejar estas diferencias (Rasskin y Esteve, 2014)

Tanto las variables lineales como las geométricas, reflejan la alometría ontogénica de tamaño y forma. En los análisis alométricos lineales, los coeficientes al igual que los porcentajes de crecimiento, muestran un crecimiento a lo largo del cráneo. Las longitudes resultaron ser en ambos análisis las variables con una mayor tasa de crecimiento que las anchuras, una excepción LMD la cual fue una de las longitudes con una menor tasa de crecimiento. Anatómicamente el cráneo de un conejo posee un diastema el cual es un espacio que separa los incisivos de las hileras molariformes, varios grupos de mamíferos tales como los roedores lo tienen (Elbroach, 2006), este espacio permite procesar mejor el alimento, por lo que es posible que esta variable tenga un límite de espacio para crecer. LN es una de las variables que se distingue por su acelerado crecimiento en ambas especies, esta característica se ve reflejada por lo distinguible de lo alargado de la parte anterior del cráneo de los adultos. Un alargamiento importante del hueso nasal agranda los conductos de aire, lo que facilita la entrada de oxígeno y promueve el metabolismo durante la carrera en los adultos (Deyan *et al.*, 2012).

Las tres anchuras (AC, ACC y AP) abarcan parte de la bóveda craneana, pero AC llega a abarcar hasta la apertura de los arcos cigomáticos. Esta variable fue la que obtuvo un mayor coeficiente alométrico y mayores porcentajes de crecimiento de las tres anchuras de la C1 a la C4 entre especies. AC ocupa parte del espacio para albergar los músculos temporal y masetero. En el caso de lagomorfos lo redondeado de la bóveda craneana y estrecho del arco cigomático indica el poco desarrollo del músculo temporal, pero uno de los músculos más desarrollados, sobre todo en herbívoros es el músculo pterigoideo, el cual permite el movimiento lateral de la mandíbula para un mejor procesamiento del alimento (Elbroach, 2006). LAC, LMD v LN son variables longitudinales que se les puede considerar que abarcan sólo una parte del cráneo, mientras que LB, LMC y LMD abarcan una mayor parte, tomando en cuenta esto, LAC después de LN fue la variable longitudinal con mayor porcentaje de crecimiento y coeficiente alométrico. Los arcos cigomáticos son importantes para sostener los ojos y proporcionar espacio para el músculo temporal, por lo que el desarrollo que conforma a esta parte y tomando en cuenta también el crecimiento de la variable AC; el crecimiento de toda esta parte permite el sostén de los ojos, así como el albergue de músculos que permiten un mejor funcionamiento y una mayor fuerza para la masticación (Deyan et al., 2012). Otro punto evidente es el de las variables LB v LD, las cuales tanto sus promedios como sus porcentajes de crecimiento de todas las categorías de edad son relativamente muy similares entre estas especies, por lo que estas variables van creciendo casi a la misma velocidad, por lo que podría decirse que hay una restricción o un límite de crecimiento correlacionado en estas variables, debido a la conexión de la mandíbula con el cráneo.

Podemos asegurar que hay alometría ontogénica y cada especie tiene su propia variación ontogénica posnatal, por lo que se rechazó la hipótesis de isometría. El porcentaje predicho obtenido de las regresiones multivariadas, muestra el grado de asociación del tamaño con la forma; estos porcentajes oscilan entre el 30 al 60% (Cuadro 4), por lo que podemos asegurar que si hay una asociación relativamente alta del tamaño con la forma. Además, los porcentajes entre las vistas de cada especie son relativamente parecidos, aunque la comparación de los ángulos resultó igual entre especies, es decir, la alometría de las vistas es la misma entre especies.

De manera general, todas las vistas en ambas especies presentan la misma tendencia de cambio ontogénico, pero difieren en la forma de algunas partes del cráneo en algunas vistas. En la vista del dentario de la C1 hasta la C4 los cambios son de una estrecha a una amplia fosa masetérica, en especial de la parte del margen posterior de la base. Esto podría deberse al desarrollo de los músculos hacia lo ancho, para un mejor procesamiento del alimento sólido en los miembros de categorías adultas. Todos los miembros de la C1 son individuos lactantes y en esta parte poseen una forma más estrecha, por lo que los músculos no se encuentran aún desarrollados debido al espacio tan reducido. Otro de los cambios en la mandíbula, es el alargamiento de la parte anterior en los alvéolos de los incisivos en dirección ascendente para formar el diastema curveado. Una de las diferencias que se pudo observar en las rejillas de deformación y diagramas de paletas entre especies, es en la parte de la hilera molariforme v el inferior anterior del proceso coronoide. En R. diazi este punto de la C1 a la C4 describe un desplazamiento que va hacia dentro de la mandíbula y luego hacia fuera, mientras que en este punto S. floridanus no muestra ningún cambio abrupto a comparación de R. diazi, además de que en la hilera molariforme en R. diazi el cambio en forma para C1 a C4 es de manera descendente a ascendente, es decir, que en C1 la hilera molariforme está hundida y en C4 se eleva, mientras que S. floridanus muestra un cambio hacia los lados, por lo que C1 la hilera molariforme se encuentra más estrecha y en C4 se alarga a los lados (Figs. 8B y 9B).

Para la vista dorsal del cráneo, los cambios entre categorías de edad, muestran una bóveda craneana abultada en los juveniles, mientras que en adultos se va haciendo cada vez menos abultada. También se presenta un alargamiento de la parte anterior en el hueso nasal como se dijo anteriormente, el cual se distingue prominentemente y tiene implicaciones funcionales en el sentido olfativo y de respiración (Devan et al., 2012). Varios grupos de herbívoros presentan este hueso muy largo y ancho lo que muestra un estilo de vida cursorial (Frev et al., 2007). En la mayoría de los vertebrados, se presenta una diferenciación acelerada en el sistema nervioso central y cápsulas sensoriales las cuales producen embriones y neonatos con grandes neurocráneos, ojos y regiones auditivas (Emerson y Blame, 1993), por ello la forma característica tan abultada de la bóveda craneana y achatada de la parte anterior de los huesos nasales de la C1. Una diferencia en forma entre especies, es la dirección de desplazamiento de la parte posterior del nasal, ya que en R. diazi conforme el organismos se va haciendo adulto el alargamiento en este punto se desplaza un poco hacia fuera, mientras que S. floridanus el punto se desplaza solamente a lo largo del cráneo (Figs. 11B y 12B). Para la vista lateral del cráneo, los cambios en general son los mismos, sólo que para las categorías juveniles de R. diazi, la parte de la bóveda craneana presenta esta dilatación y conforme va creciendo se comprime más, mientras que para S. floridanus la dilatación se presenta de la parte superior hasta la base de las bulas timpánicas en la base craneal en categorías juveniles (Figs. 12B y 13B). Para la vista ventral prácticamente el desplazamiento de los landmarks es similar entre las especies.

Se esperaban formas parecidas, dado el antecedente (Cervantes y Vargas, 1998; Vargas 1992), pero el análisis discriminante logró separar las formas entre categorías de edad entre especie, y a diferencia de los análisis de variación de forma (PCA), se consideraron también las formas no asociadas al tamaño. Las formas juveniles son muy similares, y conforme observamos las formas adultas éstas se van diferenciando aún más, este el principio ontogénico común. La forma de la vista ventral del dentario resultó significativamente igual entre especies (P=0.07). Los resultados de la vista ventral en los análisis de regresión multivariada y análisis discriminantes tienen una gran similitud en la trayectoria ontogénica de las especies, posiblemente como es un área del cráneo donde se encuentra la parte masticatoria y dado el tipo de alimento similar durante su crecimiento, llegan a alcanzar una forma muy parecida.

Un proceso importante durante el crecimiento postnatal, es el cambio de alimento líquido a sólido. Observaciones de campo con organismos juveniles de *R. diazi* muestran organismos lactantes que salen de su nido cuyas longitudes en promedio alcanzan 154 mm con un peso que oscila los 99.4 g (Cervantes y Martínez, 1996); con datos de ejemplares de la CNMA estos organismos pertenecen a la C2. En estudios con organismos criados en cautiverio de esta misma especie, encontraron la edad reproductiva de machos y hembras la cual oscila entre los 5 meses y con peso aproximado entre 400 a 450 g. (Matsuzaki et al., 1996); con datos de ejemplares de la CNMA, por el peso similar son individuos que pertenecen a la C3. De esta forma considerando a los individuos adultos de la C3 se puede asumir que dada su condición adulta, pueden procesar alimento sólido y dado que algunos individuos de la C2 aún son individuos lactantes, se puede deducir que el destete oscila entre estas dos categorías de edad. Este cálculo no es exacto y además puede variar entre especies y nos da una idea del período en el que este proceso ocurre en este tipo de organismos lo que posiblemente tiene implicación en la forma de las especies de estos lepóridos. Todos los resultados tanto lineales como geométricos reflejan pistas de diversos procesos biológicos adaptativos como puede ser en su comportamiento, en su entorno ecológico e incluso en su evolución misma; por lo que es de suma importancia tomar en cuenta este tipo de información, la cual se puede manejar a favor de la conservación de estas especies silvestres, haciendo énfasis en especies como el conejo zacatuche la cual se encuentra en peligro de extinción.

CONCLUSIONES

Este es uno de los primeros estudios que emplea técnicas de morfometría geométrica para determinar el crecimiento del cráneo de lagomorfos mexicanos.

Existe una asociación de forma y tamaño durante el crecimiento posnatal del cráneo, es decir, se presenta alometría ontogénica en *Romerolagus diazi* y *Sylvilagus floridanus*.

En la evaluación de la variación del tamaño y forma craneal durante el crecimiento posnatal de ambas especies, se determinaron diferencias entre las variables craneales lineales y categorías de edad en función del crecimiento, así como también las proporciones del tamaño total en función de cada categoría de edad.

La tendencia de cambio de la forma craneal en la trayectoria ontogénica de ambas es muy similar. No obstante hay algunas diferencias específicas en la estructura craneal entre categorías de edad en esas especies.

Las diferencias y similitudes de los resultados obtenidos constituyen el reflejo de diversos procesos biológicos que pueden estar implicados en los cambios de tamaño y forma craneal durante el crecimiento.

RECOMENDACIONES

Una recomendación para futuros estudios de la morfología del crecimiento de estos lagomorfos sería asociar la forma craneal de una manera más específica a diferentes implicaciones biológicas con el empleo de semilandmarks y la división de regiones craneales o módulos funcionales (Zelditch *et al.*, 2004). Los semilandmarks corresponden a puntos localizados en una curva de acuerdo a la posición de otros landmarks o estructuras que pueden desplazarse levemente en ella (Bookstein, 1997), estos puntos se colocan de forma equidistante unos con otros y son útiles para mostrar el cambio de perímetros de curvas, por lo que sería de gran utilidad comparar cambios más específicos en la trayectoria ontogénica y asociar estos cambios a posibles implicaciones funcionales, ecológicas e incluso mecanismos evolutivos de las especies. Esta técnica ayudaría más al recabar la información en forma de partes del cráneo más específicas, las cuales podrían ampliar el espectro de información biológica, así como adaptaciones que podrían implicar este cambio en forma. Otra recomendación sería el analizar y comparar la morfología de miembros de otros géneros como son liebres, con el fin observar si el cambio es similar al de los conejos, para observar el cambio que se produce durante el crecimiento de miembros de la familia Leporidae.

Es recomendable continuar analizando con mayor profundidad la técnica propuesta de porcentajes de crecimiento, debido a que esta técnica marcó una clara diferencia en el ritmo de crecimiento de las variables lineales entre ambas especies y mostró diferencias en las tasas de crecimiento incluso de otras especies que se podrían analizar y a su vez reflejar distintos procesos biológicos que podrían estar implicados.

LITERATURA CITADA

- ABDALA F., D. A. FLORES y N. P. GIANNINI. 2001. Postweaning ontogeny of the skull of the *Didelphis albiventris*. Journal of Mammalogy. 1: 190 200.
- ADAMS D. C., F. J. ROHLF y D. E. SLICE. 2013. A field comes of age: geometric morphometrics in the 21st century. Hystrix, the Italian Journal of Mammalogy. 1: 1-8.
- BOOKSTEIN F. L. 1997. Morphometric tool for landmark data: geometry and biology. Cambridge University Press. New York
- CABALLERO L. 2006. Aspectos dinámicos de la Biología Evolutiva y del Desarrollo. Tesis de Maestría en Ciencias Biológicas, Posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, Distrito Federal.
- CARDINI A. AND P. O' HIGGINS. 2005. Post-natal ontogeny of the mandibule and ventral cranium in *Marmota* species (Rodentia, Sciuridae): allometry and phylogeny. Zoomorphology. Washington D.C., USA. 2: 201 215.
- CARDINI A. AND R. W. THORINGTON JR. 2006. Posnatal ontogeny of marmot (Rodentia, Sciuridae) crania: Allometric trajectories and species divergence. Journal of Mammalogy. Washington D.C., USA. 2: 201 215.
- CEBALLOS G. y G. OLIVA. 2005. Los mamíferos silvestres de México. Fondo de Cultura Económica, Comisión Nacional para el Conocimiento y uso de la Biodiversidad. Ciencia y Tecnología. Distrito Federal, México.
- CERVANTES F. A. y J. MARTÍNEZ. 1996. II: Historia Natural del Conejo Zacatuche o Teporingo (*Romerolagus diazi*). Pp. 29 – 40 en Ecología y conservación del conejo zacatuche y su hábitat (Velázquez A. Romero F. y López-Paniagua J. ed.). Ediciones Científicas Universitarias, Fondo de Cultura Económica. México, Distrito Federal.
- CERVANTES F. A. y J. MARTÍNEZ. 1996. III: Morfología, Taxonomía y Sistemática del Conejo Zacatuche. Pp. 41-50 en Ecología y conservación del conejo zacatuche y su hábitat (Velázquez A., Romero F. y López-Paniagua J. ed.). Ediciones Científicas Universitarias, Fondo de Cultura Económica. México. Distrito Federal.
- CERVANTES F. A. y J. VARGAS. 1998. Comparación morfométrica entre los conejos *Romerolagus diazi, Sylvilagus floridanus y Sylvilagus audobonii*. Revista Mexicana de Mastozoología. Ciudad de México, México. 3: 45 78.
- DELGADO Z. P. 1995. Comparación Morfométrica entre el Conejo *Sylvilagus cunicularis*, El conejo *Sylvilagus floridanus* y la liebre *Lepus callotis* (Mammalia: Lagomorpha). Tesis de Licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México. México, Distrito Federal.
- DEYAN G., L. XUEFEI, X. LIAN, H. CHENGMING AND Y. QISENG. 2012. Geometric Morphometric of postnatal size and shape change in the cranium of the cape hare (Lagomorpha, Leporidae, *Lepus capensis*). Acta Theriological Sinica. Beijing, China. 32: 12-24.
- DZURISIN D. 2007. Eastern Cottontail (*Sylvilagus floridanus*) P5280020. Disponible en línea en: <u>https://www.flickr.com/photos/ndomer73/673970128/</u>

- EMERSON S. B. y D. M. BRAMBLE. 1993. Scaling allometry and skull design. Pp. 384 416 en The skull (J. Hanken and B. Hall, eds.). The University of Chicago Press., Chicago, Illinois.
- ELBROACH M. 2006. Animal Skulls, a guide to north american species. Ed. Stackpole.
- FLORES D. A., N. P. GIANNINI y F. ABDALA. 2003. Cranial ontogeny of *Lutreolina crassicaudata* (Didelphidae): a comparison with *Didelphis albiventris*. Acta Theriologica. New York, USA. 1: 1 – 9.
- FREY R., I. VOLODIN AND E. VOLODINA. 2007. A nose that roars; anatomical specializations and behavioural features of nutting male saiga. Journal Anatomy. 211: 717 736
- GARCÍA F. J. y E. SÁNCHEZ. 2013. Morfometría geométrica craneal entres especies de roedores arborícolas neotropicales (Rodentia: Cricetidae: *Rhipidomys*) en Venezuela. Therya. Venezuela. 1: 157 - 178
- GAYON J. 2000. History of the concept of allometry. American Zoologist. 40: 748 758.
- HAMMER O., D. A. T. HARPER AND P. D. RYAN. 2001. PAST: Paleontological Statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 : <u>http://folk.uio.no/ohammes/past</u>
- HOFFMEISTER D. AND E. ZIMMERMAN. 1967. Growht of the Skull in the Cottontail (*Sylvilagus floridanus*) and Its Application to Age-Determination. The American Midland Naturalist. Illinois, United States of America. 78: 198 206.
- KLIGENBERG C. P. 1996. Multivariate Allometry. Advances in Morphometrics. Plenum Press New York. 1: 23 49.
- KLINGENBERG C. P. 2011. MorphoJ versión 1.06b. Oracle corporation. The University of Manchester. Disponible en: <u>http://www.flywings.org.uk/morphoj_page.htm</u>
- LEVINTON J. 1988. Genetics, Paleontology and Macroevolution. Cambridge University Press.
- LORENZO C., L. CUAUTLE y F. BARRAGÁN. 2004. Variación morfométrica a escala temporal en la liebre del Istmo, *Lepus flavigularis* de México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología. México. 75: 207 228.
- MATSUZAKI T., M. KAMIYA, H. SUSUKI, T. NOMURA y A. VELÁZQUEZ. 1996. IV: Reproducción en el laboratorio del conejo zacatuche. Pp. 51- 66 en Ecología y conservación del conejo zacatuche y su hábitat (Velázquez A., Romero F. y López-Paniagua J. ed.). Ediciones Científicas Universitarias, Fondo de Cultura Económica. México. Distrito Federal.
- NOM-059-ECOL-SEMARNAT. 2010. Secretaría del Medio ambiente y Recursos Naturales: Norma Oficial Mexicana – 059-ECOL. Gobierno Federal, México, Distrito Federal. Disponible en línea:

(http://www.semarnat.gob.mx/temas/gestionambiental/vidasilvestre/Documents/NOM_059 SEMARNAT_2010.pdf)

RAMÍREZ V. S. 2009. Comparación morfométrica y cariotípica entre las poblaciones de *Heteromys desmarestianus* (Rodentia: Heteromyidae) al sureste del Estado de Veracruz. Tesis de Maestría en Ciencias Biológicas, Instituto de Biología, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México, Distrito Federal.

- RASSKIN D. G. y ESTEVE B. A. 2014. Connecting Dots: Anatomical Network Analysis in Morphological EvoDevo. Biological Theory. Valencia, España. 9: 178 193.
- ROHLF F. J. 2013a. Morphometrics at Stony Brook University, New York, Software: Data acquisition: TPS Util versión 1.58. Disponible en línea: (<u>http://life.bio.sunysb.edu/morph/</u>).
- ROHLF F. J. 2013b. Morphometrics at Stony Brook University, New York, Software: Data acquisition: TPS Rewl versión 1.53. Disponible en línea: (<u>http://life.bio.sunysb.edu/morph/</u>).
- ROHLF F. J. 2004. Morphometrics at Stony Brook University, New York, Software: Data acquisition: TPS Dig versión 1.40. Disponible en línea: (<u>http://life.bio.sunysb.edu/morph/</u>).
- SEGURA V. y F. PREVOSTI. 2012. A quantitative approach to the cranial ontogeny of *Lycalopex culpaeus* (Carnivora: Canidae). Zoomorphology. Buenos Aires, Argentina. 131: 79 92.
- SEGURA V. 2013. Skull ontogeny of *Lycalopex culpaeus* (Carnivora: Canidae): description of cranial traits and craniofacial sutures. Mammalia: International Journal of Systematics Biology and Ecology of Mammals. Buenos Aires, Argentina. 2: 205 – 214.
- TARNAWSKI B. A., G. H. CASSINI y D. A. FLORES. 2014. Allometry of the posnatal cranial ontogeny and sexual dimorphism in *Otaria byronia* (Otariidae). Acta Theriol. Bialowieza, Poland. 59: 81 – 97.
- TORO M., G. MANRÍQUEZ e I. SUAZO. 2010. Morfometría Geométrica y el Estudio de las Formas Biológicas: De la Morfología descriptiva a la Morfología cuantitativa. International Journal of Morphology. Santiago de Chile, Chile. 28: 977- 990.
- VARGAS J. C. 1992. Comparación morfométrica entre el conejo zacatuche *Romerolagus diazi* y el conejo castellano *Sylvilagus floridanus* y el conejo del desierto *Sylvilagus audubonii* (Mammalia: Lagomorpha). Tesis de Licenciatura. Escuela Nacional de Estudios Profesionales "Iztacala", Universidad Nacional Autónoma de México. Tlanepantla, Estado de México.
- VÁZQUEZ G. R. 2011. Comparación del cráneo y dentario de los ratones tlacuache *Tlacuatzin* canescens y Marmosa mexicana (Didelphimorphia: Didelphidae) de México, aplicando morfometría geométrica. Tesis de licenciatura. Facultad de Ciencias, Universidad Nacional Autónoma de México, México, Distrito Federal.
- ZELDITCH M., B. LUNDRIGAN AND T. GARLAND. 2004a. Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evolution and Development. Michigan, United States of America. 6: 194 – 206
- ZELDITCH M. L., D. L SWIDERSKI, H. D. SHEETS AND W. L. FINK. 2004b. Geometric Morphometrics for the biologists. I: Introduction. Pp: 1 20. Elsevier Inc.

APÉNDICE I

Número de catálogo de la CNMA	Sexo	Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)
341	Ŷ	Cráneo	D.F. : 33 km., Del. Tlalpan	4
351	3	Piel / Esqueleto	Estado de México: Paso de Cortés, Mpio. de Amecameca	4
354	8	Cráneo	D. F. : 37.5 km., Del. Tlalpan	2
355	9	Cráneo	D. F. : 37.5 km., Del. Tlalpan	2
1313	8	Piel / Cráneo	Estado de México: Lagunas de Zempoala	4
4166	9	Cráneo	D. F. : Parres, Del. Tlalpan	4
8737	8	Piel / Cráneo	México: San Vicente Coatepec	4
12479	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2
12480	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
12481	8	Piel / Cráneo	D. F. : Parres, Del. Tlalpan	4
12482	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2
12483	8	Piel / Cráneo	D. F. : Parres, Del. Tlalpan	3
12484	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
13504	Ŷ	Piel / Cráneo	D. F. : Faldas Cerro Tuxtepec, Parres, Del. Tlalpan	4
13671	Ŷ	Piel / Cráneo	Morelos: Tres Marías, Mpio. Huitzilac	4
14577	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2
15221	Ŷ	Cráneo	D. F. : Del. Milpa Alta	2
15222	8	Cráneo	D. F. : Del. Milpa Alta	4
16889	8	Piel / Esqueleto	D. F. : Cerro La Cima, Del. Tlalpan	2
16890	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
16892	8	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16893	Ŷ	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16894	Ŷ	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16897	8	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16898	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	4
16899	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	4
16900	9	Piel / Esqueleto	D. F: Coatillo Grande, Tlalpan	1
16902	Ŷ	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16903	9	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
16904	Ŷ	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16905	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	1
16906	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4

Lista de ejemplares examinados de *Romerolagus diazi*, depositados en la Colección Nacional de Mamíferos (CNMA) del Instituto de Biología de la UNAM.

D. F. : Distrito Federal **Del.** : Delegación **Mpio.** : Municipio

Número de Sexo catálogo de la		Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y
CNMA				Zimmerman, 1967)
16907	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
16908	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4
16910	Ŷ	Piel / Cráneo	D. F. : Parres, Del. Tlalpan	3
16911	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2
16912	3	Piel / Esqueleto	D. F. : Cerro La Cima, Del. Tlalpan	4
16913	3	Piel / Esqueleto	D. F. : Nacido en cautiverio, Parres, Del. Tlalpan	1
16914	9	Piel / Esqueleto	D. F. : Nacido en cautiverio, Parres, Del. Tlalpan	1
16915	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16917	3	Piel / Esqueleto	D.F. : Cerro Coatillo Grande, Del. Tlalpan	4
16920	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16921	9	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16922	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16923	3	Piel / Cráneo	D. F. : Coatillo Grande, Del. Tlalpan	4
16924	3	Esqueleto	D.F. : Cerro Coatillo Grande, Del. Tlalpan	2
16926	9	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	3
16927	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16928	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16929	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	4
16930	9	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16931	3	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16932	9	Piel / Esqueleto	D. F. : Coatillo Grande, Del. Tlalpan	2
16934	9	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2
16935	9	Piel / Esqueleto	D. F. : Cerro La Cima, Del. Tlalpan	1
16937	9	Piel / Cráneo	D. F. : La Cima, Del. Tlalpan	3
16938	3	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	4
16940	3	Piel / Esqueleto	D. F. : Cerro La Cima, Del. Tlalpan	3
16941	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	3
16943	3	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	4
16944	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	3
16947	9	Cráneo	D. F. : La Cima, Del. Tlalpan	2
16948	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	3
16949	4	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	3
16950	9	Piel / Esqueleto	D. F. : La Cima, Del. Tlalpan	2
16951	8	Piel / Esqueleto	D.F. : La Cima, Del. Tlalpan	4
18286	3	Piel / Esqueleto	Morelos: Carretera: México – Cuernavaca	3
18288	3	Esqueleto	D. F: Volcán Comalera, Chichinautzin, Del. Milpa Alta	3

D. F. : Distrito Federal **Del.** : Delegación

Continuación Ap	oéndice I								
Número de Sexo catálogo de la CNMA		Preservación	Preservación Localidad de colecta						
26427	4	Piel / Cráneo	D. F. : Parres, Del. Tlalpan	2					
26429	4	Piel / Cráneo	Edo. de México: Mpio. Juchitepec	2					
26431	3	Cráneo	D. F. : Parres, Del. Tlalpan	1					
26432	3	Cráneo	Edo. de México: Nevado de Toluca	2					
28525	3	Cráneo	D. F. : Parres, Del. Tlalpan	4					
34336	4	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2					
34337	4	Esqueleto	D. F. : Parres, Del. Tlalpan	4					
34338	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4					
34339	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4					
34824	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4					
34840	8	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	2					
34856	8	Piel / Esqueleto	D.F. : Parres, frente al C. "La Cruz del Márques"	4					
35586	Ŷ	Piel / Esqueleto	D. F. : Parres, Del. Tlalpan	4					
37822	Ŷ	Piel / Esqueleto	Morelos: Tres Marías, Mpio. Huitzilac	1					
37823	3	Piel / Esqueleto	Morelos: Tres Marías, Mpio. Huitzilac	1					
45924	Ŷ	Piel / Cráneo	D.F. : Parres, (El Guarda), Del. Tlalpan	4					
45930	3	Piel / Cráneo	D.F. : Parres, (El Guarda), Del. Tlalpan	4					

D. F. : Distrito Federal**Del.** : Delegación**Edo. de México**: Estado de México

APÉNDICE II

Número de catálogo de la CNMA	Sexo	Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)
912	8	Piel / Cráneo	Edo. de México: Mpio. Temamatla	4
1055	8	Piel / Cráneo	Edo. De México: San Cristobal, Mpio. Ecatepec	1
1057	8	Piel / Cráneo	D. F. : Bosque de Chapultepec, Del. Miguel hidalgo	1
1058	Ŷ	Cráneo	D. F. : Bosque de Chapultepec, Del. Miguel hidalgo	1
1059	8	Piel / Cráneo	D. F. : Pedregal de San Ángel, Del. Coyoacan	4
1060	Ŷ	Cráneo	D. F. : Pedregal de San Ángel, Del. Coyoacan	4
1061	8	Cráneo	D. F. : Pedregal de San Ángel, Del. Coyoacan	4
1062	8	Piel / Cráneo	D. F.: San Miguel Xicaleo, Del. Tlalpan	3
1064	Ŷ	Piel / Cráneo	D. F. : Del. Tlalpan	4
1065	8	Piel / Cráneo	D.F. : 33 km., Del. Tlalpan	4
1067	8	Piel / Cráneo	D.F. : 33 km., Del. Tlalpan	3
1068	8	Piel / Cráneo	D.F. : 33 km., Del. Tlalpan	2
1192	8	Piel / Cráneo	N. L. : Rancho 14 de Mayo China	2
1369	Ŷ	Piel / Cráneo	Morelos: Mpio. Huitzilac	4
1372	8	Piel / Cráneo	Morelos: Mpio. Huitzilac	4
3587	8	Cráneo	Veracruz: Campo experimental Córdoba	4
4404	Ŷ	Piel / Cráneo	E. U. A. : Michigan, Wasthenaw. Co. Ann Arbor	4
4405	8	Piel / Cráneo	E. U. A.: Kansas, Clinton, Douglas	4
4407	Ŷ	Piel / Cráneo	Tamaulipas: Matamoros	3
4410	Ŷ	Piel / Cráneo	Coahuila: Mpio. Ocampo	4
4414	3	Piel / Cráneo	Veracruz: Ojo de Agua Grande, Córdoba	3
6822	Ŷ	Piel / Cráneo	Oaxaca: Mpio. Juchitán	4
7166	9	Piel / Cráneo	D. F. : Sur de México	4
8344	Ŷ	Piel / Cráneo	Quintana Roo: Rancho La Ceiba, La Laguna de Chicana Mpio. José Ma. Moruelas	4
8345	8	Piel / Cráneo	Quintana Roo: Rancho La Ceiba, La Laguna de Chicana Mpio. José Ma. Moruelas	4
10827	9	Piel / Cráneo	Veracruz: Mpio. El higo	4
10828	9	Piel / Cráneo	Veracruz: Mpio. El higo	4
10829	\$	Piel / Cráneo	Veracruz: Mpio. El higo	4
10830	3	Piel / Cráneo	Veracruz: Mpio. El higo	3

Lista de ejemplares examinados de Sylvilagus floridanus, depositados en la Colección Nacional de Mamíferos (CNMA) del Instituto de Biología de la UNAM.

D. F. : Distrito Federal Del. : Delegación Edo. de México: Estado de México

Mpio. : Municipio

E. U. A.: Estados Unidos de América

Continuación Ap	Continuación Apéndice II										
Número de catálogo de la CNMA	Sexo	Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)							
10831	Ŷ	Piel / Cráneo	Veracruz: Mpio. El higo	3							
11064	8	Piel / Cráneo	Veracruz: Mpio. El higo	4							
16740	8	Piel / Cráneo	D. F. : Acopiaxco, Del. Tlalpan	2							
16876	8	Piel / Cráneo	D. F.: Parres, Del. Tlalpan	2							
16877	Ŷ	Piel / Cráneo	D. F. : Acopiaxco, Del. Tlalpan	2							
16879	ð	Piel / Cráneo	D. F.: Parres, Del. Tlalpan	1							
16880	8	Piel / Cráneo	D. F.: Parres, Del. Tlalpan	1							
18291	Ŷ	Cráneo	D. F.: Parres, Del. Tlalpan	4							
19594	ð	Cráneo	Edo. de México: Texcoco, Tequesquinahuac	3							
19600	Ŷ	Cráneo	Edo. de México: Texcoco, Tequesquinahuac	3							
21556	8	Piel / Esqueleto	Zacatecas: 2 km. de Abrego, Mpio. Fresnillo	3							
21768	8	Piel / Esqueleto	Guanajuato: Tierra Blanca Mpio. Corralillo	4							
21869	8	Piel / Esqueleto	Guanajuato: Tierra Blanca Mpio. Corralillo	4							
26442	Ŷ	Piel / Cráneo	Puebla: San Juan Tetla, Mpio. San Martín Texmeluca	3							
26473	8	Piel / Cráneo	Morelos: Mpio. Miacatlán Palpan	4							
26474	5	Piel / Cráneo	Morelos: Mpio. Miacatlán Palpan	4							
26477	2	Piel / Cráneo	Morelos: Mpio. Miacatlán Palpan	4							
27660	2	Piel / Esqueleto	Tlaxcala: 20 km. de Apizaco, Mpio. Capulac	4							
27662	Ŷ	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4							
27663	Ŷ	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	3							
27665	2	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4							
27666	2	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	2							
27668	8	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4							
27669	8	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4							
27670	Ŷ	Piel / Esqueleto	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	4							
27671	8	Piel / Esqueleto	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	2							
27673	Ŷ	Piel / Esqueleto	Jalisco: Mpio. La Manzanilla	4							
27674	Ŷ	Piel / Esqueleto	Jalisco: Mpio. La Manzanilla	3							
27677	2	Cráneo	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	2							
29021	Ŷ	Piel / Esqueleto	Jalisco: Mpio. La Manzanilla	4							
29022	3	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	3							

D. F. : Distrito Federal **Del.** : Delegación **Edo. de México**: Estado de México Mpio. : Municipio

Continuación Ap	éndice II			
Número de catálogo de la CNMA	Sexo	Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)
34333	8	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	3
34334	Ŷ	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	2
34341	2	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
34342	8	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
34343	2	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
34344	2	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
34345	Ŷ	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
34346	Ŷ	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4
34348	Ŷ	Piel / Esqueleto	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	4
34349	8	Piel / Esqueleto	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	3
34351	8	Piel / Esqueleto	Michoacán: San José de Gracia, Mpio. Marcos Castellanos	4
34841	Ŷ	Piel / Esqueleto	D. F.: Parres, Del. Tlalpan	4
34843	2	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
34844	Ŷ	Piel / Cráneo	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	2
34845	Ŷ	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
35159	Ŷ	Piel / Cráneo	Oaxaca: Mpio. Ixhuatán	4
35160	2	Piel / Cráneo	Oaxaca: Mpio. Ixhuatán	4
35212	Ŷ	Piel / Esqueleto	Jalisco: Rosa Amarilla, Mpio. La Manzanilla	4
35214	Ŷ	Piel / Esqueleto	Jalisco: Mazamitla, Mpio. Valle de Juárez	4
35216	ð	Piel / Esqueleto	Michoacán: Desviación Paso Real Agua Caliente, Mpio. Marcos Castellanos	3
36968	ð	Piel / Cráneo	Durango: La Piedra Herrada, Mpio. Suchil	3
37824	9	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
37825	8	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
37826	8	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	3
37828	Ŷ	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
37830	Ŷ	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	4
38907	2	Piel / Esqueleto	Oaxaca: Santa Ma. del Mar, Mpio. Juchitán	3
40194	Ŷ	Piel / Esqueleto	Oaxaca: Mpio. Ixhuatán	4
40195	Ŷ	Piel / Esqueleto	Oaxaca: Mpio. Ixhuatán	4
40196	2	Piel / Esqueleto	Oaxaca: Mpio. Ixhuatán	3
40421	2	Piel / Esqueleto	Oaxaca: Mpio. Ixhuatán	4

D. F. : Distrito Federal
Del. : Delegación**Santa Ma. del Mar:** Santa María del
Mar**Mpio.** : Municipio

Continuación Apo	éndice II			
Número de catálogo de la CNMA	Sexo	Preservación	Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)
40794	ð	Piel / Esqueleto	Tlaxcala: Cerro Tezoyo, Mpio. Atlagantepec	3
40801	8	Piel / Esqueleto	Tlaxcala: 8.7 km., Mpio. Atlagantepec	4
40806	9	Piel / Esqueleto	Tlaxcala: 6.9 km., Mpio. Atlangatepec	4
40807	9	Piel / Esqueleto	Tlaxcala: Mpio. Atlangatepec	4
40809	9	Piel / Esqueleto	Tlaxcala: Cerro Tezoyo Mpio. Atlagantepec	4
40810	9	Piel / Esqueleto	Tlaxcala: Mpio. Atlangatepec	4
40811	9	Piel / Esqueleto	Tlaxcala: 3.4 km Atlangatepec	4
40812	8	Piel / Esqueleto	Tlaxcala: Cerro de Suchitepec, Mpio. Atlangatepec	4
40813	9	Piel / Esqueleto	Tlaxcala: Santa Elena, Mpio. Atlangatepec	1
40814	8	Piel / Esqueleto	Tlaxcala: Mpio. Atlangatepec	4
40815	Ŷ	Piel / Cráneo	Tlaxcala: Aeropuerto, Mpio. Atlangatepec	3
40816	8	Piel / Esqueleto	Tlaxcala: Cerro del Aire, Mpio. Atlangatepec	4
40817	Ŷ	Piel / Cráneo	Tlaxcala: Cerro de Suchitepec, Mpio. Atlangatepec	2
40818	2	Piel / Cráneo	Tlaxcala: San Pedro Ecatepec, Mpio. Atlangatepec	3
40821	2	Piel / Cráneo	Tlaxcala: Vista Hermosa, Mpio. Atlangatepec	4
40822	Ŷ	Esqueleto	Tlaxcala: Mpio. Atlangatepec	3
41087	2	Piel / Esqueleto	Tlaxcala: Mpio. Ixtacuixtla de Mariano Matamoros	3
1089	Ŷ	Piel / Esqueleto	Tlaxcala: Barranca El Tejocote, Mpio. Ixtacuixtla de Mariano Matamoros	3
41090	8	Piel / Esqueleto	Tlaxcala: Ixtacuixtla, Mpio. Ixtacuixtla de Mariano Matamoros	3
41091	8	Piel / Esqueleto	Tlaxcala: Barranca El Tejocote, Mpio. Ixtacuixtla de Mariano Matamoros	4
41093	9	Piel / Esqueleto	Tlaxcala: Ixtacuixtla, Mpio. Ixtacuixtla de Mariano Matamoros	s 4
41094	Ŷ	Piel / Esqueleto	Tlaxcala: Barranca El Portezuelo Mpio. Ixtacuixtla de Mariano Matamoros	4
41096	Ŷ	Piel / Esqueleto	Tlaxcala: Barranca El Portezuelo Mpio. Ixtacuixtla de Mariano Matamoros	3
41097	2	Piel / Esqueleto	Tlaxcala: Ixtacuixtla, Mpio. Ixtacuixtla de Mariano Matamoros	3
41098	2	Piel / Esqueleto	Tlaxcala: Ixtacuixtla, Mpio. Ixtacuixtla de Mariano Matamoros	s 3
41100	3	Piel / Esqueleto	Tlaxcala: Ixtacuixtla, Mpio. Ixtacuixtla de Mariano Matamoros	s 4
41102	Ŷ	Piel / Esqueleto	Tlaxcala: San Bernardino Contla, Mpio. Juan Cuamatzi	1
41103	Ŷ	Piel / Esqueleto	Tlaxcala: San Bernardino Contla, Mpio. Juan Cuamatzi	1
41104	9	Piel / Esqueleto	Tlaxcala: San Bernardino Contla, Mpio. Juan Cuamatzi	1

Mpio. : Municipio

Continuación Apéndice II

Número de catálogo de la CNMA	Sexo) Preservació	n Localidad de colecta	Categoría de edad (Hoffmeister y Zimmerman, 1967)
43391	Ŷ	Piel / Cráneo	D. F. : Alameda Oriente, Del. Venustiano Carranza	3
44091	Ŷ	Piel / Esqueleto	D. F. : Parada Pumabús, Jardín Botánico CU, Del. Coyoacán	2
44515	8	Piel / Cráneo	D. F. : Tlaxiatemalco, Del. Xochimilco	4
44517	8	Piel / Esqueleto	D. F. : Vivero Forestal San Luis Tlaxiatemalco, Del. Xochimilco	4
44518	8	Piel / Cráneo	D. F. : Tlaxiatemalco, Del. Xochimilco	3
44519	8	Piel / Esqueleto	D. F. : Vivero Forestal San Luis Tlaxiatemalco, Del. Xochimilco	4
44520	8	Piel / Esqueleto	D. F. : Vivero Forestal San Luis Tlaxiatemalco, Del. Xochimilco	2
44521	8	Piel / Esqueleto	D. F. : Vivero Forestal San Luis Tlaxiatemalco, Del. Xochimilco	4
46340	9	Piel / Esqueleto	Edo. de México: Parque Natural Las Peñas, Dexcani, Mpio. Jilotepec	1

D. F.: Distrito Federal **Edo. de México**: Estado de México

APÉNDICE III

Variables craneales (mm) medidas en ejemplares de *Romerolagus diazi*. AC: Anchura Cigomática, ACC: Anchura de la Caja Craneana, AP: Amplitud del Parietal, LAC: Longitud del Arco Cigomático, LB: Longitud Basilar, LD: Longitud del Dental, LMC: Longitud Mayor Craneal, LMD: Longitud Molar del Dentario y LN: Longitud del Nasal

Número de catálogo de la CNMA	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
341	30	18	21	28	47	48	62	10	25
351	24	18	20	27	44	44	54	11	21
354	21	14	18	17	26	26	38	7	13
355	21	14	18	16	26	26	37	7	13
1313	30	19	20	28	44	46	60	10	24
4166	29	18	20	26	46	46	60	10	20
8737	29	18	20	28	47	45	59	11	23
12479	23	15	18	19	30	30	42	8	14
12480	28	19	21	26	46	43	59	11	22
12481	28	17	18	25	43	45	57	11	23
12482	24	15	18	20	34	33	45	8	17
12483	29	17	19	26	41	42	57	10	22
12484	29	18	20	27	45	45	60	11	24
13504	29	18	20	27	45	45	60	11	24
13671	29	17	20	27	44	45	58	10	24
14577	23	15	18	16	26	25	38	7	13
15221	24	16	19	20	30	32	43	8	15
15222	29	18	21	27	44	44	58	10	22
16889	27	17	19	24	38	38	51	9	19
16890	28	19	18	26	45	44	60	11	21
16892	29	17	20	25	45	43	59	10	22
16893	30	19	21	27	44	44	58	11	22
16894	30	17	20	26	44	44	58	11	23
16897	28	18	20	26	42	43	58	10	23
16898	29	18	20	27	43	43	58	10	20
16899	29	18	21	27	44	43	60	10	19
16900	15	11	14	11	18	16	27	5	8
16902	30	19	19	28	46	46	62	11	25

Número de catálogo	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
16903	29	18	21	28	46	44	59	11	22
16904	29	18	21	27	45	44	59	11	24
16905	15	11	14	10	18	16	25	6	9
16906	31	19	21	28	47	45	61	10	24
16907	30	18	21	27	48	47	62	11	23
16908	30	19	20	28	47	45	59	11	23
16910	30	17	19	26	43	42	57	10	21
16911	27	17	19	22	36	36	50	8	17
16912	29	18	21	27	45	44	60	11	22
16913	16	12	15	11	19	18	28	5	8
16914	16	11	15	11	18	17	26	5	8
16915	28	18	20	26	42	41	56	10	21
16917	29	17	20	25	44	42	58	10	23
16920	21	15	18	15	24	25	36	7	12
16921	27	17	18	24	37	38	51	9	18
16922	30	18	19	30	48	48	63	10	24
16923	29	17	19	27	45	44	60	11	22
16924	26	16	20	21	34	34	47	8	17
16926	27	16	19	25	40	40	55	9	21
16927	25	17	19	22	34	36	48	8	17
16928	27	17	19	25	39	39	54	9	19
16929	28	18	21	24	40	40	54	10	20
16930	23	15	18	17	28	28	40	7	13
16931	23	15	18	17	28	28	40	7	13
16932	27	17	19	23	39	40	52	9	20
16934	25	16	18	22	34	36	48	8	17
16935	20	13	16	13	21	21	33	6	10
16937	28	17	20	26	41	42	56	10	21
16938	28	17	20	27	44	45	59	11	21
16940	28	18	20	25	39	39	53	10	20
16941	26	17	19	25	40	40	54	9	21
16943	28	17	20	26	41	42	56	10	21

Continuación Apéndice III

Número de catálogo	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
16944	28	17	20	24	40	39	54	10	20
16947	28	17	19	24	36	37	51	9	19
16948	28	17	20	25	40	40	55	10	20
16949	28	17	19	26	42	41	56	10	21
16950	24	15	19	18	31	30	42	8	13
16951	29	17	20	26	41	43	56	10	20
18286	29	18	20	26	42	42	57	10	23
18288	28	17	20	26	45	42	59	11	23
26427	25	16	19	21	33	33	45	8	16
26429	24	16	19	17	29	30	41	8	14
26431	20	15	17	16	29	26	35	7	12
26432	26	16	19	21	35	35	47	8	18
28525	30	18	21	27	47	46	61	11	24
34336	25	16	19	21	33	33	46	8	16
34337	29	17	21	26	44	40	58	10	23
34338	27	17	19	26	41	42	57	11	22
34339	29	18	19	26	45	41	60	10	24
34824	26	18	19	27	45	44	58	11	24
34840	25	17	19	23	35	36	50	8	17
34856	28	17	19	25	43	42	56	10	22
35586	30	18	20	26	45	45	59	11	21
37822	20	15	17	15	25	24	36	6	11
37823	20	14	18	15	26	25	37	7	12
45924	28	18	20	27	44	44	58	10	24
45930	29	18	20	26	46	44	60	11	21

Continuación Apéndice III

APÉNDICE IV

Variables craneales (mm) medidas en ejemplares de *Sylvilagus floridanus*. AC: Anchura Cigomática, ACC: Anchura de la Caja Craneana, AP: Amplitud del Parietal, LAC: Longitud del Arco Cigomático, LB: Longitud Basilar, LD: Longitud del Dental, LMC: Longitud Mayor Craneal, LMD: Longitud Molar del Dentario y LN: Longitud del Nasal

Número de Catálogo de la CNMA	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
912	33	22	24	29	50	50	68	12	30
1055	26	17	21	19	33	30	46	8	18
1057	27	18	20	19	34	30	50	8	18
1058	27	18	21	18	33	31	47	8	18
1059	33	22	24	28	51	46	69	12	31
1060	33	22	24	29	53	51	71	12	33
1061	34	22	24	29	51	50	68	13	30
1062	32	22	23	27	48	45	65	11	28
1064	33	22	24	28	54	52	70	12	30
1065	32	22	22	30	53	51	71	12	33
1067	33	22	23	27	51	47	67	11	30
1068	31	20	23	26	45	44	62	11	26
1192	31	20	21	26	44	43	63	10	26
1369	33	21	22	29	52	50	68	11	30
1372	32	21	23	28	52	50	69	10	30
3587	36	22	24	32	56	53	74	13	33
4404	37	25	26	35	57	54	79	15	35
4405	35	24	23	31	56	53	74	13	35
4407	32	22	23	27	49	46	65	11	29
4410	36	23	24	32	57	55	74	13	35
4414	33	23	23	30	50	50	68	11	30
6822	35	24	24	33	56	55	75	13	35
7166	33	23	23	31	54	52	71	12	30
8344	36	24	25	33	57	57	77	13	35
8345	35	23	24	33	57	56	77	13	34
10827	35	21	23	33	56	53	74	12	33
10828	34	23	22	32	57	58	76	13	34
10829	35	24	24	33	57	57	75	13	32
10830	35	22	22	32	53	54	70	12	31

Número de catálogo de la CNMA	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
10831	33	23	23	31	54	54	72	11	33
11064	35	24	24	32	57	56	76	13	34
16740	31	21	24	28	46	44	65	11	28
16876	31	19	23	25	40	40	55	10	22
16877	32	22	24	26	46	45	62	10	26
16879	25	17	20	17	31	29	44	8	16
16880	24	17	19	17	30	25	44	8	16
18291	33	22	24	28	49	47	68	11	29
19594	32	20	22	28	47	45	62	10	27
19600	32	20	21	28	45	45	63	11	28
21556	32	22	23	29	49	47	65	11	27
21768	35	22	24	30	49	48	68	12	32
21869	34	23	23	30	51	47	71	13	33
26442	31	22	22	26	46	42	65	10	27
26473	38	25	26	36	61	59	79	15	34
26474	37	25	26	35	60	56	80	14	36
26477	36	24	25	35	61	57	82	15	35
27660	33	21	24	29	51	49	69	12	30
27662	34	23	24	31	53	52	73	12	34
27663	33	22	24	30	55	53	71	11	32
27665	35	23	24	30	56	53	75	12	35
27666	31	22	23	26	45	45	62	10	27
27668	35	23	25	31	55	51	75	12	35
27669	34	23	25	30	54	51	72	12	33
27670	33	23	24	31	54	53	73	12	33
27671	30	22	23	28	48	46	66	10	27
27673	34	23	24	30	53	51	71	12	32
27674	34	22	23	30	53	51	71	12	31
27677	31	20	24	26	46	44	63	11	26
29021	34	23	23	32	56	52	73	12	33
29022	33	22	24	29	49	49	66	11	28
34333	35	24	24	31	54	51	72	13	33

Continuación Apéndice IV

Número de catálogo de la CNMA	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
34334	33	22	22	27	48	47	66	11	28
34341	35	23	24	30	54	51	73	12	33
34342	34	23	23	32	54	53	76	12	32
34343	34	23	24	32	55	51	75	12	35
34344	35	22	23	30	54	52	71	12	32
34345	34	23	23	32	55	53	75	13	33
34346	32	22	23	30	54	50	72	11	31
34348	34	23	22	33	55	54	75	12	33
34349	32	22	23	30	54	53	72	12	32
34351	35	22	24	31	55	53	75	12	34
34841	33	22	24	29	48	46	67	12	31
34843	34	23	24	31	54	51	72	12	33
34844	32	22	21	30	51	47	68	12	29
34845	35	23	24	32	57	55	75	13	34
35159	35	24	26	28	55	55	76	13	35
35160	34	23	24	31	54	55	74	13	33
35212	33	23	22	29	52	51	70	12	31
35214	34	23	21	33	56	55	74	13	34
35216	33	23	23	30	50	49	67	11	30
36968	34	22	23	30	51	48	68	11	30
37824	35	24	24	33	57	54	76	13	35
37825	34	24	23	32	56	55	75	12	36
37826	33	23	23	30	52	52	71	12	32
37828	34	22	23	32	57	54	77	13	37
37830	35	24	24	33	58	56	76	13	33
38907	34	22	22	32	54	52	73	12	33
40194	33	23	22	32	58	53	77	13	35
40195	35	24	23	33	58	54	77	13	36
40196	34	23	24	32	54	51	73	12	34
40421	35	24	25	33	54	51	74	12	35
40794	33	22	23	29	50	46	67	10	30
40801	33	22	23	29	52	48	71	12	31

Continuación Apéndice IV

Número de catálogo de la CNMA	AC	ACC	AP	LAC	LB	LD	LMC	LMD	LN
40806	33	22	23	28	51	48	70	12	31
40807	31	22	22	28	50	48	68	12	29
40809	33	22	23	29	52	51	70	12	30
40810	35	23	25	29	48	48	71	12	30
40811	33	22	23	30	53	47	69	12	30
40812	33	21	23	29	50	27	67	12	28
40813	28	18	20	21	37	35	51	8	20
40814	32	22	23	28	49	48	68	12	31
40815	33	22	23	29	51	48	68	12	30
40816	34	22	24	29	50	49	70	12	32
40817	29	20	21	21	40	38	55	9	22
40818	31	20	22	26	46	45	65	11	28
40821	34	22	24	29	50	47	69	11	32
40822	31	20	23	28	48	45	63	11	27
41087	32	21	23	26	46	45	64	11	29
41089	32	21	21	28	48	47	66	12	29
41090	31	22	22	27	51	46	70	11	32
41091	33	22	22	29	52	52	70	11	31
41093	34	23	24	30	53	49	70	12	31
41094	34	22	24	29	51	50	70	13	30
41096	35	25	26	32	51	52	70	13	29
41097	32	22	23	27	48	46	67	12	28
41098	31	21	24	25	43	41	60	10	25
41100	32	21	23	29	51	48	70	12	30
41102	21	16	19	13	24	22	35	7	13
41103	21	16	19	13	25	22	36	7	13
41104	21	16	19	13	25	22	35	7	12
43391	32	21	23	28	47	45	63	11	26
44091	32	21	24	27	42	47	62	11	27
44515	33	22	25	29	51	47	68	11	28
44517	34	23	25	29	52	49	70	12	31
44518	32	21	23	27	48	48	67	12	30
44519	33	21	24	28	52	49	70	12	29
44520	30	19	21	26	45	45	60	10	25
44521	33	23	24	29	53	48	71	11	32
46340	28	18	20	22	35	35	51	8	20

Continuación Apéndice IV

APÉNDICE V

Variables y craneales (descritas en Materiales y Métodos) y categorías de edad (Hoffmeister y Zimmerman, 1967) de ejemplares de *Romerolagus diazi* (Mín – Máx)= intervalo; CV= Coeficiente de Variación.

Variables	Categoría de edad	Promedio ± desviación estándar	Mín – Máx	CV %
AC	1	17.125 ± 3.603	10 - 20	21.039
	2	24.625 ± 2.039	21 - 28	8.28
	3	28.091 ± 1.044	26 - 30	3.718
	4	28.785 ± 1.2	24 - 31	4.17
ACC	1	12.75 ± 1.752	11 – 15	13.745
	2	15.875 ± 0.991	14 - 17	6.247
	3	17.09 ± 0.54	16 - 18	3.155
	4	17.88 ± 0.67	17 – 19	3.746
AP	1	15.75 ± 1.49	14 - 18	9.447
	2	18.625 ± 0.575	18 - 20	3.091
	3	19.545 ± 0.522	19 - 20	2.671
	4	20.047 ± 0.824	18 – 21	4.12
LAC	1	12.75 ± 2.314	10 - 16	18.153
	2	20.208 ± 2.98	15 - 25	14.735
	3	25.454 ± 0.687	24 - 26	2.701
	4	26.666 ± 1.096	24 - 30	4.113
LB	1	21.75 ± 4.334	18 – 29	19.927
	2	32.375 ± 4.381	24 - 39	13.534
	3	41.181 ± 1.721	39 - 45	4.18
	4	44.547 ± 1.902	40 - 48	4.27
LD	1	20.375 ± 4.172	16 - 26	20.479
	2	32.625 ± 4.698	25 - 40	14.4
	3	40.818 ± 1.25	39 - 42	3.063
	4	44 ± 1.834	40 - 48	4.17
LMD	1	5.875 ± 0.834	5 – 7	14.204
	2	7.916 ± 0.717	7 - 9	9.06
	3	9.91 ± 0.54	9 – 11	5.443
	4	10.523 ± 0.505	10 – 11	4.803
LMC	1	30.875 ± 4.882	25 - 37	15.813
	2	45.083 ± 5.3	36 - 54	11.753
	3	55.727 ± 1.737	53 - 59	3.117
	4	58.785 ± 1.994	54 - 63	3.392
LN	1	9.75 ± 1.752	8-12	17.974
	2	15.833 ± 2.425	12 - 20	15.32
	3	21.181 ± 1.078	20 - 23	5.092
	4	22.428 ± 1.516	19 – 25	6.761

APÉNDICE VI

Variables y craneales (descritas en Materiales y Métodos) y categorías de edad (Hoffmeister y Zimmerman, 1967) de ejemplares de *Sylvilagus floridanus* (Mín – Máx)= intervalo; CV= Coeficiente de Variación.

Variables	Categoría de edad	Promedios ± desviación estándar	Min – Máx	CV (%)
AC	1	24.8 ± 2.9	21 - 28	11.686
	2	30.928 ± 1.206	28 - 33	3.901
	3	32.656 ± 1.18	31 – 35	3.615
	4	34.066 ± 1.287	33 - 36	3.779
ACC	1	17.1 ± 0.875	16 – 18	5 12
1100	2	20.571 ± 1.342	18 - 22	6.25
	3	20.371 = 1.312 21 906 + 1 117	21 - 25	5 101
	4	22.72 ± 0.98	21 - 23 22 - 24	4.314
1.5		10.0.0.0.000	10 01	2.002
AP	l	19.8 ± 0.788	19 – 21	3.983
	2	22.5 ± 1.344	20 - 24	5.975
	3	22.937 ± 0.948	24 - 26	4.134
	4	23.693 ± 1.026	24 - 25	4.331
LAC	1	17.2 ± 3.293	13 – 22	19.14
	2	26.142 ± 1.994	22 - 30	7.629
	3	28.781 ± 1.979	25 - 32	6.877
	4	30.666 ± 1.975	29 - 35	6.44
LB	1	30.5 ± 4.527	24 - 37	14.844
	2	44.714 ± 3.911	35 - 51	8.746
	3	49.843 ± 3.08	43 - 51	6.18
	4	53.92 ± 2.994	48 - 61	5.55
ID	1	27.9 ± 5	22 - 35	17 917
LD	2	27.5 ± 3 43.714 ± 3.61	35 - 47	7 688
	2	48.062 + 3.454	33 = 47 41 = 52	7.000
	4	51.413 ± 4.249	46 - 57	8.264
IMC	1	42.0 + (42(25 51	14 ((2
LIVIC	1	43.9 ± 0.430	55 - 51	14.002
	2	61.5 ± 4.686	51 - 68	7.62
	3	$6/.3/5 \pm 3.4/1$	60 - 73	5.151
	4	72.013 ± 5.412	07 - 82	4.7
LMD	1	7.7 ± 0.483	7 - 8	6.273
	2	10.285 ± 0.994	8 - 12	9.668
	3	11.312 ± 0.7803	10 - 13	6.897
	4	12.306 ± 0.884	12 – 15	7.19
LN	1	16.4 ± 2.913	12 - 20	17.765
·	2	25.714 ± 2.493	20 - 29	9.7
	3	29.656 ± 2.237	25 - 29	7.545
	4	32.48 ± 2.133	31 - 35	6 567

APÉNDICE VII

Coordenadas promedio x y y (o coordenadas de las formas consenso) de los landmarks de todas las vistas del cráneo de ejemplares de *Romerolagus diazi* y *Sylvilagus floridanus*.

		Romerolagus diazi		Sylvilagus floridanus			
Vistas	Landmarks	Eje x	Eje y	Eje x	Eje y		
Dentario	1	-0.25180749	0.22960413	-0.31503498	0.16530405		
	2	-0.39600108	0.12790350	-0.40151584	0.06784269		
	3	-0.32733151	-0.17724123	-0.30679230	-0.17871198		
	4	-0.02506638	-0.26578053	0.06024064	-0.22004624		
	5	0.02531372	-0.20298546	0.08250561	-0.16508885		
	6	0.43550071	0.03416880	0.43689389	0.04045386		
	7	0.42515288	0.09244468	0.43673964	0.10705671		
	8	0.22160183	0.03956583	0.21111975	0.05010670		
	9	0.00469706	-0.00273090	-0.00598211	0.01420801		
	10	-0.11205976	0.12505118	-0.19817431	0.11887505		
Dorsal	1	-0.08901827	-0.43104574	-0.09720028	-0.46138791		
	2	-0.00153092	-0.26741933	0.00708980	-0.25747536		
	3	-0.02607858	-0.19581129	-0.01258086	-0.18334607		
	4	0.02708847	-0 21661883	0 02913470	-0 21872643		
	5	0.04777388	-0.19513810	0.05184575	-0.20810426		
	6	0.09827613	-0.12330097	0.08951702	-0.13932426		
	7	0.04143219	-0.01887309	0.05965363	0.04619277		
	8	0.11982163	0.05211442	0.11836350	0.05242688		
	9	0.09414135	0.12213789	0.08492688	0.14465717		
	10	0.07322167	0.23659419	0.05550315	0.21432282		
	11	0.00024211	0.29917141	-0.00384640	0.28048923		
	12	-0.07223754	0.33485768	-0.07146042	0.31398066		
	13	-0.07339048	0.30400322	-0.07214708	0.29451869		
	14	-0.07449500	0.27390126	-0.07263539	0.26935893		
	15	-0.07831996	0.09221030	-0.07494399	0.12477515		
	16	-0.08692665	-0.26678302	-0.09122001	-0.27235803		
Lateral	1	0.36273736	0.05915128	0.37026783	0.06447007		
	2	0.11631547	0.15567131	0.09853695	0.17416155		
	3	-0.14165940	0.21486815	-0.20014086	0.20707629		
	4	-0.40352879	0.07468809	-0.39349266	0.05843308		
	5	-0.42471805	-0.01575085	-0.41088313	-0.03284398		
	6	-0.28528682	-0.17613831	-0.26423674	-0.16480388		
	7	-0.11992316	-0.08514699	-0.11147204	-0.08734130		
	8	-0.04909023	-0.03720875	-0.05070220	-0.05130658		
	9	0.12632971	-0.05237702	0.12692855	-0.03789398		
	10	0.14755355	-0.02322595	0.14377442	-0.01553020		
	11	0.31513626	-0.06996613	0.32440422	-0.07186162		
	12	0.35613410	-0.04456484	0.36701567	-0.04255945		
Ventral	1	-0.03668240	-0.46075284	-0.03366163	-0.47542700		
	2	-0.02788690	-0.39600498	-0.02755927	-0.41496041		
	3	-0.02239083	-0.21720620	-0.01535228	-0.20255288		

Continuación Apéndice VII

		Romerola	gus diazi	Sylvilagus floridanus			
Vistas	Landmarks	Eje x	Eje y	Eje x	Eje y		
	4	0.04388294	-0.22429576	0.04554946	-0.21857179		
	5	0.04799837	-0.06151102	0.04334770	-0.05718427		
	6	0.11058945	0.09461685	0.12007099	0.12651601		
	7	-0.04751079	-0.11052833	-0.04377564	-0.11610094		
	8	-0.05528790	0.12072946	-0.05103908	0.12688033		
	9	-0.05967939	0.23801860	-0.05433550	0.23819675		
	10	-0.06398206	0.38235173	-0.05922836	0.36580688		
	11	-0.06386082	0.42450152	-0.06119211	0.42026523		
	12	0.17481034	0.21008097	0.13717571	0.20713209		

APÉNDICE VIII

Componentes principales (PC) de todos las vistas del cráneo de Romerolagus diazi y Sylvilagus floridanus

			Romerolagus diazi		Sylvilagus floridanus			
Vista	РС	Eigenvalores	Porcentaje de variación	Porcentaje acumulado	Eigenvalores	Porcentaje de variación	Porcentaje acumulado	
Dentario	1	0.00403513	68.503	68.503	0.00214404	55.627	55.627	
	2	0.00059196	10.049	78.552	0.00057782	14.992	70.619	
	3	0.00039217	6.658	85.210	0.00031033	8.051	78.670	
	4	0.00027074	4.596	89.806	0.00021415	5.556	84.226	
	5	0.00016651	2.827	92.633	0.00017076	4.430	88.656	
	6	0.00013234	2.247	94.880	0.00010980	2.849	91.505	
	7	0.00009015	1.530	96.410	0.00008583	2.227	93.732	
	8	0.00005670	0.963	97.373	0.00007994	2.074	95.806	
	9	0.00004623	0.785	98.157	0.00004755	1.234	97.040	
	10	0.00003077	0.522	98.680	0.00003495	0.907	97.947	
	11	0.00002620	0.445	99.125	0.00002835	0.735	98.682	
	12	0.00001845	0.313	99.438	0.00002023	0.525	99.207	
	13	0.00001567	0.266	99.704	0.00001620	0.420	99.627	
	14	0.00000978	0.166	99.870	0.00000662	0.172	99.799	
	15	0.00000513	0.087	99.957	0.00000577	0.150	99.949	
	16	0.00000254	0.043	100.000	0.00000197	0.051	100.000	
Dorsal	1	0.00250915	50.298	50.298	0.00283933	64.924	64.924	
	2	0.00092271	18.497	68.794	0.00032710	7.479	72.403	
	3	0.00036654	7.348	76.142	0.00028604	6.541	78.944	
	4	0.00021209	4.252	80.393	0.00022642	5.177	84.121	
	5	0.00018555	3.720	84.113	0.00016786	3.838	87.959	
	6	0.00016485	3.304	87.417	0.00013233	3.026	90.985	
	7	0.00013797	2.766	90.183	0.00008644	1.977	92.961	
	8	0.00011231	2.251	92.434	0.00007456	1.705	94.666	
	9	0.00008353	1.674	94.109	0.00005219	1.193	95.860	
	10	0.00007581	1.520	95.629	0.00004226	0.966	96.826	
	11	0.00004867	0.976	96.604	0.00003187	0.729	97.555	
	12	0.00003816	0.765	97.369	0.00002136	0.488	98.043	
	13	0.00003034	0.608	97.978	0.00001932	0.442	98.485	
	14	0.00002705	0.542	98.520	0.00001608	0.368	98.853	
	15	0.00002054	0.412	98.932	0.00001187	0.271	99.124	
	16	0.00001417	0.284	99.215	0.00000909	0.208	99.332	
	17	0.00001152	0.231	99.446	0.00000734	0.168	99.500	
	18	0.00000923	0.185	99.631	0.00000693	0.158	99.658	
	19	0.00000740	0.148	99.780	0.00000464	0.106	99.764	
	20	0.00000339	0.068	99.848	0.00000342	0.078	99.843	
	21	0.00000240	0.048	99.896	0.00000245	0.056	99.899	
	22	0.00000177	0.036	99.931	0.00000193	0.044	99.943	
	23	0.00000157	0.032	99.963	0.00000129	0.030	99.972	
	24	0.00000109	0.022	99.985	0.00000067	0.015	99.988	
	25	0.00000066	0.013	99.998	0.00000023	0.005	99.993	
	26	0.00000009	0.002	100.000	0.00000019	0.004	99.997	

			Romerolagus diazi		Sylv	ilagus floridanu	ls
Vista	РС	Eigenvalores	Porcentaje de variación (%)	Porcentaje acumulado (%)	Eigenvalores	Porcentaje de variación (%)	Porcentaje acumulado (%)
	27	0.00000000	0.000	100.000	0.00000009	0.002	99.999
	28				0.00000003	0.001	100.000
Lateral	1	0.00306473	71.627	71.627	0.00210512	59.088	59.088
	2	0.00033427	7.812	79.440	0.00059745	16.769	75.857
	3	0.00021799	5.095	84.535	0.00027423	7.697	83.554
	4	0.00013531	3.162	87.697	0.00018126	5.088	88.642
	5	0.00010889	2.545	90.242	0.00010264	2.881	91.523
	6	0.00010101	2.361	92.603	0.00007748	2.175	93.697
	7	0.00006698	1.565	94.168	0.00004690	1.316	95.014
	8	0.00005758	1.346	95.514	0.00004474	1.256	96.269
	9	0.00004915	1.149	96.663	0.00003215	0.902	97.172
	10	0.00003427	0.801	97.463	0.00002760	0.775	97.947
	11	0.00002716	0.635	98.098	0.00001765	0.496	98.442
	12	0.00002136	0.499	98.597	0.00001611	0.452	98.894
	13	0.00001815	0.424	99.022	0.00001178	0.331	99.225
	14	0.00001605	0.375	99.397	0.00001001	0.281	99.506
	15	0.00001177	0.275	99.672	0.00000638	0.179	99.685
	16	0.00000531	0.124	99.796	0.00000486	0.136	99.821
	17	0.00000367	0.086	99.882	0.00000336	0.094	99.915
	18	0.00000292	0.068	99.950	0.00000196	0.055	99.970
	19	0.00000159	0.037	99.987	0.00000057	0.016	99.986
	20	0.00000055	0.013	100.000	0.00000049	0.014	100.000
Ventral	1	0.00272741	70.623	70.623	0.00313281	69.186	69.186
	2	0.00038669	10.013	80.635	0.00068133	15.047	84.233
	3	0.00025396	6.576	87.211	0.00022520	4.974	89.207
	4	0.00015752	4.079	91.290	0.00012520	2.765	91.971
	5	0.00011490	2.975	94.265	0.00007279	1.607	93.579
	6	0.00006544	1.695	95.960	0.00006631	1.464	95.043
	7	0.00003826	0.991	96.950	0.00006076	1.342	96.385
	8	0.00002973	0.770	97.720	0.00005067	1.119	97.504
	9	0.00002117	0.548	98.268	0.00002962	0.654	98.158
	10	0.00001609	0.417	98.685	0.00001861	0.411	98.569
	11	0.00001291	0.334	99.019	0.00001560	0.345	98.914
	12	0.00001050	0.272	99.291	0.00001346	0.297	99.211
	13	0.00000850	0.220	99.511	0.00001211	0.268	99.478
	14	0.00000545	0.141	99.652	0.00000897	0.198	99.677
	15	0.00000520	0.135	99.787	0.00000646	0.143	99.819
	16	0.00000340	0.088	99.875	0.00000281	0.062	99.882
	17	0.00000203	0.052	99.927	0.00000181	0.040	99.921
	18	0.00000118	0.031	99.958	0.00000165	0.036	99.958
	19	0.00000100	0.026	99.984	0.00000132	0.029	99.987
	20	0.00000062	0.016	100.000	0.00000058	0.013	100.000

Continuación Apéndice VIII

APÉNDICE IX

Tamaño centroide (CS) y Regression scorel de cada una de las vistas, categorías de edad correspondientes a ejemplares de *Romerolagus diazi* y *Sylvilagus floridanus*.

	Rom	ierolagus	s diazi	Sylvilagus floridanus			
T 7 * 4	Categoría de edad (Hoffmeister y	C.S.	D 1	Categoría de edad (Hoffmeister y	66	D : 1	
Vista	Zimmerman, 1967)	CS	Regression scorel	Zimmerman, 1967)	CS	Regression score I	
Dentario	1	1.01	-0.0914410519	1	1.1	-0.0606557925	
	1	1.01	-0.0854879893	1	1.22	-0.0155636663	
	1	1.02	-0.1315757613	1	1.05	-0.1142928927	
	1	1.07	-0.1227331016	1	1.09	-0.1092430391	
	1	1.08	-0.0881534816	1	1.02	-0.1006555232	
	1	1.07	-0.0803539623	1	1.18	0.0213478452	
	2	1.07	0.0332218133	2	1.23	-0.0160846165	
	2	1.11	-0.0048154057	2	1.28	0.0132204233	
	2	1.1	-0.0178437094	2	1.27	0.0125607522	
	2	1.1	-0.0023142494	2	1.12	0.0637977126	
	2	1.15	0.0472199864	2	1.15	-0.0453918121	
	2	1.1	-0.0041310645	3	1.32	0.0143491938	
	3	1.15	0.0161371696	3	1.23	-0.0055312059	
	3	1.13	0.0329534007	3	1.28	0.0326961903	
	3	1.09	0.0604168828	3	1.2	0.0207315545	
	3	1.08	0.0019819042	3	1.2	0.0037890662	
	3	1.11	0.0345305792	3	1.21	0.0061034774	
	3	1.13	0.0205414872	3	1.27	0.0130735448	
	4	1.12	0.0537439587	3	1.32	0.0228464444	
	4	1.19	0.0317136502	4	1.24	0.0015276092	
	4	1.15	0.0351426297	4	1.27	0.0224572913	
	4	1.2	0.0543374989	4	1.24	0.0196937642	
	4	1.18	0.0283520527	4	1.31	0.0155912537	
	4	1.18	0.0334110076	4	1.25	0.0499262647	
	4	1.16	0.0333796911	4	1.3	0.0369247308	
	4	1.1	0.0364709637	4	1.23	-0.0142166435	
	4	1.18	0.0458360158	4	1.27	0.0282053248	
	4	1.17	0.0294590849	4	1.25	0.0449385856	
				4	1.26	0.0378541631	
Dorsal	1	1.07	-0.0717449441	1	1.36	-0.0713625744	
	1	1.05	-0.112559012	1	1.38	-0.068200552	
	1	1.03	-0.0903238611	1	1.37	-0.0968707681	
	1	1.11	-0.1153045756	1	1.38	-0.1251313862	
	1	1.12	-0.0512926106	1	1.38	-0.1030053296	
	1	1.06	-0.0674783129	1	1.4	-0.0391643032	
	2	1.26	0.002505334	2	1.42	-0.0621477341	
	2	1.25	0.0019819282	2	1.4	-0.0084264499	
	2	1.33	-0.0081792106	2	1.41	-0.0094628876	
	2	1.36	0.0399007597	2	1.46	0.0306280948	
	2	1.31	-0.0075414209	2	1.42	-0.0064588966	
	2	1.26	-0.0194762064	3	1.45	0.0353710917	
	3	1.43	0.0484601776	3	1.42	0.0117370391	
	3	1.33	0.018201344	3	1.41	0.0296661672	
	3	1.24	0.0083507213	3	1.43	0.0572750989	
	3	1.25	0.0071430756	3	1.46	0.022632485	
	3	1.25	0.0240487879	3	1.42	-0.026206143	

	Romerolagus diazi			Sylvilagus floridanus			
Vista	Categoría de edad (Hoffmeister y Zimmerman, 1967)	CS	Regression score1	Categoría de edad (Hoffmeister y Zimmerman, 1967)	CS	Regression score1	
	3	1 27	0.0385727358	3	1 46	0.0108914085	
	4	1.27	0.037640028	3	1.10	0.0304574405	
	4	1.11	0.0398284915	4	1.11	0.0379995703	
		1.11	0.0590201915		1	0.0017770100	
	4	1.37	0.032718411	4	1.44	0.023224063	
	4	1.41	0.0350803416	4	1.45	0.0236721181	
	4	1 37	0.015480522	4	1 45	0.0186384773	
	4	1 37	0.0352811437	4	1 46	0.0582471222	
	4	1.37	0.0625010923	4	1 47	0.0588752761	
	4	14	0.0321878558	4	1.46	0.0601676911	
	4	1.36	0.0454228446	4	1.10	0.0079764568	
	4	1.30	0.01850/5505	4	1.40	0.0079704308	
	7	1.50	0.0103943395	4	1.44	0.0239373132	
Lateral	1	1.07	-0.1003694628	1	1.33	-0.0539861288	
	1	1.05	-0.1027408292	1	1.34	-0.0412040715	
	1	1.03	-0.094732474	1	1.28	-0.0835524662	
	1	1.13	-0.1154222291	1	1.28	-0.1059085847	
	1	1.1	-0.0798270327	1	1.27	-0.1068210087	
	1	1.12	-0.0761325783	1	1.34	-0.0454907457	
	2	1.23	-0.0182542388	2	1.35	-0.0590532257	
	2	1.25	-0.0121795479	2	1.4	0.0240907153	
	2	1.29	-0.0095994708	2	1.37	-0.0080685394	
	2	1.3	0.0015618694	2	1.4	0.0203049883	
	2	1.31	0.0056363425	2	1.38	-0.0116913226	
	2	1.27	-0.0053218485	3	1.41	-0.0147694466	
	3	1.43	0.0379148867	3	1.39	0.007672806	
	3	1.33	0.0376270882	3	1.43	0.0470559788	
	3	1.25	0.0111143991	3	1.41	0.0378891782	
	3	1.25	0.0159926121	3	1.45	0.0085723881	
	3	1.28	0.012771284	3	1.39	0.0136438546	
	3	1.27	0.0390716929	3	1.42	0.007981283	
	4	1.41	0.0356250379	3	1.43	0.0292436604	
	4	1.41	0.0398442959	4	1.44	0.035579197	
	4	1.37	0.0497743506	4	1.47	0.0316071648	
	4	1.41	0.045897106	4	1.45	0.0225898386	
	4	1.37	0.0410592294	4	1.44	0.0113381512	
	4	1.37	0.0383509919	4	1.49	0.0509070436	
	4	1.44	0.0603349904	4	1.44	0.0475485727	
	4	1.4	0.0383465015	4	1.47	0.0446908663	
	4	1.36	0.0617548023	4	1.46	0.0206676877	
	4	1.36	0.0419022312	4	1.47	0.0256281433	
				4	1.45	0.0435340216	
Ventral	1	1.1	-0.1354189859	1	1.14	-0.0528593501	
	1	1.15	-0.0558463591	1	1.15	-0.086265901	
	1	1.13	-0.0629965065	1	1.14	-0.0869902895	
	1	1.14	-0.0864441853	1	1.09	-0.1410608552	
	1	1.12	-0.1301515018	1	1.1	-0.1189036578	
	1	1.16	-0.0231228434	1	1.13	-0.0556137848	

	Rom	ierolagu	s diazi	Sylvilagus floridanus			
Vista	Categoría de edad (Hoffmeister y Zimmerman, 1967)	CS Regression score1		Categoría de edad (Hoffmeister y Zimmerman, 1967)	CS	Regression score1	
	2	1.17	-0.0099434343	2	1.17	-0.0501796558	
	2	1.17	0.015957497	2	1.22	0.0172929332	
	2	1.17	0.0071327127	2	1.16	-0.0026599588	
	2	1.21	0.0418542129	2	1.2	0.0212075739	
	2	1.19	0.0014061632	2	1.16	-0.0334017039	
	2	1.19	-0.0088916505	3	1.2	-0.0203600661	
	3	1.2	0.0478165544	3	1.2	0.025219312	
	3	1.18	-0.0031716311	3	1.19	0.0338925298	
	3	1.2	-0.0199543987	3	1.23	0.0583562302	
	3	1.16	0.0019563473	3	1.22	0.0207566082	
	3	1.17	-0.015583425	3	1.17	0.0072173729	
	3	1.2	0.0458312818	3	1.22	0.0023901892	
	4	1.23	0.0298605993	3	1.25	0.037956637	
	4	1.25	0.0467128679	4	1.25	0.0483360655	
	4	1.21	0.047792363	4	1.26	0.036634873	
	4	1.28	0.0553486522	4	1.28	0.0309120677	
	4	1.23	0.0259942574	4	1.21	0.0409254073	
	4	1.3	0.0320102715	4	1.21	0.0563693416	
	4	1.3	0.0525452771	4	1.28	0.0701165452	
	4	1.23	0.0288433318	4	1.21	0.0603047162	
	4	1.26	0.0467894845	4	1.21	0.0155985783	
	4	1.26	0.0236730474	4	1.23	0.027701246	
				4	1.24	0.0371069958	

Continuación Apéndice IX