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Abstract

In the last ten years, the necessity for parallel and distributed computing research has
reached a very high level of importance. The state of the art of this research has started to
be used in the most recent computer arquitechtures, and is becoming part of programming
language’s standard libraries. One of the most popular lines of research is Transactional
Memory Systems. The goal of transactional memory is to reduce the complexity of pro-
gramming concurrent programs. This systems borrow the approach database management
systems have at handling concurrency. A way of implementing and expanding the ca-
pabilities of transactional memory systems is by utilizing persistent data structures. This
kind of data structures log and store versions of themselves. In this thesis we show the
implementations of incremental persistent data structures which are built to be utilized by
transactions in a software transactional memory system in order to implement a broader
object synchronization. The result of this thesis is a catalogue of incremental persistent data
structures algorithms and show their viability inside a transactional memory system.



Chapter 1

Introduction

In the last decades, the development of parallel and distributed computing technologies has
been growing in large rate. The necessity of this technologies goes in hand with the soon
to be, fall of Moore’s Law [8]. First proposed in 1975, Moore’s Law states the following[7]:

The complexity for minimum component costs will increase at factor of two at
a rate of two years.

This means that the computing power and integration of digital cicuits will be dou-
bled every two years. Most computer processors are manufactured using the integrated
circuit technology known as CMOS (Complementary Metal-Oxide-Semiconductor). The impact
of Moore’s Law applied to CMOS is that the signal dissipation of a CMOS digital circuit is
not affected by the size (or length of the circuit it self), but only affected by the frequency
of the signal. This means that for years, as we reduced the size of the circuits, we could
also increase the frequency of the processors, since the signal needed to travel less distance.
Eventually the same power dissipation ocurred on smaller and smaller areas. Heat dissi-
pation becomes harder and harder, and eventually the costs and maintenance becomes too
great. We were arriving to the limit of how many digital components in a limited space
a circuit can have, before the energy needed for it to function overheats the circuit. The
physical limit of the integrated circuit materials is about to be reached in the coming years.

The understanding of this fact lead engineers and scientists to search for new technolo-
gies and new ways of incrementing the computing speed of processors. One of the ideas
was not only solving a computing problem by making the process go faster, but with the
help of other processes. This means having two computing processes cooperate to solve
a problem. In other words, if you cannot increase the speed of a processor, lets put two
processors together. This is easier said than done, the reality of this very much complex.

The focus of distributed programming is to find the ability to program alongside con-
currency. Concurrency in this context means how much two or more processes share in an
execution environment. Researchers and engineers had to come up with the semantics of
how a shared object behaves when operations are executed by one or more processes. By
this we mean what is or should be the correct behaviour of shared objects.
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The main problem we want to solve in the field of distributed programming is that
of process syncronization. What we mean by process synchronization is organizing the
execution of processes, that share objects or communicate with each other, in a way that
their task inside a system is not affected. By affecting the task of a process we mean that
the process shouldn’t behave in a non specified way or produce an unexpected result.

Different ways have been studied and implemented that try to solve this problem. Most
of the work has focused on designing and constructing data structures and algorithms that
can handle process synchronization. One of the the first solutions for synchronization was
Mutual Exclusion. Mutual exclusion tries to synchronize processes by only allowing one
process access to a shared object at a time. This of course creates a bottleneck and turns
parallel code into sequential code, because it blocks other processes in their execution. Re-
searchers looked for ways of achieving synchronization without blocking processes. This
in time shone light into a problem called the Consensus problem. Consensus refers to pro-
cesses deciding a value of a shared object that is being accessed concurrently. To solve this
what has been the most popular way of doing it is with primitive atomic operations.

1.1 Background

For several years, the most common tools in parallel and distributed computing have been
locks, like monitors and semaphores, to solve mutual exclusion. As well as atomic oper-
ations, like compareAndSet to solve the consensus problem. Although useful in certain
aspects locks and atomic operations have several disadvantages. The complexity of build-
ing distributed systems based on any of the two is quite considerable. The disadvantages
get even more considerable the larger the system gets.

The main disadvantage for locks is that by having bigger and more complex systems,
the more difficult for a programmer will be to decipher the amount of possible locks and
interactions between the processes. By not being able to control this, the risk of deathlocks
or starvation to occurr increases. Also in real life implementations a process can be termi-
nated, by physical reasons or by the operating system, while it holds a lock.

The disadvantages of atomic operations are each one only operates in one space of mem-
ory. Trying to do atomic operations between multiple spaces of variables is complicated and
in some cases it is imposible without using locks.

Eventually programming with this tools and concepts became very complicated and
requiered a lot of expertise on the side of the programmers. [10] A new programming
model emerged from the need to simplify this. Trying to part ways from the notions of
critical sections in programs and more in atomic blocks. This model is called Transactional
Memory.

1.1.1 Transactional Memory

In the recent years, there has been an effort to create something broader and more easy
to learn than traditional distributed programs. This effort tries to make parallel and dis-
tributed programming more aproachable for programmers without parellel programming
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expertise. One of most succesful ideas has been that of transactional memory. Transactional
memory basically takes the idea of database transactions, and tries to apply them in parallel
computing, simplifying the programming interface.

The concept of transactional memory originated in the early 90’s as a computer archi-
tecture for programmers to create their own read-modify-write operations 1 in order to
help create lock-free synchronization more efficient and easier to use [18]. Eventually the
same idea was used in a software to overcome the inflexibility of a hardware implementa-
tion. [17] Software transactional memory came to fruition with the same goal of making
non-blocking objects easier to implement.

The idea of transactional memory, in both hardware and software form, takes the ap-
proach database management systems use to handle concurrent operations. We look at a
sequence of operations being applied in shared resources as transactions. The same as in
database systems if two transactions conflict with each other, then either one aborts and
tries to execute the operations again, or both abort. Deciding what is a conflict depends on
the transactional memory system implementation, as we will see in later chapters. Synchro-
nization is achieved by detecting modifications of shared variables or registers by transac-
tions and allowing or not allowing a transaction to commit. A transaction commits when
its modifications to the shared resources are seen system wide. The point of transactions
is that they appear to happen atomically. This means that the operations performed by the
transaction appear to take effect instantaneously.

Transactional Memory seems like a very convenient tool, in the last year this concepts
and research have started seeing uses in real world applications. Hardware transactional
memory is now being used in newest Intel processors2. And software transactional memory
is now used in the libraries of several programming language.

The challenge to overcome, right now, in transactional memory is the lack of full object
synchronization.

1.1.2 Persistent Data Structures

Persistent data structures imply the idea of having data structures that remember and store
within themselves previous versions. This is that for every basic operation of the data
structure (i.e. an update, adding element, deleting element) we create a new version. The
main idea of this data structures is not making copies of itself, but storing changes of itself
in a space and time efficient way. Not only do we want to go back and see different versions
of the data sturcture, but also create new versions from older ones. As we will see in the
next chapter creating new versions from older ones can get very complicated.

The study of persistent data structures has been pretty passive in the last decades. Brief
work has been done sporadicaly, but never has a really good application been found. The
first approach on this subject came from the field of computational geometry. [4]. Several
years later the study of this structures went into more depths and several good algorithms
were published. [1] This algorithms focused on creating persistent linked data structures

1atomic operations composed by several smaller register operations.
2http://www.realworldtech.com/haswell-tm/
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(lists, trees, etc.). The disadvantage of this algorithms was that they require a new imple-
mentation from the ground up.

The bulk of the study on this kind of data structeres happened in the early 90’s, after
that not much was done. In this thesis we compile a list of persistent data structure imple-
mentations, that range from lists, trees, vector arrays, maps, stacks to queues. We approach
the problem in different ways, settling in a way that doesn’t require for a completely space
efficient persistent data structure. What we do is give methods for adding persistence to
any data structure. We also give algorithms for persistent data structures that aren’t linked
data structures. The research of this data structures gave us enough insight to create a new
categorization for this data structures, based on common behaviour when trying to add
persistence.

This thesis focuses on the implementation of transactional memory systems imple-
mented in software (STMs). Especially using a type of data structures known as persistent
data structures. Next chapter we will study the importance of this technology in the field
of parallel and distributed processes.

1.2 Objective

The bulk of the work of this thesis was made at a research visit in Brown University with
Dr. Maurice Herlihy, one of the most prominent researchers in the field of parallel and
distributed computing. The goal of the research project is to strengthen and expand the ca-
pabilities of software transactional memory systems (STM), utilizing persistent data struc-
tures. Persistent data structures, as we will see in later chapters, have functions and uses
that seem to go well with STMs.

The objective of this thesis is to show how much benefit there is in utilizing persistent
data structures on a transactional system. Also we want a new, and maybe better, way of
implementing object synchronization in broader way than what current STMs are capable
of doing. Another thing this thesis has for an objective, is to create a list of persistent data
structures, and give an API that can be used inside a transactional system.

The importance of this work will be, that we will have a base for implementing object
wide synchronization from which we can improve and refine and create a production wor-
thy implementation. And also this is important because no one has studied persistent data
structures in the environment of transactional memory systems, and there hasn’t been any
deep work on the different types of data structures and how they can be implemented in a
persistent way. This will undoubtely open many new questions and areas of research.

1.3 Results

The results of the thesis is a data structure synchronization system for Software Transac-
tional Memory that is flexible and non-restrictive. The system comes from working in per-
sistent data structures and searching for applications and new implementations. We show
examples of how it works and is adapted for several datastructures. Most of the examples
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are just basic groundwork ideas and not necessarily the most optimal implementations. We
will show that the better implementations are very data structure dependent. This means
that for each type of data structure we will need to modify the algorithms in order to have
better performance.

The importance of this system include giving new tools and capabilities to transactions
inside an STM. Aside from very fast rollbacks when a transaction aborts, we are giving
transactions the ability to look at past versions of a data structure and do operations to it
without interfering with other transactions.

Another thing that has been brought up but was not covered completely in the project
is the ability to merge versions of data structures in order to give a very granularized
serialization of two concurrent transactions.

1.4 Related Work

The related work from the peristent data structures perspective is very few. Other work
in the field include the use of transactions in the cloud [5]. This paper shows how one
can use persistent linked data structures stored across a distributed system. Other work,
although not very academic, is the use of persistent data structures inside programming
languages like Scala and Clojure [2]. This programming languages use persistent vectors
and hashmaps, and some of the examples we give in this thesis take into account that
implementation.

Current work in STM include several implementations of STM models in production
level programming languages. Specially the Scala STM library. Most of the work done in
this thesis has been planned to be used in the ScalaSTM library. The reason we use Scala is
because of the sintaxis flexibility it brings. It lets us create the sintactic structures for STM,
without having to modify the compiler or interpreter.

One of the issues this thesis tries to address is object synchronization in STMs. There
are several attempts to have an efficient way to do this, almost all attempts having several
drawbacks [20]. The problem with object synchronization is that sooner or later you en-
counter the need for locking. One method that is now a very prevalent design is dynamic
STMs[21]. This model allows for objects to be created inside transactions, and handles syn-
chronization with what is called Obstruction freedom which guarantee that a transaction will
always make progress. In the normal implementation objects made by a transaction must
be garbage collected if it aborts. Also contention detection between shared object is very
coarse grained. This two last issues is something we address in this project.

1.5 Thesis Structure

After this brief introduction the thesis talks about persistent data structures in general,
we give a brief background on them and then we proceed to talk about the importance
of version lists, followed by examples of different persistent data structures. We show a
classification of data structures based on the similarities of their implementations.
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Following persistent data structures we talk about transactional memory systems. First
talking about the background and the motivation for the research in transactional memory.
We go a little more in depth in software transactional memory and talk about the current
state of STMs.

In the next chapter we talk about the work done in the project, and presenting the
incremental persistent data structure model. We give a list of implementation examples for
several common data structures. We analyze the pros and cons of this model and expected
performance in transactional memory scenarios.

Finally we give our conclusions and final thoughts of the incremental persistent data
structure model. Of course, we write about the future work of the project, proposed im-
provements, questions still unanswered and possible branching work.
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Chapter 2

Persistent Data Structures

Persistent data structures are basically, in a very ample way, data structures that let us
do operations on past versions of it. The core goal of their study is to not simply copy
the data structure and store it, but to create versions and store them in an intelligent and
spatialy optimal way. Persistence in a data structure is an idea that started being talked
about in the early 1980’s. M. H. Overmars’ article called Searching in the past was the first
step in the study of persistent data structures. The necessity of this work came from the
field of computational geometry, specifically the d-dimensional range search problem[4]. In
computational geometry dynamic data structures are utilized to keep track of objects such
that queries (this queries include point membership, range search, triangulations, etc.) can
be answered efficiently. In some algorithms objects represented by the data structures need
to be deleted or sometimes more objects are added to the problem. Doing this operations
completely deletes or modifies the information of the data structure and most of the time we
need to return to a previous state. For example the point location problem in a triangulated
polygon is a problem that in some algorithms require going back to previous versions of
a data structure [19]. The cited algorithm computes the point location by removing points
of the triangulation until we are left with the convex hull. We then insert the points we
removed, calculating inside what triangle the point is. It’s obvious that removing and then
re inserting a point in this situation can be done by going into the past of the data structure.

The data structures and algorithms presented by Overmars were designed for very spe-
cific computational geometry problems. Years later researchers Tarjan, Driscoll and Sarnak
stepped in where Overmars left and continued to study persitent data structures. They cre-
ated a more general approach for creating this structure, but only for linked data structures.

After that, not much work was done for nearly two decades. On this thesis we take
from where Tarjan and company left and create more types of persistent data structures.
We then focus on creating persistence from already implemented data structures. One of
the goals of the research was to find ways of making a data structure persistent with least
amount of modifications possible. This was because we want to implement persistent data
structures in already functioning runtime environments. Creating data structures from the
ground up requires a higher investment and testing in order to be used in a larger scale.
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2.1 Semi-persistence and Full-persistence

Persistence in a data structure is normally achieved in two steps. One much more simple
to design and implement than the second one. We define a semi-persistent data structure as
a data structure on which we can only read past versions of the data, modifications are not
permitted or requiere to make a full copy of the data structure. Full-persistence is something
that requires much more work and thought. Full-persistence not only lets you read past
versions, but also to create new versions from past versions, we can say branch out versions.

The creation of versions is dictated by how the implementation is done. Normally we
want the common operations of the data structure be the ones that create new versions
(Delete, adding an element or update). Utility operations (function map, etc.) are normally
more expensive and we don’t want them to create new versions.

In order to keep track of versions, persistent data structures use an auxiliary data struc-
ture known as the Version List in semi-persistent data structures and a Version Tree in
full-persistent data structures. As we will see Version handling is critical for creating per-
sistent data stuctures without building everything from the ground up.

2.2 Version List

One of the most important things we discovered about persistent data structures is that
empowering the version list leads to simpler core data structure implementations, because
adding persistence to a data structure can normally be done in two ways. The first one
is creating the data stucture from the ground up with persistence in mind and with a
very simple version list. Tarjan and Sarnak’s linked data structures take this approach.
The second way is trying to adapt an existing data structure to be persistent. This is the
approach we use for this thesis.

When we try to adapt an existing data structure algorithm or design the complexity of
implementing persistence resides in the version list. As we will see when we take a look at
persistent data structure examples, adding persistence to a data structure adds an overhead
in both time and space compared to non-persistent.

2.3 Persistent Linked Data Structures

A linked data structure is finite collection of nodes, each containing a number of fields.
Each field is either an information field or a pointer field. Information fields contain data,
and a pointer field has a reference to another node, or null if there is no node. This type
of data structures include linked lists, trees and directed graphs. We will briefly explain
Driscoll, Tarjan, Sarnak’s method of creating persistent linked data structures[1]. One of
the main characteristics from this data structures is that most of the complexity lies inside
the nodes of the data structure. The version list is a very simple numbered list. An orther
operation must be overwritten when we create a fully persistent data structures, this is
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mainly because the the order of versions is no longer numerical but positional inside the
version list.

We assume that the only operations that create versions for linked data structures are:
insert, update, delete. Each of this operations are broken down into access node operations
and modify field operations. So what we want is to minimize the number of this operations
that we add as overhead of creating persitence.

There are two popular methods for making linked data structures. One is more space
efficient, Fat Node Method, the other one is more time efficient, Node Splitting.

2.3.1 Fat Nodes

First we define what a node is. In this context node is a structure that has a set amount
of fields, with at least one information and one pointer field. What a fat node does is that
it records changes to the original fields, creating new fields inside the node. Sets of nodes
with one pointer field can be viewed as linked lists, nodes with two can be seen as binary
trees.

A fat node creates an arbitraty number of values for each field. Modifiying a field in a
fat node is done by creating a new field for the value that was modify. Also each field is
tagged with a version stamp. The version stamp is created in when a new insert, update or
delete operation is done and it is assigned to the modified fields by that operation. On an
insert operation only one new pointer field is created in the data structure, plus the creation
of a new node. On an update operation, only one information field is created. A deleting
operation is can be a little more complicated, creating several new fields for several nodes.
This can be seen if the underlying data structure is a tree that uses some sort of balancing.

Traversing the fat nodes requires the use of the version list. In order to traverse we need
to know on which version we are traversing. Initial access to the data structure is done
either by an array or by a structure that maps the version number to the head node (or root)
of the data structure. Some versions can map to the same head node, but if it was modified
in a new version then it must map to the appropriate node. Starting from the head node
we traverse through the pointer fields. When we select which pointer to traverse we have to
choose which version. We finally choose, by comparing the version stamps, the field with
greatest version that is not greater than the version we are traversing in.

The only difference between semi-persistent and full persistent is how we compare ver-
sion numbers. In a fully-persitent environment we no longer have a version list, but a
version tree. The order query in a version tree is no longer numerical but also positional.
This problem is solved in O(1) worst case time by Dietz and Sleator [22].

2.3.2 Node Split

The obvious problem with fat nodes is that they can grow to aribitrary sizes. Finding
the version of a given field we want to access can start to get slow, compared to the non-
persistent data structure, the more we update the data structure. A more practical approach
is with something called Node Spliting.
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Node splitting instead of having arbitrarily large nodes, we have fixed size. This node
now only handles multiple versions of pointer fields, information fields only have on ver-
sion. We define only a set amount of versions for each pointer field. There are three different
kinds of new fields we have copy pointer, parent pointer and extra fields.. The copy pointer
is reference to a copy of the node, that copy has newer versions of the other fields. The
parent pointer is a reference to the parent node of the current version, this is necesarry for
doing traversing in versions that are not in the original node. If there was no parent node,
in order to know who was the parent of the node we have to go traverse the copy nodes in
order to find out. The inverse copy pointer is used for full-persistence, it holds the pointer
to the node that created it. The extra fields are used to carry an extra version of any of the
other fields, be it a pointer field or a pointer field. As in the fat node method fields have a
version tag including the parent pointer.

We create a new node when the following happens: there is an update of the value of an
information field of the node, and when the extra pointers given to the node are filled up.
We create a new node with the information and pointer fields copied (we put the new value
in the information field if it was created from an update). Then we put the correponding
parent pointer and version stamp on the node. The tricky part is what happens when one
makes a copy of a node that has children. If the child node does not have an extra field to
log the new parent, then we have to make a copy of the child node.

Traversing the split nodes is very similar to the fat nodes. We search for the highest
version that is not greater than the the version we are traversing in, for each node we
traverse their copies until we find the appropriate field.

As we have seen this methods for persistence go very deep into the data structure
implementation (i.e. special node implementations). But the version list used is very simple
and very straight forward. In order to do less intensive alterations to a data stucture in order
to get persistence, we can add more complexity to the version list/tree.

2.4 Persistent Random Access Data Structures

Random access data stuctures are data structures where any of its elements can be accessed
in constant time. Examples include arrays, vectors and hasmaps. We are going to treat
arrays the same as vectors , because arrays are just vectors that stay the same size.

The most common implementation for persistence in this type of data structures comes
from the work done in the Clojure programming language [2]. This programming language
uses persistence but it calls it immutability. The main difference is that with inmutable
vectors or hashmaps there is no version control, everytime an operation is done in an
immutable object a new reference is made and the old one remains unaffected. Obviously
as one creates new references this are not full copies of the data structure, internally all
references from the same immutable data structure share as much as possible. What we do
here is take the immutable data structures and add a version list. The version list can be
the same as the one from linked data structures.
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2.4.1 Vectors

The idea of the persistent vector comes from how memory pages are handled in logic
memory. The internal structure of the vector is actually a collection of arrays each of size
32. Each of this arrays are referenced by another array of size 32, forming a balanced tree
structure. The root of the tree is a reference to an array of size 32 which has 32 children
arrays. The bottom level arrays contain the references to the objects stored in the persistent
vector[16].

The reason arrays of size 32 are used is because on how the mapping of the index of the
persistent vector to the correct array inside is done. The get operation is actually done by
using bitwise operations of the original index. The index is represented in a 32 bit chain,
we divide the index number in chunks of 5 bits. Because 5 bits are needed to count to 32.
Essentianlly each chunk of 5 bits is the index for a level in the array tree. The right most
bits are the index for the bottom level, the next 5 bits to the left are for the next level, and so
on. Since the tree’s height ,is at practice, never higher than 7 the look up for an object inside
the persistent vector is always O(1). Also having a size 32 array is convenient because if the
addresses are properly aligned they fit in a cache block.

Inserting in a persistent vector requires a little more work. Vectors only consider the
’cons’ or append method, which inserts element at the end of the vector. Instead of creating
a new array and copying the previous elements to it when we add more than 32 elements,
we add a new leaf to the array tree, this new leaf will be referenced by the next entry of
the root array. Whenever a root array is filled, that is, all it’s 32 entries are pointing to other
arrays, we have to create a new root array. This new root will point to the previous root on
it’s first entry and a new array in it’s second entry, thus creating a new level in the array
tree. In practice this will only happen 5 times, which makes the tree height 7, which means
the maximum number of elements is 327, which is a very big number.

An optimization is used in order to optimize the insertion of a number. A tail array is
used to buffer insertions. When this array is full it’s only then when it appends it as a new
leaf inside the array tree.

For the update operation a technique is used called Path Copying which we will talk
about next section.

2.4.2 Hash Maps

To achieve persistent hashmaps we use a special variety of trees calle trie or prefix tree[23].
As with the persistent vector each node has up to 32 children. Leaf nodes contain a binding
of the Hashmap. A binding is the pair of key and value objects stored in the hasmap. Non-
leaf nodes are either IndexNodes or Colission Node. Index nodes depending on what level
they are the lead to the leaf node with the binding we are looking or to the next index node.

Building the trie comes again from taking the hashcode created from the objects we are
using as keys, and dividing their bit representation in chunks of 5 bits. The root of the tree
is always an index node and the first least significant 5 bits of the hash code give us the
index of what children to search for the binding. If the hash code has chunks different than
0 we create the index node at the corresponding level. Whenever there is a hash collision
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(there is already a leaf node with a binding with the same index) a Colission node is placed
instead the leaf node and it either stores colliding values, or just marks the collision for
error management.

In order to make it persistent we use a non destructive operation called path copying.
When adding a binding inside the trie in order to create another version that doesn’t inter-
fere with previous version, we copy the index nodes the hash index points to (including the
tree root) and only modify the new leaf node reference with the new binding. This method
is used to handle updates in persisten vectors. Only the path of arrays taken by the index
are copied, with only the last array modified with the new value.

2.5 Persistent Fixed Point Access Data Structures

Fixed point access data structures are data structures where contention happens only in
one or two places. An example of this data structures are stacks and queues. The main
characteristic of this data structures is that they can rely heavily on the version list in order
to implement persistence. Normally one would implement a stack or a queue based of
a list, but for the approach we are doing they are both using vectors to store the data.
The reason we use vectors is because when you implement persistence you never want to
destroy data. Vectors have no destructive operation, and update and append both take
constant time. For both data structures we give more complexity to the version list in order
to handle persistence.

2.5.1 Stack

We now give an example of a fully persistent stack. There is no previous work on either
a persistent stack or a persistent queue, so this algorithms are completely new, and with
more work can be improved.

The main aspect of the stack is the version list node. This node holds three extra fields,
aside from version number and next version, previous-push node, consec-pops and top
reference node. This means that the version node always points to where the top reference
of the stack should be in that current version. The previous-push node reference is there
to help compute valid tops for the versions. The consec-pops field is a counter how many
consecutive pops have occured. The parent node is a reference to the previous version.
Most of the computation of the stack will actually be handled by the version list.

The version list will actually be pointing to entries of a vector. This vector can be an
immutable vector like the one described in the previous section. There will be never be the
need for the vector to be updated because every entry will be the top of the stack of some
version.

We start the stack with an initial version that is the one pointing to the empty stack, and
with all fields set to null. The push operation is actually pretty simple, we take the value
we are going to push inside the stack and append it to the vector, and calling the entry of
the vector the new top of the stack. It is also very important that getting the new index
of the vector and appending the value happen atomically, if it’s not done that way we are
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Figure 2.1: This diagram represents the execution of a persistent stack after the following
operations: push(4), push(6), push(8), pop(), pop(), push(10).

going to have a bad time, because in case of a concurrent push, we can get the wrong top
reference. After we have done both steps, we create the new version node with the correct
top reference, if the parent’s consec-pops is zero we set the previous-push node field to the
parent node, else we copy the parent’s previous-push node.

The pop operation has to first compute the next top pointer from the previous elements
of the list. The operation goes as follows: first we take the value that the parent node’s top
pointer points to. We now compute the new top pointer. If the parent node’s consec-pop
field is zero we copy the top pointer from the previous-push node as the new top-pointer, we
then set that same previous-push node as a the new previous-push node. If the consec-pops
field is greater than zero we traverse the previous-node pointers one for each consec-pops.
After we find the previous-push node we set it as the new previous-push node and set it’s
top pointer as the new top pointer. Finally we set consec-pops as the parent’s consec-pops
plus one.

The stack operations have an increase of time complexity because now the computation
is done inside the version list. The push operation always does the same number of opera-
tions, it’s complexity is still O(1) time. The problem is with pop operations. The fact that we
must traverse the previous push nodes depends on how many consecutive pop operations
there has been. In practice this number does not grow to large. Aside from that we obtain
persistence while still having a low tradeoff in time complexity.

2.5.2 Queue

The persistent queue implementation is a little more simple. It still uses the version list to
compute the head and the tail of the queue. The way we see the persistent queue is like an
ever growing vector and each version has a unique head pointer and a tail pointer.
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Figure 2.2: This diagram represents the execution of a persistent queue after the following
operations: enq(2), enq(4), deq(), enq(5).

The same as the persistent stack we augment the version list node with more fields. And
modify the enqueue and dequeue algorithms. The nodes for the queue now hold reference
to the head and to the tail. As in the same way that the stack works, the underlying data
structure where we stor the data is vector, and again we ca use an immutable vector.

The enqueue operation pretty similar to the push operation. We want to get the new
tail pointer and add the value to enqueue to the vector in one atomic step. We then create
the new version node with new tail pointer and we copy the head pointer from the parent
version. If the parent version is the empty queue we set tail and head pointer with the same
value.

The dequeue operation has to do a little extra, it first takes the value that is the head
pointer of the parent version. We then have to compute the next head pointer, this is done
using the fact that a head pointer was a tail pointer at some point, so we search for the tail
pointer that was the same as the parets head pointer and we take the previous one. This
may look a little unnecesary, but remember that this is full-persistence, there can be other
versions’ data inside the vector, simply decrementing an index is not possible.

The important improvement we have on the time complexity is on the side of the de-
queue operation. Dequeue’s time now depends on how big is the difference between the
number of enqueue’s and dequeue. If the diference is great the dequeue operation will take
longer time.

2.5.3 Remarks

It is convenient to remark that the work on persistent stacks and queues is just a first
approach. Better and more efficient ways to achieve full persistence can be found. All of
this methods obviously increase the data structure time and space complexity. Although
not by a lot (for indepth analysis go to [1]) we have seen that attempting to add persistence
will add overhead to any data structure. Our goal is to minimze this, but not worrying
too much because we will be adding more capabilities to transactions inside a transactional
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memory system that otherwise would not be possible.
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Chapter 3

Transactional Memory

Transactional memory came from the need of making multiple variable atomic operations.
[18] The main weakness of atomic operations is the inability of trying to do two or more
operations across multiple variables atomically without blocking. As we have seen that
is the main roadblock in order to make a comprehensible nonblocking data structure. By
comprehensible we mean that it is relatively easy to understand, and doesn’t require in-
depth concurrent and distributed computing knowledge to implement. Non-blocking data
structures take whole chapters in books in order to explain.

The original idea was to use an instruction set extension that allowed programmers
to do their own atomic operations. In order to do it across multiple variables, they took
the idea from how database management systems handle concurrent queries. Queries are
handled inside transactions. The transactions execute the queries, if there is a conflict with
another transaction, one of them aborts and rollsback the operations done. If a transaction
finishes without conflicts it is said to commit, and the operations done are reflected in the
database. The idea is to make multiple variable atomic operations into transactions if there
is a conflict accesing one of the memory registers (by conflict we mean the original value
was changed by another operation) it aborts and rollbacks. And with this transactional
memory was born. This was quite the breakthrough because as we will see it changes
paradigms in multiprocessor programming.

The approach taken here is now called hardware transactional memory and it started a
whole new line of research all over the world. Years later it inspired to have this transaction
approach not only in hardware, but in programming languages.[17] This was inspired be-
cause hardware transactional memory can only synchronize memory registers, obviously
we want to synchronize more complex data structures. Software transactional memory
shifts the paradigm of multiprocessor programming because we now don’t reason concur-
rent programs by thinking where are the critical sections of the program. We now try to
think in what parts of our program we want them to be executed in one atomic step. Code
complexity goes down, and parallel computing becomes easier for mainstream program-
mers.

16



3.1 Software Transactional Memory

A transaction is a sequence of operations done by a single thread, this operations must
appear to take effect instantaneously and atomically. The transaction at the end either
commits (the operations take effect) or is aborted (the effects are discarded), if a transaction
aborts operations on shared objects or variables must be rolledback. Rolling back in some
case requires for inverse operations to be done in the shared objects or variables. This
is sometimes a problem because there are operation where the inverse is very hard or
expensive to do (i.e deleting a node in a balancing tree).

A very important point to make is that transactions are linearizable [24]. And not only
that, they must have the safety property of opacity[12]. Opacity guarantees three things (1)
all operations done by all commited transactions appear as if they happened at some single
point during the transacation’s lifetime, (2) no operation done by any aborted transaction
is ever visible to other transactions, and (3) every transaction always observes a consistent
state of the system.

Software transactional memory has the task of taking transactions, and instead of trying
to synchronize memory registers and now try to synchronize variables in a programming
language. At the very begininng software transactional memory had very little practical
use. Memory for variables had to be preassigned for each transaction and also transac-
tion size to be static. This limited what algorithms could be performed by a transaction.
Algorithms that used dynamically growing data structures could not be handled.

The problem was locking, eventually, when people tried to have some dynamic ob-
ject concurrency, locks had to be used. Coarse-grained locks made systems unscalable,
and fine-grained locks made guaranteeing correctness and deadlock-freedom increasingly
difficult. Eventually a way to implement dynamic objects was found [21]. Dynamic Soft-
ware Transactional Memory (DSTM) is now used for several STM implementations. The
main difference with DSTM is that it has the property of obstruction-freedom, instead of the
stronger property of lock-freedom. By obstruction-freedom we guarantee that a transaction
will always commit. This is the delay or the abortion of a transaction doen’t prevent other
transactions to commit. This lead to simpler and more efficient implementations of STMs.

3.1.1 Designing an STM

When implementing an STM there are 4 big design points one must address [13]:

• Conflict Detection: Conflict detection refers to at what step in a transaction are we
going to detect conflicts, either on encounter, or on commit. Detection in encounter
means that we detect read/write conflicts when they occur during the execution of
the transaction. This requires special infrastructure in variables or shared objects to
allow for detection, but conflicts can be detected earlier. Detection on commit makes
the transactions a little bit faster but when we try to commit and detect a conflict, one
of the transactions must abort and roll back, wasting a lot of time if the transaction
was long. Most STMs use single-writer multiple-reader conflict detection protocol .
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• Locking scheme: This refers as to how the transaction is going to commit their opera-
tions. A transaction must eventually acquire every location that has been updated by
itself. There are two types of acquisition (1) eager, at the time the operation is done in
that location, and (2) lazy it tries to acquire on commit time.

• Contention Management: This refers to how we handle a transaction when a conflict
is detected. There are two types of contenciton management (1) timid, which refers to
aborting inmediatly when we detect a conflict, and (2) greedy we try to complete the
transaction, this helps in write/write conflicts, at least one of the transaction commits.

• Read visibility: This refers to letting other transactions know that someone read a
shared variable. Making reads visible helps in conflict detection, but can sometimes
creat fals contentions if the reader was aborted or doomed to abort.

Some of this STM designs favor short transactions others favor long ones. The state of
the art STMs [13] use a combination of this design decisions for when it’s mor convenient.
For example SwissTM (the STM model used in Scala) is lock-based invisible read model
with commit-time conflict detection in read/write conflicts and encounter-time conflict de-
tection for write/write conflicts. It has two-phase contention manager that is greedy for
long transactions and timid for short ones.

3.2 Current State of TM

In the last couple of years, the use of transactional memory has been getting more and more
popular. Although research has improved HTM and STM into really promising ideas for
market level products, there are still many improvements to make. One of the problems
that still present a challenge is an efficient way to do full object synchronization between
transactions. This will allow for more complex data to be shared by transactions in a non-
blocking way, and not only that, but presented in a way that is friendly to programmers.

One of the newest and most useful ideas that try to achieve this is transactional boost-
ing[]. Transactional boosting seeks to utilize current state of the art concurrent data struc-
tures inside transactions. This is done modifying this data structures in a very minimal
way by adding locks called abstract locks. Abstract locks let us detect conflicts between
transactions, but also letting non transaction code acces the data structure, and linearizing
with the transactions. With this we have to keep in mind that operations outside transac-
tions cannot be aborted. The main condition this concurrent data structures must comply is
that every method must have an inverse, and a reasonably efficient at least. Abstract locks
detect conflict, by checking the conmutativity of operations going on in the data structure.
In order for a transaction to acquire the lock the operation it’s doing must commute with
other operations being done in data structure. If the abstract lock conflicts the caller must
be delayed.

The work in this thesis looks to address the issue of object synchronization from differ-
ent approach. The incremental persistent data structure model also looks for flexible and
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concurrent data structure friendly way for transactions to work. Conmutativity in opera-
tions is something our model is also looking at. The reason is because this model seeks
to add more capabilities to a transaction inside an STM. This capabilities include working
on past versions of a data structure and create a local copy. Creating checkpoints for a
transaction, and constant time rollbacks for a transaction.

In the next chapter we will explain this model and give some examples of it’s applica-
tions, followed by a brief analysis of model.
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Chapter 4

Transactions and Persistence

We will now present an object synchronization model for transactional memory that uses
persistent data strucrures. As we have seen achieving good and efficient object synchro-
nization is a considerable challenge. Most of the work in this modeled started with the
basic persistent data structure knowledge. After looking into what makes the persistent
data structures work, and seeing the importance of the version list, we decided that our
approach had to go in the direction of making a robust version list. This also goes in hand
with the fact that from the very beginning we wanted a systen that does not require to
create completely new data structures. We want something that can use something already
that esixts. Although using completely persistent data structures built from the ground up
gives this system better performance overall.

An important remark we make in this chapter is that the ability of merging versions in
persistent data structures is a problem that we realized is hard to solve in a reasonable and
efficient time. A complete solution was left outside the scope of this thesis. The solution
given here is the simple one, but less efficient.

The importance of merging versions is that this gives us a very fine grained object syn-
chronization. What we mean for merging versions is that, assume we have two transactions
that just did a sequence of operations with a persistent data structure, each transaction has
their own version of the data structure at the end; merging the two versions should give us
a new version of the data structure where both sequences of operations were executed. Of
course the merging can only happen if the sequences of operations are compatible. Right
now the only criteria for compatibility we have proposed is commutativity of operations.
Commutativity of operations in a data structure means that no matter what order 2 se-
quences of operations are done, the result is always leaves the data structure in the same
state. This explains the difficulty of merging versions right now, because determining com-
mutativy in single operations is very straight forward, but determining commutativity of
sequences of operation of arbitrary length gets very complicated. We tried, and failed, sev-
eral approaches for a method to determine commutativity without actually executing both
operation sequences in both orders and comparing the state of the data structure. For the
moment this was left out the scope of the thesis, but obviously is a point of supreme im-
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portance. For now, we assume that the transactional memory system has some mechanism
that limits concurrency to transactions whose operations can be merged in a meaningful
way. We focus here on how that merging is accomplished.

Working from the start with transactions in mind, gave us an easier time implementing
this model. Version searching became much easier. One thing about making persistent
datastructures with robust version lists is that finding and comparing the order of versions
takes more time, and considerable thought has to be put. Thi is becuase of the fact that
version lists no longer are lists in the full sense of the word, but trees and in some cases
directed acyclic graphs. We fortunately bypass a lot of this starting with the fact that we
assume transactions handle the versions they own. This means that transactions, for each
persistent data structure, have a reference to the versions they own, or to versions that are
shared.

This model was inpired by a model of concurrency control in memory called Conversion
[15]. This memory model takes the file repository approach, letting processes work in a local
copy of the memory and then converge their operations into the same into the shared part
of the memory.

4.1 Incremental Persistent Data Structure Model

The incremental persistent data structure is way of making data structures persistent, but
trying to minimize the amount of versions the whole data sturcture has to handle. We
use the idea of logging operations of the data structure from a commited version, and
eventually compiling the changes into a commited version where the operations done are
reflected. The use of persisten data structures guarantees that this process is lock-free,
because commiting the data structure is basically just making the version visible outside
the transaction.

We use the version list in order to log the operations of the data structure, as we will see
in the examples section some operations start having an increase of time complexity in the
order of the length of the transaction. The big advantage having the operations logged has
is that we can use any data structure underneath the version list. Since there is not a big
amount of commited versions one can use the naive persistent data stucture construction,
which is making a complete copy of the data structure for each version. Eventhough this
is something we don’t want because having a well implemented persistent data structure
beneath our version list, speeds up the performance and space.

4.1.1 Incremental Version List

The core part of this system lies in the implementation of the incremental version list.
We call it list eventhough it technically is a directed acyclic graph, but that would be a
long name an sound funny. In theory every edge of the acyclic graph is labeled with
the operation that created the version. The DAG is composed by 2 types of nodes: (1)
incremental nodes and (2) commit nodes. Incremental nodes log the operation done on the
data structure. It normally has fields for the parameters of the operation and for the result.
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In most cases extra fields ar added for certain data structures. This new fields help us to be
able to do data structure operations starting from an incremental node versions. Commit
nodes are more like traditional version nodes. The main component is a pointer field that
points to the underlying data structure. Commit nodes have 2 subtypes: Shared commit
node and local copy commit node. Shared commit nodes are visible to all transactions and
possibly visible to non transactional code. Local copy nodes are extactly that, nodes that
are only visible to single transaction. Operations done in this version of the data structure
must not affect the native data structure.

Commit nodes are created in two different ways. The first one is done by compiling
the operations logged by the incremental nodes. This is made by actually executing on the
native data structure the incremental node operations in the same order, creating a new
commit node and setting the reference to the data structure in the new state. Executing this
operation with a native data strucutre that is not persistent, requires for a complete copy
to be made before executing the operations. This step is the one that benefits on having a
good and efficient persistent data structure, because it does not require to copy the native
data structure, the operations can be executed directly without the worry of interfering or
modifying the previously commited version. The second way of creating a commit node
is by merging versions. Starting from 2 incremental nodes from 2 different sequences of
operations, we want a commit node that references a version where both sequences of
operations appear to have happened. Right now the only way to do this is by going back
to the closest common commit node of the two sequences, and executing on the native data
structure one sequence after the other. The resulting data structure is then referenced by
the new commit node.

The important aspect of the merging of versions is, that is not something a transaction by
it’s own does. A contention manager is the one that decides if two transactions’ operations
can be merged and if they are merged. We only concentrate on the task of merging two
versions. In the current design the only merge criteria we handle is commutativity of
sequences of operations.

Shared commit nodes are the most important part of the version list. This is because they
are the ones that reflect the valid states of the data structure in the concurrent environment.
Shared commit nodes are created by either upgrading a local copy node to a shared commit,
or by the merging of versions. In the current design when a transaction tries to commit it
creates a local copy node of the data structure once the contention manager decides if the
transaction is to be commited then that local copy node is upgraded to shared commit
node in a single step, achieving the goal of transactional memory, having sequences of
code happen in a single atomic step. Of course, if it is decided that the transaction should
abort then the roll back is pretty easy to execute, we discard the local copy node and the
incremental nodes.

In every use of this data strucutre model the first version is always the empty data
structure, and it is always a shared commit node.

A final remark about implementing this model is that the only condition we ask for
native data structures is that they implement read-only exploring interface, this means we
are able to explore the whole data structure without modifying it. This property we call it
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Figure 4.1: An abstract view of the Version List DAG.

transparency.
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4.2 Examples

We now present a list of several examples of data structures utilizing the incremental per-
sistent model. Each data structure has unique way of implemting the incremental nodes.
In practice, instead of actually labeling the edges or pointers of the nodes, we use object
oriented programming and add a subclass for each type of operation for the incremental
nodes. For each data structure we override their basic operations so that it’s diffent if it
was called in an incremental node or on a commit node. Also we need to override because
we need to simulate the behaviour of the native data structure in the incremental node
sequence.

We exclude the merge and the make local copy because in this cases is the mostly the
same for each data structure.

4.2.1 Vectors

Vector



operations


update
append
lookup

incremental nodes
{

Update=>(value,index)
Append=>(value,newIndex)

lookup(index)


We search the incremental nodes starting from the most recent.
If we find the node with the index we are looking for we return value.
If we reach the commit node we do the normal search in the native data structure.

Update and Append
{

We insert the corresponding incremental node.

This implementation is pretty straight forward, just add the operations to the list, and
if there is a read we search the the incremental nodes first. This is a drawback, because
lookup in a vector is constant, and now it depends on the size of the incremental node list,
which in turn depends on the size of the transaction.
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4.2.2 Hashmaps

Hashmap



operations


lookup
newBinding
removeBinding

incremental nodes
{

NewBinding=>(key,value)
RemoveBinding=(key)

lookup(key)


We search the incremental nodes starting from the most recent.
If we find the node with the key we are looking for we return value.
If we find the key in a RemoveBinding node we throw an exception.
If we reach the commit node we do native search in the native data structure.

newBinding


We first check for a collision. Traversing the incremental nodes.
If we find a RemoveBinding node with the same key we add NewBinding node
If we find NewBinding with the same key, we flag for collision.
If we reach the commit node we check for collision there
If there is no collision we add the NewBinding node.

removeBinding
{

We insert the Remove Binding incremental node.

The same as vectors, looking up a key takes a much greater time than the original data
structure. We go from a near constant time look up to possibly linear time.
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4.2.3 Stack

Stack



operations


push
pop
peek(lookup)

incremental nodes
{

Push=>(value,previousTop)
Pop=>(value,previousTop,popsInCommited)

peek


We search the incremental nodes starting from the most recent.
Case Pop node go to previous top and repeat.
Case Push node: return value
Case commit node: do peek in native data structure.

push


We create Push node.
We check parent version node type:
Case Pop node: copy preiousTop
Case Push Node: Set previousPush to parent, add Push node
Case commit node: se previous top to parent, add Push node

pop



We create Pop node.
Check parent version node type:
Case Push node: copy previousTop and set value to Push Node value
Case Pop node and popsInCommited == 0: repeat on parent
Case Pop node and popsInCommited == x: set previousTop to commit node,
value = (native top - x) and popsInCommited= x+1
Case Commit node: set value to native stack top and popsInCommited = 1.

Like the stack example in chapter two we do something similar to achieve persistence.
We have to keep track of previous top pointers inside the version list. On this version
list again we have an increase of complexity in both operations. Calculating the overhead
is tricky because, for example pop’s complexity depends on how many consecutive pop’s
have happened.
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4.2.4 Queue

Queue



operations
{

enqueue
dequeue

incremental nodes
{

Enqueue=>(valueIn,previousDeqs)
Dequeue=>(valueOut,previousDeqs)

enqueue
{

We create the enqueue node.
We insert to the version list.

dequeue



We create a dequeue node
We look at the value of previous dequeue on the parent
We look at the size of the native data structure
Case size greater than dequeues:
value to dequeue is native head pointer minus previousDeqs.
Case dequeues greater than size:
we take the (previousDeqs -size)th enqueue node in the version list, from top down.
set valueOut to valueIn.
Increase previousDeqs by one.

The design for the queue can be improved by having previousDeqs as a global variable,
or a global head pointer. The drawback of this design is that the dequeue operation now
can potentialy take non constant time. Searching for the proper enqueue node takes time
dependending on how many total dequeues we have done previously.
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4.2.5 Linked List

List



operations


insert
update
delete

incremental nodes


Insert=>(value,newIndex)
Update=>(newValue,Index)
Delete=>(index)

get(index)



We search bottom up in the incremental list.
We use local variable offset and set it to 0.
If at some point index is the index of the (currentnode index + offset) then return the value
Case Insert node: if index > currentnode index + offset,
increase offset, continue to parent node.
Case delete node: if index >= current node index + offset
decrease offset, continue to parent node
Case Update node: continue to parent node
Case commit node: return the native get(index + offset)

insert(index,value)
{

We insert the corresponding incremental node.

delete(index)
{

We insert the corresponding incremental node.

update(value, newIndex)
{

We insert the corresponding incremental node.

This data structure is different from the others because the operations that create ver-
sions actually take constant time. The change comes when we want to do a lookup in the
data structure. The overhead we get from using the incremental nodes depends on the
number of operations done to the list. The lookup algorithm works by having an offset for
the index we are searching, this is explained by the fact that if you modify the list before
the index you are looking for it shifts the index values for all the nodes to the right, if you
delete you decrease the indexes, if you insert you add the indexes. At the end we take into
account how many times the indexes have shifted and do a search in the native list taking
into account the offset.

This method adds a less overhead to the original data structure in it’s lookup, than the
other data structures. Since the search in a list is linear , adding the incremental list only
adds a linear factor to the search. The advantge we gain is in the other operations, deletions,
insertions and updates are done in constant time.
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4.2.6 Tree

The implementation of this model on trees is very bare-bones, since there are many dif-
ferent types of tree implementations. The approach we take is to try to interfere as less
as possible to any balancing or restructuring operation that happens inside the tree. The
lookup operation is pretty throw away because it depends on what we are looking for in a
tree, and that changes. As same as with the Linked List, Insert, Update and Delete opera-
tions take constant time, but all lookups are hit with a linear time overhead, that depends
on the amount of operations done previously to the data structure.

Tree



operations


insert
update
delete

incremental nodes


Insert=>(newValue)
Update=>(oldValue,newValue)
Delete=>(delValue)

lookup(value)



We search bottom up in the incremental list.
Case Insert node: if value == new value return node found
Case Update node: if value == oldValue return node not found
if value == newValue return node found
Case Delete node: value == delValue return node not found
Case Commit node: do native lookup on tree data structure.

insert(newValue)
{

We insert the corresponding incremental node.

delete(delValue)
{

We insert the corresponding incremental node.

update(oldValue, newValue)
{

We insert the corresponding incremental node.

4.3 Analysis

The incremental persistent data structure model, as we have seen has some advantages for
achieving object synchronization. It is flexible enough that any data structure works with
it, but it works better with fullpersistent data structures.

The overhead we add the data structures varies from type to type. Some have big
drawbacks but others don’t. As we can see random-access data structure the look up time
for a piece of data increases by linear time that depends on the number of operations done
previously. The use of this model will benefit mostly short transactions. One idea that
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comes to mind is using a method that tells us if the key, or index we are looking for is
on the incremental list, if it’s not then we search the native data structure directly. Also
we can do something about decreasing the time when we search the incremental list. An
unexplored idea is arranging the incremental nodes in a binary search tree, so looking for
an index there takes only logarithmic time. If we explore commutativity of sequences of
operations of this type of data structures we find that they share the property that most
operations commute, the only when they access the same index do they not commute.
Detecting commutativity here is easier.

Performance for single-point access data structures have a similar setback. Time com-
plexity for pops and dequeues increases depending on how many consequtive removal
operations have happened before. This of course makes each pop the worst case time linear
on the number of operations. This is obviously very bad since that operation natively takes
constant time. Not only that, commutativity of the operations of a Stack in most cases is not
possible, only sequences that leave the stack the same commute, and detecting that requires
the execution of both sequences. Queues on the other part their commutativity depends on
the size of the queue and the difference between dequeues and enqueues.

In the other hand linked data structures have a more apparent benefit using this model.
Insertions and updates take constant time, and lookups don’t increase their complexity.
Commutativity for lists depends on what range of nodes are affected by the two sequences,
if none of the nodes intersect then the sequences commute.

On thing we can see in several data structures is that the merging of versions of a data
structure, in some cases should be very fast to do a merge. This comes because intuition
tells us that we are operating on the same data structure. If operations don’t conflict with
each other, we should not need to re do operations. Although this statement, pretty much
goes out the window if the only method to detect commutativity is to execute the operation
sequences and then compare the two states.
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Chapter 5

Conclusions

The main conclusion this thesis arrives is that this model is just the first step of utilizing
persistent data structures in a transactional memory system. The problem of object syn-
chronization is very unexplored using this approach. Using the incremental persistence
model makes ahieving persistence much more easier and straightforward, but it has it’s
costs. The thing we must analyze as we try to experiment its use is what environment
will it be more useful. By useful we mean that the utility we get overweights its costs.This
utility are operations like having quick commits and rollbacks, and having local copies of
data strucutres for transactions.

It is clear this model has better performance in short transactions, but we don’t want it
to be limited to those scenarios. More work is needed in order to minimize the overhead
we have by utilizing this persistence model instead of regular concurrent data structures. A
way to improve this is by modifying the model and having ad hoc solutions for each type
of data structure. As we saw in the last chapter every data structure has unique behaviour
when we try to postpone operations, simulating another data structure’s behaviour with a
list, is in some cases non-trivial and not efficient. An idea is to utilize something beside a
list to log operations. For example using a binary search tree in case of the vector.

The merging model can also be improved, but to do that an ad hoc solution must
be given for each data structure. This is simpler if the native data structure is a well
implemented persistent data structure. For example in a linked data structure a merge
of versions might me achieved by changing the version stamps of pointer fields. This
wasn’t studied in depth, because we wanted to use data structures already implemented in
standard libraries. We didn’t want to make data structures from scratch.

One big point this thesis purposely mention little about is operation sequence commu-
tativity problem. This is because of the difficulty associated with the problem. The problem
is if there is a way to determine if two operation sequences of the same version of a data
structure commute, without having to execute both sequences and then compare states.
The tentative answer is no, if we only have the incremental version list. My proposed idea
is having a lock, similar to the abstract lock used in transactional boosting. This idea hasn’t
been explored yet, we only focused in this thesis to laydown the groundwork for an object
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synchronization model.
The importance of the work done in this thesis is that now we have something from

which one can start studying persistent data structures inside a transactional memory sys-
tem. Previously there was none, including a wide variety of persistent data structures. Also
of great importance is that now we have one more purpose to study persistent data struc-
tures, given that better persistent data structures improve the performance of this model.

5.1 Results

The concrete results we deliver in this thesis are the following: We created and implemented
two new never before seen persistent data structures. The persistent stack and persitent
queue presented in chapter 2 are as far as I’m concerned have never been studied. Our
implementation works well when full persistence is required, going back into past versions
and creating new states. The important aspect is that doesn’t require a complete overhaul
of the original data structure, only the internal logic is overriden to use the versionlist.

The incremental persistent data structure is 2 in 1 model that adds persistence to data
structures and a new object synchronization method for STMs. It also enables a fast commit
and rollback operations for transactions that use this data structures. The peformance of
this system is at the moment dependent on the size of the transaction.

5.2 Future Work

A big caveat of the incremental persistence model is trying to implement the version merge.
And we are not speaking about the actual algorithms that merge two structures, what we
mean is the determining and the detection of the pre-conditions needed to do a correct
merge. The only precondition we have right now is commutativity, but maybe there is
a weaker condition, one more simpler to detect. This work is going to be part of the
contention manager that uses this model. Once we are able to do this, we can focus on
having better and more efficient ways of merging data structures. Another thing that is the
future, is improving the performance of the model, not only on short transactions. This has
to be usable both scenarios. Ideas for this include better uses of the version list, and maybe
not just restrict us to just a list. For different data structures different ways of logging
operations.

One task that is pretty much not studied is the creation of normal persistent data struc-
tures. This will benefit us, because this model works best with fully persistent data struc-
tures. Most of the recent work done in this area has been non academic and has come from
software engineers. One thing that look very important to study are the famous concur-
rent data structures like skip lists and concurrent red-black trees. Having a good persistent
version of this data structures would be very useful.

Finally, one of the ideas that came up during the research, was instead of an incremental
list that logs the operations, is using a repository system approach, with non persisten local
copies. This would work by having transactions work on a local copy of the data structure
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and when it commits it merges the changes into the main persistent data structure branch.
This would require very efficient version merging and conflict detection.
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