

UNAM IZTACALA

Universidad Nacional Autónoma de México

Facultad de Estudios Superiores Iztacala

Comparación morfométrica de esqueletos transparentados de cuatro especies de roedores myomorfos

т		E	S		I		S
QU	E PAF	ra Oe	BTEN	ER E	EL TÍT	ULO	DE
В	Ι	Ó	L		0	G	0
Ρ	R	Е	S	Е	Ν	Т	Α
Ro	meo	Εdι	uard	οL	oya	Zur	ita

Director de tesis: Dr. Jorge Ricardo Gersenowies Rodríguez

Los Reyes Iztacala, Edo. de México, 2013

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "La biología es más parecida a la historia que a la física, se debe conocer el pasado para comprender el presente. No hay teoría profética en biología, como no hay teoría profética en historia, y la razón es la misma: ambos temas son todavía demasiado complicados para nosotros, pero si podremos comprender mejor si entendemos otros casos "

Carl Sagan

A mi madre y hermanos, que me apoyaron en todo momento

A mis profesores, que me inspiraron

A mis amigos y compañeros, que me brindaron su compañía en los buenos y malos momentos

AGRADECIMIENTOS

Un trabajo de esta naturaleza, a pesar de ser la culminación del esfuerzo personal como alumno requiere de la participación de varios actores en su proceso, los cuales en la medida de sus posibilidades aportaron su tiempo, esfuerzo, intelecto e incluso dinero para hacerlo posible. Así pues, vaya mi agradecimiento en primer lugar a mi director de tesis, el Dr. Jorge Gersenowies Rodríguez, por brindarme su apoyo en el aspecto material e intelectual; a mis sinodales, Dr. Juana Luis Díaz, la M. en C. Leticia Espinoza Ávila, el M. en C. Mario Cárdenas León y el Biólogo Antonio Cisneros Cisneros, por sus comentarios y correciones sobre el texto de esta tésis; al M. en C. Agustín Carmona Castro y el Bioterio de la Facultad de Ciencias de la UNAM, por proporcionar varios especímenes de *Neotomodon alstoni* utilizados en la presenta investigación; a los compañeros del Laboratorio de Biología de la Reproducción de la UMF de la FES Iztacala, quienes también gentilmente proporcionaron especimenes; y desde luego, a la Facultad de Estudios Superiores Iztacala de la UNAM.

ÍNDICE

RESUMEN	1
I. INTRODUCCIÓN	2
II. ANTECEDENTES	4
III. OBJETIVO	10
IV. DESCRIPCIÓN DE LAS ESPECIES	11
V. MATERIALES Y MÉTODOS	14
VI. RESULTADOS Y DISCUSIÓN	18
VII. CONCLUSIONES	33
VIII. ANEXOS	34
XIX. BIBLIOGRAFÍA	40

RESUMEN

Se realizó la anatomía comparada de los esqueletos y la comparación morfométrica de *Neotomodon alstoni*, *Phodopus campbelli*, *Meriones unguiculatus y Rattus norvegicus* preparados mediante la técnica de transparentación con doble tinción. Tres especies pertenecientes a dos familias distintas (*R. norvegicus*, *N. alstoni* y *P.campbelli*) compartieron dos variables correlacionadas y una de ellas compartió el mismo tipo de crecimiento alométrico en las tres especies. Asimismo, los patrones de variables en correlación en *R. norvegicus* silvestre y *P. campbelli* parecen asemejarse a los patrones de osificación observados en la variedad de laboratorio de *R. norvegicus* y en el hámster dorado *Mesocricetus auratus*. Dos características óseas, al parecer no reportadas con anterioridad, un prepollex presente en todas las especies y un hueso heterotópico adicional al proceso espinoso de la segunda vértebra torácica, presente en *M. unguiculatus*, *R. norvegicus* y *N. alstoni* fueron observados.

Palabras clave: Meriones, Neotomodon, Phodopus, alométrico, prepollex

I. INTRODUCCIÓN

El estudio del esqueleto involucra el análisis de la forma en los vertebrados y de su importancia como sistema de soporte para el resto de las estructuras que conforman su cuerpo. Aun hoy, con los avances en biología molecular, su importancia es capital en taxonomía, sistemática y desde luego como auxiliar valioso en otras disciplinas como medicina humana y veterinaria, odontología o zoología (Hildebrand, 1988; Kardong, 2008).

Sin embargo, incluso en la actualidad y en especies bien conocidas, existen pocas descripciones completas de especies de mamíferos vivientes que incluyan el esqueleto postcraneal (Howell, 1926; Naish, 2008; Gersenowies, *com pers*). Y, si en palabras de Torrey, "no existe una estructura que no funcione y no existe una función que no se realice independientemente de una estructura" (Torrey, 1978), un estudio o monografía de cualquier vertebrado que no incluya descripción de su esqueleto puede considerarse como un estudio incompleto, además que irónicamente, este tipo de descripciones, consideradas en la actualidad anticuadas y contrarias al actual espíritu experimental de la biología, se enmarcan dentro de la investigación básica que permiten la existencia de la biología experimental actual (Mares, 1991; Grimaldi y Engel, 2007).

Para estudiar el esqueleto se ha recurrido desde la antigüedad a diversas técnicas y tecnologías que permitan fijar y preservar esta estructura (Gersenowies, 2000). En pequeños mamíferos, estas suelen ser técnicas que preservan en seco los esqueletos. La más usada utiliza escarabajos derméstidos para su limpieza (Russell, 1933; Russell, 1947; Romero *et al*, 2007) Sin embargo, las técnicas de conservación de esqueletos en seco implican por lo general una amplia desarticulación del esqueleto, con la pérdida frecuente de los elementos más pequeños tales como el báculo o los elementos de la bulla timpánica, para no hablar del daño que puede sufrir el espécimen por la manipulación para su estudio, amén de las condiciones necesarias para el mantenimiento de la colonia de insectos (Davies y Gore, 1936; Friley, 1947; Russell, 1947)

Entre las técnicas de estudio y preservación del esqueleto destacan las técnicas de transparentación y doble tinción. Estas se basan en el uso de colorantes con moléculas que muestran afinidad por el calcio de los huesos y los componentes moleculares del cartílago (Puchtler *et al*, 1969; Jebarayma *et al*; 2009, Horobin, 2010).

Las técnicas de transparentación han sido usadas en los mamíferos, principalmente con especímenes en estado prenatal (Love y Vickers, 1972; McLeod, 1980; Menegola *et al*, 2001). Sin embargo, su uso en ejemplares adultos de micromamíferos sólo recientemente han comenzado a ser apreciado (Cortés *et al*, 2009).

Sin embargo, con el uso de técnicas como la de transparentación, no sólo es posible estudiar el esqueleto completamente articulado, sino también observar detalles esqueléticos no reportados anteriormente (Bailey y Heidt, 1984; Ortega *et al*, 2000).

Esto último, es especialmente importante en grupos muy diversos, morfológicamente semejantes y taxonómicamente complicados y entre los mamíferos ninguno reúne estas características de manera tan obvia como los roedores.

Rodentia, (roedores) constituyen el orden de mamíferos más numeroso, con 2227 especies, repartidas en aproximadamente 35 familias. Se coloca en la actualidad en el clado Euarchontaglires, y se divide en los subordenes Sciuromorpha, Castorimorpha, Anomaluramorpha, Histrycomorpha y Miomorpha. Este último suborden engloba a las familias Cricetidae y Muridae, que en su conjunto, aportan el 62% de todas las especies vivientes, sus miembros son los típicos roedores con forma de "ratón". Sin embargo, el modelo morfológico típico del ratón, ha sufrido modificaciones permitiendo formas fosoriales, cursoriales, saltorias y escansoriales. (Kowalski, 1981; Vaughan, 1988; Carleton y Musser, 2005a).

Muchas especies de roedores, debido a su pequeño tamaño y rápidos ciclos reproductivos, se han utilizado como modelos de experimentación a nivel mundial (Dewsbury *et al*, 1980; Kowalski, 1981; Granados *et al*, 1996; Jackson, 1997; Rissman, 2004). y sorprendentemente, a pesar de la gran variación sobre su forma básica, las pocas descripciones anatómicas de esqueleto completo de los roedores se encuentran circunscritas a las variedades de laboratorio de *Rattus norvegicus*.

Finalmente, todo trabajo descriptivo es, en sí mismo, comparativo (Grimaldi y Engel, 2007), y si la biología debe tender a ser una ciencia que aspire a usar un lenguaje matemático y preciso, la morfometría es una herramienta para dicho fin. Esta es definida como el análisis cuantitativo de las variaciones de las formas biológicas (Roth y Mercer, 2000) siendo la alometría el concepto de las diferentes tasas de crecimiento de partes diferentes del cuerpo de un organismo respecto a su tamaño total (Huxley, 1972; Gayon, 2000)

II. ANTECEDENTES

a) Transparentación.

Davies y Gore (1936), aplicaron la técnica de Schultze, modificada por Beebe y Hollister, como medio alternativo para el estudio anatómico de pequeños vertebrados, trabajando principalmente con saurios y anfibios llevando a cabo la fijación de los tejidos con alcohol al 95%.

Cumley y colaboradores (1939) aplicaron la técnica de Shultze, combinándola con la de Lundvall, en embriones de vertebrados, encontrando que en pequeños mamíferos se obtenía el mejor resultado aclarando el tejido con tolueno y saturándolo posteriormente con naftaleno saturado en aceite de anís.

Williams (1941) emplearon la técnica de transparentación con rojo de Alizarina S y azul de toluidina en *Urodela*, encontrando que la fijación con una solución de formol al 10% reducía la maceración que provocaba el hidróxido de potasio empleado para la digestión.

Love y Vickers (1972) utilizaron azul de metileno en fetos de rata para tinción de cartílago, encontrando que teñía con precisión el cartílago.

Wassersug (1976), trabajando con renacuajos, propone el uso de una solución azul de alciano para la tinción de cartílago, con resultados superiores a los obtenidos con azul de toluidina.

Dingerkus y Uhler (1977), usando distintos tipos de vertebrados, introdujeron el uso de tripsina para la digestión de músculos, manteniendo el teñido con azul de alciano y alizarina roja S, y recomendando su uso para el estudio de tejido cartilaginoso.

McLeod (1980) adoptó el uso de acetona para la técnica de transparentación y doble tinción para la remoción de grasa y dar firmeza al cuerpo al trabajar con fetos de ratón.

Kelly y Bryden (1983) aceleraron el proceso usando el procedimiento usado por Dingerkus y Uhler mediante la incubación a 37° C. Asimismo usan como fijador una solución de formol-ácido acético-alcohol, el cual también ayuda a acelerar el proceso de transparentación.

Shelby (1983) modificaron las técnicas existentes para su uso en ratones adultos mediante la variación de la concentración de hidróxido de potasio en las diversas soluciones empleadas, con lo cual pudieron realizar la transparentación y tinción en tres días.

Menegola y colaboradores (2001) realizan un atlas de esqueletos de feto de rata a los cuales aplicaron la doble tinción y transparentación.

Cortés y colaboradores (2009) aplicaron la técnica de doble tinción con trasparentación a roedores y murciélagos adultos con miras a su uso en anatomía comparada.

b) Estudios morfométricos en los mamíferos.

Samuels y Van Valkenburgh (2002) realizaron un estudio sobre indicadores esqueléticos para tipo de locomoción en roedores extintos y vivientes; usaron 67 especies correspondientes a 16 familias y 7 modos de locomoción distintos y les aplicaron medición de relaciones, media geométrica y MANOVA a 20 características osteológicas. Encontraron poca o nula alométria interespecífica y pudieron inferir el modo de locomoción de 6 especies extintas incluidas en el estudio.

Sánchez (2002) hizo una comparación de los patrones de osificación en la ontogenia postcraneal de ocho mamíferos de la subclase Theria, comparándolos con miembros de Chelonia, Crocodilia y Lacertida, mediante una matriz que examinaba 276 pares de caracteres para cada especie. Encontró que 50.4% de los caracteres eran un carácter potencial de diagnostico para clados de dos o más taxa.

Stuermer y colaboradores (2003) realizaron una comparación alométrica entre gerbillos *Meriones unguiculatus* de laboratorio y salvajes. Esta se basó sólo en caracteres externos y encontraron que los individuos de laboratorio

presentaban señales de domesticación, debidas a selección artificial a partir de un pequeño número de individuos

Flores (2009) realizó un análisis filogenético de Didelphidae mediante la morfología postcranial. Hizo la medición y una descripción escrita y fotográfica de 114 caracteres del esqueleto postcraneal de 26 especies repartidas en 13 géneros, encontrando que los didélfidos más grande forman un grupo monofilético.

Kuncová y Frynta (2009) estudiaron la variación morfométrica interespecífica del género *Apodemus* mediante la medición de 35 caracteres del esqueleto postcraneal de 7 especies de este género y el análisis de los datos mediante método estadístico multivariante, el cual reveló claras diferencias morfológicas entre diferentes subgéneros.

c) Estudios osteológicos en Rodentia.

Tullberg (1897) realizó su clásica monografía sobre los roedores, en la que describió e ilustró de manera general la anatomía de 97 especies del orden, incluyendo el sistema óseo, de las cuales 26 son especies actualmente incluidas en Myomorpha. Basándose en los caracteres anatómicos propuso una relación filogenética del orden.

Lyon (1901), hizo la descripción y comparación del esqueleto de los roedores saltadores americanos *Zapus*, contra un jerbo verdadero eurasiático, *Dipus*. Asimismo realiza una comparación entre estas dos especies contra otros roedores saltadores; concluyendo que *Zapus* y *Dipus* representan dos tipos de especialización dentro de la misma familia (Dipodidae).

Hunt (1924) y Howell (1926), elaboraron sendas monografías acerca de la anatomía de *Rattus* y *Neotoma*, respectivamente; describiendo dentro de la anatomía general, el esqueleto. Hunt desarrolló su monografía como un manual para el estudio de la rata de laboratorio, mientras que Wood discute en su trabajo tanto de la relación entre los sistemas muscular y osteológico de la rata

magueyera, como la comparación entre los subgéneros *Homodontomys*, *Teonoma* y *Neotoma*, asi como la correlación entre la anatomía y los hábitos de estos roedores.

Strong (1925), realizó un estudio de el orden, tiempo y tasa de osificación del esqueleto en la rata de laboratorio mediante el uso de material esquelético en seco y especímenes transparentados mediante la técnica de Shultze, modificada por Mall, encontrando en resumen que las primeras regiones en osificar son las craneales y las últimas son las partes distales del esqueleto apendicular y las vértebras caudales.

Villa (1944), elaboró una descripción completa del esqueleto de *Spermophilus adocetus*, desarrollando comparaciones en algunos puntos con otros roedores; sin embargo y como el mismo lo destaca, el suyo es un trabajo básicamente descriptivo.

Chiasson (1958), presentó su manual sobre la anatomía de la rata blanca de laboratorio, enfocado específicamente como texto de aprendizaje para disección. En el hace la descripción visual y textual de las partes más relevantes del esqueleto de la rata *Rattus norvegicus*.

Thorington (1972), hizo un estudio de las proporciones y relación alométrica del esqueleto de la ardilla gris *Sciurus carolinensis* y su comparación con el del mono *Saguinus oedipus*, encontrando que la ardilla, con base a sus proporciones, comparte características de primates braquiadores, saltadores y trepadores, mientras que el estudio alométrico muestra isometría entre las longitudes del tronco y de los miembros, pero no respecto a los huesos largos de estos.

Siegel y Van Meter (1973), hicieron un análisis de correlación de características osteológicas con adaptación ecológica a hábitos arbóreos en *Peromyscus floridanus y P. gossypinus*, encontrando que aunque la proporción entre miembros de delanteros y traseros de ambas especies es similar, las relaciones de huesos largos dentro de cada especie es distinta, concluyend*o*

que los cambios en las proporciones de los huesos dan lugar a modificaciones de los pies en ambas especies.

Van de Graaff (1974) hace comparación prenatal de *Peromyscus eremicus*, *Perognathus intermedius* y *Dipodomys merriami*, usando la técnica de tinción con rojo de Alizarina roja S. Encontró que la osificación ocurre craniocaudalmente en cada especie, con un desarrollo lento en la cintura pélvica de *Perognathus*, un crecimiento isométrico en *Peromyscus* y crecimiento alométrico en la región mastoidea y en los miembros posteriores en *Dipodomys*

Bailey y Heidt (1984) estudiaron la osteología neonatal de *Onychomys leucogaster* mediante la técnica de tinción y aclarado con azul de alciano/alizarina y tripsina de Dingerkus y Uhler. Hicieron descripción del esqueleto y encontraron maduración temprana de los centros del esqueleto apendicular; un hueso sesamoideo lateral al cóndilo distal del fémur no descrito, y osificación del báculo al día uno de nacimiento.

Thorington y colaboradores (1998), hiceron un estudio comparativo de 41 caracteres óseos de todo el esqueleto en varios Sciuridae, con el fin de examinar la hipótesis del desarrollo más de una vez de la locomoción arbórea en esta familia. Su análisis sugiere que dicha hipótesis no se sostiene.

Thorington y Santana (2007), hicieron comparaciones osteológicas entre ardillas verdaderas *Microsciurus* (subfamilia Sciurini) y ardillas voladoras *Glaucomys* (subfamilia Pteromyini), mediante esqueletos, rayos X de pieles de museo e imágenes escaneadas de vertebras caudales, encontrando que las proporciones de las ardillas voladoras en la región lumbar, la cola, el zeugópodo anterior y los autópodos anterior y posterior han cambiado respecto de las ardillas arbóreas.

Weksler y colaboradores (2006), hacen la descripción y comparación de diez nuevos géneros de roedores Oryzominos, previamente clasificados como *Oryzomys*, describiendo detalles del esqueleto postcranial.

9

En 2011, Percequillo y colaboradores hicieron la descripción de especímenes de la rata *Drymoreomys albimaculatus*, que recién se había descubierto. Esta incluyó una descripción somera del esqueleto.

III. JUSTIFICACIÓN

Existe una laguna en nuestros conocimientos al no haber una descripción de esqueleto postcraneal de las especies *Neotomodon alstoni*, *Phodopus campbelli* y *Meriones unguiculatus*, todas ellas especies de laboratorio, facilmente accesibles y usadas como modelos biológicos, y por tanto se requiere un estudio acerca de las relaciones morfométricas del esqueleto en estas especies.

IV. OBJETIVO

Realizar la anatomía comparada de los esqueletos y la comparación morfométrica de *Neotomodon alstoni*, *Phodopus campbelli*, *Meriones unguiculatus y Rattus norvegicus* preparados mediante la técnica de transparentación con doble tinción.

V. HIPÓTESIS

Las hipótesis de trabajo iniciales suponen:

Hα: estructuras contiguas en el esqueleto estarían correlacionadas en su tipo de crecimiento alométrico y serían interdependientes una de otra respecto a sus dimensiones posibles.

Ho: estructuras contiguas en el esqueleto no estarían correlacionadas en su tipo de crecimiento alométrico ni serían interdependientes una de otra respecto a sus dimensiones posibles.

VI. DESCRIPCIÓN DE LAS ESPECIES

Reino:	Animalia
Phylum:	Chordata
Subphylum:	Vertebrata
Clase:	Mammalia
Subclase:	Theria
Infraclase:	Eutheria
Supraorden:	Glires
Orden:	Rodentia
Suborden:	Myomorpha
Superfamilia:	Muroidea (Springer et al, 2004; Carleton y Musser, 2005b)

Familia: Muridae

Meriones unguiculatus (Milne-Edwards, 1867)

Descrita por Alphonse Milne-Edwards en base a un ejemplar colectado por el padre Armand David en el Norte de China, este roedor ha pasado a ser una de las principales especies de laboratorio en el mundo. Conocido en español como

gerbillo o jerbo de Mongolia, es un roedor myomorfo de tamaño medio, con largo de cabeza y cuerpo en el rango entre 100 y 125 mm, con una larga cola de entre 96 a 110 mm. Las patas traseras son más alargadas que las delanteras, pero no de una manera muy marcada. Las plantas

Figura 1. Meriones unguiculatus

de sus pies bien pobladas de pelo excepto un parche cerca del talón. Su pelaje está formado por pelos de color pardo claro con la base gris pizarra y las puntas blancas; el pelo de las partes inferiores es blanca o color cuero con gris claro en la base. La cola muestra en la mitad distal una cresta distintiva y un penacho terminal de color negro. Tiene una amplia distribución en Asia central y oriental, en zonas áridas y semi-áridas, así como cultivos. (Milne-Edwards, 1867; Gulotta, 1971 Walker).

Rattus norvegicus (Berkenhout, 1769)

Una de las especies más grandes de la familia Muridae, tiene una longitud de cabeza y cuerpo entre 316 a 460 mm, con una cola entre 122 y 215 mm. Pelaje usualmente de color pardo grisáceo y vientre gris pálido a blanco, grueso y áspero. Orejas pequeñas y cola escamosa. Es un roedor excavador. Su distribución original se encontraba posiblemente al Norte de China, en ambientes riparios. Si bien llegó a América alrededor de 1775, el comensalismo de esta especie respecto del hombre ha derivado en que tenga una distribución

Figura 2. Rattus norvegicus

muy amplia en México, así como otros países. Aunque es un importante vector de enfermedades, también ha ocupado un importante lugar como animal de laboratorio en investigación médica y biológica (Chiasson, 1958; Nowak y

Paradiso, 1983: Ceballos y Galindo, 1984; Álvarez y Medellín, 2005)

Familia: Cricetidae

Neotomodon alstoni Merriam, 1898

Conocido como ratón de los volcanes, esta especie de roedor fue descrita por Merriam (1898), sobre la base de ejemplares colectados por Goldman en Nahuatzin, Michoacán.Es una especie de roedor myomorfo de tamaño medio, con un largo de 204.4mm en promedio, dentro de un rango de 173 a 224 mm. Apariencia ligeramente rotunda, cabeza relativamente grande y cola relativamente corta con respecto al cuerpo. Orejas casi desnudas y cola bicolor, más corta que el cuerpo. Patas traseras largas y angostas. Seis cojinetes plantares. El pelaje es tupido y de color gris obscuro mezclado con leonado por encima y el vientre blanco. Se caracteriza por dientes molariformesde forma prismática y coronas planas. Su distribución geográfica se restringe al Eje Neovolcánico Transversal, desde la región central de Michoacán hasta la zona central de Veracruz, limitado al rango de altitud de 2400 a 4960 msnm, en zonas de pradera boreal de zacatón y bosque abierto de pino. (Merriam, 1898; Williams y colaboradores, 1985, Chávez, 2005).

Phodopus campbelli (Thomas, 1905)

Conocido de manera común en México como "hámster chino", y descrita por el zoólogo británico Oldfield Thomas en base a un ejemplar colectado en Shaborte, en el Noreste de Mongolia, por C. W. Campbell. Esta es una especie de roedor que se ha convertido en uno de los principales modelos biológicos de laboratorio en los últimos años. Es un roedor pequeño, con un rango de 80 a 103 mm y 4 a 14 mm de cola. Pelaje tupido de color gris leonado o gris parduzco con una línea dorsal más obscura y bien definida que corre de la nuca a la base de la cola, con los labios y las mejillas blancuzcas y la partes inferiores de color crema. Sin embargo, en las estirpes domesticadas también los hay gris muy obscuro, leonado claro y blanco albino. Palmas bien pobladas de pelo. Cuentan con abazones. Su distribución geográfica abarca desde las montañas de Altai en Rusia hasta el Noreste de China, en zonas de estepa alta y semi-desiertos. (Thomas, 1905; Ross, 1995).

Figura 3. Neotomodon alstoni

Figura 4. Phodopus campbelli

VII. MATERIALES Y MÉTODOS

Se utilizaron veinte ejemplares de *Meriones unguiculatus*, veinte de *Phodopus cambelli* y doce de *Neotomodon alstoni*, todos en etapa reproductiva, los cuales fueron amablemente proporcionados por el Laboratorio de Biología de la Reproducción de la UMF de la FES Iztacala y el Bioterio de la Facultad de Ciencias de la UNAM, asimismo se utilizaron cuatro ejemplares juveniles de *Rattus norvegicus* de tipo silvestre, obtenidas en el Laboratorio de Herpetología de la FES Iztacala, estimándose su edad en aproximadamente 5 semanas, de acuerdo con los criterios de Strong (1925) y Sengupta (2011)

Los ejemplares de *Meriones* y *Phodopus* se sacrificaron en una cámara de sacrificio con cloroformo; los especímenes de *Neotomodon* y *Rattus* se obtuvieron ya sacrificados. Una vez muertos se procedió a su marcaje y desollamiento, así como a su eviseración. Preparados de esta manera fue posible empezar el proceso de teñido.

Se utilizó la técnica de doble tinción diferencial con azul de alciano y rojo de alizarina S de acuerdo con las modificaciones que se le han hecho en el Laboratorio de Anatomía Animal Comparada de la UMF de la FES Iztacala de la UNAM. El procedimiento completo consistió en la fijación del organismo previamente sacrificado en formol al 4% neutralizado con borato de sodio (10gr/lt); lavado del espécimen en agua corriente; deshidratado en tren de alcohol de 40, 60, 80, 90 y 100%; tinción en la solución de alciano; rehidratado en el tren de alcohol, en sentido inverso y tinción en la solución de rojo de alizarina S. Cada uno de los pasos por las soluciones fueron por un mínimo de 24 hr. Al terminar la tinción con el rojo de alizarina, el organismo se sometió a maceración en una solución al 4% de KOH, con un tiempo variable de 7 a 20 días, dependientes tanto del tamaño del organismo como de la temperatura ambiental. Al alcanzarse el grado de transparentación aceptable se sometió el organismo a lavado intenso de agua y finalmente diafanizacion en un tren de solución de glicerina a 40, 60, 80 y 90%, durante 24 hr en cada concentración hasta que, finalmente, se depositó en glicerina al 100% para su estudio y almacenamiento final. Esta se esquematiza en la figura 5.

Una vez obtenido el grado de transparentación y tinción adecuados se procedió a realizar un registro fotográfico detallado de los esqueletos con arreglo a grupos funcionales del mismo por medio de una cámara Canon PowerShot A560, y en casos pertinentes, se usó un microscopio estereoscópico.

Se midieron 60 caracteres esqueléticos seleccionados según las mediciones sugeridas y/o usadas en trabajos diversos (Thorington, 1972; Lira *et al*, 1994; Romero *et al*, 2007; Kunková y Frynta, 2009), y con base a los grupos funcionales del esqueleto, mediante un vernier (Tabla 1 y figuras 6 a 11).

Posteriormente se realizó el análisis morfométrico de los ejemplares mediante la conversión de las cifras en mm a su logaritmo base 10, y utilizando el programa Statistica ver. 10, la obtención de los coeficientes y porcentajes de correlación, datos que se vaciaron a hojas de cálculo de Excel y se utilizó la técnica de mínimos cuadrados, la cual permitió obtener la pendiente, y el estadístico de prueba, de acuerdo a la ley alométrica en su forma "y=bx^{α}" y las condiciones de determinación son: α =1 es isométrico, α >1 significa alometría positiva, α <1 equivale a alometría negativa, y el valor negativo de α <0 un crecimiento de tipo recíproco, según el método descrito por Gersenowies (2007)

Para la descripción del esqueleto se utilizó una comparación entre especies por grupos funcionales y huesos individuales, realizando un cuadro sinóptico para presentar la información destacando la ausencia o presencia de caracteres observables y utilizando los nombres establecidos por la *Nomina Anatómica Veterinaria*.

16

Figura 5. Proceso de transparentación

clave	abreviatura	estructura medida	clave	abreviatura	estructura medida	clave	abreviatura	estructura medida
1	LTCr	largo de cráneo	21	AsCr	asa cranela del hioides	41	LaPu	largo del púbis
2	ATCr	altura de cráneo	22	AsCa	asa caudal del hioides	42	Fe	largo del fémur
3	LaRo	largo rostral	23	LaEs	largo de la escápula	43	Ti	largo de la tibia
4	An Ro	ancho rostral	24	AnEs	ancho de la escápula	44	Fi	largo de la fíbula
5	LaMd	largo de mandíbula	25	CI	largo de la clavícula	45	LaArT-F	l. del arco tibia-fibular
6	AlMa	alto de mandíbula	26	Hum	largo del húmero	46	AnArT-F	anch del arco tibia-fibular
7	AnMd	ancho de mandíbula	27	TuDe	alt. de tuberosidad deltoide	47	Cal	largo del calcáneo
8	AlApCo	alto apófisis coronoide	28	Rad	radio	48	Ast	largo del astrágalo
9	LaApAn	largo apófisis angular	29	Uln	ulna	49	MeTa	largo de los metatarsos
10	AlFoAnOr	alto foramen infraorbital	30	Ср	largo de los carpos	50	FITa	largo de las falanges
11	LaHuNa	largo hueso nasal	31	MtCp	largo de los metcarpos	51	LaVeCe	vértebras cervicales
12	LaSuNa	largo sutura nasal	32	FICp	largo de las falanges	52	AnAt	ancho del atlas
13	LaFr	largo hueso frontal	33	Poll	largo del pollex	53	LaAt	larg del atlas
14	LaDi	largo del diastema	34	PrPoll	largo del prepollex	54	LaVeTo	vértebras torácicas
15	AnZg	ancho zigomatico	35	Est	Largo del esternón	55	La2daEN	espina neural 2da vert. Toracica
16	LaZg	largo del arc. Zig.	36	LaMa	largo del manubrio	56	SeEs	hueso heterotópico
17	AnCr	ancho cranela	37	AnMa	ancho del maubrio	57	LaVeLu	vértebras lumbares
18	LaBu	largo de la bulla timp.	38	LaXe	largo del xifoesternón	58	LaVeSa	vértebras sacras
19	AnBu	ancho b. timpánica	39	Lall	largo del ilión	59	LaVeCa	vértebras caudales
20	Сро	cpo del hiodes	40	Lals	largo del isquión	60	LT	longitud total

Tabla 1. Caracteres medidos. Se muestra la clave correspondiente a las figuras 6 a

Figura 6. Medidas tomadas, vista lateral

Figura 8. Medidas tomadas, cráneo, vista ventral

Figura 7. Medidas tomadas, cráneo, vista dorsal

Figura 9. Medidas tomadas, tórax, vista ventral

Figura 10. Medidas tomadas, mano, vista ventral

Figura 11. Medidas tomadas, pie, vista dorsal

VIII. RESULTADOS Y DISCUSIÓN

a) Morfometría

Se generaron para cada especie un grupo de combinaciones en par entre las 60 variables posibles, de las cuales 174 fueron para *M. ungiculatus*, 133 para *P. campbelli*, 87 para *N. alstoni* y 74 para *R. norvegicus*. De estas combinaciones, el mayor porcentaje de isometría es observado en *R. norvegicus*, con el 100%. Esto puede deberse al uso de sólo cuatro especímenes, que además pertenecían presumiblemente a una misma camada y por tanto, tenían posiblemente la misma edad. Aparte de este, los porcentajes de combinaciones con crecimiento isométrico serían en orden descendente *P. campbelli*, con 48.120%; *M. unguiculatus*, con 33.557% y *N. alstoni*, con 31.034%.

En orden descendente, el porcentaje de combinaciones con crecimiento alométrico negativo fue de 43.678% para *N.alstoni*, 41.610% para *M. unguiculatus* y 33.834 % para *P. campbelli*, respectivamente.

Por su parte, el porcentaje de combinaciones con crecimiento alométrico positivo observado para cada especie fue así: 10.738% para *M. unguiculatus*, 4.607% para *N. alstoni* y 1.503% para *P. campbelli*.

Finalmente, el tipo de crecimiento recíproco se observó en mayor proporción en *N. alstoni*, con 20.689%, mientras que en *P. campbelli* y *M. unguiculatus* fue de 16.541% y 14.093%, respectivamente. Lo anterior se puede ver resumido en la tabla 2:

tipo de	Meriones	Neotomodon	Phodopus	Rattus
crecimiento	unguiculatus	alstoni	cambelli	norvegicus
isométrico	33.557%	31.034%	48.120%	100%
alométrico				
	41.610%	43.678%	33.834%	-
negativo				
alométrico	10 7000/	4.0070/	1 5000/	
	10.738%	4.607%	1.503%	-
positivo				
_				
recíproco	14.093%	20.689%	16.541%	-
-				

Tabla 2. Porcentajes de tipo de crecimiento obtenidas por especie.

Cada una de las especies estudiadas compartió algunas combinaciones de variables con las otras tres, siendo *Neotomodon* la que tiene el mayor porcentaje, con 22.988%, *Meriones* con 16.778%, *Rattus* con 16% y *Phodopus* con 14.925%.

La hipótesis alternativa inicial suponía que el crecimiento de huesos individuales estaría condicionado al del hueso adyacente, pero la condición no se cumple y por tanto se tiene que admitir que dicha hipótesis debe desecharse. Sin embargo, al esquematizar las correlaciones, aparece un panorama no sólo distinto, sino es más, intrigante.

Se pudo observar que *R. norvegicus*, *P. campbelli* y *N. alstoni* mostraron dos combinaciones comunes a las tres especies: ATCr-LaVeCa (Altura total del cráneo vs longitud de las vertebras caudales) y AnZg-LaVeCe (ancho zigomático vs longitud de las vertebras cervicales), siendo la primera isométrica para las tres especies y la segunda isométrica para *R. norvegicus* y *P. cambelli*, mientras que en *N. alstoni* se registró alometría negativa. Esto está en contraposición con lo descrito por Samuels y Van Valkenburgh (2002), quienes reportan ausencia de alometría interespecífica.

Los resultados se resumen en la tabla 3 y al esquematizarse sobre la representación de los respectivos esqueletos se obtienen los patrones que se pueden observar en la figura 12.

Esquematizando las combinaciones compartidas y comparándolas con el patrón de osificación descrito para ratas de laboratorio por Strong (1925), y para hámster dorado *Mesocricetus auratus* por Beatty y Hillemann (1950), se encuentran semejanzas con los esquemas correspondientes a *R. norvegicus* y *P. campbelli*. (figura 13)

M. unguiculatus	crecimiento	N. alstoni	crecimiento	P. campbelli	crecimiento	R. norvegicus	crecimiento
ATCr-LaFr	an	LTCr-LaVeCa	an	ATCr-LT	an	LTCr-PrPoll	i
LaZg-AnEs	an	LaDi-AnZg	an	LaDi-AnZg	an	AlFoAnOrb-Est	i i
AnBu-Fe	an	LaVeCa-Lt	an	LTCr-ATCr	i.	ATCr-LaVeCa	i
AnBu-Fi	an	LTCr-ATCr	i	LTCr-LaVeCa	i i	AnZg-LaVeCe	i
CI-Hum	an	ATCr-LT	i	TiFi	i	AnRo-AnCr	i
Fe-Fi	an	Ti-Fi	i	ATCr-LaVeCa	i	LaMd-Ast	i
LaEs-Ti	i	AnZg-LaVeCe	an	AnZg-LaVeCe	i	AlApCo-LaHuNa	i
Est-MeTa	r	ATCr-LaVeCa	i	AsCa-AnMan	an	LaBuPr-Poll	i
LaSuNa-Cl	an	LaSuNa-Cl	an	TuDe-Cp	an	LaApAn-MeTa	i
LaSuNa-Ti	an	LaSuNa-Ti	an	LaVeLu-LT	an	AnRo-MeTa	i
AsCa-AnMa	an	AnBu-Fe	an	LaHuNa-LaSuNa	i	LaDi-LaPu	i
Uln-Ti	an	AnBu-Fi	an	LaHuNa-Cp	i	AnCr-LT	i
LaVeLu-LT	an	Est-MeTa	an	AnZg-Lall	i		
LaHuNa-LaSuNa	ар	CI-Hum	ар	AnCr-Ti	i		
AlMd-LaPu	i	ATCr-LaFr	i	Hum-Fi	i		
LaHuNa-Cp	i	LaZg-AnEs	i	Uln-Ti	i		
AnZg-Lall	i	LaEs-Ti	i	AlMd-LaPu	r		
AnCr-Ti	i	Fe-Fi	i	AnRo-MeTa	an		
Hum-Fi	i	AlFoAnOrb-Est	an	LaDi-LaPu	an		
TuDe-Cp	i	LTCr-PrPoll	i	AnCr-LT	i		
AnRo-AnCr	an						
LaApAn-MeTa	an				Compartidas	con M. unguicula	tus
LaMd-Ast	i				Compartidas	s con N. alstoni	
LaBu-PrPoll	i				Compartidas	con <i>P. campbelli</i>	
AIApCo-LaHuNa	r				Compartidas	con R. norvegicus	

Compartidas con dos o más especies

24

Respecto a *M. unguiculatus*, comparando los resultados obtenidos y el esquema con los resultados reportados por Rolian (2008) quien comparó el desarrollo de los miembros de esta especie con *Mus musculus* y encontró en sus datos evidencia de "división del trabajo" en la osificación y elongación de los mismo, parece cumplirse la misma condición que las dos especies anteriores, y esto puede darnos la clave no sólo del porqué de la presencia de correlaciones entre partes relativamente alejadas entre sí, sino también el por qué de sus tipos de crecimiento alométrico: episodios y tasas de desarrollo distintos de acuerdo al particular tipo de vida para la especie. En lo que concierne a *N. alstoni*, no se encontró nada con lo cual se pueda comparar en la literatura en dicho sentido, ni para especies emparentadas.

Esto no significa necesariamente que el patrón de correlaciones encontrado en animales adultos (y en el caso de los especímenes de rata, en ejemplares juveniles) sea homólogo al observado por los tres investigadores citados anteriormente, sin embargo es tentador pensar que esta serie de correlaciones en el crecimiento del esqueleto reflejan las condiciones de desarrollo de huesos individuales, derivadas de un patrón específico de heterocronía para cada especie. En la literatura disponible al respecto para Rodentia y, Mammalia en general, es todavía incipiente; en ocasiones y debido a la diferencia en técnicas usadas y especies investigadas, contradictoria respecto a sus conclusiones y limitada a regiones corporales específicas (Smith, 1997; Nunn y Smith, 1998; Bininda-Emonds *et al*, 2003; Sánchez Villagra *et al*, 2008) y por tanto, es aconsejable mayor investigación al respecto.

		r	r	
	Meriones	Neotomodon	Phodopus	Pattus norvegicus
	unguiculatus	alstoni	campbelli	Ruttus noi vegicus
	Fisuras palatinas	Fisuras palatinas	Fisuras palatinas	Fisuras palatinas
	estrechas con su	anchas con su	anchas con su	anchas con su
	límite posterior	límite posterior	límite posterior	límite posterior a
Cráneo	justo en el borde	sobrepasando	justo en el borde	la mitad del
(figuras 15	anterior de los	ligeramente el	anterior de los	primer diente
a 17)	dientes yugales;	borde anterior de	dientes yugales;	yugal; dientes
	dientes yugales	los dientes	dientes yugales	yugales de
	de aspecto	yugales; dientes	de aspecto	aspecto
	lofodonto en vista	yugales de	bunodonto en	lofodonto en

b) Descripción comparativa del esqueleto.

	oclusal; foramen	aspecto	vista oclusal;	vista oclusal;
	infraorbital muy	bunodonto en	foramen	foramen
	estrecho en la	vista oclusal;	infraorbital	infraorbital
	parte inferior;	foramen	amplio; sutura	estrecho; sutura
	sutura coronal	infraorbital	coronal en curva	coronal formando
	formando una	amplio; sutura	formando un	una curva abierta
	curva abierta en	coronal en curva	ángulo de 80°	en ángulo de
	ángulo de 130°	formando un	hacia la parte	120° hacia la
	hacia la parte	ángulo de 75°	frontal; sutura	parte frontal;
	frontal; sutura	hacia la parte	lambdoidea en	sutura
	lambdoidea en	frontal; sutura	ángulo de 110°	lambdoidea en
	ángulo de 110°	lambdoidea recta;	hacia la parte	ángulo de 175°
	hacia la parte	cresta	dorsal; cresta	hacia la parte
	dorsal; cresta	lambdoidea	lambdoidea	dorsal; cresta
	lambdoidea bien	apenas visible;	apenas visible;	lambdoidea
	visible; mandíbula	mandíbula	mandíbula	apenas visible y
	sciurognata con	sciurognata con	sciurognata con	con regiones
	proceso	proceso	proceso	cartilaginosas;
	coronoide ancho.	coronoide	coronoide	mandíbula
	pequeño y	delgado, alto y	delgado,	sciurognata con
	curvado en	curvado en	triangular y	proceso
	ángulo de 25°	ángulo de 45°	curvado en	coronoide
	hacia la parte	hacia la parte	ángulo de 40°	delgado, alto v
	dorsal; proceso	dorsal; proceso	hacia la parte	curvado en
	angular de	angular de	dorsal; proceso	ángulo de 30°
	aspecto aguzado	aspecto	angular de	hacia la parte
	y recurvado en	, rectangular v	aspecto elíptico y	dorsal; proceso
	vista lateral. v	ligeramente	recurvado en	angular de
	formando un	recurvado en	vista lateral v	aspecto
	ángulo de	vista lateral. v	formando un	redondeado v
	135°hacia el	casi recto en vista	ángulo de 70°	ligeramente
	plano lateral en	inferior; arco	hacia el plano	recurvado en
	vista inferior;	zigomático muy	lateral en vista	vista lateral, y
	arco zigomático	delgado,	inferior; arco	casi recto en
	formando una	formando una	zigomático	vista inferior;
	curva en ángulo	curva en ángulo	adelgazando de	arco zigomático
	de 110°, la parte	de 115°, con el	forma progresiva	adelgazando de
	distal del yugal	vértice en la parte	en sentido	forma progresiva
	muy ancho en	escamosa del	antero-posterior,	en sentido
	sentido dorso	yugal.	formando una	antero-posterior,
	ventral.		curva muy abierta	formando una
			en ángulo de	curva abierta en
			110°, con el	ángulo de 100°.
			vértice en la parte	
			escamosa del	
			yugal.	
	Basihial formando	Basihial formando	Basihial recto y	Basihial formando
Hioidoc	un arco de 80°;	un arco de 118°;	los bordes	un arco de 80°;
/Eiguras 17	ceratobranquial	ceratobranquial	formando un	ceratobranquial
(FIGULAS 1/	con longitud igual	con longitud igual	arco de 40°;	con longitud de
y 10)	o menor del 48%	o menor del 37%	ceratobranquial	igual o menor del
	del basihial;	del basihial;	con longitud	50% del basihial;

	hipohial con longitud igual o menor del 30% del basihial	hipohial con longitud igual o menor del 17% del basihial	igual o menor del 59% del basihial; hipohial con longitud igual o menor del 30% del basihial	hipohial con longitud igual o menor del 23% del basihial
Clavicula (figura 19)	Extremo distal formando un triángulo recto con los catetos en el lado exterior. Extremo proximal curvado en ángulo de 35°; curvatura del hueso superior a 170°	El extremo proximal curvado en ángulo de 35°; curvatura del hueso superior a 170°	El extremo proximal se ensancha formando un óvalo; parte distal se eleva a 10°; curvatura superior a 170°	Curvatura de 170°. El extremo distal ensanchado.
Escápula (figuras 20 y 21)	Fosa infraespi- nosa muy desarrollada y el borde axilar alargado con el ángulo inferior agudo; la fosa supraespinosa más redondeada y menos extendida, con borde superior casi recto y ángulo medial muy abierto, Proceso coracoides muy robusto.	Fosas supraespinosa e infraespinosa muy semejantes en extensión; borde superior formando una curva abierta y borde axilar recto; ángulo superior muy abierto e inferior formando un pequeño reborde; espina ligeramente más alta; proceso coracoides con extremo medial afilado. Proceso del acromion curvado en ángulo de 65° hacia el frente.	Fosa supraespi- nosa más extendida, con el borde superior y el ángulo superior formando una amplia curva a 90°; fosa infraespinosa con borde axilar y ángulo inferior rectos. Proceso coracoides con extremo medial muy afilado. Proceso del acromion recto	fosa supraespi- nosa y fosa infraespinosa con desarrollo equivalente, ángulos superior e inferior con curvatura de 100°, borde superior con curvatura poco pronunciada; borde axilar casi recto; proceso coracoides con aspecto obtuso
Húmero (figura 21)	Corto y relativamente grácil; tuberosidad deltoide, se eleva abruptamente en forma en forma triangular equilátera, muy prominente y	Relativamente grácil y largo; tuberosidad deltoide surge abruptamente en forma triangular equilátera, ligeramente curvada en el ápice. Epicóndilo	Robusto y corto, tuberosidad deltoide pequeña en forma triangular equilátera; epicóndilo distal muy amplio.	Muy robusto y corto; con tuberosidad deltoide surgiendo suavemente formando una forma triangular recta; epicóndilo distal muy

	ligeramente	distal		robusto.
	curvada en el	moderadamente		
	ápice; epicóndilo	desarrollado.		
	distal			
	moderadamente			
	desarrollado.			
			De aspecto	
			intermedio entre	
	Robustos v		Meriones y	Aspecto robusto;
	ligeramente	De aspecto grácil;	Neotomodon.	el radio muestra
	arqueados en	radio y ulna	Radio	una pequeña
	vista nosterior Se	aproximadamen-	ligeramente	tuberosidad de
Radio y	observa una	te iguales en	arqueado y muy	aspecto cónico en
ulna.	nequeña	grosor, muy	delgado en la	la parte proximal.
(figura 21)	tuberosidad de	juntos. Proceso	zona proximal;	Ulna ligeramente
	forma cónica en	del olecranon	tuberosidad del	más gruesa que el
	la narte provimal	aparentemente	radio más	radio; más
	del radio	muy alargado.	desarrollada.	separados en la
			Proceso del	parte medial.
			olecranon muy	
			extendido.	
	Radial de tamaño	Radial muy	Radial de tamaño	Radial
	equivalente al	grande en	equivalente al	relativamente
	ulnar y de forma	relación al ulnar y	ulnar y de forma	grande en
	triangular en vista	de forma	rectangular en	relación al ulnar
	dorsal; pistorme	rectangular en	vista dorsal;	y de forma
	de forma ovalada,	vista dorsal;	pistorme de	rectangular en
	poco elongado en	pistorme de	torma	vista dorsal;
	sentido dorso		espatulada, muy	pistorme de
	ventral;	acuminada, muy	elongado en	
	formando un	elongado en	ventral	nuy elongado en
	nranallay bion	ventral:	falciformo	vontral:
	desarrollado: ol	falciformo	formando un	falciformo
	nolley presenta	formando un	nrenolley bion	formando un
Mano	un sosamoidoo	nranollay bion	dosarrollado: ol	nrenolley bion
(figuras 21	motocornal	desarrollado: ol	nollov proconto	dosarrollado: ol
y 22)	superior de forma	nolley presenta		nolley no
	redondeada noco		metacarnal	nresenta
	notable: dobles	metacarnal	superior de forma	sesamoideo
	sesamoideos en	superior de forma	redondeada muv	metacarnal
	el plano palmar	triangular muy	pequeño: dobles	superior: dobles
	de la norción	destacado: dobles	sesamoideos en	sesamoideos no
	distal de los	sesamoideos en	el plano palmar	osificados en el
	metacarpos: un	el plano palmar	de la porción	plano palmar de
	sesamoideo	de la porción	distal de los	la porción distal
	grande y de	distal de los	metacarpos; un	de los
	forma rectangular	metacarpos; un	sesamoideogrand	metacarpos; no
	en el plano	sesamoideo	ede forma	se observa
	palmar de la	diminuto de	rectangular en	sesamoideo en
	porción proximal	forma alargada	sentido	las falanges

	de las falanges distales.	en sentido parasagital en el plano palmar de la porción proximal de las falanges distales.	parasagital en el plano palmar de la porción proximal de las falanges distales.	distales.
Esternón (figura 19)	Manubrio en forma de "T", con las alas laterales cada una ligeramente curvadas en su borde superior, dos huesos sesamoideos en la parte interna y una espina central muy desarrollada; cuatro segmentos en el esternebrio; xifoides largo y delgado con cartílago xifoestermal osificado en su parte central en forma de abanico, más denso en los bordes y menos en la parte central; doce costillas.	Manubrio en forma de "T", borde superior recto, dos huesos sesamoideos en la parte interna; cuatro segmentos del esternebrio; xifoideo muy largo y delgado con cartílago xifoesternal moderadamente osificado en forma de abanico en su parte central; catorce costillas.	Manubrio con alas laterales mu pequeñas y anchas en forma deltoide invertida; cuatro segmentos del esternebrio; xifoideo corto y delgado; cartílago xifoesternal no osificado.	Manubrio con alas laterales extendidas en forma trapezoidal invertida yespina central bien desarrollada; cuatro segmentos del esternebrio; xifoideo muy delgado, cartílago xifoesternal no aparece osificado.
Cintura pélvica (figuras 23 y 24)	llion largo, robusto y aparentemente aplanado en sentido lateral;espina iliaca ventral formando una curva hacia el plano parasagitalde 150°; espina iliaca dorsal recta y poco saliente; tubérculo muscular prominente; eminencia	Ilión alargado, robusto y aplanado en sentido lateral; espina iliaca ventral formando una curva hacia el plano parasagital de 120°; tubérculo muscular bien definido eminencia iliopectinall poco prominente; pubis grácil en vista ventral formando un	Ilión, isquion y pubis bien definidos con suturas osificadas; Ilión de aspecto grácil; espina iliaca ventral formando una curva hacia el plano parasagital de 175°; tubérculo muscular pequeño; eminencia iliopectinal no aparente; pubis de aspecto grácil	Ilión, isquion y pubis bien definidos, suturas no osificadas; espina iliaca ventral formando una curva hacia el plano para sagital de 175°; espina iliaca dorsal prominente; tubérculo muscular poco aparente; eminencia iliopectinal poco desarrollada; pubis muy

	iliopectinal poco protuberante, pubis robusto en vista ventral formando un ángulo de 80°.	ángulo de 45°	en vista ventral formando un ángulo de 50°.	robusto formando un ángulo de 50°.
Báculo (figura 25)	En forma de clavija en "T", con alas laterales en la parte proximal, muy extendidas y ligeramente curvadas hacia abajo en los extremos; el resto del hueso delgado, recto y corto; la parte distal aparentemente cartilaginosa con un osificación en la punta.	Largo, recto y delgado, con la parte proximal abultada de forma romboidal; extremo distal afilado.	Corto, ligeramente curvado y aplanado en sentido dorso- ventral; extremo proximal abultado en forma oval alargada; en el extremo distal termina de manera abrupta la estructura osificada y es evidente una punta cartilaginosa bífida.	Corto, recto y delgado, con ligeros abultamientos en los extremos; el extremo proximal de forma cónica; la punta del extremo distal obtuso, no afilado.
Fémur (figura 24)	Aspecto grácil; trocánter mayor muy prominente, presentando una tuberosidad en la parte externa de forma triangular y dirigida hacia él frente; trocánter menor protuberante; se observa un tercer trocánter en forma laminar muy prominente en la parte externa; cuatro huesos sesamoideos en la articulación distal, dos delanteros y dos traseros.	Aspecto grácil; trocánter mayor comparativament e bajo; trocánter menor muy prominente; se observa un tercer trocánter en forma laminar muy poco prominente en la parte externa; cuatro huesos sesamoideos en la articulación distal, dos delanteros y dos traseros.	Aspecto grácil; trocánter mayor más bien bajo y de aspecto liso; trocánter menor muy desarrollado; se observa un tercer trocánter en forma laminar poco prominente en la parte externa; cuatro huesos sesamoideos en la articulación distal, dos delanteros y dos traseros.	Aspecto muy robusto; Trocánter mayor de forma redondeada; trocánter menor prominente; se observa un tercer trocánter en forma laminar poco prominente en la parte externa; cuatro huesos sesamoideos en la articulación distal, dos delanteros y dos traseros, todavía en estado cartilaginoso.
Tibia y	Aspecto más bien	Aspecto más bien	Aspecto más bien	Aspecto muy
fibula (figura 24)	robusto; la articulación	gracii; ia articulación	gracii; ia articulación	robusto; la articulación

	proximal de la fíbula muestra una tuberosidad bien desarrollada; crestas anterior y lateral de la tibia bien desarrolladas; articulaciones distales estrechas en vista anterior.	proximal de la fíbula muestra una tuberosidad poco desarrollada; crestas anterior y lateral de la tibia reducidas; articulaciones distales estrechas en vista anterior.	proximal de la fíbula no muestra tuberosidad; crestas anterior y lateral de la tibia ausentes; articulaciones distales estrechas en vista anterior.	proximal de la fíbula muestra una tuberosidad bien desarrollada; crestas anterior y lateral de la tibia poco desarrolladas; articulaciones distales muy anchas en vista anterior.
Pie (figura 24)	Calcáneo en forma rectangular con la articulación interior elongada de forma triangular; un sesamoideo redondeado entre el medial cuneiforme y el primer metatarsal; dos sesamoideos de forma rectangular en el plano plantar de la parte distal de los metatarsos; sesamoideo grande de forma rectangular en la porción distal de las falanges mediales.	Calcáneo en forma cruciforme con la articulación interior elongada de forma rectangular; un sesamoideo redondeado entre el medial cuneiforme y el primer metatarsal; dos sesamoideos de forma triangular en el plano plantar de la parte distal de los metatarsos; sesamoideo diminuto de forma ovalada en la porción distal de las falanges mediales.	Calcáneo en forma cruciforme con la articulación interior elongada de forma oval; un sesamoideo redondeado sobre el navicular; dos sesamoideos de forma oval, fusionados por un puente cartilaginoso, en el plano plantar de la parte distal de los metatarsos; sesamoideo alargado de forma espatulada en la porción distal de las falanges mediales.	Calcáneo en forma rectangular con la articulación interior elongada de forma ovalada; un sesamoideo redondeado sobre el navicular; dos sesamoideos de forma triangular no osificados en el plano plantar de la parte distal de los metatarsos; no se observa sesamoideo en las falanges mediales.
Vértebras cervicales (figuras 20, 21 y 27)	Atlas con alas laterales aplanadas en sentido antero- posterior muy desarrolladas; axis con proceso espinoso muy ancho, proceso odontoide corto y ancho.	Atlas con alas laterales aplanadas en sentido antero- posterior poco desarrolladas y fenestradas; axis con proceso espinoso muy ancho y proceso odontoide corto y ancho.	Atlas con alas laterales en sentido antero- posterior pequeñas; axis con proceso espinoso redondeado; proceso odontoide largo.	Atlas con alas laterales en sentido dorso- ventralmente muy desarrolladas; se observan las suturas del cuerpo de la vértebra; axis con proceso espinoso bajo y ancho; proceso odontoide largo.

Vértebras torácicas (figuras19 y 20)	Proceso espinoso de la 2ª vértebra muy alto , con presencia de un hueso heterotópico largo y delgado bien desarrollado en el extremo, y con osificación local del <i>splenium</i> ; doce vértebras torácicas, procesos espinosos en vértebras torácicas de altura creciente a partir de la 3a vértebra hasta la doceava,muy prominentes a partir de la 6ª, de forma puntiaguda hasta la 7ª, y a partir de la 8a progresivamente más cuadrados;	Proceso espinoso de la 2ª vértebra muy alto, con presencia de un hueso heterotópico poco desarrollado en el extremo, sin osificación local del <i>splenium;</i> procesos espinosos en vértebras torácicas de altura creciente a partir de la 3a vértebra hasta la catorceava, bajos ypoco prominentes.	Proceso espinoso de la 2ª vértebra muy alto, sin presencia de hueso heterotópico en el extremo, y sin osificación local del <i>splenium;</i> procesos espinosos en vértebras torácicas de altura creciente a partir de la 3a vértebra hasta la catorceava, bajos y poco prominentes.	Proceso espinoso de la 2ª vértebra muy alto, con presencia de un hueso heterotópico poco desarrollado en el extremo, y sin osificación local del <i>splenium;</i> procesos espinosos en vértebras torácicas de altura creciente a partir de la 3a vértebra, poco protuberantes.
Vértebras lumbares (figura 23 y 24)	Seis vértebras lumbares presentes y de aspecto muy robusto, procesos transversos muy desarrollados en ángulo menor a 15° respecto de la columna vertebraly dirigidos hacia abajo; se observa en vista ventral una línea de crestas.	Cinco vértebras presentes, pequeños; procesos transversos gruesos en ángulo de 20° respecto la columna vertebral; Se observan procesos dobles en vista ventral a partir de la 11a vértebra torácica y hasta la última vértebra lumbar.	Seis vértebras lumbares presentes; procesos transversos muy cortos y anchos que forman ángulo de 30° respecto de la columna vertebral; la parte ventral se muestra lisa.	Procesos transversos desarrollados y delgados dirigidos hacia afuera formando un ángulo de 12° respecto de la columna vertebral; la vista ventral no presenta procesos o crestas.
Vértebras sacras (figura 23 y 24)	ei sacro presenta los procesos espinosos de la parte intermedia fusionados, con forámenes	ei sacro no presenta los procesos espinosos de la parte intermedia fusionados, con	ei sacro presenta los procesos espinosos de la parte intermedia fusionados, con forámenes	ei sacro presenta los procesos espinosos de la parte intermedia fusionados, con forámenes

	intervertebrales	forámenes	intervertebrales	intervertebrales
	amplios y la	intervertebrales	amplios y la	amplios y la
	superficie	pequeños y	superficie	superficie
	articular del ilion	procesos	articular del ilion	articular del ilion
	delgada en su	transversos	delgada en su	delgada en su
	borde exterior;	anchos;	borde exterior;	borde exterior;
Vértebras caudales (figura 26)	Las cuatro primeras vértebras caudales presentan procesos transversos muy anchos en vista dorsal, presentándose en vista ventral una doble hilera de procesos, con aumento de tamaño en sentido cefalo- caudal, con un máximo a la mitad de la cola, y luego disminución. Se observan de 23 a 24 vertebras	Las cuatro primeras vértebras caudales presentan procesos transversos angostos en vista dorsal, se presenta en vista ventral una doble hilera de procesos, con disminución progresiva de tamaño en sentido cefalo- caudal. Se observan de 26 a 27 vértebras.	Las dos primeras vértebras presentan procesos transversos muy pequeños en vista dorsal; no se observan procesos en vista ventral. Se observan de 9 a 10 vértebras.	las cuatro primeras vértebras caudales presentan procesos transversos angostos en vista dorsal; Se presentan en vista ventral una doble hilera de procesos muy pequeños, con disminución progresiva de tamaño en sentidos cefalo- caudal, todavía no osificados. Se observan 28 vértebras.

Lo primero que se observa es la robustez de los componentes del esqueleto postcraneal en *M. unguiculatus* y *R. norvegicus* que son las especies más grandes; por otro lado, los dos roedores más pequeños, *N. alstoni* y *P. campbelli* muestran componentes esqueléticos más gráciles comparados con las otras dos especies (figura 26). Aquí podemos argumentar que nos encontramos ante un problema de escala: de manera general, en mamíferos terrestres los animales más grandes tenderán a tener huesos más grandes y sobre todo más cortos, proporcionalmente, que los más pequeños (Christiansen, 1999; Biewener, 2005)

En los roedores, por otra parte, el modo de vida y de locomoción tienen considerable influencia en la forma del cuerpo, más que el tamaño corporal. Así por ejemplo, queda de manifiesto que en Rodentia, los miembros delanteros, adaptados por lo general a la excavar y recoger comida, no suelen tener

relación con el modo de locomoción, que es a lo que suelen estar adaptados los miembros traseros (Price, 1993)

Las proporciones y aspecto de los elementos del esqueleto apendicular de *M. unguiculatus, R. norvegicus, N. alstoni y P. campbelli* indicarían un hábito de locomoción terrestre con fuerte tendencia a la cuadripedación, capacitad semifosorial y habilidad saltatoria limitada, de acuerdo con los hábitos de locomoción descritos por Samuel y Van Valkenburgh (2002), sin embargo, y tal como indican los datos de dichos autores, diversas especies de Rodentia tienden a tener una gran plasticidad en sus hábitos de locomoción. De ahí que *P. cambelli*, con una relación de Cintura pectoral/Cintura pélvica de 92, sea muy diferente a *R. norvegicus*, con relación de 83; mientras que *M. unguiculatus* con relación CinPec/CinPel de 59 y aparentemente más cercano a *R. norvegicus* en proporciones, se pueda comparar mejor con *N.alstoni*, que observa para la misma relación un valor de 65.

Una sorpresa resulta el encontrar un *prepollex* bien desarrollado en las cuatro especies estudiadas (figura 22). El panda gigante, el panda rojo, varias especies de Talpidae, Soricidae y Didelphidae, son algunos tipos de mamíferos que han desarrollado este tipo de hueso sesamoideo en grado considerable. Entre los roedores, sin embargo, el *prepollex* ha sido reportado sólo entre los lemming *Dicrostonyx* y *Lemmus* (Lessertisseur y Saban, 1967) y recientemente por Schmitt y colaboradores (2009) en la rata topo del género *Fukomys*.

Asimismo, la presencia de un hueso heterotópico en la 2a vértebra torácica (figura 27), en *M. unguiculatus*, *R. norvegicus* y *N.alstoni*, no ha sido reportado. Este hueso heterotópico está bien desarrollado en el gerbillo y la rata, pero en el ratón de los volcanes es pequeño y no se presentó en dos individuos. Su presencia puede deberse a la osificación del *ligamentum nuchae*, provocada por las fuerzas presentes durante la locomoción.

La presencia de procesos transversos robustos en las vértebras lumbares es indicativa del desarrollo de la musculatura lumbar, asociada con el salto en Sciuridae (Thorington, 1972; Thorington y colaboradores, 1998; Thorington y Santana, 2007) En roedores terrestres como *M. unguiculatus, R.norvegicus* y

N. alstoni implicaría capacidad saltatoria, y estaría asociada al desarrollo de la cintura pélvica.

Las vértebras caudales conforman la estructura caudal que, en los mamíferos terrestres, tiene funciones no sólo mecánicas, sino también conductuales y fisiológicas. Sin embargo, el estudio del órgano caudal en los mamíferos en general, y en los roedores en particular, no ha sido muy prólijo. En roedores, como la rata canguro *Dypodomys*, la rata almizclera *Ondatra* y la ardilla voladora *Glaucomys* se ha estudiado su función como ayuda en la locomoción como balancín, timón o incluso freno (Hickman, 1979) Es de suponer por tanto que en las especies aquí tratadas tiene las mismas funciones. Sin embargo, en *P. campbelli*, se presenta una reducción progresiva de la cola, por lo que las funciones normalmente asociadas con la generalidad de los roedores en las que se ha estudiado no pueden ser posibles. Resulta por demás obvio decir que deben realizarse más estudios con respecto a esta interesante situación.

IX. CONCLUSIONES

- a) el objetivo planteado se cumple; ya que mediante la técnica de transparentación empleada se pueden preparar pequeños mamíferos, hacer la descripción de su sistema esquelético y estudiarlos morfométricamente. Tanto la técnica de preparación como el método de análisis morfométrico empleados resultaron ser herramientas poderosas y, a la vez, sencillas para el estudio anatómico en laboratorio.
- b) Tres especies pertenecientes a dos familias distintas (*R. norvegicus*, *N. alstoni* y *P.campbelli*) comparten dos variables correlacionadas: Altura total del Cráneo vs Longitud de la Vértebras Caudales (ATCr-LaVeCa) y Ancho Zigomático vs Longitud de las Vértebras Cervicales (AnZg-LaVeCe) mostrando la primera de ellas el mismo tipo de crecimiento alométrico en las tres especies.
- c) Los patrones de variables en correlación en *R. norvegicus* silvestre y *P. campbelli* parecen asemejarse a los patrones de osificación observados en la variedad de laboratorio de *R. norvegicus* y en el hámster dorado *Mesocricetus auratus*.
- d) Dos características óseas, al parecer no reportadas con anterioridad, un prepollex presente en todas las especies y un hueso heterotópico adicional al proceso espinoso de la segunda vértebra torácica, presente en *M. unguiculatus*, *R. norvegicus* y *N. alstoni* fueron observados.

X. ANEXOS

Phodopus campbelli

Meriones unguiculatus

Figura 15. Cráneos, vista lateral

Figura 16. Cráneos, vista dorsal

Figura 17. Cráneos, vista ventral

Figura 18. Hioides, vista ventral

Figura 19. Caja torácica, vista ventral

Figura 20. Cintura pectoral, vista dorsal

Figura 21. Cintura pectoral, vista lateral

Figura 22. Mano izquierda, mostrando prepollex

Figura 23. Cintura pélvica, vista dorsal

Figura 24. Cintura pélvica, vista lateral

Figura 25. Báculos

Figura 26. Esqueletos, vista lateral

Meriones unguiculatus Figura 27. 2da vértebra torácica, detalle

XI. REFERENCIAS BIBLIOGRÁFICAS

- Álvarez, J. y Medellín, R. A. (2005). *Rattus norvegicus*. En Medellín, R.
 A. *Vertebrados superiores exóticos en México: diversidad, distribución y efectos potenciales*. Instituto de Ecología, Universidad Nacional Autónoma de México. Bases de datos SNIB-CONABIO.http://www.conabio.gob.mx/conocimiento/exoticas/fichaexoticas/Rattusnor vegicus00.pdf
- Bailey, J. W. and Heidt, G. A. (1984). Postnatal osteology of the northern grasshopper mouse, Onychomys leucogaster. Arkansas Academy of Sciences Proceedings. 37: 13-16.
- Beatty, M. D. and Hillemann, H. H. (1950). Osteogenesis of the golden hamster. The American Society of Mammalogist. Journal of Mammalogy, 31 (2), 121-134.
- Biewener, A. A. (2005). Biomechanical consequences of scaling. The Journal of Experimental Biology, 208 (9): 1665-1676.
- Bininda-Emonds, O. R. P; Jeffrey, J. E; and Richardson, M. K. (2003). Is secuence heterochronyan important evolutionary mechanism in mammals? Journal of Mammalian Evolution, 10 (4): 335-361.
- Carleton, M. D. and Musser, G. G. (2005a). Order Rodentia en: Wilson,
 D. E. and Reeder, D. M (eds): *Mammal species of the world. A taxonomic and geographic reference* (3rd ed.) John Hopkins University
 Press. Pp. 745-751.
- Carleton, M. D. and Musser, G. G. (2005b). Superfamilia Muroidea en: Wilson, D. E. and Reeder, D. M (editors: *Mammal species of the world. A taxonomic and geographic reference* (3rd ed.) John Hopkins University Press. Pp. 894-904.

- Ceballos, G. y Galindo C. (1984). Mamíferos silvestres de la Cuenca de México. Editorial Limusa, México. Pp. 221-223.
- Cortés, N; Perez, J and Hoyos, J. M. (2009). Staining procedure of cartilage and skeleton in adult bats and rodents. International journal of Morphology 27(4):1163-1167.
- Chávez, C. B. (2005). Ratón de los volcanes. En Ceballos, G. y Oliva, G; (eds); Los mamíferos silvestres de México. CONABIO/Fondo de Cultura Económica, 669-701.
- Chiasson, R. B. (1958). Laboratory anatomy of the white rat. 4ta edición.
 Wm. C. Brown Publisher, Dubuque, Iowa. 129 p.
- Christiansen, P. (1999). Scaling of the limb long bones to body mass in terrestrial mammals. Journal of Morphology, 239 (2): 167-190.
- Cumley, R. W, Crow, J. F. and Griffen, A. B. (1939). Clearing specimens for the demostration of bone. Stain Technology 14(1): 7-11.
- Davis, D. D. and Gore, U. R. (1936). Clearing and staining skeletons of small vertebrates. Field Museum of Natural History. Technique series No. 4, Chicago, U.S.A. 15 p.
- Dewsbury, D. A; Baumgardner, D. J; Evans, R. L. and Webster, D. G. (1980). Sexual dimorphism for body mass in 13 taxa of muroid rodents under laboratory conditions. The American Society of Mammalogist. Journal of Mammalogy, 61 (1), 146-149.
- Dingerkus, G. and Uhler, L. D. (1977). Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technology 52(4): 229-232.

- Flores, D. A. (2009). Phylogenetic analysis of postcranial skeletal morphology in didelphid marsupials. AMNH. Bulletin of the American Museum of Natural History. No. 320, 1-18.
- Friley, C. E. (1997). Preparation and preservation of the baculum of mammals. American Society of Mammalogist. Journal of Mammalogy, 28(4): 395-397.
- Gayon, J. (2000). History of the concept of allometry. American Zoologist, 40 (5): 748-758.
- Gersenowies, J. R. (2000). Historia de la anatomía animal comparada. Serie Lecturas de anatomía animal comparada. Monografía No. 1. Textos electrónicos de biología. Laboratorio de Anatomía Animal Comparada. UNAM. Campus Iztacala. Febrero de 2000. Pp 56.
- Gersenowies, J. R. (2007). Alometría. Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. 142 p.
- Granados, H. Luis, J. Carmona, A. Espinosa, G. y Arenas, T (1996). comportamiento agresivo del ratón de los volcanes Neotomodon alstoni (Rodentia: Cricetidae). Revista de Biología Tropical, 44 (2): 861-865.
- Grimaldi, D. A. and Engel, M. S. (2007). Why descriptive science still matters? American Institute of Biological Science, Bioscience, 57 (8): 646-647.
- Gulotta, E. F. (1971). *Meriones unguiculatus*. The American Society of Mammalogists. Mammalian Species. (3) 1-5.
- Hickman, G. C. (1979). The mammalian tail: a review of functions. Mammal Review, 9 (4): 143-157.

- Hildebrand, M. (1988). Anatomía y desarrollo de los vertebrados. (6 tomos). Editorial Limusa, México. Pp 24-25.
- Hunt, H. R. (1924). A laboratory manual of the anatomy of the rat. The Macmillan Company, New York. 123 P.
- Howell, B. A. (1926). Anatomy of the wood rat. Monographs of the American Society of Mammalogist. Baltimore. The Williams and Wilkins Company. 224 P.
- Horobin, R. W. (2010). How do dyes impart color to different components of the tissues? En Kumar, G. L. y Kiernan, J. A; 2010: *Special Stains and H. & E. Education Guide*. (2nd ed), Dako North America, California.Pp.159-162. http://www.dako.com/us/08066 special stains eduguide.pdf
- Huxley, J. (1972). Problems of relative growth. (2nd ed.) Dover Publications, New York, 312 p.
- Jackson, R. K. (1997). Unusual laboratory rodent species: research use, care and associated biohazards. The National Academy of Science. ILAR Journal. 38 (1). http://dels-old.nas.edu/ilar_n/ilarjournal/38_1/index.shtml
- Jebaramya, J. Ilanchelian, M. and Prabahar, S. (2009). Spectral studies of tolouidine blue o in the presence of sodium dodecyl sulfate. Digest Journal of Nanomaterials and Biostructures. 4 (4), 789-797.
- Kardong, K. V. (2008). Vertebrates: comparative anatomy, function, evolution. (5th ed.) McGraw Hill. Pp 6-7.
- Kelly, W. L. and Bryden, M. M. (1983). A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technology. 588(3): 131-134.

- Kowalski, K. (1981). Mamíferos. manual de teriología. H. Blume ediciones, Madrid. Pp 215-216, 351-374.
- Kuncová, P. and Frynta, D. (2009). Interspecífic morphometric variation in the postcranial skeleton in the genus Apodemus. Societé Royale Zoologique de Belgique. Belgian Journal of Zoology, 139 (2): 133-146.
- Lessertisseur, J. et Saban, R. (1967). Squelette appendiculaire. en Grassé, P. P. (ed.) *Traité de Zoologie*, Tome XVI, fas. 1. Masson et Cie, Paris. p 796-797.
- Love, A. M. and Vickers, T. H. (1972). Durable staining of cartilage in foetal rat skeleton by methylene blue. Stain Technology 47(1): 7-11.
- Lyon, M. W. (1901). A comparison of the osteology of the jerboas and jumping mouse. The Smithsonian Institution. Proceedings of the U. S. National Museum, 23 (1228): 659-668.
- Mares, M. A. (1991). How Scientists can impede the development of their discipline:egocentrism, small pool size, and the evolution of "sapismo". En Mares, M. A.and Schmidly, D. J. (ed.) *Latin American Mammalogy*. Oklahoma Museum of Natural History Publication. Pp. 57-75.
- McLeod, M. J. (1980). Differential staining of cartilage and bone in whole mouse fetuses by alcian blue and alizarin red S. Teratology 22: 229-301.
- Merriam, C. H. (1898). A new genus (Neotomodon) and three new species of murine rodents from the mountains of southern Mexico. Biological Society of Washington, 12: 127-129.
- Menegola, E.Broccia, M. L. and Giavini, E. (2001). Atlas of rat fetal skeloton double stained for bone and cartilage. Teratology 64: 125-133

- Milne-Edwards, A. (1867). Observations sur les mammiferes du Nord de la Chine. Annales des Sciences Naturelles. 8, 5° serie. 375-377.
- Naish, D. (2008). Bipedal orangs, gait of a dinosaur, and a new-look Ichthyostega: exciting times in functional anatomy part I. Tetrapod Zoology .http://scienceblogs.com/tetrapodzoology/2008/04/28/functional-anatomypart-i/
- Nowak, R. M. and Paradiso, J. L. (1983). Walkers's mammals of the world. (4th ed.) The John Hopkins University Press, Baltimore. Pp 652, 743-747.
- Nunn, C. L and Smith, K. K. (1998). Statistical analyses of developmental sequences: the craniofacial region in marsupial and placental mammals. The University of Chicago Press. The American Naturalist. 152 (1): 82-101.
- Ortega, J. G. Villa, B. y Gersenowies, J. R. (2000). Polydactyly and other features of the manus of the vaquita Phocaena sinus. The Society of Marine Mammalogy, Marine Mammal Science, 16(2): 277-286.
- Percequillo, A.R. Weksler, M. and Costa, L. P. (2011). A new genus and species of rodent from the Brazilian Atlantic Forest (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini) with comments on oryzomyine biogeography. The Linnean Society of London. Zoological Journal of the Linnean Society, 161: 357-390.
- Price, M, V. (1993). A functional-morphometric analysis of forelimbs in bipedal and quadripedal heteromyid rodents. Biological Journal of the Linnean Society, 50 (4): 339-360
- Puchtler, H. Meloan, S. N. and Terry, M. S. (1969). On the history and mechanism of alizarin and alizarin red S for calcium. The Histochemycal Society, Journal of Histochemestry and Cytochemestry, 17 (2): 110-124.

- Rissman, E. F. (2004). Thinking outside the mouse box: the importance of comparative laboratory animal models in research. The National Academy of Science. ILAR Journal, 45 (1): 1-3.
- Rolian, C. (2008). Developmental basis of limb length in rodents: evidence for multiple divisions of labor in mechanisms of endochondral bone growth. Evolution and Development, 10(1): 15-28.
- Romero, M. de L. Sánchez, C; García, C. y Owen, R. D. (2007). Mamíferos pequeños. Manual de técnicas de captura, preparación, preservación y estudio. Universidad Nacional Autónoma de México, Las Prensas de Ciencias, México. Pp. 34-37, 67-82.
- Ross, P. D. (1995). <u>Phodopus campbelli</u>. The American Society of Mammalogists. Mammalian Species. (503): 1-7.
- Roth, V. L. and Mercer, J. M. (2000). Morphometrics in development and evolution. The Society for Integrative and Comparative Biology. American Zoologist, 40 (5): 801-810.
- Russell, W. C. (1933). Dermestid beetles as an aid in cleaning bones. American Society of Mammalogist. Journal of Mammalogy, 14(4): 372-374.
- Russell, W. C. (1947). Biology of the Dermestid beetle with reference to skull cleaning. American Society of Mammalogist. Journal of Mammalogy, 28(3): 284-287.
- Samuels, J. X. and Van Valkenburgh, B. (2002). Skeletal indicators of locomotor adaptations in living and extinct rodents. Journal of Morphology, 269 (11): 1387-1411.

- Sánchez, M. R; (2002). Comparative patterns of postcranial ontogeny in Therian mammals: an analysis of relative timing of ossification events. Journal of Experimental Zoology. 294: 264-273.
- Sánchez V, M. R. Goswali, A.Weisbecker, V. Mock, O. and Kuratani, S. (2008). Conserved relative timing of cranial ossification pattern in early mammalian evolution. Evolution and Development, 10 (5): 519-530.
- Schmitt, M. Bappert, M. T.Krüger, C.and Burda, H. (2008). The mole rat's "pseudo-thumb" [abstract) in 83rd Annual Meeting of the German Society of Mammalogy, Dresden, 13 to 17 September 2009. Mammalian Biology, 74 (sp. is.): 23.
- Sengupta, P. (2011). A scientific review of age determination for a laboratory rat: how old is it in comparison with human age? Biomedicine International, 2 (2): 81-89.
- Shelby, P. B. (1987). A rapid method for preparing high quality alizarin stained squeletons of adult mice. Stain Technology 62 (3): 143-146.
- Smith, K, K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution, 51 (5): 1663-1678.
- Siegel, M. I. and Van Meter, R. (1973). Skeletal correlates of ecological adaptation in two species of Peromyscus. American Society of Mammalogist. Journal of Mammalogy, 54(1): 275-278.
- Strong, R. M. (1925). The order, time and rate of ossification of the albino rat (Mus norvegicus albinus) skeleton. American Journal of Anatomy 36: 313-355.

- Stuermer, I. W. Plotz, K. Leybold, K. Zinke, O. Kalberlah, O. Samjaa, R. and Scheich, S. (2003). Intraespecific allometric comparation of laboratory gerbils with Mongolian gerbils trapped in the wild indicates domestication in Merione sunguiculatus (Milne-Edwards, 1867) (Rodentia: Gerbillinae). Zoologischer Anzeiger. 242: 249-266.
- Thomas, O. (1905). A new Cricetulus from Mongolia. Annals and Magazine of Natural History. 15-7° serie (88): 322-323.
- Thorington, R. W. (1972). Proportions and allometry in the gray squirrel, sciurus carolinensis. Nemouria, Occasional papers of the Delaware Museum of Natural History. 8: 2-17.
- Thorington, R. W. Miller, A. M. L. and Anderson, C. G. (1998). Arboreality in tree squirrels. In Steele, M. A, Merritt, J. F. and Zegers, D. A. (eds.) 1998: *Ecology and evolutionary biology of tree squirrels*. Special publication 6. Virginia Museum of Natural History. Pp. 119-130.
- Thorington, R. W. and Santana, E. M. (2007). How to make a flying squirrel: Glaucomys anatomy in phylogenetic perspective. American Society of Mammalogist. Journal of Mammalogy, 88(4): 882-896.
- Torrey, T. W. (1978). Morfogénesis de los vertebrados. Editorial Limusa, México. Pp 6.
- Tullberg, T. (1897). Der nagethiere. Der Königl Gesellschaft der Wissen schaften zu Upsala. 514 p, 57 lam.
- Van De Graaff, K. M. (1974). Comparative develompment osteology in three species of desert rodents, Peromyscus eremicus, Perognathus intermedius and Dipodomys merriami. American Society of Mammalogist. Journal of Mammalogy, 54 (3): 729-741.

- Vaughan, T. A. (1988). *Mamíferos*. (3era ed.) Interamericana-McGraw Hill, México. Pp. 249-282.
- Villa, B. (1944). Contribución al conocimiento morfológico y osteológico de Citellus adocetus arceliae Villa R. Tesis de maestría, Universidad Nacional Autónoma de México, Facultad de Ciencias. 82 p.
- Wassersug, R. J. (1976). A procedure for differential staining of cartilage and bone in whole formalin-fixed vertebrates. Stain Technology, 51(2): 131-134.
- Weksler, M. Percequillo, A. R. and Voss, R. S. (2006). Ten new genera of Oryzomyine rodents (Cricetidae, Sigmodontinae). AMNH. American Museum Novitates, No. 3537, 29 p.
- Williams, S. L; Ramírez, J. and Baker, R. J. (1985). *Peromyscus alstoni*. The American Society of Mammalogists. Mammalian Species, (242): 1-4.
- Williams, T. W. (1941). Alizarin red S and tolouidine blue for differentiating or embryonic bone and cartilage. Stain Technology, 16 (1): 23-25.