

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE ESTUDIOS SUPERIORES ARAGÓN

SISTEMA EN JAVA PARA DETERMINAR EL COSTO FISCAL DE LAS PENSIONES DERIVADAS DE LA SEGURIDAD SOCIAL

Desarrollo de un caso práctico

QUE PARA OBTENER EL TÍTULO DE:

INGENIERO EN COMPUTACIÓN

PRESENTA

ANTONIO DE JESÚS ALCALDE DOMÍNGUEZ

Tutor:

MAT. LUIS RAMÍREZ FLORES

México 2012

1. Datos del alumno Alcalde Domínguez Antonio de Jesús 42113608 Universidad Nacional Autónoma de México Facultad de Estudios Superiores Aragón 407011096 2.- Datos del Tutor Matemático Luis Ramírez **Flores** 3.- Sinodal 1 Maestro Juan Gastaldi Pérez 4.- Sinodal 2 Maestra Silvia Vega Muytoy 5.- Sinodal 3 Licenciada Alma Rosa Gutiérrez Castillo 6.- Sinodal 4 Ingeniero Enrique García Guzmán Titulo

Sistema en java para determinar el costo fiscal de las pensiones derivadas de la seguridad social

151 páginas

2012

Dedicatorias

A Dios por guiar mi camino, darme salud, fuerza, inteligencia, amor y por poner en mi camino personas tan valiosas que me han apoyado en todo momento; todo lo anterior son bendiciones, y gracias a estas he concluido mi carrera profesional.

A mi madre Alicia por cuidarme y protegerme en todo momento, por darme su amor desinteresado, por darme ánimos, por todos los días que te has levantado en las mañanas, por ser un gran ejemplo de fuerza, valentía y de mucho amor.

A mi padre Sergio por brindarme su amor, por sus palabras que han logrado que no desvíe mi camino, por ser un gran ejemplo de lo que es un padre, por todos tus consejos, por enseñarme el verdadero valor de las cosas, por inculcarme tantos valores, por dejarme la mejor herencia "Una profesión".

A mi hermana Lupita por compartir conmigo tantos momentos de felicidad, por tu apoyo, por creer en mí, y por que estoy seguro que la culminación de mi carrera profesional, te servirá como motivación para que sigas adelante y veas que si se puede, y que tu también tienes que terminar la carrera que elijas.

A mi hermano Sergio por cuidarme desde pequeño, por los momentos de felicidad que hemos pasado, por ser un gran ejemplo para mí, por tus palabras, por confiar en mí, y por que estoy seguro de que te sientes muy contento de que he logrado terminar mi carrera.

A mi abuelita chepina por todo el amor que me ha brindado, por cuidarme desde pequeño, por ser un ejemplo valentía y de fuerza.

A mi abuelita toñita (q.p.d) por ser una abuelita llena de amor, por cuidarnos a todos los nietos, por ser un gran ejemplo para mí de lo que es la generosidad.

A mi abuelo (q.p.d) por ser un gran ejemplo de valentía, fuerza, disciplina y también de mucho amor, por todos los momentos de felicidad que viví a su lado, por creer en mi desde el primer momento que pisé la facultad, por todo su apoyo, por que hasta el último momento me demostró su amor, por que estoy seguro que se siente orgulloso de que he terminado mi carrera.

A mis primos Bere, Mari, Yadi, Humberto, Javier, Arturo por el amor que me han brindado, por todos los momentos que hemos pasado, por sus palabra de animo, por que en todo momento estuvieron seguros de que terminaría mi carrera.

A mi novia Gloria por todo su amor, por sus palabras de ánimo, por todos los momentos de felicidad que hemos pasado, por apoyarme en diferentes situaciones, por que siempre confiaste en mí.

A mis grandes amigos de la FES Aragón Mayela, Maria, Deborah, Marisol, Gemma, Norma, Rosario, Coradi, Minerva, Gaby, Adiana, Karen, Ivan, Beto, Memo, Lalo Gonzalez. Lalo Ramirez, Jorge, Fer, Cristian, Ramón, Vicente, Armando, Charly, Mike, Irving, Javier, Rodolfo, Salinas, Novas, Richard, German, Ruben Diaz, Alex, Miguel, Wicho, Mario, Omar, Gio, Memo (primo de gio) por todos los buenos momentos que compartí a su lado, aprendí mucho de todos ustedes, fueron mis amigos durante cinco años y espero sean más.

A mis grandes amigos Karen, Ricardo, Leonardo, Luis, Paco, Ivan, por todos los momentos que he compartido, desde mis sueños hasta mis miedos, alegrías tristezas, por que se sienten muy contentos al igual que yo de que concluí mi carrera.

Agradecimientos

A la UNAM por hacer de mí un profesional, por prepararme para enfrentar la vida con decisión, por el conocimiento que me regaló, por el orgullo que siento al decir que soy Universitario.

Al IMSS por darme la oportunidad de trabajar a pesar de no contar con experiencia, por que día con día aprendo de los problemas a los que se enfrenta el Instituto, por el excelente ambiente de trabajo, por ser mi segundo hogar.

A mi aseror Luis por que siempre ha sido un gran ejemplo para todos los estudiantes y en especial para mí, por la alegría que demuestra al dar catedra, por que siempre nos apoyó, por que no es egoísta con el conocimiento, por la humildad que siempre nos ha inculcado, por apoyarme con mí trabajo de titulación.

A mis sinodales por el tiempo que dedicaron a revisar mi trabajo de titulación, por sus observaciones, por el interés que muestran en que los estudiantes logren titularse, por sus consejos.

A Mónica por que desde el primer momento en que llegué al Instituto me arropó, por que siempre me ha apoyado, por darme la oportunidad de trabajar a su lado, por confiar en mí, por ayudarme en mi trabajo de titulación, por todo el conocimiento que he adquirido, por ser una excelente persona.

A Verónica por darme la oportunidad de formar parte de este gran equipo de trabajo que es la CARI, por el afecto que muestra hacia su grupo de trabajo, por el ejemplo de amor al trabajo que ella nos da.

A Jana por que siempre me ha apoyado, por sus consejos, por su amistad, por darme la oportunidad de formar parte de su equipo de trabajo.

A Nayeli por que desde el primer momento en que llegué me ha apoyado, por compartir su conocimiento conmigo, por su amistad, por su confianza.

A Fabián por su gran amistad, por todo el apoyo que me ha brindado para que terminara mi trabajo de titulación, por sus consejos, por sus regaños.

A Gaspar por la amistad que me ha brindado, por su apoyo, por sus consejos, por todo el conocimiento que me ha regalado, por ser una excelente persona.

A Andrés por ser un excelente amigo, por que desde un principio nos hemos apoyado, por todos los momentos que hemos pasado.

A Ángel por su gran amistad, por apoyarme, por sus consejos, por compartir su conocimiento conmigo.

Antonio Alcalde

Índice general

Índice	de gráficas	I
Índice	de cuadros	II
Introd	lucción	1
Capítı	ılo 1. Procedimiento para calcular el costo fiscal derivado de las pensiones	3
1.1	Introducción	3
1.2	Definición del modelo actual.	
1.3	Componentes técnicos	
1.4	Diagramas del modelo actual	
1.5	Procedimiento	9
1.6	Diagramas de Resultados	
1.7	Diagnóstico del procedimiento	19
Capítı	ılo 2. Componentes del sistema costo fiscal	21
2.1	Introducción	
2.2	Levantamiento de información	
2.2.1	Hipótesis demográficas	
2.2.2	Hipótesis financieras	
2.2.3	Hipótesis biométricas	
2.2.4	Árboles de decisión	
2.3	Herramientas de desarrollo	
2.3.1	Lenguaje de programación Java	
2.3.2	Kit de desarrollo de Java (JDK)	
2.3.3	NetBeans	
2.3.4	OpenOffice	
2.3.4.	1 OpenOffice Calc	38
Capítu	ılo 3. Desarrollo del sistema costo fiscal	39
3.1	Introducción	
3.2	Plan de trabajo	
3.3	Diseño	
3.3.1	Diagramas de clase	
3.3.2	Diagramas de casos de uso.	
3.3.3	Diagramas de secuencia	
3.3.4	Pseudocódigo	
3.4	Codificación del proceso	
3.5	Pruebas del sistema	
3.6	Implementación del Sistema	
3.7	Resultados generados por el sistema	
	usiones	
Riblio	grafía	122

Cibergrafía	122
Anexo 1. Proyección demográfica de los asegurados vigentes	123
A.1 Procedimiento del SIV	
Anexo 2. Probabilidades de sobrevivencia para pensionados	149
Anexo 3. Estimación del saldo promedio en la cuenta individual	150

Índice de gráficas

Gráfico 1.1 Representación del colectivo cerrado de asegurados y sus causas de decrementos	por
pensión	
Gráfico 1.2 Representación del modelo actual	6
Gráfico 1.3 Representación del modelo actual del SRT	7
Gráfico 1.4 Representación del modelo actual del SIV	8
Gráfico 1.5 Proyección demográfica de los asegurados vigentes	9
Gráfico 1.6 Proyección de los futuros pensionados vigentes al final de cada año de proyección e	
seguro de invalidez y vida	
Gráfico 1.7 Proyección de pensiones derivadas del fallecimiento de pensionados directos	10
Gráfico 1.8 Proyección de pensiones derivadas por el fallecimiento de asegurados al final de	cada
año	10
Gráfico 1.9 Proyección de los pensionados en curso de pago	11
Gráfico 1.10 Estimación de los salarios futuros del seguro de invalidez y vida	11
Gráfico 1.11 Estimación del gasto anual por pensiones	
Gráfico 1.12 Estimación de las aportaciones bimestrales a la cuenta individual	12
Gráfico 1.13 Estimación del saldo promedio en la cuenta individual	13
Gráfico 1.14 Proyección de los futuros pensionados vigentes al final de cada año de proyección	14
Gráfico 1.15 Proyección de pensiones derivadas del fallecimiento de pensionados directos	14
Gráfico 1.16 Proyección de pensiones derivadas por el fallecimiento de asegurados al final de o	cada
año	15
Gráfico 1.17 Proyección de los pensionados en curso de pago	15
Gráfico 1.18 Estimación de los salarios futuros	16
Gráfico 1.19 Estimación del gasto anual por pensiones	16
Gráfico 1.20 Resultados de la proyección demográfica para el Seguro de Invalidez y Vida	17
Gráfico 1.21 Resultados de la proyección demográfica para el Seguro de Riesgos de Trabajo	17
Gráfico 1.22 Resultados de la proyección financiera para el Seguro de Invalidez y Vida	18
Gráfico 1.23 Resultados de la proyección financiera para el Seguro de Riesgos de Trabajo	18
Gráfico 2.1 Representación de las fases para la ejecución de un programa en Java	34
Gráfico 3.1 Representación física y lógica del sistema costo fiscal	91

Índice de cuadros

Cuadro 1.1 Elementos técnicos del sistema Java	5
Cuadro 1.3 Matriz de estrategias para el diseño del sistema en Java	20
Cuadro 2.1 Matriz de asegurados afiliados al Seguro de Invalidez y Vida	22
Cuadro 2.2 Matriz de asegurados afiliados al Seguro de Riesgos de Trabajo	22
Cuadro 2.3 Distribución total del número de viudas y viudos	
Cuadro 2.4 Distribución total del número de huérfanos	
Cuadro 2.5 Distribución total del número de ascendientes	24
Cuadro 2.6 Probabilidades de densidad de cotización	24
Cuadro 2.7 Saldo acumulado en cuenta individual	25
Cuadro 2.8 Salarios, incrementos y tasas de rendimiento	25
Cuadro 2.9 Probabilidades de sobrevivencia de asegurados	
Cuadro 2.10 Probabilidades de entrada a pensión para el SIV	27
Cuadro 2.11 Probabilidades de entrada a pensión para el SRT	
Cuadro 2.12 Probabilidades de muerte de activos y de incapacitados y/o inválidos	29
Cuadro 2.13 Tasas de mejora y deserción	
Cuadro 2.14 Árbol de decisión	31
Cuadro 3.1 Proyección demográfica de inválidos	92
Cuadro 3.2 Proyección financiera de inválidos	94
Cuadro 3.3 Proyección demográfica de cesantía en edad avanzada y vejez	96
Cuadro 3.4 Proyección financiera de cesantía en edad avanzada y vejez	98
Cuadro 3.5 Proyección demográfica de fallecidos por enfermedad general	100
Cuadro 3.6 Proyección financiera de fallecidos por enfermedad general	102
Cuadro 3.7 Proyección demográfica de incapacidad igual a 100%	104
Cuadro 3.8 Proyección financiera de incapacidad igual a 100%	106
Cuadro 3.9 Proyección demográfica de incapacidad menor al 100% y mayor al 50%	108
Cuadro 3.10 Proyección financiera de incapacidad menor al 100% y mayor al 50%	110
Cuadro 3.11 Proyección demográfica de incapacidad menor al 50%	112
Cuadro 3.12 Proyección financiera de incapacidad menor al 50%	114
Cuadro 3.13 Proyección demográfica de muerte a causa de un riesgo de trabajo	116
Cuadro 3.14 Proyección financiera de muerte a causa de un riesgo de trabajo	118

Introducción

El objetivo de esta tesis es proponer un sistema de cómputo que permita generar de una manera eficiente y confiable los principales resultados demográficos y financieros que se toman como base para cuantificar el costo de las pensiones otorgadas por el Instituto Mexicano del Seguro Social (IMSS), con cargo al gobierno federal.

La necesidad de desarrollar este sistema de cómputo que permita valuar el costo a cargo del gobierno federal, denominado costo fiscal, se deriva de que el IMSS no está obligado a medir el costo futuro de las pensiones que generan bajo la Ley del Seguro Social de 1973, y que por lo tanto no cuenta con sistema computacional alguno. Así, los resultados que generará el sistema permitirán conocer el número posible de pensionados a los que el gobierno federal tendrá que pagar su pensión como el importe anual. Esta herramienta pudiera ser utilizada por la Secretaría de Hacienda y Crédito Público (SHCP) para determinar cada año el Presupuesto de Egresos de la Federación en este rubro.

Para el diseño y desarrollo del sistema, se plantean las siguientes interrogantes: ¿Qué método utilizar?, ¿Existe algún manual o procedimiento que indique como se debe realizar? En respuesta, se propone utilizar el método de proyecciones demográficas y financieras, cuya recomendación proviene de la Organización Internacional del Trabajo (OIT) y que utiliza el IMSS para sustentar el modelaje en las valuaciones actuariales de los diversos esquemas de aseguramiento que administra.

Es importante resaltar que en la medida en que se profundizó en el método mencionado, se observó que las notas metodológicas y técnicas, así como fórmulas y la explicación son muy complicadas para cualquier lector o profesionista ajeno al instituto, principalmente porque la nomenclatura es única y propia del área técnica responsable de ejecutar este método en su modelación. Por ello, fue necesario para el análisis del procedimiento realizar diversas entrevistas con los expertos y, de esta forma, conocer la estructura general y específica, detectar las variables de entrada, los procesos que se llevan acabo y las salidas que se esperan de dichos procesos. Esta fase fue crucial para el desarrollo del sistema, porque en ésta se detectaron las necesidades del usuario y se identificaron los tecnicismos, los cuales uno como desarrollador de sistemas en ocasiones es difícil interpretar. De ahí, surge la importancia de que tanto el desarrollador como el entrevistador, intercambien la información los mas sencillo y claro posible.

Una vez detectadas las necesidades del usuario, se desarrolla un diagnóstico situacional del procedimiento, en el cual se detectan las fortalezas, debilidades, oportunidades y amenazas. Esto con el fin de aprovechar las fortalezas y oportunidades, eliminar o minimizar las debilidades, y controlar las amenazas que se puedan presentar en el procedimiento.

Después de la etapa del diagnóstico del procedimiento, se elabora el plan de trabajo, en esta parte se detallan las actividades a realizar y su orden. En esta segunda fase, posiblemente, se presentaran imprevistos, o detalles que no fueron contemplados y que impactaran en la planeación inicial.

Para el desarrollo del sistema se elige a Java como el lenguaje de programación a utilizar. Algunas de las ventajas de Java son: i) Costo: todo el Java de Sun es software libre; ii) Facilidad de entendimiento: este lenguaje toma mucha de su sintaxis de C y C++, pero tiene un modelo de objetos más simple y elimina las complejidades de otros lenguajes como lo es la aritmética de apuntadores que es el origen de muchos errores de programación; iii) Manejo y uso de memoria: no se necesita determinar el momento en que se debe liberar el espacio ocupado por un objeto ya que posee un sistema de administración de memoria automático, el denominado Garbage Collector. Estas características hacen de Java un lenguaje robusto y simple, que nos ayuda a evitar muchos errores; iv) Portabilidad: Java es multiplataforma, debido a que el mismo código compilado puede ser ejecutado en distintas plataformas como lo son: Solaris, Windows, Mac, Linux, y todas aquellas plataformas para las que exista una Máquina Virtual Java; v) Multiprocesamiento: el sistema no necesita estar instalado en diferentes equipos, puede ser utilizado en la red, y desde ahí ejecutar varios procesos a la vez; vi) Compatibilidad con hojas de cálculo: este lenguaje es compatible con la mayoría de las hojas de cálculo, ya que en las hojas de cálculo es donde se almacenarán los resultados generados por el sistema; vii) Mantenimiento: por la característica de ser un lenguaje orientado a objetos, si hay que realizar cambios al código, únicamente se modificaran las clases y métodos que estén involucrados en dichos cambios, sin necesidad de ir buscando línea por línea los cambio que se deben realizar.

La tesis se presenta grosso modo en tres capítulos:

En el capítulo 1 se expone el procedimiento y los componentes técnicos utilizados para la estimación del costo de las pensiones, tomando como base el método de proyecciones demográficas y financieras utilizado en el IMSS. Lo anterior se toma como base para identificar los métodos y las variables que se requieran en la fase de desarrollo del sistema computacional.

En el capítulo 2 se muestra la información demográfica, biométrica y financiera que se utiliza en el procedimiento, y que sirve como entrada al sistema computacional a desarrollar. Dicha información consiste en probabilidades de sobrevivencia y muerte, distribuciones de asegurados y componentes familiares, salarios, y saldos en cuenta individual, además se exponen las características de las herramientas que se utilizarán en el desarrollo del *Sistema Costo Fiscal*, como los son el lenguaje de programación, el entorno de desarrollo y la hoja de cálculo en la que se entregarán los resultados.

Finalmente, el capítulo 3 se desarrolla el plan de trabajo del *Sistema Costo Fiscal*, se presenta la documentación y la definición de las clases con sus respectivas variables y métodos, que permitirá realizar los diagramas y la codificación del proceso, para la posterior ejecución de las pruebas y la implementación del sistema, el cual generará los principales resultados demográficos y financieros del costo de las pensiones en curso de pago.

Capítulo 1. Procedimiento para calcular el costo fiscal derivado de las pensiones

1.1 Introducción

El Instituto Mexicano del Seguro Social es un organismo descentralizado, con personalidad y patrimonio propio, responsable de la administración y manejo de la seguridad social de los trabajadores mexicanos. El Instituto ha sido, desde su formación, el instrumento redistribuidor del ingreso. Para ello, requiere de una adecuada administración de las contribuciones y los recursos financieros, con el propósito de garantizar las prestaciones, en especie y en dinero, y lograr la estabilidad en el bienestar del asegurado y sus dependientes económicos.

El 19 de noviembre de 1995, se presentó a la consideración del Congreso de la Unión una iniciativa para una nueva Ley del Seguro Social, que subrogaba las disposiciones contenidas en la Ley del Seguro Social de 1973 (LSS 1973). La Ley entró en vigor el 01 de julio de 1997 y uno de los cambios sustanciales en esta reforma fue el Seguro de Retiro, Cesantía en Edad Avanzada y Vejez (SRCV) que pasó de un esquema de beneficio definido, y cuya cuantía de la pensión se calculaba de acuerdo a una fórmula y esquema determinados a un esquema de contribuciones definidas, en cual las pensiones que se reciben denominadas rentas vitalicias dependen del monto acumulado durante toda la vida laboral, en la cuenta individual de ahorro para el retiro. No obstante, para aquellos asegurados que comenzaron a cotizar al IMSS antes de la entrada en vigor de la Ley del Seguro Social de 1997 (LSS 1997), conservan los derechos a los beneficios por pensiones de la Ley derogada.

Esta reforma del sistema de pensiones generó cuatro importantes costos fiscales: i) El costo del pago de pensiones a los jubilados existentes antes de julio de 1997 y que se otorgan bajo el régimen de la LSS 1973; ii) El costo de las pensiones de los trabajadores de la transición que al momento de su retiro seleccionen pensionarse por el viejo sistema de reparto; iii) costos de la aportación de la cuota social a las cuentas; y, iv) costo de las pensiones mínimas garantizadas bajo el régimen de la LSS 1997.

En este contexto, el artículo Duodécimo transitorio de la LSS 1997 establece que las pensiones que estaban vigentes al momento de entrar en vigor la nueva LSS, así como las otorgadas a partir del 1° de julio bajo los beneficios establecidos en la LSS 1973 están a cargo al Gobierno Federal.

Es importante resaltar que la población de asegurados amparada por la Ley está dividida en dos grandes grupos, o colectivos, el primero de los cuales lo integran los asegurados que se afiliaron al Instituto antes del primero de 01 de Julio de 1997 y el segundo de aquellos que lo hicieron después de esta fecha. De éstas, la población que se considera en esta tesis para el desarrollo del Sistema Costo Fiscal es el grupo o colectivo denominado "asegurados en transición" y éstos tienen la opción de elegir entre los beneficios que otorga la Ley de 1973 o los que otorga la Ley de 1997.

Por lo anterior, en el presente capítulo, se mostrarán los elementos conceptuales y componentes técnicos que servirán de base para el diseño del procedimiento previo al desarrollo del sistema computacional que permitirá obtener el número de pensiones que optaran por los beneficios de pensión que establece la Ley del Seguro Social de 1973 y el costo de las mismas que son con cargo al Gobierno Federal.

1.2 Definición del modelo actual.

El modelo teórico que se utiliza para el diseño del sistema computacional se denomina *modelo biométrico de decrementos múltiples*. En etimología de la palabra *biometría*, proviene del griego *bios* que significa vida y *metrón* que significa medida, es decir, que la biometría humana se vincula con la medición de la vida del hombre y el instante en que una persona pasa por estados mórbidos como incapacidad, invalidez, vejez, cesantía o muerte. Normalmente éstos se asocian con el cálculo de probabilidades por edad, denominados vectores biométricos.

Así, al referirse a un modelo biométrico se está hablando de un modelo aleatorio que permite aproximarse a comportamiento de la supervivencia humana desde dos perspectivas: i) cuando se refiere al análisis del fenómeno de la mortalidad hasta que fallezca el individuo (edad biométrica); y, ii) cuando se refiere al análisis del mismo fenómeno bajo una cierta condición o estado (incapacidad, invalidez, cesantía en edad avanzada o vejez).

Para efectos del estudio, este modelo se evalúa como grupo cerrado, es decir, no se considerarán nuevos trabajadores ingresantes durante todo el periodo de proyección, por lo que únicamente se estiman los asegurados que sobreviven en cada año y los que van saliendo por alguno de los estados mórbidos que se mencionaron anteriormente. Así, como todo grupo cerrado el número de asegurados disminuye, año con año, hasta su extinción a causa de sus múltiples decrementos como se presenta en el gráfico 1.1.

Gráfico 1.1 Representación del colectivo cerrado de asegurados y sus causas de decrementos por pensión.

Fuente: Elaboración propia

1.3 Componentes técnicos del modelo actual

El procedimiento para determinar el costo fiscal se realiza considerando hipótesis demográficas, financieras y biométricas, las cuales se describen en el cuadro 1.1.

Cuadro 1.1 Elementos técnicos del sistema Java

Componente	Elementos técnicos
Demográficas:	 Matriz de asegurados afiliados al seguro de invalidez y vida y al seguro de riesgos de trabajo. Vector de densidad de cotización por años de antigüedad reconocidos. Distribución de viudas, huérfanos y ascendientes
Financieras:	Tasas 1. Crecimiento real anual para salarios generales. 2. Crecimiento real anual para el SMGDF. 3. descuento real anual para la estimación del valor presente de los pagos futuros por pensión. 4. Rendimiento real anual del saldo acumulado en la subcuenta de RCV y Cuota Social. 5. Rendimiento real anual del saldo acumulado en la subcuenta de Vivienda. 6. Inflación anual. Porcentajes 1. Comisión sobre saldo cobradas por las AFORE. 2. Porcentaje de trabajadores que aportan a la subcuenta de vivienda
	 Probabilidades aplicables a los asegurados Invalidez dependiendo los años de antigüedad de los asegurados activos. Incapacidad permanente. Cesantía en edad avanzada y vejez, dependiendo de la antigüedad de los asegurados en activo. Muerte a causa de un riesgo de trabajo. Muerte a causa de una enfermedad general.
Biométricas:	Probabilidades aplicables a los pensionados 1. Experiencia demográfica de mortalidad para Inválidos para la Seguridad Social (EMSSI_09). La aplicación de estas probabilidades en el modelo de la valuación sirve de base para sobrevivir a los pensionados por incapacidad permanente y por invalidez. 2. Experiencia demográfica de mortalidad para activos 2009 para la Seguridad Social separada para hombres y mujeres (EMSSAH-09 y EMSSAM-09), las cuales deben ajustarse cada año con factores de mejora a efecto de simular un incremento en la expectativa de vida. Estas probabilidades se aplican a los componentes familiares de inválidos e incapacitados (esposa (o), hijos y padres), así como a los beneficiarios con derecho a pensión de asegurados fallecidos (viuda (o), huérfanos y ascendientes). Estas probabilidades están publicadas en la Circular S-22.2 de la Comisión Nacional de Seguros y Fianzas (CNSF) del 19 de noviembre de 2009.
Árbol de decisión:	Este es un elemento muy importante, ya que plasma la forma como se estima que se distribuirán las pensiones de acuerdo a su carácter definitivo o temporal, así como al régimen bajo el cual serán otorgadas las pensiones, que para el caso de esta tesis únicamente será bajo el régimen de 1973. Para el seguro de SIV Y SRT el árbol toma como base los datos observados en el periodo 1998-2008 de las pensiones iniciales de invalidez e incapacidad, así como de las pensiones derivadas de la muerte de asegurados a causa de enfermedad no laboral. Este muestra de manera esquemática el otorgamiento de las pensiones iniciales bajo cada uno de los regímenes legales, es decir, indica para ese período la elección de régimen de los asegurados con fecha de ingreso al Instituto hasta el 30 de Junio de 1997 (asegurados en transición).

Fuente: Elaboración propia a partir de las valuaciones actuariales, IMSS 2011.

1.4 Diagramas del modelo actual.

La población de *Asegurados en transición* se divide en dos grupos: i) Seguro de Riesgos de Trabajo (SRT); y, ii) Seguro de Invalidez y Vida (SIV). En sentido estricto, estas poblaciones de asegurados decrecen en función de las diversas causas de salida, las cuales a su vez, pueden acogerse a los beneficios de la ley de 1973. Para cada uno de estos grupos se obtienen las proyecciones demográficas y financieras, como se representa el gráfico 1.2, y las específicas para el seguro de riesgos de trabajo (gráfica 1.3) y el seguro de invalidez y vida (gráfica 1.4).

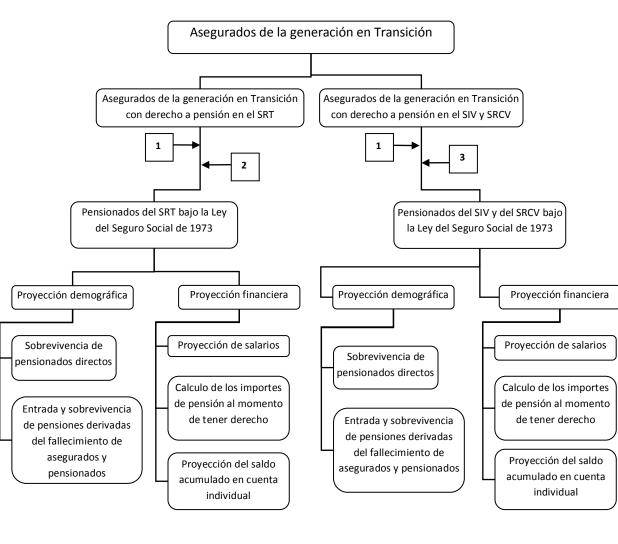
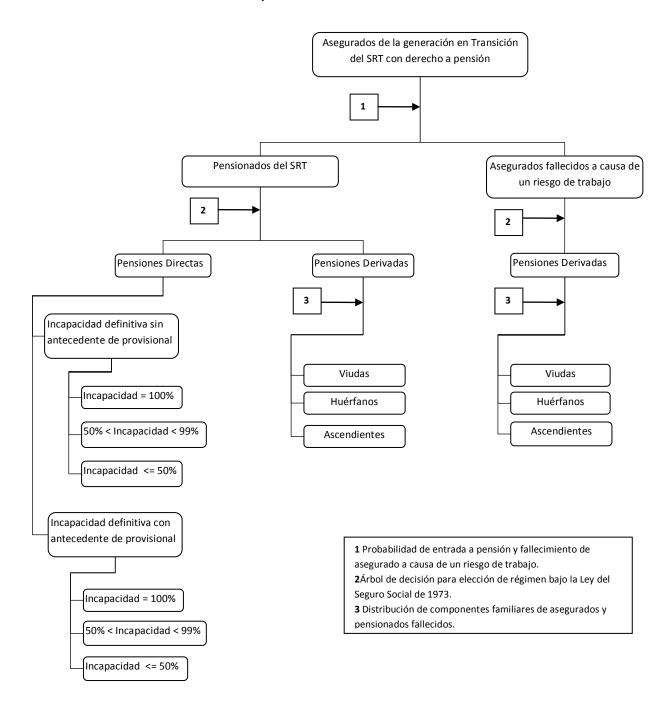



Gráfico 1.2 Representación del modelo actual

- 1 Árbol de decisión para elección de régimen bajo la Ley del Seguro Social de 1973.
- 2 Probabilidad de entrada a pensión y fallecimiento de asegurado a causa de un riesgo de trabajo.
- 3 Probabilidad de entrada a pensión y fallecimiento de asegurado a causa de una enfermedad general.

Gráfico 1.3 Representación del modelo actual del SRT.

1.5 Procedimiento

Para obtener el costo fiscal se procede a estimar el comportamiento futuro de los asegurados en transición, de ambos grupos, expuestos a sufrir una contingencia por invalidez, incapacidad permanente, retiro o muerte. Posteriormente, se determina el número de pensionados con derecho a recibir el beneficio, así como su costo futuro. Esta estimación se lleva en paralelamente para ambos esquemas, es decir, para el SIV, y el SRT.

En los gráficos 1.5, 1.6, 1.7, 1.8 y 1.9 se ilustra el procedimiento para llevar acabo las proyecciones demográficas del seguro de invalidez y vida. Por su parte, en los gráficos 1.10, 1.11, 1.12 y 1.13 el B

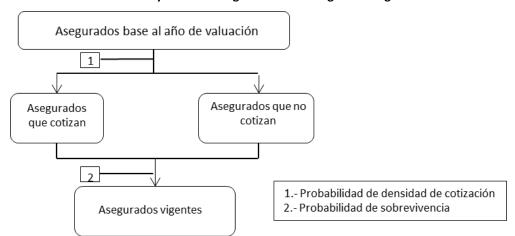
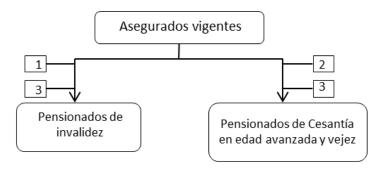



Gráfico 1.5 Proyección demográfica de los asegurados vigentes

Gráfico 1.6 Proyección de los futuros pensionados vigentes al final de cada año de proyección en el seguro de invalidez y vida

- 1.- Probabilidad de pensionarse por invalidez
- 2.- Probabilidad de pensionarse por Cesantía a edad avanzada y vejez
- 3.- Probabilidad de sobrevivencia de pensionados

Gráfico 1.4 Representación del modelo actual del SIV.

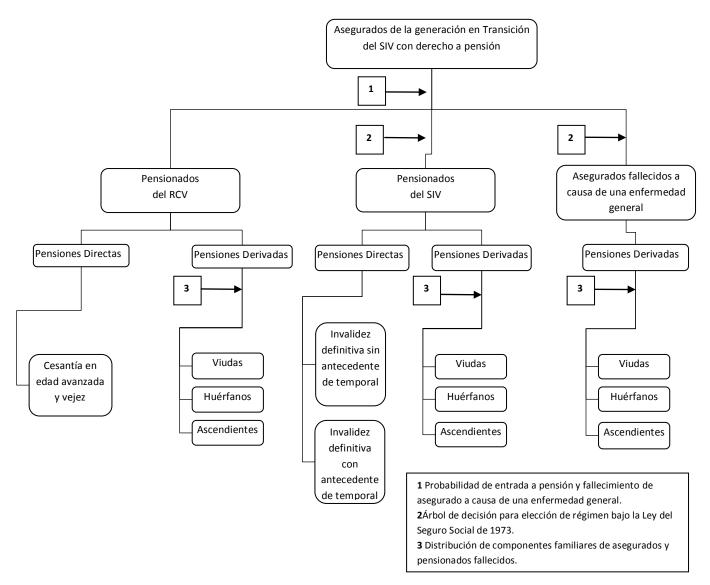


Gráfico 1.7 Proyección de pensiones derivadas del fallecimiento de pensionados directos.

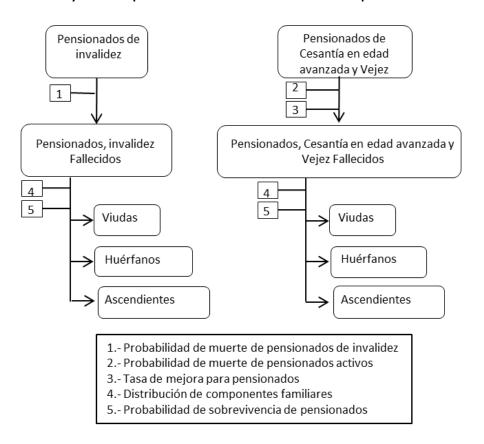
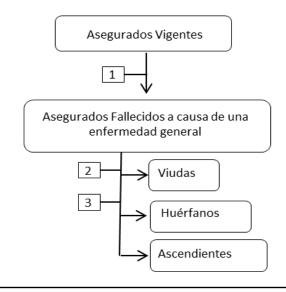



Gráfico 1.8 Proyección de pensiones derivadas por el fallecimiento de asegurados al final de cada año.

- 1.- Probabilidad de muerte a causa de una enfermedad general
- 2.- Distribución de componentes familiares
- 3.- probabilidad de sobrevivencia de pensionados

Gráfico 1.9 Proyección de los pensionados en curso de pago.

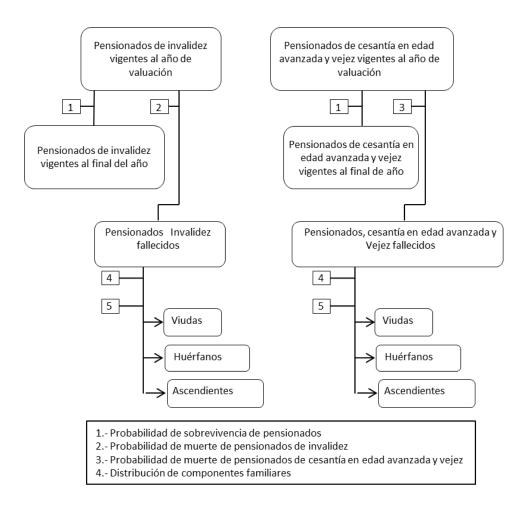


Gráfico 1.10 Estimación de los salarios futuros del seguro de invalidez y vida.

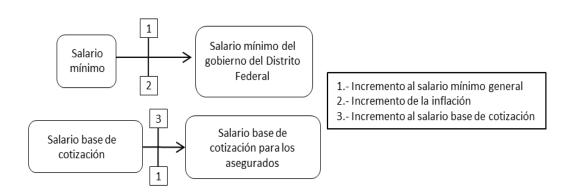


Gráfico 1.11 Estimación del gasto anual por pensiones.

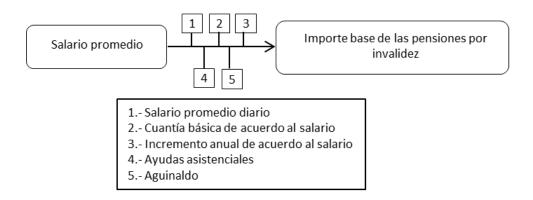


Gráfico 1.12 Estimación de las aportaciones bimestrales a la cuenta individual.

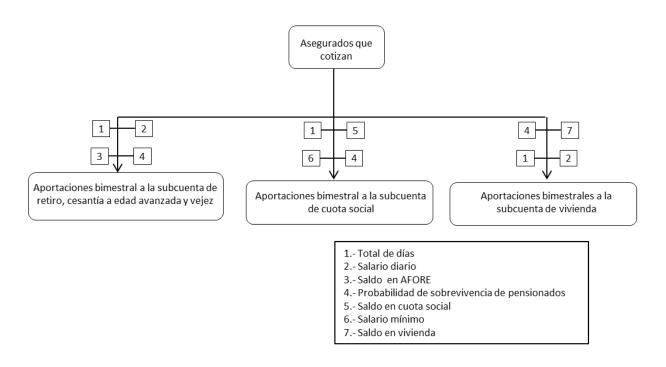


Gráfico 1.13 Estimación del saldo promedio en la cuenta individual.

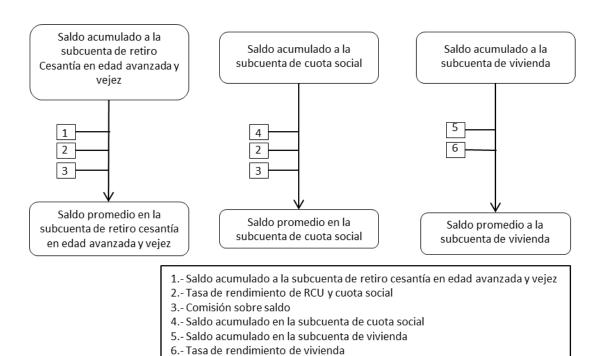


Gráfico 1.14 Proyección de los futuros pensionados vigentes al final de cada año de proyección.

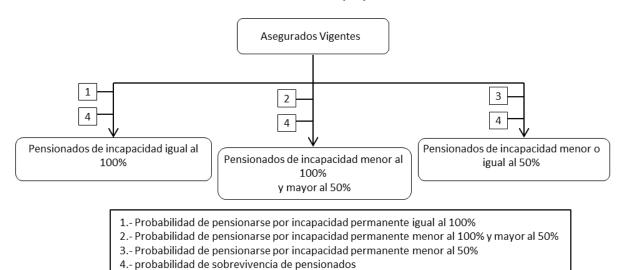


Gráfico 1.15 Proyección de pensiones derivadas del fallecimiento de pensionados directos.

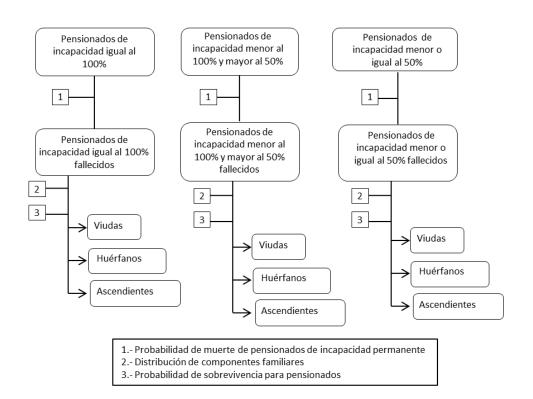
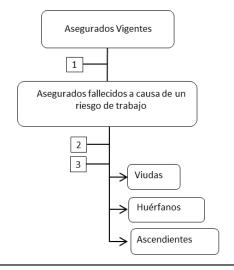
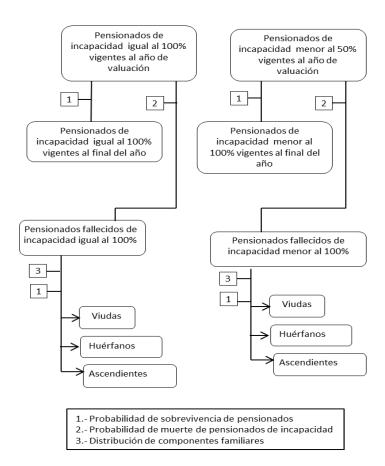
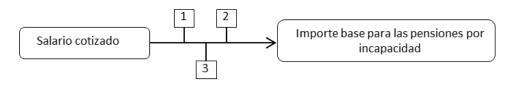




Gráfico 1.16 Proyección de pensiones derivadas por el fallecimiento de asegurados al final de cada año.



- 1.- Probabilidad de muerte de a causa de un riesgo de trabajo
- 2.- Distribución de componentes familiares
- 3.- Probabilidad de sobrevivencia para pensionados

Gráfico 1.17 Proyección de los pensionados en curso de pago.

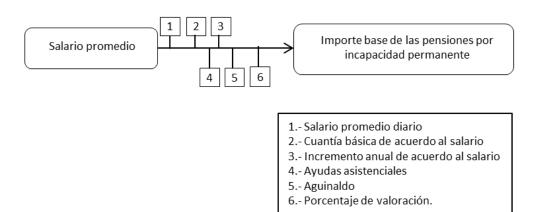


Gráfico 1.18 Estimación de los salarios futuros.

- 1.- Salario que el pensionado que cotizaba al momento del riesgo de trabajo
- 2.- Cuantía básica de acuerdo al salario
- 3.- Aguinaldo

Gráfico 1.19 Estimación del gasto anual por pensiones.

1.6 Diagramas de Resultados

por invalidez y ceve

por invalidez y ceve

sobrevivientes en cada año

de proyección

Los resultados de la proyección demográfica determinan la evolución de los trabajadores y el número de nuevas pensiones que se generan en cada año de proyección por invalidez, CeVe, muerte por enfermedad general, incapacidad o muerte por un riesgo de trabajo. Cualquiera que sea la contingencia dará origen a nuevas pensiones en cada año de proyección.

Pensiones directas

Pensiones derivadas

Nuevos pensionados

Nuevas pensiones de viudez

Nuevas pensiones de Nuevas pensiones

derivadas del fallecimiento

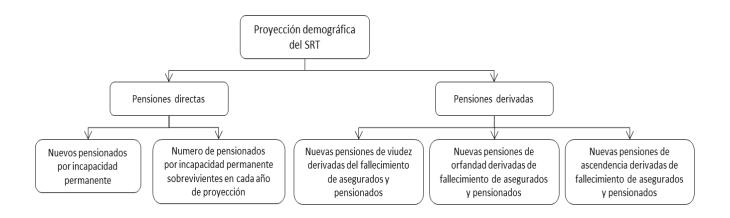
de asegurados y

pensionados

orfandad derivadas de

fallecimiento de asegurados

y pensionados


ascendencia derivadas de

fallecimiento de asegurados

y pensionados

Gráfico 1.20 Resultados de la proyección demográfica para el Seguro de Invalidez y Vida.

Gráfico 1.21 Resultados de la proyección demográfica para el Seguro de Riesgos de Trabajo.

Los resultados de la proyección financiera representan el monto que tiene que cubrir el gobierno federal por el pago de las nuevas pensiones que se generan en cada año de proyección, ya sea por invalidez, CeVe, muerte por enfermedad general, incapacidad o muerte por un riesgo de trabajo.

Gráfico 1.22 Resultados de la proyección financiera para el Seguro de Invalidez y Vida.

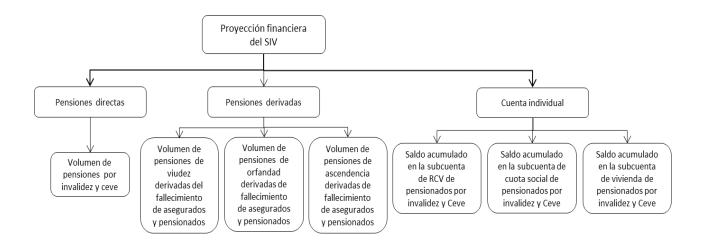
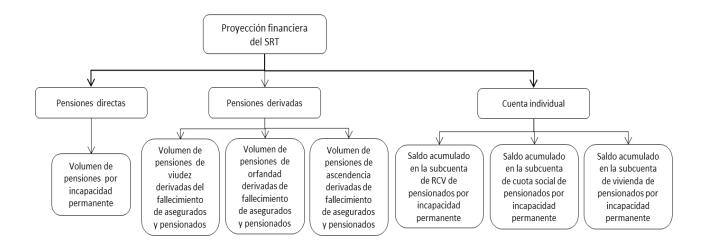



Gráfico 1.23 Resultados de la proyección financiera para el Seguro de Riesgos de Trabajo.

1.7 Diagnóstico del procedimiento

El análisis FODA¹ es una de las herramientas esenciales que provee de los insumos necesarios al proceso de planeación, proporcionando la información necesaria para la implantación de acciones y medidas correctivas y la generación de nuevos procesos de mejora.

Para el procedimiento se identifica cuatro pasos: i) análisis externo, ii) análisis interno, iii) confección de la matriz; y, iv) determinación de la estrategia a emplear.

En el análisis externo del procedimiento se identifican cuatro oportunidades, las cuales son: puede ser de utilidad para el gobierno federal y en específico para la SHCP; otras instituciones de seguridad social pueden interesarse en el procedimiento, como el ISSSTE, quién llevo una reforma similar en 2009; y, puede ser una herramienta sólida para la toma de decisiones de las autoridades del IMSS.

Por su parte, la amenazas son: en caso de existir algún desastre o contingencia, el procedimiento no puede adecuarse rápidamente; en caso de otras hipótesis de entrada llevaría demasiado tiempo su remodificación; y; el procedimiento quede en desuso y halla necesidad de una restructuración

Para el análisis interno se detectaron las siguientes las fortalezas: es un procedimiento recomendado por la Organización Internacional del Trabajo (OIT); es revisado por auditores externos; continuamente el procedimiento es revisado y se le realizan modificaciones y ajustes; el procedimiento es similar al que usa el Instituto en las valuaciones actuariales.

Por su parte, las debilidades detectadas son: el lenguaje utilizado en el procedimiento es propio del IMSS, para personas ajenas al instituto es difícil entender los términos; no existen diagramas que ilustren y ayuden al entendimiento del procedimiento; la actualización de la información se torna complicada, esto por tener demasiadas variables.

Finalmente se confecciona la matriz que permite determinar las 4 estrategias: FO (Maxi-maxi). Estrategia para maximizar tanto las fortalezas como las oportunidades; DO (Mini-Maxi). Estrategia para minimizar las debilidades y maximizar las oportunidades; FA (Maxi-Mini). Estrategia para maximizar las fortalezas y minimizar las amenazas; y, DA (Mini –Mini). Estrategia para minimizar tanto las amenazas como las debilidades (cuadro 1.3).

_

¹ El término FODA es una sigla conformada por las primeras letras de las palabras Fortalezas, Oportunidades, Debilidades y Amenazas (en inglés SWOT: Strenghts, Weaknesses, Oportunities, Threats).

Cuadro 1.3 Matriz de estrategias para el diseño del sistema en Java

		Factor	es Internos
		Fortaleza	Debilidades
		F1.Procedimiento es recomendado por la OIT. F2.Procedimiento revisado por auditor externo. F3.Mejora continua del procedimiento F4.Procedimiento utilizado en las valuaciones actuariales .	D1.El lenguaje matematico utilizado en el procedimiento es propio del IMSS, para personas ajenas al instituto es difícil entender los términos. D2.No existen diagramas que ilustren y ayuden al entendimiento del procedimiento. D3.La actualización de la información se torna complicada, esto por tener demasiadas variables.
	Oportunidades	FO (Maxi-maxi).	DO (Mini-maxi).
Externos	 O1. El procedimiento puede ser de utilidad para Secretaria de Hacienda y Crédito Publico (SHCP). O3. Otras instituciones de seguridad social pueden interesarse en el procedimiento, como el ISSSTE. O4. El instituto puede utilizarlo para la toma de decisiones dentro del mismo. 	Construir un sistema computacional eficiente, que realice proyecciones demográficas y financieras Explotando: F1,F2,F3, F4 Aprovechando: O1,O2,O3	Diseñar un sistema que sea amigable, entendible y flexible al suministro de información. Fortaleciendo: D1,D2, D3 promoviendo: O1,O2,O3
res	Amenazas	FA (Maxi-mini).	DA (Mini –mini).
Factores	A1.En caso de existir algún desastre o contingencia, el procedimiento no puede adecuarse rápidamente para captar esto. A2.Si se llegasen a pedir resultados con diferentes hipótesis de entrada, esto se llevaría demasiado tiempo. A3.El procedimiento quede en desuso y	Elegir un lenguaje de programación que brinde la facilidad de actualizar e incorporar nuevos elementos en el modelo. Aprovechando: F1, F3	Realizar una documentación adecuada, en la que se ilustren los componentes principales del sistema y la relación que existe entre ellos. Fortaleciendo:D1,D2
	halla necesidad de una restructuración.	Disminuyendo: A1, A2, A3	Disminuyendo : A1,A3

Capítulo 2. Componentes del sistema costo fiscal

2.1 Introducción

El sistema computacional a desarrollar requiere información de entrada para procesarla y obtener los resultados de la proyección demográfica y financiera de nuevas pensiones en curso de pago. La información de entrada se clasifica en hipótesis demográficas, financieras y biométricas. Dicha información está distribuida en matrices y vectores que se mostrarán en el presente capitulo.

Además de la información de entrada, se explicarán las características de las herramientas con las que se desarrollará el sistema computacional. En primer lugar se expondrá que es el lenguaje de programación Java, y las ventajas que tiene contra otros lenguajes de programación.

Una vez expuestas las características del lenguaje de programación Java, se explicará que es el JDK o Kit de Desarrollo Java, las herramientas que contiene y para se utilizan cada una de ellas. Posteriormente se hablará de NetBeans IDE, se expondrán las ventajas de utilizar una herramienta como ésta y los servicios que ofrece.

Por último se explicará que es OpenOffice, y de la compatibilidad que tiene con Microsoft Office. Ya que se explicó a grosso modo que es OpenOffice, pasaremos a explicar las características que tiene Calc de OpenOffice y la compatibilidad que tiene con Microsoft Excel.

2.2 Levantamiento de información

Como se mencionó anteriormente el sistema computacional requiere información de entrada para poder cuantificar el costo de las pensiones otorgadas por el IMSS y que son con cargo al Gobierno Federal, en este punto se mostrará gráficamente los datos de entrada que son necesarios para realizar las proyecciones demográficas y financieras de dichas pensiones.

Es importante mencionar que la información que se muestra a continuación en algunos casos está agrupada por edades y antigüedades y en otros únicamente se muestran los totales, esto para facilitar la representación de la información en la presente tesis. Cabe mencionar que la información que el sistema requiere para la obtención de los resultados demográficos y financieros no debe estar agrupada.

2.2.1 Hipótesis demográficas

Cuadro 2.1 Matriz de asegurados afiliados al Seguro de Invalidez y Vida

Grupo de					Antigi	iedad					Total
edad	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 y mas	TOLAT
15-19	0	0	0	0	0	0	0	0	0	0	0
20-24	0	0	0	0	0	0	0	0	0	0	0
25-29	0	3,030	55,347	0	0	0	0	0	0	0	58,377
30-34	0	15,224	736,540	279,748	0	0	0	0	0	0	1,031,512
35-39	0	3,053	383,139	1,106,001	162,158	0	0	0	0	0	1,654,351
40-44	0	512	97,095	563,097	673,498	63,774	0	0	0	0	1,397,976
45-49	0	143	36,460	158,357	387,627	453,233	34,807	0	0	0	1,070,627
50-54	0	55	20,052	65,800	110,209	306,888	245,187	19,325	0	0	767,516
55-59	0	20	11,187	36,304	43,693	97,479	194,029	159,696	9,830	0	552,238
60-64	0	7	4,492	13,255	14,037	22,836	36,139	74,360	42,812	2,252	210,190
65-69	0	0	1,549	4,276	3,848	5,918	6,624	11,655	17,940	9,175	60,985
70-74	0	0	782	1,791	1,528	2,146	2,076	2,668	4,124	5,276	20,391
75-79	0	0	410	848	688	896	779	918	1,162	1,679	7,380
80-84	0	0	176	358	241	324	234	274	332	448	2,387
85-89	0	0	83	184	138	143	118	113	113	131	1,023
Total	0	22,044	1,347,312	2,230,019	1,397,665	953,637	519,993	269,009	76,313	18,961	6,834,953

Cuadro 2.2 Matriz de asegurados afiliados al Seguro de Riesgos de Trabajo.

Grupo de edad	Antigüedad -								Total		
	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34	35 - 39	40 - 44	45 y mas	
15-19	0	0	0	0	0	0	0	0	0	0	0
20-24	0	0	0	0	0	0	0	0	0	0	0
25-29	0	3,004	54,877	0	0	0	0	0	0	0	57,881
30-34	0	15,095	730,288	277,376	0	0	0	0	0	0	1,022,759
35-39	0	3,030	379,887	1,096,617	160,782	0	0	0	0	0	1,640,316
40-44	0	510	96,271	558,318	667,784	63,233	0	0	0	0	1,386,116
45-49	0	143	36,151	157,007	384,336	449,390	34,514	0	0	0	1,061,541
50-54	0	55	19,882	65,241	109,272	304,285	243,107	19,162	0	0	761,004
55-59	0	20	11,094	35,995	43,321	96,653	192,379	158,341	9,749	0	547,552
60-64	0	7	4,454	13,145	13,919	22,640	35,833	73,725	42,449	2,235	208,407
65-69	0	0	1,542	4,232	3,813	5,868	6,575	11,558	17,785	9,094	60,467
70-74	0	0	777	1,777	1,523	2,126	2,056	2,644	4,091	5,223	20,217
75-79	0	0	406	842	688	893	778	914	1,145	1,652	7,318
80-84	0	0	175	352	241	322	234	274	328	440	2,366
85-89	0	0	80	179	138	143	118	113	113	131	1,015
Total	0	21,864	1,335,884	2,211,081	1,385,817	945,553	515,594	266,731	75,660	18,775	6,776,959

Cuadro 2.3 Distribución total del número de viudas y viudos.

Distribución de viudas							
Edad	Total	Edad	Total				
16	458	61	5981				
19	1,962	64	6288				
22	3,460	67	6244				
25	4,035	70	7531				
28	4,501	73	6330				
31	4,665	76	5408				
34	4,913	79	5248				
37	5,067	82	3659				
40	5,081	85	3345				
43	5,552	88	2027				
46	5,883	91	329				
49	6,255	94	226				
52	6,230	97	0				
55	6,088	100	0				
58	6,222						
		Total	122,990				

Cuadro 2.4 Distribución total del número de huérfanos.

Distribución de huérfanos							
Edad	Total	Edad	Total				
0	3,897	13	5,122				
1	5,150	14	5,138				
2	5,475	15	4,138				
3	5,537	16	1,342				
4	5,566	17	325				
5	5,790	18	228				
6	5,823	19	126				
7	5,682	20	92				
8	5,618	21	29				
9	5,343	22	0				
10	5,558	23	0				
11	5,269	24	0				
12	5,062						
		Total	86,309				

Cuadro 2.5 Distribución total del número de ascendientes.

Distribución de ascendientes								
Edad	Total	Edad	Total					
34	3,897	61	5,343					
37	5,150	64	5,558					
40	5,475	67	5,269					
43	5,537	70	5,062					
46	5,566	73	5,122					
49	5,790	76	5,138					
52	5,823	79	4,138					
55	5,682	82	1,342					
58	5,618	85	325					
		Total	85,834					

Cuadro 2.6 Probabilidades de densidad de cotización.

Edad	Probabilidad	Edad	Probabilidad	Edad	Probabilidad
15	0.79945	40	0.92233	65	0.94916
16	0.82690	41	0.92411	66	0.94960
17	0.83810	42	0.92582	67	0.95000
18	0.84660	43	0.92746	68	0.95035
19	0.85366	44	0.92903	69	0.95066
20	0.85980	45	0.93054	70	0.95092
21	0.86528	46	0.93198	71	0.95115
22	0.87025	47	0.93336	72	0.95133
23	0.87480	48	0.93468	73	0.95148
24	0.87902	49	0.93594	74	0.95158
25	0.88296	50	0.93714	75	0.95164
26	0.88664	51	0.93829	76	0.95166
27	0.89011	52	0.93938	77	0.95164
28	0.89338	53	0.94043	78	0.95158
29	0.89648	54	0.94142	79	0.95148
30	0.89942	55	0.94236	80	0.95133
31	0.90221	56	0.94325	81	0.95115
32	0.90487	57	0.94409	82	0.95092
33	0.90741	58	0.94488	83	0.95066
34	0.90983	59	0.94563	84	0.95035
35	0.91215	60	0.94633	85	0.95000
36	0.91437	61	0.94699	86	0.94960
37	0.91649	62	0.94760	87	0.94916
38	0.91852	63	0.94816	88	0.94869
39	0.92046	64	0.94869	89	0.94816

2.2.2 Hipótesis financieras

Cuadro 2.7 Saldo acumulado en cuenta individual.

		RCV				
Grupo de edad	Sin cuota social	Cuota Social	Total	Vivienda	Total RCV y Vivienda	
15-19	0	0	0	0	0	
20-24	0	0	0	0	0	
25-29	28,801	9,334	38,135	19,371	57,507	
30-34	41,061	12,472	53,533	23,979	77,512	
35-39	57,498	13,851	71,349	31,294	102,643	
40-44	68,828	14,545	83,373	36,269	119,641	
45-49	73,353	14,907	88,260	40,077	128,337	
50-54	73,491	15,057	88,547	41,692	130,240	
55-59	67,509	14,872	82,381	38,580	120,961	
60-64	56,821	13,770	70,590	36,786	107,376	
65-69	49,284	12,574	61,858	34,536	96,394	
70-74	43,434	12,073	55,507	31,716	87,223	
75-79	43,925	12,324	56,249	32,489	88,737	
80-84	46,825	12,657	59,483	34,250	93,733	
85-89	42,386	12,210	54,595	27,772	82,368	
Total	62,021	14,108	76,129	34,439	110,568	

Cuadro 2.8 Salarios, incrementos y tasas de rendimiento.

Años	Incremento real de salarios	Incremento real de salarios	Inflación anual	Tasa de rendimiento bimestral de las Cuentas individuales		Comisión sobre saldo	Capitalización de 3 aportaciones bimestrales	
		mínimos		RCV y CS	Vivienda		RCV y CS	Vivienda
2011 - 2012	0.01400	0.00500	0.04000	0.00575	0.00494	0.01460	3.01151	3.00988
2013 y mas	0.01400	0.00500	0.03800	0.00575	0.00494	0.01460	3.01151	3.00988

2.2.3 Hipótesis biométricas

Cuadro 2.9 Probabilidades de sobrevivencia de asegurados.

Edad	Pr	robabilidades		Edad		Probabilidades		Edad —	Pi	Probabilidades	
Euau	t <=2	2 < t <= 9	t > 9	Euau	t <=2	2 < t <= 9	t > 9	Eudu	t <=2	2 < t <= 9	t > 9
15	0.99925	0.99925	0.99925	40	0.99739	0.99490	0.99490	65	0.99387	0.98071	0.50678
16	0.99795	0.99795	0.99795	41	0.99723	0.99450	0.99450	66	0.99389	0.97982	0.73498
17	0.99812	0.99812	0.99812	42	0.99707	0.99406	0.99406	67	0.99392	0.97882	0.74466
18	0.99825	0.99795	0.99795	43	0.99690	0.99357	0.99357	68	0.99397	0.97769	0.75148
19	0.99835	0.99797	0.99797	44	0.99672	0.99303	0.99303	69	0.99403	0.97643	0.75590
20	0.99842	0.99797	0.99797	45	0.99654	0.99243	0.99243	70	0.99410	0.97503	0.75831
21	0.99847	0.99794	0.99794	46	0.99635	0.99177	0.99177	71	0.99419	0.97350	0.75906
22	0.99851	0.99789	0.99789	47	0.99615	0.99103	0.99103	72	0.99430	0.97184	0.75847
23	0.99853	0.99783	0.99783	48	0.99595	0.99022	0.99022	73	0.99442	0.97004	0.75682
24	0.99854	0.99776	0.99776	49	0.99575	0.98934	0.98934	74	0.99455	0.96810	0.75439
25	0.99853	0.99769	0.99769	50	0.99555	0.98837	0.98837	75	0.99470	0.96600	0.75144
26	0.99852	0.99761	0.99761	51	0.99536	0.98732	0.98732	76	0.99487	0.96370	0.74821
27	0.99850	0.99752	0.99752	52	0.99517	0.98621	0.98621	77	0.99506	0.96114	0.74491
28	0.99847	0.99742	0.99742	53	0.99499	0.98505	0.98505	78	0.99528	0.95823	0.74176
29	0.99843	0.99731	0.99731	54	0.99481	0.98390	0.98390	79	0.99551	0.95487	0.73891
30	0.99838	0.99719	0.99719	55	0.99465	0.98282	0.98282	80	0.99577	0.95093	0.73652
31	0.99832	0.99706	0.99706	56	0.99450	0.98189	0.98189	81	0.99605	0.94628	0.73472
32	0.99825	0.99691	0.99691	57	0.99436	0.98086	0.98086	82	0.99634	0.94082	0.73366
33	0.99818	0.99675	0.99675	58	0.99424	0.98036	0.98036	83	0.99663	0.93455	0.73352
34	0.99810	0.99656	0.99656	59	0.99414	0.98105	0.98105	84	0.99693	0.92758	0.73454
35	0.99800	0.99635	0.99635	60	0.99405	0.98362	0.03506	85	0.99723	0.92023	0.73712
36	0.99790	0.99612	0.99612	61	0.99398	0.98325	0.74227	86	0.99752	0.91309	0.74182
37	0.99778	0.99586	0.99586	62	0.99393	0.98276	0.77661	87	0.99781	0.90704	0.74937
38	0.99766	0.99557	0.99557	63	0.99389	0.98218	0.80197	88	0.99808	0.90321	0.76065
39	0.99753	0.99525	0.99525	64	0.99388	0.98149	0.82003	89	0.99835	0.90284	0.77651

Cuadro 2.10 Probabilidades de entrada a pensión para el SIV.

Edad	Invalidez	Cesantía y Vejez	Muerte por enfermedad general	Edad	Invalidez	Cesantía y Vejez	Muerte por enfermedad general
15	0.00000	0.00000	0.00000	53	0.00464	0.00000	0.00339
16	0.00000	0.00000	0.00000	54	0.00521	0.00000	0.00367
17	0.00000	0.00000	0.00000	55	0.00578	0.00000	0.00396
18	0.00008	0.00000	0.00019	56	0.00628	0.00000	0.00426
19	0.00009	0.00000	0.00023	57	0.00668	0.00000	0.00458
20	0.00011	0.00000	0.00027	58	0.00712	0.00000	0.00489
21	0.00013	0.00000	0.00031	59	0.00715	0.00000	0.00521
22	0.00014	0.00000	0.00035	60	0.00607	0.95107	0.00552
23	0.00016	0.00000	0.00039	61	0.00335	0.24352	0.00584
24	0.00018	0.00000	0.00043	62	0.00330	0.20966	0.00615
25	0.00021	0.00000	0.00047	63	0.00337	0.18441	0.00649
26	0.00023	0.00000	0.00050	64	0.00353	0.16620	0.00683
27	0.00026	0.00000	0.00053	65	0.00378	0.46154	0.00712
28	0.00029	0.00000	0.00057	66	0.00410	0.25005	0.00744
29	0.00032	0.00000	0.00060	67	0.00449	0.24025	0.00780
30	0.00036	0.00000	0.00063	68	0.00496	0.23291	0.00822
31	0.00040	0.00000	0.00066	69	0.00550	0.22756	0.00874
32	0.00044	0.00000	0.00070	70	0.00610	0.22401	0.00931
33	0.00049	0.00000	0.00073	71	0.00672	0.22197	0.00995
34	0.00054	0.00000	0.00077	72	0.00735	0.22109	0.01071
35	0.00061	0.00000	0.00081	73	0.00795	0.22100	0.01158
36	0.00067	0.00000	0.00086	74	0.00849	0.22133	0.01268
37	0.00075	0.00000	0.00091	75	0.00895	0.22207	0.01399
38	0.00084	0.00000	0.00098	76	0.00929	0.22290	0.01557
39	0.00093	0.00000	0.00104	77	0.00948	0.22354	0.01742
40	0.00093	0.00000	0.00112	78	0.00948	0.22340	0.01979
41	0.00104	0.00000	0.00121	79	0.00937	0.22281	0.02262
42	0.00116	0.00000	0.00131	80	0.00908	0.22130	0.02574
43	0.00131	0.00000	0.00142	81	0.00861	0.21807	0.02979
44	0.00147	0.00000	0.00154	82	0.00810	0.21375	0.03439
45	0.00165	0.00000	0.00168	83	0.00750	0.20773	0.03892
46	0.00187	0.00000	0.00183	84	0.00678	0.19961	0.04461
47	0.00212	0.00000	0.00200	85	0.00615	0.19021	0.04981
48	0.00241	0.00000	0.00219	86	0.00547	0.17872	0.05549
49	0.00275	0.00000	0.00240	87	0.00490	0.16555	0.06080
50	0.00314	0.00000	0.00262	88	0.00440	0.15103	0.06282
51	0.00358	0.00000	0.00286	89	0.00389	0.13491	0.06619
52	0.00409	0.00000	0.00312				

Cuadro 2.11 Probabilidades de entrada a pensión para el SRT.

Edad	IP<=50%	50% < IP <=99%	IP =100%	Muerte por riesgo de trabajo	Edad	IP<=50%	50% < IP<=99%	IP =100%	Muerte por riesgo de trabajo
15	0.00019	0.00012	0.00004	0.00023	53	0.00250	0.00022	0.00005	0.00014
16	0.00019	0.00011	0.00003	0.00009	54	0.00263	0.00023	0.00005	0.00015
17	0.00018	0.00010	0.00003	0.00009	55	0.00276	0.00023	0.00005	0.00015
18	0.00018	0.00010	0.00003	0.00009	56	0.00289	0.00023	0.00005	0.00015
19	0.00018	0.00009	0.00003	0.00009	57	0.00300	0.00024	0.00005	0.00015
20	0.00018	0.00009	0.00002	0.00009	58	0.00310	0.00024	0.00005	0.00015
21	0.00019	0.00009	0.00002	0.00009	59	0.00318	0.00025	0.00005	0.00015
22	0.00019	0.00008	0.00002	0.00009	60	0.00326	0.00025	0.00005	0.00015
23	0.00020	0.00008	0.00002	0.00009	61	0.00331	0.00025	0.00005	0.00015
24	0.00021	0.00008	0.00002	0.00009	62	0.00335	0.00026	0.00005	0.00016
25	0.00023	0.00008	0.00002	0.00010	63	0.00338	0.00026	0.00005	0.00016
26	0.00024	0.00008	0.00002	0.00010	64	0.00338	0.00027	0.00005	0.00016
27	0.00026	0.00009	0.00002	0.00010	65	0.00337	0.00027	0.00005	0.00016
28	0.00028	0.00009	0.00002	0.00010	66	0.00335	0.00027	0.00005	0.00017
29	0.00030	0.00009	0.00002	0.00011	67	0.00331	0.00028	0.00005	0.00017
30	0.00033	0.00009	0.00002	0.00011	68	0.00325	0.00028	0.00005	0.00018
31	0.00036	0.00010	0.00002	0.00011	69	0.00318	0.00029	0.00005	0.00019
32	0.00040	0.00010	0.00003	0.00011	70	0.00310	0.00029	0.00005	0.00019
33	0.00044	0.00010	0.00003	0.00011	71	0.00301	0.00030	0.00005	0.00000
34	0.00048	0.00011	0.00003	0.00011	72	0.00290	0.00030	0.00005	0.00000
35	0.00053	0.00011	0.00003	0.00012	73	0.00280	0.00031	0.00005	0.00000
36	0.00059	0.00012	0.00003	0.00012	74	0.00268	0.00031	0.00005	0.00000
37	0.00065	0.00012	0.00003	0.00012	75	0.00256	0.00031	0.00005	0.00000
38	0.00072	0.00013	0.00003	0.00012	76	0.00244	0.00032	0.00005	0.00000
39	0.00079	0.00014	0.00003	0.00012	77	0.00232	0.00032	0.00005	0.00000
40	0.00087	0.00014	0.00003	0.00012	78	0.00220	0.00032	0.00005	0.00000
41	0.00096	0.00015	0.00003	0.00013	79	0.00208	0.00032	0.00005	0.00000
42	0.00106	0.00016	0.00004	0.00013	80	0.00196	0.00033	0.00005	0.00000
43	0.00117	0.00016	0.00004	0.00013	81	0.00184	0.00033	0.00005	0.00000
44	0.00128	0.00017	0.00004	0.00013	82	0.00173	0.00033	0.00005	0.00000
45	0.00140	0.00018	0.00004	0.00013	83	0.00162	0.00033	0.00005	0.00000
46	0.00152	0.00018	0.00004	0.00013	84	0.00152	0.00033	0.00005	0.00000
47	0.00165	0.00019	0.00004	0.00014	85	0.00142	0.00033	0.00005	0.00000
48	0.00179	0.00020	0.00004	0.00014	86	0.00133	0.00033	0.00005	0.00000
49	0.00193	0.00020	0.00004	0.00014	87	0.00124	0.00033	0.00005	0.00000
50	0.00207	0.00021	0.00004	0.00014	88	0.00115	0.00033	0.00005	0.00000
51	0.00222	0.00021	0.00004	0.00014	89	0.00108	0.00033	0.00005	0.00000
52	0.00236	0.00022	0.00005	0.00014					

Cuadro 2.12 Probabilidades de muerte de activos y de incapacitados y/o inválidos.

Edad	Inválidos y/o incapacitados	Activos	Edad	Inválidos y/o incapacitados	Activos	Edad	Inválidos y/o incapacitados	Activos
0	0.00377	0.00070	37	0.02788	0.00187	74	0.03195	0.01403
1	0.00680	0.00072	38	0.02803	0.00195	75	0.03364	0.01497
2	0.00941	0.00073	39	0.02817	0.00204	76	0.03534	0.01598
3	0.01167	0.00072	40	0.02831	0.00213	77	0.03899	0.01706
4	0.01362	0.00073	41	0.02845	0.00223	78	0.04302	0.01823
5	0.01530	0.00073	42	0.02859	0.00234	79	0.04746	0.01948
6	0.01675	0.00074	43	0.02873	0.00245	80	0.05236	0.02082
7	0.01800	0.00074	44	0.02886	0.00257	81	0.05777	0.02228
8	0.01908	0.00075	45	0.02899	0.00270	82	0.06374	0.02383
9	0.02001	0.00076	46	0.02911	0.00283	83	0.07033	0.02551
10	0.02081	0.00078	47	0.02924	0.00298	84	0.07759	0.02732
11	0.02151	0.00080	48	0.02936	0.00312	85	0.08561	0.02927
12	0.02210	0.00082	49	0.02948	0.00328	86	0.09445	0.03136
13	0.02248	0.00084	50	0.02960	0.00346	87	0.10421	0.03362
14	0.02283	0.00086	51	0.02971	0.00364	88	0.11498	0.03606
15	0.02317	0.00088	52	0.02983	0.00384	89	0.12686	0.03868
16	0.02348	0.00090	53	0.02994	0.00405	90	0.13996	0.04536
17	0.02378	0.00093	54	0.03005	0.00427	91	0.15442	0.05204
18	0.02406	0.00095	55	0.03016	0.00451	92	0.17038	0.06079
19	0.02433	0.00098	56	0.03026	0.00477	93	0.18798	0.07102
20	0.02459	0.00101	57	0.03037	0.00503	94	0.20740	0.08297
21	0.02484	0.00104	58	0.03047	0.00532	95	0.22883	0.09694
22	0.02508	0.00108	59	0.03057	0.00563	96	0.25247	0.11326
23	0.02531	0.00111	60	0.03067	0.00597	97	0.27855	0.13232
24	0.02553	0.00115	61	0.03077	0.00632	98	0.30733	0.15460
25	0.02575	0.00119	62	0.03087	0.00669	99	0.33908	0.18062
26	0.02596	0.00123	63	0.03097	0.00710	100	0.37412	0.21162
27	0.02616	0.00127	64	0.03106	0.00753	101	0.41277	0.24718
28	0.02635	0.00131	65	0.03115	0.00800	102	0.45541	0.28870
29	0.02654	0.00136	66	0.03125	0.00850	103	0.50246	0.33721
30	0.02672	0.00141	67	0.03134	0.00903	104	0.55438	0.39386
31	0.02690	0.00147	68	0.03143	0.00960	105	0.61165	0.46003
32	0.02707	0.00152	69	0.03152	0.01021	106	0.67484	0.53731
33	0.02724	0.00159	70	0.03160	0.01087	107	0.74456	0.62758
34	0.02741	0.00164	71	0.03169	0.01158	108	0.82149	0.73302
35	0.02757	0.00171	72	0.03178	0.01233	109	0.90636	0.85616
36	0.02772	0.00179	73	0.03186	0.01315	110	1.00000	1.00000

Cuadro 2.13 Tasas de mejora y deserción.

.	Ta	Tasas		Tasas		51.1	Tasas		
Edad •	Mejora	Deserción	Edad •	Mejora	Deserción	Edad	Mejora	Deserción	
0	0.00000	0.00000	37	0.02558	0.00000	74	0.00699	0.00000	
1	0.01826	0.00000	38	0.02495	0.00000	75	0.00665	0.00000	
2	0.01769	0.00000	39	0.02426	0.00000	76	0.00651	0.00000	
3	0.02100	0.00000	40	0.02351	0.00000	77	0.00637	0.00000	
4	0.02550	0.00000	41	0.02273	0.00000	78	0.00624	0.00000	
5	0.03578	0.00000	42	0.02193	0.00000	79	0.00613	0.00000	
6	0.04267	0.00000	43	0.02112	0.00000	80	0.00604	0.00000	
7	0.04684	0.00000	44	0.02032	0.00000	81	0.00597	0.00000	
8	0.04851	0.00000	45	0.01953	0.00000	82	0.00591	0.00000	
9	0.04790	0.00000	46	0.01877	0.00000	83	0.00587	0.00000	
10	0.04430	0.00000	47	0.01804	0.00000	84	0.00584	0.00000	
11	0.04110	0.00000	48	0.01734	0.00000	85	0.00580	0.00000	
12	0.03825	0.00000	49	0.01667	0.00000	86	0.00575	0.00000	
13	0.03563	0.00000	50	0.01605	0.00000	87	0.00568	0.00000	
14	0.03321	0.00000	51	0.01546	0.00000	88	0.00559	0.00000	
15	0.03099	0.00000	52	0.01491	0.00000	89	0.00548	0.00000	
16	0.02902	0.25850	53	0.01439	0.00000	90	0.00536	0.00000	
17	0.02736	0.27796	54	0.01391	0.00000	91	0.00522	0.00000	
18	0.02604	0.28453	55	0.01346	0.00000	92	0.00505	0.00000	
19	0.02508	0.28119	56	0.01313	0.00000	93	0.00479	0.00000	
20	0.02445	0.28591	57	0.01279	0.00000	94	0.00452	0.00000	
21	0.02413	0.31553	58	0.01245	0.00000	95	0.00424	0.00000	
22	0.02407	0.36447	59	0.01211	0.00000	96	0.00396	0.00000	
23	0.02420	0.38438	60	0.01177	0.00000	97	0.00367	0.00000	
24	0.02450	0.08701	61	0.01143	0.00000	98	0.00338	0.00000	
25	0.02490	0.00000	62	0.01109	0.00000	99	0.00308	0.00000	
26	0.02535	0.00000	63	0.01075	0.00000	100	0.00000	0.00000	
27	0.02582	0.00000	64	0.01041	0.00000	101	0.00000	0.00000	
28	0.02625	0.00000	65	0.01007	0.00000	102	0.00000	0.00000	
29	0.02663	0.00000	66	0.00973	0.00000	103	0.00000	0.00000	
30	0.02692	0.00000	67	0.00939	0.00000	104	0.00000	0.00000	
31	0.02710	0.00000	68	0.00904	0.00000	105	0.00000	0.00000	
32	0.02716	0.00000	69	0.00870	0.00000	106	0.00000	0.00000	
33	0.02709	0.00000	70	0.00836	0.00000	107	0.00000	0.00000	
34	0.02689	0.00000	71	0.00802	0.00000	108	0.00000	0.00000	
35	0.02657	0.00000	72	0.00768	0.00000	109	0.00000	0.00000	
36	0.02612	0.00000	73	0.00733	0.00000	110	0.00000	0.00000	

2.2.4 Árboles de decisión

Cuadro 2.14 Árbol de decisión

Seguro de Invalidez y Vida					
Año	Pensiones				
Allo	Definitivas	Muerte			
2011	33%	66%			
2012	31%	65%			
2013	30%	63%			
2014	29%	61%			
2015	28%	60%			
2016	26%	58%			
2017	25%	57%			
2018	24%	55%			
2019	22%	53%			
2020	21%	52%			
2021	20%	50%			
2022	19%	48%			
2023	17%	47%			
2024	16%	45%			
2025	16%	45%			
2026-2110	16%	45%			

Seguro de Riesgos de Trabajo					
Año	Pensiones				
Allo	Definitivas	Muerte			
2011	25%	60%			
2012	26%	58%			
2013	28%	56%			
2014	29%	53%			
2015	30%	51%			
2016	31%	49%			
2017	33%	47%			
2018	34%	45%			
2019	35%	43%			
2020	36%	41%			
2021	37%	38%			
2022	39%	36%			
2023	40%	34%			
2024	41%	32%			
2025	41%	32%			
2026-2110	41%	32%			

2.3 Herramientas de desarrollo

En este punto se expondrán las características de las herramientas que se utilizan para desarrollar el sistema costo fiscal. Las herramientas a utilizar son: i) Java que es el lenguaje de programación; ii) NetBeans que es el entorno de desarrollo visual en el que se escriben, compilan, depuran y ejecutan los programas escritos en Java; iii) Calc de OpenOffice que es la hoja de cálculo en la que se mostrarán y almacenarán los resultados generados por el sistema.

2.3.1 Lenguaje de programación Java

Java es un lenguaje de programación orientado a objetos², desarrollado por Sun Microsystems a principios de los años 90. La implementación original y de referencia del compilador, la máquina virtual y las bibliotecas de clases de Java fueron desarrolladas por Sun Microsystems en 1995. Entre diciembre de 2006 y mayo de 2007, Sun Microsystems liberó la mayor parte de sus tecnologías Java bajo la licencia GNU GPL, de acuerdo con las especificaciones del Java Community Process, de tal forma que prácticamente todo el Java de Sun es ahora software libre (aunque la biblioteca de clases de Sun que se requiere para ejecutar los programas Java aún no lo es).

Este lenguaje toma mucha de su sintaxis de C y C++, pero tiene un modelo de objetos más simple y elimina las complejidades de otros lenguajes como lo es la aritmética de apuntadores que es el origen de muchos errores de programación que no se manifiestan durante la depuración y que una vez que el usuario los detecta son difíciles de resolver, otro aspecto muy importante es que no se necesita determinar el momento en que se debe liberar el espacio ocupado por un objeto ya que posee un sistema de administración de memoria automático, el denominado Garbage Collector. Estas características hacen de Java un lenguaje robusto y simple, que nos ayuda a evitar muchos errores.

Java es multiplataforma, ya que el mismo código compilado puede ser ejecutado en distintas plataformas como lo son: Solaris, Windows, Mac, Linux, y todas aquellas plataformas para las que exista una Máquina Virtual Java (JVM)³ sin necesidad de volver a escribirlo ni compilarlo, es por eso que Java posee bibliotecas de clases estándares es decir en todas ellas las operaciones se invocan con

-

² La programación orientada a objetos es lo que se conoce como un paradigma o modelo de programación. Esto significa que no es un lenguaje específico, o una tecnología, sino una forma de programar, una manera de plantearse la programación que se ha constituido en una de las formas de programar más populares e incluso muchos de los lenguajes que se usan hoy día lo soportan o están diseñados bajo ese modelo. Dicho modelo se basa en un acuerdo acerca de las características que deben ser contempladas en la programación orientada a objetos, las cuales son abstracción, encapsulamiento, modularidad, principio de ocultación, herencia, y polimorfismo.

³Una máquina virtual (VM) es una aplicación de software que simula a una computadora, pero oculta el sistema operativo y el hardware subyacentes de los programas que interactúan con la VM.

el mismo nombre y los mismos argumentos, estas nos facilitan el manejo de archivos, comunicación de datos, acceso a la red internet, acceso a bases de datos e interfaces gráficas. Existen distintas ediciones de la plataforma Java las cuales son: i) Java ME (Micro Edition); ii) Java EE (Enterprise Edition); y iii) Java SE (Standard Edition, o también conocido hasta la versión 5.0 como Plataforma Java 2 o J2SE).

La versión que se utiliza para el desarrollo del sistema costo fiscal es la Java SE (Standard Edition), que es una colección de APIs⁴ del lenguaje de programación Java útiles para muchos programas de la Plataforma Java, esta tiene las bibliotecas esenciales para poder desarrollar aplicaciones en Java.

Las aplicaciones Java están típicamente compiladas en un bytecode⁵, aunque la compilación en código máquina nativo también es posible. En el tiempo de ejecución, el bytecode es normalmente interpretado o compilado a código nativo para la ejecución, aunque la ejecución directa por hardware del bytecode por un procesador Java también es posible.

Por lo general, los programas en Java para poder ser ejecutados tienen que pasar a través de 5 fases: edición, compilación, carga verificación y ejecución. A continuación se explica cada una de ellas.

- Edición del programa: Se crea un programa en java (conocido, por lo general, como código fuente) utilizando un editor de texto, y se guarda en un dispositivo de almacenamiento secundario, como lo es el disco duro, con un nombre de archivo que termina con la extensión .Java.
- 2. Compilación del programa en java para convertirlo en código de bytes: El compilador de java traduce el código fuente en códigos de bytes que representan las tareas a ejecutar. La Máquina Virtual de Java (JVM), una parte del JDK y la base de la plataforma java, ejecuta los códigos de bytes. A diferencia del lenguaje máquina, que depende del hardware de una computadora específica, los códigos de bytes de Java son portables (es decir, se pueden ejecutar en cualquier plataforma que contenga una JVM que comprenda la versión de java en la que se compilaron).
- 3. Cargar el programa en memoria: El programa debe colocarse en memoria antes de ejecutarse; a esto se le conoce como cargar. El cargador de clases toma los archivos .class que contienen los códigos de bytes del programa y los transfiere a la memoria principal. El cargador de clases también carga los programas que el programa utilice, y que sean proporcionados por java.

⁴Una interfaz de programación de aplicaciones es el conjunto de funciones y procedimientos (o métodos, en la programación orientada a objetos) que ofrece cierta biblioteca para ser utilizado por otro software como una capa de abstracción. Son usados generalmente en las bibliotecas.

⁵El bytecode es lenguaje nativo de cualquier implementación de la máquina virtualde Java. De esta forma se logra que un programa Java corra en cualquier plataforma que disponga de una JVM.

- 4. **Verificación del código de bytes:** A medida que se cargan las clases, el verificador de códigos de bytes examina los códigos de bytes para asegurar que sean válidos y que no violen las restricciones de seguridad. Java implementa una estrecha seguridad para asegurar que los programas que llegan a través de la red no dañen los archivos o el sistema.
- 5. **Ejecución:** La JVM ejecuta los bytes del programa, realizando así las acciones especificadas por el mismo. Las JVMs actuales ejecutan códigos de bytes usando una combinación de la interpretación y la denominada compilación justo a tiempo JIT. En este proceso, la JVM analiza los códigos de bytes a medida que se interpretan, buscando puntos activos (partes de códigos de bytes que se ejecutan con frecuencia. Para estas partes, un compilador JIT traduce los códigos de bytes al lenguaje maquina correspondiente a la computadora. Cuando la JVM encuentra estas partes compiladas nuevamente, se ejecuta el código en lenguaje máquina, que es más rápido. Por ende los programas en java pasan por dos fases de compilación: una en la cual el código fuente se traduce a código de bytes (para tener portabilidad a través de las JVMs en distintas plataformas computacionales) y otra en la que, durante la ejecución, los códigos de bytes se traducen en lenguaje máquina para la computadora actual en la que se ejecuta el programa.

En el gráfico 2.1 se representan las fases por las que tienen que pasar los programas en Java para poder ser ejecutados.

El programa se crea en un Fase 1: Edición Editor editor y se almacena en disco, en un archivo con la terminación Java. El compilador crea los códigos Fase 2: Compilación Compilado de bytes y los almacena en disco, en un archivo con la terminación .class. principal Fase 3: Carga El cargador de clases lee los archivos .class que contienen Cargador de clases códigos de bytes del disco y coloca esos códigos de bytes en la memoria. El verificador de código de principal bytes confirma que todos los códigos de bytes sean validos Fase 4: Verificación Verificador de código y no violen las restricciones de seguridad. Para ejecutar el programa, la JVM lee los códigos de bytes y principal los compila. A medida que se Fase 5: Eiecución ejecuta el programa, existe la Maguina Virtual de posibilidad de que almacene los valores de los datos en la memoria principal

Gráfico 2.1 Representación de las fases para la ejecución de un programa en Java.

Fuente: Java Cómo Programar, Deitel & Deitel.

2.3.2 Kit de desarrollo de Java (JDK)

Se puede definir como un conjunto de herramientas, utilidades, documentación y ejemplos para desarrollar aplicaciones Java. A continuación se mencionan las principales herramientas que proporciona el JDK.

• **Compilador:** Se utiliza para compilar archivos de código fuente Java (habitualmente ".java"), en archivos de clases Java ejecutables (".class"). Este compilador es una utilidad en línea de comandos con la siguiente sintaxis:

javac [Opciones] ArchivoACompilar

Copciones!: Especifica opciones de cómo el compilador ha de crear las clases ejecutables. *Archivo A Compilar:* Especifica la ruta del archivo fuente a compilar, normalmente un fichero con extensión ".java".

• **Intérprete:** Permite la ejecución de aplicaciones Java ("*.class").La sintaxis para su utilización es la siguiente:

java [Opciones] ClaseAEjecutar [Argumentos]

[Opciones]: Especifica opciones relacionadas con la forma en que el intérprete Java ejecuta el programa.

Clase A Ejecutar: Especifica el nombre de la clase cuyo método "main()" se desea ejecutar como programa. Si la clase reside en un paquete se deberá especificar su ruta mediante en forma paquete subpaquete clase a ejecutar.

l'Argumentosl: Especifica los argumentos que se recibirán en el parámetros del método main (Strings), por si el programa necesita de parámetros de ejecución. Si por ejemplo el programa realiza el filtrado de un archivo, probablemente nos interese recibir como argumento la ruta del fichero a filtrar, y una ruta destino.

• Generador de documentación: Es una herramienta útil para la generación de documentación directamente desde el código fuente Java. Genera páginas HTML basadas en las declaraciones y comentarios javadoc, con el formato /** comentarios */. Las etiquetas, que se indican con una arroba (@), aparecerán resaltadas en la documentación generada. Su sintaxis es:

javadoc [Opciones] NombreArchivo

[Opciones]: Opciones sobre qué documentación ha de ser generada.

NombreArchivo: Paquete o archivo de código fuente Java, del que se generara la documentación.

• **Depurador:** Es una utilidad de línea de comandos que permite depurar aplicaciones Java.Se activa con la sintaxis:

jdb [Opciones]

IOpciones: Se utiliza para especificar ajustes diferentes dentro de una sesión de depuración.

Desensamblador de archivo de clase: Se utiliza para desensamblar un archivo de clase. Su salida por defecto, muestra los atributos y métodos públicos de la clase desensamblada, pero con la opción -c también desensambla los códigos de byte, mostrándolos por pantalla. Es útil cuando no se tiene el código fuente de una clase de la que se quisiera saber cómo fue codificada. La sintaxis es la siguiente:

javap [Opciones] NombresClases

[Opciones]: Especifica la forma en la que se han de desensamblar las clases.

Nombres Clase: Especifica la ruta de las clases a desensamblar, separadas por espacios.

• Compresor de archivos java: comprime o descomprime archivos ".java".

2.3.3 NetBeans

NetBeans IDE⁶ es una herramienta para que los programadores puedan escribir, compilar, depurar y ejecutar programas. Está escrito en Java, pero puede servir para cualquier otro lenguaje de programación. Además es un producto gratuito, sin restricciones de uso y de código abierto. El código fuente está disponible para su reutilización de acuerdo con la Common Development and Distribution License (CDDL) v1.0 and the GNU General Public License (GPL) v2.

En esta plataforma permite desarrollar aplicaciones de escritorio, web, mobile y Enterprise con lenguajes de programación como Java, C/C++, Ruby on Rails, PHP, Groovy, Python y Javascript,

⁶Entornos de Desarrollo Integrados (IDE), proporcionan herramientas que dan soporte al proceso de desarrollo del software, incluyendo editores para escribir y editar programas, y depuradores para localizar errores lógicos.

además de ser multilenguaje y multiplataforma ya que funciona sobre los sistemas operativos: Solaris, Windows, Mac, Linux .

La plataforma ofrece servicios comunes a las aplicaciones de escritorio, permitiéndole al desarrollador enfocarse en la lógica específica de su aplicación. Entre las características de la plataforma están:i) Administración de las interfaces de usuario (menús y barras de herramientas); ii) Administración de las configuraciones del usuario; iii) Framework basado en asistentes (diálogos paso a paso); iv) Gran cantidad de módulos de terceros (plugins) que permiten aportar nuevas funciones; v) Agrupación de código fuente y los archivos de configuración en el concepto de un proyecto; vi) Editor de código rápido e inteligente que completa y resalta las palabras clave, campos y variables; vii) Capacidad para la depuración de código mediante la ejecución de una línea a la vez; viii) Fácil de generar la documentación del proyecto.

Las características antes mencionadas ayudan a reducir considerablemente el tiempo de ciclo de desarrollo de la programación, además de aumentar la calidad del código, es por eso que se hace imprescindible el uso de un IDE al programar.

Cabe mencionar que antes de instalar NetBeans IDE se debe tener instalado el JDK, ya que la JVM, el compilador y el intérprete de Java vienen en dicho Kit, y Netbeans no trae consigo ninguna de las herramientas mencionadas.

2.3.4 OpenOffice

OpenOffice.org (escrito **OOo** para abreviar) es una suite ofimática⁷ libre (código abierto y distribución gratuita) que incluye herramientas como procesador de textos, hoja de cálculo, presentaciones, herramientas para el dibujo vectorial y base de datos. Está disponible para varias plataformas, tales como Windows, Linux, BSD, Solaris y Mac OS X. Soporta numerosos formatos de archivo, incluyendo como predeterminado el formato estándar OpenDocument (ODF), entre otros formatos comunes, así como también soporta más de 110 idiomas, desde febrero del año 2010.

La historia de OpenOffice.org se remonta a 1994, año en que comenzó el desarrollo de la suite ofimática propietaria StarOffice, creada por la compañía alemana StarDivision; que fue fundada diez años antes en la ciudad de Luneburgo por Marco Börries. Tiempo después, en agosto de 1999,

⁷Una suite ofimática o suite de oficina es una recopilación de programas, los cuales son utilizados en oficinas y sirve para diferentes funciones como editar, organizar, escanear, imprimir, etc. archivos y documentos. Generalmente no hay un estándar sobre los programas a incluir; pero la gran mayoría incluyen al menos un procesador de textos y una hoja de cálculo. Adicionalmente, la suite puede contener un programa de presentación, un sistema de gestión de base de datos, herramientas menores de gráficos y comunicaciones, un gestor de información personal (agenda y cliente de correo electrónico) y un navegador web.

StarDivision fue adquirida por Sun Microsystems. La primera versión de StarOffice lanzada por Sun fue la 5.2, que estuvo disponible de forma gratuita en junio de 2000.

El 19 de julio de 2000, Sun Microsystems anunció que dejaba disponible el código fuente de StarOffice para descarga con la intención de construir una comunidad de desarrollo de código abierto alrededor de este programa. El nuevo proyecto fue bautizado como OpenOffice.org, y el 13 de octubre de 2000 su código fuente estuvo disponible por primera vez para descarga pública.

Desde 2005, OpenOffice.org cambió su ciclo de lanzamientos de 18 meses a la presentación de actualizaciones, mejoras de características y correcciones de errores cada tres meses.

La compatibilidad entre OpenOffice y los archivos de la suite Microsoft Office es excelente,OpenOffice puede importar la mayoría de formatos de oficina, de este modo usted puede abrir, editar y guardar sin dificultad y sin pérdida de calidad documentos de Microsoft Office en sus diferentes versiones.

2.3.4.1 OpenOffice Calc

OpenOffice.org Calc es parte de la suite de ofimática OpenOffice.org. Esta herramienta es una potente hoja de cálculo, compatible con Microsoft Excel en todas sus versiones y además nos provee múltiples herramientas. Toda la suite Ofimática es multiplataforma y cuenta con traducciones para más de 110 idiomas, además de que como ya se mencionó es software libre y cualquier persona puede hacer mejoras y luego compartirlas para el disfrute de todos.

Calc es una hoja de cálculo similar a Microsoft Excel con un rango de características más o menos equivalente, pero su tamaño es mucho menor. Además de otros formatos estándares y ampliamente utilizados, puede abrir y guardar en el formato .xls de Microsoft Excel (sólo abrir desde la versión 2007).

Proporciona un número de características no presentes en Excel, incluyendo un sistema que automáticamente define series para representar gráficamente basado en la disposición de los datos del usuario, exporta hojas de cálculo como archivos PDF, asistente de funciones sofisticado que permite al usuario navegar a través de fórmulas anidadas, cuenta con auto filtros, puede hacer agrupaciones en tablas dinámicas, permite proteger documentos con contraseña, firmas digitales, hiperenlaces, etc.

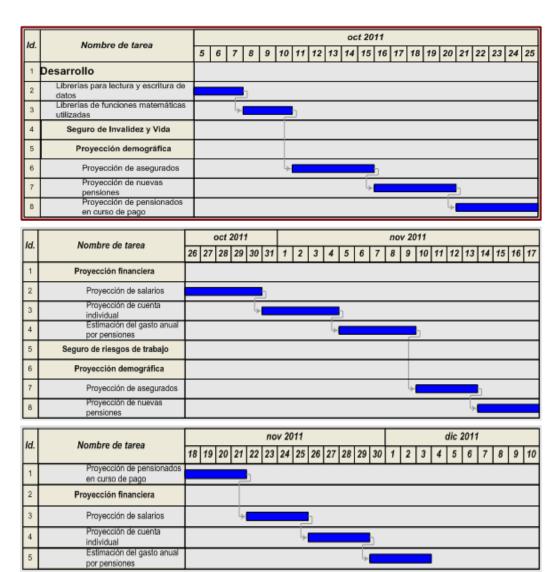
Desde el punto de vista de la programación de macros, Calc no es compatible con el modelo de objetos de Excel (aunque sí con prácticamente todo su repertorio de funciones BASIC), no es tan vulnerable a los virus de macros como el producto de Microsoft. Además, dado que su difusión es bastante menor, no hay tanto interés por parte de los creadores de software malicioso (malware) de atacarlo específicamente.

Capítulo 3. Desarrollo del sistema costo fiscal

3.1 Introducción

En este capítulo se mostrarán las fases de desarrollo del sistema computacional, desde las variables y métodos utilizados hasta los resultados generados por el sistema. Primeramente se requiere implementar un plan de trabajo en donde se especifiquen las actividades y tiempos de cada una de las diferentes fases que conllevan al desarrollo del mismo.

Una vez especificadas las fases y sus actividades a desarrollar, se empezará con el diseño del sistema, en esta parte se desarrollarán los diagramas de clase, diagramas de casos de uso, diagramas de secuencia y el pseudocódigo de los métodos utilizados en el programa. Una vez terminado el diseño se pasará a la fase de desarrollo, en la que se codificará todo lo diseñado en las fases anteriores. Después de concluir la fase de desarrollo se realizarán pruebas al sistema y una vez validado el funcionamiento de este, se implementara en los equipos que vayan a utilizarlo.


3.2 Plan de trabajo

En el plan de trabajo se plantean objetivos que deben cumplirse en un cierto tiempo, esto con el fin de administrar adecuadamente los recursos humanos y financieros. A continuación se muestran las actividades que se realizan en cada una de las fases de desarrollo del sistema computacional y los tiempos que tarda en realizarse de cada una de ellas:

Fases de Análisis y diseño:

Fase de desarrollo:

Fase de pruebas e implementación:

Id	Nombre de tarea		dic 2011			
ru.			5	6	7	
1	Pruebas					
2	Implementación					

3.3 Diseño

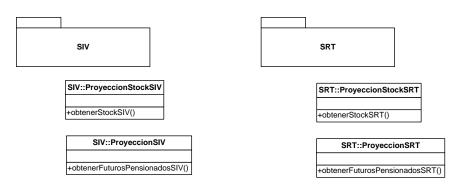
En este punto se muestran todas las etapas previas a la codificación del sistema, esta etapa es muy importante debido a que el análisis que se realizó previamente y la información que fue recabada acerca de los requerimientos del sistema, se plasma en diagramas y se estructuran los componentes que formaran parte del sistema.

3.3.1 Diagramas de clase

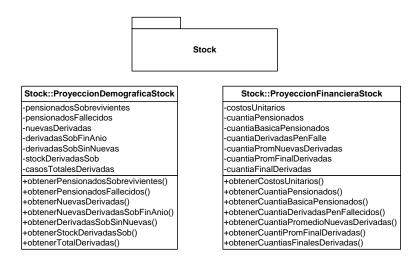
A continuación se muestran las clases que componen al sistema computacional, en cada una de éstas se muestran sus atributos y métodos, así como el paquete al que pertenecen.

Paquete proyecciónPensionados.

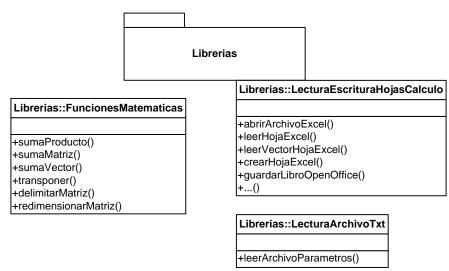
ProyeccionPensionados::ProyeccionDemografica -aseguradosCotizar -aseguradosNoCotizan -probActivosMte -probHuefanos pensionadosMitadAnio pensionadosFinalAnio . -pensionadosFallecidos -derivadasSobrevivenCadaAnio -totalPensionadosVigentesInv -totalPensionadosVigentesCeve totalPensionadosVigentesIP100 -totalPensionadosVigentesIPMenor100 -totalPensionadosVigentesIPMenor50 +obtenerProbActivosyHuerfanos() +obtenerAseguradosVigentesCadaAnio() +obtenerAseguradosVigentes() +obtenerPensionadosMitadAnio() +obtenerPensionadosFinalAnio() +obtenerPensionadosFallecidos() +obtenerNvasViuHuerAscCdaAñoProyeccion() +obtenerViuHuerAscSobCadaAnio()

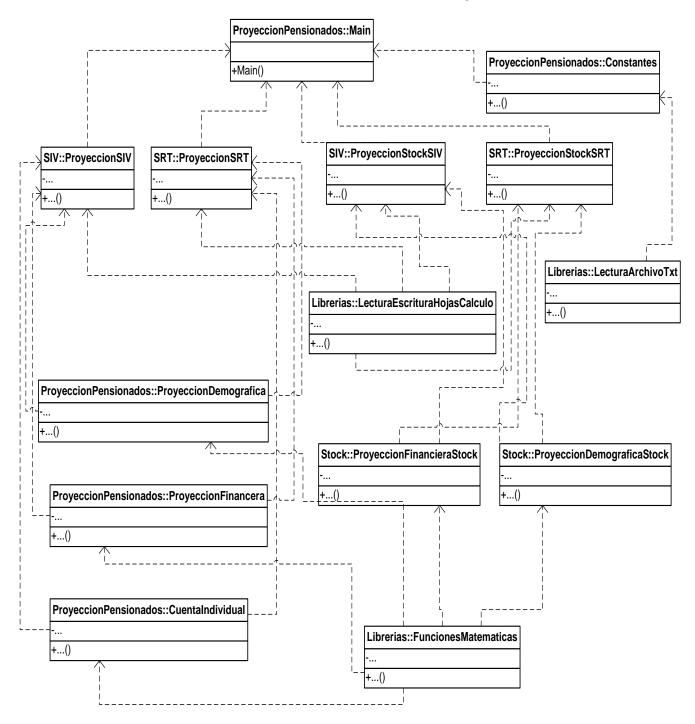

ProyeccionPensionados::Constantes -EDAD_MAX_PROYECTADA -EDAD_MIN_PROYECTADA -SALARIO_MINIMO_ANIO_BASE -VECES_SMGDF -AYUDAS -PORC_CUANTIA_VIUDEZ -PORC_CUANTIA_VIUDEZ_RT -PORC_CUANTIA_HUERF_ASC -PORC_CUANTIA_RT -PORC_VAL_MENOR_100H -PORC_VAL_MENOR_50H -PORC_VAL_MENOR_100M -PORC_VAL_MENOR_50M -APORTACION_RCV -APORTACION_VIVIENDA -PORC_COSTO_UNITARIO -PORC_ASIG_FAMILIARES -DIRECTORIO_DATOS_ENTRADA DIRECTORIO_FORMATO DIRECTORIO SALIDA NOMBRE ARCHIVO ENTRADA -NOMBRE_ARCHIVO_SALIDA -NOMBRE_ARCHIVO_FORMATO_IV -NOMBRE_ARCHIVO_FORMATO_RT +leerConstantes()

ProyeccionPensionados::ProyeccionFinancera -salarioPromedio -inflacionAnualAcumulada -cuantiaPromPensionados -cuantiaPromViudas -salariosReales -cuantiaPromHuerfyAsc -volumenPensionTitularesInv -volumenPensionTitularesCeve volumenPensionTitularesIP100 -volumenPensionTitularesIPMenor100 volumenPensionTitularesIPMenor50 -volumenPensioDerivadas +obtenerSalarios() +obtenerCuantias() +obtenerVolumenPensionesTitulares() obtenerVolumenPensionesDerivadas() ..()


Proyeccion	Pensionados::CuentaIndivid	ual
-rcvProyectad	a	
-csProyectada	a	
-vivProyectad	a	
-salariosCSpr	oy	
-saldoPromR0	CVPensionados	
-saldoPromC	SPensionados	
-saldoPromVi	vPensionados	
+obtenerSala	riosProyeccionCuotaSocial()	
+obtenerSald	osRCVyCuotaSocial()	
+obtenerSald	oVivienda()	
+obtenerSald	oAcumuladoRCVyCSPensiona	()sob
+obtenerSald	oAcumuladoVivPensionados()	
+proyectarSa	dosCuentaIndividual()	
+proyectarSa	dosCtaIndPensionados()	

ProyeccionPensionados::Main
+Main()


Paquete SIV y SRT.


Paquete Stock.

Paquete Librerias.

El siguiente diagrama muestra las asociaciones entre cada una de las clases, se puede observar la dependencia que existe entre estas. Las clases se muestran abreviadas, o sea que no se muestran ni sus atributos ni sus métodos, esto con el fin de reducir el tamaño del diagrama.

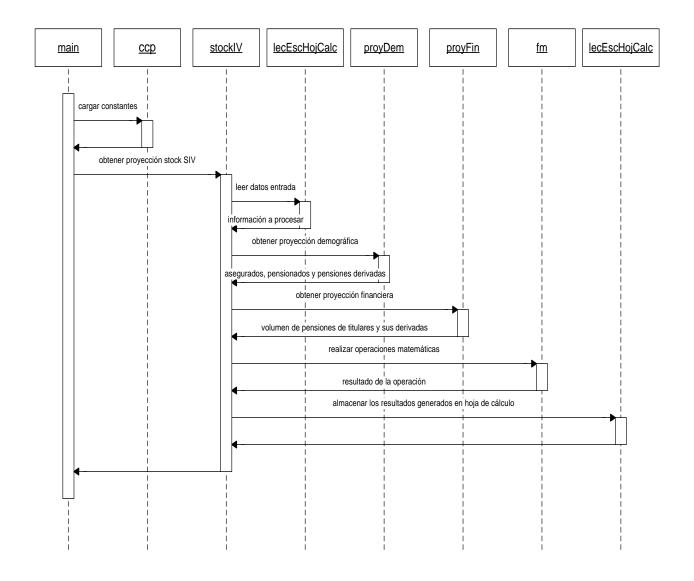
3.3.2 Diagramas de casos de uso.

En este punto se muestran las personas que interactúan con el sistema y la forma en la que lo hacen, ya que es muy importante que la información de entrada que se tiene que actualizar, sea la correcta y la coloquen en el lugar correcto, si esto no fuera así, los resultados que generaría el sistema serian erróneos.

Detalle de los casos de uso.

Escenario:	"Actualizar información de entrada"
Numeración:	1/1
Precondiciones:	Debe existir el archivo en el que se indique en donde se va agregar la información.
Postcondiciones:	Una vez actualizada y guardado el archivo, se da por hecho que la información esta correctamente acomodada.
Quien lo comienza:	Usuario.
Quien lo finaliza:	Usuario.
Excepción:	Si el usuario intenta abrir el archivo para actualizar la información y no lo logra, dar aviso al administrador del sistema.
Descripción:	El usuario intenta abrir el archivo para actualizar la información, si no se puede abrir entonces dar aviso al administrador, de lo contrario, proporcionar la información en los campos requeridos, esto sin agregar ni eliminar ningún otro elemento del archivo. Una vez que el usuario terminó de actualizar la información, este intenta guardar los cambios realizados, si no puede hacerlo, dar aviso al administrador, de lo contrario termina el proceso.

Escenario:	"Ejecución del proceso"
Numeración:	1/1
Precondiciones:	El programa, los archivos de entrada y las carpetas donde se escribirán los archivos generados por el
recondiciones.	sistema, deben estar colocados en lugar que se indico en el archivo de información de entrada.
Postcondiciones:	Una vez ejecutado el sistema, no se pueden hacer cambios en tiempo real.
Quien lo comienza:	Usuario.
Quien lo finaliza:	El sistema.
Excepción:	Si el usuario intenta abrir o modificar alguno de los archivos que este utilizando el sistema al estar
Excepcion.	ejecutándose, este puede fallar y finalizar el proceso.
	El usuario intenta ejecutar el sistema desde línea de comandos, copiando la sentencia que se
	encuentra en el archivo txt llamado ejecución del proceso, después de ejecutar el sistema esperar a
Descripción:	que termine y no modificar ninguno de los archivos que se estén utilizando como datos de entrada.
	Una vez que el sistema terminó de ejecutarse, tomar los archivos generados de las carpetas
	correspondientes.


3.3.3 Diagramas de secuencia

A continuación se muestran los diagramas de secuencia de la proyección de futuros pensionados, y de la proyección de los asegurados vigentes. Estos diagramas muestran la forma en que los objetos se comunican entre si al transcurrir el tiempo. Dado que los diagramas para el Seguro de Invalidez y Vida, y para el Seguro de Riesgos de Trabajo son muy parecidos, únicamente se mostraran los diagramas para el Seguro de Invalidez y Vida.

Diagrama de secuencia de la proyección de pensionados vigentes.

A continuación se nombran los objetos y las clases de las que se derivan dichos objetos, esto para poderles identificar mejor en el diagrama.

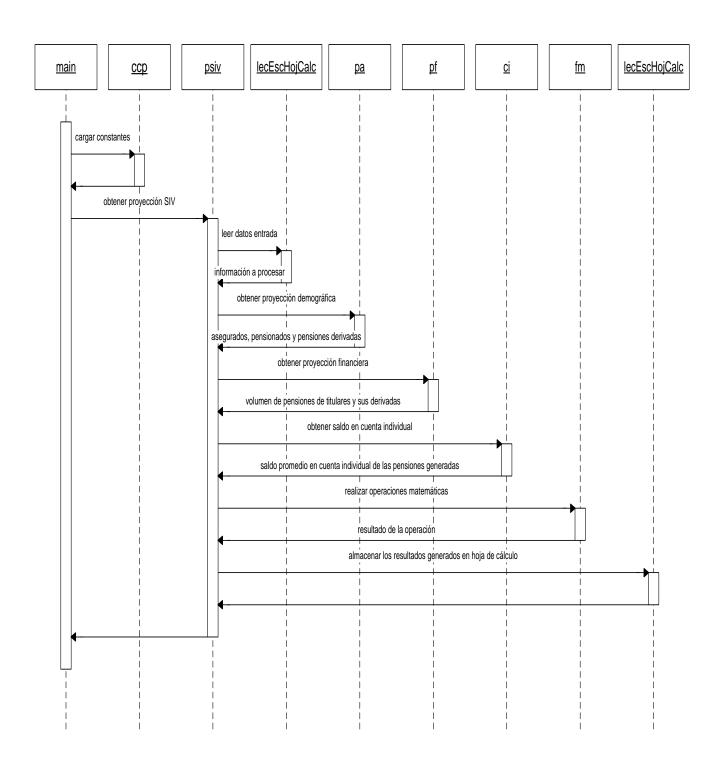

Nombre del objeto	Nombre de la clase
main	main
сср	Constantes
stockIV	ProyeccionStockSIV
lecEscHojCalc	LecturaEscrituraHojasCalculo
proyDem	ProyeccionDemograficaStock
proyFin	ProyeccionFinancieraStock
fm	FuncionesMatematicas

Diagrama de secuencia de la proyección de futuros pensionados.

A continuación se nombran los objetos y las clases de las que se derivan dichos objetos, esto para poderles identificar mejor en el diagrama.

Nombre del objeto	Nombre de la clase
main	main
сср	Constantes
psiv	ProyeccionSIV
lecEscHojCalc	LecturaEscrituraHojasCalculo
ра	ProyeccionDemografica
pf	ProyeccionFinanciera
ci	CuentaIndividual
fm	FuncionesMatematicas

3.3.4 Pseudocódigo

A continuación se presenta el pseudocódigo de los métodos que componen a la librería que se utiliza en el sistema para leer la información de entrada y para llevar acabo funciones matemáticas que son necesarias para realizar los cálculos demográficos y financieros que se requieran.

- Clase: LecturaEscrituraHojasCalculo
 - Método: abrirArchivoExcel
- 1. Buscar el archivo con el nombre y ruta especificados por el usuario.
- 2. Intentar abrir el archivo en Excel con la ruta, nombre y extensión especificados.
 - 2.1. Si el archivo se abrió correctamente, el método regresara el valor true.
 - 2.2. Si el archivo no se abrió correctamente, el método regresara el valor false.
- 3. Salir del método.
 - **Método:**crearHojaExcel
- 1. Leer el nombre del libro en el que se creará la hoja.
- 2. Validar si en el libro abierto existe la hoja que se pretende crear o abrir.
 - 2.1. Si la hoja existe, abre la hoja y regresa el valor true.
 - 2.2. Si la hoja no existe, crea la hoja, la abre y regresa el valor true.
- 3. Salir del método.
 - Método: crearArchivoExcel
- 1. Leer el nombre que con el que se creará el archivo.
- 2. Validar si el archivo de Excel existe.
 - 2.1. Si el archivo de Excel existe, este se abre y regresa el valor true.
 - 2.2. Si el archivo de Excel no existe, se crea un archivo en la ruta especificada y con la extensión correspondiente y regresa el valor true.
- 3. Salir del método.
 - Método: escribirHojasExcel
- 1. Leer la matriz que se pretende escribir en la hoja de cálculo.
- 2. Leer las filas de la matriz de entrada y al mismo tiempo crear en la hoja de cálculo una fila.
 - 2.1. Leer cada uno de los índices de la fila e ir creando cada una de las celdas en las que se escribirán los valores de la matriz.
 - 2.1.1.Si se terminó de leer toda la fila, leer la siguiente fila.
 - 2.1.2.Si no se ha terminado de leer toda la fila, continuar leyendo los índices de esta e ir escribiendo en las celdas correspondientes.
 - 2.2. Si no se han terminado de leer todas las filas, pasar a la siguiente fila.
 - 2.3. Si se terminaron de leer todas las filas, salir del proceso.
- 3. Salir del método.

- Método: leerHojaExcel
- 1. Leer el nombre de la hoja de calculo, las coordenadas a partir le las cuales se empezará a leer la hoja de calculo y el total de filas y columnas que se desean obtener.
- 2. Crear un arreglo considerando el total de filas y columnas que se especificaron para darle las dimensiones a este.
- 3. Situarse en la fila y columna que se especificó.
- 4. Validar que la fila contenga datos.
 - 4.1. Si contiene datos, situarse en la celda a leer y validar si esta contiene datos.
 - 4.1.1.Si esta contiene datos, almacenar el valor en su índice correspondiente
 - 4.1.2. Si esta no contiene datos, pasar a la siguiente celda.
 - 4.2. Si la fila no contiene datos, leer la siguiente fila.
- 5. Una vez que se terminaron de leer todas las celdas, regresar el arreglo con los datos almacenados.
- 6. Salir del método.

• Método: leerVector

- 1. Leer el nombre de la hoja de calculo, las coordenadas a partir le las cuales se empezara a leer la hoja de calculo y el total de filas que se desean obtener.
- 2. Crear un vector considerando el total de filas que se especificó para darle la dimensión a este.
- 3. Situarse en la fila y columna que se especificó.
- 4. Validar que la fila contenga datos.
 - 4.1. Si contiene datos, situarse en la celda a leer y validar si esta contiene datos.
 - 4.1.1.Si esta contiene datos, almacenar el valor en su índice correspondiente
 - 4.1.2.Si esta no contiene datos, pasar a la siguiente celda.
 - 4.2. Si la fila no contiene datos, salir del proceso.
- 5. Una vez que se terminaron de leer todas las celdas, regresar el vector con los datos almacenados.
- 6. Salir del método.

• Método: guardarLibroOpenOffice

- 1. Leer el nombre del archivo y la ruta en la que se creará.
- 2. Crear el archivo con el nombre especificado.
- 3. Escribir el archivo en la ruta especificada.
- 4. Cerrar el archivo.
- 5. Validar si el archivo fue guardado correctamente.
 - 5.1. Si el archivo fue creado correctamente, regresa el valor true.
 - 5.2. Si el archivo no fue creado correctamente, regresa el valor false.
- 6. Salir del método.

- Clase: LecturaArchivoTxt
 - Método: leerArchivoParametros
- 1. Buscar el archivo txt con el nombre y ruta especificados por el usuario.
- 2. Abrir y leer cada línea del archivo e ir verificando que esa línea no esté en blanco o que no tenga el carácter "//" que significa que es un comentario o que contenga caracteres diferentes a números y letras.
 - 2.1. Si la línea leída está en blanco o contiene los caracteres de comentario o contienecaracteres no válidos, ignorarla y pasar a la siguiente línea.
 - 2.2. Si la línea no contiene ninguno de los caracteres mencionados en el punto anterior, validar que la línea contenga el carácter "#".
 - 2.2.1.Si la línea contiene el carácter "#", almacenar en un vector los datos que se encuentren a la derecha del carácter "#", lo que este a la izquierda ignorarlo y leerla siguiente línea.
 - 2.2.2.Si la línea no contiene el carácter "#", se ignora esta y se lee la siguiente línea.
 - 2.3. Si todas las líneas fueron leídas y almacenadas en su índice correspondiente, regresar elvector que contiene los datos previamente almacenados.
- 3. Salir del método.
- Clase: FuncionesMatematicas
- **Método:** sumaMatriz
- 1. Leer el contenido del primer vector de la matriz y almacenarlo en un vector de igual longitud.
- 2. Leer los siguientes vectores de la matriz y sumar el contenido de cada uno de los índices de estos, al vector que se creó en el punto 1.
- 3. Salir del método.
- Método: sumaVector
- 1. Leer el contenido de cada uno de los índices del vector e ir sumándolos y almacenar el resultado en una variable.
- 2. Salir del método.
- Método: sumaProducto
- 1. Leer el contenido de cada uno de los índices del vector y almacenarlos en un vector de igual longitud.
- 2. Leer el contenido del siguiente vector y verificar que el índice que se está leyendo no seamayor a la longitud del primer vector.
 - 2.1. Si el índice que se está leyendo no es mayor, multiplicar el contenido de este por eldel primer vector y almacenar el resultado en el primer vector.
 - 2.2. Si el índice que se está leyendo es mayor, dejar de realizar el proceso.
- 3. Sumar el contenido de cada uno de los índices del vector resultante y almacenarlo en una variable.
- 4. Salir del método.

A continuación se presenta el pseudocódigo de los métodos que componen a la clase proyección demográfica, con los cuales se obtienen los resultados demográficos del Seguro de Invalidez y Vida, y del Seguro de Riesgos de Trabajo.

- Clase: ProyeccionDemografica
- **Método:** obtenerAseguradosCotizan
- 1. Leer la matriz de asegurados base y el vector de densidad de cotización.
- 2. Crear una matriz cuyas longitudes sean iguales a las de la matriz de asegurados base.
- 3. Leer la matriz de asegurados base desde la edad mínima hasta la edad máxima.
- 4. Leer cada una de las antigüedades correspondientes a la edad en que nos encontremos.
 - 4.1. Multiplicar a los asegurados base de la edad en la que nos encontramos y antigüedad anterior por la densidad de cotización de la edad anterior.
 - 4.2. Almacenar los resultados en la edad y antigüedad en la que nos encontramos.
- 5. Devolver la matriz con los resultados almacenados y guardarlos en la variable de clase.
- 6. Salir del método.
 - Método: obtener Asegurados No Cotizan
- 1. Leer la matriz de asegurados base y el vector de densidad de cotización.
- 2. Leer la matriz de asegurados base desde la edad mínima hasta la edad máxima.
- 3. Leer cada una de las antigüedades correspondientes a la edad en que nosencontremos.
 - 3.1. Validar que la antigüedad sea menor a 51, si es menor entonces.
 - 3.1.1.Multiplicar a los asegurados base de la edad actualy antigüedad anterior por la densidad de cotización de la edad anterior.
 - 3.1.2. Almacenar los resultados en la edad y antigüedad que correspondan.
 - 3.2. Si la antigüedad no es menor a 51, entonces salir del proceso.
- 4. Devolver la matriz con los resultados almacenados y guardarlos en la variable de clase.
- 5. Salir del método.
- **Método:** obtenerAseguradosVigentes
- 1. Leer la matriz de asegurados que cotizan y no cotizan.
- 2. Leer las 2 matrices desde la edad mínima hasta la edad máxima.
- 3. Leer cada una de las antigüedades correspondientes a la edad en que nosencontremos.
 - 3.1. Sumar a los asegurados que cotizan y no cotizan de la edad anterior a la que nos encontramos y antigüedad actual y multiplicarlos por la probabilidad de sobrevivencia de la edad anterior a la que nos encontramos y antigüedad actual.
- 4. Devolver la matriz con los resultados almacenados y guardarlos en la variable de clase.
- 5. Salir del método.

- Método: obtenerPensionadosMitadAnio
- 1. Leer la matriz de asegurados base y la de probabilidades de sobrevivencia, los vectores de densidad de cotización y de probabilidades de entrada a pensión, y el tipo de pensión que se esta calculando y crear una matriz con las mismas longitudes a la de los asegurados base.
- 2. Leer la matriz de asegurados base desde la edad mínima hasta la edad máxima.
- 3. Leer cada una de las antigüedades correspondientes a la edad en que nosencontremos.
 - 3.1. Validar si la edad es menor a 89, si es menor entonces.
 - 3.1.1. Validar si la antigüedad es menor a 50.
 - 3.1.1.1. Si es menor entonces.
 - 3.1.1.1.1. Multiplicar a los asegurados base de edad y antigüedad en que nos encontramos por la probabilidad de entrada a pensión de la edad actual y estos multiplicarlos por la elección de régimen del año actual.
 - 3.1.1.1.2. Almacenar el resultado en el índice correspondiente a la edad y año en que nos encontremos.
 - 3.1.1.2. Si no es menor entonces.
 - 3.1.1.2.1. Multiplicar a los asegurados base de edad y antigüedad en que nos encontramos por uno más la probabilidad de sobrevivencia de acuerdo a la antigüedad y estos multiplicados por la densidad de cotización de la edad actual y por la probabilidad de entrada a pensión de la edad actual y estos multiplicarlos por la elección de régimen del año actual.
 - 3.1.1.2.2. Almacenar el resultado en el índice correspondiente a la edad y año en que nos encontremos.
 - 3.2. Si no es menor entonces.
 - 3.2.1. Multiplicar a los asegurados base de edad y antigüedad en que nos encontramos por uno más la probabilidad de sobrevivencia de acuerdo a los rangos de antigüedad que corresponda y estos multiplicados por la densidad de cotización de la edad actual y por la probabilidad de entrada a pensión de la edad actual y estos multiplicarlos por la elección de régimen del año actual.
- 4. Validar el tipo de pensión.
 - 4.1. Si es CeVe entonces, devolver únicamente los resultados a partir de la antigüedad 10 y guardarlos en la variable de clase.
 - 4.2. Si no es CeVe entonces, devolver los resultados y guardarlos en la variable de clase.
- 5. Salir del método.
 - Método: obtenerPensionadosFinalAnio
- 1. Leer la matriz de probabilidades de muerte, el vector de pensionados a mitad de año y crear una matriz cuya primera dimensión tenga una longitud igual a los años de proyección y la segunda dimensión con longitud igual a la edad máxima de los pensionados.
- 2. Para el primer año de proyección se multiplica a los pensionados a mitad de año de edad anterior por la división de la probabilidad de sobrevivencia de edad anterior por dos entre uno mas la probabilidad de sobrevivencia de edad anterior y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Para los demás años de proyección, multiplicar a los pensionados calculados anteriormente por la probabilidad de sobrevivencia del año y edad igual a la de los pensionados que se están leyendo, y almacenar el resultado en los índices correspondientes al año y edad actual.
- 4. Devolver los resultados y guardarlos en la variable de clase.
- 5. Salir del método.

- Método: obtenerPensionadosFallecidos
- 1. Leer la matriz pensionados al final del año, de probabilidades de muerte y el vector de pensionados a mitad de año y crear una matriz cuyas longitudes sean iguales a la de los pensionados al final del año.
- 2. Para el primer año de proyección se multiplica a los pensionados a mitad de año de edad anterior por la división de la probabilidad de muerte de edad anterior por dos entre uno más la probabilidad de muerte de edad anterior y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Para los demás años de proyección, multiplicar a los pensionados calculados anteriormente por la probabilidad de muerte del año y edad igual a la de los pensionados que se están leyendo, y almacenar el resultado en los índices correspondientes al año y edad actual.
- 4. Devolver los resultados y guardarlos en la variable de clase.
- 5. Salir del método.

• Método: obtenerNvasViuHuerAscCdaAñoProyeccion

- Leer la matriz de pensionados fallecidos, y la distribución de viudas, huérfanos o ascendiente según sea el caso y crear una matriz cuyas longitudes sean iguales a la de los pensionados fallecidos.
- Leer por cada año las edades del pensionado fallecido y realizar la suma producto de los pensionados fallecidos con la distribución de las derivadas tomando la edad del pensionado fallecido como referencia y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Devolver los resultados y guardarlos en la variable de clase.
- 4. Salir del método.

• **Método:** obtenerViuHuerAscFallecenSegundaMitadAnio

- 1. Leer la matriz de nuevas viudas, huérfanos o ascendientes según sea el caso, la matriz de probabilidades de muerte, y crear una matriz cuyas longitudes sean iguales a la de las nuevas derivadas.
- 2. Leer por cada año las edades de las nuevas derivadasdel año y edad actuales y multiplicarlaspor la división de la probabilidad de muerte de edad actual por dos entre uno más la probabilidad de muerte de edad actual y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Devolver los resultados y guardarlos en la variable de clase.
- 4. Salir del método.

• **Método:** obtenerViuHuerAscSobFinalAño

- 1. Leer la matriz de nuevas viudas, huérfanos o ascendientes según sea el caso, la matriz de probabilidades de muerte, y crear una matriz cuyas longitudes sean iguales a la de las nuevas derivadas
- 2. Leer por cada año las edades de las nuevas derivadas del año y edad actuales y multiplicarlaspor uno menos la división de la probabilidad de sobrevivencia de edad actual por dos entre uno másla

- probabilidad de sobrevivencia de edad actual y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Devolver los resultados y guardarlos en la variable de clase.
- 4. Salir del método.

• Método: obtenerViuHuerAscSobCadaAnio

- 1. Leer la matriz de viudas, huérfanos o ascendientes sobrevivientes al final del año según sea el caso, la matriz de probabilidades de muerte, y crear una matriz cuyas longitudes sean iguales a la de las nuevas derivadas.
- 2. Para el primer año de proyección las derivadas sobrevivientes al final del año se almacenan sin agregárseles nada, y almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Para el segundo año de proyección se multiplican a las derivadas almacenadas en el año anterior por la probabilidad de sobrevivencia del año y edad actuales y almacenar los resultados en los índices correspondientes al año y edad actual.
- 4. Para los demás años de proyección se suman a las derivadas almacenadas en el año anterior con las derivadas sobrevivientes al final del año, de edad y año anterior al que se está procesando y estas se multiplican por la probabilidad de sobrevivencia del año actual y edad anterior.

 Almacenar los resultados en los índices correspondientes al año y edad actual.
- 5. Devolver los resultados y guardarlos en la variable de clase.
- 6. Salir del método.

Método: obtenerViuHuerAscFallecenCadaAnio

- 1. Leer la matriz de viudas, huérfanos o ascendientes sobrevivientes al final del año y sobrevivientes en cada año según sea el caso, y la matriz de probabilidades de muerte, crear una matriz cuyas longitudes sean iguales a la de las derivadas sobrevivientes en cada año.
- 2. Para el primer año de proyección las derivadas sobrevivientes al final del año de edad anterior se multiplican por la probabilidad de muerte del año actual y edad anterior, almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Para los demás años de proyección se suman las derivadas sobrevivientes al final del año y las derivadas que sobreviven en cada año de proyección del año y edad anterior y estas se multiplican por la probabilidad de muerte del año actual y edad anterior, almacenar los resultados en los índices correspondientes al año y edad actual.
- 4. Devolver los resultados y guardarlos en la variable de clase.
- 5. Salir del método.

• Método: obtenerProbActivosyHuerfanos

- Leer los vectores de probabilidad de muerte, tasa de mejora y tasa de desercióny crear dos matrices, una para las probabilidad de muerte y otra para los probabilidades de sobrevivencia de orfandad,cuya primera dimensión tenga una longitud igual a los años de proyección y la segunda dimensión con longitud igual a la edad máxima de los pensionados.
- 2. Calcular las probabilidades de muerte.
 - 2.1. Para todos los años de proyección al vector de la probabilidad de muerte se le multiplica la resta de uno menos la tasa de mejora de la edad actual elevado a la potencia del año que se

está proyectando, almacenar los resultados en los índices correspondientes al año y edad actual de la matriz de probabilidades de muerte.

- 3. Calcular las probabilidades de sobrevivencia para huérfanos.
 - 3.1. Para los cien años de proyección alamatriz de probabilidad de muerte calculada anteriormente de año y edad actual se le multiplica la resta de uno menos la tasa de deserción dividida entre dos, después de realizado el producto anterior, a uno se le restará este. Almacenar los resultados en los índices correspondientes al año y edad actual de la matriz de probabilidades de sobrevivencia de orfandad.
- 4. Guardar las matrices en variables de clase.
- 5. Salir del método.

A continuación se presenta el pseudocódigo de los métodos que componen a la clase proyección financiera, con los cuales se obtienen los resultados financieros del Seguro de Invalidez y Vida, y del Seguro de Riesgos de Trabajo.

- Clase: ProyeccionFinanciera
- **Método**: obtenerSalarios
- 1. Leer la matriz de salarios históricos, los vectores de incremento real de salarios, incremento real de salario mínimo, inflación anual y los salarios reales, crear 3 matrices para almacenar los salarios nominales, salarios promedio y salarios reales; y 3 vectores para almacenar los salarios diarios nominales, inflación acumulada y los salarios.
- 2. Calcular los salarios nominales.
 - 2.1. Leer la matriz de salarios históricos y almacenar en la matriz que se acaba de crear, los salarios históricos por año.
 - 2.2. Para los cien años de proyección al salario nominal almacenado en el año y edad anterior, multiplicarlo por uno más el incremento real de salarios del año actual y por unos más la inflación del año actual, y almacenar los resultados en los índices correspondientes al año y edad actual de la matriz de salarios nominales.
 - 2.3. Guardar la matriz de salarios nominales en la variable de clase.
- 3. Calcular salarios promedio.
 - 3.1. Para todos los años de proyección validar si la edad en la que nos encontramos es menor o igual a veinte.
 - 3.1.1.Si la edad es menor o igual a veinte.
 - 3.1.1.1. Leer los salarios nominales de 5 años antes, a partir del año y edad en la que nos encontramos, e ir sumandoestos salarios y almacenándolos año por año en el índice correspondiente al año y edad actual.
 - 3.1.1.2. Validar el salario que se está procesando.
 - 3.1.1.2.1. Si es el primer salario leído o el último.
 - 3.1.1.2.1.1. Multiplicar el salario calculado por 0.5.
 - 3.1.1.2.2. Si no es ni el primer salario leído ni el último.
 - 3.1.1.2.2.1. Multiplicar el salario calculado por 1.
 - 3.1.1.3. Validar si es el último salario.
 - 3.1.1.3.1. Si es el último salario leído.
 - 3.1.1.3.1.1. Dividir el salario calculado entre la edad en que nos encontramos.
 - 3.1.1.3.2. Si no es el último salario.

- 3.1.1.3.2.1. No dividir el salario calculado.
- 3.1.2.Si la edad es mayor a 20.
 - 3.1.2.1. Leer los salarios nominales de 5 años antes, a partir del año y edad en la que nos encontramos, e ir sumando estos salarios y almacenándolos año por año en el índice correspondiente al año y edad actual.
 - 3.1.2.2. Validar el salario que se está procesando.
 - 3.1.2.2.1. Si es el primer salario leído o el último.
 - 3.1.2.2.1.1. Multiplicar el salario calculado por 0.5.
 - 3.1.2.2.2. Si no es ni el primer salario leído ni el último.
 - 3.1.2.2.2.1. Multiplicar el salario calculado por 1.
 - 3.1.2.3. Validar si es el último salario.
 - 3.1.2.3.1. Si es el último salario leído.
 - 3.1.2.3.1.1. Dividir el salario calculado entre cinco.
 - 3.1.2.3.2. Si no es el último salario.
 - 3.1.2.3.2.1. No dividir el salario calculado.
- 3.2. Guardar la matriz de salarios promedio en la variable de clase.
- 4. Calcular salarios mínimos diarios nominales.
 - 4.1. Para el primer año de proyección multiplicar el salario mínimo del año por uno más el incremento real del salario mínimo del año actual y estos a su vez multiplicados por uno más la inflación anual del año actual. Almacenar los resultados en los índices correspondientes al año y edad actual.
 - 4.2. Para los demás años de proyección se multiplica el salario obtenido en el año anterior por uno más el incremento real del salario mínimo del año actual y estos a su vez multiplicados por uno más la inflación anual del año actual. Almacenar los resultados en los índices correspondientes al año y edad actual.
 - 4.3. Guardar el vector de salarios promedio en la variable de clase.
- 5. Calcular salarios reales.
 - 5.1. Para el primer año de proyección multiplicar el vector del salario real del año por uno más el incremento real de salarios y almacenar los resultados en los índices correspondientes al año y edad actual.
 - 5.2. Para los demás años de proyección se multiplica el salario obtenido en el año anterior y edad actual por uno más el incremento real de salarios del año y almacenar los resultados en los índices correspondientes al año y edad actual.
 - 5.3. Guardar la matriz de salarios reales en la variable de clase.
- 6. Calcular la inflación anual acumulada.
 - 6.1. Para el primer año de proyección a la inflación anual del año actual sumarle uno y almacenar el resultado en el índice correspondiente al año actual.
 - 6.2. Para los demás años de proyección se multiplica la inflación obtenida en el año anterior por uno más la inflación anual del año y almacenar los resultados en los índices correspondientes al año actual.
 - 6.3. Guardar el vector de la inflación en la variable de clase.
- 7. Salir del método.

- Método: obtenerCuantias
- 1. Leer las matrices de cuantías y de pensionados a mitad de año, los vectores de salarios promedio y de los últimos salarios, las variables de salario mínimo, inflación anual, salario mínimo del D.F. y el porcentaje de valoración, crear 4 matrices para almacenar cuantía de los pensionados, viudas, huérfanos y ascendientes; y 8 vectores para almacenar el salario mínimo del D.F., cuantía básica, incremento de la cuantía, cuantía promedio para pensionados, cuantía promedio de riesgos de trabajo, cuantía promedio para viudas, cuantía promedio para viudas con aplicación del décimo cuarto y la cuantía promedio para huérfanos y ascendientes.
- 2. Calcular el salario mínimo del D.F.
 - 2.1. Para todas las edades dividir al vector de salarios promedio de la edad actual entre el salario mínimo y después multiplicar el resultado por cien, de esta operación únicamente tomar el entero y dos decimales, y por ultimo dividirlo entre cien. Almacenar los resultados en los índices correspondientes al año y edad actual.
- 3. Calcular la cuantía básica y el incremento.
 - 3.1. Para cada una de las edades de los pensionados buscar de acuerdo al salario mínimo del D.F. la cuantía e incremento que le corresponda.
 - 3.1.1. Mientras el rango de la cuantía sea menor al salario mínimo del D.F.
 - 3.1.1.1. Leer el siguiente rango de cuantía.
 - 3.1.2.Realizar el cálculo de la cuantía de la edad actual, multiplicando la cuantía de acuerdo al rango que se obtuvo por el salario promedio de la edad actual y estos multiplicados por 365y almacenar los resultados en los índices correspondientes a la edad actual.
 - 3.1.3.Realizar el cálculo del incremento de la edad actual, multiplicando el incremento de acuerdo al rango que se obtuvo por el salario promedio de la edad actual y estos multiplicados por 365y almacenar los resultados en los índices correspondientes a la edad actual.
- 4. Calcular básica para pensionados.
 - 4.1. Para todas las antigüedades mayores a dos y a partir de la edad 16, calcular la cuantía para pensionados.
 - 4.2. Calcular el bloque1 sumando la cuantía básica más el incremento de la cuantía, ambos de la edad actual y multiplicar por: 0 si la antigüedad es menor o igual a 10, de lo contrario por la antigüedad menos 10.
 - 4.3. Calcular el bloque2 multiplicando el salario promedio de la edad actual por 365.
 - 4.4. Calcular el bloque3 con las siguientes comparaciones.
 - 4.4.1.Si el bloque1 por 1.2 es mayor al bloque2.
 - 4.4.1.1. Si el bloque1 es menor al bloque 2.
 - 4.4.1.1.1. El bloque3 es igual al bloque2.
 - 4.4.1.2. Si el bloque1 es mayor al bloque 2.
 - 4.4.1.2.1. El bloque3 es igual al bloque1.
 - 4.4.2.Si el bloque1 por 1.2 es menor al bloque2.
 - 4.4.2.1. El bloque3 es igual al bloque1 por 1.2.
 - 4.5. Calcular la cuantía de la edad y antigüedad actual, esta se obtiene de la suma del valor máximo entre el bloque3 y el salario mínimo multiplicado por 365, más el valor máximo entre el bloque1 multiplicado por 1/12 y el salario mínimo multiplicado por 365/12 y el resultado de la suma de los valores máximos divididos entre la inflación anual.
 - 4.6. Calcular la cuantía de promedio de pensionados.
 - 4.6.1.Realizar la operación suma producto entre la matriz de pensionados a mitad de año y la matriz de cuantía básica para pensionados de acuerdo a la edad del pensionado, dividir

el resultado entre la suma de los pensionados de la edad que se está procesando. Almacenar los resultados en los índices correspondientes a la edad actual.

- 4.6.2. Validar hay que aplicar reducción actuarial.
 - 4.6.2.1. Si es verdadero, inicializar la variable porcentaje en 0.75.
 - 4.6.2.1.1. Validar si la edad es mayor o igual a 45 y menor o igual a 49.
 - 4.6.2.1.1.1. Si es verdadero, multiplicar el resultado obtenido en el punto 4.6.1 por la variable porcentaje e incrementar esta 0.05.
 - 4.6.2.1.1.2. Si es falso, multiplicar el resultado obtenido en el punto 4.6.1 por
 - 4.6.2.2. Si es falso, multiplicar el resultado obtenido en el punto 4.6.1 por uno.
- 4.6.3. Validar si hay que calcular RT.
 - 4.6.3.1. Si es verdadero.
 - 4.6.3.1.1. Leer el vector de últimos salario por edad y obtener la cuantía promedio de RT, multiplicando el último salario de la edad correspondiente por 365 y estos multiplicados por el porcentaje de la cuantía de RT.
 - 4.6.3.1.2. Leer el vector de la cuantía promedio de pensionados por edad y validar si la edad es menor a 60.
 - 4.6.3.1.2.1. Si es verdadero, obtener el valor máximo entre la cuantía promedio de RT de la edad actual, multiplicada por 15/365 más 1 y la cuantía promedio de pensionados por el porcentaje de valoración.
 - 4.6.3.1.2.2. Si es falso, obtener el valor máximo entre la cuantía promedio de RT de la edad actual, multiplicada por 15/365 más 1 y la cuantía promedio de pensionados por el porcentaje de valoración, el resultado de lo anterior se multiplica por 1.11.
 - 4.6.3.1.3. Almacenar el resultado en el índice correspondiente a la edad actual.
- 4.7. Guardar el vector de la cuantía promedio de pensionados en la variable de clase.
- 5. Calcular básica para viudas.
 - 5.1. Para todas las antigüedades mayores a dos y a partir de la edad 16, calcular la cuantía para pensionados.
 - 5.2. Calcular el bloque1 sumando la cuantía básica más el incremento de la cuantía, ambos de la edad actual y multiplicar por: 0 si la antigüedad es menor o igual a 10, de lo contrario por la antigüedad menos 10.
 - 5.3. Calcular el bloque2 multiplicando el salario promedio de la edad actual por 365.
 - 5.4. Calcular el bloque3 con las siguientes comparaciones.
 - 5.4.1.Si el bloque1 por 1.1 es mayor al bloque2.
 - 5.4.1.1. Si el bloque1 es menor al bloque 2.
 - 5.4.1.1.1. El bloque3 es igual al bloque2.
 - 5.4.1.2. Si el bloque1 es mayor al bloque 2.
 - 5.4.1.2.1. El bloque3 es igual al bloque1.
 - 5.4.2.Si el bloque1 por 1.1 es menor al bloque2.
 - 5.4.2.1. El bloque3 es igual al bloque1 por 1.1.
 - 5.5. Calcular la cuantía de la edad y antigüedad actual, esta se obtiene de la suma del valor máximo entre el bloque3 y el salario mínimo multiplicado por 365, más el valor máximo entre el bloque1 multiplicado por 1/12 y el salario mínimo multiplicado por 365/12 y el resultado de la suma de los valores máximos divididos entre la inflación anual.
 - 5.6. Calcular la cuantía de promedio de viudas.
 - 5.6.1.Realizar la operación suma producto entre la matriz de pensionados a mitad de año y la matriz de cuantía básica para viudas de acuerdo a la edad del pensionado, dividir el

resultado entre la suma de los pensionados de la edad que se está procesando. Almacenar los resultados en los índices correspondientes a la edad actual.

- 5.6.2. Validar si hay que aplicar reducción actuarial.
 - 5.6.2.1. Si es verdadero, inicializar la variable porcentaje en 0.75.
 - 5.6.2.1.1. Validar si la edad es mayor o igual a 45 y menor o igual a 49.
 - 5.6.2.1.1.1. Si es verdadero, multiplicar el resultado obtenido en el punto 5.6.1 por la variable porcentaje e incrementar esta 0.05.
 - 5.6.2.1.1.2. Si es falso, multiplicar el resultado obtenido en el punto 5.6.1 por
 - 5.6.2.2. Si es falso, multiplicar el resultado obtenido en el punto 5.6.1 por uno.
- 5.7. Almacenar el resultado en el índice correspondiente a la edad actual.
- 6. Calcular la cuantía para viudas con aplicación del décimo cuarto.
 - 6.1. Calcular las veces el SMGDF, este se obtiene multiplicando el salario mínimo del D.F. por la suma de 365 más las ayudas asistenciales.
 - 6.2. Para todas las antigüedades mayores a dos y a partir de la edad 16, validar si la cuantía de viudas multiplicada por el porcentaje para la cuantía de viudez es menor o igual a SMGDF.
 - 6.2.1.Si es verdadero, multiplicar la cuantía de viudez por el porcentaje para dicha cuantía y por 1.11.
 - 6.2.2. Si es falso, multiplicar la cuantía por el porcentaje para la cuantía de viudez.
 - 6.3. Calcular la cuantía de promedio de viudas con aplicación del décimo cuarto.
 - 6.3.1.Realizar la operación suma producto entre la matriz de pensionados a mitad de año y la matriz de cuantía básica para viudas con aplicación del décimo cuarto de acuerdo a la edad del pensionado, dividir el resultado entre la suma de los pensionados de la edad que se está procesando. Almacenar los resultados en los índices correspondientes a la edad actual.
 - 6.3.2. Validar si hay que aplicar reducción actuarial.
 - 6.3.2.1. Si es verdadero, inicializar la variable porcentaje en 0.75.
 - 6.3.2.1.1. Validar si la edad es mayor o igual a 45 y menor o igual a 49.
 - 6.3.2.1.1.1. Si es verdadero, multiplicar el resultado obtenido en el punto 6.3.1 por la variable porcentaje e incrementar esta 0.05.
 - 6.3.2.1.1.2. Si es falso, multiplicar el resultado obtenido en el punto 6.3.1 por uno.
 - 6.3.2.2. Si es falso, multiplicar el resultado obtenido en el punto 6.3.1 por uno.
 - 6.3.3.Almacenar el resultado en el índice correspondiente a la edad actual.
 - 6.3.4. Validar si hay que calcular RT.
 - 6.3.4.1. Si es verdadero.
 - 6.3.4.1.1. Calcular la variable veces el SMGDF de la multiplicacióndel salario mínimo del D.F. por 1.5 y estos a su vez por 365 + 15.
 - 6.3.4.1.2. Leer el vector de la cuantía promedio de viudas con aplicación del décimo cuartoy multiplicarlo por el porcentaje de cuantía de viudez de RT. Validar si el resultado es menor o igual a veces el SMGDF.
 - 6.3.4.1.2.1. Si es verdadero, multiplicar por uno.
 - 6.3.4.1.2.2. Si es falso.
 - 6.3.4.1.2.2.1. Multiplicar a la cuantía de RT por 1.11, por 1 más el porcentaje de cuantías de RT y por el porcentaje de la cuantía de viudez de RT.

- 6.3.4.1.2.2.2. Obtener el valor máximo entre la cuantía de viudas con aplicación del décimo cuarto y el resultado obtenido en el punto anterior.
- 6.3.4.1.3. Almacenar el resultado en el índice correspondiente a la edad actual.
- 6.4. Guardar el vector de la cuantía promedio de viudas con aplicación del décimo cuarto.
- 7. Calcular básica para huérfanos y ascendientes.
 - 7.1. Para todas las antigüedades mayores a dos y a partir de la edad 16, calcular la cuantía para huérfanos y ascendientes.
 - 7.2. Calcular el bloque1 sumando la cuantía básica más el incremento de la cuantía, ambos de la edad actual y multiplicar por: 0 si la antigüedad es menor o igual a 10, de lo contrario por la antigüedad menos 10.
 - 7.3. Calcular el bloque2 multiplicando el salario promedio de la edad actual por 365.
 - 7.4. Calcular el bloque3 con las siguientes comparaciones.
 - 7.4.1.Si el bloque1 por 1.1 es mayor al bloque2.
 - 7.4.1.1. Si el bloque1 es menor al bloque 2.
 - 7.4.1.1.1. El bloque3 es igual al bloque2.
 - 7.4.1.2. Si el bloque1 es mayor al bloque 2.
 - 7.4.1.2.1. El bloque3 es igual al bloque1.
 - 7.4.2.Si el bloque1 por 1.1 es menor al bloque2.
 - 7.4.2.1. El bloque3 es igual al bloque1 por 1.1.
 - 7.5. Calcular la cuantía de la edad y antigüedad actual, esta se obtiene de la suma del valor máximo entre el bloque3 y el salario mínimo multiplicado por 365, más el valor máximo entre el bloque1 multiplicado por 1/12 y el salario mínimo multiplicado por 365/12 y el resultado de la suma de los valores máximos divididos entre la inflación anual. Una vez que se calculó la suma de los valores máximos, esta suma se multiplica por el porcentaje de la cuantía para huérfanos y ascendientes.
 - 7.6. Calcular la cuantía de promedio de huérfanos y ascendientes.
 - 7.6.1.Realizar la operación suma producto entre la matriz de pensionados a mitad de año y la matriz de cuantía básica para huérfanos y ascendientes de acuerdo a la edad del pensionado, dividir el resultado entre la suma de los pensionados de la edad que se está procesando. Almacenar los resultados en los índices correspondientes a la edad actual.
 - 7.6.2. Validar si hay que aplicar reducción actuarial.
 - 7.6.2.1. Si es verdadero, inicializar la variable porcentaje en 0.75.
 - 7.6.2.1.1. Validar si la edad es mayor o igual a 45 y menor o igual a 49.
 - 7.6.2.1.1.1. Si es verdadero, multiplicar el resultado obtenido en el punto 5.6.1 por la variable porcentaje e incrementar esta 0.05.
 - 7.6.2.1.1.2. Si es falso, multiplicar el resultado obtenido en el punto 5.6.1 por uno.
 - 7.6.2.2. Si es falso, multiplicar el resultado obtenido en el punto 5.6.1 por uno.
 - 7.6.3. Almacenar el resultado en el índice correspondiente a la edad actual.
 - 7.7. Validar si hay que calcular RT.
 - 7.7.1.Si es verdadero, multiplicar la cuantía promedio de huérfanos y ascendientes por el porcentaje de cuantía de huérfanos y ascendientes y a su vez por 1.11, este resultado compararlo con la multiplicación de la cuantía de huérfanos y ascendientes multiplicados por 1.11, obtener el valor entre dichas multiplicaciones.
 - 7.8. Guardar el vector de la cuantía promedio de pensionados en la variable de clase.
- 8. Salir del método.

- **Método:** obtenerVolumenPensionesTitulares
- 1. Leer las matrices de pensionados sobrevivientes al final del año y de pensionados fallecidos, el vector de la cuantía promedio para pensionados, las variables tipo de seguro y tipo de pensión. Crear una matriz con las mismas longitudes que la matriz de pensionados al final del año.
- 2. Validar únicamente para el primer año de proyección el tipo de seguro que se va calcular.
 - 2.1. Si se va calcular IV, entonces.
 - 2.1.1.Leer todas las edades del vector de la cuantía promedio de pensionados y validar si la edad es menor a 60.
 - 2.1.1.1. Si es verdadero, entonces multiplicar a la cuantía promedio de la edad anterior a que se está procesando por 1.11
 - 2.1.1.2. Si es falso, entonces multiplicar a la cuantía promedio de la edad anterior a que se está procesando por 1.
 - 2.1.2.Almacenar el resultado en la matriz que se creó, en el índice correspondiente a la edad que se está procesando.
 - 2.2. Si se va calcular RT, entonces.
 - 2.2.1.Leer todas las edades del vector de la cuantía promedio de pensionados y validar si la edad es igual a 60.
 - 2.2.1.1. Si es verdadero, entonces multiplicar a la cuantía promedio de la edad anterior a que se está procesando por 1.11.
 - 2.2.1.2. Si es falso, entonces multiplicar a la cuantía promedio de la edad anterior a que se está procesando por 1.
- 3. Para los demás años de proyección, leer las edades del año anterior al que se está procesando de la matriz que se acaba de crear.
 - 3.1. validar si la edad es igual a 60.
 - 3.1.1.1. Si es verdadero, entonces multiplicar a la cuantía del año y edad anterior a que se está procesando por 1.11.
 - 3.1.1.2. Si es falso, entonces multiplicar a la cuantíadelaño y edad anterior al que se está procesando por 1.
 - 3.2. Almacenar el resultado en el índice correspondiente al año y edad actual.
- 4. Únicamente para el primer año de proyección, realizar la operación suma producto entre la cuantía de los titulares y los pensionados sobrevivientes al final del año, estos divididos entre 2, y sumarles la operación suma producto entre la cuantía de los titulares y los pensionados sobrevivientes al final del año, estos divididos entre 4. Una vez obtenido el resultado de esta suma, dividir este, entre un millón y almacenar el resultado en la variable de clase correspondiente al tipo de seguro y de pensión que se esté calculando.
- 5. Para los demás años de proyección, realizar la operación suma producto entre la cuantía de los titulares y los pensionados sobrevivientes al final del año, y sumarles la operación suma producto entre la cuantía de los titulares y los pensionados sobrevivientes al final del año, estos divididos entre 2, todo lo anterior se realiza leyendo los índices del año que se está procesando. Una vez obtenido el resultado de esta suma, dividir este, entre un millón y almacenar el resultado en la variable de clase correspondiente al tipo de seguro y de pensión que se esté calculando.
- 6. Salir del método.

- Método: obtenerVolumenPensionesDerivadas
- 1. Leer las matrices de pensionados fallecidos, distribución de derivadas, derivadas que sobreviven en cada año de proyección, derivadas que sobreviven al final del año, las derivadas que fallecen al final del año, derivadas que fallecen en cada año y la probabilidad de activos, el vector de la cuantía promedio para derivadas y las variables tipo de seguro y tipo de pensión. Crear 3 matrices con las mismas longitudes que la matriz de pensionados fallecidos, para almacenar a la cuantía promedio de derivadas, de nuevas derivadas, derivadas sobrevivientes al final del año.
- 2. Calcular la cuantía promedio de derivadas.
 - 2.1. Validar únicamente para el primer año de proyección el tipo de seguro que se va calcular.
 - 2.1.1.Si se va calcular IV, entonces.
 - 2.1.1.1. Leer todas las edades del vector de la cuantía promedio para derivadas y validar si se va calcular pensión de viudez
 - 2.1.1.1.1. Si es verdadero, entonces multiplicar a la cuantía promedio de la edad que se está procesando por 1.11
 - 2.1.1.1.2. Si es falso, entonces multiplicar a la cuantía promedio de la edad que se está procesando por 1.
 - 2.1.1.2. Almacenar el resultado en la matriz que se creó, en el índice correspondiente a la edad que se está procesando.
 - 2.1.2.Si se va calcular RT, entonces.
 - 2.1.2.1. Leer todas las edades del vector de la cuantía promedio para derivadas y almacenar en el índice correspondiente a la edad que se está procesando.
 - 2.2. Para los demás años de proyección, leer los datos del año y edad anterior de la matriz que se está calculando y almacenarlos en los índices del año y edad actual.
- 3. Calcular la cuantía de nuevas derivadas.
 - 3.1. Leer por año la matriz de la cuantía promedio de derivadas y realizar la suma producto de esta con la matriz de distribución de las derivadas tomando el año de la cuantía promedio de derivadas como referencia y almacenar los resultados en los índices correspondientes al año y edad actual.
- 4. Calcular la cuantía promedio de derivadas sobrevivientes al final del año.
 - 4.1. Para el primer año de proyección, leer todas las edades del primer año de la cuantía nuevas derivadas y almacenar los valores en la matriz de derivadas sobrevivientes al final del año del año y edad que se esté procesando.
 - 4.2. Para las edades 15 de todos los años, leer las edades 15 de todos los años de la cuantía nuevas derivadas y almacenar los valores en la matriz de derivadas sobrevivientes al final del año del año y edad que se esté procesando.
 - 4.3. Para las edades mayores a 15 y los demás años de proyección, multiplicar a las derivadas sobrevivientes del año y edad anterior a la que estamos procesando por la probabilidad de activos del año actual y edad anterior, a estos sumarles la multiplicación de las derivadas sobrevivientes en cada año de edad y año anterior por la probabilidad de activos del año actual y edad anterior y estos multiplicados también por la cuantía promedio de derivadas sobrevivientes al final del año, y a todo lo anterior se le suma la multiplicación de las derivadas sobrevivientes al final del año de edad y año actual por la cuantía de nuevas derivadas del año y edad actual.
 - 4.4. Una vez obtenidos los cálculos del punto 4.3, dividir este entre las derivadas sobrevivientes en cada año de edad y año anterior por la probabilidad de activos del año actual y edad anterior más las derivadas sobrevivientes al final del año.
- 5. Calcular el volumen de pensiones de las derivadas.

- 5.1. Para el primer año de proyección, realizar la operación suma producto entre la cuantía promedio de derivadas sobrevivientes en cada año y las derivadas al final del año, el resultado de la suma producto dividirlo entre 4 y sumarle la suma producto entre la cuantía promedio de derivadas sobrevivientes en cada año y las nuevas derivadas que fallecen, el resultado dividirlo entre 8. Una vez obtenida la suma de los suma productos, el resultado de esta, se divide entre un millón.
- 7. Para los demás años de proyección, realizar la operación suma producto entre la cuantía de derivadas sobrevivientes en cada año y las derivadas sobrevivientes al final del año y dividir el resultado entre 2, lo anterior más la suma producto entre la cuantía de derivadas sobrevivientes en cada año, lo anterior más la suma producto entre la cuantía de derivadas sobrevivientes en cada año y las nuevas derivadas que fallecen al final del año divididas entre 4, lo anterior más la suma producto entre la cuantía de derivadas sobrevivientes en cada año y las derivadas que fallecen en cada año divididas entre 2. Todo lo obtenido anteriormente se divide entre un millóny almacenar el resultado en la variable de clase correspondiente al tipo de seguro, pensión y la derivada que se esté calculando.
- 8. Salir del método.
- Método: obtenerSaldosRCVyCuotaSocial
- 1. Leer las matrices de asegurados vigentes, asegurados que cotizan, asegurados que no cotizan, saldo en la subcuenta y la probabilidad de sobrevivencia de asegurados; el vector de proyección de salarios y las variables con la tasa bimestral de RCV y cuota social y la comisión sobre saldo. Crear una matriz con las mismas longitudes que la matriz de saldo acumulado en la subcuenta.
- 2. Para el primer año, multiplicar a los asegurados que no cotizan de la edad que se está procesando, por el saldo en la subcuenta de la edad y por la probabilidad de sobrevivencia de la edad anterior; todos estos divididos entre la multiplicación de los asegurados vigentes de la edad por uno menos la comisión sobre saldo y estos multiplicados por uno más las tasa de rendimiento bimestral elevada a la potencia 6.
- 3. Para los demás años de proyección.
 - 3.1. Calcular 3 bloques que contengan los 3 miembros importantes de la formula.
 - 3.1.1.Calcular el bloque1, multiplicar a los asegurados que cotizan y no cotizan de edad anterior y año anterior al que se está procesando por el saldo en la subcuenta de edad anterior y año actual, estos a su vez se multiplican por la probabilidad de sobrevivencia de acuerdo a la antigüedad del asegurado. Ya que se obtuvo el resultado de las multiplicaciones dividir este entre los asegurados vigentes del año y edad actual.
 - 3.1.2.Calcular el bloque2, multiplicar los salarios de la edad por las aportaciones a la subcuenta por 365, por los asegurados que cotizan de edad anterior y año actual al que se está procesando, estos a su vez se multiplican por la probabilidad de sobrevivencia de acuerdo a la antigüedad del asegurado. Ya que se obtuvo el resultado de las multiplicaciones sumar a este,uno más la tasa bimestral de RCV y cuota social lo anterior elevado a la potencia 6.
 - 3.1.3.Calcular el bloque3, multiplicar a los asegurados vigentes del edad y año por 6, el resultado de este multiplicarlo por la división entreuno más la tasa bimestral de RCV y cuota social elevada a la potencia 5 y restar uno, y la tasa bimestral de RCV y Cuota social. Ya que se obtuvo el resultado anterior multiplicarlo por la tasa bimestral de RCV y Cuota social elevado a la potencia 0.5 y sumarle uno.

- 3.2. Ya que se obtuvieron los 3 bloques, multiplicar al bloque1 por el bloque 2 y a estos dividirlos entre el bloque3, finalmente al resultado de estos multiplicarlo por uno menos la comisión sobre saldo, y almacenar el resultado en los índices correspondientes al año y edad actual.
- 4. Regresar la matriz con el saldo proyectado.
- 5. Salir del método.

Método: obtenerSaldoVivienda

- 1. Leer las matrices de asegurados vigentes, asegurados que cotizan, asegurados que no cotizan, saldo en la subcuenta y la probabilidad de sobrevivencia de asegurados; el vector de proyección de salarios y la variable con la tasa bimestral de vivienda. Crear una matriz con las mismas longitudes que la matriz de saldo acumulado en la subcuenta.
- 2. Para el primer año, multiplicar a los asegurados que no cotizan de la edad que se está procesando, por el saldo en la subcuenta de la edad y por la probabilidad de sobrevivencia de la edad anterior; todos estos divididos entre la multiplicación de los asegurados vigentes de la edad por uno más las tasa de rendimiento bimestral elevada a la potencia 6.
- 3. Para los demás años de proyección.
 - 3.1. Calcular 3 bloques que contengan los 3 miembros importantes de la formula.
 - 3.1.1. Calcular el bloque1, multiplicar a los asegurados que cotizan y no cotizan de edad anterior y año anterior al que se está procesando por el saldo en la subcuenta de edad anterior y año actual, estos a su vez se multiplican por la probabilidad de sobrevivencia de acuerdo a la antigüedad del asegurado. Ya que se obtuvo el resultado de las multiplicaciones dividir este entre los asegurados vigentes del año y edad actual.
 - 3.1.2.Calcular el bloque2, multiplicar los salarios de la edad por las aportaciones a la subcuenta por 365, por los asegurados que cotizan de edad anterior y año actual al que se está procesando, estos a su vez se multiplican por la probabilidad de sobrevivencia de acuerdo a la antigüedad del asegurado. Ya que se obtuvo el resultado de las multiplicaciones sumar a este, uno más la tasa bimestral de viviendaelevada a la potencia 6.
 - 3.1.3.Calcular el bloque3, multiplicar a los asegurados vigentes del edad y año por 6, el resultado de este multiplicarlo por la división entre uno más la tasa bimestral de vivienda elevada a la potencia 5 y restar uno, y la tasa bimestral de vivienda. Ya que se obtuvo el resultado anterior multiplicarlo por la tasa bimestral de vivienda elevada a la potencia 0.5 y sumarle uno.
 - 3.2. Ya que se obtuvieron los 3 bloques, multiplicar al bloque1 por el bloque 2 y a estos dividirlos entre el bloque3, y almacenar el resultado en los índices correspondientes al año y edad actual
- 4. Regresar la matriz con el saldo proyectado.
- 5. Salir del método.

- **Método:** obtenerSalariosProyeccionCuotaSocial
- 1. Leer la matriz de proyección de salarios reales y los vectores de salarios de la cuota social y salario salarios mínimos reales. Crear una matriz con las mismas longitudes que la matriz de proyección de salarios reales.
- Para todos los años de proyección leer la matriz de proyección de salarios reales por año y edad y
 dividir el valor leído entre el vector del salario mínimo real del año que se está procesando y
 validar lo siguiente.
 - 2.1. Si el resultado es menor o igual a 1, leer el valor del rango 1 de los salarios de la cuota socialy almacenar en el índice correspondiente a la edad y año actual de la matriz.
 - 2.2. Si el resultado es menor o igual a 4, leer el valor del rango 2 de los salarios de la cuota social y almacenar en el índice correspondiente a la edad y año actual de la matriz.
 - 2.3. Si el resultado es menor o igual a 7, leer el valor del rango 3 de los salarios de la cuota social y almacenar en el índice correspondiente a la edad y año actual de la matriz.
 - 2.4. Si el resultado es menor o igual a 10, leer el valor del rango 4 de los salarios de la cuota social y almacenar en el índice correspondiente a la edad y año actual de la matriz.
 - 2.5. Si el resultado es menor o igual a 15, leer el valor del rango 5 de los salarios de la cuota social y almacenar en el índice correspondiente a la edad y año actual de la matriz.
 - 2.6. Si el resultado es mayor o igual a 16, leer el valor del rango 6 de los salarios de la cuota social y almacenar en el índice correspondiente a la edad y año actual de la matriz.
- 3. Almacenar el resultado en la variable de clase correspondiente.
- 4. Salir del método.
- **Método:** obtenerSaldoAcumuladoRCVyCSPensionados
- 1. Leer las matrices de asegurados base, asegurados que cotizan y saldo en la subcuenta, el vector de salarios reales, y las variables tasa bimestral de RCV y cuota social, comisión sobre saldo y las aportaciones bimestrales. Crear una matriz con las mismas longitudes de la matriz de saldo en la subcuenta.
- 2. Calcular 2 bloques que contengan los 2 miembros importantes de la formula.
 - 2.1. Bloque 1, leer la matriz de saldo en la subcuenta por año y edad,y multiplicar el saldo leído por uno menos la comisión sobre saldo entre dos, y a estos se les multiplica uno más la tasa bimestral elevada a la potencia 3.
 - 2.2. Bloque 2, leer la matriz de saldo en la subcuenta por año y edad y dividir la multiplicación de los salarios reales por los asegurados que cotizan de edad y año anterior al que se está procesando, entre los asegurados base multiplicados por las aportaciones a la subcuenta, por 365/6, por las aportaciones bimestrales y por uno menos la comisión sobre saldo dividida entre 2.
 - 2.3. Realizar la suma entre el bloque 1 y el bloque 2 y almacenar el resultado en los índices correspondientes al año y edad actual
- 3. Regresar la matriz con el saldo acumulado.
- 4. Salir del método.

- **Método:** obtenerSaldoAcumuladoVivPensionados
- 1. Leer las matrices de asegurados base, asegurados que cotizan y saldo en la subcuenta, el vector de salarios reales, y las variables tasa bimestral de vivienda y las aportaciones bimestrales. Crear una matriz con las mismas longitudes de la matriz de saldo en la subcuenta.
- 2. Calcular 2 bloques que contengan los 2 miembros importantes de la formula.
 - 2.1. Bloque 1, leer la matriz de saldo en la subcuenta por año y edad,y multiplicar el saldo leído por uno más la tasa bimestral elevada a la potencia 3.
 - 2.2. Bloque 2, leer la matriz de saldo en la subcuenta por año y edad y dividir la multiplicación de los salarios reales por los asegurados que cotizan de edad y año anterior al que se está procesando, entre los asegurados base multiplicados por las aportaciones a la subcuenta, por 365/6, por las aportaciones bimestrales y por uno menos la comisión sobre saldo dividida entre 2.
 - 2.3. Realizar la suma entre el bloque 1 y el bloque 2 y almacenar el resultado en los índices correspondientes al año y edad actual
- 3. Regresar la matriz con el saldo acumulado.
- 4. Salir del método.

3.4 Codificación del proceso

Proyección demográfica del Seguro de Invalidez y Vida, y del Seguro de Riesgos de Trabajo.

Asegurados que cotizan en cada año de proyección.

Asegurados que no cotizan en cada año de proyección.

Asegurados vigentes en cada año de proyección.

Nuevos pensionados de invalidez, CeVe e incapacidad permanente que ingresan a mitad de año.

```
public double[][] obtenerPensionadosMitadAnio(double[][] asegBase,
                                                double[][] proSob,
                                                double[]
                                                           densCot.
                                                double[]
                                                           probEntPension.
                                                double
                                                           EleccionReg,
                                                String
                                                           pension) {
        double[][] nvosPenMitadAnio = new double[asegBase.length][asegBase[0].length];
        FuncionesMatematicas fm = new FuncionesMatematicas();
        for(int edad=0;edad<asegBase.length;edad++){</pre>
                for(int ant=0;ant<asegBase[0].length;ant++){</pre>
                        if (edad < Constantes.EDAD_MAXIMA_ASEGURADO -</pre>
                                              Constantes.EDAD_MINIMA_ASEGURADO) {
                                nvosPenMitadAnio[edad][ant] = asegBase[edad][ant] *
                                                        probEntPension[edad] * EleccionReg;
                        }else{
                                nvosPenMitadAnio[edad][ant] = asegBase[edad][ant] *
                                (1+proSob[2][edad]* densCot[edad]) *probEntPension[edad] *
                                EleccionReg;
```

```
}
            } else {
                if(ant <= 2){
                    nvosPenMitadAnio[edad][ant] = asegBase[edad][ant] *
                    (1+proSob[0][edad]* densCot[edad]) * probEntPension[edad] *
                    EleccionReg;
                }else if(ant<=9){</pre>
                     nvosPenMitadAnio[edad][ant] = asegBase[edad][ant] *
                     (1+proSob[1][edad]* densCot[edad]) * probEntPension[edad] *
                     EleccionReg;
                }else{
                    nvosPenMitadAnio[edad][ant] = asegBase[edad][ant] *
                    (1+proSob[2][edad]* densCot[edad]) * probEntPension[edad] *
                    EleccionReg;
            }
        }
    this.pensionadosMitadAnio = (pension.equals("ceve") ?
                            fm.delimitarMatriz(nvosPenMitadAnio,10) : nvosPenMitadAnio);
    return (pension.equals("ceve") ? fm.delimitarMatriz(nvosPenMitadAnio, 10) :
           nvosPenMitadAnio);
}
```

Pensionados de invalidez, CeVe e incapacidad permanente sobrevivientes al final del año.

```
public double[][] obtenerPensionadosFinalAnio(double[][] probMte,
                                                           penMitadAnio.
                                               double[]
                                               String
                                                           pension){
        double[][] penFinAnio = new double[Constantes.ANIOS_PROYECCION - 1]
                        [(Constantes.EDAD_MAX_PROYECTADA-Constantes.EDAD_MIN_PROYECTADA)+1];
        boolean bandera = (pension.equals("ceve") ? false : true);
        for(int edad=1;edad<=penMitadAnio.length;edad++){</pre>
              penFinAnio[0][edad] = penMitadAnio[edad-1] * ((2*(1-probMte[0]
              [(bandera?edad-1:edad+14)])) / (1+(1-probMte[0][(bandera?edad-1:edad+14)])));
        }
        for(int año=1;año<penFinAnio.length;año++){</pre>
            for(int edad=1;edad<penFinAnio[0].length;edad++){</pre>
               penFinAnio[año][edad] = penFinAnio[año-1][edad-1] *
                                    (1-probMte[(bandera?0:año)] [(bandera?edad-1:edad+14)]);
            }
        this.pensionadosFinalAnio = penFinAnio;
        return penFinAnio;
```

Pensionados de invalidez, CeVe e incapacidad permanente que fallecen en cada año.

```
public double[][] obtenerPensionadosFallecidos(double[][] penSobFinalAnio,double[][] probMte,
                                                double[]
                                                           penMitadAnio,
                                                String
                                                           pension) {
        double[][] pensFallecidos = new double[penSobFinalAnio.length]
                                                [penSobFinalAnio[0].length];
        boolean bandera = (pension.equals("ceve") ? false : true);
        for(int edad = 1;edad <= penMitadAnio.length; edad++){</pre>
            pensFallecidos[0][edad] = penMitadAnio[edad - 1] * (1-((2*(1probMte[0])))
                   [(bandera? edad-1 : edad+14)])) / (1+(1-probMte[0][(bandera ? edad - 1 :
                    edad+14)]))));
        for (int año = 1; año < pensFallecidos.length; año++) {</pre>
            for (int edad = 1; edad < pensFallecidos[0].length; edad++) {</pre>
               pensFallecidos[año][edad] = penSobFinalAnio[año - 1][edad - 1] *
                      probMte[(bandera ? 0 : año)][(bandera ? edad - 1 : edad + 14)];
        this.pensionadosFallecidos = pensFallecidos;
        return pensFallecidos;
```

Nuevas pensiones derivadas del fallecimiento de pensionados de invalidez, CeVe e incapacidad permanente.

Nuevas pensiones derivadas que fallecen a la segunda mitad del año.

```
(1 + probActivosyHuerf[año][edad]))));
}
return viuHuerAscFallecenSegMtadAnio;
}
```

Nuevas pensiones derivadas que fallecen a la segunda mitad del año.

```
public double[][] obtenerViuHuerAscSobFinalAño(double[][] nvasViuHuerfAsc,
                                                double[][] probMteActySobHuerf,
                                                boolean
                                                           esProbAct.
                                                boolean
                                                           esMuerte){
        double[][] viudasHuerfAscSobFinalAnio= new double[nvasViuHuerfAsc.length]
                                                     [nvasViuHuerfAsc[0].length];
        viudasHuerfAscSobFinalAnio[0] = nvasViuHuerfAsc[0];
            for(int año = (esMuerte?0:1); año<viudasHuerfAscSobFinalAnio.length;año++){</pre>
               for(int edad = 0; edad<viudasHuerfAscSobFinalAnio[0].length;edad++){</pre>
                    viudasHuerfAscSobFinalAnio[año][edad] = nvasViuHuerfAsc[año][edad]
                              ( esProbAct == true ?
                               ((2 * (1 - probMteActySobHuerf[año][edad + 15])) /
                               (1 + (1 - probMteActySobHuerf[año][edad + 15]))) :
                               ((2 * probMteActySobHuerf[año][edad]) /
                               (1 + probMteActySobHuerf[año][edad])));
            return viudasHuerfAscSobFinalAnio;
```

Pensiones derivadas sobrevivientes en cada año.

```
public double[][] obtenerViuHuerAscSobCadaAnio(double[][] viuHuerAscSobFinalAnio,
                                                double[][] probMteActySobHuerf,
                                                boolean esProbAct){
        double[][] viudasHuerAscSobCadaAnio= new double[viuHuerAscSobFina]Anio.length]
                                                         [viuHuerAscSobFinalAnio[0].length];
        viudasHuerAscSobCadaAnio[0] = viuHuerAscSobFinalAnio[0];
        for(int edad=1;edad<viudasHuerAscSobCadaAnio[0].length;edad++){</pre>
            viudasHuerAscSobCadaAnio[1][edad] = viuHuerAscSobFinalAnio[0][edad-1] *
            (esProbAct == true ?
           (1-probMteActySobHuerf[1][edad+14]) : probMteActySobHuerf[1][edad-1]);
        for(int año=2;año<viudasHuerAscSobCadaAnio.length;año++){</pre>
            for(int edad=1;edad<viudasHuerAscSobCadaAnio[0].length;edad++){</pre>
                viudasHuerAscSobCadaAnio[año][edad] = (viudasHuerAscSobCadaAnio[año-1]
                [edad-1] + viuHuerAscSobFinalAnio[año-1][edad-1])
                (esProbAct == true? (1-probMteActySobHuerf[año][edad+14]) :
                 probMteActySobHuerf[año][edad-1]);
            3
        return viudasHuerAscSobCadaAnio;
```

70

Pensiones derivadas que fallecen en cada año.

```
public double[][] obtenerViuHuerAscFallecenCadaAnio(double[][] viuHuerAscSobFinalAnio,
double[][] viuHuerAscSobCadaAnio,
                                                     double[][] probMteActySobHuerf,
                                                                esProbAct){
                                                     boolean
        double[][] viudasHuerAscFallecenCadaAnio = new double[viuHuerAscSobCadaAnio.length]
                                                           [viuHuerAscSobCadaAnio[0].length];
       for(int edad=1;edad<viudasHuerAscFallecenCadaAnio[0].length;edad++){</pre>
             viudasHuerAscFallecenCadaAnio[1][edad] = viuHuerAscSobFinalAnio[0][edad-1] *
            (esProbAct==true? probMteActySobHuerf[1][edad+14] :
            (1-probMteActySobHuerf[1][edad-1]));
        }
        for(int año=2;año<viudasHuerAscFallecenCadaAnio.length;año++){</pre>
            for(int edad=1;edad<viudasHuerAscFallecenCadaAnio[0].length;edad++){</pre>
                viudasHuerAscFallecenCadaAnio[año][edad] = (viuHuerAscSobFinalAnio[año-1]
                [edad-1] + viuHuerAscSobCadaAnio[año-1][edad-1]) * (esProbAct == true ?
                probMteActySobHuerf[año][edad+14] : (1-probMteActySobHuerf[año][edad-1]));
            }
        return viudasHuerAscFallecenCadaAnio;
```

Probabilidades de muerte aplicables a los pensionados.

```
public void obtenerProbActivosyHuerfanos(double[] probMteAct,
                                           double[] tasaMejora, double[] tasaDesercion,
                                           boolean esCeVe){
        double[][] probActMte = new double[Constantes.ANIOS_PROYECCION-1]
                                            [Constantes.EDAD_MAX_PROYECTADA + 1];
        double[][] probHuerf = new double[Constantes.ANIOS_PROYECCION-1]
                                           [Constantes.EDAD_MAX_PROYECTADA + 1];
        for(int edad=0; edad<probActMte[0].length;edad++){</pre>
            probActMte[0][edad] = probMteAct[edad] * Math.pow((1-tasaMejora[edad]), 1);
        for(int años=1;añosobActMte.length;años++){
                for(int edad = 0; edad < probActMte[0].length; edad++){</pre>
                        probActMte[años][edad] = probMteAct[edad] *
                                                  Math.pow((1 - tasaMejora[edad]) , años + 1);
            }
        if(esCeVe){
            this.probActivosMteCeVe = probActMte;
        }else{
            this.probActivosMte = probActMte;
        3
        if(!esCeVe){
            for(int años=0;añosrobHuerf.length;años++){
                for(int edad=0; edad<=24;edad++){</pre>
                        probHuerf[años][edad] = 1- (probActMte[años][edad] *
                                                              (1-(tasaDesercion[edad])/2D));
            this.probHuefanos = probHuerf;
        }
}
```

Proyección financiera del Seguro de Invalidez y Vida, y del Seguro de Riesgos de Trabajo.

Estimación de los salarios futuros.

```
public void obtenerSalarios(double[][] salHistoricos,
                            double[]
                                       incRealSalarios.
                            double[]
                                       incRealSalMinimo,
                            double[]
                                       inflacionAnual,
                            double[]
                                       salarioReal){
        double[][] salarioNominal = new
                  double[salHistoricos.length+(Constantes.ANIOS_PROYECCION-1)]
                         [salHistoricos[0].length];
        double[][] salarioPromedio = new double[Constantes.ANIOS_PROYECCION-1]
                                                [salHistoricos[0].length];
        double[][] proySalReales = new double[Constantes.ANIOS_PROYECCION-1]
                                             [salarioReal.length];
       double[] salarioMinDiarioNominal = new double[incRealSalarios.length];
        double[] inflacionAnualAcumulada = new double[inflacionAnual.length];
        double[] salariosReales = new double[inflacionAnual.length];
       /*************
         * Obtención de los salarios nominales. *
        for (int i = 0; i < salHistoricos.length; i++) {</pre>
            salarioNominal[i] = salHistoricos[i];
       for(int año=10;año<salarioNominal.length;año++){</pre>
               for(int edad=0;edad<salarioNominal[0].length;edad++){</pre>
                       salarioNominal[año][edad]=salarioNominal[año-1][edad] *
                       (1+incRealSalarios[año-10]) * (1+inflacionAnual[año-10]);
        this.salarioNominal = salarioNominal;
        /**************
         * Obtención de los salarios promedio.
        for(int año=0;año<Constantes.ANIOS_PROYECCION-1;año++){</pre>
            for(int edad=1;edad<salHistoricos[0].length;edad++){</pre>
                if(edad<=5){</pre>
                    for(int edadHist=edad, añoHist= año+10;edadHist>= 0;edadHist--){
                        salarioPromedio[año][edad] += salarioNominal[añoHist][edadHist] *
                      (edadHist == edad || edadHist == 0 ? 0.5 : 1);
                              if (edadHist == 0){
                                      salarioPromedio[año][edad] /= edad;
                              }
                        añoHist--;
                }else{
                    for (int edadHist=edad, añoHist=año+10;edadHist >=edad - 5;edadHist--){
                        salarioPromedio[año][edad] += salarioNominal[añoHist][edadHist] *
                                      (edadHist == edad \mid \mid edadHist + 5 == edad ? 0.5 : 1);
                               if (edadHist + 5 == edad) {
                               salarioPromedio[año][edad] /= 5D;
                        añoHist--;
                   }
               }
            }
        this.salarioPromedio = salarioPromedio;
```

```
/****************
 * Obtención de los salarios minimos diarios nominales.
salarioMinDiarioNominal[0] = Constantes.SALARIO_MINIMO_ANIO_BASE *
                          (1+incRealSalMinimo[0])*(1+inflacionAnual[0]);
for(int año=1;año<salarioMinDiarioNominal.length;año++){</pre>
   salarioMinDiarioNominal[año] = salarioMinDiarioNominal[año-1] *
                              (1+incRealSalMinimo[año])*(1+inflacionAnual[año]);
this.salMinDiarioNominal = salarioMinDiarioNominal;
/***************
* Proyección de los salarios reales al año base
for(int i=0;iijijilength;i++){
   proySalReales[0][i] = salarioReal[i] * (1+incRealSalarios[0]);
for(int año=1;añooproySalReales.length;año++){
   for(int edad=0:edadproySalReales[0].length:edad++){
      proySalReales[año][edad] = proySalReales[año-1][edad] *
                          (1+incRealSalarios[año]);
this.proySalariosReales = proySalReales;
/**************
* Obtención de la inflacion anual acumulada *
*******************
inflacionAnualAcumulada[0]= 1+inflacionAnual[0];
for(int año=1;año<inflacionAnualAcumulada.length;año++){</pre>
   inflacionAnualAcumulada[año] = inflacionAnualAcumulada[año-1] *
                                (1+inflacionAnual[año]);
this.inflacionAnualAcumulada = inflacionAnualAcumulada;
 * Obtención de los salarios reales al año base.
salariosReales[0] = Constantes.SALARIO_MINIMO_ANIO_BASE *(1+incRealSalMinimo[0]);
for(int año=1;año<salariosReales.length;año++){</pre>
   salariosReales[año]=salariosReales[año-1] * (1+incRealSalMinimo[año]);
this.salariosReales = salariosReales;
```

Estimación de las cuantías promedio para pensionados invalidez, CeVe e incapacidad permanente.

```
public void obtenerCuantias(double[][] art167LSS,
                          double[][] penMitadAnio,
                          double[] salarioPromedio,
                          double[] ultimoSalario,
                          double salarioMinimo,
double inflacionAnual,
                          double salMinGDF,
                          double porValoracion,
                          String pension, String seguro){
       ProyeccionDemografica pd = new ProyeccionDemografica();
       FuncionesMatematicas fm = new FuncionesMatematicas();
       double[][] cuantiaPensionados = new double[51][salarioPromedio.length];
       double[][] cuantiaViudas = new double[51][salarioPromedio.length];
       double[][] cuantiaHuerfyAsc = new double[51][salarioPromedio.length];
       double[][] cuantiaViudasDecimoCuarto = new double[51][salarioPromedio.length];
       double[] SMGDF = new double[salarioPromedio.length];
       double[] cuantiaBasica = new double[salarioPromedio.length];
       double[] incremento = new double[salarioPromedio.length];
       double[] ctiaPromPensionados = new double[salarioPromedio.length];
       double[] ctiaPromRT = new double[salarioPromedio.length];
double[] ctiaPromRTMax = new double[salarioPromedio.length];
       double[] ctiaPromViudas = new double[salarioPromedio.length];
       double[] ctiaPromViudasDecimoCuarto = new double[salarioPromedio.length];
       double[] ctiaPromHuerfyAsc = new double[salarioPromedio.length];
       double vecesSalMinGDF;
       boolean aplicaRedAct;
       aplicaRedAct = (pension.equals("ceve")?true:false);
       /***********************
               Obtenemos el Salario Minimo del Distrito Federal.
        *************************************
       for(int edad=0;edad<SMGDF.length;edad++){</pre>
              SMGDF[edad] = Math.floor((salarioPromedio[edad]/salarioMinimo)*100)/100;
       /*******************
        * Obtenemos la cuantia basica y el increment de salario.
       for (int edad = 1; edad < cuantiaBasica.length; edad++) {</pre>
            int rango = 0;
            while (SMGDF[edad] > art167LSS[0][rango]) {
            rango++;
           cuantiaBasica[edad] = art167LSS[1][rango] * salarioPromedio[edad] * 365;
           incremento[edad] = art167LSS[2][rango] * salarioPromedio[edad] * 365;
       /********************
        * Obtenemos las cuantias basicas para los pensionados y sus derivadas *
        /*********
        * Cuantia basica de pensionados
       double bloque1=0;
       double bloque2=0;
       double bloque3=0;
       double porcentaje=0.75;
```

```
for(int antiguedad=3;antiguedad<cuantiaPensionados.length;antiguedad++){</pre>
            for(int edad=1;edad<cuantiaPensionados[0].length;edad++){</pre>
                bloque1 = cuantiaBasica[edad] + incremento[edad] *
                           (antiguedad<=10?0:antiguedad-10);</pre>
                bloque2 = salarioPromedio[edad]*365;
                bloque3 = ((bloque1*1.2) > bloque2 ?(bloque1 < bloque2 ? bloque2:bloque1) :</pre>
                           bloque1*1.2);
                cuantiaPensionados[antiguedad] [edad] = (Math.max(bloque3,salarioMinimo*365)
                                              + Math.max(bloque1*(1D/12D).
                                              salarioMinimo*(365D/12D)))/inflacionAnual;
            }
        }
        for(int edad=0;edad<cuantiaPensionados[0].length;edad++){</pre>
            ctiaPromPensionados[edad] = (fm.sumaVector(penMitadAnio[edad]) == 0 ? 0:
               fm.sumaProducto(penMitadAnio[edad], fm.transponer(cuantiaPensionados)[edad])/
fm.sumaVector(penMitadAnio[edad])) * (aplicaRedAct?(edad>=45 && edad<=49 ?</pre>
               porcentaje:1):1);
            if(edad>=45 && edad<=49){
                    porcentaje+=0.05D;
            }
        if(seguro.equals("RT")){
            for(int edad=0;edad<ultimoSalario.length;edad++){</pre>
               ctiaPromRT[edad] = ultimoSalario[edad] * Constantes.DIAS_ANUAL *
                              Constantes.PORC_CUANTIA_RT;
                ctiaPromPensionados[edad] = (edad<45 ? Math.max(ctiaPromRT[edad] *</pre>
                (1D+15D/Constantes.DIAS_ANUAL),ctiaPromPensionados[edad]) * porValoracion :
                (Math.max(ctiaPromRT[edad]*(1D+15D/Constantes.DIAS_ANUAL),
                ctiaPromPensionados[edad]) * porValoracion) * Constantes.DECIMO_CUARTO);
        this.cuantiaPromPensionados = ctiaPromPensionados;
        /********
         * Cuantia para viudas
        for(int antiguedad=3; antigüedad <cuantiaViudas.length;antiguedad++){</pre>
            for(int edad=1;edad <cuantiaViudas[0].length;edad++){</pre>
                bloque1 = cuantiaBasica[edad] + incremento[edad] * (antiquedad <= 10 ? 0 :</pre>
                           antiquedad - 10);
                bloque2 = salarioPromedio[edad] * 365;
                cuantiaViudas[antiquedad][edad] = (Math.max(bloque3, salarioMinimo * 365)
                         + Math.max(bloque1 * (1D / 12D), salarioMinimo * (365D / 12D))) /
                           inflacionAnual;
        }
        porcentaje=0.75D;
        for(int edad=0;edad<cuantiaPensionados[0].length;edad++){</pre>
             ctiaPromViudas[edad] = (fm.sumaVector(penMitadAnio[edad]) == 0 ? 0 :
                    fm.sumaProducto(penMitadAnio[edad],fm.transponer(cuantiaViudas)[edad]) /
                    fm.sumaVector(penMitadAnio[edad]))*(aplicaRedAct?(edad>=45 && edad<=49 ?</pre>
                    porcentaje:1):1);
                if(edad>=45 && edad<=49){
                    porcentaje+=0.05D;
        this.cuantiaPromViudas = ctiaPromViudas;
```

```
**************
 * Cuantia para viudas con aplicacion del decimo cuarto.
vecesSalMinGDF = salMinGDF * Constantes.VECES_SMGDF * (Constantes.DIAS_ANUAL +
                 Constantes.AYUDAS);
for(int antiquedad=3:antiquedad<cuantiaViudasDecimoCuarto.length:antiquedad++){</pre>
    for(int edad=1;edad<cuantiaViudasDecimoCuarto[0].length;edad++){</pre>
        cuantiaViudasDecimoCuarto[antiguedad][edad] =
            (cuantiaViudas[antiguedad][edad] * Constantes.PORC_CUANTIA_VIUDEZ <=</pre>
             vecesSalMinGDF ? cuantiaViudas[antiguedad][edad]
             Constantes.PORC_CUANTIA_VIUDEZ*Constantes.DECIMO_CUARTO:
             cuantiaViudas[antiguedad][edad]*Constantes.PORC_CUANTIA_VIUDEZ);
    }
porcentaje = 0.75D;
for(int edad=0;edad<cuantiaPensionados[0].length;edad++){</pre>
     ctiaPromViudasDecimoCuarto[edad] = (fm.sumaVector(penMitadAnio[edad])== 0 ? 0:
          fm.sumaProducto(penMitadAnio[edad],
           fm.transponer(cuantiaViudasDecimoCuarto)[edad]) /
           fm.sumaVector(penMitadAnio[edad]))*(aplicaRedAct?(edad>=45 && edad<=49 ?</pre>
           porcentaje:1):1);
     if(edad>=45 && edad<=49){
            porcentaje+=0.05D;
}
double bloqueRT = 0;
if(seguro.equals("RT")){
    vecesSalMinGDF = salMinGDF*Constantes.VECES_SMGDF*(Constantes.DIAS_ANUAL+15D);
    for(int edad=0;edad<ultimoSalario.length;edad++){</pre>
        bloqueRT = (ctiaPromRT[edad] * Constantes.PORC_CUANTIA_VIUDEZ_RT <=</pre>
              vecesSalMinGDF ? 1D : Constantes.DECIMO_CUARTO)
                    ctiaPromRT[edad] * (1+Constantes.NUMERO_CTIA_RT) *
                    Constantes.PORC_CUANTIA_VIUDEZ_RT;
        ctiaPromViudasDecimoCuarto[edad] = Math.max(bloqueRT,
                                             ctiaPromViudasDecimoCuarto[edad]);
    }
this.ctiaPromViudasDecimoCuarto = ctiaPromViudasDecimoCuarto;
 * Cuantia para huerfanos y ascendientes
for (int antiguedad = 3; antiguedad<cuantiaHuerfyAsc.length; antiguedad++) {</pre>
    for (int edad=1; edad<cuantiaHuerfyAsc[0].length; edad++) {</pre>
        bloque1 = cuantiaBasica[edad] + incremento[edad] * (antiguedad <= 10 ? 0 :</pre>
                   antiquedad - 10);
        bloque2 = salarioPromedio[edad] * Constantes.DIAS_ANUAL;
        bloque3 = (bloque1 > bloque2 ? (bloque1 < bloque2 ? bloque2 : bloque1) :</pre>
                   bloque1);
        cuantiaHuerfyAsc[antiguedad] [edad] = (Math.max(bloque3, salarioMinimo *
                  Constantes.DIAS_ANUAL) + Math.max(bloque1 * (1D / 12D), salarioMinimo * (Constantes.DIAS_ANUAL / 12D))) / inflacionAnual
                   * Constantes.PORC_CUANTIA_HUERF_ASC;
    }
porcentaje = 0.75D;
```

Estimación del volumen de pensiones de invalidez, CeVe e incapacidad permanente.

```
public void obtenerVolumenPensionesTitulares(double[][] penFinalAnio,
                                             double[][] penFallecidos,
                                             double[]
                                                        ctiaPromPenMitadAnio,
                                                        anioProy,
                                             int
                                             String
                                                        pension,
                                             String
                                                        seguro){
       double[][] proyCtiaPromTitularesFinalAnio = new
                                    double[penFinalAnio.length][penFinalAnio[0].length];
       FuncionesMatematicas fm = new FuncionesMatematicas();
        /************************
         * Proyeccion de la cuantia promedio de pensionados al final de año.
       if(seguro.equals("IV")){
                for(int edad=1;edad<=ctiaPromPenMitadAnio.length;edad++){</pre>
                    proyCtiaPromTitularesFinalAnio[0][edad] =
                    (edad<45?ctiaPromPenMitadAnio[edad-1] : ctiaPromPenMitadAnio[edad-1] *</pre>
                   Constantes.DECIMO_CUARTO);
       }else{
                for(int edad=1;edad<=ctiaPromPenMitadAnio.length;edad++){</pre>
       proyCtiaPromTitularesFinalAnio[0][edad] = (edad==45 ?
                             ctiaPromPenMitadAnio[edad-1] * Constantes.DECIMO_CUARTO :
                             ctiaPromPenMitadAnio[edad-1]):
            }
       }
        for(int año=1;año<penFinalAnio.length;año++){</pre>
            for(int edad=2;edad<penFinalAnio[0].length;edad++){</pre>
                proyCtiaPromTitularesFinalAnio[año][edad] = (edad == 45 ?
                 proyCtiaPromTitularesFinalAnio[año-1][edad-1] * Constantes.DECIMO_CUARTO :
                 proyCtiaPromTitularesFinalAnio[año-1][edad-1]);
            }
       }
```

```
/***************
           Obtención del volumen de pensiones.
       if(seguro.equals("IV")){
             (pension.equals("ceve") ? volumenPensionTitularesCeve :
                   volumenPensionTitularesInv)[anioProy] +=
                  (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[0],penFinalAnio[0])
                  /1000000D)/2D +
                  (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[0], penFallecidos[0])
                  /1000000D)/4D;
             for(int año=1:añoprovCtiaPromTitularesFinalAnio.length-anioProv:año++){
                 (pension.equals("ceve")? volumenPensionTitularesCeve :
                 volumenPensionTitularesInv)[año+anioProy] +=
                 fm.sumaProducto(proyCtiaPromTitularesFinalAnio[año],penFinalAnio[año])
                 /1000000D +
                 (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[año],
                 penFallecidos[año])/1000000D)/2D;
}else{
       (pension.equals("ip100") ? volumenPensionTitularesIP100 :
       pension.equals("ipMenor100") ? volumenPensionTitularesIPMenor100 :
volumenPensionTitularesIPMenor50)[anioProy] +=
                 (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[0],penFinalAnio[0])
                 /1000000D)/2D +
                  (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[0],penFallecidos[0])
                 /1000000D)/4D;
              for(int año=1;añoproyCtiaPromTitularesFinalAnio.length-anioProy;año++){
                 (pension.equals("ip100") ? volumenPensionTitularesIP100
                  pension.equals("ipMenor100") ? volumenPensionTitularesIPMenor100 :
                  volumenPensionTitularesIPMenor50)[año+anioProy] +=
                  fm.sumaProducto(proyCtiaPromTitularesFinalAnio[año], penFinalAnio[año])
                  /1000000D + (fm.sumaProducto(proyCtiaPromTitularesFinalAnio[año],
                                penFallecidos[año])/1000000D)/2D;
              }
        }
   }
```

Estimación del volumen de pensiones derivadas del fallecimiento de pensionados.

```
public void obtenerVolumenPensionesDerivadas(double[][] penFallecidos,
                                              double[][] distDerivadas,
                                              double[][] derivadasSobCadaAnio,
                                              double[][] derivadasSobFinalAnio,
                                              double[][] nuevasDerivadasFallecen,
                                              double[][] derivadasFallecenCadaAnio,
                                              double[][] probAct,
                                              double[]
                                                         ctiaPromDerivadas,
                                                         anioProy,
                                              int
                                              char
                                                         derivada,
                                              String
                                                         pension,
                                              String
                                                         seguro){
```

```
FuncionesMatematicas fm = new FuncionesMatematicas();
       double[][] proyCtiaPromDerivadas = new
                                  double[penFallecidos.length][penFallecidos[0].length];
       double[][] proyCtiaPromNvasDerivadas = new
                                  double[penFallecidos.length][penFallecidos[0].length];
       double[][] proyCtiaPromDerivadasSobCadaAnio = new
                                  double[penFallecidos.length][penFallecidos[0].length];
       /*********************************
        * Proyeccion de la cuantia promedio para las derivadas
       if(seguro.equals("IV")){
           for(int edad=0:edad<ctiaPromDerivadas.length:edad++){</pre>
              proyCtiaPromDerivadas[0][edad] = ctiaPromDerivadas[edad] * (derivada== 'v'?
                       1 : Constantes.DECIMO_CUARTO);
       }else{
           for(int edad=0;edad<ctiaPromDerivadas.length;edad++){</pre>
              proyCtiaPromDerivadas[0][edad]= ctiaPromDerivadas[edad];
       }
       for(int año=1;año<penFallecidos.length;año++){</pre>
           for(int edad=1;edad<penFallecidos[0].length;edad++){</pre>
              proyCtiaPromDerivadas[año-1][edad]=proyCtiaPromDerivadas[año-1][edad-1];
       }
       * Proyeccion de la cuantia promedio de nuevas viudas en cada año de proyeccion
       for (int año = 0; año < penFallecidos.length; año++) {</pre>
           for (int edad = 0; edad < penFallecidos[0].length; edad++) {</pre>
              proyCtiaPromNvasDerivadas[año][edad] =
                       fm.sumaProducto(proyCtiaPromDerivadas[año], distDerivadas[edad]);
           }
       }
* Proyeccion de la cuantia promedio de viudas sobrevivientes en cada año de proyeccion
       proyCtiaPromDerivadasSobCadaAnio[0] = proyCtiaPromNvasDerivadas[0];
       for(int año=0;añoproyCtiaPromDerivadasSobCadaAnio.length;año++){
           proyCtiaPromDerivadasSobCadaAnio[año][0] = proyCtiaPromNvasDerivadas[año][0];
       for (int año = 1; año < proyCtiaPromDerivadasSobCadaAnio.length; año++) {</pre>
           for (int edad = 1; edad < proyCtiaPromDerivadasSobCadaAnio[0].length; edad++) {</pre>
              proyCtiaPromDerivadasSobCadaAnio[año][edad] = (derivadasSobCadaAnio[año-1]
                  [edad-1] *(derivada=='v' || derivada=='a'?(1-probAct[año][edad+14]) :
                   probAct[año][edad-1]) + derivadasSobFinalAnio[año][edad]== 0 ? 0:
                   (derivadasSobCadaAnio[año-1][edad-1] *(derivada=='v'||derivada=='a' ?
                   1- probAct[año][edad+14]:probAct[año][edad-1]) *
                   proyCtiaPromDerivadasSobCadaAnio[año-1][edad-1] +
                   derivadasSobFinalAnio[año][edad]*proyCtiaPromNvasDerivadas[año][edad])/
                   (double)(derivadasSobCadaAnio[año-1][edad-1] * (derivada=='v' ||
                   derivada=='a'? 1- probAct[año][edad+14]:probAct[año][edad-1]) +
                   derivadasSobFinalAnio[año][edad]));
           }
       }
```

```
* Obtencion del volumen de pensiones.
if(seguro.equals("IV")){
   if (pension.equals("inv")) {
(derivada == 'v' ? volumenPensionViudasInv : derivada == 'h' ?
        volumenPensionHuerfanosInv : volumenPensionAscendientesInv)[anioProy] +=
       ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                              derivadasSobFinalAnio[0]) / 4D +
        fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                       nuevasDerivadasFallecen[0]) / 8D) / 1000000D);
       for(int año = 1; año < penFallecidos.length - anioProy; año++){</pre>
               (derivada == 'v' ? volumenPensionViudasInv : derivada == 'h' ?
               volumenPensionHuerfanosInv : volumenPensionAscendientesInv)
               [año + anioProy] +=
               ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                  derivadasSobFinalAnio[año]) / 2D +
                 fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                   derivadasSobCadaAnio[año]) +
                 fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                           nuevasDerivadasFallecen[año]) / 4D +
                 fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                  derivadasFallecenCadaAnio[año])/2D)/1000000D);
}else if (pension.equals("ceve")){
       (derivada == 'v' ? volumenPensionViudasCeve : derivada == 'h' ?
       volumenPensionHuerfanosCeve : volumenPensionAscendientesCeve)[anioProy] +=
       ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                              derivadasSobFinalAnio[0]) / 4D +
       fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                      nuevasDerivadasFallecen[0]) / 8D) / 1000000D);
        for (int año = 1; año < penFallecidos.length - anioProy; año++) {
          (derivada == 'v' ? volumenPensionViudasCeve : derivada == 'h' ?</pre>
                volumenPensionHuerfanosCeve : volumenPensionAscendientesCeve)
                [año + anioProy] +=
               ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                 derivadasSobFinalAnio[año]) / 2D +
                fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                 derivadasSobCadaAnio[año]) +
                fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                 nuevasDerivadasFallecen[añol) / 4D +
                fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                  derivadasFallecenCadaAnio[año]) / 2D) / 1000000D);
    }
    }else{
    (derivada == 'v' ? volumenPensionViudasMte : derivada == 'h' ?
     volumenPensionHuerfanosMte : volumenPensionAscendientesMte)[anioProy] +=
     ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                                derivadasSobFinalAnio[0]) / 2D +
       fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                      nuevasDerivadasFallecen[0]) / 4D) / 1000000D);
    for(int año = 1; año < penFallecidos.length - anioProy; año++){</pre>
         (derivada == 'v' ? volumenPensionViudasMte : derivada == 'h' ?
         volumenPensionHuerfanosMte : volumenPensionAscendientesMte)[año+anioProy]+=
        ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                    derivadasSobFinalAnio[año]) / 2D +
          fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
```

```
derivadasSobCadaAnio[año]) +
               fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                             nuevasDerivadasFallecen[año])/4D +
               fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                          derivadasFallecenCadaAnio[año]) / 2D) / 1000000D);
}else{//Para el SRT
            if(pension.equals("ip100")) {
(derivada == 'v' ? volumenPensionViudasIP100 : derivada == 'h' ?
                 volumenPensionHuerfanosIP100 : volumenPensionAscendientesIP100)[anioProy]+=
                ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                                             derivadasSobFinalAnio[01) / 4D +
                  fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                               nuevasDerivadasFallecen[0]) / 8D) / 1000000D);
                for(int año = 1;año< penFallecidos.length - anioProy;año++){
        (derivada == 'v' ? volumenPensionViudasIP100 : derivada == 'h' ?</pre>
                         volumenPensionHuerfanosIP100 : volumenPensionAscendientesIP100)
                         [año + anioProy] +=
                         ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                           derivadasSobFinalAnio[año]) / 2D +
                           fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                            derivadasSobCadaAnio[año]) +
                           fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                            nuevasDerivadasFallecen[año])/4D +
                           fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                           derivadasFallecenCadaAnio[año]) / 2D) /1000000D);
}else if(pension.equals("ipMenor100")){
(derivada == 'v' ? volumenPensionViudasIPMenor100 : derivada == 'h' ?
                 volumenPensionHuerfanosIPMenor100 : volumenPensionAscendientesIPMenor100)
                 [anioProy] +=
                               ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                                             derivadasSobFinalAnio[0]) / 4D +
                                 fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                               nuevasDerivadasFallecen[0]) / 8D) / 1000000D);
                 for(int año = 1; año < penFallecidos.length - anioProy; año++){</pre>
                       (derivada == 'v' ? volumenPensionViudasIPMenor100 : derivada == 'h' ?
                       volumenPensionHuerfanosIPMenor100:
                       volumenPensionAscendientesIPMenor100)[año + anioProy] +=
                                 ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                           derivadasSobFinalAnio[año]) / 2D +
                                   fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                           derivadasSobCadaAnio[año]) +
                                  fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                          nuevasDerivadasFallecen[año]) / 4D +
                                   fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año], }
                                          derivadasFallecenCadaAnio[año]) / 2D) / 1000000D);
                     }
} else if(pension.equals("ipMenor50")){
(derivada == 'v' ? volumenPensionViudasIPMenor50 : derivada == 'h' ?
                 volumenPensionHuerfanosIPMenor50:
                 volumenPensionAscendientesIPMenor50)[anioProy] +=
                                 ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                                              derivadasSobFinalAnio[0]) / 4D +
                                   fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                               nuevasDerivadasFallecen[0]) / 8D) / 1000000D);
                  for(int año = 1; año<penFallecidos.length - anioProy; año++){</pre>
        (derivada == 'v' ? volumenPensionViudasIPMenor50 : derivada=='h' ?
                        volumenPensionHuerfanosIPMenor50:
```

```
volumenPensionAscendientesIPMenor50)[año + anioProy] +=
                        ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                     derivadasSobFinalAnio[año]) / 2D +
                                       fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                     derivadasSobCadaAnio[año]) +
                                       fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                      nuevasDerivadasFallecen[año]) / 4D -
                                       fm.sumaProducto(provCtiaPromDerivadasSobCadaAnio[año].
                                            derivadasFallecenCadaAnio[año]) / 2D) / 1000000D);
                     }
             else{
                 (derivada == 'v' ? volumenPensionViudasMteRT : derivada == 'h' ?
                  volumenPensionHuerfanosMteRT :volumenPensionAscendientesMteRT)[anioProv] +=
                 ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                                               derivadasSobFinalAnio[0]) / 2D +
                   fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[0],
                                               nuevasDerivadasFallecen[0]) / 4D) / 1000000D);
                   for(int año = 1; año < penFallecidos.length - anioProy; año++) {
    (derivada == 'v' ? volumenPensionViudasMteRT : derivada == 'h' ?</pre>
                          volumenPensionHuerfanosMteRT:
                          volumenPensionAscendientesMteRT) [año + anioProy] +=
                          ((fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                           derivadasSobFinalAnio[año]) / 2D +
                            fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                                   derivadasSobCadaAnio[año]) +
                            fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                                           nuevasDerivadasFallecen[año]) / 4D +
                            fm.sumaProducto(proyCtiaPromDerivadasSobCadaAnio[año],
                                            derivadasFallecenCadaAnio[año]) / 2D) / 1000000D);
                     }
             }
        }
}
```

Estimación del saldo acumulado en la cuenta individual de los pensionados de invalidez, CeVe e incapacidad permanente.

Estimación de los salarios utilizados para la cuenta individual.

82

Estimación del saldo en RCV y cuota social.

```
public double[][] obtenerSaldosRCVyCuotaSocial(double[][] asegVigentes,
                                                   double[][] asegCotizan,
                                                  double[][] asegNoCotizan,
double[][] saldoSubCtaL73,
                                                   double[][] probSobAseq.
                                                              proySalarios,
                                                   double[]
                                                   double.
                                                               tasaBimestraRCVyCS,
                                                   double
                                                               comisionSobSaldo,
                                                   boolean
                                                               subCtaInd){//true para RCV
        double[][] proyRCVyCS = new
                                     double[saldoSubCtaL73.length][saldoSubCtaL73[0].length];
        for(int edad=1;edad<preyRCVyCS[0].length;edad++){</pre>
proyRCVyCS[edad][0] = (asegVigentes[edad][0] == 0 ? 0 :
                ((asegNoCotizan[edad][0] * saldoSubCtaL73[edad][0]*probSobAseg[0][edad-1]) /
                 asegVigentes[edad][0])* Math.pow((1D+tasaBimestraRCVyCS),6D)
                                                (1D-comisionSobSaldo));
        }
        for(int edad=1;edadproyRCVyCS.length;edad++){
             for(int ant=1;antcycS[0].length;ant++){
proyRCVyCS[edad][ant] = (asegVigentes[edad][ant] == 0 ? 0 :
                               ((((asegCotizan[edad-1][ant]*saldoSubCtaL73[edad-1][ant-1] +
                                asegNoCotizan[edad-1][ant]*saldoSubCtaL73[edad-1][ant])
probSobAseg[(ant<= 2 ? 0: ant<= 9 ? 1 : 2)][edad-1]) /</pre>
                                asegVigentes[edad][ant]) *Math.pow((1D+tasaBimestraRCVyCS),6D)
                                + ((proySalarios[edad] * (subCtaInd ?
                                Constantes.APORTACION_RCV:1) * Constantes.DIAS_ANUAL *
                                asegCotizan[edad-1][ant]
                                probSobAseg[(ant<=2?0:ant<=9?1:2)][edad-1]) /</pre>
                               (6D*asegVigentes[edad][ant]))
                                (((Math.pow((1D+tasaBimestraRCVyCS),5)-1D) /
                                tasaBimestraRCVyCS) * Math.pow((1D+tasaBimestraRCVyCS),0.5D) +
                                1D)) * (1D-comisionSobSaldo) );
             }
        }
        return proyRCVyCS;
}
```

Estimación del saldo en vivienda.

```
public double[][] obtenerSaldoVivienda(double[][] asegVigentes,
                                        double[][] asegCotizan,
                                        double[][] asegNoCotizan,
double[][] saldoSubCtaVivL73,
                                        double[][] probSobAseq.
                                        double[]
                                                   proySalarios.
                                        double
                                                   tasaBimestralVivienda){
        double[][] proyVivienda = new
                              double[saldoSubCtaVivL73.length][saldoSubCtaVivL73[0].length];
for(int edad=1;edadoyVivienda[0].length;edad++){
            proyVivienda[edad][0] = (asegVigentes[edad][0] == 0 ? 0 :
                 ((asegNoCotizan[edad][0] * saldoSubCtaVivL73[edad][0] *
                 probSobAseg[0][edad-1]) / asegVigentes[edad][0]) *
                 Math.pow((1D+tasaBimestralVivienda),6D));
        for(int edad=1:edadovVivienda.length:edad++){
            for(int ant=1;antoyVivienda[0].length;ant++){
proyVivienda[edad][ant] = (asegVigentes[edad][ant] == 0 ? 0 :
                    ((((asegCotizan[edad-1][ant] * saldoSubCtaVivL73[edad-1][ant-1] +
```

Estimación del saldo acumulado en RCV y cuota social.

```
public double[][] obtenerSaldoAcumuladoRCVyCSPensionados(double[][] asegBase,
                                                               double[][] asegCotizan,
                                                                double[][] saldoSubcta,
                                                                double[]
                                                                            salarioReales,
                                                                            tasaBimRCVyCS,
                                                                double
                                                                double
                                                                            comisionSobSaldo,
                                                                double
                                                                            capitAportBim,
                                                                boolean
                                                                            esRCV){
        double[][] saldoAcum = new double[saldoSubcta.length][saldoSubcta[0].length];
         for(int edad=0;edad<saldoAcum.length;edad++){</pre>
             for(int ant=0;ant<saldoAcum[0].length;ant++){</pre>
saldoAcum[edad][ant] = (asegBase[edad][ant]== 0 ? 0 :
                                  (saldoSubcta[edad][ant] * Math.pow(1D+tasaBimRCVyCS,3D) *
                                  (1D-comisionSobSaldo/2D)) + (salarioReales[edad]
                                   asegCotizan[edad][ant+1] / asegBase[edad][ant]* (esRCV ?
Constantes.APORTACION_RCV : 1) * (Constantes.DIAS_ANUAL/6D)
                                   * capitAportBim * (1D-comisionSobSaldo/2D)));
             }
         return saldoAcum;
```

Estimación del saldo acumulado en vivienda.

```
public double[][] obtenerSaldoAcumuladoVivPensionados(double[][] asegBase,
                                                       double[][] aseqCotizan,
                                                       double[][] saldoSubcta,
                                                       double[]
                                                                   salarioReales.
                                                        double
                                                                   tasaBimViv,
                                                        double
                                                                   capitAportBim){
        double[][] saldoAcum = new double[saldoSubcta.length][saldoSubcta[0].length];
        for(int edad=0;edad<saldoAcum.length;edad++){</pre>
            for(int ant=0;ant<saldoAcum[0].length;ant++){</pre>
saldoAcum[edad][ant] = (asegBase[edad][ant]== 0 ? 0 :
                                (saldoSubcta[edad][ant] * Math.pow(1D+tasaBimViv,3D)) +
                                (salarioReales[edad] * asegCotizan[edad][ant+1] /
                                 asegBase[edad][ant]* Constantes.APORTACION_VIVIENDA *
                                 Constantes.ASEG_APORTAN_SIN_CREDITO
                                (Constantes.DIAS_ANUAL/6D) * capitAportBim ));
        return saldoAcum;
```

Librería utilizada para realizar funciones matemáticas y lectura y escritura de hojas de cálculo.

Suma producto.

```
public double sumaProducto(double[] vectorA, double[]... vectores){
        double[] sumaProductoVec = new double[vectorA.length];
        double sumaProducto = 0;
        int index = 0;
for (double va:vectorA){
sumaProductoVec[index] = va;
index++;
        index=0:
        for (double[] vector:vectores){
            for (double v:vector){
                if (index==vectorA.length){
                    break;
                sumaProductoVec[index] *= v;
                index++;
            index = 0;
        for (double sp:sumaProductoVec){
            sumaProducto += sp;
        return sumaProducto;
Suma matriz.
public double[] sumaMatriz(double[][] matriz){
        double[] vector = new double[matriz.length];
        int index=0;
        for (double[] v:matriz){
            for (double celda:v){
                vector[index] +=celda;
            index++;
        return vector;
}
Suma vector.
public double sumaVector(double[] vector){
        double resultado=0;
        for(double suma:vector ){
            resultado += suma;
        return resultado;
}
```

Transponer

```
public double[][] transponer(double[][] matriz){
        double[][] matrizTranspuesta= new double[matriz[0].length][matriz.length];
        int columna=0;
        int linea=0;
        for( double[] vec:matriz){
for(double celda:vec){
                 matrizTranspuesta[linea][columna] = celda;
                 linea++;
             columna++;
             linea=0;
        return matrizTranspuesta;
}
Lectura de archivo txt
public Object[] leerArchivoParametros(String rutaArchivo,
                                        String nombreArchivo){
        File archivoLeer = null;
        FileReader fr = null;
ArrayList lineaAlmacenar = new ArrayList();
        Object[] vector = null;
        try{
             archivoLeer = new File(rutaArchivo+nombreArchivo);
             String lecturaLinea;
             String[] parametros;
             fr = new FileReader(archivoLeer);
             BufferedReader br = new BufferedReader(fr);
            while ((lecturaLinea=br.readLine())!=null){
                 if (!lecturaLinea.equals("") && !lecturaLinea.startsWith("//")){
                     parametros = lecturaLinea.split("#");
if (parametros[1].trim().matches("\\d*+\\.+\\d*")){
                          lineaAlmacenar.add(parametros[1]);
                     }else if (parametros[1].trim().matches("\\d*")){
                         lineaAlmacenar.add(parametros[1]);
                     }else if (parametros[1].trim().matches("\\w*")){
lineaAlmacenar.add(parametros[1]);
                         lineaAlmacenar.add(parametros[1]);
             vector = lineaAlmacenar.toArray();
        }catch(IOException e){
             System.out.println(e);
}finally{
             try{
                 if (fr!=null){
                     fr.close();
             }catch(IOException e){
return vector; }
```

Abrir archivo de excel

Crear archivo de excel

```
public boolean crearArchivoExcel(String rutaArchivo, String nombreArchivo,String extension){
    try{
        if (abrirArchivoExcel(rutaArchivo, nombreArchivo,extension)){
        }else{
            workbook = extension.contains("xlsx")? new XSSFWorkbook()

: new HSSFWorkbook();
    }
    }catch (Exception e){
        e.printStackTrace();
        return false;
    }
    return true;
}
```

Crear hoja de cálculo

Leer matriz de excel.

```
public double[][] leerHojaExcel(String hoja,int lineas,
                             int columnas, int totalLineas,
                             int totalColumnas){
       sheet = workbook.getSheet(hoja);
       Row row = null;
       Cell cell = null;
       double[][] matriz = new double [totalColumnas][totalLineas];
       for ( int i=lineas-1, z=(lineas - 1) + (totalLineas -1); i <= z; i++){
           row = sheet.getRow(i);
           if (row != null){
           for (int ii=columnas - 1, zz=(columnas - 1)+(totalColumnas); ii<zz; ii++){</pre>
              cell = row.getCell(ii);
              if (cell != null) {
                  matriz[ii - (columnas - 1)][i - (lineas - 1)] =
                                          cell.getNumericCellValue();
          }
         }
      }
     return matriz;
```

Leer vector de excel.

```
public double[] leerVectorHojaExcel(String hoja,int lineas,
                                     int columnas,
                                     int totalLineas){
        sheet = workbook.getSheet(hoja);
        Row row = null;
        Cell cell = null;
        double[] vector = new double [totalLineas];
        for (int i=lineas-1, ii=(lineas - 1)+ (totalLineas -1); i<=ii; i++ ){
            row = sheet.getRow(i);
            if (row != null){
                cell = row.getCell(columnas-1);
                if (cell != null) {
                    if (Cell.CELL_TYPE_FORMULA ==
                         cell.getCellType()||Cell.CELL_TYPE_NUMERIC == cell.getCellType())
                         vector[i - (lineas - 1)]= cell.getNumericCellValue();
       return vector;
```

Guardar hoja de cálculo de openOffice

3.5 Pruebas del sistema

Rendimiento: El programa al ser ejecutado se detectó que no consume demasiados recursos informáticos, esto se debe a que los archivos que genera el sistema tienen un tamaño menor a un Megabyte, por lo que no se satura el disco duro, el consumo de memoria destinado a la ejecución de proceso es mínimo ya que utiliza menos de la mitad de la memoria destinada a los procesos, y el uso del procesador es de casi la mitad de la capacidad total. Las características antes mencionadas permiten al usuario seguir trabajando en su equipo sin que tenga problemas de rendimiento mientras el programa se ejecuta.

Resistencia: Como los equipos que componen el sistema son computadoras personales, estos no tienen una gran cantidad de recursos informáticos, entonces se hicieron pruebas y después de ejecutar 3 procesos simultáneamente, el equipo empezó a tener problemas de rendimiento y después de ejecutar un cuarto proceso la maquina presenta un muy mal funcionamiento, por lo que se opto por no ejecutar un quinto proceso. Después de las pruebas anteriores se recomienda ejecutar como máximo 2 procesos simultáneamente, debido a que los equipos no resisten grandes cargas de trabajo.

Robustez: El sistema presenta una vulnerabilidad a la hora de controlar las entradas erróneas, esta se encuentran a la hora de cargar las constantes del archivo txt, debido a que no se pueden bloquear los campos, por que el usuario escribe directamente en el archivo txt, por el momento no se cuenta con una interfaz grafica que permita controlar dichas entradas erróneas, pero posteriormente se desarrollará dicha interfaz para eliminar esta vulnerabilidad.

Seguridad: Únicamente los usuarios que tengan permisos podrán ejecutar el sistema, lo mismo se realizará para la actualización de la información, solo aquellos que tenga permisos para actualizar la información de entrada podrán hacerlo, los demás usuarios solamente podrán ejecutar el sistema y leer los resultados generados.

Usabilidad: Después de darles la explicación acerca de la utilización del sistema, los usuarios empezaron a interactuar con este, se les facilitó la actualización de la información, y la forma en la que el sistema entrega los resultados, los que se les complicó un poco fue la forma en la que se ejecuta el sistema, ya que este se ejecuta desde línea de comandos, pero en términos generales el sistema satisface las necesidades del usuario.

3.6 Implementación del Sistema

El sistema computacional consta de 5 equipos conectados en red, de los cuales 1 de ellos tiene alojado el archivo ejecutable y los archivos que contienen la información de entrada, dicho equipo comparte la información para que los otros 4 usuarios puedan actualizar la información y ejecutar el programa para generar los resultados del costo fiscal derivado de las pensiones.

En los 5 equipos que componen el sistema se instaló el JDK (Kit de desarrollo Java), este es necesario para que el archivo ejecutable (jar) pueda ser ejecutado. Después de esto se instaló Calc de OpenOffice, que es la aplicación en la que se muestran los resultados generados, esta aplicación se instaló también en los 5 equipos que componen el sistema.

En el gráfico 3.1 se representan la estructura física y lógica del sistema computacional que se expone en la presente tesis.

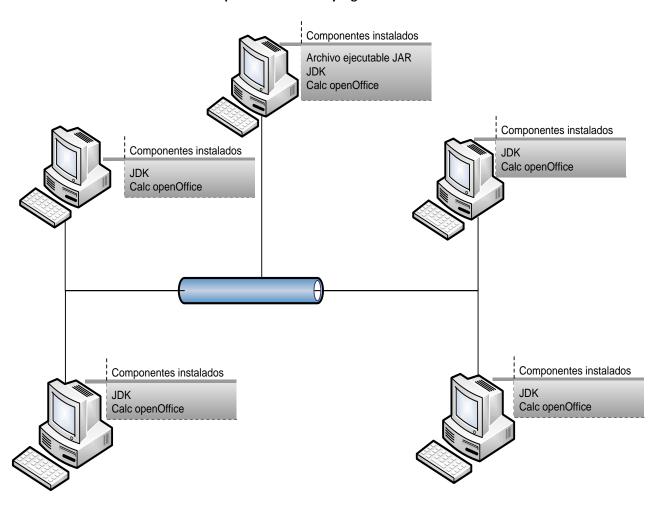


Gráfico 3.1 Representación física y lógica del sistema costo fiscal.

3.7 Resultados generados por el sistema

Cuadro 3.1 Proyección demográfica de inválidos

		Proyección demográfica de	pensiones por inval	idez	
Año	Inválidos	Inválidos sobrevivientes	Viudas	Huérfanos	Ascendientes
2011	4,896	4,822	52	44	5
2012	4,857	9,462	206	167	19
2013	4,770	13,877	457	357	40
2014	4,564	17,957	801	605	67
2015	4,507	21,857	1,232	898	100
2016	4,320	25,454	1,746	1,230	136
2017	4,254	28,874	2,337	1,588	175
2018	4,135	32,073	3,001	1,966	217
2019	3,916	34,956	3,734	2,355	260
2020	3,810	37,644	4,529	2,749	303
2021	3,686	40,124	5,383	3,141	346
2022	3,495	42,337	6,291	3,522	389
2023	3,199	44,187	7,247	3,880	429
2024	3,017	45,795	8,243	4,204	468
2025	3,000	47,332	9,276	4,488	504
2026	2,966	48,782	10,343	4,728	537
2027	2,912	50,129	11,444	4,921	567
2028	2,831	51,348	12,574	5,065	593
2029	2,721	52,414	13,731	5,160	616
2030	2,577	53,296	14,912	5,207	635
2031	2,398	53,964	16,112	5,209	649
2032	2,185	54,389	17,328	5,169	659
2033	1,939	54,544	18,555	5,090	663
2034	1,668	54,407	19,789	4,977	663
2035	1,389	53,978	21,022	4,833	658
2036	1,111	53,264	22,252	4,666	648
2037	846	52,282	23,471	4,480	633
2038	603	51,058	24,676	4,279	613
2039	392	49,627	25,862	4,069	589
2040	226	48,036	27,025	3,854	562
2041	109	46,335	28,161	3,636	531
2042	40	44,572	29,269	3,420	499
2043	14	42,788	30,344	3,207	464
2044	10	41,002	31,385	2,999	429
2045	7	39,215	32,392	2,798	393
2046	6	37,427	33,358	2,604	357
2047	4	35,636	34,275	2,420	322
2048	3	33,842	35,137	2,244	288
2049	2	32,047	35,934	2,078	255
2050	1	30,252	36,659	1,920	224
2051	1	28,458	37,306	1,770	195
2052	1	26,670	37,867	1,629	167
2053	0	24,891	38,333	1,496	142

		Proyección demográfica de	pensiones por invai	luez	
Año	Inválidos	Inválidos sobrevivientes	Viudas	Huérfanos	Ascendientes
2054	0	23,125	38,699	1,370	119
2055	0	21,380	38,955	1,252	99
2056	0	19,662	39,095	1,141	81
2057	0	17,978	39,113	1,039	65
2058	0	16,337	39,000	943	51
2059	0	14,747	38,753	854	40
2060	0	13,217	38,369	772	30
2061	0	11,756	37,843	696	23
2062	0	10,371	37,177	625	17
2063	0	9,067	36,367	560	12
2064	0	7,852	35,417	499	8
2065	0	6,728	34,328	443	6
2066	0	5,701	33,106	391	4
2067	0	4,771	31,758	343	2
2068	0	3,940	30,294	299	1
2069	0	3,206	28,730	257	1
2070	0	2,568	27,081	219	0
2071	0	2,021	25,368	184	0
2072	0	1,560	23,610	152	0
2073	0	1,180	21,830	123	0
2074	0	872	20,053	97	0
2075	0	628	18,299	75	0
2076	0	440	16,592	55	0
2077	0	299	14,950	39	0
2078	0	196	13,385	27	0
2079	0	123	11,904	17	0
2080	0	74	10,517	10	0
2081	0	43	9,228	6	0
2082	0	23	8,042	3	0
2083	0	12	6,960	2	0
2084	0	6	5,982	1	0
2085	0	2	5,105	0	0
2086	0	1	4,327	0	0
2087	0	0	3,640	0	0
2088	0	0	3,041	0	0
2089	0	0	2,520	0	0
2090	0	0	2,072	0	0
2091	0	0	1,689	0	0
2092	0	0	1,364	0	0
2093	0	0	1,091	0	0
2094	0	0	862	0	0
2095	0	0	673	0	0
2095	0	0	518	0	0
2096	0	0	392	0	0
2097	0			0	0
2098		0	292 213		0
2100	0	0 0	152	0 0	0

Cuadro 3.2 Proyección financiera de inválidos

		Proy	ección financiera de per	nsiones por invalidez			
- ~	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individua	I
Año	pensión inválidos	pensión viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda
2011	159	1	0.23	0.002	346	75	200
2012	475	6	1.92	0.014	376	84	224
2013	786	16	5.01	0.036	402	91	246
2014	1,088	32	9.25	0.066	416	95	261
2015	1,382	53	14.40	0.103	441	103	284
2016	1,668	79	20.26	0.146	453	107	298
2017	1,947	109	26.62	0.192	476	113	319
2018	2,221	144	33.31	0.243	492	118	336
2019	2,484	183	40.11	0.295	493	120	343
2020	2,737	227	46.85	0.349	507	124	358
2021	2,983	274	53.43	0.404	517	128	371
2022	3,218	326	59.66	0.458	516	128	376
2023	3,435	381	65.31	0.511	495	124	367
2024	3,632	440	70.14	0.562	489	124	368
2025	3,822	501	73.97	0.610	509	129	388
2026	4,013	565	76.68	0.655	525	134	406
2027	4,201	632	78.21	0.696	536	138	422
2028	4,387	702	78.53	0.734	543	141	433
2029	4,567	774	77.78	0.767	541	142	439
2030	4,736	849	76.01	0.794	531	140	437
2031	4,892	925	73.35	0.815	511	136	427
2032	5,030	1,003	69.92	0.830	481	129	408
2033	5,143	1,083	65.87	0.839	440	119	379
2034	5,227	1,163	61.42	0.840	390	106	340
2035	5,276	1,244	56.74	0.834	334	92	296
2036	5,290	1,324	51.94	0.821	276	76	247
2037	5,267	1,404	47.17	0.801	216	60	196
2038	5,207	1,483	42.51	0.775	159	44	146
2038	5,113	1,560	38.08	0.744	106	29	99
2039	4,987	1,635	33.91	0.707	63	17	60
2040	4,836	1,708	30.04	0.666	32	9	30
	· ·	· ·					
2042	4,666	1,778	26.48	0.623	12	3	12
2043	4,490	1,846	23.22	0.578	5	1	4
2044	4,311	1,911	20.28	0.531	3	1	3
2045	4,133	1,973	17.65	0.484	3	1	3
2046	3,955	2,032	15.30	0.438	2	1	2
2047	3,776	2,087	13.22	0.392	2	0	2
2048	3,597	2,138	11.38	0.348	1	0	1
2049	3,419	2,185	9.78	0.306	1	0	1
2050	3,240	2,227	8.39	0.266	1	0	1
2051	3,061	2,263	7.18	0.228	0	0	0
2052	2,882	2,294	6.14	0.193	0	0	0
2053	2,704	2,318	5.23	0.161	0	0	0
2054	2,526	2,336	4.46	0.133	0	0	0
2055	2,349	2,346	3.80	0.108	0	0	0

		Proy	ección financiera de per	nsiones por invalidez			
	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individua	I
Año	pensión inválidos	pensión viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda
2056	2,174	2,349	3.23	0.086	0	0	0
2057	2,001	2,344	2.74	0.067	0	0	0
2058	1,832	2,331	2.32	0.051	0	0	0
2059	1,666	2,308	1.96	0.038	0	0	0
2060	1,505	2,277	1.66	0.028	0	0	0
2061	1,350	2,237	1.40	0.020	0	0	0
2062	1,202	2,188	1.18	0.014	0	0	0
2063	1,061	2,130	0.99	0.009	0	0	0
2064	928	2,064	0.84	0.006	0	0	0
2065	803	1,990	0.70	0.004	0	0	0
2066	688	1,909	0.59	0.002	0	0	0
2067	583	1,820	0.50	0.001	0	0	0
2068	487	1,726	0.41	0.001	0	0	0
2069	402	1,626	0.34	0.000	0	0	0
2070	326	1,523	0.28	0.000	0	0	0
2071	261	1,416	0.22	0.000	0	0	0
2072	205	1,308	0.18	0.000	0	0	0
2073	157	1,199	0.14	0.000	0	0	0
2074	118	1,090	0.10	0.000	0	0	0
2075	87	984	0.07	0	0	0	0
2076	62	881	0.05	0	0	0	0
2077	43	781	0.03	0	0	0	0
2078	29	687	0.02	0	0	0	0
2079	19	599	0.01	0	0	0	0
2080	12	517	0.01	0	0	0	0
2081	7	441	0.00	0	0	0	0
2082	4	373	0.00	0	0	0	0
2083	2	312	0.00	0	0	0	0
2084	1	258	0.00	0	0	0	0
2085	0	211	0.00	0	0	0	0
2086	0	170	0	0	0	0	0
2087	0	136	0	0	0	0	0
2088	0	108	0	0	0	0	0
2089	0	84	0	0	0	0	0
2090	0	65	0	0	0	0	0
2091	0	50	0	0	0	0	0
2092	0	38	0	0	0	0	0
2093	0	29	0	0	0	0	0
2094	0	21	0	0	0	0	0
2095	0	16	0	0	0	0	0
2096	0	12	0	0	0	0	0
2097	0	8	0	0	0	0	0
2098	0	6	0	0	0	0	0
2099	0	4	0	0	0	0	0
2100	0	3	0	0	0	0	0

Cuadro 3.3 Proyección demográfica de cesantía en edad avanzada y vejez

۸ ۵ -	Doneignadas C-1/-	Pensionados CeVe	\/:daa	U	A
Año	Pensionados CeVe	sobrevivientes	Viudas	Huérfanos	Ascendientes
2011	120,419	120,068	305	57	2
2012	130,360	249,332	1,256	232	8
2013	128,001	375,466	2,869	526	19
2014	123,518	496,355	5,136	932	32
2015	128,969	621,916	8,065	1,434	47
2016	125,071	742,784	11,661	2,026	63
2017	125,365	863,144	15,926	2,703	79
2018	132,619	989,916	20,885	3,467	96
2019	134,064	1,117,243	26,569	4,318	112
2020	142,998	1,252,561	33,009	5,252	129
2021	154,748	1,398,604	40,261	6,269	146
2022	156,365	1,545,167	48,370	7,362	163
2023	172,102	1,706,284	57,390	8,524	181
2024	181,362	1,875,373	67,388	9,747	199
2025	192,299	2,054,008	78,418	11,017	217
2026	196,366	2,235,220	90,533	12,326	235
2027	206,864	2,425,332	103,782	13,666	253
2028	213,126	2,619,991	118,223	15,036	271
2029	229,478	2,829,152	133,916	16,431	289
2030	238,973	3,045,802	150,923	17,850	307
2031	251,747	3,273,062	169,303	19,290	324
2032	258,915	3,505,160	189,111	20,751	342
2033	279,091	3,754,908	210,418	22,234	359
2034	273,098	3,995,946	233,273	23,734	376
2035	266,519	4,227,521	257,666	25,237	393
2036	250,064	4,439,581	283,597	26,731	407
2037	227,773	4,626,119	310,999	28,191	419
2038	208,842	4,790,307	339,821	29,606	427
2039	171,572	4,913,623	369,955	30,953	430
2040	130,024	4,991,616	401,197	32,199	429
2041	93,374	5,028,952	433,344	33,312	423
2042	48,192	5,016,841	466,201	34,260	411
2043	7,010	4,959,036	499,602	35,019	393
2044	3,397	4,892,836	533,312	35,576	370
2045	2,486	4,820,621	566,836	35,930	345
2046	1,790	4,742,296	599,600	36,087	317
2047	1,201	4,657,711	631,432	36,042	290
2048	730	4,566,768	662,231	35,794	263
2048	478	4,469,552	691,721	35,346	237
2050	300	4,366,041	719,762	34,706	211
2050 2051	175	4,256,189	746,264	33,892	187
2051	93	4,140,066	770,999		163
2052 2053	93 45	4,140,066	770,999	32,921	163
2053 2054				31,816	
	20	3,890,132	814,783	30,599	121
2055 2056	8 3	3,756,967 3,618,815	833,370 849,637	29,291 27,919	102 85

Año	Pensionados CeVe	Pensionados CeVe sobrevivientes	Viudas	Huérfanos	Ascendientes
2057	1	3,476,042	863,278	26,497	69
2058	0	3,328,927	874,117	25,037	56
2059	0	3,177,744	881,985	23,548	44
2060	0	3,022,687	886,850	22,037	34
2061	0	2,863,938	888,571	20,517	26
2062	0	2,701,823	887,099	18,993	19
2063	0	2,536,576	882,196	17,470	14
2064	0	2,368,650	873,724	15,961	10
2065	0	2,198,634	861,492	14,475	7
2066	0	2,027,324	845,405	13,022	4
2067	0	1,855,583	825,074	11,607	3
2068	0	1,684,430	800,577	10,236	2
2069	0	1,514,934	771,990	8,914	1
2070	0	1,348,401	739,558	7,653	1
2071	0	1,186,200	703,672	6,467	0
2072	0	1,029,865	664,637	5,371	0
2073	0	880,856	623,153	4,371	0
2074	0	740,846	580,028	3,471	0
2075	0	611,303	536,100	2,678	0
2076	0	493,584	492,385	1,994	0
2077	0	388,778	449,795	1,423	0
2078	0	297,530	408,629	966	0
2079	0	220,259	369,119	622	0
2080	0	156,915	331,477	377	0
2081	0	106,860	295,882	214	0
2082	0	69,129	262,480	115	0
2083	0	42,314	231,376	58	0
2084	0	24,265	202,639	26	0
2085	0	12,865	176,294	10	0
2086	0	6,195	152,329	4	0
2087	0	2,645	130,695	1	0
2088	0	966	111,312	0	0
2089	0	286	94,073	0	0
2090	0	62	78,853	0	0
2091	0	8	65,515	0	0
2092	0	0	53,915	0	0
2093	0	0	43,907	0	0
2094	0	0	35,349	0	0
2095	0	0	28,100	0	0
2096	0	0	22,026	0	0
2097	0	0	16,994	0	0
2098	0	0	12,881	0	0
2099	0	0	9,568	0	0
2100	0	0	6,945	0	0

Cuadro 3.4 Proyección financiera de cesantía en edad avanzada y vejez

		Proyección finan	ciera de pensiones p	oor Cesantía en edad a	vanzada y Vejez	(CeVe)	
	Volumen de	Volumen de	Volumen de Volumen de	Volumen de	Cuenta individual		
Año	pensión CeVe	pensión viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda
2011	4,150	3	0	0.000	7,027	1,755	4,615
2012	12,892	25	0	0.001	8,942	2,193	5,632
2013	22,052	70	1	0.002	9,718	2,420	6,237
2014	31,025	138	2	0.003	10,502	2,591	6,859
2015	40,076	230	3	0.005	11,995	2,974	7,975
2016	49,185	348	4	0.007	12,772	3,142	8,643
2017	58,177	492	6	0.009	14,004	3,410	9,556
2018	67,538	661	8	0.011	15,845	3,883	11,029
2019	77,308	857	10	0.013	17,340	4,206	12,271
2020	87,574	1,082	12	0.015	19,760	4,788	14,125
2021	98,788	1,337	14	0.017	22,639	5,502	16,431
2022	110,687	1,626	16	0.020	24,399	5,897	17,878
2023	123,461	1,950	19	0.023	28,085	6,862	20,773
2024	137,433	2,310	21	0.025	31,190	7,632	23,315
2025	152,392	2,710	24	0.028	34,554	8,522	26,145
2026	168,117	3,153	27	0.032	37,024	9,152	28,258
2027	184,627	3,641	30	0.035	40,729	10,107	31,368
2028	202,055	4,174	32	0.038	43,937	10,905	34,222
2029	220,708	4,754	35	0.042	49,108	12,269	38,696
2030	240,775	5,383	38	0.046	53,214	13,342	42,599
2031	262,139	6,064	41	0.049	58,325	14,655	47,346
2032	284,726	6,797	44	0.053	62,096	15,698	51,173
2033	308,964	7,584	47	0.058	68,360	17,568	57,412
2034	334,202	8,426	50	0.062	68,743	17,861	58,750
2035	359,095	9,324	53	0.066	68,394	18,065	59,320
2036	383,046	10,274	56	0.070	65,306	17,531	57,645
2037	405,149	11,275	59	0.074	60,867	16,508	54,571
2038	425,190	12,321	62	0.076	57,082	15,630	51,933
2039	442,240	13,406	65	0.079	47,729	13,231	44,051
2040	454,934	14,522	67	0.080	36,746	10,252	34,512
2041	463,119	15,656	70	0.080	27,023	7,476	25,848
2042	466,374	16,797	71	0.079	14,233	3,895	13,808
2043	464,323	17,932	72	0.077	2,228	611	2,139
2044	459,300	19,046	72	0.074	1,157	314	1,108
2045	453,597	20,138	72	0.070	873	238	844
2046	447,361	21,201	71	0.065	648	176	633
2047	440,587	22,224	69	0.060	448	122	442
2048	433,268	23,200	67	0.055	282	77	280
2049	425,411	24,122	64	0.050	190	52	190
2050	417,026	24,981	61	0.045	123	33	124
2050	417,020	25,769	57	0.043	73	20	75
2051	398,657	26,477	53	0.036	40	11	73 41
2052	388,672	27,097	49	0.031	20	5	20
2053	378,163	27,623	45	0.031	9	2	9
2054			45 41	0.027			
2055	367,140	28,048	41	0.023	4	1	4

		Proyección financ	ciera de pensiones p	oor Cesantía en edad av	vanzada y Vejez	(CeVe)		
	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individual		
Año	pensión CeVe	pensión viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda	
2056	355,611	28,365	37	0.019	1	0	1	
2057	343,589	28,568	33	0.016	0	0	0	
2058	331,084	28,652	30	0.013	0	0	0	
2059	318,105	28,614	27	0.010	0	0	0	
2060	304,659	28,455	24	0.008	0	0	0	
2061	290,752	28,172	21	0.006	0	0	0	
2062	276,394	27,767	19	0.005	0	0	0	
2063	261,602	27,241	17	0.003	0	0	0	
2064	246,396	26,595	15	0.002	0	0	0	
2065	230,814	25,834	13	0.002	0	0	0	
2066	214,910	24,961	11	0.001	0	0	0	
2067	198,752	23,984	10	0.001	0	0	0	
2068	182,423	22,908	8	0.000	0	0	0	
2069	166,016	21,742	7	0.000	0	0	0	
2070	149,645	20,500	6	0.000	0	0	0	
2071	133,439	19,195	5	0.000	0	0	0	
2072	117,550	17,844	4	0.000	0	0	0	
2073	102,135	16,462	3	0.000	0	0	0	
2074	87,368	15,069	2	0	0	0	0	
2075	73,430	13,685	2	0	0	0	0	
2076	60,491	12,327	1	0	0	0	0	
2077	48,705	11,014	1	0	0	0	0	
2078	38,198	9,762	0	0	0	0	0	
2079	29,058	8,581	0	0	0	0	0	
2080	21,343	7,480	0	0	0	0	0	
2081	15,048	6,463	0	0	0	0	0	
2082	10,121	5,535	0	0	0	0	0	
2083	6,460	4,699	0	0	0	0	0	
2084	3,890	3,953	0	0	0	0	0	
2085	2,186	3,296	0	0	0	0	0	
2086	1,130	2,725	0	0	0	0	0	
2087	527	2,234	0	0	0	0	0	
2088	216	1,817	0	0	0	0	0	
2089	75	1,466	0	0	0	0	0	
2090	20	1,174	0	0	0	0	0	
2091	4	932	0	0	0	0	0	
2092	0	735	0	0	0	0	0	
2093	0	574	0	0	0	0	0	
2094	0	445	0	0	0	0	0	
2095	0	342	0	0	0	0	0	
2096	0	260	0	0	0	0	0	
2097	0	195	0	0	0	0	0	
2098	0	145	0	0	0	0	0	
2099	0	106	0	0	0	0	0	
2100	0	76	0	0	0	0	0	

Cuadro 3.5 Proyección demográfica de fallecidos por enfermedad general

Año	Fallecidos	Viudas	Huérfanos	Ascendendientes
2011	8,710	7,098	6,566	590
2012	8,515	14,030	12,963	1,142
2012	8,193	20,693	19,056	1,649
2013	8,020	27,221	24,928	2,119
2015	7,758	33,537	30,479	2,548
2016	7,625	39,746	35,790	2,945
2017	7,391	45,768	40,763	3,304
2017	7,164	51,611	45,375	3,628
2019	7,056	57,371	49,695	3,923
2019	6,816	62,941	53,630	4,184
2020	6,675	68,411	57,141	4,415
2021	6,385	73,647	59,828	4,614
2022	6,224	73,047 78,754	61,694	4,786
2023	5,893	78,754 83,588	62,685	4,786 4,926
2024	5,797	88,342	62,958	5,043
2023	5,669	92,987	62,531	5,136
2026	5,520	97,503	61,451	5,205
2027	5,335	101,857	59,791	5,249
2028	5,120	106,024		5,249
2029			57,591	
	4,851	109,954	54,932	5,258
2031	4,540	113,610	51,879	5,221
2032	4,179	116,945	48,521	5,157
2033	3,779	119,925	44,952	5,067
2034	3,311	122,488	41,240	4,950
2035	2,829	124,618	37,450	4,807
2036	2,336	126,304	33,684	4,641
2037	1,856	127,550	30,032	4,454
2038	1,406	128,380	26,592	4,249
2039	981	128,808	23,363	4,027
2040	626	128,890	20,350	3,793
2041	351	128,687	17,563	3,550
2042	156	128,263	15,011	3,300
2043	56	127,692	12,706	3,049
2044	39	127,036	10,651	2,798
2045	29	126,294	8,835	2,550
2046	21	125,458	7,246	2,307
2047	15	124,521	5,870	2,070
2048	11	123,473	4,694	1,842
2049	8	122,303	3,700	1,625
2050	5	121,002	2,875	1,420
2051	3	119,557	2,200	1,228
2052	2	117,959	1,658	1,050
2053	1	116,196	1,230	888
2054	0	114,257	897	742
2055	0	112,133	642	611
2056	0	109,816	448	497

Año	Fallecidos	Viudas	Huérfanos	Ascendendientes
2057	0	107,298	305	398
2058	0	104,573	200	313
2059	0	101,639	127	242
2060	0	98,495	76	184
2061	0	95,141	44	137
2062	0	91,584	24	100
2063	0	87,830	12	71
2064	0	83,891	6	49
2065	0	79,780	3	33
2066	0	75,517	2	22
2067	0	71,123	1	14
2068	0	66,624	1	9
2069	0	62,048	0	5
2070	0	57,429	0	3
2071	0	52,802	0	2
2072	0	48,203	0	1
2073	0	43,673	0	0
2074	0	39,249	0	0
2075	0	34,970	0	0
2076	0	30,874	0	0
2077	0	26,993	0	0
2078	0	23,357	0	0
2079	0	19,992	0	0
2080	0	16,916	0	0
2081	0	14,141	0	0
2082	0	11,672	0	0
2083	0	9,507	0	0
2084	0	7,638	0	0
2085	0	6,050	0	0
2086	0	4,722	0	0
2087	0	3,630	0	0
2088	0	2,746	0	0
2089	0	2,044	0	0
2090	0	1,496	0	0
2091	0	1,075	0	0
2092	0	758	0	0
2093	0	524	0	0
2094	0	353	0	0
2095	0	233	0	0
2096	0	149	0	0
2097	0	93	0	0
2098	0	56	0	0
2099	0	32	0	0
2100	0	18	0	0

Cuadro 3.6 Proyección financiera de fallecidos por enfermedad general

	Volumen de	Volumen de pensión	Volumen de pensión		Cuenta individual	
Año	pensión viudas	huérfanos	ascendientes	RCV	Cuota social	Vivienda
2011	171	71	0.305	602	131	350
2012	514	211	0.892	647	144	387
2013	856	349	1.433	679	154	417
2014	1,198	482	1.930	721	166	454
2015	1,540	611	2.387	753	175	485
2016	1,884	734	2.809	795	187	523
2017	2,230	852	3.198	824	195	552
2018	2,576	962	3.551	850	204	581
2019	2,924	1,065	3.873	889	215	618
2020	3,274	1,160	4.164	910	221	643
2021	3,626	1,245	4.422	940	231	675
2022	3,977	1,311	4.648	947	234	690
2023	4,327	1,352	4.843	970	241	718
2024	4,673	1,370	5.009	963	241	723
2025	5,014	1,366	5.147	992	250	755
2026	5,356	1,343	5.263	1,013	257	783
2027	5,699	1,300	5.355	1,030	263	806
2028	6,038	1,241	5.421	1,036	266	823
2029	6,371	1,168	5.460	1,034	268	833
2030	6,691	1,085	5.468	1,017	265	832
2031	6,995	995	5.447	986	259	818
2032	7,280	900	5.395	938	248	789
2033	7,541	804	5.311	875	234	747
2034	7,771	710	5.196	790	213	684
2035	7,966	620	5.050	694	189	609
2036	8,125	536	4.877	590	161	525
2037	8,248	459	4.678	483	133	436
2038	8,336	389	4.456	377	104	344
2039	8,390	327	4.217	270	75	250
2040	8,415	272	3.962	178	49	167
2041	8,416	223	3.696	103	28	98
2042	8,399	181	3.423	48	13	46
2043	8,369	145	3.147	19	5	18
2044	8,331	115	2.870	13	4	13
2045	8,287	89	2.597	10	3	10
2046	8,237	68	2.329	8	2	8
2047	8,180	52	2.069	6	2	6
2048	8,116	38	1.819	4	1	4
2049	8,044	28	1.583	3	1	3
2050	7,963	20	1.361	2	1	2
2051	7,873	14	1.155	1	0	1
2052	7,772	9	0.968	1	0	1
2053	7,660	6	0.799	0	0	0
2054	7,537	4	0.649	0	0	0
2055	7,400	3	0.519	0	0	0
2056	7,251	2	0.407	0	0	0

		Proyección financiera d	e pensiones por muerte a ca	ausa de enferme	edad general			
. ~	Volumen de	Volumen de pensión	Volumen de pensión	nsión <u>Cuenta individual</u>				
Año	pensión viudas	huérfanos	ascendientes	RCV	Cuota social	Vivienda		
2057	7,087	1	0.314	0	0	0		
2058	6,909	1	0.237	0	0	0		
2059	6,717	0	0.174	0	0	0		
2060	6,510	0	0.126	0	0	0		
2061	6,288	0	0.088	0	0	0		
2062	6,052	0	0.060	0	0	0		
2063	5,801	0	0.040	0	0	0		
2064	5,537	0	0.026	0	0	0		
2065	5,261	0	0.016	0	0	0		
2066	4,974	0	0.009	0	0	0		
2067	4,676	0	0.005	0	0	0		
2068	4,371	0	0.003	0	0	0		
2069	4,059	0	0.002	0	0	0		
2070	3,744	0	0.001	0	0	0		
2071	3,428	0	0.000	0	0	0		
2072	3,113	0	0.000	0	0	0		
2073	2,802	0	0.000	0	0	0		
2074	2,499	0	0.000	0	0	0		
2075	2,207	0	0.000	0	0	0		
2076	1,927	0	0	0	0	0		
2077	1,663	0	0	0	0	0		
2078	1,417	0	0	0	0	0		
2079	1,190	0	0	0	0	0		
2080	986	0	0	0	0	0		
2081	803	0	0	0	0	0		
2082	643	0	0	0	0	0		
2083	505	0	0	0	0	0		
2084	390	0	0	0	0	0		
2085	294	0	0	0	0	0		
2086	217	0	0	0	0	0		
2087	157	0	0	0	0	0		
2088	110	0	0	0	0	0		
2089	76	0	0	0	0	0		
2090	51	0	0	0	0	0		
2091	33	0	0	0	0	0		
2092	21	0	0	0	0	0		
2093	13	0	0	0	0	0		
2094	8	0	0	0	0	0		
2095	5	0	0	0	0	0		
2096	3	0	0	0	0	0		
2097	2	0	0	0	0	0		
2098	1	0	0	0	0	0		
2099	0	0	0	0	0	0		
2100	0	0	0	0	0	0		

Cuadro 3.7 Proyección demográfica de incapacidad igual a 100%

	F	Proyección demográfica de pe	ensiones por incapacid	ad igual a 100%	
Año	Incapacitados	Incapacitados sobrevivientes	Viudas	Huérfanos	Ascendientes
2011	73	72	1	1	0
2012	72	141	3	4	0
2013	71	207	8	9	1
2014	70	271	13	15	1
2015	72	333	21	22	2
2016	73	395	29	31	2
2017	74	456	40	40	3
2018	75	516	52	50	4
2019	75	575	65	60	5
2020	76	633	80	71	5
2021	78	690	97	81	6
2022	77	746	114	92	7
2023	76	798	134	102	8
2024	75	848	154	112	8
2025	71	893	176	121	9
2026	68	932	199	128	10
2027	64	966	223	135	10
2028	59	995	248	140	11
2029	55	1,018	273	144	11
2030	50	1,037	299	146	12
2031	46	1,049	326	146	12
2032	41	1,057	353	146	12
2033	36	1,059	380	144	12
2034	30	1,055	407	140	12
2035	25	1,047	434	136	12
2036	20	1,033	461	131	12
2037	16	1,015	487	125	12
2038	12	994	514	119	12
2039	8	968	539	112	11
2040	5	941	565	105	11
2041	3	911	589	98	10
2042	1	880	613	92	10
2043	0	849	637	85	9
2044	0	818	659	79	9
2045	0	787	681	73	8
2046	0	756	703	67	7
2047	0	725	724	62	7
2048	0	694	744	57	6
2049	0	663	763	52	5
2050	0	631	781	48	5
2051	0	600	799	44	4
2052	0	568	816	40	3
2053	0	535	832	37	3
2054	0	503	846	34	2
2055	0	470	859	31	2

	F	Proyección demográfica de pe	ensiones por incapacid	ad igual a 100%	
Año	Incapacitados	Incapacitados sobrevivientes	Viudas	Huérfanos	Ascendientes
2056	0	437	870	28	2
2057	0	404	880	26	1
2058	0	371	887	24	1
2059	0	338	892	22	1
2060	0	307	894	20	1
2061	0	275	893	18	0
2062	0	246	888	16	0
2063	0	217	880	15	0
2064	0	190	869	13	0
2065	0	164	853	12	0
2066	0	140	833	11	0
2067	0	118	809	10	0
2068	0	99	781	9	0
2069	0	81	750	7	0
2070	0	65	715	6	0
2071	0	52	677	5	0
2072	0	40	636	5	0
2073	0	31	594	4	0
2074	0	23	550	3	0
2075	0	17	507	2	0
2076	0	12	463	2	0
2077	0	8	420	1	0
2078	0	5	379	1	0
2079	0	3	339	1	0
2079	0	2	301	0	0
	0				
2081		1	266	0	0
2082	0	1	233	0	0
2083	0	0	202	0	0
2084	0	0	174	0	0
2085	0	0	149	0	0
2086	0	0	127	0	0
2087	0	0	107	0	0
2088	0	0	90	0	0
2089	0	0	75	0	0
2090	0	0	62	0	0
2091	0	0	51	0	0
2092	0	0	41	0	0
2093	0	0	33	0	0
2094	0	0	26	0	0
2095	0	0	20	0	0
2096	0	0	16	0	0
2097	0	0	12	0	0
2098	0	0	9	0	0
2099	0	0	7	0	0
2100	0	0	5	0	0

Cuadro 3.8 Proyección financiera de incapacidad igual a 100%

		Proyecc		ensiones por incapac	iuau igual a 10		
Año	Volumen de pensión	Volumen de pensión viudas	Volumen de pensión	Volumen de pensión	RCV	Cuenta individual Cuota social	Vivienda
2011	incapacitados 3	0	huérfanos 0.01	ascendientes 0.000	5	1	3
011	9		0.01	0.000			
		0			5	1	3
013	14	0	0.25	0.001	6	1	4
014	20	0	0.47	0.003	6	1	4
015	26	1	0.74	0.004	7	2	4
016	31	1	1.06	0.005	7	2	5
017	37	2	1.42	0.007	8	2	5
018	42	2	1.81	0.008	9	2	6
019	48	3	2.22	0.010	9	2	6
020	54	4	2.65	0.012	10	2	7
021	60	5	3.09	0.013	11	3	8
022	66	5	3.53	0.015	11	3	8
023	71	7	3.96	0.016	11	3	9
.024	77	8	4.37	0.018	12	3	9
025	83	9	4.75	0.020	12	3	9
026	88	10	5.08	0.021	12	3	9
.027	92	12	5.37	0.023	11	3	9
028	97	13	5.60	0.024	11	3	9
029	100	15	5.77	0.025	11	3	9
030	104	17	5.87	0.026	10	3	8
.031	107	18	5.91	0.027	10	3	8
032	110	20	5.88	0.028	9	2	8
.033	112	22	5.80	0.029	8	2	7
.034	113	24	5.67	0.029	7	2	6
.035	114	25	5.48	0.029	6	2	5
2036	114	27	5.26	0.029	5	1	5
.037	114	29	5.00	0.029	4	1	4
038	113	31	4.73	0.028	3	1	3
039	111	33	4.43	0.028	2	1	2
.040	109	34	4.13	0.027	1	0	1
041	106	36	3.83	0.026	1	0	1
042	102	38	3.52	0.025	0	0	0
043	99	39	3.22	0.024	0	0	0
044	95	41	2.94	0.022	0	0	0
045	92	42	2.66	0.021	0	0	0
046	89	44	2.40	0.020	0	0	0
047	85	45	2.16	0.018	0	0	0
047	82	46	1.94	0.016	0	0	0
048	78	48	1.73	0.015	0	0	0
050	76 75	49	1.73	0.013	0	0	0
050		50					
	71 67		1.36	0.012	0	0	0
052	67	51	1.21	0.011	0	0	0
053	64	52	1.06	0.009	0	0	0
054	60	53	0.93	0.008	0	0	0
.055	57	54	0.81	0.007	0	0	0

		Proyecci	ión financiera de p	ensiones por incapac	idad igual a 100	0%	
	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individual	
Año	pensión incapacitados	pensión viudas	pensión huérfanos	pensión — ascendientes	RCV	Cuota social	Vivienda
2056	53	54	0.71	0.006	0	0	0
2057	49	55	0.61	0.005	0	0	0
2058	45	55	0.53	0.004	0	0	0
2059	42	55	0.46	0.003	0	0	0
2060	38	55	0.39	0.002	0	0	0
2061	34	55	0.34	0.002	0	0	0
2062	31	54	0.29	0.001	0	0	0
2063	27	54	0.25	0.001	0	0	0
2064	24	53	0.21	0.001	0	0	0
2065	21	52	0.18	0.000	0	0	0
2066	18	51	0.15	0.000	0	0	0
2067	15	49	0.13	0.000	0	0	0
2068	13	47	0.11	0.000	0	0	0
2069	11	45	0.09	0.000	0	0	0
2070	9	43	0.08	0.000	0	0	0
2071	7	41	0.06	0.000	0	0	0
2072	6	38	0.05	0.000	0	0	0
2073	4	36	0.04	0.000	0	0	0
2074	3	33	0.03	0	0	0	0
2075	2	31	0.02	0	0	0	0
2076	2	28	0.02	0	0	0	0
2077	1	25	0.01	0	0	0	0
2078	1	23	0.01	0	0	0	0
2079	1	20	0.00	0	0	0	0
2080	0	18	0.00	0	0	0	0
2081	0	16	0.00	0	0	0	0
2082	0	14	0.00	0	0	0	0
2083	0	12	0.00	0	0	0	0
2084	0	10	0.00	0	0	0	0
2085	0	9	0.00	0	0	0	0
2086	0	7	0	0	0	0	0
2087	0	6	0	0	0	0	0
2088	0	5	0	0	0	0	0
2089	0	4	0	0	0	0	0
2090	0	4	0	0	0	0	0
2091	0	3	0	0	0	0	0
2092	0	2	0	0	0	0	0
2093	0	2	0	0	0	0	0
2094	0	1	0	0	0	0	0
2095	0	1	0	0	0	0	0
2096	0	1	0	0	0	0	0
2097	0	1	0	0	0	0	0
2098	0	1	0	0	0	0	0
2099	0	0	0	0	0	0	0
2100	0	0	0	0	0	0	0

Cuadro 3.9 Proyección demográfica de incapacidad menor al 100% y mayor al 50%

Año	Incapacitados	Incapacitados	Viudas	Huérfanos	Ascendientes
		sobrevivientes			
2011	328	323	4	5	0
2012	326	635	15	17	2
2013	322	934	34	37	3
2014	319	1,220	59	63	5
.015	326	1,505	92	95	8
016	334	1,790	131	131	11
017	341	2,072	178	170	14
018	346	2,351	231	213	17
019	351	2,627	292	258	20
020	354	2,897	359	304	24
021	365	3,170	433	351	27
022	365	3,434	514	398	31
023	363	3,688	601	444	34
024	359	3,929	695	487	38
025	344	4,148	795	526	41
026	327	4,343	900	561	44
027	309	4,515	1,010	590	47
028	290	4,662	1,124	614	50
.029	270	4,784	1,241	631	52
.030	249	4,881	1,362	642	54
031	227	4,953	1,485	647	56
032	203	4,998	1,609	645	57
033	179	5,017	1,735	638	58
034	153	5,009	1,861	625	58
035	128	4,975	1,988	608	58
036	103	4,917	2,113	586	58
037	81	4,837	2,238	562	57
038	60	4,737	2,361	535	55
039	41 26	4,620	2,481	506	54
040	26	4,489	2,599	477	51
041	14	4,348	2,715	447	49
042	6	4,201	2,827	417	46
043	2	4,051	2,936	388	44
044 045	1	3,902	3,042	360	40
045	1	3,754	3,146	333	37
046 047	1	3,605	3,246	308	34
047	0	3,457	3,343	284	31
048	0	3,308	3,437	262	28
049	0	3,158	3,527	241	25
050 051	0	3,007	3,613	222	22
051	0	2,854	3,695	204	19
052	0	2,701	3,773	188	17
053	0	2,546	3,846	172	14
054	0	2,389	3,912	158	12
055	0	2,232	3,972	145	10

Año	Incapacitados	Incapacitados sobrevivientes	Viudas	Huérfanos	Ascendientes
056	0	2,074	4,024	133	8
057	0	1,916	4,067	121	7
058	0	1,759	4,099	111	5
059	0	1,604	4,120	101	4
060	0	1,452	4,128	92	3
061	0	1,304	4,121	84	2
062	0	1,161	4,099	76	2
063	0	1,025	4,061	69	1
064	0	896	4,004	63	1
065	0	774	3,930	56	1
)66	0	661	3,837	50	0
067	0	558	3,725	45	0
068	0	464	3,595	39	0
069	0	381	3,448	34	0
70	0	307	3,286	29	0
071	0	243	3,110	25	0
)72	0	189	2,922	21	0
073	0	144	2,727	17	0
)74	0	107	2,526	14	0
)75	0	78	2,324	11	0
076	0	55	2,123	8	0
)77	0	37	1,927	6	0
)78	0	25	1,736	4	0
079	0	16	1,554	3	0
080	0	9	1,381	2	0
81	0	5	1,218	1	0
)82	0	3	1,067	0	0
083	0	1	927	0	0
)84	0	1	800	0	0
85	0	0	686	0	0
86	0	0	583	0	0
087	0	0	493	0	0
88	0	0	413	0	0
089	0	0	343	0	0
090	0	0	283	0	0
91	0	0	232	0	0
92	0	0	188	0	0
93	0	0	151	0	0
094	0	0	120	0	0
095	0	0	94	0	0
096	0	0	73	0	0
097	0	0	55	0	0
98	0	0	41	0	0
99	0	0	30	0	0
L00	0	0	22	0	0

Cuadro 3.10 Proyección financiera de incapacidad menor al 100% y mayor al 50%

		Proyección finan	ciera de pensiones	s por incapacidad mei	nor a 100% y m	ayor a 50%	
	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individual	
Año	pensión incapacitados	pensión viudas	pensión huérfanos	pensión — ascendientes	RCV	Cuota social	Vivienda
2011	9	0	0.03	0.000	15	3	9
2012	26	0	0.27	0.002	16	4	10
2013	43	1	0.71	0.004	18	4	11
2014	60	1	1.33	0.007	19	4	12
2015	77	2	2.10	0.011	21	5	13
2016	94	4	3.02	0.016	23	5	15
2017	112	5	4.04	0.020	25	6	16
2018	129	7	5.15	0.025	27	7	18
2019	147	9	6.34	0.030	29	7	20
2020	165	11	7.57	0.036	30	8	22
2021	184	14	8.84	0.041	33	8	24
2022	203	17	10.13	0.047	35	9	26
2023	221	20	11.39	0.052	37	9	27
2024	239	23	12.61	0.058	38	10	29
2025	257	27	13.73	0.063	38	10	29
2026	274	31	14.74	0.068	38	10	29
2027	289	36	15.62	0.073	37	10	30
2028	303	41	16.33	0.078	37	10	29
2029	317	45	16.86	0.082	36	9	29
2030	328	51	17.21	0.086	34	9	28
2031	339	56	17.37	0.090	32	9	27
2032	348	61	17.36	0.092	30	8	25
2033	355	67	17.18	0.095	27	7	23
2034	361	73	16.83	0.096	24	7	21
2035	364	78	16.35	0.097	21	6	18
2036	365	84	15.75	0.097	17	5	15
2037	364	90	15.04	0.096	14	4	13
2038	361	96	14.27	0.095	11	3	10
2039	356	101	13.44	0.093	7	2	7
2040	348	107	12.58	0.091	5	1	5
2041	339	112	11.70	0.087	3	1	3
2042	329	117	10.81	0.084	1	0	1
2043	318	122	9.94	0.080	0	0	0
2044	306	127	9.09	0.075	0	0	0
2045	295	132	8.27	0.071	0	0	0
2046	284	136	7.49	0.066	0	0	0
2047	273	141	6.76	0.060	0	0	0
2048	262	145	6.08	0.055	0	0	0
2049	250	149	5.44	0.050	0	0	0
2050	239	153	4.86	0.045	0	0	0
2051	228	156	4.32	0.040	0	0	0
2052	216	159	3.82	0.035	0	0	0
2053	204	162	3.37	0.031	0	0	0
2053	193	165	2.96	0.026	0	0	0
2054	193	167	2.59	0.028	0	0	0
2055	169	169	2.39	0.019	0	0	0

	Volumen de	Volumen de	Volumen de		Cuenta individual		
Año	pensión incapacitados	pensión viudas	pensión huérfanos	pensión — ascendientes	RCV	Cuota social	Vivienda
2057	157	171	1.96	0.015	0	0	0
058	145	172	1.69	0.013	0	0	0
059	133	172	1.46	0.010	0	0	0
.060	121	172	1.26	0.008	0	0	0
061	109	171	1.08	0.006	0	0	0
062	98	170	0.92	0.004	0	0	0
:063	87	168	0.79	0.003	0	0	0
2064	77	165	0.68	0.002	0	0	0
2065	67	162	0.58	0.002	0	0	0
2066	58	158	0.49	0.001	0	0	0
2067	49	153	0.42	0.001	0	0	0
2068	41	147	0.35	0.000	0	0	0
2069	34	141	0.30	0.000	0	0	0
2070	28	134	0.25	0.000	0	0	0
2071	22	127	0.20	0.000	0	0	0
2072	18	120	0.16	0.000	0	0	0
2073	14	112	0.13	0.000	0	0	0
2074	10	103	0.10	0.000	0	0	0
2075	8	95	0.07	0	0	0	0
2076	5	87	0.05	0	0	0	0
2077	4	79	0.03	0	0	0	0
2078	3	71	0.02	0	0	0	0
2079	2	64	0.01	0	0	0	0
2080	1	56	0.01	0	0	0	0
2081	1	50	0.00	0	0	0	0
2082	0	43	0.00	0	0	0	0
2083	0	38	0.00	0	0	0	0
2084	0	32	0.00	0	0	0	0
2085	0	28	0.00	0	0	0	0
2086	0	23	0	0	0	0	0
2087	0	20	0	0	0	0	0
2088	0	16	0	0	0	0	0
2089	0	14	0	0	0	0	0
2090	0	11	0	0	0	0	0
2091	0	9	0	0	0	0	0
2092	0	7	0	0	0	0	0
2093	0	6	0	0	0	0	0
2094	0	5	0	0	0	0	0
2095	0	4	0	0	0	0	0
2096	0	3	0	0	0	0	0
2097	0	2	0	0	0	0	0
2098	0	2	0	0	0	0	0
2099	0	1	0	0	0	0	0
2100	0	1	0	0	0	0	0

Cuadro 3.11 Proyección demográfica de incapacidad menor al 50%

۹ño	Incapacitados	Incapacitados	Viudas	Huérfanos	Ascendientes
		sobrevivientes			
011	2,730	2,689	33	30	3
012	2,753	5,322	131	115	10
013	2,770	7,892	292	249	20
014	2,792	10,408	517	426	34
015	2,914	12,968	804	642	51
016	3,042	15,578	1,156	894	70
017	3,177	18,242	1,574	1,176	92
018	3,302	20,947	2,058	1,484	115
019	3,428	23,694	2,612	1,814	139
020	3,539	26,465	3,235	2,163	165
021	3,732	29,342	3,929	2,526	192
022	3,818	32,213	4,697	2,896	219
023	3,881	35,057	5,537	3,265	247
024	3,924	37,854	6,449	3,625	275
025	3,838	40,476	7,431	3,966	302
026	3,726	42,905	8,479	4,282	329
027	3,598	45,128	9,586	4,567	354
028	3,444	47,127	10,749	4,813	378
029	3,270	48,887	11,962	5,017	399
030	3,064	50,384	13,219	5,176	418
031	2,834	51,599	14,513	5,290	433
032	2,577	52,516	15,838	5,358	446
033	2,301	53,122	17,187	5,381	455
034	1,992	53,392	18,552	5,360	460
035	1,681	53,335	19,926	5,297	461
036	1,372	52,957	21,300	5,198	458
037	1,076	52,283	22,669	5,065	452
038	804	51,340	24,024	4,904	442
039	553	50,155	25,360	4,720	429
040	347	48,778	26,672	4,516	412
041	190	47,258	27,955	4,300	393
042	80	45,643	29,206	4,074	372
043	24	43,987	30,424	3,842	349
044	16	42,332	31,607	3,610	324
045	11	40,680	32,758	3,379	299
046	8	39,027	33,875	3,154	273
047	5	37,371	34,955	2,937	248
048	3	35,710	35,996	2,728	223
049	2	34,039	36,994	2,529	199
050	1	32,358	37,946	2,340	176
051	1	30,664	38,847	2,162	153
052		28,958		1,994	132
.052	0 0		39,692 40,473	1,994 1,836	113
		27,239			
054	0	25,510	41,182	1,688	95 70
.055 .056	0 0	23,776 22,043	41,809 42,344	1,549 1,420	79 65

			ica de pensiones por inca	pacidad illellor a 50%	
Año	Incapacitados	Incapacitados sobrevivientes	Viudas	Huérfanos	Ascendientes
2057	0	20,317	42,772	1,300	52
2058	0	18,609	43,081	1,189	41
2059	0	16,929	43,257	1,085	32
2060	0	15,288	43,288	989	25
2061	0	13,697	43,162	900	18
2062	0	12,168	42,868	817	13
2063	0	10,711	42,396	739	10
2064	0	9,335	41,738	666	7
2065	0	8,049	40,890	597	5
2066	0	6,860	39,851	532	3
2067	0	5,773	38,620	471	2
2068	0	4,792	37,205	413	1
2069	0	3,919	35,620	359	1
2070	0	3,153	33,883	308	0
2071	0	2,493	32,016	260	0
2072	0	1,933	30,044	216	0
2073	0	1,467	27,998	176	0
2074	0	1,088	25,910	140	0
2075	0	786	23,812	108	0
2076	0	552	21,738	81	0
2077	0	376	19,715	58	0
2078	0	247	17,761	39	0
2079	0	156	15,892	25	0
2080	0	94	14,121	16	0
2081	0	54	12,459	9	0
2082	0	29	10,915	5	0
2083	0	15	9,494	2	0
2084	0	7	8,200	1	0
2085	0	3	7,031	0	0
2086	0	1	5,985	0	0
2087	0	0	5,058	0	0
2088	0	0	4,243	0	0
2089	0	0	3,532	0	0
2090	0	0	2,916	0	0
2091	0	0	2,386	0	0
2092	0	0	1,935	0	0
2093	0	0	1,553	0	0
2094	0	0	1,232	0	0
2095	0	0	965	0	0
2096	0	0	745	0	0
2097	0	0	567	0	0
2098	0	0	423	0	0
2099	0	0	310	0	0
2100	0	0	221	0	0

Cuadro 3.12 Proyección financiera de incapacidad menor al 50%

	Volumen de	Volumen de Volumen d		Volumen de		Cuenta individual		
Año	pensión incapacitados	pensión viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda	
2011	27	0	0.08	0.000	48	10	27	
2012	82	1	0.65	0.004	53	12	31	
2013	137	2	1.73	0.009	58	13	35	
2014	192	5	3.26	0.017	63	14	39	
2015	248	8	5.20	0.026	70	16	45	
2016	306	12	7.51	0.037	79	18	51	
2017	366	17	10.15	0.049	87	21	58	
2018	430	23	13.08	0.062	97	23	66	
2019	495	30	16.26	0.077	106	26	74	
2020	564	39	19.66	0.092	116	28	82	
2021	635	48	23.23	0.107	129	32	92	
2022	710	58	26.94	0.124	139	35	101	
2023	786	70	30.70	0.141	148	37	110	
2024	863	83	34.42	0.158	157	40	118	
2025	940	98	38.01	0.176	160	41	123	
2026	1,014	113	41.39	0.193	163	42	126	
2027	1,085	130	44.48	0.211	164	42	129	
2028	1,153	149	47.21	0.227	164	43	130	
2029	1,217	168	49.52	0.243	162	42	131	
2030	1,277	188	51.36	0.257	157	41	129	
2031	1,331	209	52.74	0.270	151	40	126	
2032	1,380	231	53.62	0.281	142	38	120	
2033	1,421	254	54.02	0.290	131	35	112	
2034	1,454	277	53.95	0.297	117	32	101	
2035	1,477	301	53.41	0.302	102	28	89	
2036	1,489	325	52.46	0.304	85	23	76	
2037	1,492	349	51.12	0.303	69	19	62	
2038	1,483	372	49.46	0.301	53	15	49	
2039	1,464	396	47.52	0.295	38	10	35	
2040	1,436	419	45.33	0.288	24	7	23	
2041	1,399	441	42.94	0.278	14	4	13	
2042	1,356	463	40.42	0.267	6	2	6	
2043	1,310	485	37.80	0.254	2	1	2	
2044	1,263	505	35.13	0.240	1	0	1	
2045	1,215	525	32.46	0.225	1	0	1	
2046	1,169	544	29.82	0.209	1	0	1	
2047	1,122	563	27.26	0.193	0	0	0	
2048	1,074	580	24.79	0.177	0	0	0	
2049	1,027	597	22.44	0.161	0	0	0	
2050	980	612	20.21	0.144	0	0	0	
2051	932	627	18.11	0.129	0	0	0	
2052	883	640	16.16	0.114	0	0	0	
2053	834	653	14.34	0.099	0	0	0	
2053	785	663	12.67	0.085	0	0	0	
2054 2055	735	673	11.13	0.073	0	0	0	
2055 2056	686	681	9.74	0.061	0	0	0	

	Proyeccion financiera de pensiones por incapacidad menor a 50%							
	Volumen de	Volumen de	Volumen de	Volumen de		Cuenta individual		
Año	pensión incapacitados	pensión viudas	pensión huérfanos	pensión	RCV	Cuota social	Vivienda	
2057	636	687	8.49	0.050	0	0	0	
2058	586	690	7.37	0.041	0	0	0	
2059	536	692	6.37	0.033	0	0	0	
2060	488	692	5.50	0.026	0	0	0	
2061	440	689	4.73	0.020	0	0	0	
2062	394	683	4.06	0.015	0	0	0	
2063	350	674	3.49	0.011	0	0	0	
2064	307	663	2.99	0.008	0	0	0	
2065	268	649	2.55	0.005	0	0	0	
2066	230	632	2.18	0.004	0	0	0	
2067	196	612	1.85	0.002	0	0	0	
2068	164	590	1.56	0.002	0	0	0	
2069	136	565	1.31	0.001	0	0	0	
2070	111	538	1.08	0.001	0	0	0	
2071	89	509	0.88	0.000	0	0	0	
2072	70	478	0.71	0.000	0	0	0	
2073	54	446	0.56	0.000	0	0	0	
2074	41	414	0.43	0.000	0	0	0	
2075	30	381	0.32	0.000	0	0	0	
2076	21	348	0.23	0.000	0	0	0	
2077	15	316	0.15	0	0	0	0	
2078	10	284	0.10	0	0	0	0	
2079	7	254	0.06	0	0	0	0	
2080	4	226	0.03	0	0	0	0	
2081	2	199	0.01	0	0	0	0	
2082	1	174	0.01	0	0	0	0	
2083	1	151	0.00	0	0	0	0	
2084	0	130	0.00	0	0	0	0	
2085	0	111	0.00	0	0	0	0	
2086	0	94	0.00	0	0	0	0	
2087	0	79	0	0	0	0	0	
2088	0	66	0	0	0	0	0	
2089	0	55	0	0	0	0	0	
2090	0	45	0	0	0	0	0	
2091	0	37	0	0	0	0	0	
2092	0	30	0	0	0	0	0	
2093	0	24	0	0	0	0	0	
2094	0	19	0	0	0	0	0	
2095	0	15	0	0	0	0	0	
2096	0	11	0	0	0	0	0	
2097	0	9	0	0	0	0	0	
2098	0	7	0	0	0	0	0	
2099	0	5	0	0	0	0	0	
2100	0	4	0	0	0	0	0	

Cuadro 3.13 Proyección demográfica de muerte a causa de un riesgo de trabajo

	Proyection demo	gráfica de pensiones por mu	ierte a causa de un nesgo de ti	abajo
Año	Fallecidos	Viudas	Huérfanos	Ascendendientes
2011	524	429	583	55
2012	495	837	1,123	103
2013	466	1,222	1,620	144
2014	438	1,585	2,073	180
2015	411	1,927	2,483	211
2016	384	2,248	2,851	238
2017	358	2,548	3,179	260
2018	326	2,822	3,461	278
2019	301	3,076	3,705	293
2020	277	3,311	3,913	305
2021	254	3,526	4,081	315
2022	231	3,722	4,187	322
2023	208	3,899	4,227	327
2024	187	4,058	4,205	331
2025	177	4,209	4,131	333
2026	166	4,350	4,006	333
2027	156	4,482	3,837	333
2028	145	4,605	3,631	331
2029	134	4,718	3,392	328
2030	123	4,821	3,130	324
2031	111	4,912	2,851	319
2032	99	4,993	2,563	312
2033	86	5,063	2,274	304
2034	74	5,120	1,991	296
2035	61	5,167	1,717	286
2036	49	5,201	1,460	275
2037	38	5,226	1,226	263
2038	28	5,240	1,024	251
2039	19	5,245	851	238
2040	12	5,243	703	224
2041	7	5,234	577	210
2042	3	5,220	471	195
2043	1	5,202	381	181
2044	1	5,182	307	166
2045	0	5,159	245	151
2046	0	5,133	195	137
2047	0	5,103	153	123
2048	0	5,070	119	110
2049	0	5,032	91	97
2050	0	4,989	69	84
2051	0	4,942	52	73
2052	0	4,888	38	62
2053	0	4,829	28	53
2054	0	4,762	20	44
2055	0	4,688	14	36
2056	0	4,606	9	29
2057	0	4,516	6	23

Año	Fallecidos	Viudas	Huérfanos	Ascendendientes
	0		4	
2058	0	4,417 4,309	3	18 14
2059	0			11
2060	0	4,191	1	8
2061	0	4,064	1 0	6
2062		3,927		
2063	0	3,781	0	4
2064	0	3,625	0	3
2065	0	3,460	0	2 1
2066	0	3,287	0	
2067	0	3,106	0	1
2068	0	2,918	0	0
2069	0	2,725	0	0
2070	0	2,528	0	0
2071	0	2,329	0	0
2072	0	2,129	0	0
2073	0	1,930	0	0
2074	0	1,735	0	0
2075	0	1,545	0	0
2076	0	1,362	0	0
2077	0	1,188	0	0
2078	0	1,025	0	0
2079	0	874	0	0
2080	0	735	0	0
2081	0	610	0	0
2082	0	500	0	0
2083	0	403	0	0
2084	0	320	0	0
2085	0	250	0	0
2086	0	192	0	0
2087	0	145	0	0
2088	0	108	0	0
2089	0	79	0	0
2090	0	56	0	0
2091	0	39	0	0
2092	0	27	0	0
2093	0	18	0	0
2094	0	12	0	0
2095	0	7	0	0
2096	0	5	0	0
2097	0	3	0	0
2098	0	2	0	0
2099	0	1	0	0
2100	0	0	0	0

Cuadro 3.14 Proyección financiera de muerte a causa de un riesgo de trabajo

	Volumen de pensión	Volumen de	Volumen de	Cuenta individual		
Año	viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda
2011	9	12	0.083	36	8	20
2012	27	36	0.236	37	8	22
2013	45	58	0.367	38	9	23
2014	62	79	0.479	38	9	24
2015	79	98	0.572	38	9	25
2016	96	116	0.650	38	9	25
2017	112	132	0.715	38	9	26
2018	128	146	0.768	37	9	25
2019	143	158	0.810	36	9	25
2020	157	169	0.844	36	9	25
2021	171	179	0.871	34	9	25
2022	184	185	0.891	33	8	24
2023	196	189	0.906	31	8	23
2024	208	190	0.917	30	8	22
2025	219	189	0.924	29	8	22
2026	230	185	0.928	29	7	22
2027	240	178	0.930	28	7	22
2028	250	170	0.929	28	7	22
2029	260	160	0.925	27	7	22
2030	269	149	0.920	25	7	21
2031	277	136	0.911	24	6	20
2032	285	123	0.900	22	6	18
2033	292	110	0.887	20	5	17
2034	298	97	0.871	17	5	15
2035	302	84	0.852	15	4	13
2036	306	73	0.831	12	3	11
2037	309	62	0.807	10	3	9
2038	311	53	0.781	8	2	7
2039	313	45	0.753	5	1	5
2040	313	38	0.722	3	1	3
2041	313	31	0.688	2	1	2
2042	312	26	0.653	1	0	1
2043	312	22	0.616	0	0	0
2044	310	18	0.578	0	0	0
2045	309	14	0.538	0	0	0
2046	308	11	0.498	0	0	0
2047	306	9	0.457	0	0	0
2048	304	7	0.416	0	0	0
2049	302	6	0.375	0	0	0
2050	299	4	0.335	0	0	0
2051	296	3	0.296	0	0	0
2052	293	2	0.259	0	0	0
2053	289	2	0.224	0	0	0

	Volumen de pensión	Volumen de	Volumen de	Cuenta individual		
Año	viudas	pensión huérfanos	pensión ascendientes	RCV	Cuota social	Vivienda
2054	285	1	0.191	0	0	0
2055	281	1	0.161	0	0	0
2056	276	1	0.134	0	0	0
2057	270	0	0.109	0	0	0
2058	264	0	0.088	0	0	0
2059	258	0	0.069	0	0	0
2060	250	0	0.054	0	0	0
2061	243	0	0.041	0	0	0
2062	234	0	0.030	0	0	0
2063	225	0	0.022	0	0	0
2064	216	0	0.015	0	0	0
2065	206	0	0.011	0	0	0
2066	195	0	0.007	0	0	0
2067	184	0	0.004	0	0	0
2068	173	0	0.003	0	0	0
2069	161	0	0.002	0	0	0
2070	149	0	0.001	0	0	0
2071	137	0	0.000	0	0	0
2072	125	0	0.000	0	0	0
2073	114	0	0.000	0	0	0
2074	102	0	0.000	0	0	0
2075	91	0	0.000	0	0	0
2076	80	0	0.000	0	0	0
2077	70	0	0.000	0	0	0
2077	60	0	0	0	0	0
2079	51	0	0	0	0	0
2079	43	0	0	0	0	0
2081 2082	36	0	0	0	0	0
	29	0	0	0	0	0
2083	24	0	0	0	0	0
2084	19	0	0	0	0	0
2085	15	0	0	0	0	0
2086	11	0	0	0	0	0
2087	8	0	0	0	0	0
2088	6	0	0	0	0	0
2089	5	0	0	0	0	0
2090	3	0	0	0	0	0
2091	2	0	0	0	0	0
2092	2	0	0	0	0	0
2093	1	0	0	0	0	0
2094	1	0	0	0	0	0
2095	0	0	0	0	0	0
2096	0	0	0	0	0	0
2097	0	0	0	0	0	0
2098	0	0	0	0	0	0
2099	0	0	0	0	0	0
2100	0	0	0	0	0	0

Conclusiones

- Es importante destacar que en la etapa de la codificación se presentaron muchas complicaciones, una de ellas, fue la reutilización del código, con esto se logran sistemas eficientes, pero esto es algo difícil de lograr, para este caso practico si logré llevarlo acabo, pero a pesar de que un mismo método se puede utilizar en distintas ocasiones y con diferentes grupos de pensionados, estos tienen ciertas características que los distinguen, aquí fue donde se presentaron los problemas, por que en el algunos casos se multiplicaban por factores diferentes, o los ciclos for inician en diferentes puntos, esto se logro resolver con variables booleanas y en otros casos con variables tipo String que nos permiten diferenciar entre los diferentes tipo de pensión y seguro
- Otro aspecto que es el fundamental y al que me tuve que enfrentar es el almacenamiento de la información, ya que son proyecciones a 100 años se van acumulando los resultados de todos los años, para llevar el control de todo esto se creó una variable local y muchas variables de clase, que nos permiten ir sumando los resultados en el año que corresponda.
- Gran parte del desarrollo del procedimiento se realizó utilizando ciclos for y en todos los casos variables de clase, con sus respectivos gets.
- Otro aspecto a considerar y que muchos de los desarrolladores no tomamos en cuenta es la documentación, esta se debe hacer antes de la codificación o paralelamente, a veces pensamos que no sirve, o que es aburrida, pero al realizarla te das cuenta de que podías reducir aun mas tu código, pero muchos de nosotros no documentamos o no nos gusta, pero si nos acostumbramos a hacerlo, y le damos el uso adecuado, nos puede ayudar a estructurar mucho mejor nuestros proyectos, reducir código, identificar los principales procesos, identificar las variables y lo mas importante, que las demás personas entiendan nuestro código.
- Cuando se terminó la codificación del proceso, los usuarios tienen que hacer pruebas, para ver si el producto final es lo que ellos necesitan y cubre totalmente sus necesidades, los usuarios interactúan con el sistema, y si tienen dudas del funcionamiento las externan, en esta fase se les indica donde es que van actualizar la información y que otros archivos tienen que ser actualizados, en esta fase si se llegase a olvidar algún detalle, se tendría que volver a modificar el código hasta que este cubra las necesidades del usuario al 100%, en este punto no encontré mayor complicación, únicamente explicarle al usuario como debe ejecutar el sistema y los archivos que debe actualizar.
- Cuando los usuarios están conformes con el funcionamiento del sistema, ahora si se instalan los componentes necesarios para que el sistema pueda funcionar en los equipos que así lo requieran.
- Una vez que el sistema computacional fue implementado en el Instituto Mexicano del Seguro Social, este ha sido de gran utilidad dentro del mismo, debido a que los resultados se generan en

un tiempo mucho menor al que se llevaría realizar dicho proceso con hojas de calculo. Otro punto que influye en la disminución de tiempos, es que el proceso de actualización de la información de entrada resulta sencillo, debido a que se encuentra ordenada en demográfica, financiera y biométrica, con esto se evitan muchos errores y se garantiza que los resultados esperados sean los correctos.

- La probabilidad de que los resultados generados no sean correctos, es mínima, y si algo estuviera mal no se tendría que buscar en el procedimiento, si no en la información que se actualizó, con esto se logra una gran confiabilidad en la entrega de resultados.
- Los resultados que genera el sistema son almacenados en archivos *Calc de openOffice*, que por la característica de ser software libre, tienen menos vulnerabilidad a los ataques de software malicioso, además de que no tiene ningún costo el utilizar dicha aplicación.
- El desarrollo del sistema computacional surge de las necesidades que tienen los trabajadores del Instituto, y el objetivo principal del sistema es cubrir dichas necesidades, después de la implementación del sistema se ha confirmado que dichas necesidades han sido cubiertas totalmente.
- Por lo anterior se afirma que el desarrollo de sistemas computacionales es muy importante en cualquier campo de laboral, debido a que estos ayudan realizar de manera eficiente cualquier proceso que pueda ser programado, que en este caso lo fue las estimación del costo fiscal derivado de las pensiones.

Bibliografía

Aaron Walsh / John Fronckowiak. (2000). Java bible. 3a Edición. Ed IDG books worldwide.

Bruce Eckel. (2007). Piensa en Java. 4a Edición. Ed. Pearson Prentice Hall.

CONTRERAS J.G. / Gutiérrez M. del. L. (2006). Modelo Dinámico de Decrementos Múltiples para el Colectivo del IMSS. Tesis. UNAM.

DEITEL J.PAUL. (2008). Como programar en Java. 7a Edición .Ed. Pearson Prentice Hall.

Dirección de finanzas. Valuación actuarial del Seguro de Invalidez y Vida al 31 de Diciembre de 2010 del IMSS. Edición 2011.

Dirección de finanzas. Valuación actuarial del Seguro de Riesgos de Trabajo al 31 de Diciembre de 2010 del IMSS. Edición 2011.

Doug Lowe / Barry Burd. (2007). Java for dummies. 2a Edición. Ed Wiley Publishing.

Grady Buach / James Rumbaugh. (2006). El Lenguaje Unificado de Modelado. 2a Edición. Ed Addison – Wesley.

JOSEPH SCHMULLER. (2003). Aprendiendo UML en 24 horas. 3a Edición. Ed. Pearson Prentice Hall.

Ley del Seguro Social de 1973.

Ley del Seguro Social de 1997.

Patricia Balderas. (2011). Ingenieria de Sistemas. 1a Edición. Ed. Plaza y Valdes.

Roger S. Pressman. (2003). Ingeniería del software un enfoque práctico. 5a Edición. Ed Mc Graw Hill.

UNIDAD DE SERVICIOS ACTUARIALES. (1990). Método para calcular las proyecciones demográficas y financieras de los seguros de invalidez, vejez, cesantía en edad avanzada y muerte. 1a Edición. Instituto Mexicano del Seguro Social.

Cibergrafía

http://www.javaranch.com/

http://www.imss.gob.mx/estadisticas/financieras/Pages/valuaciones actuariales.aspx

http://wiki.open-office.es/index.php?title=Calc

http://netbeans.org/index_es.html

Anexo 1. Proyección demográfica de los asegurados vigentes

Para estimar el número de asegurados vigentes de la generación en transición del SRT o del SIV, que sobreviven al final del año de proyección (n+m), se toma como base a los asegurados que cotizan⁸ y los que no cotizan⁹, estos se obtienen aplicando una probabilidad de densidad de cotización a los asegurados vigentes al final de cada año de proyección [n+(m-1)]. Una vez obtenidos los asegurados que cotizan y no cotizan se les aplica la probabilidad de sobrevivencia como asegurado en función de la edad (x) y antigüedad (t).

Es importante aclarar que el año de valuación (n) es el año que se toma como base para iniciar las proyecciones, y el año (m) es un indicador que determina el año de proyección, y se considera desde 1 hasta la extinción de la población valuada. Además la antigüedad (t) son los años reconocidos que tiene el asegurado trabajando y está entre 0 y 50 años, y la edad (x) del asegurado va de 15 a 89 años. A continuación se muestra la fórmula de la proyección de asegurados vigentes al final de cada año de proyección.

$$n+mT1_{t,x} = n+m-1 AVIGT_{t-1,x-1} * DC_{x-1}$$

$$n+mT2_{t,x} = n+m-1 AVIGT_{t,x-1} * (1 - DC_{x-1})$$

$$n+mAVIGT_{t,x} = (n+m-1)T1_{t,x} + n+m-1T2_{t,x} * psa_{x-1}$$

El vector de probabilidad de sobrevivencia de activos (psa_x) se aplica a los asegurados según tengan derecho a los beneficios por pensión, conforme a las siguientes condiciones:

$$psa_{t,x} = \begin{cases} psa1_x & si & t \leq 2 \\ psa2_x & si \quad 3 \leq t \leq 9 \\ psa3_x & si & t \geq 10 \end{cases}$$

Donde:

Asegurados por edad y antigüedad vigentes al final del año (n+m) de proyección. $_{n+m}AVIGT_{t,x}$ Probabilidad por edad de que un asegurado cotice un año más (densidad de cotización). $1 - (ProbIP_r + ProbMteRT_r)$ $psa1_r$ psa2 $1 - (ProbInv_x + ProbMte_x + ProbIP_x + ProbMteRT_x)$ psa3 $1 - (ProbInv_x + ProbCeVe_x + ProbMte_x + ProbIP_x + ProbMteRT_x)$ $ProbInv_r$ Probabilidad de que un asegurado se invalide por edad. Probabilidad de que un asegurado se pensione por cesantía en edad avanzada o vejez. $ProbCeVe_x$ Probabilidad de que un asegurado fallezca a causa de una enfermedad general por edad. $ProbMte_x$ Probabilidad de que un asegurado sufra una incapacidad permanente a causa de un riesgo de $ProbIP_{x}$ trabajo por edad. $ProbMteRT_{r}$ Probabilidad de que un asegurado fallezca a causa de un riesgo de trabajo por edad. Asegurados por edad y antigüedad en el año de valuación (n+m) que cotizan. $_{n+m}T1_{t-1,x-1}$ Asegurados por edad y antigüedad en el año de valuación (n+m) que no cotizan. $_{n+m}T2_{t,x-1}$

⁸ Para fines del modelo se consideran aquellos asegurados que alcanzan un año más de antigüedad y de edad.

⁹ Para fines del modelo se consideran aquellos asegurados que permanecen con la misma antigüedad pero incrementan en edad.

La separación de la psa_x de acuerdo a la antigüedad de los trabajadores se debe a que la estimación de las probabilidades de entrada a pensión únicamente toma en cuenta aquellos asegurados que tengan derecho a una pensión. Para explicar lo anterior, consideramos como ejemplo las pensiones de invalidez y muerte de asegurados a causa de una enfermedad general, las cuales únicamente se otorgan si el asegurado tiene al menos 3 años de antigüedad,en cambio para las pensiones por incapacidad permanente o muerte a causa de un riesgo de trabajo,se tiene derecho a ellas a partir de una antigüedad de 0 años.

A.1 Procedimiento del SIV.

El Seguro de Invalidez y Vida cubre las pensiones por invalidez y muerte del asegurado o pensionado por invalidez, además de las pensiones por retiro, cesantía en edad avanzada y vejez del asegurado, así como la muerte de estos pensionados.

Se dice que existe invalidez cuando el asegurado se halle imposibilitado para procurarse, mediante un trabajo igual, una remuneración superior al cincuenta por ciento de su remuneración habitual percibida durante el último año de trabajo y que esa imposibilidad derive de una enfermedad o accidente no profesionales.

Por otra parte, existe la cesantía en edad avanzada cuando el asegurado quede privado de trabajos remunerados después de los sesenta años de edad.

Por último, se considera vejez cuandoel asegurado haya cumplido sesenta y cinco años de edad y tenga reconocidas por el Instituto un mínimo de quinientas cotizaciones semanales.

A continuación se describe el procedimiento para el cálculo de la proyección del SIV, el cual se divide en proyección demográfica y financiera.

Proyección demográfica.

La proyección demográfica del modelo del SIV se divide en:

Estimación de los futuros pensionados vigentes al final de cada año de proyección.

- a) Estimación de las pensiones derivadas del fallecimiento de asegurados al final de cada año de proyección.
- b) Estimación de los pensionados en curso de pago.

A continuación se describe el proceso que se sigue para determinar cada una de las poblaciones descritas anteriormente.

a) Estimación de los futuros pensionados vigentes al final de cada año de proyección.

La estimación futura de los nuevos pensionados, se obtiene a partir del número de asegurados vigentes en el año base de valuación (n), los cuales se van sobreviviendo hasta su extinción. Cabe

recordar que el número de asegurados que tiene derecho a elegir una pensión bajo la ley de 1973, son aquellos que se afiliaron al IMSS hasta el 30 de junio de 1997, por tal motivo a esta población se le define como grupo cerrado, es decir, que el número de asegurados futuros va ir disminuyendo año con año. A continuación se describe el procedimiento a seguir para estimar el número de asegurados vigentes en cada año de proyección.

Proyección demográfica de los futuros pensionados vigentes al final de cada año (n+m) de proyección.

La estimación de los nuevos pensionados en cada año de proyección se realiza a partir de los asegurados por edad (x) y antigüedad (t) que se encuentran vigentes al final de cada año de proyección (n+m) y que están expuestos a salir de la actividad laboral a causa del otorgamiento de una pensión o fallecimiento. Las posibles causas de salida de la actividad laboral son las que se consideran en el vector $psa_{t,x}$, y se aplican a los asegurados vigentes para obtener el número de futuros pensionados al final de cada año de proyección.

Pensionados de Invalidez y Cesantía en edad Avanzada y Vejez (CeVe) vigentes al final de cada año (n+m) de proyección.

Para determinar los asegurados que se van incorporando como nuevos pensionados en cada año de proyección y que además van a sobrevivir al final de cada año, se toma como base el número de asegurados vigentes en el año inmediato anterior (n+m-1), y se les aplica la probabilidad de que se pensionen, ya sea por invalidez o por CeVe.

En este proceso cabe señalar, que el supuesto de entrada de los nuevos pensionados se realiza de manera uniforme durante el año, por tal motivo en el modelo de la valuación se determina que todos los pensionados entran a mitad de año y se tienen que sobrevivir al final del mismo, para que en los años sucesivos, únicamente se realice la sobrevivencia de los pensionados de forma anual. En el gráfico 1.5 se ejemplifica el supuesto de entrada de los nuevos pensionados durante cada año de proyección, el cual se realiza de manera uniforme

Ingreso de pensionados

A A Abr May Jun Jul Ago Sep Oct Nov Dic

Gráfico 1.5 Ejemplificación del supuesto de entrada de los nuevos pensionados durante el año.

En el gráfico 1.6 se representa el criterio que se sigue en el modelo de la valuación para incorporar a los nuevos pensionados, el cual para fines prácticos del modelo se realiza a la mitad de cada año $(n+\frac{m}{2})$ de proyección. Asimismo se muestra que los nuevos pensionados deben sobrevivirse al final del año (n+m), y en caso de que el pensionado falleciera antes del final del año, bajo el mismo supuesto de uniformidad, se establece el criterio que los beneficiarios de los pensionados fallecidos (viudas, huérfanos y ascendientes) se les otorgará su pensión a la mitad del segundo semestre del año, es decir, que sólo se les pagará el último cuarto del año $(n+\frac{m}{4})$ de proyección, o sea, los últimos tres meses.

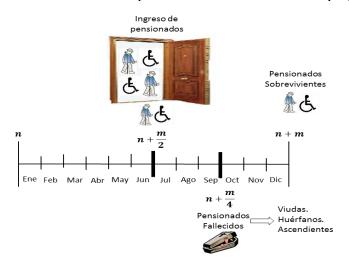


Gráfico 1.6 Entrada de nuevos pensionados durante cada año de proyección.

A continuación se muestran las fórmulas para la obtención de los pensionados de Invalidez y CeVe vigentes al final de cada año de proyección.

Las siguientes fórmulas se aplican para obtener a los nuevos pensionados en cada año de proyección (n+m).

Para pensionados de Invalidez.

$$_{n+m}PenInv_x = _{n+m-1}AVIGT_{t,x} * ProbInv_x * ^{inv}psnp_{x-1}$$
 Para $t \ge 3$

Para pensionados de Cesantía en edad avanzada y Vejez.

$$_{n+m}PenCeVe_x = _{n+m-1}AVIGT_{t,x} * ProbCeVe_x * ^{act}psnp_{x-1}$$
 Parat $\geq 10 \ y \ x \geq 60$

Las siguientes fórmulas se aplican para los demás años de proyección (n+m).

Para pensionados de Invalidez.

$$n+m$$
PenIn $v_x = n+m-1$ AVIG $T_{t,x} * ProbIn $v_{x-1} * {}^{inv}psp_{x-1}$ Para $t \ge 3$$

Para pensionados de Cesantía en edad avanzada y Vejez.

$$_{n+m}PenCeVe_x = _{n+m-1}AVIGT_{t,x} * ProbCeVe_x * ^{act}psp_{_{x-1}}$$
 Para $t \ge 10 \ y \ x \ge 60$

Donde:

 $_{n+m} PenInv_x$ Nuevos pensionados de invalidez vigentes al final de cada año de proyección.

 $ProbInv_x$ Probabilidad de que un asegurado se invalide.

 $_{n+m} PenCeVe_x$ Nuevos pensionados de CeyVe vigentes al final de cada año de proyección.

 $ProbCeVe_x$ Probabilidad de que un asegurado se pensione por CeyVe.

Nota: Las probabilidades de sobrevivencia $^{inv}psp_{x-1}^{inv}psnp_{x-1}^{act}psp_{x-1}^{act}psnp_{x-1}^{act}$ se definen en el Anexo 1 "probabilidades de sobrevivencia para pensionados".

Pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de pensionados directos.

Para estimar el número de nuevos pensionados por viudez, orfandad y ascendencia que se incorporan en cada año de proyección, es necesario obtener el número de pensionados directos por invalidez y por CeVe que fallecen en cada año. Es importante señalar, que en cada año de proyección, siempre se van a tener nuevos pensionados que ingresen a mitad del año, así como pensionados que van sobreviviendo año con año. Esto indica que tanto los nuevos pensionados como los sobrevivientes tienen las posibilidad de fallecimiento, solo que los nuevos fallecen durante el segundo semestre del año y los sobrevivientes fallecen en el transcurso de un año, por tal motivo el procedimiento para obtener los fallecidos de nuevos pensionados difiere del utilizado para determinar los fallecidos de pensionados sobrevivientes. A continuación se muestran las fórmulas empleadas para cada caso:

i. Nuevos pensionados que ingresan a la mitad del año de proyección (n+m) y que fallecen a la mitad del segundo semestre.

Para pensionados de Invalidez.

$$_{n+1}$$
PenFalleIn $v_x = _{n+1}$ PenIn $v_x * \{1 - _{nv}^{inv}psnp_{x-1}\}$

Para pensionados de Cesantía en edad avanzada y Vejez.

$$_{n+1}$$
PenFalleCeVe_x = $_{n+1}$ PenCeVe_x * $\{1 - {}^{act}psnp_{x-1}\}$

ii. Pensionados que han sobrevivido en años anteriores y que fallecen en el año de proyección (n+m).

Para pensionados de Invalidez.

```
_{n+m+1}PenFalleInv_x = _{n+m}PenInv_x * probMtePenIn<math>v_x
```

Para pensionados de Cesantía en edad avanzada y Vejez.

$$n+m+1$$
 PenFalleCeVe_x = $n+m$ PenCeVe_x * (probMtePenAct_x * $(1-TM_x)^{n+m}$)

Donde:

 $\begin{array}{ll} _{n+m}PenFalleInv_x & \text{Pensionados de invalidez fallecidos al final de cada año de proyección.} \\ n_{+m}PenInv_x & \text{Nuevos pensionados de invalidez al final de cada año de proyección.} \\ probMtePenInv_x & \text{Probabilidad de muerte de pensionados de invalidez emitida por la CNSF.} \\ n_{+m}PenFalleCeVe_x & \text{Pensionados de CeVe fallecidos al final de cada año de proyección.} \\ n_{+m}PenCeVe_x & \text{Nuevos pensionados de CeVe al final de cada año de proyección.} \\ probMtePenAct_x & \text{Probabilidad de muerte de pensionados de activos emitida por la CNSF.} \\ TM_x & \text{Tasa de mejora por edad del pensionado.} \end{array}$

Pensiones derivadas del fallecimiento de pensionados de invalidez y CeVe al final de cada año de proyección.

Para determinar el número de pensiones derivadas del fallecimiento de pensionados al final de cada año de proyección, al número de pensionados directos fallecidos se les aplica la distribución de componentes familiares¹⁰, para obtener en promedio el número de viudas, huérfanos y ascendientes que generan esos pensionados fallecidos.

A continuación únicamente se muestran las fórmulas para la proyección de viudas, huérfanos y ascendientes que se derivan de la muerte de un pensionado por invalidez, ya que este mismo procedimiento se aplica para los que se generan por la muerte de un pensionado por cesantía en edad avanzada y vejez.

Proyección de las pensiones de viudez

El proceso para proyectar las pensiones de viudez se divide en dos partes. Primero se calculan las nuevas viudas, las cuales se supone que van a sobrevivirán al final del año. Para los años subsecuentes se realiza el proceso de calcular las viudas que sobreviven y las que mueren hasta que se extinga la población. Dicho proceso se resume mediante las siguientes formulas.

¹⁰En el modelo se utilizan distribuciones por edad de viudas, huérfanos y ascendientes por asegurado o pensionado fallecido, las cuales están divididas por sexo.

Paso 1.- Estimación de nuevas viudas en el año n+m.

$$_{n+m}NvasVdasInv_{x} = \sum_{x} _{n+m}PenFalleInv_{x} * DistViu_{x,y}$$

Paso 2.- Viudas que viven o mueren en cada año de proyección n+m

$$_{n+m}VdaSobInv_x = _{n+m-1}NvasVdasInv_{x-1} * ^{act}psp_{x-1}$$
Viudas que sobreviven $_{n+m}VdafallInv_x = _{n+m-1}NvasVdasInv_{x-1} * \left(1 - ^{act}psp_{x-1}\right)$ Viudas que fallecen

Donde:

Nuevas viudas derivadas del fallecimiento de pensionados de invalidez en cada año de proyección. $DistViu_{x,y}$ Distribución del número de viudas de edad (y) para un pensionado fallecido de edad (x). $v_{n+m}VdaSobInv_{x}$ Viudas de pensionados de invalidez que sobreviven a diciembre de cada año de proyección $v_{n+m}VdafallInv_{x}$ Viudas de pensionados de invalidez que fallecen antes de diciembre de cada año de proyección

Este proceso es idéntico para las pensiones derivadas por orfandad (Orf) y ascendencia (Asc), sólo cambia las distribuciones de viudas por las correspondientes a Orf y Asc.

Estimación de las pensiones derivadas por el fallecimiento de asegurados al final de cada año de proyección.

Para estimar el número de nuevos pensionados por viudez, orfandad y ascendencia derivados del fallecimiento de asegurados, se toma como base a los asegurados vigentes en el año (n+m-1) a los cuales se les aplicará la probabilidad de que fallezcan a causa de una enfermedad general durante el año n+m. Para estos asegurados fallecidos, también se toma el criterio de que se distribuyen uniformemente en el año, por lo que, se considera que fallecen a mitad de año. El procedimiento para determinar el número de asegurados que fallecerán es el siguiente:

$$_{n+m}$$
 $AsegFalle_x = _{n+m-1}AVIGT_{t,x} * probMte_x$

A partir de la estimación de los asegurados fallecidos se procede a estimar el número de nuevas pensiones derivadas. Dicha estimación se obtiene al aplicar a los asegurados fallecidos las distribuciones de viudez, orfandad y ascendencia. Tomando en consideración que el proceso para determinar las derivadas es el mismo, a continuación se explica únicamente el que corresponde a viudez.

Paso 1.- Estimación de nuevas viudas que entran a mitad del año n+m.

$$_{n+\left(m-\frac{1}{2}\right)} NvasV das A segFalle_{x} = \sum_{x} \quad _{n+m} A segFalle_{x} * DistViu_{x,y}$$

Paso 2.- Viudas que viven o mueren durante la segunda mitad del año n+m

$${}_{n+m}NvasVdasAsegFalle_x = \\ {}_{n+\left(m-\frac{1}{2}\right)}NvasVdasAsegFalle_x * \\ {}^{act}psnp_{x-1} \\ \text{Viudas que sobreviven} \\ {}_{n+m}NvasVdasAsegFalle_x = \\ {}_{n+\left(m-\frac{1}{2}\right)}NvasVdasAsegFalle_x * \left(1 - \\ {}^{act}psnp_{x-1}\right) \\ \text{Viudas que fallecen} \\ \text{Viudas que fa$$

Paso 3.- Viudas que viven o mueren en cada año de proyección n+m

$$_{n+m}VdaSobAseg_x = {}_{n+m}NvasVdasAsegFalle_x * {}^{act}psp_{x-1}$$
Viudas que sobreviven $_{n+m}VdafallAseg_x = {}_{n+m}NvasVdasAsegFalle_x * (1 - {}^{act}psp_{x-1})$ Viudas que fallecen

Donde:

$_{n+m}$ AsegFalle $_x$	Asegurados fallecidos a mitad de cada año de proyección.
$probMte_x$	Probabilidad de que un asegurado de edad x fallezca a causa de una enfermedad
	general.
$_{n+m}$ $NvasVdasAsegFalle_{x}$	Nuevas viudas derivadas del fallecimiento de asegurados en cada año de proyección.
$DistViu_{x,y}$	Distribución del número de viudas de edad (y) para un asegurado fallecido de edad
	(x).
$_{n+m}$ $NvosHuerfAsegFalle_x$	Nuevos huérfanos derivados del fallecimiento de asegurados en cada año de
	proyección.
$DistHuerf_{x,y}$	Distribución del número de huérfanos de edad (y) para un asegurado fallecido de
	edad (x).
$_{n+m}$ $NvosAscAsegFalle_x$	Nuevos ascendientes derivados del fallecimiento de asegurados en cada año de
	proyección.
$DistAsc_{x,y}$	Distribución del número de ascendientes de edad (y) para un asegurado fallecido de
	edad (x).

c) Estimación de los pensionados en curso de pago.

Los pensionados en curso de pago, son aquellos que al año base de valuación ya cuentan con una pensión directa o derivada. Este grupo de pensionados se tiene que sobrevivir en el periodo de valuación y para los pensionados directos que fallezcan se les estimará sus pensiones derivadas, las cuales también hay que sobrevivir en el periodo de valuación.

A continuación se describe el proceso para estimar el número de pensiones directas y derivadas en curso de pago que sobreviven en cada año de proyección.

Proyección de pensionados por invalidez y por CeVe.

Para determinar el número de pensionadospor invalidez y por cesantía en edad avanzada sobrevivientes en el año de valuación (n), se toma como base el número de pensionados de invalidez y CeVe por edad (x) que se encuentran vigentes al año base de valuación (n), y a estos se les aplica la probabilidad de sobrevivencia como pensionados. Quedando las fórmulas de la siguiente manera.

$$_{n+m}$$
PenVigIn $v_x = _{n+m-1}$ PenVigIn $v_x * ^{inv} psp_{x-1}$
 $_{n+m}$ PenVigCeV $e_x = _{n+m-1}$ PenVigCeV $e_x * ^{act} psp_{x-1}$

Para determinar el número de pensionadospor invalidez y por cesantía en edad avanzada que fallecen se aplican las siguientes fórmulas.

```
_{n+m}PenFalleInv_x = _{n+m-1}PenVigInv_x * probMtePenInv_x
_{n+m}PenFalleCeVe_x = _{n+m-1}PenVigCeVe_x * probMtePenAct_x * (1 - TM_x)^{n+m}
```

Donde:

Pensionados de invalidez vigentes al final de cada año de proyección. $PenVigInv_r$ Probabilidad de muerte de pensionados de invalidez por edad en el año (n+m)de proyección $probMtePenInv_x$ emitida por la CNSF. Pensionados de CeVe vigentes al final de cada año de proyección. $PenVigCeVe_x$ Probabilidad de muerte de activos por edad en el año (n+m) de proyección emitida por la CNSF. $probMtePenAct_{x}$ Pensionados de invalidez fallecidos en el año (n+m) de proyección. $_{n+m}$ PenFalleIn v_x Pensionados de invalidez vigentes al final del año base de valuación (n). $_{n+m-1}$ PenVigIn v_x Probabilidad de muerte de pensionados de invalidez por edad en el año (n+m)de proyección $probMtePenInv_r$ emitida por la CNSF. Pensionados de CeVe fallecidos en el año (n+m) de proyección. $_{n+m}$ PenFalleCeVe $_x$ Pensionados de CeVe vigentes al final del año base de valuación (n). $_{n+m-1}$ PenVigCeVe $_x$ Probabilidad de muerte de activos por edad en el año (n+m) de proyección emitida por la CNSF. $probMtePenAct_r$

Pensiones derivadas del fallecimiento de pensionados por invalidez y CeVe en cada año de proyección.

El procedimiento que se sigue para obtener los nuevos pensionados por viudez, orfandad y ascendencia que provienen del fallecimiento de los pensionados en curso de pago, así como su sobrevivencia, es el mismo que se indicó para las derivadas del fallecimiento de los pensionados por invalidez y por cesantía en edad avanzada.

Proyección financiera.

La proyección financiera del modelo del SIV se divide en:

- a) Estimación de los salarios futuros.
- b) Proyección del saldo acumulado en la cuenta individual para el financiamiento de las pensiones.
- c) Estimación del gasto anual por pensiones.

A continuación se describe el proceso que se sigue para determinar cada uno de los puntos descritos anteriormente.

a) Estimación de los salarios futuros.

Para realizar la proyección financiera es necesario considerar la estimación futura de los siguientes salarios:

- i. Salario mínimo general del D.F.
- ii. Salario base de cotización de los asegurados.

La estimación de estos salarios se realizará de forma nominal, por lo que se requiere contar con un supuesto de inflación anual (3.5%), y un supuesto de crecimiento real anual de los salarios (1%) y de los salarios mínimos (0.5%).

El proceso que se utiliza para proyectar dichos salarios es el siguiente:

$${}_{n+m}SMGDF = {}_{n+m-1}SM * \left(1 + {}_{n+m}IncSM \right) * \left(1 + {}_{n+m}IncInf \right)$$

$${}_{n+m}SBC = {}_{n+m-1}SBC * \left(1 + {}_{n+m}IncSBC \right) * \left(1 + {}_{n+m}IncInf \right)$$

Donde:

 $_{n+m}SMGDF$ Salario mínimo general vigente del Distrito Federal. $_{n+m}IncSM$ Incremento al salario mínimo general vigente del Distrito Federal en cada año n+m de proyección. $_{n+m}IncInf$ Incremento de la inflación en cada año n+m de proyección. $_{n+m}SBC$ Salario base de cotización en cada año n+m de proyección. $_{n+m}IncSBC$ Incremento al salario base de cotización en cada año n+m de proyección.

b) Proyección del saldo acumulado en la cuenta individual para el financiamiento de las pensiones.

La cuenta individual es aquella que se abrirá para cada asegurado en las administradoras de Fondos para el Retiro (AFORE). Esta cuenta se integra por las subcuentas de Retiro, Cesantía en edad avanzada y Vejez (RCV); de vivienda y de aportaciones voluntarias.

Las aportaciones correspondientes a cada subcuenta se realizan conforme a lo que se indica en el cuadro 1.1

Cuadro 1.1 Aportaciones correspondientes a la cuenta individual.

	Aportaciones en porcentaje del salario base de cotización 1/-					
Subcuentas	Patrón	Trabajador	Gobierno Federal	Total		
Retiro, Cesantía en edad						
avanzada y Vejez						
i)Retiro	2.000			2.000		
ii) Cesantía en edad avanzada y Vejez	3.150	1.125	0.225	4.500		
iii) Cuota social diaria en pesos ^{2/}			i) \$5.43 diarios hasta 1 SM ii) \$5.20 de 1.01 a 4.0 SM iii) \$4.98 de 4.01 a 7.0 SM iv) \$4.75 de 7.01 a 10.0 SM v) \$4.52 de 10.01 a 15.0 SM			
Vivienda	5.000			5.000		
Aportaciones		Aportaciones				
Voluntarias		variables				

^{1/} Todas las aportaciones se realizan en función del salario base de cotización (SBC), excepto la cuota social y las aportaciones voluntarias.

Como se muestra en la tabla anterior, la cuenta individual está conformada por 3 subcuentas: RCV, vivienda y aportaciones voluntarias. Sin embargo, para efectos del modelo únicamente se estimará en el futuro, la subcuenta de RCV y Vivienda y para efectos de simplicidad, la subcuenta de RCV se desglosa en dos, una la correspondiente a las aportaciones sobre salario y que denominaremos RCV, y la segunda la que se refiere a la cuota social, por lo que la cuenta individual ahora queda compuesta

^{2/} La aportación se realiza en función del rango de salario mínimo en el que se encuentre su salario base de cotización del trabajador. Cuota social al 31 de diciembre de 2009.

por RCV, Cuota Social y Vivienda. A continuación se muestra el proceso para estimar el saldo acumulado en la cuenta individual que servirá para financiar el pago de pensiones. 11

Estimación de las aportaciones bimestrales a la cuenta individual que se realizarán en cada año de provección.

Para llevar a cabo la estimación del saldo promedio acumulado en la cuenta individual del trabajador, al momento de tener derecho a una pensión, se debe de tomar en consideración lo siguiente:

- i. Nuevas aportaciones que se realizan en cada año de proyección n+m.
- ii. Saldo promedio acumulado en la cuenta individual a la fecha de valuación. La acumulación delas cuentas individuales a la fecha de valuación, se debe a que por una parte el sistema de cuentas individuales tiene 11 años operando y por otra los asegurados en transición tienen en promedio 20 años de antigüedad reconocida, por tal motivo todos los asegurados deben tener recursos en su cuenta individual.

A continuación se explica el proceso que se sigue en cada uno de los puntos antes señalados.

Nuevas aportaciones bimestrales a la cuenta individual

Subcuenta de RCV:

$$_{n+m}AporBimRCV_{t,x} = \frac{TotalDias*_{n+m}SalDiario_{x}*af*_{n+m}T1_{t,x}*ProbSob_{x}}{6*_{n+m}AVIGT_{t,x}}$$

$$_{n+m}AporBimCS_{t,x} = \frac{TotalDias*_{n+m}SalMinCS_{x}*CS*_{n+m}T1_{t,x}*ProbSob_{x}}{6*_{n+m}AVIGT_{t,x}}$$

¹¹ De acuerdo al artículo noveno transitorio de la Ley de los Sistemas de Ahorro para el Retiro se establece que los recursos acumulados en la subcuenta del seguro de retiro, cesantía en edad avanzada y vejez, previsto en la Ley del Seguro Social vigente a partir del 1o. de julio de 1997, con excepción de los correspondientes al ramo de retiro, de aquellos trabajadores o beneficiarios que, a partir de esa fecha, hubieren elegido pensionarse con los beneficios previstos bajo el régimen anterior, deberán ser entregados por las administradoras de fondos para el retiro al Gobierno Federal, mientras que los recursos correspondientes al ramo de retiro de la mencionada subcuenta del seguro de retiro, cesantía en edad avanzada y vejez de dichos trabajadores deberán ser entregados a los mismos o a sus beneficiarios, según sea el caso, en los términos previstos en el presente Decreto.

Subcuenta de Vivienda:

$$_{n+m}AporBimViv_{t,x} = \frac{TotalDias*_{n+m}SalDiario_{x}*Viv*_{n+m}T1_{t,x}*ProbSob_{x}}{6*_{n+m}AVIGT_{t,x}}$$

ii. Estimación del saldo promedio en la cuenta individual

La proyección del saldo promedio acumulado en la cuenta individual al final de cada año n+m, inicia con el saldo al final del año n de valuación, el cual debe generar rendimientos anuales y además hay que agregar las nuevas aportaciones que se hacen en cada año n+m más sus rendimientos. La estimación al final del año, tanto de los saldos acumulados como de las nuevas aportaciones se les aplica una comisión sobre saldo que corresponde al cobro que realizan las Administradoras de Fondos para el Retiro (AFORE), por la administración de los recursos en cuenta individual.

A continuación se muestran los componentes de la fórmula utilizada para la estimación del saldo promedio en la cuenta individual:

$${}_{n+m}SalPromCI_{t,x} = ({}_{n+m}SaldoAcumuladoCI_{t,x} + Rendimiento_{n+m}) - ComisionSobreSaldo_{n+m} + \\ ({}_{n+m}NuevasAportacionesCI_{t,x} + Rendimiento_{n+m}) - ComisionSobreSaldoMitadA\~no_{n+m})$$

Es importante señalar que la fórmula antes mostrada no está detallada, solo contiene las variables que se utilizan para estimar el saldo promedio en la cuenta individual de forma general, ya que la estimación del saldo acumulado en la cuenta individual de RCV, cuota social y vivienda se realiza tomando en cuenta las particularidades de cada una de ellas, por lo que en el anexo 1 se muestra el detalle de las fórmulas. Cabe señalar que la estimación del saldo acumulado en la cuenta individual sirve para financiar el gasto por pensiones directas, de incapacidad permanente, invalidez, cesantía en edad avanzada y vejez, así como del gasto por las pensiones derivadas que se generan por el fallecimiento de los pensionados o de los asegurados y lo que falte será cubierto con recursos del gobierno federal.

c) Estimación del gasto anual por pensiones.

Las pensiones de invalidez y de vejez se compondrán de una cuantía básica y de incrementos anuales, los cuales se determinarán con base en el salario diario promedio de las últimas 250 semanas de cotización, expresado en veces el Salario Mínimo General para el D.F. Lo anterior con el fin de identificar el grupo sobre el cual se calculará la pensión. Para ejemplificar lo antes mencionado se toma el siguiente ejemplo, si el salario promedio diario es de 220 y dividido entre el Salario mínimo de 2010 que es de \$57.46, se tiene que el Salario promedio diario representa 3.83 veces el SMGDF, por lo que se utilizarán una cuantía básica de 20.65 un incremento anual de 2.235. La cuantía básica y los incrementos que se utilizaron en el ejemplo y que sirven para el cálculo de las pensiones se muestran en el cuadro 1.2.

Cuadro 1.2 Cuantía básica e incremento de salario correspondiente de acuerdo al número de veces el salario mínimo.

Grupo de salario en veces el salario	Porcentaje d	e los salarios
mínimo general para el D. F. (SMGDF)	Cuantia basica (CB)	Incremento anual (Inc)
Hasta 1	80	0.563
de 1.01 a 1.25	77.11	0.814
de 1.26 a 1.50	58.18	1.178
de 1.51 a 1.75	49.23	1.43
de 1.76 a 2.00	42.67	1.615
de 2.01 a 2.25	37.65	1.756
de 2.26 a 2.50	33.68	1.868
de 2.51 a 2.75	30.48	1.958
de 2.76 a 3.00	27.83	1.083
de 3.01 a 3.25	25.6	2.096
de 3.26 a 3.50	23.7	2.149
de 3.51 a 3.75	22.07	2.195
de 3.76 a 4.00	20.65	2.235
de 4.01 a 4.25	19.39	2.271
de 4.26 a 4.50	18.32	2.302
de 4.51 a 4.75	17.3	2.33
de 4.76 a 5.00	16.41	2.355
de 5.01 a 5.25	15.61	2.377
de 5.26 a 5.50	14.88	2.398
de 5.51 a 5.75	14.22	2.416
de 5.76 a 6.00	13.62	2.433
de 6.01 a LIMITE SUPERIOR	13	2.45

El procedimiento para la estimación del importe base de las pensiones de invalidez y vejez es como se indica a continuación:

$$_{n+m}ImpPenBaseIV_{x} = \\ _{n+m}SalProm \quad * \left(\\ _{n+m}CB_{x} + \\ _{n+m}NumCotAdic \quad * \\ _{n+m}Inc \ \right) \\ * \\ \frac{365}{12}$$

Donde:

 $_{n+m}ImpPenBaseIV_{\chi}$ Importe base de las pensiones de invalidez y vejez.

 $_{n+m}SalProm$ Salario diario promedio correspondiente a las últimas 250 semanas de cotización, el

cual se expresará en veces al Salario Mínimo General para el Distrito Federal y así

poder identificar el rango sobre el cual se estimará la pensión.

 $_{n+m}CB_x$ Cuantía básica correspondiente de acuerdo al grupo de salario expresado en la

tabla anterior

 $NumCotAdic_{n+m}$ Número de semanas cotizadas adicionales a las 250 utilizadas para obtener el

salario promedio diario.

 Inc_{n+m} Incremento anual correspondiente de acuerdo al rango de salario diario que

corresponda.

Para determinar el importe completo de pensión se debe considerar lo siguiente: i) El Instituto otorgará a los pensionados un aguinaldo anual equivalente a una mensualidad del importe de la pensión que perciban sin considerar las asignaciones y ayudas; ii) La pensión de invalidez, vejez o cesantía en edad avanzada incluyendo las asignaciones familiares y ayudas asistenciales, no podrá ser inferior al 100% del SMGDF; iii) La pensión que se otorgue por invalidez, vejez o cesantía en edad avanzada incluyendo el importe de las asignaciones familiares y ayudas asistenciales que se concedan, no excederá del 100% del salario promedio que sirvió de base para fijar la cuantía de la pensión; y iv) A los pensionados con 60 y más años se les otorgará un incremento del 11% de su pensión incluyendo aguinaldo y asignaciones y ayudas. Tomando en cuenta lo anterior la pensión completa se expresará como:

$$_{n+m}ImpPenCompIV_x = max(_{n+m}ImpPenBaseIV_x * (1 + Ayas), _{n+m}SMGDF) + Aguinaldo$$

Definición de Aquinaldo:

$$Aguinaldo = max(_{n+m}ImpPenBaseIV_x * (1 + Ayas),_{n+m}SMGDF) * \frac{1}{12}$$

Donde:

 ${}_{n+m}ImpPenCompIV_x \\ n+mImpPenBaseIV_x \\ Importe base de las pensiones de invalidez y vejez. \\ Ayudas que se otorgan a los pensionados directos o a los beneficiarios. En la \\ valuación actuarial se otorga a los pensionados directos el 20% por concepto \\ de ayudas asistenciales y para los pensionados por viudez, orfandad y$

ascendencia se les otorga el 10% de la pensión por asignaciones familiares.

 $_{n+m}SMGDF$ Salario mínimo general vigente del Distrito Federal.

El monto de la pensión completa de invalidez o de vejez, servirá de base para el calcular las pensiones de Cesantía en edad avanzada (CEA) y las que se deriven de la muerte tanto del pensionado como del asegurado.

En el caso de las pensiones por CEA se otorgaran al asegurado que reúna las condiciones que establece la LSS para el efecto, y su importe de la pensión será el que hubiese correspondido para vejez, solo que se aplicara al importe de la pensión completa el porcentaje que se indica en el cuadro 1.3.

Cuadro 1.3 Porcentaje de cuantía correspondiente de acuerdo a la edad del pensionado.

Edad del	Porcentaje	
Asegurado	de cuantía	
60	75%	
61	80%	
62	85%	
63	90%	
64	95%	

Nota: El porcentaje de la cuantía corresponde al % de la cuantía de la pensión de vejez que le hubiera correspondido al asegurado de haber alcanzado 65 años.

Para las pensiones que se derivan del fallecimiento del pensionado o del asegurado, estas se calcularán tomando como base el importe de la pensión completa de invalidez o vejez.

Cabe señalar que las pensiones atribuidas a la viuda y a los huérfanos de un asegurado fallecido, no deberá exceder del monto de la pensión de invalidez, de vejez o de cesantía en edad avanzada que disfrutaba el asegurado. Si ese total excediera, se reducirán proporcionalmente cada una de las pensiones. La pensión de viudez será igual al 90% de la pensión de invalidez, de vejez o de cesantía en edad avanzada, que el pensionado fallecido disfrutaba. La pensión para huérfanos y ascendientes será igual al 20% de la pensión que el asegurado estuviese gozando al fallecer.

A.2 Procedimiento del SRT.

El Seguro de Riesgos de Trabajo cubre los accidentes y enfermedades a que están expuestos los trabajadores en ejercicio o con motivo del trabajo.

Se considera accidente de trabajo toda lesión orgánica, perturbación funcional inmediata o posterior, o la muerte, producida repentinamente en ejercicio, o con motivo del trabajo.

Enfermedad de trabajo es todo estado patológico derivado de la acción continuada que tenga su origen o motivo en el trabajo, o en el medio en que el trabajador se vea obligado a prestar sus servicios.

Como ya se mencionó el SRT se encarga de cubrir las pensiones que se generan a causa de un riesgo de trabajo, estas pueden ser directas en caso de que un asegurado se incapacite, y derivadas en el caso de que un asegurado o pensionado fallezca y tenga alguno de los componentes familiares (esposa, hijos, padres). A continuación se describe el procedimiento para el cálculo de la proyección del SRT, el cual se divide en proyección demográfica y financiera.

Proyección demográfica.

La proyección demográfica del modelo del SRT se divide en:

- a) Estimación de los futuros pensionados vigentes al final de cada año de proyección.
- Estimación de las pensiones derivadas del fallecimiento de asegurados al final de cada año de proyección.
- c) Estimación de los pensionados en curso de pago.

A continuación se describe el proceso que se sigue para determinar cada una de las poblaciones descritas anteriormente.

a) Estimación de los futuros pensionados vigentes al final de cada año de proyección.

Al igual que en la proyección demográfica del SIV, la estimación futura de los nuevos pensionados del SRT, se obtiene a partir del número de asegurados vigentes al final del año base de valuación (n), los cuales se van sobreviviendo hasta su extinción.

Proyección demográfica de los futuros pensionados vigentes al final de cada año (n+m) de proyección.

La estimación de los nuevos pensionados por incapacidad permanente en cada año de proyección, se realiza a partir de los asegurados de edad (x) y antigüedad (t) que se encuentran vigentes al final de cada año de proyección (n+m-1).

A diferencia de los pensionados por invalidez, a los pensionados por incapacidad permanente se les aplica un porcentaje que indica el grado de incapacidad que le fue valorado al pensionado, que se denomina porcentaje de valoración (PV).

Para efectos de la valuación actuarial, los porcentajes de valoración se dividen en 3 rangos:

- i. Menores o iguales al 50 %.
- ii. Mayores al 50% y menores al 100%.
- iii. Iguales al 100%.

Pensionados por incapacidad permanente menor o igual al 50%, incapacidad mayor al 50% y menor a 100% e incapacidad igual al 100% vigentes al final de cada año (n+m) de proyección.

Para determinar el número de nuevos pensionados por incapacidad permanente en cada año de proyección y que además sobreviven al final de cada año, se toma como base el número de asegurados vigentes en el año inmediato anterior (n+m-1), y se les aplica la probabilidad de incapacidad permanente por rango de valoración.

Para la estimación de los pensionados se sigue tomando el supuesto de que la entrada de estos se realiza de manera uniforme durante el año, por tal motivo en el modelo de la valuación se determina

que todos los pensionados entran a mitad de año y se tienen que sobrevivir al final del mismo, para que en los años sucesivos, únicamente se realice la sobrevivencia de los pensionados de forma anual.

A continuación se muestran las fórmulas para la obtención de los pensionados por incapacidad permanente menor o igual al 50%, incapacidad mayor al 50% y menor a 100% e incapacidad igual al 100% vigentes al final de cada año de proyección.

La siguiente fórmula se aplica sólo para obtener a los nuevos pensionados en cada año de proyección (n+m).

$$_{n+m}PenIp_{x} = _{n+m-1}AVIGT_{t,x} * ProbIP_{x} * ^{inv}psnp_{x-1}$$

Donde ProbIP corresponde al rango de valoración que se esté calculando.

La siguiente fórmula se aplica para los demás años de proyección (n+m).

$$_{n+m}PenIp_{x} = _{n+m-1}AVIGT_{t,x} * ProbIP_{x} * ^{inv}psp_{x-1}para m \ge 1$$

Donde ProbIP corresponde al rango de valoración que se esté calculando.

Donde:

 $_{n+m} PenIp_x$ Nuevos pensionados por incapacidad permanente vigentes al final de cada año de proyección,

según su rango de valoración.

ProbIP_Y Probabilidad de que un asegurado se incapacite por un riesgo de trabajo. Esta probabilidad se

utiliza de acuerdo al rango de valoración que se esté calculando.

Pensiones de viudez, orfandad y ascendencia derivadas del fallecimiento de pensionados directos.

Para estimar el número de nuevos pensionados por viudez, orfandad y ascendencia que se incorporan en cada año de proyección, es necesario obtener el número de pensionados directos por incapacidad menor o igual al 50%, incapacidad mayor al 50% y menor a 100% e incapacidad igual al 100% que fallecen en cada año. A continuación se muestra de manera general las fórmulas empleadas para determinar el número de incapacitados, es decir, sin diferenciar el procedimiento para cada porcentaje de valoración.

i. Nuevos pensionados de incapacidad permanente que ingresan a la mitad del año de proyección (n+m) y que fallecen a la mitad del segundo semestre.

$$_{n+m}PenFalleIp_x = _{n+m-1}PenIp_x * \left(1 - ^{inv}psnp_{_{r-1}}\right)$$

ii. Pensionados de incapacidad permanente que han sobrevivido en años anteriores y que fallecen en el año de proyección (n+m).

$$_{n+m}$$
PenFalleIp_x = $_{n+m-1}$ PenIp_x * probMtePenIp_xpara $m \ge 1$

Donde:

 $_{n+m}PenFalleIp_{x}$ Pensionados por incapacidad permanente fallecidos al final de cada año de

proyección..

 $_{n+m-1}PenIp_{t,x}$ Pensionados por incapacidad permanente vigentes al final de cada año de

proyección.

 $probMtePenIp_x$ Probabilidad de muerte de pensionados por incapacidad permanente

emitida por la CNSF.

Pensiones derivadas del fallecimiento de pensionados por incapacidadmenor o igual al 50%, incapacidad mayor al 50% y menor a 100% e incapacidad igual al 100% al final de cada año de proyección.

El procedimiento que se sigue para obtener tanto los nuevos pensionados como los sobrevivientes por viudez, orfandad y ascendencia que provienen del fallecimiento de los pensionados por incapacidad permanente (para los 3 porcentajes de valoración), es el mismo que se indicó para los pensionados derivados del fallecimiento de inválidos.

 b) Estimación de las pensiones derivadas por el fallecimiento de asegurados al final de cada año de proyección.

Para estimar el número de nuevos pensionados por viudez, orfandad y ascendencia derivados del fallecimiento de asegurados, se toma como base a los asegurados vigentes en el año (n+m-1) a los cuales se les aplicará la probabilidad de que fallezcan a causa de un riesgo de trabajo durante el año n+m. El procedimiento para determinar el número de asegurados que fallecerán es el siguiente:

$$_{n+m}$$
 AsegFalleRT_{t,x} = $_{n+m-1}$ AVIGT_{t,x} * probMteRT_x

Donde:

 $_{n+m}AsegFalleRT_{t,x}$ Asegurados falled

Asegurados fallecidos a mitad de cada año de proyección.

 $_{n+m-1}AVIGT_{t,x}$

Asegurados vigentes al final de cada año de proyección (n+m-1).

 $probMteRT_{r}$

Probabilidad de que un asegurado de edad x fallezca a causa de un riesgo de

trabajo.

Pensiones derivadas del fallecimiento de asegurados en cada año de proyección.

El procedimiento para la estimación de las pensiones derivadas del fallecimiento de asegurados a

causa de un riesgo de trabajo es el mismo que se indicó para las pensiones derivadas del fallecimiento

de asegurados del SIV. Así también el procedimiento aplicado para la sobrevivencia de las pensiones

derivadas, es el mismo que se indica en la sección antes señalada.

c) Estimación de los pensionados en curso de pago.

Los pensionados en curso de pago, son aquellos que al año base de valuación ya cuentan con una

pensión directa o derivada. Este grupo de pensionados se tiene que sobrevivir en el periodo de

valuación y para los pensionados directos que fallezcan se les estimará sus pensiones derivadas, las

cuales también hay que sobrevivir en el periodo de valuación.

A continuación se describe el proceso para estimar el número de pensiones directas y derivadas en

curso de pago del SRT que sobreviven en cada año de proyección:

Proyección de pensionados por incapacidadmenor o igual al 50%, incapacidad mayor al 50% y

menor a 100% e incapacidad igual al 100%.

Para determinar el número de pensionadospor incapacidad sobrevivientes en el año de valuación (n),

se toma como base el número de pensionados por incapacidad permanente de los 3 rangos de

valoración de edad (x) que se encuentran vigentes al año base de valuación (n), y a estos se les aplica

la probabilidad de sobrevivencia. Quedando la fórmula de la siguiente manera.

 $_{n+m}PenVigIp_x = _{n+m-1}PenVigIp_{x-1} * ^{inv}psp_{x-1}$

Para determinar el número de pensionadospor incapacidad permanente que fallecen se aplica la

siguiente fórmula.

143

 $_{n+m}PenFalleIP_x = _{n+m-1}PenVigIP_{x-1} * probMtePenInv_{x-1}$

Donde:

 $PenVigIP_x$ Pensionados por incapacidad permanente vigentes al final del año base de

valuación (n).

 $probMtePenIp_x$ Probabilidad de muerte de pensionados por incapacidad permanente emitida por la

CNSF.

Pensiones derivadas del fallecimiento de pensionados por incapacidad menor o igual al 50%, incapacidad mayor al 50% y menor a 100% e incapacidad igual al 100% en cada año de proyección.

El procedimiento que se sigue para obtener los nuevos pensionados por viudez, orfandad y ascendencia que provienen del fallecimiento de los pensionados en curso de pago por incapacidad

permanente, así como su sobrevivencia, es el mismo que se indicó para las derivadas del fallecimiento

de los pensionados por invalidez y por cesantía en edad avanzada.

Proyección financiera.

La proyección financiera del modelo del SRT se divide en:

a) Estimación de los salarios futuros.

b) Proyección del saldo acumulado en la cuenta individual para el financiamiento de las

pensiones.

c) Estimación del gasto anual por pensiones.

A continuación se describe el proceso que se sigue para determinar cada uno de los puntos descritos

anteriormente.

144

a) Estimación de los salarios futuros.

Para realizar la proyección financiera es necesario considerar la estimación futura de los siguientes salarios:

- i. Salario mínimo general del D.F.
- ii. Salario base de cotización de los asegurados.

La estimación de estos salarios se realizará de forma nominal, por lo que se requiere contar con un supuesto de inflación anual (3.5%), y un supuesto de crecimiento real anual de los salarios (1%) y de los salarios mínimos (0.5%).

El procedimiento que se sigue proyectar los salarios antes mencionados es el mismo que se indicó en la proyección financiera del SIV.

b) Proyección del saldo acumulado en la cuenta individual para el financiamiento de las pensiones.

Como se mencionó en la proyección financiera del SIV, la cuenta individual es aquella que se abrirá para cada asegurado en las administradoras de Fondos para el Retiro (AFORE). Esta cuenta se integra para las subcuentas de Retiro, Cesantía en edad avanzada y Vejez (RCV) separando las aportaciones correspondientes a la cuota social y de vivienda.

Tomando en cuenta que la cuenta individual únicamente se genera una vez para cada asegurado y que el saldo que se tiene en el año base de valuación es el mismo que se tomó como base tanto para los asegurados de RT e IV y por consiguiente su estimación futura es igual al proceso que se explicó en la proyección financiera del SIV.

c) Estimación del gasto anual por pensiones.

Para efectos del modelo de la valuación actuarial se considera para las pensiones por incapacidad permanente parcial dos rangos de porcentaje de valoración: i) Menores o iguales al 50 %, ii) Mayores al 50% y menores al 100%; quedando por separado las pensiones por incapacidad permanente total

correspondiéndoles un porcentaje de valoración igual al 100%. Los porcentajes de valoración empleados para cada rango de valoración y sexo se muestran en el cuadro:

Cuadro 1.4 Porcentajes de valoración para las pensiones por incapacidad permanente.

	Porcentajes de Valoración Promedio (PV)	
Rangos de Valoración	Hombres	Mujeres
Menores o iguales al 50%	24.37%	27.75%
Mayores al 50% y menores al 100%	66.70%	67.94%
Iguales al 100%	100.00%	100.00%

Una vez declarada la incapacidad permanente total del asegurado, éste recibirá una pensión mensual equivalente al 70% del salario en que estuviere cotizando, dicha pensión será siempre superior a la que le correspondería al asegurado por invalidez. En caso de una enfermedad de trabajo se tomará el promedio de las 52 últimas semanas de cotización, o las que tuviere si su aseguramiento fuese por un tiempo menor.

Si la incapacidad declarada es permanente parcial, el asegurado recibirá una pensión en función de la que hubiese correspondido al pensionado por incapacidad permanente total multiplicado por su porcentaje de valoración.

Si la valuación definitiva de la incapacidad fuese de hasta el 25%, se pagará al asegurado, en sustitución de la pensión, una indemnización global equivalente a cinco anualidades de la pensión que le hubiese correspondido. Estas indemnizaciones no son con cargo al gobierno federal, si no al IMSS a través de las cuotas obrero patronales del SRT, por lo que no se valúan en esta tesis.

A todos aquellos pensionados por incapacidad permanente total e incapacidad permanente parcial con porcentaje de valoración mayor a 50% y menor a 100%, el instituto otorgará un aguinaldo anual equivalente a 15 días del importe de la pensión que perciban.

Si el riesgo de trabajo trae como consecuencia la muerte del asegurado, el Instituto otorgará a las siguientes prestaciones: i) El pago de una cantidad igual a dos meses del salario mínimo general que

rija en el Distrito Federal en la fecha de fallecimiento del asegurado; ii) A la viuda del asegurado se le otorgará una pensión equivalente al 40% de la que hubiese correspondido a aquél, tratándose de incapacidad permanente total. La misma pensión corresponde al viudo que estando totalmente incapacitado hubiera dependido económicamente de la asegurada; iii) A cada uno de los huérfanos que lo sean de padre o madre que se encuentren totalmente incapacitados o que sean menores de 16 años, se les otorgará una pensión equivalente al 20% de la que hubiese correspondido al asegurado tratándose de incapacidad permanente total y si posteriormente falleciera el otro progenitor, la pensión de orfandad se aumentará del 20% al 30%; iv) A las viudas, huérfanos y ascendientes pensionados se les otorgará un aguinaldo anual equivalente a 15 días del importe de la pensión que perciban; v) Se otorgará un incremento de la pensión del 11% siempre y cuando: el incapacitado tenga más de 59 años de edad, si la pensión de viudez es inferior a 1.5 veces SMGDF, y a todos los huérfanos y ascendientes.

El procedimiento para la estimación del importe base de las pensiones por incapacidad permanente se indica a continuación:

 $_{n+m}ImpPenBaseInc_{x} = _{n+m}Sal_{x}*CB + Aguinaldo$

Donde:

 $_{n+m}ImpPenBaseInc_x$ Importe base de las pensiones de incapacidad.

 $_{n+m}Sal_{x}$ Salario en que estuviere cotizando el asegurado al momento del riesgo de trabajo.

CB Cuantía básica que equivale a un 70%.

Aguinaldo Para los pensionados con incapacidad permanente mayor a 50% se les otorgará un aguinaldo de 15 días.

De acuerdo a los que establece la LSS en su artículo 59¹², la pensión por incapacidad permanente total deberá de compararse con la de invalidez, por lo que la fórmula para su cálculo queda de la siguiente forma:

¹² La pensión que se otorgue en el caso de incapacidad permanente total, será siempre superior a la que le correspondería al asegurado por invalidez, y comprenderá en todos los casos, las asignaciones familiares y la ayuda asistencial, así como cualquier otra prestación en dinero a que tenga derecho en los términos de este capítulo.

Importe de la pensión para las pensiones de incapacidad permanente total

$$_{n+m}ImpPenCIPT_x = max(_{n+m}ImpPenBaseInc_{x,n+m}ImpPenCompIV_x) * 1.11$$

Donde:

 $_{n+m}ImpPenCIPT_x$ Importe completo de las pensiones por incapacidad permanente total.

 $_{n+m}ImpPenBaseInc_{x}$ Importe base de las pensiones de incapacidad.

 $_{n+m}ImpPenCompIV_{\chi}$ Importe base de las pensiones de invalidez y vejez.

Considerando que el importe de las pensiones por incapacidad permanente parcial se estima tomando como base la que corresponde al pensionado por incapacidad permanente total, la fórmula anterior hay que multiplicarla por el porcentaje de valoración, por lo que la fórmula quedaría de la siguiente manera:

$$_{n+m}ImpPCIPP_{x} = _{n+m}ImpPenCIPT_{x} * PorcValoracion$$

Donde:

 $_{n+m}ImpPCIPP_{x}$ Importe completo de las pensiones por incapacidad permanente parcial.

 $_{n+m}ImpPenCIPT_x$ Importe completo de las pensiones por incapacidad permanente total.

PorcValoración Es el porcentaje de valoración que fue asignado al incapacitado, este puede ser:

i) Menor o igual al 50 %; ii) Mayor al 50% y menor al 100%.

Para las pensiones que se derivan del fallecimiento del pensionado o del asegurado, estas se calcularán tomando como base el importe de la pensión completa de incapacidad, ya sea de pensión permanente parcial o permanente completa.

Para las pensiones atribuidas a la viuda y a los huérfanos de un asegurado fallecido, no deberá exceder del monto de la pensión de incapacidad que disfrutaba el asegurado. Si ese total excediera, se reducirán proporcionalmente cada una de las pensiones. La pensión de viudez será igual al 40% de la pensión de incapacidad que el pensionado fallecido disfrutaba. La pensión del huérfano y de ascendientes será igual al 20% de la pensión que el asegurado estuviese gozando al fallecer.

Anexo 2. Probabilidades de sobrevivencia para pensionados

Para el cálculo de la sobrevivencia de los pensionados del IMSS la Comisión Nacional de Seguros y Fianzas publicó el 19 de noviembre de 2009 las siguientes probabilidades de muerte:

- Ttasa de mortalidad de inválidos para la seguridad social para hombres y mujeres (*probMtePenInv*) correspondiente al capital mínimo de garantía.
- tasa de mortalidad de activos para la seguridad social separada para hombres y mujeres (
 probMtePenAct) correspondiente al capital mínimo de garantía.

Ambas probabilidades se utilizan para el cálculo de sobrevivencia que se indica a continuación, solo que se aplican a poblaciones diferentes.

La probabilidad de sobrevivencia para nuevos pensionados de invalidez e incapacidad permanente se define a continuación:

Fórmula para calcular la probabilidad de sobrevivencia de pensionados.	Población de pensionados.
A mitad de año: $ {}^{inv}psnp_{x-1} = \left[\frac{2*(1-probMtePenInv_{x-1})}{1+(1-probMtePenInv_{x-1})} \right] $	Pensionados de invalidez, incapacidad permanente.
Al final del año: ${}^{inv}psp_{x-1} = \left(1 - probMtePenInv_{x-1}\right)$	
A mitad de año:	
${}^{act}psnp_{x-1} = \left[\frac{2*(1 - (probMtePenAct_x*(1 - TM_x)^{n+1}))}{1 + (1 - (probMtePenAct_x*(1 - TM_x)^{n+1}))} \right]$	Pensionados por cesantía en edad avanzada, vejez, viudas, huérfanos y
Al final del año:	ascendientes.
$act psp_{x-1} = (1 - (probMtePenAct_x * (1 - TM_x)^{n+m}))$	

Donde:

 $probMtePenInv_x$ Probabilidad de muerte de pensionados de invalidez emitida por la CNSF. $probMtePenAct_x$ Probabilidad de muerte de pensionados de activos emitida por la CNSF. TM_x Tasa de mejora por edad del pensionado.

Anexo 3. Estimación del saldo promedio en la cuenta individual

El proceso para la estimación del saldo acumulado en la cuenta individual es totalmente financiero y actuarial, por lo que no se consideró necesario dar una explicación detallada de las fórmulas ya que nos desviaría del propósito principal de la tesis que es la implementación de un sistema computacional que permita estimar el gasto de las pensiones otorgadas bajo la LSS de 1973. Por otra parte, de acuerdo lo publicado portal IMSS: http://imss.gob.mx/estadisticas/financieras/valuaciones actuariales.htm este procedimiento ya fue certificado por un despacho actuarial externo, por tal motivo las fórmulas se utilizan tal como aparecen en las valuaciones actuariales publicadas por el Instituto.

A continuación se detallan las fórmulas para la estimación del saldo promedio en la cuenta individual:

Saldo promedio acumulado en la cuenta individual de asegurados.

n+mSalPromRCV_{t,x}

$$= \frac{\left(_{n+m-1,}RCV_{t-1,x-1} *_{n+m}T1_{t,x} *_{n+m-1}RCV_{t,x-1} *_{n+m}T2_{t,x}\right) * psa_{x-1}}{_{n+m}AVIGT_{t,x}}$$

$$* \left(1 + _{n+m}ib_{rcv}\right)^{6} * \left(1 - _{n+m}CSd\right) + \left(_{n+m}AportRCV_{t,x} * n^{6}Cap_{RCV}\right) * \left(1 - \frac{_{n+m}CSd}{2}\right)$$

$${}_{n+m} Sal Prom CS_{t,x} = \frac{\left({}_{n+m-1} CS_{t-1,x-1} * {}_{n+m} T1_{t,x} * {}_{n+m-1} CS_{t,x-1} * {}_{n+m} T2_{t,x}\right) * psa_{x-1}}{{}_{n+m} AVIGT_{t,x}} * \left(1 + {}_{n+m} ib_{rcv}\right)^{6}$$

$$* \left(1 - {}_{n+m} CSd\right) + \left({}_{n+m} Aport CS_{t,x} * n^{6} Cap_{RCV}\right)$$

$$* \left(1 - {}_{n+m} CSd\right)$$

 $_{n+m}$ SalPromViv $_{t,x}$

$$=\frac{\left(_{n+m-1}Viv_{t-1,x-1}*_{n+m}T1_{t,x}*_{n+m-1}Viv_{t,x-1}*_{n+m}T2_{t,x}\right)*psa_{x-1}}{_{n+m}AVIGT_{t,x}}*\left(1+_{n+m}ib_{Viv}\right)^{6}$$

$$+\left(_{n+m}AportViv_{t,x}*n^{6}Cap_{Viv}\right)$$

Donde:

$${}_{n+m}^{k} Cap_{RCV} = \frac{\left(1 + {}_{n+m} ib_{RCV}\right)^{k-1} - 1}{{}_{n+m} ib_{RCV}} * \left(1 + {}_{n+m} ib_{RCV}\right)^{1/2} + 1$$

$${}_{n+m}^{k} Cap_{viv} = \frac{\left(1 + {}_{n+m} ib_{viv}\right)^{k-1} - 1}{{}_{n+m} ib_{viv}} * \left(1 + {}_{n+m} ib_{viv}\right)^{1/2} + 1$$

En este punto se calcula el saldo promedio para aquellos asegurados que fallezcan o se pensionen a mitad de año, los cuales sólo aportarán los tres primeros bimestres, capitalizando medio año:

$${}_{n+m}RCVMte_{t,x} = \frac{\left({}_{n+m-1}RCV_{t-1,x-1} * {}_{n+m}T1_{t,x} * {}_{n+m-1}RCV_{t,x-1} * {}_{n+m}T2_{t,x}\right) * psa_{x-1}}{{}_{n+m}AVIGT_{t,x}} * \left(1 + {}_{n+m}ib_{rcv}\right)^3 + \left({}_{n+m}AportRCV_{t,x} * n^3Cap_{RCV}\right) * \left(1 - \frac{{}_{n+m}CSd}{2}\right)$$

$${}_{n+m}CSMte_{t,x} = \frac{\left({}_{n+m-1}CS_{t-1,x-1} * {}_{n+m}T1_{t,x} * {}_{n+m-1}CS_{t,x-1} * {}_{n+m}T2_{t,x}\right) * psa_{x-1}}{{}_{n+m}AVIGT_{t,x}} * \left(1 + {}_{n+m}ib_{rcv}\right)^{3} + \left({}_{n+m}AportCS_{t,x} * n^{3}Cap_{RCV}\right) * \left(1 - \frac{{}_{n+m}CSd}{2}\right)$$

$${}_{n+m}VivMte_{t,x} = \frac{\left({}_{n+m-1}Viv_{t-1,x-1} * {}_{n+m}T1_{t,x} * {}_{n+m-1}Viv_{t,x-1} * {}_{n+m}T2_{t,x}\right) * psa_{x-1}}{{}_{n+m}AVIGT_{t,x}} * \left(1 + {}_{n+m}ib_{viv}\right)^{3} + \left({}_{n+m}AportViv_{t,x} * n^{3}Cap_{Viv}\right)$$