

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA DIVISIÓN DE INGENIERÍA EN CIENCIAS DE LA TIERRA

"GEOLOGÍA DE LAS UNIDADES CLÁSTICAS DEL ÁREA DE CHAZUMBA, OAXACA".

TESIS PROFESIONAL

Que para obtener el título de

INGENIERA GEÓLOGA

PRESENTA:

ADRIANA KARINA MORALES TOLENTINO

Director: M. en C. Emiliano Campos Madrigal

CIUDAD UNIVERSITARIA, MÉXICO D.F. 2014.

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Antes que nada agradezco a Dios y a la vida por ponerme en este camino, por todo lo que he vivido y he aprendido.

A mi mamá Catalina Tolentino Del Valle y a mi hermana Karla Paola Morales Tolentino por todo el apoyo durante la carrera, por apoyarme en todas las decisiones que tome durante esta ya hayan sido buenas o malas, por nunca dejarme caer en los momentos difíciles por más obscuro que haya sido el panorama, por siempre estar a mi lado y sobre todo por su amor incondicional. Las AMO y seguirán siendo el motor de mi vida.

A mi papá Carlos Hugo Morales Morales por todo lo que me has dado, por las enseñanzas y las lecciones de vida que me hicieron ser más fuerte, crecer, madurar y ver la vida de una forma diferente. Gracias papito, te AMO.

A mis abuelos Hortencia y Miguel, por su cariño, por sus sabios consejos y siempre estar a mi lado; a mis tíos Javier, Miguel, Abel y Rosa por su cariño y apoyo. En especial a mis tías Libia y Eva que tanto quiero, por sus risas, por el apoyo, el amor y el estar incondicionalmente en los momentos más difíciles.

A mis primos Abel, Ana, Javier, Adrián e Itzél que son como unos hermanos para mí. A mis primos Gabriel y Ariadna que fueron un gran apoyo y una parte importante para que pudiera concluir mi carrera. A Gabrielito y Miguelito, a mis sobrinos y demás familia. Gracias por su apoyo y cariño. Los quiero mucho.

A mi director de tesis M. C. Emiliano Campos Madrigal por la confianza, tiempo, paciencia y apoyo en la realización de esta tesis.

A mis sinodales Dr. Gilberto Silva Romo, Dra. Claudia Cristina Mendoza Rosales por sus observaciones y recomendaciones para mejorar este trabajo, al Ing. José Luis Arcos Hernández y al Dr. Enrique Alejandro González Torres.

A Adán Castro por la ayuda en la digitalización de mis columnas y en la elaboración de mi mapa; así como el apoyo brindado durante la realización de esta tesis, gracias. A la Universidad Nacional Autónoma de México y a la Facultad de Ingeniería por todos los conocimientos que adquirí durante la carrera y por todo lo que me dieron durante esta.

Finalmente a mis amigos; Nache, Dianita y Axél, por estar incondicionalmente, por el apoyo, las risas, el llanto, los buenos y los malos momentos. A Ivonne por tú amistad y por estar siempre en las buenas y en las malas. Finalmente a Violeta, Chio, Canseco, Clark, Johny, Magdaleno y Luis, por haberlos conocido y haber compartido grandes momentos. A todos gracias.

ÍNDICE

Agradecimientos.

Resumen.	1
Capítulo I. Introducción	3
1.1 Objetivo	3
1.2 Estudios previos	3
1.3 Localización	5
1.4 Metodología de trabajo	6
1.4.1 Investigación previa	6
1.4.2 Trabajo de campo	
1.4.3 Trabajo de gabinete	8
Capítulo II. Marco Geológico Regional	11
Capítulo III. Estratigrafía Local	17
3.1 Columnas Estratigráficas de Chazumba, Oaxaca	20
3.1.1 Santa Lucía 1	22
3.1.2 Santa Lucía 2	27
3.1.3 Arroyo Acatepec	33

Capítulo IV. Análisis de Facies de la Formación Otlaltepec	41
4.1 Asociaciones y Modelo de Facies de la Formación Otlaltepec	41
4.2 Modelo de Facies Santa Lucía 1 y 2	44
4.3 Modelo de Facies Santa Lucía 1 y 2 y Arroyo Acatepec	47
Capítulo V. Ambiente de Depósito	50
Capítulo VI. Conclusiones	55
Recomendaciones	57
Bilbliografía	58
Apéndice	62
Apéndice A: Conteo de puntos en conglomerados	62
Apéndice B: Petrografía de areniscas	79
Apéndice C: Conteo de puntos en areniscas	83
Apéndice D: Mapa Litoestratigráfico del área Chazumba, Oaxaca., elaboro de las cartas digitales del INEGI E14A74, E14A75 ,E14A84 y E14A85.(to Mendoza- Rosales, 2010).	•

RESUMEN

El área de estudio se ubica al noroeste de Santiago Chazumba, Oaxaca. El terreno-Tectonoestratigráfico en la cual se ubica es el Terreno Mixteco, que tiene un basamento metamórfico del Paleozoico; siendo este el Complejo Acatlán, que está constituido litológicamente por pizarras, filitas, esquisto, gneis y migmatita.

Las Formaciones a las que pertenece el área de estudio son la Formación Otlaltepec; que consiste de una sucesión alternante de arenisca, lutita y limolita y la Formación Magdalena; que consiste de una secuencia de arenisca, conglomerado, lutita y marga.

Con base en el análisis sedimentológico y estratigráfico de la sucesión clástica precretácica expuesta en las cercanía de Chazumba, Oaxaca, se presenta un modelo de evolución sedimentológica para la Formación Otaltepec y la Formación Magdalena.

La Formación Otlaltepec se acumuló en un sistema fluvial trenzado relativamente tranquilo con cambios en la dirección de la corriente durante distintos periodos, las facies más proximales se encuentran expuestas en las cercanías de Santa Lucía; caracterizado por presentar intercalación de conglomerados medios a gruesos estratificados con areniscas finas a gruesas; llegándose a presentar en ambos casos como lentes y soportado por clastos en su mayoría; de acuerdo a estas características y con base en la clasificación de las facies fluviales de Miall, se tuvieron las siguientes litofacies Gmc, Gh, Gp, Gt, Sh, Sr y Fl que dentro de un modelo arquitectónico de facies corresponden en su mayoría a rellenos de canal, barras longitudinales y flujo de detritos característicos de un sistema fluvial trenzado.

En tanto que hacia el noroeste, en el Arroyo Acatepec, perteneciente a la Formación Otlaltepec y a la Formación Magdalena siendo la zona más alejada de la fuente de aporte y la más cercana a un cambio en el ambiente de depósito se reconocieron facies transicionales caracterizadas por rizaduras simétricas, laminación ondulada y estratificación flaser, que se interpretan como una zona de playa, pudiendo pasar de un ambiente continental a marino, se observa una intercalación en menor proporción de

conglomerados medios a gruesos, areniscas finas a medias, lutita y limolita. Las areniscas de la sucesión estudiada tienen un carácter petrológico que varía de subarcosa a cuarzoarenita.

CAPÍTULO I. INTRODUCCIÓN

1.1 Objetivo

El presente trabajo tiene como objetivo determinar la geología de las unidades clásticas del área de Chazumba, Oaxaca, mediante la realización de columnas estratigráficas que nos permitirán analizar las características geológicas y estratigráficas de la zona de estudio, mediante:

- La clasificación litoestratigráfica de estas unidades clásticas.
- La clasificación de facies existentes determinadas entre las columnas estratigráficas medidas.
- La definición de asociación de facies que servirá para la elaboración de un modelo de facies que servirá para la interpretación del ambiente de depósito.
- Determinar y realizar un modelo del ambiente de depósito de estás unidades.
- Ubicar las columnas estratigráficas medidas en campo (Santa Lucía 1 y 2 y Arroyo Acatepec) en el mapa litoestratigráfico (tomado de Mendoza-Rosales, 2010); así como, la realización de una sección geológica.

1.2 Estudios previos

El área de estudio se localiza en el Terreno Mixteco, teniendo como basamento el Complejo Acatlán; en los cuales se han realizado diversos trabajos geológicos y estratigráficos; locales y regionales cercanos a la zona de estudio entre los cuales tenemos:

Aguilera (1896) y Ordoñez (1906), hicieron las primeras referencias de las rocas metamórficas de Acatlán tanto litológicamente como estratigráficamente y las situaron como parte del basamento cristalino de edad arcaica. Ordoñez (1906) fue el primero en subdividir estratigráficamente las rocas metamórficas de la región de Acatlán quien las

denominó "Formación Acatlán", teniendo como base augengneis, subyaciendo a una secuencia de pizarras verdes.

Campa y Coney (1983), determinan que el Terreno Mixteco es una entidad geológica caracterizada por un basamento metamórfico (Complejo Acatlán) y su cubierta sedimentaria.

Salinas- Prieto (1984), reconoce el límite sur y occidental del Terreno Mixteco al sureste de Tierra Colorada en donde el Complejo Acatlán se encuentra cabalgando al Complejo Xolapa a través de una zona de milonitización de dirección noreste-sureste con buzamiento hacia el noreste.

Ramos Leal (1989), propone el nombre de miembro Otlaltepec para referirse a una secuencia de 800m de espesor constituida por conglomerados oligomícticos con matriz litarenítica, interestratificada con litarenitas, grauvacas líticas, limolitas y tobas híbridas de color verde y rojo, cementadas por dolomía y calcita asignándole una edad del Jurásico Medio.

Ortega-Guerrero (1989), describe a la Unidad Otlaltepec como una secuencia alternante de arenisca, lutita y limolita, que descansa en discordancia angular sobre la unidad Piedra Hueca y en algunas porciones sobre el Complejo Acatlán y Tronco de Totoltepec. La edad que le asigna es del Jurásico.

Ortega-Guerrero (1989), describe a la Unidad Magdalena como una secuencia de conglomerado, arenisca, lutita y marga que descansa en discordancia angular sobre la unidad Piedra Hueca y en algunas porciones sobre el Complejo Acatlán y Tronco de Totoltepec. La edad que le asigna es del Jurásico.

Morán-Zenteno et al. (1993), determinan que la sucesión de la Unidad Otlaltepec consiste en dos unidades continentales separadas por una discordancia angular mayor y le asignan una edad del Jurásico Inferior y del Cretácico Temprano.

Ortega-Gutierrez et al. (1994), determinan que el Complejo Acatlán está cubierto por una sucesión de rocas sedimentarias marinas del Carbonífero-Pensilvánico y por rocas volcánicas con edades del Paleozoico al Jurásico Medio.

Mendoza Rosales (2010), determina la estratigrafía de la Formación Agua del Cordero y la Formación San Juan Raya de la Cuenca de Zapotitlán.

Cruz-Cruz (2012) describe a la Formación Otlaltepec como una alternancia de areniscas de grano fino a grueso, limolitas, lutitas y ocasionalmente unidades conglomeráticas que aflora sobre el Río Acatlán al suroeste de Santo Domingo Tianguistengo y a lo largo del Cerro la Colorada en la margen derecha del Río Acatlán.

1.3 Localización

El municipio de Santiago Chazumba, Oaxaca pertenece al Distrito de Huajuapan de León y se localiza al noroeste del estado de Oaxaca. Se extiende a 18° 11' N de latitud norte y a 97° 41' O de longitud al oeste, a una altura de 1700 metros sobre el nivel del mar, y se sitúa sobre la carretera 125, a 63 km al sur de Tehuacán, Puebla y a 57 km. de Huajuapan de León, Oaxaca.

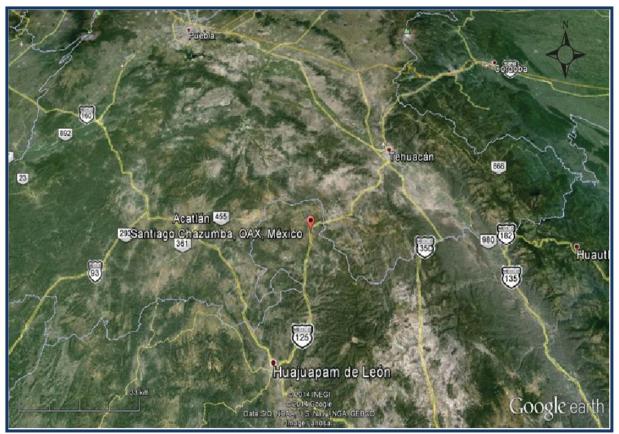


Fig.1 Ubicación del área de estudio con base en una imagen del Globo terráqueo virtual GoogleEarth.

1.4 Metodología de trabajo

1.4.1 Investigación previa

- Se realizó la recopilación de información del área de estudio, se consultaron tesis de licenciatura y de posgrado, así como artículos relacionados al área de estudio y las vías de acceso al sitio.
- Se consultó la carta topográfica y geológica escala 1:250000 de Orizaba que comprende los estados de Puebla, Veracruz y Oaxaca para delimitar la zona de estudio.

- Revisión y análisis del trabajo de cartografía geológica elaborado del área como lo es el mapa litoestratigráfico del área San Sebastián Frontera, Oaxaca realizado por Mendoza-Rosales (2010).
- Se revisó bibliografía respecto a la correcta medición de columnas estratigráficas con ayuda del báculo de Jacob (fig. 2 y 3).

Fig.2 Medición de una columna estratigráfica (Tomado de Vera-Torres, 1992).

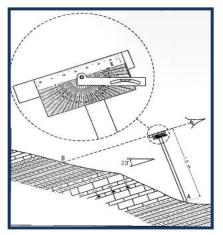


Fig.3 Medición de columnas utilizando el método de Jacob de (Silva-Romo et al., 2001).

1.4.2 Trabajo de campo

Una vez ubicados en el área de estudio y haber reconocido las unidades aflorantes (Otlaltepec y Magdalena) se llevaron a cabo las siguientes actividades, con el objetivo de conocer la naturaleza, origen y ocurrencia de las unidades clásticas:

Se tomaron las coordenadas con el receptor GPS en los puntos de interés y se midieron las columnas estratigráficas con ayuda del Báculo de Jacob, la brújula tipo Brunton y una cinta métrica, dos en la localidad de Santa Lucía con un espesor total de 56.7 y 133.9 metros respectivamente pertenecientes a la Formación Otlaltepec y una última sobre el Arroyo Acatepec con un espesor total de 169.7 metros perteneciente a la Formación Otlaltepec y a la Formación Magdalena; las tres medidas a partir del contacto con la Formación Chazumba.

- Se realizó el análisis detallado de cada columna determinando litología, estructuras sedimentarias, contenido fósil y características específicas que fueran de interés.
- Se realizaron conteos de puntos (Apéndice A) en campo para los conglomerados en cada una de las columnas, para ayudar a determinar la composición, contenido, tamaño y forma de los clastos.
- Se recolectaron un total de 7 muestras de las cuales se obtuvieron 4 láminas delgadas para con estas realizar un conteo de puntos y poderlas clasificar.

1.4.3 Trabajo de gabinete

- Se ubicaron las columnas estratigráficas medidas en campo, tomando como base el mapa litoestratigráfico de Mendoza-Rosales, 2010.
- Se realizó el análisis petrográfico de 4 láminas delgadas de areniscas pertenecientes a la Formación Otlaltepec (ADR-1, ADR-7, ADR-8) y a la Formación Magdalena (ADR-19) consistiendo de subarcosas y una cuarzoarenita (Apéndice B) que sirvieron en la interpretación del ambiente de depósito.
- Con las láminas colectadas en la Formación Otlaltepec (ADR-1, ADR-7, ADR-8) y en la Formación Magdalena (ADR-19) se realizó otro conteo de puntos determinando la proporción de cada mineral en ellas (Apéndice C).

- Con la información recopilada en campo se realizó la consulta de material bibliográfico referente al significado y análisis de facies fluviales para poder analizar las columnas estratigráficas y realizar una relación y un modelo de facies que nos ayuden a interpretar el ambiente de depósito del área comprendida.
- Se utilizó la tabla de clasificación de facies de Miall (2000) (tabla 1) para determinar las facies presentes en cada columna estratigráfica.

Código	Facies	Estructuras Sedimentarias	Interpretación
Gmm	Grava masiva, soportada por matriz.	Gradación pobre.	Flujo plástico de detritos (viscoso, alta densidad).
Gmg	Grava soportada por matriz.	Gradación normal a inversa.	Flujo de detritos seudoplástico (viscoso, baja densidad).
Gci	Grava soportada por clastos	Gradación inversa	Flujo de detritos rico en clastos (alta densidad) ó flujo de detritos seudoplástico (viscoso, baja densidad).
Gcm	Grava masiva soportada por clastos.		Flujo de detritos seudoplásticos (carga de fondo inerte, flujo turbulento).
Gh	Grava estratificada burdamente, soportada por clastos.	Estratificación horizontal, imbricación.	Barras longitudinales, depósitos de fondo de canal y otros tipos de barras de gravas incluidos las barras de punto.
Gt	Grava, estratificada.	Estratificación cruzada curvada	Pequeños rellenos de canales.
Gp	Grava, estratificada.	Estratificación cruzada planar.	Barras transversales o crecimientos deltaicos desde antiguas barras remanentes.
St	Arena fina a muy gruesa, pueden ser guijarros.	Estratificación cruzada curvada solitaria ó en grupo.	Dunas subacuáticas linguoidales (régimen de flujo bajo) y crestas sinuosas.
Sp	Arena fina a muy gruesa, pueden ser guijarros.	Estratificación cruzada planar solitaria o en grupo.	Barras transversales liguoides y rizaduras.
Sr	Arena, muy fina a gruesa.	Rizaduras, laminación cruzada.	Rizaduras (régimen de flujo inferior).

CAPÍTULO I. INTRODUCCIÓN

SIpueden ser guijarros.de bajo ángulo (<15°).	s (flujo crítico).
Sm Arena, fina a gruesa. Masiva ó laminaciones débiles. Depósitos de flujo grava débiles. Laminación fina, rizaduras muy pequeñas. Fsm Limo, arcilla. Masiva. Masiva. Depósitos de llanuras o desbordamiento, cana desbordamiento, cana despordamiento, cana d	s erosivas, montecillos, dunas
Arena, fina a gruesa. Depósitos de flujo grav.	s erosivas.
FI Arena, limo, arcilla. Fsm Limo, arcilla. Masiva. Masiva. Masiva, grietas de depósitos de desborda depósitos de charcas de descación. Masiva, grietas de depósitos de desborda Fr Arcilla, limo. Masiva, raices, bioturbación. Masiva, raices, bioturbación. Paleosuelos carbonatados (calcita y siderita). Rasgos pedogénicos. Plantas, lodo Depósitos de llanuras de desborda Depósitos de charcas de debandados depósitos de desborda Plantas, lodo Depósitos pantanosos	avitatorio.
Fsm Limo, arcilla. Masiva. abandonados. Fm Arcilla, limo. Masiva, grietas de desecación. depósitos de desborda Fr Arcilla, limo. Masiva, raices, bioturbación. Suelos incipientes, nive nivel de carbón. P Paleosuelos carbonatados (calcita y siderita). Rasgos pedogénicos. Suelos con precipitación. C Carbón. Arcilla carbonosa. Plantas, lodo Depósitos pantanosos	
Fr Arcilla, limo. desecación. depósitos de desborda Masiva, raices, bioturbación. Suelos incipientes, nive nivel de carbón. Paleosuelos carbonatados (calcita y siderita). Rasgos pedogénicos. Suelos con precipitació	de marismas o canales
Fr Arcilla, limo. bioturbación. nivel de carbón. P Paleosuelos carbonatados (calcita y siderita). Rasgos pedogénicos. Suelos con precipitación C Carbón. Arcilla carbonosa. Plantas, lodo Depósitos pantanosos	n, canales abandonados o lamiento.
Rasgos pedogénicos. Suelos con precipitació Carbón, Arcilla carbonosa. Plantas, lodo Depósitos pantanosos	vel lutítico infrayacente a un
l C Carbón, Arcilla carbonosa,	ión química.
curbonoso.	s con vegetación.

Tabla 1. Clasificación de facies de Miall (2000).

CAPÍTULO II. MARCO GEOLÓGICO REGIONAL

Para entender mejor el área de estudio, se debe ubicar primeramente en el contexto geológico regional. El terreno Tectono-estratigráfico en el cual se ubica el área de estudio es el Terreno Mixteco; siendo el basamento el Complejo Acatlán.

Terreno Mixteco

Se ubica al sur de la República Mexicana (fig. 4), se localiza en la porción noroeste del estado de Oaxaca cerca de los límites de los estados de Puebla, Guerrero y Oaxaca (Ortega-Guerrero, 1989). Está caracterizado por un basamento metamórfico (Complejo Acatlán) y por una cubierta sedimentaria. Está compuesto por un conjunto de rocas metamórficas polideformadas (migmatitas, metasedimentos, metagranitodes y napas de ofiolita eclogitizada) (Ortega-Gutiérrez, 1981). Su límite oriental es con el Terreno Oaxaqueño, que se reconoció al suroeste de Tehuacán (Ortega-Gutierrez, 1981), el límite sur y occidental se reconoce al sureste de Tierra Colorada, Guerrero, con el Complejo Xolapa. (Salinas- Prieto, 1984) y el límite poniente se encuentra cubierto por los depósitos de la plataforma Morelos-Guerrero (Campa y Coney, 1983). La edad que se le asigna es del Paleozoico.

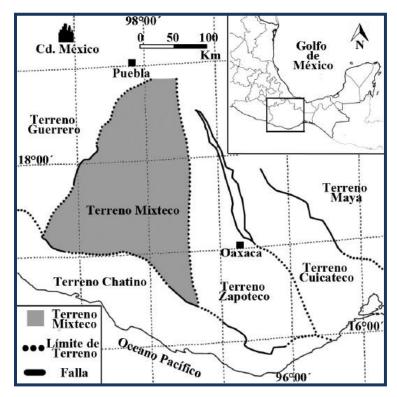


Fig.4. Ubicación del Terreno Mixteco (Ortega-Gutierrez, 1999).

Complejo Acatlán

Es el basamento del Terreno Mixteco (fig. 5) y la unidad litoestratigráfica más antigua de este, aflora en la porción oriental y el noreste del Estado de Guerrero y la parte sur de Puebla; se extiende al noroeste y oeste de Oaxaca. Se ha propuesto las rocas que lo componen se formaron en un margen pasivo (Ramírez-Espinosa, 2001) o trinchera y depósitos de frente de un arco (Ortega- Gutiérrez et al., 1999) y en zonas de trinchera-arco oceánico (Ramírez-Espinosa, 2001). Se divide litoestratigráficamente en dos subgrupos Petlalcingo y Acateco; el primero consiste de una secuencia marina de ambiente esencialmente pelágico, formado por grauvaca, lutita, pedernal y algunos carbonatos cuyo depósito se vio acompañado a diferentes tiempos y niveles estratigráficos por volcanismo e intrusiones básicas diferenciadas. Está compuesto por tres unidades (Migmatita Magdalena, Formación Chazumba y Formación Cosoltepec). El

segundo subgrupo consiste de la Formación Xayacatlán, la cual está caracterizada por presentar metamorfismo de alta presión. Consiste de esquisto verde, anfibolita, metagabro, eclogita, serpentinita, milonita, esquistos pelíticos y cuarcita. Estos dos subgrupos se encuentran separados por una secuencia volcanosedimentaria ligeramente metamorfoseada conocida como Formación Tecomate y tres unidades intrusivas (Diques San Miguel, Granitoides Esperanza y Tronco de Totoltepec) (Ortega Gutierrez, 1981).

Unidad Piedra Hueca

Se encuentra expuesta al sur de Ixcaquixtla, Puebla, en las cercanías de Santo Domingo Tianguistengo. Consiste de una secuencia de 800m de conglomerado, arenisca, limolita y lutita; presenta estratificación cruzada, marcas de rizaduras y plantas fosilizadas, sugiriendo un sistema de canales y llanuras de inundación que se desarrollaron en un ambiente fluvial trenzado. Esta unidad descansa discordantemente hacia el este y suroeste sobre el Complejo Acatlán y hacia el sur sobre el Tronco de Totoltepec; su contacto superior es una unconformidad angular con la Formación Otlaltepec y la Formación Magdalena (fig. 5) (Morán-Zenteno et al., 1993). La edad que le asignan es del Jurásico Inferior-Medio.

Formación Otlaltepec

Aflora en el área de Coyotepec-Tianguistengo al suroeste del Estado de Puebla. Descansa discordantemente sobre la Unidad Piedra Hueca y en algunas partes sobre el complejo Acatlán y el Tronco de Totoltepec, subyace discordantemente a la Formación Magdalena y hacia el extremo noroccidental del área está cubierta discordantemente por la Formación Agua de Luna (Morán-Zenteno et al., 1993) (Ortega-Guerrero, 1989). Consiste de una sucesión alternante de arenisca, lutita y limolita de aproximadamente 1500m de espesor, con estratificación cruzada, lentes conglomeráticos y abundancia de plantas fosilizadas (Ortega-Guerrero y Urrutia-Fucugauchi, 1993), su composición es de cuarzo, feldespatos y

líticos de rocas volcánicas, cuarcitas y esquistos. Las características litológicas indican un ambiente fluvial de alta energía con períodos de máxima precipitación pluvial (Ortiz-Martínez, 2013) y su edad documentada es del Jurásico Medio (fig.5) (Morán-Zenteno et al., 1993).

Formación Agua del Cordero

Aflora al poniente del poblado de San Sebastián Frontera en el Arroyo Acatepec (Apéndice D). El espesor aproximado es por arriba de los 1,000 m. Consiste en una intercalación de conglomerados y areniscas en estratos masivos irregulares, de estratos masivos lenticulares de brechas de clastos de esquistos, y cuarzo de origen metamórfico procedentes del Complejo Acatlán con algunos clastos de caliza. La edad de la Formación Agua del Cordero se establece con base en sus relaciones estratigráficas con la Formación San Juan Raya, por lo que corresponde probablemente al Barremiano superior—Aptiano inferior. La formación Agua del Cordero es producto de abanicos aluviales dominados por flujos de detritos acumulados muy probablemente al pie de un escarpe de falla, la cual se encontraba activa durante el proceso de sedimentación, formando depósitos de talud y de abanicos aluviales que en algún momento podrían haber desembocado en el mar formando abanicos delta (Mendoza Rosales, 2010).

Formación San Juan Raya

Los mejores afloramientos se observan en las barrancas Grande, Salitrillo, San Francisco, Agua La Junta, El Aguacate y El Pedernal (Apéndice D). Consiste de una intercalación de conglomerados, areniscas, limolitas, lutitas y calizas boundstone (Miembro Agua del Burro) en estratos delgados a gruesos frecuentemente bioturbados; hay abundantes fósiles de gasterópodos, pelecípodos, corales y rudistas. El espesor total puede encontrarse por arriba de los 1200m. Sobreyace concordantemente a la Formación Zapotitlán, hacia el poniente se encuentra interdigitada lateralmente con la Formación Agua del Cordero, hacia el norte se encuentra cubierta discordantemente por las calizas

CAPÍTULO II. MARCO GEOLÓGICO REGIONAL

de la Formación Cipiapa en el área de Santa Ana. Se le ha asignado una edad correspondiente al Barremiano superior. Los sedimentos de la Formación San Juan Raya se depositaron en un sistema costero complejo, hacia el sur en el área de Frontera se acumuló probablemente como un delta con una fuerte influencia de oleaje que hacia el norte cambia a una zona influida predominantemente por mareas, formando un sistema complejo de lagunas y barreras con la variante de un fuerte aporte de siliciclastos (Mendoza Rosales, 2010).

Formación Magdalena

Consiste de 200m de espesor de conglomerado, arenisca, lutita y marga. Descansa en discordancia angular sobre las unidades clásticas atribuidas al Jurásico Medio (Unidad Piedra Hueca y Formación Otlaltepec) y la sobreyace transicionalmente la Caliza Coyotepec (fig. 5) (Morán-Zenteno et al., 1993). Es una secuencia de arenisca clasificadas como sublitarenitas (Ortega-Guerrero, 1989). La edad que se le asigna es Aptiana- Albiana (Morán-Zenteno et al., 1993).

Caliza Coyotepec

Consiste de un caliza biomicrítica parcialmente dolomitizada con horizontes de brecha intraformacional y coquina, con nódulos y bandas de pedernal negro (Ortega-Guerrero y Urrutia-Fucugauchi, 1993) de 400m de espesor, está cubierta discordantemente por depósitos del Terciario y del Cuaternario. Presenta marcas de ripples que indican un ambiente de depósito intermareal o supramareal. La edad que se le asigna es Albiana-Cenomaniana (fig.5) (Morán-Zenteno et al., 1993).

CAPÍTULO II. MARCO GEOLÓGICO REGIONAL

		ÉPOCA		Τ	TERRENO MIXTECO)
ERA	PERIODO	EPOCA	EDAD	Coyotepec- Tianguistengo	lxcaquixtla- Totoltepec	este trabajo
C E	NEÓGENO	Plioceno				
N O	THEO GETTO	Mioceno			F. Agua Clásticos	
Z O		Oligoceno			F. Agua \clásticos de Luna \(del	
l C	PALEÓGENO	Eoceno			terciario	
ō	771220 02110	Paleoceno			U. Pozo Hondo	
			MAASTRICHTIANO			
			CAMPANIANO	_		
M	С	SUPERIOR	SANTONIANO	_		
_	R		CONIACIANO			
E	E		TURONIANO			
	T Á		CENOMANIANO	Caliza	Caliza	Caliza
S	Č		ALBIANO	Coyotepec	Coyotepec	Coyotepec
	١		APTIANO	U. Magdalena	U. Magdalena	F. Magdalena
0	C 0	INFERIOR	BARREMIANO			F. Agua del Cordero F. San Juan Raya
	Ĭ	INFERIOR	HAUTERIVIANO			
Z			VALANGINIANO			
			BERRIASIANO			
0			TITHONIANO			
		SUPERIOR	KIMMERIDGIANO			
T I	J		OXFORDIANO			
	U		CALLOVIANO		F. Otlaltepec	F. Otlaltepec
С	R Á	MEDIO	BATHONIANO	F. Otlaltepec		1. Ottaitepec
	S	MILDIO	BAJOCIANO	F. Piedra Hueca	U. Piedra Hueca	U. Piedra Hueca
0	I I		AALENIANO	1. Hedia Haeca		o. Hedia Hueca
	C 0		TOARCIANO			
		INFERIOR	PLIENSBACHIANO			
			SINEMURIANO			
			HETTANGIANO			
		TRIÁSICO			Tronco de	1
Р		PÉRMIC			Totoltepec	
А				Tronco de		_
L		PENSILVÁN	ICO	Totoltepec		
E		MISSISSÍP	ICO		_	
0		ivii55155IP	<u> </u>			
0 Z 0		DEVÓNI	m	Comple	jo Acatlán	
0	DEVOINCO			Comple	Jo Acadan	
				-		
C		SILÚRIC		4		
0		ORDOVÍC		4		
	CÁMBRICO					

FIg.5 .Formaciones pertenecientes al Terreno Mixteco (Ortega-Guerrero, 1989)(Ramos-Leal, 1989)respecto al área de estudio.

CAPÍTULO III. ESTRATIGRAFÍA LOCAL

Como ya se mencionó, en la zona de estudio aflora la Formación Otlaltepec, unidad litoestratigráfica objetivo de este trabajo; para la cual, se describieron sus características sedimentológicas y estratigráficas que a continuación se presentan. En este trabajo se realiza una propuesta informal de la Formación Otlaltepec según lo que especifica el Código Estratigráfico Norteamericano (Barragán *et al.*, 2010) en su Artículo 4o, en el apartado de observaciones, inciso (a), número (5).

Ramos-Leal (1989) menciona informalmente como miembro Otlaltepec, lo describe como una secuencia constituida por conglomerados oligomícticos con matriz litarenítica, interestratificada con litarenitas, grauvacas líticas, limolitas y tobas híbridas que aflora al norte y suroeste de Santo Tomás Otlaltepec, llegando hasta los poblados de San Pablo Ameyaltepec y San Felipe Otlaltepec. Ortega-Guerrero (1989) menciona a la Formación Otlaltepec como una secuencia alternada de arenisca, lutita y limolita con diastratificación y restos de tallos que aflora entre los poblados de de San Juan Ixcaquixtla y Totoltepec. Morán-Zenteno et al. (1993) coincide con la descripción de Ortega-Guerrero (1989). Cruz-Cruz (2012) la describe como una alternancia de areniscas de grano fino a grueso, limolitas, lutitas y ocasionalmente unidades conglomeráticas que aflora sobre el Río Acatlán al suroeste de Santo Domingo Tianguistengo y a lo largo del Cerro la Colorada en la margen derecha del Río Acatlán.

Su localidad tipo se localiza entre los poblados de de San Juan Ixcaquixtla y Totoltepec, al sur del estado de Puebla y al Norte con el estado de Oaxaca, donde forma el macizo de Loma Encinera y de los cerros El Encinal, La Víbora, Tres Cerros y Alegría (Ortega-Guerrero, 1989).

Se propone un nuevo estratotipo de unidad en el área de estudio de este trabajo, donde la Formación Otlaltepec aflora en la localidad de Santa Lucía con un ancho de 56.7m a 133.9m a 2.3km al noroeste de Chazumba entre las coordenadas 14Q0639052 mE, 2013658 mN y 14Q0639150 mE, 2013711 mN y sobre el Arroyo Acatepec con un ancho de

33m a 4.5km al suroeste de San Sebastián Frontera entre las coordenadas 14Q0637585 mE, 2018425 mN y 14Q0637695mE, 2018480 mN.

En las columnas medidas en la localidad de Santa Lucía (Santa Lucía 1 y 2) hacia la base se observa una intercalación de conglomerados oligomícticos de medios a gruesos intercalados en una matriz de arena gruesa color rojiza intercalados con estratos de arenisca fina a gruesa; el espesor de los estratos de conglomerado va de 1.05m hasta 2m, compuestos por cuarzo donde su tamaño va desde 1.5 hasta 15 mm, esquisto con tamaños de 1.5 hasta 10mm y metapedernal con tamaños de 2 a 16mm; los clastos se observan subangulosos a subredondeados; se observan lentes de conglomerado dentro de estratos de arenisca media y lentes de arenisca sobre algunos estratos de conglomerado grueso. Las areniscas corresponden a subarcosas que composicionalmente tienen cuarzo, esquisto, feldespato y fragmentos líticos con un espesor de los estratos que varía de 1.5m hasta 4.5m de espesor, hacia la cima de la formación también se observa igualmente conglomerados oligomícticos medios a gruesos con una matriz de arenas gruesas color rojizo de 1.5 hasta 3m de espesor compuestos por cuarzo que varían de 5 a 26mm, esquisto que va de 10 a 40mm y metapedernal que va de 5 a 27mm, están intercalados con estratos de arenisca fina a media de 0.5 a 1.5m de espesor; dentro de las estructuras sedimentarias que se observan son imbricación, estratificación cruzada, laminación paralela y laminación ondulada. En la columna medida sobre el Arroyo Acatepec, se observa una intercalación de conglomerado fino a grueso de 0.5 a 1m de espesor soportado por una matriz de grano grueso color grisáceo, la composición del conglomerado es de cuarzo donde su tamaño va de 1 a 5.5mm, esquisto con tamaños de 0.5 hasta 3mm y pedernal de 1 a 2mm; estos estratos de conglomerado se encuentran intercalados con estratos de arenisca gruesa que van de 0.4 a 0.5m de espesor, los clastos se encuentran subredondeados a redondeados. Las areniscas presentes corresponden a cuarzoarenitas cuya composición es de cuarzo en su mayoría y fragmentos líticos; las estructuras sedimentarias que se observan son estratificación cruzada y estratificación cruzada curvada.

En este trabajo se midieron tres columnas estratigráficas, donde el espesor de las columnas ubicadas en Santa Lucía (Santa Lucía 1 y 2) son de 56.7m y 133.9m respetivamente y en la columna medida sobre el Arroyo Acatepec el espesor es de 37m. Ramos-Leal (1989) le asigna un espesor de 800m al norte y suroeste de Santo Tomás Otlaltepec mientras que Ortega-Guerrero (1989) le asigna un espesor de 1500m. Cruz-Cruz (2012) le asigna un espesor de 826.5m sobre el Río Acatlán, al suroeste de Santo Domingo Tianguistengo.

En el área de estudio el contacto inferior de la Formación Otlaltepec es discordante con los esquistos de la Formación Chazumba, en la localidad de Santa Lucía su contacto superior es con la Caliza Coyotepec y en el Arroyo Acatepec su contacto superior es transicional con la Formación Magdalena. Ortega-Guerrero (1989) reporta que la unidad subyace discordantemente a la Formación Magdalena y hacia el extremo noroccidental del área está cubierta discordantemente por la Formación Agua de Luna (Pantoja-Alor, 1989).

De acuerdo a los datos recopilados en este trabajo la edad que se le asigna es del Jurásico Medio. Ramos-Leal (1989) la ubica en el Jurásico Medio de acuerdo al contacto transicional con el miembro Santa Cruz del Jurásico Medio. Ortega-Guerrero (1989) le asigna una edad Jurásica respectoa su posición estratigráfica y a sus relaciones angulares con la Unidad Piedra Hueca. Morán-Zenteno et al. (1993), determinan que la sucesión de la Unidad Otlaltepec consiste en dos unidades continentales separadas por una discordancia angular mayor y le asignan una edad del Jurásico Inferior y del Cretácico Temprano.

Se correlaciona con la Formación Chimeco, La Formación Mapache del Jurásico Medio (Perez-Ibargüengoitia et. al, 1965)) la parte superior del Grupo Tecocoyunca a la cual Corona-Esquivel (1985), Morán-Zenteno (1987) y Ferrusquía-Villafranca (1976) le asignan una edad del Jurásico Medio. Cruz-Cruz (2012) la correlaciona con Formación Tecomate de Petlalcingo, Puebla y Huajuapan de León; así como con la parte superior del Grupo Teconcoyuca.

3.1 Columnas Estratigráficas de Chazumba, Oaxaca.

Para tener un mejor control sobre las sucesiones estratigráficas que conforman a la Formación Otlaltepec en el área de Chazumba, objetivo del presente estudio se midieron tres columnas estratigráficas en el área de estudio (fig.6 y 7)

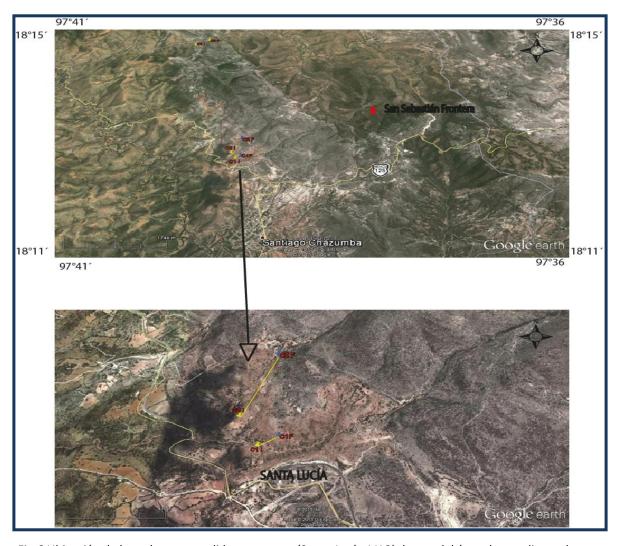


Fig. 6 Ubicación de las columnas medidas en campo (Santa Lucía 1 Y 2) dentro del área de estudio con base en una imagen del Globo terráqueo virtual GoogleEarth.

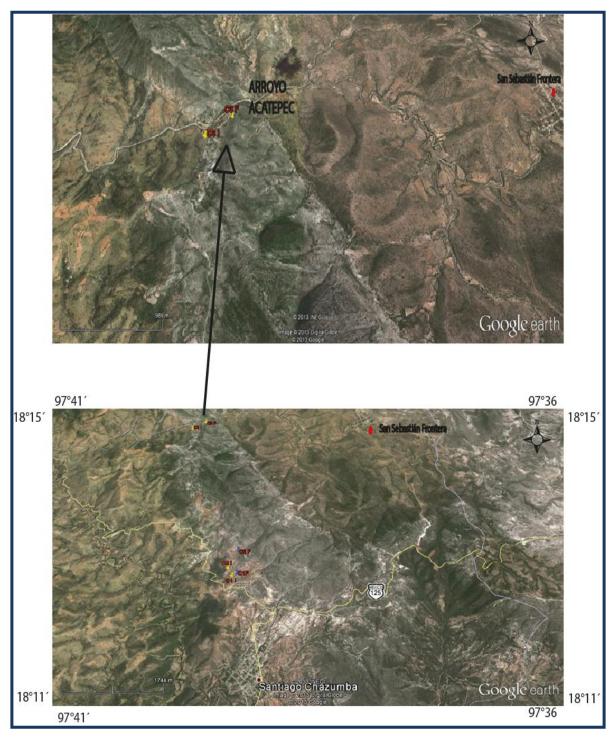


Fig.7 Ubicación de la columna medida en campo (Arroyo Acatepec) dentro del área de estudio con base en una imagen del Globo terráqueo virtual GoogleEarth.

De las columnas medidas dos corresponden a la localidad de Santa Lucía al noroeste de Chazumba, sobre la carreta que conecta a Olleras de Bustamante; y la tercera sobre el Arroyo Acatepec al suroeste de San Sebastián Frontera, todas las columnas inician sobre la discordancia que limita a la Formación Otlaltepec y la Formación Chazumba del Complejo Acatlán.

3.1.1 Columna Santa Lucía 1

Se midió una columna (fig. 10) en la localidad Santa Lucía al noroeste de Chazumba que pertenece a la Formación Otlaltepec a partir del contacto con la Formación Chazumba que pertenece al Subgrupo Petlalcingo del Complejo Acatlán con coordenadas iniciales de 14Q0639052 mE, 2013658 mN y una altura de 1772 snm. y coordenadas finales de 14Q0639150 mE, 2013711 mN y una altura de 1030.61 snm. En esta columna se midió un espesor total de 56.7m.

Descripción de la columna

En general consiste de una intercalación de estratos de arenisca fina a gruesa y en su mayoría niveles de conglomerado medio a grueso; se presentan lentes de conglomerado dentro de los estratos de arenisca y lentes de arenisca sobre algunos estratos de conglomerado. Su composición es de cuarzo, esquisto y metapedernal; donde la redondez y el tamaño de los clastos es variable respecto a la base y a la cima de la columna (hacia la cima los clastos se vuelven más angulosos y gruesos; así como, la proporción de esquisto es mayor).

De acuerdo al análisis petrográfico de la muestra de arenisca ADR-1 (Apéndice B), se puede clasificar como una subarcosa cuya composición es de cuarzo, esquisto, feldespato y fragmentos líticos en una matriz arcillosa; los cuales van de subangulosos a subredondeados, es una muestra que se encuentra moderadamente clasificada; de acuerdo a la esfericidad, redondez y contenido de matriz, se trata de una roca inmadura a

submadura. Mediante el conteo de puntos (400 puntos), se determinó que el mineral de mayor predominancia es el cuarzo (Apéndice C).

Los conglomerados están compuestos de cuarzo, esquisto, y metapedernal dentro de una matriz arenosa rica en óxidos; se encuentran mal clasificados y se presenta un arreglo caótico de los clastos. El clasto de mayor abundancia dentro de los estratos es el cuarzo presentándose entre un 80-90%.

Mediante un solo conteo de puntos (250 puntos) realizado en campo (Apéndice A), se determinó que el cuarzo es el de mayor tamaño (20.9mm) seguido por metapedernal y el esquisto (17.67mm y 12.5mm respectivamente) (fig. 8). Los clastos son subangulosos.

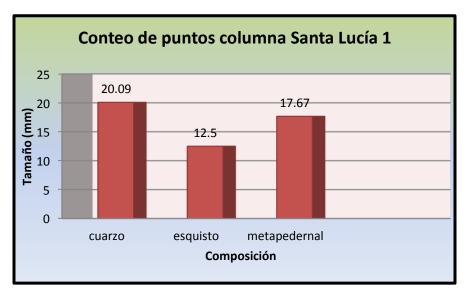


Fig. 8 Conteo de puntos realizado en la columna Santa Lucia 1 que muestra composición y tamaño de los clastos.

Se identificaron 4 facies (las cuales se describirán más detalladamente en el siguiente capítulo) de acuerdo a la clasificación de Miall (2003) y son las siguientes:

Código	Facies	Estructuras sedimentarias	Interpretación
Gmc	Grava masiva soportada por clastos.		Flujo de detritos.
Gh	Grava estratificada burdamente, soportada por clastos.	Imbricación.	Barras longitudinales, depósitos de fondo de canal.
Sh	Arena muy fina a gruesa.	Laminación horizontal.	Flujo de capas planas (flujo crítico).
Gp	Grava estratificada.	Estratificación cruzada planar.	Barras transversales o crecimientos deltaicos desde antiguas barras remanentes.

Tabla 2. Facies sedimentarias identificadas en la columna Santa Lucía 1.

Facies Gh: consiste de un conglomerado de composición cuarcítica en su mayoría, esquisto y metapedernal (fig.9) que se encuentra soportado por clastos, subangulosos a subredondeados, con un arreglo de clastos caótico y en algunas partes paralelos al plano de estratificación. Se observa imbricación de los clastos. El tamaño de los clastos es grueso en los cuales las medidas de estos clastos van desde:

Cuarzo (mm.)	Esquisto (mm.)
1.5- 13	4- 6

Tabla 3. Medida de los clastos en la facies Gh de la columna Santa Lucía 1.

La medida de los estratos va desde los 4 m. hasta los 0.4 cm de espesor y se encuentran intercalados con niveles de arenisca media a gruesa de hasta 2 metros de espesor.

Facies Gmc: se presenta intercalada con facies Gp, consiste de un conglomerado fino a grueso en el cual su composición es de cuarzo, esquisto y metapedernal, soportado por clastos dentro de una matriz de arenisca gruesa, mal clasificada y cementada por sílice.

Facies Gp: se observa en estratos de conglomerado grueso con lentes de arenisca gruesa; la composición sigue siendo la misma. El tamaño de los clastos llega hasta los 13mm.

Dentro de las estructuras sedimentarias presentes tenemos estratificación cruzada; así como lentes de arena gruesa, que también presentan este tipo de estratificación.

Facies Sh: consiste de estratos de arenisca fina a gruesa de hasta 4.5 metros de espesor, su composición es de cuarzo, óxidos y mica dentro de una matriz arcillosa. Dentro de estos estratos de arenisca se observan lentes de conglomerado fino a grueso, lo cual nos puede indicar la existencia de pequeños rellenos de canal.

Fig.9 Conglomerado de la Formación Otlaltepec.

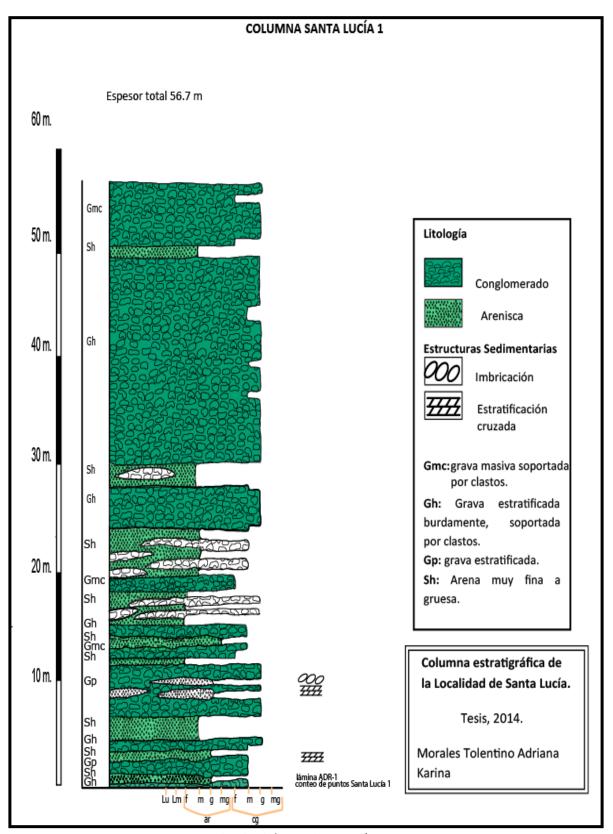


Fig.10. Columna Santa Lucía 1.

3.1.2 Columna Santa Lucía 2

Se midió una segunda columna (fig. 14) en esta localidad; Columna Santa Lucía 2, que también pertenece a la Formación Otlaltepec a partir del contacto con la Formación Chazumba que pertenece al Subgrupo Petlalcingo del Complejo Acatlán y hasta la cima de la unidad. El espesor es completo con coordenadas iniciales de 14Q0638953 mE, 2013839 mN con una altura de 1770m y coordenadas finales de 14Q0639140 mE, 2014241 mN con una altura sobre el nivel del mar de 1758m y un espesor total de 133.9m.

Descripción de la columna

Consiste de una intercalación de conglomerados oligomícticos medios a gruesos con estratos de arenisca fina a media, en su mayoría soportado por una matriz arenosa. Al igual que en la columna anterior se tienen lentes de conglomerado en una arenisca media y lentes de arenisca dentro de un conglomerado grueso. La composición es de cuarzo, esquisto y metapedernal.

De acuerdo al análisis petrográfico realizado en las muestras ADR-7 y ADR-8 (Apéndice B), las areniscas dentro de esta columna se pueden clasificar como subarcosas cuya composición es de cuarzo, esquisto, feldespato y fragmentos líticos en una matriz arcillosa; los cuales van de subangulosos a subredondeados y se puede decir que es una muestra que se encuentra moderadamente clasificada, de acuerdo a la esfericidad, redondez y contenido de matriz, se trata de rocas inmaduras a submaduras. Contiene porcentajes muy similares en abundancia de cuarzo y esquisto, seguido por los fragmentos de roca y el feldespato; esto se determinó mediante el conteo de puntos realizado (400 puntos) (Apéndice C).

Los conglomerados se encuentran soportados por clastos, están compuestos de cuarzo, esquisto, y metapedernal con una matriz arenosa rica en óxidos; se encuentran dentro de un arreglo caótico, mal clasificados, pueden presentarse de subangulosos a subredondeados. Hacia la base de la columna los clastos se presentan subredondeados y

conforme se avanza hacia la parte superior de la columna, se presentan subangulosos y hay mayor proporción de esquisto.

Mediante conteos de puntos (300 puntos) realizados en campo (Apéndice A) uno hacia la base y otro hacia la parte final de la columna, se determinó que el cuarzo es el que mayor predomina en ambos casos, el metapedernal sólo se presenta hacia la base y es el que se presenta de mayor tamaño (42.33mm) (fig. 11); hacia la parte final se deja de presentar y el esquisto es el que se presenta mayor en tamaño (22.71mm) respecto al cuarzo (fig. 12).

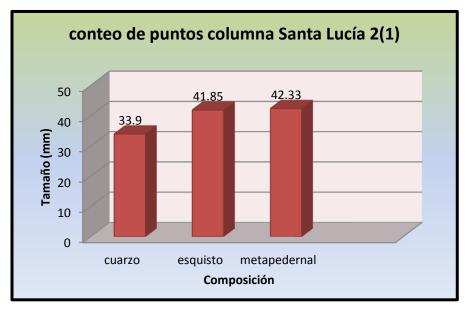


Fig. 11 Conteo de puntos realizado hacia la base de la columna Santa Lucia 2 que muestra composición y tamaño de los clastos.

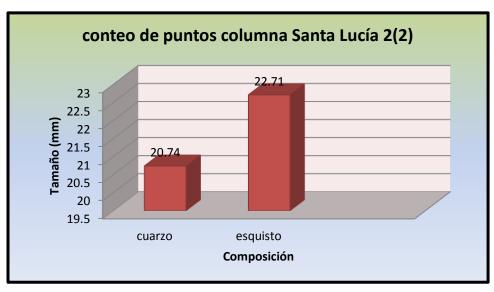


Fig. 12 Conteo de puntos realizado hacia la parte final de la columna Santa Lucia 2 que muestra composición y tamaño de los clastos.

Se determinó que se trata de conglomerados polimícticos los cuales tienen un origen fluvial.

Se identificaron 3 facies (las cuales se describirán más detalladamente en el siguiente capítulo) de acuerdo a la clasificación de Miall (2003) y son las siguientes:

Código	Facies	Estructuras sedimentarias	Interpretación
Gmc	Grava masiva soportada por clastos.		Flujo de detritos.
Gh	Grava estratificada burdamente, soportada por clastos.	Estratificación horizontal.	Barras longitudinales, depósitos de fondo de canal.
Sh	Arena muy fina a gruesa.	Laminación horizontal.	Flujo de capas planas (flujo crítico).

Tabla 4. Facies sedimentarias identificadas en la columna Santa Lucía 2.

Facies Gh: hacia la base de la columna se observa un conglomerado medio a grueso , de composición cuarcítica en su mayoría, esquisto y metapedernal que se encuentra soportado por clastos, subangulosos a redondeados, con un fábrica isotrópica y en algunas partes los clastos se observan paralelos al plano de estratificación. Dentro de estos niveles de conglomerado se observa estratificación paralela burda en una matriz de arena muy gruesa; así como, lentes de arenisca gruesa. Los espesores de los estratos van desde 0.8 cm. hasta 2.7 m. El tamaño de los clastos es grueso en los cuales las medidas de estos clastos van desde:

Nivel en la columna	Cuarzo (mm.)	Esquisto (mm.)	Metapedernal (mm.)
0	1.3-6.5	1.5- 6	2-3
3.9- 6.9	2.5-15	2-10	5- 16

Tabla 4. Medida de los clastos en la facies Gh de la columna Santa Lucía 2.

Facies Gmc: consiste de un conglomerado medio a grueso de composición cuarcítica, esquisto y metapedernal, soportado por clastos dentro de una matriz de arena gruesa, mal clasificada y cementada por sílice. En algunos estratos de conglomerado se observa estratificación paralela burda en una matriz de arena muy gruesa.

Facies Sh: consiste de estratos de arenisca fina a media de hasta 1.5 metros de espesor, su composición es de cuarzo, óxidos y mica dentro de una matriz arcillosa, en los cuales se pueden observar lentes de conglomerado fino. Dentro de los 120.4-121.9 metros de espesor, se observa una arenisca calcárea de grano fino. Se observa una sedimentación rítmica, hacia la cima los clastos se vuelven más angulosos y gruesos; así como, la proporción de esquisto es mayor. Esta columna se midió a partir del contacto con el esquisto Chazumba (fig. 13).

Fig. 13 Contacto claramente discordante entre el esquisto Chazumba y la Formación Otlaltepec.

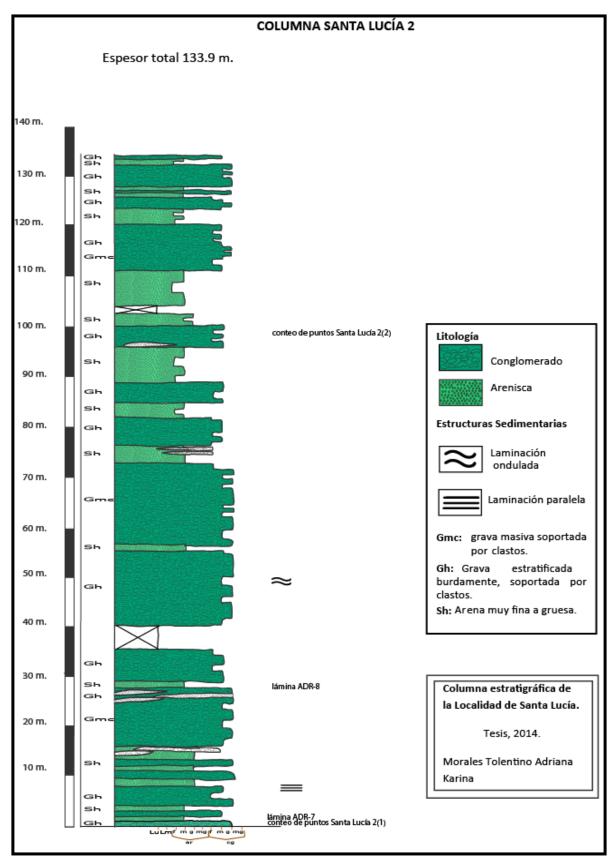


Fig.14 Columna Santa Lucía 2.

3.1.3 Arroyo Acatepec

Se midió una tercera columna (fig. 21) sobre el Arroyo Acatepec que pertenece a la Formación Otlaltepec y a la Formación Magdalena con coordenadas iniciales de 14Q0637585 mE, 2018425 mN con una altura de 1633 m. y coordenadas finales de 14Q0637913 mE, 2018702 mN con una altura de 1758 m. Esta columna se inició desde el contacto con la Formación Chazumba del Subgrupo Petlalcingo del Complejo Acatlán y se terminó de medir hasta el contacto con la Caliza Coyotepec. Con un espesor total de 169.7 m.

Descripción de la columna

Consiste de una intercalación de estratos de conglomerado oligomíctico fino a grueso con estratos de arenisca fina a media; también, se observan lentes de conglomerado fino dentro de varios estratos de arenisca, hacia los 90.2 m se observa un cambio litológico donde predomina la intercalación de estratos de arenisca, limolita y lutita. Se presentan diversas estructuras sedimentarias que servirán para determinar facies y ambiente sedimentario. Finalmente se presentan niveles de dolomía de hasta 1.5 m de espesor.

Los conglomerados están compuestos de cuarzo, esquisto, y metapedernal con una matriz arenosa; están soportados por una matriz de arenas gruesas, bien clasificados, los clastos se presentan subredondeados a redondeados. Los clastos dentro de los estratos tienden a presentar cierta alineación respecto a los planos de estratificación.

De acuerdo al análisis petrográfico realizado en la muestra ADR-19 (Apéndice B), las areniscas dentro de esta columna se pueden clasificar como cuarzoarenitas cuya composición es de cuarzo en su mayoría, fragmentos líticos y poca matriz; los cuales van de subangulosos a subredondeados, es una muestra que se encuentra moderadamente clasificada; de acuerdo a la esfericidad, redondez y contenido de matriz, se trata de una roca submadura.

Con el conteo de puntos realizado en areniscas (400 puntos) (Apéndice C), se observa un conglomerado soportado por una matriz arenosa en el cual su composición predominante es cuarzo.

Mediante el conteo de puntos (214 puntos) realizado en campo (Anexo A) hacia la base de la columna se determinó que el esquisto es el mayor tamaño (22.5mm.) respecto al cuarzo y al metapedernal (fig. 15). En abundancia el cuarzo es el que predomina.

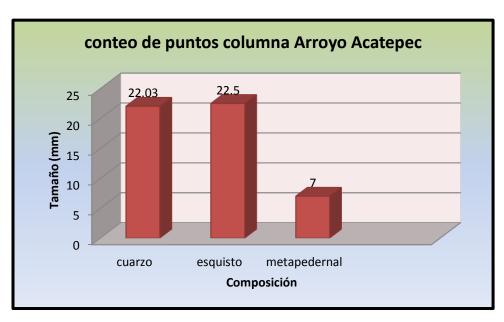


Fig. 15 Conteo de puntos realizado hacia la base de la columna Arroyo Acatepec que muestra composción y tamaño de los clastos.

Se identificaron 4 facies (las cuales se describirán más detalladamente en el siguiente capítulo) de acuerdo a la clasificación de Miall (2003) y son las siguientes:

CAPÍTULO III. ESTRATIGRAFÍA LOCAL

Código	Facies	Estructuras sedimentarias	Interpretación			
Gt	Grava estratificada.	Estratificación cruzada curvada	Pequeños rellenos de canales.			
Gp	Grava estratificada.	Estratificación cruzada planar.	Barras transversales ó crecimientos deltaicos desde antiguas barras remanentes.			
Sr	Arena, muy fina a gruesa.	Rizaduras, laminación flaser, laminación cruzada.	Rizaduras (régimen de flujo bajo).			
FI	Arena, limo, arcilla.	Laminación fina.	Depósitos de llanuras de inundación o de desbordamiento, canales abandonados.			

Tabla 5. Facies sedimentarias identificadas en la columna Arroyo Acatepec.

Facies Gp: se presenta en estratos de espesor de hasta 0.5 cm, consiste de un conglomerado fino a medio (fig.16) soportado por una matriz de arenisca gruesa, la composición es de cuarzo, esquisto y pedernal; los clastos se encuentran subredondeados a redondeados burdamente gradados. Dentro de los estratos de conglomerado fino se observan lentes de clastos gruesos y a su vez con areniscas conglomeráticas estratificadas.

El tamaño de los clastos es:

Cuarzo (mm)	Esquisto (mm.)	Pedernal (mm.)
1- 5.5.	0.5-3.	1- 2.

Tabla 6. Medida de los clastos en la facies Gp de la columna Arroyo Acatepec.

Se observan estructuras sedimentarias (fig.16 y 17) como:

- Estratificación cruzada festoneada
- Estratificación ondulada planar
- Estratificación cruzada planar

Los clastos siguen cierta orientación de acuerdo a los planos de estratificación y los niveles de areniscas gruesas conglomeráticas forman parte de la estratificación cruzada.

Fig.16 Estratificación cruzada y lentes de conglomerado presentes en una arenisca de grano muy grueso del Arroyo Acatepec. (Formación Otlaltepec).

Fig. 17 Estratificación cruzada en un conglomerado del Arroyo Acatepec (Formación Otlaltepec).

CAPÍTULO III. ESTRATIGRAFÍA LOCAL

Facies Gt: se presenta dentro de un conglomerado fino de hasta 40 cm de espesor junto

con la facies Gp con estratos de arenisca conglomerática gruesa; la composición es de

cuarzo, esquisto y pedernal donde el cuarzo es el que predomina. Los clastos estas

subredondeados a redondeados. Se observa una estratificación cruzada ligeramente

curveada.

Facies Sr: corresponde a estratos de arenisca fina a media en algunos casos muy

consolidada de hasta 1 m. de espesor con lentes de conglomerado fino. En varios estratos

de arenisca en la superficie del estrato se observa ondulada y se presentan las siguientes

estructuras sedimentarias (fig.18, 19 y 20):

rizaduras.

Laminación flaser.

Estructuras de flama

Bioturbación.

Laminación cruzada.

Icnofósiles

Thalasinoides

Probablemente esta facies ya pertenece a la formación Magdalena.

37

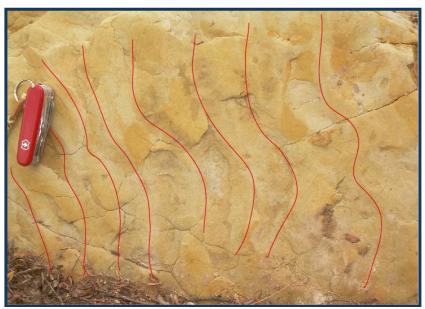


Fig .18 Rizaduras simétricas en una arenisca de grano fino muy consolidada de la Formación Magdalena en el Arroyo Acatepec.

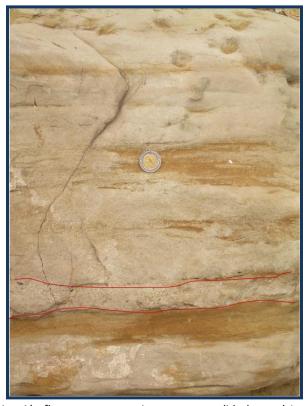


Fig. 19 Laminación flaser en una arenisca muy consolidada en el Arroyo Acatepec (Formación Magdalena).

Fig. 20 Icnofosiles presentes en una arenisca de grano medio en el Arroyo Acatepec (Formación Magdalena).

Facies FI: corresponde a una intercalación de estratos de arenisca, limos y arcilla de hasta 1.2 m, 2.5 m y 3 m de espesor respectivamente. Estos se observan laminados. Probablemente esta facies ya pertenece a la formación Magdalena.

Se observaron estratos de caliza dolomitizada de hasta 50 cm. de espesor con ligera bioturbación y presencia de icnofósiles.

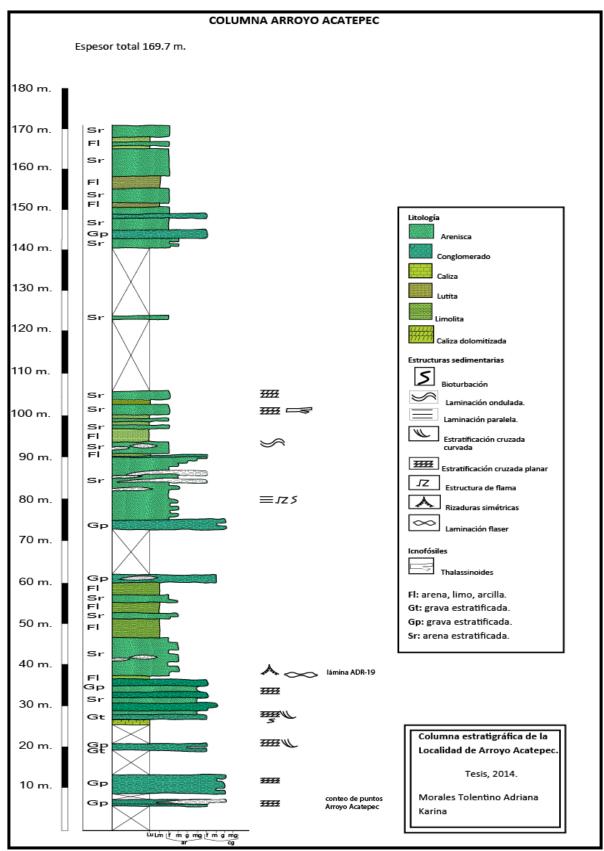


Fig.21 columna Arroyo Acatepec.

Con la descripción de las facies determinadas para cada columna estratigráfica medida en el capítulo anterior, en este capítulo se pretende realizar una asociación de facies y un modelo de facies a partir de los elementos arquitectónicos presentes.

4.1 ASOCIACIONES Y MODELO DE FACIES DE LA FORMACIÓN OTLALTEPEC

Para realizar un modelo de facies se deben tener elementos arquitectónicos, los cuales son las asociaciones de facies cuando son documentadas a escalas pequeñas considerando geometría y arreglo interno de los sistemas fluviales y se consideran que son los bloques que permitirán la construcción de los Sistemas de Depósito tanto recientes como antiguos.

Miall (2000) realiza una tabla de clasificación de facies para los distintos elementos arquitectónicos básicos de los depósitos fluviales (tabla 6 y fig. 22).

Elemento	Símbolo	Asociación principal de facies	Geometría y relaciones
Canal	СН	Cualquier combinación	Digitación, lentes o láminas. Geometría cóncava hacia arriba. Con base erosiva, escala y forma variable.
Barra de gravas y bedforms	GB	Gp, Gt, Gmm	Lentes, mantos, generalmente cuerpos tabulares.
Bedforms de arena	SB	St, Sp, Sh, Sl, Sr, Se, Ss	Lentes, láminas, mantos, cuñas que ocurren como rellenos de canal, rellenos de canales de desborde, barras menores, laterales.
Macroformas de acreción pendiente abajo	DA	St, Sp, Sh, Sl, Sr, Se, Ss	Lentes que descansan sobre lechos, planos o base acanalada, superficie de erosión interna de 3er orden cóncava hacia arriba y superficie de acreción interna de 4to orden.
Macroformas de acreción lateral	LA	St, Sp, Sh, Sl, Se, Ss menos comunmente Gm, Gt, Gp	Cuñas, laminas, lobules; caracterizados por acreción lateral interna superficie de 3er orden.
Huecos de socavamiento	но	Gh, Gt, St, Sl	Relleno de hoquedades y canales menores, limitados en la base por superficies curveadas y cóncavas de

			4to orden. El relleno generalmente consiste de litofacies Sh y Sl.			
Flujo de sedimentos por gravedad	SG	Gmm, Gmg, Gci, Gmc	i, Lóbulo, lámina, típicamen intercalada con GB, flujo de detritos.			
Arenas laminadas	LS	Sh, SI; en menor proporción Sp, Sr	Láminas, mantos.			
Depósitos de desborde finos (overbanks)	FF	Fl, Fm	Manto delgado a grueso, intercalado con SB.Puede rellenar canales.			

Tabla 6. Elementos Arquitectónicos de los depósitos fluviales (Miall-2000).

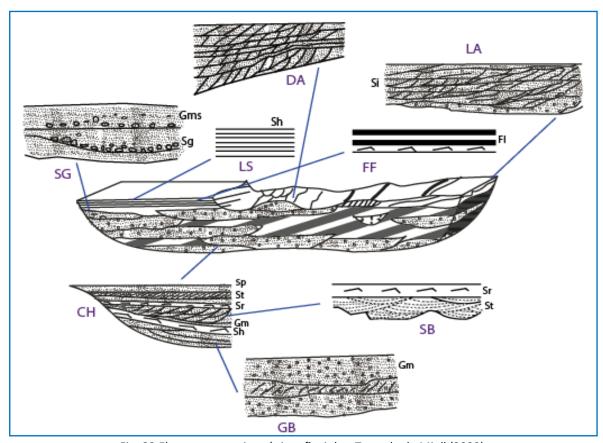


Fig. 22 Elementos arquitectónicos fluviales. Tomado de Miall (2000).

Con base en la tabla de clasificación de Elementos Arquitectónicos de los depósitos fluviales de Miall (2000), se identificaron los siguientes elementos arquitectónicos en las columnas Santa Lucía 1 y 2 así como en el Arroyo Acatepec:

Elemento	Símbolo	Asociación principal de facies	Geometría y relaciones	Columna estratigráfica en la que se presenta
Canal	СН	Gp, Gh, Gt, Sr, Sh	Lentes.Geometría cóncava hacia arriba.Escala y forma variable.	Santa Lucía 1 y 2 y Arroyo Acatepec
Bedforms de arena	SB	Sh, Sr	Lentes que ocurren como rellenos de canal.Barras menores, laterales.	Santa Lucía 1 y 2 y Arroyo Acatepec
Flujo de sedimentos por gravedad	SG	Gmc	• Flujos de detritos.	Santa Lucía 1 y 2 y Arroyo Acatepec
Huecos de socavamiento	НО	Gh	 Relleno de hoquedades y canales menores. 	Santa Lucía 1 y 2
Barra de gravas y bedforms	GB	Gp, Gt	Lentes.Cuerpos tabulares.	Santa Lucía 1 y Arroyo Acatepec
Macroformas de acreción pendiente abajo	DA	Sr	 Lentes que descansan sobre lechos o base acanalada. 	Arroyo Acatepec
Depósitos de desborde finos (overbanks)	FF	FI	Manto delgado a grueso, intercalado con SB.Puede rellenar canales.	Arroyo Acatepec
Arenas laminadas	LS	Sr	● Láminas.	Arroyo Acatepec

Tabla 7. Elementos arquitectónicos reconocidos en las columnas estratigráficas medidas Santa Lucía 1, 2 y Arroyo Acatepec.

4.2 Modelo de facies Santa Lucía 1 y 2.

Dentro de este modelo de facies (fig. 23) de las columnas Santa Lucía 1 y 2, se tienen ambas columnas medidas a partir del contacto con la Formación Chazumba; estando estas dos dentro del mismo nivel estratigráfico, se asociaron los diferentes estratos respecto a las características litológicas y mediante los elementos arquitectónicos similares u iguales que se presentan en ambas columnas.

Por lo tanto tenemos lo siguientes elementos:

CH: corresponde a rellenos de canal; dentro de este elemento tenemos facies Gp, Gh, Gt, Sr y Sh, presentándose como lentes de conglomerado u arenisca respectivamente.

SB: corresponde a bedforms de arena; dentro de este elemento tenemos facies Sh y Sr. Presentándose como barras menores laterales y como lentes de arenisca; estos, se encuentran dentro de estratos de conglomerado grueso los cuales presentan estratificación cruzada e imbricación de los clastos.

SG: corresponde a flujo de sedimentos por gravedad; dentro de este elemento tenemos facies Gmc, siendo estratos de conglomerado soportado por clastos.

HO: corresponde a huecos de socavamiento generados en el lecho de las corrientes, dentro de este elemento tenemos la facies Gh, siendo estratos de grava estratificada soportada por clastos presentando estratificación horizontal e imbricación.

GB: corresponde a barra de gravas y bedforms, dentro de este elemento tenemos facies Gp y Gt, siendo cuerpos tabulares de estratos de arenisca gruesa con una laminación horizontal y en la mayoría de los casos presentándose como lentes.

En general en este modelo al realizar asociaciones de facies en ambas columnas y hacer una clasificación de acuerdo a los distintos elementos arquitectónicos; se tienen rellenos de canal, con presencia de pequeñas barras menores; así como, de estratos laminares.

Al hacer la correlación entre las columnas es claro reconocer que las facies lateralmente no son muy amplias, situación muy común en los sistemas fluviales y mayor en los sistemas trenzados.

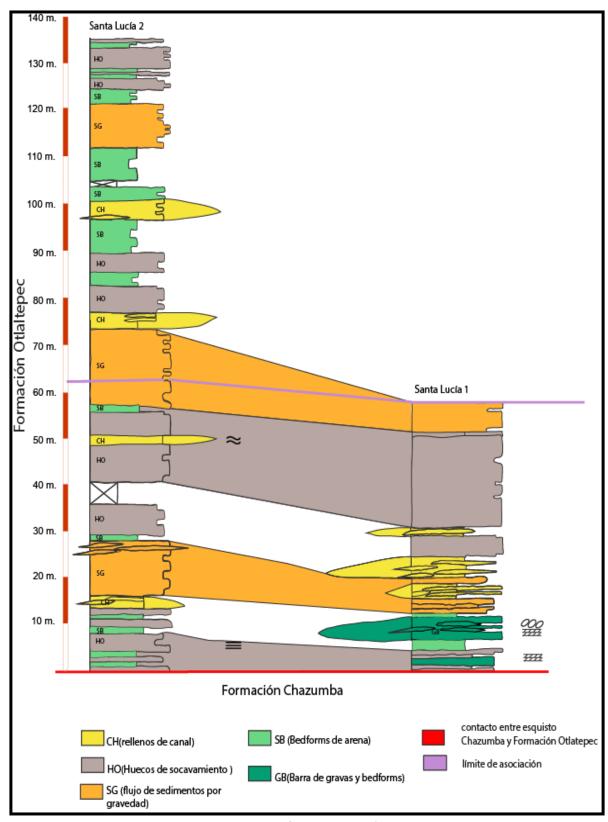


Fig. 23 modelo de facies Santa Lucía 1 y 2.

4.3 Modelo de facies Santa Lucía 1 y 2 y Arroyo Acatepec.

Como se puede observar en la fig. 24 se observan los elementos arquitectónicos identificados en Arroyo Acatepec, los cuales son los siguientes:

Compartiendo entre sí el elemento CH, GB Y SB, correspondiendo igualmente a lentes de conglomerado y arenisca que en la mayoría de los casos, son rellenos de canales y barras menores dentro de estratos de material más grueso.

DA: corresponden a macroformas de acreción pendiente abajo, presentándose facies Sr, que pequeños lentes de arena fina a gruesa que descansan sobre lechos o base acanalada.

FF: corresponde a depósitos de desborde finos (overbanks); presentándose facies FI, este se encuentra intercalado con el elemento SB y son paquetes de limos y arcillas laminadas que pueden llegar a presentarse como rellenos de canal.

LS: corresponde a arenas laminadas; presentándose facies Sr, siendo estas arenas finas a gruesas que presentan laminación cruzada de posibles depósitos de llanuras de inundación.

Asociando las tres columnas (fig. 25) respecto a los elementos arquitectónicos que presentan consta de una intercalación de lentes que ocurren como rellenos de canal con cuerpos tabulares y estratos laminares; estos últimos formándose dentro de una llanura de inundación hacia la parte media y final de la columna Arroyo Acatepec.

Se observa una zona de transición lo cual nos indica una cercanía a la línea de costa; por lo que puede existir un cambio en el ambiente de depósito hacia los 60 m. de la columna Arroyo Acatepec.

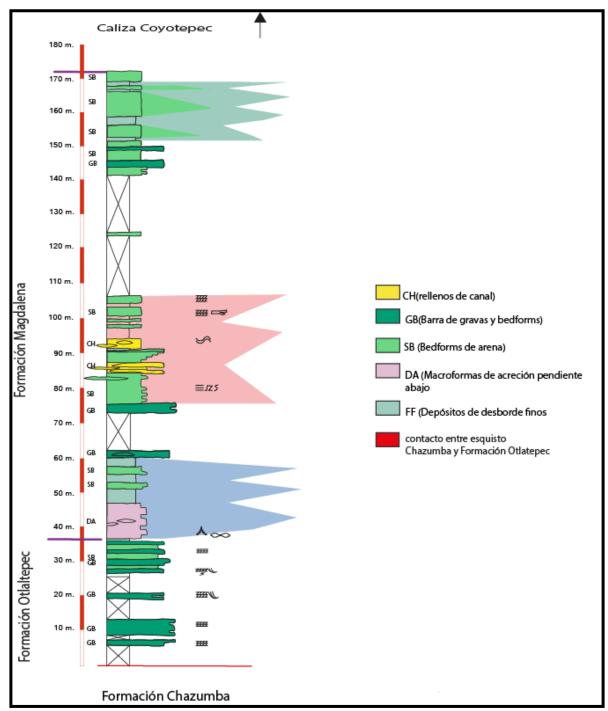


Fig. 24 Modelo de Facies Arroyo Acatepec.

DA (Macroformas de acreción pendiente abajo contacto entre esquisto Chazumba y Formación Otlatepec FF (Depósitos de desborde finos GB(Barra de gravas y bedforms) 翻 límite de asociación Santa Lucía 1 HO(Huecos de socavamiento) SG (flujo de sedimentos por SB (Bedforms de arena) CH(rellenos de canal) ngravedad) Santa Lucía 2 Formación Chazumba 연 오 오 ≥7Z ≥ Arroyo Acatepe Caliza Coyotepec ᆼ 8 8 88 ₫ **ዌ ዙዋዙዋ ዙ** 88 # 8 8 ă 88 8 170 m. 120 m. 90 m. 80 m. 70 m. 60 m. 50 m. 40 m. 20 m. 10 m. 140 m. 130 m. 30 m. 180 m. 150 m. 110 m. Formación Magdalena Formación Otlaltepec

CAPÍTULO IV. ANÁLISIS DE FACIES DE LA FORMACIÓN OTLALTEPEC

Fig. 25 Modelo de Facies Santa Lucía 1, 2 y Arroyo Acatepec.

V. AMBIENTE DE DEPÓSITO

Prothero y Schwabs (2004) consideran que los sistemas de corrientes trenzadas son amplios y someros durante los estadíos carentes de agua, tienen gradientes escalonados, abundantes sedimentos gruesos (principalmente grava y arena) (fig. 26), rápidas fluctuaciones de descarga, permitiendo una rápida velocidad de los canales de erosionar sus bancos; Miall (2006), determina que los sistemas fluviales trenzados se caracterizan por tener muchos canales separados por barras y pequeñas islas (fig. 27), y es muy común encontrarlos donde los sedimentos son abundantes, las descargas de agua son altas y esporádicas, y los ríos son sobrecargados con sedimentos; esto ocurre generalmente en las partes distantes de los abanicos aluviales. Los sistemas de ríos trenzados se definen a partir de los diferentes tipos de barras (longitudinales, laterales o transversales) que en ellos se generan.

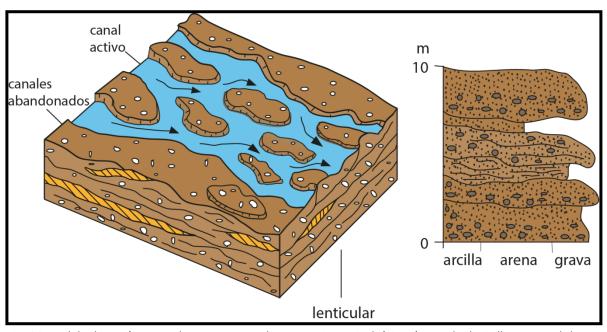


Fig. 26 Modelo de un río trenzado, que muestra la secuencia vertical típica. (Tomado de Galloway y Hobday, 1983).

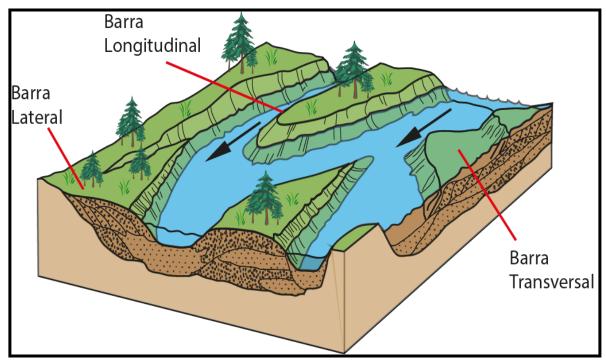


Fig. 27 Modelo depositacional para un canal trenzado. (Tomado de Galloway y Hobday, 1983).

Mediante el análisis de facies y el modelo de facies de las columnas estudiadas, se observan características similares como son los rellenos de canal que se presentan como lentes de conglomerado u arenisca, estratos que presentan laminación paralela y estratificación cruzada, la presencia de estructuras sedimentarias como las rizaduras, imbricación, laminación cruzada curvada, estratificación flaser, estructuras de flama, laminación ondulada, la presencia de fósiles y bioturbación; así como el tamaño, forma, redondez y composición de los clastos nos indican la procedencia de estos ayudándonos a determinar el posible ambiente de depósito.

Por lo tanto, nos encontramos que en un sistema fluvial trenzado (fig. 28), dentro del cauce de un río proviene de la parte alta de un valle con un régimen de flujo mayor; donde los sedimentos gruesos de grava y arena se deben a este sistema de transporte. Los cambios en el régimen de flujo durante distintos periodos pero conservando la misma

energía permitieron la formación de estratificación cruzada donde los clastos llegan a presentarse imbricados, soportado por clastos.

Durante los periodos donde el régimen de flujo fue constante, con el mismo aporte de sedimentos y en una sola dirección tenemos la formación de estratos laminares disminuyendo el tamaño de los granos; las columnas Santa Lucia 1 y 2 debido a las características litológicas y texturales de los clastos nos indican que se encuentran más cercanas hacia el área de aporte de sedimentos; la mayoría de los clastos presentes en los conglomerados y areniscas, correspondientes a los modelos arquitectónicos CH, SB, SG y GB provienen del las partes positivas, siendo este el esquisto Chazumba. De acuerdo al análisis petrográfico realizado en las areniscas (subarcosas inmaduras a submaduras) presentes dentro de estas columnas (láminas ADR-1, ADR-7 y ADR-8), observamos clastos subangulosos a subredondeados indicando que el transporte que sufrieron fue medio; es decir, el ritmo en el que fueron depositados fue constante, no hubo tanto transporte considerable, pero tampoco fue poco el tiempo de transporte.

Debido a la dinámica presente en este sistema, los cambios en la corriente y arrastre de sedimentos generaron erosión, posteriormente los espacios o huecos dejados por las corrientes, fueron ocupados por otro material diferente al que se tiene, generando lentes, barras y rellenos de canal de conglomerado y arenisca, que fueron ocupando estos espacios presentes dentro de ambas columnas. Estos depósitos corresponden con los modelos arquitectónicos HO, CH, GB, SB como se puede observa en las columnas de Santa Lucía 1 y 2.

Podemos observar que dentro del tiempo en que estos sedimentos pertenecientes a la Formación Otlaltepec se depositaron, los cambios en el flujo de corriente fueron dentro de periodos constantes y rítmicos manteniendo la misma forma de depósito (conglomerados gruesos a medios y por encima areniscas gruesas a medias).

De acuerdo al ambiente fluvial en el que nos encontramos, la columna del Arroyo Acatepec correspondería a la parte más alejada de este sistema, ya que, el tamaño de clastos, forma, redondez y composición de los clastos varía respecto a Santa Lucía 1 y 2.

Por otro lado en la columna medida en el Arroyo Acatepec las condiciones de depósito fueron un poco diferente, ya que en general la presencia de sedimentos más finos del tamaño de limo y arcilla son los que predominan, la presencia de estratos de conglomerado es menor, así como el tamaño de los clastos; comparada con Santa Lucía 1 y 2; los clastos que se presentan están redondeados y su forma es más subredondeada a redondeada. El porcentaje de cuarzo es mayor y la presencia de clastos metamórficos disminuye considerablemente, las estructuras sedimentarias presentes hacia la base de la columna como las rizaduras simétricas que se presentan indican una influencia marcada de las corrientes indicando que nos acercamos a una zona de playa o que no encontramos en ella, siendo esta probablemente una planicie costera. Aquí encontramos modelos arquitectónicos de facies CH, GB, SB, DA, FF y LS lo que nos puede decir que si estamos dentro de una zona de playa y que con acción del oleaje tenemos la formación de estas rizaduras simétricas así como de esta estratificación flaser y ondulada.

La parte superior de la sucesión en la columna medida en Arroyo Acatepec, tenemos la presencia de estratos de caliza y dolomía interestratificados, lo cual nos indica que existieron periodos con aumento en el nivel del mar, de acuerdo a lo registrado en la columna en dos episodios distintos ya que la cercanía a la que se encuentran es considerable. Otro indicador de estos episodios es la presencia de ligera bioturbación dentro de superficies de estratificación y de fósiles hacia los 80 m. de esta columna, que nos demuestran que si llegó a inundarse esta zona para poder originar este tipo de estructuras. Las areniscas hacia la parte final de esta columna son finas y están más litificadas con cementante carbonatado y con mayor porcentaje de cuarzo.

Con los argumentos proporcionados se interpreta que el ambiente de depósito de la Formación Otlaltepec fue un sistema fluvial trenzado, donde las columnas Santa Lucía 1 y 2 así como el Arroyo Acatepec pertenecen a la Formación Otlaltepec formadas durante el Precretácico (Jurásico Medio). Sin embargo, en la columna Arroyo Acatepec, donde se observa el cambio hacia la Formación Magdalena, comienza una ambiente de transición siendo este una playa, en donde todos estos movimientos de oleaje, cambios en el ritmo de sedimentación, cambios en el tamaño y forma de los clastos, la composición y la presencia de determinadas estructuras sedimentarias nos indican que se formaron en diferentes tiempos geológicos (Santa Lucía 1 y 2 son más antiguas que Arroyo Acatepec). La única que fue medida hasta el contacto con la Caliza Coyotepec originada en el Cretácico, fue la de Arroyo Acatepec.

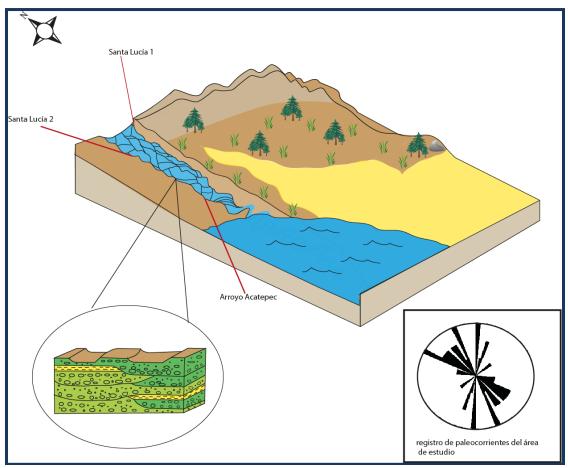


Fig. 28 Ambiente de depósito de un sistema fluvial trenzado.

VI. CONCLUSIONES

- En este trabajo se midieron tres columnas estratigráficas (Santa Lucía 1 y 2 y Arroyo Acatepec) en las cercanías al poblado de Chazumba, estas columnas sirvieron de base para la caracterización sedimentológica y estratigráfica de la Formación Otlalepec.
- En las columnas medidas se identificaron 7 litofacies fluviales (Gp, Gt, Gh, Gmc, Sh, Sr y Fl) que se agruparon en 8 asociaciones de facies o elementos arquitectónicos de facies (CH, SB, GB, SG, HO, DA, FF, LS), que permitieron caracterizar mejor el ambiente sedimentario en que se formaron.
- De acuerdo al análisis de facies y los elementos arquitectónicos, se reconoció que la sucesión clástica, se formó y depositó dentro de un ambiente fluvial, correspondiente a un sistema trenzado.
- Las distintas estructuras sedimentarias como la estratificación cruzada, laminación paralela e imbricación de los clastos presentes en Santa Lucía 1 y 2 nos reflejan cambios en el régimen de flujo y dirección de la corriente.
- La columna Arroyo Acatepec es la más alejada de la fuente de aporte y la más cercana a un cambio en el ambiente de depósito, pudiendo pasar de continental a marino.
- Las rizaduras simétricas, laminación ondulada y estratificación flaser dentro de la Columna Arroyo Acatepec nos indican una cercanía hacia la línea de costa con distintos movimientos de marea u corriente. Estas ya pertenecen a la formación Magdalena.

CAPÍTULO VI. CONCLUSIONES

- La presencia de fósiles, bioturbación y estratos de caliza en la columna Arroyo Acatepec nos indica que existieron periodos de aumento en el nivel del mar.
- De acuerdo al análisis petrográfico realizado a las areniscas de Santa Lucía 1 y 2, que corresponde a las láminas ADR-1, ADR-7 y ADR-8 se clasificaron como subarcosas. Y el análisis realizado a la del Arroyo Acatepec ADR-19 corresponde a una cuarzoarenita.

RECOMENDACIONES

Para los siguientes trabajos que se realicen dentro de esta región, se recomienda realizar la cartografía geológica de toda el área que cubre los afloramientos de la Formación Otlaltepec, para tener una visión más amplia y regional de la extensión de la unidad y de sus variaciones.

Medir más columnas estratigráficas con el fin de caracterizar mejor la Formación Otlaltepec y llevar a cabo una correlación más regional.

También hacia el noroeste de la columna Arroyo Acatepec sería conveniente realizar un caminamiento sobre la Formación Otlaltepec, donde de acuerdo a la bibliografía consultada es probable que se reconozca el acuñamiento de la Formación Magdalena.

Bibliografía y Referencias

- Adams, A.E., Mackenzie, W.S., Guilford C., 1984, Atlas of sedimentary rocks under the microscope, Longman Group, 104 pp.
- Adams, A.E, Mackenzie, W.S, 1996, Atlas en color de Rocas y Minerales en Lámina Delgada, Masson, España, 216 pp.
- Arche, A., 2010, Sedimentología: Del proceso físico a la cuenca sedimentaria,
 Editorial CSIC, 1288 pp.
- Barragán, R., Campos-Madrigal, E., Ferrusquía-Villafranca, I., López-Palomino, I.,
 Tolson, G., 2010, Código Estratigráfico Norteamericano, Instituto de Geología,
 Universidad Nacional Autónoma de México, boletín 117, 41 pp.
- Caballero-Miranda, C.I., 1994, Magnetic fabric of a Jurassic clastic sequence from Oaxaca- Puebla, southern Mexico and inferred paleocurrent flow, Geofísica Internacional, vol. 33, núm.4, 547-564 pp.
- Campos-Madrigal, E., Centeno-García, E., Mendoza-Rosales, C.C., Silva-Romo, G., 2013, Sedimentología, reconstrucción paleoambiental y significado tectónico de las sucesiones clásticas del Jurásico Medio en el área de Texcalapa, Puebla-Huajuapan de León, Oaxaca: Revisión de las formaciones Ayuquila y Tecomazúchil, Rev. Mex. cienc. Geol, vol.30, no.1, 27 pp.

- Cruz-Cruz, M.A., 2012, Análisis Estratigráfico de la secuencia Jurásica de la región de Santo Domingo Tianguistengo, Oaxaca- Santa Cruz Nuevo, Puebla, Tesis de Licenciatura, Facultad de Ingeniería, Universidad Nacional Autónoma de Mexico, 109 pp.
- Einsele, G., 2000, Sedimentary Basins (Evolution, Facies and Sediment Budget),
 Springer, Alemania, 781 pp.
- Mendoza-Rosales, C.C., 2010, Estratigrafía y Facies de las Cuencas Cretácicas del Sur de Puebla y su Significado Tectónico, Tesis de Doctorado, Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, 11-16, 61-86 pp.
- Miall, A.D., 2006, The Geology of Fluvial Deposits, Sedimentary Facies, Basin
 Analysis and Petroleum Geology, Springer-Verlag Inc., Heidelberg, 245 pp.
- Morán-Zenteno, D.J., Caballero-Miranda, C.I., Silva-Romo, G., Ortega-Guerrero, B.,
 González-Torres, E., 1993. Jurassic Cretaceos Paleogeographic Evolution of The
 Northern Mixteca Terrane, Southern Mexico, Geofísica Internacional, vol. 32, núm.
 3, 453-473 pp.
- Morán-Zenteno, D.J., 1987, Paleogeografía y Paleomagnetismo Precenozoicos del Terreno Mixteco, Universidad Nacional Autónoma de México. Tesis de maestría, Facultad de Ciencias, 177 pp.
- Ortega-Gutiérrez, F., 1978, Estratigrafía del Complejo Acatlán en la Mixteca Baja, estados de Puebla y Oaxaca. Universidad Nacional Autónoma de México, Instituto de Geología, Revista, vol. 2, núm. 2, 112-131 pp.

- Ortega-Gutiérrez, F., 1981, La evolución tectónica premisisípica del sur de México.
 Universidad Nacional Autónoma de México, Instituto de Geología. Revista, vol. 5, núm. 2, 140-157 pp.
- Ortega-Guerrero, B., 1989, Paleomagnetismo y Geología de las Unidades Clásticas
 Mesozoicas del área Totoltepec- Ixcaquixtla, Estados de Puebla y Oaxaca, Tesis de
 Maestría, Facultad de Ciencias, Universidad Nacional Autónoma de México.
- Ortega-Guerrero, B., Urrutia-Fucugauchi, J., 1993, Jurassic paleomagnetic results constraining southerly motions of the Mixteca Terrane, southern Mexico, Geofísica Internacional, vol. 32, num. 3, 475-485 pp.
- Ortiz-Martínez, E.L., Velasco de León, M.P., Salgado-Ugarte, I., Silva-Pineda, A.,
 2013, Clasificación del área foliar de las gimnospermas fósiles de la zona norte de
 Oaxaca, México, Universidad Nacional Autónoma de México, Instituto de Geología,
 Revista Mexicana de Ciencias Geológicas, v. 30, núm. 1, 150-158 pp.
- Ramos-Leal, J.A., 1989, Estratigrafía y Evolución Paleoambiental del área de San Juan Ixcaquixtla, Edo. De Puebla, México, Tesis de Licenciatura, Universidad Nacional Autónoma de México, 70 pp.
- Reading, H.G., 1993, Sedimentary Environments and Facies, Oxford, University of Oxford, Blackwell Scientific Publications, 62 pp.
- Richard, A. Davis, 1992, Depositional Systems (An Introduction to Sedimentology and Stratigraphy), Prentice hall, U.S.A, 204-252 pp.

- L. Sedlock, R., Ortega-Gutiérrez, F., C. Speed, R., 1993, Tectonostratigraphic
 Terranes and Tectonic Evolution of Mexico, The Geology Society of America, U.S.A,
 143 pp.
- Silva-Romo., Mendoza-Rosales, C.C., 2011, Manual para el Trabajo Geológico de Campo, México, Universidad Nacional Autónoma de México, Facultad de Ingeniería, 352 pp.
- Silva-Romo, G., Mendoza-Rosales, C. C., Campos-Madrigal, E., 2010, Elementos de Cartografía Geológica, Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 292 pp.
- Vera Torres, 1994, Estratigrafía: Principios y Métodos, editorial Rueda, Madrid, 805
 pp.

Apéndice A

Conteo de puntos realizado en campo de conglomerados.

Proyecto: _tesis

Fecha:_18/06/12

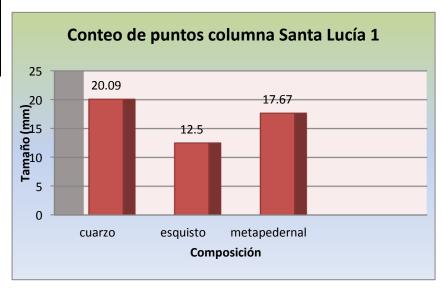
Localidad: Santa Lucía

Midio: Adriana Morales

Coordenadas: 14Q039052 mE, 2013658 mN Elipsoide: NAD-27_

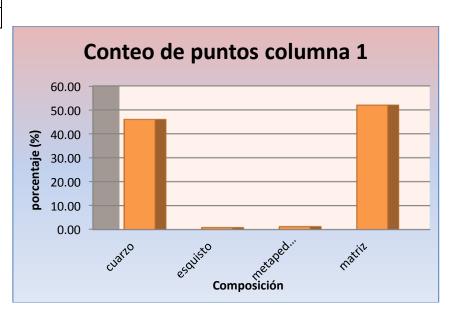
Formación: Otlaltepec

Retícula:_5*5__ Columna: 1_


		Tamaño									
	composición	(mm)	redondez	esfericidad	color		composición	tamaño	redondez	esfericidad	color
1	cuarzo	25	0.3	0.5	gris	126	cuarzo	15	0.3	0.9	gris
2	cuarzo	20	0.3	0.5	gris	127	matriz				
3	matriz					128	cuarzo	10	0.3	0.9	gris
4	matriz					129	matriz				
5	cuarzo	50	0.1	0.9		130	matriz				
6	metapedernal	10	0.3	0.7	negro	131	cuarzo	10	0.5	0.7	gris
7	matriz					132	matriz				
8	matriz					133	metapedernal	15	0.3	0.7	negro
9	cuarzo	10	0.3	0.5	gris	134	cuarzo	10	0.5	0.5	gris
10	matriz					135	matriz				
11	matriz					136	cuarzo	15	0.3	0.7	gris
12	matriz					137	matriz				
13	cuarzo	50	0.3	0.7	gris	138	matriz				
14	cuarzo	12	0.1	0.7	gris	139	cuarzo	10	0.5	0.7	gris
15	matriz					140	cuarzo	35	0.3	0.7	gris
16	cuarzo	20	0.3	0.7	gris	141	cuarzo	13	0.3	0.7	gris
17	cuarzo	30	0.5	0.9	gris	142	cuarzo	20	0.5	0.7	gris
18	matriz					143	matriz				
19	matriz					144	cuarzo	13	0.5	0.9	gris
20	matriz					145	matriz				
21	matriz					146	cuarzo	50	0.7	0.9	gris
22	matriz					147	matriz				
23	matriz					148	matriz				
24	cuarzo	20	0.3	0.5	gris	149	matriz				
25	matriz					150	cuarzo	10	0.3	0.5	gris
26	matriz					151	matriz				
27	matriz					152	matriz				
28	matriz					153	matriz				
29	matriz					154	cuarzo	30	0.5	0.7	gris
30	matriz					155	matriz				
31	matriz					156	cuarzo	20	0.5	0.5	gris
32	matriz					157	matriz				
33	cuarzo	20	0.3	0.9	gris	158	cuarzo	15	0.5	0.9	gris
34	cuarzo	45	0.3	0.7	gris	159	cuarzo	10	0.3	0.5	gris
35	matriz					160	esquisto	15	0.5	0.7	verde
36	matriz					161	matriz				

37	matriz					162	matriz				1 1
38	cuarzo	10	0.5	0.7	gris	163	cuarzo	15	0.5	0.7	gris
39	cuarzo	10	0.3	0.7	gris	164	cuarzo	20	0.5	0.9	gris
40	matriz					165	matriz				
41	matriz					166	cuarzo	20	0.5	0.7	gris
42	matriz					167	cuarzo	45	0.5	0.9	gris
43	matriz					168	cuarzo	10	0.7	0.9	gris
44	cuarzo	35	0.3	0.7	gris	169	cuarzo	25	0.3	0.5	gris
45	matriz					170	matriz				
46	cuarzo	10	0.1	0.7	gris	171	cuarzo	20	0.5	0.3	gris
47	matriz			_	0 -	172	cuarzo	15	0.7	0.5	gris
48	cuarzo	30	0.5	0.9	gris	173	matriz		•		- 8
49	matriz				0 -	174	cuarzo	17	0.5	0.3	gris
50	cuarzo	10	0.3	0.9	gris	175	cuarzo	37	0.7	0.5	gris
51	cuarzo	40	0.5	0.7	gris	176	matriz				- 8.10
52	matriz		0.0	0.7	8.10	177	cuarzo	10	0.9	0.7	gris
53	esquisto	10	0.3	0.5	verde	178	matriz		0.5	0.7	8
54	cuarzo	20	0.5	0.5	gris	179	cuarzo	10	0.5	0.3	gris
55	cuarzo	15	0.5	0.7	gris	180	matriz		0.0	0.0	8
56	cuarzo	15	0.5	0.7	gris	181	matriz				+
57	matriz		0.0	0.7	8.10	182	matriz				+
58	matriz					183	cuarzo	23	0.3	0.7	gris
59	matriz					184	matriz		0.5	0.7	8113
60	matriz					185	matriz				
61	cuarzo	20	0.5	0.9	gris	186	matriz				+
62	matriz	20	0.5	0.5	8113	187	matriz				
63	cuarzo	35	0.5	0.7	gris	188	matriz				+
64	cuarzo	20	0.5	0.9	gris	189	cuarzo	17	0.3	0.5	gris
65	cuarzo	15	0.5	0.9	gris	190	cuarzo	15	0.3	0.5	gris
66	cuarzo	30	0.3	0.9	gris	191	cuarzo	18	0.1	0.3	gris
67	cuarzo	30	0.5	0.7	gris	192	cuarzo	26	0.5	0.3	gris
68	cuarzo	35	0.7	0.9	gris	193	matriz		0.5	0.5	8113
69	matriz	33	0.7	0.3	8113	194	matriz				
70	matriz					195	matriz				
71	cuarzo	10	0.5	0.9	gris	196	cuarzo	5	0.3	0.5	gris
72	matriz	10	0.5	0.5	8113	197	matriz		0.5	0.5	81.5
73	cuarzo	0.4	0.5	0.9	gris	198	matriz				
74	matriz	J. 7	0.0	5.5	5.13	199	cuarzo	10	0.5	0.7	gris
75	cuarzo	20	0.5	0.7	gris	200	cuarzo	35	0.5	0.7	gris
76	matriz		0.0	J.,	5.13	201	matriz		0.0	0.7	5
77	matriz					202	cuarzo	35	0.5	0.7	gris
78	cuarzo	13	0.3	0.9	gris	203	cuarzo	27	0.1	0.3	gris
79	matriz	10	0.5	0.5	5.13	204	matriz		0.1	0.5	1 5.13
80	matriz					205	cuarzo	40	0.1	0.3	gris
81	matriz					206	cuarzo	36	0.3	0.5	gris
82	matriz					207	matriz		0.0	0.5	5
83	cuarzo	10	0.3	0.5	gris	208	matriz				+
84	cuarzo	10	0.3	0.9	gris	209	cuarzo	20	0.5	0.7	gris
85	matriz	10	0.5	0.5	6,13	210	matriz	20	0.5	0.7	6,13
86	cuarzo	10	0.3	0.9	gris	211	cuarzo	25	0.1	0.5	gris
87	matriz	10	0.5	0.5	8113	212	matriz	23	0.1	0.5	8113
07	matnz	1		<u> </u>	1	414	matnz				

88	cuarzo	20	0.5	0.7	gris	213	matriz				
89	matriz					214	cuarzo	10	0.5	0.7	gris
90	matriz					215	cuarzo	24	0.7	0.5	gris
91	matriz					216	cuarzo	30	0.3	0.5	gris
92	cuarzo	30	0.5	0.7	gris	217	matriz				
93	cuarzo	10	0.3	0.7	gris	218	matriz				
94	cuarzo	10	0.3	0.5	gris	219	cuarzo	27	0.3	0.5	gris
95	matriz					220	cuarzo	20	0.3	0.5	gris
96	cuarzo	15	0.5	0.7	gris	221	cuarzo	40	0.1	0.5	gris
97	matriz					222	cuarzo	25	0.5	0.7	gris
98	cuarzo	7	0.5	0.9	gris	223	cuarzo	15	0.7	0.9	gris
99	matriz					224	cuarzo	15	0.7	0.9	gris
100	matriz					225	metapedernal	28	0.1	0.3	negro
101	matriz					226	matriz				
102	cuarzo	10	0.5	0.9	gris	227	cuarzo	25	0.7	0.9	gris
103	matriz					228	cuarzo	15	0.5	0.7	gris
104	matriz					229	matriz				
105	cuarzo	10	0.5	0.9	gris	230	matriz				
106	matriz					231	matriz				
107	matriz					232	matriz				
108	cuarzo	12	0.5	0.7	gris	233	cuarzo	30	0.5	0.7	gris
109	matriz					234	cuarzo	20	0.5	0.3	gris
110	matriz					235	cuarzo	20	0.5	0.7	gris
111	matriz					236	matriz				
112	matriz					237	matriz				
113	matriz					238	cuarzo	15	0.3	0.5	gris
114	cuarzo	10	0.5	0.9	gris	239	cuarzo	9	0.1	0.3	gris
115	cuarzo	13	0.5	0.7	gris	240	matriz				
116	matriz					241	cuarzo	30	0.5	0.3	gris
117	cuarzo	7	0.3	0.7	gris	242	cuarzo	24	0.3	0.5	gris
118	cuarzo	20	0.1	0.7	gris	243	matriz				
119	cuarzo	10	0.3	0.9	gris	244	cuarzo	40	0.5	0.7	gris
120	matriz					245	cuarzo	15	0.3	0.5	gris
121	matriz					246	matriz				
122	cuarzo	25	0.5	0.9	gris	247	cuarzo	15	0.7	0.9	gris
123	matriz					248	matriz				
124	cuarzo	10	0.3	0.7	gris	249	matriz				
125	matriz					250	cuarzo	10	0.5	0.3	gris


Tamaño (mm)

composición	promedio
cuarzo	20.09
esquisto	12.5
metapedernal	17.67

Composición

	num. De	
composición	puntos	promedio
cuarzo	115	46.00
esquisto	2	0.80
metapedernal	3	1.20
matriz	130	52

Proyecto: tesisFecha: 18/06/12Localidad: Santa LucíaMidio: Adriana MoralesCoordenadas: 14Q038953 mE, 2013839 mNElipsoide: NAD-27

Formación: Otlaltepec Retícula: 5 * 5

Reticula: 5 * 5 Columna: 2(1)

		Tamaño									
	composición	(mm)	redondez	esfericidad	color		composición	tamaño	redondez	esfericidad	color
1	cuarzo	50	0.5	0.5	gris	151	matriz			-	
2	matriz				_	152	cuarzo	30	0.5	0.5	gris
3	matriz					153	matriz				
4	matriz					154	matriz				
5	esquisto	45	0.3	0.5	verde	155	cuarzo	50	0.3	0.7	gris
6	cuarzo	46	0.3	0.5	gris	156	esquisto	>50	0.3	0.7	verde
7	matriz					157	cuarzo	>50	0.3	0.5	gris
8	cuarzo	35	0.5	0.5	gris	158	cuarzo	25	0.3	0.5	gris
9	cuarzo	15	0.1	0.5	gris	159	matriz				
10	esquisto	>50	0.1	0.3	verde	160	matriz				
11	matriz					161	matriz				
12	matriz					162	matriz				
13	esquisto	22	0.1	0.7	verde	163	matriz				
14	matriz					164	cuarzo	50	0.5	0.7	gris
15	cuarzo	37	0.1	0.5	gris	165	matriz				
16	cuarzo	50	0.7	0.7	gris	166	cuarzo	7	0.1	0.3	gris
17	esquisto	>40	0.5	0.7	verde	167	matriz				
18	cuarzo	>50	0.1	0.3	gris	168	cuarzo	35	0.7	0.3	gris
19	metapedernal	>50	0.3	0.3	negro	169	matriz				
20	matriz				_	170	matriz				
21	cuarzo	27	0.3	0.7	gris	171	cuarzo	30	0.7	0.5	gris
22	cuarzo	47	0.3	0.5	gris	172	matriz				
23	matriz				_	173	cuarzo	15	0.3	0.7	gris
24	matriz					174	cuarzo	>50	0.1	0.5	gris
25	matriz					175	matriz				
26	matriz					176	matriz				
27	matriz					177	cuarzo	12	0.1	0.7	gris
28	cuarzo	20	0.7	0.9	gris	178	matriz				
29	matriz					179	matriz				
30	esquisto	45	0.5	0.7	verde	180	cuarzo	25	0.3	0.7	gris
31	cuarzo	47	0.3	0.7	gris	181	matriz				
32	matriz					182	matriz				
33	matriz					183	matriz				
34	matriz					184	cuarzo	27	0.5	0.7	gris
35	cuarzo	30	0.3	0.5	gris	185	matriz				
36	matriz					186	matriz				
37	matriz					187	matriz				
38	matriz					188	matriz				
39	matriz					189	matriz				
40	matriz					190	matriz				
41	matriz					191	matriz				
42	matriz					192	cuarzo	25	0.5	0.5	gris
43	matriz					193	matriz				

44	matriz					194	cuarzo	30	0.3	0.5	gris
45	cuarzo	35	0.7	0.9	gris	195	cuarzo	10	0.7	0.5	gris
46	matriz				8.15	196	matriz				- 8.10
47	cuarzo	20	0.3	0.5	gris	197	matriz				
48	matriz					198	matriz				
49	matriz					199	esquisto	27	0.3	0.3	verde
50	esquisto	>50	0.7	0.7	verde	200	cuarzo	27	0.7	0.7	gris
51	matriz				101010	201	cuarzo	28	0.7	0.9	gris
52	esquisto	>50	0.5	0.5	verde	202	matriz		0.7	0.0	8.10
53	matriz		0.0	0.0	7 0. 0.0	203	cuarzo	50	0.3	0.5	gris
54	matriz					204	cuarzo	45	0.7	0.9	gris
55	matriz					205	esquisto	30	0.3	0.7	verde
56	cuarzo	20	0.3	0.3	gris	206	matriz	30	0.3	0.7	10.00
57	matriz	20	0.5	0.5	8113	207	esquisto	35	0.5	0.7	verde
58	matriz					208	cuarzo	40	0.3	0.5	gris
59	matriz					209	matriz	40	0.5	0.5	8113
60	matriz					210	matriz				_
61	cuarzo	22	0.1	0.3	gris	211	matriz				
62	cuarzo	27	0.5	0.7		212	cuarzo	45	0.5	0.7	gris
63	matriz	21	0.5	0.7	gris	213	cuarzo	>50	0.5	0.7	gris
64	cuarzo	40	0.5	0.5	gris	214	matriz	/30	0.5	0.5	
65	cuarzo	>50	0.3	0.5	1	215	cuarzo	25	0.3	0.7	aric
66	matriz	/30	0.5	0.5	gris	216	matriz	23	0.5	0.7	gris
67	matriz					217					_
68		25	0.3	0.5	aric	218	matriz				
69	cuarzo	35		0.5	gris	219	matriz				-
	cuarzo	>50	0.7	0.7	gris		matriz	F0	0.1	0.7	
70	cuarzo	>50	0.5	0.7	gris	220	cuarzo	50	0.1	0.7	gris
71 72	cuarzo	32	0.3	0.7	gris	221	matriz	\ FO	0.5	0.5	
_	matriz	27	0.2	0.5		222	cuarzo	>50	0.5	0.5	gris
73	cuarzo	27	0.3	0.5	gris	223	matriz				
74	matriz					224	matriz	2.4	0.1	0.5	
75	matriz	F0	0.4	0.2		225	esquisto	34	0.1	0.5	verde
76	esquisto	50	0.1	0.3	verde	226	cuarzo	40	0.1	0.5	gris
77	matriz					227	matriz				_
78	matriz	40	0.5	0.7		228	matriz				
79	cuarzo	40	0.5	0.7	gris	229	matriz	4-	0.1	0.5	
80	matriz					230	cuarzo	45	0.1	0.5	gris
81	matriz					231	cuarzo	25	0.3	0.3	gris
82	esquisto	40	0.3	0.5	verde	232	matriz	4-	0.0		+ .
83	matriz					233	cuarzo	15	0.3	0.5	gris
84	cuarzo	25	0.7	0.9	gris	234	cuarzo	50	0.5	0.5	gris
85	cuarzo	42	0.3	0.7	gris	235	cuarzo	25	0.3	0.3	gris
86	cuarzo	>50	0.5	0.7	gris	236	matriz				
87	matriz					237	esquisto	>50	0.3	0.5	verde
88	matriz		_	_		238	matriz				
89	cuarzo	15	0.1	0.5	gris	239	matriz				
90	matriz					240	cuarzo	13	0.5	0.5	gris
91	matriz					241	cuarzo	20	0.1	0.5	gris
92	cuarzo	50	0.3	0.3	gris	242	cuarzo	18	0.7	0.3	gris
93	cuarzo	30	0.5	0.7	gris	243	matriz				
94	cuarzo	>50	0.5	0.7	gris	244	cuarzo	40	0.7	0.9	gris

95	matriz					245	matriz				1 1
96	matriz					246	esquisto	20	0.1	0.3	verde
97	cuarzo	30	0.3	0.5	gris	247	matriz .				
98	esquisto	>50	0.1	0.5	verde	248	cuarzo	42	0.5	0.7	gris
99	cuarzo	>50	0.3	0.7	gris	249	matriz				
100	matriz					250	matriz				
101	matriz					251	matriz				
102	matriz					252	esquisto	15	0.5	0.5	verde
103	matriz					253	matriz				
104	esquisto	>50	0.3	0.5	verde	254	matriz				
105	matriz					255	matriz				
106	matriz					256	matriz				
107	cuarzo	42	0.5	0.7	gris	257	matriz				
108	matriz					258	cuarzo	25	0.9	0.9	gris
109	matriz					259	matriz				1
110	matriz					260	matriz				
111	cuarzo	19	0.7	0.9	gris	261	matriz				
112	matriz		-		0 -	262	cuarzo	30	0.3	0.5	gris
113	cuarzo	27	0.3	0.3	gris	263	cuarzo	40	0.1	0.5	gris
114	cuarzo	20	0.3	0.5	gris	264	matriz				8
115	matriz				<u> </u>	265	matriz				
116	cuarzo	>50	0.7	0.7	gris	266	cuarzo	>50	0.5	0.3	gris
117	matriz				8	267	esquisto	>50	0.1	0.3	verde
118	metapedernal	>50	0.1	0.3	negro	268	matriz		0.1	0.0	10.00
119	cuarzo	50	0.7	0.9	gris	269	matriz				
120	esquisto	<50	0.3	0.5	verde	270	cuarzo	28	0.3	0.5	gris
121	esquisto	50	0.3	0.5	verde	271	matriz	20	0.5	0.5	1 8113
122	cuarzo	30	0.3	0.7	gris	272	cuarzo	30	0.1	0.5	gris
123	matriz		0.5	0.7	8113	273	matriz	30	0.1	0.5	8113
124	metapedernal	27	0.1	0.5	negro	274	cuarzo	18	0.3	0.7	gris
125	matriz		0.1	0.5	Hegro	275	cuarzo	30	0.1	0.5	gris
126	cuarzo	20	0.1	0.3	gris	276	cuarzo	17	0.3	0.5	gris
127	matriz	20	0.1	0.5	8113	277	cuarzo	>50	0.5	0.9	gris
128	esquisto	>50	0.3	0.5	verde	278	matriz	730	0.5	0.5	8113
129	cuarzo	41	0.1	0.5	gris	279	matriz				
130	matriz	71	0.1	0.5	g113	280	cuarzo	25	0.5	0.7	gris
131	esquisto	40	0.7	0.7	verde	281	cuarzo	35	0.3	0.5	gris
132	matriz	40	0.7	0.7	verde	282	matriz	33	0.5	0.5	- g113
133	matriz					283	matriz				+
134	cuarzo	38	0.5	0.5	gris	284	matriz				+
135	matriz	50	0.5	0.5	giis	285	matriz				+
136	matriz					286	matriz				+
137	matriz					287	cuarzo	35	0.5	0.7	gric
138	esquisto	45	0.1	0.5	verde	288	cuarzo	50	0.7	0.7	gris
139	esquisto	50	0.1	0.5	verde	289	matriz	30	0.7	0.7	gris
140	matriz	30	0.3	0.5	verue	290		>50	0.3	0.5	gric
141		>50	0.1	0.7	aric	290	cuarzo	/30	0.3	0.5	gris
141	cuarzo	/30	0.1	0.7	gris	291	matriz	22	0.1	0.3	aric
_	matriz	20	0.1	0.2	ania.		cuarzo	22	0.1	0.3	gris
143 144	cuarzo	20 >50	0.1	0.3	gris	293 294	matriz	20	0.3	0.5	aric
_	cuarzo	>5∪	0.5	0.5	gris		cuarzo	28		0.5	gris
145	matriz					295	cuarzo	12	0.7	0.5	gris

146	cuarzo	>50	0.5	0.7	gris	296	cuarzo	20	0.3	0.3	gris
147	matriz					297	matriz				
148	cuarzo	35	0.3	0.5	gris	298	cuarzo	12	0.5	0.5	gris
149	matriz					299	cuarzo	20	0.7	0.7	gris
150	matriz					300	matriz				

Tamaño (mm)

composición	promedio
cuarzo	33.9
esquisto	41.85
metapedernal	42.33

Composición

	Num.	
	De	
composición	puntos	promedio
cuarzo	107	35.67
esquisto	26	8.67
metapedernal	3	1
matriz	164	5.47

Proyecto: _tesis Fecha: 18/06/12 Midio: Adriana

Localidad: Santa Lucía

Coordenadas: 14Q039061 mE, 2014041 mN Elipsoide: NAD-27

Morales

Formación: Otlaltepec

Retícula: Columna: 2(2)

		Tamaño									
	composición	(mm)	redondez	esfericidad	color		composición	tamaño	redondez	esfericidad	color
1	cuarzo	26	0.5	0.7	gris	151	matriz				
2	esquisto	40	0.3	0.5	verde	152	esquisto	10	0.5	0.7	verde
3	esquisto	45	0.1	0.3	verde	153	esquisto	11	0.5	0.3	verde
4	cuarzo	23	0.3	0.5	gris	154	matriz				
5	cuarzo	30	0.5	0.3	gris	155	esquisto	20	0.1	0.3	verde
6	cuarzo	15	0.3	0.3	gris	156	matriz				
7	matriz					157	cuarzo	16	0.5	0.7	gris
8	cuarzo	5	0.1	0.3	gris	158	matriz				
9	matriz					159	cuarzo	19	0.5	0.7	gris
10	matriz					160	matriz				
11	cuarzo	30	0.5	0.5	gris	161	esquisto	41	0.5	0.7	verde
12	esquisto	20	0.5	0.3	verde	162	cuarzo	15	0.7	0.9	gris
13	cuarzo	10	0.3	0.5		163	matriz				
14	matriz					164	esquisto	30	0.3	0.3	verde
15	esquisto	15	0.1	0.3	verde	165	matriz				
16	cuarzo	20	0.5	0.5	gris	166	cuarzo	17	0.5	0.5	gris
17	cuarzo	35	0.3	0.3	gris	167	matriz				
18	cuarzo	20	0.3	0.5	gris	168	matriz				
19	matriz					169	matriz				
20	matriz					170	matriz				
21	cuarzo	9	0.7	0.5	gris	171	esquisto	40	0.1	0.3	verde
22	matriz					172	matriz				
23	matriz					173	cuarzo	15	0.3	0.5	gris
24	cuarzo	10	0.5	0.3	gris	174	matriz				
25	cuarzo	8	0.1	0.3	gris	175	matriz				
26	esquisto	10	0.3	0.3	verde	176	cuarzo	10	0.5	0.7	gris
27	cuarzo	15	0.5	0.3	gris	177	matriz				
28	matriz			_		178	matriz				
29	matriz					179	cuarzo	46	0.7	0.5	gris
30	matriz					180	matriz				
31	matriz					181	esquisto	12	0.3	0.5	verde
32	esquisto	15	0.1	0.3	verde	182	matriz				
33	matriz					183	cuarzo	23	0.5	0.3	gris

34	cuarzo	15	0.3	0.3	gris	184	matriz				
35	matriz					185	matriz				
36	matriz					186	matriz				
37	cuarzo	5	0.3	0.5	gris	187	cuarzo	30	0.3	0.3	gris
38	cuarzo	27	0.5	0.7	gris	188	cuarzo	27	0.5	0.7	gris
39	matriz				J	189	matriz				
40	cuarzo	41	0.1	0.3	gris	190	matriz				
41	esquisto	30	0.5	0.7	verde	191	cuarzo	17	0.5	0.5	gris
42	cuarzo	45	0.7	0.5	gris	192	matriz				3
43	esquisto	30	0.3	0.5	verde	193	matriz				
44	cuarzo	15	0.1	0.3	gris	194	cuarzo	10	0.1	0.3	gris
45	matriz					195	cuarzo	11	0.3	0.5	gris
46	matriz					196	matriz				
47	matriz					197	cuarzo	15	0.5	0.7	gris
48	matriz					198	matriz				
49	cuarzo	>50	0.5	0.3	gris	199	matriz				
50	matriz					200	matriz				
51	matriz					201	cuarzo	30	0.7	0.5	gris
52	matriz					202	matriz				
53	matriz					203	cuarzo	23	0.5	0.3	gris
54	matriz					204	matriz				
55	cuarzo	20	0.3	0.1	gris	205	cuarzo	25	0.3	0.3	gris
56	matriz					206	cuarzo	15	0.5	0.7	gris
57	cuarzo	15	0.5	0.7	gris	207	cuarzo	20	0.5	0.3	gris
58	esquisto	17	0.1	0.3	verde	208	cuarzo	20	0.3	0.5	gris
59	cuarzo	20	0.5	0.5	gris	209	cuarzo	25	0.5	0.7	gris
60	esquisto	30	0.3	0.3	verde	210	cuarzo	10	0.3	0.3	gris
61	cuarzo	20	0.5	0.3	gris	211	cuarzo	17	0.3	0.5	gris
62	matriz					212	matriz				
63	esquisto	>50	0.1	0.3	verde	213	matriz				
64	matriz					214	matriz				
65	matriz					215	matriz				
66	matriz					216	matriz				
67	cuarzo	36	0.3	0.3	gris	217	cuarzo	7	0.7	0.9	gris
68	matriz					218	matriz				
69	matriz					219	cuarzo	12	0.7	0.5	gris
70	matriz					220	matriz				
71	esquisto	20	0.5	0.7	verde	221	cuarzo	27	0.5	0.3	gris
72	cuarzo	15	0.1	0.3	gris	222	matriz				
73	cuarzo	45	0.5	0.7	gris	223	matriz				

74	matriz					224	cuarzo	29	0.1	0.3	gris
75	matriz					225	cuarzo	15	0.5	0.3	gris
76	cuarzo	13	0.7	0.5	gris	226	cuarzo	10	0.7	0.9	gris
77	matriz					227	matriz				
78	esquisto	15	0.5	0.3	verde	228	matriz				
79	matriz					229	cuarzo	50	0.5	0.7	gris
80	matriz					230	cuarzo	10	0.3	0.5	gris
81	cuarzo	30	0.5	0.7	gris	231	matriz				
82	cuarzo	14	0.3	0.5	gris	232	matriz				
83	cuarzo	48	0.3	0.5	gris	233	matriz				
84	matriz					234	cuarzo	15	0.3	0.5	gris
85	matriz					235	matriz				
86	matriz					236	matriz				
87	cuarzo	30	0.3	0.5	gris	237	matriz				
88	cuarzo	32	0.3	0.3	gris	238	matriz				
89	cuarzo	25	0.1	0.3	gris	239	matriz				
90	cuarzo	10	0.5	0.7	gris	240	cuarzo	20	0.3	0.5	gris
91	matriz					241	matriz				
92	matriz					242	cuarzo	17	0.1	0.3	gris
93	matriz					243	cuarzo	10	0.5	0.7	gris
94	esquisto	10	0.1	0.3	verde	244	cuarzo	25	0.1	0.7	gris
95	matriz					245	matriz				
96	matriz					246	matriz				
97	matriz					247	cuarzo	30	0.1	0.3	gris
98	matriz					248	cuarzo	30	0.3	0.5	gris
99	cuarzo	15	0.5	0.3	gris	249	cuarzo	35	0.1	0.5	gris
100	cuarzo	22	0.5	0.7	gris	250	matriz				
101	matriz					251	cuarzo	>50	0.5	0.7	gris
102	matriz					252	matriz				
103	matriz					253	matriz				
104	cuarzo	19	0.3	0.3	gris	254	cuarzo	25	0.3	0.7	gris
105	matriz					255	matriz				
106	cuarzo	11	0.1	0.3	gris	256	matriz				
107	matriz					257	matriz				
108	matriz					258	matriz				
109	cuarzo	5	0.3	0.5	gris	259	matriz				
110	esquisto	>50	0.3	0.5	verde	260	cuarzo	15	0.5	0.3	gris
111	cuarzo	20	0.5	0.7	gris	261	cuarzo	35	0.7	0.7	gris
112	cuarzo	10	0.7	0.9	gris	262	matriz				
113	cuarzo	25	0.5	0.7	gris	263	matriz				

114	matriz					264	matriz				
115	matriz					265	cuarzo	9	0.7	0.5	gris
116	cuarzo	10	0.3	0.5	gris	266	cuarzo	15	0.5	0.7	gris
117	matriz					267	matriz				
118	cuarzo	7	0.7	0.9	gris	268	cuarzo	20	0.3	0.3	gris
119	cuarzo	4	0.7	0.9	gris	269	esquisto	14	0.5	0.7	verde
120	matriz					270	cuarzo	30	0.5	0.7	gris
121	matriz					271	cuarzo	25	0.5	0.5	gris
122	esquisto	7	0.5	0.3	verde	272	cuarzo	25	0.3	0.5	gris
123	matriz					273	matriz				
124	matriz					274	matriz				
125	matriz					275	esquisto	27	0.1	0.3	verde
126	cuarzo	5	0.3	0.5	gris	276	cuarzo	7	0.5	0.5	gris
127	matriz					277	esquisto	10	0.3	0.3	verde
128	matriz					278	cuarzo	20	0.5	0.5	gris
129	matriz					279	matriz				
130	cuarzo	10	0.5	0.7	gris	280	matriz				
131	cuarzo	10	0.7	0.5	gris	281	cuarzo	30	0.3	0.5	gris
132	cuarzo	13	0.3	0.3	gris	282	cuarzo	>50	0.3	0.3	gris
133	esquisto	7	0.3	0.5	verde	283	cuarzo	45	0.5	0.7	gris
134	cuarzo	12	0.5	0.5	gris	284	cuarzo	30	0.7	0.9	gris
135	cuarzo	15	0.3	0.3	gris	285	cuarzo	25	0.7	0.5	gris
136	matriz					286	matriz				
137	cuarzo	10	0.5	0.3	gris	287	matriz				
138	matriz					288	matriz				
139	matriz					289	cuarzo	22	0.1	0.5	gris
140	matriz					290	matriz				
141	cuarzo	11	0.5	0.3	gris	291	cuarzo	20	0.5	0.5	gris
142	cuarzo	10	0.3	0.5	gris	292	cuarzo	26	0.7	0.5	gris
143	matriz					293	matriz				
144	matriz					294	cuarzo	8	0.3	0.3	gris
145	cuarzo	15	0.5	0.7	gris	295	matriz				
146	matriz					296	matriz				
147	cuarzo	10	0.7	0.9	gris	297	cuarzo	7	0.5	0.7	gris
148	cuarzo	39	0.5	0.3	gris	298	matriz				
149	esquisto	10	0.5	0.5	verde	299	cuarzo	30	0.1	0.7	gris
150	matriz					300	matriz				

Tamaño (mm)

composición	promedio
cuarzo	20.74
esquisto	22.71

Composición

	Num.	
	De	
composición	puntos	promedio
cuarzo	120	40
esquisto	28	9.33
matriz	151	50.33

Proyecto: tesis

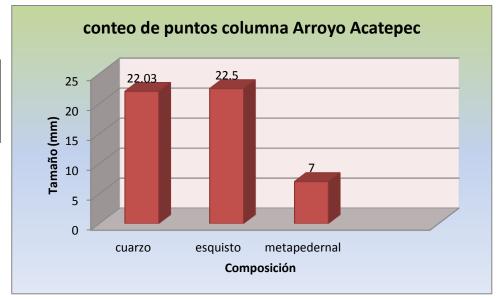
Fecha: 19/06/12 Midio: Adriana

Localidad:_Río Acatepec

<u>Morales</u>

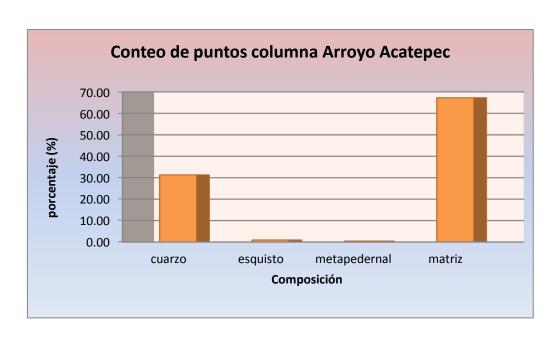
Coordenadas:14Q037585 mE, 2018425 mN Formación: Otlaltepec_y Magdalena Elipsoide:NAD-27_

Retícula: Columna:3


		Tamaño									
	composición	(mm)	redondez	esfericidad	color		composición	tamaño	redondez	esfericidad	color
1	matriz					108	matriz			_	
2	matriz					109	matriz				
3	cuarzo	15	0.5	0.7	gris	110	cuarzo	33	0.7	0.7	gris
4	cuarzo	12	0.3	0.5	gris	111	matriz				
5	matriz					112	matriz				
6	matriz					113	matriz				
7	matriz					114	matriz				
8	cuarzo	15	0.1	0.5	gris	115	esquisto	20	0.1	0.3	verde
9	matriz					116	matriz				
10	matriz					117	cuarzo	35	0.5	0.7	gris
11	cuarzo	17	0.5	0.7	gris	118	matriz				
12	cuarzo	24	0.3	0.5	gris	119	cuarzo	15	0.1	0.3	gris
13	matriz					120	matriz				
14	cuarzo	7	0.7	0.9	gris	121	cuarzo	25	0.5	0.7	gris
15	matriz					122	matriz				
16	cuarzo	18	0.3	0.5	gris	123	cuarzo	30	0.7	0.9	gris
17	matriz					124	matriz				
18	matriz					125	cuarzo	33	0.7	0.7	gris
19	matriz					126	cuarzo	40	0.7	0.7	gris
20	cuarzo	16	0.1	0.3	gris	127	cuarzo	35	0.5	0.7	gris
21	matriz					128	matriz				
22	cuarzo	9	0.1	0.5	gris	129	matriz				
23	matriz					130	matriz				
24	cuarzo	22	0.5	0.7	gris	131	matriz				
25	matriz					132	matriz				
26	matriz					133	cuarzo	20	0.3	0.5	gris
27	matriz					134	matriz				
28	matriz					135	matriz				
29	cuarzo	29	0.7	0.7	gris	136	cuarzo	30	0.3	0.5	gris
30	matriz					137	cuarzo	31	0.5	0.7	gris
31	matriz					138	matriz				
32	matriz					139	cuarzo	25	0.3	0.7	gris
33	esquisto	25	0.1	0.3	verde	140	matriz			_	
34	matriz					141	cuarzo	13	0.5	0.5	gris
35	matriz					142	matriz				
36	matriz					143	cuarzo	42	0.1	0.3	gris
37	cuarzo	5	0.7	0.9	gris	144	cuarzo	25	0.1	0.5	gris
38	matriz					145	matriz				
39	cuarzo	15	0.5	0.5	gris	146	cuarzo	35	0.1	0.3	gris
40	matriz					147	matriz				
41	matriz					148	matriz				

43						140					
42	matriz					149	matriz				
43	matriz			0.5		150	matriz				
44	cuarzo	8	0.3	0.5	gris	151	matriz	20	0 -	0.0	
45	matriz				_	152	cuarzo	30	0.7	0.9	gris
46	matriz					153	cuarzo	17	0.3	0.5	gris
47	cuarzo	20	0.5	0.7	gris	154	cuarzo	17	0.1	0.3	gris
48	matriz					155	matriz				
49	matriz					156	matriz				
50	matriz					157	cuarzo	20	0.5	0.7	gris
51	cuarzo	12	0.5	0.5	gris	158	matriz				
52	matriz					159	matriz				
53	matriz					160	matriz				
54	matriz					161	matriz				
55	cuarzo	22	0.3	0.7	gris	162	cuarzo	28	0.5	0.7	gris
56	matriz					163	matriz				
57	matriz					164	cuarzo	22	0.5	0.5	gris
58	matriz					165	matriz				
59	matriz					166	matriz				
60	matriz					167	cuarzo	34	0.7	0.7	gris
61	matriz					168	matriz				
62	cuarzo	15	0.3	0.5	gris	169	matriz				
63	matriz				Ĭ	170	cuarzo	25	0.7	0.9	gris
64	matriz					171	matriz				
65	matriz					172	cuarzo	35	0.7	0.9	gris
66	matriz					173	matriz				8
67	matriz					174	matriz				
68	matriz					175	cuarzo	15	0.7	0.9	gris
69	cuarzo	28	0.5	0.5	gris	176	matriz	13	0.7	0.5	8113
70	cuarzo	15	0.3	0.7	gris	177	matriz				
71	matriz	13	0.5	0.7	8113	178	cuarzo	13	0.5	0.7	gris
72	matriz					179	cuarzo	20	0.5	0.7	gris
73	matriz					180	matriz	20	0.5	0.7	8113
74	cuarzo	33	0.1	0.5	gris	181	matriz				
75	matriz	33	0.1	0.5	giis	182	matriz				
76	cuarzo	19	0.3	0.3		183	matriz				
77		19	0.3	0.3		184					
78	matriz matriz					185	matriz				
79		10	0.1	0.2	aric		matriz				
80	cuarzo	10	0.1	0.3	gris	186 187	matriz				+
	matriz				+		matriz	-			
81	matriz	25	0.5	0.7	!-	188	matriz	22	0.7	0.0	:-
82	cuarzo	35	0.5	0.7	gris	189	cuarzo	22	0.7	0.9	gris
83	cuarzo	15	0.7	0.5	gris	190	matriz				
84	matriz	4.4	0.2	0.5		191	matriz				
85	cuarzo	14	0.3	0.5	gris	192	matriz	1			
86	matriz	_	0.7	0.0	1	193	matriz	4.5	0.4	0.3	+
87	metapedernal 	7	0.7	0.9	negro	194	cuarzo	15	0.1	0.3	gris
88	matriz 				-	195	matriz			• -	
89	matriz					196	cuarzo	15	0.3	0.7	gris
90	matriz					197	matriz			_	
91	matriz					198	cuarzo	10	0.3	0.5	gris
92	matriz					199	matriz				

93	matriz					200	cuarzo	19	0.5	0.7	gris
94	cuarzo	20	0.3	0.5	gris	201	matriz				
95	matriz					202	matriz				
96	matriz					203	matriz				
97	cuarzo	50	0.1	0.7	gris	204	matriz				
98	cuarzo	25	0.3	0.7	gris	205	matriz				
99	matriz					206	matriz				
100	matriz					207	matriz				
101	matriz					208	matriz				
102	matriz					209	matriz				
103	cuarzo	17	0.5	0.7	gris	210	matriz				
104	matriz					211	matriz				
105	cuarzo	9	0.1	0.3	gris	212	matriz				
106	matriz					213	cuarzo	28	0.7	0.9	gris
107	cuarzo	32	0.7	0.5	gris	214	cuarzo	21	0.7	0.9	gris


Tamaño (mm)

composición	promedio
cuarzo	22.03
esquisto	22.5
metapedernal	7

Composición

	Num.	
	De	
composición	puntos	promedio
cuarzo	67	31.31
esquisto	2	0.93
metapedernal	1	0.47
matriz	144	67.29

Apéndice B

Petrografía de areniscas

Número de muestra: ADR-1

Clasificación: subarcosa

Textura

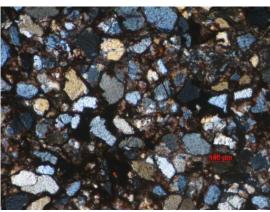
Tamaño de grano: arena media. Moderadamente clasificada.

Forma: equidimensional.

Redondeamiento: subanguloso a subredondeado.

Tipos de contacto: cóncavo-convexo y suturado.

Composición: 30% de cuarzo monocristalino,


extinción ondulada. 6% de micas.

7% fragmentos de roca metamórfica.

8% feldespato.

Número de muestra: ADR-7

Clasificación: subarcosa

Textura

Tamaño de grano: arena media. Moderadamente clasificada.

Forma: equidimensional y tabular.

Redondeamiento: subanguloso.

Tipos de contacto: puntual y longitudinal.

Composición: 29% de cuarzo monocristalino, extinción ondulada.

30% de micas. Se encuentran bordeando fragmentos de cuarzo.

4% fragmentos de roca metamórfica.

6% feldespato.

Número de muestra: ADR-8

Clasificación: subarcosa

Textura

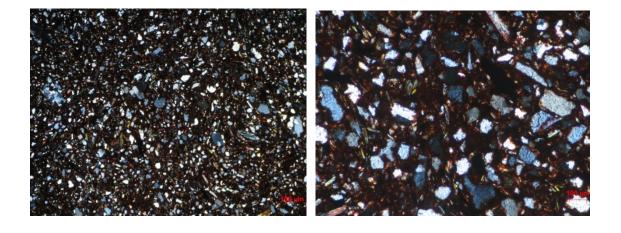
Tamaño de grano: arena media. Moderadamente clasificada.

Forma: equidimensional, prolada y tabular.

Redondeamiento: subanguloso.

Tipos de contacto: puntual.

Composición: 15% de cuarzo monocristalino,


extinción ondulada.

10% de micas.

8% fragmentos de roca metamórfica.

9% feldespato.

Número de muestra: ADR-19

Clasificación: cuarzoarenita

Textura

Tamaño de grano: arena fina. Bien clasificada.

Forma: equidimensional, discoidal, esferoidal y tabular.

Redondeamiento: subangulosa a subredondeada.

Tipos de contacto: cóncavo-convexo y longitudinal.

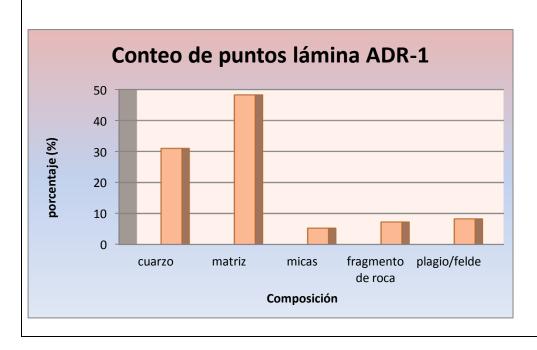
Composición: 82% de cuarzo monocristalino, extinción ondulada. 4% fragmentos de roca metamórfica.

Apéndice C

Conteo de puntos en areniscas.

Proyecto: tesis

Localidad: Santa Lucía


Coordenadas: <u>14Q039052 mE, 2013658 mN</u>

Formación: <u>Otlaltepec</u>
Columna: <u>Santa Lucía</u> 1

Lámina: ADR-1

número de puntos medidos: 400

composición	Núm. puntos	Porcentaje
cuarzo	124	31
matriz	193	48.25
micas	21	5.25
fragmento de roca	29	7.25
feldespato	33	8.25

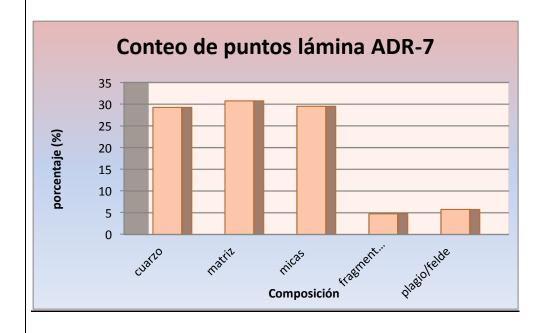
Midio: Adriana Morales

Fecha: 31/Oct/13

Elipsoide: NAD-27_

Proyecto: <u>tesis</u>

Localidad: Santa Lucía


Coordenadas: <u>14Q0638953 mE, 2013839 mN.</u>

Formación: Otlaltepec Columna: Santa Lucía 2

Lámina: ADR-7

número de puntos medidos: 400

composición	núm. de puntos	porcentaje	
cuarzo	117	29.25	
matriz	123	30.75	
micas	118	29.5	
fragmento de roca	19	4.75	
feldespato	23	5.75	

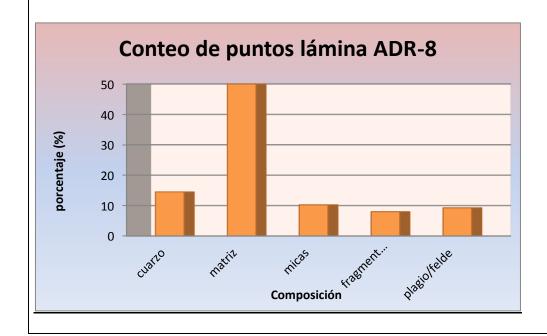
Fecha:31/Oct/2013

Elipsoide: NAD-27

Midio: Adriana Morales

Proyecto: <u>tesis</u>

Localidad: Santa Lucía


Coordenadas: 14Q0639010 mE, 2013939 mN.

Formación: <u>Otlaltepec</u>
Columna: <u>Santa Lucía</u> 2

Lámina: ADR-8

Número de puntos medidos: 400

rainers de paintes mediaes. 199						
composición	núm. de puntos	porcentaje				
cuarzo	90	14.5				
matriz	200	50				
micas	41	10.25				
fragmento de						
roca	32	17.25				
feldespato	37	8				

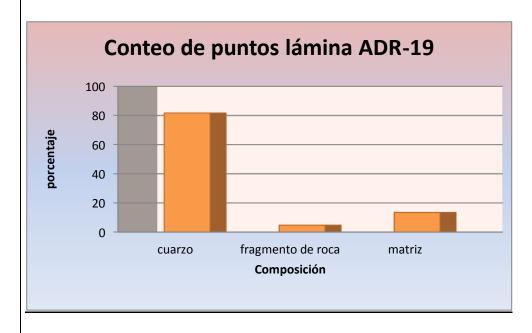
Fecha:

31/Nov/2013

Midio: <u>Adriana Morales</u> Elipsoide: <u>NAD-27</u> Proyecto: <u>tesis</u>_

Localidad: Arroyo Acatepec

Coordenadas: 14Q0637695 mE, 2018480 mN..

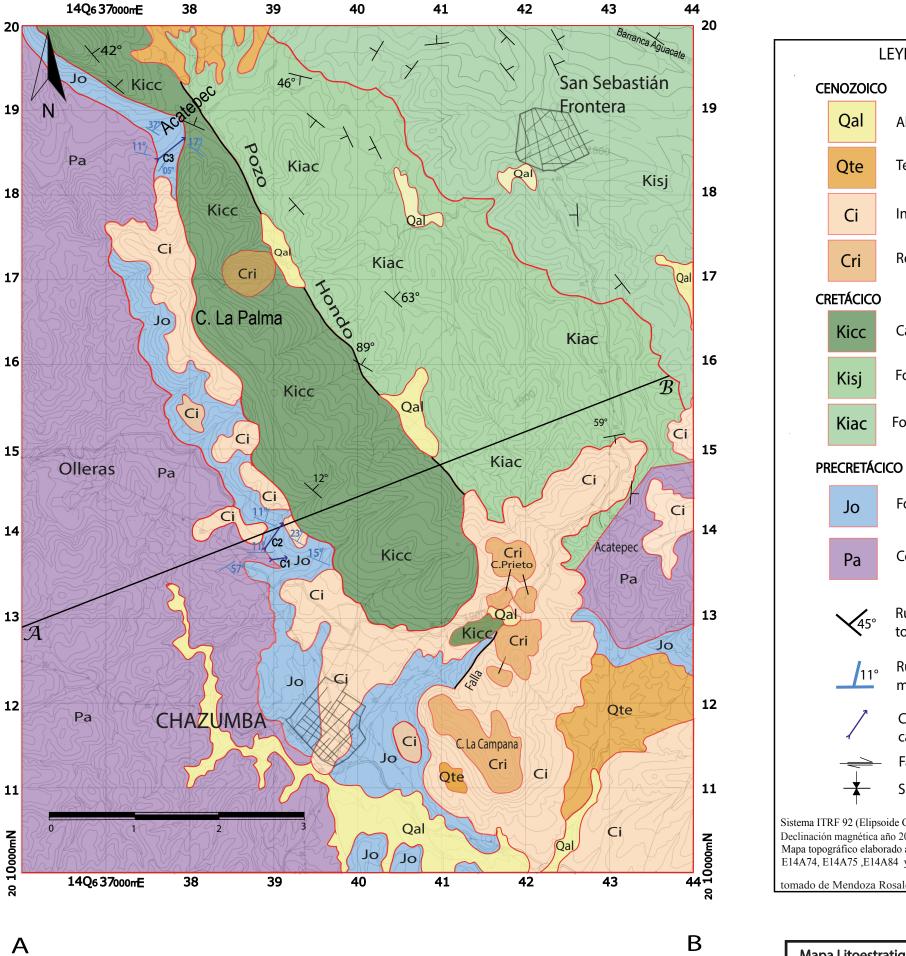

Formación: Otlaltepec y Magdalena

Columna: Arroyo Acatepec .

Lámina: ADR-19

Número de puntos medidos: 400

	num. de	
composición	puntos	porcentaje
cuarzo	327	81.75
fragmento de		
roca	19	4.75
matriz	54	13.5



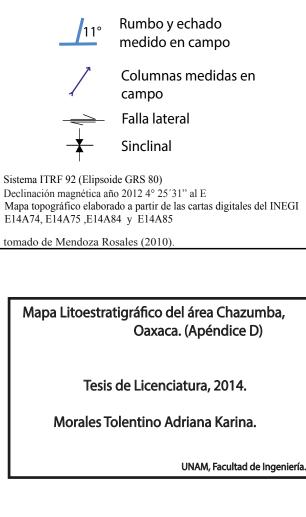
Fecha:

31/Nov/2013

Midio: <u>Adriana Morales</u>

Elipsoide: NAD-27_

Kicc


2000

1900

1800 1700

1600 1500

1400 1300

LEYENDA

Aluvión

Terraza

Indiferenciado

Rocas Igneas

Caliza Coyotepec

Formación San Juan Raya

Formación Agua del Cordero

Formación Otlaltepec

Complejo Acatlán

Rumbo y echado

tomado de Mendoza Rosales