UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE CIENCIAS DEPARTAMENTO DE FISICA

DISPERSION DE ANTINUCLEONES POR NUCLEONES.

TESIS DOCTORAL

FERNANDO ENRIQUE PRIETO CALDERON

MEXICO, D. F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

A mi Esposa.

A Alejandro Medina, maestro y amigo.

I.- INTRODUCCION

Diversos autores' han hecho notar en repetidas ocasiones, que el uso de la ecuación de Dirac para la descripción de los nucleones implica la existencia, tanto en estados -reales, como en estados virtuales, de las partículas corres pondientes de energía negativa, esto es, de los antinucleones, y ya se han estudiado algunos procesos posibles en los que intervienen tales antipartículas, especialmente reaccio nes de aniquilación de antinucleones². Puesto que existe -también una fuerte evidencia experimental en favor de la -existencia de antiprotones en estados reales³, y algunas determinaciones de la sección de atenuación para el paso de antiprotones a través de la materia han sido reportadas recientemente^{4,5}, cualquier consideración teórica concerniente a la interacción de antinucleones con nucleones es de -cierto interés.

cia cuantitativa con los resultados experimentales, pero posiblemente algunos de los resultados cualitativos que se obtienen en este trabajo continúen siendo válidos en cálcu los más refinados.

II .- ELEMENTOS DE MATRIZ PARA LA SECCION DE DISPERSION .

La dispersión de antinucleones por nucleones es muy se mejante a la dispersión de Bhabha entre electrones y posi-trones⁶, y de hecho, los diagramas de Feynman para ambos procesos son idénticos (Figuras la y lb); pero debido al hecho de que la interacción entre antinucleones y nucleo nes puede efectuarse mediante el intercambio de un mesón -neutro (Π°), o de un mesón con carga positiva o negativa (Π^{+},Π^{-}), se tiene un mayor número de procesos posibles en el caso de la dispersión antinucleón - nucleón, que en el caso de la dispersión de Bhabha, ya que en ésta última el único proceso posible es una dispersión pura mediante el in tercambio de un fotón.

Figura 1.- Gráficas de Feynman para la dispersión antinucleón - nucleón. — nucleón, — antinucleón, ---- mesón. La Tabla I muestra los diversos procesos posibles en la dispersión antinucleón - nucleón, el tipo de partícula virtual intercambiada (piones neutros o cargados), y -las gráficas que contribuyen para formar el elemento de matriz correspondiente a cada proceso. La notación usada es p para el protón, n para el neutrón, \overline{p} para el an tiprotón, y \overline{n} para el antineutrón.

	PR OC ESO	MESON VIRTUAL	GRAFICAS
I	$p + \overline{p} \longrightarrow p + \overline{p}$	TT ⁰ , TT ⁰	la, lb
II	$p + \overline{p} \longrightarrow n + \overline{n}$	π°, π+ ,π-	la, lb,lb
III	$n + \overline{p} \longrightarrow n + \overline{p}$	π-,π°	la, lb
IV	$p + \overline{n} \longrightarrow p + \overline{n}$	π+, π°	la, lb
V	$n + \overline{n} \longrightarrow n + \overline{n}$	π°, π°	la, lb

Tabla I.- Procesos posibles en la dispersión antinucleón nucleón.

Denominando a aquellas reacciones en las cuales la carga eléctrica de las partículas finales es la misma que la de las partículas iniciales, procesos de " dispersión normal ", entonces el proceso II de la Tabla I, en el cual las partículas incidentes son cargadas, en tanto que las partículas finales son neutras, podría llamarse proceso de dispersión con aniquilación de carga, o simplemente --" dispersión de intercambio ". El elemento de matriz para

la dispersión normal es la suma de las contribuciones debidas a las gráficas la y lb, pero en la dispersión de in tercambio , la gráfica lb da una contribución doble al elemento de matriz.

Denotaremos por p y q respectivamente, a los cuadrivectores impulso - energía de los nucleones y antinucleo nes en el estado inicial, y por p'y q'a los correspondientes en el estado final. Sea también e la energía de la partícula, con subíndices + y - refiriéndose a nucleo-nes y antinucleones, y con la ausencia o presencia del sím bolo de prima indicando que la cantidad correspondiente se refiere al estado inicial o final, respectivamente. Denot<u>a</u> remos finalmente por M a la masa del mucleón o del antinucleón, y por m a la masa del mesón.

Con una Hamiltoniana de interacción de la forma

$$H = G \overline{\psi} Y^5 T_i \psi \varphi_i \qquad II.1$$

y usando la métrica $g^{\circ\circ} = -g^{11} = -g^{22} = -g^{33} = 1$, así como unidades naturales con $\hbar = c = 1$, el elemento de matriz para la dispersión antinucleón nucleón resulta ser

$$S_2 = \frac{G^2}{4\pi^2 i} \frac{M^2}{(e_+e_-e_+'e_-')^{1/2}} \left[\frac{m_1}{f_1} - \frac{\varrho m_2}{f_2} \right] \qquad \text{II.2}$$

con

$$f_1 = (p + q)^2 - m^2$$
 II.3
 $f_2 = (p' - p)^2 - m^2$ II.4

y Q vale l para dispersión normal y 2 para dispersión de intercambio. m₁ y m₂ están dados por

$$m_{1} = \overline{u}(\underline{p}')Y^{5}v(\underline{q}')\overline{v}(\underline{q})Y^{5}u(\underline{p}) \qquad \text{II.5}$$

$$m_{2} = \overline{u}(\underline{p}')Y^{5}u(\underline{p})\overline{v}(\underline{q})Y^{5}v(\underline{q}') \qquad \text{II.6}$$

en las que $u(\underline{p})$ y $v(\underline{q})$ son respectivamente soluciones de la ecuación de Dirac para una partícula libre con energía positiva o negativa, y para ambas $\overline{u}(p) = u^{*}(p) Y^{\circ}$.

III .- SECCION DIFERENCIAL DE DISPERSION.

Suponiendo que los spines no se observan, sumando so-bre los spines finales y promediando sobre los spines ini-ciales, operaciones ambas que pueden efectuarse fácilmente mediante el uso de la técnica de los operadores de proyec-ción, y expresando además las trazas resultantes en térmi-nos de los productos internos λ , μ , ν definidos por

$$M^2\lambda = -pp' = -qq'$$
 III.1

$$M^2 \mu = pq = p'q'$$
 III.2

$$M^2 v = pq' = p'q$$
 III.3

se encuentra para la sección diferencial de dispersión la expresión

$$ds = 4 \frac{G^4}{16 \pi^2} \frac{M^4 B_2^{\prime 2} e_1^{\prime} T}{(|p|e_+|q|e_+)(B_1^{\prime} E_1 - |P|cos \theta_1^{\prime})} dn'_{111.4}$$

en la que

$$T = \frac{A}{f_1^2} + \frac{e^2 B}{f_2^2} - \frac{2eC}{f_1 f_2}$$
 III.5

con

y

$$A = \frac{1}{4} (\mu + 1)^2$$
 III.6

$$B = \frac{1}{4} (\lambda + 1)^2 \qquad III.7$$

$$C = \frac{1}{16} (\mu^2 + \lambda^2 - \nu^2 + 2(\lambda + \mu - \nu) + 1)$$
 III.8

$$E = e_+ + e_- = e'_+ + e'_-$$
 III.10

$$P = p + q = p' + q'$$
 III.11

$$IPI = Be e = YM (1 - B^2)Y^2 = 1 III.12$$

En el caso especial del sistèma del centro de masa ----(CMS) para el cual

- $\underline{p} = -\underline{q} \qquad \underline{p'} = -\underline{q'} \qquad \text{III.13}$
 - e_= e_= e_= e_= III.14

la sección diferencial de dispersión toma la forma

$$\frac{dG}{d\Omega} = \frac{r_o^2}{16Y^2} \left[\frac{1}{(1-k^2)^2} + \frac{e^2 \beta^4 y^2}{(\beta^2 y + k^2)^2} + \frac{e \beta^2 y}{(\beta^2 y + k^2)(1-k^2)} \right]$$
III.15

en la que

$$y = sen^2 \frac{\theta}{2}$$
 III.16

$$rac{G^2}{4\pi M}$$
 TII.17

$$k = \frac{m}{2YM}$$
 III.18

El primer término de III.15 proviene de la contribu--ción de la gráfica la al elemento de matriz, y da el efecto de aniquilación en la dispersión antinucleón - nucleón, esto es, la parte de la sección de dispersión que proviene de la aniquilación y creación subsecuente de un par antinucleón - nucleón. El segundo término se debe a la contribu-ción de la gráfica lb , y da el efecto normal en la disper sión antinucleón - nucleón. El tercer término se debe final mente a un efecto de interferencia. Se ve inmediatamente de III.15, que dependiendo de los valores relativos de los -tres términos, la sección diferencial para dispersión de in tercambio será del mismo orden o mayor que la correspondien te para dispersión normal. En el límite no relativista (NR), con $\beta^2 << 0.01$, la sección diferencial en el CMS se comporta como

$$\left[\frac{de}{d\Omega}\right]_{NR} \approx \frac{r_{o}^{2}}{16} \left[\frac{1}{(1-k^{2})^{2}} + \frac{\ell^{2}\beta^{4}}{k^{4}}y^{2} + \frac{\ell^{2}\beta^{2}}{k^{2}(1-k^{2})}y\right] \text{ III.19}$$

en tanto que en el límite ultrarelativista (UR), toma la forma

$$\left[\frac{dG}{d\Omega}\right]_{UR} \approx \frac{r_0^2}{16\gamma^2} (1 + \varrho^2 + \varrho) \qquad \text{III.20}$$

Se ve entonces que en el CMS, la sección diferencial a muy bajas energías es esencialmente una constante igual a $r_o^2/16$ tanto para dispersión normal, como para dispersión de intercambio, y que la dispersión se debe principalmente al efecto aniquilativo. A energías UR, el valor aproximado de la sección diferencial es $3r_o^2/16V^2$ para dispersión no<u>r</u> mal, y $7r_o^2/16V^2$ para dispersión de intercambio.

Es conveniente obtener la sección diferencial en el -eistema del laboratorio (LS), en el cual el nucleón se supone inicialmente en reposo. Denotando provisionalmente por primas a las variables en LS, las ecuaciones de trans-formación son

$$\cos\theta = \frac{2 - (Y' + 3) \operatorname{sen}^2 \theta'}{2 + (Y' - 1) \operatorname{sen}^2 \theta'}$$
III.21

$$d\Lambda = \frac{8(Y'+1)\cos\theta'}{(2+(Y'-1)\sin^2\theta')^2} d\Lambda'$$
 III.22

$$Y' = 2Y^2 - 1$$
 III.23

Efectuando la transformación de III.15 al LS, y suprimiendo las primas en el resultado final, se obtiene para la sección diferencial en el LS la expresión

$$\frac{ds}{d\Omega} = r_0^2 \frac{(1-x)^{1/2}}{\omega^2} \left[\frac{1}{(1-\eta^2)^2} + \frac{\ell^2 b^2 x^2}{(ax+2\eta^2)^2} + \frac{\ell b x}{(ax+2\eta^2)(1-\eta^2)} \right]$$
III.24

en la que

$$w = w(x) = 2 + (Y - 1)x$$
 III.26

$$a=(\gamma -1)(1+\eta^2)$$
 III.27

b=Y-1 III.28

$$\eta^2 = \frac{m^2}{2(\gamma+1)M^2}$$
 III.29

En el límite NR , III.24 se reduce a

$$\left[\frac{d_{\Theta}}{d\Omega}\right]_{NR} \approx \frac{r_{o}^{2}}{4} (1-x)^{1/2} \left[\frac{1}{(1-\eta^{2})^{2}} + \frac{\ell^{2} B^{4}}{\eta^{4}} x^{2} + \frac{\ell B^{2}}{\eta^{2}(1-\eta^{2})} x\right] \text{ III.30}$$

en tanto que en el caso UR la sección diferencial en el LS se comporta como

$$\left[\frac{de}{dn}\right]_{UR} \approx r_0^2 \frac{(1-x)^{1/2}}{w^2} (1+e^2+e)$$
 III.31

En el LS, la sección diferencial a energías muy bajas es la misma para dispersión normal y para dispersión de intercambio, y se comporta como ($r_o^2/4$)cos θ ; se ve tam--bién que en este caso la dispersión se debe esencialmente al efecto aniquilativo. En el límite UR, el comportamiento de la sección es ($3r_o^2\cos\theta$)/ W^2 para dispersión normal, y ($7r_o^2\cos\theta$)/ W^2 para dispersión de intercambio.

IV .- SECCION TOTAL DE DISPERSION.

La integración de III.24 puede efectuarse fácilmente , y se obtiene para la sección total de dispersión en el LS el resultado

$$G(x) = \pi r_o^2 \phi(x) \qquad \text{IV.1}$$

en la que

$$\phi(x) = F(x) + F(0) - 2F(1)$$
 IV.2

con

$$F(x) = \frac{1}{(1 - \eta^2)^2} I_{020} + \frac{\rho^2 b^2 I_{222}}{1 - \eta^2} + \frac{\rho b}{1 - \eta^2} I_{121}$$
 IV.3

$$I_{pqr}(x) = - \int \frac{x^r dx}{(ax+2\eta^2)^p \omega^q}$$
 IV.4

11

Estas integrales pueden evaluarse por los métodos usuales - de cálculo, obteniéndose

$$I_{020}(x) = \frac{1}{(\gamma - 1)w(x)}$$
 IV.5

$$I_{121}(x) = \frac{1}{(\gamma - 1)bw(x)} + \frac{\eta^2}{2b^2} ln \frac{ax + 2\eta^2}{w(x)}$$
 IV.6

$$I_{222}(x) = \frac{(S^2 - 8R\eta^2)x + 4S\eta^2}{4Rb^2(Rx^2 + 5x + 4\eta^2)} + \frac{\eta^2}{b^3} \ln \frac{2Rx + S - 2b}{2Rx + S + 2b}$$
 IV.7

con

$$R = a(Y-1) \qquad IV.8$$

$$S = 2a + 2(Y-1)n^2$$
 IV.9

V.- ALGUNAS CONSIDERACIONES CUALITATIVAS Y CUANTITATIVAS .

Puesto que tanto la sección diferencial, como la sec-ción total de dispersión, dependen de la cuarta potencia de la constante de acoplamiento G , el valor de dichas sec-ciones será altamente sensible a cambios en los valores de G.

y

Para la aplicación de los resultados anteriores a la interpretación de los experimentos de atenuación de un haz de an tiprotones, se adoptará el valor usual $G^2/4\pi = 10$. Con esta selección de la constante de acoplamiento, la sección total de dispersión en el LS, medida en barns, está dada por

$$G(x) = 0.14 \phi(x)$$
 V.I

Ahora bien, puesto que $m^2 / M^2 \approx 0.02$, y $\eta^2 = 0.01$, entonces en el límite UR, F(x) está dada con bastante buena aproximación por

$$F(x) = \frac{1 + e^2 + e}{(Y - 1) w(x)}$$
 V.2

Para dispersión normal (ns), la sección total es entonces

$$g_{ns}(x) \approx \frac{0.42}{(\gamma - 1) \omega(x)} \qquad \forall .3$$

en tanto que para dispersión de intercambio (es) resulta

$$e_{es}(x) \approx \frac{0.98}{(\gamma - 1) \omega(x)} \qquad \forall .4$$

Para el caso especial de colisiones antiprotón - protón, puede tomarse como " sección total de dispersión " la suma de las secciones totales para dispersión normal y de inter--- cambio, y en este caso

La Figura 2 muestra las gráficas de G_S para diferentes valores del ángulo de dispersión, como funciones de la velocidad inicial del antiprotón en el CMS.

como función de la velocidad inicial en el CMS.

Se ve de estas gráficas que para una energía dada, la sección de dispersión decrece para valores crecientes del án gulo de dispersión; este comportamiento está de acuerdo con los resultados reportados por Chamberlain y sus colaboradores⁴, según los cuales, a un ángulo menor de dispersión corresponde un valor mayor de la sección. Se ve también en la Figura 2, que para un valor dado del ángulo de dispersión, la sección decrece para valores decrecientes de la energía, y este es el comportamiento de la sección con la energía, -que Brabant y sus colaboradores reportan como probable⁵.

Puesto que en los experimentos reportados por Chamber-lain y sus colaboradores⁴, una dispersión normal es indig tinguible de una dispersión de intercambio, sus resultados deben compararse con el valor teórico de G_S. La tabla II da los valores teóricos de G_{NS}, G_{eS}, y G_S, para $\beta(LS)=0.75$ y $\theta_S = 12^{\circ} 40'$ y 18° , así como los correspondientes valores experimentales.

 θ_s $\beta(CMS)$ $\beta(LS)$ G_{ns} G_{es} $G_s(te)$ $G_s(exp)$ 12° 40′ 0.458 0.756 0.161 0.375 0.536 0.53 18° 0.458 0.756 0.155 0.362 0.517 0.19

Tabla II.- Secciones de dispersión para colisiones (p,p).

Los valores teóricos se calcularon con la forma exacta IV.3 para F(x), y se encontró que los términos logarítmicos en I_{121} y I_{222} son muy pequeños comparados con los términos no logarítmicos, y pueden despreciarse.

Se ve de la Tabla II que aunque los resultados teóricos no concuerdan con los experimentales, son sin embargo del mismo orden de magnitud. Para $\theta_5 = 12^\circ 40'$ la concordancia del valor teórico con el valor experimental de la sección de dispersión es sorprendentemente buena, pero para $\theta_5 = 18^\circ$ el valor teórico es alrededor de 2.6 veces mayor que el e<u>x</u> perimental.

como funciones del ángulo de dispersión.

La Figura 3 muestra las gráficas de G_{nS} , G_{eS} y G_S como funciones del ángulo de dispersión, para dispersiones --(\overline{p} , p), con β (CMS) = 0.46, β (LS) = 0.75 como velocidad inicial del antiprotón. La disminución de la sección - de dispersión para valores crecientes del ángulo de disper-sión, concuerda cualitativamente con los resultados experi-mentales, pero esta disminución parece ser mayor que la predicción teórica según la cual G_S corre de 0.55 para $\theta_S = 0^\circ$, a 0.27 para $\theta_S = 90^\circ$. Sería conveniente sin embargo, para poder hacer una comparación más completa, tener más datos experimentales sobre el comportamiento de la sección para dif<u>e</u> rentes valores del ángulo de dispersión.

Puesto que la producción de antineutrones por colisio--nes (\overline{p} , p) parece ser más probable que una dispersión nor--mal, sería interesante continuar los experimentos sobre la -detección de antineutrones a lo largo de las lineas repor--tadas por Brabant y sus colaboradores⁵. También sería de --cierto interés hacer mediciones separadas de los valores de la sección para dispersión de intercambio y para dispersión normal, para diferentes valores del ángulo de dispersión.

Para terminar, se desea agradecer las valiosas discusiones que sobre este trabajo ha tenido el autor con los Profesores A. Medina y J. de Oyarzábal.

REFERENCIAS A LA LITERATURA

la .- R. E. Marshak, Meson Physics, Ch. 9, McGraw Hill, 1952. 1b.- J.Ashkin, T.Auerbach, R.Marshak, Phys.Rev. 79,266,(1950) 2a.- J. McConnell, Proc.Roy.Irish Acad. 50A,189 (1945). 2b.- J. McConnell, Proc.Roy.Irish Acad. 51A,173 (1947). 2c.- J. McConnell and L. Janossy, Nature 159,335 (1947). 2d.- Kuan-Han Sun, Phys. Rev. 76,1266 (1949). 2e.- J.Ashkin, T.Auerbach, R.Marshak, Phys.Rev. 79,266 (1950) 2f.- L. Michel, Nature <u>166</u>,654 (1950). 2g.- E. Fermi, Prog.Theor.Phys. 5,570 (1950). 2h.- Y. Fujimoto, Y. Yamaguchi, Prog.Theor.Phys. 6,166 (1951) 21.- M. Taketani, S. Machida, Prog.Theor.Phys. 6, 559 (1951) 2j.- L. I. Schiff, Phys.Rev. 85, 374 (1952). 2k.- I. Reff, Phys.Rev. 85, 379 (1952). 21.- D. Fox, Phys.Rev. 94, 499 (1954). 2m.- R. N. Thorn, Phys.Rev. 94, 501 (1954). 2n.- K. A. Johnson, Phys.Rev. <u>96</u>, 1659 (1954). 2o.- Ch. Goebel, Phys.Rev. <u>103</u>, 258 (1956). 2p.- H. P. Duerr, Phys.Rev. <u>103</u>, 469 (1956). 2q.- L.M.Brown, M.Peshkin, Phys.Rev. <u>103</u>, 751 (1956). 2r.- G. Sudarshan, Phys.Rev. 103, 777 (1956). 3a.- O. Chamberlain et al., Phys.Rev. 100, 947 (1955). 3b.- R. D. Hill et al., Phys.Rev. 101, 907 (1956). 3c.- O. Chamberlain et al., E. Amaldi et al., P.R.101,909(1956) 3d.- O. Chamberlain et al., E. Amaldi et al., P.R. 102,921(1956) 4 .= 0. Chamberlain et al., Phys.Rev. 102, 1637 (1956). 5 .- J. M. Brabant et al., Phys.Rev. 102, 1622 (1956). 6a.- H. J. Bhabha, Proc. Roy. Soc. A154, 195 (1935). 6b.- A. Ashkin et al., Phys.Rev. 94, 357 (1954).

APENDICE I

Descripción del Experimento para la Producción y Betec ción del Antiprotón. (O. Chamberlain, E. Segre, C. Wiegand, T. Ypsilantis, Phys. Rev. <u>106</u>, 947 (1955).

La detección de los antiprotones producidos por colisiones protón - protón al incidir el has de protones del <u>Be</u> vatrón sobre un blanco de cobre, está basada en la determinación simultánea del impulso y de la velocidad de las partículas negativas producidas en el blanco del Bevatrón.

Figura 4.- Diagrama esquemático del dispositivo de detección.

La Figura 4 muestra un diagrama esquemático del dispositivo de detección. El haz de protones incide sobre un blan co de cobre, y se producen partículas negativas que salen en dirección delantera con un impulso de 1.19 Bev/c. Estas -partículas sufren una desviación de 21° por el campo del B<u>e</u> vatrón, y una desviación adicional de 32° por el electro-imán M₁. Con ayuda del cuadrupolo magnético de enfecamiento Q₁, las partículas son enfocadas al contador de centelleo S₁. Después de pasar por el primer contador de centelleo S₁. Después de pasar por el primer contador de centelleo S₁, las partículas son nuevamente enfocadas por Q₂, y desviadas 34° por M₂, para ser enfocadas sobre el segun do contador de centelleo S₂. Las partículas enfocadas en -S₂ tienen todas el mismo impulso dentro de un 2 %.

Después de pasar por S₂, las partículas pasan por los contadores de derenkov C₁ y C₂, y por el tercer contador de centelleo S₃. Las partículas de masa protónica e impulso l.19 Bev/c que inciden sobre S₂, tienen una velocidad v/c= β = 0.78. La pérdida de energía por ionización al -atravesar los contadores S₂, C₁ y C₂ reduce su velocidad a β = 0.765. El contador C₁ detecta aquellas partículas -cargadas para las cuales $\beta > 0.79$, en tanto que el contador C₂ está diseñado para detectar sólo aquellas partículas -cuya velocidad se encuentra dentro del intervalo 0.75< β < 0.78. La producción de un pulso en el contador C₂ constituye entonces una determinación de la velocidad de la partícu-

La velocidad de las partículas puede también determi-narse observando el tiempo de vuelo entre los contadores S1

b

y S₂, separados por una distancia de 13.3 m. Mediante la determinación del tiempo de vuelo, la distinción entre ant<u>i</u> protones y piones negativos es perfectamente posible , ya que piones negativos con un impulso de 1.19 Bev/c tienen una velocidad de $\beta = 0.99$, y un tiempo de vuelo de 40 milim<u>i</u> crosegundos, en tanto que la velocidad de un antiprotón con el mismo impulso es de $\beta = 0.78$, y su correspondiente tiempo de vuelo es de 51 milimicrosegundos. La distinción entre un antiprotón y un pion negativo puede hacerse entonces exa minando las fotografías de las trazas producidas por los -pulsos en S₁ y S₂ en la pantalla de un oscilógrafo.

El haz de partículas que pasa por el dispositivo de d<u>e</u> tección está formado principalmente por piones negativos y por unos cuantos antiprotones ; una de las mayores dificultades del experimento consistió en la distinción entre ant<u>i</u> protones y piones negativos. Esta distinción se consiguió requiriendo que los contadores S₁, S₂, C₂ y S₃ contaran en coincidencia. Una coincidencia S₁S₂ indica que una part<u>í</u> cula de impulso 1.19 Bev/c ha atravesado el sistema con un tiempo de vuelo de 51 milimicrosegundos. La coincidencia en C₂ indica que la velocidad de la partícula está dentro del intervalo 0.75 < β < 0.78. Finalmente, la coincidencia en S₃ indica que la partícula ha pasado por C₂ a lo largo del eje sin sufrir dispersión por un ángulo muy grande, y de esta m<u>a</u> nera , la partícula que sale de S₃ puede identificarse como un antiprotón.

Para completar la identificación de estas partículas como antiprotones, se hizo también una determinación de la masa mediante el procedimiento que se describe a continuación.Cambiando los valores del campo magnético en M_1 , M_2 , Q_1 y Q_2 , pueden escogerse partículas de diferente impulso, y si el selector de velocidades permanece inalterado, el aparato de detección trabaja para partículas de masas di-ferentes.

Figura 5.-Intensidad del haz para diferentes valores de la masa.

Estas pruebas con partículas de diferente masa se hi-cieron con partículas positivas y negativas en la vecindad de la masa del protón, y los resultados obtenidos se encuen tran en la Figura 5, en la cual se observa la existencia de un pico de intensidad en la vecindad de la masa del protón, y los resultados indican que las partículas negativas detec tadas tienen una masa igual dentro de un 5% a la masa del protón. Este experimento completa la identificación de ta-les partículas como antiprotones.

APENDICE II

Descripción del Experimento para la Determinación de las Secciones. (O. Chamberlain, E. Segre, R.D. Tripp, C. Wiegand, T. Ypsilantis, Phys. Rev. <u>102</u>, 1637 (1956).

Los antiprotones que salen del contador S₃, y que -son identificados como tales mediante el procedimiento de<u>s</u> crito en el apéndice I, se hacen incidir sobre un absorbente, y a la salida de éste se colocan dos contadores adicionales C₃ y S₄, de la manera indicada en la Figura 6.

Figura 6.- Diagrama esquemático del aparato de atenuación.

e

El contador S4 es un contador de centelleo sensible a todas las partículas cargadas que lo atraviesan. Estas partí culas pueden ser de dos tipos, (a) antiprotones de paso, o sea, antiprotones que no fueron dispersados, o que a lo más fueron dispersados por un ángulo menor que el ángulo medio -Oc subtendido por el contador en el centro del absorbente, y (b) partículas secundarias cargadas resultantes de la aniqui lación de un antiprotón con un nucleón. Para determinar las secciones correctamente es necesario poder distinguir los -secundarios de los antiprotones de paso, y esto se consigue mediante el uso del contador de Cerenkov C3 que es sensi-ble únicamente a aquellas partículas con velocidad $\beta > 0.75$. Puesto que los antiprotones incidentes tienen una velocidad B = 0.75 antes de entrar al atenuador, no son detectadas por el contador C3 , el cual sólo detecta entonces secun-darios producidos por la aniquilación de un par antiprotón protón o antiprotón neutrón.

Una partícula incidente siempre produce un pulso en S₃. En los otros dos contadores S₄ y C₃, hay cuatro combinaciones posibles de respuestas, las cuales se denotan por $\overline{C_3}$ S₄, C₃ S₄, C₃ $\overline{S_4}$, $\overline{C_3}$ $\overline{S_4}$, donde la barra indica que no hubo respuesta en el contador correspondiente.

Puesto que un antiprotón de paso no puede ser detectado por C₃, pero sí por S₄, la combinación $\overline{C_3}$ S₄ se interpreta como un antiprotón de paso, o sea, se supone que todos los

f

eventos C3 S4 representan antiprotones de paso.

Se supone que todas las aniquilaciones producen una par tícula cargada con $\beta > 0.75$ en el cono de aceptación de C₃, de modo que todos los eventos C₃ S₄ y C₃ S₄ se interpretan como aniquilaciones.

g

La combinación $C_3 S_4$ se interpreta como un evento en el cual un antiprotón fué dispersado por un ángulo mayor que Θ_c sin producir secundarios cargados en el cono de aceptación de C₃.

En la Tabla III se indican los resultados obtenidos para las secciones de aniquilación (Ga) y dispersión (G_S) de antiprotones usando atenuadores de cobre y de berilio.

blanco	θc	Gs	Ga
8" Be	18°	0.19 ± 0.07	0.17 ± 0.06
3" Cu	12.7°	0.53 ± 0.11	1.05 ± 0.22

Tabla III.- Secciones de aniquilación y de dispersión de antiprotones en Be y en Cu , medidas en barns.