

FACULTAD DE QUÍMICA

"DISEÑO DE LA BOMBA DE ANILLO LÍQUIDO PARA GARANTIZAR LA OPERACIÓN DE LA TORRE DE VACÍO DE UNA REFINERÍA"

TESIS

QUE PARA OBTENER EL TÍTULO DE INGENIERO QUÍMICO

PRESENTA

EFRAIN RAMIREZ CHAVEZ

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	Profesor: JOSE ANTONIO ORTIZ RAMIREZ		
VOCAL:	Profesor: HECTOR GERARDO MENDEZ FREGOSO		
SECRETARIO:	Profesor: JOSE FERNANDO BARRAGAN AROCHE		
1er. SUPLENTE:	Profesor: NESTOR NOE LOPEZ CASTILLO		
2° SUPLENTE:	Profesor: HUMBERTO HINOJOSA GOMEZ		
SITIO DONDE SE	DESARROLLO EL TEMA:		
4º PISO ALA SUR, TORRE DE INGENIERÍA, CIUDAD UNIVERSITARIA			
ASESOR DEL TEMA:			
	DR. JOSE FERNANDO BARRAGAN AROCHE		
SUPERVISOR TÉCNICO:			
	ING. GUILLERMO GARZA PUIG		
SUSTENTANTE (S):			
	EFRAIN RAMIREZ CHAVEZ		

Contenido

No	men	clatu	ra	1
l.	Ob	jetivo)	3
1.	Intr	oduc	ción	4
	1.1.	Ref	inación del Petróleo	4
2.	Pro	ceso	os de Destilación Atmosférica y al Vacío	7
	2.1.	De	scripción del Proceso	8
	2.2.	De	stilación Atmosférica	8
	2.2	.1.	Tren de precalentamiento	9
	2.2	.2.	Desalado	9
	2.2	.3.	Despunte	10
	2.2	.4.	Horno de calentamiento	11
	2.2	.5.	Torre atmosférica	12
	2.3.	De	stilación al Vacío	13
	2.3	.1.	Calentadores de Crudo Reducido	13
	2.3	.2.	Torre de Vacío	14
	2.3	.3.	Sistema de Vacío	17
	2.4.	Vai	iables de Operación en Torre de Destilación	18
3.	Sis	tema	de Desfogue	20
4. Compresor de anillo líquido				22
	4.1.	Sis	tema de líquido de sello	24
	4.2.	Sis	temas de recuperación de gas	25
5.	Pla	ntea	miento del problema	30
6.	Bas	ses	termodinámicas	33
7.	Cál	lculo	de la bomba de anillo líquido	37
	7.1. anillo		erminación de la composición base húmeda a la entrada de la bomba de do	39
	7.2.	•	rerios de diseño	
	7.3.		os de diseño	
	7.4.		culos de las propiedades de la mezcla	
	7.5.	Eva	aluación del flujo de entrada	44

7.6. Ajuste de las condiciones iniciales del gas por la interacción con el anillo líquido para la determinación de la potencia de la bomba de anillo líquido				
7.7. Selección del cuerpo de la bomba de anillo líquido de acuerdo a las especificaciones del "compresor de Elliot"				
7.8. Cálculo del factor de compresibilidad promedio51				
7.9. Cálculo de la potencia requerida 54				
7.10. Cálculo de la temperatura de descarga55				
7.11. Cálculo del flujo volumétrico a la descarga de la bomba de anillo líquido 55				
8. Especificación de la bomba de anillo líquido 56				
9. Análisis de resultados y conclusiones				
10. Bibliografía				
Glosario60				
ANEXOS 63				
ANEXO 1 Estadístico de la información recopilada				
ANEXO 2 Tablas y gráficos complementarios				
ANEXO 3 Especificación técnica				
ANEXO 4 Hojas de Datos. Bomba de anillo líquido				
ANEXO 5 Hoja de Datos. Bomba de Agua de Proceso				

Nomenclatura

Símbolos

C_p	Calor especifico a presion constante kJ/(kgmoi*k)
C_{v}	Calor específico a volumen constante kJ/(kgmol*K)
\dot{W}	Flujo molar kgmol/h
H	Cabeza kN*m/kg
k	Exponente adiabático, adimensional
n	Exponente politrópico, adimensional
P	Presión bar
PM	Peso molecular kg/kgmol
Q	Capacidad m³/h
q	Flujo de calor kJ/h
R	Constante de los gases m³*bar/(kgmol*K)
r	Relación de presión, adimensional
T	Temperatura absoluta K
t	Temperatura K
v	Volumen específico m³/kg
w	Flujo másico kg/h
X	Factor de incremento de la temperatura
Z	Factor de compresibilidad, adimensional
η	Eficiencia, adimensional
ρ	Densidad kg/m ³
ω	Factor acéntrico, adimensional
у	Fracción mol de gas, adimensional

Subíndices

ad	Proceso adiabático
al	Anillo líquido
ap	Agua de proceso
c	Propiedad crítica
g	Gas
g i, inf	Inferior
ℓ	Líquido
m	Propiedad media ponderada
op	Condición de operación
р	Proceso politrópico
r	Propiedad reducida
s, sup	Superior
T	Propiedad total
0	Condición de diseño/entrada
1	Condición de cálculo inicial
2	Condición de descarga

I. Objetivo

El objetivo principal de esta tesis, es proporcionar un método práctico para el cálculo de una bomba de anillo líquido. Para simplificar el cálculo se incluyen tablas y gráficas.

Se desarrollará el procedimiento de cálculo para el diseño de una bomba de anillo líquido de acuerdo:

- a) Al método de la "N"
- b) En lo establecido en la normatividad de PEMEX¹
- c) y al estándar API 6812

Partiendo de las condiciones de compresión de los bancos de condensadores del sistema de vacío de una torre de vacío de una refinería así como el envío de esta corriente a la planta de desintegración catalítica (FCC), bajo condiciones de operación normal de la planta.

¹ NRF-131-PEMEX-2007 Compresores Centrífugos.

² API 681 Bombas de anillo líquido y compresores para petróleo, químicos y servicios de la industria del gas. 1996.

1. Introducción

Actualmente el desarrollo tecnológico, económico y el crecimiento poblacional, demandan una cantidad impresionante de materias primas y energía, por ende la disposición de energéticos y materias primas derivadas del petróleo es fundamental como motor del crecimiento económico de un país, tal es el caso de México, nación que dispone de yacimientos de petróleo y gas natural como parte de sus recursos naturales no renovables.

Ante tal panorama resulta claro que el desarrollo industrial se ha convertido en el propulsor de la economía moderna, sin embargo la industria de refinación del país atraviesa por una situación crítica que dificulta cada vez más su capacidad de cumplir los objetivos de eficiencia y rentabilidad en el abastecimiento de la demanda interna de derivados del petróleo; sin embargo, existen ahorros potenciales en los procesos de refinación cuya utilización representa la oportunidad de implantar tecnologías que mejoren en forma integral la calidad de la producción, aumentando la competitividad de la Industria de la Refinación y maximizando el valor agregado de los productos que se obtienen.

1.1. Refinación del Petróleo

El petróleo es un líquido viscoso, de color pardo oscuro, de olor desagradable, tóxico, irritante e inflamable. Se encuentra en yacimientos a diferentes profundidades en el subsuelo. Está formado, esencialmente, por una mezcla de hidrocarburos, pero también contiene pequeñas cantidades de otros elementos que se combinan con ellos, tales como azufre, oxígeno, nitrógeno, níquel, vanadio, arsénico y cromo³ además el petróleo se conoce también con el

4

³ Diccionario de Términos de Pemex Refinación (PDF). http://www.itek.com.mx/INDUSTRIA/DICCIONARIO%20PEMEX.pdf

sobrenombre de oro negro, por el valor que tiene para la economía de todos los países. Factor importante para el desarrollo económico y social de México.

De acuerdo con la estructura predominante en la mezcla de hidrocarburos, el petróleo se puede clasificar en base parafínica, nafténica o aromática. En los hidrocarburos de tipo parafínicos las moléculas de carbono forman cadenas rectas, que pueden tener o no ramificaciones, y tienen poca afinidad química. Los compuestos nafténicos o cicloparafínicos tienen como base una molécula circular en la cual todos los enlaces de carbono están saturados con hidrógeno, mientras que en los aromáticos las moléculas contienen, básicamente, un anillo con seis átomos de carbono.

Según sea el origen del petróleo crudo, serán diferente su composición y sus propiedades; algunas de sus propiedades más importantes son su densidad, que generalmente se expresa en gravedad específica a grados API y su contenido de azufre. Al crudo de mayor densidad se le denomina crudo pesado, que contiene moléculas de alto peso molecular como naftenos, compuestos aromáticos y asfaltenos, principalmente. Al crudo con alto contenido relativo de azufre se le conoce como crudo amargo y al de menor contenido, crudo dulce.

La refinación del petróleo la constituye el conjunto de procesos físicos y químicos a los cuales se someten los crudos obtenidos en las labores de perforación, a fin de convertirlos en productos de características comerciales deseables. Por ello la industria de refinación involucra una serie de procesos a los que se somete al petróleo. Los procesos que se incluyen más frecuentemente son⁴:

- Destilación primaria o atmosférica
- Destilación secundaria o al vacío
- Desulfuración (hidrodesulfuración)
- Reformación de naftas
- Alquilación

⁴ James G. Speight. "The chemistry and technology of petroleum". 4a Ed. 2007.

- Isomerización
- Desintegración catalítica
- Desintegración térmica
- Reducción de viscosidad

La configuración de una refinería depende del tipo de crudo a procesar y de las características de los productos, de ahí que sea necesario aplicarle distintos tratamientos con el propósito de dar a los productos obtenidos las cualidades comerciales que requiere cada tipo de mercado. Piénsese aquí en las normas de calidad que rigen para cada legislación.

Para llevar a cabo esta transformación y conversión es necesario confrontar las cualidades inherentes a los crudos de los que se disponga para el tratamiento, las condiciones, demanda, proyección económica de los productos, así como las convenciones normativas de los mercados a los que estén destinados.

2. Procesos de Destilación Atmosférica y al Vacío

La destilación se define como una operación que consiste en la separación de componentes de una mezcla líquida por vaporización parcial y la recuperación separada del vapor y el residuo. Mediante este proceso se logra aumentar la concentración del componente más ligero o volátil en la fase de vapor y del pesado o residuo en la fase líquida. La eficiencia de separación dependerá de la volatilidad relativa de los componentes y del diseño del equipo de destilación. Este proceso puede aplicarse en muchas mezclas de productos, binarias o multicomponentes⁵.

El primer proceso de separación en una refinería y de mayor importancia es la destilación del crudo. Los objetivos de la destilación atmosférica y al vacío es separar el crudo en varias corrientes, llamadas productos primarios o fracciones, es por esto que a esta separación se le denomina también fraccionamiento del crudo. Los productos de la destilación son los siguientes:

Destilación atmosférica: destilación del crudo para la producción de los siguientes cortes: una mezcla de naftas (nafta de despunte y nafta ligera), nafta pesada, kerosina, gasóleo ligero primario (GOL "AA"), gasóleo pesado primario (GOP "AA") y residuo primario.

Destilación al vacío: destilación del residuo primario para producir gasóleo ligero de vacío (GOL "AV"), gasóleo pesado de vacío (GOP "AV") y residuo de vacío.

Estas fracciones contienen impurezas, principalmente compuestos de azufre y metales y no reúnen las especificaciones requeridas para ser utilizadas como productos finales; por eso constituyen la materia prima para otros procesos en donde se eliminan esas impurezas y se adecúa a las especificaciones de calidad requerida.

7

⁵ Ernest E. Ludwig. "Applied Process Design for chemical and petrochemical plants". Vol. 3 Third. Edición Butterworth-Heinemann, 309 USA.

2.1. Descripción del Proceso

2.2. Destilación Atmosférica

La unidad de destilación atmosférica de una refinería está diseñada para obtener máximo rendimiento de destilados (naftas o gasolina y diesel), utilizando el proceso de destilación fraccionada de crudo. En este proceso el crudo es sometido a los siguientes procesos: (Ver Figura 2.1)

- Tren de precalentamiento
- Desalado
- Despunte
- Horno de calentamiento
- Torre Atmosférica

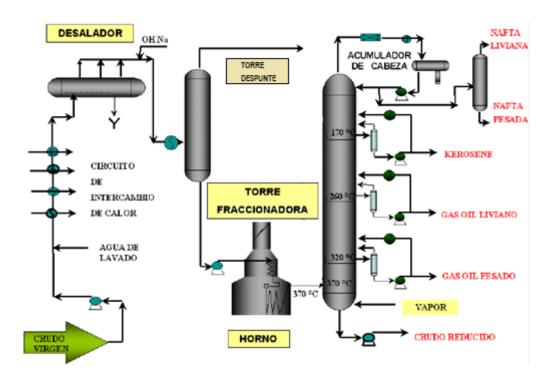


Figura 2.1 Unidad de Destilación Atmosférica.

2.2.1. Tren de precalentamiento

El proceso se inicia con el precalentamiento del crudo, proveniente de tanques de almacenamiento a la succión de las bombas de carga a una temperatura de 20° C y $0.93 \ \overline{\text{kg}}/\text{cm}^2$. Antes de que el crudo se envíe a los trenes de precalentamiento se le inyecta en la succión de las bombas agua tratada, solución de sosa cáustica al 5% peso y desemulsificante con una concentración de 15 ppm. Esto con el fin de solubilizar las sales del crudo y las que se depositan a lo largo de cada tren. En los trenes de intercambio térmico el crudo se calienta contra los productos de la destilación de la misma torre atmosférica para alcanzar la temperatura requerida para el desalado del crudo, en el intervalo de 139 a 146°C.

2.2.2. Desalado

En el sistema de desalado el crudo disminuye su concentración de sales, agua e impurezas, se elimina las sales como NaCl, a un valor mínimo del orden de 1 lb NaCl/1000 Lbs de crudo y menos de 0.05% volumen de agua y sedimentos. Lo anterior es con el fin de evitar daños por corrosión principalmente en los equipos de calentamiento y destilación.

El desalado se lleva a cabo en dos trenes en paralelo con dos etapas en serie cada uno. El sistema de desalado en serie está implementado de manera que normalmente la inyección de agua fresca a las desaladoras se efectúe en serie es decir, el agua se adiciona a la segunda etapa y de ésta a la primera. El crudo que sale de la primera desaladora pasa a la primera etapa de desalado, el crudo desalado sale por el domo de este equipo. (Ver figura 2.2)

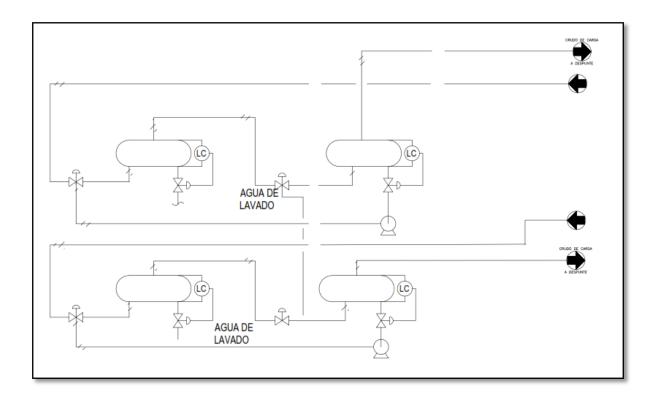


Figura 2.2 Diagrama del proceso de desalado.

2.2.3. Despunte

En seguida, el crudo desalado se precalienta hasta 219-225°C, en los intercambiadores de calor contra residuo, para después alimentarse a la zona de vaporización de las torres de despunte. La corriente de crudo se introduce por abajo del domo y debido a la reducción de presión hasta $2.19 \, \overline{\text{kg}}/\text{cm}^2 - 2.4 \, \overline{\text{kg}}/\text{cm}^2$ se ocasiona una vaporización parcial de alrededor de 10% peso, de los componentes ligeros del crudo, que se separan de la fase líquida.

Los vapores de hidrocarburos ligeros provenientes del domo de las torres de despunte se condensan parcialmente y se reciben en el acumulador, en el cual la fase líquida de hidrocarburos o nafta de despunte se extrae con bombas, enviándose a la sección de fraccionamiento y tratamiento de nafta.

La fase gaseosa de cada torre de despunte, que contiene una fracción de componentes recuperables, se envía a compresión de incondensables, la corriente se recibe en un tanque de succión. La fase líquida que se separa del tanque, se elimina drenándose de forma manual al desfogue. La corriente gaseosa se comprime de 1.8 kg/cm² a 15.4 kg/cm² y pasa a través de un condensador en donde se forma una fase líquida con los hidrocarburos recuperables de la fase gaseosa. Se reciben en un tanque separador en el cual la fase gaseosa se separa de la líquida y mediante una válvula reductora de presión, se envía a la red de gas combustible. La fase líquida se bombea y se incorpora a la corriente de nafta de torre de despunte.

El control de presión de las torres de despunte se efectúa por la operación del compresor de incondensables para mantener la presión en el domo de la misma. Cuando se tiene una disminución de presión, se recircula una parte del gas comprimido desde el tanque separador al tanque de succión, en caso de aumento de presión, el exceso de gas se alivia hacia el desfogue por medio de una válvula.

Por otro lado, cuando no trabaje el compresor de incondensables, los gases pueden enviarse a la planta catalítica (FCC) por medio de una válvula.

2.2.4. Horno de calentamiento

Del fondo de cada torre de despunte se extrae el crudo despuntado y con bombas de fondo se alimenta a cada horno de calentamiento y posteriormente se envía a los calentadores a fuego directo para alcanzar la temperatura de 368°C y a una presión de 1.37 \overrightarrow{kg} /cm² que son las condiciones requeridas para alimentarse a la zona de vaporización de la torre atmosférica.

La alimentación de cada calentador, se realiza a través de ocho serpentines y a una presión de $10.93 \ \overrightarrow{kg}/cm^2$, los serpentines entran a la zona de convección y pasan a la zona de radiación.

2.2.5. Torre atmosférica

La torre atmosférica está diseñada con alrededor de 40 platos del tipo válvula de dos pasos y con arrastre con vapor, sus condiciones de operación son las siguientes:

En el domo con una temperatura de 136 - 152°C y una presión de 0.7 \overrightarrow{kg} /cm² mientras que en el fondo con una temperatura de 361°C y una presión de 1.4 \overrightarrow{kg} /cm².

El crudo despuntado se recibe en la zona de vaporización (Por arriba de los fondos) de la torre de esta forma se lleva a cabo el fraccionamiento del crudo para obtener los diferentes cortes de hidrocarburos como son: Por el domo, nafta, de los primeros platos turbosina, de los platos que se encuentran aproximadamente a la mitad de la torre Kerosina y Diesel, de los últimos platos Gasóleo pesado. La turbosina, la kerosina y el diesel se envía desde su punto de extracción hacia su agotador, con el fin de ajustar sus especificaciones como producto.

El calor requerido para el agotamiento, se proporciona en los rehervidores de residuo. Alternativamente para el agotamiento se dispone de vapor de baja presión sobrecalentado, que se inyecta por debajo del domo de cada torre agotadora.

El producto de fondos de la torre atmosférica es lo que constituye el crudo reducido después de ceder calor se envía como carga a la planta de destilación al vacío.

2.3. Destilación al Vacío

La unidad de destilación al vacío se divide en tres diferentes secciones para su mejor descripción:

- Calentadores de crudo reducido
- Torre de destilación al vacío
- Sistema de vacío

2.3.1. Calentadores de Crudo Reducido

La planta está diseñada para procesar crudo reducido, tiene la capacidad para recibir una corriente de residuo atmosférico caliente directamente de la unidad de destilación primaria y carga fría de tanques de residuo primario. La planta recibe su carga a la temperatura de 150° C que resulta de mezclar al residuo caliente de la unidad de destilación atmosférica y el residuo frio, puede operar independientemente de la unidad de destilación atmosférica. El flujo resultante de unir las dos corrientes antes mencionadas, es manejado con bombas de carga para incrementar su presión hasta 18 kg/cm^2 . Estas bombas succionan de un cabezal común y descargan a otro para posteriormente dividirse en dos corrientes paralelas que alimentan a la sección de calentamiento.

Esta sección cuenta con dos trenes de precalentamiento de crudo reducido, cada tren cuenta con la opción de operar en forma totalmente independiente uno del otro e intercambiarse indistintamente hacia cualquier quemador a fuego directo a la salida de los trenes, la temperatura de salida del crudo reducido es de alrededor de 292°C para continuar hacia los hornos a fuego directo.

En estos hornos a fuego directo, se vaporiza parcialmente el crudo y se eleva su temperatura hasta 396°C. Para evitar la coquización del crudo reducido en los

hornos, se inyecta vapor de media presión a los serpentines de la sección de radiación, en el punto donde inicia la vaporización.

2.3.2. Torre de Vacío

Para disminuir la temperatura de ebullición de una mezcla, se utiliza presión negativa o de vacío. Se le llama presión negativa o de vacío a aquella que tiene un valor menor a la presión atmosférica. El valor de la presión atmosférica es variable y depende de la altitud del lugar donde se mide. La presión atmosférica a la que se encuentra la torre de vacío del caso de estudio es de 595 mmHg.

La torre de vacío opera con una presión menor a la atmosférica, generalmente en un rango de 25 a 40 mmHg, para disminuir la temperatura de ebullición de los componentes de la mezcla de hidrocarburos pesados (residuo primario), con el objetivo de recuperar la fracción de gasóleos presentes en la mezcla.

La torre de vacío es del tipo seca y consta de cinco secciones:

- Sección I: De condensación de gasóleo ligero de vacío (GOL "AV")
- Sección II: De lavado superior
- Sección III: De condensación de gasóleo pesado de vacío (GOP "AV")
- Sección IV: De lavado inferior
- Sección V: De agotamiento

La sección I consta de 4 platos tipo mampara de dos pasos, con perforaciones en los extremos de cada uno y una tina de extracción total. La sección II consta de 2 platos tipo mampara de dos pasos, sin perforaciones y un plato recolector. La sección III consta de 4 platos tipo mampara de dos pasos, con perforaciones en los extremos de cada uno y una tina de extracción total. La sección IV consta de 2 platos perforados de un solo paso. La sección V consta de 4 platos tipo mampara de 4 pasos con perforaciones en los extremos de cada plato. Cuenta además, con una malla eliminadora de niebla colocada entre las secciones III y IV y una línea

de lavado con gasóleo pesado de vacío en la parte superior de la misma para evitar la formación de sólido y/o depósitos de carbón en ella.

La alimentación del crudo reducido a la torre, se efectúa por medio de dos líneas de transferencia provenientes de los hornos, estas corrientes de crudo reducido entran a 385°C a través de boquillas localizadas tangencialmente a ambos lados de la torre para favorecer la separación de la mezcla líquido-vapor por efecto centrífugo sobre las paredes de la misma. La alimentación se hace a la zona de vaporización la cual opera a una presión de 30 mmHg.

En el fondo de la torre, sale el residuo de vacío, hacia la sección de calentamiento, donde se divide en dos corrientes para intercambiar calor con el crudo reducido en los intercambiadores de crudo reducido/crudo residuo de vacío, en donde se enfría desde 293°C hasta una temperatura de 277°C. Posteriormente estas corrientes se vuelven a unir y de la corriente resultante, una parte se recircula a la sección inferior de la torre de vacío, con objeto de enfriar el residuo de vacío proveniente de la sección V y otra parte se manda a una caja enfriadora.

La extracción de gasóleo pesado de la torre, se hace por gravedad desde la tina de extracción localizada debajo de la sección de condensación de gasóleo pesado de vacío y se envía a un tanque condensador. De este tanque sale una corriente que se divide en dos, una de ellas se maneja con una bomba de reflujo, para ser retornada a la torre, alimentándose en la sección de lavado inferior, se usa para lavado de la malla colocada entre las secciones de lavado y condensación de gasóleo pesado de vacío, con el fin de eliminar el carbón que se deposite sobre ellas.

La otra corriente se envía a la sección de calentamiento mediante la bomba de gasóleo pesado de vacío, que incrementa su presión hasta $11 \ \text{kg/cm}^2$ y descargan a un cabezal común, de donde posteriormente salen dos corrientes paralelas, las cuales a su vez se dividen en dos, para pasar a través del lado de los tubos de los intercambiadores de crudo reducido/GOP "AV" en donde se enfría el gasóleo pesado de vacío desde 310° C hasta 204° C. Al salir de estos equipos las corrientes

se vuelven a unir en una sola corriente, de donde se toma una parte y se envía a los enfriadores de reflujo, para ser enfriados hasta 177°C y posteriormente se retorna a la torre, alimentándose como reflujo en la parte superior de la sección de condensación de gasóleo pesado de vacío.

La otra parte de la corriente de gasóleo pesado de vacío tiene dos alternativas; una de ellas es, mandarse a Límite de Batería (L.B.) como producto caliente, que sirve como carga a la unidad de craqueo catalítico (FCC) y la otra es, enviarse a través de una caja enfriadora, hacia tanques de almacenamiento a 80° C. La primera alternativa es la que se emplea normalmente, las condiciones a las que se envía a la unidad catalítica son: $6 \text{ kg/cm}^2 \text{ y } 204^{\circ}$ C.

El gasóleo ligero de vacío se retira totalmente de la tina de extracción localizada en la parte inferior de la sección de condensación de gasóleo ligero de vacío, por gravedad hasta la succión de la bomba de GOL "AV", la cual incrementa su presión hasta $14 \ \overline{\text{kg}}/\text{cm}^2$ para ser enviada a diferentes partes formando tres corrientes; una de ellas se retorna a la torre y su flujo se controla mediante una válvula automática. La corriente entra por la parte superior de la torre y constituye el fluido de lavado de la sección II.

La segunda corriente que pasa por ocho enfriadores sale a 82°C, posteriormente la corriente pasa por el lado de la coraza de los enfriadores en donde intercambia calor con agua de enfriamiento para salir a 60°C, y de ahí se alimenta al plato 1 de la torre.

La tercera y última corriente se envía caliente (140°C) a la unidad FCC o fría (82°C) hacia los tanques de almacenamiento cuando dicha unidad esta fuera de operación. Cuando el gasóleo ligero de vacío se envía a tanques de almacenamiento, primero se enfría en los soloaires.

Para evitar sobre-presionamiento, la torre de destilación al vacío cuenta con una válvula de seguridad, la cual se encuentra protegida contra corrosión por un disco de ruptura y para saber cuándo está roto, se cuenta con un indicador de vacío.

La torre también cuenta con un indicador de vacío que permite medir la presión en las diferentes secciones a lo largo de ella. Los vapores efluentes del domo de la torre se extraen por dos líneas de 48" de diámetro conectadas cada una a un tren de eyectores. Para prevenir la corrosión a la salida de la torre, se inyecta inhibidor fílmico y amoniaco a las líneas, e inhibidor en el domo de la torre.

2.3.3. Sistema de Vacío

El Sistema de Vacío de la Torre de Destilación al Vacío está constituido por dos trenes de eyectores (norte y sur) operando en paralelo. El tren de eyectores Norte del sistema de vacío se integra por los eyectores 1-AN, 1-BN y 1-CN; los intercondensadores 7-AN y 7-BN; y el post-condensador 7-CN. El tren de eyectores sur del sistema de vacío se integra por los eyectores 2-AS, 2-BS y 2-CS; los intercondensadores 8-AS y 8-BS; y el post-condensador 8-CS.

Los eyectores son equipos auxiliares sencillos en su construcción que se utilizan en las plantas para hacer vacío en los equipos. Para su funcionamiento normalmente utilizan vapor al que se le llama vapor motriz. El vapor motriz que alimenta a los eyectores es de media presión (17 kg/cm² abs).

Los hidrocarburos ligeros, el vapor de agua proveniente de la torre y el vapor motriz de los eyectores que se condensan en los inter y post-condensadores, pasan al Tanque de Sello, en donde se separan los hidrocarburos y el agua. El tanque cuenta con dos mamparas; la más pequeña asegura un sello hidráulico para las líneas de condensados que provienen de los condensadores y la segunda mampara sirve para separar la fase de hidrocarburos enviándose por control de nivel a drenaje aceitoso. El condensado aceitoso que se separa se envía mediante una bomba al sistema de tratamiento de aguas amargas de la unidad de destilación atmosférica o como recuperado a Límite de Batería (L.B.).

Los gases y vapores que no condensan en el post-condensador de cada tren de eyectores son enviados directamente al Tanque de Incondensables. En este tanque se separa el líquido que se arrastra para ser enviado al tanque de sello y los incondensables se envían a la chimenea del calentador de crudo reducido de vacío y en caso de ser requerido, son enviados al sistema de desfogue húmedo mediante una válvula manual.

2.4. Variables de Operación en Torre de Destilación

Los paramentos termodinámicos que gobiernan la destilación son la temperatura y presión del sistema, por tal motivo consideramos como variables del proceso todas aquellas que puedan afectar el equilibrio entre las fases vapor-líquido. El éxito de la operación de una torre destiladora al vacío, depende del conocimiento que se tenga de lo que sucede en el interior de la torre, exige un razonamiento ordenado, ya que la presión, temperatura y los flujos afectan al proceso en función a la medida en que estos sean variados⁶.

Puesto que son muchos los factores que afectan la operación será conveniente considerar los principales como son: temperatura, presión y flujo.

Temperatura de la carga. Dependerá de la composición de la carga y la presión de trabajo, a mayor presión mayor temperatura. El aumento de temperatura proporciona un incremento en el contenido de calor suministrado a la torre.

Para una presión constante, un incremento de temperatura en la zona de vaporización determina un aumento de flujo interno de esta sección y de la primera extracción. Si se tiene baja temperatura en la carga, el producto de la primera extracción tendrá poco flujo y tiende a arrastrar productos pesados.

Temperatura de los platos de extracción. La composición de un producto se determina por la temperatura de extracción, y de la cantidad que de este puede

⁶ E. J. Henley; J. D. Seader. "Operaciones de separación por etapas de equilibrio en ingeniería química"

obtenerse. Con temperaturas altas se obtienen productos pesados (mayor rango de ebullición), y mayor cantidad.

Presión de operación. El efecto de la presión en una torre de destilación, es cambiar el punto de ebullición del líquido. Si se incrementa la presión de trabajo, la temperatura requerida tanto en la zona de vaporización como en los platos de extracción incluyendo el domo, deberán ser mayores.

Sí la presión se reduce, los líquidos hierven a temperaturas más bajas. Por ejemplo: el residuo atmosférico requiere de temperaturas altas para destilar las fracciones más pesadas. Sin embargo, si la presión se reduce por debajo de la atmosférica (vacío), las fracciones más pesadas se destilan a temperaturas más bajas.

Reflujos laterales. Los reflujos laterales tienen la finalidad de disminuir el flujo interno, al intercambiar calor retornan a menor temperatura por lo tanto se requiere una cantidad menor para mantener el equilibrio térmico.

La cantidad de reflujo determina la temperatura en la sección de inyección, al aumentar el reflujo se enfría y al disminuir se calienta.

Extracción de productos laterales. Tiene un doble efecto, en primer lugar representa una eliminación de calor en el balance térmico de la torre. Y el segundo es el de disminuir el reflujo interno.

La extracción de productos deberá efectuarse de acuerdo a la composición de la carga, un exceso de extracción lateral provoca un aumento de temperatura en la sección inferior del plato de extracción, incrementando el traslape de productos por falta de rectificación.

3. Sistema de Desfogue

El sistema de desfogue es un sistema cerrado, para que el fluido no entre en contacto con la atmósfera, el cual debe permitir la liberación del exceso de presión por medio del desplazamiento de la masa del fluido, desde el equipo y/o tubería presionado hasta el lugar donde se pueda disponer de ella con seguridad.

Los sistemas de desfogue existentes en la Refinería del caso de estudio se dividen en dos áreas:

Área 1: Considera unos Quemadores Elevados: además de tres quemadores de fosas (Módulos Anticontaminante Ambiental) que manejan los desfogues de Hidrocarburos de Almacenamiento y de algunas plantas.

Área 2: Considera a un solo Quemador Elevado.

Los cabezales de desfogue consideran a las siguientes plantas:

Área 1:

Plantas que relevan al Sistema de Desfogue (fosas):

- Desintegración Catalítica 1.
- Hidrodesulfuradora, Reformadora y Tratadora de Hidrocarburos I.
- Recuperación de Azufre I y IV.
- Destilación Combinada 1.
- Reductora de Viscosidad.
- Atmosférica y Alto Vacío II.
- Estabilizadora I.
- Alquilación.
- Desintegración Catalítica 2.

Desfogue al Quemador Elevado:

- Catalítica I
- Azufre I y IV
- Estabilizadora I
- Atmosférica y Alto Vacío II
- Catalítica II
- Hidros 1: Hidrodesulfuradora, Reformadora y Tratadora de Hidrocarburos I

Área 2:

Sistema de Desfogue se compone de las Plantas:

- Hidrodesulfuradora de Destilados Intermedios
- Hidrodesulfuradora de Naftas
- Reformadora de Naftas
- Tratadora y Fraccionadora
- Hidrodesulfuradora de Diesel
- Isomerizadora de Pentanos y Hexanos
- Recuperación de Azufre

Como puede observarse para el caso de estudio solo el área norte es la de interés, debido a que son los que pueden afectar el óptimo funcionamiento de la torre de destilación al vacío, al estar interconectadas las diferentes plantas al cabezal principal de desfogue.

4. Compresor de anillo líquido

Una bomba de anillo líquido o compresor es una máquina rotatoria de desplazamiento positivo que consigue comprimir un gas mediante un impulsor radial con álabes, montado en una carcasa elíptica o excéntrica, la cual está parcialmente llena de un fluido⁷.

Los compresores utilizados en las plantas de la industria de procesos químicos suelen ser complejos, construidos con precisión y costosos. Por ello, su selección, operación y mantenimiento deben ser cuidadosos. Por ejemplo, la operación incorrecta puede ocasionar oscilaciones de presión (inestabilidad), condición en la cual se invierte un instante el flujo de gas dentro del compresor. Estas oscilaciones pueden dañar los componentes internos del compresor, producir daños por miles de dólares en un corto tiempo y aumentar el costo del tiempo perdido para su reparación.

El compresor o bomba de anillo líquido, que es rotatorio, pero tiene un principio exclusivo de funcionamiento, diferente al de cualquier otro rotatorio. Es una bomba que comprime gases mediante un anillo líquido, usualmente agua, que es generado por un impulsor rotatorio. La única parte en movimiento es el rotor o impulsor, el cual es montado en una flecha localizada de manera excéntrica respecto al eje central de una carcasa cilíndrica o elíptica. La figura 1 ilustra la operación de este tipo de equipos donde se muestra un dispositivo cónico con los puertos de succión y descarga del gas a comprimir. Antes de la operación las cámaras del rotor se encuentran parcialmente llenas del líquido de sello, al iniciar la operación, el impulsor arroja el líquido de sello hacia la periferia de las paredes internas de la carcasa, generando un anillo líquido de espesor variable, de tal forma que en la parte superior de la misma, el anillo líquido casi vacía las

⁷ API 681 Bombas y compresores de anillo líquido y compresores para petróleo, químicos y servicios de la industria del gas. 1996

cavidades entre los alabes del rotor (la sección de succión), e inicia su movimiento hacia el eje del rotor, comprimiendo el gas correspondiente, de tal manera que en la parte inferior, estas cavidades están casi llenas y el gas comprimido sale por el puerto de descarga. Este vaciado y llenado de las cavidades actúa como un pistón succionando el gas de proceso por el puerto de succión y expulsándolo junto con el líquido de sello.

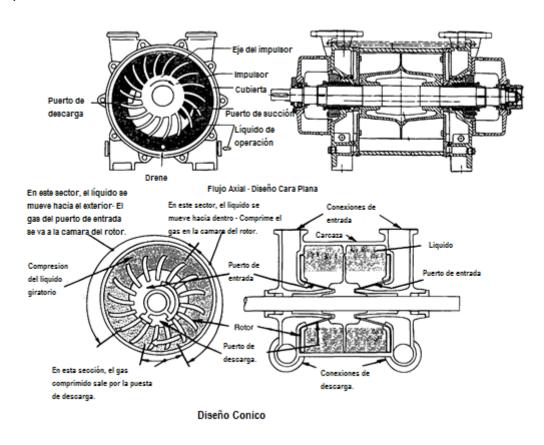


Figura 4.1. Bomba de anillo líquido.

Sus tamaños van desde los pequeños, para flujo de unos 17 m³/h, hasta los más grandes, de carcasa sencilla, para 17 000 m³/h. Estos compresores se emplean mucho con gases difíciles como cloro, gas ácido, gases cargados con sulfuro de hidrógeno, dióxido de carbono y otros. Para muchos tipos se puede obtener construcción de acero inoxidable.

En general, sólo son para necesidades especiales, la carga, capacidad y caballaje adiabáticos se pueden determinar en forma muy semejante a las de un compresor centrífugo.

4.1. Sistema de líquido de sello

Cuando los vapores succionados se contactan con el líquido de sello, ocurre algo de condensación, funcionando el equipo como un condensador de contacto directo. Si el gas succionado es seco, ocurrirá evaporación del líquido de sello. Por supuesto, estas bombas requieren reposición del líquido de sello que es expulsado junto con el gas comprimido. También debe de considerarse que la presión de succión está limitada por la presión de vapor del líquido de sello, ya que a presiones de succión muy cercana o iguales a la presión de vapor del anillo líquido, la bomba presentara cavitación y consecuente deterioro. Estas bombas no deben operarse en seco. La presión de succión en la bomba debe de ser al menos dos veces la presión del líquido de sello a la temperatura de operación del mismo.

El líquido de sello más ampliamente usado es agua, sin embargo, otros líquidos con menores presiones de vapor o bien los líquidos correspondientes a los gases de proceso pueden usarse como líquido de sello, tal es el caso del uso de los productos de la destilación al vacío o de líquidos tales como etilenglicol, ácido sulfúrico etc.

Las bombas de anillo líquido son capaces de manejar cantidades limitadas de corriente de líquido. Una práctica general es limitar el volumen total de entrada de líquido de sello y de arrastre en la corriente de proceso succionada a un valor de 1% de la capacidad del gas de succión. El líquido de sello por lo regular debe de proporcionarse a una presión de 0.3 bar mayor a la presión de descarga de la bomba de anillo líquido.

4.2. Sistemas de recuperación de gas

El sistema de recuperación de gas son: compresión, separación física y segregación de corrientes. El sistema de compresión de anillo líquido se integra básicamente por los siguientes componentes:

- Bomba de anillo líquido
- Tanque separador
- Enfriador
- Dispositivo de seguridad y control
- Tuberías
- Filtros

Sin embargo pueden ser considerados elementos adicionales.

Conforme al estándar API 681⁸ existen tres tipos de arreglos tal como se muestran a continuación siendo el más común el No.1:

- Arreglo No.1 Sistemas de un paso (sin recuperación del líquido de sello)
- Arreglo No 2. Sistema con recuperación parcial
- Arreglo No 3. Sistema con recuperación total

Sistema de un paso (sin recuperación del líquido de sello)

En este sistema todo el líquido de servicio necesario se suministra continuamente del exterior. El líquido se separa del gas en el separador de gas de anillo líquido y se descarga al exterior. Este esquema es la instalación más común y se puede utilizar cuando se dispone de gran cantidad de líquido fresco y/ó no exista el problema de contaminación del mismo, que a su vez, podría ser perjudicial para el

⁸ API 681 Bombas de anillo líquido y compresores para petróleo, químicos y servicios de la industria del gas. 1996

medio ambiente. Por este motivo se deberá proceder a su eliminación de acuerdo con la normatividad vigente.

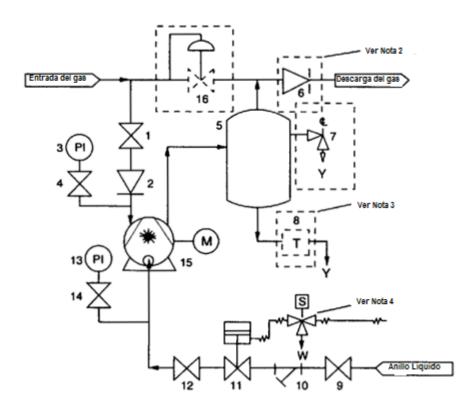


Figura 4.2 Arreglo No.1 Sistema de un paso.

Sistema de recirculación parcial

Este tipo de sistemas se utilizan cuando se quiere reducir el consumo del líquido de servicio. El líquido de servicio entra en el compresor del mismo modo que en el sistema anterior, pero una parte del líquido separado es reusado como líquido de servicio.

Durante la operación continua en la compresión, el líquido se calienta lo que implica un servicio de enfriamiento para lo cual se requiere la instalación de un intercambiador de calor en la línea del flujo de recirculación.

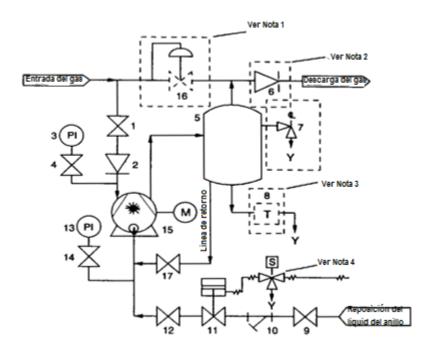


Figura 4.3 Arreglo No.2 Sistema de recirculación parcial.

Sistema de recirculación total

Este sistema se prevé la recirculación total del líquido recuperado del separador de gas de anillo líquido sin ningún tipo de aportación del exterior. El líquido contenido en el sistema es por lo tanto continuamente recirculado (circuito cerrado).

Un intercambiador de calor es necesario para estabilizar la temperatura del líquido recuperado debido que durante la compresión él líquido se calienta. Normalmente se instala una bomba de recirculación.

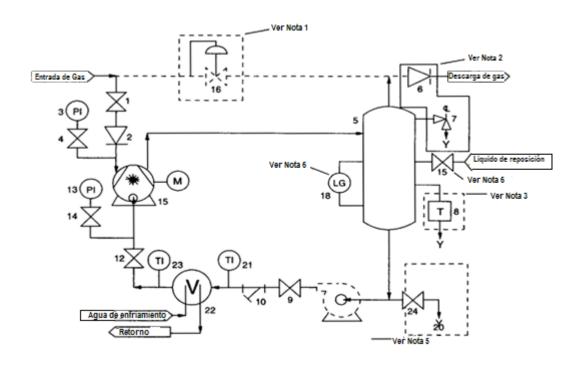


Figura 4.4 Arreglo No.3 Sistema de recirculación total.

- Válvula de aislamiento de entrada
- 2. Válvula check de entrada
- 3. Manómetro
- 4. Válvula de aislamiento
- Separador de gas de anillo líquido
- Válvula check a la descarga (ver nota 2)
- Válvula de alivio de presión (ver nota 2)

- 8. Trampa de drenaje de anillo líquido
- Válvula de aislamiento de entrada
- 10. Filtro Y
- 11. Válvula con actuador automático (ver nota 4)
- Válvula reguladora de flujo u orificio
- 13. Manómetro de presión de anillo líquido
- 14. Válvula de aislamiento

- 15. Bomba de vacío o compresor de anillo líquido
- 16. Válvula reguladora de presión (ver nota 1)
- 17. Válvula de recirculación parcial del anillo líquido
- 18. Medidor de nivel

- 19. Válvula para remplazo
- 20. Bomba opcional para la recirculación de anillo líquido
- 21. Medidor de temperatura
- 22. Intercambiador de calor
- 23. Medidor de temperatura
- 24. Válvula de purga

Notas:

- 1. Válvula reguladora de presión opcional
- 2. Requerida en compresores de anillo líquido
- 3. Requerida para compresores
- 4. Válvula actuada por solenoide de tres vías
- 5. Recirculación de bomba opcional
- 6. Control de nivel puede ser seleccionado por el comprador

5. Planteamiento del problema

La industria de refinación del país atraviesa por una situación crítica que dificulta cada vez más su capacidad de cumplir los objetivos de eficiencia y rentabilidad en el abastecimiento de la demanda interna de derivados del petróleo; sin embargo, existen ahorros potenciales en los procesos de refinación cuya utilización representa la oportunidad de implantar tecnologías que mejoren en forma integral la calidad de la producción, aumentando la competitividad de la Industria de la Refinación y maximizando el valor agregado de los productos que se obtienen.

Para Pemex el principal reto no es sólo financiero, sino fundamentalmente operativo, tecnológico y de capacidad de ejecución. Esto implica mayor eficiencia en la operación de la empresa asimismo necesita desarrollar las habilidades para administrar e incorporar tecnología de punta.

El caso de estudio toma como base a la unidad de Destilación al vacío, en la parte del sistema de vacío y cuyo objetivo es generar una presión de vacío que permita una óptima operación de la torre de destilación. Éste sistema está constituido por dos trenes de eyectores operando en paralelo, cada tren se integra por tres eyectores, dos inter-condensadores y un pos-condensador.

En la actualidad la problemática es causada cuando las plantas de proceso de la primera etapa desfogan, ocasionando un incremento de presión en el cabezal, lo cual provoca una contrapresión en el sistema de vacío, ocasionando que la destilación en la torre de vacío no se efectúe adecuadamente debido al aumento de presión de ésta y reduciendo la eficiencia del proceso.

Este trabajo tiene como objetivo el diseño de una bomba de anillo líquido que se localizará en la tercera etapa de compresión de los bancos de condensadores Norte y Sur del sistema de vacío; así como el envío de esta corriente a la planta de desintegración catalítica (FCC), bajo condiciones de operación normal de la planta. Es necesaria la integración del equipo para garantizar el buen

funcionamiento del sistema de vacío que es indispensable para la operación de la torre de vacío.

En la figura 4.5, se muestra la Torre de Destilación al Vacío y el Sistema de Vacío, los tanques separadores y los cabezales principales.

El destino del fluido de descarga del equipo bomba de anillo líquido son la planta de desintegración catalítica (FCC) y el cabezal de desfogue húmedo. Cada línea de descarga de la bomba de anillo líquido llegará a una bifurcación, en una línea se interconectará al cabezal de gas amargo de despunte, después de la válvula, hacia la planta catalítica (FCC) y en la otra línea se interconectará con el cabezal de desfogue húmedo, en un punto posterior al tanque de Incondensables.

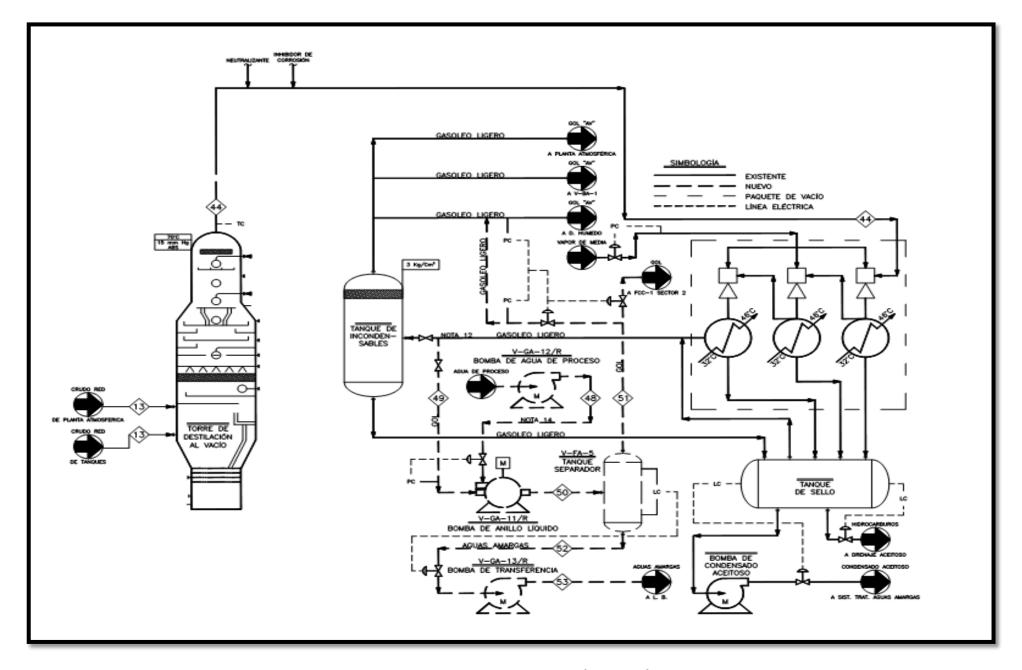


Figura 4.5 Torre de destilación al vacío

6. Bases termodinámicas⁹

El proceso de compresión se rige por la primera ley de la termodinámica que considera la compresión como adiabática. Esta ley se presenta por la siguiente ecuación.

$$dU = dQ + dW \tag{1}$$

U= Energía interna

Q= Energía Calorífica

W= Trabajo

Considerando un proceso adiabático dQ = 0, por lo tanto

$$dU = dW \qquad (2)$$

Por el contrario si se hace trabajo sobre el sistema, se incrementa la energía interna del sistema y por lo tanto se eleva la temperatura.

Una ecuación que todo gas ideal obedece en cualquier etapa de una compresión adiabática reversible, se deduce a partir de la ecuación anterior. Supongamos "n" número de moles de un gas ideal a la presión "P" y volumen "V". Para una reducción de volumen infinitesimal dV y presión "P", el trabajo realizado es el siguiente.

$$PdV = -dW (3)$$

Sustituyendo dW = dU

$$PdV = -dU \tag{4}$$

Además $dU = nC_v dT$ y $P = \frac{nRT}{V}$

⁹ 18. Smith, J.M. y Van Ness. "Introducción a la termodinámica en Ingeniería Química". 6a Ed. 2003

Por lo tanto.

$$-\frac{R}{C_{v}}\frac{dV}{V} = \frac{dT}{T} \tag{5}$$

Para un gas ideal $C_p - C_v = R$

Dividiendo entre C_v

$$\frac{C_p}{C_v} - \frac{C_v}{C_v} = \frac{R}{C_v} \quad \to \quad \frac{C_p}{C_v} - 1 = \frac{R}{C_v} \tag{6}$$

Definiendo $k = \frac{c_p}{c_v}$ entonces.

$$k - 1 = \frac{R}{C_{\nu}} \tag{7}$$

Sustituyendo en ecuación 5

$$\frac{dT}{T} = -(k-1)\frac{dV}{V} \tag{8}$$

Considerando a k constante e integrando entre los límites $\ V_1 @\ T_1 \ V_2 @\ T_2$

$$\int_{T_1}^{T_2} \frac{dT}{T} = -(k-1) \int_{V_1}^{V_2} \frac{dV}{V}$$
 (9)

$$\ln \frac{T_2}{T_1} = -(k-1)\ln \frac{V_2}{V_1} \tag{10}$$

Reordenando.

$$\ln \frac{T_1}{T_2} = (k-1) \ln \frac{V_1}{V_2} \tag{11}$$

$$\ln \frac{T_1}{T_2} = \ln \left(\frac{V_1}{V_2}\right)^{(k-1)} \tag{12}$$

Aplicando anti-logaritmo.

$$\frac{T_1}{T_2} = \left(\frac{V_1}{V_2}\right)^{(k-1)} \tag{13}$$

Arreglando.

$$\left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}} = \frac{V_1}{V_2} \tag{14}$$

Usando la siguiente ecuación:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \tag{15}$$

Despejando tenemos.

$$\frac{V_1}{V_2} = \frac{P_2}{P_1} \frac{T_1}{T_2} \tag{16}$$

Sustituyendo en ecuación 14

$$\left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}} = \frac{P_2}{P_1} \frac{T_1}{T_2} \tag{17}$$

Simplificando

$$\left(\frac{T_1}{T_2}\right)^{\frac{1}{k-1}} \left(\frac{T_1}{T_2}\right) = \frac{P_2}{P_1} \tag{18}$$

$$\left(\frac{T_1}{T_2}\right)^{\frac{k}{k-1}} = \frac{P_2}{P_1} \tag{19}$$

Despejando $^{T_1}/_{T_2}$

$$\left(\frac{T_1}{T_2}\right) = \left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} \tag{20}$$

Sustituyendo ecuación 20 en 13

$$\left(\frac{P_2}{P_1}\right)^{\frac{k-1}{k}} = \left(\frac{V_1}{V_2}\right)^{(k-1)}$$
 (21)

Elevando a la potencia $\frac{1}{k-1}$

$$\left(\frac{P_2}{P_1}\right)^{\frac{1}{k}} = \frac{V_1}{V_2} \qquad \rightarrow \qquad \frac{P_2}{P_1} = \left(\frac{V_1}{V_2}\right)^k \tag{22}$$

$$P_2 V_2^k = P_1 V_1^k = constante (23)$$

La ecuación 23 es la que rige los procesos de compresión.

La compresión isotérmica tiene lugar cuando la temperatura permanece constante a medida que la presión aumenta, esto exige una extracción continua del calor de compresión. La compresión cumple la siguiente formula.

$$P_2V_2 = P_1V_1 = constante$$

La compresión adiabática (isoentrópica) se obtiene cuando no hay adicción ni extracción de calor del gas durante la compresión. La compresión cumple con la siguiente ecuación.

$$P_2V_2^k = P_1V_1^k = constante$$

La compresión politrópica. Es casi imposible obtener una compresión adiabática exacta, ya que siempre existe pérdida o ganancia de calor por lo tanto la compresión real de este proceso se rige por la siguiente ecuación:

$$P_2V_2^n = P_1V_1^n = constante$$

Donde n es una característica del gas que determina su comportamiento durante la compresión. La compresión del gas en un compresor centrífugo se considera politrópico con valor de n mayor que k.

7. Cálculo de la bomba de anillo líquido

La refinería de estudio es una de las más importantes del país por su capacidad instalada y la porción del mercado que controla ya que procesa el 24 % del crudo total que se refina en México por lo tanto la refinería representa un punto de estudio muy importante y por esta razón el de la tesis. El cálculo del diseño de una bomba de anillo líquido es una implementación muy importante, debido a las posibles eventualidades que acontezcan, garantizará el buen funcionamiento del sistema de vacío que es indispensable para la operación de la torre de destilación al vacío.

La bomba de anillo líquido se instalará en la tercera etapa de compresión de los bancos de condensadores Norte y Sur del sistema de vacío; así como el envío de esta corriente a la planta de desintegración catalítica (FCC), bajo condiciones de operación normal de la planta.

Para determinar la capacidad de la bomba de anillo líquido que se instalará en la tercera etapa de compresión de los bancos de condensadores norte y sur del sistema de vacío se tiene información disponible con respecto a la identificación de equipos, manuales de la unidad de destilación atmosférica y al vacío, hojas de datos de equipos, diagramas de flujo de procesos, diagramas de tubería e instrumentación, análisis de composición; esta información fue proporcionada por la refinería.

Por no contar con equipos de medición de flujo, presión, temperatura y composición en los tanques de Post-condensadores, se basó en lo reportado en las hojas de datos de dichos equipos.

	Post-Condensador 7-CN	Post-Condensador 8-CS
Temperatura salida °F (°C)	120 (48.89)	120 (48.89)
Presión de salida mmHg	1,036 (20.033)	1,036 (20.033)
(psia)		
Vapor de agua salida kg/h	54.4 (120)	54.4 (120)
(lb/h)		
Gas incondensables salida	1109.48 (2446)	1109.48 (2446)
kg/h (lb/h)		
Flujo total kg/h (lb/h)	1163.9 (2566)	1163.9 (2566)

Tabla 1 Datos de los equipos Post-Condensador 10 7-CN/ 8-CS.

En el caso de la composición de salida de los post- condensadores (entrada a la bomba de anillo líquido) se considera el estadístico proveniente del análisis cromatográfico de gases del Tanque de Incondensables. Estos datos están expresados en base seca y comprenden el periodo entre Enero y Diciembre de 2010 (Ver Anexo 1). Con estos datos se determinó un promedio estadístico para obtener una representación más real de la composición. Por lo tanto, la composición promedio de la corriente de interés resulta:

COMPONENTE	% mol base seca	y base seca
METANO (C₁)	16.636	0.16636
ETANO (C ₂)	10.633	0.10633
ETILENO (C ₂ =)	1.163	0.01163
PROPANO (C ₃)	9.565	0.09565
PROPILENO(C ₃ =)	4.129	0.04129
n-BUTANO (nC ₄)	5.478	0.05478
ISOBUTANO (iC ₄)	1.019	0.01019
2-cis-BUTENO	0.659	0.00659
2-trans-BUTENO	0.775	0.00775
ISOBUTENO (iC ₄ =)	1.720	0.01720
1-BUTENO (1-C ₄ =)	1.508	0.01508
ISOPENTANO (iC ₅)	1.723	0.01723
n-PENTANO (nC ₅)	2.448	0.02448
OXÍGENO (O ₂)	1.961	0.01961

 $^{^{10}}$ Hoja de datos "Ejector after condenser - exchanger specification sheet." Rev. 3. Kinema Inc. 1981

38

COMPONENTE	% mol base seca	y base seca
HIDRÓGENO (H ₂)	4.478	0.04478
NITRÓGENO (N ₂)	6.180	0.06180
CO ₂	0.114	0.00114
H ₂ S	28.340	0.28340
INERTES (Ar)	1.475	0.01475
H ₂ O		
TOTAL	100.000	1.000

Tabla 2 Composición 11 base seca.

7.1. Determinación de la composición base húmeda a la entrada de la bomba de anillo líquido

Los datos de proceso del Tanque post-condensador 7-CN / 8-CS indican que la composición de la salida es húmeda. Para la determinación del cálculo de la composición % mol base húmeda se considera el flujo total de dichos equipos. Como se muestra en la siguiente tabla.

	Tanque post-condensador	TOTAL	
	7-CN / 8-CS	IOTAL	
CARGA DE VAPOR DE AGUA kg/h (lb/h)	54.4 (120)	108.8 (240)	
CARGA DE INCONDENSABLES kg/h (lb/h)	1109.48 (2446)	2218.9(4,892)	
TOTAL kg/h (lb/h)	1163.9 (2566)	2309.6(5,092)	

Tabla 3 Flujo de los post-condensador 7-CN/ 8-CS.

Considerando los flujos de vapor de agua, se tienen los nuevos valores de composición de base húmeda (y) los cuales corresponde a los valores de composición de entrada a la bomba de anillo líquido. Se muestran en la siguiente tabla.

¹¹ Datos proporcionados por la refinería de estudio.

COMPONENTE	% mol	У
METANO (C₁)	15.2142	0.15214
ETANO (C ₂)	9.72366	0.09724
ETILENO (C ₂ =)	1.06313	0.01063
PROPANO (C ₃)	8.74741	0.08747
PROPILENO (C ₃ =)	3.77584	0.03776
n-BUTANO (nC₄)	5.0093	0.05009
ISOBUTANO (iC ₄)	0.93167	0.00932
2-cis-BUTENO (cis-2-C ₄ =)	0.60244	0.00602
2-trans-BUTENO (trans-2-C ₄ =)	0.70875	0.00709
ISOBUTENO (iC ₄ =)	1.57298	0.01573
1-BUTENO (1-C ₄ =)	1.37864	0.01379
ISOPENTANO (iC ₅)	1.57527	0.01575
n-PENTANO (nC ₅)	2.23829	0.02238
OXÍGENO (O₂)	1.79361	0.01794
HIDRÓGENO (H₂)	4.09477	0.04095
NITRÓGENO (N₂)	5.65175	0.05652
DIÓXIDO DE CARBONO (CO ₂)	0.10403	0.00104
SULFURO DE HIDRÓGENO	25.9176	0.25918
(H ₂ S)		
INERTES (Ar)	1.34892	0.01349
AGUA (H ₂ O)	8.5477	0.08548
(S)/MEDIA PONDERADA	(100.0)	(1.0000)

Tabla 4 Composición base húmeda.

7.2. Criterios de diseño

El cálculo del compresor se basa en el método de la "N".

El dimensionamiento se basa en lo establecido en la normatividad API 681¹², API 617¹³, NRF-131-PEMEX-2007¹⁴ e ISO/FDIS 13709¹⁵.

¹² API 681 Bombas de anillo líquido y compresores para petróleo, químicos y servicios de la industria del gas. 1996.

La composición de entrada del compresor se considera a partir del análisis estadístico (ver Anexo 1).

El flujo de diseño a considerar para el cálculo del compresor, se considera a partir del flujo a la salida de los post-condensadores (tercer etapa de compresión), reportados en las hojas de datos de dichos equipos y considerando un factor de diseño del 25% más respecto de este flujo total.

	POR TREN	TOTAL	DISEÑO
CARGA DE VAPOR DE AGUA	54.4 (120)	108.8	136
kg/h (lb/h)	34.4 (120)	(240)	(300)
CARGA DE INCONDENSABLES	1109.48 (2446)	2218.9	6,115
kg/h (lb/h)	1109.40 (2440)	(4,892)	0,113
TOTAL (lb/h)	1163.9 (2566)	2309.6	2909.8
TOTAL (ID/II)	1103.9 (2300)	(5,092)	(6,415)

Tabla 5 Flujo de diseño.

La temperatura de operación se toma a partir de la temperatura a la salida del post-condensador (tercera etapa de compresión).

$$t_1 = 120 \, {}^{\circ}F = 48.89 \, {}^{\circ}C = 322.04 \, {}^{\circ}K$$

Factor para la temperatura de diseño +28 Kelvin de la temperatura de entrada del compresor¹⁶.

$$T_0 = 350.04 \, {}^{\circ}K$$

La temperatura y carga del agua de proceso al anillo líquido se considera para determinar la temperatura del gas en el punto de mezcla. Anexo 5

$$T_{ap} = 89.6 \, ^{\circ}F = 32 ^{\circ}C = 305.15 \, ^{\circ}K$$

¹³ API 617 Compresores axiales y centrífugos para petróleo, químicos y servicios de la industria del gas. Julio 2002.

¹⁴ NRF-131-PEMEX-2007 Compresores Centrífugos.

¹⁵ ISO/FDIS 13709:2009 "Bombas centrífugos para petróleo, petroquímica y la industria del gas natural".

¹⁶ NRF-090-PEMEX-2005 "Cambiadores de calor envolvente - haz de tubos"

$$Q_{ap} = 8.7 \frac{m^3}{h}$$

La presión de descarga del compresor se establecen en:

$$P_2 = 5\frac{\overrightarrow{kg}}{cm^2} = 4.9033 \ bar$$

Los factores de compresibilidad se calculan a partir de las correlaciones de Lee/Kesler. Anexo 2

7.3. Datos de diseño

Flujo másico del gas	W	=	2,909.8	kg/h
Presión de entrada del gas	P_0	=	1.3812	bar
Presión de descarga del gas	P_2	=	4.9033	bar
Temperatura de diseño del gas	T_0	=	350.04	K

7.4. Cálculos de las propiedades de la mezcla

Debido a que se tiene una mezcla de gases las propiedades de la mezcla se calculan de la siguiente manera;

La presión crítica de la mezcla (P_c).

$$P_c = P_{c1}y_1 + P_{c2}y_2 + P_{c3}y_3 + \dots + P_{cn}y_n = \sum_{i=1}^{n} P_{ci}y_i$$

La temperatura crítica de la mezcla (T_c).

$$T_c = T_{c1}y_1 + T_{c2}y_2 + T_{c3}y_3 + \dots + T_{cn}y_n = \sum_{i=1}^{n} T_{ci}y_i$$

Factor acéntrico de la mezcla (ω) el cual considera la no esfericidad o asimetría de las moléculas.

$$\omega = \omega_1 y_1 + \omega_2 y_2 + \omega_3 y_3 + \dots + \omega_n y_n = \sum_{i=1}^n \omega_i y_i$$

Peso molecular de la mezcla (PM_m).

$$PM_m = PM_1y_1 + PM_2y_2 + PM_3y_3 + \dots + PM_ny_n = \sum_{i=1}^{n} PM_iy_i$$

En la siguiente tabla se presentan las propiedades¹⁷ de la mezcla.

COMPONENTE	% mol	У	PM	PM * y	T _C (K)*	<i>P</i> _c (bar)*y	w * y 10 ³
					У		
METANO (C₁)	15.2142	0.15214	16.043	2.44082	29.150	6.997	1.83
ETANO (C ₂)	9.72366	0.09724	30.070	2.9239	29.686	4.737	9.72
ETILENO (C ₂ =)	1.06313	0.01063	28.054	0.29825	3.001	0.535	9.25
PROPANO (C ₃)	8.74741	0.08747	44.097	3.85734	32.347	3.715	1.33
PROPILENO (C ₃ =)	3.77584	0.03776	42.081	1.58891	13.804	1.761	5.29
n-BUTANO (nC₄)	5.0093	0.05009	58.123	2.91155	21.294	1.901	1.00
ISOBUTANO (iC ₄)	0.93167	0.00932	56.123	0.52288	3.802	0.339	1.69
2-cis-BUTENO (cis-2-C ₄ =)	0.60244	0.00602	56.108	0.33802	2.624	0.255	1.24
2-trans-BUTENO (trans-2-C ₄ =)	0.70875	0.00709	56.108	0.39767	3.037	0.290	1.55
ISOBUTENO (iC₄=)	1.57298	0.01573	56.108	0.88257	6.573	0.629	3.05
1-BUTENO (1-C ₄ =)	1.37864	0.01379	56.108	0.77353	5.790	0.557	2.63
ISOPENTANO (iC₅)	1.57527	0.01575	72.150	1.13655	7.263	0.530	3.97
n-PENTANO (nC ₅)	2.23829	0.02238	72.150	1.61493	10.513	0.754	5.64
OXÍGENO (O₂)	1.79361	0.01794	31.999	0.57394	2.772	0.904	3.95
HIDRÓGENO (H₂)	4.09477	0.04095	2.016	0.08255	1.359	0.537	-8.84
NITRÓGENO (N₂)	5.65175	0.05652	28.014	1.58328	8.7376	1.921	2.15
DIÓXIDO DE CARBONO (CO ₂)	0.10403	0.00104	44.010	0.04578	0.3164	0.076	2.33
SULFURO DE HIDRÓGENO (H₂S)	25.9176	0.25918	34.082	8.83323	96.802	23.22	2.44
INERTES (Ar)	1.34892	0.01349	39.948	0.53887	2.035	0.660	0.00

 $^{^{17}}$ Carl L. Yaws. "Handbook of thermodynamic Diagrams". Vol. 1, Editorial Gulf Publishing Company, Houston, Texas 1996

43

AGUA (H ₂ O)	8.5477	0.08548	18.015	1.53987	55.312	18.851	2.95
TOTAL	(100.0)	(1.0000)		32.8844	336.225	69.190	0.1086

Tabla 6 Propiedades de la mezcla.

7.5. Evaluación del flujo de entrada

A. Determinación de la presión reducida (Pr₀), temperatura reducida (Tr₀) a la entrada del compresor y la constante de los gases por unidad de masa de esta mezcla (R').

$$Pr_{0} = \frac{P_{0}}{P_{c}} = \frac{1.3812 \ bar}{69.190 \ bar} \qquad Pr_{0} = 0.0200$$

$$Tr_{0} = \frac{T_{0}}{T_{c}} = \frac{350.04 \ ^{\circ}K}{336.225 \ ^{\circ}K} \qquad Tr_{0} = 1.0411$$

$$R' = \frac{R}{PM_{m}} = \frac{0.08314 \ \frac{m^{3} * bar}{kmol * ^{\circ}K}}{32.8844 \ \frac{kg}{kmol}} \qquad R' = 0.00253 \ \frac{m^{3} * bar}{kg * ^{\circ}K}$$

B. Determinación del factor de compresibilidad¹⁸ (Z) a las condiciones de diseño (ver anexo 2).

Ecuación para la interpolación del factor de compresibilidad entre cuatro puntos.

$$\begin{split} Z_{1} &= \left[\left(\frac{Pr_{sup} - Pr_{1}}{Pr_{sup} - Pr_{inf}} \right) Z_{i,i} + \left(\frac{Pr_{1} - Pr_{inf}}{Pr_{sup} - Pr_{inf}} \right) Z_{i,s} \right] \frac{Tr_{sup} - Tr_{1}}{Tr_{sup} - Tr_{inf}} \\ &+ \left[\left(\frac{Pr_{sup} - Pr_{1}}{Pr_{sup} - Pr_{inf}} \right) Z_{s,i} + \left(\frac{Pr_{1} - Pr_{inf}}{Pr_{sup} - Pr_{inf}} \right) Z_{s,s} \right] \frac{Tr_{1} - Tr_{inf}}{Tr_{sup} - Tr_{inf}} \end{split}$$

¹⁸ John R. Howell. "Principios de termodinámica para ingeniería". Editorial McGraw-Hill 1990.

Representación de los puntos de interpolación.

	Pr _{inf}	Pr ₁	Pr _{sup}
Tr _{inf}	$Z_{i,i}$		$Z_{i,s}$
Tr ₁		Z ₁	
Tr _{sup}	$Z_{s,i}$		$Z_{s,s}$

Tabla 7 Representación de los puntos de interpolación.

Factor de compresibilidad en el punto de entrada.

Interpolación \mathbb{Z}_0^0

Tr\Pr	0.0100	0.0200	0.0500
1.0200	0.9969		0.9842
1.0411		0.9941	
1.0500	0.9971		0.9855

Tabla 8 Interpolación Z_0^0

$$\begin{split} Z_0^0 &= \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) 0.9969 + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) 0.9842 \right] \frac{1.05 - 1.0411}{1.05 - 1.02} \\ &\quad + \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) 0.9971 + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) 0.9855 \right] \frac{1.0411 - 1.02}{1.05 - 1.02} \\ &= 0.9942 \end{split}$$

Interpolación Z_0^1

Tr\Pr	0.0100	0.0200	0.0500
1.0200	0.0005		0.0026
1.0411		0.0007	
1.0500	0.0003		0.0015

Tabla 9 Interpolación Z_0^1

$$Z_0^1 = \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) * (-.0005) + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) * (-0.0026) \right] \frac{1.05 - 1.0411}{1.05 - 1.02} + \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) * (-0.0003) + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) \right] \frac{1.0411 - 1.02}{1.05 - 1.02} = -0.007$$

$$Z_0 = Z_0^0 + \omega Z_0^1 = 0.9941 + (-0.007 * 0.1086)$$
 $Z_0 = 0.99399$

C. Cálculo del volumen por unidad de masa inicial (v_o) .

$$v_o = \frac{Z_0 R' T_0}{P_0} = \frac{0.99399 * 0.00253 \frac{m^3 * bar}{kg * K} * 350.04 °K}{1.3812 bar} \qquad v_o = 0.6369 \frac{m^3}{kg}$$

D. Cálculo del flujo volumétrico a la entrada de la bomba de anillo líquido (Q_0) .

$$Q_0 = v_o * w = 0.6369 \frac{m^3}{kg} * 2,909.8 \frac{kg}{h}$$
 $Q_0 = 1853.2 \frac{m^3}{h}$

- 7.6. Ajuste de las condiciones iniciales del gas por la interacción con el anillo líquido para la determinación de la potencia de la bomba de anillo líquido.
- A. Debido a la interacción del gas con el anillo líquido (agua de proceso), se calcula la temperatura en el punto de la mezcla (T₁), con las siguientes ecuaciones.

Flujo de calor del gas

$$q_g = \dot{w}_g \int_{T_{ref}}^{T_0} Cp_g dT$$

$$Cp_g = A + BT + CT^2 + DT^3 + ET^4$$

$$Cp_g = \frac{kJ}{kgmol * K}$$

$$T_{ref} = 273.15 K$$

$$\begin{split} \int_{T_{ref}}^{T_0} C p_g dT &= A \big(T_0 - T_{ref} \big) + \frac{B}{2} \big(T_0^2 - T_{ref}^2 \big) + \frac{C}{3} \big(T_0^3 - T_{ref}^3 \big) + \frac{D}{4} \big(T_0^4 - T_{ref}^4 \big) \\ &+ \frac{E}{5} \big(T_0^5 - T_{ref}^5 \big) \end{split}$$

COMPONENTE	Α	В	С	D	E
METANO (C ₁)	34.942	-0.03996	1.92E-04	-1.53E-07	3.93E-11
ETANO (C ₂)	28.146	0.04345	1.89E-04	-1.91E-07	5.33E-11
ETILENO (C ₂ =)	32.083	-0.01483	2.48E-04	-2.38E-07	6.83E-11
PROPANO (C ₃)	28.277	0.11600	1.96E-04	-2.33E-07	6.87E-11
PROPILENO (C ₃ =)	31.298	0.07245	1.95E-04	-2.16E-07	6.30E-11
n-BUTANO (nC₄)	20.056	0.28153	-1.31E-05	-9.46E-08	3.41E-11
ISOBUTANO (iC ₄)	6.772	0.34147	-1.03E-04	-3.68E-08	2.04E-11
2-cis-BUTENO (cis-2-C ₄ =)	29.137	0.14008	1.91E-04	-2.37E-07	7.10E-11
2-trans-BUTENO (trans-2-C ₄ =)	40.312	0.13472	1.69E-04	-2.11E-07	6.33E-11
ISOBUTENO (iC ₄ =)	32.918	0.18546	7.79E-05	-1.46E-07	4.69E-11
1-BUTENO (1-C ₄ =)	24.915	0.20648	5.98E-05	-1.42E-07	4.71E-11
ISOPENTANO (iC₅)	-0.881	0.47498	-2.48E-04	6.75E-08	-8.53E-12
n-PENTANO (nC₅)	26.671	0.32324	4.28E-05	-1.66E-07	5.60E-11
OXÍGENO (O ₂)	29.526	-0.00890	3.81E-05	-3.26E-08	8.86E-12
HIDRÓGENO (H₂)	25.399	0.02018	-3.85E-05	3.19E-08	-8.76E-12
NITRÓGENO (N₂)	29.342	-0.00354	1.01E-05	-4.31E-09	2.59E-13
DIÓXIDO DE CARBONO (CO ₂)	27.437	0.04232	-1.96E-05	4.00E-09	-2.99E-13
SULFURO DE HIDRÓGENO	33.878	-0.01122	5.26E-05	-3.84E-08	9.03E-12
(H ₂ S)					
INERTES (Ar)	20.79	-0.00003	5.16E-08		
AGUA (H₂O)	33.933	-0.00842	2.99E-05	-1.78E-08	3.69E-12
TOTAL	30.2405	0.0473	9.04E-05	-9.88E-08	2.80E-11

Tabla 10 Calor específico¹⁹ de la mezcla.

47

 $^{^{19}\,}$ Carl L. Yaws. "Handbook of thermodynamic Diagrams". Vol. 1, Editorial Gulf Publishing Company, Houston, Texas 1996

$$\begin{split} \int_{T_{ref}}^{T_0} & \text{Cp}_g \text{dT} = 30.2405(350.04 - 273.15) + \frac{0.0473}{2}(350.04^2 - 273.15^2) \\ & + \frac{9.04E - 05}{3}(350.04^3 - 273.15^3) + \frac{-9.88E - 08}{4}(350.04^4 - 273.15^4) \\ & + \frac{2.8E - 11}{5}(350.04^5 - 273.15^5) = 3.9 \text{ E} + 03\frac{\text{kJ}}{\text{kgmol} * \text{K}} \end{split}$$

$$\dot{w}_g = \frac{w}{PM_m} = \frac{2909.8 \frac{kg}{h}}{32.8844 \frac{kg}{kgmol}} \qquad \qquad \dot{w}_g = 88.49 \frac{kgmol}{h}$$

$$q_g = 88.49 \frac{kgmol}{h} * 3.9 E03 \frac{kJ}{kgmol * K} = 3.47E05 \frac{kJ}{h * K}$$

Flujo de calor del anillo líquido

$$q_{al} = \dot{w}_{al} \int_{T_{ref}}^{T_{ap}} C p_{ap} dT$$

$$Cp_{al} = A + BT + CT^2$$

	Α	В	С	ρ (kg/m³)
AGUA	8.712	0.00125	-1.8E-07	1002

Tabla 11 Calor específico del agua de proceso.

$$\int_{T_{ref}}^{T_{ap}} \! Cp_{ap} dT = A \big(T_{ap} - T_{ref} \big) + \frac{B}{2} \big(T_{ap}^2 - T_{ref}^2 \big) + \frac{C}{3} \big(T_{ap}^3 - T_{ref}^3 \big)$$

$$\int_{T_{ref}}^{T_{ap}} Cp_{ap} dT = 8.712(305.15 - 273.15) + \frac{0.00125}{2} (305.15^2 - 273.15^2) + \frac{-1.8E - 7}{3} (305.15^2 - 273.15^2) = 2409.96 \frac{kJ}{kgmol * K}$$

$$\dot{w}_{g} = \frac{Q_{ap} * \rho}{PM_{H_{2}O}} = \frac{8.7 \frac{m^{3}}{h} * 1002 \frac{kg}{m^{3}}}{18.015 \frac{kg}{kgmol}} \qquad \qquad \dot{w}_{g} = 483.90 \frac{kgmol}{h}$$

$$q_{al} = 483.90 \frac{kgmol}{h} * 2409.96 \frac{kJ}{kgmol * K} = 1.17E6 \frac{kJ}{h * K}$$

Flujo de calor total

$$q_T = q_{al} + q_g = 1.17E06 \frac{kJ}{h*K} + 3.47E05 \frac{kJ}{h*K} = 1.51E06 \frac{kJ}{h*K}$$

A partir del flujo total del calor se obtiene iterativamente la temperatura en el punto de mezclado.

$$q_T = \dot{w}_g \int_{T_{ref}}^{T_1} Cp_g dT + \dot{w}_{al} \int_{T_{ref}}^{T_1} Cp_{ap} dT$$

La temperatura obtenida fue:

	T ₁	
310.21 K	=	37.06 °C

Con un error de:

$$Q_T = 1.51 E + 06$$

 $e = 0.0001$

Temperatura y Presión inicial del fluido.

$$T_1 = 310.21 \, {}^{\circ}K$$
 $P_1 = 1.3812 \, bar$

B. Determinación de las propiedades reducidas a condiciones iniciales.

$$Pr_1 = \frac{P_1}{P_c} = \frac{1.3812 \ bar}{69.190 \ bar}$$
 $Pr_1 = 0.0200$

$$Tr_1 = \frac{T_1}{T_2} = \frac{310.21 \, ^{\circ} K}{336.225 \, ^{\circ} K}$$
 $Tr_1 = 0.9226$

C. Determinación del factor de compresibilidad.

Factor de compresibilidad en el punto de mezcla con el anillo líquido.

Interpolación Z_1^0

Tr∖Pr	0.0100	0.0200	0.0500
0.9000	0.9954		0.9768
0.9226		0.9915	
0.9300	0.9959		0.9790

Tabla 12 Interpolación Z_1^0

$$Z_1^0 = \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) 0.9954 + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) 0.9768 \right] \frac{0.93 - 0.9226}{0.93 - 0.90} + \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) 0.9959 + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) 0.9790 \right] \frac{0.9226 - 0.90}{0.93 - 0.90} = 0.9915$$

Interpolación Z_1^1

Tr∖Pr	0.0100	0.0200	0.0500
0.9000	-0.0019		-0.0010
0.9226		-0.0027	
0.9300	-0.0015		-0.0075

Tabla 13 Interpolación Z_1^1

$$Z_1^1 = \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) * (-.0019) + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) * (-0.0010) \right] \frac{0.93 - .9226}{0.93 - 0.90} + \left[\left(\frac{0.05 - 0.02}{0.05 - 0.01} \right) * (-.0015) + \left(\frac{0.02 - 0.01}{0.05 - 0.01} \right) \right]$$

$$* (-0.0075). \left[\frac{0.9226 - 0.90}{0.930 - 0.90} = -0.0027 \right]$$

$$Z_1 = Z_1^0 + \omega Z_1^1 = 0.9915 + (0.1086 * -0.0027)$$
 $Z_1 = 0.9912$

D. Cálculo del volumen por unidad de masa.

$$v_1 = \frac{Z_1 R' T_1}{P_1} = \frac{0.9912 * 0.00253 \frac{m^3 * bar}{kg * {}^\circ K} * 310.21 {}^\circ K}{1.3812 \ bar} \qquad v_1 = 0.5628 \frac{m^3}{kg}$$

E. Cálculo del flujo volumétrico en la condición de cálculo inicial.

$$Q_1 = v_1 * w = 0.5628 \frac{m^3}{kg} * 2,909.8 \frac{kg}{h}$$
 $Q_1 = 1637.7 \frac{m^3}{h}$

7.7. Selección del cuerpo de la bomba de anillo líquido de acuerdo a las especificaciones del "compresor de Elliot".

CUERPO	RANGO DE FLUJO DE ENTRADA (m³/h)	CABEZA POLITRÓPICA NOMINAL POR ETAPA (H _p)	EFICIENCIA POLITRÓPICA NOMINAL (η _p)	MÁXIMO No. DE ETAPAS NOMINALES	VELOCIDAD A CABEZA POLITRÓPICA NOMINAL/ETAPA
29	850 - 13,600	30	0.76	10	11,500

Tabla 14 Especificaciones de compresores Elliot.

7.8. Cálculo del factor de compresibilidad promedio.

A. Determinación de la relación de compresión.

$$r = \frac{P_2}{P_1} = \frac{4.9033 \ bar}{1.3812 \ bar} = 3.5500$$

B. Cálculo del exponente adiabático.

$$k = \frac{Cp_m}{Cp_m - R}$$

$$R = 8.314 \frac{kJ}{kamol * {}^{\circ}K}$$

$$Cp_m = 30.2405 + 0.0473 * 355.11 + 9.04E - 05 * (355.11)^2 - 9.88E - 8 * (355.11)^3 + 2.8E - 11 * (355.11)^4 = 54.467 \frac{kJ}{kgmol * {}^{\circ}K}$$

$$k = \frac{54.467 \frac{kJ}{kgmol * °K}}{54.467 \frac{kJ}{kgmol * °K} - 8.314 \frac{kJ}{kgmol * °K}} = 1.1803$$

C. Eficiencia Politrópica (Ver tabla 14).

$$\eta_p = 0.76$$

D. Relación Politrópica.

$$\frac{n-1}{n} = \frac{k-1}{k(\eta_n)} = \frac{1.1803 - 1}{1.1803(0.76)}$$

$$\frac{n-1}{n} = 0.201$$

E. Eficiencia adiabática (η_{ad}).

$$\eta_{ad} = \frac{r^{(k-1)//k} - 1}{r^{(n-1)//n} - 1} = \frac{3.55^{(1.1803 - 1)/1.1803} - 1}{3.55^{0.201} - 1} = 0.74$$

F. Factor de incremento de la temperatura. Anexo 2

$$x = 0.25$$

G. Estimado inicial de la temperatura de descarga de la bomba de anillo líquido.

$$T_2 = \frac{x * T_1}{\eta_{ad}} + T_1 = \frac{0.25 * 310.21 \text{ °}K}{0.74} + 310.21 \text{ °}K$$
 $T_2 = 415.54 \text{ °}K$

H. Determinación de las propiedades reducidas a la descarga de la bomba de anillo líquido.

$$Pr_2 = \frac{P_2}{P_c} = \frac{4.9033 \ bar}{69.190 \ bar}$$
 $Pr_2 = 0.07087$

$$Tr_2 = \frac{T_2}{T_c} = \frac{415.54 \, ^{\circ}K}{336.225 \, ^{\circ}K}$$
 $Tr_2 = 1.2359$

 Determinación del factor de compresibilidad a la descarga de la bomba de anillo líquido.

Interpolación \mathbb{Z}_2^0

Tr\Pr	0.0500	0.0709	0.1000
1.2000	0.9904		0.9808
1.2359		0.9875	
1.3000	0.9926		0.9852

Tabla 15 Interpolación Z_2^0

$$Z_2^0 = \left[\left(\frac{0.1 - 0.0709}{0.1 - 0.05} \right) 0.9904 + \left(\frac{0.0709 - 0.05}{0.1 - 0.05} \right) 0.9808 \right] \frac{1.3 - 1.2359}{1.3 - 1.2}$$

$$+ \left[\left(\frac{0.1 - 0.0709}{0.1 - 0.05} \right) 0.9926 + \left(\frac{0.0709 - 0.05}{0.1 - 0.05} \right) 0.9852 \right] \frac{1.2359 - 1.2}{1.3 - 1.2}$$

$$= 0.9875$$

Interpolación \mathbb{Z}_2^1

Tr\Pr	0.0500	0.0709	0.1000
1.2000	0.0019		0.0039
1.2359		0.0033	
1.3000	0.0030		0.0061

Tabla 16 Interpolación \mathbb{Z}_2^1

$$\begin{split} Z_2^1 &= \left[\left(\frac{0.1 - 0.0709}{0.1 - 0.05} \right) 0.0019 + \left(\frac{0.0709 - 0.05}{0.1 - 0.05} \right) 0.0039 \right] \frac{1.3 - 1.2359}{1.3 - 1.2} \\ &\quad + \left[\left(\frac{0.1 - 0.0709}{0.1 - 0.05} \right) 0.003 + \left(\frac{0.0709 - 0.05}{0.1 - 0.05} \right) 0.0061 \right] \frac{1.2359 - 1.2}{1.3 - 1.2} \\ &\quad = 0.0033 \\ Z_2 &= Z_2^0 + \omega Z_2^1 = 0.9875 + (0.1086 * 0.0033) \end{split} \qquad Z_2 = 0.9879 \end{split}$$

J. Factor de compresibilidad promedio (Z_m) .

$$Z_m = \frac{Z_1 + Z_2}{2} = \frac{0.9912 + 0.9879}{2} = 0.9895$$

7.9. Cálculo de la potencia requerida.

A. Cálculo de la cabeza politrópica (H_n) .

Cabeza politrópica.

$$\begin{split} H_p &= \frac{100*Z_m*R'*T_1}{\frac{n-1}{n}} \left[\left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} - 1 \right] \\ &= \frac{100 \frac{kN}{m^2*bar} * 0.9895 * 0.00253 \frac{m^3*bar}{kg*°K} * 310.21°K}{0.201} \left[\left(\frac{4.9033\;bar}{1.3812\;bar} \right)^{0.201} - 1 \right] \\ H_p &= 111.98 \frac{kN*m}{kg} \end{split}$$

B. Determinación del número de etapas requeridas.

$$N_0 de \ Etapas = \frac{H_p}{Cabeza \ m\'{a}xima \ por \ etapa} = \frac{111.98 \ \frac{kN*m}{kg}}{36 \ \frac{kN*m}{kg}} = 3.1105 \approx 4 \ Etapas$$

C. Cálculo de la velocidad requerida.

$$Velocidad = 11,500 \sqrt{\frac{H_p}{30 * N_0 de \ etapas}} = 11,500 \ RPM \sqrt{\frac{111.98 \frac{kN * m}{kg}}{30 \frac{kN * m}{kg} * 4}}$$
$$= 11,109 \ RPM$$

D. Cálculo de la potencia requerida.

$$POTENCIA = \frac{w * H_p}{\eta_p * 3600} = \frac{2,909.8 \frac{kg}{h} * 111.98 \frac{kN * m}{kg}}{0.76 * 3600 \frac{s}{h}} = 119.09 \frac{kN * m}{s}$$
$$= 119.09 kW = 159.58 HP$$

7.10. Cálculo de la temperatura de descarga.

$$\begin{split} t_{2\,descarga} &= \frac{H_p}{100 Z_m R' \left(\frac{k}{k-1}\right) \eta_p} + T_1 \\ &= \frac{111.98 \; \frac{kN*m}{kg}}{100 \frac{kN}{m^2*bar} * 0.9895 * 0.00253 \frac{m^3*bar}{kg*°K} \left(\frac{1.1803}{1.1803-1}\right) 0.76} \\ &+ 310.21 K \\ &t_{2\,descarga} = 400.18 \, ^{\circ}K = T_2 \end{split}$$

7.11. Cálculo del flujo volumétrico a la descarga de la bomba de anillo líquido.

$$Q_2 = Q_1 * \frac{P_1}{p_2} * \frac{T_2}{T_1} * \frac{Z_2}{Z_1} = 1637.7 \frac{m^3}{h} * \frac{1.3812 \ bar}{4.9033 \ bar} * \frac{400.18 \ {}^{\circ}K}{310.21 \ {}^{\circ}K} * \frac{0.9895}{0.9912}$$

$$Q_2 = 593.12 \frac{m^3}{h}$$

8. Especificación de la bomba de anillo líquido

Con el objetivo de obtener cotizaciones o propuestas técnicas y comerciales de parte de los fabricantes y proveedores, es necesario proporcionarles especificaciones completas y claras de los datos de operación. Esta especificación se lleva a cabo mediante la preparación de hojas de datos correspondiente a la bomba de anillo líquido.

Las bombas de anillo líquido deben ser fabricadas con el cumplimiento de las normas de la Sociedad Americana de Ingenieros Mecánicos (ASME), cumplir con el Código Eléctrico Americano (NEMA) y además a los estandares API 617 y API 681.

Los materiales de construcción de la bomba de anillo líquido deben ser de serie del fabricante para las condiciones de operación especificadas, excepto cuando sea requerido o esté prohibido por las hojas de datos o por este estándar.

Los materiales deberán ser identificados en las hojas de datos con su aplica ASTM, AISI, ASME, o números SAE, incluyendo el material de grado. Cuando no se disponga de tal designación, se especificara el material, dando propiedades físicas y composición química.

Sistema de alimentación de agua de sello

El sistema de alimentación de agua a la bomba de anillo líquido se realizara por una bomba centrifuga la cual manejara un flujo de 8.7 m³/h y una presión de descarga de 5.3 bar, accionadas por motores eléctricos trifásicos que trabajara en conjunto con la bomba de anillo líquido. El conjunto bomba, motor y acople estará montado en una base unitaria.

En los anexos 3, 4 y 5 se presentan la especificación técnica y las hojas de datos de la bomba de anillo líquido y de la bomba de alimentación de aqua de sello.

9. Análisis de resultados y conclusiones

Debido a la contrapresión ocasionada por el sistema de desfogue se diseñó una bomba de anillo en la tercera etapa de compresión de los bancos de condensadores norte y sur del sistema de vacío así como el envío de esta corriente a la planta de desintegración catalítica (FCC).

En condiciones normales la bomba de anillo líquido operará con un flujo de entrada 5,090 lb/h, presión de 1.38 bar y temperatura de 322 K. Pero debido a las contingencias que puedan presentarse en la refinería la bomba fue diseña con un 25% más de su flujo en condición normal y un factor de diseño para la temperatura de 28 Kelvin más.

La potencia calculada del compresor es de 160 HP y un flujo volumétrico a la descarga de la bomba de anillo líquido de 593 m³/h.

La presión de descarga de la bomba de anillo líquido de $5 \ \overline{\text{kg}}/\text{cm}^2$ es suficiente para prevenir la contrapresión al sistema causada cuando las plantas de proceso de la primera etapa desfogan, garantizando el adecuado funcionamiento de la torre de destilación al vacío.

También garantizará que en condiciones inusuales de operación de la torre de destilación al vacío, la bomba de anillo líquido no tenga problemas para trabajar y no se dañe el equipo. La implementación de la bomba de anillo líquido no solo garantizar el correcto funcionamiento de la torre de destilación al vacío sino que también se aprovechará el gas de la descarga para la alimentación de la planta de desintegración catalítica (FCC).

Estas acciones convierten al presente trabajo, en la oportunidad de implantar tecnologías que mejoren en forma integral la calidad de la producción, aumentando la competitividad de la Industria de la Refinación y maximizando el valor agregado de los productos que se obtienen.

10. Bibliografía

- Anaya, Alejandro. "Manual de Operaciones Unitarias". Facultad de Química.
 2000.
- 2. American Petroleum Institute (API) 617 Axial and centrifugal compressors and expander-compressors for petroleum, chemical and gas industry services. Julio 2002.
- 3. API 681 Liquid ring pumps and compressors for petroleum, chemical and gas industry services. 1996.
- 4. API Standard 610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries 2003
- 5. Atlas Copco. "Manual del aire comprimido". 7ª Ed. 2011.
- 6. Bannwarth, Helmut. "Liquid ring vacuum pumps, compressors and systems". Wiley-Vch. 2005.
- 7. Carl L. Yaws. "Handbook of thermodynamic Diagrams". Vol. 1, Editorial Gulf Publishing Company, Houston, Texas 1996.
- 8. Datos proporcionados por la refinería de estudio.
- Diccionario de Términos de Pemex Refinación (PDF).
 http://www.itek.com.mx/INDUSTRIA/DICCIONARIO%20PEMEX.pdf
- 10. E. J. Henley; J. D. Seader. "Operaciones de separación por etapas de equilibrio en ingeniería química", Editorial Reverté, S. A. de C. V. México 2000.

- 11.Ernest E. Ludwig. "Applied Process Design for chemical and petrochemical plants". Vol. 3 Third. Edición Butterworth-Heinemann, 309 USA.
- Heinz P. Bloch. "Guía práctica para la tecnología de los compresores".
 McGraw Hill, 1998.
- 13. Hoja de datos "Ejector after condenser exchanger specification sheet." Rev. 3. Kinema Inc. 1981.
- 14. ISO/FDIS 13709:2009 "Centrifugal pumps for petroleum, petrochemical and natural gas industries".
- 15. John R. Howell. "Principios de termodinámica para ingeniería". Editorial McGraw-Hill 1990.
- 16. Manuales de Operación proporcionados por la refinería de estudio.
- 17.NASH: http://www.gdnash.com/
- 18.NRF-031-PEMEX-2007: Sistemas de desfogues y quemadores en instalaciones de PEMEX Exploración y Producción.
- 19. NRF-131-PEMEX-2007 Compresores Centrífugos.
- 20. Richard M. Felder. "Principios básicos de los procesos químicos". Addison-Wesley Iberoamericana.
- 21.SIHI Pumps Americas: http://www.sihi-pumps.com/
- 22. Smith, J.M. y Van Ness. "Introducción a la termodinámica en Ingeniería Química". 6a Ed. 2003

Glosario

Bomba: Máquina que aumenta la presión sobre un líquido y de este modo lo hace subir a un nivel más alto o lo obliga a circular. Cada equipo de bombeo es un transformador de energía. Recibe energía mecánica que puede provenir de un motor eléctrico, térmico, etc., y la convierte en energía que un fluido adquiere en forma de presión, de posición o de velocidad.

Bomba o Compresor de anillo líquido: Es una maquina rotatoria de desplazamiento positivo que consigue comprimir un gas mediante un impulsor radial con alabes, montado en una carcasa elíptica o excéntrica, la cual está parcialmente llena de un fluido.

Compresor: Equipo que sirve para comprimir un gas o aire.

Compresión: Acción mecánica de la reducción del volumen ocupado por un gas por efecto de la presión.

Condensador: Equipo de intercambio de calor utilizado para eliminar calor latente en lugar del calor sensible, licuando los vapores correspondientes.

Enfriador: Equipo que se emplea para enfriar fluidos en un proceso. El agua es el medio más importante para disminuir su contenido calorífico.

Eyector: Aparato que sirve para desalojar un líquido o un gas, arrastrándolo con otro fluido a gran velocidad.

Eyector de Vacío: Equipo auxiliar que se utiliza en las plantas para hacer vacío en equipos mayores como torres de destilación y acumuladores. Normalmente funciona con vapor como fluido de arrastre.

Factor de compresibilidad (Z): Es un factor adimensional que corrige el comportamiento de gas ideal al del gas real, en cuanto a su compresibilidad.

Factor K: Es un factor adimensional que resulta de dividir el calor especifico a presión constante entre el calor especifico a volumen constante y se emplea en el diseño termodinámico de la máquina (K= Cp/Cv).

Planta catalítica (FCC): Planta que se emplea para producir principalmente gasolina estabilizada de alto octano (59 por ciento en volumen), gas residual que se adiciona al gas combustible de la refinería, propanopropileno, butano-butileno, aceite cíclico ligero y aceite cíclico pesado, teniendo como carga gasóleo pesado primario y gasóleos de la planta de vacío.

Presión de operación: Es la presión manométrica (medida en \overrightarrow{kg} /cm² o psig) a la cual es normalmente sujeto un recipiente o equipo cuando está en servicio. Un recipiente de proceso se diseña normalmente para una presión máxima permisible de trabajo que provee de un margen de seguridad conveniente arriba de la presión de operación, con objeto de prevenir cualquier operación indeseable del mecanismo de alivio.

Tanque de sello: Recipiente que contiene cierto nivel de agua para extinguir una flama que haya retrocedido desde la boquilla del quemador. El sello en el tanque está determinado por la presión de descarga en la boquilla del quemador.

Unidad de destilación al vacío: Equipo que opera con presión menor a la atmosférica, generalmente en un rango de 25 a 40 mm de Hg, para disminuir la temperatura de ebullición de los componentes de la mezcla de hidrocarburos pesados (residuo primario), con el objetivo de recuperar la fracción de gasóleos presentes en la mezcla.

Vacío: El vacío es el estado de un gas en el cual la densidad de las partículas es inferior a la densidad registrada en la atmósfera en la superficie terrestre. En la práctica, el estado de vacío de un gas se puede definir en los casos en que la presión del gas sea inferior a la presión atmosférica.

ANEXOS

ANEXO 1 Estadístico de la información recopilada.

	METANO (C₁)	ETANO (C ₂)	ETILENO (C ₂ =)	PROPANO (C ₃)	PROPILENO(C ₃ =)	n-BUTANO (nC ₄)
FECHA	VALOR	VALOR	VALOR	VALOR	VALOR	VALOR
01-20-2009	23.82	13.71	1.54	9.56	6.67	3.20
02-20-2010	10.72	10.15	1.09	10.63	4.00	7.15
02-22-2010	13.21	12.05	1.36	11.88	4.83	6.44
02-25-2010	16.14	10.55	1.26	8.60	3.58	4.78
09-08-2010	19.10	9.51	1.04	8.71	3.28	7.22
10-06-2010	11.63	10.70	1.11	10.81	4.23	6.27
10-14-2010	27.00	8.06	0.81	5.87	2.45	2.41
12-30-2010	11.47	10.33	1.09	10.46	3.99	6.35

					1-BUTENO
	ISOBUTANO (iC4)	2-cis-BUTENO	2-trans-BUTENO	ISOBUTENO (iC ₄ =)	(1-C ₄ =)
FECHA	VALOR	VALOR	VALOR	VALOR	VALOR
01-20-2009	0.98	0.89	0.14	0.85	0.18
02-20-2010	0.79	0.29	0.47	2.02	2.02
02-22-2010	0.99	0.29	0.48	1.97	1.99
02-25-2010	1.34	0.02	1.51	2.91	2.20
09-08-2010	1.37	0.36	0.49	1.77	1.70
10-06-2010	1.33	2.95	1.79	1.70	1.89
10-14-2010	0.42	0.21	0.89	0.68	0.19
12-30-2010	0.93	0.26	0.43	1.86	1.89

	ISOPENTANO (iC₅)	n-PENTANO (nC₅)	OXÍGENO (O2)	HIDRÓGENO (H₂)	NITRÓGENO (N2)
FECHA	VALOR	VALOR	VALOR	VALOR	VALOR
01-20-2009	0.58	0.79	2.82	6.00	9.64
02-20-2010	2.09	4.78	0.40	7.00	2.94
02-22-2010	1.58	3.22	0.60	4.00	2.39
02-25-2010	3.82	2.83	0.82	4.00	3.13
09-08-2010	3.59	3.47	5.60	2.28	15.01
10-06-2010	0.23	0.18	0.91	4.26	2.78
10-14-2010	0.28	1.01	4.18	4.00	11.65
12-30-2010	1.61	3.30	0.36	4.28	1.90

	CO ₂	H₂S	INERTES	% MOL
FECHA	VALOR	VALOR	VALOR	VALOR
01-20-2009	0.14	16.00	2.49	100.00
02-20-2010	0.10	33.35	0.01	100.00
02-22-2010	0.07	32.64	0.01	100.00
02-25-2010	0.12	32.38	0.01	100.00
09-08-2010	0.05	13.12	2.33	100.00
10-06-2010	0.09	35.53	1.61	100.00
10-14-2010	0.13	26.50	3.26	100.00
12-30-2010	0.21	37.20	2.08	100.00

Por lo tanto, la composición promedio de la corriente de interés resulta:

COMPONENTE	% mol base seca	y base seca		
METANO (C ₁)	16.636	0.16636		
ETANO (C ₂)	10.633	0.10633		
ETILENO (C ₂ =)	1.163	0.01163		
PROPANO (C ₃)	9.565	0.09565		
PROPILENO(C ₃ =)	4.129	0.04129		
n-BUTANO (nC4)	5.478	0.05478		
ISOBUTANO (iC ₄)	1.019	0.01019		
2-cis-BUTENO	0.659	0.00659		
2-trans-BUTENO	0.775	0.00775		
ISOBUTENO (iC ₄ =)	1.720	0.01720		
1-BUTENO (1-C ₄ =)	1.508	0.01508		
ISOPENTANO (iC₅)	1.723	0.01723		
n-PENTANO (nC₅)	2.448	0.02448		
OXÍGENO (O2)	1.961	0.01961		
HIDRÓGENO (H₂)	4.478	0.04478		
NITRÓGENO (N₂)	6.180	0.06180		
CO ₂	0.114	0.00114		
H ₂ S	28.340	0.28340		
INERTES (Ar)	1.475	0.01475		
H ₂ O				
TOTAL	100.000	1.000		

ANEXO 2 Tablas y gráficos complementarios

Tabla 1. Correlación generalizada de Lee/Kesler (z₀).

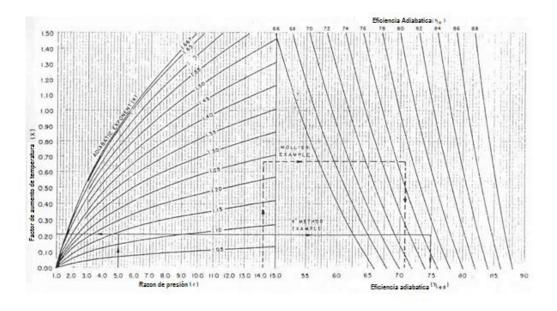
	COEFICIENTES Z ₀								
Tr\Pr	0.01	0.05	0.1	0.2	0.4	0.6	0.8	1	
0.30	0.0029	0.0145	0.0290	0.0579	0.1158	0.1737	0.2315	0.2892	
0.35	0.0026	0.0130	0.0261	0.0522	0.0143	0.1564	0.2084	0.2604	
0.40	0.0024	0.0119	0.0239	0.0477	0.0953	0.1429	0.1904	0.2379	
0.45	0.0022	0.0110	0.0221	0.0442	0.0882	0.1322	0.1762	0.2200	
0.50	0.0021	0.0103	0.0207	0.0413	0.0825	0.1236	0.1647	0.2056	
0.55	0.9804	0.0098	0.0195	0.0390	0.0778	0.1166	0.1553	0.1939	
0.60	0.9849	0.0093	0.0186	0.0371	0.0741	0.1109	0.1476	0.1842	
0.65	0.9881	0.9377	0.0178	0.0356	0.0710	0.1063	0.1415	0.1765	
0.70	0.9904	0.9504	0.8958	0.0344	0.0687	0.1027	0.1366	0.1703	
0.75	0.9922	0.9598	0.9165	0.0336	0.0670	0.1001	0.1330	0.1656	
0.80	0.9935	0.9669	0.9319	0.8539	0.0661	0.0985	0.1307	0.1626	
0.85	0.9946	0.9725	0.9436	0.8810	0.0661	0.0983	0.1301	0.1614	
0.90	0.9954	0.9768	0.9528	0.9015	0.7800	0.1006	0.1321	0.1630	
0.93	0.9959	0.9790	0.9573	0.9115	0.8059	0.6635	0.1359	0.1664	
0.95	0.9961	0.9803	0.9600	0.9174	0.8206	0.6967	0.1410	0.1705	
0.97	0.9963	0.9815	0.9625	0.9227	0.8338	0.7240	0.5580	0.1779	
0.98	0.9965	0.9821	0.9637	0.9253	0.8398	0.7360	0.5887	0.1844	
0.99	0.9966	0.9826	0.9648	0.9277	0.8455	0.7471	0.6138	0.1959	
1.00	0.9967	0.9832	0.9659	0.9300	0.8509	0.7574	0.6355	0.2901	
1.01	0.9968	0.9837	0.9669	0.9322	0.8561	0.7671	0.6542	0.4648	
1.02	0.9969	0.9842	0.9679	0.9343	0.8610	0.7761	0.6710	0.5146	
1.05	0.9971	0.9855	0.9707	0.9401	0.8743	0.8002	0.7130	0.6026	
1.10	0.9975	0.9874	0.9747	0.9485	0.8930	0.8323	0.7649	0.6880	
1.15	0.9978	0.9891	0.9780	0.9554	0.9081	0.8576	0.8032	0.7443	
1.20	0.9981	0.9904	0.9808	0.9611	0.9205	0.8779	0.8330	0.7858	
1.30	0.9985	0.9926	0.9852	0.9702	0.9396	0.9083	0.8764	0.8438	
1.40	0.9988	0.9942	0.9884	0.9768	0.9534	0.9298	0.9062	0.8827	

				COEFICII	ENTES Z ₀			
Tr\Pr	0.01	0.05	0.1	0.2	0.4	0.6	0.8	1
1.50	0.9991	0.9954	0.9909	0.9818	0.9636	0.9456	0.9278	0.9103
1.60	0.9993	0.9964	0.9928	0.9856	0.9714	0.9575	0.9439	0.9308
1.70	0.9994	0.9971	0.9943	0.9886	0.9775	0.9667	0.9563	0.9463
1.80	0.9995	0.9977	0.9955	0.9910	0.9823	0.9739	0.9659	0.9583
1.90	0.9996	0.9982	0.9964	0.9929	0.9861	0.9796	0.9735	0.9678
2.00	0.9997	0.9986	0.9972	0.9944	0.9892	0.9842	0.9796	0.9754
2.20	0.9998	0.9992	0.9983	0.9967	0.9937	0.9910	0.9886	0.9865
2.40	0.9999	0.9996	0.9991	0.9983	0.9969	0.9957	0.9948	0.9941
2.60	1.0000	0.9998	0.9997	0.9994	0.9991	0.9990	0.9990	0.9993
2.80	1.0000	1.0000	1.0001	1.0002	1.0007	1.0013	1.0021	1.0031
3.00	1.0000	1.0002	1.0004	1.0008	1.0018	1.0030	1.0043	1.0057
3.50	1.0001	1.0004	1.0008	1.0017	1.0035	1.0055	1.0075	1.0097
4.00	1.0001	1.0005	1.0010	1.0021	1.0043	1.0066	1.0090	1.0115

Tabla 2. Correlación generalizada de Lee/Kesler (z₀).

				COEFICI	ENTES Z ₁			
Tr\Pr	0.01	0.05	0.1	0.2	0.4	0.6	0.8	1
0.30	-0.0008	-0.0040	-0.0081	-0.0161	-0.0323	-0.0484	-0.0645	-0.0806
0.35	-0.0009	-0.0046	-0.0093	-0.0185	-0.0370	-0.0554	-0.0738	-0.0921
0.40	-0.0010	-0.0048	-0.0095	-0.0190	-0.0380	-0.0570	-0.0758	-0.0946
0.45	-0.0009	-0.0047	-0.0094	-0.0187	-0.0374	-0.0560	-0.0745	-0.0893
0.50	-0.0009	-0.0045	-0.0090	-0.0181	-0.0360	-0.0539	-0.0716	-0.0893
0.55	-0.0314	-0.0043	-0.0086	-0.0172	-0.0343	-0.0513	-0.0682	-0.0849
0.60	-0.0205	-0.0041	-0.0082	-0.0164	-0.0326	-0.0487	-0.0646	-0.0803
0.65	-0.0137	-0.0772	-0.0078	-0.0156	-0.0309	-0.0461	-0.0611	-0.0759
0.70	-0.0093	-0.0507	-0.1161	-0.0148	-0.0294	-0.0438	-0.0579	-0.0718
0.75	-0.0064	-0.0339	-0.0744	-0.0143	-0.0282	-0.0417	-0.0550	-0.0681
0.80	-0.0044	-0.0228	-0.0487	-0.1160	-0.0272	-0.0401	-0.0526	-0.0648
0.85	-0.0029	-0.0152	-0.0319	-0.0715	-0.0268	-0.0391	-0.0509	-0.0622

				COEFICIE	ENTES Z ₁			
Tr\Pr	0.01	0.05	0.1	0.2	0.4	0.6	0.8	1
0.90	-0.0019	-0.0010	-0.0205	-0.0442	-0.1118	-0.0396	-0.0503	-0.0604
0.93	-0.0015	-0.0075	-0.0154	-0.0326	-0.0763	-0.1662	-0.0514	-0.0602
0.95	-0.0012	-0.0062	-0.0126	-0.0262	-0.0589	-0.1110	-0.0540	-0.0607
0.97	-0.0010	-0.0050	-0.0101	-0.0208	-0.4500	-0.0770	-0.1647	-0.0623
0.98	-0.0009	-0.0044	-0.0090	-0.0184	-0.0390	-0.0641	-0.1100	-0.0641
0.99	-0.0008	-0.0039	-0.0079	-0.0161	-0.0335	-0.0531	-0.0796	-0.0680
1.00	-0.0007	-0.0034	-0.0069	-0.0140	-0.0285	-0.0435	-0.0588	-0.0879
1.01	-0.0006	-0.0030	-0.0060	-0.0120	-0.0240	-0.0351	-0.0429	-0.0223
1.02	-0.0005	-0.0026	-0.0051	-0.0102	-0.0198	-0.0277	-0.0303	-0.0062
1.05	-0.0003	-0.0015	-0.0029	-0.0054	-0.0092	-0.0097	-0.0032	0.0220
1.10	0.0000	0.0000	0.0001	0.0007	0.0038	0.0106	0.0236	0.0476
1.15	0.0002	0.0011	0.0023	0.0052	0.0127	0.0237	0.0396	0.0625
1.20	0.0004	0.0019	0.0039	0.0084	0.0190	0.0326	0.0499	0.0719
1.30	0.0006	0.0030	0.0061	0.0125	0.0267	0.0429	0.0612	0.0819
1.40	0.0007	0.0036	0.0072	0.0147	0.0306	0.0477	0.0661	0.0857
1.50	0.0008	0.0039	0.0078	0.0158	0.0323	0.0497	0.0677	0.0864
1.60	0.0008	0.0040	0.0080	0.0162	0.0330	0.0501	0.0677	0.0855
1.70	0.0008	0.0040	0.0081	0.0163	0.0329	0.0497	0.0667	0.0838
1.80	0.0008	0.0040	0.0081	0.0162	0.0325	0.0488	0.0652	0.0814
1.90	0.0008	0.0040	0.0079	0.0159	0.0318	0.0477	0.0635	0.0792
2.00	0.0008	0.0039	0.0078	0.0155	0.0310	0.0464	0.0617	0.0767
2.20	0.0007	0.0037	0.0074	0.0147	0.0293	0.0437	0.0579	0.0719
2.40	0.0007	0.0035	0.0070	0.0139	0.2760	0.0411	0.0544	0.0675
2.60	0.0007	0.0033	0.0066	0.0131	0.0260	0.0387	0.0512	0.0634
2.80	0.0006	0.0031	0.0062	0.0124	0.0245	0.0365	0.0483	0.0598
3.00	0.0006	0.0029	0.0059	0.0117	0.0232	0.0345	0.0456	0.0565
3.50	0.0005	0.0026	0.0052	0.0103	0.0204	0.0303	0.0401	0.0497
4.00	0.0005	0.0023	0.0046	0.0091	0.0182	0.0270	0.0357	0.0443


Tabla 3. Propiedades críticas de los compuestos.

COMPONENTE	<i>T_c</i> (⁰ K)	P _C	w
		(bar)	
METANO (C₁)	191.6	45.99	0.01
ETANO (C ₂)	305.3	48.72	0.10
ETILENO (C ₂ =)	282.3	50.40	0.09
PROPANO (C ₃)	369.8	42.48	0.15
PROPILENO (C ₃ =)	365.6	46.65	0.14
n-BUTANO (nC₄)	425.1	37.96	0.20
ISOBUTANO (iC₄)	408.1	36.48	0.18
2-cis-BUTENO (cis-2-C₄=)	435.6	42.43	0.21
2-trans-BUTENO (trans-2-C₄=)	428.6	41.00	0.22
ISOBUTENO (iC₄=)	417.9	40.00	0.19
1-BUTENO (1-C₄=)	420.0	40.43	0.19
ISOPENTANO (iC ₅)	461.1	33.70	0.25
n-PENTANO (nC₅)	469.7	33.70	0.25
OXÍGENO (O₂)	154.6	50.43	0.02
HIDRÓGENO (H₂)	33.2	13.13	-0.22
NITRÓGENO (N₂)	154.6	34.00	0.04
DIÓXIDO DE CARBONO (CO₂)	304.2	73.83	0.22
SULFURO DE HIDRÓGENO (H₂S)	373.5	89.63	0.09
INERTES (Ar)	150.9	48.98	0.00
AGUA (H ₂ O)	647.1	220.55	0.345

Tabla 4. Especificaciones del compresor de Elliott.

CUERPO	RANGO DE FLUJO DE ENTRADA (m³/h)	CABEZA POLITRÓPICA NOMINAL POR ETAPA (H _p)	EFICIENCIA POLITRÓPICA NOMINAL (n _p)	MÁXIMO No. DE ETAPAS NOMINALES	VELOCIDAD A CABEZA POLITRÓPICA NOMINAL / ETAPA
29M	850 - 13600	30	0.76	10	11500
38M	10000 - 39000	30/36	0.77	9	8100
46M	34000 - 60000	30/36	0.77	9	5400
60M	51000 - 99000	30/36	0.77	8	5000
70M	85000-145000	30/36	0.78	8	4100
88M	125000-220000	30/36	0.78	8	3300
103M	185000-270000	30	0.78	7	2800
110M	235000-320000	30	0.78	7	2600
25MB (H) (HH)	850 - 8500	36	0.76	12	11500
32MB (H) (HH)	8500 - 17000	36	0.78	10	10200
38MB (H)	13600 - 39000	30/36	0.78	9	8100
46MB	34000 - 60000	30/36	0.78	9	6400
60MB	51000 - 99000	30/36	0.78	8	5000
70MB	85000 -145000	30/36	0.78	8	4100
88MB	125000-220000	30/36	0.78	8	3300

Gráfico 1. Factor de incremento de temperatura (x).

ANEXO 3 Especificación técnica

ESPECIFICACIÓN TÉCNICA DE BOMBA DE ANILLO LÍQUIDO PROY Nº:										N°:					
		ВО	MBA DE	ANILLO LÍQU	DO ACCIONADA	CON MOTOR E	LÉCTRICO			HOJA	1		DE	=	2
ELABORÓ:		RE\	VISÓ:			APROBÓ:			Ì	REV	0		1	2	3
CLIENTE:		-		CLAVE	:	V-GA-11/R	MARCA:	*		REVISÓ					
LUGAR		-		No. RE	Q:	DOS (2)	MODELO:			APROBÓ)				
SERVICIO:	COMPRESOR	DE GAS GO	SOLEO L	IGERO			TAMAÑO:			FECHA					
CÓDIGO DISEÑ	O: API 681											•			
					MATERIAL	ES Y PESOS									
COM	IPONENTES		ACE	RO	A	CERO ESTAND	AR								
С	CARCASA				AS	TM A 182 F Tp. :	316L								
(CABEZA				,	ASTM A 351 CF3	ВМ								
	EJE				А	STM A 564 Tp. 6	630								
F	ROTOR				,	ASTM A 351 CF3	ВМ								
PUEI	RTO PLANO				,	ASTM A 351 CF3	ВМ								
SELI	LO DEL EJE				,	J.C. Tipo 3648 D	bl.								
SOPORTE	E DEL COJINETE				,	ASTM A 516 Gr.	60								
	JUNTA					VITON / TEFLOI	N								
SELLO DE	EL EJE OPCIONAL					-		SELLO DE	LIMPIA (G	GPM)		POF	R SEL	LO	
PESO DE LA	BOMBA SECO (LBS	i)				4,850									
SO DE LA BOMI	BA EN OPERACIÓN	I(LB				-									
					DETALLES DE	CONSTRUCCIO	ÓN								
TIPO DE P	UERTO (No. DE ETA	(PAS)		Cono	(2)	TIPO D	DE BALANCE DEL	ROTOR			Dinár	nico			
VIS	TA DE ROTACIÓN			A.E		TOLE	RANCIA DE BAL	ANCEO			ISO G	r. 2.	5		
					CRITERIO										
	INFOR	MACIÓN E	DE PRESI	ÓN			INFO	RMACIÓN DE	L ANILLO	LIQUÍD	0				
	PRESIÓN DE DISE	ÑO			150	F	RANGO DE OPER	ACIÓN psig		200	1000		-205	(4000	
PRESIC	ÓN HIDROSTÁTICA	psig (barg)		305	(21)	(21) FLUJO DEL SELLO CONICO GPM/Hp							- 0.33).32	/1200 r	pm -
RA	NGO DE OPERACIÓ	N psig		4	0-250		INF	ORMACIÓN I	DE CONE	XIONES					
	D	ATOS DE D	DISEÑO			CONE	EXIÓN	TAMAÑ	NO (IN)		CLASIFICACIÓN Y			N Y TIP	0
	EJE DIA. @ EXTENS	SIÓN			80		RADA		В		l	Flg.	150 #,	RF	
EJE	DIA. @ PRENSAES	TOPAS			100	DESC	ARGA	(6		ı	Flg.	150 #,	RF	
-	TAMAÑO CLAVE DE	EJE		2	2x14	ANILLO	LÍQUIDO	:	2		ı	Flg.	150 #,	RF	
W	VK ² (LB-FT ²) (IRON/S	5.S) ^[1]			34.9	ROSCA DE SEI	LLO DE LIMPIA	1/2	-3/4				NPT		
				SOPORTE							BRICA	CIO			
UBICAC	IÓN DEL SOPORTE			TIPO DE SOP	ORTE		No. SOPORTE		Т	TPO .			VOLU	JMEN	
Т	RANSMISION			Una solo hiler			7320 BECBM			ceite					
	INACTIVO Doble hilera						3320A		A	ceite					
				VIDA U	TIL DEL SOPORTE										
	RPM		HP		TIPO DE C		TRA	NSMISÍON			IN		IVO		
880	0-1180		Todos		Dire	cto		>5				>5			
			DIREC :	v vinn torá::	MAVIMA EN CON	DICIONES DE S	DED ACIÓN DE :	4 BOMB 41							
	2014				(MAXIMA EN CON		DPERACION DE L	A BOMBA)	\/IDDA	OLÓN					
F	RPM		CONTRO	'L	RUII		VIBRACIÓN				- NITT	/=:·			
_			Diversi		DBA (To		VELOCIDAD (mm/s) DESPLAZAMIE				ENIO	(mm)			
Todas Directo <90					U	1	<2.8				-				
NOTA															
1) EIWK	² está basado en el ro	otor, el eje y	el agua re	sidual.											

and the last		ES	SPECIFICACIÓN T	ÉCNICA	DE BOMBA DE	ANILLO LÍQUIDO)			PRO	′ N°:		
			A DE ANILLO LÍQ						HOJA	2	DE	2	
					CRITERIOS DE	DISEÑO							
ı	PRESIÓN DIFERENC	CIAL MAX (PSI)		2	00	VELOCIDAD	DE DISEÑO (RPM)	COMP.		1,	000		
	TEMPERATURA DE	E DISEÑO (°C)		7	77	VELOCIDAD	MAX (RPM)	COMP.		1,	200		
	TEMPERATU	RA MAX			*	VELOCIDAD	COMP.	MP. 800					
			FU	IERZA Y	Y MOMENTO MÁ	XIMO PERMITIDO	[2]						
CON	NEXIONES	TAMAÑO (IN)		RZA M	ÁXIMA PERMITIC	DA (LBS)	MOM	ENTO MÁ)	KIMO PERN	IITIDO (F	T-LBS)		
			F(X)		F(Y)	F(Z)	M(X)	M(X)			M (Z)		
Ef	NTRADA	8	685		685	1,370	1,716		1,716		3,432		
5	SALIDA	6	456		456	912	867		867		1,730		
SELL	O LÍQUIDO	2	176		88	88	114		57		57		
FUSELA	JE DE DRENE												
SELLO	D DE LIMPIA	-											
			CARGA MÁXI	MA DE	LOS PERNOS D	E CIMENTACIÓN	(POR PERNO)						
	MONTURA	T.	AMAÑO DEL PERI	МО	TENS	SIÓN MÁXIMA DE	CARGA (LBS)	RES	ISTENCIA I	MÁXIMA I	DE CARGA	(LB	
PLA	CA DE MONTAJE			/PERNO						/PERNO			
	BOMBA			/PERNO						/PERNO			
					DESVIACIÓN	DE EJE							
TIPO DI	E BOMBA	RPM	HP		TIPO DE CONTR	ROL F	PRESIÓN DE OPERAC	CIÓN	DESVIA	CIÓN DE	L HIERRO	/ S.S	
COMP	PRESOR	*	*		*		*			*			
				INFO	ORMACIÓN DEL	ROTOR Y EJE	F						
ROTOR / ENSAMBLE DEL EJE EQUIVALENTE MÁSICO (LB-S²/ FT) S.S. *													
	WK ² ROTOR \	Y EJE (UNICAME	NTE) (LB-FT ²)			S.S			*				
	WK ² ROTOR,	EJE Y AGUA RE	SIDUAL (LB-FT ²)			S.S			234.9				
	WK ² ROTOR,	EJE Y ANILLO LI	QUIDO (LB-FT ²)		:	S.S			*				
		OCIDAD CRÍTIC	Δ (RPM)		:	S.S			*				
	PRIMERA VEI	LOCIDAD CRITIC	77 (101 W)										
	SEGUNDA VI	ELOCIDAD CRÍTI				S.S			*				

NOTAS

2) La orientación para las fuerzas y momentos son los siguientes:

Dirección- X denota fuerzas y momentos paralelos al eje axial. Dirección-Y denota una dirección vertical. Dirección-Z denota fuerzas y momentos en el plano horizontal perpendicular al eje axial.

- 3) El WK² para el rotor, el eje y el anillo lÍquido está basado en el líquido de bombeo, durante los primeros 20 segundos de operación.
- 4) El asterisco (*) indica información que debe ser suministrada por el fabricante y/o proveedor del equipo.

MÁXIMO HP DE TRANSMISIÓN POR CORREA AL COMPRESOR

ANEXO 4 Hojas de Datos. Bomba de anillo líquido.

					H	HOJA DE DATOS	S. BOMBA DE ANILLO) LÍQUIDO		PROY N°:							
	UNAM			BON	MBA DE	ANILLO LÍQUID	O ACCIONADA CON	MOTOR ELÉCTRICO	0	HOJA	1	DE		7			
ELAE	BORÓ:			REVISÓ:				APROBÓ:		REV	0	1	2	3			
1	EDITADA PAI	RA:	C	OTIZACIÓN			COMPRA		AS BUILT.	POR							
2	CLIENTE:			LAVE:		V-GA-11/R	MARCA: * I	UGAR	<u> </u>	revisó							
3		No. REQ:	<u>D</u>	OS (2)M	DDELO:	* SERVICIO:	COMPRESOR DE	GAS GOSOLEO LIG	GERO	APROBÓ	-		-				
4		TAMAÑO:	*	CÓDIGO DISEÑO):	API 681 Y NRF-	131-PEMEX-2007			FECHA							
5																	
6						FUNCIO	NAMIENTO DE LA BO	MBA DE VACÍO O (COMPRESOR								
7	No. Requerido): 2			Motor	or No.: *			Turbina No.:								
8	Equipo No.:	*			Motor	or dado por:	*		Turbina dada por:								
9	No. Unidad de	motor:	*		Motor	or Colocado por:	*		Turbina colocada por:								
10	No. Unidad de	turbina			Hojas	s de datos del mo	otor:*		Hojas de datos de la turbina.:								
11				TIPO DE SISTEMA	4				ANILLO LÍQUII	00							
12	Bomba o	de anillo líqu				esor de anillo líqui	ido	Tipo/ Nomb	ore del líquido: AGUA DE SERVICIO								
13			SISTE	MA DE ANILLO L	ÍQUIDO			Temperatu	ra de suministro °C (°F)	Normal	32	89	9.6				
14	Funcion	amiento sin	recirculación						Máx:	Mín:							
15			recirculación par						suministro kg/cm² abs (psia): 5.31								
16			recirculación tota						vapor kg/cm ² abs (psia): 0.006	0.089							
17	Servicio:		ontinuo	Intermite	nte	Arranques	s/dia:		específica @ Máx. Temperatura:								
18			n que entra al sist	. ,		-			cifico kJ/kg °C (Btu /lb °F):)F) 200		04					
19	Tiempo	requerido d	e evacuación (mír	,	ED/401	200		Viscosidad		°F) 32.2	: 89	.96					
20			DATOS DI	E UBICACIÓN Y S	ERVICIO	US			scosidad (cP) @ Temperatura mínima								
21	Localización:		Colomb	1-	D-i-			Agentes Corrosivos/Erosivos: Concentración de Cloro (ppm):									
22		terior	Calenta			techo			***								
24		terior	Sin cale			os parciales		Concentrac	ción H ₂ S (ppm):	Otes							
25		scalón ición eléctrio	Entresu	910	NPT			Cistoma do	Tóxico Flamable	Otro:							
26	Clase: 1	icion electric		D: A		Div: 1			purga del anillo líquido ircula m³/h (opm): 8.7 38.3								
27		ionamiento	para invierno		dicionam	niento para clima	tronical			'							
28	Vapor	ionamiento	Controladore		uicionam	Calefac			snor m. m. (gpm).								
29	Condiciones	Pres ka/		emp. °C (°F)	Pres I	kg/cm² (psia)	Temp. °C (°F)	Volumen del sistema m³ (gal): Presión de diseño del sistema kg/cm² abs (psia):									
30	Mín	1 105. Ng	om (pola)	,	1105.1	ngram (psia)			gas en el anillo líq.kg/kg:	@	mm F	1 ₂ 0 y		°C			
31	Máx								ESPECIFICACIÓN DE			-2-)					
32						L		Aplicable a	la máquina:								
33	Electricio	dad	Conductores	Calefacció	in	Controles	Apagado	,									
34	Voltaje	е	4100 V	220 V		220 V		Aplicable a	zona/vecindad:								
35	Fases	5	3	1		1		·									
36	Ciclos	3	60 Hz	60 Hz		60 Hz	60 Hz	Encierro acústico	o: Sí No								
37	Elevació	in m (ft):	2,030 6660.	Barómetro	kg/cm² ((psi):	0.81 11.51		REFERENCIA	S							
38	Temp. A	mbiente °C	(°F) Rango	•		99.32 Mín:	-6 21.2	API 681, Bombas	s de anillo líquido y compresores de anillo líq	uido							
39	Húmeda	nd relativa (%	6)	- Máx: 8	34.2	Mín:	52.8	Sistemas para se	ervicio de refinerias								
40	Condiciones in	nusuales	-	Polvo	Н	umos		Especificac	ción gubernamental (si aplica):								
41	Co	orrosión deb	oido a: Pres	encia de sulfuro de	hidróge	eno en el fluido su	ıccionado										
42	Temp. del agu	a de enfrian	niento °C (°F)	- Entrada:	32	89.6 Normal	l:		PINTURA*								
43	Mín:		Máx:			Máx Recirc.:		Estándar d	el fabricante								
44	Presión	kg/cm² abs	(psia)- Norm	al: 4 56	5.893	Diseño		Sistema es	tándar del proveedor:								
45	Mi	in Retorno:		Máx. ΔP perm	itida kg/c	cm ² abs (psia):		Otros:									
46	Agua de	servicio							ENVÍO/ENTREC								
47	Pres. de aire d	le los instrui	mentos kg/cm ² ab	(psia)	Máx:	N	∕lín:	Doméstico		Caja de	exportac	ión reque	rida				
48								Almacenan	niento externo mayor a seis meses								
49																	
50																	
51	-																
52																	

				HOJA DE DA	TOS. BOMBA DE ANILLO) LÍQUIDO				PROY N°:		
			E		QUIDO ACCIONADA CON				HOJA		DE	7
1	V 21 A 28				CONDICIONES	S DE OPERACIÓN						
2						BIOSEC O			OT	RAS CONDICIONE	S	
3	Todos los datos e	están en las uni	dades corresp	ondientes	NORMAL	DISEÑO	ARRANQUE	А		В		
4	Gas manejado "nota 2				ver "nota 2"							
5	m³/h @ 1.013 bar & 0	°C seco/SCFM	1 @ 14.7 psia	y 60 °F seco	1	1						
6	Flujo másico [kg/min] [t	númedo/seco] /	[Lb/min] [húme	edo /seco]	38.8 / 5132.362	38.8 / 5132.362						
7	CONDICIONES DE SUCCIÓ	N										
8	Presión [kg/cm² abs]/[p	sia]			1.408 / 20	1.408 / 20						
9	Temperatura [°C]/ [°F]				48.89 / 120.00	48.89 / 120.00						
10	Húmedad relativa (%)											
11	Peso molecular (%)											
12	Cp/Cv (K ₁)				1.1803	1.1803						
13	Factor de compresibilio	dad (Z ₁)			0.9912	0.9912						
14	Volumen de entrada [m³	/h] [húmedo/se	eco] / [cfm] [húm	nedo/seco]	1853.2 / 1090.75	1853.2 / 1090.75	-					
15	CONDICIONES DE DESCAF	RGA										
16	Presión [kg/cm² abs] / [psia]	· <u> </u>		5 / 71	5 / 71						
17	Temperatura [°C][°F]				127.03 / 260.65	127.03 / 260.65						
18	Z_{prom}				0.9895	0.9895						
19	Factor de Compresibili	dad (Z ₂)			0.9879	0.9879		ļ				
20	Potencia al freno Requ	erida (Incluyen	ndo pérdidas) l	W/BHP	119.1 / 159.6	119.1 / 159.6						
21	kW Requerido a RV ajı	uste / BHP Req	juerido a RV aj	uste	1	1						
22	Velocidad (rpm)				*	*		<u> </u>				
23	Punto de garantía				*	*		<u> </u>				
24	Curva de desempeño l				*	*						
25	Caracteristicas del gas:	Toxio	CO T		Otro:	T	1		-			
26	Composición del gas	PM	% mol	Flujo molar de op.	Flujo molar de diseño		Otras cond		_	Observa	ciones	
27	% mol	4/	45.00	Ibmol/h / kgmol/h		lbmol/h / kg/h	A	В	_			
28	METANO (C.)	16.043	15.214	29.68 / 13.49	29.68 / 13.49				\perp			
29	ETANO (C ₂)	30.070	9.724	18.97 / 8.62	18.97 / 8.62				\perp			
30	ETILENO (C ₂ =)	28.054	1.063 8.747	2.07 / 0.94	2.07 / 0.94	+			+			
31	PROPANO (C ₃) PROPILENO(C ₃ =)	44.097	3.776	17.06 / 7.76 7.37 / 3.35	7.37 / 3.35	+			-			
32	PROPILENO(C ₃ =) N-BUTANO (nC₄)	42.081 58.123	5.009	7.37 / 3.35 9.77 / 4.44	7.37 / 3.35 9.77 / 4.44				+			
33	ISOBUTANO (IC ₄)	56.123	0.932	1.82 / 0.83	1.82 / 0.83	1			-			
34 35	2-CIS-BUTENO	56.123	0.932	1.82 / 0.83	1.82 / 0.83				+			
36	2-TRANS-BUTENO	56.108	0.709	1.38 / 0.63	1.38 / 0.63				+			
37	ISOBUTENO (IC ₄ =)	56.108	1.573	3.07 / 1.39	3.07 / 1.39	+			+			
38	1-BUTENO	56.108	1.379	2.69 / 1.22	2.69 / 1.22				-			
39	ISOPENTANO (IC ₅)	72.150	1.575	3.07 / 1.40	3.07 / 1.40				+			
40	N-PENTANO (NCs)	72.150	2.238	4.37 / 1.98	4.37 / 1.98	+	+		+			
41	OXIGENO (O ₂)	31.999	1.794	3.50 / 1.59	3.50 / 1.59	+			+			
42	HIDROGENO (H ₂)	2.016	4.095	7.99 / 3.63	7.99 / 3.63							
43	NITROGENO (N₂)	28.014	5.652	11.03 / 5.01	11.03 / 5.01				-			
44	CO ₂	44.010	0.104	0.20 / 0.09	0.20 / 0.09							
45	H ₂ S	34.082	25.918	50.56 / 22.98	50.56 / 22.98				-			
46	INERTES (Ar)	39.948	1.349	2.63 / 1.20	2.63 / 1.20	+			-			
47	H ₂ O	18.015	8.548	16.67 / 7.58	16.67 / 7.58	1			-			
48	Total		100.000	283.75 / 283.75	-							
49	PESO MOLECULAR DE LA	MEZCLA:	32.88		<u> </u>	1	1		1			
50				1								
51												
52												

		HOJA DE DATOS. BOMBA DE ANILLO I	LÍQUIDO)			PROY N°:
		BOMBA DE ANILLO LÍQUIDO ACCIONADA CON M				HOJA	3 DE 7
1	0 0 2 2	MATERIALES DE					<u> </u>
2		VELOCIDADES*			EJE		
3	Rotación, vi	ista desde la terminal del controlador		Material: ASTM AS	564 Tp. 630		
4	Máx. Contin	ua: * Disparo: * rpm		Diá. mm (in) -	@ Rotor * *		@ Unión:
5	Velocidad d	le estabilización mínima: * rpm		Terminal del eje	Cónico		Cilíndrico
6	Velocidad la	ateral de amortiguamiento * rpm			MANGAS DE LOS E	EJES*	
7	Pri	mera: * rpm: Método		Material en los sellos	de los ejes:		
8	Análisis late	eral tipico requerido			CAJA DE COJINETES/SO	OPORTES*	
9	Mapa reque	erido de fuerzas de amortiguamiento *		Hierro fundido	Hierro dúctil	Ac	ero
10	Análisis del	tren de torsión *	Sellos	: Tip	o de labio Laberint	0	
11	Primera vel	ocidad crítica de torsión * rpm		Pruebas de vibración	provisionales		
12	Nivel de pru	ıeba admisible de vibración µm (mils):			SOPORTES Y LUBRIC	CACIÓN	
13		PRUEBAS DE MATERIALES		Soportes	Tipo	No.	Espacio
14	Prueba Cha	arpy:		Radial			
15	Radiografia	requerida por:		Empuje			
16	Partículas n	nagnéticas requeridas por:	Lubricac	ión			
17	Penetración	del anillo líquido requerida por:		Grasa	Purga de niebla de aceite		Flujo
18		CARCASA*		Deflector	Niebla aceitosa		Anillo aceitoso
19	Modelo:	* Carcasa dividida:		Nivel constante de er	ngrasador	Presión	
20	Material:	Acero ASTM A 182 F Tp. 316L		1 1/2 DN Mínimo de o	grasa lleno y drenaje		
21	Espesor mr	m (pulg): * * Nivel de corrosión mm (pulg): * *		Grado ISO de viscos	idad aceitosa:		
22	Material del	colector		Aceite caliente -	Eléctrico	Vapor	
23	Placa de so	porte/cono material: ASTM A351 CF3M		Presión de aceite ma	ayor que la del refrigerante		
24	Presión má:	xima de operación kg/cm² abs(psia):	DETECT	OR DE VIBRACIÓN			
25	Presión má:	xima de diseño kg/cm² abs(psia): 10.546 150		Tipo:	API 670		
26	Pruebas de	presión kg/cm²abs (psia): Helio: * * Hidrógeno:		Marca:	Modelo:	· <u> </u>	
27	Temperatur	a de operación °C (°F) Max: 35.5 95.9 Min: 32.2 89.96		No. en cada cojinete	del eje: Total:	:	
28	Capacidad	máxima de la cubierta m³ (ft²):		Oscilador -Detectore	s suministrados por:		
29	Estudios de	cubierta requeridos:		Marca:	Modelo:		
30	Estudios de	tornillos niveladores de montaje		Servicio de monitore	o suministrado por:		
31		e montura frente a frente/marcados		Localización	Recinto:		
32		tornillos niveladores verticales y los taladros con piloto		Marca:	Modelo:		
33	Calidad de i	•		Rango de esca	, ,		
34	Accesorio v	álvula de alivio kg/cm² abs(psia):			Establecido µm (mils) @		Tiempo de retraso(s):
35		ROTOR			DE POSICIÓN AXIAL		
36	No.:	Sólido Hueco		Tipo:	No. Necesarios:		
37	Diámetros r	` '		Marca:	Modelo:		
38	No. Aspas p				ador Sumnistrado por:		
39		Abierlos Cerrados Otro:		Manufactura:	Modelo:		
40	Tipo de fabr			Servicio de monitore			
41	+	ASTM A 351 CF3M		Ubicación:	Recinto:		
42	1	asticidad maximo kg/cm abs(psia):		Marca:	Modelo:		
43	Dureza Brin	ell - Máx: Mín:		Rango de esca		μm	Tierre de c
44	000000000000000000000000000000000000000			Apagado -	Establecido µm (mils) @		Tiempo de retraso(s):
45	OBSERVACIONE	.s:					
46	1						
47	1						
48	1						
49	-						
50	-						
51	-						
52	I						

	52.52					HO.	IA DE DATO	OS. BOMBA	DE ANILLO L	ÍQUIDO							PROY	N°:		
	Party.				BOI	MBA DE AN	IILLO LÍQU	IDO ACCION	NADA CON MO	OTOR ELÉCTRICO					HO.	JA	4	DE	7	_
1	UNAM																			_
2																				
3	Conexion	ies		No	Tamaño	Reves	stimiento	Clas	ficación	Posición	Brio	das de cara	espa	rragada o	roscadas	Anillo		lamiento y	empaque	por
4													•					vendedor		
5	Entrada al sistem	a		2																_
6	Descarga del sist	ema		1																_
7	Entrada a máquir																			
8	Descarga de la m																			_
9	Drene de la máqu	-		1																_
10	Agua de enfriami	ento		1																
11	Entrada del anillo	líquido		1																_
12	Válvula de purga	(Venteo)				ı														
13																				
14	FUERZ	AS Y MOME	ENTOS	PERMITIDO	S SOBRE I	L ANILLO I	ÍQUIDO*					PESOS (Lb) A	PROXIMA	DOS					
15			Entr	rada	Des	carga	Sello	liquído	Equipo (de anillo líquido :	1330	kg		Motor:	284	5.08 kg				
16		F	uerza	Momento	Fuerza	Momento	Fuerza	Momento	Separac	lor :										
17			Lb	Ft/lb	Lb	Ft/lb	Lb	Ft/lb	Unidad (completa:										
18	Axial		685	1716	456	867	176	114	Máx. Ma	antenimiento :										
19	Vertical		685	1716	456	867	88	57	Montaje	total:										
20	Horizontal 90°		1370	3432	912	1730	88	57			ESPA	ACIOS REC	UERI	DOS APR	OXIMADO	S				
21												Larg	o (mn	n/in)	Anch	no (mm /	in)	Alto (mm / in)	
22		F	uerza	Momento	Fuerza	Momento	Fuerza	Momento		Unidad completa :		3400	1	133.86	1000	1	39.37	1020	/ 40.	16
23			Lb	Ft/lb	Lb	Ft/lb	Lb	Ft/lb		Equipo de anillo líquid	D:	1844	1	72.60	1000		39.37	1020	/ 40.	
24	Axial		685	1716	456	867	176	114		Tanque separador		2600	1	102.36	2600	/ 1	102.36	5570	/ 219.	29
25	Vertical		685	1716	456	867	88	57												
26	Horizontal 90°		1370	3432	912	1730	88	57												
27								AC	Г) Y CUBIERTA										
28	Juntas - Tipo:									Hojas de Datos API 671										
29	Marca / Modelo N									entos de lubricación										
30	Proporcionado po			1/ 1		o (UD)				ubricante	Gras	а		Otros						
31		l espaciador			adad KVV/TU	0 rpm (HP):				la de transmisión * la Tipo/No: *										
33	Protección tipo :	limitado req		o.4.o) ente cerrado		emi-abierto	Sin c	hispa		a de la banda: *										
34	Proporcion		TOMITTE	ine cenauc) 3	emi-abieno	SIIIC	Пізра		a de la banda. or de servicio de la banda(2 F. 1\·	*								
35		e la mitad de	l aconla	miento del n	nontaie					do 6.3 ISO Balance de rolo				*						
36	Balanceado				,-						(,								
37																				
38									PLACA DE I	MONTAJE										_
39	Placa de m	ontaje propo	rcionada	a por:	*				Soler	as proporcionadas por :	C	ontratista								
40	Máquina y	conductor		Siste	ma complet	0			Para:	Máquina	C	onductor		Otros						
41	Borde de g	oteo		Máqu	uina y condu	ıctor			E:	spesor mm (in):										
42				Para	sistemas co	ompletos			Su	ub-únicos Platos requerido	IS									
43	Montaje de	columna			Súb-unico:	s Platos requ	ieridos		ВІ	oques de nivel requerido										
44	Continuam	ente rellenad	los		Almoha	dillas de nive	el		Gi	osor del calce de acero in	oxidab	ole mm (in):								
45	Grosor del	calce de ace	ro inoxid	dable mm (ir	n):	*	*		Pr	imer para cubierta epóxica	a reque	erida (3.6.1	.2.5)							
46		cubierta ep	óxica re	querida																
47	Tipo: *																			
48		de montaje																		
49	Cubiertas a	ntiderrapant	es (3.6.2	2.10)																
50																				
51																				
52																				

	HOJA DE DATOS. BOMBA DE ANILLO	O LÍQUIDO PROY N°:
	BOMBA DE ANILLO LÍQUIDO ACCIONADA CON	MOTOR ELÉCTRICO HOJA 5 DE 7
1	INFORMACIÓN DE	DISEÑO DEL MOTOR
2	ESPECIFICACIONES APLICABLES :	VIBRACIÓN:
3	NEMA	Estándar NEMA
4		RUIDO:
5		Estándar NEMA
6	INFORMACIÓN DE LA UBICACIÓN :	
7	Área: Tipo Gr. Div. No peligroso	
8	Altitud m (ft) T. Amb Máx. °C (°F) Mín.	ACCESORIOS DEL EQUIPO
9	Condiciones inusuales: Polvo Humo	Soportes Duela Equipo de Estator
10	Otros:	Marca del soplador externo Soplador matachispas
11	UNIDAD DEL SISTEMA: Directamente conectado	Exitación D.C
12	Engranes	kW requeridos:
13	Otros	Por: Comprador Fabricante
14	TIPO DE MOTOR	Descripción:
15	Inducción de jaula de ardilla Diseño NEMA	ANILLOS ADJUNTOS DEL COLECTOR
16	Síncrono	Purga: Media Presión kg/cm² (psig)
17	Factor de potencia requerida: 0.9 mínimo	Resistencia a explosiones sin purga
18	Exitación Sin escobillas De anillos	Ventilacion forzada
19	Resistor de descarga de campo por fabricante del motor	m³/h (cfm) Caída de pres. mm (in) de agua:
20	Inducción del rotor bobinado	REPORTE DE DISPOSITIVO DE TEMPERATURA
21		Localización
22	LOCALIZACIÓN	Descripción
23	Clase: Grupo. Dív.	Fijado @ para alarma °C (°F) para apagado °C (°F)
24	TEFC Trabajo pesado Prueba	CALENTADORES DE ESPACIO
25	Protegido contra agua, tipo:	kW
26	TEWAC TEIGF Usado Gas	Volts Fase Hz
27	Tubos de acero al carbón de doble pares	Temperatura máxima de la cubierta °C (°F):
28	Suministro de agua: Pres. kg/cm² (psia): Temp. °C (°F)	DEVANADO DEL DETECTOR DE TEMPERATURA
29	Entrada de agua: ΔP kg/cm² (psi) Aumento de Temp. °C (°F)	Transistores: Sin fase
30	Corrosion minima permitida del lado del agua mm (in):	Tipo : Coeficiente de temperatura positiva
31	y factor de incrustación:	Coeficiente de temperatura negativa
32	(Aire) (Gas) Presión de suministro kg/cm² abs (psia):	Interruptor de Temperatura: SI NO
33	Ventilación forzada	Detector de resistencia de temperatura: Sin/Fase
34	A prueba de abertura por goteo	Resistencia del material
35	Abierto	Ohms
36		Interruptor selector e indicador por:
37		Comprador
38	INFORMACIÓN BÁSICA	Fabricante
39	Volts: MT Fases: 3 Hz 60 Hz	Temperatura máxima del estado devanado
40	Placa de identificación: HP 200 Factor de servicio: 1.25	°C (°F) Para alarma °C (°F) Para apagado
41	RPM Sincronos	DEVANADO DEL DETECTOR DE TEMPERATURA Y CABLES CALENTADORES DE ESPACIO
42	Assamiento: Clase: Tipo	En la misma caja conduit
43	Aumento de temperatura °C (°F) por encima de por:	En caja conduit separada
44	ARRANQUE Voltaie total Voltaie reducido * %	MOTOR ARREGLADO PARA PROTECIÓN DIFERENCIAL
45	Vollago Totalola 70	Método primerio de oute helenes
46	Cargado Descargado Inmersión de voltaje %	Método primario de auto balance Descripción CT
47	Inmersión de voltaje %	Descripcion CT Cables extendidos Longitud m (ft)
-		Cables extendidos Eurigitad III (II)
49 50		
51		
52		
· [I	

	51.2	HOJA DE DATOS. BOMBA DE ANILLI	o Líquido	PROY N°:					
	Party.	BOMBA DE ANILLO LÍQUIDO ACCIONADA CON	MOTOR ELÉCTRICO	HOJA 6 DE 7					
1	UNAM	EQUIPAMIENTO DE ACCESORIOS (CONTINUACIÓN)	INFORMACIÓN DEL FABRICANT	E (CONTINUACIÓN)					
2	Capacito	ores de agitación	Limitar el juego a:						
3	Pararray	yos	Curvas requeridas basadas en estudios de saturación y el voltaje espeficificado						
4	C.T. para	a amperimetro	Velocidad vs. Torque @ 100%, 90 % y 80 % del voltaje especificado						
5	Descripc	ción:	Velocidad vs. corriente @ 100%, 90 % y 80 % del voltaj	e especificado					
6	CAJA CONDUIT I	PRINCIPAL DIMENSIONADA PARA:							
7	Cables d	del motor principal Tipo THHW-LS	PESO (kg)						
8	Aislac	do No aislado	Peso neto: Peso de emba	arque:					
9	C.T.'s	s para protección diferencial (colocados por): Provedor	Peso del rotor: Peso máximo	de montaje:					
10	Capacito	ores de agitación (colocados por)	Peso máximo mantenimiento (identificación):						
11	Pararray	yos (colocados por):	Dimensiones (pies y pulgadas):						
12	C.T. para	a amperimetro (colocado por):	LARGO: ANCHO:	ALTO:					
13	Espacio	de las juntas de rompimiento							
14	Filtros de	e aire							
15	Fa	abricante: Tipo:							
16			INSPECCIÓN Y PRUEBAS	DE COMPRA					
17		INFORMACIÓN DEL FABRICANTE	Requ	erida Atestiguada					
18	Fabricante:		Inspección de compra						
19	Número de ma	arco: Carga plena RPM (ind.)	Pruebas por NEMA						
20	Eficiencia:	C.P. 3/4 L 1/2 L	Pruebas estándar del fabricante en compra:						
21	Factor de pote	encia (ind.) C.P. 3/4 F 1/2 L	Prueba de inmersión:						
22	Actual. (voltaje	e especificado): Carga plena: Rotor bloqueado:	Pruebas especiales (enlistar abajo):						
23	Factor de pote	encia del rotor bloqueado:							
24	Rotor bloquead	do con tiempo estándar (arranque en frío):							
25	Rotor bloquead	do con tiempo estándar (arranque en caliente):							
26	Torques (Ft-lb)	ı): Carga plena:							
27	Rotor	r bloqueado: Arranque:							
28	Levar	ntar Meter:	PINTURA						
29	Desco	ompuesto (Ind.) Sacar:	Estándar del fabricante						
30									
31	Constante de t	tiempo del circuito abierto (s):							
32	Contribución si	simétrica a la terminal por defecto de 3 fases							
33	a 1/2 cicl	clo. a 3 ciclos	ENVÍO						
34	Reactancias: s	subtransitorias (X"D)	Doméstico Exportar Expo	rte en caja requerido					
35	Transitor	rio (X'D): Síncrono (XD):	Almacenado en exterior por más de tres meses						
36		el estator en C.A.: Ohms @ °C (°F)							
37	kVA especifica								
38	· '	VA @ voltaje completo y rotor bloqueado (sincronizado) %							
39	<u> </u>	completo y 95% de velocidad %	OBSERVACIONES:						
40	Máxima línea o	de corriente en estator en el primer ciclo y extracción (sincronizado)							
41									
42		eleración (contador únicamente y con voltaje especificado) s							
43	<u> </u>	eleración (contador., cargado y al 85 % del voltaje especificado) s							
44		WK ² y eje Mtr. (lb-ft ²)							
45		ranques por hora:							
46	Soportes:	Tipo: Lubricante:	1						
47	Aceite lubriante		1						
48	Juego total del	ı eje:	1						
49	1								
50	1								
51 52	1								
IJΖ									

		hoja de datos. Bomba de anillo líquido		PROY	N°:	
		BOMBA DE ANILLO LÍQUIDO ACCIONADA CON MOTOR ELÉCTRICO	HOJA 7 DE			7
1	UNAM	NOTASGENERALES				
2	1 EL ASTERISC	O (*) INDICA INFORMACIÓN QUE DEBE SER SUMINISTRADA POR EL FABRICANTE Y/O PROVEEDOR DEL EQUIPO.				
3		UNA MEZCLA DE GOL PROVENIENTE DE LOS POSTCONDENSADORES 7-CN Y 8-CS				
4		E LOCALIZARÁ A NPT POR DEBAJO DE LA ESTRUCTURA DE LOS EQUIPOS DEL PAQUETE DE VACÍO DE LA TORRE DE VACÍO.				
5		TE Y/O PROVEEDOR DEBE SUMINISTRAR EL CONJUNTO BOMBA-COPLE/GUARDACOPLE-MOTOR, EN UNA BASE COMÚN.				
6		EBE INCLUIR CAJA DE CONEXIONES CON 4 HILOS, UNO PARA TERMINAL A TIERRA.				
7		ITE Y/O PROVEEDOR DEBE VERIFICAR LA SELECCIÓN DE LA BOMBA EN FUNCIÓN DE LAS CONDICIONES DE OPERACIÓN ESPECIFICADAS.				
8		O Y/O SELECCIÓN DE LA BOMBA, EL RANGO DE OPERACIÓN DEBE CUMPLIR CON LOS CRITERIOS ESTABLECIDOS POR API 617, 681 ÚLTIMA				
9		POR NRF-131-PEMEX-2007; EL QUE RESULTE MÁS RIGUROSO.				
10		EBE CUMPLIR CON LAS NORMAS DE DISEÑO INDICADAS. EN CASO DE CONFLICTO, EL FABRICANTE Y/O PROVEEDOR DEBE APLICAR LA				
11		SA, PREVIA ACLARACIÓN.				
12		ite yio proveedor debe confirmar los materiales y garantizarlos para el servicio requerido. El material debe ser cons	SIDERADO CO	MO		
13		DABLE O ALEADO DEBIDO A LA PRESENCIA DE H2S.	ADEIGIDO GO	WIO		
14		lección de la Bomba, el Fabricante y/o proveedor debe considerar la disponibilidad de los servicios auxiliares en el sitiu	n			
15		ZACIÓN EL PROVEEDOR DEBE:	J.			
16		LA HOJA DE DATOS DEBIDAMENTE LLENADA.				
17		la hoja de datos debidamente llenada. Ar la hoja técnica del Equipo.				
18		ar la curva de operación del compresor, indicando los puntos de operación.				
19	· ·	LISTA DE PARTES DE REPUESTO DEL EQUIPO.				
20	,	AR REFACCIONES PARA 1 AÑO.				
21		OGRAMA DE MANTENIMIENTO PREVENTIVO.				
22	,	AR GARANTÍA DE 12 A 18 MESES.				
23	· ·					
24	· ·	AR UN JUEGO DE PARTES DE REPUESTO EXCLUSIVOS PARA ARRANQUE Y/O PARA PRUEBAS.				
25		R EL SUMINISTRO DEL MANUAL DE INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO; EN ESPAÑOL.				
26		IR DIAGRAMA DE INTERCONEXIONES.				
27		AR REPORTE DE PRUEBAS DE ACEPTACIÓN DE FABRICA (FAT). ANTES DE EMBARCAR EL EQUIPO PAQUETE.				
28		AR REPORTE DE PRUEBAS DE ACEPTACIÓN EN SITIO (ASAT).				
29		AR NIVEL DE RUIDO DEL EQUIPO DE BOMBEO DE 85 dB A 1.5 METROS DE DISTANCIA DEL EQUIPO.				
30		ar suministro de Herramientas especiales, en caso de Ser Requerido. Ar suministro de Planos - Dimensionales certificados.				
31	· ·					
32		OOR DEBE CONSIDERAR EL SUMINISTRO DE LA PLACA DE DATOS DE LOS EQUIPOS, EN ACERO INOXIDABLE.				
33	,	ACIÓN MÍNIMA QUE DEBE CONTENER LA PLACA PARA EL COMPRESOR ES:				
34		CA, MODELO, TAMAÑO, CAPACIDAD (gpm / m³/h), VELOCIDAD (RPM), DIÁMETRO DEL IMPULSOR (mm / in).				
		ACIÓN MÍNIMA QUE DEBE CONTENER LA PLACA PARA EL MOTOR ES:				
35		A, MODELO Y TIPO, POTENCIA NOMINAL(HP), TENSIÓN NOMINAL (VOLTS), CORRIENTE NOMINAL A PLENA CARGA (AMPERES),				
37		IA (HERTZ), NÚMERO DE FASES, VELOCIDAD A PLENA CARGA (RPM), DIAGRAMA DE CONEXIONES, DESIGNACIÓN DE ARMAZÓN,				
38		FACTOR DE SERVICIO, SERVICIO INTERMITENTE, CLASE DE AISLAMIENTO, TEMPERATURA MÁXIMA AMBIENTE(°C), ELEVACIÓN DE				
39		URA (°C), LETRA DE DISEÑO, DESIGNACIÓN DE COJINETES, CARACTERISTICAS DE LUBRICACIÓN. UTE VIA PROVEEDAD DERE SUMINISTRAD EL FOUNDO (POMPA/COMPRESOR, CODE CUARDACORIE, MOTOR, DATINO CON EL ACADADO ESTA	DI ECIDO DOS			
40		ite yio proveedor debe suministrar el equipo (bomba/compresor, cople, guardacople, motor, patin) con el acabado esta Idad de demey	DLECIDO POR			
41		IDAD DE PEMEX.				
\mathbf{H}		ALIZADO EL PEDIDO, EL PROVEEDOR DEBE SUMINISTRAR, JUNTO CON LOS EQUIPOS Y REFACCIONES, LA SIGUIENTE DOCUMENTACIÓN:				
42		IICA DEL EQUIPO.				
43	,	OPERACIÓN DE LA BOMBA, INDICANDO LOS PUNTOS DE OPERACIÓN.				
45	,	ertificados del Equipo integrado (Bomba-motor-Base), incluyendo localización de Anclas.				
46	· ·	DE 12 A 18 MESES.				
\mathbf{H}		DE LAS PRUEBAS SOLICITADAS.				
47		DE INTERCONEXIONES.				
48		E INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO EN ESPAÑOL.				
49	H) PROGRAMA	a de mantenimiento preventivo.				
50						
51						
52						

ANEXO 5 Hoja de Datos. Bomba de Agua de Proceso

515		HOJA DE DATOS. BOMBA DE AGUA DE PROCESO									PRO	OY N°:			
		BOMBA DE AGUA DE PROCESO								HOJA	1	DE		2	
ELA	BORÓ:		REVISÓ:				APROBÓ:			REV	0	1	2	3	
1	EDITADA PA	A:	COTIZACIÓN		COMP	RA.			AS BUILT.	POR		\Box		Т	
2	CLIENTE:			-	CLAVE: V-GA-12		00,	ARCA		REVISÓ	\vdash	-		+-	
3	LUGAR			No. R	EQ: DOS (2)		ODEL		APROBÓ	\vdash	\neg		+-	
4	SERVICIO:					_		AMAÑ		FECHA	\vdash	\neg		+-	
5	CÓDIGO DISI	ÑO:	API 6	10, NRF-050-P	EMEX-2007	_					ш				
6			CONDICIONES	E OPERACIÓ	N			т							
7	LÍQUIDO	AGUA DE S			RMAL gpm (lps):		38.3 2.417	7.1	CURVA PROPUESTA No.	IONAMIE NTO	1				
*	TIPO DE OPE		CONT.		EÑO gpm (ps):		50 (3.155	-	NPSH REQ. # (m Liq)	20	VEL. (mp	m)	3500	0	
9	TEMP. BOMB	L,	(32)	PRESIÓN:			,		EFICIENCIA (%): NORMAL/DISEÑO			*/44.			
10	PESO MOLE			DESC.	psia (kg/cm²) Normal:		75.53 5.31	\forall	BHP DISEÑO	,		0.92		—	
11	1		62.43	SUCC.	Normal:		56.89 [4.00	- 2	BHP MAX. @ IMPULSOR DE DISEÑ	0					
12	DENSIDAD @		0.70	PRES. DIF.			18,63 [1,31	-	COLUMNA DIF, DISEÑO	ft (m)	32.			91)	
-	PRES. VAPO	psia	0.74				32.62 9.91	_			76.		6.3		
13	VISCOSIDAD	_		COLUMNA			180.06 [64.88	-5	PRES. DESC. MAX. psia (kg/	-					
14	CORR/EROS	-	Líquido Bombeado	NPSH DISP				-	-	m (lps)	38		2.4	417 J	
15		pH (NOTA2)		POT. HIDR.	. HP (kW)		0.41 0.31	4	ROTACIÓN VISTA DESDE COPLE:						
16			CONSTR					+	VEL ESPECÍFICA DE SUCCIÓN:						
17	TIPO DE BOM				FLE CHA DEL MOT	OR		⊢		NADOR (NOT					
18		TICAL EN LÍNEA	O TRO	VER NOTA 17				-		OTOR ELÉCI	RICO (NO	TA 6)			
19	CARCASA: N	ONTAJE HORIZONTAL	PIE		LÍNEA DE CENT	_			MOTOR SUMINISTRADO POR:						
20	MONTAJE		HA DE MOTOR	COPLE		OTF	RO	-	MONTADO POR:						
21	PARTICIÓ	RADIAL.	● AXIAL TIE	O DE VOLUTA	A: SENO	CILLA	DOBLE		CANTIDAD:		DOS	(2)			
22	PRES. MA	. PERM. TRAB.	Psig (kg/cm² m)		@ *F (*C)			.	No. DE TAG:		V-GA	12			
23	CONEXIONE	DIÁMETRO	CLASIF	. ANSI	CARA		POSICIÓN	Ш	POTENCIA AL FRENO (BHP):		0.92	1			
24	SUCCIÓN	1.5 pulg			*			Ш	VEL. (fpm):		3500	,			
25	DESCARGA	1.25 pulg			*		*	Ш	MARCA:		•				
26	MANÓMETRO			-				11	MODELO:		•				
27	DRENVENTE	• *		*			*	11	TIPO:					_	
28	IMPULSOR: D	IAM. in (mm)	DISEÑO 3.87 (99)	MÁX. *	TIPO		*	٦	AISLAMIENTO: "F"						
29	RODAMIENT	S: TIPO RADIAL		_	AXIAL			-	ENCAPSULADO: ^ (NOTA 4)						
30	LUBRICACIÓN: ACEITE NIEBLA GRASA * ENGRASADO PERM.								ARMAZÓN:						
31	COPLE: FABR/MODELO: * TIPO: *								VOLTS/FASES/CICLOS: 220 / 3 / 60						
32	GUARDA	LÁMINA ACERO DES	MONTABLE	ESTANDAR	. AC	CEITERA		-	AMPERES A CARGA PLENA :						
33			SISTEMA DE SELLA					┪	FACT. SERV. :			1.15			
34	CAJA DE EMI	AQUE: ESTA		ENCHAQUETA		SOLO	O SELLO	\dashv	AUMENTO DE TEMPERATURA °F (*C):					
35	EMPAQ				TAMAÑ				CANTIDAD DE RODAMIENTOS :						
36	Ш	No. ANILLOS		ANILLOS LI		* 81	No	-	TIPO ;			÷			
37	SELLO	IECÁNICO: FABR. Y MOI	DELO		CÓDIGO DE MA	\Box	Щ		LUBRICACIÓN:						
38	144		BALANCEADO	SENCILI			EXTERNO	-	BOMBAY MOTOR EN MISMA BASE			•	NO:		
39	ров		C/ESPALDA	TANDEM	CONVENC		CARTUCHO		TIPO DE ARRANCADOR :		*	_			
40	1 1000	E ESTACOA (CONTENC		GACTOGITO	\dashv	NEMA: * CLASE:	1	DIV:	2			
41	PLAN D	LIMPIEZA	TUBERIA AU	XILIAR (*)				\dashv	REFACCIONES PARA EL ARRANQU		_	_		-	
42	1	BUA DE ENFRIAMIENTO		IOTA 11	FLUJO	gpm (lps			POR PROVEEDOR			10 10111			
43		MIRILLA DE FLUJO		OIA II	- 12000	gpin (ibs	·	-	REFACCIONES PARA EL ARRANGI	IE DE PRIJE	PAS DE LA	POMPA			
44		MIRICOL DE FLOGO MIENTO DEL EMPAQUE F	PEOLIERIDO						POR PROVEEDOR	JE DE PROBI	MO DE D	, SUMBA			
\vdash	1 —			PDEOLÓN				- -		BAS EN TALL	ED				
46	FLUIDO	DE LIMPIEZA SELLO EXT		PRESIÓN	psig (kg/cm² man)	_		- -		QUERIDA	~ 11	ATESTIC	SUAD	Α.	
46			_	pprojé::				-	PRUEBA RE- FUNCIONAMIENTO	QUERIDA		VIES III	7	,	
₽-	FLUJ				psig (kg/km² man)		-	-				\vdash	\dashv		
48		ENFR. DE SELLO	- NOTAC		IFR. DE SELLO	I EADO		\dashv	HIDROSTÁTICA			\vdash	\dashv		
49	_	ERIALES DE LA BOMBA			ATOS FINALES DE	LFABR	GOANTE -	\dashv	NPSH	<u>آ</u>		\vdash	4		
50	CARCASA:	_	ASTM A 278 clase 30		UAL IMPULSOR:				VIBRACIÓN	با		L	┙		
61	IMPULSOR:		ASTM A 278 clase 30		PRUEBA No:			- [DESMONTAJE E INSPECCIÓN DES		PRVEBA:				
52	ANILLOS DE	_	ASTM A 278 clase 30		ISIONAL No:		*	-	● 81	МО					
63	FLECHA:		ASTM A 216 Gr. W CB		BOMBA No:		*	-	OTRA						
54	MANGAS DE	_	ASTM A 278 clase 30	DIB. SECC.	SELLO No:		•	. L	PRUEBA HIDROSTÁTICA		g (kgkm² m)	@ '		°F(°C)	
66	PRENSA EST	OPA:	ASTM A 216 Gr. W CB	No. DE SEF	RIE DE BOMBA:		*	. L	IN	SPECCIÓN					
56	EMPAQUES:		Ac. Inox. UNS \$31600	CLARO EN	TRE ANILLOS:		*	. [NO REQ.	JRANTE FAB	R.	I	* F	FINAL	
57	SELLOS:			EMBARCA	R:		*	L	DÍAS REQ. PARA NOTIFICACIÓN			10 DIAS			
58	BASE:	_		* SELL	OS MECÁNICOS	,	* EMPAQUE		P	ESOS (kg)					
59	GUARDACOF	LE:	•	* INSTA	ALADOS		* SEPARADOS	Γ	BOMBA 35.4	BASE		26			
60	CABEZAL DE	DESCARGA:	ASTM A 216 Gr. W CB	_		_	_		MOTOR 34	OTRO					
61	PERNOS	_	ASTM A 193 Gr. B7							_				_	
62	11	_													
63	11														

	n) ac a au	HOJA DE DATOS. BOMBA DE AGUA DE PROCESO		PROY N°:					
	UNAM	BOMBA DE AGUA DE PROCESO	HOJA	2 DI	E 2				
1		NOTAS GENERALES							
2	1. ELASTERISSO () INDIGNING ON QUE DEBE SEN SOMMISTINIDATION COMMINIMISTATION FOR ELASTICATION OF THE PROPERTY								
3		S AGUA DE PROCESO							
4		E LOCALIZARÁ A NPT POR DEBAJO DE LA ESTRUCTURA DE LOS EQUIPOS DELPAQUETE DE VACÍO DE LA TORRE DE VACÍO.							
5		TE Y/O PROVEEDOR DEBE SUMINISTRAR EL CONJUNTO BOMBA-COPLE/GUARDACOPLE-MOTOR, EN UNA BASE COMÚN.							
6		EBE INCLUIR CAJA DE CONEXIONES CON 4 HILOS, UNO PARA TERMINAL A TIERRA.							
7		ITE Y/O PROVEEDOR DEBE VERIFICAR LA SELECCIÓN DE LA BOMBA EN FUNCIÓN DE LAS CONDICIONES DE OPERACIÓN ESPECIFICADAS. O Y/O SELECCIÓN DE LA BOMBA, EL RANGO DE OPERACIÓN DEBE CUMPLIR CON LOS CRITERIOS ESTABLECIDOS POR API 610 ÚLTIMA							
8									
9		POR NRF-050-PEMEX-2007; EL QUE RESULTE MÁS RIGUROSO.							
10		EBE CUMPLIR CON LAS NORMAS DE DISEÑO INDICADAS. EN CASO DE CONFLICTO, EL FABRICANTE Y/O PROVEEDOR DEBE APLICAR LA							
11		SA, PREVIA ACLARACIÓN Y ACEPTACIÓN ESCRITA POR PEMEX Y/O SU REPRESENTANTE.							
12		ITE Y/O PROVEEDOR DEBE CONFIRMAR LOS MATERIALES Y GARANTIZARLOS PARA EL SERVICIO REQUERIDO.	0						
13		lección de la Bomba, el fabricante y/o proveedor debe considerar la disponibilidad de los servicios auxiliares en el siti Ización el proveedor debe:	U.						
14									
16		LA HOJA DE DATOS, DEBIDAMENTE COMPLEMENTADA. PAR LA HOJA TÉCNICA DEL EQUIPO.							
17		PAR LA CURVA DE OPERACIÓN DE LA BOMBA, INDICANDO LOS PUNTOS DE OPERACIÓN.							
18		LISTA DE PARTES DE REPUESTO DEL EQUIPO.							
19	,	AR REFACCIONES PARA 1 AÑO.							
20		ROGRAMA DE MANTENIMIENTO PREVENTIVO.							
21	1	AR GARANTÍA DE 12 A 18 MESES.							
22	H) CONSIDER	AR UN JUEGO DE PARTES DE REPUESTO EXCLUSIVOS PARA ARRANQUE Y/O PARA PRUEBAS.							
23	I) CONSIDERA	IR EL SUMINISTRO DEL MANUAL DE INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO; EN ESPAÑOL.							
24	J) CONSIDER	AR DIAGRAMA DE INTERCONEXIONES.							
25	K) CONSIDER	AR REPORTE DE PRUEBAS DE ACEPTACIÓN DE FÁBRICA (FAT) ANTES DE EMBARCAR EL EQUIPO PAQUETE.							
26	L) CONSIDER	AR REPORTE DE PRUEBAS DE ACEPTACIÓN EN SITIO (ASAT).							
27	M) CONSIDER	AR NIVEL DE RUIDO DEL EQUIPO DE BOMBEO DE 85 dB A 1.5 METROS DE DISTANCIA DEL EQUIPO.							
28	N) CONSIDER	AR SUMINISTRO DE HERRAMIENTAS ESPECIALES, EN CASO DE SER REQUERIDO.							
29	O) CONSIDER	AR SUMINISTRO DE PLANOS DIMENSIONALES CERTIFICADOS.							
30	12 EL PROVEE	DOR DEBE CONSIDERAR EL SUMINISTRO DE LA PLACA DE DATOS DE LOS EQUIPOS, EN ACERO INOXIDABLE.							
31	A) LA INFORM	ACIÓN MÍNIMA QUE DEBE CONTENER LA PLACA PARA LAS BOMBAS ES:							
32		CA, MODELO, TAMAÑO, CAPACIDAD (GPM / m³/h), CABEZA TOTAL (ft / m), VELOCIDAD (RPM), DIÁMETRO DEL IMPULSOR (mm / in).							
33		IACIÓN MÍNIMA QUE DEBE CONTENER LA PLACA PARA EL MOTOR ES:							
34		CA, MODELO Y TIPO, POTENCIA NOMINAL(HP), TENSIÓN NOMINAL (VOLTS), CORRIENTE NOMINAL A CARGA PLENA (AMPERES),							
35		CIA (HERTZ), NÚMERO DE FASES, VELOCIDAD A CARGA PLENA (RPM), DIAGRAMA DE CONEXIONES, DESIGNACIÓN DE ARMAZÓN,							
36		FACTOR DE SERVICIO, SERVICIO INTERMITENTE, CLASE DE AISLAMIENTO, TEMPERATURA MÁXIMA AMBIENTE(°C), ELEVACIÓN DE							
38	TEMPERA	URA (°C), LETRA DE DISEÑO, DESIGNACIÓN DE COJINETES, CARACTERÍSTICAS DE LUBRICACIÓN.							
39	13 EL FABRICA	NTE Y/O PROVEEDOR DEBE SUMINISTRAR EL EQUIPO (BOMBA, COPLE, GUARDACOPLE, MOTOR, PATÍN) CON EL ACABADO ESTABLECIDO POF	NORMATIVIDAD	DE PEMEX.					
40									
41	14 EL FABRICA	NTE Y/O PROVEEDOR DEBE SUMINISTRAR EL SISTEMA DE SELLO LÍQUIDO, EN CASO DE REQUERIRSE, TOMANDO EN CUENTA QUE ES AGUA.							
42	15 UNA VEZ RE	ALIZADO EL PEDIDO, EL PROVEEDOR DEBE SUMINISTRAR, JUNTO CON LOS EQUIPOS Y REFACCIONES, LA SIGUIENTE DOCUMENTACIÓN:							
43		IICA DEL EQUIPO.							
44		OPERACIÓN DE LA BOMBA, INDICANDO LOS PUNTOS DE OPERACIÓN.							
45		ERTIFICADOS DEL EQUIPO INTEGRADO (BOMBA-MOTOR-BASE), INCLUYENDO LOCALIZACIÓN DE ANCLAS.							
46	D) GARANTÍA	DE 12 A 18 MESES.							
47	E) REPORTES	DE LAS PRUEBAS SOLICITADAS.							
48	F) DIAGRAMA	DE INTERCONEXIONES.							
49	G) MANUAL D	E INSTALACIÓN, OPERACIÓN Y MANTENIMIENTO EN ESPAÑOL.							
50	H) PROGRAM	A DE MANTENIMIENTO PREVENTIVO.							
51									
52									
53									
54									
55									
56									
57									
58	1								