

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

"MODIFICACIÓN ÁCIDA Y CARACTERIZACIÓN DE NANOTUBOS DE HALOISITA"

TESIS

QUE PARA OBTENER EL TÍTULO DE

QUÍMICO

PRESENTA

ADÁN GIOVANNI VILLAVICENCIO GONZÁLEZ

ASESORA: DRA. YOLANDA MARINA VARGAS RODRÍGUEZ

CUAUTITLÁN IZCALLI, ESTADO DE MÉXICO 2014

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN UNIDAD DE ADMINISTRACIÓN ESCOLAR DEPARTAMENTO DE EXÁMENES PROFESIONALES

VNIVERYDAD NACIONAL AVPNMA DE MEXICO U.N.A.M FACULACIÓN EFILICIÓN ASUNTO: VOTO APROBATORIO

DRA. SUEMI RODRÍGUEZ ROMO DIRECTORA DE LA FES CUAUTITLAN PRESENTE

ATN: L.A. ARACELI HERRERA HERNÁNDEZ Jefa del Departamento de Exámenes Profesionales de fla FES Cuautitlán.

Con base en el Reglamento General de Exámenes, y la Dirección de la Facultad, nos permitimos a comunicar a usted que revisamos el: Trabajo de Tesis

"Modificación Ácida y Caracterización de Nanotubos de Haloisita"

Que presenta el pasante: <u>Adán Giovanni Villavicencio González</u> Con número de cuenta: <u>408025399</u> para obtener el Título de: <u>Químico</u>

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el **EXAMEN PROFESIONAL** correspondiente, otorgamos nuestro **VOTO APROBATORIO**.

ATENTAMENTE

"POR MI RAZA HABLARA EL ESPÍRITU"

Cuautitlán Izcalli, Méx. a 26 de agosto de 2013.

PROFESORES QUE INTEGRAN EL JURADO

NOMBRE

FIRMA

PRESIDENTE	Dra. Ana Leticia Fernández Osorio	_ Qua Leticia Fog O
VOCAL	Dra. Yolanda Marina Vargas Rodríguez	
SECRETARIO	Dra. María Gabriela Vargas Martínez	- furnif
1er. SUPLENTE	Q. Juana Cabrera Hernández	baug
2do. SUPLENTE	M. C. María del Rosario Rodríguez Hidalgo	

Agradecimientos

Este trabajo de tesis fue realizado con fondos de la UNAM-DGAPA del programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIIT IT103912 Preparación, caracterización y evaluación catalítica de nanocompósitos ácidos/halloisita.

Esta investigación se desarrolló en el Laboratorio de Nanomateriales y catálisis (L-11) de la Unidad de Investigación Multidisciplinaria (UIM) de la Facultad de Estudios Superiores Cuautitlán de la Universidad Nacional Autónoma de México.

Se agradece el apoyo técnico del Dr. Antonio Gómez Cortes del Instituto de Física de la UNAM por los análisis de adsorción-desorción de nitrógeno y al Ingeniero Carlos Flores Morales del Instituto de Investigaciones en Materiales por la microscopia electrónica de transmisión.

Agradecimientos

A mi madre, Ana María (1972-2006).

Mamá: gracias por el inmenso amor, cariño y disciplina con los que me forjaste; gracias por estar siempre junto a mí, por ser un pilar tan fuerte en mi vida; sin ti no sé dónde estaría el día de hoy. Mujer de finitas virtudes que lleno de dicha mi corazón y mi espíritu.

A mi padre Raymundo.

Papá gracias por apoyarme en mis estudios, por estar cerca durante los momentos difíciles de mi vida, gracias por creer en mí, por esa confianza que mantuviste sobre mí para estudiar y terminar mi carrera.

A mis compañeros y amigos de la carrera de Química Generación 35.

Estimados Omar Martínez, Omar Bernabé, Raquel, Jazmín, Mayla, Edith, Miguel Ángel, Paty, Martha y Anabel. Con ustedes compartí clases y laboratorios, noches en vela, hambre y frustraciones, pero más importante aún compartir su buen humor, sus deseos y ganas de estudiar y trabajar, todas aquellas virtudes que los caracterizan, gracias por hacer la diferencia durante esos días de clases.

A mis amigos del laboratorio L-401.

Estimados José Juan, Dulce, Luis, Pedro, Yesica, David y en especial à la Doctora Gaby Vargas, con ustedes compartí muy gratas experiencias durante el tiempo en el que realice mi tesis, gracias por su apoyo y amistad durante este tiempo.

A mi asesora de tesis la Doctora Yolanda Marina Vargas Rodríguez.

Gracias por su invitación para colaborar en su equipo de trabajo, por toda la confianza que deposito en mi al abrir las puertas de su laboratorio y por permitirme realizar este trabajo de tesis. Agradezco infinitamente por las experiencias que me obsequio al permitirme acompañarla a los congresos en Cancún y Costa Rica en los que presente este proyecto de investigación y tesis.

Abreviaturas	V.
Objetivos	. VIII
Hipótesis	IX
Resumen	X
CAPITULO 1 Marco teorico	1
1.1 Arcillas 1.1.1 Filosilicatos 1.1.2 Usos generales de las arcillas	1 1 4
 1.2 Haloisita 1.2.1 Morfología y estructura de la haloisita 1.2.2 Propiedades fisicoquímicas y composición química de la Haloisita 1.2.3 Capacidad de intercambio catiónico (CIC) 	4 5 7 7
 1.3 Espectrofotometría UV-Visible 1.3.1 Absorción de luz 1.3.2 Ley de Lambert-Beer relación entre absorbancia y concentración 	7 7 8
1.4 Verde de metilo (VM)	9
1.5 Adsorción física y química	10
1.6 Cinética de adsorción 1.6.1 Ecuaciones de rapidez de reacciones elementales	11 12
1.7 Equilibrio de adsorción 1.7.1 Isoterma de Freundlich	13 14
1.7.2 Isoterma de Langmuir	15
 1.8 Parámetros termodinámicos de adsorción 1.8.1 Energía de activación 1.8.2 Variación de Entalpia, Entropía y Energía libre de Gibbs 	16 16 16
CAPITULO 2_Métodos y técnicas empleadas para la caracterización de las muest	tras
de haloisita	18
 2.1 Adsorción-Desorción 2.1.1 Tipos de poro presentes en los materiales 2.1.1 Isotermas de adsorción 2.1.2 Desorción y ciclos de histéresis 2.1.4 Método BET (cálculo del área superficial) 2.1.5 Método BJH (distribución y tamaño de poro) 	18 18 19 20 22 22
2.2 Microscopias	23
2.2.1 Microscopia electrónica de barrido (MEB) 2.2.1.1 Radiación en Microscopía electrónica de barrido (MEB)	24 24

Índice

 2.2.2 Microscopia electrónica de transmisión (MET) 2.2.3 Microanálisis por Espectroscopía de Dispersión de Energía de Rayos X, (EDX Energy-Dispersive X-Ray Spectroscopy) 	26 (S, 27
 2.3 Difracción de rayos X 2.3.1 Propiedades y características de los rayos X 2.3.2 Interacción de los rayos X con la materia 2.3.3 Condiciones de los rayos X y la ley de Bragg 	28 28 29 29
CAPITULO 3_Métodos y materiales	31
 3.1 Preparación de los adsorbentes	31 31 31 31
 3.2 Caracterización de los adsorbentes	32 32 32 33 33 33 33 34
 3.3 Estudio de adsorción de verde de metilo sobre haloisita natural y las haloisitas modificadas	34 34 35 35 35
haloisitas modificadas 3.3.6 Determinación de los parámetros termodinámicos de adsorción del verde de metilo sobre la natural y las haloisitas modificadas	36 37
 3.4 Tratamiento de residuos 3.4.1 Reactivos, materiales y equipo utilizados para el tratamiento de residuos 3.4.2. Tratamiento de residuos en solución 3.4.3 Tratamientos de residuos sólidos	37 38 38 39
CAPITULO 4_Resultados y discusión	40
4.1 Resultados del tratamiento ácido sobre haloisita	40
4.2. Adsorción-Desorción de nitrógeno	41

4.2.1 Distribución de tamaño de poro	. 41
4.2.2 Tipos de poros	.43
4.2.3. Alea superincial isolerina de Bell	.43 //
4.3. Microscopia Electrónica de transmisión MFT	. 44
4.5 Difracción de ravos X	49
 4.6 Estudios de adsorción de verde de metilo VM	. 51 . 51 . 51 . 52 . 53 . 57 . 61 er . 65
modificadas	. 66
4.6.4 1 Isotermas de equilibrio de adsorción de VM sobre HN	60. 68
4.6.4.2 Isotermas de equilibrio de adsorción de VM sobre H001	. 00
4.6.4.3 Isotermas de equilibrio de adsorción de VM sobre H002	78
4.6.4.4 Comparación de Q° de las isotermas de Langmuir del equilibrio de adsorcio de VM sobre las haloisitas natural y modificadas	5n . 81
4.6.5 Parámetros termodinámicos de adsorción	. 83
4.6.5.1 Determinación de la energía de activación	. 83
4.6.5.2 Variación de la entropía y entalpia de adsorción	. 87
4.6.5.3 Variación de la energía libre de Gibbs de adsorción	. 90
Conclusiones	. 92
Índice de figuras	. 95
Índice de gráficos	. 96
Índice de tablas	. 97
Referencias	100
Anexo A Pruebas de hipótesis para la comparación de pendientes	104
Anexo B gráficos de las isotermas de Langmuir y Freundlich	109
Anexo C Tarjeta de identificación de las haloisitas	114

Abreviaturas

θ	ángulo
°C	Grado centígrado o C elsius
1/n	Factor de heterogeneidad
A	Absorbancia
а	Absortividad
Å	Armstrong
A _{BET}	Área de BET
AIPEA	"Asociación internacional para el estudio de arcillas", por sus siglas en francés, Association International Pour l'Estude des Argiles;
AI	Aluminio
b	Longitud de trayecto de luz
BET	Brunauer-Emmett-Teller
BJH	Barret-Joiner-Halenda
С	Concentración
с	Constante de BET
C ₀	Concentración inicial
C _e	Concentración al equilibrio
cm ³	Centímetro cúbico
cos θ	Coseno del ángulo
Ct	Concentración al tiempo "t"
D	Diámetro de poro
g	Gramo
HN	Haloisita natural
H001	Haloisita modificada 1, a 40 °C y ácido clorhídrico 10 mM
H002	Haloisita modificada 2, a 80 °C y ácido clorhídrico 10 mM
IUPAC	Unión Internacional de Química Pura y Aplicada, por sus siglas en inglés International U nion of P ure and A pplied C hemistry

J	Joule
К	Kelvin
k ₂	Constante de rapidez de segundo orden
k D	Coeficiente de distribución
k _f	Constante de Freundlich
kJ	Kilo joule
k _L	Constante de Langmuir
k _{p1}	Constante de rapidez de pseudo-primer orden
k _{p2}	Constante de rapidez de pseudo-segundo orden
L	Litro
In	Logaritmo natural
log	Logaritmo base 10
m	Metro
М	Molar (unidad de concentración)
m²	Metro cuadrado
mg	Miligramo
min	Minuto
mL	Mililitro
mol	ΜοΙ
N	Nitrógeno
N ₂	Nitrógeno molecular
N _A	Número de Avogadro (6.022x10 ²³ unidades/mol)
nm	Nanómetro'
NTH's	NanoTubos de Haloisita
Р	Presión
P ₀	Presión de saturación

ppm	Partes por millón
q	Cantidad adsorbida por masa de adsorbente
q _e	Cantidad adsorbida por masa de adsorbente al equilibrio
qt	Cantidad adsorbida por masa de adsorbente al tiempo "t"
R	Constante universal de los gases (8.314 J/K·mol)
rpm	Revoluciones por minuto
S	Segundo
Si	Silicio
Т	Temperatura
t	Tiempo
UV	Ultravioleta
VM	Verde de metilo.
Х	Volumen adsorbido
X _m	Volumen máximo de adsorción
ΔG [°]	Variación de energía libre de Gibbs
ΔH [°]	Variación de entalpía
ΔS [°]	Variación de entropía
3	Coeficiente de absortividad molar
λ	Longitud de onda

Objetivos

Objetivos General

Modular la porosidad e incrementar el área superficial especifica de los nanotubos de haloisita sin destruir su estructura, mediante un tratamiento con ácido clorhídrico para obtener nuevos materiales adsorbentes, además realizar la caracterización fisicoquímica, con la finalidad de explorar las propiedades de adsorción de estos nuevos materiales para su aplicación futura como catalizadores.

Objetivos Particulares

- Preparar dos nuevos materiales mediante un tratamiento de la haloisita natural con ácido clorhídrico a diferentes temperaturas.
- Determinar las propiedades texturales de las muestras natural y las modificadas (área superficial específica, volumen y distribución de tamaño de poro), mediante la técnica adsorción-desorción de N₂.
- Analizar por medio de un estudio de difracción de rayos X en polvo, los cambios estructurales de la haloisita natural y las modificadas, así como definir el tamaño de partícula.
- Establecer la composición química de la haloisita natural y las modificadas por microscopía electrónica de barrido.
- Obtener imágenes de los nanotubos de cada muestra por microscopía electrónica de transmisión, para determinar los cambios en la estructura por el tratamiento ácido.
- Realizar un estudio cinético de la adsorción de verde de metilo sobre las haloisitas natural y modificadas utilizando diferentes modelos cinéticos de adsorción.
- Efectuar un estudio del equilibrio de adsorción de verde de metilo sobre las haloisitas natural y modificadas utilizando las isotermas de Langmuir y Freundlich.
- Determinar los parámetros termodinámicos de activación (ΔH°, ΔS°, ΔG°) de la adsorción de verde de metilo sobre haloisita natural y las haloisitas modificadas.

Hipótesis

Debido al tratamiento con ácido clorhídrico al que se someterá la haloisita, esta sufrirá un incremento en su área superficial como resultado de la desaluminación de la capa octaédrica de la arcilla, por lo tanto se espera, que en las haloisitas modificadas se altere la adsorción del colorante verde de metilo, con respecto a la haloisita natural.

Resumen

La haloisita es una arcilla mineral constituida por dos láminas que generan su estructura tubular. La lámina externa está compuesta por silicatos (SiO₂) en un arreglo cristalino tetraédrico, la capa interna del nanotubo está formada por una lámina de alúmina (Al₂O₃) con un arreglo cristalino octaédrico, la geometría de ambas capas laminares son las responsables de la morfología de la arcilla, conocida como nanotubos de haloisita (NTH's) (Hendricks, 1938). Los HNT's en su estado natural pueden presentar trazas de óxidos de calcio, magnesio, manganeso, sodio, potasio, hierro, etcétera (Luo, y otros, 2010). Las haloisitas presentan superficies activas por lo que han sido utilizadas como adsorbentes de colorantes tales como violeta de metilo (Liu, Bing, Mei, Zang, & Liu, 2011), rojo neutro (Luo, y otros, 2010), azul de metileno (Zhao & Peng, 2008) y verde de malaquita (Kiani, Dostali, Rostami, & Khataee, 2011). Se ha reportado que los HNT's también se han utilizado en la adsorción de iones metálicos tales como el cobre (Mellouk, y otros, 2009) y cromo hexavalente (Jinhua, y otros, 2010).

En estudios previos el grupo de investigación con quien realice este trabajo de tesis ha encontrado que un tratamiento ácido (HCI, H₂SO₄, HF, HCIO₄, HSO₃CI y HSO₃CF₃) permite modular la porosidad e incrementar el área superficial específica (Rodríguez, 2008), así como controlar la disolución parcial o total de las arcillas. Por otro lado se ha encontrado que la haloisita ha sido tratada con HCI (Yha & Takahara, 2012).y H₂SO₄ (Zhang, y otros, 2012) en condiciones drásticas, destruyendo la estructura de la misma.

Por lo anterior, en este trabajo, se pretende modular la porosidad e incrementar el área superficial especifica de los nanotubos de haloisita sin destruir su estructura y obtener haloisitas modificadas que puedan utilizarse como nuevos materiales adsorbentes de colorantes presentes en aguas residuales.

En este trabajo, los nanotubos de haloisita fueron tratados con ácido clorhídrico diluido a 40 y 80°C respectivamente. Los materiales resultantes fueron caracterizados por difracción de rayos X (DRX) en polvo, adsorción-desorción de nitrógeno, microscopia electrónica de transmisión (MET) y de barrido (MEB). Por DRX se determinó que la estructura de la haloisita no se ve modificada, pero el tamaño de partícula se reduce de 18.98 a 16.97 y 14.94 nm respectivamente. Por microscopia electrónica de transmisión, se observaron las estructuras tubulares de la cada haloisita, mostrando a los nanotubos tratados con ácido, prácticamente intactos después del tratamiento ácido. Por Adsorción-desorción de nitrógeno se encontró que diámetro el promedio de poro se redujo de 18.98

Х

a 16.97 y 14.94 nm respectivamente por el tratamiento ácido, observándose un incremento en el área superficial específica A_{BET} de 34.49 a 56 y 67.56 m²/g,

La última parte de este trabajo, consistió en los estudios cinéticos y de equilibrio de la adsorción de verde de metilo (VM) sobre la haloisita natural y modificadas. Se determinaron cinéticas de pseudo segundo orden para las tres muestras de haloisitas. De los estudios del equilibrio, a través de los modelos de Freundlich y Langmuir, se encontró que ajustaron mejor a la isoterma de Langmuir. Finalmente, se determinaron los parámetros termodinámicos del equilibrio de adsorción, determinándose la entropía, entalpia y energía libre de Gibbs y la energía de activación.

CAPITULO 1

Marco teórico

1.1 Arcillas

El concepto de arcilla es bastante general. Puede definirse con base en su tamaño como partículas menores a 2µ, como la fracción activa del suelo de acuerdo a sus propiedades y como minerales secundarios de neoformación, heredados o detríticos según su origen (Besoain, 1985).

Las arcillas minerales son una clase de filosilicatos, que generalmente se forman como resultado de la erosión química de minerales de silicio en la superficie de la tierra (Zhang D. , 2010).

1.1.1 Filosilicatos

Los filosilicatos son polímeros cristalinos. Estos silicatos se forman por polimerización en dos direcciones, uniendo unidades tetraédricas de $(SiO_4)^{4-}$ que se unen compartiendo tres de sus cuatro oxígenos con otros vecinos, formando arreglos periódicos infinitos, en donde los átomos que se enlazan entre si se denominan átomos basales, en tanto los oxígenos que se encuentran en el otro extremo se denominan apicales. Los oxígenos apicales de la capa tetraédrica forman al mismo tiempo parte de la capa octaédrica de alúmina en la que cada unidad octaédrica está unida por oxígenos compartidos (Rodríguez, 2008).

Existen varias formas de clasificar a los filosilicatos, algunas son muy generales o muy restringidas, sin embargo todas se refieren, principalmente, a la clasificación de los

filosilicatos con base en la disposición de las estructuras laminares constitutivas (tetraédricas, octaédricas, etc.) en capas características (1:1, 2:1, 1:2)^{*}. Algunos sistemas incluyen arcillas minerales fibrosas o arcillas minerales interestratificadas regulares, en tanto que otros sistemas los excluyen.

Sin embargo el Subcomité de nomenclatura de la AIPEA[†] (Guggenheim, 2006) que trabaja para lograr una clasificación y una nomenclatura con bases internacionales así como precisar terminología mineralógica, presenta la clasificación de los filosilicatos, en función del tipo de lámina, grupos en función de la carga, subgrupos en función del número de sustituciones de los octaedros y en especies (Tabla 1.1).

^{*} En esta relación, por ejemplo 2:1, la cifra de la izquierda indica el número de láminas tetraédricas y la cifra de la derecha indica el número de láminas octaédricas.

⁺ AIPEA: Association International Pour l'Estude des Argiles; trabaja en colaboración con la comisión de nuevos minerales y nombres minerales de la IMA (International Mineralogical Association).

Tipo de capa.	Materia interláminar [‡] .	Grupo.	Carácter Octaédrico.	Especies (ejemplos).
1:1	Vacío, solamente Agua (X0).	Serpentina- caolín.	Trioctaédrico.	Lizardita, berthierina, amesita, cronstedtita, nepoutita, kellyita
			Dioctaédrico	Caolinita, dieckita, nacrita, haloisita.
			Di, Trioctaédrico.	Odinita
	Vacío (X0)	Talco- Pirofilita	Trioctaédrico.	Talco, willemseita, kerolita, pimelita.
			Dioctaédrico.	Pirofilita, Ferripirofilita.
2:1	Cationes hidratados intercambiables (X0.2-0.6).	Esméctica	Trioctaédrico.	Saponita, hectorita, saucita, stevesita, swiefordita.
			Dioctaédrico.	Montmorillonita, beidellita, nontronita, volkonskoita.
	Cationes hidratados intercambiables (X0.6-0.9).	Vermiculita	Trioctaédrico.	Vermiculita trioctaédrica.
			Dioctaédrico.	Vermiculita dioctaedrica.
	Cationes monovalentes no hidratados (X0.85-1.0 para Dioctaédrico).	Mica flexible.	Trioctaédrico.	Annita, flogopita, lepidolita, aspidolita.
			Dioctaédrico.	Muscovita, celadonita, paragonita.
	Cationes mono o divalentes no hidratados (X 0.6-0.85).	Capa intermedia deficiente Mica.	Trioctaédrico.	llita, glauconita, brammalita.
			Dioctaédrico.	Wonosita
	Cationes divalentes no hidratados (más del 50% divalente, X 1.8- 2.0).	Mica brillante.	Trioctaédrico.	Clintonita, kinoshitalita, bitiita, anandita.
			Dioctaédrico.	Margarita, Chernikhita
	Hoja de iones hidróxido (X= variable).	Clorita	Trioctaédrico.	Clinochlora, chamosita, pennantita, nimita, baileichlora.
			Dioctaédrico.	Donbassita.
			Di, Trioctaédrico.	Cookeita, sudoita.
			Tri, Dioctaédrico.	ninguna.
2.1 1.1, 2.1	Regularmente interestratificadas (X= variable).	Variable.	Trioctaédrico.	Corrensita, aliettita, hidrobiotita, kulkeita.
			Dioctaédrico.	rectorita, tosudita, brinrobersita
			Trioctaédrico.	Doziite

Tabla 1.1 Esquema de clasificación para filosilicatos relacionados con los minerales arcillosos

⁺ X es la carga de la capa, siempre tiene un número positivo.

1.1.2 Usos generales de las arcillas

Las arcillas se emplean generalmente en el campo de la cerámica, alfarería y materiales de construcción, estos últimos emplean especialmente arcillas ricas en hierro; las arcillas con alto contenido de alúmina, son empleadas para la elaboración de refractarios, debido a su resistencia a altas temperaturas (Morales, 2005).

Las arcillas también son utilizadas en la industria del cemento, en la industria de los aceites debido a sus propiedades adsorbentes, al igual que en la industria del vino como clarificante; las arcillas se emplean en la industria farmacéutica como parte de los excipientes de tabletas y comprimidos. Estas son algunas de las aplicaciones de las arcillas (Besoain, 1985).

1.2 Haloisita

La haloisita es un filosilicato que forma parte del grupo del caolín como se muestra en la tabla 1.1. La haloisita posee la formula molecular $[Al_2Si_2O_5(OH)_4 \cdot nH_2O]$ siendo n=0 para la haloisita deshidratada y n=2 para la haloisita hidratada, a la cual se referirá únicamente como haloisita (Yah W. O., 2012). La metahaloisita es otra especie de haloisita que se encuentra parcialmente hidratada, donde n= 0.25-0.75. Hendricks y Jefferson en 1938 observaron que las capas de agua presentes en la haloisita se disponen en intervalos regulares entre las láminas como se muestra en la figura 1.2.

Figura 1.2 Diagrama parcial de la estructura de la haloisita hidratada mostrando la disposición de una monocapa de agua entre los planos de oxígenos e hidroxilos de las capas 1:1 superpuestas sugeridas por (Hendricks, 1938)

La hidratación de la haloisita repercute en el espacio interláminar de los nanotubos de haloisita. La haloisita deshidratada presenta un espacio interláminar de 7.2 Å aproximadamente. En tanto que el espacio interláminar de la haloisita hidratada es de

10.1Å-10.25 Å, esto como consecuencia de una monocapa de agua, la cual genera el incremento en el espacio interláminar de la haloisita hidratada (Bates, 1950). En la figura 1.3 se aprecian un esquema de la disposición molecular de la haloisita.

Figura 1.3 Esquema de la haloisita (Bates, 1950)

La haloisita se emplea principalmente como materia prima en la elaboración de cerámicos (Garcia & Garcia, 1962). La haloisita se encuentra mezclada con caolinita, cuarzo y otras impurezas, la haloisita pura o haloisita " Halloysite nanoclay" con numero CAS 1332587 es comercializada por Sigma-Aldrich cuyo valor es de 2083.00 pesos (00/100 M.N.) por 500 g.

1.2.1 Morfología y estructura de la haloisita

Smith y Bailey determinaron la distancia de los enlaces Si-O correspondiente a 1.62 Å, la distancia del enlace AI-O de 1.77 Å (Smith, 1965). Bates y colaboradores proponen que la diferencia entre las dimensiones del plano inferior de oxígenos de la lámina tetraédrica y el plano de hidroxilos de la lámina octaédrica contribuyen a la formación de los nanotubos de haloisita (Bates, 1950). Estos autores asignan un valor de 5.14 Å al plano de oxígenos y 5.06 Å a la dimensión b del plano de OH. La dimensión b tiene un valor de 8.93 Å en el plano de oxígenos y 8.62 Å en el plano de OH. En consecuencia la hoja octaédrica de cada capa estructural 1:1 esta distendida. En presencia de capas de agua situadas entre las capas elementales, el plano de hidroxilos no es capaz de mantener su condición de mayor alargamiento y tiende a retornar a su dimensión de 8.62 Å; se desarrolla así una tensión entre la capa de sílice y el plano de hidroxilos de la hoja de hidróxido de aluminio,

induciéndose un encurvamiento en toda la hoja, de manera que el plano de OH se sitúa en el interior y mientras que la hoja de Si₂O₃ se ubica en la periferia (Bates, 1950), generándose una estructura nanotubular. Los NTH's (nanotubos de haloisita) tienen una longitud aproximada de 1-1.5 micras (Yah W. O., 2012). En la figura 1.4 y 1.5 se muestra un esquema del nanotubo de haloisita en el que se muestra el diámetro interno del nanotubo y la disposición de las capas de silicio y aluminio que conforman el nanotubo.

Figura 1.4 Representación esquemática de la estructura de la caolinita y la haloisita. En (a), se muestra la distribución en capas de caolinita, en la figura (b) la distribución de las capas de haloisita y en (c) la disposición de los planos atómicos y el encurvamiento de la capa estructural de la haloisita (Bates,

1950)

Figura 1.5 Esquema del nanotubo en el que se muestra el diámetro interno del nanotubo, así como la disposición de las capas de silicio y aluminio (Yha & Takahara, 2012)

1.2.2 Propiedades fisicoquímicas y composición química de la Haloisita

La composición química de las haloisitas marca una relación SiO_2/Al_2O_3 teórica similar a la caolinita, con un contenido de agua más elevado (Alexander, 1943).En la tabla 1.2 se muestra la composición química de tres muestras de haloisita.

	Haloisita Algeria. (Mellouk, y otros, 2009)	Haloisita Camerún (Etame, Gerard, Suh, & Bilong, 2009)	Haloisita Algeria (Belkassa, y otros, 2013)
SiO ₂	46.34	42.44	44.71
Al ₂ O ₃	37.96	35.11	39.69
Fe ₂ O ₃	0.05	1.53	0.45
TiO ₂			
MnO	1.25		2.01
MgO	0.08		0.05
CaO	0.83	0.53	0.65
K ₂ O	0.02	0.06	0.32
Na ₂ O	0.02	0.00	0.34
SiO ₂ /Al ₂ O ₃	1.2207	1.2087	1.1264

Tabla 1.2 Porcentaje de la composición química de diferentes haloisitas

1.2.3 Capacidad de intercambio catiónico (CIC)

En la literatura se encuentra reportado que la metahaloisita posee una capacidad de intercambio catiónico de entre 8 y 15 meq/100g, en tanto que el valor de CIC de la haloisita varia de 10 a 50 meq/100g y que los cationes de cambio se localizan en la superficie externa de los tubos de haloisita y no entre sus capas (Garret & Walker, 1959).

La CIC se debe en parte a reemplazamientos isomórficos, por ejemplo de Si por Al en la capa tetraédrica. Sin embargo esta capacidad es en mayor grado dependiente del pH y radica en uniones Si-O-Al en los bordes laterales de los cristales, sobre los cuales radica el fenómeno de protonación-desprotonación (Schofield, 1953).

1.3 Espectrofotometría UV-Visible

En este apartado se describe la espectrofotometría UV-Visible y su aplicación para medir concentraciones de sustancias químicas en solución.

1.3.1 Absorción de luz

El fundamento de la espectrofotometría consiste en el fenómeno de absorción de luz (energía). Las teorías corpuscular y ondulatoria, explican el comportamiento dual de la luz, es decir luz que es capaz de propagarse como onda y como partícula. Según De Broglie (1924) la luz está compuesta por partículas (fotón), mostrando además propiedades ondulatorias (Sharpe, 1993).

Cuando una molécula absorbe un fotón, la energía de la molécula se incrementa. Se dice que la molécula pasa a un estado excitado. Si una molécula emita un fotón, su energía disminuye, regresando a su estado basal o fundamental.

Cuando una muestra absorbe luz, la potencia radiante del haz de luz que se le incide disminuye. En un típico experimento de espectrofotometría, la luz se hace pasar a través de un monocromador (prisma, una rendija de difracción o un filtro) para aislar una sola longitud de onda, esta ultima de potencia radiante P_0 , incide sobre una muestra de espesor b. la potencia radiante, del haz emergente es P; la muestra absorbe una parte del haz de luz, de manera que $P \le P_0$ (Harris, 2007). La transmitancia, se define como la fracción de la luz incidente que sale de la muestra, la transmitancia se expresa como:

$$T = \frac{P}{P_0}$$
 Ecuación 1.1

Por lo tanto, la transmitancia varía de cero a uno. La magnitud física más útil es la absorbancia, que se define como la fracción de la luz incidente que es absorbida por la muestra, matemáticamente se expresa como:

$$A = log_{10}\left(\frac{P_0}{P}\right) = -logT$$
 Ecuación 1.2

La importancia de la muestra estriba en que es directamente proporcional a la concentración de la especie que absorbe en la muestra.

1.3.2 Ley de Lambert-Beer relación entre absorbancia y concentración

La relación fundamental entre la cantidad medida en un método espectrofotométrico y la concentración del analito es la ley de Lambert-Beer, matemáticamente se expresa como:

$$A = abc$$
 Ecuación 1.3

Donde "A" es la absorbancia, "a" es la constante de proporcionalidad llamada absortividad, "b" es la longitud del camino que recorre la radiación a través del medio absorbente y "c" la concentración del analito. De la expresión anterior, la concentración del analito se expresa en moles por litro y "b" en centímetros; la constante de proporcionalidad se denomina entonces como absortividad molar y se representa con " ε " cuyas unidades son L cm⁻¹ mol⁻¹, concluyendo que la absorbancia es una propiedad adimensional (Skoog, West, Holer, & otros, 1997).

$A = \varepsilon b c$

1.4 Verde de metilo (VM)

Para estudiar la capacidad de adsorción de la haloisita natural y modificadas se utilizó VM, específicamente por qué no se encontraron reportes de estudios de adsorción de VM sobre NTH's naturales o modificados.

El verde de metilo es un colorante de tipo trifenilmetano, una especie dicatiónica. Su nombre IUPAC es di cloruro de 4-[4-(dimetilamino) fenil][4-(dimetiliminio)ciclohexa-2,5-dien-1-iliden] metil]-N-etil-N,N dimetilinilinio, cuyo peso molecular es de 653.24 g/mol, con numero CAS 7114-03-6 con una pureza menor o igual al 100%. El VM se utiliza en la coloración de soluciones en medicina y biología, también es empleado en histología para la tinción de cromatina (Adams, Burdon, Campbell, & Smellie., 1986). En la Figura 1.6 se muestra la estructura química del verde de metilo VM.

Figura 1.6 Estructura química del verde de metilo

Este colorante absorbe a varias longitudes de onda del espectro electromagnético en la región UV-visible. En la Figura 1.7 se muestra el espectro de absorción (Rytwo, 2000); en donde se observan cuatro longitudes de onda máximas ($\lambda_{máx}$) en las que absorbe el VM (248, 314, 422 y 632 nm respectivamente). Cabe hacer mención que la $\lambda_{máx}$ que corresponde a 632 nm, es la que presenta un mayor coeficiente de absortividad molar, además de ser el pico mejor definido.

Figura 1.7 Espectro de absorción del VM reportado en solución acuosa, pH= 7 (Rytwo, Nir, Crespin, & Margulies, 2000)

1.5 Adsorción física y química

La adsorción es el resultado de la atracción de las moléculas entre la superficie del solido (adsorbente) y las del flujo (adsorbato). Esta adsorción puede ser de dos tipos física o química.

La adsorción física se debe a fuerzas de atracción secundarias (Van der Waals), como interacciones dipolo-dipolo, y se asemejan a la condensación de moléculas de un vapor sobre un líquido de la misma composición. La adsorción física tiene un gran interés en la catálisis por sólidos, pues proporciona un método de medición de áreas superficiales de catalizadores y de determinación de tamaño de poros así como la determinación de la distribución de los mismos (Izquierdo, Cunill, Tejero, Iborra, & Fité, 2004).

La adsorción química implica la formación de enlaces químicos. Se asemeja a una atracción química y requiere una transferencia de electrones entre adsorbato y adsorbente.

La adsorción es un proceso es espontaneo si la energía libre de Gibbs de adsorción es menor que cero ($\Delta G_a < 0$). De la relación $\Delta G_a = \Delta H_a$ -T ΔS_a , se deduce que ΔH_a -T $\Delta S_a < 0$ y $\Delta H_a < T\Delta S_a$, es decir la entalpia de adsorción (ΔH_a) es más negativa que la entropía de adsorción (ΔS_a) multiplicada por la temperatura (T ΔS_a). En la adsorción sin reacción sobre un adsorbente cuyas propiedades no se alteran por el proceso, se forma un sistema más ordenado con disminución en el número de grados de libertad. Entonces ΔS_a debe ser negativo, ΔH_a debe ser negativo (es decir el proceso es exotérmico). La adsorción física es siempre exotérmica, la química normalmente lo es también, pero en teoría podría ser endotérmica, como una reacción química (Izquierdo, Cunill, Tejero, Iborra, & Fité, 2004). La energía de activación de adsorción física es muy pequeña, casi nula. Tiene lugar a gran velocidad en un intervalo de temperaturas grande, incluso a temperatura muy baja. Por el contrario muchos tipos de quimisorción tienen energía de activación de adsorción muy elevada, por lo tanto la quimisorción tiene lugar solo por encima de la temperatura mínima. Otra diferencia entre la quimisorción y la fisisorción es la reversibilidad; la fisisorción es completamente reversible, el equilibrio se establece muy rápido, a menos de que haya problemas de difusión por poros muy estrechos, en la fisisorción pueden llevarse ciclos de adsorción-desorción muy rápidos disminuyendo de forma alternada la presión o la temperatura sin que cambie la naturaleza del adsorbato. La quimisorción puede ser reversible o irreversible (Izquierdo, Cunill, Tejero, Iborra, & Fité, 2004).

La fisisorción es altamente inespecífica. En tanto que la quimisorción es altamente específica, solo es capaz de ocurrir si el adsorbato es capaz de formar un enlace químico con el adsorbente.

En la tabla 1.3 se resumen las diferencias fundamentales entre la fisisorción y la quimisorción.

	Tipos de adsorción.	
Propiedad	Adsorción Física	Adsorción química
Adsorbente	Todos los Sólidos	Algunos Sólidos
Adsorbato	Todos los gases por debajo de la temperatura crítica	Algunos gases químicamente reactivos
Entalpía de adsorción	Baja (~ΔH)	Elevada, del orden de una entalpía de reacción
Velocidad, energía de activación (Ea)	Muy rápida, Ea muy pequeña	Activada, Ea elevada
		No activada, Ea pequeña
Reversibilidad	Extremadamente reversible	A menudo irreversible

Tabla 1.3 Diferencias entre Fisisorción y Quimisorción (Izquierdo, Cunill, Tejero, Iborra, & Fité, 2004)

1.6 Cinética de adsorción

El fenómeno de adsorción también se presenta entre solutos en disolución (adsorbatos o analitos) y un sólido. La rapidez de una reacción química se expresa como el cambio de la concentración de un reactante o producto en función del tiempo (Vargas & Obaya, 2005). En el caso de la rapidez de adsorción de uno a más analitos (adsorbatos) sobre partículas adsorbentes, se expresa como el cambio en la concentración de los analitos en función del tiempo debido al fenómeno de adsorción.

La rapidez se expresa en forma matemática por medio de la variación en la concentración del adsorbato.

$$r = rac{-d[A]}{dt}$$
 Ecuación 1.5

Donde r es la rapidez, [A] es la concentración del adsorbato y t es el tiempo, el signo negativo indica que la concentración de A decrece en función del tiempo. La ley de rapidez es la expresión matemática que relaciona la velocidad de la reacción con la concentración de los reactantes o de los productos; lo mismo ocurre en el caso de la velocidad de adsorción y la concentración del adsorbato.

$$r = \frac{-d[A]}{dt} = \frac{-d[B]}{dt} = K[A]^{a}[\mathbf{B}]^{b}$$
 Ecuación 1.6

1.6.1 Ecuaciones de rapidez de reacciones elementales

Las ecuaciones de rapidez de reacciones elementales son modelos matemáticos que describen la variación de la concentración de un reactivo o producto de reacción en función del tiempo, dichos modelos buscan una relación lineal entre el tiempo y la variación de la concentración.

Los parámetros de rapidez, es decir la constante de rapidez y el orden de la reacción se obtienen de aquel modelo que se ajuste mejor al fenómeno; es decir que presente una mayor tendencia lineal.

Las ecuaciones empleadas para este estudio, corresponden a cinéticas de orden cero, uno, dos (Vargas & Obaya, 2005), pseudo primer y pseudo segundo orden (Gürses, y otros, 2006).

Orden cero.

$$kt = x$$
 Ecuación 1.7

Orden uno

$$kt = In \frac{A_0}{(A_0 - x)}$$
 Ecuación 1.8

Orden dos.

$$\mathbf{kt} = \frac{\mathbf{x}}{\mathbf{A}_0(\mathbf{A}_0 - \mathbf{x})}$$
 Ecuación 1.9

Donde "k" es la constante de rapidez, "t" es el tiempo, "A₀" es la concentración inicial del analito, "x" es la concentración del analito al tiempo t.

Es importante mencionar que en el caso de las ecuaciones de rapidez anteriores no se considera al adsorbente, por lo que es necesario que este sea integrado en las ecuaciones. Sin embargo de acuerdo a las metodologías para los estudios cinéticos, la cantidad de adsorbente se mantiene constante, por lo que se generan ecuaciones cinéticas de pseudo orden.

Para las ecuaciones de pseudo primer orden (ecuación 1.10) y pseudo segundo orden k_1 y k_2 (ecuación 1.11) son las correspondientes constantes de rapidez, "qe" es la cantidad de analito adsorbido al equilibrio, "qt" es la cantidad de analito adsorbida a tiempo "t", en el caso de la ecuación de pseudo primer orden 2.303 es constante.

Pseudo primer orden.

$$log(q_e - q_t) = logq_e - \frac{k_1}{2.303}t$$
 Ecuación 1.10

Pseudo segundo orden.

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 Ecuación 1.11

1.7 Equilibrio de adsorción

A la expresión matemática que relaciona la cantidad de sustancia que se une a una superficie en función de la concentración en fase gaseosa o en solución, a temperatura fija, recibe el nombre de isoterma de adsorción (Laider & Meiser, 2005). En particular las isotermas de adsorción de adsorbatos disueltos presentan la forma mostrada en la Figura 1.8.

Figura 1.8 Isoterma de adsorción de adsorbatos disueltos sobre adsorbentes a temperatura contante

1.7.1 Isoterma de Freundlich

La isoterma de Freundlich fue una de las primeras ecuaciones propuestas para relacionar la cantidad adsorbida con la cantidad de material adsorbente. La ecuación 1.12 representa este tipo de isoterma (Castellan, 1998).

$$q_e = kc_e^{rac{1}{n}}$$
 Ecuación 1.12

Donde q_e es la masa adsorbida por unidad de masa del adsorbente, " c_e " es la concentración al equilibrio, "k" y "n" son constantes (Castellan, 1998). La isoterma de Freundlich no es aplicable a concentraciones altas de sustrato, por lo tanto es mejor utilizarla como una ecuación lineal, aplicando logaritmo a la ecuación 1.12, resulta:

$$Log(q_e) = Log(k) + \frac{1}{n}Log(C_e)$$
 Ecuación 1.13

De la ecuación 1.12 y 1.13 la cantidad de masa adsorbida por unidad de masa del adsorbente (q_e) se define matemáticamente de acuerdo con la ecuación 1.14

$$\mathbf{q}_{\mathbf{e}} = rac{(\mathbf{C}_{\mathbf{0}} - \mathbf{C}_{\mathbf{e}})\mathbf{V}}{\mathbf{W}}$$
 Ecuación 1.14

Donde; "C₀" es la concentración inicial del colorante, "Ce" es la concentración del colorante al equilibrio, "V" es el volumen de la solución del colorante y "W" es la masa del adsorbente (Ruiz Fernández, Alexander Franco, Fernández González, & Gómez Serrano, 2010).

La forma gráfica de la Isoterma de Freundlich se da al graficar Log q_e en función de Log Ce, construyendo así un gráfico del estilo mostrado en la figura 1.9.

Figura 1.9 Forma gráfica de la Isoterma de Freundlich

1.7.2 Isoterma de Langmuir

Propuesto por Irving Langmuir en 1918, es el modelo teórico más antiguo y más simple dado que habla de una monocapa uniforme, por lo tanto el más útil como herramienta conceptual ya que se apega más a un modelo ideal (Laider & Meiser, 2005).

Este modelo se desarrolla bajo 4 supuestos (Caballero, 2002):

- 1. La superficie del adsorbente debe ser uniforme y homogénea, esto genera que todos los centros sean equivalentes.
- 2. Se considera que no existen interacciones entre las moléculas de adsorbato y por ello se puede tratar como un sistema ideal.
- Existe una interacción despreciable entre las moléculas adsorbidas, de modo que la capacidad de las moléculas de adsorbato por adsorberse en un centro activo es independiente de que haya o no próximos a ella centros ocupados.
- 4. Las moléculas se adsorben sobre la superficie

La isoterma de Langmuir, en la forma de ecuación lineal es, en general, más acertada para la interpretación de datos que otros modelos, siempre que se forme una monocapa.

La ecuación de adsorción de Langmuir, en su forma lineal es:

$$C_e/q_e = 1/Q_b + (1/Q_b)C_e$$
 Ecuación 1.15

Donde C_e es la concentración del adsorbato libre en la solución al equilibrio, qe es la cantidad de soluto adsorbido por unidad de masa de adsorbente, Q° es la cantidad máxima que se puede adsorber por unidad de masa de adsorbente, y b es la constante de Langmuir asociada a la energía de adsorción (Ruiz Fernández, Alexander Franco, Fernández González, & Gómez Serrano, 2010). La representación gráfica de la relación

de C_e/q_e contra C_e nos da una recta cuando tenemos un sistema de adsorción de monocapa, donde el inverso recíproco de la pendiente nos da la cantidad máxima de adsorbato que se puede fijar en la superficie y la ordenada al origen nos ayuda a obtener la constante de Langmuir. La ecuación de Langmuir es muy útil porque facilita la estimación de la capacidad máxima de adsorción de un sólido.

1.8 Parámetros termodinámicos de adsorción

Los parámetros termodinámicos de un proceso permiten conocer algunas de sus características. En este apartado se describe la forma de calcular los parámetros termodinámicos de adsorción de verde de metilo sobre las haloisitas natural y modificadas, determinando así la entropía, entalpia, energía libre de Gibbs y energía de activación.

1.8.1 Energía de activación

Para calcular la energía de activación, es necesario obtener la constante de rapidez de la adsorción de VM a diferentes temperaturas, para ello se utilizaron los datos de los isotermas de adsorción con el modelo de la cinética de pseudo segundo orden obteniendo así la constante de rapidez. La energía de activación se calcula utilizando la siguiente ecuación (Rahchamani, Mousavi, & Behzad, 2011).

$$Ink_2 = InA - \frac{E_a}{RT}$$
 Ecuación 1.16

Donde k_2 es la constante de rapidez de pseudo segundo orden, A es el factor de Arrhenius, R es la constante de los gases (8.314 J/molK), T es la temperatura del sistema (K) y Ea es la energía de activación de Arrhenius (J/mol), por lo que es necesario determinar la constante de rapidez k_2 (de pseudo segundo orden que describe la cinética de adsorción).

1.8.2 Variación de Entalpia, Entropía y Energía libre de Gibbs

Los parámetros termodinámicos de un proceso permiten conocer algunas de las características de dicho proceso. Aquí se describen los parámetros y la forma para determinar los parámetros termodinámicos que describen la adsorción de verde de metilo sobre la haloisitas natural y modificadas. Los parámetros termodinámicos son:

 El cambio de entalpía (ΔH°) permite saber si un proceso es exotérmico o endotérmico al mostrar la pérdida o ganancia de energía interna en el sistema.

- El cambio de entropía (ΔS°) permite establecer la reversibilidad o irreversibilidad de una reacción, ya que muestra el desorden del sistema y estadísticamente la probabilidad de que se logre dicho estado.
- El cambio de energía libre de Gibbs (ΔG°) es el parámetro de espontaneidad de un proceso al expresar la energía del estado final al equilibrio.

Estos parámetros se pueden obtener del estudio del equilibrio de adsorción.

El cambio en la entropía y la entalpía se pueden calcular con la función matemática de la ecuación 1.17

$$\ln k_L = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
 Ecuación 1.17

Donde k_L es la constante de equilibrio de la adsorción de la isoterma de Langmuir, R es la constante universal de los gases (8.314 J/K·mol), T es la temperatura absoluta del sistema, ΔH° es el cambio de entalpía, y ΔS° es el cambio de entropía. De acuerdo a esta fórmula matemática, se obtiene una recta donde la variable dependiente es ln k_L , la variable independiente es 1/TR, la pendiente es igual a $-\Delta H^\circ$ y la ordenada al origen es $\Delta S^\circ/R$ (Rahchamani, Mousavi, & Behzad, 2011).

Para calcular la energía libre de Gibbs de adsorción se utiliza la ecuación que describe dicha propiedad.

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
 Ecuación 1.18

Donde ΔG° es la energía libre de Gibbs, ΔH° es la entalpía, ΔS° es la entropía y T es la temperatura (K) del sistema. Dado que ya se calcularon anteriormente los parámetros necesarios para deducir los valores de ΔG° , sólo se sustituyen los datos correspondientes para obtener la energía libre de Gibbs.

CAPITULO 2

Métodos y técnicas empleadas para la caracterización de las muestras de haloisita

En este capítulo se describen brevemente los fundamentos de los métodos y técnicas utilizados para la caracterización de las haloisitas natural, H001 y H002.

2.1 Adsorción-Desorción

Esta técnica permite determinar el área superficial específica (A_s) del material, así como el tamaño, volumen y distribución de tamaño de poro. El fundamento de esta técnica consiste en la adsorción de un adsorbato (molécula de gas inerte que se adsorbe), por ejemplo nitrógeno, sobre un adsorbente (sólido poroso).

2.1.1 Tipos de poro presentes en los materiales

Los poros dependiendo de su tamaño, se clasifican en diferentes clases:

Ultramicroporos menores a 0.7 nm.

Microporos menores a 2 nm.

Mesoporos de 2 a 50 nm.

Macroporos mayores a 50 nm.

Independientemente del tamaño de poro, los materiales porosos presentan diferentes tipos de poro. Poros con forma cilíndrica, de botella de tinta, de embudo, poros de tamaño uniforme, poros ciegos, cerrados y de red porosa (G. Leofanti, 1998)

Figura 2.1 Descripción de la forma de los poros (G. Leofanti, 1998)

2.1.1 Isotermas de adsorción

Si se utiliza nitrógeno como adsorbato, la adsorción se realiza a 77 K, la temperatura de ebullición del nitrógeno, posteriormente se traza la isoterma de adsorción que es el volumen de nitrógeno adsorbido frente a su presión relativa (G. Leofanti, 1998).

La forma de la isoterma depende de la textura porosa del sólido. Según la IUPAC Unión Internacional de Química Pura y Aplicada, por sus siglas en inglés "International Union of Pure and Applied Chemistry" se presentan seis tipos de isotermas, de los cuales solo cuatro se encuentran generalmente en la caracterización de adsorbentes y catalizadores (Sing, y otros, 1985).

En la figura 2.2, se muestran las formas de las isotermas de adsorción. La isoterma reversible de tipo I; se presenta en sólidos microporosos que tienen superficies externas relativamente pequeñas, por ejemplo carbonos activados, zeolitas de tamiz molecular y ciertos óxidos porosos, el límite de captación está regulado por el volumen de poro más que por el área superficial interna. La adsorción se lleva a cabo a presiones relativas muy bajas debido a las fuertes interacciones entre las paredes de los poros y el adsorbato. La finalización de llenado requiere una presión más alta favoreciendo la interacción entre las moléculas adsorbidas. En este caso el relleno de los poros se lleva a cabo sin condensación capilar de tal modo que este proceso en indistinguible del proceso de la formación de la monocapa.

La isoterma reversible tipo II: es la forma normal de la isoterma obtenida con un adsorbente macroporoso. A baja presión relativa el proceso predominante es la formación de una monocapa de moléculas adsorbidas; mientras que a una presión relativamente alta se lleva a cabo la adsorción de multicapas, el espesor del adsorbato aumenta progresivamente hasta que la presión de condensación ha sido alcanzada. La presión de formación de la monocapa primero es menor si la interacción entre el adsorbato y adsorbente es más fuerte, sin embargo los procesos de formación de monocapa y multicapa se solapan siempre.

La Isoterma reversible tipo III: este tipo de isotermas no son comunes, pero hay una serie de sistemas que la presentan, por ejemplo nitrógeno en polietileno.

La isoterma tipo IV: es característica de sólidos mesoporosos. Este tipo de isoterma presenta un ciclo de histéresis, el cual se asocia con la condensación capilar que tiene

lugar en mesoporos y limita la presión en un intervalo de alta presión. La parte inicial de la isoterma se atribuye a la adsorción de una monocapa, en una etapa posterior la adsorción se da en capas múltiples, ya que sigue la misma trayectoria que la parte correspondiente a una isoterma de adsorción tipo II.

La isoterma tipo V: es una isoterma poco común, incluso está relacionado con el isoterma tipo III donde la interacción adsorbente-adsorbato es débil, pero se obtiene con ciertos adsorbentes porosos.

La isoterma tipo VI: esta isoterma depende de la superficie del sólido, es decir si el sólido posee una superficie energéticamente uniforme el proceso de adsorción presenta una presión definida. Si la superficie contiene pocos grupos de sitios energéticamente uniformes, la isoterma descrita tendría un comportamiento escalonado, en el que cada escalón corresponde a la adsorción sobre un grupo de sitios. Debido a que las superficies de los sólidos son ampliamente heterogéneas, este comportamiento no se ha observado.

2.1.2 Desorción y ciclos de histéresis

La desorción es el proceso contrario a la adsorción, este proceso se da después de que el adsorbato alcanza su nivel de saturación, la evaporación en los mesoporos por lo general se lleva a cabo a una presión menor que la de la condensación capilar dando paso a un ciclo de histéresis.
La histéresis se suele atribuir a diferentes tamaños de poro, boca y cuerpo de poro, por ejemplo poros con forma de botella de tinta los cuales presentan un comportamiento diferente en el proceso de adsorción que en el proceso de desorción. En los poros de botella de tinta, la condensación se lleva a cabo en cada sección de la presión relativa durante el proceso de adsorción, el líquido formado en la boca del poro va llenando el cuerpo del poro. En el proceso de evaporación del líquido contenido en el cuerpo de poro no puede ocurrir mientras la boca del poro permanezca cubierta por la mono o multicapa adsorbida en la superficie del sólido (G. Leofanti, 1998).

Los ciclos de histéresis dependen de la forma de los poros, existen cuatro tipos de histéresis que han sido reconocidos por la IUPAC (Sing, y otros, 1985).

Los ciclos de histéresis tipo H1 y H2 son característicos de los sólidos constituidos por partículas atravesadas por canales casi cilíndricas o por agregados o aglomerados de partículas esferoidales. En ambos casos, los poros pueden tener un tamaño y una forma uniformes (tipo H1) o el tamaño y la forma no uniforme (tipo H2) (G. Leofanti, 1998).

Ciclos de histéresis de tipo H3 y H4. Estos ciclos de histéresis se encuentran principalmente en los sólidos que consisten de agregados o aglomerados de partículas que forman poros en forma de rendija (placas o partículas afiladas como cubos) con poros de tamaño y forma uniformes para ciclos de histéresis de tipo H4, así como poros de tamaño y forma no uniforme para ciclos de histéresis tipo H3. La histéresis es por lo general diferente debido a un diferente comportamiento en adsorción y desorción (G. Leofanti, 1998) (Sing, y otros, 1985).

Figura 2.3 Se presenta los cuatro tipos de histéresis para la adsorción-desorción de nitrógeno (Sing, y otros, 1985) y (G. Leofanti, 1998)

2.1.4 Método BET (cálculo del área superficial)

El modelo matemático desarrollado por Brunauer, Emmet y Teller en 1940 sigue siendo la herramienta más utilizada para determinar el volumen de la monocapa (V_m) del adsorbato y entonces elucidar el área superficial (A_s) del sólido. El modelo de BET fue derivada equilibrando las velocidades de adsorción y condensación para la primera capa y que la entalpia de licuefacción es aplicable a la segunda capa y a las posteriores" (Laider & Meiser, 2005).

Con los datos del volumen adsorbido y de la presión relativa se traza el gráfico que corresponde a la ecuación de BET (Sing, y otros, 1985).

$$\left(V_{ads}\left(\frac{P_{o}}{P}-1\right)\right)^{-1} = \frac{1}{V_{m}C} + \frac{C-1}{CV_{m}}\frac{P}{P_{0}}$$
 Ecuación 2.1

Dónde:

P es la Presión del gas adsorbido (nitrógeno).

Po es la Presión de saturación del gas adsorbido.

 V_a es el Volumen del gas adsorbido en condiciones estándar de temperatura y presión (STP = 1 atm y 20 °C).

V_m es el Volumen de gas adsorbido, correspondiente a la formación de una monocapa.

C es una constante.

Para calcular el área superficial del material se emplea la siguiente fórmula:

$$A_s = V_m N_a A_m$$
 Ecuación 2.2

Dónde:

V_m es el Volumen de gas adsorbido, correspondiente a la formación de una monocapa.

N_a es el número de Avogadro.

A_m es el área que ocupa una molécula de nitrógeno 0.162 nm².

2.1.5 Método BJH (distribución y tamaño de poro)

Este método permite determinar el tamaño del poro, utilizando los datos del estudio de adsorción-desorción de nitrógeno. El método BJH precede de la ecuación de kelvin, la

cual considera que durante el proceso de desorción capilar (el menisco del adsorbato condensado evoluciona supuestamente a una forma hemisférica). Sin embargo la ecuación que emplean para determinar el tamaño de poro, no considera el espesor de la capa adsorbida que existe en el momento en que ocurre el cambio de fase, a esta fase se le conoce como el cuerpo o el corazón de los poros. El método de Barret, Joyner y Halenda si tiene presente esta consideración, por lo tanto introduce una corrección considerando el espesor de la capa adsorbida al momento del cambio de fase producto de la desorción capilar. El método BJH se ha empleado sobre todo para calcular la distribución de tamaño de poro, bajo la suposición de una forma cilíndrica de los poros (Hernández, y otros, 2005).

La ecuación del método BJH es:

$$\ln \frac{P}{Po} = -\frac{(2\gamma w_m \cos \theta)}{RTr_o}$$
 Ecuación 2.3

Dónde:

2.2 Microscopias

En esta sección, se describen las técnicas de Microscopia Electrónica de Barrido (MEB) y Microscopia Electrónica de Transmisión (MET); empleadas para la caracterización de las haloisitas natural y modificadas. Estas técnicas son empleadas para caracterizar la morfología y textura de las haloisitas gracias a la obtención de imágenes, en el caso

 $[\]gamma$ Tensión superficial.

 w_m Volumen molar.

 r_c Radio del poro

 $[\]theta$ Ángulo de contacto

específico de la MEB se determina adicionalmente la composición química de las haloisitas natural y modificadas.

2.2.1 Microscopia electrónica de barrido (MEB)

La técnica se basa en la incidencia de un haz de electrones sobre la muestra a estudiar y las señales que surgen son captadas por detectores especializados para después proyectarse sobre una pantalla digital en los microscopios modernos o sobre un negativo en los más antiguos.

En un típico microscopio electrónico de barrido (MEB) un cañón de electrones y un condensador de lentes múltiple, producen un haz de electrones cuyos rayos son deflectados en varios ángulos del eje óptico, emitiéndose varios tipos de señales como son: electrones retrodispersados, electrones secundarios, electrones Auger, luminiscencia, rayos X, electrones dispersados elásticamente, electrones transmitidos y electrones dispersados inelásticamente. (Joseph I., 1992).

La profundidad de penetración es directamente proporcional al número atómico de átomos presentes en la muestra. En la figura 2.4 se presenta el nivel de profundidad de la muestra en donde se producen los electrones secundarios, retrodispersados y los rayos X.

Figura 2.4 Se muestra el nivel de profundidad de la muestra donde se producen electrones secundarios, retrodispersados y rayos X (Joseph I., 1992)

2.2.1.1 Radiación en Microscopía electrónica de barrido (MEB)

La radiación utilizada en el MEB genera ocho diferentes tipos de señales que se indican en la tabla 2.1.

Radiación	Señal	Localización.	Información
Emisión	Electrones secundarios.	Dentro de 5 micrómetros de la superficie	Topografía de la superficie.
Reflexión	Electrones retrodispersados	Dentro de 1 a 2 micrómetros de la superficie.	Naturaleza de la muestra.
Transmisión	Electrones transmitidos.	Láminas delgadas y películas.	Espesor y composición.
Absorción	Corriente de la muestra	A través de la muestra	Completo de la información anterior.
Haz inducido	Corriente en un circuito externo.	Dentro de la muestra.	Semiconductores.
luminiscencia	Fotones de longitud de onda especifica.	Luz visible.	Varias fases en la muestra.
Rayos X	longitud de onda de rayos X.	Tipos de átomos.	Análisis espectroquímico.
Electrones Auger.	Electrones Auger longitud de onda especifica.	Electrones Auger.	Elementos químicos presentes.

Tabla 2.1 Tipos de radiación, señales e información obtenida en MEB (Joseph I., 1992)

Los rayos X son fotones de radiación electromagnética. Por lo tanto tienen una longitud de onda relativa a su energía, de acuerdo con la ecuación:

$$\lambda = \frac{hc}{eE}$$
 Ecuación 2.4

Donde h es la constante de Planck, c es la velocidad de la luz y es la carga del electrón.

Cuando un haz de electrones de energía suficiente impacta en un sólido, pueden emitirse fotones de rayos X dispersados desde el núcleo, manifestando una radiación continua de rayos X debido a la ionización de la capa interna del átomo, lo cual produce el espectro de rayos X característico.

La intensidad de la radiación continua es una función del número atómico y la aceleración del voltaje. Con forme el voltaje aumenta, la radiación continua manifiesta una longitud de onda más corta y la intensidad incrementa. A medida que incrementa la radiación continua, también incrementa el número atómico, por lo que, los elementos más pesados tiene mayor dispersión nuclear, menor energía perdida entre la interacción de los electrones.

La radiación X característica resulta de la interacción de los electrones incidentes con los electrones pertenecientes a las capas internas de los átomos de la muestra. Así un

electrón incidido puede desalojar a un electrón de la capa interna, llevando al átomo aun esta excitado. El átomo retorna a su estado original por la transición de otro electrón que cubre el hueco en la capa interna, así pues el átomo pierde energía específica por la emisión de un fotón de radiación X.

El fotón de rayos X emitido tiene un nivel de energía discreto igual a la diferencia de energía entre el estado inicial y el final del átomo, eso es las longitudes de onda son características de los fotones de rayos x para cada elemento químico.

2.2.2 Microscopia electrónica de transmisión (MET)

Además de proporcionar información cristalográfica, los haces electrónicos se pueden utilizar para producir imágenes de las superficies, esto a través de microscopios electrónicos.

En un microscopio electrónico de trasmisión (TEM), los electrones de una fuente, como la de un cañón de electrones, entran en la muestra, se dispersan al pasar a través de ella y se enfocan con un lente de objetivo, se amplifican mediante un lente amplificador (proyector) y finalmente producen la imagen deseada. La longitud de onda de los electrones en el haz incidente viene dada por una forma modificada de la siguiente ecuación:

$$\lambda = \frac{0.0388}{\sqrt{V}} nm$$
 Ecuación 2.5

Donde la energía adquirida por los electrones es E=eV, tal que V es el voltaje de aceleración expresado en kilovoltios. Las imágenes se forman porque los diferentes átomos interactúan y absorben electrones en diferente extensión.

Un microscopio electrónico de transmisión puede formar imágenes mediante el uso de la Difracción Electrónica del Área Seleccionada (SAED), abertura localizada entre los lentes del objetivo y el proyector tal como se muestra en la figura 2.5.

Figura 2.5 Posiciones de los detectores de señales en una columna de microscopio electrónico (Poole & Owens, 2003)

La parte principal del has electrónico transmitido por la muestra consiste en electrones que no han sufrido dispersión alguna. El haz también contiene electrones transmitidos sin desviación. En la figura 2.5, se muestra el detector o pantalla de visualización donde se observa la imagen de campo brillante. Si la apertura se coloca para seleccionar solo uno de los haces reflejados de un campo particular, como resultado se genera una imagen de campo obscuro en la pantalla de visualización. Los detalles de la imagen de campo obscuro que se forma pueden depender del has difractado especifico, que se selecciona para formar la imagen. En la figura 2.5, se observan las posiciones donde se encuentra localizada la apertura de campo brillante (BF) y de campo obscuro (DF) (Poole & Owens, 2003).

2.2.3 Microanálisis por Espectroscopía de Dispersión de Energía de Rayos X, (EDXS, Energy-Dispersive X-Ray Spectroscopy)

Al realizar un microanálisis de rayos X, se identifican los elementos por la energía de los picos y se cuantifican las cantidades o proporciones en que éstos se encuentran en la muestra, por sus intensidades. Esta técnica se puede acoplar tanto a MEBs como a METs.

En esta técnica de cuantificación por rayos X en MEB el análisis es obtenido desde un volumen muy pequeño de muestra, hablamos de un volumen de 10⁻¹² cm³. Es posible determinar concentraciones que van desde 0.01% (100 ppm), que corresponden a los límites de detección, en términos de masa de 10⁻¹⁶ a 10⁻¹⁵ g. La posibilidad de detectar 10⁻¹⁶ a 10⁻¹⁵ g en un análisis por MEB significa que es una técnica de análisis de trazas. El termino traza es usado en la comunidad analítica, refiriéndose a la capacidad de detectar una diminuta fracción de un constituyente en un análisis (Rochow, 1994).

2.3 Difracción de rayos X

El análisis de la difracción de rayos X es una técnica que permite determinar la distribución de átomos, iones o moléculas en los cristales. La arquitectura de las estructuras cristalinas se basa en la distribución de periódica de átomos, iones y moléculas en una red tridimensional. Se trata de distribuciones regulares, separadas por distancias constantes características. La difracción en los cristales es una consecuencia de la disposición periódica de átomos que conforman la unidad básica de los cristales o celda unitaria (Besoain, 1985).

2.3.1 Propiedades y características de los rayos X

Los rayos X forman parte del espectro electromagnético, situados es la región de las ondas cortas, comparables a la luz visible pero con una longitud de onda de 5000 a 10000 veces inferior. En la figura 2.6 se muestra la región de los rayos X que se encuentra entré los rayos γ , que emiten los elementos radiactivos, y la radiación ultravioleta (Besoain, 1985).

Figura 2.6 Representación del espectro electromagnético (McMurry, 2008)

La radiación electromagnética se desplaza a través del espacio sin transferencia de materia: viaja en línea recta sin interferencia de campos magnéticos o eléctricos. Las radiaciones electromagnéticas tienen la doble propiedad de exhibir efectos de interferencia, es decir actúa como onda; además actúa como partícula, esto es como cuantos discretos de e energía que pueden ser difundidos por los electrones. Aunque la longitud de onda de los rayos X se extiende desde 0.01 a 100 Å, la longitud de onda de mayor interés para el análisis mineralógico va de 0.4 a 3 Å (Besoain, 1985).

2.3.2 Interacción de los rayos X con la materia

Ocurren varios procesos cuando un haz de rayos x atraviesa materia; algunos rayos pueden persistir como fotones, sin sufrir desviación alguna, sin perder energía y sin alterar su longitud de onda, este proceso es conocido como difusión. Algunos rayos difundidos pierden algo de su energía e incrementan ligeramente su longitud de onda, este fenómeno se define como difusión o efecto Comton; otros rayos pueden ser absorbidos por átomos, como resultado de la absorción fotoeléctrica, este hecho produce rayos X característicos (fluorescentes) y fotoelectrones. La longitud de onda de estos rayos depende solo de naturaleza del átomo excitado (Bermúdez, 1981).

2.3.3 Condiciones de los rayos X y la ley de Bragg

En 1912 Max Von Laue planteo que un cristal está constituido por átomos espaciados regularmente, estos pueden actuar como centros de difusión de rayos x; dado que estos rayos son radiaciones electromagnéticas, cuya longitud de onda corresponde a las distancias interatómicas del cristal, entonces es posible difractar los rayos X en ese cristal (Cullity, 1956).

Sir W. H. Bragg y su hijo Sir W. L. Bragg consideran que los rayos X pueden considerarse reflejados por muchos planos atómicos paralelos del cristal, en la figura 2.7 se ilustra como las ondas penetran las capas exteriores del cristal, las cuales son reflejadas parcialmente por el primer plano de átomos, en parte por el segundo plano y así sucesivamente; es la periodicidad de la distribución atómica hace posible la difracción.

Figura 2.7 Representación del haz incidente y el haz difractado, en difracción de rayos X (León & Garcia, 2013)

Dos características importantes que menciona Cullity (Cullity, 1956) son:

I. Los rayos difractados por un cristal están formados por rayos difundidos por todos los átomos del cristal que encuentra a su paso el rayo incidente.

II. La difracción de rayos monocromáticos tiene lugar solo en ángulos de inclinación particulares, que satisfacen la ley de Bragg.

Como se mencionó anteriormente, la determinación de la estructura por difracción depende de la periodicidad de la estructura y por lo tanto produce una imagen media o de largo alcance. Para que la difracción sea máxima se debe cumplir la ley de Bragg.

 $2d_{hkl} \operatorname{sen} \theta = n\lambda$

Ecuación 2.6

Donde.

n es un número entero.

 λ es la longitud de onda de los rayos X.

d es la distancia entre los planos de la red cristalina.

 θ es el ángulo entre los rayos incidentes y los planos de dispersión.

CAPITULO 3

Métodos y materiales

En este capítulo se presentan los métodos y materiales utilizados para la modificación de la haloisita en medio ácido, la caracterización, así como el estudio de la adsorción de verde de metilo sobre la haloisita natural y las modificadas.

3.1 Preparación de los adsorbentes

La preparación de los nuevos materiales adsorbentes, consistió en dos etapas, la primera fue la hidratación de la haloisita natural y la segunda el tratamiento con ácido clorhídrico.

3.1.1 Material, reactivos y equipo

La haloisita natural y el ácido clorhídrico fueron adquiridos de Sigma-Aldrich y ambos se utilizaron sin tratamiento previo, ya que estos reactivos se adquirieron con la concentración requerida para la experimentación. El agua desionizada se obtuvo con un Desionizador MilliPore. En la tabla 3.1 se enlistan los reactivos, materiales y equipos empleados en la elaboración de las haloisitas modificadas.

Material	Reactivos.	Equipo.
1 Vaso de pp.de 1 L	Haloisita (Nanoclay)	Parrilla con agitador magnético VWR Hotplate/Stirrer
1 Vaso de pp. 250 mL	Agua Desionizada.	Balanza Analítica OHAUS modelo Item Pa 214
Probeta 1 L	HCI	Desionizador MilliPore
Barra magnética de 4 cm		Centrifuga FI ROTOFIX 32A
Espátula		Estufa THERMO SCIENTIFIC
Vidrio de reloj de 20 cm de diámetro		Potenciómetro portátil HANNA instruments
1 Termómetro de -10 a 100° C		
1 Embudo de vidrio		
1 Piseta con agua desionizada		
1 Mortero de porcelana con pistilo		
Papel filtro poro chico		

Tabla 3.1 Reactivos, materiales y equipo utilizados para la preparación de los catalizadores

3.1.2 Metodología

3.1.2.1 Tratamiento ácido de haloisita

50 gramos de haloisita suspendidos en 250 mL de agua desionizada fueron adicionados en 500 mL de soluciones de ácido clorhídrico 0.015 M, para alcanzar una concentración final de 1x10⁻² M (preparada en agua desionizada) las mezclas fueron colocadas en baños de arena a 40 y 80° C. las mezclas se mantuvieron con agitación constante durante 12 horas. El producto fue filtrado y lavado con agua desionizada hasta que las aguas

residuales alcanzaron pH= 7.0, se secó a temperatura controlada de 80° C durante 12 horas. El producto seco se molió en un mortero de ágata las muestras fueron denominadas H001 y H002.

3.2 Caracterización de los adsorbentes

En este apartado se describen los estudios realizados para la caracterización de las haloisitas natural (HN) y modificadas.

3.2.1 Adsorción-Desorción de nitrógeno

El área superficial y tamaño de poro de los adsorbentes fueron obtenidos utilizando las isotermas de adsorción de nitrógeno a 77 K en un aparato Quantachrome Autosorb Automated Gas Sorption en las condiciones descritas en la tabla 3.2 bajo estas condiciones se adsorben varias capas y mediante la aplicación de la ecuación de BET, se determinó el volumen de una monocapa y con este dato el área superficial especifica

Tabla 3.2 Datos y condiciones de análisis de los estudios de Adsorción-Desorción de N2

Datos y condiciones de análisis.	HN	H001	H002
Equipo.	Quantachrome /	Autosorb Automate	d Gas Sorption.
Software	Autos	sorb 1 for Windows	1.50
Gas de Análisis.	Nitrógeno.	Nitrógeno.	Nitrógeno.
Área superficial de la molécula de nitrógeno.	16.2 A ² /molécula	16.2 A ² /molécula	16.2 A ² /molécula
Temperatura de desgasificación.	300° C	200° C	200° C
Tiempo de desgasificación.	10 h.	10 h.	10 h.
Peso de la muestra.	0.088 g	0.088 g	0.088 g
Temperatura del Gas.	77.4° Ř	77.4° K	77.4° K
Tiempo de análisis.	218.7 min	285.8 min	262.7 min

3.2.1.1 Distribución de tamaño de poro método BJH

El análisis de distribución de tamaño de poro se realizó con los datos obtenidos del análisis de Adsorción-Desorción de nitrógeno por medio de una aplicación del software "Autosorb 1 for Windows 1.50".

3.2.2 Difracción de rayos X

Los estudios de difracción de rayos X se realizaron con un equipo de Diffraktometer D5000 bajo las condiciones que se muestran en la tabla 3.3. A partir de los patrones de difracción de rayos X, se determinaron las fases cristalinas presentes.

Tabla 3.3 Datos y	condiciones e	experimentales of	del estudio de	Difracción de	rayos X
-------------------	---------------	-------------------	----------------	---------------	---------

Datos y condiciones de análisis.	HN	H001	H002
Equipo	Diffraktometer D5000		
Marca		Siemens	
Tubo de rayos x	Cobre		
Longitud de onda	1.5406 Å		
Software	D	IFFRAC AT	Г

3.2.3 Metodología de la realización de los estudios de difracción de Rayos X Las muestras de haloisita se colocaron en el porta muestras, compactando la muestra con una lámina de vidrio, procurando que la superficie de la muestra permaneciera homogénea; tras compactar la muestra, se retiró el exceso de haloisita.

Posteriormente, el porta muestras, se colocó en el equipo de difracción de rayos X, para realizar los estudios. Una vez concluida la difracción de rayos X, la muestra se retiró y se guardó. El porta muestras se limpió con algodón y alcohol etílico de 96°, posteriormente se secó el porta muestras para preparar la siguiente haloisita.

3.2.4 Micrografía electrónica de barrido (MEB) y microanálisis (EDXS)

Los microanálisis fueron realizados utilizando un espectrómetro de dispersión de energía de rayos X en las condiciones mostradas en la tabla 3.4, la digitalización posterior de dichas imágenes se realizó con una definición del orden de micras.

Datos y condiciones de análisis.	HN	H001	H002
Equipo	JXA-890	0RJ electron mi	croprobe
Marca	JEO	L Ltd., Tokyo, J	apan
Tiempo de adquisición		15 segundos	
Voltaje de aceleración		20 KeV	
Corriente de sonda	1.683 E-7 A	1.483 E-7 A	1.497 E-7 A
Escala de la imagen	200 µm	500 µm	500 µm

Tabla 3.4 Datos y condiciones de las Microscopias Electrónicas de Barrido

3.2.5 Micrografía electrónica de transmisión

Los estudios de microscopia electrónica de transmisión se realizaron con un microscopio electrónico JEOL JEM-1005 bajo las condiciones descritas en la tabla 3.5. Con este estudio se obtuvieron imágenes de los nanotubos de las haloisitas natural y modificadas.

Tabla 3.5 Datos y condiciones de análisis de las Micrografías Electrónicas de Transmisión

Datos y condiciones de análisis	HN	H001	H002
Equipo		JEOL JEM-100	5
Voltaje	120 Kv		
Rejillas.	Rejill	las de cobre de	3 mm
Membrana	Membra	ana plástica de l	Parlodión

3.2.5.1 Metodología para la preparación de la muestra

Para preparar la muestra de las haloisitas y poder observarlas en el microscopio electrónico de transmisión, se siguió la técnica de tinción negativa, descrita en la "Guía de Microscopia Electrónica" (González, Ruiz, & Hernández, 2003). Esta técnica de tinción está diseñada para muestras biológicas virus, bacterias y células.

Se preparó una suspensión de cada haloisita con agua Milli-Q, sobre papel parafilm se colocan dos gotas de la suspensión, en estas gotas se colocan dos rejillas de cobre de 3 mm con membrana de parlodión, durante 30 min, para permitir la adsorción de la muestra. Posteriormente se retiraron las rejillas, el exceso se adsorbió con papel filtro para secar las rejillas, las rejillas se secaron en la estufa a 35°C antes de observar las muestras en el microscopio.

3.3 Estudio de adsorción de verde de metilo sobre haloisita natural y las haloisitas modificadas

Para los estudios de verde de metilo se empleó el reactivo "Methyl Green" de Baker Chemical con una pureza menor o igual al 100%. Los estudios de adsorción que se realizaron consisten desde la determinación de la longitud de onda máxima de adsorción (experimental), la elaboración de la curva de calibración, las cinéticas y las isotermas de adsorción.

3.3.1 Material, reactivos y equipo

 Tabla 3.6 Materiales y reactivos para realizar los estudios de adsorción de VM

Material	Reactivos.	Equipo.
96 Viales de vidrio con tapón de hule	Verde de metilo	Parrilla con agitador magnético VWR Hotplate/Stirrer
8 Barras magnéticas de 0.5 cm	Agua Desionizada	Balanza Analítica OHAUS modelo Ítem Pa 214
8 Matraces aforados de 10 mL	Agua destilada	Desionizador MilliPore
24 juntas para micropipeta		Centrifuga FI ROTOFIX 32A
1 Piseta con agua desionizada		Micropipeta de 0.5 mL
1 Pipeta volumétrica de 5 mL		1 Baño de temperatura constante polystat
1 Propipeta		Espectrofotómetro Pekín Elmer Lamba 25
2 Celdas de cuarzo para espectrofotómetro		

3.3.2 Obtención de la longitud de onda de máxima absorbancia del verde de metilo

Se preparó una solución de 10 ppm de verde de metilo en agua desionizada, dicha solución se leyó en el espectrofotómetro empleando agua desionizada como blanco para

la obtención del espectro de absorción de verde de metilo en un rango de 1100 a 200 nm. Registrando lecturas cada nanómetro.

3.3.3 Curva de calibración

La curva de calibración se realizó a partir de una solución Stock de verde de metilo (VM) de 259.021 ppm. Realizando una serie de diluciones a partir de la solución stock para preparar cada sistema perteneciente a la curva. La siguiente tabla muestra las diluciones que se realizaron y la concentración calculada.

Sistema.	Concentración de verde de metilo [VM] ppm.	Factor de dilución mL
1	25.9022	01:10
2	20.7216	0.8:10
3	15.5412	0.6:10
4	12.9511	0.5.10
5	10.3608	0.4:10
6	6.4755	5:10 (a partir del sistema 4).
7	5.1804	0.2:10
8	2.59022	0.1:10
9	1.29511	5:10 (a partir del sistema 8).
10	0.64755	5:10 (a partir del sistema 9).

Tabla 3.7 Elaboración de la curva de calibración de verde de metilo VM

A cada sistema se le leyó la absorbancia a 632.5 nm.

Cabe mencionar que la solución Stock se preparó pesando 0.02590 g de verde de metilo en 100 mL de agua desionizada.

3.3.4 Estudio de la cinética de adsorción de verde de metilo sobre las haloisitas natural y modificadas

El estudio de la cinética de adsorción de 8 horas de verde de metilo se realizó utilizando sistemas independientes para cada hora. Por lo que cada cinética consto de 8 sistemas independientes.

Se pesaron 20 miligramos de arcilla para cada sistema en cada cinética, de igual forma cada sistema constaba con una barra magnética de 0.5 cm para la agitación. Una vez listos los ocho sistemas de la cinética, se les agregó 5 mL de una solución de VM de 600 ppm, manteniendo agitación constante a 600 rpm a temperatura ambiente (24° C). Durante las ocho horas que dura la cinética se retiraba un sistema por hora, el cual se centrifugaba a 2000 rpm por 3 min para precipitar la arcilla y recuperar el sobrenadante, el cual se trasvaso en un vial limpio y seco. Una vez completada la cinética, con los

sobrenadantes de los respectivos sistemas, fue necesario diluir 0.5 mL del sobrenadante en 10 mL de agua desionizada antes de leer en el espectrofotómetro Perkín-Elmer. Este estudio se realizó por duplicado para las tres haloisitas.

3.3.5 Estudio de la cinética de adsorción de verde de metilo sobre las haloisitas natural y modificadas, para la determinación de la energía de activación

Los experimentos, para determinar la energía de activación de adsorción de verde de metilo se realizaron a temperatura ambiente (24 °C) ,40 y 60°C, utilizando 5 sistemas independientes en tiempos de 15, 30, 60, 90 y 120 min para cada haloisita. Para estos ensayos la temperatura de los sistemas no debía exceder los 70°C ya que el VM se descompone a cristal violeta a temperaturas entre 70 y 80°C.

Se pesaron 10 miligramos de arcilla por vial, a cada vial se le colocó una barra magnética para mantener agitación constante. Una vez listos los sistemas de cada arcilla, se les agregaron 5 mL de una solución de VM de 72 ppm para las haloisitas modificadas, en tanto que a los sistemas de la haloisita natural se les agrego 5 mL de una solución de VM de 150 ppm. Se tomó la decisión de utilizar dos concentraciones iniciales, ya que experimentos previos indicaban que la haloisita natural era capaz de adsorber mayor cantidad de VM que las haloisitas modificadas. Recalcando que antes de agregar la solución del colorante, está ya estaba a la temperatura del sistema de estudio es decir a temperatura ambiente (24° C), 40 y 60° C respectivamente. En cada lapso. Una vez cumplido cada lapso de tiempo se retiraba un sistema independiente, que se centrifugaba a 3000 rpm por 1 min; se recuperaba el sobrenadante, decantándolo en un vial limpio y seco. Una vez colectados los cinco sobrenadantes, se leyeron uno a uno directamente en el en espectrofotómetro, es decir no hubo necesidad de diluir el sobrenadante antes de leer en el espectrofotómetro. Para leer la absorbancia de cada muestra se utilizó agua destilada como blanco.

3.3.6 Estudio del equilibrio de adsorción del verde de metilo sobre la natural y las haloisitas modificadas

Los experimentos, para determinar las isotermas de adsorción de verde de metilo se realizaron a temperatura ambiente (24 °C) ,40 y 60°C, utilizando 5 sistemas independientes para cada temperatura.

Se prepararon 5 disoluciones de VM de 100 ppm para el sistema 1, 150 ppm para el sistema 2, 200 ppm para el sistema 3, 250 ppm pare el sistema 4 y 300 ppm para el sistema 5, para los estudios de equilibrio de adsorción de verde de metilo.

Se pesaron 10 miligramos de arcilla por vial (sistema), a cada vial se le colocó una barra magnética para mantener agitación constante. Una vez listos los sistemas de cada arcilla, se les agregaron 5 mL de la solución de VM correspondiente a cada sistema. Cada sistema se mantuvo bajo temperatura y agitación constante de 800 rpm, utilizando un baño de arena durante 14 horas.

Una vez completadas las 14 horas, los sistemas se retiraban del baño de arena, los sistemas que se mantuvieron a 40 y 60 °C, se dejaron enfriar a temperatura ambiente por 30 min; pasados estos 30 minutos, cada sistema se centrifugaba a 3000 rpm por 3 min, se recuperaba el sobrenadante, decantándolo en un vial de vidrio limpio y seco. Una vez colectados los cinco sobrenadantes correspondientes a cada temperatura, los sistemas 1 y 2 se leyeron directamente en el en espectrofotómetro, los sistemas 3, 4 y 5 se diluyeron 1:10 antes de leer en el espectrofotómetro. Para leer la absorbancia de cada muestra se utilizó agua destilada como blanco.

Destacando que cada estudio del equilibrio de adsorción de VM sobre las haloisitas natural y modificadas se llevó a cabo por duplicado para cada haloisita.

3.3.6 Determinación de los parámetros termodinámicos de adsorción del verde de metilo sobre la natural y las haloisitas modificadas

Para determinar los parámetros termodinámicos de adsorción de verde de metilo, se utilizaron los datos recabados de las isotermas de adsorción, calculando así energía de activación, ΔH° , ΔS° y ΔG° .

3.4 Tratamiento de residuos

Durante el desarrollo experimental se generaron varios residuos que se describen a continuación.

De la hidratación y la preparación de las haloisitas modificadas, se recuperaron las aguas de la suspensión de haloisita, en las cuales se componen por el exceso de ácido clorhídrico y aluminio disuelto como resultado de la desaluminación de la haloisita.

De los estudios de adsorción de verde de metilo, se recuperaron los sobrenadantes de los sistemas de cada cinética y de cada isoterma, es decir el exceso de verde de metilo en solución; además de las haloisitas natural y modificadas con verde de metilo adsorbido, que también se consideran como residuos.

3.4.1 Reactivos, materiales y equipo utilizados para el tratamiento de residuos

Material	Reactivos.	Equipo.
1 vaso de pp de 1 L	Solución de NaOH 4 M	Parrilla con agitador magnético VWR Hotplate/Stirrer
1 Agitador de vidrio	Agua Desionizada.	Balanza Analítica OHAUS modelo Item Pa 214
1 Termómetro de -10 a 100° C		Desionizador MilliPore
1 Embudo de vidrio		Centrifuga FI ROTOFIX 32ª
1 Piseta con agua destilada.		Potenciómetro portátil HANNA instruments
Papel filtro.		Espectrofotómetro Perkín- Elmer lamda 25.
1 Vidrio de reloj.		
1 Matraz kitasato		
1 Embudo Buchner con chaqueta de hule.		
1 Manguera de látex		
2 celdas para espectrofotómetro.		
2 Recipientes de vidrio con tapa.		
1 Frasco gotero.		

Tabla 3.8 Material y reactivos utilizados para el tratamiento de resultados

3.4.2. Tratamiento de residuos en solución

Las aguas que se obtuvieron de la preparación de las haloisitas H001 y H002 así como las obtenidas de los lavados continuos al purificar las haloisitas y los sobrenadantes de los estudios de adsorción de verde de metilo, se mezclaron en un vaso de precipitados de 1L. Las aguas presentaban pH= 2, estas aguas se neutralizaron con NaOH 4M hasta pH= 6, una vez alcanzado el pH= 6 de los residuos, se empleó la técnica de Coagulación-Floculación para tratar los residuos, aprovechando el Al(OH)₃ (sólido) producido por el cambio de pH. El tiempo que duró la formación del floculó fue de 12 horas. Después de la floculación, se decantó la parte clarificada, conservando el floculo.

Se obtuvo el espectro de absorción de la zona clarificada de la floculación, empleando agua destilada como blanco. Para posteriormente desecharla a la tarja. Se filtró el floculo por gravedad, para posteriormente secarlo y confinar los residuos sólidos.

3.4.3 Tratamientos de residuos sólidos

Los residuos de haloisitas natural y modificadas producidas en el estudio de adsorción de verde de metilo, se reunieron filtrando a vacío, las arcillas colectadas se secaron a 80°C en una estufa. Posteriormente se etiquetaron y confinaron. Cabe hacer mención que dentro de nuestro grupo de trabajo se están realizando estudios con la finalidad de poder reciclar las haloisitas natural y modificadas tratando de desorber el VM.

CAPITULO 4

Resultados y discusión

En este capítulo se presentaran los resultados y la interpretación de los mismos de los diferentes estudios realizados para la caracterización de las haloisitas natural y modificadas, así como los resultados del estudio de adsorción de VM sobre las muestras de haloisita.

4.1 Resultados del tratamiento ácido sobre haloisita

Después del tratamiento ácido se observó un ligero cambio de coloración en las nuevas haloisitas modificadas, en la figura 4.1 se observa una fotografía de la haloisita natural antes del tratamiento ácido, la haloisita natural se observa como un polvo fino de color blanco; en la figura 4.2 se observa la fotografía de la haloisita H001, esta haloisita es un polvo blanco acompañada de pequeños terrones. En la figura 4.3 se observa la fotografía de la haloisita H002, esta haloisita es un polvo de color amarillo claro, en la cual también se presentan pequeños terrones.

Figura 4.1 Fotografía de la haloisita natural

Figura 4.2 Fotografía de la haloisita 001

Figura 4.3 Fotografía de la haloisita H002

Tras el tratamiento ácido con el que se preparó la haloisita H001, se recuperaron 31.5634 g de material. En el caso de la haloisita H002 se recuperaron 30.8194 g de material. La pérdida de masa en cada haloisita recuperada se debe a la desaluminación de la capa octaédrica de la haloisita provocada por el tratamiento ácido (Jozefaciuk & Bowanko, 2002).

4.2. Adsorción-Desorción de nitrógeno

4.2.1 Distribución de tamaño de poro

Se determinó la distribución de tamaño de poro empleando los datos del estudio de desorción de nitrógeno, aplicando el método BJH. En el gráfico 4.1 se presentan la distribución de tamaño de poro de las muestras de haloisita natural, H001 y H002. Las distribuciones de tamaño de poro, así como los máximos obtenidos se muestran en la tabla 4.1.

	HN	H001	H002
Distribución de poro.	Bimodal.	Mono modal.	Bimodal.
Volumen máximo (nm)	38 y 92	32	17 y 32
Volumen total de poro (cc/g).	0.1646	0.264	0.266
Diámetro promedio de poro (nm).	19.09	18.9	15.75
Diámetro promedio de poro (nm).	19.09	18.9	15.75
Tipo de material.	Mesoporoso.	Mesoporoso.	Mesoporoso.

	Tabla 4.1	Distribución	de tamaño	de poro
--	-----------	--------------	-----------	---------

La haloisita natural presenta una distribución de tamaño de poro de 17 a 1600 A, el equivalente de 1.7-160 nm, valores que indican esta muestra contiene material micro (1.7-2.0 nm), meso (2-50 nm) y macroporoso (mayor a 50 nm) (G. Leofanti, 1998). La

distribución es de tipo bimodal, con máximo en la región de los mesoporos 38 nm en la región de los mesoporos (38 nm) y otro máximo en la región de los macroporos (92 nm).

La muestra H001, presenta una distribución de tamaño de poro de tipo monomodal, de 14 a 1400 A, el equivalente de 1.4-140 nm, valores que indican esta muestra contiene material micro, meso y macroporoso, con un máximo en la región de los mesoporos 32 nm. Finalmente la muestra de haloisita H002, presenta una distribución de tamaño de poro de tipo bimodal, de 12 a 1400 A, el equivalente de 1.2-140 nm, valores que indican esta muestra contiene material micro, meso y macroporoso, con un máximo en la región de los Microporos (17 nm) y otro máximo en la región de los Mesoporos (32 nm).

Como se puede observar en el gráfico 4.1, se observa la formación de material microporoso de las muestras H002 y H001; también se observa que el máximo en la distribución de tamaño de poro correspondiente al material mesoporoso. Los resultados anteriores indican que el tratamiento ácido genera partículas de menor tamaño de poro. En el gráfico 4.1, se muestran los gráficos de BJH, en donde se observa la distribución de tamaño de poros, así mismo se observa que se trata de materiales mesoporosos.

Gráfico 4.0.1 Distribución de tamaño de poro bimodal "Haloisita Natural" y H002, distribución de tamaño de poro monomodal haloisita H001 por el método BHJ

4.2.2 Tipos de poros

Los ciclos de histéresis obtenidos por la adsorción-desorción de nitrógeno, para las muestras de haloisita natural y modificadas se observan en el gráfico 4.2, los cuales presentan ciclos de histéresis de tipo H3, estos ciclos de histéresis son característicos de sólidos que consisten de agregados o aglomerados de partículas que forman poros en forma de rendija (placas o partículas afiladas como cubos) con poros de tamaño y forma no uniformes.

Gráfico 4.0.2 Ciclo de Histéresis tipo H3 de adsorción-desorción para la haloisita natural, H001 y H002

4.2.3. Área superficial Isoterma de BET

Para calcular el área superficial de cada arcilla se empleó la isoterma de BET, calculado por el software "Autosorb 1 for Windows 1.50". En la tabla 4.2 se presentan las áreas superficiales calculadas correspondientes a cada haloisita.

Tabla 4.2 Área superficial calcula por la isoterma de BET a partir de los datos de Adsorción-Desorciónde Nitrógeno

	Haloisita natural.	H001	H002
Área superficial calculada (m²/g).	34.49	56	67.56
Vm	9.9051x10 ⁻³	1.6077x10 ⁻²	1.9401x10 ⁻²
С	157.5	194.8	774.2
r ²	0.999949	0.999998	0.999634

Se aprecia que las haloisitas modificadas poseen mayor área superficial que la haloisita natural, esto como resultado del tratamiento ácido al que se sometieron. Así como el valor de "C" la constante de la isoterma de BET y "V_m" el volumen de nitrógeno adsorbido que corresponde a la formación de la monocapa.

El área superficial de las arcillas se calcula utilizando el volumen del gas adsorbido que forma la monocapa " V_m ", el Numero de Avogadro " N_a ", y el área que ocupa una molécula de nitrógeno " A_m ", tal como se describe ecuación 4.X

$$A_s = V_m N_a A_m$$
 Ecuación 4.1

4.3. Microscopia Electrónica de Barrido

Los estudios de microscopia electrónica de barrido se realizaron con la finalidad de obtener una imagen microscópica de la textura de las arcillas de estudio. Como anteriormente se mencionó, una gran ventaja que genera este estudio es el hecho de que además de obtener información de la textura de la muestra, también se obtiene información de la composición química de la misma.

En las imágenes que se obtuvieron de las micrografías electrónicas de barrido, se observa la textura de cada haloisita, así mismo se señala el punto que fue objeto para el análisis de la composición química de la muestra. En la figura 4.4 se exhibe la micrografía de la haloisita natural.

Figura 4.4 Microscopia Electrónica de Barrido de la haloisita natural

La tabla 4.3 muestra la composición química de la haloisita natural refiriéndose a los 3 puntos establecidos en la imagen de la MEB; así como la composición de la haloisita correspondiente a toda el área observada.

	Composición química de la haloisita natural				
Elemento	Área total	Punto 1	Punto 2	Punto 3	
Na	0.0501	0.502	0.46	0.2587	
Mg	0.004	0.036	0.242	0.000	
AI	28.508	26.508	1.957	29.923	
Si	62.805	60.266	1.162	61.207	
K	2.022	0.000	0.678	0.329	
Ca	2.185	2.614	0.7173	2.501	
Mn	0.851	1.993	49.273	0.000	
Fe	2.71	0.000	41.796	0.812	
Ti	0.054	0.000	0.611	1.333	
Ni	0.063	0.000	1.765	2.219	
S	0.0403	0.000	0.187	0.000	
Si/Al	2.2030				

Tabla 4.3 Composición química de la haloisita natural obtenida por MEB

En la tabla 4.3 donde se muestra la composición química de la muestra de haloisita natural, en la primer columna se hace referencia al espectro de la composición química de toda el área que ocupa la muestra "287.5 µm".

La micrografía de la haloisita H001 se muestra en la imagen 4.5.

Figura 4.5 Microscopia Electrónica de Barrido de la haloisita H001

La tabla 4.4 se presenta la composición química de los puntos señalados en la micrografía de la haloisita H001, en la primer columna se hace referencia a la composición química de toda el área de que ocupa la muestra "500 µm".

Composición química de la haloisita H001						
Elemento	Área total	Punto 1	Punto 2	Punto 3		
Na	1.101	0.435	6.100	0.000		
Mg	0.342	0.000	0.000	0.011		
AĨ	21.715	2.181	10.046	26.863		
Si	51.851	2.155	66.616	59.940		
K	2.738	0.000	4.968	0.000		
Са	2.478	0.408	1.412	2.942		
Mn	5.091	0.345	1.408	1.705		
Fe	8.577	94.477	6.621	4.787		
Cl	6.058	1.151	1.469	1.916		
Si/AI	2 3867					

Tabla 4.4 Composición química de la haloisita H001 obtenida por MEB.

La figura 4.12 es la última micrografía que se muestra corresponde la haloisita H002, resaltando los puntos seleccionados para el análisis de la composición química.

Figura 4.6 Microscopia Electrónica de Barrido de la haloisita H002

En la tabla 4.5 se muestra la composición química de la haloisita H002, para cada punto señalado en la micrografía en la primer columna se hace referencia a la composición química de toda el área que ocupa la muestra "200 µm".

Coi	Composición química de la haloisita H002						
Elemento	Área total	Punto 1	Punto 2	Punto 3			
Na	0.91	0.000	0.298	0.000			
AI	23.247	31.085	28.412	31.959			
Si	61.26	65.871	57.084	63.826			
K	0.32	0.000	0.000	0.816			
Ca	1.094	0.617	1.954	0.149			
Mn	1.53	0.000	0.000	0.000			
Fe	3.285	1.962	5.32	0.826			
Ti	0.107	0.000	0.000	0.000			
S	0.655	0.466	1.244	0.000			
Cr	0.467	0.000	1.259	0.000			
Ni	1.363	0.000	4.109	1.195			
CI	5.611	0.000	0.000	0.000			
Si/Al	2.6351						

Tabla 4.5 Composición química de la haloisita H002 obtenida por MEB

La relación de Si/Al de las haloisitas modificadas aumento respecto a la relación de Si/Al de la haloisita natural. Se encontró una relación de 2.2030 para la haloisita natural, mientras que para las haloisitas H001 yH002 la relación fue de 2.3877 y 2.6351 respectivamente. El tratamiento ácido provoco una mayor desaluminación en la haloisita tratada a 80° C, que en la de 40° C.

4.4 Microscopia electrónica de transmisión MET

Las microscopias electrónicas de transmisión se realizaron en el Instituto de Investigaciones en Materiales en Ciudad Universitaria.

En la figura 4.7 la microscopia de la haloisita natural, se observan las estructuras de los nanotubos formando cúmulos. En la microscopia de la haloisita natural, se encontraron nanotubos con una longitud de más de 1000 nm, así mismo se encontraron algunos nanotubos de entre 500 y 800 nm, es de mencionar la presencia de algunos nanotubos de entre 200 y 400 nm. La mayoría de los nanotubos de la haloisita natural miden más de 1000nm de longitud.

Figura 4.7 Microscopia Electrónica de Transmisión de la haloisita natural

En la figura 4.8 se presenta la microscopia de la haloisita H001 donde se observan nanotubos fragmentados, en esta micrografía se observan nanotubos con longitudes de 400 hasta 500 nm de longitud, siendo estos los nanotubos de mayor tamaño encontrados en la haloisita H001.

Figura 4.8 Microscopia Electrónica de Transmisión de la haloisita H001

Las imágenes obtenidas de la haloisita H002 se muestran en la figura 4.9 donde se encontraron nanotubos con longitudes desde 300 hasta 450 nm, también se observan nanotubos más pequeños de 100 hasta los 200 nm de longitud

Figura 4.9 Microscopia Electrónica de Transmisión de la haloisita H002

Estos resultados nos ayudan a demostrar que el tratamiento ácido al que se sometió la haloisita natural redujo el tamaño promedio de los nanotubos de haloisita.

4.5 Difracción de rayos X

Se realizaron estudios de difracción de rayos X a las haloisitas natural y modificadas para estudiar la fase cristalina de las muestras así como la diferencia entre ellas.

Los patrones de difracción de rayos x de las haloisitas natural y modificadas se encuentran en el gráfico 4.3. De acuerdo con la base de datos del equipo, las muestras fueron identificadas como haloisitas, determinadas por las reflexiones características de la haloisita, $d_{001}(7.3 \text{ Å})$, $d_{110}(4.42 \text{ Å})$, $d_{002}(3.62 \text{ Å})$, $d_{203}(2.37 \text{ Å})$, $d_{003}(2.37 \text{ Å})$, $d_{243}(1.681 \text{ Å})$, $d_{330}(1.483 \text{ Å})$.

Adicionalmente se observa que la muestra tratada a 40° C se presenta una señal de 20 de 39 y 45° asignada a silicato de aluminio, en la muestra tratada a 80° C esta señal se incrementa, lo cual indica que parte del aluminio extraído por el tratamiento ácido forma esta nueva fase cristalina. En la tabla 4.6 se muestran las reflexiones calculadas de los patrones de difracción de las haloisitas natural y modificadas utilizando la ley de Bragg.

Reflexiones	HN	H001	H002
d ₀₀₁	7.24	7.24	7.2405
d ₁₁₀	4.3589	4.4202	4.3289
d ₀₀₂	3.5702	3.5589	3.4902
d ₂₀₃	2.5666	2.5266	2.5266
d ₀₀₃	2.3207	2.3309	2.3264
d ₂₄₃	1.6795	1.6494	1.6609
d ₃₃₀	1.4798	1.4689	1.4748

Tabla 4.6 Reflexiones calculadas de los patrones de difracción de las haloisitas natural y modificadas

Gráfico 4.0.3 Difracción de rayos X de las haloisitas natural y modificadas

La haloisita HN se identifico como fase única de $AI_2Si_2O_5(OH)_4$ con número de tarjeta 29-1487 JCPDS-ICDD COPYRIGHT © 1989. Las muestras H001 y H002 se identificaron como fase de $AI_2Si_2O_5(OH)_4$ con número de tarjeta 29-1487 JCPDS-ICDD COPYRIGHT © 1989, la referencia de las haloisitas viene del grupo del caolín y la serpentina, que se caracterizan por un sistema cristalino monoclínico con beta desconocida y parámetro de red a= 5.14 Å. La tarjeta de identificación, se muestra en el anexo C.

4.6 Estudios de adsorción de verde de metilo VM

En este apartado se presentan los resultados obtenidos de los estudios cinéticos y de equilibrio de la adsorción del colorante verde de metilo sobre las haloisitas natural y las tratadas con ácido

4.6.1 Espectro de Absorción de VM

En la gráfica 4.4 se muestra el espectro de absorción del verde de metilo, realizado en disolución acuosa. Se observan 4 longitudes de onda máxima 248, 314, 422 y 632. La lambda máxima, que se encuentra mejor definida y que presenta mayor coeficiente de absortividad molar es la de 632.5 nm, este resultado es muy cercano al reportado en la literatura 632 (Rytwo, Nir, Crespin, & Margulies, 2000). Cabe hacer mención que para la cuantificación de verde de metilo en los estudios cinéticos y de equilibrio de adsorción de verde de metilo sobre las haloisitas natural y modificadas, se utilizó el valor obtenido experimentalmente (632.5 nm).

4.6.2 Curva de calibración de verde de metilo

Los datos de absorbancia de las disoluciones de VM obtenidos a 632.5 nm, se muestran en la tabla 4.7, con estos datos se construyó la curva de calibración, absorbancia en función de la concentración de VM en ppm, gráfica 4.5.

Concentración de verde de metilo [VM] ppm.	Absorbancia.
25.9022	1.6855
20.7216	1.3423
15.5412	1.01
12.9511	0.8758
10.3608	0.6879
6.4755	0.399
5.1804	0.3179
2.59022	0.1782
1.29511	0.0769
0.64755	0.0416

Tabla 4.7 Curva de calibración de VM concentración vs absorbancia

Con los datos de la tabla 4.7 se construyó la siguiente curva de calibración.

Gráfico 4.0.5 Curva de calibración de Verde de metilo (VM)

Se realizó el ajuste de los datos utilizando el método de regresión lineal por mínimos cuadrados obteniéndose la ecuación 4.1 con un coeficiente de determinación (r^2) de 0.99937 de la curva, lo cual es un indicador de la linealidad de la curva, por lo anterior se consideró que en este intervalo de concentraciones de VM (0.64 a 25.90 ppm), donde se cumple con la ley de Lambert Beer.

$$y = 0.06526x - 0.0032$$
 Ecuación 4.1

4.6.3 Estudios cinéticos de adsorción

Para los estudios de la cinética de adsorción, se probaron los modelos de la cinética de adsorción de VM sobre las haloisitas natural, H001 y H002. Recordando que la cinética de adsorción se siguió por espectrofotometría, estudios que se realizaron por duplicado

4.6.3.1 Determinación de la cinética de adsorción de VM sobre la haloisita natural

En la tabla 4.8 se muestran los valores de la absorbancia de las dos réplicas de la cinética de adsorción. Los valores de absorbancia se reducen a medida que el tiempo de adsorción se incrementa.

Tiempo (h)	Absorbancia 1° replica	Absorbancia 2° replica
0	1.9546	1.9460
1	0.7009	0.9876
2	0.633	0.8148
3	0.5877	0.6990
4	0.5320	0.4645
5	0.4969	0.4230
6	0.4098	0.4033
7	0.4085	0.3949
8	0.3746	0.3634

Tabla 4.8 Variación de la absorbancia en función del tiempo para las réplicas de la cinética de adsorción de VM sobre la haloisita natural

En el gráfico 4.6 se observa la variación de la absorbancia respecto al tiempo de los experimentos de la cinética de adsorción del VM sobre la haloisita natural. En este gráfico se observa que a partir de las 6 h la absorbancia disminuye en menor proporción en función del tiempo, indicando que la adsorción de verde de metilo sobre la haloisita natural se encuentra cerca del equilibrio.

En la tabla 4.8 se muestran los valores de la absorbancia de verde de metilo a los diferentes tiempos, con estos datos se determinó la concentración de verde de metilo utilizando la ecuación obtenida para la curva de calibración, por interpolación del valor de absorbancia del sistema de estudio en la curva de calibración; al despejar el valor de "x", considerando que "y" es el valor de la absorbancia de la muestra, tal como se expresa en la ecuación 4.2:

$$x = \frac{(y+0.00324)}{0.06526}$$
 Ecuación 4.2

Para el cálculo de la concentración en la disolución inicial (la dilución que se leyó en el espectrofotómetro), se utilizó la ecuación 4.3, donde C_0 es la concentración de la disolución inicial, V_0 es el volumen de la alícuota de la disolución inicial, C_1 es la concentración de la disolución final (el sobrenadante que se recuperó tras la cinética) y V_1 es el volumen de la disolución final.

$$\boldsymbol{C}_{\mathbf{0}} = \frac{\boldsymbol{C}_{1}\boldsymbol{V}_{1}}{\boldsymbol{V}_{0}}$$
 Ecuación 4.3

Como se menciona en la parte experimental, para la determinación de las cinéticas de adsorción se requiere del cálculo de la masa adsorbida a cada tiempo; la cual se determinó con la ecuación 4.4, donde la concentración de verde de metilo a tiempo 0 [VM]_{to} es de 600 ppm, la concentración de verde de metilo a tiempo n [VM]_{tn} donde n es igual a 1, 2, 3, ..., 8, que es la concentración de VM que se determinó a cada hora durante la cinética de adsorción, la diferencia de estas concentraciones multiplicadas por el volumen de la concentración a tiempo cero y dividido entre la cantidad de haloisita que se empleó para la cinética de adsorción se calcula la cantidad de VM adsorbida por gramo de haloisita.

$$\frac{(([VM]_{t0}-[VM]_{tn}) \times 5 ml)}{0.02g} = VM_{\frac{adsorbido}{g \ de \ haloisita}}$$
Ecuación 4.4

La relación entre VM adsorbido por el material y el tiempo, es lo que permite establecer el orden de la cinética de adsorción. En la tabla 4.9, se exhiben los datos de absorbancia, la concentración de verde de metilo y la cantidad de VM adsorbido por gramo de haloisita.

	réplica 1				rép	lica 2		
Tiempo	Abs	[VM]₀	[VM]1	VM	Abs	[VM] _{dilución}	[VM] _{dilución}	VM
				adsorbido		inicial	final	adsorbido
h		Ppm	ppm	mg/g		ppm	ppm	ppm
1	0.7009	10.7902	359.6741	60.0814	0.9876	15.183	303.6592	74.0851
2	0.633	9.749	324.9668	68.7583	0.81486	12.536	250.7202	87.3199
3	0.5877	9.0553	301.8439	74.539	0.69906	10.7616	215.2314	96.1921
4	0.532	8.2023	273.4089	81.6477	0.46451	7.1675	143.3497	114.1625
5	0.4969	7.6641	255.4704	86.1323	0.42305	6.5322	130.6436	117.3391
6	0.4098	6.3284	210.946	97.2635	0.40333	6.23	124.6001	118.8499
7	0.4085	6.3091	210.3024	97.4244	0.39499	6.1022	122.0441	119.4889
8	0.3746	5.7899	192.9972	101.7506	0.36347	5.6192	112.3843	121.9039

Tabla 4.9 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción de VM sobre la haloisita natural

Para determinar el orden de la cinética de adsorción de verde de metilo sobre la haloisita, se utilizan las ya mencionadas ecuaciones de pseudo primer orden y pseudo segundo orden. Para el caso de la ecuación de pseudo primer orden se grafican log (qe-qt) contra t de la ecuación 4.5, donde qe es la cantidad de colorante adsorbido por la haloisita al equilibrio (a tiempo n), qt es la cantidad de VM adsorbida a cada hora.

$$log(q_e - q_t) = logq_e - \frac{k_1}{2.303}t$$
 Ecuación 4.5

En el caso de la cinética de pseudo segundo orden ecuación 4.6, se grafican los términos t/qt contra t, donde t es el tiempo y qt es la cantidad de VM que se adsorbe a cada hora.

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 Ecuación 4.6

En la tabla 4.10 se muestran los tiempos, los valores de la cantidad de VM adsorbido así como los términos de las ecuaciones pseudo primer orden y pseudo segundo orden para las dos réplicas de la cinética de adsorción de VM sobre la haloisita natural.

		1° réplica			2° réplica	
Tiempo	qt	Pseudo 1°	Pseudo	qt	Pseudo 1°	Pseudo 2°
	(VM adsorbido)	orden	2° orden	(VM adsorbido)	orden	orden
			<u>t</u>			<u>t</u>
h	(mg/g)	$log(q_e - q_t)$	q_t	(mg/g)	$log(q_e - q_t)$	q_t
1	60.0814	1.9148	0.0166	74.0851	1.8337	0.0135
2	68.7583	1.8664	0.0291	87.3199	1.7400	0.0229
3	74.5390	1.8308	0.0402	96.1921	1.6636	0.0312
4	81.6477	1.7827	0.0490	114.1625	1.4489	0.0350
5	86.1323	1.7493	0.0581	117.3391	1.3969	0.0426
6	97.2635	1.6533	0.0617	118.8499	1.3697	0.0505
7	97.4244	1.6518	0.0719	119.4889	1.3577	0.0586
8	101.7506	1.6077	0.0786	121.9039	1.3091	0.0656

Tabla 4.10 Cinética de adsorción de VM sobre la haloisita natural 1° y 2° réplica

La cantidad de verde de metilo adsorbida al equilibrio (qe) es de 142.2769 mg/g, este valor se determinó con 20 mg de haloisita natural en suspensión con una disolución de VM de 600 ppm con agitación a 600 rpm por un periodo de 48 horas. En el gráfico 4.7 se trazaron la cinética pseudo 1° orden y en la gráfico 4.8 se muestra la cinética de pseudo 2° orden.

Gráfico 4.0.7 Cinética de adsorción de 8 horas de VM sobre haloisita natural modelo de pseudo 1° orden

Gráfico 4.0.8 Cinética de adsorción de 8 horas de VM sobre haloisita natural modelo de pseudo 2°orden

El modelo que mejor se ajusta al fenómeno de adsorción es la cinética de pseudo 2° orden, este modelo presenta una mayor tendencia lineal con una r² de 0.9853 y 0.9955 para ambas réplicas, respecto a una r² de 0.9804 y 0.9003 de la ecuación de pseudo 1° orden, se establece que la ecuación de pseudo 2° orden presenta una mayor tendencia lineal que el modelo de pseudo primer orden.

Al comparar las dos ecuaciones del modelo de pseudo segundo orden para las réplicas que se obtuvieron, se aprecian diferencias en el valor de la pendiente y la ordenada al origen entre ambas expresiones, para la primer réplica se tiene y = 0.00725x + 0.00738 y para la segunda réplica se tiene y = 0.00858x + 0.01202.

Se realizó una prueba de hipótesis de comparación de pendientes que se ve en el anexo A para determinar si el valor de las pendientes puede considerarse iguales o no.

Con base en la prueba de hipótesis, se determinó con un 95% de confianza que el valor de las pendientes de ambas expresiones pueden considerarse iguales, por lo que no hay diferencia entre las expresiones de las dos réplicas (anexo A).

4.6.3.2 Determinación de la cinética de adsorción de verde de metilo sobre la haloisita H001

Los resultados de la variación de la absorbancia en función del tiempo para los experimentos de la adsorción del VM sobre la haloisita H001se muestran en la tabla 4.11, con estos datos se obtuvo el gráfico 4.9.

Tiempo (h)	Absorbancia 1° réplica	Absorbancia 2° réplica
0	1.9546	1.9546
1	1.3704	1.4725
2	1.3303	1.4106
3	1.3266	1.3156
4	1.2792	1.2729
5	1.2501	1.2439
6	1.2369	1.2102
7	1.2144	1.197
8	1.1984	0.7119

Tabla 4.11 Variación de la absorbancia en función del tiempo en la cinética de adsorción de VM sobrela haloisita H001

Gráfico 4.0.9 Variación de la absorbancia en función del tiempo de las réplicas de la cinética de adsorción del VM sobre la haloisita H001

En el gráfico 4.9 se observa la variación de la absorbancia con respecto al tiempo en la cinética de adsorción del VM sobre la haloisita H001. En este gráfico también se observa que a partir de la tercera hora de la cinética la adsorción del colorante tiende al equilibrio.

En la tabla 4.12 se muestra la variación de la absorbancia en función del tiempo durante la cinética de adsorción de VM sobre la haloisita H001 así como los valores de concentración de VM en disolución y la cantidad de VM adsorbido por la haloisita a cada hora; estos valores se calcularon de la misma forma que para la cinética de adsorción de VM sobre la haloisita natural.

		répl	ica 1			rép	lica 2	
Tiempo	Abs	[VM] _{dilución} inicial	[VM] _{dilución} final	VM adsorbido	Abs	[VM] _{dilución} inicial	[VM] _{dilución} final	VM adsorbido
h		ppm	ppm	mg/g		ppm	ppm	ppm
1	1.3704	21.0481	420.9623	44.7594	1.4725	22.6132	452.2648	36.9338
2	1.3303	20.4335	408.6699	47.8325	1.4106	21.6647	433.2945	41.6764
3	1.3266	20.3782	407.5636	48.1091	1.3156	20.2090	404.1802	48.9549
4	1.2792	19.6511	393.0218	51.7446	1.2729	19.5547	391.0941	52.2265
5	1.2501	19.2058	384.1158	53.9710	1.2439	19.1103	382.2066	54.4484
6	1.2369	19.0034	380.0674	54.9831	1.2102	18.5939	371.8786	57.0303
7	1.2144	18.6575	373.1505	56.7124	1.1970	18.3917	367.8333	58.0417
8	1.1984	18.4136	368.2715	57.9321	0.7119 [§]	10.9588	365.2927	58.6768

Tabla 4.12 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción deVM sobre la haloisita H001

En la tabla 4.13 se muestran los tiempos, los valores de la cantidad de VM adsorbido así como los términos de las ecuaciones pseudo 1° orden y pseudo 2° orden para las dos réplicas de la cinética de adsorción de VM sobre la haloisita H001, estos valores se determinaron de la forma ya descrita en la determinación de la cinética de adsorción de VM sobre la haloisita natural.

		1° réplica		2° réplica			
Tiempo	qt	Pseudo	Pseudo	qt	Pseudo	Pseudo	
	(VM adsorbido)	primer orden	segundo orden	(VM adsorbido)	primer orden	segundo orden	
			<u>t</u>			<u>t</u>	
h	(mg/g)	$log(q_e-q_t)$	q_t	(mg/g)	$log(q_e - q_t)$	q_t	
1	44.7594	2.2529	0.0223	36.9338	2.1695	0.0271	
2	47.8325	2.2818	0.0418	41.6764	2.2219	0.0480	
3	48.1091	2.2843	0.0624	48.9549	2.2919	0.0613	
4	51.7446	2.3159	0.0773	52.2265	2.3200	0.0766	
5	53.9710	2.3342	0.0926	54.4484	2.3380	0.0918	
6	54.9831	2.3423	0.1091	57.0303	2.3582	0.1052	
7	56.7124	2.3557	0.1234	58.0417	2.3658	0.1206	
8	57.9321	2.3650	0.1381	58.6768	2.3705	0.1363	

Tabla 4.13 Cinética de adsorción de VM sobre la haloisita H001

[§] En este sistema se corrigió de 0.5 a 0.3, dilución que se describe en la parte experimental, antes de medir la absorbancia del sistema en el espectrofotómetro.

La cantidad de verde de metilo adsorbida al equilibrio (qe) es de 81.6997 mg/g, este valor se determinó con 20 mg de haloisita H001 en suspensión con una disolución de VM de 600 ppm con agitación a 600 rpm por un periodo de 48 horas.

El gráfico 4.10 muestra el ajuste de los datos al modelo de la cinética de pseudo 1°orden, mostrándose una gran similitud entre la primera cinética y su repetición. En la gráfica 4.11 se exhiben las réplicas de la cinética de adsorción ajustadas al modelo de pseudo 2° orden.

Gráfico 4.0.10 Cinética de adsorción de 8 horas de VM sobre haloisita H001 modelo de pseudo 1° orden

Gráfico 4.0.11 Cinética de adsorción de 8 horas de VM sobre haloisita H001 ecuación de pseudo 2° orden

Comparando las r^2 de ambas ecuaciones podemos ver que las r^2 de la ecuación de pseudo segundo orden son mayores que las r^2 de la ecuación de pseudo primer orden, lo que significa que presenta un mayor tendencia lineal.

Se realizó una prueba de hipótesis con un 99% de confianza (anexo A) que muestra que las pendientes de las ecuaciones del modelo de pseudo segundo orden para las réplicas de la cinética de adsorción de verde de metilo sobre la haloisita H001 se pueden considerar iguales.

4.6.3.3 Determinación de la cinética de adsorción de verde de metilo sobre la haloisita H002

Los datos que se recabaron de las absorbancias de las cinéticas de adsorción de VM sobre la haloisita H002 se exhiben en la tabla 4.14.

Tiempo (h)	Absorbancia 1° réplica	Absorbancia 2° réplica
0	1.9546	1.9563
1	1.5690	1.6242
2	1.4450	1.3461
3	1.3036	1.2439
4	1.2592	1.1335
5	1.2006	1.0012
6	1.1839	0.9848

Tabla 4.14 Variación de la absorbancia en función del tiempo en la cinética de adsorción de VM sobrela haloisita H002

7	1.1341	0.9341
8	1.0913	0.8921

Con los datos de la tabla 4.14 se elaboró el gráfico 4.12 en el que se observan los cambios de la absorbancia en función del tiempo para las réplicas de la cinética de adsorción de VM sobre la haloisita H002. En el gráfico 4.12 se observa que la variación de la absorbancia sigue la misma tendencia, a pesar de que la absorbancia no se aproximan entre réplicas con forme se acercan al equilibrio.

Gráfico 4.0.12 Variación de la absorbancia en función del tiempo de las réplicas de la cinética de adsorción del VM sobre la haloisita H002

En la tabla 4.15 se muestra la variación de la absorbancia en función del tiempo durante la cinética de adsorción de VM sobre la haloisita H002 así como los valores de concentración de VM en disolución y la cantidad de VM adsorbido por la haloisita a cada hora, estos valores se calcularon tal como se describió anteriormente.

Tabla 4.15 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción de
VM sobre la H002

Tiempo	Abs	[VM] dilució n inicial	[VM] dilució n final	VM adsorbido	Abs	[VM] dilució n inicial	[VM] dilució n final	VM adsorbido
h		ppm	ppm	mg/g		ppm	ppm	ppm
1	1.5690	24.0919	481.8388	29.5403	1.6242	24.9378	498.7557	25.3111

2	1.4450	22.1918	443.8370	39.0408	1.4761	22.6684	453.3681	36.6580
3	1.3036	20.0251	400.5026	49.8743	1.3439	20.6427	412.8532	46.7867
4	1.2592	19.3448	386.8955	53.2761	1.2335	18.9510	379.0193	55.2452
5	1.2006	18.4468	368.9366	57.7659	1.1912	18.3028	366.0558	58.4861
6	1.1839	18.1909	363.8186	59.0454	1.1848	18.2047	364.0944	58.9764
7	1.1341	17.4278	348.5565	62.8609	1.1441	17.5811	351.6212	62.0947
8	1.0913	16.7720	335.4398	66.1401	1.0991	16.8915	337.8302	65.5424

La cantidad de verde de metilo adsorbida al equilibrio (qe) es de 76.2157 mg/g, este valor se determinó con 20 mg de haloisita H002 en suspensión con una disolución de VM de 600 ppm con agitación a 600 rpm por un periodo de 48 horas.

En la tabla 4.16 se muestran los tiempos, los valores de la cantidad de VM adsorbido por gramo de haloisita, así como los términos de las ecuaciones pseudo1° orden y pseudo 2° orden para las dos réplicas de la cinética de adsorción de VM sobre la haloisita H002. Con estos datos se construyó el gráfico 4.13 de la cinética de pseudo 1° orden y el gráfico 4.14 de la cinética de adsorción de pseudo 2° orden.

		1° réplica		2° réplica		
Tiempo	qt	Pseudo 1°	Pseudo	qt	Pseudo 1°	Pseudo 2°
	(VM adsorbido)	orden	2° orden	(VM adsorbido)	orden	orden
			<u>t</u>			<u>t</u>
h	(mg/g)	$log(q_e - q_t)$	q_t	(mg/g)	$log(q_e - q_t)$	q_t
1	29.5403	1.6691	0.0339	25.3111	1.7068	0.0395
2	39.0408	1.5703	0.0512	36.6580	1.5972	0.0546
3	49.8743	1.4206	0.0602	46.7867	1.4688	0.0641
4	53.2761	1.3606	0.0751	55.2452	1.3216	0.0724
5	57.7659	1.2660	0.0866	58.4861	1.2487	0.0855
6	59.0454	1.2348	0.1016	58.9764	1.2365	0.1017
7	62.8609	1.1256	0.1114	62.0947	1.1499	0.1127
8	66.1401	1.0033	0.1210	65.5424	1.0283	0.1221

Tabla 4.16 Cinética de adsorción de VM sobre la haloisita natural 1° y 2° réplica

Comparando las r² obtenidos por la ecuación de pseudo primer orden de 0.984 y 0.9683 con las r² de la ecuación de pseudo segundo orden de 0.9953 y 0.9948, para las respectivas réplicas, se observa que las r² de la ecuación de pseudo segundo orden son

mayores que las r² de la ecuación de pseudo primer orden, lo que significa que el modelo de pseudo segundo orden presenta mayor carácter lineal por lo tanto este modelo describe mejor la adsorción del VM sobre la haloisita H002. Las pendientes de las réplicas de la ecuación de pseudo segundo orden correspondientes a las réplicas de adsorción de VM sobre la haloisita H002 parecen diferentes, por lo tanto se realizó una prueba de hipótesis con un 99% de confianza (anexo A) para demostrar que las pendientes de la de la ecuación la cinética de adsorción de pseudo segundo orden pseudo segundo orden pueden considerarse iguales.

Gráfico 4.0.13 Cinética de adsorción de 8 horas de VM sobre haloisita H002, ecuación de pseudo 1° orden

En la gráfico 4.14 se muestra el gráfico de la cinética de pseudo segundo orden para la adsorción de VM sobre la haloisita H002.

Gráfico 4.0.14 Cinética de adsorción de 8 horas de VM sobre haloisita H002, ecuación de pseudo segundo orden

4.6.3.4 Comparación de la linealidad de los modelos de la cinética de pseudo primer orden y pseudo segundo orden de las haloisitas natural y modificadas

En la tabla 4.17 se exhiben los coeficientes de determinación de los modelos de pseudo primer orden y pseudo segundo orden para el estudio de la cinética de adsorción de VM sobre las respectivas haloisitas. En esta tabla se observa que la r^2 de la ecuación de pseudo segundo orden es mayor que la r^2 de la ecuación de pseudo primer orden para las tres haloisitas. Utilizando este indicador de la linealidad de los modelos, podemos decir que el modelo de pseudo segundo orden se ajusta mejor para todas las cinéticas de adsorción.

Tabla 4.17 Coeficientes de determinación (r²) de los modelos de las cinéticas de adsorción de pseudo1° orden y pseudo 2° orden

Haloisita	Cin	udo 1° orden			Cinética pseudo 2° orden			
	réplica 1	réplica 2	\bar{x}	S	réplica 1	réplica 2	x	S
Natural	0.9804	0.9003	0.9404	0.0566	0.9955	0.9853	0.9904	0.0072
H001	0.9842	0.9441	0.9642	0.0284	0.9979	0.9963	0.9971	0.0011
H002	0.984	0.9683	0.9762	0.0111	0.9948	0.9953	0.99505	0.0004
Las gráficas	de barras	4.15 y	se aprecia	que la	r² de la	ecuación	de pseudo	segundo
orden es ma	iyor que la	r² de la	ecuación d	e pseud	do primer	para des	cribir la ads	orción de
VM.								

Gráfico 4.0.15 Coeficiente de determinación de la primera y segunda réplica de las cinéticas de adsorción

4.6.3.5 Determinación de la q_e y k_2 de la adsorción de VM por las haloisitas natural y modificadas

Después de demostrar que el modelo de la cinética de pseudo segundo orden se ajusta mejor a los datos de la cinética de adsorción de VM sobre las diferentes haloisitas, se calcularon los parámetros de rapidez. Recordando la ecuación de la cinética de pseudo segundo orden, es una ecuación lineal donde la pendiente es el valor del inverso de qe (la cantidad máxima de VM adsorbida al equilibrio), asi como la ordenada al origen es igual al inverso de la constante de rapidez multiplicada por el cuadrado de qe.

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$

Para calcular qe, consideramos la siguiente igualdad (ecuación 4.7), donde qe es igual al inverso de la pendiente.

$$m = rac{1}{q_e} \therefore q_e = rac{1}{m}$$
 Ecuación 4.7

La constante de rapidez se calcula al obtener el inverso de la ordenada al origen, para dividirlo entre qe², como se muestra en la ecuación 4.8.

$$b = rac{1}{k_2 q_e^2}$$
 \therefore $k_2 = rac{b^{-1}}{q_e^2}$ Ecuación 4.8

En la tabla 4.18 se muestran los parámetros de rapidez calculados para las cinéticas de 8 horas.

Darám	Parámetros de rapidez de las cinéticas de adsorción de 8 horas del modelo de pseudo segundo orden										
Farametros de rapidez de las cineticas de ausorción de 8 noras del modelo de pseudo segundo orden.											
Haloisita	Réplica	1/qe	1/k ₂ qe ²	$\overline{X} \pm S$ (1/qe)	$\overline{X} \pm S (1/K_2 qe^2)$	qe	k ₂				
Natural	1°	7.25E-03	7.38E-03	7.91E-3 <u>+</u> 9.40E-4	9.70E-3±3.28E-3	126.342	6.45E-3				
	2°	8.58E-03	1.20E-02								
H001	1°	1.51E-02	1.50E-02	1.57E-2 <u>+</u> 8.33E-4	1.24E-2 <u>+</u> 3.73E-3	63.411	2.00E-2				
	2°	1.63E-02	9.78E-03								
H002	1°	1.25E-02	2.41E-02	1.21E-2±4.94E-4	2.62E-2±2.96E-3	82.304	5.63E-3				
11002	2°	1.18E-02	2.83E-02								

Tabla 4.18 Calculo de la cantidad máxima de colorante adsorbido al equilibrio y la constante de rapidez

En el gráfico 4.16 se muestran las constantes de rapidez promedio de las cinéticas de adsorción de las haloisitas natural y modificadas.

Gráfico 4.0.16 Constante de rapidez de la adsorción de VM sobre las haloisitas natural y modificadas

Como se observa en el gráfico de barras 4.16, la haloisita H001 absorbe más rápido que las haloisitas natural y H002, ya que de acuerdo a los cálculos, la k_2 es mayor para su cinética, que la k_2 de las cinéticas de las otras haloisitas. La segunda constante de rapidez pertenece a la cinética de adsorción de la haloisita natural, siendo la constante de rapidez k_2 más pequeña la correspondiente a la haloisita H002. En el grafico 4.17 se observan la cantidad de VM que se adsorbe al equilibrio para cada cinética.

Gráfico 4.0.17 Cantidad de verde de metilo adsorbido al equilibrio para las tres haloisitas

En el gráfico 4.17, se observa que la haloisita que adsorbe mayor cantidad de VM es la haloisita natural, seguida de la haloisita H002 y H001, esto significa que las haloisitas modificadas adsorben menor cantidad de colorante que la haloisita natural, a pesar que la haloisita H001 adsorbe con mayor rapidez.

4.6.4 Isotermas de equilibrio de adsorción de VM en haloisitas natural y modificadas

En esta sección se presentaran los datos de las isotermas de adsorción de VM a 24, 40 y 60° C, que se realizaron. Se probaron los modelos de las isotermas de Freundlich y Langmuir para describir el equilibrio de adsorción de verde de metilo sobre las haloisitas natural y modificadas.

4.6.4.1 Isotermas de equilibrio de adsorción de VM sobre HN

Para estudiar el equilibrio de adsorción del VM sobre las diferentes haloisitas de interés con las ecuaciones de Freundlich y Langmuir, es necesario calcular los términos de estas ecuaciones a partir de los datos que se recabaron tras los ensayos ya descritos para este fin. Para la ecuación de Freundlich en su forma logarítmica (ecuación 4.9) se grafica el logaritmo de qe (la cantidad de colorante adsorbida al equilibrio) contra logaritmo de Ce (la concentración de VM al equilibrio)

$$Log(q_e) = Log(k) + \frac{1}{n}Log(C_e)$$
 Ecuación 4.9

Para la ecuación 4.10, la ecuación de Langmuir se grafica la relación de la concentración de VM al equilibrio entre la cantidad de VM adsorbida por la haloisita (Ce/qe) contra la concentración de VM al equilibrio (Ce).

$$C_e/q_e = 1/Q^0 b + (1/Q^0) C_e$$
 Ecuación 4.10

El equilibrio de adsorción de VM sobre las haloisitas se siguió por espectrofotometría UV-Vis, calculando la concentración de verde de metilo bajo la misma metodología descrita en la cinética de adsorción de VM sobre la haloisita natural, utilizando la misma curva de calibración.

La cantidad de VM adsorbida por gramo de haloisita se determinó a partir de la concentración de VM al equilibrio, como se muestra en la ecuación 4.11, en la cual $[VM]_0$ es la concentración de VM inicial, V₀ es el volumen que se agregó al sistema (vial), para suspender la haloisita, W es constante, los 0.01 g de haloisita que se pesó en cada sistema y qe es la cantidad de colorante adsorbida por gramo de arcilla.

$$\frac{([VM]_0 - C_e)x(V_0)}{W} = qe$$
 Ecuación 4.10

Por ejemplo, utilizando los datos del primer sistema, en el que $[VM]_0=100$ mg/L, Ce=1.5483 mg/L, V₀=0.005 L y W=0.01 g de haloisita.

$$\frac{\left[\left(100^{mg}/L\right) - \left(1.5483^{mg}/L\right)\right]x(0.005L)}{0.01\,g} = 49.2258\,mg/g$$
 Ecuación 4.11

En la tabla 4.19 se observan los resultados de la absorbancia, la concentración inicial de verde de metilo [VM]_o y la concentración de VM en solución al alcanzar el equilibrio de adsorción sobre la haloisita natural.

Utilizando los datos de la tabla 4.19, se trazó el gráfico de "Qe promedio" contra " $[VM]_0$ promedio", que se observa en el gráfico 4.18. En estos gráficos se aprecia el efecto de la temperatura y la concentración inicial en la adsorción de VM sobre la haloisita natural.

Tabla 4.19 Determinación de concentración y la cantidad de VM adsorbida por gramo de haloisitanatural en condiciones de equilibrio

Determinación de la [VM] en solución y la cantidad de VM adsorbido por gramo de haloisita al equilibrio									
1° réplica	2° réplica	Ce	Qe						

Т	[VM] ₀	Abs.	Ce	Qe	Abs.	Ce	Qe	$ar{X}\pm S_{(Ce)}$	$\bar{X} \pm S$ (Qe)
К	mg/L		mg/L	mg/g		mg/L	mg/g	mg/L	mg/g
297.15	100	0.098	1.548	49.226	0.102	1.614	49.193	1.581±0.047	49.209±0.023
	150	0.197	3.071	73.464	0.202	3.151	73.424	3.111 <u>±</u> 0.056	73.444 <u>+</u> 0.028
	200	0.315	4.880	97.560	0.310	4.797	97.602	4.838±0.059	97.581±0.029
	250	0.565	8.709	120.64	0.575	8.859	120.570	8.784±0.106	120.608±0.053
	300	0.992	15.252	142.37	0.925	14.22	142.890	14.736±0.726	142.632±0.365
313.15	100	0.072	1.152	49.424	0.070	1.125	49.437	1.139±0.019	49.431±0.009
	150	0.162	2.534	73.733	0.130	2.034	73.983	2.284 ± 0.353	73.858±0.177
	200	0.329	5.096	97.452	0.170	2.647	98.677	3.871±1.731	98.064±0.866
	250	0.595	9.170	120.41	0.343	5.310	122.345	7.240±2.729	121.380±1.365
	300	1.002	15.40	142.29	0.818	12.58	143.706	13.996±1.990	143.002±0.995
333.15	100	0.052	0.848	49.576	0.069	1.105	49.447	0.977 <u>+</u> 0.182	49.512 <u>+</u> 0.991
	150	0.117	1.835	74.083	0.152	2.382	73.809	2.108 <u>+</u> 0.387	73.946 <u>+</u> 0.193
	200	0.187	2.921	98.539	0.317	4.903	97.549	3.912±1.401	98.044±0.7
	250	0.356	5.500	122.250	0.592	9.117	120.442	7.308 <u>+</u> 2.557	121.346±1.279
	300	0.827	12.72	143.63	0.987	15.17	142.414	13.949±1.730	143.026±0.865

En el gráfico 4.18 se observa un comportamiento lineal del efecto de la temperatura y concentración inicial en la adsorción de VM sobre la haloisita natural, no se aprecia un efecto importante en la adsorción de VM sobre la haloisita natural por causa de la temperatura.

En la tabla 4.20 se muestran los valores de Ce y Qe de cada réplica para calcular los términos de Langmuir y Freundlich, realizando el ajuste de mínimos cuadrados, con la finalidad de obtener la ecuación lineal de cada isoterma. Con la ecuación de cada isoterma, se pretende realizar una prueba de hipótesis con un 99% de confianza para la comparación de las pendientes (Anexo A), de resultar que las pendientes de las réplicas de cada isoterma se pueden considerar iguales, se obtendrán del promedio de las réplicas para encontrar una ecuación que describa la isoterma de adsorción a cada temperatura.

Tabla 4.20 Calculo de los términos de las isotermas de Freundlich y Langmuir para el equilibrio de adsorción de VM sobre haloisita natural

1301611116	locomido do Froditation y Langman, para or equilibrio de dacoreien de vili coste halelena halara										
Т		1° r	éplica			2° rép	lica				
	Freu	ndlich	Langmuir		Freu	Indlich	Langmuir				
ĸ	Log Ce	Log Qe	Ce	Ce/Qe	Log Ce	Log Qe	Ce	Ce/Qe			
297.15	0.1898	1.6922	1.5483	0.0315	0.2079	1.6919	1.6142	0.0328			
	0.4873	1.8661	3.0714	0.0418	0.4985	1.8658	3.1511	0.0429			
	0.6884	1.9893	4.8796	0.05	0.681	1.9895	4.7968	0.0491			
	0.94	2.0815	8.7089	0.0722	0.9474	2.0812	8.859	0.0735			
	1.1833	2.1534	15.251	0.1071	1.1529	2.155	14.2207	0.0995			
			9								
313.15	0.0613	1.6939	1.1517	0.0233	0.0513	1.6941	1.1253	0.0228			
	0.4037	1.8677	2.5336	0.0344	0.3084	1.8691	2.034	0.0275			
	0.7072	1.9888	5.0956	0.0523	0.4227	1.9942	2.647	0.0268			
	0.9624	2.0807	9.1701	0.0762	0.7251	2.0876	5.3101	0.0434			
	1.1876	2.1532	15.403	0.1082	1.1	2.1575	12.5887	0.0876			
			6								
333.15	-0.0716	1.6953	0.848	0.0171	0.0435	1.6941	1.1054	0.0224			
	0.2636	1.8697	1.8348	0.0248	0.3769	1.8681	2.3819	0.0323			
	0.4656	1.9936	2.9212	0.0296	0.6904	1.9892	4.9025	0.0503			
	0.7404	2.0872	5.5002	0.045	0.9598	2.0808	9.1165	0.0757			
	1.1047	2.1573	12.725	0.0886	1.181	2.1536	15.1722	0.1065			
			1								

Isotermas de Freundlich y Langmuir, para el equilibrio de adsorción de VM sobre baloisita natural

En la tabla 4.21 se muestran los valores de la pendiente, la ordenada al origen y las r² de la isoterma de Langmuir y Freundlich, siendo la isoterma de Langmuir la que mejor se ajusta ya que presenta mejor tendencia lineal que la isoterma de Freundlich, descartando así esta isoterma. Los gráficos de estas isotermas se observan en el anexo B.

	lsoterma de Freundlich				
T (K)	Replica.	1/Q°	1/Q°b	r ²	r ²
297.15	1°	0.0055	0.0238	0.9992	0.976
	2 °	0.0053	0.0251	0.9977	0.9918
313.15	1°	0.0059	0.0195	0.9941	0.9515
	2°	0.0058	0.0143	0.9943	0.978
333.15	1°	0.006	0.0126	0.9993	0.8953
	2°	0.006	0.0185	0.994	0.9899

Tabla 4.21 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r² de la isoterma de Langmuir y Freundlich

Con los valores promedios de "Ce" y "Qe" de la tabla 4.21, se calculan los términos de la ecuación de Langmuir y Freundlich, para estudiar el equilibrio de adsorción del VM. La prueba de hipótesis para la comparación de las pendientes de la isoterma de Langmuir con su réplica, muestra que las pendientes de cada isoterma pueden considerarse iguales. En la tabla 4.22 se muestran los valores de la isoterma de Langmuir que se obtuvo con los valores promedios de Ce y Qe, con estos valores se construyó el gráfico 4.19 para obtener la isoterma de Langmuir a 297.15, 313.15 y 333.15 K.

Tabla 4.22 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VMsobre haloisita natural a diferentes temperaturas

Isotermas de Langmuir para el equilibrio de adsorción de VM sobre haloisita natural								
297.15 K		31	3.15 K	33	333.15 K			
Ce	Ce/Qe	Ce	Ce/Qe	Ce	Ce/Qe			
1.581	0.0321	1.139	0.0230	0.977	0.0197			
3.111	0.0423	2.284	0.0309	2.108	0.0285			
4.838	0.0495	3.871	0.0394	3.912	0.0398			
8.784	0.0728	7.24	0.0596	7.308	0.0602			
14.736	0.10331	13.996	0.0978	13.949	0.0975			

Gráfico 4.0.19 Isotermas de equilibrio de adsorción de verde de metilo sobre NTH's a 297.15, 313.15 y 333.15 K

En la tabla 4.23, se aprecian los parámetros de la isoterma de Langmuir para el equilibrio de adsorción de VM sobre la HN a 297.15, 313.15 y 333.15 K. Resulta importante determinar la constante de Langmuir, ya que más adelante con ella se determinaran los parámetros termodinámicos como entalpia, entropía y energía libre de Gibbs.

Recordando la ecuación 4.13 de la isoterma de Langmuir, tenemos que $1/Q^{0}b$ es la ordenada al origen, en tanto que $1/Q^{0}$ es la pendiente, ambos valores se obtienen por ajuste de mínimos cuadrados (regresión lineal) cuando se grafican Ce/qe contra Ce. Recordando que Q^{0} es la cantidad de colorante que se adsorbe al equilibrio y b es la constante de Langmuir, hay que despejar el Valor de Q^{0} y b.

$$C_e/q_e = 1/Q^0 b + (1/Q^0) C_e$$
 Ecuación 4.13

En la ecuación 4.14 se muestra como se obtiene el valor de Q0 el cual es igual al inverso de la pendiente.

$$m = rac{1}{Q^0} \therefore m^{-1} = Q^0$$
 Ecuación 4.14

En la ecuación 4.15 se muestra como se obtiene el valor de la constante de Langmuir, el cual es igual al inverso del valor de la ordenada al origen, divida entre Q0.

$$\boldsymbol{B} = \frac{1}{Q^0 b} \therefore \ \boldsymbol{b} = \frac{B^{-1}}{Q^0}$$
 Ecuación 4.15

En la tabla 4.23, se aprecian los valores de los parámetros de la isoterma de Langmuir en el equilibrio de absorción de VM sobre HN a 297.15, 313.15 y 333.15 K.

Tabla 4.23 Contantes calculadas de las Isotermas de Langmuir para la haloisita natural a 297.15, 313.15 y 333.15 K

Temperatura K	1/Q°	1/Q°b	r ²	Q°	b
297.15	0.0054	0.0244	0.9987	185.1852	0.2213
313.15	0.0058	0.0172	0.9997	172.4138	0.3372
33.15	0.0059	0.0157	0.9983	169.4915	0.3758

4.6.4.2 Isotermas de equilibrio de adsorción de VM sobre H001

Siguiendo la metodología descrita en el apartado 4.6.4.1, se elaboró la tabla 4.24 en la que se observan los resultados de la absorbancia, la concentración inicial de verde de metilo $[VM]_o$ y la concentración de VM en solución (Ce) así como la cantidad de VM adsorbida (Qe) sobre la haloisita H001 bajo condiciones de equilibrio, así como el promedio \pm la desviación estándar de los valores de Ce y Qe de las réplicas de cada isoterma.

Tabla 4.24 Determinación de concer	tración y la cantidad de VM adsorbida por gramo de haloisita H001 en condiciones de equilibrio
1° réplica	2° réplica

			1° réplica			2° réplie	ca		
Т	[VM] ₀	Abs.	Ce	Qe	Abs.	Ce	Qe	$\bar{X} \pm S_{(Ce)}$	$\overline{X} \pm S_{(Qe)}$
K	mg/L		mg/L	mg/g		mg/L	mg/g	mg/L	mg/g
297.15	100	0.149	2.3359	48.832	0.130	2.053	48.9730	2.194 <u>+</u> 0.200	48.903± 0.100
	150	0.408	6.3138	71.843	0.425	6.571	71.7144	6.442 <u>+</u> 0.182	71.779± 0.091
	200	0.632	48.7312	75.634	0.629	48.441	75.7800	48.586 ±0.205	75.707± 0.103
	250	0.642	98.9795	75.510	0.652	100.450	74.7747	99.715 ±1.040	75.142± 0.520
	300	0.889	136.7821	81.608	0.889	136.720	81.6396	136.751± 0.044	81.624± 0.022
313.15	100	0.252	3.9111	48.044	0.365	5.644	47.1779	4.778 ±1.225	47.611± 0.612
	150	0.989	15.2136	67.393	0.965	14.848	67.5755	15.031 <u>+</u> 0.259	67.484± 0.129
	200	0.403	62.2801	68.859	0.421	65.084	67.4579	63.682 ±1.983	68.158± 0.991
	250	0.693	106.6871	71.656	0.700	107.897	71.0512	107.292 ±0.856	71.354± 0.428
	300	0.973	149.7150	75.142	0.948	145.761	77.1192	147.738 ±2.796	76.131± 1.398
333.15	100	0.275	4.2728	47.863	0.249	3.877	48.0613	4.075± 0.280	47.962± 0.140
	150	0.937	14.4107	67.794	0.954	14.671	67.6644	14.541± 0.184	67.729± 0.092
	200	0.468	72.2403	63.879	0.485	74.952	62.5238	73.596± 1.917	63.201± 0.958
	250	0.758	116.6626	66.668	0.771	118.685	65.6574	117.674± 1.430	66.163± 0.715
	300	0.966	148.5964	75.701	0.978	150.419	74.7901	149.508± 1.289	75.246± 0.644

Utilizando los datos de los valores promedios de Ce y Qe mostrados en la tabla 4.24 se trazó el gráfico de "Qe" contra [VM]₀, que se observa en la gráfica 4.20, en este gráfico se

observa una curva asintótica que describe el efecto de la temperatura y concentración inicial en la adsorción de VM sobre la haloisita H001.

Gráfico 4.0.20 Efecto de la temperatura y la [VM]₀ en la adsorción de VM sobre la haloisita H001

En la tabla 4.25 se muestran los valores de Ce y Qe de cada réplica para calcular los términos de Langmuir y Freundlich, se realizó el ajuste de mínimos cuadrados de los términos de la isoterma de Langmuir y Freundlich con la finalidad de obtener la ecuación lineal de cada isoterma, los gráficos de las isotermas se muestran en el anexo B. Con la ecuación de cada isoterma, se practicó una prueba de hipótesis para la comparación de las pendientes (Anexo A), al resultar que las pendientes de las réplicas de cada isoterma pueden considerar iguales, de las isotermas se obtendrán del promedio de Ce y Qe de las réplicas para encontrar una ecuación que describa la isoterma de adsorción para cada temperatura.

Con los datos de la tabla 4.25, se obtuvo la ecuación lineal de la isoterma de Langmuir y Freundlich de cada réplica por ajuste de mínimos cuadrados, en la tabla 4.26 se muestran los datos de la pendiente, ordenada al origen y r^2 de la isoterma de Langmuir así como la r^2 de la isoterma de Freundlich, Tomando en cuenta la r^2 como indicador de linealidad, nos indica que el modelo de Langmuir presenta una mayor tendencia lineal que el modelo de Freundlich, por lo que este describe mejor el equilibrio de adsorción del VM sobre la haloisita H001.

Temperatura		1° r	éplica			2º réplica			
	Freundlich		Langr	Langmuir		Freundlich		Langmuir	
К	Log Ce	Log qe	Ce	Ce/qe	Log Ce	Log qe	Ce	Ce/qe	
297.15	0.3685	1.6887	2.3359	0.0478	0.3126	1.6900	2.0539	0.0419	
	0.8003	1.8564	6.3138	0.0879	0.8176	1.8556	6.5713	0.0916	
	1.6878	1.8787	48.7312	0.6443	1.6852	1.8796	48.4401	0.6392	
	1.9955	1.8780	98.9795	1.3108	2.0020	1.8738	100.4505	1.3434	
	2.1360	1.9117	136.7821	1.6761	2.1358	1.9119	136.7208	1.6747	
313.15	0.5923	1.6816	3.9111	0.0814	0.7516	1.6737	5.6442	0.1196	
	1.1822	1.8286	15.2136	0.2257	1.1717	1.8298	14.8489	0.2197	
	1.7943	1.8380	62.2801	0.9044	1.8135	1.8290	65.0843	0.9648	
	2.0281	1.8553	106.6871	1.4889	2.0330	1.8516	107.8976	1.5186	
	2.1753	1.8759	149.7150	1.9924	2.1636	1.8872	145.7616	1.8901	
333.15	0.6307	1.6800	4.2728	0.0893	0.5885	1.6818	3.8774	0.0807	
	1.1587	1.8312	14.4107	0.2126	1.1665	1.8304	14.6712	0.2168	
	1.8588	1.8054	72.2403	1.1309	1.8748	1.7960	74.9525	1.1988	
	2.0669	1.8239	116.6626	1.7499	2.0744	1.8173	118.6853	1.8076	
	2.1720	1.8791	148.5964	1.9629	2.1773	1.8738	150.4199	2.0112	

 Tabla 4.25 Calculo de los términos de las isotermas de Freundlich y Langmuir para el equilibrio de adsorción de VM sobre haloisita H001

Tabla 4.26 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r² de la isoterma de Langmuir y Freundlich

Isoterma de Langmuir Isoterma de Freundlich	
Freundlich	de
	:h
T (K) Replica. 1/Q° 1/Q°b r ² r ²	
297.15 1° 0.0365 0.0233 0.9928 0.7229	
2° 0.0364 0.0250 0.998 0.7426	
313.15 1° 0.0369 0.0271 0.9956 0.8353	
2° 0.0368 0.0291 0.9948 0.7650	
333.15 1° 0.0369 0.0349 0.9976 0.6692	
2° 0.0370 0.0358 0.9971 0.6404	

Con las ecuaciones de la isoterma de Langmuir del equilibrio de adsorción de VM sobre la haloisita H001 que se presentan en la tabla 4.26, se aprecia que el valor de las pendientes son similares entre cada réplica. Se realizó una prueba de hipótesis para la comparación de pendientes con un 99% se confianza (anexo A) en cada isoterma y su réplica, con lo cual se establece que existe suficiente evidencia estadística para poder determinar que las pendientes de cada réplica en los equilibrios de adsorción a 297.15, 313.15 y 333.15 K descritos por el modelo de Langmuir pueden considerarse iguales. Por tanto se obtiene el gráfico de las isotermas de Langmuir con los valores promedios de Ce y Qe. En la tabla 4.27 se muestran los valores "Ce y Ce/Qe" de la isoterma de Langmuir

que se obtienen con los valores promedios de Ce y Qe para construir el gráfico 4.21 y obtener la isoterma de Langmuir a 297.15, 313.15 y 333.15° K.

Tabla 4.27 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VMsobre haloisita natural a diferentes temperaturas

297.15 K		31	3.15 K	33	333.15 K		
Ce	Ce/Qe	Ce	Ce/Qe	Ce	Ce/Qe		
1.581	0.0321	1.139	0.0230	0.977	0.0197		
3.111	0.0423	2.284	0.0309	2.109	0.0285		
4.839	0.0495	3.872	0.0394	3.912	0.0399		
8.784	0.0728	7.240	0.0596	7.309	0.0602		
14.737	0.1033	13.990	0.0978	13.945	0.0975		

Gráfico 4.0.21 Isotermas de equilibrio de adsorción de verde de metilo sobre la haloisita H001 a 297.15, 313.15 y 333.15 K

En la tabla 4.28, se aprecian los parámetros de la isoterma de Langmuir del equilibrio de adsorción de VM sobre la haloisita H001 a 297.15, 313.15 y 333.15 K.

Tabla 4.28 Contantes calculadas de las Isotermas de Langmuir para la haloisita H001 a partir de los valores promedios de Ce y Qe

Isoterma de Langmuir para la haloisita H001.									
ΤK	1/Q°	1/Q°b	r ²	Q°	b				
297.15	0.0124	0.0265	0.9968	80.6452	0.4679				
313.15	0.0131	0.0527	0.9970	76.3359	0.2486				
333.15	0.0137	0.0600	0.9875	72.9927	0.2283				

4.6.4.3 Isotermas de equilibrio de adsorción de VM sobre H002

Siguiendo la metodología descrita en el apartado 4.6.4.1, se elaboró la tabla 4.29 en la que se observan los resultados de la absorbancia, la concentración inicial de verde de metilo $[VM]_o$ y la concentración de VM en solución (Ce) así como la cantidad de VM adsorbida (Qe) sobre la haloisita H002 bajo condiciones de equilibrio, así como el promedio \pm la desviación estándar de los valores de Ce y Qe de las réplicas de cada isoterma.

Tabla 4.29 Determinación de concentración y la cantidad de VM adsorbida por gramo de haloisita H002
en condiciones de equilibrio.

C	Determinación de la [VM] en solución y la cantidad de VM adsorbido por gramo de haloisita H002 al equilibrio									
			1° réplica			2° réplic	a			
Т	[VM] ₀	Abs.	Ce	Qe	Abs.	Ce	Qe	$ar{X}\pm S_{({\sf Ce})}$	$ar{X}\pm S$ (Qe)	
K	mg/L		mg/L	mg/g		mg/L	mg/g	mg/L	mg/g	
297.15	100	0.245	3.814	48.092	0.159	2.486	48.7570	3.150 ±0.939	48.425 ±0.470	
	150	0.565	8.708	70.645	0.801	12.326	68.8367	10.518 <u>+</u> 2.558	69.741 <u>+</u> 1.279	
	200	0.333	51.611	74.192	0.338	52.427	73.7864	52.021±0.574	73.989 <u>+</u> 0.287	
	250	0.624	96.114	76.943	0.648	99.883	75.0582	97.999 <u>+</u> 2.665	76.001 ±1.333	
	300	0.960	147.615	76.192	0.961	147.830	76.0849	147.723± 0.152	76.139 <u>+</u> 0.076	
313.15	100	0.282	4.378	47.810	0.394	6.087	46.9565	5.233± 1.208	47.384 ±0.604	
	150	0.791	12.178	68.911	0.553	8.534	70.7329	10.356± 2.577	69.822 ±1.288	
	200	0.340	52.657	73.671	0.329	51.032	74.4836	51.845± 1.149	74.078 ±0.574	
	250	0.707	108.847	70.576	0.695	107.131	71.4343	107.990± 1.214	71.005 ±0.607	
	300	0.959	147.456	76.271	0.958	147.309	76.3454	147.383± 0.104	76.309±0.052	
333.15	100	0.309	4.787	47.606	0.314	4.868	47.5656	4.828± 0.057	47.586±0.029	
	150	0.502	7.746	71.126	0.496	7.653	71.1735	7.700 ±0.066	71.150±0.033	
	200	0.421	65.084	67.457	0.431	66.540	66.7300	65.812 ±1.029	67.094±0.515	
	250	0.696	107.223	71.388	0.681	104.986	72.5069	106.105 ±1.582	71.948±0.791	
	300	0.976	150.082	74.958	0.977	150.251	74.8743	150.167 <u>+</u> 0.119	74.916 <u>+</u> 0.060	

Utilizando los datos de la tabla 4.29, se trazó el gráfico de "Qe promedio" en función de [VM]₀, que se observa en la gráfica 4.22, en este gráfico se observa una curva asintótica que describe el efecto de la temperatura y concentración inicial en la adsorción de VM sobre la haloisita H002.

Gráfico 4.0.22 Efecto de la temperatura y la [VM]₀ en la adsorción de VM sobre la haloisita H002

En la tabla 4.30 se muestran los términos de Langmuir y Freundlich de cada réplica que describen el equilibrio de adsorción de VM sobre la haloisita H002; se realizó el ajuste de mínimos cuadrados de los términos de la isoterma de Langmuir y Freundlich con la finalidad de obtener la ecuación lineal de cada isoterma; con la ecuación de cada isoterma, se practicó una prueba de hipótesis para la comparación de las pendientes (Anexo A), de resultar que las pendientes de las réplicas de cada isoterma se pueden considerar iguales, se utilizaran los valores promedio de Ce y Qe para calcular los términos de la isoterma describa la el equilibrio de adsorción a cada temperatura.

Tabla 4.30 Calculo de los té	rminos de las isotermas (de Freundlich y Langr	muir para el equilibrio de
	adsorción de VM sobre	e haloisita H002	

Isotermas o	Isotermas de Freundlich y Langmuir, para el equilibrio de adsorción de VM sobre haloisita H002							
Temperatura		1° r	éplica			2° r	éplica	
	Freu	ndlich	Langr	nuir	Freur	ndlich	Langr	nuir
К	Log Ce	Log Qe	Ce	Ce/Qe	Log Ce	Log Qe	Ce	Ce/Qe
297.15	0.5814	1.6821	3.8146	0.0793	0.3955	1.6880	2.4861	0.0510
	0.9400	1.8491	8.7089	0.1233	1.0908	1.8378	12.3267	0.1791
	1.7128	1.8704	51.6151	0.6957	1.7196	1.8680	52.4272	0.7105
	1.9828	1.8862	96.1140	1.2492	1.9995	1.8754	99.8835	1.3307
	2.1691	1.8819	147.6157	1.9374	2.1698	1.8813	147.8302	1.9430
313.15	0.6413	1.6795	4.3785	0.0916	0.7844	1.6717	6.0870	0.1296
	1.0856	1.8383	12.1781	0.1767	0.9312	1.8496	8.5342	0.1207
	1.7215	1.8673	52.6571	0.7148	1.7078	1.8721	51.0328	0.6852
	2.0368	1.8487	108.8477	1.5423	2.0299	1.8539	107.1315	1.4997
	2.1687	1.8824	147.4563	1.9333	2.1682	1.8828	147.3092	1.9295
333.15	0.6801	1.6777	4.7876	0.1006	0.6874	1.6773	4.8688	0.1024
	0.8891	1.8520	7.7466	0.1089	0.8838	1.8523	7.6531	0.1075

1.8135	1.8290	65.0843	0.9648	1.8231	1.8243	66.5400	0.9972
2.0303	1.8536	107.2234	1.5020	2.0211	1.8604	104.9862	1.4479
2.1763	1.8748	150.0827	2.0022	2.1768	1.8743	150.2513	2.0067

Con los datos de la tabla 4.30, se obtuvo la ecuación lineal de la isoterma de Langmuir y Freundlich de cada réplica por ajuste de mínimos cuadrados; en la tabla 4.31 se muestran los datos de la pendiente, ordenada al origen y r^2 de la isoterma de Langmuir así como la r^2 de la isoterma de Freundlich, Tomando en cuenta la r^2 como indicador de linealidad, nos indica que el modelo de Langmuir presenta una mayor tendencia lineal que el modelo de Freundlich, por lo que este describe mejor el equilibrio de adsorción del VM sobre la haloisita H002. Los gráficos de estas isotermas se muestran en el anexo B

Tabla 4.31 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r² de la isoterma de Langmuir y Freundlich

			Isoterma de Freundlich		
T (K)	Replica.	1/Q°	1/Q°b	r ²	r ²
297.15	1°	0.0129	0.0203	0.9998	0.6894
	2°	0.013	0.0215	0.9999	0.8542
313.15	1°	0.0132	0.0307	0.9971	0.7124
	2°	0.0131	0.0321	0.9977	0.519
333.15	1°	0.0133	0.0417	0.9975	0.5022
	2°	0.0133	0.0433	0.9973	0.4968

Con las ecuaciones de la isoterma de Langmuir del equilibrio de adsorción de VM sobre la haloisita H002 que se presentan en la tabla 4.31, se aprecia que el valor de las pendientes son similares entre cada réplica. Se realizó una prueba de hipótesis para la comparación de pendientes con un 99% se confianza (anexo A) en cada isoterma y su réplica, con lo cual se establece que existe suficiente evidencia estadística para poder determinar que las pendientes de cada réplica en los equilibrios de adsorción a 297.15, 313.15 y 333.15 K descritos por el modelo de Langmuir pueden considerar iguales. Por tanto se obtiene el gráfico de las isotermas de Langmuir con los valores promedios de Ce y Qe. En la tabla 4.32 se muestran los valores de la isoterma de Langmuir obtenidos con los valores promedios de Ce y Qe. En el gráfico 4.23 se observa el gráfico de la isoterma de Langmuir a 297.15, 313.15 y 333.15 K

Tabla 4.32 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VMsobre haloisita natural a diferentes temperaturas

Isotermas de Langmuir para el equilibrio de adsorción de VM sobre haloisita natural								
297.15 K		3	13.15 K	3	333.15 K			
Ce	Ce/Qe	Ce	Ce/Qe	Ce	Ce/Qe			
3.150	0.065056474	5.233	8.662327073	4.828	168.1799488			
10.518	0.150811967	10.356	8.038755027	7.700	232.6759038			
52.021	0.703088751	51.845	90.28424016	65.812	127.8643153			
97.999	1.289447057	107.990	177.975011	106.105	134.1452237			
147.723	1.940186016	147.383	2831.93864	150.167	2519.195825			

Gráfico 4.0.23 Isotermas de equilibrio de adsorción de verde de metilo sobre la haloisita H001 a 297.15, 313.15 y 333.15 K

En la tabla 4.33, se aprecian los parámetros de la isoterma de Langmuir para el equilibrio de adsorción de VM sobre la H002 a 297.15, 313.15 y 333.15 K calculados con los valores promedios de Ce y Qe.

Tabla 4.33 Contantes calculadas de las Isotermas de Langmuir para la haloisita H002 para las dos réplicas a 24, 40 y 60° C

Isoterma de Langmuir para la haloisita H002									
Temperatura K	1/Q°	1/Q°b	r ²	Q° (mg/g)	b (L/mg)				
297.15	0.01299	0.02083	0.99995	76.9823	0.6236				
313.15	0.0132	0.0312	0.9974	75.7576	0.4231				
333.15	0.0133	0.0425	0.9975	75.1880	0.3129				

4.6.4.4 Comparación de Q° de las isotermas de Langmuir del equilibrio de adsorción de VM sobre las haloisitas natural y modificadas

Con los datos de las tablas 4.23, 4.28 y 4.33, donde se presentan los resultados del equilibrio de adsorción de VM sobre las haloisitas NTH's, H001 y H002 obtenidos por la isoterma de Langmuir, se construyen los gráficos de barras, donde se comparan las cantidades máximas de VM adsorbidas al equilibrio, que se observa en la gráfico 4.24 y la constante de Langmuir de las haloisitas, que se observan en el gráfico 4.25.

Gráfico 4.0.24 Cantidad de VM de metilo adsorbido al equilibrio por las haloisitas NTH's, H001 y H002 a 297.15, 313.15 y 333.15 K

Gráfico 4.0.25 Cantidad de VM de metilo adsorbido al equilibrio por la haloisitas NTH´s, H001 y H002 a 297.15, 313.15 y 333.15 K

En el gráfico de barras de la figura 4.24, se observa que para las haloisitas natural y H001 la cantidad máxima de VM adsorbida al equilibrio va disminuyendo con forme aumenta la temperatura, sin embargo para la haloisita H002, la cantidad de VM adsorbida al equilibrio parece casi constante.

En el gráfico de barras 4.25, se observa que la constante de Langmuir de la haloisita natural va en incremento con forme aumenta la temperatura, en tanto para las haloisitas

H001 y H002 la constante de Langmuir va decreciendo con forme aumenta la temperatura.

4.6.5 Parámetros termodinámicos de adsorción

En este apartado se calculan los parámetros termodinámicos de la adsorción de verde de metilo sobre las haloisitas natural y modificadas, determinando así la entropía, entalpia, energía libre de Gibbs y energía de activación.

4.6.5.1 Determinación de la energía de activación

La energía de activación en un proceso de adsorción, define si un proceso es fisco o químico, propiamente en fisisorción o quisorción. La relevancia de un proceso de fisisorción radica en que es un proceso reversible, en tanto que la quisorción no lo es. La energía de activación se calcula a partir de la constante de rapidez de adsorción a diferentes temperaturas, que se obtiene de la ecuación de pseudo segundo orden, siendo esta ecuación cinética la que mejor describe la rapidez de adsorción. Los ensayos realizados para determinar la energía de activación se describen previamente en el capítulo 3.

La energía de activación se calcula utilizando la ecuación 4.15, la cual es una ecuación lineal, lo cual permite determinar la energía de activación por ajuste de mínimos cuadrados (regresión lineal) al graficar Ink₂ vs RT⁻¹.

$$Ink_2 = InA - \frac{E_a}{RT}$$
 Ecuación 4.15

$$E_a = m$$
 Ecuación 4.16

Donde k_2 es la constante de rapidez de pseudo segundo orden, A es el factor de Arrhenius, R es la constante de los gases (8.314 J/molK), T es la temperatura del sistema (K) y Ea es la energía de activación de Arrhenius (J/mol). Siendo la ecuación 4.15 una ecuación lineal, el término "InA" corresponde al valor de la ordenada al origen, en tanto el término Ea (energía de activación) corresponde al valor directo de la pendiente (Ecuación 4.16). En la tabla 4.34 se muestran los resultados de la absorbancia así como el cálculo de la concentración de verde de metilo y la cantidad de VM adsorbida por gramo de haloisita, los cuales se determinaron bajo la misma metodología descrita anteriormente; también se exhiben los valores calculados "t/q_t" de la ecuación de pseudo segundo orden.

			Haloisi	ta Natural			Haloisi	ta H001			Halois	ita H002	
Temperatura K	T (h)	Abs.	Ce	Qe	Cinética pseudo 2° orden.	Abs.	Ce	Qe	Cinética pseudo 2° orden.	Abs.	Ce	Qe	Cinética pseudo 2° orden.
297.15	15	1.1018	16.9329	66.533558	0.2255	1.0988	16.8869	27.5565	0.5443	0.8182	12.5872	29.7064	0.5281
	30	0.8472	13.0316	68.484217	0.4381	0.7052	10.8553	30.5723	0.9813	0.5819	8.9663	31.5169	1.0347
	60	0.60734	9.3561	70.321943	0.8532	0.6398	9.8535	31.0732	1.9309	0.3128	4.8428	33.5786	1.9216
	90	0.402	6.2096	71.895188	1.2518	0.1581	2.4715	34.7643	2.5889	0.2613	4.0538	33.9731	2.7972
	120	0.2589	4.0169	72.991572	1.6440	0.0936	1.4844	35.2578	3.4035	0.1786	2.7864	34.6068	3.4799
313.15	15	0.8206	12.6240	68.688017	0.2184	1.0920	16.7827	27.6086	0.5433	0.9185	14.1241	28.9379	0.5184
	30	0.5378	8.2905	70.854735	0.4234	0.7468	11.4934	30.2533	0.9916	0.6821	10.5014	30.7493	0.9756
	60	0.355	5.4894	72.255287	0.8304	0.4095	6.3250	32.8375	1.8272	0.5440	8.3861	31.8069	1.8864
	90	0.296	4.5854	72.707325	1.2378	0.1551	2.4264	34.7868	2.5872	0.2779	4.3080	33.8460	2.6591
	120	0.2659	4.1241	72.937941	1.6452	0.1378	2.1612	34.9194	3.4365	0.1920	2.9917	34.5041	3.4778
333.15	15	0.5579	8.5985	70.700736	0.2122	0.9856	15.1523	28.4238	0.5277	0.9883	15.1937	28.4032	0.5049
	30	0.3404	5.2657	72.367147	0.4146	0.7610	11.7107	30.1447	0.9952	0.9111	14.0107	28.9946	0.9519
	60	0.2289	3.5572	73.221422	0.8194	0.4448	6.8647	32.5677	1.8423	0.6201	9.5510	31.2245	1.7869
	90	0.2398	3.7242	73.13791	1.2306	0.3437	5.3166	33.3417	2.6993	0.4960	7.6492	32.1754	2.6492
	120	0.2277	3.5388	73.230616	1.6387	0.2107	3.2783	34.3609	3.4923	0.1947	3.0331	34.4835	3.4675

Tabla 4.34 Determinación de los parámetros de la cinética de pseudo segundo orden para las tres haloisitas a 297.15, 313.15 y 333.15 K.

De la tabla de resultados 4.34, se obtuvieron los siguientes gráficos de la cinética de adsorción de pseudo segundo orden para la haloisita natural, H001 y H002 que se observan en las figuras 4.26, 4.27 y 4.28.

Gráfico 4.0.26 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita natural a 297.15, 313.15 y 333.15 K

Gráfico 4.0.27 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita H001 a 297.15, 313.15 y 333.15 K

Gráfico 4.0.28 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita H002 a 297.15, 313.15 y 333.15 K

En la tabla 4.35 se aprecian las constantes de rapidez obtenidas por el ajuste de mínimos cuadrados en los gráficos 4.26, 4.27 y 4.28. De igual forma se calculan la cantidad máxima de colorante adsorbida al equilibrio y las variables para calcular la energía de activación.

	T (K)	1/qe	1/k ₂ qe ₂	qe	k ₂	ink ₂	1/RT	R^2
HN	297.15	1.351E-02	3.17E-02	74.0411	5.762E-03	-5.1565	4.048E-04	0.9999
	313.15	1.358E-02	1.52E-02	73.6127	1.213E-02	-4.4123	3.841E-04	0.9999
	333.15	1.359E-02	6.80E-03	73.5726	2.717E-02	-3.6055	3.610E-04	0.9997
H001	297.15	2.705E-02	1.86E-01	36.9740	3.935E-03	-5.5379	4.048E-04	0.9964
	313.15	2.730E-02	1.57E-01	36.6340	4.732E-03	-5.3534	3.841E-04	0.9995
	333.15	2.822E-02	1.34E-01	35.4383	5.957E-03	-5.1232	3.610E-04	0.9995
H002	297.15	2.821E-02	9.50E-02	35.4521	8.372E-03	-4.7828	4.048E-04	0.9999
	313.15	2.809E-02	1.34E-01	35.6011	5.895E-03	-5.1337	3.841E-04	0.9988
	333.15	2.827E-02	1.71E-01	35.3756	4.663E-03	-5.3681	3.610E-04	0.9963

Tabla 4.35 Parámetros para la determinación de la energía de activación de la adsorción de VM de las haloisitas natural y modificadas

Gráfico 4.0.29 Determinación de la energía de activación de las haloisitas natural y modificadas

Del gráfico 4.29 se obtienen los valores de la pendiente que equivalen a la energía de activación de adsorción de VM sobre las haloisitas correspondientes. En la tabla 4.36 se resumen los valores de la energía de activación obtenidos al graficar Ink₂ vs (RT)⁻¹ para cada haloisita, así mismo se presenta la energía asociada a la fisisorción y Quimisorción. Con la energía de activación de la adsorción de VM de las haloisitas natural y modificadas observamos que dicha energía se encuentre en el rango de energía de la fisisorción.

Tabla 4.36 Energía de activación de la adsorción de VM de las haloisitas natural y modificadas

Haloisita	Energía de activación calculada (KJ/mol).	r ²	Energía de activación Asociada (KJ/mol).		
HN	35.450	0.9999	Fisisorción	5-40	
H001	9.49136	0.9990	Quimisorción	40-800	
H002	13.418	0.9931			

4.6.5.2 Variación de la entropía y entalpia de adsorción.

Los parámetros termodinámicos de adsorción son el cambio de entropía y la entalpía. Estos parámetros se pueden calcular con la siguiente función matemática:

$$\ln k_L = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$$
 Ecuación 4.17

Donde k_L es la constante de adsorción de la isoterma de Langmuir, R es la constante universal de los gases (8.314 J/K mol), T es la temperatura del sistema, ΔH° es el cambio de entalpía, y ΔS° es el cambio de entropía. De acuerdo a esta fórmula matemática, se

obtiene una recta donde la variable dependiente es ln k_L, la variable independiente es 1/TR, la pendiente es igual a $-\Delta H^{\circ}$ y la ordenada al origen es $\Delta S^{\circ}/R$.

Para determinar ΔH° y ΔS° , recurrimos a los valores de constante de Langmuir que se calculó anteriormente, las cuales están reportadas en las tablas 4.23, 4.28 y 4.33 para las haloisitas natural, H001 y H002 respectivamente. Estas constantes de Langmuir están definidas en términos de masa (L/mg), para poder calcular ΔH° y ΔS° , debemos trabajar con la constante de Langmuir en términos molares (L/mol), por lo que las constantes de Langmuir k_L se deben multiplicar por el peso molecular del verde de metilo, lo que se resume en la ecuación 4.18.

$$b(Lmg^{-1})xW(mgmol^{-1}) = k_L(Lmol^{-1})$$
 Ecuación 4.18

Donde "b" es la constante de Langmuir en términos de masa, W es el peso molecular del VM (653240 mg/mol), k_{L} es la constante de Langmuir en términos molares.

Los datos de temperatura de trabajo, las constantes de Langmuir, así como el inverso del producto de la constante de los gases por la temperatura, se encuentran en la tabla 4.37.

Т	(K)	1/RT	b (L/mg)	kL (L/mol)	In k∟
	297.15	0.000405	0.2269	1.349E+05	11.8126
HN	313.15	0.000384	0.2974	1.769E+05	12.0834
	333.15	0.000361	0.4683	2.785E+05	12.5372
	297.15	0.000405	0.4793	2.851E+05	12.5606
	313.15	0.000384	0.3070	1.826E+05	12.1149
H001	333.15	0.000361	0.2213	1.316E+05	11.7877
	297.15	0.000405	0.6108	3.633E+05	12.8030
	313.15	0.000384	0.4267	2.538E+05	12.4443
H002	333.15	0.000361	0.3285	1.954E+05	12.1828

Tabla 4.37 Cálculo de los parámetros para la determinación de ΔH° y ΔS°

Con los datos de la tabla 4.37, se grafica Ink_L contra RT^{-1} para obtener los parámetros termodinámicos ΔH° y ΔS° que se muestran en el gráfico 4.30.

Gráfico 4.0.30 Determinación de los parámetros termodinámicos de la adsorción de VM para las haloisitas natural y modificadas, 1° réplica

En la tabla 4.38 se resumen los datos obtenidos por el ajuste de mínimos cuadrados para la determinación de la entalpia y entropía.

Calculo de los parámetros termodinámicos de adsorción de VM sobre las haloisitas natural y								
	modificadas							
Parámetros	HN	H001	H002					
Pendiente (-ΔH°)	-16624	17604	14125					
Ordenada la origen (ΔS°/R)	18.516	5.4068	7.0627					
ΔH° (J/mol)	16624	-17604	-14125					
ΔS° (J/molK)	153.9420	44.9570	58.7193					
r ²	0.9872	0.9858	0.9853					

Tabla 4.38 Calculo de los parámetros termodinámicos de adsorción de VM de las haloisitas natural y modificadas

En esta tabla podemos observar los coeficientes de determinación (r^2), los cuales presentan una buena linealidad. Todos los cambios de entalpía calculados tienen valores negativos lo cual indica que los sistemas de adsorción estudiados son procesos exotérmicos, donde el que más energía libera es el sistema para la haloisita H001. Esto explica por qué la adsorción de colorante disminuye al aumentar la temperatura de los sistemas de las haloisitas H001 y H002.

La variación de la entropía entre las muestras es muy distinta. Los valores positivos de entropía indican un mayor desorden lo cual significa una mayor afinidad del adsorbente por el adsorbato, siendo entonces, que la haloisita natural presenta mayor afinidad por el

verde de metilo que la haloisita H002 y este a su vez presenta mayor afinidad por el VM que la haloisita H001.

Lo que podría explicar por qué la haloisita natural tiene una mayor capacidad de adsorción a pesar de tener la menor área específica de las muestras de haloisita.

4.6.5.3 Variación de la energía libre de Gibbs de adsorción

Para calcular la energía libre de Gibbs de adsorción se utiliza la ecuación que describe dicha propiedad (ecuación 4.18).

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
 Ecuación 4.18

Donde ΔG° es la energía libre de Gibbs, ΔH° es la entalpía, ΔS° es la entropía y T es la temperatura del sistema (K). Dado que ya se calcularon anteriormente los parámetros necesarios para deducir los valores de ΔG° , sólo se sustituyen los datos correspondientes para obtener la energía libre de Gibbs. Los resultados de ΔG° se resumen en la tabla 4.39.

Energía libre de Gibbs de adsorción de VM sobre las haloisitas natural, H001 y H002								
ΔG°	Temperatura	HN	H001	H002				
	297.15	-29.1199	-30.9630	-31.5734				
	313.15	-31.5829	-31.6823	-32.5129				
	333.15	-34.6618	-32.5814	-33.6873				

Tabla 4.39 Determinación de la energía libre de Gibbs de adsorción

Como se puede observar en la tabla 4.39, todos los valores calculados de energía libre de Gibbs son negativos, lo cual indica que la adsorción de VM es un proceso espontaneo para las tres haloisitas. La tendencia de espontaneidad para las haloisitas tratadas es ascendente a medida que la temperatura aumenta.

En la gráfica 4.31, se muestran las gráficas de barras donde se aprecia mejor el ΔG° de adsorción de las haloisitas natural, H001 y H002 a diferente temperatura.

Gráfico 4.0.31 Comparación del ΔG° de adsorción de VM sobre haloisita natural y modificadas en función de la temperatura

En la tabla 4.40 se muestran los valores de la energía libre de Gibbs de adsorción de algunos colorantes adsorbidos sobre haloisita, estos valores reportados en la literatura presentan la misma tendencia que los valores de la energía libre de Gibbs de adsorción de VM sobre las haloisitas natural y modificadas, dichos valores de ΔG° tienden a incrementar conforme aumenta la temperatura; a pesar de ser diferentes las temperaturas de trabajo reportadas en este trabajo con las reportadas en las referencias, esta tendencia se hace presente.

Referencias	Adsorbato	temperatura K	ΔG°
(Liu, Bing, Mei, Zang, & Liu, 2011)	Violeta de Metilo	298	-30.34
		308	-31.31
		318	-32.32
(Luo, y otros, 2010)	Rojo Neutro	298	-27.49
		308	-28.4
		318	-29.53

Tabla 4.40 AG° de adsorción reportado para violeta de metilo y rojo neutro

Conclusiones

En el presente trabajo se utilizó una haloisita comercial obtenida de Sigma Aldrich, con esta haloisita se prepararon dos haloisitas acidas, mediante un tratamientos con ácido clorhídrico a diferente temperatura, 40 y 80°C, las nuevas haloisitas fueron nombradas H001 y H002 respectivamente.

Se caracterizaron texturalmente las nuevas haloisitas H001 y H002 así como la haloisita natural, para determinar los cambios en las haloisitas H001 y H002 como consecuencia del tratamiento ácido respecto a la haloisita natural. Adicionalmente se realizaron estudios de la adsorción del colorante verde de metilo sobre las haloisitas natural y modificadas que describen el comportamiento del fenómeno en las tres haloisitas; mostrándose resultados interesantes. Como consecuencia de lo anterior se presentan las conclusiones formuladas a lo largo del trabajo realizado.

- Se realizó la preparación de las haloisitas H001 y H002, a partir de una haloisita comercial. Tanto las haloisitas H001, H002 y la haloisita natural se caracterizaron mediante diversas técnicas y elucidar la textura de las tres haloisitas:
 - Por difracción de rayos X, se determinó que pese al tratamiento ácido practicado para la obtención de las haloisitas H001 y H002, se conserva la estructura cristalina de la haloisita, lo cual se refleja en la similitud de los patrones de difracción de rayos X de las haloisitas modificadas con los patrones de difracción de la haloisita natural.
 - Los valores de las reflexiones calculadas en los patrones de difracción de rayos X de cada haloisita, son próximas a los valores reportados en la base de datos del equipo de difracción de rayos X.
 - En los estudios de difracción de rayos X, se encontró una nueva fase cristalina en las haloisitas H001 y H002 que corresponde a silicato de aluminio. Lo cual concuerda con la perdida de aluminio de la haloisita como resultado del tratamiento ácido aplicado.
 - Los estudios de Adsorción-Desorción de nitrógeno, demostraron que tras el tratamiento ácido las haloisitas H001 y H002 cuentan con mayor área superficial que la haloisita natural. Recordando que el área superficial se obtuvo mediante la isoterma de BET.
 - Utilizando los datos del estudio de Adsorción-Desorción de nitrógeno y el modelo de BJH se determinó la distribución de tamaño de poro, indicando que
las tres haloisitas de estudio son materiales mesoporosos. Sin embargo la haloisita H002 también presenta microporoso de acuerdo al grafio de distribución de tamaño de poro.

- Las microscopias electrónicas de barrido aplicadas a las tres haloisitas, ofrecen de la composición química de las muestras como resultado del microanálisis, apoyan la teoría de la desaluminación de las haloisitas tratadas, esto debido a la disminución del contenido de aluminio en la muestra con respecto a la haloisita natural.
- Las microscopias electrónicas de transmisión obtenidas de las muestras de haloisita mostraron que el tamaño de los nanotubos de haloisita reducen su longitud posterior al tratamiento ácido al que se sometieron, en la muestra de haloisita natural, se observan nanotubos con longitudes mayores a 1000 nm y fragmentos de nanotubos de 200 a 400 nm; en las haloisitas H001 y H002, ya no aparecen nanotubos de 1000 nm de longitud.
- En los estudios realizados a la adsorción de verde de metilo (VM) se encontró el modelo que describe la cinética de adsorción, así mismo la isoterma de adsorción que mejor se ajusta al fenómeno. Se determinó la energía de activación, el valor de la entalpia, entropía y energía libre de Gibbs de adsorción.
 - Se encontró que la cinética de adsorción del verde de metilo se ajusta a una cinética de pseudo segundo orden para las tres haloisitas, también se observó que la haloisita más veloz al adsorber el VM es la haloisita H001, posteriormente la haloisita natural y por último la haloisita H002.
 - De los valores de la cinética de adsorción de pseudo segundo orden de cada haloisita se calcularon los valores de la cantidad de colorante adsorbida al equilibrio, encontrando que la haloisita con mayor capacidad adsorbente es la haloisita natural, seguida de la haloisita H002 y H001. A pesar de que la haloisita natural tiene menor área superficial, es la que mayor cantidad de colorante adsorbe.
 - En el caso de la haloisita H001 se incrementa la velocidad de adsorción del colorante VM.
- El estudio de equilibrio de adsorción de verde de metilo sobre las tres haloisitas de estudio se realizó a tres temperaturas, 24, 40 y 60° C. los resultados obtenidos llevan a las siguientes conjeturas:
 - Se determinó por el método gráfico que la adsorción de verde de metilo sobre las haloisitas de estudio siguen el modelo de la monocapa de Langmuir.

- Por medio del modelo matemático de adsorción de Langmuir se obtuvieron los valores de adsorción máxima para cada haloisita y cada temperatura de trabajo. Los datos muestran que el poder adsorbente de las haloisitas H001 y H002 disminuye a medida que aumenta la temperatura del sistema.
- Con base a los resultados obtenidos se establece que la capacidad de adsorción es independiente del área superficial de las haloisitas. Esto se cumple al menos para esta especie química de estudio (Verde de Metilo), ya que en el estudio de Adsorción-Desorción de nitrógeno las haloisitas H001 y H002 son las especies que adsorben mayor cantidad de Nitrógeno en comparación con la haloisita natural. Por tanto el comportamiento en el fenómeno de adsorción depende en gran medida de la naturaleza del adsorbato no solo en el área superficial del adsorbente.
- Con el estudio del equilibrio se calcularon los parámetros termodinámicos de adsorción, energía libre de Gibbs, entalpia, entropía y energía de activación.
 - Los valores obtenidos de la energía de activación, indican que la adsorción del verde de metilo es un proceso de fisisorción.
 - Los valores de energía libre de Gibbs son todos negativos, lo que significa que la adsorción del VM sobre las tres haloisitas, es un proceso espontaneo.
 - Los valores de entalpia son negativos, esto indica que la adsorción de VM sobre las haloisitas H001 y H002 es un proceso exotérmico, por consiguiente esto explica la disminución de la cantidad de colorante adsorbido con forme aumenta la temperatura.
 - Los valores de entropía son diferentes para cada muestra. Por ejemplo para la haloisita natural el valor de entropía es positivo lo que indica una mayor afinidad del colorante por este material; mientras que los valores negativos para las muestras H001 y H002 indican una menor afinidad del colorante por la superficie de las mencionadas haloisitas. Estos datos explican la mayor adsorción de colorante por parte de la haloisita natural.
- Estadísticamente se demostró mediante la prueba F para la comparación de varianzas y la prueba t student para la comparación de pendientes, que las pendientes entre réplicas de los respectivos gráficos en cada cinética e isoterma de adsorción pueden considerarse iguales.

Índice de figuras

Figura 1.1 Unión entre tetraedro y octaedro a través de oxígenos comunes. Los octaedros contienen oxígen	0
e iones hidroxilo mientras que los tetraedros contienen sólo oxígeno. 💛 Átomo de aluminio, magnesio, hierr	ю,
etc. 🔿 Átomo de oxígeno y/o grupo –OH (Rodríguez, 2008)	1
Figura 1.2 Diagrama parcial de la estructura de la haloisita hidratada mostrando la disposición de una	
monocapa de agua entre los planos de oxígenos e hidroxilos de las capas 1:1 superpuestas sugeridas por	
(Hendricks, 1938)	4
Figura 1.3 Esquema de la haloisita (Bates, 1950)	5
Figura 1.4 Representación esquemática de la estructura de la caolinita y la haloisita. En (a), se muestra la	
distribución en capas de caolinita, en la figura (b) la distribución de las capas de haloisita y en (c) la	
disposición de los planos atómicos y el encurvamiento de la capa estructural de la haloisita (Bates, 1950)	6
Figura 1.5 Esquema del nanotubo en el que se muestra el diámetro interno del nanotubo, así como la	
disposición de las capas de silicio y aluminio (Yha & Takahara, 2012)	6
Figura 1.6 Estructura química del Verde de Metilo	9
Figura 1.7 Espectro de absorción del VM reportado en solución acuosa, pH= 7 (Rytwo, Nir, Crespin, &	
Margulies, 2000)	10
Figura 1.8 Isoterma de adsorción de adsorbatos disueltos sobre adsorbentes a temperatura contante	14
Figura 1.9 Forma gráfica de la Isoterma de Freundlich	15
Figura 2.1 Descripción de la forma de los poros (G. Leofanti, 1998)	18
Figura 2.2 Formas de las isotermas de adsorción descritos por la IUPAC (Sing, y otros, 1985)	20
Figura 2.3 Se presenta los cuatro tipos de histéresis para la adsorción-desorción de nitrógeno (Sing, y otros	,
1985) y (G. Leofanti, 1998)	21
Figura 2.4 Se muestra el nivel de profundidad de la muestra donde se producen electrones secundarios,	
retrodispersados y rayos X (Joseph I., 1992)	24
Figura 2.5 Posiciones de los detectores de señales en una columna de microscopio electrónico (Poole &	
Owens, 2003)	27
Figura 2.6 Representación del espectro electromagnético (McMurry, 2008)	28
Figura 2.7 Representación del haz incidente y el haz difractado, en difracción de rayos X (León & Garcia,	
2013)	30
Figura 4.1 Fotografía de la haloisita natural	40
Figura 4.2 Fotografía de la haloisita 001	40
Figura 4.3 Fotografía de la haloisita H002	41
Figura 4.4 Microscopia Electrónica de Barrido de la haloisita natural	44
Figura 4.5 Microscopia Electrónica de Barrido de la haloisita H001	45
Figura 4.6 Microscopia Electrónica de Barrido de la haloisita H002	46
Figura 4.7 Microscopia Electrónica de Transmisión de la haloisita natural	48
Figura 4.8 Microscopia Electrónica de Transmisión de la haloisita H001	48
Figura 4.9 Microscopia Electrónica de Transmisión de la haloisita H002	49

Índice de gráficos.

Gráfico 4.1 Distribución de tamaño de poro bimodal "Haloisita Natural" y H002, distribución de tamaño de poro
monomodal haloisita H001 por el método BHJ 42
Gráfico 4.2 Ciclo de Histéresis tipo H3 de adsorción-desorción para la haloisita natural, H001 y H002
Gráfico 4.3 Difracción de rayos X de las haloisitas natural y modificadas
Gráfico 4.4 Espectro de absorción experimental del verde de metilo en solución acuosa
Gráfico 4.5 Curva de calibración de Verde de metilo (VM) 52
Gráfico 4.6 Variación de la absorbancia respecto al tiempo en las réplicas de la cinética de adsorción de VM
sobre la haloisita natural
Gráfico 4.7 Cinética de adsorción de 8 horas de VM sobre haloisita natural modelo de pseudo 1° orden 56
Gráfico 4.8 Cinética de adsorción de 8 horas de VM sobre haloisita natural modelo de pseudo 2°orden 57
Gráfico 4.9 Variación de la absorbancia en función del tiempo de las réplicas de la cinética de adsorción del
VM sobre la haloisita H001
Gráfico 4.10 Cinética de adsorción de 8 horas de VM sobre haloisita H001 modelo de pseudo 1° orden 60
Gráfico 4.11 Cinética de adsorción de 8 horas de VM sobre haloisita H001 ecuación de pseudo 2° orden 61
Gráfico 4.12 Variación de la absorbancia en función del tiempo de las réplicas de la cinética de adsorción del
VM sobre la haloisita H002
Gráfico 4.13 Cinética de adsorción de 8 horas de VM sobre haloisita H002, ecuación de pseudo 1° orden 64
Gráfico 4.14 Cinética de adsorción de 8 horas de VM sobre haloisita H002, ecuación de pseudo segundo
orden 65
Gráfico 4.15 Coeficiente de determinación de la primera y segunda réplica de las cinéticas de adsorción 66
Gráfico 4.16 Constante de rapidez de la adsorción de VM sobre las haloisitas natural y modificadas
Gráfico 4.17 Cantidad de verde de metilo adsorbido al equilibrio para las tres haloisitas
Gráfico 4.18 Efecto de la temperatura y la [VM] ₀ en la adsorción de VM sobre la haloisita natural
Gráfico 4.19 Isotermas de equilibrio de adsorción de verde de metilo sobre NTH's a 297.15, 313.15 y 333.15 K
Gráfico 4.20 Efecto de la temperatura y la [VM] ₀ en la adsorción de VM sobre la haloisita H001
Gráfico 4.21 Isotermas de equilibrio de adsorción de verde de metilo sobre la haloisita H001 a 297.15, 313.15
y 333.15 K
Gráfico 4.22 Efecto de la temperatura y la [VM] ₀ en la adsorción de VM sobre la haloisita H002
Gráfico 4.23 Isotermas de equilibrio de adsorción de verde de metilo sobre la haloisita H001 a 297.15, 313.15
y 333.15 K
Gráfico 4.24 Cantidad de VM de metilo adsorbido al equilibrio por las haloisitas NTH's, H001 y H002 a 297.15,
313.15 y 333.15 K
Gráfico 4.25 Cantidad de VM de metilo adsorbido al equilibrio por la haloisitas NTH´s, H001 y H002 a 297.15,
313.15 y 333.15 K
Gráfico 4.26 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita natural a 297.15,
313.15 y 333.15 K
Gráfico 4.27 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita H001 a 297.15, 313.15
y 333.15 K

Gráfico 4.28 Cinética de adsorción de pseudo segundo orden de VM sobre la haloisita H002 a 297.15, 313.	15
y 333.15 K	. 86
Gráfico 4.29 Determinación de la energía de activación de las haloisitas natural y modificadas	. 87
Gráfico 4.30 Determinación de los parámetros termodinámicos de la adsorción de VM para las haloisitas	
natural y modificadas, 1° réplica	. 89
Gráfico 4.31 Comparación del ΔG° de adsorción de VM sobre haloisita natural y modificadas en función de l	la
temperatura	. 91

Índice de tablas

Tabla 1.1 Esquema de clasificación para filosilicatos relacionados con los minerales arcillosos	. 3
Tabla 1.2 Porcentaje de la composición química de diferentes haloisitas	. 7
Tabla 1.3 Diferencias entre Fisisorción y Quimisorción (Izquierdo, Cunill, Tejero, Iborra, & Fité, 2004)	11
Tabla 2.1Tipos de radiación, señales e información obtenida en MEB (Joseph I., 1992)	25
Tabla 3.1 Reactivos, materiales y equipo utilizados para la preparación de los catalizadores	31
Tabla 3.2 Datos y condiciones de análisis de los estudios de Adsorción-Desorción de N2	32
Tabla 3.3 Datos y condiciones experimentales del estudio de Difracción de rayos X	33
Tabla 3.4 Datos y condiciones de las Microscopias Electrónicas de Barrido	33
Tabla 3.5 Datos y condiciones de análisis de las Micrografías Electrónicas de Transmisión	33
Tabla 3.6 Materiales y reactivos para realizar los estudios de adsorción de VM	34
Tabla 3.7 Elaboración de la curva de calibración de verde de metilo VM	35
Tabla 3.8 Material y reactivos utilizados para el tratamiento de resultados	38
Tabla 4.1 Distribución de tamaño de poro	41
Tabla 4.2 Área superficial calcula por la isoterma de BET a partir de los datos de Adsorción-Desorción de	
Nitrógeno	43
Tabla 4.3 Composición química de la haloisita natural obtenida por MEB	45
Tabla 4.4 Composición química de la haloisita H001 obtenida por MEB.	46
Tabla 4.5 Composición química de la haloisita H002 obtenida por MEB	47
Tabla 4.6 Reflexiones calculadas de los patrones de difracción de las haloisitas natural y modificadas	50
Tabla 4.7 Curva de calibración de VM concentración vs absorbancia	52
Tabla 4.8 Variación de la absorbancia en función del tiempo para las réplicas de la cinética de adsorción de	
VM sobre la haloisita natural	53
Tabla 4.9 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción de VM	
sobre la haloisita natural	55
Tabla 4.10 Cinética de adsorción de VM sobre la haloisita natural 1° y 2° réplica	56
Tabla 4.11 Variación de la absorbancia en función del tiempo en la cinética de adsorción de VM sobre la	
haloisita H001	58
Tabla 4.12 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción de VM	
sobre la haloisita H001	59
Tabla 4.13 Cinética de adsorción de VM sobre la haloisita H001	59

Tabla 4.14 Variación de la absorbancia en función del tiempo en la cinética de adsorción de VM sobre la
haloisita H002
Tabla 4.15 Variación de la absorbancia, concentración y cantidad de VM en la cinética de adsorción de VM
sobre la H002
Tabla 4.16 Cinética de adsorción de VM sobre la haloisita natural 1° y 2° réplica
Tabla 4.17 Coeficientes de determinación (r ²) de los modelos de las cinéticas de adsorción de pseudo 1°
orden y pseudo 2° orden
Tabla 4.18 Calculo de la cantidad máxima de colorante adsorbido al equilibrio y la constante de rapidez 67
Tabla 4.19 Determinación de concentración y la cantidad de VM adsorbida por gramo de haloisita natural en
condiciones de equilibrio
Tabla 4.20 Calculo de los términos de las isotermas de Freundlich y Langmuir para el equilibrio de adsorción
de VM sobre haloisita natural
Tabla 4.21 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r ² de la
isoterma de Langmuir y Freundlich
Tabla 4.22 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VM sobre
haloisita natural a diferentes temperaturas
Tabla 4.23 Contantes calculadas de las Isotermas de Langmuir para la haloisita natural a 297.15, 313.15 y
333.15 K
Tabla 4.24 Determinación de concentración y la cantidad de VM adsorbida por gramo de haloisita H001 en
condiciones de equilibrio
Tabla 4.25 Calculo de los términos de las isotermas de Freundlich y Langmuir para el equilibrio de adsorción
de VM sobre haloisita H001
Tabla 4.26 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r ² de la
isoterma de Langmuir y Freundlich
Tabla 4.27 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VM sobre
haloisita natural a diferentes temperaturas
Tabla 4.28 Contantes calculadas de las Isotermas de Langmuir para la haloisita H001 a partir de los valores
promedios de Ce y Qe
Tabla 4.29 Determinación de concentración y la cantidad de VM adsorbida por gramo de haloisita H002 en
condiciones de equilibrio
Tabla 4.30 Calculo de los términos de las isotermas de Freundlich y Langmuir para el equilibrio de adsorción
de VM sobre haloisita H002
Tabla 4.31 Términos de la isoterma de Langmuir, pendiente y ordenada al origen; comparación de la r^2 de la
isoterma de Langmuir y Freundlich
Tabla 4.32 Calculo de los términos de las isotermas de Langmuir para el equilibrio de adsorción de VM sobre
haloisita natural a diferentes temperaturas
Tabla 4.33 Contantes calculadas de las Isotermas de Langmuir para la haloisita H001 para las dos réplicas a
24, 40 y 60° C
Tabla 4.34 Determinación de los parámetros de la cinética de pseudo segundo orden para las tres haloisitas a
297.15, 313.15 y 333.15 K

Tabla 4.35 Parámetros para la determinación de la energía de activación de la adsorción de VM de las	
haloisitas natural y modificadas	86
Tabla 4.36 Energía de activación de la adsorción de VM de las haloisitas natural y modificadas	87
Tabla 4.37 Cálculo de los parámetros para la determinación de ΔH° y ΔS°	88
Tabla 4.38 Calculo de los parámetros termodinámicos de adsorción de VM de las haloisitas natural y	
modificadas	89
Tabla 4.39 Determinación de la energía libre de Gibbs de adsorción	90
Tabla 4.40 ${}_{\Delta}{ m G}^{\circ}$ de adsorción reportado para violeta de metilo y rojo neutro	91

Referencias

- Adams, R., Burdon, R., Campbell, A. M., & Smellie., R. (1986). *Bioquímica de los ácidos nucleicos de Davidson.* Barcelona España.: Editorial Reverté.
- Alexander, L. (1943). Relationship of the clay minerals halloysite and endellite. *American Mineralogist*, 1-18.
- Bates, T. H. (1950). Morphology and structure of andellite and halloysite. *American Mineralogist*, 464-484.
- Belkassa, K., Bessaha, F., Marouf-Khelifa, K., Isabelle, B.-G., Jean-dominique, C., & Khelifa, A.
 (2013). Physicochemical and adsorptive properties of a heat-treated and acid-leached
 Algerian halloysite. *Colloids and surfaces A: Physicochem. Eng. Aspects*, 26-33.
- Bermúdez, J. (1981). *Metódos de difracion de rayos X. Principios y Aplicaciones*. Madrid, España: Piramide.
- Besoain, E. (1985). *Minealogía de arcillas de suelos.* San José, Costa Rica: Sere de libros y materiales educativos.
- Birdi, K. (2003). *Scanning Probe Microscopes Aplications in Science and Technology*. Boca Raton Florida, USA: CRC PRESS.
- Caballero, S. L. (2002). Introducción a la catálisis heterogénea. Colombia: Universidad Nacional de Colombia.
- Castellan, G. W. (1998). *Fisicoquímica*. Naucalpan de Juarez, Estado de México.: Addison Wesley Longman de México S.A. de C.V.
- Cheng, K., Ueno, K., & Toshiaki, I. (1990). *CRC Handbok of Organic Analytical Reagents*. Boca Raton, Florida: CRC Press.
- Cullity, B. (1956). *Elements of X-ray Diffraction. Mass.* United States of America: Addison-Wesley Publishing.
- Etame, J., Gerard, M., Suh, C., & Bilong, P. (2009). Halloysite neoformation during the weathering of nephelinitic rocks under humid tropical conditions at Mt Etinde, Cameroon. *Geoderma*, 59-68.
- Frommer, J. (1992). Scanning Tunneling Microscopy and Atomic Force Microscopy in Organic Chemstry. *Angew. Chem. Int. Ed. Engl.*, 1298-1328.
- G. Leofanti, M. P. (1998). Surface area and pore texture of catalysts. Catalysis Today, 207-219.

- Garret, W., & Walker, G. (1959). The cation exchange capacity of hydrated halloysite and the formation of halloysite salt complexes. *Clay Minerals*, 75-80.
- González, G. S., Ruiz, V. M., & Hernández, B. E. (2003). *Guía de Microscopía Electronica*. Ciudad Universitaria México D.F.: Universidad Nacional Autónoma de México.
- Guggenheim, S. (2006). Summary or recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l'Etude des Argiles (AIPEA) Nomenclature Committee for 2006. *Clay Minerals*, 863-877.
- Gürses, A., Dogar, C., Yalcin, M., Acikyildiz, M., Bayrak, R., & Karaca., S. (2006). The adsorption kinectics of the cationic dye, methylene blue, onto clay. *Journal of Hazardous Materials*, 217-228.
- Harris, D. C. (2007). Análisis químico cuantitativo. Barcelona España: Editorial Reverté S.A.
- Hendricks, S. a. (1938). Structure of kaolin ald talc-pirophillite hydrates and their bearing on water sorption of clays. *American Mineralogist*, 863-875.
- Hernández, M. Á., Rojas, F., Corona, L., Lara, V. H., Portillo, R., Salgado, M. A., & Petranoskii, V.
 (2005). Evalucion de porocidad de zeolitas naturales por medio de curvas diferenciales de adsorción. *Revista Internacional de Contaminación Ambiental*, 71-81.
- Izquierdo, J. F., Cunill, F., Tejero, J., Iborra, M., & Fité, C. (2004). Cinética de las reacciones químicas. Barcelona España: Ediciones de la Universitat de Barcelona.
- Jinhua, W., Xiang, Z., Bing, Z., Yafei, Z., Rui, Z., Jindun, L., & Rongfeng, C. (2010). Rapid adsorption of Cr (VI) on modified halloisite nanotubes. *Desalination*, 22-28.
- Joseph I., G. (1992). Scanning Electron Microscopy and X-ray Microanalysis. A text for Biologist, Materials Scientist and Geologists. New York: Plenum Press.
- Kiani, G., Dostali, M., Rostami, A., & Khataee, A. R. (2011). Adsorption studies on the removal of Malachite Green from aqueous solutions onto halloysite nanotubes. *Applied Clay Science*, 34-39.
- Laider, K. J., & Meiser, J. H. (2005). Fisiscoquímica. In K. J. Laider, & J. H. Meiser, *Fisicoquímica* (p. 836). México DF.: Compañia Editorial Continental.
- León, R. L., & Garcia, A. M. (2013, Febrero 19). *Servicios centrales de apoyo a la investigación* . Retrieved from Unidad Difraccion de Rx: http://www.scai.uma
- Liu, R., Bing, Z., Mei, D., Zang, H., & Liu, J. (2011). Adsorption of methyl violet from aqueous solution by halloysite nanotubes. *Desalination*, 111-116.

- Luo, P., Zaho, Y., Zhan, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. *Water Research*, 1489-1497.
- McMurry, J. (2008). *Química Organica*. México DF: Cengage Learning Editores, S.A. de C.V.
- Mehmel, M. (1935). Uber die Struktur von Halloysit und Metahalloysit. *Zeitschrift Für Kristallographie*, 35-43.
- Mellouk, S., Cherifi, S., Sassi, M., Marouf-Khelifa, K., Abderlkader, B., Schott, J., & Khelifa, A.
 (2009). Intercalation of halloisite from Djebel Debagh (Algeria) and adsorption of cooper ions. *Applied Clay Science*, 230-236.
- Mellouk, S., Cherifi, S., Sassi, M., Marouf-khelifa, K., Bengueddach, A., Schott, J., & Amine, K. (2009). Intercalation of halloysite from djebel Debagh (Algeria) and adsorption of copper ions. *Applied clay Science*, 230-236.
- Millot, G. (1964). Geologie des Argiles. París: Masson.
- Poole, C. P., & Owens, F. J. (2003). *Introducción a la Nanotecnología*. Barcelona, España: editorial Reverté, S. A.
- Rahchamani, J., Mousavi, H. Z., & Behzad, M. (2011). Adsorption of methyl violet from aqueous solution by polyacrylamide as an adsorbent: Isotherm and kinetic studies. *Desalination*, 256-260.
- Rochow, T. G. (1994). *Introduction to Microscopy by means of light, electrons, X-ray or acustics*. New York: Plenum Press.
- Rodríguez, Y. M. (2008). *Preparación y caracterización de arcillas ácidas y superácidas: Algunas aplicaciones*. México DF.: Tesis para optar por el grado de Doctora en ciencias químicas.
- Ruiz Fernández, M., Alexander Franco, M., Fernández González, C., & Gómez Serrano, V. (2010).
 Adsorption Isotherms of Methylene Blue in Aqueous Solution onto Activated Carbons
 Developed from Vine Shoots (Vitis vinifera) by Physical and Chemical Methods. Adsorption
 Science and Technology., 751-759.
- Rytwo, G., Nir, S., Crespin, M., & Margulies, L. (2000). Adsorption and Interactions of Methyl Green with Montmorillonite and Sepiolite. *Journal of Colloid and Interface Science*, 12-19.
- Schofield, R. a. (1953). The defoculation of kaolinite suspencions and the accompanying changeover from positive to negative Chlorite adsorption. *Clay Mineral bulletin*, 45-51.

Sharpe, A. G. (1993). *Química Inorganica*. Barcelona, España: Reverte, S.A.

- Sing, K. S., Everett, D. H., R. A. W. Haul, L. M., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting phisisorption data for gas/solid systems. With special reference to the determination of surface area and porosity. *Pure & Appl. Chem., Vol. 57*, 603-619.
- Skoog, D. A., West, D. M., Holer, J., & otros, y. (1997). *Fundamentos de Química Analítica*. Barcelona España.: Editoral Reverté, S.A.
- Smith, J. y. (1965). Second review of Al-O and Si-O tetrahedral distances. . Acta Cristalographica, 801-811.
- Vargas, R. Y., & Obaya, V. a. (2005). *Cálculo de parametros de rapidez en cinética química y enzimática*. México DF.: Comite editorial UNAM.
- Yah, W. O. (2012). Biomimetic dopamine derivative for selective for selective polymer modification of halloysite nanotube lumen. *Journal of the American Chemical Society.*, 12134-12137.
- Yah, W. O. (2012). Biomimetic Dopamine for selective polymer modification of halloysite nanotube lumen. *Journal of the American Chemical Society*, 12134-12137.
- Yha, W. O., & Takahara, A. (2012). Selective modification of halloysite lumen with Octadecylphosphonic Acid, New Inorganic Tubular Micelle. *Journal American Chemical Society*, 1853-1859.
- Zhang, A.-B., Pan, L., Zhang, H.-Y., Lui, S.-T., Ye, Y., Xia, M.-S., & Chen, X.-G. (2012). Effects of acid treatment on the physico-chemical and pore characteristics of halloysite. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 182-188.
- Zhang, D. (2010). Synthesis of clay minerals. Applied Clay Science, 1-11.
- Zhao, M., & Peng, L. (2008). Adsorption behavior of methylene blue on halloysite nanotubes. *Microporous and Mesoporous Materials*, 419-424.

Anexo A Pruebas de hipótesis para la comparación de pendientes.

Para determinar si las expresiones (ecuaciones) que se obtuvieron de los modelos de las cinéticas de adsorción de pseudo segundo orden entre replicas se pueden considerar iguales o no, se realizaron pruebas de hipótesis y así contar con evidencia estadística que nos confirme tal afirmación. Esto demostraría que independientemente del día (réplica) en que se realizó el experimento se obtiene el mismo modelo la cinética de adsorción.

En primer instancia se establece la hipótesis nula (H_0) que establece que las pendientes entre replicas 1 y 2 son iguales, la hipótesis alternativa (H_1) establece que las pendientes entre replicas 1 y 2 son diferentes.

$$H_0: m_1 = m_2$$
 $H_1: m_1 \neq m_2$ Ecuación 1

Esto se obtiene con una prueba de t de student del tipo de comparación de medias, donde sí:

$$t_{calculada} < t_{tablas}$$

Entonces se acepta H₀.

Para la prueba de hipótesis es preciso evaluar primero las varianzas de los residuales (S_e^2) entre cada replica si se pueden considerar iguales o no, para elegir que varianza se utilizara para determinar t calculada. Esto se hace mediante la prueba de hipótesis de comparación de varianzas (prueba de F).

$$H_o: S_{e2}^2 = S_{e1}^2 \quad H_1: S_{e2}^2 \neq S_{e1}^2$$

Si

$$F_{calculada} = \frac{S_{e2}^2}{S_{e1}^2} < F_{0.05, (n1-1, n2-1)}$$
 Ecuación 2

Entonces se acepta H0.

La varianza de los residuales se calcula al realizar la regresión lineal que se obtiene con los datos de la variable del modelo de la cinética de pseudo segundo orden y tiempo gracias al programa "Statgraphics Centurión 16". La F calculada se compara con la F_t de tablas con grados de libertad τ_1 = n_1 -1 para le ecuación de la réplica 1 y grados de libertad τ_2 = n_2 -1 para la ecuación de la réplica 2.

Si se comprueba que las varianzas entre las réplicas se pueden considerar iguales se calcula entonces la varianza estimada común:

$$S_{ep}^2 = \frac{(n_1 - 2)S_{e1}^2 + (n_2 - 2)S_{e2}^2}{n_1 + n_2 - 4}$$
 Ecuación 3

Donde S_{ep}^2 es la varianza estimada común, que se calcula con las varianzas de los residuales, m es la pendiente correspondiente a cada modelo, $(x_{i2} - \bar{x}_2)^2$ es la sumatoria de cuadrados de la diferencia de cada valor con el promedio de cada replica.

Con el valor de S_{ep}^2 se calcula el estadístico de prueba t student cuando se considera que las varianzas son iguales:

$$t_{calculada} = \frac{m_1 - m_2}{\left(S_{ep}^2 \left[\frac{1}{\Sigma(x_{i1} - \bar{x}_1)^2} + \frac{1}{\Sigma(x_{i2} - \bar{x}_2)^2}\right]\right)^{1/2}}$$
 Ecuación 4

Cuando en la prueba F para el análisis de la varianza de los residuales F calculada es mayor que la F de tablas, se aplica el estadístico t student, que considera que las varianzas entre modelos son diferentes.

$$F_{calculada} = \frac{S_{e2}^2}{S_{e1}^2} > F_{0.05, (n1-1, n2-1)}$$
 Ecuación 5

Si F calculada es mayor que la F de tablas se aplica el siguiente estadístico t:

$$t_{calculada} = \frac{m_1 - m_2}{\left(s_{b1}^2 + s_{b2}^2\right)^{1/2}}$$
 Ecuación 6

Donde S_b^2 es la varianza de los residuales sobre la sumatoria del cuadro de la diferencia de cada valor de la cinética con el promedio.

$$S_{b1}^2 = \frac{S_{e1}^2}{\Sigma(x_{i1} - \overline{x_1})^2}$$
 Ecuación 7

Una vez obtenida t calculada, se compara con t de tablas para aceptar H_0 o H_1 , donde t de tablas se obtiene calculando los grados de libertad gl= $n_1 + n_2$ -4, y buscando el valor de t de acuerdo a sus gl y nivel de significancia.

Ejemplo prueba de hipótesis para la cinética de adsorción de verde de metilo sobre haloisita natural con un 99% de confianza.

Se establecen las hipótesis nula y alternativa.

$$H_o: m_1 = m_2$$
$$H_1: m_1 \neq m_2$$

Se realiza la prueba F para seleccionar el estadístico t de student correcto.

$$F_{calculada} = \frac{7.777603x10^{-6}}{1.66304x10^{-6}} = 4.6767$$

 F_t de tablas con grados de libertad τ_1 = 7 y τ_2 = 7 por lo tanto F_t =3.787.

$$F_{calculada} > F_t$$
; 4.6767 > 3.787

Tal que se utiliza la ecuación seis para calcular la prueba t.

Calculando la sumatoria del cuadrado de la diferencia de cada valor de la cinética con el promedio para cada réplica tenemos la siguiente tabla:

Tiempo	1° replica	2° replica	1° replica	2° replica		
horas	t/qt	t/qt	$(x - \bar{x}_1)^2$	$(x - \bar{x}_2)^2$		
1	0.0166	0.0135	0.001159403	0.000701588		
2	0.0291	0.0229	0.000464403	0.000291983		
3	0.0402	0.0312	0.000109203	7.72202E-05		
4	0.049	0.035	2.7225E-06	2.48752E-05		
5	0.0581	0.0426	5.55025E-05	6.82516E-06		
6	0.0617	0.0505	0.000122103	0.000110513		
7	0.0719	0.0586	0.000451563	0.000346425		
8	0.0786	0.0656	0.000781203	0.000656		
	\bar{x}_1	\bar{x}_2	$(x - \bar{x}_1)^2$	$(x - \bar{x}_2)^2$		
	0.0031461	0.002215429	0.0031461	0.002215429		

Calculando S_b^2 :

$$S_{b1}^2 = \frac{7.777603x10^{-6}}{3.1461x10^{-3}} = 2.4721x10^{-3}$$

$$S_{b2}^2 = \frac{1.66304x10^{-6}}{2.2154x10^{-3}} = 7.5067x10^{-4}$$

Calculando t:

$$t_{calculada} = \frac{0.00858 - 0.00725}{(2.4721x10^{-3} + 7.5067x10^{-4})^{1/2}} = 0.02342 < 3.05$$

El valor de la t_t de tablas que se obtiene con un grado de libertad de 12 y con una significancia de 0.01 es t_t =3.05.

Concluyendo: Existe suficiente evidencia estadística con un 99% de confianza que muestra que las pendientes de las ecuaciones del modelo de pseudo segundo orden para las réplicas de la cinética de adsorción de verde de metilo sobre la haloisita natural son iguales.

En la siguiente tabla se resumen las pruebas aplicadas para cada cinética e isoterma de adsorción realizado durante todo el trabajo.

Prueba F comparación de varianzas									
	Grafico	Se ² 1*	Se ² _{2 figur}	as B 2	$\Sigma(\mathbf{x}_1 - \overline{x_1})^2$	$\Sigma(x_1 - \bar{x}_2)^2_2$	F _{calculada}	F _{t 0.05}	Fc <ft< td=""></ft<>
Cinética de adsorción de VM, H001	4.8	6.973E-06	3.304E	-06	0.011	9.690E-03	2.110	3.787	$\mathrm{Se_1}^2 = \mathrm{Se_2}^2$
Cinética de adsorción de VM, H002	4.11	5.013E-06	4.285E	-06	0.007	3.168E-03	1.170	3.787	Se ₁ ² =Se ₂ ²
Isoterma de adsorción de VM, Halosita	4.32	5.974E-06	8.845E	-06	0.026	3.829E-02	0.675	6.388	$\mathrm{Se_1}^2 = \mathrm{Se_2}^2$
natural.	4.33	9.119E-07	5.198E	-06	0.011	3.198E-02	0.175	6.388	Se ₁ ² =Se ₂ ²
	4.34	6.718E-08	5.419E	-07	0.004	7.690E-03	0.124	6.388	$\mathrm{Se_1}^2 = \mathrm{Se_2}^2$
Isoterma de adsorción de VM, H001.	4.35	4.066E-05	1.925E	-04	0.218	1.795E-01	0.211	6.388	$\mathrm{Se_1}^2 = \mathrm{Se_2}^2$
	4.36	2.888E-04	2.954E	-04	0.215	1.844E-01	0.977	6.388	Se ₁ ² =Se ₂ ²
	4.37	1.010E-04	1.228E	-04	0.129	1.275E-01	0.822	6.388	$Se_1^2 = Se_2^2$
Isoterma de adsorción de VM, H002.	4.38	3.859E-05	4.536E	-05	0.081	9.571E-02	0.851	6.388	$\mathrm{Se_1}^2 = \mathrm{Se_2}^2$
	4.39	9.299E-05	1.440E	-04	0.106	1.034E-01	0.646	6.388	$\operatorname{Se_1}^2 = \operatorname{Se_2}^2$
	4.40	1.446E-04	2.706E-04		0.133	1.450E-01	0.535	6.388	$Se_1^2 = Se_2^2$
Prueba t STUDENT comparación de pendientes.									
	Figura	S_{ep}^2	m ₁	m ₂	m₁-m	2 t _c	t	Confianza	Hipótesis aceptada.
Cinética de adsorción de VM, H001	4.23	5.138E-06	0.01518	0.01636	1.180E-	-03 3.758E-02	2 3.05	99	H ₀
Cinética de adsorción de VM, H002	4.25	4.649E-06	0.01246	0.00865	3.810E-	-03 8.165E-02	3.05	99	H ₀
Isoterma de adsorción de VM, Haloisita	4.32	9.879E-06	0.01540	0.01670	1.300E-	-03 5.130E-02	3.71	99	H ₀
natural.	4.33	4.073E-06	0.01520	0.01500	2.000E-	-04 9.005E-03	3.71	99	H₀
	4.34	4.061E-07	0.01450	0.01460	1.000E-	-04 8.018E-03	3.71	99	H ₀
Isoterma de adsorción de VM, H001.	4.35	1.554E-04	0.03650	0.03640	1.000E-	-04 2.517E-03	3.71	99	H ₀
	4.36	3.895E-04	0.03680	0.03710	3.000E-	-04 4.791E-03	3.71	99	H ₀
	4.37	1.493E-04	0.03690	0.03700	1.000E-	-04 2.073E-03	3.71	99	Ho
Isoterma de adsorción de VM, H002.	4.38	5.597E-05	0.03500	0.03540	4.000E	-04 1.118E-02	3.71	99	H ₀
	4.39	1.580E-04	0.03580	0.03630	5.000E-	-04 9.107E-03	3.71	99	H ₀
	4.40	2.768E-04	0.03690	0.03720	3.000E-	-04 4.750E-03	3.71	99	Ho

En principio se demostró que las varianzas de los residuales de las réplicas de cada gráfico se pueden considerar iguales, esto con la prueba F para la comparación de varianzas con una significancia del 0.05.

Con estas pruebas de hipótesis se demuestra que existe suficiente evidencia estadística con un 99% de confianza, para considerar que las pendientes de cada réplica en cada gráfico se pueden considerar iguales.

Anexo B gráficos de las isotermas de Langmuir y Freundlich

En este anexo se presentan los gráficos de las isotermas de Langmuir y Freundlich que se realizaron para el estudio del equilibrio de la adsorción de VM sobre las haloisitas de estudio.

Grafico 4.33 Isoterma de adsorción de la haloisita natural a 313.15 K.

Grafico 4.34 Isoterma de adsorción de la haloisita natural a 333.15 K.

Grafico 4.36 Isoterma de adsorción de la haloisita H001 a 313.15 K.

Grafico 4.39 Isoterma de adsorción de la haloisita H002 a 313.15 K.

Grafico 4.42 Isoterma de adsorción de la haloisita natural réplica 2.

Grafico 4.43 Isoterma de adsorción de la haloisita H001 réplica 1.

Grafico 4.44 Isoterma de adsorción de la haloisita H001 réplica 2.

Grafico 4.45 Isoterma de adsorción de la haloisita H002 réplica 1.

Grafico 4.46 Isoterma de adsorción de la haloisita H002 réplica 2.

Anexo C Tarjeta de identificación de las haloisitas