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Resumen 
Esta tesis doctoral trata el modelado numérico de fluidos complejos en flujos complejos 
(geometrías complejas). Este tipo de modelado requiere la solución de sistemas de 
ecuaciones diferenciales parciales acopladas y altamente no lineales, que representan a los 
principios de conservación de masa y cantidad de movimiento para fluidos incompresibles en 
condiciones isotérmicas. Además, la naturaleza compleja de los fluidos se especifica 
mediante una ecuación constitutiva diferencial generalizada, en la cual muchos fluidos 
viscoelásticos y  viscoelastoplásticos conocidos tienen cabida. En la parte numérica, este tipo 
de problemas se resuelven usando un esquema de discretizacion hibrido que considera 
elementos finitos y volúmenes finitos. Aquí, se ha adoptado un método de Taylor-Galerkin 
con corrección de presión para las ecuaciones de cantidad de movimiento (parabólica) y 
continuidad (elíptica), mientras que una implementación de volúmenes finitos se usa para la 
ecuación constitutiva (hiperbólica). 
 Este trabajo se centra particularmente en el problema típico de contracción-expansión 
redondeada con relación  de contracción 4:1:4 y la simulación numérica del flujo de 
soluciones micelares tipo gusano, bajo el esquema del modelo Bautista-Manero. Esta familia 
de fluidos dependientes del tiempo puede manifestar pseudoplasticidad, engrosamiento y 
adelgazamiento por extensión, tixotropía, flujo bandeado y esfuerzo de cedencia en ciertas 
condiciones de flujo. Así, con base en el modelo Bautista-Manero modificado (MBM), se 
proponen algunas correcciones a este esquema constitutivo. La primera de ellas se basa en 
observaciones fenomenológicas en las soluciones numéricas para el modelo MBM, para las 
cuales la caída de presión en exceso (epd) resulta subestimada en el límite Stokesiano. La 
corrección de esta inconsistencia se propone mediante la inclusión de la viscoelasticidad 
(mediante el Numero de Weissenberg, We) en la dinámica de construcción-destrucción de la 
estructura del material. La segunda corrección considera el valor absoluto de la función de 
disipación como el factor que promueve la destrucción de la estructura del fluido. Esto (i) 
corrige las predicciones de fluidez adimensional negativa (y por lo tanto viscosidad negativa) 
en flujos complejos: y (ii) aumenta significativamente el nivel de viscoelasticidad para el cual 
las soluciones numéricas en flujos complejos son estables. Además, esta corrección es 
aplicable en general, y es examinada aquí para la familia de fluidos independientes del 
tiempo de Phan-Thien-Tanner, ampliamente conocidos. 
 La aplicación de estas correcciones se ve reflejada en la simulación numérica de fluidos 
viscoelastoplásticos, para los cuales se requieren soluciones estables a altos grados de no-
linealidad debido a las bajas fracciones de solvente observadas para fluidos con propiedades 
plásticas. Estos fluidos son caracterizados reológicamente con modelos híbridos que 
involucran los modelos micelares estudiados en este trabajo, y el modelo de Papanastasiou 
(modelos micelares-Papanastasiou). En más aplicaciones, se realizó un estudio experimental-
numerico comparativo de flujos en contracción expansión de fluidos de Boger, caracterizados 
con el modelo FENE-CR. Finalmente, se ha desarrollado una herramienta predictiva para un 
reómetro extensional aplicado a dos fluidos biológicos, que se representan mediante el 
modelo SXPP. Aquí, se consideran los flujos de contracción 4:1 para representar bilis en los 
conductos biliares, y de estiramiento de filamentos para fluidos en las vías respiratorias. Se 
usaron dos variantes de flujos extensional, FiSER para la estimación de la viscosidad 
extensional y CaBER para el tiempo característico. 



 

Abstract 
This thesis is concerned with the numerical modelling of complex fluids in complex flows (complex 

geometries). This type of modelling requires the solution of coupled systems of highly non-linear 

partial differential equations that represent the principles of mass and momentum for incompressible 

fluids in isothermal conditions. In addition, the complex nature of the fluids is specified in a 

generalised differential constitutive equation in which several well-known viscoelastic and 

viscoelastoplastic fluid representations may be accommodated. Numerically, these complex problems 

are resolved using a hybrid finite element/finite volume discretisation scheme. In this context, a 

Taylor-Galerkin/pressure-correction finite element method has been adopted for the parabolic-elliptic 

momentum-continuity equations, whilst a finite volume implementation is utilised for the hyperbolic 

subsystem comprising of the constitutive equation. 

 Particular attention has been devoted to the benchmark 4:1:4 rounded contraction-expansion 

flow problem and numerical simulation for the flow or wormlike micellar systems under the umbrella 

of the Bautista-Manero approach. Such a time-dependent family of complex fluids can display shear-

thinning, strain-softening, thixotropy, shear-banding and yield-stress features. Then, starting from the 

modified Bautista-Manero (MBM) model, a number of corrections to this constitutive approach are 

proposed. The first correction is based on phenomenological observation with respect to numerical 

results using the MBM model, for which excess pressure drop is underestimated at the Stokesian 

limit. This inconsistency is dealt with by the inclusion of the viscoelasticity (via the Weissenberg 

number) into the structure destruction-construction dynamics. The second correction considers the 

absolute value of dissipation function as the driving influence for structure destruction. This (i) fixes 

the unphysical predictions on negative dimensionless fluidity and hence viscosity in complex flow; 

and (ii) significantly increases the elastic-level for which numerical solutions in complex flow are 

stable. Moreover, this last correction is found to have general applicability, and has been tested on the 

conventional time-independent PTT family of fluids. 

 Application of such corrections is considered through 4:1:4 contraction-expansion flow of 

viscoelastoplastic fluids, for which stable highly-nonlinear numerical solutions at low solvent fraction 

are required. These fluids are characterised by a hybrid micellar-Papanastasiou model. Further 

application is obtained through an experimental-to-numerical contraction-expansion study of Boger 

fluids, characterised by a FENE-CR model. Finally, a predictive toolset has been developed for an 

extensional rheometer and two biofluid systems, represented via the SXPP model. Here, 4:1 

contraction flow for bile in biliary ducts provides insight on flow structure and evolution; whilst, 

under filament stretching flows for sputum in the lung airways calibration of such a device is 

permitted (through FiSER-extensional viscosity estimation and CaBER-characteristic time 

estimation). 
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Introduction  1 
 

CHAPTER 1  

Introduction 
 

Rheology and non-Newtonian fluid mechanics Rheology is the science and study of the 

deformation and flow of matter. This subject comprised of two main branches: (i) rheometry, 

and (ii) viscoelastic fluid mechanics. Category (i) deals with constitutive modelling and 

material function estimation, whilst category (ii) is concerned with the study of material 

response in complex flows. Controlled flows appear under category (i), in which the 

kinematics is imposed in an ideal linear framework. Meanwhile, for category (ii) and 

complex flows, the continuity and momentum equations must be solved together with a 

constitutive equation for stress, where kinematics are unspecified a priori (Denn 1990). The 

governing principles and state equations, expressed as non-linear partial differential 

equations, constitute initial and boundary-value problems. Solution to such problems 

necessitates robust numerical methods in their resolution (Walters and Webster 2003). The 

resulting numerical and computational analysis constitutes the science of Computational 

Rheology (Crochet and Walters 1993). As stated by Keunings (2000), “the challenge to a 

computational rheologist is to develop numerical schemes to obtain accurate numerical 

solutions to governing equations at values of the Weissenberg number of practical interest, 

using a physically-realistic mathematical model.” Accordingly, a number of benchmark 

problems have been established as a basis of comparison in computational rheology. 

Amongst these, flow of viscoelastic fluids through contractions or contraction-expansions, 

and flow past objects, are two of the most widely studied benchmark problems (Crochet & 

Walters 1993; Owens and Phillips 2002; Keunings 1990, 2000, 2001). These problems have 

been extensively studied over some years (Walters and Webster 2003; Crochet & Walters 

1993), and multidisciplinary attempts have been made to answer the many fundamental 
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physical and scientific questions they provoke (Walter and Tanner 1992; Denn 2005, 2009; 

Bird 2004). Nevertheless, despite such effort, there are still several issues that lie 

unanswered, such as: (i) the disparity between experimental enhanced excess pressure drop 

and the contradictory numerical predictions in contraction-expansion flows for constant 

shear-viscosity Boger fluids (Walters et al. 2008, 2009), and the complex vortex-dynamics 

observed in these flows; and (ii) computation of accurate numerical solutions at high 

Weissenberg number levels, where the non-linearity of the systems prevails (Keunings 2000). 

Moreover, the advent of new technologies, with engineering and biomedical applications, 

requires the use of new materials, such as wormlike micellar solutions, polymers and 

biofluids (Dreiss 2007; Yang 2002; Verdier 2003). 

Wormlike micellar solution systems Viscoelastic wormlike micellar solutions are one of 

the most widely used types of fluid in modern industry, given their complex rheological 

behaviour. Over the last two decades, these materials have been enthusiastically embraced 

from several points of view, ranging between - experimental probes for shear banding 

(Olmsted 2008; Radulescu et al. 1999; Bautista et al. 2000, 2007, 2012), constitutive 

modeling (Bautista et al. 1999; Manero et al. 2002; Boek et al. 2005; López-Aguilar et al. 

2014; de Souza 2009, 2011, 2012; Vazquez et al. 2007) and numerical simulations in 

complex flow (Tamaddon-Jahromi et al. 2011; López-Aguilar et al. 2014). The presented 

thesis is principally concerned with the final category: that of numerical simulations in 

complex flow (chapters 5-7). This versatile family of fluids is constituted by mixtures of 

surfactants and salts in water; with typical surfactants - cetyltrimethylamonium bromide 

(CTAB) or cetylpyridinium chloride (CPyCl); and typical salts – sodium salicylate (NaSal) 

(Yang 2002; López-Aguilar et al. 2014). These components interact physically, depending on 

the concentration, temperature and pressure, to form elongated micelles that entangle and 

provoke interactions of viscosity, elasticity, and breakdown and formation of internal 

structure (López-Aguilar et al. 2014). This complex constitution spurns highly complex 

rheological phenomena, and manifests features associated with thixotropy (Bautista et al. 

1999), pseudo plasticity (Bautista et al. 1999; Manero et al. 2002; Boek et al. 2005; López-

Aguilar et al. 2014; de Souza 2009, 2011, 2012; Vazquez et al. 2007), shear banding 

(Olmsted 2008; Radulescu et al. 1999; Bautista et al. 2000, 2007, 2012) and yields stress 

(Calderas et al 2013). These features render them as ideal candidates for varied processing 

and present-day applications. For example, in use as drilling fluids in enhanced oil-reservoir 

recovery (EOR) (López-Aguilar et al. 2014), and as additives in many everyday products - 
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paints, house-hold products, cosmetics, health-care products, drag reducing agents (Yang 

2002; López-Aguilar et al. 2014). 

Micellar constitutive models – Many approaches have been pursued to model wormlike 

micelle flow behaviour. The original Bautista-Manero-Puig (BMP) model (Bautista et al. 

1999; Manero et al. 2002) consisted of the upper-convected Maxwell constitutive equation 

coupled to a kinetic equation. The Maxwell model described stress evolution, whilst the 

kinetic equation accounted for flow-induced structural change. Such kinetic considerations 

were based on the rate of energy dissipation. Subsequently, Boek et al. (2005) corrected the 

BMP model for its unbounded extensional viscosity response in simple uniaxial extension – 

thus producing the base-form MBM model employed in the present analysis. This model has 

been calibrated in complex flow scenarios such as benchmark problems of 4:1 contraction 

flow (Tamaddon-Jahromi et al. 2011) and 4:1:4 contraction-expansion flow (López-Aguilar 

et al. 2014). There, it has been proven inconsistent in excess pressure drop (EPD) estimation 

towards the Stokesian limit. This anomaly has been resolved more recently through a 

corrected model approach (López-Aguilar et al. 2014), that introduces viscoelasticity into the 

structure construction/destruction mechanics. Accordingly, two such model variants have 

arisen, with energy dissipation given by: (i) the polymer contribution exclusively (NM_p 

model), and (ii) polymer and solvent contributions (NM_T model). These considerations 

introduce new physics into the representation, by coupling explicitly the thixotropic and 

elastic nature of these fluids, alongside new key rheological characteristics, such as declining 

first normal stress difference in simple shear flow (López-Aguilar et al. 2014). For 

completeness, one may cite other alternative model approaches that have appeared in the 

literature, though these have largely focused on simple flows and the shear-banding 

phenomena. The VCM model, based on a discrete version of the ‘living polymer theory’ of 

Cates, has been tested on simple flows, where rheological homogeneity prevails (Vazquez et 

al. 2007), and under conditions of shear-banding. Another approach consists of using the 

Johnson–Segalman model, modified with a diffusion term for the extra/polymeric stress (so-

called d-JS model) (Olmsted et al. 2000). The Giesekus model has also been used in the 

representation of wormlike micelles under simple shear flow scenarios, whilst using the non-

linear anisotropy coupling parameter to introduce shear-banding conditions (Gurnon and 

Wagner 2012).  

CFD modelling The mathematical tools required for the solution of real flow situations of 

complex fluids are robust computational techniques, based traditionally on finite-difference, 
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finite-volume and finite-element methods (Walters and Webster 2003). The advent of 

powerful computers, the need to understand the nature of and to develop technology for such 

flow situations with complex fluids, has triggered the creation of ever more advanced 

numerical techniques (Walters and Webster 2003). The present in-house CFD predictive 

modelling capability accommodates transient, mixed extensional-shear flows within complex 

geometrical settings, as well as highly-elastic, large-extensional deformation. Important 

computational issues dealt with in such dynamic extensional flows involve the accurate 

capture of temporal rheological adjustment. This necessitates consistent, accurate and stable 

treatment of specific (flux/source/time) term combinations in the underlying partial 

differential equation systems, variable selection and location, and discrete functional space 

representations. Furthermore, of specific relevance and in general terms, there is provision 

within this CFD modelling for adaptive highly-accurate, dynamic remeshing, stable and 

hybrid spatial discretisations (finite element and finite volume). In this study, a semi-implicit 

time-stepping incremental pressure-correction version of the scheme is employed, that 

involves a hybrid parent-subcell finite element/finite volume fe/fv(sc) numerical algorithm 

(Wapperom and Webster 1998, 1999; Aboubacar et al. 2001, 2002, 2005, Webster et al. 

2004, 2005; Aguayo et al. 2006, 2008; Belblidia et al. 2006; Walters et al. 2008, 2009; 

Sujatha et al. 2008; Belblidia et al. 2007, 2008, 2011; Tamaddon-Jahromi et al. 2008, 2010, 

2011; Nyström et al. 2013; Echendu et al. 2013; Al-Muslimawi 2013; López-Aguilar et al. 

2014). This in-house scheme, is based on Taylor-series temporal expansions and Taylor–

Galerkin/pressure-correction fractional-staged methodology, coupled with subcell cell-vertex 

finite-volume schemes. It has been extensively documented and tested for various 

viscoelastic flow configurations and is well-suited to the present solution process in-hand. 

Specifically, on flows through abrupt contraction/expansion (focusing attention on excess 

pressure drop and vortex activity) and flow past objects. Here, several constitutive equations 

have been used for incompressible/compressible polymer solutions and melts (Oldroyd-B for 

constant-viscosity, XPP, PTT for shear-thinning fluids). As such, pressure and flow-

controlled, steady-state and transient flows, have been individually analysed and successfully 

solved. 

 The contraction–expansion flow problem offered in the current study is now a standard 

benchmark in experimental and computational rheology (Walters and Webster 2003). Some 

of the most outstanding features of this problem relate to its vortex dynamics (re-

entrant/salient), stress fields, flow kinematics and pressure drop measurement (Aguayo et al. 

2008; López-Aguilar et al. 2014). Here, diverse manifestations of the nature of the fluid can 
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be outlined, relating to vortex-size and evolution (extensional viscosity, N2-effects), structure 

formation and numerical tractability (sharp/rounded corners) (Aboubacar et al. 2002). One 

notes that the pressure drop, which reflects the energy expended in the flow, is often studied 

through an EPD measure (Binding et al. 2006; Aguayo et al. 2008), which itself offers a 

significant challenge in accurate resolution through computational prediction (Binding  1991; 

Binding et al. 2006; Aguayo et al. 2008). 

 Biofluids systems From the bioengineering point of view and with the development of 

rheology, much attention has been paid to the relationship between the rheological properties 

of biofluid systems and their biological function, in the challenge to meet industrial, 

biological and medical needs (Verdier 2003). This emerging research field, termed 

biorheology, deals with flow-deformation and rheological properties of substances within 

living organisms. For example, one may cite flow properties of biofluids: blood, lymph, 

synovial fluid, sputum, saliva, cervical mucus, cerebrospinal and intra-ocular fluid; and 

deformation of soft tissues, such as: blood vessels and capillaries, heart, muscles, bladder, eye 

lens and cartilage; and solution of proteins, nucleic acid and polysaccharides. Today, there is 

a substantial body of biorheological work related to blood flow and blood vessels 

(haemorheology) at the macro, micro and nano-scale (Verdier 2003). The present research 

combines the study of bile rheological properties from both, the experimental and theoretical 

points of view for confined flows in complex geometries, such as those occurring in flows 

past objects, and contraction-expansion flows. Bile rheological properties may be associated 

with common bile duct disorders, conditions under which bile passage and transport is 

obstructed or prevented, stimulating gallstones or inflammatory narrowing. Moreover, the 

properties of bile are not only patient dependent, but also pathologically dependent. Also, the 

effects of the duct geometry (narrowing) flow dynamics and bile rheology on pressure drops 

(flow resistance) are highly significant. In addition, bile flows can reveal exotic deformation 

and extensional behaviour at the micro-scale, where shear-thinning, tension-hardening and 

pressure-drops are all relevant. 

 Therefore, the main motivation of this research work is the analysis of flow of complex 

fluids in complex flow situations, taking advantage of the predictive capability of the 

numerical tools produced in the computational rheology framework. Special attention is paid 

to the flow of time-dependent thixotropic wormlike micellar fluids through Bautista-Manero 

models, along with applications on viscoelastoplastic flow. In addition, further practical 

directions of study cover: an experimental-versus-numerical comparative analysis, performed 
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on contraction-expansion flow; and the development of numerical predictive tools for the 

extensional properties of biofluids, on filament-stretching. This thesis is structured in the 

following manner: 

 In Chapter 2 – Basic equations & rheology, the outline of the relevant conservation 

principles and governing equations is provided. Here, these equations are specified for the 

flow of viscoelastoplastic fluids in isothermal conditions. In addition, a general differential 

constitutive model is described. This model accommodates the conventional PTT and FENE 

models, along with the proposals of modifications to the micellar thixotropic Bautista-

Manero models. Finally, the pom-pom model is described, which is used in this research to 

mimic the rheological characteristics of two biofluid systems, i.e. bile in biliary ducts and 

sputum in the lung-airways. 

 Material function response is provided in Chapter 3. Here, parametric variation is 

performed to illustrate their effect on shear and extensional viscosity and first normal stress 

differences data against deformation rate. This permits the acknowledgement of the physics 

introduced (by the parameters in each model) in ideal theoretical flow context, of simple 

shear and uniaxial extensional flows; and, more importantly, this provides a reference 

framework to compare and contrast against numerical solutions from complex flow 

situations. 

 Chapter 4 describes the Numerical Scheme and Discretisation utilised in this work for 

the simulation for benchmark problems of 4:1:4 contraction-expansion and filament 

stretching (FiSER and CaBER). This method is outlined as that based on a hybrid finite 

element/finite volume algorithm, centred around an incremental pressure-correction time-

stepping scheme. In this section, a brief description of and background to the finite element 

and finite volume methods is given, in application to the Bautista-Manero framework. 

 The first section of results is given in Chapter 5, in which A new constitutive model for 

worm-like micellar systems is proposed through results for the Numerical simulation of 

confined contraction-expansion flows of the MBM model. This correction is based on 

phenomenological observations of underprediction of the conventional MBM-model for the 

excess pressure drop (epd) estimation in the Stokesian limit. In addition, these time-

dependent thixotropic models are contrasted with the more conventional time-independent 

EPTT model. This produced interesting and contrasting trends in epd, vortex-dynamics and 

stress-fields data as the elasticity levels were risen. Finally, a relationship between the nature 
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of the steady state f-functional (explicitly related to the structure of the fluid and its 

viscosity) and the limiting Welim was obtained. 

 In Chapter 6 High-Weissenberg predictions for micellar fluids in contraction-expansion 

flows, a second correction to the Bautista-Manero family of models is proposed. The 

constitutive equation correction proposed takes into account the absolute value of the 

dissipation function in the structure destruction mechanism; f ≥1 are predicted and, 

consistently, positive viscosity results are obtained. In addition, the positive nature of the 

corrected provides larger Wecrit values, which are increased in one order of magnitude with 

respect to the natural-signed versions. This correction is found generally applicable, and 

proved successful under the EPTT framework. New findings surround strong control of flow-

centreline deformation rates. Finally, the constitutive equation has been recasted in a 

conformation-tensor context, for which the positive-definiteness is enhanced, and then, Wecrit 

increased with respect to the stress-tensor versions. Using the second eigenvalue of this 

conformation tensor, the stability of the numerical results is evaluated. Furthermore, a 

relationship between the eigenvalues and the first normal stress difference N1 is derived 

theoretically, which indicate departure from the linear viscoelastic regime predictions. 

 The large Wecrit attained in Chapter 6 imply that the levels of non-linearity attainable by 

the correction proposed are higher. Recently, Calderas et al. (2013) have provided evidence 

on the yield-stress predictive capability of the Bautista-Manero model in simple shear flow at 

low solvent fraction levels (meaning highly polymer-concentrated systems). Hence, in 

Chapter 7 Numerical modeling of thixotropic and viscoelastoplastic materials in complex 

flows, the applications of those results have leaded to the simulation of viscoelastoplastic 

flow in the 4:1:4 contraction-expansion complex flow setting using a hybrid NM_p_ABS-

Papanastasiou model at low solvent fraction levels (which represents an alternative way of 

increasing the non-linearity of the problem). Plastic characteristics are incorporated in both 

solvent and polymeric contributions. A Bingham-Papanastasiou model is introduced into the 

solvent part, whilst the polymer part is described through the micellar thixotropic 

NM_p_ABS model. Here, results on vortex dynamics, epd, stress fields and yields fronts are 

all analysed.  

 A further section to this thesis on applications is in Chapter 8 - Pressure-drop and 

kinematics of viscoelastic flow through an axisymmetric contraction-expansion geometry 

with various contraction-ratios. This constitutes collaborative work between MEng M. Pérez-
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Camacho (experimental data, contributes to Pérez-Camacho’s DEng thesis) and MEng J. E. 

López-Aguilar (simulation data, under Prof. M. F. Webster supervision, performed at 

Institute of Non-Newtonian Fluid Mechanics, Swansea University UK). Both Pérez-Camacho 

and López-Aguilar are supervised by Dr. O. Manero Brito on UNAM DEng degrees at our 

Facultad de Química. The research lies in comparison of experimental and numerical data for 

flow of viscoelastic Boger and pseudoplastic fluids through axisymmetric contraction-

expansion flows. Here, the contribution of López-Aguilar lies in the material functional data 

fitting for the Boger fluids and simulation solutions for the rounded 4:1:4 contraction 

expansion, using the FENE-CR model. In this work, there is a striking match between 

experimental and numerical predictions. This demands still further work, with matching 

between geometrical configuration (sharp corners and varying the contraction ratio), to fully 

capture the lip-to-corner-vortex transitions.    

 A predictive extensional viscosity and characteristic time toolset for biofluids is 

proposed in Chapter 9 A Computational Extensional-Rheology Study of Two Biofluid 

Systems. Here, complex flow through a 4:1 contraction and filament-stretching FiSER 

(Filament Stretching Extensional Rheometer) and CaBER (Capilary Break-up Extensional 

Rheometer) are analysed, with a view to describing flow structure in contraction-bile biliary 

ducts flows, and extracting reliable rheometric data for sputum in the lung airways from 

filament-stretching. The behaviour of these biofluids is emulated using the SXPP model, 

which is capable of reproducing shear-thinning strain-hardening response, through branching, 

entanglements and anisotropy physical characteristics.  

 Finally, in Chapter 10, the Concluding remarks and future directions are outlined. 
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CHAPTER 2 

Conservation Principles & Rheology 

The basic equations of fluid mechanics are presented that allow the description of 

fluid motion and conservation of mass. In addition, rheological models relevant to the 

present study are considered, which relate surrounding forces with the internal response 

from the material. These models are centred on the Bautista-Manero type models, which 

describe complex fluid systems capable to exhibit complex non-linear characteristics, 

such as thixotropy, shear banding and yield stress. Here, a number of corrections to 

these micellar models are described. These corrections are based on phenomenological 

and physical factors, such as, epd estimation and viscosity representation. Finally, a 

description of conventional PTT, pom-pom and FENE type models is also provided. 

2.1 Background 

Rheology is the science of deformation and flow. As such, the subject matter of 

rheology surrounds the flow of complex fluids, observing the change in fluid properties 

depending on the flow deformation and its time-scale, at fixed temperature. The scope 

of rheology spans between two classical linear laws of nature for the deformation of 

matter and flow: (a) that given by the Newton’s law of viscosity for ideal fluids, and (b) 

that of Hooke’s law for the deformation of ideal elastic solids. These two classical 

extremes are characterised by constant viscosity and modulus, for Newtonian liquids 

and Hookean solids, respectively.  Correspondingly, water is the most representative 

example of a simple Newtonian fluid; and a metal spring stands for a Hookean solid 
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under small deformation. The variety of materials departing from these two extremes is 

wide: ranging from fluids used in industry (plastics, paints, oil in wells and out of them, 

surfactant solutions), biomaterials (sputum, blood, saliva, tissues), and foods - to name 

some examples. These ideal linear extremes provide the span that defines a viscoelastic 

material: which enjoys characteristics of a viscous liquid (in its dissipative nature); and 

an elastic solid, which stores energy and ‘has memory’ of its past state, to which it tends 

to return. The contributions of these fluid-like and solid-like features are reflected in 

what is termed a ‘characteristic time’ of a fluid. In general, the larger the characteristic 

time, the stronger its viscoelastic features. For example, water is a classified as a 

Newtonian liquid and has a characteristic time of 10-12s; whilst a polymer melt under 

processing conditions may display a characteristic time of just a few seconds (Barnes et 

al. 1989). As such, the distinction between solids and liquids is often faint, yet still, a 

concise redefinition of the terms solid and liquid material can be stated. A solid can be 

defined as a material that does not continually deform under a given stress; whilst, a 

liquid is a material that continually deforms when subjected to a given stress, 

irrespective of how small the stress may be (Barnes et al. 1989). 

Rheology can be studied on alternative levels of scale: either through a continuum 

approach level, or on the molecular scale (Barnes et al. 1989). The first, in which this 

thesis has been developed, is based on the assumption that the material is viewed as a 

continuous bulk body, often termed ‘fluid element’. Within the continuum approach, 

the individual contribution of the molecules are ignored, given the fact that the largest 

molecular length-scale is still considerably smaller than the smallest characteristic 

length-scale in such an idealised macroscopic framework. In contrast, the molecular 

scale considers the interactions between molecules in a framework where the 

characteristic length-scale is comparable to the characteristic length-scale of a molecule. 

Whichever the framework chosen, such considerations need be incorporated within a 

constitutive equation that accounts for the relationship between the stress on an element 

(or molecule) of fluid and the deformation caused. Then, classical conservation 

principles of mass, energy and linear momentum should be satisfied. In particular, 

constitutive equations, governing rheological equations of state for stress, are then 

introduced, which contribute additional forces into the linear momentum conservation 

equation to account for the flow of a particular class of fluids, in space and time. 
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2.2 Viscometric flows 

These theoretical ideal flows are reference deformation states within which a 

complex fluid is analysed to qualify and quantify its response characteristics. This 

procedure trials the physics supporting a particular constitutive equation that is intended 

to mimic a realistic fluid under such experimental deformation flow states. Viscometric 

flows are characterised by a controlled flow, in which the kinematics are fixed 

(determined from the solution of the momentum and mass balance equations), and are 

then introduced into the constitutive equation to derived closed-form expressions for the 

fluid material functions (i.e. shear and extensional viscosities, and normal stress 

coefficients). In addition, these ideal flows and material functions provide a common 

reference-basis, for comparison and interpretation against approximate numerical 

solutions. Such numerical solutions (to the full underlying system of equations) can be 

quite general and apply for both ideal (theoretical) and non-ideal (complex) flow states, 

as in combined shear and extensional flows. The most common types of viscometric 

flows are simple shear and simple extension. 

2.2.1 Simple shear flow  

The most straightforward manner in which this ideal flow is often described is that of 

flow between parallel plates, as illustrated in Fig. 2.1. Here, the material is confined 

between two extremely-large parallel plates, separated by a gap h , with the upper-plate 

moving at constant velocity  u h h  , and a constant velocity gradient (shear-rate  ), 

so that the shear stress is: 

 Shear      .  (2.1) 

In particular, a Newtonian fluid is characterised by a constant coefficient of 

proportionality Shear  (known as shear viscosity, which symbolises the resistance to flow) 

and a linear relationship between the shear stress and shear-rate. 

The kinematics imposed in this case is    1 2 3 2 0 0u ,u ,u x , ,  u . Hence, the rate-

of-deformation tensor D  under simple shear deformation is as follows: 
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 
0 0

1 1 0 0
2 2

0 0 0

T



 
      
  



D = u + u = .  (2.2) 

Here, ( 1 2 3u ,u ,u ) represent the vectorial components of fluid velocity in the three 

spatial reference directions of (
1x ,

2x ,
3x ) In a planar configuration, as in Fig. 1, these 

spatial directions equate to (
1x ,

2x ,
3x )=( x , y , z ). 

 

  

Figure 2.1 Schematic representation of simple shear flow   

Normal stress differences The display of normal stress differences in non-Newtonian 

fluids is one of the key manifestations of their non-linear nature. These normal stresses 

are responsible for complex and attractive phenomena such as die-swell, rod-climbing 

(the so-called Weissenberg effect), tubeless syphon, the so-called Kaye effect (Boger 

and Walters 1993). Usually, the first and second normal stress difference, 1N  and 2N , 

respectively, are analysed. Their magnitudes are zero for Newtonian fluids, whilst for 

non-Newtonian fluids, their definitions are: 

    2

1 11 22 1N           ,  (2.3) 

    2

2 22 33 2N           ,  (2.4) 

where  1   and  2  , represent the first and second coefficients of normal stresses. 

Experimentally, it has been observed that (Barnes et al. 1989), 

1 0N            and          1 2N N .  (2.5) 
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2.2.2 Extensional flows  

A generalised extensional velocity field may be given as 

  1 2 31x ,m x , m x      u (Macosko 1994). From here, the rate-of-deformation D   

may be written as follows: 

 

0 0
0 0
0 0 1

m
m






 
 
 
   







D = ,  (2.6) 

where   represents the constant extension rate in this simple and ideal extensional flow 

setting. Note that this generalised extensional flow field is designed to fulfill 

incompressibility ( trD = 0 ) m . This parameter m  may be at m ={-1/2,1,0} to 

represent {uniaxial, biaxial, planar} extension, respectively. Under such states, there is 

no shear deformation, the fluid volume maintains essentially the same internal angles, 

but with modified lengths. 

Simple uniaxial extension  

In particular, for uniaxial extension ( m =-1/2), the material is stretched in one particular 

direction (1:flow direction), and due to incompressibility, compression occurs in the 

other two directions (2 and 3), preserving the volume (incompressibility satisfied).  

Then, the velocity field is 1 2 3

1 1
2 2

x , x , x      
 
  u , and rate-of-deformation tensor 

becomes: 

0 0
10 0
2

10 0
2







 
 
 
 
 
 
 
 







D = ,  (2.7) 

The extensional viscosity is then expressed as follows, 

 11 22 Ext        .         (2.8) 
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Figure 2.2 Schematic representation of extensional flows 

 Once more, the Newtonian fluid embodies the reference, for which the extensional 

viscosity Ext  is constant   . Here, the relationship of 3Ext

Shear




  is observed, which 

defines the lower-rate limit for the Trouton ratio (see definition below). This zero-

extension-rate limit is universal, including those with viscoelastic properties at low 

deformation-rates,  
 

0
3

0
Ext

Shear

 
 









. 

 The Trouton ratio (Tr ) is defined as the quotient of extensional and shear 

viscosities at equivalent deformation rates (Barnes et al. 1989): 

 
 3

Ext

Shear

Tr
 

  






 
.  (2.9) 

Consistently with the Newtonian limit stated above, Tr =3   inelastic liquids. In 

contrast, for viscoelastic materials, this ratio is anticipated to satisfy  0 3Tr    . 

Beyond this range, common response for viscoelastic materials is that of initial early 

growth to values Tr >3 with  ; rising subsequently to a peak in the relatively moderate 
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rate of deformation range (strain-hardening limit); to ultimately   3Tr     in the 

high deformation-rate regime (strain-softening). 

Planar extension  

This planar variant of simple extension is characterised with m =0, and illustrated in 

Fig. 2.2. Here, the material is extended in one direction (1), and compressed in another 

direction (3); whilst there is no deformation in the remaining direction. Consistently, the 

velocity field is  1 30x , , x   u  and the rate-of-deformation tensor becomes: 

0 0
0 0 0
0 0





 
 
 
  





D = ,         (2.10) 

and, by analogous calculations, then, for a Newtonian fluid 4Ext

Shear




 . In contrast, the 

Trouton ratio for a viscoelastic liquid is defined as  
 2
Ext

Shear

Tr
 

  






 
, with limiting 

value of     
 

0
0 4

0
Ext

Shear

Tr
 


 


  







, at vanishing deformation rates. 

 Interestingly, in contraction flows, pure extension takes place along the centreline, 

whilst a pure shear state applies along the wall; a mixture of both applies throughout the 

general flow-field domain. In particular, under axisymmetric configurations, this 

centreline elongation is that of uniaxial extension ( m =-1/2); whilst in 2D planar flows, 

such deformation is that of planar extension ( m =-0). 

2.3 Conservation principles & Constitutive models 

2.3.1 Conservation of mass  

The principle of conservation of mass states that the net increase of mass in a volume 

control is equal to the net mass flow rate that passes through its boundaries. 

Equivalently, under steady-state conditions, the principle states that the accumulation of 

mass in any given system is determined by the mass entering minus the mass leaving 
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the system through its boundaries at any given time (Morrison 2001). This principle is 

expressed mathematically through the continuity equation (Aris 1962; Bird et al. 1960, 

1977), 

  0
t





  


u .  (2.11) 

 Under transient, incompressible and isothermal flow conditions, the relevant mass 

conservation and momentum equations for viscoelastic flow, may be expressed in non-

dimensional terms (see definitions below; omitting * notation for dimensionless 

variables) as: 

0 u ,          (2.12) 

where t represents time; the gradient and divergence operators apply over the spatial 

domain; field variable u represents fluid velocity. 

 The dimensionless variables utilised are defined as follows (see below for scales): 

*

U


uu         t* 
U
L

t         
 0

p*

p

p s

U
L

 





        

 0

*

p s

pp U
L

 



         * L

U
D D  

2.3.2 Conservation of linear momentum  

The principle of conservation of linear momentum states that the rates of increase of 

momentum in a control volume are due to (i) the net flow of momentum into the system 

by convection (momentum of the stream of material entering and leaving from the 

volume control crossing its boundary); (ii) the diffusion of momentum due to internal 

forces in the material; and (iii) and the external body forces acting in the distance (such 

as gravity and electromagnetic forces, which are considered negligible in this work). 

This principle is Newton’s second law of motion rephrased, which states that the change 

of linear momentum in a system is equal to the sum of the forces acting upon it. In 

dimensionless form, this principle can be written (Aris 1962; Bird et al. 1960, 1977; 

Morrison 2001): 

Re - Re p
t


   


u T u u         (2.13) 
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where field variables u, p and T represent fluid velocity, hydrodynamic pressure and 

stress contributions, respectively; then, stress may be further split into solvent (viscous-

inelastic) and polymeric (viscoelastic) contributions 2 s p T D . Body forces are 

neglected in the present analysis, since contributions from gravity are less significant 

than those from other forces (i.e. pressure and stress).  

The non-dimensional group of the Reynolds number may be defined as 

 0p sRe UL /    , with characteristic scales of U  on fluid velocity (based on mean 

flow rate) and L  on spatial dimension (based on minimum contraction dimension). 

Material density is   and reference viscosity is taken as the zero shear-rate viscosity, so 

that 0

0 0

1 0p s

p s p s

.
 

   
 

 
. Here, 0p  is the zero rate polymeric viscosity and s  is the 

solvent (zero shear-rate) viscosity, from which the solvent fraction can be defined as 

 0s p s/     . 

2.3.3 Constitutive equations  

In general and for fluids of complex rheological behaviour, additional information is 

required to specify the state of stress and to complete the statement of the flow problem. 

This lies in the form of constitutive laws or state equations for stress, which relate the 

internal state of stress and the rate of deformation that a fluid experiences under flow. 

As such, the specification of the form of the extra-stress tensor p  completes the 

minimum set of equations to describe the flow of a viscoelastic material. The 

description of the models used in this work starts with the basic principles constitutive 

equations must satisfy to represent general fluid flow behaviour. Subsequently, as a 

base reference, the Newtonian fluid (simplest viscous model) is described, followed by 

more complex constitutive models that account for viscoelastic and viscoelastoplastic 

behaviour. 

Basic principles of continuum mechanics  

Within a continuum mechanics framework and from a mathematical perspective, 

constitutive equations must satisfy the following basic criteria to adequately represent 

fluid response (Barnes et al. 1989; Astarita and Marucci 1974). 
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(i) Frame invariance The form of constitutive equations must be independent of the 

frame of reference used to describe the motion of the fluid it represents. 

(ii) Invariance under superposed rigid body motion The constitutive equations must 

reflect independence of absolute motion in space; implying, any rigid body motion 

imposed on the whole fluid must not affect the response of the material. 

 (iii) Determination of stress and local action: The behaviour of a material element 

depends only on the previous history of that same material element and not on the state 

of neighbouring elements. Hence, the concept of ‘fluid memory’ must be associated 

with material elements and not with points in space. 

Newtonian Fluids  

The linear Newtonian-fluid constitutive equation is the traditional reference for 

comparison between inelastic and non-Newtonian fluids, given that non-Newtonian 

fluids at vanishingly small deformation rates tend to behave as Newtonian fluids. 

Newtonian fluids present a constant viscosity under isothermal and isobaric, shear and 

elongational flows. Moreover, they display an instantaneous response to deformation 

(interpreted through an extremely low characteristic time). The expression representing 

the relationship between stress and rate of deformation is linear for incompressible 

Newtonian fluids, i.e.: 

2T D ,  (2.14) 

where   represents the constant viscosity characteristic of Newtonian fluids. Then, 

substitution of equation (2.14) into (2.13) produces the well-known Navier-Stokes 

equations. 

Maxwell and Oldroyd-B models  

The first differential viscoelastic model designed to describe viscoelastic fluid flow 

behaviour was introduced by Maxwell (Maxwell 1867). Based on total stress, the 

expression for this model is as follows, 

0
0

0

2
G t
 



TT + D ,  (2.21) 
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where 0G  and 
0  are the elastic modulus and the viscosity of the viscoelastic fluid, 

respectively. Then, the relaxation time for a Maxwell fluid is defined by 0

0G
  . This is 

the first model to account for ‘memory effects’ (viscoelasticity) in non-Newtonian 

fluids. Nevertheless, eq.(2.21) does not fulfil the second principle of continuum 

mechanics, that of invariance under superposed rigid body motion. 

Oldroyd (1950) proposed a correction to the Maxwell model, replacing the Eulerian 

time derivative with its convected alternative. Oldroyd introduced the upper- (


 ) and 

lower- (


 ) convected derivatives of any tensor  , to fulfill the basic principles of 

fluid mechanics stated above. These convected derivatives are defined as follows: 

 T

t

 
      


u u u           (2.22) 

 T

t

 
      


u u u           (2.23) 

 From eqs.(2.22)-(2.23), eq.(2.21) the upper-convected (UCM) and the lower-

convected Maxwell (LCM) models are generated, respectively, as, 

02 


T + T D ,  (2.24) 

02 


T + T D .  (2.25) 

Upon further consideration, and amongst more detailed model variants, Oldroyd 

(1950) proposed the inclusion of a solvent contribution in eq.(2.24). This introduced a 

retardation time, J , as: 

 02 J  
 

T + T D + D .  (2.26) 

Equation (2.26) is known as the Oldroyd-B model. Here, s
J

s p


 

 



 is identified as 

a retardation time related to the presence of the solvent in the mixture. It is noteworthy 

that practical discretisation difficulties arise under numerical approximation when 
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dealing with the term 


D , and its counterpart higher order (second-order) spatial 

derivatives on velocity that themselves demand resolution. Nevertheless, this issue can 

be managed, with some additional steps in variable redefinition (see below).  

Elastic-viscous stress splitting EVSS Considering variable redefinition, the Oldroyd-B 

model may be split into two different equations, one for the polymeric contribution and 

other for the that of solvent, to generate a general statement of the differential 

constitutive model that may be expressed in dimensionless form as (Barnes et al. 1989): 

 2 1 p  T D           (2.27) 

   2 1p T

p p p pWe f We
t 


       


D u u u


        (2.28) 

in which a second dimensionless group number is introduced governing elasticity, via a 

Weissenberg number ( 1

UWe
L

 ), which is a function of the characteristic material 

relaxation time, 0

1

0

p

G


  , and the characteristic velocity and length scales. By 

specifying the functional f , the network nature and theoretical structure properties of 

any particular fluid may be imposed within this general framework. The Oldroyd-B 

model is the simplest such instance, and is represented by a fluid with 1f  . 

 In subsequent sections, the nature of the f -functional is specified for a variety of 

models, covering the wormlike micelles-thixotropic Bautista-Manero models and the 

conventional approaches given by the PTT and pom-pom representations. Moreover, 

counterpart detail on FENE-CR, and viscoelastic and viscoelastoplastic hybrid models 

is also provided. 

2.3.4 Bautista-Manero models  

The original Bautista-Manero (BMP) and Modified Bautista-Manero (MBM) models  

To represent the field of wormlike micellar systems and in the first instance, the 

modified Bautista-Manero (MBM) model (Boek et al. 2005) is adopted. This approach 

is based on the Bautista-Manero-Puig (Bautista et al. 1999; Manero et al. 2002), in 

which a non-linear differential structure equation for the fluidity ( 1

p p   ), dictates the 
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construction/destruction dynamics of the structure of the fluid; this also provides the 

polymeric viscosity 
p . Typically, this may begin from a fully structured state to be 

converted to a completely unstructured form, using the energy dissipated by the 

polymer under flow. This MBM model may be presented in stress-split form, in which 

the solvent contribution is of Newtonian-type and the polymeric contribution is given 

by the following expression: 

0

2p
pp pG






   D .         (2.29) 

The structure equation is then: 

1

0

1 1 1p

p

s p p

k :
t


   





   
         

 D        (2.30) 

 Defining  0p pf /


   using the zero-rate viscosity 0p  as a scaling factor, Eq. 

(2.30) can be recast into that to determine f , as follows: 

  0

1 1 p p

s

f kf :
t


 
 



 
      

D .       (2.31) 

 Applying non-dimensionalisation (again, omitting * for dimensionless variables), 

as above: 

 
0

1 1
p p

f f :
t


 


  


D .        (2.32)  

 The dimensionless parameters of this micellar model, which account for structural 

construction ( sU / L  ) and destruction (    
0 0 0p p p sk / U / L    


  ), appear in 

the corresponding terms for these network mechanisms.  

NM_p and NM_T models - Inclusion of viscoelasticity into the structure 

construction-destruction mechanism (a correction to MBM)  

In this work, a key modification has been proposed to Eq. (2.32) driven by 

phenomenological observation, which results in the novel inclusion of viscoelasticity 

within the destruction mechanics of the fluid structure, via 0 0 1p G  . In the first 
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instance, the destruction term is further developed to accommodate only that energy 

involved in destroying the fluid structure from the polymeric dissipation (NM_p 

model): 

 
0

1 1 G p

f f We :
t


 



  


D         (2.33) 

where    
0 0 0G p sk / G   


   is the new and replaced destruction dimensionless 

parameter‡. 

A second factor to consider is that there are energy contributions from both 

polymeric and solvent dissipation terms to the destruction of the fluid structure (NM_T 

model): 

 
0

1 1 G

f f We :
t





  


T D .        (2.34) 

When the dynamic differential eqs.(2.33)-(2.34) for structure evolution are recast 

into their steady-state form, then the equivalent algebraic form is recovered, 

.        (2.35) 

Here, the two versions of eq.(2.35) arise to break the structure of the fluid, dependent 

on the choice of -variable: one, considering the energy dissipated by the polymer 

constituent alone (p, NM_p model); and the other, involving both the polymer plus 

the solvent contributions (, NM_T model). 

A correction for realistic material function estimation – NM_p_ABS model  

Importantly, the dissipation function in eq.(2.30)-(2.36) is the driving influence in previous 

models for departure from Oldroyd behaviour (f=1), which is modulated by the product of the 

construction and destruction parameters (thixotropy) (and with the Weissenberg number, where 

applicable). Here, this expression for the f-functional links directly with the viscosity, which is 

a positive physical quantity that should remain finite and above unity in scaled form 

                                                
‡ The corresponding theory may be developed for constructive contributions also, to be addressed 
subsequently. 
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( : D 0 ),1 during flow evolution (time) and throughout the spatial domain (in shear, 

extensional and mixed flow deformation). As such, negative values (and less than unity) of this 

f-functional are inadmissible. As evidenced in our previous work (López-Aguilar et al. 

2014), there are instances in complex 4:1:4 contraction/expansion flow, near numerical We-

solution breakdown, in which the dissipation function becomes negative, thus predicting 

negative values of the f-functional and unphysical thixotropic viscosities. To avoid this 

possibility arising, and consistent with the underlying ideal shear and extensional flow 

derivation theory, the following ABS-correction is proposed: 

.       (2.36) 

In eq.(2.36), the absolute value sign is applied to each component of the scalar 

dissipation function2. This ABS-correction becomes redundant in simple shear and extensional 

flows, since the domain of the variables in such viscometric flows is positive. As such, this 

correction provides correct physical and thermodynamical interpretation to this family of 

micellar models, in their departure from ideal flow. 

2.3.5 Phan-Thien/Tanner models  

This Phan-Thien/Tanner (PTT) model considers the creation and destruction of network 

junctions, as in a rubber network representation. Shear-thinning and extension-

hardening/softening are predicted by this class of models, alongside finite extensibility 

(hence useful practically to represent polymer melt and solution response). The upper 

convected form of this model is expressed as: 

02p p pf  


  Dτ                       (2.37) 

the additional network-structure function f  is, 

 

 

1

1

0

0

1

e

p
p

p
p

tr
exponential,f

tr linear .








 
 
 
 
 



 
 


τ

τ
      (2.38) 

                                                
1 Note, observations on trace(p)>0 of Hulsen (1990), to maintain positive stored elastic energy with viscoelastic PTT 
models. 
2 Alternatively, apply the absolute operation to the total dissipative sum 
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 The model may be modified to incorporate combination of both upper and lower 

convected derivatives (Johnson-Segalman form). The linear form is extracted from 

truncation of a Taylor series expansion of the exponential form. Both forms predict 

shear-thinning behaviour and extension-hardening; strain-softening is anticipated for the 

exponential form; whilst the linear form displays sustained strain-hardening (limiting 

plateau behaviour); although, for some extreme values ( 1  ) moderate softening is 

also observed with the linear variant. 

2.3.6 PTT-ABS models  

The same reasoning as with thixotropic models can be applied to PTT models, and the 

analysis returns towards classical Oldroyd-B behaviour in the limit of vanishing trp.3 

Consistently with the above f-functional modifications expressed for thixotropic 

micellar models, the corresponding modification to PTT models becomes: 

 for LPTT,        and      for EPTT. (2.39) 

 Note, in eq.(2.39), it is implied that the absolute value sign applies to every 

constituent component of the scalar trp. With non- thixotropic PTT models, the trace of 

the extra-stress is the function responsible for departure from Oldroyd-B form, as 

opposed to energy dissipation, : D , under the alternative thixotropic approximations. 

2.3.7 Change of variable (translations p - )  

Following the developments on positive definiteness and loss of evolution by Dupret 

and Marchal (1986) and Hulsen (1988), a dimensional tensor =p+(p0/1)I  is 

adopted in this study, which is a translation identity between  and p tensors. As such, 

the eigenvalues of the  tensor may be taken as a form of guidance as to solution 

quality and, indeed, as an indicator towards violation in attaining converged steady-state 

numerical solutions at increasing We-increments (numerical divergence/breakdown). 

According to the non-dimensional variables above, the dimensionless form of this 

tensor is =[We/]p
+I. 

Application of the –tensor definition leads to the following dimensionless 
                                                
3  Provided the model parameter set {, , We}>0, as is necessary by definition 
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constitutive equation statement (eq.2.28): 

.        (2.40) 

For the time-dependent thixotropic micellar models, the functional f is governed by 

the differential expression, where  represents the conformation-tensor form of : 

   
0

1 1 1G

f f :
t


  



   


D .      (2.41) 

This reduces under steady-state conditions to the following expression: 

 
0

1 1Gf :     D .       (2.42) 

For this family of fluids, it is noteworthy that the We-scaling on the non-

dimensionalised dissipation function is omitted in the p-to- translation. 

Then, the corresponding f-functional for the time-independent network-based PTT 

models (Hulsen 1990) are given by: 

1 3f tr     for LPTT,        and  3f exp tr


   for EPTT. (2.43) 

One notes that eqs.(2.41)-(2.43) already include the ABS-correction, yet this 

assumption may be relaxed to consider natural-signed options. 

2.3.8 Convoluted viscoelastic models  

A hybrid modelling approach may also be pursued, by convoluting f-functionals of the 

EPTT and micellar models. Herein, a stronger, steady state f-We explicit relation is 

designed to attain highly elastic solutions for micellar fluids. For the steady-state case of 

the convolution of MBM and EPTT f-functionals (EPTT/MBM model): 

 
0

1
1p p pf : exp Wetr 




 
    

D  .      (2.44) 

 Now for the EPTT/NM_p model, 

  
0

1
1G p pf We : exp Wetr




 
    

D  .      (2.45) 

 And finally for the EPTT/NM_T: 
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 
0

1
1G pf We : exp Wetr




 
    

T D  .      (2.46) 

2.3.9 Hybrid/convoluted viscoelastoplastic models  

In this study, non-Newtonian viscoplastic properties are introduced via a 

regularization approach adopting the Bingham-Papanastasiou model (Papanastasiou 

1989). The viscoelastoplastic contribution is given by the NM_p_ABS model describe 

in previous sections. Hence, yield stress contributions are recognised as entering 

through the solvent viscosity functionality alone. Note, there are other alternative 

formulation choices to embrace plastic behaviour via Papanastasiou regularisation 

(Papanastasiou 1989), namely: (a) within polymeric viscosity functionality alone; and 

(b) via both solvent and polymeric viscosity contributions. Studies illustrating the 

consequences of applying these various options have already been conducted and 

reported upon elsewhere, with polymeric representations under Oldroyd-B (Belblidia et 

al. 2011) and EPTT (Al-Muslimawi et al. 2013) models. 

The general differential statement of the viscoelastic model in eq.(2.27)-(2.28) is 

supplemented in the solvent contribution with the Bingham-Papanastasiou model: 

 02s pII ;m ,  D D         (2.47) 

The Papanastasiou regularisation specifies an exponential functional-form in its 

solvent viscosity contribution, based on the second invariant, 21
2

II trD D , of the rate of 

deformation tensor, viz: 

   1
2

0

10 0 2

1

2

pm II

p

e
II ;m ,

II


  




D

D

D

= .       (2.48) 

Here, parameters of {0,mp} represent: 0 the base cut-off yield stress factor, and mp the 

regularisation stress growth exponent (with scale of time). The 0-parameter expresses 

the stress level below which plastic behaviour is observed and is equivalent to a 

Bingham Number, Bn=0=yLchar/0Uchar. 
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2.3.10 FENE-CR model  

The FENE-CR model was introduced by Chilcott and Rallison (1988). This model is 

appealed to under comparison against Boger fluids in the experimental versus numerical 

comparison chapter, considering vortex dynamics and pressure drop estimation for 

contraction-expansion flow. The attractive rheological properties sought under this 

comparison are those of its constant shear-viscosity and strain-hardening, reflecting 

those of  Boger fluids. The model reads: 

0A Af We f


  A A I ,         (2.49) 

where A is the conformation tensor, derived from Kramer’s rule:                        

 1
p AfWe

= A- I ,         (2.50) 

and where the Warner spring-expression is: 

2

1

1
Af tr

L


 A

,          (2.51) 

2.3.11 The Single-eXtended pom-pom (SXPP) model  

In addition and by way of contrast, the kinetic-theory molecular-based pom-pom model 

is also considered when representing biofluid properties under some specific 

applications. This model may be represented in general form as: 

 †
1

2

2(1 ) ( )

1                                                       ( 1)
1

De De f De De
t

De f
De

 

 



             




   



     

 

u d L L d d

I
                      (2.52) 

Here, for the Single Extended pom-pom (SXPP) model, one identifies the functionals 

(f1, f2) and four additional parameters (q, εpom, λpom, αpom). These additional structure 

parameters govern the number of side-branch arms to the molecular-backbone chain-

segment (q), system entanglement (εpom), the stretch of the back-bone segment (λpom), 

and the degree of system anisotropy (αpom). Corresponding forms extracted from the 

physics for these functionals (f1, f2), in terms of the base network-description parameters 

(q, εpom, λpom, αpom) and (, De, ) may be given by: 
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     
2

1 2 2

12 1 1 e, 1 e 1 tr
1 3

pom pom

pom pom pom

Df f f
  


   

 
 
 

                       
   . 

           (2.53) 

Here, the free parameter ν is estimated by data-fitting and found to be inversely 

proportional to the number of side-branch arms dangling from an end of a molecular 

chain-segment (ν = c/q, with c taken as 2), see Blackwell et al. (2000). The parameter 

εpom is the ratio of the backbone-stretch (λ0s=) to the orientation (λ0b) relaxation times 

(larger values indicate more highly-mobile system states, less degree of entanglement). 

Conveniently and with the single-equation (SXPP) approximation to the pom-pom 

model, representation of the back-bone stretch parameter pom, collapses from its 

generalised differential evolutionary form to an instantaneous algebraic response, given 

through expression: 

   1 e1 tr
3 1pom

D


 


 , 0

0

s
pom

b




 .       (2.54) 

This completes the statement of all models utilised within the present body of research. 
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CHAPTER 3 

Material function response 

3.1 Bautista-Manero and EPTT models 

Material functions for the EPPT, MBM, NM_p and NM_T models, along with the 

Oldroyd-B (f=1) reference, are plotted in Fig. 3.1. Solvent fraction variants considered 

in this work are ={1/9, 0.9} for highly-polymeric and solvent-dominated fluids, 

respectively (see Table 2.1 for details in parameter values). The EPTT model 

parameters are chosen to take values at benchmark settings of ={0.25, 0.02}, 

characterising polymer melts and solutions [41], which are identified as applicable for 

moderate (MH, =0.25) and strong hardening (SH, =0.02) scenarios, respectively. The 

resulting micellar extensional viscosities are matched with those of corresponding 

EPTT forms at each {,} combination. The micellar combinations adopt the structure-

construction parameter values of =4.0 for MH, and =0.28 for SH fluids. The 

structure-destruction parameter assumes different values for each micellar model 

depending on the solvent fraction, hardening characteristics and their matching to 

EPTT. The corresponding sets of parameters are listed in Table 1 for ={1/9, 0.9}. 

Here, the distinction between parametric specification of NM_p and NM_T models 

arises due to inclusion of the solvent contribution within the energy dissipation term, 

which introduces the further influence of the -factor. 

 The material functions generated by the convoluted EPTT/MBM, EPTT/NM_p and 

EPTT/NM_T models are plotted in Fig. 3.2 for =1/9 and MH response (Table 3.1). 
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Here, in Fig. 3.2a, the extensional and shear viscosity curves lie closer to those for 

EPTT. After the peak in extensional viscosity, at We~0.7, the convoluted data provide 

larger extensional viscosity values than under MBM prediction, for which introduction 

of strain-softening is more abrupt. The EPTT/NM_T curve shows a steeper slope in the 

20<We<400 range; yet, there is little difference observed outside this range with respect 

to the other convoluted cases. The MBM shear viscosity curve provides smaller values 

than the other curves for We>3 onwards. On N1 in shear (Fig. 3.2b), the convoluted data 

follow the nature of their non-convoluted pairs: the EPTT/MBM and EPTT/NM_p 

curves inherit the MBM-plateau, with larger magnitude. The EPTT/NM_T curve peaks 

at We~40 and declines thereafter with increasing We, as under NM_T prediction, which 

peaks at We~5 (Fig. 3.1).  

 

Figure 3.1 Material functions versus We: top-shear and extensional viscosity, bottom-shear N1; 
EPTT, MBM, NM_p and NM_T models; left-MH (EPTT =0.25; Micellar =4.0), right-SH (EPTT 

=0.02; Micellar =0.28) response; highly-polymeric (=1/9) fluids 
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Table 3.1 Parameter sets; micellar and EPTT; highly-polymeric (=1/9), solvent-dominated fluids 

(=0.9) 

 =1/9  =0.9 
Model - f-functional MH SH  MH SH 

EPTT 

1 pf exp Wetr


 
   

       

      

MBM 4.0 0.28  4.0 0.28 

0
1

p pf :   D  p=0. 1125 p=0. 1125  p=1.0 p=1.0 
      

NM_p 4.0 0.28  4.0 0.28 

0
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Figure 3.2. a) Shear and extensional viscosities, b) shear N1 versus We; MBM, EPTT and convoluted models; 
MH (EPTT =0.25; Micellar =4.0) response, highly-polymeric (=1/9) fluids 
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3.2 Hybrid NM_p_ABS-Papanastasiou model  

These material functions provide the vital background and model reference against 
which to interpret anticipated complex flow response. One notes the extremely low 
levels of -solvent fraction attained practically, those of ={10-2,10-3}; chosen to 
enhance the viscoelastoplastic characteristics inherent to these yield-stress polymeric 
micellar fluids, under NM_p_ABS-Pap modelling. Moreover, the micellar construction 
and destruction parameters are =4.0 and G0={1,0.1125}. Here, at each solvent-
fraction level, fluids with {,G0}={4,1} (relatively larger structure destruction 
parameter) display weaker strain-hardening characteristics (smaller peak in extensional 
viscosity) relative to those with {,G0}={4,0.1125} (relatively reduced structure 
destruction parameter) (see Fig. 3.1). Consideration of the solvent viscoplastic 
Papanastasiou features are evaluated through variation of yield stress parameter 
0={0.01,0.1,0.5,1}, and  the regularisation stress-growth exponent 
mp={10,102,103,105,107}. Also, viscoelastoplastic behaviour is pursued through -
variation for NM_p_ABS, with decreasing ={0.9,0.5,1/9,10-2,10-3,10-4,10-5} (Calderas 
et al. 2013). The special cases for which either 0 or mp attain null values, characterise 
absence of viscoplasticity, and thus collapse the fluid representation to that of the 
NM_p_ABS model. In Fig. 3.3, 3.4 and 3.5, dimensionless plots are provided of the 
material function against deformation rates in simple shear and uniaxial extension 
deformations. 

Yield-stress mp-variation {10s;s=1,2,…,7} Under {0,G0={10-2,, the shear 
stress against shear-rate plot illustrates the influence of mp-variation, and also the effect 
of this low solvent fraction regime on the apparent polymeric-plastic fluid 
characteristics (Fig. 3.3 top). Firstly, and as a consequence of the solvent viscoplastic 
characteristics at relatively low rates, the linear slope is gradually reduced as mp is 
increased; shifts of ~one decade in rate for one decade increase in mp, once mp≥102. 
This shift leads to the appearance of a plateau (xy10-2) at low rates, which is extended 
further into even lower-order rates as mp is increased; to the point in which the linear 
low-rate slope is practically lost. This position corresponds to the theoretical 
Papanastasiou prediction, in which mp leads to an ideal yield stress viscoplastic 
response. The shear and extensional viscosities behave as expected, with shear-thinning 
features, and strain-hardening-softening (only at G00.1125) features, as the 
deformation rate is increased. As mp is increased, the 0 plateau-value is incremented 
and thinning features onset at relatively low shear rates. Extensional viscosity curves 
reflect similar behaviour at low deformation rates, preserving the viscous factor of three 
units involved at each comparable mp-level. Interestingly, the shear and extensional 
viscosity data curves mp converge at deformation-rates of 10-1, before encountering 
either onset of shear-thinning or strain-hardening-softening phenomena. Then, as the 
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deformation rate is increased, these data curves appear to overlap, irrespective of their 
corresponding mp-level. The first normal stress difference in shear (N1) reflects 
invariance with mp-change. Here, the quadratic slope at low shear-rates is lost at unity 
deformation rate, evolving to a plateau of N1~0.4.  

As the thixotropic structure destruction parameter is decreased from G0 to 0.1125, 
the upper-limiting plateau becomes N1~4 units; extensional strain-softening-hardening 
characteristics are exaggerated, with extensional viscosity peaks of ~6 units; both such 
effects apply irrespective of mp-level. Moreover, as a consequence of this more 
structured fluid state at G00.1125, the second viscoelastic plateau in xy is shifted to 
relatively larger shear-rates (5<

1  <102) and higher levels of shear-stress (~1 units). 

 

Yield-stress 0-variation {0.01,0.1,0.5,1} Alternatively, under {mp,G0={10-

2102,, the shear stress against shear-rate plot (Fig. 3.4 top) illustrates the influence 
of yield stress 0-variation. In contrast to mp-variation, the effects of varying 0 on the 
shear stress are relatively milder. In particular, as0 is elevated and at relatively low 
shear-rate levels, the slope of linear dependency decreases. These data curves show 
united patterns at 1 ~10-1 units. In this moderate-to-high shear rate range, xy-data 

Figure 3.3 Material functions against dimensionless rate; shear (Shear) and extensional (Ext) viscosities, N1, xy; mp-
variation mp={10s;s=1,2,…,7}; {0={10-2G0=topG0=bottom 
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curves follow the polymeric micellar-behaviour described above: a plateau is attributed 
to non-linear thixotropic-viscoelastoplasticity, that extends into 1< 1  <102 range with 

further rise beyond 1 >102. Shear and extensional viscosity are affected in their 

corresponding zero-rate plateaux as 0 is increased, whilst preserving their 3:1 
extensional-to-shear viscosity ratio. Here, for low-rate shear viscosity, 0 levels elevate 
from ~1 units for 0=0.01, to ~1.5 units at 0=1. Accordingly, this increase is reflected in 
extensional viscosity curves, for which the zero-extension rate plateaux elevate from ~3 
units for 0=0.01, to ~4.5 units at 0=1. As true for mp-variation, the shear and 
extensional viscosity data curves  0 converge at deformation-rates of 10-1, before 
either encountering - decline due to shear-thinning, or strain-hardening-softening 
phenomena. 

 

Solvent-fraction -variation {0.9,0.5,1/9,10-2,10-3,10-4,10-5} Finally, under 
{0mp,G0={00,, the solvent fraction -variation is analysed in (Fig. 3.5 top), 
that accounts for variation in polymer concentration. Here, the shear stress data curves 
illustrate the thixotropic NM_p_ABS property to generate a level xy-plateau 
(value~4.5) that applies over an ever wider shear-rate range as the –factor declines (at 
=10-5, plateau over 4

13 10  ). Signs of plateau-onset are observed at low solvent 

Figure 3.4 Material functions against dimensionless rate; shear (Shear) and extensional (Ext) viscosities, N1, xy; 
0-variation 0={0.01,0.1,0.5,1}; {mp={10-2G0=topG0=bottom 
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fractions, ≤ at 
1 ~3 units. At larger rates and beyond the plateau period, the data 

curves return to a linear rise. One notes the appearance of this thixotropic xy-plateau, 
located in the moderate-to-high shear-rate range, conforms to the current viscosity-scale 
chosen under non-dimensionalisation ( 0p ). It is desirable to shift such a polymeric 

feature to still lower shear-rates, and henceforth, account for a realistic 
viscoelastoplastic plateau, as with the solvent viscoplastic Papanastasiou contribution. 
To achieve this, the characteristic viscosity-scale should be fixed at the second 
Newtonian plateau 


instead.  This adjustment rescales the f-functional, and hence 

viscosity, to the range 
0

1
p

f



   . Computational analysis to bear this out is due to 

appear subsequently. Analysis on N1 reflects, at low deformation-rates (in the linear 
elastic regime) that such -variation provokes data-curve translation by one-half decade 
for –change from 0.9 to 1/9. At 

1 ~6, these N1-data curves unite, plateauing at 

N1~0.4, independently of polymer concentration. The shear and extensional viscosity 
properties are also affected, with proportional decline in second Newtonian plateaux as 
-decreases. The Newtonian ratio of 3 is upheld between limiting extensional (dashed 
lines) and shear (continuous lines) viscosity plateaux.  

 
Figure 3.5 Material functions against dimensionless rate; shear (Shear) and extensional (Ext) viscosities, N1, xy; -

variation ={0.9,0.5,1/9,10-2,10-3,10-4,10-5}; {0,mp={00G0=topG0=bottom
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ThixotropicG0-variation As the micellar structure destruction parameter is decreased 
from G0 to 0.1125, again the strain hardening-softening property is exaggerated, with 
peak values reaching ~6 units (Fig. 3.3-3.5 bottom). Here, as the solvent fraction is 
decreased from =0.9 to 10-4, the appearance of an extensional viscosity peak is shifted 
to slightly lower deformation rates and reduces in size. Moreover, the plateaux in {xy, 
N1} at G00.1125 are shifted to larger levels of ~{1,4}, relative to the less structured 
G0=1 representation. These properties are unaffected by 0- or mp-variation. 

3.3 FENE-CR model  

This constant shear-viscosity strain-hardening model has particularly been used in this 
work to match dimensional shear viscosity and N1 from the experiments done with 
Boger fluids by MEng Mariano Perez-Camacho for his DrEng thesis at Facultad de 
Química, UNAM. With respect to the first normal stress difference in simple shear, N1, 
as the extensibility parameter increases, its dependence on shear-rate is more quadratic 
in nature, approaching the behaviour of Oldroyd-B. N1 is fitted to the extensibility 
parameters of L={3,6,8} at solvent fraction =0.85 (Fig. 3.6). Note that increase in L, 
extensional viscosity plateaux attain higher levels and the quadratic nature of the N1 
data-curve is enhanced. Here, when L  , the Oldroyd-B quadratic N1 behaviour is 
recovered. The shear viscosity is adjusted at a constant level of ~10 Pa s. 

 
 

3.3 Single-eXtended Pom Pom model As observed in Fig 2.9, the steady extensional  

 

Figure 3.6 Dimensional material functions against deformation rate; shear (Shear) and extensional (Ext) viscosities, 
N1; L-variation L={3,6,10}; {={0.850.174
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3.4 SXPP model  

In Fig. 3.7, the extensional viscosity of the SXPP model is plotted for two sets of 

parameters. These theoretical data curves display an initial rise to a peak (devoid of 

anisotropy, αpom=0), or to a plateau (anisotropy αpom≠0) with increasing extension-rate; 

and then, a decrease prior to reaching a limiting second plateau (controlled by -

parameter). The plots in the first row of Fig. 3.7 clearly demonstrate that there is 

significant growth in the peak-value of extensional viscosity with the rise in the number 

of arms (q). Values of q={2, 5, 10} typically provide peak/plateaued-values of e={5.4, 

11.5, 16.3 units} at fixed entanglement state (pom=0.666), solvent-fraction (=1/9) and 

anisotropy level (αpom=0.15). Moreover, fall in the degree of entanglement (pom), with 

values of pom={0.333, 0.666, 0.999} typically provokes peak/plateaued-values of 

e={16.3, 18.1, 18.1 units} at fixed q=10 (pom-pom side-branch arms number), solvent-

fraction (=1/9) and anisotropy level (αpom=0.15).  

In contrast, at a fixed entanglement state (pom=0.99), and solvent-fraction (=0.262), 

with absence of anisotropy (αpom=0), rise in the number of arms (q) provides peak-

values of e={5, 10, 30, 80 units} for values of q={2, 4, 8, 15}, respectively. Similar 

trends in elevation of peak extensional viscosity are also realised when the degree of 

entanglement declines (characterising more highly-mobile systems, rising pom). 

Specifically, at q=8 with =0.262 and αpom=0, values of pom={0.11, 0.2, 0.33, 0.99} 

provide peak-values of e={4, 7, 10, 30 units}, respectively. With change in the 

polymer concentration, under q=8 and, pom=0.99 conditions, extensional viscosity 

peak-values of highly-polymeric fluids (=0.262) are larger and exhibit a lower second-

plateau viscosity level (∞) relative to the solvent-dominated fluids (=0.915). Here, 

values of ={0.262, 0.915} provide extensional viscosity peak-values of e={30, 6}, 

with second-plateau viscosity levels of ∞={0.8, 3}. Note, an important observation is 

that change in all three material parameters {q,pom,}, provokes elevation in 

extensional viscosity to varying degrees, arising from different physics at the system 

level {molecular chain mobility, degree of entanglement, degree of polymer 

concentration}. 
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Figure 3.7 Extensional viscosity; SXPP model; variation of parameters 
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CHAPTER 4 

Numerical scheme and discretisation 

A hybrid method is used and modified in this work to accommodate the structure 

equation of the Bautista-Manero class models. The balance equations (momentum and 

continuity equations) are discretised using the finite element method (FEM); whilst the 

finite volume method (FVM) is used for the constitutive equation for stress. This hybrid 

implementation generates a stable fractional-staged high-order finite element/finite 

volume (fe/fv) scheme. Such a scheme has demonstrated success in solving complex 

flow problems of viscoelastic and viscoelastoplastic fluids (Wapperom and Webster 

1998, 1999; Aboubacar et al. 2001, 2002, 2005, Webster et al. 2004, 2005; Aguayo et 

al. 2006, 2008; Belblidia et al. 2006; Walters et al. 2008, 2009; Sujatha et al. 2008; 

Belblidia et al. 2007, 2008, 2011; Tamaddon-Jahromi et al. 2008, 2010, 2011; Nyström 

et al. 2013; Echendu et al. 2013; Al-Muslimawi 2013; López-Aguilar et al. 2014). 

 Computational rheology has emerged and now become established as an 

independent science (Crochet and Walters 1993). In this, numerical modelling is 

employed to simulate the flow of complex fluids in complex geometries. Traditionally, 

in CFD modelling (Chung 2002), and subsequently in computational rheology (for 

viscoelastic flows refer to [Keunings 1989, 1990, 2000, 2001; Baaijens 1998; Owens 

and Phillips 2002; Webster and Walters 2003]), finite difference, finite element and 

finite volume schemes have been used to solve complex flow problems. In recent years 

with parallelisation facilities becoming available, other numerical approaches have been 

used to simulation the flow of non-Newtonian and viscoelastic fluids. Two examples are 
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- the highly parallelisable Lattice-Boltzmann method (Aidun and Clausen 2010), and 

the meshless smoothed particle hydrodynamics (SPH) method (Liu and Liu 2010). 

4.1 Finite element/volume methods  

In these methods, the problem domain is divided into a non-overlapping finite number 

of sub-domains. Here, the conservation and constitutive equations apply over each 

control finite element/volume, and solution unknowns ( , p, , fu T ) are approximated by 

‘shape’ functions with their associated nodal values over these sub-domains. Practically, 

the equations describing the flow problem are multiplied by weighting functions and 

integrated over the flow domain, thus producing a system of algebraic equations whose 

solutions provide the nodal unknown values. 

4.1.1 Galerkin finite element method  

To illustrate the finite element method employed, a simple example is developed, that of 

the time independent Poisson equation, 

 
2

2

u f x
x





.  (4.1) 

Here,  u x  and x  represent the dependent and independent variables. The function 

 f x  in the RHS of eq.(4.1) accounts for non-homogeneous source-terms. In this 

discretisation, the unknown solution variables are approximated by suitable trial (nodal) 

functions  i x , usually polynomials of first or second order. The solution nodal values 

are given by iu : 

   
N

i i
i

u x x u .  (4.2) 

Substitution of this trial solution into eq.(4.1) yields its corresponding residual, which is 

then weighted, being multiplied by the weighting (test) functions  iw x . This procedure 

is applied to all nodes N in each element. In the case of the Galerkin method, these test 

functions correspond to the trial functions, so that,    i iw x x . Hence, applying this 

procedure to eq.(4.1) results in: 
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       
2

2
e e

i i j e j ex u x d f x x d
x 

    
    . (4.3) 

Reduction in differential operator order is then achieved through integration by 

parts of eq.(4.3), which generates boundary condition dependency. This is then the next 

step in the procedure, 

           
e e

e

ji i

j i e j e

xx x
x u d f x x d

x x x 


 
   

 
 

    . (4.4) 

Eq.(4.4) represents the Poisson equation in a single elemental control volume. 

Addition of all such elemental contributions provided the full system of equations to 

solve. The first term on the LHS of eq.(4.4) is evaluated through the boundary 

conditions for each element. Consistently, this term is null for internal elements; 

otherwise, its value is determined by those conditions specified on the perimeter-

boundary of the domain. For example, in this work, no-slip boundary conditions are 

adopted on solid-walls. This condition implies no movement ( 0u ) at the walls. 

For conciseness and practicality, matrix notation is used to represent the whole 

system of algebraic equations given by consideration of each elemental contribution in 

eq.(4.4) on control volume ( e ): 

Ku b ,  (4.5) 

where    
e

ji

ij e

xx
K d

x x







   and    
e

j j eb f x x d


   . The solutions for this 

system of algebraic equations provide the column-matrix u of nodal-solution values. 

Once this vector has been determined, the approximate solution to eq.(4.1) is found by 

eq.(4.2). 

4.1.2 The finite volume method  

To apply this method, the equation under consideration is conventionally written in 

conservative form, in order to apply the Divergence Theorem, i.e. 

d d
 

       n . This theorem translates the integral of a conservative quantity    

over the volume of the domain  , to integrals over its respective bounding surface  , 
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defined by its normal vector n  (Versteeg and Malalasekera 1995). The finite volume 

method can be viewed as a subclass of the finite element procedure, with weighting 

functions chosen as unity,   1w x   (Puangkird 2007; Aguayo 2006). As such, and in 

general conservation law form: 

d d d
t   

   


  
   n f q ,  (4.6) 

where f  is the flux of  , that can be separated into convective and diffusive parts, and 

q  represents inhomogeneous source terms. Mean values in a fv-cell are defined 

as 1
i

i i

i

d


  


  . 

Then, for a single finite volume, eq.(4.6) can be recast into, 

1
k

i
k k i

k
i

d q
t 

 



  


  n f ,  (4.7) 

where k  is the number of ‘faces’ of the fv-subcell and k  is the area of those faces, 

defined by their normal vectors kn . 

Moreover, the mean values can be approximated through numerical integration 

procedures, 

0
i

nn

i i i
i

d


   


 ,  (4.8) 

where 0i   are weights, and nn is the number of nodes of the integration procedure. 

Surface integrals, which represent the flow of the conservative property, are 

approximated as 

k

k k k
k

d F


   n f d
k

k k k
k

F


   f n .  (4.9) 

Similarly to the finite element method, implementation of this procedure for each 

finite volume throughout the whole domain, provides the system of equations 

representing the approximation to eq.(4.6). 
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4.2 Problem specification  
As in chapter 2, under transient, incompressible and isothermal flow conditions, the 

relevant mass conservation and momentum equations for viscoelastic flow, may be 

expressed in non-dimensional terms (see definitions below; omitting * for 

dimensionless variables) as: 

0 u ,          (2.12) 

Re Re p
t


    


u T u u .       (2.13) 

 An equation of state accounting for the response (the internal stresses) of 

viscoelastic fluids must be specified. Hence, in the general differential framework 

described in chapter 2: 

 2 1 p  T D  ,         (2.27) 

   2 1p T

p p p pWe f We
t 


       


D u u u


     .   (2.28) 

By specifying the functional f , the network nature and theoretical properties of the 

fluid considered may be imposed into this general framework. The Oldroyd-B model is 

a simple case in this general framework. It is represented by a fluid with 1f   (see 

chapter 2 for the variants used of this f -functional, and hence fluids, considered). 

The balance and constitutive equations of (2.12)-(2.13) and (2.27)-(2.28) should be 

supplemented with appropriate boundary and initial conditions to specify the physical 

conditions of the flow problem. In general, the boundary conditions may be of a mixed 

form, 

 
1

,t u g x ,          (4.10a) 

   
2

,t


 T n h x ,         (4.10b) 

 
3

,t T i x .          (4.10c) 
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These boundary conditions are defined at the boundary   that enclosed the flow 

domain  . The condition in (4.10a) treats the imposition of the velocity field  ,tg x  

in the subsection 
1  of the geometry-boundary. The expression in (4.10b) specifies the 

normal forces  ,th x  on the surface given at the boundary-subsection 2 . Finally, 

eq.(4.10c) specifies the stress state  ,ti x  at the subsection 
3 . Note that the 

subsections i  do not overlap, so that the boundary conditions remain independent 

along the boundaries of the domain. 

Specific to this analysis, 

(i) 2D flows are considered, 

(ii) no-slip conditions (vanishing velocity) are imposed at the boundary-wall, 

(iii) for domain inlet and exit, velocity profiles for the Oldroyd-B model are 

imposed, providing sufficiently large inlet/exit channel sections are established 

for fully-developed flow to apply. 

(iv) inlet stress conditions must be imposed. 

Simulation procedure  

(i) Simulation starts from some initial state in all variables (typically rest) and at 

low elasticity (or Weissenberg) levels (typically 0 1We . ).  

(ii) Then, once a calculation for a particular We has converged, continuation in We  

is employed to obtain subsequent larger elasticity levels, using the solution at the 

previous We-level as the initial condition for the next We -step. Consistency 

checks are also conducted, with We-backward stepping, for vanishing elasticity 

levels (such as We=10-2-10-3). This corroborates reduced Newtonian solutions. 

(iii) Simulations are terminated (with non-convergence) when either (a) divergence 

is encountered, whereupon the errors in the dependent variables { , p,u T } 

amplify and fail to reach the specified tolerance (=10-6); or (b) when the errors in 

the dependent variables provide non-convergent oscillatory states during the 

time-stepping process. 
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4.3 The incremental Taylor-Galerkin/pressure-correction (iTGPC) scheme  

The numerical algorithm employed in this work is based on a semi-implicit formulation 

on a Taylor-Galerkin/pressure correction scheme. Here, the time discretisation is based 

on a Taylor series expansion, which is enhanced in accuracy through a two-step Lax-

Wendroff approach. The incompressibility condition is enforced through a fractional-

staged incremental pressure-correction scheme, which leads to a time-stepping scheme 

of second-order accuracy. 

4.3.1 Time semi-discretisation  

The two-step Lax-Wendroff (predictor-corrector) procedure is based on a Taylor series 

expansion in time. This splits a time-step t  into two halves, for which the first covers 

the 1
2

n t n    range, whilst the second involves 1 1
2

n t n    . A second-order 

Taylor expansion for the scalar function  ,t x  is: 

2
1 2

2

1
2

n n

n n t t
t t
                  

,  (4.11) 

where 1n   represents the function  ,t x  at time step 
1nt 
, and n  represents the 

function  ,t x  at time step nt , respectively. Now, for a differential equation of the 

form of 

F
t





,  (4.12) 

it follows that 
2

2

F F F F
t t t
 

 
    

  
    

, identifying the system Jacobian ( F




), 

for which the Taylor series expansion becomes:  

1 21
2

n

n n n nFtF t F 


         
.  (4.13) 

To obtain an  2O t  accurate scheme, a two-step predictor-corrector approach is 

considered. The predictor step  
1
2

n




 is approximated to an error of  2O t  with an 
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explicit Euler step; and the corrector step gives the approximation of 1n   with an error 

of  3O t . 

Step 1: 
1
2

2
n n nt F 
 
  ,  (4.14a) 

Step 2: 
1

1 2

2
nn n t F 
 

  .  (4.14b) 

 This approach can be directly applied to the stress equations in eq.(2.27)-(2.28). In 

contrast, the momentum equation must comply with the extra requirement of 

incompressibility. For this, pressure-correction is incorporated into the numerical 

scheme, as described below. 

 Thus, the time-step equations for the general constitutive law (including the f -

functional) can be written as, 

Step 1a: 

       
1
2

2 2 1
nn n T

p p p p p p

We f We
t 



        


D u u u       . (4.15a) 

Step 1b:  

      
1
21 2 1

n
n n T

p p p p p p

We f We
t 


         


D u u u       . (4.15b) 

Pressure correction This method is a fraction step technique that decouples the velocity 

and pressure terms in the momentum equation, and implies the consideration of a 

Poisson equation for pressure (or its temporal increment) in each time-step. Applying 

such an approximation to eqs.(2.12)-(2.13) renders, 

  1 0n
 u .  (4.16) 

   1 1nn n nRe Re p
t

      


u u T u u .  (4.17) 

 From the projection concept, an intermediate velocity field *u  can be determined, 

so that the momentum equation can be split as follows, 
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   n* nRe Re
t

    


u u T u u .  (4.18) 

 1 1n * nRe p
t

   


u u .  (4.19) 

 Applying the divergence operator to eq.(4.19), and employing the approximated 

continuity equation, one gathers that 

2 1* nRe p
t

  


u .  (4.20) 

 Then, the fractional steps for eq.(4.18) can be written as: 

Step 1:    n* nRe Re
t

    


u u T u u .  (4.21a) 

Step 2: 2 1n *Rep
t

  


u .  (4.21b) 

Step 3:  1 1n * nRe p
t

   


u u .  (4.21c) 

  The Lax-Wendroff predictor-corrector approximations for eq.(4.21a) are: 

    
1
2

2 n nnRe Re
t



     


u u T u u .  (4.22a) 

   
1
2

n* nRe Re
t



     


u u T u u .  (4.22b) 

 The pressure term is treated implicitly, using a Crank-Nicolson treatment with 

1
2

  : 

 1 1 1n n np p p        ,  (4.23) 

or, 

 1 1n n n np p p p      .  (4.24) 
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Hence, and finally, replacing eq. (4.24) into (4.21)-(4.22) yields: 

Step 1a: 

     
1
21

12
1

2 2
2

n n
nn n n n n

p

Re Re p p p
t

 


 
               
 

D Du u u u .  

  (4.25a) 

      1 22 2 1
nTn / n

p p p p p p

We f We
t             

D u u u      . (4.25b) 

   1 22 1 1
n

n / nf f f :
t   

        
D .  (4.25c) 

Step 1b: 

     
1

12
1 2

2

* n
n* n n n n

p

Re Re p p p
t

 


                  
D Du u u u .  

  (4.25d) 

      
1
21 2 1

n
Tn n

p p p p p p

We f We
t 


            

D u u u      . (4.25e) 

   
1
2

11 1 1
n

n nf f f :
t   



        
D .  (4.25f) 

Step 2: 

 2 1

2

n n *Rep p
t

    


u . (4.25g) 

Step 3: 

   1 1

2

2 n * n nRe p p
t

     


u u . (4.25h) 
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This three-stage structure must be solved over each time-step, 1n nt ,t     until 

convergence to a limiting steady-state is secured. One notes that the f -functional is 

simply treated as an additional stress variable component. Here, one may define (as 

elsewhere) a generalised stress variable,  , which can take either 
0 p  , 

0G pWe   or 

0G We T  values, to specify MBM, NM_p or NM_T models, respectively. Dealing with 

models for which an algebraic f  applies, then the extra differential equation for f  is 

replaced by the relevant algebraic identity. 

4.3.2 Spatial discretisation 

As described above, here velocity and pressure field variables are spatially discretised 

through Galerkin approximation, whilst the stress equation is dealt with by a finite 

volume scheme. 

4.3.2.1 Finite element scheme Under a finite element framework, scalar velocity 

components and pressure fields are approximated as, 

     i

i
i

,t t u x u x ,        (4.26a) 

     j

j
i

p ,t p t  x x ,        (4.26b) 

where {  i tu ,  jp t } represent the vectors of nodal values for velocity and pressure 

drop, respectively. Similar forms apply to *u . Moreover,  i x  are the piecewise-

continuous quadratic shape functions for velocity, and  j x  are the piecewise-

continuous linear shape functions for pressure. The two-dimensional flow domain   is 

divided into triangular elements. Velocity components are evaluated at the vertex and 

mid-side nodes of this elements, and consistently, 1 6i ...  (see Fig. 3.1 for complete 

domain reference). In contrast, pressure is evaluated only at vertex nodes and 1 3j ... . 
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Figure 4.1 Spatial discretisation: a) fe-cell with four fv sub-cells and flux distribution (FD) per triangle T; 
b) fv-control volume per node l, with median-dual-cell configuration  

 For eqs.(4.25a,d,g,h), the Galerkin method of weighted residuals can be expressed 

as, 

    1 3 0i , ,t d


   ux R u x ,        (4.27a) 

     0j p2 ,t d


   x R u x .        (4.27b) 

 Here, { 1 3,uR , p2R } are the residuals of velocity equations in steps 1a, 1b and 3; and 

the residuals of the pressure equation in step 2, respectively. Then, integration by parts 

of eqs.(4.25a,d,g,h) yields:  

Step 1a: 

       
1
21

12
2 2 2

2

n n
n n n n n n n

i i i p i

Re , Re , p p , ,
t

    


 
                       

D Du u x u u x x x

  (4.28a) 

Step 1b: 

       
1 1 1

12 2 2 2 2
2

* n
n n n* n n n

i i p i i

Re , Re , , p p ,
t

    
                        

D Du u x u u x x x

  (4.28b) 

b) a) 
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Step 2: 

 1

2

n n *

j j

Rep p , ,
t

            
u .  (4.28c) 

Step 3: 

   1 1

2

2 n * n n

i i

Re , 2p p ,
t

            
u u x x . (4.28d) 

Here, the notation implies that (i)        A ,t , x x A ,t d


     x x , (ii) 

       ,t , x x ,t d


     A x A x  and (iii)        ,t , x x ,t d


    A x A x  . 

Then, for eqs.(4.28),  the problem statement in fully-discrete matrix form may be 

written as: 

Step 1a: 

   1a * n a n n n n n

u u P ,P , , , A U U b U T D , (4.29a) 

Step 1b: 

   1 1 1
1 2 2 2

n n nb * n b n n n

u u P ,P , , , ,
   A U U b U U T D , (4.29b) 

Step 2: 

   1

2

n n *P P  K b U , (4.29c) 

Step 3: 

   1 1

3 3

n * n nP ,P  A U U b . (4.29d) 

Here, the superscript n denotes the time level, t  the time-step, and { *, ,P, ,U U T D } 

represent the nodal values of velocity, non-solenoidal velocity, pressure, extra-stress 

and rate of deformation tensor (velocity gradient), respectively. Moreover, 

2
2

a

u

Re
t


 


A M S ,  (4.30a) 
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2
b

u

Re
t


 


A M S ,  (4.30b) 

3

Re
t




A M , (4.30c) 

where M  and S  are the consistent mass and diffusion matrices. For the extra-stress 

tensor equation, the corresponding mass matrix 
A , under the finite element 

representation, equates to the identity matrix under finite volume approximation. In 

addition, the vector b  is described in the following section, under finite volume 

approximation.  The pressure matrix 2 A K  is the standard stiffness matrix and 3A  is 

identified with the mass matrix. The RHS of eq.(4.29) are defined as, 

     1

1

n
a T n n n

u pRe P P P            b S N U U B L , (4.30d) 

     
1
2 1

1

n
b T n n n

u pRe P P P  


         b S N U U B L , (4.30e) 

10 1  , 

2

2

*Re
t




b LU ,  (4.30f) 

 1

3 2

T n np p   b L , (4.30f) 

where  N U  and L  represent the consistent advection and pressure gradient matrices, 

respectively. Using the summation convention with repeated indexes notation over the 

domain, the matrices are defined as ij i jM d


   , ij i jS d


     , 

   i l l jij
N d



    U U , ij i jK d


     , ij i jB d


   , ij i jL d


     .  

4.3.2.2 Finite volume scheme This spatial discretisation scheme is adopted for its 

particular advantages when solving conservation-law type hyperbolic partial differential 

equations, with attractive retention of such properties as positivity and other 

conservation principles. In the fractional time steps described in eqs.(4.25) the stress 

equation is decoupled from the mass/momentum equation. This permits a 
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straightforward implementation of finite volume techniques (fv) for parent-child subcell 

stress equation discretisation. As observed in Fig. 4.1, the fv mesh is generated by 

connecting the mid-side nodes of each parent finite element triangle, thus obtaining four 

child triangular fv-sub-cells. Then, the general constitutive model considered in this 

work can be recast under the finite volume implementation in terms of flux and source 

terms as follows, 

p

t


 


R Q


.          (4.31) 

 Here, the flux term is represented by, 

pR = u  ,          (4.32a) 

whilst the source term is given by, 

   2 1 Tp

p p=
We We

        Q D u u


   .     (4.32b) 

 Then eq.(4.31) may be integrated over suitable control volumes as, 

l l l

p d d d
t  

  


  
  R Q


.       (4.33) 

 These residuals are evaluated over each fv triangle l  and are allocated 

proportionally by the selected cell-vertex distribution (upwinding) scheme to its three 

vertices. The nodal update is obtained by summing all contributions control volume 
l , 

composed of all fv-triangles surrounding the node l . In addition, these flux and source 

residuals may be evaluated over two separate control volumes associated with the node 

l  within the fv-cell T  (see Fig. 4.1b). These come from (a) an upwinded contribution 

that is governed over the fv-triangle T, (RT,QT); and/or (b) an area-averaged 

contribution, subtended over  the median dual cell (MDC) zone,  l l

MDC MDC,R Q . In this 

manner, a generalised fv-nodal update equation has been derived per stress component 

(Webster et al. 2005), by separate treatment of individual time derivative, flux and 

source terms, and integration over associated control volumes. Such steps yield, 
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where  T

T T  b R Q ,  lMDC

l MDC MDC  b R Q , 
T  is the area of the fv-triangle T, and 

T

l


 is the area of its median dual cell ( MDC ). The weighting parameter, 0 1T  , 

ensures consistency and controls the balance taken between contributions from the 

median-dual-cell and the fv-triangle T.  

Overall summary  

The algorithm employed to solve the problem stated in eqs.(2.12)-(2.13), (2.27)-(2.28) 

and (4.10) is given in the general framework of the time-marching hybrid fe/fv scheme 

employed here involves two distinct aspects. First, velocity and pressure are computed 

via a semi-implicit incremental pressure-correction (ipc) procedure with finite element 

spatial discretisation. Secondly, a finite volume based fluctuation distribution scheme is 

adopted for the computation of the hyperbolic extra-stress equations. The algorithm 

consists of a two-step Lax-Wendroff time-stepping procedure, extracted via a semi-

implicit Taylor series expansion in time. The incremental pressure-correction signature 

is apparent through the three time-level pressure-reference. This ensures that temporal 

error bounds are uniformly met, to an order one higher than under direct pc-

implementation, hence of O(t2) [43].  

Here, first velocity and stress components are predicted to a half time-step (Step 1a), 

and then, corrected over the full time-step (Step 1b, Lax-Wendroff, split time-step, 

prediction-correction). To ensure the satisfaction of the incompressibility constraint, 

pressure at the forward time-step is derived from a Poisson equation for pressure-

difference (Step 2). The solenoidal end-of-time-step velocity field is constructed at a 

final stage (Step 3). To attain second-order time accuracy, the free weighting parameter 

(), governing Step 2 and 3 across the time-step, is selected as the Crank-Nicolson 

option, (=0.5). Defining initial time-step (tn) solution components ( , , )n
ppu  , the semi-

discrete three-stage algorithmic structure per time-step may be expressed as in 

eqs.(4.23)-(4.30). 
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CHAPTER 5  

A new constitutive model for worm-like micellar 
systems - Numerical simulation of confined 
contraction-expansion flows  
 
 
 
 This chapter is concerned with the modelling of worm-like micellar systems, employing a 

new micellar thixotropic constitutive model with viscoelasticity within network-structure 

construction-destruction kinetics. The work focuses on steady-state solutions for axisymmetric, 

rounded-corner, 4:1:4 contraction-expansion flows. This has importance in industrial and 

healthcare applications such as in enhanced oil-reservoir recovery. Material functions for the 

micellar models (time-dependent, thixotropic) have been fitted to match two different extensional 

configurations of the exponential Phan-Thien/Tanner (PTT) model (rubber network-based, non-

thixotropic). This covers mild and strong-hardening response, and re solvent fraction, highly-

polymeric (=1/9) and solvent-dominated (=0.9) fluids. Solution results are described through 

normalised Excess Pressure Drop (EPD), vortex intensity and stream function, stress (N1 & N2), 

and f-functional data. EPD predictions with the new micellar models prove to be consistent (at 

low rates, some rising) with Newtonian results, contrary to the base-reference modified Bautista-

Manero (MBM) results. Markedly different vortex intensity trends are found in comparing 

micellar and EPTT solutions, which correspond with N2-N1 and f data. In order to address the 

highly-elastic regime for thixotropic materials, a convoluted approach between EPTT and 

micellar models has been proposed. Here, numerically stable solutions are reported for 

impressively large We up to 300 and new vortex structures are revealed. 
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5.1. Introduction 

 This work is devoted to solve numerically the benchmark 4:1:4 rounded 

contraction/expansion flow of worm-like micellar systems using the Bautista-Manero 

constitutive approach (Bautista et al. 1999; Manero et al. 2002; García-Sandoval et al. 2012). 

Herein, a new approach is proposed that intimately introduces the viscoelasticity into the 

structure construction/destruction mechanism of worm-like micellar solutions. These non-

Newtonian viscoelastic liquids present interactions of viscosity, elasticity, and breakdown and 

formation of internal structure. This spurns highly complex rheological phenomena, and 

manifests features associated with thixotropy, pseudo plasticity and shear-banding (Bautista et al. 

1999; Olmsted 2008). The versatility and complex rheological behaviour of viscoelastic 

wormlike micellar solutions render them an ideal candidate for varied applications. In 

viscoelastic surfactant form, they have been termed ‘Smart Fluids’, due to their ability to self-

select their rheological properties to appropriately fit to change in alternative deformation 

environments. Processing and modern-day applications of such material systems range amongst 

additives in house-hold products (hard surface cleaners and drain-opener liquid plumber), paints, 

cosmetics, health care products (nutrient-carriers in shampoo and body wash), and under specific 

application fluid design such as with drag reducing agents in heating and cooling systems and 

drilling fluids in enhanced oil-reservoir recovery (EOR) (Yang 2002). 

 Significantly in modern EOR processes, which consist of hydraulic stimulation of oil wells 

to increase productivity, these fluid systems have become highly important given their 

adaptability in rheological characteristics (Yang 2002). Fracturing fluids are required in this 

operation, with the capability of transforming their rheological properties according to the 

prevailing flow conditions encountered. This involves transitions from low viscosity Newtonian 

fluids, when pumped into the oil-wells to fracture the rock-pores; passing through to gel-like 

form, with highly viscoelastic characteristics, capable of transporting proppants to keep fractures 

open and enhance rock-pores permeability in the oil-well; to finally, reverting into low viscosity 

fluids which degrade easily and unblock the fractures as the prerequisite pressure levels are 

realised. Wormlike micellar solution systems fulfil these requirements, being constituted of 

mixtures of surfactants – typically cetyltrimethylamonium bromide (CTAB) or cetylpyridinium 

chloride (CPyCl) (Miller and Rothstein 2007) - and salts –sodium salicylate (NaSal) - in water. 

These mixtures arrange themselves into physically bonded units and change their network-
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structure characteristics with temperature, surfactant and salt concentration (Moss and Rothstein 

2010); but also with the forces and deformations they experience. The wormlike micelles are 

elongated surfactant groups that, under suitable conditions, can entangle and impart 

viscoelasticity to the fluid. Their behaviour is highly complex, although similar to that observed 

for polymer solutions and melts; hence their naming “living polymers” (Moss and Rothstein 

2010). Unlike the covalently bonded polymer backbone, these micelles lie in thermodynamic 

equilibrium with the solvent and continuously break and reform under Brownian fluctuations. 

Therefore, additionally to reptation, wormlike micelles provide a mechanism for stress relief and 

entanglement elimination, creating and destroying temporary branch points, known as “ghost-

like crossing” (Moss and Rothstein 2010). 

 Furthermore, wormlike micelles are particularly viable for industrial application, since a) 

fewer additives than for polymer-based fracturing fluids are required in their production, which 

render them a cheaper option (Yang 2002); b) in EOR, chemical-breakers are unnecessary, since 

after contact with crude oil, wormlike micelles systems rearrange into small spherical micelles 

(c. a. 10-50 nm). These are simpler and smaller physical arrangements, which finally form a low 

viscosity microemulsion. Additionally, c) wormlike micelles are more environmentally friendly 

and more easily biodegradable than polymer-based fracturing fluids (Yang 2002). 

 Many approaches have been pursued to model wormlike micelles flow behaviour. Bautista 

et al. (Bautista et al. 1999, 2000; Manero et al. 2002)  proposed a rheological modelling approach 

for wormlike micelle solutions, the Bautista-Manero-Puig (BMP) model. This equation of state 

consists of the upper-convected Maxwell constitutive equation to describe stress evolution, 

coupled to a kinetic equation that takes into account structural changes induced by the flow, 

based on the rate of energy dissipation. This theory has demonstrated accuracy in the description 

of shear-banding (Bautista et al. 2000, 2007; García-Sandoval et al. 2012), pulsating flows of 

wormlike micelle solutions (Herrera et al. 2010), characterisation of associative polymers 

(Caram et al. 2006), and for evaluating the negative wake flow past a sphere (Mendoza-Fuentes 

et al. 2009) and drag correction (Mendoza-Fuentes et al. 2010). Some years later, Boek et al. 

(2005) corrected the BMP model, given its unbounded extensional viscosity in simple uniaxial 

extensional flow - thus producing the Modified Bautista-Manero (MBM) model. This has been 

utilised to model the transient flow of wormlike micellar solutions in planar 4:1 contraction flow 

setting (Tamaddon-Jahromi et al. 2011), being a forerunner in wormlike micellar simulations for 
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complex flows, along with others based on the principles of mesoscopic Brownian dynamics 

(Stukan et al. 2008). The VCM model, based on a discrete version of the ‘living polymer theory’ 

of Cates, has been tested in simple flows, where rheological homogeneity prevails (Vazquez et 

al. 2007; Cromer et al. 2011), and under conditions of shear-banding (Zhou et al. 2010). Another 

approach, consists of using the Johnson-Segalman model, modified with a diffusion term for the 

extra/polymeric stress (so-called d-JS model [Olmsted et al. 2000; Fielding and Olmsted 2003; 

Radulescu 1999]). This model has been tested against experimental data in simple shear flows 

and shear-banding conditions. The Giesekus model has also been used in the representation of 

wormlike micelles under simple shear scenarios, whilst using the nonlinear anisotropy coupling 

parameter to introduce shear-banding conditions (Libertatore et al. 2009; Gurnon et al. 2012; 

Thereja et al. 2011; Helgeson et al. 2009; Fisher et al. 1997). For this purpose, the appropriate 

Giesekus model parameters, for both banding and non-banding conditions, have been determined 

through Large Amplitude Oscillatory Shear (LAOS) (Gurnon et al. 2012) experiments in a 

coaxial-cylinder Couette geometry (Libertatore et al. 2009). In addition, whilst using parallel 

plate geometries, and adjusting temperature, salt concentration and shear rate, shear-banding and 

non-banding conditions have been studied by Rheo-small-angle 1ight scattering (Rheo-SALS) 

(Thereja et al. 2011), and flow-small angle neutron scattering (flow-SANS) (Helgeson et al. 

2009). In this respect, findings reveal shear-induced separation into an isotropic low-shear band 

and another flow-aligned nematic high-shear band. 

 The surfactant:salt concentration of these fluid-systems dictates their nature and rheological 

response, providing a classification into three (or more) basic types. As such, the so-called ‘salt 

curve’ provides the dependency of the zero-shear viscosity 0p  on the surfactant:salt 

concentration. Studies on the composition of wormlike micellar solutions and their rheological 

implications (Rehage and Hoffmann 1991; Parker and Fieber 2013; Dreiss 2007), provide 

evidence that these solutions (i) have 0p  close to the Newtonian solvent at low salt 

concentration; this range is characterised by spherical micelles. (ii) When the salt concentration 

is increased to moderate/semi-dilute levels, the solution demonstrates a dramatic increase in its 

zero-shear viscosity, reaching 0p  peaks as large as six times the solvent zero-shear viscosity 

(Parker and Fieber 2013; Dreiss 2007); this range manifests the formation-growth of wormlike 

structures and beginnings of their entanglement, causing shear-thinning and normal stresses in 

shear (Dreiss 2007). (iii) Further increase of the salt concentration generates longer wormlike 
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micelles, which form an entangled network (Dreiss 2007). This is reflected in a steep decline in 

0p  given by the proliferation of stress-relaxation points at the entanglement junctions (Parker 

and Fieber 2013). The work presented in this manuscript is based around the Bautista-Manero 

approach (Bautista et al. 1999, 2000; Manero et al. 2002; Boek et al 2005), and aims to represent 

wormlike micellar systems in the second-third type-stage, with significant pseudoplastic and 

elastic characteristics. This theory originated to represent semi-dilute concentrations of micellar 

solutions in water, composed of erucyl bis-(hydroxyehtyl)methylammonium chloride (EHAC) as 

surfactant, and sodium salicylate (NaSal) as counterion (Raghavan and Kaler 2001). In addition, 

such theory has proven effective more broadly to describe other micellar systems, such as 

cetylpyridinium chloride–sodium salicylate (CPCl) as surfactant, and brine as counterion; and 

cetyltrimethylammonium tosylate (CTAT), dodecyltrimethylammonium bromide (DTAB), 

Pluronics P103 as surfactants, with NaSal as counterion (Bautista et al. 2012). 

 Taking the experience gained in our prior work on modelling of wormlike micellar solutions 

(Tamaddon-Jahromi et al. 2011), we subsequently deploy a new micellar approach, driven by 

phenomenological observation (EPD attainment) in the axisymmetric rounded-corner 4:1:4 

contraction/expansion domain, for which there is a dearth of comparable work available - 

micellar fluid solutions in complex flows. This study also sheds light on some other key related 

topics – that is limiting We (Welim) and vortex dynamics – all absent in simple viscometric flows 

(Tamaddon-Jahromi et al. 2011; Stukan et al. 2008). We proceed to demonstrate that this new 

constitutive approach provides: (i) consistent EPD values at low We regimes - vital for oil-well 

rock-bed permeability estimation in EOR; (ii) larger Welim in numerical solution reached through 

the explicit presence of the elasticity (We) in the structure equation; and (iii) attainment of rising 

EPD trends at high elasticity levels. 

5.2. Governing equations, constitutive modelling and fluids considered 

 The governing equations and constitutive equations considered in this chapter have been 

detailed in chapter 2. The non-dimensional continuity and momentum conservation principles are 

expressed in eqs.(2.11)-(2.12), whilst the stress equations is given in (2.27)-(2.28). The specific 

time-dependent thixotropic micellar or time independent network-based nature is specified by 

the f-functional. For the micellar framework eqs.{(2.33), (2.34), (2.35)} provide the {MBM, 

NM_p, NM_T} representations. In contrast, the network-based Exponential PTT model is 
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represented in eq.(2.38). The hybrid approached proposed in this work, derived from the 

convolution of EPTT and {MBM, NM_p, NM_T} is represented by eqs.{(2.44), (2.45), (2.46)}. 

Material function comparison for these models is provided in chapter 3, in Fig. 3.1-3.2. 

5.3. Problem specification - The 4:1:4 rounded corner contraction/expansion flow 

The schematic representation of the 4:1:4 axisymmetric, rounded-corner 

contraction/expansion flow problem with its corresponding zoomed mesh are shown in Fig. 5.1a 

and 5.1b, respectively. Mesh data are tabulated in Table 5.1.  See Aguayo et al. (2008) for further 

detail on this problem, which provides a full mesh refinement analysis for some typical case 

studies. 

Table 5.1 Mesh characteristics 

Mesh 

characteristics 
Elements Nodes 

Degrees of freedom 

(u, p, p) 
Rmin 

Coarse 1080 2289 14339 0.0099 

Medium 1672 3519 22038 0.0074 

Refined 2112 4439 27798 0.0058 

 

 

Ru

Ru / 4

a)  

b)  

Figure 5.1  a) Schematic diagram, b) zoomed mesh sections 4:1:4 
contraction/expansion 
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5.4. Results and discussion 

Discussion around the rising We-results solutions is based on findings under EPD, 

limiting We (Welim), vortex dynamics, stress fields contours, and f-functional fields, considered 

against variation in rising We. 

5.4.1. Excess pressure drop 

5.4.1.1. Low solvent fraction conditions (=1/9) 

The first point to highlight is the preservation of consistency in EPD in the Stokesian 

limit for the new versions of micellar models developed. In this limit of small deformation rates 

or vanishing elasticity, all fluids behave as the ideal universal fluid, for which non-linear 

characteristics vanish, and EPD (pressure drop measure relative to the equivalent Newtonian 

fluid) tends to the Stokes-Newtonian reference level of unity. Nevertheless, it is apparent from 

Fig. 5.2a that MBM EPD is inconsistent, providing We→0 limiting EPD values ~30% below the 

Stokes-Newtonian reference level. In contrast, EPTT models generate consistent EPD trends in 

the low elasticity asymptotic limit. With rising We away from zero, EPD-predictions generally 

tend to decrease and fall away from the Stokes-Newtonian reference EPD level (of unity); and 

this is upheld in MBM and EPTT solutions. 

 

Figure 5.2 EPD versus We; MBM, EPTT, NM_p and NM_T models; a) highly-polymeric (=1/9) b) solvent-
dominated (=0.9) fluids; MH (EPTT =0.25; Micellar =4.0) response 

Non-convoluted results: EPD 
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As described in Chapter 2, here new versions of micellar models are developed to address 

the MBM-shortcoming in EPD when We→0, which incorporate the viscoelasticity in the 

structure-destruction term, with explicit dependency on the We-factor [see Eq. (2.33) and (2.34), 

Fig. 5.2a]. Conspicuously then, and in contrast to the MBM-results, both micellar approaches 

(NM_p and NM_T) do not exhibit underprediction in EPD in the low We–range. NM_p 

solutions provide EPD values tightly matching in trend to EPTT predictions. Subsequently, upon 

rise in We there is: (i) a slight deviation to lower EPD from EPTT data in the 0<We<3 range; (ii) 

NM_p data attains critical solutions to Welim=4.9 (Table 5.2), where both NM_p and EPTT 

curves intersect. In contrast when considering NM_T against EPTT solutions, some new EPD 

trends are gathered as We rises: (i) there is less degradation observed in EPD with NM_T than 

with EPTT, from the reference-line and in the low elasticity range (0<We<3.5); (ii) intersection 

between their respective EPD-curves occurs at a lower elasticity level (We~3.5), taken relative to 

the NM_p comparison. From We≥3.5 onwards, both NM_T and EPTT data-curves decline, but 

the loss of slope in EPD is more rapid with NM_T than EPTT as We rises; thus predicting 

ultimately larger EPD with NM_T for higher We up to Welim=16. These differences in EPD and 

Welim attainments with new micellar versions (_p and _T) can be explained by appealing to their 

respective material functions (Fig. 3.1), and analysing the competing influences of extensional 

viscosity (strain-hardening) and normal stress difference on EPD (Walters et al. 2009). Whilst 

the NM_p data-curve provides a plateau in N1 for high We (Fig. 3.1), following the MBM 

results; the NM_T data-curve reveals a maximum in N1 at moderate elasticity levels (We~5), 

followed by a sharp decline over the extended range, 5<We<100. This major disparity, firstly, 

generates lower stresses under NM_T compared with NM_p solutions; consequently, yielding 

higher Welim with NM_T than NM_p. Secondly, as the competing roles between extensional 

viscosity (E) and N1 in EPD predictions dictate (Walters et al. 2009) – rise in the former (strain-

hardening) elevates EPD whilst it is weakening in N1 (from quadratic form) that reinforces EPD. 

Therefore, the declining-N1 of NM_T stimulates larger EPD than under EPTT-solutions, 

acknowledging that EPTT provides monotonically rising viscometric N1 (itself with decay away 

from quadratic response). All comments apply equally under both strong and moderate-

hardening settings, with exaggeration to higher E and N1-maxima under the strong-setting. 

In Fig. 5.3a, EPD predictions with convoluted models are reported, with restriction to MH-

response and highly-polymeric (=1/9) fluids, and compared to those for base-EPTT and NM_T 
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forms. Here, convoluted EPD data-curves principally inherit their parent-EPTT trends. 

Contrastingly, the NM_T solutions begin to show marginally larger EPD predictions, with 

respect to convoluted results, upon approaching the early Welim=16 of NM_T. Notably, at high 

deformation rates, EPD predictions for the convoluted models are larger than the corresponding 

second-Newtonian EPD-plateau reference level indicated, and asymptote to a limiting plateau 

above that, accordingly. 

 

Table 5.2. Limiting We; highly-polymeric (=1/9), solvent-dominated fluids (=0.9) 

 =1/9  =0.9 

Model MH SH  MH SH 

EPTT 210.0 3.6  300.0* 4.6 

MBM 3.6 1.8  4.1 2.2 

NM_p 4.9 2.1  7.6 2.4 

NM_T 16 2.2  300* 30.0 

EPTT/MBM 217 -  300* - 

EPTT/NM_p 224 -  300* - 

EPTT/NM_T 300* -  300* - 

*Stable Solution 

Figure 5.3 EPD versus We; EPTT, NM_T and convoluted models; a) highly-polymeric (=1/9), b) 
solvent-dominated (=0.9) fluids; MH (EPTT =0.25; Micellar =4.0) response 

Convoluted results: EPD 
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5.4.1.2. High-solvent fraction conditions (=0.9) 

In the high-solvent fraction scenario, with only mild strain-hardening properties and 

Newtonian-like response, NM_T solutions are observed to provide ultimately rising EPD trends 

with increasing elasticity (Fig. 5.2b). In contrast, NM_p and EPTT solutions manifest only 

monotonic EPD-decline whilst traversing towards their Welim. Similarly to the highly-polymeric 

scenario above, NM_p solutions faithfully follow those of EPTT, locating their Welim (=7.6) 

sooner than occurs with NM_T solutions, remaining numerically-stable at We=300+ (Table 5.2). 

The reason for this discrepancy in Welim, again as argued above with =1/9 fraction, lies in the 

base-N1 material function response: recall, NM_T shows declining N1 with rising We. This has 

the consequent effect of exhibiting a wider tractable window of numerical solution for NM_T, 

and favours the ultimate and opposite rising trend in EPD. This is the situation encountered 

beyond the local EPD-minima reached for NM_T at We=8. 

Under this high-solvent fraction, the convoluted data-curves again all follow those of 

parent-EPTT, and actually intersect with the second-Newtonian EPD-plateau reference line at 

high We levels, We~220 (Fig. 5.3b). This latter observation contrasts with the distinctly different 

and remarkable NM_T model predictions (partially shown in Fig. 5.2b), which further pursue 

rising EPD trends with increasing elasticity levels (without encountering a limit). 

5.4.2. Vortex dynamics 

This section describes the various dynamic vortex structures developed in the flow, 

alongside their growth and decay patterns, through comparison across thixotropic and non-

thixotropic models and their solutions at increasing levels of elasticity up to critical limits. 

5.4.2.1. Vortex dynamics - low solvent fraction conditions (=1/9) 

Here, a comparison on vortex intensity, size and streamlines patterns is performed as We 

is increased. To facilitate direct comparison, both upstream and downstream vortex intensities 

are plotted in Fig. 5.4 as a function of We.  

Non-convoluted solutions, vortex intensity. Upstream vortex activity: MBM, NM_p and 

NM_T data for the upstream vortex follow each other closely in a rising vortex intensity pattern 

with increasing We, up to their Welim (Fig. 5.4a). NM_T solutions attain the largest Welim (=16) 
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amongst these micellar models, with indications of approach to an upper limiting plateau. Up to 

its first turning point at We=2 (local maximum), EPTT results exhibit a similar trend to that of 

the thixotropic micellar solutions. Beyond which for We>2, the EPTT data-curve indicates 

departure, initially through a decline to a second extremum at We=100 (local minimum), prior to 

upturn and ultimate rise towards its final Welim=210 (Table 5.2) (Aboubacar et al. 2002).  

Non-convoluted solutions, downstream vortex activity: Downstream vortex activity 

mirrors, in reverse form, the changes in upstream vortex activity (Fig. 5.4b), somewhat acting as 

an energy balance and release mechanism. So here, thixotropic MBM, NM_p and NM_T data-

curves also follow each other closely in a declining trend up to We=2. After this stage, NM_p 

downstream vortex intensity declines suddenly and more rapidly than apparent with MBM or 

NM_T, noting that MBM is nearing its limit in this region at Welim=3.6, followed by NM_p with 

Welim=4.9. The NM_T curve continues in its decline up to We=7, where it observes a local-

minimum. Beyond We>7, NM_T downstream vortex intensity then rises up to its corresponding 

Welim=16. Interestingly, the occurrence of this local minimum-extremum in the NM_T 

downstream vortex intensity response, roughly coincides in elasticity level (We=7) with extrema 

observed in viscometric-N1 for this model (We~5) (Fig. 3.1). In contrast to micellar data, non-

thixotropic EPTT results also exhibit a declining trend, but at slightly lower rate (hence, greater 

intensity), at relatively low elasticity levels (0.5<We<5). At We=5, the EPTT data-curve also 

locates a minimum, beyond which for 7<We<15, the curve rises to a local-maximum at We=15. 

After this second extremum, the trend is repeated of a subsequent decline, to find a third 

extremum (minimum) at 40<We<50. Finally and thereafter, the EPTT-curve rises up to its 

corresponding Welim=210. 

Significant difference is apparent in Welim between EPTT and MBM-solutions under MH: 

with Welim=O(102) for EPTT, and Welim=O(10) for micellar data (Table 5.2). One may argue that 

this is due to the explicit presence of 1 (or We, in dimensionless terms) in the f-functional under 

the EPTT construction. This discrepancy is starkly evidenced in MH instances, and through the 

comparison between the Welim for MBM and the new micellar model data, where the presence of 

1 increases Welim by one unit for NM_p, and increases eight times under NM_T (Table 5.2). 

This observation is not so evident under the SH scenario, yet still present, since Welim is 

relatively small for the high extensional viscosity levels these fluid models can display. 
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Convoluted solutions, vortex intensity: The flow patterns displayed by the convoluted 

micellar solutions are markedly different to their non-convoluted counterparts; specifically, they 

inherit the behavioural response of the parent-EPTT non-thixotropic predictions. On upstream 

vortex intensity (Fig. 5.4a), it is worth highlighting that (i) the convoluted data-curves follow 

closely over 0.1<We<300 range; and (ii) after We=200 and for stable EPTT/NM_T solutions, the 

upstream vortex reappears and monotonically grows in strength up to the corresponding Welim, or 

We=300+. 

Convoluted solutions, downstream vortex intensity: In Fig. 5.4b, a more complex trend 

is extracted and relative to EPTT-solutions. Here, (i) the convoluted data-curves follow the 

trends for EPTT and lie between those the non-convoluted micellar data-curves; (ii) data-curves 

for convoluted solutions observe a local-minimum at We=7, beyond which for 7<We<15, they 

rise to a local-maximum at We=15. After this second extrema, the trend is one of subsequent 

Figure 5.4 Vortex intensity profiles versus We: top-upstream, bottom-downstream; EPTT, 
MBM, NM_p, NM_T and convoluted models; MH (EPTT =0.25; Micellar =4.0) 

response; highly-polymeric (=1/9), solvent-dominated (=0.9) fluids 

Vortex Intensity, MH 

=1/9 =0.9 
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decline again to find a third extrema (minimum) at 40<We<50. Finally, for We>50, convoluted 

solutions show a monotonic rising trend up to their respective Welim, with impressively high-We 

solutions generated for {EPTT/NM_p, EPTT/MBM, EPTT/NM_T} with Welim={217, 224, 

300+} (Table 5.2). Comparatively, EPTT limitation is Welim=210, and with MBM is Welim=3.6, 

under the same solvent fraction (=1/9) and MH conditions. This trend also holds for the other 

convoluted results. 

Streamline patterns, non-convoluted: The streamline patterns of Fig. 5.5, provide the 

counterpart field-structure representation to Fig. 5.4 above, in which the columns relate to 

variation across models, whilst the rows refer to levels of elasticity (terminating in Welim). 

Results for non-convoluted forms are shown in Fig. 5.5. At low We-levels, We~O(0.1), little 

difference is apparent in vortex size across models. Here, upstream and downstream vortex 

structures are symmetrical about the contraction. At We=1.0, for which the elastic and dissipative 

forces are balanced, asymmetry is observed in all solutions, with slight differences in vortex 

sizes noted. These are clearly exposed in the vortex intensity data of Fig. 5.4 with increasing 

elasticity: whilst the upstream vortex displays vortex enhancement, the downstream vortex 

displays vortex reduction. Reaching the stage We=2, where elastic effects are more dominant, 

this pattern of upstream growth/downstream shrinkage remains, and is reflected consistently in 

vortex size/shape across all solutions. MBM (Welim=3.6) results are the first to exhibit numerical 

breakdown. For higher elasticity levels, NM_p (at We=4.9) and NM_T (at We=5.0) streamlines 

reflect upstream vortex growth, whilst EPTT results show shrinkage – notwithstanding the 

relatively even larger shear and extensional viscosities with EPTT (see N1 and N2 below for 

justification; nb. in contrast [Aboubacar et al. 2002]). NM_p results are the next in the sequence 

to show divergence (Welim=4.9), with an almost vanishing downstream vortex at this stage. 

Increasing elasticity to We=10, the trends in vortex size evolution are well established. 

Consequently, NM_T (We=10) results provide an even larger upstream vortex with We<10, 

whilst comparably EPTT manifests vortex decay. The corresponding downstream vortex tends to 

disappear under NM_T, whilst that under EPTT prediction remains almost constant in size-shape 

as We rises. NM_T solutions locate their Welim=16. Finally, EPTT solutions retain tractability up 

to Welim=210; an impressively large level for stable numerical solutions. 

Streamline patterns, convoluted: The streamlines in Fig. 5.6 for convoluted forms and 

data in Fig. 5.4 demonstrate that at We=200, convoluted solution-fields exhibit the formation of a 
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new upstream vortex (Fig. 5.6, inset). This grows and slightly shifts with We-rise, travelling 

towards the lip of the contraction wall. EPTT/NM_p data at We=220 reveals this new upstream 

vortex growth, and a further vortex structure appears from the top wall; both these new features 

then subsequently tend to join up with further We rise. In EPTT/NM_T results at We=300, the 

upstream vortex appears completely formed, with comparable size to those at low elasticity 

levels (1<We<5), though now of one order of magnitude reduced in intensity. Meanwhile, as this 

complex upstream vortex activity is emerging, the downstream vortex shrinks over the 

0.1<We<50 range, and afterwards with further We rise, consistently and continually grows and 

builds in intensity. 

 

Figure 5.5 Streamlines versus We; EPTT, MBM, NM_p, NM_T models; MH (EPTT =0.25; Micellar =4.0) 
response, highly-polymeric (=1/9) fluids 

 

Non-convoluted results 

Streamlines 
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Figure 5.6 Streamlines versus We; EPTT/NM_p, EPTT/NM_T models; MH (EPTT =0.25; Micellar =4.0) 
response, highly-polymeric (=1/9) fluids 

 

Convoluted results 

Streamlines 

I EPTT / NM _T I 

We=300+ 

j3= 1/ 9 

IMHI 

IWe = 300.01 
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5.4.2.2. Vortex dynamics - high solvent fraction conditions (=0.9); convoluted/non-

convoluted results 

Vortex intensity, =0.9: vortex intensity trends under solvent-dominated response 

(=0.9) (Fig. 5.4c and d) are similar, but with smaller values, to the corresponding highly-

polymeric data (=1/9) (Fig. 5.4a and b). This applies in both upstream and downstream 

vortices.  

The upstream vortex intensity results (Fig. 5.4c) exhibit smooth rise as We is increased at 

relatively low elasticity levels (0.1<We<5). Beyond We>5, EPTT and convoluted solutions 

depart in trend and decline as We increases, with stable solutions at {We=300+, Welim=210} for 

{=0.9, =1/9}. In this zone, the convoluted curves decline smoothly, whilst EPTT data-curve 

once more encounters a minimum, but now at We=200. After this stage, EPTT suddenly rises up 

to We=250, where it locates another extremum (maximum), and declines sharply-rapidly 

thereafter. Contrastingly, again, the non-convoluted thixotropic data-curves illustrate a rising 

pattern with increasing We, up to their Welim. Differently to =1/9 results, the NM_T upstream 

data-curve now does not asymptote to a plateau. Here, at =0.9, {MBM, NM_p, NM_T} attain 

Welim={4.1, 7.6, 300+}; in contrast at =1/9, {MBM, NM_p, NM_T} encounter Welim={3.6, 4.9, 

16}. Consistently, Welim is notably extended under solvent-dominated predictions (=0.9), 

specifically in contrast to the highly-polymeric (=1/9) results above (Table 5.2 data). Recall, the 

non-linear polymeric part of the constitutive equation is present in smaller proportion, relative to 

the solvent contribution. Notably: (i) the NM_T extreme case predicts that Welim is some 

nineteen times larger under =0.9 than =1/9; (ii) such major departure in Welim is also apparent 

between EPTT and most non-convoluted micellar results; and (iii) the common trends observed 

behind these Welim findings repeat consistently under SH response (Table 5.2).  

On downstream vortex intensity Fig. 5.4d, a declining trend is observed at low elasticity 

levels (0.1<We<2). Beyond We>2, the following departure is observed: EPTT and convoluted 

results exhibit a local minimum at We=5, and rise to locate a plateau in 20<We<50. Beyond 

We>50, an ultimate decline is apparent with the convoluted results, whereas EPTT evolves as 

with the upstream vortex data above. Notably, the thixotropic non-convoluted results generate 

some alternative trends: {MBM, NM_p}-data-curves decline as elasticity is increased up to their 

Welim={4.1, 7.6}. In contrast, the NM_T downstream vortex intensity pattern is more complex; 
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resembling the EPTT and convoluted solutions. The NM_T data-curve plateaus across 2<We<5 

range; thereafter, this curve rises with increasing elasticity up to a peak of We=30. Subsequently 

after this local peak, for We>30, NM_T downstream vortex intensity ultimately declines, with 

stable solutions observed as far out as We=300+ and above. 

5.4.3. f-functional and stress fields (N1) 

5.4.3.1. Low solvent fraction conditions (=1/9) 

In this section, results for f-functional and normal stress are considered. Firstly, 

correspondence between vortex activity (section 4.2) and normal stresses data (i. e. N2) is 

outlined. Secondly, f-functional and N1 results are described, in which close correlation is 

revealed through theoretical and numerical data. Markedly, an inverse relation between N1 and f 

predictions is observed with the numerical solutions for contraction-expansion flow, similar to 

that obtained in simple viscometric shear. Fig. 5.7 provides shear viscometric f-functional data, 

where all curves rise from the Oldroyd-B reference data as We is elevated. Consistently with 

their exponential nature, the response for EPTT and convoluted curves follow each other closely. 

Differently, (i) MBM-data yield smaller f-values in the 0.1<<1.5 range. For larger rates beyond 

>1.5, MBM form provides larger f-values than arise for EPTT and its convoluted analogues. 

(ii) As We rises, only MBM response shows decline in the size of f-values at fixed shear-rate. 

 

Figure 5.7 f-function profiles in simple shear versus We; MBM, EPTT and convoluted models; 
MH (EPTT =0.25; Micellar =4.0) response, highly-polymeric (=1/9) fluids 
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N2, N1-vortex activity and relationship. Fig. 5.8 shows maximum N1 and minimum N2 in 

the upstream vortex zone across models as We is increased. Here, it is worth highlighting the 

correlation between N2-minima and N1-maxima observed in the upstream vortex region, 

alongside the location, size and intensity of the upstream vortices themselves. This provides 

concrete evidence as to the influence of elasticity in the flow kinematics. Solutions trends in N1-

maxima (Fig. 5.8a) and N2-minima (Fig. 5.8b) correspond to those in Fig. 5.4a for maximum 

intensity in the upstream vortex. As above for vortex intensity, MBM, NM_p and NM_T curves 

on N1 and N2 extrema in the upstream vortex, closely follow one another in a rising pattern with 

increasing We up to their Welim. EPTT and convoluted results exhibit similar rising and further 

declining trends as We is elevated. Furthermore, N2 results for convoluted versions (Fig. 5.8b) 

evidence larger values over 0.1<We<2, and smaller values over 2<We<15, in comparison to 

EPTT N2-data. Beyond We>15, a sudden and steeper slope is noted in the convoluted solutions. 

The vortex-like structures in N1 and N2-fields, are absent for We>20 in the upstream zone, and 

disappear at low elastic levels in the downstream region. Hence, direct comparison with vortex 

patterns loses tractability beyond We>20. Fig. 5.9 contains the counterpart field-structure 

representation of Fig. 5.8, with the key results for EPTT and NM_T solutions. Particularly, N2 

plots render the most illustrative information (Tamaddon-Jahromi and Webster 2011), providing 

a signature for vortex development in the corner-region (Fig. 5.9b), whilst N1 plots (Fig. 5.9a) 

only show its periphery through location and relative size. 

 

Figure 5.8 a) Maximum N1 and b) minimum N2 versus We; EPTT, MBM, NM_p, NM_T and 
the convoluted models; MH (EPTT =0.25; Micellar =4.0) response, highly-polymeric 

(=1/9) fluids 

N1 - N2 Upstream Vortex results 
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N1-fields 

N2-fields 

Figure 5.9 a) N1 and b) N2 contour fields versus We comparison for EPTT and the NM_T models 
for MH (EPTT =0.25; Micellar =4.0) response and highly-polymeric (=1/9) fluids 
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f-functional expression, size of N1 and impact on Welim. As specified in Section 2, Eq. 

(3) provides a general form for the equation of state for stress, where the only essential 

difference is given by the f-functional. This functional takes into account departure from 

Oldroyd-B-like behaviour. As argued above, the explicit presence of 1 (or We, in dimensionless 

terms) in f is most important for these new micellar models (NM_p and NM_T), since it 

provides consistent EPD values at low We and produces relatively large Welim. Hence, it is 

pertinent to discuss the nature and role played by this explicit f-We functionality on solutions. As 

listed in Table 1, the EPPT model contains an explicit, exponential f-We relation in its 

constitutive equation (with Welim=210 under MH conditions, see Table 5.2). In comparison, an 

explicit, linear f-We functionality appears in the new micellar forms (NM_T with Welim=16, and 

NM_p with Welim=4.9). The MBM model, which attains Welim=3.6, does not possess an explicit 

relationship between f and We. These observations suggest a possible correlation between f and 

Welim: the stronger the f-We functional relationship (expressed in powers or rate-rise), the larger 

the Welim. Size of f-functional and N1 forms across these micellar models are provided in Table 

5.3 and 5.4. NM_p solutions (with Welim=4.9) generate larger N1 (smaller f-) values than under 

NM_T (with Welim=16.0) at comparable elasticity levels. Furthermore, MBM solutions yields 

larger N1 (smaller f-) values (with Welim=3.6) than under NM_p prediction (with Welim=4.9) for 

1<We<2.  

N1 and f-functional fields, non-convoluted: Fig. 5.10a provides a complete record for 

the (N1 fields non-convoluted) predictions. First, EPTT-N1 results exhibit fields with vanishing 

negative zones and declining maximum values as We rises. This is consistent with (i) the inverse, 

quadratic relation between the f-functional and N1 in simple shear flow (specifically 
2 2

1 1 02 pN / f   , based upon Eq. 2.27-2.28), where f-increases with rising-  (see Fig. 5.7); 

and (ii) the EPTT f-results in complex flow, with relatively large f=O(360) and large Welim=210 

(cf. Table 5.3), and small N1. In contrast, the thixotropic MBM, NM_p and NM_T results 

produce relatively more intense and larger N1 maxima zones (Fig. 5.10a), smaller f and Welim. For 

example, at We=2, MBM-N1 is twice as large as for EPTT and NM_p (cf. Table 5.4). The non-

convoluted f-maxima range is from {f=O(1), We=0.1} to {f=O(20), We=O(10)} (cf. Table 5.3). 

Consequently, critical elasticity levels are much smaller and lie around Welim=O(10). In Fig. 

5.11a (f-functional fields non-convoluted), notable differences in EPTT f-field results are 

apparent relative to the non-convoluted thixotropic solutions from low We levels (We=0.5). 
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EPTT data show a red-intense zone with relatively large, positive values about the contraction. 

As We is increased, the EPTT red zone grows in size and magnitude notably, from f=O(10) at 

We=0.1, to f=O(102) at We=100 (Table 5.3); until almost filling the region about the contraction. 

Moreover, localised small-f zones are apparent at the re-entrant and downstream corner for EPTT 

solutions at We=50 and onwards. Contrastingly, the micellar MBM, NM_p and NM_T f-field 

results do not exhibit such growth in size and intensity as We is elevated. Indeed, these results 

exhibit a blue-light zone with relatively small, and even negative, values arising from the 

centreline. This is shifted downstream and lies within the red zone. Conspicuously and in 

contrast to EPTT f-fields, the micellar f-fields reveal that the blue patch at the contraction grows 

until it touches the wall, before encountering numerical solution breakdown. 

Convoluted vs. non-convoluted, f-maximum values at Welim (Table 5.4), f-fields. In this 

comparison, significantly larger f-maxima are obtained for the EPTT and convoluted versions 

(exponential f), relative to their non-convoluted thixotropic analogues (linear f) at their 

respective Welim: in fact, one order of magnitude larger. Specifically, EPTT/MBM results render 

f=O(390), whilst MBM predicts f=O(7), and EPTT originate f=O(360). Similarly, EPTT/NM_p 

and NM_p data result in f=O(400) and f=O(10), respectively. Moreover, EPTT/NM_T solutions 

evidence f=O(500) at We=300 and beyond, whilst NM_T results show f=O(20) at its Welim. 

Accordingly, the convoluted N1-values are smaller than for the non-convoluted counterparts 

(Table 5.4), and decline as We is elevated, thus rendering larger Welim. In the f-fields displayed in 

Fig. 5.11b, the convoluted solutions exhibit micellar features at low elasticity levels 

(0.1<We<2.0): a blue relatively small zone that disappears as We is increased, when EPTT 

characteristics emerge, with the growing large-f red zone for We>5.0 onwards. Accordingly, the 

convoluted N1-fields exhibit the inverse relationship with f-functional as We is elevated (Fig. 

5.10b). 
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Table 5.3. Maximum and minimum f-function values versus We; MH (EPTT =0.25; Micellar =4.0) 

response, highly-polymeric fluids (=1/9) 

  f 

We  EPTT / 
NM_T 

EPTT / 
NM_p 

EPTT / 
MBM 

EPTT MBM NM_p NM_T 

0.1 Max. 1.15 1.15 1.25 1.14 6.35 2.06 2.17 
 Min. 0.98 0.98 0.99 1.00 0.99 1.00 1.00 

         

0.5 Max. 2.50 2.49 2.53 2.46 5.82 4.11 5.00 
 Min. 0.94 0.94 0.95 0.97 0.81 0.87 0.91 

         

1.0 Max. 4.12 4.10 4.11 4.09 5.62 5.62 7.25 
 Min. 0.91 0.91 0.91 0.96 0.60 0.59 0.69 

         

2.0 Max. 6.86 6.80 6.76 6.81 5.62 7.40 9.77 
 Min. 0.96 0.96 0.96 1.00 0.11 -0.34 0.05 
         

5.0 Max. 13.55 13.43 13.39 13.24 D** 11.04*** 13.74 
 Min. 0.94 0.94 0.94 0.99  -4.92 -2.76 

         

10.0 Max. 23.37 23.14 23.07 22.86  D 17.73 
 Min. 0.92 0.92 0.92 0.95   -8.05 

         

15.0 Max. 32.81 32.47 32.39 32.08   19.76 
 Min. 0.95 0.95 0.95 0.94   -13.66 

         

20.0 Max. 41.93 41.48 41.39 41.01   D 
 Min. 0.96 0.96 0.96 0.94    

         

50.0 Max. 97.29 98.25 98.46 96.84    
 Min. 0.93 0.93 0.93 0.91    

         

100.0 Max. 192.22 196.08 196.53 179.78    
 Min. 0.86 0.86 0.86 0.86    

         

200.0 Max. 380.06 393.88 394.91 360.40    
 Min. 0.78 0.17 0.07 0.08    

         

220.0 Max. 417.08 433.75 D D    
 Min. 0.76 0.005      

         

300.0 Max. 564.65 D*      
 Min. 0.09       

* Diverged 

** Diverged at Welim=3.6 

*** Diverged at Welim=4.9 
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Table 5.4. Maximum and minimum N1 dimensionless values versus We; MH (EPTT =0.25; Micellar 
=4.0) response, highly-polymeric fluids (=1/9) 

  N1 

We  EPTT / 
NM_T 

EPTT / 
NM_p 

EPTT / 
MBM 

EPTT MBM NM_p NM_T 

0.1 Max. 8.24 8.25 7.89 8.30 2.41 5.48 5.20 
 Min. -5.08 -5.08 -4.98 -5.09 -2.18 -4.18 -4.05 

         

0.5 Max. 7.84 7.87 7.79 7.98 3.09 4.83 3.59 
 Min. -3.08 -3.08 -3.07 -3.09 -2.15 -2.64 -2.50 

         

1.0 Max. 5.71 5.75 5.76 5.84 4.46 4.46 2.95 
 Min. -2.22 -2.22 -2.22 -2.23 -2.19 -2.20 -2.04 

         

2.0 Max. 3.70 3.75 3.78 3.80 7.44 4.17 2.72 
 Min. -1.46 -1.46 -1.46 -1.46 -2.98 -1.77 -1.61 
         

5.0 Max. 1.93 1.98 2.00 2.00 D** 4.11*** 2.94 
 Min. -0.93 -0.93 -0.94 -0.94  -3.53 -1.72 

         

10.0 Max. 1.15 1.18 1.20 1.20  D 3.01 
 Min. -0.66 -0.66 -0.67 -0.67   -2.26 

         

15.0 Max. 0.83 0.87 0.88 0.88   3.03 
 Min. -0.49 -0.49 -0.50 -0.49   -2.02 

         

20.0 Max. 0.67 0.70 0.70 0.70   D 
 Min. -0.40 -0.40 -0.40 -0.40    

         

50.0 Max. 0.33 0.34 0.34 0.34    
 Min. -0.19 -0.20 -0.20 -0.20    

         

100.0 Max. 0.19 0.19 0.19 0.19    
 Min. -0.11 -0.11 -0.11 -0.11    

         

200.0 Max. 0.11 0.11 0.11 0.11    
 Min. -0.06 -0.06 -0.06 -0.06    

         

220.0 Max. 0.10 0.10 D D    
 Min. -0.06 -0.05      

         

300.0 Max. 0.07 D*      
 Min. -0.04       

* Diverged 

** Diverged at Welim=3.6 

*** Diverged at Welim=4.9 
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Figure 5.10 N1 fields versus We: a) EPTT, MBM, NM_p and NM_T models, b) EPTT, EPTT/MBM, 
EPTT/ NM_p and EPTT/NM_T models; MH (EPTT =0.25; Micellar =4.0) response, highly-

polymeric (=1/9) fluids 

Non-convoluted results 

N1 colour-contour 

Convoluted results 
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Figure 5.11 f-function fields versus We: a) EPTT, MBM, NM_p and NM_T models, b) EPTT, EPTT/MBM, 
EPTT/ NM_p and EPTT/NM_T models; MH (EPTT =0.25; Micellar =4.0) response, highly-polymeric 

(=1/9) fluids 

Non-convoluted results 

Convoluted results 

f-fields 
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All above findings can be related to the corresponding materials functions (Fig. 3.1 and 

3.2) and their impact on flow kinematics (Fig. 5.4a, 5.5a, 5.6 and 5.8 above). Both constitutive 

representations, the time-independent (meaning a model for which the f-functional is defined in 

terms of an algebraic equation; see 2.38) network-based EPTT, and the time-dependent (which in 

contrast have their f-functional given by a differential equation with time as the independent 

variable, and therefore capable of displaying thixotropy) micellar models, provide shear-thinning 

in steady simple shear and strain-hardening/softening effects in steady simple uniaxial extension 

(Fig. 3.1). Moreover, they exhibit an inverse, quadratic relation between N1 and f in viscometric 

simple shear flow (Fig. 5.10). Nevertheless, EPTT results evidence a more complex kinematics 

than the micellar forms (Fig. 5.4a, 5.5a, 5.6 and 5.8 above). Major differences in f-results 

between the EPTT and non-convoluted micellar forms become apparent. Therefore, one may 

argue that the manifestation of the strain-hardening and softening characteristics (on vortex 

size/intensity, and N1) is influenced by the magnitude of the f-functional predicted in complex 

flow, which seems to be largely dictated by the f-We functionality. Specifically, as noted for 

EPTT and convoluted models, and in contrast with the strain-hardening effects observed 

exclusively in the thixotropic non-convoluted micellar solutions. The exponential f-functional of 

EPTT and convoluted forms (Table 5.3) provide impressively larger f-results, which generate 

relatively smaller N1 values, and consistently, larger Welim in complex flow. Alternatively the 

linear f-expression, as in NM_p and NM_T models, yields relatively smaller f-predictions, with 

larger N1 and smaller Welim than those of EPPT. These trends become even more noticeable for 

the MBM predictions, a model devoid of f-We explicit functionality. 

5.5. Conclusions 

A new set of constitutive models based on the MBM model (Boek et al. 2005) for 

wormlike micellar solutions has been presented, involving the viscoelasticity in the structure 

construction/destruction mechanics. Solutions are compared between time-dependent thixotropic 

MBM models and network-based time-independent EPTT models. Complex flows for a 4:1:4 

rounded contraction/expansion are considered, under relatively moderate and strong strain-

hardening response, and highly-polymeric and Newtonian like instances. 
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Analysis for the MBM model in the complex axisymmetric 4:1:4 contraction/expansion 

flow has provided information based on phenomenological observation (EPD attainment). Here, 

feedback between viscometric theory and complex flow analyses complement and improve the 

micellar constitutive approach, reflecting the new physics involved. In this study, this point is 

illustrated through the observation of the EPD underprediction at low elasticity levels, for which 

the MBM model provides inconsistent results, and upon which a correction is performed. 

The new constitutive framework provides a) consistent EPD predictions at low elasticity 

levels, (contrary to the MBM model), b) larger limiting We to those obtained with the MBM 

model, by the explicit presence of We in the micellar f-functional, and c) rising EPD tendency at 

high-elasticity instances for Newtonian-like, moderate hardening fluids. 

Moreover, impressively high-We results, of interest for industrial applications and 

microfluidics/nanotechnology (We~300+), have been obtained for the models characterising 

micellar solutions. This was achieved through the convolution of the f-functional of the micellar 

and EPPT models. The analysis of the f-functional across models evidences notable trends as to 

the level of attainable Welim. Here, models with stronger explicit mathematical functionality 

between f and 1 (We) provide larger Welim. Furthermore, the effects of these large-f results are 

reflected, firstly, on the N1 magnitude predicted. These obey the inverse, quadratic functionality 

between N1 and f, found in simple shear flow. Secondly, as demonstrated in this study and 

elsewhere (Tamaddon-Jahromi and Webster 2011), the vortex dynamics proves to be a function 

of the N2–minima, as located in the vortices generated. Moreover, the relative size of f-

predictions influences the manifestation of strain-softening/hardening characteristics through the 

vortex dynamics. Thus, outstandingly definite trends are established regarding the various 

constitutive models proposed. Significantly, the EPTT and its convoluted solutions evidence 

relatively complex kinematical behaviour with We rise, based on the relatively large f-values 

generated. Here, increasing vortex growth to a maximum is reported for the low-to-moderate 

elasticity range, with further decrease to a minimum over the moderate-to-high elasticity range, 

and ultimate rise in the high elasticity range. In particular, this rise in vortex intensity at high We 

is related to the formation and enhancement of a second upstream vortex, which is observed with 

the convoluted models. In contrast, solutions with non-convoluted micellar models and relatively 

smaller f-values, provide only vortex enhancement before their earlier numerical breakdown.  
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CHAPTER 6  

High-Weissenberg predictions for micellar fluids in contraction-

expansion flows 

In this chapter the numerical modelling of thixotropic and non-thixotropic materials in 

contraction-expansion flows at high Weissenberg number (We) is analised. Thixotropy is 

represented via the new micellar time-dependent constitutive model for worm-like micellar 

systems proposed chapter 3, and contrasted against network-based time-independent PTT 

forms in complex flow in chapter 5. The work focuses on steady-state solutions in 

axisymmetric rounded-corner 4:1:4 contraction-expansion flows for the benchmark solvent-

fraction of β=1/9 and moderate hardening characteristics (=0.25). In practice, this work has 

relevance to industrial and healthcare applications, such as enhanced oil-reservoir recovery 

and microfluidics. To obtain high-We solutions, both micellar and PTT constitutive equation 

f-functionals have been amended by (i) adopting their absolute values appealing to physical 

arguments (ABS-correction); (ii) through a change of stress variable, Π=τp+(ηp0/λ1)I, that 

aims to prevent the loss of evolution in the underlying initial value problem; and finally, (iii) 

through an improved realisation of velocity gradient boundary conditions imposed at the 

centreline (VGR-correction). On the centreline, the eigenvalues of Π are identified with its 

Π–stress-components, and discontinuities in Π–components are located and associated with 

the f-functional-poles in simple uniaxial extension. Quality of solution is described through 

rz, N1 and N2 (signature of vortex dynamics) stress fields, and -eigenvalues. With 

{micellar, EPTT} fluids, the critical We (Wecrit) is shifted from critical states of Wecrit={4.9, 

220} without correction, to Wecrit={O(102), O(103)} with ABS-VGR-correction. Furthermore, 

such constitutive-equation correction has been found to have general applicability. 
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6.1 Introduction 

This study addresses the topic of high Weissenberg (We) number solutions for worm-like 

micellar systems using the class of Bautista-Manero models (Bautista et al. 1999; Manero et 

al. 2002; Boek et al. 2005; López-Aguilar et al. 2014). The work concentrates on the rounded 

4:1:4 contraction/expansion benchmark flow problem, and various alternative procedural and 

constitutive approaches are introduced. Herein, high-elasticity levels are accessible through 

two routes: (i) a correction to the constitutive model based on physical arguments, in which 

absolute values of the dissipation-function components are considered in complex flow; and 

(ii) the imposition of consistent boundary conditions at the axisymmetric geometry centre 

flow-line. There, in complex flow, the deformation is purely extensional (inhomogeneous) 

and shear-free flow prevails. 

One of the principal challenges in the field of computation rheology has been to address 

the problem of seeking convergent numerical solutions to the underlying partial differential 

equation system for steady-state complex flows at high levels of Weissenberg number, 

referred to as the so-called ‘High-Weissenberg Number Problem’ (HWNM) (Binding et al. 

2006; Aguayo et al. 2008). Strictly speaking this applies to the differential Maxwell/Oldroyd 

context, but in practice, often arises under strong-strain hardening alternatives, with shear-

thinning (EPTT, LPTT, FENE-P; where We-definition may vary) or without shear-thinning 

(FENE-CR). Though many possible resolutions to this challenge have been proposed [see 

Walters & Webster (2003), Keunings (1986), Baaijens (1998)], still for many complex flows 

there are often limitations in Weissenberg number solutions met – due to issues such as sharp 

stress boundary layers and flow singularities (Keunings 2001). Relevant factors influencing 

the determination of a particular critical We solution state are: the numerical technique and 

discretisation for the independent variables (often stress, velocity, pressure, in space and 

time), the complex flow problem itself and the constitutive equation choice (Keunings 1986). 

Here, and largely motivated by findings with thixotropic constitutive model adjustments, this 

issue is revisited and further light is cast upon the problem.  

Variable transformation and positivity: Dupret et al. (1985) and Dupret and Marchal 

(1986) state that, for theoretical flows (i.e. simple flows, from which we extract material 

functions), a well-posed initial-value problem in the context of a Maxwell fluid is one in 

which: (a) the tensor =p+(p0/1I) remains positive definite; (b) there is no solutions of a 

transient three-dimensional flow of a Maxwell fluid if the tensor  does not remain positive-
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definite; (c) in a steady-state scenario with well-defined boundary conditions (i.e. with  

positive definite at the boundary that crosses the streamlines), a solution cannot exist when  

is non positive-definite; and (d) the change of mixed-type of the underlying differential 

equation system, from {elliptic to hyperbolic, steady} or {hyperbolic-parabolic to hyperbolic-

hyperbolic, unsteady}, which influences the stability of the numerical scheme in terms of loss 

of evolutionary character, and by implication, the requirements (completeness - necessity and 

sufficiency) on boundary conditions themselves.  

Application of positive definiteness principles to viscoelastic complex flows: Dupret et al. 

(1985)  applied the principles specified by Dupret and Marchal (1986) to the finite element 

solution of Maxwell and Oldroyd-B fluids, dealing with 2D complex flows such as 4:1 

contraction flow with sharp borders in planar and axisymmetric geometries, and flow past a 

cylinder. These authors found that Oldroyd-B solutions proved more stable in comparison 

with those with the Maxwell model, due to the solvent presence inherent in the former 

choice, which provides its contribution through solvent diffusion to the momentum transport. 

The stability of their numerical scheme was evaluated through an S-parameter, defined in 

terms of the eigenvalues of  as S=2/(s1/s2-s2/s1). This parameter characterises three possible 

outcomes: (i) S>0, when both s1, s2 > 0; (ii) S = 0, when either s1 or s2 =0 (not 

simultaneously); and (iii) S<0, when s1, s2 have opposite signs. This last instance was denoted 

as a precursor and sign of numerical convergence problems (numerical breakdown in stable 

steady-state extraction, subject to an imposed and consistent detection criterion). Later, 

Dupret and Marchal (1986) extended their studies on viscoelastic fluids for Johnson-

Segalman and White Metzner equations, where ‘evolutionary flows’ are those for which the 

‘solutions at a present time t is a valid initial condition for determining the flow fields at 

subsequent moments’, otherwise ‘non-evolutionary flows’ are obtained. This classification 

was based on (a) the positive definiteness of the appropriate extra-stress tensor; and (b) the 

existence of an extremum in the determinant of the same tensor.  

Classification of differential models and conformation-tensor form:  Van der Zanden and 

Hulsen (1988) and Hulsen (1988) proposed a classification of differential models to analyse 

computationally inclusion of a Newtonian solvent contribution. In their work, they studied 

the Leonov and Giesekus models, finding that the inclusion of such a solvent contribution 

resulted in a more well-posed scheme for numerical computation (as argued above). With this 

in mind, Hulsen (1990) generalised the work to define an alternative stress-like variable [as 
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proposed similarly under Dupret and Marchal (1986)], termed the configuration tensor, with 

its corresponding constitutive model statement, and with the objective of  positive-

definiteness retention under numerical solution. Here, the positive-definiteness of a 

differential constitutive equation system relies upon the property that the non-evolutionary 

terms therein remain positive and finite. Based upon such specification, corresponding 

expressions for equations of state were derived equivalent to commonly used models such as 

Giesekus and PTT. 

6.2 Governing equations, constitutive modelling & theoretical framework 

6.2.1 ABS and  tensor approaches The governing equations and constitutive equations 

considered in this chapter have been detailed in chapter 2. The non-dimensional continuity 

and momentum conservation principles are expressed in eqs.(2.11)-(2.12), whilst the stress 

equations is given in (2.27)-(2.28). The specific time-dependent thixotropic micellar or time 

independent network-based nature is specified by the f-functional. For the micellar 

framework, the natural-signed  NM_p is represented by eq.(2.34). In contrast, the network-

based Exponential PTT model is represented in eq.(2.38). Material function comparison for 

these models is provided in chapter 3, in Fig. 3.1-3.2. The dimensionless variables utilised 

are defined in chapter 2. Here, an additional definition with respect to the conformation 

tensor should be emphasised, i.e. .          

In this chapter, a new correction to the time-dependent thixotropic micellar theory is 

proposed, as outlined in chapter 2, with the inclusion of the absolute value of the dissipation 

function in the structure construction-destruction eq.(2.36): 

.       (2.36) 

Under network theory, the same reasoning as with thixotropic models can be applied to 

PTT models, and the analysis returns towards classical Oldroyd-B behaviour in the limit of 

vanishing trp.1 Consistently, the corresponding modification to the PTT models becomes: 

 for LPTT, and  for EPTT. (2.38) 

                                                        
1  Provided the model parameter set {, , We}>0, as is necessary by definition 
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Note, material functions for the models considered, along with the Oldroyd-B (f=1) reference, 

are reported in Fig 3.1, since the ABS-correction does not have any impact in simple ideal 

flow. For such theoretical flows, the domain of the stress and deformation rate variables is 

positive.  

6.2.2 Change of variable (translations p - ) A change of variable between the 

conventional stress tensor and a conformation tensor has been derived in chapter 2, section 

2.3.7. In this chapter, this change of variables in tested to generate stable high-We solutions. 

With this change of variable, the stress equation eq.(2.28) is transformed into eq.(2.40). The 

conformation-tensor versions for the constitutive equations are given in eqs.(2.41) and (2.43) 

for NM_p and PTT models, respectively.  One notes that eqs.(2.36)-(2.38) already include 

the ABS-correction, yet this assumption may be relaxed to consider natural-signed options. 

6.2.3 -eigenvalues in the field The eigenvalues of any tensor can be calculated via the 

solution of the characteristic equation obtained as follows (applied to ): 

,         (6.1) 

where s denotes the vector of eigenvalues (si) of the tensor . If we apply this principle to the 

symmetric  tensor relevant to axisymmetric {z, r, }-flow, as pertinent to this study with 

vanishing shear components - rz=0, given by: 

0
0 0

0 0

zz rz

rz rr

s
det s

s

 
 



 
   
  

,      (6.2) 

and thus producing the cubic characteristic equation: 

    2 0zz rr rzs s s          .      (6.3) 

In this form, firstly note the decoupling of the-component from the remainder of the 

system, which provides the independence of the subsystem in r-z components (replicating 

that of planar flow). This is reflected in eigenvalue s3=, which is termed the third 

eigenvalue and identified unambiguously with over the whole field. Then, the remaining 

two eigenvalues can be determined from the quadratic equation for the r-z subsystem: 
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   2 0zz rr rzs s      ,       (6.4) 

which can be recasted as: 

   2 2 0zz rr zz rr rzs s               (6.5) 

or more simply,  

        (6.6) 

where use is made of trace and determinant operations, in trsub=zz+rr and 

detsub=zz*rr-rz
2 . 

Thus, the two solutions of eq.(6.6) provide the first (s1) and second (s2) eigenvalues, 

respectively: 

,      (6.7) 

      (6.8) 

Notably, the discriminant of the square-root represents a balance on sub-system components 

between the (trsub)2 and detsub, and to conform to real eigenvalues should comply with the 

restriction that [(trsub)-4detsub]≥0.2 

Corresponding and detailed analysis for the -eigenvalues at the centreline (in shear-free 

flow) is given below, along with their relationship to the poles of the f-functional in simple 

uniaxial extension. This detail is called upon in the results sections below. 

6.2.4 -eigenvalues at the centreline (shear-free flow) The eigenvalues of the -tensor at 

the centreline reveal some interesting properties, worthy of further inspection. Shear-free 

flow applies along this flow-line (rz =0), and hence, eqs.(6.4) and (6.6) reduce to: 

   0zz rrs s    ,         (6.9) 

                                                        
2 In practice, this condition has always been met for computable and stable steady-state We-solutions 
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   2 0zz rr zz rrs s       .        (6.10) 

The discriminant associated with the solution of eq.(6.9) is: 

   2 2 2 2 24 2 4 2zz rr zz rr zz zz rr rr zz rr zz zz rr rr                      , 

viz, 

   2 2 2

14zz rr zz rr zz rr N           

From which the eigenvalues are then given by: 

  1

1 2 2
zz rr N

s ,s
  

          (6.11) 

With dependence on the sign-switch of N1 on the centreline, three instances can be identified 

from eq.(6.11): 

a) when N1>0  N1=zz-rr, s1=zz, s2=rr; 

b) N1=0  zz=rr, s1=zz=s2=rr= trsub/2; 

c) when N1<0  N1=rr -zz, s1=rr, s2=zz. 

Hence, theoretically on the centreline, a duality exists in the nature of the component 

identities between the {s1, s2} eigenvalue pairs, and is dictated by the sign-switch in the first 

normal stress difference at this shear-free flow-line. What is clear is that each eigenvalue here 

picks up the identity of the local ii component, and that this tensor component switches over 

its roll of eigenvalue dependency as the sign-switch in N1 is traversed. Hence, both 

eigenvalues have an intimate roll to play in the analysis. Universal findings, to be discussed 

subsequently below, reveal that the corresponding centreline pattern of behaviour taken up by 

{s1, s2} is such that s1 remains positive  z, whilst s2 has the potential to decline into minor 

negativity, subject to a number of constraints. Hence, it is s2-response that is particularly 

instructive to focus attention on below. 

6.2.5 -eigenvalue relationship with f-functional poles in simple uniaxial extension 

Consideration of simple uniaxial extension (or compression) within eq.(2.40) under 

deformation rate  , applicable to the linear viscoelastic regime, realises: 

,      (6.12) 
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from which one extracts solutions of the form: 

.    (6.13) 

Hence and from the above analysis, the first and second eigenvalues on the centreline, in non-

homogeneous uniaxial extension, may be approximated by  1 2zz
fs f We



    

 and 

 2 rr
fs f We



    

. This equivalence holds exactly in the linear viscoelastic regime 

and for homogeneous extension conditions. Hence, one may identify departure in numerical 

solutions generated under inhomogeneous extensional conditions, and indeed the various 

windows of influence of departure from fully-developed flow. 

6.2.6 Centreline shear-free boundary condition imposition – VGR-correction Consistent 

boundary conditions are required for any differential problem to be well-posed. In the 

contraction-expansion flow problem, the symmetry flow-line is the unique region in the flow-

domain where uniaxial (inhomogeneous) extension exclusively occurs, as opposed to the 

contraction-wall where (inhomogeneous) shear flow prevails. Conventionally, the so-called 

stick-boundary condition is assumed along the contraction-wall, by which the fluid is treated 

as at rest on the wall (u=0). At the shear-free centreline, flow symmetry boundary conditions 

apply. In this work, under VGR-correction and on the centreline, we propose imposing 

specific analytical restrictions on the deformation gradients (see section below). Here, the 

deformation gradients themselves are determined throughout the flow domain by a 

superconvergent local recovery technique and imposed on the stress equation [akin to well-

known DEVSS-G methodology, but applied locally in quadratic form (Matallah et al. 1998)]. 

This enforces: (i) shear-free flow, to ensure 1D-extensional deformation (eq.(6.14a)); (ii) a 

pure uniaxial extension relationship between the normal deformation-gradients (eq.(6.14b)); 

and (iii) nodal-pointwise continuity imposed exactly, in discrete form (eq.(6.14c)). With 

computed knowledge of the normal deformation-gradients, the third of these conditions may 

be utilised throughout the domain, irrespective of 1D-centreline arguments. Assuming 
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specific notation for the extensional rate on the centreline in the axial direction, as 
^

zu
z

 



 ,3 

then the following identities may be established and imposed on the numerical solution under 

VGR-correction:  

0z ru u
r z

 
 

 
, (6.14a) 

^1 1
2 2

r zu u
r z

 
   

 
 , (6.14b) 

^1
2

r z ru u u
r z r

         
 . (6.14c) 

Corresponding solutions results are discussed below, when this methodology is considered. 

As such, the VGR-correction is intended to eliminate noise proliferation, originating at the 

centreline, which may provoke numerically polluted solutions and earlier numerical solution 

breakdown. 

6.3 Problem specification 

The schematic representation of the 4:1:4 axisymmetric, rounded-corner 

contraction/expansion flow problem with its corresponding mesh data are reported in chapter 

5.  See Aguayo et al. (2008) for further detail on this problem, which provides a full mesh 

refinement analysis for some typical case studies. 

Velocity-gradient approximation (VGR-correction) In Matallah et al. 1998; Hawken et al. 1991, 

both local (direct-recovery) and global (Galerkin) schemes for the treatment of velocity-

gradients (VGR) were analysed and compared. There, a direct and nodal method was 

advocated, based on averaging velocity-gradient elemental-contributions to a triangular 

mesh-node. It is particularly significant that for midside nodes, this is the only scheme that 

enjoys superconvergent properties. In contrast, the global Galerkin approach fits an 

appropriate set of nodal gradient values that satisfy an associated weighted-residual 

formulation. Hawken et al. (1991) observed that the local recovery method offered improved 

performance, for solution gradients in complex flow problems, such as flow past a cylinder. 

Likewise, Matallah et al. (1998) conducted similar analysis on a 4:1 contraction problem and 

flow around a cylinder, observing that the local recovery technique was more stable than a 

local Galerkin equivalent; see summary in Walters and Webster (2003). Furthermore, in 

                                                        
3 As a function of z-spatial variable, in uniaxial extension along the flow centreline 
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Belblidia et al. (2008) the above analysis was revisited under velocity-stress, parent/subcell 

approximation, as used here. This covered the various function-spaces and combination-

options available for velocity-gradient representation (parent/subcell control-volume, 

quadratic/linear order), with special reference to stress-subcell approximation. In Belblidia et 

a. (2008), the localised-quadratic velocity-gradient (parent-cell) treatment was shown to 

achieve both stability and accuracy, applying robustly for both linear (subcell) and quadratic 

(parent) stress interpolations. 

 Entry flow kinematics is determined computationally for the equivalent entry-channel 

problem. These may be imposed through the time-stepping procedure, either as steady-state, 

or via a smooth transient build-up. Then, fully-developed outflow conditions are established 

ensuring no change in streamwise and vanishing cross-stream kinematics. Once fully-

developed entry-flow kinematics is known, stress may be determined through the derived and 

corresponding initial-value-problem ODE system (consistent with internal domain solution 

discretisation). 

6.4. Solutions with Micellar NM_p model – natural-signed form 

Negative f-values in complex flow In Fig. 6.1, zones of small and negative f-value, appear at 

the centreline from low We-solution levels onwards (i.e. We=0.1, dark blue regions). These 

regions grow towards the contraction wall and are convected downstream as elasticity level 

increases, for all three micellar models (i.e. MBM, NM_p, NM_T) (López-Aguilar et al. 

2014), which vary in dissipation function. 

The structure equation given in terms of the f-functional for the micellar models is 

represented in [1 + g(:D)] form. The only way this expression can generate negative f-values 

in complex flow is if g(:D)<-1. This occurrence is unphysical with respect to the second law 

of thermodynamics, since any viscous flow is dissipative; thus increasing the entropy of the 

system (Bird et al. 1960, 1977; Aris 1962). As outlined by Bird et al. (2007), for viscoelastic 

fluids, elasticity acts as a energy storage feature. As such, the global dissipation could be zero 

or negative when the elastic-storage is more important than the viscous-dissipative 

contribution. Complex flows, with their mixed shear-extensional nature caused by change of 

geommetry, display regions with localized positive and negative values in stress and velocity 

components, with the corresponding change of sign in their gradients (see Fig. 5.10 for 

positive and negative N1 values, for example). This can originate regions with dissipation-
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function negative values that in our particular case of micellar fluids, are used to change of 

structure of the material and ultimately estimate its viscosity across the field. Moreover, the f-

functional for these thixotropic micellar models is explicitly related to viscosity-inverse (see 

Eq. 2.32-2.35 and recall  0p pf /  ). Thus, from Eq. 2.35, one may conclude that 

sufficiently large negative dissipation-function values may generate negative f-values, that 

represent negative viscosities in the field (again unphysical); and moreover, when g(:D)=-1, 

f=0, an infinite viscosity would be predicted. As reported elsewhere (López-Aguilar et al. 

2014), numerical breakdown for each micellar variant, characterised by the critical-We 

(denoted Wecrit) solution, is observed when the small and negative f-function region reaches 

the contraction wall (see Fig. 6.1 and Table 6.1). In this study, for the sake of conciseness 

only, the NM_p micellar version is studied in detail; nevertheless, all observations are quite 

general. 

 
Figure 6.1. f-functional 2D-fields versus We; MBM, NM_p and NM_T 
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s2-field trends and numerical breakdown In Fig. 6.2, the evolution of NM_p s2-fields 

through increasing elasticity to Wecrit is depicted. This graduated change in solution state with 

elasticity level is evidence to the regional loss of positive-definiteness and the consequence 

this has on evolution in We-solution, which provokes numerical breakdown (Dupret and 

Marchal 1986). Firstly, at low elasticity levels (We=0.5) (Fig. 6.2a), s2 remains positive 

throughout the field, with variations about the centreline given by the mixed nature of shear-

extensional flow. The s2-minimum value (s2min=0.53; see Table 6.2) is located on the 

centreline, downstream with respect to the contraction. This first low s2 peak (blue spot on 

centreline; see 2D field) is connected to the contraction wall by another light-blue positive 

contour level, originating at the centreline and reaching out across the flow to the contraction 

wall. The s2-maximum value (red spot s2max=1.03) is located off the centreline, but close to it; 

this is surrounded by a green contour-banded region of relatively low-s2 levels, that connects 

locations on the centreline to those on the wall, both upstream and downstream of the 

contraction. 

Interestingly, when elasticity level is increased further to We=2 (Fig. 6.2b), negative-blue 

s2 values begin to penetrate into the field. The location of the minimum-negative value is 

observed through the first-peak at the centreline (s2min=-0.23), which appears to be convected 

downstream. This negative region remains connected to that on the contraction wall by a 

similar green-positive fringe to that identified when We=0.5. In addition, this green fringe 

(disconnected downstream) partially surrounds the second-red positive-peak. This second-red 

peak appears to have grown in size and strength (s2max=1.24), and is convected downstream in 

contrast to the We=0.5 solution. Moreover, a new feature has now arisen at this We-level: a 

third peak on the downstream contraction wall (see 3D field-plot). The value for this peak 

(s2=0.27 units) remains positive. The fully-developed flow region upstream and downstream 

of the contraction is characterised by levels of 0.8≤s2≤1 units.  

Fig. 6.2c provides corresponding results at We=3. Here, strong features in s2 are 

established which become more intense with rise in We. The first and second-peaks, are 

identified by s2min=-0.29 and s2max=1.35, respectively; these have been convected even more 

and become relatively more intense, with reference to lower We-level solutions. At We=3, the 

positive surrounding-level connecting the first-peak between the centreline and contraction 

wall, appears larger and fully-connected upstream. The third-peak at the downstream wall has 

become sharper and its local minimum value has just wandered into negativity (s2=-0.05).  
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Table 6.1. f, fextrema versus We; micellar models 

f f 

We Natural ABS VGR 
0.1 Max. 2.06 2.06 2.06 

 
2.69 

 Min. 0.998 1.00 1.00 
 

1.00 
      0.5 Max. 4.11 4.18 4.18 

 
5.82 

 Min. 0.87 1.00 1.00 
 

1.00 
      1 Max. 5.62 6.59 6.59 

 
7.87 

 Min. 0.59 1.00 1.00 
 

1.00 
      2 Max. 7.4 10.94 10.94 

 
12.14 

 Min. -0.34 1.00 1.00 
 

1.00 
      3 Max. 8.72 13.35 13.35 

 
15.07 

 Min. -1.82 1.00 1.00 
 

1.00 
      4 Max. 9.98 15.39 15.39 

 
17.58 

 Min. -3.44 1.00 1.00 
 

1.00 
      5 Max. 11.04* 17.35 17.35 

 
19.92 

 Min. -4.91 1.00 1.00 
 

1.00 
    10 Max. 

 
25.48 25.48 

 
30.40 

 Min. 
 

1.00 1.00 
 

1.00 
      15 Max. 

 
32.20 32.20 

 
41.72 

 Min. 
 

1.00 1.00 
 

1.00 
      20 Max. 

 
36.85 36.85 

 
42.65 

 Min. 
 

1.00 1.00 
 

1.00 
      30 Max. 

 
41.29 41.29 

 
53.19 

 Min. 
 

1.00 1.00 
 

1.00 
      40 Max. 

 
74.51** 85.54 

 
115.87 

 Min. 
 

1.00 1.00 
 

1.00 
   75 Max. 

  
195.49 

 
256.53 

 Min. 
  

1.00 
 

1.00 
      100 Max. 

  
279.89 

 
321.52 

 Min. 
  

1.00 
 

1.00 
      140 Max. 

  
427.52 

 
450.44 

 Min. 
  

1.00 
 

1.00 
      175 Max. 

  
534.31 

 
562.73 

 Min. 
  

1.00 
 

1.00 
   200 Max. 

  
606.83 

 
 Min. 

  
1.00 

 
 

      250 Max. 
  

748.47 
 

 Min. 
  

1.00 
 

 
      370 Max. 

  
1037.10 

   Min.     1.00     
*Wecrit=4.9; **Wecrit=39 
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Finally and most conspicuously for We=4.9, the stage is reached beyond which steady-

state numerical breakdown is observed (Fig. 6.2d, Wecrit=4.9, breakdown at We=5). Note, the 

important switch in location of the global s2min=-2.05 in the NM_p case at Wecrit=4.9, from 

previous We–levels on centreline, to presently on the wall (backface-tip of contraction). In 

addition here, a fourth-red positive-peak also becomes apparent on the downstream wall, next 

to the third-peak, as fresh evidence to the appearance of solution overshoot-undershoot. 

Moreover, the first two peaks appear completely attached to the centreline and convected 

downstream. The first-peak has become less intense at this We-level (s2=-0.15), whilst the 

second-peak has grown in size and intensity (s2max=1.39). The first-peak at the centreline still 

remains connected to the wall by a slim-positive s2-band (light-blue). 

We 3

We 2We  0.5

Wecr it  4.9

a) b) 

c) d) 

Figure 6.2. s2 2D, 3D-fields versus We; NM_p 
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Table 6.2. s2 extrema versus We; micellar models 

s2 

We   Natural ABS VGR  
0.1 Max. 1.00 1.00 1.00 1.00 

 Min. 0.74 0.74 0.74 0.74 
      0.5 Max. 1.03 1.03 1.03 1.01 

 Min. 0.53 0.55 0.55 0.48 
      1 Max. 1.13 1.09 1.09 1.06 

 Min. 0.10 0.17 0.17 0.24 
      2 Max. 1.24 1.22 1.22 1.22 

 Min. -0.23 -0.11 -0.11 0.03 
      3 Max. 1.35 1.31 1.31 1.31 

 Min. -0.29 -0.18 -0.18 -0.04 
      4 Max. 1.52 1.4 1.4 1.41 

 Min. -0.80 -0.19 -0.2 -0.05 
      5 Max. 2.31* 1.47 1.47 1.49 

 Min. -2.05 -0.22 -0.22 -0.08 
     10 Max. 1.75 1.74 1.83 

 Min. -0.28 -0.3 -0.13 
     15 Max. 1.98 1.97 2.11 

 Min. -0.96 -0.96 -0.69 
     20 Max. 2.17 2.17 2.3 

 Min. -2.00 -2.00 -95.75 
     30 Max. 2.57 2.57 2.91 

 Min. -109.98 -109.97 -105.67 
     40 Max. 2.82** 2.75 3.15 

 Min. -143.55 -154.13 -258.04 
     75 Max. 7.82 3.89 

 Min. -354.61 -490.08 
    100 Max. 10.73 3.88 

 Min. -474.41 -665.58 
    140 Max. 6.77 5.04 

 Min. -663.73 -932.55 
    175 Max. 9.33 6.05 

 Min. -791.01 -1166.40 
    200 Max. 10.34 

 Min. -902.81 
   250 Max. 11.81 

 Min. -1124.60 
   370 Max. 17.30 
  Min.     -1641.20   

*Wecrit=4.9; **Wecrit=39 
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s1-s2 vs. zz-rr @ centreline In Fig. 6.3, a plot for NM_p data at Wecrit=4.9 illustrates the 

theory of section 2.4 for the swapping-over character of the eigenvalues at centreline. As 

predicted by the theory, s1=zz and s2=rr when N1 remains positive, whilst s1=rr and 

s2=zz when N1 becomes negative. The switch-over point in N1 lies at z=1.6 units (at 

Wecrit=4.9). Interestingly, the switch-over point in N1-sign is independent of counterpart 

conditions in rate of deformation. Along this flow-line, uniaxial extension is apparent 

upstream and uniaxial compression downstream. Moreover, given that a constant flow rate is 

maintained in these 1-increasing simulations, the localised inhomogeneous rate of 

deformation is barely changed throughout the We-continuation procedure.  

zz-rr vs. f-functional poles @ centreline As discussed above and applicable on the 

centreline, a correlation may be extracted between numerical -components and their 

corresponding simple uniaxial extensional predictions from viscometric/linear viscoelastic 

regime theory. Fig. 6.4 gathers this comparison together at low elasticity levels We={0.001, 

0.01, 0.1}. As We tends to zero, the continuous reference line is that of unity. As elasticity is 

elevated, the inhomogeneous nonlinear solution is contrasted against its linearised 

inhomogeneous counterpart. To be precise, the latter is extracted functionally from 

viscometric theory along the centreline, yet by imposing the derived inhomogeneous state of 

stress and deformation from the numerical solution. The numerical data curves at We=0.001, 

for zz (symbols) and its theoretical linear estimation (f-pole1 related to 2 We  – dashed lines) 

are practically superimposed over the reference line. For We=0.01, departure from 

viscometric data is now evident, yet not relatively significant, ranging around 2% for the 

largest departure. In contrast for We=0.1, this departure appears significantly large, with the 

largest difference ranging around 25% over the unity reference line. Comparison of rr with 

its theoretical linear estimation (f-functional -pole2 related to We  – dashed lines; see inset 

Fig. 6.4) provides similar trends as pole1 analysis, with two main differences: (i) at We=0.1, 

the maximum departure of the linear estimation from unity reference line, is smaller (14%) 

than occurs with f-functional-pole1, and (ii) now, the maximum departure appears 

downstream. Note, the shape of rr is the reflected-scaled image of zz in the reference line; 

also, all curves intersect at z=0.  
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Figure 6.3. zz, rr, s1, s2 at centreline; Wecrit=4.9; NM_p 

Figure 6.4. zz, linear-pole1 estimation (inset rr, linear-pole2 estimation) at centreline;  

We={0.001, 0.01, 0.1}; NM_p 



High-Weissenberg predictions for micellar fluids in contraction-expansion flows  100 

 

Fig. 6.5 provides additional information at more elevated elasticity levels, including 

Wecrit=4.9. At We=0.5, a singularity in zz linear viscometric estimation is observed at z~-0.9. 

The reason for their appearance is illustrated in the plot below, in which a comparison 

between the zz viscometric estimation (top-row) and the components of the pole1 (bottom-

row) are plotted as We rises and complex flow becomes more dominant. These singularities 

correspond in location to the centreline-zone at which the components of pole1 (i.e. f & 

2 We ) balance one another (bottom-row). A similar situation arises with f-functional-pole2 

(i.e. f & We  ), for which singularities are observed first at larger We=2 relative to f -

functional-pole1. 

6.5 The ABS correction - Micellar NM_p_ABS model and larger Wecrit 

Correction on negative f-values & consequence on positive definiteness To correct for the 

inconsistency in the f-functional, and therefore in viscosity predictions described in section 

6.4, these thixotropic models have been amended - adopting absolute components values in 

the dissipation function. Considering such ABS-correction provides the global f_min=1 

(extrema, Table 6.1), applicable spatially and through all We-levels for NM_p_ABS. In 

contrast, NM_p provides negative values (f_min=-4.92) at Wecrit=4.9. Moreover, global f_max 

is observed to increase. For example, this extremum for We={2,3,4,4.9} goes from 

f_max={7.40, 8.72, 9.98, 11.04} for NM_p, to f_max={10.94, 13.35, 15.39, 17.34} with We 

={2,3,4,5} and NM_p_ABS. Fig. 6.6 compares f and s2 in 2D and 3D-fields at We=4.9 

(Wecrit for NM_p). Consistently, the blue-region containing negative NM_p  f-functional 

values is lost in NM_p _ABS 2D-fields, and replaced by a continuous red-region about the 

contraction. The 3D-f-fields reveal further detailed features, with NM_p providing (i) a 

pronounced negative-dip just downstream of the contraction and filling the gap across the 

flow; and (ii) a sharp negative-peak to this f-dip at the downstream contraction-wall (f=-

3.37); which now coincides in location with the negative-peak observed in the second 

eigenvalue data (s2min=-2.05). In contrast, NM_p_ABS 3D-f-field data provides a less-erratic 

field about the contraction, with two local maxima f{4.51, 3.86}, and a minimum f=1.35 at 

the centreline. Note under NM_p_ABS, values of f slightly larger than unity are located 

over the fully-developed regions, upstream and downstream of the contraction, where shear 

flow prevails. fvalues grow with increasing We and along the radial direction at any fixed z-
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coordinate in these locations; from fmin=1 at the centreline (since rz=0, hence 

: 0z r
p rz

u u
r z

       
 D = ),  to fvalues larger than unity at the wall (where : 0p  D ). 

For instance, the NM_p_ABS solution at Wecrit=39, provides f-values that range between 

fmin=1 at the centreline, and f=1.06 at the wall. 

2D and 3D field s2-data Furthermore, the s2-data counterpart to f-data in Fig. 6.6 (see more 

at Fig. 6.8), clearly exhibits the strong influence of the ABS-correction: the sharp negative-

peak on the wall observed in NM_p results is practically lost under NM_p_ABS. With 

NM_p_ABS, this key contraction-wall feature appears positive (s2=0.24) and relatively less 

prominent; whilst it is negative (s2min=-2.05; Table 6.2) and sharp in the natural-signed 

NM_p results. Moreover, overshoot-undershoot in s2 is absent at this location for 

NM_p_ABS, whilst this is evident in the NM_p 3D-field data, through a prominent positive 

red-peak (s2=1.25) next to the negative blue-peak (s2min=-2.05). One notes, the severity of 

solution gradients at this location and degradation in the quality of their capture, which all 

hints at pending numerical solution breakdown. The global s2min is smaller and on centreline 

(cl) for NM_p_ABS compared with NM_p, noting the final We=4.9 s2min value switches 

location from -0.19cl to -2.05wall. At fixed We=4.9, contrasting local s2min on centreline 

between NM_p_ABS and NM_p solutions and (Fig. 6.6), reveals an even more intense peak 

for NM_p_ABS (global s2min=-0.19) relative to NM_p (local s2min=-0.15). See Fig. 6.8 for 

additional data on stress fields. 

Wecrit levels Table 6.3 lists critical Weissenberg number (over models and methods) 

according to the final stable solution-state (Wecrit), and that at which solution breakdown 

(failure) is first detected (Wefail). For these micellar models, the inclusion of the ABS-

correction generates an increase of some eight times in Wecrit, from {Wecrit=5, NM_p} to 

{Wecrit=39, NM_p_ABS} representation. Generally, increasing f-magnitude elevates the 

levels of computable Wecrit-solutions (López-Aguilar et al 2014) (down-scaling elasticity 

prominence). This is clearly the case when selecting the ABS-correction, and moreover, is 

exaggerated by selecting the absolute value of each individual component of the dissipation 

function (as opposed to the absolute value of the total dissipation function). 
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Figure. 6.5 zz, linear-pole1 estimation and pole1-components at centreline; We={0.1, 0.5, 2, 4.9}; NM_p 
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Table 6.3. {Critical, first-failure} Weissenberg numbers {Wecrit, Wefail} across models 

  Wecrit, (Wefail)

Model f Natural Sign ABS VGR 

NM_p  4.9, (5) 39, (40) 370, (380) 175, (180) 

LPTT  11, (12) 210, (220) - - 

EPTT  210, (220) 4000, (4250) 4250, (4500) 1000, (1250) 

 

 

Figure 6.6. f-functional and s2 2D, 3D-fields at We=4.9; NM_p 
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s2 vs. We history plot Fig. 6.7 provides the detailed graphical data across models on s2min as a 

function of We,4 following Table 6.2. From the zoomed figure-inset in 0.1≤We≤0.5 range, the 

NM_p and NM_p_ABS curves drop from s2min=0.74 at low elasticity levels (We=0.1) and 

closely match, upholding the same declining trend up to We=0.5. Subsequently for We>0.5, 

the curves begin to depart from each other, with the NM_p curve adopting the strongest 

negative declining slope. This is reflected in the precise We at which each data-curve crosses 

the zero-reference line. The NM_p curve provides an intercept at We~1.4, whilst the 

intercept for NM_p_ABS curve is slightly retarded in this respect to We~1.6. From this 

situation and from We≥2 onwards, NM_p and NM_p_ABS s2min-curves differ in solution 

gradient response, and markedly so for We≥3. The NM_p curve gradually declines in slope 

in the interval 2≤We≤5, locating drops with increasing magnitude at points We=3, 4. 

Thereafter, for We>4, the NM_p curve declines most sharply, continuously and up to its 

Wecrit=4.9 state, with s2min=-2.05 now on the contraction-wall. In contrast and relative to 

NM_p, the NM_p_ABS s2min-curve adopts a continuous and shallow decline in slope which 

appears to reach a plateau in 3≤We<20 range (see full-scale plot). Around and after this 

We=20 state, the NM_p_ABS curve locates variation points at We={20, 25, 30}, first 

declining less rapidly at We=20, then more rapidly at We=25, returning to less rapidly at 

We=30, and continuing onwards towards Wecrit=39. At this critical solution stage, the 

negativity in s2 has reached levels of s2min=-143.55. It is noteworthy that negativity in s2 

would appear to provide an over-strong indicator of primary solution quality, and indeed 

convergence to steady-state, as some degree of negativity in this factor is tolerated (under 

We-continuation, as opposed to IVP time-evolution, where the theory more strictly applies), 

whilst this does not hinder computation of smooth unpolluted solutions in all primary 

solution variables. 

Stress fields – solution quality Fig. 6.8(i) gathers together comparatively a sample of stress 

data for the NM_p_ABS model, via first (and second) normal stress-difference N1 (and N2), 

shear stress rz and second eigenvalue s2-data (2D-fields) at selected We={0.5, 2, 5, 39}. 

Notably, these N1 and rz 2D-fields display continuous change through We incrementation, 

without evidence of numerical pollution (see section 5.2.3 for identification of eigenvalues, 

positive-definiteness). More sporadic field patterns become apparent in s2-data and We>40, 
                                                        
4 Weinc – NM_p: unity to We=4, in 0.1 to Wecrit=4.9; NM_p_ABS: unity to We=10, in 5 to We=30, unity to Wecrit=39 
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useful to hold comparatively against the stress data. Particularly on N1 (Fig. 6.8(i)a) at 

We=0.5, regions with positive (red) and negative (blue) values can be identified, with extrema 

indicated of {N1max=4.48, N1min=-2.49}. At We=2 and under greater influence of shear-

thinning/extension-softening, these extrema have diminished in magnitude to {N1max=4.20, 

N1min=-1.47}. At We=5 stage (NM_p Wecrit=4.9), N1-extrema continue to decrement, with 

{N1max=3.73, N1min=-1.92}. Importantly at Wecrit=39, there is evidence of overshoots-

undershoots in N1 attached to the obstruction downstream backface-wall, as a new and third 

positive-region has emerged, located alongside the third blue-region (now larger and more 

conspicuous than before). Notably, this local behaviour correlates to s2min negative-extremum. 

N1-extrema at this critical stage are smallest reported, with {N1max=3.67, N1min=-1.76}. N2-

data with rising We is also included, to indicate trends in vortex region activity [see NM_p in 

(López-Aguilar et al 2014) up to Wecrit=4.9], where upstream growth is apparent (deep-blue 

zone) and sustained through increasing We; whilst only vortex decay is displayed 

downstream (absent by We=2). In Fig. 6.8(i)c, comparable rz-field response is less dramatic 

than in N1. In therz-field at We=0.5, rz-extrema are largest reported at {rzmax=1.54, rzmin=-

1.77}; diminishing by We=2 to {rzmax=1.28, rzmin=-1.10}, due to greater shear-thinning. 

Furthermore at We=5, even greater shear-thinning effects render reduced extrema of 

{rzmax=0.91, rzmin=-0.94}. Proceeding to Wecrit=39; the most prominent feature to report is 

the splitting of the second-downstream red-positive region (already apparent at We=20), 

leaving a zone located above the obstruction backface-tip and a satellite zone that has drifted 

off downstream, periphery to the downstream-vortex region; rz-extrema are now least in 

magnitude, being {rzmax=0.66, rzmin=-0.84}.  

Shear deformation rate fields In Fig. 6.9 duz/dr 3D and 2D-fields are contrasted for 

NM_p_ABS versus NM_p_ABS_VGR at rising We. Elimination of noise proliferation 

under VGR-correction is clearly observed in the undulating centreline patterns in the duz/dr 

3D-NM_p_ABS solutions at every elasticity instance (shown for We=2). These centreline 

undulations (in duz/dr≠0) are convected downstream of the contraction as We is elevated, 

although there is evidence here for the continued persistence of these undulations in the 

contraction-gap itself on the centreline (permanent deformation) and via upstream field-

penetration. In contrast, for NM_p_ABS_VGR solutions, this flow-line remains unperturbed 

throughout the We-continuation process.  Moreover for We≥2, signals of pollution in 
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Figure 6.7. s2min versus We; NM_p, NM_p_ABS, NM_p_ABS_VGR and NM__ABS 

NM_p_ABS solutions are evident off the centreline, upstream and downstream of the 

contraction; whilst NM_p_ABS_VGR fields remain unpolluted up to We=8. Some solution 

gradient activity is becoming apparent on the backface obstruction-wall at We=5 (more 

prominent at We=9), for both NM_p_ABS and NM_p_ABS_VGR. This is manifest through 

three locations: one located at the centre of the obstruction-wall and the other two near its 

extremities, in the salient and corner-tip neighbourhoods. Through We-rise, the most 

influential of these three is that near the tip of the obstruction. This feature continues to grow 

downstream penetrating the field, and subsequently links up in a stalagmite-stalactite fashion 

to its counterpart downstream, just-off-centreline, positive growth-point, uniting at We=19. 

The growth pattern of this positive-point is: first appears at {We=5, NM_p_ABS} and 

{We=9, NM_p_ABS_VGR}; with a distinct gap to centreline under NM_p_ABS.  
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Figure 6.8. N1, s2, rz, N2 2D-fields versus We; (i) NM_p_ABS, (ii) NM_p_ABS_VGR and 

(iii) NM__ABS 
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Figure 6.9. duzdr 2D, 3D-fields versus We; NM_p_ABS and NM_p_ABS_VGR 
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6.6. Highly elastic solutions 

6.6.1 The VGR-correction - Micellar NM_p_ABS_VGR model 

Wecrit levels In addition to the ABS-correction and with the imposition of the enhanced 

centreline boundary conditions (NM_p_ABS_VGR) as described in section 2.6, converged 

steady-state solutions now become attainable at considerably higher Weissenberg numbers5. 

With reference to Table 6.3, an increase in Wecrit level of some ten times is observed under 

NM_p_ABS_VGR, relative to NM_p_ABS capability. Specifically, NM_p_ABS numerical 

solution breakdown is observed at Wecrit=39, whilst NM_p_ABS_VGR attains the 

exaggerated response of Wecrit=370. This position is interrogated further below, through 

exposure to solution perturbation on the centreline via the deformation-gradients themselves, 

and hence the consistency of the problem. One notes, there is practically no change in f-

functional extrema between NM_p_ABS and NM_p_ABS_VGR; and hence, elevation in 

Wecrit with NM_p_ABS_VGR is attributed solely to the VGR-correction.  

s2 vs. We history plot Fig. 6.7 provides for comparison between NM_p_ABS and 

NM_p_ABS_VGR s2min-solution response, and emphasizes the more gradual/smoother 

changes gathered in the NM_p_ABS_VGR s2min-curve up to and around Wecrit=39 for 

NM_p_ABS. This theme is continued up to Wecrit=370, with essentially the same declining 

gradient trend after {NM_p_ABS, Wecrit=39}; the refined deformation-gradient centreline 

conditions clearly provide for the advance in high We-number attenuation. One notes with 

look ahead, that the data on NM__ABS, is of similar form to that under 

NM_p_ABS_VGR, displaying only slightly greater rate in s2min-decline beyond We~30.  

Deformation rates @ centreline See Fig. 6.9 for detail on corresponding field data. Fig. 6.10 

graphs contrast NM_p_ABS versus NM_p_ABS_VGR data, for rising We and on the 

centreline, in shear duz/dr and the extensional duz/dz deformation gradient components. In 

Fig. 6.10a, there is conspicuous noise present in the shear gradient duz/dr (NM_p_ABS); 

absent under NM_p_ABS_VGR, where the shear gradient vanishes. Upstream of the 

contraction, these NM_p_ABS non-zero duz/dr values tend to increase as We is elevated. 

Notably, at the axis z=0, a minimum is observed for every We-data-curve; yet, the magnitude 
                                                        
5 Weinc – NM_p_ABS_VGR: unity to We=10, in 5 to We=200, in 10 to Wecrit=370 
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of this minimum is rising for 0.1≤We≤5, whilst decreasing for We≥10. Downstream of the 

contraction, duz/dr-data-curves reflect rather oscillatory behaviour, adopting a damped pattern 

with We rise, somewhat resembling the convected patches in N1 and s2-fields (Figs. 10a,b).  

In contrast, data-curves under NM_p_ABS_VGR (Fig. 6.10b) display null duz/dr at the 

centreline. In terms of normal gradient component representation, extensional rate duz/dz data 

is imposed on the other two normal components, discretely conveyed through dur/dr 

approximation (Fig. 6.10c, d). VGR-correction at We={2,5} is evident, through localised 

differences and their subsequent downstream convection; this may be gathered in the 

comparison between data-curves in NM_p_ABS and NM_p_ABS_VGR solutions 

downstream of the contraction. Relatively smoother trends in dur/dr curves are observed 

under the (pink) NM_p_ABS_VGR data-curve. Conspicuously, adjustments in the shear 

duz/dr component prove to be an order of magnitude larger than those in the extensional 

dur/dr component. 

Stress fields – solution quality Fig. 6.8(ii) gathers VGR-correction data in N1, s2, rz and N2 

2D-fields, with rising We and sampled at incremental stages. Between NM_p_ABS (Fig. 

6.8(i)) and NM_p_ABS_VGR Fig. 6.8(ii) solutions up to We~40, there are no noticeable 

solution differences in f-fields or other variables. Of the N1-field in the 75<We<370 range 

(Fig. 6.8(ii)a), the most significant feature lies in the red-positive downstream-zone that 

originated from the second bulbous-zone in Fig. 6.8(i)a and split off downstream around 

We~20; this has now further elongated downstream and parallel to the channel-wall, passing 

incrementally in steps through We={40,75,175,370}, with signs of splitting about its centre 

around We~175. This has certainly occurred at the advanced stage of Wecrit=370. Similarly in 

the same We-range and on rz-field data, the downstream obstruction-backface detached-

satellite red-positive zone (from We~20, Fig. 6.8(ii)c) is continuously convected with rising 

We along the obstruction face towards the salient vortex region and becoming more intense. 

The N2-field data continues to convey the signature of vortex activity in the upstream salient 

corner of Fig. 6.8(i)d (López-Aguilar et al 2014), increasing upstream in Fig. 6.8(ii)d up to 

We~175; strain-softening eventually provides some slight shrinkage of this structure, 

apparent at 175<We<370. One notes ahead that the equivalent stress-data on micellar 

NM__ABSFig. 6.8(iii), largely replicates that of NM_p_ABS_VGR; only noting clearer 

downstream splitting of the N1 red-zone earlier around We~75,and less intense structures on 



High-Weissenberg predictions for micellar fluids in contraction-expansion flows  111 

 

the downstream obstruction-backface. 

 

6.6.2 Conformation-tensor solutions – Micellar NM__ABS model 

Wecrit levels In addition to the ABS-correction, this second strategy to attain high-We 

solutions focuses on solving the problem when cast in primary variable conformation tensor 

form (see eqs.(8-10)). The critical elasticity level attainable with NM__ABS is Wecrit=175 

(Table 6.3)6, which stands at some 4.5 times that achieved with NM_p_ABS. Hence, as 

                                                        
6 Weinc – NM__ABS analogous to NM_p_ABS_VGR with earlier Wecrit=175 

Figure 6.10. At centreline: (a) and (b) duz/dr versus We; dur/dr  (c) We=2 and (d) We=5; 

NM_p_ABS and NM_p_ABS_VGR 

a) 

d) 

b) 

c) 
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proposed in theory, the posing of the problem through its corresponding differential 

constitutive equation (with its data dependency) and its boundary conditions, does discretely 

have an impact on tractability of numerical solutions. Moreover, the constitutive equation 

solved for each case plays an important role, since the -based equation is reinforced relative 

to the p-based equation, maintaining positive definiteness via (i) f acting as a RHS-equation 

scaling-factor, and (ii) the explicit absence of the rate-of-deformation tensor D. Consistently, 

f-functional values originating from NM__ABS are larger compared with the remaining 

p -versions (Table 6.1) (López-Aguilar et al 2014). In contrast to the further achievements 

with -VGR-correction, one can state that this position is not substantially altered under 

combination with the conformation tensor implementation (as in NM__ABSVGR). It is 

conspicuous that NM_p_ABS_VGR capability in this regard outperforms the {NM__ABS 

Wecrit=175} implementation, with the exaggerated response of {NM_p_ABS_VGR 

Wecrit=370}. 

Hence, though the conformation tensor approach is certainly a reasonable candidate to 

consider for generating high-We steady-state solutions, one concludes thus far and in 

practical terms, that the superior method of implementation is VGR-correction imposed on 

NM_p_ABS. 

6.7.  General applicability – PTT(=0.25,=1/9) solutions: EPTT and LPTT results 

Wecrit levels In an effort to assess more widely the generality and applicability of current 

findings to cover alternative constitutive models, one may appeal to the class of Phan-Thien-

Tanner models, being non-thixotropic and phenomenological viscoelastic models derived 

from a network-basis. Table 6.3 lists counterpart high Wecrit findings for such model 

solutions, under application of ABS, VGR and -corrections, as above. These are now 

impressively large, unrealised elsewhere, and offer wide scope for new application 

accordingly (large deformation scenarios, as in microfluidics). Conspicuously, the ABS-

correction yields an order-of-magnitude increase in Wecrit, from O(102) under the natural-

signed version (López-Aguilar et al 2014), to O(103) under EPTT_ABS results. Specifically, 

Wecrit=210 for the natural signed EPTT model (López-Aguilar et al 2014), has now been 

further increased to Wecrit={4000, 4250, 1000} for {EPTT_ABS, EPTT_ABS_VGR, 
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EPTT_ABS_}7. Consistently to the thixotropic context above with -correction, which 

also subsumes ABS-correction, there is improvement in Wecrit of some five-times above the 

natural-signed EPTT_p alternative; yet, this lies some four times lower than that achieved 

under EPTT_ABS and EPTT_ABS_VGR counterparts. Note, the level of Wecrit=210 for the 

natural-signed EPTT model (López-Aguilar et al 2014), is already elevated above that for 

thixotropic NM_p, (see also Wecrit=11 for natural-signed linear-version LPTT). As 

previously reported elsewhere (López-Aguilar et al 2014), such high-We solutions attainable 

with EPTT versions, are in part a consequence of its non-linear exponential explicit f-We 

functionality (Table 6.3). In contrast, linear f-We relationships are observed within steady-

state f for thixotropic NM_p (Table 6.3) models or non-thixotropic LPTT version. This is 

reflected in complex flow via the relatively large EPTT f-maxima encountered as We is 

elevated and when compared to those under NM_p (or LPTT) solutions (Table 6.1).  

Considerations at very high-We levels Fig. 6.11 gathers a sample of high-We EPTT_ABS 

solutions, via the stress discriminant in the expression for the eigenvalues, s1 and s2 (eqs.(18-

19)). Here a fresh phenomenon arises, not prominent at more moderate We–levels. At such 

large We=O(103) levels, numerical noise becomes evident in the solution exit-zone (Fig 11a), 

which is first detected around We~750 cross-stream and emanating from the centreline. This 

feature, which grows with further rise in We, comes from solution anomalies arising between 

interior domain and boundary section solution approximation (applies similarly at inlet-

station, 1000<We<2000). These theoretic-discrete inlet-outlet region considerations are not 

graphically evident at relatively low We<220; they onset earlier at exit than entry at We~750; 

strengthen at exit We~1000; become strong and clearly manifested around We~2000, at inlet 

and outlet; to be finally, amplified as We rises up to Wecrit=4000, when inlet fluctuations are 

apparent and penetrating into the field up to the contraction itself. These inconsistencies are 

dealt with by a feedback-feedforward technique on stress/kinematics, to mimic steady fully-

developed flow state, taking primary information from the interior-domain discrete solution 

and translating this to the domain boundary sections. This is accomplished by averaging 

internal stress/velocity-gradient components (velocity remains unadjusted) and substituting 

this refreshed information into inlet and outlet neighbour nodal points, to thus reset the stress 

                                                        
7 Weinc – EPTT_ABS, EPTT_ABS_VGR and EPTT_ABS analogous to NM_p_ABS_VGR to We=400, in 50 to 
We=500, in 250 to corresponding Wecrit 



High-Weissenberg predictions for micellar fluids in contraction-expansion flows  114 

 

components. Implementation of such a procedure, removes the source of solution discrepancy 

arising at inlet-outlet, to provide the counterpart and repaired solution forms of Fig. 6.11b, 

which have been extended to even larger We-levels (We=5000+). 

6.8 Conclusions 

Highly elastic thixotropic solutions have been achieved through three alternative 

approaches (independent, interchangeable): (i) absolute f-functional correction (ABS-

correction – related to positive energy dissipation (Bird et al. 1960, 1977; Aris 1962) and 

accurate viscosity prediction); (ii) centreline velocity gradient correction (VGR-correction – 

f-values as with ABS-correction); (iii)  conformation tensor correction (-correction – 

change of variable). The first two alternatives have provided an increase of some ten times in 

Wecrit on their preceding versions. ABS-correction adjusts {Wecrit=4.9, NM_p} to {Wecrit=39, 

NM_p_ABS}; whilst VGR-correction renders {NM_p_ABS_VGR, Wecrit=370} layered on 

top of ABS-correction. The third alternative {NM__ABS, Wecrit =175} has also increased 

Wecrit by some five times with respect to NM_p_ABS solutions.  

The s2-eigenvalue has been identified as a suitable marker for numerical stability 

retention. Localised minima first arise on the centreline, just downstream of the contraction, 

which are found responsible for linking-up and stimulating contraction-wall minima, that 

ultimately dominate overall as We rises. Then, localised undershoot–overshoot phenomena 

(reflected in N1 and f-functional data) are observed on the backface of the contraction-wall, 

with subsequent solution penetration into the field. The ABS-correction retards the 

appearance of such s2 undershoot–overshoot phenomena, although ultimately their presence 

does not affect the quality of solutions in primary variables. This is noted through smooth and 

tractable trends in {rz, N1, N2}-fields and We-incrementation. N2 provides insight on trends in 

upstream vortex-dynamics with We elevation (López-Aguilar et al. 2014): reflecting initial 

vortex-enhancement, then, vortex-suppression {NM_p_ABS_VGR, 175<We<370}.  
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Figure 6.11. Stress discriminant fields versus We; EPTT and EPTT_ABS 
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Theoretical observations are derived on -component response under centreline 

deformation conditions. This is detailed through We rise via: (i) {s1, s2} eigenvalue-pair dual-

nature in correspondence with {zz, rr}; (ii) location of discontinuities in the linearised 

inhomogeneous -component estimation, interpreted against the components of its poles; 

and (iii) numerical {zz, rr} departure from their linearised inhomogeneous estimation. In 

the first aspect this relies upon {s1, s2} eigenvalue-pair dual-nature being dictated by the sign-

switch in N1. The third aspect dictates the degree and capture of departure from the linear 

viscoelastic regime. 

In addition, generalisation of current findings for thixotropic theory has been explored 

under classical non-thixotropic models too. This has led to incrementation in Wecrit well over 

an order of magnitude for network-based time-independent PTT models [ABS-correction 

relates to positive stored elastic energy in this case (Hulsen 1990)]; in contrast to two orders 

of magnitude achieved for thixotropic models. Stable solutions have been extended for the 

exponential-PTT version, from the natural-signed {EPTT, Wecrit=230} to {EPTT_ABS, 

Wecrit=4000}; and {EPTT_ABS_VGR, Wecrit=4250}. In its conformation-tensor form, 

incrementation is observed with {EPTT_ABS_, Wecrit=1000}. In terms of the linear-PTT 

version, the natural-signed {LPTT, Wecrit=11} is now adjusted to {LPTT_ABS, Wecrit=210}. 

The relatively larger Wecrit under EPTT are due to its larger f-values, coming from its 

exponential f-We relationship, as opposed to those under the linear relationship given with 

LPTT and NM_p models (López-Aguilar et al. 2014). At very high We=O(103) and for 

EPTT, it has been shown how to ensure satisfaction of fully-developed inlet-outlet region 

conditions (theory to practice, avoiding inlet-outlet inconsistencies), to ultimately gather 

smooth solutions at even larger elasticity levels (We=5000+). 
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CHAPTER 7  

Numerical modeling of thixotropic and viscoelastoplastic 

materials in complex flows 

This chapter is concerned the application of the constitutive developments in Chapters 5 and 6, in the 

numerical modelling of thixotropic and viscoelastoplastic material systems through two approaches: 

(i) the new micellar thixotropic constitutive model for worm-like micellar systems that introduces 

viscoelasticity into the network-structure construction/destruction kinetic equation, studied in chapters 

5 and 6; and (ii) adopting a Bingham-Papanastasiou model. The appearance of plastic behaviour arises 

through the micellar-polymeric viscosity, by increasing the zero-shear viscosity (low solvent 

fractions), whilst the Bingham-Papanastasiou introduces plastic features through the solvent viscosity. 

The characteristics of thixotropic worm-like micellar systems are represented through the class of 

Bautista-Manero models. The correction incorporated in Chapter 6, based on physical arguments for 

fluidity, in which absolute values of the dissipation-function are adopted in complex flow, permits 

access low-solvent fractions and high-elasticity levels. Considering elastic and plastic influence 

separately, solutions are compared and contrasted for contraction-expansion flow, identifying such 

flow field features as vortex dynamics, stress field structure, yield front patterns, and enhanced 

pressure-drop. Particular attention is paid to the influence of enhanced strain-hardening that is 

introduced through stronger thixotropic structural features. 

7.1 Introduction 

This study addresses the topic of modelling complex flow of micellar-yield stress fluids in the 

4:1:4 contraction-expansion benchmark flow problem. Here, two sources of plastic behaviour 

are considered: (i) through the solvent viscosity, offered by Bingham-Papanastasiou model 

(Papanastasiou 1989; Mitsoulis 2007; Belblidia et al. 2011; Al-Muslimawi et al. 2013); and 

(ii) through the polymeric viscoelastic contribution, introduced via Bautista-Manero models 
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(Bautista et al. 1999; Manero et al. 2002; Boek et al. 2005; López-Aguilar et al. 2014a and b). 

The class of Bautista-Manero models has been derived to represent the characteristics of 

thixotropic worm-like micellar systems. Herein, low-solvent fractions and high-elasticity 

levels are accessible. This is achieved through a correction to the constitutive equation for 

these polymeric Bautista-Manero models, based on physical arguments for fluidity, in which 

absolute values of the dissipation-function are adopted in complex flow (López-Aguilar et al. 

2014b). 

Yield-stress concept Although the concept of viscoplastic materials was first introduced by 

Bingham over nine decades ago (Bingham 1922), still this topic remains one of the most 

controversial in rheology today (Belblidia et al. 2011; Bingham 1922; Barnes 1999; Renardy 

2010). Viscoplastic properties exhibit a so-called ‘yield stress, τ0 effect’, which governs the 

transition from solid-like to liquid-like response. Under flow, these materials develop plastic 

plug-like flow zones, due to elastic resistance from the microstructure, in which any 

deformation essentially disappears. The controversy surrounding yield stress, is associated 

with its existence, representation, experimental measurement and data interpretation. Note 

that, in practice, most materials weakly yield, or creep in the limit of zero shear-rate.  

Barnes and Walters (1985) demonstrated, through experimental data gathered from a 

constant stress rheometer, that in this context the yield stress concept was a pure idealisation. 

Thereby, given sufficiently accurate measurement, no ‘actual’ yield stress truly existed. 

Subsequently, the non-existence of yield stress, claimed by Barnes and Walters, was 

challenged by Hartnett and Hu (1989). These authors used a falling ball viscometer to 

demonstrate unambiguously that an aqueous Carbopol solution exhibited a yield stress  - to 

an engineering approximation. To further complicate the situation, Møllera et al. (2006) 

related the uncertainty in interpretation of some rheometrical measurement to material time 

dependency; that is, to thixotropic behaviour and time-scale. Notably, no single method has 

been universally accepted as the standard for measuring yield stress, and it is not unusual to 

find large variations in results obtained from different methods with the same material (Bonn 

2006). 

Theoretical and numerical modelling of viscoelastoplastic material So-called Bingham 

fluids display a distinct finite stress level (yield stress) at vanishingly low shear rates. In areas 

of intense deformation, above the yield stress limit, the material is observed to flow and 

behave as a Newtonian fluid. The presence of these unyielded and yielded regions across the 

flow domain, provide a corresponding interface between them, or yield-front, as an intrinsic 
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discontinuity to the representation. Then, more complex shear viscous response may be 

included through power-law type rate-dependency (Herschel-Bulkley or Casson models). A 

drawback to using these models is their discontinuous stress representation. This necessitates 

using robust numerical techniques for discretisation, to accurately describe the yielded-

unyielded regions and their corresponding interface (Belblidia et al. 2011).  

To date, one successful approach proposed to deal with this discontinuous representation 

is the regularisation method of Papanastasiou (1989). As such, the resulting Papanastasiou 

viscoplastic model consists of a single unified, modified constitutive relation - applicable to 

both yielded and unyielded regions alike. Such an approach proffers the advantage that it 

eliminates the need for explicit tracking of the yield-surface. Here, an exponential stress-

growth parameter is introduced to access numerical solutions, which in limiting terms may 

practically replicate ideal model results. This model has been successfully applied in a 

plethora of studies, to describe viscoplastic and viscoelastoplastic flows, in simple-ideal and 

complex flow scenarios (Mitsoulis 2007). This would include - entry-exit flows from dies; 

flow past objects and squeeze flows; steady Oldroyd-B 4:1:4 contraction-expansion flow 

(Belblidia et al. 2011); and steady die-swell flow for exponential Phan-Thien-Tanner models 

(EPTT, viscoelastic, shear-thinning, strain-hardening/softening; Al-Muslimawi et al. 2013). 

Here, the conventional yielded-unyielded regions across the flow domain were studied. 

Additionally, in Belblidia et al. (2011), vortex dynamics, excess pressure drop versus yield-

stress and enhancement with viscoelasticity were all reported; whilst in Al-Muslimawi et al. 

(2013) swelling-ratio and excess pressure loss received attention. 

Worm-like micelle solution systems are a versatile family of fluids, as already outlined in 

previous chapters. In this particular section of the work, the capability of generating yields-

stress characteristics (Calderas et al. 2013) is evaluated in complex flow. This application is 

vital in industrial fields like drilling fluids for enhanced oil-reservoir recovery (EOR) (López-

Aguilar et al. 2014a), and additives in household-products, paints, cosmetics, health-care 

products, drag reducing agents (López-Aguilar et al. 2014a; Yang 2002). 

Micellar constitutive models – Apart from the well-known Bautista-Manero-Puig 

approach, many approaches have been pursued to model wormlike micelle flow behaviour. 

Particular attention is paid to De Souza (2009 and 2011) work, who has proposed an 

alternative thixotropic-viscoelastoplastic model, based on a structure equation defined on the 

second invariant of the stress tensor p  to drive the structure-destruction mechanics. Then, 
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the differential equation for their ‘structure parameter’ is introduced within and to form a 

generalised viscoelastic differential constitutive equation. In contrast, the family of Bautista-

Manero models use the dissipation function p : D  (i.e. NM_p) to this same end (López-

Aguilar et al. 2014a and b). The de Souza model has been used in ideal simple and complex 

flow situations to represent thixotropic and viscoelastoplastic characteristics; see for example, 

overview for models representing viscoelastoplasticity (de Souza and Thompson 2012); and 

flow in an expansion-contraction setting (Hermany et al. 2013). 

7.2 Governing equations, constitutive modelling and problem specification 

 The governing equations and constitutive equations considered in this chapter have been 

detailed in chapter 2. The non-dimensional continuity and momentum conservation princples 

are expressed in eqs.(2.11)-(2.12), whilst the stress equations is given in (2.27)-(2.28). The 

schematic representation of the 4:1:4 axisymmetric, rounded-corner contraction/expansion 

flow problem, alongside its corresponding mesh data, are reported chapter 5. 

 

7.2.1 Viscoelastoplastic Bingham-Papanastasiou model - solvent contribution form 

In this Chapter 2, non-Newtonian viscoplastic properties are introduced via a 

regularization approach adopting the Bingham-Papanastasiou model (Papanastasiou 1989), 

eqs.(2.47)-(2.48). Hence, yield stress contributions are recognised as entering through the 

solvent viscosity functionality alone. Note, there are other alternative formulation choices to 

embrace plastic behaviour via Papanastasiou regularisation (Papanastasiou 1989), namely: (a) 

within polymeric viscosity functionality alone; and (b) via both solvent and polymeric 

viscosity contributions. Studies illustrating the consequences of applying these various 

options have already been conducted and reported upon elsewhere, with polymeric 

representations under Oldroyd-B (Belblidia et al. 2011) and EPTT (Al-Muslimawi et al. 

2013) models. 

A general differential statement of the viscoelastic Bingham-Papanastasiou model 

employed here, with only solvent yield stress contribution, may be expressed in 

dimensionless form as: 

s p T             (7.1) 

 02s pII ;m ,  D D         (7.2) 
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,        (7.3) 

The Papanastasiou regularisation specifies an exponential functional-form in its solvent 

viscosity contribution, based on the second invariant, 21
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where parameters of {0,mp} represent, 0 the base cut-off yield stress factor, and mp the 

regularisation stress growth exponent (with scale of time). The 0-parameter expresses the 

stress level below which plastic behaviour is observed and is equivalent to a Bingham 

Number, Bn=0=yLchar/0Uchar.  

7.2.3 Micellar NM_p_ABS Bingham-Papanastasiou model 

To proceed to the micellar viscoelastoplastic representation, one needs to specify the 

generalised functional f, in eq.(7.1)-(7.3), imbuing a thixotropic networked nature to the fluid 

system. Here, the new constitutive equation, based on the Bautista-Manero model-class, has 

proposed in chapters 5 and 6 (eqs. (2.33)-(2.36)) is employed for modelling wormlike 

micellar systems. This constitutes the base-level constitutive background upon which the 

present study is founded. 

7.2.4 Material functions  Under such a description, the NM_p_ABS-Papanastasiou (named 

NM_p_ABS-Pap) dimensionless material functions for viscometric flow may be extracted, 

as: 
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These material functions in eqs.(7.5)-(7.7) provide the vital background and model reference 

against which to interpret anticipated complex flow response. One notes the extremely low 

levels of -solvent fraction attained practically, those of ={10-2,10-3}; chosen to enhance the 

viscoelastoplastic characteristics inherent to these yield-stress polymeric micellar fluids, 

under NM_p_ABS-pap modelling. Moreover, the micellar construction and destruction 

parameters are =4.0 and G0={1,0.1125}. Here, at each solvent-fraction level, fluids with 

{,G0}={4,1} (relatively larger structure destruction parameter) display weaker strain-

hardening characteristics (smaller peak in extensional viscosity) relative to those with 

{,G0}={4,0.1125} (relatively reduced structure destruction parameter) (see Fig. 3.3-3.5). 

Consideration of the solvent viscoplastic Papanastasiou features are evaluated through 

variation of yield stress parameter 0={0.01,0.1,0.5,1}, and  the regularisation stress-growth 

exponent mp={10,102,103,105,107}. Also, viscoelastoplastic behaviour is pursued through -

variation for NM_p_ABS, with decreasing ={0.9,0.5,1/9,10-2,10-3,10-4,10-5} (Calderas et al. 

2013). The special cases for which either 0 or mp attain null values, characterise absence of 

viscoplasticity, and thus collapse the fluid representation to that of the NM_p_ABS model. 

In Fig. 3.3-3.5, dimensionless plots are provided of the material function against deformation 

rates in simple shear and uniaxial extension deformations. 

7.3 Numerical results: Vortex dynamics - 0 and We variation 

 As Weissenberg number (We) and yield stress (0) are increased, the kinematic nature of 

this complex flow is illustrated through the streamline patterns and graphs of vortex-intensity 

of {Fig. 7.1 and Table 7.1}. These data are generated under solvent Papanastasiou parameters 

of mp=102 and 0={0,0.01,0.05,0.1}, which enforces the solvent plastic characteristics. In 

addition, the polymeric NM_p_ABS parameters used are =4 and =1, with solvent fraction 

of =10-2. Interestingly, vortex activity (size and intensity) decreases as either We is 

increased at a fixed 0, or 0 is increased at a fixed We.  

At We=0.1 and 0=0 (viscoelastic NM_p_ABS, no solvent yield stress), the upstream and 

downstream vortex structures appear relatively symmetric in structure about the contraction. 

Here, the upstream vortex is slightly larger and more intense (min=
minx10-4=12) than the 

downstream vortex (min=9.05). Larger yield stress levels under NM_p_ABS-Pap 

representation, lead to vortex-intensity suppression. In particular, at 0=0.01, both upstream 
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(min=5.88) and downstream (min=4.35) vortex-intensity drops by some 50% away from the 

{NM_p_ABS, 0=0} reference solution. Notably, additional incrementation of0={0.05,0.1} 

generates even further vortex suppression of {96%,99%}. 

 

 

 
Table 7.1 Vortex intensity (min=-min

* x10-4) against 0 and We; {mp, ,,G0}={102,10-2,4,1} 

 min=-min
* x10-4

 We=0.1  We=5  We=10
0 Upstream Downstream Upstream Downstream  Upstream Downstream
0* 12.0 9.05  8.59 2.51  1.28 0.727 

         
0.01 5.88 4.35  3.76 1.02  0.442 0.385 

         
0.05 0.543 0.358  0.356 0.156  0.136 0.048 

         
0.1 0.147 0.117  0.106 0.017  0.043 ~0 

*Solutions reduced to NM_p_ABS (NM_p_ABS-Pap 0=0) 

Figure 7.1 Streamlines against 0 and We; {mp, ,,G0}={102,10-2,4,1} 
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As We rises through {1,10} at 0=0.01, this declining vortex behaviour is still further 

exaggerated, with percentage-drop in intensity from each corresponding NM_p_ABS 

solution of {60%,65%}. 

At larger 0-values of {0.05,0.1} at We={1,10}, this vortex suppression response from 

NM_p_ABS solution, and at each fixed We-level, is even more marked, O(95%); with the 

downstream vortex almost completely disappearing at {0=0.1, We=10}. 

These trends are clearly illustrated in the graphical plots of Fig. 7.2-top (mp=102), upstream-

downstream vortex-intensity versus 0 at each fixed We-level (negative exponential form). 

The common trend across all three We={0.1,1,10} curves is the drop in intensity to around 

the same intensity level by 0=0.05. Since the starting intensity at 0=0 for each We-level rises 

with fall in We, this leads to ever increasing intensity drop-rates as We rises. The upstream 

(left) trend graph versus the downstream (right) graph, illustrates the more marked intensity 

goes with the upstream vortex activity. Such trend adjustment is nonlinear in change with 

We-level, the largest being around We=1.  

Regularisation stress growth exponent mp-variation The upper graphs for (mp=102) versus 

the lower graphs for (mp=103) of Fig. 7.2, illustrate the influence of increased yield stress 

characteristics and enhancement of plastic behaviour through the solvent (see material 

functions, Fig. 2). Here, there is steeper early decline in intensity, from 0=0.0 to 0=0.01, that 

is apparent in all instances of We. Asymptotic larger 0-behaviour is rather more rapidly 

assumed under (mp=103) response, this being quite evident even at the 0=0.01 level.  

Solvent fraction -variation As above, polymeric concentration effects on vortex dynamics 

are illustrated in Fig. 7.3 through ={10-2,10-3} comparison. At such low solvent fraction 

levels, there are no significant differences in vortex dynamics to observe; only manifesting a 

slight increase in the vortex intensity for 0<0.05, which is larger with smaller We-level.  
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Figure 7.2 Vortex intensity (min=-min
* x10-4) against 0 and We;  

{,,G0}={10-2,4,1};  
2 3 
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Figure 7.3 Vortex intensity (min=-min
* x10-4) against 0 and We; { mp,,G0}={103,4,1}; 

 =10-2 (continuous lines), =103 (dashed lines) 
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7.4 Normal stress differences - 0 and We variation 

 Adopting the parametric study approach as above and under the setting { mp}={10-2, 

103}, the influence of plasticity and elasticity on normal stress difference is gathered through 

N1-data fields of {Fig. 7.4; Table 7.2} and {0, We} increase. Then, 0-incrementation at any 

fixed We={0.1,1,10} level, reveals little adjustment in N1 magnitude or distribution. In 

contrast, at any fixed 0={0,0.01,0.1} level, N1-extrema suffer a drop as We is elevated. This 

feature can be tied to the wall shear-zones, and as such is a manifestation of shear-thinning. 

In the extreme case of {0=0.1, We=1}, then {N1max, N1min}={1.06,-0.94} are 62% less intense 

relative to We=0.1 data of {N1max, N1min}={2.76,-2.50}. At We=10, this trends is more abrupt, 

with We=10 data of {N1max, N1min}={0.59,-0.46}, which represent a drop of 80% relative to 

the same We=0.1 extrema. Here, the red-positive and blue-negative regions, both upstream 

and downsteam of the contraction, become less intense as We is elevated (as a consequence 

of shear-thinning/strain softening, enhanced by low- solvent-fraction levels). Nevertheless, 

the domain occupation of the red-positive region grows in size, whilst the blue-negative zone 

contracts. Moreover, as We rises, the blue-negative zone at the centreline (and its local 

maxima) is convected downstream, as observed elsewhere (López-Aguilar et al. 2014b).  

 
Figure 7.4 N1 against 0 and We; {mp, ,,G0}={103,10-2,4,1} 
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In the upstream and downstream salient-corner zones, N1-data fields of {Fig. 7.4; Table 7.2} 

provide vortex-like structures, essentially identifying N2-contributions to N1, that evolve in 

the same fashion as do the true kinematic vortex-structures (see section 4 above). Hence, 

these vortex-like N2-structures shrink as 0 and We rise. One notes with look ahead, that these 

structures are exaggerated when extensional viscosity effects are introduced via G0-variation. 

Table 7.2 First normal stress difference (N1) against 0 and We; {mp, ,,G0}={103,10-2,4,1} 

  N1 
0 We=0.1 We=5  We=10 
0 Max. 2.75  1.06  0.581 

 Min. -2.48  -0.924  -0.453 

       
0.01 Max. 2.75  1.07  0.582 

 Min. -2.48  -0.926  -0.450 

       
0.05 Max. 2.75  1.05  0.584 

 Min. -2.49  -0.932  -0.449 

       
0.1 Max. 2.76  1.06  0.587 

 Min. -2.50  -0.938  -0.459 

 

7.5 Yield fronts – yielded and unyielded regions, 0 and We variation 

Fig. 7.5 conveys the solution perimeter and divide between yielded (red) and unyielded 

(blue) regions at { mp}={10-2,103} for the NM_p_ABS-Pap model.  Once more, the effects 

of plasticity are analysed, via 0={0.01,0.05,0.1}, and those due to elasticity, via 

We={0.1,1,5,10}. The cut-off criterion for these fields is based on the magnitude of stress 

(through its second-invariant, see Mitsoulis 2007; Belblidia et al. 2011; Al-Muslimawi et al. 

2013) exceeding 0 in each instance. The dominant and most interesting features to report 

here are those given in terms of 0-incrementation at fixed We-level. For instance, at 0=0.01 

and We=0.1, red yielded regions are found near the tube-wall, where the shear rates are 

relatively large. Approaching the geometry centreline, blue relatively slender unyielded 

regions appear around and along the centreline, upstream and downstream of the contraction. 

In shape, this unyielded centreline-zone resembles a necking-filament, with bulbous zones 

either side of the contraction. This structure-pattern tapers to a sharp end that is directed 

towards the contraction, connected by a slender column-like thread that passes through the 

contraction along the centreline. In the recess zones (geometry salient-corners) concave-

shaped unyielded regions are also present.  
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As yield-stress level is raised to 0=0.05, the unyielded regions in the core-flow have 

considerably expanded outwards, towards the tube walls; also, those in the recess zones have 

elongated upstream and downstream. This defines the perimeter of the yielded regions, which 

appear connected and are pinched by the expanding unyielded zones.  

Finally, at even higher 0=0.1, the unyielded salient-corner/core-flow regions have now 

merged; surrounding and isolating the yielded zone, which is now restricted to a domain 

lying across and on either side of the contraction-plane (shamrock-shape). For {0=0.1, 

We≤1}, these regions preserve their characteristic sharp-cusp tip at the centreline; a feature 

that is gradually being suppressed with rise in We (almost non-existent at We=10). A 

significant new feature to note is the birth and growth of a halfmoon-shaped unyielded 

region, just downstream of the contraction, emerging about the centreline. This feature is 

apparent in {0=0.1, We≥1} and {0=0.05, We≥5} solutions; subsequent to its appearance, it 

expands downstream, as either 0 or We rise.  

 

 

Figure 7.5 Yield fronts against 0 and We; {mp, ,,G0}={103,10-2,4,1} 
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7.6 Thixotropic destruction parameter G0-variation – extensional viscosity effects 

 As illustrated in Fig. 3.3-3.5, reduction of the G0-destruction parameter (of polymeric 

NM_p_ABS model; López-Aguilar et al. 2014b), leads to the consideration of additional 

extensional viscosity features in this viscoelastoplastic context. Here, solutions generated 

under G0=1 are contrasted against the relatively more strain-hardening configuration of 

G0=0.1125.  

Vortex dynamics In {Fig. 7.6 and Table 7.3}, the streamline patterns reveal interesting 

results, when contrasting the two levels of strain-hardening, G0={1,0.1125}, and elasticity 

levels, We={0.1,5}. At We=0.1, G0-solutions are graphically invariant on vortex structure 

with G0-change at each fixed 0-value. Here, under G0=0.1125, larger upstream and 

downstream minimum vortex intensity values (Table 7.3) are predicted (vortex-enhancement) 

relative to the solutions at G0=1.  

In contrast, at We=5 and G0=0.1125, notably larger upstream minimum vortex intensity 

values are obtained with respect to those under G0=1. Here, the change is strain-hardening 

characteristics with G0=0.1125 is now so dramatic that the downstream vortex structure is 

visually lost for 0≥0.01, and the upstream vortex takes on a convex-shape. Moreover, the 

minimum upstream vortex intensity values for G0=0.1125 solutions are remarkably larger (at 

least two orders of magnitude) than those under G0=1.  

 
 

Table 7.3 Vortex intensity (min=-min
* x10-4) against 0, G0 and We; {mp, ,}={103,10-2,4} 

 min=-min
* x10-4 

 We=0.1  We=5 
 G0=1  G0=0.1125  G0=1  G0=0.1125 
0 Ups Dns 

 
Ups Dns  Ups Dns  Ups Dns 

0* 12.0 9.05  14.5 9.91  3.39 0.629  202.4 0.188 

            
0.01 1.26 0.797  1.81 1.05  0.199 0.055  119.2 ~0 

            
0.05 0.032 0.023  0.039 0.025  0.004 ~0  28.7 ~0 

            
0.1 ~0 ~0  ~0 ~0  ~0 ~0  2.89 ~0 

*Solutions reduced to NM_p_ABS (NM_p_ABS-Pap 0=0) 
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Upstream vortex & the normal stress differences N1 and N2 In Fig. 7.7, comparison of 

streamlines, N1 and N2-data fields are provided under the strain-hardening setting of 

G0=0.1125. Here, particular attention is paid to the close signature between the kinematic 

upstream vortex-structures and the vortex-like structures in N2-fields (with its 

reflection/counterpart on N1-data). Correspondence in shape and declining trends as the yield 

stress0 is increased, are identified amongst these structures. This close relationship between 

vortex dynamics and N2-N1-data fields has already been commented upon elsewhere (López-

Aguilar et al. 2014a;Tamaddon-Jahromi and Webster 2011). 

Figure 7.6 Streamlines against 0 and We={0.1,5}; {mp, ,}={103,10-2,4}; G0={1,0.1125} 
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Excess pressure drop In Fig. 7.8, the effects of mp and G0-variation on epd are evaluated as 

the yield stress0 is elevated and at three elasticity parameter levels, We={0.1,1,5}. 

Consistently, it is evident from these data that any variation that leads to solid-like behaviour 

produces epd enhancement. Furthermore, these epd data-curves adopt a linear trend 

withchange in0 (Belblidia et al. 2011). One notes here, that the presence of viscoelasticity 

and pronounced strain-hardening characteristic do not change this trend in signature. The 

positive slope in the data-curves for all We–values reveals an increase in epd as0 is elevated. 

Interestingly, the same effect is observed with mp-variation; a growth in slope is observed 

when passing from mp=102 to 103. From this enhancing epd evidence, the most prominent is 

that of G0 (with its corresponding strain-hardening effects). For this parameter, going from 

G0=1 to the relatively more strain-hardening level of 0.1125, translates into an increase of 

~0.25 units in epd, covering the entire range of 0 examined. In contrast, rise in elasticity 

through We, provides smaller epd values - likely caused by marked shear-thinning and strong 

N1 characteristics of the viscoelastoplastic fluids analysed (see Fig. 1 and 2). 

Figure 7.7 Streamlines, N1 and N2, against 0; We=5; {mp, ,G0}={103,10-2,4,0.1125} 
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Yield fronts The effects of G0-variation on yield fronts is provided in Fig. 7.9. This 

illustrates the divide between yielded (red) and unyielded (blue) regions at { mp}={10-2, 

103} for NM_p_ABS-Pap solutions. Here, at {0=0.01, We=0.1} and G0 =0.1125, the 

Figure 7.8 epd against 0; We={0.1,1,5}; {,}={10-2,4} 
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unyielded regions at the centre of the flow field appear larger than those for G0 =1. Such 

disparity is minimised with further rise in level of yield stress, 0≥0.05.  

At the higher elasticity level of We=0.5, stronger strain-hardening characteristics through 

G0-variation do begin to influence yield-front shape. Here, taking We=0.5 solutions in 

comparison to We=0.1 solutions, the unyielded {0=0.01} regions at the centreline would 

appear wider in the radial direction, and their tip changes more abruptly. These characteristics 

are simply stretched out radially with further rise in 0. Strictly at We=0.5 and in comparison 

across G0={1, 0.1125} solutions, there are notable asymmetries in salient-corner vortex 

zones.  Moreover at 0=0.1, the additional strain-hardening G0=0.1125 solution, is observed 

to suppress the half-moon-shaped unyielded region, present in the G0 =1 solution. 

 
 

7.7 Conclusions 

Yield stress elastic thixotropic solutions have been obtained through two different 

constitutive routes (and models thereby): (i) in the solvent contribution, via Papanastasiou 

regularisation; and (ii) in the polymeric contribution, via thixotropic-micellar (NM_p_ABS-

Figure 7.9 Yield fronts against 0 and We={0.1,5}; {mp, ,}={103,10-2,4}; G0={1,0.1125} 
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Pap) models. Numerical solutions have been reported whilst varying elastic and plastic 

contributions through parametric variation of - yield-stress cut-off 0={0.01,0.05,0.1}, 

regularisation stress growth exponent mp={102,103}, polymer concentration ={10-2,10-3} 

and thixotropic destruction parameter G0={1,0.1125}. 

Numerical solutions under NM_p_ABS-Pap model reveal interesting findings on vortex-

dynamics, N1 fields, yield-front patterns and excess pressure drop, according to yield-stress 

{0, mp}-parameter variation, strain-hardening (G0) and elasticity incrementation (). Vortex 

intensity and size is observed to sharply reduce with increasing {0, mp} (yield-stress) and 

elasticity levels (strain softening). There is reduction in the initial negative slope of the vortex 

intensity curve versus 0 as We is elevated at base-level mp=102. From this position, 

considering mp-elevation at each fixed We-level, there is increased drop in vortex intensity 

with 0-rise. Clearly, enhancing solid-like features dampens the mobility of the material 

(vortex-dynamics).  

On structure influence In contrast to these yield stress consequences above where G0=1, 

now considering each fixed 0-level, the exaggerated strain-hardening properties observed 

when decreasing the thixotropic G0 destruction–parameter (from unity to 0.1125, 

characterising more mobile fluids), have a major impact on vortex activity. This is 

encapsulated through upstream vortex enhancement and downstream vortex suppression. The 

influence of change with elasticity (We-rise, from 0.1 to 5) appears as a counter effect to that 

due to strain-hardening – with upstream vortex reduction for  G0=1, and enhancement for 

G0=0.1125. This is true  0–solutions, though most emphasised at 0=0. Appealing to 

corresponding viscometric properties, this observation may be attributed to the influence of 

strain-softening. It is particularly attractive that We-rise promotes asymmetry in the 

streamline patterns about the contraction. 

Structures and trends in the normal stress-difference fields reflect those in re-entrant-

corner vortex patterns, with elevation in yield stress, elasticity and strain-hardening. Hence, 

these N2 vortex-like features in the upstream and downstream recess corner zones contract as 

the yield-stress 0 and the elasticity levels are increased. Interestingly, at the extreme setting 

{0, We}={0.1,10}, downstream vortex  activity practically disappears. Consistently, these 

trends are more exaggerated when strain-hardening is enhanced through G0-reduction, which 
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represent more structured fluid states. 

On yield-front patterns These reveal significant influence with yield stress 0–variation. 

Here, symmetric unyielded regions first appear at 0=0.01, with upstream and downstream 

slender core regions at the centreline and concave unyielded regions confined in recess zones. 

When the cut-off yield-stress level (0 value) is increased, the core region expands outwards 

towards the wall and approaches the recess unyielded zones, which now have elongated away 

from the corner. Further increase of the yield stress provokes unification, of core and recess 

yielded zones, to define a central single shamrock-shaped yielded-region about the 

contraction-gap. In contrast, elevation in elasticity provokes asymmetry in the recess 

unyielded-zones. There is also formation of a new halfmoon-shaped unyielded-region, about 

the centreline just beyond the contraction-plane, in the middle-to-high yield-stress range 

(0≥0.05) and for elasticity levels (We≥5). G0-reduction (thixotropic-structural influence) 

suppresses the formation of this halfmoon-shaped unyielded region.  

On excess pressure drop (epd) Here, findings versus increased yield stress (0) follow linear 

functionality. The epd-slopes slightly rise with elevation in mp. The epd-intersection point at 

0=0 (coinciding with NM_p_ABS solutions) is shifted to lower levels as elasticity is 

increased.  One associates this epd-lowering for NM_p_ABS thixotropic solutions with its 

marked shear-thinning and strong N1 properties. Moreover, relatively more-structured fluids, 

characterised with smaller G0, display distinctly larger epd-values throughout the 0–range 

covered.  
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CHAPTER 8  

 

Pressure-drop and kinematics of viscoelastic flow 

through an axisymmetric contraction-expansion 

geometry with various contraction-ratios1 

 

In this chapter, one of the relevant benchmark problems in pressure-driven flows, that of 

flow through an axisymmetric expansion-contraction geometry, is addressed. Three fluids 

have been considered: a Newtonian, Boger and a shear-thinning polymer solution. 

Particular attention is given to the pressure-drop and kinematics obtained in a flow 

apparatus specifically designed for various contraction-ratios (2:1:2, 4:1:4, 6:1:6, 8:1:8, 

10:1:10). Both viscoelastic fluids present large magnitudes of normal stress under simple 

shear flow. The three fluids have the same viscosity at low shear-rates. The Boger fluid 

(polyacrylamide in a syrup-water solution) possesses a constant viscosity over a wide range 

of shear-rates. The shear-thinning fluid also has a wide range of first Newtonian plateau 

before the onset of shear-thinning.  

                                                             
1 The contribution of  J.E. López-Aguilar in this part of the work has been on simulations of 4:1:4 contraction-
expansion settings for Boger fluids, and the simple shear rheometric data fitting for Boger fluids. 
Experimental work is part of the DEng doctoral research of MIng M. Pérez-Camacho at Facultad de Química, 
UNAM. 
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 Findings for the Boger fluid reflect, initially, a decreasing pressure-drop below the 

Newtonian reference line (excess pressure-drop lower than unity), followed by values 

larger than one as the contraction-ratio increases. This can be explained on the basis of the 

extensional viscosity behaviour in the contraction section of the geometry. The shear-

thinning polymer solution (HASE-type associative polymer) shows a reduction in epd 

below the Newtonian curve for small contraction-ratios (due to shear-thinning). However, 

in more abrupt contractions, the extensional flow behaviour dominates the shear-thinning 

effects: first attaining Newtonian behaviour (producing an epd of one), and then, showing 

values larger than unity as the contraction-ratio becomes more severe.  

 Kinematic fields illustrated by flow visualization reveal several different sizes of the 

corner-vortex, which are related to the relative contributions from the first normal stress 

difference (N1) and extensional stress throughout the geometry. Transitions from lip-to-

corner vortex are related to the transition from shear-dominated to extension-dominated 

flows. Experimental data, for the Boger fluid on 4:1:4 contraction-ratio, are contrasted 

against numerical simulation results for a constant-shear-viscosity/extension-hardening 

FENE-CR model. Trends demonstrate qualitative agreement on epd and vortex activity, 

which also reveal an interesting interplay between N1 and extensional viscosity. 

8.1 Introduction  

One of the original works on contraction flows of viscoelastic liquids (Alves et al. 2004) 

analysed vortex growth patterns through an axisymmetric contraction flows for various 

contraction-ratios. Much data from elastic and shear-thinning fluids show a correlation of 

the Weissenberg number (We) with the elasticity number, illustrating the relationship 

between vortex growth and fluid elasticity. 

 To gather information on the cause of vortex appearance, Boger et al. (1987, 1992) 

studied different contraction-ratios in the axisymmetric contraction (4<o<16) using two 

similar Boger fluids. The first was made with polyacrylamide and corn syrup, whilst the 

second consisted of a mixture of polybutene-polyisobutylene (PIB/PB). By increasing the 

shear-rate at the contraction, for a 4:1 ratio, the vortex-separation line changed in pattern 

from concave to convex-shaped. 
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 In the PIB/PB solution with o=4, vortices were observed at low shear-rates. Upon 

increasing the shear-rate, the upward displacement of the length Lv of the salient-corner 

vortex, began to decrease, and simultaneously, a small second vortex (lip-vortex, of small 

growing length) appeared next to the re-entrant corner-lip. Subsequently, this secondary 

vortex grew considerably till its length Lv (distance to the separation point) overtook that of 

the first vortex.  

 In the same contraction and for both fluids, since the flow conditions at the contraction 

depend on the rheological properties of the particular fluid involved, differences in the 

growth of the extensional viscosity caused different flow patterns (Binding 1991). Hence, 

the growth of the second (lip-) vortex (due to extensional fluid properties) was different in 

both Boger fluids, although the same contraction-ratio and shear-rate were employed.  

 White et al. (1987) and, White and Kondo (1977) proposed that the vortex appearance 

reflects an underlying mechanism of stress relief in the contraction. For a polyacrylamide 

solution and prior to the contraction region, Cable and Boger (1978) studied the 

development of radial velocities in axisymmetric contractions with ratios of 2:1 and 4:1. 

Two flow patterns were identified, namely, the vortex growth regime and the divergent 

regime. This work analysed the presence of both extensional and shear flow and their 

influence upon flow kinematics.  

 It was found that vortex-growth scales with shear-rate (displaying outward 

streamlines); and at the contraction-entrance, the extensional viscosity retards the fluid and 

causes divergence towards the walls. 

 Binding et al. (1991, 2006) analysed the flow dynamics in the contraction, paying 

particular attention to the extensional and shear components of the flow, and the elasticity, 

represented by the first normal-stress difference. Two mechanisms were proposed: the first 

related to the quasi-radial flow at low shear-rates, generated by the presence of elasticity 

under shear flow. This flow corresponds to the region of vortex growth. The second 

mechanism corresponds to funnel-type flow at high shear-rates, which favours the 

development of uniaxial extensional flow at the contraction-centreline. This aspect 

corresponds to the development of the lip-vortex, which tends to inhibit the growth of the 
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primary (salient-) vortex. Finally, the salient-vortex is incorporated into the growth of the 

secondary lip-vortex. Still, some open questions remain re the contraction zone - such as, 

the appearance of the lip-vortex, and the dynamic change in flow patterns. 

 Rothstein and McKinley (1999, 2001) studied a contraction-expansion geometry with 

various contraction-ratios (2<o<8) for two Boger fluids - the first, based on polystyrene, 

and the second, made of a (PIB/PB) mixture. For the first Boger fluid and with a 

contraction-ratio of 2:1:2, the lip-vortex was present at all shear-rates. For the other ratios 

(4:1:4 and 8:1:8), corner vortices were observed, and associated with extensional flow 

contributions. Hence for the polystyrene solution, the dominant flow-type depended 

strongly upon the contraction-ratio. With the PIB/PB solution under the same flow 

conditions, such transition in kinematics was not apparent, inasmuch as the lip-vortex was 

always observed. An explanation was proffered, in terms of the solubility of the 

components of the solution, such as with a compatible/good solvent (polystyrene), different 

patterns may be observed. The shear to extension-dominated flow transition itself has been 

suggested to depend on the ratio of the first normal-stress difference to the extensional 

stress.  

 Experimental studies are still scarce on pressure-drops within axisymmetric 

contraction-expansion flows. Cartalos and Piau (1992) studied various viscoelastic fluids 

made of flexible and semi-rigid molecules (partially-hydrolised polyacrylamide dissolved 

in glucose-water and polyethylene oxide dissolved in a sugar-water solution, as the flexible 

molecules solutions; and PAA partially-hydrolised without salt, as the semi-rigid molecules 

solution). 

 Experimental data on pressure-drop versus flow rate for pseudoplastic fluids identified 

three regimes (linear viscoelastic regime, intermediate quadratic regime and final viscous 

regime). At low rates of deformation with small molecular deformation, the first regime is 

characterized by a linear relationship between pressure-drop and deformation-rate. In the 

second regime, the pressure-drop varies with the square of the flow rate, and may be 

attributed to the onset of extensional elastic stress. The third mechanism, associated with a 
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second-Newtonian region, involves high molecular deformation and increasing 

hydrodynamic interactions with the solvent. 

 In the studies of Rothstein and McKinley (1999, 2001), excess pressure-drops larger 

than that of the reference Newtonian fluid were found. These experimental data are not 

matched by the numerical calculations (Cable and Boger 1978). Results from the latter 

analysis indicate a reduction of pressure-drop with We below the Newtonian reference 

fluid, attributed to the onset of elasticity under shear flow (N1). Once the minimum has 

been reached, the epd then shows a continuous increase. This response may be attributed to 

a change of flow-type through the contraction, from a shear to extension-dominated flow-

regime.   

 Most significant theoretical developments have focused on Boger-type fluids in 

axisymmetric and planar contractions for low We numbers.  In this, various constitutive 

equation representations have been considered, such as the Oldroyd-B model. Nevertheless, 

this model has been found wanting in its ability to predict the observed large excess 

pressure-drops at high strain-rates.  

8.2 Experimental section 

8.2.1 Axisymmetric contraction-expansion flow apparatus 

The flow apparatus comprises four sections: feed, test, electronic control and fluid recovery 

sections. 

1.- Feed section. Here, a tri-phasic 1/12 HP pump (G) of variable speed was instrument-ted. 

It possesses a special gear reduction system (H), with gear ratios of 2:1, 4:1 and 8:1, to 

support small flow rates (0.01 ml) and Reynolds numbers (<0.1). The piston (A) is built 

with an aluminum smooth surface of 3 cm inner diameter with two stabilizers to allow for a 

centered and continuous displacement.  

2.- Test section. This section has two parts (i), (ii) - a first part(i) of a concentric-tube heat 

exchanger (D) of 65 cm length and 5.2 cm inner diameter and 6.27 cm external tube 

diameter. The thermal bath (L) ensures a constant fluid-temperature in the contraction 

region. The second part(ii) contains an acrylic tube of 55.5 cm length and 5.2 cm inner 
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diameter, which coincides with the dimensions of the inner tube of the heat exchanger. 

Here, the contraction-expansion is built with a disc made of a polymeric material. This can 

be inter-changed relatively easily, hence allowing for use of various contraction-ratios. 

Table 8.1 discloses the dimensions of the discs used. 

 The flow of the test fluid is regulated using a voltage controller (Baldor BC 140) of 

115 volts. This is coupled to the motor and gears that displace the piston to deliver a 

constant flow rate. The flow rate is measured from the time elapsed, the cross-section area 

of the piston and the displacement length. 

3.- Electronic control section. This consists of two pressure transducers (Piezotronic), of 0-

10 psi range. These are placed 7 cm above and below the contraction region, outside the 

vortex developing region and in the fully-developed zone. The signal from the transducers 

is received in a data acquisition unit (Q) (Dataq, DI-158). This device transmits the data in 

real time to a computer for storage and manipulation. Then, for each flow-rate trial and 

commencing from rest or between flow-rates, constant signals identify the establishment of 

steady-state pressure-drop across the contraction.  

 

Figure 8.1 Experimental apparatus 
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Table 8.1 Contraction disc dimensions 

 
 

4.- Fluid-recovery section. The liquid flowing from the region below the test section cannot 

be discharged to atmospheric pressure, since gravity interferes with the imposed flow 

through the voltage regulator. A second stainless-steel tube (I) was adapted, of same 

dimensions as the test tube. In addition, a third tube (J) was fixed to allow for fluid 

recovery to a container. This tubing arrangement facilitates flow control, without the effects 

of gravity. 

8.2.2 Flow visualisation 

For vortex observation, a special chamber with a camera was built of dimensions 45x45x40 

cm around the contraction section (see Fig. 8.2).  

 

Figure 8.2 Vortex visualisation chamber 
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 A reflex-type photo-camera (Nikon D5000) was mounted. Images were provided with 

an exposure time of 35 s and vortex dimensions were measured using an imaging 

programme (Java applications). The dimensions are measured from the number of pixels, 

using the tube with inner diameter of 4.5 cm as a basis to compute a ratio of 

0.00195cm/pixel.   

8.2.3 Pressure-drop calculations 

As above, two pressure transducers of high sensitivity are placed in the fully-developed 

flow sections, upstream and downstream of the contraction (see Fig. 8.3). The individual 

pressure-drop contributions comprise those of the fully-developed flow before and after the 

contraction, the pressure-drop in the contraction channel and the extra pressure-drop due to 

non-Newtonian effects: 

 ExtraC21Total ΔPΔPΔPΔPΔP  .       (8.1)              

 The first three contributions are considered as arising from pressure-shear flow in a 

tube (Hagen-Poiseuille flow). The latter, the so-called extra pressure-drop, is determined by 

the shape factor at the contraction region for a Newtonian fluid, according to the Sampson 

formula (Sampson 1891): 

Extra 3
3ΔP

c

Q
R


 .          (8.2) 

 The total pressure-drop is then rewritten as: 
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
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 Since the calculation of the extra pressure-drop in a non-Newtonian fluid is not known 

in advance, this is estimated experimentally from the measurements of the total pressure-

drop as follows:  
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.      (8.4) 
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 In Equation (8.4), η  is the fluid viscosity in the fully-developed regions, and Cη  is the 

viscosity of the fluid in the contraction itself. Equation (8.4) is used to estimate ExtraΔP  

acknowledging that the viscosities η  and Cη  may be significantly different depending on 

the rheological nature of fluids under analysis (recall that constant-viscosity Boger type and 

pseudoplastic fluids are analysed in this work). 

8.3 Rheological characterisation of the test fluids 

The experimental measurements consider three fluids - a Newtonian, a Boger and a shear-

thinning fluid. The Boger fluid is made from a solution of polyacrylamide (0.1 wt.%) in 

corn syrup, and the shear-thinning fluid is an aqueous solution of an associative polymer 

(HASE, hydro-phobically-modified alkali-soluble emul-sion, 2.5 wt. %).   The HASE 

polymer (Acrysol TT-935, from Rom & Haas) was prepared by dissolving the polymer in 

water and adjusting the pH to 9, using 0.1 M of 2 amino-2 metil-1 propanol. The 

Newtonian fluid is a solution in corn syrup in water. 

 
Figure 8.3 Schematic representation of contraction-expansion flow apparatus 
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 The rheological properties of the fluids were measured in a controlled-stress rheometer 

TA-Instruments AR-G2, in a cone-and-plate fixture, of 40 mm diameter and 1° angle 

between the cone and plate. 

 In Fig. 8.4, the shear viscosity and first normal-stress difference are plotted against 

shear-rate. The Newtonian fluid viscosity amounts to 13.5 Pas and the zero shear-rate 

viscosities of the two viscoelastic fluids were adjusted to this value (by dilution). Note that 

N1 is larger with the HASE fluid, whilst both viscoelastic fluids approach the same value at 

high shear-rates. 
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Figure 8.4 Shear viscosity and first normal-stress difference as functions of shear-rate, for Boger and HASE 

fluids 
 

 Predictions of viscometric functions in simple shear and uniaxial extension have been 

extracted using BMP (Bautista et al. 1999) (representing HASE fluid) and FENE-CR 

(Chilcott and Rallison 1988) (for Boger fluid) constitutive equations.  The expression 

derived for the shear viscosity corresponding to i-modes of the BMP model is: 

   
1

2 22 2 2

1

1 4
2

n

ss i i o i i o i i
i

K K K         


             
    ,   (8.5) 
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ss  is the fluidity or inverse viscosity at steady-state, Ki is a kinetic constant associated with 

the structure modification and λ i is a structure relaxation time,   is the shear-rate, the 

fluidity at vanishing shear-rates is o  and   stands for the fluidity at high shear-rates.  

Then, the first normal-stress difference is given by:  

12
1

2

o ss

N
G
 





,          (8.6) 

where G0 is the elastic modulus and 12 is the shear stress. 

  
Table 8.2 Model parameters for shear viscosity BMP model 

 
 In Fig. 8.5, the shear viscosity of the HASE fluid is predicted by eq.(8.5), and N1 is 

predicted by eq.(8.6). The model parameters are shown in Table 8.2. 

 
Figure 8.5 Data and predictions of shear viscosity according to eq.(8.5) 
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 Predictions for uniaxial extensional flow consider the following expression for the 

extensional viscosity (Bautista et al. 1999): 

    2 22 3o o o o
KG G G       


 
     

 
  

        (8.7)                                                                        

where 

  is the strain-rate. The extensional stress is given by:   
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where s represents the solvent viscous contribution. The extensional viscosity is then: 

1
E

N






.          (8.9) 

 Experimental data covering the uniaxial extensional viscosity for the HASE fluid is 

provided by Tan et al. (2000). Predictions with the BMP model for simple shear and 

extensional flow are given in Mendoza-Fuentes et al. (2009). In Fig. 8.6, these predictions 

are shown for the 2.5 wt. % solution. 

 For the Boger fluid, the FENE-CR model by Chilcott and Rallison (1988) is used in 

extensional flow. See Chapter 2, section 2.3.10; and Chapter 3, section 3.2 for further 

details on model representation and rheology, respectively. 

 

Figure 8.6 Shear and uniaxial extensional viscosity data. Lines with arrows indicate range of strain-rates 

corresponding to each geometry 
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8.4 Experimental results - Vortex growth dynamics 

In Figures 8.7A-7E, corner-vortex growth is shown for the Boger and HASE fluids in the 

five geometries. Each photograph was taken at the shear-rate indicated, evaluated at the 

contraction and for the corresponding De number. The shear-rate is the largest attained for 

each geometry. In Fig. 8.7A and for the 2:1:2 contraction-expansion, the shear-rate at the 

contraction is around 1s-1 and a small corner-vortex appears with the HASE fluid. For the 

Boger fluid, in contrast, the vortex is of negligible size. At this shear-rate, the magnitude of 

N1 is small in the Boger fluid case, amounting to ~10Pa with the HASE fluid. 

 In the 4:1:4 geometry, the representative shear-rate at the contraction has increased to 

8s-1, which corresponds to N1–values larger than 100Pa with the HASE fluid. The vortex 

size for the HASE fluid is quite large, whilst with the Boger fluid is still small (Fig. 8.7B). 

 In the 6:1:6 expansion-contraction, the shear-rate is now 28s-1 and N1 with the HASE 

fluid has grown to near 1000Pa, which is reflected in the large vortex size. The Boger fluid 

vortex is also large, but still smaller than the HASE vortex, corresponding to lower N1 (Fig. 

8.7C). 

 The 8:1:8 geometry presents extremely large vortices with the HASE fluid, and also 

the Boger fluid, with values of N1 for both fluids around 1000Pa. The representative shear-

rate is now 66s-1 (Fig. 8.7D) 

 At the shear-rate of around 130s-1, in the 10:1:10 contraction-expansion (Fig. 8.7E), a 

most interesting result is that N1 for both fluids approaches the same value; and this 

coincides with equity in vortex size generated. Here with both fluids, large corner-vortices 

are observed, which clearly indicates a relationship between vortex-size and first normal-

stress difference. 

 Figures 8.8A,8.8B display the non-dimensional reattachment length (Lv, length-scale 

associated with vortex-size) plotted against Deborah number, for both Boger and HASE 

fluids. 

 In Fig. 8.8A, the Boger fluid illustrates that Lv is constant at low De numbers, but a 

decrease in the reattachment length is observed as the lip-vortex develops. As the 

extensional flow dominates, the transition to a corner-vortex is observed in the 2.5 – 5 
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range of De numbers, corresponding to the 6:1:6 and 8:1:8 geometries. The large increase 

in vortex size is observed in the 10:1:10 case. 

 

Figures 8.7 A-E Relationship of first normal-stress difference with vortex dimensions for each geometry. The 

vertical broken line indicates representative shear-rate at contraction region 

 In contrast, with the HASE fluid, the transition lip-to-corner vortex occurs at fairly low 

De numbers in the 4:1:4 geometry, as shown in Fig. 8.8B. In summary, the vortex 

reattachment length-scales with the strain-rate, and is a strong function of N1 (López-

Aguilar et al. 2014). With a view ahead, this relationship is observed in numerical solutions 
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for the Boger fluid within the 4:1:4 setting, discussed below and found applicable 

elsewhere (López-Aguilar et al. 2014). 

 

Figures 8.8A and B Vortex growth (normalized reattachment length, Lv) against Deborah number for Boger 

and HASE fluids, respectively 

8.5 Pressure-drop 

In Figures 9A-9E, the extra pressure-drop (epd) is plotted versus Deborah number for both 

Boger and HASE fluids. The unity Newtonian reference line is also indicated. In Fig. 8.9A, 

the 2:1:2 expansion-contraction data is reported. The flow rate in this case is small and 

corresponds to the shear-rate region where the viscosity is constant for both fluids (first 

Newtonian region). The Boger fluid provides a negligible N1 in this range (see Fig. 8.7A). 

It is most interesting to observe the growth in Boger-epd data with De, which achieves an 

upper asymptote some three times that of the reference-line. This scaling with the 

extensional viscosity reveals that, here, the flow is completely dominated by extensional 

fluid properties. In contrast, the HASE fluid manifests only a small normal stress 

contribution. Now, since the viscosity is also constant in this range for this liquid, one 

concludeds that the maximum and further decline in HASE-epd data is due to the combined 

effects of extensional viscosity and N1. 



Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction-expansion 
geometry with various contraction-ratios  151 
 

 

Figure 8.9A  epd versus De number, 2:1:2 contraction-expansion 

 Results on epd for the 4:1:4 geometry are illustrated in Fig. 8.9B. Here, the range of 

shear-rates spans from 1 to 8s-1, corresponding to De-values around 0.1 to 1.5. The Boger 

fluid presents a non-negligible N1; whilst the HASE fluid becomes shear-thinning, with 

relative large N1, accompanied with a growing extensional viscosity (see Fig. 8.6).  

 

Figure 8.9B epd versus De number, 4:1:4 contraction-expansion 
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 Here, the growth of epd with De is not as spectacular as in the 2:1:2 geometry, due to 

suppression from normal stress contributions. The HASE fluid presents a radical switch in 

behaviour. It achieves epd<1, reaching ~0.6 (~40% drop), attributable to the combined 

effects of shear-thinning and N1. There is a slight upturn, beyond the minimum, where one 

observes a change in vortex activity: from a lip-vortex to a corner-vortex. Since this 

outcome is associated with a transition from shear-dominated to extension-dominated flow, 

the extensional component is held responsible for this upturn in epd. 

 

Figure 8.9C epd versus De number, 6:1:6 contraction-expansion 

 As the contraction-ratio increases further to 6:1:6, extensional properties begin to 

dominate normal stress contributions arising from shear. In Fig. 8.9C, the Boger fluid epd 

rises to values larger than 3. Note, in Figures 9B, 9C, the notorious low De-range Boger-

epd behaviour is depicted - where epd drops slightly below the unity-Newtonian line; prior 

to upturn and continuous rise for larger De numbers, crossing the unity-Newtonian line; 

ultimately proceeding to a critical De number (Decrit). Here, Decrit is defined as the elasticity 

stage at which the epd-curve cross the Newtonian reference line (epd=1). These trends 

correspond to those observed in numerical solutions for Boger fluid representations. There, 

an interplay has also been observed between N1 (dominating at low De) and extensional 

viscosity (overtaking and eventually dominating, as De is increased). See discussion below 

on numerical solutions for the 4:1:4 geometry and Boger fluids, and recall the competing 
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roles these two quantities exert on epd-estimation (Walters et al. 2009). Here, the transition 

from lip to corner-vortex is observed near epd=3, past the region where the concavity of the 

curve changes, and the slope decreases. Beyond the Decrit (or its critical shear-rate), there is 

an almost linear region of epd versus De, which is common in flows with 4:1:4 and 6:1:6 

geometry options. 

 Relative to 4:1:4 geometry data and with the HASE fluid of Fig. 8.9C, extensional 

properties become manifest in a smaller epd-drop (25%) below the unity-Newtonian line. 

This feature is also influenced by (greater) shear-thinning effects. After the minimum, again 

the transition from lip-to-corner vortex signals the onset of extension-dominated flow. 

 

Figure 8.9D epd versus De number, 8:1:8 contraction-expansion 

 In Fig. 8.9D and here for the 8:1:8 geometry, both viscoelastic fluids have similar N1-

values. Yet, the HASE fluid presents a maximum in extensional viscosity (strain-

hardening/softening transition) and a pronounced shear-thinning response (see Fig. 8.6). 

Fig. 8.9D displays an intriguing result with the HASE fluid: all three contributions, from 

extensional viscosity, shear-thinning and N1, counter-balance to produce an equivalent-

Newtonian response. The change from lip-to-corner vortex is observed to occur at low De, 

similarly to results in Fig. 8.9C. 
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 Correspondingly, on observed epd with the Boger fluid, there is an initial minor epd-

drop (epd<1), and thereafter, a Decrit is reached. Beyond this critical De-value, epd grows 

linearly and attains the region of extension-dominated flow. There, the transition from lip-

to-corner vortex is encountered, accompanied with a change in curve-slope. Here, 

spectacular increases in Boger-epd are noted (epd~6) in the high De number range. 

 

Figure 8.9E epd versus De number, 10:1:10 contraction-expansion 

 In the 10:1:10 geometry of Fig. 8.9E, the Boger fluid presents extremely high levels of 

normal stress and extensional viscosity; in fact, the largest values attained across all trial 

geometries. This is reflected through the increase in Decrit and the transition level from lip-

to-corner vortex. Once again, this transition occurs beyond the epd-linear region, at {epd, 

De}=~{4,7}. At low De, the region of epd-drop is wider. The near-asymptotic values of 

epd obtained at high De numbers (up to De=18) are slightly lower than those observed in 

Fig. 8.9D (for 8:1:8 case). This concurs with larger N1-contributions and delayed transition 

from shear-dominated to extension-dominated flow, occurring at De>7.  

 Here, the HASE fluid supports extremely high normal stress response, yet far from the 

limiting slope of 2; and also, is strongly shear-thinning. Data in Fig. 8.6 reveal that the flow 

in this geometry significantly penetrates the strain-softening regime. This triple-combined 

effect produces epd>1 throughout and up to De~7, with the transition from lip-to-corner 
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vortex occurring in the low-De range (De~0.5). This indicates an extension-dominated flow 

throughout most of the De range. 

 In Fig. 8.10, Decrit for the Boger fluid is plotted against the accumulated Hencky strain, 

defined as 

 2ln o  ,          (8.10) 

where βo is the contraction-ratio. This expression arises from the estimation of the total 

accumulated strain gathered by a fluid element, moving along the centreline from upstream 

to the middle of the contraction (Rothstein and McKinley 2001). It is provocative to note 

that the Decrit curve is qualitatively similar to the growth of extensional viscosity with 

Hencky strain. Indeed, in computational predictions of epd using the FENE-CR model 

(Tamaddon-Jahromi et al. 2010), it has been shown that Decrit scales with increase in 

extensional viscosity. 

 As such, for the Boger fluid and the 4:1:4 contraction-expansion, there stands a striking 

similarity between the predictions of Tamaddon et al. (2011) and the present experimental 

results. Indeed, the predictions for epd using FENE-CR at low De numbers, describe all the 

documented features of:- an initial region of epd-drop (epd<1); attainment of a minimum 

and upturn; prior to continuous rise,  crossing the unity-Newtonian reference line; attaining 

epd>1 for higher De numbers and tending towards an ultimate asymptotic plateau. The 

increase in epd mimics the shape of the experimental curves, although the calculated 

magnitudes (28% increase over unity-Newtonian line) are predicted to occur at large De 

numbers. This contrasts with results presented in Fig. 8.9B, where increases of the order of 

40% are observed at De numbers around unity. 
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Figure 8.10 Critical Deborah number versus accumulated Hencky strain for 5 contraction-expansion 

geometries 

 Moreover, another notable feature of the predictions, which complies with the present 

experimental data, is the increase in calculated epd and Decrit with rising extensional 

viscosity. As the contraction-ratio becomes more severe (larger), the level of extensional 

stress, developed within the contraction, dominates that of normal stress, arising from 

shear. The experiments reveal large magnitudes in epd with increasing extensional effects 

for rising contraction-ratios.  

 The transition from lip-to-corner vortex is suggested to signal the transition from shear-

dominated to extension-dominated flow (Rothstein and McKinley et al. 2001). For the 

shear-thinning fluid and to quantify this transition, the ratio of normal stress (on wall) to 

extensional stress (along centreline) is calculated, according to: 

 1

E o

N   
   


 

 
 .         (8.11) 

 From Fig. 8.6, it is possible to estimate this stress-ratio ( ) as a function of the strain-

rate or De number (noting, assumption made on comparable deformation rates). Results are 

shown in Fig. 8.11. What is essentially needed here is appropriate maxima in N1 and 

extensional viscosity for the flow in question. 
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Figure 8.11 Non-dimensional stress ratio versus Deborah number for 5 geometries, indicating (arrows) 

transition of lip-to-corner vortex, HASE fluid 

 In Fig. 8.11, the =1 value corresponds to the transition of shear-dominated flow (>1) 

to extension dominated flow (<1). It is noteworthy that the lip-to-corner vortex transition 

(indicated by arrows) occurs in the 0.4-0.5 range of the stress-ratio, corresponding to De 

numbers from 0.2 to 1.0 for the five geometries.  >1 only occurs in the 4:1:4 geometry, in 

accordance with the large epd-drop (epd<1) observed in Fig. 8.9B. In addition, this plot 

clearly demonstrates that the equivalent-Newtonian balanced-epd response, shown in the 

8:1:8 contraction-expansion (Fig. 8.9D), corresponds to a near-balance state of shear and 

extensional flow, where the lip-to-corner vortex transition appears at the stress ratio, 

0.5  . 

8.6 Numerical results  

Numerical simulations have been performed to compare against the counterpart 

experiments on Boger fluids, whilst selecting the 4:1:4 (rounded) contraction-expansion 

geometry. Note, in these simulations, lip-vortices are suppressed through the contraction-tip 

rounding (not so in the experiments). These steady-state predictions have been performed 

via a hybrid finite element/finite volume algorithm, based around an incremental pressure-

correction time-stepping structure (López-Aguilar et al. 2014; Nyström et al. 2013; 



Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction-expansion 
geometry with various contraction-ratios  158 
 

Tamaddon-Jahromi et al. 2011; Walters et al. 2008, 2009). Then, numerical solutions on 

salient-corner vortex activity (related to Lv experimental data) and epd are reported using 

the FENE-CR model to represent the Boger fluid properties. Here, the solvent fraction 

=0.85 and extensibility parameter L={3,6,10} have been chosen to match the experimental 

characterization of the Boger fluid, as in Fig. 6B. In particular, the extensibility parameter 

has been adjusted to capture the window of variation in simple shear N1 experimental data. 

Note the wall (maximum) shear-rate used in the experiments, 3
4

wall
c

Q
R




 , is four times the 

characteristic rate chosen in the numerical situation, 3avg
c

Q
R




  (derived from the average 

velocity in tube flow). Taking the experimental-rate choice as the basis for comparison, 

rescaling of the numerical characteristic rate is given as 4wall avg   , and hence De=4We. 

Here, 1 avgWe     is the Weissenberg number derived in the numerical framework. One 

notes that experiments are performed by increasing the deformation-rate (through Q) for a 

single fluid (fixed 1); whilst, simulations are performed at fixed rate and by increasing 

fluid relaxation time (1). Due to the nonlinear equation dependency on velocity-scale, this 

will affect any direct comparison attempted (Tamaddon-Jahromi et al. 2008). Nevertheless, 

a delay factor of 16, would appear to apply between epd-features, from experimental to 

simulation results (i.e. 16Deexp~Desim). 

 In the case of the 4:1:4 contraction-ratio and despite the disparity in physical 

configuration (sharp–experiments /rounded-numerical), agreement in trends between 

numerical predictions and experimental results is striking. The epd data-curves reveal an 

initial negative slope for De<{4,8,12} with respective, L={3,6,10} (Fig. 8.12A). Then, local 

epd-minima continually fall away from the reference-line, with {epdmin,L,De}~ {0.99,3,4}, 

{0.97,6,8}, {0.95,10,12}, as both L and De rise. Crossing points at {Decrit,L}={5.5,3}, 

{12,6}, {24,10} are influenced by the extensibility parameter L. The appearance of epdmin 

and Decrit is delayed as L is increased, and as N1 strengthens (Fig. 8.6B). Beyond such 

Decrit, the epd-curves cross the unity reference-line, reaching percentage relative maxima 

(epdmax) to unity of {10%,28%,10%}. Here, at relatively higher elasticity levels than those 
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covered in experiments, two different behaviour patterns emerge: (i) under L={6,10}, 

monotonic rise to their limiting Deborah number Delim={32,36},2 prior to establishing an 

asymptote; and (ii) L=3, rises to a maxima (at De=10), asymptoting to a plateau, and 

declining thereafter (Fig. 8.12B). This second pattern is direct evidence of the complex 

interplay between N1 and extensional viscosity. Here, (a) N1 dominates at low elasticity 

levels, stimulating the initial epd-drop (epd<1); (b) when De is increased, the strain-

hardening properties of the fluid balance N1 effects, and provoke the epd data-curve to 

locate a minimum and rise thereafter; and (c) finally, as De is increased further (inset Fig. 

8.12B), the epd-data curve locates a maximum (another extensional viscosity-N1 balance 

state), and N1 dominates with a declining epd trend. The numerical {Decrit
num=5.5,L=3}, is 

some 18 times larger than the experimental result of Decrit
exp=0.3.  

 Consistently, under ideal theoretical flows in Fig. 8.6B, (simple shear) N1 and (simple 

uniaxial) extensional viscosity data reflect this interplay as De is elevated: (a) at low 

elasticity levels, N1 data-curve rises with a quadratic functionality with the shear-rate, 

whilst the extensional viscosity remains constant; (b) at larger De, strain-hardening in 

extensional viscosity is observed, whilst N1 weakens its quadratic rising slope; and (c) 

finally, at even higher elasticity levels, the extensional viscosity data-curves plateau, and 

those for N1 rise monotonically. Due to their relatively low Delim, this complex behaviour is 

not observed in solutions with L={6,10}. 

 

 
Figure 8.12A and B Numerical epd predictions versus De; Boger fluid; =0.85, FENE-CR L={3,6,10} 

                                                             
2 Delim represents the final Deborah number with a stable solution 
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 Analogous trends are observed to the experimental findings between vortex dynamics 

and epd-prediction in the streamline patterns of Fig. 8.13A. Here, for L=3 and 0.4<De<300, 

upstream vortex enhancement is apparent through streamline fields and upstream vortex 

intensity curves. Beyond De>300, this flow-pattern is suppressed as De rises. Such growth-

maximum-suppression behaviour is likewise apparent in epd-data (Fig. 8.12B). In contrast, 

under L={6,10}, upstream vortex enhancement is exclusively observed. Corresponding 

reattachment vortex lengths (Lv) are provided in Fig. 8.13B. These data are in accord with 

experimental findings at low De, where the reattachment vortex length (Lv) is observed to 

grow as De rises (see Fig. 8.8). 

 

Figure 8.13A and B Numerical streamline patterns and vortex intensity and Lv predictions versus De; Boger 

fluid; =0.85, FENE-CR L={3,6,10} 

8.7 Conclusions 

This work has revealed provocative results on the kinematics and pressure-drop 

measurements in the axisymmetric contraction-expansion geometry for Boger and shear-

thinning elastic fluids. 
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 Besides the large differences existing between Boger and shear-thinning elastic fluids, 

this study has exposed the binding relationship between the magnitude of the first normal 

stress difference and vortex growth. When the magnitude of N1 for both fluids is similar, 

vortex-size is comparable, independent of the nature of the fluid. 

 For the Boger fluid, the 2:1:2 contraction-expansion is a unique case, in which the 

range of strain-rates of this creeping flow correspond to constant viscosity and negligible 

normal stress. The associated epd measured (epd=3) amounts to three times the Newtonian 

reference (epd=1).  For other and increasing contraction-ratios, the resulting epd reflects the 

balance between N1 and extensional viscosity. The transition of lip-to-corner vortex occurs 

in the more severe contraction ratios (βo>6). Furthermore and relative to the unity-

Newtonian reference line - the initial epd-drop below (epd<1); the subsequent crossing 

(epd=1); and continuous increase above (epd>1), all agree with FENE-CR numerical 

predictions using small extensibility-parameters. The crossing-point (Decrit) scales with the 

accumulated Hencky strain, with growth qualitatively similar to that noted in extensional 

viscosity with strain. 

 The shear-thinning HASE fluid possesses larger normal stresses at comparable strain-

rates than those of the Boger fluid. Hence, N1 substantially influences the resulting epd, 

even in the 2:1:2 geometry. Shear-thinning dominates in the 4:1:4 geometry, where epd-

drops are measured of around 40% below the Newtonian reference line. The transition 

between shear to extension-dominated flows occurs at low De numbers, as the lip-to-corner 

vortex transition is observed accordingly. The equivalent-Newtonian epd-response, 

observed in the 8:1:8 contraction-expansion, derives from a balance between shear-

dominated and extension-dominated flow types. The lip-to-corner vortex transition occurs 

at a stress-ratio near unity in this case (~1). 
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CHAPTER 9  

 

A Computational Extensional-Rheology Study of Two 

Biofluid Systems 
 

 

The main focus of the present chapter is to determine, through computational modelling, the 

extensional rheological response of some model biofluids, with a view to ultimately aiding 

experimentally-based analyses and clinical practice. This is accomplished in the present study 

through model extensional flows and rheological investigation, addressing filament stretching and 

contraction flows, and upon which significant advances are presented. As such, two biofluid flow 

systems within the human body are of current interest: (i) respiratory disorders and sputum in the 

lung-airways (associated with filament stretching), where stretchiness of mucus-sputum in situ is 

vital; with clinical focus on chronic obstructive pulmonary disease (COPD/sputum); and (ii) bile-

flow in the biliary system (contraction flow): with clinical focus on disorders of primary sclerosis 

cholangitis, and common bile duct narrowing.  Both sputum and bile biofluid systems are 

represented through kinetic theory rheological fluid modelling, with capability to represent material 

structure - entanglement, branching, anisotropy. This is practically achieved by appealing to the 

class of pom-pom differential constitutive models, extracted from polymer-melt physics and 

deployed here through a Single Extended pom-pom (SXPP) approximation. This class of models is 

sufficiently rich to enable description of both network-structure and rheological properties, 

exhibiting viscoelastic response (memory), with strain-hardening/softening and shear-thinning 

properties. 
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9.1 Introduction 

To advance the present work, two known ideal-benchmark flow problems are introduced to 

mimic the targeted biofluid systems under study, involving bile and sputum. For the bile-duct 

narrowing work, a steady 4:1 contraction flow problem is considered (Walters and Webster 2003; 

Owens and Phillips 2002), whilst a dynamic FiSER-CaBER filament-stretching flow is utilised for 

the respiratory study (McKinley and Sridhar 2003).  The information sought from the contraction-

flow bile studies, is related to confined complex flow field description, under varied rheological 

description. Hence, seeking flow field structure through vortices and stress build-up. At this early 

stage of the study, a key aim has been to also assess what quality of computational free-surface 

FiSER-CaBER characterisation may be extracted for such model biofluid systems through the 

proposed kinetic network-theory fluid modelling. This is accomplished via use of the Single 

Extended pom-pom (SXPP) model (Verdier 2003; Aboubacar et al. 2005; Aguayo et al. 2007), 

exhibiting viscoelastic response of strain-hardening fluids that also display shear-thinning 

properties. Crucially, the present work is directed towards casting direct insight into the precise role 

and impact that the various rheological properties have towards seeking effective biomarkers. 

Hence, this will pinpoint those rheological properties of key importance, and therefore gain clinical 

advantage through advanced predictive aids on: disease progression, modification to diagnosis and 

treatment procedures, and drug modification/delivery. Motivationally, improved understanding of 

flow systems within the human body and their functioning will facilitate appropriate intervention at 

pre-symptomatic, acute or chronic stages of illnesses – hence, addressing patient-specific needs and 

those most pressing in a modern healthcare system. To achieve this goal, the main focus here lies in 

developing high-quality predictive solutions, to associated complex flow model systems, 

representative of sputum in the respiratory system and bile in the biliary system.  

Specifically, the focused challenge of the present study relates to the advanced prediction of 

biofluid flows within two bio-systems associated with the human body – the respiratory and biliary 

systems. In particular to pathologies of (i) the lung-airways (respiratory disorders): chronic 

obstructive pulmonary disease (COPD, smokers’ disease, 3rd leading cause of death worldwide, 

2020), and (ii) the biliary system: primary sclerosing cholangitis (cancerous), and common bile duct 

narrowing (CBD).  To provide some background - disease progression left untreated may result in 

fatal cancerous conditions and/or organ transplant. Some of the novelty and appeal of the present 

study lies in the embodied advanced bio-rheology predictive technology, with the ultimate aim of 

developing new biomarkers, and producing improved diagnostic tools to aid in next-generation 

clinical practice. It is important to appreciate, that the rheological properties of bile or sputum are 

not only patient-specific, but also pathologically dependent, and in this analysis their rheological 
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response, particularly under extension, represents a key cornerstone to the present research 

approach. In particular, bile and sputum rheological description is handled computationally via 

filament-stretching, which finds embodiment in CaBER-FiSER rheometer apparatus. 

Bile duct disorders and study Unfortunately, the vast majority of published work on bile duct 

disorders has focused on clinical aspects and procedures for diagnosis and treatment, with less 

regard to the actual flow dynamics or rheological implications of bile flow itself (Sugita et al. 

2003). Some relevant numerical studies have considered the geometrical complexity of the biliary 

network, whilst neglecting the additional complexity of the rheological description of bile. Some 

viscous inelastic (shear-thinning) bile flow modelling has recently emerged (Ooi et al. 2004; Li et 

al. 2007; Holdsworth et al. 1989). However, a comprehensive rheological analysis of bile flow 

within the biliary system remains relatively uncharted (Holdsworth et al. 1989). Note, some issues 

relating to bile rheological characterisation are also encountered within sputum characterisation, as 

discussed below. Specifically, under contraction flow studies for bile/biliary system disorders, the 

well established 4:1 contraction benchmark problem (Walters and Webster 2003; Owens and 

Phillips 2002) is appealing and representative of the confined flow settings encountered in the 

biliary system (mixed shear-extensional flow). Here, accurate determination of flow field variables 

and structures is thought to be vital for appropriate clinical response - to avert advanced 

constrictions/blockage in the bile system (Sugita et al. 2003) – as with gallstone blockages and 

cancerous conditions. Such flow field features are apparent as a direct consequence of rheological 

properties (Tamaddon-Jahromi and Webster 2011), and may be associated with the response of bile 

flow within the biliary ducts (Sugita et al. 2003). 

In the present context, bile flow rheology may be modelled through a number of approaches, 

some of which emerge from kinetic-molecular theory (pom-pom models; Blackwell et al. 2000; 

Aboubacar et al. 2005; Aguayo et al. 2007; used here; as likewise for sputum) and yet others from 

micellar network theory (worm-like micelles, mimicking bile cellular design; López-Aguilar et al. 

2014). The modelling may account for macro-to-micro length-scales (microfluidics) (Verdier 

2003), transient dynamics (Tamaddon-Jahromi et al. 2011), viscoelastoplastic yielding (Verdier 

2003; Al-Muslimawi et al. 2013) and, in some instances, elastic duct-wall deformation (Echendu et 

al. 2013). Here, pom-pom parametric variation is conducted over structural network description to 

explore a wide variety of (i) topologies (entanglement pom, branching q) related to molecular 

architecture, (ii) rheological properties (tension-hardening or softening, shear-thinning), and (iii) 

relaxation mechanisms (backbone stretch, multiple time-scales). Subsequently, additional 

consideration may also be given to representation of additives (assumed fibre-like, specific size 

range, concentration), thixotropy (time dependency; López-Aguilar et al. 2014; Aguayo et al. 2007), 
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and alternative bile compositions (molecular weight, concentration). As a consequence, clinical 

treatment is envisaged through directed-variation of bile rheology, which may practically be 

triggered via appropriate drug administration. Adjustment in drug design, through bile rheological 

modification, is aimed at lowering both pressure drops and duct swelling. Industrially, examples 

already exist of such technology deployed in practice (enhanced oil-recovery through surfactants 

and rheological adjustment – smart fluids; López-Aguilar et al. 2014). In more extreme bile-duct 

narrowing instances (blockage), direct medical intervention may be required, where duct widening 

is necessary via a stent implant or a bypass. Again here, modelling may be introduced beneficially, 

to detect effective working of the stent-implant or bypass functionality, in situ and post-operative. 

Respiratory disorders and study For background here, the rheology of sputum has been 

extensively reported in studies involving the application of steady and oscillatory shear. Sputum is 

generally considered as a non-Newtonian viscoelastic gel that exhibits shear-thinning and 

thixotropic properties (Lai et al. 2009). Sputum (and/or sputum-mucus mixtures) is a biofluid 

secreted by goblet cells present along the airways. Mucus is a slimy substance produced to help 

remove inhaled dust, bacteria, and other small particles. This biofluid contains a number of 

enzymes, degraded cellular material, bacteria and white blood cells that act as an immune defence 

system against infection and inflammation. Infected patients tend to cough up considerable sputum 

daily, the constitution of which is impregnated with cell residue. Damaged airways of the lung tend 

to make considerably more mucus than under normal conditions. An excess of sputum production 

may block air tracks and even exacerbate COPD symptoms. Thus, a particular therapy adopted is 

often designed to adjust sputum rheology (shear), through drug administration (typically – 

mucolytics and anticholinergics), and increases sputum production.  

Challenges in experimental measurement relate to the large degree of variability in values of 

rheological parameters of samples from patient-subjects with the same diseased state. Commonly, 

samples of biofluid (sputum and bile likewise) from both healthy and unhealthy subjects are 

rheologically characterised in terms of viscosity, elastic modulus (G’), loss modulus (G’’), and also 

yield stress (Lopez-Vidriero and Reid 1978; Broughton-Head et al. 2007; Serisier et al. 2009). For 

sputum, Lopez-Vidriero and Reid (1978) provide a summary of viscosity of samples of mucoid, 

purulent and mucopurulent (mixture of mucoid and purulent) sputum from a range of diseased 

patients, including those with Chronic Bronchitis, Bronchiectasis and Asthma. They reported 

viscosity values depend more on whether the sample is mucoid or purulent than diseased state; the 

former being generally more viscous than the latter.  A major concern, when comparing values of 

viscosity between different data sets, is that the viscosity is often measured at an arbitrary level of 

shear rate and found to vary in sputum viscosity within the same subject on different days 
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(Broughton-Head et al. 2007; Serisier et al. 2009). Notably, measurements of sputum (shear) 

viscosity generally lack standardisation and have failed to provide a global biomarker for diseased 

states. It is the case that the variability of results is mainly due to the differences between subjects, 

methods of collection, and diseased state. Furthermore, this casts doubt on the appropriateness of 

shear rheometry in the measurement of bulk rheological properties of sputum, which is 

inhomogeneous and can contain cells and aggregates (Kini 2002). Homogenisation of the sputum 

prior to rheological measurements can be attempted by means of shearing the sample several times 

in a syringe (Serisier et al. 2009). Comparisons of viscoelastic measurements between homogenised 

and non-homogenised samples of the same sputum sample show that values of G’ and dynamic 

viscosity can change up to a few decades of magnitude (Broughton-Head et al. 2007). This suggests 

that the homogenisation procedure itself strongly influences the structure of the sample, and this 

may mask any differences detectable and stimulated by the precise nature of the disease.  

Filament stretching Under filament-stretching considerations, the filament stretching rheometer 

(McKinley and Sridhar 2003; Eggers 1997; Anna and McKinley 2001) has emerged as a favourable 

apparatus for measuring the extensional properties of highly-mobile low-medium viscosity fluids. 

This measuring device determines access to crucially important bulk rheological properties such as 

Trouton ratio, extensional viscosity and characteristic time. This is precisely the modelling 

procedure adopted in the present study, where trends of increasing apparent extensional viscosity in 

time are derived over acceptable ranges of deformation rate. Filament samples may vary in length 

(nano, micro, macro) and loading (length/breath). Subsequent necking leads to significant thinning 

and reduction in the central region of the liquid bridge, whilst end-effects result in considerable 

shearing within the near end-plate zone (filament-foot). Previous and relevant studies on filament 

stretching span numerous application areas including - micro to macro-filamentation, coatings, 

cavitation, printing, foaming, extrusion, gas-droplet formation, conventional and dynamically-

loaded journal-bearing lubrication. A comprehensive overview of filament stretching technology is 

provided by McKinley and Sridhar (2003), covering the flow dynamics within filament-stretching 

rheometers for non-Newtonian fluids. These authors also commented (McKinley and Sridhar 2003) 

on the challenge to reach large strains (Hencky-strain, measure of time or strain build-up). In the 

present context, it is anticipated that sputum samples exhibit strain-hardening, through rapid 

deformation in dilute polymer solutions, allowing for various representative constitutive equations 

used to model such flows. For example with Boger fluids, exhibiting constant shear viscosity and 

pronounced strain-hardening in uniaxial extension, the overall dynamical response within 

elongating liquid-filaments is now well-reported in the open literature. Regarding the thinning and 

breakup of filaments, Eggers (1997) provided a comprehensive experimental and numerical review 
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on break-up for Newtonian filaments and jets. Moreover in step-strain mode, Anna and McKinley 

(2001) examined the transient dependence of the diameter of the filament, the time to break-up as a 

function of the sample molecular weight; with comparison against the theory for break-up of 

slender viscoelastic filaments. In the present analysis, kinetic network-theory fluid modelling (via 

SXPP) is called upon to pursue the detailed numerical differential equation computation and 

analysis. 

Typically, the dynamic development of the mid-filament diameter is monitored during the 

process of necking and failure, from which the appropriate rheological calculations are performed 

(dynamic extensional viscosity, characteristic time). In step-strain mode (CaBER), the filament 

stretching rheometer may be employed under capillary-breakup conditions (Eggers 1997; Anna and 

McKinley 2001). CaBER trials impose a rapid axial step-strain of prescribed magnitude, and then 

allow the sample to relax and breakup under the action of capillary forces (fluid self-selecting time 

scale). Commonly, this implies short initial stretched samples (user-controlled), and much shorter 

than under FiSER-mode (continuous stretching, imposed rate/time scale). This is a practical 

attraction of the CaBER-mode for in-situ sample testing (point-of-healthcare clinical dispensation 

and treatment for out-patients), avoiding the need for sample transportation and possible 

degradation (technique of choice). Although the flows in these two types of filament-stretching 

rheometer differ, both devices generate, a priori a uniaxial extensional deformation – hence, 

accessing dynamic extensional viscosity. The CaBER-form also offers the capability to estimate 

sputum principal characteristic time (measure of elasticity, resistance to thinning, time for stress-

growth), necessitating cylindrical filamentation. FiSER and CaBER trials are conducted here under 

pom-pom (SXPP) material modelling to analyse the influence of material-system parameters on the 

cylindrical filament shape (minimal radius) and therefore to the material characterisation itself.  

Concerning FiSER and CaBER filament-stretching, as a suitable rheometric technique in 

deployment on biosystems pertinent for respiratory disorder study, comparison between numerical 

predicted data and theoretically derived results (transient simple uniaxial extensional flow) may be 

used as a directive. For example, this may elucidate which rheological extensional test, is more 

suitable to determine material properties, and which more practical in gathering diagnostic data. 

FiSER is found to produce faithful extensional viscosity values alongside corresponding 

experiments, with the drawback of being impractical in experimental/field-clinical usage given its 

size/sample requirements. That is, to within certain deformation ranges/parameter sets. 

Alternatively, CaBER is effective in determining the characteristic time, but considerable care must 

be taken over the mid-plane filament-diameter measurement window to ensure 
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agreement/consistency with theoretical data. One thesis proposed here, is to explore the possibility 

of utilising FiSER in predictive mode, to dictate effective use of CaBER for deployment clinically. 

9.2 Governing equations and rheology 

The governing equations considered in this chapter have been detailed in chapter 2. The non-

dimensional continuity and momentum conservation principles are expressed in eqs.(2.11)-(2.12). 

Some relevant characteristic quantities are introduced based on a characteristic velocity scale U 

(average velocity) and a length scale L (radius at contraction or filament initial length L0). A time 

scale ( t = L0 U ) is derived, the inverse of which defines a characteristic deformation rate for 

contraction flow; in the filament setting, the initial stretch-rate is taken as the time-scale, as 

( 0 =U L0 ).The dimensionless group numbers of Reynolds number ( 0Re UL = for contraction-

flow, and 2
0 0 0Re L =   for filament-stretching), Deborah number (likewise, De = lU L  in 

contraction-flow and  De = l 0 in filament-stretching), and capillary number ( 0 0 0Ca L  =  , 

filament-stretching alone) are introduced considering density ρ together with the zero-shear rate 

viscosity (0) as a viscosity scale. Here,  is the interfacial surface tension coefficient, relevant for 

free-surface conditions. Then, the stress and pressure are non-dimensionalised with ( 0 U L  or 

0 0  ) scales.  

From a viscoelastic modelling viewpoint, the kinetic/molecular-based pom-pom model is 

considered. Then, the mass-momentum governing equations should be supplemented by a 

constitutive equation for stress, which may be represented in general form as: 
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Here, for the Single Extended pompom (SXPP) model, one identifies the functionals (f1, f2) and 

four additional parameters (q, εpom, λpom, αpom). These parameters govern the number of side-branch 

arms to the molecular-backbone chain-segment (q), system entanglement (εpom), the stretch of the 

back-bone segment (λpom), and the degree of system anisotropy (αpom). Corresponding forms 

extracted from the physics for these functionals (f1, f2), in terms of the base network-description 

parameters (q, εpom, λpom, αpom) and (De, ) may be given by: 
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where, the free parameter ν is estimated by data-fitting and found to be inversely proportional to the 

number of side-branch arms dangling from an end of the molecular chain-segment (ν = c/q, with c 

taken as 2), see Blackwell et al. (2000). The parameter εpom is the ratio of the backbone stretch 

(λ0s=) to the orientation (λ0b) relaxation times (larger values indicate more highly-mobile system 

states, less degree of entanglement). With the single-equation (SXPP) approximation to the pom-

pom model, representation of the back-bone stretch parameter lpom, is collapsed from its 

generalised differential evolutionary form to an instantaneous algebraic response, given through 

expression: 

   1 e1 tr
3 1pom

Dl


= 


 , 0

0

s
pom

b

l
l

= .        (2.54) 

In this respect, the viscometric data of relevance for the current study and this SXPP model are 

reported in Chapter 3, section 3.3, covering extensional viscosity response for the various system-

network variation parameters.  

9.3 Contraction flow analysis: relevant to biliary duct and bile flow studies  

 The 4:1 axisymmetric rounded-corner contraction-flow problem has been used to analyse the 

influence of the XPP rheometrical parameter setting on the development of flow field structure, 

governing system-network composition under viscoelastic creeping flow conditions. Such a flow 

configuration is utilised as a model idealisation for bile duct narrowing within the biliary system. 

The length of upstream and downstream sections are 27.5L and 49L, respectively. To solve the 

governing system of partial differential equations for the XPP model, appeal is made to the inlet 

boundary-condition treatment employed by Aboubacar et al. (2005).  That is, by imposing fully-

developed velocity and extra-stress XPP-profiles on flow-entry. These are provided from 

computations based on the equivalent axisymmetric entry-channel flow problem. Fully-developed 

boundary conditions are established at the outflow ensuring no change with respect to velocity 

component Uz and vanishing component Ur. In addition, no-slip boundary conditions are imposed 

along contraction-geometry walls. Once flow kinematics have been established at the inlet, stress 

can be gathered by solving the corresponding consistent set of ODEs. Simulations are initiated from 

a (We=0.1)-solution state and continuation in We parameter-space is employed until a critical level 

of Weissenberg number is reached (Wecrit), beyond which either oscillation or numerical divergence 

is encountered.  

 Based on various elasticity levels (We), the present study presents an analysis for the influence 

of the number of dangling molecular-arms q across the range {2,5,10}. The remaining XPP 

parameters setting are unperturbed, Re=0, εpom=0.666, αpom=0.15 and β=1/9 (Fig. 9.1). The flow 
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field structure is traced for each setting of arms-q, through vortex patterns for a series of steady-

state solutions up to critical levels of Weissenberg number. Then, at the level of We=10, 

corresponding solution states are provided along the downstream wall, manifested through principal 

stress N1 (variation in q and αpom, respectively), and stretch λpom (Fig. 9.2).   

9.3.1 Vortex behaviour with q-variation As depicted from Fig. 9.1, elasticity levels attainable in 

the numerical simulations have been found to decline with increasing number of dangling branched-

arms (q), with Wecrit for q={2, 5, and 10} being {60, 30 and 11}, respectively. It is important to bear 

in mind that the flow here is not purely extensional, but of complex dynamical form. As all model-

fluids in consideration exhibit practically identical shear viscosity, it is anticipated that the increase 

in maximum value in extensional viscosity (strain-hardening) with increasing branched-arms is a 

major factor in determining the reduction in Wecrit. Notably, one generally observes significantly 

larger vortices with increasing levels of elasticity (We) and number of branched-arms (q). Here, 

salient-corner vortex cell-size shape adjustment against We, measured on the vertical wall (L) and 

horizontal wall (X), follow similar patterns to one another, relatively independent of q-parameter. 

Note that, the magnitude of X is larger than for L at any chosen We5. This growth-trend for X and 

L can be associated with all the strongly strain-hardening cases considered (q≥5).  In addition, 

major increments are observed in vortex strength between We values of 5 and 10 for q≥5 (Fig. 9.1), 

with convex curvature attached to the vortex separation-line.  Moreover, for q={2, 5}, vortex 

strength decreases sharply from {3.01, 25.09} at We=10, to {0.46, 12.97} at Wecrit. This is likely 

due to the drop in level of softening at intermediate extension-rates. 

9.3.2 First normal stress and stretching with q-variation Independent of the fluid model, the 

components of the deformation tensor have their largest value (peak-maxima) around the corner; 

this stimulates corresponding response in all solution components at the same location. This 

increase is followed by a levelling plateau along the downstream wall, a flow characteristic 

commonly attributed to the 4:1 benchmark contraction-flow problem. Under XPP modelling, 

profiles of N1 and λpom along the downstream wall (y=3) are displayed in Fig. 9.2 at We=5. There is 

a significant increase in the level of N1 and λpom with increasing arms-q from the corner (peak) and 

beyond (downstream-wall plateau). The relative increase in N1 from the reference-base of (q=2) to 

(q=10) is nearly three times. Equivalently, λpom almost doubles (1.7 times) its reference-base level 

for (q=2). Prior to the contraction zone, in the upstream channel, and independent of the number of 

branched-arms q, there is relatively no variation in N1 and λpom fields (unstretched material: λpom=1). 

Within this zone, shear dominates over extensional deformation.  
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9.3.3 Vortex behaviour with pom-variation, low (εpom=0.999), median (εpom=0.666), and high 

levels of entanglement (pom=0.333) The influence of pom, the ratio of the relaxation time of the 

stretch of the backbone to that of its orientation, on the vortex structure is shown in Fig. 9.3 for 

q=10, pom=0.15, and =1/9. This pom parameter may be used to interpret the degree of 

entanglement of the structured-network system. High values of pom correspond to molecular-chains 

with relatively short backbone lengths but long arms to slow down the dynamics. In this case the 

system is less entangled, and the orientation and stretch relax almost simultaneously. Alternatively, 

low values of pom correspond to highly-entangled systems. The orientation relaxation time with low 

values of pom is much slower than the relaxation time of the backbone stretch. In Fig. 9.3, one may 

observe that the combination of extensional viscosity and the degree of entanglement clearly 

Figure 9.1 Stream function; increasing We; q-variation {2,5,10}; pom=0.666, pom=0.15, =1/9 
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influence vortex activity, under vortex size and intensity. As opposed to under the same shear 

viscosity with increasing q, changing pom from 0.333 to 0.666 and 0.999, generates delay in shear-

thinning response.  Here, one observes larger vortex intensity (Ψsal) with increasing levels of 

elasticity (We) at different pom. However, at the low value of pom=0.333, the magnitude of the 

salient-corner vortex cell-size of the horizontal wall (X) is larger than that obtained for pom=0.666 

and pom=0.999. This is to be regarded as a consequence of the higher degree of entanglement for 

pom=0.333 state, when interpreted against those for pom=0.666 and pom=0.999 states. Nevertheless, 

at We=10 (Wecrit=9 for ε=0.999), there is about 54% and 61% increase in salient-corner vortex 

intensity from pom=0.333 to pom=0666 and pom=0.999, respectively. This finding one may attribute 

to the difference in level of strain-hardening from pom=0.333 to pom=0.999. Note that, the shape of 

the vortex separation-line evolves from convex at We=1, to concave at high We. 

 

 

 

Figure 9.2 First normal stress (top) and backbone stretch (bottom) along the downstream wall,  
q-variation {2,5,10}; pom=, =1/9 , We=5 

Z



20 25 30 35 40
0

1

2

3

4

5 q=10
q=5
q=2



Z

N
1

20 25 30 35 40
0

2

4

6

8

10
q=10
q=5
q=2



A Computational Extensional-Rheology Study of Two Biofluid Systems 173 
 

 

9.3.4 First normal stress, stretching, and fringe pattern fields with increasing We  In Fig. 9.4a, 

field plots are presented for polymeric first-normal stress (N1) for pom=0.666, q=10, pom=0.15, 

β=1/9. Note that maximum in N1 field plot for We=10 is located around the corner just after the 

constriction, whilst for We=1 and 5, the maxima in N1 are located before the contraction. From 

We=1 to We=10 of Fig. 9.4a, N1-maxima increase from 2.57 to 29.34 units with a downstream shift 

in location of such stress-maxima. There is some noticeable cross-stream influence away from this 

stress-maxima towards the centreline, which is evident at We=1 and that increases with rise in We.  

 For molecular stretch, λpom in Fig. 9.4b, one can distinguish regions where there is relatively 

unstretched material. These regions correspond to inflow and recirculation zones. Such regions of 

unstretched material correspond to zones where shear deformation dominates over extensional 

deformation. In addition, there is a ‘banded entry-flow’ zone of stretched material, where the 

influence of increasing levels of elasticity is reflected in larger extension of the polymeric 

molecular-chains.  For We=1, stretch generates a value of λpom≈2.38 at the boundary wall, whilst for 

We=5, this rises to λpom≈4.19. At larger levels of elasticity (We=10), solution differences become 

more apparent over We=1 and We=5. The relative increase in λpom over the contraction zone, from 

(We=5) to (We=10), lies around 60%, as opposed to 43% increase from (We=1) to (We=5).  

 

 Fig. 9.5 demonstrates the Principle Stress Difference (PSD) fields for the SXPP model at We=5 

and 10 with pom=0.666, q=10, pom=0.15, β=1/9. PSD contains information covering both shear and 

extensional response ( 2 2
1 4 xyPSD N=   ) and conveys patterns of discrete bands and levels of 

equal stress. Such evidence is often held as a direct measure of correspondence to stress-

birefingence data extracted from counterpart experimental flow investigations (Verbeeten et al. 

2004). On the symmetry line, where τxy=0, PSD patterns represent the first-normal stress-difference 

response. Moreover, fringe patterns are detected that begin to originate from the corner and expand 

outwards from that station. In addition, within Fig. 9.5, the banding pattern along the downstream 

wall (in shear deformation) is more expanded for We=10 than for We=5, and likewise, even the 

fringes away from the wall appear relatively more widespread. No sign of maximum shifting is 

observed as elasticity levels are raised. However, the relative increase in PSD-maxima lies around 

70% from We=5 to We=10. 

The study of the biliary system (which practically would be constituted by a set of contractions; 

Sugita et al. 2003) through the idealised 4:1 contraction problem (Walters and Webster 2003; 

Owens and Phillips 2002), has enabled the determination of the effects of rheological properties and 
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complex shear/extensional flow conditions on flow field variables and structures. In this work, first 

normal stress difference (N1)-fields and vortex structures have been found to be highly indicative 

flow features, based on the presence of duct narrowing (and by implication near-blockages). In this 

respect and relating to bile/biliary system disorders, accurate bile rheological characterisation 

(through complex constitutive equations), N1 and vortex-structure dynamics are all key 

determination factors worthy of further investigation. 

 

 

 

Figure 9.3 Stream function; increasing We; pom-variation {0.333, 0.666, 0.999}; q=10, pom=0.15, =1/9 
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Fig. 9.4 a) First normal stress-difference (N1), b) backbone stretch (λpom) fields:  
SXPP axisymmetric; increasing We; εpom=0.666, q=10, pom=0.15, β=1/9 
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Figure 9.5 Fringe pattern (Principle Stress Difference, PSD) fields: SXPP axisymmetric, 
We={5, 10}; εpom=0.666, q=10, pom=0.15, β=1/9 
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9.4 Filament Stretching: towards a rheometer and biomarker for respiratory disorders 

Under the filament-stretching procedures of current interest, the filament is stretched between 

two flat circular end-plates through a controlled synchronous motion to a specific time/length, 

followed by a sudden halt. This leads to both stress growth (FiSER) and relaxation (CaBER), 

followed by filament break-up. In the FiSER mode, the time-scale is inversely proportional to the 

initial constant stretch-rate that is imposed for the moving-plates. In contrast, for the CaBER mode, 

a self-selective, own time-scale of material sample is chosen. The problem is axisymmetric about 

the axial z-axis, along the filament centreline and perpendicular to the end-plates. The origin is 

taken at the intersection between the filament mid-plane and this axis. The moving domain has an 

initial aspect ratio ( 0 0 / plateL R = =0.54) and a final aspect-ratio ( /f f plateL R = =2Lf/Dplate), where 

Lf and Rplate represent the filament final-length and plate-radius, respectively. 

The filament stretching problem involves a free-surface determination, where capillary forces act 

upon the liquid-gas free-surface to determine its displacement. The force balance on this interface 

may be expressed as a function of the Cauchy stress (), ambient surrounding pressure (pa), 

principal radii of curvature (R1 and R2) (Sujatha et al. 2008) and normal vector (n) to the free-

surface,  

1 2

1 1
ap

R R

 

 =    
 

 n n n .         (6) 

Based on an initial imposed stretch-rate ( 0 ), the appropriate corresponding boundary conditions 

are those of no-slip on the end-plates (upper +, and lower -), under axial velocity component, 

 Vz = 0L t  , where 
 L t  = ±0.5L0 exp 0t  . 

9.4.1 Filament behaviour with q-variation During CaBER (fixed plate-position in time; step-

strain phase) and for a small number of arms (q=2), transient development in filament-surface 

profiles reveal that, the fluid progressively thins at the filament mid-plane (see Fig. 9.6), with no 

wave-like profile perturbations (little resistance to the necking down). This trend adjusts for fluids 

with medium to large number of arms, see q≥4 profiles. This symmetrical reflective wave-like 

motion (stimulated by fluid resistance to break-up) is observed to commence at the end-plate zones, 

expanding outwards and towards the mid-plane (Fig. 9.6, q≥4), prior to reflection backwards from 

the mid-plane towards the end-plates. Due to enhanced strain-hardening properties and through 

temporal trends observed in Rmid development, Fig. 9.7 plots confirm that as the number of 

branched-arms increases the resistance to break-up is increased. This is reflected in longer break-up 

times as q is increased. The filament breaks-up earlier for q=2 (~2 time units) compared to those 

corresponding to q=4 (~9.5 units), q=8 (~19 units), and q=15 (more than 20 time units). 
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9.4.2 Filament behaviour with pom-variation Recall that in theory the parameter pom, 

representing the ratio of stretch to orientation relaxation times, is inversely proportional to the 

entanglement molecular weight of the backbone segments. Therefore, values of pom approaching 

unity correspond to molecular chain-segments with relatively short backbone-lengths, yet 

displaying long arms to retard the dynamics. Small values of pom (tending towards zero), 

correspond to highly-entangled backbone configurations. 

Hence, as pom increases, the polymeric model-system reflects less entanglement (inverse 

relationship), and is more mobile. This state will exhibit pronounced strain-hardening, and hence 

q=8 

q=2 q=4 

q=1

q=2 q=4 

q=8 q=15 

Figure 9.6 CaBER, transient development of free-surface, q-variation {2, 4, 8, 15}; L/D=2,  
(pom=0.99, pom=0, =0.262) 

 

Figure 9.7 CaBER, transient development of Rmid, q-variation {2, 4, 8, 15}; L/D=2, 
(pom=0.99, pom=0, =0.262) 
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more resistance to break-up. Under CaBER and at large level of pom (Fig. 9.8 right), stronger 

presence of reflective waves throughout the filament is observed, when compared with (Fig. 9.8 

left, centre). Then, for example at pom=0.99 (Fig. 9.8 right), the reflective wave is first apparent at 

t=2 units, traveling from the end-plates towards the mid-plane; after ~t=4 units the wave is being 

suppressed and reflected backwards towards the plates.  The wave-shape is considerably damped as 

pomis reduced (more entangled/less mobile system), and less resistance is observed through the 

reduced time to break-up (see for example, Fig. 9.8 left, Fig.10). This is observed comparatively in 

the centreplane temporal trace of Rmid-profiles of Fig. 9.9, where filament break-up is earlier at ~3 

time units for pom=0.2, compared to {5, 19} units for pom={0.33, 0.99}. 

 

 

9.4.3 Filament behaviour with β-variation Concerning CaBER, first, one may comment on the 

impact of solvent-fraction β-elevation upon the early-time response as illustrated in Fig. 9.10. 

Under such β-change, the fluid-filament exhibits greater resistance at the lower level of β=0.262 

(highly-polymeric), once more, through the manifestation of a symmetrical reflective wave; whilst 

this is absent at the higher level β=0.915 (solvent-dominated) state. Corresponding temporal 

developments in Rmid-profiles are depicted in Fig. 9.11. These profiles depict a clear tendency 

=0.2 =0.33 =0.99 

Figure 9.8 CaBER, transient development of free-surface, pom -variation {0.20, 0.33 & 
0.99}; L/D=2,  

Figure 9.9 CaBER, transient development of Rmid, pom–variation {0.20, 0.33 & 0.99}; L/D=2,  
(q=8, pom=0, =0.262) 
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towards enhanced strain-hardening at low β levels, as filament break-up time increases from 8 units 

for β=0.915 to 19 units for β=0.262. 

 

 
9.4.4 Extensional viscosity estimation, q-variation After investigating the impact of the several 

SXPP parameters on the numerical predictions for CaBER and FiSER, one may assess the ability of 

the present numerical toolset for estimating rheometrical properties of the fluids under 

consideration. Specifically, in assessment of the rheometrical capability and potential for good 

biomarker qualities, from the data generated. Firstly, extensional viscosity estimation is considered, 

through the comparison of its theoretical prediction (obtained from transient uniaxial extension data 

– red intense solid line in Fig. 9.12), versus those extracted from numerical results (black dotted 

lined) and its average (light green solid line). This estimation was obtained using 

    3Ext zz rr st    =  
  and     2 mid midt R dR dt = 

  (Sujatha et al. 2008). The extensional 

deformation rate used for the theoretical estimation is  =1, which somewhat matches with the 

numerical solutions, for which {pompom}={0.99,0,0.262}. The branching of the polymeric 

molecular-chains, in the range of q={2, 4, 8, 15}, has proven to have the strongest influence on 

=0.262 =0.915 

Figure 9.10 CaBER, transient development of free-surface, -variation {0.262, 0.915}; L/D=2,  
(q=8, pom=0.99, pom=0) 

 

Figure 9.11 CaBER, Rmid transient development, -variation {0.262, 0.915}; SXPP (pom=0.99, pom=0, q=8) 
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material property estimation. This is illustrated in Fig. 9.12 and 14. Here, comparison across 

parameter variation renders q as the finest/most accurate calibration parameter, provided that q-

variation lies within a relatively reasonable q={2,4,8,15} range. Parametric variation on pom and  

do not provide such clear boundaries of measurement, even though their variation range covers 

most of their domain. On-going through such a wide range of q-variation, coverage is provided for 

polymeric melt-like fluids (small q) with small Trouton ratios, up to highly-mobile (dynamic, 

polymeric solution-like) fluids (large q), which show relatively larger peaks in extensional viscosity 

(see Fig. 2.9). As observed from Fig. 9.12, it has been possible to determine a suitable measurement 

window (highlighted within the red dotted square) in which accurate extensional viscosity 

estimation can be captured.  This measurement window corresponds to fluids with intermediate q-

values (q=4, 8). The criterion employed for window-capture, is the matching between the transient 

theoretical and average numerical predictions, both in value and temporal trend. Notably, for 

FiSER, the theoretical and numerical curves follow similar dynamic trends. Beyond the accurate 

prediction windows, these curves predict more disparate viscosity values. In contrast for CaBER, 

numerical solutions provide a poorer quality extensional viscosity estimation as q is increased 

(elevated strain-hardening characteristic); yet their averages are relatively accurate with respect to 

the theoretical predictions within the measurement window indicated. Again, the results outside the 

window provide inaccurate estimations from CaBER results. Specifically, for the case of the q=2 

model-fluid, the numerical solution is insufficiently adequate, in being too short in time to break-up, 

to be compared against the theoretical data. Alternatively for q=15, the average numerical curve lies 

far below the theoretical data-curve. This may be attributed to a consequence of the strong early 

presence of a reflective wave under these branching conditions, and the disturbance this has on 

temporal centreplane stressing-states (confirmed by counterpart FiSER solutions, where reflective 

waves are avoided).  
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In terms of relative time-duration of each CaBER and FiSER trial, FiSER provides the shortest 

time, with times of ~O(4) units, whilst CaBER displays times as large as ~O(20) units. As pointed 

out above, FiSER trials can qualitatively reproduce dynamic extensional viscosity data throughout 

Figure 9.12 Extensional viscosity estimation transient development contrasting CaBER and FiSER; SXPP pom=0; 
a) q-variation (center) q={2, 4, 8, 15}, pom=0.99, =0.262; b) pom-variation (left) pom={0.2,0.33, 0.99}, =0.262, 

q=8; c) -variation (right) ={0.262, 0.915}, pom=0.99, q=8 
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the complete trial-cycle. There, the average numerical prediction faithfully reproduces theoretical 

estimation. In comparison and by nature, CaBER is temporally longer and manifests disturbance 

from reflective waves due to the step-strain, conditions that do not nurture accurate extensional 

viscosity estimation.  Therefore, in conclusion, FiSER alone has proven to be suitable for wider use 

over filament time-evolution and in estimation of extensional viscosity for moderate polymeric-like 

fluids: q={4,8} and {pompom}={0.99,0,0.262}. Here, and to avoid impractical experimental 

FiSER fluid measurement, the recommendation is to use such predictive simulation instead. In 

contrast, CaBER is tightly restricted to only a narrow terminating temporal-interval of effective 

extensional viscosity estimation capability, and is thus much less preferable. 

9.4.5 Stress-growth characteristic time estimation Fig. 9.13 illustrates the ability of FiSER and 

CaBER to estimate the characteristic time (lest) of a model fluid. Here, converse to findings on 

extensional viscosity estimation in the preceding section, now CaBER procedures are found to 

provide accurate characteristic time estimation (original design intention of the step-strain CaBER 

experiment); whilst FiSER procedures prove notably less reliable in this respect. Once more, q-

variation is the key parameter used in determining lest. Here, for CaBER-mode, the branching-

factor variation, q={2,4,8,15}, predicts lest ranging between 1 and 5 units (boxed regions, upper 

row/centre Fig.14). This provides the coarser, and therefore more definitive, calibration factor for a 

rheometer. Moreover, the pattern of lest curves provides some practical guidance as to effective 

measurement-estimation windows. These curves peak abruptly at an early stage of measurement; 

which becomes sharper, as either q or pom are increased, or is decreased (parameters that also 

promote larger extensional viscosity, see Fig. 2.9). After such a peak, lest curves decline to a 

minimum. Beyond this second extrema, a relatively smooth pattern emerges to take up a second 

maximum. Finally, the curves decline again before locating filament break-up. This last relatively 

smooth period is recommended as the most suitable interval for data collection (boxed-highlight, 

Fig. 9.13).  

In contrast, FiSER results do not show such positive and practically measureable characteristic 

features inlest estimation. Varying the branching (q), (pom)and () factors do not change lest 

curves, which lie close together after the peak-value encountered earlier in the trial. These lest-

peaks appear at Hencky strain ~1.5 in all cases, for which lower maxima are observed with either 

larger q or pom, or smaller . Hence overall, CaBER is the preferred technique of choice for 

characteristic time estimation. 
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9.5 Conclusions 

Under the 4:1 contraction problem, mimicking a bile duct narrowing, one has observed that 

differences in solutions, derived across variation in the number of branched-arms-q, are related 

principally to properties of extensional viscosity and first normal stress-difference, and barely at all 

to shear viscosity. The level of elasticity reached is also related to the degree of strain-hardening 

(Aboubacar et al. 2005; Aguayo et al. 2007). For moderate levels of increase in extensional 

viscosity, Wecrit is often larger than that obtained for strongly-hardening fluids. Vortex cell-size and 

curvature of vortex separation-lines follow similar trends as either q (number of arms) or pom (less 

degree of entanglement) are increased. Firstly, a growth-trend is observed through X and L; which 

can be associated with enhancement in strain-hardening, provoked by parametric change, either 

through q or pom (irrespective of the background physics upon which these parameters were 

introduced). This proves particularly so for q≥5 and pom≥0.333.  In addition, major increments are 

Figure 9.13 Characteristic time estimation transient development contrasting CaBER and FiSER; SXPP 
pom=0; pom-variation (left) pom={0.2, 0.33, 0.99}, =0.262, q=8; q-variation (center) q={2, 4, 8, 15}, 

pom=0.99, =0.262; -variation (right) ={0.262, 0.915}, pom=0.99, q=8 
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observed in salient-corner vortex intensity with 5≤We≤10 for q≥5;  and for pom≥0.333 We.  

Conspicuously, for q={2, 5}, vortex strength decreases sharply from {3.01, 25.09} at We=10, to 

{0.46, 12.97} at Wecrit. This is most likely due to the drop in level of softening at intermediate 

extension-rates. In pure shear flow, established over the exit-channel, significant increase in N1 and 

λpom is observed. At any given arm-q-level chosen, and as characterised by maxima in N1, variable 

levels are sustained along the downstream wall. Adjustment in solution levels for (N1, λpom) with 

increase in arms-(q) may be attributed to shear response in first normal stress-coefficient, at the 

prevailing shear-rates developed in the exit-channel.  

Corresponding findings on filament stretching, under CaBER, are related to predictions of the 

evolution of mid-filament radius Rmid, and filament shape. As q (number of -arms), pom (less degree 

of entanglement; more mobile systems) and β (polymer concentration) increase, fluid strain-

hardening properties are enhanced. This provokes (i) longer time-cycles for each CaBER and 

FiSER trial; and (ii) under CaBER, symmetrical reflective wave-like motion (stimulated by fluid 

resistance to break-up). Such wave-like motion is observed to commence at the end-plate zones, to 

expand outwards and towards the mid-plane, to be reflected back from the mid-plane, and finally to 

be damped away at later trial-stages.  

Regarding estimation of material properties, and thus on the development of predictive 

rheological toolsets, here significant advances have been made. The assessment capabilities of 

CaBER and FiSER have been effectively analysed, with respect to extensional viscosity and 

characteristic-time estimation. Specifically, FiSER produces faithful extensional viscosity 

estimation within appropriate deformation ranges/parameter sets. One notes that the FiSER 

technique is impractical in experimental/field-clinical usage given its size requirements (suggest to 

be replaced with simulation alternative). Alternatively, CaBER is suitable for clinical use, given its 

reduced size, but is restricted to effective determination of fluid-sample characteristic time alone. 

Practical guidance as to measurement gathering through characteristic-time curves is proposed. 

These CaBER-curves peak abruptly at the onset of the test, and decline thereafter to reach a 

relatively smooth trend, which provides a reasonably window for effective and practical 

measurement of characteristic material-time. Note that, as observed through ideal theoretical 

uniaxial extension response, any mechanism to adjust physical characteristic response 

(parametrically via number of arms q, entanglements pom, or polymer concentration ) that raises 

extensional viscosity levels, has a counterpart effect on complex flow solution features (as in 

temporal Rmid profiles for filament stretching; vortex growth for contraction flow; see discussion 

under results described with q-variation).  
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Overall, this work has permitted the determination of some key factors of influence for two 

biological flow systems and their related disease states, namely: biliary duct systems and disorders 

(contraction flow) and respiratory systems and COPD (filament stretching). Firstly, N1 and vortex 

structures have been exposed, that in broad terms are indicative flow features with bearing on 

biliary system narrowing. In contrast under filament stretching, extensional viscosity/characteristic-

time prediction windows (forecasts) have been successfully devised – providing the necessary 

guidance for experimental FiSER/CaBER trials – and leading towards specification of a reliable 

biorheometer and establishment of an effective biomarker. In this manner, dynamic extensional 

viscosity trends have been well captured via FiSER, and effective practical measurement of 

characteristic-time has been extracted via CaBER. Moreover, this predictive toolset has already 

been successfully deployed to evaluate healthy and unhealthy sputum clinical samples (to appear 

subsequently). These results provide illustration of the significant progress being made towards 

predictive guidance in clinical data-acquisition. The ambition for the future is for this work to be 

more strongly linked to clinical requirement, and thereby, ultimately lead to improved preventive 

disease diagnosis and therapy. 
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CHAPTER 10  

Concluding remarks and future directions 
 

This research work has dealt with the numerical modelling of complex fluids in confined and 

free-surface steady-state and transient complex flows. Particular attention has been paid to 

the flow of wormlike micellar solutions through the constitutive approach of Bautista-

Manero. Moreover, viscoelastoplastic and biofluid predictive applications have been 

investigated, alongside comparison between experiments and numerical simulations 

performed on the flow of Boger and pseudoplastic-fluids in contraction-expansion situations. 

 The numerical modelling component of this work has been accomplished through 

collaboration between the rheology groups at Universidad Nacional Autónoma de México 

(UNAM, leaded by Dr. O.M. Brito); and at the Institute of non-Newtonian Fluid Mechanics, 

Swansea University, Wales UK, (INNFM, leaded by Prof. M.F. Webster, performed by J.E. 

López-Aguilar). The experimental results exposed in Chapter 8, were obtained at UNAM, as 

part of the doctoral research and corresponding thesis of M.Eng. M. Pérez-Camacho. 

 On wormlike micellar fluids and equations of state In this thesis, the study complex 

flows of wormlike micellar systems under the approach of Bautista-Manero, has leaded to 

corrections in this family of constitutive equations that account for (i) the inclusion of the 

viscoelasticity (via the characteristic time) into the structure construction-destruction 

mechanism; and (ii) the consideration of the absolute value of the dissipation function as the 

driving influence to depart from Oldroyd-B-like behaviour. The first correction, described in 

Chapter 5, has risen in deriving inconsistent results for MBM-EPD values at the Stokesian 

limit with the 4:1:4 contraction-expansion problem. At this limit, inclusion of the 

characteristic time (viscoelasticity) into the structure equation provided consistent epd results 
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and larger Wecrit with respect to those for the MBM model. Here, significant trends were 

observed in vortex dynamics and epd values as the viscoelasticity level was increased. Vortex 

activity (in size and strength) resembled the evolution of extensional viscosity with the 

elevation of extension rate, and provides a close relationship between evolution in kinematic 

structure with that in second and first-normal stress-difference data fields. Meanwhile, a 

particular version of the micellar models (NM_T) was found to display rising trends in epd as 

We increased. In addition, the f-functionality and dependency on Weissenberg number, 

indicates a capability to attain relatively large Wecrit. Here, the stronger the f-We 

functionality, the larger the attainable Wecrit for convergence. Consistently, the EPTT model 

provides the larger Wecrit=O(102), with its exponential f-We functionality; whilst the micellar 

(in their steady-state form) and LPTT models attained relatively smaller Wecrit=O(10) , with 

their linear f-We functionality. 

 The second correction, described in Chapter 6, deals with the fact that in complex flows 

the natural-signed micellar models generate negative unphysical fluidity values 

(accommodated here within the dimensionless f-functional); and hence, negative viscosities 

result. This has its origin in the negative dissipation function values generated in complex 

flow, which are not observed in positive-valued simple ideal flows (as considered in 

theoretical construction). With the consideration of the absolute value of the dissipation 

function in the structure equation, this inconsistency is resolved, and f≥1 are obtained 

throughout the field. Moreover, Wecrit values are considerably increased (Wecrit=O(40) for 

NM_p_ABS, with respect to the results of Wecrit=O(1) under natural-signed versions). This 

observation is quite general and found applicable to other models too, such as the Phan-

Thien-Tanner models (for which natural-signed EPTT Wecrit=O(102), in contrast to O(103) for 

EPTT_ABS). Apart for these constitutive corrections, the specification of consistent 

deformation-rate boundary conditions at the pure-extension flow-centreline has proved highly 

effective in deriving smoother solutions at impressively high elasticity levels (Wecrit=O(102) 

for micellar models and Wecrit=O(103) for EPTT models). Locally enforced boundary 

conditions, through the deformation-rate components at the flow-centreline, are those of 

vanishing-shear on the shear component, and a simple uniaxial extension relationship 

between the extensional gradients. Adoption of a conformation-tensor version of the micellar 

and PTT constitutive equations has lead to an increase in Wecrit with respect to the stress-

tensor based versions (not as effective as the ABS-correction). This has also provided the 

framework to evaluate solution-stability, via the conformation tensor eigenvalues. In this 
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sense, the second eigenvalue of the conformation tensor has been identified as a suitable 

indicator of numerical stability, which reflects zones of localised and growing negativity as 

elasticity levels are increased. Furthermore, some theoretical identities have been derived 

between the first normal stress differences and the change of sign in the eigenvalues at the 

centreline; upon this basis, departure from the linear viscoelastic regime can be evaluated in 

complex flows. 

 On viscoelastoplastic complex flow modelling The applicability of the corrections above 

is applied and illustrated in Chapter 7, in the sense of deriving numerical solutions at higher 

non-linear levels (either via the characteristic time or the solvent fraction). Simulation of 

viscoelastoplastic fluids in the complex 4:1:4 rounded contraction-expansion settings were 

performed, adopting the micellar thixotropic Bautista-Manero models for the polymer 

contribution, alongside the Bingham-Papanastasiou model for the solvent component. Here, 

relatively low solvent-fraction numerical results (≤10-2), are attainable whilst deriving 

elasto-plastic features from the viscoelastic Bautista-Manero models (Calderas et al. 2013). 

The combination of viscoelastic and plastic contributions from both micellar and 

Papanastasiou representations provides, shear-thinning and extensional viscosity effects 

through the polymeric contribution, and viscoplastic features through the Papanastasiou 

approximation. Generally, those features that promote plastic material behaviour (such as 

yield-stress), provoke a decline in fluid-mobility. This is reflected in vortex activity 

suppression and epd enhancement. In addition, viscoelasticity introduces asymmetry about 

the contraction, with vortex and yield-fronts deformed as We rises. Finally, extensional 

viscosity effects are responsible for upstream vortex enhancement. Moreover, a re-scaling 

with respect to the viscosity plateau at high deformation rates is suggested, to account for a 

low deformation-rate Bautista-Manero plastic contribution (as with Papanastasiou 

contributions), in contrast to the current zero-deformation rate characteristic viscosity, which 

provides a plateau at moderate deformation rates. This would shift the polymeric-originated 

plateau to the low-deformation-rate regime and then enhance plastic features of such 

viscoelastoplastic fluids, with polymer plus solvent-originated plastic plateaus. 

 On the experimental-to-numerical contraction-expansion flow comparison Simulations 

for the 4:1:4 contraction-expansion flow geometry have been performed and contrasted 

against experimental data for Boger fluids. Here, the constant shear-viscosity strain-

hardening FENE-CR model was used to fit rheometric data for Boger solutions. These fluids 

were used to experimentally evaluate pressure drop and flow kinematics in flow-controlled 
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sharp contraction-expansion flow; the contraction ratio was varied as 2:1:2, 4:1:4, 6:1:6, 

8:1:8, 10:1:10. Despite the differences in geometric specification (sharp-to-rounded corners) 

and procedure (flow-controlled experiments, procedure in which one test fluid is forced 

through contraction at increasing flow rates; to characteristic-time controlled simulations, in 

which the relaxation time or We is varied in simulations a fixed flow rate -procedure that 

could be interpreted as change of test fluid), coincidence of trends in results is most striking. 

In numerical solutions, the experimental rising epd and upstream vortex-size and intensity 

with elasticity elevation have all been captured. Here, the follow-on step will comprise the 

matching in experimental-geometry requirements (i.e. sharp corners and flow controlled 

simulations), and variation in contraction ratio. 

 On predictive tool development for biofluids In this last section, whilst moving away 

from Bautista-Manero modeling, numerical simulation has been considered to devise an 

effective extensional rheometer for biofluids. Here, the effects of variation over the model 

parameters for the network-structured non-thixotropic SXPP model (traditionally for polymer 

melt architectures) have been examined for two complex flows and sets of parameters that 

resemble biofluids. This has been accomplished through the simulation of 4:1 contraction 

flow for bile-flow in biliary ducts; and filament stretching flow (FiSER-CaBER) for sputum 

extensional properties in the lung airways. In this manner, an estimation window has been 

obtained, for extensional viscosity (via FiSER) and characteristic time (via CaBER), based on 

the number of arms parameter (q) of the SXPP model. This structure-based parameter has 

proven itself to be the most influential in adjusting such complex extensional-flow response, 

and hence, which has generated the better estimation windows. It is envisaged that given the 

highly dynamic nature of these biofluids, subsequent work will involve their characterisation 

through the time-dependent thixotropic and viscoelastic Bautista-Manero family of fluids. 
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