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Aplicadas y Sistemas

Co-Tutor:
Dra. Kerstin Inge Eder

Posgrado en Ciencia e Ingenieŕıa de la Computación
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Introduction

A Model Checker is a tool that verifies whether or not a property, written as a formula
of a certain logic, is satisfied by a model of a system [22]. Several and diverse model
checkers have been developed, amongst them we can mention:

• NuSMV [5], a Sat-based and Bdd-based model checker, that expresses its spec-
ifications in LTL and CTL.

• PRISM [17], which manipulates various types of probabilistic models such as
Discrete Time Markov Chains and Probabilistic Automata. Its specification lan-
guage incorporates the temporal logics PCTL, CSL, LTL and PCTL*.

• SPIN [32], where the system models are described through the modelling lan-
guage PROMELA (Process Meta Language), that emphasises the modelling of
process synchronisation and coordination. Besides SPIN’s built-in correctness
requirements, other correctness properties can be specified as LTL formulas.

• Kronos [32], which checks whether a real-time system modelled by a Timed Au-
tomaton satisfies a timed property specified by a TCTL formula.

However, looking at the features of the previous model checkers, it seems that
one of the most relevant probabilistic models has been ruled out, namely the Hidden
Markov Model (HMM). Such a model was first studied in the late 1960s and early
1970s by Baum. Later on, Rabiner published a pivotal tutorial about HMM in the
late 1980s [27]. As a consequence, a myriad of HMM’s applications have been studied,
such as speech recognition [19, 27], computational biology [15], compressed document
processing [18], human gesture recognition [28], text recognition [8], and human-robot
interaction [11, 12]. Would not it be interesting to study and analyse whether or
not certain properties are satisfied in these situations? We think, the answer is an
overwhelming ‘yes’.

Naturally, it is highly interesting to consider how we can state and verify proper-
ties of HMM-based systems. This task, apparently forgotten by the previous model
checkers, is investigated here. The main contribution of this project thesis is the con-
struction, in the Haskell programming language, of a model checker that makes use
of HMMs to model the systems of interest, and whose specifications are formulated by
the logic POCTL* [36]. Noticeably, as far as we know, there exists no model checker for
this logic elsewhere, an assertion reinforced by first-hand comments of H. Hermanns,
one of the creators of POCTL*. Additionally, to give a real-world example of the op-
eration of our model checker, we address the basic human-robot handover interaction,
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where safety and liveness properties must be guaranteed to regard such activity as
reliable to be carried out in real life [10, 11, 12]. We study the handover interaction
based on the robot Bert2 [20].

The research questions considered in this thesis are:

• How is the model checking algorithm for POCTL* modified, with respect to its
original description, when we seek to implementing it?

• What are the conveniences and difficulties, in terms of code generation, of imple-
menting the model checker in Haskell?

• Can we get an HMM, suitable for our model checker, that captures the basic
handover interaction on Bert2?

• How likely is the object dropped when the basic handover task is performed on
Bert2?

In this thesis we have two aims. First, we implement a model checker that verifies
properties of systems represented by HMMs. Such properties are stated through the
expressive power of POCTL*. Secondly, using the resulting tool of the first aim, we
verify whether or not safety and liveness properties hold under the scenario in which a
robot hands an object over to a human.

The first aim comprises the implementation of the model checking algorithm for
the logic POCTL*. This algorithm is outlined in three main stages and follows the
idea given in Zhang’s thesis [35]. The input of the model checker consists of both an
HMM, which takes the form of a file with extension .poctl, and a POCTL* formula.
We accomplish our second aim by building, out of a series of experiments run on
Bert2, an HMM that models the basic handover process. Then, we formulate safety
and liveness properties for this human-robot interaction. Finally, the model checker is
provided with the previous HMM and properties. The evaluation of its corresponding
outcomes should allow us to conclude that this handover process is trustworthy.

The rest of this thesis is organised as follows. In Chapter 1, HMMs are defined
and their three fundamental problems are shown with their particular solutions. Here,
probability measures on HMMs, needed by the POCTL* semantics, are also studied.
In Chapter 2, the logic POCTL* is given, together with its syntactic rules and semantic
relations; moreover, some important sublogics and examples of the POCTL* expres-
siveness are also available. The model checking algorithm is described in Chapter 3.
Besides the mere algorithm, this chapter gives the reasoning on which every single
instruction of the model checker is built upon. In Chapter 4, we focus on the actual
Haskell implementation of the model checker. We take advantage of this functional
programming language to ease the coding task. Lastly, the explanation of the handover
process, run on the Bert2’s platform, is contained in Chapter 5. It provides details
on the construction of an HMM representing this interaction. Also, safety and liveness
properties related to the handover situation are drawn on. Both the HMM and the
properties are passed to our model checker, whose results are evaluated in terms of the
handover task.
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Chapter 1

Hidden Markov Model

The impediment of knowing all the elements that affect a system or agent is an uncer-
tainty that must be studied; moreover, it is interesting to consider how the environment
changes with time. Among the more relevant models used to represent this probabilistic
situation is the Markov Model. In this chapter, we will introduce the Hidden Markov
Model. We start briefly discussing the Discrete Time Markov Chain (DTMC), then we
move on to present the Hidden Markov Model.

1.1 Discrete Time Markov Model

Suppose that we have a system with n states (S0, S1, . . . , Sn−1). With each of them
we associate an observable event happening in our environment in a way that, for each
discrete time interval, a transition between states is produced. We name the instance
in which the transition takes place as t = 0, 1, . . ., and the state in which the system
is at the moment t as qt. Furthermore, let the system be a first-order Markov process,
i.e., the current state qt depends only on the previous state qt−1 and not on states
before to qt−1, so the next equality holds:

P [qt = Sj | qt−1 = Si, qt−2 = Sk, . . . q0 = Sl] = P [qt = Sj | qt−1 = Si].

We also assume that the DTMC is homogeneous, in other words, the above equation
is true for every t. Hence we can define a DTMC giving the transition probabilities
between states aij = P [qt = Sj | qt−1 = Si].

To study additional properties of DTMCs we label the states with atomic proposi-
tions that represent interesting assertions of the system.

Definition 1.1. A labelled Discrete Time Markov Chain is a tuple D = (S,A, L, π)
where:

• S = {S0, S1, . . . , Sn−1} is a finite set of states;

1



2 Chapter 1. Hidden Markov Model

• A is a state transition probability matrix, such that:

A = {aij} 0 ≤ i, j ≤ n− 1,

aij ≥ 0 0 ≤ i, j ≤ n− 1,

n−1∑
j=0

aij = 1 0 ≤ i ≤ n− 1;

• L : S → 2AP , L is a labelling function that maps a state in S to a subset of the
set of atomic propositions AP ;

• π is an initial probability distribution over S, such that:

πi = P [q0 = Si] ≥ 0 0 ≤ i ≤ n− 1,
n−1∑
i=0

πi = 1.

Consider the following example. Say that we are interested in knowing what the
weather in Bristol, UK, is going to be like using DTMCs. To simplify our problem
let us say that we can choose from three different states: rainy (S0), drizzly (S1) and
cloudy (S2); and that the weather conditions in Bristol are checked once a day.

The transition probability matrix A is

A =

 0.4 0.4 0.2
0.3 0.4 0.3
0.2 0.5 0.3

 .

The initial distribution is π = [0.35, 0.4, 0.25].
Finally, the set of atomic propositions AP contains two elements: p, which declares

that people in Bristol go to the pub; and q, which indicates that people in Bristol stay
home watching a film. So, the labelling function is

L(S0) = {q}, L(S1) = {p}, L(S2) = {p}.

We would like to know the probability of the weather forecast for the next four
days to be cloudy – cloudy – rainy – drizzly. Let O be the observation sequence
O = {S2, S2, S0, S1}. The desired probability is found using the product rule (see
Appendix A.1) three times, so

P (O |D) = P [S2, S2, S0, S1 | D]

= P [S2] · P [S2 |S2] · P [S0 |S2] · P [S1 |S0]

= π2 · a22 · a20 · a01

= 0.25 · 0.3 · 0.2 · 0.4
= 0.006.
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Now, we want to know the probability that, in a three-day period, on the third day
people stay at home watching a film. We know that this only happens if, on the third
day, the atomic proposition q holds. In other words, if the last state of the sequence
O = {q0, q1, q2} is S0. Applying marginalisation (see Appendix A.1) and the product
rule, we obtain

P [q2 = S0 | D] =
∑

i,j∈{0,1,2}

P [q0 = Si, q1 = Sj, q2 = S0 | D]

=
∑

i,j∈{0,1,2}

P [Si] · P [Sj |Si] · P [S0 |Sj]

=
∑

i,j∈{0,1,2}

πi · aij · aj0

= π0 · a00 · a00 + π0 · a01 · a10 + π0 · a02 · a20+

π1 · a10 · a00 + π1 · a11 · a10 + π1 · a12 · a20+

π2 · a20 · a00 + π2 · a21 · a10 + π2 · a22 · a20

= 0.112 + 0.12 + 0.0725

= 0.3045.

1.2 Hidden Markov Model

Let us recall that the states in a DTMC represent an observable event. This restriction
prevents us from modelling many interesting processes. Thus, we extend this model
so that the observation currently seen is the output of a probabilistic function over
the states. So a Hidden Markov Model (HMM) is a doubly embedded stochastic1

process [27, 31, 35, 36]. We can say that an HMM has two layers, one on top of the
other. The stochastic process (a DTMC) on the underlying layer is not visible, i.e., it
is hidden, and can be seen only through the stochastic process on the external layer
that effectively produces a visible sequence of observations.

The Hidden Markov Model has important and many applications such as speech
recognition, DNA sequence analysis and robot control. Before giving a formal defini-
tion, we present next an example of the use of HMMs.

Suppose that we are interested in predicting the food offered at our favourite restau-
rant. The choice depends on the chef’s mood. Say that he or she can only be either
happy (H) or upset (U). Furthermore his or her mood changes stochastically. Nonethe-
less, the chef is busy all the time and we do not want to unexpectedly enter the kitchen
just to ask for the chef’s mood. Moreover, we know that the main course the chef
cooks depends probabilistically on his or her mood. The main course the chef prepares
is any of the following: steak (S), pasta (P ) or haddock fillet (F ). We wonder: what

1A process is stochastic if it is not deterministic, where the uncertainty of the possible outcomes
is expressed in terms of probabilities [29].



4 Chapter 1. Hidden Markov Model

H U

S P F

0.7

0.3

0.5 0.3 0.2

0.6

0.4

0.60.1 0.3

Figure 1.1: An HMM diagram for the chef’s mood problem.

is the probability that the main course for the next five days is P , P , S, F and S,
respectively?

It is clear that the states of the HMM modelling this situation are H and U . We
consider the observations as the possible meals S, P and F . The chef’s change of mood
from one day to the other is described by the transition probability matrix:

A =

( H U

H 0.7 0.3
U 0.4 0.6

)
.

The relation between the chef’s mood and the meal he or she cooks is pictured in the
observation probability matrix:

B =

( S P F

H 0.5 0.3 0.2
U 0.1 0.6 0.3

)
.

In Figure 1.1 the transition probabilities between states are expressed with a con-
tinuous line, while the observation probabilities are depicted with dotted lines.

Finally, assume that on the first day someone tells us how likely the chef’s mood is
going to be on that day, thus we get the following initial state distribution

π =
( H U

0.6 0.4
)
.

Definition 1.2. The labelled Hidden Markov Model consists of a tuple H = (S,A,Θ,
B, L, π), where:

• (S,A, L, π) is a labelled Discrete Time Markov Chain (see Definition 1.1);

• Θ is a set of m observations, such that Θ = {v0, v1, . . . , vm−1};

• B is the observation probability matrix of dimension n × m, such that B is a
collection of observation symbol distributions in the states of the model, i.e.,
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B = {bj(k)} with,

bj(k) = P [vk at the instant t | qt = Sj], 0 ≤ j ≤ n− 1,

0 ≤ k ≤ m− 1.

Additionally, the probabilities bj(k) are independent of t.

The procedure an HMM follows to generate the observation sequence O = {o0,
o1, . . . , oT−1}, with each oi ∈ Θ, is described below:

1. For t = 0, an initial state is chosen, qt = Si, according to the initial distribution
π.

2. We pick an observation, ot = vk, using the distribution bi(k); notice that this
observation distribution is in the state Si.

3. The model transits to the state qt+1 = Sj, as dictated by the state transition
probability aij.

4. If t < T − 1, we update the time t = t + 1 and jump to step 2; otherwise the
procedure finishes.

1.2.1 The three basic problems for HMMs

In 1989, Rabiner wrote an outstanding tutorial on HMMs, where he shows the three
fundamental problems originally asked by Jack Ferguson. Furthermore, Rabiner gives
elegant and efficient solutions to these problems in his tutorial [27], which we also
present after stating the three respective problems.

Let O = {o0, o1, . . . , oT−1} be an observation sequence and H be an HMM, the
three basic problems are:

Problem 1. How do we efficiently compute the probability of O given the model H,
i.e., P [O |H]?

Problem 2. How do we choose an optimal state sequence that best explains the ob-
servations O? That is, how do we unveil the hidden state sequence?

Problem 3. How do we adjust the model parameters such that P [O |H] is maximised?

Solution to Problem 1

To solve Problem 1, we need to find P [O |H], i.e., the probability that the observation
sequence O = {o0, o1, . . . , oT−1} is produced, given the model H. Observe that the
desired probability does not choose a particular state sequence, hence we must look at
all possible state sequences of length T . Let Q = q0q1 . . . qT−1 be one of such sequences.
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If we assume that Q has occurred, the probability is computed by taking the values of
the current state producing the respective observation,

P [O |Q,H] =
T−1∏
t=0

P [ot | qt,H] = bq0(o0)bq1(o1) · · · bqT−1
(oT−1). (1.1)

Notice that Q starts in q0, then it moves onto q1, after that to q2, and so on until
it reaches qT−1. Therefore, the probability of Q being generated is

P [Q |H] = πq0aq0q1aq1q2 · · · aqT−2qT−1
. (1.2)

Using the formula for conditional probability (see Appendix A.1) we get the equa-
tion,

P [O, Q |H] = P [O ∧Q |H] =
P [O ∧Q ∧H]

P [H]
.

Also, it is true that,

P [O |Q,H] P [Q |H] =
P [O ∧Q ∧H]

������
P [Q ∧H]

·������
P [Q ∧H]

P [H]
=
P [O ∧Q ∧H]

P [H]
.

Consequently,
P [O, Q |H] = P [O |Q,H] P [Q |H].

Observe that we already know the values of P [O |Q,H] and P [Q |H] by Equations
(1.1) and (1.2), respectively.

To calculate the probability of O, given the model H, we add up the joint prob-
ability over Q on the left-hand side of the previous equation. This task is known as
marginalisation (see [29] and Appendix A.1). Accordingly,

P [O |H] =
∑

for all Q

P [O, Q |H] (1.3)

=
∑

for all Q

P [O |Q,H] P [Q |H]

=
∑

for all Q

πq0bq0(o0)aq0q1bq1(o1) · · · aqT−2qT−1
bqT−1

(oT−1).

This direct computation has a poor performance, since it involves on the order of 2TnT

calculations, because we have nT possible state sequences and, according to the above
summation, for each such state sequence about 2T computations are executed. The
resulting running time is computationally unfeasible.

There exists, however, an efficient method to compute this probability. The process
is known as the forward algorithm, for which we define the forward variable αt(i) as
the probability of the partial observation sequence o0o1 . . . ot and state Si at time t,
given the model H, i.e.,

αt(i) = P [o0, o1, . . . , ot, qt = Si |H].

The definition of the forward variable is inductive, as shown next:
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Initialisation: We need to start in state Si and see the observation o0 there. That is,

α0(i) = πibi(o0), 0 ≤ i ≤ n− 1.

Induction: We wish to find the value of αt(j), the probability of the partial obser-
vation o0 . . . ot and state Sj at instance t. Now let us consider the probability
that in the previous instance the state Si is reached and the observation sequence
o0 . . . ot−1 is seen, i.e., αt−1(i), then we move from Si to Sj, i.e., aij. Once in state
Sj, we should observe ot, i.e., bj(ot). Consequently,

αt(j) =

[
n−1∑
i=0

αt−1(i)aij

]
bj(ot), 1 ≤ t ≤ T − 1, 0 ≤ j ≤ n− 1.

Termination: Finally, applying marginalisation to P [O |H] we obtain,

P [O |H] =
n−1∑
i=0

P [O, qT−1 = Si |H]

=
n−1∑
i=0

αT−1(i).

To find out the complexity of the forward algorithm, we note that the forward
variable, αt(j), needs n+1 multiplications at the induction step. This is done for every
time 1, 2, . . . , T − 1. Moreover, this is carried out for the n states of the system, hence
we have n(n + 1)(T − 1) multiplications. We must also consider the multiplication
required by the initialization step of α for all n states. Thus, the total number of
multiplications used by the forward variable is n(n+ 1)(T − 1) + n. A similar analysis
shows that the number of additions used is n(n − 1)(T − 1). So, the computation
required by this method is on the order of n2T , a much smaller number of operations
than the ones involved in the naive approach.

By the forward algorithm, we can now address the question we were wondering when
discussing the chef’s mood problem. The probability that the main course for the next
five days is P , P , S, F and S, respectively, i.e., P [O |H], where O = {P, P, S, F, S} and
H is the model given as an example in Section 1.2, is P [O |H] =

∑1
i=0 α4(i) = 0.00431.

Solution to Problem 2

There are several possible ways of solving Problem 2, that is, finding the “optimal”
state sequence Q = {q0q1 · · · qT−1} associated with the given observation sequence O =
{o0 · · · oT−1}, because there are several possible optimality criteria. The one discussed
here focuses on finding the single best state sequence, i.e., it maximises P [Q | O,H].
By the product rule (see Appendix A.1), P [Q | O,H] = P [Q,O |H] /P [O |H]. Thus
this optimality criterion is equivalent to maximising P [Q,O |H]. The process that
computes this state sequence is known as the Viterbi algorithm and is described next.
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We define the quantity

δt(i) = max
q0, ..., qt−1

P [q0 · · · qt = Si, o0 · · · ot |H],

that is, δt(i) is the highest probability along a single path, at time t, which accounts
for the first t observations and ends in state Si. By induction we have

δt(j) = max
0≤i≤n−1

[δt−1(i)aij] · bj(ot).

We realise the need to keep track of the argument i which maximised the last expression,
for each t and j. That is why we use the array ψ, where the cell ψt(j) holds the state
index that maximises the probability of the observation sequence o0o1 · · · ot−1 and state
Sj at time t.

Another important aspect to highlight is the fact that underflow is likely to happen
since we are going to multiply numbers close to zero. We cope with this problem by
simply taking logarithms and adding them up.

Below, the complete Viterbi algorithm is stated; next to its conventional definition,
its logarithmic version appears.

Initialisation: For 0 ≤ i ≤ n− 1,

Conventional: δ0(i) = πibi(o0), Logarithmic: δ0(i) = log(πi) + log(bi(o0)).

Induction: For 1 ≤ t ≤ T − 1 and 0 ≤ j ≤ n− 1,

Conventional:


δt(j) = max

0≤i≤n−1
[δt−1(i)aij] bj(ot),

ψt(j) = arg max
0≤i≤n−1

[δt−1(i)aij].

Logarithmic:


δt(j) = max

0≤i≤n−1
[δt−1(i) + log(aij)] + log(bj(ot)),

ψt(j) = arg max
0≤i≤n−1

[δt−1(i) + log(aij)].

Termination:

Both versions:


P ∗ = max

0≤i≤n−1
[δT−1(i)],

q∗T−1 = arg max
0≤i≤n−1

[δT−1(i)].

Path backtracking: For t = T − 2, T − 3, . . . , 0,

Both versions: q∗t = ψt+1(q∗t+1).

We should notice that this algorithm is an instance of dynamic programming and
that it resembles the forward algorithm. The major difference is the maximisation
calculation over previous states performed in the Viterbi algorithm, whereas in the
definition of the forward variable a summation is computed instead.
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Solution to Problem 3

To deal with Problem 3 we use a procedure called backward variable, βt(i), that is
reminiscent of the forward variable, αt(i), shown in the solution of Problem 1. The
backward variable is defined as

βt(i) = P [ot+1ot+2 . . . oT−1 | qt = Si,H].

It is interpreted as the probability of the partial observation sequence form t+ 1 to the
end, given state Si at time t and the model H. We give an inductive definition of βt(i)
as follows:

Initialisation: We define for 0 ≤ i ≤ n− 1,

βT−1(i) = 1.

Induction: To have been in state Si at time t, and the observation sequence from
time t + 1 on to occur, we have to examine all possible states Sj at time t + 1,
the cost of going from state Si to Sj, as well as that of producing the observation
ot+1 in state Sj. Finally, we consider the remaining partial observation sequence
beginning in state Sj, i.e., βt+1(j). So,

βt(i) =
n−1∑
j=0

aijbj(ot+1)βt+1(j), t = T − 2, T − 3, . . . , 0, 0 ≤ i ≤ n− 1.

The running time required to compute βt(i), for 0 ≤ t ≤ T −1 and 0 ≤ i ≤ n−1,
is on the order of n2T calculations.

Baum-Welch algorithm

Now we address the problem of adjusting the model matrices A, B and π, to maximise
the probability of the observation sequence O given the original model H. We will
depict an iterative procedure known as the Baum-Welch method that produces a new
model H = (S,A,Θ, B, L, π) such that P [O |H] is locally maximised. To that end we
must define two more probability values, namely ξt(i, j) and γt(i).

We first define ξt(i, j) as the probability of being in state Si at time t, and in state
Sj at time t+ 1, given the observation sequence O and the model H, that is,

ξt(i, j) = P [qt = Si, qt+1 = Sj | O,H].

Thanks to the conditional probability formula, we see that the previous equation can
be written as,

ξt(i, j) =
P [qt = Si, qt+1 = Sj,O |H]

P [O |H]
.
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It is clear that ξt(i, j) can be easily expressed using the forward and backward variables
as shown next:

ξt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)

P [O |H]

=
αt(i)aijbj(ot+1)βt+1(j)

n−1∑
i=0

n−1∑
j=0

αt(i)aijbj(ot+1)βt+1(j)

.

We also define γt(i) as the probability of being in state Si at time t, given the
observation sequence O and the model H, that is, γt(i) = P [qt = Si | O,H]. Applying
the conditional probability formula to the right-hand side results in

γt(i) =
P [qt = Si,O |H]

P [O |H]
.

This equation can be simply expressed in terms of the forward and backward vari-
ables, i.e.,

γt(i) =
αt(i)βt(i)

P [O |H]
=

αt(i)βt(i)
n−1∑
i=0

αt(i)βt(i)

.

Additionally, we can relate γt(i) to ξt(i, j) by summing over the states Sj, giving
γt(i) =

∑n−1
j=0 ξt(i, j).

A further examination of γt(i) reveals that if we sum it over the time t, ignoring
the time slot t = T − 1, we get a quantity which can be interpreted as the expected
number of transitions made from state Si. Thus,

T−2∑
t=0

γt(i) = expected number of transitions from Si.

Likewise, summation of ξt(i, j) over t, with 0 ≤ t ≤ T − 2, can be interpreted as
the expected number of transitions from state Si to state Sj. That is,

T−2∑
t=0

ξt(i, j) = expected number of transitions from Si to Sj.

A method for reestimation of the parameters of an HMM can be drawn via the
two newly defined variables and the idea of counting event occurrences. As a result we
have:
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πi = expected number of times in state Si at the initial intance = γ0(i),

aij =
expected number of transitions from state Si to state Sj

expected number of transitions from state Si
=

T−2∑
t=0

ξt(i, j)

T−2∑
t=0

γt(i)

,

bj(k) =
expected number of times in Sj and observing symbol vk

expected number of times in state Sj
=

T−1∑
t=0

s.t. ot=vk

γt(j)

T−1∑
t=0

γt(j)

.

The reestimated model H is more likely to have produced the observation sequence
O than model H, i.e., P (O |H) ≥ P (O |H). From that we see that if we iterate this
process using H in place of H and carry out the reestimation operations once again,
we can then improve the probability of O being generated from the model until some
threshold is reached.

Since αt(i) consists of a sum of several terms involving the multiplication of αt−1(j),
aji and bi(ot), which are less than 1 by far, each αt(i) starts to head exponentially to
zero as t gets bigger. For sufficiently large values of t, the computation of αt(i) will
exceed the precision range of practically any computer. Therefore a scaling procedure
must be implemented. In order to keep the scaled αt(i) within the precision range
handled by the computer, the scaling procedure multiplies αt(i) by a scaling coefficient
ct independent of i. For the backward variable βt(i) a similar scaling process has to be
done. This causes the scaling coefficients to cancel out at the end of the reestimation
process.

The scaled value of αt(i) is kept in the variable α̂t(i). For 0 ≤ t ≤ T − 1 we have,

ct =
1

n−1∑
i=0

?
αt(i)

, α̂t(i) = ct
?
αt(i), 0 ≤ i ≤ n− 1,

where
?
α0(i) = πibi(o0) and

?
αt(i) =

[∑n−1
j=0 α̂t−1(j)aji

]
bi(ot), if 1 ≤ t ≤ T − 1.

The scaled βs are found according to the equation β̂t(i) = ct
?

βt(i), where
?

βT−1(i) = 1,
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and
?

βt(i) =
∑n−1

j=0 aijbj(ot+1)β̂t+1(j) if t = T − 2, . . . , 0. Observe that the same scaling

factor ci is used on both α̂t(i) and β̂t(i).
Moreover, the previously studied reestimation equations incorporate the scaled vari-

ables as:

πi = γ0(i) =
n−1∑
j=0

ξ0(i, j) =

n−1∑
j=0

α̂0(i)aijbj(o1)β̂1(j)

n−1∑
i=0

n−1∑
j=0

α̂0(i)aijbj(o1)β̂1(j)

,

aij =

T−2∑
t=0

ξt(i, j)

T−2∑
t=0

γt(i)

=

T−2∑
t=0

ξt(i, j)

T−2∑
t=0

n−1∑
j=0

ξt(i, j)

=

T−2∑
t=0

α̂t(i)aijbj(ot+1)β̂t+1(j)

T−2∑
t=0

n−1∑
j=0

α̂t(i)aijbj(ot+1)β̂t+1(j)

,

bj(k) =

T−1∑
t=0

s.t. ot=vk

γt(j)

T−1∑
t=0

γt(j)

=

T−1∑
t=0

s.t. ot=vk

α̂t(j)β̂t(j)

ct

T−1∑
t=0

α̂t(j)β̂t(j)

ct

.

From the previous equations just the one related to aij is presented in Rabiner’s
tutorial. The equations for πi and bj(k) are simply found using the new scaled α̂t(j)

and β̂t(j). In addition, we will show that in the product α̂t(j)β̂t(j) the term ct is
multiplied twice, that is why we divide by ct when computing bj(k). First, we see

that α̂t(i) =
∏t

k=0 ckαt(i) and β̂t(i) =
∏T−1

k=t ckβt(i) can be proven by induction on t.
Consequently,

bi(k) =

T−1∑
t=0

s.t. ot=vk

α̂t(j)β̂t(j)

ct

T−1∑
t=0

α̂t(j)β̂t(j)

ct

=

T−1∑
t=0

s.t. ot=vk

∏t
k=0 ckαt(i) ·

∏T−1
k=t ckβt(i)

ct

T−1∑
t=0

∏t
k=0 ckαt(i) ·

∏T−1
k=t ckβt(i)

ct

=

T−1∑
t=0

s.t. ot=vk

ct
∏T−1

k=0 ck αt(i)βt(i)

ct

T−1∑
t=0

ct
∏T−1

k=0 ck αt(i)βt(i)

ct

=

T−1∑
t=0

s.t. ot=vk

αt(i)βt(i)

T−1∑
t=0

αt(i)βt(i)

.
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The last formula is precisely the original reestimation expression for bi(k), so the
scaling process works well. Using a similar argument we can prove that πi and aij also
compute the reestimated values correctly.

In Chapter 5, we will train an HMM using a kind of model that goes from one state
to another in a sequential manner, for which a single observation sequence is not enough
to adequately train the model. The reason is that, for any state within the model, only
a small number of observations is allowed to be brought on; from there, a transition may
be made to the next state and more observations may be yielded. Therefore, in order
to have sufficient data to make reliable estimates of the model parameters, multiple
observation sequences have to be considered. The modification of the reestimation-
scaling formulas is straightforward. We simply append to the formulas we already
have an extra summation that combines the individual frequencies of occurrence for
each observation sequence, as is explained below. The details on how to train an HMM
with multiple observation sequences are found in [34].

Let O be a set of observation sequences such that

O = {O(0),O(1), . . . ,O(K−1)},

where O(k) = {o(k)
0 , o

(k)
1 , . . . , o

(k)
T−1} are individual observation sequences. Assume fur-

ther that each observation sequence O(k) is independent from the others.

Finally, taking into account the multiple observation sequences, the final reestimation-
scaling formulas, used in Chapter 5 are

πi =
1

K

K−1∑
k=0


n−1∑
j=0

α̂
(k)
0 (i)aijbj(o

(k)
1 )β̂

(k)
1 (j)

n−1∑
i=0

n−1∑
j=0

α̂
(k)
0 (i)aijbj(o

(k)
1 )β̂

(k)
1 (j)

 ,

aij =

K−1∑
k=0

T−2∑
t=0

α̂
(k)
t (i)aijbj(o

(k)
t+1)β̂

(k)
t+1(j)

K−1∑
k=0

T−2∑
t=0

n−1∑
j=0

α̂
(k)
t (i)aijbj(o

(k)
t+1)β̂

(k)
t+1(j)

,

bj(m) =

K−1∑
k=0

T−1∑
t=0

s.t. o
(k)
t =vm

α̂
(k)
t (j)β̂

(k)
t (j)

ct

K−1∑
k=0

T−1∑
t=0

α̂
(k)
t (j)β̂

(k)
t (j)

ct

.
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K-means

The K-means procedure is another technique for adjusting parameters. It requires
an initial model H and a set of training observation sequences. These observations
sequences are segmented into states according to the optimal state sequence calculated
with the Viterbi algorithm and the model H. This segmentation into states allows us
to count the number of times that each state Si was visited and the number of times
that such state saw the observation vm generated. Hence, reestimation formulas can
be found from this counting of event occurrences. The new value for πi is obtained
by dividing the number of times the optimal state sequence started at Si by the total
number of training observation sequences. We assign to aij the result of dividing the
number of transitions from Si to Sj by the total number of transitions from Si to any
state. Finally, we compute bj(vm) as the number of observations with index m, i.e.,
vm, generated in state Sj divided by the total number of observations seen in state Sj.

The K-means procedure is clear and simple to program; furthermore, it essentially
generates identical estimates values for the HMMs as its Baum-Welch counterpart.
Besides these features, there are some advantages of the K-means technique over the
Baum-Welch approach. For instance, it is about an order of magnitude faster and
scaling is by far easier, because the forward and backward variables are only used in
the context of the Viterbi algorithm that applies logarithms to avoid underflow.

We seek to increase the reliability of the reestimated model computed in Chapter 5.
So we implemented both the Baum-Welch and K-means methods given here, expecting
that their corresponding outputs would be particularly alike.

1.2.2 Belief states

According to Zhang’s thesis [35], to have a concise representation of what we know
about the current state, we summarise the history of seen observations in a belief state,
which is a probability distribution over S. In other words, a belief state is a way to
describe what we know about the state, given the history of observations. The set of
all distributions over S is the set of all possible belief states, it is denoted by B. We
define next the belief state at time T , i.e., bT .

Definition 1.3. Let O = {o0, . . . , oT} be a sequence of observations. The belief state
bT at time T is the distribution over S at time T given the history of observations O,
i.e.,

bT (j) = P [qT = Sj | O,H] 0 ≤ j ≤ n− 1.

To compute the value of a belief state at time t = 0, . . . , T we see that, in the
first instance, the history of observations has just one element o0 and that the state
is determined by the initial distribution π. For the belief state at time t = 1, . . . , T ,
we have to consider the history of observations seen so far. Hence we can give an
inductive definition for bt that depends on the previous belief state bt−1 and the current
observation ot. In his thesis, Zhang shows that
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Initialisation: The belief state at time 0 is,

b0(j) =
πjbj(o0)

K0

,

with K0 a normalisation constant, such that,

K0 =P [o0 |H] (marginalization)

=
∑n−1

j=0 P [o0, q0 = Sj |H] (product rule)

=
∑n−1

j=0 P [q0 = Sj |H] · P [o0 | q0 = Sj,H]

=
∑n−1

j=0 πjbj(o0).

Induction: The new belief state bt is defined on terms of the previous belief state bt−1

as,

bt(j) =

∑n−1
i=0 bt−1(i)aijbj(ot)

Kt

1 ≤ t ≤ T,

where Kt is a normalisation constant, such that,

Kt =

= P [ot | o0, . . . , ot−1,H] (marg.)

=
∑n−1

j=0 P [ot, qt = Sj | o0, . . . , ot−1,H] (product rule)

=
∑n−1

j=0 P [qt = Sj | o0, . . . , ot−1,H] · P [ot | qt = Sj, o0, . . . , ot−1,H] (marg.)

=
∑n−1

j=0

(∑n−1
i=0 P [qt = Sj, qt−1 = Si | o0, . . . , ot−1,H] · bj(ot)

)
(product rule)

=
∑n−1

j=0

(∑n−1
i=0 P [qt−1 = Si | o0, . . . , ot−1,H]·

·P [qt = Sj | qt−1 = Si, o0, . . . , ot−1,H] · bj(ot)
)

=
∑n−1

j=0

(∑n−1
i=0 bt−1(i)aijbj(ot)

)
.

Interestingly, the initialisation and induction definitions of the belief state at time
t, bt(j), and of the forward variable, αt(j), are extremely similar.

1.2.3 Paths and probability measures

The treatment we present here for paths and probability measures is taken from [6, 16,
35].

Definition 1.4. An execution of the system being modelled by an HMM is represented
by a path. Formally, a path is a sequence of ordered pairs (s0, o0), (s1, o1), . . ., where
si ∈ S, oi ∈ Θ, asisi+1

> 0 and bsi(oi) > 0, for all i ≥ 0. A path can be either finite
(ωfin) or infinite (ω), we will deal with infinite paths unless stated otherwise.
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We denote the (i+1)st state of the path ω as ωs(i); likewise, to indicate the (i+1)st
observation of ω we write ωo(i). The suffix of ω that ignores the first i pairs, i.e., the
suffix that captures the sequence (si, oi), (si+1, oi+1), . . ., is denoted by ω[i]. Moreover,
we denote the sets of all finite and infinite paths in H starting with a pair whose first
component is state s as Pathfin,Hs and PathHs , respectively. When H is obvious from
the context, we remove it from the notation.

To study the probabilistic behaviour of the HMM, we need to be able to determine
the probability that certain paths are taken. To this aim we define the measure Prs
over the set Paths. A finite path determines a basic event, known as cylinder [16]. We
define the basic cylinder set induced by the cylinder ωfin = (s0, o0), (s1, o1), . . . , (sk, ok)
as,

C(ωfin)
def
= {ω ∈ Paths | ∀i ∈ {0, . . . , k} (ωs(i) = si ∧ ωo(i) = oi)}.

Let Σs be the smallest σ-algebra on Paths (see Appendix A.1) which contains all basic
cylinder sets C(ωfin), where ωfin can be any path in Pathfins . We define the measure
Prs on Σs as,

Prs
(
C(ωfin)

)
=Prs

(
C
(
(s, o0), . . . , (sk, ok)

))
=πsbs(o0)

k∏
i=1

asi−1sibsi(oi).

From equation (1.3), we notice that the measure Prs is the probability of the ob-
servation sequence O = o0, . . . , ok and state sequence Q = s, . . . , sk, given the model
H, i.e., P [O, Q |H].

Let Σ be the smallest σ-algebra on Path, i.e., the set of paths in H such that the
first component of the initial pair can be any state. We define the probability measure
PrH over Σ in terms of the measures Prs next. Since

⋃
s∈S C

(
(s, o0), . . . , (sk, ok)

)
∈ Σ

and the cylinder sets in this family are disjoint, we have

PrH

(⋃
s∈S

C
(
(s, o0), . . . , (sk, ok)

))
=
∑
s∈S

PrH

(
C
(
(s, o0), . . . , (sk, ok)

))
(By Definition A.2)

=
∑
s∈S

Prs

(
C
(
(s, o0), . . . , (sk, ok)

))
.

We can now quantify the probability that an HMM behaves in a specified fashion
by identifying the set of paths which satisfy the corresponding specification and using
the associated measure PrH (or Prs).

Additionally, we extend the measure Prs with respect to belief states as follows.
Let b be a belief state, i.e., b ∈ B, ωfin be the cylinder (s0, o0), . . . , (sk, ok) and C(ωfin)
be a basic cylinder set induced by ωfin, then

Prb
(
C(ωfin)

)
=
∑
s∈S

b(s) · Prs
(
C(ωfin)

)
.
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Observe that the only moment we use a belief state is in Chapter 2. In fact it is a
trivial belief state that assigns the value of 1 to a certain state and 0 to the others.

Interestingly, the measure with respect to the belief state, Prb, was originally pur-
posed by Zhang et al. in [35, 36] to weight the values Prs by b. Furthermore, in [35, 36]
the calculation of Prs does not consider the initial distribution π, whereas we indeed
account for it when computing Prs, as stated above, that is, we weight the values Prs
by π. Therefore, to get the same effect that Zhang intended, we can integrate the belief
state into the probability measure PrH by taking b instead of π.

In this chapter we studied the Hidden Markov Model, which can be an appropriate
representation of diverse phenomena. We also saw how to find the probability of an
observation sequence using the forward variable, we devised a manner to unveil the
optimal sequence of states given a sequence of observations via the Viterbi algorithm,
and two methods of training the HMM were covered. Moreover, we discussed belief
states and developed tools to measure the probability that an HMM behaves in a
certain way, when some paths are taken. In the next chapter we will study a formal
language suitable to specify system properties for HMMs, namely the logic POCTL*.
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Chapter 2

The Logic POCTL*

We are about to introduce a formal language that will allow us to specify properties of
an HMM. Actually, we wish to specify properties involving the states of the model, i.e.,
our desire is to express formulas over the underlying DTMC, but we are also interested
in studying properties of the external stochastic process, where the observations are
perceived. This language is the Probabilistic Observation Computational Tree Logic*
(POCTL* [35, 36]), an extension of PCTL*, which in turn is a probabilistic version of
the logic CTL* [3]. POCTL* has the peculiarity that the next operator is equipped
with an observation constraint. This is the way in which we add observations to our
specifications, thus the formula Xoφ means that the next observation is o (we can also
interpret it as the next transition being labelled with an action o) and the remaining
path satisfies φ.

Typically, the definition of a language is divided in two parts: syntax, where the
structure and correct formation of the elements of the language is established using
some grammatical rules; and semantics, that explains, based on the syntax, the mean-
ing and expected behaviour of such elements, and the relation among themselves.
Hence, we present first the syntax of POCTL* and later on its semantics.

2.1 Syntax

Definition 2.1. Let H = (S,A,Θ, B, L, π) be an HMM and AP a set of atomic
propositions. The syntax of POCTL* is defined as follows:

Φ := true | false | a | (¬Φ) | (Φ ∨ Φ) | (Φ ∧ Φ) | ε
φ := Φ | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (Xoφ) | (φU≤nφ) | (φUφ)

ε := (P./ p(φ)) | (¬ε) | (ε ∨ ε) | (ε ∧ ε),

where a ∈ AP , o ∈ Θ, n ∈ N, p ∈ [0, 1] and ./∈ {≤, <,≥, >}.

To get rid of the parentheses without introducing ambiguity, we assume that the
unary connectives (consisting of ¬, X and P) bind most tightly. Next in order comes
U≤n; after that U ; then comes ∧; and finally ∨. However, we will keep the inner

19
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parentheses of the probabilistic operator, P./ p(φ), as well as the parentheses that are
used to override the operator precedence just defined.

We distinguish several categories of formulas. Φ is for state formulas, φ for path
formulas, and ε for belief state formulas. Since we always know the current belief state
in HMMs, although the current state is uncertain, we want to know if some probabilistic
properties are valid in belief states. Let ε = P./ p(φ) be a belief state formula and b be
a belief state. Intuitively, b satisfies ε if the probability measure with respect to b of
the set of paths satisfying φ is within the threshold imposed by ./ p.

The grammar presented here is slightly different from the one used in [35] and
[36]. In these papers the algorithm of the model checker for POCTL* is designed,
whereas this thesis focuses on implementing such algorithm, hence it is likely we will
sometimes choose a distinct approach that suits our needs and limitations arising while
programming. For instance, we add syntactic rules for true, false and the disjunction
operator, features missed in the original grammar. Furthermore, we explicitly have a
constructor for the unbounded until operator, which Zhang and his colleagues declare
it is obtained by taking n equals to ∞ in φ1 U≤nφ2, clearly this idea is infeasible in
practice.

2.2 Semantics

For an HMM H, a state s and POCTL* state formula Φ, we write s |=H Φ to indicate
that s satisfies Φ assuming H is the model being used. We also can say that Φ is true
in s over H. Likewise, for a path ω satisfying a path formula φ, we write ω |=H φ, and
for a belief state formula ε that holds in a belief state b, we declare it as b |=H ε. When
the considered HMM H is obvious from the context, we leave the model out from the
expression and write s |= Φ, ω |= φ and b |= ε instead.

Definition 2.2. Let H = (S,A,Θ, B, L, π) be an HMM. For any state s ∈ S, the
satisfaction relation |= is inductively defined over the state formulas as

s |= true ∀s ∈ S
s 6|= false ∀s ∈ S
s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∨ Φ2 iff s |= Φ1 ∨ s |= Φ2

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= ε iff bs |= ε,

where bs is a belief state such that bs(s) = 1 and bs(s
′) = 0, with s′ 6= s. Now, for any
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belief state b, we define the satisfaction relation as

b |= P./ p(φ) iff Prb{ω ∈ Path |ω |= φ} ./ p
b |= ¬ε iff b 6|= ε

b |= ε1 ∨ ε2 iff b |= ε1 ∨ b |= ε2

b |= ε1 ∧ ε2 iff b |= ε1 ∧ b |= ε2.

Observe that Prb{ω ∈ Path |ω |= φ} denotes the probability measure of the set of all
paths which satisfy φ, whose initial state is weighted according to b. Finally, for any
path ω, the satisfaction relation is defined as

ω |= Φ iff ωs(0) |= Φ

ω |= ¬φ iff ω 6|= φ

ω |= φ1 ∨ φ2 iff ω |= φ1 ∨ ω |= φ2

ω |= φ1 ∧ φ2 iff ω |= φ1 ∧ ω |= φ2

ω |= Xoφ iff ωo(0) = o ∧ ω[1] |= φ

ω |= φ1 U≤nφ2 iff ∃j ≤ n. (ω[j] |= φ2 ∧ ∀i < j. ω[i] |= φ1)

ω |= φ1 Uφ2 iff ∃j ≥ 0. (ω[j] |= φ2 ∧ ∀i < j. ω[i] |= φ1).

Let Ω be a set of observations, i.e., Ω ⊆ Θ, we write XΩφ as a shorthand for
∨o∈ΩXoφ, given the previous semantics we have ω |= XΩφ iff ωo(0) ∈ Ω ∧ ω[1] |= φ.

We also allow path formulas to include the 3φ operator and its bounded variant
3≤nφ. Intuitively, 3φ means that φ is eventually satisfied, whereas 3≤nφ means that
φ is satisfied within n units of time. They are syntax sugar and can be expressed in
terms of the POCTL* grammar given in Definition 2.1 as follows:

3φ ≡ true Uφ, 3≤nφ ≡ true U≤kφ.

Moreover, we add the temporal logic operator �φ and its bounded variant �≤nφ.
The idea is that for �φ the path formula φ holds always along every step of the path,
whereas the �≤nφ says that φ is true in the first n steps of the path. Using the fact
that negations are allowed in path formulas, we can express the operator � as follows:

�φ ≡ ¬3¬φ, �≤nφ ≡ ¬3≤n¬φ.

2.3 The sublogics

The exhaustive list of sublogics of POCTL* is presented in [35]. Here we focus on two
of them, namely POCTL and the Quantitative OLTL Specification language, or QOS
for short. As we will see, they are going to play an important role when studying the
model checker for POCTL*.
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2.3.1 POCTL

The logic POCTL is a constrained version of POCTL*, in which every presence of
the temporal operators (X, U≤n and U) is immediately attached to the probabilistic
operator P . As a result, the syntax of POCTL is

Φ := true | false | a | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | ε
φ := XoΦ | ΦU≤nΦ | ΦUΦ
ε := P./ p(φ) | ¬ε | ε ∨ ε | ε ∧ ε,

where a ∈ AP , o ∈ Θ, n ∈ N, p ∈ [0, 1] and ./∈ {≤, <,≥, >}.
Using our notation for XΩΦ, with Ω ⊆ Θ, we see that XΦ ≡ XΘΦ. This observation-

free variant of the next operator is the one used in the logic PCTL (see Appendix C.1),
thus PCTL is in turn a sublogic of POCTL. A relevant remark arises when considering
the formula P<0.5(Xo(aU≤27b)). It is a valid POCTL* formula, but a false assertion
for POCTL.

2.3.2 QOS

To define the logic QOS we must first study the logic it comes from, that is, OLTL.

OLTL

In Observation LTL (OLTL), we can have any combination of temporal operators and
propositional formulas; nonetheless, formulas involving the probability operator are
not allowed. Formally, OLTL formulas are expressed through the following grammar

φ := true | false | a | ¬φ | φ ∨ φ | φ ∧ φ | Xoφ | φU≤nφ | φUφ.

Note that OLTL may be seen as an extension of the logic LTL (see Appendix C.2),
where the next operator, Xo, has been equipped with an observation constraint.

We are now able to define the the language QOS. We generate QOS formulas as pairs
of the form (φ, ./ p), where φ is an OLTL formula, ./∈ {≤, <,>,≥} and p ∈ [0, 1].
Note that the logic QOS has been defined as a quantitative version of OLTL. Similarly,
the logic QLS (see the end of Appendix C.2) is a quantitative version of LTL.

Let H = (S,A,Θ, B, L, π) be an HMM and s be a state in S. The semantics of
QOS formulas is stated next

H, s |= (φ, ./ p)⇐⇒ Prs{ω ∈ Paths |ω |= φ} ./ p.

2.4 The expressive power of POCTL*

We show next a list of properties that let us appreciate how we may write specifications
through the logic POCTL*.
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• With a probability of at least 0.85, the model produces the sequence of observa-
tions {o0, o1, . . . , oT−1}.
The corresponding POCTL* formula, with nested parenthesis omitted, is

P≥0.85(Xo0Xo1 . . .XoT−1
true).

There are three remarks about this formula. First, it describes a bounded version
of Rabiner’s Problem 1 related to HMMs (see Section 1.2.1). Second, the formula
above can be seen as either a state formula or belief state formula. Then, to
compute the appropriate value, the probability measure is chosen accordingly.
And third, any sublogic of POCTL* discussed in Section 2.3 is unable to express
this property.

• The probability that the state sequence {q0, q1, . . . , qT−1} produces the observa-
tion sequence {o0, o1, . . . , oT−1} is at most 0.25.

To find the corresponding POCTL* formula, we associate with each state qi
the atomic proposition aqi , which is true only in qi. Observe though that not all
states, qi, are necessarily different. Therefore, this property results in the formula

P≤0.25

(
aq0 ∧Xo0

(
aq1 ∧Xo1

(
. . . (aqT−1

∧XoT−1
(true)) . . .

)))
.

Note that this formula attempts to unveil the hidden state sequence, situation
addressed by Rabiner’s Problem 2.

In this chapter, the POCTL* syntax and semantics were given, together with two
of its sublogics: POCTL and QOS, that we will use later in this thesis. To demonstrate
how POCTL* can be used to specify relevant properties of an HMM, we revealed, in
the last section, some examples of formulas belonging to this logic. The next chapter
describes in detail the model checking algorithm for POCTL*; in it thorough explana-
tions on how and why the algorithm works are provided.
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Chapter 3

Model Checking for POCTL*

Model checking is the process of answering the question of whether a state s satisfies
a formula Φ with H as the model, i.e., s |=H Φ, or simply s |= Φ. Up to this point,
we are acquainted with all the elements of that expression, that is, H is an HMM that
captures the essentials of the system being studied, s is a state of this model, Φ is a
specification written as a POCTL* state formula and |= is the underlying satisfaction
relation. What we are still missing is the verification method to establish whether H
in s satisfies Φ. This chapter is dedicated to present such method, known as model
checker, for the logic POCTL*.

The model checking algorithm, roughly speaking, can be divided in three stages.
The first one follows the same lines given in [35]. We deviate from [35] for the second
and third stages, that deal with QOS formulas, and consider the procedure depicted
in [6, 36]. We also provide proofs of critical results that support the decisions made
along the algorithm.

It is important to note that we agreed to specify properties of an HMM using state
formulas, since we are interested in specifying properties related to the states of the
model.

Remark 3.1. Looking at the original syntax of POCTL* given in Definition 2.1, we
notice that the belief state formulas ε can be generated by Φ adding the probabilistic
operator P to the state formulas rule. Thus we simplify the grammar in the following
manner

Φ := true | false | a | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | P./ p(φ)
φ := Φ | ¬φ | φ ∨ φ | φ ∧ φ | Xoφ | φU≤nφ | φUφ.

The semantic relation for states is extended to handle the probabilistic operator as

s |= P./ p(φ) iff bs |= P./ p(φ)
iff Prbs{ω ∈ Path |ω |= φ} ./ p
iff

∑
si∈S bs(si) · Prsi{ω ∈ Pathsi |ω |= φ} ./ p.

As stated in Definition 2.2, bs(s) = 1 and bs(s
′) = 0, with s′ 6= s. Therefore, we can

declare

s |= P./ p(φ) iff Prs{ω ∈ Paths |ω |= φ} ./ p.

25
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3.1 Stage One: SATPOCTL*

Let H = (S,A,Θ, B, L, π) be an HMM and Φ be a POCTL* state formula. These
elements are the input of the model checking algorithm SatPoctl* shown in Figure
3.1, that computes the set Sat(Φ) = {s ∈ S | s |= Φ}.

Algorithm: SatPoctl*(H, Φ)

Identify a most deeply nested state formula Ψ 6∈ AP of Φ1

Generate a new atomic proposition aΨ2

AP := AP ∪ {aΨ}3

switch Ψ do4

case ¬a where a ∈ AP5

forall s ∈ S such that a 6∈ L(s) do6

L(s) := L(s) ∪ {aΨ}7

case a ∨ b where a, b ∈ AP8

forall s ∈ S such that a ∈ L(s) ∨ b ∈ L(s) do9

L(s) := L(s) ∪ {aΨ}10

case a ∧ b where a, b ∈ AP11

forall s ∈ S such that a ∈ L(s) ∧ b ∈ L(s) do12

L(s) := L(s) ∪ {aΨ}13

case P./ p(φ)14

Sat:=directApp(H, φ, ./ p)15

forall s ∈Sat do16

L(s) := L(s) ∪ {aΨ}17

Φ′ is the result of replacing this occurrence of Ψ in Φ by aΨ18

if Φ′ is not an atomic proposition then19

Φ := Φ′20

return SatPoctl*(H,Φ)21

return [s ∈ S | aΦ ∈ L(s)]22

Figure 3.1: The SatPoctl* algorithm, which contains the first instruc-
tions executed by de model checker.

We explain now what the algorithm does. It identifies a most deeply nested state
subformula Ψ of Φ such that Ψ is not a propositional variable, i.e., Ψ 6∈ AP . A new
atomic proposition aΨ is generated accordingly. Given the syntax depicted in Remark
3.1, for Ψ we have to consider only four cases, which are

i. Ψ is the negation of an atomic proposition.

ii. Ψ is the disjunction of two atomic propositions.

iii. Ψ is the conjunction of two atomic propositions.



3.2. Stage Two: Direct Approach 27

iv. Ψ is the probabilistic operator.

We then find the states s ∈ S that satisfy Ψ. This is a trivial task for the first
three cases, but no trivial at all when facing the fourth case, i.e., the probabilistic
operator. In order to get the states that satisfy P./ p(φ), we invoke a subroutine called
directApp2, that takes as input the HMM H and the QOS formula (φ, ./ p), with
φ the argument of P./ p(φ) (see Section 2.3.2). This subroutine obtains the set Sat of
states s such that s |= (φ, ./ p). According to the semantics of QOS, it is equivalent to
s |= P./ p(φ). The previously defined atomic proposition aΨ replaces Ψ in Φ, we named
the result of this substitution as Φ′. Moreover, the label of the states satisfying Ψ is
extended by aΨ. We set Φ := Φ′ and proceed recursively unless Φ itself was replaced
by the atomic proposition aΦ, in such case we just return the states s where aΦ holds,
that is, aΦ ∈ L(s).

Example 3.2. Consider the chef’s mood problem and its corresponding HMM dis-
cussed in Section 1.2. We want to find the states that satisfy the state formula Φ =
¬c ∧ P>0.05(X{S,F}d), where c and d are propositional formulas such that L(H) = {c}
and L(U) = {d}.

According to stage one of the model checking algorithm, we take Ψ = ¬c because Ψ
has to be a most nested state subformula of Φ not being a proposition variable. Only
state U satisfies ¬c, thus its label L(U) is extended with the new atomic proposition
a¬c. The formula Φ becomes a¬c ∧ P>0.05(X{S,F}d). Next, the recursive call is made;
hence we have now Ψ = P>0.05(X{S,F}d). The subroutine directApp is executed to
obtain the states that make true this probabilistic operator. As we will see, the output
of this subroutine is {H,U}. We extend further the label of these states to include the
new atomic proposition aP>0.05(X{S,F}d). After the corresponding substitution, Φ results
in a¬c ∧ aP>0.05(X{S,F}d). This conjunction of atomic propositions is satisfied by state
U . The final new atomic proposition that takes this last formula Φ is aΦ. It is solely
added to the label of U . Consequently, only state U satisfies Φ.

3.2 Stage Two: Direct Approach

Stage two deals with the case encountered in line 14 of the SatPoctl* algorithm of
the previous section. The directApp algorithm is presented here. Its inputs are the
HMMH and the QOS formula (φ, ./ p). Its outputs are the states ofH that satisfy the
QOS formula; these are precisely the ones that satisfy the formula P./ p(φ). As stated in
[36], there are two ways to accomplish this goal. The first one is based on constructing
an automaton in which a probabilistic reachability analysis is performed. The second
one transforms the HMM H into a DTMC D, and produces a QLS formula (φ′, ./ p)
from the input QOS formula (φ, ./ p). Remember that QLS formulas are defined in
Appendix C.2. This second approach is the one considered in the implementation of
our model checker; it is explained thoroughly by the next steps

2This subroutine is called after our choice of tackling this problem using the direct approach offered
in [36].
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a) From the HMMH = (S,A,Θ, B, L, π) we define the DTMCD = (SD, AD, LD, πD),
where

• SD = S ×Θ.

• AD((s, o), (s′, o′)) = as s′ · bs′(o′).

• LD(s, o) = L(s) ∪ {Ω ⊆ Θ | o ∈ Ω}.

• πD(s,o) = πsbs(o).
3

b) The set of atomic propositions is extended by APD = APH ∪ {Ω |Ω ⊆ Θ}.

c) We modify the OLTL formula φ, which is part of the input QOS formula (φ, ./ p),
such that every occurrence of XΩϕ is replaced by Ω∧Xϕ, where Ω is a new atomic
proposition just added to APD in the former step. Once we finish with this
process, the resultant LTL formula, denoted φ′, shall have every next operator
clear of sets of observations as subscripts. Taking this φ′ together with the original
comparison operator ./ and threshold p, the QLS formula (φ′, ./ p) is generated.

d) We are interested in finding out whether s |= (φ, ./ p), for all s ∈ S. By the
semantics of QOS, this is equivalent to Prs{ω ∈ Paths |ω |= φ} ./ p. Using the
constructed DTMC D and QLS (φ′, ./ p), Theorem 3.4 says that

Prs{ω ∈ PathHs |ω |= φ} =
∑
o∈Θ

Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}.

Therefore, a method to compute the value of Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′} is
needed. Fortunately, it is done with the algorithm designed by Courcoubetis et
al. [6]. This task becomes the third stage of our model checker.

Now, we turn our attention to show why we can calculate Prs{ω ∈ PathHs |ω |= φ}
in terms of Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}. Our aim is to prove Theorem 3.4, that uses
the next lemma, which is not present in [36].

Lemma 3.3. Let H be an HMM, and φ an OLTL formula. Moreover, let D be the
DTMC obtained by transforming H according to Step a), and φ′ be the LTL formula
we get by modifying φ as described in Step c). Hence the next implication holds,

ω |= φ =⇒ ω′ |= φ′,

where ω ∈ PathHs induces ω′ ∈ PathD(s,o0), with s = ωs(0) and o0 = ωo(0).

Proof. Recall that the LTL syntax and semantics are given in Appendix C.2. The
result is proved by structural induction on the syntax of OLTL (see Section 2.3.2).

3The initial distribution πD
(s,o) is not considered by Zhang et al. in [36] but we defined it here

because it is used by Theorem 3.4.
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The only interesting case for the logic OLTL is when φ = Xo0ϕ, thus

ω |= φ

=⇒ {φ = Xo0ϕ}
ω |= Xo0ϕ

=⇒ {By the QOS and POCTL* semantics}
ωo(0) = o0 ∧ ω[1] |= ϕ

=⇒ {Equivalently}
o0 ∈ {ωo(0)} ∧ ω[1] |= ϕ

=⇒ {According to the new labelling function L′}
{ωo(0)} ∈ L′(s, o0) ∧ ω[1] |= ϕ

=⇒ {Since ωo(0) = o0 and

by the inductive hipothesis}
{o0} ∈ L′(s, o0) ∧ ω′[1] |= ϕ

=⇒ {By the LTL semantics}
ω′ |= {o0} ∧ ω′ |= Xϕ

=⇒ {By the LTL semantics}
ω′ |= {o0} ∧Xϕ

=⇒ {φ = Xo0ϕ was transformed

into φ′ = {o0} ∧Xϕ}
ω′ |= φ′.

Theorem 3.4. Let H be an HMM and (φ, ./ p) be a QOS formula. Let D be the
DTMC obtained by transforming H according to Step a), and (φ′, ./ p) be the QLS
formula such that φ′ results from modifying φ as described in Step c). Therefore, the
next equation holds

Prs{ω ∈ PathHs |ω |= φ} =
∑
o∈Θ

Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}.

Proof. The following argument is an adaptation of the one presented in [36] for a similar
result involving the automaton based approach.

Typically, to prove results of measures over paths we have to show that they produce
the same output for every single basic cylinder set. Instead, for this proof we take a fam-
ily of basic cylinder sets whose paths start at s, that is, F =

⋃
o∈Θ C((s, o), . . . , (sk, ok)),

where k ∈ N and every path ω in C satisfies φ, i.e., F ⊆ {ω ∈ PathHs |ω |= φ}. De-
pending on the observation o, it might happen that some cylinder sets are ignored by
F since their paths might not satisfy φ. Observe also that the basic cylinder sets in F
are all pairwise disjoint. By Definition A.2 we have

Prs

( ⋃
o∈Θ

C((s, o), . . . , (sk, ok))
)

=
∑
o∈Θ

Prs(C((s, o), . . . , (sk, ok))).
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As we know from Section 1.2.3, the measure Prs(C((s, o), . . . , (sk, ok))) is πsbs(o) ·∏k
i=1 asi−1 sibsi(oi).
The cylinder set C induces a unique cylinder set inD, namely C ′((s, o), . . . , (sk, ok)).

Note that (sj, oj) is a state in D. According to Appendix B, the probability measure

Pr(s,o)(C
′) is π(s,o)

∏k
i=1A

D((si−1, oi−1), (si, oi)). Equivalently, by construction of the

D, we have π(s,o)

∏k
i=1 asi−1 sibsi(oi). It follows that

Prs

( ⋃
o∈Θ

C((s, o), . . . , (sk, ok))
)

=
∑
o∈Θ

Prs(C((s, o), . . . , (sk, ok)))

=
∑
o∈Θ

πsbs(o) ·
k∏
i=1

asi−1 sibsi(oi)

=
∑
o∈Θ

πD(s,o) ·
k∏
i=1

AD((si−1, oi−1), (si, oi))

=
∑
o∈Θ

Pr(s,o)(C
′((s, o), . . . , (sk, ok))).

Furthermore, we observe that φ is an OLTL formula. So by Lemma 3.3 we conclude
that every path ω′ ∈ C ′ satisfies φ′, i.e., C ′ ⊆ {ω′ ∈ PathD(s,o) |ω′ |= φ′}. Therefore,

Prs{ω ∈ PathHs |ω |= φ} =
∑
o∈Θ

Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}.

Recall Example 3.2, where the states satisfying P>0.05(X{S,F}d) have not yet been
computed. Given the original HMM H = (S,A,Θ, B, L, π), stage two dictates that the
DTMC D = (SD, AD, LD, πD) is obtained as follows:

• SD = S ×Θ = {(H,S), (H,P ), (H,F ), (U, S), (U, P ), (U, F )}.

• AD((s, o), (s′, o′)) = as s′ · bs′(o′), that is,

A =



(H,S) (H,P ) (H,F ) (U, S) (U, P ) (U, F )

(H,S) 0.35 0.21 0.14 0.03 0.18 0.09
(H,P ) 0.35 0.21 0.14 0.03 0.18 0.09
(H,F ) 0.35 0.21 0.14 0.03 0.18 0.09
(U, S) 0.20 0.12 0.08 0.06 0.36 0.18
(U, P ) 0.20 0.12 0.08 0.06 0.36 0.18
(U, F ) 0.20 0.12 0.08 0.06 0.36 0.18

.

• LD(s, o) = L(s) ∪ {Ω ⊆ Θ | o ∈ Ω}. For the label of (s, o) we keep that of s,
i.e., L(s). Moreover, without explicitly adding {Ω ⊆ Θ | o ∈ Ω} to L(s, o), we
can know whether the subset of observations Ω is in L(s, o) by simply checking
whether o ∈ Ω. This mechanism will be covered with more detail in Remark
4.1. Therefore, we have L(H,S) = L(H,P ) = L(H,F ) = {c}, and L(U, S) =
L(U, P ) = L(U, F ) = {d, a¬c}.
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• πD(s,o) = πsbs(o), that is,

πD =
( (H,S) (H,P ) (H,F ) (U, S) (U, P ) (U, F )

0.30 0.18 0.12 0.04 0.24 0.12
)
.

Additionally, the formula φ = X{S,F}d is transformed into φ′ = {S, F} ∧Xd. Both
the DTMC D and the OLTL formula (> 0.05, φ′) are passed to stage three, whose
outcome is used to easily determine the states in H that satisfy Φ.

3.3 Stage Three: Courcoubetis and Yannakakis’s

algorithm

This section focuses on finding the value of Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}, a gap left
in the previous section. We are provided with a DTMC D and a LTL formula φ′. The
algorithm discussed here is taken from [6]. It transforms step-by-step both D and φ′,
eliminating one-by-one the temporal connectives, while preserving the probability of
satisfaction of the formula. This algorithm dictates that transformations CX and CU
must be performed for each X and U operator, respectively. The execution of each of
these two constructions, described below, produces a new DTMC D′ and a new LTL
formula ψ.

The CX transformation

The construction of CX takes Xϕ as an innermost subexpression of φ′, i.e., ϕ is com-
posed of atomic propositions and Boolean connectives only. This makes easy to evaluate
ϕ on each state of D. Then we partition the states of the DTMC D into three disjoint
subsets S = SYES ∪ SNO ∪ S?, where:

• SYES consists of the states for which all of their transitions are into states satis-
fying ϕ.

• SNO consists of the states for which all of their transitions are into states satisfying
¬ϕ.

• S? consists of the states with transitions to both states satisfying ϕ and states
satisfying ¬ϕ.

Let puv denote the probability AD(u, v), and let qu denote the probability that Xϕ
is satisfied starting from state u. By the above partition of the state space, we know
that qu = 1 if u ∈ SYES, qu = 0 if u ∈ SNO. Otherwise, qu =

∑
v puv, where the sum

ranges over all successor states v of u satisfying formula ϕ.
The new DTMC D′ has a larger state space to be constructed soon. Additionally,

D′ is defined over the new set AP ′ = APD ∪{ξ}, where ξ4 is a new atomic proposition.

4The atomic proposition ξ represents the property Xϕ.
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States of D′
For each u ∈ SYES there is a new state (u, ξ) in D′. For each u ∈ SNO there is a new
state (u,¬ξ). And for each u ∈ S?, there are two new states (u, ξ) and (u,¬ξ) in D′.
A state (u, ξ) satisfies all the atomic propositions that u satisfies including the new
atomic proposition ξ; similarly for (u,¬ξ), except that it does not satisfy ξ.

The way we will define the transition probabilities in D′ gives to a state (u, ξ)
the following interpretation. The distribution of the paths of D′ starting from (u, ξ),
projected on the first state component, will be the same as the distribution of the paths
of D starting from u, conditioned on the event that they satisfy Xϕ.

Transitions of D′
Every transition u → v in D implies one or two transitions in D′. The transition
probability of (u, ξ1) → (v, ξ2), with ξi ∈ {ξ,¬ξ} and i ∈ {1, 2}, is defined as being
equal to the probability that D, being at state u, transitions next to state v and
starting at state v onward satisfies property ξ2, conditioned on the event that in state
u it satisfies property ξ1. Let x be the transition in D from u to v, y be the event
that a path starting at state v satisfies property ξ2, and z be the event that in state
u property ξ1 is satisfied. Therefore, the desired probability for (u, ξ1) → (v, ξ2) is
P [x ∧ y | z]. Now, applying the Bayes’ rule (see Appendix A.1) we have

P [x ∧ y | z] =
P [z |x ∧ y] · P [x ∧ y]

P [z]
.

Since the atomic events x and y are independent and we know that P [x] = pu v, we can
rewrite the above expression as

P [x ∧ y | z] =
P [z |x ∧ y] · pu v · P [y]

P [z]
.

In more detail, we have the following cases for the transition probability of (u, ξ1) →
(v, ξ2):

1. u ∈ SYES ∪ SNO.

1.1. v ∈ SYES∪SNO. Then, D′ contains a unique state (u, ξ1) with first component
u and a unique state (v, ξ2) with first component v. We include in D′ the
transition:

! (u, ξ1)→ (v, ξ2) with probability pu v. Since P [y] = P [z] = P [z |x∧y] =
1, it is true that P [x ∧ y | z] = pu v.

1.2. v ∈ S?. Let (u, ξ1) be the unique state of D′ with first component u. We
include two transitions:

! (u, ξ1)→ (v, ξ) with probability pu vqv. Here P [z] = P [z |x∧ y] = 1 and
P [y] = qv. Consequently, P [x ∧ y | z] = pu vqv

! (u, ξ1)→ (v,¬ξ) with probability pu vqv, where qv = 1− qv. For this we
also have P [z] = P [z |x∧ y] = 1, but P [y] = qv. So P [x∧ y | z] = pu vqv.
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2. u ∈ S?.

2.1. v ∈ SYES ∪ SNO.

2.1.1. v satisfies ϕ. We only have the transition:

! (u, ξ)→ (v, ξ2) with probability pu v/qu, where (v, ξ2) is the unique
state of D′ with first component v. We have set such value to
this transition probability because the path we are considering goes
from u to v and in this case state v satisfies ϕ, then P [z |x∧ y] = 1;
moreover, P [y] = 1 and P [z] = qu. Therefore, P [x∧ y | z] = pu v/qu.

2.1.2. v satisfies ¬ϕ. We only need the transition:

! (u,¬ξ) → (v, ξ2), with probability pu v/qu. In this situation, we
observe that P [z |x∧y] = 1 because the path we are taking goes from
u to v and we are assuming that state v satisfies ¬ϕ. Furthermore,
P [y] = 1 and P [z] = qu. Therefore, P [x ∧ y | z] = pu v/qu.

2.2. v ∈ S?.

2.2.1. v satisfies ϕ. Due to the fact that the transition goes from u to v and
state v satisfies ϕ, we conclude that ξ holds in u, i.e., P [z |x ∧ y] = 1.
We define two transitions:

! (u, ξ)→ (v, ξ), with probability pu vqv/qu. It turns out that P [y] =
qv and P [z] = qu. Therefore, P [x ∧ y | z] = pu vqv/qu.

! (u, ξ) → (v,¬ξ), with probability pu vqv/qu. Under these circum-
stances, we find out that P [y] = qv and P [z] = qu. Therefore,
P [x ∧ y | z] = pu vqv/qu.

2.2.2. v satisfies ¬ϕ. For similar reasons to previous ones, it is the case that
P [z |x ∧ y] = 1. We have two transitions:

! (u,¬ξ)→ (v, ξ), with probability pu vqv/qu. We realise that P [y] =
qv and P [z] = qu. So P [x ∧ y | z] = pu vqv/qu.

! (u,¬ξ) → (v,¬ξ), with probability pu vqv/qu. For this case, the
following probabilities hold: P [y] = qv and P [z] = qu. Therefore,
P [z |x ∧ y] = pu vqv/qu.

Notice that we get at most two transitions in D′. Fact that is clear if u ∈ SYES.
Suppose now u ∈ S?. When taking into account the transition from u to v, the
satisfaction of ξ in u is restricted. If ϕ does not hold in v, then u does not satisfy
ξ when going to v, e.g., a transition such as (u, ξ) → (v, ξ2), with state v not
satisfying ϕ, will be assigned a probability of zero since P [z |x∧ y] = 0. Likewise
for any other transition between states of D′ not considered in the above cases.

We stress that the detailed explanation presented above is not part of [6], where
only the transition probabilities formulas are given but the reasoning to reach those
expressions is omitted.
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Initial distribution of D′
The interpretation of the initial distribution of D′ given to the state (u, ξ1) is that
state u is initially chosen and the property ξ1 is satisfied starting at u. This can be
seen as the joint probability of independent events, which is just the product of the
probabilities of the two events,

πD
′

(u,ξ1) = πDu · P [ξ1 is satisfied starting at u].

On the one hand, if u ∈ SYES ∪ SNO, then P [ξ1 is satisfied starting at u] = 1 and
πD
′

(u,ξ1) = πDu . On the other hand, if u ∈ S?, then P [ξ is satisfied starting at u] = qu and

P [¬ξ is satisfied starting at u] = qu. Furthermore, there are two states in D′ for u,
namely (u, ξ) and (u,¬ξ), with initial probabilities πDu · qu and πDu · qu, respectively.

The CU transformation

Let ϕ1Uϕ2 be an innermost temporal subexpression of φ′, i.e., both ϕ1 and ϕ2 are
composed of atomic propositions and Boolean connectives only; therefore, it is easy
to know which states of D satisfy them. To obtain the new DTMC D′, similarly to
the construction CX, we partition the states of D in three disjoint subsets such that
S = SYES ∪ SNO ∪ S?. The interpretation of these subsets is that the paths starting at
states in SYES satisfy with probability one the formula ϕ1Uϕ2. If they start with states
in SNO, the formula ¬(ϕ1Uϕ2) is satisfied with probability one. And if the paths start
from states in S? both events will have not zero probabilities. We select the states
that belong to each subset as specified by the following equations, which rely on the
auxiliary algorithms ProbNo and ProbYes, which are taken from [17] and depicted
in Figures 3.2 and 3.3, respectively.

SNO = ProbNo(Sat(ϕ1), Sat(ϕ2)),

SYES = ProbYes(Sat(ϕ1), Sat(ϕ2), SNO),

S? = S \ (SYES ∪ SNO).

where Sat is a mapping that returns the set of states in D that satisfy its input formula
ϕ.

The auxiliary algorithm ProbNo first finds the states for which there is at least
one path that satisfies the formula ϕ1Uϕ2. It then removes those states from S, the
remaining ones are the states that satisfy ¬(ϕ1Uϕ2) with probability exactly one.

The algorithm ProbYes behaves similar to ProbNo. It identifies the states that
have at least one path that does not satisfy the formula ϕ1Uϕ2. They are set apart
and, consequently, the states that are left satisfy ϕ1Uϕ2 with probability exactly one.

According to [6], the probability that ϕ1Uϕ2 is satisfied starting from state u,
denoted qu, is computed by solving the linear equation system

qu =


1 if s ∈ SYES

0 if s ∈ SNO∑
v∈S

pu v · qv if s ∈ S?.
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Algorithm: ProbNo(Sat(ϕ1), Sat(ϕ2))

R := Sat(ϕ2)1

done := false2

while (done = false) do3

R′ := R ∪ {s ∈ Sat(ϕ1) | ∃s′ ∈ R . ps s′ > 0}4

if R′ = R then done = true5

R := R′6

return S \R7

Figure 3.2: The ProbNo algorithm.

Algorithm: ProbYes(Sat(ϕ1), Sat(ϕ2), SNO)

R := SNO
1

done := false2

while (done = false) do3

R′ := R ∪ {s ∈ (Sat(ϕ1) \ Sat(ϕ2)) | ∃s′ ∈ R . ps s′ > 0}4

if R′ = R then done = true5

R := R′6

return S \R7

Figure 3.3: The ProbYes algorithm.

It is possible to rewrite the above linear equation system in the traditional matrix
form M · q = b. We let M = I−A, where I is the identity matrix and A is given by

A =

{
ps s′ if s ∈ S?

0 otherwise,

and b is a state-indexed column vector with b(s) equal to 1 if s ∈ SYES, and 0 otherwise.
Note that both auxiliary algorithms are based on the computation of a fixpoint

operator and will require at most |S| iterations.
The new chain D′ has a bigger state space S ′ and is defined over the extended

set AP ′ = APD ∪ {ξ}, where ξ is a new atomic proposition. Note that ξ denotes the
property ϕ1Uϕ2.

States of D′
For each state u ∈ SYES there is only one state (u, ξ) ∈ D′. Similarly, for each u ∈ SNO

there is only one state (u,¬ξ) ∈ D′. Lastly, for each u ∈ S?, there are two states (u, ξ)
and (u,¬ξ) in D′. The propositions satisfied in state (u, ξ) are the ones satisfied in
state u plus the atomic proposition ξ, the same is true for the propositions valid in
(u,¬ξ) but it does not satisfies ξ.

The interpretation of the state (u, ξ), given by the definition of the transition proba-
bility in D′, is that the distribution of the paths of D′ starting from (u, ξ), projected
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on the first state component, will be the same as the distribution of the paths of D
starting from u conditioned on the event that they satisfy ϕ1Uϕ2.

Transitions of D′
Every transition u → v in D implies one or two transitions in D′. The transition
probability of (u, ξ1) → (u, ξ2), with ξi ∈ {ξ,¬ξ} and i ∈ {1, 2}, is defined as being
equal to the probability that D, starting at state u, transitions next to state v and
the property ξ2 is satisfied initiating from state v, conditioned on the event that state
u satisfies property ξ1. As we have seen in the construction for CX, this transition
probability corresponds to the value

P [x ∧ y | z] =
P [z |x ∧ y] · pu v · P [y]

P [z]
,

where x, y and z are the atomic events defined by the construction CX when the new
transition were given.

The possible transitions (u, ξ1)→ (v, ξ2) are:

1. u ∈ SYES ∪ SNO.

1.1. v ∈ SYES ∪ SNO. Then, there is a unique state (u, ξ1) in D′ with first
component u and there is a unique state (v, ξ2) with first component v. We
include in D′ the transition:

! (u, ξ1)→ (v, ξ2) with probability pu v.

1.2. v ∈ S?. Let (u, ξ1) be the unique state of D′ with first component u. We
include two transitions:

! (u, ξ1)→ (v, ξ) with probability pu vqv.

! (u, ξ1)→ (v,¬ξ) with probability pu vqv, where qv = 1− qv.

2. u ∈ S?.

2.1. v ∈ SYES.

! (u, ξ)→ (v, ξ) with probability pu v/qu, where (v, ξ) is the unique state
of D′ with first component v.

2.2. v ∈ SNO.

! (u,¬ξ)→ (v,¬ξ) with probability pu v/qu.

2.3. v ∈ S?. We define two transitions:

! (u, ξ)→ (v, ξ), with probability pu vqv/qu.

! (u,¬ξ)→ (v,¬ξ), with probability pu vqv/qu.
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Initial distribution
If u ∈ SYES ∪ SNO, there is only one state (u, ξ1), with ξ1 ∈ {ξ,¬ξ}, whose initial
probability in D′ is πD

′

(u,ξ1) = πDu . Nevertheless, if u ∈ S?, the two states that are

generated from it, namely (u, ξ) and (u,¬ξ), have initial probabilities πD
′

(u,ξ) = πDu · qu
and πD

′

(u,¬ξ) = πDu · qu, respectively.

Once either construction CX or CU is finished, we replace the corresponding inner-
most temporal subexpression in φ′ by ξ, obtaining so the formula ψ. This completes
stage three’s description.

Continuing with Example 3.2, we consider the DTMC D and the OLTL formula
(>0.05, φ′) obtained by stage two. Since φ′ = {S, F}∧Xd, the construction CX is used
to reach the DTMC D′.

First the set of states is partitioned. We realise that every state in SD has transitions
to both states satisfying d and states satisfying ¬d. So u ∈ S? for all states u in D.
Since qu =

∑
v puv, where the sum ranges over all successor states v of u satisfying d,

it turns out that q(H,S) = q(H,P ) = q(H,F ) = 0.3, and q(U,S) = q(U,P ) = q(U,F ) = 0.6.

The new set of states is {
(
(H,S), ξ

)
,
(
(H,S),¬ξ

)
,
(
(H,P ), ξ

)
,
(
(H,P ),¬ξ

)
,
(
(H,F ), ξ

)
,(

(H,F ),¬ξ
)
,
(
(U, S), ξ

)
,
(
(U, S),¬ξ

)
,
(
(U,P ), ξ

)
,
(
(U,P ),¬ξ

)
,
(
(U,F ), ξ

)
,
(
(U,F ),¬ξ

)
}.

To demonstrate how to compute the transition probabilities in D′, we will compute
the value of going from

(
(H,P ), ξ

)
to
(
(U,F ),¬ξ

)
. Given that both (H,P ) and (U,F )

are in S?, and that d ∈ L(U,F ), the transition probability of
(
(H,P ), ξ

)
→
(
(U,F ),¬ξ

)
is p(H,P ) (U,F ) · q(U,F )/q(H,P ) = 0.09 · 0.4/0.3 = 0.12.

Also, the label of state
(
(H,S), ξ

)
is the one of (H,S) extended to include the atomic

proposition ξ. The computation of the labels for the rest of the new states is similar.

Finally, the initial probabilities of states (u, ξ) and (u,¬ξ) are calculated by the
expressions πDu · qu and πDu · qu, respectively. Consequently, πD

′
is defined as

πD
′

((H,S),ξ) = 0.09,

πD
′

((H,P ),ξ) = 0.054,

πD
′

((H,F ),ξ) = 0.036,

πD
′

((U,S),ξ) = 0.024,

πD
′

((U,P ),ξ) = 0.144,

πD
′

((U,F ),ξ) = 0.072,

πD
′

((H,S),¬ξ) = 0.21,

πD
′

((H,P ),¬ξ) = 0.126,

πD
′

((H,F ),¬ξ) = 0.084,

πD
′

((U,S),¬ξ) = 0.016,

πD
′

((U,P ),¬ξ) = 0.096,

πD
′

((U,F ),¬ξ) = 0.048.

To obtain the formula ψ, we replace Xd by ξ in φ′, that is, ψ = {S, F} ∧ ξ. We
will consider D′ and ψ again before the end of this chapter to find the states of H that
satisfy P>0.05(X{S,F}d).

Through Theorem 3.8 we see that the measure of paths in D satisfying the formula
φ′, with initial state s, is equal to the sum of two measures of paths in D′ satisfying
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the formula ψ, with respective initial states (s, ξ) and (s,¬ξ). Some observations and
lemmas are needed prior to that result.

Let ω = ω0, . . . , ωm ∈ Pathfin,Dω0
. It induces the path σ = σ0, . . . , σm ∈ Pathfin,D

′

σ0
,

such that fst(σi) = ωi, ∀i ∈ {0, . . . ,m}. Observe that if (v, ξl), with ξl ∈ {ξ,¬ξ}, is a
state in the induced path σ and u is an immediate predecessor of v in ω, then (v, ξl)
has exactly one immediate predecessor in σ with first component u.

• If u ∈ SYES ∪ SNO, then there is only one state with first component u in D′.

• If u ∈ S?, then for the construction CU , the immediate predecessor of (v, ξl) is
(u, ξl), i.e., it agrees in the second component. For the construction CX, the
immediate predecessor of (v, ξl) is (u, ξ) if v satisfies ϕ, and (u,¬ξ) if v satisfies
¬ϕ.

Hence, having final state σm = (ωm, ξm) and proceeding backwards, we see that the set
Pathfin,D

′

σ0
has a unique path σ which ends at σm and has projection ω0, . . . , ωm.

The next result is mentioned in [6] but not proved as we do here.

Lemma 3.5. Let ω = ω0, . . . , ωm be an element of Pathfin,Dω0
, inducing the unique

path σ = σ0, . . . , σm ∈ Pathfin,D
′

σ0
, with σm = (ωm, ξm). Let C(ω) and C ′(σ) be their

respective cylinder sets. If ξm = ξ, then Prσ0(C
′(σ)) = Prω0(C(ω))·qωm , and if ξm = ¬ξ,

then Prσ0(C
′(σ)) = Prω0(C(ω)) · qωm .

Proof. We will discuss here the case when the construction applied is CU . For CX, the
argument is similar.

We prove this lemma by induction on the length m of the path ω.
Base Case. Takem = 0, we recognise three different situations. First, if ω0 ∈ SYES,

then ξ0 = ξ and qω0 = 1. So, by the initial distribution of D′, we have Prσ0(C
′(σ)) =

πD
′

σ0
= πDω0

= Prω0(C(ω)) · qω0 . Secondly, if ω0 ∈ SNO, then the reasoning is analogous.
Thirdly, if ω0 ∈ S? and ξ0 = ξ, then Prσ0(C

′(σ)) = πDω0
· qω0 = Prω0(C(ω)) · qω0 . The

argument is similar when ξ0 = ¬ξ.
Induction step. We assume that the lemma holds for m = k. Let us prove that

the lemma is also true for m = k + 1. By the definition of probability measure for
DTMCs given in Appendix B, we have Prσ0(C

′(σ0, . . . , σk+1)) = Prσ0(C
′(σ0, . . . , σk)) ·

AD
′
(σk, σk+1). Here we use the induction hypothesis and see that the last expression is

either Prω0(C(ω0, . . . , ωk)) · qωk · AD
′
(σk, σk+1) if σk = (ωk, ξ) or Prω0(C(ω0, . . . , ωk)) ·

qωk · A
D′(σk, σk+1) if σk = (ωk,¬ξ).

For the case when ωk ∈ SYES (if ωk ∈ SNO we follow much of these same lines) we
have qωk = 1. Furthermore, we consider three possibilities for ωk+1. If ωk+1 ∈ SYES,
then qωk+1

= 1 and AD
′
(σk, σk+1) = pωk ωk+1

. Therefore, we have

Prω0(C(ω0, . . . , ωk)) · qωk · AD
′
(σk, σk+1) = Prω0(C(ω0, . . . , ωk)) · 1 · pωk ωk+1

= Prω0(C(ω0, . . . , ωk+1)) · qωk+1
.

The option when ωk+1 ∈ SNO is similar. Moreover, if ωk+1 ∈ S? and σk+1 = (ωk+1, ξ),
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then AD
′
(σk, σk+1) = pωk ωk+1

qωk+1
. Thus, we compute the sought probability as

Prω0(C(ω0, . . . , ωk)) · qωk · AD
′
(σk, σk+1) = Prω0(C(ω0, . . . , ωk)) · 1 · pωk ωk+1

qωk+1

= Prω0(C(ω0, . . . , ωk+1)) · qωk+1
.

When σk+1 = (ωk+1,¬ξ), then we proceed in a similar fashion.
Finally, if ωk ∈ S?, we should analyse three cases for ωk+1 as before. Nonetheless, we

take only one case since the others are analogous. When ωk+1 ∈ SYES, then qωk+1
= 1

and AD
′
(σk, σk+1) = pωk ωk+1

/qωk . Consequently,

Prω0(C(ω0, . . . , ωk)) · qωk · AD
′
(σk, σk+1) = Prω0(C(ω0, . . . , ωk)) · qωk · pωk ωk+1

/qωk

= Prω0(C(ω0, . . . , ωk)) · pωk ωk+1

= Prω0(C(ω0, . . . , ωk+1)) · qωk+1
.

The next lemma is a particular case of a similar result appearing in [6]. Here we
focused on the probability of satisfaction of specific states rather than the overall value.

Lemma 3.6. Let ω = s, s1, . . . , sm ∈ Pathfin,Ds . It induces one or two finite paths,

σ = (s, ξ0), (s1, ξ1), . . . , (sm, ξm) ∈ Pathfin,D
′

(s,ξ0) , where ξk ∈ {ξ,¬ξ}, for all 0 ≤ k ≤ m.

Let C(ω) and C ′(σ) be their respective cylinder sets. Then,

Prs
(
C(ω)

)
=

∑
ξi∈{ξ,¬ξ}

Pr(s,ξi)

(
C ′(σ)

)
.

Proof. As we have seen, if sm ∈ SYES ∪ SNO, then there is only one possible induced
path σ. Suppose that sm ∈ SYES and σ starts at state (s, ξ), then qsm = 1 and by
Lemma 3.5

Prs(C(ω)) = Prs(C(ω)) · qsm
= Pr(s,ξ)(C

′(σ)).

The lemma holds since the other operand in the summation is zero, because there is
no induced path σ with initial state (s,¬ξ).

If sm ∈ S?, there are two states for sm, namely (sm, ξ) and (sm,¬ξ), and therefore
two possible paths σ induced by ω. It could have happened that both of these two
paths share the same initial state, say (s,¬ξ). By Lemma 3.5 and Definition A.2, it
follows that

Prs(C(ω)) = Prs(C(ω)) · (qsm + qsm)

= Prs(C(ω)) · qsm + Prs(C(ω)) · qsm
= Pr(s,¬ξ)(C

′(σ0, . . . , σm = (sm, ξ))) + Pr(s,¬ξ)(σ0, . . . , σm = (sm,¬ξ)))
= Pr(s,¬ξ)(C

′(σ0, . . . , σm = (sm, ξ)) ∪ C ′(σ0, . . . , σm = (sm,¬ξ))),
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clearly, qsm + qsm = 1. Again, the lemma holds since the other term in the summation
is zero.

But it could also have happened that these two paths induced by ω originate from
different starting points. Suppose that we have one path starting at (s,¬ξ) with final
state (sm, ξ), and a second path starting at (s, ξ) with final state (sm,¬ξ). By Lemma
3.5, we conclude,

Prs(C(ω)) = Prs(C(ω)) · (qsm + qsm)

= Prs(C(ω)) · qsm + Prs(C(ω)) · qsm
= Pr(s,¬ξ)(C

′(σ0, . . . , σm = (sm, ξ))) + Pr(s,ξ)(C
′(σ0, . . . , σm = (sm,¬ξ))).

All the remaining cases are solved analogously.

Lemma 3.7. With probability one, a path σ ∈ PathD
′

satisfies the following property:
∀t ≥ 0, ξ is an atomic proposition satisfied at state σt iff the suffix σ[t] = σt, σt+1, . . .
satisfies the path formula ϕ1Uϕ2 (respectively Xϕ). In other words, ϕ1Uϕ2 ≡ ξ (re-
spectively Xϕ ≡ ξ) holds with probability one at all times in all paths in PathD

′
.

Proof. The proof presented here is taken from the paper written by Courcoubetis et
al., [6]. In it only the until operator is considered; nonetheless, if the next operator
were taken, a similar argument would be used.

It suffices to show that starting at any state of the form (u, ξ) a path σ satisfies with
probability one the specification ϕ1Uϕ2. Likewise, if σ starts from a state (u,¬ξ), it
will satisfy with probability one the negation of the previous specification. We examine
the three possible cases for the initial state of σ.

a) (u,¬ξ), with u ∈ SNO. Looking at the DTMC D′ as a directed graph, we obtain
its subgraph G1 formed with the states whose first component is in SNO. We
observe that all transitions out of G1 occur on states of G1 satisfying ¬ϕ1 and
¬ϕ2. Moreover, we know that all states in G1 satisfy ¬ϕ2. If the initial state
(u,¬ξ) satisfies also ¬ϕ1, the formula ¬(ϕ1Uϕ2) is satisfied with probability one
trivially. If the initial state (u,¬ξ) satisfies ϕ1, then with probability one any
path of D′ will either remain in states of G1 that satisfy ϕ1 and ¬ϕ2 or eventually
reach a state satisfying ¬ϕ1 and ¬ϕ2. In either case σ satisfies ¬(ϕ1Uϕ2).

b) (u, ξ), with u ∈ SYES. We consider the subgraph G2 of D′ induced on the states
with first component belonging to SYES. For this subgraph G2, all transitions
out of it occur on states of G2 satisfying ϕ2. Furthermore, every state in G2

satisfy ϕ1 and ¬ϕ2, or ϕ2. An important remark is that there is no strongly
connected component5 of G2, without transitions coming out of it, consisting
solely of states satisfying both ϕ1 and ¬ϕ2 because this component would have
to be part of G1. If the path’s initial state (u, ξ) satisfies ϕ2, with probability
one the formula ϕ1Uϕ2 is satisfied trivially. If σ ∈ PathD

′
starts at a state (u, ξ)

satisfying ϕ1 and ¬ϕ2, then with probability one the path σ will reach a state
satisfying ϕ2, thus it will satisfy ϕ1Uϕ2.

5A strongly connected component of a graph is a maximal subgraph where every node can reach
every other node.
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c) (u, ξ) or (u,¬ξ), with u ∈ S?. Consider the subgraphs G3 and G4 of D′ induced
on the states (u, ξ) and (u,¬ξ), respectively, where u ∈ S?. These subgraphs do
not have strongly connected components of D′ without transitions out of them
since this components would be part of G1. Moreover, all transition out of G3

are into state in G2 and all transitions out of G4 are into states in G1. If σ starts
at a state (u, ξ) in G3, then it will reach a state in G2 with all previous states
in G3. Since the states in G3 satisfy both ϕ1 and ¬ϕ2, and once the path enters
into G2 it certainly will satisfy ϕ1Uϕ2, it follows that σ satisfies with probability
one the formula ϕ1Uϕ2. With a similar argument we can conclude that any path
starting at a state (u,¬ξ) in G4 will satisfy ¬(ϕ1Uϕ2) with probability one.

Theorem 3.8. Let D be a DTMC, φ′ be an LTL formula, and α be an innermost
temporal subformula of φ′. Let D′ be the DTMC resulting from applying either trans-
formation CU or CX to D, and ψ the formula resulting from replacing α by ξ in φ′.
Then

Prs{ω ∈ PathDs |ω |= φ′} =
∑

ξi∈{ξ,¬ξ}

Pr(s,ξi){σ ∈ PathD
′

(s,ξi)
|σ |= ψ}.

Proof. By Lemma 3.6, it is true that

Prs{ω ∈ PathDs |ω |= φ′} =
∑

ξi∈{ξ,¬ξ}

Pr(s,ξi){σ ∈ PathD
′

(s,ξi)
|σ |= φ′}.

Notice that ω induces the path σ, so by construction the state σt satisfies the atomic
propositions valid in ωt at each instant t; therefore, ω |= φ′ implies σ |= φ′. Now, by
Lemma 3.7, we have ϕ1Uϕ2 ≡ ξ (Xϕ ≡ ξ), thus φ′ ≡ ψ. In consequence∑

ξi∈{ξ,¬ξ}

Pr(s,ξi){σ ∈ PathD
′

(s,ξi)
|σ |= φ′} =

∑
ξi∈{ξ,¬ξ}

Pr(s,ξi){σ ∈ PathD
′

(s,ξi)
|σ |= ψ}.

Recall that our goal is to find Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′}. If the φ′ has k tempo-
ral operators, we can compute this measure as follows: apply k times the appropriate
transformations CX or CU to get the sequences D1, . . . ,Dk and ψ1, . . . , ψk of DTMCs
and LTL formulas6, respectively, where ψk is a simple propositional formula. Then by
applying Theorem 3.8 repeatedly, the formula to compute the desired measure is

Pr(s,o){ω′ ∈ PathD(s,o) |ω′ |= φ′} =
∑

ξi1∈{ξ1,¬ξ1}
...

ξik∈{ξk,¬ξk}

Pr(...((s,o),ξi1 ),...,ξik )︸ ︷︷ ︸
σ0

{σ ∈ PathD
k

σ0
|σ |= ψk}.

6The initial elements in these sequences are such that D′ = D1 and ψ = ψ1.
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Since ψk is a propositional formula, the right-hand side of the previous equality is
just the sum of the initial distribution in Dk of the states (. . . ((s, o), ξi1), . . . , ξik) that
satisfy ψk.

With all the work done so far we can bring on the crucial result that allows to com-
pute the probability that an HMM state satisfies a probabilistic formula. Furthermore,
in [36] the authors conclude their calculation of the model checker with Theorem 3.4,
yet we decided to give the explicit calculation that integrates the work presented in
[6]. Thus, we arrive at the corollary below.

Corollary 3.9. Let H = (S,A,Θ, B, L, π) be an HMM, φ be an OLTL path formula,
and s be a state in S. The next property holds

s |= P./ p(φ) iff
∑
o∈Θ

( ∑
ξi1∈{ξ1,¬ξ1}

...
ξik∈{ξk,¬ξk}

Pr(...((s,o),ξi1 ),...,ξik )︸ ︷︷ ︸
σ0

{σ ∈ PathD
k

σ0
|σ |= ψk}

)
./ p.

where Dk and ψk are output by stage three, which takes as input the DTMC D and the
LTL formula φ′. These last values are returned by stage two, when it is provided with
H and φ.

Proof. It follows immediately from all the previous results and transformations in this
chapter.

To complete Example 3.2, we spot that the only states satisfying ψ = {S, F} ∧ ξ,
where state H is involved, are

(
(H,S), ξ

)
and

(
(H,F ), ξ

)
. Thus the sum of their

respective initial probabilities is 0.09 + 0.036 = 0.126, which is greater than 0.05.
Similarly, the sum of the initial probabilities of the states satisfying ψ, where state U
is involved, is 0.096. This number is also greater than 0.05. Therefore, both H and U
satisfy P>0.05(X{S,F}d).

The reader may have noticed the missing transformation for the bounded until
temporal operator. It is also missing in [6], where the other two constructions are
found. However, as a final remark of this section, once the state set partition (S =
SYES ∪ SNO ∪ S?) is obtained the construction CU≤n follows the same lines of the CU
transformation, regarding the new set of states, transition probabilities and initial dis-
tribution. Furthermore, the theorem, lemmas and results hold for this new construction
CU≤n and the proofs can be easily extended to include this transformation too.

The difficulty consists in finding the partition S = SYES∪SNO∪S?, where the paths
with initial state in SYES satisfy with probability one the formula ϕ1U≤nϕ2; whereas
the paths starting at states belonging to SNO satisfy with probability one the formula
¬(ϕ1U≤nϕ2); and the paths that start at the remaining states, i.e., members of S?,
satisfy both properties with non zero probability. The way we find this partition is
by calculating first the probabilities qu. Recall that for each state u ∈ S, qu is the
probability that ϕ1U≤nϕ2 is satisfied having u as initial state. Since both ϕ1 and ϕ2
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are propositional formulas we can find the sets Sat(ϕ1) and Sat(ϕ2), with them we can
compute the desired values qu in accordance with the method presented in [17]. In
there, a naive state set partition is first computed as

XNO = S \ (Sat(ϕ1) ∪ Sat(ϕ2)), XYES = Sat(ϕ2), X? = S \ (XNO ∪XYES).

The probability that φ1U≤nφ2 is satisfied starting at u will be denoted qu(ϕ1U≤nϕ2)
instead of qu.

Trivially, the states in u ∈ XYES have qu(ϕ1U≤nϕ2) = 1; if u ∈ XNO, then
qu(ϕ1U≤nϕ2) = 0. For the states in X?, we find the value qu(ϕ1U≤nϕ2) through the
recursive definition,

qu(ϕ1U≤nϕ2) =

 0 if n = 0∑
v∈S

pu v · qv(ϕ1U≤n−1ϕ2) if n ≥ 1.

Moreover, we defined an auxiliary matrix A, where

A(u, v) =


pu v if u ∈ X?

1 if u ∈ XYES and u = v
0 otherwise.

Using the matrix A, the required probability can be expressed as an n matrix-vector
multiplication. For n = 0, we define the vector q(ϕ1U≤0ϕ2)(u) = 1 if u ∈ XYES and 0
otherwise. For n > 0

q(ϕ1U≤nϕ2) = A · q(ϕ1U≤n−1ϕ2).

At the end of the computation, the states u with qu(ϕ1U≤nϕ2) = 1 are in SYES;
likewise, if qu(ϕ1U≤nϕ2) = 0, then u ∈ SNO; else u ∈ S?.

3.4 Time Complexity

Let H = (S,A,Θ, B, L, π) be an HMM and Φ a POCTL* state formula. In this section
we analyse the time complexity of the POCTL* model checking algorithm executed on
H and Φ. We will follow the ideas provided in [6, 36]. We define the size of a formula,
denoted by |Φ|, as its number of Boolean and temporal connectives.

Clearly, the complexity of stage one is linear in the size of the formula Φ because
the algorithm in Figure 3.1 recursively takes all the subformulas of Φ.

If the probabilistic operator is encountered, then stage two is performed. In the
constructed DTMC D = (SD, AD, LD, πD), the size of the AD can be, in the worst
case, O(|S|2|Θ|2). Note that the size of the transformed Φ is at most twice that of the
original Φ. Although, the number of temporal operators remains at most |Φ|.

Finally, we examine the time needed to run stage three. This stage aims at forming
the DTMCD′ by applying the construction CX, CU or CU≤n toD. The main component
of these constructions is the states partition into the sets SYES, SNO and S?, as well
as the computation of the probability values qu for each state u ∈ S. Once these two
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tasks are finished, the rest of the construction is straightforward. It turns out that
for CX the states partition and the values qu are both found in time O(|SD|2). For
CU the states partition takes time O(|SD|2). Note that to find the values qu it has to
solve a linear equation system. Here the Gaussian elimination method7 can be used,
which incurs a time complexity of O(|SD|3) at most. Additionally, in the construction
CU≤n the states partition is achieved by first computing qu, which requires n matrix-
vector multiplications. Thus the running time of CU≤n is O(n |SD|2). Given that
the elimination of each temporal operator at most doubles the number of states and
transitions, the time needed to construct the final DTMC Dk is O(2|Φ| |SD|3), that is,
O(2|Φ| |S|3|Θ|3).

The model checking algorithm for the logic POCTL* was presented in this chapter.
We saw that it can be split in three main stages. Furthermore, some important claims
were stated and proven. Noticeably, in order to be adequate to our particular condi-
tions, these claims shown here have minor modifications to the ones presented in the
original papers. Finally, we have analysed the time complexity of the POCTL* model
checking algorithm. The next chapter deals with the model checker’s implementation
in Haskell. First, we will choose a convenient representation for the HMM elements
as well as for the POCTL* formulas. Then, the three stages will be coded and some
strategies to cope with theoretical issues will be offered.

7In Chapter 4 we see that the SMT solver Z3 is part of our implementation. This tool solves linear
equation systems by the Gaussian elimination method, as expressed via a direct e-mail by Nikolaj
Bjorner, one of its developers.



Chapter 4

Implementation of a Model Checker

Up to this point we have studied in detail the model checking algorithm for the
POCTL* logic, this chapter exhibits its implementation in the functional program-
ming language Haskell. This programming language was chosen to code the model
checker because it allows the programmer to work in a high-level abstract layer, neither
worrying about memory allocation, object creation nor classes handling. It also man-
ages recursion efficiently, better that many other programming languages, this is a vital
feature since recursive calls are made continuously throughout the implementation, as
we shall see.

We will start this chapter discussing how HMMs and DTMCs are designed in
Haskell. Also we will offer adequate representations to the POCTL* and LTL syn-
tactic rules. Afterwards, we will describe the implementation of each of the three
stages constituting the algorithm. Moreover, we will explain how we managed to solve
some difficulties encountered while coding; in them a few new additional features to
the original model checker are also considered and studied.

Additionally, the model checker code is organised in different files that are submitted
together with this thesis and can be accessed if more details and documentation of the
implementation are needed.

4.1 Coding HMMs and DTMCs in HASKELL

Recall Definition 1.2 of an HMM. Succinctly, an HMM is a tupleH = (S,A,Θ, B, L, π).
It is straightforward to associate this tuple with a record value. We represent S, A, B,
L and π as arrays; finally, Θ is encoded as a list. Hence, in code this definition is

data HMM = HMM {
statesHMM :: Array Int Int, -- States

pTransHMM :: Array (Int, Int) Double,-- State Transition Matrix

labelFHMM :: Array Int [String], -- Labelling Function

obsHMM :: [Int], -- Set of observation

pObsHMM :: Array (Int, Int) Double,-- Observation Probability Matrix

initDiHMM :: Array Int Double -- Initial Distribution Matrix

} deriving (Show)

45
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Observe how we have chosen Int values to become the states of the HMM; this type
also is used to code the observations. We see that every probability matrix entry is
taken as a Double value. The labels with the atomic propositions holding in their
associated states are described as lists of String values.

Since DTMCs are tuples too, this same idea of working with records is considered
when designing the data type for them. As stated in Definition 1.1, a DTMC is a tuple
D = (S,A, L, π). Then, we have the coding

data DTMC a = DTMC {
statesDTMC :: Array Int a, -- States

pTransDTMC :: Array (Int, Int) Double,-- State Transition Matrix

labelFDTMC :: Array Int [String], -- Labelling Function

initDiDTMC :: Array Int Double -- Initial Distribution Matrix

} deriving (Show)

Interestingly, the above type variable a plays a prominent role in this definition,
since in stage two of the model checking algorithm a is instantiated to be a pair of
values. In stage three a becomes a recursive data type in order to handle the various
transformations CX, CU and CU≤n . Furthermore, the model checker requires the type
variable a to instantiate the class Eq8.

4.2 POCTL* and LTL Data Types

Another basic component of our model checker is the Haskell representation of the
rules that determine how to construct well-formed POCTL* expressions. This corre-
sponds to the grammar shown in Remark 3.1, where two grammar categories are de-
fined, namely state and path formulas. Once again, we exploit the functional paradigm
by which Haskell is characterised, since the data type we devised for the POCTL*
formulas makes it clear that it derives from their formal definition, i.e.,

data POCTL = VerdadP | FalsoP | AtomP String | NoP POCTL

| OP POCTL POCTL | YP POCTL POCTL | Prob String Double PathF

data PathF = FormP POCTL | NoPath PathF | OPath PathF PathF

| YPath PathF PathF | NextPath [Int] PathF

| UntilBPath Int PathF PathF | UntilPath PathF PathF

Let us remember the way the model checking algorithm deals with most deeply
nested state subformula when it matches the probabilistic operator P./p(φ), where φ is
an OLTL formula. In this situation the stage two is performed. It particularly modifies
φ to get an LTL formula by removing the set of observations Ω attached to the next
operator XΩψ, and then generating the conjunction Ω ∧Xψ. Consequently, the set of

8The Eq class consists of the methods (==) and (/=), to instantiate Eq it suffices to defining either
one of them.
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atomic propositions APD, over which this resulting LTL formula is defined, takes the
original atomic propositions and considers also any set of observations Ω as an atomic
proposition. Thus, we have to code these two possibilities of elements belonging to
APD. We achieve this by defining a data type that can be either a simple atomic
proposition or a set of observations, as appears next

data AtomElem = Simple String | ObSet [Int]

As we can see, a simple atomic proposition is just a value of type String. Observe
that the POCTL definition shown above similarly takes strings as atomic propositions.

To implement the syntax of the LTL formula that is produced by stage two of the
model checker, we have the data type

data LTL = Verdad | Falso | Atom AtomElem | No LTL | O LTL LTL

| Y LTL LTL | Next LTL | UntilB Int LTL LTL | Until LTL LTL

This data type does match the definition of LTL given in Appendix C.2.

4.3 Implementing Stage One

The implementation of stage one is coded in a module named ModelChecker.hs. The
main function of this module is satPOCTL that corresponds to the algorithm in Figure
3.1, whose inputs are an HMM and a POCTL* formula, which are coded according to
the two previous sections, and returns the list of HMM’s states satisfying the specifi-
cation. We define this function using pattern matching of the data type POCTL. There
are three base cases VerdadP, FalsoP and AtomP s. For example, if we take the latter
base case we have

satPOCTL hmm (AtomP s) = [(statesHMM hmm)!ind | ind<-indices lab,

elem s (lab!ind)]

where

lab = labelFHMM hmm

For the rest of the POCTL* formulas two auxiliary functions are called, namely extHMM

and rename, which also are implemented through pattern matching. The first one
extends the original HMM recursively adding to the labels of states satisfying the
most deeply state subformula Ψ 6∈ AP its corresponding new atomic proposition aΨ.
Ultimately, extHMM returns an extended HMM that has incorporated the new atomic
propositions for every state subformula, including the original formula Φ itself. The
second auxiliary function performs the substitutions of state subformulas Ψ by atomic
propositions aΨ in a recursive fashion. At the end it returns the new atomic proposition
aΦ that replaces the original formula Φ itself. We can see that all the work is done
by these two auxiliary functions. After invoking them, satPOCTL only calls itself once
more with inputs the extended HMM and the final atomic proposition aΦ as formula.
For instance, to deal with the probabilistic operator Prob c f path, the function
satPOCTL does
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satPOCTL hmm (Prob c f path) = satPOCTL newHmm ap

where

(newHmm, _) = extHMM hmm (Prob c f path) 0

(ap, _) = rename (Prob c f path) 0

We perceive that both extHMM and rename functions take as the last argument
an integer number, say i. The reason is that our atomic propositions are String

values and we need to define new such elements, thus every time we create an atomic
proposition we use this integer parameter. The brand new atomic proposition becomes
"ap"++show i. Furthermore, the return value for these two functions is a pair where
the second component is an integer; this is the next available number to define new
atomic propositions. In the description of extHMM and rename, this second component
is assigned to i+1 after the atomic proposition "ap"++show i has been created and
used.

To link this first stage with the next one, we have to highlight the situation when
we encounter the probabilistic operator while trying to extend the given HMM. As it
was said in Chapter 3, it is hard to find the states that satisfy this formula. Hence
the subroutine directApp is called to obtain the states we are looking for. The way
we invoke this subroutine and the details on how to extend the HMM in this case are
illustrated with the next fragment of code; its clarification comes below.

extHMM hmm (Prob comp x path) i = (HMM {statesHMM = statesHMM hmm,

pTransHMM = pTransHMM hmm,

labelFHMM = newLabel,

obsHMM = obsHMM hmm,

pObsHMM = pObsHMM hmm,

initDiHMM = initDiHMM hmm},
j+1)

where

newLabel = listArray (bounds lab)

[if (elem (edos!k) sat)

then (lab!k)++["ap"++show j]

else (lab!k) | k<-indices lab]

sat = directApp newHMM (fst (renamePath path i)) comp x

lab = labelFHMM newHMM

edos = statesHMM newHMM

(newHMM, j) = extHMMPath hmm path i

Basically, the resulting extended HMM varies from the one as input only in the
labelling function, which now appends to the current label the new atomic proposition
for those states satisfying the probabilistic formula, i.e., the states returned by calling
directApp. It is worth mentioning that to reach the deepest state subformulas anal-
ogous functions to extHMM and rename are required when examining path formulas,
as it happens with the argument of the probabilistic operator. These functions are
extHMMPath, which further extends the labels of the HMM states in the presence of a
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path formula, and renamePath, that replaces state subformulas by new atomic propo-
sitions inside the path formula. These two processes occur first and their results are
passed to directApp, together with the comparison operator comp and the threshold
value x. Finally, notice how the integer i is the last argument of extHMMPath, where it
may be used to generate new atomic propositions. We know j is the subsequent value
we can take to create the atomic proposition "ap"++show j, afterwards we increase
this j by one.

4.4 Implementing Stage Two

The implementation of stage two makes up a new module named after the approach we
use to deal with the QOS formula (φ, ./ p), that is, DirectApproach.hs. We resume
where we finished last section, with the function directApp. Its inputs are: hmm, an
HMM; p, a path formula; comp, a comparison operator; and x, a real valued threshold.
The return value is the set of HMM states that satisfy the formula. As we can see
below, directApp calls another function

directApp hmm p comp x =

satisfy hmm (satQOSHMM hmm) (transForm p) comp x

Where satisfy implements the comparison expressed in Corollary 3.9. We will address
this function later on. At the moment we focus on the mappings satQOSHMM and
transform, that carry out the tasks described in stage two of the model checking
algorithm.

First, the DTMC D is constructed via satQOSHMM, which takes the source HMM
hmm as input and transforms it according to the next code.

satQOSHMM hmm = DTMC {statesDTMC = getStates,

pTransDTMC = newTrans,

labelFDTMC = newLabel,

initDiDTMC = initialT}
where

tmpList = [Base (s,o) | s<-elems (statesHMM hmm), o<-(obsHMM hmm)]

tmpLength = length tmpList

obsLen = length (obsHMM hmm)

getStates = listArray (1, tmpLength) tmpList

newTrans = array ((1,1), (tmpLength, tmpLength)) [((n,m),

(pTransHMM hmm)!((div (n-1) obsLen)+1, (div (m-1) obsLen)+1)

* (pObsHMM hmm)!((div (m-1) obsLen)+1, (mod (m-1) obsLen)+1))

| n<-[1..tmpLength], m<-[1..tmpLength]]

newLabel = array (1, tmpLength)

[(i, (labelFHMM hmm)!((div (i-1) obsLen)+1))

| i<-[1..tmpLength]]

initialT = array (1, tmpLength)

[(i, (initDiHMM hmm)!((div (i-1) obsLen)+1)
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* (pObsHMM hmm)!((div (i-1) obsLen)+1, (mod (i-1) obsLen)+1))

| i<-[1..tmpLength]]

The new states are elegantly constructed using a Haskell list comprehension that
is formed as a Cartesian product of the HMM states and observations. We explain the
data constructor Base in the next section.

Now, to compute the remaining items of the DTMC we see that the state index
of interest can be referred to as (div (i-1) obsLen)+1, where obsLen is the cardi-
nality of the set of observations, i.e., |O|, and i ∈ [1..tmpLength], with tmpLength

representing the size of the new set of DTMC states, that is, |S| × |O|. We wish i

values 1, 2, . . . , |O| to be assigned to state 1, i values |O|+ 1, . . . , 2 · |O| to be assigned
to state 2, and so on. Since i takes every number from 1 to |S| × |O|, the desired
state index is effectively found when adding 1 to the integer division of i-1 by obsLen.
Likewise, the expression (mod (i-1) obsLen)+1 repeatedly calculates the observation
indices 1, 2, . . . , |O| for this transformation. Once the state and observation indices are
known, the stage two operations that transform the HMM into a DTMC described in
Section 3.2 can be carried out readily.

Remark 4.1. The lines of code depicted above show that the labelling function for the
constructed DTMC D takes the corresponding labels of the HMM states. Nonetheless,
according to stage two, the label of state (s, o) should be L(s) ∪ {Ω ⊆ Θ | o ∈ Ω}.
Notice that the set APD is defined as the union of APH and {Ω |Ω ⊆ Θ}. The latter
set would imply to computing the power set of Θ, which is highly inconvenient and time
consuming. Fortunately, to get around this difficulty we realise that the purpose of the
label attached to each state is to know the atomic propositions that are true in it. We
now have two kinds of LTL atomic propositions, the simple ones whose pattern is Atom
(Simple str), and the ones involving a set of observations, xs, formed through the
pattern Atom (ObSet xs). If we want to know whether a simple atomic proposition
Atom (Simple str) holds in state (s, o), we just check if the string str is in this state
label. In the case of checking an atomic proposition whose pattern is Atom (ObSet

xs), the state (s, o) satisfies it if o ∈ xs because this means xs ∈ {Ω ⊆ Θ | o ∈ Ω}.
Clearly, in this way we prevented the calculation of the power set of Θ.

Second, the function transform takes a path formula and every time it encounters
XΩϕ detaches the set of observations and joins it via a conjunction, i.e., it returns
Ω ∧Xϕ. All other operators are left intact. This leads to the code

transForm (FormP (AtomP s)) = Atom (Simple s)

transForm (FormP VerdadP) = Verdad

transForm (FormP FalsoP) = Falso

transForm (NoPath p) = No (transForm p)

transForm (OPath p q) = O (transForm p) (transForm q)

transForm (YPath p q) = Y (transForm p) (transForm q)

transForm (NextPath xs p) = Y (Atom (ObSet xs)) (Next (transForm p))

transForm (UntilBPath n p q)= UntilB n (transForm p) (transForm q)

transForm (UntilPath p q) = Until (transForm p) (transForm q)
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transForm _ = error "This case shouldn’t happen. Because

the formula we are considering is a maximal

state subformula"

The last case of the pattern matching is for the situation in which we have a state
formula within a path formula φ, but this is impossible because we recursively found
the most nested state formula to be P./ p(φ).

We explain now the function satisfy, that finds, with the help of the induced
DTMC m, the states of the HMM hmm that satisfy the LTL formula obtained by
transform. For each state, we check that the probability of satisfaction is within
the interval established by the comparison operator comp and the threshold x. Let us
look at the way it works when the LTL formula is the next operator

satisfy hmm m (Next p) comp x = comparison hmm comp x

(probVal myMC size (sat myMC ap))

where

hmmStat = statesHMM hmm

size = rangeSize (bounds hmmStat)

(myMC, _)= cxu m (Next p) 0

(ap, _) = reWrite (Next p) 0

Next, as dictated by the third stage of the model checking algorithm, the construc-
tion CX is performed by calling the cxu function. The corresponding substitution is
also carried out via the reWrite method. Their respective output is myMC and ap.
Since new atomic propositions are constantly created by this third stage, we decided
to take the same approach we used in stage one for the creation of such elements, i.e.,
new atomic propositions are brought about thanks to an extra integer argument, i,
which increases by one after being used.

The relevant operation here is the summation found in Corollary 3.9. This quantity
is computed by function probVal for every HMM state. Basically, it takes the DTMC
m outcome of stage three, the number size of HMM states, and the set sat of DTMC
states that satisfy the LTL formula (the process to determine the states satisfying an
LTL formula appears in the next section). Then, for each state u in sat, a pair is
produced with first component the original HMM state that eventually leads to u,
and second component the initial distribution of u in m. Once these pairs are found,
probVal matches the elements with same first component, i.e., same HMM state index,
and sums their second components up. Before that, the respective summation for each
HMM state had initial value of 0.0. The argument size indicates how many initial
value are required. So, the desired summation is calculated for all states in the HMM.

Lastly, the comparison of each value in probVal with the threshold number x, ac-
cording to the operator comp, is done by the comparison function. If the individual
comparison is evaluated to True, then the corresponding HMM state satisfies the prob-
abilistic formula and is part of the output list. This, in turn, is the outcome of satisfy;
consequently, it, too, is the outcome of directApp. If the comparison is False, the
state does not satisfy the formula and is ignored.
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4.5 Implementing Stage Three

The constructions that make stage three of the model checker are grouped in a module
named Courcoubetis.hs, as one of the authors of [6], which describes them.

We begin this section by defining an adequate data type for the DTMC states that
enables us to recursively create new states, as specified by the multiple constructions
studied in stage three. We recall that these new states are now pairs (u, ξl), where ξl is
an atomic proposition and u itself could be the outcome of a previous transformation,
i.e., u might be a pair (u′, ξ′l). We proceed in this fashion until a basic state from the
original DTMC is reached. Hence, the following recursive data type precisely captures
the required specification

data Courcou a = Base a | Par (Courcou a, String)

From the code of the satisfy function given at the end of the last section, we found
a call to cxu. This method implements the transformations CX, CU and CU≤n . Directly
linked with these constructions is the substitution process that replaces an innermost
temporal operator inside an LTL formula by the atomic proposition ξ. The reWrite

function implements this task. Both cxu and reWrite realise their work recursively.
They also manage the creation and manipulation of atomic propositions with an index
number, similar to the manner in which functions extHMM and rename work, as we saw
earlier.

Before diving into the details of the cxu implementation, let us briefly discuss how
we find the set of states that satisfy the propositional formula ϕ, denoted Sat(ϕ). This
is achieved via the function sat whose inputs are the DTMC m and a propositional
formula, for which it considers four base cases, i.e., Verdad, Falso, Atom (Simple s)

and Atom (ObSet xs). Noticeably, the computation of the set Sat for the last two
formulas, as examined in Remark 4.1, has the encoding

sat m (Atom (Simple s)) = [edos!ind | ind<-indices labl, elem s (labl!ind)]

where

labl = labelFDTMC m

edos = statesDTMC m

sat m (Atom (ObSet xs)) = [edos!ind | ind<-indices labl,

elem (getObs (edos!ind)) xs]

where

labl = labelFDTMC m

edos = statesDTMC m

Where the function getObs receives a state of type Courcou a, and returns the obser-
vation o obtained by backtracking on this state up to Base (s,o). According to the
method satQOSHMM, s is an HMM state and o is in Θ.

The remaining situations are recursively evaluated by sat. Particularly, the set
union is used to find the states that make a disjunction formula true. Likewise, the set
intersection is computed to get the states satisfying a conjunction.
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Next, we will explain how the cxu function operates in the case of the unbounded
until operator. In Haskell code we have

cxu m (Until phi1 phi2) n =

(DTMC {statesDTMC = newEdos,

pTransDTMC = newTransitionU newM newEdos sY sN sQ solVect,

labelFDTMC = newLabellingU newM newEdos,

initDiDTMC = newInitDistU newM newEdos sY sN solVect}
, nextN)

where

(tmpM, tmpN) = cxu m phi1 (n+1)

(newM, nextN) = cxu tmpM phi2 tmpN

(p1, nn) = reWrite phi1 (n+1)

(p2, _) = reWrite phi2 nn

sN = sNoU p1 p2 newM

sY = sYesU p1 p2 sN newM

sQ = sQMU newM sY sN

solVect = vectProbUU newM sY sQ

newEdos = newStatesU newM n sY sN sQ

Initially, the recursive call on the arguments of the until operator is made. We
apply the function cxu to the current DTMC m, the formula phi1, and the next index
number n+1. Its outputs become part of the input to the second application of cxu, but
now the formula phi2 is taken. In the same way, we call twice the function reWrite;
first on phi1, afterwards on phi2. These initial procedures provide us with the actual
DTMC newM, and formulas p1 and p2, needed to carry out the current construction.

As described in stage three, the partitioning subsets SNO, SYES and S?, that in the
code above are sN, sY and sQ, respectively, have to be performed to continue with the
other steps. Basically, we identify the states in each of the previous sets by means of
the algorithms in Figures 3.2 and 3.3, e.g., SNO = ProbNo(Sat(ϕ1), Sat(ϕ2)), whose
equivalent expression in Haskell is

sNoU phi1 phi2 mC =

(elems (statesDTMC mC)) \\ (probNo mC (map (getInd mC) satPhi1)

satPhi2 (map (getInd mC) satPhi2))

where

satPhi1 = sat mC phi1

satPhi2 = sat mC phi2

Note that the function getInd obtains the index of the passed state within the input
DTMC mC. Furthermore, the formulas phi1 and phi2, as well as the DTMC mC, are
given to the function sNoU, which calculates a set subtraction as indicated by the last
instruction of the ProbNo algorithm. The earlier instructions making up the rest of
this algorithm are coded by the function probNo that appears next. Its parameters are:
mC, a DTMC; sat1Ind, the indices of states satisfying phi1; sat2, the set of states
satisfying phi2; and myInd, the indices of states satisfying phi2.
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probNo mC sat1Ind sat2 myInd = if sat2 == nL

then sat2

else probNo mC (sat1Ind \\ newIndices) nL newIndices

where

nL = union sat2 [st!i | i<-sat1Ind,

findState (row i (pTransDTMC mC)) myInd]

findState _ [] = False

findState arr (n:ns) = if arr!n > 0

then True

else findState arr ns

st = statesDTMC mC

newIndices = (map (getInd mC) (nL \\ sat2))

Since Haskell lacks a loop expression, to implement the one involved in ProbNo we
execute recursive calls that end up generating the same outcome. We have to point
out that the row function takes a two-dimensional array and an index i. Its output is
an one-dimensional array representing the i row of the input array. This function is
taken from [26]. Notice also how the function findState determines whether or not
there is a state s′ in sat2 with index n, such that the probability of going from the ith
state s, that satisfies phi1, to s′ is greater than zero. When the first such state s′ is
found, the True value is immediately returned by findState; otherwise, we proceed
recursively. If no state meets these requirements, findState returns False. In this
way the variable nL effectively finds the same values as R′ in Figure 3.2. Importantly, in
the function call probNo mC (sat1Ind \\ newIndices) nL newIndices, we remove
from sat1Ind the elements of newIndices, i.e., the indices of states satisfying phi1

just added to nL. So, in this function call we focus on any state left satisfying phi1

that may reach states with untested indices in newIndices. The implementation of
the sets SYES and S? is analogous.

Next, the method vectProbUU computes the array solVect that holds the prob-
abilities that ϕ1Uϕ2 is satisfied starting from every DTCM state. These magnitudes
are the solution of a linear equation system (LES), with matrix form M · q = b, whose
details are specified in stage three of the model checking algorithm. To obtain the
solution of this LES we decided to import the library Math.LinearEquationSolver.
In particular, inside vectProbUU the function solverRationalLinearEqs is invoked
with the matrix M, the vector b and the Satisfiability Modulo Theories solver Z3 as
input, see [4, 24]. The result is the solution vector q with the desired probabilities for
every DTMC state.

At this point we are in a position to define the new DTMC built via the CU con-
struction. Initially, the function newStatesU computes the new set of states which has
an intuitive implementation driven by its formal definition.

newStatesU mC n yes no qMark = array (1, length asoccL) (zip [1..] asoccL)

where

edos = elems (statesDTMC mC)

asoccL = [if elem s yes
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then Par (s,"xi"++show n)

else if elem s no

then Par (s, "noXi"++show n)

else Par (s, "xi"++show n) | s<-edos]

++ [Par (s, "noXi"++show n) | s<-edos, elem s qMark]

The function parameters are the current DTMC mC, the index number n, and the
partitioning subsets yes, no and qMark. Furthermore, newstatesU pairs up the DTMC
states with a new atomic proposition, "xi"++show n or "noXi"++show n or both. The
choice depends on which subset the state belongs to. Now, it is clear the usage the
index number n has when creating new atomic propositions.

On these same lines, the new labelling function defines the label of state (u, ξl) in
newStat just by adding the second component, ξl, to u’s label. This is exactly stated
by the newLabellingU function.

newLabellingU mC newStat = listArray (bounds newStat)

[getAtom edo | edo<-elems newStat]

where

getAtom s = (labelFDTMC mC)!(getInd mC (first s)) ++ [second s]

The functions first and second return the first and second component of a value of
type (Courcou a), respectively, as long as this value follows the pattern Pair (Coucou

a, String).
We concentrate next on the function newInitDistU that finds the initial distribu-

tion for the new set of states.

newInitDistU mC newStat yes no vect =

listArray (bounds newStat)

[computeInitDis (getInd mC (first edo)) edo | edo<- elems newStat]

where

computeInitDis indU (Par (u, atom))

| (elem u yes) || (elem u no)= initDist!indU

| (take 2 atom /= "no") = (initDist!indU)*(vect!indU)

| otherwise = (initDist!indU)*(1-(vect!indU))

computeInitDis _ _ = error "This case shouldn’t happen"

initDist = initDiDTMC mC

For each new state Par (u, atom) in newStat, we check whether u is a member of
either the partitioning subsets yes or no. If so, its respective initial distribution is
the same as the one of u in the DTMC mC. If that is not the case, i.e., u is in S?,
we look at the atomic proposition atom. If atom 6= ¬ξ (equivalently, atom = ξ),
then the CU construction says that the initial distribution is πmCu · qu, that is in code,
(initDist!indU)*(vect!indU), where the vector vect already holds the values qu for
every state u in mC. If atom = ¬ξ, we know that the initial distribution turns out to be
πmCu ·qu, that is, (initDist!indU)*(1-(vect!indU)). Notably, since we are computing
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the initial distribution of new states that necessarily have the form Par (u, atom), it
would be an error to do it for the other plausible value Base a.

The new transition probability matrix is the only element left to define. It is
attained by the function newTransition that receives the source DTMC mC, the set
newStat of new states, the three partitioning subsets (yes, no and qMark), and the
vector vect with the probabilities qu for every DTMC state u.

newTransitionU mC newStat yes no qMark vect = array ((1,1), (sb, sb)) lista

where

sb = snd (bounds newStat)

lista = [ ((i,j), getValU mC (newStat!i) (newStat!j) yes no qMark vect)

| i<-[1..sb], j<-[1..sb]]

The probability of going from state Par (u,x) to state Par (v,y) is the result of the
auxiliary function getValU, which is shown below.

getValU mC (Par (u,x)) (Par (v,y)) yes no qMark vect

| (elem u yes || elem u no)= if (elem v yes || elem v no)

then pTran!(gu, gv)

else if (take 2 y /= "no")

then (pTran!(gu, gv))*(gQv)

else (pTran!(gu, gv))*(1-gQv)

| elem v qMark = if (take 2 x /= "no")

then if (take 2 y /= "no")

then (pTran!(gu, gv))*(gQv)/(gQu)

else 0

else if (take 2 y == "no")

then (pTran!(gu, gv))*(1-gQv)/(1-gQu)

else 0

| elem v yes = if (take 2 x /= "no")

then (pTran!(gu, gv))/(gQu)

else 0

| elem v no = if (take 2 x == "no")

then (pTran!(gu, gv))/(1-gQu)

else 0

| otherwise = 0

where

gu = getInd mC u

gv = getInd mC v

gQu = vect!gu

gQv = vect!gv

pTran = pTransDTMC mC

Expectedly, the step of stage three depicting all the cases needed to obtain the transi-
tion probabilities is directly mapped into the previous code. As a toy example, let us
look at the situation when we seek the probability value of going from Par (u,"xi1")
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to Par (v,"xi1"), where u ∈ S? and v ∈ S?. Moreover, (take 2 x /= "no") and
(take 2 y /= "no") are true because both x and y represent the atomic proposition
"xi1". Therefore the return value is (pTran!(gu, gv))*(gQv)/(gQu), i.e., au v∗qv/qu,
as it is established by stage three of the model checking algorithm.

The construction CU is completed now. All four DTMC elements have been al-
ready defined in Haskell, namely the set of states, the transition probabilities, the
labelling function and the initial distribution. Furthermore, the remaining construction
encodings for CX and CU≤n are much like the one we studied for CU .

Regarding the way this model checker works we must say that, in addition to the
code explained in the preceding pages, a basic lexer and parser were implemented,
as well as a main module named Main.hs that sequentially asks for inputs and calls
the appropriate methods to get the model checker executed. The inputs given to the
main module are an HMM and a POCTL* formula; the former is passed as a file with
extension .poctl and the latter is directly typed into the terminal. In order to gain
insight on how the .poctl files are arranged, Appendix D exhibits a sample input file
containing an HMM. It also illustrates the way we pass an input POCTL* formula to
our model checker.

This chapter gave the implementation of key aspects of the model checker for
POCTL*, such that the rest of the code can be easily extended from the ideas presented
here. This encoding was written in Haskell, programming language that allowed us
to come up with elegant, simple and straightforward translations from the formal def-
inition presented in Chapter 3 to the code shown here. Furthermore, we provided
solutions to overcome difficulties such as the apparent need to compute the power set
of the observation set and the lack of a loop expression. Importantly, a real-world
application is studied in the next chapter. There a handover task from a robot to
a human is modelled through an HMM, which is considered by the POCTL* model
checker to verify relevant properties of this human-robot interaction. Also, an inter-
esting technique is considered to reduce the number of observations, thus the model
checking process performs in reasonable running time.
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Chapter 5

Verification of a Human-Robot
Interaction

Human-assistive robots are machines designed to improve our quality of life by help-
ing us to achieve tasks [11, 12]. Moreover, some situations may require robots to be
powerful and therefore potentially dangerous. As a result, trustworthiness must be
guaranteed to actually let the robot interact with the general public. Especial atten-
tion is paid on properties of usefulness and safety, which take the form of specifications.
Intuitively, on the one hand, a usefulness or liveness property stipulates that a good
thing happens during the execution of the system [1]. On the other hand, a safety
property stipulates that some bad thing does not happen during execution [1]. Conse-
quently, to demonstrate the correctness and trustworthiness of the robot’s behaviour
we must prove that the model of the robot control system satisfies a set of liveness and
safety properties. This verification process is performed by a model checker [11].

For the sake of working out a real-world example of the verification process carried
out by the model checker for POCTL* coded in Chapter 4, this chapter studies the
robot-to-human object handover task [11, 12]. The robot’s decision to release the
object is determined by a Hidden Markov Model that identifies the different stages
occurring throughout the handover by its states. To construct the desired HMM,
initial estimated values for each probability matrix are extracted out of a sequence of
experiments. For example, the initial observation values are obtained from the robot’s
fingers while executing several complete handover tasks. Then a training algorithm is
applied on the initial estimated values to better approximate the probability quantities
involved in the model. To release the object, the system is required to reach a state
in which it is safe to do so. Since an HMM is the way this interaction is described, it
makes sense to use our model checker for POCTL* to know whether some liveness and
safety properties hold under this interaction.

The platform used to study this human-robot interaction (HRI) was Bert2 [9, 10,
20]. We start by describing Bert2’s infrastructure. Then, the construction of the
HMM modelling the handover task is explained. Here we introduce the concept of
vector quantisation, a technique used to bring down the number of observations by
partitioning the input vector space into few regions. Furthermore, the two training
processes mentioned in Chapter 1 as the solution of Problem 3 of HMMs are consid-
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ered to adjust the probability matrices of the HMM being constructed. Finally, some
specifications, i.e., liveness and safety properties, are proposed in order to guarantee
the correctness and trustworthiness of this interaction. Our model checker takes these
specifications and the trained HMM as inputs, and returns the states satisfying the
corresponding property. The results are interpreted with respect to the confidence
expected from this HRI interaction.

5.1 BERT2 Infrastructure

Bert2 (acronym for Bristol Elumotion Robot Torso 2) [9, 10, 20] is a humanoid robot
designed at the Bristol Robotic Laboratory (BRL) in co-operation with Elumotion, a
mechanical engineering company. It is composed of a torso, shoulders, arms and a head.
These components contain multiple joints that can be independently controlled. Each
arm has an anthropomorphic hand with multiple degrees of freedom that implements
higher-level movement commands, e.g., we can instruct it to prepare to grasp, grasp
and release an object. Remarkably, these actions are done by Bert2 in a human-like
fashion, which allows an improved study of the object handover scenario (see Figure
5.1).

Furthermore, the joints present in Bert2 are controlled through EPOS motor con-
trollers which are connected to a controller area network (CAN) that, together with a
central-controller, that is, a Linux computer with a PCI to CAN interface, makes up
the joint-level control infrastructure. The central-controller is in charge of broadcasting
the synchronisation and heartbeat messages. The EPOS units expect this heartbeat
messages at a regular basis of 20ms to broadcast their internal state. This guarantees
that there is always a link between the EPOS units and the central-controller. The
Bert2’s functionality described so far is enough to cover the basic handover scenario
we are interested, which gives a real-world application of the POCTL* model checker.
Nonetheless, we will briefly mention the remaining elements available in Bert2’s plat-
form.

The purpose of the design of Bert2’s head is to implement the facial expression
communication channel as used in human-human interaction, with a particular em-
phasis on gaze but keeping an artificial, “robotic” look. This plastic head incorporates
a colour LCD screen that allows Bert2 to displaying eyes, eyebrows, mouth and lips.
Thus a wide rage of face expressions are possible, and changing between them is seam-
lessly.

Bert2 also features a gaze tracking system from Seeing Machines called faceLABTM.
This includes two cameras mounted on either side of Bert2’s head that track the head
and eyes of a human directly in front of it. The cameras use an infrared stereo vision
system to detect head pose and position. Additionally, cornea reflection techniques
achieve high-accuracy eye tracking.

The Bert2’s framework integrates the CSLU Toolkit Rapid Application Devel-
opment in order to interact with the user through spoken language. Moreover, the
construction of speech dialogues is supported via a state-based graphical programming
environment.
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(a) Bert2 in his initial position. (b) Bert2 handing an object over
to a person.

Figure 5.1: Bert2 platform.

The platform can track objects and human body parts in 3D space, positioned in
the same room that Bert2, via the VICON motion capture system. Every item to be
tracked must have attached at least three retro-reflective markers. Furthermore, the
VICON system represents these items with two databases handling static and dynamic
knowledge. The OPDB (Object Property Data Base) is the common namespace man-
ager and stores the static components of all objects in the interaction scenario. The
EgoSphere module quickly, dynamically and asynchronously stores object positions and
orientations, matches them with the OPDB object ID, and broadcasts this on YARP
ports.

The robotic system’s communication is based on YARP (Yet Another Robotic Plat-
form), an open-source C++ project that reduces the complications of infrastructure-
level software development by producing independent software modules that connect
with each other using named TCP/IP or UDP ports. Figure 5.2 shows a list of several
YARP ports running on Bert2, e.g, /BertMotorCommands/Hands:i. These channels
can be considered as a data streaming interface or as remote-procedure-call facilities.

5.2 HMM implementation

We break down the states of the HMM corresponding to the basic handover interaction
as proposed in [10, 12], where four states are chosen, namely
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Figure 5.2: The YARP port list.

1. The robot is not holding the cup.

2. The robot is grabbing the cup.

3. The robot is holding the cup (with the user not touching it).

4. The user is grabbing the cup.

Note that our initial state is the last one of the model given in [10, 12]. The state
machine of this HMM, without observations, is depicted in Figure 5.3. For convenience
we start counting the states from 1.

The initialisation of the model’s matrices A, B and π is the first step to discover
the final HMM that represents the handover task, we address this assignment next.

The process starts at state Robot not hold, so its initial distribution value π1 is
almost one, whereas the other states have been given initial distribution values close
to zero.

Moreover, the transition probability matrix A must encourage the transitions ap-
pearing in Figure 5.3. We see that for each state there are two outgoing edges. Thus
for each row of A the cells corresponding to the two outgoing edges have approximate
values of 0.5. The remaining cells in the row hold magnitudes close to zero.

To initialise the observation probability matrix B, we have to choose the source of
input observations. Taking advantage of the highly specialised anthropomorphic hands,
we focus on the values returned by them during the handover interaction. Their output
is read from the port /BertMotorData/HandState:o and has the format:
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Robot
not hold

State 1

Robot
pick up

State 2

User
grab

State 4

Robot
hold

State 3

Figure 5.3: The basic HMM for the handover process.

[Time stamp] [Left hand field set] [Right hand field set].

Each field set has the form:

[Hand live] [Hand state] [Hand finished]

[Hand palm pressure] [c1] [c2] [c3] [c4] [c5] [c6] [c7] [c8].

where Hand live is a positive number or 0, the latter means the hand is not active,
otherwise the hand is working properly; Hand state is a value taken from the set
{−1, 0, 1, 2, 3, 4, 5, 6, 7} that indicates the instruction being executed, e.g., prepare to
grasp or release; Hand finished is 0 if the task is not completed, it is 1 if the task is
finished; Hand palm pressure is an integer value returned by the hand touch sensor;
c1-c8 are motor currents9 of particular hand joints according to the following table.

c1 → index finger metacarpophalangeal joint (MCPJ)
c2 → middle finger proximal interphalangeal joint (PIPJ)
c3 → index finger PIPJ
c4 → middle finger MCPJ
c5 → ring finger gross flexion
c6 → small finger gross flexion
c7 → thumb opposition
c8 → thumb flexion

Since Bert2’s right hand was not functioning at the moment we were working at
the BRL, we completely ignore its values. Thus Bert2’s left hand is used to accomplish
the handover process.

To understand how the left hand finger values change throughout the interaction,
we carried out fifty basic handover tasks on Bert2, in which the robot simply takes an
object from a table and then hands it over to a person. So we could identify the precise

9The motor currents are provided in a fraction (i.e., 1
8 ) of the actual motor current in mA.
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instant the scenario moves from one state to the next. For each trial we were able to
save in a text file the output values. We later examined this data to determine the
most distinctive and meaningful values, among the c1-c8 motor currents, that exhibit
important variations every time a state transition occurs. Under Bert2’s particular
settings two current values are vital to perform this handover task, namely the index
and middle finger MCPJ motor current values.

Therefore, we decide to consider as observations the ordered pairs whose first and
second components are the index and middle finger MCPJ current values, respectively,
i.e., the observations have the form (c1, c4). Nevertheless, when trying to find the
number of different values these motor currents might take, we realise that there are
nearly 236 possibilities for the index finger MCPJ and 239 options for the middle finger
MCPJ. Hence the number of ordered pairs, i.e., observations, is up to 56404. This
exceeds the capabilities of our model checker, then a way to bring down the number of
observation is necessary. Fortunately, we can achieve this goal by means of the vector
quantisation technique.

5.2.1 Vector Quantisation

An N -level k-dimensional vector quantiser [21, 23], also called block quantiser, is a
mapping, q, that assigns to each input vector, x = (x0, . . . , xk−1), a codeword, y = q(x),
drawn from a finite codebook, Y = {yi | i = 1, . . . , N}. The vector quantiser q is
described by the codebook Y and the partition, C = {C1, . . . , CN}, of the input vector
space into the sets Ci = {x | q(x) = yi} of input vectors x associated by q to the ith
codeword yi, we call the sets Ci cells.

A distortion measure obtains the error produced by considering the codeword y
instead of the actual input vector x, this quantity must be non-negative and is denoted
by d(x,y). Many distortion measures have been proposed in the literature. However,
we will use the most common and mathematical convenient, i.e., the squared-error
distortion that is computed as follows:

d(x,y) =
k−1∑
i=0

|xi − yi|2.

To design a N -level (or N -size) codebook, we have to partition the k-dimensional
space into N cells C1, . . . , CN each one connected with its matching codeword yi. In
order to bring on an optimal minimum-distortion quantiser two conditions must be
met. First, the optimal quantiser is realised by using a minimum-distortion or nearest
neighbour selection rule, i.e., for every input vector x we have

q(x) = yi iff d(x,yi) ≤ d(x,yj), j 6= i, 1 ≤ j ≤ N.

In other words, the quantiser chooses the codeword which distortion with respect
to x is minimum. If a tie happens, then the codeword with lowest index is taken as
the output of the quantiser.
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The second required condition for optimality is that each codeword yi is chosen
to minimise the average distortion Di in cell Ci. Since we are provided with a set of
training vectors {xj | j = 0, . . . , n− 1}, the expression for Di is

Di =
1

Ni

∑
xj∈Ci

d(xj,yi),

where Ni is the number of training vectors in the cell Ci. For the squared-error criterion,
Di is minimised by the Euclidean centre or gravity centroid, i.e.,

yi = cent(Ci) =
1

Ni

∑
xj∈Ci

xj,

So, the next algorithm describes how to find a vector quantiser that minimises the
average distortion for a training vector sequence.

Let N be the number of levels, ε ≥ 0 be the distortion threshold, Y0 be an initial
N -level codebook and {xj | j = 0, . . . , n− 1} be a training sequence.

1. Set the iteration index m = 0 and the average distortion D−1 =∞.

2. Given the codebook Ym = {ym
i | i = 1, . . . , N}, classify the training vectors into

sets of the minimum distortion partition P(Ym) = {Cm
1 , . . . , C

m
N }, such that

xj ∈ Cm
i if d(xj,y

m
i ) ≤ d(xj,y

m
` ), for all 1 ≤ ` ≤ N, ` 6= i.

3. Compute the overall average distortion

Dm = D({Ym,P(Ym)}) =
1

n

n−1∑
j=0

min
y∈Ym

d(xj,y).

If (Dm−1 −Dm)/Dm ≤ ε, stop and return Ym as the final codebook. Otherwise
continue.

4. Update the codebook taking the centroids for each set in P(Ym). Thus we obtain
Ym+1 = {ym+1

i | i = 1, . . . , N}, where ym+1
i = cent(Cm

i ). Set m = m + 1 and go
to step 2.

From the four previous steps we can notice and be concerned that only partitions
of the training sequence are considered. Nonetheless, once the algorithm terminates
and the final codebook Ym is found, it is used on new data, not pertaining to the
training sequence, with the above mentioned optimum nearest neighbour rule, i.e, the
codebook Ym defines an optimum partition of the k-dimensional Euclidean space.

For our purposes, we are interested only on the cell Cm
i where the input vector x

lies after applying the quantiser q, thus the answer given by q when processing x is
the index i. In other words, our final observations are no longer ordered pairs but cells
indices.
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Step 1 of the vector quantisation algorithm requires an initial codebook Y0. In
[21] two approaches are given to attain this initial codebook. We regard the first of
them which uses a uniform quantiser over all or most of the training sequence if it is
bounded, as is the case of the motor current values we get from Bert2 during the
handover interaction.

Since our input vectors are pairs of motor current values, the choice we made for
the initial codebook Y0 was to use a 2-dimensional uniform quantiser on a rectangle
including all or most of the points in the training sequence. Specifically, the rectangle
we used has vertices (−124.872,−118.538), (107.718,−118.538), (−124.872, 119.487)
and (107.718, 119.487)10. Furthermore, we define on this rectangle’s edges codewords
every 30 units. Hence, the initial codebook has length 32 which is still large to be taken
as the number of possible observations. However, we decide to execute the vector
quantiser algorithm with this initial Y0, distortion threshold ε = 0.01 and training
sequence the pairs of output values (c1, c4) from one of the experiments we performed
on Bert2 that is considered as representative.

The idea is to perform step 2 in a way that if we get an empty cell Cm
i , then

we drop its corresponding codeword ym
i from the codebook. The resulting quantiser

is optimum since the two conditions for optimality are held. We ended up having
a codebook containing 13 cell indices, i.e., 13 regions into which the 2-dimensional
space is partitioned as illustrated in Figure 5.4. So the observation set becomes Θ =
{0, 1, 2, . . . , 12}. This small number of observation makes our model checker run in a
practical amount of time. Finally, we spot from Figure 5.4 that the cells or regions
produced by the vector quantisation algorithm defined a Voronoi diagram. As stated
by [25], given a set of two or more but a finite number of distinct points in the Euclidean
plane, a planar ordinary Voronoi diagram is the result of associating all locations in
that space with the closest member(s) of the point set with respect to the Euclidean
distance.

From each of the fifty experiments completed on Bert2 we draw an input observa-
tion sequence of pairs (c1, c4) on which we applied the previously described quantiser.
We use these results to initialise the HMM matrix B. The entry bj(m) in B is the
result of dividing the number of times observation (i.e., cell index) m occurred in state
j by the total number of observations occurring in this particular state.

Once the initial estimates of the matrices π, A and B are computed, we adjust
these matrices by executing either the Baum-Welch or the K-means algorithm. Both
methods were studied in Chapter 1.

The implementation of the vector quantisation process was done in the Java pro-
gramming language. In this same language, the Baum-Welch and K-means reesti-
mation algorithms were coded. We compare the outcomes of both methods to gain
confidence in their implementation. Furthermore, to successfully perform the multipli-
cation operations required by the Baum-Welch algorithm we used the package Apfloat,
a high performance arbitrary precision arithmetic library.

10The average of the lowest and highest values for the field c1 considering all fifty experiments is
-124.872 and 107.718, respectively. Similarly, the average of the lowest and highest values for c4 is
-118.538 and 119.487, respectively.
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(a) The region boundaries and their positions with respect
to the x and y axis.

(b) The regions filled with different colours. This parti-
tion can be seen as a Voronoi diagram.

Figure 5.4: The 2-dimensional space partitioned into 13 regions.

5.3 Verifying Liveness and Safety Properties

There is one HMM element that remains to be defined. It is the labelling function L
that returns the set of atomic propositions satisfied by each state. Figure 5.5 shows
the state machine for the basic handover task, next to each state the set of its valid
atomic propositions is defined. We are considering the set of atomic propositions
AP = {rnh, rpu, rh, hg}. Now the HMM is complete and can be formatted according
to the instructions found in Appendix D to create the handover.poctl file that is
passed to our model checker. Since we want to know whether each state satisfies the
specification in turn, despite of how likely the state is initially chosen, the approach we
follow is the proposed by Zhang in [35]. Hence the model checker is used as specified
by Remark D.1.
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Robot
not hold

State 1

L(1)={rnh}

Robot
pick up

State 2

L(2)={rpu}

User
grab

State 4
L(4)={ug}

Robot
hold

State 3
L(3)={rh}

Figure 5.5: The labelled states involved in the basic handover process.

5.3.1 Liveness properties

A liveness property indicates that a good thing does happen during the execution of
the system or program. In a probabilistic context, a liveness property is a claim that
a good thing happens with high probability. Now we list some good things we expect
to take place while executing the handover interaction with Bert2.

• With probability at least 0.9, Bert2 releases the object when the user grabs it.
Clearly, we take the probabilistic operator to specify that the property holds with
a probability of at least 0.9. If Bert2 is going to release an object, then it is
holding it and does it until the user grabs the object, who waits for Bert2 to
release it. Consequently, the POCTL* formula for this property is

P≥0.9(rh ∧ rh U(ug ∧ ug U rnh)).

When we pass it to our model checker together with the handover.poctl file,
the set of states that is returned consists only of state 3, i.e., Robot hold. This
means that with high probability Bert2 releases the object when the user grabs
it, assuming Bert2 is holding it at the starting point.

• Recall that we are extracting the pairs (c1, c4) from the motor current values of
Bert2’s left hand finger joints. Thus an observation in our HMM is the region
index the pair (c1, c4) is associated with by the vector quantiser q. Interestingly,
these regions can be thought of as specific finger positions described by the pairs
of finger motor values within the region.

In Figure 5.6, we have plotted the observations obtained by a handover execution
as a function of time. From this plot we would like the next property to hold.
The model generates the sequence of observations, i.e., the sequence of finger
positions, O = {o0, o1, o2, o3} where o0, o1 ∈ {2, 3, 5} and o2, o3 ∈ {2, 3, 10}, with
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a probability greater than 0.88. This property becomes the POCTL* formula

P>0.88(X{2,3,5}(X{2,3,5}(X{2,3,10}(X{2,3,10} true)))).

Figure 5.6: The plot of observations vs time. The first blue vertical line
denotes the transition from state 1 to state 2. The second one indicates the
transition from state 2 to state 3. And so on.

The output returned by the model checker is state 4 only. Furthermore, in
Haskell we can use the function trace, belonging to the Debug.Trace library,
to print intermediate results. By means of the function trace we realise that the
probability of satisfaction of the previous specification for states 1, 2, 3 and 4
is 4.998e-10, 4.086e-6, 7.509e-3 and 0.891, respectively. Noticeably, this formula
is an extension of Rabiner’s Problem 1 (see Section 1.2.1), since we have found
the probability of the sequence of observations O, such that at each instance the
observation is drawn from a set of possible values.

• Analysing Figure 5.6 and other outcomes of the handover executions on Bert2,
we identify all observations that state 3 (Robot hold) produces as {0, 1, 2, 3, 5, 7}.
Likewise, state 4 (User grab) mainly generates observations {2, 3}. We wish to
show that the next property holds. With probability greater than 0.9 the user will
grab the object resulting in Bert2’s finger positions 2 or 3, such that for every
previous moment the object was held by Bert2 having any of the following finger
positions {0, 1, 2, 3, 5, 7}. The corresponding POCTL* formula is

P>0.9((rh ∧X{0,1,2,3,5,7}true) U (ug ∧X{2,3}true)).

we denote it as Φ.

When our model checker takes Φ together with the handover.poctl file, it re-
turns states 3 and 4 with probabilities of satisfaction 0.9854 and 0.9855, respec-
tively. These probability values were detected by calling the function trace.
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Notice that observation 5 is the most important in state 3 as seen in Figure
5.6. If we drop observation 5 from Φ, the probability of satisfaction of state 3
dramatically falls to 1.829e-3. Note that if we keep this observation and drop
any other (i.e., 0, 1, 2, 3 or 7) from Φ, its probability of satisfaction is greater at
least by one order of magnitude than the one obtained when observation 5 was
dropped. With such importance this observation is regarded that state 3 satisfies
(rh∧X{5}true) U (ug∧X{2,3}true) with probability 8.4092e-3, this is greater than
the one for Φ when observation 5 was dropped and 0, 1, 2, 3 and 7 kept.

The formula Φ trivially holds in state 4, since this state satisfies ug ∧X{2,3}true
with probability 0.9855. If we take the formula ug ∧ X{0,1,4,5,6,7,8,9,10,11,12}true,
the probability of satisfaction of state 4 is 1.4450e-2. This indicates that state 4
is exceedingly likely to generate observations 2 or 3.

Therefore, the observation 5 is predominantly produced in state 3. Once state 4
is reached, the observations we mostly see are 2 or 3.

5.3.2 Safety properties

A safety property establishes that a bad thing does no occur, or does occur with low
probability, during the execution of the system or program. Next we offer various
safety properties related to the handover scenario run on Bert2.

• With probability less than 0.05, Bert2 releases the object without the user grab-
bing it. Again, we use the probabilistic operator. Certainly, Bert2 must be
holding the object, and when he does not have it anymore, the user is not grab-
bing it either. Thus we have the POCTL* formula

P<0.05(rh ∧ rh U(¬rh ∧ ¬ug)).

The model checker is given this formula and the handover.poctl file, it returns
[1, 2, 3, 4]. This indicates that with a good degree of confidence we expect Bert2
not to drop the object once he has grabbed it.

• With probability less than 0.05, Bert2 abandons its serving position with the user
not grabbing the object. The serving position is equivalent to Bert2 holding the
object. What we want to say is that it is unlikely that Bert2 holds the object
and next moves onto another state that is not User grab, this subsequent state
could be either Robot not hold or Robot pick up. The POCTL* formula describing
this property is

P<0.05(rh ∧XΘ(rnh ∨ rpu)).

The states that satisfy this specification, i.e., the output of the model checker,
are [1, 2, 3, 4]. This shows that having Bert2 holding the object, it is highly
improbable that he will stop doing so to return to the initial position or to pick
up the object once again.
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• From Figure 5.6 we infer that the sequence of observations, i.e., the sequence
of finger positions, O = {4, 5, 12, 0} hardly takes place, say O is generated with
probability less than 0.00001. Formally, we have the specification

P<0.00001(X{4}(X{5}(X{12}(X{0} true)))).

The answer given by the model checker is [1, 2, 3, 4], which means that for every
state of the model, O is unlikely to be generated. Moreover, thanks to the
function trace, we can find out the actual probability of satisfaction of each
state in S for the previous specification. It turns out that the outcome is 0 for
all states. This is expected since such sequence of observations can not be drawn
from of the handover interaction, as seen in Figure 5.6.

This chapter discussed a real-world application of the model checker for POCTL*
implemented in Chapter 4. The situation studied was a human-robot interaction (HRI)
in which a robot, namely Bert2, hands an object to a person. We started this chapter
by describing Bert2’s infrastructure. Next, we shown how to obtain an initial esti-
mation of the HMM H modelling this HRI. Special attention was paid on reducing the
number of observations, objective accomplished by means of the vector quantisation
technique. Later, the two adjusting methods offered in Chapter 1 were applied on H
to get the final HMM. We finished this chapter by designing several liveness and safety
properties related to the handover process. These properties took the form of POCTL*
formulas that, together with H, were supplied to our model checker, whose outputs
were discussed and analysed accordingly.
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Chapter 6

Conclusions and Future Work

In this thesis we successfully implemented a model checker for POCTL*. We used a
slightly modified version of the model checking algorithm described in [35, 36]. We had
to make changes to the original POCTL* grammar to explicitly add Boolean values
and connectives, as well as the unbounded until operator. Noticeably, to reach the
final model checking algorithm proposed in Chapter 3, we had to cope with different
and sometimes contradictory approaches considered in [6, 17, 35, 36]. We ended up
agreeing with a three-stage model checking algorithm that:

• For stage two, the algorithm uses the measure Prs over paths of the HMM H
starting at state s, such that Prs incorporates the initial distribution π to its
calculation. Similarly, the counterpart measure over paths of the DTMC D,
obtained by transforming H, also considers the initial distribution to compute
its value. This approach is followed by Courcoubetis et al. in [6]. Nevertheless,
Zhang [35, 36] and Kwiatkowska [17] do not take the initial probability to compute
the measure Prs.

• When executing stage three, the algorithm finds the probability of satisfaction of
state (s, o) of the DTMC D through that of the states

(
(s, o), ξ

)
and

(
(s, o),¬ξ

)
of

the DTMC D′, which is generated according to the construction CX, CU or CU≤n .
In contrast, Courcoubetis originally calculates the probability of satisfaction of
the entire model D in terms of that of the entire model D′, as explained in [6].

Furthermore, in Chapter 3 we provided additional reasoning and original proofs for
some results. These aspects were seemingly omitted or unattended by the papers where
the model checker initially appears. Surprisingly, there is no treatment for the bounded
until operator U≤n in [6]; therefore, we explicitly added the missing construction CU≤n
to stage three of our algorithm.

The Haskell implementation was devised in Chapter 4. There were times when
the coding process was straightforward, e.g., choosing the representation of HMMs and
DTMCs, and calculating the Cartesian product required by stage two of the algorithm
to obtain the new set of states. However, there were other times when the implementa-
tion was cumbersome, e.g., creating new atomic propositions by constantly carrying an
integer that was appended to a string that represented a proposition variable. Impor-
tantly, challenging circumstances were overcome such as the apparent need to compute
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the power of the set of observations, and the coding of a loop statement in a functional
language.

The second goal of this thesis was also achieved, i.e., we explained how we can
operate the model checker for POCTL* to check liveness and safety properties of the
handover task from a robot to a user. The robot considered was Bert2 which is part
of the Bristol Robotics Laboratory. It features high specialised anthropomorphic hands.
We focused on his left hand and after numerous handover experiments, we concluded
that two joints are specially significant for this task, namely the index and middle finger
metacarpophalangeal joint motor current values. These two values formed the pairs
that were taken as observations of the HMM modelling this interaction. However,
the number of possible observations was not plausible to be handled by the model
checker. To make our model checker run in a realisable amount of time, a technique
called vector quantisation was used to bring down the number of observations to just
thirteen. Consequently, the interpretation given to the observations is that they are
specific finger positions. Next, the HMM parameters were adjusted by the Baum-Welch
method, this reestimation was confirmed by the K-means algorithm. With all this, we
were able to come up with a trained HMM that can be taken as input of our model
checker.

Finally, thanks to the model checker for POCTL*, we verified relevant liveness and
safety properties, by them we conclude that for this handover process:

. To release the object held by Bert2, the user has to grab it first. Otherwise
Bert2 is remarkably unlikely to let the object go, that is, Bert2 is unlikely to
drop the object.

. The model is likely to generate some observation sequences, e.g.,
O = {o0, o1, o2, o3} where the first two observations are taken from {2, 3, 5} and
the last two are any of the set {2, 3, 10}; whereas other sequences have no possi-
bility at all to be seen, e.g., O = {4, 5, 12, 0}.

. The sets of typical observations generated by states 3 and 4 are {5} and {2, 3},
respectively. Accordingly, with high probability the critical transition, i.e., when
the model goes from state 3 (Robot hold) to state 4 (User grab), is expected to
be seen as a sequence of observations 5 followed by observations 2 or 3.

Therefore, we can regard the basic handover interaction on Bert2 as trustworthy.

Now we turn our attention to examine several considerations to extend the work of
this thesis. First, we seek improvements to the implementation of the model checker
for POCTL*. Zhang et al. say in [35, 36] that there are alternative ways to efficiently
compute the probability of satisfaction for specific type of formulas, such as:

• Let φ = as0 ∧ Xo0(as1 ∧ Xo1(. . . (asn ∧ Xontrue) . . .)) be a path formula, where
for each state si ∈ S we create the atomic proposition asi that is true only in
si. Clearly, every path ω that satisfies it is a member of the basic cylinder set
C
(
(s0, o0), . . . , (sn, on)

)
. Thus, to know whether s |= P./p(φ), it suffices to check
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whether the measure of this basic cylinder set, i.e., Prs0(C
(
(s0, o0), . . . , (sn, on)

)
),

meets the bound ./ p.

• Let φ = Xo0Xo1 . . .Xontrue be a path formula. To check whether s |= P./p(φ),
that is, Prs{ω ∈ Paths |ω |= φ} ./ p, we realise that the required measure value
can be seen as the probability of the observation sequence O = o0, o1, . . . , on and
state s = Si at time 0, given the model H, i.e., P [q0 = Si,O |H]. This probability
is efficiently computed by the expression α0(i) · β0(i) that involves the forward
and backward variables studied in Section 1.2.1.

• In Appendix C.2 the logic PCTL is defined. In [17] we find its model checking
algorithm, which works far more efficient that the one for POCTL* regarding the
until operator and its bounded version. Hence we can use it to deal with QOS
formulas of the form (ϕ1 Uϕ2, ./ p) and (ϕ1 U≤nϕ2, ./ p), where the POCTL*
path formulas ϕ1 and ϕ2 are verified recursively.

The previous suggestions can be spotted by the parser of our model checker for
POCTL*. Next, the necessary operations should be computed accordingly.

Furthermore, remember that stage two of the model checking algorithm, depicted
in Section 3.2, describes the way to construct a DTMC D = (SD, AD, LD, πD) from
the original HMM H = (S,A,Θ, B, L, π). Notice how the probability matrix AD is
defined by AD((s, o), (s′, o′)) = as s′ · bs′(o′). Since the observation o is not part of the
right-hand side, the values of AD((s, o), (s′, o′)) are the same for all o. In other words,
the rows of AD labelled (s, o) are the same for all o ∈ Θ. Consequently, we could get a
smaller matrix AD of size |S|×|S| · |Θ| where the repeated rows are removed. Likewise,
in Section 3.3 stage three of the algorithm is explained together with the constructions
CX and CU that defined a new DTMC D′. If we could devise a way to manage the
transition probabilities in D′ such that the occurrence of cells with zero probability is
prevented, both the execution time and the memory consumption would decrease.

Certainly, a large amount of observations dramatically affects the performance of
our model checker. So we investigated the vector quantisation method that reduces
the number of observations in the HMM. As we studied, this method yields a Voronoi
diagram whose peculiarities and applications (see [2, 25]) could be related to interesting
properties of the system’s observations.

With respect to the handover interaction discussed in Chapter 5, we analysed the
basic scenario for which we appointed only four broadly states. It is accurately said
in [10, 12] that the human engagement and intention plays a marked role in this task.
These papers show an extended system where the robot takes into account the expected
sequence of actions a user will make when interested in the handover process, that is,
user looks at the cup, user looks away and user touches the object. The decision made
by the robot also relies on a specific interval of time from the user first looking at
the object to the moment he or she finally touches it. If the timing for the handover
is within this interval, the process is successfully performed. Thus further work may
take this extended system and check liveness and safety properties of it through the
POCTL* model checker.
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Finally, the model checker for POCTL* might be used to check important properties
of other systems modelled by an HMM such as speech recognition, protein modelling,
compressed document processing, human gesture recognition and text recognition.



Appendix A

Probability

Here we present technical definitions and ideas related to probability theory. They are
taken from [14, 29, 35].

A.1 Properties and elements of probability theory

Definition A.1. Let X be a set, not necessarily finite. Then a σ-algebra Σ is a
nonempty collection of subsets of X such that the following hold:

1. X ∈ Σ.

2. If A ∈ Σ, then (X \ A) ∈ Σ.

3. If Ai ∈ Σ for all i ∈ N, then ∪i∈NAi ∈ Σ.

If S is any collection of subsets of X , we can always find a σ-algebra that contains S,
which trivially is the power set of X , P(X ). By taking the intersection of all σ-algebras
containing S, we get the smallest such σ-algebra.

Definition A.2. A measure P is defined as a nonnegative real function from σ-algebra
Σ, i.e., P : Σ→ R+, such that

P (∅) = 0,

and for any finite or countable sequence of pairwise disjoint sets A1, A2, . . ., with Ai ∈ Σ
∀i ∈ N, such that (∪i∈NAi) ∈ Σ, we have

P (∪i∈NAi) =
∑
i∈N

P (Ai).

Moreover, P is said to be a probability measure on Σ if P (X ) = 1.

Joint probability and marginalisation

The joint probability is the probability of two events in conjunction. We denote the
joint probability of X and Y by P [X ∧ Y ] or P [X, Y ].
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A common way to compute the probability of X, i.e., P [X], is to sum up the joint
probabilities over all outcomes Y of a particular experiment or situation, where X and
Y are mutually exclusive events. Therefore,

P [X] =
∑

for all Y

P [X, Y ].

This process is called marginalisation.

Conditional probability, the product rule and independence

When dealing with uncertainty, once we have obtained evidence concerning previously
unknown information, we use conditional or posterior probabilities. The notation used
is P [X |Y ]. Conditional probabilities can be defined in terms of unconditional proba-
bilities. Accordingly,

P [X |Y ] =
P [X, Y ]

P [Y ]
if P [Y ] > 0.

From this we can derived the product rule

P [X, Y ] = P [X |Y ] · P [Y ].

If one event X has no influence over another Y , then we say that they are indepen-
dent. Independence between X and Y can be written as any of the equations

P [X |Y ] = P [X], P [Y |X] = P [Y ], P [X, Y ] = P [X]P [Y ].

Moreover, observe that if the original joint probability is already conditioned, as in
P [X, Y |W ], then by the product rule we have

P [X, Y |W ] = P [X |Y,W ] · P [Y |W ].

Equivalently,

P [X |Y,W ] =
P [X, Y |W ]

P [Y |W ]
.

Bayes’ rule

We can state the product rule in two different ways, namely

P [X ∧ Y ] = P [X |Y ] · P [Y ]

P [Y ∧X] = P [Y |X] · P [X].

Equating the two right hands and dividing by P [X], we get the formula known as
Bayes’ rule

P [Y |X] =
P [X |Y ] · P [Y ]

P [X]
.

A more general version results when taking the previous probabilities conditioned
on some background evidence W , that is,

P [Y |X,W ] =
P [X |Y,W ] · P [Y |W ]

P [X |W ]
.
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Probability Measures over DTMCs

In Chapter 1 we defined a probability measure over HMMs. In this appendix we will
do so for DTMCs, following the ideas presented in [6, 17].

A path represents an execution of a system described by a DTMC D = (S,A, L, π).
A path ω is defined as a non-empty sequence of states s0, s1, . . . where si ∈ S and
asi si+1

> 0 for all i ≥ 0. A path can be either finite (ωfin) or infinite (ω). We denote
the (i + 1)st state of a path ω by ω(i) and the length of ω, that is, the number of
transitions, by |ω|. We say that a finite path ωfin is a prefix of the infinite path ω if
ωfin(i) = ω(i) for 0 ≤ i ≤ |ωfin|. To indicate the suffix of ω that starts at state sk,
that is, sk, sk+1, . . ., we write ω[k]. The sets of all finite and infinite paths in D starting
in state s are denoted Pathfin,Ds and PathDs , respectively. When the model D is obvious
from the context, we omit it from the notation.

To study the probabilistic behaviour of a DTMC, we have to determine the prob-
ability that certain paths are taken. With that goal in mind, we define, for each state
s in S, a measure Prs over Paths. We adhere to the basic cylinder construction as
follows. The basic cylinder set C(ωfin) is

C(ωfin)
def
= {ω ∈ Paths |ωfin is a prefix of ω}.

Let Σs be the smallest σ-algebra on Paths (see previous Appendix A.1) which con-
tains all the sets C(ωfin), where ωfin may be any path in Pathfins . We define Prs on
Σs as the unique measure such that

Prs
(
C(ωfin)

)
= Prs

(
C(s, s1, . . . , sn)

)
=

{
πs if n = 0
Prs
(
C(s, s1, . . . , sn−1)

)
asn−1 sn otherwise,

where n = |ωfin|. Moreover, we can rewrite the previous probability measure as

Prs
(
C(ωfin)

)
= πs

n∏
i=1

asi−1si .

Let Σ be the smallest σ-algebra on Path, i.e., the set of paths of D starting at any
state s ∈ S. We use the measure Prs to define the probability measure PrD over Σ as
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follows:

PrD
( ⋃
s∈S

C
(
s, . . . , sk)

)
=
∑
s∈S

PrD
(
C(s, . . . , sk)

)
(By Definition A.2)

=
∑
s∈S

Prs
(
C(s, . . . , sk)

)
,

where the family of sets
⋃
s∈S C(s, . . . , sk) ∈ Σ consists of disjoint cylinder sets.

Now we are able to quantify the probability that a DTMC behaves in a certain way
by applying the associated measure PrD (or Prs) over the set of paths which satisfy a
particular specification.
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Logics: PCTL, LTL and QLS

This appendix is dedicated to show logics that have a remote relation with POCTL*
sublogics.

C.1 PCTL

The definition given here follows the lines presented in [30]. PCTL stands for Proba-
bilistic Computational Tree Logic, and its syntax is

Φ ::= true | false | a | ¬Φ | Φ ∨ Φ | Φ ∧ Φ | P./p(φ)

φ ::= XΦ | ΦU≤k Φ | ΦU Φ,

where a is an atomic proposition, ./ {≤, <,>,≥}, p ∈ [0, 1] and k ∈ N.
We use PCTL as a specification language of DTMCs (see Definition 1.1). Addition-

ally, paths and probability measures over DTMCs are defined as explained in Appendix
B. We can distinguish between state formulas (Φ) and path formulas (φ), which are
evaluated over states and paths, respectively.

Let D = (S,A, L, π) be a labelled DTMC. The semantics of PCTL over D is given
through the satisfaction relation |=, which is inductively defined next. For any state
s ∈ S, we have

s |= true ∀s ∈ S
s 6|= false ∀s ∈ S
s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φ1 ∨ Φ2 iff s |= Φ1 ∨ s |= Φ2

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2

s |= P./p(φ) iff Prs{ω ∈ Paths | ω |= φ} ./ p,
where for any path ω ∈ Paths

ω |= XΦ iff ω(1) |= Φ

ω |= Φ1 U≤kΦ2 iff ∃i ≤ k. (ω(i) |= Φ2 ∧ ∀j < i. ω(j) |= Φ1)

ω |= Φ1 UΦ2 iff ∃k ≥ 0. (ω |= Φ1 U≤kΦ2).
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C.2 LTL and QLS

The next definition is taken in part from [33] and [35]. Here we explicitly have additio-
nal features, such as the false Boolean value, the disjunction operator and the bounded
until operator. Moreover, formulas of linear-time propositional temporal logic (LTL) are
built from a set Prop of atomic propositions and are formed according to the grammar
production

φ := true | false | a | ¬φ | φ ∨ φ | φ ∧ φ | Xφ | φU≤kφ | φUφ,

where a ∈ Prop and k ∈ N.
LTL is interpreted over computations. A computation is a function ρ : N → 2Prop,

which at each instant of time (natural number) assigns truth values to the elements
of Prop. For a function ρ and an instant i ∈ N, we define a satisfaction relation (|=)
inductively over the LTL formulas as follows:

ρ, i |= true for every function ρ and every i ∈ N
ρ, i 6|= false for every function ρ and every i ∈ N
ρ, i |= a iff a ∈ ρ(i)
ρ, i |= ¬φ iff ρ, i 6|= φ
ρ, i |= φ1 ∨ φ2 iff ρ, i |= φ1 ∨ ρ, i |= φ2

ρ, i |= φ1 ∧ φ2 iff ρ, i |= φ1 ∧ ρ, i |= φ2

ρ, i |= Xφ iff ρ, i+ 1 |= φ
ρ, i |= φ1 U≤kφ2 iff ∃j, i ≤ j ≤ i+ k. (ρ, j |= φ2 ∧ ∀l, i ≤ l < j. ρ, l |= φ1)
ρ, i |= φ1 Uφ2 iff ∃j ≥ i. (ρ, j |= φ2 ∧ ∀l, i ≤ l < j. ρ, l |= φ1).

Moreover, we say that ρ satisfies a formula φ, which we write as ρ |= φ, if and only if
ρ, 0 |= φ.

We can see computations as infinite words over the alphabet 2Prop, this word turns
out to be the concatenation of ρ(i) for every i ∈ N, i.e., ρ(0)ρ(1)ρ(2) . . .. In [33], it is
stated that the computations satisfying a given LTL formula are exactly those accepted
by some finite automaton on infinite words.

We defined the logic QLS as a quantitative LTL specification. QLS formulas are
pairs (φ, ./ p), where φ is a LTL formula, ./∈ {≤, <,>,≥} and p ∈ [0, 1]. In [35] the
formula φ is interpreted over DTMCs. So let D = (S,A, L, π) be a DTMC and s a
state in S, the satisfaction relation |= is given by the rule

D, s |= (φ, ./ p)⇐⇒ Prs{ω ∈ Paths |ω |= φ} ./ p.



Appendix D

Sample Execution of the Model
Checker

This appendix is dedicated to explain step-by-step how the model checker can be
executed, as well as to show the format that its input arguments must attain to, they
are a .poctl file with the HMM of interest and a POCTL* formula.

Once the Haskell compiler ghci is running, we have to load the module Main.hs

that contains the function main, which is called to initiate the model checker. Next,
the legend: Enter the file name where the HMM is located. is shown and the
program waits for a .poctl file to be passed to it.

D.1 The .poctl file

The six elements of an HMM have to be defined within this file. We recall that H =
(S,A,Θ, B, L, π), thus we use the reserved words States, Transitions, Observations,
ObsProb, Labelling and Initial to define its respective elements. Moreover, in the
.poctl file the sets of states and observations are given as integer numbers represent-
ing their length, the probability matrices for the state transitions and the observation
distributions are expressed as lists of lists of double values, the labelling function is a
list of lists of strings and, finally, the initial distribution is a list of double values. For
instance, in [35] an HMM is offered in Chapter 5 as part of Example 5.1.1 on how the
model checking algorithm for POCTL* works. We code that same HMM in the file
ModelZhang.poctl, whose content is:

States = 5

Transitions = [[0, 0.5, 0, 0, 0.5],

[0, 0, 0.5, 0, 0.5],

[0, 0, 0, 0.5, 0.5],

[0, 0, 0, 0.5, 0.5],

[0, 0, 0, 0, 1.0]]

Labelling = [["a"],["a"],[""],["b"],[""]]
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Observations = "3"

ObsProb = [[0.33333333333333,0.33333333333333,0.33333333333333],

[0.33333333333333,0.33333333333333,0.33333333333333],

[0.33333333333333,0.33333333333333,0.33333333333333],

[0.33333333333333,0.33333333333333,0.33333333333333],

[0.33333333333333,0.33333333333333,0.33333333333333]]

Initial = [1, 0, 0, 0, 0]

We require the definition of the number of states (identified by the reserved word
States) to be the first element to be given by this file. The reason is that knowing
this quantity helps us to define the other items composing the HMM. Likewise, the
number of observations (Observations) has to be established before the observation
probability matrix (ObsProb). Besides these two constraints, the rest of the HMM
elements can be defined regardless of their position in the .poctl file.

So, when we are asked for a file where the HMM is located, we might answer
ModelZhang.poctl. As a result, out of this file the program generates a record value of
type HMM as defined in Chapter 4. Now the input POCTL* formula is requested by the
model checker with the sentence: Enter the POCTL* formula we are interested

in., projected on the screen.

D.2 Typing POCTL* formulas

In Remark 3.1 of Chapter 3, we fixed the grammar for the POCTL* formulas, and
its corresponding Haskell implementation is given back in Chapter 4. However, that
encoding is not user friendly at all. In order to offer a less cumbersome manner to
type these formulas, we associate to each grammar’s terminal symbol a more natural
encoding according to the next table.

Terminal Symbol New encoding

Boolean value true Reserved letter T
Boolean value false Reserved letter F
Atomic proposition a Sequence of non-reserved letters
Negation operator ¬ Symbol ~
Disjunction operator ∨ Reserved letter v
Conjunction operator ∧ Symbol ^
Probabilistic operator P./ p P[./ p], where P is a reserved letter
Next operator X{m1,...,mi} X {m1, . . . ,mi}, where X is a reserved letter
Bounded until operator U≤n U n, where U is a reserved letter
Unbounded until operator U Reserved letter U
Left Parenthesis ( Symbol (
Right Parenthesis ) Symbol )
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Observe that,

• The encoding of the comparison symbol ./ can take any of the values <, <=, >=
or >.

• For the threshold double value p used by the probabilistic operator, the inequality
0 ≤ p ≤ 1 holds.

• Since we are considering the observations as integer numbers from 1 to the value
of Observations defined in the .poctl file, every element in the subset of obser-
vations {m1, . . . ,mi}, attached to the next operator, also lies within that interval.

• The bound n used in U≤n is a non-negative integer.

Continuing with Example 5.1.1 found in Chapter 5 of [35], we are interested to
knowing whether state s1 satisfies the formula (¬b) ∧ P<0.05(aU (X{1}b)) based on the
HMM packed in the file ModelZhang.poctl. After being asked for a formula to verify,
we type in the terminal (~b) ^ P[<0.05] (a U (X_{1}b)). The software runs the
model checking algorithm on the already passed HMM and this POCTL* formula, it
takes a couple of seconds and returns

The states that satisfy it are:

[1,2,3,5]

Since s1 has initial distribution value of 1, we do not regard states 2, 3 and 5. We
conclude that s1 |= (¬b)∧P<0.05(aU (X{1}b)). This is also the answer shared by [35]11.

Afterwards, the model checker asks whether the user wants to keep verifying prop-
erties. So, it prints: Do you want to continue checking more specifications?

y/n:. If the answer is y, the program waits for a new formula to be entered. If we
respond with an n, the model checker finishes.

Remark D.1. A subtle issue arises when trying to find the states that satisfy the
formula Φ following Zhang’s method. He does not take into account the initial distri-
bution π to calculate the measure Prs, contrary to what we do. We can achieve the
same result that Zhang obtains by executing the model checker |S| times, such that for
i = 1, . . . , |S| we have πsi = 1 and πsj = 0, ∀i 6= j. With this consideration, the model
checker is executed. If i is in the output, then we mark the ith state as satisfying Φ.
At the end of this process we will have identified all states satisfying Φ, just as Zhang
does.

By the previous remark, we get states 1 and 5 as the outcome of Example 5.1.1.
This is, too, the solution given by [35].

11In [35], Zhang uses state indices ranging from 0 to n−1. Nonetheless, our implementation specifies
state indices in the range 1 to n. Same situation happens with the observation indices. Consequently,
Zhang’s answer to Example 5.1.1, s0, is equivalent to ours, i.e., s1.
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