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Chapter 1

Introduction

Un problema clásico en geometrı́a riemanniana es el de clasificar las variedades

cuya curvatura secional está acotada por arriba o por abajo. Las cotas inferi-

ores de curvatura (particularmente aquéllas positivas o el cero) imponen restric-

ciones severas sobre la geometrı́a y topologı́a de las variedades riemannianas (ver

por ejemplo, [CG72, Fra61, Gro78, Gro81, Mye41, Syn36]). La intuición nos

dice que debido a estas restricciones el número de ejemplos debe ser pequeño

y podrı́amos tratar de encontrarlos todos. Sin embargo, este problema es muy

difı́cil de tratar con las herramientas que proporciona solamente la geometrı́a rie-

manniana. De modo que ha sido necesario utilizar nuevas herramientas como la

distancia de Gromov-Hausdorff, foliaciones riemannianas singulares, acciones de

grupos de Lie y los espacios de Alexandrov.

Los espacios de Alexandrov (de curvatura acotada por debajo) aparecen como

generalizaciones sintéticas de las variedades riemannianas de curvatura seccional

acotada por debajo. Estos espacios proveen un contexto natural para discutir va-

rios problemas de geometrı́a riemanniana global. De hecho, el comportamiento

de los espacios de Alexandrov respecto a ciertas herramientas de naturaleza geo-

métrica y topológica es mejor que el de las variedades. Por ejemplo, los espacios
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de órbitas de acciones isométricas de grupos de Lie y los lı́mites respecto a la

distancia de Gromov-Hausdorff de variedades riemannianas de curvatura acotada

por debajo son espacios de Alexandrov. Es por esto que uno de los problemas

principales consiste en encontrar versiones análogas de resultados de geometrı́a

riemanniana en la geometrı́a de Alexandrov.

Particularmente, el estudio de grupos de transformaciones ha sido una lı́nea de

investigación fructı́fera en geometrı́a riemanniana [Gro02, Kob95, Sea14]. Este

enfoque ha sido estudiado recientemente en el contexto de Alexandrov [GGG13a,

GGS11, HS12] y ha revelado información sobre la estructura de los espacios

de Alexandrov. En [Ber89], Berestovskiı̌ probó que los espacios métricos ho-

mogéneos de dimensión finita con una cota de curvatura inferior son variedades

riemannianas. Galaz-Garcı́a y Searle investigaron en [GGS11] la estructura de los

espacios de Alexandrov de cohomogeneidad uno (i.e. aquéllos que admiten una

acción efectiva e isométrica de un grupo de Lie compacto cuyo espacio de órbitas

es de dimensión uno) y los clasificaron en dimensiones menores o iguales a 4.

Como en el caso de variedades, decimos que un espacio de Alexandrov es cerrado

si es compacto y no tiene frontera. En esta tesis clasificamos las acciones efectivas

e isométricas del cı́rculo sobre 3-espacios de Alexandrov cerrados y conexos. De

este modo, completamos la clasificación de los espacios de Alexandrov cerrados

de dimensión a lo más tres que admite una acción isométrica de un grupo de Lie

compacto y conexo.

En la categorı́a de espacios topológicos, Raymond obtuvo una clasificación

equivariante de las acciones efectivas del cı́rculo sobre cualquier 3-variedad topo-

lógica cerrada y conexa [Ray68]. El espacio de órbitas de dichas acciones es una

2-variedad topológica, posiblemente con frontera. Raymond demostró que existe

un conjunto de invariantes completo que determina el tipo de homeomorfismo

equivariante:

Theorem A (Raymond [Ray68]). El conjunto de acciones (salvo homeomorfismo
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equivariante) efectivas e isométricas del cı́rculo sobre una 3-variedad topológica

cerrada y conexa está en correspondencia biyectiva con el conjunto de tuplas no

ordenadas

(b; (ε, g, f, t),{(α1, β1), . . . , (αn, βn)}).

En el teorema anterior b denota a la clase de obstrucción para que el estrato

principal de la acción sea un haz S1-principal trivial. El sı́mbolo ε toma dos posi-

bles valores dependiendo de la orientabilidad del espacio de órbitas. El género

del espacio de órbitas se denota por g. El número de componentes conexas del

conjunto de puntos fijos se denota por f , mientras que t es el número de compo-

nentes conexas de isotropı́a Z2. Las parejas {(αi, βi)}ni=1 son los invariantes de

Seifert asociados a las órbitas excepcionales de la acción (ver Sección 3.2 para la

definición).

Raymond también probó que los invariantes del Teorema A determinan la

descomposición prima de la variedad cuando f > 0. La clasificación topológica

sin la restricción de que f > 0 fue obtenida por Orlik y Raymond en [OR68] (ver

también [Orl72]).

La clasificación que aquı́ se presenta es una extensión del trabajo de Orlik y

Raymond a la clase de 3-espacios de Alexandrov cerrados y conexos. En con-

traposición con las 3-variedades cerradas, un 3-espacio de Alexandrov cerrado X

puede tener puntos topológicamente singulares, i.e. puntos cuyo espacio de di-

recciones es homeomorfo al plano proyectivo real RP 2 (ver Sección 2.3 para la

definición precisa).

Por el trabajo de Perelman [Per91], el conjunto de dichos puntos es discreto

y, por compacidad, finito. Para tomar en cuenta estos puntos, introducimos un

conjunto de invariantes adicional a los de Raymond: una s-tupla (r1, r2, . . . , rs) de

enteros positivos pares. El entero s denota al número de componentes de frontera

del espacio de órbitas que contienen órbitas de puntos topológicamente singulares.

Los enteros ri corresponden al número de puntos topológicamente singulares de
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la i-ésima componente de frontera con singularidades topológicas. En caso de que

no haya puntos topológicamente singulares, consideramos a la s-tupla vacı́a. Con

estas definiciones podemos enunciar nuestro resultado principal. Denotamos por

Susp(RP 2) a la suspensión de RP 2.

Theorem B. Sea X un 3-espacio de Alexandrov cerrado y conexo sobre el cual

actúa S1 efectiva e isométricamente. Si X tiene 2r puntos topológicamente sin-

gulares entonces se satisfacen las siguientes afirmaciones:

1. El conjunto de acciones (salvo homeomorfismo equivariante débil) efecti-

vas e isométricas sobre X está en correspondencia biyectiva con el con-

junto de tuplas no ordenadas

(b; (ε, g, f, t);{(αi, βi)}ni=1; (r1, r2, . . . , rs))

donde los valores permitidos para b, ε, g, f , t y {(αi, βi)}ni=1, son los mismos

que en el Teorema A y (r1, r2, . . . , rs) es una s-tupla no ordenada de enteros

positivos pares ri tales que r1 + . . . + rs = 2r.

2. X es débilmente equivariantemente homeomorfo a

M# Susp(RP 2)# . . .# Susp(RP 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

donde M es la 3-variedad cerrada dada por el conjunto de invariantes

(b; (ε, g, f + s, t);{(αi, βi)}ni=1)

del Teorema A.

También obtenemos el número de acciones inequivalentes efectivas e isomé-

tricas del cı́rculo sobre cualquier 3-espacio de Alexandrov cerrado y conexo X

utilizando el de la variedad M que aparece en (2) del Teorema B.
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Asimismo observamos que los únicos 3-espacios de Alexandrov cerrados y

simplemente conexos que admiten una acción efectiva e isométrica del cı́rculo

son la 3-esfera y las sumas conexas de un número finito de copias de Susp(RP 2).

Por otro lado, Galaz-Garcı́a y Guijarro mostraron en [GGG13b], sin ninguna su-

posición de simetrı́a, que existen ejemplos de 3-espacios de Alexandrov cerrados

y simplemente conexos con puntos topológicamente singulares que no son ho-

meomorfos a una suma conexa de copias de Susp(RP 2).

Destacamos que los 3-espacios de Alexandrov cerrados que admiten una ac-

ción efectiva e isométrica del cı́rculo forman parte de la clase de 3-espacios de

Alexandrov colapsados, considerados por Mitsuishi y Yamaguchi en [MY12]. En

nuestro caso, el colapso ocurre a lo largo de las órbitas de la acción. Esto nos

permite obtener una clasificación topológica más detallada que la que aparece en

la Sección 5 de [MY12].

Para mostrar una aplicación del Teorema B, damos una prueba de la conjetura

de Borel para 3-espacios de Alexandrov cerrados, conexos que admiten una ación

efectiva e isométrica del cı́rculo, que a continuación enunciamos. Recordamos

que un espacio topológico X es asférico si sus grupos de homotopı́a πq(X) son

triviales para q > 1.

Theorem C. Si S1 actúa efectiva e isométricamente sobre dos 3-espacios de

Alexandrov asféricos, cerrados, conexos y homotópicamente equivalentes, en-

tonces dichos espacios son homeomorfos.

Por último, generalizamos el Teorema B al caso de las acciones locales iso-

métricas de S1. Decimos que un 3-espacio de Alexandrov cerrado y conexo

X admite una acción local isométrica de S1 si admite una descomposición en

curvas cerradas simples que satisfacen la siguiente condición: Cada curva de

la descomposición tiene una vecindad tubular sobre la cual actúa S1 efectiva e

isométricamente de tal manera que las órbitas son las curvas de la descomposición.
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Theorem D. SeaX un 3-espacio de Alexandrov cerrado y conexo con una acción

local isométrica de S1. SiX tiene 2r puntos topológicamente singulares entonces

se satisfacen las siguientes afirmaciones:

1. El conjunto de acciones locales (salvo homeomorfismo equivariante débil)

isométricas sobre X está en correspondencia biyectiva son el conjunto de

tuplas no ordenadas

(b; (ε, g, (f, k1), (t, k2));{(αi, βi)}ni=1; (r1, r2, . . . , rs))

donde, los valores permitidos para b, ε, g, (f, k1), (t, k2) y {(αi, βi)}ni=1 están

dados por el Teorema 6.3.3 y (r1, r2, . . . , rs) es una s-tupla no ordenada de

enteros positivos pares ri tales que r1 + . . . + rs = 2r.

2. X es débilmente equivariantemente homeomorfo a

M# Susp(RP 2)# . . .# Susp(RP 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

donde M es la 3-variedad cerrada dada por el conjunto de invariantes

(b; (ε, g, (f + s, k1), (t, k2));{(αi, βi)}ni=1)

del Teorema 6.3.3.

La tesis está organizada como sigue. En el capı́tulo 2 recordamos los con-

ceptos básicos de la geometrı́a de Alexandrov, ası́ como aquéllos de la teorı́a de

acciones isométricas de un grupo de Lie sobre espacios de Alexandrov. En el

capı́tulo 3, bosquejamos las clasificaciones topológica y equivariante de Orlik y

Raymond de las acciones suaves y efectivas del S1 sobre 3-variedades cerradas.

Demostramos el Teorema B en el capı́tulo 4. Para esto, obtenemos la estructura

topológica del espacio de órbitas de cualquier 3-espacio de Alexandrov cerrado y

6



conexo que admite una acción efectiva e isométrica del cı́rculo. Asignamos inva-

riantes al espacio de órbitas que contienen información sobre la isotropı́a. Des-

pués probamos nuestro teorema principal en el caso particular en el que no hay

órbitas excepcionales y el espacio de órbitas es homeomorfo a un 2-disco. Uti-

lizamos este caso particular para demostrar el Teorema B completamente. En el

capı́tulo 5 demostramos el Teorema C . Finalmente, obtenemos las clasificaciones

topológica y equivariante, contenidas en el Teorema D, de las acciones locales

isométricas del cı́rculo sobre 3-espacios de Alexandrov cerrados y conexos en el

capı́tulo 6.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we introduce the notation and basic tools and facts we will use

throughout. We give the definition of an Alexandrov space and its main proper-

ties, such as the principal results concerning its local structure. We also review

associated constructions. Finally, we recall the basic facts about isometric ac-

tions on Alexandrov spaces. All spaces are assumed to be connected. Standard

references on Alexandrov geometry are [BBI01, BGP92, Shi93].

2.2 Alexandrov spaces

In order to give the definition of an Alexandrov space, we need some concepts.

Let k be a real number. Recall that the k-plane, denoted by M2(k), is the

simply-connected, complete Riemannian 2-manifold of constant sectional curva-

ture k. In other words, M2(k) is the round sphere S2 of constant sectional curva-

ture k if k > 0, the hyperbolic plane H2 of constant sectional curvature k if k < 0

or the Euclidean plane if k = 0. We will denote the distance between two points p
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and q on M2(k) by ∣pq∣.
Let (X,d) be a complete, locally compact, inner (i.e. the distance between

any two points is equal to the infimum of the length of paths joining these points)

metric space. A geodesic triangle △pqr in X is a collection of three points p, q, r

and of three geodesics [pq], [qr] and [rp] joining them. A geodesic triangle

△pqr in M2(k) is a comparison triangle for a geodesic triangle △pqr in X if

d(p, q) = ∣pq∣, d(q, r) = ∣qr∣ and d(r, p) = ∣rp∣.
We will say that X has bounded curvature from below by k ∈ R and denote it

by curv(X) ≥ k, if for every x ∈X there is an open neighborhood U of x such that

for every geodesic triangle △pqr and any comparison triangle △pqr inM2(k) the

following distance condition is satisfied: Let s ∈ [pq] and s ∈ [pq] be such that

d(p, s) = ∣ps∣. Then d(r, s) ≥ ∣rs∣ for all s.

Definition 2.2.1. An Alexandrov space is a complete, locally compact, inner met-

ric space (X,d) such that curv(X) ≥ k for some k ∈ R.

If k > 0 we will not consider R, the half line R+, intervals of length greater

than π/
√
k and circles of length greater than π/

√
k to be Alexandrov spaces of

curv ≥ k, as this convention avoids technical difficulties (see for example the In-

troduction of [BBI01, Chapter 10]). We note that, if X is a Riemannian manifold

with sectional curvature bounded from below, the distance condition is satisfied

by Toponogov’s Theorem [CE08, Theorem 2.2].

One of the most important tools in the study of Alexandrov spaces is Topono-

gov’s globalization theorem:

Theorem 2.2.2 (Toponogov’s Theorem). Let X be an Alexandrov space with

curv(X) ≥ k. Then the distance condition is satisfied for any geodesic triangle in

X .

If k > 0, Alexandrov spaces of curv ≥ k do not contain triangles of perimeter

greater than 2π/
√
k ([BBI01, Corollary 10.4.2]), and therefore every geodesic
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triangle has a comparison triangle in M2(k).

There is a number of constructions on Alexandrov spaces which are used to

produce new examples. We list some of them.

• Products. Let X and Y be Alexandrov spaces with curv ≥ k and k ≤ 0. The

cartesian product X × Y with the usual product metric is an Alexandrov

space of curv ≥ k. For k > 0, the product X × Y is a space of curv ≥ k only

in the case that one of the spaces is a single point.

• Cones. Let (X,d) be a metric space with diam(X) ≤ π. Recall that the

cone over X is the metric space (K(X), dK) obtained from X × [0,∞) by

collapsing X × {0} to a point. The metric dK is given by

dK ((x1, t1), (x2, t2))) =
√
t21 + t22 − 2t1t2 cosd(x1, x2).

The cone K(X) is an Alexandrov space of curv ≥ 0 if and only if X is an

Alexandrov space of curv ≥ 1 ([Shi93, Theorem 5.1] and [BGP92, Theorem

3.7]).

• Spherical suspensions. Let (X,d) be a metric space with diam(X) ≤ π.

The spherical suspension (Susp(X), dS) of X is the metric space obtained

from X × [0, π] by collapsing X × {0} and X × {π} to single points. The

metric dS is defined by the equation:

cosdS ((x1, t1), (x2, t2))) = cos t1 cos t2 + sin t1 sin t2 cosd(x1, x2).

If X is an Alexandrov space of curv ≥ 1, then Susp(X) is an Alexandrov

space of curv ≥ 1 [BBI01, Theorem 10.2.3].

• Joins. Let (X,dX) and (Y, dY ) be Alexandrov spaces with curv ≥ 1. The

conesK(X) andK(Y ) are Alexandrov spaces with curv ≥ 0. We let vx and

vy be the vertices of the cones. The join X ∗ Y of X and Y is defined to be

11



the space of directions (see Section 2.3 for the definition) of K(X)×K(Y )
at (vx, vy) and it is an Alexandrov space of curv ≥ 1 [Ber86, GP93].

An explicit way of defining the join is the following: X ∗ Y is the set ob-

tained from [0, π/2]×X×Y after identifying (θ, x, y) with (θ′, x′, y′) when-

ever one of the following holds:

(i) θ = θ′ = 0 and x = x′

(ii) θ = θ′ = π/2 and y = y′

(iii) θ = θ′ ∉ {0,2π} and x = x′, y = y′.

We denote the classes by [θ, x, y]. The join is equipped with the following

metric:

d ([θ, x, y], [θ′, x′, y′]) = cos θ cos θ′ cosdX(x,x′)+sin θ sin θ′ cosdY (y, y′).

• Orbit spaces. Let (X,d) be an Alexandrov space of curv ≥ k. Let G be a

Lie group acting by isometries on X such that the orbits (denoted by G(x))

are closed. Then (X/G,dX/G) is an Alexandrov space of curv ≥ k, where

dX/G (G(x),G(y)) = inf{d(w, z) ∣ w ∈ G(x), z ∈ G(y)}.

More generally, the image of an Alexandrov space under a submetry is an

Alexandrov space (See [BBI01, Proposition 10.2.4] and [Gro02, Theorem

1.6]).

• Gromov-Hausdorff limits. Let (X,d) be a metric space. We denote the

metric ball of radius ε around Y ⊆ X by Bε(Y ). The Hausdorff distance

between A an B, two subsets of X , is defined as

dXH(A,B) = inf{ε > 0 ∣ A ⊆ Bε(B) and B ⊆ Bε(A)}
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The Gromov-Hausdorff distance between two metric spaces X and Y is

dGH(X,Y ) = inf{dZH(f(X), g(Y ))}

where the infimum is taken over all metric spaces Z and all isometric em-

beddings f ∶X → Z, g ∶ Y → Z.

Let {Xi}∞i=1 be a sequence of Alexandrov spaces such that curv(Xi) ≥ k for

all i. If Xi converges in the Gromov-Hausdorff sense to a metric space X ,

then X is an Alexandrov space of curv ≥ k.

• Gluing. It is possible to glue Alexandrov spaces along their boundaries

under certain conditions (Theorem 2.1 [Pet97]):

Theorem 2.2.3 (Petrunin). LetX1 andX2 be Alexandrov spaces of curv ≥ k
with non-empty boundaries such that ∂X1 is isometric to ∂X2 when consid-

ered with the induced intrinsic metrics. Let f ∶ ∂X1 → ∂X2 be an isometry.

Then the glued space X1 ∪f X2 is an Alexandrov space of curv ≥ k.

We recall the definition of Hausdorff dimension for metric spaces. Let d be a

non-negative real number and S = {Si}i∈I a countable covering of subsets of X .

The d-weight of S is defined as ωd(S) = ∑i∈I(diam(Si))d. If d = 0 we consider

00 = 1. For ε > 0 we define

µd,ε(X) ∶= inf{ωd(S) ∣ diam(Si) < ε for all i}.

The d-dimensional Hausdorff measure of X is defined as

µd(X) = C(d) ⋅ lim
ε→0

µd,ε(X)

where C(d) is a normalization constant that satisfies that the unit cube in Rn

has measure 1. We define the Hausdorff dimension dimH(X) of X to be the

d0 ∈ [0,∞] such that µd(X) = 0 for all d > d0 and µd(X) = ∞ for all d <
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d0. (See [BBI01, Theorem 1.7.16]). Alexandrov spaces satisfy a dimensional

homogeneity condition, namely that dimH(U) = dimH(X) for every open subset

U ⊂ X ([BBI01, Theorem 10.6.1]). Moreover, the Hausdorff dimension of a

finite-dimensional Alexandrov space is an integer [BBI01, Corollary 10.8.21].

2.3 Local structure

Let α ∶ I → X and β ∶ J → X be two geodesics starting at the same point

x ∈ X . Let θ(t, s) denote the angle ∠̃α(t)xβ(s) at x of a comparison triangle

△α(t)xβ(s). The angle between α and β is defined by

∠(α,β) ∶= lim
(t,s)→0

θ(t, s)

There is a well defined metric space (Sx,∠) of geodesic directions at x obtained

by identifying geodesics making a zero angle. The space of directions (ΣxX,∠)
at x is defined to be the metric completion of Sx.

Let dimH(X) = n ≥ 2. Then the space of directions Σx at any point x ∈ X
is a compact Alexandrov space of curv ≥ 1 and dimension n − 1. The space of

directions of a one dimensional Alexandrov space consists of one or two points

[BBI01, Theorem 10.8.6]. The space of directions determines the local structure

of X as the following Theorem shows (see [Per93, Local Theorem I], [Per91,

Theorem 0.1] and [BBI01, Theorem 10.9.3]):

Theorem 2.3.1 (Perelman’s Conical neighborhood Theorem). Any sufficiently

small spherical neighborhood of a point x in an Alexandrov space is pointed-

homeomorphic to the cone K(Σx) over the space of directions at x.

The previous theorem motivates the following terminology. A point x on an

n-dimensional Alexandrov spaceX is said to be topologically regular if the space

of directions Σx is homeomorphic to Sn−1, otherwise x is called topologically sin-

gular. Furthermore, x is metrically regular if Σx is isometric to the unit round
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sphere Sn−1 and metrically singular otherwise. In contrast to Riemannian mani-

folds, an Alexandrov space can be topologically regular (that is, each of its points

is topologically regular) but have metrically singular points. (See for example,

[Pla02, Example 97]). However, the subset of topologically singular points of X

is dimensionally not very large. The codimension of the subset of topologically

singular points which are not boundary points is at least 3. This is a consequence

of the fact that Alexandrov spaces have a canonical stratification by topologi-

cal manifolds (see [BBI01, Theorem 10.10.1], [Per91, Theorem 0.2], [Per93, III

Structure Theorem]).

2.4 Isometric actions on Alexandrov spaces

Let X be a finite-dimensional Alexandrov space and n be its dimension. As in

the Riemannian case, the isometry group Isom(X) of X is a Lie group ([FY94]).

If X is compact then Isom(X) is also compact ([DW28]). The isometry group

of X has been further investigated in [GGG13a], where it is proved that, as in

the Riemannian case, its dimension is bounded above by n(n + 1)/2 ([GGG13a,

Theorem 3.1]). If the dimension of Isom(X) attains the maximal value, X is

isometric to one of the space forms Rn, Sn, RP n or Hn ([GGG13a, Theorem

4.1]).

We consider isometric actions G ×X → X of a compact Lie group G. The

orbit of a point x ∈X is the subset

G(x) = {gx ∣ g ∈ G}

The isotropy group at x is the closed subgroup of G

Gx = {g ∈ G ∣ gx = x}.

There is a natural homeomorphism G(x) ≅ G/Gx for each x ∈ X . The closed

subgroup of G given by ∩x∈XGx is called the ineffective kernel of the action. If
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the ineffective kernel is trivial, we will say that the action is effective. In what

follows we will only consider effective actions.

Given a subset A ⊂ X we denote its image under the canonical projection

π ∶ X → X/G by A∗. In particular, X∗ = X/G. It was proved in [BGP92,

Section 4.6] (see also [BBI01, Proposition 10.2.4]) that the orbit space X∗ is an

Alexandrov space with the same lower curvature bound as X . For a subset A of

ΣxX , we define the set of normal directions to A as

A� = {v ∈ ΣxX ∶ d(v,w) = diam(ΣxX)/2 for all w ∈ A}.

The following Proposition ([GGS11, Proposition 4]) describes the tangent and

normal spaces to an orbit:

Proposition 2.4.1. LetX be an Alexandrov space admitting an isometricG action

and fix x ∈ X with dimG/Gx > 0. If Sx ⊂ ΣxX is the unit tangent space to the

orbit G(x) ≅ G/Gx, then the following hold:

(1) The set S⊥x is a compact, totally geodesic Alexandrov subspace of ΣxX with

curvature bounded below by 1, and the space of directions ΣxX is isometric

to the join Sx ⋆ S⊥x with the standard join metric.

(2) Either S⊥x is connected or it contains exactly two points at distance π.

We now recall the Slice Theorem for isometric actions on Alexandrov spaces

(see [HS12, Slice Theorem 3.8]). For a subset A ⊂ X , the metric ball of radius

ε centered on A is denoted by Bε(A). The cone of an Alexandrov space Y of

Curv ≥ 1 is denoted by K(Y ) and it is assumed to have the standard cone metric.

Theorem 2.4.2 (Slice Theorem). Let a compact Lie group G act isometrically on

an Alexandrov space X . Then for all x ∈ X , there is some ε0 > 0 such that for all

ε < ε0 there is an equivariant homeomorphism

G ×Gx K(S�x)→ Bε(G(x)).
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As a consequence of the Slice Theorem, a slice at x is equivariantly homeo-

morphic to K(S�x). It follows that Σx∗X∗, the space of directions at x∗ in X∗, is

isometric to S�x/Gx. We will also use the Alexandrov version of Kleiner’s isotropy

Lemma ([GGG13a, Lemma 2.1]) which we now state.

Lemma 2.4.3 (Isotropy lemma). Let G be a Lie group acting isometrically on an

Alexandrov space X . If c ∶ [0, d] → X is a minimal geodesic between the orbits

G(c(0)) and G(c(d)), then for any t ∈ (0, d), the isotropy group Gc(t) = Gc is a

subgroup of Gc(0) and of Gc(d).

Let H be an isotropy subgroup of G. We will say that an orbit G/Gx is of type

(H) if Gx is conjugate to H . We denote the set of orbit types by O(G,X). The

previous definition defines a partial order on O(G,X) in the following way: Let

H and K be isotropy subgroups of G. Then, (H) ≤ (K) if K is conjugate to a

subgroup of H . The following Theorem was proved in [GGG13a, Theorem 2.2].

Theorem 2.4.4 (Principal Orbit Theorem). Let G be a compact Lie group acting

isometrically on an n-dimensional Alexandrov space X . Then there is a unique

maximal orbit type and the orbits with maximal orbit type, the so-called principal

orbits, form an open dense subset of X .

Let G act isometrically on two Alexandrov spaces X and Y . We will say that

a mapping ϕ ∶ X → Y is weakly G-equivariant if for every x ∈ X and g ∈ G
there exists an automorphism f of G such that ϕ(gx) = f(g)ϕ(x), or simply G-

equivariant if f is the identity homomorphism. If it is clear what G is, we only

say weakly equivariant and equivariant respectively. Two actions ofG overX are

said to be equivalent if there exists a weakly equivariant homeomorphism from X

onto itself.

Let (Susp(RP 2), d0) denote the spherical suspension of the unit round pro-

jective space RP 2. We will now give an example of an effective, isometric circle

action on Susp(RP 2). We will denote the circle by S1, whenever we regard it
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as a Lie group, and by S1 when we think of it as a space. This action will play

a central role in our examination of S1-actions on closed, connected Alexandrov

3-spaces. We will show in Section 4.3 that this is the only circle action that can

occur on (Susp(RP 2), d0) up to equivalence.

Example 2.4.5. We will say that the suspension of the standard cohomogeneity

one circle action on the unit round RP 2 is the standard circle action on Susp(RP 2).

We will describe this action explicitly. Let D2 be the unit disk in the plane with

polar coordinates (r, θ). We identify the points of the form (1, θ) with (1, θ + π).

Then each point in RP 2 is an equivalence class [r, θ] where (r, θ) ∈ D2. There-

fore, the points of Susp(RP 2) are equivalence classes [[r, θ], t] with [r, θ] ∈ RP 2

and 0 ≤ t ≤ 1. Now, for every 0 ≤ ϕ ≤ 2π the standard action is given by

ϕ ⋅ [[r, θ], t] ∶= [[r, θ + ϕ], t].
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Chapter 3

Circle actions on 3-manifolds

3.1 Introduction

In this chapter we outline the classification of smooth, effective S1 actions on

closed 3-manifolds due to Orlik and Raymond [Ray68, OR68]. The equivariant

classification is given in terms of the orbit space structure, which is expressed

through a set of invariants. These invariants contain information about the type of

orbits of the action and the topology of the orbit space. Recall that two S1 actions

on a 3-manifold M are equivalent, if there exists an equivariant homeomorphism

from M onto itself.

3.2 Circle actions on 3-manifolds

Let S1 act effectively on a closed 3-manifold M . The isotropy subgroups of the

action are the following closed subgroups of S1: the trivial subgroup {e}, the

cyclic subgroups Zk and S1 itself. The orbit of a point x ∈ M is classified ac-

cording to its isotropy Gx. We describe the possible orbit types and their tubular

neighborhoods.
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Fixed points. Assume that Gx = S1. A small tubular neighborhood of G(x)
is equivariantly homeomorphic to S1 ×S1 K(S⊥x). Here a slice at x is a small

closed 3-ball B3. By [Neu68, MSY56] the action of Gx on B3 is equivalent to

an orthogonal action, that is, an action by rotations with respect to an axis of B3.

Therefore, the orbit space is a closed 2-disk with x∗ on the boundary. We explicitly

describe a tubular neighborhood of a connected component of fixed points C as

follows.

Let V be a solid torus D2 × S1, parametrized by (r, γ, δ) with 0 ≤ r ≤ 1,

0 ≤ γ, δ ≤ 2π. We equip V with the following S1 action:

θ ⋅ (r, γ, δ) = (r, γ + θ, δ)

The orbit space V ∗ is a closed annulus with S1 isotropy on one boundary compo-

nent and principal isotropy everywhere else.

Exceptional orbits. Assume that Gx ≅ Zk acts without reversing the local

orientation of M . The slice in this case is a small 2-disk D2. The action of Gx on

D2 is equivalent to an orthogonal action, that is, the action is equivalent to

ξ ⋅ (r, γ) = (r, γ + νξ)

where ξ = 2π/µ and 0 < ν < µ are relatively prime.

If we parametrize a tubular neighborhood ofG(x) as in the previous case, then

the S1 action is equivalent to

θ ⋅ (r, γ, δ) = (r, γ + νθ, δ + µθ)

The curve determined by the condition that r = 0 is the exceptional orbit. Observe

that exceptional orbits are isolated and therefore, there is a finite number of them.

There is a pair of relatively prime integers (α,β) associated to an exceptional

orbit which we describe now. We fix an orientation on the solid torus V . Now we

orient the slice D2 at x in such a way that followed by the orientation of G(x),
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we obtain the fixed orientation of V . We let m be the boundary of D2, regarded

with the induced orientation. Observe that m is null-homotopic in V . The action

is principal in ∂V , therefore there exists a cross-section (∂V )∗ → ∂V . Its image

is a curve q on ∂V . Any other cross-section with image q′ is related to q by the

homology relation

q′ = ±q + sh,

where h is an oriented principal orbit on ∂V and s is some integer. Let l be a

curve on ∂V which is homologous to G(x) in V so that m followed by l give the

orientation of ∂V . In particular, if the pair q, h gives the same orientation as m, l,

we have the relation

m = αq + β′h

where α and β′ are non-negative integers. If q′ is oriented so that q′ = q + sh, then

m = αq′ + (β′ − s)h.

We choose s so that β ∶= β′−s is such that 0 < β < α. For l we have the homology

relation

l = −νq − ρh

for some integers ν and ρ. By our choices regarding orientation, we have that

RRRRRRRRRRRR

α β

−ν −ρ

RRRRRRRRRRRR
= 1.

Therefore, by reducing modulo α, we obtain that βν ≡ 1. The oriented Seifert

invariants (α,β) of the orbit G(x) are defined as α = µ and β such that βν ≡ 1

mod α and 0 < β < α. If the orientation on V is changed, the oriented Seifert

invariants change to (α,α − β). If we don’t consider any orientation on V , we

define the unoriented Seifert invariants to be (α,β) where 0 < β < α/2 with

βν ≡ ±1.
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Special exceptional orbits. Consider now the case that Gx ≅ Z2 acts reversing

the local orientation of M . The slice at x here is a small 2-disk, and Z2 acts by

reflections with respect to an axis of the slice. If we suppose that D2 is the unit

disk in the complex plane and ξ is the generator of Z2, then the action is explicitly

described by

ξ ⋅ z = z.

Small tubular neighborhoods of the orbits are equivariantly homeomorphic to

D2 ×Z2 S
1. Let J = (−1,1) and I an open interval. We identify D2 with J × I

equipped with the Z2 action

(t, u)↦ (−t, u).

Therefore, D2 ×Z2 S
1 is equivariantly homeomorphic to (J × I × S1) modulo the

relation (t, u, z) ∼ (−t, u,−z). Furthermore, from the previous analysis we obtain

that D2 ×Z2 S
1 is homeomorphic to Mo × I , where Mo is an open Möbius band.

The circle action on D2 ×Z2 S
1 can be described explicitly by the following

circle action on J × S1 × I:

w ⋅ (t, z, u) = (t,wz, u).

Observe that the points on {0} × {−π/2} × I (or in other words I ×Z2 S
1), have

isotropy Z2. Therefore, since a componentC of special exceptional orbits projects

to a circle in M∗, it is an S1-bundle over S1. A tubular neighborhood V of C

projects to an annulus with Z2-isotropy on one of the boundary circles and prin-

cipal isotropy everywhere else. Since V restricts to an S1-principal bundle when

taking out C, V is homeomorphic to Mo × S1.

We will denote the set of fixed points by F , the set of points on exceptional

orbits by E and the set of points on special exceptional orbits by SE. The orbit

spaceM∗ is a compact, topological 2-manifold with boundary [Ray68, Lemma 1].

Each circle action on M is determined, up to equivalence, by a set of invariants
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[Ray68, Corollaries 2a, 2b]

(b; (ε, g, h, t), (α1, β1), . . . , (αn, βn)) .

These invariants have the following meanings: The genus of M∗ is g. The

number of boundary components of M∗ is h + t. Here, h is a non-negative in-

teger, corresponding to the number of fixed-point set components in M . The

non-negative integer t is the number of SE orbits in M . The symbol ε takes the

value o ifM∗ is orientable. On the other hand, ifM∗ is non-orientable, ε takes the

value n. The number of E orbits in M is n, while the pairs (αi, βi) are the Seifert

invariants of each E orbit. The symbol b is an obstruction class defined under the

following constraints:

• If ε = o and h + t = 0, then b is an arbitrary integer.

• If h + t ≠ 0 and no αi = 2, then b is an integer modulo 2.

• In any other case, b = 0.

The topological decomposition of M is given by the following Theorem (see

[Ray68, Theorem 1, Theorem 4]). We letL(αi, βi), i = 1, . . . , n denote lens spaces

and S2×̃S1 the non-trivial S2-bundle over the circle.

Theorem 3.2.1 (Raymond). Let S1 act effectively on a compact 3-manifold M

and let

(b; (ε, g, h, t), (α1, β1), . . . , (αn, βn)) .

be the associated set of invariants. Assume that h > 0. Then M is weakly equiv-

ariantly homeomorphic to

(i) S3# (S2 × S1)1 #. . .# (S2 × S1)2g+h−1 # (RP 2 × S1)1 # . . .# (RP 2 × S1)t
#L(α1, β1)# . . .#L(αn, βn), if ε = o and t ≥ 0;
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(ii) (S2 × S1)1 # . . .# (S2 × S1)g+h−1 # (RP 2 × S1)1 # . . .# (RP 2 × S1)t
#L(α1, β1)# . . .#L(αn, βn), if ε = n and t > 0;

(iii) (S2×̃S1)# (S2 × S1)1 # . . .# (S2 × S1)g+h−1 #L(α1, β1)# . . .#L(αn, βn),

if ε = n and t = 0.
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Chapter 4

Circle actions on Alexandrov
3-spaces

4.1 Introduction

Let X be a closed, connected Alexandrov 3-space with an effective, isometric

S1-action. In this section we will determine the topological structure of the orbit

space X∗. We will also assign weights to its points with isotropy information.

4.2 Orbit space

Throughout this and the next section we denote the set of topologically singular

points of X by SF (see definition in Section 2.3). Let x ∈ SF and g ∈ S1. By

Theorem 2.3.1 a small neighborhood Br(x) of x is homeomorphic to K(RP 2).

Assume that r is small enough so that gBr(x) is homeomorphic to K(ΣgxX).

We conclude that gx ∈ SF . Otherwise, g∣Br(x) would be a homeomorphism be-

tween K(RP 2) and K(S2). Therefore, the elements of S1 map singular points to

singular points. The compactness of X then implies that SF is a finite set.
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We have different orbit types according to the possible isotropy groups of

the action. Since the closed subgroups of S1 are the trivial subgroup {e}, the

cyclic subgroups Zk with k ≥ 2 and S1 itself, then the orbits in X are either 0-

dimensional or 1-dimensional.

The orbit of a point x ∈ SF must be 0-dimensional by the finiteness of SF .

Furthermore, it is made up of a single point since isometries take topologically

singular points to topologically singular points.

We let F be the set of fixed points of the action and denote the set of topo-

logically regular fixed points by RF = F ∖ SF . The points whose isotropy is

not S1 are topologically regular, therefore a local orientation is well defined in

the following way (see [HS12, Section 2]): Alexander-Spanier cohomology (see

[Spa81, Section 6.4]) is used in the Alexandrov setting as it has some advantages.

Let V be a conical neighborhood of x, and consider the pair (V,x). By excision,

Hn(X,X ∖ {x};Z) ≅ Hn(V,x;Z). The reduced cohomology coincides with the

unreduced version: Hn(V,x;Z) ≅ Hn(V ;Z). Since V is the cone over Σx, we

have Hn(V ;Z) ≅Hn−1(Σx;Z). If x is a topologically regular point, then

Hn−1(Σx;Z) ≅Hn−1(Sn−1;Z) ≅ Z.

A choice of a generator of Hn−1(Σx;Z) is called a local orientation of X at x.

As in the manifold case, we will say that an orbit with isotropy Zk acting

without reversing the local orientation is exceptional; we will denote the set of

points on exceptional orbits by E. An orbit with isotropy Z2 that acts reversing

the local orientation will be called special exceptional and the set of points on

such orbits will be denoted by SE. The orbits with trivial isotropy will be called

principal.

We now investigate the topological structure of X∗. A small neighborhood of

x∗ ∈ X∗ is homeomorphic to Bε(x)∗. By Theorem 2.3.1, Bε(x)∗ is homeomor-

phic to K(Σx∗X∗). Then, Theorem 2.4.2 implies that Bε(x)∗ is homeomorphic

to K(S�x/Gx). For a point x∗ ∈ SF ∗ this means that Bε(x)∗ is homeomorphic
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to K(RP 2/S1). An action by homeomorphisms on RP 2 is equivalent to a lin-

ear action [Mos57, Neu68], therefore RP 2/S1 is a closed interval with principal

isotropy in the interior, Z2-isotropy at one endpoint and S1-isotropy at the other

endpoint. It follows that x∗ is the common endpoint of two arcs contained in the

boundary of X∗. One of these arcs is contained in SE∗ and the other is contained

in F ∗. The topological structure of X∗ near topologically regular points is given

in Lemma 1 of [Ray68].

Lemma 4.2.1 (Raymond). The orbit space M∗ of an effective action of a circle

on a 3-manifold M is a 2-manifold with boundary F ∗ ∪ SE∗. Furthermore all

orbits near E∗, F ∗ or SE∗ are principal orbits.

The orbit space X∗ is weighted with isotropy information, which we detail

now. Let C∗ be a boundary component of X∗. We have the following three

possibilities: C∗ ⊆ RF ∗, C∗ ⊆ SE∗, or C∗∩SF ∗ ≠ ∅. The last possibility implies

that C∗ ⊆ F ∗ ∪SE∗ and that C∗ intersects F ∗ and SE∗ non-trivially. The interior

of X∗ is composed of principal orbits and E∗. A generic orbit space is shown in

Figure 4.1. We summarize the previous discussion in the following proposition.

Proposition 4.2.2. Let S1 act effectively and isometrically on a closed, connected

Alexandrov 3-space X . Then the following hold:

(1) The orbit space X∗ is a 2-manifold with boundary.

(2) The interior of X∗ consists of principal orbits except for a finite number of

exceptional orbits.

(3) For each boundary component C∗ of X∗, one of the following possibilities

holds: C∗ ⊂ RF ∗, C∗ ⊂ SE∗ or C∗ ∩ SF ∗ ≠ ∅.

(4) If C∗ ∩ SF ∗ ≠ ∅, then C∗ ∖ SF ∗ is a finite union of r ≥ 2 open intervals

{Ik}rk=2, with each Ik contained either in RF ∗ or SE∗.
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Figure 4.1: Example of an orbit space of an isometric circle action on a closed

Alexandrov 3-space.

(5) If Ik ⊂ RF ∗, then Ik+1 ⊂ SE∗ and if Ik ⊂ SE∗, then Ik+1 ⊂ RF ∗.

We also have the following lemma.

Lemma 4.2.3. Let S1 act effectively and isometrically on a closed, connected

Alexandrov 3-space X . Then X has an even number of topologically singular

points.

Proof. LetC∗ be a boundary component ofX∗, identified with the interval [0,2π].
Let Pr = {0 = t1 < t2 < . . . < tr = 2π} be a partition of C∗ such that [ti, ti+1] ⊆ F ∗

or [ti, ti+1] ⊆ SE∗ for each i = 1, . . . , r. Let Pr̃ be a minimal partition satisfying

the conditions. Then r̃ > 1 if and only if C∗ ∩ SF ∗ ≠ ∅. In this case it is clear

that ti ∈ SF ∗. We claim that r̃ is an even integer. Suppose Pr̃ has an odd number

of points. Observe that adjacent intervals in Pr̃ cannot be contained both in F ∗ or

in SE∗ since that would make their common point superfluous, contradicting the

minimality condition on Pr̃.

We remark that the conclusion of the previous Lemma holds even without the

assumption of symmetry (i.e., without assuming the action of any Lie group), as

is observed in [MY12].
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We group the topological and equivariant information of X∗ into a set of in-

variants which we list now. Let b be the obstruction for the principal part of the

action to be a trivial principal S1-bundle. The symbol ε, with possible values o

or n, will stand for orientable and non-orientable X∗ respectively. The genus of

X∗ will be denoted by an integer g ≥ 0. We let f ≥ 0 designate the number of

boundary components of X∗ that are contained in RF ∗. Similarly, t ≥ 0 will

stand for the number of boundary components of X∗ contained in SE∗. We as-

sociate Seifert invariants (αi, βi) to each exceptional orbit as in [Ray68] (see also

[Orl72]). Let C∗
1 , . . . ,C

∗
s be the boundary components of X∗ that intersect SF ∗.

We define ri to be the cardinality of C∗
i ∩ SF ∗ for each i = 1, . . . , s. Note that ri

is an even integer by Lemma 4.2.3. In summary, we associate the following set of

invariants to X∗:

(b; (ε, g, f, t);{(αi, βi)}ni=1; (r1, r2, . . . , rs)) .

In the case where X is a manifold, ri = 0 for all i. The set of invariants in this case

coincides with the one defined by Raymond in [Ray68], which we described in

Section 3.2. The definition of this set of invariants of X∗ suggests the following

notion of equivalence between orbit spaces:

Definition 4.2.4. Let S1 act effectively and isometrically on two closed, connected

Alexandrov 3-spaces X and Y . We will say that their orbit spaces are isomorphic

if there is a weight-preserving homeomorphism X∗ → Y ∗. If X∗ and Y ∗ are

oriented, we also require the homeomorphism to be orientation-preserving.

We have the following result:

Proposition 4.2.5. Let S1 act effectively and isometrically on two closed, con-

nected Alexandrov 3-spaces X and Y . If X and Y are equivariantly homeomor-

phic, then X∗ and Y ∗ are isomorphic.
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Proof. Let Ψ ∶ X → Y be an equivariant homeomorphism and πX ∶ X → X∗ and

πY ∶ Y → Y ∗ the canonical projections. Observe that the mapping πY ○ Ψ sends

points in the same orbit in X to the same point in Y ∗. Therefore, πY ○Ψ induces

a mapping Ψ̃ ∶ X∗ → Y ∗ such that Ψ̃ ○ πX = πY ○ Ψ. Similarly, Ψ−1 induces a

mapping Ψ̃−1 ∶ Y ∗ → X∗ such that Ψ̃−1 ○ πY = πX ○Ψ−1. We have that Ψ̃−1 is the

inverse of Ψ̃. Hence, Ψ̃ is a homeomorphism.

We will now prove that the weights of the orbit spaces are preserved by Ψ̃. Let

x ∈X and g ∈ GΨx . By the equivariance of Ψ, Ψ(x) = Ψ(gx). Since Ψ is injective,

g ∈ Gx. Analogously, g ∈ Gx implies that g ∈ GΨ(x). Thus, Gx = GΨ(x).

4.3 Topological and equivariant classification when

X∗ is a disk, E = ∅ and s ≥ 1

We will first focus our attention on the case that X∗ is homeomorphic to a 2-disk

without exceptional orbits and at least two orbits of topologically singular points.

This is the simplest orbit space that can arise from a non-manifold Alexandrov

space. Recall that a cross-section for the orbit map of an action of G over X is

a map h ∶ X∗ → X such that π ○ h is the identity map on X∗. We will construct

a cross-section and use it to obtain a topological decomposition of X . The exis-

tence of this cross-section will also yield a weakly equivariant classification of the

effective, isometric S1-actions on X , as is shown in Corollary 4.3.2. When deal-

ing with arbitrary permissible values for the invariants defined in the last section,

the simpler case considered here will play a fundamental role. Throughout this

and the next section the term cross-section will be used to refer to both the map

h ∶X∗ →X and its image h(X∗).

Theorem 4.3.1. Let S1 act effectively and isometrically on a closed, connected

Alexandrov 3-spaceX that is not a manifold. Assume that there are no exceptional
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Figure 4.2: Decomposition of X∗ into neighborhoods with cross-sections.

orbits and that X∗ is homeomorphic to a 2-disk. Then there exists a cross-section

to the orbit map.

Proof. Let 2r be the number of topologically singular points of X . We will pro-

ceed by induction on r.

We will first assume that r = 1 and denote the topological singularities by x+

and x−. We will construct a cross-sectionX∗ →X by decomposingX into subsets

admitting cross-sections. By Proposition 4.2.2 the boundary of X∗ is the union

of two arcs I1 ⊂ F ∗ and I2 ⊂ SE∗ such that I1 ∩ I2 = {(x+)∗, (x−)∗}. Let ε > 0

be small enough so that Bε(x+) and Bε(x−) are conical [Per91]. By Theorem

2.4.2 we may assume that a tubular neighborhood U of F ∪ SE of radius ε is

invariant. Then, U ∖ (Bε(x+) ∪Bε(x−)) is an invariant subset of X consisting of

two disjoint components. Let URF and USE be such components, so that U∗
RF and

U∗
SE intersect I1 and I2 respectively. Figure 4.2 depicts the induced decomposition

on X∗. Let U be the closure of U . Observe that P ∶= X ∖ U is contained in the

principal stratum of X . Furthermore, P ∗ is contractible since it is homeomorphic

to an open 2-disk. Therefore, the restriction of the orbit map to P is a trivial

principal S1-bundle. Thus, we have a cross-section hP ∶ P ∗ → P . We will now

show that this cross-section can be extended to U∗.
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We extend hP to U∗
RF first. By Theorem 2.4.2, URF is equivariantly homeo-

morphic to a solid tube D2 × I with an action by rotations around its axis {0} × I .

The common boundary of P and URF is a cylinder C ∶= S1×I . We have a continu-

ous curvem onC defined as hP (∂P ∗)∩∂URF , where ∂URF denotes the boundary

of URF . This does define a continuous curve since ∂P ∗ is homeomorphic to a cir-

cle. Since m is the restriction of hP to C, (D2 × {t}) ∩m consists of exactly one

point mt for each t ∈ I . Now, we connect mt with (0, t) by a line segment. The

resulting subset of D2 × I is a cross-section hRF ∶ U∗
RF → URF . We observe that

the restrictions of hRF and hP to C coincide.

We extend hP to U∗
SE similarly. By Theorem 2.4.2 a small neighborhood of

an orbit in SE is equivariantly homeomorphic to S1 ×Z2 D
2, the non-trivial D2-

bundle over S1. Consider RP 2 parametrized as in Example 2.4.5 with the same

circle action. Let D2
δ ⊂ RP 2 be the disk of radius δ < 1 centered at [0, θ]. Then

S1×Z2D
2 is equivariantly homeomorphic to (RP 2∖D2

δ)×I where the action on I is

trivial. Consequently, USE is equivariantly homeomorphic to (RP 2×I)∖(D2
δ×I).

The common boundary between USE and P is again a cylinder C. As before,

hP (P ∗)∩ ∂USE determines a continuous curve l on C. Observe that each point lt
of l determines a unique point ([1, θt], t) ∈ (RP 2 × I) ∖ (D2

δ × I). Therefore, by

joining lt with the corresponding point ([1, θt], t), a cross-section hSE ∶ U∗
SE →

USE is obtained. The restrictions of hSE and hP to C coincide.

So far, we have a cross-section h0 ∶ P ∗ ∪U∗
RF ∪U∗

SE Ð→ P ∪URF ∪USE . We

will extend h0 to Bε(x+). Recall that we assumed that Bε(x+) is conical. Then

by Theorem 2.4.2, Bε(x+) is equivariantly homeomorphic to K(RP 2) equipped

with the standard circle action. Let w be the curve given by h0(P ∗∪U∗
RF ∪U∗

SE)∩
∂Bε(x+). A cross-section to the action on Bε(x+)∗ is obtained by repeating the

curvew on each level RP 2×{t} ofBε(x+). We extend h0 toBε(x−)∗ analogously.

This concludes the proof of the theorem for r = 1.

Suppose now that r = k + 1. We assume that every effective, isometric circle
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action on a closed, connected 3-space, with 2k topologically singular points, has a

cross-section. Take two edges in RF ∗ that are separated by a single edge in SE∗

and let γ be a geodesic that connects them by arbitrary points. This separates X∗

into two subsets. Let X∗
2 be the subset of X∗ with two points in SF ∗ and X∗

2k, the

subset with 2k points in SF ∗. Let π ∶X →X∗ be the canonical projection. Then,

π−1(γ) is an invariant 2-sphere in X . The invariant subspaces X2 = π−1(X∗
2 )

and X2k = π−1(X∗
2k) of X , share π−1(γ) as boundary. Observe that the restric-

tion of the action to π−1(γ) is equivalent to an orthogonal action [MSY56]. Let

B be a closed 3-ball with the orthogonal S1-action and let B∗ be its orbit space.

The weights on B∗ are as follows. The interior of B∗ corresponds to principal

isotropy. Its boundary is composed of two arcs, one of principal isotropy and

the other one of fixed points. Denote the boundary arc of principal isotropy by

γ̃. Let F ∶ π−1(γ) → ∂B be an equivariant homeomorphism and f ∶ γ → γ̃ a

homeomorphism. The spaces X̃2 ∶= X2 ∪F B and X̃2k ∶= X2k ∪F B are naturally

endowed with effective, isometric S1-actions. Furthermore, their orbit spaces are

isomorphic to the topological surfaces X̃∗
2 ∶= X∗

2 ∪f B∗ and X̃∗
2k ∶= X∗

2k ∪f B∗

respectively. We note that X̃2 and X̃2k have 2 and 2k topologically singular points

respectively. By our induction hypothesis and the case r = 1, there exist cross-

sections h̃2 ∶ X̃∗
2 → X̃2 and h̃2k ∶ X̃∗

2k → X̃2k. We restrict h̃2 and h̃2k to obtain

cross-sections h2 ∶ X∗
2 → X2 and h2k ∶ X∗

2k → X2k. We make h2 and h2k coin-

cide on π−1(γ) by means of an equivariant homeomorphism π−1(γ) → π−1(γ) to

obtain a global cross-section h ∶X∗ →X .

We obtain the following Corollary to Theorem 4.3.1:

Corollary 4.3.2. Let S1 act effectively and isometrically on two closed, connected

Alexandrov 3-spacesX and Y . Assume that the actions have no exceptional orbits

and that the orbit spaces X∗ and Y ∗ are homeomorphic to 2-disks. Then X is

weakly equivariantly homeomorphic to Y if and only if X∗ is isomorphic to Y ∗.

33



Proof. Let πX ∶ X → X∗ and πY ∶ Y → Y ∗ be the canonical projections. By

Theorem 4.3.1, there exist cross-sections hX ∶ X∗ → X and hY ∶ Y ∗ → Y . We let

Ψ ∶ X∗ → Y ∗ be an isomorphism and define Ψ̃ = hY ○ Ψ ○ πX . The function Ψ̃

takes hX(X∗) onto hY (Y ∗) homeomorphically. The equivariance of Ψ̃ follows

from the injectivity of Ψ̃−1, noting that Ψ̃−1(Ψ̃(gx)) = Ψ̃−1(f(g)Ψ̃(x)) for every

g ∈ S1, x ∈X and every automorphism f of S1.

We construct a weakly equivariant homeomorphism Φ ∶ X → Y in the fol-

lowing manner. For each x ∈ X there is a unique representation of the form

ghX(x∗0). Thus, Φ(ghX(x∗0)) ∶= f(g)Ψ̃(hX(x∗0)) is a weakly equivariant home-

omorphism. Its inverse is obtained similarly by noting that Ψ−1(ghY (y∗0)) =
f−1(g)Ψ̃−1(hY (y∗0)).

Let S1 act effectively and isometrically on two closed, connected Alexandrov

3-spaces X1 and X2. We want to define an equivariant connected sum X1#X2.

In order to do so we consider invariant open 3-balls Bi ⊂ Xi that do not contain

topologically singular points. We let X̃i ∶= Xi ∖ Bi. The boundaries ∂X̃i of X̃i

are homeomorphic to 2-spheres. Therefore, the restricted S1-actions on ∂X̃i are

equivalent to orthogonal actions [MSY56]. Then, we glue X̃i along the ∂X̃i by

means of an equivariant homeomorphism, obtaining a topological space X1#X2

carrying an effective S1-action by homeomorphisms. The equivariant homeo-

morphism is required to be orientation reversing if the Xi are orientable. This

construction can be iterated to obtain an equivariant connected sum of any finite

number of connected summands.

Lemma 4.3.3. Let S1 act effectively and isometrically on n closed, connected

Alexandrov 3-spaces X1, . . . ,Xn. Then there exists an Alexandrov metric on X ∶=
X1# . . .#Xn such that the S1-action on X , induced by each Xi, is isometric.

Proof. We divide the proof into two cases. If X is a topological manifold, then

by Theorem 6 of [Ray68] there is a differentiable structure on X such that the
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S1-action is equivalent to an action by diffeomorphisms. Since X is compact, the

circle action on X induced by the Xi is proper. Therefore, there is a Riemannian

metric g on X such that the elements of S1 are isometries with respect to g. The

metric on X induced by g is an Alexandrov metric since X is compact.

Now, assume that X is not a topological manifold. We remove from X dis-

joint, open conical neighborhoods of each topologically singular point, obtaining

a non-orientable topological 3-manifold X0 whose boundary is composed of an

even number of copies of RP 2. The orientable double cover X̃0 of X0 is an ori-

entable, topological 3-manifold with boundary. By Theorem 9.1 in [Bre72] we can

lift the S1-action on X0 to obtain an effective S1-action by homeomorphisms on

X̃0. We also note that the S1 acting on X̃0 is a 2-fold covering of the S1 acting on

X0. We let ξ ∶ S1 → S1 be such covering. Before proceeding any further, we prove

some technical facts. Let ι be the natural involution on X̃0 and ρ ∶ X̃0 → X̃0/ι, the

canonical projection. First we observe that, since ρ is 2-sheeted, then Aut(ρ), the

group of deck transformations of ρ, is isomorphic to Z2. We also observe that ι is

an element of Aut(ρ). By Theorem 9.1 in [Bre72], the kernel of ξ is a subgroup

of Aut(ρ). Therefore ι coincides with the function {eiπ} × X̃0 → X̃0, the restric-

tion of the S1 action. Since each boundary component of X̃0 is a 2-sphere, the

restriction of the S1-action is orthogonal [MSY56]. Then we can extend ι and the

S1 action to 3-balls to obtain a closed topological 3-manifold X̃ . Note that X̃/ι
is homeomorphic to X . Now, we apply Theorem 6 of [Ray68] to conclude that

the circle action on X̃ is equivalent to an action by diffeomorphisms. This also

implies that the action of ι on X̃ is equivalent to an action by diffeomorphisms.

Furthermore, the smoothed actions of ι and S1 commute. Now we let g̃ be a Rie-

mannian metric on X̃ such that the S1 and ι actions are isometric. Then, (X̃, g̃)/ι
is a Riemannian orbifold with an effective, isometric S1-action equivalent to that

induced by the Xi.

In particular, we have the following observation: Let S2 be the unit round
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2-sphere and consider S3 = Susp(S2) with the standard spherical suspension met-

ric. Let ι ∶ S3 → S3 be given by the antipodal map on each level of the suspen-

sion. Then (Susp(RP 2), d0) is isometric to the quotient of the unit round S3 by

ι. Therefore, (Susp(RP 2), d0) has the structure of a Riemannian orbifold with

curvature bounded below and has an effective, isometric S1-action. Thus, the

connected sum of finitely many copies of Susp(RP 2) has an Alexandrov metric

and the S1-action determined by taking the standard action on every summand is

effective and isometric. Thus, we obtain the following corollary:

Corollary 4.3.4. Let S1 act effectively and isometrically on a closed, connected

Alexandrov 3-space X with 2r topologically singular points. If there are no ex-

ceptional orbits and X∗ is homeomorphic to a 2-disk, then X is weakly equivari-

antly homeomorphic to the equivariant connected sum of r copies of Susp(RP 2)
equipped with the standard circle action. Consequently, the only effective, isomet-

ric circle action on Susp(RP 2) is the standard action, up to weakly equivariant

homeomorphism.

One of the central problems in Alexandrov geometry is whether the boundary

of an Alexandrov space is an Alexandrov space with the induced intrinsic metric

(see [Pet07, Conjecture 9.1.1]). If this turns out to be true, the construction of the

equivariant connected sum could be greatly simplified: In the notation of the con-

struction, the spaces X̃i would be Alexandrov spaces with isometric boundaries

and by 2.2.3, the connected sum would be an Alexandrov space.

Remark 4.3.5. We can avoid the use of the Slice Theorem for Alexandrov spaces

(Theorem 2.4.2) in our present setting as follows. Observe that an invariant con-

ical neighborhood of x ∈ SF is homeomorphic to K(RP 2) [Per91]. There ex-

ists a topological involution ι of the 3-ball B, such that B/ι is homeomorphic to

K(RP 2). By results of Hirsch and Smale [HS59] and Livesay [Liv63], the action

of the involution must be orthogonal. Hence this action is the cone of the action
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induced by the antipodal map on S2. On the other hand, the action of S1 on B is

equivalent to an orthogonal action [MSY56]. Since these actions on B commute,

we have that the action of S1 on K(RP 2) is the cone of the standard action on

RP 2. For a more general instance of this construction in Alexandrov geometry,

see for example, Section 2 of [GW14], Section 2 of [HS12] or Lemmas 1.6 and

1.7 of [GGG13b].

4.4 Topological and equivariant classification in the

general case

In this section we will prove Theorem B. To this end we will consider effective,

isometric circle actions onX without any restrictions on the orbit space. The proof

will follow along the lines of the proof in the manifold case (see [Orl72, OR68,

Ray68]). It consists of first obtaining a cross-section to the action everywhere

except for a tubular neighborhood of E and then noting that one can define a

global weakly equivariant homeomorphism between spaces with isomorphic orbit

spaces. This cross-section will be constructed by using the more restrictive case

considered in the previous section. Here one must use the fact that, just as in the

manifold case, there is essentially a unique way to glue a tubular neighborhood of

an exceptional orbit once the restriction of a cross-section to the boundary and the

Seifert invariants of the orbit are given.

Proposition 4.4.1. Let S1 act effectively and isometrically on a closed, connected

Alexandrov 3-spaceX . If there are no exceptional orbits, then there exists a cross-

section to the action.

Proof. Let (b; (ε, g, f, t); (r1, r2, . . . , rs)) be the invariants of the action. First

we assume that s = 1 and denote r1 = r. Consider the topological surface M∗

weighted by the tuple (b; (ε, g, f + 1, t)). By Theorem 4 in [Ray68], there is

an effective, isometric S1-action on a closed 3-manifold M with M∗ as the or-

bit space. Furthermore, M is unique up to weakly equivariant homeomorphism.
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Since f + 1 > 0, there is at least one circle C of fixed points on M . Consider an

arc I contained in C. Let U be a small tubular neighborhood of I . Now, let X̃

be the equivariant connected sum of r/2 copies of Susp(RP 2). Take an edge of

fixed points in X̃ that has topologically singular points as endpoints and let Ĩ be

a subarc of such an edge consisting of topologically regular points only. Consider

a small tubular neighborhood Ũ of Ĩ . By Theorem 2.4.2 the restricted actions on

U and Ũ are equivalent to an action by rotations with respect to I and Ĩ respec-

tively. Thus, there is an equivariant homeomorphism ϕ ∶ Ũ → U . We now take

the equivariant connected sum M#X̃ =M ∪ϕ X̃ . We then have that (M#X̃)∗ is

isomorphic to M∗ ∪ X̃∗, gluing along Ũ∗ and U∗. Observe that (M#X̃)∗ is also

isomorphic to X∗. The subsets π−1(M∗) and π−1(X̃∗) are invariant in X . More-

over, π−1(M∗) ∩ SF = ∅, and therefore, π−1(M∗) is a topological 3-manifold.

We conclude that M is weakly equivariantly homeomorphic to π−1(M∗).

By Lemma 2 in [Ray68] and Theorem 4.3.1, we have cross-sections h1 ∶M∗ →
M and h2 ∶ X̃∗ → X̃ . As mentioned in the preceding paragraph, the restricted ac-

tions on Ũ and U are equivalent to an orthogonal action on a 3-ball B. This

action has a canonical cross-section J ⊂ B3. We take equivariant homeomor-

phisms ϕ1 ∶ U → B and ϕ2 ∶ B → Ũ such that ϕ1 and ϕ2 take h1(M∗) and

J homeomorphically onto J and h2(X̃∗), respectively. Therefore, the equivari-

ant homeomorphism ϕ2 ○ ϕ1 makes h1 and h2 agree. Then, we obtain a global

cross-section h ∶X∗ →X . This concludes the proof of the Proposition for s = 1.

For the general case, we let M∗ be weighted by (b; (ε, g, f + s, t)). We use

Theorem 4 in [Ray68] again to obtain the unique closed 3-manifold M . In this

case, M has at least s circles of fixed points. We let X̃i be the equivariant con-

nected sum of ri/2 copies of Susp(RP 2), for each i = 1,2, . . . , s. Then X∗ is iso-

morphic to M∗ ∪ (∪si=1X̃
∗
i ) , where the unions are taken along adequate invariant

neighborhoods of the fixed point set components. Applying the procedure used

in the case s = 1 for each circle of fixed points, we get cross-sections M∗ → M
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and X̃i
∗ → X̃i. We glue these cross-sections to obtain a global cross-section

X∗ →X .

Theorem B. Let S1 act effectively and isometrically on a closed, connected Alexan-

drov 3-space X . Assume that X has 2r topologically singular points. Then the

following hold:

1. The set of effective, isometric circle actions (up to weakly equivariant home-

omorphism) onX is in one-to-one correspondence with the set of unordered

tuples

(b; (ε, g, f, t);{(αi, βi)}ni=1; (r1, r2, . . . , rs))

where the permissible values for b, ε, g, f , t and {(αi, βi)}ni=1, are the same

as in Theorem A and (r1, r2, . . . , rs) is an unordered s-tuple of even positive

integers ri such that r1 + . . . + rs = 2r.

2. X is weakly equivariantly homeomorphic to

M# Susp(RP 2)# . . .# Susp(RP 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

where M is the closed 3-manifold given by the set of invariants

(b; (ε, g, f + s, t);{(αi, βi)}ni=1)

in Theorem A.

Proof. We will prove (2) first. Let X0 denote the complement in X of a suf-

ficiently small tubular neighborhood of E, so that X∗
0 is homeomorphic to X∗

with n disks removed. By Proposition 4.4.1 there is a cross-section X∗
0 → X0.

Let Y be a closed, connected Alexandrov 3-space with an effective, isometric

S1-action such that X∗
0 and Y ∗

0 are isomorphic. By replicating the argument

in Corollary 4.3.2, we obtain a weakly equivariant homeomorphism X0 → Y0.

In the notation of Proposition 4.4.1, X∗
0 is isomorphic to the orbit space M∗

0 ∪
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(∪si=1X̃
∗
i ), where M0 has no exceptional orbits and has n torus boundary compo-

nents. Therefore, there exists a weakly equivariant homeomorphism ϕ ∶ X0 →
M0# Susp(RP 2)# . . .# Susp(RP 2), where the connected sum has s summands

equal to Susp(RP 2). We now observe that Lemma 6 and Theorems 2a and 2b in

[Ray68] admit straightforward generalizations to the Alexandrov setting by using

our Theorem 4.3.1. Hence, as in the manifold case, ϕ can be extended to a weakly

equivariant homeomorphism between X and Y .

We now prove (1). The restriction of the action to the manifold M0 appear-

ing on the previous decomposition of X is uniquely determined, up to weakly

equivariant homeomorphism, by Theorem 4 in [Ray68]. On the other hand, the

restriction of the action to Susp(RP 2)# . . .# Susp(RP 2) is an equivariant con-

nected sum of standard actions. Therefore, the action is determined by the number

of pairs of topologically singular points on each boundary component of X∗.

Remark 4.4.2. Recall that s is the number of boundary components of X∗ which

intersect SF ∗. The set of invariants (b; (ε, g, f, t);{αi, βi}ni=1; s) provides enough

information to obtain the topological decomposition of X . However, by exclud-

ing the s-tuple (r1, r2, . . . , rs), the remaining invariants are incapable of detecting

some inequivalent actions on X if the number of topologically singular points is

greater than 2, as the following example shows:

Example 4.4.3. Let M = S2 × S1, regarding S2 as a subset of C×R. Consider the

S1-action on M that sends each (z, t,w) ∈ S2 × S1 to (gz, t,w), where g ∈ S1 and

gz is the complex multiplication. LetX1 andX2 denote two copies of Susp(RP 2)
equipped with the standard circle action. The equivariant connected sum X =
M#X1#X2 is realized by choosing small tubular neighborhoods of subarcs of

the components of fixed points of the connected summands. Observe that M has

two circles of fixed points, namely, C1 = {(0,1)} × S1 and C2 = {(0,−1)} × S1.

Note that each Xi has one fixed point component, which we will denote by F1

and F2, respectively. Therefore the choices involved in the construction of the
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equivariant connected sum can be done in two ways. On the one hand, we can

glue Fi to subarcs of C1, obtaining an orbit space X∗ with C∗
2 ∩ SF ∗ = ∅. On the

other hand, we can glue F1 with a subarc in C1, and F2 with a subarc in C2. In

the resulting orbit space, Ci ∩ SF ∗ ≠ ∅. These actions on X cannot be equivalent

since their orbit spaces are not isomorphic.

Remark 4.4.4. Example 4.4.3 illustrates how we count the number of inequiv-

alent effective and isometric circle actions on X . By Theorem B, X is weakly

equivariantly homeomorphic to M#Y , where Y is an equivariant connected sum

of s copies of Susp(RP 2) and M is a closed 3-manifold. Since Y can only con-

tribute with standard circle actions, we only have to choose how to arrange s pairs

of topologically singular points along the boundary components of mixed isotropy

in X∗. Following the notation of Theorem B, if s > 0, then there are (r
s
) inequiv-

alent effective, isometric circle actions for each effective, isometric circle action

on M .
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Chapter 5

An application to the Borel
conjecture

5.1 Introduction

The simplest examples of non-manifold Alexandrov spaces occur within the class

of closed Alexandrov 3-spaces, since they are topological manifolds except for

a finite number of isolated points. This property suggests that some results for

closed 3-manifolds may have suitable generalizations to Alexandrov 3-spaces.

One such result is the Borel conjecture which we deal with in this chapter.

5.2 Borel conjecture for Alexandrov spaces with cir-

cle symmetry

Recall that a topological space X is said to be aspherical if its homotopy groups

πq(X) are trivial for q > 1. One result concerning the class of aspherical n-

manifolds is the Borel conjecture. It asserts that if two closed, aspherical n-

manifolds, are homotopy equivalent, then they are homeomorphic. The proof
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of this conjecture in the 3-dimensional case is a consequence of Perelman’s proof

of Thurston’s Geometrization Conjecture (see [Por08]). It is natural to ask if

this conjecture still holds for closed, connected Alexandrov 3-spaces, particularly

for those with symmetry. The explicit topological decomposition in Theorem B

allows us to investigate the homotopy groups of these spaces and to prove the

following analog of the Borel conjecture:

Theorem C (Borel conjecture for Alexandrov spaces with circle symmetry). If

two aspherical, closed, connected Alexandrov 3-spaces on which S1 acts effec-

tively and isometrically are homotopy equivalent, then they are homeomorphic.

Proof. Our proof will consist of showing that the only aspherical, closed, con-

nected Alexandrov 3-spaces admitting an effective, isometric S1-action are topo-

logical manifolds. As pointed out before, the Borel Conjecture holds for closed,

aspherical 3-manifolds [Por08].

We begin by noting that Susp(RP 2) is not aspherical: a combination of the

suspension isomorphism and the Hurewicz Theorem [GH81, Theorem 12.1] yields

that π2(Susp(RP 2)) ≅ Z2. We will now prove that a connected sum of sus-

pensions of RP 2 is not aspherical. We use homology with Z coefficients. Let

X = Susp(RP 2)# Susp(RP 2) and B ⊂ Susp(RP 2) be an invariant 3-ball used

for the construction of the equivariant connected sum. By the Seifert-Van Kam-

pen Theorem, X is simply-connected. Therefore, by the Hurewicz Theorem,

π2(X) ≅H2(X). Observe that ∂B ≅ S2 is a deformation retract of a neighborhood

in X . Hence, by Proposition 19.36 of [GH81], H2(X,S2) ≅ H2(Susp(RP 2) ∨
Susp(RP 2)). Also note that the distinguished point in Susp(RP 2) ∨ Susp(RP 2)
is a deformation retract of neighborhoods U1 in the first Susp(RP 2) and U2 in the

second Susp(RP 2). Then, by applying the Mayer-Vietoris sequence to the de-

composition (Susp(RP 2)∪U2, U1∪Susp(RP 2)), we obtain thatH2(Susp(RP 2)∨
Susp(RP 2)) ≅ Z2 ⊕ Z2. Hence, the exact sequence of the pair (X,S2) takes the
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following form:

H2(X)→H2(Susp(RP 2) ∨ Susp(RP 2))→H1(S2).

Therefore, we have a surjection H2(X) → Z2 ⊕ Z2 from which it follows that

H2(X) ≠ 0. By induction, no connected sum of finitely many suspensions of

RP 2 is aspherical.

Let Y be an aspherical, closed, connected Alexandrov 3-space on which S1

acts effectively and isometrically. By Theorem B, Y is homeomorphic to M#X ,

where X is a connected sum of finitely many copies of Susp(RP 2) and M is

a closed 3-manifold. Let ϕ ∶ M#X → M ∨ X be the function that collapses

to a point the S2 used to construct the connected sum. The pair (M#X,S2) is

0-connected, therefore by Proposition 4.28 in [Hat02], ϕ is 2-connected. Now,

we lift ϕ to the universal covers to get a 2-connected map ϕ̃ ∶ M̃#X → M̃ ∨X .

Since we assumed Y to be aspherical, πk(M#X) = 0 for k > 1. Therefore,

πk(M̃#X) = 0 for k ≥ 1. The map ϕ̃ and the Hurewicz Theorem yield that

π2(M̃ ∨X) =H2(M̃ ∨X) = 0.

Denote the projection of the universal cover ofM∨X by p. Observe that p−1(M)∩
p−1(X) = p−1({pt}) is a discrete set and that p−1(M) ∪ p−1(X) = M̃ ∨X . Using

the Mayer-Vietoris sequence for this decomposition we obtain thatH2(p−1(M))⊕
H2(p−1(X)) ≅ 0. The preimage of X is a disjoint union of copies of the universal

cover of X . Since X is simply-connected, p−1(X) is a disjoint union of copies of

X . This is a contradiction, since we proved that H2(X) ≠ 0.
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Chapter 6

Further development: 3-dimensional
Alexandrov spaces with local circle
actions

6.1 Introduction

Orlik and Raymond noted in [OR69] that the closed 3-manifolds admitting a cir-

cle action without fixed points or special exceptional orbits are Seifert manifolds

(see [Orl72, Section 5.2] for the definition) of certain types. Nevertheless, not

every Seifert manifold admits a global S1-action. However, locally they resemble

those that do. In [OR69] and [Fin76], Orlik, Raymond and Fintushel, obtained

a topological and equivariant classification of the local S1-actions on closed 3-

manifolds. We extend the results of Chapter 4 to the setting of local circle actions.
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6.2 Three-dimensional Alexandrov spaces with lo-

cal circle actions

Let X be a closed, connected three-dimensional Alexandrov space. We will say

that X admits an isometric local S1-action if it can be decomposed into disjoint

simple closed curves each having a tubular neighborhood which admits an effec-

tive, isometric S1-action whose orbits are the curves of the decomposition. The

decomposition map π ∶X →X∗ is defined as the map that coincides with the orbit

maps of the circle actions on each of the neighborhoods of the decomposition of

the local S1-action. We call each element of the decomposition into curves of X a

fiber andX∗ the fiber space of the local S1-action. Following Orlik and Raymond

[OR69] and Fintushel [Fin76] we will study the structure of the fiber space, the

types of fibers that can arise and compare it to the manifold case.

Let x be a topologically singular point of X contained in a sufficiently small

tubular neighborhood V of a fiber. Since the restricted S1-action on V is isometric,

x is a fixed point. In other words, singular points of X are point fibers of the

decomposition into curves of X . Therefore the restriction of any local S1-action

on X to a sufficiently small conic neighborhood of a topologically singular point

is the cone of the standard cohomogeneity one circle action on the unit round

RP 2. We will call topologically singular point fibers, SF -fibers.

We now describe the possible invariant tubular neighborhoods of non-degene-

rate fibers. A fiber will be called an F -fiber if sufficiently small tubular neigh-

borhoods are equivariantly homeomorphic to D2 × S1 equipped with the circle

action

S1 × (D2 × S1) Ð→ (D2 × S1)

(z, ρeiθ, eiψ) z→ (zρeiθ, eiψ).

The fiber corresponds to the curve {0} × S1 with the previous action. Tubular
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neighborhoods of F -fibers will be called orientation preserving F -blocks. The

orbit space of an orientation-preserving F -block is an annulus where one of the

boundary components corresponds to fixed points and the rest correspond to prin-

cipal orbits.

Let µ and ν be two relatively prime integers satisfying 0 < ν < µ. Consider the

following S1-action:

S1 × (D2 × S1) Ð→ (D2 × S1)

(z, ρeiθ, eiψ) z→ (zνρeiθ, zµeiψ).

The fiber obtained by taking ρ = 0 will be called an exceptional fiber or E-

fiber. Equivalently, tubular neighborhoods of E-fibers are of the form D2 ×Zµ S1

where Zµ acts on D2 by rotations without reversing the local orientation and with

the E-fiber corresponding to the curve {0} ×Zµ S1. Seifert invariants (α,β) are

assigned to this action. We will call a tubular neighborhood of an exceptional fiber

anE-block of type (α,β). The orbit space of anE-block is a 2-disk where a single

point on the interior corresponds to the exceptional fiber and the rest of the fibers

are principal. Cyclic groups Zµ can act by reflexion on an axis of D2 for µ = 2,

reversing the local orientation with the action we proceed to describe. Consider

the product of a Möbius band with a circle regarded as the space [0,1] × S1 × S1

after identifying the points (0, eiθ, eiψ) with (0, eiθ, ei(ψ+π)). We equip this space

with the action induced by the circle action

S1 × [0,1] × S1 × S1 Ð→ [0,1] × S1 × S1

(z, t, eiθ, eiψ) z→ (t, eiθ, zeiψ)

The fibers corresponding to the points of {0} × S1 × S1 after the identification

will be called special exceptional or SE-fibers. In this case the orbit space is an

annulus whit one boundary circle weighted with Z2-isotropy. Circle fibers that are

not F , E or SE fibers will be called principal.
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Different types of building blocks appear when considering tubular neighbor-

hoods of connected components of fibers of the same type. LetCF be a component

of F -fibers and V a sufficiently small tubular neighborhood of CF . We have the

following possibilities for the bundle π∣V ∶ V → V ∗: If ∂V is orientable, then CF
is an F -fiber and V is as previously described. If ∂V is non-orientable, then it is

the non-orientable bundle S1×̃S1, that is, a Klein bottle K. Therefore V is equiv-

ariantly homeomorphic to a solid Klein bottle K × [0,1] with the fibers contained

in K × {0} collapsed to points and equipped with the following action: Regard

K as the quotient of a cylinder S1 × [0,2π] by identifying the points (eiθ,0) with

(ei(θ+π),2π). We have the following circle action:

S1 × S1 × [0,2π] × [0,1] Ð→ S1 × [0,2π] × [0,1]

(eiκ, eiθ, ψ, t) z→ (ei(θ+κ/2), κ + ψ, t).

By passing to the quotient we obtain the desired action. Here, CF corresponds

to the curve obtained by taking the corresponding points in K × [0,1]/K × {0} of

the points of the form (eiθ, ψ,0) in S1 × [0,2π] × [0,1]. We will call this block

an orientation-reversing F -block. The orbit space of this orientation-reversing F -

block is an annulus with one boundary component corresponding to fixed points

and the other boundary component corresponding to Z2-isotropy. The rest of the

annulus is made up of principal orbits.

Consider now a component CSE of SE-fibers and U a sufficiently small tubu-

lar neighborhood of CSE . As in the case of CF we look at the restricted bundle

π∣ ∶ U → U∗. If ∂U is orientable, then U is equivariantly homeomorphic to the

product of the Möbius band and a circle with CSE being the torus I ×Z2 D
2 and

with the action previously described. Since π(CSE) is homeomorphic to a cir-

cle, if ∂U is nonorientable, it is homeomorphic to a Klein bottle. In this case U

is equivariantly homeomorphic to K × [0,1] with the fibers of K × {0} identi-

fied by the antipodal map, and with the same circle action as in the case of the

orientation-reversing F -block. The orbit space of this SE-block is an annulus

50



with both boundary circles carrying Z2-isotropy and the rest of the annulus com-

prised of principal orbits.

There are two types of building blocks that contain topologically singular

points which we describe now. Let (Susp(RP 2), d0) be the suspension of the

round projective plane equipped with the standard Alexandrov metric of positive

curvature and Rk be the connected sum of k copies of Susp(RP 2). By Corollary

4.3.4 there is a unique isometric, effective circle action on Rk. Thus we define the

orientation-preserving SF -block as Rk ∖ (D2 × S1) regarded with the restricted

circle action, and with the solid torus taken away from the principal part of Rk.

The orbit space of the orientation-preserving SF -block is an annulus composed

as follows. The interior and one of the boundary components of the orbit space

are composed of principal orbits. By Proposition 4.2.2, the remaining boundary

component is made up of a union of arcs joined by their endpoints, alternating be-

tween S1 and Z2 isotropies. We construct the orientation-reversing SF -block by

taking a connected sum of an orientation-reversing F -block BF and Rk where the

ball that is taken away from BF consists of principal fibers except for an axis of

F -fibers. The orientation-reversing SF -block is given the circle action obtained

by taking the connected sum of the actions on each connected summand. The orbit

space of the orientation-reversing SF -block is an annulus weighted in the same

way as the orientation-preserving SF -block but having a Z2 boundary component

in place of the boundary component of fixed points.

An analysis similar to that of [Ray68, Section 2] (see also [Orl72, Section

1.9]) and Chapter 2 shows that X∗ is a topological 2-manifold with boundary.

The boundary of X∗ is composed by the images of F , SF and SE fibers, while

the interior ofX consists of principal fibers and a finite number ofE-fibers. More-

over, the number of SF -fibers is even. The restriction of π to the principal fibers

is a fiber bundle with structure group O(2).

Besides the information given by the local action, there is the topological type
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of the fiber space. We will list invariants associated to the topological type of X∗

and the isometric local S1-action. To this end, we now state the weak bundle clas-

sification of S1-bundles over compact 2-manifolds with nonempty boundary and

structure group O(2) (see [Fin76], [Orl72], [OR69], [OVZ67] ). Recall that the

fundamental group of a compact, connected 2-manifold X∗ with m > 0 boundary

components and genus g has the presentation (vj, si ∣ s1 . . . smv2
1 . . . v

2
g) if X∗ is

nonorientable and (aj, bj, si ∣ s1 . . . sm[a1, b1] . . . [ag, bg]) if X∗ is orientable.

Theorem 6.2.1. LetX∗ be a compact, connected 2-manifold withm > 0 boundary

components and genus g. Then the set of weak equivalence classes of circle bun-

dles over X∗ with structure group O(2) is in one-to-one correspondence with the

pairs (ε, k) where k is the number of si in the presentation of π1(X∗) that reverse

orientation along fibers. The symbol ε can take the values o1, o2, n1, n2, n3, n4

representing the following classes:

o1: X∗ is orientable and all aj , bj preserve orientation.

o2: X∗ is orientable, all aj , bj reverse orientation and g ≥ 1.

n1: X∗ is non-orientable, all vj preserve orientation and g ≥ 1.

n2: X∗ is non-orientable, all vj reverse orientation and g ≥ 1.

n3: X∗ is non-orientable, v1 preserves orientation, all other vj reverse orienta-

tion and g ≥ 2.

n4: X∗ is non-orientable, v1 and v2 preserve orientation, all other vj reverse

orientation and g ≥ 3.

If k ≠ 0, classes o1 and o2 collapse to a single class o and n1, n2, n3 and n4

collapse to a single class n.
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Let (ε, k) be the pair associated to the bundle of principal fibers with possible

values as in Theorem 6.2.1 and b the obstruction for the existence of a section

to the bundle. Let g ≥ 0 be an integer denoting the genus of X∗ and satisfying

the constrains of Theorem 6.2.1. We let f, t, k1, k2 be nonnegative integers such

that k1 + k2 = k, k1 ≤ f , k2 ≤ t, where k1 is the number of orientation-reversing

F -blocks and k2 is the number of orientation-reversing SE-blocks. Consequently

we take f − k1 as the number of orientation-preserving F -blocks and t − k2 is the

number of orientation-preserving SE-blocks. A nonnegative integer nwill denote

the number of E-fibers and {(αi, βi)}ni=1 the corresponding Seifert invariants. We

let s1 and s2 denote the number of torus boundary and Klein bottle boundary SF -

blocks respectively and (r1, r2, . . . , rs1) and (rs−s1+1, rs−s1+2, . . . , rs) be s1 and s2-

tuples of nonnegative, even integers corresponding to the number of topologically

singular points in each SF -block. Summarizing, to any fiber space X∗ we asso-

ciate the set of invariants

(b; ε, g, (f, k1), (t, k2);{(αi, βi)}ni=1; (r1, r2, . . . , rs)) .

Let X and Y be two closed Alexandrov 3-spaces admitting local isometric S1

actions. We will say that their fiber spaces are isomorphic if there is a weight-

preserving homeomorphism X∗ → Y ∗. In the case that X∗ and Y ∗ are oriented

we require the homeomorphism to be orientation-preserving. We will say that

X and Y are weakly equivalent if there is a fiber-preserving homeomorphism

X → Y which is orientation preserving on X ∖ (SE ∪SF ) when X ∖ (SE ∪SF )
is oriented.

6.3 Topological and (weak) bundle classification

The invariants of the previous section determine a space in the following man-

ner: If f + t > 0 we let X∗
0 be a 2-manifold of genus g and f + t + n + s
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boundary components which is orientable if ε ∈ {o, o1, o2} and nonorientable if

ε ∈ {n,n1, n2, n3, n4}. Let X0 be the circle bundle with structure group O(2)
over X∗

0 associated to (ε, k). This bundle has a cross-section q (See [Fin76]).

On n of the torus boundary components q restricts to curves qi and the struc-

ture group on these tori reduces to SO(2). This determines equivariant sewings

for the E-blocks onto the n torus components as in the proof of Theorem 1.10

in [Orl72]. We attach k1 orientation-reserving F -blocks, k2 Klein bottle bound-

ary SE-blocks, f − k1 orientation-preserving F -blocks and t − k2 torus bound-

ary SE-blocks. Similarly, by means of fiber-wise homeomorphism we glue s1

torus boundary SF -blocks with rj topologically singular points respectively and

s2 Klein bottle boundary SF -blocks with qj topologically singular points respec-

tively. If f + t = 0 we let X be the Alexandrov space determined by the set of

invariants {b; ε, g,0,0;{(αi, βi)}ni=1; (r1, r2, . . . , rs)} described in Chapter 4.

Lemma 6.3.1. LetX be a closed, connected Alexandrov 3-space admitting a local

isometric S1-action without exceptional fibers. Then there exists a cross-section

for the fiber map.

Proof. Let π0 ∶ X0 → X∗
0 be the restriction of the fiber map to the principal

fibers and let qj be the restriction of a cross-section q ∶ X∗
0 → X0 to each bound-

ary component of X0. The qj that lie on boundary components corresponding to

orientation-preserving F -blocks and torus-boundary SE-blocks determine exten-

sions of q to such blocks as in the proof of Theorem 4.3.1. Extensions of q to

the Klein bottle boundary F and SE blocks are constructed analogously. More

explicitly, q determines curves on the Klein bottle boundary components of X0

and we can extend these curves radially to obtain cross-sections on such blocks.

An extension to q on the torus-boundary SF -blocks is constructed as in the proof

of Theorem 4.3.1. In order to extend q to the Klein bottle boundary SF -blocks

we do the following: We decompose the orbit space of a Klein bottle SF -block

into two annuli. One of these annuli will have only principal orbits, except for the
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SF -points in one boundary component and the other annulus will have principal

orbits except for the Z2-boundary component. Both annuli are glued along the

principal orbits boundary components. By the Slice Theorem, the annulus with

the Z2 boundary component is the orbit space of a space equivariantly homeomor-

phic to a torus-boundary SE block, which has a section q̃ extending q. Then we

can extend q̃ as in the case of the torus boundary SF -blocks.

Remark 6.3.2. Using the cross-section obtained in the previous lemma we can

prove that the effective, isometric S1-action on a Klein bottle boundary SF -block,

equipped with the Riemannian orbifold metric of nonnegative curvature is unique

up to weak equivariant homeomorphisms (see [Ray68, Lemma 3] and Corollary

4.3.4).

We recall Orlik, Raymond and Fintushel’s classification Theorem.

Theorem 6.3.3 (Orlik-Raymond [OR69], Fintushel [Fin76]). If M is a closed,

connected 3-manifold with local S1-action, it is determined up to weak equivari-

ant equivalence by the set of fiber invariants (b; ε, g, (f, k1), (t, k2);{(αi, βi)}ni=1).

The topological classification is given in [OR69, Theorems 1, 2, 3] and [Fin76,

Theorems 3, 4]. We are now able to state and prove the main result of this chapter.

Theorem D. Let X be a closed, connected Alexandrov 3-space admitting an iso-

metric local S1 action. Assume that X has 2r topologically singular points. Then

the following hold:

1. The set of isometric local actions (up to weakly equivariant homeomor-

phism) is in one-to-one correspondence with the set of unordered tuples

(b; (ε, g, (f, k1), (t, k2));{(αi, βi)}ni=1; (r1, r2, . . . , rs))

where the permissible values for b, ε, g, (f, k1), (t, k2) and {(αi, βi)}ni=1 are

given by Theorem 6.3.3 and (r1, r2, . . . , rs) is an unordered s-tuple of even

positive integers ri such that r1 + . . . + rs = 2r.
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2. X is weakly equivariantly homeomorphic to

M# Susp(RP 2)# . . .# Susp(RP 2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r

where M is the closed 3-manifold given by the set of invariants

(b; (ε, g, (f + s, k1), (t, k2));{(αi, βi)}ni=1)

in Theorem 6.3.3.

Proof of Theorem D. We begin by noting that if X does not have any topologi-

cally singular points then the classification for 3-manifolds with local S1-action

extends trivially to our case. Thus we first assume that s > 0 and there are no

exceptional fibers. Consider the unique 3-manifold M admitting a local S1-

action determined by the set of invariants (b; ε, g, (f + s, k1), (t, k2)) as in The-

orem 6.3.3 (see also [Fin76, Theorem 2]). We let ρ ∶ M → M∗ be the fiber

map and q ∶ M∗ → M the cross-section given by Lemma 6.3.1. Note that

since s > 0, M has at least s boundary components of F -points. We choose

s of these boundary components arbitrarily and denote them by Qi. On each

Qi we consider an arc and an invariant tubular neighborhood Ui of such an arc

which only contains principal fibers in its interior. Now, for 0 ≤ i ≤ s1, let

Ri be a torus-boundary SF -block and for s1 < i ≤ s2 let Ri be a Klein bottle

boundary SF -block. Denote cross-sections to these SF -blocks by qi ∶ R∗
i →

Ri. For every i we consider an edge of fixed points in Ri with SF endpoints

and consider a subarc of such an edge. We take Ũi to be an invariant tubu-

lar neighborhood of the subarc with only principal points on its interior. Now

consider the equivariant connected sum M#R1#R2# . . .#Rs along the Ui and

Ũi which has orbit space (M#R1#R2# . . .#Rs)∗ ≅ M∗#R∗
1#R∗

2# . . .#R∗
s .

The method of Lemma 3 in [Ray68] and Corollary 4.3.2 yields a weak equiva-

lence M#R1#R2# . . .#Rs ≅ M#Susp(RP2)# . . .#Susp(RP2). Furthermore
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by using a cross-section X∗ → X (given by Lemma 6.3.1) we conclude that

X ≅ M#Susp(RP2)# . . .#Susp(RP2). Finally, Lemma 6 and Theorems 2a

and 2b in [Ray68] extend to Alexandrov spaces naturally so in the case X has

exceptional fibers, the equivalence still holds.
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