

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

"MODELADO TERMODINÁMICO DE MEZCLAS GLICOLES-AGUA A TRAVÉS DE LA ECUACIÓN DE ESTADO CTS.

TESIS

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA (N)

RUBÉN SÁNCHEZ GUDIÑO

MÉXICO, D.F.

2012

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor: ENRIQUE RODOLFO BAZUA RUEDA
VOCAL:	Profesor: GERARDO OMAR HERNANDEZ SEGURA
SECRETARIO:	Profesor: MILTON THADEU GARCIA MEDEIROS DE OLIVERA
1er. SUPLENTE:	Profesor: MARCO ANTONIO ALMARAZ GIRON
2° SUPLENTE:	Profesor: HUMBERTO HINOJOSA GOMEZ

EL PRESENTE TRABAJO SE ELABORO EN LA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, EN LA FACULTAD DE QUÍMICA, EDIFICIO **B**, CUBÍCULO **106** Y BAJO LA DIRECCIÓN DEL DR. MILTON THADEU GARCÍA MEDEIROS DE OLIVERA.

ASESOR DEL TEMA:

DR. MILTON THADEU GARCÍA MEDEIROS DE OLIVERA

SUSTENTANTE (S):

RUBÉN SÁNCHEZ GUDIÑO

ÍNDICE

ABREVIATURAS Y SÍMBOLOS	5
1. RESUMEN	8
1.1 Objetivos	8
2. INTRODUCCIÓN	9
2.1 Breve descripción de la ecuación CTS	
2.2 Actividades	10
3. ANTECEDENTES	10
3.1 EL GAS NATURAL	10
3.2 DESHIDRATACIÓN DEL GAS NATURAL	12
3.3 DESCRIPCIÓN DEL PROCESO DE DESHIDRATACIÓN DEL GAS NATURAL.	17
3.4 FUNCIONES DE LOS PRINCIPALES EQUIPOS INVOLUCRADOS EN EL SISTEMA	
3.5 PROBLEMAS QUE SE PRESENTAN EN LA DESHIDRATACIÓN DEL GAS NATURAL.	21
3.5.1 Corrosión	
3.5.2 Descomposición térmica	22
3.5.3 Contaminación por sales	22
3.5.4 Presencia de hidrocarburos	22
3.5.5 Lodos o barros	22
3.5.6 Espuma	23
4. FUNDAMENTOS TERMODINÁMICOS	24
4.1 Echaciones cúbicas	24
4.1 ECUACIONES CÚBICAS	
4.1 ECUACIONES CÚBICAS	24 26
 4.1 ECUACIONES CÚBICAS 4.2 EQUILIBRIO LÍQUIDO-VAPOR 5. DESCRIPCIÓN DE LA ECUACIÓN CÚBICA DE DOS ESTADOS (CTS) 	
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29 31 32 33
 4.1 ECUACIONES CÚBICAS	
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29 31 32 33 33 33 33 34
 4.1 ECUACIONES CÚBICAS	
 4.1 ECUACIONES CÚBICAS	
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29 31 32 33 33 33 33 33 33 33 33 33 33 33 33
 4.1 ECUACIONES CÚBICAS	
 4.1 ECUACIONES CÚBICAS 4.2 EQUILIBRIO LÍQUIDO-VAPOR 5. DESCRIPCIÓN DE LA ECUACIÓN CÚBICA DE DOS ESTADOS (CTS) 5.1 GENERALIDADES 5.2 CONSTRUCCIÓN DE LA ECUACIÓN CÚBICA DE DOS ESTADOS 5.3 SENTIDO FÍSICO DE LOS PARÁMETROS DE LA CTS 5.4 SUSTANCIAS PURAS 5.4.1 Ecuación para compresibilidad para sustancia pura 5.4.2 Fugacidades con la ecuación CTS 5.5 CÁLCULO DE <i>cp</i> CON LA ECUACIÓN CTS PARA UNA SUSTANCIA PURA 5.6 MEZCLAS BINARIAS CON LA ECUACIÓN CTS 5.7 REGLAS DE COMBINACIÓN Y MEZCLADO 5.8 POLINOMIO PARA LA COMPRESIBILIDAD EN UNA MEZCLA BINARIA 5.9 CÁLCULO DE CURVAS DE ROCÍO Y BURBUJA 	
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29 31 32 33 33 33 33 33 34 34 39 39 39 41 41 42 44 45
 4.1 ECUACIONES CÚBICAS	24 26 28 28 29 31 32 33 33 33 33 34 39 39 39 41 41 42 42 44 45 46
 4.1 ECUACIONES CÚBICAS	
 4.1 ECUACIONES CÚBICAS	

6.3.1 Envolventes de fases	55
$5.3.2 \ cp$ de las mezclas	59
7. CONCLUSIONES Y SUGERENCIAS.	
REFERENCIAS	65
APENDICE A. PARÁMETROS DE FUNCIONES EMPÍRICAS TOMADOS	DEL DIPPR 67
APÉNDICE B. ELECCIÓN DE LA RELACIÓN PRIMARIA PARA CALCU	LAR <i>Pas</i> 68
APÉNDICE C. DEDUCCIÓN DEL POLINOMIO DE COMPRESIBILIDAD	PARA LA CTS 69
APÉNDICE D. DESARROLLO DE LA EXPRESIÓN EXACTA PARA EL C.	ÁLCULO DEL
COEFICIENTE DE FUGACIDAD	71
APÉNDICE E. DEDUCCIÓN DE LA EXPRESIÓN PARA EL CÁLCULO DI	EL COEFICIENTE DE
FUGACIDAD UTILIZANDO LA CTS.	73
APENDICE F. MEMORIA DE CÁLCULO	79
1. Cálculo de propiedades termodinámicas para una sustancia pura hacien	DO USO DE LA ECUACIÓN
<i>CTS</i>	
2. CÁLCULO DE ELV PARA MEZCLAS GLICOLES-AGUA	
3. CÁLCULO DE CP PARA MEZCLAS GLICOL-AGUA	100
APENDICE G. DATOS EXPERIMENTALES, CÁLCULOS CON LA ECUA	CIÓN CTS Y ERRORES

APENDICE G. DATOS EXPERIMENTALES, CALCULOS CON LA ECUACIÓN CTS Y ERRORES CALCULADOS PARA ENCONTRAR LOS PARÁMETROS DE LAS SUSTANCIAS PURAS....... 115

Abreviaturas y símbolos.

- a = Energía libre de Helmholtz
- a_m = Parámetro energético de mezclado
- a_i = Parámetro energético para una especie pura *i*
- a_{ij} = Parámetro energético entre la especie *i* y *j*
- a_0 = Parámetro energético ajustable de una especie pura
- b_m = Parámetro de covolumen de mezclado.
- b_i = Parámetro de covolumen para una especie pura *i*
- b_{ij} = Parámetro de covolumen entre la especie *i* y *j*

$$\beta = \frac{1}{k_B T}$$

- *CPA* = Ecuación de estado cúbica más asociación
- CTS = Ecuación cúbica de dos estados
- c_1 = Parámetro de ecuación de estado cúbica
- c_p = Capacidad térmica molar a presión constante
- c_v = Capacidad térmica molar a volumen constante
- *DEG* = Dietilenglicol
- EoS = Ecuación de estado
- *ELV* = Equilibrio líquido vapor
- E_i = Energía de asociación de la especie *i*
- E_{ij} = Energía de asociación entre la especie *i* y *j*
- ϕ_i^{π} = Coeficiente de fugacidad de la especie *i* en la fase π
- f_i^{π} = Fugacidad de la especie *i* en la fase π
- f_{ij} = Función de Meyer

h = Entalpía

 k_B = Constante de Boltzmann

- k_{ij} , l_{ij} = Parámetros de interacción binarios
- *MEG* = Monoetilenglicol
- μ_i = Potencial químico de la especie *i*
- N_j = Número de sitios de asociación tipo *j* donde la molécula *i* puede asociarse
- p = Presión
- p_c = Presión crítica
- $\rho = Densidad$
- q_i = Función de partición de una partícula
- R =Constante de los gases
- *SRK* = Ecuación de estado de Soave-Redlich-Kwong
- s =Entropía
- *TEG* = Trietilenglicol
- TSAM = Modelo de asociación de dos estados
- T = Temperatura
- T_c = Temperatura crítica
- T_r = Temperatura reducida
- *V* =Volumen
- v = Volumen molar
- v_i = Volumen de asociación de la especie *i*
- v_{ij} = Volumen de asociación entre la especie *i* y *j*
- W = índice de Wobbe
- w_i = Fracción molar
- x_i = Fracción molar en la fase líquida
- y_i = Fracción molar en la fase vapor

z = Factor de compresibilidad

Índices y superíndices

- i, j, k =Los compuestos i, j y k
- as =Asociación
- *id* =Ideal
- ns = No específica
- s = Saturación

1. Resumen

En ingeniería química las ecuaciones de estado son de gran importancia para poder calcular el equilibrio de fases de una mezcla binaria o multicomponente. Una ecuación de estado debe de ser fácil de utilizar, sin gran complejidad numérica y capaz de describir el equilibrio de fases en un amplio rango de temperatura, presión y composición para diversas especies químicas. Una ecuación ampliamente aceptada en ingeniería química es la ecuación de estado cúbica Soave-Redlich-Kwong (SRK) la cual es capaz de describir apropiadamente el equilibrio líquido-vapor de sustancias no polares, sin embargo para sustancias polares los resultados se alejan de la realidad.

La propuesta de esta tesis es utilizar una ecuación de estado que describa el equilibrio líquido-vapor de compuestos polares, en particular aquellos que presentan puentes de hidrógeno como es el caso de las mezclas glicol-agua. Se utilizará la ecuación de estado Cubic-Two-State (CTS), la cual combina la simplicidad de la ecuación SRK y que representa las interacciones no especificas, con el modelo Two State Association Model (TSAM) la cual describe las interacciones específicas como son los puentes de hidrógeno. La ecuación CTS se utilizará para calcular el equilibrio líquido-vapor de los glicoles puros y de las mezclas glicol-agua, además se incluirá el cálculo y mejora de la capacidad térmica de las sustancias puras y mezclas con respecto a trabajos anteriores [1].

1.1 Objetivos

- Aplicar la ecuación de estado CTS (Cubic-Two-State) en sistemas complejos donde se presentan la formación de puentes de hidrógeno.
- Encontrar los parámetros adecuados para utilizar esta ecuación de estado.
- Describir propiedades como la presión de vapor, densidad de líquido saturado y capacidad térmica de los compuestos puros con importancia tecnológica, en este caso los glicoéteres monoetilenglicol, dietilenglicol y trietilenglicol.
- Describir el equilibrio líquido-vapor de mezclas glicol-agua.
- Calcular propiedades termodinámicas para sustancias puras y mezclas de glicolesagua, tales como la capacidad térmica.

- Probar con diferentes reglas de combinación para calcular el término de energía de asociación cruzada entre el agua y los glicoles y determinar la más efectiva para la predicción/correlación de propiedades termodinámicas.
- Comparar los resultados obtenidos con la ecuación CTS con datos experimentales reportados en la literatura.

2. Introducción

2.1 Breve descripción de la ecuación CTS.

La ecuación CTS fue propuesta por Milton Medeiros y Pablo Téllez-Arredondo [1]. Consiste básicamente en una modificación a la ecuación de estado SRK, agregando un nuevo término para considerar las contribuciones debidas a las interacciones fuertes como es el caso de los puentes de hidrógeno. Este término tiene origen en el modelo mecanoestadístico de dos estados para las moléculas asociativas (TSAM). La combinación de la ecuación cúbica con el término de asociación de dos estados generó la ecuación CTS ("Cubic + Two-State).

El modelo TSAM produce una expresión simple para la contribución de la presión debida a las fuerzas específicas de asociación. También tuvo éxito en la descripción del fenómeno de asociación en líquidos [2]. Este hecho la hace adecuada para unirla con una EoS que pueda representar la contribución física de la presión pero no la especifica asociativa.

En trabajos previos, la CTS ha descrito con éxito el fenómeno de asociación para sustancias puras y mezclas binarias con asociaciones cruzadas (alcohol-alcanos, alcohol-alcohol y agua-alcohol), al observar este hecho notamos buenas correlaciones obtenidas para las propiedades de equilibrio de fases tanto de substancias puras como de mezclas.

La ecuación CTS tiene 5 parámetros ajustables para cada compuesto. Así puede describir sistemas con interacciones fuertes, siendo de especial interés para nosotros aquellos que forman puentes de hidrógeno.

La ventaja de la CTS sobre otras ecuaciones modernas, como la CPA (Cubic plus Asociation) [3], es que tiene una forma polinomial con respecto a su volumen molar. Como

consecuencia, es de fácil resolución numérica. El polinomio resultante tiene grado N_{as} +3, donde N_{as} es el número de substancias capaces de asociarse.

2.2 Actividades

- Revisión de fundamentos teóricos, estudio de la ecuación Soave-Redlich-Wong (SRK)
- Desarrollo de las expresiones matemáticas para la ecuación Cubic-Two-State (CTS) que describirán el equilibrio líquido-vapor de sustancias puras y mezclas.
- Búsqueda de datos experimentales en bibliografía especializada de equilibrio líquido-vapor y capacidad térmica (c_p) de sustancias puras y mezclas.
- Determinación de los parámetros característicos de la ecuación CTS para sustancias puras, modelando el equilibrio liquido-vapor, el c_p y contrastándolo con datos experimentales.
- Ajuste de parámetros de interacción binarios y modelado de equilibrio liquido-vapor de mezclas glicol-agua. Comparar con datos experimentales.
- Cálculo del equilibrio líquido-vapor cambiando la regla de combinación para la energía de asociación cruzada.
- Utilizando los parámetros encontrados y la mejor regla de mezclado, predecir el equilibrio líquido-vapor y el comportamiento de la capacidad térmica c_p de mezclas glicol-agua.

3. Antecedentes

3.1 El gas natural

El gas natural es un energético natural de origen fósil que se encuentra normalmente en el subsuelo continental y marino. Se formó hace millones de años cuando una serie de organismos descompuestos quedaron atrapados bajo lodo y arena, en lo más profundo de los lagos y océanos. Con el paso del tiempo, el lodo, la arena y los sedimentos comenzaron a formar capas de rocas a gran profundidad. La presión originada por estas capas de rocas así como la temperatura de la tierra fueron transformando lentamente el material orgánico

en petróleo crudo y gas natural. El gas natural constituye la tercera fuente de energía después del petróleo y el carbón, como se muestra a continuación en la figura 3-1.

Figura 3-1. Comparación del uso del gas natural contra otras fuentes de energía

Algunas veces el gas natural se acumula entre la porosidad de las rocas, pero en otras ocasiones queda atrapado bajo rocas sólidas que evitan que el gas fluya, formándose lo que comúnmente conocemos como yacimiento.

El gas natural se puede encontrar en forma "asociada" cuando el yacimiento se encuentra acompañado de petróleo, o se puede encontrar como gas natural "no asociado" cuando está acompañado de pequeñas cantidades de otros hidrocarburos o gases. Por otra parte, el gas natural se puede clasificar como gas amargo que es cuando contiene derivados de azufre como el ácido sulfúrico, mercaptanos y sulfuros o bien como gas dulce, el cual se encuentra libre de derivados de azufre y se obtiene generalmente al endulzar el gas amargo.

El gas natural es incoloro e inodoro y se compone principalmente por metano, aunque comúnmente se encuentra mezclado con otros hidrocarburos como: etano, propano, nbutano, n-pentano, dióxido de carbono, nitrógeno, vapor de agua, sulfuro de hidrógeno y helio, cuya composición típica se presenta en la tabla I.

COMPOSICIÓN TÍPICA DEL GAS NATURAL			
Compuesto	Fórmula	Gas no	Gas
	química	asociado	asociado
Metano	CH ₄	95-98%	60-80%
Etano	C_2H_6	1-3%	10-20%
Propano	C ₃ H ₈	0.5-1%	5-12%

Tabla I. Composición típica del gas natural asociado y no asociado.

Butano	$C_{4}H_{10}$	0.2-0.5%	2-5%
Pentano	$C_{5}H_{12}$	0.2-0.5%	1-3%
Dióxido de carbono	CO ₂	0-8%	0-8%
Nitrógeno	N_2	0-5%	0-5%
Sulfuro de Hidrógeno	H_2S	0-5%	0-5%
Otros	He, Ar, Xe, Ne	trazas	trazas

El procesamiento total del gas natural está compuesto por varias etapas las cuales se mencionan a continuación:

- I. Remoción de condensados y agua.
- II. Endulzamiento
- III. Recuperación de azufre
- IV. Deshidratación de gas natural
- V. Remoción del mercurio.
- VI. Rechazo de nitrógeno
- VII. Recuperación de los líquidos del GN.

El tema principal de la tesis está relacionado de forma directa con la etapa número IV, la deshidratación del gas natural. A continuación haremos una breve descripción del proceso, donde podremos comprender el porqué de la importancia del estudio del equilibrio líquidovapor y la capacidad térmica de la mezcla agua-glicoles.

3.2 Deshidratación del gas natural

El gas natural tal como lo encontramos en la naturaleza contiene muchos contaminantes, el más común de ellos es el agua. Cuando un volumen de gas sale a la superficie para su procesamiento y transporte ocurre de manera natural una reducción de presión y temperatura. Esto tiene como consecuencia que la capacidad del gas natural para contener vapor de agua se vea disminuida y por lo tanto que el agua libre que posee se condense. El gas natural está saturado con vapor de agua a la temperatura y a la presión a la cual es producido. Es necesario remover este vapor para prevenir la condensación del agua en el

sistema de transporte y para cumplir con las especificaciones de los contratos. Algunos de los requerimientos que se solicitan para el gas natural son:

- 1. Poder calorífico (en México debe de ser entre 34 y 40 MJ/m³)
- 2. Ausencia de partículas sólidas y agua líquida.
- 3. Tolerancia máxima de componentes como el H₂S, mercaptanos y vapor de agua.
- 4. Índice de Wobbe el cual es la relación del poder calorífico con respecto a la raíz cuadrada de la densidad relativa.

$$W = \frac{H_s}{\sqrt{\rho}}$$

El gas natural generalmente contiene agua en estado líquido y/o vapor. El contenido de agua en el gas debe ser reducido y controlado. Las principales razones para eliminar el agua son:

- El gas natural en las condiciones adecuadas puede combinarse con el agua libre para formar hidratos sólidos los cuales pueden taponear válvulas, accesorios e incluso tuberías.
- La presencia de agua líquida puede incrementar la corrosividad del gas natural, especialmente cuando el gas contiene H₂S y CO₂.
- El agua puede condensar en la tubería causando flujo tapón con posible erosión y corrosión.
- El volumen del vapor de agua disminuye el contenido energético del gas.
- Los vendedores y transportistas deben lograr ciertas especificaciones en el contenido del agua en el gas natural (112Kg por millón de m³)

Los separadores de agua ubicados cerca de la boca del pozo y en ubicaciones estratégicas eliminan la gran mayoría del contenido del agua. Sin embargo, la remoción del vapor de agua que existe disuelto en el gas natural requiere de un tratamiento más complejo. Este tratamiento consiste en la deshidratación del gas natural, la cual se logra reduciendo la temperatura de punto de rocío de la mezcla agua-gas.

Existen muchos métodos para deshidratar el gas natural. Los más comunes son la deshidratación por líquidos desecantes (glicoles), la deshidratación por sólidos desecantes y

deshidratación por refrigeración. Los dos primeros métodos utilizan la transferencia de masa de las moléculas de agua hacia un disolvente líquido (solución de glicol) o hacia una estructura cristalina (desecación en seco).

Para la deshidratación por sólidos desecantes se utilizan materiales tales como la sílica gel, alúmina activada, carbón activado y tamices moleculares. Esta deshidratación trabaja con el principio de adsorción. Esta adsorción implica una adhesión entre la superficie del sólido desecante y el vapor de agua. Los desecantes son sólidos con una enorme área de superficie efectiva por unidad de masa que contiene un número alto de poros microscópicos y capilares abiertos. Los costos de la deshidratación del gas natural por medio de sólidos desecantes exceden a las típicas unidades de deshidratación con glicoles.

El tercer método emplea el enfriamiento para condensar las moléculas de agua, después se inyecta un inhibidor para evitar la formación de hidratos. Este proceso está basado en el principio de que el gas bajo presión puede experimentar una gran caída de temperatura durante una brusca reducción de la presión, fenómeno conocido como el efecto Joule-Thomson. Un enfriamiento adicional puede obtenerse por la expansión del gas a través de una turbina.

Generalmente se utilizan los métodos de absorción por medio de glicoles y adsorción con desecantes sólidos.

La absorción es la técnica más común de secado de gases. En este método el vapor de agua de la corriente gaseosa se absorbe en una corriente líquida de un disolvente. La elección del disolvente que se utilizará para la deshidratación del gas natural debe seguir los siguientes criterios:

- 1. Fuerte afinidad por el agua.
- 2. Bajo costo.
- 3. No corrosivo.
- 4. Baja afinidad por los gases ácidos y los hidrocarburos.
- 5. Estabilidad térmica.
- 6. Fácil regeneración.
- 7. Baja viscosidad.

- 8. Baja presión de saturación a la temperatura del contactor.
- 9. Baja solubilidad en hidrocarburos.
- 10. Baja tendencia a formar espuma o a emulsificarse.

Los glicoles son los líquidos absorbentes más utilizados ya que poseen propiedades que se adaptan tanto al proceso como a la aplicación comercial. En general, su naturaleza higroscópica, la gran atracción entre el agua y el glicol, el abatimiento de la presión de vapor de agua en la solución los hacen ideales para su uso en el proceso de deshidratación del gas natural. También son muy atractivos para su uso debido a la confiabilidad de la operación y simplicidad de los equipos.

En estado líquido las moléculas del agua se encuentran asociadas por medio de los puentes de hidrógeno. Los glicoles, por medio de su grupo éter y su grupo hidroxilo también son capaces de formar puentes de hidrógeno con el agua. Debido a este fenómeno, los glicoles tienen una alta afinidad por el agua. Este fenómeno es muy importante ya que tiene como consecuencia que las soluciones agua-glicol tiendan a reducir la presión parcial del vapor de agua sobre la solución.

En la tabla II, se muestran los glicoles comúnmente utilizados para el proceso de deshidratación del gas natural.

Nombre común	Acrónimo	Nombre IUPAC	Estructura química
Monoetilenglicol	MEG	Etano-1,2-diol	но
Dietilenglicol	DEG	(2-hidroxietoxi)etano-2-ol	но
trietilenglicol	TEG	2-(2-(2-	HO VOVOVOH
		hidroxietoxi)etoxi)etanol	and and a construction of the second s

Las características generales que poseen este tipo de glicoles son:

- MEG (monoetilenglicol): Presenta una alta presión de vapor por lo que tiende a escapar en la fase vapor del contactor. Se utiliza como inhibidor de hidratos donde se puede recuperar del gas mediante separación a temperaturas inferiores a 10°C.
- 2. DEG (dietilenglicol): Su presión de vapor relativamente alta lleva a altas perdidas en el contactor. Su baja temperatura de descomposición implica bajas temperaturas para poder reconcentrarlo (160°C a 170°C) por lo que no puede obtenerse lo suficientemente puro para la mayoría de las aplicaciones.
- 3. TEG (trietilenglicol): Es el glicol más utilizado, se reconcentra entre temperaturas de 170°C a 200°C cuando posee alta pureza. Si la temperatura del contactor supera los 50°C puede existir una alta tendencia a altas perdidas en la fase vapor. Puede lograrse disminuciones en el punto de rocío mayores a 80°C con gas stripping.

A continuación se presentan algunas de las propiedades de los glicoles en la tabla III:

Propiedades de los glicoles	Etilenglicol	Dietilenglicol	Trietilenglicol
Acrónimo	MEG	DEG	TEG
Fórmula química	$C_2H_6O_2$	$C_4H_{10}O_3$	$C_6H_{14}O_4$
Masa molecular (g/mol)	62.068	106.122	150.175
Punto de fusión (°C)	-13	-10.45	-7.35
Punto de ebullición a 1 atm (°C)	197.3	245	277.85
Densidad a 25°C (Kg/m ³)	1110	1115	1122
Viscocidad absoluta a 25°C (Pa*s)	0.01771	0.03021	0.03673
Temperatura crítica (K)	720	744.6	769.5

Tabla III. Propiedades de los glicoles.

El TEG es el glicol más utilizado para la deshidratación del gas natural y las ventajas de su utilización son:

- Se regenera más fácilmente a concentraciones de 98-99% en un desorbedor atmosférico debido a su alto punto de ebullición y a su alta temperatura de descomposición. La temperatura de descomposición teórica del TEG es de 207°C la cual es alta comparada con la del DEG la cual es de 164°C.
- Sus pérdidas por vaporización son menores que las del MEG y DEG, esto significa que lo podemos regenerar fácilmente a altas concentraciones.
- Sus costos de capital y operativos son menores.

3.3 Descripción del proceso de deshidratación del gas natural.

El gas natural húmedo entra primero a un separador para remover los hidrocarburos líquidos. Luego el gas fluye hacia el absorbedor (contactor) donde se ponen en contacto a contracorriente con TEG, lo que elimina el contenido de humedad del gas natural. El TEG también absorbe compuestos orgánicos volátiles que se evaporan junto con el agua en el rehervidor. El gas natural seco que se obtiene pasa directamente a un intercambiador de calor gas-glicol y posteriormente a la tubería de transporte. El glicol húmedo o "rico" que sale del absorbedor, es conducido por los tubos del acumulador donde se precalienta utilizando el glicol seco caliente. Una vez realizado el intercambio de calor glicol-glicol, el glicol rico entra al desorbedor y fluye a través del lecho empacado hacia el rehervidor. El vapor generado en el rehervidor despoja el agua absorbida y los compuestos orgánicos volátiles del glicol a medida que sube por el lecho empacado. El vapor de agua y el gas desorbido se ventean por la cabeza del desorbedor. El glicol seco regenerado que está caliente, sale del rehervidor y se dirige hacia el acumulador donde es enfriado debido al intercambio de calor con el glicol rico que retorna. Por último el glicol seco se bombea hacia el intercambiador de calor glicol-gas y se retorna al domo del absorbedor. El esquema general del proceso antes descrito se muestra en la figura 3-2.

En la siguiente sección, se describirán las funciones de los principales equipos involucrados en este proceso.

Figura 3-2. Esquema general para la deshidratación de gas natural. (Manning and Thomson, 1991)

3.4 Funciones de los principales equipos involucrados en el sistema. *Separador de entrada (tanque flash trifásico)*

La principal función del separador de entrada es evitar que grandes cantidades de agua e hidrocarburos entren en la torre de absorción y contaminen la solución de glicol.

Si el separador de entrada no es colocado, el agua que se transporta en grandes cantidades con el gas podría diluir el TEG, lo que produciría una menor eficiencia en la torre de absorción y por lo tanto, un mayor flujo de TEG para recompensar esta baja eficiencia. Otro inconveniente de no utilizar un tanque separador en la entrada son las sales y sólidos disueltos que el agua puede contener, pues esto traería como consecuencia problemas de incrustaciones en el rehervidor disminuyendo la eficiencia del equipo. Además existe la presencia una gran cantidad de hidrocarburos líquidos arrastrados por el gas natural, estos pueden llegar hasta la columna del rehervidor, donde las fracciones livianas podrían llegar al domo de la columna como vapor y producir un riesgo de fuego si estas fracciones de hidrocarburos en vapor se presentan en grandes cantidades.

Filtro separador de gas de entrada

Este filtro se coloca en la línea que se dirige a la torre de absorción. Su función es separar líquidos que aún pudiese haber en el gas proveniente del tanque separador y eliminar algunas partículas.

Absorbedor

La columna absorbedora es el equipo de transferencia de masa que trabaja a alta presión, baja temperatura y a contracorriente. El propósito de este equipo es eliminar la humedad del gas utilizando una solución de TEG por medio de un empaque estructurado para obtener un mejor contacto líquido-vapor, cuya fotografía se muestra en la figura 3-3.

Figura 3-3. Fotografía de una columna absorbedora que forma parte del proceso de deshidratación del gas natural.

El gas natural es alimentado por los fondos de la columna mientras que la solución de TEG "pobre" se introduce por los domos de la misma. El gas que ha sido secado en esta etapa es enviado a un filtro donde se elimina el glicol que viene con el gas para poder enviarlo a un sistema de deshidratación con tamices moleculares y posterior envío a un proceso criogénico. La limpieza del equipo es muy importante para prevenir altos puntos de rocío del gas tratado, causado por espuma y/o pobre contacto gas-líquido.

Tanque separador gas-glicol

El TEG además de absorber agua tiene la capacidad de absorber algunos hidrocarburos y dióxido de carbono. El propósito de este tanque flash (también conocido como tanque de venteo), es remover hidrocarburos gaseosos que hayan sido absorbidos por el glicol. Estos gases son separados como resultado de la caída de presión y de la elevación de la temperatura.

Intercambiador de calor glicol-glicol

El intercambiador de calor se da entre el glicol "rico" proveniente de la torre de absorción y el glicol "pobre" que ha sido regenerado. Son instalados para reducir el calor que demanda el rehervidor y obtener el máximo calor recuperado del glicol "pobre" que sale del rehervidor. El esquema general de dicho intercambiador de calor, se ilustra en la figura 3-4.

Figura 3-4. Esquema general que muestra el intercambiador de calor glicol pobre-glicol rico

Columna de desorción

Este equipo es utilizado para regenerar la solución de glicol con la pureza necesaria para reutilizarla de nuevo en la torre de absorción. La columna se encuentra empacada y localizada en la parte superior del rehervidor y su función es separar el agua del glicol. La separación se logra operando la columna a una temperatura que permita la condensación del glicol pero no la del vapor de agua.

El vapor que se obtiene en la parte superior de la torre tiene una composición del 99.5% en agua, valor muy superior a las fracciones del vapor al entrar al equipo que son de 42% TEG y 58% agua. El vapor formado por glicol y agua va disminuyendo la concentración del glicol a medida que va ascendiendo por la columna.

Si en esta etapa se producen depósitos de sedimentos, sales o hidrocarburos la consecuencia será que el empaque se contamina, causando espuma y pérdidas de glicol. Un arrastre de hidrocarburos líquidos dentro de este equipo puede llegar a ser peligroso pues si llegan al rehervidor pueden crear riesgo de fuego.

Rehervidor

El objetivo del equipo es calentar el glicol a la temperatura necesaria para poder regenerarlo. Básicamente efectúa una destilación. El agua evaporada junto con pequeñas cantidades del glicol fluyen del rehervidor a la columna de desorción. El glicol "pobre" que se obtiene en la columna poco a poco fluye hacia abajo para dirigirse de nuevo al rehervidor. Posteriormente, este glicol pobre se dirige al intercambiador de calor glicol-glicol donde disminuirá su temperatura transfiriendo calor al glicol "rico".

Bomba de recirculación

La bomba se coloca a la salida del intercambiador de calor para transportar la corriente de glicol pobre al domo de la torre y así reutilizarla de nuevo en el proceso.

3.5 Problemas que se presentan en la deshidratación del gas natural.

Durante el proceso de deshidratación de gas natural se pueden presentar diversos problemas en la operación de los equipos provocando un mal funcionamiento de los mismos. A continuación se describirá brevemente algunos de los principales problemas que se pueden presentar en este proceso.

3.5.1 Corrosión

Los glicoles se oxidan fácilmente en presencia de oxígeno y forman ácidos orgánicos corrosivos. Por esta razón, se recomienda que los equipos posean una purga de gas para mantener el aire fuera del sistema, además de que se pueden emplear inhibidores de

corrosión. Para asegurarse que no existan problemas de corrosión, el pH de la solución de glicol debe mantenerse en un intervalo de 6 a 8.5, y al mismo tiempo realizar el análisis de contenido de hierro y de cloruros. Generalmente se utiliza una solución de monoetanolamina (MEA) para proveer una adecuada protección.

3.5.2 Descomposición térmica

Un exceso en la temperatura provoca la descomposición del glicol y la formación de compuestos corrosivos. Este problema se puede presentar en el rehervidor, pues aquí, si no hay el cuidado necesario, la temperatura puede elevarse por encima de la temperatura de descomposición del glicol. La descomposición térmica se manifiesta por un olor a quemado del glicol, bajos valores de pH y color negro en la solución.

3.5.3 Contaminación por sales.

Los depósitos de sales aceleran la corrosión de los equipos y dificultan la transferencia de calor en los tubos del rehervidor. Es necesario un buen funcionamiento del tanque separador de entrada para poder tener el mínimo de problemas causados por el depósito de sales. La presencia de sales en la solución de glicol esta indirectamente relacionado con formación de espuma y corrosión.

3.5.4 Presencia de hidrocarburos

Los hidrocarburos líquidos que han sido arrastrados con el gas incrementan la formación de espuma y la degradación de la solución de glicol. El mayor inconveniente de la presencia de estos hidrocarburos líquidos es que se pueden depositar en la superficie de contacto de la torre absorbedora, lo que tiene causa una menor eficiencia en la transferencia de masa. Otro inconveniente con estos hidrocarburos es que pueden provocar zonas calientes en los tubos del rehervidor, provocando que la transferencia de calor no sea la óptima y resultar como consecuencia en un incendio al interior de los tubos del rehervidor.

3.5.5 Lodos o barros

Las soluciones de glicol llegan a presentar una acumulación de partículas sólidas e hidrocarburos a los cuales se les denomina lodos. Estos lodos se encuentran suspendidos en la solución de glicol y con el tiempo pueden acumularse y presentarse una sedimentación de los mismos. Este fenómeno desencadena en la corrosión y obstrucción de los equipos tales como, válvulas, bombas, etc.

3.5.6 Espuma

La formación de espuma aumenta las perdidas del glicol y reduce el contacto entre el gas y la solución de glicol. Algunas de las causas de la formación de espuma son:

- Presencia de hidrocarburos líquidos
- Presencia de inhibidores de corrosión provenientes del yacimiento
- Sólidos suspendidos
- Turbulencia excesiva y alta velocidad de contacto líquido-vapor.

La mejor forma de evitar la espuma es la precaución, es decir, tener un buen cuidado de la solución de glicol y una limpieza óptima del gas antes de entrar al circuito de deshidratación. No se recomienda utilizar anti-espumante pues generalmente solo resuelven el problema de manera temporal. En caso de utilizarse su propósito es ganar tiempo para poder identificar el verdadero problema que está produciendo la espuma.

Como se puede notar, es necesario el estudio del equilibrio L-V y de las propiedades termodinámicas de la mezcla agua-glicol. En esta tesis se desarrollará el uso de una ecuación de estado que sea capaz de describir el comportamiento del sistema agua-glicol, pues con ecuaciones de estado convencionales como es el caso de Peng-Robinson (PR) y Soave-Redlich-Wong (SRK) no es posible describir apropiadamente el comportamiento de tales sistemas sin la utilización de reglas de combinación y mezclado apropiadas, pues estas ecuaciones fueron desarrolladas para trabajar con moléculas no polares.

4. Fundamentos termodinámicos

4.1 Ecuaciones cúbicas

Una ecuación de estado es una ecuación que relaciona, para un sistema en equilibrio termodinámico, las variables de estado que lo describen. Su forma general es del tipo:

$$f(P,T,v,\mathbf{x}) = 0 \tag{4-1}$$

Una de las maneras más fáciles de poder representar el comportamiento termodinámico de las fases líquidas y vapor de los compuestos puros y sus mezclas es a través de una ecuación cúbica en el volumen molar. El desarrollo moderno de las ecuaciones cúbicas se dio a partir de 1949 con la publicación de la ecuación de Redlich/Kwong.

Las ecuaciones de estado cúbicas son explicitas en presión. Esta característica permite que las propiedades termodinámicas se calculen a partir de una ecuación de tercer grado, teniendo al volumen como variable independiente.

Las ecuaciones cúbicas de estado tienen 3 raíces para el volumen: Tres raíces reales o dos raíces complejas y una raíz real. Las raíces reales son siempre positivas y mayores que el co-volumen b. Los casos que se pueden presentar para las distintas isotermas en una ecuación cúbica se describen a continuación:

- Cuando la temperatura es mayor que la temperatura crítica entonces existe solo una raíz real y positiva de *v* para cualquier valor de presión.
- Si la temperatura es igual a la temperatura crítica, lo descrito anteriormente sigue siendo cierto con la única excepción en $p = p_c$ existirán 3 raíces reales y positivas, pero siendo las tres iguales al volumen crítico (v_c).
- Para temperaturas menores a la temperatura crítica pueden existir 1 o 3 raíces reales y positivas. La raíz intermedia no tiene significado físico, la raíz más pequeña representa el volumen del líquido y la mayor representa el volumen del vapor. El estado más estable corresponderá al de menor fugacidad.

El diagrama típico P vs V para sustancia pura a diferentes temperaturas se presenta a continuación en la figura 4-1.

Figura 4-1. Isotermas en diagrama *pv* para sustancia pura.

En un diagrama pv(figura 4-1) una ecuación cúbica nos predice una transición uniforme de la fase líquida a la fase vapor. Sin embargo, esta transición generalmente se representa como un segmento horizontal dentro de la región de dos fases donde el líquido y el vapor coexisten en diferentes proporciones a la presión de saturación.

Para discutir el significado físico de las 3 raíces de la ecuación cúbica, de acuerdo con la figura 4-1, se considera una isoterma subcrítica para una sustancia pura, en la cual se pueden distinguir claramente tres regiones para esta isoterma; las cuales se presentan en la figura 4-2. Estas tres regiones son:

- 1. La región I, donde solo existe una raíz real positiva. Esta raíz corresponde a volúmenes bajos a altas presiones, lo que indica que pertenece a la fase líquida.
- 2. La región II que exhibe tres raíces de las cuales la intermedia no tiene significado físico. La raíz más pequeña es la que representa al líquido, mientras que la raíz más grande representa al vapor. Para poder saber cuál es la fase más estable o si las dos fases se encuentran en equilibrio es necesario el cálculo de fugacidades. La fase estable será aquella con la menor fugacidad. En el caso de que las fugacidades de la fase líquida y vapor sean iguales, entonces existirán dos fases en equilibrio.
- La región III, donde solo existe una raíz real y positiva, la cual se ubica a bajas presiones y le corresponden valores altos de volumen, lo que indica que está raíz pertenece a la fase vapor.

La ecuación CTS, objeto de estudio en este trabajo, presenta el mismo comportamiento cualitativo de una ecuación cúbica. Reynoso y cds. [4] han demostrado que el número de raíces en la región de volúmenes molares físicamente posibles también puede ser una o tres, con los mismos comportamientos descritos en el párrafo anterior.

Figura 4-2. Regiones en un diagrama pv

4.2 Equilibrio líquido-vapor

El equilibrio es una condición estática donde las propiedades macroscópicas de un sistema no cambian con el tiempo ya que hay un balance en todos los potenciales que pueden ocasionar un cambio. El sistema se encuentra en equilibrio cuando se alcanzan las condiciones necesarias para la temperatura, presión y composición. A nivel microscópico, las condiciones no son estáticas: el equilibrio se puede describir como un fenómeno dinámico, pues las moléculas que se están transfiriendo de una fase a otra en realidad se encuentran en movimiento. Cuando se alcanzan las condiciones de equilibrio, las velocidades con que se transfieren las moléculas de una fase a otra son iguales en ambas direcciones.

Las condiciones que se deben de cumplir para establecer el equilibrio termodinámico se expresan de manera matemática de la siguiente forma:

> Equilibrio mecánico: La presión en todas las fases debe de ser igual.

$$P^{\alpha} = P^{\beta} = \dots = P^{\pi} \tag{4-2}$$

(4-3)

- Equilibrio térmico: La temperatura en todas las fases debe ser la misma. $T^{\alpha} = T^{\beta} = \dots = T^{\pi}$
- Equilibrio material: El potencial químico de cada una de las especies i en todas las fases debe ser la misma.

$$\mu_i^{\alpha} = \mu_i^{\beta} = \dots = \mu_i^{\pi} \tag{4-4}$$

Las relaciones de equilibrio líquido-vapor son necesarias para poder resolver diversos problemas en procesos como la destilación, absorción y extracción donde es necesario poner en contacto diferentes fases con composiciones distintas cuando no están en equilibrio.

La relación de equilibrio K, es una medida que nos describe como la especie química i se distribuye entre las fases líquida y vapor. La relación es muy conveniente para realizar cálculos, ya que permite la eliminación formal de uno de los dos conjuntos de fracciones molares (x_i , y_i). Para una especie química ligera, la K será mayor a 1, mientras que para una especie pesada, será menor a 1.

$$K = \frac{y_i}{x_i} \tag{4-5}$$

Cuando las fases líquida y vapor se pueden describirse por una ecuación de estado, se dice que se está utilizando el enfoque ϕ - ϕ . La fugacidad de una especie *i* en una determinada fase puede escribirse de la siguiente manera:

Fase líquida:
$$f_i^l = \phi_i^l x_i p$$
 (4-6)

Fase vapor:
$$f_i^{\nu} = \phi_i^{\nu} y_i p$$
 (4-7)

Donde $x_i y y_i$ son las fracciones molares de la especie química *i* en las fases líquida y vapor respectivamente, *p* es la presión total, mientras que $\phi_i^l y \phi_i^v$ son los coeficientes de fugacidad de la especie *i* en las fases líquida y vapor respectivamente.

La condición de equilibrio material, es decir, la igualdad de fugacidades, se puede escribir de la siguiente manera:

$$x_i \phi_i^l = y_i \phi_i^{\nu} \tag{4-8}$$

Como podemos observar de la ecuación 4-8, el equilibrio líquido-vapor (ELV) de una sustancia *i* se alcanza cuando hay igualdad de fugacidades. Esta relación de equilibrio tiene que resolverse simultáneamente con las demás relaciones de equilibrio de cada compuesto, así como las del equilibrio mecánico y térmico para poder describir apropiadamente el comportamiento líquido-vapor.

Descripción de la ecuación cúbica de dos estados (CTS)

5.1 Generalidades

Una de las herramientas más importantes para poder realizar cálculos en los procesos dentro de la ingeniería química son las ecuaciones de estado (EoS). Las ecuaciones de estado más comunes son las ecuaciones cúbicas de las cuales podemos mencionar como las clásicas la ecuación de Peng-Robinson (PR) y la de Soave-Redlich-Kwong (SRK). Estas ecuaciones de estado convencionales representan muy bien sistemas con interacciones dispersivas, como son las fuerzas de dispersión de London, sin embargo, existen sistemas que presentan interacciones más fuertes entre las moléculas, como es la formación de puentes de hidrógeno. Este tipo de interacciones atractivas son altamente direccionales, es decir, solo se pueden llevar a cabo en sitios específicos y con orientaciones específicas. Estas fuerzas intermoleculares son del tipo de interacciones específicas y son causadas por fuerzas electroestáticas. Las EoS convencionales no son capaces de describir sistemas con interacciones específicas a menos que se les propongan ciertas modificaciones con la inclusión de muchos parámetros ajustables.

El modelo de asociación de los dos estados o TSAM (two-state-association-model) es un nuevo enfoque de asociación capaz de producirnos una expresión simple para la contribución por la presión debido a las interacciones específicas. El TSAM tiene como hipótesis que una molécula puede residir en dos niveles energéticos, asociado o monomérico. El modelo TSAM tuvo éxito en la descripción del fenómeno de asociación en líquidos, cuantificado a través de la capacidad térmica de diversos compuestos que forman puentes de hidrógeno. Este hecho hizo que fuese adecuado para unirlo con una EoS convencional, que en este caso fue la SRK, y así poder generar la ecuación de estado CTS (Cubic + Two-State).

La ventaja de la CTS con respecto a otras ecuaciones modernas, como la CPA (cubuc-plusassociation) [3], es que es una ecuación que puede arreglarse de forma polinomial con respecto a su volumen molar y que por lo tanto, permita plantear una resolución numérica. Con la ecuación CTS se puede obtener un polinomio de grado N_{as} + 3, donde N_{as} es el número de substancias capaces de asociarse[2].

5.2 Construcción de la ecuación cúbica de dos estados

Para la creación de la ecuación CTS, se empleo el enfoque que propone el modelo TSAM. Utilizando las ideas fundamentales del TSAM, se logró desarrollar una expresión a partir de la energía de Helmholtz debido al fenómeno de asociación, cuya descripción se presenta a continuación.

Se considera que la energía de Helmholtz de un sistema es la suma de tres contribuciones, la ideal, la no específica y la de asociación, la cual se representa como:

$$a(N,V,T) = a^{id} + a^{ns} + a^{as}$$

$$(5-1)$$

A partir de la ecuación 5-1 se trabajó bajo la hipótesis de que el sistema es un fluido hipotético el cual no contempla la contribución en las interacciones no especificas a^{ns} y por lo tanto, las únicas contribuciones importantes son debidas a la idealidad a^{id} y a las interacciones de asociación a^{as} . Las contribuciones no específicas a^{ns} serán incluidas posteriormente al combinar la parte específica de la ecuación con una ecuación de estado convencional como es el caso de la ecuación de SRK.

Por medio de esta hipótesis, se desarrolló la función de partición de una partícula de un "gas ideal asociado", es decir, un gas donde la única interacción intermolecular posible es la formación de asociaciones fuertes de muy corto alcance entre las moléculas:

$$q_i^{as} = 1 + \frac{1}{V} \sum_j N_j v_{ij} (e^{-\beta E_{ij}} - 1)$$
(5-2)

Donde:

v: Volumen.

 N_i : Es el número de sitios de asociación tipo *j* donde la molécula *i* puede asociarse.

 v_{ij} : Es el volumen de asociación de la interacción entre la molécula i y la j.

 E_{ij} : Es la energía de asociación de la interacción i y j.

 $\beta = 1/k_B T$ donde k_B es la constante de Boltzman.

Utilizando la aproximación del campo medio considerando que el sistema está conformado por moléculas distinguibles, la función de partición canónica estará dada por:

$$Q^{as}(N,V,T) = \prod_{i} (q_{i}^{as})^{Ni} = \prod_{i} \left[1 + \frac{1}{V} \sum_{j} N_{j} v_{ij} (e^{-\beta E_{ij} - 1}) \right]^{N_{i}}$$
(5-3)

Por otra parte, la expresión de la energía de Helmholtz de asociación en términos de la función de partición canónica es:

$$a^{as} = -k_B T ln Q^{as} \tag{5-4}$$

Ahora si se sustituye la expresión de la función de partición de una partícula (5-3) se obtiene:

$$a^{as}(w, V, T) = -RT \sum_{i} w_i Ln \left[1 + \frac{1}{V} \sum_{j} w_j v_{ij} f_{ij}(T) \right]$$
(5-5)

Donde

$$f_{ij}(T) = e^{-\beta E_{ij}} - 1 \tag{5-6}$$

Utilizando la ecuación 5-5, que es la energía de Helmholtz, y utilizando la relación primaria apropiada (Apéndice C) es posible describir diferentes propiedades termodinámicas. En el presente trabajo nos interesa saber la presión debida a la asociación:

$$p^{as} = \left(\frac{\partial a^{as}}{\partial v}\right)_{T,N} \tag{5-7}$$

De donde obtenemos:

$$P^{as}(w, v, T) = -RT \sum_{i} w_{i} \frac{\sum_{j} w_{j} v_{ij} f_{ij}(T)}{v[v + \sum_{j} w_{j} v_{ij} f_{ij}(T)]}$$
(5-8)

La ecuación 5-8, en principio, es capaz de cuantificar el fenómeno de asociación en sustancias puras y mezclas. Posteriormente, la contribución de asociación se acopló con una ecuación que contempla la parte no asociativa. En la CTS se usó la ecuación SRK, dando como resultado la siguiente expresión:

$$P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu(\nu + b)} + P^{as}$$
(5-9)

Al sustituir la ecuación 5-8 en la ecuación 5-9 se obtiene:

$$P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu(\nu + b)} - RT \sum_{i} w_{i} \frac{\sum_{j} w_{j} \nu_{ij} f_{ij}(T)}{\nu[\nu + \sum_{j} w_{j} \nu_{ij} f_{ij}(T)]}$$
(5-10)

Donde, para substancias puras b es el covolumen, que es independiente de la temperatura y característico de una sustancia:

$$a(T) = a_0 \left[1 + c_1 (1 - \sqrt{T_r}) \right]^2$$
(5-11)

5.3 Sentido físico de los parámetros de la CTS

Como se discutió en la sección anterior, la ecuación CTS posee 5 parámetros ajustables para cada compuesto puro. La manera en la que fue construida esta ecuación, permite describir sistemas con interacciones específicas, siendo de especial interés aquellos que formen puentes de hidrógeno.

De los 5 parámetros que posee la ecuación de estado CTS, 3 pertenecen a la parte no específica de la ecuación, es decir a la parte de SRK. Estos parámetros son: a_0 , b y c_1 . Los dos parámetros restantes pertenecen a la parte específica y son: E_{ij} y v_{ij} .

Como se sabe de la ecuación cúbica de Van der Waals, el parámetro a_0 está relacionado con las fuerzas intermoleculares débiles que se presentan, es decir, de la parte no específica. El término *b* toma en cuenta el tamaño finito de las moléculas y es llamado covolumen de van der Waals.

Los dos nuevos parámetros que son del interés de este trabajo son los términos E_{ij} y v_{ij} los cuales pertenecen a la parte asociativa de la ecuación.

El término E_{ij} es la energía de asociación de la interacción i-j. Esta energía cuantifica la intensidad de la interacción entre las moléculas i-j. Este término siempre será menor o igual a cero. Mientras menor sea el término E_{ij} entonces mayor será la fuerza de la interacción.

El término v_{ij} es el volumen característico de asociación de la interacción i-j. Cuantifica la facilidad con que se lleva a cabo la asociación entre las moléculas i-j. Este parámetro depende de dos factores principalmente:

- El número de sitios de asociación con los que cuenta la molécula (pares electrónicos o hidrógenos que se encuentran enlazados a átomos muy electronegativos).
- El espacio alrededor con el que cuenta los sitios de asociación. Los sitios impedidos implican valores menores para este parámetro y esto a su vez nos indica una menor posibilidad de formar enlaces.

Para una mezcla multicomponente, cada par de moléculas con la capacidad de asociarse tendrán parámetros característicos E_{ij} y v_{ij} . En el caso de moléculas diferentes será necesario el uso de reglas de combinación para la determinación de estos parámetros a partir de los encontrados para sustancias puras. Cuando se presente el caso de que no haya contribución debida a la parte asociativa los parámetros E_{ij} y v_{ij} tendrán valores de cero y la ecuación CTS regresará a su forma convencional SRK.

Los 5 parámetros de la ecuación CTS son parámetros que se pueden ajustar a datos reportados en la literatura. El propósito fundamental de este trabajo es encontrar los parámetros óptimos para describir el comportamiento de las mezclas glicoles-agua.

5.4 Sustancias Puras

La ecuación para una sustancia pura con capacidad de asociarse toma la siguiente forma:

$$P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu(\nu + b)} - RT \frac{\nu_i f_i(T)}{\nu(\nu + \nu_i f_i(T))}$$
(5-12)

En esta ecuación $v_i = v_{ii}$, el cual es el volumen de asociación característico de la sustancia *i*. La función de Mayer contiene el parámetro $E_i = E_{ii}$ y es la energía de asociación de la sustancia *i*. La ecuación 5-12 es la ecuación de estado CTS con la cual se puede modelar el equilibrio líquido-vapor una vez que se hayan encontrado los parámetros adecuados para la sustancia pura.

5.4.1 Ecuación para compresibilidad para sustancia pura.

Utilizando la ecuación 5-12 y realizando el álgebra correspondiente (Apéndice D) podemos transformar la ecuación en términos de compresibilidades obteniendo como resultado:

$$z - \frac{z}{z-B} + A \frac{z}{(z+\varepsilon B)(z+\sigma B)} + \frac{c}{z+C} = 0$$
(5-13)

La ecuación 4-11 puede reescribirse en su forma polinomial:

$$z^{4} + (C-1)z^{3} + (A-B-B^{2})z^{2} + (AC-AB-BC-B^{2}C)z - ABC - B^{2}C = 0$$
(5-14)

Donde:

$$A = \frac{Pa(T)}{(RT)^2} \tag{5-15}$$

$$B = \frac{Pb}{RT}$$
(5-16)

$$C = v_i f_i(T) \frac{P}{RT}$$
(5-17)

$$z = \frac{PV}{RT}$$
(5-18)

La ecuación 5-14 es una ecuación de cuarto grado. El análisis de las raíces de esta ecuación es muy similar a cualquier ecuación de estado cúbica. Se puede demostrar [4] que esta ecuación siempre tendrá una raíz negativa. Por lo tanto, puede presentarse una sola raíz real, positiva y mayor al covolumen; esto significará que solo hay una fase presente. También pueden presentarse 3 raíces reales adicionales, positivas y mayores al covolumen pero solo dos de ellas tendrán significado físico. De estas 3 raíces la menor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase líquida y la mayor corresponde a la compresibilidad de la fase vapor.

5.4.2 Fugacidades con la ecuación CTS

Para obtener la ecuación correspondiente para calcular el coeficiente de fugacidad es necesario desarrollar la siguiente expresión exacta:

$$RTLn\phi_i = \int_{\infty}^{V} \left[\frac{RT}{V} - \left(\frac{\partial P}{\partial n_i} \right)_{T,V,N_{j\neq i}} \right] dV - RTLnz$$
(5-19)

La expresión resultante para calcular el coeficiente de fugacidad a partir de la ecuación CTS es:

$$Ln\phi_i = \frac{A}{B}Ln\left(\frac{z}{z+B}\right) - Ln(z-B) + Ln\left(\frac{z}{z+C}\right) + (z-1)$$
(5-20)

Las raíces que contiene la ecuación 5-14 son las compresibilidades del líquido y del vapor. Utilizando la ecuación 5-18 se puede encontrar el volumen del líquido y del vapor utilizando las compresibilidades correspondientes. Al realizar los cálculos con la ecuación 5-20 se puede encontrar el coeficiente de fugacidad de la sustancia *i* en la fase líquida o en la fase vapor, dependiendo de la raíz que se esté utilizando a una determinada presión y temperatura.

Para encontrar la presión de saturación de la sustancia i a una determinada presión y temperatura se deben resolver las relaciones de equilibrio. Lo anterior significa que hay que resolver la siguiente ecuación, la cual implica igualdad de fugacidades entre las fases líquido y vapor.

$$K_i = \frac{\phi_i^L}{\phi_i^V} = 1 \tag{5-21}$$

La ecuación 5-21 se resuelve utilizando algún método numérico.

5.5 Cálculo de c_p con la ecuación CTS para una sustancia pura

El principal aporte del presente trabajo con respecto a trabajos anteriores se encuentra en el intento de calcularse el c_p de las substancias puras y mezclas con la ecuación CTS.

A continuación se presentan las ecuaciones y relaciones de la termodinámica necesarias para el cálculo del c_v y c_p . La energía interna molar u se puede escribir como función de la temperatura y del volumen:

$$du = \left(\frac{\partial u}{\partial T}\right)_V dT + \left(\frac{\partial u}{\partial v}\right)_T dv$$
(5-22)

Por medio de la definición de la energía de Helmholtz podemos escribir la energía interna de la siguiente manera:

$$u = a + Ts \tag{5-23}$$

Tenemos que encontrar las derivadas parciales de la ecuación 5-22, por lo tanto se derivará la ecuación 5-23 con respecto al volumen a temperatura constante:

$$\left(\frac{\partial u}{\partial v}\right)_T = \left(\frac{\partial a}{\partial v}\right)_T + T\left(\frac{\partial s}{\partial v}\right)_T \tag{5-24}$$

Utilizando las relaciones de Maxwell se puede escribir la ecuación 5-24 de la siguiente manera:

$$\left(\frac{\partial u}{\partial v}\right)_T = -p + T \left(\frac{\partial p}{\partial T}\right)_v \tag{5-25}$$

Pero el c_v , por definición, está dado por:

$$c_{\nu} = \left(\frac{\partial u}{\partial T}\right)_{\nu} \tag{5-26}$$

Ahora se puede sustituir la ecuación 5-25 y 5-26 en la ecuación 5-22 y encontrar a la energía interna como función de T y V.

$$du = c_{\nu}dT + \left[-p + T\left(\frac{\partial p}{\partial T}\right)_{\nu}\right]d\nu$$
(5-27)

Como la ecuación 5-27 es una ecuación diferencial exacta, cumple con la igualdad de las ecuaciones diferenciales cruzadas:

$$\left(\frac{\partial c_{\nu}}{\partial \nu}\right)_{T} = \left\{\frac{\partial}{\partial T}\left[-p + T\left(\frac{\partial p}{\partial T}\right)_{\nu}\right]\right\}_{\nu} = -\left(\frac{\partial p}{\partial T}\right)_{\nu} + \left(\frac{\partial p}{\partial T}\right)_{\nu} + T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{\nu} = T\left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{\nu}$$
(5-28)

Integrando la ecuación 5-28 desde el estado ideal a un valor de c_v a temperatura constante encontramos, para el c_v residual:

$$c_{\nu}^{R} = T \int_{\infty}^{\nu} \left(\frac{\partial^{2} p}{\partial T^{2}}\right)_{\nu} d\nu$$
(5-29)
Para la evaluación de la expresión 5-29 es necesario determinar la segunda derivada de la presión con respecto a la temperatura. Se puede mostrar que para la ecuación CTS:

$$T\left(\frac{\partial^2 p}{\partial T^2}\right)_{v} = \frac{Ta''}{b}\left(\frac{1}{v+b} - \frac{1}{v}\right) + 2E_i \frac{v_i + F_{as}}{(v+F_{as})^3} F'_{as} - \frac{F'_{as}}{(v+F_{as})^2} E_i$$
(5-30)

Integrando obtenemos.

$$c_{v}^{R} = \frac{Ta''}{b} Ln \frac{v+b}{v} + R \left(\frac{E_{i}}{RT}\right)^{2} \frac{(F_{as}+v_{i})(v-v_{i})}{(v+F_{as})^{2}}$$
(5-31)

donde:

$$a = a_0 [1 + c_1 (1 - T_r^{0.5})]^2$$
(5-32)

$$a' = -\frac{1}{T_r^{0.5}} \frac{a_0 c_1}{T_c} \left[1 + c_1 (1 - T_r^{0.5}) \right]$$
(5-33)

$$a^{\prime\prime} = \frac{0.5}{T_r^{1.5}} \frac{a_0 c_1 (1+c_1)}{T_c^2}$$
(5-34)

$$F_{as} = v_{as} \left[exp \left(-\frac{E_{as}}{RT} - 1 \right) \right]$$
(5-35)

$$F'_{as} = v_{as} exp\left(-\frac{E_{as}}{RT}\right)\frac{E_{as}}{RT^2}$$
(5-36)

Por otro lado, existe una relación entre c_v y c_p que está determinada por la ecuación de estado que se utilice. A continuación, se mostrará la deducción de esta ecuación. Tomando como referencia las siguientes ecuaciones diferenciales exactas para *s y v*.

$$ds = \frac{c_v}{T} dT + \left(\frac{\partial s}{\partial v}\right)_T dv = \frac{c_v}{T} dT + \left(\frac{\partial p}{\partial T}\right)_v dv$$
(5-37)

$$ds = \frac{c_p}{T}dT + \left(\frac{\partial s}{\partial p}\right)_T dv = \frac{c_p}{T}dT - \left(\frac{\partial v}{\partial T}\right)_p dp$$
(5-38)

$$dv = \left(\frac{\partial v}{\partial T}\right)_p dT + \left(\frac{\partial v}{\partial p}\right)_T dp \tag{5-39}$$

Sustituyendo la ecuación 5-39 en 5-37

$$ds = \frac{c_{v}}{T}dT + \left(\frac{\partial p}{\partial T}\right)_{v} \left[\left(\frac{\partial v}{\partial T}\right)_{p} dT + \left(\frac{\partial v}{\partial p}\right)_{T} dp \right]$$
$$= \left[\frac{c_{v}}{T} + \left(\frac{\partial p}{\partial T}\right)_{v} \left(\frac{\partial v}{\partial T}\right)_{p} \right] dT + \left(\frac{\partial p}{\partial T}\right)_{v} \left(\frac{\partial v}{\partial p}\right)_{T} dp$$
(5-40)

Las ecuaciones 5-38 y 5-40 son equivalentes. Del primer término de las ecuaciones 5-38 y 5-40 se observa que:

$$\frac{c_p}{T} = \frac{c_v}{T} + \left(\frac{\partial p}{\partial T}\right)_v \left(\frac{\partial v}{\partial T}\right)_p \tag{5-41}$$

Aplicando la regla cíclica:

$$\left(\frac{\partial \nu}{\partial T}\right)_p = -\frac{\left(\frac{\partial p}{\partial T}\right)_\nu}{\left(\frac{\partial p}{\partial \nu}\right)_T}$$
(5-42)

Al sustituir la expresión 5-42 en 5-41 se obtiene:

$$c_p = c_v - T \frac{\left(\frac{\partial p}{\partial T}\right)_v^2}{\left(\frac{\partial p}{\partial v}\right)_T}$$
(5-43)

Para el caso de un gas ideal las derivadas son:

$$\left(\frac{\partial p}{\partial T}\right)_{v} = \frac{R}{v} \tag{5-44}$$

$$\left(\frac{\partial p}{\partial v}\right)_T = -\frac{RT}{v^2} \tag{5-45}$$

Por lo tanto al colocar las expresiones 5-43 y 5-44 en 5-45 se puede escribir:

$$c_{p}^{id} = c_{v}^{id} - T \frac{\left(\frac{R}{v}\right)^{2}}{-\frac{RT}{v^{2}}} = c_{v}^{id} + R$$
(5-46)

Utilizando la definición de una propiedad residual:

$$c_{\nu}^{R} = c_{\nu} - c_{\nu}^{id} \tag{5-47}$$

$$c_p^R = c_p - c_p^{id} \tag{5-48}$$

Por medio de la ecuación 5-46 y 5-47 se puede escribir la ecuación 5-43 de la siguiente manera:

$$c_p = c_p^R + C_p^{id} \tag{5-49}$$

$$c_{\nu} = c_{\nu}^R + C_{\nu}^{id} \tag{5-50}$$

$$c_p^R + C_p^{id} = c_v^R + C_v^{id} - T \frac{\left(\frac{\partial p}{\partial T}\right)_v^2}{\left(\frac{\partial p}{\partial v}\right)_T}$$
(5-51)

$$c_p^R + C_p^{id} - C_v^{id} = c_v^R - T \frac{\left(\frac{\partial p}{\partial T}\right)_v^2}{\left(\frac{\partial p}{\partial v}\right)_T}$$
(5-52)

Pero:

$$C_p^{id} - C_v^{id} = R \tag{5-53}$$

Entonces la expresión resultante es:

$$c_p^R = c_v^R - R - T \frac{\left(\frac{\partial p}{\partial T}\right)_v^2}{\left(\frac{\partial p}{\partial v}\right)_T}$$
(5-54)

Todas las expresiones necesarias para evaluar 5-54 pueden ser obtenidas a través de una ecuación de estado. En el caso de la ecuación CTS estas expresiones están dadas por:

$$\left(\frac{\partial p}{\partial v}\right)_{T} = -\frac{RT}{(v-b)^{2}} + \frac{a}{b} \left[\frac{1}{v^{2}} - \frac{1}{(v+b)^{2}}\right] + RT \left[\frac{1}{v^{2}} - \frac{1}{(1+F_{as})^{2}}\right]$$
(5-55)

$$\left(\frac{\partial p}{\partial T}\right)_{v} = \frac{R}{v-b} + \frac{a'}{b}\left(\frac{1}{v+b} - \frac{1}{v}\right) + R\left(\frac{1}{v+F_{as}} - \frac{1}{v}\right) - \frac{v_i + F_{as}}{(v+F_{as})^2}\frac{E_i}{T}$$
(5-56)

El algoritmo de cálculo para evaluar el c_p se describe a continuación.

- 1. Resolver la ecuación de estado CTS (ecuación 5-14). Determinar las compresibilidades y los volúmenes correspondientes para cada fase.
- 2. Determinar las derivadas $\left(\frac{\partial p}{\partial v}\right)_T y \left(\frac{\partial p}{\partial T}\right)_v$ a partir de 5-55 y 5-56.
- 3. Determinar el c_v^R con la expresión 5-31.
- 4. Determinar el c_p^R con la expresión 5-54.
- 5. Calcular el c_p utilizando la definición de propiedad residual con la ecuación 5-49.

5.6 Mezclas binarias con la ecuación CTS

La expresión para la presión de asociación en una mezcla está dada por la siguiente ecuación:

$$p^{as}(x, v, T) = -RT \sum_{i} x_{i} \frac{\sum_{j} x_{j} v_{ij} f_{ij}(T)}{v[v + \sum_{j} x_{j} v_{ij} f_{ij}(T)]}$$
(5-57)

En una mezcla multi-componente se presentan 2 fenómenos:

- 1. Auto-asociación: Asociación entre moléculas de la misma especie.
- 2. Asociación cruzada: Asociación entre moléculas de distinta especie

Las mezclas glicoles-agua son mezclas que presentan auto-asociaciones y asociaciones cruzadas lo cual significa que es necesario utilizar reglas de combinación para describir a_{ij} , b_{ij} , E_{ij} y v_{ij} a partir de los parámetros de asociación de las sustancias puras. Para el caso de la a_{ij} y E_{ij} es necesario dos parámetros de interacción binarios, k_{ij} y l_{ij} respectivamente. Estos dos parámetros se ajustaron para cada sistema estudiado, a partir de datos de equilibrio líquido-vapor (ELV) de las mezclas binarias, para poder describir con la mayor precisión posible los sistemas glicol-agua.

5.7 Reglas de combinación y mezclado

Para que una ecuación de estado que describe el comportamiento de una sustancia pura sea capaz de producir buenos resultados con mezclas, es necesario utilizar reglas de combinación y mezclado para cada parámetro de la ecuación. Estos parámetros serán

funciones de la composición de la mezcla. Las reglas de mezclado son semiempíricas y relacionan los parámetros de mezclado con los parámetros de las sustancias puras.

Para la contribución no específica se utilizarán las reglas de combinación y mezclado de van der Waals.

$$a_m(w,T) = \sum_i^{N_c} \sum_j^{N_c} w_i w_j a_{ij}$$
(5-58)

$$a_{ij}(T) = (1 - k_{ij})\sqrt{a_i(T)a_j(T)}$$
(5-59)

$$b_m(w,T) = \sum_i^{Nc} \sum_j^{Nc} w_i w_j b_{ij}$$
(5-60)

$$b_{ij} = \frac{b_i + b_j}{2} \tag{5-61}$$

Cuando los subíndices i y j son iguales entonces significa que los parámetros son los de las sustancias puras. Como puede observarse, las reglas de Van der Waals exigen un nuevo parámetro de interacción k_{ij} , el cual se determinara a partir de un ajuste con datos experimentales de ELV. Este parámetro representa la desviación de la regla de combinación de los promedios geométricos del parámetro a_{ij} .

Las reglas de combinación que se proponen para la parte específica son:

$$\varepsilon_{ij} = \frac{\varepsilon_i + \varepsilon_j}{2} (1 - l_{ij}) \tag{5-62}$$

$$v_{ij} = \frac{v_i + v_j}{2} \tag{5-63}$$

$$\nu_{ij} = \sqrt{\nu_i \nu_j} \tag{5-64}$$

La ecuación para v_{ij} que se utilice en los cálculos dependerá de cuál sea la regla que proporcione resultados con el menor error posible al compararlos con los datos experimentales.

Para la energía de interacción del par i-j es necesario utilizar el parámetro l_{ij} el cual corrige el término energético.

5.8 Polinomio para la compresibilidad en una mezcla binaria.

Para una mezcla binaria la ecuación de compresibilidad que se dedujo a partir de la ecuación CTS resulta tener la siguiente forma:

$$Z^{5} + C_{4}Z^{4} + C_{3}Z^{3} + C_{2}Z^{2} + C_{1}Z + C_{0}$$
(5-65)

Que es un polinomio de grado N_{as} + 3 donde N_{as} = 2 (glicol-agua)

Los coeficientes de la ecuación 5-65 se describen a continuación:

$$C_4 = [w_1(\gamma_1 + \gamma_{21}) + (1 - w_1)(\gamma_2 + \gamma_{12}) - 1]$$
(5-66)

$$C_{3} = [w_{1}^{2}\gamma_{1} + w_{1}(1 - w_{1})\gamma_{12} - w_{1}^{2}\gamma_{21} - w_{1}(1 - w_{1})\gamma_{2} + a - b^{2} - b + w_{1}^{2}\gamma_{1}\gamma_{21} + w_{1}\gamma_{1}(1 - w_{1})\gamma_{2} + (1 - w_{1})\gamma_{12}w_{1}\gamma_{21} + (1 - w_{1})^{2}\gamma_{2}\gamma_{12} - w_{1}\gamma_{1} - (1 - w_{1})\gamma_{12}]$$
(5-67)

$$C_2 = \left[-(w_1\gamma_1 + (1 - w_1)\gamma_{12} + w_1\gamma_{21} + (1 - w_1)\gamma_2)(b^2 + b - a) + ab\right]$$
(5-68)

$$C_{1} = [-(w_{1}\gamma_{1} + (1 - w_{1})\gamma_{12})(w_{1}\gamma_{21} + (1 - w_{1})\gamma_{2})(b^{2} + b - a) + b^{2}(w_{1}\gamma_{21} + (1 - w_{1})\gamma_{2}) + ab(w_{1}\gamma_{1} + (1 - w_{1})\gamma_{12} + w_{1}\gamma_{21} + (1 - w_{1})\gamma_{2}) + w_{1}b^{2}(w_{1}\gamma_{1} + (1 - w_{1})\gamma_{12} - w_{1}\gamma_{21} - (1 - w_{1})\gamma_{2})]$$

$$(5-69)$$

$$C_0 = \left[-b(w_1\gamma_1 + (1 - w_1)\gamma_{12})(w_1\gamma_{21} + (1 - w_1)\gamma_2)(b + a)\right]$$
(5-70)

Donde:

$$a = \alpha(T, p, w_1, k) = \frac{pa_m(T, w_1, k)}{(RT)^2}$$
(5-71)

$$b = \beta(T, p, w_1) = \frac{pb_m(w_1)}{RT}$$
(5-72)

$$\gamma_{ij}(T,p) = p \frac{f_{ij}(T)}{_{RT}}$$
(5-73)

La ecuación CTS en su forma polinomial tiene un orden igual a $m = N_{as} + 3$, donde N_{as} es el número de sustancias con capacidad de asociarse [2]. Aunque el grado del polinomio va aumentando con el número de compuestos con la capacidad de asociarse, la ecuación CTS sigue manteniendo su esencia similar a la de una ecuación cúbica. La ecuación CTS al ser una función polinomial es de fácil resolución numérica, esto hace que el nuevo enfoque sea más atractivo que algunas otras ecuaciones más complejas.

5.9 Cálculo del coeficiente de fugacidad para una mezcla

El cálculo del coeficiente de fugacidad se realizó dividiendo la ecuación CTS en las 2 partes que la conforman con el fin de simplificar la deducción.

$$p^{CTS} = p^{SRK} + p^{as} \tag{5-74}$$

Utilizando la definición de potencial químico:

$$\mu_i(T, p, x) = \mu_i^{lavel}(T, p, x) + RT ln \phi_i(T, p, x)$$
(5-75)

Conociendo la siguiente expresión:

$$\mu_i^{ideal}(T, p, x) = \mu_i^{ideal}(T, v, x) + RTln(z)$$
(5-76)

Sustituyendo la ecuación (4-68) en (4-69) obtenemos:

$$\mu_i(T, v, x) = \mu_i^{ideal}(T, v, x) + RT lnz + RT ln\phi_i(T, v, x)$$
(5-77)

Despejando el logaritmo natural del coeficiente de fugacidad.

$$ln\phi_i(T, v, x) = \frac{\mu_i(T, v, x) - \mu_i^{ideal}(T, v, x)}{RT} - lnz$$
(5-78)

Utilizando la expresión general que se dedujo para el cálculo del coeficiente de fugacidad.

$$RTln\phi_i^{SRK} = \int_{\infty}^{\nu} \left[\frac{RT}{\nu} - N\left(\frac{\partial p_{SRK}}{\partial N_i}\right)_{T,\nu,N_j} \right] d\nu - RTlnz$$
(5-79)

Y comparando la ecuación (5-79) con la (5-78) podemos afirmar que:

$$\mu_i^{SRK} - \mu_i^{ideal} = \int_{\infty}^{\nu} \left[\frac{RT}{\nu} - N \left(\frac{\partial p_{SRK}}{\partial N_i} \right)_{T,\nu,N_j} \right] d\nu$$
(5-80)

Retomando la ecuación (5-78) y aplicándola para la ecuación de estado CTS, se obtiene:

$$ln\phi_{i}^{CTS}(T,\nu,x) = \frac{\mu_{i}^{CTS}(T,\nu,x) - \mu_{i}^{ideal}(T,\nu,x)}{RT} - lnz$$
(5-81)

La ecuación anterior se puede escribir considerando la contribución del modelo SRK y la de asociación.

$$ln\phi_{i}^{CTS} = \frac{\mu_{i}^{SRK}(T,v,x) + \mu_{i}^{as}(T,v,x) - \mu_{i}^{ideal}(T,v,x)}{RT} - lnz$$
(5-82)

$$ln\phi_{i}^{CTS} = \frac{\mu_{i}^{SRK}(T,\nu,x) - \mu_{i}^{ideal}(T,\nu,x)}{RT} + \frac{\mu_{i}^{as}(T,\nu,x)}{RT} - lnz$$
(5-83)

El primer término de la ecuación 5-83 es equivalente a la expresión 5-80, mientras que el segundo término de la ecuación que es la parte que corresponde al término específico el cual se puede calcular con la expresión 5-81 [1] :

$$\frac{\mu^{SRK} - \mu^{ideal}}{RT} = \frac{b'}{v - b_m} + Ln\left(\frac{v}{v - b_m}\right) + \frac{1}{b_m RT} Ln\left(\frac{v}{v + b_m}\right) \left(a_m + a' - a_m \frac{b'}{b_m}\right) - \frac{a_m b'}{b_m RT(v + b_m)}$$
(5-84)

$$\frac{\mu_k^{as}(T,\nu,x)}{RT} = Ln\left[\frac{\nu}{\nu+\sum_j x_j \nu_{kj} f_{kj}}\right] - \sum_i \frac{x_i \nu_{ik} f_{ik}}{\nu+\sum_j x_j \nu_{ij} f_{ij}}$$
(5-85)

La ecuación final para el cálculo del coeficiente de fugacidad para una mezcla binaria, entonces, es:

$$ln\phi_{i} = \frac{b'}{v - b_{m}} + ln\left(\frac{v}{v - b_{m}}\right) + \frac{1}{b_{m}RT}ln\left(\frac{v}{v + b_{m}}\right)\left(a_{m} + a' - a_{m}\frac{b'}{b_{m}}\right)$$
$$- \frac{a_{m}b'}{b_{m}RT(v + b_{m})} + ln\left[\frac{v}{v + w_{1}f_{1}(T) + (1 - w_{1})f_{12}(T, l_{ij})}\right]$$
$$- \frac{w_{1}f_{1}(T)}{v + w_{1}f_{1}(T) + (1 - w_{1})f_{12}(T, l_{ij})} - \frac{(1 - w_{1})f_{12}(T, l_{ij})}{v + w_{1}f_{12}(T, l_{ij}) + (1 - w_{1})f_{2}(T)}$$
(5-86)

5.10 Cálculo de curvas de rocío y burbuja

Para el cálculo de los puntos de burbuja y rocío se utilizaron las funciones objetivo propuestas por Prausnitz y cds [5], esto con el propósito de evitar problemas de convergencia. De acuerdo con Prausnitz, estas funciones se acercan a un comportamiento lineal mejorando la convergencia de los cálculos realizados.

Para la temperatura de burbuja:

$$G\left(\frac{1}{T}\right) = \ln(\sum_{i=1}^{N_c} K_i x_i)$$
(5-87)

Para la presión de burbuja:

$$G\left(\frac{1}{p}\right) = \left(\sum_{i=1}^{Nc} K_i x_i\right) - 1 \tag{5-88}$$

Para la temperatura de rocío:

$$G\left(\frac{1}{T}\right) = ln\left(\sum_{i=1}^{Nc} \frac{y_i}{K_i}\right)$$
(5-89)

Para la presión de rocío:

$$G\left(\frac{1}{P}\right) = \ln\left(\sum_{i=1}^{Nc} \frac{y_i}{K_i}\right) - 1$$
(5-90)

Donde G es la función objetivo.

Este tipo de funciones objetivos se utilizan debido a que los métodos de punto-pendiente convergen con mayor rapidez para estas funciones.

Como podemos observar, las ecuaciones para el cálculo de puntos de burbuja y rocío se encuentran en función de $\frac{1}{T}$ y $\frac{1}{P}$, esto se debe a que la K_i tiende a variar de forma lineal si se utilizan las variables $\frac{1}{P}$ y $e^{\frac{1}{T}}$.

5.11 Cálculo de c_p con la ecuación CTS para mezclas binarias.

La metodología de cálculo es la misma que para una sustancia pura, con la diferencia de que esta vez se utilizará la ecuación CTS para mezclas. Las derivadas que hay que resolver y la expresión para el cálculo del c_v^R cambian relativamente poco.

$$\left(\frac{\partial p}{\partial v}\right)_{T} = -\frac{RT}{(v-b)^{2}} + \frac{a}{b} \left[\frac{1}{v^{2}} - \frac{1}{(v+b)^{2}}\right] + x_{1} RT \left[\frac{1}{v^{2}} - \frac{1}{(v+F_{1})^{2}}\right] + x_{2} RT \left[\frac{1}{v^{2}} - \frac{1}{(v+F_{2})^{2}}\right]$$
(5-91)

$$\left(\frac{\partial p}{\partial T}\right)_{v} = \frac{R}{v-b} + \frac{a'}{b}\left(\frac{1}{v+b} - \frac{1}{v}\right) + x_{1}R\left(\frac{1}{v+F_{1}} - \frac{1}{v}\right) - \frac{x_{1}RTF'_{1}}{(v+F_{1})^{2}} + x_{2}R\left(\frac{1}{v+F_{2}} - \frac{1}{v}\right) - \frac{x_{2}RTF'_{2}}{(v+F_{2})^{2}}$$
(5-92)

Donde:

$$F_1 = x_1 v_{11} f_{11} + x_2 v_{12} f_{12} \tag{5-93}$$

$$F_2 = x_1 v_{12} f_{12} + x_2 v_{22} f_{22} \tag{5-94}$$

Por último la expresión para el c_v^R queda de la siguiente manera:

$$c_{v}^{R} = \frac{Ta''}{b} Ln \frac{v+b}{v} + 2x_{1}RT^{2}F'_{1} \left[\frac{\frac{1}{T} + \frac{1F''_{1}}{2F'_{1}}}{(v+F_{1})} - \frac{1}{2}\frac{F'_{1}}{(v+F_{1})^{2}} \right] + 2x_{2}RT^{2}F'_{2} \left[\frac{\frac{1}{T} + \frac{1F''_{2}}{2F'_{2}}}{(v+F_{2})} - \frac{1}{2}\frac{F'_{2}}{(v+F_{2})^{2}} \right]$$
(5-95)

Para encontrar el c_p es necesario resolver las ecuaciones 5-49 y 5-54. Estas expresiones no cambian para las mezclas.

6. Modelado termodinámico de mezclas glicolesagua.

6.1 Determinación de parámetros para sustancia pura.

La ecuación CTS posee 5 parámetros ajustables para cada sustancia pura, de los cuales tres de ellos son de la parte no específica y los otros 2 son de la parte específica de la ecuación 5-10. Los parámetros se encontraron por medio de un método numérico para minimización de errores, que está incorporado al programa MathCad. Se utilizaron datos experimentales de presión de saturación, densidad de líquido saturado y c_p para cada sustancia pura y así poder ajustar los parámetros de la ecuación. El objetivo en esta parte del trabajo es minimizar los errores calculados entre los datos experimentales y los cálculos realizados por la ecuación CTS a través de la siguiente función objetivo.

$$f(a_{0}, b, c_{1}, \varepsilon_{ij}, v_{ij}) = \sum_{k} \left(\frac{P_{CTS_{k}}^{s} - P_{exp_{k}}^{s}}{P_{exp_{k}}^{s}}\right)^{2} + \sum_{k} \left(\frac{\rho_{CTS_{k}}^{s} - \rho_{exp_{k}}^{s}}{\rho_{exp_{k}}^{s}}\right)^{2} + \sum_{k} \left(\frac{Cp_{CTS_{k}}^{s} - Cp_{exp_{k}}^{s}}{Cp_{exp_{k}}^{s}}\right)^{2}$$
(6-1)

La ecuación 6-1 es una de las ecuaciones más utilizadas para determinar parámetros de sustancias en ecuaciones de estado. La diferencia principal del presente trabajo con trabajos realizados anteriormente [6] es la inclusión del c_p de sustancias puras en la determinación de los datos experimentales.

Se realizó una búsqueda bibliográfica especializada para encontrar los datos experimentales para cada especie química pura. La base de datos utilizada fue la del DIPPR [7].

Los datos experimentales se obtuvieron con las siguientes ecuaciones informadas en el DIPPR [7]

$$p_i^{sat} = exp\left(A_p + \frac{B_p}{T} + C_p Ln(T) + D_p T^{E_p}\right)$$
(6-2)

$$\rho(T) = \frac{A_d}{\left[B_d^{\left[1 + \left(1 - \frac{T}{C_d}\right)^{D_d}\right]}\right]}$$
(6-3)

$$c_p(T) = A_c + B_c T + C_c T^2$$
(6-4)

$$c_p^{ideal} = A_g + B_g \left(\frac{\left(\frac{C_g}{T}\right)}{\left(senh\frac{C_g}{T}\right)}\right)^2 + D_g \left(\frac{\left(\frac{E_g}{T}\right)}{\left(cosh\frac{E_g}{T}\right)}\right)^2 \tag{6-5}$$

Parámetros	Unidades	MEG	DEG	TEG
a_0	Pa∙m ⁶ /mol ²	1.4339	3.017	4.839
b	m³/mol	5.103E-05	9.014E-05	1.282E-04
<i>c</i> ₁	adimensional	1.0171	0.8996	0.9247
<i>v</i> ₁₁	m³/mol	2.366E-06	3.35E-07	1.658E-07
$-E_{11}/R$	К	1807	2825	3041
T _c	К	720	744.6	769.5

Tabla IV. Parámetros ajustables a partir de la ecuación 6-1 para glicoles puros.

Tabla V. Parámetros reportados en trabajos anteriores para glicoles puros[15].

Parámetros	Unidades	MEG	DEG	TEG
a_0	Pa∙m ⁶ /mol ²	1.411	3.046	4.742
b	m³/mol	5.082E-05	9.090E-05	1.307E-04
<i>c</i> ₁	adimensional	0.8857	1.011	1.091
<i>v</i> ₁₁	m³/mol	1.291E-06	2.865E-07	2.043E-07
$-E_{11}/R$	К	2307	2613	2722
T _c	К	720	744.6	769.5

Al comparar los valores de los parámetros ajustables del modelo CTS representados en la tabla IV con los reportados en la tabla V para los glicoles puros, se observa que los valores, son cercanos entre sí, lo que indica que la calidad del ajuste es buena.

Además, se observa que los datos ajustados son consistentes con su significado físico, puesto que, el parámetro a_0 , que cuantifica las interacciones de tipo dispersivo entre las moléculas, aumenta de manera proporcional con la masa molar.

Figura 6-1. Variación del parámetro a_0 (Pa·m⁶/mol²) con respecto a la masa molar de los glicoles(g/mol).

El parámetro b que está relacionado al volumen finito de las moléculas, también aumenta de manera proporcional con respecto a la masa molar. Al aumentar la masa molar de la especie química tiende a ser más grande y por lo tanto tener un mayor volumen. La tendencia general para b se muestra en la figura 6-2.

Figura 6-2. Variación del parámetro b (m³/mol) con respecto a la masa molar de los glicoles (g/mol).

El parámetro v_{11} cuantifica la posibilidad con que se puede llevar a cabo una interacción del tipo puente de hidrógeno entre las moléculas *i* y *j*. Los glicoles con mayor masa molar son más grandes y poseen más grupos –OH y –O– y por lo tanto debería ser más fácil que

se lleve a cabo este tipo de interacción. Los resultados obtenidos van en contra de esta tendencia. Una posible explicación es la mayor facilidad de formación de puentes de hidrógeno intramoleculares, fenómeno que la ecuación CTS no es capaz de describir, además de la estereoquímica de las moléculas. El parámetro ε_{11} cuantifica la energía de asociación entre *i* y *j*. Como las asociaciones entre estas substancias son del tipo puentes de hidrógeno OH····O, es de esperarse que los valores de las energías de autoasociación sean similares. Esto es exactamente lo que se observa en los valores determinados que se muestran en la tabla IV.

Las figuras 6-3 a 6-8 presentan los resultados obtenidos para correlación de las propiedades de las tres substancias en estudio. Se puede notar que la representación de la densidad de líquido saturado y de la presión de saturación son bastante satisfactorios, es decir, no hubo pérdida de calidad al incluir el c_p en el ajuste. Sin embargo, como se puede ver en las figuras 5-9 hasta 5-11, la reparametrización mejoró significativamente la representación de la capacidad calorífica para sustancias puras.

Presión de saturación ajustada a datos experimentales para MEG, DEG y TEG.

Figura 6-3. Presión de saturación como función del inverso de la temperatura. Los puntos representan a los datos experimentales de MEG, mientras que la línea continua corresponde al comportamiento predicho por la ecuación CTS.

Figura 6-4. Presión de saturación como función del inverso de la temperatura. Los puntos representan a los datos experimentales de DEG, mientras que la línea continua corresponde al comportamiento predicho por la ecuación CTS.

Figura 6-5. Presión de saturación como función del inverso de la temperatura. Los puntos representan a los datos experimentales de TEG, mientras que la línea continua corresponde al comportamiento predicho por la ecuación CTS.

Densidad de líquido saturado ajustada a datos experimentales para los compuestos MEG, DEG y TEG.

Figura 6-6. Densidad de líquido saturado como función de temperatura. Los puntos son datos experimentales de MEG, la línea continua es lo descrito por la ecuación CTS.

Figura 6-7. Densidad de líquido saturado como función de temperatura. Los puntos son datos experimentales de DEG, la línea continua es lo descrito por la ecuación CTS

Figura 6-8. Densidad de líquido saturado como función de temperatura. Los puntos son datos experimentales de TEG, la línea continua es lo descrito por la ecuación CTS

Capacidad calorífica ajustada a datos experimentales para los compuestos MEG, DEG y <u>TEG</u>

Figura 6-9. Capacidad térmica de la fase líquida como función de la temperatura. Las cruces son datos experimentales del MEG. La línea discontinua verde son los cálculos con la ecuación CTS con parámetros anteriores para MEG[15]. La línea color azul corresponde a lo descrito con la ecuación CTS con los nuevos parámetros para MEG.

Figura 6-10. Capacidad térmica de la fase líquida como función de la temperatura. Las cruces son datos experimentales del DEG. La línea discontinua verde son los cálculos con la ecuación CTS con parámetros anteriores para DEG[15]. La línea color azul corresponde a lo descrito con la ecuación CTS con los nuevos parámetros para DEG.

Figura 6-11. Capacidad térmica de la fase líquida como función de la temperatura. Las cruces son datos experimentales del TEG. La línea discontinua verde son los cálculos con la ecuación CTS con parámetros anteriores para TEG[15]. La línea color azul corresponde a lo descrito con la ecuación CTS con los nuevos parámetros para TEG.

La ecuación CTS mejoró la representación del c_p en los tres glicoles puros con respecto a la predicción que se obtiene con los parámetros encontrados en trabajos anteriores [6], especialmente para el MEG. De las figuras 6-9, 6-10 y 6-11 se observa que la descripción del c_p para el MEG es mucho más satisfactoria que para el DEG y TEG. Los cálculos del c_p son mejores para el caso del MEG debido a que los puentes de hidrógeno que se forman al autoasociarse las moléculas, sólo se deben a la interacción de los grupos hidroxilos. En el caso del DEG y TEG los puentes de hidrógeno se pueden formar al interactuar un grupo hidroxilo con otro grupo hidroxilo o con la interacción de un grupo hidroxilo con un grupo éter. La interacción –OH con un –O– se puede realizar entre dos moléculas distintas de DEG o TEG, pero también es posible que una sola molécula de DEG o una de TEG pueda interactuar con ella misma y formar un puente de hidrógeno intramolecular.

La naturaleza en la formación de puentes de hidrógeno para el caso del DEG y TEG es más complicada que para el MEG. Para el MEG. al presentar solo interacciones –OH con –OH los parámetros $E_{ii} y v_{ii}$ son capaces de describir adecuadamente el fenómeno de autoasociación. Como se menciono anteriormente, el DEG y TEG tienen la capacidad de formar puentes de hidrógeno de diferentes maneras, por lo que los parámetros $E_{ii} y v_{ii}$ en realidad son un promedio que cuantifica todas las posibles interacciones que se pueden dar entre moléculas de DEG y de TEG.

Como se puede observar no tenemos un parámetro específico para cada interacción tipo puente de hidrógeno que se puede realizar entre las moléculas de DEG y TEG. La consecuencia de tomar un solo parámetro $E_{ii} y v_{ii}$ que involucre todas las interacciones de puentes de hidrógeno posibles se nota en una correlación no totalmente satisfactoria como es en el caso del MEG. Los errores de la figuras 6-3 a 6-11 se muestran en el apéndice G.

6.2 Determinación de parámetros de interacción binaria k_{ij} y l_{ij}

Utilizando los parámetros característicos que se encontraron para las sustancias puras con la ecuación CTS es posible hacer los cálculos correspondientes para mezclas binarias. Sin embargo, las predicciones utilizando únicamente los 5 parámetros ajustados para sustancias puras, pueden presentar errores considerables y por lo tanto grandes desviaciones con

respecto a los datos experimentales. Es necesario determinar los parámetros de interacción binarios k_{ij} y l_{ij} . Los parámetros se obtienen minimizando los errores entre los puntos de burbuja y rocío experimentales con los calculados por la ecuación CTS con el fin de conseguir resultados confiables.

Los parámetros k_{ij} y l_{ij} son parte de las reglas de combinación y se determinan a partir de un ajuste con datos experimentales a la ecuación CTS. La función objetivo a minimizar es:

$$error(k_{ij}, l_{ij}) = \sum_{m} \sum_{k} \left[\frac{P_k^{CTS}(T_m, k_{ij}, l_{ij}) - P_k^{exp}(T_m)}{P_k^{exp}(T_m)} \right]^2 + \sum_{m} \sum_{k} \left[\frac{T_k^{CTS}(P_m, k_{ij}, l_{ij}) - T_k^{exp}(P_m)}{T_k^{exp}(P_m)} \right]^2$$
(6-6)

Donde P_k es la presión de burbuja o rocío a una temperatura constante T_m . T_k es la temperatura de burbuja o rocío a una presión constante P_m . El superíndice *CTS* indica que la variable se calculó con la ecuación CTS, o bien si el superíndice es *exp* entonces corresponden a los datos experimentales.

Para los 3 sistemas estudiados solo se minimizó el error para la presión de burbuja y temperatura de burbuja, pues estos cálculos son más simples de realizar que los cálculos de temperatura y presión de rocío. Al ajustar las curvas de burbuja automáticamente se ajustan las curvas de rocío. Con los nuevos parámetros encontrados para la ecuación CTS en sustancias puras y, en conjunto con los parámetros de interacción binaria k_{ij} y l_{ij} , se espera representar adecuadamente el c_p de las 3 mezclas binarias estudiadas. Los resultados obtenidos se detallan en la sección 6.3.

6.3 Resultados de mezclas binarias.

6.3.1 Envolventes de fases

Las mezclas estudiadas son MEG-agua, DEG-agua y TEG-agua.

Para realizar los ajustes a datos experimentales, se utilizó en las 3 mezclas la regla de combinación de promedio aritmético para la ε_{ij} , (ver ecuación 5-62). En trabajos anteriores [6], se demostró que el promedio aritmético describe mejor la energía de asociación cruzada. Para la regla de combinación del volumen de asociación cruzado (v_{ij}), se eligió la regla de mezclado que mejor correlaciona los datos experimentales. Para las tres mezclas

MEG-agua, DEG-agua y TEG-agua, se empleó el promedio geométrico (ecuación 5-64). Los parámetros de interacción binarias encontrados para las mezclas glicoles agua son presentados en la tabla VI.

Figura 6-12. Presiones de burbuja y rocío para la mezcla MEG-agua. Líneas continuas son los cálculos de la CTS, mientras que las cruces corresponden a los datos experimentales. Compuesto 1-agua, compuesto 2-MEG.

Figura 6-13. Temperaturas de burbuja y roció para mezcla DEG-agua. Líneas continuas son los cálculos de la CTS. Cuadrados, cruces y círculos son los datos experimentales. Compuesto 1-DEG, compuesto 2-agua.

Figura 6-14. Presión de burbuja para la mezcla TEG-agua. Líneas continuas son los cálculos con la CTS. Cruces son los datos experimentales. Compuesto 1-agua, compuesto 2-TEG.

Figura 6-15. Temperatura de burbuja para la mezcla TEG-agua. Línea continua son cálculos con la CTS. Cruces son datos experimentales. Compuesto 1-agua, compuesto 2-TEG.

mezcla	kij	lij	Error ec. 5-6
MEG-agua	-0.09109	0.01919	0.070
DEG-agua	-0.147	0.147	2.328E-03
TEG-agua	-0.2663	-5.8039E-03	0.321

Tabla VI. Parámetros de interacción binarios para las mezclas glicol-agua estudiadas.

De acuerdo con la información reportada en la tabla VI, los errores son aceptables en las 3 mezclas glicoles-agua. Cabe destacar que la reparametrización de los 5 parámetros de los glicoles puros en conjunto con los nuevos parámetros de interacción binarias describen apropiadamente el ELV. Los cálculos realizados mantienen la misma precisión descrita en trabajos anteriormente realizados [6] y, como se puede observar en las figuras 6-9 a 6-11, se ha mejorado la descripción de la capacidad calorífica de los glicoles puros.

Con los parámetros k_{ij} y l_{ij} encontrados se prosiguió a calcular el c_p de las mezclas lo cual es uno de los puntos principales del trabajo.

5.3.2 c_p de las mezclas

A continuación se presentan los resultados obtenidos para la predicción del c_P de las mezclas glicoles- agua. En las figuras siguientes, también se presentan el c_P calculado con el conjunto de parámetros obtenidos a partir de datos de substancias puras donde no se incluyó esta propiedad en su determinación [6].

<u>c_p para mezcla MEG-agua</u>

6-16. Capacidad calorífica como función de la composición de la mezcla MEG-agua. Rombos son datos experimentales. Línea verde son los cálculos con parámetros anteriores[15]. Línea roja son los cálculos con los nuevos parámetros encontrados.

<u>c_p para mezcla DEG-agua</u>

60

Figura 6-17. Capacidad calorífica como función de la composición de la mezcla DEG-agua. Rombos son datos experimentales. Línea verde son los cálculos con parámetros anteriores [15]. Línea roja son los cálculos con los nuevos parámetros encontrados.

c_n para mezcla TEG-agua

1

Figura 6-18. Capacidades caloríficas como función de la composición de la mezcla TEG-agua. Rombos son datos experimentales. Línea verde son los cálculos con parámetros anteriores[15]. Línea roja son los cálculos con los nuevos parámetros encontrados.

Podemos observar de las figuras 6-16, 6-17 y 6-18 que se ha logrado mejorar la descripción del c_p de las mezclas glicoles-agua utilizando la ecuación CTS. Aunque la representación del c_p aún no es perfecta, se puede afirmar que hubo una mejor descripción de esta propiedad termodinámica con respecto al trabajo informado en la referencia [6]. También de acuerdo con los resultados mostrados en la sección 6.3.1 la mejora en el c_p no afecta de manera considerable la precisión de los cálculos para el ELV.

7. Conclusiones y sugerencias.

- La ecuación CTS es capaz de describir el comportamiento de las sustancias puras MEG, DEG y TEG ajustando los 5 parámetros de la ecuación con datos experimentales. La ecuación CTS predice de manera cuantitativa y muy acertadamente la presión de vapor y la densidad de líquido saturado. Para el caso del c_p los resultados para sustancia pura con la ecuación CTS aun se alejan un poco de la realidad.
- Para el estudio del sistema DEG y TEG, se trabajó bajo la suposición de que los parámetros $E_{ii} y v_{ii}$ involucran todas las posibles interacciones de puente de hidrógeno que se pueden dar entre estas moléculas. Para este caso se podría proponer alguna modificación a la ecuación para obtener mejores resultados para el c_p , por ejemplo se podría proponer que alguno(s) de los parámetros de la ecuación se hagan funciones de la temperatura.
- Para mezclas binarias la ecuación CTS describe muy bien el equilibrio líquidovapor para cada una de las mezclas binarias glicol-agua. Esto se logró ajustando los dos parámetros de interacción k_{ij}y l_{ij} a datos experimentales de puntos de burbuja y rocío.
- Con los nuevos parámetros para sustancias puras y los parámetros de interacción binarios, se logró representar de mejor manera el c_p de las mezclas glicol-agua sin perder la precisión en la descripción de los envolventes del ELV de las mismas mezclas.
- Los parámetros k_{ij} y l_{ij} no se ajustaron a datos experimentales de c_p, solo se tomaron los parámetros obtenidos del ajuste a datos experimentales de ELV. El

resultado es que la ecuación CTS no es capaz de describir de forma precisa el *cp* de las mezclas glicoles-agua, así también se observó que da mejores resultados al aumentar la temperatura y a bajas concentraciones.

Referencias.

1. Medeiros, Milton; Tellez-Arredondo, Pablo. "A Cubic Two. State Equation of State for Associating Fluids". 2008. Ind. Eng. Chem. Res. 47, pp 5723-5733.

2. **Téllez-Arredondo, Pablo.** "Modificación de la ecuación de estado cúbica de SRK incorporando el modelo de asociación de dos estados (TSAM): cálculo del equilibrio líquido-vapor de sistemas alcohol-alcano". Tesis de Licenciatura. UNAM. México D.F., 2006

3. Xiang, H. W., Montel, F., Graciaa, A., Mendiboure, B., Miqueu, C. "Generalized *Cubic-Plus-Association Equation of State*". Engineering Sciences and Fundamentals, 2005.

4. **Reynoso- López, Rodolfo; Tellez- Arredondo, Pablo; Medeiros, Milton.** "*The Cubic-Two-State Equation of State: Cross-associating mixtures and Monte Carlo study of self-associating prototypes*". 2010. Fluid Phase Equilibria 297, pp 98-106., In press.

5. **Prausnitz, John M.; Lichtenthaler, Rüdiger N.; Azevedo Edmundo G.** *"Termodinámica molecular de los equilibrios de fases"*. Madrid. Ed. Prentice Hall, 2000.

6. Galicia Andrés, Edgar. "Modelado Termodinámico de los sistemas presentes en el proceso de deshidratación de gas natural con glicoles empleando la ecuación de estado *CTS*". Tesis de Licenciatura. UNAM. 2010.

7. **Danner, R.P.; Daubert, T.E**. Physical and Thermodynamic Properties of Pure Chemicals. Daata Compilation. Hemisphere Publishing Corporation., 1989.

8. **Téllez- Arredondo, Pablo**. *"Equilibrio de fases en sistemas con asociaciones cruzadas a través de la ecuación CTS"*. Tesis de Maestría. México D.F., 2008.

9. **Smith-Van-Ness**. *"Introducción a la termodinámica a la Ingeniería Química"*. 4^a edición. Ed. McGraw-Hill ,pp 64, 65, 66, 73, 338, 339, 341, 342, 343, 363.

10. John M. Praustnitz, Robert C. Reid, Bruce E. Poling. "*The properties of gases and liquids*". Ed. Mc Graw-Hill. 4a edición, pp 668, 669,670, 671, 676, 677, 678.

11. **CDATA**: Database of Thermodynamic and Transport Properties for Chemistry and Engineering. Department of Physical Chemistry. Institute for Chemical Technology (distributed by FIZ Chemie GmbH): Prague, 1991.

12. **Stryjek, R. and Vera, J.H.**, 1986. *Vapor—liquid equilibrium of hydrochloric acid solutions with the PRSV equation of state. Fluid Phase Equilibria*, 25: 279–290.

13. **Huron, M.-J. and Vidal, J.**, 1979. New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 3: 255-271.

14. Wong, D. S. H. and Sandler, S. I. (1992). "A theoretically correct mixing rule for cubic equations of state". AIChE Journal **38**: 671–680.

15. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M. "SAFT: Equation-of-State Solution Model for Associating Fluids. Fluid Phase Equilibria". 52:31-38 (1989).

16. **Soave, G.** *"Equilibrium Constants from a Modified Redlich-Kwong Equation of State"*, Chem. Eng. Sci., 1 9 7 2, 27, 1197-1203.

17. Hernandez Valencia, Vicente N.; Hlavinka, Michael W.; Bullin, Jerry A. Design Glycol Units for Maximun Efficiency. Bryan Research and Engineering, Inc.- Technical Papers., 2006.

18. **Kontogeorgis, Georgios M.; Breil, Martin P.** Thermodynamics of Triethylene Glycol and Tetraethylene Glycol Containing Systems Described by the Cubic-Plus- Association Equation of State. 2009, Ind. Eng. Chem. Res. 48, pp 5472-5480.

19. H.; Tassone, Vince; Sim, Wayne D.; Watanasiri, Suphat. Advanced equation of state method for modeling TEG-water for glycol gas dehydration. Two, Chorng 2005, Fluid Phase Equilibria.

20. Cerdireña, C: Costas, M.; Delgado, M.d. Towards and Understanding of the Heat Capacity of Liquids.. 2004, Journal of Chemical Physics.

21. **Medeiros, M.; Armas-Alemán, C.O.; Costas, M.** Temperature Dependence of the Heat Capacity and Vapor Pressure of Pure Self-Associated Liquids. A New Correlation Based on a Two-State Association Model. 2006, Ind. Eng. Chem. Res.

22. Gmehling, J.; Onken, U.; Arlt, W.; Rarery-Nies, J. R. Vapor-liquid equilibrium data collection. Vol I. DECHEMA Chemestry Data Series, 1988.

23. Herskowltz, Mordechay; Gottlleb, Moshe. Vapor Liquid Equilibrium in Aqueous Solutions of Various Glycols and Poly (ethylene Glycols). 1. Triethylene Glycol. 1984, J. Chem. Eng. Data.

24. **Rosman, A.**Water Equilibrium in the Dehydration of Natural Gas with Triethylene Glycol. 1973, Society of Petroleum Engineers Journal 13.

APENDICE A. Parámetros de funciones empíricas tomados del DIPPR.

Compuesto	Propiedad	А	В	С	D	E
	P ^{sat} , Pa	84.09	-10411	-8.1976	1.6536E-18	6
	ρ, Kmol/m ³	1.315	0.25125	720	0.21868	-
	$Cp, \frac{J}{Kmol \cdot K}$	35.54	436.78	-0.18486	-	-
MEG	$Cp^{ideal}, \frac{J}{Kmol \cdot K}$	6.30E+04	1.46E+05	1.67E+03	9.73E+04	7.74E+02
	P ^{sat} , Pa	142.45	-15050	-16.318	5.95E-18	6
	ρ , Kmol/m ³	0.83692	0.26112	744.6	0.2422	-
	$Cp, \frac{J}{Kmol \cdot K}$	1.25E+05	4.01E+02	-	-	-
DEG	$Cp^{ideal}, rac{J}{Kmol \cdot K}$	8.79E+04	2.71E+05	1.40E+03	1.70E+05	- 6.24E+02
	P ^{sat} , Pa	1.52E+02	-1.64E+04	-17.67	6.45E-18	6.00E+00
	ρ, Kmol/m ³	5.97E-01	2.62E-01	769.5	2.46E-01	-
	$Cp, \frac{J}{Kmol \cdot K}$	1.54E+05	5.87E+02	-	-	-
TEG	$Cp^{ideal}, \frac{J}{Kmol \cdot K}$	9.04E+04	4.20E+05	-1.26E+03	2.77E+05	5.31E+02

Tabla A1. Parámetros de funciones empíricas tomados del DIPPR.

Los parámetros descritos en la tabla A1 se utilizan con las ecuaciones 6-2, 6-3, 6-4 y 6-5; mostradas en el capítulo 6.

Apéndice B. Elección de la relación primaria para calcular Pas.

Para la elección de la relación primaria apropiada que se utiliza en el trabajo para calcular la P^{as} , se realizó de la siguiente manera:

La ecuación 5-5 corresponde a la energía de Helmholtz de asociación.

$$a^{as}(w, V, T) = -RT \sum_{i} w_i Ln \left[1 + \frac{1}{V} \sum_{j} w_j v_{ij} f_{ij}(T) \right]$$
(5-5)

Como esta propiedad depende de *T*, *V* y *N*.

$$a^{as} = a^{as}(T, V, N) \tag{B-I}$$

Al diferenciar esta función se obtiene:

$$da^{as} = \left(\frac{\partial a^{as}}{\partial T}\right)_{V,N} dT + \left(\frac{\partial a^{as}}{\partial V}\right)_{T,N} dV + \left(\frac{\partial a^{as}}{\partial N}\right)_{T,V} dN$$
(B-II)

De la cuarta ecuación fundamental de la termodinámica:

$$da^{as} = -S^{as}dT - P^{as}dV + \mu^{as}dN \tag{B-III}$$

Al comparar las ecuaciones C-II con C-III, se observa que:

$$\left(\frac{\partial a^{as}}{\partial T}\right)_{V,N} = -S^{as} \tag{B-IV}$$

$$\left(\frac{\partial a^{as}}{\partial V}\right)_{T,N} = P^{as} \tag{B-V}$$

$$\left(\frac{\partial a^{as}}{\partial N}\right)_{T,V} = \mu^{as} \tag{B-VI}$$

Como el propósito en el presente trabajo, es conocer la presión debida a la asociación, entonces la ecuación C-V en la de mayor interés.

Al aplicar la ecuación C-V a la ecuación 5-5, se obtiene:

$$P^{as} = \left(\frac{\partial a^{as}}{\partial V}\right)_{T,N} = \frac{\partial}{\partial V} \left[= -RT \sum_{i} w_{i} Ln \left[1 + \frac{1}{V} \sum_{j} w_{j} v_{ij} f_{ij}(T) \right] \right]$$
(B-VII)
o bien:

$$P^{as}(w,v,T) = -RT\sum_{i} w_i \frac{\sum_{j} w_j v_{ij} f_{ij}(T)}{v[v + \sum_{j} w_j v_{ij} f_{ij}(T)]}$$
(5-8)

Apéndice C. Deducción del polinomio de compresibilidad para la CTS.

Deducción para la ecuación de compresibilidad de la ecuación CTS.

La ecuación 5-12 es la presión para una sustancia pura con la ecuación CTS.

$$P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu(\nu + b)} - RT \frac{v_i f_i(T)}{\nu(\nu + v_i f_i(T))}$$
(5-12)

Definimos:

 $A = \frac{Pa(T)}{(RT)^2} \tag{5-15}$

$$B = \frac{Pb}{RT}$$
(5-16)

$$C = v_i f_i(T) \frac{P}{RT}$$
(5-17)

Y sabemos que:

$$z = \frac{PV}{RT}$$
(5-18)

Entonces multiplicamos toda la ecuación por $\left(\frac{v}{RT}\right)$.

$$\left[P = \frac{RT}{\nu - b} - \frac{a(T)}{\nu(\nu + b)} - RT \frac{\nu_i f_i(T)}{\nu(\nu + \nu_i f_i(T))}\right] \left(\frac{\nu}{RT}\right)$$
(C-I)

Y obtenemos:

$$z = \frac{v}{v-b} - \frac{a(T)}{RT} \frac{v}{v(v+b)} - v \left[\frac{v_i f_i(T)}{v(v+v_i f_i(T))} \right]$$
(C-II)

Ahora los términos del lado derecho de la ecuación los multiplicamos por $\frac{\frac{P}{RT}}{\frac{P}{RT}} = 1$, para

obtener.

$$z = \frac{z}{z-B} - A\frac{z}{z(z+B)} - \frac{C}{z+C}$$
(C-III)

Igualando a cero y rescribiendo la ecuación:

$$z - \frac{z}{z-B} + A \frac{1}{(z+B)} + \frac{C}{z+C} = 0$$
 (C-IV)

El siguiente paso es multiplicar cada uno de los términos de la ecuación C-IV por todos los términos que se encuentran en los denominadores, es decir por (z - B)(z + C).

$$\left[z - \frac{z}{z-B} + A\frac{1}{(z+B)} + \frac{C}{z+C} = 0\right] \left[(z-B)(z+B)(z+C)\right]$$
(C-V)

La expresión resultante es:

$$z(z-B)(z+B)(z+C) - z(z+B)(z+C) + A(z-B)(z+C) + C(z-B)(z+B)$$
(C-VI)

Desarrollando los términos de la ecuación C-VI:

-Término 1.

$$z(z-B)(z+B)(z+C) = (z^{3} - B^{2}z)(z+C) = z^{4} + z^{3}C - z^{2}B^{2} - zB^{2}C$$
(C-VII)

-Término 2.

$$-z(z+B)(z+C) = (z^{2} + zC + Bz + BC)(-z) = -z^{3} - z^{2}C - z^{2}B - zBC$$
(C-VIII)

-Término 3.

$$A(z - B)(z + C) = A(z^{2} + zC - zB - BC) = z^{2}A + zAC - zAB - ABC$$
(C-IX)

-Término 4.

$$C(z-B)(z+B) = C(z^2 - B^2) = z^2 C - B^2 C$$
 (C-X)

La ecuación total resultante es:

$$z^{4} + z^{3}C - z^{2}B^{2} - zB^{2}C = -z^{3} - z^{2}C - z^{2}B - zBC + z^{2}A + zAC - zAB - ABC + z^{2}C - B^{2}C = 0$$
(C-XI)

Reagrupando los términos, la expresión resultante es:

$$z^{4} + (C-1)z^{3} + (A-B-B^{2})z^{2} + (AC-AB-BC-B^{2}C)z - ABC - B^{2}C = 0$$
(5-14)

Apéndice D. Desarrollo de la expresión exacta para el cálculo del coeficiente de fugacidad.

Desarrollo de la expresión exacta que debe resolverse para el cálculo del coeficiente de fugacidad ϕ_i de una ecuación explicita en presión.

Utilizando la ecuación fundamental de la termodinámica tenemos:

$$dA = -SdT - PdV + \mu_i dn_i \tag{D-1}$$

Por medio de las relaciones de Maxwell.

$$\left[\frac{\partial}{\partial Y}\left(\frac{\partial F}{\partial X}\right)_{Y}\right]_{X} = \left[\frac{\partial}{\partial X}\left(\frac{\partial F}{\partial Y}\right)_{X}\right]_{Y} \tag{D-II}$$

Entonces podemos escribir:

$$\left(\frac{\partial \mu_i}{\partial V}\right)_{T,n_i} = -\left(\frac{\partial P}{\partial n_i}\right)_{T,V,n_{j\neq i}} \tag{D-III}$$

Con T y n constantes.

$$\frac{d\mu_i}{dV} = -P_i \tag{D-IV}$$

$$d\mu_i = -P_i dV \tag{D-V}$$

La definición de potencial químico es:

$$\mu_i(T, P, x) = \mu_i^0(T, P_0, x_0) + RTLn \frac{f_i(T, P, x)}{f_i^0(T, P_0, x_0)}$$
(D-VI)

Obteniendo la diferencial.

$$d\mu_i = RT(dLnf_i) \tag{D-VII}$$

Sabemos que la definición de coeficiente de fugacidad es la siguiente:

$$\phi_i(T, P, x) = \frac{f_i(T, P, x)}{x_i P}$$
(D-VIII)

Entonces:

$$f_i = \phi_i x_i P \tag{D-IX}$$

Sustituyendo D-IX en D-VII.

$$d\mu_i = RT(dLn(\phi_i x_i P)) \tag{D-X}$$

Para sustancia pura $x_i = 1$ y aplicando las leyes de los logaritmos llegamos a:
$$d\mu_i = RT(dLn\phi_i + dLnP) \tag{D-XI}$$

La presión la podemos escribir como:

$$P = \frac{znRT}{V}$$
(D-XII)

Aplicando logaritmo natural a ambos lados de la ecuación, podemos escribir:

$$LnP = Lnz + Ln(n) + Ln(RT) - LnV$$
(D-XIII)

Haciendo la derivada marcada en la ecuación D-XI y recordando que T y n son constantes, obtenemos:

$$dLnP = dLnz - dLnV \tag{D-XIV}$$

Sustituyendo D-XIV en D-XI:

$$d\mu_i = RT(dLn\phi_i + dLnz - dLnV)$$
(D-XV)

Igualando D-V con D-XV.

$$-P_i dV = RT(dLn\phi_i + dLnz - dLnV)$$
(D-XVI)

Resolviendo para el coeficiente de fugacidad, escribimos:

$$RTdLn\phi_i = -P_i dV - RTdLnz + RTdLnV$$
(D-XVII)

Ahora debemos de integrar la ecuación D-XVII con los límites adecuados.

$$RT \int_0^{Ln\phi_i} dLn\phi_i = RT \int_\infty^V \frac{1}{V} dV - \int_\infty^V P_i dV - RT \int_0^{Lnz} dLnz$$
(D-XVIII)

Agrupando términos y aplicando las integrales correspondientes, la expresión resultante es:

$$RTLn\phi_i = \int_{\infty}^{V} \left(\frac{RT}{V} - \left(\frac{\partial P}{\partial n}\right)_{T,V,n_{j\neq i}}\right) dV - RTLnz$$
(D-XIX)

La ecuación D-XIX, es la expresión para calcular el coeficiente de fugacidad para una ecuación explicita en presión.

Apéndice E. Deducción de la expresión para el cálculo del coeficiente de fugacidad utilizando la CTS.

Escribimos la ecuación fundamental de la termodinámica de la siguiente forma:

$$dG = -SdT + VdP + \mu_i dn_i \tag{E-I}$$

Utilizando las relaciones de Maxwell, podemos escribir.

$$\left(\frac{\partial \mu_i}{\partial P}\right)_{T,n_i} = \left(\frac{\partial V}{\partial n_i}\right)_{T,P,n_{j\neq i}}$$
(E-II)

$$\frac{d\mu_i}{dP} = \nu_i \tag{E-III}$$

$$d\mu_i = V_i dP \tag{E-IV}$$

La definición de potencial químico es:

$$\mu_i(T, P, x) = \mu_i^0(T, P_0, x_0) + RTLn \frac{f_i(T, P, x)}{f_i^0(T, P_0, x_0)}$$
(E-V)

Obteniendo la diferencial.

$$d\mu_i = RT(dLnf_i) \tag{E-VI}$$

Sabemos que la definición de coeficiente de fugacidad es la siguiente:

$$\phi_i(T, P, x) = \frac{f_i(T, P, x)}{x_i P}$$
(E-VII)

Entonces:

$$f_i = \phi_i x_i P \tag{E-VIII}$$

Sustituyendo E-VIII en E-VI.

$$d\mu_i = RT(dLn(\phi_i x_i P)) \tag{E-IX}$$

Para sustancia pura $x_i = 1$ y aplicando las leyes de los logaritmos llegamos a:

$$d\mu_i = RT(dLn\phi_i + dLnP) \tag{E-X}$$

Igualando E-IV con E-X

$$v_i dP = RT(dLn\phi_i + dLnP) \tag{E-XI}$$

Resolviendo para el coeficiente de fugacidad.

$$RTd(Ln\phi_i) = v_i dP - RTdLnP$$
(E-XII)

$$RTd(Ln\phi_i) = v_i dP - RT\frac{1}{p}dP$$
(E-XIII)

Aplicando las integrales correspondientes.

$$RT \int_0^{Ln\phi_i} d(Ln\phi_i) = \int_{P=0}^P \left[v - \frac{RT}{P} \right] dP$$
 (E-XIV)

Escribiendo la presión de la siguiente manera.

$$P = \frac{zRT}{v}$$
(E-XV)

Derivando la expresión E-XV

$$dP = RTd\left(z \cdot \frac{1}{v}\right) \tag{E-XVI}$$

$$dP = RT\left(-\frac{z}{v^2}dv + \frac{1}{v}dz\right)$$
(E-XVII)

De la ecuación E-XV podemos escribir.

$$\frac{RT}{P} = \frac{v}{z}$$
(E-XVIII)

Sustituyendo E-XVII y E-XVIII en E-XIV y cambiando los límites de integración obtenemos.

$$RTLn\phi_i = \int_{\infty}^{\nu} \left[\nu - \frac{\nu}{z} \right] \left[RT \left(-\frac{z}{\nu^2} d\nu + \frac{1}{\nu} dz \right) \right]$$
(E-XIX)

Agrupando términos.

$$Ln\phi_i = \int_{\infty}^{\nu} \left[-\frac{z}{\nu} + \frac{1}{\nu} \right] d\nu + \int_1^{z} \left[1 - \frac{1}{z} \right] dz$$
(E-XX)

Resolviendo la integral para z encontramos

$$Ln\phi_i = \int_{\infty}^{\nu} \left[\frac{1}{\nu} - \frac{z}{\nu}\right] d\nu + (z - 1) - Lnz$$
(E-XXI)

Ahora sabemos de E-XVIII.

$$\frac{z}{v} = \frac{P}{RT}$$
(E-XXII)

La ecuación para la presión de una sustancia pura utilizando la ecuación CTS es:

$$P = \frac{RT}{v-b} - \frac{a(T)}{v(v+b)} - RT \frac{v_i f_i(T)}{v(v+v_i f_i(T))}$$
(E-XXIII)

Multiplicando E-XXIII por $\frac{1}{RT}$ nos queda.

$$\frac{z}{v} = \frac{P}{RT} = \frac{1}{v-b} - \frac{a(T)}{RT} \frac{1}{v(v+b)} - \frac{v_i f_i(T)}{v(v+v_i f_i(T))}$$
(E-XXIV)

La expresión E-XXIV se sustituye en E-XXI

$$Ln\phi_{i} = \int_{\infty}^{\nu} \left[\frac{1}{\nu} - \frac{1}{\nu - b} + \frac{a(T)}{RT} \frac{1}{\nu(\nu + b)} + \frac{\nu_{i}f_{i}(T)}{\nu(\nu + \nu_{i}f_{i}(T))} \right] d\nu + (z - 1) - Lnz$$
(E-XXV)

Para resolver la integral primero se evaluara el límite inferior de la integral aplicando el límite en el infinito.

$$\lim_{\nu \to \infty} \left[\frac{1}{\nu} - \frac{1}{\nu - b} + \frac{a(T)}{RT} \frac{1}{\nu(\nu + b)} \right] = 0 \tag{E-XXVI}$$

El límite es cero. Para resolver la integral se utilizó el método de fracciones parciales. Primero se resolverán los tres primeros términos de la integral, es decir:

$$\int_{\infty}^{\nu} \left[\frac{1}{\nu} - \frac{1}{\nu - b} + \frac{a(T)}{RT} \frac{1}{\nu(\nu + b)} \right] d\nu \tag{E-XXVII}$$

Los dos primeros términos se pueden resolver de manera directa, el tercer término lo escribimos de la siguiente forma.

$$\frac{1}{v(v+b)} = \frac{A}{v} + \frac{B}{v+b}$$
(E-XXVIII)

$$A(v+b) + Bv = 1 \tag{E-XXIX}$$

$$v(A+B) + Ab = 1 \tag{E-XXX}$$

Si A = -B entonces el primer término de E-XXX es igual a cero y nos queda.

$$Ab = 1$$
 (E-XXXI)

Y por lo tanto obtenemos.

$$A = \frac{1}{b} \ y \ B = -\frac{1}{b} \tag{E-XXXII}$$

Entonces la solución de la integral es:

$$\int_{\infty}^{v} \left[\frac{1}{v} - \frac{1}{v-b} + \frac{a(T)}{RT} \left[\frac{1}{b} \cdot \frac{1}{v} - \frac{1}{b} \frac{1}{(v+b)} \right] \right] dv = Lnv - Ln(v-b) + \frac{a(T)}{RT} \left[\frac{1}{b} Lnv - \frac{1}{b} Ln(v+b) \right]$$
(E-XXXIII)

Aplicando las reglas de los logaritmos, la parte izquierda de la igualdad de E-XXXIII la podemos escribir de la siguiente manera.

$$Ln\frac{v}{v-b} + \frac{a(T)}{bRT}Ln\frac{v}{v+b}$$
(E-XXXIV)

Definimos

$$A = \frac{Pa(T)}{(RT)^2}$$
(E-XXXV)

$$B = \frac{Pb}{RT}$$
(E-XXXVI)

Entonces.

$$\frac{A}{B} = \frac{a(T)}{bRT}$$
(E-XXXV)

Los numeradores y denominadores que se encuentran en los logaritmos naturales de la ecuación E-XXIV los multiplicaremos por $\frac{P}{RT}$ para poder poner la expresión en términos de compresibilidades. La expresión E-XXXIV entonces nos queda.

$$Ln\frac{z}{z-B} + \frac{A}{B}Ln\frac{z}{z+B} = Lnz - Ln(z-B) + \frac{A}{B}Ln\frac{z}{z+B}$$
(E-XXXVI)

Ahora la expresión E-XXV para calcular el coeficiente de fugacidad nos queda de la siguiente manera.

$$Ln\phi_{i} = \int_{\infty}^{\nu} \left[\frac{v_{i}f_{i}(T)}{v(\nu+v_{i}f_{i}(T))} \right] d\nu + Lnz - Ln(z-B) + \frac{A}{B}Ln\frac{z}{z+B}(z-1) - Lnz \quad (E-XXXVII)$$

$$Ln\phi_{i} = \int_{\infty}^{\nu} \left[\frac{\nu_{i}f_{i}(T)}{\nu(\nu+\nu_{i}f_{i}(T))} \right] d\nu + \frac{A}{B}Ln\frac{z}{z+B} - Ln(z-B) + (z-1)$$
(E-XXXVIII)

Ahora se debe resolver la integral que corresponde a la parte específica de la ecuación CTS.

$$\int_{\infty}^{\nu} \left[\frac{\nu_i f_i(T)}{\nu(\nu + \nu_i f_i(T))} \right] d\nu$$
(E-XXXIX)

El límite inferior de la integral se resolverá utilizando la definición de límite.

$$\lim_{\nu \to \infty} \frac{\nu_i f_i(T)}{\nu(\nu + \nu_i f_i(T))} = 0$$
(E-XL)

La integral de E-XXXIX se resuelve utilizando el método de fracciones parciales. Primero escribiremos la integral de la siguiente manera.

$$v_i f_i(T) \int_{\infty}^{v} \left[\frac{1}{v(v+v_i f_i(T))} \right] dv$$
 (E-XLI)

El término dentro de la integral lo expresamos de la siguiente forma.

$$\frac{1}{v(v+v_i f_i(T))} = \frac{A}{v} + \frac{B}{(v+v_i f_i(T))}$$
(E-XLII)

$$A(v + v_i f_i(T)) + Bv = 1$$
(E-XLIII)

$$v(A+B) + A(v_i f_i(T)) = 1$$
(E-XLIV)

Si A = -B nos queda.

$$A(v_i f_i(T)) = 1 \tag{E-XLV}$$

Entonces obtenemos.

$$A = \frac{1}{v_i f_i(T)} \ y \ B = -\frac{1}{v_i f_i(T)}$$
(E-XLVI)

Por lo tanto.

$$v_i f_i(T) \int_{\infty}^{v} \left[\frac{1}{v(v+v_i f_i(T))} \right] dv = Lnv - Ln(v+v_i f_i(T))$$
(E-XLVII)

Ahora la ecuación E-XXXVIII la escribimos de la siguiente manera.

$$Ln\phi_{i} = \frac{A}{B}Ln\frac{z}{z+B} - Ln(z-B) + (z-1) + \frac{1}{v_{i}f_{i}(T)}Lnv - \frac{1}{v_{i}f_{i}(T)}Ln(v+v_{i}f_{i}(T))$$
(E-XLVIII)

$$Ln\phi_{i} = \frac{A}{B}Ln\frac{z}{z+B} - Ln(z-B) + (z-1) + Ln\frac{v}{(v+v_{i}f_{i}(T))}$$
(E-XLIX)

El último término de la ecuación E-XLIX que pertenece a la parte específica lo multiplicaremos en el numerador y el denominador por $\frac{P}{RT}$ para que también se encuentre en términos de compresibilidades.

$$Ln\phi_{i} = \frac{A}{B}Ln\frac{z}{z+B} - Ln(z-B) + (z-1) + Ln\frac{z}{(z+\frac{P}{RT}v_{i}f_{i}(T))}$$
(E-L)

Definimos.

$$C = \frac{P}{RT} v_i f_i(T)$$

Por lo tanto la expresión final para calcular el coeficiente de fugacidad para una sustancia pura haciendo uso de la ecuación CTS es:

$$Ln\phi_{i} = \frac{A}{B}Ln\frac{z}{z+B} - Ln(z-B) + (z-1) + Ln\frac{z}{(z+C)}$$
(E-LI)

APENDICE F. Memoria de cálculo.

1. Cálculo de propiedades termodinámicas para una sustancia pura haciendo uso de la ecuación CTS.

Compuesto agua

Propiedades críticas

bar = 10000Pa KPa = 1000Pa Tc = 647. IK pc = 220.5 fbarzc = 0.22 R = $8.314 \frac{\text{J}}{\text{mol} \cdot \text{K}}$

Constantes para ec	cuación de estado	(m ³	(m ³			
$\epsilon \equiv 0$	$c_1 \equiv 0.5628$	$b \equiv 14.7 \cdot 10^{-6} \frac{\text{m}}{\text{mol}}$	$v_{11} \equiv 1.422 \cdot 10^{-6} \frac{\text{m}}{\text{mol}}$			
$\sigma \equiv 1$	m ⁶					
	$a0 \equiv 0.302 \mathcal{P}a \cdot \frac{1}{mol^2}$	$E_{11} \equiv 2062 K \cdot (-R)$				

Inicio de cálculos

$$Tr(T) \equiv \frac{T}{Tc}$$
$$a(T) \equiv a0 \left[1 + c_1 \cdot \left(1 - Tr(T)^{0.5} \right) \right]^2$$

$$f_{11}(T) \equiv e^{\frac{-E_{11}}{R \cdot T}} - 1$$
$$A(T, p) \equiv p \cdot \frac{a(T)}{(R \cdot T)^2}$$
$$B(T, p) \equiv p \cdot \frac{b}{R \cdot T}$$

 $C(T,p) \equiv v_{11} \cdot f_{11}(T) \cdot \frac{p}{R \cdot T}$ $(-A(T,p) \cdot B(T,p) \cdot C(T,p) - B(T,p)^2 \cdot C(T,p)$

$$z(T,p) \equiv \begin{pmatrix} A(T,p) \cdot C(T,p) - A(T,p) \cdot B(T,p) - B(T,p) \cdot C(T,p) \\ A(T,p) \cdot C(T,p) - A(T,p) \cdot B(T,p) - B(T,p) \cdot C(T,p) \\ A(T,p) - B(T,p) - B(T,p)^{2} \\ C(T,p) - 1 \\ 1 \end{pmatrix}$$

 $zl(T,p) \equiv polyroots(z(T,p))_1$

 $zv(T,p) \equiv polyroots (z(T,p))_{3}$

 $VI(T,p) \equiv zI(T,p) \cdot R \cdot \frac{T}{p}$ $Vv(T,p) \equiv zv(T,p) \cdot R \cdot \frac{T}{p}$

 $\Delta \text{vap}(T,p) \equiv Vv(T,p) - Vl(T,p)$

$$\rho l(T,p) \equiv \frac{1}{Vl(T,p)}$$

$$\Phi l(T,p) \equiv e^{\left[(zl(T,p)-1-ln(zl(T,p)-B(T,p))) + ln\left(\frac{zl(T,p)}{zl(T,p)+C(T,p)}\right) + \frac{A(T,p)\cdot ln\left(\frac{zl(T,p)+\sigma\cdot B(T,p)}{zl(T,p)+\epsilon\cdot B(T,p)}\right)\right]}{B(T,p)\cdot(\epsilon-\sigma)} \right]}$$

$$\Phi v(T,p) \equiv e^{\left[(zv(T,p)-1-ln(zv(T,p)-B(T,p))) + ln\left(\frac{zv(T,p)}{zv(T,p)+C(T,p)}\right) + \frac{A(T,p)\cdot ln\left(\frac{zv(T,p)+\sigma\cdot B(T,p)}{zv(T,p)+\epsilon\cdot B(T,p)}\right)\right]}{B(T,p)\cdot(\epsilon-\sigma)} \right]}$$

 $\mathrm{fl}(\mathrm{T},\mathrm{p})\equiv \Phi\mathrm{l}(\mathrm{T},\mathrm{p}){\cdot}\mathrm{p}$

 $fv(T,p) \equiv \Phi v(T,p) \cdot p$

 $d(T,p) \equiv fl(T,p) - fv(T,p)$

T1 := 300K

p := 1bar

g(T) := root(d(T,p),p)

g(373.1K) = 1.012 bar

Cálculo de propiedades residuales

 $F_{11}(T) \equiv v_{11} \cdot f_{11}(T)$ $a'(T) = \frac{-a0}{Tc} \cdot \left[1 + c_1 \cdot \left(1 - Tr(T)^{0.5} \right) \right] \cdot \frac{c_1}{T_{-}(T)^{0.5}}$ <u>-е₁₁</u> $F'_{11}(T) \equiv v_{11} \cdot \frac{E_{11} \cdot e^{\overline{R \cdot T}}}{R \cdot T^2}$ $hl_{residual}(T,p) = \frac{R \cdot T}{b \cdot R} \cdot \left(\frac{a(T)}{T} - a'(T)\right) \cdot ln\left(\frac{zl(T,p)}{zl(T,p) + B(T,p)}\right) + R \cdot T^2 \cdot \frac{F'_{11}(T)}{Vl(T,p) + F_{11}(T)} + R \cdot T \cdot (zl(T,p) - 1)$ $\operatorname{Cpl}_{\operatorname{residual}}(T,p) \equiv \frac{d}{dT} \operatorname{hl}_{\operatorname{residual}}(T,p)$ $hv_{residual}(T,p) = \frac{R \cdot T}{b \cdot R} \cdot \left(\frac{a(T)}{T} - a'(T)\right) \cdot ln\left(\frac{zv(T,p)}{zv(T,p) + B(T,p)}\right) + R \cdot T^2 \cdot \frac{F'_{11}(T)}{Vv(T,p) + F_{11}(T)} + R \cdot T \cdot (zv(T,p) - 1)$ $\operatorname{Cpv}_{\operatorname{residual}}(T,p) \equiv \frac{d}{dT} \operatorname{hv}_{\operatorname{residual}}(T,p)$ $gl_{residual}(T,p) \equiv R \cdot T \cdot ln(\Phi l(T,p))$ $gv_{residual}(T,p) \equiv R \cdot T \cdot ln(\Phi v(T,p))$

$$sl_{residual}(T,p) \equiv \frac{\left(hl_{residual}(T,p) - gl_{residual}(T,p)\right)}{T}$$
$$sv_{residual}(T,p) \equiv \frac{\left(hv_{residual}(T,p) - gv_{residual}(T,p)\right)}{T}$$

Constantes para calor especifico de gas ideal

$$a_{cp} \equiv 3.37633610^{1} \frac{J}{\text{mol} \cdot \text{K}}$$

$$e_{cp} \equiv 1.09748710^{-12} \frac{J}{\text{mol} \cdot \text{K}^{5}}$$

$$T0 \equiv 273.1 \text{K}$$

$$p0 \equiv 1 \text{bar}$$

$$b_{cp} \equiv -5.94595810^{-3} \frac{J}{\text{mol} \cdot \text{K}^{2}}$$

$$c_{cp} \equiv 2.23575410^{-5} \frac{J}{\text{mol} \cdot \text{K}^{3}}$$

$$d_{cp} \equiv -9.96200910^{-9} \frac{J}{\text{mol} \cdot \text{K}^{4}}$$

$$Cpgi(T) \equiv a_{cp} + b_{cp} \cdot T + c_{cp} \cdot T^{2} + d_{cp} \cdot T^{3} + e_{cp} \cdot T^{4}$$

$$s_{ideal}(T,p) \equiv \int_{T0}^{T} \frac{Cpgi(T)}{T} dT - R \cdot ln \left(\frac{p}{p0}\right)$$

$$h_{ideal}(T) \equiv \int_{T0}^{T} Cpgi(T) dT$$

$$hl(T,p) \equiv hl_{residual}(T,p) + h_{ideal}(T)$$

$$hv(T,p) \equiv hv_{residual}(T,p) + h_{ideal}(T)$$

$$\Delta h_{vap}(T,p) \equiv hv(T,p) - hl(T,p)$$

$$sl(T,p) \equiv sl_{residual}(T,p) + s_{ideal}(T,p)$$

$$gl(T,p) \equiv hl(T,p) - T \cdot sl(T,p)$$

$$gv(T,p) \equiv hv(T,p) - T \cdot sv(T,p)$$

$$Kmol \equiv 1000mol$$

$$Cpl(T,p) \equiv Cpl_{residual}(T,p) + Cpgi(T)$$

2. Cálculo de ELV para mezclas glicoles-agua Mezcla MEG-AGUA

Compuesto 1: agua

Compuesto 2: MEG

 $R \equiv 8.314 \frac{J}{\text{mol} \cdot \text{K}}$

PROPIEDADES DE SUSTANCIAS PURAS.

 $T_{c2} \equiv 720 K$

 $T_{c1} \equiv (647.25)K$

$$a0_2 \equiv 1.180 \text{Pa} \cdot \frac{\text{m}^6}{\text{mol}^2}$$
$$a0_1 \equiv 0.3105 \text{Pa} \cdot \frac{\text{m}^6}{\text{mol}^2}$$
$$b_2 \equiv 4.979 \cdot 10^{-5} \cdot \frac{\text{m}^3}{\text{mol}}$$
$$b_1 \equiv 1.519 \text{E} \cdot 05 \frac{\text{m}^3}{\text{mol}}$$

 $c1_2 \equiv 0.920\xi$

$$c1_1 \equiv 0.9645$$

 $v_2 \equiv 1.38210^{-6} \frac{m^3}{mol}$

$$v_1 \equiv 7.784\text{E-}06\frac{\text{m}^3}{\text{mol}}$$

$$\varepsilon_2 \equiv 2736 \mathrm{K}$$

 $\epsilon_1 \equiv 1093 \mathrm{K}$

$$Tr2(T) \equiv \frac{T}{T_{c2}}$$

$$Tr1(T) \equiv \frac{T}{T_{c1}}$$

$$a1(T) \equiv a0_1 \left[1 + c1_1 \cdot (1 - Tr1(T)^{0.5}) \right]^2$$
$$a2(T) \equiv a0_2 \left[1 + c1_2 \cdot (1 - Tr2(T)^{0.5}) \right]^2$$

REGLAS DE MEZCLADO Y COMBINACIÓN

$$\begin{split} a12(T,k) &= (1-k) \cdot (a1(T) \cdot a2(T))^{0.5} \\ b12 &= \frac{b_1 + b_2}{2} \\ a_m(T,w1,k) &= w1^2 \cdot a1(T) + 2 \cdot w1 \cdot (1 - w1) \cdot a12(T,k) + (1 - w1)^2 \cdot a2(T) \\ b_m(w1) &= w1^2 \cdot b_1 + 2 \cdot w1 \cdot (1 - w1) \cdot b12 + (1 - w1)^2 \cdot b_2 \\ a_{1p}(T,w1,k) &= 2 \cdot w1 \cdot a1(T) + 2 \cdot (1 - w1) \cdot a12(T,k) - a_m(T,w1,k) \\ a_{2p}(T,w1,k) &= 2 \cdot (1 - w1) \cdot a2(T) + 2 \cdot w1 \cdot a12(T,k) - a_m(T,w1,k) \\ b_{1p}(w1) &= 2 \cdot w1 \cdot b_1 + 2 \cdot (1 - w1) \cdot b12 - b_m(w1) \\ b_{2p}(w1) &= 2 \cdot (1 - w1) \cdot b_2 + 2 \cdot w1 \cdot b12 - b_m(w1) \\ \epsilon_{12}(1ij) &= \frac{\epsilon_1 + \epsilon_2}{2} \cdot (1 - 1ij) \\ f1(T) &= v_1 \cdot \left(exp\left(\frac{\epsilon_1}{T}\right) - 1 \right) \\ f2(T) &= v_2 \cdot \left(exp\left(\frac{\epsilon_2}{T}\right) - 1 \right) \\ v_{12} &= min(v_1, v_2) \end{split}$$

$$f12(T, lij) \equiv v_{12} \left(exp\left(\frac{\varepsilon_{12}(lij)}{T}\right) - 1 \right)^{\bullet}$$
$$f12(T, lij) \equiv \left(v_1 \cdot v_2\right)^{0.5} \cdot \left(exp\left(\frac{\varepsilon_{12}(lij)}{T}\right) - 1 \right)^{\bullet}$$
$$f12(T, lij) \equiv \left(\frac{v_1 + v_2}{2}\right) \cdot \left(exp\left(\frac{\varepsilon_{12}(lij)}{T}\right) - 1 \right)$$

 $f21(T, lij) \equiv f12(T, lij)$

PARAMETROS ADIMENSIONALES

$$\alpha(T, p, w1, k) \equiv p \cdot \frac{a_m(T, w1, k)}{(R \cdot T)^2}$$
$$\beta(T, p, w1) \equiv p \cdot \frac{b_m(w1)}{R \cdot T}$$
$$\gamma 1(T, p) \equiv p \cdot \frac{f1(T)}{R \cdot T}$$
$$\gamma 2(T, p) \equiv p \cdot \frac{f2(T)}{R \cdot T}$$

$$\gamma 12(T, p, lij) \equiv p \cdot \frac{f12(T, lij)}{R \cdot T}$$

 $\gamma 21\,(\mathrm{T},\mathrm{p}\,,\mathrm{lij})\equiv\gamma 12\,(\mathrm{T},\mathrm{p}\,,\mathrm{lij})$

ECUACIÓN PARA PRESION

$$pr(T, v, w1, k, lij) = \frac{R \cdot T}{v - b_{m}(w1)} - \frac{a_{m}(T, w1, k)}{v \cdot (v + b_{m}(w1))} - R \cdot \frac{T}{v} \cdot \left[(1 - w1) \cdot \frac{w1 \cdot f21(T, lij) + (1 - w1) \cdot f2(T)}{v + w1 \cdot f21(T, lij) + (1 - w1) \cdot f2(T)} + w1 \cdot \frac{w1 \cdot f1(T) + (1 - w1) \cdot f12(T, lij)}{v + w1 \cdot f1(T) + (1 - w1) \cdot f12(T, lij)} \right]$$

ECUACIÓN PARA COMPRESIBILIDADES (POLINOMIO)

 $c5 \equiv 1$

$$c4(T, p, w1, k, lij) \equiv \begin{cases} g1 \leftarrow \gamma l (T, p) \\ g21 \leftarrow \gamma 21 (T, p, lij) \\ g2 \leftarrow \gamma 2 (T, p) \\ g12 \leftarrow \gamma 12 (T, p, lij) \\ w1 \leftarrow w1 \\ w1 \cdot (g1 + g21) + (1 - w1) \cdot (g2 + g12) - 1 \end{cases}$$

$$c_{3}(T,p,wl,k,lij) = \begin{cases} pl \leftarrow \gamma l(T,p) \\ pl = -\gamma l(T,p,lij) \\ pl = -\gamma l(T,p,wl,k) \\ wl \leftarrow wl \\ wl ^{2}; pl + wl (1 - wl) \cdot pl = -wl^{2}; pl = -wl^{2}; pl = wl \cdot pl = -wl^{2}; pl = -wl \cdot pl = -wl^{2}; pl = -wl^$$

$$z(T, p, w1, k, lij) = \begin{cases} g1 \leftarrow \gamma 1 (T, p) \\ g21 \leftarrow \gamma 21 (T, p, lij) \\ g2 \leftarrow \gamma 2 (T, p) \\ g12 \leftarrow \gamma 12 (T, p, lij) \\ b \leftarrow \beta (T, p, w1) \\ a \leftarrow \alpha (T, p, w1, k) \\ w1 \leftarrow w1 \\ -b \cdot [w1 \cdot g1 + (1 - w1) \cdot g12] \cdot [w1 \cdot g21 + (1 - w1) \cdot g2] \cdot (b + a) \end{cases}$$

$$z(T, p, w1, k, lij) = \begin{pmatrix} c0(T, p, w1, k, lij) \\ c1(T, p, w1, k, lij) \\ c2(T, p, w1, k, lij) \\ c3(T, p, w1, k, lij) \\ c5 \end{pmatrix}$$

 $z_{L}(T, p, w1, k, lij) \equiv if \left(Im \left(polyroots \left(z(T, p, w1, k, lij) \right)_{2} \right) = 0, polyroots \left(z(T, p, w1, k, lij) \right)_{2}, polyroots \left(z(T, p, w1, k, lij) \right)_{4} \right)$ $z_{V}(T, p, w1, k, lij) \equiv if \left(Im \left(polyroots \left(z(T, p, w1, k, lij) \right)_{4} \right) = 0, polyroots \left(z(T, p, w1, k, lij) \right)_{4}, polyroots \left(z(T, p, w1, k, lij) \right)_{2} \right)$

$$\begin{split} &V_{L}(T,p,w1,k,lij) \equiv z_{L}(T,p,w1,k,lij) \cdot \mathbb{R} \cdot \frac{T}{p} \\ &\rho_{L}(T,p,w1,k,lij) \equiv \frac{1}{V_{L}(T,p,w1,k,lij)} \\ &V_{V}(T,p,w1,k,lij) \equiv z_{V}(T,p,w1,k,lij) \cdot \mathbb{R} \cdot \frac{T}{p} \end{split}$$

$$\rho_{\mathbf{V}}(\mathbf{T},\mathbf{p},\mathbf{w}\mathbf{1},\mathbf{k},\mathbf{lij}) \equiv \frac{1}{V_{\mathbf{V}}(\mathbf{T},\mathbf{p},\mathbf{w}\mathbf{1},\mathbf{k},\mathbf{lij})}$$

FUGACIDAD Y PRESIÓN DE SATURACIÓN

$$\mu \operatorname{srk}_{1}(T, v, w1, k) \equiv \left| \begin{array}{l} \operatorname{bm} \leftarrow \operatorname{b}_{m}(w1) \\ \operatorname{am} \leftarrow \operatorname{a}_{m}(T, w1, k) \\ \operatorname{db} \leftarrow \operatorname{b}_{1p}(w1) \\ \operatorname{da} \leftarrow \operatorname{a}_{1p}(T, w1, k) \\ \\ \frac{\operatorname{db}}{v - \operatorname{bm}} + \ln\left(\frac{v}{v - \operatorname{bm}}\right) + \frac{1}{\operatorname{bm} \cdot \operatorname{R} \cdot \operatorname{T}} \cdot \ln\left(\frac{v}{v + \operatorname{bm}}\right) \cdot \left(\operatorname{am} + \operatorname{da} - \operatorname{am} \cdot \frac{\operatorname{db}}{\operatorname{bm}}\right) - \frac{\operatorname{am} \cdot \operatorname{db}}{\operatorname{bm} \cdot \operatorname{R} \cdot \operatorname{T} \cdot (v + \operatorname{bm})} \right)$$

$$\begin{split} \mu srk_{2}(T, v, wl, k) &\equiv & bm \leftarrow b_{m}(wl) \\ am \leftarrow a_{m}(T, wl, k) \\ db \leftarrow b_{2p}(wl) \\ da \leftarrow a_{2p}(T, wl, k) \\ \frac{db}{v - bm} + ln \left(\frac{v}{v - bm}\right) + \frac{1}{bm \cdot R \cdot T} \cdot ln \left(\frac{v}{v + bm}\right) \cdot \left(am + da - am \frac{db}{bm}\right) - \frac{am \cdot db}{bm \cdot R \cdot T \cdot (v + bm)} \\ \mu as_{1}(T, v, wl, lij) &\equiv ln \left[\frac{v}{v + wl \cdot fl(T) + (1 - wl) \cdot fl2(T, lij)}\right] - \frac{wl \cdot fl(T)}{v + wl \cdot fl(T) + (1 - wl) \cdot fl2(T, lij)} - \frac{(1 - wl) \cdot fl2(T, lij)}{v + wl \cdot fl2(T, lij) + (1 - wl) \cdot f2(T)} \\ \mu as_{2}(T, v, wl, lij) &\equiv ln \left[\frac{v}{v + wl \cdot f2l(T, lij) + (1 - wl) \cdot f2(T)}\right] - \frac{wl \cdot f2l(T, lij)}{v + wl \cdot fl(T) + (1 - wl) \cdot fl2(T, lij)} - \frac{(1 - wl) \cdot f2(T)}{v + wl \cdot fl2(T, lij) + (1 - wl) \cdot f2(T)} \\ \Phi_{1L}(T, p, wl, k, lij) &\equiv \left[v \leftarrow V_{L}(T, p, wl, k, lij) \\ exp(\mu srk_{1}(T, v, wl, k) + \mu as_{1}(T, v, wl, lij) - ln(z_{L}(T, p, wl, k, lij)))\right] \end{split}$$

$$\begin{split} \Phi_{1} \sqrt{(T, p, w1, k, lij)} &= \begin{vmatrix} v \leftarrow V_{\sqrt{(T, p, w1, k, lij)} \\ exp(\mu srk_{1}(T, v, w1, k) + \mu as_{1}(T, v, w1, lij) - ln(z_{\sqrt{(T, p, w1, k, lij)}}) \end{vmatrix} \\ \Phi_{2L}(T, p, w1, k, lij) &= \begin{vmatrix} v \leftarrow V_{L}(T, p, w1, k, lij) \\ exp(\mu srk_{2}(T, v, w1, k) + \mu as_{2}(T, v, w1, lij) - ln(z_{L}(T, p, w1, k, lij))) \end{vmatrix} \\ \Phi_{2} \sqrt{(T, p, w1, k, lij)} &= \begin{vmatrix} v \leftarrow V_{\sqrt{(T, p, w1, k, lij)}} \\ exp(\mu srk_{2}(T, v, w1, k) + \mu as_{2}(T, v, w1, lij) - ln(z_{\sqrt{(T, p, w1, k, lij)}}) \end{vmatrix} \\ K_{1}(T, p, x1, y1, k, lij) &= \frac{\Phi_{1L}(T, p, x1, k, lij)}{\Phi_{1}\sqrt{(T, p, y1, k, lij)}} \\ K_{2}(T, p, x1, y1, k, lij) &= \frac{\Phi_{2L}(T, p, x1, k, lij)}{\Phi_{2}\sqrt{(T, p, y1, k, lij)}} \\ fl(T, p) &= K_{1}(T, p, 1, 1, 0, 0) - 1 \\ f2(T, p) &= K_{2}(T, p, 0, 0, 0, 0) - 1 \\ p0 &= 0.00 lbar \\ p_{s1}(380K) &= \mathbf{e} \cdot bar \\ p_{s2}(380K) &= \mathbf{e} \cdot bar \end{split}$$

Puntos de burbuja y roció

Presión de burbuja

$$\begin{aligned} & \text{Fpb}(\text{T}, \text{ip}, \text{x1}, \text{y1}, \text{k}, \text{lij}) \equiv \text{x1-K}_1 \left(\text{T}, \frac{1}{\text{ip}}, \text{x1}, \text{y1}, \text{k}, \text{lij} \right) + (1 - \text{x1}) \cdot \text{K}_2 \left(\text{T}, \frac{1}{\text{ip}}, \text{x1}, \text{y1}, \text{k}, \text{lij} \right) - 1 \\ & \text{pbu}\left(\text{T}, \text{x1}, \text{k}, \text{lij} \right) \equiv \left| \begin{array}{c} \text{p} \leftarrow \text{p}_{\text{s1}}(\text{T}) \\ & \text{ip} \leftarrow \frac{1}{\text{p}} \\ & \text{y1} \leftarrow \text{ip} \cdot \text{x1} \cdot \text{p}_{\text{s1}}(\text{T}) \\ & \text{while} \left| \text{x1-K}_1 \left(\text{T}, \frac{1}{\text{ip}}, \text{x1}, \text{y1}, \text{k}, \text{lij} \right) + (1 - \text{x1}) \cdot \text{K}_2 \left(\text{T}, \frac{1}{\text{ip}}, \text{x1}, \text{y1}, \text{k}, \text{lij} \right) - 1 \right| \geq 1 \cdot 10^{-6} \\ & \left| \begin{array}{c} \text{ip} \leftarrow \text{Re}(\text{root}(\text{Fpb}(\text{T}, \text{ip}, \text{x1}, \text{y1}, \text{k}, \text{lij}), \text{ip})) \\ & \text{y1} \leftarrow \text{x1-K}_1 \left(\text{T}, \frac{1}{\text{ip}}, \text{x1}, \text{y1}, \text{k}, \text{lij} \right) \\ & \left(\frac{1}{\text{ip} \cdot \text{bar}} \\ & \text{y1} \end{array} \right) \end{aligned} \right. \end{aligned}$$

 $Pb(T,x1,k,lij) := pbu(T,x1,k,lij)_0 \cdot bar$

 $Pb(390K, 0.59, 0, 0) = \mathbf{I} \cdot bar$

 $ypb(T,x1,k,li) := pbu(T,x1,k,li)_1$

ypb(390K, 0.999, 0, 0) = ∎

Temperatura de burbuja

$$\begin{aligned} & \text{FTb}(\text{iT},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij}) \equiv \ln \Biggl[\text{x}1 \cdot \text{K}_{1} \Biggl(\frac{1}{\text{iT}},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij} \Biggr) + (1 - \text{x}1) \cdot \text{K}_{2} \Biggl(\frac{1}{\text{iT}},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij} \Biggr) \Biggr] \end{aligned}$$

$$\begin{aligned} & \text{Tbu}(\text{p},\text{x}1,\text{k},\text{lij}) \coloneqq \Biggl[\begin{array}{c} \text{T} \leftarrow 370\text{K} \\ \text{y}1 \leftarrow 0.99 \\ \text{iT} \leftarrow \frac{1}{\text{T}} \\ \text{while} \Biggl[\ln \Biggl[\text{x}1 \cdot \text{K}_{1} \Biggl(\frac{1}{\text{iT}},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij} \Biggr) + (1 - \text{x}1) \cdot \text{K}_{2} \Biggl(\frac{1}{\text{iT}},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij} \Biggr) \Biggr] \Biggr] \ge 1 \cdot 10^{-6} \\ & \Biggl[\begin{array}{c} \text{iT} \leftarrow \text{Re}(\text{root}(\text{FTb}(\text{iT},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij}),\text{iT})) \\ \text{y}1 \leftarrow \text{Re}\left(\text{x}1 \cdot \text{K}_{1} \Biggl(\frac{1}{\text{iT}},\text{p},\text{x}1,\text{y}1,\text{k},\text{lij} \Biggr) \Biggr) \Biggr] \end{aligned}$$

 $Tb(p,x1,k,lij) := Tbu(p,x1,k,lij)_0 \cdot K$

Tb(1bar, 0.4, 0, 0) = \blacksquare

 $yTb(p,x1,k,li) := Tbu(p,x1,k,li)_1$

 $yTb(1bar, 0.99, 0, 0) = \mathbf{I}$

Presión de roció

$$Fpr(T, p, x1, y1, k, lij) = \frac{y1}{K_1(T, p, x1, y1, k, lij)} + \frac{(1 - y1)}{K_2(T, p, x1, y1, k, lij)} - 1$$

$$pro(T, y1, k, lij) := \left| \begin{array}{l} p \leftarrow p_{s1}(T) \\ x1 \leftarrow y1 \cdot \frac{p}{p_{s1}(T)} \\ while \left| \frac{y1}{K_1(T, p, x1, y1, k, lij)} + \frac{(1 - y1)}{K_2(T, p, x1, y1, k, lij)} - 1 \right| \ge 1 \cdot 10^{-6} \\ \left| \begin{array}{l} p \leftarrow \text{Re}(\text{root}(\text{Fpr}(T, p, x1, y1, k, lij), p)) \\ x1 \leftarrow \frac{y1}{K_1(T, p, x1, y1, k, lij)} \\ \left| \frac{p}{bar} \\ x1 \end{array} \right| \right|$$

 $Pr(T, y1, k, lij) := pro(T, y1, k, lij)_0 \cdot bar$

 $xpr(T,y1,k,lij) := pro(T,y1,k,lij)_1$

Temperatura de rocío

$$FTr(iT, p, x1, y1, k, lij) \equiv ln \left[\frac{y1}{K_1\left(\frac{1}{iT}, p, x1, y1, k, lij\right)} + \frac{(1-y1)}{K_2\left(\frac{1}{iT}, p, x1, y1, k, lij\right)} \right]$$

$$\begin{aligned} \operatorname{Tro}(p, y1, k, \operatorname{lij}) &\coloneqq & \operatorname{T} \leftarrow 470\mathsf{K} \\ x1 \leftarrow y1 \cdot \frac{p}{p_{S1}(T)} \\ &\operatorname{iT} \leftarrow \frac{1}{T} \\ &\operatorname{while} \left[\ln \left[\frac{y1}{K_1 \left(\frac{1}{\mathrm{iT}}, p, x1, y1, k, \operatorname{lij} \right)} + \frac{(1 - y1)}{K_2 \left(\frac{1}{\mathrm{iT}}, p, x1, y1, k, \operatorname{lij} \right)} \right] \right] \geq 1 \cdot 10^{-6} \\ & \left[\operatorname{iT} \leftarrow \operatorname{root}(\operatorname{FTr}(\mathrm{iT}, p, x1, y1, k, \operatorname{lij}), \mathrm{iT}) \\ & x1 \leftarrow \frac{y1}{K_1 \left(\frac{1}{\mathrm{iT}}, p, x1, y1, k, \operatorname{lij} \right)} \\ & \left(\frac{1}{\mathrm{iT} \cdot K} \right) \\ & \left(\frac{1}{\mathrm{iT} \cdot K} \right) \end{aligned} \right] \end{aligned}$$

 $Tr(p, y1, k, lij) := Tro(p, y1, k, lij)_0 \cdot K$

Tr(0.1bar, 0.4, 0, 0) =

 $xTr(p,y1,k,lij) := Tro(p,y1,k,lij)_1$

xTr(0.1bar, 0.4, 0, 0) =

mmHg = 1.33289473710^{-3} bar

 $KPa \equiv 1000Pa$

DATOS EXPERIMENTALES

							(0.1395)		(0.9105)) (10.378)
									0.9197		11.944	
							0.1866		0.9344		13.362	
							0.1933		0.9433		14.079	
	0.1986		(0.9562)		6.053)	0.2204		0.9494		15.953	
xe3 _{343.15} :=	0.2419		0.9654		7.391	xe4 _{363.15} := KPa	0.2548	0.9634 0.9678		17.976		
	0.2784		0.9729		8.417		0.3057			21.518		
	0.3264		0.977		9.926		0.3384		0.9724 0.9741 0.9819	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23.943	KPa
	0.367		0.9805		11.14		0.3786				26.622	
	0.442		0.9858		13.5		0.452				31.699	
	0.4892		0.9875		15.017		0.4989	$ye4_{363.15} := \begin{bmatrix} 0.\\ 0.\\ 0.\\ 0.\\ 0.\\ 0. \end{bmatrix}$	0.9842		34.833	
	0.5385		0.9905	Pe3 343.15 :=	16.557		0.5437		0.9868		38.16	
	0.5873	vo2 :	0.9922		18.027		0.5855		0.9892		41.653	
	0.63	yes343.15	0.9933		19.513		0.6332		0.9916		44.707	
	0.6854		0.9952		21.201		0.6869		0.993 0.9945		48.508	
	0.7316		0.9964		22.753		0.7357				51.948	
	0.7682	0.9969 0.9975 0.9984 0.9989	0.9969		23.989		0.7765		0.9954		54.62	
	0.8144		0.9975		25.467		0.8228		0.9967		57.961	
	0.8484		0.9984		26.438		0.8491		0.9974		59.614	
	0.8921		27.9	27.923		0.8945		0.9984		62.778		
	0.9349		0.9996).9996	29.258		0.9364		0.9991		66.016	
	$\begin{pmatrix} 1 \end{pmatrix}$		$\begin{pmatrix} 1 \end{pmatrix}$		31.188	J	$\begin{pmatrix} 1 \end{pmatrix}$		(1)) (70.149	J

	$\begin{pmatrix} 0 \end{pmatrix}$		(0.22)		$\begin{pmatrix} 0 \end{pmatrix}$) ((0.77)	
	0.00327		0.28		0.00589		1.02	
	0.00949		0.39		0.01148		1.28	
	0.01634		0.51		0.02172		1.72	
	0.02723		0.71		0.03311		2.22	
	0.04142		0.96		0.04538		2.76	
	0.0634		1.35		0.06678		3.7	
	0.09276		1.87		0.09633		4.99	
	0.13218		2.58		0.13585		6.71	
	0.17827		3.43		0.18162		8.76	
	0.23101		4.42		0.2346		11.15	
	0.28891		5.52		0.29193		13.81	
	0.34875		6.69		0.35156		16.6	
	0.41455		7.99		0.41702		19.7	
	0.47769		9.27		0.4797		22.7	
	0.53779		10.49		0.53926		25.58	
	0.59256		11.61		0.59356		28.22	
	0.64202		12.64		0.64227	Pe2 _{353.15} :=	30.61	KPa
	0.68626		13.55		0.6868		32.75	
	0.72541		14.37		0.72475		34.59	
.1	0.75942		15.09	2	0.72575		34.65	
xel _{333.15} :=	0.78920	Pe1 333.15 :=	15.72	KPa $xe_{353.15} =$	0.75803		36.16	
	0.78979		15.81		0.78978		37.66	
	0.82005		16.42		0.82003		39.1	
	0.84816		16.99		0.84811		40.40	
	0.87391		17.5		0.87384		41.61	
	0.89719		17.94		0.89707		42.69	
	0.918		18.38		0.91785		43.67	
	0.93601		18.74		99 .93584		44.5	
	0.95154		19.04		0.95131		45.15	
	0.96334		19.22		0.9631		45.72	
	0.97303		19.43		0.97277		46.2	
1		1 1		1	1	ı I		

$$\operatorname{err}(k) := \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe1}_{333,15})-1} \left(\frac{\operatorname{Pe1}_{333,15_{i}} - \operatorname{Pb}(333.15K, xe1_{333,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe1}_{333,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15_{i}})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15_{i}})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15_{i}})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15_{i}})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2} + \sum_{i=0}^{\operatorname{rows}(\operatorname{Pe2}_{353,15_{i}})-1} \left(\frac{\operatorname{Pe2}_{353,15_{i}} - \operatorname{Pb}(353.15K, xe2_{353,15_{i}}, k_{0}, k_{1})}{\operatorname{Pe2}_{353,15_{i}}} \right)^{2}$$

$$k := \begin{pmatrix} -0.02954 \\ 0.03165 \end{pmatrix}$$

 $err(k) = \mathbf{I}$

kk := Minimize(err, k)

kk := k

 $\mathbf{k}\mathbf{k} = \mathbf{I}$

3. Cálculo de Cp para mezclas glicol-agua

Compuesto: DEG-agua

0. Unidades

bar $\equiv 10^5 \cdot Pa$

 $L \equiv 10^{-3} m^3$

1. Constantes, Propiedades Críticas

 $R \equiv 8.314 \frac{J}{mol \cdot K}$

 $T_{c1} \equiv 744.6 \,\mathrm{K}$

 $T_{c2} \equiv 647.25 \text{ K}$

1.1 Temperatura Reducida

$$T_{r1}(T) \equiv \frac{T}{T_{c1}}$$

$$T_{r2}(T) \equiv \frac{T}{T_{c2}}$$

2. Ecuación CP2

2.1 Parámetros de asociación

$$\begin{aligned} \mathbf{v}_{2} &= (7.784\text{E-06}) \frac{\text{m}^{3}}{\text{mol}} \\ a_{1}(T) &= ao_{1} \left[1 + c1_{1} \cdot \left(1 - T_{r1}(T)^{0.5} \right) \right]^{2} \\ a_{2}(T) &= ao_{2} \left[1 + c1_{2} \cdot \left(1 - T_{r2}(T)^{0.5} \right) \right]^{2} \\ da_{2}(T) &= \frac{-1}{T_{r2}(T)^{0.5}} \cdot \frac{ao_{2} \cdot c1_{2}}{T_{c2}} \cdot \left[1 + c1_{2} \cdot \left(1 - T_{r2}(T)^{0.5} \right) \right] \\ da_{1}(T) &= \frac{-1}{T_{r1}(T)^{0.5}} \cdot \frac{ao_{1} \cdot c1_{1}}{T_{c1}} \cdot \left[1 + c1_{1} \cdot \left(1 - T_{r1}(T)^{0.5} \right) \right] \end{aligned}$$

$$\varepsilon_2 \equiv (1093) \mathrm{K}$$

 $c1_2 \equiv (0.9645)$

$$b_2 \equiv (1.519\text{E-}05\frac{\text{m}^3}{\text{mol}}$$

$$ao_2 \equiv (0.3105) \cdot Pa \cdot \left(\frac{m^3}{mol}\right)$$

 $v_1 \equiv 3.350 \, 10^{-7} \, \frac{m^3}{mol}$

$$d2a_{2}(T) = \frac{0.5}{T_{r2}(T)^{1.5}} \cdot \frac{ao_{2} \cdot c1_{2} \cdot (1 + c1_{2})}{T_{c2}^{2}}$$
$$d2a_{1}(T) = \frac{0.5}{T_{r1}(T)^{1.5}} \cdot \frac{ao_{1} \cdot c1_{1} \cdot (1 + c1_{1})}{T_{c1}^{2}}$$

2.3 Reglas de Mezclado

 $\begin{aligned} a_{12}(T,k) &= (1-k) \cdot \left(a_{1}(T) \cdot a_{2}(T)\right)^{0.5} \\ b_{12} &= \left(b_{1}+b_{2}\right) \cdot 0.5 \\ a_{m}(T,y_{1},k) &= y_{1}^{-2} \cdot a_{1}(T) + 2 \cdot y_{1} \cdot (1-y_{1}) \cdot a_{12}(T,k) + (1-y_{1})^{2} \cdot a_{2}(T) \\ b_{m}(y_{1}) &= y_{1}^{-2} \cdot b_{1} + (1-y_{1})^{2} \cdot b_{2} + 2 y_{1} \cdot (1-y_{1}) \cdot b_{12} \\ da_{m}(T,y_{1},k) &= y_{1}^{-2} \cdot da_{1}(T) + (1-y_{1})^{2} \cdot da_{2}(T) + \frac{y_{1} \cdot (1-y_{1}) \cdot (1-k)}{\left(a_{1}(T) \cdot a_{2}(T)\right)^{0.5}} \cdot \left(a_{1}(T) \cdot da_{2}(T) + a_{2}(T) \cdot da_{1}(T)\right) \\ d2a_{m}(T,y_{1},k) &= y_{1}^{-2} \cdot d2a_{1}(T) + (1-y_{1})^{2} \cdot d2a_{2}(T) - \frac{1}{2} \frac{y_{1} \cdot (1-y_{1}) \cdot (1-k)}{\left(a_{1}(T) \cdot a_{2}(T)\right)^{1.5}} \cdot \left(a_{1}(T) \cdot da_{2}(T) + a_{2}(T) \cdot da_{1}(T)\right)^{2} + \frac{y_{1} \cdot (1-y_{1}) \cdot (1-k)}{\left(a_{1}(T) \cdot a_{2}(T)\right)^{0.5}} \cdot \left(a_{1}(T) \cdot d2a_{2}(T) + a_{2}(T) \cdot d2a_{1}(T) + 2 \cdot da_{1}(T)\right) \\ \varepsilon_{12}(lij) &= \frac{\varepsilon_{1} + \varepsilon_{2}}{2} (1-lij) \end{aligned}$

 $\mathbf{v}_{12} \equiv \min(\mathbf{v}_1, \mathbf{v}_2)$

$$v_{12} \equiv (v_1 \cdot v_2)^{0.5}$$

$$v_{12} \equiv \frac{v_1 + v_2}{2}$$

$$f11(T) \equiv v_1 \cdot \left(\exp\left(\frac{\varepsilon_1}{T}\right) - 1 \right)$$

$$f22(T) \equiv v_2 \cdot \left(\exp\left(\frac{\varepsilon_2}{T}\right) - 1 \right)$$

$$f12(T, \text{lij}) \equiv v_{12} \cdot \left(\exp\left(\frac{\varepsilon_12(\text{lij})}{T}\right) - 1 \right)$$

$$f21(T, \text{lij}) \equiv f12(T, \text{lij})$$

$$df11(T) \equiv -v_1 \frac{\varepsilon_1}{T^2} \cdot \exp\left(\frac{\varepsilon_1}{T}\right)$$

$$df22(T) \equiv -v_2 \cdot \frac{\varepsilon_2}{T^2} \cdot \exp\left(\frac{\varepsilon_2}{T}\right)$$

$$df12(T, \text{lij}) \equiv -v_{12} \cdot \frac{\varepsilon_{12}(\text{lij})}{T^2} \cdot \exp\left(\frac{\varepsilon_{12}(\text{lij})}{T}\right)$$

$$d2f11(T) \equiv v_1 \cdot \left(\frac{\varepsilon_1}{T} + 2\right) \cdot \frac{\varepsilon_1}{T^3} \cdot \exp\left(\frac{\varepsilon_1}{T}\right)$$

$$\begin{split} d2f22(T) &\equiv v_{2} \cdot \left(\frac{\varepsilon_{2}}{T} + 2\right) \cdot \frac{\varepsilon_{2}}{T^{3}} \cdot exp\left(\frac{\varepsilon_{2}}{T}\right) \\ d2f12(T, lij) &\equiv v_{12} \cdot \left(\frac{\varepsilon_{12}(lij)}{T} + 2\right) \cdot \frac{\varepsilon_{12}(lij)}{T^{3}} \cdot exp\left(\frac{\varepsilon_{12}(lij)}{T}\right) \\ F_{1}(T, y_{1}, lij) &\equiv y_{1} \cdot f11(T) + (1 - y_{1}) \cdot f12(T, lij) \\ F_{2}(T, y_{1}, lij) &\equiv y_{1} \cdot f12(T, lij) + (1 - y_{1}) \cdot f22(T) \\ dF_{1}(T, y_{1}, lij) &\equiv y_{1} \cdot df11(T) + (1 - y_{1}) \cdot df12(T, lij) \\ dF_{2}(T, y_{1}, lij) &\equiv y_{1} \cdot df12(T, lij) + (1 - y_{1}) \cdot df12(T, lij) \\ dF_{2}(T, y_{1}, lij) &\equiv y_{1} \cdot df12(T, lij) + (1 - y_{1}) \cdot df22(T) \\ d2F_{1}(T, y_{1}, lij) &\equiv y_{1} \cdot d2f11(T) + (1 - y_{1}) \cdot d2f12(T, lij) \\ d2F_{2}(T, y_{1}, lij) &\equiv y_{1} \cdot d2f12(T, lij) + (1 - y_{1}) \cdot d2f22(T) \end{split}$$

2.4 Parámetros Adimensionales

$$\alpha(T, p, y_1, k) \equiv \frac{a_m(T, y_1, k) \cdot p}{(R \cdot T)^2}$$
$$\beta(T, p, y_1) \equiv \frac{p \cdot b_m(y_1)}{R \cdot T}$$
$$\gamma_{21}(T, p, lij) \equiv \frac{p \cdot f21(T, lij)}{R \cdot T}$$

$$\begin{split} \gamma_{11}(T,p) &\equiv \frac{p \cdot f11(T)}{R \cdot T} \\ \gamma_{12}(T,p,lij) &\equiv \frac{p \cdot f12(T,lij)}{R \cdot T} \\ \gamma_{22}(T,p) &\equiv \frac{p \cdot f22(T)}{R \cdot T} \end{split}$$

2.5 Ecuación para presión

$$pr(T, v, y_1, k, lij) \equiv \frac{R \cdot T}{v - b_m(y_1)} - \frac{a_m(T, y_1, k)}{v \cdot (v + b_m(y_1))} - y_1 \cdot R \cdot T \cdot \frac{F_1(T, y_1, lij)}{v \cdot (v + F_1(T, y_1, lij))} - (1 - y_1) \cdot R \cdot T \cdot \frac{F_2(T, y_1, lij)}{v \cdot (v + F_2(T, y_1, lij))}$$

2.6 Ecuación para compresibilidades y volúmenes de gas y líquido y presión de saturación

 $c5 \equiv 1$

$$c4(T, p, x_1, x_2, lij) \equiv x_1 \cdot (\gamma_{11}(T, p) + \gamma_{21}(T, p, lij)) + x_2 \cdot (\gamma_{22}(T, p) + \gamma_{12}(T, p, lij)) - 1$$

$$\begin{aligned} c3(T, p, x_1, x_2, k, lij) &= \begin{cases} g11 \leftarrow \gamma_{11}(T, p) \\ g12 \leftarrow \gamma_{12}(T, p, lij) \\ g21 \leftarrow \gamma_{21}(T, p, lij) \\ g22 \leftarrow \gamma_{22}(T, p) \\ b \leftarrow \beta(T, p, x_1) \\ a \leftarrow \alpha(T, p, x_1, k) \\ x1 \leftarrow x_1 \\ x2 \leftarrow x_2 \\ -(x^2 \cdot g12 + x1^2 \cdot g21 + b^2 + b - a - x1^2 \cdot g11 \cdot g21 - x1 \cdot g11 \cdot x2 \cdot g22 - x2 \cdot g12 \cdot x1 \cdot g21 - x2^2 \cdot g12 \cdot g22 + x1 \cdot x2 \cdot g22 + x1 \cdot g11 \cdot x2 \end{cases}$$

 $\begin{array}{lll} c_{1}^{2}(T,p,x_{1},x_{2},k,li) &\equiv & g11 \leftarrow \gamma_{1}(T,p) \\ g12 \leftarrow \gamma_{1}(T,p,li) \\ g21 \leftarrow \gamma_{2}(T,p,li) \\ g22 \leftarrow \gamma_{2}(T,p,li) \\ g22 \leftarrow \gamma_{2}(T,p) \\ b \leftarrow \beta(T,p,x_{1}) \\ a \leftarrow o(T,p,x_{1},k) \\ x1 \leftarrow x_{1} \\ x2 \leftarrow x_{2} \\ -\left(-x2b^{2} - x1b^{2} + ab + b^{2} + x1b^{2}\cdotg21 + b^{2}\cdotx2g22 + b^{2}\cdotx1g11 + x2b^{2}\cdotg12 + b\cdotx2g22 + b\cdotx1g11 + b\cdotx2g12 - ax1g21 - ax2g22 - ax1g11 - ax2g1\frac{1}{2} \end{array}$
$\mathtt{cl}\bigl(\mathtt{T},\mathtt{p},\mathtt{x}_1,\mathtt{x}_2,\mathtt{k},\mathtt{lij}\bigr) \equiv$	$g_{11} \leftarrow \gamma_{11}(\mathbf{T},\mathbf{p})$		
	$g_{12} \leftarrow \gamma_{12}(\mathbf{T},\mathbf{p},i_{1j})$		
	$g_{21} \leftarrow \gamma_{21}(\mathbf{T},\mathbf{p},i_{1j})$		
	$g_{22} \leftarrow \gamma_{22}(\mathbf{T},\mathbf{p})$		
	$b \leftarrow \beta(T,p,x_1)$		
	$a \leftarrow \alpha(T, p, x_1, k)$		
	$x_1 \leftrightarrow x_1$		
	$x_2 \leftarrow x_2$		
	$-(x_{1}\cdot b^{2}\cdot g_{2}1 + b^{2}\cdot x_{2}\cdot g_{2}2 + b^{2}\cdot x_{1}\cdot g_{1}1 + x_{2}\cdot b^{2}\cdot g_{1}2 + b^{2}\cdot x_{1}^{2}\cdot g_{1}1 \cdot g_{2}1 + b^{2}\cdot x_{1}\cdot g_{1}1 \cdot x_{2}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{1}2 \cdot x_{1}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{1}2 \cdot x_{1}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{1}2 \cdot x_{2}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{1}2 \cdot x_{1}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{1}2 \cdot x_{2}\cdot g_{2}2 + b^{2}\cdot x_{2}\cdot g_{2} $	$21 + b^{2} \cdot x^{2} \cdot g12 \cdot g22 + b \cdot x1^{2} \cdot g11 \cdot g21 + b \cdot x1 \cdot g11 \cdot x^{2} \cdot g22 + b \cdot x^{2} \cdot g12 \cdot x1 \cdot g21 + b \cdot x2^{2} \cdot g12 \cdot g$	g22 - a·x1 ² ·g11·g21 - a·x1·g11·x2·g22

 $-a \cdot x_2 \cdot g_{12} \cdot x_1 \cdot g_{21} - \left| a \cdot x_2^2 \cdot g_{12} \cdot g_{22} + a \cdot b \cdot x_1 \cdot g_{21} + a \cdot b \cdot x_2 \cdot g_{22} + a \cdot b \cdot x_1 \cdot g_{11} + a \cdot b \cdot x_2 \cdot g_{12} - x_1^2 \cdot b^2 \cdot g_{21} - x_1 \cdot b^2 \cdot x_2 \cdot g_{22} - x_2 \cdot b^2 \cdot x_1 \cdot g_{11} - x_2^2 \cdot b^2 \cdot g_{12} \right|$

$$z(T, p, x_{1}, k, lij) = \begin{pmatrix} c0(T, p, x_{1}, 1 - x_{1}, k, lij) \\ c1(T, p, x_{1}, 1 - x_{1}, k, lij) \\ c2(T, p, x_{1}, 1 - x_{1}, k, lij) \\ c3(T, p, x_{1}, 1 - x_{1}, k, lij) \\ c4(T, p, x_{1}, 1 - x_{1}, lij) \\ c5 \end{pmatrix}$$

 $\begin{aligned} z_{l}(T, p, y_{1}, k, lij) &\equiv if(Im(polyroots (z(T, p, y_{1}, k, lij))_{2}) = 0, polyroots (z(T, p, y_{1}, k, lij))_{2}, polyroots (z(T, p, y_{1}, k, lij))_{4}) \\ z_{v}(T, p, y_{1}, k, lij) &\equiv if(Im(polyroots (z(T, p, y_{1}, k, lij))_{4}) = 0, polyroots (z(T, p, y_{1}, k, lij))_{4}, polyroots (z(T, p, y_{1}, k, lij))_{2}) \\ v_{l}(T, p, y_{1}, k, lij) &\equiv z_{l}(T, p, y_{1}, k, lij) \cdot \frac{R \cdot T}{p} \\ \rho_{l}(T, p, y_{1}, k, lij) &\equiv z_{v}(T, p, y_{1}, k, lij) \cdot \frac{R \cdot T}{p} \\ v_{v}(T, p, y_{1}, k, lij) &\equiv z_{v}(T, p, y_{1}, k, lij) \cdot \frac{R \cdot T}{p} \\ \rho_{v}(T, p, y_{1}, k, lij) &\equiv \frac{1}{v_{v}(T, p, y_{1}, k, lij)} \end{aligned}$

$$\begin{split} dpdv \left(T, p, y_{1}, k, li \right) &= \left| \begin{array}{l} v \leftarrow v_{1} \left(T, p, y_{1}, k, li \right) \\ b \leftarrow b_{m} (y_{1}) \\ a \leftarrow a_{m} (T, y_{1}, k) \\ \hline -R \cdot T \\ (v - b)^{2} + \frac{a}{b} \left[\frac{1}{v^{2}} - \frac{1}{(v + b)^{2}} \right] + y_{1} \cdot R \cdot T \cdot \left[\frac{1}{v^{2}} - \frac{1}{(v + F_{1} (T, y_{1}, li j))^{2}} \right] + (1 - y_{1}) \cdot R \cdot T \cdot \left[\frac{1}{v^{2}} - \frac{1}{(v + F_{2} (T, y_{1}, li j))^{2}} \right] \\ dpdt \left(T, p, y_{1}, k, li \right) &= \left| \begin{array}{l} v \leftarrow v_{1} (T, p, y_{1}, k, li j) \\ b \leftarrow b_{m} (y_{1}) \\ a \leftarrow a_{m} (T, y_{1}, k) \\ ap \leftarrow da_{m} (T, y_{1}, k) \\ f1 \leftarrow F_{1} (T, y_{1}, li j) \\ f2 \leftarrow F_{2} (T, y_{1}, li j) \\ fp1 \leftarrow dF_{1} (T, y_{1}, li j) \\ fp2 \leftarrow dF_{2} (T, y_{1}, li j) \\ \frac{R}{(v - b)} + \frac{ap}{b} \cdot \left(\frac{1}{v + b} - \frac{1}{v} \right) + y_{1} \cdot R \cdot \left(\frac{1}{v + f1} - \frac{1}{v} \right) - \frac{y_{1} \cdot R \cdot T \cdot fp_{1}}{(v + f1)^{2}} + \left(1 - y_{1} \right) \cdot R \cdot \left(\frac{1}{v + f2} - \frac{1}{v} \right) - \frac{\left(1 - y_{1} \right) \cdot R \cdot T \cdot fp_{2}}{(v + f2)^{2}} \end{split}$$

$$\begin{aligned} \operatorname{cvr}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij}) &= \left| \mathbf{v} \leftarrow \mathrm{v}_{1}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij}) \\ \mathrm{b} \leftarrow \mathrm{b}_{\mathrm{m}}(\mathrm{y}_{1}) \\ \mathrm{a} \leftarrow \mathrm{a}_{\mathrm{m}}(\mathrm{T},\mathrm{y}_{1},\mathrm{k}) \\ \mathrm{ap} \leftarrow \mathrm{da}_{\mathrm{m}}(\mathrm{T},\mathrm{y}_{1},\mathrm{k}) \\ \mathrm{ap} \leftarrow \mathrm{da}_{\mathrm{m}}(\mathrm{T},\mathrm{y}_{1},\mathrm{k}) \\ \mathrm{ap} \leftarrow \mathrm{da}_{\mathrm{m}}(\mathrm{T},\mathrm{y}_{1},\mathrm{k}) \\ \mathrm{ap} \leftarrow \mathrm{da}_{\mathrm{m}}(\mathrm{T},\mathrm{y}_{1},\mathrm{k}) \\ \mathrm{fl} \leftarrow \mathrm{F}_{1}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fl} \leftarrow \mathrm{F}_{1}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fl} \leftarrow \mathrm{F}_{2}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fp1} \leftarrow \mathrm{dF}_{1}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fp2} \leftarrow \mathrm{dF}_{2}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fp2} \leftarrow \mathrm{dF}_{2}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fp2} \leftarrow \mathrm{dF}_{2}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \mathrm{fp2} \leftarrow \mathrm{dF}_{2}(\mathrm{T},\mathrm{y}_{1},\mathrm{lij}) \\ \frac{\mathrm{T}\cdot\mathrm{a2p}}{\mathrm{b}} \cdot \ln\left(\frac{\mathrm{v} + \mathrm{b}}{\mathrm{v}}\right) + 2 \cdot \mathrm{y}_{1}\cdot\mathrm{R}\cdot\mathrm{T}^{2} \cdot \mathrm{fp1} \cdot \left[\frac{1}{\mathrm{T}} + \frac{1}{2} \cdot \frac{\mathrm{f2p1}}{\mathrm{fp1}} \\ -\frac{1}{2} \cdot \frac{\mathrm{fp1}}{(\mathrm{v} + \mathrm{f1})^{2}}\right] + 2 \cdot (1 - \mathrm{y}_{1}) \cdot \mathrm{R}\cdot\mathrm{T}^{2} \cdot \mathrm{fp2} \cdot \left[\frac{1}{\mathrm{T}} + \frac{1}{2} \cdot \frac{\mathrm{fp2}}{\mathrm{fp2}} \\ -\frac{1}{2} \cdot \frac{\mathrm{fp2}}{(\mathrm{v} + \mathrm{f2})^{2}}\right] \\ \mathrm{cpr}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij}) = \mathrm{cvr}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij}) - \mathrm{R} - \mathrm{T} \cdot \frac{\mathrm{dpdt}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij})^{2}}{\mathrm{dpdv}(\mathrm{T},\mathrm{p},\mathrm{y}_{1},\mathrm{k},\mathrm{lij})^{2}} \end{aligned}$$

 $cpe(T, p, y_1, k, lij) \equiv cpr(T, p, y_1, k, lij) - y_1 \cdot cpr(T, p, 1, 0, 0) - (1 - y_1) \cdot cpr(T, p, 0, 0, 0)$

2.7 Ecuaciones CDATA

$$cpag(T) = \begin{bmatrix} TK \leftarrow \frac{T}{K} \\ R \cdot \left[20.9634 - 10.1344 \frac{TK}{100} + 2.8253 \left(\frac{TK}{100} \right)^2 - 0.256738 \left(\frac{TK}{100} \right)^3 \right] & \text{if } TK \le 380 \\ R \cdot \left[-22.0666 + 23.8366 \frac{TK}{100} - 6.11445 \left(\frac{TK}{100} \right)^2 + 0.52745 \left(\frac{TK}{100} \right)^3 \right] & \text{if } TK \le 590 \\ \left[R \cdot \left[-40151.8 + 20428.8 \frac{TK}{100} - 3464.58 \left(\frac{TK}{100} \right)^2 + 195.921 \left(\frac{TK}{100} \right)^3 \right] & \text{otherwise} \\ \end{bmatrix}$$

cpagid (T) =
$$\begin{array}{l} TK \leftarrow \frac{T}{K} \\ F1 \leftarrow \frac{-2770.56}{TK} \\ F2 \leftarrow \frac{-7187.15}{TK} \\ \left[33.295 + 25.47F1^2 \cdot \frac{\exp(F1)}{(1 - \exp(F1))^2} + 17.34F2^2 \cdot \frac{\exp(F2)}{(1 - \exp(F2))^2} \right] \cdot \frac{J}{\operatorname{mol} \cdot K} \\ \operatorname{cpoh}(T) = \left[TK \leftarrow \frac{T}{100K} \end{array} \right.$$

5.88415+ 4.37971TK - 0.109376TK²

Cp gas idela (J/Kmol*K)

 $Ag = 8.79 \cdot 10^4$

 $Bg \equiv 2.713 \cdot 10^5$

 $Cg \equiv 1.3963 \cdot 10^3 K$

 $Dg \equiv 1.7035 \, 10^5$

 $Eg \equiv -6.2404 \, 10^2 K$

$$\operatorname{cpohid}(T) = \frac{\left[\operatorname{Ag} + \operatorname{Bg}\left[\frac{\left(\frac{Cg}{T}\right)}{\sinh\left(\frac{Cg}{T}\right)}\right]^{2} + \operatorname{Dg}\left[\frac{\left(\frac{Eg}{T}\right)}{\cosh\left(\frac{Eg}{T}\right)}\right]^{2}\right]}{1000}$$

 $\operatorname{cpohid}(340\mathrm{K}) = \mathbf{I} \cdot \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$

 $cpliq(T, p, y_1, k, lij) \equiv cpr(T, p, y_1, k, lij) + y_1 \cdot cpohid(T) + (1 - y_1) \cdot cpagid(T)$

APENDICE G. Datos experimentales, cálculos con la ecuación CTS y errores calculados para encontrar los parámetros de las sustancias puras. *Para el DEG*

p ρ c_p # datos 213 213 127 Función Objetivo 1.719Ε-03

<i>Т /</i> (К)	p _{sat} / (Pa)		ρ _{sat} / (mo	ρ_{sat} / (mol/m ³)			
	calc.	exp.	error	calc.	exp.	error		
336	16	16	6.41E-04	10036	10240	3.96E-04		
337	17	17	5.48E-04	10032	10230	3.76E-04		
338	19	18	4.64E-04	10027	10220	3.56E-04		
339	20	20	3.91E-04	10023	10210	3.37E-04		
340	22	22	3.26E-04	10018	10210	3.54E-04		
341	24	24	2.69E-04	10013	10200	3.35E-04		
342	26	26	2.20E-04	10009	10190	3.17E-04		
343	28	28	1.77E-04	10004	10190	3.34E-04		
344	30	30	1.40E-04	9999	10180	3.15E-04		
345	33	33	1.09E-04	9995	10170	2.98E-04		
346	36	35	8.26E-05	9990	10160	2.81E-04		
347	38	38	6.07E-05	9985	10160	2.96E-04		
348	41	41	4.29E-05	9980	10150	2.79E-04		
349	45	44	2.88E-05	9976	10140	2.63E-04		
350	48	48	1.79E-05	9971	10140	2.78E-04		
351	52	52	9.79E-06	9966	10130	2.62E-04		
352	56	56	4.41E-06	9961	10120	2.46E-04		
353	60	60	1.23E-06	9956	10110	2.31E-04		
354	65	65	2.53E-08	9952	10110	2.46E-04		
355	70	70	5.41E-07	9947	10100	2.30E-04		
356	75	75	2.55E-06	9942	10090	2.16E-04		
357	81	81	5.80E-06	9937	10090	2.30E-04		
358	87	87	1.02E-05	9932	10080	2.15E-04		
359	93	93	1.54E-05	9927	10070	2.01E-04		
360	100	100	2.13E-05	9922	10060	1.88E-04		
361	107	108	2.78E-05	9917	10060	2.01E-04		
362	115	115	3.48E-05	9912	10050	1.88E-04		
363	123	124	4.20E-05	9907	10040	1.75E-04		
364	132	133	4.95E-05	9902	10040	1.88E-04		
365	141	142	5.70E-05	9897	10030	1.75E-04		
366	151	152	6.45E-05	9892	10020	1.62E-04		

367	161	163	7.20E-05	9887	10010	1.50E-04
368	173	174	7.93E-05	9882	10010	1.63E-04
369	184	186	8.65E-05	9877	9998	1.46E-04
370	197	199	9.33E-05	9872	9991	1.42E-04
371	210	212	1.00E-04	9867	9984	1.37E-04
372	225	227	1.06E-04	9862	9976	1.31E-04
373	239	242	1.12E-04	9857	9969	1.27E-04
374	255	258	1.18E-04	9852	9962	1.23E-04
375	272	275	1.23E-04	9846	9954	1.17E-04
376	290	293	1.27E-04	9841	9947	1.13E-04
377	309	312	1.32E-04	9836	9939	1.08E-04
378	329	333	1.35E-04	9831	9932	1.04E-04
379	350	354	1.39E-04	9825	9925	1.01E-04
380	372	377	1.42E-04	9820	9917	9.53E-05
381	396	400	1.44E-04	9815	9910	9.21E-05
382	420	425	1.46E-04	9810	9902	8.71E-05
383	447	452	1.48E-04	9804	9895	8.41E-05
384	474	480	1.49E-04	9799	9887	7.94E-05
385	503	510	1.50E-04	9794	9880	7.66E-05
386	534	541	1.50E-04	9788	9872	7.21E-05
387	566	573	1.50E-04	9783	9865	6.95E-05
388	600	608	1.49E-04	9777	9857	6.53E-05
389	636	644	1.49E-04	9772	9850	6.29E-05
390	674	682	1.47E-04	9766	9842	5.90E-05
391	714	723	1.46E-04	9761	9835	5.67E-05
392	756	765	1.44E-04	9755	9827	5.31E-05
393	800	809	1.42E-04	9750	9820	5.10E-05
394	846	856	1.40E-04	9744	9812	4.75E-05
395	894	905	1.37E-04	9739	9804	4.43E-05
396	945	956	1.35E-04	9733	9797	4.24E-05
397	999	1010	1.23E-04	9728	9789	3.94E-05
398	1055	1067	1.27E-04	9722	9782	3.77E-05
399	1114	1126	1.16E-04	9716	9774	3.49E-05
400	1176	1189	1.26E-04	9711	9766	3.22E-05
401	1240	1254	1.18E-04	9705	9759	3.07E-05
402	1308	1322	1.08E-04	9699	9751	2.82E-05
403	1379	1394	1.11E-04	9693	9743	2.58E-05
404	1454	1469	1.07E-04	9688	9736	2.46E-05
405	1532	1547	9.76E-05	9682	9728	2.24E-05
406	1613	1629	9.31E-05	9676	9720	2.04E-05
407	1699	1715	9.14E-05	9670	9713	1.93E-05
408	1788	1805	9.04E-05	9664	9705	1.75E-05
409	1881	1899	8.86E-05	9659	9697	1.57E-05
410	1979	1997	8.46E-05	9653	9689	1.40E-05
411	2080	2099	7.77E-05	9647	9682	1.32E-05
412	2187	2206	7.51E-05	9641	9674	1.18E-05
413	2298	2317	6.74E-05	9635	9666	1.04E-05
414	2414	2434	6.81E-05	9629	9658	9.08E-06
415	2535	2555	6.19E-05	9623	9650	7.90E-06

416	2661	2682	6.07E-05	9617	9643	7.35E-06
417	2793	2814	5.73E-05	9611	9635	6.31E-06
418	2930	2951	5.12E-05	9605	9627	5.35E-06
419	3073	3094	4.67E-05	9599	9619	4.49E-06
420	3222	3244	4.68E-05	9592	9611	3.71E-06
421	3377	3399	4.21E-05	9586	9603	3.01E-06
422	3538	3561	4.00E-05	9580	9595	2.39E-06
423	3707	3729	3.61E-05	9574	9587	1.84E-06
424	3882	3904	3.31E-05	9568	9580	1.63E-06
425	4064	4086	3.02E-05	9562	9572	1.20E-06
426	4253	4275	2.70E-05	9555	9564	8.38E-07
427	4450	4472	2.51E-05	9549	9556	5.45E-07
428	4654	4676	2.19E-05	9543	9548	3.16E-07
429	4867	4889	2.09E-05	9536	9540	1.52E-07
430	5087	5109	1.79E-05	9530	9532	4.77E-08
431	5317	5338	1.60E-05	9524	9524	2.48E-09
432	5555	5576	1.46E-05	9517	9516	1.35E-08
433	5802	5822	1.21E-05	9511	9508	7.85E-08
434	6058	6078	1.08E-05	9504	9500	1.95E-07
435	6324	6343	9.00E-06	9498	9492	3.61E-07
436	6600	6618	7.60E-06	9491	9484	5.74E-07
437	6886	6903	6.30E-06	9485	9476	8.31E-07
438	7182	7199	5.55E-06	9478	9467	1.37E-06
439	7489	7505	4.45E-06	9471	9459	1.74E-06
440	7807	7822	3.52E-06	9465	9451	2.15E-06
441	8137	8150	2.60E-06	9458	9443	2.59E-06
442	8478	8490	1.98E-06	9452	9435	3.07E-06
443	8831	8841	1.21E-06	9445	9427	3.58E-06
444	9197	9205	7.86E-07	9438	9419	4.12E-06
445	9575	9582	5.23E-07	9431	9410	5.15E-06
446	9966	9971	2.21E-07	9425	9402	5.77E-06
447	10371	10370	7.92E-09	9418	9394	6.41E-06
448	10789	10790	4.82E-09	9411	9386	7.06E-06
449	11222	11220	2.18E-08	9404	9377	8.34E-06
450	11669	11660	5.33E-07	9397	9369	9.06E-06
451	12130	12120	7.06E-07	9390	9361	9.79E-06
452	12607	12600	3.14E-07	9383	9353	1.05E-05
453	13100	13090	5.28E-07	9376	9344	1.20E-05
454	13608	13590	1.74E-06	9369	9336	1.28E-05
455	14133	14110	2.60E-06	9362	9328	1.36E-05
456	14674	14650	2.75E-06	9355	9319	1.52E-05
457	15233	15210	2.30E-06	9348	9311	1.60E-05
458	15809	15780	3.48E-06	9341	9303	1.68E-05
459	16404	16370	4.27E-06	9334	9294	1.86E-05
460	17017	16980	4.66E-06	9327	9286	1.94E-05
461	1/648	1/600	7.56E-06	9320	9277	2.12E-05
462	18299	18250	7.34E-06	9312	9269	2.20E-05
463	18970	18920	7.06E-06	9305	9261	2.28E-05
464	19661	19600	9.79E-06	9298	9252	2.47E-05

465	20373	20310	9.65E-06	9291	9244	2.55E-05
466	21106	21040	9.83E-06	9283	9235	2.74E-05
467	21861	21780	1.37E-05	9276	9227	2.82E-05
468	22637	22550	1.49E-05	9269	9218	3.02E-05
469	23436	23350	1.37E-05	9261	9210	3.09E-05
470	24259	24160	1.67E-05	9254	9201	3.29E-05
471	25105	25000	1.75E-05	9246	9193	3.37E-05
472	25974	25860	1.96E-05	9239	9184	3.57E-05
473	26869	26750	1.98E-05	9231	9175	3.77E-05
474	27789	27660	2.16E-05	9224	9167	3.84E-05
475	28734	28600	2.19E-05	9216	9158	4.04E-05
476	29705	29560	2.42E-05	9209	9149	4.24E-05
477	30704	30550	2.52E-05	9201	9141	4.30E-05
478	31729	31570	2.53E-05	9193	9132	4.51E-05
479	32782	32610	2.78E-05	9186	9123	4.71E-05
480	33863	33680	2.97E-05	9178	9115	4.76E-05
481	34974	34780	3.10E-05	9170	9106	4.96E-05
482	36113	35910	3.21E-05	9162	9097	5.16E-05
483	37283	37070	3.31E-05	9155	9088	5.36E-05
484	38484	38260	3.42E-05	9147	9080	5.40E-05
485	39715	39480	3.55E-05	9139	9071	5.59E-05
486	40979	40730	3.72E-05	9131	9062	5.79E-05
487	42274	42020	3.66E-05	9123	9053	5.98E-05
488	43603	43330	3.96E-05	9115	9044	6.17E-05
489	44965	44680	4.07E-05	9107	9036	6.19E-05
490	46361	46060	4.28E-05	9099	9027	6.37E-05
491	47792	47480	4.33E-05	9091	9018	6.55E-05
492	49259	48930	4.52E-05	9083	9009	6.73E-05
493	50762	50420	4.59E-05	9075	9000	6.91E-05
494	52301	51940	4.82E-05	9067	8991	7.09E-05
495	53877	53500	4.97E-05	9059	8982	7.26E-05
496	55492	55100	5.06E-05	9050	8973	7.43E-05
497	57145	56740	5.09E-05	9042	8964	7.59E-05
498	58837	58410	5.35E-05	9034	8955	7.75E-05
499	60570	60130	5.34E-05	9026	8946	7.91E-05
500	62342	61880	5.59E-05	9017	8937	8.06E-05
501	64157	63680	5.60E-05	9009	8928	8.21E-05
502	66013	65520	5.65E-05	9001	8919	8.35E-05
503	67911	67390	5.99E-05	8992	8910	8.49E-05
504	69853	69320	5.92E-05	8984	8900	8.83E-05
505	71839	71280	6.16E-05	8975	8891	8.96E-05
506	73870	73290	6.27E-05	8967	8882	9.09E-05
507	75946	75340	6.47E-05	8958	8873	9.20E-05
508	78068	/7440	6.59E-05	8950	8864	9.32E-05
509	80238	79590	6.62E-05	8941	8854	9.65E-05
510	82454	81780	6.80E-05	8932	8845	9.75E-05
511	84/19	84020	6.92E-05	8924	8836	9.84E-05
512	87033	86310	7.02E-05	8915	8827	9.93E-05
513	89397	88650	7.09E-05	8906	8817	1.02E-04

514	91811	91030	7.36E-05	8897	8808	1.03E-04
515	94276	93470	7.44E-05	8889	8799	1.04E-04
516	96793	95960	7.54E-05	8880	8789	1.07E-04
517	99363	98500	7.68E-05	8871	8780	1.07E-04
518	101987	101100	7.70E-05	8862	8770	1.10E-04
519	104665	103700	8.65E-05	8853	8761	1.11E-04
520	107397	106400	8.79E-05	8844	8751	1.14E-04
521	110186	109200	8.15E-05	8835	8742	1.14E-04
522	113031	112000	8.48E-05	8826	8732	1.17E-04
523	115934	114900	8.09E-05	8817	8723	1.17E-04
524	118894	117800	8.63E-05	8808	8713	1.19E-04
525	121914	120800	8.50E-05	8799	8704	1.19E-04
526	124993	123800	9.29E-05	8790	8694	1.22E-04
527	128133	126900	9.44E-05	8781	8685	1.21E-04
528	131334	130100	9.00E-05	8771	8675	1.24E-04
529	134597	133300	9.47E-05	8762	8665	1.26E-04
530	137924	136600	9.39E-05	8753	8655	1.28E-04
531	141314	140000	8.81E-05	8744	8646	1.27E-04
532	144768	143400	9.11E-05	8734	8636	1.29E-04
533	148288	146800	1.03E-04	8725	8626	1.31E-04
534	151875	150400	9.61E-05	8715	8616	1.33E-04
535	155528	154000	9.84E-05	8706	8607	1.32E-04
536	159249	157700	9.65E-05	8697	8597	1.34E-04
537	163039	161400	1.03E-04	8687	8587	1.36E-04
538	166899	165200	1.06E-04	8677	8577	1.37E-04
539	170829	169100	1.05E-04	8668	8567	1.39E-04
540	174831	173100	1.00E-04	8658	8557	1.40E-04
541	178904	177100	1.04E-04	8649	8547	1.41E-04
542	183051	181200	1.04E-04	8639	8537	1.42E-04
543	187271	185300	1.13E-04	8629	8527	1.43E-04
544	191567	189600	1.08E-04	8619	8517	1.44E-04
545	195938	193900	1.10E-04	8610	8507	1.45E-04
546	200385	198300	1.11E-04	8600	8497	1.46E-04
547	204910	202700	1.19E-04	8590	8487	1.47E-04
548	209513	207300	1.14E-04	8580	8477	1.47E-04

<i>T /</i> (K)	<i>p_{sat} /</i> (Pa)	<i>C_{pl}</i> residual / J/mol·K			C _{pid}
		calc.	exp.	error	J/mol⋅K
380	372	106.7	116.3	6.77E-03	161.3
381	396	107.3	116.4	6.14E-03	161.6
382	420	107.8	116.5	5.55E-03	161.9
383	447	108.4	116.6	4.99E-03	162.2
384	474	108.9	116.7	4.47E-03	162.5
385	503	109.4	116.8	3.98E-03	162.8
386	534	110.0	116.9	3.53E-03	163.1
387	566	110.5	117.0	3.11E-03	163.4
388	600	111.0	117.0	2.63E-03	163.8

389	636	111.5	117 1	2 28E-03	164 1
390	674	112.0	117.2	1.96E-03	164.4
391	714	112.5	117.3	1.67E-03	164.7
392	756	113.0	117.4	1.40E-03	165.0
393	800	113.5	117.5	1.16E-03	165.3
394	846	114.0	117.6	9 50E-04	165.6
395	894	114.5	117 7	7 62E-04	165.9
396	945	114.9	117.8	5.98E-04	166.2
397	999	115.4	117.9	4 56E-04	166.5
398	1055	115.8	118.0	3.36E-04	166.8
399	1114	116.3	118.1	2.36E-04	167.1
400	1176	116.7	118.2	1.55E-04	167.4
401	1240	117.2	118.3	9 24E-05	167.7
402	1308	117.6	118.4	4 67E-05	168.0
403	1379	118.0	118.5	1 70E-05	168.3
404	1454	118.4	118.7	5 43E-06	168.5
405	1532	118.8	118.8	5.84E-08	168.8
406	1613	119.2	118.9	7 53E-06	169.1
400	1699	119.6	119.0	2.68E-05	169.4
408	1788	120.0	119.0	5.69E-05	169.7
409	1881	120.0	119.2	9.67E-05	170.0
400	1979	120.4	119.2	1 45E-04	170.0
410	2080	120.7	119.0	2 02F-04	170.6
412	2187	121.1	119.4	2.62E 04	170.0
412	2298	121.4	119.6	3 34F-04	170.3
414	2230	121.0	119.8	3 75E-04	171.5
415	2535	122.1	119.9	4.51E-04	171.8
416	2661	122.1	120.0	5.30E-04	172.1
417	2793	123.1	120.0	5 70E-04	172.3
418	2930	123.4	120.3	6.51E-04	172.6
419	3073	123.7	120.4	7 33E-04	172.9
420	3222	123.9	120.5	8.16E-04	173.2
421	3377	124.2	120.6	8 99F-04	173.5
422	3538	124.5	120.7	9.81E-04	173.8
423	3707	124.7	120.8	1.06E-03	174.1
424	3882	125.0	121.0	1.08E-03	174.3
425	4064	125.2	121.1	1.16E-03	174.6
426	4253	125.5	121.2	1.23E-03	174.9
427	4450	125.7	121.3	1.30E-03	175.2
428	4654	125.9	121.4	1.37E-03	175.5
429	4867	126.1	121.5	1.43E-03	175.8
430	5087	126.3	121.7	1.42E-03	176.0
431	5317	126.5	121.8	1.47E-03	176.3
432	5555	126.6	121.9	1.52E-03	176.6
433	5802	126.8	122.0	1.56E-03	176.9
434	6058	127.0	122.1	1.60E-03	177.2
435	6324	127.1	122.3	1.56E-03	177.4
436	6600	127.3	122.4	1.58E-03	177.7
437	6886	127.4	122.5	1.60E-03	178.0

400	7400	407 E	100.0	4 005 00	170.0
438	7182	127.5	122.0	1.62E-03	178.3
439	7403	127.0	122.0	1.50E-03	178.8
440	9127	127.0	122.3	1.502-03	170.0
441	0137	127.9	123.0	1.502-03	179.1
442	0470	127.9	123.1	1.552-05	179.4
443	0031	120.0	123.3	1.47 E-03	179.0
444	9197	120.1	123.4	1.43E-03	179.9
440	9575	120.2	123.5	1.43E-03	160.2
440	9966	128.2	123.0	1.40E-03	180.5
447	10371	128.3	123.8	1.31E-03	180.7
448	10789	128.3	123.9	1.27E-03	181.0
449	11222	128.4	124.0	1.23E-03	181.3
450	11669	128.4	124.1	1.19E-03	181.6
451	12130	128.4	124.3	1.09E-03	181.8
452	12607	128.4	124.4	1.04E-03	182.1
453	13100	128.4	124.5	9.85E-04	182.4
454	13608	128.4	124.7	8.82E-04	182.6
455	14133	128.4	124.8	8.27E-04	182.9
456	14674	128.4	124.9	7.72E-04	183.2
457	15233	128.3	125.1	6.72E-04	183.4
458	15809	128.3	125.2	6.16E-04	183.7
459	16404	128.3	125.3	5.60E-04	184.0
460	17017	128.2	125.5	4.69E-04	184.2
461	17648	128.2	125.6	4.16E-04	184.5
462	18299	128.1	125.7	3.64E-04	184.8
463	18970	128.0	125.9	2.86E-04	185.0
464	19661	128.0	126.0	2.40E-04	185.3
465	20373	127.9	126.1	1.97E-04	185.6
466	21106	127.8	126.3	1.37E-04	185.8
467	21861	127.7	126.4	1.03E-04	186.1
468	22637	127.6	126.5	7.33E-05	186.4
469	23436	127.5	126.7	3.74E-05	186.6
470	24259	127.4	126.8	1.96E-05	186.9
471	25105	127.2	127.0	3.62E-06	187.1
472	25974	127.1	127.1	1.60E-08	187.4
473	26869	127.0	127.2	2.86E-06	187.7
474	27789	126.8	127.4	1.88E-05	187.9
475	28734	126.7	127.5	3.88E-05	188.2
476	29705	126.6	127.7	7.99E-05	188.4
477	30704	126.4	127.8	1.19E-04	188.7
478	31729	126.2	127.9	1.67E-04	189.0
479	32782	126.1	128.1	2.47E-04	189.2
480	33863	125.9	128.2	3.17E-04	189.5
481	34974	125.7	128.4	4.28E-04	189.7
482	36113	125.6	128.5	5.21E-04	190.0
483	37283	125.4	128.6	6.25E-04	190.3
484	38484	125.2	128.8	7.81E-04	190.5
485	39715	125.0	128.9	9.11E-04	190.8
486	40979	124.8	129.1	1.10E-03	191.0

487	42274	124.6	129.2	1.26E-03	191.3
488	43603	124.4	129.4	1.48E-03	191.5
489	44965	124.2	129.5	1.67E-03	191.8
490	46361	124.0	129.7	1.93E-03	192.0
491	47792	123.8	129.8	2.15E-03	192.3
492	49259	123.6	130.0	2.45E-03	192.5
493	50762	123.3	130.1	2.69E-03	192.8
494	52301	123.1	130.3	3.03E-03	193.0
495	53877	122.9	130.4	3.31E-03	193.3
496	55492	122.7	130.5	3.60E-03	193.6
497	57145	122.4	130.7	4.00E-03	193.8
498	58837	122.2	130.8	4.32E-03	194.1
499	60570	122.0	131.0	4.76E-03	194.3
500	62342	121.7	131.1	5.12E-03	194.6
501	64157	121.5	131.3	5.59E-03	194.8
502	66013	121.2	131.4	5.99E-03	195.1
503	67911	121.0	131.6	6.50E-03	195.3
504	69853	120.7	131.8	7.05E-03	195.5
505	71839	120.5	131.9	7.49E-03	195.8
506	73870	120.2	132.1	8.07E-03	196.0

Para el MEG

	p	ρ	C p
# datos	213	213	71
Función Error	Objetivo	3.834E-04	

<i>T /</i> (K)	p _{sat} / (Pa)			ρ_{sat} / (mol/m ³)			
	calc.	exp.	error	calc.	exp.	error	
330	156	149	2.41E-03	17494	17516	1.58E-06	
331	168	160	2.20E-03	17483	17504	1.44E-06	
332	179	172	2.01E-03	17472	17493	1.45E-06	
333	192	184	1.84E-03	17461	17481	1.32E-06	
334	205	197	1.67E-03	17450	17469	1.20E-06	
335	219	211	1.52E-03	17439	17457	1.09E-06	
336	234	226	1.37E-03	17428	17445	9.83E-07	
337	250	242	1.24E-03	17417	17433	8.87E-07	
338	267	259	1.12E-03	17405	17421	7.98E-07	

339	285	277	1.00E-03	17394	17409	7.15E-07
340	304	295	8.94E-04	17383	17397	6.39E-07
341	324	316	7.97E-04	17372	17385	5.69E-07
342	346	337	7.07E-04	17361	17373	5.05E-07
343	368	359	6.24E-04	17349	17361	4.46E-07
344	392	383	5.48E-04	17338	17349	3.92E-07
345	418	409	4.79E-04	17327	17337	3.44E-07
346	444	435	4.16E-04	17316	17324	2.40E-07
347	473	464	3.59E-04	17304	17312	2.04E-07
348	503	494	3.07E-04	17293	17300	1.73E-07
349	534	526	2.60E-04	17281	17288	1.45E-07
350	567	559	2.19E-04	17270	17276	1.20E-07
351	603	595	1.81E-04	17259	17264	9.84E-08
352	640	632	1.49E-04	17247	17251	5.04E-08
353	679	671	1.20E-04	17236	17239	3.78E-08
354	720	713	9.45E-05	17224	17227	2.75E-08
355	763	757	7.28E-05	17213	17215	1.91E-08
356	809	803	5.44E-05	17201	17202	2.93E-09
357	857	852	3.91E-05	17189	17190	8.64E-10
358	908	903	2.66E-05	17178	17178	3.61E-11
359	962	958	1.68E-05	17166	17165	5.51E-09
360	1018	1015	6.98E-06	17155	17153	9.01E-09
361	1077	1075	2.67E-06	17143	17141	1.30E-08
362	1139	1138	5.70E-07	17131	17128	3.63E-08
363	1204	1204	1.05E-08	17120	17116	4.28E-08
364	1273	1274	1.06E-06	17108	17103	7.87E-08
365	1345	1347	2.93E-06	17096	17091	8.65E-08
366	1420	1424	6.78E-06	17084	17078	1.33E-07
367	1500	1505	1.27E-05	17072	17066	1.41E-07
368	1583	1590	2.01E-05	17061	17053	1.97E-07
369	1670	1679	2.75E-05	17049	17041	2.04E-07
370	1762	1772	3.36E-05	17037	17028	2.67E-07
371	1858	1870	4.33E-05	17025	17016	2.72E-07
372	1958	1973	5.59E-05	17013	17003	3.41E-07
373	2064	2080	6.24E-05	17001	16991	3.43E-07
374	2174	2193	7.60E-05	16989	16978	4.16E-07
375	2289	2311	8.77E-05	16977	16965	4.94E-07
376	2410	2434	9.56E-05	16965	16953	4.90E-07
377	2537	2564	1.14E-04	16953	16940	5.70E-07
378	2669	2699	1.24E-04	16941	16927	6.54E-07
379	2807	2840	1.33E-04	16929	16915	6.42E-07
380	2952	2988	1.47E-04	16916	16902	7.25E-07
381	3103	3143	1.63E-04	16904	16889	8.10E-07
382	3261	3304	1.72E-04	16892	16876	8.9/E-07
383	3425	3473	1.87E-04	16880	16864	8.71E-07
384	3598	3649	1.98E-04	16867	16851	9.54E-07
385	3///	3833	2.11E-04	16855	16838	1.04E-06
386	3965	4025	2.24E-04	16843	16825	1.12E-06
387	4160	4226	2.41E-04	16830	16812	1.21E-06

388	4364	4435	2.54E-04	16818	16799	1.29E-06
389	4577	4653	2.66E-04	16806	16786	1.37E-06
390	4799	4880	2.77E-04	16793	16773	1.45E-06
391	5030	5117	2.90E-04	16781	16761	1.39E-06
392	5271	5363	2.97E-04	16768	16748	1.46E-06
393	5521	5620	3.08E-04	16756	16735	1.53E-06
394	5782	5888	3.21E-04	16743	16722	1.60E-06
395	6054	6166	3.28E-04	16731	16708	1.82E-06
396	6337	6456	3.39E-04	16718	16695	1.89E-06
397	6632	6757	3.45E-04	16705	16682	1.95E-06
398	6938	7071	3.55E-04	16693	16669	2.00E-06
399	7256	7397	3.62E-04	16680	16656	2.05E-06
400	7587	7736	3.69E-04	16667	16643	2.10E-06
401	7931	8088	3.75E-04	16654	16630	2.14E-06
402	8289	8454	3.81E-04	16642	16617	2.18E-06
403	8661	8835	3.89E-04	16629	16603	2.39E-06
404	9047	9230	3.95E-04	16616	16590	2.42E-06
405	9447	9640	3.99E-04	16603	16577	2.44E-06
406	9863	10070	4.21E-04	16590	16564	2.46E-06
407	10295	10510	4.17E-04	16577	16550	2.66E-06
408	10743	10970	4.26E-04	16564	16537	2.66E-06
409	11208	11440	4.10E-04	16551	16524	2.66E-06
410	11691	11930	4.03E-04	16538	16510	2.85E-06
411	12191	12440	4.02E-04	16525	16497	2.83E-06
412	12709	12970	4.04E-04	16512	16483	3.01E-06
413	13247	13520	4.09E-04	16498	16470	2.98E-06
414	13803	14090	4.14E-04	16485	16457	2.94E-06
415	14380	14680	4.17E-04	16472	16443	3.11E-06
416	14978	15290	4.17E-04	16459	16430	3.05E-06
417	15597	15920	4.12E-04	16445	16416	3.20E-06
418	16238	16580	4.27E-04	16432	16403	3.13E-06
419	16901	17250	4.10E-04	16419	16389	3.27E-06
420	17587	17950	4.09E-04	16405	16375	3.41E-06
421	18297	18670	3.98E-04	16392	16362	3.31E-06
422	19032	19420	3.99E-04	16378	16348	3.43E-06
423	19792	20200	4.08E-04	16365	16334	3.54E-06
424	20578	21000	4.04E-04	16351	16321	3.41E-06
425	21390	21820	3.88E-04	16338	16307	3.51E-06
426	22230	22680	3.94E-04	16324	16293	3.60E-06
427	23097	23560	3.86E-04	16310	16279	3.68E-06
428	23994	24470	3.79E-04	16296	16266	3.51E-06
429	24920	25410	3.72E-04	16283	16252	3.58E-06
430	25876	26380	3.65E-04	16269	16238	3.63E-06
431	26864	27380	3.56E-04	16255	16224	3.67E-06
432	27883	28420	3.57E-04	16241	16210	3.71E-06
433	28935	29480	3.41E-04	16227	16196	3.73E-06
434	30021	30580	3.34E-04	16213	16182	3.75E-06
435	31142	31/20	3.33E-04	16199	16168	3.76E-06
436	32297	32890	3.25E-04	16185	16154	3.75E-06

437	33489	34090	3.11E-04	16171	16140	3.74E-06
438	34718	35340	3.09E-04	16157	16126	3.72E-06
439	35986	36620	3.00E-04	16143	16112	3.68E-06
440	37292	37940	2.92E-04	16129	16098	3.64E-06
441	38638	39300	2.84E-04	16114	16084	3.59E-06
442	40025	40700	2.75E-04	16100	16070	3.53E-06
443	41454	42140	2.65E-04	16086	16056	3.45E-06
444	42926	43620	2.53E-04	16071	16041	3.61E-06
445	44442	45150	2.46E-04	16057	16027	3.51E-06
446	46003	46720	2.35E-04	16043	16013	3.41E-06
447	47610	48340	2.28E-04	16028	15998	3.53E-06
448	49264	50000	2.16E-04	16014	15984	3.41E-06
449	50967	51720	2.12E-04	15999	15970	3.28E-06
450	52718	53480	2.03E-04	15984	15955	3.37E-06
451	54520	55290	1.94E-04	15970	15941	3.21E-06
452	56374	57150	1.84E-04	15955	15927	3.06E-06
453	58280	59060	1.74E-04	15940	15912	3.11E-06
454	60240	61030	1.68E-04	15925	15898	2.93E-06
455	62255	63040	1.55E-04	15910	15883	2.97E-06
456	64326	65120	1.49E-04	15895	15868	2.99E-06
457	66455	67250	1.40E-04	15880	15854	2.78E-06
458	68643	69440	1.32E-04	15865	15839	2.79E-06
459	70890	71690	1.25E-04	15850	15825	2.57E-06
460	73199	73990	1.14E-04	15835	15810	2.55E-06
461	75570	76360	1.07E-04	15820	15795	2.52E-06
462	78005	78790	9.94E-05	15805	15780	2.48E-06
463	80505	81280	9.10E-05	15790	15766	2.24E-06
464	83071	83840	8.41E-05	15774	15751	2.19E-06
465	85706	86470	7.81E-05	15759	15736	2.12E-06
466	88409	89160	7.09E-05	15743	15721	2.05E-06
467	91184	91920	6.42E-05	15728	15706	1.97E-06
468	94030	94750	5.78E-05	15713	15691	1.88E-06
469	96949	97650	5.15E-05	15697	15676	1.78E-06
470	99944	100600	4.25E-05	15681	15661	1.68E-06
471	103015	103700	4.36E-05	15666	15646	1.57E-06
472	106164	106800	3.55E-05	15650	15631	1.46E-06
473	109392	110000	3.06E-05	15634	15616	1.34E-06
474	112701	113300	2.80E-05	15618	15601	1.22E-06
475	116092	116600	1.90E-05	15602	15586	1.10E-06
476	119567	120100	1.97E-05	15586	15571	9.78E-07
4//	123128	123600	1.46E-05	15570	15555	9.79E-07
4/8	126776	12/200	1.11E-05	15554	15540	8.50E-07
479	130513	130900	8.76E-06	15538	15525	1.24E-07
480	134339	134600	3.75E-06	15522	15509	1.06E-07
481	138258	138500	3.05E-06	15506	15494	5./9E-0/
482	142271	142500	2.59E-06	15489	15479	4.60E-07
483	146378	146500	6.89E-07	154/3	15463	4.31E-07
484	150583	150600	1.26E-08	15457	15448	3.20E-07
485	154886	154900	1.67E-09	15440	15432	2.8/E-07

486	159290	159200	3.21E-07	15424	15417	1.91E-07
487	163796	163600	1.44E-06	15407	15401	1.59E-07
488	168406	168100	3.31E-06	15390	15386	8.54E-08
489	173122	172800	3.46E-06	15374	15370	6.07E-08
490	177945	177500	6.27E-06	15357	15354	3.85E-08
491	182877	182300	1.00E-05	15340	15338	2.02E-08
492	187920	187300	1.10E-05	15323	15323	3.42E-10
493	193077	192300	1.63E-05	15306	15307	1.95E-09
494	198348	197400	2.31E-05	15289	15291	1.23E-08
495	203736	202700	2.61E-05	15272	15275	3.33E-08
496	209243	208100	3.01E-05	15255	15259	6.66E-08
497	214870	213600	3.53E-05	15238	15243	1.14E-07
498	220619	219200	4.19E-05	15221	15227	1.78E-07
499	226493	224900	5.02E-05	15203	15211	2.62E-07
500	232493	230700	6.04E-05	15186	15195	3.66E-07
501	238622	236700	6.59E-05	15168	15179	4.94E-07
502	244881	242800	7.35E-05	15151	15163	6.49E-07
503	251272	249000	8.33E-05	15133	15147	8.34E-07
504	257798	255300	9.58E-05	15115	15130	9.21E-07
505	264460	261800	1.03E-04	15098	15114	1.16E-06
506	271261	268300	1.22E-04	15080	15098	1.44E-06
507	278202	275100	1.27E-04	15062	15081	1.58E-06
508	285286	281900	1.44E-04	15044	15065	1.93E-06
509	292514	288900	1.57E-04	15026	15049	2.33E-06
510	299890	296000	1.73E-04	15008	15032	2.57E-06
511	307414	303300	1.84E-04	14990	15016	3.06E-06
512	315090	310700	2.00E-04	14971	14999	3.36E-06
513	322919	318200	2.20E-04	14953	14982	3.70E-06
514	330903	325900	2.36E-04	14935	14966	4.35E-06
515	339045	333700	2.57E-04	14916	14949	4.78E-06
516	347347	341700	2.73E-04	14898	14932	5.26E-06
517	355812	349900	2.85E-04	14879	14915	5.78E-06
518	364440	358100	3.13E-04	14860	14899	6.69E-06
519	373236	366600	3.28E-04	14842	14882	7.34E-06
520	382200	375200	3.48E-04	14823	14865	8.05E-06
521	391335	383900	3.75E-04	14804	14848	8.82E-06
522	400644	392800	3.99E-04	14785	14831	9.66E-06
523	410129	401900	4.19E-04	14766	14814	1.06E-05
524	419792	411100	4.47E-04	14747	14797	1.16E-05
525	429635	420500	4.72E-04	14727	14779	1.22E-05
526	439662	430100	4.94E-04	14708	14762	1.33E-05
527	449873	439900	5.14E-04	14689	14745	1.46E-05
528	460272	449800	5.42E-04	14669	14/2/	1.54E-05
529	470861	459800	5.79E-04	14650	14/10	1.68E-05
530	481643	4/0100	6.03E-04	14630	14693	1.84E-05
531	492619	480500	6.36E-04	14610	146/5	1.95E-05
532	503793	491200	6.57E-04	14590	14658	2.13E-05
533	515167	502000	6.88E-04	145/1	14640	2.25E-05
534	526742	512900	7.28E-04	14551	14622	2.39E-05

535	538523	524100	7.57E-04	14530	14605	2.61E-05
536	550510	535500	7.86E-04	14510	14587	2.77E-05
537	562707	547000	8.25E-04	14490	14569	2.94E-05
538	575116	558700	8.63E-04	14470	14551	3.12E-05
539	587740	570700	8.92E-04	14449	14533	3.32E-05
540	600582	582800	9.31E-04	14429	14516	3.62E-05

<i>T /</i> (K)	p _{sat} / (Pa)	C _{pl} residual / (J/mol⋅K)			C _{pid}
		calc.	exp.	error	J/mol-K
330	156	41.7	41.1	2.01E-04	82.9
331	168	41.7	41.3	1.13E-04	83.1
332	179	41.8	41.4	9.17E-05	83.3
333	192	41.9	41.6	6.94E-05	83.4
334	205	42.0	41.7	5.43E-05	83.6
335	219	42.1	41.8	4.17E-05	83.8
336	234	42.2	42.0	3.13E-05	83.9
337	250	42.3	42.1	2.06E-05	84.1
338	267	42.4	42.2	1.41E-05	84.3
339	285	42.5	42.5	4.51E-07	84.4
340	304	42.6	42.6	9.76E-12	84.6
341	324	42.7	42.7	7.53E-07	84.8
342	346	42.8	42.9	2.11E-06	84.9
343	368	42.9	43.0	3.99E-06	85.1
344	392	43.0	43.1	6.24E-06	85.3
345	418	43.1	43.3	8.73E-06	85.4
346	444	43.2	43.4	1.30E-05	85.6
347	473	43.4	43.5	1.58E-05	85.8
348	503	43.5	43.7	1.86E-05	85.9
349	534	43.6	43.9	4.72E-05	86.1
350	567	43.7	44.0	5.06E-05	86.3
351	603	43.8	44.2	5.68E-05	86.4
352	640	43.9	44.3	5.93E-05	86.6
353	679	44.1	44.4	6.13E-05	86.8
354	720	44.2	44.6	6.27E-05	87.0
355	763	44.3	44.7	6.34E-05	87.1
356	809	44.5	44.8	6.72E-05	87.3
357	857	44.6	45.0	6.67E-05	87.5
358	908	44.7	45.1	6.57E-05	87.6
359	962	44.8	45.2	6.40E-05	87.8
360	1018	45.0	45.4	6.54E-05	88.0
361	1077	45.1	45.5	6.26E-05	88.1
362	1139	45.3	45.6	5.93E-05	88.3
363	1204	45.4	45.7	5.56E-05	88.5
364	1273	45.5	45.9	5.47E-05	88.6
365	1345	45.7	46.0	5.02E-05	88.8
366	1420	45.8	46.1	4.54E-05	89.0
367	1500	46.0	46.3	4.04E-05	89.1

368	1583	46.1	46.4	3.80E-05	89.3
369	1670	46.3	46.5	3.27E-05	89.5
370	1762	46.4	46.7	2.75E-05	89.6
371	1858	46.6	46.8	2.44E-05	89.8
372	1958	46.7	46.9	1.94E-05	90.0
373	2064	46.9	47.1	1.47E-05	90.1
374	2174	47.0	47.2	1.18E-05	90.3
375	2289	47.2	47.3	7.90E-06	90.5
376	2410	47.4	47.5	4.62E-06	90.6
377	2537	47.5	47.6	2.78E-06	90.8
378	2669	47.7	47.7	9.01E-07	91.0
379	2807	47.9	47.9	4.07E-08	91.1
380	2952	48.0	48.0	1.33E-07	91.3
381	3103	48.2	48.1	1.36E-06	91.5
382	3261	48.4	48.3	3.21E-06	91.6
383	3425	48.5	48.4	7.01E-06	91.8
384	3598	48.7	48.6	1.10E-05	92.0
385	3777	48.9	48.7	1.79E-05	92.1
386	3965	49.1	48.8	2.46E-05	92.3
387	4160	49.2	49.0	3.51E-05	92.5
388	4364	49.4	49.1	4.49E-05	92.6
389	4577	49.6	49.2	5.94E-05	92.8
390	4799	49.8	49.4	7.29E-05	92.9
391	5030	50.0	49.5	9.20E-05	93.1
392	5271	50.1	49.5	1.56E-04	93.3
393	5521	50.3	49.7	1.80E-04	93.4
394	5782	50.5	49.8	2.11E-04	93.6
395	6054	50.7	49.9	2.39E-04	93.8
396	6337	50.9	50.1	2.76E-04	93.9
397	6632	51.1	50.2	3.10E-04	94.1
398	6938	51.3	50.4	3.46E-04	94.3
399	7256	51.5	50.5	3.85E-04	94.4
400	7587	51.7	50.6	4.36E-04	94.6

Para el TEG

	p	ρ	С _р
# datos	213	213	127
Función Error	Objetivo	4.484E-03	

<i>Т /</i> К	p _{sat} / (Pa)			ρ _{sat} / (mo	ρ _{sat} / (mol/m³)		
	calc.	exp.	error	calc.	exp.	error	
336	2	2	1.02E-03	7155	7277	2.80E-04	
337	2	2	9.88E-04	7152	7272	2.72E-04	
338	2	3	9.50E-04	7151	7268	2.61E-04	
339	3	3	9.20E-04	7147	7263	2.53E-04	
340	3	3	9.04E-04	7144	7258	2.47E-04	
341	3	3	8.69E-04	7141	7253	2.38E-04	
342	4	4	8.39E-04	7138	7248	2.30E-04	
343	4	4	8.01E-04	7135	7243	2.21E-04	
344	4	4	7.69E-04	7132	7239	2.18E-04	
345	5	5	7.28E-04	7129	7234	2.10E-04	
346	5	5	6.98E-04	7126	7229	2.01E-04	
347	5	6	6.63E-04	7124	7224	1.93E-04	
348	6	6	6.28E-04	7120	7219	1.86E-04	
349	7	7	5.95E-04	7117	7214	1.79E-04	
350	7	7	5.56E-04	7114	7209	1.72E-04	
351	8	8	5.25E-04	7112	7205	1.68E-04	
352	8	9	4.88E-04	7109	7200	1.61E-04	
353	9	9	4.54E-04	7105	7195	1.55E-04	
354	10	10	4.22E-04	7103	7190	1.48E-04	
355	11	11	3.90E-04	7099	7185	1.42E-04	
356	12	12	3.60E-04	7096	7180	1.36E-04	
357	13	13	3.31E-04	7093	7175	1.29E-04	
358	14	14	3.00E-04	7090	7170	1.24E-04	
359	15	15	2.72E-04	7087	7165	1.18E-04	
360	16	16	2.45E-04	7084	7160	1.12E-04	
361	17	18	2.20E-04	7081	7155	1.07E-04	
362	19	19	1.96E-04	7078	7150	1.02E-04	
363	20	21	1.72E-04	7075	7146	9.93E-05	
364	22	22	1.51E-04	7072	7141	9.43E-05	
365	24	24	1.30E-04	7069	7136	8.95E-05	
366	26	26	1.11E-04	7065	7131	8.48E-05	
367	28	28	9.33E-05	7062	7126	8.02E-05	
368	30	30	7.78E-05	7059	7121	7.58E-05	
369	32	32	6.30E-05	7056	7116	7.15E-05	
370	35	35	5.01E-05	7053	7111	6.75E-05	
371	37	37	3.89E-05	7049	7106	6.35E-05	
372	40	40	2.90E-05	7046	7101	5.97E-05	

373	43	43	2.04E-05	7043	7096	5.60E-05
374	46	46	1.35E-05	7040	7091	5.25E-05
375	50	50	8.03E-06	7036	7086	4.90E-05
376	53	53	4.02E-06	7033	7081	4.58E-05
377	57	57	1.38E-06	7030	7076	4.26E-05
378	61	61	1.35E-07	7026	7071	3.96E-05
379	66	65	2.04E-07	7023	7066	3.67E-05
380	70	70	1.57E-06	7020	7060	3.24E-05
381	75	75	4.19E-06	7016	7055	2.98E-05
382	80	80	8.03E-06	7013	7050	2.73E-05
383	86	86	1.31E-05	7010	7045	2.50E-05
384	92	92	1.92E-05	7006	7040	2.28E-05
385	98	98	2.63E-05	7003	7035	2.07E-05
386	105	104	3.45E-05	7000	7030	1.87E-05
387	112	111	4.37E-05	6996	7025	1.69E-05
388	120	119	5.37E-05	6993	7020	1.51E-05
389	128	127	6.45E-05	6989	7015	1.35E-05
390	136	135	7.61E-05	6986	7010	1.19E-05
391	145	144	8.84E-05	6982	7005	1.05E-05
392	154	153	1.01E-04	6979	6999	8.30E-06
393	164	163	1.15E-04	6975	6994	7.13E-06
394	175	173	1.29E-04	6972	6989	6.05E-06
395	186	184	1.44E-04	6968	6984	5.07E-06
396	198	195	1.59E-04	6965	6979	4.18E-06
397	210	208	1.74E-04	6961	6974	3.38E-06
398	224	220	1.89E-04	6958	6968	2.23E-06
399	237	234	2.05E-04	6954	6963	1.66E-06
400	252	248	2.21E-04	6950	6958	1.19E-06
401	267	263	2.37E-04	6947	6953	7.95E-07
402	284	279	2.53E-04	6943	6948	4.83E-07
403	301	296	2.69E-04	6940	6943	2.50E-07
404	319	313	2.85E-04	6936	6937	2.64E-08
405	338	332	3.00E-04	6932	6932	8.46E-10
406	358	351	3.16E-04	6929	6927	4.79E-08
407	379	372	3.31E-04	6925	6922	1.66E-07
408	401	393	3.46E-04	6921	6916	5.45E-07
409	424	416	3.61E-04	6917	6911	8.51E-07
410	448	439	3.75E-04	6914	6906	1.22E-06
411	474	464	3.89E-04	6910	6901	1.66E-06
412	500	490	4.02E-04	6906	6895	2.60E-06
413	528	518	4.15E-04	6902	6890	3.20E-06
414	558	546	4.28E-04	6899	6885	3.86E-06
415	589	577	4.40E-04	6895	6880	4.57E-06
416	621	608	4.51E-04	6891	6874	6.03E-06
417	655	641	4.62E-04	6887	6869	6.90E-06
418	690	6/6	4.72E-04	6883	6864	7.81E-06
419	/28	/12	4.81E-04	6879	6858	9.66E-06
420	/66	/50	4.90E-04	6875	6853	1.0/E-05
421	807	789	4.98E-04	6872	6848	1.18E-05

422	850	831	5.05E-04	6868	6842	1.40E-05
423	894	874	5.12E-04	6864	6837	1.52E-05
424	940	920	5.17E-04	6860	6832	1.65E-05
425	989	967	5.23E-04	6856	6826	1.90E-05
426	1040	1016	5.41E-04	6852	6821	2.04E-05
427	1093	1068	5.27E-04	6848	6816	2.18E-05
428	1148	1122	5.25E-04	6844	6810	2.46E-05
429	1205	1178	5.36E-04	6840	6805	2.61E-05
430	1265	1237	5.25E-04	6836	6799	2.92E-05
431	1328	1298	5.32E-04	6832	6794	3.08E-05
432	1393	1362	5.25E-04	6828	6789	3.24E-05
433	1461	1428	5.40E-04	6824	6783	3.58E-05
434	1532	1497	5.47E-04	6819	6778	3.75E-05
435	1606	1570	5.19E-04	6815	6772	4.10E-05
436	1683	1645	5.20E-04	6811	6767	4.28E-05
437	1762	1723	5.23E-04	6807	6761	4.65E-05
438	1846	1804	5.29E-04	6803	6756	4.83E-05
439	1932	1889	5.17E-04	6799	6751	5.01E-05
440	2022	1977	5.14E-04	6795	6745	5.41E-05
441	2115	2069	4.99E-04	6790	6740	5.60E-05
442	2212	2164	4.98E-04	6786	6734	6.01E-05
443	2313	2263	4.90E-04	6782	6729	6.20E-05
444	2418	2366	4.80E-04	6778	6723	6.63E-05
445	2527	2473	4.69E-04	6774	6718	6.83E-05
446	2639	2584	4.60E-04	6769	6712	7.27E-05
447	2757	2699	4.54E-04	6765	6707	7.47E-05
448	2878	2818	4.53E-04	6761	6701	7.93E-05
449	3004	2942	4.44E-04	6756	6695	8.40E-05
450	3135	3071	4.29E-04	6752	6690	8.59E-05
451	3270	3205	4.11E-04	6748	6684	9.07E-05
452	3410	3343	4.05E-04	6743	6679	9.27E-05
453	3556	3486	3.99E-04	6739	6673	9.77E-05
454	3706	3635	3.84E-04	6735	6668	9.96E-05
455	3862	3789	3.72E-04	6730	6662	1.05E-04
456	4023	3949	3.56E-04	6726	6656	1.10E-04
457	4190	4114	3.46E-04	6721	6651	1.12E-04
458	4363	4285	3.34E-04	6717	6645	1.17E-04
459	4542	4462	3.22E-04	6712	6640	1.19E-04
460	4727	4645	3.11E-04	6708	6634	1.24E-04
461	4918	4835	2.95E-04	6703	6628	1.30E-04
462	5116	5031	2.83E-04	6699	6623	1.31E-04
463	5320	5234	2.69E-04	6694	6617	1.37E-04
464	5531	5443	2.60E-04	6690	6611	1.42E-04
465	5/49	5660	2.46E-04	6685	6606	1.44E-04
466	5974	5884	2.33E-04	6681	6600	1.50E-04
467	6206	6115	2.22E-04	6676	6594	1.55E-04
468	6446	6354	2.10E-04	6672	6588	1.61E-04
469	6694	6601	1.97E-04	6667	6583	1.63E-04
470	6949	6856	1.84E-04	6662	6577	1.68E-04

471	7212	7119	1.72E-04	6658	6571	1.74E-04
472	7484	7390	1.62E-04	6653	6565	1.80E-04
473	7764	7670	1.51E-04	6648	6560	1.82E-04
474	8053	7959	1.40E-04	6644	6554	1.87E-04
475	8351	8257	1.29E-04	6639	6548	1.93E-04
476	8658	8564	1.19E-04	6634	6542	1.99E-04
477	8974	8881	1.09E-04	6630	6537	2.01E-04
478	9299	9207	1.00E-04	6625	6531	2.06E-04
479	9634	9544	8.96E-05	6620	6525	2.12E-04
480	9979	9890	8.18E-05	6615	6519	2.18E-04
481	10335	10250	6.84E-05	6611	6513	2.24E-04
482	10700	10620	5.73E-05	6606	6507	2.30E-04
483	11077	10990	6.22E-05	6601	6502	2.31E-04
484	11464	11380	5.42E-05	6596	6496	2.37E-04
485	11862	11780	4.84E-05	6591	6490	2.43E-04
486	12271	12200	3.43E-05	6586	6484	2.49E-04
487	12693	12620	3.30E-05	6581	6478	2.55E-04
488	13125	13060	2.50E-05	6577	6472	2.61E-04
489	13570	13510	1.99E-05	6572	6466	2.67E-04
490	14027	13970	1.69E-05	6567	6460	2.73E-04
491	14497	14450	1.06E-05	6562	6454	2.79E-04
492	14980	14930	1.11E-05	6557	6448	2.85E-04
493	15475	15440	5.21E-06	6552	6442	2.91E-04
494	15984	15950	4.59E-06	6547	6436	2.97E-04
495	16507	16480	2.62E-06	6542	6430	3.03E-04
496	17043	17030	5.90E-07	6537	6424	3.09E-04
497	17594	17590	4.23E-08	6532	6418	3.15E-04
498	18159	18160	6.19E-09	6527	6412	3.21E-04
499	18738	18750	3.95E-07	6522	6406	3.26E-04
500	19333	19350	7.85E-07	6517	6400	3.32E-04
501	19943	19970	1.86E-06	6512	6394	3.38E-04
502	20568	20610	4.11E-06	6506	6388	3.44E-04
503	21210	21260	5.64E-06	6501	6382	3.50E-04
504	21867	21940	1.11E-05	6496	6376	3.55E-04
505	22541	22620	1.22E-05	6491	6370	3.61E-04
506	23231	23330	1.78E-05	6486	6364	3.67E-04
507	23939	24050	2.12E-05	6481	6358	3.72E-04
508	24664	24790	2.57E-05	6475	6352	3.78E-04
509	25407	25550	3.13E-05	6470	6345	3.90E-04
510	26168	26330	3.80E-05	6465	6339	3.95E-04
511	26947	27130	4.57E-05	6460	6333	4.01E-04
512	27744	27950	5.42E-05	6455	6327	4.06E-04
513	28561	28780	5.80E-05	6449	6321	4.12E-04
514	29397	29640	6.73E-05	6444	6314	4.24E-04
515	30252	30520	7.70E-05	6439	6308	4.29E-04
516	31128	31420	8.66E-05	6433	6302	4.34E-04
517	32023	32340	9.59E-05	6428	6296	4.39E-04
518	32940	33280	1.05E-04	6423	6290	4.45E-04
519	33877	34240	1.12E-04	6417	6283	4.56E-04

520	34836	35230	1.25E-04	6412	6277	4.62E-04
521	35816	36240	1.37E-04	6406	6271	4.66E-04
522	36818	37270	1.47E-04	6401	6264	4.78E-04
523	37843	38330	1.62E-04	6396	6258	4.83E-04
524	38890	39410	1.74E-04	6390	6252	4.88E-04
525	39960	40510	1.84E-04	6385	6245	5.00E-04
526	41054	41640	1.98E-04	6379	6239	5.05E-04
527	42172	42790	2.09E-04	6374	6233	5.09E-04
528	43314	43970	2.23E-04	6368	6226	5.21E-04
529	44480	45180	2.40E-04	6363	6220	5.26E-04
530	45672	46410	2.53E-04	6357	6213	5.38E-04
531	46889	47670	2.69E-04	6351	6207	5.42E-04
532	48131	48960	2.87E-04	6346	6201	5.46E-04
533	49400	50270	3.00E-04	6340	6194	5.58E-04
534	50695	51610	3.15E-04	6335	6188	5.62E-04
535	52016	52980	3.31E-04	6329	6181	5.74E-04
536	53366	54380	3.48E-04	6323	6175	5.77E-04
537	54743	55810	3.66E-04	6318	6168	5.89E-04
538	56147	57270	3.84E-04	6312	6162	5.93E-04
539	57581	58760	4.03E-04	6306	6155	6.04E-04
540	59043	60280	4.21E-04	6301	6149	6.08E-04
541	60535	61830	4.39E-04	6295	6142	6.19E-04
542	62056	63410	4.56E-04	6289	6135	6.31E-04
543	63608	65030	4.78E-04	6283	6129	6.34E-04
544	65190	66670	4.93E-04	6278	6122	6.45E-04
545	66802	68350	5.13E-04	6272	6116	6.48E-04
546	68447	70070	5.37E-04	6266	6109	6.60E-04
547	70123	71810	5.52E-04	6260	6102	6.71E-04
548	71831	73590	5.71E-04	6254	6096	6.73E-04