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Abstract

Increasingly improved astronomical observations of compact objects such as pulsars and

other neutron star phenomena has created the need for a comprehensive physical description

of matter around nuclear density. In neutron star cores the density can go well beyond, the

properties of which are still quite mysterious though their importance in governing observ-

able spectra is increasingly evident. One such aspect in determining the observable surface

temperature, spectrum and timing properties is heat transport within the star. In the outer

less dense layers the properties of matter is much better understood partly due to experimen-

tal particle physics results performed on Earth and more thoroughly tested mathematical

treatments of particle interactions in the sub-nuclear regime. This insulating outer layer

takes the heat generated in the core and determines the resulting surface temperature profile

which in turn is observed and interpreted, thus providing a window into the depths of com-

pact matter, the likes of which is irreproducible on Earth. The usefulness of the numerical

method of Finite Differencing applied to the problem of diffusion in multiple dimensions

in spherically symmetric coordinates is investigated and numerical models of the thermal

evolution of neutron stars based on these methods are presented. Furthermore, the effect on

anisotropic surface temperature distribution from the presence of a strong magnetic field and

their resultant phenomena are examined. This project attempts to elucidate various case

studies of known compact objects with the intention of conecting theory with observation.
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Chapter 1

Resumen en Español

1.1. Introducción

Las observaciones astronómicas de objetos compactos como los pulsares y otros fenómenos

relacionados con las estrellas de neutrones mejoran constantemente, lo cual ha creado la

necesidad de obtener una descripción cada vez mas comprehensiva de la f́ısica de la matéria

a densidades cercanas a la densidad nuclear. En los núcleos de las estrellas de neutrones

la densidad puede ir mucho más allá de la densidad nuclear, donde las propriedades de la

materia siguen siendo poco entendidas. En las capas exteriores menos densas las propriedades

de la mateŕıa son mejor entendidas en parte debido a los resultados de la f́ısica nuclear

experimental realizado en la Tierra y también debido a los modelos matemáticos de las

interacciones de part́ıculas en el régimen sub-nuclear. La capa aislante exterior transporta

el calor desde el núcleo hacia la superficie y determina el perfil de la temperatura superficial

observada lo que nos proporciona una ventana a las profundidades de la materia compactada

en condiciones imposibles de producir en la Tierra.

Evolución Térmica de Estrellas de Neutrones Por el momento es generalmente ac-

ceptado que las estrellas de neutrones son formadas en el núcleo de una supernova con tem-

peraturas internas muy altas T & 1011K. En los primeros minutos de su vida, la temperatura

del núcleo baja a 1010 K por la emisión de neutrinos, quienes se encargan principalmente

de la perdida de enerǵıa hasta T ∼ 108K que es cuando los fotones asumen esta función.

Resolviendo la ecuación de balance de enerǵıa dentro de una estrella de neutrones, nos da

calculos teóricos del enfriamiento que establecen las escalas de tiempo. Las observaciones
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de temperaturas superficiales en combinación con edades inferidas (e.j. la asociación con

remanentes de supernovas, SNr) son usadas para soportar ó rechazar estas teorias. Mien-

tras se puede deducir de estas teoŕıas información de las propriedades que dependen de T

cómo los coeficientes de transporte (e.j. la conductividad térimica), la transición a estados

superfluidos, solidificación de la matéria de la corteza y más.

Es de particular importancia en este momento encontrar evidencia de la transición a es-

tados superfluidos. Recientemente Heinke & Ho [47] demostraron por primera vez evidencia

directa del enfriamiento rápido de una estrella de neutrones. Analizaron datos de Cassiopeia

A (Cas A), una estrella de neutrones descubierta en 1999 en la observación de primera luz de

Chandra [102] asociada con la supernova historica SN 1680 [6]. Observaron que su temper-

atura superficial bajó de 2.12×106K en el año 2000 a 2.04×106K en 2009 - una disminución

de 4% en solo nueve años. Poco después, Page et al [75] propusieron que el enfriamiento

en Cas A fue debido al comienzo de la superfluidez en el núcleo de la estrella y proponen

que va a continuar por las próximas décadas (la misma descripción fue propuesta, indepen-

dentemente, por [97]). Para mostrar que se puede explicar la evolución térmica de Cas A

por los processos de enfriamiento dentro de una estrella de neutrones, usaron la solución

numérica de cálculos de balance de enerǵıa y transporte de calor incluyendo la relatividad

general y emparejamiento. El modelo resuelve las ecuaciones previamente mencionadas en

una dimensión (radial) de una estrella esféricamente simétrica con la microf́ısica descrita en

[74] y [73].

Los modelos de enfriamiento en una dimensión son muy poderosos y pueden mostrar los

efectos de propiedades dependientes en la temperatura y la densidad, suponiendo una estrella

esféricamente simétrica con capas de densidad uniformes. Se puede comparar efectivamente

teoŕıas del efecto del estado de la mateŕıa densa (conocido como la ecuasión de estado,

EOS ), las propiedades superfluidas de la mateŕıa densa, la composición de la corteza de

la estrella de neutrones y su masa con las observaciones de las temperaturas efectivas para

eliminar algunas de las posibilidades [73]. Sin embargo, hay otros procesos de interés en

la evolución térmica de una estrella de neutrones que se desean investigar. Por ejemplo, el

campo magnético puede tener un gran efecto sobre el transporte de calor ya que los agentes

de transporte de enerǵıa como los electrones, siguen las ĺıneas del campo. Es necesario tomar

en cuenta este efecto en multiples dimensiones, lo cual incrementa el costo computacional

para su cálculo.

Geppert, Küker & Page consideraron el efecto del campo magnético poloidal [32] y



toroidal [33] sobre la distribución de la temperatura superficial. Resolvieron ecuaciones

de balance de enerǵıa y de transporte de calor en dos dimensiones, con simetŕıa rotacional

por el eje del campo. Mostraron que la solución del equilibrio (cuando la estrella se enfŕıa

pasivamente por fotones, tiempo > 105 años) tiene un perfil de la temperatura dentro de

la estrella no-simétrico, especificamente que la combinación del las configuraciones de los

campos en la corteza efectivamente limita el flujo de calor por la región ecuatorial formando

puntos calientes en los polos magnéticos superficiales de tamaños diferentes. Se propone que

estos hot spots pueden producir pulsaciones vistas en las curvas de luz de algunas estrellas.

Aguilera, Pons & Miralles [1] presentaron sus cálculos de la evolución térmica de estrellas

de neutrones con campos magnéticos fuertes con configuraciones estáticas similares a las con-

sideradas arriba. Mostraron como el campo magnético afecta la distribución de temperatura

superficial,Ts, de la estrella tanto en la época de enfriamiento por fotones como durante los

peŕıodos tempranos de enfriamiento por neutrinos.

Contribución de la Autora Los modelos numéricos del enfriamiento en dos dimensiones

de estrellas de neutrones magnetizadas esfericamente simétricas de Aguilera, Pons & Miralles

[1] usan una combinación de métodos numéricos pseudo-espectrales (dimensión ángular) y

de diferencias finitas (dimensión radial). Mientras los métodos espectrales usan representa-

ciones globales de las ecuaciones de interés en la forma de polinomios de alto orden o series

de Fourier, los métodos de diferencias finitas están basados en representaciones locales de

polinomios de orden más bajo. Estos métodos espectrales pueden ser muy precisos para

calculos computacionales grandes en multiples-dimensiones y también permiten una malla

más grande reduciendo aśı el costo computacional. En contraste estos métodos pseudo-

espectrales son especialmente afectados por la presencia de las condiciones de la frontera,

tanto es aśı que impacta negativamente su estabilidad numérica y puede restringir el tamaño

de las estapas temporales de la evolućıon aumentando aśı el tiempo de computación [103].

La intenćıon de esta tésis es de tratar de usar un esquema completamente formado por

diferencias finitas en cada dimensión, resolviendo la evolución térmica con pasos en el tiempo

que siguen en magnitud a la edad de la estrella. Este modelo, que divide las etapas tempo-

rales para buscar la solución de balance de enerǵıa en cada dirección considerada, permite

la precisión de segundo orden en el espacio y tiempo. Los resultados en dos dimensiones son

comparables a los obtenidos en una-dimension para estrellas no-magnetizadas pero con efri-

amiento más eficiente. El modelo también tiene éxito para estrellas de neutrones fuertamente



magnétizadas.

Bosquejo La tésis está organizada de la siguiente manera: El Caṕıtulo 3 presenta una

breve historia del descubrimiento de estrellas de neutrones y los fenomenos associados que

nos dejan con más preguntas sobre la naturaleza de la matéria densa. El Caṕıtulo 4 describe

los métodos numéricos mencionados anteriormente y sus aplicaciones a la evolucion térmica

de estrellas de neutrones. Los efectos resultados de varias contribuciones a la microf́ısica son

investigados por ejemplo el efecto de un campo magnético fuerte. El Caṕıtulo 5 presenta la

aplicación de los cálculos de la evolución térmica para explicar ciertos casos del fenómeno

asociado con las estrellas de neutrones. El Caṕıtulo 6 resume los resultados presentados en

esta tésis y brinda una proyección del futuro del presente trabajo aśı como del futuro de la

investigación de las estrellas de neutrones.

1.2. Estrellas de Neutrones

Nuestra visión presente de la estructura interna de una estrella de neutrones está ilustrado

en la Figura 3.1. Por afuera donde la presión llega hasta P = 0 la estrella tiene una atmósfera,

de unos pocos cent́ımetros de espesor, sobre una capa delgada, de un centenar de metros

de profundidad, llamada envolvente. En la parte superior de la envolvente está un ocean,

donde la materia que era gaseosa en la atmósfera se vuelva ĺıquida por el aumento de la

presión, abajo del cual, a todav́ıa mas alta presión, la materia está en un estado sólido. La

atmósfera es la capa donde se emiten los fotones térmicos que se pueden detectar en rayos

X y nos permiten “medir” la temperatura efectiva de la estrella, Te, a través del modelado

de su espectro. Globalmente, la envolvente funciona como una “cobija térmica”, aislando

la superficie del interior y determinando la temperature superficial,Ts, dada la temperatura

interior Tb en su base. El calor proveniente del interior tiene que viajar dentro de la envolvente

por una mezcla de composiciones qúımicas dependiente en el modelo teórico utilizado para

describir la envolvente. Hay modelos suponiendo una composición de átomos ligeros (H, He)

y algunos que suponen la presencia de especies más masivas como Fe. También, en esta

zona la presencia o no del campo magnético en el modelo del envolvente cambia mucho la

Ts esperada, aún cambia la distribución de Ts sobre la superficie. El rol de estos modelos en

los cálculos del enfriamiento de las estrellas de neutrones es más elaborada en §3.3.7.

Mientras viajamos más hacia adentro de la estrella, la densidad ρ, y la presión P corre-



spondiente aumenta y el decaimiento-β inverso resulta en más especies ricas en neutrones.

La composición del equilibrio depende en la densidad de la capa de matéria y la EOS partic-

ular. Por ejemplo, la EOS de BPS predice la presencia de 56Fe hasta una densidad máxima

de 8.1× 106 g cm−3, una serie de especies qúımicas hasta llegar a 118Kr antes de cruzar un

ρdrip de 4.3× 1011 g cm−3. Esta capa se llama la corteza exterior.

El punto ρdrip es definido por la densidad a la cual los neutrones sobre-abundantes ya no

están todos confinados dentro de los núcleos: desde este punto la materia está compuesta

de núcleos sumamente ricos en neutrones y rodeados de un ĺıquido de neutrones “goteados”,

todo inmerso en un gas de electrones. Los modelos teóricos predicen que los núcleos están

ordenados en una malla cristalina mientras los neutrones goteados forman un superfluido. La

rotación de la estrella, examinado en más detaille en §3.4.1, crea vórtices del superfluido que

pueden clavarse a los núcleos cristalizados. Esta descripción microscópica está ilustrada en el

inserto B de la Figura 3.1. El desacoplamiento eventual de los dos componentes puede ser el

mecanismo detrás del fenomeno de los “glitches”, un tema explorado en §3.4 Observaciones.

Al aumentar mas la densidad y conforme la distancia entre los núcleos decrece resulta

energéticamente favorable tener núcleos no esféricos: se vuelven alargados (“espaguetis”),

anchos (“lasañas”), hasta casi fusionar solo dejando huecos (“queso suizo”). Esta fase de

transición has sido apodada fase de “pasta nuclear” (ver el inserto A de la Figura 3.1). Los

“espaguetis” aparecen cuando la densidad rebasa 1013 g cm−3 mientas la fase de “queso suiza”

terminaŕıa cuando la densidad rebasa 1014 g cm−3: en este punto los “huecos” desaparecen

y entramos en la región donde la materia es homogénea, el núcleo, o carozo de la estrella.

(Mas detalle sobre la estructura y la ecuación de estados de la materia densa en la corteza

se presentan en las secciones 3.2.2 y 3.2.3).

El núcleo de una estrella de neutrones esta definido por densidades más grandes que ρnucl

y contiene > 90% de la masa. La matéria esta considerada como un fluido frio uniforme

de neutrones en equilibrio-β con una fracción de protones, electrones y muones. La teoŕıa

indica que los neutrones siguen formando un superfluido mientras los protones forman un

superconductor. Como en la corteza interior, la rotación de la estrella requiere la presencia de

vórtices en el superfluido mientras en la presencia de un campo magnético el superconductor

de protones seŕıa de tipo II y el campo magnético estaŕıa confinado en fluxoides: esta posible

estructura está ilustrada en el inserto C de la Figura 3.1. Pero la region al centro de la

estrella, donde la densidad supera 1015 g cm−3, la historia se vuelve aun más misteriosa y

está marcada por un ? en la Figura 3.1. La presencia de hiperones está esperada aśı como



la de quarks deconfinados, pero la multitud de teorias de la matéria ultra-densa todavia

necesita estar comprobada.

Y esto es el chiste. Desde la región de la pasta nuclear hasta la parte mas interna,

la materia está en condiciones muy lejanas de las posibilidades experimentales terrestres

y los modelos teóricos están plagados de much́ısimas incertidumbres. La confrontación de

predicciones teóricas con observaciones es necesaria para restringir el rango de incertidumbre

de la teoŕıa. Una herramienta muy poderosa en esta ĺınea es el modelado de la evolución

térmica de estrellas de neutrones y comparación de la predicciones de las varias teoŕıas con

observaciones, en particular mediciones de temperaturas superficiales Ts de estrellas de varias

edades. Es la propuesta de esta tesis el extender los modelos existentes al incluir los efectos

del campo magnético sobre la evolución de la estrella. En la presencia de un campo fuerte

el transporte de calor dentro de la estrella es fuertemente alterado: de una descripción con

simetŕıa esférica (que es común en modelos de evolución estelar) tenemos que desarrollar

modelos bi-, y tri-, dimensionales.

La siguiente sección describe los elementos que componen un modelo de enfriamiento de

una estrella de neutrones.

1.3. Modelado Numérico del Enfriamiento de Estrellas

de Neutrones

Estudiar el enfriemiento de una estrella de neutrones consiste en determinar su tempera-

ture interna en función de la posición en la estrella y del tiempo. En un modelo con simetŕıa

esférica esto significa calcular T (r; t) mientras en un modelo esférico pero sin simetŕıa ten-

emos que determinar T (r, θ, φ; t), (r, θ, φ) siendo coordenadas esféricas. Dos ecuaciones rigen

la evolución de T : conservación de enerǵıa y transporte de calor. El segundo está expresado

por la ecuación

F = −κ∇T (1.1)

(frecuentemente llamada “Ley de Fick”) donde ∇T es el gradiente de temperatura y F el

flujo de calor, κ siendo la conductividad térmica. La conservación de enerǵıa se expresa

como
∂ET
∂t

= Cv
∂T

∂t
= −∇ · F − “perdidas” + “fuentes” (1.2)



donde ET is la densidad de enerǵıa térmica, Cv el calor espećıfico y “perdidas” representa

los mecanismos de perdida de energá, esencialmente procesos de emisión de neutrinos, y

“fuentes” la fuentes de calor que pueden ser, por ejemplo, reacciones nucleares o generación

de calor por decaimiento del campo magnético. Designaremos estos dos términos por Qν

y Qh (ν por neutrinos y h por “heating”) Estas dos ecuaciones se pueden juntar en un

“ecuación del calor” generalizada como

∂T

∂t
=

1

Cv
[∇ · (κ∇T )−Qν +Qh] (1.3)

La micro-f́ısica involucrada en el cálculo de Cv, κ, y Qν está descrita en la secciones 3.3.2

hasta 3.3.5.

En el caso con simetŕıa esférica, ∇→ d
dr

la Eq. (1.3) se escribe

∂T

∂t
=

1

Cv

[
1

r2

∂

∂r

(
κr2∂T

∂r

)
−Qν +Qh

]
≡ G(T ) (1.4)

(donde G(T ) simboliza todo el operador del lado derecho). Dada la complejidad de las

funciones f́ısicas Cv, κ, y Qν , tal ecuación tiene que resolverse numericamente:

- se discretiza la coordenada radial r en r0 = 0, r1, ... , ri, ... , rI = R

- se discretiza el tiempo t en t0 = 0, t1, t2, ...

En cada punto de la malla radial las derivadas ∂/∂r implican que ∂Ti/∂t depende no solo

de Ti pero también de Ti−1 y Ti+1 aśı que la versión discetizada en r de la Eq. (1.4) es

∂Ti
∂t

= G(Ti, Ti−1, Ti+1) (1.5)

Al discretizar también el tiempo tenemos una secuencia de temperaturas T
(n)
i (es decir T

en el punto ri al tiempo tn). Con esto podŕıamos integrar numericamente la Eq. (1.6) de

manera trivial como

T
(n+1)
i = T

(n)
i + δtn ×G(T

(n)
i , T

(n)
i−1, T

(n)
i+1) (1.6)

(donde δtn ≡ tn+1 − tn). Se escojen valores iniciales T
(0)
i en t0 = 0, por ejemplo T

(0)
i = 1010

K en toda la estrella y de la Eq. (1.6) se obtienen los T
(1)
i , luego los T

(2)
i , ... , de manera

directa (después de escoger δtn = δt fijo).

Este método es desastroso !

Se llama “método explicito” y es numericamente inestable al menos que δt sea muy pequeño

(satisfaciendo la llamada condición de Courant): si δt es demasiado grande los errores de



redondeo (inevitables en un calculo numérico que siempre usa un numero f́ınito de cifras sig-

nificativas) crecen exponencialmente ! La solución a este problema es sencilla: se reemplaza

la Eq. (1.6) por

T
(n+1)
i = T

(n)
i + δtn ×G(T

(n+1)
i , T

(n+1)
i−1 , T

(n+1)
i+1 ) (1.7)

donde se reemplazan los T
(n)
i por T

(n+1)
i en el lado derecho. Es el llamado “método implicito”

y la inestabilidad numerica desaparece !

El precio a pagar con el metodo implicito es que los T
(n+1)
i a calcular aparecen dentro

de G que es una función sumamente compleja. La manera de encontrar estos T
(n+1)
i es por

iteraciones:

1) hacemos un intento inicial T
(n+1,0)
i = T

(n)
i

2) calculamos el lado derecho de la Eq. (1.7) usando G(T
(n+1,0)
i , T

(n+1,0)
i−1 , T

(n+1,0)
i+1 )

3) obtenemos los T
(n+1,1)
i resolviendo la Eq. (1.7)

y regresamos a 2) usando ahora los T
(n+1,1)
i en G, vamos a 3), ... y seguimos iterando k

veces hasta que T
(n+1,k+1)
i ' T

(n+1,k)
i con la precisión requerida. Se considera entonces que el

procedimiento de aproximaciones sucesivas ha convergido y se puede pasar al paso siguiente

en el tiempo, tn+2.

La ecuación del calor, Eq. (1.3), tiene que ser complementada por condiciones de frontera

y, tratando de estrella de neutrones, debe ademas incluir efectos de Relatividad General: la

formulación completa está presentada en la sección 3.3.1. La sección 4.1 presenta la ecuación

del calor con mas detalle y el metodo numérico implicito está descrito con detalle en la

sección 4.2. La sección 4.3 finalmente presenta modelos realistas de enfriamiento de estrellas

de neutrones en la aproximación de simetŕıa esférica.

1.3.1. Modelos en 2D con campo magnético

La parte medular de esta tesis fue el extender los modelos de enfriamiento con simetŕıa

esférica a modelos bi-dimensionales con simetŕıa axial en presencia de una campo magnético

fuerte. El transporte de calor en la corteza está dominado por los electrones y estos

están fuertemente afectados por campos magnéticos: la conductividad térmica κ se vuelve

anisotrópica, pudiendo ser muchos ordenes de magnitud mas grande a lo largo del campo

magnético que en la dirección perpendicular. La ecuación del calor, Eq. (1.3), en su forma

bi-dimensional con efectos de relatividad general y en la presencia de un campo magnético

fuerte está descrita en la sección 4.4. El método de resolución numérica es implicito pero



mucho mas complicado que en el caso con simetŕıa esférica ya que la anisotroṕıa de la con-

ductividad térmica induce un fuerte acoplamiento entre las componentes r y θ del campo

magnético B y del gradiente de temperatura ∇T (ver la sección 4.4.2 para los detalles de la

formulación). Las geometŕıas del campo magnético que se consideran están descritas en la

sección 4.4.1: dos componentes dipolar poloidales, una con corrientes en la corteza y la otra

con corrientes en el núcleo, y una componente dipolar toroidal confinada en la corteza. La

componente toroidal es un campo magnético que no sale de la estrella y sus ĺıneas de campo

forman un “dona” magnética dentro de la corteza: actúa como una fuerte “cobija térmica”

que impide el flujo de calor haćıa la superficie y su efecto observable es el que la superficie

es muy fŕıa salvo en dos pequeñas regiones centradas en el eje de simetŕıa del campo.

Los efectos de la anisotroṕıa del transporte de calor en la corteza en presencia de una

campo magnético fuerte, notablemente una componente toroidal, están descritos en la sección

4.4.4 donde se puede apreciar la complejidad de los perfiles de temperatura que se obtienen.

Finalmente, en el caṕıtulo 5, se estudian cuatro casos espećıficos:

- Agregamos a los procesos de enfriamiento (que son emisión de neutrinos del interior y de

fotones en la superficie) un procesos de “calentamiento” debido al decaimiento del campo

magnético, sección 5.1. Este proceso permite mantener la estrella caliente durante mas

tiempo se aplica al estudio de la evolución de los magnetares.

- Considerando la presencia de dos regiones calientes en la superficie, rodeadas de una fond

fŕıo, modelamos la emisión térmica de esta superficie la caracteŕısticas observables, sección

5.2. Mostramos que esta peculiar distribución de temperature superficial (debida a la presen-

cia de una componente toroidal del campo magnético) permite explicar la muy alta amplitud

de la modulación observada en el caso del pulsar PSR J1119-6127.

- Extendemos el modelo de componente toroidal poloidal, es decir simétrica con respeto al

ecuador magnético, a casos asimétricos, sección 5.3. Esta configuración asimétrica resulta en

una distribución de temperature superficial también asimétrica y aplicamos este escenario

para interpretar las observaciones de la estrella de neutrones en el remanente de supernova

“Puppis A”.

- Como último estudio, consideramos un caso extremo, el de una estrella de quarks, ó

“Strange Star”, sección 5.4. En este escenario, el núcleo de la estrella está constituido

en un 100% de materia de quarks, en vez de materia bariónica, y la corteza interna (que

debeŕıa contener neutrones goteados) no existe. Tales estrellas de quarks solo pueden tener



una corteza externa que es muy delgada. Al incluir una componente poloidal del campo

magnético en esta corteza mostramos que no resulta en una distribución de temperatura

superficial tan diferenciada como en el caso de una estrella de neutrones y no aparecen estos

dos regiones calientes rodeadas de un fondo fŕıo. Esto implica que estrellas compactas con

“hot spots” no se pueden interpretar como siendo estrellas de quarks. Este argumento no

permite concluir directamente que estas estrellas compactas no son estrellas de quarks, ya

que otro escenario (no descrito a la fecha !) podŕıa existir, pero hace muy sospechoso un

escenario de estrellas de quarks.

Posibles extensiones de este trabajo se presentan en el último caṕıtulo 6.



Chapter 2

Introduction

Increasingly improved astronomical observations of compact objects such as pulsars and

other neutron star phenomena has created the need for a comprehensive physical description

of matter around nuclear density. In neutron star cores the density can go well beyond, the

properties of which are still quite mysterious though their importance in governing observ-

able spectra is increasingly evident. One such aspect in determining the observable surface

temperature, spectrum and timing properties is heat transport within the star. In the outer

less dense layers the properties of matter is much better understood partly due to experimen-

tal particle physics results performed on Earth and more thoroughly tested mathematical

treatments of particle interactions in the sub-nuclear regime. This insulating outer layer

takes the heat generated in the core and determines the resulting surface temperature pro-

file which in turn is observed and interpreted, thus providing a window into the depths of

compact matter, the likes of which is irreproducible on Earth.

2.1. Modeling Thermal Evolution

It is generally accepted that neutron stars are formed in the cores of supernova explo-

sions with extremely high internal temperatures of T & 1011K. In the first few seconds of

their lives the temperature of their nuclei drop to 1010− 109K due to neutrino emission, the

dominant form of energy transport until T ∼ 108K when photons begin to dominate. Solv-

ing the Energy Balance within a neutron star enables us to theoretically model it’s cooling

and establish the timescales of these aforementioned cooling eras while surface temperature

observations in combination with inferred neutron star ages (e.g. from the association with
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Supernova Remnants, SNr) are used to support or reject these theories. Meanwhile, informa-

tion about T -sensitive ingredients of the Energy Balance such as transport coefficients (e.g.

thermal conductivity, κ), transition to superfluid staes and solidification of crust material

can be deduced.

Of particular interest at the moment is evidence of the transition to superfluid states.

Recently, Heinke & Ho [47] demonstrated for the first time direct evidence of the rapid

cooling of a neutron star. They analyzed data from Cassiopeia A (Cas A), a neutron star

discovered in the 1999 Chandra “first light” observations [102] associated with the historical

1680 supernova [6], and saw that it’s temperature dropped from 2.12×106K in the year 2000

to 2.04×106K in 2009 - a decrease of 4% en nine years, larger that that expected from cooling

from neutrinos alone! Soon afterwards, Page et al (2011) [75] proposed that the cooling in

Cas A was to due the turn-on of superfluidity in the star’s core and predicted that this rapid

cooling would continue in the next dacades. In order to show that the thermal evolution of

Cas A could be explained from cooling precoesses from within a neutron star, a numerical

solution to Energy Balance and Heat Transport calculations including general relativistic

effects and pairing was used. The model solved these equations in a one dimensional (radial)

spherically symmetric star with input microphysics decribed in [73] and [74].

One-dimensional radial cooling models are very powerful and successfully show the effect

of physical properties that are dependant on temperature and density assuming a spherically

symmetrical star with uniform density levels. Comparisons between observations of effective

surface temperatures and theories of the state, or Equation of State, (EOS), of dense matter,

superfluid properties of dense matter, neutron star crust composition and stellar mass can

be made in order to eliminate some of the myriad of possibilities [73]. It is however desirable

to investigate in detail processes of the thermal evolution of a neutron star. For example, the

intrinsic magnetic field can have a large effect on heat transport since energy carriers such

as electrones are strongly influenced by field lines. Magnetic field configurations vary in two

and three dimensions, thus this effect is necessarily considered in multiple dimensions. The

challenges of scaling up spatial dimensions then become stability of the numerical method

and an increase in the computational cost of the calculation.

Geppert, Küker & Page considered the effct of a poloidal magnetic field [32] as well as

the addition of a toroidal component [33] on the temperature distribution within a neutron

star and it’s resulting surface temperature anisotropy. The equilibrium solution of Energy

Balance and heat transport was calculated in two dimensions (radial and polar) symmetrical



about the magnetic axis and showed that at equilibrium, when the star is passively cooling

by photons (> 105 years) it’s interior temperature profile is asymmetric. Specifically, the

combination of the magnetic field configurations within the neutron star crust effectively

blanket heat flow from the core creating hot polar regions of different sizes surrounded by a

cooler equatorial belt. It is propsed that these hot spots can produce pulsations in the light

curves of some neutron stars.

Aguilera, Pons & Miralles [1] presented their thermal evolution calculations with static

magnetic field configurations similar to the above work. They showed that the magnetic

field affects the distribution of surface temperature, Ts, during neutrino-cooling early life of

a neutron star as well as the later photon cooling era.

2.2. Contribution of the Author

The numerical models of two-dimensional cooling of spherically-symmetric magnetized

neutron stars from Aguilera, Pons & Miralles [1] use a combination of pseudo-spectral nu-

merical methods (polar direction) and finite differences (radial direction). While spectral

methods use global representations of the equations of interest in the form of higher-order

polynomials or Fourier series, finite difference methods are based on local representations of

lower-order polynomials. Spectral methods can be more accurate for large multi-dimensional

computations, such as solving heat transport within magnetized neutron stars, and allow for

larger grid sizes thus lowering computational cost. They are, however, particularly sensitive

to the presence of boundary conditions, so much so that their numerical stability is negatively

affected and can severely restrict time-step sizes thus increasing computing time [103].

It is the intention of this thesis to attempt to use an entirely finite differencing scheme

in each dimension thus solving heat transport within a neutron star with timesteps that

increase on par with stellar age. This model, which will divide each timestep in order to

find the solution to the Energy Balance equation in each direction considered, will allow

for second-order accuracy in both time and space, with results that are comparable to, if

not slightly more efficient than, their one-dimensional (radial) couterparts for unmagnetized

neutron stars. The parallelized model code also has success with strongly magnetized neutron

stars with a calculation time on the order of minutes for an age up to the end of the photon

cooling era (∼ 105 years).



2.3. Outline

This thesis is ordered by the following scheme. Chapter 3 presents a brief history of the

theory and the eventual discovery of neutron stars and the myriad of associated phenomena

which leaves us with more questions than answers regarding the nature of dense matter. In

order to illuminate this mystery the following Chapter 4 describes the numerical methods

mentioned above and their application to the thermal evolution of neutron stars. Results

of the effects of various contributions to the input microphysics, such as superfluidity and a

strong internal magnetic field, are investigated. The next Chapter 5 presents the application

of thermal tranport calculations to explain certain phenomena associated with particular

known neutron stars. The concluding Chapter 6 summarizes the results presented within

this thesis. A description of the possible work to be continued in the Future is also presented

with regards to this project and neutron star research in general.



Chapter 3

Neutron Stars

3.1. History

The neutron was discovered in 1932 by Sir James Chadwick [19] and by the following year

Walter Baade and Fritz Zwicky proposed the existence of the neutron star [7]. In an effort to

explain what powers a supernova, Baade and Zwicky correctly hypothesized that this power

could be derived from the release of gravitational binding energy during the creation of a

neutron star. As a massive star approaches the end of its life, nuclear fusion runs out in

its core and the star collapses resulting in a compact remnant and a supernova (Type II, Ib

or Ic). The newly created compact star could be a white dwarf, neutron star, or black hole

depending on the size on the progenitor star. Since that time researchers investigating the

properties of dense matter have worked on a theory to describe the state of matter inside a

neutron star, whose core density could possibly increase beyond that of nuclear matter.

3.2. The Interior Physics

In order to determine the structure and composition of a neutron star, a description

of the physical properties of dense matter, also known as it’s Equation of State (EOS), is

necessary. An EOS starts with the basic laws of thermodynamics for a certain number of

particles, N , in a volume, V , in a Lorentz cell which is co-moving within the fluid stellar

material. It is expressed in terms of the Pressure, P (ρ) where ρ is the density whose lowest

energy state gives the local composition.

There are several important assumptions regarding the initial conditions in the life of
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a neutron star: after proto-stellar nuclear burning sufficient time has passed such that the

tempertaures of interest are lower than those necessary for nuclear reactions and the star

can be considered to be in thermodynamic equilibrium ; and is otherwise considered to be

cold with T = 0 (cold catalyzed matter).

3.2.1. Equations of Stellar Structure

In order to ultimately model (numerically) the physical processes of a neutron star, one

must start with it’s general structure. In order to properly consider such a compact object

as a neutron star, whose density exceeds ρ > 1014 g cm−3 within it’s core, relativistic effects

must be considered.

A spherically symmetric spacetime geometry, in the usual Schwarzschild coordinates

(t, r, θ, φ), takes the following form:

ds2 = −e2φc2dt2 +
dr2

1− 2Gm/rc2
+ r2dΩ2 (3.1)

where the radial proper length is

dl = dr/
√

1− 2Gm/rc2 > dr (3.2)

and proper time dτ = eφdt < dt.

Coupling Einstein’s equations to a perfect fluid energy momentum tensor gives the fol-

lowing standard structure equations,

dm

dr
= 4πr2ρ (3.3)

dP

dr
= −Gmρ

r2

[
1 +

P

ρc2

] [
1 +

4πr3P

mc2

] [
1− 2Gm

rc2

]−1

= −(ρc2 + P )
dΦ

dr
(3.4)

dΦ

dr
=

1

c2

Gm

r2

[
1 +

4πr3P

mc2

] [
1− 2Gm

rc2

]−1

= −dP
dr

[
ρ+

P

c2

]−1

(3.5)

where the latter is the Tolman-Oppenheimer-Volkoff (TOV) equation for hydrostatic equi-

librium and (3.3) and (3.5) give the mass function m = m(r) and the gravitational potential

Φ = Φ(r) respectively.

From (3.4) one see that c2dΦ/dr plays the role of the gravitational acceleration, and thus

c2Φ is naturally interpreted as the gravitational potential.



Boundary conditions in the centre, where r = 0 is dictated by the regularity of the

geometry of (3.1):

m(r = 0) = 0 (3.6)

while P = P (ρ), which is a relation particular to the Equation of State (EOS) to be further

discussed below, will give the central pressure, Pc, depending on the corresponding free

parameter, ρc:

P (r = 0) = Pc (3.7)

At the outer boundary r = R, the radius of the star, and ρ(R) is arbitrarily set to a low

value (i.e. for the models presented in this project, R is determined by the EOS value of r

at a boundary density of ρb = 1010 g cm−3). Densities lower than ρb are considered part of

the envelope and are treated as an outer boundary condition which will be discussed below.

Equation (3.5) can be scaled, given its linearity, to always fulfill the following condition:

eφ(R) =

√
1− 2GM

c2R
(3.8)

The interior spacetime geometry is connected across the surface (defined by R) of the star

to an exterior Schwarzschild field determined by M = m(r) [72].

With these conditions in place, the EOS is guaranteed to be temperature independent,

thus greatly simplifying the algorithm to be used to model neutron star cooling, the equations

for which will be described in the next section.

3.2.2. Equation of State of cold, dense matter below Neutron Drip

An isolated neutron star ultimately cools to T = 0 and it’s structure is calculated using

a degenerate EOS. To begin with, a single fermionic species can be considered for simplicity.

In the pioneering article of 1931, Chandrasekhar [20] chose electrons at T = 0 in order to

describe an ideal Fermionic gas to characterize White Dwarfs and found a maximum mass

of 1.4M� (the Chandra limit). In 1939, Oppenheimer & Volkoff (OV) [68] expanded on

Chandrasekhar’s idea to describe neutron stars, objects that are much more dense than their

White Dwarf counterparts, and found a maximum mass of 0.7M�. This seemed very small,

so much so that it was doubtful that sufficient observable luminosity could be produced.

Interest in these objects then diminished.



It was also evident that an ideal Fermi gas was insufficient to describe dense matter.

Positive charges are not actually uniformly distributed throughout the gas, but are concen-

trated around nuclei of charge Z. This has the effect of lowering the energy and pressure of

the ambient electrons, which have more distance between each other than with their respec-

tive nuclei, and therefore the attractive forces dominate over repulsive forces. The density

increases with increasing depth within the star and crosses a point at which the electrons

become degenerate. In this region Coulomb effects become important and ions form a crystal

which maximizes the distance between them, Ec = Ee−e+Ee−i. The effect is electrostatic and

in 1949 Feynman, Metropolis & Teller [27] added these corrections to the ideal degenerate

electron gas EOS.

As well as electrostatic corrections, the inclusion of inverse β-decay, described by the

following formula, was important:

e− + p→ n+ ν (3.9)

It is assumed here that neutrinos, ν, are massless and escape the star without interactions.

β-decay is blocked when the density is sufficiently great that the Fermi energies, EF , are

completely filled with electrons until the level at which the emitted electron would have filled.

Assuming the simple case of a cold n-p-e gas, neutrons, electrons and protons in equilibrium

(µe+µp = µn) and neutral charge (ne = np) the EOS and the composition can be calculated

using the mass fractions, Xe, Xp and Xn.

In 1958, Harrison & Wheeler caculated the EOS considering inverse β-decay and β-

equilibrium between relativistic electrons and nuclei using a mass function, M(A,Z). How-

ever the nuclei have discrete values of A and Z and in 1961 Salpeter included these “shell”

effects using the EOS of Chandrasekar as a base including the Coulomb correction. A

decade later in 1971, Baym, Pethick & Sutherland (“BPS” [14]) improved upon the results

of Salpeter using a new improved semi-emperical mass formula in order to determine the

equilibrium composition. Besides shell effects, BPS included lattice energy of the crystal

phase. However, considering that the pressure P is continuous causes discontinuities in the

number densities of n and p due to phase transitions between the nuclear species. In order to

smooth the composition between layers the following methods are implemented: a Maxwell

construction determines P in the transition; or a Gibb’s construction minimizes the Gibbs

free energy, g, at constant P . Both EOS join with the EOS of Chandrasekhar for White

Dwarfs and give a maximum mass similar to that of OV, MNS ∼ 0.7M�.



At the moment we have the following picture of the physics of the interior of the neutron

star: considering nuclear forces alone, the equilibrium nuclear structure would be a nucleus of

unlimited size. Including repulsive Coulomb forces which are so great that fission can occur

at low densities, an equilibrium is reached at A = 56 (56Fe). Adding relativistic electrons

and inverse β-decay produces more neutrons in the stellar core and Coulomb forces become

relativly weak and unimportant. When the density reaches 4 × 1011 g cm−3 the fraction

of neutrons to protons, n/p, reaches a critical level and the neutrons begin to drip out of

the nuclei. This point is refered to as the neutron drip point and is described by ρdrip. For

ρ > ρdrip the electrons, ion nuclei and “free” neutrons coexist. Furthermore, for ρ > 4× 1012

g cm−3 the neutrons replace the electrons as the dominant constituent to the pressure.

3.2.3. Equation of State of cold, dense matter above Neutron Drip

While the theoreticians improved upon the physical picture of neutron stars, observers

were making incredible discoveries. In 1962 Giacconi [36] discovered cosmic non-solar x-ray

sources and interest in neutron stars was reignited. A few years later, in 1967, Jocelyn

Bell and her supervisor Anthony Hewish, made the monumental discovery of radio pulsars

[49]. At first, these highly regular radio pulses were interpreted as possible signals from

extraterrestrials, but soon enough were correctly attributed by Gold (1968) [38] to spinning

neutron stars. The following year the “Crab” and “Vela” pulsars were discovered indicating

that neutron stars were indeed born from the violent explosions of supernova. Furthermore,

it was observed that the Crab pulsar was slowing down and Gold (1969)[39] showed that

the energy loss was similar in magnitude to the rotational energy necessary in order to give

it it’s power. Neutrons had then been observed directly and initial mass measurements did

not indicate something as small as the star resulting from the calculations of OV but rather

something akin to the Chandra limit, MNS ∼ 1.3M�. It was evident that something was

missing from the EOS and that we had to improve our understanding of matter at densities

beyond ρdrip.

For densities up to ρnucl the picture of dense matter was well understood and the system

could be treated as a non-relativistic many-body Schrödinger equation. Matter in equi-

librium is composed of neutron-rich nuclei forming a Coulomb lattice, free electrons and

neutrons. While the density approaches ρnucl the nuclei dissolve and start to join together.

The pressure, P , is dominated by neutrons interacting via strong forces. For densities be-



yond ρnucl the “meson clouds” surrounding the nucleons start to overlap and the system can

be treated as a local group of particles interacting via two-body forces to which three- and

more- body forces also have to be added. Until ρ ∼ 1015 g cm−3 the nuclear potential from

nucleon-nucleon interactions (NNI) must be described and a method to solve the many-body

problem found. Different potentials result in different EOS, but which is the correct one?

Furthermore, for ρ > 1015 g cm−3 the picture is even more mysterious such that it is expected

that the composition would contain hyperons and relativistic NNI would have to be treated.

In 1971, Baym, Bethe & Pethick (BBP [13]) used a mass formula determined from many-

body calculations. As well, they included the effect of a neutron gas on the surface energy

of the nuclei they surround and the effect of the nuclear Coulomb lattice energy. It was

deemed the “compressible liquid drop” model. Their EOS had the following consequences:

free neutrons accounted for an increasingly significant fraction of the pressure with increasing

density; the adiabatic index, Γ, decreased dramatically close to ρdrip and does not return to

Γ = 4/3 until ρ ≥ 7 × 1012 g cm−3 resulting in a range of densities that could not support

a stable neutron star; nuclei survive until a ρ of 2.4 × 1014 g cm−3 after which the matter

forms a nuclear liquid; beyond this density the contribution of mesons to the EOS must be

incorporated.

In a pioneering work, Negele & Vautherin (1973)[66] calculated the EOS for matter be-

yond ρdrip using NNI from n-n scattering data with variational methods. Their calculation

is based on the many-nucleon theory of Hartree-Fock with the semi-empirical NNI of cold

catalyzed matter above ρdrip sufficient to determine the structure of the level of neutron-rich

nuclei. Haensel, Zdunik & Dobaczewski (hereafter refered to as HZD, 1989) [46] expanded

upon the aforementioned methods using a Hartree-Fock-Bogolyubov scheme to calculate lat-

tice energies of the nucleons included in NNI. This method allowed the authors to reproduce

nuclear properties seen in the laboratory and predicted the nuclear shell structure expected

in the neutron star crust. During the 1970’s, it became obvious that NNI alone would be

insufficient to describe the properties of nuclear matter. NNI saturates at high densities

thus underbinding 3H. This problem was resolved with the addition of ρ-dependant 3-body

terms to the Urbana 14 (U14) model. In 1981, Friedmann & Pandharipande [29] derived

models with three-body interactions (TI). The terms of these models have energies fixed

to the saturation density of nuclear matter and the binding energy of 3H. In the 1990’s,

the Nijmegen group created a database of NN scattering data for energies below 350 MeV

collected from 1955 to 1992. The data were sufficiently precise in order to determine phase



changes and mixing parameters. The Argonne v18 model was born from this great effort

by the Wiringa group (1995)[108]. In the same year, Pudliner and colleagues [86] expanded

the model Urbana to UIX. In 1998, Akmal, Pandharipande & Ravenhall (APR)[2] combined

the models of A18, U1X and added δν relativistic boost interactions arriving at a maximum

neutron star mass of 2.2M�.

A combination of the EOS of APR for the stellar core (ρcore > 1.6 × 1014g cm−3), and

NV (ρcore > ρ > ρdrip) and HZD (ρdrip > ρ > 1010g cm−3) for the inner and outer crust

respectively is used in this project, the results of which for a model star of 1.4M� are

presented in the Chapter “A Virtual Laboratory”. Since we are, in this work, concentrating

on the effect of a strong magnetic field in the thermal evolution of the crust, we will not,

for the time being, explore scenarios with some form of “exotic” matter present in the core

(see, e.g., [76] for a presentation of “exotic” phases).

3.2.4. The Complete Picture? The General Structure of Neutron

Stars

Typical neutron stars have masses between 1.34 and 2.1M� with corresponding radii

between 10 and 20 km [60]. Their cores are thought to be a homogenous quantum liquid

of neutrons and protons and possibly more exotic species. Inwards of ∼ 1000 − 500 m, the

stellar layers are comprised of a solid crust and envelope of subsequently less-dense nuclear

matter covered with a thin atmosphere (Fig. 3.1).

Though thin, the atmosphere on a neutron star is critical when understanding the emitted

thermal Flux, F , we get from observations. It may contain light or heavy elements and may or

may not be magnetized, all crucial parameters in modelling observed spectra. The envelope

may be 10’s of meters thick and acts as an insulator between the surface and the hot stellar

interior. It consists of matter that is not yet fully degenerate, the composition of which

may be standard among stars of a particular mass or may vary from case to case, perhaps

depending on if the star is in an accreting system or isolated.

Unlike in the core, matter in the crust is inhomogenous, containing a lattice formed by

nuclei immersed in a quantum liquid of electrons. At densities greater than the neutron

drip point (ρdrip ∼ 4 − 7 × 1011 g cm−3), free neutrons join the mix, likely as a superfluid

(see Figure 3.1 Inset B). Stellar rotation could form vortices in this nuclear superfluid which

may actually pin on the nuclei. Generally, the superfluid portion of the star is moving faster



than the solid crust and occasional pinning of these vortices to lattice nuclei could cause a

temporary increase in pulsar spin frequency (a.k.a. Pulsar Glitches).

As densities continue to increase towards nuclear density, nuclei become elongated, then

flattened - termed Pasta phases. The situtaion is then inverted as the superfluid neutrons

that once permeated the pasta now form bubbles in the Swiss cheese-like proton + neutron

quantum liquid surrounding it. Inset A of Figure 3.1 shows the idea of this complicated phase

transition, the physics for which are still being studied [87] so that they may be included

in neutron star modelling. This transition from core to crust occurs at a density slightly

lower than ρnucl, currently thought to be at ρcc ∼ 1− 2 · 1014 g cm−3 for matter at non-zero

pressure comprised of 95% neutrons and 5% protons.

Their cores reach nuclear densities � ρnucl and contain > 95% of their mass, whose

exact composition is still a mystery but is generally thought to be a homogenous superfluid

of degenerate neutrons and superconducting degenerate protons. Figure 3.1 Inset C shows a

likely representation of vortices, formed from rotation of the star, containing this superfluid

interlaced with magnetic field fluxoids from the superconductor.

The inner core is truly mysterious (marked with a ? in Figure 3.1) and one of the ultimate

goals of neutron star modelling is to narrow down it’s composition.

3.3. Neutron Star Cooling

3.3.1. Cooling and The Energy Balance Equation

When looking at neutron star thermal evolution one considers internal temperatures in

the range of ∼ 107− 1010K. In this range neutrinos have a mean free path much larger than

R and leave the star as soon as they are produced. Taking this into account, along with

reletivistic effects, energy balance considerations give the following (from [73] Appendix B):

d(Le2Φ)

dr
= − 4πr2eΦ√

1− 2Gm/rc2

(
dU

dt
+ eΦ(Qν −Qh)

)
(3.10)

where L is the internal luminosity and Φ is gravitational potential. The other quantities are

the internal energy U , the neutrino emissivity (heat loss) Qν and the heating rate Qh, all

three expressed per unit volume. The inner boundary condition is necessarily,

L(r = 0) = 0 (3.11)



Figure 3.1 Theorists view of the interior of a neutron star (Artist: Dr. Dany Page)
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which simply states that there are no point energy sources or sink at the center of the star.

In order to rewrite the equation in terms of the temperature, T , the following equivalencies

can be applied:
dU

dt
=
dU

dT

dT

dt
= Cv

dT

dt
(3.12)

where Cv is the specific heat at constant volume, which equals the specific heat at contant

pressure, Cp, for degenerate matter, per unit volume. Then Eq. (3.10) reads

d(Le2Φ)

dr
= − 4πr2eΦ√

1− 2Gm/rc2

(
Cv
dT

dt
+ eΦ(Qν −Qh)

)
(3.13)

Energy transport is obtained from Fick’s law, ~F = −κ~∇T , which expresses the energy flux

~F in term of the T -gradient through the thermal conductivity κ. With spherical symmetry

only the radial direction has to be considered and, with GR effects properly included, gives

d(TeΦ)

dr
= −1

κ

LeΦ

4πr2
√

1− 2Gm/rc2
(3.14)

where T is the local temperature. TeΦ is usually referred to as the redshifted temperature

and the term isothermal refers to this relativistic term being constant, i.e., r independent.

This equation needs an outer boundary condition

Tb = T (Lb) (3.15)

which states that the outer boundary temperature (mentioned above) is related to the lu-

minosity, Lb, at this level. The level is chosen so that Lb is equal to the total photon

luminosity of the star, L(r = R) = LR, which in turn can be expressed in terms of the

effective temperature, Te, and the Stefen-Boltzmann constant σSB:

LR ≡ 4πR2σSBT
4
e (3.16)

thus relating Tb = Tb(Te) dubbed the Tb − Te relation which will be discussed later in terms

of outer envelope models, the outer layer of the star whose thermal evolution must be treated

differently for it’s lower densities.

The quantities T,R and L shown above are quantities local to the star, however in

principle these values taken at infinity should be measurable. The following conversions

must then be taken is order to compare theoretical results with observations:

T∞e ≡ Tee
Φ(R) (3.17)



R∞ ≡ Re−Φ(R) (3.18)

L∞ ≡ e2Φ(R)L(R) = 4πR∞2σSBT
∞4
e (3.19)

Measuring these observables is, of course, no trivial task and will be touched on in §3.4.

3.3.2. Pairing

The Cooper theorem (1956) [23] states: the Fermi surface of a degenerate system of

fermions become unstable in the presence of an attractive interaction between the particles

(i.e. the formation of Cooper Pairs) whose momenta lie close to the Fermi momentum. This

instability results in an energy gap ∆ in the energy spectrum around the Fermi energy such

that no particle can have an energy between EF −∆ and EF + ∆. This is illustrated when

considering the excitiation energy spectrum for a single particle:

∂ε(p)

∂p

∣∣∣∣
p=pF

≡ pF
m∗
≡ vF (3.20)

where m∗ is the effective mass and pF , vF are the Fermi momentum and velocity. For

momenta close to pF we can write:

ε(p) = EF + vF (p− pF ) (3.21)

where the Fermi energy, EF is the value of ε(p) at the Fermi Surface. Normally, ε(p)

would vary smoothly across the Fermi Surface but when conditions for pairing are met the

aforementioned gap, ∆, appears:

ε(p) = EF −
√
v2
F (p− pF )2 + ∆2 for p < pF ,

(3.22)

ε(p) = EF +
√
v2
F (p− pF )2 + ∆2 for p > pF (3.23)

Neutron star matter with a temperature lower than this latent heat from pairing, i.e kT . ∆,

will be expected to be in a superfluid or superconductive state. The temperature associated

with ∆ is referred to as the critical temperature, Tc, such that for matter with T > Tc we

expect ∆ to vanish and its behavior to correspond to a Fermi liquid. For T ≤ Tc the second

order transition to superfluidity and superconductivity should occur and ∆ will continue to



grow as the temperature continues to drop. The gap, ∆, and Tc, is much studied and, from

BCS theory (Bardee, Cooper & Schreiffer, 1957 [12]), has a value at T = 0 of

kBTc ≈ 0.57∆(0) (3.24)

Furthermore, the weak coupling approximation estimates

∆(0) ∼ EF e
−1/N(0)V , (3.25)

where N(0) is the density of states at the Fermi surface and is equivalent to,

m∗pF/π
2~3 , (3.26)

where V is the pairing potential and it’s presence implies that accurate calculations are very

difficult, particularly because of its exponential dependence. V depends on the scattering

length of an interation, a, which is negative for attraction. However, Cooper pairs have

a coherence length great enough that it may comprehend many other particles. These

particles could react with the pair thus screening their interaction, a process called medium

polarization. Including this effect, termed Beyond BCS, reduces ∆ in the following way,

∆(kF )→∼ 0.45∆BCS(kF ) (3.27)

The gap has been reduced by more than a factor of two which in turn reduces its corre-

sponding Tc.

There are no obvious attractive interactions for electrons and muons, so they are not

considered for the Tc of interest. However nucleons (i.e. neutrons, protons) do have attractive

interactions and Cooper pairs can appear in various spin-orbital angular momentum states.

Those expected for a neutron star are the 1S0 channel for lower densities (i.e. the neutron

star crust, see Inset A of Fig. 3.1) and 3P2 for higher densities, i.e. the core) ([101], [75]). The
1S0 channel for neutrons has been the most studied and when comparing Fig. 3.2, Fig. 3.3,

and Fig. 3.4 the range of Tc is not so vast as for the 3P2 or the proton 1S0 channels. This

large uncertainly in Tc is partly why the composition and underlying physics of the very core

of neutron stars is still such a mystery (see ? of Figure 3.1). Is the entire proton population

of the core superconducting, or only the outer, lower density shell?

3.3.3. Specific Heat

The core of a neutron star represents roughly ∼ 90% of its mass and thus is the main

contributor to the overall specific heat of the star. The total specific heat per unit volume
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Figure 3.2 Neutron 1S0 Pairing critical temperature, Tc, as a function of neutron Fermi

momentum, kF (n), from neutron drip to the stellar centre. 1: [94], 2: [22], 3: [106], 4: [35],

5: [30], a: [109], b: [110], c: [110]
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Figure 3.3 Neutron 3P2 Pairing critical temperature, Tc, as a function of neutron Fermi

momentum, kF (n) up to the central density of the model star considered here. The models

[a], [b], and [c] are from [11]. The solid line models are from the following [from top]: [51],

next two from [3], the following two from [99], [10], and last two from [25]
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Figure 3.4 Proton 1S0 Pairing critical temperature, Tc, as a function of proton Fermi mo-

mentum, kF (p) from the neutron drip point to the stellar centre. 1: [4], 2: [67], 3: [100], 4:

& 6: [21], 5: [10], 7: [22]



(at constant volume) can be summed linearly,

Cv =
∑
i

Cv,i (3.28)

where i refers to the particular species such as leptons, baryons, mesons and quite possibly

deconfined quarks. For degenerate matter, such as in the core, Cv is equal to Cp, the specific

heat at constant pressure, and the Fermi liquid result (for unpaired matter) can be used,

Cv,i = Ni(0)
π2

3
k2
BT =

m∗i pF,i
π2~3

π2

3
k2
BT (3.29)

As mentioned above, N(0) is the density of states at the Fermi surface (see equation (3.26)).

Figure 11 from [73] shows the relative contributions of various core constituents to Cv.

Temperatures well above Tc are associated with superfluidity and superconductivity and

matter in the core is considered a normal Fermi liquid and energy states, ε(p) from equation

(3.21), above EF are smoothly filled up, allowing for the above linearity in CV . However,

when T reaches Tc, the second order phase transition to a superfluid/superconductor occurs

at the same time as pair breaking since kBT >> ∆(T ). The associated large fluctuations

cause a sharp increase in CV as more thermal energy becomes easily stored. As temperatures

much below Tc are reached and matter in the core is in a superfluid and/or superconductive

state, the gap in the energy spectrum decribed by equation (3.22) appears and the occu-

pation probability is suppressed by a Boltzman factor ∼ exp[−2∆(T )/kBT ], thus strongly

suppressing anything relying on thermally excited particles including Cv [73].

In the crust, Cv comes from degenerate free neutrons in the inner regions, from the

nuclear lattice, and from the degenerate electron gas in the shallower layers. Since the inner

crust neutron superfluid specific heat is strongly suppressed by the 1S0 gap, the majority

must come from vibrations of the lattice itself. The lattice forms at a temperature, Tg, and

for T below this limit Cv doubles that of an ideal Maxwell-Boltzmann gas due to the lattice

potential energy (+1/2kT ). However, as T decreases past the Debye temperature, defined

by kBΘD ≡ ~Ωp where Ωp is the ion plasma frequency, quantum effects become increasingly

important thus we obtain [95],

Cv ' 3kB, for ΘD << T << Tg

(3.30)

Cv '
16π4

5

(
T

ΘD

)3

kB, for T << ΘD. (3.31)



Though the crust is physically much smaller than the core, its contribution is considered

in detailed calculations, such as those performed in this project. In order to put the spe-

cific heat, with (or without) considering pairing effects, into practice one must use control

functions, R: Cv → CPaired
V = RcC

Normal
V . R functions for nucleon pairing in 1S0 and 3P2

channels have been calculated by Levenfish & Yakovlev [62]. Fig. 3.5 shows the contrast in

Cv with depth in the star between the case where pairing is considered and that where it it

is left out. Two different temperatures are considered to represent the early life of the star

(T = 108K) and it’s later years (T = 107K).

3.3.4. Neutrinos

Neutrino emission, from the crust as well as the core, is the dominant form of energy loss

for a cooling neutron star until photon emission takes over at about 105 years.

Table 3.1 is merely a sample of possible neutrino emission processes, however it does

include the main ones to be considered in this project. The second column decribes the

process named in the first and the third column gives an order of magnitude estimate of

the resulting emissivity, Qν . The R’s in this column are control functions, such as those

mentioned above in the context of the specific heat, to account for pairing effects such that

R = R(T/Tc). The final column refers to the efficiency of the process, whose presence or

absense actually constrains the physical properties of the star.

The simplest neutrino emission mechanisms are the β-decay of the neutron and its inverse,

otherwise known as the Direct Urca process for nucleons. For this reaction to occur, not

only must energy be conserved but momentum as well. Since the matter in the neutron star

core is degenerate, particles’ energy and momenta are within ∼ kBT of their Fermi energies

and momenta. Furthermore, the Fermi energies, EF are essentially equal to the chemical

potentials, µi and energy conservation is given by the chemical equilibrium condition:

µn = µp + µe (3.32)

where µν is neglected. Momentum conservation, on the other hand, is highly non-trivial and

can be stated as the triangle inequality,

pF,n ≤ pF,p + pF,e (3.33)

Charge neutrality would require that the number density np = ne, which is related to the

Fermi momentum by n = p3
F/3π

2~3, thus requiring that pF,p = pF,e. The triangle inequality
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Figure 3.5 Specific Heat as a function of depth in the star for T = 107K: solid line: no

pairing, dashed line: pairing; and for T = 108K: dotted line: no pairing, dash-dot : pairing.

Cv is increasingly suppressed as T << Tc.



would then give pF,n ≤ pF,p which leads to nn ≤ 8np. Relating the proton fraction, xp ≡
np/nB where nB is the total baryon number density, the above gives xp ≥ 1/9 ≈ 11% - a

value higher than the estimated proton fraction of 5%, and suggesting from this simplistic

case that the Direct Urca processes, and thus fast neutrino cooling, is out of reach. Hence

the birth of the modified Urca (MUrca) processes.

MUrca processes have a spectator neutron, n′, that satisfies the momentum conservation

requirement, but since these processes now have five degenerate Fermions instead of only

three, their emissivities become suppressed by approximately six orders of magnitude (this

can be seen in comparing the emissivities of Table 3.1).

The reactions of other species of baryons can also be considered, depending on the input

model star that one wants to study (see lower reactions of Table 3.1). Besides Urca processes

there are also the Bremsstrahlung interactions through neutral currents (see middle of Table

3.1). They are the slowest processes considered here, by 2 orders of magnitude, but their

contributions may not be all for naught when superfluidity comes in to play.

As with the specific heat discussed above, as T decreases below Tc, neutrino emmissivity

is exponentially suppressed, their behavior characterized by control functions R [62]. This

would seem bleak for cooling by neutrinos, except that when the phase transition to pairing

first starts to take place the temperature in the star is still high enough that thermal agitation

will break the pairs apart, thus releasing its binding energy in the form of neutrinos. This

process is termed Pair Breaking and Formation or PBF and can potentially dominate neutron

star cooling until T drops to aprroximately 0.2Tc. Numerically, PBF also has it’s control

function. Although the reality of PBF has been around for many years ([28],[105]), it was

not included in neutron star cooling calculations until [92] and [70].

Medium effects, mentioned above with respect to Cooper pair screening, have also been

included in the MUrca process, modifying it to the Medium Modified Urca (MMUrca) which

may be significantly more efficient than MUrca alone (though not so much so as the DUrca

processes). The constraint on the DUrca processes was eventually shown to not be so strict

[61] and can be included in recent cooling models.

It may seem that the core, comprising approximately 90% of the star, would be the

dominant neutrino emitter, and general cooling agent. However, this is not necessarily the

case. In the very early stages of a neutron stars life, the thermal diffusion time is less than its

age and it’s crustal temperature evolution is almost entirely independant of that in the core,

thus entirely governing the evolution of the effective temperature. The dominant processes



Table 3.1. Sample of Neutrino Emission Processes b

Name Process Emissivitya

(erg cm−3 s−1)

Modified Urca n+ n→ n+ p+ e− + ν̄e ∼ 2 · 1021RT 8
9 Slow

(neutron branch) n+ p+ e− → n+ n+ νe

Modified Urca p+ n→ p+ p+ e− + ν̄e ∼ 1021RT 8
9 Slow

(proton branch) p+ p+ e− → p+ n+ νe

n+ n→ n+ n+ ν + ν̄

Bremsstrahlung n+ p→ n+ p+ ν + ν̄ ∼ 1019RT 8
9 Slow

p+ p→ p+ p+ ν + ν̄

Cooper Pair n+ n→ [nn] + ν + ν̄ ∼ 5 · 1021RT 7
9 Medium

p+ p→ [pp] + ν + ν̄ ∼ 5 · 1019RT 7
9

Direct Urca n→ p+ e− + ν̄e ∼ 1027RT 6
9 Fast

(nucleons) p+ e− → n+ νe

Direct Urca Λ→ p+ e− + ν̄e ∼ 1027RT 6
9 Fast

(Λ hyperons) p+ e− → Λ + νe

Direct Urca Σ−1→ n+ e− + ν̄e ∼ 1027RT 6
9 Fast

(Σ− hyperons) n+ e− → Σ− + νe

π− condensate n+ < π− >→ n+ e− + ν̄e ∼ 1026RT 6
9 Fast

K− condensate n+ < K− >→ n+ e− + ν̄e ∼ 1025RT 6
9 Fast

Direct Urca d→ u+ e− + ν̄e ∼ 1027RT 6
9 Fast

(u-d quarks) u+ e− → d+ νe

Direct Urca s→ u+ e− + ν̄e ∼ 1027RT 6
9 Fast

(u-s quarks) u+ e− → s+ νe

aR’s are the control functions used to include suppression from pairing. T9 is

temperature in units of 109K.

bTable data from [77].

for conditions of interest (i.e. neutron star temperatures) are plasmon, Γ, decay,

Γ→ νν̄, (3.34)

the electron-ion Bremsstrahlung process,

e− +Nucleus→ e− +Nucleus+ νν̄, (3.35)

and pair annihilation,

e− + e+ → νν̄ (3.36)

the latter occurring at very high temperatures in order to allow for the presence of positrons.

The core neutrino control functions used in this work are from Levenfish & Yakovlev

(1994) [62] whereas the crust neutrino calculations are from Itoh et al (1996) [53]. Fig. 3.6
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Figure 3.6 Neutrino emissivity, Qν , as a function of depth in the model star for a star of

uniform temperature. Stellar depth has been displayed to emphasize the effects of pairing in

the neutron star inner crust and core. (A) No pairing or PBF processing is considered; (B)

The effect of pairing alone; and (C) The effect of pairing + PBF. As temperature decreases

so does Qν .

shows the effect of pairing and PBF processes on neutrino emissivities for a range of temper-

atures representing the initial configuration of the model stars considered ( T = 1010K) to

their later years (T = 107K). It can be immediately seen that in the early life of a neutron

star, when core temperature is still very high, neutrino emmission plays the most important

role in cooling. Fig. 3.6(A) shows neutrino emissivity with depth in the star for the case with

no pairing considered. In the case of pairing alone, Fig. 3.6(B), as T drops below Tc neutrino

emission is exponentially suppressed. In Fig. 3.6(C) when PBF processes are included, as T

drops below Tc neutrino emission is still exponentially suppressed but is compensated for by

neutrinos released in the PBF process when T is still high enough.

In order to establish evidence in favour of enhaced cooling, the Minimal Cooling paradigm

was put forth by Page et al in [73] and [74] and excludes all “fast” neutrino emission mech-

anisms (see the DUrca processes of Table 3.1) while accounting for PBF. The idea behind



these models, which we have adopted in this project, is that certain theories of dense matter

may be rejected if their restrictions do not meet observations. Conversely, if conditions are

met then other theories of dense matter which do not embody them can then be rejected.

(e.g. restrictions in the composition of certain combinations of light and heavy elements in

envelope models or certain triplet gap sizes in the nucleus).

3.3.5. Conductivity

The next physical property to be considered in order to solve the Energy Balance equation

of (3.14) are the agents for thermal conductivity κ. In the crust electrons dominate the

thermal conductivity while in the core neutrons, in the case they are not superfluid, are

the most efficient heat carriers. However, once paired, neutrons do not anymore contribute

significantly and electrons are again the main agent of heat transport. In the crust, the

principle considerations are electron interactions: e-phonons, e-ions and e-impurities. The

lattice impurities are decribed by their concentration factor, Q. The crustal zone, whose

composition is defined by the EOS adopted in this project and described in §3.2.2 and

§3.2.3, is further divided from the crystal regime, where ρ > ρcryst and e-phonons rule,

to the liquid regime, ρ > ρliq where e-ion interactions are more important. To avoid a

discontinuity among the two regions, results from these interactions are interpolated. In

the core, and in the presence of neutron superfluidity implying that electrons provide the

major contribution to κ, electron-electron and electron-proton scattering are the processes

controlling the thermal conductivity. The resulting conductivity is so high that the core is

essentially isothermal, except possibly during the very early hase of evolution, at ages less

then ∼ 100 yrs. No data are available on such young neutron stars and discussing the effects

of the core thermal conductivity is, at the present time, of purely academic interest. Three

different model stars with calculations from different groups for each zone are contrasted in

Fig. 3.7. Model 1 : for ρ > ρcryst e-phonon from [54] and e-impurity from [111], for ρ < ρliq

e-ion from [55]; Model 2 : for ρ > ρcryst e-phonon from [9] and e-impurity from [111], for

ρ < ρliq e-ion from [55]; Model 3 : for ρ > ρcryst e-phonon from [37] and e-impurity from

[111], for ρ < ρliq e-ion from [37]. Conductivity in the core in all models is taken from [96]

for leptons and [8] for baryons.

Unless otherwise stated, Model 2 from Fig. 3.7 conductivity calculations were used with

the impurity fraction set arbitrarily to Qimp ≈ 0.1. The main reason this model was chosen
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over the calculations from Model 3 is that for high temperature, as in the initial conditions

for these model stars, the conductivity is very low near the surface and affects the ease of

numerical calculation in that zone (see the dependence on conductivity κ in the Flux of the

outer boundary condition).

3.3.6. Magnetic Field

One of the defining characteristics of neutron stars is their strong magnetic fields. Con-

sidering only the classical effect of Larmour rotation of electrons in a high magnetic field

> 1012− 1013G, anisotropy of heat transport could extend throughout the entire crust, as in

the case of a field with a strong meridian component confined entirely to the crust [32].

The expression for the thermal conductivity, κ, would become a tensor,

κ =


κ⊥ −κ∧ 0

κ∧ κ⊥ 0

0 0 κ‖

 (3.37)

with components,

κ‖ = κo (3.38)

κ⊥ =
κo

1 + (ωBτ)2
(3.39)

κ∧ =
κoωBτ

1 + (ωBτ)2
(3.40)

where ωB = eB/m∗ec is the electron gyro-frequency and 1/τ = ν is the effective electron

collisional frequency. ωbτ is referred to as the Magnetization Parameter and it’s variation

throughout the crust for a constant field of 1013G can be seen in Figure 3.8 for several

local temperatures. Particularly at lower temperatures ωbτ will have a strong effect on

conductivity in the crust (see §4.4).

In the envelope of the neutron star, the low density ρ < 1010gcm−1 upper layer, classical

and quantum magnetic field effects cause heat transport anisotropy which in turn reduces

conductivity in the direction perpendicular to the field and enhances it parallel to the field

(see above expressions for conductivity in equation (3.37)). Thus, the region around the

magnetic poles is expected to be warmer than the region about the equator. The superfluid



core would remain isothermal and unaffected by the magnetic field. Greenstein & Hartke

[43] showed that for fields > 1010G neutron star surface temperatures will not be uniform:

Ts(θ, φ)4 ≡ Ts(Tb;B,ΘB)4 (3.41)

≈ cos ΘB
2 × Ts(Tb;B,ΘB = 0)4

+ sin Θb
2 × Ts(Tb;B,ΘB = 90)4

where (θ, φ) are coordinates on the surface of the star and ΘB is the angle between the

magnetic field line and the normal to the surface. Potekhin et al [83] performed a more

detailed calculation which eventually considered the neutrino emission in the outer crust [82].

Pons et al [80] further extended the former model by including ion/phonon heat transport

in the envelope within their 2D model. Their magnetized envelope models build on the

relationship presented in equation (3.41) in the following way:

Ts(B,ΘB, gs, Tb) ≈ T (0)
s (gs, Tb)χ(B,ΘB, Tb) (3.42)

where gs is the surface gravity and χ is a function with terms transverse and logitudinal to

the magnetic field lines that have been fitted to the model data:

χ(B,ΘB, Tb) =

[
χ

9/2
‖ (B, Tb) cos ΘB

2 + χ
9/2
⊥ (B, Tb) sin ΘB

2

]2/9

(3.43)

Pons et al [80] give the following fits,

χ‖(B, Tb) = 1 + 0.05B0.25
12 T 0.240

b,9 (3.44)

χ⊥(B, Tb) =

√
1 + 0.07B12(0.03 + Tb,9)−0.559[
1 + 0.9B12/(0.03 + Tb,9)

]0.4 (3.45)

and the results can be seen in Figure 3.10. Here, B12 is the magnitude of B in units of 1012G.

It has been shown ([63] and [17]) that a stable magnetic field configuration requires

poloidal + toroidal components (see Figure 3.9). This toroidal component is maintained by

poloidal currents in the crust. Geppert et al[33], and then later groups such as Pons et al

[80], demonstrate that the effect of adding a strong toroidal component to the magnetic field

entirely confined to the crust where it can be supported, is to strongly suppress radial heat

flow in the regions where is it strongest. Thus, the magnetic poles are expected to equalize

their temperature with the stellar core, but the blanketing effect of the toroidal field will

maintain a cooler equatorial region.



Besides the large dipolar component, the exact structure of the magnetic field, which

should evolve along with the star, is still uncertain and it is a goal of neutron star cooling

models to test the viability of magnetic structure models.

3.3.7. Outer Envelope and Atmosphere

As mentioned above, the outer layers of a neutron star consist of low-density, not fully-

degenerate matter on the scale of ∼ 10m− 100m possibly covered by an atmosphere on the

scale of centimeters. These layers can be comprised of light elements (H and He), mixed

heavy elements or rather a condensed solid surface if highly magnetized. This thin envelope

is all that stands in the way between the hot neutron star interior and the emitted flux,

F (E), that we observe from Earth. The Photon Luminosity (Equation(3.16)) actually gives

the definition of the Effective Temperature, Te. As mentioned in §3.3.1, the Tb − Te relation

relates the temperature at the outer boundary of the star to the effective temperature, which

should be measurable (see Equations (3.17) to (3.19)).

The thermal relaxation timescale in the envelope is less than that of the core so it can

be treated separately in cooling calculations as a layer always in a steady state. With

this assumption, plus a plane-parallel approximation due to its thiness, solving the heat

transport (3.13) and hydrostatic equilibrium (3.4) equations gives a relationship between

the temperature at the bottom of the envelope, Tb, and the Flux, F , going through it (or

equivalently with the effective temperature Te, hence the Tb−Te relationship). The results of

Gudmundsson et al (1982)[44] for neutron star envelopes are summarized by the following,

simple Tb − Te relation,

Te ' 0.87× 106g
1/4
s14

(
Tb

108K

)0.55

(3.46)

where gs14 is the surface gravity acceleration in units of 1014cm s−2 and the composition

assumed to be that of 56Fe and Fe-like nuclei). This relation shows the dependence of Te

on gs14 only, which contains M and R, thus liberating it from dependence on M(r). This

allows one the ability to take an envelope model and effectively stick it on as the outer layer

in a stellar model. Although equation (3.46) is based on catalyzed matter, real neutron star

envelopes are likely more complicated in composition (e.g. He, He, C, O from the progenetor

supernova) and there are many models out there exploring this (see Figure 3.10).

In the absence of thermal gradation effects such as strong magnetic field configuration or

additional heating from processes like accretion, the stellar interior will become isothermal
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Figure 3.9 Schematic of magnetic field lines for a neutron star with a core-centered dipolar

field plus a crustal poloidal + toroidal field (Artist: Dr. Dany Page)



by an age of ∼ 100 years. This is due to the dominance of degenerate electrons as heat

carriers. Photons are the main carriers in the lowest density layers until the density increases

such that electrons are not yet fully degenerate (i.e. bottom of the layer, liquid). This zone is

termed the Sensitivity Strip and acts to regulate the heat escaping from the interior. Thermal

conductivity in this zone is proportional to Z−1, therefore light elements penetrating this

layer increase its ability to transport energy and thus higher Te can be acheived. Conversely,

higher Te also means electron degeneracy starts deeper in the star, and a thicker layer of

light elements would be needed to affect outgoing temperature [71].

Given the importance of the sensitivity strip to heat gradation, the compositon of the

outermost layers of the atmosphere is not so important for the outgoing flux, F , but will

determine the spectral distribution, F (E). Observed spectra can then be fitted with model

atmospheres in order to estimate T and R: light element models generally give lower T

and larger angular size (sometimes too large); and heavy element models give higher T but

sometimes too small R. Figure 3.10 shows some models including the Fe envelope considered

by [44] (sold line) and a lighter envelope model by [81] (dashed line). The results of Potekhin

et al [81] (dash-dot) are used for models that do not consider magnetic field effects, and those

of Pons et al [80] (dash-dot-dot) are used for those stars with magnetic envelopes.

3.4. Observations

3.4.1. Pulsars and Magnetic Braking

Immediately after their creation, conservation of angular momentum causes neutron stars

to rotate extremely rapidly (on the scale of ms) and they are also thought to be born with

high magnetic fields (> 1010G). Coupling of the rotating magnetic field with the external

environment (“magneto-dipolar radiation”) and particle ejection from the magnetosphere

(“pulsar wind”) produces a torque that continuously slows down the rotation. Assuming a

dipolar field, the magnitude of the magnetic field at the equatorial surface of a neutron star

can be inferred using the observational parameters of period, P , and spin-down period, Ṗ

The most abundant type of neutron star studied to date is the radio pulsar, whose

pulsed emission in radio and x-rays is generally considered as regular as clockwork. They

are thought to be powered by rotational kinetic energy loss from magnetic braking, which

also provides a convenient method for estimating dipolar magnetic field strength, B, from



Figure 3.10 Envelope Models showing the relationship bewteen the surface temperature, Ts,

and the temperature at the bottom of the envelope, Tb. The solid line shows the results of

[44] for an Fe based envelope (see equation (3.46)), the dashed line includes light elements

from [81], the dash-dot line is an unmagnetized model from [81] where as the dotted lines

show the same model with B = 1013G, finally the dash-dot-dot lines show a variation on the

previous model done by [80]. For the magnetized models, the upper curves show Ts at the

magnetic poles and the lower curves Ts at the equator.



their spin characteristics, P − Ṗ .

The following Magnetic Dipole Model shows how pulsar emission can be derived from the

kinetic energy of a rotating neutron star independant of the interior field geometry. A time-

varying purely dipole moment, m, as seen by an observer at infinity will have the following

luminosity [95],

L = Ė = − 2

3c3
|m̈|2 (3.47)

If the dipole moment is written:

m =
1

2
BpR

3
NS(e‖ cosα + e⊥ sinα cos Ωt+ e′⊥ sinα sin Ωt) (3.48)

then the luminosity is:

L =
−B2

pR
6
NSΩ4 sinα2

6c3
(3.49)

where α is the angle between the angle of orientation between m and the rotation axis, and

Ω = 1/P is the frequency of rotation. In terms of the rotational kinetic energy of the star,

E =
1

2
IΩ2 (3.50)

Ė = IΩΩ̇ (3.51)

Thus,

B2
pΩ

4 ∝ ΩΩ̇ (3.52)

which, after substitution of the relation P = 1/Ω and Ṗ = −Ω̇/Ω2, gives the useful relation:

Bp '

√
c3I|Ω̇|
Ω3R6

' 3.2× 1012(PsṖ14)1/2 G (3.53)

where Ps is P measured in seconds and Ṗ14 is Ṗ is measured in 10−14 s s−1. This is of course

only a coarse estimate of the surface magnetic strength and, within the approximations

involved in the model, the numerical coefficient also depends on the assumed values of I and

R. The braking index, n, is given by Ω̇ ∝ Ωn. For the Magnetic Dipole Model n = 3. As a

matter of interest, in the case of gravitational wave emission n = 5.

Fields from 108G for millisecond Pulsars to 1015G for Magnetars have been estimated

from the P − Ṗ relation (see Figure 3.11) and used to diversify neutron stars into various,

perhaps not wholly unrelated, classes that will be discussed in the next section Observations.



Figure 3.11 P − Ṗ diagram from McLaughlin et al. 2003 [65]. dots : represent radio pulsars,

diamonds SGR’s, squares : AXPs, star HBPSR J1847-0130 presented in the paper, triangles :

XDINS presented in [45], hexagon: HBPRS J1119-6127 presented in [41]. Dashed lines show

lines of constant inferred dipolar magnetic field strength (at the equator, i.e., Bp/2) and doted

lines show constant characteristic ages. The solid line represents the Quantum Critical Field

BCR. As can be noted from the diagram, classes of magnetized neutron stars discussed in

this project fall nearly in the same region suggesting a relation between them.
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3.4.2. The Zoo

HBPSRs - High Magnetic Field Pulsars

Radio pulsars are by far the most commonly studied neutron stars. The first pulsar was

discovered in 1967 by Jocelyn Bell and Anthony Hewish [49] and the extremely regular ra-

dio pulses were first thought to be a signal from extraterrestrials, which was later correctly

interpreted as pulsar emission. Their power is generally thought to be due to the loss of rota-

tional kinetic energy through magnetic dipole braking. The exact mechanism that converts

rotational energy into the observed pulses is poorly understood, despite the consistancy of

observations among sources. Pair production along the magnetic dipole axis is thought to

produce radio emission which is then beamed within a radius dependant on the period of

rotation of the star.

Previously, radio pulsars were divided from Magnetars by the Quantum Critical field,

BCR ∼ 4.4 · 1013G. at which cyclotron energy equals the electron rest-mass energy. In

fields above BCR magnetic photon splitting overrides pair production and no radio emisiion

is produced. Before the Parkes Multibeam Survey (1999) the largest magnetic dipole field

inferred for a radio pulsar was 2.1 · 1013G and the aforementioned division held. However,

with Parkes, radio pulsars with dipole fields above this limit have been discovered. PSR

J1847-0130, shown as a star in Figure 3.11, was reported by McLaughlin et al (2003) to

have a B ∼ 9.4 · 1013G which puts it in the same range as the Magnetars, specifically the

AXPs. An upper limit on its x-ray luminosity shows it is a weaker emitter in x-rays than

AXPs, however the similar B field strength suggests that the x-ray luminosities of some

AXPs must be due to something other than just their strong dipolar magnetic fields. A

natural candidate is the presence of multipolar, and also toroidal, components that would

be much stronger in magnetars than in radio pulsars.

XDINs - X-Ray Dim Isolated Neutron Stars

There is a group of neutron stars, once dubbed the Magnificent Seven (their number

has grown by now to eight [90], and the new member has been dubbed “Calvera” !) , all

showing similar characteristics that distinguish them from other neutron stars. As their

title sugests, they have low but persistent emission in x-rays (Lx ∼ 1030 − 1031 ergs s−1)

and no apparent emission in radio. Their x-ray spectra are best fit with a black body of

temperature kT ∼ 40− 110 eV and some show one or a few broad absorption line(s). They



Table 3.2. Sample of High Magnetic Field Radio Pulsars

PSR J1847-0130 J1718-3718 J1814-1744 J1846-0258 J1119-6127 J1357-6429a

B (1013G) 9.4 7.4 5.5 4.8 4.1 0.8

Ė (erg s−1) 1.7 · 1032 1.5 · 1033 4.7 · 1032 8.0 · 1036 2.3 · 1036 3.1 · 1036

Lx (erg s−1) < 5 · 1033 ∼ 1030 < 6 · 1035 6.4 · 1034 2.0 · 1033 3.7 · 1032d22.5
P (s) 6.7 3.4 4.0 0.32 0.408 0.166

τc (kyr) 83 34 85 0.72 1.7 7.3

d (kpc) ∼ 8 4− 5 ∼ 10 ∼ 19 8.4 ∼ 2.5

PWN? - - - yes yes yes

PF (%) - - - - 74± 14 63± 15

Reference McLaughlin et al. Kaspi & McLaughlin Pivovaroff et al. Helfand et al. Gonzalez et al. Zavlin

(2003) [65] (2005) [59] (2000) [79] (2003) [48] (2005) [41] (2007) [112]

aAun que PSR J1357-6429 no califica como un HBPSR, esta incluido por comparason en la Tabla por su emision rayos-x y PF

similar a PSR J1119-6127.



have an optical component in their spectra best fit with the low-energy tail of a black body

of slightly lower temperature than the x-ray black body with an emitting radius much larger

that the emitting radius of the warmer component (∼ 3 − 5 km). The assumed radius of

a neutron star is between 10 − 15 km, a range that lies between the radii indicated by the

two thermal components of the spectrum. This shows that XDINs may have some sort of

surface temperature anisotropy. In five sources, pulses in the light curve are observed with

pulse fractions between 4% and 18%. Inferred dipole magnetic fields range between 1013 G

and 1014 G for two of the XDINs. Fields in the same range were also inferred for 5 of the

XDINs from interpretation of the broad absorption line as resulting from proton-cyclotron

absorption.

It is thought that these are young, close-by cooling neutron stars between 105 and 106

years old which is consistent with the low observed column density (NH ∼ 10−2 which

implies d ∼ 10−100 pc), the lack of association with a SN remenant (age > 105 yrs) and the

thermal x-ray emission (age < 106 yrs) [45]. These neutron stars have been the specific study

of the effects of the magnetic field on neutron stellar properties (e.g. surface temperature

distributions) to explain observations such as light curves and x-ray spectra.

SGRs - Soft Gamma-Ray Repeaters

The trademark of SGRs is the repetition of short (∼ 100 ms) soft gamma-ray and x-ray

bursts with energies of ∼ 1041 ergs and risetimes of ∼ 10 ms. There are 4-6 known SGRs

located in the Galactic Plane and one in the LMC. Their burst spectra are well modelled

by optically thin thermal Bremsstrahlung emission with kT ∼ 20 − 50 eV. Burst activity

is highly episodic with the occasional giant gamma-ray burst of energy > 4 · 1044 ergs.

Three sources show pulse periods in x-rays during quiescence, two of which with inferred

magnetic field of ∼ 1015 G. The spectra in quiescence are well modelled by a power-law with

photon index of 2− 3. The pulses have broad profiles and resist coherent timing over spans

longer than a few weeks (i.e. noisy rotators). The bursting and rotational behavior seem

uncorrelated.

There are many factors that support the idea that SGRs are a manifestation of magnetars.

In 1979, SGR 0525-66 was detected coming from the direction of a supernova remnant SNR.

An 8 s periodicity modulated the decaying light curve of the burst, which had a luminosity

> 6 Eddington Luminosities. In order to slow down a neutron star from a P ∼ 10 ms at birth

to a P = 8 s in ∼ 104 years, the approximate lifetime of a SNR, a very high magnetic field is



needed. This argument predicted Ṗ for two more SGRs. Considering energy requirements to

produce burst luminosities, rotation only gives a maximum of 1033 ergs and accretion is ruled

out by the absence of a companion and the fact that such behavior has never been seen in an

accreting system. A magnetic field > 1015 G is needed for the energy of a giant burst to be a

small fraction of available magnetic energy. As well, magnetar strength fields are required to

confine hyper-Eddington burst to ∼ 100 ms. Furthermore, they lower the Thompson cross-

section thus reducing scattering opacity to allow these higher fluxes to escape. Fields < 1014

G are not expected to decay rapidly whereas fields > 1014 G decay via ambipolar diffusion

in the core and Hall drift in the crust on timescales of about 104 years . It is thought that

the quiescent x-rays originate from the surface by internal heating of the decaying magnetic

field whereas bursts could result from the crust cracking under magnetic stress [58].

AXPs - Anomalous X-Ray Pulsars

AXPs are very similar to SGRs with some differences. Their behavior is typified by x-ray

pulsations of Lx ∼ 1033 − 1035 ergs s−1 and P ∼ 6− 12 s. Their x-ray spectra are relatively

soft compared to most accreting x-ray pulsars and are best described by two components:

a black body with kT ∼ 0.4 keV; and a hard power-law with photon index 2.5 − 4. Like

SGRs they show broad pulse profiles and similar P − Ṗ characteristics in quiescent x-ray

spectra. However, they are less noisy rotators with softer spectra, lower inferred B and

more frequent association with a SNR. In two cases SGR-like burst were detected, however

AXP bursts have a wider range of durations and show a correlation with rotation as they

occur preferentially near pulse maxima. These bursts indicate a major event extended in

time with one component from surface fracture(s) and the other more broadly distributed, as

with magnetars. AXPs were initially dubbed anaomalous as they were thought to be similar

to the x-ray pulsars found in high mass x-ray binaries, long pulse period and strong magnetic

field, but no companions were found. For similar arguments as those presented above, it is

likely that AXPs have magnetar-like fields. The absence of a companion is supported by the

lack of Doppler shift in the pulses and the low characteristic age is supported by associations

with SNR. In the case of 1E 2259+586, a glitch, the temporary spin-up of the period, suggests

a possible disturbance in the superfluid core. Extended flux enhancement and pulse profile

change suggests an excitation of magnetospheric currents plus crustal heating [58].



3.4.3. More Questions than Answers

The last decades has seen a great advancement in the quantity and quality of observations

of the myriad of neutron stars and their related phenomena. Despite this, these objects still

retain many of their secrets. It is still a mystery whether or not the phenomenon of the

magnetars, pictures in the upper right quadrant of Fig. 3.11 are related or not.

Fig. 3.12 shows where some of these neutron stars lie in relation to a cooling curve (the

model curve comes from a numerical simulation of a non-magnetized neutron star without the

effects of superfluidity from §4.3 in the following chapter). It can immediately be seen that

some stars lie very close to the model cuvre, whereas several more are grouped well above

it: these are the magnetars and one of the challenges of modelling temperature diffusion

inside magnetized neutron stars is to reach these relatively high effective temperatures for

a mature star. At the moment, we can strive for these magnetar temperatures assuming a

persistent heating source in the crust of the star (see §5.1).

The following chapter is dedicated to the calculations performed in this work to solve

the Energy Balance Equation (3.10) and track the effective temperature, Teff , of our model

stars over time.



Figure 3.12 Observed neutron star effective temperatures on a cooling curve. The solid line

are the results from the simulated cooling of a non-magnetized neutron star without the

effects of superfluidity described in §4.3. The data can be found in the Tables 3.3 and 3.4.



Table 3.3. Sample Magnetar Data

Name P dP/dt Bsurf ) dE/dt τc NH TBB d Lx

(s) (10−11s/s) (1014G) (1033erg/s) (kyr) (1022cm−2) (keV ) (kpc) (1035erg/s)

4U 0142+61a 8.68832877(2) 0.20332(7) 1.3 0.12 68 0.96(2) 0.395(5) 3.6(4) 1.1

1E 1048.1-5937a 6.457875(3) 2.25 3.9 3.3 4.5 0.97(1) 0.51(1) 2.7(1) 0.059

1E 2259+586 a 6.9789484460(39) 0.048430(8) 0.59 0.056 230 1.012(7) 0.400(7) 4.0(8) 0.34

1E 1841-045 a 11.7828977(10) 3.93(1) 6.9 0.95 4.8 2.2(1) 0.45(3) 8.5+1.3
−1 1.9

1E 1547.0-5408 a 2.0721255(1) 4.7 3.2 210 0.70 3.1+0.7
−0.8 0.43+0.03

−0.04 3.9(1) 0.0058

1RXS J170849.0-400910 a 11.003027(1) 1.91(4) 4.6 0.57 9.1 1.48(4) 0.456(9) 3.8(5) 0.59

XTE J1810-197 a 5.5403537(2) 0.777(3) 2.1 1.8 11 0.63(5) 0.19(3) 3.5(5) 0.00031

CXOU J010043.1-721134 a 8.020392(9) 1.88(8) 3.9 1.4 6.8 0.3(4) 0.38(2) 60 0.61

CXO J164710.2-455216 a 10.6106563(1) 0.073 0.89 0.024 230 1.9 0.49(1) 5 0.0044

CXOU J171405.7-381031 a 3.82535(5) 6.40(14) 5.0 45 0.95 4.11+0.82
−0.34 0.38+0.08

−0.05 8 0.22

PSR J1622-4950 a 4.3261(1) 1.7(1) 2.7 8.3 4.0 2 0.4 9 0.0063

aData collected from the McGill SGR/AXP Online [64]



Table 3.4. Sample Neutron Star Data

Name tsd
a tkin

b T∞) d L∞

(log10yrs) (log10yrs) (log10K)) (kpc)) (log10ers s−1)

RX J0822-4247 3.90 3.57+0.04
0.04 6.24+0.04

−0.04 1.9-2.5 33.85-34.00

1E 1207.4-5209 5.53+0.44
0.19 3.85+0.48

0.48 6.21+0.070.07 1.3 3.9 33.27 33.74

RX J0002+6246 3.96+0.08
0.08 6.03+0.03

0.03 2.5 3.5 33.08 33.33

PSR 0833-45 (Vela) 4.05 4.26+0.17
0.31 5.83+0.02

0.02 0.22 0.28 32.41 32.70

PSR 1706-44 4.24 5.8+0.13
0.13 1.4 2.3 31.81 32.93

PSR 0538+2817 4.47 6.05+0.10
0.10 1.2 32.6 33.6

asd is the spin-down age of the star availble when measurements of P and Ṗ can be taken.

bkin is the kinematic age of the star.

∗Data compiled from Tables 1 and 2 from [73]



Chapter 4

A Virtual Laboratory: Numerical

Methods

Heat transport within neutron stars is a subject of much interest due to the exotic nature

of the ultra-dense material inside, the nature of which is, for the most part, unknown. Only

surface temperatures of these objects can be observed from our current position, and the

end goal of modeling the thermal profiles of neutron stars would be to create an accurate-as-

possible picture of the cooling of said surfaces. A complete model would include the behavior

of material at every depth of the star as well as any other influences to the thermal evolution,

such as the presence of a magnetic field and relativistic effects. Such a model would thus

be an excellent testing ground for, as an example, the equations of state of matter at supra-

nuclear densities. As such, these are our only laboratories for testing ultra-dense matter.

In order to approach this problem, the energy balance equation relevant for regions of

interest must be constructed. This equation, which describes thermal evolution within a

neutron star and is presented below, can be put into a simplified form of a general diffusion

equation for which a numerical method can be devised and tested. A desirable method can

be extended to increasingly complicated cases.

In this work, Finite Difference methods are explored in order to solve this problem. The

advantages of the methods used in this paper are that they can be modified to achieve second-

order accuracy in both space and time, and are generally stable numerical schemes, while

not being unnecessarily computationally expensive. The methods used were developed by

Press et al. (1986)[85], and adapted accordingly for use with heat diffusion. One-dimensional

problems are treated with the Crank-Nicolson method, a combination of implicit and explicit

55



schemes in order to combine stability with accuracy, while multi-dimensional problems, more

the problems of interest, are treated by the Alternating Direction Implicit method (ADI).

This last method, as will be shown, allows for second-order accuracy in time by dividing

timesteps and for a relatively computationally inexpensive way to solve coupled linear equa-

tions.

The purpose of this section is to present a general reference for an algorithm appropriate

for use in calculating the thermal history of neutron stars, although its application to other

systems not considered here is certainly valid. The relevant equations to be solved are

presented followed by their analytical solutions. Next come the Finite Difference schemes

and their results compared analytical solutions. The section closes with a discussion of the

application of the ADI method to the specific case of neutron star cooling.

4.1. Heat Transport and the Energy Balance Equation

We saw from Equation (3.14) the form of energy transport in the radial direction in terms

of the luminosity, L. For modelling purposes it is advantageous to re-write this equation in

terms of the change in Temperature, T , with time. For simplicity, we will ignore reletivistic

effects such as the redshift factor, eΦ. Equations (3.13) and (3.14) then become:

dL

dr
= −4πr2

(
Cv
dT

dt
+Qν −Qh

)
(4.1)

dT

dr
= −1

κ

L

4πr2
(4.2)

Rearranging (4.1) and substituting (4.2) into it then gives:

Cv
dT

dt
=

1

r2

d

dr

[
r2κ

dT

dr

]
−Qν +Qh (4.3)

Putting this equation in terms of the flux, F = L/4πr2 = −κdT/dr:

Cv
dT

dt
= − 1

r2

d

dr

[
r2F

]
−Qν +Qh (4.4)

This can be put more gerally into the following form which can be expanded depending

on the number of dimensions to be considered,

Cv
∂T

∂t
= −∇ · F− Sinks + Sources (4.5)



where Cv is the specific heat per unit volume. Here, the heat flux, F , is described by,

F = −κ̂ · ∇T (4.6)

where κ̂ is the heat conductivity tensor. It will be assumed that the system will be free of

heat sources and sinks and Cv and κ will be taken as constant for purposes of simplicity, at

least for the time being. Also, general relativistic effects and other influences (e.g. magnetic

field) will not be discussed until later.

4.1.1. Heat Transport in Diffusion Equation Form: Constant Cv

and κ

The aforementioned approximations simplify (4.5) greatly and thermal evolution in a

homogenous medium can be put into a straightforward diffusion equation form,

∂T

∂t
=

κ

Cv

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
(4.7)

or, alternatively, in spherical coordinates,

∂T

∂t
=

κ

Cv

[
1

r2

∂

∂r

(
r2∂T

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

r2 sin2 θ

∂2T

∂φ2

]
(4.8)

While (4.8) is written in three spherical dimensions, it is a simple matter to consider, say,

axial symmetry by simply eliminating the last term inside the square brackets. (4.7) and

(4.8) will hence, form the basic equations to be solved by the method described below.

Analytical Solution

The aforementioned simplifications, although physically unrealistic, enable analytic solu-

tions to (4.7) and (4.8) to be found, which are a good starting points to test any numerical

method. Below are a few cases relevant to this study.

Finite Cube Here, we will consider a homogenous medium defined within a cube with

limits,

x = 0, x = l, y = 0, y = m, z = 0, z = n

The corresponding general diffusion equation is defined by (4.7).

Let,

a =

√
κ

Cv



and the initial condition be described by,

u|t=0 = f(x, y, z) (4.9)

with the boundary condition.

u|x,y,z=0,l,m,n = 0 (4.10)

Particular solutions of (4.7) that satisfies the initial and boundary conditions (4.9),(4.10)

are easily found by separation of variable with the form u = e−ω
2tX(x)Y (y)Z(z), the par-

ticulars of which can be found in [98]. The general solution is then obtained as follows,

u(x, y, z, t) =
∞∑

σ,τ,ρ=1

ασ,τ,ρe
−ω2

σ,τ,ρt sin
σπx

l
sin

τπy

m
sin

ρπz

n
, (4.11)

where the coefficients are given by,

ασ,τ,ρ =
8

lmn

∫ l

0

∫ m

0

∫ n

0

f(x, y, z) sin
σπx

l
sin

τπy

m
sin

ρπz

n
dx dy dz ,

and

ω2
σ,τ,ρ = a2π2

(
σ2

l2
+
τ 2

m2
+
ρ2

n2

)
.

It results from (4.11) that the heat does not spread at a finite speed, but instantaneously,

which is the primary difference between the heat equation and the wave equation.

Solution for a Sphere The case of spherical coordinates can also be studied and is

perhaps more relevant to the case of heat transport in neutron stars considered below. Here,

the solution to (4.8) is at first simplified if we consider symmetry in θ and φ:

∂u

∂t
=

κ

Cv

[
1

r2

∂

∂r

(
r2∂u

∂r

)]
,

with initial condition,

u|t=0 = f(r) ,

and boundary conditions,

∂u

∂r
+ hu = 0 for r = R ,



where R is the radius of the sphere and the “external heat conductivity” h > 0. Supposing

a solution of the form,

u(r, t) = Ae−ω
2tU(r) ,

the details leading to the final solution can be found in [98].

u(r, t) =
∞∑
n=1

ane
−a2k2nt sin knr

r
, (4.12)

where the coefficients an are derived from the initial condition,

an =

∫ R

0

rf(r) sin knrdr :

∫ R

0

sin2 knrdr .

The constants kn are derived from the boundary conditions and are given by the roots of

the equation,

kR tan−1 kR = 1− hR .

4.2. Numerical Methods

4.2.1. Finite Differencing: The Crank-Nicolson Method for One

Dimension

Solving the Heat Transport Equation is an initial value problem. That is, given an initial

temperature distribution (4.5) describes it’s evolution through time. Equation (4.5) is an

example of a diffusion equation and can be solved numerically in several ways. However,

here we concentrate on “Finite Difference” methods.

A model diffusion equation in one spatial dimension with a constant diffusion coefficient,

a2, is taken from (4.7),
∂u

∂t
=

κ

Cv

(
∂2u

∂x2

)
(4.13)

Here, u is the quantity whose evolution through time we are interested in. In Finite Difference

form this becomes,
un+1
i − uni

∆t
= a2

[
uni+1 − 2uni + uni−1

(∆x)2

]
(4.14)

which can then be solved for un+1
i in a straightforward way. Here, n denotes increments in

time (i.e. n = 1, 2, . . . , N where N is the maximum number of allowed time-steps) and i



denotes increments in space (i.e. i = 1, 2, . . . , I where I represents the outer boundary of the

space in which u is evolving). Differences in u are centered on i+ 1/2 and i− 1/2, otherwise

known as central differences. The level of accuracy is determined by evaluating the error

in the difference between the derivative of u and the limit in the central difference around

u divided by ∆x as ∆x becomes small. The error in this approximation is proportional to

the square of the spatial step (∆x)2 and the scheme then obtains second-order accuracy in

space. This is in contrast to forward or backward difference schemes whose error is on the

order of O(∆x) or only first-order accurate in space.

A numerical scheme such as 4.14 where the searched for value at time step n + 1, un+1,

only appears in the l.h.s. time derivative while the r.h.s. spatial derivative is evaluated only

at time step n, is called an explicit scheme.

A problem arises when considering the ∆t required for stability. In general, the diffusion

time across a cell size ∆x is of the order τ ∼ ∆x2/a2 which, for sufficiently small spatial

scales and large overall time scales, is prohibitively small.

The goal is to accurately evolve the large-scale features while keeping the small-scale

features as innocuous yet accurate as possible. One way to achieve this is to use a “fully-

implicit” differencing scheme, as

un+1
i − uni

∆t
= a2

[
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

]
where the searched for values at time step n+ 1, un+1, are employed in both the l.h.s. time

derivative and the r.h.s. spatial derivative.

It can be easily rearranged into the following form,

−αun+1
i+1 + (1 + 2α)un+1

i − αun+1
i−1 = uni , i = 1, 2 . . . I (4.15)

α =
a2∆t

(∆x)2

Eq. (4.15) represents a tri-diagonal matrix which, with appropriate boundary conditions at

i = 1 and i = I, can be solved at each time step with an appropriate method. Here, the

system to be solved is A · x = B where A is an I × I matrix whose only non-zero elements

lie along the diagonal plus or minus one column, as seen by the coefficients of 4.15. The

unknown values of u are represented by the column matrix x and B is the right-hand-side



of 4.15. Direct methods to solve the set of equations represented by 4.15 would use O(I3)

operations, a potentially huge number if I is large. However, using a technique that involves

“LU decomposition”, which is the breaking up of A into matrices with upper, U , and lower,

L, triangular elements only, creates a triangular set of equations that are trivial to solve.

More importantly, the number of operations is O(I), a significant improvement over more

“brute force” methods.

However, another problem arises in the limit ∆t → ∞. In this limit, 4.13 goes to its

equilibrium form,

a2∂
2u

∂x2
= 0

which is unconditionally stable for all ∆t and gives the correct equilibrium solution, but is

inaccurate at small-scales and only first-order accurate in time.

In order to get an unconditionally stable method that is second-order accurate in space

and time, the average of both fully-implicit and fully-explicit methods is taken. This is called

the Crank-Nicolson Method and has the following form,

un+1
i − uni

∆t
=
a2

2

[
(un+1

i+1 − 2un+1
i + un+1

i−1 ) + (uni+1 − 2uni + uni−1)

(∆x)2

]
(4.16)

Here, the left-hand side of the equation is centered on a time step of size n+ 1/2 and is thus

second-order accurate in time. The fully-implicit portion of the equation ensures that it is

stable for all ∆t. This method, and variations thereof, are used to solve the energy balance

equation.

4.2.2. Finite Differencing: Alternating Direction Implicit (ADI)

Method, Methods for Multiple Dimensions

The diffusion equation in three dimensions has the general form,

∂u

∂t
= a2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(4.17)

Now, this could be put into Crank-Nicolson representation as in 4.16 however, a solution

requires solving a series of coupled linear equations. The equations involved still have mostly

zero elements, however in order to minimize operations for the special order of more com-

plicated sparse matrix patterns, one must often sacrifice stability. A desirable scheme would

reduce the problem to the solution of a tri-diagonal matrix, the “simplest” sparse matrix



form, as in the aforementioned method, which uses the relatively stable regular LU decom-

position. In general, 4.17 can be written as,

∂u

∂t
= Γu

where Γ is some operator. Furthermore, say the right-hand side of 4.17 can be divided into

a linear sum of m pieces as follows,

Γu = Γ1u+ Γ2u+ · · ·+ Γmu

Suppose that for each operator Γm a scheme for updating u from time step n to n+ 1 is

known. Then, u could be updated by a series of updating schemes, Um, each one desirably

stable for the Γm piece only,

un+1/m = U1

(
un,∆t/m

)
un+2/m = U2

(
un+1/m,∆t/m

)
...

un+1 = Um

(
un+(m−1)/m,∆t/m

)
Thus, the time step from n to n+1 is divided into m pieces. At each fractional step, one term

on the right-hand side of 4.17 is treated implicitly in turn. The three-dimensional diffusion

equation would have the form,

u
n+1/3
i,j,k = uni,j,k +

1

3
α
(
δ2
xu

n+1/3
i,j,k + δ2

yu
n
i,j,k + δ2

zu
n
i,j,k

)

u
n+2/3
i,j,k = u

n+1/3
i,j,k +

1

3
α
(
δ2
xu

n+1/3
i,j,k + δ2

yu
n+2/3
i,j,k + δ2

zu
n+1/3
i,j,k

)

un+1
i,j,k = u

n+2/3
i,j,k +

1

3
α
(
δ2
xu

n+2/3
i,j,k + δ2

yu
n+2/3
i,j,k + δ2

zu
n+1
i,j,k

)
(4.18)

where α and δ2
xu

n
i,j,k would be the following,

α ≡ a2∆t

∆2
∆ ≡ ∆x = ∆y = ∆z

δ2
xu

n
i,j,k = uni+1,j,k − 2uni,j,k + uni−1,j,k



Each sub-step looks very much like the Crank-Nicolson scheme with the slight difference

that heat transfer in each direction is treated implicitly in turn during a time step 1/3 of

the original ∆t. Now, the solution becomes the relatively simple matter of solving three

tri-diagonal systems one after the other. Going back to two-dimesions is straightforward:

division of ∆t into only two sub-steps and solving the two corresponding tri-diagonal systems.

4.2.3. Comparison with Analytical Solution

The energy balance equation for one-dimension and constant κ and Cv has the following

form in the Crank-Nicolson Method,

T n+1
i − T ni

∆t
=

κ

Cv

1

2r2
i

[
r2
i+1

2

(Tn+1
i+1 −T

n+1
i )−r2

i− 1
2

(Tn+1
i −Tn+1

i−1 )

(∆r)2

+
r2
i+1

2

(Tni+1−Tni )−r2
i− 1

2

(Tni −Tni−1)

(∆r)2

]
(4.19)

Here, the general differencing form of 4.16 has been appropriately modified to a spherical

representation (i.e. the right-hand side of 4.19 is not only centered on n + 1/2 but also on

the spatial coordinate i).

The energy balance equation for three-dimensions in cartesian coordinates takes the form

of 4.17 with temperature, T , in place of u and the diffusion coefficient, a2, replaced with a

constant value of κ/Cv = 1. A comparison with the solution for a finite three-dimensional

homogenous medium, 4.11, is shown in Fig. 4.1.

Fig. 4.2 shows the results of using 4.19 to numerically solve the energy balance equation

compared with the analytic solution described above for an initial Guassian T-distribution.

For illustrative purposes κ = Cv = 1 was used, as well as h = 0.1 for the external boundary

condition. For comparison, Fig. 4.1 shows the one-dimensional solution in cartesian coordi-

nates. Colour has been used to show the passage of time, t, with black representing log t = 0,

red log t = +/− 1, green log t = +/− 2, and blue log t = +/− 3.

However, we are more interested in a spherical coordinate system in order to move to

the next step of modeling the interior of a star. The following equations are the spherical
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Figure 4.1 One-, Two- and Three-dimensional evolution of the diffusion equation in Cartesian

coordinates. Initial temperature distribution is a Gaussian. Colour has been used to show

the passage of time, t, with black representing log t = 0, red log t = +1 and − 1, green

log t = +2 and− 2, and blue log t = +3 and− 3.



equivalents of 4.18, the results of which are shown in Fig. 4.2:

T
n+1/3
i,j,k = T ni,j,k +

∆t

3

κ

Cv

(
δ2
rT

n+1/3
i,j,k + δ2

θT
n
i,j,k + δ2

φT
n
i,j,k

)

T
n+2/3
i,j,k = T

n+1/3
i,j,k +

∆t

3

κ

Cv

(
δ2
rT

n+1/3
i,j,k + δ2

θT
n+2/3
i,j,k + δ2

φT
n+1/3
i,j,k

)

T n+1
i,j,k = T

n+2/3
i,j,k +

∆t

3

κ

Cv

(
δ2
rT

n+2/3
i,j,k + δ2

θT
n+2/3
i,j,k + δ2

φT
n+1
i,j,k

)
(4.20)

with the general δ representations,

δ2
rT

n
i,j,k =

r2
i+ 1

2

(
T ni+1,j,k − T ni,j,k

)
− r2

i− 1
2

(
T ni,j,k − T ni−1,j,k

)
r2
i (∆r)

2

δ2
θT

n
i,j,k =

sin(θj+ 1
2
)
(
T ni,j+1,k − T ni,j,k

)
− sin(θj− 1

2
)
(
T ni,j,k − T ni,j−1,k

)
r2
i sin(θj)(∆θ)2

δ2
φT

n
i,j,k =

(
T ni,j+1,k − T ni,j,k

)
−
(
T ni,j,k − T ni,j−1,k

)
r2
i sin2(θj)(∆φ)2

In contrast to the one-dimensional cases, two- and more so three-dimensional cooling

appears more efficient and temperature will continue to decrease even as it’s profile reaches

isothermality. The greatest practical difference is, of course, computational expense as the

number of operations increases with increasing dimension. Depending on the system and

complexity of the input, a one-dimensional calculation could take on the order of minutes to

complete, while a three-dimensional one could be on the order of days.

Now, the next step would be to apply more realistic physical parameters to 4.20, which

will be discussed briefly below. The inclusion of realistic physics along with appropriate

initial and boundary conditions into this numerical method will then provide a successful

means by which solve heat transport within a neutron star.

4.3. 1D Neutron Star Modeling

The inclusion of non-constant physical coefficients can be a bit tricky. However, if they

can be treated as dependent on only one spatial dimension the problem becomes significantly

easier. For example, say the diffusion coefficient of 4.16 depended on x. Then, it could be
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Figure 4.2 One-, Two-, and Three-dimensional evolution of the diffusian equation in Spherical

coordinates. Initial temperature distribution is a Gaussian (blue). Although computationally

more expensive, cooling appears more efficient, specifically at the surface. Colour has been

used to show the passage of time, t, with black representing log t = 0, red log t = +1 and−1,

green log t = +2 and− 2, and blue log t = +3 and− 3.



included in the difference over i of the difference in flux in the following way,

un+1
i − uni

∆t
= 1

2

[
a2
i+1

2

(un+1
i+1 −u

n+1
i )−a2

i− 1
2

(un+1
i −un+1

i−1 )

(∆x)2

+
a2
i+1

2

(uni+1−uni )−a2
i− 1

2

(uni −uni−1)

(∆x)2

]
(4.21)

This was seen above in the spherical coordinate representation of the diffusion equation,

4.19 and 4.20 where the physical coefficient a would now become part of the δ flux terms.

This is easily extendible to the case of three-dimensional heat transport within a neutron

star when considering Cv and κ borne from a particular equation of state (EOS) considered

in the stellar model. Then physical properties of the star can be calculated depending on

temperature and radius of the point in the star for which temperature flow is being calculated.

Unfortunately, solving for these coefficients implicitly along with heat flux is prohibitively

complicated since they themselves depend on the temperature, T . However, combining the

aforementioned Finite Differencing methods with an iterative method to solve for the physical

coefficients within a desired range works just as well, enabling an overall method that is still

second-order accurate in both space and time. As well, adding an iterative component to

the method helps to reduce numerical errors produced by the precision limit of the machine

on which the simulation is running.

Similarly to adding physical coefficients that depend on spatial coordinates, other influ-

ences in the heat transport problem such as relativistic effects, neutrino emission and the

presence of a magnetic field (see §4.4) can be successfully added to the ADI scheme. Factors

such as redshift and length correction depend on global properties of the model and can be

included as depending on only the radial dimension. Heat sinks such as neutrino emissivity,

Qν , which depend on both depth within the star and local temperature can be solved for

iteratively, as in the case of specific heat, Cv.

The majority of the input physics to the code used to produce the results presented here

in this project were generated from pre-existing subroutines in the cooling code NSCool from

Dr. Dany Page which uses a Henyey scheme in one dimension. An interface was written

in order to communicate between the two codes while leaving their constituent subroutines

and variables completely separate. In all cases, an initial temperature of T = 1010K is taken

throughout the star.



Boundary Conditions In the radial direction, Fr = 0 is taken at the center of the star

and at the surface F̃r,i−1/2 = σSBT
4
s,je

2Φ is evaluated using an appropriate Tb − Ts relation

depending on the model star being considered. When solving heat transport in the θ and

φ directions, solutions at r = 0 and r = Rstar are not calculated. Along the poles, the

φ-direction is not calculated and F (θ = 0) = F (θ = π
2
) = 0. There are no true bounds in the

φ-direction, however some must be imposed in order to take advantage of the relatively easy-

to-solve tri-dimensional system. Therefore, the fact that T (r, θ, φ = 0) = T (r, θ, φ = 2π) is

imposed using temperatures calculated form the previous iteration.

Results Results from the one-dimensional ADI scheme described above are presented in

Fig. 4.3. Each curve represents the temperature profile along depth in the star. As the

star cools with time, different physical processes are activated (or deactivated as the case

may be) at different densities. The top left panel shows a cooling neutron star without

any pairing processes switched on. At earlier times, there is a marked difference in thermal

profile between the crust and the core (marked on the upper edge of the panel at a density

just above 1014 gcm−3) as the crust cooling catches up to the more rapid neutrino cooling in

the core. By an age of ∼ 1000 years, the star is essentially isothermal and cooling passively

by photons.

The other three panels of Fig. 4.3 show the effect on the model neutron star thermal

profile as pairing channels are turned on. In the upper right hand side panel the neutron
1S0 channel has been switched on, the effect of which can be clearly seen in the deep inner

crust. The lower panels have the proton 1S0 (left) and the neutron 3P2 (right) processes

added successively. The proton 1S0 gap vanishes in the inner core whereas the neutron 3P2

gap is more likely to reach the centre with high values. The dotted lines are the Tc values

for each process included in each panel for comparison.

Though the effects of pairing on internal temperature within the star are evident in

Fig. 4.3, the overall effect on the observable quantity of effective temperature, Teff , is not

immediately noticeable as each stellar configuration reaches near-isothermality at a similar

age. Fig. 4.4 then compares the cooling evolution of Teff (or Te) with stellar age. The right

hand side panel shows the observable difference between the model stars of Fig. 4.3. There

are two regions where the confirmation of the presence of these processes within a neutron

star could be verified: at the relatively young age of 10’s to 100’s of years as T drops below
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Figure 4.3 Local temperature evolution profile for 1D model neutron stars. The numbers

along the right axis denote the Log of approximate age in years. Top Left: No pairing effects

although the curves for Tc have been inserted for comparison (dotted lines). Top Right : The

neutron 1S0 process has been taken into account. The curve for the critical Temperature,

Tc, can be clearly seen in the inner crust and core. Bottom Left: In this model, the proton
1S0 process has been added. It’s effect can be seen in the outer core. Bottom Right: The

Neutron 3P2 process has been added here and its effect can be clearly seen within the core.



Figure 4.4 Left: Cooling curves for three model stars showing the importance of the PBF

(Pairing Breaking and Formation) process: dashed line - no pairing; dotted line- pairing

without PBF; solid line pairing with PBF. Right: cooling curves for four models stars

showing the effect of including various pairing processes: sold line - no pairing; dotted line -

N1S0 only; dash-dot line- N1S0 + P1S0; dashed line - N1S0 + P1S0 + N3P2.

Tc; and possibly during the photon cooling era for stars older than 105 years old where,

according to the results presented here, the addition of the neutron 3P2 process has cooled

the star significantly faster.

In all the above model stars that include pairing effects, enhanced cooling from neutrinos

produced in PBF processes have also been included. The left hand side of Fig. 4.4 shows the

importance of this process on the evolution of Teff . Without its inclusion (dotted curve) the

star stays significantly warmer longer as T drops below Tc. This characteristic rapid cooling

due to neutron superfluidity shown in both panels of Fig. 4.4 are evidence as presented by

Page et al [75] in the case of Cassiopeia A, observations of which over time confirmed that

superfluidity must have been “switched on”.



4.4. 2D with Magnetic Field

As mentioned in the Introduction, magnetic field strength, configuration and location can

have severe consequences on the heat flow within magnetized neutron star crusts. In the

following model it is assumed that the core, where ρ ≥ 1014 g cm−3, is composed of a Type

II superconductor that provides an impenetrable barrier to the magnetic field. Thus, the

core is considered isothermal and heat anisotropies are confined to the crust. The spherically

axis-symmetric cases of a poloidal and poloidal + toroidal field are shown below [32].

4.4.1. Poloidal and Toroidal Fields

The core field, Bcore, is a dipolar field maintained by axis-symmetric currents in the

core. A vacuum-like dipolar field will penetrate the crust with components oriented along

the symmetry axis,

Bcore
r = Bcore

o

cos θ

x3
(4.22)

Bcore
θ = −B

core
o

2

sin θ

x3
(4.23)

Bcore
φ = 0 (4.24)

where Bcore
o is the magnitude of the magnetic field at the pole on the surface of the star

and x = r/RNS is the dimensionless radial coordinate normalized to the neutron star radius,

RNS.

The crustal poloidal field, Bcrust, is maintained by toroidal currents circulating in the

crust. The crust field, which continues beyond the surface as a dipolar vacuum field, is

described by the Stokes Stream Function, S = S(r, t).

Bcrust
r =

2 cos θ

r2
S(r, t) = Bcrust

o

cos θ

x2
s(x, t) (4.25)

Bcrust
θ =

sin θ

r

∂S(r, t)

∂r
=
Bcrust
o

2

sin θ

x

∂s(x, t)

∂x
(4.26)

Bcrust
φ = 0 (4.27)

where Bcrust
o is the strength of the field at the pole and s is the normalized Stokes Function

s = 2S/Bcrust
o /R2

NS which satisfies the boundary condition s = 0 at the crust-core boundary

and s = 1 with ∂s/∂x = −1 at the surface.



From Maxwell’s equation ∇∧B = (4π/c)j, with j being the electric current density, one

deduces that j is todoidal with a φ component

jcrustφ =
c

4π

sin θ

r

∂

∂r

(
∂S

∂r
− 2S

r2

)
(4.28)

while jr and jθ vanish. Besides its boundary conditions, S is arbitrary and its choice is, thus,

equivalent to choosing where the currents generating the crust field are located in the crust.

Toroidal Fields The crustal toroidal field, Btor, is maintained by poloidal currents circu-

lating in the crust. It is entirely confined to the crust, thus vanishes at the surface and does

not penetrate the core. Therefore, Btor does not have components in r or θ directions:

Btor
φ =

sin θ

r
T (r, t) = Btor

o

sin θ

x
t(x, t) (4.29)

where t derives from the same formalism as s, however, it must vanish at the surface and

crust-core boundary while its maximum value is 1 at an arbitrary location with the crust.

The currents producing the toroidal field are then given by

jtorr =
c

4π

2 cos θ

r2
T

jtorθ = − c

4π

sin θ

r

∂T

∂r
(4.30)

jtorφ = 0

As for the poloidal field, a choice of T is equivalent to choosing where the electric currents

generating Btor are located in the crust.

The total dipolar field has thus been decomposed in three components, two poloidal field,

with currents in the core and in the crust, and one toroidal component with currents in the

crust. A next, and natural, step would be to add higher order component (quadrupolar,

both poloidal and toroidal, ...).

4.4.2. The 2D Algorithm

Considering that energy transport in neutron stars will be affected by the presence of

a magnetic field as it re-directs heat carriers, the equation for heat Flux, F from Equation

4.6, must be revisited. The temperature gradient will be divided into terms parallel and



perpendicular to the magnetic field, b, in the following way:(
∇T

)
‖ =

(
∇T · b

)
b(

∇T
)
⊥ = b ∧

(
∇T ∧ b

)
= ∇T −

(
∇T

)
‖(

∇T
)
∧ = b ∧∇T

where b ≡ B/B is the unit vector in the direction of B. The last term is the Hall component

- a non-linear term in the magnetic induction equation for the evolution of magnetic fields

resulting from a transverse force exerted on charge carriers by the magnetic field. Combining

this expression for the temperature gradient with the tensor of thermal conductivity from

Equation 3.37 gives the new expression for the heat flux

F = −κ̂ ·∇T = −κ‖
(
∇T

)
‖ − κ⊥

(
∇T

)
⊥ − κ∧

(
∇T

)
∧

= −(κ‖ − κ⊥)
(
∇T · b

)
b− κ⊥∇T − κ∧b ∧∇T (4.31)

Using the expressions of Eq. (3.38), 3.39, and 3.40, one may explicitely obtain

F = − κ0

1 + (ωBτ)2

[
∇T + (ωBτ)2(∇T · b) b + (ωBτ) b ∧∇T

]
. (4.32)

An immediate consequence is that

F · (−∇T ) =
κ0

1 + (ωBτ)2

[
(∇T )2 + (ωBτ)2(∇T · b)2

]
> 0 (4.33)

so that even if F is not aligned with −∇T the angle between the two is less than 90◦. In

other words, the heat flow points toward decreasing T , in agreement with the Second Law

of Thermodynamics!

The addition of the magnetic field complicates the Finite Differencing scheme somewhat

by adding temperature gradients from each direction into each step of the ADI method of

solving heat transport of the form A · x = b.

Expanding the above Equation 4.31 for two dimensions only and adding relativistec

effects gives the following expressions for the radial, r, and meridonal, θ components of the

Flux:

Fr = −eΦ
[
(κ‖ − κ⊥)br(br∇rT̃ + bθ∇θT̃ ) + κ⊥∇rT̃ − κ∧bφ∇θT̃

]
(4.34)

Fθ = −eΦ
[
(κ‖ − κ⊥)bθ(br∇rT̃ + bθ∇θT̃ ) + κ⊥∇θT̃ + κ∧bφ∇rT̃

]
(4.35)



or, grouping the ∇r and ∇θ terms, and intruducing conductivity coefficients, χ and ξ:

Fr = −eΦ
[
χr∇rT̃ +ξr∇θT̃

]
(4.36)

Fθ = −eΦ
[
χθ∇θT̃ +ξθ∇rT̃

]
(4.37)

where

χr =
{

(κ‖ − κ⊥)b2
r + κ⊥

}
=

κ0

1 + (ωBτ)2

[
(ωBτ)2b2

r + 1
]

(4.38)

ξr =
{

(κ‖ − κ⊥)brbθ − κ∧bφ
}

=
κ0

1 + (ωBτ)2

[
(ωBτ)2brbθ − (ωBτ)bφ

]
(4.39)

χθ =
{

(κ‖ − κ⊥)b2
θ + κ⊥

}
=

κ0

1 + (ωBτ)2

[
(ωBτ)2b2

θ + 1
]

(4.40)

ξθ =
{

(κ‖ − κ⊥)brbθ + κ∧bφ
}

=
κ0

1 + (ωBτ)2

[
(ωBτ)2brbθ + (ωBτ)bφ

]
(4.41)

These last terms in each of the above expressions, ∇θT̃ in Fr and ∇rT̃ in Fθ, complicates

rearrangement of the heat transport equation into a neat tri-diagonal form of the matrix A.

If these terms were to be treated implicitly in each step, the equation could be rearranged

into a sparse matrix form on one side. There are methods for solving sparse matrix systems

(for example the Biconjugate Gradient method [84]) however they are more computationally

expensive and have not yet been investigated in the scope of this project.

Now we need to take these changes to the conductivity coefficients of our star and return

to the general heat diffusion equation:

CV
∂T

∂t
= −∇ · F −Qν with F ≡ −κ ·∇T (4.42)

gives in 2D spherical coordinates with axi-symmetry

CV
∂T

∂t
= − 1

r2

∂

∂r

(
r2Fr

)
− 1

r sin θ

∂

∂θ
(sin θFθ)−Qν

=
1

r2

∂

∂r

(
r2χr∇rT + r2ξr∇θT

)
+

1

r sin θ

∂

∂θ
(sin θχθ∇θT + sin θξθ∇rT )−Qν

=
1

r2

∂

∂r

(
χrr

2∂T

∂r
+ ξrr

∂T

∂θ

)
+

1

r sin θ

∂

∂θ

(
χθ

sin θ

r

∂T

∂θ
+ ξθ sin θ

∂T

∂r

)
−Qν (4.43)

and let’s rewrite it as

∂T

∂t
= Grr +Grθ +Gθθ +Gθr −Qν/Cv (4.44)



where

Grr ≡
1

CV

1

r2

∂

∂r

(
χrr

2∂T

∂r

)
Grθ ≡

1

CV

1

r2

∂

∂r

(
ξrr

∂T

∂θ

)
Gθθ ≡

1

CV

1

r sin θ

∂

∂θ

(
χθ

sin θ

r

∂T

∂θ

)
Gθr ≡

1

CV

1

r sin θ

∂

∂θ

(
ξθ sin θ

∂T

∂r

)
When discretising in time, in the spirit of the Crank-Nicholson scheme, the r.h.s. is taken

as time average of its values at tn and tn+1 = tn + ∆t:

T n+1 − T n =
∆t

2
[Grr +Grθ +Gθθ +Gθr −Qν/Cv]

n+1 +

∆t

2
[Grr +Grθ +Gθθ +Gθr −Qν/Cv]

n (4.45)

(exponents n and n+ 1 refer to values at times tn and tn+1). The first term in the r.h.s.

at tn+1 must be found by iterating on T n+1,m since it contains T n+1 implicitly. Moreover,

when discretizing in space the cross-derivatives in r and θ would link values of T at five

adjacent mesh point.

It is initially tempting to take Eq. (4.45) and put it into an ADI scheme, where firstly the

θ-terms are solved for implicitly with all the other T-dependant terms solved for iteratively,

then secondly to do the same but with the radial terms now solved for implitly. Experience

with attempting to implement the ADI method with non-constant coefficients, however,

has shown that the iterations in the first step will not converge, resulting in an unstable

code. Therefore, the trick is to solve Eq. (4.45) in such a way as to maintain the accuracy

and stability of an ADI scheme meanwhile including the now complicated T-dependant

conductivity coefficients.

It is valuable to notice that the second step of the aforementioned ADI scheme, where

the radial flux terms were solved for implicity, did converge to a solution within the allotted

maximum number of iterations. Therefore, why not keep the time-averaging operator of

Eq. (4.45) for accuracy and it’s overall form for stability while solving for the Gn+1
rr term

implicitly and the other tn+1 terms iteratively. The stability of this new scheme is reinforced

by the explicit tn terms.

More explicitly, the scheme is:



T n
+1,m+1

i,j − T ni,j =
∆t

4
[Grr]

n+1,m|m+1
i,j

+
∆t

4
[Grθ +Gθθ +Gθr −Qν/Cv]

n+1,m
i,j

+
∆t

4
[Grr +Grθ +Gθθ +Gθr −Qν/Cv]

n
i,j (4.46)

where the exponents in the r.h.s. mean:

- third line: n means the physics (CV , Qν and the χ’s and ξ’s) and the spatial gradients are

evaluated using the known T n at previous time step.

- second line: n + 1,m means the physics and the spatial gradients are evaluated using the

known T n
+1,m from the previous iteration.

- first line: n+ 1,m|m+ 1 means the physics is evaluated using the known T n
+1,m from the

previous iteration while the spatial gradients in r use the searched for T n
+1,m+1.

Thus, for given i, the r.h.s. of Eq. (4.46) only contains the searched for T n
+1,m+1

i−1,j , T n
+1,m+1

i,j ,

and T n
+1,m+1

i,j+1 , leading to a tri-diagonal matrix in i (for each j).

The full numerical scheme can now be written as follows:

Upper time indices mean, depending where the Gxx term is used:

p = n in the third line

p = n+ 1,m in the first and second line.

p′ = n + 1,m + 1, in the first line for the fully implicit part: this implements the “n +

1,m|m+ 1” notations of Eq. (4.46) and is only used for Grr.

Reintroducing now the GR corrections, this gives us



[Grr]
p
i,j =

1

[CV ]pi,j

1

r2
i

1

∆li
× (4.47)[

eΦ
i+1/2[χr]

p
i+1/2,jr

2
i+1/2

(
T̃ p
′

i+1,j − T̃
p′

i,j

∆li+1/2

)
−

eΦ
i−1/2[χr]

p
i−1/2,jr

2
i−1/2

(
T̃ p
′

i,j − T̃
p′

i−1,j

∆li−1/2

)]

[Grθ]
p
i,j =

1

[CV ]pi,j

1

r2
i

1

∆li
× (4.48)[

eΦ
i+1/2[ξr]

p
i+1/2,jri+1/2

(
T̃ pi+1/2,j+1/2 − T̃

p
i+1/2,j−1/2

∆θj

)
−

eΦ
i−1/2[ξr]

p
i−1/2,jri−1/2

(
T̃ pi−1/2,j+1/2 − T̃

p
i−1/2,j−1/2

∆θj

)]

[Gθθ]
p
i,j =

1

[CV ]pi,j

1

ri sin θj

1

∆θj
× (4.49)[

eΦ
i [χθ]

p
i,j+1/2

sin θj+1/2

ri

(
T̃ p
′

i,j+1 − T̃
p′

i,j

∆θj+1/2

)
−

eΦ
i [χθ]

p
i,j−1/2

sin θj−1/2

ri

(
T̃ p
′

i,j − T̃
p′

i,j−1

∆θj−1/2

)]

[Gθr]
p
i,j =

1

[CV ]pi,j

1

ri sin θj

1

∆θj
× (4.50)[

eΦ
i [ξθ]

p
i,j+1/2 sin θj+1/2

(
T̃ pi+1/2,j+1/2 − T̃

p
i−1/2,j+1/2

∆li

)
−

eΦ
i [ξθ]

p
i,j−1/2 sin θj−1/2

(
T̃ pi+1/2,j−1/2 − T̃

p
i−1/2,j−1/2

∆li

)]



Physical values are defined on the grid points that are located at

ri: i = 0, ... , I, with r0 = 0 and rI = Rb (with ρb usually taken as ' 1010 g cm−3). Values

of ri are not necessarily equally spaced. li is obtained from ri as li ≡ ri/
√

1− 2Gmi/ric2.

θj: j = 0, ... , J , with θ0 = 0◦ and θJ = 180◦. Values of θj are equally spaced.

Quantities evaluated at half-integer points are defined as averages from neighbouring points.

E.g. Ti+1/2,j ≡ 1
2
(Ti,j+Ti+1,j), θj+1/2 ≡ 1

2
(θj+1 +θj). In the case of more complicated physical

quantities, as, e.g., CV , there are two ways of averaging them. One could define [CV ]i+1/2,j ≡
1
2
([CV ]i,j+[CV ]i+1,j) (and similarly for i, j+1/2 and other half integer grid points). However,

since actually [CV ]i,j = CV (ri, θj;Ti,j) where the r, θ dependence encompasses dependence

on ρ, chemical composition, etc, ... and other time-independent quantities that could easily

be calculated at ri+1/2, one could also alternatively define [CV ]i+1/,j = CV (ri+1/2, θj;Ti+1/2,j).

This second definition is physically more accurate: the physics at the average is not the

average of the physics, particularly for quantities with strong T dependence.

Intervals, for the derivatives, are defined by consistency of the discretisation procedure:

∆li ≡ (li+1 − li−1)/2 , ∆li+1/2 ≡ li+1 − li , ∆li−1/2 ≡ li − li−1

∆θj ≡ (θj+1 − θj−1)/2 , ∆θj+1/2 ≡ θj+1 − θj , ∆θj−1/2 ≡ θj − θj−1

With the detailed expressions Eq. (4.48), (4.49), (4.50), and (4.51) for the Gxx terms we

can write explicitly the tri-diagonal equations as

DUj(i) T̃
n+1,m+1
i+1,j +Dj(i) T̃

n+1,m+1
i,j +DLj(i) T̃

n+1,m+1
i-1,j = Rj(i) (4.51)

where

DUj(i) = −∆t

4

1

∆li∆li+1/2

eΦ
i+1/2r

2
i+1/2

r2
i

[χr]
n+1,m
i+1/2,j

[CV ]n+1,m
i,j

(4.52)

DLj(i) = −∆t

4

1

∆li∆li−1/2

eΦ
i−1/2r

2
i−1/2

r2
i

[χr]
n+1,m
i−1/2,j

[CV ]n+1,m
i,j

(4.53)

DLj(i) = 1− [DUj(i) +DLj(i)] (4.54)

Rj(i) = T
n+1/2
i,j +

∆t

4
[Grθ +Gθθ +Gθr − e2ΦQν/Cv]

n+1,m
i,j

+
∆t

4
[Grr +Grθ +Gθθ +Gθr − e2ΦQν/Cv]

n+1/2
i,j (4.55)

while for i = 1, and i = I we simply have:

T̃ n
+1,m+1

2,j − T̃ n+1,m+1
1,2 = 0 and T̃ n

+1,m+1
I,j − T̃ n+1,m+1

I−1,j = σT 4
s . (4.56)



We write these in a matrix form A · T = B with

A =



−1 1 0 0 0 ...

DLj(2) Dj(2) DUj(2) 0 0 ...

0 DLj(3) Dj(3) DUj(3) 0 ...

. . . . . . .

. . . . . −1 1


and (4.57)

B =



0

Rj(2)

.

Rj(i)

.

Rj(I − 1)

0


(4.58)

Boundry Conditions Boundary conditions are the same as those for the non-magnetized

case, with the exception of the possibilty to add a magnetized envelope model. Figure 3.10

displays two such models, that of [82] (dotted lines) show a model with B = 1013G and a

variation on this model derived from their own 2D simulations is that of [80] (dash-dot-dot).

The latter model from [80] was used in the following simulations.

4.4.3. Observational Data

Observational data of thermal luminosities of isolated neutron stars are summarized in

Fig. 4.5.

4.4.4. Results

Crust or Core Dominated Poloidal Fields The first consideration is the effect of the

poloidal field on the temperature evolution of the star. What would be the effect if, say,

the core-centred dipolar field dominated over the crust-confined poloidal field? Would the

opposite situation be dramatically different? The lefthand side panels of Fig. 4.6 illustrate

the (poloidal) dipolar magnetic field of the crust-dominated case (upper : Bcrust = 7.5 · 1012

G & Bcore = 2.5 · 1012 G) and the core-dominated one (lower : Bcrust = 2.5 · 1012 G &
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(? in G093.3+6.9)

(? in G315.4ï2.3)

Figure 4.5 Summary of observational data on thermal luminosities of isolated cooling neutron

stars. Upper panel: 12 stars for which a thermal spectrum has been clearly detected. Lower

panel: the PSR in the nebula 3C58 seems to exhibit a thermal component, and could be

presented in the upper panel, whereas in the case of the other objects a thermal component

from the main stellar surface is not detected; consequently, the data shown are upper limits

on the thermal luminosity. The labels ”?” indicate that a compact object has not yet been

detected in the supernova remnant. Figure from [74].
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Bcore = 7.5 · 1012 G). It can immediately be seen that the crust dominated case concentrates

its power deep within the crust where Bθ overpowers. On the other hand, the core-dominated

dipole allows for a stronger radial component of the magnetic field, Br.

The righthand side panels of Fig. 4.6 illustrate the internal temperature profiles of these

two model stars from the inner core to the bottom of the envelope (Tb) during their passive

cooling phase, at an age > 105 years. It can be immediately seen that the crust-dominated

poloidal field of the upper panels, whose maximum lies deep within the crust, forms what is

effectively a “wall” blocking heat flowing perpendicular to it (see the vector field overlayed on

the magnetic field profiles of the left hand side panels). The equatorial region in thus cooler

at the surface than the two poles, which are between themselves a the same temperature,

reflective of the core temperature. In the core-dominated case of the lower panels, the

magnetic field is much stronger along the poles where field lines and thus energy flow, are

almost purely radial. The temperature at the bottom of the envelope, then, is allowed to be

cooler at the poles than the equator. Notice that the temperature at the outer boundary is

then converted into a surface temperature through an envelope model: a band around the

magnetic equator is then much cooler than the rest of the star due to the high sensitivity of

the low density layers to the magnetic field.

The resulting surface temperature evolution are shown in Fig. 4.7. The cooling curves

of the two models follow eachother, though the crust-dominated case has a slighly higher

Teff , a result of its warmer crust as seen in Fig. 4.6. The unmagnetized star has a higher

Teff than the magnetized ones mostly due to its non magnetized envelope which results in

a uniform surface temperature.

Strong Toroidal Field & Depth In order to attempt a more complex picture of the

internal magnetic field, the following simulation includes a strong toroidal field of maximum

intensity 1015 G confined entirely to the crust. Fig. 4.8 shows arbitrary combinations of

magnetic field Stokes functions with the maximum of the toroidal field at three fraction of

the crust thickness: Model A at 0.25rcrust; Model B at 0.5rcrust; and Model C at 0.75rcrust.

The poloidal field has a dominant crust-confined poloidal compent at 7.5 · 1012 G and a

core-centered dipole at 2.5 · 1012 G. The lefthand side panels of the following Fig. 4.9 shows

the magnetic field profiles of the three model stars.

Careful inspection of Fig. 4.9 will show that the magnetic field is strongest at the centre

of the toroidal field where the component of the field bφ is close to a value of 1 and br and bθ
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Figure 4.6 Magnetic field (left) and temperature (right) profiles inside two model stars who

differ only in the dominant component of their poloidal fields. The upper model has a crust-

dominant poloidal field, and the core-centred dipolar field dominates the lower model star.

The magnetic field profiles also show the vector form of the poloidal field (arrows). These

colour maps are for stars > 105 years old and vary horizontally by index i along the radius

and index j along θ. The crust-core boundary is at index i = 110, corresponding to a density

ρ = 1.6× 1014g cm−3 and a radus of approximately 10.6 km.
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Figure 4.7 The cooling histories of a model star with either a crust and or a core-dominated

poloidal magnetic field are not phenomenally different. Data are from Fig. 4.5.
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s(x)
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t(x)

x = r/R

Figure 4.8 Stokes functions used in the construction of a static magnetic field for use inthe

neutron star cooling evolution presented here. The function s(x), and its derivative ds/dx,

generates the poloidal component, see Eq. (4.25). Three types of toroidal components will

be used, models A, B, and C, generated by the Stoke function t(x), Eq. (4.29), which differ

by their depth.
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Figure 4.9 Magnetic field (left) and temperature (right) profiles inside the three model stars

from Fig. 4.8 who differ only in the depth of their toroidal fields. The magnetic field profiles

also show the vector form of the poloidal field (arrows). These colour maps vary horizontally

by index i along the radius and index j along θ.
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are small. As heat carriers (e.g. electrons) will tend to flow along magnetic field lines, one

can imagine that the toroidal field will essentially create a wall blocking heat from escaping

near the equatorial regions of the star. The arrows show the direction of the magnetic field

in this region. While it would seem that directly along the poles heat should be allowed

to flow from the core unhindered, directly off centre heat will be deflected perpendicularly.

Recall that the boundary conditions along the poles state that Fθ = 0. In the numerical

scheme this is enforced by setting the temperature along the polar grid equal to the grid

points immediately nect to it. In this way the poles “feel” the effect of the magnetic field.

In the case of a strong toroidal field, this means that heat flow can still be hindered along

the poles.

The effect of the toroidal “wall” can be clearly seen in the righthand side panels of

Fig. 4.9, which show the internal temperature profiles for the model stars aged to 106 years.

Notice that in Model A, though the toroidal field (maximum in red) is deep within the crust,

the maximum of the crust confined poloidal field lies directly above it (yellow region) and

also acts by diverging heat from flowing radially through equatorial regions.

The asymmetrical outcome of the combined poloidal + toroidal fields can also be clearly

seen along the pole at θ = 0◦. The resulting surface temperature profiles in Fig. 4.10 fur-

ther illustrate this asymmetry by showing the differing sizes of the warm “hotspot” regions

centered on the magnetic poles. Minimum hotspot sizes are necessarily dictated by the

resolution of the grid in the numerical method. For the illustrative observational geometry

presented, where the observer’s line of sight is in the plane of the dipolar field and perpendic-

ular to the rotational axis of the star, the superficial hotspots with cooler equatorial belt can

produce a characteristic modulation in received flux. Using a code presented in [69, §4.4],

simulated pulsed fractions, PF , are calculated along with blackbody fit spectra in Fig. 4.10.

The pulsed fractions are high, over 60%: this issue will be explored in depth in §5.2.

The cooling history of model stars A, B & C are shown in Fig. 4.11, where the dramatic

effect of the inclusion of a strong magnetic field and it’s matching magnetic envelope can

be seen contrasted against the unmagnetized case. In all three cases, the star is “born”

with the full magnetic field presented in Fig. 4.9, whose corresponding magnetic envelope is

“switched on” during the crust relaxation phase. The initial temperature decrease due to

the envelope is fairly dramatic (see envelope models contrasted in Fig. 3.10), though later

during the Photon Cooling era the cooling is much softer, possibly due to the toroidal wall

diverting radiative heat flow along the poles.
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Figure 4.10 Surface temperature maps (left) and recieved spectra (right) for the model stars

of Fig. 4.9, presented in using the code described in [69, §4.4]. For illustrative purposes, the

observer is placed in the plane of the magnetic field which is then perpendicular to the stars

rotational axis. The resulting Pulse Fractions, PF, are stated below.
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Figure 4.11 Cooling curves of the model stars in Fig. 4.9 contrasted with the unmagnetized

case (turquoise).
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Fast vs. Slow Magnetic Fields It was mentioned above that the model stars so far

considered were “born” with their magnetic fields in place and that their strength and

configuration never change. This is, of course, far from the realistic assumption that the

magnetic field would actually evolve along with the star and increase or decrease in stength

during its lifetime. As a first step, the effect of slowly increasing the magnetic field strength

during the star’s lifetime is considered. Fig. 4.12 shows the Model B star shown previously

(red curve) contrasted with its slow cousin, (green curve) and the unmagnetized star (blue

curve). The strength of the total magnetic field of the slow star is regulated by letting it

reach its maximum at an age of 3 · 105 years. At this point in time you can see how it

eventually matches the cooling of the fast star. Previous to which, the shape at least of the

slow star matched the unmagnetized case, though the same magnetized envelope was applied

since the beginning and served to still lower its overall effective temperature over time. If

nothing else, it illustrates that even the simplest magnetic field evolution scenario can have

an effect. A realistic field evolution scenario would involve solving the magnetohydrodynamic

(MHD) equation for the magnetic field simultaneously with the thermal evolution. This is

a formidable task which we leave for future work.
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Chapter 5

Case Studies

5.1. Magnetic Heating and Core Superfluidity

So far we have neglected the the term Qh from Equation (3.13): heat sources within the

star. In magnetic neutron stars, magnetic field decay could be one such source of energy [1].

In the core, it would have to compete with the efficiency of neutrino cooling, but could be

important since it could influence when superfluidity actually occurs [24]. This in turn would

affect various associated phenmena, such as glitches (see §3.2.1). The problem was addressed

by Ho et al (2012)[50] who performed detailed one-dimensional simulations to check if the

decay of a strong core-centered dipolar field of 1016G could keep core temperatures high

enough to delay the onset of superfluidity. They found that heat generated from field decay

was not strong enough to overwhelm neutrino cooling. Here, we confirm their analysis by

performig a similar calculation but with two dimensional cooling with the addition of a

magnetized envelope of Pons et al (2009)[80].

The heating term, qh is calculated by considering magnetic field decay due to bipolar

diffusion [40] and is given by,

qh ≈
B

4π

dB

dt
≈ B2

4πτamb
(5.1)

= 1 · 1020 ergs cm−3 s−1 ×
(

ρ

ρnucl

)−2/3(
T

109 K

)−2(
B

1016 G

)4

(5.2)

where the the ambipolar diffusion timescale, τamb is controlled by particle collisions in neutron

91



star matter. From it’s form you can note that it operates at high T ,

τamb ∼ 2.5 · 103 yrs

(
L

1 km

)2(
ρ

ρnucl

)2/3(
T

109 K

)2(
B

1016 G

)4

(5.3)

Finally, the actual decay of the magnetic field is given by the following simple formula,

B(t) =
Bo

1 + t/τdecay
(5.4)

whose justification lies in the fact that it has a similar form to that found in the literature (for

example Dall’Osso (2009)[24] and of course the model paper from Ho et al (2012)[50]) and

results can thus be compared. The decay timescale, τdecay, is taken to be 104 yrs. Magnetic

field decay in times less than 104 yrs is not yet well understood or even guaranteed to occur

[40].

Figure 5.1 shows the 2D cooling calculation of a star similar to the one in Ho et al

(2012)[50]) with Tc for neutron 1S0 from Wambach et al (1993)[106] and proton 1S0 from

Chen et al (1993)[22]. The neutron 3P2 channel for a deep appearance of the gap, however,

is from Elgarøy et al (1996)[25].

Figure 5.2 has the simulated B-decay heating added in the core. Along the right-hand

axis are approximate ages, Log(t/years), labels and when compared to the case without

heating (Figure 5.1), it is clear that onset of the neutron 3P2 Gap is delayed by ∼ 1000

years.

However, the above equation for τamb is for the solenoidal mode only. The transition to

the non-solenoidal mode at lower temperatures from beta chemical equilibrium should be

taken into account and occurs at τ tr = 7 · 108 K. Proton superconductivity occurs before

this at ∼ (2 − 3) · 109 K [75]. The conversion to superconducting protons would suppress

beta equilibrium, thus changing τamb and the heating rate of Equation (5.1). It was found

by Ho et al (2012)[50]) that taking this into account results in no delayed onset of proton

superfluidity in the core from magnetic field decay, and cooling occurs much as in the case

without the additional core heating.

Kaminker et al (2006)[57] proposed that in order to keep a neutron star hot enough to

reach the Teff of Magnetars, additional heating (qh) must come from a heat source in the

outer crust, where it would not be overwhelmed by neutrino cooling. Ho et al (2012)[50])

confirmed these results and here we perform the same analysis but with the two-dimensional

calculation and the addition of a magnetized envelope.



The qh term for the crust is given by a phenomenological model given in Kaminker et

al (2009)[56] and Ho et al (2012)[50] rather than a detailed analysis of physical processes

that may be occurring (such as presented in Pons et al (2009)[80]). The exact nature of the

added energy is not important for the purposes of this model, rather the fact that it must

be present in order to account for the high Teff of magnetars. qh is given thus,

qh = qo exp
{
−
[
(ρ− ρh)/∆h

]2}
exp

(
− t/τh

)
(5.5)

where qo = 3 · 1020 ergs cm−3, ρh = 6 · 1010 g cm−3, ∆h = 1 · 1010 g cm−3, and τh = 104 yrs.

The timescale during which the crust will maintain a high temperature, τh, is chosen such

that it approximates the age of the oldest magnetar.

Figure 5.3 shows a simulation with the above crustal heating scheme placed within. It

is clear that a high surface temperature will be maintained until the expected timescale,

τh = 104 years and τh = 105 years. Note that the pairing channels are distinct from 5.1 (see

Figure 4.3), but do not affect the Ts for the purposes of this particular simulation.

The cooling curves for the crustal heating models are plotted in Figure 5.4. Without any

added heating mechanism the star shows what we would expect for a neutron star (turquoise

line). With the addition of core heating Ts would actualy be maintained longer as can be

seen in it’s profile from Figure5.2: the star reaches isothermality with the core then decreases

with it. The addition of the magnetized envelope from Pons et al (2009)[80] aids in keeping T

from leaking, particularly for such a high magnetic field (1016G). However, as found by Ho et

al (2012)[50], only with the addition of crustal heating near the surface (red and green lines)

can the possibility of maintaining a high Ts long enough to reach Magnetar temperature be

kept alive.

5.2. Light Curves and Large Pulse Fractions

Although most pulsars have derived B values below the quantum critical value of 4.4 ·
1013G, there are a small number of objects with B fields near or above this QED value, some

of which are still detected in the radio, otherwise known as High-Magnetic Field Pulsars

(HBPSRs).

First Detected in the Parkes Multibeam Survey [18], PSR J1119-6127 is one such object

with a spin-down inferred B of 4.1 ·1013 G, one of the highest magnetic fields measured for a

pulsar. Later detected in x-rays by Gonzalez et al (2005) [41] with XMM-Newton, this star



Figure 5.1 Internal temperature profile as a function of stellar age for a model without any

additional heating terms. Superfluid critical temperatures Tc for the processes outlined in

§3.3.2 are added for comparison (dotted curves): neutron 1S0 from [106] (left); proton 1S0

from [22] (top); and neutron 3P2 from [25] (bottom). Age is marked along the right-hand

axis as Log(years).



Figure 5.2 Internal temperature profile as a function of stellar age for a model with heating

from magnetic field decay in the core. Superfluid critical temperatures Tc for the processes

outlined in §3.3.2 are added for comparison (dotted curves): neutron 1S0 from [106] (left);

proton 1S0 from [22] (top); and neutron 3P2 from [25] (bottom). Age is marked along the

right-hand axis as Log(years). Note that when compared to the case for no heating (see

Figure 5.1 the onset of neutron 3P2 superfluidity has been delayed.
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Figure 5.3 Internal temperature profile as a function of stellar age for a model with heating

in the crust. Age is marked along the right-hand axis as Log(years). Note that when

compared to the case for no heating (see Figure 5.1 the temperature in the outer crust remains

essentially isothermal for thousands of years and is expected to do so for the timescale of the

input heating model (Left: τh = 104yrs and Right: τh = 105yrs). The pairing channels are

distinct from 5.1 (see Figure 4.3), but do not affect the Ts for the purposes of this particular

simulation.
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Figure 5.4 Cooling curves for the models presented in Figures 5.1 (turquoise line) and 5.3 (red

curve for τh = 104 years and green for τh = 105 years). Approximate ages and Black Body

temperatures for the Magnetars from Table 3.3 are plotted for comparison. It is evident that

some sort of crustal heating is most likely necessary in order to reach Magnetar temperatures.



showed pulsed emission in soft x-rays (0.5− 2.0 keV) with a very high pulsed fraction (PF)

of 74 ± 14%. It’s spectra in the 0.5 − 10.0 keV range was best fit by a blackbody in soft,

low energy x-rays plus a power law for the hard, high energy x-ray emission, implying that

the lower energy pulsed emission is thermal in origin, most likely from the stellar surface

either due to initial cooling evolution of the star or reheated polar caps by magnetospheric

processes.

It is the view in this project that the most reasonable scenario is that non-uniform

surface temperature distributions from cooling resulting in the presence of superficial hot-

spots centered upon the magnetic dipole axis surrounded by a cooler equatorial belt are

responsible for the pulsed thermal soft x-ray emission. Previous cooling calculations have

shown that the presence of a strong toroidal field in the crust can produce such a scenario

and does result in detectable pulsed emission ([78], [33], §4.4 of this text).

It is the purpose of this section to explore the effect on pulsed emission of hot spot

configuration, ultimately due to magnetic field configuration, along with other important

effects on radiation emission, such as an angular dependance on ~B and gravitational light

bending. The theory of this influence on radiated emission is discussed below followed by a

description of the numerical model used to simulated the effects as well as their results. The

particular case of PSR J1119-6127 and related objects is examined.

The strong gravitational field of a compact star causes a lensing effect: that is, a photon

emitted at an angle α with respect to the radial direction will have it’s trajectory bent to

an angle ψ > α. The result being that an observer at infinity will be able to see more than

half of the stellar surface (see Fig. 5.5).

The effect is quantified in a simple and elegant analytical form from Beloborodov (2002)[15].

In this work a relationship between observed pulsed fraction and stellar size in a Schwarzschild

metric is developed, valid for radii R > rg where rg = 2GM/c2 is the gravitational radius.

Beloborodov [15] considers a pulsar with two antipodal point-like “hotspots” (spot diam-

eter < 10◦), presumably produced by the presence of a dipolar magnetic field whose axis is

at an angle θ 6 90◦ with the rotation axis of the star (see figure 5.5). The normal pointing

towards the observer is denoted by d and the angle between d and the rotation axis is i.

The spot closest to the observer is designated as “primary” with normal n and inclination

µ = n · d. The antipodal spot then has normal n̄ and inclination µ̄ = n̄ · d. The spot

inclinations will vary in time, µ = µ(t), between µmin = cos(i + θ) and µmax = cos(i − θ).
The visible part of the star is defined by a circle µ = cosψ. In a flat spacetime µ > 0, but



Figure 5.5 Effect of gravity on light emitted near a compact star. Here, a photon emitted

from the antipodal spot at an angle α with respect to the radial direction escapes to infinity

at an angle ψ and impact parameter b.
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in a curved spacetime µ can be negative up to a maximum µv at which point photons are

emitted tangentially to the stellar surface.

Using the following approximation in a Schwarzschild spacetime,

1− cosα = (1− cosψ)

(
1− rg

R

)
(5.6)

the observed flux, dF , from a visible area, dS, is given by,

dF =

(
1− rg

R

)2

Io(α) cosα
dS

D2
(5.7)

where Io(α) is the surface radiation intensity seen by an observer at distance D � R. Using

a point-like spot approximation, the flux from a spot of area s viewed directly would be

F1 = (1 − rg/R)2Ios/D
2 and the observed fluxes from the primary, F , and antipodal, F̄ ,

spots as the star rotates would be,

F

F1

= µ

(
1− rg

R

)
+
rg
R
,

F̄

F1

= −µ
(

1− rg
R

)
+
rg
R

(5.8)

The primary spot is seen when µ > µv and the antipodal spot is seen when µ̄ > µv (from

equation 5.6, µv = −rg/(R − rg)). Both spots should be seen when µv < µ < −µv at which

point the observed flux, Fobs, will be constant.

Depending on the initial configuration of spot and observer angle, (θ, i), the observed

light curves can be generally divided into four classes [15, Figures 3,4]. Class I describes a

“perfect” sinusoidal light curve produced when the primary spot is viewed at all times and the

antipodal spot is never seen (µmin > −µv). Class II describes a situation where the primary

spot is always seen and the antipodal spot appears occasionally, at which point both spots

are seen and Fobs = constant. The characteristic light curve for this scenario is a sinusoidal

profile interrupted by a plateau between the peaks (µv < µmin < −µv < µmax). Class III

pulsed profiles are characterized by a main sinusoid from the primary spot interrupted by a

plateau which is in turn interrupted by a sinusoid with smaller amplitude from the antipodal

spot. In this situation, whenever the primary is not seen, the antipodal spot is (µmin < µv).

The final Class IV is produced by a configuration in which both spots are seen at all times

and the resulting light curve is constant (µv < µmin, µmax < −µv).
The corresponding PF ’s defined by PF = (Fmax − Fmin)/(Fmax + Fmin) for all classes



are given by,

PF =



(µmax−µmin)
(µmax+µmin−2µv)

Class I

(µmax+µv)
(µmax−3µv)

Class II, III

0 Class IV


(5.9)

If µmax = 1 and µmin < −µv then PFmax = (R− 2rg)/(R + 2rg).

Magnetic field effects In order to include possible effects from magnetic field orientation

on photon trajectories (i.e. “beaming”) in the above equations a beaming factor, BF , was

added to equation 5.7 to refine the photon emission in the following way,

dF =

(
1− rg

R

)2

Io(α)(cosα)BF+1 dS

D2
(5.10)

which has the corresponding effect on µv and PFmax (see equation 5.6),

µv −→
−(rg/R)BF+1

1− (rg/R)BF+1

PFmax −→
1− 2(rg/R)BF+1

1 + 2(rg/R)BF+1

In this study, BF ’s of 0, 1, 2 were considered.

Numerical Model and Results

Antipodal hot spots For the purpose of this investigation, model stars were produced

by setting antipodal hotspots of varying diameter and constant temperature (Tsp = 5 ·
106K) at specific angles, θ, with respect to the rotation axis. The rest of the surface of

the star was kept at a constant Tmain = 105K (see figure 2) and the star was “rotated”

to produce model light curves for each configuration of spot and observer angles (θ, i) =

(45◦, 45◦), (30◦, 60◦), (60◦, 80◦), spot diameter (diam = 10◦, 30◦, 50◦), stellar size (2 6 R/rg >

4) and beaming factor (BF = 0, 1, 2). In this simulation a distance of 100 pc and NH =

1020cm−2 was used. Variation of these parameters would have an effect on observed intensity

and spectra but not necessarily on PF amplitudes. A mass of 1.4M� was used, but again,

while varying the mass will change the R for a particular PF , it has no effect on PF vs. R/rg.

Virtual observations were made in the energy range 0.5− 2 keV , representing the majority



of the pulsed emission. A more in-depth description of the code used to produce the model

data can be found in [69, §4.4]. Note: As seen in Fig. 5.6, as long as Tsp is about an order of

magnitude greater than Tmain, temperature does not play a significant role in determining

the amplitude of observed pulse fractions.

The results of PF vs. R/rg are plotted in Fig. 5.7 where each panel represents a different

(θ, i) configuration. Three sets of curves become distinctly separated in each plot correspond-

ing to different BF ’s, where PF increases with increasing beaming, as intuition may dictate.

Two “theoretical” curves are also plotted for each BF , the higher one corresponding to the

maximum PFmax, and the lower corresponding to the PF of equation 5.9, which depends

on the (θ, i) configuration. Perhaps also intuitively, PF decreases for increasing spot size,

represented by the three descending curves for each BF . Note: The apparent plateau in the

PF vs. R/rg curves for zero beaming at small radii is an effect of numerical noise from the

model resulting from an effort to keep angular resolution computationally reasonable and

should be ignored.

Non-antipodal hot spots The symmetric antipodal case is not the only configuration

that needs to be addressed. There exists the possibility that the hotspots could be asym-

metric, or lie in the same hemisphere (i.e. less than 180◦ apart). Results for a few Class II

(θ, i) configurations are considered in Fig. 5.8. In all cases, very high PF ’s can be reached

without the need for significant beaming.

High Field Radio Pulsars

Case Study: PSR J1119-6127. XMM-Newton observations of PSR J1119-6127 pub-

lished by Gonzalez et al (2005)[41] report a very high pulsed fraction of 74± 14% in the soft

x-ray range 0.5 − 2 keV, the upper and lower bounds of which are marked in Figures 5.7

and 5.8 (horizontal lines). The characteristic shape of the light curve for this pulsar shows

one narrow peak every phase and can probably be classified as Class II (see light curve class

definitions above). The favoured fit to the spectrum of this star consists of a two-component

Black Body (BB) + power law, with the BB component (< 2 keV) dominating the pulsed

emission, contributing over ∼ 85% of the flux. It is a fairly good assumption that the pulse

in the light curve profile is produced by this thermal emission originating from the primary

spot on the stellar surface. Making the further assumption of antipodal hot spots, it is im-

mediately clear from Figure 5.7 that in order to reach a PF of at least 60% some beaming
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Figure 5.6 The effect of temperature difference between hot spots, Tsp, and the main surface,

Tmain. The dashed lines represent PF vs. R/rg for the model star with BF = 2, diam = 10◦,

and (θ, i) = (45◦, 45◦). The solid line represents PFmax fron [15]. Tsp is kept at 5 · 106 K

and no deviation in PF occurs until Tmain = 8.24 · 105 K. The horizontal lines represent the

upper and lower bounds for the PF = 74 ± 14% of the high field pulsar PSR J1119-6127

[41].
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Figure 5.7 Effect of spot diameter and beaming factor on black body pulsed profiles. (θ, i) =

(45◦, 45◦)− top, (30◦, 60◦)−middle, (60◦, 80◦)− bottom. Each line type represents a different

beaming factor: BF = 0 (dashed line), BF = 1 (dash − dot line), BF = 2 (dotted line).

There are three curves perBF which descend with increasing spot size (diam = 10◦, 30◦, 50◦).

The solid curves represent theoretical PFmax (upper) and PF from equation 5.9, developed

from [15]. The horizontal lines represent the upper and lower bounds for the PF = 74±14%

of the high field pulsar PSR J1119-6127 [41].
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(d)

(a) (b)

(c)

Figure 5.8 Effect of asymmetric hot spots on observed pulsed fraction. Both spots are located

in the same hemisphere. (θ, i) = a : (45◦, 45◦), b : (30◦, 60◦), c : (45◦, 90◦), d : (30◦, 90◦). A

spot diameter of 10◦ is used. Each line type represents a different beaming factor: BF =

0 (dashed line), BF = 1 (dash−dot line), BF = 2 (dotted line). The solid curves represent

theoretical PFmax developed from [15] for the antipodal case. The horizontal lines represent

the upper and lower bounds for the PF = 74± 14% of the high field pulsar PSR J1119-6127

[41].



(BF > 1) is required. A minimum R is also required depending on the size of the spot (i.e

R ∼ 3rg for a spot of diam = 10◦).

The scenario that initial cooling of neutron stars with strong magnetic fields (i.e. poloidal

plus toroidal crustal fields) could account for non-homogenous surface temperatures resulting

in hot spots is certainly plausible ([78], [33]) and has been explicitly shown in the previous

chapter where Pulsed Fractions over 64% are routinely generated with the approriately strong

internal toroidal magnetic fields. Figure 5.9 shows the results for the (θ, i) configurations of

the middle panel of Figure 5.7. In this configuration with a 1.4 M� star of radius 14 km and

hotspots of diamater 25◦, an average PF of 62.6% was reached with a BF = 1.

Figure 5.10 shows the results of a simulation supposing that the apparent two-component

profile in the observations is statistically significant. In this case in order to produce the

profile the two hotspots are not antipodal, nor are they of the same temperature. In accor-

dance with Figures 5.6, 5.7 and 5.8, in order to keep the PF within range, the main surface

temperature of the star had to be increased as were the spot diameters (diam = 60◦).

For illustrative purposes, stellar models of the configurations in Figure 5.8 were also

used to produce light curves and spectra. Although pulsed fractions approachings 100%

were produced for configurations with the observer at 90◦ to the rotation axis (see Figure

5.8), reasonable PF ’s within the bounds for PSR J1119-6127 could be achieved for the

other configurations, although beaming would still need to be considered for small stars (i.e.

R = 10 km and BF = 1).

Other High Field PSR’s PSR J1119-6127 is one of a select group of radio pulsars, all

of whom are primarily characterized by their high magnetic fields ( B & the QED value

of 4.4 · 1013 G inferred from spin-down characteristics, the P − Ṗ relation). Although, it’s

high B field seems to be the only thing it has in common with these other objects. It does

not power a bright pulsar wind nebula (PWN), a general characteristic of young energetic

pulsars. Neither does it exhibit magnetar-like x-ray emission, as recently manifested by PSR

J1846-0258 [31], with whom it shares similar spin properties. Table 3.3 lists some of the

properties of the pulsars in this group. Unfortunately, as of yet, none of the other HBPSR’s

have been detected in thermal x-rays.

Other High PF Pulsars Although PSR J1119-6127 does not share similar x-ray emission

properties with other stars in the HBPSR group, nor magnetars, it does have comparable Ė



Figure 5.9 Simulated XMM-Newton spectrum (bottom left) and light curve (bottom right)

from the model star with a surface temperature distribution consisting of two hotspots

(Tsp = 2.8 · 106K) with (θ, i) = (30◦, 60◦) and a cooler main surface (Tmain = 3 · 105 K)

(upper panel) in the 0.5− 2 keV range. Here, a PF of 65.6% was achieved.



Figure 5.10 Same as Fig. 5.9, except that the two hotspots are not antipodal (located 108◦

from eachother in φ) nor of the same temperature (T1 = 2.5 ·106K and T2 = 2.8 ·106K) with

(θ, i) = (90◦, 90◦) and a warmer main surface (Tmain = 2 · 106 K). Here, a PF of 62.6% was

achieved.



and dominating thermal x-ray component in its spectrum (< 2 keV) to the more “classical

Vela-like” pulsar PSR J1357-6429 [112]. A rather high pulsed fraction in thermal x-rays

was also reported for this star (PF = 63 ± 15%) and was interpreted as originating from

anisotropic emission from a magnetized NS atmosphere and non-uniform surface temperature

as a result of the magnetic field distribution, the latter nicely coinciding with the argument

in this work for the origin of the pulsed thermal emission coming from PSR J1119-6127.

Discussion

It has been shown ([78], [33]) that hot surface caps surrounded by a cooler equatorial belt

can be produced from cooling models including the presence of a strong toroidal field in the

crusts of neutron stars. As shown above, assuming that the observed thermal x-ray emission

does come from the surface of the star, high PF ’s, as seen in some neutron stars, can be

explained by this cooling scenario. In the above models, the most important considerations

are beaming effects, stellar size and spot size. In general, if you can say with some kind of

certainty that there is symmetry in the hotspot configuration of your particular star, then,

according to this study, you can put restrictions on M and R. However, it has not been

ruled out that hotspots could occur in the same hemisphere of the star, thus producing

higher PF ’s and leaving the possible ranges of M and R as open as ever.

As per usual, better observations are needed in order to constrain neutron star surface

characteristics. Higher timing resolution would be necessary in order to see the real structure

of the light curve. That is, if the secondary peak is statistically significant or not as it presence

would be a strong indicator for non-antipodal hotspots. This and a deeper observation in

order to raise photon counts would also be useful to check for pulsations in the hard band

(> 2 keV) and confirm the nature of the hard emission (hard x-rays originating from the

magnetosphere of the pulsar are expected to be pulsed).

In an effort to establish, or not, a link between high-field pulsars, isolated neutron stars

and magnetars, it has been proposed [41] to search some nearby HBPSRs for thermal surface

x-ray emission. If detected, and determined to be pulsed, these sources could be modeled in

a similar way to PSR J1119-6127.

As a final note, perhaps a more sophisticated scheme for the dependence of local flux

on α should be considered since it is apparent, at least for antipodal hotspots, that some

beaming is required in order to reach the realm of PF ’s over 30% (e.g. [113]).



5.3. Asymmetric Toroidal Fields

Along the lines of the above discussion of neutron star spectra explained by thermal

emission from non-uniform surface temperature distributions, a.k.a hotspots, we present the

curious case of te pulsar PSR J0821-4300, the compact central object in the supernova

remnant Puppis A. Gotthelf et al (2010 [42]) showed that its spectrum could be fit by a

double blackbody and, furthermore, be explained by a pair of thermal, antipodal hotspots

on it’s surface and viewing geometry.

Their favoured model is presented in Fig. 5.11, where the surface temperture distribution

and observed emission properties have been modelled. The emission is dominated by a

relatively small hot spot (radius = 6.61◦, T ∼ 6× 106 K ) and a much larger antipodal spot

that is a factor of two times cooler (radius = 34.04◦, T ∼ 3 × 106 K ). The extended cool

equatorial region was set arbitrarily low at T = 106 K. The viewing angle is 86◦ with respect

to the axis of rotation of the pulsar. Its pulsed fraction is 21.7% in the range 1.5− 4.5 keV

compared to the published value of 19.6%.

One of the tricks in modelling neutron star cooling is choosing a magnetic field geometry.

Often, symmetric fields, such as those presented in §4.4 are chosen for their simplicity and

overall effects on the surface temperature distribution. The most likely scenario is that the

interior of a neutron star is not perfectly symmetric at all, but subject to local dynamics

such that one could imagine any possible angular dependence on the supossed crust-confined

magnetic field components.

The core-centred dipolar magnetic field of PSR J0821-4300 has a relatively weak upper

limit of 2× 1011 G compared to the highly magnetized neutron stars generally considered so

far. In the context of surface hotspots generated from the thermal history of the star leaves

the responsibility of their extreme difference up to a very strong, and more importantly

confined, magnetic field. The idea of a submerged magnetic field in young neutron stars is

not a new one. Geppert et al (1999 [34]) considered the effect of accretion from core-collapse

supernovae on the internal magnetic field. In cases where the flow from accretion would

overpower ohmic diffusion, the initial magnetic field would be pushed down and frozen at

greater depths within the star. As the star ages, it’s magnetic field would diffuse outwards

resulting in a delayed “switch on” of its pulsar properties.

A star of a young age such as PSR J0821-4300 at 3700 years, could still conceivably

have such a magnetic field, the bulk of which is still frozen within the crust. The following
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two models, A and B, were produced using such scenarios inserted into the 2D cooling code

presented in the previous chapter. Their differing magnetic fields are presented in Fig. 5.12.

In order to recreate the dramatic temperature difference between the polar hotspots of PSR

J0821-4300, a strong toroidal field (Btor
o = 1016 G) with it’s maximum relatively near the

surface at 0.7rcrust (see the Stoke’s functions in the bottom left panel of Fig. 5.12) was

constructed using two different angular dependencies. Both models have the same core-

centered dipolar field (Bcore
o = 2 × 1011 G) and the same, stronger, crust-confined poloidal

field (Bpol
o = 1013G, the components of which that stretch outside the star will hoever add

to the overall magnetic field strength). Note that the bulk of the poloidal fields influence on

heat flow is deeper within the crust than even the toroidal field.

The results are presented in Fig. 5.12. It can immediately be seen that both models can

reproduce a single small hotter spot at one pole. Note that the geometry of Model B is

flipped with repect to Model A and the model of PSR J0821-4300 in Fig. 5.11. However,

an extended antipodal warmer region was more difficult to achieve, particularly with a cool

equatorial belt, and thus higher pulsed fractions than desired were created (36.9% and 37.8%

for Models A and B respectively).

One of the main difficulties in these first attempts at modelling PSR J0821-4300 is the

balance between making a two-fold temperature difference between the relatively smaller hot

spot and it cooler extended anipodal spot and creating an equatorial region that is cooler

still. The strong asymmetric toroidal “wall” was deliberately placed in shallow depths in

order to exagerrate the small hotspot and effectively block heat from the core in the rest of

the star. The effect of a magnetized envelope was actually desirable in these models as it

tends to allow a higher temperature along the poles for a given base temperature, Tb (see

Fig. 3.10), thus further widening the temperature gap.

The models show the ability for the mysterious and arbitrary parameters of the interior

magnetic field configuration to gain control of the surface temperature of the star and influ-

ence it in such a way as to cause the dramatic hot spot configurations found on stars such

as PSR J0821-4300. It certainly supports that a submerged, but strong, magnetic field is

likely. Further “fiddling” with the magnetic field will most likely improve results. Whether

such asymmetric interior fields could come out of magnetic field evolution model remains to

be seen.
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Figure 5.12 Assymetric toroidal field models and their varying angular dependencies.



Figure 5.13 Surface temperature maps of models A and B presented in Fig. 5.12 using the

code found in [69, §4.4]. Spectral and light curve properties calculated using PSR J0821-4300

properties R = 12 km, d = 2.2 kpc and NH = 4.8× 1021 cm−2 from [42].
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5.4. Strange Stars

The possibility exists that some neutron stars could very well be quark stars and there

is much research into the Equation of State of deconfined quark matter in the core of a

compact star. This was first introduced by Itoh, 1970 [52] and continues to this day.

The following article is based on one of the propositions of this thesis: that the combi-

nation of a crust-confined magnetic field in a compact star and the thermal diffusion within

said star will create a non-uniform surface temperature distribution. A surface with hot

polar caps and a cooler equatorial belt could explain the observed spectra of some neutron

stars. That is, the hot x-ray temperature predict a smaller radius for the star than its cooler

optical counterpart. One possible inherent characteristic of these stars could be their rela-

tively small radial size. The existence of a very thin crust covering the star then could be

possible only when the electron density inside is less than that of the quark matter. Using

the star RX J1856.5-3754 as a model candidate due to its small inferred radius, we calculate

thermal diffusion inside stars based on the models of Geppert et al [33] supposing a quark

core described by Farhi & Jaffe (1984)[26].

As in the case of neutron stars, it can be shown that the magnetic field configurations

that result in non-uniform surface temperature distributions can exist in the baryonic crusts

of quark stars, despite their meager depth. However, in order to reproduce the observations,

the magnetic field strength, in particular that of the toroidal field, must be on the order of

1015G. When one considers that magnetif stresses can reach BrBθ/4π ∼ 1026 dyne cm−2 for

a Bcorteza
0 de 1013G, it is doubtful that a crust of a depth only 200−300 m [89] could support

it.

Nevertheless, a detailed investigation into the non-linear evolution of a coupled poloidal

and toroidal magnetic field is still lacking in order to see if a million year old star could

maintain a magnetic field of 1015G supposing that it was initially born with one that would

have been several orders of magnitude even larger.
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Abstract RX J1856.5-3754 has been proposed as a strange
star candidate due to its very small apparent radius mea-
sured from its X-ray thermal spectrum. However, its opti-
cal emission requires a much larger radius and thus most
of the stellar surface must be cold and undetectable in X-
rays. In the case the star is a neutron star such a surface
temperature distribution can be explained by the presence of
a strong toroidal field in the crust (Pérez-Azorín et al.: As-
tron. Astrophys. 451, 1009 (2006); Geppert et al.: Astron.
Astrophys. 457, 937 (2006)) We consider a similar scenario
for a strange star with a thin baryonic crust to determine if
such a magnetic field induced effect is still possible.

Keywords RX J1856.5-3754 · Strange star · Neutron star

PACS 26.60.+c · 97.60.Jd · 95.30.Tg

1 Introduction

Quark stars have long ago been proposed as an alternative
to neutron stars (Itoh 1970). The “strange matter hypothe-
sis” (Witten 1984) gave a more precise theoretical formu-
lation for their existence: that at zero pressure three flavor
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quark matter, i.e. with u, d and s quarks, has a lower den-
sity per baryon than nuclear matter and would hence be the
true ground state of baryonic matter. These stars are now
called “strange stars” (Alcock et al. 1986; Haensel et al.
1986) and share many similarities with neutron stars: they
can have similar masses, have similar radii in the observed
range of masses, similar cooling histories and, to date, it
has been practically impossible to conclusively prove or dis-
prove their existence (for recent reviews, see Weber 2005;
Page et al. 2006; Page and Reddy 2006).

One possible distinctive property of a strange star could
be a small radius. Given the impossibility to treat quark-
quark interactions from first principles, i.e. starting from
Q.C.D., at densities relevant for compact stars, only simpli-
fied models are possible and results are, naturally, model de-
pendent. However, several classes of such models do predict
small radii, 5 < R < 10 km at masses ∼ 1.4M� (see, e.g.,
Dey et al. 1998; Hanauske et al. 2001), and all models pre-
dict very small radii, ≤5 km, at masses �1M�. Hence, mea-
surement of a compact star radius giving a radius � 10 km
directly allows a claim for a strange star candidate.

The “Magnificent Seven” (Haberl 2007) arouse great ex-
pectations to measure compact star radii with high enough
accuracy to put strong constraints on the dense matter equa-
tion of state. In particular, fits of the observed soft X-ray
thermal spectrum of RX J1856.5-3754 (Pons et al. 2002)
pointed to a very small radius and lead to the claim that
this object may be a strange star (Drake et al. 2002). How-
ever, observations in the optical band allowed the identifi-
cation of the Rayleigh–Jeans tail of a second component
of the surface thermal emission, corresponding to a lower
temperature and much larger radius than the component de-
tected in the X-ray band. An interpretation of these results
is that the surface temperature of the star is highly non-
uniform (Pons et al. 2002; Trümper et al. 2004), possibly
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due to the presence of a strong magnetic field. Models of
surface temperature distribution with purely poloidal mag-
netic fields (Page 1995; Geppert et al. 2004) do predict non-
uniform surface temperature distributions, but such inho-
mogeneities are not strong enough to produce such small
X-ray emitting regions surrounded by large cold regions de-
tectable in the optical band as observed. However, inclu-
sion of a toroidal component of the magnetic field, con-
fined to the neutron star crust, has a dramatic effect (Pérez-
Azorín et al. 2006; Geppert et al. 2006; see also Pons 2007;
Page 2007): this field component inhibits heat from the stel-
lar core to flow to the surface through most of the crust, ex-
cept for small domains surrounding the magnetic axis, and
results in highly non-uniform surface temperature distribu-
tions producing good fits to the observed thermal spectra,
from the optical up to the X-ray band.

These models of small hot regions, detected in the X-ray
band, surrounded by large cold regions, detected in the opti-
cal band, which allow to reproduce the entire observed ther-
mal spectrum and results in large radii for the star are in
contradiction with the proposed strange star interpretation
of RX J1856.5-3754, which was based on the small radius
detected in the X-ray band. Here we want to push the discus-
sion one step further: are these highly non-uniform surface
temperature distributions, assuming they are real, incompat-
ible with a strange star model? We consider strange stars
having a thin crust, composed of normal baryonic matter,
with a strong magnetic field. Since a strange star crust can,
at most, reach the neutron drip density, it is much thiner than
the crust of a normal neutron star and the specific question
is: can such a thin layer produce the surface temperature dis-
tributions deduced from observation?

2 The strange star models

We will consider strange star models built on the MIT-bag
inspired equation of state of (Farhi and Jaffe 1984) which
has three parameters: the QCD coupling constant αs , the bag
constant B and the strange quark mass ms (u and d quarks
are treated as massless). Figure 1 illustrates four families
of such strange matter models: by varying the parameters,
these equations of state allow the production of a wide range
of models, from very compact stars up to very large ones. It
is important to notice from this figure that, depending on
the assumed parameters of the model, strange stars can have
large radii and thus, although a small radius measurement is
a strong argument in favor of a strange star, a large radius is
not an argument against a strange star.

On top of the quark matter, a thin crust can exist as long
as the electron density within it is smaller than that in the
quark matter (Alcock et al. 1986). Such a baryonic crust is,
however, much thinner than a neutron star crust as illustrated
in Fig. 2.

Fig. 1 Mass vs. central density (left) and radius (right) for strange
stars built with four MIT-bag inspired models of strange matter (model
parameters are indicated in the right panel) and covered by a thin bary-
onic crust (see Fig. 2)

Fig. 2 Density profile of the upper layers of four strange stars built
with four MIT-bag inspired models of strange matter, using αs = 0.3,
B1/4 = 140 MeV and four different strange quark masses as indicated.
Indicated are also the electron chemical potentials μe at the quark sur-
face, which is the parameter determining the maximum baryonic crust
density, i.e., the baryonic crust thickness. The crust equation of state is
from (Haensel et al. 1989)

Following the neutron star models presented by Geppert
et al. (2006) we consider dipolar magnetic fields with three
components (Fig. 3): a poloidal one maintained by currents
in the quark core, Bcore, a poloidal one maintained by cur-
rents in the baryonic crust, Bcrust, and a toroidal one main-
tained by currents in the baryonic crust, Btor. The separation
between currents in the crust and in the core is motivated by
the likely fact that quark matter forms a Maxwell supercon-
ductor (Alford 2001; Page and Reddy 2006): at the moment
of the phase transition, occurring very early in the life of
the star, superconductivity will prevent any current in the
crust from penetrating the core while currents in the core
will become supercurrents and be frozen there. Moreover,
flux expulsion due to the star’s spin-down can also signif-
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Fig. 3 The three components of the magnetic field considered in this
work

icantly increase the crustal field at the expense of the core
field.

The importance of the crustal field is that its field lines are
forced to be closed within the crust and hence it has a very
large meridional component Bθ , compared to the core com-
ponent. Due to the classical Larmor rotation of electrons,
a magnetic field causes anisotropy of the heat flux and the
heat conductivity becomes a tensor whose components per-
pendicular, κ⊥, and parallel, κ‖, to the field lines become

κ⊥ = κ0

1 + (ΩBτ)2
and κ‖ = κ0 (1)

where κ0 is the conductivity in the absence of a magnetic
field, ΩB the electrons cyclotron frequency and τ their
collisional relaxation time. The large values of Bθ in the
crust have the effect of inhibiting radial heat flow except
in regions close to the magnetic axis where Br dominates
over Bθ (Geppert et al. 2004).

3 Strange stars - results

We performed heat transport calculations using the 2D code
described in Geppert et al. (2004) which incorporates the
thermal conductivity anisotropy described by (1). Details
of the crust microphysics are as described in Geppert et al.
(2004, 2006). We consider a strange star model with a radius
of ∼11 km and a baryonic crust of thickness ∼250 m for
a 1.4M� mass. The two poloidal components of the mag-
netic field are parametrized by Bcore

0 and Bcrust
0 which are

the strengths of the corresponding field components at the
surface of the star along the magnetic axis so that, ideally,
Bcore

0 + Bcrust
0 would be the dipolar field estimated from the

star’s spin-down. Notice that the maximum value of Bcore

in the crust is only slightly larger than Bcore
0 while maximum

values of Bcrust are up to almost 100 times larger than Bcrust
0

due to its large tangential component, Bcrust
θ , resulting from

the compression of the field within the narrow crust. The
strength of the toroidal field is parametrized by B tor

0 , defined

as the maximum value reached by B tor within the crust. We
keep Bcore

0 at 1013 G and vary Bcrust
0 and B tor

0 .
We display in Fig. 4 the resulting crustal temperature pro-

files for several typical values of Bcrust
0 and B tor

0 . One sees
that, independently of the strength of the poloidal compo-
nent, B tor

0 needs to reach 1015 G to have a significant ef-
fect, a result similar to what was obtained by Geppert et al.
(2006) for the neutron star case. However, independently of
the value of B tor

0 , once Bcrust
0 reaches 1013 G highly non-

uniform temperature profiles develop in the thin strange star
crust: such profiles are sufficiently non-uniform to produce
the wanted surface temperature distribution, i.e. small hot
regions surrounded by extended cold ones.

4 Discussion and conclusions

The optical + X-ray spectrum of RX J1856.5-3754, when
fitted with blackbodies, requires two components with very
different temperatures and emitting areas. The implied
highly non-uniform surface temperature distribution can be
physically justified by the introduction of a very strong mag-
netic field, whose supporting currents are mostly located
within the star’s crust. We have shown here that, similarly
to the neutron star case, such field configurations can be
found in the case of a strange star, despite the shallowness
of its baryonic crust. However, the strength of these fields,
either the toroidal component Btor or the crust anchored
poloidal one Bcrust must reach strengths close to, or above,
1015 G to produce the desired temperature anisotropy. Sim-
ilarly to the neutron star case, such surface temperature
distributions impose severe, but not unrealistic, restrictions
on the orientation of either the observer or the magnetic
field symmetry axis with respect to the rotation axis to ex-
plain the absence of pulsations (Braje and Romani 2002;
Geppert et al. 2006).

That the thin strange star crust can support such huge
field strengths is an open question, but a positive answer
seems doubtful as some simple estimates illustrate. The
magnetic shear stress, BrBθ/4π , reaches 1026 dyne cm−2

in the crust when Bcrust
0 reaches 1013 G, which is compara-

ble or higher to the maximum value sustainable by a crust of
thickness Δ ∼ 200–300 m (Ruderman 2004): violent read-
justments of the crust are expected but have yet to be ob-
served in any of the “Magnificent Seven”. Moreover, the
ohmic decay time in the low density crust is relatively short,
less than 105 yr (Page et al. 2000), and the presence of such
a strong field in a ∼106 yr old star would require an initial
crustal field about two orders of magnitude higher when the
star was young. (However, the highly non-linear evolution
of coupled strong poloidal and toroidal magnetic fields re-
mains to be studied under such conditions.)

We have also adopted the very ingenuous assumption
that the surface emits as a perfect blackbody. A condensed
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Fig. 4 Crustal temperature
profiles for various strange star
magnetic field structures
according to the model
parameters (see text for details).
The radial aspect of the crust
has been stretched by a factor
of 15 in order to clearly show
the thermal structure. The upper
right profile shows the field
lines of the poloidal component
Bcore + Bcrust (white lines) and
the intensity distribution of the
toroidal component Btor (in
colours)

matter surface may simulate a blackbody spectrum (Turolla
et al. 2004; Pérez-Azorín et al. 2005; van Adelsberg et al.
2005) but such models still require strong fields to produce
a non-uniform temperature distribution (Pérez-Azorín et al.
2006). However, other interpretations are possible, such as
a thin atmosphere atop a solid surface (Motch et al. 2003;
Ho et al. 2007) which may be able to reproduce both the
optical and X-ray spectra without invoking strongly non-
uniform temperatures and can be applied as well to strange
stars with a crust as to neutron stars since they only consider
the very surface of the star.

In conclusion, the crustal field scenario, which is success-
ful when applied to neutron star models in order to explain
the observed thermal spectrum properties of RX J1856.5-
3754, can be “successfully” applied to a strange star model
but requires such a huge magnetic field confined within such
a thin crust that its applicability is doubtful. It is hence diffi-
cult to conciliate the observed, from optical to X-ray, prop-
erties of RX J1856.5-3754 with a strange star interpretation
unless these are due exclusively to the emitting properties of
its surface.
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Chapter 6

Summary and the Future

Neutron stars continue to be a fascinating laboratory for matter at extreme densities.

Increasingly improved astronomical observations of compact objects such as pulsars and

other neutron star phenomena has created the need for a comprehensive physical description

of matter around nuclear density. In the cores of neutron stars densities are supra-nuclear,

whose mysterious properties governing observable spectra is increasingly evident. One such

aspect in determining the observable surface temperature, spectrum and timing properties is

heat transport within the star. In the outer less dense layers the properties of matter is much

better understood partly due to experimental nuclear physics results performed on Earth and

more thoroughly tested mathematical treatments of particle interactions in the sub-nuclear

regime. This insulating outer layer takes the heat generated in the core and determines

the resulting surface temperature profile which in turn is observed and interpreted, thus

providing a window into the depths of compact matter.

In this thesis project, I have aimed to improve upon existing one-dimensional temperature

evolution calculations by extending to two- and three-dimensional models which are second-

order accurate in both time and space. The purpose is to accurately reproduce the thermal

history of a neutron star based on an input model of matter at high density, or equation

of state, which can then be compared to existing observations of surface temperature and

thus narrow down the rather vast field of theories of post-nuclear matter. Besides surface

temperature, processes such as superfluidity turn-on times [75] or the effects of crustal heating

mechanisms [50] such as accretion of material from a companion star can also be seen on

so-called cooling curves, the results of thermal evolution calculations.

My work has also encompassed the effects of magnetic field configuration and strength on
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heat transport and resulting surface temperature anisotropies. This in turn has been investi-

gated as a probable explanation for variable thermal x-ray observations and additional source

heating from magnetic field decay. An example was investigated in §5.1 where additional

heating due to magnetic field decay shows how surface temperature could be maintained hot

enough to account for the observed high temperatures of some magnetars (see Fig. 5.4).

Pulsations in thermal x-ray spectra from pulsars with unusually high pulse fractions were

investigated in §5.2. A correlation between pulse fraction and stellar size (mass, radius) is

made based on the idea that a strong magnetic field is present. Simple but elegant space-

time geometry is applied to model stellar spectra [15]. The goal is to create a self-consistent

picture of neutron star total mass, which is dependent on the particular equation of state of

matter at high density, and its inherent magnetic field.

A natural expansion of this project could include, though is not limited to, expanding and

improving two-dimensional neutron star cooling numerical modeling code to three dimensions

in order to properly account for asymmetrical magnetic field effects on heat transport within

the star. Currently, the complex mathematics involved in modeling an evolving magnetic

field within a star force the most stable evolution codes to use mainly static magnetic fields

or those with simplified evolution estimates [80].

Adding the third dimension in a problem as complicated as energy transport in a neutron

star increases complexity by orders of magnitud. As mentioned previously, Finite Difference

methods are relatively fast and sufficiently accurate for the problem of a spherically symmet-

ric star in two-dimensions with well-defined boundaries, but the addition of the azimuthal

direction introduces a periodic boundary condition which, although it can be represented by

Finite Differences, may perhaps be better reproduced by a method specifically designed for

boundary-value problems (e.g. Fourier and Cyclic-Reduction methods).

Another natural progression of the code described within would be a possible evolving

magnetic field in both two and three dimensions. As mentioned previously, static magnetic

field configurations were tested here. Recently, there has been advancement in solving the

complexity of this problem by [104] who has developed an ”upwind” finite-differencing scheme

for magnetic field evolution that can be solved for in turn with solving heat diffusion. A

scheme such as this could possibly be ”glued” in to the code from the current project.

Part of the usefulness of having a multidimensional energy transport code for compact

stars is the ability to model certain physical phenomena whose mechanisms remain myste-

rious. One such process would be high energy bursts observed in some strongly magnetized



neutron stars, or magnetars [88]. The origin of such a spike in energy output in these stars

could be investigated by artificially inserting a strong energy source in an energy transport

code such as that developed as part of my PhD thesis, and observing model output of its

temperature evolution over time. Such model output can then be directly compared to as-

tronomical observations of the temporal evolution of these bursts as well as their spectra and

may well answer the reigning question: how are magnetar bursts powered? [5]. Successful

modeling could, furthermore, constrain at what depth within the star burst energy origi-

nates and, therefore, what kinds of physical process are occurring at particular densities.

Multidimensional models of these events produced from the numerical code developed in my

thesis would be a desirable extension to existing one-dimensional results [5].

On the frontiers of nuclear physics is the question: how does matter behave in the

ultra-dense regime? As mentioned above, the physical extremes experienced within compact

stars are irreproducible on Earth, making these objects unique laboratories for studies of

matter in extraordinary environments. One of the essential inputs to an energy transport

evolution code is the Equation of State or the relationship between the pressure and the

density of matter, whose lowest energy state dictates the local chemical composition. The

composition within a star necessarily dictates how energy moves within and without, leaving

its observational signature for astronomers on Earth. Numerical models, such as those

proposed here, thus provide the testing ground for physical theories of matter, including

superfluidity and exotic states such as Strange Stars with de-confined quark cores [107].

The Equation of State (EOS) describes the fundamental state of matter in thermody-

namic equilibrium at T = 0. At a temperature of T ∼ 109K nuclear reactions are so slow

that we can assume the chemical composition of each density layer within the star remains

uniform with the exception of processes such as electron capture. Since their birth from a

supernova, it is supposed that a neutron star will have reached it’s equilibrium state, how-

ever it is possible that this state is never actually achieved. It is perhaps desirable to use a

temperature-dependent EOS, at least for the first hours of a neutron star’s life in order to

see the effect on it’s overall temperature evolution.

In the particular case of magnetic braking in magnetars (§5.1) it was shown that the

numerical model presented within this thesis could be effectively used to show the general

effect of an unspecified heat source in the neutron star crust without elaborating on the

details of the unknown energy producing mechanism. A simple decrease in the magnetic

field showed that the effective temperature of the star could be maintanied sufficiently hot



for the timescale of the mechanism in order to arrive close to the region of a cooling curve

diagram dominated by the magnetars. (see Figures 5.3 and 5.4).

The insulating effect of the azimuthal magnetic field components confined within the

stellar crust producing superficial hot spots centered on the magnetic poles surrounded by a

cooler equatorial belt was shown in the surface temperature profiles in Fig. 4.10. Supposing

that this is a viable mechanism to produce non-uniform surface temperatures, a study of

the geometry of the observation of light curves of these stars suggests a relation between

the pulsed fraction (PF) and the gravitational radius of the star. In the particular case of

the high-field pulsar PSR J1119-6127, a simple model of the beaming reproduces the large

reported PF of 74± 14% [41] (see Figure 5.7).

It’s altogether possible that there exist quark stars or, equally possible, hybrid stars -

those that have an inner core of deconfined quark matter surrounded by an outer core of

hadronic matter covered by a thin baryonic crust. Preliminary work done with Dr. Irina

Sagert (Center for Exploration of Energy and Matter at Indiana University) using an en-

ergy diffusion model inside a compact star with a baryonic crust shows the dramatic effect

possible with the addition of a quark nucleus Equation of State (Figure 6.1). The EOS

was constructed by Dr. Sagert and presented in her doctoral thesis for Goethe Univeristy

(Frankfurt, Germany, 2010 [91]). There are two cooling curves: the dotted line represents

the result of a 1D neutron star model presented in Section §4.3; the secund lower curve is

that of a hybrid star with a strange matter core. It is obvious that the neutrino cooling is

very strong and that the Te of the star decreases dramatically at a very young age. There

is much activity in this area of compact star cooling research (see, for example, the work of

Blaschke, Grigorian & Voskresensky [16] or the more recent Schramm et al 2012 [93]).

Theoretical modeling is fundamental to the continuing support of observational initia-

tives focusing on compact stars. One branch cannot exist without the other and it is this

relationship that is the base objective of the research presented in this thesis: to contribute

to the increasingly relevant discourse between observational, theoretical and experimental

astrophysics.



Figure 6.1 The thermal evolution of a hybrid star (solid line) - deconfined quark inner core

with a hadronic outer core and baryonic crust - compared with a neutron star (dotted line).
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