

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

Síntesis y Caracterización de Compuestos de Metales del Grupo 10 con Ligantes Derivados de Tiabendazol

TESIS

QUE PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS

PRESENTA

Q. JAIR ISAI ORTEGA GAXIOLA

TUTOR.

DR. DAVID MORALES MORALES INSTITUTO DE QUÍMICA UNAM

MÉXICO, D.F., AGOSTO 2014

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Jurado asignado

Presidente:	Dra. Silvia Elena Castillo Blum.					
Vocal:	Dra. Larissa Alexandrova.					
Vocal:	Dr. José Francisco Delgado Reyes.					
Vocal:	Dr. Ronan Marie Le Lagadec.					
Secretario:	Dr. José Guadalupe López Cortés.					

Sitio donde se desarrolló el tema:

Laboratorio 3. Departamento de Química Inorgánica. Instituto de Química. UNAM.

Asesor del tema.

Agradecimientos

Al CONACYT por la beca otorgada para los estudios de posgrado: número de becario/CVU **271107/443001**. A la Universidad Nacional Autónoma de México-Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT-DGAPA-UNAM) por el financiamiento a través del proyecto **IN201711-3 e IN213214-3** y al Consejo Nacional de Ciencia y Tecnología por el financiamiento a través del proyecto **CB2010/154732**.

A los sinodales: Dra. Silvia Elena Castillo Blum, Dra. Larissa Alexandrova, Dr. José Francisco Delgado Reyes, Dr. Ronan Marie Le Lagadec. Dr. José Guadalupe López Cortés. Que en conjunto lograron, con sus comentarios y sugerencias, el enriquecimiento y mejora de este trabajo.

Al Dr. David Morales Morales por permitirme incorporarme a su grupo de investigación y brindarme su apoyo y amistad durante la realización de este trabajo y a mis compañeros del Laboratorio de Inorgánica 3, por brindarme su amistad.

Al equipo técnico del Instituto de Química, UNAM; Q. Eréndira García-Ríos, a la M en C. Lucero Mayra Ríos Ruiz y a la M en C. Lucia del Carmen Márquez Alonso por los análisis de espectrometría de masas ESI-MS, a la Q. Roció Patiño-Maya por los análisis de IR, al I. Q. Luis Velasco Ibarray al Dr. Francisco Javier Pérez Flores por los análisis de espectrometría de masasIE-MS y FAB-MS, y a la Q. María de la Paz Orta Pérez y a la M en C. Alejandra Núñez Pineda (CCIQS) por los análisis elementales.

Al Posgrado en Ciencias Químicas, a la Facultad de Química y al Instituto de Química.

A mi mamá Ana, por tu amor, porque a pesar de los momentos difíciles, nos has enseñado con tu ejemplo, a seguir luchando, te amo. A mis hermanos Laura, Ericka y Christian, gracias por también ser mis amigos y mi apoyo, a mis sobrinos Edwin, Edgar, Kheni, Iker y Evan, por cada sonrisa que me han arrancado, a mi Abuelita, por demostrarnos que siempre hay que ser fuertes ante las adversidades y a mis cuñados, gracias por todo.

A mis suegros Luis y Cuauyatital, por todo su apoyo, cariño, por cada palabra de aliento y por compartir las alegrías y momentos difíciles, por dejarme ser parte de la vida en esta familia. A mis cuñados y al nuevo integrante y sobrino, Iktan.

A los amigos incondicionales, a esas reuniones con Hubble App, por los mejores momentos, por ser mi familia. y a mis amigos de la Licenciatura y de la Maestría.

A mis amores y lo más importante en mi vida, Tetzin Alexander, por cada sonrisa, por cada momento y por todo tu amor, y a mi compañera de vida, Zitlalli, por todo tu apoyo, complicidad, diversión, por cada momento, y por este inmenso amor, los amo.

Y finalmente, a ti papá, porque aunque ya no estás, nunca te fuiste, porque nunca dejaste de creer en mí, porque me enseñaste tanto, porque gracias a tu ejemplo voy aprendiendo a ser hijo y a ser padre, porque algún día te daré esa alegría de la que hablabas, porque cada día quiero ser más como tú, porque siempre nos enseñaste que un error y una caída deben ser el inicio de un éxito, porque siempre veré hacia adelante como tú lo hacías, porque sé que nos cuidas desde donde estás, desde la Luna o el Sol.

Para ti, Abu Poncho...

Índice general.

Símbolos y abreviaturas.	6
Resumen.	7
Objetivos.	8
Índice de compuestos obtenidos.	9
Índice de esquemas, figuras y tablas.	12
Introducción.	17
Capítulo 1. Antecedentes.	18
1.1. Generalidades.	17
1.2. Síntesis del tiabendazol.	21
1.3. Complejos metálicos derivados del tiabendazol.	22
1.4. Complejos con metales del grupo del platino.	25
1.5. Ligantes bidentados N,N derivados del bencimidazol.	27
Capítulo 2. Resultados y discusión.	32
2.1.Síntesis de ligantes bencílicos.	33
2.2. Síntesis de ligantes carbonílicos.	35
2.3. Síntesis de complejos metálicos M _n L	37
2.3.1. Complejos de paladio.	36
2.3.2. Complejos de níquel.	38
2.3.3. Complejos de platino.	39
2.4. Caracterización.	40
2.4.1. Compuesto 1a.	40
2.4.2. Compuesto 2a .	44
2.4.3. Compuesto 3a .	47
2.4.4. Compuesto 4a .	53
2.4.5. Compuesto 5a .	57
2.4.6. Compuesto 6a .	61
2.5. Caracterización de complejos de paladio.	66
2.5.1. Compuesto 7b .	66
2.5.2. Compuesto 4b .	68

2.5.3. Compuesto 5b .	75
Capítulo 3. Análisis Cristalográfico.	81
3.1. Análisis cristalográfico de compuestos 2a, 3a y 6a.	82
3.1.1. Compuesto 2a .	82
3.1.2. Compuesto 3a .	84
3.1.3. Compuesto 6a .	87
3.2. Análisis cristalográfico de los complejos metálicos	
[PdCl ₂ (TBZH)] (7b.1 y 7b.2) y [NiCl(H ₂ O)(TBZH) ₂]Cl (8b).	89
3.2.1. Solvato 7b.1	90
3.2.2. Solvato 7b.2	92
3.2.3. Compuesto 8b.	94
Conclusiones.	97
Bibliografía.	99
Capítulo 4. Procedimiento experimental.	100
4.1. Reactivos e instrumentación.	101
4.2.Síntesis de ligantes y complejos metálicos.	101
4.2.1. Síntesis de compuesto 1a.	101
4.2.2. Síntesis de compuesto 2a.	102
4.2.3. Síntesis de compuesto 3a .	103
4.2.4. Síntesis de compuesto 4a.	104
4.2.5. Síntesis de compuesto 5a.	105
4.2.6. Síntesis de compuesto 6a .	105
4.27. Síntesis de compuesto 4b .	106
4.2.8. Síntesis de compuesto 5b .	107
4.2.9. Síntesis de compuesto 7b .	108
4.2.10. Síntesis de compuesto 8b .	108
Anexos.	110
Espectros de Infrarrojo.	110
Datos cristalográficos.	119

Símbolos y abreviaturas.

RMN ¹ H	Resonancia Magnética Nuclear de Protón			
RMN ¹³ C	Resonancia Magnética Nuclear de Carbono 13			
Hz	Hertz			
ESI	Ionización por electrospray			
δ	Desplazamiento químico			
ppm	Partes por millón			
mmol	milimol			
mg	miligramo			
m/z	Relación masa-carga			
h	Horas			
THF	Tetrahidrofurano			
TBZH	Tiabendazol			
CDCl ₃	Cloroformo deuterado			
CH ₂ Cl ₂	Diclorometano			
COD	1,5- ciclooctadieno			
DMSO-d ₆	Dimetil sulfóxido deuterado			
HETCOR	Del acrónimo inglés: Heteronuclear correlation			
^x J _{a-b}	Constante de acoplamiento de "a" con "b" a "x" enlaces de distancia			
DEPT	Del acrónimo inglés : Distortionless Enhancement by Polarization Transfer.			
TBZH	Tiabendazol			

Resumen.

En este trabajo se presenta la síntesis de seis nuevos ligantes derivados del tiabendazol con dos posibles sitios de coordinación. Los ligantes sintetizados poseen un plano de simetría, el cual proviene de la incorporación de un centro de anillo de benceno disustituido; a su vez poseen isomería estructural *orto, meta y para*. El nitrógeno sp³ del tiabendazol se funcionalizó con grupos bencilo y carbonilo, obteniéndose compuestos de naturaleza estérica y electrónica diferente. Los ligantes se obtuvieron a partir de la reacción de dos equivalentes de tiabendazol con los isómeros del dibromo xileno y de los cloruro de ftaloilo. Los compuestos se obtuvieron en un sólo paso de reacción con moderados a altos rendimientos. Se lograron cristalizar tres de ellos y su estructura fue determinada por difracción de rayos X de monocristal.

A partir de los ligantes se sintetizaron compuestos de coordinación de níquel(II) y paladio(II) en estequiometrías metal:ligante 2:1. Únicamente se lograron obtener complejos de paladio con dos de los ligantes sintetizado, debido a que presentaron solubilidad en DMSO. Por otra parte, se sintetizó al compuesto de paladio con tiabendazol [PdCl₂(TBZH)] con el objetivo de tener una referencia y así comparar las señales observadas en los experimentos de RMN de ¹H y ¹³C de los compuestos obtenidos. Se hicieron pruebas para obtener complejos de platino a partir de [PtCl₂(Me₂S)₂]. A pesar de haber trabajado en condiciones de reflujo de CHCl₃ para la síntesis de estos complejos , la cinética de sustitución de los ligantes dimetil sulfuro en el precursor metálico es muy lenta (alrededor de una semana para observar la formación del complejo), por lo tanto se descartó continuar su estudio para este metal.

Se logró determinar la estructura a través de difracción de rayos X de monocristal de un compuesto de níquel con dos moléculas de tiabendazol. Desafortunadamente éste proviene de la descomposición de uno de los ligantes durante la síntesis del complejo. Los intentos de obtener cristales de paladio siempre condujeron a la descomposición de los ligantes, obteniéndose dos cristales (polimorfos) de cloruro de paladio con tiabendazol.

Objetivos

- Llevar a cabo la síntesis de seis ligantes derivados del tiabendazol con compuestos aromáticos *orto*, *meta* y *para* disustituidos.
- Establecer las condiciones óptimas de reacción para cada compuesto y posteriormente efectuar la caracterización por las técnicas espectroscópicas disponibles.
- Obtener compuestos de coordinación con metales del grupo 10, como níquel, paladio y platino en estequiometrías metal-ligante 2:1.
- Evaluar la reactividad de los ligantes obtenidos frente diversas fuentes de paladio, así como encontrar las condiciones óptimas de síntesis.

Índice de compuestos obtenidos.

Ligantes sintetizados.

4a

Compuestos de coordinación obtenidos.

5b

8b

Notación empleada para la asignación de posiciones de H y C.

En color negro se denota a posiciones del sustituyente tiabendazol, en color rojo a carbonos cuaternarios y en azul a posiciones del anillo de benceno disustituido. En los compuestos **1a-3a** las posiciones \underline{o} (verde), R¹ es CH₂, y para **4a-6a** R¹ es CO.

La simetría de las moléculas simplifica la caracterización de los compuestos por RMN de ¹H y ¹³C.

Compuesto	(Fórmula química)	# Señales esperadas en RMN		
		$^{1}\mathrm{H}$	¹³ C	
1a ^{II}	$C_{28}H_{20}N_6S_2$	9	14	
2a ^{III}	$C_{28}H_{20}N_6S_2$	10	15	
3a ^{IV}	$C_{28}H_{20}N_6S_2$	8	13	
4a ^{II}	$C_{28}H_{16}N_6O_2S_2$	8	14	
5a ^{III}	$C_{28}H_{16}N_6O_2S_2$	9	15	
6a ^{IV}	$C_{28}H_{16}N_6O_2S_2$	7	13	
TBZH	$C_{10}H_7N_3S$	7	10	

-

Índice de esquemas, figuras y tablas.

Figura 1. Estructura de ligantes bidentados N,N.	19
Esquema 1. Biotransformación del tiabendazol propuesta por Fujitani y Mizutani.	20
Esquema 2. Síntesis de tiabendazol a partir de anilinas.	21
Esquema 3. Síntesis de tiabendazol.	22
Esquema 4. Obtención de tiabendazol con agentes deshidratantes.	22
Esquema 5. Síntesis de tiabendazol catalizada por sales de cobre (I).	23
Figura 2. Estructura del compuesto [Na(TBZ) ₂ (TDF) ₂].	24
Figura 3. Estructura del complejo [Co(tbz) ₂ (NO ₃)(H ₂ O)](NO ₃).	24
Figura 4. Estructura cristalina de Cu(TBZH) ₂ (NO ₃) ₂ •H ₂ O.	25
Esquema 6. Reactividad del tiabendazol frente a diversas sales de Cu(II).	25
Figura 5. Estructura cristalina de la sal [TBZH ₂][NO ₃].	25
Figura 6. Estructura cristalina del complejo de platino con tiabendazol.	26
Figura 7. Estructura cristalina del catión[Rh(H) ₂ (PPh ₃) ₂ (TBZH)] ⁺ .	26
Figura 8. Estructuras de complejos de Zn(II) y Co(II) con tiabendazol.	27
Esquema 7. Síntesis de complejos de paladio con ligantes 2-piridil bencimidazoles. Esquema 8. Evaluación catalítica de complejos de paladio con ligantes piridil	28 28
bencimidazoles.	
Esquema 9. Reacción de acoplamiento C-C tipo Heck catalizada por complejos de paladio.	29
Esquema 10. Mecanismo propuesto para la activación del complejo de paladio.	29
Esquema 11. Síntesis de ligantes bidentados.	30
Esquema 12. Reacción general para la obtención de los ligantes.	33
Figura 9. Precursores bencílicos.	33
Esquema 13. Mecanismo de obtención del compuesto 2a.	33
Tabla 1. Solubilidades de los ligantes bencílicos.	34
Figura 9.1. A Crudo de reacción de compuesto 3a. B, C Compuesto purificado en disolución de CHCl ₃ e irradiado con luz UV λ =360nm.	34
Figura 10. Precursores carbonílicos.	35
Esquema 14. Mecanismo de obtención del compuesto 5a .	35
Tabla 2. Solubilidades de los ligantes carbonílicos.	35
Esquema 15. Obtención de complejos metálicos.	36

Esquema 16. Reacción general para la obtención de complejos de paladio.	36
Tabla 3. Condiciones de reacción para la síntesis de complejos de paladio.	37
Tabla 4. Reactividad de diversas fuentes de paladio con los ligantes obtenidos. *Complejos insolubles. ** Complejos caracterizados en este trabajo, [≠] al calentar se descomponen, formando negro de paladio.	38
Tabla 5. Propiedades físicas de los complejos de paladio obtenidos.	38
Esquema 17. Obtención de complejos de níquel.	38
Esquema 18. Obtención de complejos de platino.	39
Figura 11. Espectro de RMN ¹ H de compuesto 1a en CDCl ₃ a 300MHz.	40
Figura 12. Espectro de RMN ${}^{13}C{}^{1}H$ de compuesto 1a en CDCl ₃ a 75MHz.	41
Figura 13. Espectro HETCOR- $[^{13}C^{-1}H]$ de compuesto 1a en CDCl ₃ .	42
Figura 14. Espectro de masas ESI de compuesto 2a.	43
Figura 15. Espectro de RMN ¹ H de compuesto 2a en CDCl ₃ a 300MHz.	44
Figura 16. Espectro ${}^{13}C{}^{1}H$ de compuesto 2a en CDCl ₃ a 75MHz.	45
Figura 17. Espectro de masas ESI de compuesto 2a.	46
Figura 18. Espectro de RMN ¹ H de compuesto 3a en CDCl ₃ a 300MHz.	47
Figura 19. Espectro de RMN ${}^{13}C{}^{1}H$ de compuesto 3a en CDCl ₃ a 75MHz.	48
Figura 20. Espectro de masas ESI de compuesto 3a .	49
Tabla 6. ^a Sin considerar metanol como molécula de recristalización. ^b Considerando al metanol como disolvente de recristalización. ^c $ %$ de error = $ (100*(Enc Calc.)/Calc $. Figura 21. Comparación de los espectros de RMN ¹ H de los compuestos 1a-3a	50
Figura 22. Señales de RMN ¹ H de metilenos de los compuestos 1a -3a	51
Figura 23. Momento dipolar e interacción intramolecular presente en el compuesto 1a.	52
Figura 24. Comparación de espectros de RMN 13 C de compuestos 1a-3a .	52
Figura 25. Señales de RMN 13 C del carbono sp ³ (o) de los compuestos 1a-3a .	53
Figura 26. Espectro de RMN 1 H de compuesto 4a en CDCl ₃ a 300MHz.	53
Figura 27. Espectro de RMN HETCOR- $[^{13}C^{-1}H]$ de compuesto 4a en CDCl ₃ .	54
Figura 28. Espectro ${}^{13}C{}^{1}H$ de compuesto 4a en CDCl ₃ a 75MHz.	55
Figura 29. Espectro de masas de compuesto 4a obtenido por la técnica ESI.	56
Figura 30. Espectro de RMN ¹ H de compuesto 5a en CDCl ₃ a 300MHz.	57
Figura 31. Espectro ${}^{13}C{}^{1}H$ de compuesto 5a en CDCl ₃ a 75MHz.	58
Figura 32. Espectro HETCOR- $[^{13}C^{-1}H]$ de compuesto 5a .	59

Figura 33. Espectro de masas ESI de compuesto 5a.	60
Figura 34. Espectro de RMN ¹ H de compuesto 6a en CDCl ₃ a 300MHz.	61
Figura 35. Espectro de RMN 13 C de compuesto 6a en CDCl ₃ a 75MHz.	62
Figura 36. Espectro de RMN HETCOR- $[^{13}C^{-1}H]$ de compuesto 6a en CDCl ₃ .	63
Figura 37. Espectro de masas de compuesto 6a obtenido por la técnica ESI.	64
Figura 38. Estructura general de ligantes.	65
Tabla 7. Señales de RMN ¹³ C de ligantes. ^{<i>a</i>} R ¹ : (CH ₂), ^{<i>b</i>} R ¹ : (C=O); * <i>orto-</i> , ** <i>meta-</i> , *** <i>para-</i> .	65
Tabla 8. Señales de RMN ¹³ C del anillo aromático. ^{<i>a</i>} R ¹ : (CH ₂), ^{<i>b</i>} R ¹ : (C=O), * <i>orto-</i> , ** <i>meta-</i> , *** <i>para-</i> .	65
Tabla 9. Señales de RMN ¹ H de ligantes. ^{<i>a</i>} R ¹ : (CH ₂), ^{<i>b</i>} R ¹ : (C=O), * <i>orto</i> -, ** <i>meta</i> -, *** <i>para</i>	65
Figura 39. Espectro de RMN ¹ H de compuesto 7b en DMSO-d ₆ a 300MHz.	66
Figura 40. Equilibrio tautomérico presente en el tiabendazol.	66
Figura 41. Comparación de los espectros de RMN ¹ H de TBZH y 7b .	67
Figura 42. Ampliación del espectro de RMN ¹ H del protón N-H α en el compuesto 7b .	67
Figura 43. Comparación de los espectros de RMN ¹³ C de TBZH y 7b .	68
Tabla 10. Desplazamientos químicos de RMN ¹³ C de TBZH y 7b .	68
Figura 44. Espectro de RMN ¹ H de compuesto 4b en DMSO-d ₆ a 300MHz.	69
Figura 45 . Posibles confórmeros del compuesto 4b en disolución.	70
Figura 46. Espectro de RMN 13 C de compuesto 4b en DMSO-d ₆ a 75MHz.	71
Figura 47. Espectro HETCOR- $[^{13}C^{-1}H]$ de compuesto 4b .	72
Figura 48. Espectro de masas de compuesto 4b obtenido por ESI.	73
Figura 49. Simulación de fragmentos.	74
Figura 50. Ampliación del espectro de masas de compuesto 4b . Fragmentos observados (int $x10^5$).	74
Figura 51. Espectro de RMN ¹ H de compuesto 5b en DMSO-d ₆ a 300MHz.	75
Tabla 6. Desplazamientos químicos de RMN 1 H de compuestos 5a y 5b .	75
Figura 52. Espectro HETCOR- $[^{13}C^{-1}H]$ de compuesto 5b .	76
Figura 53. Espectro de RMN ¹ H de compuesto 5b en DMSO-d ₆ a 75MHz.	77
Figura 54. Espectro de masas de compuesto 5b obtenido por ESI.	78
Figura 55. Simulación de fragmentos observados del compuesto 5b.	79
Tabla 8. Comparación de señales en compuestos 4a, 4b, 5a y 5b.	80
Figura 56. Estructura general de los ligantes sintetizados.	80

Tabla 9. ^a R^2 = -TBZ, b R^2 =TBZ(PdCl ₂).	80
Tabla 10. ^a R^2 = -TBZ, b R^2 =TBZ(PdCl ₂).	80
Tabla 11. Información cristalográfica de los compuestos 2a 3a y 6a.	82
Figura 57. Representación de elipsoides al 30% de la estructura molecular del compuesto 2a .	83
Figura 58. Arreglo lineal de por interacciones C-H…N. Los átomos de hidrógeno que no participan en interacciones son omitidos por claridad.	83
Figura 59. Arreglo paralelo al plano ab encontrado en el compuesto 2a .	84
Figura 60. Representación de elipsoides al 30% de la estructura molecular del compuesto $3a$.	84
Figura 61. Arreglo laminar paralelo al plano <i>ac</i> identificado en el compuesto 3a . Los átomos de hidrógeno que no intervienen en las interacciones se omiten para una mejor claridad.	85
Figura 62. Representación de las interacciones C-H $\cdots \pi$. Los átomos de hidrógeno que no participan en interacciones son omitidos por claridad.	86
Figura 63. Representación de elipsoides al 30% de la estructura molecular del compuesto 6a .	87
Figura 64. Arreglo lineal originado por las interacciones C-H···O del compuesto 6a .	87
Tabla 11. Valores de las interacciones de enlace de hidrógeno identificadas enlos arreglos cristalinos de los compuestos 2a, 3a y 6a.	88
Tabla 12. Información cristalográfica de 7b.1, 7b.2 y 8b .	89
Figura 65. Representación de elipsoides al 50% de la estructura molecular del solvato 7b.1 . Las moléculas de DMSO se omiten para mejor claridad de la representación.	90
Tabla 13. Distancias de enlaces y ángulos seleccionados de las moléculasindependientes en el solvato 7b.1.	90
Figura 66. Representación de las interacciones entre el DMSO y las moléculas del complejo metálicos.	91
Figura 67. Interacciones π - π de dos de las moléculas en la unidad asimétrica.	92
Figura 68. Arreglo lineal generados por las interacciones C-H··· π en el solvato 7b.1 . Los átomos de hidrógeno se omiten para una mejor claridad.	92
Figura 69. Representación de elipsoides al 50% de la estructura molecular del solvato 7 b.2 , con las distancias y ángulos de la esfera de coordinación del centro metálico.	93
Figura 70. Representación de las interacciones del DMSO de 7b.1.	93
Figura 71. Representación del arreglo lineal generado por las interacciones N- H···O y C-H···Cl en 7b.2 . Los átomos de hidrógeno que no intervienen en las interacciones son omitidos para mejor claridad.	94
Figura 72. Representación molecular del compuesto 8b con elipsoides al 50%, distancias de enlace y ángulos representativos.	94

Figura 73. Interacciones que forma el átomo de cloro que esta como contraión.	95
Figura 74. Representación del arreglo lineal generado por las interacciones N- H···Cl y C-H···Cl del átomo de cloro Cl2.	95
Figura 75. Representación del arreglo lineal generadas por las interacciones del átomo de cloro Cl1.	96
Tabla 14. distancias y ángulos más relevantes de compuestos 7b.1 , 7b.2 y 8b .	96
Esquema 19. Síntesis de compuesto 1a.	101
Esquema 20. Síntesis de compuesto 2a .	102
Esquema 21. Síntesis de compuesto 3a .	103
Esquema 22. Síntesis de compuesto 4a.	104
Esquema 23. Síntesis de compuesto 5a .	105
Esquema 24. Síntesis de compuesto 6a.	105
Esquema 25. Síntesis de compuesto 4b .	106
Esquema 26. Síntesis de compuesto 5b .	107
Esquema 27. Síntesis de compuesto 7b .	108
Esquema 28. Síntesis de compuesto 8b .	108
Figura 76. Espectro de infrarrojo de compuesto 1a.	111
Figura 77. Espectro de infrarrojo de compuesto 2a.	112
Figura 78. Espectro de infrarrojo de compuesto 3a .	113
Figura 79. Espectro de infrarrojo de compuesto 4a.	114
Figura 80. Espectro de infrarrojo de compuesto 5a.	115
Figura 81. Espectro de infrarrojo de compuesto 6a.	116
Figura 82. Espectro de infrarrojo de compuesto 4b.	117
Figura 83. Espectro de infrarrojo de compuesto 5b.	118

Introducción.

La química de coordinación de derivados del bencimidazol es una de las áreas más exploradas en los últimos años, ya que estos compuestos tienen gran afinidad a los metales de transición debido a que el nitrógeno sp² es altamente coordinante. Una de las propiedades que lo caracterizan es su capacidad de formar compuestos quelato de cinco miembros térmicamente estables. La funcionalización de este compuesto por grupos voluminosos puede influir en el modo de coordinación del nitrógeno (al pasar de compuestos quelato a sistemas monodentados) teniendo la posibilidad reaccionar en estequiometrías metal:ligante 1:2. Por otra parte, la funcionalización del nitrógeno sp³ por grupos electroatractores puede conducir a la modulación fina de las propiedades electrónicas del ligante, convirtiéndolo en un sistema hemilábil durante un proceso catalítico. Cabe destacar que incluso se pueden obtener complejos organometálicos (paladaciclos) para reacciones de acoplamiento cruzado C-C tipo Heck.

Ligantes derivados del bencimidazol y complejos metálicos.

El desarrollo de nuevos ligantes y la implementación de metodologías en catálisis homogénea es un reto importante en la actualidad, teniendo como objetivo principal la obtención de nuevos compuestos de coordinación de paladio, que sean estables y eficientes en procesos catalíticos de potencial relevancia a nivel industrial. Por lo tanto, en este trabajo se abre una nueva línea de investigación al sintetizar ligantes derivados del tiabendazol que en su estructura posee dos posibles sitios de coordinación, y la obtención de compuestos con metales del grupo 10, específicamente con paladio, para su posible aplicación en catálisis homogénea y química medicinal.

Antecedentes.

1.1. Generalidades.

El tiabendazol (1) [2-(4-tiazolil)-1-*H*-bencimidazol] es un derivado del bencimidazol que se encuentra sustituido en la posición 2 por un grupo tiazol. Es un agente antihelmíntico y fungistático^[1] que se utiliza para erradicar parásitos y hongos (tanto en humanos como en animales). Su actividad consiste en inhibir la enzima fumarato-reductasa^[2] (componente vital en el metabolismo microbiano para la respiración anaerobia) de algunos helmintos. Por otra parte, este compuesto ha despertado gran interés en el área de la química de coordinación^[3-6], debido a que se comporta como un ligante bidentado **N**,**N** semejante a los análogos bidentados bipiridina (2), *orto*-fenantrolina (3), 1,10-fenantrolina-5,6-diona (4) y al 2-(2-piridil)bencimidazol (5).

Figura 1. Estructura de ligantes bidentados N,N.

Reportes recientes han demostrado una correlación entre este compuesto y su derivado hidroxilado, el 5-hidroxitiabendazol (1.2), su mayor metabolito, cuya unión covalente con los hepatocitos de la especie isotópica marcada [¹⁴C]TBZ sugieren una vía de activación del tiabendazol. El metabolismo de este compuesto hidroxilado propuesta por *Tocco*^[7] resulta en la formación del derivado glucuronado (1.5) y sulfonado (1.6). Por otra parte, *Mizutani* y su grupo de investigación en 1990 sugirieron un mecanismo más detallado^[8-10] (Esquema 1), en el cual proponen la producción de metabolitos reactivos durante el metabolismo de éste (1.7-1.11), los cuales provocan el agotamiento de la función renal y hepática de ratas *in vivo*.

Esquema 1. Biotransformación del tiabendazol propuesta por Fujitani y Mizutani.

1.2. Síntesis de tiabendazol.

La síntesis de este compuesto fue reportada en 1964^[7], el cual se muestra en el Esquema 2.

Esquema 2. Síntesis de tiabendazol a partir de anilinas.

El procedimiento consiste en la formación de una amida aromática simétrica (8) a partir del clorhidrato de anilina (6) con un equivalente de cloruro de oxalilo (7), posteriormente ocurre una sulfonación (9) para activar el anillo y facilitar la nitración (10), seguida por una doble hidrólisis para remover el grupo sulfonato y regenerar la amina correspondiente (11). Este último, en presencia del cloruro de 4-carboniltiazol (12) forma un intermediario (13) que posteriormente es reducido por hidrogenación catalítica del grupo nitro (14), finalizando con un ataque intramolecular para la formación del bencimidazol funcionalizado.

Otro método para obtener este compuesto^[11] es empleando anilina (**15**) y el 4-ciano tiazol (**16**) en presencia de AlCl₃ como ácido de Lewis, generando un intermediario clorhidrato de N-arilamidina (**17**), con su posterior tratamiento con hipoclorito de sodio y una base, nos conduce a la formación de este producto (Esquema 3).

Esquema 3. Síntesis de tiabendazol.

Otra alternativa para la síntesis directa de este compuesto^[12] es a partir de la *orto*-fenilendiamina (**19**) con la 4-carboxiamida tiazol (**20**) en presencia del ácido polifosfórico como agente deshidratante (Esquema 4).

Esquema 4. Obtención de tiabendazol con agentes deshidratantes.

Otra ruta de síntesis atractiva para este tipo de compuestos heterocíclicos^[13] (reportada recientemente por Yong Kim y su grupo de investigación) catalizada por sales de cobre(I), a partir de halogenuros de *orto*-anilinas (**21**) con aldehídos (**22**), en presencia de azida de sodio, se muestra en el Esquema 5.

Esquema 5. Síntesis de tiabendazol catalizada por sales de cobre (I).

1.3. Complejos metálicos derivados del tiabendazol.

Actualmente se pueden consultar publicaciones (de 2001 a 2013)^[14-19] en los cuales se reporta la síntesis de complejos metálicos del tipo $MX_2(TBZ)_n$ (donde M=Ni(II), Cu(II), Co(II), Fe(II), Zn(II), Cd(II), Pb(II), Li⁺, Na⁺ y K⁺, X=Cl, NO₃⁻, CH₃COO⁻, NO₃⁻) en los que se muestra su afinidad tanto a metales alcalinos y a metales de la primera serie de transición. Además, este ligante puede generar complejos metálicos en diferentes estequiometrías metal-ligante ML_n, con n=1-3

En 2002, Jean Michel Grevy y colaboradores^[14] reportaron la síntesis de complejos de tiabendazol derivados de los metales Li^I, Na^I, K^I, Pb^{II}, Co^{II}, Ni^{II}, Cu^{II}, Zn^{II}, Cd^{II} and Hg^{II}, reportando las estructuras por difracción de rayos X de monocristal de los compuestos Na^I, Pb^{II}, Co^{II}, Ni^{II}, Cu^{II}, Cd^{II}, evidenciando su estabilidad y su capacidad de formar compuestos bis y trisquelato.

La estructura cristalina (reportada por estos investigadores) del compuesto bis-quelato con sodio (Figura 2), obtenida por la caracterización por RMN ¹H en THF deuterado es de interés para este trabajo, ya que la síntesis de los ligantes implicaron el uso de THF e hidruro de sodio. Por otra parte, los resultados obtenidos por espectrometría de masas en su modalidad de electrospray confirman la presencia de sodio en las muestras (se observa el ion molecular con un aumento en 23 unidades de masa atómica).

Figura 2. Estructura del compuesto [Na(TBZ)₂(TDF)₂].

K.K. Mothilal^[15] reportó la estructura por difracción de rayos x de monocristal del complejo octaédrico de cobalto(II) [Co(tbz)₂(NO₃)(H₂O)](NO₃), evidenciando la coordinación del ligante por los dos átomos de nitrógeno, formando dos anillos quelato de 5 miembros. Los ángulos de mordida observados son 77.28° y 78.35° respectivamente.

Figura 3. Estructura del complejo [Co(tbz)₂(NO₃)(H₂O)](NO₃).

Por otra parte, la posible actividad citotóxica que presenta esta serie de compuestos es asociada al centro metálico. Se cree que este comportamiento es debido a que el complejo metálico induce efectos tóxicos por la generación de especies reactivas de oxígeno^[16,17].

Marek Z. Wisniewski^[19] sintetizó una serie de complejos de Co, Ni, Cu, Pd, Pt, en el cual únicamente reportó la estructura de rayos X del complejo de cobre(II). El ligante actúa también como un ligante bidentado para este caso.

Figura 4. Estructura cristalina de Cu(TBZH)₂(NO₃)₂•H₂O

Michael Devereux, en 2004 reportó 2 resultados interesantes, la reacción de tiabendazol con $Fe(NO_3)_3 \cdot 9H_2O$ promueve la protonación del ligante tiabendazol-H $[TBZH_2]^+$, generando la sal correspondiente $[TBZH_2][NO_3]$, mientras que el acetato de cobre activa el enlace N-H, generando un ligante aniónico $[TBZ]^-$ en el complejo de cobre $[Cu(TBZ)_2 \cdot (H_2O)_2]^{[18]}$.

Esquema 6. Reactividad del tiabendazol frente a diversas sales de Cu(II).

Figura 5. Estructura cristalina de la sal [TBZH₂][NO₃].

1.4. Complejos con metales del grupo del platino.

Son pocos los ejemplos reportados de complejos metálicos del grupo del platino con tiabendazol, sin embargo este ligante posee la capacidad de coordinarse tanto a metales duros como a metales blandos (en términos de la definición de Pearson). La síntesis de los complejos ML₂Cl₂ (M=Pt, Pd) fue propuesta en 2001^[19], sin embargo la estructura aún era desconocida.

La estructura del análogo dibromado de platino, de fórmula $[Pt(TBZH)Br_2]$ (23), un análogo al *cis*-platino, ya había sido reportada por M. Rong y colaboradores en 1991^[20]. La síntesis

consistió en la reacción de la sal de platino(II) [NEt₄]₂[Pt₂Br₆] con un equivalente de tiabendazol en metanol a reflujo durante 1 hora (Figura 6).

Figura 6. Estructura cristalina del complejo de platino con tiabendazol.

X. Y. Yu y su equipo de trabajo obtuvo una serie de complejos de rodio(III) con ligantes nitrogenados heterocíclicos derivados del imidazol^[21] (Figura 7). Uno de ellos, el compuesto de fórmula [Rh(H)₂(PPh₃)₂(TBZH)]ClO₄ es el primer ejemplo reportado de complejos de hidruro de rodio(III) con tiabendazol, con posibles aplicaciones en reacciones de hidrogenación e hidroformilación.

Figura 7. Estructura cristalina del catión[Rh(H)₂(PPh₃)₂(TBZH)]⁺.

En general, aún no se ha informado acerca de interacciones del tipo Metal-azufre, en el cuál este se coordine como sucede con el nitrógeno, debido a su carácter blando como base de Lewis que éste posee. Sin embargo, se ha encontrado evidencia espectroscópica para la interacción M-S para el complejo de hierro $[Fe(TBZH)_3]Cl_3^{[3]}$. Únicamente se sabe de la existencia de complejos tris quelato de tiabendazol con cobalto(II), níquel(II) y cadmio(II).

Por último, existen dos compuestos cobalto(II) y zinc(II) de publicación reciente (en 2012) por dos investigadores. El primero (**25**), obtenido por Hicham Gueddar^[22], es un complejo octaédrico de Co(II) con un ligante N-Bencil-tiabendazol semejante mostrado en este trabajo (Figura 8). El

segundo compuesto (**26**) (reportado por F. L. Oliveira) se trata de un complejo octaédrico iónico tris quelato de zinc y tiabendazol^[23].

Figura 8. Estructuras de complejos de Zn(II) y Co(II) con tiabendazol

1.5. Ligantes bidentados N,N derivados del bencimidazol.

Muchos de los procesos de la actualidad que implican la formación de enlaces carbono-carbono (Suzuki-Miyaura, Mizoroki-Heck, Sonogashira, Negishi, Stille, etc.) catalizados por especies de paladio, ha crecido significativamente el uso de complejos de este metal con ligantes nitrogenados, ya que son térmicamente estables, resisten condiciones aerobias, son fáciles de preparar, y que además le confieran al centro metálico propiedades estéricas y electrónicas como lo hacen las fosfinas^[24-27]. Es por ello que el uso de ligantes bidentados N,N ha crecido considerablemente^[28-33].

Estos compuestos, con átomos donadores N,N, en general, presentan una baja toxicidad, su preparación implica un bajo costo (requieren pocos pasos en su síntesis), e incluso muchos de ellos ya están disponibles comercialmente a precios accesibles.

El compuesto 2-(2-piridil)bencimidazol (5), un análogo al tiabendazol, es un ligante bidentado que posee dos átomos donadores de nitrógeno. La funcionalización de este compuesto por grupos alquilo voluminosos y grupos electroatractores (27, 29), da la posibilidad de obtener complejos del tipo monodentado (28) y bidentado (30) como se muestra en el Esquema 7; cabe mencionar que ya ha sido probado por W. Chen y su equipo de trabajo en 2007^[34], específicamente en reacciones de acoplamiento cruzado tipo Heck con bromuros de arilo y una

serie de olefinas (34) (tomando como reacción de optimización al bromobenceno (30) con acrilato de butilo(32)) dando buenos resultados.

Esquema 7. Síntesis de complejos de paladio con ligantes 2-piridil bencimidazoles.

Esquema 8. Evaluación catalítica de complejos de paladio con ligantes piridil bencimidazoles.

Simultáneamente, Haneda S. y colaboradores reportaron la síntesis, caracterización y actividad catalítica de complejos de paladio(II) con ligantes 2-(2-piridil)benzazoles (**36**) en acoplamientos C-C tipo Heck^[35]. Mediante estudios por RMN de ¹H de los ligantes libres y los complejos de

paladio(II) (en ausencia y presencia de una base), analizando las distancias de enlace Pd-N en las distintas estructuras de los complejos obtenidas por difracción de rayos x de los monocristales y basándose en cálculos de densidades electrónicas de los ligantes, determinaron los efectos electrónicos que influyen en la reacción de acoplamiento C-C al modificar el tipo del heteroátomo en el sistema azólico.

Esquema 9. Reacción de acoplamiento C-C tipo Heck catalizada por complejos de paladio.

Esquema 10. Mecanismo propuesto para la activación del complejo de paladio.

En términos generales, encontraron una tendencia favorable hacia el derivado bencimidazólico (X=NH), ya que éste, al tener un hidrógeno ácido (41) puede ser removido por una base, por consecuencia el sistema adquiere una carga negativa (42) que puede ceder más densidad electrónica al metal y labilizar el enlace Pd-Cl, generando una especie dimérica (43, 44). El mecanismo de activación del complejo se muestra en el Esquema 10.

Ojwatch y James Darkwa^[36] sintetizaron una serie de compuestos muy parecidos a los mencionados con anterioridad, (ligantes piridil benzazoles sustituidos). Evaluaron la actividad catalítica de los complejos derivados de paladio en reacciones de acoplamiento C-C tipo Heck (Esquema 11).

Esquema 11. Síntesis de ligantes bidentados.

Hallaron que los complejos PdLCl₂, (X=O)l catalizaban con mayor rapidez la reacción debido al efecto electroatractor del heteroátomo, mientras que los complejos metilados de paladio se descomponían *vía* eliminación reductiva, dando bajos rendimientos.

Resultados y discusión.

2.1. Síntesis de ligantes bencílicos.

Los compuestos **1a-3a** fueron obtenidos bajo el siguiente esquema de reacción:

Esquema 12. Reacción general para la obtención de los ligantes.

La reacción de alquilación del tiabendazol procede mediante un ataque nucleofílico del tipo $S_N 2$, empleando como electrófilos a los isómeros derivados del xileno 1,2-bromometilbenceno (**57**), 1,3-bromometilbenceno (**58**) y 1,4-bromometil benceno (**59**) (Figura 9).

Como nucleófilo, en el medio de reacción se generó *in situ* el anión correspondiente del tiabendazol [TBZ]⁻ (**60**) utilizando hidruro de sodio; posteriormente éste ataca al carbono sp³ (**58**) para formar el enlace C-N como se muestra en la siguiente esquema:

Esquema 13. Mecanismo de obtención del compuesto 2a.

Esta metodología de síntesis permitió obtener a los ligantes de moderados a altos rendimientos; cabe mencionar que los tres compuestos se purificaron por lavados de metanol, obteniéndolos con la pureza suficiente para caracterizarlos por RMN de ¹H y ¹³C. Los compuestos **1a** y **3a** se obtuvieron bajo el mismo esquema de reacción que el compuesto **2a**. En la Tabla 1 se resumen algunas propiedades físicas de estos compuestos.

Compuesto	Rendimiento	Aspecto	solubilidad					
	(%)		H_2O	THF	MeOH	CH_2Cl_2	CHCl ₃	1,2- dicloroetano
1 a	83	Sólido blanco	nula	alta	nula	alta	alta	alta
2a	89	Sólido blanco	nula	baja	nula	nula	alta	alta
3 a	65	Sólido blanco	nula	baja	nula	nula	alta	alta

Tabla 1. Solubilidades de los ligantes bencílicos.

Los compuestos **1a-3a** prácticamente son insolubles en metanol, lo cual facilitó su purificación y evitando el empleo de separación por cromatografía en columna. Culminada la reacción, los tres compuestos llevaron a sequedad, se precipitaron y lavaron con metanol y agua, para filtrarlos por gravedad, obteniéndose en buenos rendimientos.

En la reacción para la síntesis del compuesto 3a se obtuvieron dos productos. Ambos presentaron fluorescencia tanto en disolución de CHCl₃ como en estado sólido. Al monitorear la reacción por cromatografía en placa fina se observó que cuando se irradiaban con luz a 360 nm, una mancha adquiría un color verde-amarillo y otra azul claro. El compuesto mayoritario fue el azul, el cual se disolvió en cloroformo. Las causas de este fenómeno observado aún se desconocen, ya no se han realizado los estudios correspondientes.

Figura 9.1. **A** Crudo de reacción de compuesto **3a. B, C** Compuesto purificado en disolución de CHCl3 e irradiado con luz UV λ =360nm
2.2. Síntesis de ligantes carbonílicos.

Los compuestos **4a-6a** fueron obtenidos a partir de una reacción de acilación del tiabendazol mediante un ataque nucleofílico del tipo adición-eliminación, empleando como electrófilos a los isómeros cloruro de ftaloilo (**62**), cloruro de isoftaloilo (**63**) y cloruro de tereftaloilo (**64**).

De la misma forma se generó el nucleófilo aniónico derivado del tiabendazol. El producto final es un compuesto con dos grupos amida.

Esquema 14. Mecanismo de obtención del compuesto 5a.

Compuesto	Rendimiento	Aspecto	solubilidad							
	(%)		$\mathrm{H}_{2}\mathrm{O}$	THF	MeOH	CH_2Cl_2	CHCl ₃	1,2- dicloroetano		
4 a	67.9	Sólido blanco	nula	alta	nula	nula	alta	alta		
5a	44.6	Sólido blanco	nula	alta	nula	baja	alta	alta		
6a	60.4	Sólido verde	nula	baja	nula	nula	alta	alta		

Tabla 2. Solubilidades de los ligantes carbonílicos.

Estos compuestos se obtuvieron con rendimientos moderados debido a que las materias primas cloradas (**62-64**) son muy reactivas, existiendo la posibilidad de generar subproductos (el compuesto **62** es un líquido sensible al aire y al calor). Esta serie de ligantes carbonílicos presentan una alta solubilidad en mezclas de MeOH-CH₂Cl₂ (3:1 a 1:1), sin embargo se observó que eran sensibles y se descomponen, regenerando al tiabendazol (prueba de ello fue la obtención de cristales, los cuales se analizaron por difracción de rayos x de monocristal) y el producto de esterificación del compuesto carbonílico.

2.3. Síntesis de complejos metálicos M_nL.

Se llevaron a cabo en relaciones estequiométricas metal:ligante 2:1. Además se probaron varias fuentes de paladio para evaluar su reactividad frente a los ligantes.

Esquema 15. Obtención de complejos metálicos.

2.3.1. Complejos de paladio.

Todos los complejos de paladio sintetizados precipitaron del medio de reacción, facilitando su aislamiento y purificación por filtración al vacío.

$$nPdX_{2}L' + L \longrightarrow Pd_{n}LX_{2n}$$

Esquema 16. Reacción general para la obtención de complejos de paladio

En general, con la fuente de paladio $PdCl_2(COD)$ implicó un mayor tiempo de reacción y condiciones de reflujo; al emplear $PdCl_2(MeCN)_2$ los complejos se obtienen en aproximadamente 1 hora y a temperatura ambiente, obteniéndose en altos rendimientos (80-90%). El ligante COD (1,5-ciclooctadieno) presente en la materia prima forma un quelato de 5 miembros bastante estable con el paladio, lo que hace que la reacción de los ligantes **1a-6a** con este compuesto sea más lenta y requiera condiciones térmicas, mientras que los ligantes acetonitrilo de la segunda fuente de paladio son lábiles y monodentados, tales que permiten que la reacción proceda más rápido y a temperatura ambiente. El efecto quelato es un factor que facilita la obtención de los complejos con esta fuente de paladio.

Utilizando acetato de paladio se obtienen bajo las mismas condiciones que el anterior y en buenos rendimientos, desafortunadamente son insolubles en todos los disolventes, y al intentar calentarlos para disolverlos se descomponen formando negro de paladio. La sensibilidad de estos complejos se atribuye principalmente a que el ion acetato es un ligante demasiado lábil, y no protege al paladio. Para la reacción de PdCl₂(COD) con los ligantes **1a-3a** se tuvo el inconveniente de que éstos no reaccionaron en su totalidad (además de ser prácticamente insolubles) lo que impidió su caracterización por RMN. Por lo tanto, la fuente de paladio utilizada fue PdCl₂(MeCN)₂.

L	L'	X	n	tiempo (h)	Temperatura (°C). THF ó CHCl ₃
Tiabendazol	COD	Cl	1	1	25
1a	COD	Cl		24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25
2a	COD	Cl		24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25
3a	COD	Cl		24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25
4a	COD	Cl		24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25
5a	COD	Cl		24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25
6a	COD	Cl	•	24	reflujo
	OAc ⁻		2	1	25
	MeCN	Cl		1	25

Tabla 3. Condiciones de reacción para la síntesis de complejos de paladio.

Fuente de				L			
paradio	1a	2a	3 a	4a	5a	6a	tiabendazol
PdCl ₂ (COD)	parcial	parcial	parcial	si**	si**	parcial*	si**
Pd(OAc) ₂	si ^{≠,} *						
PdCl ₂ (MeCN) ₂	si*	si*	si*	si**	si**	si*	

Tabla 4. Reactividad de diversas fuentes de paladio con los ligantes obtenidos. *Complejos insolubles. ** Complejos caracterizados en este trabajo, [≠] al calentar se descomponen, formando negro de paladio.

Los complejos reportados en este trabajo son **4b** y **5b**, debido a que fueron los únicos que se lograron disolver en DMSO-d₆ para su análisis por espectroscopía de RMN de ¹H y ¹³C. Para asignar y comparar las señales de los espectros de los complejos obtenidos, se sintetizó a la especie [Pd(TBZH)Cl₂] (**8b**) para observar cómo cambian los desplazamientos químicos de ¹H y ¹³C, y qué efectos produce tener isomería de sustitución en el anillo aromático, así como la funcionalización del nitrógeno del bencimidazol con grupos carbonilo.

Fórmula	Compuesto	aspecto	Rendimiento (%)	Solubilidad en DMSO
[Pd(TBZH)Cl ₂]	(8b)	Sólido amarillo	85.4	Alta
Pd_2L^{4a}	(4b)	Sólido naranja-rojo	89.4	Moderada
Pd_2L^{5a}	(5b)	Sólido naranja-rojo	92.7	moderada

Tabla 5. Propiedades físicas de los complejos de paladio obtenidos.

Los intentos de cristalizar a los complejos de paladio **4b** y **5b** mediante la técnica de cristalización bifásica (solución saturada del complejo) en DMSO-isopropanol siempre condujeron a la descomposición de los ligantes, generando dos cristales polimorfos de paladio, de fórmula [Pd(TBZH)Cl₂], cuyo análisis de ambas estructuras se discute más adelante en el capítulo 3.

2.3.2. Complejos de níquel.

$$\begin{array}{rcl} & \mathsf{MeOH/CH}_2\mathsf{Cl}_2\\ 2\mathsf{NiCl}_2 \cdot 6\mathsf{H}_2\mathsf{O} + \mathsf{L} & \underbrace{1:1}_{\mathsf{L}} & \mathsf{Ni}_2\mathsf{L}\mathsf{Cl}_4 \cdot \mathsf{XH}_2\mathsf{O}\\ & \mathsf{L} = \mathsf{1a}\mathsf{-}\mathsf{6a}, \mathsf{24h} \\ & \mathsf{Esquema 17. Obtención de complejos de níquel.} \end{array}$$

La obtención de los complejos de níquel con los ligantes **1a-3a** fue a partir de la sal NiCl₂•6H₂O. Éstos, al entrar en contacto precipitaron al instante en el medio de reacción, generando un sólido azul claro. Desafortunadamente, para esta serie de complejos fue imposible continuar su caracterización debido a que los productos obtenidos son insolubles. Para la reacción de níquel con el compuesto **5a** se obtuvo un resultado inesperado, ya que bajo las condiciones mostradas en el Esquema 17 (mezcla de MeOH-CH₂Cl₂ 1:1) el ligante se descompone, generando *in situ* al tiabendazol. El producto obtenido es un complejo bis quelato catiónico de fórmula [NiCl(TBZH)₂(H₂O)]Cl (compuesto **8b**), el cual cristalizó por evaporación lenta de metanol, lo que permitió determinar su estructura por difracción de rayos X de monocristal. La carga adquirida durante la síntesis del complejo permite que sea altamente soluble en metanol,

El estudio cristalográfico de éste compuesto se realizó debido a que en ambos casos (níquel y paladio) el ligante empleado (**5a**) se descompone y regenera al tiabendazol. Por un lado, el complejo de paladio **5b** no tolera las condiciones de cristalización cuando se empleó isopropanol como agente precipitante. Por otra parte, al emplear una mezcla de disolventes para obtener al complejo de níquel, el ligante **5a** se descompone. En ambos casos, los disolventes próticos promueven la descomposición del ligante, lo que revela la inestabilidad del enlace N-CO. Por este motivo se reporta en este trabajo las estructuras cristalinas de ambos metales.

2.3.3. Complejos de platino.

Se descartó la obtención de estos complejos con platino, ya que un ensayo previo para la síntesis del complejo $PtCl_2(L^{5a})$ mostró que la reacción procedía muy lentamente, observándose la formación de un precipitado después de una semana de colocar la reacción.

PtCl₂(Me₂S)₂ + L
$$\xrightarrow{\text{CHCl}_3}$$
 X
L= 5a 7 días
Esquema 18. Obtención de complejos de platino.

2.4. Caracterización.

2.4.1. Compuesto 1a.

Espectroscopía de RMN.

De acuerdo a la formulación propuesta para el compuesto 1a (Figura 11), en el espectro de RMN ¹H se pueden distinguir las 9 señales esperadas (**a-o**), cuya integración da para un total de 20 H.

Las asignaciones de los protones restantes se lograron mediante la técnica bidimensional HETCOR-[¹³C-¹H] (Figura 13). De acuerdo a las multiplicidades observadas para cada hidrógeno se asignó su respectivo átomo de carbono. Las señal e perteneciente al sustituyente tiazolil (protón más desprotegido de todo el sistema al estar a dos enlaces de distancia de un nitrógeno sp² y un átomo de azufre) aparece desdoblada, cuya constante de acoplamiento a cuatro enlaces de distancia (${}^{4}J_{e-f}$) es de 1.32 Hz.

jga-xTBZ01

alto en δ =46.51ppm (zona de alifáticos). ajusta perfectamente para cuatro hidrógenos, además de que correlaciona con una señal a campo la posición bencílica (o) se asignó al singulete en δ =6.16ppm ya que la integración de la señal distinguir los carbonos cuaternarios (j-n) presentes en este compuesto (Figura 12). El protón de Del espectro DEPT de ¹³C (Figura 13) generado a partir del experimento HETCOR se lograron

Figura 13. Espectro HETCOR-[¹³C-¹H]de compuesto 1a en CDCl₃.

Espectro de masas de compuesto 1a.

El espectro de masas de este compuesto fue obtenido por la técnica de ionización por electrospray (ESI), proporcionando información del peso molecular. El fragmento en m/z=526.9 es claramente el pico base, al restar 23 unidades de masa debida al sodio da un valor de 503.9 (con un valor esperado de 504.12). Prácticamente no se observaron otros picos importantes a masas inferiores.

La composición química de este compuesto de fórmula $C_{28}H_{20}N_6S_2$ se determinó por análisis elemental orgánico. Calc. %C:66.64, %H:3.99, %N:16.65, %S:12.7; Enc. %C:64.51, %H:3.98, %N:16.16, %S:12.13.

2.4.2. Compuesto 2a.

Espectroscopía de RMN.

Las señales y las multiplicidades de este compuesto se asemejan a las del compuesto **1a** (véase Figura 11), cambiando únicamente las señales (g ,h, i) del anillo aromático *meta*-sustituido tanto en los espectros RMN de ¹H y de ¹³C (Figura 15).

El singulete que aparece en δ =6.88ppm (Figura 15) se debe al protón **g** del anillo bencílico, mientras que el triplete que se espera para el protón **i** aparece superpuesto a la señales de los protones **a** y **c**. La señal **b** aparece desdoblada con una ${}^{3}J_{b-d}$ =8Hz, mientras que la del protón **a** también aparece desdoblada, con un valor de ${}^{3}J_{a-c}$ =5.3Hz.

Figura 16. Espectro de masas ESI de compuesto 2a.

En el espectro de ¹³C del compuesto **2a** aparecen las 15 señales esperadas, como se observa en la Figura 16. Los desplazamientos químicos de los carbonos cuaternarios se mantienen en el mismo intervalo, variando únicamente para el carbono ipso **n** del sustituyente bencilo.

Espectro de masas de compuesto 2a.

Al tratarse de un isómero del compuesto anterior, este posee el mismo peso molecular y por lo tanto, un patrón semejante en el espectro de masas.

Figura 17. Espectro de masas ESI de compuesto 2a.

Se caracterizó por análisis elemental orgánico dando los siguientes valores para los elementos C, H, N, S. Calc. %C:66.64, %H:3.99, %N:16.65, %S:12.7; Enc. %C:66.35, %H:3.89, %N:16.53, %S:12.44.

Adicionalmente se logró obtener un cristal de calidad adecuada para complementar la caracterización de este compuesto mediante difracción de rayos X de monocristal. Estos resultados se reportan más adelante en la sección correspondiente.

2.4.3. Compuesto 3a.

Espectroscopía de RMN.

Figura 18. Espectro de RMN ¹H de compuesto **3a** en CDCl₃ a 300MHz.

Lo sobresaliente de la espectroscopía de este compuesto es que la molécula, al poseer dos planos de simetría, los hidrógenos y átomos de carbono del sistema bencílico son equivalentes, esto reduce el número de señales esperadas. Se comprueba al observar un singulete en δ =6.97ppm asociado al hidrógeno de la posición **g** que integra para 4H (Figura 18). El singulete localizado en δ =5.92ppm se asignó al hidrógeno de la posición bencílica (**o**) al estar localizada hacia valores de δ más pequeño. Las señales **a**, **c** y **d** están solapadas, pero la integración del multiplete resulta para alrededor de 6H (señal de CDCl₃ superpuesta). El protón **b** aparece desdoblado, acoplado a su vecino H_d, con una constante de acoplamiento ³J_{b-d}=7.74Hz.

Figura 19. Espectro de RMN 13 C 1 H 3 de compuesto **3a** en CDCl $_{3}$ a 75MHz.

jgax-TBZP1

En el espectro de ¹³C del compuesto **3a** la señal que destaca del resto es la de mayor intensidad (δ =127.17ppm), atribuida al carbono de la posición **g**. Esto se debe a que son cuatro núcleos químicamente equivalentes (Figura 19).

Espectro de masas de compuesto 3a.

Nuevamente se observa el fragmento en m/z= 526.9, (M^+ + Na), revelando el peso molecular del compuesto, de 504 unidades de masa atómica.

Figura 20. Espectro de masas ESI de compuesto 3a.

El análisis elemental mostró una variación en cuanto a la composición de N y S. Este compuesto se purificó y recristalizó de metanol, al efectuar los cálculos para $C_{28}H_{20}N_6S_2$, el porcentaje en

masa observados de los elementos H, N y S quedaron por arriba del 4% de error con respecto a lo propuesto. Al incorporar disolvente a la fórmula mínima y proponiendo $[C_{28}H_{20}N_6S_2]_5 \cdot 3(CH_3OH)$ se optimizaron los valores al disminuir el porcentaje de error.

Elemento	%C	%Н	%N	%S
^a Calc.	66.64	3.99	16.65	12.7
Enc.	65.55 (1.63) ^c	$4.15 (4.01)^{c}$	15.58 (6.42) ^c	11.7 (7.87) ^c
^b Calc.	65.57	4.3	16.04	12.24
Enc.	$65.55 (0.03)^{c}$	$4.15(3.48)^{c}$	15.58 (2.86) ^c	11.7 (4.41) ^c

Tabla 6.^a Sin considerar metanol como molécula de recristalización. ^b Considerando al metanol como disolvente de recristalización. ^c |% de error|=|(100*(Enc.-Calc.)/Calc|.

El ajuste en masa se realizó debido a que en el espectro de RMN de ¹H y ¹³C del compuesto se observaron señales de MeOH residual, en 3.40 y 50.55ppm respectivamente.

En la Figura 21 se muestran los espectros de RMN ¹H compilados de los compuestos **1a-3a** en el intervalo 8.9-6.4ppm (zona de aromáticos) para comparar las señales, mostrando que la isomería *orto- meta-* y *para-* de estos tres modifica ligeramente el desplazamiento químico de las señales observadas. Aquellas provenientes del sustituyente bencilo (**g**, **h**, **i**) tienen un desplazamiento químico intrínseco debido a la isomería presentada.

La señal **b** permanece ligeramente desplazada hacia campo alto para el isómero 3a, y por último dos observaciones: la señal del hidrógeno del sustituyente tiazolil (e) del compuesto 3a llama la atención, ya que se encuentra desplazada 0.2ppm hacia campo alto que la de sus análogos, y las señales **e** y **f** en este compuesto están más separadas entre sí (0.5ppm).

Figura 21. Comparación de los espectros de RMN ¹H de los compuestos **1a-3a**.

La señal del protón bencílico (**o**) del compuesto **1a** en esta serie de compuestos se desplazó más a campo bajo { δ H_o: **1a** > **3a** > **2a**} (Figura 22). El efecto producido de tener a los sustituyentes de tiabendazol en posición *orto* influye tanto en su solubilidad como el ambiente químico de los protones. La disposición espacial de los sustituyentes en el compuesto **1a** provoca que adquiera un momento dipolar mayor que para las moléculas de los compuestos **2a** y **3a**. En cuanto a los efectos electrónicos, al observar la Figura 23 uno de los nitrógenos enlazados al carbono de la posición **o** puede interaccionar como un puente de hidrógeno con uno de los protones del carbono adyacente.

Figura 22. Señales de RMN ¹H de metilenos de los compuestos **1a-3a**.

Como consecuencia el enlace C-H se polariza, quedando el hidrógeno parcialmente cargado y por lo tanto desprotegido.

Figura 23. Momento dipolar e interacción intramolecular presente en el compuesto 1a.

En la siguiente figura se muestran compilados los espectros de RMN ¹³C de los compuestos **1a-3a** en el intervalo 156-110 ppm (carbonos aromáticos). En general, el desplazamiento químico de las señales no parecen alterarse al modificar la isomería del sistema bencilo, ya que permanece el mismo patrón de desplazamientos para las señales observadas.

Figura 24. Comparación de espectros de RMN ¹³C de compuestos **1a-3a**.

49.0 48.5 48.0 47.5 47.0 46.5 ft (ppm) Figura 25. Señales de RMN 13 C del carbono sp³ (0) de los compuestos 1a-3a.

Para el compuesto **1a**, la señal del carbono sp³ (**o**) en esta serie de compuestos apareció a campo más bajo (Figura 25), el motivo de este comportamiento se puede atribuir también si consideramos la interacción N^{...}H intramolecular descrita en la Figura 23. El carbono queda cargado parcialmente negativo y por lo tanto la señal en RMN se desplaza hacia campo alto.

2.4.4. Compuesto 4a.

Espectroscopía de RMN.

Como se observa en la Figura 26, este compuesto de fórmula $C_{28}H_{16}N_6S_2$ posee un total de 16 hidrógenos, al integrar las señales y sumarlas ajusta perfectamente con la estructura propuesta.

La señal **a** se desplaza y queda aislada de las demás señales debido al efecto electroatractor del carbonilo con respecto a su análogo bencílico (**1a**), desplazándose 0.5 ppm hacia campo bajo. Por otro lado, las señales de los protones **h** y **g** del grupo ftaloilo también sufren el efecto electroatractor de los carbonilos. Sin embargo, el desplazamiento de estas señales invierten su posición en el espectro ($\delta H_h > \delta H_g$), desplazándose alrededor de 0.7ppm por encima de lo observado con los protones **g** y **h** del compuesto **1a**; éstas se superponen con las señales de los protones **d** y **c** del grupo bencimidazol. La señal **b** posee una ³J_{b-d}=7.40Hz, mientras que para **a** se tiene ³J_{a-c}=7.83Hz. La asignación de las señales de los protones y carbono se pudo lograr mediante la técnica de RMN bidimensional HETCOR-[¹³C-¹H] (Figura 27).

A su vez, del espectro DEPT ¹³C generado por el experimento HETCOR se dedujeron las señales provenientes de carbonos cuaternarios (**j-o**). En el espectro de RMN de ¹³C (Figura 28), la señal del carbonilo (**o**) se observa a campo alto en δ =166.98ppm, lo que corrobora la formación del enlace (CO)-N del grupo amida.

[55]

En general, las 15 señales observadas en el espectro de ¹³C muestran una ligera tendencia a desplazarse a campo alto (Figura 28). Por ejemplo, la señal del carbono **a** en δ =114.20ppm, es la que se ve más afectada por efectos electroatractores de los carbonilos, si se compara con la señal de su análogo bencílico **1a** (δC_a = 110.78ppm).

Espectro de masas de compuesto 4a.

El fragmento observado en m/z=554.8 (M⁺ + Na) confirma la obtención del compuesto **4a** de fórmula $C_{28}H_{16}N_6O_2S_2$, con M= 532 unidades de masa (Figura 29). Se distingue claramente que es el pico base.

El análisis elemental orgánico confirmó la pureza del compuesto. **Calc**. %**C**:63.14, %**H**:3.02, %**N**:15.77, %**S**:12.04; **Enc**. %**C**: 62.18, %**H**: 2.88, %**N**: 15.42, %**S**: 11.74.

2.4.5. Compuesto 5a.

Espectroscopía de RMN.

En el espectro de RMN de ¹H de este compuesto (Figura 30) destacan las señales del protón **g** (singulete) y **h** (doble de dobles), desplazadas a campo más alto, debido al fuerte efecto electroatractor que inducen los grupos carbonilo del sistema isoftaloil. Esta última, con una ³J_h_i=8.67Hz y una ⁴J_{h-g}=1.69Hz. El triplete esperado para el hidrógeno **i** no está definido del todo, pero se logra distinguir ligeramente en δ =7.25ppm, con un acoplamiento ³J_{i-h}=7.78Hz. La señal del protón **b** aparece desdoblada con ³J_{b-d}=7.96Hz.

La simetría de la molécula del compuesto **5a** permitió asignar con mayor facilidad las señales en el espectro de 13 C, observándose únicamente 15 (Figura 31).

[58]

En el espectro de ¹³C del compuesto **5a**, las señales de los carbonos terciarios se asignaron con el espectro bidimensional HETCOR-[¹³C-¹H] (Figura 32), así como la identificación de los carbonos cuaternarios (**j-o**).

[59]

Espectrometría de masas de compuesto 5a.

Figura 33. Espectro de masas ESI de compuesto 5a.

Esta serie de compuestos (**4a-6a**) los espectros de masas poseen el mismo patrón; para este compuesto (**5a**) destaca el pico más intenso (m/z=554.28), que corresponde a la masa aumentada en 23 por la presencia de sodio.

Analisis elemental. Calc. %C:63.14, %H:3.02, %N:15.77, %S:12.04; Enc. %C: 62.51, %H: 3.19, %N: 15.01, %S: 11.39.

2.4.6. Compuesto 6a.

Espectroscopía de RMN.

jgax-TPCO

El compuesto **6a** se distingue de **4a** y **5a**, ya que la molécula posee dos planos de simetría, por lo tanto el número de señales disminuye (los carbonos e hidrógenos del anillo de benceno son químicamente equivalentes). El singulete observado en δ = 7.61ppm se debe a la presencia de cuatro hidrógenos equivalentes (g) (Figura 34). Las señales del grupo tiazolil (**e** y **f**) aparecen como doblete y singulete respectivamente. El conjunto de señales **a**, **c** y **d** aparecen superpuestas, impidiendo su asignación de manera correcta, por último, la señal b aparece aislada como un doblete con una ³J_{b-c}= 8.22Hz.

El espectro de RMN ¹³C del compuesto **6a** (Figura 35) permitió observar las 13 señales esperadas, destacando la señal de la posición **g** del sistema tereftaloilo. Estos átomos, al ser equivalentes provocan que la señal incremente de intensidad. La señal del carbonilo (**o**) confirma la presencia del enlace(CO)-N de la amida.

Figura 35. Espectro de RMN 13 C de compuesto **6a** en CDCl₃ a 75MHz.

[62]

(wdd) ŢJ

Del espectro bidimensional HETCOR (Figura 36) se correlacionó la señal del protón \mathbf{g} con la señal descrita anteriormente en el espectro de ¹³C.

Espectro de masas de compuesto 6a.

El fragmento m/z= 532.8 revela el peso molecular del compuesto **6a**, mientras que los observados a masas superiores m/z= 554.8 y 570.8 corresponden a las especies $[L+Na]^+$ y $[L+NaO]^+$ respectivamente (Figura 37).

Análisis elemental.

_

Calc. %**C**:63.14, %**H**:3.02, %**N**:15.77, %**S**:12.04; **Enc**. %**C**: 62.18, %**H**: 2.88, %**N**: 15.42, %**S**: 11.74.

En las siguientes tablas se resumen los valores experimentales de las señales de ¹H y ¹³C.

Figura 38. Estructura general de ligantes.

					12							
δ ¹³ C (ppm)												
Compuesto	а	b	С	d	е	f	j	k		m	0	
1a [*]	110.78	119.73	123.61	123.27	153.13	122.08	146.82	147.23	142.51	135.95	46.51 ^{<i>a</i>}	
2a **	110.60	119.43	123.61	123.26	153.10	122.28	146.33	146.73	141.91	135.50	48.41 ^a	
3a ***	110.59	119.75	123.28	122.88	153.04	121.46	146.78	147.69	142.94	135.84	48.19 ^{<i>a</i>}	
4a *	114.20	120.45	125.83	125.28	152.55	122.19	145.94	147.44	142.48	133.78	166.98 ^{<i>b</i>}	
5a **	112.62	120.44	125.29	124.78	152.59	121.32	146.21	147.23	142.75	134.29	167.46 ^{<i>b</i>}	
6a ***	112.54	120.15	125.49	125.03	152.72	121.76	145.69	146.89	141.99	134.05	167.56 ^{<i>b</i>}	

Tabla 7. Señales de RMN ¹³C de ligantes. ^{*a*} R¹: (CH₂), ^{*b*} R¹: (C=O); * orto-, ** meta-, *** para-.

		δ ¹³ C (ppm)		
Compuesto	g	h	i	n
1a [*]	127.85	126.28		133.83
2a ^{a**}	125.59	126.33	129.05	137.42
3a ^{a***}	127.17			136.42
4a ^{b*}	131.71	130.29		134.80
5a ^{b**}	131.30	134.53	128.99	134.41
6a ^{b***}	130.07			137.95

Tabla 8. Señales de RMN ¹³C del anillo aromático. ^{*a*}R¹: (CH₂), ^{*b*}R¹: (C=O), * *orto-*, ** *meta-*, *** *para-*.

δ ¹ H (ppm)													
Compuesto	а	b	С	d	е	f	0	g	h	i			
1a [*]	7.16	7.80	7.18	7.27	8.65	8.35	6.16	6.96	6.61				
2a ^{a**}	7.14	7.78	7.15	7.26	8.59	8.34	5.86	6.89	7.02	7.12			
3a ^{a***}		7.71			8.75	8.23	5.92	6.97					
4a ^{b*}	7.55	7.69	7.22	7.27	8.46	7.99		7.24	7.32				
5a ^{b**}	7.36	7.79	7.79	7.33	8.38	8.06		7.97	7.73	7.27			
6a ^{b***}		7.81			8.43	8.21		7.61					

Tabla 9. Señales de RMN ¹H de ligantes. ${}^{a}R^{1}$: (CH₂), ${}^{b}R^{1}$: (C=O), * orto-, ** meta-, *** para-.

2.5. Caracterización de complejos de paladio.

2.5.1. Compuesto 7b.

Espectroscopía de RMN.

El compuesto **7b** [PdCl₂(TBZH)] fue obtenido y caracterizado únicamente por RMN de ¹H y ¹³C con la finalidad de comparar las señales observadas en los complejos **4b** y **5b**, y así determinar de qué manera influye la isomería *orto* y *meta* y la funcionalización del nitrógeno del tiabendazol al obtener nuevos compuestos de coordinación.

Figura 39. Espectro de RMN ¹H de compuesto 7b en DMSO-d₆ a 300MHz.

Figura 40. Equilibrio tautomérico presente en el tiabendazol.

Al observar la molécula del tiabendazol (Figura 40), vemos que esta puede existir como dos estructuras posibles debido a que presenta tautomería, por lo tanto los desplazamientos químicos

de los protones **a** y **b** son muy parecidos (Figura 41), de igual forma que las señales **c** y **d**. El protón imidazólico aparece en 13.02ppm, el cual es ácido.

Al comparar las señales de los espectros de RMN ¹H del tiabendazol (**TBZH**) y el complejo de paladio **7b**, se observa que la señal más afectada por la coordinación es α (**N-H**) y **b** (**C-H**), desplazándose hacia campo alto. H_b{7.68 \rightarrow 8.54}, H_a {13.02 \rightarrow 14.84}.

El desplazamiento químico del protón α en del compuesto **7b** se incrementa 1.82 unidades cuando el tiabendazol está coordinado al átomo de paladio. Esto se debe a que la densidad electrónica del ligante está localizada más hacia el centro metálico, provocando la polarización del enlace N-H, volviéndose más ácido.

Figura 42. Ampliación del espectro de RMN ¹H del protón N-H α en el compuesto 7b.

Las señales \mathbf{e} y \mathbf{f} de los carbonos provenientes del tiazol, al estar más cerca del centro metálico son las que sufren más el efecto de la coordinación del metal, ya que se desplazan casi 5 unidades por encima de lo observado con el ligante libre.

Los desplazamientos químicos de ¹³C de estas dos especies se muestran en la siguiente tabla.

	δ ¹³ C (ppm)										
	а	b	С	d	е	f	j	k		m	
TBZH	112.28	119.26	123.11	122.29	156.07	119.94	147.50	147.55	144.23	134.84	
7b	113.63	118.69	125.63	124.55	160.42	124.52	143.18	147.84	140.23	133.48	
11 10 D	1 .	, ,	· 1	D) DI 130							

Tabla 10. Desplazamientos químicos de RMN ¹³C de **TBZH** y **7b.**

2.5.2. Compuesto 4b.

Espectroscopía de RMN.

Al comparar los espectros de RMN ¹H, los valores de los desplazamientos químicos y las multiplicidades del compuesto **7b** (Figura 39) con los datos del compuesto **4b** vemos que existe una gran similitud (señales **a-f**), excepto con la aparición de nuevas señales (**g', h'**, Figura 45) debidas a los protones del anillo aromático central. A primera instancia se propuso que las señales g', h' provenían de una impureza contenida en el producto, pero se descartó esta hipótesis

debido a que el producto precipito del medio de reacción, y el análisis elemental (mostrado más adelante) ajustó para lo propuesto en Pd_2Cl_4L con L=4a. Otra justificación para la presencia de señales adicionales es que esta molécula puede presentar un fenómeno semejante a los sistemas biarilo que poseen quiralidad axial. Los carbonilos del compuesto 4a se encuentran en posición orto , los cuales pueden presentar repulsión por los pares libres, sin embargo, no se observaron señales extras en los experimentos de RMN, en cambio cuando se forma el complejo se pudo corroborar la presencia de 2 señales adicionales, las cuales mediante el espectro bidimensional HETCOR se confirmó que las señales extras g', h' de ¹H y ¹³C pertenecían a las mismas posiciones (Figura 47).

Esta fenómeno puede explicarse con la siguiente figura:

Figura 45 . Posibles confórmeros del compuesto 4b en disolución.

En el **confórmero A** (Figura 45) la molécula adquiere una configuración -*cis* de los carbonilos con respecto al anillo de benceno, generando que la molécula no pierda la simetría y los hidrógenos h,h' y g,g' sean equivalentes, en cambio para el **confórmero B** los carbonilos quedan en posiciones relativas -*trans* provocando que la molécula pierda simetría y los hidrógenos del anillo de benceno pierdan su equivalencia química. Es de esperarse que la configuración de menor energía sea en **B** en la cual las repulsiones existente entre los pares libres de los átomos oxígeno son mínimas. Las señales restantes (**a-f**) mantienen su multiplicidad y al integrar el área suma para 12H, sumando las señales **g** y **h** da en total 16 H.

En el espectro de ¹³C se lograron observar las 14 señales esperadas (como en el compuesto **4a**, Figura 28) mas otras dos, g' y h', que fueron discutidas en el párrafo anterior.

[71]

[72]

Espectro de masas de compuesto 4b.

Se confirmó la obtención del compuesto **4b** por espectrometría de masas, ya que se observaron los picos en m/z= 850.4, 875.6, 910.3 y 926.3, que corresponden a las especies $[Pd_2Cl_3L^{4a}]^+$ (Figura 48), $[Pd_2Cl_3L^{4a} Na]^+$, $[Pd_2Cl_4L^{4a}Na]^+$, $[Pd_2Cl_4L^{4a} NaO]^+$ respectivamente, confirmando la formación del complejo de paladio en estequiometría ML 2:1, además de que las distribuciones isotópicas de estos fragmentos concuerdan con la simulación realizada.

La distribución isotópica del fragmento en m/z=875.6 concuerda con la simulación realizada con dos átomos de paladio y tres de cloro para el fragmento de fórmula $[Pd_2Cl_3LNa]^+$. Más adelante, en las Figuras 49 y 50 se presentan las ampliaciones de tres fragmentos observados (**I**, **II** y **III**), cuya simulación muestra la formación del complejo Pd_nL con n=2.

Figura 50. Ampliación del espectro de masas de compuesto 4b. Fragmentos observados (int $x10^5$).

Análisis elemental. Calc. %C:37.90, %H:1.81, %N:9.47, %S:7.22; Enc. %C: 38.26, %H: 1.81, %N:9.17, %S: 6.79.

2.5.3. Compuesto 5b.

Espectroscopía de RMN.

Las señales de los protones se ven afectadas debido a la coordinación del ligante al átomo de paladio, desplazándose a campo alto (Figura 51). En la Tabla 6 se aprecia con detalle el cambio en los desplazamientos químicos, siendo más notorio el de la posición **e**, al aumentar una unidad de valor de ppm

δ ¹ H (ppm)									
Compuesto	а	b	С	d	е	f	g	h	i
- 5a	7.36	7.79	7.27	7.33	8.38	8.06	7.97	7.73	7.27
5b	7.69	8.53	7.38	7.30	9.39	8.62	8.45	8.14	7.63

Tabla 6. Desplazamientos químicos de RMN ¹H de compuestos **5a** y **5b**.

Las constantes de acomplamiento H-H para este compuesto se muestran a continuación: ³J_{b-d}=8.14Hz, ³J_{a-c}=7.93Hz, ³J_{h-i}=7.69Hz, ⁴J_{e-f}=1.9Hz, ⁴J_{h-g}=1.67Hz, ³J_{a-c}=7.93Hz, ³J_{c-d}=7.10Hz.

El espectro bidimensional HETCOR-[¹³C-¹H] (Figura 52) facilitó la asignación de las señales de los carbonos.

Como era de esperarse, el número de señales en el espectro de RMN ¹³C (figura 53) se mantuvo (15 señales) confirmando la obtención del complejo de paladio en relación metal-ligante 2:1.

[77]

Espectro de masas de compuesto 5b.

Los fragmentos observados más representativos mostrados en la Figura 54 son I y II, los cuales provienen de la ionización del compuesto, de la formación de una especie dimérica de paladio y fragmentación del ligante, ambos aumentados en masa en 23 unidades por la presencia de sodio. El primer fragmentó (m/z=907.9) proporcionó la evidencia de la formación del compuesto **5a**.

Figura 55. Simulación de fragmentos observados del compuesto 5b.

Análisis elemental

Dado que la síntesis del compuesto **5b** se realizó en THF y precipitó del medio de reacción, al efectuar los cálculos para el porcentaje en masa de los elementos H, N y S en $[Pd_2Cl_4(L^{5a})]$ estos quedaron muy dispersos con respecto a lo propuesto. Al incorporar disolvente a la fórmula mínima $[Pd_2Cl_4(L^{5b})]$ •0.5(THF) se optimizaron los valores al disminuir el porcentaje de error de los elementos H, N y S (Tabla 7).

Elemento	%C	%Н	%N	%S
^a Calc.	37.90	1.81	9.47	7.22
Enc.	$38.26(0.94)^{c}$	$2.14(18.23)^{c}$	$8.84(6.65)^{c}$	$6.59(8.72)^{c}$
^b Calc.	39.02	2.18	9.1	6.94
Enc.	$38.26(1.94)^{c}$	$2.14(1.83)^{c}$	$8.84(2.85)^{c}$	$6.59(5.04)^{c}$

Tabla 7. Análisis elemental de compuesto 5a. ^a Sin considerar THF como molécula de recristalización. ^b Considerando al THF como disolvente de recristalización. ^c |% de error|= |(100*(Enc.- Calc.)/Calc.

En el espectro de RMN de ¹H y ¹³C se logró apreciar impurezas provenientes de THF, en 3.70 y 68ppm, lo cual justifica el reajuste anterior.

En las siguientes tablas se presentan los valores de los desplazamientos químicos de ¹³C observados.

	δ ¹³ C (ppm)											
	а	b	С	d	е	f	j	k	I	m	n	0
4a	114.20	120.45	125.83	125.28	152.55	122.19	145.94	147.44	142.48	133.78	134.80	166.98
4b	113.65	118.74	125.42	124.62	160.49	124.42	143.19	147.89	140.27	133.27	133.50	169.18
5a	112.62	120.44	125.29	124.78	152.59	121.32	146.21	147.23	142.75	134.29	137.95	167.46
5b	113.63	118.75	125.40	124.61	160.49	124.42	143.18	147.88	140.27	133.49	131.65	167.07

Tabla 8. Comparación de señales en compuestos 4a, 4b, 5a y 5b.

Como se observa en la Tabla 8, no existen cambios significativos cuando el ligante presenta isomería -*orto* y -*meta*, al mantenerse constantes los valores de δ para los núcleos de carbono **a-f** en los compuestos de coordinación de paladio. En cambio, al presentar un alto impedimento estérico al tener sustitución 1,2 en el anillo de benceno en el compuesto **4b**, la molécula pierde la simetría al verse obligada a girar en torno al enlace C(benceno)-C(carbonilo), dando como resultado la aparición de señales nuevas en los espectros de ¹H y de ¹³C (Tabla 10).

Figura 56. Estructura general de los ligantes sintetizados.

δ ¹³ C (ppm)					
Compuesto	g	h	i		
5a ^a	131.30	134.53	128.99		
5b ^b	130.42	133.87	129.64		

Tabla 9. ^a R^2 = -TBZ, ^b R^2 =TBZ(PdCl₂)

	g	g'	h	h'
4a ^a	131.71	_	130.29	
4b ^b	131.28	136.67	128.81	125.84

Tabla 10. ^a R^2 = -TBZ, ^b R^2 =TBZ(PdCl₂)

Análisis cristalográfico

3.1. Análisis cristalográfico de compuestos 2a, 3a y 6a.

La estructura molecular de los compuestos 2a, 3a y 6a fue corroborada inequívocamente por difracción de rayos X de monocristal. Los compuestos 3a y 6a fueron cristalizados por evaporación lenta de una disolución saturada de 1,2-dicloroetano, mientras que el compuesto 2a fue disuelto en una mezcla CH₂Cl₂/metanol y cristalizado por evaporación lenta de los disolventes. Los datos cristalográficos se presentan en la Tabla 11.

	2a	3 a	6a
Fórmula	$C_{28}H_{20}N_6S_2$	$C_{28}H_{20}N_6S_2$	$C_{28}H_{16}N_6O_2S_2$
Peso Molecular	504.62	504.64	532.61
Sistema cristalino	Monoclínico	Monoclínico	Ortorrómbico
Grupo Espacial	C2/c	P 21/n	Pna21
Datos de celda			
a (Å)	15.1372(8)	5.342(4)	22.4906(16)
b (Å)	10.0133(5)	16.673(14)	7.2395(5)
c (Å)	16.3161(9	26.84(2)	14.9445(11)
α (°)	90	90	90
β (°)	104.944(2)	90.35(2)	90
γ (°)	90	90	90
V (Å ³)	2389.4(2)	2391(3)	2433.3(3)
Z	4	4	4
δ calc. (g/cm ³)	1.40	1.402	1.454
Temperatura (K)	298	298	298
R(%)	4.67	13.90	5.02

Tabla 11. Información cristalográfica de los compuestos 2a, 3a y 6a.

3.1.1. Compuesto 2a

El compuesto **2a** se encuentra representado en la Figura 57 donde se aprecia que su estructura consta del anillo fenilo con dos sustituyentes tiabendazol en posiciones uno y tres, el grupo fenilo (C19C16C17C16C19C18) presenta ángulos de torsión de 85.4° con el plano de los grupos bencimidazol (C2N3C9C4C5C6C7C8N1). El ligante cristalizó en un sistema monoclínico con la mitad de la molécula por unidad asimétrica cuya otra mitad se genera por un eje de rotación C2.

Figura 57. Representación de elipsoides al 30% de la estructura molecular del compuesto 2a.

La red cristalina se encuentra estabilizada por interacciones de enlace de hidrógeno C-H···N, la interacción C4-H4···N3 con distancia de 2.68 Å da origen a ciclos de ocho miembros que se extienden a lo largo del eje *a* como se muestra en la Figura 58. Estos arreglos se unen a través de la interacción C15-H15B···N3 formando así arreglos paralelos al plano *ab* (Figura 59).

Figura 58. Arreglo lineal de por interacciones C-H···N. Los átomos de hidrógeno que no participan en interacciones son omitidos por claridad.

Figura 59. Arreglo paralelo al plano ab encontrado en el compuesto 2a.

3.1.2. Compuesto 3a.

El compuesto **3a** consta del anillo fenilo con dos sustituyentes tiabendazol en posiciones uno y cuatro, cristalizó en un sistema monoclínico con dos moléculas cristalográficamente diferentes que son centrosimétricas. Las moléculas presentan ángulos diedros de 80.6 y 81.3° entre los planos de los anillos fenilo y los grupos bencimidazol. La unidad asimétrica está compuesta por la mitad de cada una de las moléculas y son completadas por la aplicación de centros de inversión, la estructura molecular se presenta en la Figura 60. Las dos moléculas se mantienen unidas por la interacción C35-H35…N3 con una distancia de 2.49 Å (Figura 60).

Figura 60. Representación de elipsoides al 30% de la estructura molecular del compuesto 3a.

Figura 61. Arreglo laminar paralelo al plano *ac* identificado en el compuesto 3a. Los átomos de hidrógeno que no intervienen en las interacciones se omiten para una mejor claridad.

En el compuesto **3a** se identifica un arreglo laminar paralelo al plano *ac* como resultado de las interacciones C35-H35····N3 y C17-H17····N25, dichas interacciones presentan distancias de 2.49 y 2.46 Å, respectivamente, el arreglo se representa en la Figura 62. Los arreglos se ven complementados por interacciones C-H··· π que contribuyen a establecer los arreglos en la tres direcciones del espacio, las dos interacciones identificadas son C15-H15··· π (C26-C31) y C33-H33··· π (C8-C13) con distancia de 2.80 Å para ambas interacciones (Figura 62 y Tabla 11).

Figura 62. Representación de las interacciones C-H··· π . Los átomos de hidrógeno que no participan en interacciones son omitidos por claridad.

3.1.3. Compuesto 6a.

El compuesto **6a** presenta en la unidad asimétrica una molécula y cuatro en la celda unitaria. Cristalizó en un sistema ortorrómbico y grupo espacial Pna21, la estructura molecular se muestra en la Figura 63. La presencia del grupo carbonilo (C=O) origina que los arreglos se estabilicen por interacciones C-H···O. Se identifica el arreglo lineal presentado en la Figura 64 donde se pueden observar las interacciones C14-H14···O1 y C21-H21···O2 con distancias 2.63 y 2.70 Å.

Figura 63. Representación de elipsoides al 30% de la estructura molecular del compuesto 6a.

Figura 64. Arreglo lineal originado por las interacciones C-H…O del compuesto 6a.

D-H···A	D-H (Å)	H…A (Å)	D…A (Å)	∠DHA (°)
2				
2a				
C4-H4···N3	0.93	2.68	3.4812(2)	145
C15-H15B…N3	0.97	2.68	3.6442(2)	175
3a				
C35-H35…N3	0.93	2.49	3.376(13)	160
C17-H17…N25	0.93	2.46	3.360(12)	162
C15-H15····Cg(C26-C31)	0.93	2.80	3.574(11)	141
C33-H33···Cg(C8-C13)	0.93	2.80	3.576(11)	141
6a				
C14-H14…O1	0.93	2.63	3.4886(2)	153
C21-H21···O2	0.93	2.70	3.266(13)	120

Tabla 11. Valores de las interacciones de enlace de hidrógeno identificadas en los arreglos cristalinos de los compuestos **2a**, **3a** y **6a**.

3.2. Análisis cristalográfico de los complejos metálicos [PdCl₂(TBZH)] (7b.1 y 7b.2) y [NiCl(H₂O)(TBZH)₂]Cl (8b).

Los cristales del compuesto **7b** se obtuvieron de dos reacciones diferentes, obteniéndose dos polimorfos, los cuales se representan en este trabajo como solvato **7b.1** y **7b.2**

El compuesto **7b** fue cristalizado de una mezcla de disolventes DMSO/isopropanol obteniéndose dos solvatos de dimetilsulfóxido: **3[(TBZH)PdCl₂]•5.5DMSO (7b.1)** y **[(TBZH)PdCl₂]•DMSO (7b.2)**. Mientras que el compuesto **[(TBZH)₂NiCl(H₂O)]Cl (8b)** se obtuvo como un monosolvato de metanol. Los datos cristalográficos de los cristales analizados se muestran resumidos en la Tabla 12.

	7b.1	7b.2	8b
	3[(tiabendazol)PdCl ₂]•	[(tiabendazol)PdCl ₂]•	[(tiabendazol)2NiCl(H2O)]Cl•
	5.5DMSO	DMSO	СН ₃ ОН
Fórmula	$3(C_{10}H_7Cl_2N3PdS),$	C ₁₀ H ₇ Cl ₂ N ₃ PdS, C ₂ H ₆ OS	C ₂₀ H _{15.65} Cl _{1.18} N ₆ NiO _{0.82} S ₂ ,
	$5.5(C_2H_6OS)$		CH ₄ O,0.82(Cl)
Peso Molecular	1565.34	456.67	578.99
Sistema cristalino	Triclínico	Triclínico	Triclínico
Grupo Espacial	P-1	P-1	P-1
Datos de celda			
a (Å)	13.5428(6)	8.5944(1)	10.4074(13)
b (Å)	14.8173(6)	9.3895(2)	11.3510(14)
c (Å)	16.8347(7)	11.2291(2)	11.7816(14)
α (°)	73.1488(8)	68.0659(10)	67.752(8)
β (°)	81.4769(9)	77.816(1)	73.892(8)
γ (°)	65.2178(8)	74.5925(10)	86.096(8)
V (Å ³)	2934.0(2)	804.00(3)	1236.6(3)
Ζ	2	2	2
δ calc (g/cm ³)	1.772	1.887	1.555
Temperatura (K)	123	123	298
R(%)	3.76	3.14	4.85

Tabla 12. Información cristalográfica de 7b.1, 7b.2 y 8b.

3.2.1. Solvato 7b.1

El solvato **7b.1** cristalizó en un sistema triclínico con tres moléculas del complejo y 5.5 moléculas de dimetilsulfoxido por unidad asimétrica, de las moléculas de DMSO tres se encuentran en desorden. Cada molécula del complejo presenta como centro metálico al átomo de paladio coordinado por una molécula del tiabendazol en forma de quelato y dos átomos de cloro (Figura 65) con distancias Pd-Cl entre los valores de 2.2822(11) y 2.3062(12) Å. La geometría alrededor del átomo de paladio es de cuadrado plano distorsionado con ángulos entre 80.19(12) y 97.34(9)° (Tabla 13).

Figura 65. Representación de elipsoides al 50% de la estructura molecular del solvato **7b.1**. Las moléculas de DMSO se omiten para mejor claridad de la representación.

Pd-Cl (Å)	2.3012(11)	2.2995(12)	2.3062(12)
	2.2822(11)	2.2981(11)	2.2904(12)
Pd-N (Å)	2.053(3)	2.055(3)	2.051(3)
	2.030(3)	2.033(3)	2.027(3)
∠NPdN (°)	80.72(12)	79.97(12)	80.19(12)
∠ClPdN (°)	92.31(9)	91.98(9)	91.78(9)
	96.30(9)	97.34(9)	96.65(9
∠ClPdCl (°)	90.68(4)	90.71(4)	91.44(4)

Tabla 13. Distancias de enlaces y ángulos seleccionados de las moléculas independientes en el solvato 7b.1.

Figura 66. Representación de las interacciones entre el DMSO y las moléculas del complejo metálicos.

Las moléculas del disolvente interaccionan con el complejo a través de interacciones de enlace de hidrógeno de los tipos N-H···O, C-H···O y C-H···Cl (Figura 66). Los valores de las distancias N-H···O son de 2.06, 2.02 y 2.00 Å, mientras que las interacciones C-H···O se encuentran en un intervalo entre de 2.39 y 2.55 Å. Las interacciones C19-H19B····Cl6 y C20-H20C····Cl5 dan origen a la formación de ciclos de ocho miembros, como se observa en la Figura 66, este tipo de ciclo también se observan por las interacciones C17-H17C····Cl2 y C18-H18B····Cl1.

Las moléculas correspondientes a los centros metálicos Pd1 y Pd2 se mantienen unidas en la unidad asimétrica por interacciones π - π (Figura 67), cuyas distancias entre centroides son de 3.62 y 3.71 Å entre el sistema aromático de bencilo y el anillo tiazol. Estas interacciones se extienden a lo largo del eje *a* formando el arreglo lineal presentado en la Figura 68, cuyas distancias entre centroides son de 3.54 y 3.61 Å.

Figura 67. Interacciones π - π de dos de las moléculas en la unidad asimétrica.

Figura 68. Arreglo lineal generados por las interacciones C-H $\cdots\pi$ en el solvato **7b.1**. Los átomos de hidrógeno se omiten para una mejor claridad.

3.2.2. Solvato 7b.2

El solvato **7b.2** cristalizó en un sistema triclínico con una molécula del complejo y una del disolvente en unidad asimétrica (Figura 69), ambas moléculas en desorden. Estas moléculas se encuentran unidas a través de la interacción N3-H3…O1 con una distancia de 1.88 Å. Al igual que en el solvato **7b.1**, el átomo de paladio se encuentra tetracoordinado con geometría cuadrado plano distorsionado como lo demuestra los ángulos observados entre 80.82 y 95.87 ° (Figura 69).

Figura 69. Representación de elipsoides al 50% de la estructura molecular del solvato **7b.2**, con las distancias y ángulos de la esfera de coordinación del centro metálico.

La molécula de DMSO contribuye a estabilizar la red cristalina por formación de las interacciones N-H···O, C-H···O y C-H···Cl con la molécula del complejo metálico. Es así como se identifica una interacción N3-H3···O1 con distancia de 1.88 Å, una interacción C14-H14···O1 con distancia 2.48 Å y cuatro interacciones C-H···Cl con distancias 2.81, 2.82 y 2.76 Å. Las interacciones se muestran en la Figura 70. La combinación de las interacciones N-H···O y C-H···Cl generan arreglos lineales como el mostrado en la Figura 71.

Figura 70. Representación de las interacciones del DMSO de 7b.2.

Figura 71. Representación del arreglo lineal generado por las interacciones N-H…O y C-H…Cl en **7b.2**. Los átomos de hidrógeno que no intervienen en las interacciones son omitidos para mejor claridad.

3.2.3. Compuesto 8b.

El compuesto **8b** presenta como centro metálico al átomo de níquel con un número coordinación de seis y una geometría de octaedro distorsionado. La esfera de coordinación está compuesta por dos moléculas del ligante tiabendazol formando anillos quelato de cinco miembros, un átomo de cloro (C11) y una molécula de agua (Figura 72). El compuesto presenta como contraión un átomo de cloro (Cl2) que presenta desorden con la molécula de agua en una relación 82:18. El compuesto cristalizó como solvato observándose en la unidad asimétrica una molécula de metanol por cada molécula del complejo metálico, la molécula del disolvente también presenta desorden en una proporción 68:32. También se observa que el átomo de cloro que actúa como contraión presenta en la unidad asimétrica dos interacciones de enlace de hidrógeno N17-H17…Cl2⁻ y C27-H27…Cl2⁻ con distancias de 2.26 y 2.74 Å, respectivamente.

Figura 72. Representación molecular del compuesto 8b con elipsoides al 50%, distancias de enlace y ángulos representativos.

Además de las dos interacciones N17-H17····Cl2⁻ y C27-H27····Cl2⁻, el átomo de cloro Cl2 muestra una interacción de enlace de hidrógeno con la molécula de agua coordinada al átomo de Ni con distancia de 2.24 Å, y una interacción C-H····Cl⁻ con la molécula de metanol. Las interacciones encontradas para el átomo de cloro Cl2 se presentan en la Figura 73.

Figura 73. Interacciones que forma el átomo de cloro que esta como contraión.

Las interacciones del átomo de cloro Cl2 con el tiabendazol y la molécula de agua dan origen a un arreglo lineal que se extiende a lo largo del eje *a* como se muestra en la Figura 74. Al igual que el Cl2, el átomo de cloro Cl1 también forma interacciones N-H···Cl y C-H···Cl, identificándose las interacciones N3-H3···Cl1 y C25-H25···Cl1 con distancias de 2.38 y 2.76 Å que dan como resultado formación de un arreglo lineal a lo largo del eje *b* (Figura 75).

Figura 74. Representación del arreglo lineal generado por las interacciones N-H…Cl y C-H…Cl del átomo de cloro Cl2.

Figura 75. Representación del arreglo lineal generadas por las interacciones del átomo de cloro Cl1.

En la tabla 14 se resumen los valores de distancias y ángulos de las interacciones de enlace de hidrógeno consideradas más relevantes para el análisis de los arreglos cristalográficos de **7b.1**, **7b.2** y **8b.**

D-H…A	D-H (Å)	H…A (Å)	D…A (Å)	∠DHA (°)
7b.1				
C19-H19B…Cl6	0.98	2.78	3.672(6)	151
C20-H20C…Cl5	0.98	2.87	3.7736(1)	153
C17-H17B…Cl1	0.98	2.71	3.595(4)	150
C17-H17C…Cl2	0.98	2.79	3.743(5)	165
C19-H19A…Cl2	0.98	2.84	3.6728(1)	143
N3-H3…O1	0.75	2.06	2.798(4)	168
N23-H23····O2	0.75	2.02	2.735(4)	161
N43-H43…O3	0.76	2.00	2.750(5)	167
C14-H14…O1	0.95	2.44	3.256(5)	143
C51-H51O2	0.95	2.55	3.317(5)	138
С54-Н54…О3	0.95	2.39	3.086(5)	129
C34-H34…O2	0.95	2.51	3.274(5)	138
7b.2				
N3-H3…O1	0.82	1.88(3)	2.702(5)	177
C14-H14…O1	0.95	2.48	3.122(5)	125
C7-H7··Cl2	0.95	2.72	3.441(4)	134
C15-H15A··Cl1	0.98	2.81	3.743(6)	159
C15-H15C··Cl2	0.98	2.82	3.638(6)	142
C16-H16B··Cl2	0.98	2.81	3.753(6)	161
C16-H16C··Cl1	0.98	2.76	3.664(7)	153
8b				
O1-H1A····Cl2	0.85	2.24(3)	3.076(6)	169
O1-H1B···Cl2	0.85	2.24(3)	3.069(6)	169
N3-H3····Cl1	0.79	2.38(4)	3.148(4)	164
N17-H17…Cl2	0.79	2.26(4)	3.048(4)	176
C27-H27…Cl2	0.93	2.74	3.576(4)	150

Tabla 14. distancias y ángulos más relevantes de compuestos 7b.1, 7b.2 y 8b.

Conclusiones.

- Se lograron obtener satisfactoriamente los ligantes propuestos bajo un esquema simple de reacción. Se caracterizaron por todas las técnicas espectroscópicas, mostrando evidencia de la formación de los compuestos.
- La síntesis de los compuestos **1a-3a** es más eficiente al obtenerse en mejores rendimientos; éstos toleran la mayoría de los disolventes para efectuar reacciones y no se descomponen. La desventaja es que forma complejos prácticamente insolubles sin importar la fuente paladio empleada. El grupo bencilo no es recomendable para la funcionalización del tiabendazol, ya que no ejerce polarización de la molécula en los compuestos de coordinación.
- Únicamente fue posible caracterizar complejos de paladio en estequiometrías M:L 2:1 con los ligantes **4a** y **5a**. La espectrometría de masas lo confirma al observarse fragmentos que corresponden a la fórmula propuesta Pd₂Cl₄L. La funcionalización del tiabendazol por grupos polares (como el carbonilo) en las moléculas del ligante promueven la solubilidad de los compuestos de coordinación de paladio. Esto es de importancia para una posible aplicación en un proceso catalítico que involucre a estos complejos, ya que pueden incorporarse al medio de reacción
- La isomería presente en los compuestos 4a-6a sí influye en la solubilidad de los complejos de paladio obtenidos, al resultar solubles únicamente los isómeros -orto y meta. El derivado Pd₂Cl₄L (con L=6a) es prácticamente insoluble. Los momentos dipolares ejercidos en la molécula se cancelan y por lo tanto la molécula es apolar, sin importar la presencia de grupos carbonilos.
- El enlace N-CO (amida) de los ligantes **4a-6a** es inestable en medios próticos y en disolución se revierte, formando tiabendazol. Este desperfecto limita la síntesis de complejos que sean solubles en este medio. Se debe optar por otro grupo funcional que polarice a la molécula y que además impida la descomposición del ligante.
- La difracción de rayos X de monocristal permitió corroborar la descomposición de los ligantes **4a** y **5a**, observándose la obtención de compuestos quelato de tiabendazol con níquel y paladio.

Bibliografía.

[1]. M. P. Upadhyay, E. P. West, A. P Sharma, Br. J. Ophthalmol, (1980), 64, 30-32.

[2]. S. Kirubakaran, G. S. Kumar1, Sharling, L., Z. Minjia1, L. Xiaoping, R. Soumya, MacPherson, I. S., S. Boris, H. Lizbeth1, C. Gregory, *Bioorg. Med. Chem. Lett.*, (2012), 22, 1985–1988.

[3]. M. Devereux, S. Denis, K. Andrew, M. McCann, W. Maureen, E. Denise, D. Carol, K. Kinga, R. Georgina, H. Müller-Bunz, *J. Inorg Biochem.* (2007), 101, 881–892.

[4]. B. Umadevi, P.T. Muthiah, X. Shui, D.S. Eggleston, *Inorg. Chim. Acta*, (1995), 234, 149-152.

[5]. S. Q. Wei, C. W. Lin, X. H. Yin, Y. J. Du, Z. Y. Xiong, *R. J. Coord. Chem.*, (2013), 39, (9), 641–649.

[6]. L. Vernon, Ch. J. Gould, E. Csonka, R. L. Jensen J., Agr. Food Chem., (1973), 21, (5), 931-932.

[7]. D. Tocco, R. P. Buhs, H.D. Brown, A.R. Matzuk, H. E. Mertel, R.E. Harman, N. R. Trenner, J. Med. Chem., (1964), 7 (4), 399–405.

[8]. C. Myriam, E.Claudine, L. Gilberte, S Jean-François, A. Michel, M. Katherine, P. Andrea, Z. Flavia, L. Stammati, I. De Angelis, V. Anna Lidia, G. Pierre. *Chemico-Biological Interactions*, (2000), 127, 109–124.

[9]. D. Dalvie, E. Smith, A. Deese, S. Bowlin, DMD, (2006), 34, (4), 709-717.

[10]. S. Roslyn, T. P. Simbarashe, H. Dolgos, B. Anna-Lena, Collen M. Masimirembwa DMD,
 (2009), 37, (6), 1286–1294.

[11]. J. Grenda, R. E. Jones, G. Gal, M.Sletzinger, J. Org. Chem., (1965), 30 (1), 259-261.

[12]. L.B. Townsend, D.S. Wise Parasitology Today, (1990), 6, (4).107-112.

[13]. Y. Kim, M. R. Kumar, N. Park, Y. H., S. Lee, J. Org. Chem., (2011), 76, 9577–9583.

[14]. J. M. Grevy, F.Tellez, S. Bernés, H. Nöth, R.Contreras, N. Barba-Behrens, *Inorg. Chim. Acta*, (2002) 339 532-542.

[15]. K. K. Mothilal, C. Karunakaran, C. Rajendran, A. Murugesan, R. J. Inorg. Biochem., 98 (2004), 322–332.

[16]. Y. Inoue, M. Hoshino, H. Takahashi, T. Noguchi, T.i Murata, Y. Kanzaki, H. Hamashima, M. Sasatsu, *Inorg. Biochem.*, (2002), 92, 37–42.

[17]. W. Byrnes, M. Mohan , W.E. Antholine , R. X. Xu , D.H. Petering, *Biochem*, (1990), 29, 7046–7053.

[18] M. Devereux, M. O. McCann, D. Shea, R. Kelly, D. Egan, C. Deegan, Kavanagh, K., McKee, V. Finn, G. J. Inorg.Biochem., (2004), 98, 1023–1031.

- [19]. M. Wisniewski, T.Glowiak, A. Opolski, J. Wietrzyk, Metal Based Drugs, (2001), 8, 4, 189–194.
- [20]. M. Rong, M. M. Muir, M. E. Cádiz, J. A. Muir, Acta Cryst. (1991). C47, 1539-1541.

[21]. X.Y. Yu, M. Maekawa, T. Morita, C. Ho-Chol, S. Kitagawa, Guo-Xin Jin *Polyhedron*,(2002) 21, 1613-1620.

[22]. H. Gueddar, R. Bouhfid, E. M. Essassi, N. El Brahmi, L. El Ammari, *Acta Cryst.*, (2012).E69, m5-m8.

[23]. F. L. Oliveira, P. C. Huber, W. P. Almeida, J. R. Sabino, R. Aparicio, *Acta Cryst.*, (2013).C69, 119–122.

- [24]. P. E. Garrou, Chem. Rev. (1981) 81 229-266.
- [25]. R. Imbos, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. (2002), 124, 184-185.

[26]. W. A. Herrmann1, C. Brossmer1, K. Öfele1, Claus-Peter Reisinger1, T. Priermeier1, M.

Beller, H. Fischer, Angew. Chem., (1995), 34 1844-1848.

- [27]. A. Fürstner, J. Grabowski, C. W. Lehmann, J. Org. Chem., (1999), 64, 10 8275-8280.
- [28]. K. Rajender, G. Krishna. Tetrahedron Letters, (2005) 46 661-663.
- [29]. C. Constable, P. Harverson Polyhedron, (2010) 29 1891–1901.

[30]. S. Casas, A. Castiñeiras. E.García-Martínez, Y. Parajó, M. Luz Pérez-Parallé, A. Sánchez-González, J.Sordo, Z. Anorg. Allg. Chem. (2005), 631, 2258-2264.

- [31]. F. Li, S. Andy Hor, Adv. Synth. Catal. (2008), 350, 2391-2400.
- [32]. M. C. Done, J. Organomet. Chem. (2000), 607, 78–92.
- [33]. C. Mock, I. Puscasu, M. J. Rauterkus, G. Tallen, J. E. A Wolff, B. Krebs, *Inorg. Chim. Acta*, (2001), 319, 109–116.
- [34]. Chen, W., Xi, C. & Wu, Y. J. Organomet. Chem., (2007), 692, 4381–4388.
- [35] S. Haneda, Z. Gan, K. Eda, M. Hayashi, Organometallics, (2007), 26, 6551–6555.
- [36]. S. O. Ojwach, G. Westman, J. Darkwa, *Polyhedron*, (2007), 26, 5544–5552

Procedimiento experimental.

4.1. Reactivos e Instrumentación.

Todos los disolventes empleados para la síntesis y purificación de los compuestos obtenidos fueron adquiridos de J. T. Baker en grado reactivo. Los reactivos α , α dibromo xilenos (orto, meta y para), los cloruros de ftaloilo y el hidruro de sodio se adquirieron en Aldrich. Los espectros de IR se realizaron en un espectrómetro Nicolet-Magna 750 FT-IR en pastilla de KBr. Los análisis de RMN de ¹H y ¹³C se hicieron en un equipo Bruker-Avance a 300 y 75 MHz respectivamente. Los espectros de masas por ESI se obtuvieron en equipo Esquire 6000. El análisis elemental orgánico de los compuestos se determinó en un analizador Perkin-Elmer 240. Los datos cristalográficos se obtuvieron en un equipo Bruker SMART APEX.

4.2. Síntesis de ligantes y complejos metálicos.

4.2.1. Síntesis de compuesto 1a.

Esquema 19. Síntesis de compuesto 1a.

En un matraz seco se colocaron 1.5g (7.45mmol) de tiabendazol, e inmediatamente se agregaron 0.231g (9.16mmol) de hidruro de sodio (95%) en polvo, cerrándolo con tapón de hule. El sistema se purgó con nitrógeno por unos segundos e inmediatamente, usando cánulas, se adicionaron aproximadamente 150mL de THF anhidro de la línea de vacío. La reacción evolucionó con el desprendimiento de hidrógeno molecular y calentamiento del matraz, formándose un precipitado blanco. Se dejó en agitación durante 15 minutos hasta no observar desprendimiento de gas. Posteriormente, se agregaron 1024g (3.72mmol) de α , α '-Dibromo-*o*-xileno (96%) (**57**) y bajo reflujo se dejó en agitación durante 24 horas. La reacción fue monitoreada por cromatografía de

capa fina para observar la formación del producto (4:1 Hexano/AcOEt). El progreso de la reacción fue verificado por la desaparición del precipitado generado con anterioridad, ya que el producto es altamente soluble en THF. La disolución resultante (ámbar) se filtró con celita para eliminar la sal de sodio formada. El filtrado se llevó a sequedad, obteniéndose un sólido crema; Se lavó y filtró por vacío con fracciones de MeOH/H₂O 70:30 frío (35mL) para remover el NaBr y el tiabendazol residual, obteniéndose un sólido blanco (altamente soluble en CH₂Cl₂, THF CHCl₃ y mezcla de CH₂Cl₂/MeOH 2:1; Insoluble en MeOH), con un rendimiento del 83% (1.596g, $3.16x10^{-3}$ mol). P.M=504.3g/mol. M⁺= 526.9. RMN-¹H (300MHz, CDCl₃): δ 6.16 (s, 4H, H_o), 6.61 (m, 2H, H_h), 6.96 (m, 2H, H_g), 7.17 (m, 4H, H_{a,c}), 7.27 (m, 2H, H_d), 7.80 (d, 2H, H_b), 8.35 (s, 2H, H_f), 8.64 (d, 2H, H_e). RMN-¹³C (75MHz, CDCl₃): δ 46.51 (s, C_o), 110.78 (s, C_a), 119.73 (s, C_b), 122.08 (s, C_f), 123.27 (s, C_d), 123.61 (s, C_c), 126.28 (s, C_h), 127.85 (s, C_g), 133.83 (s, C_n), 135.95 (s, C_m), 142.51 (s, C₁), 146.82 (s, C_j), 147.23 (s, C_k), 153.13 (s, C_e).

4.2.2. Síntesis de compuesto 2a.

Esquema 20. Síntesis de compuesto 2a.

La síntesis de este compuesto se llevó bajo las mismas condiciones que el compuesto **1a**. En un matraz seco se colocaron 1.399g (6.95mmol) de tiabendazol, se agregaron 0.200g (8.34mmol) de hidruro de sodio (95%), se adicionaron aproximadamente 150mL de THF anhidro de la línea de vacío. La reacción evolucionó con el desprendimiento de H₂(g) y calentamiento del matraz, formándose un precipitado blanco. Se dejó en agitación durante 15 minutos hasta no observar desprendimiento de gas. Posteriormente, se agregaron 945.8g (3.47mmol) de α,α' -Dibromo-*m*-xileno (97%) (**58**), dejándose en reflujo y agitación durante 24 horas. La reacción fue monitoreada por cromatografía de capa fina para observar la formación del producto (4:1

Hexano/AcOEt). El progreso de la reacción se verificó por la formación de un precipitado blanco. La mezcla de reacción se filtró por gravedad con papel filtro. obteniéndose un sólido blanco. Posteriormente se lavó y filtró por vacío con fracciones de MeOH/H₂O 70:30 frío (35mL), obteniéndose un sólido blanco (soluble en CHCl₃, 1,2-dicloroetano, solubilidad parcial en THF e insoluble en CH₂Cl₂ y MeOH), con un rendimiento del 89% (1.383g, 2.74x10⁻³mol). P.M=504.3g/mol. M⁺= 526.9. RMN-¹H (300MHz, CDCl₃): δ 5.86 (s, 4H, H_o), 6.88 (s, 1H, H_g), 7.01 (d, 2H, H_h), 7.13 (m, 5H, H_{a,c,i}), 7.25 (m, 2H, H_d), 7.77 (d, 2H, H_b), 8.29 (s, 2H, H_f), 8.58 (d, 2H, H_e). RMN-¹³C (75MHz, CDCl₃): δ 48.41 (s, C_o), 110.60 (s, C_a), 119.43 (s, C_b), 122.28 (s, C_f), 123.26 (s, C_d), 123.61 (s, C_c), 123.61 (s, C_g), 126.33 (s, C_h), 129.05 (s, C_i), 135.50 (s, C_m), 137.42 (s, C_n), 141.91 (s, C₁), 146.33 (s, C_j), 146.73 (s, C_k), 153.1 (s, C_e).

4.2.3. Síntesis de compuesto **3a**.

Esquema 21. Síntesis de compuesto 3a.

Se pesaron 2.00g (9.93mmol) de tiabendazol, 0.300g (12.5mmol) de NaH y 1.33g (4.93mmol) de α,α' -dibromo-*p*-xileno (**59**). Al término de la reacción aparece un sólido amarillo el cuál se filtra por gravedad. El sólido se redisuelve en una mezcla MeOH/CH₂Cl₂ 60:40 (disolución verde-amarilla) adicionando agua destilada hasta observar una ligera turbidez. De nuevo se filtra por gravedad, ahora recuperando un líquido incoloro. Éste se lleva a sequedad y de nuevo se lava y filtra por vacío con MeOH/H₂O 70:30 para eliminar el NaBr y el tiabendazol residual. Se obtiene un sólido blanco con un rendimiento del 65% (1.61g, 3.19mmol). P.M=504.3g/mol. M⁺= 526.9. RMN-¹H (300MHz, CDCl₃): δ 5.92 (s, 4H, H₀), 6.97 (s, 4H, H_g), 7.17 (m, 6H, H_{a,c,d}), 7.71 (d, 2H, H_b), 8.23 (s, 2H, H_f), 8.75 (d, 2H, H_e). RMN-¹³C (75MHz, CDCl₃): δ 48.19 (s, C₀), 110.59

(s, C_a), 119.75 (s, C_b), 121.48 (s, C_f), 122.88 (s, C_d), 123.28 (s, C_c), 127.17 (s, C_g), 135.84 (s, C_m), 136.42 (s, C_n), 142.94 (s, C_l), 146.78 (s, C_j), 147.69 (s, C_k), 153.04 (s, C_e).

4.2.4. Síntesis de compuesto 4a.

Esquema 22. Síntesis de compuesto 4a.

Se pesaron 1.357g (6.75mmol) de tiabendazol, 0.200g (8.34mmol) de NaH y 0.761g (0.54mL, 3.37mmol) de cloruro de ftaloilo líquido (al 90%) (**62**) y se colocaron en THF anhidro a reflujo durante 24h. El progreso de la reacción se verificó por la desaparición del precipitado generado al inicio. La disolución resultante se filtró con celita para remover el NaBr formado. Se evaporó y se llevó a sequedad, obteniéndose un sólido blanco, que posteriormente se filtró y lavó con fracciones de MeOH/H₂O 70:30 obteniéndose 1.22g (2.29mmol) de un sólido blanco con un rendimiento del 67.9%. Pm=532.6g/mol, M⁺= 554.8. v(CO)= 1685cm⁻¹, RMN-¹H (300MHz, CDCl₃): δ 6.16 (s, 4H, H_o), 7.21-7.33 (m, 8H, Hc,d,g,h), 7.55 (d, 2H, H_a), 7.70 (d, 4H, H_b), 8.00 (d, 2H, H_f), RMN-¹³C (75MHz, CDCl₃): 114.20 (s, C_a), 120.45 (s, C_b), 122.19 (s, C_f), 125.28 (s, C_d), 125.83 (s, C_c), 130.29 (s, C_h), 131.71 (s, C_g), 133.78 (s, C_m), 134.80 (s, C_n), 142.48 (s, C_l), 145.94 (s, C_j), 147.44 (s, C_k), 152.55 (s, C_c).

4.2.5. Síntesis de compuesto 5a.

Esquema 23. Síntesis de compuesto 5a.

Se pesaron 1.380g (6.85mmol) de tiabendazol, 0.200g (8.34mmol) de NaH y 0.696g (3.42mmol) de cloruro de isoftaloilo (**63**) y se colocaron en THF anhidro a reflujo durante 24h. El progreso de la reacción se verificó por la desaparición del precipitado generado al inicio. La disolución resultante se filtró con celita para remover el NaBr formado. Se evaporó y se llevó a sequedad, obteniéndose un sólido blanco, que posteriormente se filtró y lavó con fracciones de MeOH/H₂O 70:30 y CH₂Cl₂ frío, obteniéndose 0.813g (1.52mmol) de un sólido blanco con un rendimiento del 44.6%. Pm=532.6g/mol, M⁺= 554.8. v(CO) =1701 cm⁻¹ RMN-¹H (300MHz, CDCl₃): δ 7.22-7.38 (m, 7H, H_{a,c,d,i}), 7.73 (dd, 2H, H_h), 7.97 (s, 1H, H_g), 8.07 (d, 2H, H_f), 8.38 (d, 2H, H_f). RMN-¹³C (75MHz, CDCl₃): 112.62 (s, C_a), 120.44 (s, C_b), 121.32 (s, C_f), 124.78 (s, C_d), 125.29 (s, C_c), 128.99 (s, C_i), 131.30 (s, C_g), 134.29 (s, C_m), 134.41 (s, C_n), 134.53 (s, C_h), 142.75 (s, C_l), 146.21 (s, C_i), 147.23 (s, C_k), 152.59 (s, C_e), 167.46 (s, C_o).

4.2.6. Síntesis de compuesto 6a.

Esquema 24. Síntesis de compuesto 6a.

Se pesaron 1.5g (7.45mmol) de Tiabendazol, 0.200g (8.34mmol) de NaH, 0.757g (3.72mmol) de cloruro de tereftaloilo (**64**) y se colocaron en THF anhidro a reflujo durante 24h. El progreso de la reacción se verificó por la aparición de un precipitado verde. La mezcla de reacción se concentró hasta aproximadamente 10% del volumen inicial, filtrándose por vacío y haciendo lavados con MeOH/H₂O y CH₂Cl₂ frio. El sólido resultante se recuperó, obteniéndose 1.197g (2.24mmol) de un sólido blanco con un rendimiento del 60.4%. Pm=532.6g/mol, M⁺= 554.8. ν (CO) =1694 cm⁻¹ RMN-¹H (300MHz, CDCl₃): δ 7.27-7.36 (m, 6H, H_{a,c,d}), 7.61 (s, 4H, H_g), 7.81 (d, 2H, H_b), 8.21 (d, 2H, H_f), 8.43 (d, 2H, H_e). RMN-¹³C (75MHz, CDCl₃): 112.54 (s, C_a), 120.15 (s, C_b), 121.76 (s, C_f), 125.03 (s, C_d), 125.49 (s, C_c), 130.07 (s, C_g), 134.05 (s, C_m), 137.95 (s, C_n), 141.99 (s, C₁), 145.69 (s, C_f), 146.89 (s, C_k), 152.72 (s, C_e), 167.56 (s, C_o).

4.2.7. Síntesis de compuesto 4b.

Esquema 25. Síntesis de compuesto 4b.

En un matraz bola se disolvieron 70mg (0.138mmol) de compuesto **4a** en 30 mL de THF (disolución A); en otro matraz se disolvieron 67.5mg (0.261mmol) de PdCl₂(MeCN)₂ en 20mL de THF (disolución B). Esta última se agregó gota a gota a la disolución A, dejándose en agitación constante durante 1 hora. El progreso de la reacción se verificó por la formación de un precipitado amarillo claro en los primeros segundos del mezclado. Al término de la reacción se observa un sólido amarillento en el fondo del matraz. Se filtró por vacío, obteniéndose 104.6mg
(0.1178mmol) de un sólido con rendimiento del 85.4%. Pm= 887.24g/mol, M⁺= 910.3. RMN-¹H (300MHz, DMSO-d₆): δ 7.30-7.43 (m, 4H, H_{c,d}), 7.57-7.68 (m, 4H, H_{g,h}), 7.71 (d, 2H, H_a), 7.98-8.01 (m, 1H, H_{g'}), 8.07-8.10 (m, 1H, H_{h'}), 8.56 (d, 2H, H_b), 8.64 (d, 2H, H_f), 8.42 (d, 2H, H_e) RMN-¹³C (75MHz, DMSO-d₆): 113.65 (s, C_a), 118.74 (s, C_b), 124.42 (s, C_f), 124.62 (s, C_d), 125.42 (s, C_c), 125.84 (s, C_{h'}), 128.81 (s, C_h), 131.28 (s, C_g), 133.27 (s, C_m), 133.50 (s, C_n), 136.67 (s, C_{g'}), 140.27 (s, C_l), 143.19 (s, C_j), 147.89 (s, C_k), 160.49 (s, C_e), 169.18 (s, C_o).

4.2.8. Síntesis de compuesto 5b.

Esquema 26. Síntesis de compuesto 5b.

En un matraz bola se disolvieron 64.6mg (0.121mmol) de compuesto **5a** en 30 mL de THF (disolución A); en otro matraz se disolvieron 60mg (0.232mmol) de $PdCl_2(MeCN)_2$ en 20mL de THF (disolución B). Esta última se agregó gota a gota a la disolución A, dejándose en agitación constante durante 1 hora. El progreso de la reacción se verificó por la formación de un precipitado amarillo claro en los primeros segundos del mezclado. Al término de la reacción se observa un sólido amarillo-naranja en el fondo del matraz. Se filtró por vacío, obteniéndose 96mg (0.1082mmol) de un sólido rojo con rendimiento del 89.4%. Pm= 887.24g/mol, M⁺= 910.3. RMN-¹H (300MHz, DMSO-d₆): δ 7.31 (m, 2H, H_d), 7.40 (m, 2H, H_c), 7.64 (t, 1H, H_i), 7.70 (d, 2H, H_a), 8.16 (dd, 2H, H_h), 8.48 (s, 1H, H_g), 8.54 (d, 2H, H_b) 8.64 (d, 2H, H_f), 9.40 (d, 2H, H_e). RMN-¹³C (75MHz, DMSO-d₆): 113.63 (s, C_a), 118.75 (s, C_b), 124.42 (s, C_f), 124.61 (s, C_d), 125.40 (s, C_c), 129.64 (s, C_i), 130.42 (s, C_g), 133.49 (s, C_m), 131.65 (s, C_n), 133.87 (s, C_h), 140.27 (s, C_l), 143.18 (s, C_j), 147.88 (s, C_k), 160.49 (s, C_c), 167.07 (s, C_o).

4.2.9. Síntesis de compuesto 7b.

Esquema 27. Síntesis de compuesto 7b.

En un matraz se colocaron 45.4mg (0.156mmol) de $PdCl_2(COD)$ disueltos en 35mL de $CHCl_3$, posteriormente se agregaron 32mg (0.156mmol) de tiabendazol disueltos en cloroformo, formándose un precipitado amarillo al entrar en contacto, obteniéndose 54.8mg (0.144mmol) con un rendimiento del 92.7%. RMN-¹H (300MHz, DMSO-d₆) δ : 7.31 (m, 1H, H_d), 7.40 (m, 1H, H_c), 7.70 (d, 1H, H_a), (m, 1H, H_d), 8.54 (d, 1H, H_b), 8.72 (s, 1H, H_f), 9.40 (s, 1H, H_e), 14.84 (s, 1H, H_a). RMN-¹³C (75MHz, DMSO-d₆): 113.63 (s, C_a), 118.69 (s, C_b), 124.52 (s, C_f), 124.55 (s, C_d), 125.63 (s, C_c), 133.48 (s, C_m), 140.23 (s, C_l), 143.18 (s, C_j), 147.84 (s, C_k), 160.42 (s, C_e),

4.2.10. Síntesis de compuesto 8b.

Esquema 28. Síntesis de compuesto 8b.

En un matraz se agregaron 49.5mg (0.2082mmol) de cloruro de níquel hexahidratado, disolviéndolos en 20mL de etanol, adicionando gota a gota una disolución del compuesto **5a** (55.45mg, 0.1041mmol) en cloroformo. La disolución de color verde característica del níquel cambia a azul intenso, formando un precipitado. Después de 5 horas desaparece el precipitado, obteniéndose una disolución azul, la cual se llevó a sequedad por evaporación. El sólido recuperado se colectó en un vial y se redisolvió en una mezcla de MeOH-CH₂Cl₂ 1:1. La obtención del cristal procedió por la evaporación lenta de los disolventes, hasta la saturación del complejo en metanol. Después de tres días se observó la formación de unos cristales azules.

Anexos

Espectros de Infrarrojo.

Figura 76. Espectro de infrarrojo de compuesto 1a

Figura 77. Espectro de infrarrojo de compuesto 2a

Figura 78. Espectro de infrarrojo de compuesto 3a

Figura 79. Espectro de infrarrojo de compuesto 4a

Figura 80. Espectro de infrarrojo de compuesto 5a

Figura 81. Espectro de infrarrojo de compuesto 6a

Figura 82. Espectro de infrarrojo de compuesto 4b

Figura 83. Espectro de infrarrojo de compuesto 5b

Datos cristalográficos de compuesto 2a

Table 1. Crystal data and structure refinement for jgax-TBZM.

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions	318MMD13 $C_{28} H_{20} N_6 S_2$ 504.62 298(2) K 0.71073 Å Monoclinic C 2/c a = 15.1372(8) Å	$\alpha = 90^{\circ}$.
	b = 10.0133(5) A c = 16.3161(9) Å	$\beta = 104.944(2)^{\circ}$. $\gamma = 90^{\circ}$
Volume	$2389.4(2) Å^3$	<i>γ</i> = 90 .
Z	4	
Density (calculated)	1.403 Mg/m^3	
Absorption coefficient	0.254 mm ⁻¹	
F(000)	1048	
Crystal size	0.385 x 0.156 x 0.094 mm ³	
Theta range for data collection	2.465 to 25.357°.	
Index ranges	-18<=h<=18, -12<=k<=11, -19	<=l<=19
Reflections collected	6933	
Independent reflections	2170 [R(int) = 0.0633]	
Completeness to theta = 25.242°	99.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2170 / 0 / 164	
Goodness-of-fit on F ²	0.916	
Final R indices [I>2sigma(I)]	R1 = 0.0467, wR2 = 0.1154	
R indices (all data)	R1 = 0.0919, wR2 = 0.1410	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.193 and -0.253 e.Å ⁻³	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **jgax-TBZM**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
N(1)	2280(1)	7042(2)	7135(1)	58(1)
C(2)	2695(2)	6332(3)	6623(2)	61(1)
N(3)	3527(1)	5919(2)	7022(2)	64(1)
C(4)	4419(2)	6246(3)	8547(2)	78(1)
C(5)	4372(2)	6810(3)	9316(2)	87(1)
C(6)	3591(2)	7517(3)	9366(2)	86(1)
C(7)	2852(2)	7670(3)	8684(2)	73(1)
C(8)	2898(2)	7093(2)	7926(2)	60(1)
C(9)	3662(2)	6395(3)	7848(2)	62(1)
N(10)	1365(2)	6199(3)	5380(2)	90(1)
C(11)	1187(2)	5883(3)	4587(2)	102(1)
S(12)	2071(1)	5377(1)	4207(1)	96(1)
C(13)	2774(2)	5610(3)	5183(2)	78(1)
C(14)	2290(2)	6057(3)	5736(2)	65(1)
C(15)	1385(2)	7674(3)	6948(2)	64(1)

C(16)	684(2)	6867(2)	7247(2)	54(1)
C(17)	0	7545(4)	7500	55(1)
C(18)	0	4804(4)	7500	65(1)
C(19)	674(2)	5488(3)	7241(2)	60(1)

Table 3.	Bond lengths [Å] and angles [°]	for jgax-TBZM.

N(1)-C(2)	1.366(3)	N(10)-C(11)	1.291(4)
N(1)-C(8)	1.386(3)	N(10)-C(14)	1.377(3)
N(1)-C(15)	1.455(3)	C(11)-S(12)	1.691(3)
C(2)-N(3)	1.326(3)	S(12)-C(13)	1.687(3)
C(2)-C(14)	1.445(4)	C(13)-C(14)	1.377(4)
N(3)-C(9)	1.394(3)	C(15)-C(16)	1.511(3)
C(4)-C(5)	1.394(4)	C(16)-C(19)	1.381(3)
C(4)-C(9)	1.400(4)	C(16)-C(17)	1.387(3)
C(5)-C(6)	1.398(4)	C(17)-C(16)#1	1.387(3)
C(6)-C(7)	1.369(4)	C(18)-C(19)#1	1.383(3)
C(7)-C(8)	1.383(4)	C(18)-C(19)	1.383(3)
C(8) - C(9)	1.385(3)		
C(2)-N(1)-C(8)	106.4(2)		
C(2)-N(1)-C(15)	130.5(2)		
C(8)-N(1)-C(15)	123.1(2)		
N(3)-C(2)-N(1)	113.0(2)		
N(3)-C(2)-C(14)	122.4(3)		
N(1)-C(2)-C(14)	124.6(2)		
C(2)-N(3)-C(9)	104.6(2)		
C(5)-C(4)-C(9)	117.9(3)		
C(6)-C(5)-C(4)	119.9(3)		
C(7)-C(6)-C(5)	122.3(3)		
C(6)-C(7)-C(8)	117.5(3)		
N(1)-C(8)-C(9)	106.0(2)		
N(1)-C(8)-C(7)	132.1(3)		
C(9)-C(8)-C(7)	121.9(3)		
C(8)-C(9)-N(3)	110.1(2)		
C(8)-C(9)-C(4)	120.4(3)		
N(3)-C(9)-C(4)	129.5(3)		
C(11)-N(10)-C(14)	109.0(3)		
N(10)-C(11)-S(12)	117.4(3)		
C(13)-S(12)-C(11)	88.80(16)		
C(14)-C(13)-S(12)	110.5(2)		
C(13)-C(14)-N(10)	114.3(3)		
C(13)-C(14)-C(2)	124.0(3)		
N(10)-C(14)-C(2)	121.7(3)		
N(1)-C(15)-C(16)	113.1(2)		
C(19)-C(16)-C(17)	119.0(2)		
C(19)-C(16)-C(15)	122.7(2)		
C(17)-C(16)-C(15)	118.3(2)		
C(16)-C(17)-C(16)#1	121.3(3)		
C(19)#1-C(18)-C(19)	120.6(3)		
C(16)-C(19)-C(18)	120.0(3)		

Symmetry transformations used to generate equivalent atoms:

#1 -x,y,-z+3/2

Table 4. Anisotropic displacement parameters (Å²x 10³) for **jgax-TBZM**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	50(1)	55(1)	76(2)	0(1)	30(1)	2(1)
C(2)	62(2)	51(2)	76(2)	3(1)	31(2)	-1(1)
N(3)	47(1)	66(1)	82(2)	-4(1)	21(1)	3(1)
C(4)	55(2)	85(2)	91(2)	-6(2)	14(2)	-11(2)
C(5)	73(2)	89(2)	99(3)	-15(2)	23(2)	-23(2)
C(6)	99(2)	81(2)	82(2)	-20(2)	33(2)	-27(2)
C(7)	78(2)	64(2)	85(2)	-12(2)	39(2)	-13(2)
C(8)	58(2)	51(2)	77(2)	-2(1)	30(2)	-13(1)
C(9)	54(2)	59(2)	78(2)	-3(2)	25(2)	-9(1)
N(10)	72(2)	110(2)	82(2)	-11(2)	8(1)	26(2)
C(11)	95(2)	111(3)	87(3)	-13(2)	0(2)	35(2)
S(12)	126(1)	88(1)	76(1)	-2(1)	31(1)	15(1)
C(13)	80(2)	79(2)	80(2)	0(2)	32(2)	9(2)
C(14)	69(2)	57(2)	71(2)	5(1)	21(2)	6(1)
C(15)	55(2)	54(2)	91(2)	2(1)	36(1)	7(1)
C(16)	48(1)	52(2)	66(2)	0(1)	21(1)	-1(1)
C(17)	53(2)	45(2)	73(3)	0	27(2)	0
C(18)	61(2)	48(2)	85(3)	0	17(2)	0
C(19)	50(2)	55(2)	76(2)	-2(1)	20(1)	8(1)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for jgax-TBZM.

	х	У	Z	U(eq)
		·····		····
H(4)	4937	5786	8499	93
H(5)	4858	6715	9794	104
H(6)	3574	7897	9882	103
H(7)	2338	8144	8728	87
H(11)	595	5932	4238	122
H(13)	3401	5458	5326	93
H(15A)	1169	7810	6341	76
H(15B)	1444	8545	7218	76
H(17)	0	8474	7500	66
H(18)	0	3875	7500	78
H(19)	1121	5019	7062	72

Table 1. Crystal data and structure refinement for jgax-TBZP.

Identification code

414MMD13 (Solved by: Rubén A. Toscano)

Datos cristalográficos de compuesto 3a

Project Title	jgax-TBZP	
Empirical formula	$C_{28}\;H_{16}\;N_6\;S_2$	
Formula weight	500.59	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P 2_1/n$	
Unit cell dimensions	a = 5.342(4) Å	= 90°
	b = 16.673(14) Å	= 90.35(2)°
	c = 26.84(2) Å	= 90°
Volume	2391(3) Å ³	
Ζ	4	
Density (calculated)	1.391 Mg/m ³	
Absorption coefficient	0.253 mm ⁻¹	
F(000)	1032	
Crystal size / colour / shape	0.385 x 0.263 x 0.074 mm / colo	urless / plates
Theta range for data collection	1.438 to 27.855°	
Index ranges	-6<=h<=6, -21<=k<=21, -34<=l<	<=28
Reflections collected	15335	
Independent reflections	5090 [<i>R</i> (int) = 0.1988]	
Completeness to theta = 25.242°	97.2 %	
Measurement device	Bruker Smart Apex CCD diffract	tometer 01-670-01
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7455 and 0.3298	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5090 / 0 / 325	
Goodness-of-fit on F^2	1.035	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	R1 = 0.1390, wR2 = 0.3204	
R indices (all data)	R1 = 0.2833, wR2 = 0.3907	
Largest diff. peak and hole	0.620 and -0.703 e.Å ⁻³	

Este producto no cumple las especificaciones del LRX-IQUI y se libera a solicitud expresa del usuario quien exime

al laboratorio de toda responsabilidad de su uso

x y	z U(eq)				
C(1)	1815(16)	5423(5)	275(3)	37(2)	
C(2)	915(17)	4698(6)	441(3)	44(2)	
N(3)	2644(14)	6207(4)	1923(3)	42(2)	
C(3)	-930(20)	4281(6)	169(3)	54(3)	
C(4)	3735(16)	5876(5)	582(3)	39(2)	
N(5)	2871(13)	6088(4)	1074(3)	36(2)	
C(7)	3728(14)	5836(5)	1543(3)	31(2)	
C(8)	-792(18)	7240(5)	1926(4)	46(3)	
C(9)	-2398(19)	7669(6)	1615(5)	55(3)	
C(10)	-2269(19)	7621(6)	1097(4)	51(3)	
C(11)	-560(19)	7117(6)	877(4)	48(3)	
C(12)	990(15)	6657(5)	1185(3)	35(2)	
C(13)	911(16)	6727(5)	1692(3)	35(2)	
N(14)	5786(14)	4545(5)	1290(3)	43(2)	
C(15)	7448(18)	4049(6)	1453(4)	50(3)	
S(16)	8944(4)	4316(2)	1991(1)	47(1)	
C(17)	7170(15)	5169(5)	2013(3)	38(2)	
C(18)	5615(16)	5197(5)	1613(3)	35(2)	
C(19)	-3175(17)	5427(5)	4721(3)	37(2)	
C(20)	-4122(19)	4681(6)	4553(4)	49(3)	
C(21)	-5910(20)	4276(6)	4832(4)	52(3)	
C(22)	-1232(17)	5876(5)	4425(3)	42(2)	
N(23)	-2133(14)	6084(4)	3915(3)	38(2)	
C(24)	-1243(16)	5845(5)	3462(3)	34(2)	
N(25)	-2333(13)	6204(4)	3083(3)	39(2)	
C(26)	-5515(18)	7107(6)	4132(4)	47(3)	
C(27)	-7216(18)	7609(6)	3896(4)	51(3)	
C(28)	-7366(16)	7670(6)	3379(4)	45(3)	
C(29)	-5760(19)	7247(6)	3079(4)	52(3)	
C(30)	-4058(15)	6713(5)	3306(3)	36(2)	
C(30)	-+050(15)	0/15(5)	5500(5)	50(2)	

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **jgax-TBZP**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(31)	-3975(16) 6670(5	5) 3818(3) 35(2)		
N(32)	754(14)	4546(4)	3711(3)	43(2)
C(33)	2460(20)	4049(6)	3543(4)	54(3)
S(34)	3955(5)	4318(2)	3009(1)	47(1)
C(35)	2199(16)	5172(5)	3000(4)	40(2)
C(36)	647(16)	5198(5)	3384(3)	36(2)

Table 3. Bond lengths [Å] and angles [°] for **jgax-TBZP**.

C(1)-C(3)#1	1.373(12)	C(19)-C(21)#2	1.390(13)
C(1)-C(2)	1.575(12)	C(19)-C(20)	1.413(12)
C(1)-C(4)	1.514(12)	C(19)-C(22)	1.510(13)
C(2)-C(3)	1.406(12)	C(20)-C(21)	1.392(13)
N(3)-C(7)	1.327(11)	C(21)-C(19)#2	1.390(13)
N(3)-C(13)	1.408(11)	C(22)-N(23)	1.489(11)
C(3)-C(1)#1	1.373(12)	N(23)-C(24)	1.368(11)
C(4)-N(5)	1.446(11)	N(23)-C(31)	1.409(11)
N(5)-C(7)	1.402(11)	C(24)-N(25)	1.313(11)
N(5)-C(12)	1.415(11)	C(24)-C(36)	1.493(12)
C(7)-C(18)	1.479(12)	N(25)-C(30)	1.392(11)
C(8)-C(9)	1.391(14)	C(26)-C(27)	1.387(13)
C(8)-C(13)	1.401(12)	C(26)-C(31)	1.387(13)
C(9)-C(10)	1.395(14)	C(27)-C(28)	1.393(13)
C(10)-C(11)	1.377(14)	C(28)-C(29)	1.375(13)
C(11)-C(12)	1.395(12)	C(29)-C(30)	1.409(12)
C(12)-C(13)	1.368(12)	C(30)-C(31)	1.377(12)
N(14)-C(15)	1.288(12)	N(32)-C(33)	1.314(12)
N(14)-C(18)	1.394(11)	N(32)-C(36)	1.398(11)
C(15)-S(16)	1.705(10)	C(33)-S(34)	1.705(11)
S(16)-C(17)	1.710(9)	S(34)-C(35)	1.706(9)
C(17)-C(18)	1.354(12)	C(35)-C(36)	1.326(12)

C(3)#1-C(1)-C(2)	118.5(8)	N(3)-C(7)-C(18)	122.7(8)
C(3)#1-C(1)-C(4)	121.5(8)	N(5)-C(7)-C(18)	123.2(8)
C(2)-C(1)-C(4)	120.0(8)	C(9)-C(8)-C(13)	116.4(10)
C(1)-C(2)-C(3)	120.8(8)	C(8)-C(9)-C(10)	122.3(10)
C(7)-N(3)-C(13)	103.8(7)	C(11)-C(10)-C(9)	119.9(10)
C(1)#1-C(3)-C(2)	120.6(9)	C(10)-C(11)-C(12)	118.4(10)
N(5)-C(4)-C(1)	113.6(7)	C(13)-C(12)-C(11)	121.3(9)
C(7)-N(5)-C(12)	103.9(7)	C(13)-C(12)-N(5)	107.0(7)
C(7)-N(5)-C(4)	130.1(8)	C(11)-C(12)-N(5)	131.7(9)
C(12)-N(5)-C(4)	125.9(7)	C(12)-C(13)-C(8)	121.5(8)
N(3)-C(7)-N(5)	114.1(7)	C(12)-C(13)-N(3)	111.2(8)
C(8)-C(13)-N(3)	127.3(9)	N(23)-C(24)-C(36)	125.1(8)
C(15)-N(14)-C(18)	109.6(8)	C(24)-N(25)-C(30)	103.7(7)
N(14)-C(15)-S(16)	116.1(8)	C(27)-C(26)-C(31)	115.4(10)
C(15)-S(16)-C(17)	89.4(5)	C(26)-C(27)-C(28)	122.2(9)
C(18)-C(17)-S(16)	109.8(7)	C(29)-C(28)-C(27)	120.9(9)
C(17)-C(18)-N(14)	115.2(8)	C(28)-C(29)-C(30)	118.3(10)
C(17)-C(18)-C(7)	122.6(8)	C(31)-C(30)-N(25)	112.4(8)
N(14)-C(18)-C(7)	122.1(7)	C(31)-C(30)-C(29)	118.8(9)
C(21)#2-C(19)-C(20)	117.5(9)	N(25)-C(30)-C(29)	128.8(9)
C(21)#2-C(19)-C(22)	121.6(8)	C(30)-C(31)-C(26)	124.3(9)
C(20)-C(19)-C(22)	121.0(9)	C(30)-C(31)-N(23)	103.7(7)
C(21)-C(20)-C(19)	120.0(9)	C(26)-C(31)-N(23)	132.0(9)
C(19)#2-C(21)-C(20)	122.5(9)	C(33)-N(32)-C(36)	107.4(8)
N(23)-C(22)-C(19)	112.3(7)	N(32)-C(33)-S(34)	116.9(7)
C(24)-N(23)-C(31)	106.6(7)	C(33)-S(34)-C(35)	88.3(5)
C(24)-N(23)-C(22)	129.5(8)	C(36)-C(35)-S(34)	111.2(7)
C(31)-N(23)-C(22)	123.4(7)	C(35)-C(36)-N(32)	116.1(8)
N(25)-C(24)-N(23)	113.6(8)	C(35)-C(36)-C(24)	124.0(8)
N(25)-C(24)-C(36)	121.2(8)	N(32)-C(36)-C(24)	119.8(8)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z #2 -x-1,-y+1,-z+1

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C(1) C(2)	46(5) 58(6)	29(5) 40(6)	36(5) 34(6)	-1(4) 10(5)	-7(4) -7(4)	-4(4) -7(5)
N(3)	61(5)	23(4)	43(5)	3(4)	-12(4)	-6(4)
C(3)	88(8)	35(6)	40(6)	10(5)	-19(5)	-19(5)
C(4)	54(6)	25(5)	37(6)	5(4)	-3(4)	-9(4)
N(5)	46(5)	25(4)	37(5)	-7(3)	-6(3)	-4(3)
C(7)	30(5)	16(4)	46(6)	-3(4)	-5(4)	-8(4)
C(8)	54(6)	26(5)	59(7)	10(5)	1(5)	-9(5)
C(9)	52(7)	25(6)	87(10)	-5(5)	-6(6)	-7(4)
C(10)	56(7)	26(5)	71(8)	7(5)	-14(6)	0(5)
C(11)	62(7)	33(6)	49(6)	10(5)	-15(5)	-15(5)
C(12)	39(5)	23(5)	44(6)	1(4)	-11(4)	-8(4)
C(13)	44(5)	16(4)	44(6)	5(4)	-3(4)	-2(4)
N(14)	51(5)	32(4)	48(5)	-10(4)	-10(4)	10(4)
C(15)	58(6)	30(5)	63(7)	-6(5)	-4(5)	1(5)
S(16)	52(2)	34(1)	55(2)	-4(1)	-12(1)	9(1)
C(17)	43(5)	22(5)	49(6)	-3(4)	8(4)	1(4)
C(18)	44(5)	24(5)	36(5)	-1(4)	-5(4)	-3(4)
C(19)	48(6)	26(5)	37(5)	2(4)	-9(4)	1(4)
C(20)	68(7)	32(6)	47(6)	-12(5)	3(5)	-16(5)
C(21)	83(8)	29(5)	43(6)	-7(5)	5(5)	-12(5)
C(22)	60(6)	26(5)	39(6)	-5(4)	0(4)	-13(4)
N(23)	59(5)	16(4)	38(5)	4(3)	1(4)	-4(3)
C(24)	45(5)	22(5)	36(6)	-9(4)	-3(4)	-11(4)
N(25)	53(5)	25(4)	38(5)	0(3)	-9(4)	-2(4)
C(26)	55(6)	25(5)	62(7)	0(5)	2(5)	3(5)
C(27)	49(6)	24(5)	81(9)	-14(5)	6(6)	3(5)
C(28)	29(5)	35(6)	69(8)	1(5)	4(5)	5(4)
C(29)	59(7)	41(6)	54(7)	1(5)	-10(5)	6(5)
C(30)	38(5)	23(5)	47(6)	1(4)	-5(4)	-7(4)
C(31)	41(5)	19(5)	46(6)	0(4)	5(4)	-8(4)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **jgax-TBZP**. The anisotropic displacement factor exponent takes the form: -2 2 [h² a*²U₁₁ + ... + 2 h k a* b* U₁₂]

N(32)	56(5)	22(4)	51(5)	14(4)	-1(4)	-2(4)	
C(33)	79(8)	18(5)	65(7)	4(5)	-10(6)	7(5)	
S(34)	52(2)	31(1)	58(2)	1(1)	2(1)	8(1)	
C(35)	38(5)	26(5)	56(6)	4(4)	6(5)	2(4)	
C(36)	39(5)	32(5)	36(6)	-2(4)	-1(4)	-5(4)	

Table 5.	Hydrogen coordinates ($x \ 10^4$) and isotropic	displacement parameters (Å ² x 10 ³)
for jgax-'	FBZP.	

x y	z U(eq)				
H(2)	1534	4481	736	53	
H(3)	-1550	3799	292	65	
H(4A)	5230	5550	614	46	
H(4B)	4188	6363	406	46	
H(8)	-847	7291	2271	56	
H(9)	-3599	8000	1758	66	
H(10)	-3337	7929	901	61	
H(11)	-442	7084	533	57	
H(15)	7811	3574	1288	61	
H(17)	7260	5557	2261	45	
H(20)	-3550	4462	4256	59	
H(21)	-6514	3787	4715	62	
H(22A)	-788	6365	4600	50	
H(22B)	264	5550	4399	50	
H(26)	-5415	7065	4477	57	
H(27)	-8293	7916	4089	61	
H(28)	-8569	8001	3235	53	
H(29)	-5796	7311	2735	62	
H(33)	2829	3572	3707	65	
H(35)	2315	5569	2758	48	

Datos cristalográficos de de compuesto 6a.

Table 1. Crystal data and structure refinement for	JGAX-TPCO.	
Identification code	043MMD14	
Empirical formula	$\rm C_{28}H_{16}N_6O_2S_2$	
Formula weight	532.59	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P n a 21	
Unit cell dimensions	a = 22.4906(16) Å	α= 90°.
	b = 7.2395(5) Å	β= 90°.
	c = 14.9445(11) Å	γ = 90°.
Volume	2433.3(3) Å ³	
Z	4	
Density (calculated)	1.454 Mg/m ³	
Absorption coefficient	0.259 mm ⁻¹	
F(000)	1096	
Crystal size	0.382 x 0.103 x 0.066 mm ³	
Theta range for data collection	2.267 to 25.330°.	
Index ranges	-27<=h<=15, -8<=k<=7, -17<=	=1<=15
Reflections collected	8513	
Independent reflections	4040 [R(int) = 0.0909]	
Completeness to theta = 25.242°	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4040 / 1 / 343	
Goodness-of-fit on F ²	0.817	
Final R indices [I>2sigma(I)]	R1 = 0.0502, wR2 = 0.0733	
R indices (all data)	R1 = 0.1422, wR2 = 0.0963	
Absolute structure parameter	0.55(15)	
Largest diff. peak and hole	0.230 and -0.184 e.Å ⁻³	

	x	y	z	U(eq)
O(1)	517(3)	6049(9)	9812(5)	82(2)
O(2)	2101(3)	13690(10)	7726(5)	81(2)
C(1)	862(3)	8645(11)	9011(6)	40(2)
C(2)	704(3)	10433(11)	8740(5)	43(2)
C(3)	1141(3)	11714(12)	8520(6)	50(2)
C(4)	1736(3)	11205(12)	8579(6)	45(2)
C(5)	1885(3)	9430(12)	8850(6)	51(2)
C(6)	1453(3)	8123(12)	9070(7)	52(3)
C(7)	414(4)	7273(14)	9282(7)	52(3)
C(8)	2192(4)	12549(11)	8278(7)	47(3)
N(9)	2779(3)	12365(8)	8644(5)	42(2)
C(10)	2950(4)	12069(12)	9523(6)	43(2)
N(11)	3528(2)	11784(9)	9604(4)	40(2)
C(12)	4325(4)	11644(12)	8437(6)	51(2)
C(13)	4435(4)	11846(13)	7541(7)	64(3)
C(14)	3976(4)	12220(12)	6944(7)	63(3)
C(15)	3392(5)	12446(11)	7217(7)	56(3)
C(16)	3297(4)	12270(11)	8117(7)	41(3)
C(17)	3753(3)	11872(11)	8733(6)	41(2)
N(18)	2057(3)	13335(11)	10173(6)	56(2)
C(19)	1766(4)	13366(14)	10926(8)	71(3)
S(20)	2063(1)	12125(5)	117/5(2)	92(1)
C(21)	2626(4)	11546(15)	11085(7)	69(3)
C(22)	2541(4)	12277(12)	10280(6)	43(3)
N(23)	-18/(3)	7561(8)	8999(5)	40(2)
C(24)	-418(3)	7893(11)	8149(6)	39(2)
N(25)	-982(3)	8223(10)	8146(5)	47(2)
C(26)	-1715(3)	8367(12)	9418(7)	58(3)
C(27)	-1763(4)	8176(14)	10333(7)	71(3)
C(28)	-1275(5)	7715(13)	10861(8)	70(3)
C(29)	-/2/(4)	7426(12)	10497(7)	59(3)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for JGAX-TPCO. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(30)	-675(4)	7624(11)	9573(7)	46(3)
C(31)	-1156(3)	8095(12)	9042(7)	43(2)
N(32)	478(3)	6839(12)	7346(6)	63(2)
C(33)	698(4)	6918(14)	6539(7)	73(3)
S(34)	291(1)	7951(4)	5743(2)	83(1)
C(35)	-223(4)	8457(12)	6521(7)	66(3)
C(36)	-57(4)	7778(12)	7344(7)	46(3)

O(1)-C(?)	1.210(10)	C(16)-C(17)	1.408(13)
O(2)-C(8)	1.185(10)	N(18)-C(19)	1.303(12)
C(1)-C(6)	1.383(9)	N(18)-C(22)	1.340(11)
C(1)-C(2)	1.403(9)	C(19)-S(20)	1.693(12)
C(1)-C(7)	1.472(11)	S(20)-C(21)	1.687(9)
C(2)-C(3)	1.390(9)	C(21)-C(22)	1.327(12)
C(3)-C(4)	1.391(9)	N(23)-C(30)	1.394(11)
C(4)-C(5)	1.388(10)	N(23)-C(24)	1.394(11)
C(4)-C(8)	1.484(11)	C(24)-N(25)	1.292(9)
C(5)-C(6)	1.397(9)	C(24)-C(36)	1.455(13)
C(7)-N(23)	1.430(11)	N(25)-C(31)	1.397(10)
C(8)-N(9)	1.436(11)	C(26)-C(27)	1.377(12)
N(9)-C(10)	1.386(11)	C(26)-C(31)	1.393(10)
N(9)-C(16)	1.406(11)	C(27)-C(28)	1.392(13)
C(10)-N(11)	1.321(10)	C(28)-C(29)	1.364(11)
C(10)-C(22)	1.466(12)	C(29)-C(30)	1.393(14)
N(11)-C(17)	1.398(9)	C(30)-C(31)	1.385(12)
C(12)-C(17)	1.370(10)	N(32)-C(33)	1.304(12)
C(12)-C(13)	1.371(12)	N(32)-C(36)	1.381(11)
C(13)-C(14)	1.392(13)	C(33)-S(34)	1.678(11)
C(14)-C(15)	1.385(12)	S(34)-C(35)	1.680(9)
C(15)-C(16)	1.369(14)	C(35)-C(36)	1.376(13)
C(6)-C(1)-C(2)	121.0(7)	N(23)-C(7)-C(1)	117.9(9)
C(6)-C(1)-C(7)	117.1(8)	O(2)-C(8)-N(9)	119.2(8)
C(2)-C(1)-C(7)	121.9(7)	O(2)-C(8)-C(4)	123.3(8)
C(3)-C(2)-C(1)	120.3(7)	N(9)-C(8)-C(4)	117.4(8)
C(2)-C(3)-C(4)	119.3(8)	C(10)-N(9)-C(16)	107.1(7)
C(5)-C(4)-C(3)	119.8(8)	C(10)-N(9)-C(8)	129.1(8)
C(5)-C(4)-C(8)	121.8(7)	C(16)-N(9)-C(8)	123.5(8)
C(3)-C(4)-C(8)	118.2(8)	N(11)-C(10)-N(9)	112.6(8)
C(4)-C(5)-C(6)	121.8(/)	N(11)-C(10)-C(22)	124.2(9)
C(1)-C(6)-C(5)	118.0(7)	N(9)-C(10)-C(22)	122.8(8)
O(1)-C(7)-N(23)	118.7(8)	C(10)-N(11)-C(17)	105.3(7)
O(1)-C(/)-C(1)	122.8(8)	C(17)-C(12)-C(13)	118.2(8)

Table 3. Bond lengths [Å] and angles [°] for JGAX-TPCO.

C(12)-C(13)-C(14)	120.9(8)	N(25)-C(24)-C(36)	123.8(8)
C(15)-C(14)-C(13)	122.5(10)	N(23)-C(24)-C(36)	122.4(7)
C(16)-C(15)-C(14)	115.3(10)	C(24)-N(25)-C(31)	105.0(7)
C(15)-C(16)-N(9)	132.5(10)	C(27)-C(26)-C(31)	117.2(8)
C(15)-C(16)-C(17)	123.2(9)	C(26)-C(27)-C(28)	121.7(9)
N(9)-C(16)-C(17)	104.4(8)	C(29)-C(28)-C(27)	121.5(11)
C(12)-C(17)-N(11)	129.4(8)	C(28)-C(29)-C(30)	117.1(10)
C(12)-C(17)-C(16)	119.9(9)	C(31)-C(30)-C(29)	121.9(9)
N(11)-C(17)-C(16)	110.7(7)	C(31)-C(30)-N(23)	105.7(9)
C(19)-N(18)-C(22)	108.4(9)	C(29)-C(30)-N(23)	132. <mark>3</mark> (9)
N(18)-C(19)-S(20)	116.1(7)	C(30)-C(31)-C(26)	120.6(9)
C(21)-S(20)-C(19)	88.3(5)	C(30)-C(31)-N(25)	110.4(7)
C(22)-C(21)-S(20)	110.3(8)	C(26)-C(31)-N(25)	129.0(8)
C(21)-C(22)-N(18)	117.0(9)	C(33)-N(32)-C(36)	107.9(9)
C(21)-C(22)-C(10)	124.6(9)	N(32)-C(33)-S(34)	117.9(7)
N(18)-C(22)-C(10)	118.4(9)	C(33)-S(34)-C(35)	88.9(5)
C(30)-N(23)-C(24)	105.1(6)	C(36)-C(35)-S(34)	110.7(7)
C(30)-N(23)-C(/)	124.5(9)	C(35)-C(36)-N(32)	114.5(10)
C(24)-N(23)-C(7)	130.3(8)	C(35)-C(36)-C(24)	124.5(8)
N(25)-C(24)-N(23)	113.7(8)	N(32)-C(36)-C(24)	120.9(9)

Ωŋ	n ₁₃	n ₅₃	Ω_{33}	n _{IJ}	ΩIJ	
(+)02-	(+)+2-	(\$)0\$	110(0)	80(5)	(+)25	(1)0
-55(4)	-21(4)	(5)15	85(2)	105(9)	(†)09	(7)0
(+)9-	-15(4)	(\$)\$	(9)9†	45(0)	(+)88	(1))
5(4)	(+)E-	(5)5-	(9)15	(9)+5	53(4)	C(5)
(5)7	(5)£1-	(9)0	(9)65	(9)85	(5)28	(٤))
(+)9-	(+)8-	(5)1-	(9)/+	(9)25	(5)58	(†))
(5)4	(5)81-	(5)0	94(9)	(9)95	34(2)	(5)0
(5)8-	(S)L-	14(0)	(L)LL	(9)75	(5)67	(9)0
(s)L-	(5)8-	(9)8	(2)55	(8)89	(5)88	(1))
(5)8-	(5)E-	(5)EI	(2)[5	(1)7+	(9)8†	(8)
-15(3)	-4(3)	(+)5	(5)84	(9)55	(+)/2	(6)N
(S)7-	(S) 1	(\$)0	(9)++	¢5(0)	(5)1+	(0I))
(†)8-	(٤)0	(+)5	(5)94	(5)44	(+)67	(11)N
-5(2)	(5)11	(5)I	(9)/5	(1)6+	(9)8+	C(15)
(5)+-	(9)71	(/)6-	(6)58	(1)95	(9)8+	(13)
(9)27-	58(6)	(9)51-	(L)IS	(1)19	(L)9L	(14)
-50(2)	-5(2)	(5)1-	31(6)	(8)+9	(1)7(1)	(st)C
(+)£1-	(\$)01	(\$)2-	4 0(0)	(1)1+	45(2)	()))
(+)9-	(+)5	-5(2)	(9)7+	(9)9+	(\$)\$8	((1))
(+)8	(+)5	(\$)\$1-	(9)69	(\$)65	(+)65	(81)N
(5)9	14(0)	(L)LZ-	100(10)	(8)02	+3(2)	(51))
-1(5)	31(2)	-3(2)	95(5)	(5)6+1	(7)+9	(07)5
(5)+	(5)61	50(9)	(8)+9	104(10)	(5)0+	C(21)
-5(2)	(\$)9	(5)1-	(9)/2	(1)85	34(2)	C(55)
(E)11-	(+)I	(+)9	(5)0+	(9)+5	(+)/2	(EZ)N
(+)0	(5)1-	(5)6	(9)7	(5)++	(5)75	(54)
(†)1-	(†)1-	(†)0	(5)85	(5)25	30(4)	(57)N
(5)1-	(5)01	(9)+1	(8)//	(1)55	(9)8+	(97)0
(9)8-	(1)05	(/)0	(01)68	(1)55	(/)69	(17)0
(0)01-	(/)57	(0)-	(/)+5	(8)69	(8)88	(87)
-13(2)	3(9)	-1(0)	(1)1+	(8)09	(1)11	(67)

Table 4. Anisotropic displacement parameters $(k^{2}x \ 10^{5})$ for JGAX-TPCO. The anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*}^{2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

C(30)	45(6)	41(7)	51(6)	-4(5)	0(5)	-11(4)
C(31)	36(5)	41(6)	51(6)	-1(5)	5(5)	-9(4)
N(32)	42(5)	87(6)	58(6)	-10(6)	9(4)	0(4)
C(33)	54(6)	88(9)	77(8)	-28(8)	21(6)	-5(6)
S(34)	111(2)	84(2)	54(2)	-4(2)	24(2)	-9(2)
C(35)	79(7)	52(7)	67(7)	-3(6)	13(6)	8(6)
C(36)	40(5)	50(7)	47(7)	-6(5)	-4(5)	-6(5)

Datos cristalográficos de compuesto 7b.1.

Table 1. Crystal data and structure refinement for	Pd2TBZMCO.		
Identification code	449MMD13 (Solved by: R. A. Toscano)		
Project Title	Pd2TBZMCO		
Empirical formula (Sum)	C41 H54 Cl6 N9 O5.50 Pd3 S8.50		
Formula weight (Sum)	1565.34		
Temperature	123(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 13.5428(6) Å	$\alpha = 73.1488(8)^{\circ}$	
	b = 14.8173(6) Å	β= 81.4769(9)°	
	c = 16.8347(7) Å	$\gamma = 65.2178(8)^{\circ}$	
Volume	2934.0(2) Å ³		
Ζ	2		
Density (calculated)	1.772 Mg/m ³		
Absorption coefficient	1.536 mm ⁻¹		
<i>F</i> (000)	1566		
Crystal size / colour / shape	0.350 x 0.241 x 0.164 mm / ora	inge / prism	
Theta range for data collection	2.115 to 27.103°		
Index ranges	$-17 \le h \le 17, -18 \le k \le 18, -21$	$\leq l \leq 21$	
Reflections collected	31846		
Independent reflections	12784 [R(int) = 0.0267]		
Completeness to theta = 25.242°	99.4 %		
Measurement device	Bruker Smart Apex CCD diffra	ctometer 01-670-01	
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.9075 and 0.8165		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	12784 / 235 / 709		
Goodness-of-fit on F^2	1.032		
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0376, wR2 = 0.0922		
R indices (all data)	R1 = 0.0474, wR2 = 0.0988		
Largest diff. peak and hole	1.394 and -1.600 e.Å ⁻³		
Remarks	Main residue disorder 7%, Se	olvent disorder 40%	

	X	у	Z	U(eq)
$\overline{Pd(1)}$	9553(1)	-1568(1)	4717(1)	24(1)
Cl(1)	10255(1)	-2840(1)	4018(1)	$\frac{21(1)}{41(1)}$
Cl(2)	10233(1) 10027(1)	-2768(1)	5956(1)	43(1)
N(1)	8885(2)	-309(2)	5202(2)	23(1)
C(2)	8495(3)	577(3)	4625(2)	23(1)
N(3)	8045(2)	1397(2)	4945(2)	26(1)
C(4)	7822(3)	1597(2) 1544(3)	6435(3)	$\frac{20(1)}{32(1)}$
C(5)	8057(3)	946(3)	7233(3)	34(1)
C(6)	8589(3)	-136(3)	7200(2)	37(1)
C(0)	8905(3)	-641(3)	6776(2)	29(1)
C(8)	8677(3)	-44(3)	5960(2)	23(1)
C(0)	8145(3)	1034(3)	5799(2)	23(1) 24(1)
S(10)	8671(1)	750(1)	2211(1)	24(1) 35(1)
C(11)	0175(3)	-145(3)	2211(1) 2850(2)	33(1)
N(12)	9173(3) 0003(2)	-4+3(3)	2639(2) 3640(2)	$\frac{32(1)}{26(1)}$
$\Gamma(12)$	9093(2) 8600(2)	-444(2)	3049(2) 3756(2)	20(1) 25(1)
C(15)	8009(3)	346(3) 1206(3)	3730(2) 3044(2)	23(1) 21(1)
C(14) S(1)	6333(3)	1290(3)	3044(2) 2071(1)	31(1) 28(1)
S(1)	63/1(1)	4333(1) 2275(2)	$\frac{3971(1)}{2911(2)}$	30(1)
O(1) C(15)	0990(2) 7150(4)	5275(2)	3811(2) 2455(2)	59(1) 55(1)
C(15)	(130(4))	3030(4) 4227(2)	5455(5)	33(1)
$\mathcal{L}(10)$	5421(1)	4227(3) 1246(1)	5017(5)	43(1) 22(1)
Pd(2)	5451(1)	1340(1)	0300(1)	23(1)
CI(3)	4810(1)	2281(1)	7287(1)	41(1)
CI(4)	4/20(1)	2819(1)	5265(1)	38(1)
N(21)	603/(2)	329(2) (49(2)	55/1(2)	22(1)
C(22)	64/4(3)	-648(3)	5996(2) 5512(2)	24(1)
N(23)	6826(2)	-1308(2)	5512(2)	24(1)
C(24)	6808(3)	-1019(3)	3954(2)	30(1)
C(25)	6489(3)	-231(3)	3240(2)	33(1)
C(26)	5979(3)	808(3)	$\frac{32}{1(2)}$	32(1)
C(27)	57/6(3)	1090(3)	4009(2)	29(1)
C(28)	6110(3)	302(3)	4/39(2)	23(1)
C(29)	6606(3)	-12/(3)	4/00(2)	23(1)
S(30)	6840(1)	-1496(1)	8434(1)	38(1)
C(31)	6192(3)	-215(3)	7985(2)	33(1)
N(32)	6081(2)	5(2)	/186(2)	26(1)
C(33)	6533(3)	-8/3(3)	6892(2)	24(1)
C(34)	69/5(3)	-1755(3)	7486(2)	29(1)
S(2)	2159(1)	4361(1)	3821(1)	32(1)
O(2)	2/48(2)	3307(2)	3652(2)	38(1)
C(17)	918(4)	4919(3)	3282(3)	48(1)
C(18)	1617(4)	4172(3)	4858(3)	42(1)
Pa(3)	6162(1)	6019(1)	-303(1)	25(1)
CI(5)	7806(1)	5843(1)	-999(1)	40(1)
CI(6)	6898(1)	5704(1)	939(1)	44(1)
N(41)	4609(2)	6240(2)	152(2)	26(1)
C(42)	3939(3)	6364(3)	-419(2)	25(1)
N(43)	2918(3)	6538(2)	-120(2)	30(1)
C(44)	2062(4)	6685(3)	1313(3)	43(1)
C(45)	2331(4)	6659(4)	2090(3)	51(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **Pd2TBZMCO**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(46)	3381(4)	6488(3)	2257(3)	48(1)
C(47)	4224(4)	6325(3)	1661(3)	38(1)
C(48)	3971(3)	6346(3)	880(2)	30(1)
C(49)	2910(3)	6530(3)	710(2)	32(1)
S(50)	4884(1)	6350(1)	-2769(1)	33(1)
C(51)	5822(3)	6216(3)	-2119(2)	31(1)
N(52)	5449(2)	6230(2)	-1357(2)	26(1)
C(53)	4367(3)	6339(3)	-1264(2)	25(1)
C(54)	3934(3)	6407(3)	-1966(2)	28(1)
S(3)	9724(1)	2900(1)	1292(1)	42(1)
O(3)	8630(2)	2874(2)	1265(2)	47(1)
C(19)	9537(4)	3828(4)	1804(3)	63(2)
C(20)	10000(4)	3546(5)	284(3)	60(1)
S(4)	1788(3)	2035(3)	8183(2)	49(1)
O(4)	1454(8)	1295(7)	8295(6)	80(3)
C(35)	2437(12)	2226(12)	8844(8)	48(4)
C(36)	1808(16)	2879(12)	7275(6)	61(4)
S(4B)	1325(4)	2366(3)	8328(2)	63(1)
O(4B)	372(7)	2376(11)	8556(7)	101(4)
C(35B)	2223(12)	2320(16)	8963(8)	70(5)
C(36B)	1634(15)	3049(15)	7396(6)	75(5)
S(4C)	1310(8)	3133(8)	8236(6)	62(2)
O(4C)	657(17)	2541(18)	8483(13)	52(5)
C(35C)	2455(16)	2640(30)	8780(15)	48(7)
C(36C)	1820(20)	3180(30)	7235(9)	40(6)
S(5)	3544(2)	9056(2)	233(1)	58(1)
O(5)	3327(10)	9034(9)	-594(6)	190(5)
C(37)	3263(5)	10213(4)	330(4)	28(1)
C(38)	4913(5)	8433(6)	411(6)	49(2)
S(5B)	3957(4)	9623(3)	-321(3)	67(1)
O(5B)	3653(7)	9318(7)	-930(5)	51(2)
C(37B)	3041(6)	9986(7)	439(5)	14(2)
C(38B)	5010(9)	8597(11)	273(8)	57(5)
S(6)	571(14)	-522(13)	576(10)	200(6)
O(6)	-344(15)	-566(13)	1090(10)	74(5)
C(39)	590(30)	660(20)	190(20)	173(11)
C(40)	710(40)	-940(30)	-296(18)	192(12)
S(6B)	235(17)	342(15)	-245(13)	227(7)
O(6B)	850(30)	590(30)	-967(16)	178(11)
C(39B)	860(40)	-80(40)	666(16)	209(12)
C(40B)	-130(40)	-650(30)	-230(20)	144(11)

Pd(1)-N(12)	2.030(3)	S(2)-C(17)	1.784(5)
Pd(1)-N(1)	2.053(3)	Pd(3)-N(52)	2.027(3)
Pd(1)-Cl(2)	2.2823(10)	Pd(3)-N(41)	2.051(3)
Pd(1)-Cl(1)	2.3012(10)	Pd(3)-Cl(6)	2.2903(11)
N(1)-C(2)	1.334(4)	Pd(3)-Cl(5)	2.3062(10)
N(1)-C(8)	1.397(5)	N(41)-C(42)	1.341(5)
C(2)-N(3)	1.342(5)	N(41)-C(48)	1.399(5)
C(2)-C(13)	1.458(5)	C(42)-N(43)	1.343(5)
N(3)-C(9)	1 386(5)	C(42)-C(53)	1 458(5)
C(4)-C(5)	1 376(6)	N(43)-C(49)	1 393(5)
C(4)-C(9)	1 401(5)	C(44)-C(45)	1 395(7)
C(5)- $C(6)$	1 413(6)	C(44)-C(49)	1.000(7)
C(6)- $C(7)$	1 379(6)	C(45)-C(46)	1 393(7)
C(7)- $C(8)$	1 399(5)	C(46)-C(47)	1 391(6)
C(8)-C(9)	1 410(5)	C(47)-C(48)	1 396(6)
S(10)-C(11)	1 705(4)	C(48)-C(49)	1 403(6)
S(10)-C(14)	1.721(4)	S(50)-C(51)	1.709(4)
C(11)-N(12)	1 319(5)	S(50) - C(54)	1.705(1) 1.716(4)
N(12)-C(13)	1 390(5)	C(51)-N(52)	1.710(1) 1.310(5)
C(13)- $C(14)$	1 349(5)	N(52)-C(53)	1.316(3) 1 396(4)
S(1)-O(1)	1 522(3)	C(52) = C(53)	1.356(5)
S(1)-C(15)	1.322(5) 1.774(5)	S(3) - O(3)	1.556(3)
S(1)-C(16)	1.774(5)	S(3)-C(19)	1.300(3) 1.740(5)
Pd(2) - N(32)	2032(3)	S(3)-C(20)	1.740(3) 1.762(4)
Pd(2)-N(21)	2.052(3)	S(4) - O(4)	1.702(4)
Pd(2)-Cl(4)	2.035(3) 2.2981(10)	S(4) - C(35)	1.505(0)
Pd(2)-Cl(3)	2.2901(10)	S(4) - C(36)	1.005(0) 1.675(7)
N(21) - C(22)	1.329(4)	S(4P) - C(30)	1.075(7) 1.286(7)
N(21)-C(22)	1.329(4) 1 400(5)	S(4B)-C(4B)	1.200(7) 1.702(7)
C(22) N(23)	1.400(5) 1.242(5)	S(4B) - C(35B) S(4B) - C(36B)	1.702(7) 1.703(7)
C(22)-IN(23) C(22) $C(23)$	1.342(3) 1.455(5)	S(4D) - C(50D) S(4C) - O(4C)	1.703(7) 1.433(8)
N(22) - C(33)	1.433(3) 1 287(5)	S(4C) - O(4C)	1.433(8) 1.602(8)
N(25)-C(29) C(24) C(25)	1.307(3)	S(4C) - C(35C)	1.092(8)
C(24) - C(25)	1.382(0)	S(4C) - C(30C)	1.710(8) 1.477(7)
C(24)-C(29) C(25) $C(26)$	1.397(3)	S(5) - O(5)	1.4//(7) 1.644(5)
C(25)-C(20)	1.415(0)	S(5) - C(57)	1.044(3) 1.719(5)
C(20)-C(27) C(27) $C(28)$	1.379(0)	S(5)-C(50) S(5P) O(5P)	1./10(3) 1.405(6)
C(27) - C(28)	1.403(3)	S(5D) - O(5D) S(5D) - O(27D)	1.403(0) 1.694(6)
C(28)-C(29) S(20), C(21)	1.403(3)	S(3D)-C(37D) S(5D)-C(29D)	1.084(0) 1.752(7)
S(30)-C(31) S(20)-C(24)	1.700(4)	S(5B)-C(58B)	1./32(/) 1.417(9)
S(30)-C(34) C(21) N(22)	1./12(4) 1.204(5)	S(0) - O(0)	1.41/(6) 1.690(9)
V(31) - IN(32) N(32) = C(32)	1.304(3)	S(0)-C(39)	1.009(0) 1.711(0)
N(32)-C(33)	1.389(3)	S(0)-C(40)	1./11(8) 1.414(8)
C(33)-C(34)	1.353(3)	S(0B) - O(0B)	1.414(8)
S(2) - O(2)	1.310(3)	S(0B) - C(39B)	1.084(8)
S(2)-C(18)	1./82(4)	S(6B)-C(40B)	1./2/(9)
N(12)-Pd(1)-N(1)	80.70(12)	C(2)-N(1)-Pd(1)	113.1(2)
N(12)-Pd(1)-Cl(2)	176.99(9)	C(8)-N(1)-Pd(1)	141.2(2)
N(1)-Pd(1)-Cl(2)	96.29(9)	N(1)-C(2)-N(3)	112.9(3)
N(12)-Pd(1)-Cl(1)	92.32(9)	N(1)-C(2)-C(13)	118.4(3)
N(1)-Pd(1)-Cl(1)	173.02(9)	N(3)-C(2)-C(13)	128.7(3)
Cl(2)-Pd(1)-Cl(1)	90.68(4)	C(2)-N(3)-C(9)	107.2(3)
C(2)-N(1)-C(8)	105.7(3)	C(5)-C(4)-C(9)	117.0(4)
	× /	× / × / × /	

Table 3. Bond lengths [Å] and angles [°] for $\ Pd2TBZMCO.$

C(4)-C(5)-C(6)	121.2(4)	N(52)-Pd(3)-N(41)	80.20(12)
C(7)-C(6)-C(5)	121.9(4)	N(52)-Pd(3)-Cl(6)	175.71(9)
C(6)-C(7)-C(8)	117.6(3)	N(41)-Pd(3)-Cl(6)	96.65(9)
N(1)-C(8)-C(7)	131.9(3)	N(52)-Pd(3)-Cl(5)	91.76(9)
N(1)-C(8)-C(9)	108.1(3)	N(41)-Pd(3)-Cl(5)	171.84(9)
C(7)-C(8)-C(9)	120.0(3)	Cl(6)-Pd(3)-Cl(5)	91.44(4)
N(3)-C(9)-C(4)	131.7(3)	C(42)-N(41)-C(48)	105.9(3)
N(3)-C(9)-C(8)	106.2(3)	C(42)-N(41)-Pd(3)	113.3(2)
C(4)-C(9)-C(8)	122.2(3)	C(48)-N(41)-Pd(3)	140.8(3)
C(11)-S(10)-C(14)	90.72(19)	N(41)-C(42)-N(43)	112.7(3)
N(12)-C(11)-S(10)	113.2(3)	N(41)-C(42)-C(53)	118.7(3)
C(11)-N(12)-C(13)	111.8(3)	N(43)-C(42)-C(53)	128.6(3)
C(11)-N(12)-Pd(1)	133.7(3)	C(42)-N(43)-C(49)	106.8(3)
C(13)-N(12)-Pd(1)	114.5(2)	C(45)-C(44)-C(49)	116.1(4)
C(14)-C(13)-N(12)	114.4(3)	C(46)-C(45)-C(44)	121.8(4)
C(14)-C(13)-C(2)	132.3(3)	C(47)-C(46)-C(45)	122.0(4)
N(12)-C(13)-C(2)	113.2(3)	C(46)-C(47)-C(48)	116.9(4)
C(13)-C(14)-S(10)	109.9(3)	C(47)-C(48)-N(41)	131.2(4)
O(1)-S(1)-C(15)	105.4(2)	C(47)-C(48)-C(49)	121.0(4)
O(1)- $S(1)$ - $C(16)$	107.14(19)	N(41)-C(48)-C(49)	107.8(3)
C(15)-S(1)-C(16)	98.1(2)	N(43)-C(49)-C(44)	131.0(4)
N(32)-Pd(2)-N(21)	79.98(12)	N(43)-C(49)-C(48)	106.8(3)
N(32)-Pd(2)-Cl(4)	177 32(9)	C(44)-C(49)-C(48)	1221(4)
N(21)-Pd(2)-Cl(4)	97 33(8)	C(51)-S(50)-C(54)	90 53(18)
N(32)-Pd(2)-Cl(3)	91 97(9)	N(52)-C(51)-S(50)	113 8(3)
N(21)-Pd(2)-Cl(3)	171 86(8)	C(51)-N(52)-C(53)	1114(3)
Cl(4)-Pd(2)-Cl(3)	90 71(4)	C(51)-N(52)-Pd(3)	132.8(3)
C(22)-N(21)-C(28)	105 2(3)	C(51) - N(52) - Pd(3)	1152.0(3) 1156(2)
C(22)- $N(21)$ - $Pd(2)$	113 7(2)	C(54)-C(53)-N(52)	113.3(2) 114 3(3)
C(22) = N(21) = Pd(2) C(28) = N(21) = Pd(2)	1411(2)	C(54)-C(53)-C(42)	1337(3)
N(21)-C(22)-N(23)	113 2(3)	N(52)-C(53)-C(42)	112.0(3)
N(21)-C(22)-C(33)	118.3(3)	C(53)-C(54)-S(50)	109.9(3)
N(23)-C(22)-C(33)	128 5(3)	O(3)-S(3)-C(19)	107.9(3) 107.4(2)
C(22) - N(23) - C(29)	120.5(3) 107 1(3)	O(3) - S(3) - C(20)	107.4(2) 106 1(2)
C(22) - C(24) - C(29)	116 3(4)	C(19)-S(3)-C(20)	98.5(2)
C(24)-C(25)-C(26)	121 4(4)	O(4)-S(4)-C(35)	128.1(5)
C(27)-C(26)-C(25)	121.4(4) 122 0(4)	O(4)-S(4)-C(35)	125.1(5) 125.2(5)
C(26)-C(27)-C(28)	1174(4)	C(35)-S(4)-C(36)	125.2(5) 106 1(4)
N(21) - C(28) - C(27)	117.4(4) 131 $4(3)$	O(AB) S(AB) C(35B)	1250(6)
N(21)-C(28)-C(29)	108 6(3)	O(4B)-S(4B)-C(35B) O(4B)-S(4B)-C(36B)	123.0(0) 124 5(6)
$\Gamma(21)$ - $C(28)$ - $C(29)$	120 0(3)	C(35B) - S(4B) - C(36B)	124.5(0) 102.0(5)
N(23) C(20) C(24)	120.0(3) 121 2(2)	O(4C) S(4C) C(35C)	102.0(3) 114.4(8)
N(23)-C(29)-C(24) N(23)-C(20)-C(28)	105.0(3)	O(4C) - S(4C) - C(35C)	114.4(0) 112.7(7)
$\Gamma(23)$ - $C(23)$ - $C(28)$	103.9(3) 122.0(3)	C(35C) S(4C) - C(36C)	112.7(7) 102.2(6)
C(24) - C(23) - C(28) C(21) - C(24) - C(24)	122.9(3)	O(5) S(5) C(27)	102.2(0) 114.2(5)
N(32) C(31) S(30)	90.09(19) 114 1(2)	O(5) - S(5) - O(57)	114.3(3) 110.0(5)
N(32)-C(31)-S(30) C(21) N(22) C(22)	114.1(3) 111.5(2)	C(27) S(5) - C(28)	110.0(3) 102.8(2)
C(31) - N(32) - C(33)	111.3(3) 122 4(2)	C(57) - S(57) - C(58)	102.8(3) 118.2(5)
C(31)-N(32)-Pu(2) C(32) N(32) Pd(2)	155.4(5) 115 1(2)	O(5D) - S(5D) - C(57D)	110.2(3) 111.2(5)
C(33)-N(32)-Pu(2)	113.1(2)	O(3D) - S(3D) - O(38D)	111.2(3) 100.1(5)
C(34) - C(33) - IN(32) C(24) - C(22) - C(22)	114.1(3) 122.0(2)	C(3/D) - S(3B) - C(3SB)	100.1(3) 116.1(9)
U(34)-U(33)-U(22) V(22)-U(22)-U(22)	133.0(3)	O(0) - S(0) - C(39)	110.1(8)
IN(32)-U(33)-U(22)	112.8(3) 110.2(2)	U(0)-S(0)-U(40)	113.9(8)
C(33)-C(34)-S(30)	110.5(3)	C(39)-S(6)-C(40)	102.7(6)
O(2)-S(2)-C(18)	106.94(18)	O(6B) - S(6B) - C(39B)	116.5(8)
U(2)-S(2)-U(17)	104.85(19)	O(0B) - S(0B) - C(40B)	113.2(8)
C(18)-S(2)-C(17)	98.7(2)	C(39B)-S(6B)-C(40B)	102.1(6)

	I I			I1	I1	ĪŢ
	011	022	033	023	013	012
$\overline{Pd(1)}$	20(1)	18(1)	33(1)	-4(1)	0(1)	-9(1)
Cl(1)	47(1)	27(1)	50(1)	-17(1)	10(1)	-15(1)
Cl(2)	55(1)	23(1)	42(1)	3(1)	-10(1)	-11(1)
N(1)	18(1)	20(1)	30(2)	-3(1)	-3(1)	-8(1)
C(2)	15(2)	22(2)	31(2)	-1(1)	-4(1)	-9(1)
N(3)	23(2)	18(1)	34(2)	-3(1)	-4(1)	-7(1)
C(4)	29(2)	26(2)	42(2)	-10(2)	-4(2)	-11(2)
C(5)	35(2)	41(2)	36(2)	-15(2)	-1(2)	-20(2)
C(6)	30(2)	36(2)	30(2)	-4(2)	-5(2)	-15(2)
C(7)	23(2)	27(2)	37(2)	-2(2)	-5(2)	-12(2)
C(8)	16(2)	24(2)	32(2)	-7(1)	-2(1)	-10(1)
C(9)	18(2)	23(2)	34(2)	-5(1)	-5(1)	-9(1)
S(10)	34(1)	39(1)	29(1)	-4(1)	-2(1)	-15(1)
C(11)	30(2)	35(2)	35(2)	-8(2)	1(2)	-17(2)
N(12)	22(1)	26(2)	32(2)	-6(1)	0(1)	-13(1)
C(13)	16(2)	26(2)	34(2)	-5(2)	-1(1)	-10(1)
C(14)	24(2)	29(2)	34(2)	-1(2)	-4(2)	-9(2)
S(1)	37(1)	26(1)	47(1)	-10(1)	-10(1)	-5(1)
O(1)	44(2)	24(1)	46(2)	-9(1)	-11(1)	-6(1)
C(15)	62(3)	31(2)	62(3)	-5(2)	1(3)	-15(2)
C(16)	56(3)	33(2)	45(3)	-13(2)	-8(2)	-12(2)
Pd(2)	20(1)	20(1)	30(1)	-6(1)	-2(1)	-7(1)
Cl(3)	41(1)	34(1)	44(1)	-20(1)	-2(1)	-5(1)
Cl(4)	43(1)	22(1)	41(1)	-2(1)	-6(1)	-8(1)
N(21)	19(1)	21(1)	26(2)	-5(1)	-2(1)	-8(1)
C(22)	17(2)	23(2)	31(2)	-5(1)	-2(1)	-9(1)
N(23)	22(1)	19(1)	29(2)	-5(1)	-1(1)	-7(1)
C(24)	22(2)	35(2)	36(2)	-12(2)	3(2)	-12(2)
C(25)	29(2)	49(2)	26(2)	-12(2)	5(2)	-22(2)
C(26)	30(2)	40(2)	25(2)	-1(2)	-1(2)	-18(2)
C(27)	24(2)	29(2)	33(2)	-3(2)	-1(2)	-14(2)
C(28)	17(2)	29(2)	25(2)	-5(1)	0(1)	-13(1)
C(29)	18(2)	28(2)	25(2)	-4(1)	0(1)	-12(1)
S(30)	47(1)	35(1)	26(1)	-2(1)	-7(1)	-14(1)
C(31)	37(2)	30(2)	29(2)	-9(2)	-3(2)	-10(2)
N(32)	23(1)	25(2)	29(2)	-5(1)	-2(1)	-10(1)
C(33)	20(2)	24(2)	29(2)	-6(1)	-1(1)	-11(1)
C(34)	30(2)	25(2)	31(2)	-5(2)	-2(2)	-12(2)
S(2)	35(1)	24(1)	35(1)	-7(1)	5(1)	-14(1)
O(2)	43(2)	26(1)	36(2)	-9(1)	10(1)	-9(1)
C(17)	55(3)	29(2)	58(3)	-11(2)	-17(2)	-10(2)
C(18)	45(2)	41(2)	39(2)	-15(2)	12(2)	-17(2)
Pd(3)	25(1)	20(1)	31(1)	-3(1)	-5(1)	-9(1)
Cl(5)	25(1)	39(1)	52(1)	-3(1)	-3(1)	-15(1)
Cl(6)	49(1)	43(1)	42(1)	-5(1)	-19(1)	-17(1)
N(41)	29(2)	23(2)	28(2)	-5(1)	-2(1)	-12(1)
C(42)	26(2)	18(2)	32(2)	-4(1)	-2(2)	-9(1)
N(43)	26(2)	30(2)	37(2)	-8(1)	3(1)	-14(1)
< -)		()	()			

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Pd2TBZMCO**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$

-20(2)
-29(2)
-28(2)
-18(2)
-13(2)
-15(2)
-17(1)
-15(2)
-13(1)
-10(1)
-11(2)
-11(1)
-21(1)
-27(3)
-49(3)

Table 5.	Hydrogen	coordinates (x 10 ⁴) a	and isotropic	displacement parameters	(Å ² x 10 ³)
for Pd2T	BZMCO.				

	х	У	Z	U(eq)
H(3)	7760(30)	1940(30)	4690(20)	31
H(4)	7458	2271	6320	38
H(5)	7858	1265	7680	41
H(6)	8733	-527	7959	38
H(7)	9264	-1369	6895	35
H(11)	9482	-1054	2670	39
H(14)	8005	2012	3008	37
H(15A)	7113	5186	2853	82
H(15B)	7910	4669	3619	82
H(15C)	6860	5712	3608	82
H(16A)	6257	3816	5403	68
H(16B)	6334	4913	5115	68
H(16C)	7405	3892	5106	68
H(23)	7070(30)	-1880(30)	5680(30)	29
H(24)	7146	-1720	3938	36
H(25)	6616	-392	2718	39
H(26)	5770	1328	2767	38
H(27)	5424	1791	4024	34
H(31)	5936	292	8290	39
H(34)	7313	-2422	7391	35
H(17A)	1080	5009	2684	72
H(17B)	468	5589	3394	72
H(17C)	525	4466	3472	72
H(18A)	2214	3771	5245	63
H(18B)	1147	3801	4919	63
H(18C)	1191	4841	4981	63
H(43)	2480(30)	6620(40)	-400(30)	36
H(44)	1346	6800	1198	52
H(45)	1782	6761	2517	62
H(46)	3526	6483	2793	58
H(47)	4939	6205	1781	45
H(51)	6546	6138	-2295	37
------------------	--------------	----------------------	------------	------------
H(54)	3213	6477	-2008	34
H(19A)	9290	3621	2379	94
H(19B)	8989	4488	1521	94
H(19C)	10226	3897	1801	94
H(20A)	10070	3143	-107	89
H(20B)	10681	3632	278	89
H(20C)	9404	4222	121	89
H(35A)	2425	1766	9393	72
H(35B)	2075	2941	8880	72
H(35C)	3192	2084	8647	72
H(36A)	1331	2881	6890	92
H(36B)	2553	2682	7041	92
H(36C)	1552	3567	7365	92
H(35D)	2157	1895	9518	106
H(35E)	2064	3017	8997	106
H(35E)	2965	2022	8738	106
H(36D)	1311	2022	6951	113
H(36E)	2426	2703	7309	113
H(36E)	1343	3777	7393	113
H(35G)	3086	2560	8396	72
H(35H)	2536	1974	9154	72
H(35I)	2330	3113	9106	72
H(36G)	2554	3160	7200	60
H(36H)	1348	3818	6862	60
H(36I)	1837	2500	7070	60
H(301) H(37A)	2806	10727	166	43
H(37R)	3940	10727	-100	43
H(37C)	2787	10275	821	43
$H(38\Lambda)$	5205	7704	222	73
H(38R)	5031	8274	1006	73
H(38C)	5286	8876	08	73
H(37D)	2200	0864	202	20
H(37E)	2397	10710	388	20
H(37E)	3364	9586	981	20
H(38D)	5449	9500 8115	62	20
H(38E)	4700	8243	-02 762	86
H(38E)	4700 5471	8860	153	86
H(301)	2471	1075	582	260
H(30R)	232	085	-340	260
H(39C)	13/0	500	-540	260
H(40A)	1049	1122	21/	200
H(40R)	1401	-1133	-314	288
H(40D)	711	-1343	-285	288
H(30D)	1252	-554	-790	200
H(30E)	1352	-828	780	313
H(30F)	300	-020	1112	212
H(40D)	15	_788	_780	515 216
H(40E)	_007	-/00	-700	210
H(40F)	-907	- - -1268	182	210
	275	1200	102	210

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(1)	0.76(3)	2.05(3)	2.798(4)	168(5)
N(23)-H(23)O(2)#1	0.75(4)	2.01(4)	2.734(4)	161(4)
N(43)-H(43)O(3)#2	0.76(3)	2.00(3)	2.750(5)	168(5)

Table 6. Hydrogen bonds for $Pd2TBZMCO~[\mbox{\AA and }^\circ].$

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 #2 -x+1,-y+1,-z

Datos cristalográficos de compuesto 7b.2

Project Title Empirical formula (Sum) Formula weight (Sum) Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Ζ Density (calculated) Absorption coefficient F(000)Crystal size / colour / shape Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Measurement device Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final *R* indices $[I \ge 2\sigma(I)]$ *R* indices (all data) Largest diff. peak and hole Remarks

Identification code

450MMD13 (Solved by: R. A. Toscano) Pd2-TOCO C12 H13 Cl2 N3 O Pd S2 456.67 123(2) K 0.71073 Å Triclinic P -1 a = 8.59440(10) Å $\alpha = 68.0659(10)^{\circ}$ b = 9.3895(2) Å $\beta = 77.8160(10)^{\circ}$ c = 11.2291(2) Å $\gamma = 74.5925(10)^{\circ}$ 804.00(3) Å³ 2 1.886 Mg/m^3 1.746 mm⁻¹ 452 0.456 x 0.211 x 0.060 mm / yellow / plates 2.534 to 27.499° $-10 \le h \le 11, -12 \le k \le 12, -11 \le l \le 14$ 8215 3685 [R(int) = 0.0261]99.8 % Bruker Smart Apex CCD diffractometer 01-670-01 Semi-empirical from equivalents 0.9041 and 0.5085 Full-matrix least-squares on F^2 3685 / 710 / 364 1.038 R1 = 0.0314, wR2 = 0.0658R1 = 0.0378, wR2 = 0.06940.720 and -0.654 e.Å-3 Main residue disorder 100%, Solvent disorder 100%

	X	у	Z	U(eq)
D 1(1)	2(14(1))	11000(1)	(102(1))	27(1)
Pd(1)	3614(1)	11822(1)	4123(1)	27(1)
CI(1)	4827(1)	13949(1)	3102(1)	41(1)
Cl(2)	3829(1)	11360(1)	2229(1)	41(1)
N(1)	2441(3)	10047(3)	5241(2)	26(1)
C(2)	2005(9)	10020(7)	6458(3)	25(1)
N(3)	1205(3)	8879(3)	7177(2)	26(1)
C(4)	450(4)	6787(4)	6661(3)	32(1)
C(5)	605(7)	6213(5)	5672(5)	38(1)
C(6)	1406(4)	6940(4)	4436(3)	38(1)
C(7)	2051(5)	8242(5)	4161(3)	33(1)
C(8)	1900(4)	8821(4)	5168(3)	25(1)
C(9)	1117(4)	8087(4)	6397(3)	26(1)
S(10)	3162(2)	12845(1)	7844(1)	38(1)
C(11)	3785(5)	13087(5)	6261(4)	34(1)
N(12)	3341(4)	12137(3)	5851(2)	28(1)
C(13)	2465(4)	11137(4)	6848(3)	26(1)
C(14)	2249(4)	11377(4)	7990(3)	30(1)
S(1)	1423(2)	6772(2)	10752(2)	37(1)
O(1)	361(5)	7994(4)	9767(4)	44(1)
C(15)	2482(6)	5323(6)	10065(6)	58(1)
C(16)	3077(7)	7610(7)	10692(6)	66(2)
Pd(1B)	3227(4)	10878(5)	3736(3)	49(1)
Cl(1B)	3340(14)	10559(13)	1788(7)	55(3)
Cl(2B)	4483(14)	12970(11)	2767(9)	55(3)
N(1B)	2890(30)	10930(20)	5566(9)	35(2)
C(2B)	1990(110)	9920(80)	6400(30)	31(2)
N(3B)	1730(30)	10020(30)	7583(11)	32(2)
C(4B)	2520(50)	11780(40)	8473(15)	38(2)
C(5B)	3290(70)	13010(60)	8100(30)	38(3)
C(6B)	4110(50)	13540(40)	6830(20)	42(3)
C(7B)	3980(70)	13010(50)	5880(20)	37(3)
C(8B)	3090(60)	11830(40)	6234(15)	36(2)
C(9B)	2380(50)	11230(40)	7515(16)	34(2)
S(10B)	740(20)	6678(17)	5551(15)	44(2)
C(11B)	1680(80)	8010(50)	4318(19)	42(2)
N(12B)	2120(40)	9010(30)	4671(11)	36(2)
C(13B)	1580(40)	8810(30)	5967(13)	32(2)
C(14B)	790(60)	7620(40)	6576(18)	34(2)
S(1B)	1600(30)	7110(30)	10760(20)	37(1)
$\dot{O(1B)}$	570(70)	8290(60)	9730(60)	44(1)
C(15B)	2750(70)	5650(70)	10120(80)	66(2)
C(16B)	3190(60)	8000(70)	10740(70)	58(1)
-()				

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **Pd2-TOCO**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3. Bond lengths [Å] and angles [°] for **Pd2-TOCO**.

Pd(1)-N(12)	2.027(3)	Pd(1B)-N(1B)	2.030(6)
Pd(1)-N(1)	2.041(2)	Pd(1B)-N(12B)	2.041(7)
Pd(1)-Cl(2)	2.2859(9)	Pd(1B)-Cl(2B)	2.289(7)
Pd(1)-Cl(1)	2.2981(9)	Pd(1B)-Cl(1B)	2.295(7)
N(1)-C(2)	1.331(4)	N(1B)-C(2B)	1.336(9)
N(1)-C(8)	1.386(4)	N(1B)-C(8B)	1.386(8)
C(2)-N(3)	1.335(4)	C(2B)-N(3B)	1.334(8)
C(2)-C(13)	1.444(5)	C(2B)-C(13B)	1.448(8)
N(3)-C(9)	1.367(4)	N(3B)-C(9B)	1.368(9)
N(3)-H(3)	0.82(3)	N(3B)-H(3B)	0.82(4)
C(4)-C(5)	1.374(6)	C(4B)-C(5B)	1.373(10)
C(4)-C(9)	1.391(5)	C(4B)-C(9B)	1.392(9)
C(4)-H(4)	0.9500	C(4B)-H(4B)	0.9500
C(5)-C(6)	1.416(6)	C(5B)-C(6B)	1.415(11)
C(5)-H(5)	0.9500	C(5B)-H(5B)	0.9500
C(6)-C(7)	1 380(5)	C(6B)-C(7B)	1 379(10)
C(6)-H(6)	0.9500	C(6B)-H(6B)	0.9500
C(7)- $C(8)$	1 396(5)	C(7B)-C(8B)	1 398(9)
C(7)-H(7)	0.9500	C(7B)-H(7B)	0.9500
C(8)-C(9)	1 406(4)	C(8B)-C(9B)	1402(9)
S(10)-C(11)	1 692(4)	S(10B)-C(14B)	1.402(9) 1 703(10)
S(10) - C(14)	1.092(4) 1.701(3)	S(10B) - C(11B)	1 705(9)
C(11)-N(12)	1.309(4)	C(11B) - N(12B)	1.705(9) 1.200(9)
C(11)-H(12) C(11)-H(11)	0.9500	C(11B)-H(11B)	0.9500
N(12) - C(13)	1.391(4)	N(12B)-C(13B)	1 387(8)
$\Gamma(12)$ - $C(13)$ C(13) $C(14)$	1.351(4) 1.350(4)	C(12B) - C(13B)	1.367(8)
C(13)-C(14) C(14) $H(14)$	0.9500	C(13B)-C(14B) C(14B) $H(14B)$	0.0500
S(1) O(1)	0.9500	$C(14D)-\Pi(14D)$ S(1P) O(1P)	1,515(10)
S(1) - O(1) S(1) - O(15)	1.313(2) 1.761(4)	S(1B) - O(1B) S(1B) - O(15D)	1.313(10) 1.762(11)
S(1)-C(15) S(1)-C(16)	1.701(4)	S(1D)-C(15D) S(1D)-C(14D)	1.702(11) 1.775(11)
S(1)-C(10)	1.//8(4)	S(1D)-C(10D)	1.773(11)
$C(15) - \Pi(15A)$	0.9800	$C(15D) - \Pi(15D)$	0.9800
C(15)-H(15B) C(15)-H(15C)	0.9800	C(15B)-H(15E)	0.9800
C(15)-H(15C)	0.9800	C(15B)-H(15F)	0.9800
C(16)-H(16A)	0.9800	C(16B)-H(16D)	0.9800
C(16)-H(16B)	0.9800	C(16B)-H(16E)	0.9800
C(16)-H(16C)	0.9800	C(16B)-H(16F)	0.9800
N(12)-Pd(1)-N(1)	80.83(10)	C(5)-C(4)-H(4)	121.3
N(12)-Pd(1)-Cl(2)	176.66(8)	C(9)-C(4)-H(4)	121.3
N(1)-Pd(1)-Cl(2)	95.86(8)	C(4)-C(5)-C(6)	120.5(4)
N(12)-Pd(1)-Cl(1)	91.43(8)	C(4)-C(5)-H(5)	119.8
N(1)-Pd(1)-Cl(1)	172.03(8)	C(6)-C(5)-H(5)	119.8
Cl(2)-Pd(1)-Cl(1)	91.86(3)	C(7)-C(6)-C(5)	122.5(3)
C(2)-N(1)-C(8)	105.9(3)	C(7)-C(6)-H(6)	118.8
C(2)-N(1)-Pd(1)	112.9(2)	C(5)-C(6)-H(6)	118.8
C(8)-N(1)-Pd(1)	141.2(2)	C(6)-C(7)-C(8)	117.0(3)
N(1)-C(2)-N(3)	112.6(3)	C(6)-C(7)-H(7)	121.5
N(1)-C(2)-C(13)	118.8(3)	C(8)-C(7)-H(7)	121.5
N(3)-C(2)-C(13)	128.6(3)	N(1)-C(8)-C(7)	132.1(3)
C(2)-N(3)-C(9)	107.2(3)	N(1)-C(8)-C(9)	107.6(3)
C(2)-N(3)-H(3)	126(3)	C(7)-C(8)-C(9)	120.3(3)
C(9)-N(3)-H(3)	127(3)	N(3)-C(9)-C(4)	131.0(3)
C(5)-C(4)-C(9)	117.4(3)	N(3)-C(9)-C(8)	106.8(3)
$\langle \rangle \langle \rangle = \langle - \rangle$	(-)		(-)

C(4)-C(9)-C(8)	122.3(3)	N(1B)-C(8B)-C(7B)	131.1(10)
C(11)-S(10)-C(14)	90.50(17)	N(1B)-C(8B)-C(9B)	107.5(6)
N(12)-C(11)-S(10)	114.2(3)	C(7B)-C(8B)-C(9B)	120.8(7)
N(12)-C(11)-H(11)	122.9	N(3B)-C(9B)-C(4B)	131.1(9)
S(10)-C(11)-H(11)	122.9	N(3B)-C(9B)-C(8B)	106.9(6)
C(11)-N(12)-C(13)	111.0(3)	C(4B)-C(9B)-C(8B)	121.8(7)
C(11)-N(12)-Pd(1)	134.9(2)	C(14B)-S(10B)-C(11B)	89.7(4)
C(13)-N(12)-Pd(1)	114.1(2)	N(12B)-C(11B)-S(10B)	114.3(7)
C(14)-C(13)-N(12)	114.0(3)	N(12B)-C(11B)-H(11B)	122.9
C(14)-C(13)-C(2)	132.8(3)	S(10B)-C(11B)-H(11B)	122.9
N(12)-C(13)-C(2)	113.2(3)	C(11B)-N(12B)-C(13B)	110.9(6)
C(13)-C(14)-S(10)	110.3(2)	C(11B)-N(12B)-Pd(1B)	135.0(6)
C(13)-C(14)-H(14)	124.8	C(13B)-N(12B)-Pd(1B)	113.9(5)
S(10)-C(14)-H(14)	124.8	C(14B)-C(13B)-N(12B)	114.0(6)
O(1)-S(1)-C(15)	106.66(18)	C(14B)-C(13B)-C(2B)	132.9(7)
O(1)-S(1)-C(16)	106.21(19)	N(12B)-C(13B)-C(2B)	113.1(6)
C(15)-S(1)-C(16)	98.9(3)	C(13B)-C(14B)-S(10B)	110.8(6)
S(1)-C(15)-H(15A)	109.5	C(13B)-C(14B)-H(14B)	124.6
S(1)-C(15)-H(15B)	109.5	S(10B)-C(14B)-H(14B)	124.6
H(15A)-C(15)-H(15B)	109.5	O(1B)-S(1B)-C(15B)	106.6(9)
S(1)-C(15)-H(15C)	109.5	O(1B)-S(1B)-C(16B)	106.3(9)
H(15A)-C(15)-H(15C)	109.5	C(15B)-S(1B)-C(16B)	99.0(8)
H(15B)-C(15)-H(15C)	109.5	S(1B)-C(15B)-H(15D)	109.5
S(1)-C(16)-H(16A)	109.5	S(1B)-C(15B)-H(15E)	109.5
S(1)-C(16)-H(16B)	109.5	H(15D)-C(15B)-H(15E)	109.5
H(16A)-C(16)-H(16B)	109.5	S(1B)-C(15B)-H(15F)	109.5
S(1)-C(16)-H(16C)	109.5	H(15D)-C(15B)-H(15F)	109.5
H(16A)-C(16)-H(16C)	109.5	H(15E)-C(15B)-H(15F)	109.5
H(16B)-C(16)-H(16C)	109.5	S(1B)-C(16B)-H(16D)	109.5
N(1B)-Pd(1B)-N(12B)	80.7(3)	S(1B)-C(16B)-H(16E)	109.5
N(1B)-Pd(1B)-Cl(2B)	97.0(3)	H(16D)-C(16B)-H(16E)	109.5
N(12B)-Pd(1B)-Cl(2B)	177.7(5)	S(1B)-C(16B)-H(16F)	109.5
N(1B)-Pd(1B)-Cl(1B)	171.2(4)	H(16D)-C(16B)-H(16F)	109.5
N(12B)-Pd(1B)-Cl(1B)	90.7(3)	H(16E)-C(16B)-H(16F)	109.5
Cl(2B)-Pd(1B)-Cl(1B)	91.6(3)		
C(2B)-N(1B)-C(8B)	105.8(6)		
C(2B)-N(1B)-Pd(1B)	113.0(6)		
C(8B)-N(1B)-Pd(1B)	140.3(7)		
N(3B)-C(2B)-N(1B)	112.3(8)		
N(3B)-C(2B)-C(13B)	128.8(8)		
N(1B)-C(2B)-C(13B)	118.6(8)		
C(2B)-N(3B)-C(9B)	107.2(6)		
C(2B)-N(3B)-H(3B)	144(10)		
C(9B)-N(3B)-H(3B)	109(10)		
C(5B)-C(4B)-C(9B)	117.3(8)		
C(5B)-C(4B)-H(4B)	121.3		
C(9B)-C(4B)-H(4B)	121.3		
C(4B)-C(5B)-C(6B)	120.6(9)		
C(4B)-C(5B)-H(5B)	119.7		
C(6B)-C(5B)-H(5B)	119.7		
C(7B)-C(6B)-C(5B)	122.1(9)		
C(7B)-C(6B)-H(6B)	118.9		
C(5B)-C(6B)-H(6B)	118.9		
C(6B)-C(7B)-C(8B)	116.8(8)		
C(6B)-C(7B)-H(7B)	121.6		
C(8B)-C(7B)-H(7B)	121.6		

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\overline{Pd(1)}$	22(1)	27(1)	21(1)	0(1)	3(1)	-3(1)
Cl(1)	$\frac{-2}{38(1)}$	38(1)	34(1)	3(1)	3(1)	-15(1)
Cl(2)	47(1)	43(1)	22(1)	-6(1)	6(1)	-4(1)
N(1)	22(1)	26(1)	19(1)	-2(1)	1(1)	-1(1)
C(2)	21(1)	26(2)	21(1)	-2(1)	0(1)	-2(1)
N(3)	28(1)	25(1)	18(1)	-4(1)	1(1)	-4(1)
C(4)	31(2)	30(2)	31(2)	-4(1)	-6(1)	-6(1)
C(5)	43(2)	30(2)	42(2)	-7(2)	-10(2)	-12(2)
C(6)	39(2)	42(2)	35(2)	-18(2)	-9(1)	-2(2)
C(7)	31(2)	39(2)	26(2)	-10(1)	-3(1)	-4(1)
C(8)	19(1)	27(1)	22(1)	-4(1)	-2(1)	1(1)
C(9)	24(2)	23(2)	24(1)	-4(1)	-3(1)	-1(1)
S(10)	43(1)	34(1)	38(1)	-15(1)	-6(1)	-8(1)
C(11)	32(2)	32(2)	35(2)	-6(2)	-4(2)	-8(1)
N(12)	23(1)	26(1)	25(1)	-2(1)	0(1)	-1(1)
C(13)	21(1)	23(1)	25(1)	-3(1)	0(1)	-1(1)
C(14)	30(2)	28(2)	26(2)	-8(1)	-1(1)	-2(1)
S(1)	32(1)	47(1)	19(1)	-2(1)	2(1)	-6(1)
O(1)	34(2)	58(2)	24(1)	-7(1)	0(1)	4(1)
C(15)	63(3)	55(3)	37(2)	-12(2)	1(2)	8(2)
C(16)	60(3)	71(4)	55(3)	9(3)	-23(2)	-26(3)
Pd(1B)	34(2)	51(2)	26(2)	9(2)	4(1)	11(2)
Cl(1B)	48(6)	54(7)	32(4)	1(4)	6(4)	11(5)
CI(2B)	49(6)	60(6)	25(4)	10(4)	2(4)	-1(4)
N(IB)	26(4)	30(4)	31(3)	4(3)	1(3)	0(3)
C(2B)	25(4)	28(4)	25(3)	0(3)	1(4)	0(3)
N(3B)	29(4)	30(4)	$\frac{2}{3}$	-3(3)	0(4)	-3(3)
C(4B)	35(5)	32(5)	38(4)	-8(4)	-3(5)	-4(4)
C(3B)	37(5)	33(3) 27(5)	$\frac{3}{(5)}$	-8(5)	-2(5)	-6(5)
C(0B)	40(5) 21(5)	$\frac{3}{(3)}$	38(3) 22(5)	-0(4)	-1(5)	-3(4)
C(PD)	31(3) 37(4)	33(3) 20(4)	33(3)	-1(4)	0(3)	-2(4)
C(0D)	$\frac{2}{(4)}$	30(4)	34(3)	2(3)	0(4)	-1(3)
C(9D) S(10P)	30(4) 42(4)	29(4)	33(3)	-2(3)	-1(4) 15(4)	-3(3)
C(11B)	42(4) 36(5)	40(4) 45(4)	40(4) 30(4)	-0(3)	-13(4)	-7(3)
N(12B)	29(4)	43(4) 38(4)	26(3)	-3(4)	-3(4)	9(4) 8(3)
C(13B)	29(4) 26(4)	30(4)	20(3)	-4(3)	-2(4)	1(3)
C(13D) C(14B)	20(4) 30(4)	30(3) 31(4)	20(3)	-1(3)	-2(3)	-2(3)
S(1R)	32(1)	47(1)	19(1)	-2(1)	2(1)	-6(1)
O(1B)	34(2)	58(2)	24(1)	-7(1)	0(1)	4(1)
C(15B)	60(3)	71(4)	55(3)	9(3)	-23(2)	-26(3)
C(16B)	63(3)	55(3)	37(2)	-12(2)	1(2)	8(2)
	x- /	<u>(</u> -)				

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Pd2-TOCO**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$

	Х	У	Z	U(eq)
11(2)	020(40)	8(40(40)	70(0(20)	21
H(3)	920(40)	8040(40) 6215	7960(30)	31 29
П(4) Ц(5)	-91	5222	7492	38 46
П(<i>3</i>) Ц(б)	172	5522	3819	40
П(0) П(7)	2575	0313	2224	43
$\Pi(1)$	2373	0/24	5524	40
П(11) Ц(14)	4403	13643	8765	41
$\Pi(14)$ $\Pi(15A)$	2000	5811	0231	30
Ц(15 R)	1705	J011 4812	9231	80
H(15C)	3240	4615	106/10	86
H(15C)	2662	8571	10049	00
H(16R)	3674	7862	0810	00
H(16C)	3809	6859	11314	99
H(3B)	1330(140)	9600(300)	8330(100)	38
H(3B)	2089	11321	9349	45
H(5B)	3276	13512	8699	46
H(6B)	4763	14291	6636	50
H(7B)	4485	13412	5014	44
H(11B)	1869	8028	3449	50
H(14B)	318	7339	7456	41
H(15D)	3366	6131	9288	99
H(15E)	2016	5091	9986	99
H(15F)	3502	4900	10723	99
H(16D)	2729	8926	11005	86
H(16E)	3778	8313	9868	86
H(16F)	3942	7248	11347	86

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **Pd2-TOCO**.

Table 6. Hydrogen bonds for $Pd2\text{-}TOCO~[\mbox{\AA and }^\circ].$

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)O(1)	0.82(3)	1.88(4)	2.702(5)	177(4)
N(3B)-H(3B)O(1B)	0.82(4)	1.73(13)	2.52(6)	161(34)

Datos cristalográficos de compuesto 8b.		
Identification code	421MMD13 (Solved by: R. A.	Toscano)
Project Title	Ni2TBZMCO	
Empirical formula (Sum)	C ₂₁ H _{19.65} Cl ₂ N ₆ Ni O _{1.82} S ₂	
Formula weight (Sum)	578.99	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	<i>P</i> -1	
Unit cell dimensions	a = 10.4074(13) Å	$\alpha = 67.752(8)^{\circ}$
	b = 11.3510(14) Å	$\beta = 73.892(8)^{\circ}$
	c = 11.7816(14) Å	$\gamma = 86.096(8)^{\circ}$
Volume	$1236.6(3) Å^3$	
Ζ	2	
Density (calculated)	1.555 Mg/m ³	
Absorption coefficient	1.200 mm ⁻¹	
<i>F</i> (000)	592	
Crystal size / colour / shape	0.431 x 0.234 x 0.221 mm / lig	ht blue / prism
Theta range for data collection	1.940 to 27.103°	
Index ranges	$-13 \le h \le 13, -14 \le k \le 14, -15$	$\leq l \leq 15$
Reflections collected	12211	
Independent reflections	5457 [$R(int) = 0.0269$]	
Completeness to theta = 25.242°	99.9 %	
Measurement device	Bruker Smart Apex CCD diffra	actometer 01-670-01
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	0.7775 and 0.6260	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	5457 / 47 / 356	
Goodness-of-fit on F^2	1.029	
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0485, wR2 = 0.1323	
R indices (all data)	R1 = 0.0668, wR2 = 0.1493	
Largest diff. peak and hole	1.494 and -0.434 e.Å ⁻³	
Remarks	Main residue disorder 3%, Se	olvent disorder 100%

· · · · · · · · · · · · · · · · · · ·	Х	У	Z	U(eq)
Ni(1)	1585(1)	3157(1)	2827(1)	41(1)
Cl(1)	-471(1)	3263(1)	4388(1)	59(1)
Cl(2)	8081(1)	4929(2)	1331(2)	96(1)
O(1)	981(5)	4684(5)	1507(5)	56(1)
Cl(2B)	1040(7)	5027(6)	1003(6)	35(1)
N(1)	2096(3)	1456(2)	4100(2)	44(1)
C(2)	1653(3)	437(3)	4016(3)	47(1)
N(3)	1998(3)	-654(3)	4833(3)	58(1)
C(4)	3330(5)	-1044(4)	6439(4)	78(1)
C(5)	4016(5)	-401(5)	6870(4)	82(1)
C(6)	4084(5)	935(5)	6404(4)	77(1)
C(7)	3467(4)	1636(4)	5498(3)	63(1)
C(8)	2780(3)	1005(3)	5036(3)	48(1)
C(9)	2712(4)	-329(3)	5507(3)	55(1)
N(10)	747(3)	1824(3)	2368(3)	47(1)
C(11)	139(4)	1877(4)	1521(4)	61(1)
S(12)	-210(1)	438(1)	1518(1)	75(1)
C(13)	489(4)	-295(4)	2747(4)	62(1)
C(14)	946(3)	579(3)	3074(3)	49(1)
N(15)	3502(2)	3260(2)	1556(2)	40(1)
C(16)	4392(3)	3856(3)	1765(3)	40(1)
N(17)	5656(3)	3782(3)	1084(3)	48(1)
C(18)	6562(4)	2635(4)	-424(4)	65(1)
C(19)	6130(5)	1883(4)	-933(4)	76(1)
C(20)	4788(5)	1580(4)	-665(4)	72(1)
C(21)	3805(4)	1990(3)	146(3)	56(1)
C(22)	4216(3)	2740(3)	687(3)	44(1)
C(23)	5580(3)	3061(3)	394(3)	48(1)
N(24)	2632(2)	4361(2)	3261(2)	42(1)
C(25)	2324(4)	4968(3)	4031(3)	51(1)
S(26)	3645(1)	5719(1)	4097(1)	64(1)
C(27)	4701(4)	5190(4)	3001(3)	54(1)
C(28)	3990(3)	4492(3)	2661(3)	41(1)
O(2)	-17(9)	7406(8)	1609(11)	146(4)
C(29)	-1252(13)	7103(14)	2536(15)	140(5)
O(2B)	-250(20)	6906(17)	2530(20)	133(5)
C(29B)	-1120(30)	7470(30)	1780(30)	144(7)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for **Ni2TBZMCO**. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table 3.	Bond lengths	[Å] and a	ngles [°] f	or Ni2TBZM	CO.

Ni(1)-O(1)	2.042(6)	N(15)-C(22)	1.387(4)
Ni(1)-N(24)	2.088(3)	C(16)-N(17)	1.354(4)
Ni(1) - N(1)	2.091(3)	C(16)-C(28)	1.450(4)
Ni(1)-N(10)	2.098(3)	N(17)-C(23)	1.372(5)
Ni(1)-N(15)	2.116(2)	N(17)-H(17)	0.79(3)
Ni(1)-Cl(1)	2 4343(9)	C(18)-C(19)	1 371(6)
Ni(1)- $Cl(2B)$	2.550(5)	C(18) - C(23)	1.395(5)
O(1) - H(1A)	0.845(10)	C(18) - U(23) C(18) - H(18)	0.9300
O(1) H(1R)	0.844(10)	$C(10) - \Pi(10)$ $C(10) - \Omega(20)$	1.381(7)
N(1) C(2)	1,220(4)	C(19) - C(20) C(10) + U(10)	1.381(7)
N(1) - C(2) N(1) - C(2)	1.320(4) 1.204(4)	$C(19)-\Pi(19)$ C(20) C(21)	0.9300
N(1)-C(0)	1.394(4)	C(20) - C(21)	1.300(3)
C(2) - N(3)	1.348(4)	C(20)-H(20)	0.9300
C(2)-C(14)	1.449(5)	C(21)-C(22)	1.388(5)
N(3)-C(9)	1.380(5)	C(21)-H(21)	0.9300
N(3)-H(3)	0.79(3)	C(22)-C(23)	1.404(5)
C(4)-C(5)	1.362(7)	N(24)-C(25)	1.297(4)
C(4)-C(9)	1.387(6)	N(24)-C(28)	1.384(4)
C(4)-H(4)	0.9300	C(25)-S(26)	1.700(4)
C(5)-C(6)	1.404(7)	C(25)-H(25)	0.9300
C(5)-H(5)	0.9300	S(26)-C(27)	1.716(4)
C(6)-C(7)	1.360(5)	C(27)-C(28)	1.349(5)
C(6)-H(6)	0.9300	C(27)-H(27)	0.9300
C(7)-C(8)	1.380(5)	O(2)-C(29)	1.400(10)
C(7)-H(7)	0.9300	O(2)-H(2)	0.852(10)
C(8)-C(9)	1.401(5)	C(29)-H(29A)	0.9600
N(10)-C(11)	1.303(5)	C(29)-H(29B)	0.9600
N(10)-C(14)	1.378(4)	C(29)-H(29C)	0.9600
C(11)-S(12)	1.699(4)	O(2B)-C(29B)	1.403(13)
C(11)-H(11)	0.9300	O(2B)-H(2B)	0.850(10)
S(12)-C(13)	1 706(4)	C(29B)-H(29D)	0.9600
C(13)-C(14)	1 346(5)	C(29B)-H(29E)	0.9600
C(13)-H(13)	0.9300	C(29B)-H(29E)	0.9600
N(15)-C(16)	1 309(4)	$C(2)D) \Pi(2)\Gamma)$	0.9000
	1.505(1)		
O(1)-Ni(1)-N(24)	90.92(17)	Ni(1)-O(1)-H(1A)	125(5)
O(1)-Ni(1)-N(1)	173.06(17)	Ni(1)-O(1)-H(1B)	115(4)
N(24)-Ni(1)-N(1)	95.98(10)	H(1A)-O(1)-H(1B)	99(6)
O(1)-Ni(1)-N(10)	93.55(17)	C(2)-N(1)-C(8)	106.1(3)
N(24)-Ni(1)-N(10)	173.04(10)	C(2)-N(1)-Ni(1)	112.7(2)
N(1)-Ni(1)-N(10)	79.51(11)	C(8)-N(1)-Ni(1)	141 2(2)
O(1)-Ni(1)-N(15)	91 90(15)	N(1)-C(2)-N(3)	112.2(3)
N(24)-Ni(1)-N(15)	79.03(10)	N(1) - C(2) - C(14)	120.0(3)
N(1)-Ni(1)-N(15)	88 68(10)	N(3)-C(2)-C(14)	120.0(3) 127.7(3)
N(10)-Nj(1)-N(15)	95 48(10)	C(2)-N(3)-C(9)	127.7(3) 107 5(3)
O(1) Ni(1) Cl(1)	99.40(10) 88.00(14)	C(2) = N(3) + C(3) C(2) = N(3) + L(3)	107.3(3) 122(3)
N(24) N(1) Cl(1)	00.00(14) 02 10(7)	$C(2)^{-11}(3)^{-11}(3)$ C(0) N(2) U(2)	122(3) 120(2)
N(2+)-N(1)-O(1) N(1) N(1) O(1)	92.10(7)	C(5) - C(4) - C(0)	130(3) 117 5(4)
N(1) - NI(1) - CI(1) N(10) NI(1) - CI(1)	72.47(7)	C(5) - C(4) - C(7)	117.3(4)
N(10)-NI(1)-CI(1) N(15) NI(1) CI(1)	93.38(8) 171.12(7)	$C(3)-C(4)-\Pi(4)$	121.2
N(13)-NI(1)-CI(1)	1/1.13(/)	C(9)-C(4)-H(4)	121.2
	(1) = 1/1 = 1	(14) - (15) - (16)	1714(4)
N(24) - NI(1) - CI(2D)	91.54(17)	C(4) - C(5) - C(0)	121.4(4)
N(1)-Ni(1)-Cl(2B)	91.54(17) 169.90(18)	C(4)-C(5)-H(5)	119.3
N(1)-Ni(1)-Cl(2B) N(10)-Ni(1)-Cl(2B) N(10)-Ni(1)-Cl(2B)	91.54(17) 169.90(18) 92.36(17)	C(4)-C(5)-H(5) C(4)-C(5)-H(5) C(6)-C(5)-H(5)	119.3 119.3
N(1)-Ni(1)-Cl(2B) N(1)-Ni(1)-Cl(2B) N(10)-Ni(1)-Cl(2B) N(15)-Ni(1)-Cl(2B)	91.54(17) 169.90(18) 92.36(17) 86.12(18)	C(4)-C(5)-C(0) C(4)-C(5)-H(5) C(6)-C(5)-H(5) C(7)-C(6)-C(5)	119.3 119.3 121.0(5)

C(5)-C(6)-H(6)	119.5
C(6)-C(7)-C(8)	118.6(4)
C(6)-C(7)-H(7)	120.7
C(8)-C(7)-H(7)	120.7
C(7)-C(8)-N(1)	131.5(3)
C(7)-C(8)-C(9)	120.2(3)
N(1)-C(8)-C(9)	108.3(3)
N(3)-C(9)-C(4)	132.9(4)
N(3)-C(9)-C(8)	105.8(3)
C(4)-C(9)-C(8)	121.3(4)
C(11)-N(10)-C(14)	110.7(3)
C(11)-N(10)-Ni(1)	135.7(3)
C(14)-N(10)-Ni(1)	113.4(2)
N(10)-C(11)-S(12)	114.6(3)
N(10)-C(11)-H(11)	122.7
S(12)-C(11)-H(11)	122.7
C(11)-S(12)-C(13)	89.74(19)
C(14)-C(13)-S(12)	110.2(3)
С(14)-С(13)-Н(13)	124.9
S(12)-C(13)-H(13)	124.9
C(13)-C(14)-N(10)	114.7(3)
C(13)-C(14)-C(2)	131.0(3)
N(10)-C(14)-C(2)	114.2(3)
C(16)-N(15)-C(22)	105.8(2)
C(16)-N(15)-Ni(1)	111.99(19)
C(22)-N(15)-Ni(1)	141.1(2)
N(15)-C(16)-N(17)	112.9(3)
N(15)-C(16)-C(28)	120.6(3)
N(17)-C(16)-C(28)	126.4(3)
C(16)-N(17)-C(23)	106.9(3)
C(16)-N(17)-H(17)	123(3)
C(23)-N(17)-H(17)	130(3)
C(19)-C(18)-C(23)	116.6(4)
C(19)-C(18)-H(18)	121.7
C(23)-C(18)-H(18)	121.7
C(18)-C(19)-C(20)	121.7(4)
C(18)-C(19)-H(19)	119.2
C(20)-C(19)-H(19)	119.2
C(21)-C(20)-C(19)	122.3(4)
C(21)-C(20)-H(20)	118.8
C(19)-C(20)-H(20)	118.8
C(20)-C(21)-C(22)	117.2(4)
C(20)-C(21)-H(21)	121.4
C(22)-C(21)-H(21)	121.4
N(15)-C(22)-C(21)	131.4(3)
N(15)-C(22)-C(23)	108.4(3)
C(21)-C(22)-C(23)	120.1(3)
N(17)-C(23)-C(18)	132.0(4)
N(17)-C(23)-C(22)	106.0(3)
C(18)-C(23)-C(22)	122.0(3)
C(25)-N(24)-C(28)	111.0(3)
C(25)-N(24)-Ni(1)	134.9(2)
U(28)-N(24)-N(1)	113.97(19)
N(24)-C(25)-S(26)	114.5(3)
N(24)-C(25)-H(25)	122.7
S(26)-C(25)-H(25)	122.7

C(25)-S(26)-C(27)	90.05(17)
C(28)-C(27)-S(26)	109.5(3)
C(28)-C(27)-H(27)	125.2
S(26)-C(27)-H(27)	125.2
C(27)-C(28)-N(24)	114.9(3)
C(27)-C(28)-C(16)	131.5(3)
N(24)-C(28)-C(16)	113.6(3)
C(29)-O(2)-H(2)	109.8(15)
O(2)-C(29)-H(29A)	109.5
O(2)-C(29)-H(29B)	109.5
H(29A)-C(29)-H(29B)	109.5
O(2)-C(29)-H(29C)	109.5
H(29A)-C(29)-H(29C)	109.5
H(29B)-C(29)-H(29C)	109.5
C(29B)-O(2B)-H(2B)	109.9(16)
O(2B)-C(29B)-H(29D)	109.5
O(2B)-C(29B)-H(29E)	109.5
H(29D)-C(29B)-H(29E)	109.5
O(2B)-C(29B)-H(29F)	109.5
H(29D)-C(29B)-H(29F)	109.5
H(29E)-C(29B)-H(29F)	109.5

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
$\overline{\text{Ni}(1)}$	39(1)	37(1)	44(1)	-17(1)	-5(1)	-1(1)
Cl(1)	55(1)	46(1)	65(1)	-26(1)	10(1)	-4(1)
Cl(2)	43(1)	169(2)	87(1)	-54(1)	-26(1)	8(1)
O(1)	44(2)	59(3)	59(3)	-17(2)	-11(2)	-3(2)
Cl(2B)	35(3)	32(3)	35(3)	-5(2)	-15(3)	-2(2)
N(1)	48(2)	39(1)	41(1)	-15(1)	-5(1)	2(1)
C(2)	44(2)	42(2)	45(2)	-16(1)	4(1)	-1(1)
N(3)	61(2)	35(1)	60(2)	-11(1)	1(2)	1(1)
C(4)	83(3)	54(2)	65(3)	4(2)	-11(2)	17(2)
C(5)	81(3)	87(3)	60(3)	-6(2)	-26(2)	14(3)
C(6)	81(3)	88(3)	56(2)	-19(2)	-26(2)	11(2)
C(7)	79(3)	57(2)	50(2)	-16(2)	-20(2)	6(2)
C(8)	52(2)	45(2)	37(2)	-11(1)	-2(1)	4(1)
C(9)	50(2)	48(2)	50(2)	-10(2)	1(2)	4(2)
N(10)	47(2)	45(2)	50(2)	-22(1)	-7(1)	-1(1)
C(11)	60(2)	60(2)	68(2)	-29(2)	-19(2)	0(2)
S(12)	84(1)	74(1)	82(1)	-45(1)	-20(1)	-14(1)
C(13)	67(2)	51(2)	71(2)	-32(2)	-7(2)	-8(2)
C(14)	47(2)	45(2)	51(2)	-24(2)	4(1)	-5(1)
N(15)	38(1)	38(1)	37(1)	-10(1)	-7(1)	1(1)
C(16)	36(2)	40(2)	35(1)	-7(1)	-6(1)	3(1)
N(17)	36(1)	52(2)	49(2)	-15(1)	-5(1)	1(1)
C(18)	57(2)	67(2)	60(2)	-23(2)	-4(2)	15(2)
C(19)	84(3)	68(3)	63(2)	-30(2)	2(2)	24(2)
C(20)	102(3)	58(2)	56(2)	-31(2)	-10(2)	12(2)
C(21)	68(2)	50(2)	47(2)	-20(2)	-9(2)	1(2)
C(22)	51(2)	36(2)	35(1)	-9(1)	-5(1)	6(1)
C(23)	50(2)	42(2)	43(2)	-11(1)	-6(1)	8(1)
N(24)	42(1)	38(1)	42(1)	-15(1)	-6(1)	2(1)
C(25)	49(2)	54(2)	54(2)	-27(2)	-7(2)	2(2)
S(26)	67(1)	71(1)	66(1)	-41(1)	-13(1)	-10(1)
C(27)	50(2)	60(2)	54(2)	-22(2)	-11(2)	-4(2)
C(28)	41(2)	37(2)	42(2)	-12(1)	-11(1)	1(1)
O(2)	147(6)	93(5)	142(7)	-42(5)	56(5)	-37(4)
C(29)	145(8)	104(7)	137(8)	-67(7)	56(7)	-33(7)
O(2B)	174(11)	98(8)	124(9)	-73(7)	19(10)	-30(9)
C(29B)	149(11)	105(10)	139(12)	-48(10)	32(10)	-27(10)

Table 4. Anisotropic displacement parameters (Å²x 10³) for **Ni2TBZMCO**. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2h k a^* b^* U_{12}]$

	Х	у	Z	U(eq)
	1200(70)	4000/70)	710(15)	0.4
H(1A)	1280(70)	4890(70)	/10(15)	84
H(1B)	152(16)	4690(60)	1570(60)	84
H(3)	1/40(40)	-1330(30)	4920(40)	69
H(4)	3279	-1930	6757	93
H(5)	4448	-857	/488	98
H(6)	4558	1348	6718	92
H(7)	3508	2521	5197	76
H(11)	-85	2641	963	73
H(13)	547	-1171	3135	75
H(17)	6290(30)	4110(40)	1110(40)	58
H(18)	7465	2850	-614	78
H(19)	6756	1570	-1472	91
H(20)	4537	1081	-1045	86
H(21)	2905	1774	321	68
H(25)	1452	4991	4509	62
H(27)	5621	5358	2690	65
H(2)	170(70)	6820(70)	1300(100)	220
H(29A)	-1225	6280	3181	211
H(29B)	-1945	7090	2146	211
H(29C)	-1434	7731	2917	211
H(2B)	170(170)	6320(150)	2310(150)	200
H(29D)	-2030	7222	2287	216
H(29E)	-939	7180	1081	216
H(29F)	-1002	8375	1452	216

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for Ni2TBZMCO.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1) U(1A) O(2) U(1)	0.945(10)	2 242(18)	2.07((5)	1(0/7)
O(1)-H(1A)Cl(2)#1 O(1)-H(1B)-Cl(2)#2	0.845(10) 0.844(10)	2.242(18) 2.227(16)	3.076(5)	169(7)
O(1)-H(1B)Cl(2)#2	0.844(10)	2.237(10)	3.009(0)	109(0)
N(3)-H(3)Cl(1)#3	0.79(3)	2.38(3)	3.149(3)	164(4)
C(13)-H(13)Cl(1)#3	0.93	2.97	3.756(4)	143.4
N(17)-H(17)Cl(2)	0.79(3)	2.26(3)	3.048(3)	176(4)
C(18)-H(18)Cl(2B)#1	0.93	2.78	3.511(8)	136.4
C(18)-H(18)O(2)#1	0.93	2.63	3.481(9)	151.7
C(25)-H(25)Cl(1)	0.93	2.96	3.444(4)	113.7
C(25)-H(25)Cl(1)#4	0.93	2.76	3.395(3)	126.7
C(27)-H(27)Cl(2)	0.93	2.74	3.577(4)	150.3
O(2)-H(2)O(1)	0.852(10)	2.46(7)	3.228(10)	150(13)
C(29)-H(29B)Cl(2)#2	0.96	2.95	3.467(15)	115.0
O(2B)-H(2B)Cl(2B)	0.850(10)	2.47(4)	3.282(18)	159(6)
C(29B)-H(29F)S(12)#5	0.96	2.57	3.45(3)	151.9

Table 6. Hydrogen bonds for $Ni2TBZMCO~[\mbox{\AA and }^\circ].$

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z #2 x-1,y,z

#3 -x,-y,-z+1 #4 -x,-y+1,-z+1 #5 x,y+1,z