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PABLO SEBASTIÁN CONTRERAS OSORIO

TUTOR PRINCIPAL:

DR. EDUARDO RAMOS MORA

INSTITUTO DE ENERGÍAS RENOVABLES, UNAM
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Resumen

El presente trabajo es un estudio de las propiedades topológicas del mezclado en un
flujo generado por convección natural en un contenedor cúbico donde la temperatura de
las paredes verticales es dependiente del tiempo. El fluido es Newtoniano pero no se
consideran los términos no lineales, esto es, se considera el problema lineal en estado
permanente a pedazos.

Seguimos la metodoloǵıa propuesta para un flujo producido por el desplazamiento de
paredes en una cavidad ciĺındrica donde no se toman en cuenta los términos inerciales en
una primera instancia. Las propiedades a considerar en este contexto son ĺıneas periódicas,
planos de simetŕıa y superficies invariantes.

Para el flujo convectivo considerado en este estudio se identifican superficies invariantes
que son topológicamente equivalentes a esferas y se encuentran ĺıneas periódicas situadas
en planos de simetŕıa. Hacemos un estudio paramétrico en función del número de Rayleigh
en el que se estudian seis valores del parámetro. Es interesante notar que encontramos una
segmentación de las ĺıneas periódicas con puntos eĺıpticos e hiperbólicos. La dinámica en
las superficies invariantes muestra los comportamientos distintivos de los mapeos que con-
servan área. Agrupamos las diferentes caracteŕısticas observadas en términos del número
de Rayleigh.

El flujo estudiado comparte ciertas propiedades con otros sistemas y a lo largo del trabajo
hacemos notar las similitudes para tener un panorama amplio del mezclado de fluidos.
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Abstract

In this work we use topological tools to describe the motion of a natural convective flow
generated by stepwise, alternating heating and cooling protocol of opposite vertical walls
of a cubic container. The working fluid considered is Newtonian but the nonlinear terms
are neglected, i.e., we study the piece-wise steady and linear problem.

We follow the methodology presented for the lid-driven cylinder flow for the noninertial
case. The organizing properties for the analysis are periodic lines, specific symmetries
and invariant surfaces.

For this convective mixing flow we identify invariant surfaces formed by the orbits of
massless tracers that are topologically equivalent to spheroids and periodic lines that
are located on symmetry planes. We describe the previous features as functions of the
Rayleigh number, a parametric study is made in which six values of the Rayleigh number
are considered. It is particularly interesting that elliptic and hyperbolic segments of the
periodic lines are found. We show that the dynamics on the invariant surfaces exhibit
the complexity of area-preserving maps. We are able to group the different properties
observed in terms of the Rayleigh number.

The flow under consideration exhibit properties that are present in other systems and in
this work we point out specific similarities in order to have a wider context about fluid
mixing.
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Introduction

The simplest mixing problem corresponds to the mixing of a fluid with itself. Although
this may seem a problem without much interest, in this case rests the foundation of the
subject1 [1].

Mixing is present in a variety of physical systems on a large range of time and length
scales in nature and industry [3]; from the very small (microfluidic applications as micro-
electronics cooling, micro-reactors, ’labs-on-a-chip’ for molecular analysis, etc.2), to the
very large (mixing in the Earth’s oceans and atmosphere). The ratio of the contributions
of inertial forces (dominant at large scales) to viscous forces (dominant at small scales)
spans more than twenty orders of magnitude [5]. In particular, mixing under laminar3

flow conditions is key to a wide variety of fluid systems extending from micrometers to
meters [6].

Over the years, efforts have been devoted to find methods to quantify and accelerate mix-
ing; for example, using mechanical interactions to mix fluids with propellers or through
periodic displacement of container’s wall as in the flow between rotating cylinders. There
are also non intrusive methods, for example, systems that rely on the use of electromag-
netic forces to produce stirring in electrically conducting fluids [7].

The concept of laminar flow mixing with blinking vortices was introduced by Hassan Aref
[8]. In Aref’s system the flow was generated by point vortices fixed in space that are
switched alternatively on and off; here he demonstrated that such a system can produce
effective mixing. Experimental mixing with periodic motion for laminar flows was demon-
strated by the group of Ottino, see for example [9]. In two dimensions, fluid mixing can
be considered to be a visual representation of the behavior of a Hamiltonian system.

Here it is interesting to note the comment in the introduction of [4]: three decades have
passed since Aref introduced the term chaotic advection, and twenty-five years since a
textbook of the field appeared [10]. Clearly during this period of time a lot of research
has been done but there are still open problems and our insight into laminar mixing
remains incomplete to date.

1The term mixing has a precise meaning in ergodic theory, see for example [1]; in this work the term
will be used in a fluid mechanical sense: physical processes in which fluids are combined in such a way
that each individual fluid is continuously distributed among the other fluids [2].

2See the latest review of Aref et al. [4].
3They are characterized by low Reynolds numbers (Reynolds number, Re, represents the ratio of

inertial to viscous forces in a fluid).
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14 Introduction

Poincaré maps and chaos

In this part of the introduction we follow the exposition made by Galison [11] and our
purpose is present certain concepts used in the text. Poincaré was very interested in the
three-body problem4, which was described by Whittaker as ’the most celebrated of all
dynamical problems and which fulfilled the necessary criteria for a good mathematical
problem as defined by Hilbert [12]. Poincaré took a new visual-geometrical approach to
celestial mechanics through diagrams5, he focused on qualitative features of differential
equations.

It has been stated that the work of Henri Poincaré on the three body problem published
in the journal Acta Mathematica, is renowned for containing the first mathematical de-
scription of chaotic behavior6 [12]. He was aiming to set bounds on the motions caused
by the mutual attractions of planets and to reaffirm the stability of the solar system.

Poincaré asked the following question: ’in the configuration of an asteroid hurtling around
the orbiting system of Jupiter-Sun, what could the orbit of the asteroid do?’ His idea was
not to concentrate on the trajectory itself. If we think about simple periodic motion, the
asteroid returning every time to the same spot with the same velocity, his idea was to
examine the situation each time the asteroid came around as in a stroboscopic picture.
This is the idea behind Poincaré maps.

In this particular case we can think the map as a plane that intersects the asteroid’s
wandering, Poincaré’s idea was to study the patterns punctured in the plane, see fig. 1.
For the simple periodic orbit the asteroid would punch the plane in the same point over
and over again, that is we have a fixed point, F . Two interesting situations are when
the intersections occur near but not in F ; one possibility is a succession of points that
approach to F (labeled by S1, S2, ... in fig. 2) orbit by orbit. The curve through the points
is named stable axis, S; an asteroid starting anywhere on the line gradually tends toward
an orbit that circulates through F . A curve through F is called unstable, U , if an asteroid
punching F gradually moves away from F ; in this case, successive punctures run away
from F in the plane, see fig. 2.7

In mid-1885 an announcement of a mathematical competition honoring the birthday of
the King of Sweden Oscar II, was given. The problem: the three-body problem. Poincaré
thought that if asteroid’s intersections fled from a fixed point they would eventually settle

4It can be simply stated: three particles move in space under their mutual gravitational attraction;
given their initial conditions, determine their subsequent motion [12].

5June [12] remarks that Poincaré instructs his readers in the introduction to his original memoir that:
’These theorems have been given in a geometric form which has to my eyes the advantage of making
clearer the origin of my ideas ...’.

6Here we can have an idea of the importance of Poincaré’s work from the 1925 comment of George
Birkhoff: ’Le Problème de [sic] trois corps ... contained the first great attack upon the non-integrable
problems of dynamics ... Acta Mathematica has had many remarkable articles, but perhaps none of larger
scientific importance than this one.’ [12].

7See chapter 2 and Appendix A and for more details on fixed points, stable and unstable manifolds,
etc.
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Asteroid

Figure 1: Poincaré map for the asteroid.

down toward another fixed point. However, some problems in the prize proof of Poincaré8

were found and he discovered something that he had neither sought nor desired, a crack
in the stability of the problem, chaos9.

The idea of Poincaré was to suppose that a line of stability and a line of instability crossed
at the fixed point F . If the asteroid begins near but not on the stable axis (labeled by
C0 on fig. 2), it will move toward F getting quite near to it and at some point it will fall
under the influence of the unstable axis and begin to wander away from F , see the right
panel of fig. 2. The interesting point comes if we suppose that the stable and unstable
axes cross somewhere else, at H for example, a homoclinic point10. If an asteroid flies
through H, since it must remain on S, it moves toward F but H is also on U and then the
following points must also be on U , the result of both situation is a complex behavior. As
pointed out by Poincaré: ’The intersections form a kind of lattice, web or network with
infinitely tight loops; neither of the two curves must ever intersect itself but it must bend
in such a complex fashion that it intersects all the loops of the network infinitely many
times. One is struck by the complexity of this figure which I am not even attempting to
draw’ [14].

81890 Poincaré’s applauded paper is very different from the version which actually won the prize [12].
9Holmes [13] pointed out that the memoir published in 1890 by Poincaré (the same work referred

by Birkhoff) describing the prize problem is the first textbook in the qualitative theory of dynamical
systems.

10As we have noted, Poincaré’s discovery of a significant error in the original prize paper made him
extend the material contained in the work, it was as a result of its correction that Poincaré made his
important discovery of homoclinic points [12].
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Figure 2: Stable and Unstable axes.

Stretching and folding

Ottino et al. [15] make a historical review of the connection between mixing, stretching
and folding and chaos. Behind the chaotic behavior found by Poincaré are homoclinic
intersections, the mechanism being exactly equivalent to stretching and folding in phase
space. This idea is precisely the one advocated by Reynolds to explain fluid mixing. On
the other hand, stretching and folding as the fingerprint of chaos formally appeared in the
literature in the late 1960s through the horseshoe map of Smale, see [1] for more details
about this map. Connections between fluid mixing, stretching and folding and horseshoes
were made in the 80s, see [15] and references therein. The authors of the previously cited
work show that Reynolds’s stretching and folding idea of fluid mixing was replaced by
the statistical viewpoint that was taken in the 1950s and 1960s11 with the starting point
being the averaged Navier-Stokes equations proposed by Reynolds himself. In this way
the authors refer the history of mixing as one of failed connections12; it is now standard
to visualize internal motion of fluids by deformation of ’colored bands’ and to apply
geometrical thinking to rationalize internal motion of fluids, ideas that were linked to the
stretching and folding picture of fluid mixing.

Fluid mixing is an instance in which chaos is beneficial [16]. For laminar flow applications,
biological, industrial, etc., chaotic advection is typically the only way to efficiently increase
transport rates for mixing, reaction, and heat and mass transfer. In this context, we
are interested in chaotic motion [17]. This is a particular interesting point of the area,
usually, chaos is associated with something ’bad’: undesirable vibrations, difficulty in
control problems, yet another type of noise, etc. [4].

11The picture of turbulence during those decades was one of a structureless viewpoint where no pattern
could exist. Similar comments were applied to mixing [15].

12Reynolds presented the stretching and folding mechanism for mixing in a 1894 lecture and the idea
of averaged Navier-Stokes equations was published in 1895 [15].
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Mixing of fluids

We can think a mixing problem as knowing where fluid particles are advected by a pre-
scribed velocity field. For a two dimensional flow of an incompressible fluid the equations
of motion of an individual passive particle can always be written in Hamiltonian form and
methods of Hamiltonian mechanics can be applied [18], as opposed, the study of three
dimensional mixing flows encounters considerable difficulties.

Unlike turbulent flows, where chaotic tracer motion is intrinsic to the stochastic velocity
field, in the viscous limit chaotic tracer paths typically coexist with regular flow patterns.
This reflects the essential difference between laminar and turbulent mixing [2].

In a Lagrangian representation, tracer motion of mixing flows is described by a dynamical
system13. Much of the work due to the incorporation of dynamical systems theory to
mixing is for two dimensional flows and the extension to the three dimensional case has
seen less progress [19]. To study two and three dimensional periodic flows the concept of
Poincaré maps is traditionally applied, this approach allows to transfer the problem from a
continuos dynamical system to a discrete mapping and reduce the number of dimensions.
An important characteristic for both classes of flows is the location of periodic points. In
particular, the presence or absence of periodic points allows a judgement on the quality
of mixing process [20].

In a series of papers, Clercx and collaborators have described a methodology to analyze
the topological properties of mixing in a time-dependent driven flow inside a cylinder
(lid-driven cylinder flow). For a brief review of their work see [21] or [4, section V]. The
analysis made by the group of Clercx starts by considering symmetry planes, periodic lines
and invariant surfaces of the Lagrangian orbits in a Stokes flow, i.e., in the non-inertial
limit, Re = 0.

To identify periodic invariant curves the authors use the symmetries of the flow, then they
determine the stability of these curves and, in general, find that a particular curve may
be normally hyperbolic along certain length but change to normally elliptic along the rest
of the length. The point where the curve changes stability is normally parabolic [19].

For some protocols the authors find that the flow structure is such that it is filled out
by concentric invariant spheres. The particle motion on the invariant spheres can take a
variety of forms, depending on the radius of the sphere, as well as the forcing. Invariant
spheres can exhibit particle motions that appear integrable (regular), a mixture of regular
and chaotic, and completely chaotic. The dynamics of particle motion on the sphere is
governed by two dimensional time-periodic Hamiltonian dynamics [19]. In chapter 2 we
will review the topological analysis made by these authors more widely.

From the previous cited methodology we briefly comment on three works. Malyuga et
al. [18] consider the Stokes problem for the lid-driven cylinder flow with discontinuous
movements of top and bottom walls, a classification of periodic points is presented and the

13 Dynamical-systems theory deals primarily with the behavior of differential equations and their
relatives, iterated mappings, we refer to [13] for a brief history of the mathematical foundations of the
subject.
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flow near these points is explored using Poincaré maps. Here the authors find periodic
lines and isolated periodic points for the different studied protocols. Speetjens et al.
[2] study three dimensional advection of passive tracers in non-inertial lid-driven cylinder
flows by means of numerical simulations and laboratory experiments. Tracer orbits exhibit
quasi-two dimensional motion within thin shells, effectively two dimensional dynamics or
truly three dimensional dynamics covering the entire flow domain depending on the time-
periodic forcing protocol [2, 21, 4]. The configuration considered by Pouransari et al. [6]
is the lid-driven cylinder flow where the fluid is set in motion through periodic forcing
resulting from in-plane motion of the lower endwall. Once the topological properties of
the linear flow have been found, the analysis proceeds by looking at the modifications
of the topological properties brought about by the inclusion of the nonlinear terms in
the momentum conservation equations, here, the authors show new types of dynamical
systems structures [19].

Chaotic mixing can be achieved inside a two dimensional cavity with time dependent wall
temperature in presence of a body force as showed by de la Cruz & Ramos [22]. Under
these conditions a vortex of variable strength is generated and the center of the vortex
moves around the container. In this configuration no moving walls are required to mix
the fluid inside the cavity.

In the present investigation, we study a natural convective flow inside a cubic box with a
time-dependent temperature in the vertical walls. Our system shares some features with
the lid-driven cylinder flow; motion is generated by time-dependent boundary conditions,
although the main difference is that the displacement of a wall is a surface force while
natural convection is a body force. The dynamical consequences of these two effects are
similar insofar the motion in the natural convective flow is mostly concentrated in the
dynamic boundary layer that forms very close to the vertical wall.

Chapter 1 is an introduction to the study of mixing and a summary of the equations of
natural convection. Chapter 2 presents a review of the topological analysis of mixing, as
we have commented, we mainly follow the papers of the group of Clercx, but also add
some results of the ’blinking rolls’ flow and the ’blinking tumbler’ from granular flows
because these configurations share some features with our system and it is particularly
interesting that an analytic treatment can be made. In chapter 3 the problem statement
is set for the piece-wise steady and linear flow. Chapter 4 considers the numerical tools
of solution for the topological analysis and in chapter 5 the results are presented. Finally
we give the conclusions and an outlook of future work in chapter 6.



Chapter 1

Background

In this chapter we will briefly introduce previous ideas in the study of mixing and the
concept of chaotic advection. We also enunciate the context in which are located three
dimensional unsteady incompressible laminar flows from the point of view of volume
preserving maps. We shortly comment about some examples of thermal mixing in the
literature and in the second part we present a summary of the governing equations for
natural convection.

1.1 Mixing

Over the years, different strategies have been adopted in the study of mixing. Ottino [10]
shows examples of papers published in the 40’s and 50’s related to the subject; in some of
them, the approach is statistical and others emphasize geometric aspects of the problem.
Subsequently, statistical theory took over and geometrical aspects of the problem were
somewhat lost as was briefly commented in the Introduction.

Danckwerts in 1953 focused primarily on the characterization of the mixed state, he
devised parameters to indicate how well a mixed system is1. A large number of mixing
measures exist, e.g., interfacial area between fluids per unit volume, fractal dimension,
various types of correlation and distribution functions, average cluster size and cluster
size distribution, etc., however, the characterization of the structures depend strongly
on the specific application2. The importance and relevance of measures of mixing is not
clear; they might be impossible to relate to the mixing process itself or they might be
unmeasurable from an experimental viewpoint [3].

In mechanical mixing, an initially designated material region of fluid stretches and folds
throughout the space. Without the action of molecular diffusion, mechanical mixing
produces a lamellar structure and a measure of the state of mechanical mixing is given
by the thicknesses of layers.

Wiggins & Ottino [1] give the mathematical definition of a mixing transformation in the
context of the hierarchy of characterization of mixing. Intuitively the basic idea of the
definition is as follows: within the domain R, denote a region B of fluid (differentiated by

1Ottino [3] remarks that the earliest ideas about quantification of mixing come from Danckwerts.
2The measure should be selected according to the specific application and it is futile to devise a single

measure to cover all contingencies [10].

19
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color, for example) and any other region W . After n applications of the mixing process
if we take any region of W we have the same fraction of the fluid B as that for the entire
domain3.

Ottino et al. [15] present two other similar mathematical definitions of mixing, measure-
theoretic mixing and strongly topologically mixing. A summary of the quality of the
mixed state and some measures of mixing can be found in [4, section VI]. Briefly, the
idea in most definitions is that mixing can be quantified using statistical quantities like
the coarse-grained density and entropy4. The authors consider three criteria of the mixed
state: the average square density, proposed by Welander in 1955; the entropy, following
ideas of Gibbs proposed in 1902, and the intensity of segregation and scale of segregation
proposed by Danckwerts in 1952.

The fundamental concept behind these measures is to estimate the time necessary for the
mixed state to become uniform within some specified range, for a given volume element
size (’the grain’) [4]. In this work we will not use these concepts but we observe that their
study might be of great interest in the context of the natural convective flow studied here.

1.1.1 Flows and maps

We present the main idea of the hierarchy in the dynamics of incompressible laminar fluid
flows following Cartwright et al. [23]. Dynamics of one dimensional incompressible lami-
nar flow (whether steady or unsteady), as Poiseuille or Couette flow, is well understood:
one dimensionality plus incompressibility means that the fluid velocity must be uniform
at any time in the direction of the flow.

As we mentioned in the introduction, two dimensional steady incompressible flows are
integrable, like one degree of freedom time independent Hamiltonian systems. Two di-
mensional unsteady incompressible flows, on the other hand, display the dynamics of one
degree of freedom time dependent Hamiltonians5, which are generically nonintegrable. If
we have time-periodic systems, the resulting maps are area-preserving on the plane, and
show the chaotic motion typical of these maps, with chaotic trajectories bounded by the
invariant KAM tori [23].

The steady three dimensional incompressible flow problem is similar to the unsteady case
in two-dimensions: the Poincaré map to any section transverse to the flow is an area-
preserving map on the plane. These flows can be reduced to a one-degree of freedom
time-dependent Hamiltonian system, except at points where the flow has fixed points.

3Again the comment made by the authors is that from the viewpoint of applications we find a problem
since in this definition is implicit the limit n → ∞ and in practice we desire the number of cycles to be
as small as possible.

4These quantities may be employed if at any moment in time the distribution of the marked fluid to
be mixed in the ambient fluid domain in exactly known [4].

5In the literature it is also found that if the Hamiltonian is an explicit function of time the system
has an additional degree of freedom. In the case of time-periodic Hamiltonians, time is regarded as an
additional 1

2 degree of freedom [10].
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Arnold first addressed chaos in three dimensional steady incompressible inviscid fluid
flow [24, 23, 4, 25].

Three dimensional unsteady incompressible laminar flow has an entirely different dynam-
ics. Periodic systems in this category produce stroboscopic maps in three dimensions that
preserve volume. These maps are named Liouvillian maps, do not correspond to Hamil-
tonian systems, which have phase spaces of even dimensionality: Hamiltonians with two
or three degrees of freedom produce volume preserving maps of two or four dimensions
respectively [23]. An important feature of Liouvillian maps is that they can exhibit
types of behavior analogous to both two and three degree-of-freedom Hamiltonian sys-
tems [24, 23]. We want to stress that to study volume-preserving systems it is mandatory
the use of algorithms that provide accurate solutions to the incompressibility constraint,
i.e., ∇ · u = 0.

A similar feature between the system studied in this work and the one analyzed by Clercx
and collaborators is the presence of spheroidal invariant surfaces6 that topologically differ
from the classical invariant tori. The context of these flows is the study of generic volume-
preserving systems. Tumbled granular flows also display features as time periodicity,
invariant surfaces and periodic lines of elliptic and hyperbolic type [6]. Another system
that shares some topological characteristics is the 3D time-periodic laminar flow driven
by a rotating sphere [26].

Even if great progress has been made since mid-1980s, the development of a Hamiltonian-
like framework for 3D Lagrangian transport is far from complete, for example, response
scenarios to perturbations and routes to chaos and particularly scenarios for coherent
structures of different topology as invariant spheroids remain outstanding [21, 4]. Topo-
logical equivalence of invariant surfaces to spheres is a key feature; the Hamiltonian re-
sponse to perturbation of one-action maps7 depends explicitly on the assumption that
both intrasurface coordinates are periodic, this condition is fulfilled for tori but violated
for spheres [27]. In this context, bifurcations on invariant surfaces are likely to play a
pivotal role [21].

1.1.2 Characterization of mixing

As we pointed out in the introduction, mixing of a continuous medium in motion is
intimately related to stretching and folding of material surfaces or lines in two dimensions,
an exact description of mixing should be given in terms of the location of interfaces as
functions of space and time. However, this level of description is rare because the velocity
fields usually found in mixing processes are complex and furthermore the mixing problem
starts rather than ends with the specification of the velocity field [3].

Mixing is also strongly related to flow visualization, but frequently, the typical ways of vi-
sualizing a flow (streamlines, pathlines, and to a lesser degree, streaklines) are insufficient
to understand the process [10].

6See chapter 2 for details on invariant surfaces.
7They confine tracers to invariant surfaces, see section 2.2 for more about maps.
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In the work of the Clercx group, tracer dynamics is investigated in terms of Poincaré
sections of tracers released at strategic locations in the domain that enable visualization
of the flow topology. We will study some properties of the results obtained with this
technique in chapter 2.

When a particle moves with the fluid, we speak of advection, sometimes passive advection8

to emphasize that the particle is light and inert [28]. The motion of passive tracers in the
flow is governed by the kinematic equation, called by Aref as advection equations

dx

dt
= u(x, t), x(0) = x0, (1.1)

which describe the evolution of the positions x(t) of tracers released at x0. These equa-
tions belong to the Lagrangian description of fluid motion, where individual particles are
tracked. The general solution of eq. (1.1) reads x(t) = Φt(x0) and uniquely determines
the current position x for a given initial tracer position x0.

The orbit defined by Xt(x0) = Φt′(x0), where t′ = [0, t], coincides with the Lagrangian
trajectory followed by the tracer while propagating from x0 to x. For steady systems
u = u(x) and the tracer paths coincide with streamlines [2].

Time-periodic systems are characterized by u(x, t) = u(x, t + T ), with T the global
period, and the corresponding discrete mapping by xk+1 = ΦT (xk), where xk is the
tracer position after k periods of the time-periodic protocol. The sequence [x0,x1,x2, ...]
contains the subsequent tracer positions at times [0, T, 2T, ...] and forms the temporal
Poincaré section of the tracer trajectory9.

The system of ordinary differential equations (1.1) can generate nonintegrable or chaotic
dynamics. As we stated in the previous subsection 1.1.1, steady, two dimensional advec-
tion is integrable10, in two dimensions we need time-dependent flow to produce chaotic
particle motion but three dimensional flows need not be time-dependent in order to have
chaos.

Chaotic advection is a way to generate small-scale structures in the spatial distribution of
advected fields by using the stretching and folding property of chaotic flows [4]. In chaotic
advection particles moving passively with the flow field follow chaotic particle trajectories.

Mixing by chaotic advection has the advantage over turbulence that it does not require the
large input of energy to maintain the Kolmogorov cascade to create small-scale structures.

8The formal statement of passive advection in terms of velocity can be expressed as vparticle = vfluid.
9As pointed out by Cartwright et al. [23], the term Poincaré section is used for the sectioning of the

flow in time or space to produce a map. The terminology is not completely fixed; generally, Poincaré
section to mean any such section, and Poincaré map to be the dynamics on the section. See appendix A
for more details about eq. (1.1) and mappings.

10Two dimensional kinematics of advection by an incompressible flow is equivalent to the Hamiltonian
dynamics of a one-degree-of-freedom system (the stream function plays the role of the Hamiltonian).
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1.1.3 Thermal Mixing

Heat transfer and mixing plays an important role in fields as earth and life sciences,
chemical engineering and material science [29]. Since 1990s there have been many studies
concerned the use of chaotic advection flows to promote heat transfer.

In this context, two main classes of flow geometries are encountered in the production of
chaotic mixing: those that use rotating elements or translating elements and those that
use multiple curved ducts, see [30] for examples in both cases. For both types of geometry,
the heat is communicated to the fluid through the walls, a situation that is very common
in industrial applications.

We want to introduce a mixer composed of two circular rods inside a cylindrical tank
(two-rod mixer11) that has been studied by Le Guer & El Omari [4, 30]. The tank and
the rods can be heated or cooled and can rotate around their respective axes. This mixer
is suitable for obtaining global chaotic flow without large KAM regions. The authors
consider a highly viscous fluid (Re ≈ 1) with a high Prandtl number (Pr = 104), so it is
difficult to mix.

The authors have shown for Newtonian and non-Newtonian fluids and for a constant
wall-temperature boundary condition (Dirichlet condition) that the efficiency of thermal
exchange is strongly dependent on the choice of the stirring protocol imposed on the walls.
The authors have also considered a constant heat flux imposed at the wall (Neumann
condition) [30].

For constant temperature wall condition El Omari & Le Guer [29] show that the use of
discontinuous wall rotations is necessary to promote heat transfer by chaotic mixing and
to avoid hot spots in the vicinity of the walls, that is, maximizing heat transfer from the
wall boundaries requires that the walls (tank or rods) move alternately.

We won’t expand on the work of the two-rod mixer because we have followed the topo-
logical analysis presented for the lid-driven cylinder flow. However, it may be of interest
to return and compare the results obtained for this kind of configuration, particularly,
the evolution of the fluid temperature, its homogenization and mixing indicators. The
authors focus mainly on different statistical tools.

1.2 Governing equations for natural convection

Natural convection flows arise when buoyancy forces due to density differences occur and
these act as driving forces [31]. If the density is kept constant, a natural convection
flow cannot form; the direct origin of the formation of natural convection flows is heat
transfer via conduction through the fixed walls surrounding the fluid, heat supply by
an internal dissipation mechanism, Joule or viscous dissipation, or heat injection by an
external mechanism like electromagnetic radiation.

11This mixer geometry can be seen as an extension of the eccentric cylinder geometry (journal bearing
flow).
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The equations describing the natural convective motion of a Newtonian fluid can be found
in many references [32, 33, 34] and we will only enunciate them briefly.

Consider a fluid in which the density ρ is a function of position xj (j = 1, 2, 3) and time
t, and let uj (j = 1, 2, 3) denote the components of the velocity. The variables p and T
are the pressure and the temperature of the fluid, respectively. We shall use the notation
of Cartesian tensors with the usual summation convention. The conservation equations
are presented below.

Mass conservation equation

∂ρ

∂t
+

∂(ρuj)

∂xj

= 0. (1.2)

For an incompressible fluid, the equation of continuity (1.2) reduces to

∂uj

∂xj

= 0; (1.3)

the velocity field in this case is solenoidal.

Momentum conservation

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk

= − ∂p

∂xj

+
∂

∂xj

(λ
∂uk

∂xk

) +
∂

∂xi

[μ(
∂ui

∂xj

+
∂uj

∂xi

)] + ρfj, (1.4)

where μ is the dynamic viscosity of the fluid12, the parameter λ is referred as the second
viscosity coefficient and fj is the jth component of an external force acting on the fluid.
Equations (1.4) are known as the Navier-Stokes equations. For an incompressible fluid in
which μ is constant, equations (1.4) simplifies to

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk

= − ∂p

∂xj

+ μ
∂2uj

∂xk∂xk

+ ρfj. (1.5)

In the special case of negligible viscous effects, the Laplacian term is eliminated, equations
(1.5) are known as Euler equations and the fluid is called inviscid.

Energy conservation

ρ
∂e

∂t
+ ρuk

∂e

∂xk

= −p
∂uk

∂xk

+
∂

∂xj

(k
∂T

∂xj

) + λ(
∂uk

∂xk

)2 + μ(
∂ui

∂xj

+
∂uj

∂xi

)
∂uj

∂xi

. (1.6)

Here e is the internal energy per unit mass and k is the thermal conductivity of the fluid
appearing in Fourier’s law.

12The kinematic viscosity is defined by ν = μ/ρ.
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Equation of state

The set of mass, momentum and energy conservation equations do no constitute a closed
system. Additional relationships between thermodynamic variables are required. The
most convenient are

p = p(ρ, T ), (1.7)

and

e = e(ρ, T ). (1.8)

Equations (1.7) and (1.8) are general representations of the thermal and caloric equations
of state, respectively.

1.2.1 Boussinesq approximation

Equations (1.2), (1.4) and (1.6) are the basic hydrodynamical equations and are of quite
general validity. However, there are many situations where they can be simplified con-
siderably; these situations occur when the variability of the density and of the various
coefficients (μ, cV , α, and k) due to variations in the temperature is only moderate. Un-
der this condition, we may treat ρ as constant in all terms in the equation of motion
except the one in the external force and all the physical attributes in the coefficients are
considered constants, this is the Boussinesq approximation13 [32].

Under this approximation, the conservation equations for Newtonian incompressible fluids
take the following form

∂uj

∂xj

= 0, (1.9)

ρ0[
∂ui

∂t
+ uj

∂ui

∂xj

] = − ∂p

∂xi
+ μ

∂2ui

∂xj∂xj

+ ρbi, (1.10)

∂T

∂t
+ uj

∂T

∂xj

= α
∂2T

∂xj∂xj

, (1.11)

ρ = ρ0 [1− β(T − T0)] , β = − 1

ρ0

(
∂ρ

∂T

)
T=T0

, (1.12)

where T0 is a reference temperature, ρ0 is the density for T = T0. The variable α =
k/(ρcV ), is the thermal diffusivity. In eq. (1.11) it is considered that the internal energy
can be expressed as e = cV T , with cV the specific heat at constant volume. In eq. (1.12),
the density function ρ(T ) is expanded in Taylor series with β the coefficient of volume
expansion and breaking off after the linear term.

13The formal conditions under which the Boussinesq approximation is valid can be found in Gray &
Georgini [35]. See also the work by Ramos & Vargas [36].
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1.2.2 Non-dimensional equations

In order to simplify the generalization of the results, it is convenient to write the variables
in the natural scale of the flow as follows

xj =
x′
j

H
, t = t′

H2/α
, uj =

u′
j

α/H
, p = p′

ανρ0/H2 , and T = T ′−TC

ΔT
− 1

2
,

where H is the vertical characteristic length of the container and ΔT = TH − TC , is
the difference between hot, (TH), and cold, (TC), temperatures. The non-dimensional
conservation equations are [37]:

∂uj

∂xj

= 0, (1.13)

∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ Pr
∂2ui

∂xj∂xj

+ bi, (bi = (0,PrRaT, 0)) (1.14)

∂T

∂t
+ uj

∂T

∂xj

=
∂2T

∂xj∂xj

, (1.15)

where the non-dimensional parameters are the Prandtl and Rayleigh numbers defined by

Pr =
ν

α
and Ra =

gβΔTH3

αν
. (1.16)

We are considering the gravity force in the negative direction of y-axis.

1.2.3 General scalar transport equation

The previous equations share some features which can be used to write a general transport
equation. If we introduce a general variable φ, we can write the fluid flow equations in
the following form [38]

∂φ

∂t
+

∂

∂xj

(ujφ) =
∂

∂xj

(Γ
∂φ

∂xj

) + S, j = 1, 2, 3. (1.17)

The second term on the left and the first term on the right hand side of this equation
are the convective and diffusive terms respectively. Γ is a generalized diffusion coefficient
and S is the source term. Equation (1.17) is the transport equation for property φ. Equa-
tions (1.13), (1.14) and (1.15) can be expressed in the form of (1.17) with the following
identifications

Equation φ Γ Si

Mass ρ = constant 0 0

Momentum ui Pr − ∂p
∂xi

+ bi
Energy T 1 0

Table 1.1: Correspondence of balance equations with the general transport equation.
i = 1, 2, 3.
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Eq. (1.17) is used as the starting point for computational procedures in the finite volume
method and we will return to it in chapter 4.





Chapter 2

Topological analysis of mixing

In this chapter we present a recapitulation of the topological concepts applied to mixing
processes that are available in the literature. The flow topology can be characterized
by the collection of coherent structures embedded in the web of tracer orbits. Coherent
structures geometrically determine the transport properties of the flow so they are essential
to three dimensional mixing phenomena.

These concepts are important in the present context since they constitute the fundamen-
tal ideas of the modern analysis of three dimensional mixing as introduced Pouransari
et. al [6]. Further, visualization and isolation of coherent structures in numerical and
experimental data is a big challenge for three dimensional transport studies [4].

2.1 Flow topology

Flow topology imposes geometrical constraints on the tracer motion and thus dictates
the advection properties of a flow. The coherent structures and organizing properties
are periodic lines, specific symmetries and invariant surfaces associated with constants of
motion.

2.1.1 Periodic points

Location of periodic points of two and three dimensional flows is closely related to the
problem of determining regions of regular behavior, which are barriers for mixing. Period-
1 structures are the most important for the flow topology, as they determine the global
organization. Higher-order structures are embedded within lower-order ones and thus
concern smaller features [4].

In three dimensions these points can form one-dimensional periodic lines, and, this situa-
tion is of interest because the flow near a periodic line is topologically similar to the flow
near a periodic point in the two dimensional case [18].

The presence or absence of first-order periodic points in mixing protocols consisting of
time-periodic boundary conditions can be explained using a qualitative argument. By
definition, periodic points are points where tracers return to their original position after
one or more periods of the flow, if a periodic point exists, the tracer orbit must be closed.

29
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An orbit consists of segments stemming from the streamlines of each step of the protocol,
and in order to have closed trajectories the crossing of streamlines is required, moreover,
detecting the absence of first-order periodic points in a mixing flow gives an early, strong
indication of poor mixing properties [20].

Periodic points in two dimensional maps can be classified as hyperbolic, elliptic, or
parabolic, according to the nature of deformation of the fluid in the neighborhood of
the periodic point. Elliptic points are surrounded by islands, or regular regions, where
there is no chaos [39]. Hyperbolic points are accompanied by stable, W s, and unstable,
W u, manifolds that either merge into closed orbits or display transversal intersection. The
former phenomenon acts obstructing communication between flow regions, whereas the
later implies stretching and folding of material elements. The stable manifold is defined
as a set of points that tends to the periodic point, P, at moments tn = nT with n → ∞,
while the unstable manifold, is defined as a set of points that tend to P at moments
tn = −nT with n → ∞ [18].

In three dimensional space, periodic points may either appear isolated or merge into
periodic lines. If a periodic point is isolated, one of its manifolds is a surface, while the
other is a line. If periodic points are arranged on a line, their stable and unstable manifolds
are integrated into two surfaces [18]. In two dimensional flows the stable and unstable
manifolds are two lines that can intersect at an infinite set of points called homoclinic
points, or heteroclinic points for intersection of manifolds of two different fixed points. The
behavior of the flow near homoclinic points is very complicated and their existence in the
flow generally indicates chaotic behavior of the system; the complex dynamics of chaotic
systems is intimately related to the emergence of periodic points in the flow, in particular
lower-order periodic points [10]. Homoclinic intersection of stable an unstable manifolds
in a flow is referred to as being ’signature of chaos’1, the manifolds are folded infinitely
many times and the layered form is associated with locally efficient mixing behavior. Such
a behavior of the manifolds corresponds with the so called horseshoe map, which describes
repeated stretching and folding of material by the flow.

Generally, the periodic points of three dimensional flows are characterized by a much
richer variety compared with the points of two dimensional flows, a general classification
of periodic points in three dimensional flows is presented by Malyuga et al. [18], see table
2.1.

2.1.2 Periodic lines

Key coherent structures for laminar flows are periodic lines, that is, material curves con-
sisting of points that periodically return to their initial position. These structures have
been found in numerical simulation and also in experiments, as is demonstrated for the
lid-driven cylinder flow [40].

Periodic points of order p (period-p points) of a time-periodic map are material points
that will return to their initial positions after p periods: X = Φp(X). The local behaviour

1See Appendix A for more details.
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at such period-p points is determined by

dxn+1 = F · dxn, F = ∇Φp|X =
3∑

i=1

λinini, (2.1)

with dx being the local frame of reference, F being the deformation tensor (real Jacobian
matrix) representing the locally linearized mapping Φ and {λi,ni} being its spectral de-
composition [18]. Stable and unstable structures may emerge, depending on the properties
of F.

The eigenvalue spectrum Λ = {λ1, λ2, λ3} determines the local dynamics and thus the
type of periodic point; the solenoidality of the flow field u implies λ1λ2λ3 = det(F) = 1,
where det is the determinant of F. The eigenvalue spectrum of F is found with the
characteristic polynomial

λ3 − J1λ
2 + J2 − J3 = 0, (2.2)

with J1 = Tr(F), 2J2 = Tr2(F)−Tr(F2), J3 = det(F), Tr and det represent the trace and
determinant, respectively. Equation (2.2) always has one real positive eigenvalue, say, λ1,
and it can be rewritten as follows

(λ− λ1)(λ
2 + (λ1 − J1)λ+

1

λ1

) = 0. (2.3)

The remaining eigenvalues are

λ2,3 =
J1 − λ1

2
±
√

D , D =
(J1 − λ1)

2

4
− 1

λ1

, (2.4)

where D is the discriminant. Introducing the parameters (D , λ1) allows the identification
of nine principal regimes, as listed in table 2.1 [18].

λ1 > 1 λ1 = 1 λ1 < 1
D > 0 I II III
D = 0 IV V VI
D < 0 VII VIII IX

Table 2.1: Parameter regimes of periodic points in three dimensional flows.

Regimes IV and VI accommodate two identical eigenvalues λ2 = λ3 = ±1/
√
λ1 and in

region V the system exhibits λ1 = λ2 = λ3 = 1, constituting the two degenerate cases
for which F is non-diagonalizable. Outside the two degenerate cases, F has three distinct
eigenvalues, implying that it is fully diagonalizable.

For eigenvalue λ1 = 1, i.e., regimes II and VIII indicates absence of stretching and com-
pression in the corresponding direction n1, and designates via λ2λ3 = 1 the canonical plane
spanned by n2,3 as area preserving and thus essentially two dimensional; this behavior is
typical of periodic lines [18, 6].
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Periodic lines are the three dimensional counterparts of periodic points in two dimensional
systems in that they induce effectively two dimensional tracer dynamics in the local plane
perpendicular to their tangent. This tangent coincides with the eigenvector n1, signifying
absence of motion in n1-direction, and further, eigenvectors n2,3 are normal to n1 and
span the before mentioned perpendicular plane; the associated eigenvalues dictate the
dynamics within this plane [6].

In the tangent subspace the behavior is governed by the single parameter J2D
1 = J1−λ1 =

λ2 + λ3 through λ2,3 = J2D
1 /2 ±

√
(J2D

1 /2)2 − 1 and permits this subclass of periodic
structures to adopt the classification proposed for two dimensional systems. One can
distinguish elliptic (VIII), hyperbolic (II) and parabolic (V) periodic lines. Here, quasi-
three dimensional effects exist by the spatial variations in J2D

1 subdividing a periodic line
into elliptic and hyperbolic segments smoothly connected via parabolic points.

In steady systems, periodic points describe closed streamlines on which any constituent
point is periodic; such closed streamlines form uniform-type periodic lines (fully elliptic,
hyperbolic or parabolic) [2]. Time-periodic systems allow periodic lines with elliptic and
hyperbolic segments [18].

In summary, the topological features of periodic lines are

(i) Elliptic type (D < 0, Λ = {1, eiφ, e−iφ}), elliptic points on periodic lines form the cen-
tres of elliptic islands within the local perpendicular plane that consist of concentric closed
orbits along which tracers undergo periodwise rotation at an angle φ. In three-dimensions,
these islands merge into elliptic tubes centred on elliptic (segments of) periodic lines; such
tubes entrap and circulate tracers and thus form barriers to global tracer transport.

(ii) Hyperbolic type (D > 0, Λ = {1, λ, 1
λ
}), hyperbolic points on periodic lines are

the time-periodic equivalent of saddle points in two dimensional systems; the stable and
unstable manifolds delineate the principal transport directions within the local perpendic-
ular plane. Material is elongated along the unstable manifold by a stretching rate λ > 1
and is compressed along the stable manifold by a compression rate 1

λ
< 1. In 3D, the

planar manifolds merge into two dimensional manifolds emanating from hyperbolic (seg-
ments of) periodic lines. Transverse manifold intersection leads to exponential stretching
of material elements and chaotic tracer advection.

Elliptic and hyperbolic segments on periodic lines are connected by parabolic points (D =
0, Λ = {1, 1, 1}), these are degenerate points in that, contrary to elliptic and hyperbolic
points, in the Poincaré section net fluid motion ceases in their proximity2 [6].

For the sake of completeness we briefly comment on the other regimes. The eigenvalue
spectrum, three distinct eigenvalues, of regimes I, III, VII and IX implies the emergence
of an isolated periodic point and a three dimensional behavior, as opposed to the previous
cases, where the map was locally area preserving and thus inherently two dimensional.

Isolated periodic points can be typified as node-like (D > 0, Λ = {λ1, λ2, (λ1λ2)
−1})

or focus-like (D < 0, Λ = {λ, eiφ/√λ, e−iφ/
√
λ}) [41]. See Malyuga et al. [18] for the

2This behavior near parabolic points is central for the flow topology in the works of the group of
Clercx under weakly inertial conditions.
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classification of these four regimes.

Blinking tumbler

Canonical examples of three dimensional chaotic dynamical systems are few, with the more
realistic ones being analytically intractable [25]; the blinking spherical tumbler is a linked
twist map, specifically, a composition of two action-action-angle maps, its mathematical
structure is not precisely that of a perturbed integrable Hamiltonian system such as the
ABC flows3 first considered as prototypical 3D chaotic systems [25]. However, the analogy
to nonintegrable Hamiltonian dynamics is helpful in understanding the bifurcations of
period-one structures on the invariant surfaces of the flow.

Christov et al. [25] studied three dimensional chaotic dynamics in a ’blinking’ tumbler
granular flow. The authors find analytical expressions for the location of period-one
curves. In general, period-one points are significant because they tend to give rise to the
largest islands, i.e., regions of material that do not mix with their surroundings. For this
system the period-one points lie on curves and their stability is determined by symmetry
arguments. The authors refer to these curves as normally elliptic and hyperbolic because
the elliptic and hyperbolic behavior occurs in planes normal to the period-one curves.
Important for our work is the case where both curves intersect.

In a blinking tumbler, the trajectories are restricted to nested invariant surfaces with
shape of a portion of a hemispherical ”shell” that can be parametrized by the radius.
The dynamics on these surfaces are essentially those of a volume preserving map and
are similar to those of a one-and-a-half-degree-of-freedom dynamical system. The authors
consider important the understanding of the structure of these curves for 3D generalization
of elliptic islands and barriers to mixing. The study of stable and unstable manifolds
associated with the normally hyperbolic invariant curves made in this system is also
interesting for our work.

2.1.3 Symmetries

Symmetries are one of the most powerful tools in the understanding of mixing. They
organize the flow topology, as they affect the tracer dynamics (symmetries in the flow
field manifest themselves as symmetries in the tracer trajectories [2]), and facilitate iden-
tification of coherent structures. Symmetries reflect a degree of order in flows and play
an essential role in the topological makeup, they are intimately related to the existence
of constants of motion [41].

To determine symmetries when the analytical expressions for maps are not available we
can take advantage of geometrical properties [42]. Symmetries exist whenever there are
simple geometric constraints on the fluid motion, e.g., system geometry, flow conditions,
etc. [43].

3These are the spatially periodic Arnold-Beltrami-Childress flows, for more details see [24].
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There exist various definitions of symmetry of a map. In general, we say that a map4

M posses a symmetry, if there exists a mapping5 S such that (MS)2 = I, with (S)2 = I
[42]. Both MS and S are called involutions of the map M. If the determinant of the
Jacobian of S is equal to −1, the transformation is orientation reversing, and S is said
to be a reflectional symmetry. On the other hand, if the determinant is equal to +1, the
transformation is orientation preserving and S is said to be a rotational symmetry [42].

The fixed line of the symmetry S is defined as a set of points {x} that is invariant upon
transformation, i.e., S{x} = {x} [15].

Any orientation reversing transformation contains a set of points that remain invariant
upon action of the transformation; these points may form a fixed line associated with the
transformation as in the case of two dimensional time-periodic flows studied by Franjione
& Ottino [42]. The most important symmetry line of a flow is the fixed line of S because
the lowest periodic points will be located either on this line, or, exist in pairs on opposite
sides of the line as in the case of the cavity flow.

Mathematically, two maps A and B are said to be symmetric to each other if there exists
a transformation S such that: B = SAS−1. If B = A, the symmetry is termed ordinary;
if B = A−1, the symmetry is termed time-reversal. In general, S can be rotational
symmetry or reflectional symmetry. If a map posses symmetry, the periodic points are
found in symmetric arrangements [16].

Pouransari et al. [6] discuss two types of symmetries: time reversal reflectional symmetries
and ordinary non-reflectional symmetries. If S = S−1, we have a reflectional symmetry.
Periodic lines are related to time-reversal reflectional symmetries of the mapping Φ, they
are of the form

Φ = SΦ−1S, (S = S−1) (2.5)

where S is a map that effectuates reflection about the symmetry plane IS, defined as
IS = S(IS). Time-reversal reflectional symmetries as (2.5) imply periodic lines in IS

6

[6]. The procedure is to release a material surface on the symmetry plane Is and track it
for one period. The intersection of the original and tracked surfaces corresponds with a
period-1 line.

Time reversal reflectional symmetries in mappings of the form Φ = ΦnΦn−1...Φ1, derive
from symmetries of the individual steps7. Pouransari et al. [6] consider time-reversal and
ordinary reflectional symmetries within and between steps.

The following four kinds of reflectional symmetry relations for the forcing steps can be
identified

Φi = SΦiS, Φi = SΦ−1
i S, Φi = SΦjS, Φi = SΦ−1

j S, (2.6)

4We are thinking in time periodic systems where the motion can be written in the form of a mapping,
xn+1 = Mxn. See Appendix A for more information about mappings.

5Mappings can be composed, MM = M2, I is the identity map, M−1M = I, for more information
see [42, 43] and references therein.

6In principle, further periodic lines may exist outside the symmetry plane.
7Usually, the symmetries of the ’sub-mappings’ are more easily determined, and this information can

be used to deduce symmetries of the overall map [42].
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with i and j indicating different steps.

The second type of symmetries relevant in the present context are ordinary symmetries

Φ = SΦS−1, (2.7)

this symmetries affect the flow topology and tracer dynamics in very specific ways.

2.1.4 Invariant surfaces

Invariant surfaces are surfaces within which tracers remain trapped indefinitely; these sur-
faces may emanate from either particular symmetries or constants of motion. Pouransari
et al. [6] consider only constants of motion without explicit time-dependence (G = G(x))
in the context of piecewise steady flows8.

Constants of motion are quantities G that are preserved by fluid elements during their
excursion in the flow domain. They are defined by

dG

dt
= u · ∇G = 0, G(x) = G(x0), (2.8)

where u·∇ is the derivative in the u direction at position x. The main idea is that a tracer
released at x0 remains trapped within the surface defined by the surface G(x0). In three
dimensional flows, constants of motions parameterize families of iso-surface G =constant,
within which tracers perform an effectively two dimensional motion [6].

Periodic lines and invariant spheroids are strongly linked in that the latter imply the
former [40]. According to [26, Appendix A], Brouwer’s fixed-point theorem states that
any continuous mapping with convex invariant surfaces must accommodate at least one
period-1 point. These period-1 points merge into period-1 lines under a certain condition
which follows from the implicit-function theorem.

Bifurcations on intra-surface dynamics

The result of the existence of a constant of motion or a continuous symmetry in a flow field
may lead to the existence of invariant surfaces9, within which effectively 2D flow occurs; for
incompressible flows, the intra-surface equations of motion define a Hamiltonian system
[26].

In general, islands centered upon elliptic segments of period-1 line consist of closed orbits
that coincide with a given surface of the invariant, in consequence, in the local intra-surface
frame of reference (φ, ϕ), the map Φ is area-preserving, meaning that closed orbits identify
with level curves of a local Hamiltonian H(φ, ϕ) and thus tracers are locally governed by

8Absence of explicit time-dependence in G implies that these invariant surfaces remain fixed in space
at any time.

9If a volume preserving map has a continuous symmetry, such as a rotational symmetry, then it has
an invariant and the orbits are confined to surfaces [44].
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two constant of motion [41, 27]. The situation expressed above will become important
when we try to relate bifurcations in our system with those found in Hamiltonian systems.

Hamiltonian systems can undergo an enormous variety of bifurcations, however, the
generic (not destroyed by small changes in the Hamiltonian) are more restricted [45].
For a Hamiltonian system with one-degree-of-freedom and no symmetry, the generic bi-
furcation when eigenvalues pass through zero is the ’fish’ picture, or saddle-node, see
Appendix A.1.

Mullowney et al. [46] study a nonautonomous, three dimensional, incompressible flow
corresponding to sequentially active two dimensional rolls with distinct axes. In their
model an analytical map is obtained; when the roll axes are orthogonal, motion is confined
to two dimensional topological spheres and the dynamics on surfaces ranges from nearly
regular to largely chaotic. The idea in this paper is to generalize the Aref’s blinking
vortex model for a system with three dimensional mixing. These researchers concentrate
on two-roll maps, and they remark that from numerical investigations for orthogonal roll
arrays three dimensional mixing does not occur and that observation led them to show
that an invariant exists. As a result of this fact they visualize orbits of tracers using the
angles of spherical coordinates to obtain a two dimensional projection of the dynamics.
They also study dynamics near the origin and on the boundary of the cube in terms of
normal forms10. In this work the authors limit their research for periodic points born
at q-tupling bifurcations11 of fixed points. An orbit of the map generically undergoes q-
tupling bifurcations when an eigenvalue of the Jacobian matrix passes through the value
e2πiω with ω = p

q
rational. These bifurcations correspond to the creation of new periodic

orbits, see [47, 48]. In the first example studied in this work, the authors find the presence
of a pair of fixed points on each invariant surface, so they can focus only in one of these
points (by symmetry the other point has the same behavior). They find several q-tupling
bifurcations, in particuar, doubling, tripling and quadrupling bifurcations are shown [46].

In the case of the blinking tumbler studied in [25], Poincaré sections on different invariant
surfaces are shown near a parabolic point; here the dynamics are similar to a perturbed
(nonintegrable) Hamiltonian system, a double saddle-node bifurcation is presented (two
elliptic period-one points coalesce with two hyperbolic period-one points in a symmetric
manner).

2.2 Noninertial case in the lid-driven cylinder flow

In this section we summarize some properties found for the step-wise lid-driven cylin-
der flow in the non-inertial limit. We present some important features observed in this
configuration since other systems, including the present investigation, share them [21, 4].

10Normal forms were introduced by Birkhoff for the area-preserving case. The idea of normal forms is
to study the asymptotic behavior of a map near a fixed point [46].

11These bifurcations are also referred as k-bifurcations in the literature, see Appendix A.1. In this work
we will use both terms.
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The motion within each forcing step is described by the non-dimensional steady Stokes
equations

∇p = ∇2u, ∇ · u = 0. (2.9)

The analysis is made in terms of the topological properties of volume-preserving maps
[41]. Time-periodic flows admit reduction to volume-preserving maps classified by the
number of constants of motion (’actions’) they may possess. Three kinds of maps can
be distinguished: zero-, one-, and two-action maps12, see [23, 24] for more about this
classification. One-action and two-action maps confine tracers to dense sets of invariant
surfaces and curves, respectively. Zero-action maps are devoid of geometrical constraints
and admit unrestricted advection. The idea behind this analysis is the identification and
possible destruction of the transport barriers of the one and two action maps transforming
them into zero-action maps through perturbations13.

As we have noted, in the lid-driven cylinder flow for the non-inertial limit, with forc-
ing protocols of the lower endwall, the invariant surfaces are topologically equivalent to
spheres [6, 41, 27]. They can seeΦT as a one-action map with invariant surfaces other than
tori (which is a subclass of volume-preserving maps largely unexplored [41]). Perturba-
tion of one-action maps hitherto appear examined only for invariant surfaces topologically
equivalent to tori and gives the ’classical’ Hamiltonian scenario: KAM-like survival of non-
resonant tori; Poincaré-Birkhoff-type break-up of resonant tori. However, despite their
practical relevance, response scenarios of one-action maps with invariant surfaces other
than tori received little attention thus far [27].

For the two-step forcing protocol [41, 27], the authors find a period-1 line on one of the
symmetry planes (y = −x14) and two period-2 lines, one within and one symmetric about
this plane. The period-1 and period-2 lines intersect at a stagnation point and the two
inner parabolic points on the period-1 line. Invariant surfaces are centered around the
stagnation point.

Within invariant surfaces, motion is determined by the corresponding intrasurface topolo-
gies, which are shaped essentially by the periodic points defined by the intersection of the
invariant surfaces with periodic lines15. The influence of the period-2 lines is highly lo-
calized and they left out of consideration.

As we pointed out in the previous section, periodic points belonging to periodic lines
implies the map ΦT is locally area-preserving in their proximity. This has the impor-
tant implication that the periodic points, and consequently, the associated islands and
manifolds, have properties that are essentially the same as found in area-preserving maps.
This, means that, thought the map is typically non-area-preserving away from the pe-
riodic points, the intrasurface dynamics are essentially similar to that of a Hamiltonian

12In three-action maps, tracer motion in fully restricted, implying rigid-body fluid motion rather than
actual fluid flow [41].

13Which for this particular case can be done through the inclusion of inertial terms in the model.
14The frame of reference used by the authors has the z direction pointing in the vertical direction.
15As the authors point out, spatial variations in properties of periodic lines (elliptic and hyperbolic

segments) suggests multiple kinds of intrasurface topologies.
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system. Hence the intrasurface dynamics comprise KAM tori, island chains, and chaotic
regions.

For the lid-driven cylinder flow rs is defined as the horizontal distance between invariant
surfaces and the parabolic stagnation point, this parameter acts as control parameter
for the state of the intrasurface topology16. The behavior found by increasing rs is phe-
nomenologically similar to the progressive departure of a generic two dimensional Hamil-
tonian system from its integrable state by increasing the governing control parameter
[41].

For the forcing protocols studied in Pouransari et al. [6], the authors find that the
intrasurface motion is essentially equivalent to that of two dimensional time-periodic
Hamiltonian systems, they consider three different protocols. Two parameters affect
the intrasurface dynamics: the bottom-wall displacement, D, and the distance, rs, as
previously defined. Again the authors see that variations in these parameters result in
changes in dynamics (linked with the segmentation of periodic lines) similar to those
found upon perturbation of two dimensional Hamiltonian systems.

The evolution with D (for a given invariant surface) is similar to progressive departure
from the integrable state of a 2D Hamiltonian system; it generally depends nonlinearly
on the perturbation parameter in that stronger perturbation must not necessarily result
in more chaotic dynamics (existing islands, after diminution, may again grow in size or
new islands may form). The authors show here a similar behavior as the period-doubling
bifurcation.

For a fixed D, the evolution as a function of rs has the same Hamiltonian characteristics
found with variations of D, that is, nonlinear progression of the flow topology with mono-
tonic variation of the perturbation parameter. An essential difference, however, is that
here the progression takes place between two (protocol-independent) integrable states:
rs = 0 (stagnation point) and rs de radius of the cylinder (no-slip boundary).

The authors comment that qualitatively the evolution for all their protocols are similar but
differences manifest in the composition of the flow topologies. In general, more elaborate
forcing protocols tend to result in more complex topologies. For open protocols chaotic
seas grows substantially larger with increasing rs, typically they cover the entire invariant
surfaces. Dynamics become more regular upon approaching the no-slip boundary sets in
for higher rs than for closed protocols. Another highlighted feature is that closed forcing
protocols tend to be dynamically more constrained than their open counterparts in the
sense that global chaos is less likely to occur and, instead, arrangements of islands remain
present.

2.2.1 Area-preserving maps

The notion of an area-preserving map is a valuable tool for studying Hamiltonian systems.
These maps can display all the generic properties of nonintegrable Hamiltonian systems

16It is not a perturbation parameter in the strict sense though, since it cannot be controlled externally
[6].
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[49]; for example, typical features of a Henon-Heiles-like surface of section are smooth
curves, islands chains, and chaotic trajectories [50, 14].

Following the reasoning of the end of the previous section, we want to present some ideas
of chaos in Hamiltonian systems and the Taylor-Chirikov or standard map17.

Hamiltonian systems form a special case of volume preserving dynamical systems; they
conserve volume in phase space and in Poincaré sections (it corresponds to an area-
preserving map18). Systems with one-degree of freedom are integrable19 and cannot be
chaotic20.

The existence of n integrals for integrable systems means that the phase-space trajectories
will be confined to a manifold that has the topology of an n-dimensional torus [14].
Trajectories on a torus are N frequency quasiperiodic (in this case the orbits fill up the
torus) if there is no vector of integers m = (m1, ...,mN) such that

m · ω = 0, (2.10)

except when m is the zero vector, ω is part of the solution of Hamilton’s equations in
action-angle coordinates, it can be interpreted as an angular velocity vector. For integrable
systems, we can view the phase space as being completely occupied by N -tori almost all
of which are in turn filled by N frequency quasiperiodic orbits [52]. In contrast with the
case of N frequency quasiperiodicity is the case of periodic motion, where orbits on the
N -torus close on themselves. It can be shown that arbitrarily near any torus on which
there is N frequency quasiperiodicity there are tori on which the orbits are periodic21.
A rotation number can be defined so that if it is irrational the trajectories wrap densely
around the torus, never intersecting themselves. If this number is rational the trajectory
returns exactly to its initial position.

A very fundamental question concerning Hamiltonian systems is how prevalent is inte-
grability? The resolution came with the mathematical work in KAM theorem and with
computer studies of chaos and integrability. In terms of the development of the subject of
nonlinear dynamics, it is interesting to note that the first Poincaré section computations
for nonintegrable Hamiltonians started to appear in the literature at about the same time
as the KAM theorem [14].

For perturbed systems the Poincaré-Birkhoff (PB) and the Kolmogorov-Arnold-Moser
(KAM) are two very important theorems. A full description of these results is beyond the
scope of the present study, here we just present some general ideas. The former describes

17The name steaming from its presence in a variety of theoretical and practical problems [14]. The
standard map can be derived from the kicked rotator system [51].

18More precisely, symplectic mapping, because the preservation corresponds to a sum of projected areas
[14].

19A time-independent Hamiltonian H, with N degrees of freedom, is called integrable (also completely
integrable) if there existN independent functions, to be determined, {Fi}, i = 1; ..., N , such that [Fi, H] =
0, ([, ] is the Poisson bracket; Fi are integrals of motion, one of these is the Hamiltonian itself), and which
are in involution ([Fi, Fj ] = 0 for i, j = 1, .., N).

20Non-integrability is a necessary but not sufficient condition for chaos [10].
21For integrable systems the set of tori that have periodic orbits is dense in the phase space [52].
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the fate of rational tori upon perturbation [14, 52], and the latter studies the local picture
of what happens to the irrational orbits in the neighborhood of an elliptic point [10].

In 1954 Kolmogorov outlined a theorem that was subsequently proved by Arnold and
Moser since the early 1960s. The central idea in this theorem is to ask what happens to
an integrable system under a perturbation (are the tori preserved, destroyed, etc.?), this
is of great importance because integrable Hamiltonian systems are exceptional, generic
Hamiltonian dynamical systems are not integrable. In this context, we are interested
in determining whether the perturbed Hamiltonian has N -dimensional tori to which its
orbits are restricted.

A useful paraphrase of the KAM theorem is that ’for sufficiently small perturbation, al-
most all tori are preserved’ [14]. KAM states that under very general conditions, ’most’
of the tori of the unperturbed integrable Hamiltonian survive22 [52].The theorem excludes
tori with rationally related frequencies (resonant tori), these tori are ’destroyed’ under
perturbation and provide the ’seeds’ of chaotic behavior observed in nonintegrable sys-
tems. PB tells us what happens to the rational orbits that disappear (the rational orbits
break into a collection of equal number of hyperbolic and elliptic points). Successive ap-
plications procedures described by the KAM and Poincaré-Birkhoff fixed point theorems
lead to a self-similar structure.

Now, since the resonant tori are ’dense’, it is expected that, arbitrarily near surviving
tori of the perturbed system, there are regions of phase space where the orbits are not
on surviving tori. These regions are occupied by chaotic orbits as well as new tori and
elliptic and hyperbolic orbits all created by the perturbation [52].

To complete the the overall picture we have to consider what happens in the neighborhood
of the hyperbolic fixed points. As we commented in subsection 2.1.1, hyperbolic points
are accompanied by stable and unstable manifolds. These manifolds are not allowed
to intersect themselves but, instead, intersect each other. If the intersection point(s)
involve the manifolds from the same fixed point, they are called homoclinic points. If the
intersecting manifolds emanate from different fixed points, they are called heteroclinic
points. The smooth joining of manifolds is the exceptional (i.e., nongeneric) situation that
can only arise in integrable systems. Under perturbation the stable and unstable manifolds
of an integrable Hamiltonian system intersect transversally and a complex picture appears
near the hyperbolic points [10].

To fix ideas we describe the simplest case of a Hamiltonian system, H = H(p, q), namely
a system of one-degree of freedom. The essence of any integrable system can be seen
in the phase space of the simple pendulum23 containing two hyperbolic points connected

22Here the term ’most’ has to be taken in the sense of the Lebesgue measure, intuitively, it give us the
phase space volume. We say that a torus of the unperturbed system with frequency vector ω0 ’survives’
perturbation if there exists a torus of the perturbed system which has a frequency vector kω0 (k depends
on the perturbation) and such that the perturbed toroidal surface goes continuously to the unperturbed
torus as the perturbation goes to zero [52].

23All integrable systems with N -degrees of freedom can be transformed into N -uncoupled one-degree
of freedom systems, therefore, the main features of an integrable system with N -degrees of freedom is
embodied in a system of N non-interacting pendula [10].
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smoothly by their stable and unstable manifolds encircling one stable elliptic point.

Under perturbations the stable and unstable manifolds intersect transversally and a com-
plex picture appears near the hyperbolic points (the phase space change showing trans-
verse heteroclinic points). On the other hand, near elliptic points, some orbits disappear,
the ’most rational’ tori first, each giving rise to a string of elliptic and hyperbolic points
with their own stable and unstable manifolds. This picture can be taken as characteristic
of all near-integrable chaotic Hamiltonian systems, for more details see [52, 10, 14].

We end this part of the discussion by saying that the standard KAM theorem does not
apply to odd dimensional dynamical system, but generalizations of the KAM theorem
have been developed and under certain condition may be used to study three dimensional
time-periodic flows [19]. For volume preserving-maps there exist the 3D counterparts of
KAM and Poincaré-Birkhoff theorems that respectively describe the fate of non-resonant
invariant tori and resonant trajectories. Also the formation of invariant manifolds of
various topologies due to constants of motion and local and global breakdown of invariant
manifolds by resonances are important results in this context [4].

But as we commented in section 1.1.1, the development of a comprehensive Hamiltonian-
like theoretical framework for 3D Lagrangian transport, in particular response scenarios
to perturbations and routes to chaos, is nonetheless in its infancy [21].

Standard map

The standard map serves as an approximation for several physical systems, most notably
the kicked rotor. The standard map can be written as [14]

θi+1 = θi + pi+1, pi+1 = pi +
k

2π
sin(2πθi), mod 1. (2.11)

The variables p and θ are dimensionless phase space variables (action-angle variables).
Both coordinates are periodic with period unity, the map is confined to the unit torus.
k is a dimensionless parameter that controls the nonlinearity of the system. In figs. 2.1
and 2.2 we present Poincaré surfaces of section for the standard map for different values
of k. The surface of section is produced by choosing several initial points in phase space
and then plotting the sequence of points that result from repeatedly applying the map to
each initial point.

For k = 0 the system is integrable. The intersections of the tori in the (θ, p) surface of
section are just lines of constant p (the surface of section consists of trajectories crossing
horizontally from θ = 0 to θ = 1 at constant p), see fig. 2.1 (a); on each line the orbit is
given by θn = (θ0+np0) modulo 1. The trajectories correspond to quasiperiodic behavior
(a single orbit densely fills the line p = p0) if p0 is an irrotational number24, and periodic
behavior (the orbits on the line return themselves after a finite number of iterates, and
we have a resonant torus) if p0 is a rational number [52].

24Computers deal with rational numbers and only with finite precision, we must take this into account
in analyzing surfaces of section [51].
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Increasing k from zero introduces a small nonintegrable perturbation. For small k most
of the orbits remain slightly distorted versions of the k = 0 orbits, there are KAM tori
running from θ = 0 to θ = 1; these tori are those that originate from the nonresonant tori
of the unperturbed system (p0 irrational) and have survived the perturbation. Also we
can see tori created by the perturbations nested around elliptic periodic orbits originating
from resonant tori. In particular, the period one elliptic orbits, (θ, p) = (0.5, 0) and
(θ, p) = (0.5, 1), and the period two elliptic orbits, (0, 0.5), (0.5,0.5), are visible, see
figs. 2.1 (e) − (f). We call the structure surrounding a period p elliptic periodic orbit a
period p island chain. If the initial condition yields a chaotic orbit (seen as a disorganized
scatter of points), then it will wander throughout an area densely filling that area. An
important property of two dimensional area preserving maps is that the area bounded
by two invariant KAM curves is itself invariant. Thus, while there may be chaotic orbits
’sandwiched’ between KAM curves (as, for example, in the island structures surrounding
elliptic orbits), these chaotic orbits are necessarily restricted to lie between the bounding
KAM curves [52].

As k is increased further, we see that the islands grow, eventually these resonances overlap
and the KAM tori between them are broken. The overlap of nonlinear resonances leads
to chaotic motion [51], this chaotic motion begins in the vicinity of the separatrix (the
boundary between a nonlinear resonance and the KAM tori that lie just outside).

As k is increased, more of the deformed survivors originating from the unperturbed tori
are destroyed. At some point we see that there are none left (there are no tori running as
continuous curves from θ = 0 to θ = 1). In their place we see chaotic regions distributed
with island chains. As k is increased further many of the KAM surfaces associated with
the island chains disappear, and the chaotic region enlarges. At k = 3 (fig. 2.2 (c)), for
example, we see that the only discernible islands are those associated with the period one
orbits.

Increasing even further k, Chirikov numerically found values of k for which there are no
discernible tori, and the entire square is (to within the available numerical resolution),
covered by a single orbit. Thus, if any island chains are present, they are very small, see
fig. 2.2 (d). Some of the invariant tori extending across the phase plane are apparently
permeated with small ’holes’, this is not a numerical artifact but is, a manifestation of the
fact that the invariant curves are not really tori but are the so-called cantori (the term
has been invoked to suggest the connection with a Cantor-set-like structure) [14].

The absence of a period q island chain at some value k = k′, implies that the period q
elliptic periodic orbit has become unstable as k increases from 0 to k′. As k increases,
the eigenvalues of the qth iterate of the linearized map evaluated on the period q orbit
eventually change. The periodic orbit of period q changes from elliptic to hyperbolic with
reflection as k passes through some value, kq

25. The migration of the eigenvalues leads
to a period doubling bifurcation and is typically followed by an infinite period doubling
cascade. In such a cascade, the period q elliptic orbit destabilizes (becomes hyperbolic)

25When a periodic orbit becomes hyperbolic with reflection its eigenvalues in the elliptic range, e±iθ,
both approach −1 by having θ approach π as k approaches kq [52].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Poincaré surface of section for the standard map, the coordinates p and θ are
periodic. (a) k = 0, (b) k = 0.1, (c) k = 0.4, (d) k = 0.8, (e) k = 1, (f) k = 1.2.

simultaneously with the appearance of a period 2q elliptic orbit, which then period doubles
to produce a period 22q elliptic orbit, and so on [52].
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(a) (b)

(c) (d)

Figure 2.2: Continuation of the previous sequence. Poincaré surface of section for the
standard map, the coordinates p and θ are periodic. (a) k = 1.5, (b) k = 2.2, (c) k = 3,
(d) k = 6.

In summary, when k = 0 the standard map is integrable. As k is increased, chaotic regions
occupy increasingly large areas, and the original KAM tori of the integrable system are
successively destroyed.

A cause of the onset of chaotic motion in area-preserving maps is often attributed to the
period-multiplying bifurcation phenomena. When the nonintegrable parameters varies,
period-multiplying bifurcations occur by emitting stable and unstable periodic orbits
nearby the original orbit. These bifurcations are as important as period-doubling bi-
furcations for the understanding of the onset of chaotic motion [49]. As we will see in
chapter 5, we find bifurcations in this natural convective flow similar to higher order
bifurcations studied in area-preserving maps, see [47].



Chapter 3

Convective mixing in three
dimensions

In order to give a convenient background to the problem under analysis, let us start
this chapter by introducing the problem of a heated vertical flat plate (fig. 3.1). We
consider a vertical plate whose temperature TW is greater than the surrounding fluid
temperature T∞. The heat transferred from the plate to the fluid leads to an increase of
the temperature of the fluid close to the wall and to a change in the density because it is
temperature dependent. If the density decreases with increasing temperature, buoyancy
forces arise close to the wall, and warmer fluid moves up along the plate. The effect of


g

x
y

T∞

TW
δ

δth

T (x, y)− T∞

u(x, y)

Figure 3.1: Boundary layer at a heated vertical flat plate. We show distributions of
velocity and temperature.

the plate is restricted to a thin layer close to the wall (the flow has a boundary-layer
character); the thickness, δth, of the thermal layer (the region with T > T∞) is taken to
be the distance from the wall at which the temperature has dropped to within a certain
percentage of the outer temperature T∞ [31].
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3.1 Problem statement

We study the mixing properties of a natural convective flow inside a cubic container with
time-dependent wall temperatures. The working fluid is Newtonian and the system is in
presence of the acceleration of gravity, we can see the frame of reference for the system
in fig. 3.3 (a).

The temperature of the vertical walls is time dependent by instantaneously setting one
vertical wall, right say, at a hot temperature and keeping it at this condition for a small
time interval, the opposite wall temperature, left, is kept at T = 0. Then, the left wall is
set at a cold temperature and maintained at this temperature for the same time interval
while the temperature of the right wall is kept at T = 0. Subsequently, this protocol
is repeated but with the temperature of the other two vertical walls. For this actual
calculation, we determined the time interval by looking at the formation of the invariant
surfaces for the trajectories of tracers for the case Ra = 1×105, then this time interval was
used for all other studied values of the Ra parameter. The forcing protocol is illustrated
in fig. 3.2.

The walls that do not participate on the forcing protocol are thermally insulated. In all
walls the no-slip condition, u = 0, is imposed. The number of cycles, i.e., repetitions of
the protocol, used for each case with constant Rayleigh number was chosen in order to
visualize the dynamics on invariant surfaces. In general, the number of cycles required
for the analysis, increases for smaller values of Rayleigh number, see chapter 4.

As we have mentioned, in the lid-driven cylinder flow the motion is promoted by the
displacement of a wall, i.e., a surface force, in contrast, in natural convection the fluid is
set in motion by a convective force which is a volumetric or body force. The dynamical
consequences of these two effects are similar insofar the motion in the natural convective
flow is mostly concentrated in the boundary layer that forms very close to the vertical
wall as in the heated vertical plate.

3.2 Piece-wise steady and linear flow

We consider the piece-wise steady and linear problem, i.e., the conservation equations
without the convective terms corresponding to the unsteady, non linear natural convective
flow in a cubic box. From equations of subsection 1.2.2 we have that the non-dimensional
conservation equations in this case are

∂uj

∂xj

= 0, (3.1)

∂p

∂xi

= Pr
∂2ui

∂xj∂xj

+ bi, (bi = (0,PrRaT, 0)) (3.2)

∂2T

∂xj∂xj

= 0. (3.3)
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Figure 3.2: Time-periodic wall temperature protocol. In the first half of the cycle, two
opposite vertical walls are sequentially kept at a higher and lower temperatures, respec-
tively. In the second half, the temperature of the other two vertical, opposite walls is
assumed to take the same time-dependent values. (This figure was made by L. M. de la
Cruz).

Recall that we consider a constant Prandtl number, in this work the studied value is
Pr = 5, following the work by de la Cruz & Ramos [22]. We will focus on the topological
analysis of the flow presented in chapter 2, that is, once the velocity field is calculated we
study the advection equation (1.1) in terms of the flow topology. Before that we present
some properties of eqs. (3.1)-(3.3). Let us focus in only one quarter of the total cycle,
heating one of the vertical walls (the cooling part is very similar). We start by describing
the problem in the configuration of fig. 3.3 (b) where z is constant. Boundary condition
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for three of the walls are1

T = A, x = 1; Ty = 0, y = 0, 1. (3.4)

Below we consider two possible cases for the boundary condition of the other vertical wall:

1. Adiabatic
∂T

∂x
= 0, x = 0. (3.5)

2. Constant temperature

T = 0, x = 0. (3.6)

As we noted in fig, 3.2 we will use case 2 for the numerical simulations and the topological
analysis but we briefly comment the other one because it helps us to understand the
fundamental statement of the problem.

x

z

y

z = const.

y

x
0 1

1

T (1, y)1. Tx = 0

Ty = 0

Ty = 0

1

1

1

0


g

(a) (b)

2. T = 0

Figure 3.3: (a) Coordinate system for the unitary cube. Heating protocol will be carried
out in the vertical walls. (b) Piece-wise steady and linear flow configuration for a plane
z = const., with boundary conditions for one quarter of the total cycle.

With this configuration eq. (3.3) is

Txx + Tyy = 0. (3.7)

We look for a solution of the form T (x, y) = X(x)Y (y) as the standard separation of
variables method. Note that this is neither an entirely Dirichlet nor a Neumann problem,

1In this work we use A = 0.5.
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but a mixed thermal boundary problem in which T is prescribed on part of the boundary
and its normal derivative on the rest. The second derivatives are

Txx = X ′′Y, Tyy = XY ′′,

substituting them in (3.7) and dividing by T (x, y) we get

X ′′

X
+

Y ′′

Y
= 0, or

Y ′′

Y
= −X ′′

X
.

In the last expression the term in one side is only a function of y and the other of x so
each term must be equal to a constant2, −λ. We get two differential equations with the
next boundary conditions

Y ′′ + λY = 0, Y ′(0) = 0, Y ′(1) = 0. (3.8)

X ′′ − λX = 0,

{
Case 1 X ′(0) = 0,

Case 2 X(0) = 0.
(3.9)

We will need also T (1, y) = X(1)Y (y) = A from the first condition in eq. (3.4). At this
point λ is arbitrary but the boundary value problem (3.8) has non trivial solution Y (y)
only if λ = λn = n2π2, n = 0, 1, 2, ..., and in that case

Y (y) = Yn(y) = cos(nπy).

For the first case in (3.9) we have the differential equation X ′′ −n2π2X = 0, with general
solution X(x) = αcosh(nπx)+βsinh(nπx), and using X ′(0) = 0, we get β = 0. Therefore

Tn(x, y) = cosh(nπx)cos(nπy), n = 0, 1, 2, ...,

and the function

T (x, y) =
c0
2
+

∞∑
n=1

cncosh(nπx)cos(nπy) (3.10)

is a solution of (3.7). We must now set the condition T (1, y) = A for obtaining the
constants cn. The series of cosines of a constant is the constant so we have c0 = 2A as
the only non zero constant giving the solution for the first case

T1(x, y) = A. (3.11)

Now for the second case in (3.9) X(x) = δsinh(nπx), with δ a constant of integration. The
difference with previous case is that for λ = 0 we have the particular solution T0(x, y) =
k0x, so we get

T (x, y) =
c′0x
2

+
∞∑
n=1

c′nsinh(nπx)cos(nπy) (3.12)

2This is a standard result, see for example Boyce & DiPrima [53].
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and using the boundary condition we get

T2(x, y) = Ax. (3.13)

Equations (3.2) are

y-component
∂p

∂y
= Pr

(
∂2v

∂y2
+

∂2v

∂x2

)
+ PrRaT (3.14)

and

x-component
∂p

∂x
= Pr

(
∂2u

∂y2
+

∂2u

∂x2

)
. (3.15)

Now since
∂

∂x

(
∂p

∂y

)
− ∂

∂y

(
∂p

∂x

)
= 0,

and using (3.14) and (3.15) in the first case (T is constant)

∂

∂x

(
∂p

∂y

)
= Pr

(
∂

∂x

(
∂2v

∂y2

)
+

∂3v

∂x3

)
∂

∂y

(
∂p

∂x

)
= Pr

(
∂3u

∂y3
+

∂

∂y

(
∂2u

∂x2

))
,

we have

Pr

(
∂

∂x

(
∂2v

∂y2

)
− ∂

∂y

(
∂2u

∂x2

)
+

∂3v

∂x3
− ∂3u

∂y3

)
= 0. (3.16)

For this two dimensional flow we can use the stream function, ψ and vorticity, ω

ωz =
∂v

∂x
− ∂u

∂y
=

∂

∂x

(
−∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)
= −

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
.

That is, −∇2ψ = ωz = ω. We also have

∇2ω =
∂2

∂x2

(
∂v

∂x

)
− ∂2

∂x2

(
∂u

∂y

)
+

∂2

∂y2

(
∂v

∂x

)
− ∂2

∂y2

(
∂u

∂y

)
= (3.17)

=
∂3v

∂x3
− ∂3u

∂y3
+

∂2

∂y2

(
∂v

∂x

)
− ∂2

∂x2

(
∂u

∂y

)
, (3.18)

and if we exchange the order of the partial derivatives in (3.16) and comparing the result
with the last expression we get

∇2ω = 0. (3.19)

Finally, using −∇2ψ = ω in the last equation, we get

∇4ψ = 0. (3.20)

Essentially, the same process can be repeated for the second case but we will have an
extra term ∂(APrRax)/∂x = APrRa, coming from eq. (3.14), to give the expression

1

A
∇4ψ = Ra. (3.21)
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The previous derivation applies for the second quarter of the cycle with T = −A, and
the second half of the total cycle is equivalent to the first one with a π/2 rotation. The
no-slip condition in the walls results in ∂ψ/∂y = −∂ψ/∂x = 0.

Solution to eq. (3.20) is the classical biharmonic problem, which consists in finding a
continuous function ψ(x, y), with continuos partial derivatives up to the fourth order and
that has prescribed values for it and its normal derivative on the boundary of the domain.
Eq. (3.21) is the inhomogeneous biharmonic equation and appears in other problems
like for instance, the bending of an elastic rectangular clamped plate. According to the
boundary conditions we can define different biharmonic problems, for example, in the
theory of elasticity is studied the biharmonic equation for the stress function and the
boundary conditions are given for the shear and normal stresses (second order derivatives
of the stress function).

Interest in solutions of the biharmonic equation and their mathematical properties goes
back over more than 130 years and yet, the biharmonic problem is still challenging in hy-
drodynamics, linear theory of elasticity, mathematics and engineering [54, 55]. There are
various representations of the general solution of the biharmonic equation in terms of har-
monic functions (any harmonic function automatically satisfies the biharmonic equation)
and in terms of analytic functions of the complex variable.

The way in which the solutions of the biharmonic problems can be obtained is, in principle,
similar [56]3. There are many methods for the solution of such problems and we refer to
[54, 56, 57] for more information4. As pointed out by Bloor & Wilson [55], an approximate
solution is straightforward to obtain but fails to allow the arbitrary level of refinement for
the analysis of the physical mechanism.

Superposition method has been widely used for the resolution of biharmonic problems
for Stokes flows in a cavity5. The idea is to construct the solution in the form of the
sum of Fourier series with sufficient functional arbitrariness for fulfilling the boundary
conditions. Because of the interdependency, the expressions for a coefficient of a term in
one series will depend on all the coefficients of the other series an vice versa, therefore,
the final solution involves an infinite system of linear algebraic equations [54].

With the previous comments it may be noted that the solution of equation (3.21) is far
from trivial. In our case the difficulties come from the boundary conditions, our goal would
be to have a semi analytical solution but at this point a deeper numerical study would be
required. We will not follow the path of solving it, however, it may be a very interesting
study in the future. A semi analytical solution would provide us with great tools for
the study of the flow topology. In the next chapter we present the method for solving
equations (3.1)-(3.3) with the finite volume method that is used in this dissertation.

3The inhomogeneous biharmonic equation can be reduced to the homogeneous problem by choosing
a particular solution, see [57].

4A solution of the biharmonic equation (even in a two-dimensional domain) traditionally represents
a challenging problem for various analytical and numerical methods. The difficulties come from the
boundary conditions imposed on the function and its normal derivatives (first, second or third) [57].

5The advantage of the superposition method is the high accuracy that can be obtained with relatively
little calculations [56].





Chapter 4

Numerical method for calculating
the velocity field and particle

tracking

The topological characterization of a mixing flow starts by determining a time-dependent
velocity flow. In this chapter we describe the numerical method to solve the equations
that describe the flow under analysis.

In this work we use the software TUNAM 1 for solving the governing equations of fluid
mechanics of natural convection with the finite volume method (FVM). TUNAM was
originally developed to simulate natural convection in rectangular domains; it is intended
to solve the transport equation (1.17) where φ represents a scalar field, temperature,
density or a component of the velocity. We solve the natural convection equations in
the piece-wise steady and linear case numerically with the FVM using central differences
scheme for diffusive terms, and SIMPLER algorithm to decouple the equations. In TU-
NAM the tools for the unsteady and nonlinear case are also available, QUICK scheme for
the advective terms and the SIMPLEC algorithm. Below these tools are briefly described,
we mainly follow the exposition made in [37, 58]. Figures 4.1 and 4.2 were made by L.M.
de la Cruz.

4.1 Finite Volume Method

The Finite Volume Method (FVM) is the name given to the technique by which the
integral formulation of the conservation laws is discretized directly in the physical space.
The FVM is based on cell-averaged values, which distinguishes this method from the finite
difference and finite element methods, where the main numerical quantities are the local
function values at the mesh points [59].

A mesh of the domain is required in the FVM. Once a grid has been generated, the FVM
consists in associating a local finite volume, also called control volume, to each mesh
point, see fig. 4.1, and applying the integral conservation law to this local volume. The
key step in this method is the integration of the general equation over a control volume,

1Stands for: Template Units for Numerical Applications and Modeling in computational fluid dynamics
and is an open source project. Web page http://code.google.com/p/tunam/.
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subsequently different numerical schemes are used for resulting terms. For more details
about the method see [38, 60, 59].

Piecewise continuous functions are used for expressing the variations of φ between mesh
points in the integration. The result of this process is a set of discrete equations for each
control volume. Equations have the form of a linear system of algebraic equations that
can be solved by iterative solvers [37, 58].

Figure 4.1: Discretized domain using control volumes. In the FVM the discretized space
is formed by a set of small cells, one cell being associated to one mesh point.

4.1.1 Discretization

For describing the FVM consider a structured rectangular mesh2 in three dimensions.
Control volumes where eq. (1.17) is integrated are presented in fig. 4.2. The spatial and
temporal integration (over the region ΔV and the interval Δt) of the transport equation
results in

(φ− φ0)
ΔV

Δt
+C = D+ S, (4.1)

where φ is the value of the variable at time t+Δt and φ0 represents the value at the same
point at time t. C, D and S are the convective, diffusive and source term and depend of
the numerical scheme used for discretization. Using a Backward Euler scheme (which is a
fully implicit scheme), the previous terms are functions of φ and have the following form
[58]

C = (ceφe − cwφw) + (cnφn − csφs) + (cfφf − cbφb), (4.2)

2In a structured mesh every point has the same number of neighbors, except the boundary points.
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D = Γ

[(
∂φ

∂x

)
e

−
(
∂φ

∂x

)
w

]
ΔyΔz

+ Γ

[(
∂φ

∂y

)
n

−
(
∂φ

∂y

)
s

]
ΔxΔz

+ Γ

[(
∂φ

∂z

)
f

−
(
∂φ

∂

)
b

]
ΔxΔy, (4.3)

S = SPΔV. (4.4)

The terms of eq. (4.2) are defined by

ce = ueΔyΔz, cw = uwΔyΔz,

cn = vnΔxΔz, cs = vsΔxΔz, (4.5)

cf = wfΔxΔy, cb = wbΔxΔy.

Figure 4.2: Control volume surrounding P. The neighbor nodes are represented by capital
letters and small letters denote points on the faces of control volumes. In this way we
denote variables evaluated at the center and at the boundaries of volumes respectively.

The convective and diffusive terms can be approximated using different schemes; inde-
pendently of these approximations when we insert all the terms in (4.1) we get the linear
system

aPφP = aEφE + aWφW + aNφN + aSφS + aFφF + aBφB + SP . (4.6)

Here aP = DP + CP + ΔV
Δt

and aα = Dα + Cα, being α the six neighbors.
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Diffusive terms

Partial derivatives appearing in eq. (4.3) are evaluated in the faces of control volumes;
these derivatives are approximated using a linear function between adjacent mesh points.
In this way we would have

(
∂φ
∂x

)
e
≈ φE−φP

Δx
, and equivalent expressions for all faces. These

expressions yield an approximation of order O(Δx2) [38]. The diffusive part of (4.6) is
given by

DE = Γ
ΔyΔz

Δx
, DW = Γ

ΔyΔz

Δx
,

DN = Γ
ΔxΔz

Δy
, DS = Γ

ΔxΔz

Δy
, (4.7)

DF = Γ
ΔxΔy

Δz
, DB = Γ

ΔxΔy

Δz
,

. (4.8)

and DP results from the sum of the previous terms.

Convective terms

The variable φ represents a scalar variable defined at the center of volumes but in eq.
(4.2) it is evaluated at the cell faces. Different schemes exist in order to approximate
the value of φ at these points such as upwind, central differences and QUICK (Quadratic
Upstream Interpolation for Convective Kinematics). Convective terms need to be carefully
calculated as they are the nonlinear part of momentum equations.

The upwind scheme takes into account the flow direction when determining the value at
a cell face: the convected value of φ at a cell face is taken to be equal to the value at the
upstream node [38]. This scheme gives an approximation of first order O(Δx). Central
differences scheme consists in evaluating φ at the faces using a linear interpolation and is
of second order O(Δx2).

QUICK is an upwind scheme of third order, O(Δx3), where three points of the mesh
are chosen in order to build a second order polynomial. Points are selected according
the direction of the velocity in the corresponding face of the control volume. The final
expressions for the convective coefficients can be found in the references, see for example
[38, 37].

Boundary conditions

In our heating protocol there exist two types of boundary conditions

• Dirichlet: the value of the scalar field is given at the boundary, that is, φ = φb.

• Neumann: the value of the normal derivative of scalar field is specified, ∂φ
∂n

= φ′
b.
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Boundary condition are incorporated to the system of equations to be solved and different
approximations can be used depending on the order of the numerical scheme used for the
interior points [37].

4.1.2 Pressure correction methods

A central problem with the numerical integration of Navier-Stokes equations is that there
is no equation for the pressure. A way to overcome this situation is to use SIMPLE (Semi-
Implicit Method for Pressure Linked Equations) methods. In this context staggered grids
are widely used. The idea is to evaluate scalar variables such as pressure and temperature
in the centers of control volumes while velocities are taken at the faces of volumes.

SIMPLE

SIMPLE is a guess-and-correct procedure for the calculation of pressure on the staggered
grid arrangement. To illustrate in a very general way the method, let us consider the
FVM applied to the momentum conservation equation for u in the staggered grid. In this
way we get [37]

aPuP =
∑
nb

anbunb + bu + Au(pW − pP ), (4.9)

where nb represents the neighbors in the arrangement of the staggered mesh, Au, is the
face area of the control volume where the pressure force is acting and, bu, is the source
term. We can write similar equations for each velocity component. As the pressure field
is unknown, we need a method for calculating it. The idea of the SIMPLE algorithms is
to solve the velocity equations with an initial guessed pressure field p∗ that will produce
an approximate velocity u∗ as follows

aPu
∗
P =

∑
nb

anbu
∗
nb + bu + Au(p

∗
W − p∗P ). (4.10)

In general, the solution u∗, does not satisfy the continuity equation. In a second step
we correct the guessed pressure until the resulting velocity field satisfies the continuity
equation. Let p′ and u′ be the pressure and velocity correction respectively, they are the
difference between correct and guessed fields such that

p = p∗ + p′ u = u∗ + u′. (4.11)

We have a similar expressions for all the velocity components. From equations (4.9)-(4.10)
we get an expression for p′ and u′

aPu
′
P =

∑
nb

anbu
′
nb + Au(p

′
W − p′P ). (4.12)

Different ways of handling the term
∑

nb anbu
′
nb (and the corresponding terms for other

components of the velocity) define various methods of the SIMPLE family. For SIMPLE
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the approximation is the omission of these terms for each velocity components. With this
approximation we get expressions for the correct velocity field in terms of p′. By using the
continuity equation with these expressions we can get the discretised continuity equation
as an equation for the pressure correction p′. The source term of this equation will be the
the continuity imbalance arising from the incorrect velocity field. By solving this equation
the pressure correction field is known and we can get the correct pressure field by using
eq. 4.11 and finally the correct velocity components through the correction formulae.

The pressure correction equation is susceptible to divergence unless some under-relaxation
is used during the iterative process. The idea is to add a multiplicative factor to the
pressure correction variable [38].

SIMPLER (SIMPLE Revised) is an improved version of SIMPLE. In this algorithm the
discretised continuity equation is used to derive a discretised equation for pressure (in-
stead of a pressure correction equation as in SIMPLE). The intermediate pressure field is
obtained directly without the use of a correction. Velocities are, however, still obtained
through the velocity corrections and p′ equation must also be solved. For a detailed
description of the algorithms SIMPLER and SIMPLEC see [38].

4.1.3 Linear systems solution

As we have seen in the previous sections, discretization of the governing equations results
in a system of linear algebraic equations which need to be solved. The complexity and
size of the set of equations depends on the dimensionality of the problem, the number of
grid nodes, etc.

There are two families of solutions techniques for the resolution of linear algebraic sys-
tems: indirect or iterative and direct methods. Examples of direct methods are Gaussian
elimination and Cramer’s rule matrix inversion. Examples of iterative methods are Jacobi
and Gauss-Seidel point-iterative methods [38].

The TDMA is a direct method based on a technique developed by Thomas for rapidly
solving tridiagonal systems. TDMA is actually a method for one-dimensional situations,
but it can be applied iteratively, in a line-by-line procedure, to solve multi-dimensional
problems and is widely used in CFD simulations [38]. In TUNAM the TDMA method is
available an we refer to the previous reference for more details.

In summary, using the finite volume method we obtain the velocity, pressure and tempera-
ture fields as functions of space and time. In Appendix B we present the incompressibility
constraints for the velocity fields used in this work and show also the size of the meshes for
each case. As we study the piece-wise steady and linear flow we do not take into account
the transient states, the boundary conditions were given in chapter 3.
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4.2 Coherent structures

The tools needed for particle tracking inside the natural convective flow and the con-
struction of the invariant surfaces are available in TUNAM. Below we briefly discuss the
general idea of these tools and also present the searching algorithm of periodic points and
the method for their classification.

4.2.1 Particle tracking

The solution of balance equations constitutes only a first but important step in this work.
With the discrete velocity field calculated on each point of the mesh it is possible to track
massless particles inside the flow based on a numerical integration of the equation (1.1).

A general particle tracking must perform the following actions for every time step [61]:

1. Locate the particles inside de container.

2. Interpolate the velocity to the positions of the particles.

3. Integrate the equation (e.g., Fourth order Runge-Kutta scheme).

The last two steps are the most important because introduce accumulative numerical
errors. A trilinear interpolation of the velocity is used, in such a way that the accuracy
depends on the size of the mesh.

For reliable numerical integration of kinematic equation (1.1) higher-order algorithms are
mandatory. In the framework of this dissertation a fourth-order Runge-Kutta scheme is
used [62]

k1 = u(xm, tm), k2 = u(xm + k1
Δt
2
, tm + Δt

2
)

k3 = u(xm + k2
Δt
2
, tm + Δt

2
), k4 = u(xm + k3Δt, tm +Δt)

xm+1 = xm +
Δt

6
(k1 + 2k2 + 2k3 + k4). (4.13)

4.2.2 Invariant surfaces

The invariant surfaces are found by releasing many particles on different initial position
and tracking them inside the flow. In this work we started by tracking initial tracers
positioned in a diagonal from the center of the cube (the center of the cube is stagnation
point) to near a corner of the container. Specifically, the line of initial points goes from
the point with coordinates (0.501, 0.501, 0.501) to the point (0.85, 0.85, 0.85). We do not
extend the analysis to the corner of the cube in order to avoid lack of precision at the
boundary layer.
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We start with 100 tracers to construct 100 surfaces. All of these surfaces are topologically
equivalent to spheroids, they are slightly flattened near top and bottom walls. We do
not have an analytical solution of the velocity field and we must calculate the surfaces
numerically. The procedure to find these surfaces is as follows:

1. Define the initial position of a particle.

2. Follow the particle for a short number of cycles (20 is a typical number).

3. Take a representative number of points on this trajectory.

4. Build Poincaré maps for the previous number of points for a large number of cycles
(typical values range from 200-700) in order to visualize the dynamics of invariant
surfaces.

In step 1 we determine a particular invariant surface. In step 2 we only use few cycles in
order to reduce the numerical errors in the construction of the surface.

4.2.3 Periodic points

The idea for a formulation of a generic search algorithm of periodic points is outlined
below. We define a displacement function

dX(x) = x−Φk
T (x), (4.14)

which represents the displacement vector between the material point x and the k-th
forward mapping Φk

T (x). The period-k points, x
(k)
0 , coincide with the roots of eq. (4.14)

(dX(x
(k)
0 ) = 0). One way of finding the roots rests on the fact that dX(x) and the

euclidean norm (dX(x) = |dX(x)|) share the same roots [20]. The idea of the searching
algorithm is to find points in which dX(x) reaches a minimum.

For this work a searching algorithm was developed, the searching procedure focused in
points laying at the intersection of the invariant surfaces and symmetry planes.

Period-1 lines

For the identification of periodic lines of period 1, we calculate the intersection of invariant
surfaces with symmetry planes and track the points of the intersection for one cycle looking
for minimum values of dX(x). A general procedure for isolation of periodic points can be
found in [26, Appendix B].

We can verify the existence of periodic lines by the eigenvalues of the linearized deforma-
tion tensor, recall the discussion in 2.1.2.
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Classification of periodic points

The classification of fixed points for time-periodic systems is based on the eigenvalues
of the linearized deformation tensor (F = ∂ΦT

∂x
|x0). For the numerical evaluation of the

tensor at arbitrary point x0 we define six surrounding material nodes [62]

x
(+,−)
1 = x0 + (±δ, 0, 0), x

(+,−)
2 = x0 + (0,±δ, 0), x

(+,−)
3 = x0 + (0, 0± δ), (4.15)

through which the entries of F follow from the central difference scheme

Fij =
∂fi
∂xj

=
fi(x

(+)
j )− fi(x

(−)
j )

2δ
i, j = 1, 2, 3. (4.16)

We have defined f(x) = ΦT (x). This way of calculating numerically the elements of the
matrix is equivalent to the approach taken by Krasnopolskaya et al. [63]. For solenoidal
velocity fields, the requirement det(F) = 1 is an accuracy test.

In this work we use δ = 1 × 10−3 for all Ra except for the case Ra = 5 × 105 where we
reduced it to δ = 5 × 10−4 for the periodic points located away from the center of the
cube, see section 5.1.4.
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(a) (b)

(c) (d)

Figure 5.1: Velocity fields for the first half of the forcing protocol. Two streamlines and
the temperature distribution for the middle z plane are also shown. The origin of the
frame of reference is located at the lower left corner at the back of the cube, the z direction
is pointing to the front of the cube. (a) First quarter of the forcing protocol and (b) second
quarter of the forcing protocol for Ra = 7× 104 and a mesh of 963 from a diagonal view.
(c) First quarter of the forcing protocol and (d) second quarter of the forcing protocol for
Ra = 9× 104 and a mesh of 1283 from a frontal view.

Making this analogy we can think in our heating protocol in the same way as lid-driven
cavity flows. The deduction of symmetries for the square cavity with alternate movements
of two opposite walls can be found in the work of Franjione et al. [42] and for the alternate
movements of a wall in perpendicular directions in [2]. As we can see from fig. 5.2 (b),
we have a sort of combination of the two cases.

For the alternate movement of a wall in perpendicular directions there exist a time-reversal
reflectional symmetry that hosts a period-1 line [2, 6]. With the previous discussion we
will focus on the searching of periodic points on the planes1 x = 1 − z and x = z, see

1The exploration of the plane y = 0.5 can also be of interest.
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y

x

z

x

(a) (b)

Figure 5.2: (a) Qualitative flow produced by the application of first half of the protocol
F1 (this is a sketch of the general behavior and not an exact representation). (b) Analogy
of the heating protocol with movement of walls.

subsection 5.1.3. In this work we don’t present a rigorous and exhaustive study of the
symmetries of this heating protocol and we have it in mind for the future.

5.1.2 Invariant surfaces and intra-surface dynamics

We studied invariant surfaces and their dynamics for Ra numbers of 3×104, 5×104, 7×104,
9×104, 1×105 and 5×105. For the piece-wise steady and linear flow we find axisymmetric
invariant surfaces that are topologically equivalent to spheres, similar to those found for
the lid-driven cylinder flow [41, 6], the three-dimensional sphere-driven flow [26] and the
blinking rolls flow [46]. In fig. 5.3, we show a typical orbit of a tracer that lies on an
invariant spheroid and the Poincaré map.

We make a parametric study of the dynamics; we discuss the most important structures
found for each Ra and present them in the cases where their formation is more clearly
visualized. We have two important parameters, Ra and the radius. We define the radius
as the distance from the center of the cube to the point in the diagonal that was used to
generate the invariant spheroid, recall the discussion in section 4.2. Different behaviors
are present for several values of Ra at different radii. In particular, we emphasize the
behavior near critical points when the radius of the invariant surfaces is slightly changed.
Unless otherwise noted, we will always change the radius from a surface to the following
one with an increment of Δr ≈ 0.006, this increment is taken along the diagonal of the
initial tracked points, see section 4.2. In each sequence of surfaces we maintain the scale of
the figures. Similar bifurcations to those found for Hamiltonian systems with symmetry
and area-preserving maps are presented. We are specifically thinking in the dynamics
presented by Golubitsky & Stewart [45], see Appendix A.1.
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(a) (b)

Figure 5.3: (a) Typical Lagrangian orbit of a tracer for 20 cycles. (b) Poincaré map built
from (a) for 200 cycles. Ra = 1× 105 and radius = 0.307.

We present the dynamics in order of increasing Ra and show different views of invariant
surfaces in order to be as descriptive as possible. At the end of all the cases we summarize
the intra-surface dynamics in function of Ra and the radius.

Rayleigh number 3× 104

In all cases except for Ra = 5 × 105 we find on the invariant surfaces two elliptic points
symmetrically arranged that are present all over the studied region of the container2. In
fig. 5.4 (a) we show the Poincaré map on a typical invariant surface; we have colored the
points in Poincaré section in order to highlight the fact that elliptic points are located at
opposite sides of the surface. In fig. 5.4 (b) we show two axisymmetric surfaces where
their common center is the center of the cube.

At specific radii we find that elliptic and hyperbolic points appear surrounding the two
elliptic points previously mentioned, we will refer to this behavior as k-bifurcations or
q-tupling bifurcations following [46, 25, 48]. This phenomenon generally starts at the
central region of the surfaces. In fig. 5.5 (a) we show an invariant surface just before
the appearance of points forming a five-tupling bifurcation (or 5-bifurcation). In fig. 5.5
(b) we decreased the radius from panel (a). In fig. 5.6 (b) we see another perspective
of this surface from a top view where we have added the two planes considered in this
work. For clarity, in fig. 5.6 (a), we show the position of the elliptic points about the
plane x = 1 − z. Changing the radius of invariant surfaces produces a similar behavior
to changing the perturbation parameter in k-bifurcation points. This is demonstrated in

2This behavior is similar to the arrangement of periodic points, and hence islands, in the flows with
reflectional symmetry discussed by Franjione & Ottino [43]. The periodic points must exist along the
line of symmetry, or in pairs on opposite sides of the line.
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figs. 5.7 - 5.8. This structure is very similar to the bifurcations of Hamiltonian systems
for the case Z5, see Appendix A.1. For this value of the parameter we find also 7 and
9-bifurcations at larger radius3, see table 5.1.

(a) (b)

Figure 5.4: Poincaré maps on invariant surfaces for Ra = 3 × 104. (a) Typical invariant
surface exhibiting two elliptic points symmetrically arranged, radius = 0.239. (b) Settle-
ment of nested invariant surfaces, red surface corresponds to the one in (a) and the radius
of the blue one is 0.117.

(a) (b)

Figure 5.5: Ra = 3 × 104. Appearance of elliptic and hyperbolic points near the central
region of surfaces. (a) Radius = 0.307. From (a)-(b) we decrease the radius of the
invariant surface.

3As described in Appendix A.1 the behavior of bifurcations for m ≥ 5 is similar.
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(a) (b)

Figure 5.6: Ra = 3 × 104. Position of invariant surfaces and planes of analysis. (a)
Invariant surface of fig. 5.4 (a) and x = 1 − z plane (central line from this view point).
(b) Invariant surface of fig. 5.5 (b) and the considered planes from a top view.

(a) (b)

Figure 5.7: Ra = 3 × 104. Typical behavior near a 5-bifurcation point, i.e., presence of
an elliptic and hyperbolic periodic-5 orbit surrounding one of the elliptic points. This is
another view of fig. 5.5 (b) emphasizing the behavior near one of the elliptic points. From
(a)-(b) we decrease the radius of the invariant surface.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.8: Ra = 3 × 104. Different view of the five-tupling bifurcation. In (a)-(g) the
radius of the invariant surfaces decreases. The radius in (a) is 0.3131 and the radius in
(g) is 0.2764.
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Rayleigh number 5× 104

For this Rayleigh number we also find the 5-bifurcation described in the case of Ra =
3 × 104 but for a larger radius. This tendency will be present for the whole range of
Rayleigh numbers explored excepting Ra = 5×105; we find similar intra-surface topologies
but at larger radius for larger Ra.

In contrast to the case Ra = 3×104, a different geometric feature found for Ra = 5×104 is
a 3-bifurcation, this is similar to the case of Hamiltonians with Z3 symmetry, see Appendix
A.1. We can see a sequence of the formation of this structure near one of the elliptic points
in figs. 5.9 - 5.10. Another perspective of the formation of hyperbolic/elliptic points is
presented in fig. 5.11. Here in (a)− (d) we can see a ’fish’ type bifurcation for the three
pairs of elliptic-hyperbolic points formed, see Appendix A.1.

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Ra = 5×104. In (a)-(f) we are decreasing the radius of the invariant surfaces.
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(a) (b)

(c) (d)

Figure 5.10: Continuation of previous sequence. Ra = 5×104. In (a)-(d) we are decreasing
the radius of the invariant surfaces.

It must be noticed that in the sequence of fig. 5.11 two of these pairs (hyperbolic/elliptic)
correspond to one of the elliptic points and the other pair to the opposite elliptic point.
What we are observing here is that the two opposite elliptic points ’merge’ via the periodic
orbits of the bifurcations. A similar behavior occurs in Poincaré maps for the partitioned
pipe mixer when the mixing strength is augmented, see [10, 5].

A very similar behavior to figs. 5.10 (c)− (d) is reported for the blinking rolls map [46].
In that case, investigators observe stable and unstable period-three orbits near a periodic
point4. The collision of the fixed point and the unstable period three is named a tripling
bifurcation point.

In fig. 5.12 we can see a phenomenon that occurs as Ra is increased. We observe four
invariant surfaces with one of their elliptic points. From one value of the Ra to the other
we see a wandering of points (a similar behavior is found increasing the displacement
parameter for the lid-driven cylinder flow [6]). This effect is more dramatic for smaller
radius of the invariant surfaces. Also we note that changing the radius for a given Ra
results in the wandering of points and that the effect is more evident when we increase
Ra.

4Two very interesting movies showing bifurcations for this system can be seen at the supplementary
material web page.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Ra = 5 × 104. In (a)-(f) we are decreasing the radius of the invariant
surfaces. We can see how points corresponding to the opposite elliptic points unite and
separate.
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(a) (b)

(c) (d)

Figure 5.12: Position of elliptic points for different radii of invariant surfaces (this is
expressed as different colors). (a) Ra = 3 × 104, (b) Ra = 5 × 104. (c) − (d) are yz
projection of (a)− (b).
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Rayleigh number 7× 104

The dynamics for Ra = 5×104 and Ra = 7×104 are very similar. In fig 5.13 we show the
tripling bifurcation previously described; the entire surfaces are shown for clarity. The
difference between the dynamics of the two values of Rayleigh numbers is a difference of
radii where they are present. Fig. 5.16 shows the tripling bifurcation for both Rayleigh
numbers.

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Ra = 7×104. In (a)-(c) we are decreasing the radius of the invariant surfaces,
we can see how the two set of points unite. (d)-(f) top view with a cut in y of (a)-(c).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Ra = 7×104. In (a)-(c) we are decreasing the radius of the invariant surfaces.
(d)− (f) Is a slightly different perspective of (a)− (c).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Ra = 7×104. In (a)-(f) The Poincaré sections of orbits on invariant surfaces
are shown for different radii. We can see for certain radii the appearance of island chains
at the center of the invariant surfaces between the two elliptic points (only one is shown
for clarity), see (b) and (d).
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We want to highlight an interesting phenomenon that occurs after the merging of the set
of points. In figs. 5.14 (a)− (c) we show three invariant surfaces just before, during and
after the merging of points. From (a) to (b) we changed the radius by a factor of two (i.e.,
we skipped one surface between them) and from (b) to (c) by a factor of five for clarity. A
reconnection of hyperbolic points of the periodic 3 orbit is clearly seen by looking at the
position of the elliptic points. Figs. 5.14 (d) − (f) show a different view of the previous
sequence.

A distinctive feature in this case is the appearance of chains of hyperbolic and elliptic
points, see fig. 5.15. The difference of these chains with the described bifurcation in
Ra = 3×104, is that we can not appreciate the points radius by radius until they ’collide’
the main elliptic point, i.e., in the Poincaré sections the chains are lost at some radius
and they are not clearly present onwards.

(a) (b)

(c) (d)

Figure 5.16: Comparison of invariant surfaces for Ra = 5× 104 (blue) and Ra = 7× 104

(red). In (a) − (d) we are decreasing the radius. Topologies are similar but for 5 × 104

the different structures are exhibited at smaller radius compared with 7× 104.
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Rayleigh number 9× 104

A change of the Poincaré section pattern occurs for Ra = 9× 104 and Ra = 1× 105. At
the central region of surfaces we see the formation of four set of points, each consisting
of a pair of hyperbolic and elliptic points, see figs. 5.17 (a)− (d), this behavior is similar
to a double-saddle-node bifurcation, a phenomenon also found for the blinking tumbler
[25, 64, 65]. The four sets of points expand until they collide and a fragmentation of the
entire surface takes place.

(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Ra = 9 × 104. In (a)-(f) we are decreasing the radius of the invariant
surfaces.
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By decreasing more the radius we see a separation of two set of points, each corresponding
to the opposite elliptic points. This behavior resembles the bifurcation seen for level curves
of Hamiltonians for the group Z4. The change of behavior of figs. 5.18 and 5.19 (b) to
(c) looks like the two cases of level curves of 4-bifurcation points, see Appendix A.1.
A complete sequence of a similar behavior is presented for Ra = 1 × 105 in the next
subsection.

(a) (b)

(c) (d)

Figure 5.18: Continuation of previous sequence. Ra = 9×104. In (a)-(d) we are decreasing
the radius of the invariant surfaces. From (a) to (b) we have skipped one invariant surface
because it shows a similar behavior.

In fig. 5.20 we observe the motion of elliptic points for Ra = 5× 104, 7× 104, 9× 104 and
different radii. The wandering of points is now more pronounced for the smaller surfaces.
This behavior follows the behavior already described from 3 × 104 onwards. Fig. 5.21
shows the position of elliptic points about the plane x = 1 − z (vertical line from this
view point).
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(a) (b)

(c) (d)

Figure 5.19: Another view of the previous sequence. Ra = 9× 104. In (a)-(d) the radius
of the invariant surfaces decreases. From (a) to (b) we have skipped one invariant surface
because it shows a similar behavior.

(a) (b) (c)

Figure 5.20: Position of elliptic points for different radii of invariant surfaces. (a) Ra =
5× 104, (b) Ra = 7× 104 and (c) Ra = 9× 104.
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(a) (b)

(c) (d)

Figure 5.21: Wandering of elliptic points augmenting Ra for fixed radius, from this per-
spective the plane x = 1 − z is represented by the vertical line. (a) Ra = 3 × 104, (b)
Ra = 5× 104, (c) Ra = 7× 104, and (d) Ra = 9× 104.

Rayleigh number 1× 105

In essence we can group the dynamics of Ra = 1 × 105 and Ra = 9 × 104 as we did for
Ra = 7 × 104 and Ra = 5 × 104. In figs. 5.22-5.23 we show the complete sequence of
the 4-bifurcation. It is important to remark the way that hyperbolic points connect at
different radii in a similar way as in the 3-bifurcation case. When the two set of points
separate a reconnection occurs, see figs. 5.23 (d)− (e).

Fig. 5.24 shows two nested invariant surfaces when the collision of hyperbolic points
occurs (figs. 5.22 (c) − (e)). Fig. 5.25 shows the elliptic points wandering in this case;
we make a comparison between Ra = 5× 104 and Ra = 1× 105 and we can see how the
effect is more pronounced for larger Ra.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.22: Ra = 1 × 105. We focus in one of the elliptic points (right bottom). In
(a)-(f) we are decreasing the radius of the invariant surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.23: Continuation of previous sequence. Ra = 1×105. In (a)-(f) we are decreasing
the radius of the invariant surfaces.
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(a) (b)

Figure 5.24: Ra = 1 × 105. (a) Invariant surfaces of fig. 5.22 (c) and (d). (b) Invariant
surfaces of fig. 5.22 (c) and (e).

(a) (b)

(c) (d)

Figure 5.25: (a) Position of elliptic points for different radii of invariant surfaces for
Ra = 5× 104. (c) View of (a) in the zy plane. (b) Same as (a) for Ra = 1× 105. (d) View
of (b) in the zy plane.
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Rayleigh number 5× 105

From Ra = 1×105 to 5×105 we see a big change in the dynamics and consequently in the
pattern of the Poincaré section. A clear difference is the absence of the two elliptic points
present for all the radii at opposite sides of the surfaces. At a specific radius, we find
isolated critical points but they are present only for few surfaces, i.e., in a limited range of
radii. We find now different behaviors as filled surfaces with no apparent structures. This
behavior is called ’fully chaotic intra-surface dynamics’ for the lid-driven cylinder flow [6],
recall also the description of the standard map with increasing strength in section 2.2.1. It
can also be observed 4 critical points symmetrically located with respect to planes x = z
and x = 1− z, and two points symmetrically positioned about x = z or x = 1− z planes.
The different structures observed are positioned in pairs symmetrically arranged as we
have observed in the previous cases.

For surfaces near the center of the cube we recover the presence of two elliptic points
at opposite places on the invariant surface. For this value of the Rayleigh number we
will show sequences of invariant surfaces where representative behaviors are displayed.
The figures are presented in order of decreasing radii. In Fig. 5.26 we see a five-tupling
bifurcation. In this case, the phenomenon is present just for a small number of surfaces,
in contrast with the case Ra = 3× 104.

In fig. 5.27 we see a similar behavior to a 3-bifurcation for two elliptic points. Fig. 5.28
is the continued sequence for the left point of fig. 5.27. The situation represented in this
sequence display a similar behavior as the tripling bifurcations for the blinking rolls map
[46]. Similar behavior is also found in some bifurcations for the volume preserving maps
studied in [66]. In fig. 5.29 we show a sequence where we can observe a great variety of
isolated points.

We also find a period doubling bifurcation as the one reported for the blinking rolls map
[46]. This is a similar phenomenon to the ’figure eight’ bifurcation5 found for Hamiltonians
with Z2 symmetry, see figs. 5.30-5.32. In the first of the sequences at the left the ’figure
eight’ bifurcation can be identified, while on the right side we see a double-saddle-node
bifurcation. Fig. 5.31 shows a frontal view of the period doubling bifurcation. In the
sequence of fig. 5.32 we can see the evolution of the ’figure eight’ point, in (b) we observe a
connection between the points forming the period doubling bifurcation with points of the
double-saddle-node bifurcation. Recall that the structures appear in pairs on the invariant
surfaces, we are showing a cut of the surfaces for more clarity. After this connection we
observe another ’figure eight’ point but located with a rotation with respect to the first
one. This behavior after merging of points is similar to reconnections after 3 and 4-
bifurcations.

5See Appendix A.1.
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(a) (b)

(c) (d)

Figure 5.26: Ra = 5×105. In (a)-(d) we are decreasing the radius of the invariant surfaces.

(a) (b)

(c) (d)

Figure 5.27: Ra = 5×105. In (a)-(d) we are decreasing the radius of the invariant surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.28: Continuation of the previous sequence for the point on the left. Ra = 5×105.
In (a)-(f) we are decreasing the radius of the invariant surfaces.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.29: Ra = 5 × 105. In (a)-(f) we are decreasing the radius of the invariant
surfaces.
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(a) (b) (c)

Figure 5.30: Ra = 5 × 105. In (a) − (c) we are decreasing the radius of the invariant
surface.

(a) (b) (c)

Figure 5.31: Ra = 5 × 105. In (a) − (c) we are decreasing the radius of the invariant
surface.
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(a) (b)

(c) (d)

Figure 5.32: Ra = 5×105. In (a)-(d) we are decreasing the radius of the invariant surfaces.

Table 5.1 summarizes q-tupling bifurcations found for different Rayleigh numbers and
radii. Each column is obtain for a fixed Rayleigh number, Poincaré sections and the
variations with the radius is examined downwards. As described in the previous sections,
we can group together cases Ra = 5×104 and 7×104, and cases Ra = 9×104 and 1×105.
In this table we took intervals of radii in order to group the bifurcations observed. We
can see how the different structures are observed at different intervals of radii, smaller
radii for smaller Ra. The case Ra = 5 × 105 displays different Poincaré section patterns
from all others but near to the center of the cube we recover the presence of two elliptic
points symmetrically positioned as is found for the other cases examined. Purple and
black figures show chains of elliptic and hyperbolic points, eight and seven, respectively
and are the cases where we can not track the patterns radius by radius as in the other
figures. The behavior of these chains is similar to the resonant bifurcations studied in [67]
for the elastic pendulum.
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5.1.3 Period-1 lines

We have found period-1 lines for all the values of Rayleigh number on the symmetry plane
x = 1 − z. The shape becomes progressively convoluted with growing Rayleigh number,
see figs. 5.33 - 5.35. A similar behavior is found for the lid-driven cylinder flow [18, 6, 40],
their displacement parameter is equivalent to Rayleigh number in our system.

In fig. 5.33, the colors represent Ra = 1× 105, black, Ra = 9× 104, purple, Ra = 7× 104,
blue, Ra = 5 × 104, red, and Ra = 3 × 104, orange. We use different types of points
for more clarity and plot the symmetry plane with a green grid. In fig. 5.34 the colors
represent Ra = 1 × 105, black, and Ra = 5 × 105, red; here we plot the symmetry plane
with a blue grid. In both figures the dots represent the intersection of an invariant surface
and the plane. In fig. 5.35 we show a xy projection of the previously commented figures.

We can group these lines according to the intersections with the lines y = 0.5 (horizontal)
and the vertical line that passes through the center of the cube. In this way, cases for
3× 104 and 5× 105 have no partners but we can relate 5× 104 with 7× 104, and 9× 104

with 1× 105, this behavior is consistent with the analysis of the dynamics of intra-surface
topologies of the previous section.

Figure 5.33: Periodic lines found on the plane x = 1 − z (green) for different Ra. Black
(Ra = 1 × 105), purple (Ra = 9 × 104), blue (Ra = 7 × 104), red (Ra = 5 × 104) and
orange (Ra = 3× 104). Green dots represent the intersection of an invariant surface and
the plane.
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Figure 5.34: Periodic lines found on the plane x = 1 − z (blue) for different Ra. (a)
Black (Ra = 1× 105) and red (Ra = 5× 105). Blue dots represent the intersection of an
invariant surface and the plane.
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(a)

(b)

Figure 5.35: Projection of figures 5.33 and 5.34 on the xy plane, colors represent the
same Ra numbers as in the previous figures. In (a) lines have been added to highlight the
trends.
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Closed periodic lines

For Ra = 9 × 104, 1 × 105, 5 × 105 we find also closed periodic lines on the symmetry
planes, x = z and x = 1 − z, at the same interval of radii of invariant surfaces, i.e.,
the periodic lines are symmetrically situated. Closed periodic lines have been shown for
different systems, in the 3D Stokes flows in a cubic container considered by Anderson et
al. [20], periodic lines are closed or start and end on the boundary of the flow domain;
this is also the case for the lid-driven cylinder flow [18].

The arrangement of closed periodic lines is similar to the periodic lines studied for the
blinking tumbler [25, 65, 64]. In fig. 5.36 we plot periodic lines found for Ra = 5 × 105,
Ra = 9× 104. The case Ra = 1× 105 is topologically equivalent.

For Ra = 9 × 104, 1 × 105 we found two closed periodic lines (each one on each of the
planes analyzed). In the case Ra = 5 × 105 we found more closed lines symmetrically
arranged after making a search refinement, see fig. 5.37 for the settlement of points on
the x = 1− z plane. In fig. 5.38 we show periodic lines found on each plane.

(a)

(b)

Figure 5.36: Settlement of periodic lines found for (a) Ra = 9×104, and (b) Ra = 5×105.
Color black represents points on x = z plane and blue and red points on x = 1− z plane.
We added dots as an aid to the eye for the closed lines.

A qualitative phenomenon that is present in cases Ra = 9 × 104, 1 × 105, 5 × 105 is that
the radii at which merging of points, at 4-bifurcations in the first two cases and for the
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Figure 5.37: Settlement of periodic lines found for Ra = 5× 105 on x = 1− z plane.

period doubling and double-saddle-node bifurcations in the last case, coincide with the
presence of symmetric closed periodic lines. For Ra = 5 × 104, 7 × 104 where we found
also merging of points in 3-bifurcations we didn’t find closed periodic lines. In fig. 5.39
we show the closed periodic lines and one invariant surface where we see merging of the
sets of points for Ra = 1× 105.

As we see in subsection 5.1.4, the line on the x = 1 − z plane (black dots in fig. 5.39
(c)) is almost completely elliptic. A similar behavior is found for the blinking tumbler
where the authors show a portion of a KAM tube that encircles the elliptic curve [25]. As
we will express in the outlook of future studies at the end of this work, it would be very
interesting to study in a deeper way the relation of periodic lines and invariant surfaces
for this natural convective flow.
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(a)

(b)

Figure 5.38: Settlement of periodic points found for Ra = 5 × 105 on planes (a) x = z,
(b), x = 1− z.

(a) (b) (c)

Figure 5.39: Closed periodic lines and one invariant surface where there is merging of
points for the 4-bifurcation. Ra = 1× 105. Blue points represent the line on x = z plane
and black points the line on x = 1−z plane. In (a) we show a top view of the intersection.
(b)− (c) show a cut of this arrangement.
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5.1.4 Classification of periodic points

In the previous subsection we showed the arrangement of periodic lines. As we described
in section 4.2, we look for periodic points at the intersections of planes and invariant
surfaces. We have constructed a finite number of surfaces and consequently, in some
cases, little gaps between points forming the periodic lines exist, e.g., at closed periodic
lines. Also we note that structures observed on invariant surfaces (q-tupling bifurcations)
also affect the points on the intersection of planes and invariant surfaces. For example, if
we have ’empty’ regions on the Poincaré maps, those points will not be detected at the
intersection with the planes. However, we want to stress that these two limitations can
be resolved by building more invariant surfaces at specific regions and by inspecting more
cycles on the construction of Poincaré maps, for instance. An alternative solution may
be the use of surface tracking6 of the symmetry planes as is the method actually used for
the lid-driven cylinder flow [6, 2] and for the cubical lid-driven cavity flow [20].

In figs. 5.40-5.44 we can see the type of periodic points comprising the period-1 lines
for different Rayleigh number. For Ra = 3 × 104 the line is completely elliptic, with
increasing Rayleigh number, the line takes a more complicated shape with both elliptic
and hyperbolic segments. From these figures we can see that open periodic lines are
symmetric when we make a reflection about the y = 0 line plus a reflection of the plane
x = z, this plane is represented as a vertical line in the following figures.

The behavior of the open periodic lines is similar to those found for the lid-driven cylinder
flow with the two step forcing protocol that consists of a ’zigzag’ movement of the top
wall [18]. The segmentation of periodic lines for the lid-driven cylinder flow exhibits a
strongly nonlinear dependence upon the displacement parameter [6], here we can see a
similar behavior in function of the Rayleigh parameter.

6Further, surface tracking can also be used for visualization of natural convective flows as shown by
de la Cruz et al. [61].
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(a)

(b)

Figure 5.40: Period-1 lines on x = 1−z plane. (a) Ra = 3×104 and (b) Ra = 5×104. Blue
and green points represent elliptic periodic points and blue and red represent hyperbolic
periodic points.
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(a)

(b)

Figure 5.41: Period-1 lines on x = 1−z plane. (a) Ra = 7×104 and (b) Ra = 9×104. Blue
and green points represent elliptic periodic points and blue and red represent hyperbolic
periodic points.
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(a)

(b)

Figure 5.42: Period-1 lines on x = 1−z plane. (a) Ra = 1×105 and (b) Ra = 5×105. Blue
and green points represent elliptic periodic points and blue and red represent hyperbolic
periodic points.
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(a)

(b)

Figure 5.43: Classification of points for the closed period-1 line found on symmetry planes.
(a) Ra = 9 × 104. (b) Ra = 1 × 105. Blue and green points represent elliptic periodic
points and blue and red represent hyperbolic periodic points. We present a slightly
different perspective in the two cases seeking the clarity of the figures.
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(a)

(b)

Figure 5.44: Classification of points for the closed period-1 line found on symmetry planes
for Ra = 5 × 105. Blue and green points represent elliptic periodic points and blue and
red represent hyperbolic periodic points. (a) Points on x = z plane. (b) Arrangement of
periodic points for four closed periodic lines.

For the case Ra = 9 × 104, the closed periodic line located on x = 1 − z plane is almost
completely elliptic except in the intersection with the other two lines, see fig. 5.43 (a).
The closed periodic line located on x = z plane is completely hyperbolic except for the
intersection with the y = 0.5 line. A similar behavior is present for Ra = 1× 105, see fig.
5.43 (b). In the discussion of the symmetries of this flow we commented the possibility of
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having the plane y = 0.5 as a symmetry plane also, we have made a quick scan looking
for periodic points on this plane and apparently they do exist for the cases where we find
closed periodic lines. As we previously mentioned, this arrangement of closed periodic
lines and the type of points forming them is similar to those found for the blinking tumbler
[25, 65, 64].

We see that a very important requirement for the classification of periodic points is to
have the highest possible accuracy in the determination of such points. In general, near
the center of the cube we find the greater precision and when we move towards the walls
the accuracy decreases. For that reason we choose to classify just a subset of periodic
points for the case Ra = 5 × 105, see fig. 5.42 (b) and fig. 5.44. Here we can see that
increasing Ra produces a bigger segmentation of the outer closed line on the x = 1 − z
plane, the lines on x = z plane are almost fully hyperbolic, see fig. 5.44 (a).

For the full identification of parabolic points, the points where the behavior changes from
elliptic to hyperbolic, we need the refinement of the method. To have more invariant
surfaces at specific regions or to explore the surface tracking algorithm in order to decrease
the space between points in the periodic lines near the position of the change. We have
identified points that nearly fulfill the condition Λ = {1, 1, 1} neighboring the position of
fragmentation but as we have commented before for a good characterization of points we
need accurate determination of the position of points.

As specific example to illustrate a more detailed analysis procedure, we chose two periodic
points, one elliptic and one hyperbolic, of the open periodic line for Ra = 5× 105 and we
track points on a circle of radius 0.005 surrounding them on the symmetry plane x = 1−z
for 1, 2, 3, 4 and 5 cycles in order to see the motion of the fluid in their vicinity. In fig.
5.45 (a) we show the initial circles and a segment of the periodic line. As we can see from
fig. 5.45 (b), the circle of the hyperbolic point deforms in a much greater way exploring a
larger region of the container than for the elliptic point, this different behavior is crucial
in terms of zones of better mixing, see fig. 5.45 (b).

The behavior near the hyperbolic point can be the result of the interaction with the stable
and unstable manifolds, a behavior studied for the lid-driven cylinder flow [18, 2]. It would
be very interesting to analyze the deformation of material surfaces in order to determine
stable and unstable manifolds of hyperbolic segments of periodic lines.
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(a)

(b)

Figure 5.45: Ra = 5 × 105. Tracking of initial circles surrounding two periodic points,
crosses, on the x = 1− z plane. (a) The black points represent a segment of the periodic
line and the red points are located at circles surrounding the hyperbolic point (top of the
image) and the elliptic point. (b) Deformation of circles (red) for 1 (blue), 2 (green), 3
(pink), 4 (yellow) and 5 (purple) cycles.





Chapter 6

Summary

Conclusions

In this work we presented some topological properties for the natural convective flow inside
a cubic container following the methodology presented for the lid-driven cylinder flow. In
particular, we found invariant spheroids where trajectories of tracers are restricted. Intra-
surface dynamics on invariant spheroids show a variety of forms that can be grouped in
terms of Rayleigh number and that exhibit the complexity of area-preserving maps. We
found period-1 lines for all the studied values of Rayleigh number and we have made a
classification of periodic points that form these lines.

The phenomena observed in this work have been observed in a wide range of three-
dimensional volume preserving maps with non-toroidal invariant surfaces, starting with
the lid-driven cylinder flow [21, 6, 41, 4], the three-dimensional sphere-driven flow [26], the
flow generated by the blinking rolls map [46], the three-dimensional lid-driven cube flow
[20] and three-dimensional granular flows inside spherical tumbler [25, 65, 64]; specific
similarities and differences have been pointed out at the appropriate places. As noted
by Aref et al. [4], the emergence of similar dynamics in such a great variety of systems
reflects the universality of many of the phenomena.

Future work

Many possible tasks have been identified as possible continuation of the present research,
here we list a few.

In chapter 5 we presented some representative intra-surface dynamics found for the natural
convective flow and the evolution of the periodic lines as functions of the Rayleigh number.
At this point we have presented them as two separate phenomena but as we noted in
section 2.2, intrasurface topologies are shaped essentially by the periodic points defined
by the intersection of the invariant surfaces with periodic lines [6, 41]. This is beautifully
shown for the flow driven by a rotating sphere [26]. We need to make a deeper study in
order to relate our observations to this system.

Making an exhaustive study of the symmetries of our heating protocol can be of interest in
order to fully understand the presence of periodic lines and also the symmetries shown by
them. As shown for the lid-driven cylinder flow, protocols that lack of global symmetries
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do not have periodic lines and can display isolated periodic points and three-dimensional
chaos [21, 2].

The manifolds of isolated periodic points and hyperbolic segments of periodic lines are
essential to the dynamics. As it is shown for the blinking tumbler, the invariant manifold
template for chaotic transport can be applied to this kind of flows [25]. Such manifolds
have been also presented for the lid-driven cylinder flow and the flow driven by a rotating
sphere. An important tool that can be used to measure the degree of chaos are the Lya-
punov exponents. For volume preserving maps in three dimensions the sum of the three
exponents must be zero and when the orbits are restricted to two-dimensional surfaces,
one of these exponents must be exactly equal to zero. A study of the Lyapunov exponents
can be found for the blinking rolls map where the authors can see a clear correspondence
between the existence of island structures and small Lyapunov exponents [46]. Determin-
ing the Lyapunov exponents is yet another task for continuing the study presented in this
thesis.

A promising concept with Hamiltonian foundation and devised specifically for mixing
application is found in the linked twist map [21], it may be of interest to explore possible
connections regarding this convective flow.

Though the existence of invariant surfaces forbids three-dimensional mixing, mixing can
occur on the invariant surfaces. This is associated with the elimination of islands. For the
lid-driven cylinder flow it is shown that three-dimensional chaotic dynamics covering the
entire flow domain can be achieved depending on the forcing protocol, moreover, when
tracers are restricted to invariant surfaces, the dynamics can be changed by breaking such
structures via perturbations of the linear problem.

As pointed out in the recent review of Frontiers of chaotic advection [4], the challenge
ahead is the study of three-dimensional unsteady flows. The natural continuation of the
work presented here is the inclusion of the nonlinear terms in the governing equations.
The appearance of new structures by the inclusion of inertial effects in the lid-driven
cylinder flow is thought to exemplify a universal mechanism and an important part of an
essentially route to chaos of three-dimensional time-dependent flows [19, 4]. The dynamics
of perturbed invariant spheroids remains largely an open problem. Fully-chaotic spheroids
survive weak inertia and constitute transport barriers, non-chaotic regions of invariant
spheroids have ramifications by causing the formation of intricate adiabatic structures
through ’resonance induced merger’ (RIM) [21, 4].

Some of the academic activities listed before are potential research projects that will
contribute to the understanding of mixing with natural convection.



Appendix A

Dynamical systems

The motion of fluid particles in an Eulerian velocity field is a dynamical system1. In this
work we are very interested in the solution,

x = Φt(X), X = Φt=0(X) (A.1)

which is called flow 2 or motion (term from continuum mechanics), of

dx

dt
= v(x, t), (A.2)

with x = X at time t = 0. The flow is represented by a mapping or map or point
transformation; X is mapped to x after a time t3. In the language of dynamical systems
a mapping

Φt(X) → x (A.3)

is called a Ck diffeomorphism if it is 1-1 and onto, and both Φt(·) and its inverse are
k-times differentiable. The transformation (A.1) is required to satisfy the condition for
the Jacobian, J = det( ∂xi

∂Xj
) = det(DΦt(X)),

0 < J < ∞. (A.4)

Eq. (A.4) precludes two particles X1 and X2, from occupying the same position x at a
given time, or one particle splitting into two (non-topological motions such as breakup or
coalescence are not allowed).

In the language of dynamical systems theory, a map, S, is an example of a measure-
preserving transformation. If R denote the region occupied by the fluid, and A is any
subdomain of R, μ(A) denotes the volume of A. μ is a function that assigns to any
subdomain of R its volume; the function μ is known as a measure. Incompressibility of
the fluid is expressed as μ(A) = μ(S(A)) [1].

Here we consider that a continuous dynamical system is a system of differential equations
(A.5) and its associated flow

dx

dt
= f(x, t), (A.5)

1We deal exclusively with either autonomous systems or time-periodic systems following [10, Chapter
5].

2Here x = Φt(X) is usually assumed to be invertible and differentiable.
3Here we are identifying a point in a continuum by its initial position vector, i.e., eq. (A.1) means

that the initial condition of particle X occupies the position x at time t.
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x ∈ Rn and the right hand side is arbitrary. An important case occurs when f is periodic
in time (f(x, t) = f(x, t + T )). The space x, with t as a parameter or with x augmented
by t (Rn×R if the time t is added as one of the axes), is called de phase space of the flow.
Given any point x0 belonging to the phase space at some time arbitrarily designated as
zero, the orbit or trajectory based at x0 is given by Φt(x0) for all times t.

When we do not follow the trajectory of every initial condition continuously in time
through the phase space we can record their positions at specified times4. Consider for
example that the position of the initial condition X = x0 is recorded every t = T , in this
case

xn = Φn
T (x0) (A.6)

where Φn
T (·) denotes the composition of n mappings ΦT (alternative ways of expressing

the same concept are xn → ΦT (xn) and xn+1 = ΦT (xn)). Mappings as (A.6) are referred
as discrete dynamical systems.

Given a flow x = Φt(X), P is a fixed point of the flow if

P = Φt(P) (A.7)

for all time t, that is, the particle located at the position P stays at P. P is a periodic
point of period T (belonging to a periodic or closed orbit) if

P = ΦT (P), (A.8)

the particle located at the position P with orbit x = Φt(P) returns to its initial position
after a time T (Φt(P 	= P) for any t < T ).

A point P is a fixed point of the mapping f(·) if5

P = fn(P) (A.9)

for all n. We say that P is a periodic point of order n of the map f(·) if
P = fn(P), (A.10)

P returns to its initial location after exactly n iterations (fn(P) 	= P for any m < n). In
fluid mixing a very common way of generating mappings from flows is by means of the
Poincaré surface of section.

A flow Φt(·) in a region S displays chaos when it satisfies one of the following conditions6

[10, 15]:

4If we think of the number of dimensions, it is clear that there is a visualization problem. For a
two-degree-of freedom (Hamiltonian) system, the phase space is four-dimensional and, if conservative,
the energy shell is three-dimensional and even following the motion on this 3D energy shell is difficult.
The surface of section is a most valuable technique to this end [14].

5A fixed point of a flow and its corresponding mapping are in general not the same. Generally, a fixed
point of a mapping corresponds to a periodic point of the flow.

6In a strict sense, the definitions are not equivalent, although for many purposes in fluid mixing they
might be regarded to be so [15]. There are also other possible definitions for temporal chaos [10]. For a
brief discussion of the term chaos in the context of chaotic advection, see [1].
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• There is an invariant set7 S (Φt(S) = S) and the flow is sensitive to initial condi-
tions8 on S.

• The flow has transverse homoclinic and/or heteroclinic points.

• The flow produces horseshoe maps.

A.1 Hamiltonian systems

Golubitsky & Stewart [45] study generic bifurcations of Hamiltonian systems with sym-
metry (see [68] for a definition of this concept, the idea is that the Hamiltonian H is
invariant under a compact Lie group Γ which preserves the symplectic structure). The
authors seek conditions on the group in order that bifurcations cannot be changed by
small Γ-invariant perturbations of H. We are particularly interested in section 4 of this
work were they summarize generic bifurcations (when eigenvalues pass through zero) of
Hamiltonian systems with one-degree-of-freedom9 for different symmetry groups, 1, Zn

and SO(2). This material can also be found in references [68, 48, 47], we also recommend
[69, Appendix 7].

Zn is the cyclic group of order n (the order or a finite group is the number of elements
of the group), this is the set of rotational symmetries of a regular n-sided polygon. It
consists of rotations of the plane through the angles 0, θ, ..., (n − 1)θ, where θ = 2pi/n.
The action of this group on R

2 (identifying it with C) is given by θ · z = eiθz [68, 45].

Γ = 1

The Hamiltonian is generically

H(p, q) = ±p3 ± q2 + ..., (A.11)

and the model 1-parameter has the normal form10

H(p, q, λ) = p3 + q2 + λp. (A.12)

7A set S is called an invariant set of the flow x = Φt(X) on a manifold M (S ⊂ M) if Φt(X) ∈ S for
all X ∈ S, for all time t. If a point belongs to an invariant set, then when acted by the flow, it remains
in the set.

8The flow Φt(X) is said to be sensitive to initial conditions on a domain S if for all X 	= X0, with X
belonging to an ε-ball around X0, there exists a time, t < ∞ such that Φt(X) lies outside the ε-ball for
all the X0 contained in S. A similar definition applies to maps [10].

9Bifurcations in Hamiltonian systems with two degrees of freedom can be reduced to an investigation
of a one-parameter Hamiltonian systems with one degree of freedom [69].

10The method of normal forms provides a way of finding a coordinate system in which a dynamical
system takes the ’simplest’ form, see [68, 48], though a description of normal forms is beyond the scope
of the present study.
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Level curves exhibit ’fish’ structure bifurcation when the parameter changes from λ > 0
to λ < 0. This is the analog to the saddle-node bifurcation for Hamiltonian systems, as
a parameter is varied two equilibria, a saddle and a center, collide and disappear, leaving
no fixed points.

Γ = Z2

The model normal form in this case is

H(p, q, λ) = p4 + q2 + λp2. (A.13)

The level curves presents the ’figure eight’ generic bifurcation when the parameter changes
from λ > 0 to λ < 0.

Γ = Zm (m ≥ 3)

Here the authors obtain the normal forms

(zz)2 +Rezm − λzz (m ≥ 5), (A.14)

(zz)2 + γRez4 − λzz (m = 4), (A.15)

Rez3 − λzz̄ (m = 3), (A.16)

where the parameter γ 	= 0,±1. The level curves of the normal form for m = 3, exhibit a
3-bifurcation (there exists a hyperbolic periodic orbit of period 3 for positive and negative
values of the parameter and it tends to the 3-bifurcation point as the parameter goes to
0).

For m ≥ 5 the level curves of the normal form are typical of m-bifurcation points (there
exist an elliptic and also a hyperbolic periodic orbits of period m for positive value (re-
spectively negative) of the parameter and no periodic orbit of period m for negative value
(respectively positive) of the parameter, as the parameter goes to 0 from the appropriate
side, both orbits tend to the m-bifurcation point), see [48, Chapter 11].

The authors consider separately the case m = 4 since it has special features. As γ is
changed to −γ the phase portrait is unchanged except for a rotation. And therefore they
assume γ ≥ 0. There are two exceptional values of γ, 0 and 1 (or −1) at which the
topology of the phase portrait changes. They show the transition of the two portraits
for values γ = 0.5 and 1.5. This bifurcation can behave either like m = 3 or like m > 4
[66, 48].
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Incompressibility constraint

Ra = 5× 105, mesh: 963

Step of the protocol ∇ · u
1 9.14127e− 06
2 8.62083e− 06
3 8.72801e− 06
4 8.65373e− 06

Table B.1: Incompressibility constraint for Ra = 5× 105, computational mesh: 963.

Ra = 1× 105, mesh: 963

Step of the protocol ∇ · u
1 9.55421e− 06
2 8.65632e− 06
3 7.61257e− 06
4 8.67739e− 06

Table B.2: Incompressibility constraint for Ra = 1× 105, computational mesh: 963.

Ra = 1× 105, mesh: 1283

Step of the protocol ∇ · u
1 2.88287e− 05
2 2.59745e− 05
3 2.87175e− 05
4 2.63960e− 05

Table B.3: Incompressibility constraint for Ra = 1× 105, computational mesh: 1283.
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Ra = 9× 104, mesh: 1283

Step of the protocol ∇ · u
1 2.81003e− 05
2 2.61406e− 05
3 2.84726e− 05
4 2.66368e− 05

Table B.4: Incompressibility constraint for Ra = 9× 104, computational mesh: 1283.

Ra = 7× 104, mesh: 963

Step of the protocol ∇ · u
1 7.84445e− 06
2 8.90510e− 06
3 8.90597e− 06
4 8.92077e− 06

Table B.5: Incompressibility constraint for Ra = 7× 104, computational mesh: 963.

Ra = 5× 104, mesh: 963

Step of the protocol ∇ · u
1 5.88451e− 06
2 8.90308e− 06
3 6.94999e− 06
4 8.91544e− 06

Table B.6: Incompressibility constraint for Ra = 5× 104, computational mesh: 963.

Ra = 3× 104, mesh: 963

Step of the protocol ∇ · u
1 5.74044e− 06
2 8.46982e− 06
3 4.33433e− 06
4 8.48091e− 06

Table B.7: Incompressibility constraint for Ra = 3× 104, computational mesh: 963.
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Company, 2003). Cited 1 time on p. 14.
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