

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE MEDICINA

División de Estudios de Postgrado e Investigación

INSTITUTO DE SEGURIDAD Y SERVICIOS SOCIALES DE LOS TRABAJADORES DEL ESTADO

EL SÍNDROME METABÓLICO COMO FACTOR DE RIESGO PARA ENFERMEDAD ARTERIAL CORONARIA

TESIS

Que para obtener el postgrado de:

Especialidad en Medicina Interna

Presenta:

Lizeth Guadalupe López Castillo

Asesor de Tesis: Dr. Ricardo Ángel Valdovinos Nuñez

No. de Registro de Protocolo: 385

México, D.F. 2011

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

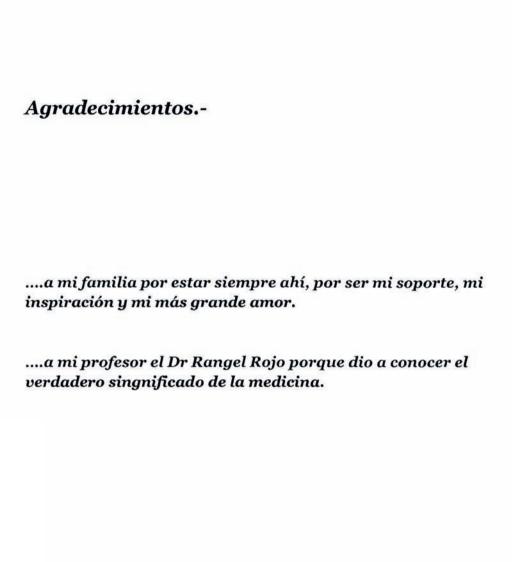
El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DR. FÉLIX OCTAVIO MARTÍNEZ ALCALA
COORDINADOR DE CAPADESI

DR. GUILEBADO PATIÑO CARRANZA

JEFE DE ENSEÑANZA

DRA. MARTHA EUNICE RODRÍGUEZ ARELLANO



Jeind .

DR. CARLOS LENIN PLIEGO REYES PROFESOR TITULAR

NOMBRE Y FIRMA

DR. RICARDO ÁNGE VALDOVINOS NUÑEZ

INDICE

I INTRODUCCION	4
II MARCO TEORICO	6
III JUSTIFICACION	17
IV HIPÓTESIS	18
1 Hipótesis de Trabajo	18
2 Hipótesis nula.	18
V PLANTEAMIENTO DEL PROBLEMA	18
v OBJETIVOS	20
A. Específico	20 20
VI MATERIAL Y METODOS	21
A. Diseño y tipo de estudio. B. Universo de estudio.	21 21
1B Cálculo de la muestra	21
2B Criterios de inclusión	21
3B Criterios de exclusión	21
C. Variables	22
1C Definición operacional de las variables	22

D. Métodos e instrumentos de recolección de datos24
E. Plan de tabulación y análisis de datos
F. Análisis estadístico
G. Consideraciones éticas
H. Ámbito geográfico
I. Recursos
VII RESULTADOS
VIII DISCUSION
IX CONCLUSIONES
X BIBLIOGRAFIA174

Resumen

Realizamos un estudio retrospectivo con el objetivo de medir la prevalencia de Síndrome Metabólico y determinar la relación existente entre éste y la severidad y extensión de la coronariopatía, así como analizar cada uno de sus componentes en qué grado se relacionan con la alteración en flujo de las arterias y tener más énfasis en el tratamiento temprano de las mismas. Participaron 92 pacientes, ingresados en en el Hospital Adolfo López Mateos del Instituto de Seguridad y Servicio Social para los Trabajadores del Estado desde enero 2011 hasta octubre del 2011 en el servicio de Cardiología con diagnóstico de síndrome metabólico con cardiopatía Isquémica y sometidos a coronariografía.

El resultado del estudio se puede medir una prevalencia por género en su mayoría de los pacientes (73.9%) son hombres predominando el grupo de 50 a 70 años. En ambos sexos predominó en la mayoría de arterias coronarias (descendente anterior, circunfleja, coronaria derecha) el flujo lento o TIMI2, mientras que en el tronco de la coronaria izquierda no se vió afectado en la mayoría de los casos. Por último se realizo un análisis mutivariable de regresión logística para determinar la independencia de las mismas variables y su asociación a largo tiempo con el desarrollo de enfermedad arterial coronaria y la relación entre los mismos componentes del síndrome metabólico entre sí. Así mismo por género se presenta como síndrome coronario de mayor frecuencia en mujeres la angina inestable, y culmina un mayor riesgo para infarto al miocardio en los hombre con síndrome metabólico.

Podemos concluir que en los pacientes estudiados el Síndrome Metabólico parece ser un factor predisponente para la Aterosclerosis Coronaria, y para la severidad y extensión de la misma. Esta relación es mayor a medida que aumenta el número de componentes del síndrome.

La enfermedad cardiovascular y su morbimortalidad están incrementadas en los hombres con síndrome metabólico incluso en ausencia de diagnóstico de diabetes mellitus. La identificación temprana, tratamiento y prevención de síndrome metabólico representa un desafío mayo para os profesionales de la salud que confrontan una epidemia de sobrepeso y obesidad.

Summary

We made a retrospective study with the objective to measure the prevalence of the Metabolic Syndrome and to determine the relation between this and the severity and extension of the coronary heart disease, as well as, to propose categories for each component of the metabolic syndrome, and also analyze the relation between them and the coronary artery disease and the level of obstruction, and finally propose alternatives of early treatment to prevent the final equation. In this study participate 94 patients from Lopez Mateos Hospital participated, admitted with coronary artery disease since January until October 2011 in the Ischemic Cardiopathy service.

The 73.9% of patients that suffered the metabolic Syndrome were men, being the most the group of 50 to 70 years or more. In both sexes, we observed the prevalence of the TIMI myocardial perfusion blush was the TIMI 2 score in the main coronary arteries (LAD, circumflex), otherwise the TCI observed no affection of the flow grade in most of the cases. In the present study a multivariate logistic regression analysis was performed to determine independent predictors of long term coronary artery disease in patients with metabolic syndrome and analyze the relation between their components . As well as the number of diagnostic judgments of the Metabolic Syndrome raised the severity of the obstruction increase finding a relation statistically significance between the number of criteria and the severity of the obstruction (p = 0.004). We can conclude that in the studied patients the Metabolic Syndrome seems to be a predisposal Coronary Atherosclerosis and for the severity and the extension of it. This relation is higher in case the components of the Syndrome rise. Cardiovascular disease and all-cause mortality are increased in men with the metabolic syndrome, even in the absence of baseline CVD and diabetes. Early identification, treatment, and prevention of the metabolic syndrome present a major challenge for health care professionals facing an epidemic of overweight and sedentary lifestyle.

I. INTRODUCCIÓN.

A la asociación de Obesidad Central, Hipertensión Arterial (HTA), Hipertrigliceridemia, Colesterol HDL (HDL – C) bajo y regulación alterada de la glucosa o diabetes se le denomina Síndrome Metabólico (SM). Este se presenta en una gran parte de la población que padece de enfermedad aterosclerótica coronaria.

A lo largo de estos años se han propuesto diferentes clasificaciones para definir el Síndrome Metabólico. En el año 2005, la Federación Internacional de Diabetología (FID) publicó nuevos criterios diagnósticos. En esta se considera que la obesidad abdominal es el elemento central del Síndrome Metabólico y causal de la insulinorresistencia por lo que tiene más factibilidad para su aplicación general en la clínica, obviando la medición de la insulinorresistencia. Esta clasificación enfatiza además en las diferencias étnicas en la correlación entre obesidad abdominal y resistencia a la insulina ¹

Cabe señalar que en los dos últimos años, se inició una controversia sobre la existencia o no del síndrome metabólico, ejemplo fue el obituario que escribió Raven, así como las diversas opiniones de expertos en el tema tanto por la American diabetes Association como por la Asociación Europea para el Estudio de la Diabetes, las cuales concluyen que los criterios diagnósticos son ambiguos e incompletos.

El diagnóstico clínico del síndrome metabólico se hace por la presencia de sus atributos. La OMS definió un criterio en pacientes diabéticos tipo 2 o intolerantes a la glucosa o resistentes a la insulina con 2 o más de las siguientes características: obesidad según IMC o relación de perímetro de cintura y cadera, dislipidemia según triglicéridos o C-HDL, hipertensión arterial y microalbuminuria.

Esta definición que ha sido aplicada en estudios epidemiológicos tiene la limitación de exigir la realización de exámenes de test de tolerancia a la glucosa y determinaciones de insulinemia y microalbuminuria. (8)

El National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATP III) reconoce por primera vez que el síndrome metabólico condiciona un mayor riesgo de enfermedad coronaria, plantea su diagnóstico y tratamiento como un objetivo secundario después de alcanzar las metas para el C-LDL y señala los criterios de diagnóstico que son muy simples y de fácil aplicación clínica

Definición de síndrome metabolico de acuerdo ATP-III (2001)

Asociación de tres de los siguientes factores de riesgo:

- 1. Obesidad abdominal (circunferencia de la cintura > 102 cm en varones y > 88 cm en mujeres)
- 2. Trigliceridemia > 1,69 mmol/l (150 mg/dl)
- Colesterol HDL < 1,03 (40 mg/dl) en varones o de 1,29 mmol/l (50 mg/dl) en mujeres
- 4. Presión arterial > 130/85 mmHg
- 5. Glucemia basal > o igual de 6,1 mmol/l (110 mg/dl)

El concepto de Sindrome Metabólico ha atraído mucho interés en el campo de la Cardiología, reconociendo que la agrupación de factores de riesgo metabólicos es un patrón de riesgo cada vez más observado en personas que exhiben enfermedad arterial coronaria. Aunque el Síndrome Metabólico no incluye todos los factores de riesgo coronarios, éste sin embargo parece ser un cuadro de riesgo dominante en una gran porción de población con enfermedad arterial coronaria

y como entidad se relaciona con el incremento en la probabilidad para desarrollar enfermedad cardiovascular y cerebrovascular. ^{2- 5} En diversos estudios se ha documentado que el síndrome metabolico se relaciona con un aumento de la extensión y severidad de las lesiones ateroescleróticas ⁶.

El síndrome metabólico es un grupo de alteraciones que se asocian con incremento en el riesgo de de desarrollo de diabetes mellitus, enfermedad cardiovascular entre otras, el cual puede ser evaluado a través de diversas escalas para su estimación, entre las principales la de Framingham y la del ATP III. Sin embargo habrá q considerar q pese a estimaciones se puede estar subestimando el riesgo, tomar en cuenta los marcadores subclínicos y así implementar en el paciente un plan de tratamiento no sólo podría ser curativo sino preventivo.

Con todas estas cuestiones, la existencia del denominado síndrome metabólico una de sus principales ventajas es la fácil aplicación de sus criterios en la práctica clínica y su relación con la determinación del riesgo de enfermedad cardiovascular. Aunque existen las diferentes escalas para determinar este riesgo, es aún casi nula su aplicación en la práctica médica diaria. Además su importancia también radica en ser factor predictivo de desarrollo de diabetes en un paciente y permite implementar en forma temprana las medidas necesarias para la disminución de este riesgo. La presencia de marcadores inflamatorios se correlaciona con el riesgo elevado de eventos coronarios agudos y es predictor de la presencia de placas vulnerables, uno de estos marcadores y de los más estudiados es la proteína C reactiva (PCR). Ridker observó en pacientes con síndrome metabolico y ajuste a la edad una incidencia de eventos cardiovasculares a futuro de 3,4 a 5.9 por 1000personas/año para aquellos con un nivel de PCR >3mg/l.

El riesgo cardiovascular total se incrementa cada vez que se adiciona un factor de riesgo, y/o la presencia de un órgano blanco con daño y comorbilidades. Esta interacción acumulativa se está tomando cada vez más en cuenta a la hora de realizar la estratificación del riesgo en un paciente; en general la presencia de síndrome metabólico incrementa el riesgo de enfermedad cardiovascular con un factor de 1.69 (1.38-1.99) y el riesgo de diabetes con un factor de 2.99 (1.96-4.57). La presencia de síndrome metabólico con o sin diabetes se correlaciona en forma directamente proporcional con el riesgo de enfermedad cardiovascular y alteración en la circulación coronaria, aunque la presencia de diabetes y síndrome metabólico es el riesgo más alto en la estratificación.

II. MARCO TEORICO

Síndrome metabólico.

Desde hace muchos años Reaven describió la asociación entre hiperinsulinemia y enfermedad cardiovascular. Estos pacientes presentaban los que denomino síndrome X formado por un conjunto de alteraciones patológicas destacando entre ellas la intolerancia a la glucosa, diabetes mellitus tipo 2, hipertensión arterial y dislipidemia caracterizada por hipertrigliceridemia y niveles bajos de colesterol de alta densidad (c-HDL) . En los últimos años, este síndrome ha recibido diversas denominaciones siendo la más aceptada la de síndrome metabólico. Se le han agregado atributos tales como obsesidad viscero-abdominal, aumento de lipoproteínas de baja densidad (por sus siglas en ingles LDL) hiperurcemia, aumento del factor inhibidor del activador del palsminogeno (PAI-1) y del fibrinógeno, hiperandrogenismo y ovario poliquistico en mujeres de dad fértil , hígado graso con esteato hepatitis no alcoholica marcadores prinflamatorios y de disfunción endotelial (46)

En la actualidad podemos definir el síndrome metabólico como una condición patológica asociada a resistencia a la insulina e hiperinsulinemia que presenta un alto riesgo para desarrollar diabetes mellitus tipo 2 y enfermedad cardiovascular ateroesclerótica. La OMS definió un criterio en pacientes diabéticos tipo 2 o intolerantes a la glucosa, resistentes a la insulina con 2 o más de los riquientes características: obesidad según IMC o relación de perímetro de cintrura y cadera, slipidemia según triglicéridos o c.HDL, hipertensión arterial y microalbuminuria (53). La finición de la National Colesterol Education Program (NCEP) se basa en la coexistencia de ialquier combinación de tres alteraciones: en la distribución de grasa corporal, presión arterial, iglicéridos, HDL, y glicemia en ayunas. Obesidad abdominal (circunferencia abdominal >102 en ombres y >88 en mujeres, TG> o igual a 150mg/dl, HDL colesterol <40 en hombres y menor de) en mujeres, presión arterial > o igual de 130/80mmhg, glicemia basal en ayunas > o igual a 110 g /dly reconoce que el síndrome metabólico condiciona un mayor riesgo de enfermedad pronaria. (54)

arios estudios concuerdan en que alrededor de un 25% de la población adulta padece síndrome etabólico que la prevalencia aumenta con la edad siendo de un 24% a los 20 años, de un 30% o ás en los mayores de 50 años y ya por encima de los 60 más del 40% de la población padece ndrome metabólico.

n estudio que adquiere relevancia en la actualidad es el NHANES III (National Health and utrition Examination Survey). Este evalúa la prevalencia de síndrome metabólico y diabetes ellitus en personas con 50 años de edad o más y se realiza. Las conclusiones son las siguientes:

prevalencia de síndrome metabólico varía entre individuos con alteraciones del metabolismo ucídico. Un 25.8% de personas con normo glucemia basal y un 33.1% de personas con tolerancia a la glucosa tiene síndrome metabólico las cifras superan el doble en individuos con ucosa alterada en ayunas y diabetes (siendo de 71.3% y 86% respectivamente).

oncluyendo el síndrome metabólico aumenta por 2 el riesgo de accidentes vasculares cerebrales por 3 el riesgo de enfermedad coronaria; la mortalidad cardiovascular aumentó en un 2.2% que vieron los sujetos sin el síndrome a un 12% cuando el síndrome estaba presente.

En el estudio the ischemic heart disease risk factor study se encontró mayor mortalidad coronaria cardiovascular y total en los sujetos con síndrome metabólico. (58)

En el síndrome metabólico intervienen factores genéticos como ambientales que van a influir sobre el tejido adiposo y sobre la inmunidad innata. La obesidad juega un papel preponderante ya que el tejido adiposo, sobre todo el visceral o abdominal, es muy activo en la liberación de distintas sustancias: ácidos grasos, factor de necrosis tumoral, leptina, resistina, factor inhibidor de la activación del plasminogeno (PAI-1), IL6, etc. Estos factores pudieran favorecer la aparición de un estado proinflamatorio, de resistencia a insulina y/o daño endotelial. Por otro lado, la obesidad tiene una estrecha relación con la resistencia a la insulina (RI). Generalmente la resistencia a la insulina aumenta con el incremento del contenido de grasa corporal. Los ácidos grasos libres no esterificados (AG) que se generan aumentan en plasma y se encuentran con un hígado y una masa muscular resistentes a la insulina.

Epidemiología.

La importancia clínica del síndrome metabólico se relaciona con su impacto en la morbimortalidad cardiovascular en pacientes con o sin diabetes. En un estudio (Lakka, 2002), con exclusión de pacientes diabéticos, la prevalencia del síndrome metabólico triplicó el riesgo de mortalidad cardiovascular. El riesgo relativo para enfermedad cardiovascular total y para enfermedad coronaria fue superior a 3 (Gimeno Orna, 2004) y la presencia del síndrome metabólico se asoció a enfermedad coronaria en pacientes con DM tipo 2 con un riesgo relativo de 3.8 (Lehto, 2000). El Decode Study Group (Arch Intern Med, 2004) confirma la relación existente entre el síndrome metabólico y la mortalidad por todas las causas, incluyendo la cardiovascular, la multiplica por dos respecto a la población sana y es similar tanto en hombres como en mujeres no diabéticas, ajustando la edad, niveles de colesterol y tabaco.

Según los reportes de la Organización Mundial de la salud (OMS) la prevalencia varía entre 1.6 a 15%, pero cuando el índice de masa corporal (IMC) se incrementa a 35 o más, la prevalencia se incrementa hasta el 50%. La prevalencia también se ve modificada directamente por la edad, puesto que está reportado que entre personas de 20 a 29 años 6.7% son los portadores de SM, mientras que en mayores de 60 años es mayor a 43%. 4.5

El estudio latinoamericano INTERHEART realizado entre 1999 y 2003, que incluyó participantes de Brasil, Argentina, Colombia, Chile, Guatemala y México, aunque no documenta la prevalencia de SM, sí reporta que algunos de los componentes de SM tales como, obesidad, dislipidemia e hipertensión son factores de riesgo importantes para desarrollo de infarto del miocardio. 10

En México se han reportado prevalencias que van del 13.6 al 26.6% en la población general, incrementándose hasta el 36.6% en méxico-americanos; sin embargo es probable que esta cifra se encuentre subestimada. 11-13

La prevalencia en Europa está próxima al 23% en varones y al 12% en mujeres entre 40 y 55 años, excluyendo la población diabética. En España se ha detectado una prevalencia del 19.3% (E. VIVA - criterios OMS) y con criterios ATPIII, la prevalencia global es de 14.2%, mayor en mujeres que en varones (16.3 vs. 11.8%). Es muy llamativa su presencia en la

población infantil, donde oscila entre el 7 y el 11%. La prevalencia en pacientes DM tipo 2 es superior al 80% y el SM es predictor de nuevos casos de diabetes. Recientemente (Berlín 2005) la IDF ha propuesto una nueva definición del SM cuyo requisito previo es la obesidad

Resistencia a insulina

Esto se manifiesta en órganos y tejidos como hígado, tejido adiposo, muscular y también en el endotelio. La resistencia a la insulina patológica puede ser secundaria a defectos del receptores de insulina o por trastornos de su acción a nivel de postreceptor. En la gran mayoría de los pacientes que tienen resistencia a la insulina, hay defectos a nivel postreceptor derivados de alteraciones genéticos, cuya expresión es favorecida por factores ambientales entre los que destaca la obesidad abdominal, sedentarismo, tabaquismo, algunos medicamentos (diuréticos, progestágenos, corticoesteroides).

Ciertos investigadores creen que la resistencia a la insulina tiene un papel preponderante en la patogénesis del síndrome metabólico porque de ésta, y del hiperinsulinismo, derivan los factores de riesgo metabólico. Por otro lado la resistencia a la insulina tiene una estrecha relación con la obesidad y el aumento de ácidos grasos ya que es la causa principal de la misma. Por otro lado la resistencia la insulina tiene una estrecha relación con la obesidad y el aumento de ácidos grasos ya que es la causa principal de la misma.

Obesidad.

Es un trastorno metabólico que conduce a una excesiva acumulación de energía en forma de grasa corporal en relación con el valor esperado según el sexo, talla y edad. El criterio más exacto para el diagnostico de la obesidad es la terminación del porcentaje de grasa que contiene el organismo. Se usan diversas técnicas para ello: la antropometría, la pletismografía, la absorciometría dual de rayos X y la impedanciometría. En la actualidad el más usado es el índice de masa corporal.

La principal limitación del IMC es que no distingue entre la masa grasa y la masa libre de grasa. Para determinar con certeza esto último se requieren técnicas como la TAC y RMI. No solo es importante la cuantificación de la gras corporal sino también conocer su patrón de distribución (central/periférica) se puede determinar utilizando distintos índices como son: el índice cintura/cadera, cuando se supera los 0.9 en hombres u 0.85 en mujeres, es indicativo de obesidad abdominal. La relación de pliegue tricipital/ pliegue subescapular y el índice de centralidad.

Más del 80% de los obesos son insulino-resistentes, el aumento de los adipocitos viscerales modifica la actividad endocrino-metabólica de la insulina con aumento de secreción y niveles plasmáticos de ácidos grasos libres, del factor de necrosis tumoral y otras citocinas proinflamatorias así como disminución de la adiponectina. Los ácidos grasos libres generan resistencia a la insulina en el músculo al promover la fosforilación del IRS-1 en posición serina (en vez de tirosina), lo que se traduce en menor traslocación de los transportadores de glucosa GLUT-4 dependientes de la fosfatidilinositol-3-cinasa. La menor utilización de la glucosa a nivel de los adipositos y células musculares, y su mayor producción hepática, por neoglucogenesis son la causa de hiperglicemia y de hiperinsulinemia compensadora (47)

Dislipidemia.

Se explica por un aumento de la síntesis hepática de triglicéridos (por la mayor disponibilidad de ácidos grasos libre e hiperinsulinemia), mayor secreción de lipoproteínas VLDL y mayor catabolismo de las HDL con aumento de la excreción renal de apo A1. Las VLDL recibe colesterol esterificado desde las LDL y desde las HDL, transfiriéndoles a su vez, triglicéridos. Las HDL y las LDL ricas en triglicéridos son sustrato de la lipasa intravascular hepática aumentando el catabolismo de las HDL, mientras las LDL se transforman en partículas más pequeñas y densas. Estas LDL son más aterogénicas porque son más susceptibles a la oxidación siendo especialmente captadas por los receptores SR-A1 de los macrófagos del espacio subendotelial, generando una respuesta inflamatoria a medida que se transforman en células espumosas cargadas de colesterol. Además de la resistencia a la insulina reduce la actividad de la lipasa lipoproteica intravascular. Los efectos moleculares asociados a la resistencia a la insulina en la célula endotelial son múltiples y complejos pero en conjunte producen un estado proinflamatorio y pro-trombótico que explicarían el incremento en el riesgo cardiovascular. Tales como el aumento de estrés oxidativo por mayor producción de especies reactivas de oxígeno debido al aumento de ácidos grasos libres y de glucosa, directamente o a través de la activación de factores de transcripción. La mayor actividad del factor nuclear NFkB (por disminución de su inhibidor) produce una mayor expresión de los genes pro inflamatorios. Como consecuencia de ello se producen múltiples cambios como alteraciones del tono y flujo vascular (menor actividad de la oxido nitrico sintetasa, aumento de la endotelina-1) aumento de moléculas de adhesión (VCAM-1, ICAM-1) mayor permeabilidad vascular aumento de VEGF, menor fibrinólisis (aumento de MCP-1)

La insulina es una potente hormona antinatriuretica que causa una retención de sodio y en consecuencia una expansión de volumen.

Una asociación causal entre la resistencia a la insulina y el desarrollo de una hiperinsulinemia compensatoria en presencia de presión arterial elevada. Los mecanismos involucrados en esta relación incluyen retención de sodio mediada por insulina , estimulación del sistema nerviosos simpático y promoción de las células vasculares de crecimiento y producción de óxido nítirico por las células endoteliales en los estados de la resistencia a la insulina.

Los csos de hipertensión arterial refrectaria se asocian a resistencia a la insulina en el 3-13%. Los obesos (IMC de 30 o mas kg/m2) tienen con mayor frecuencia hipertensión arterial cuando se les compara con individuos sin obesidad (34.5% y 12.5% respectivamente).

Resistencia a la insulina. Conceptos.

Disminución en la sensibilidad a la actividad metabólica de la insulina por parte de sus receptores condicionando una hiperinsulinemia para poder mantener una tolerancia a la glucosa normal, que finalmente no se logra pudiendo identificar la existencia de la intolerancia a la glucosa.

La resistencia a la insulina se puede definir como el requerir 200 unidades o mas de insulina en 24 hr para mantener el control de la hiperglucemia y prevenir la cetosis; esta resistencia puede estar caracterizada como prereceptor (por anormalidades de la insulina o anticuerpos anti-insulina) por receptor (disminución en el número de receptores o disminución de la capacidad de respuesta a la insulina) o posreceptor (traducción anormal de la señal, especialmente falla en la actividad del receptor tirosinquinasa) 11

De acuerdo con el estudio Bruneck, en 1998, se demostró una prevalencia de resistencia a la insulina del 65%, en personas con curva anormal de tolerancia a la glucosa del 83.9%, en diabéticos tipo 2, del 53.5% en personas con hipercolesterolemia, del 84.2% en personas con hipertrigliceridemia, 88.1% en personas con hipoalfalipoproteina, 62.8% en personas con hiperurcemia e hipertensión del 95.2%. Y un porcentaje del 9.6% de la población con resitencia a l ainsulina no tenían curva anormal de la tolerancia a la glucosa, diabetes mellitus tipo2, dislipidemia, hiperuricemia, ni hipertensión arterial sistémica. (1,3)

El aumento de riesgo coronario con la asociación de varios factores se demostró en varios estudios, siendo el más representativo de ellos el Estudio de Framingham, cuya principal limitación es que es una quinta parte de los eventos coronarios que ocurren entre los individuos en quienes los factores de riesgo cuantificables (diabetes, hipercolesterolemia, edad, tabaquismo e hipertensión arterial) no han sido identificados, por lo que se transforma en una prioridad el que se desarrollen nuevas formas de detección en grupos de individuos de alto riesgo (asintomáticos) y una de ellas es a través de la utilización de marcadores inflamatorios tales como proteína C reactiva. (4,16,25)

El efecto de la resistencia a la insulina en la función endotelial es el nexo que explica la asociación entre obesidad visceral y enfermedad vascular cerebral aun en fases prediabéticas. (2,6,7)

Las células endoteliales tienen normalmente receptores de insulina que activan al sistema de señalización intracelular (IRS-1-2PIK-3Akt-1-2). La Akt-2 es la kinasa encargada de fosforilar a la óxido nítrico sintetasa endotelial en introducir la producción de óxido nítrico, así mismo es probable que induzca la activación de la proteína reguladora de genes Kruppel-similar al factor-2, promotora de la transcripción y síntesis de óxido nítrico sintetasa endotelial y trombomodulina.

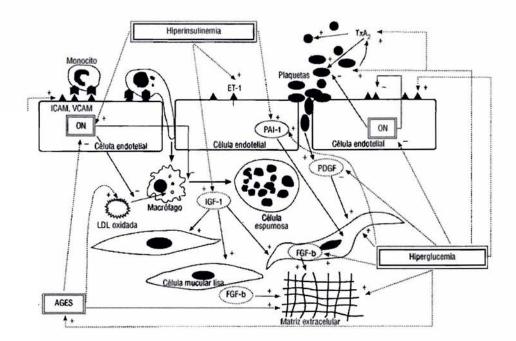
La Akt-2 también contrarresta el efecto activador de la cinasa Rac-1 sobre la nicotin Adenin Dinucleotido fósforo hidrógeno oxidasa endotelial inducida por el factor de necrosis tumoral alfa y generadora de RLO2. Los RLO2 son 2 mensajeros para la desrepresión de la proteína reguladora de genes factor nuclear-kB. El factor nuclear kB es la principal proteína reguladora de genes proinflamatorios en la célula endotelial y promueve la transcripción y síntesis de más de 150 genes, entre ellos los de endotelina -1 (E-1), moléculas de adhesión intracelular (ICAM), moléculas de adhesión vasculo-celular (VCAM), selectinas E, P y L, PAl-1 y factor de crecimiento endotelial (EDGF), etc. El factor nuclear –kB a su vez reprime la promoción del gen del óxido nítrico sintetasa endotelial, entre otros como es el de la osteocalcina y las proteínas óseas morfogenéticas (BMP) (8.12)

Así, la insulina normalmente induce en la célula endotelial la expresión de su fenotipo fisiológico determinado principalmente por el óxido nítrico y caracterizado por vasodilatación autorregulada antiadhesión de leucocitos y plaquetas circulantes e inhibición de la migración, hiperplasia y transformación de células musculares lisas de la capa media arterial. El innato estado de la resistencia a la insulina en cierta poblaciones en individuos, el cual por ser sistémica involucra también las células endoteliales, es sinergizado por la acción de la citoquinas como el factor de necrosis tumoral-alfa y los RLO2 y ocasiona un estado de disfunción endotelial en el cual el fenotipo fisiológico de las células endoteliales se transforma en un fenotipo caracterizado por vasodilatacion inapropiada, adhesión leucocitaria y plaquetaria con un estado fibrinolitico disminuido y migración hiperplasia y transformación de las células del músculo liso de la capa

media arterial. Dicho estado de disfunción de las células endoteliales se ha documentado en el humano in vivo tanto en la circulación arterial periférica como en la coronaria. (21,23)

En el fenómeno de disfunción endotelial e inflamación postprandial en individuos con hipertensión arterial sistémica, explica el mecanismo que hasta ahora solo implicaba a la hiperglucemia postprandial como un factor de riesgo aterotrombótico, incluso más significativo que la hiperglucemia de ayuno.

Los obesos son hiperinsulinemicos por presentar resistencia a la insulina. La insulina tiene un efecto presor relacionado con aumento de actividad simpática, hipertrofia vascular y aumento de reabsorción de sodio que es contrarrestado por efecto vasodilatador mediado por la síntesis de óxido nítrico. Por otra parte en la hipertensión arterial hay disminución del aclaramiento de insulina. Este síndrome tiene relevancia pronostica al estar asociado, además con diabetes e hiperlipidemia, que junto a la hipertensión arterial sistémica son los principales factores de riesgo coronario.


Disfunción endotelial.

En los últimos años se ha conocido la participación del endotelio en la función del sistema cardiovascular. Las células endoteliales, son capaces de responder a estímulos hemodinamicos y humorales, sintetizando o activando sustancia vasoactivas y factores de crecimiento celular. De esta forma, el endotelio regula el tono vascular, interviene en el remodelado vascular, en la hemostasia local (adhesión y agregación palquetaria y fibrinolísis) y participa en la inflamación por mediadores pro y antinflamatorios. (22)

En cuanto al control del tono vascular, las células endoteliales libera o responden a diversas sistancias vasodilatadoras y vasoconstrictoras. Entre las vasodilatadoras se encuentran el óxido nítrico, y la prostaciclina. Las vasoconstrictoras incluyen factores derivados de la ciclooxigenasa (tormboxano A y prstaglandina H2) endotelina y angiotensina II.

Fisiológicamnente el óxido nítrico es el principal regulador del tono vascular, su síntesis precisa de la oxido nítrico-sintetasa endotelial y actúa en las células musculares lisas vecinas produciendo relajación. En el riñón produce natriuresis por vasodilatación renal y disminución de la reabsorción de sodio en el túbulo. Además, inhibe la agregación y adhesión plaquetaria. Su inhibición produce aumento rápido sostenido de las resistencias periféricas, de la presión arterial media y reduce el flujo regional. La endotelina es un potente vasoconstrictor y ésta no parece tener papel importante en la regulación del tono vascular en condiciones fisiológicas pero podría participar en la HTA en situaciones patológicas. La interacción entre estos factores vasodilatadores y vasoconstrictores constituye el mecanismo de control local del tono vascular y de su equilibrio resulta el mantenimiento de la presión arterial en condiciones normales (23,24,25)

El endotelio sintetiza o libera sustancias que actúan en el crecimiento celular (músculo liso y fibroblastos) dando lugar al aumento del grosor y /o de la luz vascular (remodelamiento) y de la reactividad vascular con el consiguiente aumento de las resistencias periféricas. Varias sustancias vasoactivas intervienen también en este proceso la mayoría de las vasodilatadoras lo inhiben y las vasoconstrictoras lo estimulan.

pertensión arterial.

hipertensión arterial sistémica es uno de los problemas de salud más importantes en los países lustrializados por su alta prevalencia (alrededor del 25% de la población) y el protagonismo en desarrollo de enfermedad cardiovascular.

95% de los adultos jóvenes con hipertensión arterial de 18 y 65 años de edad no tienen causa intificable y su hipertensión puede se secundaria. Frecuentemente se encuentra en sujetos con esidad y trastornos en el metabolismo de los carbohidratos, en el 40% a 50% en personas con ibetes mellitus tipo 2, en comparación a un 20% de la población general (2,25)

presión arterial sistémica media está determinada por el gasto cardiaco y las resistencias sculares periféricas: PAM= GC x RP. También se encuentran otros dos factores directos, que n la impedancia (resistencia vascular al flujo) y el volumen arterial diastólico. El gasto cardiaco pende del volumen sistólico y de la frecuencia cardiaca. A su vez el volumen sistólico varía gún la contractilidad cardiaca y el retorno venoso. Por su parte las resistencia periféricas están guladas por factores nerviosos, humorales y locales.

bre estos determinantes directos intervienen los denominados indirectos como son la actividad rviosa central y periférica autonómica, la reserva corporal de sodio y liquido extracelular , el tema renina-angiotensia-aldosterona y hormonas locales como las prostaglandinas, cininas, tor natriuretico atrial y otros péptidos. Ahora se sabe que el endotelio tiene una importante a regulación de vasoconstricción y la vasodilatación arterial. Muchos de estos

factores están interrelacionados en circuitos de autoregulación consiguiendo mantener la presión arterial en unos límites estrechos (5.7.9)

El sistema renina- angiotensina- aldosterona participa en la regulación del balance hidroelectrolítico, volumen plasmático y resistencias periféricas y se encuentran en la patogénesis de la hipertensión arterial sistémica, sin embargo no parece tener un papel importante en el control de presión arterial en condiciones normales.

La renina, sintetizada como proenzima en el aparato yuxtaglomerular del riñón, interacciona en la circulación periférica con el angiotensinógeno, producido en el hígado, para formar la angiotensina I. La angiotensina I es transformada en angiotensina II por la acción de la enzima convertidora de AI producida por el endotelio, fundamentalmente en el lecho pulmonar. La angiotensina II inhibiría la renina (autorregulación). Los receptores de angiotensina II tipo 1 (AT1) y tipo 2 (AT2) modularían el efecto neto del sistema renina-angiotensina.

La angiotensina II interviene en la presión arterial actuando en diferentes órganos. Es un potente vasconstrictor y el principal controlados de la síntesis y liberación de aldosterona por la corteza suprarrenal. A nivel renal actúa sobre las arteriolas y directamente en el túbulo produciendo reabsorción de sodio y en el aparato yuxtaglomerular inhibiendo la renina. Estimula la liberación de catecolaminas en la médula suprarrenal y en las terminaciones simpáticas. En el sistema nervioso central aumenta la secreción de vasopresina y otras hormonas hipofisiarias, la actividad simpática, la sed, y el apetito.

La angiotensina II tisular se produce por la existencia y acción de uno o más componentes del sistema renina-angiotensina en diferentes órganos. Las múltiples acciones de la angiotensina II conducen a minimizar las pérdidas de sodio y agua a nivel renal y mantener la presión arterial. A largo plazo la angiotensina II ejerce efecto proliferativo y lesiva vascular a través de su interaccion con factores de crecimiento como el facto de crecimiento fibroblastico -bFGF y factor de crecimiento derivado de plaquetas-PDGF.

El patrón hemodinamico establecido de la hipertensión arterial se caracteriza por gasto cardiaco normal o disminuido y resistencia periféricas altas. El aumento de las resistencias periféricas se relaciona con aumento de sustancias vasoactivas que actuarían sobre el musculo liso y/o con cambios estructurales en la pares vascular con el resultado final de la reducción del calibre vascular.

La hipertensión arterial sistémica, considerada como un síndrome de anormalidades metabólicas y estructurales, produce un aumento de la presión intraluminal que incrementa la fuerza de cizallamiento o de estrés parietal, lo que origina disfunción endotelial y remodelación vascular con cambios precoces del complejo íntima-media, tanto más intensa y progresiva si se presenta la ocurrencia de otros factores de riesgo como ocurre en el síndrome metabólico.

- Se han propuesto 4 mecanismos para explicar la disminución del flujo coronario a) Edema intracelular e intersticial que produce compresión extravascular de las arterias y arteriolas; b) daño a las células de músculo liso coronario con aumento del tono vascular y falta de relajación frente al estímulo con acetilcolina; c) liberación alterada (disminuida) de oxido nitrico que se acompaña de un aumento del tono vascular, y d) bloqueo capilar por material tromboembólico.

- Los términos hipoperfusión, mala función o disfunción de la microcirculación expresan un inadecuado flujo tisular.

De esto se deduce el concepto de que no es una ecuación el hecho de que «arteria abierta» sea igual a «miocardio perfundido». En los tejidos, en el territorio de «no reflujo» existe edema celular e intercelular, daño endotelial e infiltración de neutrófilos.

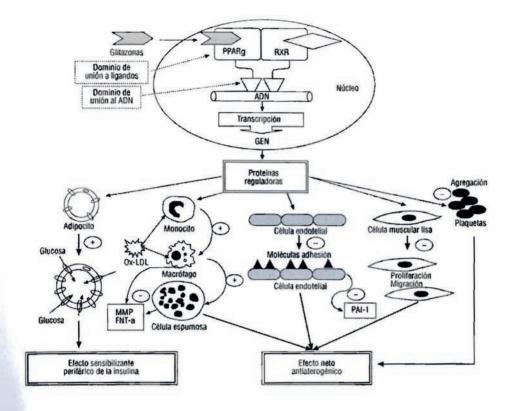
Flujo TIMI inicial: Catalogada en categorías de 0, 1, 2 y 3

Cero: (no perfusión) no hay flujo anterógrado más allá de la oclusión

Uno: el material de contraste pasa más allá de la obstrucción, pero no opacifica el lecho distal de la arteria coronaria.

Dos: (perfusión parcial) el contraste pasa a través de la lesión y opacifica el lecho distal a la obstrucción, pero a velocidad disminuída.

Tres: (completa perfusión) flujo anterógrado que opacifica todo el lecho arterial y a velocidad adecuada.


La velocidad de la sangre se determina, como en cualquier otro sistema, sabiendo el tiempo que tarda una partícula en recorrer una cierta distancia.

Por supuesto que, calculada de esa manera, se trata de una velocidad media (medida en la aorta) y la sangre tendrá una velocidad mayor durante la sístole y menor durante la diástole. La unidad habitual es cm/s y la velocidad media de la sangre en la aorta es del orden de los 40 a 50 cm/s, mientras que en los capilares es 0,02 a 0,06 cm/s.

El agrupamiento de varios factores de riesgo en un mismo paciente incrementa de manera exponencial la tendencia a un aumento de la mortalidad por enfermedades cardiovasculares, así como a una mayor repercusión de daño a nivel de las diferentes arterias del organismo, e inclusive a una mayor mortalidad.

Resistencia a la insulina, aterosclerosis y PPAR.

El receptor gamma activado del peroxisoma proliferador (PPAR) es un receptor nuclear que actúa como factor de transcripción dependiente del ligando ¹¹⁰. El PPAR se expresa en los tejidos diana de la insulina y su activación regula el metabolismo de la glucosa y de los ácidos grasos ¹¹¹. Agonistas de los PPAR, como los nuevos antidiabéticos orales de la clase de las glitazonas, han demostrado aumentar la sensibilidad periférica a la insulina y mejorar el estado de resistencia a la insulina en pacientes diabéticos tipo 2⁴⁵. Además del control glucémico, los pacientes diabéticos mejoraron todos los componentes del síndrome metabólico (disminución de triglicéridos, ácidos grasos, LDL, PAI-1, cifras tensionales y aumento de las HDL) ^{46,47} (tabla 2) y en un estudio se demostró regresión de la aterosclerosis ⁴⁸. El reciente descubrimiento de los PPAR nos ofrece otra evidencia más de la asociación entre la resistencia a la insulina, la DM y la aterosclerosis.

Por tanto, concluimos que el síndrome metabólico se asocia de forma compleja, pero directa, con una temprana y rápida progresión de la aterosclerosis coronaria. Los mecanismos inmunitarios e inflamatorios que subyacen al proceso aterogénico y que parecen influir de manera directa en el crecimiento y la rotura de la placa de ateroma son particularmente agresivos en el paciente diabético

La placa de ateroma es una estructura dinámica en la que existe un equilibrio entre la influencia destructiva de células inflamatorias y el efecto estabilizante de las células musculares lisas (CML) 44. Hoy día sabemos que las placas más vulnerables son las que poseen unmayor núcleo lipídico, una capa fibrosa más fina y una mayor proporción de células inflamatorias 45-46. Los linfocitosT activados elaboran interferón-g (IFN-g) que inhibe la proliferación de las CML y su capacidad de síntesis de colágeno. Los macrófagos producen metaloproteinasas que degradan las proteínas de la matriz extracelular, sintetizan factor tisular e inducen apoptosis de las CML. Estos efectos celulares producen el adelgazamiento de la placa fibrosa, lo que predispone a un mayor riesgo de rotura 47. Cuando se produce la rotura o erosión de la placa de ateroma se exponen a la sangre el core lipídico con el factor tisular y la matriz colágena, que son altamente trombogénicos. Este acontecimiento induce la activación y la agregación plaquetaria, el depósito de fibrina y la formación del trombo 48. Recientemente, Moreno et al 49 demostraron que las placas

ateromatosas de los pacientes diabéticos tienen un mayor contenido lipídico y una mayor infiltración macrofágica que las de los pacientes no diabéticos. También se sabe que las plaquetas de los pacientes diabéticos muestran una mayor adhesividad y agregabilidad 50. Además, la actividad de la vía del ácido araquidónico está incrementada en los pacientes diabéticos, presentan una mayor síntesis de tromboxano A2, potente vasoconstrictor y activador plaquetario 52.

Adicionalmente, la hiperinsulinemia incrementa las concentraciones del PAI-1 tanto en la sangre como en la pared arterial de los pacientes diabéticos46,47. El PAI-1 inhibe la migración de las CML, lo que predispone a la formación de placas con una capa fibrosa fina y, por tanto, con una mayor predisposición a la rotura. Así mismo, en muestras de reestenosis coronaria de pacientes diabéticos se observó un gran componente colágeno. Estos hallazgos sugieren que en el paciente con síndrome metabolico la placa es muy trombogénica 54.

Esto explica la gran propensión a la rotura, trombosis y cicatrización, entrando en un círculo vicioso de dos procesos muy agresivos en el síndrome metabolico como son el crecimiento y la vulnerabilidad de la placa.

El riesgo cardiovascular en el síndrome metabólico. Estudios epidemiológicos.

Aunque los estudios son escasos, hay dos que muestran resultados importantes. Isomaa et al, en el estudio de Botnia conuna población de 4.483 individuos entre 35 y 70 años, encontraron una prevalencia de síndrome metabólico (según el criterio de la OMS) de 12% entre quienes tenían una tolerancia a la glucosa normal, de 53% en los intolerantes a la glucosa y de 82% en los diabéticos. Seguidos por 6,9 años, quienes presentaban el síndrome presentaron una mayor morbilidad coronaria con un riesgo relativo de 2.96 (p<0.001)

III. JUSTIFICACION.

El Síndrome metabólico es una condición prevalente que se asocia a la obesidad y a estilos de vida pocos saludables. Constituye un factor que aumenta de 2 a 4 veces el riesgo cardiovascular. Su diagnóstico clínico es sencillo, las patologías cuantitativas del síndrome deben tratarse integralmente. Sin embargo, aún falta información sobre el impacto en el riesgo cardiovascular por lo cual se realiza el presente estudio para cuantificar y correlacionar las diferentes variables cuantitativa y cualitativamente en presencia de daño endotelial por enfermedad coronaria medido por fluio TIMI.

El síndrome metabólico por sí mismo es justificación identificarlo para medidas de prevención primaria y secundaria por sus repercusiones a nivel sistémico: es un estado proinflamatorio en el que se ven aumentadas citocinas proinflamatorias (TNF alfa, IL -6) y proteína C reactiva, es un estado protrombotico en el q se ve aumentado la expresión de factor pAl-1 y fibrinógeno, afecta directamente eje adrenal pituitario. (10)

En el síndrome metabólico hay una disregulación vascular mediada por disfunción endotelial y provoca microalbuminuria como consecuencia de hipertensión arterial (10).

El presente estudio tiene como principal justificación el encontrar relación directa de síndrome metabólico con enfermedad coronaria ya que se ha demostrado en estudios previos q es un factor de riesgo el cual aumenta dos veces la aparición de enfermedad coronaria y cinco veces el riesgo de diabetes mellitus tipo 2 en la población en general. Así mismo se desarrolla a largo plazo enfermedad arterial crónica manifestada con enfermedad arterial periférica, aneurisma aortico abdominal, enfermedad renal crónica y/o apnea obstructiva del sueño.

La enfermedad coronaria en los pacientes diabéticos suele ser de naturaleza difusa y ocasiona unas arterias coronarias no óptimas para la revascularización.

La principal justificación para la realización del presente estudio tiene como relevancia estadística:

- Medir la repercusión cardiovascular de cada uno de las entidades que integran el síndrome metabólico.
- Describir las variables independientes y su relación con enfermedad endotelial coronaria
- Identificar las características del síndrome metabólico más frecuentes que influyen en la enfermedad cardiovascular.
- Repercusión a nivel arterial coronario y frecuencia de presentación de flujo lento por grupos de edad relacionado con síndrome coronario.

IV. HIPOTESIS.

IV a. Hipótesis de trabajo

Determinar relación directa de síndrome metabólico como factor de riesgo cardiovascular demostrado por alteración en flujo coronario en pacientes con cardiopatía isquémica.

Determinar asociación entre los componentes del síndrome metabólico y alteración en el flujo arterial coronario.

IV b. Hipótesis nula.

No hay relación estadísticamente significativa entre la presencia de síndrome metabólico y alteración en flujo arterial coronario en pacientes con cardiopatía isquémica

No hay relación directa entre los componentes de síndrome metabólico (glucosa, hipertensión arterial, triglicéridos, HDL) que se midieron en el presente estudio con el flujo arterial coronario.

V. OBJETIVOS

V a. Objetivo General.

Describir la posible asociación entre la enfermedad arterial coronaria y el Síndrome Metabólico.

V b.Objetivos Específicos.

- Medir la prevalencia de Síndrome Metabólico en la población estudiada.
- Determinar la relación existente entre la presencia de Síndrome Metabólico en la población de estudio y la severidad y extensión de la coronariopatía.
- Determinar proporción de alteración de flujo arterial coronario de acuerdo a score TIMI, y
 dividirlos en dos categorías flujo normal y flujo anormal haciendo sus respectivas
 comparaciones y análisis estadísticos en cuanto a su frecuencia en género y grupo de
 edad.
- Determinar el nivel estadísticamente significativo de cada variable y su relación con flujo arterial coronario.

VI. Planteamiento del problema.

Los pacientes que presentan diagnóstico de síndrome metabólico en su evolución presentaron infarto al miocardio o angina inestable, fueron sometidos a cateterismo cardiaco en lo que se cuantifico por escala TIMI la calidad de flujo arterial coronario así mismo arteria coronaria en su mayoría afectada: coronaria derecha, arteria circunfleja, descendente anterior o tronco de la coronaria izquierda, se mide la relación en cuanto a edad y sexo de cada arteria afectada por frecuencia y la relación de cada uno de los componentes del síndrome metabolico a interferir directa o indirectamente con alteración en flujo arterial. Posteriormente se realiza un breve análisis sobre factor externo tabaquismo y su participación en la misma enfermedad coronaria.

VII.- MATERIAL Y METODOS.

- a. Diseño y tipo de estudio. Es un estudio observacional y retrospectivo.
- b. Universo de estudio. Se incluyeron 94 pacientes portadores de síndrome metabólico con antecedente de cardiopatía isquémica y realización de coronariografía, que cuenten con derechohabiencia del ISSSTE y que reúnan los criterios de inclusión para este estudio

1 b.- Criterios de inclusión.

Pacientes de 30 a 80 años de edad con diagnostico de cardiopatía isquémica tipo angina inestable, angina crónica estable e infarto al miocardio, que cumplan los criterios de acuerdo a ATPIII para la definición de síndrome metabolico.

Derechohabientes de ISSSTE.

2 b.- Criterios de exclusión.

Pacientes de 30-80 años con valvulopatías, cateterismos cardiacos previos, cirugía de revascularización coronario o post colocación de stents.

Pacientes no derechohabientes de ISSSTE.

Pacientes de 30 a 80 años con enfermedades concomitantes como septicemia, choque séptico, insuficiencia cardiaca crónica.

Enfermedad cardiovascular atribuibles a otras causas vasculitis, valvulopatías, malformaciones congénitas, trastornos de la coagulación.

3 b.- Criterios de eliminación .-

Que no complete seguimiento hospitalario posterior a la angioplastia en el hospital Adolfo López Mateos ISSSTE.

c. Variables.

Variable	Tipo de Variable	Valores posibles
Tipo de enfermedad	Cualitativa Nominal	Angina Crónica Infarto Miocardio Angina Inestable
Flujo arteria descendente anterior (DA)	Cualitativa Nominal	Lento Normal
Flujo arteria circunfleja (CI)	Cualitativa Nominal	Lento Normal
Flujo arteria coronaria derecha (CD)	Cualitativa Nominal	Lento Normal
TG	Continua	
Glucosa	Continua	
HDL	Continua	
TA	Continua	
Síndrome metabólico	Cualitativa Nominal	No Sí
Edad	Cualitativa Nominal	30-50 51-70 71-80
Sexo	Cualitativa Nominal	Masculino Femenino

1c. Definición operacional de las variables.

- Factores de riesgo: Cualitativa nominal, los cuales constituyen identificación de determinados datos biológicos, hábitos adquiridos y/o estilos de vida, que se observan con mayor frecuencia entre los pacientes a presentar enfermedad coronaria que entre la población global de la que proceden los cuales se clasifican en modificables y no modificables, incluyendo en nuestro estudio algunos de estos factores refiriéndonos a: la hipertensión arterial, diabetes mellitus tipo 2, hiperlipidemias (hipertrigliceridemia >150, HDL baja <40 y 50 respectivamente hombres y mujeres, obesidad,. Estos factores se consideraron presentes solo cuando se confirmaban que se encontraban previamente registrados.</p>
- Edad: Variable cuantitativa continua, que dividimos en diferentes grupos de edades a partir de los 30 años en intervalos de 10 años (de 30 39 años; de 40 49 años; de 50 59 años; 60 69 años y de 70 años y mas) No decidimos incluir edades mas tempranas ya que como es sabido según la literatura revisada la prevalencia de esta enfermedad es baja antes de los 40 años
- Sexo: Cualitativa nominal dicotómica (masculino y femenino) según sexo biológico de pertenencia) obteniendo así la prevalencia de casos por sexo.
- Hipertensión Arterial: Se consideró hipertenso a toda persona que tenía antecedentes o historia de cifras tensionales de 140/90 mm Hg ó mayores que estas, con o sin síntomas asociados.
 - Diabetes Mellitus: Pacientes con historia de cifras elevadas de glicemia para lo cual llevan tratamiento ambulatorio con hipoglicemiantes orales y/o con insulina. necesidad de antidiabéticos orales o insulina o glicemia sanguínea en ayunas > 126mg/dl o > 7MMol
- Dislipidemia.- hipertrigliceridemia >150 y HDL baja <50 en mujeres y <40 hombres respectivamente.
- Insulina: hormona anabólica de tipo proteica que tiene como primera acción facilitar la utilización de la glucosa en las fibras musculares, en miocitos, hepatocitos y adipocitos, principalmente con el fin de mantener un equilibrio entre la producción de glucosa y la utilización de esta.
- Hipertensión arterial sistémica esencial: Se conoce a las cifras tensionales sistólica mayor de 120mmhg y/o diastólica mayor de 80mhg, sin una causa evidente se medirá conforme a la estadificacion del Joint National Commite 7 (JNC7)
- Dislipidemia: Historia de dislipidemia diagnosticada y tratada por un médico o determinación de colesterol total > 200 mg/ dl , LDL > 130 mg/dl y > 100 mg/ dl en pacientes con evidencia de enfermedad coronaria, en este estudio triglicéridos mayor de 150 mg/dl y HDL en mujeres menor a 50 y en hombres menor a 40.
- Tabaco: Se expresará en categoría de fumador o no fumador. Historia confirmada de tabaquismo sea fumador actual o haya dejado de fumar recientemente entre el mes y el año antes del intervencionismo.
- Arteria Responsable: Es el vaso considerado responsable del evento coronario agudo, que será determinado por el hemodinamista en base a su juicio y experiencia. Se expresará de acuerdo a la arteria hallada como culpable: TCI, DA, Circunfleja, coronaria derecha, puente safeno.
- Flujo TIMI inicial: Catalogada en categorías de 0, 1, 2 y 3
 Cero: (no perfusión) no hay flujo anterógrado más allá de la oclusión
 Uno: el material de contraste pasa más allá de la obstrucción, pero no opacifica el lecho distal de la arteria coronaria.

Dos: (perfusión parcial) el contraste pasa a través de la lesión y opacifica el lecho distal a la obstrucción, pero a velocidad disminuída.

Tres: (completa perfusión) flujo anterógrado que opacifica todo el lecho arterial y a velocidad adecuada

En el presente estudio se describe flujo en dos categorías: flujo sin alteración y flujo con alteración .

D. Métodos e instrumentos de recolección de datos.

Se estudiaron 92 individuos (24 mujeres y 68 hombres) de edades entre 30 y 80 años con diagnóstico de síndrome metabólico antecedente de cardiopatía isquémica y realización de coronariografía.

Antes de iniciar el estudio se hace anamnesis sobre criterios para síndrome metabólico en base a expediente clínico (criterios de inclusión).

La evaluación estadística se realizó con el programa computacional STATS, Analyze-it, EXEL,ssps

E. Plan de tabulación y análisis de datos.

Se utilizará tablas para recolección de datos y características de los sujetos en estudio, usaremos gráficas de dispersión para representación de datos y las correlaciones asi como graficas de barras para variables numéricas.

F. Análisis Estadístico.

- Se propone en primera instancia hacer un análisis descriptivo de los datos. En primer lugar se hará un análisis para ver el número y proporción de observaciones en cada una de las variables cualitativas.
- Los valores de las variables pueden ser obtenidos a partir de los registros médicos correspondientes a cada paciente. Cada paciente será identificado y se vaciarán en una base de datos los valores que toman cada una de las variables para ese paciente, obteniendo una base de datos generada en Excel que puede ser trasladada a SPSS versión 17.0 para poder hacer los análisis estadísticos correspondientes.
- Se definen como variables independientes: circunferencia de cintura, HDL, triglicéridos, hipertensión arterial, glucosa, edad, sexo, así como su razón de momios
- Se definen como variables cualitativa nominal: tipo de flujo (lento, normal, TIMI1,2,3) los cuales fueron adjuntados como flujo normal (TIMI1 y 0) flujo anormal (TIMI2,3 oclusión total), arteria afectada (descendente anterior, circunfleja, coronaria derecha y tronco coronaria izquierda), síndrome coronario (angina crónica estable, angina inestable, infarto al miocardio), síndrome metabólico, edad, sexo; variables continuas (glucosa, triglicéridos, hipertensión arterial sistémica, HDL), para las variables continuas o cualitativas podemos obtener otras estadísticas: la media, la varianza o dispersión, la desviación estándar, la mediana, los cuartiles, el error estándar de la media, el rango y los valores mínimos y máximos de los datos.

- Los estadísticos anteriores se utilizan porque las variables involucradas son nominales, por lo cual se usan estadísticos equivalentes a la correlación de Pearson pero definidos para este tipo de variables, estos estadísticos están basados en el estadístico Ji cuadrado obtenido para la prueba de independencia. En nuestros datos en particular obtendríamos entonces si el sexo está asociado con el tipo de enfermedad o si está asociado con el flujo en cada una de las distintas arterias y en caso afirmativo el grado de esa asociación.
- Se definen a las variables dependientes siendo estas el tipo de flujo arterial coronario (TIMI1,2,3, flujo lento y flujo normal), arteria afectada,
- Posterior a la recolección de datos se determinarán la asociación de variables como factores de riesgo y afectación de flujo coronario.
- Un siguiente paso es presentar las tablas cruzadas o de contingencia para variables cuyo cruce puede resultar de interés. Se proponen cruces que incluyan tanto a la variable sexo como a la variable edad. Principalmente, son de interés el cruce entre estas variables (sexo y edad) y el tipo de enfermedad, así como el cruce entre estas y las tres variables de flujo sobre las distintas arterias: flujo arteria DA, flujo arteria CI y flujo arteria CD. Dentro de las tablas se puede presentar los conteos, así como las proporciones o porcentajes que cada celda representa por columna, por renglón y para el total de la tabla.
- En resumen, con las ANOVA's entenderemos si las distintas medidas que conforman el síndrome metabólico difieren y de qué forma de acuerdo a las distintas enfermedades.
- La hipótesis principal de este estudio es que el síndrome metabólico es un factor de riesgo cardiovascular para daño endotelial. Lo anterior se traduce estadísticamente en que queremos ver si el resto de las variables, principalmente la variable correspondiente a síndrome metabólico, afecta a las variables relacionadas con el flujo de las tres distintas arterias. Esto se puede verificar a través de modelos de regresión.
- Una vez ajustado el modelo, se obtienen los parámetros estimados. Para cada uno de los parámetros se obtienen las pruebas correspondientes para ver si son significativos, es decir se prueba la hipótesis nula de que cada parámetro es cero y si el p-value asociado a la prueba es inferior a un nivel de significancia dado, por ejemplo de 0.05 se rechaza la hipótesis nula y entonces el parámetro es significativamente distinto de cero.
- Aquellas variables explicativas cuyos parámetros no son significativos deben eliminarse del modelo porque no explican a la variable dependiente. Entonces se ajusta un nuevo modelo logístico con solo aquellas variables significativas. Una vez ajustado el modelo, podemos observar el error estándar del parámetro estimado.
- Las variables continuas se presentarán con media +/- desviación estándar.

G. Consideraciones éticas.

El estudio presentado no viola ninguno de los principios establecidos por el comité de ética e investigación en seres humanos.

La investigación es considerada como sin riesgo de acuerdo con el artículo 17 del reglamento de la Ley General de Salud en materia de investigación para la salud. Solo fue necesaria la aprobación del comité de ética e investigación del Hospital Regional Adolfo López Mateos ISSSTE

El estudio se encuentra apegado a los principios de investigación médica, establecidos en la Declaración de Helsinki en 1975.

H. Ámbito Geográfico.

Población mexicana que son derechohabientes al servicio médico de Hospital Regional Adolfo López Mateos de ISSSTE.

I. Recursos.

- 1.- Humanos. Médico Residente encargado de racabar los datos de expedientes clínicos.
- 2.- Materiales.- Expedientes clínicos y base de datos del servicio de Hemodinamia del Hospital Adolfo López Mateos.
- 3.- Financieros. No requeridos

VII. RESULTADOS.

Se observa que la mayoría de los pacientes presentan angina inestable (52.2%), seguida por infarto al miocardio (41.3%). Así mismo, la mayoría de los pacientes presentan flujo lento en las arterias DA, CX y CD, esto es cuando se toma en cuenta la categorización original en 6 clases distintas: Oclusión total, Flujo lento, TIMI 1, TIMI 2, TIMI 3 y sin alteración de flujo, con valores en todos los casos cercanos al 47%. En el flujo TCI no ocurre esto, la mayoría (70.7%) de los pacientes no tiene alteraciones de flujo. Aún colapsando TIMI 2 y flujo lento en la misma categoría se conservan proporciones similares en los flujos anteriores, alcanzando esta nueva categoría que podríamos renombrar como flujo lento aproximadamente el 50% de los pacientes en los flujos DA, CX y CD. (Ver tablas (1))

TABLA1.1.- Enfermedad Coronaria

		Frequency	Percent	Valid Percent	Cumulative Percent
Ang	Infarto miocardio	38	41.3	41.3	41.3
	Angina inestable	48	52.2	52.2	93.5
	Angina crónica estable	6	6.5	6.5	100.0
	Total	92	100.0	100.0	

TABLA 1.2.-FLUJO DA Descendente anterior.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sin alteración de flujo	8	8.7	8.7	8.7
	Flujo lento	43	46.7	46.7	55.4
	TIMI 1	10	10.9	10.9	66.3
	TIMI 2	3	3.3	3.3	69.6
	TIMI 3	20	21.7	21.7	91.3
	Oclusión total	8	8.7	8.7	100.0
	Total	92	100.0	100.0	

TABLA 1.3.- FLUJO CX Circunfleja

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sin alteración de flujo	6	6.5	6.5	6.5
	Flujo lento	43	46.7	46.7	53.3
	TIMI 1	7	7.6	7.6	60.9
	TIMI 2	6	6.5	6.5	67.4
N.C.	TIMI 3	28	30.4	30.4	97.8
	Oclusión total	2	2.2	2.2	100.0
	Total	92	100.0	100.0	

TABLA 1.4.- FLUJO CD Coronaria derecha

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sin alteración de flujo	7	7.6	7.6	7.6
	Flujo lento	41	44.6	44.6	52.2
	TIMI 1	7	7.6	7.6	59.8
	TIMI 2	15	16.3	16.3	76.1
	TIMI 3	9	9.8	9.8	85.9
	Oclusión total	13	14.1	14.1	100.0
1	Total	92	100.0	100.0	

TABLA 1.5 .- FLUJO TCI Tronco de coronaria izquierda.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sin alteración de flujo	65	70.7	70.7	70.7
	Flujo lento	7	7.6	7.6	78.3
	TIMI 1	3	3.3	3.3	81.5
	TIMI 2	14	15.2	15.2	96.7
	TIMI 3	2	2.2	2.2	98.9
	Oclusión total	1	1,1	1.1	100.0
J.	Total	92	100.0	100.0	

TABLA 1.6.-Flujo DA Descendente anterior (5 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Oclusion total	8	8.7	8.8	8.8
The last	TIMI 1	10	10.9	11.0	19.8
	TIMI 2 y Flujo lento	46	50.0	50.5	70.3
	TIMI 3	20	21.7	22.0	92.3
	Sin alteración de flujo	7	7.6	7.7	100.0
	Total	91	98.9	100.0	
Missing	System	1	1.1		
	Total	92	100.0		

TABLA 1.7 Flujo CX Circunfleja (5 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Oclusion total	2	2.2	2.2	2.2
	TIMI 1	7	7.6	7.6	9.8
1	TIMI 2 y Flujo lento	49	53.3	53.3	63.0
	ТІМІ З	28	30.4	30.4	93.5
	Sin alteración de flujo	6	6.5	6.5	100.0
	Total	92	100.0	100.0	

TABLA 1.8 Flujo CD Coronaria derecha (5 valores)

	llo 14	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Oclusion total	13	14.1	14.1	14.1
	TIMI 1	7	7.6	7.6	21.7
	TIMI 2 y Flujo lento	56	60.9	60.9	82.6
	TIMI 3	9	9.8	9.8	92.4
	Sin alteración de flujo	7	7.6	7.6	100.0
	Total	92	100.0	100.0	

TABLA 1.9 Flujo TCI Tronco coronaria derecha (5 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Oclusion total	i	1.1	1.1	1.1
	TIM! 1	3	3.3	3.3	4.3
	TIMI 2 y Flujo lento	21	22.8	22.8	27.2
	TIMI 3	2	2.2	2.2	29.3
	Sin alteración de flujo	65	70.7	70.7	100.0
er.	Total	92	100.0	100.0	

Al categorizar la glucosa, triglicéridos y HDL, se observa que la mayoría (48.9%) de los pacientes presentan un nivel de glucosa entre 60 y 126. Además un poco más de la mitad de los pacientes (54.3%) tienen valores de triglicéridos mayores a 150. Así mismo casi el 90% de los pacientes tienen hipertensión arterial en Estadio I. Prácticamente el 70% de los pacientes tienen niveles de HDL menores de 40 y el resto presenta valores mayores o iguales a este número.

TABLA 1.10.- Glucosa

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	60-126	35	38.0	38.0	38.0
	127-200	45	48.9	48.9	87.0
	Mayor a 200	12	13.0	13.0	100.0

Al categorizar la glucosa, triglicéridos y HDL, se observa que la mayoría (48.9%) de los pacientes presentan un nivel de glucosa entre 60 y 126. Además un poco más de la mitad de los pacientes (54.3%) tienen valores de triglicéridos mayores a 150. Así mismo casi el 90% de los pacientes tienen hipertensión arterial en Estadio I. Prácticamente el 70% de los pacientes tienen niveles de HDL menores de 40 y el resto presenta valores mayores o iguales a este número.

TABLA 1.10.- Glucosa

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	60-126	35	38.0	38.0	38.0
	127-200	45	48.9	48.9	87.0
	Mayor a 200	12	13.0	13.0	100.0
	Total	92	100.0	100.0	

TABLA 1.11Trigliceridos

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Menor a 150	42	45.7	45.7	45.7
	Mayor a 150	50	54.3	54.3	100.0
	Total	92	100.0	100.0	

TABLA 1.12 Hipertensión Arterial.

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Estadio I de la JNC7 140- 160 sistolica y 90-100 diastolica	82	89.1	89.1	89.1
	Estadio 2 >160/100	10	10.9	10.9	100.0
	Total	92	100.0	100.0	

El 52.2% de los pacientes están en el grupo de edad intermedio (51 a 70 años) y 23.9% están en cada uno de los otros dos grupos de edad. La mayoría de los pacientes (73.9%) son hombres y la mayoría (73.9%) presentan tabaquismo positivo.

TABLA1.13.-Edad

	5	Frequency	Percent	Valid Percent	Cumulative Percent
Valid	30-50 años	22	23.9	23.9	23.9
	51-70 años	48	52.2	52.2	76.1
	mayor de 70 años hasta 80 años	22	23.9	23.9	100.0
	Total	92	100.0	100.0	

TABLA 1.14 HDL

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Menor a 40	64	69.6	69.6	69.6
	Mayor a 40	26	28.3	28.3	97.8
	Total	90	100.0	100.0	

TABLA 1.15.- Tabaquismo

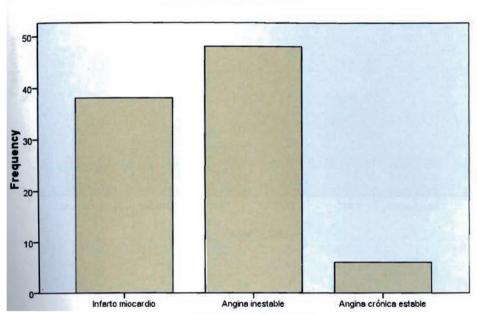
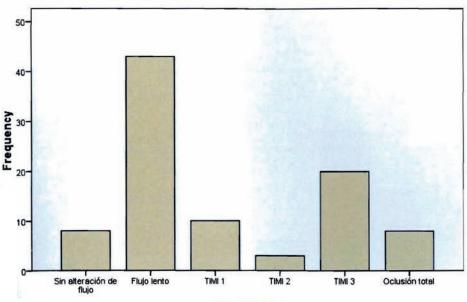
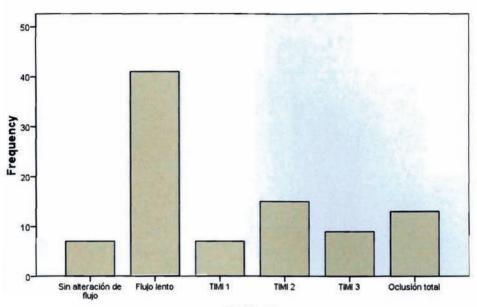

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Positivo	68	73.9	73.9	73.9
	Negativo	24	26.1	26.1	100.0
	Total	92	100.0	100.0	

TABLA 1.16.-Género

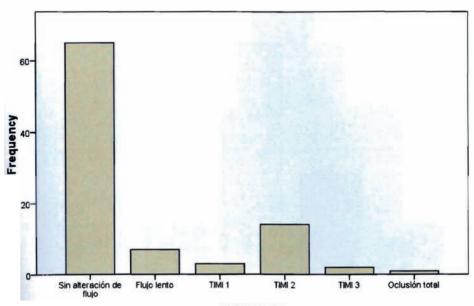
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Hombres	68	73.9	73.9	73.9
	Mujeres	24	26.1	26.1	100.0
	Total	92	100.0	100.0	


GRAFICA DE BARRAS.

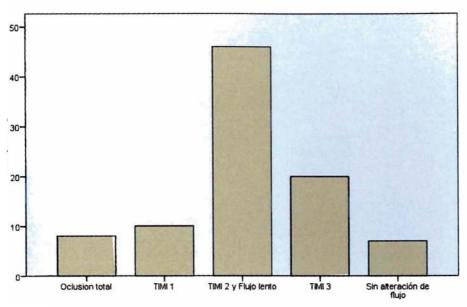
Enfermedad Coronaria


Enfermedad Coronaria

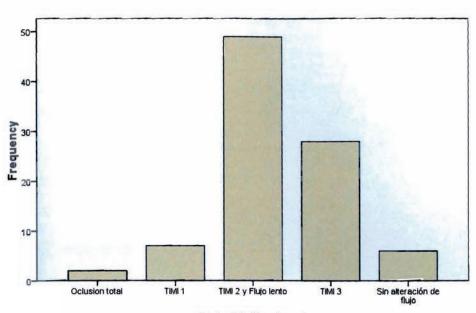
FLUJO DA


FLUJO DA

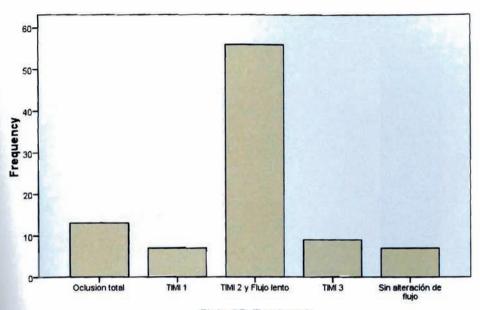
FLUJO CD


FLUJO CD

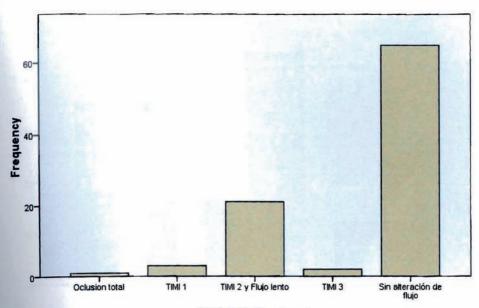
FLUJO TCI


FLUJO TCI

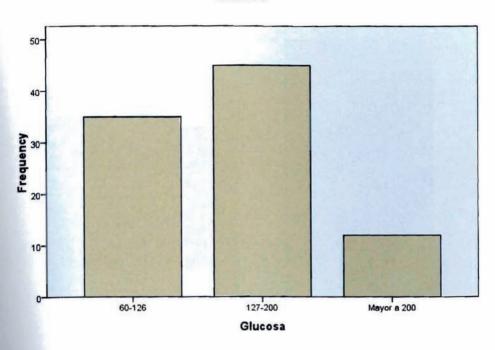
Flujo DA (5 valores)


Flujo DA (5 valores)

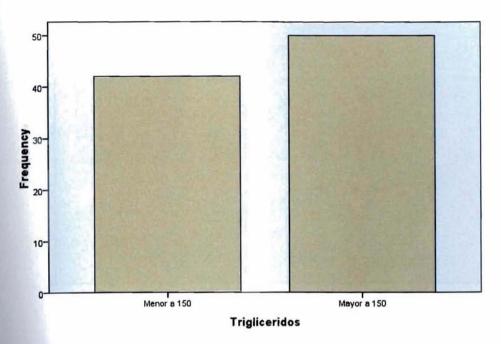
Flujo CX (5 valores)


Flujo CX (5 valores)

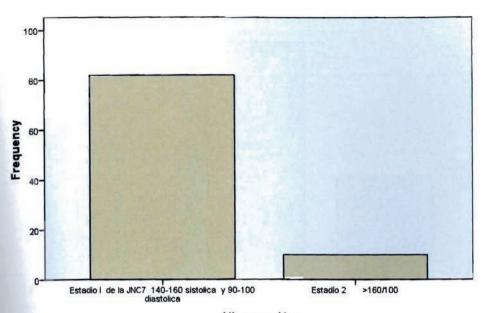
Flujo CD (5 valores)


Flujo CD (5 valores)

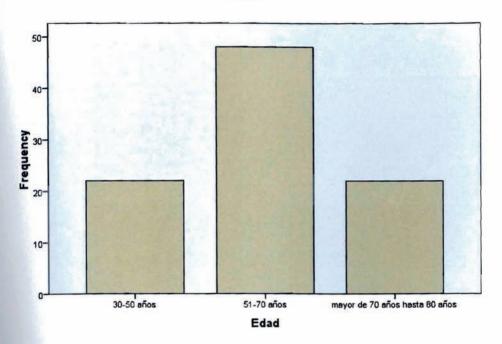
Flujo TCI (5 valores)



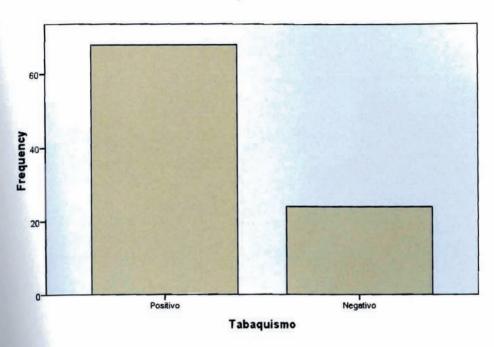
Flujo TCI (5 valores)


Glucosa

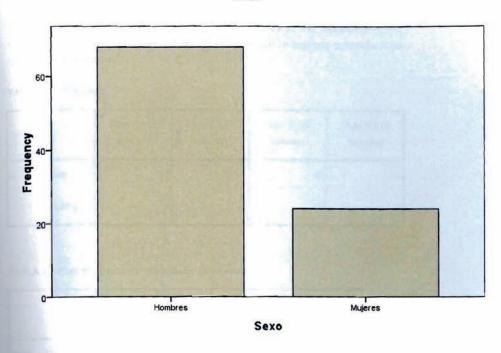
Trigliceridos



Hipertensión



Hipertensión



Tabaquismo

Categorizando en dos grupos a los distintos niveles de flujo de la siguiente forma se agruparon como flujo normal (sin alteración en flujo, TIMI3) y flujo anormal (flujo lento, TIMI3 y oclusión total o TIMI 0) de tal modo que se tiene flujo normal y anormal, se observa que la mayoría de los pacientes presentan flujo anormal para las arterias DA, CX y CD, con porcentajes de 69.6%, 63% y 82.6%, respectivamente. En el caso de la arteria TCI ocurre lo opuesto, ya que la mayoría presenta flujo normal (72.8%) (Tablas 2)

TABLA 2.1 .- Statistics

		Flujo DA (2 valores)	Flujo CX (2 valores)	Flujo CD (2 valores)	Flujo TCI (2 valores)
N	Valid	92	92	92	92
	Missing	0	0	0	0

TABLA 2.2 Flujo DA Descendente anterior (2 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	28	30.4	30.4	30.4
	Anormal	64	69.6	69.6	100.0
	Total	92	100.0	100.0	

TABLA 2.3Flujo CX (2 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	34	37.0	37.0	37.0
	Anormal	58	63.0	63.0	100.0

TABLA 2.3Flujo CX (2 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	34	37.0	37.0	37.0
	Anormal	58	63.0	63.0	100.0
	Total	92	100.0	100.0	

TABLA 2.4 Flujo CD (2 valores)

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	16	17.4	17.4	17.4
	Anormal	76	82.6	82.6	100.0
	Total	92	100.0	100.0	

TABLA 2.5 Flujo TCI (2 valores)

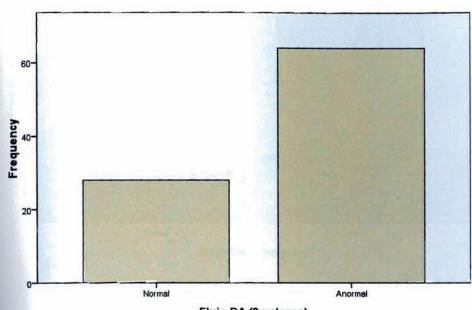
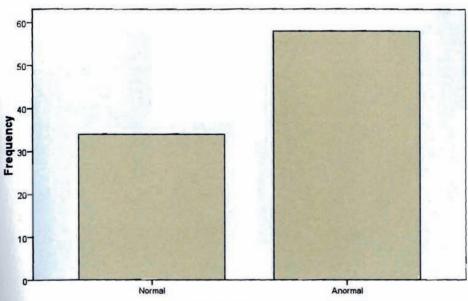
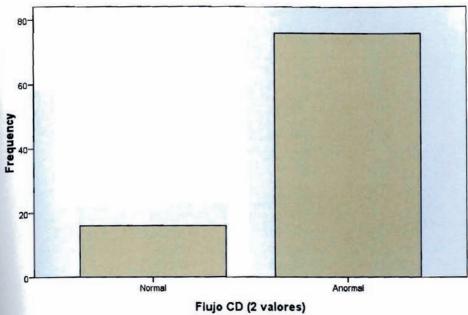

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	67	72.8	72.8	72.8
	Anormal	25	27.2	27.2	100.0

TABLA 2.5 Flujo TCI (2 valores)

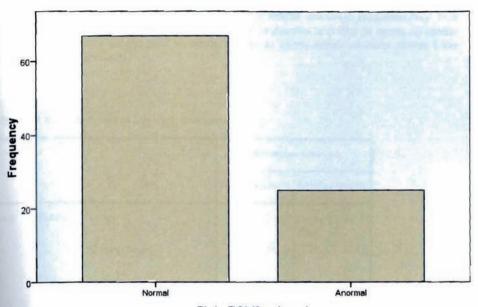

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Normal	67	72.8	72.8	72.8
	Anormal	25	27.2	27.2	100.0
	Total	92	100.0	100.0	

GRAFICA DE BARRAS.-

Flujo DA (2 valores)



Flujo CX (2 valores)



Flujo CX (2 valores)

Flujo CD (2 valores)

Flujo TCI (2 valores)

En la tabla de sexo contra el tipo de enfermedad se observa que estadísticamente no hay asociación entre estas variables. Los hombres tienen similar proporción de infarto al miocardio y angina inestable y las mujeres mayor proporción de esta última. La falta de fuerte asociación estadística se comprueba al no rechazar la hipótesis nula de que hay independencia entre las variables usando el estadístico Ji cuadrado, que tiene un p-value superior a 0.05 (el nivel de significancia elegido). Los estadísticos Phi y V de Cramer indican una cierta asociación muy baja entre los variables (al ser números cercanos a cero). Si se examina la gráfica de barras agrupadas se reafirma lo anterior porque para los hombres algunas barras tienen similares alturas (Ver tablas y gráficas de barras 3)

TABLA 3.1 Sexo * Enfermedad Coronaria Crosstabulation

			Enfermeda	d Coronaria
			Infarto miocardio	Angina inestable
Sexo	Hombres	Count	31	32
		% within Sexo	45.6%	47.1%
		% within Enfermedad Coronaria	81.6%	66.7%
	Mujeres	Count	7	16
		% within Sexo	29.2%	66.7%
		% within Enfermedad Coronaria	18.4%	33.3%
	Total	Count	38	48
		% within Sexo	41.3%	52.2%
		% within Enfermedad Coronaria	100.0%	100.0%

TABLA 3.1 Sexo * Enfermedad Coronaria Crosstabulation

			Enfermedad Coronaria	
			Angina crónica estable	Total
Sexo	Hombres	Count	5	68
12.		% within Sexo	7.4%	100.0%
		% within Enfermedad Coronaria	83.3%	73.9%
	Mujeres	Count	1	24
nijo:		% within Sexo	4.2%	100.0%
		% within Enfermedad Coronaria	16.7%	26.1%
	Total	Count	6	92
		% within Sexo	6.5%	100.0%
		% within Enfermedad Coronaria	100.0%	100.0%

TABLA 3.2. Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	2.741ª	2	.254
Likelihood Ratio	2.791	2	.248
Linear-by-Linear Association	.860	1	.354
N of Valid Cases	92		

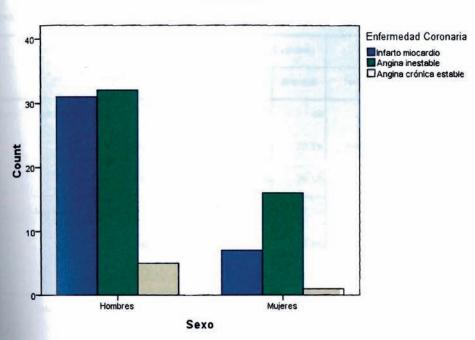

Los análisis estadísticos se realizaron para saber si están asociadas las variables sexo y enfermedad.

TABLA 3.3 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.173	.254
	Cramer's V	173	.254
	N of Valid Cases	92	

GRAFICA DE BARRAS 3.0

En las tablas de sexo contra los flujos (normal y anormal) se tienen los siguientes resultados:

Para el flujo DA se tiene que no hay asociación fuerte entre las variables, la prueba Ji cuadrado y la prueba exacta de Fisher tienen p-values superiores a 0.05, indicando que no se rechaza la hipótesis nula de independencia. Como ambas variables, sexo y flujo DA, son binarias, el estadístico Phi es equivalente al coeficiente de correlación de Pearson, el estadístico Phi toma un valor de -0.145, lo cual indica una asociación negativa débil entre las variables, es decir que al pasar de la categoría hombre(categoría 1) a la categoría mujer (categoría 2) se cambia de flujo anormal (categoría 2) a normal (categoría 1), en otras palabras, las mujeres tienden a tener flujo normal comparado con los hombres. Esto se comprueba con la gráfica de barras agrupadas. Sin embargo, los estadísticos no son significativos. (Ver tablas y gráfica de barras 4)

TABLA 4.1Sexo * Flujo DA descendente anterior (2 valores)

			Flujo DA (2	2 valores)	
			Normal	Anormal	Total
Sexo	Hombres	Count	18	50	68
		% within Sexo	26.5%	73.5%	100.0%
		% within Flujo DA (2 valores)	64.3%	78.1%	73.9%
	Mujeres	Count	10	14	24
		% within Sexo	41.7%	58.3%	100.0%
		% within Flujo DA (2 valores)	35.7%	21.9%	26.1%
	Total	Count	28	64	92
		% within Sexo	30.4%	69.6%	100.0%
		% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA4.2 Prueba de Chi-cuadrada

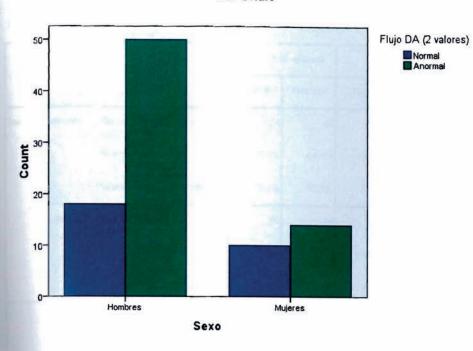

	Value	Df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.935ª	1	.164		
Continuity Correction ^b	1.284	1	.257		
Likelihood Ratio	1.870	1	.171		
Fisher's Exact Test				.200	.129
Linear-by-Linear Association	1.914	1	.167		
N of Valid Cases	92				

TABLA 4.4Symmetric Measures

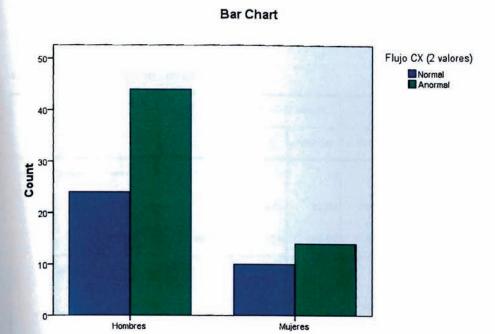
		Value	Approx. Sig.
Nominal by Nominal	Phi	145	.164
	Cramer's V	145	.164
	N of Valid Cases	92	

GRAFICA DE BARRAS 4.0

Para el flujo CX circunfleja se tienen resultados similares, no se rechaza la hipótesis nula de independencia debido a que el p-value supera el nivel de significancia de 0.05 elegido y también el estadístico Phi es negativo, aunque más cercano a cero (-0.058) así que de acuerdo a este índice la asociación entre el flujo CX y sexo no es fuerte. Los estadísticos no son significativos (Ver tablas y gráfica de barras 5)

TABLA 5.1Sexo * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2	valores)	
			Normal	Anormal	Total
ехо	Hombres	Count	24	44	68
		% within Sexo	35.3%	64.7%	100.0%
		% within Flujo CX (2 valores)	70.6%	75.9%	73.9%
	Mujeres	Count	10	14	24
		% within Sexo	41.7%	58.3%	100.0%
		% within Flujo CX (2 valores)	29.4%	24.1%	26.1%
	Total	Count	34	58	92
		% within Sexo	37.0%	63.0%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%


TABLA 5.2 Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.309ª	1	.578		
Continuity Correction ^b	.096	1	.756		
Likelihood Ratio	.306	1	.580		
Fisher's Exact Test				.627	.375
Linear-by-Linear Association	.306	1	.580		
N of Valid Cases	92				

TABLA 5.3 Symmetric Measures

16		Value	Approx. Sig.
Nominal by Nominal	Phi	058	.578
	Cramer's V	.058	.578
	N of Valid Cases	92	

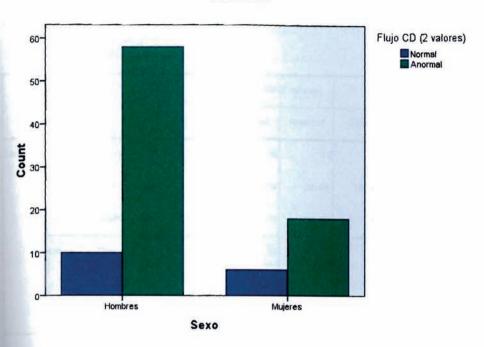
GRAFICA DE BARRAS 5.0

Sexo

Para el flujo CD coronaria derecha análogamente no se rechaza la hipótesis nula de independencia, pues los p-values son superiores a 0.05, así que las variables no están asociadas, de acuerdo al estadístico Phi el valor de la asociación es de -0.119, así que nuevamente las mujeres tienden a tener valores normales. Los estadísticos no son significativos. (Ver tablas 6 y gráfica de barras 6.0)

TABLA 6.1Sexo * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2	2 valores)	
			Normal	Anormal	Total
Sexo	Hombres	Count	10	58	68
		% within Sexo	14.7%	85.3%	100.0%
B.		% within Flujo CD (2 valores)	62.5%	76.3%	73.9%
	Mujeres	Count	6	18	24
		% within Sexo	25.0%	75.0%	100.0%
		% within Flujo CD (2 valores)	37.5%	23.7%	26.1%
	Total	Count	16	76	92
		% within Sexo	17.4%	82.6%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%


TABLA 6.2Prueba de Chi-cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	1.308 ^a	1	.253		
Continuity Correction ^b	.690	1	.406		
Likelihood Ratio	1.233	ĩ	.267		
Fisher's Exact Test				.347	.200
Linear-by-Linear Association	1.294	1	.255		
N of Valid Cases	92				

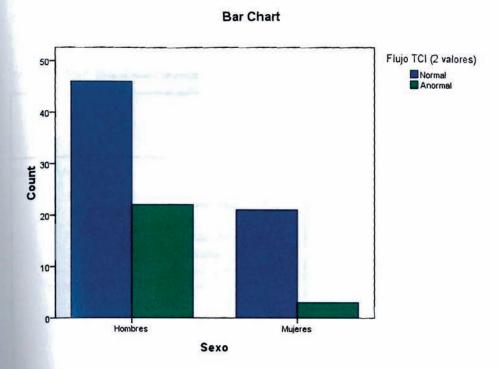
TABLA 6.3 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	119	.253
	Cramer's V	119	.253
	N of Valid Cases	92	

Para el flujo TCI tronco de coronaria izquierda sí hay una asociación significativa, usando un nivel de significancia de 0.1, los p-values quedan por abajo en las pruebas basadas en el estadístico Ji cuadrado. Similarmente el estadístico Phi y V de Cramer son significativos a ese nivel, el primero toma un valor de -0.196, así que de manera más significativa podemos decir que las mujeres tienden a tener el flujo TCI más normal que los hombres. (Ver tablas 7 y grafica de barras 7.0)

TABLA 7.1Sexo * Flujo TCI (2 valores) Crosstabulation

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
Sexo	Hombres	Count	46	22	68
		% within Sexo	67.6%	32.4%	100.0%
		% within Flujo TCI (2 valores)	68.7%	88.0%	73.9%
	Mujeres	Count	21	3	24
		% within Sexo	87.5%	12.5%	100.0%
		% within Flujo TCI (2 valores)	31.3%	12.0%	26.1%
ger L	Total	Count	67	25	92
		% within Sexo	72.8%	27.2%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%


TABLA 7.2Chi-Cuadrada prueba

	Value	Df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	3.533°	1	.060		
Continuity Correction ^b	2.601	1	107		
Likelihood Ratio	3.939	1	.047		
Fisher's Exact Test				.068	.049
Linear-by-Linear Association	3.495	1	.062		
N of Valid Cases	92				

Los análisis anteriores demuestran que hay asociación entre sexo y flujo.

TABLA 7.3Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	196	.060
	Cramer's V	.196	.060
	N of Valid Cases	92	

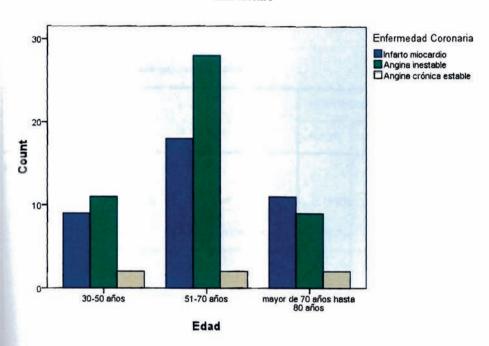
Al analizar la tabla de edad contra el tipo de enfermedad, vemos que los que están en el grupo de edad de 51 a 70 años tienden a tener más angina inestable, las variables no están asociadas, ya que de acuerdo a la prueba Ji cuadrado asociada, el p-value es superior a 0.05 así que no rechazo independencia entre las variables. La asociación débil se comprueba con los estadísticos Phi y V que miden asociación (Ver tablas y gráfica de barras 8)

TABLA 8.1 Edad * Enfermedad Coronaria Crosstabulation

			Enfermeda	d Coronaria
			Infarto miocardio	Angina inestable
Edad	30-50 años	Count	9	11
		% within Edad	40.9%	50.0%
		% within Enfermedad Coronaria	23.7%	22.9%
	51-70 años	Count	18	28
		% within Edad	37.5%	58.3%
		% within Enfermedad Coronaria	47.4%	58.3%
	mayor de 70 años hasta 80 años	Count	11	9
	anos	% within Edad	50.0%	40.9%
		% within Enfermedad Coronaria	28.9%	18.8%
	Total	Count	38	48
		% within Edad	41.3%	52.2%
		% within Enfermedad Coronaria	100.0%	100.0%

TABLA 8.1Edad * Enfermedad Coronaria Crosstabulation

		Enfermedad Coronaria	
		Angina crónica estable	Total
30-50 años	Count	2	22
	% within Edad	9.1%	100.0%
	% within Enfermedad Coronaria	33.3%	23.9%
51-70 años	Count	2	48
	% within Edad	4.2%	100.0%
	% within Enfermedad Coronaria	33.3%	52.2%
mayor de 70 años hasta 80	Count	2	22
años	% within Edad	9.1%	100.0%
	% within Enfermedad Coronaria	33.3%	23.9%
Total	Count	6	92
	% within Edad	6.5%	100.0%
	% within Enfermedad Coronaria	100.0%	100.0%


TABLA 8.2 Prueba Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	2.329ª	4	.675
Likelihood Ratio	2.351	4	.671
Linear-by-Linear Association	.252	1	.616
N of Valid Cases	92		

TABLA 8.3Symmetric Measures

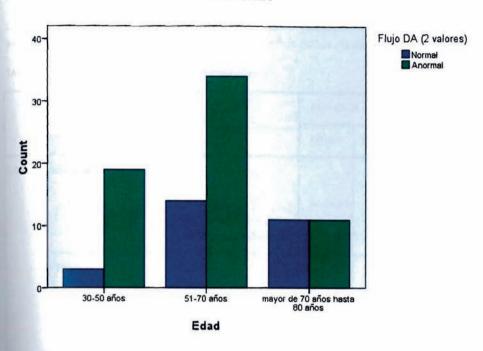
		Value	Approx. Sig.
Nominal by Nominal	Phi	159	.675
	Cramer's V	.113	.675
	N of Valid Cases	92	

Existe una asociación significativa entre la edad y el flujo DA descendente anterior, todas las pruebas basadas en el estadístico Ji cuadrado tienen p-values inferiores a 0.05, así que se rechaza la hipótesis nula de independencia, de acuerdo a los estadísticos Phi y V de Cramer la asociación es significativa con valores de 0.275, de acuerdo a la gráfica y tabla asociada, se observa que con la edad hay menos proporción de casos con flujo DA anormal. (Ver tabla y gráfica de barras 9)

TABLA 9.1 Edad * Flujo DA (2 valores) Crosstabulation

		Flujo DA (2	2 valores)	
		Normal	Anormal	Total
30-50 años	Count	3	19	22
	% within Edad	13.6%	86.4%	100.0%
	% within Flujo DA (2 valores)	10.7%	29.7%	23.9%
51-70 años	Count	14	34	48
	% within Edad	29.2%	70.8%	100.0%
	% within Flujo DA (2 valores)	50.0%	53.1%	52.2%
mayor de 70 años hasta 80	Count	11	11	22
años	% within Edad	50.0%	50.0%	100.0%
	% within Flujo DA (2 valores)	39.3%	17.2%	23.9%
Total	Count	28	64	92
	% within Edad	30.4%	69.6%	100.0%
	% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA 9.2 Prueba de Chi-Cuadrada


	Value	af	Asymp. Sig. (2- sided)
Pearson Chi-Square	6.946°	2	.031
Likelihood Ratio	7.095	2	.029
Linear-by-Linear Association	6.795	1	.009
N of Valid Cases	92		

Los análisis anteriores concluye que sí está asociada la edad con el flujo.

TABLA 9.3 Symmetric Measures

The second		Value	Approx. Sig.
Nominal by Nominal	Phi	.275	.031
	Cramer's V	.275	.031
	N of Valid Cases	92	

Con el flujo CX circunfleja hay resultados similares, pero usando un nivel de significancia de 0.1, así que no es tan fuerte la asociación.

Con los flujos CD coronaria derecha y TCl ya no se rechaza la independencia entre las variables, aún usando un nivel de 0.1, así que con estas medidas de flujo no hay asociación con la edad.

TABLA 10.1 Edad * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2 valores)	
			Normal	Anormal	Total
Edad	30-50 años	Count	4	18	22
		% within Edad	18.2%	81.8%	100.0%
		% within Flujo CX (2 valores)	11.8%	31.0%	23.9%
	51-70 años	Count	19	29	48
		% within Edad	39.6%	60.4%	100.0%
		% within Flujo CX (2 valores)	55.9%	50.0%	52.2%
	mayor de 70 años hasta 80	Count	11	11	22
	años	% within Edad	50.0%	50.0%	100.0%
		% within Flujo CX (2 valores)	32.4%	19.0%	23.9%
	Total	Count	34	58	92
		% within Edad	37.0%	63.0%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%

TABLA 10.2 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	5.077*	2	.079
Likelihood Ratio	5.401	2	.067
Linear-by-Linear Association	4.728	1	.030
N of Valid Cases	92		

TABLA 10.3Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.235	.079
	Cramer's V	.235	.079
	N of Valid Cases	92	

Bar Chart

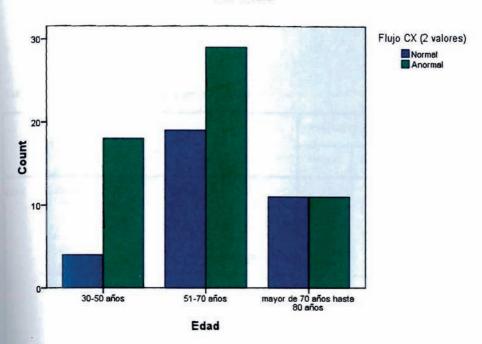


TABLA 10.4Edad * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2 valores)	
			Normal	Anormal	Total
Edad	30-50 años	Count	1	21	22
		% within Edad	4.5%	95.5%	100.0%
		% within Flujo CD (2 valores)	6.3%	27.6%	23.9%
	51-70 años	Count	9	39	48
		% within Edad	18.8%	81.3%	100.0%
		% within Flujo CD (2 valores)	56.3%	51.3%	52.2%
	mayor de 70 años hasta 80	Count	6	16	22
	años	% within Edad	27.3%	72.7%	100.0%
		% within Flujo CD (2 valores)	37.5%	21.1%	23.9%
	Total	Count	16	76	92
		% within Edad	17.4%	82.6%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%

TABLA 10.5.- Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	4.084°	2	130
Likelihood Ratio	4.770	2	.092
Linear-by-Linear Association	3.912	1	.048
N of Valid Cases	92		

El análisis estadístico entre las variables anteriores es no significativo.

TABLA 10.6Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.211	130
	Cramer's V	.211	.130
	N of Valid Cases	92	

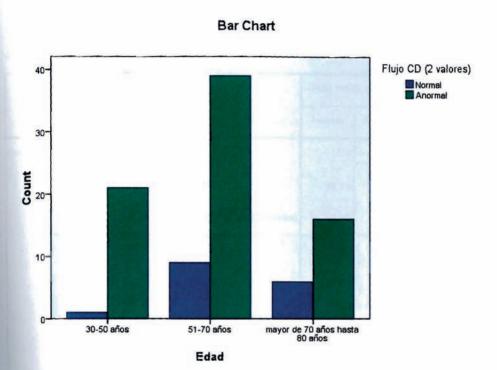
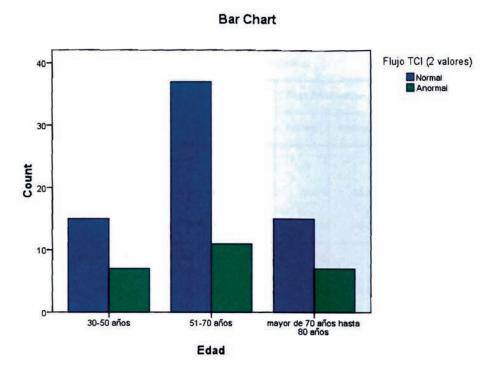


TABLA 10.7Edad * Flujo TCI (2 valores) Crosstabulation

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
Edad	30-50 años	Count	15	7	22
		% within Edad	68.2%	31.8%	100.0%
		% within Flujo TCI (2 valores)	22.4%	28.0%	23.9%
	51-70 años	Count	37	11	48
		% within Edad	77.1%	22.9%	100.0%
		% within Flujo TCI (2 valores)	55.2%	44.0%	52.2%
	mayor de 70 años hasta 80	Count	15	7	22
	años	% within Edad	68.2%	31.8%	100.0%
		% within Flujo TCI (2 valores)	22.4%	28.0%	23.9%
	Total	Count	67	25	92
		% within Edad	72.8%	27.2%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%


TABLA 10.8 Prueba Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	.919ª	2	.632
Likelihood Ratio	.920	2	.631
Linear-by-Linear Association	.000	1	1.000
N of Valid Cases	92		

Por el análisis estadístico previo la edad no afecta el flujo de TCI.

TABLA 10.9 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	100	.632
	Cramer's V	.100	.632
	N of Valid Cases	92	

Se realizan los siguientes análisis estadísticos para comprobar si hay asociación entre Trigliceridos (TG), Glucosa, HDL e hipertensión (TA) con los distintos flujos.

No hay asociación significativa entre los triglicéridos categorizados en dos grupos y el flujo, en todos los casos los p-values son superiores a 0.05 o inclusive a 0.1. (Ver tablas 11y gráfica de barras 11).

TABLA 11.1 Trigliceridos * Flujo DA (2 valores) Crosstabulation

			Flujo DA (2	2 valores)	
			Normal	Anormal	Total
Trigliceridos	Menor a 150	Count	13	29	42
		% within Trigliceridos	31.0%	69.0%	100.0%
		% within Flujo DA (2 valores)	46.4%	45.3%	45.7%
	Mayor a 150	Count	15	35	50
		% within Trigliceridos	30.0%	70.0%	100.0%
		% within Flujo DA (2 valores)	53.6%	54.7%	54.3%
	Total	Count	28	64	92
		% within Trigliceridos	30.4%	69.6%	100.0%
		% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA 11.2 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.010ª	1	.921		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.010	1	.921		
Fisher's Exact Test				1.000	.550
Linear-by-Linear Association	.010	1	.922		
N of Valid Cases	92		1		

TABLA 11.3 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.010	.921
	Cramer's V	.010	.921
	N of Valid Cases	92	

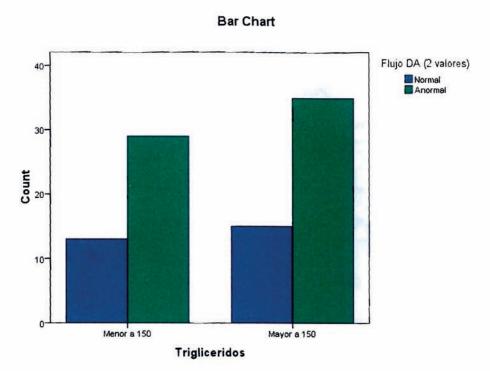


TABLA 11.4 Trigliceridos * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2	2 valores)	
			Normal	Anormal	Total
Trigliceridos	Menor a 150	Count	16	26	42
	% within Trigliceridos	38.1%	61.9%	100.0%	
		% within Flujo CX (2 valores)	47.1%	44.8%	45.7%
	Mayor a 150	Count	18	32	50
	% within Trigliceridos	36.0%	64.0%	100.0%	
		% within Flujo CX (2 valores)	52.9%	55.2%	54.3%
	Total	Count	34	58	92
		% within Trigliceridos	37.0%	63.0%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%

TABLA 11.5 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.043°	1	.836		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.043	1	.836		
Fisher's Exact Test				1.000	.503
Linear-by-Linear Association	.043	1	.837		
N of Valid Cases	92				

TABLA 11.6 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.022	.836
	Cramer's V	.022	.836
	N of Valid Cases	92	

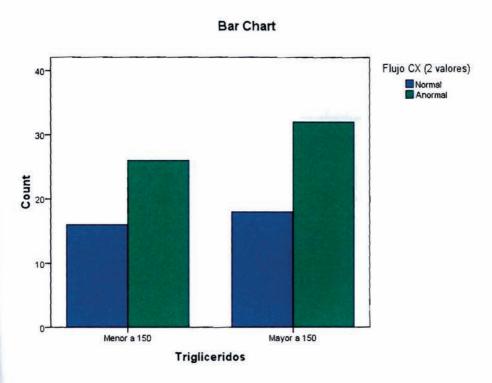


TABLA 11.7 Trigliceridos * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2	2 valores)	
			Normal	Anormal	Total
Trigliceridos	Menor a 150	Count	9	33	42
		% within Trigliceridos	21.4%	78.6%	100.0%
		% within Flujo CD (2 valores)	56.3%	43.4%	45.7%
	Mayor a 150	Count	7	43	50
		% within Trigliceridos	14.0%	86.0%	100.0%
		% within Flujo CD (2 valores)	43.8%	56.6%	54.3%
	Total	Count	16	76	92
		% within Trigliceridos	17.4%	82.6%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%

TABLA 11.8 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.877ª	1	.349		
Continuity Correction ^b	.436	1	.509		
Likelihood Ratio	.874	1	.350		
Fisher's Exact Test				.414	.254
Linear-by-Linear Association	.867	1	.352		
N of Valid Cases	92		1		

TABLA 11.9 Symmetric Measures

6		Value	Approx. Sig.
Nominal by Nominal	Phi	.098	.349
	Cramer's V	.098	.349
	N of Valid Cases	92	

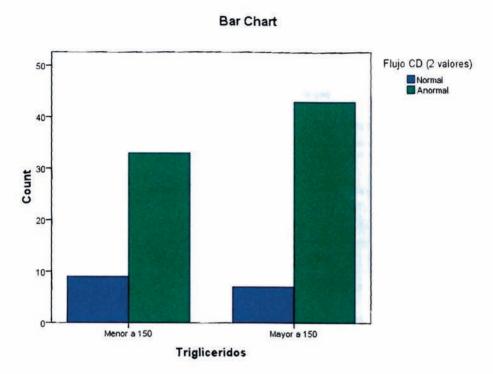


TABLA 11.10 Trigliceridos * Flujo TCI (2 valores) Crosstabulation

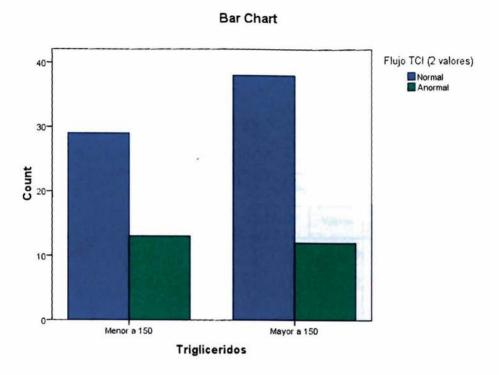

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
Trigliceridos	Menor a 150	Count	29	13	42
Mayor a		% within Trigliceridos	69.0%	31.0%	100.0%
		% within Flujo TCI (2 valores)	43.3%	52.0%	45.7%
	Mayor a 150	Count	38	12	50
		% within Trigliceridos	76.0%	24.0%	100.0%
		% within Flujo TCI (2 valores)	56.7%	48.0%	54.3%
	Total	Count	67	25	92
		% within Trigliceridos	72.8%	27.2%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%

TABLA 11.11 Prueba Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.558°	1	.455		
Continuity Correction ^b	.262	1	.609		
Likelihood Ratio	.556	1	.456		
Fisher's Exact Test				.488	.304
Linear-by-Linear Association	.551	1	.458		
N of Valid Cases	92				

TABLA 11.12 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	078	.455
	Cramer's V	.078	.455
	N of Valid Cases	92	

Hay asociación significativa a un nivel de significancia de 0.1 entre la glucosa y el flujo DA, vemos que al crecer el nivel de glucosa, la proporción de normales y anormales se va acercando. Con el flujo CX hay una asociación mucho más fuerte, con un estadístico Phi y Cramer de 0.409 y con p-values para estos y para las pruebas ji cuadrada mucho menores a 0.05, nuevamente a medida que crece el nivel de glucosa, crece la proporción de individuos con flujo normal respecto al anormal. Similares resultados se tienen con el flujo CD. Con el flujo TCI no ocurre lo anterior, no hay asociación significativa. (Ver tablas y gráfica de barras 12)

TABLA 12.0 Glucosa * Flujo DA (2 valores) Crosstabulation

			Flujo DA (2	2 valores)	
			Normal	Anormal	Total
Glucosa	60-126	Count	6	29	35
		% within Glucosa	17.1%	82.9%	100.0%
		% within Flujo DA (2 valores)	21.4%	45.3%	38.0%
	127-200	Count	16	29	45
		% within Glucosa	35.6%	64.4%	100.0%
		% within Flujo DA (2 valores)	57.1%	45.3%	48.9%
	Mayor a 200	Count	6	6	12
		% within Glucosa	50.0%	50.0%	100.0%
		% within Flujo DA (2 valores)	21.4%	9.4%	13.0%
	Total	Count	28	64	92
		% within Glucosa	30.4%	69.6%	100.0%
		% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA 12.1 Prueba Chi-cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	5.648ª	2	.059
Likelihood Ratio	5.789	2	.055
Linear-by-Linear Association	5.550	1	.018
N of Valid Cases	92		

TABLA 12.3 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.248	.059
	Cramer's V	.248	.059
	N of Valid Cases	92	

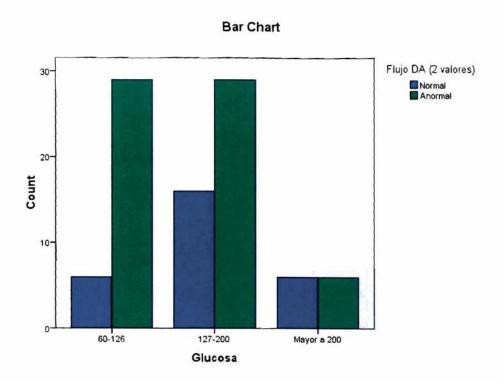


TABLA 12.4 Glucosa * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2	2 valores)	
			Normal	Anormal	Total
Glucosa	60-126	Count	7	28	35
		% within Glucosa	20.0%	80.0%	100.0%
		% within Flujo CX (2 valores)	20.6%	48.3%	38.0%
	127-200	Count	17 28		45
		% within Glucosa	37.8%	62.2%	100.0%
		% within Flujo CX (2 valores)	50.0%	48.3%	48.9%
	Mayor a 200	Count	10	2	12
		% within Glucosa	83.3%	16.7%	100.0%
		% within Flujo CX (2 valores)	29.4%	3.4%	13.0%
	Total	Count	34	58	92
		% within Glucosa	37.0%	63.0%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%

TABLA 12.5 Prueba de Chi-cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	15.410ª	2	.002
Likelihood Ratio	15.697	2	.001
Linear-by-Linear Association	13.611	1	.003
N of Valid Cases	92	7	

TABLA 12.6Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.409	.003
	Cramer's V	.409	.002
	N of Valid Cases	92	

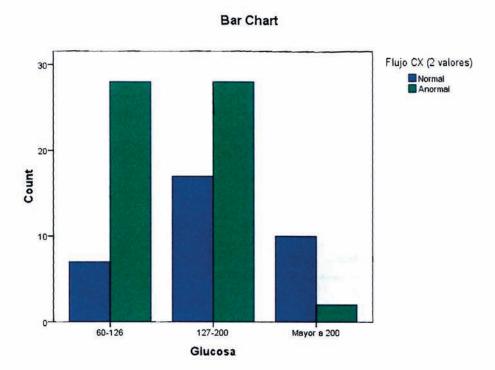


TABLA 12.7 Glucosa * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2 valores)	
			Normal	Anormal	Total
Glucosa	60-126	Count	3	32	35
		% within Glucosa	8.6%	91.4%	100.0%
		% within Flujo CD (2 valores)	18.8%	42.1%	38.0%
	127-200	Count	8	37	45
		% within Glucosa	17.8%	82.2%	100.0%
		% within Flujo CD (2 valores)	50.0%	48.7%	48.9%
	Mayor a 200	Count	5	7	12
		% within Glucosa	41.7%	58.3%	100.0%
		% within Flujo CD (2 valores)	31.3%	9.2%	13.0%
	Total	Count	16	76	92
		% within Glucosa	17.4%	82.6%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%

TABLA 12.8Prueba de Chi-cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	6.822ª	2	.033
Likelihood Ratio	6.118	2	.047
Linear-by-Linear Association	6.009	1	.014
N of Valid Cases	92		

TABLA 12.9Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.272	.033
	Cramer's V	.272	.033
	N of Valid Cases	92	

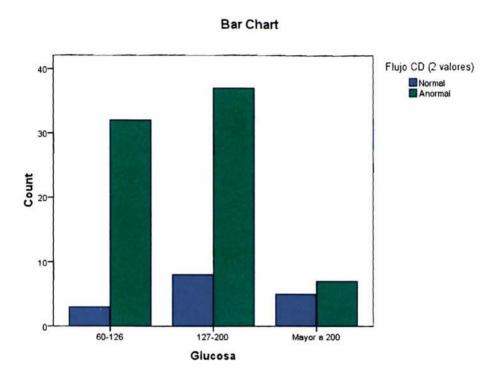


TABLA 12.10 Glucosa * Flujo TCI (2 valores) Crosstabulation

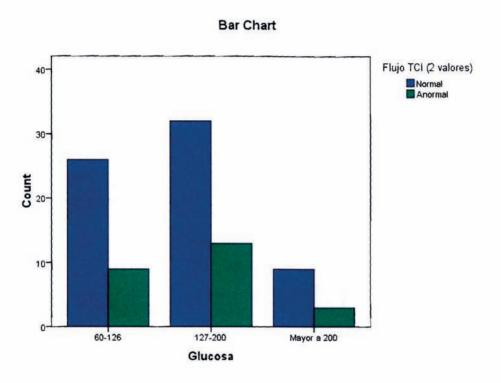

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
Glucosa	60-126	Count	26	9	35
		% within Glucosa	74.3%	25.7%	100.0%
		% within Flujo TCI (2 valores)	38.8%	36.0%	38.0%
	127-200	Count 32 13		13	45
		% within Glucosa	71.1%	28.9%	100.0%
		% within Flujo TCI (2 valores)	47.8%	52.0%	48.9%
	Mayor a 200	Count	9	3	12
		% within Glucosa	75.0%	25.0%	100.0%
		% within Flujo TCI (2 valores)	13.4%	12.0%	13.0%
	Total	Count	67	25	92
		% within Glucosa	72.8%	27.2%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%

TABLA 12.11 Prueba de Chi- cuadrada

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	.133ª	2	.936
Likelihood Ratio	.133	2	.936
Linear-by-Linear Association	.008	-1	.931
N of Valid Cases	92		

TABLA 12.12Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.038	.936
	Cramer's V	.038	.936
	N of Valid Cases	92	

Las tablas de HDL con los distintos flujos no indican asociaciones significativas entre las variables en ningún caso.

TABLA 13.0 HDL * Flujo DA (2 valores) Crosstabulation

			Flujo DA (2	2 valores)	
			Normal	Anormal	Total
HDL	Menor a 40	Count	18	46	64
		% within HDL	28.1%	71.9%	100.0%
		% within Flujo DA (2 valores)	66.7%	73.0%	71.1%
	Mayor a 40	Count	9	17	26
		% within HDL	34.6%	65.4%	100.0%
		% within Flujo DA (2 valores)	33.3%	27.0%	28.9%
	Total	Count	27	63	90
		% within HDL	30.0%	70.0%	100.0%
		% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA 13.1 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.371°	1	.543		
Continuity Correction ^b	126	1	.722		
Likelihood Ratio	.365	1	.546		
Fisher's Exact Test				.615	.357
Linear-by-Linear Association	.367	1	.545		
N of Valid Cases	90				

TABLA 13.2 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	064	.543
	Cramer's V	.064	.543
	N of Valid Cases	90	

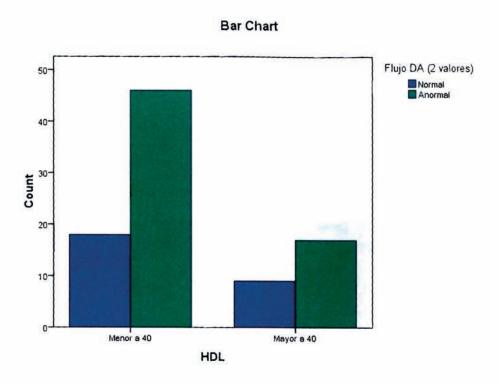


TABLA 13.3 HDL * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2	2 valores)	
			Normal	Anormal	Total
HDL	Menor a 40	Count	24	40	64
		% within HDL	37.5%	62.5%	100.0%
		% within Flujo CX (2 valores)	72.7%	70.2%	71.1%
	Mayor a 40	Count	9	17	26
		% within HDL	34.6%	65.4%	100.0%
		% within Flujo CX (2 valores)	27.3%	29.8%	28.9%
	Total	Count	33	57	90
		% within HDL	36.7%	63.3%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%

TABLA 13.4 Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.066ª	-1	.797		
Continuity Correction ^b	.000	1	.987		
Likelihood Ratio	.067	1	.796		
Fisher's Exact Test				1.000	.497
Linear-by-Linear Association	.066	1	.798		
N of Valid Cases	90				

TABLA 13.5 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.027	.797
	Cramer's V	.027	.797
	N of Valid Cases	90	

GRAFICA DE BARRAS 13.1

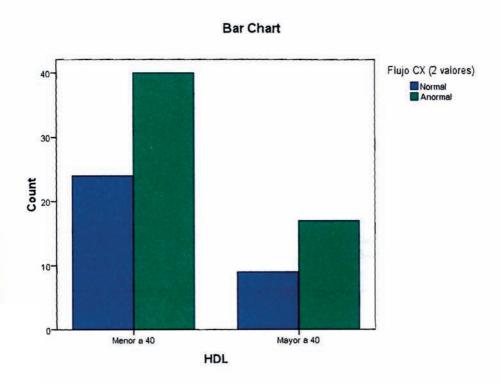


TABLA 13.6 HDL * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2	2 valores)	
			Normal	Anormal	Total
-	Menor a 40	Count	11	53	64
		% within HDL	17.2%	82.8%	100.0%
		% within Flujo CD (2 valores)	73.3%	70.7%	71.1%
	Mayor a 40	Count	4	22	26
		% within HDL	15.4%	84.6%	100.0%
		% within Flujo CD (2 valores)	26.7%	29.3%	28.9%
	Total	Count	15	75	90
		% within HDL	16.7%	83.3%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%

TABLA 13.7 Prueba de Chi-Cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.043ª	1	.835		
Continuity Correction ^b	.000	1	.800		
Likelihood Ratio	.044	1	.834		
Fisher's Exact Test				1.000	.553
Linear-by-Linear Association	.043	1	.836		

N of Valid Cases	90		1

TABLA 13.8 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.022	.835
	Cramer's V	.022	.835
	N of Valid Cases	90	

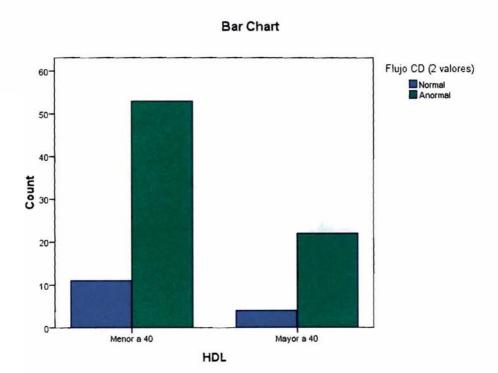


TABLA 13.9.- HDL * Flujo TCI (2 valores) Crosstabulation

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
HDL	Menor a 40	Count	48	16	64
		% within HDL	75.0%	25.0%	100.0%
		% within Flujo TCI (2 valores)	73.8%	64.0%	71.1%
Mayor a 40	Mayor a 40	Count	17	9	26
		% within HDL	65.4%	34.6%	100.0%
		% within Flujo TCI (2 valores)	26.2%	36.0%	28.9%
	Total	Count	65	25	90
		% within HDL	72.2%	27.8%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%

TABLA 13.10 Prueba Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.852°	1	.356		
Continuity Correction ^b	.440	1	.507		
Likelihood Ratio	.831	1	.362		
Fisher's Exact Test				.438	.25

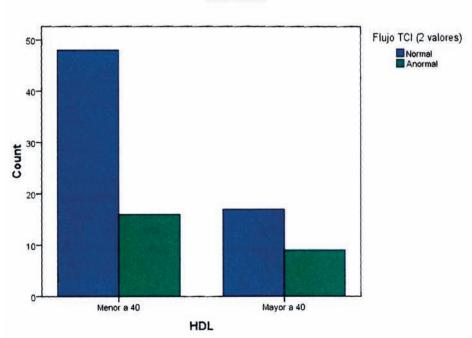

Linear-by-Linear Association	.843	1	.359	1	1
N of Valid Cases	90				

TABLA 13.11 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.097	.356
	Cramer's V	.097	.356
	N of Valid Cases	90	

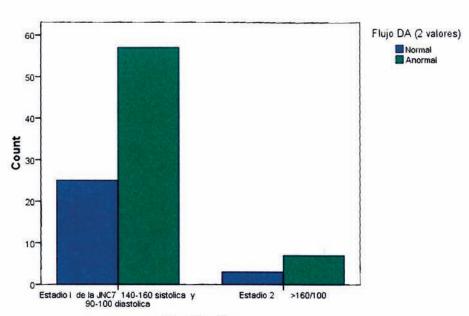
GRAFICA DE BARRAS 13.2

Las tablas de hipertensión (TA) con cada uno de los flujos tampoco indica asociaciones significativas.

TABLA 14.0 Hipertensión * Flujo DA (2 valores) Crosstabulation

			Flujo DA (2	2 valores)	
			Normal	Anormal	Total
Hipertensión	Estadio I de la JNC7 140- 160 sistolica y 90-100	Count	25	57	82
	diastolica	% within Hipertensión	30.5%	69.5%	100.0%
		% within Flujo DA (2 valores)	89.3%	89.1%	89.1%
	Estadio 2 >160/100	Count	3	7	10
		% within Hipertensión	30.0%	70.0%	100.0%
		% within Flujo DA (2 valores)	10.7%	10.9%	10.9%
	Total	Count	28	64	92
		% within Hipertensión	30.4%	69.6%	100.0%
		% within Flujo DA (2 valores)	100.0%	100.0%	100.0%

TABLA 14.1 Prueba de Chi-Cuadrada


	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.001*	1	.975		
Continuity Correction ^b	.000	1	1.000		
Likelihood Ratio	.001	1	.975		

Fisher's Exact Test	1		1	1.000	.642
Linear-by-Linear Association	.001	1	.975		
N of Valid Cases	92				

TABLA 14.2 Symmetric Measures

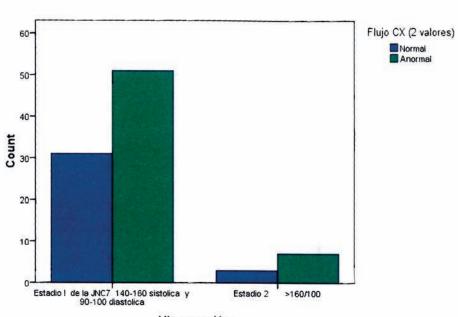
		Value	Approx. Sig.
Nominal by Nominal	Phi	.003	.975
	Cramer's V	.003	.975
	N of Valid Cases	92	

Bar Chart

Hipertensión

TABLA 14.3 Hipertensión * Flujo CX (2 valores) Crosstabulation

			Flujo CX (2 valores)	
			Normal	Anormal	Total
Hipertensión	Estadio I de la JNC7 140- 160 sistolica y 90-100	Count	31	51	82
diastolica Estadio 2 >160/100	% within Hipertensión	37.8%	62.2%	100.0%	
	% within Flujo CX (2 valores)	91.2%	87.9%	89.1%	
	Estadio 2 >160/100	Count	3	7	10
		% within Hipertensión	30.0%	70.0%	100.0%
		% within Flujo CX (2 valores)	8.8%	12.1%	10.9%
	Total	Count	34	58	92
		% within Hipertensión	37.0%	63.0%	100.0%
		% within Flujo CX (2 valores)	100.0%	100.0%	100.0%


TABLA 14.4 Prueba de Chi-cuadrada

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.233ª	1	.629		
Continuity Correction ^b	.018	1	.892		
Likelihood Ratio	.239	1	.625		
Fisher's Exact Test				.740	.456
Linear-by-Linear Association	.231	1	.631		
N of Valid Cases	92				

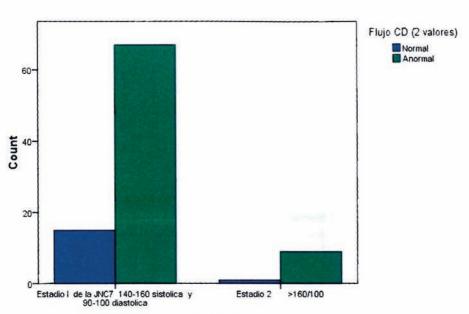
TABLA 14.5 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.050	.629
	Cramer's V	.050	.629
	N of Valid Cases	92	

Hipertensión

TABLA 14.6 Hipertensión * Flujo CD (2 valores) Crosstabulation

			Flujo CD (2 valores)	
			Normal	Anormal	Total
Hipertensión	Estadio I de la JNC7 140- 160 sistolica y 90-100	Count	15	67	82
diastolica Estadio 2 >160/100	% within Hipertensión	18.3%	81.7%	100.0%	
		% within Flujo CD (2 valores)	93.8%	88.2%	89.1%
	Estadio 2 >160/100	Count	1	9	10
		% within Hipertensión	10.0%	90.0%	100.0%
		% within Flujo CD (2 valores)	6.3%	11.8%	10.9%
	Total	Count	16	76	92
		% within Hipertensión	17.4%	82.6%	100.0%
		% within Flujo CD (2 valores)	100.0%	100.0%	100.0%


TABLA 14.7 Prueba de Chi-cuadrado

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.427 ^a	1	.514		
Continuity Correction ^b	.045	1	.833		
Likelihood Ratio	.481	1	.488		
Fisher's Exact Test				1.000	.449
Linear-by-Linear Association	.422	1	.516		
N of Valid Cases	92				

TABLA 14.8 Symmetric Measures

à		Value	Approx. Sig.
Nominal by Nominal	Phi	.068	.514
	Cramer's V	.068	.514
	N of Valid Cases	92	

Hipertensión

TABLA 14.10 Hipertensión * Flujo TCI (2 valores) Crosstabulation

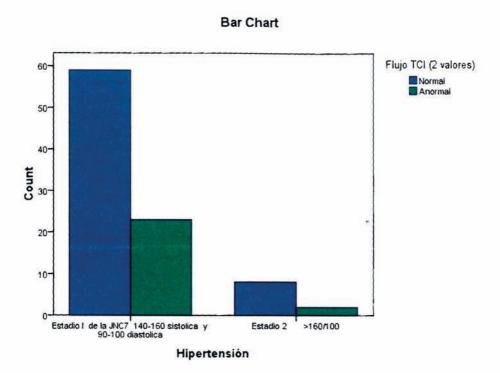

			Flujo TCI (2 valores)	
			Normal	Anormal	Total
Hipertensión	Estadio I de la JNC7 140- 160 sistolica y 90-100	Count	59	23	82
diastolica Estadio 2 >160/100	% within Hipertensión	72.0%	28.0%	100.0%	
		% within Flujo TCI (2 valores)	88.1%	92.0%	89.1%
	Estadio 2 >160/100	Count	8	2	10
		% within Hipertensión	80.0%	20.0%	100.0%
		% within Flujo TCI (2 valores)	11.9%	8.0%	10.9%
	Total	Count	67	25	92
		% within Hipertensión	72.8%	27.2%	100.0%
		% within Flujo TCI (2 valores)	100.0%	100.0%	100.0%

TABLA 14.11Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.292 ⁸	1	.589		
Continuity Correction ^b	.027	1	.870		
Likelihood Ratio	.309	1	.579		
Fisher's Exact Test				.723	.454
Linear-by-Linear Association	.289	1	.591		
N of Valid Cases	92				

TABLA 14.12 Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	056	.589
	Cramer's V	.056	.589
	N of Valid Cases	92	

Viendo a glucosa, triglicéridos y HDL como variables continuas, se tiene un valor medio de 148 con un error estándar de 6.43 para el primero, 162.68 con un error estándar de 6.73 para el segundo y 41.06 con un error estándar de 0.92 para el último. Los triglicéridos tienen el rango de valor más amplio, con un valor de 344, así mismo es la variable con una mayor desviación estándar, 64.61 unidades.

Para ver si entre los distintos grupos de edad se tienen en promedio los mismos valores de glucosa, triglicéridos y HDL se hacen las ANOVAS de un factor correspondientes. De acuerdo al estadístico F asociado a estas ANOVAS y al p-value asociado, el cual sirve para probar la hipótesis nula de que la media de las variables es la misma en los tres grupos de edad contra la alternativa de que no lo son, se observa que para glucosa y triglicéridos no se rechaza la hipótesis nula, mientras que para HDL sí se rechaza. Esto se logra al comparar el p-value con el nivel de significancia elegido (en este caso 0.05) y viendo que en los primeros dos casos el p-value estaba por arriba del nivel de significancia. Esto quiere decir que en promedio los valores de glucosa y triglicéridos son similares en los tres grupos de edad, pero en el caso de HDL son significativamente distintos.

Al ser distintos los valores promedios de HDL en los distintos grupos de edad nos fijamos en las comparaciones múltiples correspondientes para ver entre cuáles edades hay diferencias significativas. Resulta que una diferencia significativa ocurre entre el grupo entre 30 y 50 años con respecto al grupo de los de 70 a 80 años, a favor de este último, es decir el grupo de mayores de 70 a 80 años presenta mayores valores de HDL. Similarmente hay diferencia significativa entre el grupo de 51 a 70 años con respecto al último grupo, así que en promedio el último grupo presenta mayores niveles de HDL.

Como a continuación se ejemplifica:

ANOVA

		Sum of Squares	df	Mean Square
Glucosa continua	Between Groups	10285.205	2	5142.602
	Within Groups	336220.752	89	3777.761
	Total	346505.957	91	
Trigliceridos continua	Between Groups	2793.198	2	1396.599
	Within Groups	377134.661	89	4237.468

	Total	379927.859	91	
HDL continuo	Between Groups	704.092	2	352.046
	Within Groups	6527.443	89	73.342
	Total	7231.535	91	

ANOVA

4.004	
1.361	.262
.330	.720
4.800	.010

13 Multiple Comparisons

Dependent Variable		(I) Edad	(J) Edad	Mean Difference (I-J)
Glucosa continua	Tukey HSD	30-50 años	51-70 años	-8.64583
			mayor de 70 años hasta 80 años	-29.31818
		51-70 años	30-50 años	8.64583
			mayor de 70 años hasta 80 años	-20.67235

		mayor de 70 años hasta 80 años	30-50 años	29.31818
			51-70 años	20.67235
	Tamhane	30-50 años	51-70 años	-8.64583
			mayor de 70 años hasta 80 años	-29.31818
		51-70 años	30-50 años	8.64583
			mayor de 70 años hasta 80 años	-20.67235
		mayor de 70 años hasta 80 años	30-50 años	29.31818
		arios	51-70 años	20.67235
Trigliceridos continua	Tukey HSD	30-50 años	51-70 años	.53220
			mayor de 70 años hasta 80 años	13.27273
		51-70 años	30-50 años	53220
 Ta			mayor de 70 años hasta 80 años	12.74053
		mayor de 70 años hasta 80	30-50 años	-13.27273
		años	51-70 años	-12.74053
	Tamhane	30-50 años	51-70 años	.53220
			mayor de 70 años hasta 80 años	13.27273
		51-70 años	30-50 años	53220
			mayor de 70 años hasta 80 años	12.74053

		mayor de 70 años hasta 80 años	30-50 años	-13.27273
			51-70 años	-12.74053
HDL continuo	Tukey HSD	30-50 años	51-70 años	77083
			mayor de 70 años hasta 80 años	-6.97273
		51-70 años	30-50 años	.77083
			mayor de 70 años hasta 80 años	-6.20189 ⁻
		mayor de 70 años hasta 80 años	30-50 años	6.97273
		alius	51-70 años	6.20189
	Tamhane	30-50 años	51-70 años	77083
			mayor de 70 años hasta 80 años	-6.97273
		51-70 años	30-50 años	.77083
			mayor de 70 años hasta 80 años	-6.20189
		mayor de 70 años hasta 80	30-50 años	6.97273
		años	51-70 años	6.20189

Entre pares de grupos de edad cuando hay diferencia del promedio.

Multiple Comparisons

Dependent Variable		(I) Edad	(J) Edad	Std. Error	Sig.
Glucosa continua	Tukey HSD	30-50 años	51-70 años	15.82466	.849
			mayor de 70 años hasta 80 años	18.53194	.259
		51-70 años	30-50 años	15.82466	.849
			mayor de 70 años hasta 80 años	15.82466	.395
		mayor de 70 años hasta 80 años	30-50 años	18.53194	.259
		oo anos	51-70 años	15.82466	.395
	Tamhane	30-50 años	51-70 años	14.78981	.916
			mayor de 70 años hasta 80 años	19.79160	.378
		51-70 años	30-50 años	14.78981	.916
			mayor de 70 años hasta 80 años	17.62395	.577
		mayor de 70 años hasta 80 años	30-50 años	19.79160	.378
		oo anos	51-70 años	17.62395	.577
Trigliceridos continua	Tukey HSD	30-50 años	51-70 años	16.75986	.999
			mayor de 70 años hasta 80 años	19.62713	.778
		51-70 años	30-50 años	16.75986	.999

			mayor de 70 años hasta 80 años	16.75986	.728
		mayor de 70 años hasta 80 años	30-50 años	19.62713	.778
			51-70 años	16.75986	.728
	Tamhane	30-50 años	51-70 años	16.69277	1.000
			mayor de 70 años hasta 80 años	18.14069	.850
		51-70 años	30-50 años	16.69277	1.000
			mayor de 70 años hasta 80 años	15.81109	.809
		mayor de 70 años hasta	30-50 años	18.14069	.850
		80 años	51-70 años	15.81109	.809
HDL continuo	Tukey HSD	30-50 años	51-70 años	2.20492	.935
			mayor de 70 años hasta 80 años	2.58214	.022
		51-70 años	30-50 años	2.20492	.935
			mayor de 70 años hasta 80 años	2.20492	.016
		mayor de 70 años hasta 80 años	30-50 años	2.58214	.022
			51-70 años	2.20492	.016
	Tamhane	30-50 años	51-70 años	1.65762	.955
			mayor de 70 años hasta 80 años	2.93912	.071
		51-70 años	30-50 años	1.65762	.955

	mayor de 70 años hasta 80 años	2.85296	.111
mayor de 70 años hasta 80 años	30-50 años	2.93912	.071
	51-70 años	2.85296	.111

Multiple Comparisons

				95% Confidence Interval
Dependent Variable		(I) Edad	(J) Edad	Lower Bound
Glucosa continua	Tukey HSD	30-50 años	51-70 años	-46.3647
			mayor de 70 años hasta 80 años	-73.4900
		51-70 años	30-50 años	-29.0730
			mayor de 70 años hasta 80 años	-58.3912
		mayor de 70 años hasta 80 años	30-50 años	-14.8536
			51-70 años	-17.0465
	Tamhane	30-50 años	51-70 años	-45.4664
			mayor de 70 años hasta 80 años	-78.6463
		51-70 años	30-50 años	-28.1747
			mayor de 70 años hasta 80 años	-64.9661

		mayor de 70 años hasta 80 años	30-50 años	-20.0099
			51-70 años	-23.6214
Trigliceridos continua	Tukey HSD	30-50 años	51-70 años	-39.4158
			mayor de 70 años hasta 80 años	-33.5095
		51-70 años	30-50 años	-40.4802
			mayor de 70 años hasta 80 años	-27.2074
		mayor de 70 años hasta 80 años	30-50 años	-60.0550
		arios	51-70 años	-52.6885
	Tamhane	30-50 años	51-70 años	-40.8729
			mayor de 70 años hasta 80 años	-31.8521
		51-70 años	30-50 años	-41.9373
			mayor de 70 años hasta 80 años	-26.3579
		mayor de 70 años hasta 80 años	30-50 años	-58.3975
		anos	51-70 años	-51.8389
HDL continuo	Tukey HSD	30-50 años	51-70 años	-6.0264
			mayor de 70 años hasta 80 años	-13.1274
		51-70 años	30-50 años	-4.4847
			mayor de 70 años hasta 80 años	-11.4574

	mayor de 70 años hasta 80 años	30-50 años	.8181
		51-70 años	.9463
Tamhane	30-50 años	51-70 años	-4.8671
		mayor de 70 años hasta 80 años	-14.4010
	51-70 años	30-50 años	-3.3254
		mayor de 70 años hasta 80 años	-13.4467
	mayor de 70 años hasta 80 años	30-50 años	-,4555
		51-70 años	-1.0429

Multiple Comparisons

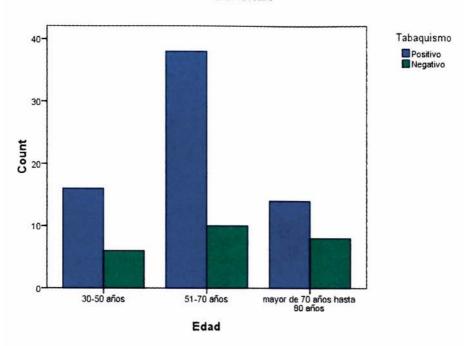
				95% Confidence Interval
Dependent Variable		(I) Edad	(J) Edad	Upper Bound
Glucosa continua T	Tukey HSD	30-50 años	51-70 años	29.0730
			mayor de 70 años hasta 80 años	14.8536
		51-70 años	30-50 años	46.3647
			mayor de 70 años hasta 80 años	17.0465
		mayor de 70 años hasta 80	30-50 años	73.4900

		años	51-70 años	58.3912
	Tamhane	30-50 años	51-70 años	28.1747
			mayor de 70 años hasta 80 años	20.0099
		51-70 años	30-50 años	45.4664
			mayor de 70 años hasta 80 años	23.6214
		mayor de 70 años hasta 80 años	30-50 años	78.6463
			51-70 años	64.9661
Trigliceridos continua	Tukey HSD	30-50 años	51-70 años	40.4802
			mayor de 70 años hasta 80 años	60.0550
		51-70 años	30-50 años	39.4158
			mayor de 70 años hasta 80 años	52.6885
		mayor de 70 años hasta 80	30-50 años	33.5095
		años	51-70 años	27.2074
	Tamhane	30-50 años	51-70 años	41.9373
			mayor de 70 años hasta 80 años	58.3975
		51-70 años	30-50 años	40.8729
			mayor de 70 años hasta 80 años	51.8389
		mayor de 70 años hasta 80	30-50 años	31.8521

		años	51-70 años	26.3579
HDL continuo	Tukey HSD	30-50 años	51-70 años	4.4847
			mayor de 70 años hasta 80 años	8181
		51-70 años	30-50 años	6.0264
			mayor de 70 años hasta 80 años	9463
		mayor de 70 años hasta 80 años	30-50 años	13.1274
			51-70 años	11.4574
	Tamhane	30-50 años	51-70 años	3.3254
			mayor de 70 años hasta 80 años	.4555
		51-70 años	30-50 años	4.8671
			mayor de 70 años hasta 80 años	1.0429
		mayor de 70 años hasta 80 años	30-50 años	14.4010
		anos	51-70 años	13.4467

Para ver si hay asociación entre el tabaquismo y la hipertensión arterial en los distintos grupos de edad, se harán pruebas Ji cuadrado y se obtendrán los estadísticos Phi y V de Cramer correspondientes, además de las tablas de contingencia asociadas. De acuerdo a las pruebas de hipótesis basadas en la Ji cuadrada se rechaza significativamente que haya asociación entre la edad y el tabaquismo, así mismo los coeficientes de asociación correspondientes son muy cercanos a cero, lo cual indicaría independencia entre las variables, y no son significativos. Las proporciones se mantienen similares entre los grupos de edades. Algo similar ocurre con hipertensión arterial y los grupos de edad.

			Tabaq	uismo	
			Positivo	Negativo	Total
Edad	30-50 años	Count	16	6	22
		% within Edad	72.7%	27.3%	100.0%
	% within Tabaquismo	23.5%	25.0%	23.9%	
	51-70 años	Count	38	10	48
		% within Edad	79.2%	20.8%	100.0%
		% within Tabaquismo	55.9%	41.7%	52.2%
mayor de 7	mayor de 70 años hasta 80	Count	14	8	22
	años	% within Edad	63.6%	36.4%	100.0%
		% within Tabaquismo	20.6%	33.3%	23.9%
	Total	Count	68	24	92
		% within Edad	73.9%	26.1%	100.0%
		% within Tabaquismo	100.0%	100.0%	100.0%


Chi-Square Tests

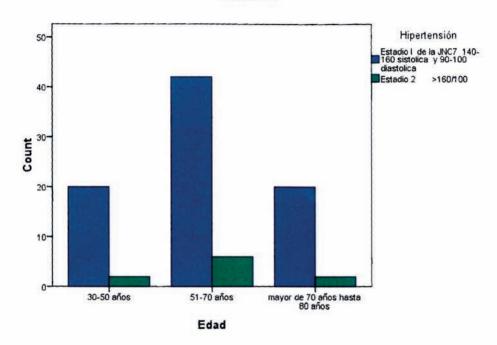
	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	1.908°	2	.385
Likelihood Ratio	1.859	2	.395
Linear-by-Linear Association	.466	1	.495
N of Valid Cases	92		

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.144	.385
	Cramer's V	144	.385
	N of Valid Cases	92	

Edad * Hipertensión

			Hiperter	nsión	
			Estadio I de la JNC7 140-160 sistolica y 90- 100 diastolica	Estadio 2 >160/100	Total
Edad	30-50 años	Count	20	2	22
		% within Edad	90.9%	9.1%	100.0%
		% within Hipertension	24.4%	20.0%	23.9%
	51-70 años	Count	42	6	48
		% within Edad	87.5%	12.5%	100.0%
		% within Hipertensión	51.2%	60.0%	52.2%
	mayor de 70 años hasta 80	Count	20	2	22
	años	% within Edad	90.9%	9.1%	100.0%
		% within Hipertensión	24.4%	20.0%	23.9%
	Total	Count	82	10	92
		% within Edad	89.1%	10.9%	100.0%
		% within Hipertension	100.0%	100.0%	100.0%


Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	.275ª	2	.871
Likelihood Ratio	.278	2	.870
Linear-by-Linear Association	.000	1	1.000
N of Valid Cases	92		

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.055	.871
	Cramer's V	.055	.871
	N of Valid Cases	92	

Para ver si los valores de las variables continuas (glucosa, triglicéridos y HDL) son similares entre los tres distintos tipos de enfermedad, se llevan a cabo nuevamente ANOVAS. De acuerdo a las pruebas basadas en el estadístico F, en todos los casos se obtienen p-values por arriba del nivel de significancia de 0.05, así que no se rechaza la hipótesis nula de que el promedio de glucosa, triglicéridos y HDL es similar en los tres grupos, es decir no hay diferencia entre los valores de estas variables en las tres distintas enfermedades.

Si entre las distintas enfermedades el promedio es el mismo de la glucosa, triglicéridos y HDL.

Descriptives

		N	Mean	Std. Deviation	Std. Error
Glucosa continua	Infarto miocardio	38	151.5526	69.76086	11.31671
	Angina inestable	48	145.6458	57.48579	8.29736
	Angina crónica estable	6	144.6667	45.41659	18.54125
	Total	92	148.0217	61.70703	6.43340
Trigliceridos continua	Infarto miocardio	38	167.4474	77.96766	12.64803
	Angina inestable	48	158.0000	55.54450	8.01716
	Angina crónica estable	6	170.0000	39.41066	16.08933
	Total	92	162.6848	64.61448	6.73653
HDL continuo	Infarto miocardio	38	41.0711	10.61959	1.72272
	Angina inestable	48	41.5208	7.71566	1.11366
	Angina crónica estable	6	37.4500	5.87324	2.39774
	Total	92	41.0696	8.91445	.92940

Descriptives

95% Confidence Interval for Mean	

		Lower Bound	Upper Bound	Minimum	Maximum
Glucosa continua	Infarto miocardio	128.6228	174.4825	78.00	383.00
	Angina inestable	128.9537	162.3380	76.00	310.00
	Angina crónica estable	97.0049	192.3285	83.00	190.00
	Total	135.2426	160.8009	76.00	383.00
Trigliceridos continua	Infarto miocardio	141.8200	193.0747	2.00	346.00
	Angina inestable	141.8716	174.1284	2.00	299.00
	Angina crónica estable	128.6411	211.3589	105.00	210.00
	Total	149.3035	176.0661	2.00	346.00
HDL continuo	Infarto miocardio	37.5805	44.5616	30.00	85.20
	Angina inestable	39.2804	43.7612	30.00	56.00
	Angina crónica estable	31.2864	43.6136	30.00	48.00
	Total	39.2234	42.9157	30.00	85.20

ANOVA

		Sum of Squares	df	Mean Square
Glucosa continua	Between Groups	812.249	2	406.125
	Within Groups	345693.707	89	3884.199
	Total	346505.957	91	
Trigliceridos continua	Between Groups	2236.464	2	1118.232
	Within Groups	377691.395	89	4243.724

	Total	379927.859	91	
HDL continuo	Between Groups	88.382	2	44.191
	Within Groups	7143.152	89	80.260
	Total	7231.535	91	

ANOVA

		F	Sig.
Glucosa continua	Between Groups	.105	.901
Trigliceridos continua	Between Groups	.264	.769
HDL continuo	Between Groups	.551	.579

Primero se utiliza una regresión con variable respuesta el flujo DA categorizado en 5 valores, de tal forma que tiene un orden (la variable es ordinal), y va de lo peor que sería oclusión total (con valor 1) hasta lo mejor que sería sin alteración de flujo (con valor 5). Como variables explicativas se usan el tipo de enfermedad, la hipertensión arterial TA, la edad, el tabaquismo, el sexo, la glucosa, los triglicéridos y el HDL, estas tres últimas se toman como variables continuas.

Al ajustar la regresión, la única variable significativa a un nivel de 0.05 es el sexo, con un coeficiente estimado de -0.56 en la categoría de los hombres, que indicaría que para los hombres respecto a las mujeres la variable respuesta disminuye en 0.56 unidades, así que tienden más a los valores más pequeños relacionados con menor flujo. Si tomamos como variable respuesta a la variable binaria correspondiente a flujo DA: normal y anormal, entonces se trata de una regresión logística y se observa que los coeficientes significativos a un nivel de significancia de 0.1 son las variables correspondientes a glucosa, edad y sexo. En el primer caso se tiene un coeficiente estimado de -0.008, así que aumentar la glucosa disminuye ligeramente el riesgo de que el flujo sea anormal. En el grupo de edad inferior se tiene un coeficiente estimado positivo, cuyo exponencial es 6.897, así que tomando como referencia el grupo de edad último en este grupo hay 6.897 veces más riesgo de flujo anormal, en el grupo de edad de en medio el riesgo es de tan solo 2.48 veces. En el caso del sexo, se tiene que el coeficiente estimado para hombres es positivo y su

exponencial es 3.11, así que en los hombres hay 3.11 veces más riesgo que en las mujeres de tener un flujo anormal.

Se hacen regresiones similares, pero tomando como variable respuesta al flujo CX. Usando aquella variable para CX ordinal categorizada en 5, se tiene que la única variable significativa es la glucosa, con un coeficiente estimado de 0.004, lo cual indica que al aumentar la glucosa se incrementa muy ligeramente el puntaje para CX, así que se tiende a no tener alteración de flujo. Usando a la variable CX categorizada en dos y una regresión logística, se tiene que a un nivel de significancia de 0.1, las variables significativas son la glucosa y la edad, para la glucosa se tiene un coeficiente estimado de -0.016 que indicaría que al aumentar la glucosa disminuye ligeramente el riesgo de flujo CX anormal. En el primer grupo de edad se tiene un coeficiente estimado positivo de 0.052, con una exponencial de 5.11, así que en este grupo se tiene 5.11 veces más riesgo de flujo anormal que en el grupo de los más viejos

Parameter Estimates

			95% Wald Confidence Interval		
Parameter	В	Std. Error	Lower	Upper	
(Intercept)	4.817	.8710	3.110	6.524	
[EAC=1]	.103	.4171	715	.920	
[EAC=2]	.141	.4180	678	.961	
[EAC=3]	O*			82	
GLUC2	-1.043E-6	.0016	003	.003	
TG2	.000	.0015	003	.003	
[TA=1]	218	.3342	873	.437	
[TA=2]	0ª			(9	
[EDAD=1]	503	.3019	-1.095	.089	
[EDAD=2]	323	.2634	839	.194	
[EDAD=3]	0ª				
HDL2	018	.0124	042	.007	

[TAB=1.0]	327	.2330	783	130
[TAB=2.0]	0*		₹.	
[SEXO=1.0]	566	.2526	-1.061	071
[SEXO=2.0]	0ª			
(Scale)	.882 ^b	.1300	.660	1.177

Dependent Variable: Flujo DA (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2, TAB, SEXO

b. Maximum likelihood estimate. 1 quiere decir hombre cuando es hombre tiene peores características de flujo.

Parameter Estimates

	Hypothesis Test				
Parameter	Wald Chi-Square	df	Sig.		
(Intercept)	30.583	1	.000		
[EAC=1]	.061	1	.805		
[EAC=2]	.114	1	.735		
[EAC=3]		-			
GLUC2	.000	1	.999		
TG2	.027	1	.870		
[TA=1]	.424	1	.515		
[TA=2]	1.0				
[EDAD=1]	2.776	1	.096		

[EDAD=2]	1.500	1	.221
[EDAD=3]			
HDL2	2.025	1	155
[TAB=1.0]	1.967	1	.161
[TAB=2.0]		77.0	
[SEXO=1.0]	5.015	1	.025
[SEXO=2.0]			

Dependent Variable: Flujo DA (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2,

TAB, SEXO

Logistic Regression

Dependent Variable

Encoding

Original Value	Internal Value
Normal	0
Anormal	1

16 Categorical Variables Codings

		meter coding	
Frequency	(1)	(2)	

[EDAD=2]	1.500	1	.221
[EDAD=3]			,
HDL2	2.025	1	.155
[TAB=1.0]	1.967	1	161
[TAB=2.0]		7.	
[SEXO=1.0]	5.015	1	.025
[SEXO=2.0]			

Dependent Variable: Flujo DA (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2,

TAB, SEXO

Logistic Regression

Dependent Variable

Encoding

Original Value	Internal Value
Normal	0
Anormal	1

16 Categorical Variables Codings

	Parameter coding	
Frequency	(1)	(2)

Edad	30-50 años	22	1.000	.000
	51-70 años	48	.000	1.000
	mayor de 70 años hasta 80 años	22	.000	.000
Enfermedad Coronaria	Infarto miocardio	38	1.000	.000
	Angina inestable	48	.000	1.000
	Angina crónica estable	6	.000	.000
Tabaquismo	Positivo	68	1.000	
	Negativo	24	.000	
Hipertensión	Estadio I de la JNC7 140- 160 sistolica y 90-100 diastolica	82	1.000	
	Estadio 2 >160/100	10	.000	
Sexo	Hombres	68	1.000	
	Mujeres	24	.000	

16 Classification Table a,b

		Predicted	i
	Flujo DA (2 valores)	
Observed	Normal	Anormal	Percentage Correct
Step 0 Flujo DA (2 valores) Normal	0	28	,

Anormal	0	64	100.0
Overall Percentage			69.6

Variables in the Equation

	В	S.E.	Wald	df	Sig.	Exp(B)
Step 0 Constant	.827	.227	13.311	1	.000	2.286

Variables not in the Equation

			Score	df	Sig.
Step 0	Variables	EAC	.084	2	.959
		EAC(1)	.040	1	.841
		EAC(2)	.076	1	.782
		GLUC2	5.145	1	.023
		TG2	1.165	1	.280
		TA(1)	.001	1	.975
		EDAD	6.946	2	.031
		EDAD(1)	3.854	1	.050
		EDAD(2)	.076	1	.782

HDL2	109	1	.741
TAB(1)	.766	1	.382
SEXO(1)	1.935	1	164
Overall Statistics	15.894	10	103

Classification Table^a

			Flujo DA (2 valores)			
	Observed		Normal	Anormal	Percentage Correct	
Step 1	Flujo DA (2 valores)	Normal	10	18	35.7	
		Anormal	7	57	89.1	
		Overall Percentage			72.8	

a. The cut value is .500

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1ª	EAC			.179	2	.914	
	EAC(1)	.107	1.008	.011	1	.915	1.113
	EAC(2)	.306	1.007	.093	1	.761	1.358

GLUC2	008	.004	3.501	1	.061	.992
TG2	.005	.004	1.327	1	.249	1.005
TA(1)	156	.857	.033	1	.856	.856
EDAD			5.450	2	.066	
EDAD(1)	1.931	.833	5.378	1	.020	6.897
EDAD(2)	.908	.623	2.125	1	.145	2.480
HDL2	.051	.034	2.172	1	.141	1.052
TAB(1)	.251	.580	188	1	.665	1.286
SEXO(1)	1.135	.639	3.157	1	.076	3.112
Constant	-2.721	2.321	1.374	1	.241	.066

a. Variable(s) entered on step 1: EAC, GLUC2, TG2, TA, EDAD, HDL2, TAB, SEXO.

El sexo edad y glucosa son significativas.

Tomando como variable respuesta al flujo CD con la categorización en 5 niveles resulta una regresión en la cual ninguna variable explicativa es significativa. Al considerar la regresión logística con dos categorías en la variable respuesta: normal y anormal, se observa que la única variable explicativa significativamente distinta que cero es la glucosa, con un coeficiente estimado de - 0.013 y su respectivo exponencial de 0.987, que indicaría que al aumentar la glucosa disminuye ligeramente el riesgo de flujo anormal.

Finalmente, tomado como respuesta al flujo TCI considerándolo como una variable continua, se tiene que el sexo, el tipo de enfermedad coronaria y tal vez los triglicéridos usando un nivel de significancia de 0.12 son significativos. En el caso de sexo se tiene un coeficiente estimado para hombres de -0.55, que indicaría que en los hombres respecto a las mujeres hay una disminución del valor de la variable del flujo TCI, así que tienden más a valores pequeños que tienen que ver con menor flujo. En el caso de la enfermedad, se tiene que el coeficiente estimado significativo corresponde a la enfermedad categorizada como 2, enfermedad coronaria, y tiene un valor de -0971, lo cual indica que al tener esta enfermedad respecto a tener la enfermedad de referencia (en este caso la 3, angina crónica inestable) la variable que mide el flujo se hace más pequeña, o sea se tiende a flujo menor. Finalmente en los triglicéridos hay un valor estimado de 0.002, que

indicaría que al aumentar los triglicéridos ligeramente incrementa el puntaje del flujo hacia no tener alteración en el flujo. En la regresión logística correspondiente se obtienen resultados similares, nuevamente el tipo de enfermedad y el sexo son significativas e indican el mismo tipo de conclusiones.

Como se explica en las siguientes tablas.

Tests of Model Effects

	Type III					
Source	Wald Chi-Square	df	Sig.			
(Intercept)	42.572	1	.000			
EAC	8.043	2	.018			
GLUC2	.015	1	.903			
TG2	2.472	1	.116			
TA	.004	1	.948			
EDAD	1.816	2	.403			
HDL2	.022	1	.882			
ТАВ	.400	1	.527			
SEXO	4.977	1	.026			

Dependent Variable: Flujo TCI (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2.

TAB, SEXO

Parameter Estimates

			95% Wald Con	fidence Interval
Parameter	В	Std. Error	Lower	Upper
(Intercept)	5.060	.8575	3.379	6.740
[EAC=1]	529	.4106	-1.334	.276
[EAC=2]	971	.4115	-1.777	164
[EAC=3]	0°	24		
GLUC2	.000	.0016	003	.003
TG2	.002	.0015	.000	.005
[TA=1]	.022	.3290	623	.666
[TA=2]	0ª	G#		
[EDAD=1]	057	.2973	640	.525
[EDAD=2]	.236	.2593	273	.744
[EDAD=3]	0*	· ·	,	*
HDL2	.002	.0122	022	.026
[TAB=1.0]	145	.2294	595	.305
[TAB=2.0]	0°	129		÷
[SEXO=1.0]	555	.2487	-1.042	067
[SEXO=2.0]	0*	2.8		×
(Scale)	.855 ^b	.1260	.640	1.141

Dependent Variable: Flujo TCI (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2, TAB, SEXO

Categorical Variables Codings

Edad	30-50 años
	51-70 años
	mayor de 70 años hasta 80 años
Enfermedad Coronaria	Infarto miocardio
	Angina inestable
	Angina crónica estable
Tabaquismo	Positivo
	Negativo
Hipertensión	Estadio I de la JNC7 140-
	160 sistolica y 90-100
	diastolica
	Estadio 2 >160/100
Sexo	Hombres
	Mujeres

Classification Table a,b

Observed

	Hypoth	nesis Test	
Parameter	Wald Chi-Square	df	Sig.
(Intercept)	34.813	1	.000
[EAC=1]	1.658	1	198
[EAC=2]	5.565	1	.018
[EAC=3]	·		-
GLUC2	.015	1	.903
TG2	2.472	1	.116
[TA=1]	.004	1	.948
[TA=2]			
[EDAD=1]	.037	1	.847
[EDAD=2]	.825	1	.364
[EDAD=3]	s.		5 .
HDL2	.022	1	.882
[TAB=1.0]	.400	1	.527
[TAB=2.0]			
[SEXO=1.0]	4.977	1	.026
[SEXO=2.0]			

Dependent Variable: Flujo TCI (5 valores)

Model: (Intercept), EAC, GLUC2, TG2, TA, EDAD, HDL2, TAB, SEXO

Classification Table^a

			Flujo TCI (2 valores)	
	Observed		Normal	Anormal	Percentage Correct
Step 1	Flujo TCI (2 valores)	Normal	64	3	95.5
		Anormal	13	12	48.0
		Overall Percentage			82.6

Variables in the Equation

		В	S.E.	Wald	df	Sig.	Exp(B)
Step 1 ^a	EAC			8.660	2	.013	
	EAC(1)	19.822	15140.883	.000	1	.999	4.059E8
	EAC(2)	21.704	15140.883	.000	1	.999	2.666E9
	GLUC2	.001	.004	.023	1	.879	1.001
	TG2	009	.006	2.434	1	.119	.991
	TA(1)	703	1.037	.460	1	.498	.495
	EDAD			3.029	2	.220	
	EDAD(1)	246	.827	.088	1	.766	.782
	EDAD(2)	-1.150	.763	2.272	1	.132	.317
	HDL2	005	.033	.021	1	.886	.995

TAB(1)	.590	.658	.804	1	.370	1.804
SEXO(1)	1.937	.845	5.250	1	.022	6.937
Constant	-21.144	15140.883	.000	1	.999	.000

a. Variable(s) entered on step 1: EAC, GLUC2, TG2, TA, EDAD, HDL2, TAB, SEXO.

Cuando tienes angina inestable: El riesgo de que tu flujo se anormal aumenta 21.7 veces en vez de angina crónica estable.

VIII. DISCUSION.

Observamos que, los pacientes con hipertensión arterial, sin importar tiempo de evolución de la enfermedad a mayor nivel de insulina mayor glucemia en ayuno central y con esto mayor resistencia a la insulina y por deducción mayor daño endotelial.

Hay relación directa estadísticamente significativa entre alteración en flujo coronario y pacientes con síndrome metabólico, con aumento en frecuencia entre género masculino que femenino.

En los estudios de Wannamethee y San Antonio Heart Study se demostró q el score Framingham tiene más valor predictivo para enfermedad cardiovascular que el síndrome metabolico no así para predecir diabetes mellitus tipo 2 o ser un factor de riesgo como tal para este último (20)

Se debe proponer al momento de diagnostico de síndrome metabólico un tratamiento integral farmacológico y modificaciones al estilo de vida por la relación directa con enfermedad coronaria, y un estricto control de peso para cambiar las estrategias de salud y evitar complicaciones. (21)

Se ha documentado que aún las personas aparentemente sanas no cuentan con una adecuada información nutricional, teniendo que hasta un 50% de las mismas tiene dietas hipercalóricas asociándose esta hasta con un 60% de sedentarismo. Estas condiciones que conllevarán a corto o mediano plazo al deterioro de la glucemia postprandial con la subsecuente alteración en el metabolismo de los carbohidratos y diferentes complicaciones metabólicas (por ejemplo diabetes) y cardiovasculares (cardiopatía isquémica, hipertensión, etc.), son muy similares a lo encontrado por nosotros, donde se puede observar además como parte inicial de este proceso un alto índice de sobrepeso, el cual con los malos hábitos terminará en el desarrollo de obesidad y consecuentemente síndrome metabolico (22).

En un estudio colombiano se encontró que dentro del conjunto de factores que lo integran, la obesidad predominó en mujeres, así como, la disminución del HDL - C, mientras que en los hombres predominó la Hipertensión Arterial y la hipertrigliceridemia ³⁰, en otro estudio se encontró que las mujeres tenían mayores prevalencias de hipertensión y de dislipemia y que el número medio de componentes del Síndrome Metabólico fue superior en ellas ³¹. En un trabajo realizado por Schettini y colaboradores se encontró mayor prevalencia de hombres que de mujeres con tres, cuatro y cinco componentes del síndrome metabólico ³², así mismo, encuentran que el grupo de edad predominante en hombres con tres componentes del síndrome metabólico fue el de 70 a 79 años, mientras que la edad predominante entre los que tenían cuatro o cinco componentes fue la de 50 a 59 años, en las mujeres con tres componentes la edad de mayor prevalencia fue la 80 y más y en el grupo de edades de 70 a 79 años se encontraron el mayor número de mujeres con cuatro o cinco componentes. La autora de este trabajo también encuentra mayor prevalencia de casos severos de síndrome metabólico (cuatro o más componentes) en edades avanzadas. La prevalencia de síndrome metabólico aumenta con la edad y esto puede deberse a un efecto acumulativo de los factores etiológicos ³³.

La relación entre Síndrome Metabólico y severidad de las lesiones coronarias ha sido analizada por varios autores. Hurtado y Fernando coinciden con nosotros al encontrar que la mayoría de sus pacientes tenían lesiones severas ³⁴. Hitsumoto y colaboradores detectan incluso estadios

precoces de aterosclerosis coronaria mediante el uso de ultrasonido y la medición de la concentración de adiponectina ³⁵. Una de las conclusiones del estudio WISE es que el síndrome metabólico se relaciona con enfermedad coronaria angiográficamente significativa, así como con un riesgo doble de morbilidad cardiovascular ³⁶. En un estudio canadiense de pacientes con enfermedad coronaria se encontró que el 51% tenía un síndrome metabólico y que en este grupo la frecuencia de pacientes con estenosis mayor de un 50% y con score de estenosis coronaria acumulada fue alta ³⁷. El Síndrome Metabólico estuvo asociado significativamente con incremento de la extensión de la enfermedad coronaria (enfermedad de uno, dos o tres vasos) en un estudio realizado por Garin y colaboradores ³⁹. El Síndrome Metabólico definido de acuerdo a los criterios de la FID estuvo asociado con alto riesgo de enfermedad coronaria extensa en mujeres en un estudio realizado en Japón. ⁴⁰

Los autores encuentran una prevalencia muy elevada de Síndrome Metabólico en esta población con diagnóstico de Cardiopatía Isquémica, con predominio del sexo masculino y de edad avanzada que son otros dos factores que aumentan la prevalencia 41,42,43. En un estudio noruego se concluye que la prevalencia de síndrome metabólico se incrementa fuertemente con la edad ⁴⁴. Otro estudio realizado en Turquía también encuentra un aumento de la prevalencia con la edad, siendo mayor en el grupo de 60 a 69 años

Aunque existe controversia en cuanto al papel de la hiperglucemiaen el desarrollo de la enfermedad coronaria, el estudioDiabetes and Insulin-Glucose Infusion in AcuteMyocardial Infarction (DIGAMI)12 tras infarto de miocardioha demostrado que el buen control glucémico disminuye significativamente la mortalidad a largo plazo. En el campo de la prevención primaria, el estudio United Kingdom Prospective Diabetes Study (UKPDS)50 demostró que el buen control metabólico reducía en un 16% la incidencia de infarto de miocardio.

En otro reciente estudio se halló que, tras efectuar una angioplastia 55, el principal determinante de mal pronóstico a largo plazo era el mal control glucémico, y no necesariamente el tamaño del vaso.

IX. CONCLUSIONES.

En los pacientes con Cardiopatía Isquémica atendidos en el Instituto de Seguridad Social para los Trabajadores del Estado encontramos una elevada prevalencia del Síndrome Metabólico, el cual parece ser un factor predisponente para la Aterosclerosis Coronaria y para la severidad y extensión de la misma. Esta relación es mayor a medida que aumenta el número de componentes del síndrome.

En conclusión, el estudio muestra un porcentaje considerable de pacientes con sobrepeso, inactividad física, obesidad abdominal, y síndrome metabólico. Estos resultados sugieren la conveniencia de investigar la presencia de factores de riesgo determinantes para enfermedad cardiovascular (ECV) en pacientes con síndrome metabólico, ya que esta última constituye la principal causa de mortalidad en el paciente diabético y debido a que recientemente ha quedado demostrada la eficacia a largo plazo de una intervención multifactorial.

Es lógico pensar que mientras más severo sea el síndrome metabólico mayor será la extensión y severidad de las lesiones coronarias, en tal sentido Yavuz y colaboradores encuentran que a medida que la severidad del Síndrome Metabólico se incrementa la severidad de la enfermedad arterial coronaria aumenta también ²⁴, esto también es planteado por otros autores ^{25, 26}. Recientemente, en un estudio basado en datos de la tercera encuesta de salud llevada a cabo en Estados Unidos se demuestra que la adición de criterios se relaciona con la severidad de lesiones angiográficas en las arterias coronarias y sus complicaciones clínicas ²⁷. Otros autores coinciden con estos planteamientos ²⁸.

Una de las conclusiones del estudio de cohorte DESIR es que el score de Síndrome Metabólico estuvo fuertemente y linealmente asociado con el riesgo de incidencia de diabetes, enfermedad coronaria y cardiovascular ²⁹.

En este análisis la presencia de flujo TIMI 2/3 en la arteria responsable del infarto previa ,con lleva mejores resultados angiográficos y menor incidencia de eventos adversos, en un estudio realizado en el Instituto de cardiología comparando flujo TIMI0,1, con flujo TIMI 2,3.

En el análisis multivariado sexo (p 0.001), tabaco (p 0.006), dislipidemia (p 0.011) y edad recodificada (p 0.026) se comportaron como factor de riesgo independiente para enfermedad coronaria, mientras que el índice de masa corporal mostró una (p 0.545), el cual no es estadísticamente signifi cativo como factor de riesgo independiente para enfermedad coronaria.

El síndrome metabólico identifica a individuos con riesgo elevado de cursas con enfermedad cardiovascular o diabetes mellitus tipo 2, aún no se ha evidenciado q el contribuir a terapia mulitfactorial y tratamiento médico (hipolipemiantes) tengan una efectividad en particular al riesgo cardiovascular , sin embargo su diagnóstico oportuno si representa una disminución en la posibilidad de presentar futuras complicaciones.

Los componentes del síndrome metabólico muestran una afectación lineal asociados a un incremento en el riesgo de enfermedad cardiovascular.

En el resultado de algunos estudios como PREMIER Clinical trial y DASH se concluye q el tratamiento intensivo y modificaciones al estilo de vida influyen menos para enfermedad cardiovascular en pacientes con síndrome metabolico que sin la presencia del mismo. (18)

Finalmente McNeill et al encontraron q se incluye al síndrome metabolico como una variable adicional en función predictiva a enfermedad cardiovascular relativamente más alta en comparación con Framingham. (17)

X.BIBLIOGRAFIA.

- 1. Zimmet P, Alberti G, Phil D. The Metabolic Syndrome: Perhaps an Etiologic Mystery but Far From a Myth -- Where Does the International Diabetes Federation Stand? Medscape Diabetes & Endocrinology, 2005; 7 (2).
- 2. Mathieu P, Pibarot P, Després JP. Metabolic syndrome: the danger signal in atherosclerosis. Vascular Health and Risk Management. 2006; 2 (3): 285 302.
- Wilson PWF. Estimating cardiovascular disease risk and the metabolic syndrome; a Framingham view. Endocrinol Metab Clin N Am. 2004; 33: 467–481.
- Zimmet PZ, Alberti G, Phil D. The Metabolic Syndrome: The Cardiovascular Interests. Medscape Diabetes & Endocrinology, 2005; 7 (2).
- Rosenson RS. New Approaches in the Intensive Management of Cardiovascular Risk in the Metabolic Syndrome. Curr Probl Cardiol, 2005; 30: 241-279.
- 6. Lanz JR, Pereira AC, Martinez E, Krieger JE. Metabolic syndrome and coronary artery disease: is there a gender specific effect? Int J Cardiol. 2006; 107 (3): 317 21.
- 7. Cordero A, Alegria E, León M. Prevalencia de sindrome metabólico. Rev Esp Cardiol. 2006; 5: 11 15
- 8. Cordero Fort A, Alegría E, Montserrat León et al. Prevalencia de sindrome metabólico y asociación con la cardiopatia isquémica en pacientes cardiológicos ambulatorios. Rev Clin Esp. 2006; 206 (6): 259-265
- 9.- RH Eckel, SM Grundy, PZ Zimmet. The metabolic syndrome. Lancet 2005; 365:1415-28.
- Alberti KG, Zimmet P, Shaw J; IDF Epidemiology Task Force Consensus Group. The metabolic syndromea new worldwide defi nition. Lancet 2005;366:1059-62.
- 11.- Golden SH, Folsom AR, Coresh J et al. Risk factor grouping related to insulin resistance and their synergistic effects on subclinical atherosclerosis: the atherosclerosis risk in communities study. Diabetes 2002;51:3069-76.
- 12.-Hu G, Qiao Q, Tuomilehto J et al. Plasma insulin and cardiovascular mortality in non-diabetic European men and women: a meta-analysis of data from eleven prospective studies. The DECODEInsulin Study Group. *Diabetologia* 2004;47:1245–56.
- 13.- Carr DB, Utzschneider KM, Hull RL et al. Intra-abdominal fat is a major determinant of the National Cholesterol Education Program Adult Treatment Panel III criteria for the metabolic syndrome. *Diabetes*2004;53(8):2087-94
- 14.- Nesto RW. The relation of insulin resistance syndromes to risk of cardiovascular disease. Rev Cardiovasc Med 2003;4(6):S11-S18
- 15.- Chobanian AV, Bakris GL, Black HR et al. Seventh report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. *Hypertension* 2003;42(6):1206-52
- 16.- Nakamura T, Tokunga K, Shimomura I et al. Contribution of visceral fataccumulation to the development of coronary artery disease in non-obesemen. Atherosclerosis 1994;107:239-46
- 17.- McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, EastHE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the Atherosclerosis Risk in Communities Study. Diabetes Care 2005;28:385-390.
- 18.- Lien LF, Brown AJ, Ard JD, Loria C, Erlinger TP, Feldstein AC, et al. Effects of PREMIER lifestyle modifications on participants with and without the metabolic syndrome. Hypertension 2007;50:609-16.
- 19.- Sattar N, Gaw A, Scherbakova O, Ford I, O'Reilly D, Haffner SM, et al.Metabolic syndrome with and without c-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation 2003;108:414-9
- 20.- Wannamethee SG, Sharper AG, Lennon L, Moris RW. Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus. Arch Intern Med 2005;165:2644-50.
- 21.- Malik S, Wong ND, Franklin SS, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. Sep 7 2004;110(10):1245-1250.
- 22.- Mc Auley KA, Williams SM, Man J, et al. intensive lifestyle changes are necessary to improve insulin sensitivity. Diabetes Care 2002; 25:445-452

- 23. Lorenzo C, Williams K, Hunt KJ, Haffner SM. Trend in the prevalence of the metabolic syndrome and its impact on cardiovascular disease incidence. Diabetes Care 2006, 29(3): 625-630.
- 24. Yavuz B, Kabakci G, Aksoy H, Tulumen E, Deveci OS, Aytemir K et al. Determining the relationship between metabolic syndrome score and angiographic severity of coronary artery disease. Int J Clin Pract. 2008; 62 (5): 717-22.
- 25. Sadeghi M, Garak-Yaraghi M, Saneie H, Rozati G, Roohafza H, Talaei M. Relationship between the Metabolic Syndrome and coronary artery disease in patients with stable angina. ARYA Journal. 2006; 2(1): 10-14
- 26. Eberly LE, Prineas R, Cohen JD, Vazquez G, Zhi X, Neaton JD et al. Metabolic Syndrome. Risk factor distribution and 18-year mortality in the Multiple Risk Factor Intervention Trial. Diabetes Care. 2006; 29:123-130.
- Solymoss BC, Bourassa MG, Campeau L, Sniderman A, Marcil M, Lespérance J et al. Effect of increasing metabolic syndrome score on atherosclerotic risk profile and coronary artery disease angiographic severity. Am J Cardiol 2004; 93 (2): 159-64.
- 28. Sarau CA et al. Metabolic syndrome in patients with coronary artery by pass grafting and its vascular consequences. TMJ 2006; 56 (2 3): 154 56.
- 29. Hillier TA, Rousseau A, Lange C, Lépinay P, Cailleau M, Novak M et al. Practical way to assess metabolic syndrome using a continuous score obtained from principal component analysis. The D.E.S.I.R. cohort. Diabetologia. 2006; 49: 1528 35.
- 30. Lombo B, Villalobos C, Tique C, Satizábal C, Franco CA. Prevalencia del síndrome metabólico entre los pacientes que asisten al servicio clínica de hipertensión de la Fundación Santa Fe de Bogotá. Rev. Colomb. Cardiol. 2006; 12 (7): 472-478.
- 31. Gimeno Orna JA, Boned Juliani B, Lou Arnal LM. Prevalencia de sindrome metabólico en pacientes con diabetes tipo 2. An. Med. Interna (Madrid). [periódico en la Internet]. 2004 Jun [citado 2008 Nov 30]; 21(6): 59-61. Disponible en: http://scielo. isciii. es/ scielo. php?scrip t=sci a rttext&p id=S021 2-719 9200 4000 60001 5&Inq =es& nrm=iso.
- 32. Schettini C, Schwedt E, Moreira V, Mogdasy C, Chávez AEL, Bianchi M et al. Prevalencia del sindrome metabólico en una población adulta. Rev Urug Cardiol. 2004; 9 (1):19-28.
- 33. Pérez CM, Guzmán M, Ortiz AP, Estrella M, Valle Y, Pérez N et al. Prevalence of the metabolic syndrome in San Juan, Puerto Rico. Ethn Dis. 2008; 18(4):434-41.
- 35. Hitsumoto T, Takahashi M, Iizuka T, Shirai K. Relationship between metabolic syndrome and early stage coronary atherosclerosis. J Atheroscler Thromb. 2007; 14 (6): 294 302.
- 36. Marroquin OC, Kip KE, Kelley DE, Johnson BD, Shaw LJ, Bairey Merz CN, et al. Metabolic syndrome modifies the cardiovascular risk associated with angiographic coronary artery disease in women: a report from the Women's Ischemia Syndrome Evaluation. Circulation. 2004; 109 (6): 714-21.
- 37. Solymoss BC, Bourassa MG, Lespérance J, Levesque S, Marcil M, Varga S, Campeau L et al. Incidence and clinical characteristics of the metabolic syndrome in patients with coronary artery disease. Coron Artery Dis. 2003; 14 (3): 207-12.
- 38. Garin MCB, Kalix B, Morabia A, James R.W. et al. Small, Dense Lipoprotein Particles and Reduced Paraoxonase-1 in Patients with the Metabolic Syndrome. J Clin Endocrinol Metab. 2005; 90 (4): 2264–2269.
- 39. Kasai T, Miyauchi K, Kubota N, Tamura H, Kojima T, Yokoyama K et al. The relationship between the metabolic syndrome defined by various criteria and the extent of coronary artery disease. Atherosclerosis. 2008; 197(2): 944-50.
- 40. Cordero A, Alegría E, León M. Prevalencia de síndrome metabólico. Rev Esp Cardiol. 2006; 5: 11 15
- 41. Cordero Fort A, Alegría E, Montserrat León et al. Prevalencia de sindrome metabólico y asociación con la cardiopatía isquémica en pacientes cardiológicos ambulatorios. Rev Clin Esp. 2006; 206 (6): 259-265.
- 42. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002; 287:356-9.
- 43. Hildrum B, Mykletun A, Hole T, Midthjell K, Dahl A. Age-specific prevalence of the metabolic syndrome defined by the International Diabetes Federation and the National Cholesterol Education Program: the Norwegian HUNT 2 study. BMC Public Health. 2007; 7:220
- 44. Weissberg PL. Atherogenesis: current understanding of the causesof atheroma. Heart 2000; 83: 247-252

- 45. Falk E. Shah Pk, Fuster V. Coronary plague disruption. Circulation 1995; 92: 657-671.
- Davies MJ. Acute coronary thrombosis-the role of plaque disruption and its initiation and prevention. Eur Heart J 1995; 16(Supl L): 3-7.
- 47. Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Circulation 1994: 90: 775-778.
- 48. Davies MJ. Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995. Circulation 1996; 94: 2013-2020.
- 49. Davies MJ. Reactive oxygen species, metalloproteinases, and plaque stability. Circulation 1998; 97: 2382-2383.
- 50. Moreno PR, Murcia AM, Palacios IF, Leon MN, Bernardi VH, Fuster V et al. Coronary composition and macrophage infiltrationin atherectomy specimens from patients with diabetes mellitus. Circulation 2000; 102: 2180-2184.
- 51. Winocour PD. Platelet abnormalities in diabetes mellitus. Diabetes1992; 41 (Supl 2): 26-31.
- 52. Davi G, Catalano I, Averna M, Notarbartolo A, Strano A, CiabattoniG et al. Thromboxane biosynthesis and platelets function in type II diabetes mellitus. N Engl J Med 1990; 322: 1769-1774.
- Sobel BE. Increased plasminogen activator inhibitor-1 and vasculopathy. A reconcilable paradox. Circulation 1999; 99: 2496-2498.
- 54. Fuster V. Remodelado del trombo: punto clave en la progresion dela aterosclerosis coronaria. Rev Esp Cardiol 2000; 53 (Supl 1): 2-7.
- Otsuka Y, Miyazaki S, Okumura H, Yasuda S, Daikoku S, Morii I et al. Abnormal glucose tolerance, not small vessel diameter, is a determinant of long-term prognosis in patients treated with balloon coronary angioplasty. Eur Heart J 2000; 21: 1790-1796.
- 56.- Sattar N, McConnachie A, Shaper AG, et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two prospective studies. *Lancet.* 2008 Jun 7;371(9628):1927-35.