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Pablo y Leila, César el chicharŕın, el Toño, Pedro, Alencar el Cayo... Gracias por todo lo
que aprend́ı de ustedes y por las sabias enseñanzas que me llevo. Gracias por llevarme a
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Resumen

El tema principal de esta investigación está relacionado con la modelación de la propagación
de ondas marinas y surge de una cierta manera de una falta de información cient́ıfica para los
tomadores de decisión, al momento de enfrentarse a la amenaza de eventos extremos tal como
son las mareas de tormenta o los tsunamis en las costas Mexicanas. De hecho, estos fenómenos
maŕıtimos son bastante recurrentes en México y con alta capacidad de tomar vidas humanas y
causar serios daños costeros socioeconómicos e inundaciones tierra adentro. De manera más
espećıfica, este trabajo pretende implementar una herramienta numérica académica para
la simulación de ondas largas. Después de revisar las caracteŕısticas y las condiciones de
validez de las teoŕıas de onda anaĺıticas aśı como las técnicas de modelación matemática, se
restringe el enfoque en los modelos tipo Boussinesq. Al extender la validez en aguas someras
al menos a unas condiciones de aguas intermedias, dichos modelos dispersivos abarcan el
campo de aplicación más grande en cuanto a la propagación de ondas marinas, permitiendo
aśı una reproducción fiable de ondas largas hasta relativamente cortas. De ah́ı, se propone
el desarrollo de un modelo tipo Boussinesq de alto orden en dos dimensiones horizontales, lo
cual se basa en un sistema de ecuaciones completamente no lineales y dispersivas al primer
orden, con una descripción multi-capa de la distribución vertical del flujo. El modelo incluye,
al orden de aproximación, los términos de vorticidad vertical en la ecuación de conservación
de cantidad de movimiento. Luego se presenta una estimación del error de truncamiento del
modelo matemático, en función del número de capas. También se describe una metodoloǵıa
para optimisar las propiedades lineales y no lineales intŕınsecas del modelo, a partir de una
elección adecuada de las posiciones de las capas y de sus respectivas variables internas
de velocidad. Para llevar a cabo la discretización numérica del modelo en una dimensión
horizontal, se usa el marco del método de Galerkin discontinuo. En particular, el esquema
se basa en un método local de Galerkin discontinuo para la discretización espacial, mientrás
que para la discretización temporal se utiliza un algoritmo de Runge-Kutta a variación total
decreciente de alto orden. Los flujos numéricos son diseñados para asegurar la estabilidad del
esquema. Finalmente, por la simulación de dos casos prueba clásicos de referencia, se valida
el solucionador numérico en el caso de una capa. En primer lugar, se considera la propagación
de tres ondas solitarias sobre un fondo plano con diferente no linealidad. La presencia de un
tren dispersivo de ondas cortas es detectada detrás de los solitones no lineales y confirmada
por un modelo RANS. En segundo lugar, son reproducidos dos escenarios de dispersión de
onda sobre una barra sumergida. El impacto del orden de precisión sobre la solución calculada
es además examinado. El modelo de una capa muestra un buen comportamiento para ondas
débilmente dispersivas con valores del kh inferiores al ĺımite de condición de aguas profundas
igual a π. Se ilustra la eficiencia numérica del código por medio de un análisis de tiempo de
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viii RESUMEN

cómputo para unas combinaciones dadas del orden y de la resolución de malla. El modelo
de una capa es aplicado luego a la modelación de marea de tormenta forzada por medio del
término fuente de gradiente de presión, y muestra una respuesta dispersiva interesante. Por
último, se presenta el caso de un soliton peraltándose sobre una pendiente constante. Se
considerarán casos adicionales de validación para un sistema de varias capas en unas futuras
ĺıneas de investigación.



Résumé

Le sujet de cette étude est étroitement relié à la modélisation de la propagation des ondes
marines et nâıt d’un certain manque d’information scientifique pour les preneurs de décision,
quand il s’agit de faire face à la menace d’évènements extrêmes comme les ondes de tempête
ou encore les tsunamis sur les côtes Mexicaines. D’ailleurs, ces phénomènes maritimes sont
plutôt récurrents au Mexique, avec une forte capacité à ôter des vies humaines et à provoquer
de sérieux dégâts côtiers socio-économiques en plus des inondations à l’intérieur des terres.
Concrètement, ce travail vise de ce fait à implémenter un outil numérique académique pour
la simulation d’ondes longues. Après une révision des caractéristiques et des conditions de
validité des théories d’onde analytiques et des techniques de modélisation mathématiques,
on concentre l’attention sur les modèles de type Boussinesq. En prolongeant la validité en
eau peu profonde à au moins des conditions d’eau intermédiaires, ces modèles présentent
le champ d’application le plus étendu en ce qui concerne la propagation des ondes marines,
permettant ainsi une reproduction fiable d’une bonne gamme de longueurs d’ondes, allant des
ondes longues jusqu’à des ondes relativement courtes. On propose du coup de développer un
modèle de type Boussinesq d’ordre élevé en deux dimensions horizontales, basé sur un système
d’équations complètement non linéaires et dispersives à l’ordre un, avec une description multi-
couche de la distribution verticale du flux. A l’ordre de l’approximation, le modèle inclut
les termes de vorticité verticale dans l’équation de conservation de quantité de mouvement.
On présente ensuite une estimation de l’erreur de troncature du modèle mathématique, en
fonction du nombre de couches. Par ailleurs, on décrit une méthodologie pour optimiser les
propriétés linéaires et non linéaires intrinsèques du modèle, à partir d’un choix adéquat des
positions des couches ainsi que de leurs respectives variables internes de vitesse. Pour mener
à bien la discrétisation numérique du modèle en une dimension horizontale, on s’intéresse
à la méthode de Galerkin discontinue. En particulier, le schéma est basé sur une méthode
locale de Galerkin discontinue pour la discrétisation spatiale, alors que pour la discrétisation
temporelle on utilise un algorithme de Runge-Kutta à variation totale décroissante d’ordre
élevé. Les flux numériques sont choisis de façon à assurer la stabilité du schéma. Finalement,
on valide le solveur numérique dans le cas d’une couche, par la simulation de deux cas tests
classiques de référence. On considère d’abord la propagation de trois ondes solitaires de non
linéarité différente sur un fond plat. La présence d’un train dispersif d’ondes courtes est
détectée derrière les solitons non linéaires et confirmée par un modèle RANS. En second lieu,
on reproduit deux scénarios de dispersion d’ondes au dessus d’une barre immergée. L’impact
de l’ordre de précision sur la solution calculée est alors examiné. Le modèle à une couche
montre un bon comportement pour des ondes faiblement dispersives dont les valeurs du kh
ne dépassent pas la limite de condition d’eau profonde égale à π. On illustre l’efficacité
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numérique du code grâce à une analyse de temps de calcul pour des combinaisons données de
l’ordre et de la résolution de maillage. Le modèle à une couche est par la suite appliqué à la
modélisation d’onde de tempête forcée par le biais du terme source de gradient de pression,
et montre une réponse dispersive intéressante. Un dernier test présente enfin la levée d’un
soliton sur une pente constante. Des cas test additionnels de validation pour un système à
plusieurs couches seront considérés dans le cadre des prochaines lignes de recherche de ce
travail.



Abstract

The main topic of this investigation is related to water wave propagation modelling and
emerges from some lack of scientific information for decision-makers, when facing the real
threat of extreme events like storm surges or tsunamis on Mexican coasts. Actually, such
maritime phenomena are quite recurrent in Mexico and still able to take human lives and
cause serious socio-economic coastal damage and inland flooding. More specifically, this
work aims at the implementation of an academic numerical tool for the simulation of long
waves. After revising the characteristics and conditions of validity of analytical wave theories
and mathematical modelling techniques, the attention is directed to Boussinesq type models.
These dispersive models present the largest field of action as for the propagation of water
waves, by extending the shallow water validity to at least intermediate water conditions, then
allowing a reliable reproduction of long to relatively short waves. A high order Boussinesq
type model is thus proposed and developed in two horizontal dimensions, which is based on
a set of fully nonlinear and first order dispersive equations and a multi-layer description of
the vertical distribution of the flow. Vertical vorticity terms are retained into the momentum
equation up to the order of the approximation. An estimation of the truncation error of the
mathematical model is then presented, according to the number of layers. A methodology is
also described to get the intrinsic linear and nonlinear properties of the model optimised by
choosing adequately the position of layers and the respective velocity variables inside. The
numerical discretisation of the model is further carried out in one horizontal dimension using
a discontinuous Galerkin framework. In particular, the basis of the scheme is established
through a local discontinuous Galerkin (LDG) method for the spatial discretisation, while
for the time discretisation a high order total variation diminishing Runge-Kutta algorithm
is utilised. Numerical fluxes are designed to ensure the stability of the scheme. Finally,
the numerical solver is validated for one layer by means of the simulation of two classic
benchmark test cases. Firstly, the propagation over a flat bed of three solitary waves with
different nonlinearity is considered. The presence of a dispersive tail of short waves is detected
behind nonlinear solitons and confirmed by a RANS model. Secondly, two wave dispersion
scenarios over a submerged bar are reproduced. Moreover, the impact of different orders of
accuracy is assessed on the computed solution. The one-layer model shows good behaviour
for weakly dispersive waves up to kh values close to the deep water limit π. The numerical
efficiency of the code is then illustrated by a CPU-time analysis for given combinations of the
order and mesh resolution. The one-layer model is further applied to storm surge modelling
through a pressure source term forcing and show an interesting dispersive response. Lastly,
the shoaling of a soliton over a constant slope is presented. Additional test cases with a
multi-layer system will be considered in future work.

xi



xii ABSTRACT



Contents

Resumen vii
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Chapter 1

Introduction

Nowadays, even with a heightened global awareness of extreme maritime phenomena, the
occurrence of natural disasters with severe coastal damage and/or large loss of human life still
becomes increasingly frequent. Amongst the most devastating events, recently we remember
the Indian Ocean tsunami (December 2004) and hurricane Katrina in New Orleans (August
2005), whose numbers speak for themselves. Caused by a tectonic subduction of the India
plate under the Burma plate, the Sumatra-Andaman earthquake, of magnitude Mw 9.2 on
the moment magnitude scale, triggered tsunamis inundating the coasts of most landmasses
bordering the Indian Ocean with waves up to 30 m high, and killed over 230,000 people
in Indonesia, Malaysia, Thailand, Myanmar, Bangladesh, India, Sri Lanka, the Maldives,
Somalia, Kenya, Tanzania, the Seychelles, Madagascar and South Africa. Eventually, nations
all over the world donated more than $14 billion in humanitarian aid to attend to stricken
regions (Jayasuriya and McCawley, 2010). During hurricane Katrina, Louisiana reported
average winds of 140 km/h with gusts of 183 km/h; torrential rain of 203 to 305 mm fell
along the track inland from the northern Gulf coast, and storm surge flooding of 7.6 to 8.5 m
and 3 to 6 m above normal tide level occurred along portions of the Mississippi coast and the
southeastern Louisiana coast respectively (NHC, NOAA). In brief, with catastrophic damage
estimated at $75 billion and approximately 1200 reported deaths, Katrina is the costliest and
one of the deadliest U.S. hurricanes on record. Now, while the number of casualties after
such tragedies may be seen to be in decrease, thanks to the simple education of people and
better anticipation, based on past experience, the material damage can still be enormous, as
in October 2012 when hurricane Sandy paralysed New York City.

1.1 Current issues in coastal engineering

Concern and social pressure increase ever more for civil protection departments to improve
the capacity to react quickly, by making decisions, activating and coordinating emergency
procedures, and alerting local populations at an opportune time about safety precautions to
incoming tsunami waves or the approach of a tropical cyclone with an induced storm surge
in a high wind sea. That is where the scientific community can intercede by bringing some
solid knowledge about geofluid dynamics and the propagation and transformation of waves
from deep to shallow waters. Strongly based on physics and mathematics, the development

1
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of small and finite amplitude wave theories for sea surface gravity waves and the growth field
of unsteady numerical simulations appear to provide valuable help in the understanding of
oceanic processes involved in a relatively easy and cheap way, since in general they save us
from any scaled experimental test. That kind of information with risk assesments of regions
liable to flood, commonly based on analyses of both the vulnerability and hazard (Escudero
C. et al., 2012), are fundamental for the establishment of coastal and port management plans
to order the design, construction and maintenance of some protection infrastructure, and
for the implementation of strategies for the evacuation of people. Moreover, by applying a
flooding model on local topographies, it is possible to identify the way the water flows inland,
and to design evacuation circuits with systems of by-channels to redirect this flow seaward,
in order to protect neighboring urban zones and their inhabitants.

In the following subsections, a brief review is presented of the Mexican situation in view
of natural maritime hazards, the categorisation of existing water wave theories according to
their domain of applicability and the weight of numerical simulation in coastal engineering.

1.1.1 Mexico: exposure to extreme events and challenges

With more than 11000 km of coastline identified in total and a national waters area covering
about 2.5% of the territory, the availability of maritime resources in Mexico is indisputable.
However, the efficiency of the exploitation is not optimal and suffers from a certain lack
of environmental sustainability. Apart from some shortage of educational, technological
and economic opportunities for local coastal communities to profit from this inexhaustible
natural resource, people also live with the permanent threat of geologically associated and
hydrometeorological phenomena such as tsunamis and hurricane induced storm surges.

Tsunami hazards

Japanese harbour waves or tsunamis, are oceanic long waves generated by sudden movements
of the seabed, causing quasi-instantaneous vertical displacements of a substantial mass of
water, which are finally restored as high energy waves by gravity. The generation of tsunamis
is commonly ascribed to earthquakes, submarine landslides, volcanic activity and much rarer
but statistically possible meteorite impact. Invisible in deep waters, the amplitude of a
tsunami grows due to shoaling until it looks like a huge bore when viewed from the beach,
able to demolish and sweep everything away over quite long distances inland.

Most of the tsunamis reported in Mexico were observed on the Pacific coast (Figure 1.1)
and were of seismic origin. This is not surprising given the location of the country, firstly
along the San Andres transform fault between the Pacific and North America tectonic plates
and secondly on one of Earth’s subduction zones, where the ocean floor of the Cocos plate
is forcing its way down beneath the continental edge of the North American plate along
the Mesoamerican trench. Notwithstanding, Mexico is also exposed to distant tsunamis, as
shown by historic records of waves issued from coseismic moves with epicentres in Japan
(March 2011), Russia, Alaska, Chile (February 2010).
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To date, there is no detailed free access national database for the impact of tsunamis on
Mexican territory. Despite the real will of the government to generate such information
in order to encourage related academic research, it is still necessary to use for instance
the available data of the U.S. National Oceanic and Atmospheric Administration (NOAA).
Regarding tsunami prevention, recording tide-gauges set up along Pacific coast are of little
use since information cannot be checked in time because their location is too close to the
shoreline. For future protection, the challenge for Mexico would be to modernise these
stations to satellite telemetry, to get real time processing of the information so that an alert
can be emitted about the danger. In such a case, conventional safety rules consist in moving
away from the sea or retreating upland. The case of distant tsunamis is easier to anticipate
thanks to the Pacific Tsunami Warning Center operated by NOAA.

Hurricane storm surge hazards

Tropical cyclones are usually classified depending on the growing intensity of sustained winds:
we count the tropical depression, the tropical storm and five levels of hurricane on the Saffir-
Simpson Hurricane Wind Scale, for maximal velocities above 119 km/h (NHC, NOAA). In
the western North Pacific Ocean, hurricanes are called typhoons, while similar storms in the
Indian Ocean and South Pacific Ocean are called cyclones. Due to its location on the Tropic of
Cancer, Mexico is affected every year in the hurricane season (approximately from May 15 to
November 30) from both Pacific and Atlantic fronts (Figure 1.2). According to the National
Disaster Prevention Center (CENAPRED for its abbreviation in Spanish), 17% of the annual
average of 23 tropical cyclones strike or arrive at less than 100km from the coast, of which 14
occur in Pacific Ocean and 9 in the Gulf of Mexico and the Caribbean. Lately, two memorable
tragedies left their mark on Mexican people’s minds: hurricanes Gilbert (September 1988)
and Wilma (October 2005). Gilbert crossed Yucatan peninsula as a category 5 hurricane
before making its final landfall in Tamaulipas: economic losses were estimated at about
$766 million with more than 250 deaths. By comparison, the slow-moving hurricane Wilma
struck Cozumel island and the Yucatan peninsula at level 4 intensity, before emerging over
the Gulf of Mexico 2 days later toward Florida. Silva et al. (2009) reported huge waves
of 12 m, devastating winds of 250 km/h and storm surge flooding, with consequent tourist
infrastructure damage, shortage of drinking water supplies and power cuts (CFE, 2012). A
heavy economic toll valued at about $7500 million and 8 deaths, in addition to a quasi-total
erosion of the Cancun beach system, with more than 7 million cubic meters of sand removed
from the shoreline by powerful currents of 2 m/s, leaving 68% of the beach front as bedrock
(Silva C. et al., 2012) were the consequences.

Regarding hurricane associated hazards, strong winds with gusts of over 300 km/h, heavy
rainfall, large wind waves, storm surge flooding and landslides can be mentioned. Along the
coast, storm surge is often the greatest threat to life and property. Caused by an abnormal
creeping rise of water driven by the low pressure weather system, storm surge is produced by
this water being pushed toward the shore. Basically, rotating whipping winds and the low
pressure act over the ocean surface, causing the water to pile up higher than the ordinary
astronomical tide level. Nevertheless, the impact on surge of the low pressure associated with
the storm is minimal in comparison to the effect of the wind. Furthermore, the destructive
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power of the surge is strengthened by battering waves, since the propagation inland of
these waves is made possible by the surge itself. As described on the website of NHC from
NOAA, storm surges are very complex phenomena because of a high sensitivity to factors
like storm size and intensity, forward speed, angle of approach to the coast, central pressure
and steepness of the continental shelf. Another major and influential factor for the severity of
local damage, is the time elapsed by the hurricane over land (Wilma). Archived information
about tropical cyclones recorded in the Atlantic, Pacific and Indian Oceans can be consulted
on the hurricane webpage of Unisys Weather.

Without doubt, tropical cylones are the most recurring natural threat of hydrometeorological
origin in Mexico, ahead of tsunamis. That is why the government started investing money in
2000 for the creation of an early warning system (Sistema de Alerta Temprana para Ciclones
Tropicales or SIAT CT in Spanish), whose primary goal was to improve the coordination of
initial responses to people’s needs such as life and health protection, food and water supply
and temporary lodging, in order to prevent and mitigate such events. Initially structured in
four alert levels, it is concerned with the interaction between the main actors of the National
Civil Protection System (SINAPROC for its abbreviation in Spanish), including the coastal
populations, related institutes of scientific and social research and the media. Opportune,
formal warnings launch a series of systematised activities for each integral part of the system,
according to the intensity, the trajectory and the position of the cyclone. Having shown its
efficiency during the confrontation of powerful hurricanes Isidore and Kenna in 2002, SIAT
was reviewed and updated in 2003 to standardise the alert procedures of all SINAPROC
members for a faster organised response and a truly effective coordination.

Last but not least, a realization of the repercussions of anthropogenic changes and climate
changes on the vulnerability of both the expanding coastal conglomerations and beaches is
vital. Mexico should impose a stricter, informed control on coastal construction and curb
the blind overexploitation of tourist destinations such as those of Quintana Roo. The case of
Cancun remains dramatic since hurricane Wilma, with a manmade increase of the rigidity of
the Nichupte lagoon system to the detriment of its resilience to storm events (Silva C. et al.,
2012). As a result, there is now a lower capacity for breaching renewal for the lagoon water
and a severe accrued loss of beach (Ruiz Mart́ınez, 2009).

1.1.2 Inadequacy of water wave theories

A wave is completely specified by its height H, its period T or length L, and the local water
depth h. Using these characteristics, some dimensionless parameters can be defined, namely
the relative depth h/L, the wave steepness H/L and the wave height to water depth ratio
H/h. The raison d’être of wave theories arises from the need to quantify wave characteristics
from these basic quantities, for the determination of design waves for a specific site and
type of coastal work; we mean here the water surface profile, the forward speed or celerity
of the wave form, water particle velocities, accelerations and motion paths, the dynamic
pressure field of the wave, potential and kinetic components of energy fluxes, etc... Wave
theories are based on the governing assumptions of the homogeneity and incompressibility of
the seawater and a horizontal, impermeable and stationary bottom. In addition, during the
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propagation of most surface ocean waves, surface tension capillary forces may be neglected
and rotation viscous forces only become important in the thin boundary layers present at
the bottom and at the air-water interface, leaving gravity, inertia and pressure gradients as
the dominant restoring forces. Water wave theories were thus developed using the inviscid
velocity potential under the assumption of an irrotational flow.

Finite amplitude wave theories are generally of two types. Numerical theories employ complex
variables and Fourier series for the solution of potential flow equations with numerical
iterative techniques to optimise coefficients, while analytical theories expand the velocity
potential as a power series within a perturbation approach. Evidently, both lead to infinite
series solutions of the wave boundary problem, truncated at the desired order. The main
drawback of the former remains the limitation to a set of broadly tabulated numbers, as
a function of selected values of the basic wave parameters (see the stream function theory
of Dean, 1965, 1974). On the other hand, the latter yields explicit expressions for wave
characteristics, but at the price of a restriction to a range of relative water depths h/L and
some deficiency for large wave steepnesses near breaking conditions, even when carried to
high orders.

Analytical theories

Since there is no general solution to the system composed of the Laplace equation and
the three gravity wave boundary conditions, all wave theories issue from some form of
approximation. For the small amplitude wave theory of Airy (1845), also known as the linear
theory of Airy, both parameters H/h and H/L are assumed to be small compared to unity,
so that kinematic and dynamic surface boundary conditions can be linearised and applied
at the still water level rather than at the free surface. This first order theory, based on a
sinusoidal description of waves, can consequently be applied throughout the range of relative
water depths h/L, provided H/h ≪ 1 in shallow water or H/L ≪ 1 in deep water. Unlike the
linear theory, nonlinear or finite amplitude wave theories relax the requirement that either
H/h or H/L be small, then taking the other ratio as the small perturbation parameter, in
order to derive valid theories for finite amplitude waves over some specific range of wave
conditions. A finite H/L results in a theory useful in deep water (e.g. the theory of Stokes,
1847) whereas a finite H/h results in a theory more appropriate for shallow water (e.g. the
cnoidal theory based on work done by Korteweg and de Vries (1895) and further synthesised in
Wiegel (1960, 1964)). While Stokes’ theory uses a simple series of trigonometric functions, the
cnoidal theory involves Jacobian elliptical functions hardly applicable in practice. Both wave
forms are characterised by sharper and larger amplitude crests in return for flatter and smaller
amplitude troughs, a situation all the more accentuated in the case of the cnoidal wave. For
shallower waters, a first order solitary wave theory, with a surface displacement completely
above the still water line and useful for tsunamis, was firstly presented by Boussinesq (1872)
and later attempts to develop it to higher orders were made (e.g. McCowan (1891), Laitone
(1960), etc...). With a crest and no trough, it is of infinite wave period and length. As for
some interesting features, the truncation at first order of the nonlinear Stokes’ expansion leads
to the linear small amplitude wave theory of Airy, and deep and shallow water limits of the
first order cnoidal wave are respectively the wave of Airy and the solitary wave of Boussinesq.
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For a mathematical description and corresponding literature of all these theories, readers are
referred to Dean and Dalrymple (1991) and Sorensen (1993). For the circumstances under
which analytical small and finite amplitude wave theories can be applied, Figure 1.3, taken
from Hedges (1995) and supported by both theory and reference to laboratory measurements,
provides useful guidance. In relatively shallow water, the Ursell number HL2/h3 mainly
governs the suitability of theories to describe wave conditions, while in deep water, it is the
wave steepnessH/L. It may be noted that the range of validity of linear theory is reassuringly
wide, covering all of the transitional water depths for most wave steepnesses encountered in
practice (Reeve et al., 2004). In spite of its limitations, this theory, extensively used in
practice, has been shown to yield surprisingly realistic results for conditions that markedly
deviate from the small amplitude assumption.
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Figure 1.3: Approximate regions of validity of analytical wave theories

Main limitations

Describing the properties of monochromatic wave trains, with the same height and length
from wave to wave, these theories are valid for regular gravity waves but are inappropriate
for much more complex and irregular wind generated wave surface profiles, where statistical
distribution type analyses are required. Moreover, wave theories are limited to constant
depth and unidirectional wave propagation conditions, where shoaling, breaking, runup and
three-dimensional wave transformations like refraction and diffraction cannot occur. Besides,
wave theories do not pretend to reproduce them. Then, in order to be able to investigate
wave propagation events over two-dimensional real bathymetries, variable depth numerical
modelling appears to be the most attractive alternative for ocean and coastal engineers.
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1.1.3 Advances in numerical simulation

Today, the use of water wave simulation tools is essential in coastal engineering. Despite
the fact that the range of existing numerical models seems wide enough, it is important to
continue the improvement of both their accuracy and efficiency. On the one hand, calculation
domains can cover quite big areas for large scale simulations, in the order of thousands of
miles. Usually in those cases, the need for high order discretisation schemes is acknowledged
to allow the use of coarse grids, since from a computational point of view and assuming
the consistency of the schemes, the consideration of extremely refined meshes to reach the
desired accuracy, with consequent low temporal increments to ensure the numerical stability,
is not an acceptable option. On the other hand, a better numerical efficiency, with maybe a
parallel coding, allows us to get closer to a quasi-ideal real time simulation. Indeed, at the
time of the generation of a tsunami, wave model predictions such as the number and height
of waves, as well as the time to reach the shoreline, will be timely only if the code runs faster
than the physical time. This situation is typically referred to as the ideal simulation.

In any case, before being made available to users, a numerical model requires serious attention
and commitment for a proper validation and a suitable calibration when necessary. The
validation has to be done by comparing computed results with known analytical and other
numerical solutions, and experimental or field data, within the realms of possibility. Wave
theories are derived to be used for that purpose. Once validated, the model can be applied to
simulate plausible scenarios or real events. It is clear that numerical simulation has a lot of
future in all domains, provided people always keep control of the models and never forget the
meaning of an approximation; a critical eye on results while taking account of randomness
and margins of error is indispensable.

Regarding mathematical modelling options, the most complete set of equations to govern the
physics of any hydraulic problem is the standard three-dimensional compressible system of
Navier-Stokes equations. However, the heavy computational requirements of these equations
make them unsuitable for the simulation of ocean waves, especially as the compressibility of
the seawater and the viscosity of the flow can be ignored to the magnitude of scales in play
(from meso to macroscales). In that sense, the implementation of a model able to propagate
all wave lengths and reproduce all wave transformation processes at all spatiotemporal scales,
still appears numerically inconceivable in ocean modelling. So that means scales have to
be separated and hypotheses made, so the complexity of the system can be reduced to a
problem solvable in reasonable times with currently available microprocessors. Water wave
propagation models are generally classified by the form of solution delivered: firstly the
phase-resolving models yielding harmonic solutions (by the use of complex numbers) and
an implicit propagation of waves, and secondly the non phase-resolving models providing
transient solutions with an explicit propagation in time of waves. Corresponding advances
under both linear and nonlinear approaches are reviewed in the next two paragraphs.

Linear models

The first linear numerical attempts to model the inshore transformation of deep water wave
spectra used ray theory based on optic and geometric bases such as Snell’s law of refraction
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(e.g. Abernethy and Gilbert, 1975). Basically, from a discretisation of the offshore wave
spectrum in both horizontal direction and frequency and a ray-tracing refraction and shoaling
analysis, a spectral description of nearshore wave conditions at a point could be obtained
and further improved with an empirical incorporation of nonlinear surf zone processes such
as breaking (Bouws et al., 1985). Extended from regular bottoms with parallel isobaths to
slightly irregular bathymetries, ray theory is still restricted to small amplitude waves as it
relies on the linear theory of Airy (1845). Unfortunately, these semi-graphic approaches do
not account for diffraction and reflection, and result in some quite plodding and drawn out
manual calculation procedures. Developed more than three decades ago, spectral ray models
are now almost obsolete with very limited engineering applications, regardless of their modest
computational requirements and proved effectiveness (Reeve et al., 1996).

A significant step in the development of linear models was the introduction of the mild
slope equation (MSE), first derived by Berkhoff (1972) and described more concisely by
Smith and Sprinks (1975). Resulting from the linearised equation of an irrotational flow in
three dimensions, the MSE estimates the transformation of a monochromatic linear wave
train over an impermeable seabed under the assumption of a slowly varying depth. The
approximated elliptic differential equation can deal with relatively complex wave fields in
deep and transitional waters with satisfactory accuracy. Based on the small amplitude wave
theory, it does not apply in shallow water for long wave conditions. The MSE includes the
implicit resolution of the main wave transformations such as refraction, shoaling, diffraction
and reflection (e.g. Mike 21 EMS module (DHI Water and Environment, 2007a) of the Danish
Hydraulic Institute). However, a somewhat arduous treatment of boundary conditions and
the high requirements needed in both computational efforts and resources (a minimum of
grid nodes per wavelength is recommended for finite difference schemes) make it hardly
applicable to large coastal areas. Some more computationally efficient and stable procedures
were developed by Li and Anastasiou (1992) and Li (1994), but still remain expensive. We
may mention the extension of elliptic models to irregular waves by Al-Mashouk et al. (1992)
and Li et al. (1993), with a methodology consisting in the linear superposition of a series of
computations for individual direction/frequency pairs of a wave spectrum.

Some work that neglects some of the processes was done in order to simplify the MSE
and enable computationally efficient algorithms. Copeland (1985) transformed the equation
into a hyperbolic form, but achieving numerical convergence was shown to be difficult within
this approach. Another common simplification is the parabolic approximation of the MSE,
giving rise to the refraction-diffraction models (e.g. Mike 21 PMS module (DHI Water and
Environment, 2007b) of the Danish Hydraulic Institute, the REF/DIF model (Kirby et al.,
2002) of the University of Delaware and the OLUCA model (GIOC, 1999, 2000) of the
University of Cantabria). These models are able to reproduce refraction and shoaling, but
disregard reflection and assume that diffraction effects are weak in the direction of wave
propagation, through an expansion in the Padé series. Only small angular deviations from
the initial direction of propagation are allowed then, a constraint further relaxed after some
improvements on the approximation by McDaniel (1975), Kirby (1986b) and Dalrymple and
Kirby (1988). Parabolic models are the most widely used for practical engineering purposes,
thanks to more efficient numerical implementations. They deliver good approximations when
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diffraction is weak, that is to say for small irregularities of the bottom or non parallel depth
contours, but present some serious drawbacks when diffraction becomes important in the
presence of islands or structures. Of course, without reflection, they are useless for resonance
studies.

Additional simplifications of parabolic approximations can be derived, yielding the remaining
basic refraction and diffraction models. Indeed, if diffraction terms are completely removed
from previous refraction-diffraction equations, models that only take into consideration
refraction and shoaling are obtained. Correspondingly named refraction models, they appear
as an easier and much less tedious alternative to ray theory, with less rectriction on the
irregularity of the seafloor (e.g. REFRACT model (Dalrymple, 1991) of the University of
Delaware). Now, if those equations are reduced to horizontal bottom conditions, they form
the diffraction models which eliminate all bathymetric variation effects, then only treating
vertical impermeable structure induced diffraction problems. An interesting feature of the
latter is that explicit analytical solutions can be encountered to get the diffraction coefficient,
even though sometimes the presentation of results on dimensionless diagrams, as in the
Shore Protection Manual (1984), looks more appropriate due to the use of Bessel numbers
in systems of cylindrical coordinates. For real practical cases, both refraction and diffraction
models can be utilised to study refraction with shoaling and diffraction separately, before
combining results to try to get a coupling of both analyses.

To get back to the MSE, originally derived for impermeable bottoms and valid for bed
slopes up to 1:3 (Booij, 1983), several studies have been carried out from its basic version
to try to eliminate these restrictions. By expanding bottom boundary conditions to a slowly
varying mean water level, Kirby (1986a) presented an extended version of the mild slope
equation (EMSE), and Massel (1993) proposed a new approximation including the effect of
evanescent modes. A little later, Chamberlain and Porter (1995) derived the modified mild
slope equation (MMSE) with the inclusion of second order bathymetric terms, thus removing
the mild slope limitation, while Porter and Staziker (1995) extended it to evanescent modes
with new boundary conditions. In order to reproduce energy losses from breaking and bottom
friction, dissipation terms were incorporated in the MMSE by Dingemans (1997a) in a similar
way to Kirby and Dalrymple (1994). Based on the homogeneous and isotropic media theory
of Sollitt and Cross (1972) to let Darcy’s law be applicable, the first consideration of porous
structures within the mild slope approximation was proposed by Rojanakamthorn et al.
(1989, 1990), for breaking and non breaking waves travelling over an arbitrary finite porous
layer. Silva et al. (2002) then proposed a derivation of the MMSE capable of describing
known scaterring properties of porous ripple beds, based on the previous work of Mase and
Takeba (1994) and studies of the kinematics and dynamics of wave interaction with permeable
breakwaters by Losada et al. (1996). The new equation was finally extended to evanescent
modes in Silva et al. (2003). Applications to wave-porous struture interaction, from regular
to random unidirectional and multidirectional waves through the use of a transfer function,
are presented by Silva et al. (2006a, 2006b). In general, in the face of its computational
disadvantages, the MMSE is widely used to date to predict linear wave patterns in harbours
and coastal regions with complex geometries (e.g. WAPO model (Silva Casaŕın, 2008) of the
National Autonomous University of Mexico by Silva et al. (2005)). Finally, recent related
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publications look at the derivation of analytical solutions under specific bed profiles (e.g. Xie
and Liu, 2012), as helpful data for the validation of mild slope type models.

Among linear wave propagation models, the MMSE is certainly the most complete and robust
physical equation for steady harmonic solutions. Nonetheless, linear models suffer from their
restriction of validity to deep water sine waves because of the first order approximation. They
are clearly useless for the reproduction of the nonlinear asymmetrical steepness of shoaling
waves in shallow water. At this point, concerned with the simulation of long waves that
typically dominate coastal wave fields, as well as intermediate and moderately short waves
that emerge from locally involved nonlinearities close to the breaking point in the internal
surf zone, let us take an interest in nonlinear modelling, for a more realistic shallow water
hydrodynamics.

Nonlinear models

Often depth-integrated equations have been pointed out as the way forward for the modelling
of unsteady nonlinear wave interactions in shallow water, therefore making them a promising
option for the study of wave propagation in coastal regions. This family of equations is
comprised of the well known shallow water equations (SWE), firstly introduced into a one-
dimensional version for nonsteady flow in open flat bed channels by Barré de Saint-Venant
(1871), and Boussinesq type equations, derived from the classical Boussinesq equations
of Peregrine (1967). Resulting from the integration over the entire water column of the
wave motion equations, depth-integrated equations can be encountered under different levels
of nonlinearity, where weakly and fully nonlinear forms are generally achieved. By some
projection of primitive governing equations onto the (x, y) horizontal plane, both are based
on a polynomial approximation for the vertical flow distribution so that the initial three-
dimensional problem is reduced to a two-dimensional one. These models are formulated
accordingly in terms of the free surface displacement and representative horizontal flow
components, which can be either depth-averaged (shallow water models) or evaluated at
a certain elevation z = κ (x, y, t) (Boussinesq type models). In the first set of equations,
vertical velocities of fluid particles are neglected while a constant polynomial is utilised for
the vertical profile of horizontal components: the model is depth-averaged. Here the validity
of solution for these equations is limited to the longest waves, like tides, storm surges or
tsunamis, for which any depth is shallow. In contrast, for Boussinesq type equations the
vertical profile of velocities is approximated by at least first and second degree polynomials
for vertical and horizontal components respectively, which enables better accuracy for deeper
water conditions. Through this, the mathematical description is able to simulate shorter
waves in large coastal areas, like storm waves that naturally move at the free surface of storm
surges under the effect of hurricanes, for instance. Models based on these mathematical
functions are usually characterised by a range of validity expressed in terms of maximal
achievable kh values, where k = 2π

L
is the wavenumber and h is still the local water depth.

Shallow water models are quite useful to simulate bay and estuarine hydrodynamic responses
to river discharges and tidal forcing (e.g. H2D model of the University of Cantabria by
Castanedo Bárcena (2000)) as well as the generation of storm surges (e.g. MATOmodel of the
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National Autonomous University of Mexico by Posada V. et al. (2010)). They are also largely
used for the propagation of tsunami waves over relatively smooth bathymetries (e.g. GeoClaw
module from the Clawpack software package by LeVeque et al. (2011), a powerful large
scale simulation tool based on a very efficient dynamic Adaptive Mesh Refinement (AMR)
procedure). However, for an additional approximated reproduction of storm wind generated
waves that accompany those surges, or for the simulation of tsunamis over more complex
seabed topographies, for example with the presence of high depth gradients able to produce
non negligible wave dispersion, the choice of Boussinesq models can be recommended for more
realistic wave surface profiles and run-up estimations (e.g. Mike 21 BW module (DHI Water
and Environment, 2007c) of the Danish Hydraulic Institute, FUNWAVE-Geowave model
(Kirby et al., 1998) of the University of Delaware by Wei et al. (1995), and COULWAVE
model (Lynett and Liu, 2002) of Cornell University by Lynett (2002)). In addition to the
Coriolis acceleration, both types of equations can incorporate turbulent efforts, as well as
some empirical forcing and dissipation source terms for capillarity effects and the wind and
bed shear stresses. Notwithstanding, whereas such terms are commonly added in an ad hoc
manner to the inviscid equations, Kim et al. (2009) demonstrated that it is not necessary to do
so and these terms can be included through a physically consistent derivation from the viscous
primitive equations. Besides, it is clear from their work that one cannot properly add the
quadratic bottom friction term without also adding a number of extra terms in the integrated
governing equations. As a rule, while numerically harder to implement than shallow water
equations, Boussinesq type models are capable of reproducing the combined effects of most
wave phenomena of interest in coastal and harbour engineering, with an extension of the
domain of applicability from shallow to at least transitional waters. Particularly robust for
the transformation of surface gravity waves by coastal structures and in the vicinity of the
breaking zone, they represent a good base to model breaking dissipative effects, run-up and
run-down processes, sediment transport, etc...

1.2 Boussinesq type modelling

One of the main assets of Boussinesq type equations over shallow water equations is the
approximation of the wave dispersion physical process, responsible for the separation of
sea and swell wave states. The linear theory of surface gravity waves shows by means of
the dispersion relation that in deep water, the wave celerity is in inverse proportion to
the frequency of the wave component considered. Low frequency waves therefore travel
faster than high frequency waves. The initially random wave field, as generated in a storm,
then disintegrates when it moves out of the storm in fields of more regular waves, with
low frequencies in the lead and high frequencies in the trailing edge: this is the frequency
dispersion. Apart from becoming more and more regular, waves also change from short to long
crested waves, due to the dispersion of wave frequencies in their respective initial direction
of propagation in the storm: this is the direction dispersion. Waves that have thus dispersed
across the ocean are called swell (Holthuijsen, 2007). A regular monochromatic wave train
can also suffer dispersion and harmonic generation over submerged bars in shallow waters,
induced by nonlinear energy transfers that normally occur under bathymetric effects and
result in the release of bound (phase-locked) harmonics into shorter free waves.
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In this work, we mainly focus on Boussinesq type models, as they are the most dependable
option to date to simulate the propagation of extreme nonlinear long waves such as tsunamis
or storm surges in coastal waters, thanks to a well founded treatment of dispersion through
the addition of mixed and at least third order spatial derivative terms to the leading order
shallow water terms. Actually, long wave equations would be recovered by an elimination of
dispersive terms from any set of Boussinesq type equations. Two important dimensionless
parameters are associated with Boussinesq type equations: the nonlinearity is characterised
by the wave amplitude to water depth ratio ε = a

h
, and the dispersion is characterised by the

water depth to wave length ratio µ = h
l
. While ε may be considered as arbitrary, Boussinesq

type derivations require the weak dispersion assumption µ2 ≪ 1. In practice, there are many
ways to obtain a set of Boussinesq type equations, since derivations can be started from the
potential flow or momentum equations, according to the assumed (or not) irrotationality of
the flow. They produce dispersive mathematical formulations that can be written in terms
of various kinematic variables, whether the velocity potential or the horizontal velocity:
specifically the depth-averaged value, the bottom, still water or surface value, or an arbitrary
z-elevation respective evaluation can be utilised, and Taylor series expansions are generally
applied to switch from one to another. A corresponding exhaustive revision of the state of
the art of Boussinesq type modelling background is presented below.

1.2.1 First order dispersive equations

The pioneering work by Boussinesq (1872), limited to a horizontal bed, allowed frequency
dispersion through a non-hydrostatic pressure distribution, altered by a linear variation of
the vertical velocity from zero at the bottom to a maximum at the free surface. Extended to
uneven bottoms in one dimension by Mei and Le Méhauté (1966), with some minor algebraic
corrections on the characteristic form of the equations updated in Madsen and Mei (1969),
a set of equations for varying depths in two horizontal dimensions was finally presented by
Peregrine (1967). Today referred to as the standard Boussinesq equations and originally
given under two different forms including the mean and still water velocities chosen for
the dependent variables, the mathematical model of Peregrine (1967) provided the starting
point for the development of Boussinesq theory and its use in wave propagation problems.
Taken from the conventional dispersive perturbation method, with µ2 taken as the small
expansion parameter, the original assumptions at the same order of weak dispersion and
weak nonlinearity with ε = O (µ2) restricted their utilisation to shallow water areas and small
nonlinear effects since only first order terms O (ε) and O (µ2) were retained. A few years later
and under the same hypothesis, Dingemans (1973) presented an investigation aimed at the
introduction of second order dispersive terms O (εµ2) and O (µ4) into Boussinesq equations;
however, he provided neither accuracy analyses nor computations.

Later efforts aimed to extend the range of applicability of Boussinesq equations by improving
their linear dispersion characteristics within the first order dispersive approximation, notably
by the introduction of Padé approximants for the exact theoretical dispersion relationship
of Airy (1845). Amongst other related publications, where various forms of the standard
Boussinesq equations are studied, the book of Whitham (1974) and papers of Svendsen (1974)
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and Mei (1983) illustrate the sensitivity of the accuracy of linear dispersion properties to the
choice of the velocity variable and to the mixture of spatial and temporal derivatives in the
governing equations, for increasing wavenumbers. In the case of a constant depth in a single
horizontal dimension, Witting (1984) inspired Boussinesq model developers by modifying
the straightforward Taylor expansion of the velocity with the introduction of calibration
coefficients for the optimisation of the phase celerity. The newly parameterised linear
dispersion relation was matched with a Taylor expansion about kh = 0 of Airy’s squared
celerity up to (kh)4 by a [2/2] Padé expansion in kh. As a result, linear properties were greatly
enhanced with a 5% phase error close to the deep water limit kh = π, against the previous
5% phase error at kh ≈ 0.44π of the [0/2] Padé expansion corresponding to the best phase
properties registered for the Boussinesq equations, and associated with the depth-averaged
version recommended by Whitham (1974). Later, and under the same horizontal bottom
assumption, Madsen et al. (1991) manipulated the dispersive terms into the two-dimensional
system of depth-averaged equations solved by Abbott et al. (1984), with the introduction of
an additional weighted third order derivatives term to the momentum equations; this term
was added by invoking the linear long wave equation so that it reduced to zero in shallow
water without affecting the accuracy. An alternative form of the Boussinesq equations was
therefore presented with some possible improvements in linear dispersion characteristics by
considering the free coefficient as a curve fitting parameter in the process of obtaining the
best overall agreement with Airy’s theory; in that sense, slight deviations from the [2/2] Padé
approximant of Witting (1984) were shown to lead for example to phase errors of less than 3%
for the range 0 6 kh 6 1.5π. This work was closely extended to mildly sloping bottoms and
an ensuing linear shoaling analysis in Madsen and Sørensen (1992). Finally, Nwogu (1993)
achieved similar improvements by using a velocity at an arbitrary distance z = γh (x, y)
from the still water level as the dependent variable for uneven bottoms in two horizontal
dimensions. Following the methodology of Madsen et al. (1991) with a small sacrifice of low
wavenumber accuracy for accuracy at higher wavenumbers, Nwogu proposed an optimum
value γ = −0.53 for the reference elevation that minimises the sum of the relative error of
the phase speed over the entire range 0 6 kh 6 π to less than 2%.

Furthermore, the weak nonlinearity limitation might be eliminated by dropping ε as a scaling
parameter in the derivation of the dispersive approximation. In fact, Serre (1953) had
been the first to try combining the lowest order dispersion with full nonlinearity, using a
z-independent horizontal velocity. Nevertheless, the assumption of such a uniform vertical
distribution for this velocity was shown to prevent his approximation from any significant
improvements on frequency dispersion, in comparison to the classical weakly nonlinear forms
of Boussinesq equations, hence making the equations of Serre (1953) somewhat unattractive
(Dingemans, 1997b). Later, fully nonlinear versions of the two-dimensional first order
dispersive Boussinesq equations for variable depths, based on the judicious arbitrary z-level
approach of Nwogu (1993), were lately derived by Liu (1994) from the mass conservation
and Euler momentum equations, and Wei et al. (1995) from the boundary value problem for
an inviscid and irrotational wave motion expressed in terms of the velocity potential, with
terms O (εnµ2) retained ∀n ∈ N. A detailed review and discussion about all these Boussinesq
type formulations and their applications can be found in Madsen and Schäffer (1999). In
order to complete these nonlinearity enhancements, Kennedy et al. (2001) generalised the
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reference elevation concept of Nwogu (1993) to a time varying component dependent on the
free surface elevation: z = γh (x, y) + δζ (x, y, t), then allowing a considerable optimisation
of nonlinear performance for the equations of Wei et al. (1995) by an adequate choice of
the new free parameter δ. Thereby, from a second order Stokes (1847) type Fourier analysis
and by setting the linearity coefficient to the [2/2] Padé approximation of Witting (1984)
γ =

√
1/5 − 1 ≈ −0.55, he matched a power series expansion about kh = 0 of the second

order component of the free surface elevation with the same expansion of the full second
order Stokes solution up to (kh)4, with the value δ = 17

√
5/200 ≈ 0.19.

1.2.2 Higher order approximations

Since the work of Dingemans (1973), other authors had been working on solutions to raise
the dispersion accuracy in Boussinesq type equations without having to add higher order
dispersive terms. Then, Schröter et al. (1994) and Schäffer and Madsen (1995) pursued the
same methodology by merging the approaches of Nwogu (1993) and Madsen et al. (1991),
in order to achieve the more accurate [4/4] Padé approximation for the linear dispersion
and some new improvements on linear shoaling properties. Acceptable agreements with the
linear theory of Airy (1845) were obtained up to kh ≈ 6, at almost twice the deep water
limit. At this point, it seems important to recall that these equations are not developed to
a higher order than the classical Boussinesq equations. Thus, the underlying expressions for
the vertical distribution of velocities cannot be trusted in the extended depth range in which
the surface elevation is still very well described (Schäffer and Madsen, 1995). To mend these
shortcomings, higher order Boussinesq type approximations were then investigated. A series
of more complex Boussinesq type derivations, introduced from the potential flow equations
with second order in dispersion, can be appreciated in Madsen and Schäffer (1998). Through
the same dispersion enhancement procedures and accuracy analyses, this time performed
with emphasis on linear dispersion, shoaling characteristics and nonlinear properties for large
wavenumbers, a comparison is made between several formulations, on the one hand given
to different levels of nonlinearity, on the other hand written in terms of the depth-averaged
velocity and particle velocities at the still water level or at the arbitrary vertical location.
Once again, the superiority of the arbitrary z-elevation form over the depth-averaged form
is underlined, even at a lower dispersive order where almost the same linear and nonlinear
characteristics can still be achieved. Similar enhancements under a mild slope assumption at
O (µ4) for linear dispersion accuracy, shoaling properties and nonlinear characteristics, can
be found in Zou (1999) within a depth-averaged velocity formulation and Zou (2000) for a
more general calibration velocity variable.

Closely, Gobbi et al. (2000) derived a fully nonlinear second order Boussinesq type model, by
extending the equations of Wei et al. (1995) to O (µ4) with a fourth order polynomial in z for
the velocity potential. As a result, a much better representation of the internal kinematics
than O (µ2) first order dispersive approximations, especially in the intermediate to deep
water range was achieved. This formulation used a new dependent variable as the weighted
average of the velocity potential evaluated at two distinct elevations in the water column.
The weight and positions were chosen to achieve the [4/4] Padé approximant of the exact
linear dispersion relationship of Airy (1845), with a certain flexibility left for the weight value.
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Presented for a two-dimensional horizontal bottom in Gobbi et al. (2000), the description of
the model for variable water depths can be found in Gobbi and Kirby (1999), together with
the discretisation scheme and some one-dimensional numerical applications. More recently,
Lynett (2002) proposed a multi-layer system for the first order equations of Liu (1994) to get
a very high order Boussinesq type equations model, with a series of quadratic polynomials
matching at layer interfaces, then allowing the reproduction of even more complex vertical
profiles for the internal kinematics. He used the general approach of Kennedy et al. (2001) for
the vertical location of layer interfaces and horizontal velocity variables, and an optimisation
of linear and nonlinear properties was performed by adjusting the arbitrary coefficients
through some overall error minimisation processes over given specific kh ranges, with respect
to the known analytical properties of water waves. Errors in the wave speed, group velocity
and shoaling gradient were included for the linear part, while errors in the second order
free surface correction and subharmonic/superharmonic transfer amplitudes for bichromatic
wave interactions were taken into account for the nonlinear part. Generally speaking, linear
characteristics of a N -layer model are equivalent to a [2N/2N ] Padé approximation (Lynett
and Liu, 2004b). In the case of the two-layer model, numerically implemented and described
in detail in Lynett and Liu (2004a), linear and nonlinear behaviours were shown to be
relatively well captured up to kh ≈ 6. For comparison, a less thorough linear optimisation,
undertaken by Lynett (2002), examining only the phase celerity and the group velocity,
indicated a very good linear accuracy up to kh ≈ 15 for the three-layer model and to kh ≈ 22
for the four-layer model. It is emphasised here that the multi-layer approach enables the
model to control and extend its own limit of validity from intermediate to fairly deep water
regimes, without the need to raise the order of the dispersive approximation, hence retaining
at most third order derivatives and a relatively simple system of equations. Meanwhile,
Hsiao et al. (2002) derived a Boussinesq type model for waves propagating over a permeable
bed, taking the equations of Liu (1994) for the free flow region and a fluid phase volume-
averaged momentum equation in terms of the intrinsic velocity and pore pressure for the
permeable layer. Optimal positions for the evaluation of velocities in both layers can finally
be calculated according to their thickness ratio, through least-square error minimisations for
the phase speed and damping rate over a specific kh range.

In general, these high order Boussinesq type models result in a better linear behaviour than
the nonlinear one, and Agnon et al. (1999) presented a different procedure to achieve the
same accuracy in both linear and nonlinear properties within a mild slope approximation.
Unlike the traditional way well described in Madsen and Schäffer (1998), the solution of
the problem is basically decoupled into two parts: a truncation to a finite order through
Padé approximants for the infinite power series solution of the Laplace equation in a time-
independent domain for the linear part, and a marching in time using the exact free surface
boundary conditions for the nonlinear part. The separation of the approached linearity and
exact nonlinearity allows the accuracy of linear dispersion and shoaling to be fully carried over
to the nonlinear interaction part of the system. Written from the still water level, the infinite
series was further generalised to an expansion from the arbitrary z-level of Nwogu (1993) in
Madsen et al. (2002, 2003), together with attached optimisations of linear velocity vertical
profiles by some error minimisation processes, a comparison between various truncation
methods and some one-dimensional numerical tests. For up to fifth-derivative operators
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involved in the finite series approximation, model analyses report linear and nonlinear wave
characteristics of an accuracy up to kh ≈ 40, leading to a major improvement over previous
Boussinesq type formulations. Finally, these high order Boussinesq type equations were
extended to fully nonlinear and highly dispersive water waves interacting with a rapidly
varying bathymetry in Madsen et al. (2006), with some smoothing procedure for the arbitrary
expansion level needed to remove the effects of small scale undulations of the bottom. A full
re-derivation of these equations in a more general framework, including both potential and
velocity formulations, can be found in Bingham et al. (2009), with some corrections and
consistency refinements as regards the order of approximation. In parallel, Zou and Fang
(2008) proposed, analysed and validated three alternative forms of a second order Boussinesq
type model, based on a direct extension of the equations of Serre (1953) to the next higher
order. The most complete version, with full nonlinearity up to O (µ4), resulted very close in
accuracy to the model of Gobbi et al. (2000).

1.3 Objectives and novelty of the investigation

With all the above mentioned studies in mind, this work is to be seen in the present context of
international lines of research and some need for Mexico to start generating its own academic
numerical nonlinear models, to be able to compete with foreign simulation tools.

The main objective of the investigation consists in developing from scratch a high order
Boussinesq type model, for the propagation of water waves. The dispersive model has to be
able to reproduce wave generation by a moving seabed, and transformation processes such
as wave-wave and wave-current interactions, bathymetric refraction and nonlinear shoaling,
diffraction and reflection near structures, accurate in relation to local kh values. The matter
of viscosity and the associated turbulence will not be treated here within the model, as this
dissipation of energy is negligible on large scale simulations, except maybe at the free surface
where the wave breaking dissipative mechanism could have significant effects on the flow and
would require some specific attention.

To reach such a scope, the multi-layer technique of Lynett and Liu (2004b) is applied to
a rotational version of the fully nonlinear equations of Liu (1994). Indeed, it is proposed to
allow some vertical vorticity and the formation of horizontal eddies, that generally govern
tsunami induced flows in harbour basins (Lynett et al., 2012). Regarding the division into
layers of the water column, it is, from a mathematical and numerical point of view, surely the
most efficient approach ever proposed for Boussinesq type equations. It enhances the deep
water accuracy with shallow water flow based equations, leading to a model able to cover
the entire range of possible wave lengths, depending on the number of layers considered.
Initially thought to simulate long surface gravity waves such as tsunamis and storm surges,
the model will be then satisfactorily applicable to shorter wind waves and those emerging from
nonlinear interactions in the nearshore area, where both actually coexist during hurricanes.
In addition, the governing equations are intended to be solved with a more sophisticated
numerical algorithm than the predictor-corrector finite difference routine implemented in the
FUNWAVE code of Wei et al. (1995), and reused in the COULWAVE code by Lynett (2002).
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The proposed model employs the discontinuous Galerkin (DG) method for the numerical
resolution of these equations. In fact, a similar scheme has been recently presented by Engsig-
Karup et al. (2006), who used a discontinuous Galerkin finite element method (DG-FEM) for
the equations of Madsen et al. (2002) and obtained encouraging results. Besides, their work
has been extended to 2D problems (see Engsig-Karup et al., 2008). Following the observed
success in the utilisation of DG-based methods for the discretisation of Boussinesq type
equations, this study aims to use the latest developments of the DG method for computational
fluid dynamics, in the presence of high order derivatives.

As for some specific objectives, the following methodology is considered:

• Carry out the complete derivation of a multi-layer set of Boussinesq type equations;

• Initiate and validate the numerical implementation in one horizontal dimension;

• Illustrate the accuracy and efficiency of the model through some application test cases.

1.4 Organisation of the thesis

The present document is structured in five main chapters, including the Introduction. The
following lines give a brief description of their respective contents:

• Chapter 2 presents the derivation of the Boussinesq type mathematical model, an
evaluation of the truncation error due to the dispersive truncation of the equations
and a methodology for the calibration of the model to the theory of Stokes (1847).

• Chapter 3 introduces the resolution strategy followed and the numerical scheme
implemented for both space and time discretisations in one horizontal dimension.

• Chapter 4 illustrates the results obtained for two validation test cases of the one-layer
model: the constant depth propagation of solitary waves and the interaction of regular
wave trains with a submerged bar. An application of the code to the simulation of
pressure forced storm surges and solitary wave shoaling is then examined.

• Finally, the conclusions derived from the present investigation are given in chapter 5,
with some future lines of research for the continuation of the work.
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Chapter 2

High order Boussinesq type model

This chapter is essentially dedicated to the detailed mathematical derivation, an accuracy
evaluation and some optimisation clues for the intrinsic properties of a two-dimensional fully
nonlinear Boussinesq type model. The governing equations result from a first order dispersive
expansion of the incompressible Euler system (Liu, 1994) within a multi-layer description of
the system (Lynett, 2002), which addresses them the status of high order Boussinesq type
approximation amongst the other truly higher order expansions (e.g. Gobbi et al., 2000).

2.1 Definition of the multi-layer problem

In the following, the Cartesian coordinate system is adopted, with horizontal axes x and
y located on the still water plane and the vertical axis z pointing upwards from the still
water level (SWL). The water column is divided into an arbitrary number N of imaginary
layers, numbered from the top to the bottom and having exactly the same physical properties
including density. In order to ensure the continuous medium characterisation of the fluid, the
continuity of both pressure and velocity variables is enforced at layer interfaces through some
additional internal boundary conditions. In the next subsections, the multi-layer problem is
set out and the starting assumptions for the derivation of the model are expounded.

2.1.1 Geometry of the system

A full definition sketch of the general N -layer system is presented in Figure 2.1, given all the
characteristic scales and dimensional dependent variables relative to the wave motion:

• a0 and l0 are the characteristic wave amplitude and wave length.

• h0 and dn are the characteristic water depth and thickness of the layer n.

• bn =
n∑

m=1

dm is the characteristic depth of the layer n, and by convention b0 = a0.

• At each point of the layer n, the fluid flow can be described by Un = (Un, Vn)
T, Wn and

pn, designating respectively the horizontal and vertical particle velocities and the total
pressure, which are spatiotemporal variables in function of (x, y, z, t); the evaluation of
Un at the specific depth κn (x, y, t) is noted un = Un (x, y, z = κn (x, y, t) , t).

21
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• ∀ 1 6 n 6 N − 1, ηn (x, y, t) marks the interface between layers n and n + 1 with
respect to the still water level, while top and bottom borders are given by the free
surface elevation η0 = ζ (x, y, t) and the seabed location ηN = −h (x, y, t).

It is pointed out that the model is applicable to uneven bathymetries, including a time-
dependency of the bottom function h for the simulation of submarine landslides.

Figure 2.1: Geometric layout of the multi-layer system

2.1.2 Simplifying hypotheses

Following the general framework of all Boussinesq type derivations, we define the nonlinearity
and dispersion dimensionless parameters, for both the overall system and the layer n:

ε0 =
a0
h0

, µ0 =
h0

l0
, εn =

a0
dn

, µ2
n =

dnh0

l20
(2.1)

It should be noted that these parameters are closely related by ε0µ
2
0 = εnµ

2
n.

Now, the derivation of the model rests on the next fundamental hypotheses:

• The fluid, in this case the (sea)water, is assumed incompressible; the meaning here,
in the mathematical sense of the term, of this very common hypothesis in numerical
ocean engineering is explored in the following subsection.

• To the magnitude of scales involved during the propagation of oceanic waves, viscous
effects can be assumed insignificant so that the flow is considered inviscid.

• As the depth-integration of the equations purely bans waves from curling and breaking,
the flow is assumed laminar and the turbulence is fully neglected.
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• Regarding the dispersive expansion of equations, the needed long wave perturbation
analysis is based here on the new weak dispersion assumption µ2

n ≪ 1 and then utilises
µ2
n as the small parameter in the power series developments; it can be noted that this

condition is less restrictive than the usual µ2
0 ≪ 1 assumption of the classical one-layer

Boussinesq type approximations, regardless of the order of accuracy.

• Horizontal vorticity is assumed to be at least second order O (µ4
n), whereas components

of the vertical vorticity start at order zero O (1); thereby in this case, the next first
order dispersive derivation only allows the full reproduction of horizontal eddies.

2.1.3 Incompressibility of the fluid

This subsection aims to justify the incompressibility hypothesis in the ocean context.
Generally speaking, the continuity equation for mass conservation reads

dρ

dt
+ ρ∇.u = 0 (2.2)

where ρ is the density and u = (u, v, w)T the three-dimensional velocity of fluid particles.

Let the following characteristic scales of the motion be defined:

• Characteristic length L;

• Characteristic velocity U ;

• Characteristic time T = L/U ;

• Characteristic pressure P = ρU2.

By definition, compressibility effects can be disregarded when
∣∣∣dρρ
∣∣∣≪ 1, that is to say when∣∣∣1ρ

dρ
dt

∣∣∣≪ 1
dt

∼ U
L
, which is equivalent to |∇.u| ≪ U

L
given the equation (2.2).

Noting that 1
ρ
dρ
dt

= 1
ρ
dρ
dp

dp
dt

and using the basic definition of the sound celerity c2 = ∂p
∂ρ

∣∣∣
s

in the fluid, the condition of incompressibility then becomes
∣∣∣ 1
ρc2

dp
dt

∣∣∣≪ U
L
.

The momentum Euler equation, written in the vectorial form, reads

ρ
du

dt
= −∇p+ ρg (2.3)

where g = (0, 0,−g)T represents the acceleration vector of gravity.

The multiplication by u of this equation immediately gives

ρu.
du

dt
= −u.∇p+ ρu.g

1

2
ρ
du2

dt
= −u.∇p− ρwg

(2.4)



24 CHAPTER 2. HIGH ORDER BOUSSINESQ TYPE MODEL

Using the equation (2.4), the term dp
dt

= ∂p
∂t

+ u.∇p can be developped as follows:

dp

dt
=

∂p

∂t
− 1

2
ρ
du2

dt
− ρwg (2.5)

So that the condition of incompressibility now reads
∣∣∣∣
1

ρc2
∂p

∂t
− 1

2c2
du2

dt
− wg

c2

∣∣∣∣≪
U

L
(2.6)

In order to justify this inequality, two conditions are studied separately.

• Condition 1 (Mach number M = U
c
):

∣∣∣∣
1

ρc2
∂p

∂t
− 1

2c2
du2

dt

∣∣∣∣≪
U

L
(2.7)

Using the previous characteristic scales, the inequality (2.7) reduces to
∣∣∣∣
1

ρc2
P

T
− 1

2c2
U2

T

∣∣∣∣≪
U

L∣∣∣∣
1

ρc2
ρU2U

L
− 1

2c2
U2U

L

∣∣∣∣≪
U

L∣∣∣∣M2U

L
− M2

2

U

L

∣∣∣∣≪
U

L∣∣∣∣
M2

2

∣∣∣∣≪ 1

M2 ≪ 1

(2.8)

The sound celerity in oceanic waters is approximately c ≈ 1470 m/s, so that for the
average velocity of a tsunami wave of 750 km/h (208 m/s), a value still largely superior
to the average forward speed of a hurricane, this first condition is likely to be always
verified within the present long wave simulation context in play.

• Condition 2 (scale height Hsc =
c2

g
):

∣∣∣wg
c2

∣∣∣≪ U

L
(2.9)

Similarly, with the similitude w ∼ U , the condition (2.9) is reduced to
∣∣∣∣
Ug

c2

∣∣∣∣≪
U

L∣∣∣∣
Lg

c2

∣∣∣∣≪ 1

L ≪ Hsc

(2.10)

Given the ocean scale height Hsc ≈ 220 km, this second condition shall be satisfied by
considering simulation spatial scales small enough in comparison to this value.
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Consequently from (2.7) and (2.9), it can be deduced that

∣∣∣∣
1

ρc2
∂p

∂t
− 1

2c2
du2

dt

∣∣∣∣+
∣∣∣wg
c2

∣∣∣≪ U

L
(2.11)

Finally, the following inequality validates the condition of incompressibility (2.6):

∣∣∣∣
1

ρc2
∂p

∂t
− 1

2c2
du2

dt
− wg

c2

∣∣∣∣ 6
∣∣∣∣
1

ρc2
∂p

∂t
− 1

2c2
du2

dt

∣∣∣∣+
∣∣∣wg
c2

∣∣∣≪ U

L
(2.12)

2.1.4 Influence of inertial forces

Any ocean wave modelling subject requires an adequate coordinate system. The system most
commonly used in coastal engineering is the rectilinear Cartesian coordinate system (x, y, z),
in which the earth is assumed to be flat. In fact, a spherical coordinate system

(
r, π

2
− φ, θ

)

would be more realistic, but it is also much more complicated to implement. The usual
convention, followed here, consists in defining a local plane at the surface of the earth, in
which the x axis points east, the y axis points north and the z axis points upward from the
mean ocean level, in the direction opposite to the gravitational vector (see Figure 2.2). A
correction of horizontal distances is then applied to account for the sphericity of the earth.

Figure 2.2: Conventional local coordinate system in ocean engineering
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Amongst the main forces acting on a fluid particle in the ocean, we may cite gravity, the
pressure gradient, the bottom friction and inertial forces. Actually, rather than a true force,
the latter is a compensation device to account for the acceleration of the particle induced by
the rotation of the earth Ω (Knauss, 1996). Inertial forces are conventionally quantified by a
fictitious volumetric force F Ω, directly related to this acceleration aΩ by F Ω = −ρaΩ. The
force F Ω is generally split into two terms: the well known Coriolis kinematic component F c

and a static driving component F e. For most problems, the accelerations and forces in play
are sufficiently large so that inertial effects can be ignored. However, in the case of large
scale simulations, for example the oceanic propagation of tsunamis, the Coriolis acceleration
can have significative effects on the kinematics of the flow and should be included in the
governing equations of numerical models. Regarding the leading order terms of the static
driving acceleration, the z component is usually folded into the gravity value g, while the
y component seems to be simply ignored without apparent reason. A derivation of inertial
accelerations in the rotating local Cartesian frame of reference is presented below.

Relative motion

The studied system is the earth, characterised by its centre O and radius R (Figure 2.2). We
denote by O′ a point on the surface of the earth and by M some oceanic fluid particle. Let
R = (O; I,J,K) be the fixed frame of reference in space, R′ = (O′; i, j,k) the usual rotating
mobile frame of reference and Ω = ΩK the angular velocity vector of R′ with respect to R.
By convention, the absolute total derivative in time with respect to R of some variable ϕ

is written
(
dϕ
dt

)
(R)

= ϕ̇, and the relative derivative with respect toR′ is written
(
dϕ
dt

)
(R′)

= ϕ̇′.

Before calculating inertial accelerations, we recall the fundamental theorem of Poisson that
gives the total derivative in time of any unitary vector e in a rotating frame of reference:

ė = Ω× e (2.13)

This property can be easily verified by projecting the three basis unitary vectors i, j, k of
the rotating frame of reference R′ on the basis (I,J,K) of the fixed frame of reference R:

i = − sin θI+ cos θJ

j = − sinφ cos θI− sinφ sin θJ+ cosφK

k = cosφ cos θI+ cosφ sin θJ+ sinφK

(2.14)

The position vector
−−→
OM of the fluid particle M is given by

r = R+ r′

= Rk+ (xi+ yj+ zk)

= xi+ yj+ (R + z)k

(2.15)

The total velocity
(
dr
dt

)
(R)

of the fluid particle M with respect to R reads

ṙ = (ẋi+ ẏj+ żk) +
(
xi̇+ yj̇+ (R + z) k̇

)

= ṙ′ + xΩ× i+ yΩ× j+ (R + z)Ω× k

= ṙ′ +Ω× r

(2.16)
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The total acceleration
(

d2r
dt2

)
(R)

=
(
dṙ
dt

)
(R)

of the fluid particle M with respect to R reads

r̈ = (ẍi+ ÿj+ z̈k) +
(
ẋi̇+ ẏj̇+ żk̇

)
+ Ω̇× r +Ω× ṙ

= r̈′ + 2Ω× ṙ′ + Ω̇× r +Ω× (Ω× r)
(2.17)

Finally, the expression (2.17) for the absolute total acceleration aa can be rewritten as the
sum of a relative total acceleration ar, which is the acceleration measured by an earth observer
and generally reproduced by numerical models, and the inertial acceleration aΩ composed of
the Coriolis acceleration term ac and a driving acceleration term ae, as follows:

aa = ar + aΩ

aΩ = ac + ae

(2.18)

where each component ar, ac and ae respectively reads

ar = r̈′ = u̇′

ac = 2Ω× ṙ′ = 2Ω× u′

ae = Ω̇× r +Ω× (Ω× r)

(2.19)

Coriolis acceleration

The Coriolis acceleration ac in (2.19) can be explicitly evaluated in the local mobile coordinate
system by projecting Ω on the rotating frame of reference R′:

ac = 2Ω




0
cosφ
sinφ


×



u′

v′

w′


 = 2Ω



cosφw′ − sinφ v′

sinφu′

− cosφu′


 (2.20)

The Coriolis acceleration directly depends on the velocity components of the particle. This
acceleration allows the interpretation of many phenomena at the surface of the earth, for
example the motion of air masses and hurricanes, and the trajectory deviation of long-range
projectiles and during free fall. Actually, some particle in motion at the surface of the earth
suffers an east deflection in the Northern Hemisphere and a west deflection in the Southern
Hemisphere. For displacements along meridians, this acceleration is due to the fact that
different parts of the earth rotate with different velocities according to the distance from the
rotation axis. For displacements along parallels, this acceleration results from the centrifugal
or centripetal force induced by the rotation, according to a motion in the same direction or
in the opposite direction to the rotation.

Driving acceleration

The driving acceleration ae in (2.19) is composed of two characteristic terms, commonly
referred to as a tangential component aet and a centripetal component aec:

ae = aet + aec (2.21)
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where both components aet and aec respectively read

aet = Ω̇× r

aec = Ω× (Ω× r)
(2.22)

By assuming a constant angular rotation of the earth, the tangential acceleration in (2.22) is
zero, so that the driving acceleration is reduced to the centripetal acceleration:

ae = Ω× (Ω× r) (2.23)

and can be expressed in the rotating frame of reference R′ as

ae = Ω2




0
cosφ
sinφ


×






0
cosφ
sinφ


×




x
y

R + z




 = Ω2




−x
sinφ cosφ (R + z)− sin2 φ y

− cos2 φ (R + z) + cosφ sinφ y




(2.24)
It can be noted that the driving acceleration is a function of position only and is independent
of velocity. They can be important in determining the gravitational field of the earth and
establishing the related equal potential surfaces (Knauss, 1996).

Finally, it is noted that the position of the fluid particle M is described by its latitude φ
and its coordinates (x, y, z) in the local rotating frame of reference R′. As for the earth,
it is characterised by its volumetric mean radius R ≈ 6371.0 km and its angular velocity
Ω = 2π

Tsideral
≈ 2π

86164.091
≈ 7.2921159e−5 rad/s, calculated from the sideral day.

2.2 Mathematical formulation of governing equations

Usually, by nondimensionalising the governing equations of a given fluid dynamics problem,
one makes the physical parameters of the system appear. In the Boussinesq context, once
such parameters are identified, the idea basically consists of approximating the dispersion
process from a long wave perturbation analysis expanded in terms of the respective parameter.

According to previous hypotheses, the inviscid response of the (sea)water to some flow motion
can be described by the Euler momentum equations coupled to the incompressible continuity
equation, and the dynamic and kinematic closure boundary conditions of the model.

Before performing a nondimensionalisation of the complete primitive system of equations,
some suitable characteristic scales proper to the studied problem must be defined. We recall
here the characteristic scales previously mentioned in the first section:

• Characteristic water depth h0;

• Characteristic layer thickness dn;

• Characteristic height of the wave motion a0;

• Characteristic length of the wave motion l0;

• Characteristic time of the wave motion t0 = l0/
√
gh0.
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2.2.1 Nondimensionalisation of the Euler system

One way to nondimensionalise the Euler equations and the boundary conditions is following
Lynett (2002). Dimensionless variables are thus defined from the characteristic scales of the
system in the following way (dimensional variables are denoted with asterisks):

(x, y) =
(x∗, y∗)

l0
, zn =

z∗

dn
for z∗ ∈ layer n , t =

t∗

t0
, h =

h∗

h0

ζ =
ζ∗

a0
, ηn =

η∗n
bn

, pn =
p∗n
ρga0

, Un =
U ∗

n

ε0
√
gh0

, Wn =
W ∗

n

ε0µ0

√
gh0

(2.25)

where ρ and g represent the (sea)water density and the gravity acceleration.

Equations of motion

The dimensional incompressible Euler system of equations reads inside the layer n:





∇.Un +
∂Wn

∂z
= 0

∂Un

∂t
+Un.∇Un +Wn

∂Un

∂z
= −1

ρ
∇pn

∂Wn

∂t
+Un.∇Wn +Wn

∂Wn

∂z
= −

(
1

ρ

∂pn
∂z

+ g

)
(2.26)

where ∇ = (∂/∂x, ∂/∂y)T denotes the horizontal gradient operator.

The nondimensionalisation of (2.26) using the variables given in (2.25) then leads to





dn
h0

∇.Un +
∂Wn

∂zn
= 0

∂Un

∂t
+ ε0Un.∇Un + εnWn

∂Un

∂zn
= −∇pn

µ2
n

(
∂Wn

∂t
+ ε0Un.∇Wn

)
+ ε0µ

2
0Wn

∂Wn

∂zn
= −

(
∂pn
∂zn

+
1

εn

)
(2.27)

External boundary conditions

The fluid domain is bounded by the free surface and the seabed. The respective dimensional
dynamic and kinematic conditions along both moving boundaries are given by

p1 = patm , at z = ζ

W1 =
dz

dt

∣∣∣∣
z=ζ

=
∂ζ

∂t
+U 1.∇ζ , at z = ζ

WN =
dz

dt

∣∣∣∣
z=−h

= −∂h

∂t
−UN .∇h , at z = −h = ηN

(2.28)
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and in nondimensional form by

p1 =
patm
ρga0

, at z1 = ε1ζ

W1 =
∂ζ

∂t
+ ε0U 1.∇ζ , at z1 = ε1ζ

WN = − 1

ε0

∂h

∂t
−UN .∇h , at zN = − h0

dN
h =

bN
dN

ηN

(2.29)

Internal boundary conditions

In addition, a continuity condition for pressure and velocities is imposed at layer interfaces.
These internal boundary conditions read in terms of dimensional variables:

pn = pn+1 , at z = ηn , 1 6 n 6 N − 1

Un = Un+1 , at z = ηn , 1 6 n 6 N − 1

Wn = Wn+1 , at z = ηn , 1 6 n 6 N − 1

(2.30)

and in nondimensional form, (2.30) becomes

pn = pn+1 , at zn =
bn
dn

ηn and zn+1 =
bn
dn+1

ηn , 1 6 n 6 N − 1

Un = Un+1 , at zn =
bn
dn

ηn and zn+1 =
bn
dn+1

ηn , 1 6 n 6 N − 1

Wn = Wn+1 , at zn =
bn
dn

ηn and zn+1 =
bn
dn+1

ηn , 1 6 n 6 N − 1

(2.31)

The derivation of the multi-layer first order dispersive model presented below does not take
account of inertial terms. However, the inclusion of these forces is trivial and would start
from the addition of accelerations (2.20) and (2.24) into the dimensional Euler system (2.26),
by setting u′ ≡ (U ,W )T for the relative velocity of the rotating frame of reference.

2.2.2 Approximation of velocities and pressure

The long wave perturbation analysis now consists in expanding the dimensionless physical
dependent variables, in this case the velocities and pressure of the layer n, as an infinite
power series of the assumed small dispersion parameter µ2

n of the form:

ϕn =
+∞∑

m=0

µ2m
n ϕ[m]

n , ϕ = U ,W, p (2.32)

In addition, given the vector vorticity ωn defined as the rotational of the velocity field as

ωn = ∇× (Un,Wn)
T =

(
∂Wn

∂y
− ∂Vn

∂zn
,
∂Un

∂zn
− ∂Wn

∂x
,
∂Vn

∂x
− ∂Un

∂y

)T

, (2.33)
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the previous hypotheses on the vorticity of the flow can then be written in the following way,
for both horizontal and vertical components:

∂U [0]
n

∂zn
= 0 , ∇W [0]

n − ∂U [1]
n

∂zn
= 0

∇×Un =
∂Vn

∂x
− ∂Un

∂y
= O (1)

(2.34)

Vertical velocity

The application of expansion (2.32) to velocity variables within the continuity equation in
(2.27) and both kinematic boundary conditions in (2.29), leads at leading order to

dn
h0

∇.U [0]
n +

∂W
[0]
n

∂zn
= 0 , for

bn
dn

ηn 6 zn 6
bn−1

dn
ηn−1 , 1 6 n 6 N

W
[0]
1 =

∂ζ

∂t
+ ε0U

[0]
1 .∇ζ , at z1 = ε1ζ

W
[0]
N = − 1

ε0

∂h

∂t
−U

[0]
N .∇h , at zN = − h0

dN
h

(2.35)

By integrating the continuity equation in (2.35) with respect to zn, the expression of the first
order component of the vertical velocity Wn can be explicitly found:

W [0]
n = −zn

(
dn
h0

∇.U [0]
n

)
+ An (x, y, t) (2.36)

where terms An (x, y, t) are integration constants independent of zn, which can be calculated
using both the seabed and internal continuity kinematic conditions in (2.35) and (2.31):

• Application of the seabed condition:
In layer N , the vertical velocity (2.36) reads at the bottom location:

W
[0]
N

(
zN = − h0

dN
h

)
=

h0

dN
h

(
dN
h0

∇.U
[0]
N

)
+ AN (2.37)

Equalling W
[0]
N

(
zN = − h0

dN
h
)
to its expression in (2.35) gives the value of AN :

AN = −∇.
(
hU

[0]
N

)
− 1

ε0

∂h

∂t
(2.38)

• Application of the internal continuity condition for W :
By defining the auxiliary variable S

[0]
n = dn

h0
∇.U [0]

n , the vertical velocity (2.36) now reads
at the interface ηn from both layers n and n+ 1:

W [0]
n

(
zn =

bn
dn

ηn

)
= − bn

dn
ηnS

[0]
n + An

W
[0]
n+1

(
zn+1 =

bn
dn+1

ηn

)
= − bn

dn+1

ηnS
[0]
n+1 + An+1

(2.39)
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By applying the kinematic continuity condition in (2.31) for the vertical velocity W
through internal layer interfaces, a relation between An and An+1 is obtained:

An = An+1 − ηn

(
bn
dn+1

S
[0]
n+1 −

bn
dn

S[0]
n

)
(2.40)

From (2.38) and (2.40), the complete expression of An, 1 6 n 6 N − 1 is easily calculated:

An = −∇.
(
hU

[0]
N

)
− 1

ε0

∂h

∂t
−

N−1∑

m=n

ηm

(
bm
dm+1

S
[0]
m+1 −

bm
dm

S[0]
m

)
(2.41)

So that the leading order component of the vertical velocity in the layer n can be written

W [0]
n = −znS

[0]
n − T [0]

n (2.42)

where auxiliary variables S
[0]
n and T

[0]
n are given by

S[0]
n =

dn
h0

∇.U [0]
n

T [0]
n = ∇.

(
hU

[0]
N

)
+

1

ε0

∂h

∂t
+

N−1∑

m=n

ηm

(
bm
dm+1

S
[0]
m+1 −

bm
dm

S[0]
m

)
, 1 6 n 6 N − 1

T
[0]
N = ∇.

(
hU

[0]
N

)
+

1

ε0

∂h

∂t

(2.43)

Horizontal velocity

From the hypothesis on vorticity components given in (2.34), the first order component of

the horizontal velocity Un can then be calculated as U [1]
n =

∫
∇W

[0]
n dzn:

U [1]
n = −z2n

2
∇S[0]

n − zn∇T [0]
n +Bn (x, y, t) (2.44)

where terms Bn (x, y, t) are integration constants independent of zn.

At first order, the dispersive expansion (2.32) of the horizontal velocity reads

Un (x, y, zn, t) = U [0]
n (x, y, t) + µ2

nU
[1]
n (x, y, zn, t) +O

(
µ4
n

)
(2.45)

which, by replacing U [1]
n by its expression in (2.44), becomes

Un = U [0]
n − µ2

n

(
z2n
2
∇S[0]

n + zn∇T [0]
n −Bn

)
+O

(
µ4
n

)
(2.46)

The evaluation un of Un at the specific depth κn (x, y, t) then reads

un = U [0]
n − µ2

n

(
κ2
n

2
∇S[0]

n + κn∇T [0]
n −Bn

)
+O

(
µ4
n

)
(2.47)
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So that Un can now be expressed in terms of un by subtracting (2.47) from (2.46):

Un = un − µ2
n

(
z2n − κ2

n

2
∇S[0]

n + (zn − κn)∇T [0]
n

)
+O

(
µ4
n

)
(2.48)

Finally, considering the general relation un = U [0]
n +O (µ2

n) in (2.47), the first order dispersive
approximation of the horizontal velocity Un can be rewritten as

Un = un − µ2
n

(
z2n − κ2

n

2
∇Sn + (zn − κn)∇Tn

)
+O

(
µ4
n

)
(2.49)

where

Sn =
dn
h0

∇.un

Tn = ∇. (huN) +
1

ε0

∂h

∂t
+

N−1∑

m=n

ηm

(
bm
dm+1

Sm+1 −
bm
dm

Sm

)
, 1 6 n 6 N − 1

TN = ∇. (huN) +
1

ε0

∂h

∂t

(2.50)

In the same way, the expression (2.42) of the vertical component W
[0]
n can be updated to

wn = −znSn − Tn (2.51)

So that the zero order dispersive approximation of the vertical velocity Wn reads

Wn = −znSn − Tn +O
(
µ2
n

)
(2.52)

Pressure

Now, to determine the pressure field in layer n, the vertical momentum equation given in
(2.27) and the previous dispersive expansions of both horizontal (2.49) and vertical (2.52)
velocities are used. Keeping leading order terms only, this equation reads

µ2
n

(
∂wn

∂t
+ ε0un.∇wn

)
+ ε0µ

2
0wn

∂wn

∂zn
+O

(
µ2
0µ

2
n, µ

4
n

)
= −∂pn

∂zn
− 1

εn
(2.53)

The pressure pn can then be simply calculated by replacing wn by its expression in (2.51)
before integrating the equation with respect to zn, using both the free surface and internal
continuity dynamic conditions in (2.29) and (2.31) to evaluate the integration constant.

In the case of layer 1, the expression of the pressure field thereby reads

p1 =
patm
ρga0

− (z1 − ε1ζ)

[
1

ε1
+ ε0µ

2
0

(
z1 + ε1ζ

2
S2
1 + T1S1

)

−µ2
1

(
z1 + ε1ζ

2

(
∂S1

∂t
+ ε0u1.∇S1

)
+

∂T1

∂t
+ ε0u1.∇T1

)]
+O

(
µ2
0µ

2
1, µ

4
1

) (2.54)
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In the same way, the pressure field in layer n, 2 6 n 6 N , results as follows:

pn =
patm
ρga0

+ ζ − zn
εn

−
(
zn −

bn−1

dn
ηn−1

)[
ε0µ

2
0

(
zn +

bn−1

dn
ηn−1

2
S2
n + TnSn

)

−µ2
n

(
zn +

bn−1

dn
ηn−1

2

(
∂Sn

∂t
+ ε0un.∇Sn

)
+

∂Tn

∂t
+ ε0un.∇Tn

)]

−
n−1∑

m=1

(
bm
dm

ηm − bm−1

dm
ηm−1

)[
ε0µ

2
0

(
bm
dm

ηm + bm−1

dm
ηm−1

2
S2
m + TmSm

)

−µ2
m

(
bm
dm

ηm + bm−1

dm
ηm−1

2

(
∂Sm

∂t
+ ε0um.∇Sm

)
+

∂Tm

∂t
+ ε0um.∇Tm

)]

+O
(
µ2
0µ

2
1, ..., µ

2
0µ

2
n, µ

4
1, ..., µ

4
n

)

(2.55)

2.2.3 Derivation of dispersive equations

This subsection is aimed at a brief description of the derivation of the model under the
multi-layer approach. The continuity equation is piecewisely integrated over the entire water
depth, the horizontal momentum equation is developed for the superficial layer in terms of
u1, and the internal kinematic continuity condition for the horizontal velocity U is used for
the determination of lower layer velocities un, 2 6 n 6 N .

Continuity equation

The continuity equation in (2.27) is integrated over the layer n as follows:

∫ zn=
bn−1

dn
ηn−1

zn=
bn

dn
ηn

(
dn
h0

∇.Un +
∂Wn

∂zn

)
dzn = 0 (2.56)

Then, by summing the equation (2.56) for all layers, and applying the Leibniz rule and
all kinematic boundary conditions in (2.29) and (2.31) successively, the following exact
expression of the depth-integrated continuity equation can be obtained:

∇.

N∑

n=1

(
dn
h0

∫ zn=
bn−1

dn
ηn−1

zn=
bn

dn
ηn

Un dzn

)
+

∂ζ

∂t
+

1

ε0

∂h

∂t
= 0 (2.57)

Finally, by evaluating the integral in (2.57) from the expression (2.49) of the horizontal
velocity Un, the first order dispersive approximation of the multi-layer mass equation reads

∂ζ

∂t
+

1

ε0

∂h

∂t
+∇.

N∑

n=1

(
bn−1

h0

ηn−1 −
bn
h0

ηn

)[
un −

µ2
n

6

((
bn−1

dn
ηn−1

)2

+
bn−1ηn−1bnηn

d2n
+

(
bn
dn

ηn

)2

− 3κ2
n

)
∇Sn

−µ2
n

2

(
bn−1

dn
ηn−1 +

bn
dn

ηn − 2κn

)
∇Tn

]
+O

(
µ4
1, ..., µ

4
N

)
= 0

(2.58)
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The total mass flux markedly tends to zero at the shoreline when bn−1

h0
ηn−1− bn

h0
ηn, 1 6 n 6 N ,

tends to zero in (2.58). This natural shoreline boundary condition is in general automatically
recovered by the fully nonlinear versions of Boussinesq type models (Wei et al., 1995).

Momentum equation

The momentum equation for the superficial layer 1 is then easily obtained by substituting
the expressions (2.49), (2.52) and (2.54) for velocities U 1 and W1 and the pressure p1 into
the horizontal Euler equation in (2.27), and keeping all nonlinear first order dispersive terms:

∂u1

∂t
+ ε0u1.∇u1 +∇ζ +

1

ρga0
∇patm + µ2

1

∂

∂t

(
κ2
1

2
∇S1 + κ1∇T1

)

+ ε0µ
2
1

[
∇
(
κ2
1

2
u1.∇S1

)
+∇ (κ1u1.∇T1)− u1 ×

(
∇×

(
κ2
1

2
∇S1

))

−u1 × (∇× (κ1∇T1)) +
z21 − κ2

1

2
∇S1 × (∇× u1) + (z1 − κ1)∇T1 × (∇× u1)

]

+ ε0µ
2
0∇
(
T 2
1

2
− ζ

∂T1

∂t

)
− ε20µ

2
0∇ (ζu1.∇T1) + ε1ε0µ

2
0∇
(
ζT1S1 −

ζ2

2

∂S1

∂t

)

− ε1ε
2
0µ

2
0∇
(
ζ2

2
u1.∇S1

)
+ ε21ε0µ

2
0∇
(
ζ2

2
S2
1

)
+O

(
µ2
0µ

2
1, µ

4
1

)
= 0

(2.59)

Noticeably, this equation is slightly different from Lynett (2002), as both rotational terms

u1 ×
(
∇×

(
κ2
1

2
∇S1

))
and u1 × (∇× (κ1∇T1)) are no longer neglected and no assumption

is made on the vertical vorticity (see (2.34)). Actually, the one and two-layer first order
dispersive model implemented by Lynett was fully irrotational, with a vorticity field assumed
at least of second order O (µ4

n) for both horizontal and vertical components.

Moreover, as discussed in Hsiao et al. (2002), the z1-dependency in equation (2.59) vanishes if
the vertical vorticity∇×u1 of layer 1 is assumed to be first order O (µ2

1). However, the natural
alternative to removing this vertical dependency consists in integrating the equation over the
superficial layer as in Chen (2006). Although this approach is almost never explicitly used
in practice, thus leaving the momentum equation in its non conservative form, it is supposed
to be part of the derivation procedure of the so-called depth-integrated models.

Internal continuity condition for U

The remaining lower layer velocities can be further calculated in function of the upper layer
component, by the use of the internal kinematic continuity condition for U in (2.31), so that
it is not necessary to solve a momentum equation within all layers:

un +
µ2
n

2

[(
κ2
n −

(
bn−1

dn
ηn−1

)2
)
∇Sn + 2

(
κn −

bn−1

dn
ηn−1

)
∇Tn

]
− un−1

− µ2
n−1

2

[(
κ2
n−1 −

(
bn−1

dn−1

ηn−1

)2
)
∇Sn−1 + 2

(
κn−1 −

bn−1

dn−1

ηn−1

)
∇Tn−1

]

+O
(
µ4
n−1, µ

4
n

)
= 0 , 2 6 n 6 N

(2.60)
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Equations (2.58), (2.59) and (2.60) are the coupled governing equations for fully nonlinear first
order dispersive waves under the multi-layer approach of Lynett (2002). The N -layer model
has now been reduced from the 4N unknowns Un, Wn and pn of the initial three-dimensional
problem, to 2N + 1 unknowns ζ and un for the depth-integrated two-dimensional problem.

2.2.4 Back to the dimensional form

Once the multi-layer fully nonlinear Boussinesq type first order dispersive mathematical
model is derived, governing equations are rewritten in the original dimensional form using
(2.25). This simplified form will be used later for the numerical approximation of the model.

The auxiliary variables (2.50) are first redefined in dimensional form as

Qn = ∇.un

Rn = ∇. (huN) +
∂h

∂t
+

N−1∑

m=n

ηm (Qm+1 −Qm) , 1 6 n 6 N − 1

RN = ∇. (huN) +
∂h

∂t

(2.61)

So that the vertical profiles of velocities (2.49) and (2.52), and pressure (2.54) and (2.55) are
now respectively given in dimensional form by:

Un = un −
z2 − κ2

n

2
∇Qn − (z − κn)∇Rn (2.62)

Wn = −zQn −Rn (2.63)

p1 =patm + ρg (ζ − z) + ρ
z2 − ζ2

2

(
∂Q1

∂t
+ u1.∇Q1 −Q2

1

)

+ ρ (z − ζ)

(
∂R1

∂t
+ u1.∇R1 −R1Q1

) (2.64)

pn =patm + ρg (ζ − z) + ρ
z2 − η2n−1

2

(
∂Qn

∂t
+ un.∇Qn −Q2

n

)
+ ρ (z − ηn−1)

(
∂Rn

∂t
+ un.∇Rn −RnQn

)
+ ρ

n−1∑

m=1

[
η2m − η2m−1

2

(
∂Qm

∂t
+ um.∇Qm −Q2

m

)

+(ηm − ηm−1)

(
∂Rm

∂t
+ um.∇Rm −RmQm

)]
(2.65)

The continuity equation (2.58) reads in dimensional form:

∂ζ

∂t
+

∂h

∂t
+∇.

N∑

n=1

(ηn−1 − ηn)

(
un −

1

6

(
η2n−1 + ηn−1ηn + η2n − 3κ2

n

)
∇Qn

−1

2
(ηn−1 + ηn − 2κn)∇Rn

)
= 0

(2.66)
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The momentum equation (2.59) within layer 1 reads in dimensional form:

∂u1

∂t
+ u1.∇u1 + g∇ζ +

1

ρ
∇patm +

∂

∂t

(
κ2
1

2
∇Q1 + κ1∇R1

)
+∇

(
κ2
1

2
u1.∇Q1

)

+∇ (κ1u1.∇R1)− u1 ×
(
∇×

(
κ2
1

2
∇Q1

))
− u1 × (∇× (κ1∇R1))

+
z2 − κ2

1

2
∇Q1 × (∇× u1) + (z − κ1)∇R1 × (∇× u1) +∇

(
R2

1

2
− ζ

∂R1

∂t

)

−∇ (ζu1.∇R1) +∇
(
ζR1Q1 −

ζ2

2

∂Q1

∂t

)
−∇

(
ζ2

2
u1.∇Q1

)
+∇

(
ζ2

2
Q2

1

)
= 0

(2.67)

Finally, the internal continuity condition (2.60) for U reads in dimensional form:

un +
κ2
n − η2n−1

2
∇Qn + (κn − ηn−1)∇Rn − un−1

− κ2
n−1 − η2n−1

2
∇Qn−1 − (κn−1 − ηn−1)∇Rn−1 = 0 , 2 6 n 6 N

(2.68)

2.3 Truncation error of the model

In this section, an estimation of the truncation error of the multi-layer first order dispersive
model is presented from the heuristic analysis of Lynett (2002). According to equations
(2.58), (2.59) and (2.60), the overall truncation error of the model can be expressed as

O
(
µ2
0µ

2
1, µ

4
1, µ

4
2, ..., µ

4
N

)
(2.69)

Noting that µ4
1 6 µ2

0µ
2
1 since d1 6 h0, this error is simplified to

O
(
µ2
0µ

2
1, µ

4
2, ..., µ

4
N

)
(2.70)

2.3.1 Heuristic approach

The truncation error is examined through an heuristic approach, by taking the error as a
finite value instead of an order. This value is then utilised to estimate the accuracy of the
model, in comparison to higher order Boussinesq type dispersive approximations.

The optimal exploitation of the multi-layer description of the water depth is achieved when
the truncation error is minimal and occurs when µ2

0µ
2
1 = µ4

2 = ... = µ4
N , that is to say when

d1h0 = d22 = ... = d2N . Then, thicknesses dn, 2 6 n 6 N can be expressed in terms of d1 as:
d2 = ... = dN =

√
d1h0, so that an equation for

√
d1 is obtained from the relation bN = h0:

d1 + (N − 1)
√
h0

√
d1 − h0 = 0 (2.71)

The resolution of this second degree equation leads to two distinct real roots, and the
inequality d1 6 h0 allows the selection of the physical solution:

d1 =


1−N +

√
(N − 1)2 + 4

2




2

h0 (2.72)
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Finally, the heuristic truncation error can be expressed in function of N as follows:

O





1−N +

√
(N − 1)2 + 4

2




2

µ4
0


 (2.73)

The truncation error of the model is shown in Figure 2.3 for up to five layers, and is compared
to the error in O (µ6

0) of the second order Boussinesq type model of Gobbi et al. (2000). As
expected, the error decreases when the number of layers is raised. Besides, the curves of the
first order multi-layer model and the second order model intersect each other at µ0int:

µ0int =

√
d1
h0

=
1−N +

√
(N − 1)2 + 4

2
(2.74)

It can be observed in Figure 2.3 that for µ0 < µ0int, the second order model error is lower
than the multi-layer model error. However from µ0int, the multi-layer model becomes more
accurate. In fact, compared to a one-layer model derived at any order O

(
µ2k
0

)
, even the

two-layer model will achieve a better accuracy as µ0 gets closer to 1.
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Figure 2.3: Truncation error of the multi-layer model, N = 1 (-), N = 2 (-), N = 3 (-),
N = 4 (-) and N = 5 (-) versus the model of Gobbi et al. (2000) (- -)

2.3.2 Insignificance of intermediate order terms

At the time of evaluating the pressure pn in subsection 2.2.2, the terms O (µ2
0µ

2
1) were

neglected in the vertical momentum equation (2.53). This subsection explores the effect
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the inclusion of these terms would have on the truncation error, which modifies to

O
(
µ2
0µ

4
1, µ

4
1, µ

4
2, ..., µ

4
N

)
(2.75)

In this case, the two following situations are examined:

• µ0 6 1 ⇔ µ2
0µ

4
1 6 µ4

1, the error reduces to O (µ4
1, µ

4
2, ..., µ

4
N ) and reads

O

(
1

N2
µ4
0

)
(2.76)

• µ0 > 1 ⇔ µ4
1 6 µ2

0µ
4
1, the error reduces to O (µ2

0µ
4
1, µ

4
2, ..., µ

4
N ) and reads

O

(
1

(1 + (N − 1)µ0)
2µ

6
0

)
(2.77)

As a result, the addition of O (µ2
0µ

2
1) terms to the multi-layer model induces a reduction of

the truncation error in Figure 2.4 for µ0 6 µ0int2 (up to the intersection point of the curves):

µ0int2 =
µ2
0int (N − 1) + µ0int

1− µ2
0int (N − 1)2

(2.78)

Beyond this point, the error becomes increasingly greater and starts affecting the accuracy.
Furthermore, the previous enhancement of accuracy is actually relatively weak compared to
the additional complexity of governing equations, due to an implication of those terms, which
would require the determination of the second component W

[1]
n of the vertical velocity Wn.
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Figure 2.4: Effect of the inclusion of O (µ2
0µ

2
1) terms on the truncation error of the multi-layer

model with the same colors as in Figure 2.3, model (-), modified model (- -)
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2.3.3 Velocities in lower layers

The multi-layer model, derived in the previous section, does not explicitly solve the horizontal
momentum equation within each layer, for the calculation of velocities un. Basically, the
momentum equation is solved in the superficial layer, while lower layer velocities are chosen to
be determined by the internal velocity continuity condition at layer interfaces. The truncation
error of an alternative model comprised of a system of N momentum equations is examined
below. In such a case, this error would read O (µ2

0µ
2
1, ..., µ

2
0µ

2
N , µ

4
1, ..., µ

4
N ) and reduce to

O (µ2
0µ

2
1, ..., µ

2
0µ

2
N), which can be expressed in function of N as

O

(
1

N
µ4
0

)
(2.79)

This time, Figure 2.5 clearly shows an increase of the truncation error for the alternative
model, which supports in some way the choice made for the calculation of velocities. Finally,
we recall the great feature of the multi-layer approach and the ability of the model to control
its own range of validity by only playing with the arbitrary number N of layers.
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Figure 2.5: Effect of the alternative modelling on the truncation error of the multi-layer
model with the same colors as in Figure 2.3, model (-), alternative model (- -)

2.4 Calibration of the model properties

As part of any Boussinesq type derivation, the intrinsic dispersion properties of the governing
equations are generally optimised through a sort of calibration of the model to the known
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theoretical properties of deep water waves, fully described by the analytical theory of Stokes
(1847). In the case of an overall bth order calibration, the arbitrary vertical location ηn of the
layers and the respective internal depths κn to which horizontal velocities are numerically
evaluated can be mathematically described from the suggestion of Lynett (2002) by

ηn = αnh+
b−1∑

q=1

βnq
ζq

hq−1
, 1 6 n 6 N − 1

κn = γnh+
b−1∑

q=1

δnq
ζq

hq−1
, 1 6 n 6 N

(2.80)

Then, the user-defined coefficients are taken as calibration parameters: αn and γn are used
to optimise linear properties with a calibration of first order terms, while βnq and δnq are
used to optimise nonlinear properties with a calibration of higher order terms.

In the next two subsections, we discuss the main ideas of both linear and nonlinear analyses
in the case of a second order calibration procedure, where the expressions of variables ηn and
κn in (2.80) reduce to the approach of Kennedy et al. (2001):

ηn = αnh+ βnζ , 1 6 n 6 N − 1

κn = γnh+ δnζ , 1 6 n 6 N
(2.81)

2.4.1 Linear optimisation

The phase speed, wave group velocity and linear shoaling gradient are generally examined so
as to achieve optimal linear dispersion properties over a wide range of kh values. Basically,
the analysis consists in making the model linear properties match at best the analytical
theory of Airy (1845), or the theory of Stokes (1847) truncated to first order.

The linear phase celerity c is formally given by the linear dispersion relationship, which
reads in the analytical theoretical case in its most common form:

c2

gh
=

tanh (kh)

kh
(2.82)

The linear dispersion relationship of the model can be obtained from a linearisation of the
one-dimensional and constant water depth version of the governing equations (2.66), (2.67)
and (2.68), and by substituting the first order term from the expansion of a Stokes (1847)
type Fourier analysis as the assumed linear solution form, as follows:

(ζ, un) =
(
ζ(1), u(1)

n

)
ei(kx−σt) (2.83)

where σ = kc is the angular wave frequency. Lynett and Liu (2004b) reported a linear
dispersion relationship equivalent to a [2N/2N ] Padé approximant in kh (which could also
be viewed as a [N/N ] Padé approximant in kh2) of (2.82) for the N -layer model:

c2

gh
=

1 +
N∑

n=1

Nn (kh)
2n

1 +
N∑

n=1

Dn (kh)
2n

(2.84)
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where coefficients Nn and Dn are functions of αn and γn.

The linear group velocity cg is associated with the propagation of the wave energy or the
wave envelope in irregular linear wave trains, and can be determined straightforwardly by
taking the derivative of the dispersion relation: cg =

dσ
dk
. In the analytical case, it reads

cg =
c

2

(
1 +

2kh

sinh (2kh)

)
(2.85)

The linear group velocity of the model can then be easily calculated from (2.84).

The linear shoaling gradient Ax characterises the propagation of a linear wave train of
amplitude a over a mildly sloping bottom h and is given by the linear shoaling equation:

ax
a

+ Ax
hx

h
= 0 (2.86)

The analytical linear shoaling gradient can be determined from the concept of energy flux
conservation ∂

∂x
(a2cg) = 0 and the exact dispersion relationship (2.82) (see Madsen and

Sørensen, 1992), so that after some algebraic manipulations it reads

Ax =
G
(
1 + G

2
[1− cosh (2kh)]

)

(1 +G)2
, G =

2kh

sinh (2kh)
(2.87)

The linear shoaling gradient of the model can be calculated following the methodology
described in Schäffer and Madsen (1995) and used by Lynett and Liu (2004a), for an assumed
solution form of the linearised one-dimensional version of the governing equations (2.66),
(2.67) and (2.68) and a truncation up to first derivative terms of the slowly varying quantities.

Finally, the linear optimisation of the model can be performed by adjusting the calibration
parameters αn and γn to a Padé approximation of the dispersion relationship, or through an
overall error minimisation procedure of an average value built from the phase speed, group
velocity and shoaling gradient errors, over a desired range of kh values.

In practice, in the case of one layer, the value γ1 = −0.53 recommended by Nwogu (1993) can
be used for an optimal elevation that minimises phase errors to 2% for kh ∈ [0, π[. For two,
three and four layers, optimal sets of values issued from the error minimisation process are
given in Lynett (2002) for an average of c, cg and Ax errors, and in Lynett and Liu (2004b)
for an average of only c and cg errors as available numerical data.

2.4.2 Nonlinear optimisation

In the case of a second order calibration of the model, a nonlinear optimisation can be
performed that makes the nonlinear dispersion properties of the model match the nonlinear
second order terms of the analytical theory of Stokes (1847). The propagation of nonlinear
second order Stokes steady waves and the analysis of nonlinear interactions of a linear first
order Stokes bichromatic wave group are generally examined for the optimisation.
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For the former case, the second order Stokes (1847) type Fourier expansion reads

(ζ, un) = ǫ
(
ζ(1), u(1)

n

)
ei(kx−σt) + ǫ2

(
ζ(2), u(2)

n

)
e2i(kx−σt) (2.88)

where ǫ is simply a small ordering parameter and the second order component of the solution
of Stokes (1847) for the free surface elevation ζ is given by the following expression:

ζ(2) =
kζ(1)

2

4

cosh (kh)

sinh3 (kh)
(2 + cosh (2kh)) =

kζ(1)
2

4
coth (kh)

(
3 coth2 (kh)− 1

)
(2.89)

The nonlinear second order component of the model can then be calculated and expressed
in terms of the remaining nonlinear coefficients βn and δn, from the one-dimensional and
constant water depth version of the governing equations (2.66), (2.67) and (2.68) and the
second order Stokes (1847) type Fourier expansion (2.88) for the assumed solution form.

Second order nonlinear interactions of a linear first order Stokes (1847) bichromatic wave
group can be analysed by considering the following two-wave group problem up to O (ǫ2):

(ζ, un) =ǫ
(
ζ
(1)
1 , u

(1)
1n

)
ei(k1x−σ1t) + ǫ

(
ζ
(1)
2 , u

(1)
2n

)
ei(k2x−σ2t) + ǫ2

(
ζ
(2)
1 , u

(2)
1n

)
e2i(k1x−σ1t)

+ ǫ2
(
ζ
(2)
2 , u

(2)
2n

)
e2i(k2x−σ2t) + ǫ2

(
ζ+, u+

n

)
ei(k+x−σ+t) + ǫ2

(
ζ−, u−

n

)
ei(k−x−σ−t)

(2.90)

Where (ζ+, u+
n ) and (ζ−, u−

n ) are the resultant components of the sum and difference of the
two first order wave frequencies σ± = σ1±σ2 and wavenumbers k± = k1± k2. Referred to as
the super and subharmonic amplitudes respectively, the analytical free surface components
ζ± can be found in the second order wavemaker theory derivation by Schäffer (1996).

To find the super and subharmonic amplitudes of the model for the bichromatic interactions
problem, the procedure is the same as for steady waves, substituting this time (2.90) for the
assumed solution form into the one-dimensional and constant water depth equations.

Now, to close the calibration of the model with a second order general nonlinear optimisation,
coefficients βn and δn may be adjusted to minimise an overall error parameter including errors
in the second order component of the free surface elevation and in the super and subharmonic
amplitudes for up to a specific limit kh value (see Lynett, 2002 and Lynett and Liu, 2004a for
minimisation based nonlinear optimisations of the two-layer model). An alternative method
would be to restrict the optimisation procedure to only one case by making the model match
some Taylor series about kh = 0 of the analytical components of the theory of Stokes (1847),
and further analyse the effect of the calibration on the other case (see Kennedy et al., 2001).
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Chapter 3

Numerical approximation in 1D:

MUOLDAO model

A brief description of the numerical implementation of the high order multi-layer Boussinesq
type model is presented in this chapter. Basically, the governing equations are solved by a
discontinuous Galerkin type method. In the following numerical approximation MUOLDAO
(the Spanish abbreviation for Modelo Unidimensional de Ondas Largas Dispersivas de Alto
Orden), we restrict our attention to one horizontal dimension x, so that both the horizontal
velocity vector and horizontal nabla operator now simplify to Un = Un and ∇ = ∂

∂x
.

3.1 Resolution strategy

Before dealing with the numerical discretisation scheme, the somewhat crude dimensional
governing equations (2.66), (2.67) and (2.68) are simplified to only one horizontal dimension
x and a resolution strategy is proposed for the application of the discontinuous Galerkin
(DG) method. Firstly, the auxiliary variables Qn and Rn in (2.61) become

Qn =
∂un

∂x

Rn =
∂ (huN)

∂x
+

∂h

∂t
+

N−1∑

m=n

ηm (Qm+1 −Qm) , 1 6 n 6 N − 1

RN =
∂ (huN)

∂x
+

∂h

∂t

(3.1)

In the same way, the vertical profiles of velocities Un and Wn in (2.62) and (2.63), and
pressures p1 and pn, n > 2, in (2.64) and (2.65) are rewritten as follows:

Un = un −
z2 − κ2

n

2

∂Qn

∂x
− (z − κn)

∂Rn

∂x
(3.2)

Wn = −zQn −Rn (3.3)

45
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p1 =patm + ρg (ζ − z) + ρ
z2 − ζ2

2

(
∂Q1

∂t
+ u1

∂Q1

∂x
−Q2

1

)

+ ρ (z − ζ)

(
∂R1

∂t
+ u1

∂R1

∂x
−R1Q1

) (3.4)

pn =patm + ρg (ζ − z) + ρ
z2 − η2n−1

2

(
∂Qn

∂t
+ un

∂Qn

∂x
−Q2

n

)
+ ρ (z − ηn−1)

(
∂Rn

∂t
+ un

∂Rn

∂x
−RnQn

)
+ ρ

n−1∑

m=1

[
η2m − η2m−1

2

(
∂Qm

∂t
+ um

∂Qm

∂x
−Q2

m

)

+(ηm − ηm−1)

(
∂Rm

∂t
+ um

∂Rm

∂x
−RmQm

)]
(3.5)

3.1.1 Systems of equations

For one horizontal dimension x, the governing equations (2.66), (2.67) and (2.68) reduce to

∂ζ

∂t
+

∂h

∂t
+

∂

∂x

N∑

n=1

(ηn−1 − ηn)

(
un −

1

6

(
η2n−1 + ηn−1ηn + η2n − 3κ2

n

) ∂Qn

∂x

−1

2
(ηn−1 + ηn − 2κn)

∂Rn

∂x

)
= 0

(3.6)

∂u1

∂t
+

1

2

∂u2
1

∂x
+ g

∂ζ

∂x
+

1

ρ

∂patm
∂x

+
∂

∂t

(
κ2
1

2

∂Q1

∂x
+ κ1

∂R1

∂x

)
+

∂

∂x

(
κ2
1

2
u1

∂Q1

∂x

)

+
∂

∂x

(
κ1u1

∂R1

∂x

)
+

∂

∂x

(
R2

1

2
− ζ

∂R1

∂t

)
− ∂

∂x

(
ζu1

∂R1

∂x

)

+
∂

∂x

(
ζR1Q1 −

ζ2

2

∂Q1

∂t

)
− ∂

∂x

(
ζ2

2
u1

∂Q1

∂x

)
+

∂

∂x

(
ζ2

2
Q2

1

)
= 0

(3.7)

un +
κ2
n − η2n−1

2

∂Qn

∂x
+ (κn − ηn−1)

∂Rn

∂x
− un−1

− κ2
n−1 − η2n−1

2

∂Qn−1

∂x
− (κn−1 − ηn−1)

∂Rn−1

∂x
= 0 , 2 6 n 6 N

(3.8)

It is underlined that rotational terms, and thereby the z-dependency, of the two-dimensional
momentum equation (2.67) disappear in (3.7) in the case of only one horizontal dimension,
so that this equation can be solved directly without being necessarily integrated over the
upper layer 1. Gathering some hyperbolic terms, equation (3.7) simplifies to

∂u1

∂t
+

1

2

∂u2
1

∂x
+ g

∂ζ

∂x
+

1

ρ

∂patm
∂x

+
∂

∂t

(
κ2
1

2

∂Q1

∂x
+ κ1

∂R1

∂x

)

+
∂

∂x

(
κ2
1 − ζ2

2
u1

∂Q1

∂x

)
+

∂

∂x

(
(κ1 − ζ) u1

∂R1

∂x

)

+
1

2

∂

∂x

[
(ζQ1 +R1)

2]− ∂

∂x

(
ζ2

2

∂Q1

∂t
+ ζ

∂R1

∂t

)
= 0

(3.9)
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The last two terms of this equation can be reformulated using the relations

∂

∂x

(
ζ2

2

∂Q1

∂t

)
=

∂

∂x

(
∂

∂t

(
ζ2

2
Q1

)
− ζtζQ1

)

∂

∂x

(
ζ
∂R1

∂t

)
=

∂

∂x

(
∂

∂t
(ζR1)− ζtR1

) (3.10)

So that the momentum equation (3.9) is then rewritten in the following way:

∂u1

∂t
+

1

2

∂u2
1

∂x
+ g

∂ζ

∂x
+

1

ρ

∂patm
∂x

+
∂

∂t

(
κ2
1

2

∂Q1

∂x
+ κ1

∂R1

∂x
− ∂

∂x

(
ζ2

2
Q1

)
− ∂

∂x
(ζR1)

)

+
∂

∂x

(
κ2
1 − ζ2

2
u1

∂Q1

∂x

)
+

∂

∂x

(
(κ1 − ζ) u1

∂R1

∂x

)
+

∂

∂x

(
(ζQ1 +R1)

2

2
+ ζt (ζQ1 +R1)

)
= 0

(3.11)

Finally, the unidirectional model (3.6), (3.11) and (3.8) can be written in the form of two
decoupled systems: a dispersive system whose unknowns are the free surface elevation ζ and
the horizontal velocity u1 in the superficial layer, and an elliptic system which allows the
calculation of velocities un, 2 6 n 6 N , in lower layers.

Where Un = (ζ, u1, ..., un)
T, 1 6 n 6 N , the governing equations then read

Dispersive system

∂U1

∂t
+

∂D

∂t
+

∂Fd

∂x
= Sd (3.12)

where the terms U1, D, Fd and Sd are expressed as

U1 =

(
ζ
u1

)
, D =



0
κ2
1

2

∂Q1

∂x
+ κ1

∂R1

∂x
− ∂

∂x

(
ζ2

2
Q1

)
− ∂

∂x
(ζR1)


 , Sd =




− ht

− 1

ρ

∂patm
∂x




Fd =




N∑

n=1

(ηn−1 − ηn)

(
un −

1

6

(
η2n−1 + ηn−1ηn + η2n − 3κ2

n

) ∂Qn

∂x
− 1

2
(ηn−1 + ηn − 2κn)

∂Rn

∂x

)

u2
1

2
+ gζ +

κ2
1 − ζ2

2
u1

∂Q1

∂x
+ (κ1 − ζ) u1

∂R1

∂x
+

(ζQ1 +R1)
2

2
+ ζt (ζQ1 +R1)




(3.13)

Elliptic system

un +
κ2
n − η2n−1

2

∂Qn

∂x
+ (κn − ηn−1)

∂Rn

∂x
− un−1

− κ2
n−1 − η2n−1

2

∂Qn−1

∂x
− (κn−1 − ηn−1)

∂Rn−1

∂x
= 0 , 2 6 n 6 N

(3.14)
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3.1.2 Rearrangement of terms

With the aim of elaborating a resolution strategy, let us start focusing on the main difficulty
of the previous system (3.12): the treatment of the time derivative of the dispersive term D.
Then to simplify this equation, a substitution method is proposed with the definition of a
temporal velocity variable ũ1 so the system can be rewritten in the following way:

∂Ũ1

∂t
+

∂Fd

∂x
= Sd (3.15)

with Ũ1 = U1 +D = (ζ, ũ1)
T.

As a consequence, an additional equation is introduced in the elliptic system (3.14) for the
estimation of the upper layer velocity u1, in function of ũ1:





u1 +
κ2
1

2

∂Q1

∂x
+ κ1

∂R1

∂x
− ∂

∂x

(
ζ2

2
Q1

)
− ∂

∂x
(ζR1) = ũ1

un +
κ2
n − η2n−1

2

∂Qn

∂x
+ (κn − ηn−1)

∂Rn

∂x
− un−1

− κ2
n−1 − η2n−1

2

∂Qn−1

∂x
− (κn−1 − ηn−1)

∂Rn−1

∂x
= 0 , 2 6 n 6 N

(3.16)

By defining the vectors U = (u1, ..., uN )
T, so that UN = (ζ,U)T, and Ũ = (ũ1, 0, ..., 0)

T, a
substitution of the expressions of auxiliary variables Qn and Rn given in (3.1) and their first
spatial derivative into (3.16), leads to the following form for the elliptic system of size N :

(Id +A)U + B∂U

∂x
+ C ∂

2U

∂x2
= Se + Ũ (3.17)

where Id denotes the identity matrix. Moreover, the three squared matrices A, B and C are
a function of the free surface elevation ζ and its two first spatial derivatives ζx and ζxx, while
the source term Se only depends on ζ and ζx:

A =




0 a1,N

−1
. . . 0

...
. . . . . . an,N

0 . . . 0
...

−1 aN,N




, B =




b1,1 . . . b1,n . . . b1,N

. . . . . .
...

...

bn,n−1 bn,n . . . bn,l . . . bn,N

0
. . . . . .

...

bN,N−1 bN,N
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C =




c1,1 . . . c1,n . . . c1,N

. . . . . .
...

...

cn,n−1 cn,n . . . cn,l . . . cn,N

0
. . . . . .

...

cN,N−1 cN,N




, Se =




se1
...
sen
...

seN




(3.18)

The components of A, B, C and Se are given respectively by

b1,1 = (η1 − ζ) ζx − (κ1 − ζ) η1x
b1,n = (κ1 − ζ) (ηn−1x − ηnx)− ζx (ηn−1 − ηn)
b1,N = − (h+ ηN−1) ζx + (κ1 − ζ) (2hx + ηN−1x)

a1,N = (κ1 − ζ)hxx − ζxhx bn,n−1 = (κn−1 − ηn−1) ηn−1x

an,N = (κn − κn−1)hxx bn,n = − (κn−1 − ηn−1) ηn−1x − (κn − κn−1) ηnx
aN,N = (κN − κN−1)hxx bn,l = (κn − κn−1) (ηl−1x − ηlx)

bn,N = (κn − κn−1) (2hx + ηN−1x)
bN,N−1 = (κN−1 − ηN−1) ηN−1x

bN,N = 2hx (κN − κN−1)− (κN−1 − ηN−1) ηN−1x

c1,1 = (κ1 − ζ)
(
κ1+ζ
2

− η1
)

c1,n = (κ1 − ζ) (ηn−1 − ηn)
c1,N = (κ1 − ζ) (h+ ηN−1)

cn,n−1 = −1
2
(κn−1 − ηn−1)

2 se1 = − (κ1 − ζ)htx + ζxht

cn,n =
κ2
n+η2

n−1

2
− κn−1ηn−1 − (κn − κn−1) ηn sen = − (κn − κn−1)htx

cn,l = (κn − κn−1) (ηl−1 − ηl) seN = − (κN − κN−1)htx

cn,N = (κn − κn−1) (h+ ηN−1)

cN,N−1 = −1
2
(κN−1 − ηN−1)

2

cN,N =
κ2
N
+η2

N−1

2
− κN−1ηN−1 + h (κN − κN−1)

(3.19)
As a mathematical trick to solve the elliptic system, it is proposed to rearrange terms in
(3.17) and add an extra physically nonsense time derivative term ∂τU , so that a new parabolic
system can be written for U (x, τ) (the time variable t is no more a variable here):

τe
∂U

∂τ
+ (Id +D)U +

∂

∂x
(EU) +

∂

∂x

(
C ∂U
∂x

)
= Se + Ũ (3.20)

where D = A−Bx+Cxx, E = B−Cx and τe is a time to keep the homogeneity of the equation.
For simplicity, τe will be set to unity in numerical calculations: τe = 1 s.

Finally, the solution of the elliptic system (3.17) can now be easily obtained by calculating
the steady state of the parabolised elliptic system (3.20), with a simple iterative method in
time τ and a convergence criterion, since time accuracy there is unimportant.
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3.2 Local Discontinuous Galerkin scheme in space

The finite volume (FV) spatial discretisation framework is proved to be much more adequate
and efficient than finite differences (FD) in CFD, for their shock-capturing capacities treated
by the use of Riemann solvers to deal with discontinuities between adjacent cells. In view of
the computational efficiency of the one-dimensional Godunov type hybrid Boussinesq-SWE
numerical model used by Borthwick et al. (2006) to study the transformation of solitary
waves, the present investigation proposes to apply the discontinuous Galerkin (DG) method
to solve the one-dimensional version of the multi-layer Boussinesq type model previously
described in chapter 2. Basically, the DG method is a direct extension to higher order
of the FV method, in a more general context than total variation diminishing monotone
upstream-centered schemes for conservation laws (TVD-MUSCL) finite volume enhancement
techniques, initially developed to raise the order of FV schemes. Actually, the DG method
is preferred here to avoid combining both FV and FD methods, which might lead to some
“dilution” of the general benefits of FV for the final scheme.

Introduced for the first time by Reed and Hill (1973), to study the neutron transport described
by a steady state linear hyperbolic equation, the use of the DG method in numerical modelling
has dramatically increased in the last thirty years. In a series of papers, Shu (1987, 1988)
and Cockburn et al. (1989, 1990, 1998) developed a solid methodology to solve nonlinear
hyperbolic conservation laws using explicit, nonlinearly stable high order Runge-Kutta time
discretisations, coupled with a DG discretisation in space, and present a validation with the
Euler equations of compressible gas dynamics. Another application of the method to the
(in)compressible Navier-Stokes equations can be found in Cockburn and Shu (2001).

If widely adopted for (non)linear shallow water models, the DG framework is still poorly
applied to Boussinesq type equations, due to the presence of the high order dispersive terms.
Recently, Eskilsson and Sherwin (2005, 2006) and Eskilsson et al. (2006) presented some
spectral, discontinuous Galerkin methods for the weakly nonlinear dispersive Boussinesq
equations of Peregrine (1967) and the enhanced Boussinesq type equations of Madsen and
Sørensen (1992): they compared various formulations for the treatment of the third order
mixed derivatives and their results are very encouraging. Lately, Engsig-Karup et al. (2006,
2008) utilised a discontinuous Galerkin finite element method (DG-FEM) solver to get a
numerical approximation of the equations presented by Madsen et al. (2002) and obtained
excellent results in 1D and 2D respectively. In order to control mild nonlinear instabilities,
their method introduced artificial damping in the scheme. The discretisation presented below
has been implemented from scratch, and notably does not seem to require the incorporation
of any de-aliasing method or filter to maintain numerical stability, which should yield some
gain in CPU time and could represent a serious advantage for 2D problems, where such
techniques can be numerically expensive and almost impractical (Engsig-Karup et al., 2006).

3.2.1 Overview of the DG method

Basically, the DG method consists in approximating the solution by the numerical calculation
of its local projection onto a polynomial basis, using a weak formulation of the equations,



3.2. LOCAL DISCONTINUOUS GALERKIN SCHEME IN SPACE 51

written on each cell. Indeed, the DG scheme is a high order generalisation of the classic
first order FV scheme which uses piecewise constant polynomials. The fundamental part of
the DG method, when applied to solve partial differential equations (PDEs), is the adequate
design of numerical fluxes at cell interfaces to deal with the allowed jumps of the solution,
since each cell is treated separately. Naturally, the choice of these fluxes can be borrowed
from the framework of FV methods, which is theoretically well-established (see LeVeque,
2002). Moreover, the DG method is flexible to hp adaptivity with a high parallel efficiency,
thanks to the local structure of data communication between immediate neighbours, and can
handle complicated geometry by the use of unstructured irregular grids for 2D problems.

To illustrate the essence of the method, the derivation of the DG scheme in the case of
a simple one-dimensional scalar conservation law equation is presented below:

∂u

∂t
+

∂f (u)

∂x
= 0 , x ∈ [a, b] (3.21)

Let the M + 1 subdivisions a = x1/2 < x3/2 < ... < xM+1/2 = b be an ordered partition
of some interval I = [a, b] ⊂ R: the induced one-dimensional mesh is composed of M cells
Ii =

[
xi−1/2, xi+1/2

]
, of center xi = 0.5

(
xi−1/2 + xi+1/2

)
and width ∆xi = xi+1/2 − xi−1/2. By

multiplying (3.21) by an arbitrary test function v and integrating by parts over Ii, the weak
formulation of the equation is obtained with less regularity demanded for the solution:

∫

Ii

∂u

∂t
v dx−

∫

Ii

f (u)
∂v

∂x
dx+ f

(
ui+1/2

)
vi+1/2 − f

(
ui−1/2

)
vi−1/2 = 0 (3.22)

Henceforward, the solution u and the test function v are chosen to be piecewise polynomials
of degree up to k, k > 0. By denoting Pk (Ii) the space of polynomials of degree at most k in
each cell Ii, the solution space of the weak problem (3.22) is given by Vk:

V
k =

{
v : v ∈ P

k (Ii) for x ∈ Ii , i = 1, ...,M
}

(3.23)

Actually, this choice produces a clear ambiguity in equation (3.22) for the last two terms
involving the boundary values at xi±1/2, as the solution u is discontinuous at these points.
These terms must be designed appropriately to ensure the numerical stability of the method.
By denoting u−

i+1/2 and u+
i+1/2 the values of u at xi+1/2 from the left cell Ii and the right cell

Ii+1, the boundary terms f
(
ui±1/2

)
are treated by the so-called numerical fluxes:

f̂i±1/2 = f̂
(
u−
i±1/2, u

+
i±1/2

)
(3.24)

In general, these fluxes depend on both limits at the left and right side of a cell interface,
and are defined by taking information from the characteristics as an upwinding mechanism.
For the equation (3.22), the numerical flux f̂i±1/2 is taken from FV schemes as a two-point,

Lipschitz continuous in both arguments, consistent with f̂ (u, u) = f (u) and monotone flux,
i.e. non decreasing in the first argument and non increasing in the second one (e.g. the
Godunov, Lax-Friedrichs, Roe fluxes, etc...). As for the test function v evaluated at boundary
points xi±1/2, values are taken within the cell Ii where it is defined, i.e. v+i−1/2 and v−i+1/2.
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Finally, the numerical DG weak problem for the hyperbolic conservation law (3.22) can
be formulated as follows: Find u ∈ Vk, such that ∀v ∈ Vk, we have for all cells Ii

∫

Ii

∂u

∂t
v dx−

∫

Ii

f (u)
∂v

∂x
dx+ f̂i+1/2v

−
i+1/2 − f̂i−1/2v

+
i−1/2 = 0 (3.25)

The discretisation scheme is then obtained by choosing a suitable basis of the space Pk (Ii),
and applying the weak formulation (3.25) to each element of this basis as the test function.

3.2.2 Discretisation of governing equations

Following the framework introduced in the previous subsection, the L2-orthogonal basis
of Legendre polynomials (Ll)06l6k is used in the present investigation to cover the local

polynomial space Pk (Ii) (Figure 3.1). After a convenient redefinition of these polynomials
from [−1, 1] to the cell Ii, the local approximation ϕi (x, t) of some variable ϕ (x, t) on Ii can

be expressed as a linear combination of the new basis function elements L̃l:

ϕi (x, t) =
k∑

l=0

ϕl
i (t) L̃l (x) (3.26)

where the k + 1 unknown coefficients ϕl
i, related to the cell Ii, correspond to the degrees of

freedom of the method, for which at least a suboptimal order of accuracy k can be expected
for smooth solutions: see Cockburn and Shu (1998) and Xu and Shu (2007).
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Figure 3.1: The first six elements of the Legendre polynomials family
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Regarding now the further choice of numerical fluxes, a local Lax-Friedrichs flux will be
employed for hyperbolic components, while for parabolic and dispersive terms the alternating
fluxes methodology, summed up in Xu and Shu (2010), will be followed. The discretisation
of both the dispersive (3.15) and parabolic (3.20) systems is presented below.

Dispersive system

In the previous dispersive system (3.15), auxiliary variables Qn and Rn are developed to be
able to separate convective, diffusive and dispersive parts of the flux. The resulting equation
can then be expressed in the following way:

∂Ũ1

∂t
+

∂Fdconv

∂x
+

∂Fddiff

∂x
+

∂Fddisp

∂x
+

∂Fdbed

∂x
= Sd , x ∈ [a, b] , t > 0 (3.27)

where respective fluxes Fdconv, Fddiff , Fddisp, Fdbed and the modified source term Sd read

Fdconv =




N∑

n=1

(ηn−1 − ηn) un − (hxxuN + htx)
N∑

n=1

bn (ζ)

1

2

(
u2
1 + h2

xu
2
N

)
+ gζ + d (U1) (hxxuN + htx) + hthxuN




Fddiff =




− 2hx
∂uN

∂x

N∑

n=1

bn (ζ)−
N−1∑

n=1

bn (ζ)
N−1∑

m=n

ηmx

(
∂um+1

∂x
− ∂um

∂x

)

d (U1)

(
2hx

∂uN

∂x
+

N−1∑

m=1

ηmx

(
∂um+1

∂x
− ∂um

∂x

))

+

(
ζt + hxuN + ht +

1

2

N∑

m=1

(ηm−1 − ηm)
∂um

∂x

)
N∑

m=1

(ηm−1 − ηm)
∂um

∂x




Fddisp =




− h
∂2uN

∂x2

N∑

n=1

bn (ζ)−
N∑

n=1

an (ζ)
∂2un

∂x2
−

N−1∑

n=1

bn (ζ)
N−1∑

m=n

ηm

(
∂2um+1

∂x2
− ∂2um

∂x2

)

c (U1)
∂2u1

∂x2
+ d (U1)

(
h
∂2uN

∂x2
+

N−1∑

m=1

ηm

(
∂2um+1

∂x2
− ∂2um

∂x2

))




Fdbed =

(
0
ζt (hxuN + ht)

)
, Sd =




− ht

− hthtx −
1

ρ

∂patm
∂x




(3.28)

and coefficients an (ζ), bn (ζ), c (U1) and d (U1) are given by

an (ζ) =
η3n−1 − η3n

6
− κ2

n (ηn−1 − ηn)

2
, bn (ζ) =

η2n−1 − η2n
2

− κn (ηn−1 − ηn)

c (U1) =
κ2
1 − ζ2

2
u1 , d (U1) = (κ1 − ζ) u1

(3.29)

The total flux is then recovered by the sum Fd = Fdconv +Fddiff +Fddisp +Fdbed.
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Owing to the presence of high order spatial derivatives, the local discontinuous Galerkin
(LDG) method is defined by degenerating equation (3.27) to a first order system:

∂Ũ1

∂t
+

∂

∂x
Fd (UN ,U

′
N ,U

′′) = Sd , x ∈ [a, b] , t > 0

U
′′
N − U

′
Nx = 0

U
′
N − UNx = 0

(3.30)

The corresponding numerical weak formulation is obtained by multiplying the system (3.30)

by the elements L̃p, 0 6 p 6 k, of the Legendre basis of the space Pk (Ii) as test functions,
integrating over the cell Ii and finally performing an integration by parts: ∀ 0 6 p 6 k,

∫

Ii

∂Ũ1

∂t
L̃p (x) dx−

∫

Ii

L̃′
p (x)Fd dx+ F̂di+1/2L̃p

(
xi+1/2

)
− F̂di−1/2L̃p

(
xi−1/2

)
=

∫

Ii

SdL̃p (x) dx

∫

Ii

U
′′
N L̃p (x) dx+

∫

Ii

L̃′
p (x)U

′
N dx− Û

′
Ni+1/2L̃p

(
xi+1/2

)
+ Û

′
Ni−1/2L̃p

(
xi−1/2

)
= 0

∫

Ii

U
′
N L̃p (x) dx+

∫

Ii

L̃′
p (x)UN dx− ÛNi+1/2L̃p

(
xi+1/2

)
+ ÛNi−1/2L̃p

(
xi−1/2

)
= 0

(3.31)

where variables with the hat sign are the numerical fluxes, evaluated at cell interfaces xi±1/2.
Using the local expansion of variables (3.26) and the orthogonality property of Legendre
polynomials, the LDG scheme of the dispersive system finally reads: ∀ 0 6 p 6 k,

∆x

2p+ 1

dŨ
p

1i

dt
−
∫

Ii

L̃′
p (x)Fd dx+ F̂di+1/2 − (−1)p F̂di−1/2 =

∫

Ii

SdL̃p (x) dx

∆x

2p+ 1
U

′′p
Ni +

∫

Ii

L̃′
p (x)U

′
N dx− Û

′
Ni+1/2 + (−1)p Û ′

Ni−1/2 = 0

∆x

2p+ 1
U

′p
Ni +

∫

Ii

L̃′
p (x)UN dx− ÛNi+1/2 + (−1)p ÛNi−1/2 = 0

(3.32)

The main flux is treated separately according to the order of spatial derivatives:

F̂d = F̂dconv + F̂ddiff + F̂ddisp + F̂dbed (3.33)

For the convective term, the two-point Lipschitz continuous, consistent and monotone local
Lax-Friedrichs flux is chosen here as it is relatively efficient and easy to implement:

F̂dconv =
1

2

[
Fd

−
conv +Fd

+
conv − ϑd

(
U

+
1 − U

−
1

)]
(3.34)

where - and + appendages refer to values at the left and right sides of the interfaces between
adjacent cells, and ϑd is given by the eigenvalues λdj of the jacobian matrix Fd

′
conv (U1):

ϑd = max
16j62

(∣∣λ−
dj

∣∣ ,
∣∣λ+

dj

∣∣) (3.35)
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In order to ensure the numerical stability of the scheme, the higher order fluxes can be
chosen according to some rules, as recalled by Xu and Shu (2010): basically, upwinding
is considered for odd derivatives which correspond to waves, while a symmetric treatment,
such as an alternating choice of the fluxes for a quantity and its derivative, is used for even
derivatives. The alternating fluxes methodology is described in Yan and Shu (2002). In that
way, diffusive and dispersive components of the total flux in (3.33) can be simply given by

F̂ddiff

(
U

′+
N

)
, F̂ddisp

(
U

′′+
)

Û
′
N upwind

ÛN = U
−
N

(3.36)

So that for instance, by denoting Fddisp =
(
Fddisp1,Fddisp2

)T
, the first component of the

dispersive flux can be expressed as the scalar product Fddisp1 = f (ζ) .U ′′ of the form:

Fddisp1 =
N∑

n=1

fn (ζ)U ′′
n , (3.37)

and the corresponding numerical flux is obtained as follows:

F̂ddisp1 =
N∑

n=1

f̂n (ζ)Û ′′
n =

N∑

n=1

Fn (ζ
+)− Fn (ζ

−)

ζ+ − ζ−
U ′′+
n (3.38)

where Fn is a primitive function of fn. The choice of fluxes is not unique here: in fact, the
crucial part is taking ÛN and F̂ddiff (U

′
N), F̂ddisp (U

′′) from opposite sides.

Regarding the isolated numerical flux Fdbed, an empirical design of the second component
Fdbed2 was shown to maintain the stability of the scheme and is adopted here:

Fdbed2 =
ζ−t + ζ+t

2

(
hx

u−
N + u+

N

2
+ ht

)
(3.39)

Integrals in the LDG scheme (3.32) of the dispersive system are replaced by a Gauss-Legendre

quadrature rule of order 2k+1, using the k+1 zeros of the polynomial L̃k+1 as the quadrature
nodes (see the next subsection 3.2.3). At this point, it is important to note that the global
order k of the approximation is maintained for the two first spatial derivatives U ′

N and U
′′
N , of

the solution UN . Furthermore, the time derivative of the free surface elevation in the second
component of the dispersive system is present, which is determined by the first component.
Therefore, it is necessary to solve these components separately.

Basically, a set of k + 1 subsystems of ordinary differential equations (ODEs) is obtained
from (3.32) for each cell, which in a more compact form would result in the general system

dŨ1

dt
= Ld (t,UN ,U

′
N ,U

′′) (3.40)

where Ũ1 contains the degrees of freedom Ũ
p

1i, 0 6 p 6 k, of each cell Ii, 1 6 i 6 M :

Ũ1 =
(
..., Ũ

0

1i, ..., Ũ
p

1i, ..., Ũ
k

1i, ...
)T

(3.41)
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Parabolised elliptic system

The LDG numerical discretisation of the parabolised elliptic system is very similar to that
of the dispersive system. The identification of the convective F econv = EU and diffusive
F ediff = CUx parts of the flux in (3.20) leads to the following equation:

τe
∂U

∂τ
+ (Id +D)U +

∂F econv

∂x
+

∂F ediff

∂x
= Se + Ũ , x ∈ [a, b] , τ > 0 (3.42)

The degeneration of equation (3.42) to a first order system reads

τe
∂U

∂τ
+ (Id +D)U +

∂

∂x
F e (U ,U ′) = Se + Ũ , x ∈ [a, b] , τ > 0

U
′ − Ux = 0

(3.43)

where the total flux corresponds to the sum F e = F econv +F ediff .

The LDG scheme of the parabolised elliptic system is then given by: ∀ 0 6 p 6 k,

∆x

2p+ 1

(
τe
dUp

i

dτ
+ U

p
i

)
+

∫

Ii

DU L̃p (x) dx−
∫

Ii

L̃′
p (x)F e dx+ F̂ ei+1/2

− (−1)p F̂ ei−1/2 =

∫

Ii

SeL̃p (x) dx+
∆x

2p+ 1
Ũ

p

i

∆x

2p+ 1
U

′p
i +

∫

Ii

L̃′
p (x)U dx− Û i+1/2 + (−1)p Û i−1/2 = 0

(3.44)

with the total numerical flux calculated separately according to the nature of the terms:

F̂ e = F̂ econv + F̂ ediff (3.45)

The convective part is again evaluated using the local Lax-Friedrichs flux:

F̂ econv =
1

2

[
F e

−
conv +F e

+
conv − ϑe

(
U

+ − U
−
)]

(3.46)

with ϑe given this time by the eigenvalues λen of the matrix E :

ϑe = max
16n6N

(∣∣λ−
en

∣∣ ,
∣∣λ+

en

∣∣) (3.47)

and the same alternating flux methodology is followed for the diffusive term:

F̂ ediff

(
U

′+
)

Û = U
−

(3.48)

The ODE system resulting from equation (3.44) can be written in this way:

dU

dτ
= Le (U,U′) (3.49)
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with

U =
(
...,U0

i , ...,U
p
i , ...,U

k
i , ...

)T
(3.50)

Remaining integrals in (3.44) are approximated in a similar way to the dispersive system, by
means of the same Gauss-Legendre quadrature rule. To get the desired steady state solution,
the latter system, defined in (3.49), is finally iterated in time through the use of the following
explicit Euler forward scheme until a suitable convergence criterion is satisfied:

U
(0) = U

n

U
(m+1) = U

(m) +∆τLe

(
U

(m),U′(m)
)

U
n+1 = U

(+∞)

(3.51)

3.2.3 Gauss-Legendre quadrature

As previously mentioned for the LDG discretisation of both the dispersive and the parabolised
elliptic systems, remaining integrals in numerical schemes (3.32) and (3.44) can be evaluated
by means of quadrature rules, selected to an adequate order. To be consistent with a Pk-
based method, a quadrature rule of order 2k + 1 is required (Cockburn and Shu, 1989).

Given a family of orthogonal polynomials (pl)06l6+∞ and the corresponding non negative
integrable weight function w, we recall the following Gauss integration theorem. Let (αl)06l6k

denote the k + 1 zeros of the polynomial pk+1, belonging to the orthogonal family and located

in the open interval ] − 1, 1[ with α0 < ... < αk. It exists k + 1 positive constants λ0, ..., λk

such that the following relationship holds for all polynomials up to degree 2k + 1:

∫ 1

−1

w (x) f (x) dx =
k∑

l=0

λlf (αl) , ∀f ∈ P
2k+1 (3.52)

For polynomials with a degree larger than 2k + 1 or non polynomial functions, the Gauss
integration scheme (3.52) with k+1 nodes yields an approximate value of

∫ 1

−1
w (x) f (x) dx

with an error, the leading term of which is proportional to f (2k+2) (α), with −1 < α < 1. The
quantities (αl)06l6k and (λl)06l6k are known as the Gauss integration nodes and weights.

In the particular case of the Legendre polynomials family (Ll)06l6+∞, the weight function is
w (x) = 1 and the Gauss-Legendre integration scheme of order 2k+1 reads for any g ∈ L2(I):

∫ 1

−1

g (x) dx ≈
k∑

l=0

λlg (αl)

αl : zeros of Lk+1 , 0 6 l 6 k

λl =
2

(1− α2
l )L

′2
k+1 (αl)

, 0 6 l 6 k

(3.53)
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3.2.4 Boundary conditions

To perform feasible numerical simulations, it is important to be able to confine the infinite
region of interest R into the relatively small finite domain I ⊂ R bounded by some boundary a
and b. This can be done by imposing outer boundary conditions at these domain boundaries.
Besides, the design of such conditions is fundamental for the numerical stability of a confined
simulation. Up to now, three kinds of boundary conditions are implemented into the code: a
wave inlet condition for the left border, a fully reflective rigid wall type closed condition for
both borders, and a set of periodic conditions to connect the borders.

Given the left x1/2 and right xM+1/2 borders of the calculation domain, the outer values
ϕ−
1/2 and ϕ+

M+1/2 of some variable ϕ = ζ, ζx, ζt, u1, u1x, u1xx can be defined as follows for the
calculation of numerical fluxes, according to the nature of the boundary condition desired:

• Inlet left boundary condition: ϕ−
1/2 = ϕ

(
x1/2

)
∀ϕ, i.e. the explicit expressions of the

wave theory to be propagated are evaluated at the left border of the domain;

• Closed boundary conditions: at the right border ϕ+
M+1/2 = ϕ−

M+1/2 for ϕ = ζ, ζt, u1x

and ϕ+
M+1/2 = −ϕ−

M+1/2 for ϕ = ζx, u1, u1xx (the condition is similar at the left border);

• Periodic boundary conditions: ϕ−
1/2 = ϕ−

M+1/2 and ϕ+
M+1/2 = ϕ+

1/2 ∀ϕ.

Actually, the closed boundary condition at the right border xM+1/2 = b is designed by first
considering the classic mirror analogy, i.e. by setting ζ+ = ζ−, ζ+t = ζ−t and u+

1 = −u−
1 .

Then, to find the somewhat less intuitive conditions for the spatial derivatives of ζ and u1,
it only depends on the assumed symmetry or antisymmetry of the variable at b:

symmetry : ϕ (b+ x) = ϕ (b− x)

antisymmetry : ϕ (b+ x) = −ϕ (b− x)
(3.54)

So that for a symmetric ζ and an antisymmetric u1, the corresponding boundary conditions
for ζx, u1x and u1xx are thereby easily determined from the derivation rule:

symmetry :
dn

dxn
ϕ (b+ x) = (−1)n

dn

dxn
ϕ (b− x)

antisymmetry :
dn

dxn
ϕ (b+ x) = (−1)n+1 dn

dxn
ϕ (b− x)

(3.55)

and the outer derivative values are set to ζ+x = −ζ−x , u
+
1x = u−

1x and u+
1xx = −u−

1xx.

3.3 Advancing in time

While the spatial discretisation of governing equations is fully performed above, the time
discretisation remains outstanding to advance the propagation of water waves in time.
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3.3.1 A Runge-Kutta type method

It is proposed to solve The ODE system (3.40) with the total variation diminishing (TVD)
Runge-Kutta time discretisation. This was introduced by Shu (1988) for steady state
calculations with large Courant-Friedrichs-Lewy (CFL) coefficients, and later developed by
Shu and Osher (1988) for an efficient implementation of the high resolution, essentially non-
oscillatory (ENO), schemes for systems of hyperbolic conservation laws.

An explicit single-step r-stage TVD Runge-Kutta scheme thereby reads for (3.40):

Ũ
(0)

1 = Ũ
n

1

Ũ
(i)

1 =
i−1∑

j=0

[
αijŨ

(j)

1 + βij∆tLd

(
tn + dj∆t,U

(j)
N ,U

′(j)
N ,U′′(j)

)]
, i = 1, ..., r

Ũ
n+1

1 = Ũ
(r)

1

(3.56)

where coefficients αij , βij and dj can be designed to achieve a desired order of accuracy. Such
a set of coefficients is not necessarily unique for a given order and is generally chosen to
render the stability of the method with optimal CFL conditions.

3.3.2 Coefficients for 2nd and 3rd orders

For r 6 4, this solver can be made rth order accurate, as stated in Cockburn and Shu (1989).
The first order scheme corresponds to the classical forward Euler scheme with α10 = β10 = 1,
while the optimal second and third order schemes are characterised by the following sets of
coefficients, according to the values proposed by Shu and Osher (1988):

• Second order r = 2:

α10 = β10 = d1 = 1 , α20 = α21 = β21 =
1

2
, β20 = d0 = 0 (3.57)

• Third order r = 3:

α10 = β10 = d1 = 1 , α20 =
3

4
, β20 = β30 = α31 = β31 = d0 = 0 ,

α21 = β21 =
1

4
, α30 =

1

3
, α32 = β32 =

2

3
, d2 =

1

2

(3.58)

From a computational point of view, the main drawback in using a Runge-Kutta type scheme

here is that for an order of more than one, the calculation of intermediate stages Ũ
(i)

1 in (3.56)

requires the evaluation of U
(j)
N in function of Ũ

(j)

1 (actually U
(j) in function of Ũ

(j)

1 ). This
implies the solution of the elliptic system r− 1 times per time step, plus the final evaluation

of Un+1 in function of Ũ
n+1

1 , thus increasing calculation times significantly.

Due to the high order spatial derivatives of the PDE (3.27), this explicit and local time
discretisation suffers from a severe time step restriction. In fact, it is recognised that further
enhancements are needed in terms of the temporal discretisation, for example by considering
either nonlocal or implicit techniques (see Xu and Shu, 2010).
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Chapter 4

Validation and application of the

one-layer model

In order to validate the one-dimensional numerical tool, this chapter introduces the
reproduction of two classic benchmark test cases. Firstly, the propagation over a flat bed of
solitary waves with different nonlinearity is considered, using the framework of Boussinesq
theory (1872). Secondly, two wave dispersion scenarios over a submerged bar are simulated
using laboratory data presented and used by Dingemans (1994). Finally, an application of
the model to pressure forced storm surges and solitary wave shoaling is presented.

One-layer results are exclusively presented here, as the multi-layer option is still under
implementation into the code. As discussed in subsection 2.4.1 of chapter 2, the horizontal
velocity u1 can be chosen to be evaluated at the specific depth κ1 = −0.53h, as suggested by
Nwogu (1993) through an optimisation of the linear dispersion relationship of the model.

Hereafter, the appendage “kr” attached to the words scheme and run refers to the
overall order of accuracy of the numerical approximation, as a combination of the spatial
discretisation order k in (3.26) with the temporal discretisation order r in (3.56). A priori
independent from each other, k and r are generally set to the same value to guarantee a
certain consistency for the overall order of the scheme.

4.1 Solitary wave propagation

The solitary wave is of finite amplitude and permanent form, resulting from the balance
between nonlinear and dispersive effects. Initially observed in 1834 by Scott Russell, while
conducting some experiments to determine the most efficient design for canal boats, this
“wave of translation” was further presented in the experimental reports of Scott Russell
(1844), Bazin (1862) and Clapeyron (1863). A decade later, Boussinesq (1871, 1872)
published a general theoretical description of the solitary wave in which he obtained an
analytical solution for the wave profile, wave propagation speed and water particle velocities,
thus validating the empirical relationship proposed by Bazin for the wave speed. Since then,
several attempts, summed up in Lee et al. (1982), have been made to get a higher order theory
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and improve upon this solution (e.g. up to ninth order by Fenton, 1972). Lately, Tanaka
(1986) developed a very accurate iterative scheme for the solution of the full boundary value
problem, which allows the simulation of highly nonlinear solitary waves.

Owing to the low nonlinearity of the solitary waves simulated here, Boussinesq’s (1872)
explicit expressions of the free surface elevation and the horizontal velocity are used as the
“analytical” forcing solution for simplicity in the following comparisons to validate the model:

ζ (x, t) = a sec2

(√
3a

4h3
(x− ct)

)

U (x, z, t) =
√
gh

(
ζ

h
− 1

4

ζ2

h2
+

h

3

(
1− 3

2

(z + h)2

h2

)
d2ζ

dx2

) (4.1)

where h is the local water depth, a the wave amplitude and c the wave speed given by

c =
√
g (h+ a) (4.2)

Both expressions in (4.1) are evaluated at each time step to force the free surface elevation
ζ and the velocity u1 at the left border of the calculation domain as an inlet boundary
condition. A still water initial state is imposed, with no wave motion ζ (x, 0) = u1 (x, 0) = 0.

4.1.1 Validation of the numerical scheme

Three typical solitary waves are investigated, with amplitudes a = 0.1 m, 0.2 m and 0.3 m,
propagating over a uniform bed of constant depth h = 1 m. Simulations are performed over
a 110 m horizontal distance partitioned into M = 110 cells. Figure 4.1 shows a comparison
between the analytical solution and numerical results to orders kr = 01, 11 and 22.

As expected, the higher the order of the scheme, the more precise and slicker is the numerical
curve. For the first case (a), close to a linear situation, an excellent agreement between
analytical and numerical 11 and 22 solutions is observed. Then, a loss of matching of
numerical curves with the analytical solution can be noticed in panels (b) and (c), with
a gently decreasing amplitude and a growing phase shift, when the nonlinearity parameter
ε0 = a/h is incremented. The finite volume forward Euler method, corresponding to runs
01, is the most diffusive here; however this purely numerical issue can be easily eliminated
by raising the overall order of the discretisation scheme, as shown by runs 11 and 22.

Generally, the one-layer model results are quite good and very close to the solution of
Boussinesq (1872), despite the nonlinear phase shift. In fact, these discrepancies can be
expected to abate by increasing the number of layers in the model. Obviously, it is important
to keep in mind that Boussinesq’s analytical expressions are not an exact solution of the
present multi-layer model, which contains some more nonlinear terms. Actually, the most
linear situation (a) is the only relevant case for conclusions to be made as to the accuracy of
the model compared to this analytical solution. Higher order solitary wave theories should
therefore be considered (e.g. Tanaka, 1986) to reproduce highly nonlinear conditions.



4.1. SOLITARY WAVE PROPAGATION 63

In addition, an initial small overestimation of the amplitude of the soliton, on coming into
the domain, and the appearance of a dispersive tail of shorter waves behind should be noted
with the increase of the nonlinearity parameter. These fluctuations tend to decrease in time
and seem to be part of the transient state mentioned by Wei and Kirby (1995) and Gobbi
et al. (2000) as a consequence of the fact that the inlet condition of Boussinesq (1872) does not
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Figure 4.1: Comparison between analytical (- -) and numerical 01 (-), 11 (-) and 22 (-) free
surface elevations displayed each 6 s for three solitary waves of nonlinearity ε = a

h
(a) 0.1,

(b) 0.2 and (c) 0.3

satisfy the model. Nonetheless, since the primary wave travels faster than the tail, this should
be left far behind without interfering with the soliton, and the permanent form solitary wave
can be expected after a relatively long time, depending on the amplitude of the wave.

4.1.2 Comparison Boussinesq versus RANS

These positive waves are also reproduced by using the COBRAS model (COrnell BReaking
wave And Structure), within a 110 m long and 1.5 m high domain in the vertical plane
which is numerically represented with a grid comprised of 2200 x 50 cells. The same soliton
of Boussinesq (1872) is forced at the left boundary, a free slip rigid wall is used for the
bottom and an open boundary condition is chosen for the top and right borders of the
domain. COBRAS is a two-dimensional model that solves the Reynolds Averaged Navier-
Stokes (RANS) equations for the mean flow field with a modified k-ε turbulence closure
based on the nonlinear eddy viscosity assumption and a volume of fluid (VOF) method for
free surface tracking. Details about this very well known wave model can be found in the
papers of Lin and Liu (1998a, 1998b) and Liu et al. (1999). The one-layer model results of
previous runs 22 are now compared to RANS simulations in Figure 4.2.

A similar behaviour can be generally observed for both Boussinesq and RANS type numerical
models in each case, in spite of some additional noisy oscillations and a clear non-zero offset
before and after the soliton identified for RANS curves, and probably due to the low vertical
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resolution of the grid. Going into detail, the Boussinesq model is seen to maintain the
amplitude of the soliton in a better way than the RANS model for growing nonlinearities.
Finally, the presence of the dispersive tail detected behind the soliton is confirmed by the
RANS model, while stretched over a longer distance than in the case of Boussinesq.
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Figure 4.2: Comparison between analytical (- -) and numerical RANS (-), Boussinesq 22 (-)
free surface elevations displayed each 6 s for three solitary waves of nonlinearity ε = a

h
(a)

0.1, (b) 0.2 and (c) 0.3

It can be concluded from this comparison that the present Boussinesq type model, run at
its lowest level of accuracy with only one layer for the vertical profile representation of the
wave motion, is shown to achieve at least the same accuracy as a more sophisticated model
solving the RANS equations, for a lower resolution.

4.2 Wave evolution over a submerged bar

To validate the model for space varying bathymetries, the laboratory data of Dingemans
(1994), dealing with the generation of harmonic waves over a submerged bar, are used. Since
the model does not take into account the energy dissipation mechanism due to wave breaking,
only the two non-breaking experimental situations A and C are examined and numerically
reproduced. The model is forced at the left boundary to generate the inlet wave into the
domain, using the second order theory of Stokes (1847), for which the free surface elevation
and the horizontal velocity are given by the following expressions:

ζ (x, t) = a cos (kx− σt) +
ka2

4

cosh (kh)

sinh3 (kh)
(2 + cosh (2kh)) cos (2 (kx− σt))

U (x, z, t) = σa
cosh (k (z + h))

sinh (kh)
cos (kx− σt) +

3kσa2

4

cosh (2k (z + h))

sinh4 (kh)
cos (2 (kx− σt))

(4.3)
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where h is still the local water depth and a the wave amplitude. The wavenumber k = 2π
L

and the angular wave frequency σ = 2π
T

are inversely proportional to the wave length L and
the wave period T . As for the solitary wave forcing, both the free surface elevation ζ and the
velocity u1 are specified in time at the left border of the calculation domain using (4.3) and
the initial inner conditions are set to zero, i.e. ζ (x, 0) = u1 (x, 0) = 0.

4.2.1 Comparison to experimental data

The experimental measurements, performed by Professor Gert Klopman of Delft Hydraulics
in 1993, are an exact recreation of the original tests done by Beji and Battjes (1993), but
with a linear scale of 2. The scaled profile of the bar can be appreciated in Figure 4.3. The
scaled forcing conditions are T = 2.02

√
2 s and a = 0.02 m for case A, and T = 1.01

√
2 s

and a = 0.041 m for case C. The numerical setup is composed of five wave gauges, whose
locations are indicated above the bar in Figure 4.3, and correspond to the experimental setup
of the measurement series 01 in the report of Dingemans (1994). For both cases, schemes
22 and 33 are run with a number M = 100 of cells (∆x = 0.5 m). Additional runs with a
higher resolution M = 160 (∆x = 0.3125 m) are performed for case C. Comparisons of the
free surface elevation time series, between model predictions and experimental observations,
are presented for each sensor in the next three Figures.

Basically, as it approaches the bar, the wave starts changing form and steepens due to
nonlinear shoaling. Nonlinear energy transfers, occurring above the bar, induce the dispersion
of the wave and its decomposition into shorter superharmonic waves. These harmonics, then
moving away from the bar become deep water waves with higher kh values that should belong
to the range of validity of the model to be reproduced properly.

The forced wave of case A, characterised by an initial kh = 0.7, is perfectly well captured by
the two first sensors, located upstream from the bar, for both numerical simulations of Figure
4.3. From there, some discrepancies appear at the three other positions for scheme 22, while
the wave field is still well reproduced by scheme 33 for sensors 3 and 4. The small phase
shift, observed from the third sensor for both schemes, is ascribed to the linear dispersion
accuracy limit of the model near kh ≈ π, exceeded by the presence of dominant kh ≈ 4
waves (Lynett and Liu, 2004a) behind the bar. At sensor 5, scheme 33 gets much closer to
the measurements than scheme 22, and even slightly better than the one-layer simulation
of Lynett and Liu (2004a) at the corresponding sensor #3; however both one-layer results
still present the same deviation from the experimental dots in the largest trough of this time
series, owing to the nonlinear inaccuracy of the model for such deep water kh values.

Regarding case C, the wave enters the domain with a kh = 1.8 and waves of kh = 6.3 are
reported behind the bar by Lynett and Liu (2004a) for the second harmonic. As expected,
numerical results are not as good in Figure 4.4 as for the previous case A for the same
resolution, due to the presence of deeper water waves. A finer mesh (∆x = 0.3125 m) makes
scheme 33 tend to capture better the nonlinear shape and amplitudes of the wave field (Figure
4.5). Nevertheless, the one-layer model becomes inaccurate when applied to simulate such
highly dispersive waves. Actually, a more precise set of equations is required in such cases,



68 CHAPTER 4. VALIDATION AND APPLICATION OF THE ONE-LAYER MODEL

0 5 10 15 20 25 30 35 40 45 50

−0.8

−0.6

−0.4

−0.2

0

0.2

x (m)

z 
(m

)

s1 s2 s3 s4 s5

−0.05

0

0.05
s1

ζ 
(m

)

Numerical 22

−0.05

0

0.05
s2

ζ 
(m

)

−0.05

0

0.05
s3

ζ 
(m

)

−0.05

0

0.05
s4

ζ 
(m

)

48 50 52 54 56 58
−0.05

0

0.05
s5

t (s)

ζ 
(m

)

s1

Numerical 33

s2

s3

s4

48 50 52 54 56 58

s5

t (s)

Figure 4.3: Case A (M = 100): computed 33 free surface elevation displayed at time t = 58 s,
and comparisons between experimental (◦) and numerical (-) time series of the wave field
registered by five sensors for schemes 22 and 33
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Figure 4.4: Case C (M = 100): computed 33 free surface elevation displayed at time t = 58 s,
and comparisons between experimental (◦) and numerical (-) time series of the wave field
registered by five sensors for schemes 22 and 33
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Figure 4.5: Case C (M = 160): computed 33 free surface elevation displayed at time t = 58 s,
and comparisons between experimental (◦) and numerical (-) time series of the wave field
registered by five sensors for schemes 22 and 33
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and the implementation into the code of the more general N -layer system analysed by Lynett
and Liu (2004b) is underway.

4.2.2 CPU efficiency of the code

The main objective of numerical simulation resides in approaching the convergence of the
scheme as quickly as possible. This is the very essence of the efficiency of a numerical code.
To illustrate the efficiency of the model, CPU running times, corresponding to the simulation
of the previous experimental situation C of Dingemans (1994), are now compared for both
schemes 22 and 33 with different mesh resolutions in Figure 4.6. For reference, the model
was executed and run on a Windows XP operating system platform by an Intel R© CoreTM2
Quad CPU Q9300 @ 2.50GHz 2.48GHz multiprocessor. Given the underlined inaccuracy of
the one-layer model in that case, the finest run (scheme 33 with M = 160) is taken here as
the reference solution instead of measurements for the numerical convergence.
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Figure 4.6: Computing times of schemes 22 (•) and 33 (×)

At first sight, the code can run very fast as well as very slowly: from about one minute for
scheme 22 with M = 80, to several hours for scheme 33 with a double spatial resolution. This
is not surprising if we consider the additional complexity induced in the scheme when raising
the orders k and r. Regarding the spatial discretisation, the size of the final ODE system
to solve increases M times with the order k, and calculations are duplicated for numerical
fluxes and quadrature rules. Moreover, as discussed in the time discretisation section 3.3
of chapter 3, the Runge-Kutta method is not an optimal choice here, since it might cause
drastic effects on CPU times to high r orders, due to the increasing number of intermediate
stage evaluations necessary, in addition to the severe time step restrictions.
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The determining choice of both the overall order of the numerical discretisation and the
mesh resolution then remains up to the user, depending on his needs in terms of accuracy
and speed required for the simulation, and first and foremost on the expected sophistication
of the wave field to be reproduced. For instance, as we can catch a brief glimpse in Figures
4.4 and 4.5 of case C, scheme 33 with M = 100 gets slightly closer to the reference solution
than scheme 22 with M = 160 (sensors 3, 4 and 5), and despite the run taking 40% longer
to finish, it is certainly the better of these two options given the relatively short additional
CPU running time, in the order of eight minutes.

As the sloping tendency of CPU time in function of the mesh resolution is higher for scheme
33 than for scheme 22 in Figure 4.6, some methodology to get CPU efficient accurate runs
may be inferred: while manipulating the order does not break the efficiency so much at quite
small M values, it would be preferable to refine the mesh rather than raising the order for
large M values. This is obviously not a rigorous inference, since one would need to compare
the CPU times of different runs which provide the same accuracy.

4.3 Pressure forced storm surge modelling

As discussed in chapter 1, storm surges driven by low pressure weather systems represent
a real threat of inland flooding for both Pacific and Atlantic coasts in Mexico. In the
hurricane season, it is usually necessary to evacuate large areas, thereby causing major
socio-economic problems in addition to irreversible ecological damage, in particular when
coastal infrastructure is not properly planned. So, to get a better understanding of transient
stages of storm surges, the one-layer model is applied to examine a numerical Boussinesq
type dispersive response to a moving low pressure system forcing.

Here, storm surges are generated ideally from the only pressure gradient source term, without
considering the wind effect. Simulations are initiated from a calm sea state set of initial
conditions ζ (x, 0) = u1 (x, 0) = 0, and are performed at an overall order 22, on a uniform
bed of constant depth h = 20 m, with a moving Gaussian trough pressure forcing:

patm = p0 exp

(
−(x− ct)2

R2

)
(4.4)

Where p0 is the lowest pressure value of the function, R some characteristic evaluation of the
Gaussian radius and c the celerity of the forcing. Four situations can be identified and are
reproduced in Figure 4.7 for the displacement of this low pressure function:

c = 0 , c <
√
gh , c ≈

√
gh , c >

√
gh (4.5)

In each case, a dispersion of the two free waves travelling in opposite directions can be
observed, which was not taken into account in the non dispersive analytical solution of the
wave equation for forced small amplitude shallow water waves, presented by Nielsen et al.
(2008). In the second panel (b), it is interesting to see how the superharmonics of the right
free wave go over the asymptotic steady forced positive surge. Panel (c) shows a resonance



4.3. PRESSURE FORCED STORM SURGE MODELLING 73

phenomenon, with an increasingly growing wave height under the pressure trough. Actually,
such a situation is hardly observable as the speed of hurricanes varies in time. Besides, it
would be interesting to investigate a moving pressure system with a time varying celerity c.
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Figure 4.7: Numerical free surface response to a Gaussian trough atmospheric pressure
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Furthermore, it clearly appears that for both directions, a negative surge will always precede
a positive one, which can be seen as a recession of the coastline followed by smaller waves or
a higher positive surge, depending on the celerity c of the low pressure system.

As for an attempt to corroborate the qualitative aspect of numerical results, the free surface
residual time series of a measured storm in Campeche (2009), obtained after the extraction
of the reconstructed astronomical tide component, is shown in Figure 4.8. Finally, a similar
behaviour between field data and case (b) can be identified.
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Figure 4.8: Extract from a measured storm surge, Campeche Mexico (2009)

4.4 Shoaling of a weakly nonlinear solitary wave

Referring now to the other major maritime threat in Mexico, this section presents an
additional simulation for the shoaling of a weakly nonlinear solitary wave, in order to illustrate
the applicability of the one-layer model to tsunami waves. A soliton of Boussinesq (1872)
of nonlinearity ε0 = 0.2 is propagated through the inlet boundary condition on a slope 1:15
(see Figure 4.9), by using the previous explicit expressions in (4.1).
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Figure 4.9: Numerical free surface elevations of a shoaling solitary wave of nonlinearity
ε = a

h
= 0.2, displayed at time t = 18 s (top) and each second from time t = 14 s (bottom)

The simulation is performed on a 1 m mesh resolution at an overall order 22, from a calm
sea state of initial conditions ζ (x, 0) = u1 (x, 0) = 0 perturbed by the entrance of the soliton
into the domain. The wave first propagates over a 40 m long flat bottom before shoaling over
the slope. The run is stopped just prior to breaking so as to avoid unwanted numerical noise.
As expected, the wave crest grows in height over the slope and nonlinearity effects alter the
wave form to an asymmetric profile like a tsunami wave front.
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Chapter 5

Conclusions

Coastal engineering issues, when facing extreme maritime phenomena, are first introduced
and the case of Mexico is adressed through an evaluation of hurricane induced storm surge and
tsunami threats. Both theoretical and numerical approaches for the characterisation of water
waves are then examined. A quite exhaustive revision of the state of the art about water wave
propagation modelling is presented, that covers the main mathematical techniques in current
use, from the simple phase-resolving linear mild slope equation to the most sophisticated high
order Boussinesq type models. The selected multi-layer Boussinesq type model, developed
in this thesis, is based on a first order expansion in dispersion and a subdivision into
layers of the water column for a piecewise description of the vertical profile of the flow.
A new set of two-dimensional governing equations is derived with the inclusion of vertical
vorticity terms, that describes the fully nonlinear, horizontally rotational and dispersive
shallow water flow dynamics of an incompressible and inviscid fluid system over uneven
bidirectional bathymetries, with some variation in time of the seafloor for the simulation of
submarine landslides. The one horizontal dimension equations are solved in space by the DG
method, a class of finite element methods using discontinuous basis functions, usually chosen
as piecewise polynomials, to approach the solution over the whole calculation domain. The
spatial discretisation scheme of order k > 0 employs a local Lax-Friedrichs flux for hyperbolic
components, while for parabolic and dispersive terms an alternating fluxes methodology is
followed. The DG scheme is advanced in time by a TVD Runge-Kutta type algorithm of order
r > 1. Finally, the numerical solver is tested and validated for one layer on classic benchmark
test cases and show very good behaviour within the range of validity of the model.

5.1 Concluding remarks

It is clear that a full resolution of the three-dimensional Navier-Stokes equations is still
far from being a worth considering option in large scale ocean modelling due to the
current computing limitations. Actually, amongst the remaining modelling techniques, the
Boussinesq type depth-integration of the equations is, to date, surely the most advanced
and efficient alternative, while extending the validity of the shallow water depth-averaged
equations to at least intermediate water conditions

(
π
10

6 kh 6 π
)
, through the addition of

dispersive terms. Moreover, a multi-layer description of the system makes a Boussinesq
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type model of a given order able to overcome the accuracy of any other higher order
Boussinesq type model, while maintaining lower order derivatives in the governing equations
and a relatively simple discretisation scheme. Regarding the vertical vorticity of Boussinesq
type models, rotational terms should not be neglected in the momentum equations, and
particularly to simulate tsunami waves into a harbour correctly. In addition, keeping a set of
free coefficients, like for the location of layer variables in the present model, generally results
very useful to calibrate the model properties to the analytical deep water theory of Stokes
(1847). As discussed at the end of chapter 2, various linear and nonlinear characteristics
might be involved within this procedure. The truth is that the optimisation strategy for
such a calibration remains up to the user and the physical situation to be simulated and
numerically reproduced, so as to be able to focus on certain properties only.

A unified LDG approach was undertaken for a new numerical implementation of the one-
dimensional high order multi-layer Boussinesq type model, that takes full advantage of
the capacities and numerical efficiency of the DG method. Numerical fluxes are designed
so as to ensure numerical stability and a Gauss-Legendre quadrature rule is utilised to a
consistent order with the spatial discretisation order of the scheme. The solver can be run
for arbitrary orders of accuracy in space and time. An arbitrary number of layers for the
vertical distribution of the internal kinematics of the flow is also prone to be a user-defined
parameter very soon; the implementation into the code of the general multi-layer system is
underway. The MUOLDAO model is very easy to be run with only one short input file to
be filled in, according to the details of the simulation to be performed. Basically, it deals
with solitary wave, first and second order Stokes (1847) type forcing, with inlet, closed and
periodic boundary conditions and an arbitrary bottom function h (x, t).

As a flat bottom validation test-case, the propagation of solitary waves, based on the
analytical theory of Boussinesq (1872), was investigated. The one-layer model is shown
to achieve the same accuracy as a more sophisticated model solving the RANS equations, for
a lower resolution. The development of the dispersive tail behind the soliton, part of a known
transient state resulting from the non-matching nonlinearity between Boussinesq’s solution
and Boussinesq type models, is then confirmed by the model with increasing nonlinearity
and accredited by RANS type simulations with the same forcing conditions. The one-layer
model was further applied to reproduce the laboratory data of Dingemans (1994) about the
generation of harmonics above a submerged bar experimental test: for both cases simulated,
a relatively good agreement between model predictions and experimental data was observed,
even if as expected, the one-layer model turns out to be inadequate for simulating highly
dispersive waves with kh > π values.

As an application test case, the Boussinesq type response of the one-layer model to a
moving Gaussian trough pressure forcing was examined as an ideal storm surge generation.
As expected, the simulation allows the reproduction of the dispersion of the two opposite
free waves into a long wave train, independently of the steady forced surge. Besides, these
results can be qualitatively extrapolated, from the one-dimensional simulation to the two-
dimensional reality, so as to be able to anticipate the behaviour of a storm surge approaching
the coast, according to the celerity of a hurricane and the local bathymetry.
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Finally, regarding the CPU efficiency of the code: raising the order of the polynomial basis
rather than the mesh resolution, seems to be a good option to approach the convergence of
the scheme with still relatively fast runs, as long as the number of cells remains quite small.
Otherwise, the inverse methodology is recommended. Notwithstanding, a manipulation of
the order of the scheme could play its full role in efficiency for two-dimensional problems,
where the number of cells grows as M2 in the simple case of a Cartesian grid.

While the MUOLDAO model is not directly applicable to the simulation of real physical
situations, due to the one horizontal dimension limitation, it actually constitutes a very
helpful numerical tool for academic research. In this way, it can be utilised to corroborate
experimental laboratory studies, with wave-structure interaction and cross-shore sediment
transport modelling as for some coastal engineering applications.

5.2 Future lines of work

The numerical code, developed from scratch during this investigation, represents a reliable
base in high order Boussinesq type modelling to simulate the propagation and transformation
of water waves in one dimension. Naturally, the next big step would be the two-dimensional
implementation of the model as a culmination of the work. Furthermore, additional specific
ideas can be mentioned as for some future lines of research, and are exposed below:

• Finish the extension of the solver to an arbitrary number N of layers as a user-defined
parameter to be chosen in the input file, and complete the validation of the multi-layer
model in chapter 4 in that regard, by running the code with N > 1.

• Implement a slope limiting routine to avoid non physical spurious oscillations close to
contact discontinuities of the weak solution, and control thereby the numerical stability
of the scheme: indeed the simulations of Dingemans’ (1994) experimental cases were
shown to present some transient instabilities close to the left border of the domain due
to the initial discontinuity of velocity in the inlet Stokes (1847) type forcing condition.

• Investigate the implementation of a wave breaking criterion and validate it with the
experimental situation B of Dingemans (1994). Design a wetting/drying numerical
algorithm to reproduce beach flooding and validate it with the analytical solution
of Carrier and Greenspan (1958) for sine wave runup on a planar beach, and the
experimental results of Synolakis (1986, 1987) for solitary wave runup. Add the wind
shear stress and bottom friction to the model as other energy dissipation mechanisms.
Extend the model to porous media, with maybe an extra momentum equation to
describe the flow within the permeable bottom layer.

• Implement a suitable open numerical boundary condition to allow the infinite radiation
of all wave lengths at the borders of the calculation domain, so as to avoid a
contamination of the solution induced by a reflection of waves inward.
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• Apply the model to the generation of waves by a time moving seabed, as a submarine
landslide type simulation. Compare the accuracy and performance of theN -layer model
to other high order Boussinesq type numerical tools.

• Implement a parallel version of the code.

Actually, this pending work is still quite heavy and the author will likely continue the
investigation under these lines of research in a close future.
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Universidad de Cantabria, Ministerio del Medio Ambiente, Santander Cantabria Spain.

[50] Gobbi, M.F., Kirby, J.T. (1999). Wave evolution over submerged sills: tests of a high-
order Boussinesq model. Coastal Engineering, 37, pp. 57-96.

[51] Gobbi, M.F., Kirby, J.T. and Wei, G. (2000). A fully nonlinear Boussinesq model for
surface waves. Part 2. Extension to O(kh)4. J. Fluid Mech., 405, pp. 181-210.

[52] Hedges, T.S. (1995). Regions of validity of analytical wave theories. Proc. ICE, Water,
Maritime and Energy Journal, 112, pp. 111-114.

[53] Holthuijsen, L.H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University
Press. Cambridge UK.

[54] Hsiao, S.-C., Liu, P.L.-F. and Chen, Y. (2002). Nonlinear water waves propagating over
a permeable bed. Proc. R. Soc. Lond. A, 458, pp. 1291-1322.



BIBLIOGRAPHY 85

[55] Jayasuriya, S. and McCawley, P. (2010). The Asian Tsunami: Aid and Reconstruction
after a Disaster, Edward Elgar, Cheltenham Glos UK and Northampton Massachusetts
USA.

[56] Kennedy, A.B., Kirby, J.T., Chen, Q., Dalrymple, R.A. (2001). Boussinesq-type
equations with improved nonlinear performance. Wave motion, 33, pp. 225-243.

[57] Kim, D.-H., Lynett, P.J., Socolofsky, S.A. (2009). A depth-integrated model for weakly
dispersive, turbulent, and rotational fluid flows. Ocean Modelling, 27, pp. 198-214.

[58] Kirby, J.T. (1986a). A general wave equation for waves over rippled beds. J. Fluid
Mech., 162, pp. 171-186.

[59] Kirby, J.T. (1986b). Rational approximations in the parabolic equation method for
water waves. Coastal Engineering, 10, pp. 355-378.

[60] Kirby, J.T., Wei, G., Chen, Q., Kennedy, A.B., and Dalrymple, R.A. (1998).
FUNWAVE 1.0, Fully Nonlinear Boussinesq Wave Model, Documentation and User’s
Manual. Research Report NO. CACR-98-06, Center for Applied Coastal Research,
Department of Civil Engineering, University of Delaware, Newark DE USA.

[61] Kirby, J.T., Dalrymple, R.A. and Shi, F.(2002). Combined Refraction/Diffraction
Model, REF/DIF 1, Version 3.0, Documentation and User’s Manual. Research Report
NO. CACR-02-02, Center for Applied Coastal Research, Department of Civil and
Environmental Engineering, University of Delaware, Newark DE USA.

[62] Knauss, J.A. (1996). Introduction to Physical Oceanography, Second Edition. Prentice-
Hall, Upper Saddle River NJ USA.

[63] Korteweg, D.J. and de Vries, G. (1895). On the change of form of long waves, advancing
in a rectangular canal and on a new type of long stationary waves. Philos. Mag., series
5, 39, pp. 422-443.

[64] Laitone, E.V. (1960). The second approximation to cnoidal and solitary waves. J. Fluid
Mech., 9, pp. 430-444.

[65] Lee, J.-J., Skjelbreia, J.E. and Raichlen, F. (1982). Measurement of velocities in solitary
waves. Journal of the Waterway, Port, Coastal and Ocean Division, 108(2), pp. 200-218.

[66] LeVeque, R.J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, Cambridge UK.

[67] LeVeque, R.J., George, D.L. and Berger, M.J. (2011). Tsunami modelling with
adaptively refined finite volume methods. Acta Numerica, Cambridge University Press,
pp. 211-289.

[68] Li, B. and Anastasiou, K. (1992). Efficient elliptic solvers for the mild-slope equation
using the multigrid technique. Coastal Engineering, 16(3), pp. 245-266.



86 BIBLIOGRAPHY

[69] Li, B., Reeve, D.E. and Fleming, C.A. (1993). Numerical solution of the elliptic mild-
slope equation for irregular wave propagation. Coastal Engineering, 20, pp. 85-100.

[70] Li, B. (1994). A generalized conjugate gradient model for the mild slope equation.
Coastal Engineering, 23(3-4), pp. 215-225.

[71] Lin, P. and Liu, P.L.-F. (1998a). A numerical study of breaking waves in the surf zone.
J. Fluid Mech., 359, pp. 239-264.

[72] Lin, P. and Liu, P.L.-F. (1998b). Turbulence transport, vorticity dynamics, and solute
mixing under plunging waves in surf zone. Journal of Geophysical Research, 103(C8),
pp. 15,677-15,694.

[73] Liu, P.L.-F. (1994). Model equations for wave propagation from deep to shallow water.
In Advances in coastal engineering (ed. P.L.-F. Liu), 1, pp. 125-157, World Scientific,
Singapore.

[74] Liu, P.L.-F., Lin, P., Chang, K.-A. and Sakakiyama, T. (1999). Numerical Modeling
of Wave Interaction with Porous Structures. Journal of Waterway, Port, Coastal, and
Ocean Engineering, 125(6), pp. 322-330.

[75] Losada, I.J., Silva, R., Losada, M.A. (1996). 3-D non-breaking regular wave interaction
with submerged breakwaters. Coastal Engineering, 28, pp. 229-248.

[76] Lynett, P.J. (2002). A multi-layer approach to modeling generation, propagation, and
interaction of water waves. Ph.D. thesis, Cornell University.

[77] Lynett, P.J. & Liu, P.L.-F. (2002). Modeling Wave Generation, Evolution, and
Interaction with Depth-Integrated, Dispersive Wave Equations, COULWAVE Code
Manual, Cornell University Long and Intermediate Wave Modeling Package. School
of Civil and Environmental Engineering, Cornell University, Ithaca NY USA.

[78] Lynett, P.J. and Liu, P.L.-F. (2004a). A two-layer approach to wave modelling. Proc.
R. Soc. Lond. A, 460, pp. 2637-2669.

[79] Lynett, P.J., Liu, P.L.-F. (2004b). Linear analysis of the multi-layer model. Coastal
Engineering, 51, pp. 439-454.

[80] Lynett, P.J., Borrero, J.C., Weiss, R., Son, S., Greer, D., Renteria, W. (2012).
Observations and modeling of tsunami-induced currents in ports and harbors. Earth
and Planetary Science Letters, 327-328, pp. 68-74.

[81] Madsen, O.S. and Mei, C.C. (1969). The transformation of a solitary wave over an
uneven bottom. J. Fluid Mech., 39(4), pp. 781-791.

[82] Madsen, P.A., Murray, R. and Sørensen, O.R. (1991). A new form of the Boussinesq
equations with improved linear dispersion characteristics. Coastal Engineering, 15(4),
pp. 371-388.



BIBLIOGRAPHY 87

[83] Madsen, P.A. and Sørensen, O.R. (1992). A new form of the Boussinesq equations
with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry.
Coastal Engineering, 18(3-4), pp. 183-204.
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