UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

FACULTAD DE QUIMICA DIVISION DE ESTUDIOS SUPERIORES

"EQUILIBRIO DE FASES EN EL SISTEMA Li20 - BeO-SiO2"

TESIS

que para obtener el grado académico de: MAESTRO EN CIENCIAS QUIMICAS QUIMICA INORGANICA C E R A M I C A presenta el Químico PATRICIA QUINTANA OWEN

México, 1977

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

D.E.FG.

CONTENIDO

1

- CAPITULO I. RESUMEN
- CAPITULO II. INTRODUCCION
- CAPITULO III. PARTE EXPERIMENTAL
 - 1.- Preparación de vidrios
 - a) Análisis de los vidrios
 - 2.- Estudio del Diagrama de Fases
 - a) Método
 - b) Método de enfriamiento brusco
 - c) Análisis de cristales
 - Análisis con Análisis Térmico
 Diferencial

CAPITULO IV. RESULTADOS

CAPITULO V. CONCLUSIONES

BIBLIOGRAFIA.

CAPITU LO I

2

RESUMEN.

El objeto de este trabajo es estudiar el diagrama de equilibrio de fases del sistema ternario $\text{Li}_20-\text{BeQ}-\text{Si0}_2$. Nos interesa conocer si existen fases nuevas, ya que sólo se conoce el compuesto ternario $\text{Li}_2\text{BeSi0}_4$; También si hay soluciones sólidas; estudiar el efecto de añadir Li_20 y Si0₂ a Be0 y co mo modifican sus propiedades refractarias; y por último, saber si se pueden preparar nuevos vidrios cerámicos.

Se prepararon cerca de 70 composiciones, de las cuales 40 formaron vidrios y fundieron en un intervalo de temperatura de 1000-1200°C. Las demás composiciones que no formaron vi-drio fue porque se necesitaba temperatura más alta o porque estaban fuera del límite de formación de vidrios.

Para determinar las temperaturas del liquidus y solidus del diagrama de fases, las muestras se dejaron dentro de la mufla, el tiempo y la temperatura necesarias para cada com-posición y se enfriaron rápidamente en Hg. En otros experi-mentos, las fases binarias o ternarias ya preparadas, como - Li_2Si0_3 , $Li_2Be_20_3$, fueron mezcladas en varias proporciones y luego se calentaron a diferentes temperaturas.

Se analizaron los productos con el Microscopio Petrográfico, el difractómetro de rayos X por el método de polvos y se checaron las temperaturas de los puntos invariantes con An<u>á</u> lisis Térmico Diferencial.

Se localizaron 10 puntos invariantes en el liquidus y 7 triángulos compatibles en el subsolidus. La mayoría de las composiciones refractarias se encuentran en la unión BeO - - Y - Li₂BeSiO₄, con una temperatura de solidus de 1320°C.

Se encontraron tres fases metaestables en éste sistema, la fase X, que se encontró en el triángulo χ -Li₂BeSiO₄ --Be₂SiO₄-SiO₂ en la cristalización de los vidrios a 1000°C o por reacciones de BeO y Li₂Si₂O₅ en el solidus, proba-blemente es un ortosilicato metaestable, con una composición aproximadamente entre χ -Li₂BeSiO₄ y Be₂SiO₄.

Las otras dos fases metaestables que se encontraron se formaban en la cristalización de los vidrios a bajas temperaturas, entre 500-700°C, en las composiciones que se lo calizan en la unión $\partial -\text{Li}_2\text{BeSiO}_4$ -SiO₂. La fase Y parece ser que se encuentra entre un metasilicato y un ortosilicato con composición más rica en SiO₂. La otra fase metaestable tiene un patrón de difracción de polvos de rayos X muy similar a la fase alto cuarzo, pero pudiera ser que forme una serie de soluciones sólidas con SiO₂ de la forma Li_{2-X} (Si_{1-X} Be X) O₂, $0 \leq X \leq 0.33$.

CAPITU LO II

4

INTRODUCCION.

Hasta ahora no se han hecho estudios sobre el diagrama de equilibrio de fases Li 0-Be0-Si0₂, sólo se encontró un compuesto ternario Li₂BeSi0₄ ya reportado ^(1,2). Li₂BeSi0₄ tiene dos formas polimórficas χ -Li₂BeSi0₄ y la forma - β -Li₂BeSi0₄.

El diagrama de fases binario $\text{Li}_20-\text{Si0}_2$ fue estudiado por Kracek⁽⁴⁾. Este sistema tiene un rango de composiciones bastante amplio que forman vidrios desde ~ 60-100% mol de Si0₂ puro. En la figura 1 tenemos el diagrama -- $\text{Li}_20-\text{Si0}_2$ con las fases más importantes para este estudio El diagrama sólo se ha estudiado hasta un 70% mol Li_20 , ya que a concentraciones mayores aparece un exceso de -- Li_2CO_3 después de la reacción, o muchas veces se pierde - Li_20 por evaporación a altas temperaturas. Vemos que éste sistema tiene tres fases estables, siendo éstas $\text{Li}_4\text{Si0}_4$, $\text{Li}_2\text{Si0}_3$ y $\text{Li}_2\text{Si}_20_5$.

En la Química del estado sólido, las composiciones de los compuestos se representan como la suma de los óxidos, y las fórmulas se abrevian como sigue: $L=Li_20$, B=Be0, - $S=Si0_2$, por lo tanto para $Li_4Si0_4=2Li_20$. $Si0_2=L_2S$; - $Li_2Si0_3=Li_20.Si0_2=LS$; X-Li_2BeSi0_4= X -LBS; usándose la misma nomenclatura para las demás fases cristalinas.

Parece que hay dos estudios sobre el sistema Be0-Si0_2 , uno es sobre la preparación y las propiedades de fenaquita, $\text{Be}_2\text{Si0}_4$ (B_2S), hecho por Morgan y Hummel⁽⁵⁾ (fig.2);y el otro hecho por Budnikov y Cherepanov⁽⁶⁾ sobre las relaciones de fusión Be0-Si0₂ como se puede ver en la figura 3.

FIG. 2 SISTEMA BOO-SIO2 (5) DE MORGAN & HUMMEL

FIG. 3 SISTEMA B.O.SIO2 DE BUDNIKOV & CHEREPANOV (6)

Comparando los datos de los dos trabajos, tenemos que en el primero no conocieron con mucha exactitud la temperatura de disociación de B_2S a Be0+Si0₂ y supusieron que la curva del liquidus era un eutéctico sencillo a 1670°C, tomando los puntos de fusión de Be0 y Si0₂. En cambio en el segundo trabajo hicieron varios conos de diferentes composiciones y consideraron la temperatura de fusión, cuando el ápice del cono estaba doblado, sin medir temperaturas de liquidus o de solidus, por lo que esta curva de la fig<u>u</u> ra 3 es sólo un promedio de las curvas de liquidus y solidus de la figura 2. Esto explica la diferencia de 200°C de las temperaturas de liquidus en la composición de B_2S .

La temperatura mínima en la curva de la figura 3 es de 1660°C y por los datos presentados por Morgan y Hummel se puede considerar como un eutéctico, con la diferencia de sólo 10°C.

También se ha reportado el sistema binario $\text{Be0-Li}_20^{(7)}$ en la parte rica en berilio, como se demuestra en la fig<u>u</u> ra 4. La curva de liquidus continua está basada en la observación de las temperaturas de fusión de varias mezclas, que analizaron químicamente. El punto eutéctico a 78.5% mol de Be0 se extrapoló de los datos experimentales y ta<u>m</u> bién reportaron una fase nueva Li₂Be₂0₃ (B₂L), que funde congruentemente a 1150°C.

Se estudió éste diagrama de fases ternario por varias razones. Primero es un sistema desconocido. Segundo, ver como Li $_4$ Si0 $_4$ puede formar soluciones sólidas al mezclarlo con Be²⁴ y si realmente las forma, cómo puede afectar las propiedades de Li $_4$ Si0 $_4$ como un electrolito sólido; -tercero, ver si existen otras fases nuevas ya que sólo se conoce el compuesto ternario χ -Li $_2$ BeSi0 $_4$. Cuarto, ver si

8 -

(7) FIG. 4 SISTEMA Li₂0 - B • 0 (LINEAS CONTINUAS, SE CALCULO CON DATOS EXPERIMENTALES)

se pueden preparar nuevos vidrios cerámicos, y por último, conocer las propiedades refractarias y el efecto de añadir Li_20 como fundente al sistema Be0-Si0₂, ya que éstos tie-nen buenas propiedades como refractarios con puntos de fusión altos.

Los diagramas de fases juegan un papel muy importante en la Química del estado sólido, para entender su comporta miento térmico de los sólidos y las reacciones que pueden ocurrir entre ellos. Para el estudio de la mayoría de los materiales sólidos, como cementos, refractarios, aleacio-nes, vidrios, óxidos magnéticos y electrónicos, etc., es necesario entender la regla de las fases y los diagramas de fases.

La regla de las fases está dada por la ecuación P+F=C+2, donde P es el número de fases presentes en equilibrio físi camente diferentes, F es el número de grados de libertad o variables independientes dados por presión, temperatura y composición de las fases presentes y, por último, C es el mínimo número de constituyentes necesarios para describir completamente las fases presentes en un sistema dado.

En el caso de los sistemas óxidos o sistemas condensados se utiliza la regla de las fases condensadas P+F=C+1, ya que sólo se consideran 2 grados de libertad, temperat<u>u</u> ra y composición, porque la presión de vapor de las fases sólidas y líquidas es tan pequeña en comparación con la presión atmosférica que la presión se considera constante (a menos que se estén estudiando sistemas a bajas presiones).

Es necesario dar algunas definiciones para poder enten der algunos términos que se utilizan en los sistemas ternarios. En la figura 5 se representa un sistema de 2 componentes A-B, graficando composición (%mol) contra tempe-

10 -

FIG. 5 SISTEMA BINARIO A-B

ratura (°C) y 2 compuestos binarios A₂B y AB.

La <u>curva de liquidus</u> OPQRS, es una curva univariante, porque a cualquier composición la temperatura del liquidus es fija, o sea P=2, por lo tanto F=1. Esta curva da la temperatura más alta a la cual los cristales pueden existir, arriba de esta temperatura solo hay líquido. Lí quido de composición entre 0 y P en enfriamiento entra a una región de 2 fases, esto es, A+líquido; para éstas composiciones A es la <u>Fase Primaria</u>, porque es la primera fase en cristalizar en enfriamiento.

La línea X-Y y U-W es el <u>solidus</u> y nos da la temperaratura más baja, el cual el líquido puede existir en equ<u>i</u> librio, sobre este intervalo de composiciones.

Hay 3 puntos invariantes donde coexisten 3 fases en equilibrio (F=0), dos sólidos más líquido, los puntos Q y R son <u>eutécticos</u>, y en estos puntos es la mínima temperatura en que puede existir un líquido. El punto P es un <u>pe</u> <u>ritéctico</u>, porque no es el punto mínimo de la curva del liquidus y la fase primaria de A_3B está fuera de la compo sición de este compuesto; en diferencia con el eutéctico, vemos que la composición de AB está dentro del área de la fase primaria AB; en este caso se dice que AB <u>funde con-gruentemente</u> porque hay un cambio directo de AB sólido a líquido en la misma composición. En cambio A_3B sólido <u>fun</u> de incongruentemente a A+líquido a la misma composición.

En un sistema ternario hay tres componentes y por la regla de las fases condensadas se necesitan tres varia- bles independientes, temperatura y la composición de dos componentes, para definir completamente el sistema. La temperatura es representada por un eje vertical perpendicular al plano del triángulo.

En la figura 6 tenemos un sistema ternario, con un com

FIG. 6 SISTEMA TERNARIO A-B-C CON UN COMPUESTO B C CON FUSION CONGRUENTE.

FIG. 7

SISTEMA TERNARIO A-B-C CON UN COMPUESTO BINARIO BC QUE FUNDE INCONGRUENTEMENTE.

puesto binario BC que funde congruentemente. El triángulo ABC puede dividirse en dos pequeños triángulos A-B-BC, y A-BC-C, en el cual cada uno tiene un eutéctico sencillo - $(E_1 \ y \ E_2)$.

La línea de unión A-BC es completamente binaria porque cualquier composición en la unión, sólida, líquida o una mezcla de sólido más líquido se pueden representar por cantidades positivas de A y BC. Esta unión se le puede llamar eutéctico simple en el sistema binario A-BC, pero en realidad es un <u>máximo térmico</u> en el sistema ternario -A-B-C, ya que la curva univariante que separa los campos de las fases primarias A y BC, está dentro de la unión -A-BC.

Las flechas de las curvas univariantes indican hacia donde disminuye la temperatura.

La figura 7 es otro sistema ternario con un compuesto binario BC que funde incongruentemente a C+líquido. La curva univariante que separa los campos de las fases primarias A y C y que cruza la unión A-BC, no es un máximo térmico como en el caso anterior, porque la curva univa-riante que separa los campos de las fases primarias A y -BC están fuera de la unión A-BC. Por lo que también, el punto invariante ternario asociado al triángulo A-C-BC se encuentra fuera de este triángulo; por lo tanto es un peritéctico (P_1). El punto invariante para el triángulo -A-B-BC es un eutéctico ternario (E_1), porque se encuentra dentro de este triángulo (A-B-BC).

Para todas las composiciones dentro del triángulo - A-C-BC, la cristalización del líquido en enfriamiento de-

14 .

ben terminar en P_1 , o sea, que P_1 es la temperatura del solidus para las composiciones de éste triángulo. De la misma manera la temperatura del solidus para el triángulo A-B-BC es la temperatura eutéctica E_1 .

Por último la unión A-BC no es una unión binaria, como en el ejemplo anterior, porque en un intervalo de compos<u>i</u> ciones, C es la fase primaria y la composición de C no se encuentra en la unión A-BC.

Estos sistemas ternarios simples que hemos considerado sólo se han dividido en dos triángulos. Sin embargo, en los sistemas complejos el número de triángulos aumenta. De pendiendo del número de las fases presentes, habrá diferen tes maneras de dividir el sistema ternario en triángulos.

Uno de los problemas al estudiar el equilibrio ternario es determinar cuál es el verdadero conjunto de <u>triángulos</u> <u>de compatibilidad</u>. Se puede ver en la figura 8 que hay dos compuestos binarios BC y AC. El triángulo AC-BC-C debe -existir ya que no hay otra oportunidad de que se forme otro triángulo con estos compuestos.Sin embargo, para el resto del diagrama se puede tener las fases compatibles A y BC ó B y AC. Si A y BC son compatibles, se escribe una línea continua entre éstos, dando los triángulos A-BC-AC y -BC-A -8, por lo tanto B y AC no son compatibles y en teoría deben reaccionar al estar en contacto entre ellos mismos.

Esto es importante, porque si se quiere preparar por ejemplo un refractario que tiene las propiedades de la fase AC, entonces es necesario excluir B del sistema porque B y AC reaccionarán para dar A y BC.

FIG. 8 POSIBLE COMPATIBILIDAD DE TRIANGULOS EN UN SISTEMA TERNARIO.

- 17 -

CAPITULO III

PARTE EXPERIMENTAL.

1.- PREPARACION DE VIDRIOS.

Para la preparación de los vidrios con diferentes composiciones se usaron los siguientes reactivos químicos: Li_2CO_3 (RA), BeSO₄: 4 H₂O (RA) y Cuarzo (obtenido del Depto. de - Ingeniería Química, cuya pureza se probó con rayos X).

El BeSO₄. 4 H₂O se descompuso a BeO calentándolo en un crisol de Al₂O₃, subiendo gradualmente la temperatura hasta 900°C, y se dejó por un día a esta temperatura. Se tuvo cu<u>i</u> dado de no dejar escapar los vapores, ya que puede haber al go de BeO, y éstos son muy venenosos. El Li₂CO₃ y SiO₂ se usaron directamente de la botella sin secar.

Se prepararon las composiciones adecuadas aproximadamente de 1-3 gm en total en peso y se mezclaron en un mortero con acetona durante 5-10 min,hasta que la acetona se evaporó. La muestra se puso en un crisol de Pt y se colocó dentro de una mufla, empezando con una temperatura de 500°C y subiendo lentamente la temperatura hasta 900°C por un día, para eliminar el CO₂ del Li₂CO₃ y obtener Li₂O, y para empezar la reacción entre los reactivos, después se elevó la temperatura a 1100-1250°, dependiendo de la temperatura del líquidus de cada composición. Se dejó dentro de la mufla durante 1-5 horas para causar fusión.

Una vez fundida la muestra se sacó el crisol de Pt de la mufla y se enfrió rápidamente en un recipiente con agua sin dejar que ésta entrara dentro del crisol. - 18 -

Se repitió este proceso dos o tres veces para obtener un vidrio bastante homogéneo, sobre todo con las composiciones que necesitaron mayores temperaturas para fundirse y que están muy cerca del límite de formación de vidrio. Con estas muestras fué necesario dejarlas dentro de la mufla durante 12 horas.

Una vez preparados los vidrios se guardaron en pequeños frascos, sin tomar en cuenta precauciones especiales, como ponerlos en un desecador, ya que no hubo señales visibles de ataque por la atmósfera.

a.- ANALISIS DE LOS VIDRIOS.

Se analizó la pureza de los vidrios (que no tuvieran -cristales) y su homogeneidad con el Microscopio Petrográfico (Olympus Tokyo POM 200585).

Se molieron las muestras con un tamaño de grano o de pol vo de 5-50 μ y se pusieron sobre un portaobjeto con benceno que tiene un índice de refracción semejante a los vidrios para evitar la dispersión de los rayos de luz.

Con el Microscopio Petrográfico se puede distinguir fá-cilmente los vidrios de los cristales. Los vidrios se com-portan como los cristales cúbicos son isotrópicos con respe<u>c</u> to a la propagación de la luz, lo cual significa que para -una longitud de onda dada, la luz viaja a la misma velocidad en todas direcciones.

En cambio los cristales que no son cúbicos son anisotrópi cos, quiere decir, que para varias direcciones de propaga-ción de la luz, dividen la luz monocromática en dos rayos po - 19 -

larizados que siguen diferentes caminos y viajan a diferentes velocidades. Estos cristales son birrefrigentes, pero hay ciertas direcciones de propagación a través de estos cristales donde no ocurre la doble refracción (ejes ópticos).

El Microscopio Petrográfico tiene dos discos polarizadores, la luz incidente llega a un disco polarizador y pasa vibrando en un solo plano, después pasa a través de la muestra y llega al segundo disco que se llama analizador y que se en-cuentra a 90°del polarizador. Cuando el polarizador y analizador están cruzados (a 90°) y no permiten que la luz llegue al ojo del observador, entonces la muestra es isotrópica (vi drios), porque la luz transmitida por el polarizador es eliminada por el analizador, por lo tanto, se ve opaco.

En cambio, cuando se trata de una muestra anisotrópica, la luz que llega al polarizador se divide en dos rayos diferentes, uno es eliminado por el analizador, pero el otro ll<u>e</u> ga al ojo del observador y se pueden ver los cristales.

2.- ESTUDIOS DE DIAGRAMAS DE FASES.

a. METODO.

Para determinar el diagrama de fases, se tomaron pequeñas muestras de vidrio (30-50 mg) y se pusieron en pequeños so-bres hechos de lámina de Pt, los sobresitos se colocaron parados en pequeñas ranuras que se hicieron en un ladrillo refractario.

El ladrillo con las muestras se colocó en el centro de la mufla. Se tuvo mucho cuidado de que todas las corridas que se hicieran siempre estuvieran en el mismo lugar, para que la temperatura fuera la misma en caso de que se repitiera el experimento, además de que para todos los experimentos se usó la misma mufla. Una vez que las muestras estuvieron dentro de la mufla se les dejó un tiempo de 4 horas hasta 3 ó 4 a diferen-tes temperaturas para obtener el límite de la curva del liquidus y del solidus y poder conocer la fase primaria de cada composición.

Se calibró la mufla (thermolyne 1500 Sybron Corporation) a bajas y altas temperaturas, al principio y al final de esta investigación. Se hizo una pastilla de NaCl y se colocó en el mismo lugar que las muestras (en el centro de la mufla) y fundió a 790°C y a 810°C, lo mismo se hizo con una pequeña lámina de Au que fundió a 1034°C y la segunda vez 1094°C.

Los puntos de fusión del NaCl es de 801°C y el de Au es de 1064.643°C según Handbook of Chemistry and Physics, Ed 54, 1973-1974.

Por lo tanto las temperaturas menores de 1200° C tienen – una exactitud de $\pm 30^{\circ}$ C. Para temperaturas mayores de 1200– 1500° C se usó una mufla de tubo horizontal (Ströhlein & Co), y esta se calibró con Au que fundió a 1104° C y con una pequeña pastilla de Li₂SiO₃ que fundió a 1200° C (punto de fusión de Li₂SiO₃ 1201^oC, ref.4), por lo tanto el error a altas temperaturas es de $\pm 30^{\circ}$ C.

b.- METODO DE ENFRIAMIENTO BRUSCO.

Es muy importante el método de enfriamiento brusco (o método de "Quenching"), que es el proceso de enfriamiento de las muestras, que debe ser lo mas rápido posible para obtener el producto a las condiciones deseadas.

Las condiciones que se necesitan son que a temperatura -ambiente se tengan las fases presentes que existen a altas temperaturas, ya que si se enfría lentamente se pueden obtener otras fases cristalinas que a altas temperaturas no -- 21 -

están en equilibrio.

Las muestras se sacaron rápidamente de la mufla y se enfrió en Hg a una velocidad de aproximadamente 500°C/seg. Y así el líquido se formó vidrio y las demás fases crist<u>a</u> linas presentes a altas temperaturas permanecieron cons-tantes una vez enfriado el producto.

Las corridas en que solo se hicieron para encontrar el equilibrio de las tres fases en el subsolidus de cada -triángulo, no se enfriaron en Hg, sino que se sacaron de la mufla y se dejaron enfriar a temperatura ambiente en aire con una velocidad de 200°C/min.

c.- ANALISIS DE CRISTALES.

Una vez que se enfriaron las muestras se analizaron en el Microscopio Petrográfico para observar cuántas fases presentes había en los productos. Se prepararon las muestras de la misma forma que en los vidrios. Se analizó si había líquido y también se vió que cuando las muestras se dejaban más de 24 horas en la mufla los cristales crecían y se podía distinguir cuáles eran las fases cristalinas.

También se usó la Difracción de Rayos X por el método de polvos (Phillips Co. con generador PW 1120/00 modelo LZ5, graficador PW 1360/00/01/02 y goniómetro PW 1049/01 con contador tipo proporción. Con cristal analizador de Cu K & y con una velocidad de registro 2°20/min.) para analizar las diferentes fases cristalinas presentes en los productos. Las gráficas de rayos X se interpretaron con los patrones de difracción de polvos de la ASTM (Ame rican Society for Testing Materials).

En algunos casos la identificación de ciertas fases cristalinas fue difícil, como en el caso de tridimita, ésta forma polimórfica de sílice tiene tres picos de mayor intensidad que se encuentran a una distancia de 4.26, 4.06 y 3.80. El primer pico se encuentra a la misma distancia que alto cuarzo, el segundo también pertenece a la otra forma polimórfica de sílice, cristobalito, y esta f<u>a</u> se no tiene otros picos de intensidad apreciable que ayuden a su identificación por último \cancel{D} -Li₂BeSi0₄ tiene un pico de mayor intensidad a 3.80 Å.

El mismo problema se tuvo con $\text{Li}_2\text{Si0}_3$ y \ll cuarzo, donde ambos tienen un pico intenso a 3.30 Å. Otro de los casos fue con las formas alto (β) y bajo (\propto) cuarzo, ya que la diferencia entre las distancias entre éstos es muy pequeña; sobre estas fases se hablará más tarde y cómo se identificaron.

También fué difícil identificar Be0, ya que tiene muy pocos picos y éstos son los mismos que tiene Be $_2$ Si0 $_4$ de mayor intensidad y muchas veces no se podía saber si ha-bía Be0 en la reacción.

d.- ANALISIS CON ANALISIS TERMICO DIFERENCIAL.

Una vez que se obtuvieron las fases primarias de las diferentes composiciones, esto es, una sola fase cristal<u>i</u> na más líquido y se conoció el campo delas fases primarias, por lo tanto, los puntos invariantes de cada triángulo; se escogieron diferentes composiciones cristalizadas y se an<u>a</u> lizaron sus temperaturas de fusión con Análisis térmico D<u>i</u> ferencial (DTA) (equipo de DUPONT 990 con una celda para a<u>l</u> ta temperatura de 1600°C) para checar las temperaturas de los puntos invariantes, determinados por el método de enfriamiento brusco y también para estudiar algunas composiciones básicas que están fuera de la región de formación de vidrio (Tabla y).

Para medir las temperaturas de equilibrio de fusión de

FIG.

9 DTA

DE ACIDO BENZOICO

23

FIG.

- 24 -

las muestras, se usó una velocidad de 5-10°C/min. ya que con el aumento de velocidad de calentamiento los picos aparecen a temperaturas más altas, y se trabajó en una atmósfe ra de aire.

Un problema que se presenta frecuentemente en este tipo de muestras es saber: ¿cuál será la temperatura correcta de un pico? Un ejemplo típico ideal de fases moleculares, como ácido benzóico (fig. 9), el pico es muy pronunciado y en teoría Tb es mejor que Ta, pero en los óxidos compejos como $\text{Li}_2\text{Si}_20_5$ (fig.10) no se puede conocer cuál es Tb en la desviación endotérmica porque el pico nos está advirtiendo de que va a haber fusión, por lo que en este caso se tomó en cuenta Ta (el máximo del pico), dando una temperatura de -1039°C que comparado con el valor de la literatura dado por Kracek⁽⁴⁾ de 1033°C, habiendo una diferencia de solo 6°C. -También se utilizaron estos datos para calibrar el equipo.

En los demás sistemas complejos y dependiendo de la composición de la muestra, la forma del pico va a depender de la cantidad del líquido arriba del solidus, por lo que pue de haber varios pasos antes de la fusión completa.

Si la composición está muy cerca de un punto invariante (fig.11), la primera desviación de la línea base va a ser la temperatura del solidus (poca cantidad de líquido), pero si la composición está muy lejos del punto invariante (fig.12) es difícil saber realmente cuál es el pico del solidus, por que va a haber otros picos que pueden ser cambios dentro de la muestra.

Para saber cuál fue la temperatura de estos picos que no tenían buena resolución, y eran muy distintos, se tomó un - promedio de las temperaturas $T_1 y T_2$ para conocer la temperatura del solidus como se ve en la Tabla I.

FIG. II DTA DE LA MUESTRA n.36

TEMP. °C

FIG. 12 DTA. DE LA MUESTRA n. 20

· · ·

TABLA I.

m	o. de vestra	antes DTA	Rayos X después DTA	Rango de temp.ºC DTA	Promedio de la tenp.ºC.
	3 15	VIBS+LS+L ₂ S OQtz+VIBSp	∦IBSp+IS+L2S	1004-1064 1000-1075	1064 1035 <u>+</u> 5
	20	LS ₂ +%LBS + LSp		930-980	955 <u>+</u> 10 sol. 1040 líq.
	36	&Qtz+LS2+8LBS		935-965	950 <u>+</u> 10 sol. 1075 l í q.
	103	LS+8 LBS mp			1130 sol.
	104	LS+8 LBSp	LS +&Qtzp		1170 11q. 1148 sol 1175 1fq.
	105	X LBS	%LBS+ C	1284-1396	1335 1320
			XLBS+ LS+C+B	1318-1386	1301
	109	8LBS+B2S	XLBS+C+B	1052-1126	1126
	110	CLBS+Bmp	%185+L5+Cp	1290–1346	1318
	124	aQtz+dlBS+B2S	YLBS+Qtz+V	995-1028	1028
	140	∦lbs+b ₂ s	B+Qtz+V	1120-1146	1133
	141	∦LBS+B2S	%LBS+C+B+V	1114-1164	1140
	LS2	LS2			1039

valor de la literaruta 1033

NOTA: Las muestras se corrieron a una velocidad de 5-10°C/min. en atmósfera de aire. sol= solidus liq.=liquidus. - 27 -

CAPITULO IV

RESULTADOS.

Se prepararon cerca de 70 composiciones, de las cuales 40 formaron vidrios y las demás que no lo hicieron fue porque necesitaban temperaturas mayores de 1250°C o estaban fuera del límite de formación de vidrio (Fig.13).

Los resultados de los experimentos a diferentes temperaturas de las distintas composiciones se dan en la Tabla V -(Pág.48) y se demuestran en el diagrama del sistema ternario (fig.19).

Estudiando el diagrama por partes, podemos ver que la unión LS-B es en realidad un sistema binario, como se ve en la figura 14. Este sistema se construyó con los datos obtenidos por DTA (Tabla I) y con los puntos de fusión LS⁽⁴⁾ y -B⁽⁵⁾.

Se observa que hay un punto eutéctico a 1140°C y un punto peritéctico a 1320°C, que es el punto de fusión de X-LBS. Para saber que X-LBS fundió incongruentemente a B + líquido, se sacó análisis de DTA de X-LBS y después se sacó rayos X de la misma muestra y dió por resultado X-LBS + cristobali-to), si X-LBS hubiera fundido congruentemente, el resultado de rayos X sólo hubiera sido de X-LBS. También el pico de fusión de X-LBS de DTA (fig.15) no era un buen pico endotérmico; como sucede generalmente cuando una substancia funde congruentemente, se obtiene un pico bastante claro.

La unión S - YLBS en la figura 19 se puede considerar casi un sistema binario, ya que como se ve en la figura 16 -YLBS funde a B+líquido y B no se encuentra dentro de este sistema.En esta

FIG. 13 LIMITE APROXIMADO DE LA FORMACION DE VIDRIO. PARA PEQUEÑAS MUESTRAS CON RA-PIDO ENFRIAMIENTO EN Hg.

FIG. 14 SISTEMA BINARIO LI SIO-BOO 2 3 0 = DATOS EXPERIMENTALES

TEMP °C

FIG 15 DTA DE 1 - Li BeSi 04

FIG 16 UNION SIO2 - CLI2 BESIO4 0 = DATOS EXPERIMENTALES

- 32 -

gráfica tenemos un punto eutéctico a 1035°C que se determinó con datos experimentales obtenidos de las composiciones en esa unión y por análisis de DTA.

La unión $LS_2^{-} \& LBS$ (Fig. 19) no es un sistema binario, aunque estas dos fases son compatibles y coexisten en el sub solidus. Como se puede ver, esta sección en la figura 17, composiciones hasta un 35% de &-LBS con temperaturas mayores de 955°C funden a LS_2 +LS+Líquido y después a LS+Líquido, las demás composiciones (35% - 100% de &-LBS) funden a &LBS+LS+ Líquido y posteriormente a 1010°C a &LBS + Líquido. Por lo tanto, para todas Ias composiciones a determinadas temperaturas se tiene LS y este compuesto no se encuentra dentro de es te sistema; lo mismo pasa con &-LBS que funde incongruente mente por las razones ya explicadas anteriormente.

El punto mínimo que se encuentra a 955°C (35% de X-LBS) no es un punto eutéctico como en el caso del sistema X-LBS-S, si no sólo indica la temperatura del solidus.

La unión L_2S-B_2S tampoco es un sistema binario (fig.18) por la presencia de las fases BeO y SiO₂ que no están dentro de – esta unión. Esta unión tiene el compuesto estable \S -LBS a 50% de B₂S, un punto eutéctico aproximadamente a 1150°C (20% de – B₂S) y entre \aleph -LBS y B₂S hay un punto a 1120°C que corresponde a la temperatura del solidus, siendo este punto en el sistema ternario un eutéctico. La curva del liquidus de B+líquido se – trazó con los datos de Morgan & Hummel ⁽⁵⁾ en la cual BeO funde completamente a líquido a 2150°C.

Ahora estudiando la figura 19 como un sistema ternario, encontramos que hay 10 puntos invariantes, como se puede ver en la Tabla II, donde se dan sus composiciones aproximadas, las temperaturas con un error de \pm 20°C y las fases presentes en equilibrio con líquido. Hay tres puntos eutécticos que se en-cuentran dentro de los triángulos LS₂- \Im LBS-S con un valor de

FIG 17 UNION Lizsion - ELiz Besio4

TABLA II

Puntos invariantes en el sistema Li₂0-Be0-Si0₂

Composición	Naturaleza	Fases cristalinas	lemperatura
L: B:S	del punto	en equilibrio con	°C
razón molar	invariante	líquido.	
26 <u>+</u> 2:9 <u>+</u> 2:65+2	Eutéctico	sio ₂ , Ls ₂ , & LBS	950 <u>+</u> 20
30 <u>+</u> 2:9 <u>+</u> 2:61 <u>+</u> 2	Peritéctico	LS2, LS, & LBS	955 <u>+</u> 20
60±3:3±2:37±3	Eutéctico	LS,L ₂ S, & LBS	1010 <u>+</u> 20
18 <u>+</u> 2:18 <u>+</u> 2:64 <u>+</u> 2	Eutéctico	s, y lbs	1035 <u>+</u> 20
	(máximo térmico)		
46.5+2:7+2:46.2+2	Eutéctico	LS, Y LBS	1140 <u>+</u> 20
	(máximo térmico)		
53+3:14+3:33+3	Eutéctico	LS. X LBS	1150+20
	(máximo térmico))	-
35 <u>+</u> 1:30.5 <u>+</u> 2:34.5 <u>+</u> 2	Peritéctico	B, Y LBS	1320+20
	(máximo térmico)		
1612-2112-6212	Putfation	DC XIDC C	1030+20
10+2:21+2:03+2	Eutectico	B ₂ s, 0 LBs, 5	1030-20
20+2.20+2.50+2	Peritéctico	BS X IBS B	1120+20
20+2:30+2:30+2	reiitectico	22, 0 100,0	1120.20
4+2.20+2.76+3		BSB S	1560 (ref 5)
4+3:20+3:70+3	1977 - 1978 - 1978)	20 5, 5	1000 (101.0)

(950°C); S-&LBS-B₂S (1030°C) y LS₂- LS-&LBS (1010°C) de los cuales este último punto no se comprobó experimentalmente.

Encontramos también dos puntos que son peritécticos por encontrarse fuera del triángulo de las tres fases que coexisten en equilibrio en el susolidus. Uno se encuentra en el triángulo -S -&LBS-LS₂ a 955°C y tiene las fases en equilibrio LS₂-&LBS-LS, el otro tiene una temperatura de 1120°C que se encuentra en el triángulo S-&LBS-B₂S y con las fases en equilibrio en el subsolidus &LBS-B₂S-B.

También hay un punto indiferente dentro del triángulo 3LBS-B₂S-S mayor de 1400°C donde se descompone B₂S a B+S y tomamos los datos del sistema binario B-S (Fig.2), el cual la temperatura de este punto es de 1560°C y en el subsolidus las fases - en equilibrio son B+B₂S+S.

En el sistema B-S, B_2S tiene un alto límite de estabilidad, pero en el sistema ternario con Li_2O , hay un campo de la fase primaria de B_2S . La composición del eutéctico en el sistema B-S, se estimó como 81% de SiO₂ por extrapolación de las curvas un<u>i</u> variantes ternarias, que está de acuerdo razonablemente con los valores de la literatura de 82.5% SiO₂ ⁽⁶⁾ y 88% SiO₂ ⁽⁵⁾.

Los otros puntos que se encuentran en las uniones son eutéc ticos en los respectivos sistemas de 2 fases, porque existen las 2 fases en subsolidus, pero en un sistema ternario son máximos térmicos, éstos son: unión S - & LBS a 1035°C, unión LS-& LBS a 1140°C y LS₂ - & LBS a 1150°C. Por último tenemos que & LBS funde incongruentemente a B+líquido a 1320°C y nunca se encontró la forma polimórfica β -LBS que es estable a tempera turas menores de aproximadamente 700°C ⁽¹⁾

Las curvas univariantes determinan el límite de las áreas de las diferentes fases primarias y las flechas indican hacia donde disminuye la temperatura. Se localizaron 7 triángulos compatibles en el susolidus y se comprobó su estabilidad estudiando las diferentes lí-neas de unión, utilizando los compuestos binarios y terna-rios ya preparados como B_2L , % -LBS, LS, etc. Así para la unión %-LBS- B_2S se preparó una muestra de LS₂+B (muestra -108) y otra de S+B+L (140) y ambas nos dieron en rayos X -%-LBS+ B_2S , por lo que quiere decir %LBS y B_2S coexisten en equilibrio. Lo mismo para la línea %LBS-B se formó una mue<u>s</u> tra con LS+ B (110) y el análisis de rayos X nos dió %LBS+B.

Una vez que sabemos que esas líneas de unión son esta-bles, se escoge cualquier composición dentro de ese triángu lo y cristalizándola nos debe dar las tres fases en equilibrio que coexisten en el subsolidus como en la muestra 131 nos dió LBS+B₂S+B, lo que quiere decir que el triángulo -CLBS-B₂S-B existe. Lo mismo se hizo para las demás uniones y así comprobar la existencia de los otros triángulos (Ta-bla V).

Se demuestra también en la figura 19 las isotermas de temperatura de 1000°C a 1600°C, las que son líneas contí-nuas (1000°C-1200°C) están bien conocidas experimentalmente, las demás están calculadas aproximadamente (curvas dis continuas).

Sólo se estudiaron composiciones situadas arriba de la unión L_2S-B_2L , porque composiciones que tienen mayor cant<u>i</u> dad de Li₂O que este límite, contienen un exceso de Li₂CO₃ después de la reacción (a menos que se usara mayor temper<u>a</u> tura o se dejara reaccionar más tiempo, pero en esos casos se perdía litio por evaporación ya sea del Li₂CO₃ o de B₂L). Por lo tanto estas composiciones contienen CO₂ como un cua<u>r</u> to componente y estos resultados no pertenecen a este sist<u>e</u> ma ternario.

Se vió también que el añadir Li_20 como tercer componente al sistema BeO-SiO₂ hace disminuir bastante las temperaturas del solidus a 900°C - 1100°C. Estudiando las reacciones que sufren ciertas composiciones al disminuir la temperatura, tenemos por ejemplo en la composición 30:20:50 de Li_20 : BeO:SiO₂; %LBS + Líq $\overset{<955}{\longrightarrow}$ %LBS + LS₂ + Líq $\overset{<950}{\longrightarrow}$ %LBS + LS₂ + S

35:5:60 LS + $Liq \xrightarrow{2955} LS + LS_2 + Liq \xrightarrow{4955} LS + LS_2 + \delta$ -LBS 10:40:50 B + $Liq \xrightarrow{1200} B + B_2S + Liq \xrightarrow{4120} B + B_2S + \delta$ -LBS 20:10:70 S + $Liq \xrightarrow{41300} S + B_2S + Liq \xrightarrow{41300} S + B_2S + \delta$ -LBS

Debido al comportamiento químico similar entre BeO y ZnO se comparan muy seguido. La comparación de los diagramas de fase - $\text{Li}_20\text{-Be}0\text{-Si0}_2$ y $\text{Li}_20\text{-Zn}0\text{-Si0}_2^{(8)}$, demuestran en forma general - una similaridad en la compatibilidad de los triángulos, pero en realidad hay una gran diferencia entre las dos uniones de los - respectivos ortosilicatos. La unión $\text{Li}_4\text{Si0}_4\text{-Zn}_2\text{Si0}_4$ contiene un extenso rango de soluciones sólidas, junto a $\text{Li}_4\text{Si0}_4$ y a cada lado de $\text{Li}_2\text{ZnSi0}_4$ (9). Sin embargo, no se encontraron soluciones sólidas en la unión $\text{Li}_4\text{Si0}_4\text{-Be}_2\text{Si0}_4$.

También se vió que la mayoría de las composiciones ternarias con propiedades refractarias se encuentran en la unión δ -Li₂Be Si0₄-Be0. Estas composiciones tienen temperatura de solidus de 1320°C y las temperaturas del liquidus son considerablemente al tas. Las demás composiciones ternarias tienen temperatura de solidus muy bajas, por lo que no son de mucho interés.

Se encontraron tres fases metaestables en este sistema. La fase X se encontró ya sea cristalizando vidrios cuyas composi-ciones se encuentran en el triángulo $\&LBS-B_2S-S$ aproximadamente a 1000°C por 1-2 días o por reacciones de BeO y Li₂Si₂O₅ en el subsolidus a la misma temperatura. Probablemente es un ortosilicato con una composición aproximada mente entre χ -LBS y B₂S, posiblemente con fórmula Li₂Be₃Si₂0₈; su patrón de polvos de rayos X se da en la Tabla III.

Parece que la fase X tiene una vida larga, pero es una fase metaestable porque usualmente desaparece cuando se continúa ca-lentando por 1-2 semanas. La formación y desaparición de X parece ser que está muy relacionado con la dificultad de cristalizar B_2S . Esto es, B_2S raramente se forma en el primer o segundo día de reacción y en su lugar se forma X, y a medida que se sigue calentando, B_2S se va cristalizando y X va desapareciendo gradual mente como se puede ver en varias de las composiciones de la Ta-bla V.

Las otras dos fases metaestables que se encontraron se formaban en la cristalización de los vidrios a bajas temperaturas, en tre 500-700°C, en las composiciones que se encuentran en la unión %LBS-S o muy cerca de esta unión, como se puede ver en la Tabla IV. La fase metaestable Υ se ve que es más rica en Si0₂, de com posición entre un metasilicato y un ortosilicato posiblemente de fórmula Li₆Be₃Si₄0₁₄. El patrón de difracción de polvos de ra-yos X se da en la Tabla III.

La otra fase metaestable tiene un patrón de difracción de polvos de rayos X muy similar a la composición de alto cuarzo (forma β) y no de bajo cuarzo (formad) como se puede ver la figura 20 donde se hace la comparación con los patrones de difracción de Rayos X.

Se graficó el % de SiO₂ de las diferentes composiciones en la unión SiO₂- \cancel{X} -LBS contra la razón de Υ : \cancel{B} cuarzo (fig.21), tomando en cuenta la intensidad de los primeros picos de Y y \cancel{B} cuarzo a la distancia de 4.56 y 4.37 respectivamente, de los ex perimentos que se hicieron a 550°C durante 1.5 y 5 días: Se ve en la gráfica que alto cuarzo tiene aproximadamente 67% de SiO₂ y su

- 40 -

FIG. 20 PATRON DE DIFRACCION DE RAYOS X DE \propto Y /3 CUARZO. ESTA GRAFICA NO ESTA A ESCALA, POR LO QUE SOLO SE INDICAN LOS PICOS QUE PERTENECEN A CADA FASE Y LAS DISTANCIAS EN QUE APARECIERON. SE CORRIO LA GRAFICA A UNA VELOCIDAD 1° 20/MIN. LOS PICOS 3.357 Å Y 3.388 Å SE CORRIERON A UNA SENSIBILIDAD DE 1 X 10³-2-0 LOS DEMAS TIENEN UNA SENSIBILIDAD DE 2 X 10⁻16-0

- -

FIG. 21 GRAFICA PARA CALCULAR EL % SIO₂ EN ALTO / CUARZO.

- 43 -

TABLA III.

Patrones de difracción de rayos X

Fase X		Fase Y		Fase alt	o cuarzo
d (A)	I obs.	d (A)	I _{obs} .	d (A)	I _{obs} .
4.10	80	4.56	100	4.375	16
4.08	79	3.16	38	3.386	100
3.69	6	2.88	17	2.521	3
3.55	50	2.82	80	2.486	2
3.30	60	2.69	10	2.019	8
3.23	100			1.836	17
3.00	3			1.693	5
2.90	9			1.576	7
2.73	30				
2.706	17				
2.455	40				
2.108	20				
1.955	11				
1.855	11				

composición parece que está muy cerca de un disilicato.

No fué posible preparar vidrios más ricos en SiO₂ (que un 70% por el aumento tan pronunciado de la temperatura del liquidus y porque la capacidad de la muestra solo al-canza temperaturas de 1250°C. De ahí que no podemos saber si es una fase separada o si forma una serie continua de soluciones sólidas con sílice de forma $\text{Li}_{2-\chi}(\text{Si}_{1-\chi}\text{Be}\chi)O_2,$ $O\leq\chi\leq0.33.$

Este alto cuarzo y la fase Y parece que existen indefinidamente a temperaturas mayores de 550°C, pero alto cuarzo se descompone a bajo cuarzo y la fase Y desaparece en unos cuantos minutos a 750°C. A temperaturas mayores de 750°C algunos vidrios cristalizan para dar el equilibrio en el subsolidus, como X-LBS y SiO₂. Los valores de d (distancia) y la intensidad observada de los picos de patrón de r<u>a</u> yos X se da en la Tabla III.

La facilidad con que los vidrios cristalizaron a 900-1100°C dependió mucho en la razón de Li₂O:BeO de los vidrios. Para razones mayores que 1 no hubo nunca alguna dificultad en cristalizar los vidrios y alcanzaron las condiciones de -equilibrio en unas cuantas horas. Sin embargo, para razones menores de 1, las reacciones eran más lentas.

Ya se habló de la vida larga de la fase metaestable X y la preferencia de formar B_2S en corto tiempo, en la cristalización de los vidrios. Otra fase metaestable de vida larga también en la cristalización de los vidrios a 900-1100°C en la presencia del líquido era alto β cuarzo. Dado que la transición de $\beta \longrightarrow \alpha$ es normalmente difícil de controlar se presume que β cuarzo es una solución sólida que contiene BeO y Li₂0, pero no hay datos para confirmar esto directa-menta. - 45 -

Esta fase, alto cuarzo (que se forma a 900-1100 °C) y el otro alto cuarzo (que se forma en la cristalización de los vidrios en la unión S - X -LBS a 500-700 °C) pudiera ser que fueran las mismas fases con una gran diferencia de gra-dos en la metaestabilidad que depende en la composición inicial de los vidrios.

De estas observaciones se puede ver una gran simil<u>a</u> ridad entre los vidrios beriliosilicatos y aluminosilicatos, esto es, la aparición de las fases alto cuarzo y/o solucio-nes sólidas y la dificultad en cristalizar vidrios ricos en berilio y ricos en aluminio. Estos resultados pueden ser relacionados a la red que se forma con las propiedades de BeO, ambos en la fase alto cuarzo y en la estructura de los vi- drios.

TABLA IV

_

No. de muestra	Composición L - B - S	Temperatura °C	Tiempo hr	Fases presentes
5	15-15-70	550	24	V
		580	36	$\beta Qtz + (Y + \% - BS + LS_2) mp^{\&}$
		600 [#]	1	$yQtz + (Y + \% - LBS + LS_2) mp^{\&}$
		650 [#]	1	$\frac{1}{2}$ Qtz + (Y + $\frac{1}{2}$ -LBS + LS ₂) p ^{&}
		700#	1	$\beta Qtz + (\delta LBS + LS_2)p + ymp^{\&}$
		750#	1	dQtz +Y-IBS
8	18-15-67	500	12.	V
		650 [#]	12	$\int Qtz + \sqrt[3]{-LBS} + LS_2 P + Yp^{\&}$
		550	60	$\neq Qtz + \delta' - LBSp + LS_2p$
		770#	60	$\forall Qtz + \delta' - LBS + LS_2$
15	20-20-60	550	36	$\int_{t}^{t} Qtz + Y^{\delta}$
		770 [#]	60	a Qtz + C + -IBS
		550	168	$ \mathcal{O}$ Qtz + Yp + LS ₂ mp ^{&}
		650 [#]	3	$dtz + Yp + IS_2 mp^{\&}$
		580	36	$\int_{0}^{4} Qtz + Y + \lambda^{h} - LBSp^{k}$
31	25-25-50	550	24	BQtz + 2 - LBS + V
		580 [#]	36	$dz + \delta - IBS + Yp^{\&}$
		600 [#]	1	\therefore Qtz + $^{\Lambda}$ -LBS + Yp ^{&}
		650 [#]	1	$2 \text{ Qtz} + \gamma^{2} - \text{IBS} + \text{Yp}^{\delta}$
		700#	1	δ LBS + (3Qtz + C + Y) p ^{&}
		750#	1	$2'$ LBS + ($\alpha Qtz + C$) p
36	23-9-68	550	19	Qtz + LS2

.....

No.de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
		600#	20	BQtz + LS
		650#	17	β Otz + LS
		700#	22	$LS_2 + Qtz + \mathcal{F}LBSmp$
39	23-23-54	550	168	$\beta Qtz + \delta' - LBSp + Y^{\&}$
		580	36	BQtz+(Y+X-LBS+LS)p
		600#	1	β Qtz+(Y+ δ -LBS+LS ₂)p ^{&}
		650 [#]	1	BQtz+(Y+ & -LBS+LS) p
		700#	1	$\beta Qtz + Cp + (Y + \partial LBS + LS_2)p^{\&}$
		750 [#]	1	$\alpha Qtz + C + \delta - LBS + LS_2p$
40	18-18-64	550	168	βQtz +(β -LBS + Y)p ^{&}
		580	3,6	BQtz + Yp&
		600#	1	BQtz + (Y + 8-LBS)p&
		650 [#]	1	BOtz + (Y + J-LBS)p ^{&}
		700#	1	β Qtz + (Y + δ -LBS
				+ LS_2) p ^{&}
		750 [#]	1	AQtz + Cp + J-LBS+Yp
16	15-25-60	550	19	β Otz + V
		600#	20	BOtz
		650#	17	$Otz + (Y + \partial LBS) mp^{\&}$
		700#	22	$0tz + (X_{LBS+X})p^{\&}$
		800#	66	≪Qtz + %LBS+X ^{&}
		600	96	β Qtz

- 47 -

48 .	-
------	---

TABLA V

No. de Muestra	Composición L - B - S	Temperatura °C	Tiempo hr	Fases presentes
1	25-5-70	1150	4	T + V
	14	960	4	$LS_2 + T + V$
5	15-15-70	1030	3	T + V
		960	40	$C + dQtz + \mathcal{C} - IBS$
6	30-5-65	1020	16	v
		970	24	ls ₂ + v
		960	5	ls ₂ + v
		950	4	$LS_2 + \delta' - LBSmp + Qtz \delta LS + Vp$
		800	24	$LS_2 + (\delta LBS + Qtz + C)p$
7	25-10-65	1025	24	v
		960	12	T +alltz + 2-IBSp? + V
		950	18	T + Qtz + V
		940	4.5	$LS_2 + C + \delta - LBS$
8	18-15-67	1060	12	V
		1050	12	T + V
		980	24	$T + \delta - LBSp + V$
		950	12	δ -LBS + T + Qtzp + Vp
		800	24	$\alpha Qtz + $ -IBS + IS ₂
12	35-5-60	1025	6.5	V
		980	24	LS + Vp
		960	4	LS + LS + V
		950	6	$IS_2 + (IS + 3^4 - IBS)p$
		940	4	152 + 2 IBSp

ŧ

- 49 -

TABLA V.

No.de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
13	30-10-60	1025	18	v
		970	96	χ -lbs + v
		960	4	LS + X - LBS + V
		950	10	$LS_2 + \delta - LBS + V$
		940	45	$LS_2 + $ -LBS + Tp
14	25-15-60	1000	12	δ'LBS + V
		975	18	$\delta LBS + Cp + V ?$
		800	45	$LS_2 + \delta LBS + o Qtz + C$
15	20-20-60	1050	120	v
		1030	45	X LBS + V
		1020	112	8 lbs + t + v
		1000	19	Хlbs + т
20	35-10-55	1060	24	XLBS + V
		1045	20	$LS + \delta' LBS + V$
		960	12	$LS + \delta' LBS + V$
21	30-15-55	970	6	ØLBS + V?
		945	6	$\delta LBS + Qtzp + (LS_2)?$
		800	24	152+2Qtz + 1BS
30	30-20-50	1025	14	YLBSp + V
		940	18	LS ₂ +8LBS + C
31	25-25-50	1180	22	v
		1140	60	ÅLBS + V
		900	24	8LBS + C + ≪ Qtz

- 50 -

TABLA V.

No. de muestra	Composición L - B - S	Temperatura °C	Tiempo hr	Fases presentes
106	ls ₂ + b	1060	18	XIBS + C+
		800#	18	$LS_2p + \delta LBS + \alpha Qtz$
36	23-9-68	980	12	T + V
		800	24	χ Qtz + LS ₂ + $\%$ LBS
37	22-13-65	1010	24	v
		1005	45	т + V
		980	12	δ LBS + T + V
		960	12	δ LBS + T + V
		800	24	α Qtz + LS ₂ + δ LBS
38	27-8-65	960	4	v
		940	18	$LS_2 + Qtz + V$
		930	6	ls ₂ + T
		860	24	$LS_2 + \propto Qtz + \delta LBS$
39	23-23-45	1180	22	v
		1140	60	V + 1% cristales, punto
				de liquidus
40	18-18-64	1040	120	V
		1030	44	$T + \delta' LBSmp + V$
		1000	69	d Qtz + C + $\frac{1}{2}$ LBS + V
41	26-26-48	1250	1	$\overset{\lambda}{\cup}$ LBS + V

No. de muestra	Composición L - B - S	Temperatura °C	Tiempo hr	Fases Presentes
9	15-20-65	1040	96	T + V
		1030	63	$T + \alpha Qtz + X + V^{\delta}$
		1000	47.5	$dQtz + \delta LBS + X + V^{\&}$
		1000#	144	$dQtz + d'LBS + B_2Smp + V$
		920	45	∠Qtz + YLBS + Xp ^{&}
		920 [#]	168	≪Qtz + XLBS + B ₂ Smp
16	15-25-60	1090	66	B ₂ S + V
		1050	115	$B_2S + \alpha Qtz + V$
		1030	15	$T + X + V^{\&}$
		1000	47.5	$a Qtz + C + b LBS + X^{\&}$
		1000#	144	≪Qtz + 8 LBS + B2Sp
		960	46	$C + \alpha Qtz + \delta LBS + X^{\&}$
		960 [#]	168	dQtz + IBSp + B2Sp
17	ls ₂ + 3B + 4S	1010	72	$B_2S + T + c_Qtz^+$
	575	940 [#]	45	$T + Qtz + 0 LBS + B_2Sp$
		1000#	144	$\beta Qtz + \beta IBSp + B_2Sp^+$
		1475	2	v
		1350	4.5	B + V
		1270 [#]	22	B ₂ S + V
		1120	17	B ₂ S + V
18	$LS_2 + 7B + 105$	5 1010	72	$^{\prime}$ Qtz + C + B ₂ S
	-	1000#	178	β Qtz + Cp + B ₂ S + χ LBSp
		1120 [#]	17	$T + B_2 S + V$

,

- 51 -

-	52	

		- 52 -		
No. de	Camposición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
42	13-17-70	1050	115	T + V
		1030	15	$\alpha Qtz + X + V^{\&}$
		1020	112	δ^{Λ} LBS + T + V
		1000	47.5	$a Qtz + {}^{h} LBS + X + V^{\&}$
		1000#	144	$\propto Qtz + \delta^{1} LBSp + B_{2}Smp + V$
		980	60	$\propto Qtz + C + \chi^{A}LBS + X + V^{\&}$
		960	86	$\alpha Qtz + \lambda LBS + X_{a}^{\&}$
		920	168	$\langle qtz + \rangle$ 'LBS + B_2^p Sp
107	$LS_2 + 2B$	1045	18	$\int LBS + X \epsilon, +$
		1060 [#]	36	% LBS + B ₂ S + X +, &
		1010#	72	Υ LBS + β C + B_2S^+
		940 [#]	45	& LBS + B2Sp + Qtz
		1000#	46.5	MIBS + B2Sp + Qtzp+
		1000#	178	¥LBS + B ₂ S + Ymp ⁺ , &
108	$LS_2 + 3B$	1045	18	Bp + X + $^{\prime}$ LBSp $^{\&}$
	2	800 [#]	18	B + Qtzp + X + X LBSp &
		1060#	18	$\mathbf{\hat{x}}_{\text{LBSp}}$ + Bp + $\mathbf{x}^{\hat{\mathbf{k}}}$
		800#	18	$\delta LBS + Bp + X^{\&}$
		1010#	72	₩BS + B ₂ Sp + X ^{&}
		1000#	47.5	MLBS + B ₂ S + Xp ^{&}
		1000#	190	VLBS + B2S
111	B ₂ L + 2S	640	45	d Qtz + BBS + Bp + LS
	2	850 [#]	16	AQtz + LBS + Bp

		- 53 -		
No. de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
		1000#	60	$f'_{LBS} + Qtz_{p} + B_{2}Sp + Yp^{\&}$
		1000#	176	δ LBS + B ₂ S + Qtzp + Yp ^{+,&}
		1045 [#]	15	$\delta LBS + B_2S$ +
124	20-30-50	1120	72	v
		1110	20	δ LBS + Qtz + B + V
		1100	68	$B_2S + Qtz + V$
		1080	132	$Qtz p + \delta LBS + B_2S + V$
		1100 [#]	20	$\delta' LBS + Qtz + V$
		1075	120	$\delta LBS + B_2S + V$
		1050	115	$\delta LBS + B_2S + V$
		960	68	altz + 1BS + B2Sp
125	ls ₂ + b + s	1120	17	$B_2S + V$
		1080	22	$B_2S + V$
		1050	115	$B_2S + Qtz + V$
		1045	15	$B_2Sp + Qtz + V$
		1030	16	$Qtz + \delta LBSp + B_2Sp + V$
		1000	46.5	$Qtz + \chi LBS + B_2Sp + \chi^{\&}$
		1000#	132	$Qtz + \chi LBS + B_2 Sp^+$
126	$ls_2 + b + s$	1000	44.5	$AQtz + X + \delta LBSp + B_2Sp^{\&}$
		1000#	132	$\beta Qtz + \delta LBS + B_2S^+$
		1475	2	v
		1350	4.5	B₂S + V
		1120	17	$B_2S + V$

ł

|--|

No. de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
		1080	22	$B_2S + T + V$
		1045	15	$\beta Qtz + B_2S + V$
		1030	70	$Qtz + B_2S + 1BSp + V$
127	20-35-45	1400	1.5	в + V
		1350	4.5	% LBS + B + Qtz + V
		1100	79	γ^{\prime} LBS +c.Qtzmp + V
		1090	66	$\delta \text{LBS} + \text{B}_2 \text{S} + \text{V}$
		1050	115	1 LBS + B ₂ S + X + V ^{&}
		1050#	211	% LBS+ B ₂ Sp + V
128	25-30-45	1350	2	č'IBS +αQtzp + V
		1300	5	λ' LBS + (C + Qtz) p + B + V
		1100	79	\mathcal{Y}_{i}^{l} IBS + V
129	23-27-50	1120	24	lBS +αQtzp + V
		1050	115	$\delta' LBS + X + Qtz + V^{\&}$
		1050#	163	δ LBS + Xp + Qtzp + B ₂ Sp +V ^{&}
		1090 [#]	66	JIBS + V
130	15-31-54	1450	1.5	XQtz + V
		1300	5	Qtz + V
		1120	24	$B_2S + V$
		1050	115	$B_2S + X + \alpha Qtz + V^{\delta}$
		1050#	163	$B_2S + V$
		1040	96	$B_2S + V$
		1030	63	$Qtz + X + (BSp+B_2Sp+V)^{\&}$

No. de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
132	17-27-56	1100	20	$B_2S + V$
		1050	115	$B_2S + V$
		1040	96	$B_2S + \alpha Qtzp + \delta LBSmp + V$
	9	1030	63	$\alpha Qtz + \delta^{\lambda} LBSp + X + V^{\&}$
		960	68	$\alpha Qtz + \delta LBS + B_2Sp$
133	10-25-65	1475	2	v
		1350	4.5	$B_2S + Qtzp + V$
		1250	2	$B_2S + V$
		1090	72	$T + B_2 S + V$
134	15-40-45	1300	5	B + V
		1250	2	B + Qtzp + V
		1090	72	$B_2S + X + V^{\&}$
135	10-20-70	1300	5	Qtz + V
		1120	72	$T + Qtzp + B_2Smp + V$
136	16-22-62	1120	72	v
		1075	120	Β ₂ S + V?
		1000	42	$\angle Qtz + \forall LBS + X^{\&}$
137	20-24-56	1000	42	alatz + & IBS + Xe
		1120 [#]	72	B ₂ s + v
138	20-27-53	1000	42	
		1120	72	$B_2S + Qtz + V$
		1100	68	B ₂ S + V
		1075	120	81BS+ B2S + V

- 55 -

-	56	-

		- 56	-	
No. de muestra	Composición L - B - S	Temperatura °C	Tiempo hr	Fases presentes
139	22-32-46	1450	1.5	Bp + V
		1400	3	%LBS + Qtzp + Bp + V
		1350	4.5	X LBS +dQtz + B + V
		1120	15	χ^{\prime} LBS + Bmp + V
140	10-57-33	1000	96	HIBS+ B2S + Cp +Qtzmp
		1000#	168	8 LBS + B2S
		950	118	LBS + 0. Qtz + B + B ₂ Lp ^{&}
141	27-40-33	1030	72	8 LBS + B2S
		1000	168	XLBS + B ₂ S + Bp
		950	118	δ LBS + α Qtz + C + Bp+B ₂ L? ^{&}
142	19-22-59	1100	60	v
		1050	48	χ^{t} LBS + X + V ^{&}
		1030	72	δ^{A} LBS + Qtz + X + V ^{&}
		950	96	δ LBS + C + α Qtz + Xmp ^{&}
		1080	132	Β ₂ s + v
143	12-22-66	1150	2	B ₂ S + V
144	10-22-68	1270	22	B ₂ S + V
		1150	2	в ₂ s + т + v
145	7-27-66	1480	1	$B_2S + Qtzp + V$
		1400	2.5	$B_2S + V$
		1300	4	$T + Qtzp + B_2S + V$
		1150	24	$T + Qtzp + B_2S + V$
146	7-23-70	1480	1	$B_2S + Qtzmp + V$
		1400	2.5	$B_2S + Qtz + V$

-	57	5
	51	

		- 57 -		
No. de	Composición	Temperatura	Tiempo	Fases presentes
muestra	L - B - S	°C	hr	
		1300	4	$B_2S + T + Qtzp + V$
		1150	24	$B_2S + T + Qtzp + V$
147	7-20-73	1480	1	v
		1420	3	V + pocos cristales
		1400	2.5	$B_2S + Qtz + V$
		1150	20	$B_2S + T + Qtzp + V$
101	L ₂ S + B	750	41	L ₂ S + X-LB S + B ⁺⁺
	2	840	72	$L_2^{S} + \chi^{+}-LBS + B^{++}$
102	$L_2S + B_2L$	650	15	$B_2L + L_2S + Li_2 CO_3p^{\&}$
		750 [#]	24	$B_2L + L_2S$
3	X-LBS + LS	+ L ₂ S 720	24	δ -LBS + LS + L ₂ S
104	LS + B	850	16	LE +X-LESP
	(90-10)%			
105	ls + b	1080	15	$LS + \delta - LBS + Bp$
	(67-33) %	1000#	24	$LS + \chi - LBS + B$
		1000#	240	ls + X −lbs
	L + B + S	960	96	X-lbs
109	$LS_2 + 4B$	1045	18	δ -LBSp + Bp + X + B ₂ Sp ^{&}
		1060#	18	δ' -lbs + b + x ^{&}
		1010#	72	$^{-LBS} + B_2S + Bp$
		1055#	12	δ -LBS + B ₂ S + Bp
		1000#	44.5	χ -LBS + B ₂ S + Bp
		1000#	176	δ -lbs + B_2 s
110	LS + B	950	142	δ -LBS + Bp + LSp

No. de	Composición	Temperatura	Tiempo	Fases Presentes.
muestra	L - BS	°C	hr	
		1000 [#]	168	X -LBS + Bmp
112	B ₂ L + LS	750	24	$L_2S + \lambda^{+}-LBS + B + LS^{++}, \&$
		1000 [#]	18	$L_2s + X - LBS + Bp ++$
113	$B_2L + S$	980	24	₂ s + в ⁺
	(86-14)%	1000#	18	δ -LBS + B + L ₂ Sp +, ++
114	2.3B ₂ L + 3S	980	24	δ -lbs + c
		1050#	24	δ^4 -LBS + α Qtzp
		980 [#]	60	%LBS + B ₂ Sp + Bp + Ymp ^{&}
		1000#	44.5	χ^{A} LBS + Ymp ^{&,+}
		1000#	176	δ ^A LBS+ B ₂ Smp + Ymp ^{&} , ⁺
115	%LBS + L ₂ S +	800	24	L2S +& LBS
	Li2003			
116	81BS + L2S	800	24	$L_2S + 3 LBS + LS^{++}$
	(20-80) % + Li ₂ 00 ₃			
119	%LBS + L2S	800	24	$L_2S + \delta LBS + LS^{++}$
	(80-20) %+			
	Li2003			
122	& LBS+2L	750	16	L2S+B+B2Lp
	+Li2003	740 [#]	16	L ₂ S+B ₂ L
	+Li2003	690 [#]	60	L ₂ S+X ⁴ LBS + B
123	βlbs + l	750	16	$L_2S + \delta' LBS + B + B_2Lp^{\delta}$
131	L ₂ S + B + S	1100	168	א'LBS + B ₂ S+ B
103	LS + B (95-5)	\$ 850	16	LS + X LBS mp

NOTA: Las abreviaturas de las fases presentes significan

T = tridimita
C = cristobalito
Qtz= cuarzo
B =Beo
L=Li₂O
S=SiO₂

$$IBS=I_{12}BeSiO_4$$

B₂L=Li₂Be₂O₃
B₂S = Be₂SiO₄
L₂S = Li₄SiO₄
LS = Li₂SiO₃
LS₂= Li₂Si₂O₅
X = fase metaestable X
Y= fase metaestable Y
p = poca cantidad de la fase correspondiente
mp= muy poca cantidad de la fase correspondiente
M = fundido, probablemente hay vidrio
+= fundido, probablemente hay vidrio
+= ay pérdida de litio
& = no están en equilibrio
#= se usó la muestra anterior.

- 60 -

CAPITULO V

CONCLUSIONES.

En el sistema ternario $\text{Li}_2\text{O-BeO-SiO}_2$ se encontraron 10 puntos invariantes y 7 triángulos compatibles en el subso lidus, por lo que el efecto de añadir Li_2O a SiO₂ y BeO es el disminuir mucho las temperaturas del solidus hasta 950- -1100°C.

El compuesto ternario δ -Li₂BeSiO₄ funde incongruentemente a BeO más líquido a 1320°C. Siendo la línea de unión Li₂SiO₃-BeO un sistema binario verdadero y la mayoría de las composiciones ternarias refractarias, se encuentran en la unión δ -Li₂BeSiO₄-BeO con una temperatura de solidus de -1320°C y una temperatura de líquidus considerablemente alta.

El compuesto Be_2SiO_4 en el sistema ternario tiene un campo de fase primaria determinado, y se estima que la composición del eutéctico en el sistema BeO-SiO₂ es de 81% mol de SiO₂.

Se encontraron tres fases metaestables ternarias, una fase X que es un ortosilicato posiblemente con fórmula $\text{Li}_2\text{Be}_3\text{Si}_2\text{O}_8$. La fase Y que se encuentra entre un metasilicato posiblemente con la fórmula $\text{Li}_6\text{Be}_3\text{Si}_4\text{O}_{14}$. Por último la fase metaestable similar a alto $/^3$ cuarzo con un 67% mol de SiO₂, que quizás forme una serie de soluciones sól<u>i</u> das que contiene Li_2O y BeO de fórmula $\text{Li}_{2-\chi}(\text{Si}_{1-\chi},\text{Be}_{\chi})\text{O}_2$, $0 \leq \chi \leq 0.33$.

BIBLIOGRAFIA.

- 1.- Crystal Chemistry of Liberite, Li₂BeSiO₄ and Li₂BeGeO₄, A. R. West, Bull. Soc. Fr. Min. Crist. (1975), 98, 6-10
- Crystal Chemistry of some tetrahedral oxides. A.R. West,
 Krist., 141 (1975) 422-436.
- 3.- The crystal structure of High (𝔥) -Li2BeSiO₄: a Tetrahedral structure. R.A. Howie and A.R. West, Acta Cryst.<u>B30</u> (10) (1974) 2434-2437.
- 4.- The Binary System Li₂O-SiO₂. F.C. Kracek, J.Phys. Chem., 34 2641-2650 (1930).
- 5.- Reaction of BeO and SiO₂: Synthesis and decomposition of phenacite. R.A. morgan and F.A. Hummel J. Amer. Ceram. -Soc., <u>32</u> (8) (1949).
- 6.- Fusion Diagram of the System BeO-SiO₂. N.N. Budnikov and A.M. Cherepanov. Vopr. Petrog. and Mineralog. Akad. Nauk SSSR 2 241-244 (1953).
- 7.- Tentative phase diagram of Beryllia-Lithia System. P.P. Terner and S.F. Bartram. Inorg. Che., <u>6</u> No. 4, 833-835 (1967).
- 8.- Crystalization of lithium magnesium zinc silicates. Part 2 Phase equilibria and the crystalization of glasses in the system $\text{Li}_4\text{SiO}_4-\text{Mg}_2\text{SiO}_4-\text{Zn}_2\text{SiO}_4-\text{SiO}_2$. A.R. West and F.P. Glasser, J. Materials Sci., 7. 895-908 (1972).
- 9.- Crystalization of Lithium Zinc Silicates. Par 1. Phase Equilibria in the System Li₄SiO₄-Zn₂SiO₄. A.R. West and F.P. Glasser. J. Materials Science <u>5</u>, 557-566 (1997).

UIMICA D.E.PG.