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Tutor

Dr. Xavier Hernández Doring

Instituto de Astronoḿıa-UNAM
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estudio, por compartirme su forma de hacer ciencia valiente y honesta,
nunca le falto emoción al trabajo y se lo agradezco. Los que hemos
trabajado con Xavier sabemos que es de esos bichos raros en la ciencia
que se dan de a poco y yo tuve la fortuna de trabajar con él.
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A Benjamı́n, por ser mi compañero en todas las formas de disfrutar
la vida, por su cariño y complicidad.

A Ivonne, por ser mi hermana de años.

A Juan Aldebaran, por sus comentarios siempre cŕıticos a este trabajo
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Resumen

La evidencia astronómica de que en ciertas circunstancias, la dinámica de los
objetos en el universo no corresponde a la esperada dadas las leyes de la f́ısica
que conocemos y la masa luminosa en estrellas y gas que observamos es conocida
desde hace varias decadas. En las observaciones hechas por Zwicky (1933) y Oort
(1932) ya se hace evidente esta discrepancia en el Cúmulo de Coma en el primer
caso y en la vecindad solar en el segundo.

Esta discrepancia resulto ser irrefutable con la medición de las curvas de ro-
tación galacticas hechas por Bosma (1981) y Rubin et al. (1982), donde para un
gran número de glaxias espirales la velocidad de rotación no decae con la ráız
cuadrada de la separación al centro gálactico r cómo se espera según la terce-
ra ley de Kepler sino que, en la periferia de las galaxias se mantiene constante
conforme r aumenta.

A una escala mucho más grande, mediciones de la masa de cúmulos de ga-
laxias hechas usando la emisión en rayos X del gas caliente del cúmulo y por
lentes gravitacionales muestran que su masa debe ser alredor de siete veces más
que la observada asumiendo equilibrio hidrostático y Relatividad General (RG)
(Hoekstra et al. 1998).

En escalas cosmológicas surge también el problema de reconciliar las observa-
ciones con la teoŕıa; el rastro que dejó el contraste de densidad de las fluctuaciones
de materia en la radiación cósmica de fondo en el momento de la recombinación
muestra que estas deb́ıan tener una amplitud de ∼ 10−5, según la RG estas fluc-
tuaciones crecen proporcionales al factor de escala del universo, y dado que la
recombinación ocurrio en z ∼ 1000, las fluctuaciones primordiales al d́ıa de hoy
solo habŕıan crecido en tres ordenes de magnitud y la estructura que observamos
en el universo no se habŕıa formado aún.

Estos hechos son evidencia de que calculamos un potencial gravitacional menor
al que observamos y esto puede ocurrir en principio por dos razones; la primera,
que hay mas materia que contribuye a este potencial de la que observamos y las
leyes de la f́ısica que usamos para calcular dicho potencial son las correctas o la
cantidad de materia que vemos es la que existe y nuestras leyes de la f́ısica son
incompletas.

Explorar la primer posibilidad ha llevado a la comunidad cient́ıfica a construir
el modelo cosmológico ΛCDM (Lambda Cold Dark Matter) o ΛWDM (Lambda
Warm Dark Matter) según se trate de materia oscura fŕıa o tibia. En este escenario



se asume que la RG y su ĺımite de campo débil la dinámica newtoniana son
validas a todas las escalas, y los ingredientes que dominan la densidad de enerǵıa
en el universo son la materia y enerǵıa oscura. Este modelo, también llamado de
concordancia, está definido por varios parámetros, los más importantes son los
que definen un espacio-tiempo plano, donde la densidad de enerǵıa del universo
se constituye por alrededor de 4 % materia bariónica, 23 % materia oscura y 73 %
enerǵıa oscura. Este escenario, exitoso en la descripción de la estructura a gran
escala del universo, a escalas más pequeñas presenta varios problemas que para
una parte de la comunidad cient́ıfica son consecuencia de la complicada f́ısica de
los bariones involucrada en cada caso y para otros son evidencia de que el modelo
está en crisis y debemos de cuestionarnos si la hipótesis de la materia oscura es
la adecuada para describir nuestro universo (Kroupa 2012).

La segunda posibilidad es que estemos observando un régimen donde las leyes
de la f́ısica son distintas a las que conocemos. Sabemos que la ley de gravedad
newtoniana funciona muy bien a escalas del Sistema Solar y que la RG es adecuada
para describir sistemas que involucran campos gravitacionales intensos, pero para
aceleraciones del orden de la que experimenta una estrella en la periferia de una
galaxia no hemos probado su validez y existe la posibilidad de tengan que ser
modificadas a estas escalas.

La primera propuesta de introducir una modificación a la dinámica newto-
niana para explicar las curvas de rotación galácticas fue hecha por Milgrom
en 1983 (Milgrom 1983c,a,b) y es conocida como MOND (MOdified Newto-
nian Dynamics), en su propuesta Milgrom supone que la ley de inercia o la
ley de gravedad sufren un cambio en escalas donde la aceleración es menor que
a0 = 1.2×10−8cm/s2 y en escalas donde a > a0 la f́ısica newtoniana queda intac-
ta. Una consecuencia de esta modificación es que para una part́ıcula de prueba
orbitando una masa M , la velocidad de equilibrio de la part́ıcula es constante con
la distancia y escala con la masa total como v4 = Ga0M .

El esquema de Milgrom tiene la peculiaridad de lograr reproducir la curva de
rotación de un gran número de galaxias sin la necesidad de suponer materia oscura
(Sanders & McGaugh 2002, McGaugh 2011). Numerosos intentos por obtener
una teoŕıa relativista tal que su ĺımite de campo débil sea tipo MOND han sido
llevados a cabo sin que a la fecha exista una que logre describir en su totalidad
las observaciones tanto a escalas galácticas como cosmológicas (Bekenstein 2004,
Bernal et al. 2011, Moffat & Toth 2010). Las teoŕıas de gravedad modificada cuyo
ĺımite a aceleraciones menores que a0 son tipo MOND tienen en común que en los
sistemas donde se cumpla la condición a < a0 se puede esperar una transición del
régimen newtoniano a un régimen de gravedad modificada, el cual se caracteriza
por velocidades de equilibrio que no dependen de la separación al centro de masa
y se cumple una relación del tipo Tully-Fisher entre la masa y la velocidad, esta
predicción puede ser comprobada en sistemas astrof́ısicos.



En esta tesis estudiamos sistemas astrof́ısicos que se encuentran en el régimen
donde la aceleración es del orden de a0 y donde según el modelo estandar la
materia oscura no juega un papel importante en la dinámica del sistema y esta
queda determinada por la masa visible según las leyes de la dinámica newtoniana.

En el caṕıtulo uno exponemos los aspectos más relevantes de los esquema
de gravedad modificada para está tesis. En el caṕıtulo dos nos ocupamos de las
estrellas binarias abiertas ya que para un sistema de dos estrellas ligadas gravi-
tacionalmente con masas alrededor de 1M� la aceleración es menor que a0 para
separaciones mayores a 7000AU , siendo este un sistema donde podemos poner a
prueba las predicciones de los esquemas de gravedad modificada. Para ello usamos
dos muestras de estrellas binarias tomadas de manera independiente. La prime-
ra, de la base de datos del SDSS (Sloan Digital Sky Survey) como se presentan
en (Dhital et al. 2010), que consiste en miles de sistemas binarios con una baja
señal a ruido en la velocidad relativa. La segunda muestra es tomada del satelite
Hipparcos, (Shaya & Olling 2011) es una muestra más pequeña pero con una
mejor señal a ruido ∼ 2 en las velocidades relativas y separaciones más grandes
que 104AU . Nuestros resultados muestran un ĺımite superior constante de las
velocidades relativas de las estrellas binarias para las dos muestras, el cúal es in-
dependiente de la separación en analoǵıa con las curvas de rotación galácticas en
el mismo regimen a < a0. Este resultado es cuantitavamente inconsistente con la
predicción hecha por la dinámica newtoniana para estos sistemas evolucionando
en un ambiente galáctico (Jiang & Tremaine 2010). En este estudio hemos veri-
ficado la predicción de los esquemas de gravedad modificada de que en sistemas
donde se cumpla que la aceleración es menor que a0 tenemos una velocidad de
equilibrio constante que no decae con la separación al centro de masa del sistema
(Hernandez, Jiménez, & Allen 2012).

En el caṕıtulo tres usamos la propuesta de gravedad modificada hecha por
Mendoza et al. (2011) para construir modelos de equilibrio dinámico para dieciséis
cúmulos globulares (CGs) donde en años recientes se ha medido la dispersión de
velocidades como función de la separación al centro del cúmulo encontrado que la
dispersión de velocidades no decae como se espera bajo la dinámica newtoniana
sino que se mantiene constante (Scarpa et al. 2007, Scarpa & Falomo 2010, Scarpa
et al. 2011). La ley de fuerza que usamos tiene la caracteŕıstica de que en el
ĺımite a < a0 coincide con MOND y para a > a0 recobramos la ley del inverso
al cuadrado de la distancia de Newton. Con nuestros modelos encontramos que
el aplanamiento del perfil de dispersión de velocidades proyectado ocurre en el
lugar donde a < a0 y logramos reproducir tanto el perfil de brillo superficial y el
perfil de dispersión de velocidades proyectado sobre la ĺınea de visión asi como
todas las restricciones observacionales del CG que se trate (Hernandez & Jiménez
2012).

Además como una prueba de consistencia de los modelos de equilibrio desa-



rrollados en (Hernandez & Jiménez 2012) para CGs, los aplicamos ahora a la
galaxia eĺıptica gigante NGC 4649, un sistema varios ordenes de magnitud en
masa y tamaño mayor que un CG y nuevamente logramos construir modelos de
equilibrio para esta galaxia que satisfacen todas las restricciones observacionales
incluyendo la parte plana de su perfil de dispersión de velocidades proyectado
sin la necesidad de incluir materia oscura, mientras que los modelos newtonianos
requieren un halo de materia oscura con una masa de casi la mitad de la masa
total de la galaxia a tres radios efectivos (Jiménez et al. 2013).

En el caṕıtulo tres discutimos como es que dentro del modelo de concordancia
los CGs son sistemas newtonianos y un perfil de dispersión de velocidades que
se aplana en la periferia de un CG tiende a explicarse por la acción de la fuerza
de marea que actua sobre las estrellas en la parte externa del CG. Sin embargo,
dentro de un esquema de gravedad modificada este comportamiento es el esperado
en escalas donde la aceleración de las estrellas en el CG sea ∼ a0. Para contrastar
las dos explicaciones hemos calculado el radio de marea newtoniano para cada CG
usando masas calculadas a través de modelos de śıntesis de poblaciones estelares
independientes de cualquierer suposición dinámica del CG. Encontramos que en
el punto donde la órbita del cúmulo es más cercana al centro galáctico, el radio
de marea es mucho más grande, diez veces más grande en algunos casos, que
el radio en el cual el perfil se aplana. Es decir, en el lugar donde el perfil se
aplana las fuerzas de marea no afectan la dinámica del CG. Por otro lado el
radio donde el perfil se aplana correlaciona en promedio con el radio en el cual se
cruza el punto donde la aceleracion vale a0, favoreciendo los modelos de gravedad
modificada. Además encontramos que la masa y la dispersión de velocidades
asintótica siguen la misma relación Tully- Fisher galáctica. De esta manera se
verifica otra de las predicciones de los esquemas de gravedad modificada y se
explica el comportamiento asintoticamente constante delperfil de dispersión de
velocidades proyectado de los CGs (Hernandez, Jiménez, & Allen 2013a).

En el caṕıtulo ćınco exploramos otra consecuencia de los esquemas de gra-
vedad modificada, esta es que cualquier halo isotérmico de part́ıculas de prueba
alrededor de una distribución esférica de masa debe adoptar una configuración
de equilibrio que en primera aproximación satisface ρ ∝ r−3. Las observaciones
muestran que en efecto esto es aśı; el halo etelar de la Vı́a Láctea tiene un perfil
de densidad el cual satisface ρ ∝ r−3, lo mismo ocurre para M31 y las observa-
ciones muestran que la distribución de CGs en la galaxia Andromeda siguen el
mismo patrón, además recientemente se ha observado que una población difusa de
estrellas en los alrededores de CGs que se extienden más allá de su radio de ma-
rea newtoniano siguien la misma distribución. Mientras que en una descripción
newtoniana de la gravedad hay diversas explicaciones dependiendo del sistema
del que se trate, dentro de la gravedad modificada todas estas observaciones se
entienden como consecuencia delcomportamiento de la gravedad en escalas donde



la aceleración es del orden de la aceleración de Milgrom (Hernandez, Jiménez, &
Allen 2013b).

Por último, una vez que hemos explorado varios sistemas astrof́ısicos locales y
hemos comprobado que se cumplen las predicciones de los esquemas de gravedad
modificada en cada uno de ellos, queremos estudiar las consecuencias cosmológicas
de estos modelos. En el caṕıtulo seis exponemos un primer intento, estudiamos la
formación de estructura en el régimen lineal en gravedad modificada y mostramos
a primer orden es posible formar estructura consistente con la observada hoy en
d́ıa a partir de las fluctuaciones de materia iniciales cuyo contraste de densidad
es el observado en la radiación cósmica de fondo. Mientras que en la gravedad de
Einstein o Newton es necesario que las fluctuaciones de materia estén sumergidas
en los pozos de potencial ocasionados por fluctuaciones de materia oscura con
un contraste de densidad mayor. Además en contraste con el escenario estandar
en gravedad modificada no se tiene una dependencia crucial con las condiciones
iniciales debido a que se obtiene una solución que converge independientemente
de las condiciones iniciales a una solución atractora ∆(M, z).

En el caṕıtulo siete damos las conclusiones de este trabajo y comentamos el
trabajo futuro.
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Caṕıtulo 1

Introducción

Las anomaĺıas gravitacionales que se observan tanto a escalas galácticas como
cosmológicas son consecuencia de que nuestro conocimiento de la naturaleza es
incompleto; o bien hay un tipo de materia cuya naturaleza es desconocida y
hasta el momento ha logrado evadir toda detección independiente a su efecto
gravitacional, o nos falta entender cómo se comporta la fuerza de gravedad en las
escalas donde estas anomaĺıas se manifiestan.

En esta tesis exploramos la posibilidad de que nuestro conocimiento de la
ley de gravedad sea incompleto y retomamos la propuesta de Milgrom (Milgrom
1983c,a,b) como ha sido replanteada en trabajos recientes Mendoza et al. (2011).
llevamos a cabo una prueba de las predicciones de estos modelos en estrellas
binarias abiertas y mostramos como dentro de estos esquemas se logra explicar
el comportamiento del perfil de dispersión de velocidades asintóticamente plano
en cúmulos globulares y en la galaxia eĺıptica gigante NGC 4649. Por último
exploramos la consecuencia del crecimiento de las fluctuaciones primigenias de
densidad en el régimen lineal en gravedad modificada y encontramos que a primera
aproximación el crecimiento de las fluctuaciones iniciales como se observan en la
radiación cósmica de fondo, es consistente con la estructura que se observa hoy
en d́ıa en el Universo.

A continuación exponemos los aspectos más relevantes de los esquemas de
gravedad modificada para este trabajo.

1.0.1. Dinámica modificada (MOND)

Milgrom considera la posibilidad de que en el caso no relativista y en el ĺımite
de aceleraciones bajas la fuerza total que actúa sobre un objeto no sea proporcio-
nal a la aceleración, sino que depende de ella mediante una función µ. Milgrom
supone lo siguiente:
i) La fuerza inercial que experimenta un objeto es proporcional a la masa gravi-
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1. INTRODUCCIÓN

tacional del mismo.
ii)La aceleración que experimenta el objeto depende solo de la fuerza a la posición
del objeto, como se deduce en la manera convencional según la distribución de
las fuentes.
iii)La fuerza inercial actúa en la dirección de la aceleración.
iv)En el ĺımite de aceleraciones bajas la inercia es proporcional al cuadrado de la
aceleración del objeto.
Es decir, Milgrom deja el resto de los supuestos de la f́ısica newtoniana intactos
y sólo introduce un cambio en escalas donde la aceleración es menor que una
constante a0 (Milgrom 1983c,a,b). De esta manera la fuerza que actúa sobre un
objeto de masa m está dada por:

maµ(
a

a0

) = F. (1.1)

Donde a0 es una nueva constante f́ısica con unidades de aceleración, µ es
una función por determinar que debe tener los siguientes ĺımites; µ( a

a0
) = a

a0

si a
a0
� 1 y µ( a

a0
) = 1 si a

a0
� 1 de manera que para aceleraciones mayores

que a0 obtengamos de nuevo la dinámica newtoniana. Si la única fuerza que
actúa sobre la part́ıcula es la gravedad, la aceleración gravitacional modificada
estará relacionada con la aceleración gravitacional newtoniana de la siguiente
manera:

gµ(g/a0) = gn. (1.2)

Donde gn es la aceleración gravitacional newtoniana. En consecuencia para
una part́ıcula de prueba orbitando una masa M , si igualamos la aceleración gra-
vitacional g a la aceleración centŕıpeta de la part́ıcula obtenemos para el régimen
de aceleraciones bajas

v4 = GMa0. (1.3)

Con esta modificación se obtienen curvas de rotación asintóticamente pla-
nas y la relación Tully-Fisher entre la masa y la velocidad. Siendo esta última
consecuencia la principal predicción de este modelo.

En esta fórmula se resume la fenomenoloǵıa de una gran cantidad de observa-
ciones astronómicas (Famaey & McGaugh 2012). Sin embargo, aplicarla en todo
sistema f́ısico puede llevar a inconsistencias, como es el caso del problema de dos
cuerpos con diferente masa donde el momento no es conservado (Felten 1984).

Aśı que la fórmula 1.1 debe considerarse no como una ley universal, sino
como una aproximación que es valida en sistemas con una distribución simétrica
de masa de una fuerza más general que debe ser derivada de una acción y de un
principio variacional.

2



Milgrom considera la posibilidad de que la dinámica requiera ser modificada
sólo cuando hay una fuerza gravitacional involucrada, en este caso es la ley de
gravedad la que se modifica y la segunda ley de Newton queda como la conocemos.

En sistemas donde la única fuerza que actúa es la fuerza gravitacional estos dos
enfoques son equivalentes. Sin embargo, en general no es aśı y las implicaciones
f́ısicas de considerar una u otra posibilidad son muy distintas.En nuestro trabajo
tomaremos el segundo enfoque siguiendo la propuesta de Mendoza et al. (2011).

1.0.2. Gravedad modificada

En el trabajo hecho en esta tesis consideramos la posibilidad de que la fuerza
de gravedad sea la que requiera una modificación, usamos la propuesta hecha por
Mendoza et al. (2011) donde se propone que la fuerza gravitacional está dada por
la siguiente expresión;

f(x) = a0x
1− xn

1− xn−1
. (1.4)

Donde x es un parámetro a dimensional definido como; x := lM
r

y lM :=
√

(GM(r)/a0),
vemos que en el ĺımite donde a� a0, es decir cuando x� 1, recobramos la fuerza
gravitacional newtoniana:

f(x) −→ aox
2 =

GM(r)

r2
(1.5)

y cuando tenemos a� a0, es decir x� 1 es equivalente a MOND;

f(x) −→ aox =
(Ga0M(r))1/2

r
(1.6)

Esta propuesta ha demostrado ser consistente con las restricciones observacionales
a la dinámica del Sistema Solar, con la curva de rotación estimada para nuestra
galaxia y cuenta con una versión relativista (Bernal et al. 2011) que reciente-
mente a mostrado ser consistente con las observaciones de lentes gravitacionales
(Mendoza et al. 2012).

1.0.3. Motivación y objetivos de la tesis

Las propuestas de gravedad modificada cuyos ĺımites a velocidades no relati-
vistas y a aceleraciones menores que a0 son tipo MOND tienen dos predicciones
que pueden ser probadas en sistemas astronómicos:

I. En el régimen de aceleraciones bajas, a < a0, donde en el caso de asumir
como validas la relatividad general y su ĺımite clásico la dinámica newtoniana se

3



1. INTRODUCCIÓN

requiere materia oscura, los sistemas astronómicos se caracterizan por velocidades
de equilibrio que no dependen de la distancia.

II. Existe una relación del tipo M ∝ v4 (σ4 ∝M) (Tully-Fisher)

Es importante notar que no se conoce ningún sistema donde a >> a0 y se
necesite materia oscura para explicar la dinámica, ni uno donde a << a0 y no se
necesite materia oscura.

En esta tesis pondremos a prueba en estrellas binarias abiertas con separacio-
nes tales que su aceleración relativa es menor que a0 la predicción de las teoŕıas
de gravedad modificada y veremos si la distribución de velocidades relativas de
estos sistemas es consistente con un ĺımite superior constante como lo esperan los
esquemas de gravedad modificada o es consistente con la tercera ley de Kepler.

Usaremos mediciones recientes en la dispersión de velocidades como función
del radio en cúmulos globulares donde las observaciones muestran un perfil que se
aplana en escalas donde la aceleración es del orden de a0 (Scarpa et al. 2011), en el
modelo de materia oscura estos objetos tendŕıan que ser puramente newtonianos
y no hay razón para que la dispersión de velocidades permanezca constante en
la periferia del cúmulo. Veremos si una ley de gravedad modificada es capaz de
explicar el perfil de dispersión de velocidades de estos objetos con las restricciones
observacionales existentes.

En la literatura suele explicarse este comportamiento en los CGs en el contexto
de la dinámica newtoniana como consecuencia de las fuerzas de marea galácticas,
también veremos si está explicación es realmente viable.

Como una prueba de consistencia al modelo hecho para los CGs, lo aplicaremos
a una escala de masa y tamaño varios ordenes de magnitud diferentes, lo usaremos
para modelar la galaxia eĺıptica gigante NGC 4649.

Otra consecuencia de los esquemas de gravedad modificada es que cualquier
halo isotérmico de part́ıculas de prueba alrededor de una distribución esférica de
masa debe adoptar una configuración de equilibrio que en primera aproximación
satisface ρ ∝ r−3, veremos que observaciones en diferentes sistemas astronómicos
muestran que esto efectivamente ocurre.

Por último exploraremos un posible escenario de formación de estructura en
un contexto de gravedad modificada.
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Caṕıtulo 2

Estrellas binarias abiertas

2.1. Resumen

En los esquemas de GM donde se espera un cambio de régimen en la ley de
gravedad en lugares donde la aceleración es del orden de a0 = 1.2×10−8cm/s2, un
sistema de estrellas binarias con separaciones mayores a 7000UA y con las masas
de sus componentes de alrededor de 1M� representa el sistema más simple donde
se puede observar este cambio en el comportamiento de la fuerza de gravedad.

Los sistemas binarios con estas caracteŕısticas tienen aceleraciones relativas
menores a a0. Para estos sistemas la gravedad newtoniana predice velocidades
relativas que decaen con la ráız cuadrada de la separación entre las estrellas,
mientras que en un esquema de GM se espera que esta velocidad sea constante.

Para averiguar cual de las dos descripciones de la fuerza de gravedad es la que
se corresponde a las observaciones de los movimientos de las estrellas binarias
abiertas en este art́ıculo estudiamos dos muestras independientes de sistemas
binarios con separaciones del sistema mayores que 104UA.

El primer catálogo corresponde a datos del satélite Hipparcos que consiste en
280 sistemas con alrededor de 10 % de falsos positivos y un valor señal a rudo de
∼ 2 para los valores de las velocidades relativas. El segundo catalogo es obtenido
de datos del satélite Sloan Digital Sky Survey (SDSS), con 1250 sistemas binarios
con una relación señal a ruido en sus velocidades relativas de ∼ 0.5. Ambos
catálogos contienen movimientos propios en dos dimensiones de cada sistema, sus
separaciones angulares y sus respectivas distancias. Los datos para construir cada
muestra son tomados de manera independiente.

Cada teoŕıa de gravedad espera un resultado distinto, en el caso de la gravedad
newtoniana lo que se espera observar es que la distribución de velocidades relativas
proyectadas tenga un ĺımite máximo, ∆V = 2GM

s
1/2, para el caso de GM

esperamos un ĺımite superior constante de acuerdo con V = (GMa0)
1/4.
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2. ESTRELLAS BINARIAS ABIERTAS

Tomando en cuenta que la dinámica de un sistema de estrellas binarias puede
ser afectada por las fuerzas de marea galácticas, por encuentros con otras estrellas
y una serie de otras interacciones propias del ambiente galáctico en el que están
sumergidas, estos factores pueden alterar el rango de separaciones y velocidades
relativas en el que actualmente se encuentran.

Afortunadamente en trabajo donde (Jiang & Tremaine 2010) se estudia numéri-
camente la evolución de 50, 000 sistemas binarios de 1M� en un ambiente galáctico
para obtener aśı la distribución al d́ıa de hoy de la velocidad cuadrática media co-
mo función de la separación de estos sistemas dentro de la dinámica newtoniana,
en este articulo comparamos las observaciones de los dos catálogos que usamos
con el modelo de los autores para tener aśı un análisis adecuado del tipo de ley
de gravedad que favorecen las estrellas binarias abiertas que se encuentran en el
régimen de aceleración a < a0.

Nuestros resultados muestran que estrellas binarias abiertas con separaciones
mayores a 7000UA que se encuentran en el régimen donde de aceleración a < a0

la distribución de las velocidades relativas presenta un ĺımite superior constante
como lo esperan los esquemas de gravedad modificada y en contradicción con la
la tercera ley de Kepler y aún incorporando los efectos debidos a la interacciones
que este sistema puede sufrir en su evolución dentro de la galaxia esta tendencia
se mantiene.

En este trabajo participe en la extracción de todos los datos necesarios de los
catálogos usados para hacer el estudio y en el cálculo de las cantidades involu-
cradas para realizar las gráficas que aparecen en el mismo, también participe en
su escritura y en todo el proceso de revisión hasta que fue publicado.
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Abstract Modified gravity scenarios where a change of
regime appears at acceleration scales a < a0 have been pro-
posed. Since for 1M� systems the acceleration drops below
a0 at scales of around 7000 AU, a statistical survey of wide
binaries with relative velocities and separations reaching 104

AU and beyond should prove useful to the above debate. We
apply the proposed test to the best currently available data.
Results show a constant upper limit to the relative velocities
in wide binaries which is independent of separation for over
three orders of magnitude, in analogy with galactic flat ro-
tation curves in the same a < a0 acceleration regime. Our
results are suggestive of a breakdown of Kepler’s third law
beyond a ≈ a0 scales, in accordance with generic predic-
tions of modified gravity theories designed not to require
any dark matter at galactic scales and beyond.

1 Introduction

Over the past few years the dominant explanation for the
large mass to light ratios inferred for galactic and meta-
galactic systems, that these are embedded within massive
dark matter halos, has begun to be challenged. Direct de-
tection of the dark matter particles, in spite of decades of
extensive and dedicated searches, remains lacking. This has
led some to interpret the velocity dispersion measurements
of stars in the local dSph galaxies (e.g. [2, 13]), the extended
and flat rotation curves of spiral galaxies (e.g. [19, 24]), the
large velocity dispersions of galaxies in clusters (e.g. [21]),
stellar dynamics in elliptical galaxies (e.g. [23]), the gravita-
tional lensing due to massive galaxies (e.g. [9, 31]), and even
the cosmologically inferred matter content for the universe
through CMB and structure formation physics (e.g. [12, 22,
28]), not as indirect evidence for the existence of a dominant
dark matter component, but as direct evidence for the failure

a e-mail: xavier@astroscu.unam.mx
b e-mail: mjimenez@astro.unam.mx
c e-mail: chris@astroscu.unam.mx

of the current Newtonian and general relativistic theories of
gravity, in the large scale or low acceleration regimes rele-
vant for the above situations.

Numerous alternative theories of gravity have recently
appeared (e.g. TeVeS of [3], and variations; [5, 29], F(R)
theories e.g. [6, 7, 27], conformal gravity theories e.g. [18]),
mostly grounded on geometrical extensions to general rela-
tivity, and leading to laws of gravity which in the large scale
or low acceleration regime, mimic the MOdified Newtonian
Dynamics (MOND) fitting formulae. Similarly, [20] have
explored MOND not as a modification to Newton’s second
law, but as a modified gravitational force law in the New-
tonian regime, finding a good agreement with observed dy-
namics across galactic scales without requiring dark matter.
In fact, recently [4] have constructed an f (R) extension to
general relativity which in the low velocity limit converges
to the above approach.

Whilst classical gravity augmented by the dark matter hy-
pothesis provides a coherent and unified interpretation from
galactic to cosmological scales (with the inclusion of dark
energy), the very profusion of modified gravity theories,
mostly tested in very localised situations, points to the lack
of any definitive theoretical contender to classical gravity.
Nonetheless, a generic feature of all of the modified gravity
schemes mentioned above is the appearance of an acceler-
ation scale, a0, above which classical gravity is recovered,
and below which the dark matter mimicking regime appears.
The latter feature results in a general prediction; all systems
where a � a0 should appear as devoid of dark matter, and all
systems where a � a0 should appear as dark matter domi-
nated, when interpreted under classical gravity. It is interest-
ing that no a � a0 system has ever been detected where dark
matter needs to be invoked, in accordance with the former
condition. On the other hand, the latter condition furnishes
a testable prediction, in relation to the orbits of wide bina-
ries. For test particles in orbit around a 1M� star, in circular
orbits of radius s, the acceleration is expected to drop below
a0 ≈ 1.2 × 10−10 m/s2 for s > 7000 AU = 3.4 × 10−2 pc.
The above provides a test for the dark matter/ modified the-
ories of gravity debate; the relative velocities of components
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of binary stars with large physical separations should deviate
from Kepler’s third law under the latter interpretation.

More specifically, seen as an equivalent Newtonian force
law, beyond s ≈ 7000 AU the gravitational force should
gradually switch from the classical form of FN = GM/s2

to FMG = (GMa0)
1/2/s, and hence the orbital velocity,

V 2/s = F , should no longer decrease with separation, but
settle at a constant value, dependent only on the total mass of
the system through V = (GMa0)

1/4. That is, under modified
gravity theories, binary stars with physical separations be-
yond around 7000 AU should exhibit “flat rotation curves”
and a “Tully–Fisher relation”, as galactic systems in the
same acceleration regime do.

An interesting precedent in this sense is given by the re-
cent results of [25] and [26] who find evidence for a transi-
tion in the dynamics of stars in the outer regions of a series of
Galactic globular clusters. These authors report a flattening
of the velocity dispersion profile in globular clusters, out-
wards of the radius where accelerations fall below the a0

threshold, in accordance with generic predictions of mod-
ified gravity schemes. The interpretation under Newtonian
dynamics explains the observed flattening as due to tidal
heating by the Milky Way, e.g. [17], but the matter is still
being debated. We also note the recent results of [16] who
point out various discrepancies between standard �CDM

predictions and structural and dynamical properties of the
local group, and suggest solutions to these in the context of
modified gravity theories.

In this paper we propose that wide binary orbits may
be used to test Newtonian gravity in the low acceleration
regime. We apply this test to the binaries of two very recent
catalogues containing relative velocities and separations of
wide binaries. The two catalogues are entirely independent
in their approaches. The first one, [27] uses data from the
Hipparcos satellite to yield a moderate number of systems
(280) relatively devoid of false positives (10%), with a high
average signal to noise ratio for the relative velocities of the
binaries (∼2). The second, [10] identifies 1,250 wide bina-
ries from the Sloan Digital Sky Survey (SDSS) data base re-
lease 7, which, compounded with a detailed galactic stellar
distribution model, results in pairs with a very low proba-
bility of chance alignment (<2%), albeit with a low average
signal to noise ratio in their relative velocities (∼0.5).

The paper is organised as follows: Sect. 2 briefly gives
the expectations for the distribution of relative velocities as
a function of separation for wide binaries, under both New-
tonian gravity and generically for modified theories of grav-
ity. In Sect. 3 we show the results of applying the test to the
[27] Hipparcos catalogue, and to the independent [10] SDSS
data. Our conclusions are summarised in Sect. 4.

2 Expected relative velocity distributions
for wide binaries

Since orbital periods for 1M� binaries with separations in
the tens of AU range already extend into the centuries, there
is no hope of testing the prediction we are interested in
through direct orbital mapping. Fortunately, modern relative
proper motion studies do reach binary separations upwards
of 104 AU, e.g. [1, 8, 10]. The Newtonian prediction for the
relative velocities of the two components of binaries hav-
ing circular orbits, when plotted against the binary physi-
cal separation, s, is for a scaling of �V ∝ s−1/2, essentially
following Kepler’s third law, provided the range of masses
involved were narrow.

In a relative proper motion sample however, only two
components of the relative velocity appear, as velocity along
the line of sight to the binary leads to no proper motion.
Thus, orbital projection plays a part, with systems having
orbital planes along the line of sight sometimes appearing
as having no relative proper motions. A further effect comes
from any degree of orbital ellipticity present; it is hence clear
that the trend for �V ∝ s−1/2 described above, will only
provide an upper limit to the distribution of projected �V

vs. s expected in any real observed sample, even if only a
narrow range of masses is included. One should expect a
range of measured values of projected �V at a fixed ob-
served projected s, all extending below the Newtonian limit,
which for equal mass binaries in circular orbits gives

�VN = 2

(
GM

s

)1/2

. (1)

The problem is complicated further by the dynamical
evolution of any population of binaries in the Galactic envi-
ronment. Over time, the orbital parameters of wide binaries
will evolve due to the effects of Galactic tidal forces. Also,
dynamical encounters with other stars in the field will mod-
ify the range of separations and relative velocities, specially
in the case of wide binaries. To first order, one would expect
little evolution for binaries tighter than the tidal limit of the
problem, and the eventual dissolution of wider systems.

A very detailed study of all these points has recently ap-
peared, [15]. These authors numerically follow populations
of 50,000 1M� binaries in the Galactic environment, ac-
counting for the evolution of the orbital parameters of each
due to the cumulative effects of the Galactic tidal field at the
solar radius. Also, the effects of close and long range en-
counters with other stars in the field are carefully included,
to yield a present day distribution of separations and relative
velocities for an extensive population of wide binaries, un-
der Newtonian gravity. Interestingly, one of the main find-
ings is that although little evolution occurs for separations
below the effective tidal radius of the problem, calculated
to be of 1.7 pc, the situation for grater separations is much
more complex than the simple disappearance of such pairs.

~ Springer 
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It is found that when many wide binaries cross their Ja-
cobi radius, the two components remain fairly close by in
both coordinate and velocity space, drifting in the Galactic
potential along very similar orbits. This means that in any
real wide binary search a number of wide pairs with sep-
arations larger than their Jacobi radii will appear. Finally,
[15] obtain the RMS one-dimensional relative velocity dif-
ference, �V1D , projected along an arbitrary line of sight, for
the entire populations of binaries dynamically evolved over
10 Gyr to today, for a distribution of initial ellipticities, as
plotted against the projected separation on the sky for each
pair. The expected Keplerian fall of �V1D ∝ s−1/2 for sep-
arations below 1.7 pc is obtained, followed by a slight rise
in �V1D as wide systems cross the Jacobi radius threshold.
�V1D then settles at RMS values of ≈0.1 km/s.

These authors also explore variation in the initial (realis-
tic) distribution of semi-major axes, and the formation his-
tory of the binaries, finding slight differences in the results,
which however are quite robust to all the variations in the pa-
rameters explored, in the regime we are interested of present
day projected separations larger than log(s/pc) > −2, above
very small variations of less than 0.14 in the logarithm. This
represents the best currently available estimate of how rel-
ative velocities should scale with projected separations for
binary stars (both bound and in the process of dissolving in
the Galactic tides) under Newtonian gravity.

The testable quantitative prediction of Classical Gravity
for the distribution of data in a plot of projected �V vs. pro-
jected s is clear: one should find a spread of points extending
below the limit defined by (1), with an RMS value for �V1D

given by the results of [15], their Fig. 7.
The recent proliferation of modified gravity models how-

ever, implies the absence of a definitive alternative to clas-
sical gravity. Further, in many cases, the complex formu-
lations put forth do not lend themselves to straightforward
manipulations from which detailed predictions might be ex-
tracted for varied applications distinct from the particular
problems under which such models are presented. We shall
therefore not attempt to test any particular modified grav-
ity theory, but shall only consider the generic predictions
such theories make for “flat rotation curves” in the a < a0

regime. That is, the predictions of modified gravity schemes
will only be considered qualitatively and generically, to first
order, in terms of the upper envelope of observed distribu-
tions in projected �V vs. s plots to appear flat. For circular
orbits one expects:

�VMG = C(GMa0)
1/4, (2)

where C is a model-dependent constant expected to be of
order unity. A further correction upwards due to departures
from circularity, which at this point must be thought of as
dependent on the details of the particular modified gravity
scheme one might pick, should also be included. This cor-
rection will tend to give even larger values of �VMG. We

note that in the particular case of MOND, the external field
effect, the fact that the overall potential of the Galaxy at
the solar neighbourhood globally puts local binaries close
to the a = a0 threshold, would imply only slight corrections
on Newtonian predictions.

We see that all we need is a large sample of relative
proper motion and binary separation measurements to test
the Newtonian prediction for the RMS values of the 1 di-
mensional relative velocities of [15], and to contrast the
�VN ∝ s−1/2 and the �VMG = cte. predictions for the up-
per envelope of the �V vs. s distributions. It is important
to have a sample as free of chance alignments as possible,
as the inclusion of non-physical stellar pairs would blur the
test, potentially making a conclusion suspect. Also, it is de-
sirable to limit the range of masses of the stars involved, as
a spread in mass will also blur any trends expected for the
upper limit of the �V distributions, although not terribly so,
given the small powers to which mass appears in both pre-
dictions.

To end this section we briefly recall the first order tidal
limit calculation of

dFext(R)

dR

∣∣∣∣
R0

�r = GM2
s

(�r)2
(3)

which leads to the tidal density stability condition of ρs > ρ

for the density of a satellite of extent �r and mass Ms or-
biting at a distance R0 from the centre of a spherical mass
distribution M(R) having an average matter density ρ inter-
nal to R0 resulting in a gravitational force Fext(R), under the
assumption �r � R. The equivalent calculation under the
force law given by the a � a0 limit of FMG = (GMa0)

1/2/R

is given by

(GM(R)a0)
1/2

R2
�r = (GMsa0)

1/2

�r
, (4)

leading to

ρs >

(
�r

R

)
ρ, (5)

as the equivalent of the classical tidal density criterion, as
a first generic approximation under modified gravity. Since
the spatial extent of wide binaries will always be much
smaller that their Galactocentric radii, (5) shows that under
modified gravity, to first order, wide binaries will be much
more robust to tides than under Newtonian gravity. In the
following section we apply the test we have identified to two
recent catalogues of wide binaries which became available
over the previous year, the SLoWPoKES catalogue of SDSS
wide binaries by [10] and the Hipparcos satellite wide bina-
ries catalogue of [27].
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3 Observed wide binary Samples

3.1 The Hipparcos wide binaries

The [27] catalogue of very wide binaries was constructed
through a full Bayesian analysis of the combined Hippar-
cos data base, the new reduction of the Hipparcos cata-
logue, [30], the Tycho-2 catalogue, [14] and the Tycho dou-
ble star catalogue, [11] mostly, amongst others. There, prob-
able wide binaries are identified by assigning a probability
above chance alignment to the stars analysed by carefully
comparing to the underlying background (and its variations)
in a 5 dimensional parameter space of proper motions and
spatial positions. The authors have taken care to account for
the distortions introduced by the spherical projection on the
relative proper motion measurements, �μ. When angular
separations cease to be small, small relative physical veloci-
ties between an associated pair of stars might result in large
values of �μ. A correction of this effect is introduced, to
keep �μ values comparable across the whole binary sepa-
ration range studied.

We have taken this catalogue and kept only binaries with
a probability of non-chance alignment greater than 0.9. The
wide binary search criteria used by the authors requires that
the proposed binary should have no near neighbours; the
projected separation between the two components is thus al-
ways many times smaller than the typical interstellar separa-
tion, see [27]. We use the reported distances to the primaries,
where errors are smallest, to calculate projected �V and
projected s from the measured �μ and �θ values reported
by [27]. Although the use of Hipparcos measurements guar-
antees the best available quality in the data, we have also
further pruned the catalogue to remove all binaries for which
the final signal to noise ratio in the relative velocities on the
plane of the sky was lower than 0.3.

We plot in Fig. 1 a sample of 280 binaries constructed as
described above, having distances to the Sun within 6 < d <

100 in pc. The slanted line gives the Newtonian prediction
of (1) to the upper limit expected on the relative velocities
shown, which appears in conflict with it, as they are defined
by a neat horizontal upper limit, as generically predicted by
modified gravity theories, (2). Figure 1 could then be a first
direct evidence of the breakdown of classical gravity theo-
ries in the low acceleration regime of a < a0.

The average signal to noise ratio for the data in Fig. 2
is 1.7, with an average error on �V of 0.83 km/s, which
considering a 2σ factor from the top of the distribution to
the real underlying upper limit for the sample, results in
3 km/s as our estimate of the actual physical upper limit
in �V . Comparing with (2), the factor accounting for non-
circular orbits in modified gravity comes to 4.5. That this
factor is significantly larger than the

√
2 of Newtonian grav-

ity is to be expected, as objects are much more tightly bound
in MOND-type schemes.

3.2 The SDSS wide binaries

The Sloan low mass wide pairs catalogue (SLoWPoKES) of
[10] contains a little over 1,200 wide binaries with relative
proper motions for each pair, distances and angular separa-
tions. Also, extreme care was taken to include only physical
binaries, with a full galactic population model used to ex-
clude chance alignment stars using galactic coordinates and
galactic velocities, resulting in an estimate of fewer than 2%
of false positives. As with the Hipparcos sample, this last re-
quirement yields only isolated binaries with no neighbours
within many times the internal binary separation. We have
also excluded all systems with white dwarfs or subdwarf
primaries, where distance calibrations are somewhat uncer-
tain. As was also done for the Hipparcos sample, all triple
systems reported in the catalogue were completely excluded
from the analysis.

Given the large range of distances to the SDSS binaries
(46 < d/pc < 992), we select only 1/3 of the sample ly-
ing within the narrow distance range (225 < d/pc < 338),
which forms the most homogeneous set in terms of the errors
in �V , excluding data with large errors at large distances.
Again, we use the reported distances to the primaries, where
errors are smallest, to calculate projected �V and projected
s from the measured �μ, �θ and d values reported by [10],
to plot Fig. 2. The figure shows 417 binaries with average
signal to noise ratio and average errors on �V of 0.5 and
11.3 km/s, respectively.

Fig. 1 The figure shows projected relative velocities and separations
for each pair of wide binaries from the [27] Hipparcos catalogue hav-
ing a probability of being the result of chance alignment <0.1. The
average value for the signal to noise ratio for the sample shown is 1.7.
The upper limit shows the flat trend expected from modified gravity
theories, at odds with Kepler’s third law, shown by the s−1/2 solid line
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Fig. 2 The figure shows projected relative velocities and separations
for each pair of wide binaries from the [10] SDSS catalogue within the
distance range (225 < d/pc < 338). The average value for the signal to
noise ratio for the sample shown is 0.5. The upper limit shows the flat
trend expected from modified gravity theories, at odds with Kepler’s
third law, shown by the s−1/2 solid line

The slanted solid line gives the Newtonian prediction
of (1). It is clear that the upper envelope of the distribution
of �V measurements from the catalogue does not comply
with Kepler’s third law. As was the case with the Hipparcos
sample, the upper envelope of the distribution of observed
measurements describes a flat line, as expected under modi-
fied gravity schemes.

Figure 3 is a plot of the number of SLoWPoKES sys-
tems for the full distance range, with �V values below
the Newtonian prediction of (1), and hence consistent with
it, as a fraction of the total per bin, as a function of pro-
jected binary separations. We see this fraction starts off be-
ing consistent with 1, but begins to decrease on approach-
ing log(s/pc) ≈ −2, after which point it rapidly drops, to
end up consistent with 0 on reaching separations of around
log(s/pc) ≈ −1. Again, the result matches the qualitative
generic expectations of modified gravity schemes, but would
call for further explanations under classical gravity.

The average signal to noise values in �V for the full dis-
tance range of the [10] catalogue is 0.48. The average error
on �V for the full SDSS sample is 12 km/s, which consid-
ering a 2σ factor from the top of the complete distribution
to the real underlying upper limit, results in the same 3 km/s
as obtained for the [27] Hipparcos catalogue.

We end this section with Fig. 4, where we calculate the
RMS value of the one-dimensional relative velocity differ-
ence for both of the samples discussed, after binning the

Fig. 3 The figure shows the number of systems with �V values below
the Newtonian upper limit prediction of (1), as a fraction of the total
per bin, for the SDSS data of [10], as a function of projected binary
separations

Fig. 4 The solid curve gives the RMS values for one dimensional
projected relative velocities as a function of projected separations, for
the detailed dynamical modelling of large populations of wide binaries
evolving in the Galactic environment, taken from [15]. The same quan-
tity for the data from the catalogues analysed is given by the points with
error bars; those with narrow log(s) intervals being from the Hipparcos
sample of [27], and those two with wide log(s) intervals coming from
the SDSS sample of [10]

data into constant logarithmic intervals in s. This quantity
is given by the points, where the error bars simply show the
propagation of the errors on �μ and d , reported by the au-
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thors of the catalogues. We construct �V1D by considering
only one coordinate of the two available from the relative
motion on the plane of the sky. Thus, each binary can furnish
two �V1D measurements, which statistically should not in-
troduce any bias. Indeed, using only �μl or only �μb or
both for each binary, yields the same mean values for the
points shown. The small solid error bars result from con-
sidering an enlarged sample where each binary contributes
two �V1D measurements, while the larger dotted ones come
from considering each binary only once, and do not change
if we consider only �μl or only �μb . The series of small
log(s) interval data are for the Hipparcos catalogue of [27],
while the two broader crosses show results for the [10]
SDSS sample of Fig. 2. For this last case, the much larger
intrinsic errors mean that to compensate through weight of
numbers the low signal to noise ratio of this catalogue, im-
poses the loss of separation resolution through the use of
only two bins, with vertical error bars which are only rele-
vant if the sample is doubled, as described above.

The solid curve is the Newtonian prediction of the full
Galactic evolutionary model of [15] for a randomly oriented
population of wide binaries with a realistic distribution of
eccentricities, both bound and in the process of dissolving.
Note that the results of this simulation deviate from Ke-
pler’s law for s larger than the Newtonian Jacobi radius of
the problem of 1.7 pc, whereas the deviation shown by the
samples of binaries studied also occur at much smaller sep-
arations (see below). Even considering the large error bars,
where each binary contributes only one �V1D value, we see
eight points lying beyond 1σ , making the probability of con-
sistency between this prediction and the observations of less
than (0.272)8 = 3 × 10−5. The only point where this model
is slightly at odds with the selection of the Hipparcos sam-
ple of [27], is that [15] assume 1M� stars for their binaries,
while the typical mass of the stars in the binaries we ex-
amine is closer to 0.5M�. This detail would only shift the
Newtonian prediction a factor of 21/2 further away from the
measurements. We obtain an RMS value for �V1D compati-
ble with a horizontal line at 1 km/s, in qualitative agreement
with expectations from modified gravity schemes. The ver-
tical dashed line marks the a = a0 threshold; we clearly see
the data departing from the Newtonian prediction outwards
of this line, and not before.

Under Newtonian Gravity one would need to look for an
alternative dynamical dissociation and heating mechanism
for the binaries we analyse which might result in relative ve-
locities an order of magnitude above the results obtained by
[15]. The Hipparcos catalogue has been closely studied for
over a decade, and not only the values reported, but also the
uncertainties in them are now well established. It is highly
unlikely that these confidence intervals might have been sys-
tematically underestimated by the community by a factor of
3, as would be required for the data in Fig. 4 to be consistent
with the Newtonian prediction of [15].

The two SDSS points are clearly consistent with the Hip-
parcos measurements, but given the much larger error bars,
they are also marginally consistent with the Newtonian pre-
diction at a 2σ level. A fuller discussion of the robustness of
our results to the various sample selection effects and errors
involved appears in the appendix.

The consistency of the results obtained from both cata-
logues provides a check of the physical reality of the trends
presented. The two completely independent, very carefully
constructed catalogues, each using different sets of selec-
tion criteria, each perhaps subject to its own independent
systematics, are consistent with the same result, a constant
horizontal upper envelope for the distribution of relative ve-
locities on the plane of the sky at an intrinsic value of 3 km/s
± 1 km/s, extending over three orders of magnitude in s,
with a constant RMS �V1D value consistent with 1 km/s ±
0.5 km/s. This supports the interpretation of the effect de-
tected as the generic prediction of modified gravity theories.

Given the relevance of the subject matter discussed, it
would be highly desirable to obtain an independent confir-
mation, ideally using a purposely designed sample includ-
ing cuts at a variety of stellar masses, in order to test the
scaling of the fourth power of the dynamical velocities with
mass expected under modified gravity schemes. To include
also radial velocity measurements would require sampling
over many epochs, as the only way to allow for the effects
of nearby companions in these frequently hierarchical sys-
tems.

4 Conclusions

We have identified a critical test in the classical gravity/
modified gravity debate, using the relative velocities of wide
binaries with separations in excess of 7000 AU, as these oc-
cupy the a < a0 regime characteristic of modified gravity
models. We present a first application of this critical test us-
ing the best currently available data; a large sample of wide
binaries from the SDSS with low signal to noise on the rela-
tive velocities, and a smaller Hipparcos satellite sample with
signal to noise ∼2 on the relative velocities of the binaries
sampled.

Results show constant relative RMS velocities for the bi-
nary stars in question, irrespective of their separation, in the
a < a0 regime sampled. This is quantitatively inconsistent
with detailed predictions of Newtonian dynamical models
for large populations of binaries evolving in the local galac-
tic environment.

Our results are qualitatively in accordance with generic
modified gravity models constructed to explain galactic dy-
namics in the absence of dark matter, where one expects
constant relative velocities for binary stars, irrespective of
their separation, in the a < a0 regime sampled.

~ Springer 
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Appendix: Calculation of confidence intervals

We begin this section with a discussion of various analyses
performed to test for the possibility that our results could
have been driven by potential systematics and selection ef-
fects in the catalogues.

We first test for the option that the results of Figs. 1 and
2 were distorted from the Newtonian prediction by errors
which correlate with the separation of the binaries, increas-
ing as the separation increases, to yield the trends obtained.
For the Hipparcos sample we ranked the binaries by sepa-
ration, s, and calculated the average errors on the resulting
�V in each the tightest third, middle third and widest third
of the binaries, yielding values 0.8 (0.4), 0.7 (0.11) and 1.0
(0.4) respectively, in km/s. The numbers in parentheses giv-
ing the dispersion of the distributions of errors in each of
the three thirds of the sample. It can be seen that there is
no increase either in the average values of the errors in �V ,
or in the width of the distributions of errors, with increas-
ing binary separations. For the SDSS sample the average
errors in �V show only a very slight increase of a factor
of 1.3 over the entire range probed. Thus, for both samples,
the trends of Figs. 1, 2 and 4 cannot be explained as aris-
ing from the Newtonian prediction and an increase in the
errors with binary separation. In essence, the data presented
are inconsistent with the Newtonian prediction not because
of differences in the details of the trends, but because the
former presents multiple real detections at a level of 3 km/s
± 1 km/s, while the latter is smaller by an order of magni-
tude. The resulting RMS values for the various data points
are of ≈1 km/s ± 0.5 km/s, while the Newtonian prediction
lies below the detection by about a factor of 10.

We next check against systematics in the catalogues,
which would preferentially arise in the lower signal to noise
points, or alternatively, in the most distant ones. For the
Hipparcos sample, we repeat the experiment including only
points with a signal to noise ratio on �V > 1, and then in-
cluding only the binaries nearest to earth with d < 50 pc.
These two sub-samples have 186 and 130 binaries, with av-
erage signal to noise ratios on �V above the value of 1.7
of Fig. 1, of 2 and 2.2 respectively, and yield results indis-
tinguishable from Figs. 1 and 4. Also, we checked explic-
itly the results of the SDSS sample for any systematics with
distance to the binaries analysed, and found the flat upper
envelope to be robust to the choice of distance range taken.

Although no specific cut in resulting �V or even on mea-
sured �μ was built into the Hipparcos catalogue, the SDSS

one includes the selection cut that the signal to noise ratio
on �μ should be <2. We repeat the SDSS analysis tracing
the 15% of the points closest to this cut, and find that these,
the ones which just made the cut, do not define the flat up-
per envelope on �V . For both the Hipparcos and the SDSS
samples, any observational bias/truncation would appear in
(�μ, �θ ) space, not in the (�V , s) one.

We end with a detailed description of the calculation of
the points in Fig. 4 and their error bars, directly from the
data published in the catalogues used. Whenever z = f (x),
the error in z is given by δz = | df

dx
|δx, where δx is the error

in x. If z is a function of several variables z = f (x1, x2, . . .),
the absolute error, which we take, is δz = ∑

i | ∂f
∂xi

|xi
δxi

which is always greater than the standard deviation σz =√∑
i (

∂f
∂xi

δxi)2.
Following these rules we estimate the absolute error in

each �V measurement, and in the RMS velocity for the
samples studied. For the Hipparcos sample we have taken
columns 11, 12, 13 and 14 of the online catalogue of [27],
which contains the values of the relative motions of each bi-
nary and their errors, as well as columns 15 and 16, which
contain the distance to the binary, d , and its corresponding
error, δd .

For all calculations, we considered the distance to the
system as the distance to the primary. For each binary we
calculated the projected relative velocity �v in km/s and its
error as

�v = 4.74 × 10−3�μd, (A.1)

δ(�v) = 4.74 × 10−3(δ(�μ)d + �μδd
)
, (A.2)

hence, on (�v)2the error is δ(�v)2 = 2�vδ(�v). The RMS
velocity is now

�vRMS =
√√√√1

n

n∑
i=1

(�v)2 =
√〈

(�v)2
〉
. (A.3)

We then binned the data into constant logarithmic inter-
vals in s with a width of 0.32 and calculated �vRMS for each
bin, n the number of binary systems that fall into each bin.
The error in �vRMS for each bin is now:

δ(�vRMS) = 1

2

〈δ(�v)2〉√〈(�v)2〉 . (A.4)

To compare with the prediction of the RMS values for
the one dimensional projected relative velocities of the evo-
lutionary model of [15] we construct �vRMS by considering
only one coordinate. For the case of the SDSS sample of
[10], we have calculated the relative proper motion for each
coordinate �μα = μαA

−μαB
and �μδ = μδA

−μδB
taking

columns 18 to 25 of their online catalogue, which contain
the proper motions and their errors in equatorial coordinates
for each component of the binary system, to estimate the

--

.g) Springor 
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projected relative velocity we have used column 26 contain-
ing the distance to the primary, in this case we consider an
error of 15% in the distance and we have followed the same
path as in the previous case for calculating the RMS relative
velocities and their errors.
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Caṕıtulo 3

Perfil de dispersión de
velocidades asintóticamente
plano en cúmulos globulares:
modelos con gravedad modificada

3.1. Resumen

Observaciones recientes en cúmulos globulares muestran que la dispersión de
velocidades no decrece con la separación al centro del cúmulo como se espera
bajo la dinámica newtoniana, sino que se mantiene constante en regiones donde
la aceleración es menor que la aceleración de Milgrom a0 = 1.2 × 10−8cm/s2.
Dentro de un esquema de gravedad modificada se espera tener velocidades de
equilibrio constantes cuando la aceleración es del orden de a0 y qu esta velocidad
sea proporcional a la ráız cuarta de la masa bariónica total (relación Tully-Fisher).

En este caṕıtulo construimos modelos de equilibrio dinámico para cúmulos
globulares donde el perfil de dispersión de velocidades ha sido medido como fun-
ción del radio, usamos la ley de fuerza de gravedad modificada propuesta por
Mendoza et al. (2011), la cual a mostrado ser consistente con las restricciones im-
puestas por el sistema solar a una ley de gravedad que se desvie de la newtoniana
y con la curva de rotación esperada para nuestra galaxia.

Encontramos que es posible reproducir todas las restricciones observacionales
para los cúmulos globulares; el perfil de brillo superficial, la masa total del cúmu-
lo y el perfil de dispersión de velocidades proyectado incluyendo la parte plana.
Además usando modelos de śıntesis de poblaciones estelares para cada cúmulo es-
timamos su masa independientemente de cualquier suposición de la dinámica del
cúmulo. Como resultado obtenemos que la masa de cada cúmulo globular es pro-
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3. PERFIL DE DISPERSIÓN DE VELOCIDADES
ASINTÓTICAMENTE PLANO EN CÚMULOS GLOBULARES:
MODELOS CON GRAVEDAD MODIFICADA

porcional a la cuarta potencia del valor asintótico de la dispersión de velocidades,
tal como se espera en los escenarios de gravedad modificada.

Además como una prueba de consistencia de los modelos de equilibrio desa-
rrollados para cúmulos globulares, los aplicamos a la galaxia eĺıptica gigante NGC
4649, un sistema varios ordenes de magnitud en masa y tamaño mayor que los
cúmulos y nuevamente logramos construir modelos de equilibrio para esta galaxia
que satisfacen todas las restricciones observacionales incluyendo la parte plana de
su perfil de dispersión de velocidades proyectado sin la necesidad de incluir ma-
teria oscura. Mientras que los modelos newtonianos requieren un halo de materia
oscura con una masa de casi la mitad de la masa total de la galaxia a tres radios
efectivos.

Mi participación en estos art́ıculos consistió en desarrollar los modelos de equi-
librio y aplicarlos a los cúmulos, y supervisar la elaboración independiente de los
mismos modelos del estudiante Gustavo Garcia para que fueran aplicados a NGC
4649, a partir de estos modelos se obtuvieron todos los resultados presentados en
el art́ıculo. también participe en la escritura de ambos y en todo el proceso de
revisión hasta que fueron publicados.
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ABSTRACT

In the context of theories of gravity modified to account for the observed dynamics of galactic systems without
the need to invoke the existence of dark matter, a prediction often appears regarding low-acceleration systems:
wherever a falls below a0, one should expect a transition from the classical to the modified gravity regime. This
modified gravity regime will be characterized by equilibrium velocities that become independent of distance and
that scale with the fourth root of the total baryonic mass, V 4 ∝ M . The two conditions above are the well-known flat
rotation curves and Tully–Fisher relations of the galactic regime. Recently, however, a similar phenomenology has
been hinted at, at the outskirts of Galactic globular clusters, precisely in the region where a < a0. Radial profiles of
the projected velocity dispersion have been observed to stop decreasing along Keplerian expectations and to level
off at constant values beyond the radii where a < a0. We have constructed gravitational equilibrium dynamical
models for a number of globular clusters for which the above gravitational anomaly has been reported, using
a modified Newtonian force law that yields equilibrium velocities equivalent to modified Newtonian dynamics.
We find models having an inner Newtonian region and an outer modified gravity regime, which reproduce all
observational constraints, surface brightness profiles, total masses, and line-of-sight velocity dispersion profiles,
can be easily constructed. Through the use of detailed single stellar population models tuned individually to each
of the globular clusters in question, we derive estimates of the total masses for these systems. Interestingly, we find
that the asymptotic values of the velocity dispersion profiles are consistent with scaling with the fourth root of the
total masses, as expected under modified gravity scenarios.

Key words: globular clusters: general – gravitation – stars: kinematics and dynamics

Online-only material: color figures

1. INTRODUCTION

In the context of modified gravity theories, where the dy-
namical measurements usually ascribed to the presence of dark
matter are interpreted as evidence for a change in the form of
gravity, stellar populations in the Galactic halo have proven to be
critical test grounds. The relative proximity of many such sys-
tems makes them accessible to detailed photometric and spec-
troscopic kinematical observations, while the total absence of
gas in the cases of many dwarf spheroidal satellites (dSph) and
globular clusters (GCs) implies these objects present a relatively
clean test, as only the measured stellar component must be re-
sponsible for the measured dynamics, in the absence of any dark
matter.

Galactic dwarf spheroidal satellites appear under classical
gravity as the most heavily dark matter dominated systems
known and have been modeled extensively under modified
Newtonian dynamics (MOND), e.g., Sanchez-Salcedo et al.
(2006), Angus (2008), Hernandez et al. (2010), McGaugh &
Wolf (2010), and Kroupa et al. (2010) for some recent examples,
or equivalently, thinking of MOND as a modified Newtonian
force law, rather than a change to Newton’s second law, by
Mendoza et al. (2011). Sanchez-Salcedo & Hernandez (2007)
also studied the problem of the tidal limiting of Galactic GCs
and local dSph galaxies comparatively under MOND and dark
matter, finding both hypothesis to be consistent with the data,
given the present level of observational errors.

One generic prediction of modified gravity theories, designed
not to require the hypothesis of dark matter, is that as acceler-
ations fall below a0 ≈ 1.2 × 10−10 m s−2, a transition should
occur away from Newtonian gravity (e.g., MOND in Milgrom
1983; TeVeS in Bekenstein 2004; QUMOND, BIMOND in

Zhao & Famaey 2010; and modified Newtonian force law in
Mendoza et al. 2011). This modified regime will be character-
ized by equilibrium velocities for test particles orbiting within
spherical mass distributions that become constant with distance
and that scale with mass as V 4 ∝ M .

In this sense, the recent studies by Scarpa et al. (2007a,
2007b, 2011) appear particularly exciting, as they find precisely
the above-mentioned transition in a number of Galactic GCs,
precisely beyond the radius where accelerations fall below a0.

The modelling of Galactic GCs under modified gravity the-
ories has been studied before, e.g., Baumgardt et al. (2005)
study the mean values of the velocity dispersion expected under
Newtonian gravity and MOND comparatively, finding larger
values are expected in MOND, for GCs in the outer halo of the
Milky Way. Moffat & Toth (2008), however, obtain expected
values for the mean velocity dispersion of GCs compatible with
Newtonian expectations and projected velocity dispersion pro-
files which fall slower than Newtonian expectations, compatible
with the measurements of Scarpa et al. (2007a, 2007b). Haghi
et al. (2009) use a MOND N-body code to account for the effects
of the external field effect of MOND in the problem and find
that the profiles of the projected velocity dispersion of Galactic
GCs can serve as a test in constraining modified gravity theo-
ries. Using an analytical treatment of the problem under MOND,
ignoring the external field effect of MOND, Sollima & Nipoti
(2010) construct the MOND equivalent of analytic King pro-
files, where one limits the extent of the modeled distributions
through the Galactic tides, to get models where the velocity
dispersion profiles fall to zero. Also, very recently Haghi et al.
(2011) again use a numerical MOND N-body code to show that
under MOND mean velocity, dispersions of Galactic GCs are
expected to be higher than Newtonian.
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In this paper, we construct fully self-consistent dynamical
models for Galactic GCs using the modified Newtonian force-
law formulation of Mendoza et al. (2011) to explore the
consistency of that approach. The modeled density profiles
are calibrated to match observed surface brightness profiles,
projected velocity dispersion radial profiles, and total masses
inferred through a careful single stellar population modeling of
the GCs in question, taking into account metallicity and age
of the relevant stellar populations. We pay particular attention
to reproducing the flat outer regions of the velocity dispersion
profiles, as recently measured by Drukier et al. (1998), Scarpa
& Falomo (2010), and Scarpa et al. (2011).

We find that fully self-consistent equilibrium models can be
constructed to match all observational constraints available on
Galactic GCs, including the outward flattening of the projected
velocity dispersion profiles. To within uncertainties, the same
happens under Newtonian gravity (e.g., Drukier et al. 2007;
Lane et al. 2010; Küpper et al. 2010), where the kinematics
in question are interpreted as evidence of tidal heating by the
overall Galactic gravitational field, occurring even in the absence
of prominent tidal tails, or contamination of unbound stars. It is
interesting that we further find that the masses and asymptotic
velocity dispersions of the studied GCs are consistent with a
scaling σ 4 ∝ M . This last point strengthens the interpretation
of the observed dynamics in the outskirts of Galactic GCs as
evidence for modified gravity in general.

In Section 2, we derive the model through which equilib-
rium profiles for spherically symmetric stellar populations are
derived, under the modified Newtonian force law of Mendoza
et al. (2011). In Section 3, we show that such models can be
easily obtained to satisfy all observed parameters for a sample
of eight recently observed Galactic GCs, all clearly showing a
flattening of their projected velocity dispersion profiles at large
radius. Our conclusions appear in Section 4.

2. NON-ISOTHERMAL GRAVITATIONAL
EQUILIBRIUM MODELS

We shall model GCs as populations of self-gravitating stars in
spherically symmetric equilibrium configurations (e.g., Sollima
& Nipoti 2010), under a modified Newtonian gravitational
force law for test particles at a distance r from the centers of
spherically symmetric mass distributions M(r):

f (x) = a0x

(
1 − xn

1 − xn−1

)
. (1)

In the above, x = lM/r , where lM = (GM(r)/a0)1/2. We
see that when a � a0, x � 1 and f (x) → a0x

2, and one
recovers Newton’s gravity force law, while when a � a0,
x � 1 and f (x) → a0x, where an equivalent MOND force
law f = (GM(r)a0)1/2/r is obtained. The index n mediates the
abruptness of the transition between the two regimes. Note that
for a soft n = 2 transition function one recovers the classical
MOND μ function of Bekenstein (2004).

This was shown in Mendoza et al. (2011) to yield gener-
alized isothermal gravitational equilibrium configurations with
characteristic radii, masses, and velocity dispersions, rg, M, σ ,
which smoothly evolve from the classical virial equilibrium of
M = σ 2rg/G to the observed tilt in the fundamental plane of
elliptical galaxies, to the σ 4 = (MGa0) scaling of the galactic
Tully–Fisher relation, as one goes from x � 1 to x ∼ 1 to
x � 1. Also, consistency with solar system observations was

found there to constrain the transition to be fairly abrupt, re-
quiring n > 4. In Mendoza et al. (2011), it is also proven that a
sufficient condition for Newton’s theorems for spherically sym-
metric mass distributions to hold, for any modified force law,
is only that f can be written as a function exclusively of the
variable x, which we will be using in what follows to construct
equilibrium models for GCs. Recently, Bernal et al. (2011)
showed this modified force-law model to be the low-velocity
limit of a formal generalization to GR of the f (R) type, provid-
ing a theoretical basis for the model used.

The equation of hydrostatic equilibrium for a polytropic
equation of state P = Kργ is

Kγργ−2 dρ

dr
= −∇φ. (2)

Since ρ = (4πr2)−1dM(r)/dr , going to locally Maxwellian
conditions γ = 1 and K = σ 2(r), the preceding equation can
be written as

σ (r)2

[(
dM(r)

dr

)−1
d2M(r)

dr2
− 2

r

]
= −a0x

(
1 − xn

1 − xn−1

)
,

(3)
where σ (r) is the isotropic Maxwellian velocity dispersion for
the population of stars, which is allowed to vary with radius, as
observed in GCs, e.g., Sollima & Nipoti (2010). The above is
a generalization of the treatment presented in Hernandez et al.
(2010), which we used in the modeling of dSph galaxies, which
are characterized by flat velocity dispersion profiles, obtaining
mass models consistent with observed velocity dispersions, half-
mass radii, and total masses, in the absence of dark matter.
Locally Maxwellian models of this type with radially varying
volumetric velocity dispersions can be found in, e.g., Ibata et al.
(2011), where conditions are further generalized to the inclusion
of a varying radial orbital anisotropy, which, for simplicity, we
take as zero.

As an illustrative example we can take the limit f (x) = a0x
2,

and recover −GM(r)/r2 for the right-hand side of Equation (3),
the Newtonian expression appearing for a � a0, or equivalently
r � lM . If one then imposes isothermal conditions σ (r) ≡ σ
and looks for a power-law solution for M(r) = M0(r/r0)m,
we get

σ 2

[
m − 3

r

]
= −GM0

r2

(
r

r0

)m

, (4)

and hence m = 1, the standard isothermal halo, M(r) =
2σ 2r/G, having a constant centrifugal equilibrium velocity
v2 = 2σ 2 and infinite extent. At the other limit, a � a0, r � lM ,
Equation (3) yields

σ 2

[
m − 3

r

]
= − [GM0a0]1/2

r

(
r

r0

)m/2

. (5)

In the limit m = 0, we obtain M(r) = M0 and v2 =
3σ 2 = (GM0a0)1/2, the expected Tully–Fisher scaling of the
circular equilibrium velocity with the fourth root of the mass,
with rotation velocities which remain flat even after the mass
distribution has converged, rigorously isothermal halos are
naturally limited in extent. It is interesting to note that in this
limit the scaling between the circular rotation velocity and the
velocity dispersion is only slightly modified as compared to the
Newtonian case, the proportionality constant changes from 2 to
3, for the squares of the velocities. In astrophysical units, this
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low-acceleration limit for an isothermal halo in gravitational
equilibrium yields

σ = 0.2

(
M0

M�

)1/4

km s−1, (6)

v = 0.35

(
M0

M�

)1/4

km s−1, (7)

for the velocity dispersion and the centrifugal equilibrium
velocities of a halo of total mass M0, respectively.

Also, it must be kept in mind that Galactic GCs are not in
isolation, but orbit within the Galactic environment. This leads
to a radius beyond which the tidal forces of the Milky Way
unbound the outer stars of a GC, which depends on the mass
and orbital radius of the GC in question. The above tidal radius
can be calculated to first order for a point mass orbiting another
point mass by equating the internal gravitational force of the GC
to the derivative of the Galactic gravitational force; we briefly
recall the first-order tidal limit calculation of

dFext(R)

dR

∣∣∣∣
R0

Δr = Fint, (8)

which leads to the tidal density stability condition of ρs > ρ for
the density of a satellite of extent Δr and mass Ms orbiting at a
distance R0 from the center of a spherical mass distribution
M(R) having an average matter density ρ internal to R0
resulting in a gravitational force Fext(R), where the internal
gravitational force under Newton is Fint = −GM2

s /(Δr)2, under
the assumption Δr � R. The equivalent calculation under the
force law given by the a � a0 limit of F = −(GMa0)1/2/R is
given by

(GM(R)a0)1/2

R2
Δr = (GMsa0)1/2

Δr
, (9)

leading to

ρs >

(
Δr

R

)
ρ, (10)

as the equivalent of the classical tidal density criterion. In terms
of masses and radii only, we obtain the tidal radius as

rt = R

(
Ms

M(R)

)1/4

. (11)

Since the spatial extent of GCs will always be much smaller
than their Galactocentric radii, Equation (10) shows that under
the modified gravitational force law explored here, GCs will
be much more robust to tides than under Newtonian gravity.
As an example, for a 3 × 105 M� GC orbiting 10 kpc from
a 1.6 × 1011 M� mass, corresponding through Equation (7) to
the 220 km s−1 of the Galactic rotation curve, the tidal radius
comes to 370 pc. This is relevant as it shows that treating GCs
as isolated systems is a self-consistent assumption within the
approach of the modified force law being considered. Recent
examples of dynamical modeling of Galactic GCs treated as
isolated systems can be found in, e.g., Sollima & Nipoti (2010)
and Haghi et al. (2011).

Taking initial conditions M(r) → 0, dM(r)/dr → 4πr2ρ0,
when r → 0, a constant central density ρ0, we can solve the
full second-order differential Equation (3) for M(r) through a
numerical finite differences method, once a model for σ (r) is
adopted.

Solving Equation (3) yields the volumetric profiles for the
density and mass, ρ(r), M(r). ρ(r) is then projected along one
dimension to obtain a projected surface density mass profile,
Σ(R). In all that follows we shall use r for radial distances in
three dimensions, and R for a projected radial coordinate on
the plane of the sky. Σ(R) can be compared to observed surface
brightness profiles once a mass-to-light ratio is assumed. Given
the appearance of mass segregation processes in the dynamically
evolved stellar populations of Galactic GCs, volumetrically, the
mass-to-light ratio of a real GC will never be strictly constant.
However, given the ages of the stellar populations involved,
only a narrow range of stellar masses remain, and further,
observed surface brightness profiles are projections on the plane
of the sky of the volumetric density profiles. Thus, observed
surface brightness measurements towards the central regions
of GCs imply an integration across the entire foreground and
background of any observed cluster. This in turn means that the
regions where mass segregation is strongest, the central ones,
contribute to the projected surface brightness profiles only after
being averaged out over lines of sight traversing entirely the
cluster in question. Even after this averaging process, the high
densities found toward the center still surely imply M/L values
which strictly must be a function of radius, even for the surface
brightness profiles I (R). Still, for the reasons described above,
it is frequent to compare modelled Σ(R) mass surface density
profiles directly to observed projected surface brightness profiles
through the use of constant M/L values, e.g., Jordi et al. (2009)
and Haghi et al. (2011). In what follows, we will also perform
such comparisons assuming constant M/L values.

Finally, a projected velocity dispersion profile σp(R) is con-
structed through a volume density weighted projection of the
volumetric velocity dispersion profile of a model, σ (r). There-
fore, a proposed model for σ (r) does not directly give a pro-
jected σp(R) profile, which the model only yields after having
solved for the detailed density structure, and the subsequent
mass weighted projection of the proposed σ (r).

Observations provide only the density weighted projected
profiles of σ (r), integrated along the line of sight, σp(R), not
the volumetric σ (r) profiles which we require in Equation (3).
We shall therefore adopt a parametric form for the volumetric
velocity dispersion profile and adjust the parameters to obtain a
match to the observed GC properties. For this we use

σ (r) = σ1exp

(
− r2

r2
σ

)
+ σ0. (12)

In the above, σ0 is given directly by the observations as the
asymptotic value of the measured projected velocity dispersion
profile for each GC, as at large R radii, projection effects tend
to zero and σp(R) → σ (r). This leaves us with three model
parameters to determine: ρ0, σ1, and rσ , which we fit to match
the observed projected velocity dispersion profiles, as well as
central projected velocity dispersion values for each observed
GC treated, and comparing the resulting model Σ(R) profiles
to the observed surface brightness profiles of any given GC,
under the requirement that the M/L ratios used be consistent
with detailed inferences from the stellar evolutionary and initial
mass function (IMF) studies of McLaughlin & van der Marel
(2005).

We end this section presenting in Figures 1 and 2, a sample
model. In Figure 1 we show the volumetric density profile, which
is qualitatively similar to a cored isothermal profile, with the
difference that the asymptotic ρ(r) profile at large radii is steeper
than the r−2 of the Newtonian case. This results in finite total
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Figure 1. Volumetric density profile for a sample model. The vertical line gives
the point where x = 1. Note that the asymptotic ρ(r) profile at large radii is
steeper than the r−2 of the Newtonian case, resulting in a finite total radius and
total mass for the configuration.

(A color version of this figure is available in the online journal.)

masses and finite half-mass radii even for the asymptotically
flat σ (r) volumetric profiles we adopt, in contrast with the
situation in classical gravity, where infinitely extended mass
profiles would appear. These finite profiles are also what results
under the type of modified gravity laws we are treating, even for
rigorously isothermal σ (r) = σ0 equilibrium configurations, as
already pointed out in Hernandez et al. (2010) and Mendoza
et al. (2011) and as shown in the developments following
Equation (5).

Figure 2 shows the corresponding volumetric radial mass
profile for the same sample model, indicating again with a
vertical line the threshold where x = 1. We see that only
20% of the total model mass lies beyond x = 1. This fraction
is distributed over a much larger area having much smaller
projected mass surface densities than the central regions interior
to the x = 1 threshold, the ones which are much more easily
observed, and over which Newtonian gravity accurately holds.

These two figures illustrate the physical consistency of the
model, a positive isothermal volumetric velocity dispersion is
assumed, integration of Equation (3) then yields a volumetric
density profile essentially consistent with what would appear
under Newtonian dynamics in the region interior to x = 1, where
the force law converges precisely to the standard expression. At
large radii however, the density profile increasingly steepens
and naturally reaches ρ(r) = 0 at a well-defined total radius,
as is evident from the convergence seen in Figure 2. Thus,
the distribution function is necessarily positive throughout the
modeled structure and goes to zero at a well-defined outer radius.
In the following section we give best-fit models for eight recently
observed Galactic GCs.

3. MODELING OBSERVED GLOBULAR CLUSTERS

We now present best-fit models constructed as described
above, optimized to match observed projected surface brightness
profiles, under M/L values consistent with the ranges given by
McLaughlin & van der Marel (2005) for each individual GC
modeled, and projected velocity dispersion measurements for
a series of Galactic GCs. The data for the projected velocity

Figure 2. Volumetric mass profile for the same sample model of Figure 1. The
vertical line gives the point where x = 1. The convergence to a total mass is
evident, despite not having introduced any externally determined tidal radius.

(A color version of this figure is available in the online journal.)

dispersion profiles are taken from Drukier et al. (1998), Scarpa
et al. (2004, 2007a, 2007b, 2011), and Scarpa & Falomo
(2010), and the surface brightness profiles from Trager et al.
(1995). We infer the total masses from the integration of
the observed surface brightness profiles, assuming again M/L
values consistent with the ranges given by McLaughlin & van
der Marel (2005) for each individual GC modeled. These author
calculate detailed single stellar population models tuned to the
inferred ages and metallicities of each of the clusters we model.
We checked for consistency through the synthetic H-R diagram
construction procedure described in Hernandez & Valls-Gabaud
(2008).

For the above-mentioned case, we take the relevant ages
and metallicities from the following literature: Salaris & Weiss
(2002) and Kraft & Ivans (2003) for NGC 288 and NGC 6341;
Salaris & Weiss (2002) and Rutledge et al. (1997) for NGC 6171;
Salaris & Weiss (2002), McNamara et al. (2004), and Kraft
& Ivans (2003) for NGC 7078; and Samus’ et al. (1995) and
Harris (1996) for NGC 7099, respectively. In obtaining inferred
total masses, confidence intervals were assigned by considering
the full catalogue of M/L values given by McLaughlin & van
der Marel (2005) for each individual GC, for the full range of
plausible stellar models considered in that study, for each of the
GCs we treat. The final results for the mass-to-light ratios are
shown in Table 1.

The final resulting density weighted projected velocity disper-
sion profiles, σp(R), together with the resulting surface bright-
ness profiles for the eight GCs treated appear in Figures 3
and 4, where the vertical line indicates the point where a = a0.
The models accurately fit the observed projected surface bright-
ness profiles of the clusters, the central value of the measured
projected velocity dispersion, as well as the observed profiles
for σp(R).

We see five cases, NGC 288, NGC 1851, NGC 5139,
NGC 6341, and NGC 7099, where the models very accurately
reproduce all light distribution and velocity dispersion profiles,
which in fact agree with the observations in all cases, to
within reported uncertainties. For NGC 1904 and NGC 6171,
a very slight mismatch appears between the models and the
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Figure 3. Comparison of the resulting model projected surface brightness profiles and resulting model projected velocity dispersion profiles to the corresponding
observed quantities for the first four GCs studied. In all cases, the assumed M/L values were within the ranges given by McLaughlin & van der Marel (2005) for each
individual GC through detailed stellar population modeling. The vertical line gives the point where x = 1 and the modified force law used shifts from the classical
Newtonian form to the MONDian character of Equation (5).

(A color version of this figure is available in the online journal.)

observations of the surface brightness profiles at values of R ∼
a few pc, and for NGC 7078, over the outer regions, precisely
beyond x = 1, the model falls below the observed surface
brightness profile. These two last points could be evidence of
the failure of some of the assumptions used in these cases,
probably the presence of velocity anisotropy in the dynamics of
the stars in question. Alternatively, a slight tuning of the assumed
volumetric M/L ratios with radius, within entirely plausible
ranges, would improve the fits. Rather than introducing a further
degree of freedom, we prefer to show that highly adequate fits are
easily obtained for the simplest M/L = constant assumption.

We see also the steepening of the surface density brightness
profile toward the edge of the clusters, particularly for NGC 288
and NGC 7099. Under Newtonian gravity this feature would be
interpreted as a tidal radius, while under the modified force-law

scheme treated here, it is a natural consequence of the change
in the gravitational regime, leading to finite matter distributions
when a < a0 and σ (r) tends to a constant, cf. Equation (5).

A model with a degree of radial orbital anisotropy which
varies with radius is an entirely plausible alternative, implying
the introduction of a further free function that allows us to more
accurately reproduce the surface brightness profiles. We have
also chosen not to complicate the model with the inclusion of
a β(r) profile, and preferred to show that under the simplest
isotropic construction, the modified force law we test is capable
of adequately reproducing all the observations in five of the cases
studied, although slight mismatches appear in three other cases.
In particular, for NGC 7078, our model requires more mass at
large radii, but without an increase in σ (r) in that region. This
can be trivially accommodated by an increase of kinetic energy
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Figure 4. Comparison of the resulting model projected surface brightness profiles and resulting model projected velocity dispersion profiles to the corresponding
observed quantities for the last four GCs studied. In all cases, the assumed M/L values were within the ranges given by McLaughlin & van der Marel (2005) for each
individual GC through detailed stellar population modeling. The vertical line gives the point where x = 1 and the modified force law used shifts from the classical
Newtonian form to the MONDian character of Equation (5).

(A color version of this figure is available in the online journal.)

at large radius, which should not be evident in the observed
velocity dispersion, through the inclusion of radial motion, a
degree of orbital radial anisotropy appearing beyond 20 pc.

Obtaining a good match required taking a high exponent of
n = 10 in Equation (3), i.e., a relatively sharp transition for the
generalized force law, which however, remains continuous and
differentiable at all points, by construction. This is in agreement
with observed upper limits to deviations from Newtonian
dynamics at the solar system, models for the Galactic rotation
curve, and equilibrium models for the local dSphs, as shown
in Mendoza et al. (2011) to apply for the modified force law
tested here, provided n > 4. Essentially, this implies that the
transition between the Newtonian and the “MONDian” regimes
must be fairly abrupt. In fact, given the form of Equation (3), the

final model becomes independent of n for any value of n higher
than 10.

We now illustrate the dependence of the models obtained to
the assumed force-law index n. Figure 5 shows the ratio between
the resulting model mass, M, to the observed cluster mass, Mc,
as a function of the value of n used, for best-fit models for two
illustrative cases, NGC 288 and NGC 6341, the upper and lower
curves at the right end, respectively. The shaded region gives the
allowed range of GC mass for a particular choice of stellar popu-
lation parameters in McLaughlin & van der Marel (2005); if the
systematic uncertainties were included, the shaded region would
extend, but only upward, by a factor of about two. We see that
obtaining a total model mass in accordance with direct stellar
population studies requires taking a value of n > 5 for NGC 288
and n > 8.5 for NGC 6341. The particular minimum value of
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Figure 5. Dependence of resulting model mass on the value of the force-law
index n. The ratio of the model mass to the inferred GC mass is shown for
two representative clusters, with the shaded region giving the range allowed by
direct stellar population studies of the clusters shown, NGC 288 and NGC 6341.
This illustrates the need for a sharp transition in the force law used.

(A color version of this figure is available in the online journal.)

Table 1
Model Parameters for the Globular Clusters Treated

Globular Cluster log(ρ0) σ1 σ0 rσ (M/L)M (M/L)GC

NGC 288 2.15 0.83 2.1 18.0 2.0 3.03 ± 1.12
NGC 1851 5.65 6.00 3.9 7.0 2.0 3.00 ± 1.19
NGC 1904 4.70 3.00 2.0 9.0 1.73 2.73 ± 1.00
NGC 5139 3.60 8.90 7.4 15.0 2.0 2.68 ± 0.98
NGC 6171 3.52 1.20 2.8 5.0 2.5 3.20 ± 1.20
NGC 6341 4.68 3.50 3.3 9.0 1.63 2.55 ± 0.95
NGC 7078 4.98 5.80 2.9 11.0 1.7 2.51 ± 0.90
NGC 7099 4.92 1.80 2.3 8.0 1.65 2.60 ± 0.90

Notes. ρ0 gives the central values of the stellar density used in each model in
units of M� pc−3, while σ0, σ1 and rσ give the parameters of the volumetric
velocity dispersion profile used, in units of km s−1 and pc, respectively. (M/L)M
gives the mass-to-luminosity ratios used in each model, and (M/L)GC gives the
corresponding values reported by McLaughlin & van der Marel (2005) for each
cluster through single stellar population modeling using age and metallicity
parameters as appropriate for each.

n required for the other clusters in the sample varies somewhat,
although most require values n > 8–9 to reach the minimum
inferred masses. As this parameter cannot be expected to change
from cluster to cluster, we have taken n = 10 in all cases.

Note that this value results in an equivalent MOND μ transi-
tion function that is fairly abrupt. For comparison, most MOND
transition functions proposed imply a softer transition from the
Newtonian to the MONDian regimes, e.g., the μ function of
Bekenstein (2004) corresponds exactly to the force law treated
here, with n = 2. A similar result has recently been pre-
sented by Qasem (2011), who analyzes laser lunar ranging
data to constrain the allowed departures from Newtonian grav-
ity at the scale studied and finds that the data rule out most
proposed MOND transition functions, while our proposal of
Mendoza et al. (2011) remains consistent with the test per-
formed. This completely independent study supports the con-
straints of Figure 5, implying that the transition from the

Figure 6. Projected velocity dispersion profiles normalized to σ0 and to R0 of
our models for four representative examples.

(A color version of this figure is available in the online journal.)

Newtonian regime to the MONDian one is probably steeper
than commonly thought.

Figure 6 now shows the radial profiles of σp(R) for four of
the Galactic GCs in the sample, where we have normalized the
velocity dispersions to their asymptotic values, and the radial
coordinate to the values where the condition x = 1 (a = a0) is
met in each of the models, R0. Measurements with confidence
intervals appear represented by different symbols for each GC.
We again see that σp(R) profiles consistent with observations are
easily obtained, while fitting simultaneously surface brightness
profiles, to within the error bars, where we have also assumed
a 20% uncertainty in all distance determinations. The four
clusters included in this figure illustrate the range of behaviors
found, from NGC 7078 which shows a very large variation
in σp(R) from the center to the outskirts, implying a large
Newtonian inner region and only a slight MONDian outer zone,
to clusters with only small variations in σp(R) like NGC 6171
and NGC 7099. An extreme case is NGC 288 with a σp(R)
profile which is also consistent with observations, but which
cannot be plotted in Figure 6, as that low-density cluster lies in
the a < a0 regime throughout, and therefore R0 is not defined
for it.

Note that no external field effect of MOND was included in
the dynamical modeling performed, as was also not included in,
e.g., Sollima & Nipoti (2010). The fact that accurate mass and
velocity dispersion models can be thus constructed is suggestive
of a modified gravity formulation where no such effect appears.

Finally, in Figure 7 we plot inferred values of the total masses
and asymptotic values of projected velocity dispersions for the
eight GCs we study, with their corresponding confidence inter-
vals. The solid line shows the best-fit power-law dependence for
this plot, excluding Omega Cen from the fit. Note that the quan-
tities plotted here are completely independent of any dynamical
modeling, being merely measured velocity dispersion values in
the outskirts of the clusters in question, and total masses as
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Figure 7. Points with error bars represent the values of σ0 and total stellar mass
for the eight GCs we study. The solid line gives the best-fit power law, having
a slope of 0.31 ± 0.06, excluding Omega Cen from the fit. If Omega Cen is
included in the fit, the slope comes to 0.32 ± 0.04. The dotted curve shows the
prediction of Equation (6) for isothermal systems fully in the a � a0 regime,
while the dashed line gives the best slope 1/4 fit.

(A color version of this figure is available in the online journal.)

inferred from total luminosities and models of their observed
stellar populations.

Despite the small ranges in parameters covered by the clusters
studied, it is clear that the data are consistent with the generic
modified gravity prediction of σ0 ∝ M1/4, the slope of the
solid line being statistically determined to be 0.31 ± 0.06. For
comparison, the dashed line gives the best slope 1/4 fit, as the
numbers above show, a consistent description of the data. Omega
Cen was excluded from the fit, as it is usually acknowledged
to be an outlier. The complex stellar populations it presents, its
abnormally high mass, together with the possible presence of
an intermediate mass black hole in its center probably indicate a
complex dynamical formation history. Still, its inclusion in the
power-law fit of Figure 7 only slightly modifies the resulting
slope to 0.32 ± 0.04.

Figure 7 lends credibility to the interpretation of the outer flat-
tening of the observed velocity dispersion profiles as evidence
for modifications in the law of gravity. Under classical gravity,
one needs to invoke further causal correlations to account for
the clear trend appearing in Figure 7, a more contrived scenario
than simply the natural consequence of a shift toward MONDian
dynamics in GCs at scales where a < a0. As a comparison, the
dotted line in Figure 7 shows the prediction of Equation (6) for
isothermal systems fully in the a � a0 regime.

That the GCs treated lye somewhat below the prediction of
Equation (6) is not surprising, as they are by no means structures
fully in the a � a0 regime; most of the mass is partly in the
Newtonian regime, or in the transition between both, hence the
asymptotic velocity dispersions are slightly off the results of
Equation (6).

We acknowledge that with the number of the assumptions
going into the modeling remain as such, it is entirely plausible
that some might not strictly apply. As already discussed, the

case of NGC 7078 could be indicative of a certain degree
of orbital radial anisotropy appearing toward the outskirts of
some of these systems. Also, the projected M/L values might
have some radial variations, or the flattening of the projected
velocity dispersion profiles might simply reflect the presence of
contaminating unbound stars, or the effects of tidal heating, as
assumed under Newtonian interpretations of GC structure, e.g.,
Drukier et al. (2007) or Lane et al. (2010). Under Newtonian
dynamics, perfectly self-consistent models can be constructed,
often leading to fits even better than those resulting from
modified gravity approaches, e.g., Ibata et al. (2011). It is
the new results of Figure 7, which are independent of any
gravitational modeling, which we find most suggestive of the
modified gravity interpretation; as under the standard approach,
further mechanisms must be invoked to explain the appearance
of a “Tully–Fisher” relation for GCs.

We conclude this section with Table 1, which summarizes
the observed parameters used and the model parameters fitted
for each of the eight Galactic GCs in this paper. We also note
that the models are relatively insensitive to small changes in the
values of ρ0 used; only changes of factors ∼3 and above in this
model parameter result in significant changes.

4. CONCLUSIONS

We show that for Galactic GCs, spherically symmetric equi-
librium models can be constructed using a modified Newtonian
force law which reproduces the MOND phenomenology, which
naturally satisfies all observational constraints available.

The resulting models are typically characterized by a New-
tonian inner region, which smoothly transitions to a modified
gravity outer region upon approaching the a = a0 threshold.
The resulting internal velocity dispersion profiles correspond-
ingly transit from an inner radially decaying region to an outer
flat velocity dispersion one.

By comparing against careful single stellar population model-
ing of the GCs studied to derive total stellar mass estimates, we
show that the asymptotic values of the measured velocity disper-
sion profiles, σp(R → ∞), and total masses for these systems,
M, are consistent with the generic modified gravity prediction
for a scaling σ 4

p(R → ∞) ∝ M .
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ABSTRACT

Elliptical galaxies are systems where dark matter is usually less necessary to explain observed dynamics than in the
case of spiral galaxies; however, there are some instances where Newtonian gravity and the observable mass are
insufficient to explain their observed structure and kinematics. Such is the case of NGC 4649, a massive elliptical
galaxy in the Virgo cluster for which recent studies report a high fraction of dark matter, 0.78 at 4 Re. However, this
galaxy has been studied within the MOdified Newtonian Dynamics (MOND) hypothesis, where a good agreement
with the observed values of velocity dispersion is found. Using a MONDian gravity force law, here we model
this galaxy as a self-consistent gravitational equilibrium dynamical system. This force law reproduces the MOND
phenomenology in the a < a0 regime, and reduces to the Newtonian case when a > a0. Within the MONDian
a < a0 scales, centrifugal equilibrium or dispersion velocities become independent of radius, and show a direct
proportionality to the fourth root of the total baryonic mass, V 4 ∝ (MGa0). We find that the recent detailed
observations of the surface brightness profile and the velocity dispersion profile for this galaxy are consistent with
the phenomenology expected in MONDian theories of modified gravity, without the need to invoke the presence of
any hypothetical dark matter.

Key words: galaxies: general – galaxies: individual (NGC 4649) – galaxies: structure

Online-only material: color figures

1. INTRODUCTION

The flat rotation curves of spiral galaxies have been well
known for decades (e.g., Bosma 1981; Rubin et al. 1982); as-
suming the validity of the Newtonian law of gravity throughout,
this results in a discrepancy between the dynamical mass and
the luminous mass of spiral galaxies. Other types of galaxies
exhibit mass discrepancies as well: the most remarkable is the
case of dwarf spheroidal (dSph) galaxies for which the veloc-
ity dispersion is well known and the mass inferred from their
internal dynamics greatly exceeds the visible mass by factors
reaching into the thousands (e.g., Simon & Geha 2007). On the
other hand, bright giant elliptical galaxies exhibit small mass
discrepancies (e.g., Romanowsky et al. 2003). Usually these
facts are commonly interpreted as the manifestation of the dark
matter halo in which the different galaxies are immersed. This
halo dominates the dynamics of extended galaxies with low
surface brightness, and its presence is less significant in more
centrally concentrated galaxies with larger surface brightness
values (e.g., McGaugh & de Blok 1998).

Alternatively, the discrepancy between observable mass in
galaxies and their dynamics can be interpreted as direct evidence
for the failure of the current Newtonian and general relativistic
theories of gravity, rather than the existence of a dark matter
component. As examples, in spiral galaxies the flat rotation
curve has been successfully interpreted assuming a modification
of Newtonian dynamics (MOND) (e.g., Sanders & McGaugh
2002), or equivalently an extended Newtonian force law (e.g.,
Mendoza et al. 2011); the projected surface density profiles
and observational parameters of the local dSph galaxies are in
agreement with a description in MOND (e.g., Hernandez et al.
2010; McGaugh & Wolf 2010; Kroupa et al. 2010). Similarly,
modified gravity approaches have been successful in explaining
the general shape of the observed rotation curves of many dwarf
and low surface brightness galaxies (e.g., Swaters et al. 2010),

and many other astronomical systems have been interpreted in
this context, such as globular clusters (GCs) (e.g., Sollima &
Nipoti 2010; Haghi et al. 2011; Hernandez & Jiménez 2012),
the relative velocity of wide binaries in the solar neighborhood
(e.g., Hernandez et al. 2012), the infall velocity of the two
components of the Bullet cluster (e.g., Moffat & Toth 2010),
and the gravitational lensing of elliptical galaxies (e.g., Mendoza
et al. 2012).

Modified gravity proposals not requiring any dark matter
generically predict that for accelerations below a0 ≈ 1.2 ×
10−10 m s−2, one should transit away from Newtonian gravity,
e.g., MOND in Milgrom (1983), TeVeS in Bekenstein (2004),
QUMOND and BIMOND in Zhao & Famaey (2010), the
extended Newtonian force law in Mendoza et al. (2011) or its
relativistic version in Bernal et al. (2011). Regardless of the
details, within a < a0 scales velocities for test particles about
spherical mass distributions will become independent of radius,
and show a mass scaling coinciding with that of the galactic
Tully–Fisher relation of V 4 ∝ M .

To test the predictions of modified gravity schemes in ellip-
tical galaxies, one needs to know the kinematics and mass dis-
tribution of these systems. Elliptical galaxies are dynamically
hot systems with little or no cold gas where determining their
kinematics is more difficult than for spiral galaxies. Their orbital
structure is thought to be the result of their evolution through
a complex formation process. For determining their dynamics
several tracers have been used, such as X-ray gas, GCs, and
planetary nebulae (PNe). Massive elliptical galaxies are usually
surrounded by hot and low-density gas evident through its X-ray
glow. A tool to determine the mass distribution in these systems
is to model their X-ray spectra to obtain density and tempera-
ture profiles for the gas. If we assume hydrostatic equilibrium
for this component, we can then obtain the mass distribution
and then an estimate of the brightness profile to be compared to
the photometrically observed one (e.g., Das et al. 2010).

1
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The problem of modeling the luminosity profile and kine-
matics of elliptical galaxies has been treated before; e.g.,
Kormendy et al. (2009) modeled the brightness profiles of all
known elliptical galaxies in the Virgo cluster using Sérsic pro-
files log I ∝ r1/n; they develop a mechanism to calculate a
realistic error in the Sérsic parameters and identify departures
from these profiles that are diagnostic of galaxy formation pro-
cesses. Teodorescu et al. (2011) studied the kinematics of PNe
in the Virgo giant elliptical galaxy NGC 4649 (M60). Assuming
Newtonian gravity, they conclude that the kinematics of this ob-
ject are consistent with the presence of a dark matter halo around
M60; this halo is almost one-half of the total mass of the galaxy
within 3 Re. In De Bruyne et al. (2001), three-integral axisym-
metric models for NGC 4649 and NGC 7097 are considered,
concluding that the kinematic data of NGC 4649 are consistent
with a dynamical model with a moderate amount of dark mat-
ter; Das et al. (2010) create a dynamical model of NGC 4649
using the NMAGIC code and kinematic constraints to infer a
dark matter mass fraction in NGC 4649 of ∼0.78 at 4 Re. In
Samurović & Ćirković (2008a, 2008b), the GC dynamics of
NGC 4649 are used as mass tracers and the Jeans equation is
solved for Newtonian and MOND models, finding that both are
consistent with the values of the observed velocity profile of the
galaxy, although considering the light distribution only to first
approximation, as a radial power law for the surface brightness
profile.

Along the same lines, we here treat the massive elliptical
galaxy NGC 4649 assuming the modified Newtonian force law
formulation of Mendoza et al. (2011) through fully consistent
self-gravitating models, as a test of the above ideas. The free
parameters of the galactic model are calibrated to match the
details of the observed surface brightness and projected velocity
dispersion profiles. This becomes a valuable test of the physical
modeling introduced in Hernandez & Jiménez (2012) to the
modeling of light and velocity dispersion profiles in Galactic
GCs, as the same scheme is now applied to a system which lies
orders of magnitude above the GCs in size and mass.

We obtain equilibrium models which satisfy all observed
parameters of the galaxy in question, including crucially, the
flattening of the projected velocity dispersion evident at large
radii, in the absence of any unseen dark component. Under a
purely Newtonian framework, any accurate modeling of this
galaxy requires the inclusion of a substantial amount of dark
matter.

In Section 2 we present the modeling used to construct
equilibrium models for self-gravitating spherically symmetric
stellar populations using the modified Newtonian force law of
Mendoza et al. (2011). We then show in Section 3 specific
models satisfying all observational constraints available for
NGC 4649. Section 4 gives our conclusions.

2. SELF-GRAVITATING EQUILIBRIUM MODELING

In the same way as done for GCs in Hernandez &
Jiménez (2012), we have modeled the massive elliptical galaxy
NGC 4649 as a population of self-gravitating stars in a spher-
ically symmetric equilibrium configuration, under a modified
Newtonian gravitational force law. For a test particle a distance
r from the center of a spherically symmetric mass distribution
M(r), the force per unit mass is given by

f (x) = a0x

(
1 − xn

1 − xn−1

)
. (1)

In the equation above, x = lM/r , where lM = (GM(r)/a0)1/2.
Notice that for a � a0 (x � 1), f (x) → a0x

2 and we
recover the standard force law, while for a � a0 (x � 1),
f (x) → a0x and the corresponding MONDian force law of
f = (M(r)Ga0)1/2/r ensues. The abruptness of the transition
between the two limits is regulated by the index n, which satisfies
n > 1.

In Mendoza et al. (2011), the above force law was proven
to result in generalized isothermal gravitational equilibrium
configurations having well defined and finite rg, M, and σ values,
radii, masses, and velocity dispersion, which evolve smoothly
from the classical virial equilibrium scaling of M = σ 2rg/G to
the observed tilt in the fundamental plane of elliptical galaxies,
to the σ 4 = (MGa0) Tully–Fisher relation, in going from x � 1
to x ∼ 1 to x � 1. In that paper it was also shown that
solar system constraints will not be violated, provided that the
transition in Equation (1) is sufficiently abrupt, n > 4, and
also that Newton’s theorems for spherically symmetric mass
distributions will continue to be valid, provided only that f
depends exclusively on the variable x.

Recently, in Hernandez & Jiménez (2012) we showed that
constructing similarly successful models for GCs requires
n � 10 to obtain best fits to brightness and velocity dispersion
profiles; here we use n = 10 to construct equilibrium models for
the elliptical galaxy NGC 4649. Notice also that given the form
of the proposed force law, any other larger value of n results
in only marginal differences from n = 10. Since any feasible
modified force law at the Newtonian level evidently requires
the form of the force law to be fully fixed across astrophysical
systems and scales, here we do not treat n as a free parameter,
but use always a fixed n = 10 value. A theoretical grounding for
the above modified force law appeared in Bernal et al. (2011),
who provided an f (R) formal generalization to general relativity
which has as its low velocity limit precisely the MONDian force
law of Equation (1) in the a � a0 range.

Taking the derivative of the kinematic pressure, the equation
of hydrostatic equilibrium for a polytropic equation of state
P = Kργ is

d(Kργ )

dr
= −ρ∇φ. (2)

In going to locally isotropic Maxwellian conditions, γ = 1 and
K = σ (r)2, and we get

2σ (r)
dσ (r)

dr
+

σ 2(r)

ρ

dρ

dr
= −∇φ. (3)

Since ρ = (4πr2)−1dM(r)/dr , the preceding equation can
be written as

2σ (r)
dσ (r)

dr
+ σ (r)2

[(
dM(r)

dr

)−1
d2M(r)

dr2
− 2

r

]

= −a0x

(
1 − xn

1 − xn−1

)
, (4)

with σ (r) the isotropic Maxwellian velocity dispersion for the
population of stars. This is hence an application of the treatment
developed in Hernandez & Jiménez (2012), where we modeled
eight GCs in our Galaxy under the same modified force law used
here. In that paper we showed that using a plausible parametric
σ (r) function, self-gravitating models can be easily constructed
to accurately reproduce all observational constraints.

Once a specific σ (r) is chosen, using a numerical finite
differences scheme and the initial condition of a fixed central
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Figure 1. Volumetric density profile for the best-fit model for NGC 4649. The
point where x = 1, a = a0, is shown by the vertical line. Notice that at large
radii ρ(r) becomes steeper than the r−2 of the Newtonian case, which yields a
finite total radius and mass for the model.

(A color version of this figure is available in the online journal.)

density ρ0, i.e., M(r) → 0, dM(r)/dr → 4πr2ρ0, for r → 0,
the second-order differential equation (Equation (4)) can be
solved. This solution gives ρ(r) and M(r), volumetric profiles
for the density and mass. Projecting ρ(r) along one direction
then yields the corresponding Σ(R), a projected surface density
mass profile, which, assuming a mass-to-light ratio (M/L), can
then be compared against an observed surface brightness profile.
We use r for radial distances in three dimensions, and R as a
projected radial coordinate on the plane of the sky.

Lastly, a volume density weighted projection of σ (r) yields
σp(R), the corresponding projected velocity dispersion profile.
Thus, it is only after solving for the complete density structure
that a σp(R) is obtained. Notice that existing observations only
give σp(R), the density weighted projected profiles of σ (r), and
never σ (r) itself. To solve Equation (4), we assume a parametric
form for σ (r), with parameters which will be adjusted to
yield full projected models in surface brightness and σp(R)
in accordance with the properties of the observed galaxy. We
shall use

σ (r) = σ1exp

(
− r

rσ

)m

+ σ∞. (5)

Notice that σ∞ will be given directly by the observations,
since at large radial distances the effects of projection tend to
zero and σ (R) → σ (r). Therefore, σ∞ can be obtained from the
asymptotic value of the observed projected velocity dispersion
profile for the galaxy in question, in this case ≈200 km s−1,
following Das et al. (2011). The remaining four free parameters,
ρ0, σ1, rσ , and m, will be fitted to yield projected velocity
dispersion and surface brightness profiles (following Bridges
et al. 2006, we take M/L = 8.0) in accordance with the
corresponding observed quantities.

3. MODELING ELLIPTICAL GALAXY NGC 4649

We begin this section by presenting in Figures 1 and 2 our
best-fit NGC 4649 model. The volumetric density profile is
shown in Figure 1, and appears similar to a cored isothermal

Figure 2. Volumetric mass profile for the best-fit model for NGC 4649. The
point where x = 1, a = a0, is shown by the vertical line. Notice the convergence
of the mass appearing at large radii.

(A color version of this figure is available in the online journal.)

density distribution, with the difference that at large radii ρ(r)
becomes steeper than the Newtonian r−2. The consequence of
this steepening is a finite total mass and radius, even using
asymptotically flat σ (r) profiles, e.g., Milgrom (1984). This
contrasts with the Newtonian case where classical isothermal
spheres of infinite extent appear. As already pointed out by
Hernandez et al. (2010) and Mendoza et al. (2011), these
finite profiles also appear for the modified gravity law we are
using, even under rigorously isothermal σ (r) = σ0 equilibrium
configurations. The vertical line shows the radius where the
condition x = 1 is crossed, i.e., the point beyond which
a < a0, and hence the departure of the force law used from the
Newtonian value toward the MONDian regime, consequently
the point where the density profile steepens away from the 1/r2

of Newtonian gravity, toward the convergence of the MONDian
regime.

The corresponding volumetric radial mass profile is given
in Figure 2, where the vertical line again shows the x = 1
threshold. This clearly shows the departure from the linear
growth of the total mass within the approximately isothermal
Newtonian region, toward convergence to a finite total mass in
the MONDian a < a0 regime. We see that 40% of the mass of the
modeled galaxy falls outside of the x = 1 threshold. This mass
appears spread out over large areas, and hence presents much
smaller surface densities than those appearing in the central
regions interior to the a > a0, x = 1 limit, the more easily
observed Newtonian central parts.

The consistency of the model is shown in Figures 1 and 2;
having assumed a positive isotropic Maxwellian velocity distri-
bution function, the physical modeling results in a mass density
profile in accordance with what a Newtonian modeling would
have yielded for the inner a > a0 region, where the force law
used reproduces Newton’s expression. In going to larger radii,
ρ(r) steepens increasingly to eventually reach ρ(r) = 0 at a
finite total radius, as can be seen from the convergence of the
mass profile given in Figure 2. The distribution function is thus
positive throughout the model, going to zero at the outer edge.
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Figure 3. Comparison of the resulting model projected surface brightness
for NGC 4649 (continuous line) with the corresponding observed quantities
and the best-fit Sérsic function with the central (dashed line), maximum, and
minimum values consistent with the reported confidence intervals for the Sérsic
parameters, flanking curves. The squares correspond to data in Kormendy et al.
(2009), and the points with error bars to PNe data (Teodorescu et al. 2011).
Following Bridges et al. (2006), we take M/LV = 8, which coincides with the
stellar population studies of Shen & Gebhardt (2010). The point where a = a0
and the modified force law used changes from the Newtonian form to the outer
MONDian behavior is shown by the vertical line.

(A color version of this figure is available in the online journal.)

The optimum model shown was fitted to agree with the
observed projected velocity dispersion and surface brightness
profile for NGC 4649, assuming a constant M/LV value; see
below. We take the surface brightness profile observations from
photometry in Kormendy et al. (2009) and the number density
calculated from PNe in Teodorescu et al. (2011) as scaled in Das
et al. (2011), and projected velocity dispersion measurements
from Pinkney et al. (2003) adopted from De Bruyne et al. (2001).
Following Bridges et al. (2006) we take M/LV = 8, which
coincides with the central value reported by Shen & Gebhardt
(2010), determined directly from stellar population synthesis
models.

The final resulting surface brightness profile and its cor-
responding volume density weighted projected velocity dis-
persion profile σp(R) for galaxy NGC 4649 are presented in
Figures 3 and 4 for M/LV = 8. The parameters for the best
fit in Equation (5) are σ∞ = 175 km s−1, σ1 = 230 km s−1,
rσ = 8.5 kpc, and m = 1; the central density that we have
assumed is ρ0 = 1.5 × 102 M� pc−3.

Regarding the free parameters of the model, m, σ1, rσ , and
ρ0, we began with m = 1 as used in our GC study of Hernandez
& Jiménez (2012), and with a trial rσ at the effective radius of
the galaxy, and a trial σ1 at the σp(R = 0) = σ1 + σ∞ condition.
We then performed a least-squares fit to the well-established
projected surface density profile to obtain an optimal ρ0 value.
The projected σ (R) profile was then visually examined, and the
procedure ended if the model agreed with these more uncertain
observations to within their reported error bands. If not, the
procedure is repeated with rσ and σ1 re-adjusted to yield a
larger or smaller central σp(R = 0) value, or a faster or slower

Figure 4. Comparison of the resulting model projected velocity dispersion
profile for NGC 4649 (continuous line) with the corresponding observed
quantities; stars for long-slit observations in Pinkney et al. (2003) and the points
with error bars for PNe data. The point where a = a0 and the modified force
law used changes from the Newtonian form to the outer MONDian behavior is
shown by the vertical line.

(A color version of this figure is available in the online journal.)

decay in the σp(R) curve. Only at the lowest M/L range were
solutions with m = 1 slightly less good than the ones presented,
so the procedure was repeated with slight variations in m. We
do not claim the models obtained to be unique, neither did we
set out to find final values for our parameters which could be
definitively associated to NGC 4649, merely working models
intended to show the plausibility of the force law examined.
We do note, however, that the full observed and Sérsic fit to
the projected surface density profile can be reproduced, not
only within the observed uncertainties, but actually to an almost
indistinguishable level, giving us confidence that some of the
physics of the problem has been captured by the modeling
presented. At the same time, the more uncertain projected
velocity dispersion profile has also been adequately reproduced,
to within the observational confidence intervals.

In the figures, the vertical line indicates the point where
a = a0; we can see that the model accurately fits the observed
projected surface brightness profiles of the galaxy and the
central value of the measured projected velocity dispersion
σp(R = 0) = 400 km s−1, as well as the observed profiles
for σp(R).

We see that both the surface brightness and velocity dispersion
profiles are in agreement with photometry and PNe observations,
to within reported uncertainties. Under Newtonian gravity, this
requires invoking a large amount of dark matter to reproduce
the structure and kinematics of this galaxy; using the proposed
modified force law, however, it is natural that once the change
in the gravitational regime appears, σ (r) will tend to a constant
once the mass distribution has converged.

Although the projected surface brightness profile of the
model shown in Figure 3 is in excellent accordance with the
observed one, a value of M/LV = 8 might appear as somewhat
excessive. Indeed, from Figure 4 we see that the projected
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Figure 5. Same as Figure 3 but using M/LV = 6.

(A color version of this figure is available in the online journal.)

velocity dispersion of the model systematically exceeds the
measurements from long-slit observations, and is more in
accordance with the more crude PNe inferences. To test the
range of values in M/LV that the physical modeling can
accommodate, we repeated the experiment, taking this time
a lower value of M/LV = 6. The results are presented in
Figures 5 and 6, which are analogous to Figures 3 and 4. We
see a similarly excellent accordance for the projected surface
brightness profile in Figure 5, and a projected velocity dispersion
profile in Figure 6 which this time closely follows the more
detailed data of the long-slit observations, and lies slightly
below the PNe inferences. The parameters of this second model
are σ∞ = 163 km s−1, σ1 = 233 km s−1, rσ = 6.6 kpc, and
m = 0.95, with ρ0 = 2.3 × 102 M� pc−3.

M/L ratios higher than 8 appear unphysical from the point
of view of pure stellar populations, while models with values
lower than 6 result in σ (R) curves which fall below the observed
values. The range 6 < M/LV < 8 thus brackets the models
which can yield accurate simultaneous fits to both the observed
surface brightness profile and the observed velocity dispersion
profile of NGC 4649.

The total mass we obtain from the dynamical modeling
described is consistent with what results from the integration
of the surface brightness profile assuming a constant M/LV .
The mass obtained for the dynamical model to NGC 4649 is
1.09×1012 M�, and the luminosity that results from integrating
the V-band light profile is 1.36 × 1011 L�, implying a mass
of 1.08 × 1012 M� from using M/LV = 8 as determined
directly from the stellar population studies of Shen & Gebhardt
(2010). Also, notice that the asymptotic value of the velocity
dispersion is 195.0 ± 30.36 km s−1 in consistency with the
σ = 0.2 (M/M�)1/4 = 203.9 km s−1 prediction of Hernandez
& Jiménez (2012) for 1.08 × 1012 M�, and 190.09 km s−1 for
the 8.16 × 1011 M� of the M/LV = 6 case.

Models including a degree of orbital anisotropy, constant or
with radial variations, are also possible, as are ones considering
also some degree of sub-dominant rotation, as often observed

Figure 6. Same as Figure 4 but using M/LV = 6.

(A color version of this figure is available in the online journal.)

in elliptical galaxies. Introducing more free functions would
clearly allow even finer fits to the observed restrictions. We
have chosen not to increase the complexity of the modeling
in this way, as our aim here is merely to prove that for the
simplest isotropic, non-rotating construction, reproducing all
the available observational constraint is easily achieved under
the modified force tested. As already mentioned, the models
presented are not intended as unique definitive fittings to any of
the parameters used, merely as examples of plausible models
showing the viability of the force law used.

4. CONCLUSIONS

We show that for the massive elliptical galaxy NGC 4649,
fully self-consistent spherically symmetric equilibrium models
can be constructed using a modified Newtonian force law which
smoothly transits from the Newtonian value when a > a0,
toward the MONDian phenomenology in the a < a0 regime,
which naturally satisfy all observational constraints available
for the central, asymptotic, and radial profiles for projected
surface brightness and velocity dispersion measurements. All
this, without the need to invoke any hypothetical and as yet
undetected dark matter component.

We obtain models which show a Newtonian inner region,
smoothly evolving outward toward a MONDian solution on
crossing the a = a0 limit. The corresponding velocity dispersion
profiles similarly evolve from an internal “Keplerian” region to
an external constant velocity dispersion regime.

We show that the asymptotic value of the observed velocity
dispersion profile, σp(R → ∞), and the total mass for this
system, M, are consistent with the generic modified gravity
prediction for σp(R → ∞) = 0.2 (M/M�)1/4.

The authors wish to thank an anonymous referee for com-
ments leading to a clearer and more complete final ver-
sion. Xavier Hernandez acknowledges financial assistance from
UNAM DGAPA grant IN103011-3. Alejandra Jimenez ac-
knowledges financial support from a CONACYT scholarship.
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3. PERFIL DE DISPERSIÓN DE VELOCIDADES
ASINTÓTICAMENTE PLANO EN CÚMULOS GLOBULARES:
MODELOS CON GRAVEDAD MODIFICADA
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Caṕıtulo 4

¿Gravedad modificada o mareas
newtonianas en cúmulos
globulares?

4.1. Resumen

Observaciones hechas en años recientes muestran que el perfil de dispersión de
velocidades proyectado sobre la linea de visión de cúmulos globulares de nuestra
galaxia sufre un aplanamiento a partir de cierto radio. La dispersión de velocida-
des conforme aumenta la distancia al centro del cúmulo ya no decrece sino que
tiende a un valor constante σ∞.

En el contexto de la gravedad newtoniana este comportamiento tiende a ex-
plicarse como consecuencia del calentamiento de las fuerzas de marea sobre las
estrellas en la periferia del cúmulo ocasionado por el potencial de la Vı́a Láctea.

En gravedad modificada en cambio, se espera un aplanamiento del perfil de
dispersión de velocidades en el lugar donde la aceleración es menor que a0, ya que
es aqúı donde ocurre la transición de una dinámica newtoniana a una dinámica
MONDiana donde las velocidades de equilibrio dejan de ser función del radio.
En este capitulo contrastamos estas dos posibles explicaciones desde un análisis
puramente emṕırico.

Calculamos el radio de marea de los cúmulos globulares utilizando el estudio
detallado de (Allen & Santillan 1991) de la órbita de 54 cúmulos globulares, para
los cuales se conocen sus movimientos propios y sus velocidades sobre la linea
de visión. En este estudio se utiliza un modelo de masa 3D axisimétrico (bulbo,
disco, halo de materia oscura que se extiende hasta 100kpc) para nuestra galaxia
aśı como un modelo con barra, los 16 CGs de nuestra muestra están incluidos,
las masas de los cúmulos son obtenidas por modelos de śıntesis de poblaciones
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4. ¿GRAVEDAD MODIFICADA O MAREAS NEWTONIANAS EN
CÚMULOS GLOBULARES?

estelares que son independientes de cualquier supuesto dinámico.
Encontramos que el radio de marea en el punto de la órbita del cúmulo más

cercano al centro galáctico es en general mayor que el radio en el cual el perfil se
aplana, este hecho hace que la explicación de que las fuerzas de marea newtonia-
nas son las responsables del aplanamiento del perfil de dispersión de velocidades
inadecuado. Por otro lado se observa que el radio al cual el perfil se aplana coin-
cide en promedio con el radio en el cual se cruza el umbral de aceleración a0 y
que σ∞ resulta proporcional a la ráız cuarta de la masa (relación Tully - Fisher),
es decir se observa lo esperado en un contexto de gravedad modificada.

Para este art́ıculo realice los ajustes del perfil de dispersión de velocidades,
Compare estos ajustes con los existentes en la literatura en el contexto newto-
niano, realice las comparaciones entre Rf y RT y entre Rf y Ra y junto con los
demás autores participe en todo el proceso de revisión hasta lograr la publicación
del trabajo.
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Flattened velocity dispersion profiles in globular clusters: Newtonian tides
or modified gravity?
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ABSTRACT
Over the past couple of years, a number of observational studies have confirmed the flattening
of the radial velocity dispersion profiles for stars in various nearby globular clusters. As the
projected radial coordinate is increased, a radius appears beyond which, the measured velocity
dispersion ceases to drop and settles at a fixed value, σ∞. Under Newtonian gravity, this is
explained by invoking tidal heating from the overall Milky Way potential on the outer, more
loosely bound stars of the globular clusters in question. From the point of view of modified
gravity theories, such an outer flattening is expected on crossing the critical acceleration
threshold a0, beyond which, a transition to MONDian dynamics is expected, were equilibrium
velocities cease to be a function of distance. In this paper, we attempt to sort out between
the above competing explanations, by looking at their plausibility in terms of an strictly
empirical approach. We determine Newtonian tidal radii using masses accurately calculated
through stellar population modelling, and hence independent of any dynamical assumptions,
distances, size and orbital determinations for a sample of 16 globular clusters. We show that
their Newtonian tidal radii at perigalacticon are generally larger that the radii at which the
flattening in the velocity dispersion profiles occurs, by large factors of 4, on average. While
this point makes the Newtonian tidal explanation suspect, it is found that the radii at which
the flattening is observed on average correlate with the radii where the a0 threshold is crossed,
and that σ∞ values scale with the fourth root of the total masses, all features predicted under
modified gravity theories.

Key words: gravitation – stars: kinematics and dynamics – globular clusters: general –
Galaxy: kinematics and dynamics.

1 I N T RO D U C T I O N

The central values of the stellar velocity dispersion, projected on
the plane of the sky, for many Galactic globular clusters (GCs) have
been well known for decades, and are known to accurately corre-
spond to the expectations of self-consistent dynamical models under
Newtonian gravity, e.g. King models (e.g. Binney & Tremaine 1987;
Harris 1996). Recently, a number of studies (e.g. Scarpa & Falomo
2010; Scarpa et al. 2007a,b, 2011; Lane et al. 2009, 2010a,b, 2011,
henceforth the Scarpa et al. and Lane et al. groups, respectively)
have performed measurements of the projected velocity dispersion
along the line of sight for stars in a number of Galactic GCs, but
as a function of radius, and reaching in many cases out to radial
distances larger than the half-light radii of the clusters by factors of
a few.

� E-mail: xavier@astro.unam.mx

The surprising result of the above studies has been that radially,
although velocity dispersion profiles first drop along Newtonian
expectations, after a certain radius, settle to a constant value which
varies from cluster to cluster. This behaviour is what is expected
under MOND (Milgrom 1983), where equilibrium velocities tend to
a constant value when below a critical acceleration, a0. In fact, such
a result is fairly generic to modified theories of gravity designed to
explain galactic rotation curves in the absence of any dark matter,
e.g. Milgrom (1994), Bekenstein (2004), Zhao & Famaey (2010),
Bernal et al. (2011), Mendoza et al. (2011), Capozziello & De
Laurentis (2011). As already noted by Scarpa et al. (2011), it is
suggestive of a modified gravity scenario that the point where the
velocity dispersion profiles flatten, approximately corresponds to
the point where average stellar accelerations drop below a0. Several
recent studies have shown dynamical models for self-gravitating
populations of stars under MOND or other modified gravity variants
(e.g. Moffat & Toth 2008; Haghi et al. 2009; Sollima & Nipoti
2010; Haghi, Baumgardt & Kroupa 2011; Hernandez & Jiménez
2012) which accurately reproduce not only the observed velocity

C© 2012 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Flattened velocity dispersion profiles in GCs 3197

dispersion profiles, but also the observed surface brightness profiles
of GCs.

A recent study reaching the same conclusions, but at a signifi-
cantly distinct scale, can be found in our work (Hernandez, Jiménez
& Allen 2012), where we show that the relative velocity of wide
binaries in the solar neighbourhood is in conflict with predictions
from full galactic dynamical simulations of the systems observed,
and actually shows also velocities which cease to drop with dis-
tance, precisely on crossing the same a0 threshold. Along the same
lines, Lee & Komatsu (2010) show that the infall velocity of the
two components of the Bullet cluster, as required to account for the
hydrodynamical shock observed in the gas, is inconsistent with ex-
pectations of full cosmological simulations under standard � cold
dark matter (�CDM) assumptions. This has recently been con-
firmed in greater detail by Thompson & Nagamine (2012), and can
in fact be seen as a failure not only of the �CDM model, but of stan-
dard gravity, as the required collisional velocity is actually larger
than the escape velocity of the combined system. We note also the
recent reviews by Kroupa et al. (2010), Famaey & McGaugh (2012)
and Kroupa (2012) and references therein, detailing a number of
observations in tension with standard �CDM assumptions.

From the point of view of assuming Newtonian gravity to be
exactly valid at all low-velocity regimes, it has also been shown that
both velocity dispersion and surface brightness profiles for Galactic
GCs can be self-consistently modelled. Under this hypothesis, it is
dynamical heating due to the overall Milky Way potential that is
responsible for the flattening of the velocity dispersion profiles e.g.
Drukier et al. (2007), Küpper et al. (2010), Lane et al. (2010a). The
constant velocity dispersion observed at large radii merely shows
the contribution of unbound stars in the process of evaporating
into the Milky Way halo. In attempting to sort between these two
contrasting scenarios, here we take a fully empirical approach. We
critically examine the plausibility of both gravitational scenarios by
looking through the data for other correlations which each suggest.

For the Newtonian case, we examine the best-available inferences
for the tidal radius of each cluster at closest galactocentric passage,
and compare it to the observed point where the velocity dispersion
flattens. Here, we find the former to generally exceed the latter by
factors of 4 on average, making the Newtonian interpretation sus-
pect. Also, we take all the clusters which the Lane et al. group have
claimed show no indication of a modified gravity phenomenology,
based on the fact that their velocity dispersion profiles can be mod-
elled using Plummer profiles, and show that the fits with the generic
asymptotically flat profiles we use are actually slightly better, in all
cases.

From the point of view of MONDian-modified gravity theories,
we reexamine in greater detail the correlation between the crossing
of the a0 threshold and the point where the velocity dispersion
flattens, already suggested by Scarpa et al. (2011). We shall use the
term MONDian to refer to any modified theory of gravity which
reproduces the basic phenomenology of MOND in the low-velocity
limit for accelerations below a0, of flat equilibrium velocities and a
Tully–Fisher relation, regardless of the details of the fundamental
theory which might underlie this phenomenology.

In consistency with the expectations of such theories, we find
that mostly systems almost fully within the a < a0 threshold show
almost fully flat velocity dispersion profiles, while those which only
reach this threshold at their outskirts present a significant Newto-
nian region, with a large fall in their velocity dispersion profiles. The
above correlations are actually what would be expected generically
under modified gravity schemes. We confirm our previous results
with a much smaller sample of Hernandez & Jiménez (2012), show-

ing that the asymptotic values of the velocity dispersion profiles are
consistent with scaling with the fourth root of the total masses, a
Tully–Fisher relation for GCs. Our results support the interpretation
of the observed phenomenology as evidence for a change in regime
for gravity on crossing the a0 threshold.

In Section 2, we present the detailed velocity dispersion fitting
procedure, and show the best-fitting profiles, including a compari-
son with the Plummer models used by the Lane et al. group, which
are slightly worse than the asymptotically flat profiles we use. A
description of the tidal radii derivations and the calculation of the
confidence intervals for all the GC parameters used is also given.
Section 3 shows a comparison of the tidal radii against the radii at
which the velocity dispersion becomes flat, as a test of the plausi-
bility of Galactic tides under a Newtonian scenario as responsible
for the observed outer flattening of the velocity dispersion profiles.
In Section 4, we present a number of scalings between the struc-
tural parameters of the observed GCs, showing these systems to
be consistent with MONDian gravity expectations, in terms of a
change towards a modified regime on crossing the a0 threshold.
Our conclusions are summarized in section 5.

2 EMPI RICAL VELOC I TY DI SP ERSI O N
M O D E L L I N G

We begin by modelling the observed projected radial velocity dis-
persion profiles, σ obs(R), in the GCs in our sample, listed in Table 1.
As seen from the Scarpa et al. and Lane et al. data, the observed
velocity dispersion profiles show a central core region where the
velocity dispersion drops only slightly, followed by a ‘Keplerian’
zone where the drop is more pronounced. These first two regions
are in accordance with standard Newtonian King profiles, but they
are then followed by a third outermost region where the velocity
dispersion profiles cease to fall along Keplerian expectations, and
settle to fixed values out to the last measured point. As some of
us showed in Hernandez & Jiménez (2012), an accurate empirical
modelling for these velocity dispersion profiles can be achieved
through the function

σ (R) = σ1e−(R/Rσ )2 + σ∞. (1)

In the above equation σ∞ is the asymptotic value of σ (R) at
large radii, Rσ a scale radius fixing how fast the asymptotic value
is approached, and σ 1 a normalization constant giving σ (R = 0) =
σ 1 + σ∞.

We now take the observed data points σ obs(Ri) along with the
errors associated with each data point, to determine objectively
through a maximum likelihood method the best-fitting values for
each of the three parameters in equation (1), for each of the 16
observed GCs. Assuming the errors to have a Gaussian distribution,
the likelihood function will be

L (σ∞, σ1, Rσ ; σobs(Ri)) =
n∏

i=1

exp
[−(σobs(Ri) − σ (Ri))2/2�2

i

]
�i

,

(2)

where �i is the error on the ith data point, and σ (R) is a particular
model resulting from a given choice of the three model parameters.
Thus, for any choice of the three model parameters, the likelihood
function can be calculated for a given data set σ obs(Ri) with its er-
rors. For each observed GC, we calculate the likelihood function
over a 1003 grid in parameter space, and then select the point where
this function is maximized, to identify the optimal set of parameters
for each observed velocity dispersion profile, (X1, 0, X2, 0, X3, 0). As it
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3198 X. Hernandez, M. A. Jiménez and C. Allen

Table 1. Parameters for the GCs treated.

GC σ 1 (km s−1) σ∞ (km s−1) Rσ (pc) Ra (pc) R1/2 (pc) RT (pc) log10 (M/M�) b �Vr (km s−1)

NGC 104b 4.5 ± 0.4 5.0 ± 0.1 14.8 ± 0.9 23.6 ± 1.3 8.7 ± 1 93.5 ± 11.1 6.3 ± 0.2 −45.20 −18.7
NGC 288a, b 2.3 ± 1.4 0.2 ± 0.8 24.0 ± 5.8 4.8 ± 1.2 5.9 ± 1 33.8 ± 4.2 4.8 ± 0.2 −89.38 −46.6
NGC 1851a 4.2 ± 3.0 3.9 ± 0.4 7.9 ± 2.4 13.6 ± 4.5 2.4 ± 1 60.9 ± 10.7 5.6 ± 0.2 −35.03 320.5
NGC 1904a 2.4 ± 0.3 2.0 ± 0.1 10.3 ± 2.9 8.4 ± 2.6 2.7 ± 1 55.8 ± 9.4 4.9 ± 0.2 −29.35 206.0
NGC 4590b 1.5 ± 0.6 0.8 ± 0.4 18.1 ± 5.0 3.9 ± 1.1 8.0 ± 1 49.8 ± 6.0 5.7 ± 0.2 35.8 −94.3
NGC 5024b 2.4 ± 1.5 2.4 ± 0.5 24.0 ± 3.8 12.3 ± 2.2 7.8 ± 1 184.1 ± 22.2 5.6 ± 0.2 79.3 −62.9
NGC 5139a 8.0 ± 1.0 7.2 ± 0.4 16.8 ± 2.1 41.9 ± 5.6 7.2 ± 1 55.3 ± 8.9 6.4 ± 0.2 14.97 232.3
NGC 6121b 1.3 ± 1.0 2.9 ± 0.6 5.9 ± 4.6 8.0 ± 8.0 3.8 ± 1 9.6 ± 1.3 4.9 ± 0.2 15.38 70.7
NGC 6171a 1.4 ± 0.6 2.7 ± 0.2 3.8 ± 1.1 6.4 ± 1.5 3.2 ± 1 30.8 ± 5.2 4.9 ± 0.2 23.01 −33.6
NGC 6218b 3.3 ± 0.9 1.4 ± 0.5 4.7 ± 1.2 4.9 ± 1.4 1.8 ± 1 34.5 ± 4.4 4.9 ± 0.2 −42.20 25.71
NGC 6341a 3.8 ± 0.7 3.1 ± 0.2 6.8 ± 2.4 10.0 ± 2.0 3.2 ± 1 20.6 ± 3.4 5.3 ± 0.2 34.86 −120.3
NGC 6656b 3.8 ± 1.3 3.3 ± 0.8 7.4 ± 1.7 11.1 ± 2.9 2.7 ± 1 58.6 ± 7.0 5.4 ± 0.2 −8.15 −146.3
NGC 6752b 3.5 ± 0.8 2.0 ± 0.3 10.7 ± 1.4 5.5 ± 0.9 3.7 ± 1 63.9 ± 7.8 4.9 ± 0.2 −23.87 174.7
NGC 6809b 1.1 ± 0.8 1.6 ± 0.5 16.0 ± 5.8 5.5 ± 2.0 2.7 ± 1 28.6 ± 3.6 4.9 ± 0.2 −29.35 206.0
NGC 7078a 5.1 ± 1.6 3.0 ± 0.3 8.7 ± 1.4 12.0 ± 1.7 3.2 ± 1 127.5 ± 21.0 5.5 ± 0.2 −27.31 −107.0
NGC 7099a, b 2.1 ± 0.4 2.0 ± 0.2 6.8 ± 1.1 6.7 ± 2.4 2.1 ± 1 53.4 ± 8.3 4.8 ± 0.2 −46.80 −185.0

The first three entries give the parameters of the fits to the observed projected velocity dispersion profiles and their confidence intervals to data from the
Scarpa et al. groupa and the Lane et al. groupb. The fourth column gives an empirical estimate of the point where the average stellar acceleration drops
below a0. Columns 5–7 give the half-light radius calculated from the surface density light profiles, the Newtonian tidal radius from the Galactic mass
model and orbital calculations derived from observed proper motions by Allen et al. (2006), and the total masses derived from the M/L values inferred
through stellar population modelling by McLaughlin & van der Marel (2005) for each cluster, with corresponding confidence intervals. The last two
columns give the Galactic latitude of the clusters, and the radial velocity difference with respect to the Sun.

is customary, we work with the logarithm of the likelihood function.
The confidence intervals for each of the three parameters are then
obtained by looking through the full likelihood matrix to identify
the largest and smallest values for a particular parameter which sat-
isfy the condition lnL(Xlim, X2, X3) − lnL(X1,0, X2,0, X3,0) = 0.5,
i.e. the full projection of the error ellipsoid is considered, without
imposing any marginalization. This last point allows us to properly
account for any correlations between the three fitted parameters
when calculating any quantity derived from combinations of them,
as will be constructed in what follows.

Taking σ obs(Ri) data from Drukier et al. (1998), Scarpa, Marconi
& Gilmozzi (2004), Scarpa et al. (2007a,b, 2010, 2011), Lane et al.
(2009, 2010a,b, 2011) and half-light radii, R1/2, from integrating the
surface density brightness profiles of Trager, King & Djorgovski
(1995), we perform a maximum likelihood fit as described above
for all the 16 GCs studied.

Fig. 1 shows the observed projected velocity dispersion profiles
for the six GCs from the Scarpa et al. group, which are not also part
of the Lane et al. total sample, denoted by points with error bars. The
radial coordinate has been normalized to the R1/2 radius of each of
the clusters. The continuous curves show the maximum likelihood
fits for each cluster, which are clearly good representations of the
data. We can now give Rf = 1.5Rσ as an adequate empirical estimate
of the radius beyond which the dispersion velocity profile becomes
essentially flat. In terms of equation (1), which can be seen to be
highly consistent with the observed velocity dispersion profiles, Rf

is the radius such that σ (Rf) = 0.1σ 1 + σ∞, a good representation
of the transition to the flat behaviour, as can be checked from Fig.
1, where the arrows give Rf, with the horizontal lines on the arrows
showing the 1σ confidence intervals on these fitted parameters. An
empirical definition of the radius where the typical acceleration felt
by stars drops below a0 can now be given as Ra, where

3σ (Ra)2

Ra

= a0. (3)

Using the above definition, we can now identify Ra for each
of the GCs studied. The vertical lines in Fig. 1 show Ra for each

cluster, also normalized to the half-light radius of each. In the figure,
clusters have been ordered by their Ra/R1/2 values, with the smallest
appearing at the top, and Ra/R1/2 growing towards the bottom of
the figure.

The Lane et al. sample comprises 10 clusters, two of which are
also part of the Scarpa et al. sample. Fig. 2 is analogous to Fig. 1,
and shows velocity dispersion profiles for five clusters from the
Lane et al. sample not having any overlap with the Scarpa et al.
group. Here, we have added also the best-fitting Plummer models
to the data, with parameters taken from the Lane et al. papers,
and shown by the dashed curves. It is obvious that both functional
forms provide good representations to the data, which qualitatively,
display an asymptotically flat region at large radii. At large radii,
the line-of-sight velocity dispersion profiles for the Plummer models
fall to zero, but only very slowly, as R−1/2. This allows good fits
to data which qualitatively tend to constant values. The good fits
allowed by the Plummer models are clearly not sufficient to dismiss
a modified gravity interpretation, as the asymptotically flat projected
dispersion velocity fits of the type used for full dynamical modelling
under modified gravity (Hernandez & Jiménez 2012) are equally
consistent with the data.

Fig. 3 completes the fits to the Lane et al. sample, where NGC
6121, NGC 6218 and NGC 6752 are analogous to the ones shown in
Fig. 2. Again, the dashed and solid curves are essentially equivalent.
The remaining two clusters in this figure give the two examples
which have been studied by both groups of observers, NGC 7099
and NGC288, where the triangles and dots with error bars give the
Scarpa et al. and Lane et al. data, respectively. In these last two cases,
the dashed lines give the best-fitting Plummer models from the Lane
et al. papers, and the solid lines the best-fitting models from equation
(1), considering joint data samples from both groups. An equation
(1) fit limited to the Lane et al. data for these last two clusters
was also performed, for the comparison shown in the following
figure. For the last two clusters, we see that the two independent
data samples are consistent with a fixed underlying distribution, and
also, that the fits to the added samples from equation (1) represent
the data as well as the Plummer models.

 at U
niversidad N

acional A
utÃ

³nom
a de M

Ã
©

xico on July 25, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 



Flattened velocity dispersion profiles in GCs 3199

Figure 1. The observed projected velocity dispersion profiles for six GCs in the Scarpa et al. sample, points with error bars, as a function of the radial
coordinate, normalized to the half-light radius of each. The solid curves indicate the maximum likelihood fits to the asymptotically flat σ (R) model of equation
(1), seen to be accurate descriptions of the data. The vertical lines indicate the a = a0 threshold, and the arrows the point where the profiles flatten, a priori
independent features, in most cases seen to occur at approximately the same region; see the text for details.

It is interesting at this point to notice a first correlation, the
smaller the value of Ra/R1/2, the larger the fraction of the cluster
which lies in the a < a0 regime, and interestingly, the flatter the
velocity dispersion profile appears. At the top of the figures we
see clusters where stars experience acceleration below a0 almost at
all radii, and it so happens that it is only in these systems that the
velocity dispersion profile appears almost flat throughout. Towards
the bottom, we see systems where only at the outskirts accelerations
fall under a0. Over most of their extents, these clusters lie in the
Newtonian a > a0 regime, and indeed, it is exclusively these that

show a clear Keplerian decline in the projected velocity dispersion
profiles over most of their extents. Also, note that on average, Rf and
Ra approximately coincide, as already previously noticed by Scarpa
et al. (2007a), the flattening in the velocity dispersion profiles seems
to appear on crossing the a0 threshold.

We end this section with Fig. 4 which compares the χ2 values
for the Plummer fits to the Lane et al. data to the χ2 values for the
equation (1) fits to the same data. As it was already obvious from
Figs 2–3, both functional forms provide fits of very similar quality,
although a rigorous statistical assessment actually shows the fits to
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3200 X. Hernandez, M. A. Jiménez and C. Allen

Figure 2. The observed projected velocity dispersion profiles for five GCs in the Lane et al. sample, points with error bars, as a function of the radial coordinate,
normalized to the half-light radius of each. The solid curves indicate the maximum likelihood fits to the asymptotically flat σ (R) model of equation (1), seen
to be accurate descriptions of the data. The dashed lines indicate the best-fitting Plummer models from the Lane et al. papers, also fair representations of the
data. The vertical lines indicate the a = a0 threshold, and the arrows the point where the profiles flatten, a priori independent features, in most cases seen to
occur at approximately the same region; see the text for details.

profiles which are asymptotically flat at large radii to better represent
the data than the Plummer models, which slowly tend to zero. NGC
104, which results in the poorest fits under both functional forms
tested, falls off the range shown in Fig. 4. For the asymptotically flat
profile suggested by MONDian gravity schemes, this cluster yields
a χ2 value of 28.55, while for the Newtonian Plummer profile of
Lane et al., a χ2 of 51.14 results. This cluster is in fact the one
for which the difference in χ2 values is greatest, in the sense of
further supporting the conclusions presented, but was omitted from

the figure to allow greater detail in the region where the majority of
the clusters lie.

3 T E S T I N G T H E N E W TO N I A N E X P L A NAT I O N

In order to test the validity of the explanation for the outer flatten-
ing of the observed velocity dispersion profiles under Newtonian
gravity, that these indicate dynamical heating due to the tides of
the Milky Way system (bulge plus disc plus dark halo), we need

 at U
niversidad N

acional A
utÃ

³nom
a de M

Ã
©

xico on July 25, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

4 
1 

\V 
3 

~~ --r=----
2 

5 

4 

3 

2 

o 
~ 6 

rJl 
~ 4 

S 2 

~ 
~ 12 

b 10 

B 

6 

4 

2 

O 

B 

1 T IT! 
j 111 ! 

- J- - -:::--

~IT! qy 

t ! 
6f 1 -
4 

2 

O I 

1 
1 

¡dJ 
L L 

I 

t 
rr-=-- _1 1 ! I ! " 

i 
:¡ 

-. ! ., 
~ - - -- - --

,1/ 

-
- --i:.-- 1--

1 ! 
I 1 I 1 
2 3 4 5 6 

R/Rl/2 

-

NGC4590 
-

-

~ -

NGC6809 -

T -

1 
-

-

NGC5024 -

1 
-

NGC104 
-

I -

-

-- - - --- - -- --- -- -
-

-

NGC6656 
-

I -

= 
I I 1 I 

7 B 9 10 11 



Flattened velocity dispersion profiles in GCs 3201

Figure 3. The observed projected velocity dispersion profiles for the remaining five GCs in the Lane et al. sample, points with error bars, as a function of
the radial coordinate, normalized to the half-light radius of each. The solid curves indicate the maximum likelihood fits to the asymptotically flat σ (R) model
of equation (1), seen to be accurate descriptions of the data. The dashed lines indicate the best-fitting Plummer models from the Lane et al. papers, also fair
representations of the data. NGC 288 and NGC 7099 are common to both samples; dots and triangles show the Lane et al. and Scarpa et al. data, respectively.
The vertical lines indicate the a = a0 threshold, and the arrows the point where the profiles flatten, a priori independent features, in most cases seen to occur at
approximately the same region; see the text for details.

accurate estimates of the Newtonian tidal radii for the clusters stud-
ied. One of us in Allen, Moreno & Pichardo (2006, 2008) performed
detailed orbital studies for 54 GCs for which absolute proper mo-
tions and line-of-sight velocities exist. In that study, both a full
3D axisymmetric Newtonian mass model for the Milky Way and a
model incorporating a Galactic bar were used to compute precise
orbits for a large sample of GCs, which fortunately includes the
16 of our current study. The Galactic mass models used in those

papers are fully consistent with all kinematic and structural restric-
tions available. Having a full mass model, together with orbits for
each GC, allows the calculation of the Newtonian tidal radius, not
under any ‘effective mass’ approximation, but directly through the
calculation of the derivative of the total Galactic gravitational force,
including also the evaluation of gradients in the acceleration across
the extent of the clusters, at each point along the orbit of each studied
cluster.
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3202 X. Hernandez, M. A. Jiménez and C. Allen

Figure 4. A comparison of the χ2 values for the best-fitting asymptoti-
cally flat σ (R) model of equation (1), and the optimum Plummer model fits
from the Lane et al. papers to the same data samples. Although both fits
are comparable as representations of the observed projected velocity disper-
sion profiles, the asymptotically flat model suggested by modified gravity
schemes provides, in all cases, a slightly better description of the data.

The Newtonian tidal radii we take for our clusters, RT, are actu-
ally the values which result in the largest dynamical heating effect
upon the clusters studied, those at perigalacticon. As the distance of
closest approach to the centre of the Galaxy might vary from pas-
sage to passage, as indeed it often does, detailed orbital integration
is used to take RT as an average for perigalactic passages over the
last 1 Gyr.

We update the tidal radii published in Allen et al. (2006, 2008),
by considering revised total masses from the integration of the ob-
served V-band surface brightness profiles for our clusters (Trager
et al. 1995), and using the V-band stellar M/L values given in
McLaughlin & van der Marel (2005) and accompanying electronic
tables. For each individual GC, detailed single stellar population
models tuned to the inferred ages and metallicities of each of the
clusters we model were constructed in that study, using various stan-
dard population synthesis codes, and for a variety of assumed initial
mass functions (IMFs). In this way, present stellar M/L values in the
V band were derived, which we use here. As we do not in any way
use the dynamical mass estimates of McLaughlin & van der Marel
(2005), the total masses we use are independent of any dynamical
modelling or assumption regarding the law of gravity, as they are
derived through completely independent surface brightness profile
measurements and stellar population modelling. The confidence in-
tervals in our tidal radii include the full range of stellar M/L values
given by McLaughlin & van der Marel (2005), through considering
a range of ages, metallicities and IMFs consistent with the observed
HR diagrams for each cluster. These uncertainties dominate the
error budget on RT, as those introduced by the observational un-
certainties in the orbital determinations are much smaller. This last
can be seen from the range in RT values given in Allen et al. (2006)
which are extreme in being derived from taking all four orbital
parameters at their 1σ extremes, something with a probability of
(0.318)4 = 1 per cent, and are hence about 2.58σ ranges. Although
sub-dominant, the corresponding 1σ errors on RT have also been
added. In what follows, we shall make use of total stellar masses
derived as explained above, including as confidence intervals the

Figure 5. The relation between the point where the velocity dispersion
flattens, Rf, and the Newtonian tidal radius, RT, for each cluster. Even con-
sidering the large errors involved on both quantities, on average points fall
far to the right of the identity line shown, making the Newtonian explanation
for the flattened velocity dispersion profiles, rather suspect.

full uncertainties in these results associated with the various IMFs
assumed by McLaughlin & van der Marel (2005), and not the much
narrower confidence intervals resulting from taking a fixed IMF.

In Fig. 5, we show values of Rf for our clusters, plotted against
their corresponding RT values, both in units of pc. The error bars
in Rf come from the full likelihood analysis described in the fitting
process of equation (1) to σ obs(R), which guarantees that confidence
intervals in both of the quantities plotted are robust 1σ ranges. The
solid line shows an Rf = RT relation. It is obvious from the figure
that the onset of the flat velocity dispersion regime occurs at radii
substantially smaller than the tidal radii, for all of the GCs in our
sample. Even under the most extreme accounting of the resulting
errors, only three of the clusters studied are consistent with RT ≈
Rf at 1σ . Actually, the average values are closer to RT = 4Rf, with
values higher than 8 appearing. One of the clusters, NGC 5024,
does not appear, as it has values of RT = 184.12, Rf = 36, which
puts it out of the plotted range, but consistent with the description
given above. Given the R3 scaling of Newtonian tidal phenomena,
even a small factor of less than 2 inwards of the tidal radii, tides
can be safely ignored, e.g. in Roche lobe overflow dynamics, the
stellar interior is largely unaffected by the tidal fields, until almost
reaching the tidal radius. It therefore appears highly unlikely under
a Newtonian scheme that Galactic tides could be responsible for
any appreciable dynamical heating of the velocity dispersion of the
studied clusters.

We note that Lane et al. (2010a) and Lane, Küpper & Heggie
(2012) find that Newtonian tidal heating can explain the observed
velocity dispersion profile of their GC sample. However, it is im-
portant to note that in Lane et al. (2010a, 2012) total masses were
calculated directly from the observed velocity dispersion observa-
tions, under the assumption that Newtonian dynamics hold. If that
assumption is to be tested, the importance of deriving total masses
through an independent method, not based on stellar dynamics, is
evident. Our results do not imply that the Newtonian explanation
might not apply to other GCs, e.g. the theoretically constructed ones
of Küpper et al. (2010) and Küpper, Lane & Heggie (2012), which
show the Newtonian explanation to hold in principle, although no
real GCs were included in those studies. A potential caveat of all
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Flattened velocity dispersion profiles in GCs 3203

the above studies is the use of strictly axisymmetric potentials for
the Milky Way, given that in Allen et al. (2006, 2008) it is shown
that the orbital dynamics of Galactic GCs with orbits probing the
regions where the Galactic bar is present, as many in our sample
do, can be strongly affected by its presence.

Note also that most of the clusters in our sample are problematic
for a Newtonian gravity scheme, even without the recent observa-
tions of an outer flat velocity dispersion profile. As remarked already
in Allen et al. (2006), the clusters in our sample have Newtonian
tidal radii larger than the observed truncation radii of their light
distribution, the sole exceptions being Omega Cen (NGC 5139) and
M92 (NGC 6341), two rather anomalous clusters. Whereas a full
dynamical modelling under an extended gravity force law of these
clusters, Hernandez & Jiménez (2012), naturally yielded an outer
truncation for the light profile, under a Newtonian hypothesis, the
observed truncation in the light profile of the clusters in our sample
cannot be explained as arising from interaction with the tidal field
of the Milky Way.

Furthermore, note that we have taken RT at perigalacticon, where
tides are at their most severe over the clusters orbit, any other orbital
occupation averaging would result in substantially larger RT values.
Note also that as shown by Allen et al. (2006, 2008), the inclusion of
a realistic massive Galactic bar potential, in the case of the clusters
in our sample, results generally in negligible changes in the resulting
RT values, or in some cases, a slight increase in these values. Hence,
even taking the fullest non-axisymmetric Galactic mass model under
Newtonian gravity, with precise orbits derived from 3D velocity
measurements for the clusters studied, together with total mass
determinations tuned to the individual stellar populations of them,
yields tidal radii as shown in Fig. 2.

Regarding a comparison to the expectations under Newtonian
gravity, an interesting dynamical effect appears when a stellar halo
object is near its apocentre. As shown in e.g. Niederste-Ostholt,
Belokurov & Evans (2012), near apocentre tidal tails are com-
pressed into what might look like a high dispersion velocity halo.
We have checked the position of the clusters studied along their
orbits, and found that only in the case of NGC 6121 is the cluster
near apocentre, checked explicitly from the orbits for the clusters
in question from Allen et al. (2006, 2008). Note that this case also
follows the MONDian expectations of Fig. 7, see below. It is also
important to note that the piling up of tidally stripped stars near
apocentre has not been proven to hold for more chaotic orbits, and
probably does so to a much smaller degree than what shown in
Niederste-Ostholt et al. (2012) for a pure axisymmetric potential.
This is relevant, as the orbits of clusters lying within the region
of influence of the Galactic bar, as many of the ones in our sam-
ple do, become substantially chaotic, with no well-defined periodic
apocentre distance, as shown in the Allen et al. papers mentioned.

4 TESTING A MO DI F IED G R AV IT Y
E X P L A NAT I O N

We begin this section by testing the correlation between Ra and
Rf. As already noticed by Scarpa et al. (2011), the flattening in the
observed velocity dispersion profiles seems to appear at the point
where the a0 threshold is crossed. Here, we use the much more
careful and objective modelling of the observed velocity dispersion
curves of the previous section to test this point, shown in Fig. 6.

We see nine GCs in the sample falling within 1σ of the identity
line shown, a further three lying within 2σ of this same line and the
remaining four appearing as outliers. Thus, the correlation appears
stronger than in Figs 1–3, where errors on Rf/R1/2 appear and only

Figure 6. The relation between the radius where the velocity dispersion
flattens, Rf, and the point where average stellar accelerations fall below the
a0 threshold, Ra.

a qualitative comparison is implied, not including the confidence
intervals in Ra. A quantitative test of the correlation being explored
is possible, since the careful modelling of the velocity dispersion
profiles we performed naturally yields objective confidence inter-
vals for the parameters of the fit. Of the outliers, NGC 288 presents
an almost entirely flat velocity dispersion profile, and is hence a
case where the parameter Rσ is only poorly constrained. In this
figure, we thus quantify the correlation between the point where the
velocity profile flattens and the crossing of the a0 threshold, as ex-
pected under MONDian schemes, which is seen to hold on average.
One could think of adding a point at (0,0) in Fig. 6, corresponding
to the local dSph galaxies, systems with fully isothermal observed
velocity dispersion profiles, lying fully within the a < a0 condition,
e.g. Angus (2008), Hernandez et al. (2010). A possible caveat is the
use of only a coarse definition for Ra, which relies only on projected
quantities which are integrals along the line of sight. More detailed
dynamical structure modelling of the type as found in Hernandez
& Jiménez (2012), requiring fixing on a particular modified gravity
model, something which we expressedly avoid in this study, might
reveal slight differences from the current Fig. 6, perhaps with no
outliers.

As already noticed in Figs 1–3, a correlation is evident in that the
further out, in units of the cluster half-light radius, the a0 threshold
is reached, the larger the relative drop in the observed velocity dis-
persion profile. This is expected under MONDian gravity schemes,
since when the Newtonian a > a0 region is larger within a particular
cluster, the larger the ‘Keplerian’ fall before the a < a0 modified
regime is reached.

We end this section with Fig. 7, which shows the relation between
the measured asymptotic velocity dispersion, σ∞, and the total mass
of the clusters in question. The mass was calculated as described in
Section 3, and therefore represents the best current estimate of the
stellar mass for each of the clusters in the sample, including its cor-
responding confidence intervals. As with all the other correlations
and data presented in Figs 1–6, there is no dynamical modelling or
modified gravity assumptions going into the data presented in Fig.
7, merely observable quantities. We see, as already pointed out in
Hernandez & Jiménez (2012), that the GCs observed comply with
a scaling of σ ∝ M1/4, the Tully–Fisher law of galactic systems
‘embedded within massive dark haloes’.
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3204 X. Hernandez, M. A. Jiménez and C. Allen

Figure 7. The relation between the observed asymptotic dispersion velocity
measurements and the total mass of each cluster. The line indicates the best-
fitting σ ∝ M1/4 scaling for the data, and is consistent with the galactic scale
Tully–Fisher relation.

From this last figure two clusters have been excluded, NGC 288
and NGC 4590 which have very poorly determined σ∞ values, with
uncertainties so large that these clusters provide little information in
terms of Fig. 7. Regarding NGC 288, both the Scarpa et al. and the
Lane et al. data are noisier than for the others. Also, taking only one
set of data yields significantly distinct answers, although still barely
within their respective errors, a low asymptotic velocity for the Lane
et al. sample and a high value from the Scarpa et al. data. This does
not happen with the other common GC, NGC 7099, where both data
samples are in complete agreement. Although Sollima, Bellazzini
& Lee (2012) recently reported a velocity dispersion profile for
NGC 288, this is equally noisy, and does not help to clear the case,
their data are actually consistent, to their respective errors, with
both the Lane et al. or the Scarpa et al. data. Given the current level
of observational uncertainties we prefer to exclude NGC 288 from
any consideration regarding its asymptotic velocity value, until a
clearer picture emerges from the observational point of view.

The straight line shows the best-fitting σ ∝ M1/4 scaling, and
actually falls only a factor of 1.3 below the modified gravity pre-
diction for systems lying fully within the low-acceleration regime
(e.g. Hernandez & Jiménez 2012), for the same value of a0 = 1.2 ×
10−10 m s−1 used here, as calibrated through the rotation curves of
galactic systems. This small offset is not surprising, since the GCs
treated here are not fully within the a < a0 condition, most have an
inner Newtonian region encompassing a substantial fraction of their
masses. Note also that from an statistical point of view, consistency
of a set of data points with a model does not require for all data
points to lie within 1σ of the proposed model. Probabilistically, one
actually expects about 1/3 of the points to lie between 1σ and 2σ

of the model, with 1/100 expected between 2σ and 3σ , even for
data actually extracted from a given model. Given the size of our
sample, finding five GCs without 1σ , but within 2σ of the proposed
model is then well within expected random noise, inasmuch as we
have taken care to ensure that the error bars given are real 1σ con-
fidence intervals. Further, as many of the GCs in our sample have
not reached acceleration values significantly below a0 at their last
measured point, while other have, a certain intrinsic scatter would
be expected in Fig. 7 from a MONDian gravity perspective.

From a Newtonian point of view, if Galactic tides were responsi-
ble for the observed outer flattening of the velocity dispersion pro-
files studied, given the narrow range of half-light radii these present,
and given the inverse scaling of Newtonian tides with the density
of the satellite, a slight downward trend for decreasing asymptotic
velocity dispersion with increasing mass would be expected in Fig.
7. This would of course be blurred significantly by the range of peri-
galacticon distances inferred for the GCs in our sample. It is clear
from the figure that a blurred decreasing trend is not what the data
show; rather, consistency with the σ ∝ M1/4 of MONDian gravity,
including the normalization, is evident. A preliminary version of
this last figure appeared already in Hernandez & Jiménez (2012);
we reproduce here an updated version using now the extended sam-
ple of clusters treated, and σ∞ values and their confidence intervals
as derived through the careful velocity dispersion fitting procedure
introduced.

Given that the inclusion of even a few high-velocity contami-
nating stars can bias the velocity dispersion measurements signif-
icantly, e.g. Giersz & Heggie (2011), it is important to assess the
robustness of the velocity dispersion profiles we use to this possi-
bility. The stars from the Lane et al. group were selected through
the requirement of four stellar parameters, ensuring membership
through requiring simultaneously a �Vr, and also Ca, g and [m/H]
membership criteria. These make it unlikely that contamination is-
sues might have degraded the velocity dispersion profiles reported
by the Lane et al. group. Regarding the Scarpa et al. results, only a
�Vr membership criteria was used. However, as can be seen from
the table, only one of their clusters, NGC 6171, has |b| < 45 and
�Vr < 100 km s−1, showing that with this only possible exception,
contamination of field stars is unlikely to affect the derived velocity
dispersion determinations we use. It is also reassuring of the relia-
bility of the Scarpa et al. results that of the two clusters which have
also been studied by the Lane et al. group, NGC 7099 has reported
velocity dispersion profiles which are fully consistent when com-
paring the data samples from the two groups of observers. The case
of NGC 288 has already been discussed, although both data samples
are still consistent to within their respective errors, a definitive trend
appears for large and small asymptotic velocity dispersion values
for the Scarps et al. and Lane et al. groups, respectively.

To summarize, we have tested the Newtonian explanation of
Galactic tides as responsible for the observed σ (R) phenomenol-
ogy, and found it to be in tension with the observations, given the
tidal radii (at perigalacticon) which the GCs in our sample present
are generally larger than the points where σ (R) flattens, on average,
by factors of 4, with values higher than 8 also appearing. An expla-
nation under a MONDian gravity scheme appears probable, given
the correlations we found for the clusters in our sample, all in the
expected sense, and shown in Figs 1–7. Table 1 gives the parameters
of velocity dispersion fits and their confidence intervals. The errors
in σ∞ are uncorrelated with those in the other two parameters,
which, as it is easy to see from the model, are perfectly anticorre-
lated amongst themselves. The masses come from integrating the
observed surface density light profiles, and using the M/L values,
and their uncertainties, calculated using detailed stellar population
modelling on a cluster by cluster basis by McLaughlin & van der
Marel (2005).

5 C O N C L U S I O N S

From a purely empirical perspective, we test the Newtonian ex-
planation of Galactic tides as responsible for the observed flat-
tening of the velocity dispersion profiles in the GCs studied. These
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clusters can be shown to have Newtonian tidal radii at closest Galac-
tic passage larger than the points where σ (R) flattens, by large fac-
tors of 4 on average, making the explanation under the Newtonian
hypothesis suspect.

Through a careful modelling of the observed velocity dispersion
profiles, we corroborate an average correlation between the appear-
ance of a flat region in σ (R) and the crossing of the a0 threshold, as
expected under modified gravity schemes.

By including results from careful stellar population modelling
of the GCs studied to derive total mass estimates, we show that
the asymptotic values of the measured velocity dispersion profiles,
σ∞, and total masses for these systems, M, are consistent with the
generic modified gravity prediction for a scaling σ 4

∞ ∝ M .
Although individual velocity dispersion profiles can be ade-

quately fitted with either Newtonian Plummer models or MONDian
asymptotically flat ones to equivalent accuracy, the large Newtonian
tidal radii sometimes found and the ‘Tully–Fisher’ mass–velocity
scaling observed show that the phenomenology of the velocity dis-
persion profiles of the GCs studied is consistent with a qualitative
change in gravity in the low-acceleration regime, as predicted by
MONDian gravity theories.
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Lane R. R., Küpper A. H. W., Heggie D. C., 2012, MNRAS, 423, 2845
Lee J., Komatsu E., 2010, ApJ, 718, 60
McLaughlin D. E., van der Marel R. P., 2005, ApJS, 161, 304
Mendoza S., Hernandez X., Hidalgo J. C., Bernal T., 2011, MNRAS, 411,

226
Milgrom M., 1983, ApJ, 270, 365
Milgrom M., 1994, ApJ, 429, 540
Moffat J. W., Toth V. T., 2008, ApJ, 680, 1158
Niederste-Ostholt M., Belokurov V., Evans N. W., 2012, MNRAS, 422, 207
Scarpa R., Falomo R., 2010, A&A, 523, 43
Scarpa R., Marconi G., Gilmozzi R., 2004, in Dettmar R., Klein U., Salucci

P., eds, Proc. Science, Baryons in Dark Matter Haloes. SISSA, Novigrad,
p. 55.1

Scarpa R., Marconi G., Gimuzzi R., Carraro G., 2007a, A&A, 462, L9
Scarpa R., Marconi G., Gimuzzi R., Carraro G., 2007b, The Messenger,

128, 41
Scarpa R., Marconi G., Carraro G., Falomo R., Villanova S., 2011, A&A,

525, A148
Sollima A., Nipoti C., 2010, MNRAS, 401, 131
Sollima A., Bellazzini M., Lee J. W., 2012, ApJ, 755, 156
Thompson R., Nagamine K., 2012, MNRAS, 419, 3560
Trager S. C., King I. R., Djorgovski S., 1995, AJ, 109, 218
Zhao H., Famaey B., 2010, Phys. Rev. D, 81, 087304

This paper has been typeset from a TEX/LATEX file prepared by the author.

 at U
niversidad N

acional A
utÃ

³nom
a de M

Ã
©

xico on July 25, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 





4. ¿GRAVEDAD MODIFICADA O MAREAS NEWTONIANAS EN
CÚMULOS GLOBULARES?
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Caṕıtulo 5

Perfiles de densidad

5.1. Resumen

.
Es un hecho conocido que el halo estelar de la Vı́a Láctea tiene un perfil de

densidad el cual a primera aproximación satisface ρ ∝ r−3. , Lo mismo ocurre
para M31 y las observaciones muestran que la distribución de CGs en la galaxia
Andrómeda siguen el mismo patrón. Recientemente se ha observado que una
población difusa de estrellas en los alrededores de CGs que se extiende más allá de
su radio de marea newtoniano sigue la misma distribución.

En un esquema de gravedad modificada cualquier halo isotérmico de part́ıcu-
las de prueba alrededor de una distribución esférica de masa debe adoptar una
configuración de equilibrio que en primera aproximación satisface ρ ∝ r−3.

En una descripción newtoniana de la gravedad hay diversas explicaciones para
cada caso dependiendo del sistema del que se trate, dentro de la gravedad mo-
dificada en cambio todas estas observaciones se entienden como consecuencia del
comportamiento de la gravedad en escalas donde la aceleración es del orden de
la aceleración de Milgrom.

En este trabajo participe en la deducción de la relación ρ ∝ r−3 en un esque-
ma de gravedad modificada, en la búsqueda de registros en la literatura donde
se documentara este comportamiento en diferentes sistemas astrof́ısicos y junto
con los demás autores participe en todo el proceso de revisión hasta lograr la
publicación del trabajo.
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ABSTRACT

That the stellar halo of the Milky Way has a density profile which, to first approximation, satisfies ρ ∝ r−3 and
has been known for a long time. More recently, it has become clear that M31 also has such an extended stellar
halo, which approximately follows the same radial scaling. Studies of distant galaxies have revealed the same
phenomenology. Also, we now know that the density profiles of the globular cluster systems of our Galaxy and
Andromeda to first approximation follow ρ ∝ r−3, Σ ∝ R−2 in projection. Recently, diffuse populations of stars
have been detected spherically surrounding a number of Galactic globular clusters, extending much beyond the
Newtonian tidal radii, often without showing any evidence of tidal features. Within the standard Newtonian and
general relativity scenario, numerous and diverse particular explanations have been suggested, individually tailored
to each of the different classes of systems described above. Here we show that in a MONDian gravity scenario any
isothermal tenuous halo of tracer particles forming a small perturbation surrounding a spherically symmetric mass
distribution will have an equilibrium configuration which to first approximation satisfies a ρ ∝ r−3 scaling.

Key words: galaxies: kinematics and dynamics – galaxies: star clusters: general – gravitation – stars: kinematics
and dynamics

1. INTRODUCTION

Progress in the debate between the hypothetical physical
reality of astrophysical dark matter and the option of modifying
gravity at the low acceleration regime will hinge upon the
exploration of as many independent lines of enquiry as possible.
Whereas the rotation curves of galaxies can be adequately
reproduced from either point of view (Milgrom 1983, 1994;
Sanders & McGaugh 2002; Swaters et al. 2010), a variety of
recent studies have shown results in tension with the standard
scale-invariant gravity plus dark matter paradigm, and being
more in line with generic MONDian gravity approaches.

We shall use the term MONDian to refer to modified gravity
theories in which, in the low velocity limit, the force per unit
mass between a test particle and a spherical mass distribution
will shift from the Newtonian expression of GM/r2 to an
(GMa0)1/2/r behavior for acceleration scales below Milgrom’s
a0, independently of the fundamental underlying theory of
gravity which might lead to such a behavior, e.g., Bekenstein
(2004), Moffat & Toth (2008), Zhao & Famaey (2010), Bernal
et al. (2011), Mendoza et al. (2011), Capozziello & De Laurentis
(2011), and Famaey & McGaugh (2012). The most salient
features of such schemes are equilibrium velocities which
become independent of distances at a value ≈(GMa0)1/4.

In Lee & Komatsu (2010) and Thompson & Nagamine (2012)
it has been shown that the infall velocity of the two components
of the Bullet cluster is incompatible with expectations of
full ΛCDM predictions, and is actually a challenge to the
standard gravity theory, as it surpasses the escape velocity of the
combined system. Recently, Kroupa (2012) has shown that tidal
dwarf galaxies, which, under the standard scenario, are transient
tidal clumps of galactic material having out of equilibrium
dynamics, actually fall on the same Tully–Fisher relation as all
dwarf galaxies. This appears as an uncanny coincidence from
the standard gravity perspective, where the dynamics of normal
dwarfs are thought to be determined by their dominant dark
matter halos. The result is expected under MONDian gravity

schemes, where, once the baryonic mass of the system is fixed,
the dynamics will uniquely follow, as it is indeed observed.

Along the same lines, in Haghi et al. (2011), Scarpa et al.
(2011), Hernandez & Jiménez (2012), and Hernandez et al.
(2013), it has been shown that the velocity dispersion profiles of
a number of Galactic globular clusters stop falling radially along
Keplerian expectations and settle to finite asymptotic values on
crossing the a < a0 threshold. The standard gravity explanation
for these profiles, that it is the tides of the Milky Way (MW)
that dynamically heat the outskirts of the clusters observed, e.g.,
Lane et al. (2010), appears suspect, as the Newtonian tidal radii
can be shown to exceed the points where the velocity dispersion
profiles flatten by large factors, and because the total globular
cluster masses and asymptotic velocity dispersion values follow
the galactic Tully–Fisher relation, as expected under MONDian
gravity schemes. Finally, in Hernandez et al. (2012) we showed
that the relative velocities of extremely wide binaries do not
follow the expectations of full galactic dynamical Newtonian
simulations, but diverge from the Keplerian decline with radius
to settle also at finite relative velocities on crossing the a < a0
threshold of MONDian gravity proposals.

In this paper we show that the density profile of an isothermal
population of trace particles surrounding a spherical mass dis-
tribution in MONDian gravity will naturally follow an approx-
imately ρ ∝ r−3 profile. Under standard gravity approaches,
the ubiquitous nature of ρ ∝ r−3 profiles has to be addressed
through a variety of highly specific explanations, individually
tailored to each of the diverse classes of systems where these
profiles have been observed. Examples of the above are merg-
ers and tidal dissolution of accreted substructure for the tenuous
stellar halos surrounding our Galaxy, M31, and also the recently
detected ones around external galaxies (e.g., Bullock et al. 2001;
Abadi et al. 2006), and the compression of tidal tails at apocenter
or disk shock heating for the “extra tidal” features surrounding
Galactic globular clusters, e.g., Da Costa (2012).

The above situation contrasts with the appearance of a di-
rect equilibrium solution for tracer populations having the
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simplest isotropic and isothermal Maxwellian distribution func-
tion, which, to first order, yields ρ ∝ r−3 profiles under
MONDian gravity schemes, which we show here. We suggest
that this is one further piece of evidence pointing in the direction
of the necessity of a modified gravity regime at low acceleration
scales.

In Section 2 we derive the first order predictions for equilib-
rium tenuous stellar halos under a MONDian gravity scheme,
and also under Newtonian gravity within dark matter halos, and
under Newtonian gravity in the absence of dark matter halos.
In Section 3 we compare the theoretical estimates with the ob-
served profiles for a variety of systems, finding the MONDian
prediction a good fit to the observed situation, over a wide va-
riety of scales and classes of astronomical systems. Section 4
presents a final discussion of our results.

2. FIRST ORDER DYNAMICAL EXPECTATIONS

We shall model the physical situation which applies generi-
cally for a MONDian scenario, where in the a � a0 limit, the
force between a test particle and a spherically symmetric mass
distribution becomes −(GM(r)a0)1/2/r , when one introduces
no modifications to Newton’s second law, e.g., Hernandez et al.
(2010) and Mendoza et al. (2011).

Assuming spherical symmetry, and taking the derivative of
the kinematic pressure, the equation of hydrostatic equilibrium
for a polytropic equation of state P = Kργ is

d(Kργ )

dr
= −ρ∇φ. (1)

In going to isothermal conditions, γ = 1 and K = σ 2, e.g.,
Binney & Tremaine (1987), and we get

σ 2

ρ

dρ

dr
= −∇φ. (2)

Writing ρ = (4πr2)−1dM(r)/dr , the above equation can be
written as

σ 2

[(
dM(r)

dr

)−1
d2M(r)

dr2
− 2

r

]
= −∇φ(r) (3)

where σ is the isotropic Maxwellian velocity dispersion for the
population of stars. The above treatment is common, and can
be found in, e.g., Hernandez et al. (2010), where we used it in
the modeling of dSph galaxies, systems characterized by flat
velocity dispersion profiles, obtaining mass models consistent
with observed velocity dispersion, half mass radii and total
masses, in the absence of dark matter. Other recent examples
of similar treatments can found in, e.g., Drukier et al. (2007),
Sollima & Nipoti (2010), and Hernandez & Jiménez (2012),
all modeling stellar populations using isotropic Maxwellian
distribution functions.

As an illustrative example we can take ∇φ(r) = GM(r)/r2

for the right-hand side of Equation (3), the Newtonian expres-
sion appearing for a � a0. Looking for a power law solution
for M(r) = M0(r/r0)m, we get

σ 2

[
m − 3

r

]
= −GM0

r2

(
r

r0

)m

, (4)

and hence m = 1, the standard isothermal halo, M(r) =
2σ 2r/G, having a constant centrifugal equilibrium velocity

v2 = 2σ 2 and infinite extent. In going to the MONDian limit of
a � a0, ∇φ(r) = (GM(r)a0)1/2/r , Equation (3) yields

σ 2

[
m − 3

r

]
= − [GM0a0]1/2

r

(
r

r0

)m/2

. (5)

In this limit m = 0, we obtain M(r) = M0 and v2 =
3σ 2 = (GM0a0)1/2, the expected Tully–Fisher scaling of the
circular equilibrium velocity with the fourth root of the mass,
with rotation velocities that remain flat even after the mass
distribution has converged, thus, rigorously isothermal halos
are naturally limited in extent, as already shown by Milgrom
(1984). It is interesting that in this limit the scaling between
the circular rotation velocity and the velocity dispersion is only
slightly modified as compared to the Newtonian case, with the
proportionality constant changing from 2 to 3, for the squares
of the velocities. Note also that a fuller asymptotic analysis
(Milgrom 1984) not imposing a power law solution shows that
the factor of three obtained above will in general lie in the
range 3–4.5.

We can now look for the behavior of a tenuous stellar
halo in the MONDian regime, and hence at large distances,
around a mass distribution which has essentially converged,
by looking at Equation (2) and writing the right-hand side as
−(GMtota0)1/2/r , where Mtot is the total mass of the galactic
or stellar system. The ρ in the left-hand side of this same
equation now refers to the density distribution of essentially test
particles making up a trace population, e.g., a stellar galactic
halo, the globular cluster distribution around a large galaxy,
or the faint halos of “extra-tidal” stars surrounding Galactic
globular clusters. Using also the result of Equation (5) of
3σ 2 = (GM0a0)1/2, Equation (2) yields

dρ

dr
= −3

ρ

r
, (6)

which can then be integrated directly to yield

ρ(r) = ρ0(r0/r)3. (7)

In deriving Equation (7) we have introduced the assump-
tions of a tracer population and the results of having forced a
power law solution in Equation (5), which significantly simplify
the calculations with respect to a full numerical solution (e.g.,
Milgrom 1984 or Hernandez & Jiménez 2012), or even with re-
spect to the asymptotic analysis of Milgrom (1984). The above
assumptions will certainly never be strictly valid in a real as-
trophysical system, still, provided they are approximately valid,
the solution of Equation (7) will represent a first order descrip-
tion. Our simplified approach, however, allows a transparent
handling of the physics, and permits a clear understanding for
the generic appearance of a ρ(r) ∝ r−3 region, a feature already
noted in the numerical solutions presented in Milgrom (1984),
and apparent in many astrophysical systems, as discussed in the
following section. The volumetric distribution of Equation (7)
can be projected analytically along one direction to yield the
projected surface density profile

Σ(R) = πρ0r
3
0

2R2
. (8)

Of course, ρ ∝ r−3 is an approximation which will only
be valid over a limited radial range. In fact, mass profiles for
isothermal solutions converge to finite total masses and radii, as

2



The Astrophysical Journal, 770:83 (6pp), 2013 June 20 Hernandez, Jiménez, & Allen

shown in, e.g., Milgrom (1984) and Hernandez et al. (2010). In
closer detail, the density profiles will steepen beyond r−3 as one
moves farther out as the total mass converges, e.g., as seen in
the broken power law fits for the Galactic stellar halo reported
by Sesar et al. (2011).

Under the Newtonian expression of ∇φ = GM(r)/r2, the
equivalent development for a trace population in the halo of
a galaxy having the same rotation curve as the one leading to
Equation (6), M(r) = 2σ 2r/G, where this time M(r) refers
mostly to the hypothetical dark matter component, yields

ρ(r) = ρ0(r0/r)2 (9)

as the expression corresponding to Equation (7). The case of a
trace population around an essentially converged total mass in
Newtonian dynamics, e.g., the tenuous stellar halos surrounding
the Galactic globular clusters, ∇φ = GMtot/r2 yields

ρ(r) = ρ0e
(GMtot/σ

2r), (10)

a density distribution which tends to a constant at large radii.
Thus, we see that equilibrium configurations of isothermal tracer
populations in the MONDian regime will approximately follow
ρ(r) ∝ r−3 density profiles, while under Newtonian gravity
the same populations within the corresponding dark matter
halos will show much shallower ρ(r) ∝ r−2 profiles, which,
in the absence of dark matter halos, e.g., tenuous stellar halos
about globular clusters, will have density profiles as given by
Equation (10).

3. OBSERVATIONAL COMPARISONS

In this section we review the observational situation of
tenuous tracer population halos, which now spans a very wide
range of systems and astrophysical scales. We begin with a
number of recent determinations of the density structure of the
stellar halo of our Galaxy. Morrison et al. (2000) implement a
careful disk/halo star separation criteria, and obtain ρ(r) ∝ r−3

for the stellar halo of the MW. Jurić et al. (2008) report a single
power law fit ρ(r) ∝ r−2.8±0.3, while Bell et al. (2008) find halo
profiles having more structure than simple power laws to yield
better fits, but still, ρ(r) ∝ r−3 for the preferred single power
law model. Finally, Sesar et al. (2011) obtain a broken power
law as the most accurate description, but again, a best fit single
power law of ρ(r) ∝ r−2.9. There is clearly a broad radial range
over which the best fit single power law model yields a slope as
expected from Equation (7).

Recent detailed studies of the stellar halo of Andromeda
using a variety of techniques and data from the largest modern
facilities have reached a consensus for a ρ ∝ r−3 structure.
Ibata et al. (2007) obtain Σ(R) ∝ R−1.91±0.12 with data from the
Canada–France–Hawaii Telescope, Tanaka et al. (2010) using
the Suprime-Cam instrument on the Subaru telescope found
Σ(R) ∝ R−2.17±0.15, and lastly Gilbert et al. (2012) measure
Σ(R) ∝ R−2.2±0.2 out to very large distances, 175 kpc, coming
to Σ(R) ∝ R−2.0±0.5 for 20 kpc < R < 90 kpc once the
kinematical substructure is removed. It appears that the stellar
halo of M31 is a classic example of the tenuous populations
described by Equation (7).

Regarding more external galaxies, tenuous extended stellar
halos have been detected over the past few years surrounding
numerous systems. Recent detections include Cockcroft et al.
(2013), who find evidence for an extended stellar halo about
M33 and Bakos & Trujillo (2012), who report finding such

structures about a sample of seven late-type spirals from the
Sloan Digital Sky Survey (SDSS), in all cases with total masses
amounting to only a few percent of the total baryonic mass of the
host galaxies. Although the above observations cannot yet yield
secure projected density profiles, Jablonka et al. (2010) report
a tenuous stellar halo about NGC 3957 with a projected scaling
Σ(R) ∝ R−2.76±0.43, while Barker et al. (2009) find a faint stellar
halo about M81 with a projected scaling Σ(R) ∝ R−2.0±0.2, and
Bailin et al. (2011) observe a stellar halo about NGC 253 with
Σ(R) ∝ R−2.8±0.6. In going to larger samples, Zibetti et al.
(2004) showed through the stacking of images from 1047 edge-
on spiral galaxies from the SDSS that these very generally
present extended tenuous stellar halos with volumetric radial
density profiles well described by ρ(r) ∝ r−3.

In going to the spatial distribution of a different tracer
population, this time the globular cluster systems of galaxies, it
has been well know for many years that the density profile of
the GC system of the MW very accurately follows a ρ(r) ∝ r−3

profile, e.g., Surdin (1994), Racine & Harris (1989). Looking in
more detail, more recently Bica et al. (2006) find a ρ(r) ∝ r−n

profile with 3.2 < n < 3.9 for all Galactic globular clusters,
while the metal-rich population also follows a power law, this
time with ρ(r) ∝ r−3.2±0.2 for large radii, and ρ(r) ∝ r−3.2±0.9

if one includes the effects of oblateness in the distribution.
The globular cluster system of M31 has a projected power
law density profile also in agreement with the expectations
of Equation (7), e.g., Racine (1991) determined Σ(R) ∝ R−2.
More recently and in more detail, Huxor et al. (2011) obtained
a best fit profile composed of three distinct power laws, which,
however, if modeled as a single power law for r > 1 kpc, can
be approximated by the same Σ(R) ∝ R−2 law found earlier by
Racine (1991).

Going to more external galaxies, Perelmuter & Racine (1995)
found a best fit Σ(R) ∝ R−2 scaling for the globular cluster sys-
tem of M81. Harris et al. (1984) found the outer projected radial
distribution of globular clusters in NGC 4594, the Sombrero
galaxy, to be well described by a Σ(R) ∝ R−2 profile. Harris &
van den Bergh (1981) also found ρ(r) ∝ r−3 scalings for the
globular cluster systems around seven elliptical galaxies. More
recent studies have found a spread in the power law slopes of
projected density profiles for globular cluster systems, but taken
as a whole, “typical projected power-law indices range from 2
to 2.5 for some low-luminosity Es to 1.5 or a bit lower for the
most massive giant ellipticals” Brodie & Strader (2006, p. 211).

Since the studies of Grillmair et al. (1995) and Leon et al.
(2000), a number of tenuous stellar halos associated with
Galactic globular clusters have been detected. The problem of
determining structural parameters is harder than in the cases of
the stellar halos surrounding galaxies as the overall numbers
of stars are much lower, and the problem of contamination by
foreground and background sources, as well as by obscuration,
is significant. More modern studies have found a large range
of power law slopes in the outskirts of globular clusters, for
example, McLaughlin & van der Marel (2005) find projected
indexes going from −2 to −6, but report that a population
of the most massive clusters shows indexes close to Σ(R) ∝
R−2 and conclude that the extended halos enveloping the
clusters they study are suggestive of a generic equilibrium
feature, rather than being transient structures. Jordi & Grebel
(2010) report projected power law indexes for tenuous stellar
halos surrounding 17 Galactic globular clusters; their most
reliable results span values from −1 to −4. These authors
also note features which are problematic for a standard gravity
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interpretation, in the cases of, e.g., NGC 7089 and Pal 1, whose
stellar halos are clearly spherical with no sign of any tidal
features, in spite of extending in both cases much beyond their
Newtonian Jacobi radii. Carballo-Bello et al. (2012) perform
a similar study (also including careful CMD modeling to
limit contamination) for the extra-tidal halos of 19 Galactic
globular clusters. Again, the reported projected power law
indexes span a broad range from close to −2 to about −4,
excluding clusters showing clear tidal features. Note that for
two of the three clusters which overlap with the Jordi & Grebel
(2010) sample, NGC 4147 and NGC 5272, Carballo-Bello et al.
(2012) report power law indexes of −2.8+0.07

−0.05 and −3.18+0.08
−0.05,

while Jordi & Grebel (2010) assign to these same clusters
values of −1.48 ± 0.24, and of −0.94 ± 0.38, respectively,
for a comparable radial range. This simply illustrates that
the observational situation is far from converging to definitive
answers regarding these systems.

Further, in the case of globular clusters the problem is
intrinsically less clear than for the galactic stellar halos, as
internal dynamical evolutionary effects might play a part, as
well as the gravitational perturbations due to the crossing of
the Galactic disk. It is, however, clear that Galactic globular
clusters often, if not always, are surrounded by tenuous stellar
halos, which, from a Newtonian point of view, must be regarded
as “extra tidal” structures. The smooth and round appearances
often observed, with all absence of tidal tails, hence become
a problem. This problem does not appear under MONDian
gravity, where satellite systems are generally expected to be
much more robust to tides, e.g., Hernandez & Jiménez (2012).
Interestingly, Mackey et al. (2010) find a Σ(R) ∝ R−n power law
structure for the tenuous stellar halo surrounding an extremely
isolated globular cluster in M31, which begins as n ≈ 2.5, and
then breaks further outward to n ≈ 3.5. Also, note that most of
the Σ(R) ∝ R−n indexes in the two recent Jordi & Grebel (2010)
and Carballo-Bello et al. (2012) studies cluster about n = 3.
The presence of as yet undiscovered tidal features among these
clusters would tend to artificially steepen their profiles. Note
also that Grillmair et al. (1995) cautioned that the difficulties of
background subtraction and obscuration corrections will lead to
systematics which tend to yield overestimates in n. On the other
hand, the large indexes sometimes reported for globular clusters
could also be detections of the steepening in the profile expected
under MONDian gravity models on approaching the final radius,
already mentioned in the discussion following Equation (8).

It thus appears clear that extended tracer population halos,
stars, or globular clusters having a small fraction of the light of
their host systems, galaxies, or globular clusters are a common
feature. Also, such halos are generally never far from the
predictions of Equation (7) for equilibrium configurations of
isothermal tracer populations in the MONDian regime, to first
approximation ρ(r) ∝ r−3 or Σ(R) ∝ R−2. Within the standard
gravity interpretation, explanations of the power law density
profiles of galactic stellar halos have been proposed in terms
of the accretion and tidal dissolution of substructure falling
into the main galaxy, e.g., Bullock et al. (2001), Bullock &
Johnston (2005), and Abadi et al. (2006). However, the overall
smoothness and uniformity in stellar properties of these systems
has been pointed out as problematic for the standard explanation,
which naturally implies a degree of randomness in the accreted
material, e.g., Ibata et al. (2007), and Bell et al. (2008), who also
find from simulations stellar halos not matching observations
in terms of the substructure details. Ibata et al. (2007) also
show that standard simulations sometimes yield exponents of

ρ(r) ∝ r−n inconsistent with observations, with n = 4 or
even n = 5. Also, a further explanation must be sought for the
observed profiles of the globular cluster systems surrounding
galaxies, and yet another for the remarkably smooth “extra-
tidal” stellar halos surrounding many of the globular clusters of
the MW.

4. DISCUSSION

The relevance of the ρ(r) ∝ r−3 solution presented here to
the observations listed above depends crucially on the validity
of three assumptions regarding the tracer population in question,
and which enter into the derivation of Equation (7): (1) that it
lies within the a < a0 region over which the modified gravity
regime is thought to apply; (2) that its velocity dispersion does
not depend on radius, i.e., that it is isothermal; and lastly, (3) that
there is no orbital anisotropy present in its velocity dispersion,
i.e., that it is isotropic. The validity of the first assumption is
easy to verify; the radial ranges over which galactic stellar halos
and globular cluster populations are observed to comply with
the ρ(r) ∝ r−3 profiles are within the radial ranges where flat
rotation curves are seen, and hence, from the accurate rotation
curve modeling which MOND affords (e.g., Swaters et al. 2010),
also within the a < a0 region. In the case of the tenuous
stellar halos surrounding Galactic globular clusters, these appear
at radial distances comparable to, but mostly larger than, the
regions where the a < a0 threshold is crossed and the velocity
dispersion profiles flatten, in the cases where this last have been
measured, e.g., Scarpa et al. (2011) and Hernandez et al. (2013).

Regarding the second assumption, in all of the cases listed
in the previous section, wherever a radial profile has been
measured for the velocity dispersion of the tracer populations
in question, these have been shown to be consistent with a
constant isothermal solution. Examples of this last point are
Battaglia et al. (2006) who, from a sample of 240 halo objects,
obtain a velocity dispersion profile for the halo stars in the MW
consistent, within errors, with a constant value from 15 kpc to
about 70 kpc, and with an inferred anisotropy consistent with an
isotropic distribution. Brown et al. (2010) do find a falling trend
for the velocity dispersion profile of stars in the MW halo, but
only a very mild radial drop, while more recently Samurovic &
Lalovic (2011) obtain a velocity dispersion profile for a large
sample of 2557 blue horizontal branch stars in the MW from
Xue et al. (2008) which is consistent with a constant value
out to 70 kpc. Finally, Kafle et al. (2012), using 4664 blue
horizontal branch stars from Xue et al. (2011) in the MW halo,
observe a radial velocity dispersion which is indistinguishable
from flat outward of about 15 kpc, out to their last measured
point at close to 60 kpc. Also, in all cases where the velocity
dispersion profiles of stars in Galactic globular clusters have
been measured out to large radii, these can be seen to be
consistent with constant σ values, e.g., Scarpa et al. (2011)
and Hernandez et al. (2013). An interesting feature of the two
most recent references measuring the velocity dispersion profile
of the stellar halo of our Galaxy listed above is that the level
for the constant one-dimensional velocity dispersion found is of
between 100 and 110 km s−1, which would bring it in accordance
with the expectations of the 3σ 2 = v2 condition we derive in
Section 2, since

√
3 × 110 = 190, the observed asymptotic

rotation velocity of the MW.
The third assumption is much harder to test empirically, as no

reliable measurements of orbital anisotropy exist for any of the
astronomical systems treated here. Orbital isotropy is, however,
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a natural first order approximation commonly used in the
modeling of self-gravitating systems, e.g., Binney & Tremaine
(1987), or Drukier et al. (2007), Sollima & Nipoti (2010), and
Hernandez & Jiménez (2012), in the modeling of globular
clusters under either Newtonian or MONDian approaches.
Although an idealization, it provides a convenient reference
solution for a variety of dynamical studies of self-gravitating
systems; for instance, studies of dynamical friction due to both
the hypothetical dark matter and stellar components of dSph
galaxies routinely assume isotropic distribution functions for
the stars in question, even though this assumption is understood
as only a first order approximation (e.g., Sanchez-Salcedo et al.
2006; Goerdt et al. 2006; Cole et al. 2012 to cite a few recent
examples). In the absence of any evidence suggesting orbital
anisotropy for the systems and radial ranges treated here, e.g.,
any observed dominant flattening in the light distribution, we
chose not to introduce any at this initial point. Further, in
the particular case of MOND gravity, it was already shown
in Milgrom (1984) that the introduction of a slight degree of
anisotropy, which could in principle be present, modifies only
slightly the resulting density profiles of self-gravitating systems.

It is of course true that under Newtonian gravity a ρ(r) ∝ r−3

profile for a tracer population can also be found, but only
if one allows for more complex σ (r) and radially varying
anisotropy parameters. Since the observed density profiles for
tenuous halos match the simplest isothermal (as observed in
all cases where this function has been measured) and isotropic
distribution functions under MONDian gravity, this solution is
to be preferred to the fitting of contrived, ad hoc, radial variations
in the velocity dispersion and anisotropy parameters of the tracer
populations in question under Newtonian gravity, especially as
none such variations have been detected.

Clearly, for any astrophysical system where the halo popula-
tion ceases to be a small perturbation on the total mass, or where
the velocity dispersion profile is seen to deviate significantly
from the isothermal condition assumed here, our solution will
not be relevant. In spite of the approximate nature of the solution
(due to the tracer population assumption, the strict isothermal
assumption and the forcing of a power law solution), the ap-
proximately isothermal profile of various systems where this
has been observed, the very low mass contribution of the tracer
populations treated, and the good match to a r−3 density profile
which a wide variety of systems present, give us confidence in
that some of the physics has been captured by the modeling.

Finally, it is interesting that some of the systems mentioned
in the previous section are not in the deep MOND regime,
therefore, from the point of view strictly of MOND as such,
no significant modifications to gravity should be apparent. We
note that the external field effect of MOND will be substantially
modified for different modified gravity theories, of the various
types listed in the introduction. Indeed, MOND variants have
been discussed where the external field effect is substantially
reduced, or even practically disappears, e.g., Milgrom (2011).
We note also that our previous results of Hernandez et al. (2012)
looking at the observed relative velocities of wide binaries in
the solar neighborhood, or of Hernandez et al. (2013) finding
MONDian phenomenology in the observed outer dynamics of
Galactic globular clusters, both classes of systems not in the
deep MOND regime, strongly suggest a modified gravity theory
where no external field effect appears.

To summarize, we have shown that under a MONDian grav-
ity force law, the density profiles of isothermal tenuous tracer
population halos with isotropic Maxwellian velocities surround-

ing spherical mass distributions will be well approximated by
ρ ∝ r−3 scalings. We suggest that such equilibrium configura-
tions provide a natural, and certainly general, explanation for
the observed close to ρ ∝ r−3 behavior of: the stellar halos
surrounding the MW, M31, and a variety of external galaxies,
the density profiles of the globular cluster systems in our Galaxy
and Andromeda, and the radial structure of the “extra tidal” stel-
lar halos recently observed surrounding a number of Galactic
globular clusters.
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Hernandez, X., Jiménez, M. A., & Allen, C. 2012, EPJC, 72, 1884
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Caṕıtulo 6

Fluctuaciones de densidad en
gravedad modificada

6.1. Resumen

En este caṕıtulo hacemos una primera aproximación a la formación de es-
tructura en el régimen lineal en gravedad modificada y mostramos que en una
aproximación de primer orden es posible formar estructura consistente con la ob-
servada hoy en d́ıa a partir de las fluctuaciones de materia iniciales, cuyo contraste
de densidad es el observado en la radiación cósmica de fondo.

En un contexto de gravedad clásica, se requiere que las fluctuaciones de ma-
teria bariónica estén sumergidas en los pozos de potencial ocasionados por fluc-
tuaciones de materia oscura que tienen un contraste de densidad mayor y para
aśı lograr crecer y dar lugar a la estructura que observamos hoy en d́ıa.

Además en contraste con el escenario estándar, en gravedad modificada no se
tiene una dependencia crucial con las condiciones iniciales debido a que se obtiene
una solución que converge independientemente de las condiciones iniciales a una
solución atractora ∆(M, z).

En este trabajo participe en la deducción de las ecuaciones y en su solución
numérica, aśı como en la escritura del mismo junto con mi asesor.
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ABSTRACT
The inability of primordial baryonic density fluctuations, as observed in the cosmic
microwave background (CMB), to grow into the present day astronomical structures
is well established, under Newtonian and Einsteinian gravity. It is hence customary to
assume the existence of an underlying dark matter component with density fluctua-
tions, ∆(M), having amplitudes much larger than what CMB observations imply for
the baryons. This is in fact one of the recurrent arguments used in support of the dark
matter hypothesis. In this letter we prove that the same extended theory of gravity
which has been recently shown to accurately reproduce gravitational lensing observa-
tions, in absence of any dark matter, and which in the low velocity regime converges to
a MONDian force law, implies a sufficiently amplified self-gravity to allow purely bary-
onic fluctuations with amplitudes in accordance with CMB constraints to naturally
grow into the z = 0 astrophysical structures detected. The linear structure formation
scenario which emerges closely resembles the standard concordance cosmology one,
as abundantly calibrated over the last decade to match multiple observational con-
straints at various redshifts. However, in contrast with what occurs in the concordance
cosmology, this follows not from a critical dependence on initial conditions and the
fine tuning of model parameters, but from the rapid convergence of highly arbitrary
initial conditions onto a well defined ∆(M, z) attractor solution.

Key words: gravitation — cosmology: theory — (cosmology:) dark ages, reionization,
first stars — (cosmology:) large-scale structure of Universe

1 INTRODUCTION

In Bernal et al. (2011) a relativistic extended gravity model
was presented, which working under a FLRW metric was re-
cently shown in Carranza et al. (2013) to be consistent with
the observed expansion history of the Universe, including
the recent accelerated expansion phase. In Mendoza et al.
(2013) we proved that the same relativistic extended grav-
ity scenario, working under an spherically symmetric, static
Schwarzschild-like metric, results in a gravitational lensing
framework in full accordance with the observed phenomenol-
ogy, all the above considering exclusively baryonic mat-
ter as inferred from observations, without the need of any
dark components. The relativistic extended gravity model of
Bernal et al. (2011), by construction, converges in the low
velocity limit to a MONDian force law, as required to explain
galactic rotation curves e.g. Milgrom (1983), Famaey & Mc-
Gaugh (2012), observed stellar dynamics of dwarf galaxies
e.g. McGaugh & Wolf (2010), Hernandez et al. (2010), and
the recently measured outer flattening of globular cluster
dispersion velocity profiles e.g. Scarpa et al. (2011), Her-
nandez et al. (2013), in the absence of any dark matter.

Since under the standard gravity scenario, augmented
by the introduction of a hypothetical dark matter compo-
nent, an essentially constant dark matter fraction is required
across astrophysical scales, it is reasonable to suspect that a
model which replaces the dark matter component by an en-
hanced self-gravity of the baryons, might naturally also solve
the cosmological structure formation puzzle. In this letter,
working with the linearised cosmological density contrast
evolution equation, we show that indeed, replacing the New-
tonian for the MONDian self-gravity expression, yields sub-
stantially faster density contrast growth factors. For com-
parison, in an a(t) = (3H0t/2)

2/3 universe, the growth of
the density contrast changes from the Newtonian solution
of ∆ ∝ (1 + z)−1, to ∆ ∝ (1 + z)−3. Clearly, having 3 or-
ders of magnitude in redshift since recombination, allows
for growth factors of 109, and hence purely baryonic fluctu-
ations as observed with ∆ ∼ 10−5 in the CMB can become
amply non-linear by substantially high redshifts.

Additionally, we find that the character of the linearised
cosmological density contrast evolution equation changes
qualitatively from the standard case where solutions are
highly sensitive to initial conditions, to an equation hav-

c© 0000 RAS
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ing a strong attractor solution. This last point replaces the
need for delicately crafted initial conditions, to a situation
where it is the self-gravity of baryonic perturbations alone
what essentially fixes the structure formation scenario.

This resulting structure formation scenario is highly
reminiscent of what appears under the standard concor-
dance cosmology, with a bottom up growth of astrophysi-
cal structures, but without the need of specifying a detailed
primordial fluctuation spectrum, or of calibrating bias, anti-
bias, feedback parameters, etc. The modified baryonic Jeans
mass at zCMB is of 4 × 105M⊙, mass-scales which become
non-linear by z ≈ 19, which hence defines the corresponding
start of reionization redshifts.

2 EVOLUTION OF SMALL DENSITY
PERTURBATIONS IN THE EXPANDING
UNIVERSE

We are interested in the growth of gravitational instabilities
in the non-relativistic regime within an expanding universe.
We shall follow the well known procedure established for the
case of standard gravity e.g Longair (2008), and modify only
the self-gravity term to use the corresponding MONDian
expression. First, we write the fluid dynamical equations
including a self-gravity term: the equation of conservation
of mass, the Euler equation, and the equation for the self-
gravitational potential generated by a density field, ρ(r):

dρ

dt
= −ρ∇ · v (1)

dv

dt
= −1

ρ
∇p−∇φ (2)

φ = φ(ρ, r) (3)

In the Newtonian case, eq.(3) is the standard Poisson
equation with an explicit dependence only on ρ. Note that
this equations are written in Lagrangian form.

Considering a homogeneous expanding background
upon which a small perturbation evolves, v = v0 + δv,
ρ = ρ0 + δρ, φ = φ0 + δφ and p = p0 + δp, we can write
equations (1) and (2) keeping only terms to first order in
the perturbation to yield:

d

dt

δρ

ρ0
=

d∆

dt
= −∇ · δv (4)

d(δv)

dt
+ (δv · ∇)δv =

−1

ρ0
∇δp−∇δφ (5)

where we use the comoving quantities

x = a(t)r, (6)

v =
δx

δt
=

da

dt
r + a(t)

r

dt
, (7)

with v0 = da/dt identified as the Hubble expansion term
and δv the perturbation on the Hubble flow, a(t)(dr/dt).
From equation (7) the perturbed velocity field, a(t)u, now
results as:

du

dt
+ 2

(
1

a

da

dt

)
u =

−1

ρ0a2
∇δp− 1

a2
∇2

c(δφ). (8)

Considering adiabatic perturbations to replace δp in the
above equation for c2

sδρ, and taking the comoving divergence

of this same equation, to eliminate u using the time deriva-
tive of equation (4) gives:

d2∆

dt2
+ 2

(
1

a

da

dt

)
d∆

dt
=

c2
s

ρ0a2
∇2

cδρ +∇2δφ, (9)

where we have introduced the density contrast as ∆ =
δρ/ρ0. In analogy with the standard result, we begin by
considering the large scale regime where the pressure term
in eq.(9) can be neglected, yielding:

d2∆

dt2
+ 2

(
1

a

da

dt

)
d∆

dt
= ∇2δφ. (10)

The quantity ∇2δφ depends on the theory of gravity
one assumes. In the Newtonian case, ∇2δφ = 4πGδρ, but if
the potential is the MONDian one introduced by Mendoza
et al. (2011) we should write:

∇δφ =

√
a0Gδm

r
. (11)

Notice that since we are working in the linear regime
where the density contrast is small, we can safely assume
the accelerations below a0 = 1.2 × 10−8cm/s2 limit of the
extended gravity force law. For a top hat density fluctuation
we can write δm(r) = 4π

3
r3δρ, equation (11) yields for within

the fluctuation

∇δφ =
(

4π

3
a0Grδρ

)1/2

. (12)

Now we take the divergence of the gradient of this po-
tential perturbation to obtain the Laplacian of the MON-
Dian potential as,

∇2δφ = ∇ · ∇δφ =
(

4π

3
a0Gδρ

)1/2 1

r2

∂

∂r
r5/2, (13)

giving:

∇2δφ =
(

25π

3

a0Gδρ

r

)1/2

. (14)

Evaluating this last expression at the edge of the density

fluctuation, we write r =
(

3
4π

δm/δρ
)1/3

where δm is now
the total fluctuation mass, to eliminate r from the Laplacian
of the MONDian potential, which yields:

∇2δφ =
5

2

(
4π

3

)2/3 (Ga0)
1/2ρ

2/3
0

(δm)1/6
∆2/3 (15)

We can now study the evolution of over-densities in the
linear regime in an extended gravity scenario, by substitut-
ing the result of equation (15) into (10):

d2∆

dt2
+ 2

(
1

a

da

dt

)
d∆

dt
=

5

2

(
4π

3

)2/3 (Ga0)
1/2ρ

2/3
0

(δm)1/6
∆2/3, (16)

which is the main result of this section. Particular solutions
to the above equation and comparisons to the standard New-
tonian results appear in the following section.

3 SOLUTIONS FOR PARTICULAR a(t) CASES

We begin by examining the evolution of density fluctuations
evolving within a flat universe described by:

a(t) =
(

3H0

2
t
)2/3

. (17)
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Structure formation under extended gravity 3

Figure 1. Growth of density contrast in an a(t) = (3H0t/2)2/3

universe for the power law convergent solution of eq.(19). Fluctu-
ation masses of 4 × (105, 106, 107, 108, 109 and 1010)M⊙ appear
in descending order.

This idealised case will serve merely as a test where solutions
are analytical, and comparison to well known standard re-
sults can be clearly explored. In the Newtonian case equation
(10) becomes:

d2∆

dt2
+

(
4

3t

)
d∆

dt
=

2

3t2
∆, (18)

with a growing mode solution ∆ ∝ t2/3 ∝ a = (1+z)−1. Al-
ternatively, when we work in the modified gravity scenario
for a Universe that follows a = (3H0t/2)

2/3 dynamics, equa-
tion (16) describing the evolution of density perturbations
becomes:

d2∆

dt2
+

(
4

3t

)
d∆

dt
= 0.124

a
1/2
0

(Gδm)1/6

∆2/3

t4/3
. (19)

In this last equation we have considered H0 =
70km/sMpc−1 and ρ0 = 0.05(3H0/8πG)(1 + z)3, the con-
tribution of baryonic matter only. It is important to note
that in this section, particular a(t) scale factor evolution
models are considered merely as convenient parametrisa-
tions of the expansion history of the Universe, as calibrated
through a large number of empirical observations across
a range of redshifts. Thus, we are not assuming a stan-
dard GR theory behind any of the a(t) models tested, it
has been shown that modified gravity theories of the f(R)
type can self-consistently account for the expansion histories
obtained under GR models with parameters as calibrated
to match cosmological inferences, e.g. Nojiri & Odintsov
(2011), Capozziello & De Laurentis (2011), or Carranza et
al. (2013) for the particular metric extended gravity theory
which converges to the MONDian force law used here.

This time, for equation (19) there exist a unique
power law solution, ∆ = c1t

2 where c1 = 1.898 ×
10−5

(
a3
0/Gδm

)1/2
. To write ∆ as a function of the scale

factor we use t2 = 4a3/9H0 to obtain:

∆ =
(

Mc

δm

)1/2

a3 =
(

Mc

δm

)1/2

(1 + z)−3, (20)

Figure 2. Numerical solutions to eq.(19) for a fluctuation mass
of 106M⊙, for a range of ∆(zCMB) initial conditions extending
over 6 orders of magnitude. Notice the strong convergence to the
power law solution of eq.(20), thick curve.

where we have introduced

Mc = 7.12 × 10−11 a3
0

GH4
0

= 3.488 × 1010M⊙. (21)

By comparing eq.(20) to the equivalent solution in the
Newtonian case which appears following eq.(18), we see that
the (1 + z)−1 scaling has been replaced by a (1 + z)−3 one.
This shows that growth factors of 9 orders of magnitude,
rather than the 3 orders of the Newtonian case, will result
for the interval from zCMB ≈ 1000 to today. Thus, purely
baryonic density fluctuations with amplitudes as observed
in the CMB, of order ∆ ≈ 10−5, will have ample time to
naturally grow under their own self-gravity alone into the
non-linear regime, by substantially high redshifts. Therefore,
the requirement under the Newtonian approach of a hypo-
thetical underlying undetected dark component with density
fluctuations many orders of magnitude larger than what the
observed density component shows, is removed. Results for
the evolution of the growth factor from eq.(20) are shown in
figure (1), for fluctuation masses of 4×(105, 106, 107, 108, 109

and 1010)M⊙, appearing in descending order. The lower fluc-
tuation mass limit of 4×105M⊙ was chosen as the baryonic
MONDian Jeans mass at recombination of σ4/Ga0 with σ
the sound speed of 3000 K hydrogen gas, e.g. Mendoza et
al. (2011).

Notice also that in this case, the power law solution has
a unique normalisation, as happens e.g. when one solves for a
power law solution to the hydrostatic equilibrium of a New-
tonian isothermal self-gravitating gas, the singular isother-
mal solution which results furnishes not only a definitive
power law behaviour, but also a unique amplitude fully de-
termined by the physical parameters of the problem. Here,
G, a0 and H0 fully define the amplitude and evolution of the
density contrast at all redshifts, once a fluctuation mass is
chosen. This last point is related to the strongly attractive
character which the power law solution eq.(20) has.

From the ∆ = ∆CMB(1 + zCMB)/(1 + z) solutions of
the Newtonian case, we see that taking different ∆CMB
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Figure 3. Growth of density contrast in a universe having an
a(t) evolution as the concordance case, for the attractor solution
to eq.(23). Fluctuation masses of 4 × (105, 106, 107, 108, 109 and
1010)M⊙ appear in descending order.

initial conditions results in evolutionary tracks in (∆, z)
space which remain parallel throughout. Thus, initial condi-
tions ∆CMB(M) are preserved during the linear evolution-
ary phase. The consequence of this feature is the delicate de-
pendence of the standard structure formation scenario upon
the initial conditions, the details of which hence become cru-
cial to determining the ensuing structure formation scenario.

The situation emerging from the modified MONDian
force law in eq.(16) is thoroughly different; ∆ in the source
term in the right hand side appears to a power smaller
than 1, and hence if we take an enhanced solution having a
slightly larger amplitude at a given reference redshift than a
given reference solution, the source term will be proportion-
ally smaller than the increase in ∆ itself, so that now, the
reference solution will catch up with the enhanced variant.
It is clear that the power law solution to eq.(16) of eq.(20)
will thus be a strongly attractive solution. This is shown
explicitly in figure (2), where a number of numerical solu-
tions to eq.(19) are shown for a constant fluctuation mass of
106M⊙, for a range of initial conditions at a = 10−3, cover-
ing 6 orders of magnitude, all with d∆/dt = 0 at a = 10−3.
The solid line shows the convergent solution for the same
mass, of eq.(20), which is clearly a very strongly attractive
solution. We thus see that the resulting structure formation
scenario will be highly independent of the initial conditions,
and also, that initial density contrast values at zCMB in
the galactic region, much smaller than the ∆ ∼ 10−5 val-
ues observed for the extragalactic scales now measured, will
be amply sufficient to yield non-linear structures by high
redshifts.

At this point we examine the evolution of the density
contrast, but under a realistic a(t) model. The evolution
of the expansion factor for a flat universe for the concor-
dance cosmology case, as abundantly calibrated to yield ac-
cordance with a large number of observations across a red-
shift range extending out to zCMB is:

Figure 4. Numerical solutions to eq.(23) for a fluctuation mass
of 106M⊙, for a range of ∆(zCMB) initial conditions extending
over 6 orders of magnitude. Notice the strong convergence to the
attractor solution of eq.(23), thick curve.

a(t) =
(

Ωm

ΩΛ

)2/3 [
sinh

(
3

2

√
ΩΛH0t

)]2/3

. (22)

As already mentioned, the above equation is taken as
merely a convenient fit to the actual a(t) evolution of the
Universe, which is accurately reproduced by choosing the
numerical parameter values Ωm = 0.3 and ΩΛ = 0.7. Intro-
ducing this expression in equation (16) we have:

d2∆

dt2
+ A(t)

d∆

dt
= B(t)

∆2/3

dm1/6
(23)

where:

A(t) =
2H0ΩΛ

tanh
(

3
2

√
ΩΛH0t

) , (24)

B(t) =
c2[

sinh
(

3
2

√
ΩΛH0t

)]4/3
, (25)

and c2 is given by

c2 =
5

2

(
4πΩm

3ΩΛ

)2/3

(a0G)1/2 ρ
2/3
0 . (26)

By solving eq.(23) numerically, we find again a strongly
attractive solution given by taking initial conditions at
zCMB from the power law solution of eq.(20), which are
shown in figure (3) for the same fluctuation masses appear-
ing in figure (1). The strongly attractive character of the
solutions shown in figure (3) can again be traced to the struc-
ture of eq.(16), and is shown explicitly in figure (4), which
is analogous to figure (2). We note that for log(a) > −2 the
growth factor evolution shown in figure (3) can be accurately
fitted by:

∆ =
(

Mcr

δm

)1/2

a3.16 =
(

Mcr

δm

)1/2

(1 + z)−3.16, (27)

where this time Mcr = 6.5 × 1013M⊙. By comparing figure
(3) to the a = (3H0t/2)

2/3 case of figure (1), we see that for
the more realistic case having an a(t) evolution as that of the
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concordance cosmological model, the enhanced amount of
time implied by a given redshift interval now allows for sub-
stantially more growth for the density fluctuations treated.
In fact, from eq.(27), we see that the smallest primordial
structures, those having the MONDian baryonic Jeans mass
at zCMB of 4×105M⊙, will become non-linear by a redshift
of 19. This last point provides a good qualitative agreement
with re-ionisation constraints e.g. z = 11.1±1.1 for the red-
shift at which the Universe is half re-ionised of the recent
Plank results, Planck Collaboration (2013).

Notice that our result of eq.(16) will also apply to other
modified relativistic theories of gravity which in the v << c
limit tend to a MONDian force law e.g. Bekenstein (2004)
or Zhao & Famaey (2010). We end by commenting that
by merely changing the Newtonian for the MONDian self-
gravity term in the density contrast evolution equation, not
only does the enhanced self-gravity results in a sufficiently
amplified growth factor evolution no longer requiring any
dark matter, but also, strongly convergent solutions appear
which eliminate the need for carefully tuned initial condi-
tions.

4 CONCLUSIONS

We have shown that if the Newtonian self-gravity term in the
cosmological linear evolution fluctuation density contrast
equation is substituted for the equivalent MONDian one,
purely baryonic density perturbations with amplitudes com-
patible with CMB restrictions at zCMB and masses ranging
from 4×105−4×1010M⊙ will enter the non-linear regime by
redshifts of between 19 and 2.2 respectively. The resulting
structure formation scenario is hence highly reminiscent of
the one appearing under the standard concordance cosmol-
ogy, with a bottom up growth of cosmological structures.
The modified baryonic Jeans mass at zCMB is of 4×105M⊙
and hence the corresponding start of reionization redshifts
will be of ≈ 19.

This eliminates the necessity of invoking a hypothetical
underlying dark matter component at zCMB having den-
sity fluctuations with amplitudes several orders of magni-
tude above what is observed for the empirically measured
baryonic component.

A strongly convergent growth factor solution results,
which also eliminates the need for an additional primordial
fluctuation generating mechanism.
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6. FLUCTUACIONES DE DENSIDAD EN GRAVEDAD
MODIFICADA
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Caṕıtulo 7

Conclusiones y trabajo futuro

7.1. Conclusiones

El objetivo de esta tesis fue poner a prueba las dos predicciones principales
de los esquemas de gravedad modificada cuyos ĺımites son tipo MOND; para
ello usamos las observaciones disponibles de los movimientos propios de estrellas
binarias abiertas de 1M� y separaciones mayores a 7000UA ya que es en estos
sistemas donde la aceleración es del orden de a0 y los esquemas de gravedad
modificada predicen un ĺımite superior plano para la distribución de velocidades
relativas, mientras que en gravedad newtoniana esta distribución tendŕıa que
tener una envolvente que decae con la ráız cuadrada de la separación del sistema
binario.

Para dos muestras independientes de estrellas binarias encontramos que la
distribución de velocidades relativa esta en acuerdo con la predicción de los es-
quemas de gravedad modificada y en contradicción con la tercera ley de Kepler.

También consideramos las observaciones disponibles de la dispersión de velo-
cidades como función del radio de dieciséis CGs en los cuales se observa que el
perfil de dispersión de velocidades proyectado se aplana en la periferia del cúmu-
lo, dentro de la gravedad estándar este comportamiento es inesperado ya que en
estos objetos la materia oscura no juega un papel relevante para la dinámica del
cúmulo y debeŕıan observarse perfiles que decaen con la ráız cuadrada del radio.

Con la ley de fuerza propuesta por Mendoza et al. (2012) cuyos ĺımites son
tipo MOND modelamos cada CG como un sistema autogravitante de estrellas con
simetŕıa esférica y logramos reproducir todas las restricciones observacionales y
encontramos que la masa total del cúmulo y la dispersión de velocidades asintótica
siguen una relación Tully-Fisher.

El modelo desarrollado para CGs fue aplicado a la galaxia eĺıptica gigante
NGC 4649 y nuevamente logramos reproducir todas las restricciones observacio-
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nales para esta galaxia incluyendo su perfil de brillo y el perfil de dispersión de
velocidades asintóticamente plano, corroborando aśı la consistencia de nuestro
modelo.

Encontramos que en la mayoŕıa de los cúmulos el radio al cuál el perfil se
vuelve plano coincide en promedio con el radio al cual la aceleración es del orden
de a0 como lo esperan las teoŕıas de gravedad modificada. El radio de marea
newtoniano en general resulta ser mucho más grande que el radio al cual el perfil
de dispersión de velocidades se aplana, descartando aśı a las fuerzas de marea
newtonianas como las responsables del aplanamiento del perfil en el contexto de
la f́ısica newtoniana.

También encontramos que las observaciones de la distribución de CGs en
nuestra galaxia y en Andrómeda, aśı como la distribución de densidad del halo
de estrellas en la Vı́a Láctea y en M31 y las estrellas alrededor de los cúmulos
globulares, corresponde a la distribución esperada por los modelos de gravedad
modificada para cualquier halo isotérmico de part́ıculas de prueba alrededor de
una distribución esférica de masa.

Por último, hacemos una primera aproximación a la formación de estructura
en un contexto de gravedad modificada, encontrando que es posible formar es-
tructuras compatibles a las observadas hoy en d́ıa a partir de fluctuaciones de
densidad como las observadas en la radiación cósmica de fondo sin la necesidad
de materia oscura, este hecho es un buen indicio de que es posible construir una
cosmoloǵıa en gravedad modificada compatible con las observaciones.

En esta tesis mostramos que una de las predicciones fundamentales de las
teoŕıas de gravedad modificada tipo MOND es correcta, además vimos como
dentro de este esquema la fenomenoloǵıa observada en cúmulos globulares se
explica de manera natural y realizamos un primer acercamiento a la formación
de estructura encontrando resultados consistentes con las observaciones.

Aśı que podemos concluir que si bien la teoŕıa final de cómo se debe modi-
ficar la gravedad es aún discutida, nuestros resultados apuntan a que en efecto
es necesario modificar la ley de gravedad para poder explicar las observaciones
astrónomicas a todas las escalas.

7.2. Trabajo futuro

Con el trabajo desarrollado en esta tesis nos hemos convencido de la necesi-
dad de modificar la gravedad para poder explicar y entender una gran variedad
de observaciones astronómicas, es necesario continuar explorando la cosmoloǵıa
resultante de estos esquemas, en mi trabajo futuro pretendo seguir explorando
la formación de estructura en este contexto, calcular las oscilaciones bariónicas
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acústicas y trabajar en la construcción de un escenario de formación de estructura
sin la necesidad de incluir materia oscura si es esto posible.
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