

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE FILOSOFÍA Y LETRAS

ANÁLISIS DE LOS CAMBIOS DEL LÍMITE SUPERIOR DEL BOSQUE EN EL VOLCÁN IZTACCÍHUATL.

TESIS que para obtener el grado académico de: licenciada en geografía

PRESENTA:

CARLA TORRES BELTRAN

DIRECTOR DE TESIS:

DR. LORENZO VÁZQUEZ SELEM

Ciudad Universitaria, México D.F.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Para la hermosa vida que viene en camino...

Así, a cada paso, los hechos nos recuerdan que nuestro dominio sobre la naturaleza no se parece en nada al dominio de un conquistador sobre el pueblo conquistado, que no es el dominio de alguien situado fuera de la naturaleza, sino que nosotros, por nuestra carne, nuestra sangre, y nuestro cerebro, pertenecemos a la naturaleza, nos encontramos en su seno, y todo nuestro dominio sobre ella consiste en que, a diferencia de los demás seres, somos capaces de conocer sus leyes y de aplicarlas adecuadamente...

F. Engels

AGRADECIMIENTOS

En la naturaleza nada se desarrolla de manera aislada, incluyendo a la sociedad y a cada individuo que la componen. Por ello agradezco a la gente que me ha acompañado en los últimos años, gracias a la cual he logrado cumplir la meta materializada aquí.

Agradezco a mi familia por el apoyo brindado en todas sus modalidades. A mi padre, que ha conseguido su tercer objetivo como padre. A mi madre cuyo apoyo moral y confianza en mi le agradeceré siempre. A mis hermanas que han puesto más que ánimo y me han alentado cada día. A Edy, Marco y Eder que también son parte de mi familia y han colaborado mucho.

A mi pareja y compañero de vida, Osvaldo Franco, le agradezco ser más que eso; la ilusión de realizar nuestra vida juntos ha sido un impulso fundamental para cumplir esta misión. La pequeña vida que hemos creado es un motor inagotable, el mayor de los impulsos para lograr los pequeños y los grandes objetivos. A su padre y su madre también les agradezco su apoyo en la etapa final, que ha sido la más complicada.

Agradezco a la familia Alcíbar Cruz, por su apoyo para retomar la escuela, fue un paso necesario que me ayudaron a dar, además les doy gracias por su confianza.

A Fabi que la quiero tanto, también la agradezco su incondicional, infinito y sincero apoyo.

La paciencia ha sido clave para este trabajo, y no sólo la mía, gracias a todos por tenerla, especialmente a Militante, y a todos mis compañeros y amigos. Le agradezco la formación que he recibido y que me ha permitido ver al mundo con otros ojos y que me crea el ineludible deseo de transformalo. Es un objetivo para estar en esta vida y afrontar los retos más grandes.

Lorenzo Vázquez Selem ha sido una pieza clave, asesor de este trabajo, maestro, inspirador, un hombre que enseña con el mínimo gesto. Le agradezco su trabajo, su paciencia, su ánimo y su disposición.

A José Lugo, la agradezco por su disposición y actitud ante la revisión de mi tesis, pero le agradezco más por su método de enseñanza, por mostrarme a la dialéctica en la ciencia y por todas las horas de pláticas que han alimentado de disfrute mi vida.

Agradezco a los sinodales: Rebeca Granados, Leticia Gómez y María de la Paz Medina, por su actitud ante la revisión de la tesis, por su disposición y sus observaciones que fueron de mucha utilidad.

El trabajo para esta tesis tuvo que cruzar varias puertas, agradezco al Ing. Alfredo Rodríguez Manjarrez del taller de instrumentación meteorológica del Centro de Ciencias de la Atmosfera, UNAM, por colaborar con este trabajo al permitir el lijado de las muestras de dendrocronología en su taller; a la Fundación ICA por guardar el archivo de Aerofoto y ponerlo a disposición del público. Agradezco al Instituto de Geografía de la UNAM por el otorgamiento de la beca "Maria Teresa Gutiérrez de MacGregor" para financiar la parte final de este trabajo. Asimismo al M.C. Juan Angel Tinoco Rueda, del Centro Regional Universitario Oriente, UACH; por enviarme información que me fue de mucha utilidad.

Un especial agradecimiento a la Universidad Nacional Autónoma de México que ha tenido un espacio para mi formación académica, y a toda la comunidad universitaria que vela porque la educación siga siendo gratuita, pública, laica y de calidad.

Foto: Volcán Iztaccíhuatl desde el oeste. Por Compañía Mexicana Aerofoto S.A. de C.V. (año desconocido). Derechos de autor: Fundación ICA A.C.

ÍNDICE

Introducción	1

I. Antecedentes y Marco Teórico-Conceptual	6
. Timberline/Treeline	8
. Estudios sobre el <i>LSB</i> en México	14
. Dendrocronología	15
. Materialismo Dialéctico	17

Capí	tulo II. Zona de Estudio	.19
	2.1. Localización	.19
	2.2. Geología	.21
	2.3. Geomorfología	.22
	2.4. Clima	.23
	2.5. Suelo	.28
	2.6. Vegetación	.31

Cap	ítulo III. Métodos y Materiales	.35
	3.1. Trazado de límites	.36
	3.2. Extracción de datos de variables biofísicas	.39
	3.3. Extracción de valores para cada límite del bosque	.45
	3.4. Pruebas estadísticas	.47
	3.5. Dendrocronología	.49

Capítulo IV. Resultados y Discusión	56
4.1. Cambios en el LSB (Timberline y Treeline) entre 1955 y 2012	56

4.2. Posible influencia del aumento de la temperatura en los cambios del LSB	59
4.3. Relación entre el LSB y otras variables ambientales	62
4.4. Diferencias entre segmentos del Timberline y Treeline de 1955	64
4.5. Diferencias entre segmentos del Timberline y Treeline de 2012	65
4.6. Segmentos del Timberline con cambios importantes en altitud de 1955 a 2012	69
4.7. Dendrocronología	70

Conclusiones	75
Referencias	79
Anexos	
Anexo A: Mapas	
Anexo B: Pruebas estadísticas	

Anexo C: Dendrocronología

ÍNDICE DE FIGURAS Y TABLAS

Introducción

Figura 1. Posición latitudinal del límite superior del bosque ("Treeline") y de la línea de las nieve	s
("snowline")	.2
Figura 2. Esquema general de la estructura de la tesis	.5

Capítulo I. Antecedentes y Marco Teórico-Conceptual

Figura 1.1. Esquema de Timberline y Treeline de Körner y Paulsen (2004)
Figura 1.2. Esquema para explicar la terminología de Timberline, Forest-line y Treeline10
Figura 1.3. Ejemplo del Timberline y Treeline considerados para el presente trabajo1
Figura 1.4. Ejemplo del Timberline y Treeline considerados para el presente trabajo1

Capítulo II. Zona de Estudio

Figura 2.1. Volcán Iztaccíhuatl y límite superior del bosque	19
Figura 2.2. Asimetrías entre laderas E y W	25
Figura 2.3. Efectos climáticos regionales	27
Figura 2.4. Mapa de tipos de suelo en el volcán Iztaccíhuatl	29
Tabla 2.1. Comparación de datos de temperaturas en suelo y aire de diferentes autores	31
Figura 2.5. Ficha fenológica de Pinus hartwegii	33

Capítulo III. Métodos y Materiales

Figura 3.1. Esquema de metodología	35
Figura 3.2. Ejemplo del trazo en SIG del <i>Timberline</i> y del <i>Treeline</i> de 1955 a partir de un mosaico de fotos aéreas de 1955	37
Figura 3.3. Ejemplo de trazo en SIG del <i>Timberline</i> y del <i>Treeline</i> de 2012	38
Figura 3.4. Esquema de extracción de valores de variables por cada punto de cada límite	39
Tabla 3.1. Estaciones meteorológicas empleadas para el mapa de interpolación de	40
temperatura	40

Figura 3.5. Mapa de ubicación de estaciones meteorológicas	.41
Tabla 3.2. Datos de temperatura por estación, sus formulas y correlaciones	.41
Figura 3.6. Imagen de división de los <i>LSB</i> en segmentos	.46
Figura 3.7. Localización del transecto del muestreo en el valle Apipilulco	.50
Figura 3.8. Medición de estaciones de muestreo a lo largo de un transecto	.51
Figura 3.9. Toma de datos de cada individuo	.51
Figura 3.10. Obtención de núcleos o virutas de un individuo de Pinus hartwegii	.52
Figura 3.11. Proceso de montado de núcleos de dendrocronología	.52
Figura 3.12. Ejemplo de proceso de lijado de núcleos	.53
Figura 3.13. Conteo de anillos de crecimiento con microscopio	.53
Figura 3.14. Plantilla estandarizada para los anillos faltantes a la médula	.54

Capítulo IV. Resultados y Discusión

Tabla 4.1. Tabla de estadísticas generales de altitud por cada límite del bosque delIztaccíhuatl (1955 y 2012)56
Figura 4.1. Gráfica de altitud media (± 1 desviación estándar) del <i>Timberline</i> y del <i>Treeline</i> de 1955 y 2012
Tabla 4.2. Tabla de comparación de medias con la prueba ANOVA de los <i>Timberlines</i> de 1955, 1993 y 2012
Figura 4.2. Gráfica de altitud media (± 1 desviación estándar) de los <i>Timberlines</i> de 1955, 1993 y 2012
Figura 4.3. Gráfica de Temperatura media anual de la estación 21096, Santa Rita Tlahuapan con datos de 1945 a 2009, con línea de tendencia de la temperatura59
Figura 4.4. Gráfica de tendencia de temperatura59
Figura 4.5. Mapa de temperatura del volcán Iztaccíhuatl y estaciones meteorológicas61
Tabla 4.3. Tabla de distribución del Timberline y Treeline del Iztaccíhuatl (1955 y 2012) porclases de pendiente
Figura 4.6. Imagen de los 16 segmentos del Timberline y Treeline de 195565
Figura 4.7. Imagen de los 16 segmentos del <i>Timberline</i> de 201267
Figura 4.8. Imagen de los 16 segmentos del <i>Treeline</i> de 201268
Figura 4.9. Imagen de los 16 segmentos del <i>Timberline</i> de 1955 y 201269

Tabla 4.4. Tabla de cambios altitudinales en los 16 segmentos comparando <i>Timberline</i> de	
2012 con <i>Timberline</i> de 1955	70
Figura 4.10. Gráfica de correlación entre la edad del arbolado y la altitud	71
Figura 4.11. Mapa de interpolación de edades del arbolado en el valle de Apipilulco	72
Tabla 4.5. Número de nudos contados en individuos de <i>Pinus hartwegii</i> a la altura del pech	0
	73

INTRODUCCIÓN

Los bosques son vitales para la permanencia de la vida tal y como la conocemos hoy. Han sido, son y serán parte importante de los cambios físicos que sufre nuestro medio ambiente, y se han transformado en el transcurso de la historia de nuestro planeta. La variabilidad climática que en este momento implica un ascenso de la temperatura es uno de los fenómenos ambientales más importantes de nuestra época y puede ser cuantificado a partir de diversos indicadores. Estudios recientes señalan que uno de estos indicadores puede ser la vegetación a partir de diferentes aspectos como los cambios en el límite latitudinal o altitudinal del bosque. Éste último es conocido como *Límite Superior del Bosque (LSB*).

Diferentes factores y procesos fisiológicos que controlan la posición del LSB, son estudiados en todo el mundo para conocer cuál es su grado de influencia (Sveinbjörnsson, 2001). Algunos estudios sugieren que un factor fundamental para la definición de este límite, es la relación existente entre el crecimiento de los árboles y la temperatura (Beaman, 1962; Lauer y Klaus, 1975; Körner, 1998; Köner y Paulsen, 2004; entre otros), por lo que se considera a ésta relación una variable de gran interés para el estudio de los efectos del calentamiento global en la distribución de las especies arbóreas. Un cambio que puede ser apreciado es el movimiento del *LSB* a mayores altitudes en zonas montañosas (Körner, 1998).

En este trabajo el objeto de este estudio es el cambio en la posición del *LSB* entre 1955 y 2012 y su relación con la temperatura y el relieve en una de las montañas más significativas del norte de los trópicos: el Iztaccíhuatl, situada en el centro de México.

Conocer los cambios en 60 años en el *LSB* y sus correlaciones con el clima y las características del terreno en el cual se establece permitirá ampliar la perspectiva sobre el *LSB* en el futuro y en general sobre los efectos de los cambios climáticos en los bosques alpinos alrededor del paralelo de 19° en México.

Los estudios al respecto del *LSB* en el Iztaccíhuatl, son importantes porque se trata de un lugar significativo desde el punto de vista ecológico, debido a su riqueza vegetal y animal, perteneciente al Parque Nacional Izta-Popo, y parte del Sistema Nacional de Aéreas Protegidas en México (SINAP) (SEMARNAP, 2000). Además es una fuente de recarga de los acuíferos a través de la infiltración y provee de agua potable a la población de las cuencas de México y Puebla, por lo que las variaciones que sufra esta zona montañosa pueden tener importantes repercusiones ambientales. El *LSB* representa una transición o ecotono entre dos ecosistemas que es de gran trascendencia local para ambos ecosistemas: el pastizal alpino y el bosque de coníferas.

La zona volcánica del centro de México a la que pertenece el Iztaccíhuatl es un lugar de referencia para el análisis internacional del *LSB* por las características exclusivas de ubicación de este límite forestal a la altitud más elevada con respecto al resto de los límites forestales en las formaciones montañosas de todo el mundo. Esta ubicación latitudinal corresponde a alrededor de los 19° del hemisferio norte (Körner, 1998) (Figura 1).

Figura 1. Posición latitudinal del límite superior del bosque (*Treeline*) y de la línea de las nieves (*snowline*) (Körner, 1998).

Según Beaman (1962) se han realizado varios reportes previos sobre el *LSB* para el PopocatépetI pero al IztaccíhuatI se le ha prestado relativamente poca atención. Sin

embargo, en el caso del Popocatépetl su actividad volcánica es un factor que afecta la definición de este límite, por las frecuentes expulsiones de ceniza, situación que no ocurre en el caso del Iztaccíhuatl, cuya inactividad eruptiva desde finales del Pleistoceno permite estudiar mejor cuáles son los factores ambientales predominantes para el control de este límite. Aunque es probable que algunos factores relacionados con el Popocatépetl, como la caída de ceniza tengan algún efecto en el desarrollo de suelos.

El objetivo general de este trabajo es analizar la distribución espacial del *LSB* en el Iztaccíhuatl y determinar los factores que lo controlan a nivel general y local; a partir de examinar posibles cambios en la posición del *LSB* durante el último medio siglo, a través de una comparación con los resultados del estudio realizado por Beaman (1962), para establecer la magnitud de este cambio y evaluar sus causas posibles.

Para llegar a este objetivo general se trazaron algunos objetivos específicos que consistieron en:

- Cartografiar la distribución actual del *LSB* de *Pinus hartwegii*, en las laderas del Iztaccíhuatl, con base en imágenes de Google Earth de 2012.
- Cartografiar con las nuevas herramientas de SIG el LSB en 1955.
- Actualizar y enriquecer las mediciones reportados por Beaman (1962) para el estudio de este límite.
- Analizar la influencia de la dinámica geomorfológica del Iztaccíhuatl en el establecimiento de este límite a escala local.
- Comparar la posición del LSB actual con la posición que tenía en 1955 estudiada por Beaman (1962), y cartografiada por la autora con SIG, determinando la magnitud de los cambios y su significancia estadística.
- Explorar el potencial de la dendrocronología como herramienta para determinar la movilidad del límite superior arbóreo.

La utilización de herramientas actuales como SIG, nos permitirá conocer los factores fundamentales que controlan el *LSB* actualmente y representar gráficamente la magnitud de los cambios.

Hipótesis

Debido a que el clima, en particular la temperatura, es el factor más importante que determina la altitud del *LSB* de *Pinus hartwegii* en el Iztaccíhuatl, el aumento de la temperatura observado en las últimas décadas ha propiciado un ascenso del *LSB*.

El *LSB* en general se mantiene relativamente denso y definido, salvo que existan factores biofísicos locales, como el relieve, que provoquen un ascenso altitudinal diferenciado sobre las laderas del Iztaccíhuatl.

De verificarse estas hipótesis se confirmará en última instancia la responsabilidad de la variabilidad climática en el ascenso del *LSB* de *Pinus hartwegii* en la zona volcánica del centro de México y el relieve como posible factor limitante a nivel local para el continuo ascenso.

Estructura de la tesis

Los aspectos a desarrollar en este tema se refieren la posición del *LSB* de *Pinus hartwegii* en el volcán Iztaccihuatl, haciendo una comparación con el establecido por Beaman (1962). Para ello se presenta la definición grafica de este límite con las fotos aéreas empleadas por Beaman de diciembre de 1955 y las imágenes más actuales de Google Earth (2012). También se presentan los resultados estadísticos de la media altitudinal para ambos años. Mediante la prueba estadística T-student se definen las zonas en donde se observa mayor cambio y se proponen algunos factores que estadísticamente resultan ser los que mejor correlacionan localmente con este límite arbóreo. Finalmente se complementa este análisis cartográfico y estadístico con un muestreo dendrocronológico enfocado a determinar las edades mínimas de individuos de *Pinus hartwegii* en un transecto altitudinal a través del límite susperior del bosque en el Valle de Apipilulco en el flanco SE del Iztaccíhuatl (Figura 2).

Figura 2. Esquema general de la estructura de la tesis.

Esta tesis pretende ser objetiva y rigurosa, por lo que para el análisis de los resultados se emplea una perspectiva materialista dialéctica. Partiendo de que es imposible prescindir de una filosofía aplicada a la ciencia, aquí se hace un ejercicio consciente por emplear la más objetiva de ellas y demostrar su viabilidad.

CAPITULO I. ANTECEDENTES Y MARCO TEORICO-CONCEPTUAL

El estudio del *LSB (límite superior del bosque)* implica considerar diferentes variables biofísicas. Para la construcción de esta tesis se retomaron estudios precedentes desde la perspectiva de diferentes ramas de las ciencias naturales. Los estudios sobre aspectos geológicos han servido como un marco general para conocer la historia geológica y la litología del volcán como Demant (1978), Nixon (1989) y Guillen (1996). Los estudios sobre la geomorfología del volcán han servido como una base para comprender la complejidad del relieve del volcán y cómo la variedad de la topografía también influye en el establecimiento del bosque, por las condiciones de pendiente asociadas al escurrimiento/acumulación del agua; así cómo la formación de suelo. Estos estudios son importantes para enmarcar el trabajo, sin embargo son demasiado generales para la escala de esta investigación.

Conocer las variaciones topográficas es útil para comprender el establecimiento del *LSB*, ya que esta variable tiene una responsabilidad en ello, aunque menor que la temperatura. Por ejemplo, las máximas elevaciones del *LSB* ocurren en las prominencias topográficas y las mínimas en las depresiones.

Sobre los estudios climáticos se pueden encontrar reconstrucciones paleoclimáticas de gran escala, sobre las variaciones climáticas de los últimos 40 mil años, correlacionando las distintas glaciaciones entre los depósitos generados en varios volcanes del CVTM (Heine, 1973). Otros estudios sobre aspectos del avance y retroceso glaciar (Vázquez-Selem y Heine, 2011) son importantes ya que permiten explicar el origen exógeno de la variada topografía, y la dinámica del área de estudio.

Los estudios de Caballero et al. (2010) sobre los diferentes avances glaciares y su relación con el desplazamiento de la vegetación, así como las condiciones de temperatura y humedad en cada evento de avance glaciar desde el Glacial Temprano hasta el Glacial Terminal, dan una idea de la dinámica y la relación de la vegetación con los ciclos de variabilidad climática a escala milenaria. En la relación de paleoclimas con los procesos geomórficos y para datos locales en la zona del Iztaccíhuatl, se tienen estudios como los de White (1962, 1986) y más recientemente de Vazquez-Selem

(2000), en el cual se propone una cronología glaciar, renovando el mapeo hecho por White (1962, 1986) para los diferentes avances glaciales en el Iztaccíhuatl y sus respectivos vestigios morrénicos.

A la altitud de *LSB* (~4,000 m) se pueden encontrar las morrenas de Milpulco-1 con una elevación terminal media a los 3,810 m ± 80, y algunas morrenas recesionales; el avance Milpulco-2 con una posición media del término del glaciar a los 4,050 m ± 120 y morrenas recesionales Milpulco-2 a los 4,180 m ± 80. También señala la existencia de condiciones periglaciales con abundantes nevadas en elevaciones de 4,260 m, durante la primera mitad del siglo XX. Estos vestigios glaciares son importantes para el estudio ya que cruzan la curva de los 4,000 m e interactúan en la actualidad con el límite superior del *Pinus hartwegii*, siendo un elemento morfológico relevante en esta franja. Y para datos climátologicos de referencia se han considerado los trabajos de Lauer (1978a, 1978b); Klaus y Lauer (1978) ; Lauer y Stiehl (1973) y Andres et al. (2010).

El trabajo de Andrés et al. (2010), se ha empleado para considerar la dinámica periglacial en el Iztaccíhuatl y para tener datos de referencia de temperatura del aire y suelo por encima de los 4,000 m.

Con respecto a un periodo más próximo existen estudios sobre nevadas (Islas-Curiel, 2011), dirección del viento y radiación solar (Gavilanes, 1994), y bases de datos climáticos (CLICOM, ERIC), de los que se usaron los de CLICOM (2011) desde 1944 hasta 2010. También existen trabajos generales sobre la dinámica forestal y modelaciones de la vegetación por su respuesta potencial al variabilidad climática. Según Villers-Ruiz (1998) con base en los modelos GFDL-R30 (modelo Geophysical Fluid Dynamics Laboratory) y CCCM (Canadian Climate Centre Model), a los ecosistemas de latitudes tropicales les afectará más los cambios en precipitación que en temperatura. Siendo el más optimista de los modelos un pronóstico de aumento de temperatura y precipitación que afectará a 24 de las 33 áreas naturales protegidas, por lo que las poblaciones vegetales y animales tenderán a desaparecer o en el mejor de los casos a migrar. Concluye que los bosques naturales son vitales para la mitigación de los impactos de la variabilidad climática, así que conocer su dinámica es fundamental.

1.1. Timberline / Treeline

También se han realizado trabajos a nivel internacional sobre la dinámica forestal ante la variabilidad climática y su modelación para respuestas potenciales, específicamente sobre el *LSB* y el límite superior de los árboles. Los estudios fueron iniciados hace aproximadamente 100 años tomando a este *LSB* como objeto de estudio, y es analizado desde diferentes perspectivas, haciendo énfasis en los mecanismos ecofisiológicos que limitan el crecimiento de los árboles a mayor altitud, o desde la perspectiva de las bajas temperaturas como límite fundamental para el crecimiento y reproducción de los árboles, otros estudios hacen énfasis sobre aspectos locales como la causa de las variaciones en su establecimiento (Malanson et al., 2011).

También existe una discusión epistemológica que ha derivado en el empleo de algunos conceptos como *Timberline, Treeline,* o *Forestline,* para definir al *LSB*, usados por cada autor según sus consideraciones, por lo que la definición de este límite superior sigue siendo un tanto subjetiva. No hay un límite preciso para el bosque, ello se puede apreciar en el caso de estudio y a nivel internacional, ya que comúnmente hay una declinación gradual del tamaño de los árboles y la apertura de la cubierta (Körner, 1998). El *LSB* una zona de transición más que un límite abrupto, difícil de definir tajantemente. Sin embargo, es posible distinguir tres zonas distintas según la densidad de árboles a través del ecotono: una en la que el bosque es cerrado, otra de mayor dispersión y otra de individuos aislados.

En este trabajo se empleará el término *Timberline*, como ha sido definido por Beaman (1962), es decir, como el *LSB* más o menos cerrado, y a la vez como el límite continuo de crecimiento arbóreo como lo definen Lauer y Klaus (1975). También se empleará el término de *Treeline* para definir al límite superior de los árboles. Para Körner (1998) el *Treeline* es el límite de una zona de transición abrupta o no del desarrollo de los árboles (Figura 1.1). Esta es una línea imaginaria que toma una posición media y conecta los rodales de árboles por encima del bosque. Sin embargo, aquí se hace uso de este término considerando la definición de Lauer y Klaus (1975) y Lauer (1978a), como el límite efectivo de los individuos arbóreos, así como la definición para *Treeline* alpina de Sveinbjörnsson (2000) dada como la línea imaginaria que delinea el límite

superior disperso pero vertical de los árboles, dependiendo de la consideración de "árbol" que se emplee (Figura 1.2). Junto a estos conceptos se ha manejado *forest-line* o *forest limit* que también aparecen en la figura 1.2, y se refieren al límite del bosque, pero éste depende de cómo se considere al "bosque". El termino *Species-line* se refiere al límite de la especie. El *Historical tree-line* que significa el límite histórico del ascenso del *Treeline* (Figura 1.2).

La razón del empleo de los conceptos *Timberline* y *Treeline*, a pesar de los otros propuestos por diferentes autores, es por el uso cotidiano que se les ha dado y el empleo que ya se ha hecho de ellos en México (Beaman, 1962; Lauer y Klaus, 1975; Lauer, 1978a; Körner y Paulsen, 2004) porque resultan prácticos para la delimitación del *LSB* en el Iztaccíhuatl. Y especialmente en el caso del *Timberline*, porque implica una metodología para delimitar y hacer asequible la comparación de la línea marcada por Beaman en 1955 y la definida en este trabajo.

Figura 1.1. Esquema de *Timberline* y *Treeline* de Körner y Paulsen (2004). A la derecha se indican los límites utilizados en este estudio.

Figura 1.2. Esquema para explicar la terminología de *Timberline, Forest-line* y *Treeline*. Hustich (1983) tomada de Sveinbjörnsson (2000). A la derecha se indican los límites utilizados en este estudio.

En suma en este trabajo se adoptan las siguientes definiciones sobre el límite superior del bosque:

Límite superior del bosque (*LSB*): El establecimiento máximo altitudinal del bosque de *Pinus hartwegii*.

Y se subdivide en:

Timberline: El límite superior del bosque continuo, más o menos cerrado. Se consideraron a los individuos a mayor altitud empleando una capa de curvas de nivel.

Treeline: El límite superior de los individuos visibles en fotografía aérea y en imágenes de Google Earth. Se consideró a los árboles individuales a mayor altitud siguiendo una capa de curvas de nivel.

En las figuras 1.1 y 1.2 se han añadido flechas para mostrar la correspondencia con las definiciones anteriores. En las figuras 1.3 y 1.4 se ejemplifica cómo se considero a ambos límites en el Iztaccíhuatl, nótese la densidad y continuidad del bosque para cada límite.

Figura 1.3. Ejemplo del *Timberline* y *Treeline* considerados para el presente trabajo en imagen de Google Earth (2012).

Figura 1.4. Ejemplo del *Timberline* y *Treeline* considerados para el presente trabajo en una fotografía convencional.

En cuanto a los trabajos realizados sobre el *Timberline* y el *Treeline* se pueden encontrar diferentes enfoques y énfasis, así como metodologías en correspondencia, y diferentes escalas de estudio. A nivel internacional se ha estudiado el *Treeline* como un límite controlado fundamentalmente por la temperatura. Se ha planteado como aspecto primordial al papel de la temperatura tanto del suelo a la profundidad de las raíces, como del aire para determinar la posición natural del *Treeline*, a nivel global por lo que en la actualidad el estudio de la posición del *LSB* ha tomado mayor interés como una forma de evaluar los efectos de la variabilidad climática. También se han evaluado otros factores para determinar la posición del *Treeline* o del *Timberline*, desde el aspecto fisiológico o botánico como el estrés, los disturbios, los requerimientos para la reproducción, o limitaciones del crecimiento por procesos biológicos aunque también pueden existir limitaciones, disturbios y condiciones de estrés físicas, el balance del carbono, la disponibilidad de nutrientes, el efecto del viento, los requerimientos fenológicos específicos de los árboles que lo componen, la inversión térmica, el viento, la nieve, granizo, humedad relativa , balance hídrico, radiación solar, etc.

Considerando los diferentes factores que pueden influir en el establecimiento del bosque Holtmeier y Broll (2005) proponen una clasificación de los *Treelines* según el control dominante, en antropogenicos, orográficos/edáficos y climáticos.

Actualmente gracias a estos estudios se ha encontrado un incremento lineal de la altitud del *Treeline* desde latitudes circumpolares hasta los 32° norte y los 20° sur, estando entre las máximas altitudes del *Treeline*, las reportadas alrededor de los 4,000 m en el volcán Iztaccíhuatl, el volcán Nevado de Toluca y el volcán Pico de Orizaba, en México. Hay sólo dos casos más reportados con esta elevación del *Treeline* en los Himalayas (Körner y Paulsen, 2004).

Estos estudios del *Treeline* internacional proponen parámetros generales de referencia para el establecimiento natural del *Treeline*, entre ellos una temperatura media entre 5.5 y 7.5°C, propuesta por Köner (1998). Por debajo de 5°C la baja temperatura puede ser un límite importante para el crecimiento de los árboles. También Körner y Paulsen (2004) estudiaron el *Treeline* en 46 sitios entre los 68°N y los 42°S midiendo la temperatura ambiental y del suelo a la profundidad de las raíces, con una resolución horaria, descartando a los factores taxonómicos, las características del terreno y el control del fuego. Los resultados revelaron una temperatura media del suelo a la profundidad de las raíces de 6.7°C (±0.8) a nivel internacional a la altitud del *Timberline*. Para el volcán Iztaccíhuatl se determinó una temperatura media del suelo

de 5.9 \pm 0.5°C a una altitud de 4000 msnm. Encontraron diferencias en las medias de la temperatura del suelo al nivel de las raíces en el periodo de crecimiento según la orientación de la ladera, registrando una temperatura de 5.5 \pm 0.4°C en el norte, 5.7 \pm 0.2 °C en el sur (3970 m) y la mayor en 6.4 \pm 0.9°C en el este (3964 m) (Körner y Paulsen, 2004). Tratándose de parámetros generales cabe mencionar la posibilidad de variaciones según el umbral de resistencia de la especie de la cual se componen el *Treeline/Timberline*.

Sobre la tendencia general para el establecimiento del *Timberline/Treeline*, se pueden observar cambios locales que tiene un control dominante de algún otro factor del sitio de estudio, entre los que se encuentran los procesos geomórficos que pueden limitar el crecimiento y que no han sido considerados para la zona de estudio. Rasgos como los taludes de caída de detritos activos, flujos de escombros no consolidados, o procesos gravitacionales, son elementos activos que afectan negativamente el establecimiento del *Timberline/Treeline*. Por otro lado formaciones como cabeceras, fondos de valles y otras morfologías cóncavas en perfil y/o en planta, pueden dificultar o impedir la colonización de árboles en relación al tipo de drenaje, ya que el desarrollo de *Pinus hartwegii* es limitado por suelo con mala aireación, al menos durante una parte del año. También los escarpes son un rasgo que puede jugar el papel de límite para el establecimiento de árboles a mayor altitud.

Para Leonelli et al. (2011) la geomorfología es un elemento fundamental a considerar en estudios a escala local del *Timberline*. En su estudio analizan varios elementos dinámicos que afectan la posición del *Timberline* en el oeste de los Alpes italianos y proponen una tendencia futura a la elevación del *Timberline/Treeline* hasta las cimas o hasta los límites impuestos por la geomorfología del lugar, previendo que las limitantes geomorfológicas para el ascenso altitudinal del bosque tengan mayor relevancia en el futuro conforme los árboles asciendan y se encuentren con rasgos limitantes o condiciones adversas propias del relieve alpino.

El conjunto de estos factores puede tener una tendencia a elevar el *LSB*, así como a reducir el área total del bosque por el ascenso generalizado de la temperatura en comparación con el proceso de adaptación de las especies.

1.2. Estudios sobre el LSB en México

En México sólo existen tres estudios sobre la ubicación del *LSB*, el de Lauer (1978a); el de Lauer y Klaus (1975), y el más antiguo de Beaman (1962) que delimita únicamente el *Timberline* y lo cartografía en la Sierra Nevada. Sin embargo no existen trabajos en la zona de estudio que evalúen a través de los árboles los efectos de la variabilidad climática y de la geomorfología. Aún así, con la investigación de Beaman (1962) hoy se pueden cuantificar los cambios que ha sufrido el *LSB* y sus posibles causas.

Según Beaman (1962) el *LSB* no sufrió cambios en el siglo XIX hasta 1955, año de las fotos aéreas con las que determina que la altitud promedio del lado oeste del *Timberline* en el Iztaccíhuatl alcanza los 4,020 ±49 m. Aunque no contaba con muchos datos climatológicos para ver la relación que existía con la temperatura, definió con una estación climatológica en el oeste, que 500 m debajo del *Timberline* la temperatura era de 7.7°C. Además de que notó poco cambio entre la densidad de árboles en el *Timberline* con respecto al resto del bosque en menor elevación (Beaman, 1962).

En el volcán Iztaccíhuatl según Beaman (1962) el *Timberline* corresponde con la isoterma de 10°C en el mes más cálido, aunque admite que los datos aún eran insuficientes.

Otros estudios se han hecho en México para determinar la ubicación del *Timberline* y sus posibles causas, en el Pico de Orizaba, por Lauer y Klaus (1975) y en la parte central de la República por Lauer (1978a). En ambos estudios se señala como factor fundamental para la posición del *Timberline* el régimen climático, las condiciones del suelo, en especial en el Pico de Orizaba, en el que existe el efecto *cold-dry-limit*, es decir, cuando la baja temperatura del suelo en primavera limita la difusión del agua entre las membranas celulares de las plantas (Lauer y Klaus, 1975), y la exposición debido a las evidentes diferencias en el borde forestal de acuerdo con la orientación. También se considera como influencia importante al fuego tanto inducido como natural. Y se considera el *Timberline* de la zona central de México como una zona de transición climática no perteneciente a una zona específica, debido a la latitud a la que se encuentra.

En cuanto a los factores antrópicos en el control del *Timberline*, es necesario señalar que ha habido una reducción de la intensidad de deforestación de 1990 a 2000, debido al control de cultivos y pastoreo, aunque aún se puede observar a los 4,000 m rastros de pastoreo. Sin embargo, para este trabajo no se ha priorizado el papel de esta actividad humana, ya que se trata de un área natural protegida, donde las actividades nocivas para el bosque son relativamente controladas o prohibidas. Del bosque que había para 2007, el 47% se mantenía intacto desde 1990 y la mayoría de éste se ubica en la zona del *Timberline* (Galicia y García-Romero, 2007).

El fuego es otra variable que puede controlar el *Timberline*. El 87% de *Pinus hartwegii* sobreviven al fuego al ras del piso, sin embargo solo el 8% lo hace cuando el incendio es sobre la pendiente (Rodriguez y Fúle, 2003). De manera que aunque esta especie es de las más resistentes al fuego, la ubicación del *Timberline* sobre una pendiente más empinada puede representar mayor peligro, además de estar rodeado por pastizales que en temporadas secas son un buen combustible.

Se estima que la frecuencia promedio de incendios en los bosques de *Pinus hartwegii* en México no es mayor a 10 años (Rodríguez-Trejo et al., 2001). Sin embargo, no se cuenta para este estudio con datos precisos de frecuencia de incendios en la zona del *Timberline* del Iztaccíhuatl y que puedan jugar un papel de control.

Los incendios, en especial los inducidos por el hombre pueden afectar la elevación del *Timberline* manteniéndolo en cotas bajas (Lauer, 1978a).

1.3. Dendrocronología

La dendrocronología es la disciplina que estudia la edad de los árboles (Fritts, 2001), proviene del griego: *dendros* que significa árbol, *cronos* tiempo y *logos* conocimiento. Esta disciplina nos permite tener un registro ambiental del sitio, al cual pertenece el objeto de estudio.

Las gimnospermas (plantas que no producen flores) a las cuales pertenece el *Pinus hartwegii* forman anillos de crecimiento compuestos por células ordenadas verticalmente llamadas traqueidas. En la fase de mayor crecimiento que abarca a la primavera, las traqueidas se forman anchas y con paredes celulares delgadas, conformando la madera temprana (de color claro). En la fase siguiente, que es de menor crecimiento, las traqueidas reducen su tamaño y forman paredes más gruesas (color oscuro) componiendo la madera tardía. Al conjunto de estas dos etapas se le considera un anillo de crecimiento y su formación es anual (Fritts, 2001; Villanueva, et al., 2004).

A partir de la dendrocronología se han derivado otras ramas de estudio con base en los anillos de crecimiento, como por ejemplo la dendroclimatología para reconstrucciones ambientales del pasado y evaluaciones de la variabilidad climática (Fritts, 2001), o la dendrogeomorfología para el mejor entendimiento de los procesos geomorfológicos, los peligros naturales y riesgos (Stoffel y Bollschweiler, 2008). Ambas se fundamentan en el hecho de que diversos parámetros de los anillos de crecimiento, en particular las variaciones en anchura, están relacionados con factores ambientales como el clima, el fuego, y procesos geomórficos perturbadores como los movimientos en masa, etc.

Las aplicaciones de la dendrocronología son vastas. Para este estudio resulta una herramienta muy útil ya que a través del conteo de los anillos de crecimiento de los *Pinus hartwegii* se puede conocer la edad mínima de un individuo.

Se han realizado algunos estudios del *LSB* empleando a esta disciplina y relacionando las cronologías de crecimiento con el clima como Aravena et al. (2002) que encontró una correlación positiva entre la temperatura el crecimiento de los árboles por encima del promedio en los años siguientes a 1960. Domic y Capriles (2009) relacionaron la edad de los árboles con las características alométricas de los mismos, para lo que no se encontró una correlación positiva significativa. También estimaron la velocidad del crecimiento y evaluaron los efectos de la elevación en el crecimiento radial de los individuos; en este caso el crecimiento fue menor de 5 mm por año, reforzando la hipótesis del efecto negativo en el crecimiento de los árboles a mayor elevación. Leonelli et al. (2011) encontraron en los Alpes Italianos progresivamente mayor juventud de los árboles a mayor altitud, a partir de métodos dendrocronológicos.

En el Iztaccíhuatl, Beaman (1962) realizó un muestreo de 4 árboles cercanos al *Timberline* para medir el crecimiento radial del tronco a partir de los anillos de

crecimiento. Aunque con datos limitados, reportó un rápido crecimiento en los anillos en los últimos 30 años, pero la máxima edad encontrada fue de 44 años (op. cit.).

1.4. Materialismo Dialéctico

Para esta primera incursión personal en la ciencia física se consideró indispensable partir conscientemente de una filosofía, es decir, una interpretación del mundo (Woods y Grant, 2002), por lo tanto, también una interpretación de la ciencia.

La división del trabajo a gran escala, trasladada a la división del conocimiento, ha llevado a una especialización y segmentación de la investigación científica sin precedente histórico. Esta especialización es positiva por el grado de profundad que le da a los estudios, pero desafortunadamente en la mayoría de los estudios especializados se pierde de vista de dónde se parte y hacia dónde se va. Se tiende a aislar a los eventos y a no entender a la naturaleza en conjunto como unidad de lo diverso.

Inevitablemente todos portamos una filosofía y sería recomendable asumirla conscientemente. Aquí se intenta partir de una visión materialista dialéctica, es decir, materialista porque antepone la materia a la idea, en su connotación filosófica, y dialéctica porque considera a la naturaleza como esa unidad de los diversos, en donde todo está interrelacionado y en constante cambio a partir de contradicciones entre sus elementos. La dialéctica es la lógica de la contradicción (Engels, 1894).

Pese a que desde la segunda mitad del siglo XIX "una nueva concepción de la naturaleza se había trazado en sus rasgos fundamentales, en la que toda rigidez se disolvió, todo lo inerte cobró movimiento, toda particularidad considerada eterna resultó pasajera, y quedó demostrado que en la naturaleza todo se mueve en un flujo eterno y cíclico" (Engels, 2006). Muchos estudios académicos en la actualidad son elaborados, inconscientemente, desde la perspectiva del positivismo, una filosofía idealista, y la lógica formal. Esta situación se presenta de manera casi natural, ya que esta visión de la ciencia ha sido introducida tras bambalinas desde la educación básica.

El análisis de los resultados, la elaboración de las conclusiones y la discusión se hace en el marco de considerar a las tres leyes fundamentales del materialismo dialéctico (op. cit.):

La unidad y lucha de contrarios, es decir, la existencia inevitable de contrarios en una misma unidad, y la justificación de esta misma por la existencia de esta contradicción, el átomo con cargas positivas y negativas, el magnetismo de la tierra con dos polos opuestos e inseparables o en general la atracción y repulsión.

La transformación de la cantidad en calidad y viceversa, es decir que en un determinado punto de alteraciones cuantitativas, se produce repentinamente un cambio ("salto") cualitativo (op. cit.).

La negación de la negación, es la ley del desarrollo constante, en el que un estado de la materia o la idea se niega (en sentido filosófico) a sí misma para pasar a un estado superior. "... toda la geología es una serie de negaciones negadas, una serie de sucesivas destrucciones de viejas formaciones rocosas y depósitos de otras nuevas" (op. cit).

CAPITULO II. ZONA DE ESTUDIO

2.1. LOCALIZACIÓN

El volcán Iztaccíhuatl se localiza entre los 19° 10′ 20″ N, y 98° 38′ 30″ W (Figura 2.1). Con una altitud de 5,284 m, es la sexta estructura más grande en América del Norte y la tercera más grande y la más alta de los volcanes inactivos de México.

Figura 2.1. Localización del volcán Iztaccíhuatl. En imagen A: localización del volcán Iztaccíhuatl en el centro de México. En imagen B: Las estructuras principales de la Sierra Nevada, volcán Iztaccihuatl al N y volcán Popocatépetl al S; en rojo el área de la vegetación y la línea verde representa el límite superior del bosque en el Iztaccíhuatl.

El Iztaccíhuatl pertenece al conjunto de los 7 principales estratovolcanes que forman parte del Cinturón Volcánico Transmexicano (CVTM), el cual cruza México desde el Pacífico hasta el Golfo de México entre los paralelos 19° y 21° N, y con orientación de NNW-SSE. El CVTM tiene una extensión de cerca de 1,000 km, con un ancho que oscila entre los 50 y los 200 km. El CVTM es un arco continental que se desarrolla sobre la margen sudoccidental de la placa Norteamericana como resultado de la subducción de las placas Rivera y Cocos y a lo largo de la trinchera Mesoamericana. El Iztaccíhuatl se localiza dentro de la parte oriental de esta gran unidad geológica con sus respectivas características volcánicas y químicas que diferencian significativamente esta región de la parte occidental y central (Ferrari, 2000).

El estratovolcán Iztaccíhuatl también forma parte de la Sierra Nevada junto con el Popocatépetl. Y su extensión al norte, la Sierra de Río Frío. Es el límite entre las cuencas de México y de Puebla-Tlaxcala. El Iztaccíhuatl se encuentra 16 km al norte del Popocatépetl, es más antiguo, se desarrolló a lo largo del Cuaternario y se encuentra inactivo desde fines del Pleistoceno (Nixon, 1989).

La orientación del Iztaccíhuatl es de N-S y se extiende por alrededor de 7 km. El punto más alto 5,280 msnm, está a 3,000 m por encima de las planicies circundantes de México y Puebla. Se encuentra a ~60 km al SE de la ciudad de México y a ~50 km al NW de la ciudad de Puebla. Es parte del Parque Nacional Izta-Popo y su bosque provee de agua potable a los mantos acuíferos a través de la infiltración, recarga que beneficia principalmente a las poblaciones de las ciudades mencionadas.

La cercanía del Iztaccíhuatl y el Popocatépetl permitiría la comparación entre el *LSB* en una misma latitud y con condiciones ambientales muy semejantes de un volcán inactivo y uno activo. Debido a esta cercanía el Iztaccíhuatl ha sido cubierto por cenizas y pómez del Popocatépetl en diversos momentos del Pleistoceno Tardío y el Holoceno (Miehlich, 1991; Franco-Ramos, 2009). Éstas son los materiales componentes de muchos de los suelos de la montaña.

Sin embargo, con el tiempo éstas cenizas se erosionan parcialmente. Por el contrario, en el Popocatépetl ésta cubierta es más gruesa y por ello permanece afectando a la vegetación y a la elevación del *LSB*. En los volcanes activos esta es una condición que limita el estudio de las condiciones ambientales que controlan el *LSB*. Una relación semejante existe entre el Nevado de Colima y el Volcán de Fuego.

2.2. GEOLOGÍA

El Iztaccíhuatl es un complejo volcánico compuesto por tres cumbres principales alineadas: "Cabeza" 5,146 msnm; "Pecho" 5,230 m; y "Pies" 4,703 m. La traducción de su nombre náhuatl es "mujer blanca" debido a su forma que se asemeja a una mujer acostada y por la presencia de nieve y glaciares en sus cimas. Más de 6 km de su longitud están cubiertos de nieves perennes.

El Iztaccíhuatl se formó por la actividad eruptiva de tres volcanes alineados N-S y coalescentes (volcanes de Cabeza, Pecho y Pies Nuevo), sobre las ruinas de dos volcanes previos (volcanes Llano Grande y Pies Antiguo) (Nixon, 1989, en Andrés et al., 2010). Algunos estudios muestran que la edad radiométrica del Iztaccíhuatl es menor a 1 millón de años (Demant, 1978). Su composición es andesítica y dacítica (Nixon, 1989). Este tipo de volcanes de más de 4,000 metros de altura han sido afectados por la erosión glaciar durante el último periodo de glaciación, lo que ha modificado profundamente su morfología.

Las series volcánicas más antiguas del Iztaccíhuatl se dividen en dos grupos: Llano Grande y Pies Antiguo. El primero está constituido por andesitas y dacitas, representan la etapa más antigua de construcción del Iztaccíhuatl. La estructura está disecada por valles en "V" con paredes escarpadas elevándose 100 a 250 m sobre el piso de los valles, separados por interfluvios cubiertos de material glacial. Su morfología es discontinua entre los 3,000 y 3,500 msnm en sus laderas norte y oeste. "Los Pies antiguo" se diferencian por dos periodos de construcción, en el primero se construyó el cono y las erupciones subsecuentes produjeron las lavas de los Pies y depósitos piroclásticos asociados, que descienden hasta los 2,800 msnm Las series volcánicas más recientes se dividen en dos grupos: las andesitas y dacitas recientes que forman las cumbres del Iztaccíhuatl; y las lavas y escorias emitidas en focos a bajas altitudes en el norte y en el sur (Guillen, 1996).

2.3. GEOMORFOLOGÍA

Después del cese de actividad volcánica del Iztaccíhuatl hubo una gran acumulación de sedimentos en las zonas bajas, debidos a la denudación, pues la erosión y los glaciares afectaron las cimas y formaron grandes barrancos. El relieve variado del Iztaccíhuatl comprende restos de glaciares (Yarza De la Torre, 2003). Entre el Pecho y los Pies del volcán se forma una depresión llamada Ayoloco o Ayolocotl, es el lecho del mayor glaciar actual.

Lorenzo (1964) identificó nueve glaciares en las partes altas de la montaña en el año 1960, varios de ellos ya desaparecieron desde entonces.

El Iztaccíhuatl conserva una de las mejores secuencias de depósitos morrénicos de México. Las morrenas más antiguas conservadas y de mayor avance tienen su frente en torno a los 3,300 msnm El último máximo avance glaciar tuvo altitudes mínimas de 3,300 - 3,700 m entre 20 y 14 mil años antes del presente (ka AP) y después nuevos avances ocurrieron hace 12 ka y hacia 8.3-7 ka cuyos frentes glaciares se situaron alrededor de los 4,000 m. El último avance fue en la Pequeña Edad de Hielo (PEH), que se reconoce en un complejo de altitud mínima a los 4,300 m (Vázquez-Selem y Heine, 2004; Vázquez-Selem, 2000). En dónde antes había glaciar o llegaban los frentes de éstos hoy se ha establecido el bosque.

Estos procesos glaciares han creado rasgos morfológicos del relieve que se preservan y coinciden justo con la altitud del actual *LSB*. Si a ello se suma el resto de procesos exógenos que actúan sobre el Iztaccíhuatl, resulta una zona de gran complejidad de procesos exógenos actuando sobre los relictos de procesos anteriores. Otros procesos activos en zonas de alta montaña son los de tipo periglacial, que ocurren a partir de los 3,900 m y se intensifican de ahí hacia las cimas (Lorenzo, 1969). De acuerdo con Andrés et al. (2010) la actividad periglaciar ocurre a partir de 4,300/4,400 m, en tanto que el permafrost se presenta a partir de los 4,600 m. Justamente en el límite inferior de los procesos periglaciales, aldedor de los 4,000 m, es donde se encontraba el *LSB* en la década de los 1950s (Beaman, 1962). La relación que guardan los procesos geomorfológicos periglaciales con el *LSB* es por lo tanto un tema de estudio a profundizar.

2.4. CLIMA

No existen estaciones meteorológicas a 4,000 m de altitud por lo que los datos empleados para este apartado son generales para toda la zona del Iztaccíhuatl, determinados con base en la clasificación climática de Köppen modificada por García (1988), y considerando aportes de otras investigaciones.

El clima predominante en la zona de la Sierra Nevada, según el Sistema Climático de Köppen, es templado con lluvias en verano (Cw). Sin embargo, con las modificaciones de García (1988) se pueden distinguir diferentes tipos de clima específicos para la República Mexicana en relación con la altitud.

El tipo climático E(F)HW, muy frío, corresponde a las cimas o a la zona de los glaciares en el caso del Iztaccíhuatl. En general se considera para México a partir de los 5,272 msnm Tiene una precipitación total anual de menos de 800 mm.

El tipo E(T)HC (w) es un clima frío con lluvias en verano, dentro de esta zona climática se encuentra gran parte de la franja que abarca al *LSB*, con límite superior de la zona en los 5,272 m y el límite inferior calculado en los 4,000 m en promedio, tomando como referencia el límite de la vegetación (García, 1988). La clasificación de García (1988) se basa en los datos obtenidos de la estación Campamento Hueyatlaco del Sistema Meteorológico Nacional a una altitud de 3,557 m en la ladera occidental del Iztaccíhuatl. Es una estación con 17 años de datos. Con precipitación total anual entre 800 y 1,300 mm (Almeida-Leñero et al., 2004). Según García (1988) la temperatura media anual calculada para los 4,000 m de altitud es de 5°C y la del mes más caliente de 6.4°C. Este dato es confirmado por Lauer (1978b) ubicando la isoterma de 5°C entre los 4,000 y los 4,100 msnm, con 200 días de fluctuaciones térmicas sobre y bajo 0°C. Por otro lado Beaman (1962) plantea una temperatura media de 7.7°C en Hueyatlaco a 3,551 msnm

El tipo Cb' (w_2) (w) ig. Es semifrío húmedo con lluvias en verano. El límite superior está en los 4,000 m, con precipitación total anual entre 1,000 y 1,500 mm (Almeida-Leñero et al., 2004).

El gradiente térmico de la región ha sido calculado entre -0.69°C y -0.61°C por cada 100 metros de ascenso altitudinal por Andres et al. (2010), y en -0.5°C por cada 100 m de ascenso altitudinal por Lauer (1978a).

De acuerdo con Lauer y Klaus (1975), el factor limitante principal del crecimiento del *Pinus hartwegii* son las bajas temperaturas de primavera porque disminuyen la posibilidad de difusión del agua a través de las membranas celulares. Para los 3,950 m en la zona de ecotono entre el bosque de *Pinus hartwegii* y el zacatonal alpino el 55-60% de los días presentan temperaturas inferiores a los 0°C. A 4000 m la temperatura media mensual de enero (mes más frío) es de 3°C y en agosto de 7°C con fluctuación media diurna de 6°C, y temperatura media de 5°C, según los datos obtenidos mediante el proyecto de investigación en la región oriental de la meseta mexicana de Lauer (1978a). Mientras que las temperaturas más altas a los 3,880 m según Klaus y Lauer (1981) se dan en abril entre las 10 hrs y 12 hrs del día llegando hasta los 12°C y nuevamente en agosto hasta los 10°C. Se presenta mayor variabilidad de temperatura en los primeros seis meses que en los últimos y es entre estos meses que comienza el periodo de crecimiento del *Pinus hartwegii*. Los datos se obtuvieron de la estación "Caracol" en un periodo de mayo de 1974 a abril de 1975, reportados por Klaus y Lauer (1981).

Existe asimetría entre las laderas este y oeste, a mediodía la temperatura es mayor y más persistente en el este (Figura 2.2).

Abb. 3: Thermoisoplethendiagramme der Hangstationen (a) San Rafael (Westhang, 2 640 m) und (b) El Vaquero (Osthang, 2 680 m) berechnet aus den sündlichen Werten der Monate Mai 1974 bis April 1975. Schräffert sind die Tageszeiten hervorgehoben, während denen die Osthänge höhere Temperaturen als die Westhänge aufweisen.

Figura 2.2. Asimetrías entre laderas E y W. En dónde 1. Diagrama de termoisopletas de las estaciones (a) Caracol (3880 m) y (b) Llano Grande (3.180 m), calculado a partir de los valores horarios del período de mayo 1974 a abril de 1975. 2. Diagrama de termoisopletas de las estaciones (a) San Rafael (vertiente occidental, 2640 m) y (b) El Vaquero (vertiente oriental, 2680 m), calculado a partir de los valores horarios del período mayo 1974 a abril de 1975. Se destacaron momentos del amanecer durante los cuales las laderas orientales tienen temperaturas más altas que las laderas occidentales (Klaus y Lauer, 1981).

Además se observa mayor oscilación diurna de temperatura en la ladera este, y es más extrema que en la occidental, según los datos de dos estaciones ubicadas a 2,640 m en el oeste y a 2,680 m al este. También en el este la tendencia es a temperaturas más bajas hacia la época invernal. En general, la ladera occidental es más estable que la oriental. Otra diferencia entre la cara este y la oeste es de al menos 72 días despejados anualmente más en el este que en el oeste.

Para datos de humedad se consideró la clasificación higrotérmica de clima de Lauer y Stiehl (1973).

Estos autores asignaron categorías (en números romanos) a diferentes pisos altitudinales para la región de Tlaxcala y Puebla, considerando parámetros climáticos térmicos, de humedad y datos de vegetación.

Por arriba de los 3,800 - 4,000 msnm y hasta los 4,400 – 4,600 msnm es un piso altitudinal térmico subnevado, con temperatura media anual de 5°C a 1°C, con un clima higrotérmico semihúmedo, correspondiente al piso altitudinal térmico "X", pero con 7 meses húmedos; la vegetación corresponde a zacatonales alpinos.

Entre 3,200 y 4,000 msnm es un piso altitudinal térmico "helado", con temperatura media anual de 5°C a 9°C. Ahí se encuentra el clima higrotérmico correspondiente al piso "IX", de los 3,200 a los 4,000 msnm y corresponde a un semihúmedo con 8 meses húmedos hasta los 3,800 msnm y 7 meses húmedos de los 3,800 a los 4,000 msnm; a partir de los 3,500 m la vegetación es de *Pinus hartwegii*.

Al aumentar la altitud, la temperatura baja progresivamente. La precipitación se incrementa con la altitud, pero alcanza un tope, que en el Popocatépetl a los 3,500 m (Beaman, 1962), dato que se puede tomar como referencia para el Iztaccíhuatl. A los 4,000 m (en los que se estima la altitud media del *LSB*) la precipitación es de 800 a 900 mm, valor a partir del cual va disminuyendo altitudinalmente. El *Pinus hartwegii* crece en esta región que presenta 6 a 7 meses húmedos. Por encima de esta región o piso altitudinal, la humedad desciende rápidamente y la precipitación disminuye drásticamente (Lauer, 1978a).

La máxima precipitación ocurre en verano, la humedad se introduce en el territorio fundamentalmente por vientos alisios provenientes del Golfo de México. Los vientos que predominan en la zona del Iztaccíhuatl son los vientos de vallemontaña y los "nortes" (Lauer, 1978b), los primeros provenientes del Valle de México y Puebla e interactúan con la Sierra Nevada (Lauer, 1978b), y los segundos son de temporada invernal (Figura 2.3). Los vientos tienen efectos indirectos para generar microclimas y favorecer con ello la proliferación de algunas especies (García-García, 2000).

Figura 2.3. Efectos climáticos regionales. Tomado de Lauer (1978b).

A la escala en la que se está trabajando, factores como los vientos locales que circulan por las montañas y los valles, provocando un enfriamiento y descarga de humedad al ascender, pueden diferenciar el establecimiento de *Pinus hartwegii*. Es debido a los vientos dominantes que la parte noroccidental tiende a ser más húmeda. Otra buena fuente de humedad temporal es la aportada por los efectos de tormentas tropicales y huracanes en verano. El invierno se caracteriza en general por ser frío y seco con el paso de masas de aire polar, frentes fríos o "nortes". Además se agrega el efecto de los nortes, mayor en el oeste y norte.

2.5. SUELO

Para obtener los datos de suelo se empleó una carta digital del Instituto Nacional de Investigaciones Forestales y Agropecuarias (INIFAP) - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), de 1995, escala 1:250,000. Se identificó el predominio de litosoles de textura gruesa; son suelos poco desarrollados con una profundidad de menos de 25 cm y se encuentran en el Iztaccíhuatl a partir de ~3,700 m de altitud cubriendo la parte sur del área del *LSB*. Mientras que una porción de la parte norte está cubierta por regosol dístrico, un suelo también de poco desarrollo, con fragmentos rocosos intercalados con partículas finas de tierra. En altitudes menores se encuentra regosol éutrico y andosol húmico (Figura 2.4). Además, el suelo se vuelve más arenoso a mayor altitud.

Figura 2.4. Mapa de tipos de suelo en el volcán Iztaccíhuatl

Un límite importante para el ascenso del bosque es el permafrost, sobre el que se han hecho varios estudios ubicándolo a más de 4,600 msnm (Lorenzo, 1961, y Heine, 1975 tomado de Andrés et al, 2010); a los 4,500 msnm según Gorbunov (1978, tomado de Andrés et al, 2010), o a los 4,800 msnm según Lauer (1978b). Según Lorenzo (1961, citado por Andrés at al, 2010) la actividad periglacial comienza en los 3,900 msnm

La temperatura del suelo es un límite ecológico natural para el crecimiento de la vegetación. Las fluctuaciones diarias de la temperatura del suelo se reducen con la profundidad. A los 3,900 m y con una profundidad en el suelo de 50 cm no se produce oscilación diaria y la temperatura es similar a la media anual ambiental (Lauer, 1978a).

Para conocer los datos de la temperatura del suelo se tomaron los datos presentados por Andrés et al. (2010) sobre la estación instalada a los 4,137 msnm en un periodo de 2002 a 2003 para una profundidad de 10 cm y 80 cm. Los datos presentados para una profundidad de 10 cm tienen una oscilación de la temperatura media diaria de 26.18°C, desde -3.87°C en el mes más frío (febrero), hasta 22.31° C en el mes más cálido (julio). Los datos tomados a 80 cm de profundidad fluctúan menos (6.50°C), desde 2.15° en el mes más frío (marzo) hasta 8.65°C en el mes más cálido (julio).

Existe una tendencia al aumento ligero de la temperatura a mayor profundidad a los ~4,137 m de altitud a razón de 0.078°C por cada -10 cm. Esta tendencia se rompe para convertirse en su contrario a los 4,980 msnm (Andrés et al., 2010), como posible efecto de la existencia de permafrost.

El estudio citado anteriormente también señala que en las altitudes intermedias (de 4,200 a 4,700) por arriba del *LSB* el número de ciclos diarios de hielo/deshielo es mínimo (66 ciclos) a una profundidad de 10 cm, al contrario de lo que se pensaba como la zona de mayor actividad de procesos periglaciales. Ya para los -30cm no existen ciclos hielo/deshielo para esta región. La distribución de la actividad de los ciclos de hielo/deshielo se relaciona con la orientación, siendo más intensa en laderas abruptas orientadas al norte.

Además, especialmente para el flanco este, el horizonte de suelo más profundo mantiene un balance estacional en temperatura diurna y humedad respecto al oeste (Lauer, 1978a).

La temperatura media anual del suelo para una altitud de ~4,137 msnm es de 4.31°C a -80 cm y de 3.55°C a -60 cm de profundidad (Andrés et al., 2010). Para Lauer y Klaus (1975) es de 5°C a 70 cm de profundidad para una altitud de 4,000 msnm (Tabla 2.1).

ALTITUD	SUELO		AIRE
(msnm)	Prof. (m)	Temp. media anual (°C)	Temp. media anual (°C)
3551			7.7 (Beaman, 1962)
3900	-50	~5 (Lauer <i>,</i> 1978a)	
			5 (García, 1978; Lauer
4000	-70	5 (Lauer y Klaus, 1975)	1975)
4137	-60	3.55 (Andrés et al., 2010)	
4137	-80	4.31 (Andrés et al., 2010)	

Tabla 2.1. Comparación de datos de temperaturas en suelo y aire de diferentes autores.

2.6. VEGETACIÓN

En general la vegetación montana que se desarrolla en el CVTM está compuesta fundamentalmente por bosques de *Pinus* (pinos) y *Quercus* (encino) y de *Pinus-Quercus* y por arriba del *LSB* (~4,000 msnm) la vegetación predominante es de zacatonal alpino (Velázquez et al., 2000).

En la Sierra Nevada el bosque de *Pinus hartwegii* se localiza desde los 3,500 hasta los 4,020 msnm en el Iztaccíhuatl y 3,910 msnm en el Popocatépetl. Por arriba de esta altitud y hasta los 4,300 msnm la vegetación dominante son las gramíneas. El *Abies religiosa* se localiza entre los 3,200 y 3,500 msnm Al norte de la Sierra Nevada se localiza entre los 2,900 y los 3,200 msnm el bosque mixto y por debajo de éste, entre los 2,800 y 2,950 msnm se localiza el bosque de encino (Sánchez-González y López-Mata, 2003).

El sotobosque de *Pinus hartwegii* se compone predominantemente de gramíneas amacolladas y es casi carente de material arbustivo (Madrigal 1964).

El *Pinus hartwegii* funciona como el indicador ecológico para la zona de estudio, es la especie que compone el *LSB*. Es propia de las zonas templadas y de grandes elevaciones de México, suele dominar formando bosques puros a altitudes en las que ya no se encuentran otras especies de pinos, es decir arriba de los ~3,800 msnm

La condición térmica es la principal responsable del establecimiento de los límites de la vegetación vascular que se puede ubicar a los 4,400 msnm y coincide con la isoterma de 3.5°C con 85% de días con heladas. También lo es para el *LSB*, ya que los factores climáticos son los que fundamentalmente afectan su elevación. Algunos autores sostienen que el *Pinus hartwegii* se extiende poco a altitudes de más de 4,000 m aún con condiciones de suelo favorables, debido a la limitante de la temperatura (García-García, 2000; Eguiluz, 1978; Solórzano, 1987). Sin embargo hay otros factores ambientales que inciden en el establecimiento del *Pinus hartwegii*, como el suelo, el viento, la luz excesiva o deficiente, escaso dióxido de carbono, profundidad de la nieve, inversión térmica. Las menores variaciones en el establecimiento del *LSB* bosque pueden deberse a factores como los topográficos, el viento frío y la humedad del suelo.

El *Pinus hartwegii* tiene un umbral óptimo para el crecimiento, como muestra la figura 2.5.

Descripción						
Forma de vida	árbol	Fisiología	árbol de hoja perenne, de un solo tallo			
Hábito	erigir	Categoría	bosque / madera			
Vida	perenne	Atributos de la planta				

Ecología								
	Optima	L	Absolut	0		Optimal	Absoluto	
	Min	Мах	Min	Max	La profundidad del suelo	profunda (>> 150 cm)	a medio (50-1	50 cm)
Temperat. requiriendo.	10	18	5	25	La textura del suelo	luz	luz	
Lluvia (anual)	1100	1400	1000	1500	Fertilidad del suelo	alto		
Latitud	13	13	20	20	Al suelo. tox			
Altitud			2500	4000	La salinidad del suelo	baja (<4 dS / m)	baja (<4 dS /	/ m)
PH del suelo	5.5	6	5.2	6.4	Drenaje del suelo	también (sequías	también (sec) excesiva (sec moderadame	quías), co / ente seco)
La intensidad de luz	muy brillante	cielos despejados	muy brillante	cielos nublados				
Zona climáti	ca templ contin con in	lado oceánic iental (Dc), c iviernos seco	o (Do), t on invie os (DW)	emplado t rnos húme	emplado edos (Df), ter	nplado F	otoperíodo	día corto (<12 horas)
Matar temp. durante el descanso	-15					M c t	latar temp. recimiento emprano	0
Tolerancia abiótica.						S	uscept biótico.	
Introducción riesgos.	1							
Cultivo								
Del producto sistema			Ciclo de	cultivo	Min 120		Max 180	
Sistema de o	ultivo	Subsistema	Especie: acompa	s ñantes	Nivel de mecaniz	ación	Intensidad Trabajo	del

Figura 2.5. Ficha fenológica de *Pinus hartwegii*. Fuente: ECOCROP, FAO-Food and Agriculture Organization of the UN (2012).

Estos árboles alcanzan hasta 32 metros de altura, son de corteza gruesa y agrietada, tienen tres acículas por fascículo, color verde claro, los conos son ovoides color rojizo muy obscuro, y miden hasta 14 cm de largo (García-García, 2000). De marzo a abril es la época de formación de flores femeninas y masculinas, después de dos años los

conos dispersan las semillas en diciembre. Su ciclo semillero se desconoce pero se estima que pueda ser de 6 a 7 años (Ortega et al., 2003).

Es la especie de pino de la República Mexicana más tolerante a temperaturas bajas (op. cit.), de ahí que el bosque compuesto por estos pinos no tenga competencia con otros pinos en su límite superior y que sea un buen indicador de temperatura. Además las variaciones morfométricas de los individuos, con la altitud son un rasgo de importancia para considerar su relación con los efectos climáticos.

Es probable que sus problemas de regeneración se deban a la depredación de la semilla, a impactos de incendios o sobrepastoreo en la Sierra Nevada. Siendo mayor su regeneración en doseles abiertos que en cerrados (García-García, 2000, tomado de Saldívar et al., 1983).

Según Rodríguez-Trejo et al. (2001) la comunidad de Pinus hartwegii presenta un régimen de incendios superficiales, frecuentes y de baja intensidad. La amplitud de comportamientos del fuego va desde quemas prescritas de baja intensidad en marzo, con la supervivencia del 90 al 95% de los individuos, hasta incendios a favor del viento y la pendiente en mayo (pico de la temporada), con tan sólo el 30% de supervivencia. Niveles bajos de chamuscado de copa favorece el crecimiento radial mientras que los niveles altos de chamuscado de copa reducen el crecimiento radial y aumentan la mortalidad y la afectación por descortezadores. El fuego muy intenso y el fuego frecuente parecen tener efectos importantes de deterioro, mientras que el fuego de baja intensidad tiene beneficios. Según los autores mencionados, es importante para mantener la composición, estructura y función de este ecosistema. Lauer (1978a) considera que contribuye al establecimiento del LSB en los volcanes mexicanos. Los incendios naturales se dan en intervalos de 6 a 7 años antes de la temporada de lluvia y dan tiempo a que los árboles jóvenes crezcan. Mientras que los incendios provocados son más recurrentes y no dejan tiempo a los jóvenes para crecer, además de que afectan las zonas del Timberline y a menor altura, mientras que los fuegos por rayos afectan a árboles viejos por arriba del Timberline y su propagación es menor.

34

CAPITULO III. MÉTODOS Y MATERIALES

La metodología seguida para la elaboración de este trabajo se puede dividir en tres fases fundamentales como se presenta en el figura 3.1.

Esquema de metodología

Figura 3.1. Esquema de metodología. Se organizó la metodología a partir de tres fases: Fase 1: Recopilación de bibliografía y material cartográfico. Fase 2: Procesamientos de datos en SIG y trabajo de campo de dendrocronología. Fase 3: Realización de pruebas estadísticas con el Software SPSS. 15.

3.1. Trazado de límites

Para conocer los cambios en el límite superior del bosque de *Pinus hartwegii* en el Iztaccíhuatl se compararon el *Timberline* y *Treeline* entre 1955 y 2012. Se eligió el año 1955 porque fue el año en que se tomaron las fotos aéreas que empleo Beaman para hacer el trazo del *Timberline* y posteriormente publicarlo (Beaman, 1962), y que es uno de los dos registros que se tiene de delimitación del *Timberline* en México, además de ser el más antiguo. Este *Timberline* de 1955 se reelaboró con las nuevas herramientas que ofrece el avance tecnológico y se empleó como punto de partida. Para el caso del *Treeline* de 1955, y el *Timberline* y *Treeline* de 2012 se realizaron trazos originales para este trabajo.

Para el trazo del *Timberline* y *Treeline* de 1955 y para obtener los valores altitudinales se interpretaron las fotografías aéreas verticales números: 8, 10, 35, 36, 37, 38, 54 y 56 del levantamiento del Estado de México, No. 1230 realizado en diciembre de 1955 por la compañía Mexicana Aerofoto. Se obtuvieron a través de la Fundación ICA, que tiene a disposición parte del archivo de Aerofoto en alta resolución.

Para trazar los límites del bosque en una plataforma de SIG se georeferenciaron estas fotografías. Se cortaron las partes más céntricas posibles, para reducir la distorsión que las fotos presentan cerca del margen; luego se cargaron una a una en ArcGis 9.3 para georeferenciarlas usando ortofotos digitales de INEGI. Se realizó un mosaico con las fotos, se sobrepusieron las curvas de nivel digitales de INEGI y se trazó una línea siguiendo el *Timberline* y luego otra marcando el *Treeline*, ambas siguiendo las curvas de nivel con líneas imaginarias que las cortan perpendicularmente para marcar el trazo sobre el punto de mayor elevación del límite del bosque (Figura 3.2).

El *Timberline* se trazó con base en el criterio empleado por Beaman (1962), es decir, siguiendo el límite superior más o menos cerrado y continuo del bosque según Lauer y Klaus (1975). Beaman (1962) no realizó un trazo del *Treeline*, pero se considera importante tener este otro límite, para comparar no sólo la movilidad de la cobertura forestal sino incluso la movilidad de los individuos que se encuentran por encima de ésta. Para trazar el *Treeline* se siguió el criterio manejado por Lauer y Klaus (1975) y

36

Lauer (1978a) (ver el marco teórico). Posteriormente se convirtieron ambas líneas a puntos con la herramienta *ET Geo Wizards* para ArcGis 9.3.

Para obtener los valores altitudinales se usó le herramienta de *Spatial Analyst Tools* – *Extraction - Extract Values To Points*, de la plafaforma ArcGis 9.3 y se creó un modelo digital de terreno (MDT) con las curvas de nivel de las cartas digitales de INEGI a partir de la herramienta *Spatial Analyst Tools* – *Interpolation* – *Topo to Raster* (Anexo A).

En total se obtuvieron 1531 puntos para el *Timberline* de 1955 y 1487 para el *Treeline* de 1955 cada uno con su respectiva elevación.

Figura 3.2. Ejemplo del trazo en SIG del *Timberline* y del *Treeline* de 1955 a partir de un mosaico de fotos aéreas de 1955 (Compañía Mexicana Aerofoto). La Georeferenciación y el trazo se realizaron en ArcMap 9.3.

Para trazar el *Timberline* y *Treeline* para 2012 y obtener los valores altitudinales se usaron las imágenes de satélite SPOT de Google Earth del 28 de febrero de 2012, siguiendo los mismos criterios que para los límites de 1955 (Figura 3.3). Se transformaron de líneas a puntos en ArcGis 9.3 usando *ET Geo Wizards*, se sobrepusieron a una capa del MDT y posteriormente con la herramienta de *Extract Values To Point*, se extrajeron los valores altitudinales para cada punto.

En total se obtuvieron 1418 puntos para el *Timberline* de 2012 y 1404 para el *Treeline* de 2012 cada uno con su respectiva elevación.

Figura 3.3. Ejemplo de trazo en SIG del *Timberline* y del *Treeline* de 2012, a partir de imágenes de satélite de Google Earth (2012). El trazó se realizó directamente en Google Earth.

La diferencia de puntos entre los cuatro límites diferentes, es menor al 25%, por lo que son estadísticamente comparables.

La altitud media, mediana, altitud mínima, altitud máxima y la desviación estándar de los límites se obtuvo con ArcGis 9.3 y SSPS 15.0.

3.2. Extracción de datos de variables biofísicas

Para la extracción de los datos de variables biofísicas en torno a los límites superiores del bosque se realizaron capas en SIG con la plataforma ArcGis 9.3 siguiendo la figura 3.4.

Figura 3.4. Esquema de extracción de valores de variables por cada punto de cada límite.

Capa de Modelo Digital de Elevación (MDT)

Como base para los raster realizados en ésta etapa, se usó un MDT en ArcGis 9.3 a partir de las curvas de nivel digitales de INEGI a cada 20 m, y con la herramienta *Spatial Analyst Tools – Interpolation -Topo to Raster*, con un tamaño del celda de 20 metros (Anexo A).

Capa de Temperatura

Puesto que no existen estaciones climáticas a la altitud del *Timberline* (~4,000 m) en el Iztaccíhuatl, se realizó un mapa interpolando los datos de las estaciones meteorológicas existentes.

Se seleccionaron las estaciones más cercanas, en un radio de 14.5 km, en total 6 estaciones de la base de datos de CLICOM. Se realizó la prueba de homogeneidad para cada estación.

Una vez depurados los datos climáticos, se obtuvo la temperatura media anual histórica (MEDIA HISTÓ), la temperatura media mínima (MEDIA MIN), la temperatura media de verano (MEDIA VER), la temperatura media de invierno (MEDIA INV) y la temperatura media del periodo de crecimiento (MEDIA PC), de cada una de las estaciones, con datos desde 1944 hasta 2010 (Tabla 1.1 y 1.2).

CLAVE	NOMBRE	MUNICIPIO	LONGITUD	LATITUD	ALTITUD
15007	AMECAMECA DE JUAREZ (DGE)	AMECAMECA	-98.77	19.14	2462
15015	AMECAMECA DE JUAREZ (SMN)	AMECAMECA	-98.76	19.13	2478
15106	SAN PEDRO NEXAPA	AMECAMECA	-98.76	19.21	2529
15103	SAN RAFAEL	TLALMANALCO	-98.74	19.08	2617
21164	C.A.E. SAN JUAN TETLA	CHIAUTZINGO	-98.59	19.21	3218
21214	SAN JUAN TETLA SIETE NORTE	CHIAUTZINGO	-98.58	19.1 7	3364
Izt 4	Izt 4		-98.64	19.17	4890
Izt 5	Izt 5		-98.64	19.16	5020

Tabla 3 1	Estaciones	meteorológica	s empleadas	nara el ma	na de inter	nolación de	temneratura
I dhiq 2'T'	Estaciones	meteorologica	s empleadas	, para er ma	pa de inter	polacion de	: temperatura

Para obtener un gradiente altitudinal de temperatura e interpolar los datos se extrajeron las altitudes de cada estación a partir del MDT de la zona de estudio con la *herramienta Extract Values To Point* de ArcGis 9.3, con el fin de tener un dato más

exacto de ubicación. Debido a la falta de datos climáticos por arriba de los 4,000 m de altitud, se emplearon datos de dos estaciones instaladas por Andrés et al. (2010) nombradas "Izta 4" e "Izta 5" (aire), sin embargo, se trata sólo de la temperatura media para un periodo de 1 año en "Izta 4" de 2004-2005 y en "Izta 5" de 2005-2006, aun así se reproyectaron e integraron a los datos de las 6 estaciones seleccionadas de la base de CLICOM (Figura 3.5).

Figura 3.5. Mapa de ubicación de estaciones meteorológicas.

Se realizó una tabla con los datos de la clave de la estación, las temperaturas promedio anuales mencionadas y la elevación en el terreno, se trasladó al programa SPSS 15.0 para correr una regresión lineal con límites de confianza al 95% y obtener una fórmula para interpolar a partir de un gradiente altitudinal de temperatura, por cada tipo de dato de temperatura con su correspondiente correlación (SSPS 8.0, 1998) (Tabla 1.2).

CLAVE	ALTITUD	MEDIA HISTÓ.	MEDIA HISTÓ.	MEDIA PC	MEDIA MIN	MEDIA VER	MEDIA INV
15007	2462	13.84	13.84	15.11	6.10	15.11	11.94
15015	2478	14.14	14.14	15.38	6.59	15.38	12.25
15106	2529	14.03	14.03	14.51	7.27	14.51	12.68
15103	2617	13.99	13.99	14.50	7.13	14.50	12.79
21164	3218	8.08	8.08	8.94	2.26	8.94	6.78
21214	3364	11.06	11.06	12.11	4.22	12.11	9.47
Izt 4	4890	-0.54					
Izt 5	5020	-1.70					
For	mula	y=29.613006x	y=27.252005x	y=28.091005x	y=17.175004x	y=28.091005x	Y=25.087005X
Corre	elación	-0.986	-0.865	-0.859	-0.854	-0.859	-0.855

Tabla 3.2. Datos de tem	peratura por estación	, sus formulas v	y correlaciones.

Se seleccionó la fórmula del dato de mejor correlación con la altitud, y que las temperaturas interpoladas coincidieran mejor con las temperaturas en los puntos de las estaciones con información. Ésta fue la que considera datos de temperatura media anual histórica (MEDIA HISTÓ.), más los datos de las estaciones de Andrés et al. (2010) con una correlación de -0.98, es decir, conforme aumenta la altitud (variable independiente) disminuye la temperatura (variable dependiente). Si quitásemos las estaciones de Andrés et al. (2010) por insuficiencia de datos, aun así la mejor correlación con la altitud es con la variable de temperaturas históricas que arroja una correlación negativa de -0.865. Con base en la metodología utilizada por Castillo (2006), se integró el gradiente de temperatura en la formula:

Empleando ArcGis 9.3 se creó un raster para la interpolación de la temperatura con la herramienta *Spatial Analyst -Raster Calculator* en dónde se introdujo ésta fórmula, obteniendo así un mapa de temperaturas interpoladas para la zona del *Timberline* y *Treeline*. También se obtuvo un gradiente altitudinal de 0.651°C / 100 m con los datos de las estaciones meteorológicas 15 007 (14.96°C de temperatura media) e "Izta 5" (-1.70) con datos de marzo de 2005 a febrero de 2006 mediante la fórmula (Castillo, 2006):

$$(Y_1 - Y_2)/(X_2 - X_1) = Td / Ad$$

Dónde:

Y₁= Temperatura Máxima

Y₂= Temperatura Mínima

X₁=Altitud Mínima

X₂= Altitud Máxima

Td= Diferencia entre la temperatura en °C

Ad= Diferencia entre la altura en metros

Y se obtuvo un gradiente de 0.64°C / 100 m con los datos de la interpolación.

Capa de Orientación (Aspect)

Para tener la orientación de las laderas en el Iztaccíhuatl se creó la capa de "Aspect" (orientación) en ArcGis 9.3 con la herramienta *Spatial Analyst Tools-Surface-Curvature* a partir del MDT de la zona del Iztaccíhuatl. Se trata del cálculo de la dirección de la pendiente descendente por la tasa de cambio máxima de un valor de cada celda hacia sus vecinas. Se expresa en grados desde -1 (zonas planas) hasta 359.9 azimut (ESRI, 2008). Se empleó un tamaño de celda de 20. Se clasificó en 8 cuadrantes, norte, noreste, noroeste, sur, sureste y suroeste. La orientación es importante en la exposición a la radiación solar y en la dirección del flujo (Anexo A).

Capa de pendientes (Slope)

También se creó una capa de pendientes con ArcGis 9.3, utilizando la herramienta *Spatial Analyst Tools- Surface- Slope*, que identifica la tasa de cambio máximo en el valor de altitud desde cada una de las celdas raster con sus vecinas. Se expresa en grados y se realizaron 8 rangos. La pendiente es importante porque afecta en gran medida el movimiento descendente de los procesos erosivos y del escurrimiento. También es importante en la exposición a la radiación solar y en la formación de suelo. Y tiene cierta influencia en la dinámica del fuego, pues con una mayor pendiente es más común la propagación del fuego hasta la copa de los árboles (Anexo A).

Capa de geometría del relieve (Curvature)

La geometría del relieve también fue evaluada mediante la creación de la capa "curvature" en ArcGis 9.3 mediante la herramienta *Spatial Analyst Tools –Surface-Curvature*, que calcula la forma de las laderas en perfil, siguiendo la dirección de la pendiente máxima; y la forma de las laderas en planta, perpendicularmente a la dirección de la pendiente máxima. En perfil arroja datos positivos para las morfologías cóncavas, datos cercanos a cero para las morfologías rectas y datos negativos para las morfologías convexas. En planta arroja datos positivos para las morfologías convexas, datos cercanos a cero para las morfologías rectas y datos negativos para las morfologías cóncavas. En planta arroja datos positivos para las morfologías convexas,

43

morfología del relieve es importante en la concentración o dispersión de la escorrentía, y en la velocidad de ésta, contribuyendo en la tendencia a la erosión o a la acumulación en el terreno (Anexo A).

Capa de acumulación de flujo

La acumulación del agua es un elemento importante para conocer el establecimiento de Pinus hartwegii ya que éste no se establece en zonas con mal drenaje, que pueden aportar demasiada humedad para la tolerancia de esta especie. Para identificar éstas zonas se creó una capa de dirección de flujo a partir del raster del MDT con la plataforma ArcGis 9.3 usando Spatial Analyst Tools – Hydrology – Flow direction y con base en ésta se creó una capa de relleno de sumideros para corregir depresiones por errores en la capa de dirección de flujo por anomalías en las curvas de nivel. Se empleó la herramienta Spatial Analyst Tools – Hydrology – Sink. Una vez identificados los sumideros se rellenaron con Spatial Analyst Tools – Hydrology – Fill, para corregir imperfecciones de las curvas de nivel. Con base en la capa resultante se obtuvo una nueva capa de dirección del flujo. Finalmente a partir de este último raster y con la herramienta Spatial Analyst Tools – Hydrology – Flow acumulation se generó la capa de acumulación de flujo. Esta capa representa la acumulación de flujo por cada celda, es decir, el numero de celdas de dirección de flujo a su alrededor que derivan en cada una de ellas asumiendo que no hay infiltración, evaporación o evapotranspiración. Entre mayor es el dato numérico que arroja, mayor es la acumulación. Esta capa da una idea relativa de la humedad del suelo y ofrece un mapa de escurrimientos que se exageró para destacar los causes fluviales a fin de reconocerlos y compararlos con el MDT sombreado, así se confirmo que hay correspondencia (Anexo A).

Capa de Radiación solar

La capa de radiación solar se creó a partir del raster del MDT en la plataforma ArcGis 9.3 con la herramienta *Spatial Analyst Tools – Solar Radiation – Area Solar Radiation*. Ésta capa considera las características morfológicas del terreno (orientación, altitud, pendiente, etc.) y la latitud. En la capa que genera sólo se considera la radiación directa y difusa que son las de mayor cantidad, la radiación reflejada no se considera. Los datos que arroja están expresados en vatios por hora por metro cuadrado (Wh/m²), se consideró un intervalo de "cielo grande" (200) y con un valor de 32 direcciones azimutales correspondiente al cálculo de una topografía compleja, y un intervalo anual. La radiación solar influye en variaciones microclimáticas, en regímenes térmicos del aire, evapotranspiración, fusión de la nieve, humedad del suelo y en la fotosíntesis, por lo que es un factor importante a considerar en el presente estudio (Anexo A).

Mapa de tipo de suelos

Se creó un mapa de tipo de suelos para conocer gráficamente su relación con los límites del bosque de 1955 y 2012. Se usó la capa de edafología del INIFAP-CONABIO (1995) y se editó en ArcGis 9.3 (Ver mapa en Capitulo 1: Zona de estudio).

3.3. Extracción de valores para cada límite del bosque

Con el conjunto de capas de las variables biofísicas del Iztaccíhuatl, se extrajeron los valores de cada una que corresponden a cada uno de los puntos que conforman el *Timberline* de 1955, el *Treeline* de 1955, el *Timberline* de 2012 y el *Treeline* de 2012. Para ello se empleó ArcGis 9.3 mediante la herramienta *Spatial Analyst Tools – Extraction- Extract Values to Points*, que crea una columna al final de la tabla de puntos con los valores recién extraídos de cada una de las capas.

Al final obtuvimos una tabla para cada límite con la clave del punto, y un valor de altitud, orientación, pendiente, morfología en perfil, morfología en planta, acumulación de flujo, radiación solar, tipo de suelo y temperatura para cada punto. Se unieron las tablas y se exportaron a Excel para su depuración.

Para poder hacer comparaciones a escala detallada, se segmentaron los límites (*Timberline* y *Treeline* para 1955 y 2012) alrededor de toda la montaña. Primero se generalizó el límite en formato de línea en ArcGis 9.3 para luego segmentarlo en 16 partes, con la herramienta de *Editor-Start Editing - Divide*, se seleccionó el límite y se dividió en 16 partes iguales, se tomaron las distancias de cada segmento con la herramienta *Measure*, se sobrepusieron los límites convertidos a puntos y se tomaron los puntos de inicio y fin del segmento y la cantidad de puntos que abarca cada

segmento en una tabla de Excel y para cada uno de los límites. Finalmente se marcaron los límites y se sobrepusieron a una imagen del Iztaccíhuatl de Google Earth para visualizarlos, las líneas que representan los cortes de los segmentos se trazaron perpendicularmente a las curvas de nivel tratando de seguir la forma del volcán y considerando la forma radial de los límites. El segmento ocho tiene dos límites finales uno para los *Timberline* de 1955 y 2012 y el *Treeline* de 1955 y otro para el *Treeline* de 2012; y el segmento nueve queda muy pequeño para el *Treeline* de 2012 (Figura 3.6).

Posteriormente se trasladó a una tabla de Excel los grupos de puntos que correspondían espacialmente a cada segmento (Anexo B1).

Figura 3.6. Imagen de división de los *LSB* en segmentos. Se marcaron 16 segmentos. Al sur se realizaron dos trazos para delimitar el término del segmento 8 e inicio del segmento 9 por la irregularidad del bosque. Uno de los trazos esta sobre el *Timberline* y *Treeline* de 1955 y el otro está sobre el *Timberline* y *Treeline* de 2012. Imagen de Google Earth (2012).

3.4. Pruebas estadísticas

Una vez depuradas las tablas en Excel, se trasladaron al SPSS 15.0. Ahí se organizó la información creando 16 variables, e integrando en la tabla todos los puntos de cada uno de los límites en la variable PUNTO. Para realizar las pruebas estadísticas fue necesario crear una variable con el título GRUPO en una nueva columna. Se organizaron 4 grupos para reconocer cada tipo de límite:

Grupo 1 = *Timberline* 1955

Grupo 2 = *Treeline* 1955

Grupo 3 = *Timberline* 2012

Grupo 4 = Treeline 2012

De la misma forma se creó otra variable (columna) registrando el segmento al cual pertenecen los puntos hay 16 segmentos para cada límite. Se enumeraron del 1 al 16 en cada caso. A la nueva variable se le llamó SEGMENTO. El resto de las variables son las que contienen los datos obtenidos a partir de las capas en ArcGis 9.3 (Anexo B2). De tal manera que por cada punto en la tabla, se tiene un valor de GRUPO, es decir, límite al que pertenece (*Timberline* o *Treeline* de 1955 o 2012), un valor de SEGMENTO, es decir, un número de segmento que lo hace comparable con el mismo número de otro límite, y un valor por cada variable biofísica.

El análisis de los datos arrojados por el ArcGis 9.3 se realizó a partir de la aplicación de pruebas paramétricas en SPSS 15.0. Para lo que el primer paso fue hacer una prueba de confianza verificando cada uno de los límites mediante una prueba de normalidad y un histograma (Anexo B2), así como pruebas de homogeneidad de varianzas incluidas en las ANOVAS. Se trata además de muestras "grandes" en las que es posible hacer pruebas T-Student (Marin, 2007; Hernández et al., 2000).

Una vez que se comprobó la curva de normalidad se realizó la comparación entre las medias altitudinales con la aplicación de la prueba T-Student entre el *Timberline* de 1955 vs el *Treeline* de 1955, entre el *Timberline* de 1955 vs el *Timberline* de 2012, entre

el *Timberline* de 2012 vs el *Treeline* de 2012 y entre *Treeline* de 1955 y *Treeline* de 2012 (SSPS 8.0, 1998).

Para comparar las medias entre los segmentos de un mismo límite se realizaron pruebas ANOVA de un factor con pruebas post hoc, es decir de comparaciones múltiples (SSPS 8.0, 1998).

Para conocer la correlación entre las diferentes variables biofísicas y la altitud del *Timberline* y del *Treeline*, se realizó una prueba de correlaciones en el SPSS 15.0. Primero por cada límite del bosque y después por cada segmento.

Para obtener una correcta aplicación del método respecto a los datos de orientación arrojados por ArcGis 9.3, los datos fueron transformados a partir de formulas en Excel para tener una gradación desde 0 hasta 180, donde el 0 índica mayor proximidad a una orientación norte y 180 mayor proximidad a una orientación sur, sin distinción E-W. Para tener la información E-W se realizó la misma transformación en una nueva columna, en donde 0 indica mayor proximidad a la orientación oeste y 180 mayor proximidad a la orientación este. Se crearon dos nuevas variables (columnas) en SSPS 15.0, una de orientación E-W y otra de orientación N-S en la que se anotaron los resultados de la transformación.

Se seleccionaron los segmentos con mayor diferencia entre las medias, es decir, mayores cambios altitudinales.

Primero se compararon las altitudes entre los 16 segmentos de un mismo límite. Luego se compararon las altitudes entre los segmentos de diferentes límites. Por ejemplo, se comparó el límite 1 del *Timberline* de 1955 con el resto de los segmentos del *Timberline* de 1955 y luego se comparó el segmento 1 del *Timberline* de 1955 con el segmento 1 del *Timberline* de 2012. Esta operación se realizó para cada uno de los segmentos de los cuatro límites: Una vez identificados los de mayor cambio se realizó una prueba de correlación entre la altitud del *Timberline/Treeline* y el resto de las variables y así conocer en esos casos qué variable está relacionada con mayor fuerza con los cambios observados.

48

Adicionalmente se trazó el *Timbeline* de 1993 con base en las ortofotos digitales de INEGI y se aplicó la prueba estadística ANOVA, comparando las tres medias de los *Timberline* de 1955 y 2012 con la media del trazo de 1993, se creó una tabla de temperaturas medias históricas para ver si existe una variabilidad en la temperatura durante las últimas décadas, tal que pueda explicar cambios observados en el *LSB* (Cap. IV).

3.5. Dendrocronología

Dentro de la metodología para comprender la dinámica del bosque, se empleó a la dendrocronología para conocer las edades mínimas de los árboles, a través de un muestreo en un transecto altitudinal. La justificación para el uso de este método es la siguiente: si en décadas recientes los árboles se han expandido a altitudes donde antes no crecían, debe existir una correlación negativa entre altitud y edad del arbolado.

Se eligió para este fin el valle Apipilulco por tener individuos arbóreos por encima de los 4300 m y por presentar cambios importantes en el *Timberline* de 2012 respecto a 1955, observable en las fotos aéreas. Este valle se ubica en el sureste de Iztaccíhuatl (Figura 3.7), específicamente en el flanco SSE de los Pies, y es relativamente accesible.

Se hizo un muestreo sistemático a través de un transecto altitudinal con estaciones de muestreo a cada ~25 metros extrayendo núcleos de los 2 individuos más viejos en un radio de 10 metros (Hernández et al, 2000), desde el fondo del valle a 3,938 m hasta el árbol a una altitud mayor a 4,350 m. Se obtuvo una muestra de 73 individuos (Figura 3.7). Se eligieron algunos individuos jóvenes para contar los nudos generados hasta la altura del Pecho (135 cm) para comparar los datos entre diferentes altitudes.

La localización de cada muestra colectada se registró por medio de un GPS Garmin, con una precisión del orden de ±5 m. Los puntos fueron transferidos al SIG y a Google Earth para su visualización.

49

Figura 3.7. Localización del transecto del muestreo en el valle Apipilulco, flanco SE de los Pies (Google Earth, 2012).

Figura 3.8. Medición de estaciones de muestreo a lo largo de un transecto, valle de Apipilulco, SSE de los Pies. En la fotografía, tomada a ~4,120 msnm, se observa la transición entre el bosque cerrado (al fondo) y la zona de arbolado disperso de *Pinus hartwegii*, al frente. La persona visible se encuentra aproximadamente en el *Timberline*. Al frente a la izquierda, individuo de *Juniperus monticola* creciendo sobre roca pulida por el paso del hielo. (Fecha de la fotografía: 15 de noviembre de 2012)

Se tomaron los datos dasonómicos de cada árbol en los formatos correspondientes (Figura 3.9).

Figura 3.9. Toma de datos de cada individuo. En la imagen, individuo de *Pinus hartwegii*, muestra IzTim-09, con 122 anillos contados y una edad aproximada de 147 años. Foto tomada a ~3,960 msnm el 31 de octubre de 2012.

Se extrajeron 2 núcleos por individuo con un taladro Pressler (Figura 3.10).

Figura 3.10. Obtención de núcleos o virutas de un individuo de *Pinus hartwegii*. Muestra IzTim-56 con 38 anillos contados y una edad aproximada de 42 años. Foto tomada a ~4,240 msnm el 15 de noviembre de 2012.

Se montaron en bases de madera (Figura 3.11) y una vez fijas y secas se lijaron en un taller del Centro de Ciencias de la Atmosfera de la UNAM (Figura 3.12).

Figura 3.11. Proceso de montado de núcleos de dendrocronología.

Figura 3.12. Ejemplo de proceso de lijado de núcleos.

Se contaron los anillos generados anualmente mediante un microscopio estereoscópico (Figura 3.13).

Figura 3.13. Conteo de anillos de crecimiento con microscopio.

A la cantidad de anillos contados, se sumaron los anillos faltantes para llegar a la médula con una plantilla estandarizada (O. Franco, com. Pers., 22 de enero de 2012) (Figura 3.14). Para obtener la edad calibrada a estos dos datos se sumó el cálculo de los años transcurridos ("Altura anual") hasta la altura a la que se tomó la muestra a través de la formula:

Altura anual = h muestra (cm) / h-años (cm)

En donde:

h muestra = altura de la toma de muestra desde la base del árbol

h-años = [altura total del árbol (m)/ edad contada (años)]*100

El resultado es la *Edad calibrada*:

Edad calibrada= anillos contados + anillos faltantes + altura anual

(O. Franco, com. Pers., 22 de enero de 2012)

Figura 3.14. Plantilla estandarizada para los anillos faltantes a la médula.

Los datos se concentraron en una tabla con las coordenadas de cada muestra, los anillos contados, los anillos añadidos, la altura del árbol, la relación altura del árbolaños, la altura de la muestra, la cantidad final de años transcurridos a la altura de la muestra, la edad calibrada final, un margen de error en el conteo y finalmente en caso de haber, el número de nudos contados (Anexo C).

Pruebas estadísticas en dendrocronología

Con los datos de dendrocronología de las edades mínimas de los árboles muestreados, se hizo una tabla para los cálculos estadísticos con la clave de la muestra, la altitud y la edad mínima en SSPS 15.0. Se le aplicó una prueba T-student para conocer si la diferencia entre las medias de edad de los árboles por encima de los 4,000 m y por debajo de esta altitud es significativa. También se graficó un histograma por encima de los 4,000 m y por debajo de los 4,000 m para ver la distribución de las edades del arbolado. Para estimar el ritmo de crecimiento de los árboles a diferentes altitudes se contaron los nudos a la altura del pecho y realizó otra división del transecto en tres pisos altitudinales que son: 3,987-4,019 m, 4,089-4,143 m y 4,196-4,236 m, para comparar la cantidad de nudos contados contra los rangos de altitud.

CAPITULO IV. RESULTADOS Y DISCUSIÓN

4.1. Cambios en el LSB (Timberline y Treeline) entre 1955 y 2012

A partir de las fotos aéreas de 1955 se determinó la altitud del *Timberline* en 3,983 \pm 66 m y del *Treeline* en 4,005 \pm 72 m (media \pm 1 desviación estándar). En contraste con los 4,020 \pm 49 m reportados por Beaman (1962) para el *Timberline* de 1955 solamente para el lado W (Tabla 4.1). La altitud media del *Timberline* de 2012 es de 4,013 \pm 83 m y la altitud media del *Treeline* de 2012 es de 4,072 \pm 74 m (Tabla 4.1).

Tabla 4.1. Tabla de estadísticas generales de altitud por cada límite del bosque del Iztaccíhuatl (1955 y 2012).

	Timberline 1955	Treeline 1955	Timberline 2012	Treeline 2012
# de puntos	1531	1487	1418	1404
Longitud (Km)	46.93	61.71	59.09	49.74
Altitud. Min. (m)	3801	3801	3792	3857
Altitud. Máx. (m)	4193	4218	4197	4274
Media	3983	4005	4013	4072
Mediana	3989	4010	4020	4067
D. Estándar	66.49	72.01	82.9	73.58

Figura 4.1. Gráfica de altitud media (± 1 desviación estándar) del *Timberline* y del *Treeline* de 1955 y 2012.

En la comparación de medias utilizando la prueba-T se observó que el *Treeline* de 1955 está 22 m por encima del *Timberline* del mismo año, y es estadísticamente significativa a un nivel de significancia de .000 (Ver Figura 4.1, y Anexo B3). El *Treeline* de 2012 está 59 m por encima del *Timberline* de 2012, también estadísticamente significativo con un nivel de significancia de .000 (Anexo B3). Como se observa, la diferencia entre *Treeline* y *Timberline* se amplió sustancialmente entre 1955 (22 m) y 2012 (59 m).

La comparación de medias entre los distintos años analizados muestra que el *Timberline* de 2012 presentó un ascenso de 30 m sobre el *Timberline* de 1955, estadísticamente significativo a un nivel de significancia de 0.000 (Anexo B3). Asimismo el *Treeline* de 2012 se encontró 67 m por encima del de 1955, y la diferencia es estadísticamente significativa al 0.000. Es muy interesante notar que el *Timberline* de 2012 se encuentra 8 m por encima del 1955 (estadísticamente significativo a un nivel de 1955 (estadísticamente significativo a un nivel de 1955 (estadísticamente significativo a un nivel de 1955), estadísticamente significativo a un nivel de 1955 (estadísticamente significativo a un nivel de significancia de 0.007), en otras palabras el bosque cerrado en 2012 ya se encontraba por encima del nivel del límite de los árboles de 1955.

En ortofotos digitales de 1993 se determinó un *Timberline* de 3,996 ± 72 m. La diferencia entre la media altitudinal del *Timberline* de 2012 con la del *Timberline* de la ortofoto de 1993 es de 17 m en 19 años (con nivel de significancia de .000), mientras que la diferencia entre la media altitudinal del *Timberline* de 1993 con el *Timberline* de 1955 es de 12 m en 38 años (con nivel de significancia de 0.001) (Tabla 4.2 y Figura 4.2).

		Diferencia			Intervalo de confianza al 95%	
		de medias (I-	Error		Límite	Límite
(I) Grupo	(J) Grupo	J)	típico	Sig.	superior	inferior
<i>Timberline</i> 1955	Timberline 1993	-12.057(*)	3.350	.001	-19.9	91 -4.20
	<i>Timberline</i> 2012	-29.189(*)	2.738	.000	-35.6	51 -22.77
<i>Timberline</i> 1993	<i>Timberline</i> 1955	12.057(*)	3.350	.001	4.2	20 19.91
	<i>Timberline</i> 2012	-17.132(*)	3.392	.000	-25.0	-9.18
<i>Timberline</i> 2012	<i>Timberline</i> 1955	29.189(*)	2.738	.000	22.7	35.61
	<i>Timberline</i> 1993	17.132(*)	3.392	.000	9.2	18 25.09

Tabla 4.2. Tabla de comparación de medias con la prueba ANOVA de los *Timberlines* de 1955, 1993 y 2012.

* La diferencia de medias es significativa al nivel .05.

4.2. Posible influencia del aumento de la temperatura en los cambios del LSB

Tomando como referencia la gráfica de temperaturas históricas para la estación 21 096, en Santa Rita Tlahuapan, a 2,630 m (elegida por los años de registro y su cercanía a la zona de estudio), se puede observar un incremento de la temperatura a partir de 1977, con un evidente cambio de tendencia de la temperatura a partir de este año (Figuras 4.3, y 4.4). La misma tendencia se puede apreciar en cuatro estaciones más de los alrededores del volcán (15007, 15103, 21214, 15015).

Temperatura media anual estación 21 096

Figura 4.3. Gráfica de Temperatura media anual de la estación 21 096, Santa Rita Tlahuapan con datos de 1945 a 2009, con línea de tendencia de la temperatura.

Figura 4.4. Gráfica de tendencia de temperatura. A: Tendencia entre 1945 y 1976. B: Tendencia de 1976 a 2008. En la Gráfica A la tendencia a una menor temperatura puede deberse a condiciones locales, esta tendencia existe en al menos una estación más (15 015 con datos hasta 1966). La tendencia observada en la gráfica B existe en tres estaciones más (15 007, 15 103 y 21 214).

El ascenso del *Timberline* y del *Treeline* observado entre 1955 y 2012 puede estar controlado por un aumento regional de las temperaturas. El hecho de que la mayor diferencia se presenta entre el *LSB* de la ortofoto de 1993 y la imagen de 2012 (Tabla 4.2 y Figura 4.4) puede deberse a que justamente en el periodo más reciente (a partir de 1977) es cuando se observa una tendencia al aumento de la temperatura.

En 1955, Beaman calcula una temperatura media de 7.7°C en Hueyatlaco a 3,551 msnm, (Beaman, 1962). Lauer (1978a) considera una temperatura media de 5°C a 4,000 msnm Si tomamos de referencia el gradiente térmico obtenido en este estudio (0.65°/100 m, metodología, pag. 9) y se aplica a la estación de Amecameca de Juárez (15 007) que se encuentra a 2,462 msnm y que en 2006 registró una temperatura media anual de 14.3 °C, se obtiene una temperatura a los 4,000 msnm de 4.6°C. Si se toma de referencia a la estación Izt-5 (5020 msnm; Andrés et al. 2010) con temperatura media anual para 2005-2006 de -1.7°C, se tiene una temperatura media anual de 4.8 °C a los 4,000 msnm Por lo tanto tenemos un cálculo de temperatura media anual en 2006 que va de 4.6 a 4.8 °C para una altitud de 4,000 msnm, más baja de lo que plantean los autores antes citados. Con este cálculo a la altitud del *Timberline* (4,013 m) tenemos una temperatura de 4.5-4.7 y a la altitud del *Treeline* (4,072 m) una temperatura de 4.1-4.3°C. Como se observa esta temperatura estaría por debajo del umbral de *Pinus hartwegii* y sin embargo se encontraron individuos por arriba de los 4,300 m donde la temperatura media anual estimada es de 2.65- 2.85 °C.

La temperaturas y valores para el *LSB* y el límite superior de los individuos arbóreos se modelaron usando una regresión lineal para obtener un gradiente térmico trasladado a un modelo digital de elevación (MDE) en una plataforma de SIG (ver cap. III) (Figura 4.5).

Figura 4.5. Mapa de temperatura del volcán Iztaccíhuatl y estaciones meteorológicas.

4.3. Relación entre el LSB y otras variables ambientales

Entre las variables analizadas, la que naturalmente obtuvo mejor correlación con la altitud de los *LSB* fue la temperatura, con r=-0.99, es decir, una correlación negativa casi perfecta (debido a que la temperatura fue determinada a partir de la altitud).

La segunda variable que mejor correlacionó con la altitud de los árboles es la orientación, en relación E-W, en la que el bosque asciende más en el E. Esto puede deberse a una mayor exposición a la radiación solar pues el E suele tener más horas de exposición sin la interrupción de nubes que el W. Ello coincide con el planteamiento de Lauer (1978a) sobre la existencia de una asimetría en la distribución del Pinus hartwegii en el centro de México por una exposición directa al Sol, por lo que a medio día la temperatura es mayor y más persistente al E, mientras que el W es más húmedo; en el E hay 72 días despejados más que en el W (Lauer, 1978a). Se nota además una tendencia a una correlación más fuerte conforme sube el LSB, hasta una mayor correlación para el Treeline de 2012. En orientación N-S la correlación es positiva aunque débil, es decir, los LSB están poco más elevados al S. Un factor de control general del límite al S puede ser el contenido de ceniza en el suelo originado por el Popocatepetl, o la actividad antropogénica (que sería más intensa en el sur del Iztaccíhuatl); pero sólo parece limitar este ascenso tiempo antes del 2012, ya que para entonces la correlación mejora significativamente con una mayor altitud del bosque al S respecto al N (Anexo B4).

La correlación de la pendiente con la altitud de los árboles es más fuerte en 2012 que en 1955, es decir, se convirtió en una variable más relevante para el establecimiento de los árboles a una mayor altitud. Siendo además positiva, ello quiere decir que a mayor altitud del arbolado existe una mayor pendiente, como es de esperar por la forma montañosa del Iztaccíhuatl. Además hay un aumento de 2° en la media de pendiente del *Treeline* de 2012 respecto al *Timberline* de 1955 (Anexo B4).

El 85% del *Timberline* actual se encuentra en laderas que van de muy inclinadas (5-15°) a débilmente escarpadas (15-25°) y escarpadas (25-35°) (De Pedraza, 1996). El 42% se encuentra en el rango de laderas débilmente escarpadas (15°-25°), asociadas a laderas en montañas medias, escarpes de falla y terrazas. A tal tipo de relieve corresponde una

62
erosión lineal muy incisiva con peligro de destrucción de suelo, asociada a conos de deyección, deslizamientos y caídas (op. cit.). Para 1955 el porcentaje de árboles en este tipo de pendiente era de 35%, 7 puntos porcentuales menos que en 2012 (Tabla 4.3).

Tabla 4.3. Tabla de distribución del <i>Timberline</i> y <i>Treeline</i> del Iztaccíhuatl (1955 y 2012) por clases de
pendiente. Se relaciona la cantidad de puntos con cada rango de pendiente y el porcentaje que
representa del total de puntos de todo el límite. Los rangos se tomaron de la clasificación de De
Pedraza (1996).

	<i>Timberline</i> 1955	<i>Treeline</i> 1955	<i>Timberline</i> 2012	Treeline 2012
Total de puntos/Pendiente	1,531	1,487	1,418	1,404
de < 5°	37	32	39	20
%	2.42	2.15	2.75	1.42
de 5 a 15°	256	271	319	230
%	16.72	18.22	22.50	16.38
de 15 a 25°	536	501	529	603
%	35.01	33.69	37.31	42.95
de 25 a 35°	462	454	362	371
%	30.18	30.53	25.53	26.42
de < 35	240	229	169	180
%	15.68	15.40	11.92	12.82

En cuanto a la morfología, la correlación es negativa para las morfologías de perfil, es decir, a mayor altitud los árboles se establecen en superficies más convexas. La mejor correlación con r= -.246 es la del *Treeline* de 2012, es significativa pero poco más que débil. En general se observa una tendencia al establecimiento del bosque en morfologías convexas especialmente entre los árboles más altos sobre la ladera. Para la correlación entre la morfología en planta y la altitud del *LSB*, la relación es la misma aunque en general la correlación es todavía más débil (Anexo B4).

Esto sugiere que los individuos de *Pinus hartwegii* se establecen preferentemente en laderas que dispersan el agua y que están más expuestas a la radiación solar.

Se puede observar una correlación negativa pero débil en todos los *LSB* para la variable acumulación del flujo, por lo que los árboles a mayor altitud, tienden a establecerse lejos de los flujos de agua o zonas de acumulación como se confirma con la variable de

morfología, pero no es tan determinante este factor a esta altitud. Esta variable es más importante para los árboles en individual que para los *Timberlines* (Anexo B4).

En cuanto a la radiación solar ésta tiende a correlacionar mejor y positivamente en los *Treelines* que en los *Timberlines* de cada año, lo que es de esperar por encontrarse a una mayor pendiente y mayor elevación. Además la falta de sombra de más árboles permite el libre paso de la radiación ya que en el *Treeline* solo hay árboles dispersos (Anexo B4).

4.4. Diferencias entre segmentos del Timberline y Treeline de 1955

A continuación se exponen resultados de los cambios observados en el *LSB* por segmentos de la montaña. Este análisis se realizó con objeto de identificar mejor los factores ambientales locales que pueden controlar la posición y los cambios del *LSB* a lo largo del tiempo.

En el *Timberline* de 1955 el segmento más bajo es el 9, en el SW (Figura 4.6), con elevación media de 3,858 msnm Con una superficie dominante ligeramente cóncava y menor pendiente que el promedio del *Timberline* pero con mejor correlación positiva en altitud-pendiente, indicador de que los árboles "buscan" mayores pendientes. En general la correlación en este segmento con las variables geomorfológicas (pendiente, morfología y orientación) y la altitud mejoran en el mismo sentido que en el *Timberline* en general (Anexo B4).

El segmento más alto es el 15 al NW (Figura 4.6). Tiende a ser más alto hacia el sur pues al norte tiene como barrera geomorfológica un escarpe de lava. Tiene una elevación media de 4,074 msnm La media de la pendiente es de 23°. La correlación con morfología de perfil, morfología en planta, acumulación del flujo y radiación solar son más fuertes respecto a la correlación del conjunto del *Timberline*, es decir más determinantes. Las condiciones generales del segmento son una morfología tanto en perfil como en planta más convexa, una menor acumulación del flujo y mayor radiación solar. Su ubicación en el sector NW, a pesar de que en la orientación W el *Timberline* de 1955 en general tiende a ser más bajo, puede deberse a que a las condiciones favorables de la temperatura se suman condiciones favorables en la topografía como la convexidad y la pendiente.

En el *Treeline* de 1955 el segmento más bajo también es el 9 y el segmento más alto el 15 (Figura 4.6).

Figura 4.6. Imagen de los 16 segmentos del *Timberline* y *Treeline* de 1955. Imagen de Google Earth (2013).

4.5. Diferencias entre segmentos del Timberline y Treeline de 2012

En el *Timberline* de 2012 el segmento más bajo también es el 9, pero el segmento más alto es el 5 (Figura 4.7). El segmento 5 tiene orientación E, con elevación media de 4,095 msnm En este segmento la correlación con la morfología en perfil, es mucho más significativa que en el conjunto del *Timberline* de 2012. Lo mismo ocurre con la pendiente y la radiación solar. Existe una correlación positiva más fuerte entre acumulación del flujo y altitud, también entre mayor radiación solar y mayor altitud que no aparece para otros segmentos. Las variables geomorfológicas (pendiente, orientación y morfología) en general mejoran su correlación respecto al resto del *Timberline* de 2012 (Anexo B5).

Las condiciones generales del segmento 5 son una morfología tanto en perfil como en planta más convexa. La media de la pendiente es de 26.8°, 4° por encima de la media de todo el *Timberline* 2012. Parece que a ésta altitud los árboles comienzan a buscar mayor humedad, quizá por el aumento en la radiación solar, las condiciones de escasez de suelo y mayor pendiente. Además de su orientación al E, se agregan condiciones geomorfológicas favorables, es decir pendientes débilmente escarpadas y convexidad en el terreno, variables con las que la correlación es buena y las condiciones se mantienen favorables para el establecimiento del bosque. Además de que parece no haber disturbios de tipo antropogénico, aunque se necesita un estudio más profundo.

Figura 4.7. Imagen de los 16 segmentos del Timberline de 2012. Imagen de Google Earth (2013).

En el *Treeline* de 2012 el segmento más bajo es el 13 ubicado al W (Figura 4.8). La elevación media está en 3,981 m. La media de la pendiente es considerablemente baja (18°) en comparación con el resto de los segmentos y las correlaciones entre las variables geomorfológicas disminuyen considerablemente, es decir, a esta altitud estas variables no son tan determinantes, aumentando la correlación positiva entre radiación solar-altitud y aumentando positivamente la correlación acumulación del flujo-altitud. Las condiciones generales del segmento son de menor pendiente, mayor radiación solar, sin limitantes topográficas, y mayor acumulación del flujo a mayor altitud (Anexo B5). En este segmento es probable que tanto la orientación al W como mayor humedad en el suelo debido a la baja pendiente asociada a un mal drenaje sean

las variables de mayor control local. También puede deberse a un disturbio antropogénico.

El segmento más alto en el *Treeline* de 2012 es el 3 al NE (Figura 4.8). Su punto más alto se encuentra a los 4,274 m de altitud con elevación media de 4,173 m. Es el segmento más alto de todos los *LSB*. La media de la pendiente es de 28.6°. La correlación con la pendiente y morfología mejoran y disminuye la correlación entre radiación solar y acumulación del flujo (Anexo B5). Este segmento crea una idea de hasta donde el resto del bosque puede seguir ascendiendo de manera natural con condiciones geomorfológicas favorables.

Estas correlaciones coinciden de manera general con las observadas por Beaman (1962) sobre las características topográficas y su correlación con la elevación del *Timberline*.

Figura 4.8. Imagen de los 16 segmentos del Treeline de 2012. Imagen de Google Earth (2013).

4.6. Segmentos del Timberline con cambios importantes en altitud de 1955 a 2012

En los cambios de altitud de los segmentos comparando 1955 con 2012, se pudo observar tanto ascenso como descenso (Tabla 4.4). El cambio más importante fue de ascenso en el segmento 1, de 81 m (de 3,986 a 4,067 m) (Figura 4.9). Es un segmento controlado fundamentalmente por la temperatura, y las variables geomorfológicas han favorecido el establecimiento del bosque. El descenso se observó en los casos de los segmentos 9, 11, 14 y 15 (Figura 4.9). El mayor descenso se dio en el segmento 14, de 12 m. Estos segmentos parecen estar siendo controlados fundamentalmente por la actividad antrópica, pues no presentan condiciones biofísicas radicalmente distintas al resto del *Timberline*, y en cambio sobre estos segmentos cruzan las rutas de ascenso al Iztaccíhuatl más fáciles para los excursionistas (Neyra, 2012).

Figura 4.9. Imagen de los 16 segmentos del *Timberline de 1955* y de 2012. La línea verde representa al Timberline de 1955 y la línea amarilla representa al Timberline de 2012. Imagen de Google Earth (2013).

El menor cambio se dio en el segmento 11 y fue descendente en 6 m.

Time harding a 1055 and								
Imberline	1955 vs							
Timberlin	e 2012							
Segmento	Metros							
1	81							
2	22.3							
3	61							
4	47.8							
5	53.5							
6	53							
7	18.9							
8	17.3							
9	-7.5							
10	12.9							
11	-6.5							
12	8.9							
13	17.7							
14	-12.5							
15	-9.8							
16	23.3							

Tabla 4.4. Tabla de cambios altitudinales en los 16 segmentos comparando *Timberline* de 2012 con *Timberline* de 1955. Un valor positivo indica ascenso entre 1955 y 2012. Un valor negativo indica descenso.

4.7. Dendrocronología

El análisis dendrocronológico de las muestras de núcleos de *Pinus hartwegii* en el valle Apipilulco, en el SSE de los Pies del Iztaccíhuatl, mostró una disminución de la edad del arbolado en relación con el aumento en la altitud (Anexo C y Figura 4.10). El individuo más alto se encontró a los 4,350 msnm y tenía una edad de 6 años, mientras que por debajo de 4,000 msnm se encontraron 6 individuos de > 180 años (tres de ellos con más de 200 años). La media de las edades por arriba de los 4,000 msnm fue de 120 años y por debajo fue de 64 años con un nivel de significancia de 0.000 (Anexo C). Se obtuvo un mapa de interpolación de las edades (Figura 4.11).

Figura 4.10. Gráfica de correlación entre la edad del arbolado y la altitud. Los puntos del gráfico representan a los árboles muestreados.

En la figura 4.10, la función que describe la curva tiene un r² de 0.7001. En general se observa una disminución marcada de la edad con el aumento de altitud a partir de los 4,100 msnm Esto en general coincide con los cambios observados en el *LSB* entre 1955 y 2012, en particular, el ascenso del *Treeline*. En los histogramas (Anexo C) se observan las diferencias entre la composición de edad por debajo de los 4,000 msnm y por arriba de esta cota.

Mapa de interpolación de edades en el Valle Apipilulco

Figura 4.11. Mapa de interpolación de edades del arbolado en el valle de Apipilulco al SSE de los pies del Iztaccíhuatl.

En general la comparación de altitud contra edad del arbolado sugiere que en décadas recientes los individuos de *Pinus hartwegii* se han ido expandiendo hacia cotas más altas. El hecho de que los árboles más viejos (>124 años) se encuentren por debajo de los 4,000 m indica que árboles aislados o el bosque cerrado han existido por debajo de esa cota desde hace al menos 124 años. En contraste, no hay árboles viejos en sitios de gran altitud, y el hecho de que por encima de 4,200 m en general sólo haya árboles de <38 años, sugiere que la colonización de esas cotas ha ocurrido en décadas recientes, como indica también la comparación de los *LSB* en imágenes de 1955 y 2012.

Por otro lado es interesante notar que a los ~4,200 msnm las muestras obtenidas presentaron anillos más anchos, incluso que las muestras a menor altitud, coincidiendo con las observaciones de Beaman (1962). Esto puede deberse a la falta de competencia e indicando condiciones ambientales favorables. Pero para las muestras obtenidas a los ~4,300 msnm se observaron anchos de anillo en general pequeños aun bajo condiciones de nula competencia intraespecifica.

Se logró distinguir 3 pisos altitudinales en función de los nudos contados a la altura del pecho (1.35 m) (Tabla 4.5).

Nudos al pecho	Promedio	Altitud
8 a 65cm*		4336
6 a 60cm*		4334
7/8	7 5	4236
7/8	7.5	4196
11/12		4143
11	10.1	4108
12/13	15.1	4098
17/18		4089
14		4019
12	13.7	3998
15		3987

Tabla 4.5. Número de nudos contados en individuos de *Pinus hartwegii* a la altura del Pecho (135 cm), a diferentes altitudes en el área del *LSB*, valle de Apipilulco, SSE de los Pies del Iztaccíhuatl. Los dos primeros valores (*) corresponden a individuos que no alcanzaban la altura del Pecho.

Se sabe que las coníferas producen un nudo cada año, de manera que se puede observar en los datos de la Tabla 4.5 que en el piso altitudinal inferior (~ 4,023 m) se requieren entre 12 y 15 años para que un árbol alcance una altura de 1.35 m. En cambio en el piso altitudinal entorno a los 4200 m (~ 4,216) se requieren de 7 a 8 años para que el árbol alcance la misma altura. Una diferencia promedio de 6 años.

En el piso altitudinal más alto (>4,330 m) los árboles tardaron de 6-8 años para alcanzar alturas de 60-65 cm, es decir que a esta tasa de crecimiento les tomaría al

menos 12-14 años para acercarse a una altura de 1.35 m. Esto refleja condiciones muy limitantes a esta altitud, si bien es necesario un muestreo más amplio.

CONCLUSIONES

A partir de la comparación de las fotos aéreas de 1955 con las imágenes de satélite de Google Earth de 2012 y la prueba estadística T-student, se confirmó un ascenso de los *LSB* en los últimos 57 años.

El *Timberline* ascendió 30 m entre 1955 y 2012, mostrando mayor ritmo de 1993 a 2012 con un total de 17 m en estos 19 años. El *Treeline* ascendió 67 m (de 1955 a 2012), fue mayor que el del *Timberline*. Esta diferencia puede deberse a que para cada límite los controles del ascenso del bosque cambian, aunque es un aspecto que se tendría que estudiar más a detalle.

El ascenso altitudinal de ambos límites se corresponde con un aumento local de la temperatura que se observa en las gráficas de la estación meteorológica 21 096 (Figuras 4.3 y 4.4 cap. IV). Por lo que el control de los *LSB* en el volcán Iztaccíhuatl puede considerarse de tipo climático y especialmente térmico.

El *LSB* podría seguir ascendiendo junto con la isoterma 4.6-4.8°C (calculado en este estudio), siguiendo la tendencia de aumento de temperatura.

Para evaluar otras variables que también pueden ser importantes se empleó SIG y se realizó el análisis estadístico de correlaciones entre las capas de variables biofísicas aplicadas a cada *LSB* y por segmento. Se observó que, además de la temperatura, la pendiente, la orientación y la morfología influyen en la dinámica de los *LSB*. La importancia de las variables cambia entre los diferentes *LSB* y entre los segmentos de un mismo *LSB*. Sin embargo, no se pudieron evaluar otros factores que también pueden ser importantes como la humedad y temperatura del suelo, y la precipitación.

Cabe destacar que sobre la pendiente se encontró un rango óptimo para el crecimiento del *Pinus hartwegii* de 15° a 25°. La media de pendiente del segmento más alto (segmento 3 con 28°) y algunos individuos que llegaban hasta los 35° (pendientes que son más comunes en cotas altas sobre la ladera del Iztaccíhuatl) demuestran que esta especie puede subir sobre pendientes bastante escarpadas pero de manera escasa, ya que por arriba de este umbral de los 35° el factor geomorfodinámico puede afectar el ascenso, impidiendo la formación de suelo y generando inestabilidad en el

75

terreno. Estas condiciones son poco propicias para el establecimiento de los árboles por lo que a mayor altitud la pendiente puede convertirse en una variable que limite el ascenso del bosque. Sin embargo, se esperaría un ascenso incentivado por el aumento de temperatura dentro de un rango de pendiente de 5° a 25°.

Por otro lado a partir de las correlaciones se observó que la orientación E es más favorable para el ascenso del bosque y concuerda con los resultados de Lauer (1978a). Además se observó que es más favorable para los árboles individuales que para el *Timberline* y más favorable en 2012 que lo que era en 1955. La comparación por segmento entre los *LSB* también demostró esta tendencia al cambiar el segmento más alto (15) de los *LSB* de 1955 con orientación NW a segmentos con orientación E en ambos *LSB* de 2012.

Las observaciones respecto a las variables: orientación y pendiente hacen pensar que en el futuro pueden ser más importantes para el **LSB**.

También se confirmó la preferencia en el establecimiento de los árboles sobre morfologías de ladera convexas, aunque es probable que a mayor altitud y con mayor radiación solar los árboles crezcan cerca de flujos de agua, como se pudo observar en el Valle de Apipilulco. Sin embargo, es necesario explorar más esta variable.

Es necesario considerar que, pese a que se ha evaluado el factor geomorfológico desde la perspectiva de la morfología, poco se ha evaluado acerca de los procesos y han faltado variables como la humedad del suelo o la precipitación para tener un estudio más completo.

La extracción de información a partir de SIG, el análisis estadístico de comparación de medias de los *LSB* por segmento, sus datos descriptivos, las correlaciones entre ellos y su análisis espacial en las fotos aéreas y las imágenes de satélite de Google Earth, sugieren que aunque el control fundamental proviene de la variable temperatura, a escala local las variaciones por encima o debajo de la media de altitud de cada *LSB*, se deben a control de tipo geomorfológico, en la mayoría de los casos. Sin embargo, en las zonas donde hubo descenso del *LSB*, parece deberse a un severo efecto local de la actividad antropogénica.

76

La dendrocronología fue de gran utilidad para comprobar el ascenso del *LSB* en las últimas décadas al SE del Iztaccíhuatl, en el Valle Apipilulco entre los ~4,000 – 4,300 msnm Se mostró una tendencia de mayor juventud de los árboles a mayor altitud; los individuos más jóvenes (<38 años) fueron encontrados por encima de la cota de 4,200 msnm

Además la dendrocronología arrojó datos que pueden ser muy útiles para conocer la adaptación de los *Pinus hartwegii* que crecen a mayor altitud, ya que a través de los anillos de crecimiento se puede ver el estrés que éstos sufren. El ancho de anillos y el conteo de nudos a la altura del pecho a diferentes altitudes, demostró que los árboles parecen estar en condiciones favorables (buena calidad de sitio y poca competencia) para su crecimiento alrededor de los 4,200 msnm, ya que generan anillos de crecimiento más anchos que los árboles de altitudes menores. Sin embargo, es posible marcar un límite ~100 m más arriba (~4,300 msnm), a partir del cual inicien condiciones de estrés del arbolado generando anillos más delgados.

A partir de este estudio se puede conocer más sobre el efecto de la variabilidad climática en esta especie de pino; así como evaluar el potencial de colonización del *Pinus hartwegii*, lo que puede ser útil para planes de reforestación; además un estudio comparativo con otras montañas del centro de México puede ayudar a clarificar y explotar más este potencial en otras regiones.

Materialismo Dialéctico y el Límite Superior del Bosque

Un análisis hecho a partir del materialismo dialéctico nos puede ofrecer algunas conclusiones:

Respecto a la transformación de la cantidad en calidad, puede concluirse que existe un salto cualitativo en el que el *Treeline* se convierte en el *Timberline*, con el ascenso del conjunto del bosque hasta alcanzar a los primeros individuos que ascendieron (*Treeline*). Para la actualidad esta transformación requirió de ~57 años, que es el periodo estudiado, sin embargo, no es posible limitar con exactitud en dónde deja de ser uno para convertirse en otro. Se trata de un proceso de transformación en el que

hay un punto en que las variables biofísicas en retroalimentación con el *Treeline* crea las condiciones para el establecimiento de más y más árboles y así cambiar sus propias características que lo definen. Ahí se transforma negándose a sí mismo y convirtiéndose en otro límite con nuevas características al que se le ha llamado *Timberline*. A este último proceso se le conoce en dialéctica como la negación de la negación. En la comparación de los histogramas del *Timberline* y *Treeline* de 2012 con 1955 se puede observar una tendencia en la que ascienden primero algunos individuos y después son alcanzados por el bosque (Anexo B2).

Actualmente, aunque existe un *LSB* en el Iztaccíhuatl y ha existido desde hace muchos años, no podemos decir que se trata del mismo, éste ha cambiado, ha subido altitudinalmente, los árboles que lo componen son otros, se establece en otras condiciones del terreno, y se negará de nuevo así mismo con el transcurso del tiempo para subir o bajar sobre la pendiente.

Respecto a las variables que lo determinan, se puede decir que se trata de una relación entre ellas, que al final crea las condiciones necesarias para el establecimiento y crecimiento de los árboles. Existen por lo tanto variables que "empujan" al bosque hacia abajo, como procesos geomorfológicos, y otras que lo "empujan" hacia arriba como el aumento de temperatura. Al mismo tiempo que estas variables se contraponen son parte de una unidad que es el medio ambiente. El punto en el que se establece el *LSB* es el punto de "equilibrio" entre todas las variables, pero "equilibrio" no significa inmovilidad, así que conforme una variable cambia todo cambia produciendo así un constante movimiento que hemos logrado medir hasta cierto límite en este trabajo.

El constante movimiento incluye la posibilidad de la total transformación de cualquier variable, de ser un factor positivo para el ascenso del bosque a ser un factor negativo para el mismo, cada una de las variables aquí expuestas puede convertirse en su contrario, por ejemplo la temperatura. Si continúa el aumento de temperatura, ésta puede llegar a ser tan elevada que cree condiciones para las cuales los *Pinus hartwegii* no puedan adaptarse, o incluso ir a un ritmo mayor al que los árboles puedan responder.

78

REFERENCIAS

- Almeida-Leñero, L., Gimenez de Azcarate, J., Cleef, A. M., González, T. A. (2004). Las comunidades vegetales del zacatonal alpino de los volcanes Popocatépetl y Nevado de Toluca, Región Central de México. *Phytocoenologia*: 34, 91-132
- Alvarado, M. A., Foroughbakch, R., Jurado, E., Rocha, A. (2002). La variabilidad climática y la fenología de las plantas. *Ciencia* UANL: 5 (4), 493-500.
- Andrés, N., Palacios, D., Zamorano, J.J., Vázquez-Selem, L. (2010). Distribución del permafrost e intensidad de los procesos periglaciares en el estratovolcán Iztaccíhuatl (México). *Ería:* 83, 291-310.
- Aravena, J. C., Lara, A., Wolodarsky-Franke, A., Villalba, R., Cuq, E. (2002). Tree-ring growth patterns and temperature reconstruction from *Nothofagus pumilio* (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. *Revista Chilena de Historia Natural*: 75: 361-376.
- Beaman, J. (1962). The timberline of Iztaccihuatl and Popocatepetl, México. *Ecology*: 43 (3), 377-385.
- CLICOM. (2011). Mexico Climatological Station Network Data. Servicio Meteorológico Nacional (SMN). Base de datos 2011.
- Caballero, M., Lozano-García, S., Vázquez-Selem, L., Ortega, B. (2010). Evidencias de variabilidad climática y ambiental en registros glaciares y en cuencas lacustres del centro de México durante el último máximo glaciar. México. *Boletín de la Sociedad Geológica Mexicana*: 62 (3), 359-377.
- Castillo Rodríguez, M. E. (2006). Delimitación de unidades ambientales biofísicas en el volcán La Malinche con base en el análisis de unidades morfogenéticas. Tesis de maestría en Geografía, Universidad Nacional Autónoma de México, México, D.F., 135 pp.
- De Pedraza, J. (1996). Geomorfología. Pr incipios, Métodos y Aplicaciones. Ed. Rueda. Madrid, España. 414 p.
- Demant, A. (1978). Caracteristicas del Eje Neovolcanico Transmexicano y sus problemas de interpretación. *Instituto de Geología*: 2 (2), 172-187.
- Domic, A. I., Capriles, J. M. (2009). Allometry and Effects of Extreme Elevation on Growth Velocity of the Andean TreePolylepis Tarapacana Philippi (Rosaceae). *Plant Ecology*: 205 (2), 223-234.
- Eguiluz-Piedra, T. (1978). Ensayo de integración de los conocimientos sobre el género *Pinus* en México. Tesis Licenciatura. Universidad Autónoma Chapingo. Departamento de Bosques. Chapingo. México. 571 p.

Engels, F. (1961). Dialéctica de la Naturaleza. Ed. Grijalbo. D.F., México. 348 p.

- Engels, F. (1894). Anti-Dühring. La subversión de la ciencia por el señor Eugen Dühring. Ed. Grijalbo. D.F., México, 1964. 347 p.
- Engels, F. (2006). Introducción a "Dialéctica de la naturaleza". El papel del trabajo en la transformación del mono en hombre y otros escritos sobre dialéctica. Ed. Fundación Federico Engels. Madrid, España. 109 p.
- Food and Agriculture Organization (FAO). (2012). ECOCROP. Ficha fenológica de *Pinus* hartwegii.
- Franco Ramos, O. (2009). Procesos morfodinámicos en la vertiente norte del Popocatépetl. Tesis de maestría en Geografía, Universidad Nacional Autónoma de México, México, D.F., 113 pp.
- Ferrari, L. (2000). Avances en el conocimiento de la Faja Volcánica Transmexicana durante la última década. *Boletín de la Sociedad Geológica Mexicana*: 53, 84-92.
- Fritts, H.C. (2001). Tree Rings and Climate. Ed. The Blackburn Press. New Jersey, USA. 567 p.
- Galicia, L. y García-Romero, A. (2007). Land Use and Land Cover Change in Highland Temperate Forests in the Izta-Popo National Park, Central Mexico. *Mountain Research and Development:* 27, 48-57.
- García, E. (1988). Modificaciones al sistema de clasificación climática de Köppen (para adaptarlo a las condiciones de la República Mexicana). Instituto de Geografía. UNAM. México, D.F. 246 p.
- García García, R. (2000). Comportamiento de la dinámica sucesional de Abies religiosa (HBK) SCHL. et. CHAM., y Pinus hartwegii LINDL., en la estación forestal experimental Zoquiapan, Estado de México. Tesis profesional. Universidad Autónoma Chapingo. XP.
- Gavilanes–Ruiz, J. C. (1994). Mediciones a 5,100 m de altitud de la irradiación solar global y ultravioleta. Tesis de Licenciatura. Facultad de Filosofía y Letras, UNAM. 167 p.
- Guillen-Guerrero, M. A. (1996). Geomorfología de la vertiente occidental del volcán Iztaccihuatl. Tesis de Licenciatura, Colegio de Geografía, UNAM, México D.F. xp.
- Heine, K. (1973). Variaciones más importantes del clima durante los últimos 40,000 años en México. Deducciones indirectas de observaciones geomorfológicas. Puebla, México. *Comunicaciones:* 7, 51-56.
- Hernández Samperi, R., Fernández Collado, C., Baptista Lucio, P., (2000). Metodología de la investigación. Mc Graw Hill. México. 501 p.
- Hoch, G. y Köner, C. (2003). The carbon charging of pines at the climatic treeline: a global comparison. *Oecologia*: 135, 10-21.
- Holtmeier, F. K., y Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography: 14, 395-410.

- Instituto Nacional de investigaciones Forestales y Agropecuarias (INIFAP) Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) (1995). 'Edafología'. Escalas 1:250000 y 1:1000000. México.
- Islas Curiel, H. (2011). Análisis de la tendencia de nevadas en la Sierra Nevada, México. Tesis de Licenciatura. Facultad de Filosofía y Letras, UNAM. 178 p.
- Klaus, D. y Lauer, W. (1981): Zur thermischen asymmetrie der west-und osthänge der Sierra Nevada. Ibero-Amerikanisches Archiv. *Jahrgong* 7, Heft 1/2, 55-66.
- Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. *Oecologia:* 115, 445-459.
- Köner, C. y Paulsen, J. (2004). A world-wide study of high altitude treeline temperatures. J. *Biogeogr:* 31, 713-732.
- Lauer, W. y Stiehl, E. (1973). La clasificación del clima en la región Puebla-Tlaxcala. *Comunicaciones*, 7, 31-35.
- Lauer, W. (1978a). Timberline studies in central México. University of Bonn. *Arctic and Alpine Research*: 10 (2), 383-396.
- Lauer, W. (1978b). Tipos ecológicos del clima en la vertiente oriental de la meseta mexicana (con mapa). Comentario para una carta climática 1:500000. *Comunicaciones*: 15, 235-248.
- Lauer, W. y Klaus, D. (1975). Geoecological investigations on the timberline of Pico de Orizaba, México. *Arctic and Alpine Research*: 7 (4), 315-330.
- Leonelli, G., Pelfini M., Morra di Cella U., Garavaglia V. (2011). Climate Warming and the Recent Treeline Shift in the European Alps: The Role of Geomorphological Factors in High-Altitude Sites. *Ambio*: 40, 264-273.
- Lorenzo, J.L. (1959). Los glaciares de México. Universidad Nacional Autónoma de México. Monograf. *Instituto de Geofísica*: 114p.
- Lorenzo, J. L. (1961). La revolución neolítica en Mesoamérica. *Instituto Nacional de Antropología e Historia*: 11.
- Lorenzo, J.L. (1964). Los glaciares de México. Monografías del Instituto de Geofísica, 1. Instituto de Geofísica, U.N.A.M., México, 124 pp.
- Malanson, G. P., Resler, L. M., Bader, M. Y., Holmeier, F.-K. Butler, D. R., Weiss, D. J., Daniels,
 L. D. y Fagre, D. B. (2011). Mountain Treelines: a Roadmap for Research Orientation.
 Artic, Antarctic, and Alpine Research: 43 (2) 167-177.
- Marin F. J. (2007). Manual de prácticas de ordenador con SPSS 15. *Curso académico 2007/2008*. Universidad de Murcia. España. 85 p.
- Miehlich, G. (1991). Chronosequences of volcanic ash soils. Hamburger Bodenkundliche Arbeiten, Vol. 15, pp. 1-207.

- Neyra Jáuregui, J.A. (2012). Guía de las altas montañas de México y una de Guatemala. Ed. CONABIO. D.F., México. 413 p.
- Nixon, G.T. (1989). The Geology of Iztaccíhuatl volcano and adjacent areas of the Sierra Nevada and Valley of Mexico. Special Paper 219. The Geological Society of America, Boulder, 58 pp.
- Ortega Mata, A., Mendizábal Hernández, L., Alba Landa, J., Aparicio Rentería, A. (2003). Germinación y crecimiento inicial de Pinus hartwegii lindl. De siete poblaciones del Estado de México. Universidad Veracruzana. México. *Foresta Veracruzana*: 5 (002), 29-34.
- Rodríguez Trejo, D. A. y Fúle, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. *International Journal of Wildland Fire*: 12 (1), 23-27.
- Rodríguez-Trejo, D., Martínez Hernandez, H. C., Ortega Baranda, V. (2001). Ecología del fuego en el ecosistema de *Pinus hartwegii* Lindl. *Revista Chapingo, Ciencias Forestales y del Ambiente* 7(2), 145-151.
- Sánchez-González, A. y López-Mata, L. (2003). Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología. UNAM. *Serie Botánica*: 74(1), 47-72.
- Solórzano Ibarra, F. (1987). Efecto de algunos factores ambientales en la germinación de semillas de Pinus hartwegii Lindl., bajo condiciones controladas. Tesis profesional. División de ciencias forestales. Universidad Autónoma de Chapingo, México. 81 pp.

- SPSS (2006). IBM SPSS, Versión 15.0 (software) USA.
- Stoffel, M., Bollschweiler, M. (2008). Tree-ring analysis in natural hazards research- an overview. *Natural Hazards and Earth System Sciences*: 8, 187-202.
- Sveinbjörnsson, B. (2000). North American and European Treelines: External Forces and Internal Processes Controlling Position. *Ambio*:29 (7), 388-395.
- Vázquez-Selem, L. (2000). Late Quaternary glacial chronology of Iztaccíhuatl volcano, central Mexico. A record of environmental change in the border of the tropics. Ph.D. Dissertation Thesis, Arizona State University, Tempe, 210 pp.
- Vázquez-Selem, L., y Heine, K. (2004). Late quaternary glaciation of Mexico. *Developments in Quaternary Sciences*, *2*, 233-242.
- Vázquez-Selem, L. y Heine, K. (2011). Late Quaternary Glaciation in Mexico. In: J. Ehlers, P.L. Gibbard and P.D. Hughes (Editors), Quaternary Glaciations Extent and Chronology. A closer look. Developments in Quaternary Science. Elsevier, Amsterdam, pp. 849-861.
- Velázquez, A., Toledo, V.M., Luna, I. (2000). Mexican temperate vegetation, en Barbour, M. G., Dwight Billings, W.. Nueva York, Cambridge University Press. (eds.) North America Terrestrial Vegetation: 574-592.

SPSS Base 8.0. (1998). Applications Guide. IBM SPSS, USA. Pp. 372

- Velazquez M, A. (1984). Estudio de algunos factores que influyen en la regeneración natural de *Pinus hartwegii* Lindl. En Zoquiapan, México. Tesis Maestría en Ciencias. Colegio de Postgraduados. México. 123 p.
- Villanueva, J., Cerano, J., Stahle, D.W., Therrell, M.D., Cleaveland, M. K., Sánchez, I. (2004). Elementos básicos de la dendrocronología y sus aplicaciones en México. INIFAP, CENID-RASPA. Gómez Palacio, Dgo. Folleto Técnico 2, 37 p.
- Villers-Ruiz, L. y Trejo-Vázquez, I. (1998). Impacto de la variabilidad climática en los bosques y áreas naturales protegidas de México. *Interciencia:* 23 (1), 10-19.
- White, S.E. (1962). Late Pleistocene glaciar sequence for the west side of Iztaccíhuatl, Mexico. *Geological Society of America*, 73, 935-958.
- White, S.E. (1986). Quaternary Glacial Stratigraphy and Chronology of Mexico. *Quaternary Science Reviews*, 5 (1-4), 201-206.
- Woods, A. y Grant, T. (2004). Razón y Revolución. Filosofía marxista y ciencia moderna. Ed. Fundación Federico Engels. Madrid, España. 472 p.
- Yarza, De la Torre, E. (2003). Los Volcanes del Sistema Volcánico Transversal. UNAM. *Boletín Investigaciones Geográficas*: 50, 220-234.

Mapa altimétrico

Mapa de orientación de laderas N-S

19°12'0"N **Orientación E-W** 0 - 180 19°10'0"N-180 - 360 Límite superior del bosque de Pinus hartwegii Timberline 1955 19°8'0"N Treeline 1955 Timberline 2012 Treeline 2012 ⊐Kilómetros 0.5 2 3 19°6'0"N 98°36'0"W 98°42'0"W 98°40'0"W 98°38'0"W 98°34'0"W

Mapa de orientación de laderas E-W

Mapa de pendientes

Mapa geometría del relieve en perfil

Mapa de geometría del relieve en planta

Mapa de acumulación del flujo

Mapa de radiación solar

ANEXO B1

Tabla de distribución de puntos por segmento

Seg, en el mapa	Seg. en la base	Distancia	Timbe	rline 55	# puntos	Distancia	Treelin	e 55	# puntos	Distancia	Timberline	e 2012 - #	# puntos	Distancia	Treeline	2012	# puntos
			Inicio	FIn			inicio Fi	n		In	icio Fi	n			inicio Fi	in	
0		9 3100	891	1010	119	3,091	853	1001	118	4731	749	861	112	1248	841	858	17
1	1	0 3008	1011	1106	95	3,464	1002	1088	80	3629	862	930	68	2032	859	860	21
2	1	1 2844	1107	1199	92	2780	1059	1181	92	4409	931	1025	94	3225	881	906	85
3	1	2 2898	1200	1266	66	2896	1182	1245	63	3200	1026	1102	76	3518	967	1043	76
4	1	3 3290	1267	1321	54	3216	1246	1288	42	3186	1103	1153	50	2639	1044	1102	58
5	1	4 3077	1322	1384	62	2515	1269	1345	50	1980	1154	1192	38	2336	1103	1153	50
G	1	5 2757	1385	1452	67	3129	1346	1410	64	3267	1193	1255	62	2621	1154	1197	43
7	1	6 3019	1458	al 1580 y al 5	82	3318	1411 al	1486 y al 5	30	4056	1256	1355	99	4430	1198	1290	92
8		1 2983	; G	118	112	3141	G	116	110	3300	1356 al	1417 y al 47	108	3074	1291 d	1408 y al 137	249
9		2 2783	. 119	201	82	3872	117	194	77	3391	48	180	132	4735	138	372	234
10		3 2818	202	309	107	4580	195	305	110	4094	181	315	134	3091	373	474	101
11		4 2863	310	399	89	3526	306	395	89	3933	316	397	81	4015	475	578	108
12		5 2872	400	513	113	3578	396	509	113	3747	398	494	90	3097	579	659	110
13		6 2713	514	650	136	4288	510	641	131	4066	485	589	94	3008	690	775	85
14		7 2990	651	781	130	5382	642	779	137	4190	590	678	88	2918	776	818	42
15		8 2907	782	890	108	8337	780	882	102	3319	679	748	09	2309	819	840	21

Tabla de variables en SPSS 15.0 (muestra)

Tabla.sav

	PUNTO	GRUPO	SEGMENTO	ALTITUD	ASPECT	ASNS	ASEW	SLOPE	CURVATU	CPROFILE	CPLAN
1	0	1	16	3965	285	75	15	38.61	.09	29	0
2	1	1	16	3960	286	74	16	39.38	.39	16	0
3	2	1	16	3954	292	68	22	40.09	.70	15	1
4	3	1	16	3944	299	61	29	40.39	.40	01	0
5	4	1	16	3937	309	51	39	38.00	.14	.08	0
6	5	1	1	3952	317	43	47	35.99	.70	20	1
7	6	1	1	3968	347	13	77	30.81	.60	.13	1
8	7	1	1	3954	5	5	95	32.03	.75	25	1
9	8	1	1	3938	10	10	100	31.00	.06	.30	0
10	9	1	1	3924	19	19	109	23.57	89	.87	0
11	10	1	1	3912	48	48	138	17.13	84	.17	-1
12	11	1	1	3902	88	88	178	15.05	-1.28	.23	-1
13	12	1	1	3896	81	81	171	14.99	79	18	-1
14	13	1	1	3889	71	71	161	16.59	90	10	-1
15	14	1	1	3894	33	33	123	20.94	-1.03	.40	-1
16	15	1	1	3920	8	8	98	35.30	81	.46	0
17	16	1	1	3920	8	8	98	35.30	81	.46	0
18	17	1	1	3939	1	1	91	39.09	28	.14	0
19	18	1	1	3960	0	0	90	39.24	.14	10	0
20	19	1	1	3980	3	3	93	37.74	.37	24	0
21	20	1	1	3999	7	7	97	34.65	.63	40	0
22	21	1	1	3996	11	11	101	32.77	.71	43	0
23	22	1	1	3977	12	12	102	34.32	.66	20	0
24	23	1	1	3972	17	17	107	32.19	.24	07	0
25	24	1	1	3967	19	19	109	30.38	.24	11	0
26	25	1	1	3980	23	23	113	29.44	03	.08	0
27	26	1	1	3993	26	26	116	29.98	16	.13	0
28	27	1	1	4000	25	25	115	29.60	.00	.06	0

Tabla.sav

	FDIR	FACC	RSOLAR	Suelo	TemMed	filter \$
1	16	5	1992127	RegDis	5.81	1
2	16	2	1972869	RegDis	5.84	1
3	32	0	1917635	RegDis	5.87	1
4	32	2	1859368	RegDis	5.97	1
5	32	5	1860695	RegDis	6.00	1
6	32	1	1871687	RegDis	5.86	1
7	64	2	1911226	RegDis	5.72	1
8	64	3	1932505	RegDis	5.88	1
9	64	5	1874880	RegDis	5.97	1
10	128	6	2047794	RegDis	6.11	1
11	128	14	2214386	RegDis	6.17	1
12	1	16	2368187	RegDis	6.16	1
13	1	28	2368521	RegDis	6.19	1
14	1	38	2313662	RegDis	6.25	1
15	128	9	2100668	RegDis	6.23	1
16	64	7	1938486	RegDis	6.11	1
17	64	6	1724801	RegDis	6.03	1
18	64	7	1630785	RegDis	5.94	1
19	64	8	1652465	RegDis	5.85	1
20	64	7	1697024	RegDis	5.76	1
21	64	11	1697024	RegDis	5.67	1
22	64	38	1743162	RegDis	5.69	1
23	64	6	1802309	RegDis	5.71	1
24	64	2	1867228	RegDis	5.73	1
25	64	2	1916662	RegDis	5.76	1
26	64	5	1954906	RegDis	5.72	1
27	128	2	1951183	RegDis	5.62	1
28	64	3	1949713	RegDis	5.59	1

1/418

26/02/2013 07:10:14 p.m.

ANEXO B2

Estadísticos de grupo

				Desviación	Error típ. de
	GRUPO	N	Media	típ.	la media
ALTITUD	TIM 55	1531	3983.96	66.497	1.699
	TIM 12	1418	4013.15	82.945	2.203

Prueba de muestras independientes

		Prueba de Levene para la igualdad de varianzas		Prueba de Levene para la igualdad de varianzas Prueba T para la igualdad de medias								
							Diferencia	Error típ. de	95% Intervalo de confianza para la diferencia			
		F	Sig.	t	gl	Sig. (bilateral)	de medias	la diferencia	Inferior	Superior		
ALTITUD	Se han asumido varianzas iguales	54.525	.000	-10.578	2947	.000	-29.184	2.759	-34.594	-23.774		
	No se han asumido varianzas iguales			-10.490	2715.102	.000	-29.184	2.782	-34.639	-23.729		

Estadísticos de grupo

				Desviación	Error típ. de
	GRUPO	N	Media	típ.	la media
ALTITUD	TIM 55	1531	3983.96	66.497	1.699
	TREE 55	1487	4005.34	72.012	1.867

Prueba de muestras independientes

		Prueba d para la igi varia	e Levene ualdad de nzas			Prueba T pa	ara la igualdad	de medias		
							Diferencia	Error típ, de	95% Inte confianz difere	ervalo de a para la encia
		F	Sig.	t	gl	Sig. (bilateral)	de medias	la diferencia	Inferior	Superior
ALTITUD	Se han asumido varianzas iguales	5.218	.022	-8.476	3016	.000	-21.377	2.522	-26.322	-16.431
	No se han asumido varianzas iguales			-8.466	2980.865	.000	-21.377	2.525	-26.327	-16.426

Estadísticos de grupo

				Desviación	Error típ. de
	GRUPO	N	Media	típ.	la media
ALTITUD	TIM 12	1418	4013.15	82.945	2.203
	TREE 12	1404	4072.99	73.584	1.964

Prueba de muestras independientes

		Prueba de Levene para la igualdad de varianzas		Prueba T para la igualdad de medias						
							Diferencia	Error típ, de	95% Intervalo de confianza para la diferencia	
		F	Sig.	t	gl	Sig. (bilateral)	de medias	la diferencia	Inferior	Superior
ALTITUD	Se han asumido varianzas iguales	2.831	.093	-20.268	2820	.000	-59.847	2.953	-65.636	-54.057
	No se han asumido varianzas iguales			-20.280	2786.692	.000	-59.847	2.951	-65.633	-54.060
Estadísticos de grupo

				Desviación	Error típ. de
	GRUPO	N	Media	típ.	la media
ALTITUD	TREE 55	1487	4005.34	72.012	1.867
	TREE 12	1404	4072.99	73.584	1.964

Prueba de muestras independientes

		Prueba d para la igi varia	e Levene ualdad de nzas			Prueba T pa	ara la igualdad	de medias				
							Diferencia	Error típ, de	95% Intervalo de confianza para la diferencia			
		F	Sig.	t	gl	Sig. (bilateral)	de medias	la diferencia	Inferior	Superior		
ALTITUD	Se han asumido varianzas iguales	14.902	.000	-24.980 2889 .000 -67.654		2.708	-72.964	-62.344				
	No se han asumido varianzas iguales			-24.965	2871.065	.000	-67.654	2.710	2.710 -72.968			

Estadísticos de grupo

				Desviación	Error típ. de
	GRUPO	N	Media	típ.	la media
ALTITUD	TREE 55	1487	4005.34	72.012	1.867
	TIM 12	1418	4013.15	82.945	2.203

Prueba de muestras independientes

		Prueba d para la ig varia	e Levene ualdad de nzas			Prueba T pa	ara la igualdad	de medias				
							Diferencia	Error típ, de	95% Intervalo de confianza para la diferencia			
		F	Sig.	t	gl	Sig. (bilateral)	de medias	la diferencia	Inferior	Superior		
ALTITUD	Se han asumido varianzas iguales	25.181	.000	-2.713	2903	.007	-7.807	2.878	-13.451	-2.164		
	No se han asumido varianzas iguales			-2.704	2804.461	.007	-7.807	2.888	/88 -13.470			

Prueba de homogeneidad de varianzas

ALTITUD

Estadístico de Levene	gl1	gl2	Sig.
24.302	3	5836	.000

ANOVA

ALTITUD					
	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Inter-grupos	6291482.3	3	2097160.8	384.670	.000
Intra-grupos	31816931	5836	5451.839		
Total	38108413	5839			

Pruebas post hoc

Comparaciones múltiples

valiable depend	arente. All'ITTO	0					
						Intervalo de co 95%	nfianza al
			Diferencia de				Límite
	(I) GRUPO	(J) GRUPO	medias (I-J)	Error típico	Sig.	Límite inferior	superior
HSD de Tukey	TIM 55	TREE 55	-21.377*	2.688	.000	-28.29	-14.47
		TIM 12	-29.184*	2.721	.000	-36.18	-22.19
		TREE 12	-89.031*	2.728	.000	-96.04	-82.02
	TREE 55	TIM 55	21.377*	2.688	.000	14.47	28.29
		TIM 12	-7.807*	2.741	.023	-14.85	76
		TREE 12	-67.654*	2.748	.000	-74.71	-60.59
	TIM 12	TIM 55	29.184*	2.721	.000	22.19	36.18
		TREE 55	7.807*	2.741	.023	.76	14.85
		TREE 12	-59.847*	2.780	.000	-66.99	-52.70
	TREE 12	TIM 55	89.031*	2.728	.000	82.02	96.04
		TREE 55	67.654*	2.748	.000	60.59	74.71
		TIM 12	59.847*	2.780	.000	52.70	66.99

Variable dependiente: ALTITUD

*- La diferencia de medias es significativa al nivel .05.

					Correlacio	nes					
GRUPO			ALTITUD	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
TIM 55	ALTITUD	Correlación de Pearson	1	.075	.248	.213	206	.167	070	.068	996
		Sig. (bilateral)		.003	.000	.000	.000	.000	.006	.007	.000
	ASNS	N Correlación de Pearson	1531	1531	1531	1531	1531	1531	1531	1531	1531
	Nono	Sig. (bilateral)	.075	1	007	.007	092	.006	020	.686	072
		N	1531	1531	1531	1531	1531	1531	1531	1531	1531
	ASEW	Correlación de Pearson	.248	007	1	.253	029	.024	023	127	248
		Sig. (bilateral)	.000	.771		.000	.265	.341	.361	.000	.000
	01.005	N Ourselauitie de Deserver	1531	1531	1531	1531	1531	1531	1531	1531	1531
	SLOPE	Correlacion de Pearson	.213	.007	.253	1	.084	040	051	600	209
		N	.000	.796	.000	1501	.001	.119	.045	.000	.000
	CPROFILE	Correlación de Pearson	- 206	- 092	- 029	084	1001	- 378	070	- 171	206
		Sig. (bilateral)	.000	.000	.265	.001		.000	.006	.000	.000
		Ν	1531	1531	1531	1531	1531	1531	1531	1531	1531
	CPLAN	Correlación de Pearson	.167	.006	.024	040	378	1	193	.034	167
		Sig. (bilateral)	.000	.824	.341	.119	.000		.000	.187	.000
	EACC	N Correlación de Pearson	1531	1531	1531	1531	1531	1531	1531	1531	1531
	TAGO	Sig. (bilateral)	070	020	023	051	.070	193	1	.020	.071
		N	1531	1531	1531	1531	1531	1531	1531	1531	1531
	RSOLAR	Correlación de Pearson	.068	.686	127	600	171	.034	.020	1	071
		Sig. (bilateral)	.007	.000	.000	.000	.000	.187	.440		.005
		Ν	1531	1531	1531	1531	1531	1531	1531	1531	1531
	TemMed	Correlación de Pearson	996	072	248	209	.206	167	.071	071	1
		Sig. (bilateral)	.000	.005	.000	.000	.000	.000	.005	.005	
TREE 55		N Correlación de Pearson	1531	1531	1531	1531	1531	1531	1531	1531	1531
INCL 00	ALIHOD	Sig. (bilateral)	1	.102	.280	.076	195	.172	079	.187	997
		N	1487	1487	1487	1487	1487	1487	1487	1487	1487
	ASNS	Correlación de Pearson	.102	1	035	020	064	.014	017	.679	104
		Sig. (bilateral)	.000		.172	.430	.013	.594	.513	.000	.000
		Ν	1487	1487	1487	1487	1487	1487	1487	1487	1487
	ASEW	Correlación de Pearson	.280	035	1	.242	042	.024	009	129	279
		Sig. (bilateral)	.000	.172		.000	.103	.352	.738	.000	.000
	SLOPE	N Correlación de Pearson	1487	1487	1487	1487	1487	1487	1487	1487	1487
		Sig. (bilateral)	.078	020	.242		.090	005	038	019	072
		N	1487	1487	1487	1487	1487	1487	1487	1487	1487
	CPROFILE	Correlación de Pearson	195	064	042	.096	1	338	.030	150	.200
		Sig. (bilateral)	.000	.013	.103	.000		.000	.252	.000	.000
		Ν	1487	1487	1487	1487	1487	1487	1487	1487	1487
	CPLAN	Correlación de Pearson	.172	.014	.024	005	338	1	138	.031	172
		Sig. (bilateral)	.000	.594	.352	.835	.000		.000	.231	.000
	FACC	N Correlación de Pearson	1487	1487	1487	1487	1487	1487	1487	1487	1487
	11100	Sig. (bilateral)	079	017	009	036	.030	136	1	.002	.079
		N	1487	1487	1487	1487	1487	1487	1487	1487	1487
	RSOLAR	Correlación de Pearson	.187	.679	129	619	150	.031	.002	1	192
		Sig. (bilateral)	.000	.000	.000	.000	.000	.231	.930		.000
		Ν	1487	1487	1487	1487	1487	1487	1487	1487	1487
	TemMed	Correlación de Pearson	997	104	279	072	.200	172	.079	192	1
		Sig. (bilateral)	.000	.000	.000	.006	.000	.000	.002	.000	4407
TIM 12	ALTITUD	Correlación de Pearson	1487	1487	1487	1487	1487	1487	1487	1487	1487 . aao
		Sig. (bilateral)		.414	.000	.000	.000	.000	.006	.423	.000
		Ν	1418	1418	1418	1418	1418	1418	1418	1418	1418
	ASNS	Correlación de Pearson	.022	1	.003	032	.010	.009	056	.669	023
		Sig. (bilateral)	.414		.916	.225	.705	.739	.036	.000	.384
	10514	N Ourselauitie de Deserver	1418	1418	1418	1418	1418	1418	1418	1418	1418
	ASEW	Correlación de Pearson	.428	.003	1	.192	022	034	052	051	427
		N	.000	.916	1/10	.000	.399	.200	.050	.053	.000
	SLOPE	Correlación de Pearson	317	- 032	1418	1418	061	- 051	- 069	- 639	- 315
		Sig. (bilateral)	.000	.225	.000	'	.021	.053	.009	.000	.000
		Ν	1418	1418	1418	1418	1418	1418	1418	1418	1418
	CPROFILE	Correlación de Pearson	146	.010	022	.061	1	359	.046	063	.151
		Sig. (bilateral)	.000	.705	.399	.021		.000	.083	.018	.000
		N Corrologića da Davida	1418	1418	1418	1418	1418	1418	1418	1418	1418
	GPLAN	Sig (bilateral)	.125	.009	034	051	359	1	217	.063	130
		N	.000	.739	.200	.053	.000	4440	.000	.018	.000
	FACC	Correlación de Pearson	- 074	- 056	- 052	- 069	1418	- 217	1418	- 008	1418
		Sig. (bilateral)	.006	.036	.050	.009	.083	.000		.764	.004
		Ν	1418	1418	1418	1418	1418	1418	1418	1418	1418
	RSOLAR	Correlación de Pearson	021	.669	051	639	063	.063	008	1	.019
		Sig. (bilateral)	.423	.000	.053	.000	.018	.018	.764		.476
	Torelda	N Corrologića da Davida	1418	1418	1418	1418	1418	1418	1418	1418	1418
	i emMed	Correlación de Pearson	998	023	427	315	.151	130	.075	.019	1

1		Sig. (bilateral)	.000	.384	.000	.000	.000	.000	.004	.476	
		Ν	1418	1418	1418	1418	1418	1418	1418	1418	1418
TREE 12	ALTITUD	Correlación de Pearson	1	.390	.442	.210	246	.224	171	.292	997
		Sig. (bilateral)		.000	.000	.000	.000	.000	.000	.000	.000
		Ν	1404	1404	1404	1404	1404	1404	1404	1404	1404
	ASNS	Correlación de Pearson	.390	1	045	.136	071	080	055	.661	392
		Sig. (bilateral)	.000		.095	.000	.008	.003	.040	.000	.000
		N	1404	1404	1404	1404	1404	1404	1404	1404	1404
	ASEW	Correlación de Pearson	.442	045	1	.273	.005	070	.003	143	439
		Sig. (bilateral)	.000	.095		.000	.859	.009	.914	.000	.000
		N	1404	1404	1404	1404	1404	1404	1404	1404	1404
	SLOPE	Correlación de Pearson	.210	.136	.273	1	.094	034	091	548	210
		Sig. (bilateral)	.000	.000	.000		.000	.202	.001	.000	.000
		N	1404	1404	1404	1404	1404	1404	1404	1404	1404
	CPROFILE	Correlación de Pearson	246	071	.005	.094	1	389	.079	174	.245
		Sig. (bilateral)	.000	.008	.859	.000		.000	.003	.000	.000
		N	1404	1404	1404	1404	1404	1404	1404	1404	1404
	CPLAN	Correlación de Pearson	.224	080	070	034	389	1	271	.012	225
		Sig. (bilateral)	.000	.003	.009	.202	.000		.000	.642	.000
		Ν	1404	1404	1404	1404	1404	1404	1404	1404	1404
	FACC	Correlación de Pearson	171	055	.003	091	.079	271	1	006	.172
		Sig. (bilateral)	.000	.040	.914	.001	.003	.000		.817	.000
		Ν	1404	1404	1404	1404	1404	1404	1404	1404	1404
	RSOLAR	Correlación de Pearson	.292	.661	143	548	174	.012	006	1	294
		Sig. (bilateral)	.000	.000	.000	.000	.000	.642	.817		.000
		Ν	1404	1404	1404	1404	1404	1404	1404	1404	1404
	TemMed	Correlación de Pearson	997	392	439	210	.245	225	.172	294	1
		Sig. (bilateral)	.000	.000	.000	.000	.000	.000	.000	.000	
		N	1404	1404	1404	1404	1404	1404	1404	1404	1404

Timberline 1955

Estadísticos descriptivos Timberline 1955

	Ν	Mínimo	Máximo	Media	Desv. típ.
ALTITUD	1531	3801	4194	3983.96	66.497
ASNS	1531	0	180	92.75	50.163
ASEW	1531	0	199	98.72	53.145
SLOPE	1531	1.33	55.13	24.2451	10.20143
CPROFILE	1531	-1.55	1.29	0368	.40140
CPLAN	1531	-1	1	02	.359
FACC	1531	0	5150	59.38	273.906
RSOLAR	1531	1545290	2527523	2240894.2 9	212910.81 8
TemMed	1531	4.44	6.81	5.7082	.39917
N válido (según lista)	1531				

Segmento 9 de Timberline 1955

Estadísticos descriptivos segmento 9

	Ν	Mínimo	Máximo	Media	Desv. típ.
ALTITUD	120	3801	3926	3858.02	32.530
ASNS	120	1	179	93.67	54.645
ASEW	120	2	100	48.57	27.019
SLOPE	120	1.72	38.06	20.2679	8.92415
CPROFILE	120	89	1.12	.0522	.41839
CPLAN	120	-1	1	07	.284
FACC	120	0	2136	60.30	225.746
RSOLAR	120	1865569	2500663	2258384.5 7	159215.77 3
TemMed	120	6.05	6.81	6.4612	.19411
N válido (según lista)	120				

							1				
		ALTITUD	ASPECT	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
ALTITUD	Correlación de Pearson	1	047	067	328	.487	573	.332	319	067	988
	Sig. (bilateral)		.612	.465	.000	.000	.000	.000	.000	.467	.000
	Ν	120	120	120	120	120	120	120	120	120	120
ASPECT	Correlación de Pearson	047	1	510	353	072	.036	125	.091	234	.031
	Sig. (bilateral)	.612		.000	.000	.433	.700	.175	.321	.010	.735
	Ν	120	120	120	120	120	120	120	120	120	120
ASNS	Correlación de Pearson	067	510	1	.077	.117	.249	.060	061	.751	.070
	Sig. (bilateral)	.465	.000		.404	.204	.006	.515	.511	.000	.445
	Ν	120	120	120	120	120	120	120	120	120	120
ASEW	Correlación de Pearson	328	353	.077	1	204	.296	.131	058	065	.324
	Sig. (bilateral)	.000	.000	.404		.026	.001	.153	.527	.480	.000
	Ν	120	120	120	120	120	120	120	120	120	120
SLOPE	Correlación de Pearson	.487	072	.117	204	1	.027	.003	367	337	487
	Sig. (bilateral)	.000	.433	.204	.026		.766	.975	.000	.000	.000
	Ν	120	120	120	120	120	120	120	120	120	120
CPROFILE	Correlación de Pearson	573	.036	.249	.296	.027	1	456	.060	.130	.546
	Sig. (bilateral)	.000	.700	.006	.001	.766		.000	.518	.158	.000
	Ν	120	120	120	120	120	120	120	120	120	120
CPLAN	Correlación de Pearson	.332	125	.060	.131	.003	456	1	121	015	319
	Sig. (bilateral)	.000	.175	.515	.153	.975	.000		.189	.868	.000
	Ν	120	120	120	120	120	120	120	120	120	120
FACC	Correlación de Pearson	319	.091	061	058	367	.060	121	1	.098	.321
	Sig. (bilateral)	.000	.321	.511	.527	.000	.518	.189		.288	.000
	Ν	120	120	120	120	120	120	120	120	120	120
RSOLAR	Correlación de Pearson	067	234	.751	065	337	.130	015	.098	1	.069
	Sig. (bilateral)	.467	.010	.000	.480	.000	.158	.868	.288		.451
	Ν	120	120	120	120	120	120	120	120	120	120
TemMed	Correlación de Pearson	988	.031	.070	.324	487	.546	319	.321	.069	1
	Sig. (bilateral)	.000	.735	.445	.000	.000	.000	.000	.000	.451	
	Ν	120	120	120	120	120	120	120	120	120	120

Segmento 15 de Timberline de 1955

Estadísticos descriptivos segmento 15

	N	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	ietría	Curt	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	68	257	3936	4194	4075.64	8.138	67.111	4503.931	.081	.291	940	.574
ASNS	68	130	0	130	70.60	4.385	36.161	1307.616	016	.291	-1.191	.574
ASEW	68	88	2	90	34.93	2.577	21.246	451.412	.667	.291	376	.574
SLOPE	68	37.04	1.33	38.37	23.6922	1.15926	9.55949	91.384	261	.291	-1.068	.574
CPROFILE	68	2.11	-1.13	.98	0385	.05621	.46355	.215	.061	.291	461	.574
CPLAN	68	1	-1	0	02	.032	.261	.068	463	.291	582	.574
FACC	68	2434	0	2434	65.02	38.406	316.703	100300.898	6.836	.291	49.241	.574
RSOLAR	68	723099	1795908	2519007	2229138.56	21166.839	174546.225	3046638466 0.362	741	.291	.085	.574
TemMed	68	1.56	4.44	5.99	5.1602	.04888	.40310	.162	118	.291	896	.574
N válido (según lista)	68											

		ALTITUD	ASPECT	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
ALTITUD	Correlación de Pearson	1	331	.759	605	.183	645	.225	128	.460	997
	Sig. (bilateral)		.006	.000	.000	.134	.000	.065	.299	.000	.000
	Ν	68	68	68	68	68	68	68	68	68	68
ASPECT	Correlación de Pearson	331	1	518	.267	082	.323	.165	.087	316	.331
	Sig. (bilateral)	.006		.000	.027	.507	.007	.179	.482	.009	.006
	Ν	68	68	68	68	68	68	68	68	68	68
ASNS	Correlación de Pearson	.759	518	1	751	.180	497	.004	120	.552	759
	Sig. (bilateral)	.000	.000		.000	.142	.000	.973	.329	.000	.000
	Ν	68	68	68	68	68	68	68	68	68	68
ASEW	Correlación de Pearson	605	.267	751	1	148	.459	100	.088	378	.606
	Sig. (bilateral)	.000	.027	.000		.227	.000	.416	.476	.001	.000
	Ν	68	68	68	68	68	68	68	68	68	68
SLOPE	Correlación de Pearson	.183	082	.180	148	1	.093	058	231	628	174
	Sig. (bilateral)	.134	.507	.142	.227		.450	.639	.058	.000	.156
	Ν	68	68	68	68	68	68	68	68	68	68
CPROFILE	Correlación de Pearson	645	.323	497	.459	.093	1	414	.036	402	.646
	Sig. (bilateral)	.000	.007	.000	.000	.450		.000	.771	.001	.000
	Ν	68	68	68	68	68	68	68	68	68	68
CPLAN	Correlación de Pearson	.225	.165	.004	100	058	414	1	108	.043	236
	Sig. (bilateral)	.065	.179	.973	.416	.639	.000		.380	.728	.053
	Ν	68	68	68	68	68	68	68	68	68	68
FACC	Correlación de Pearson	128	.087	120	.088	231	.036	108	1	.095	.131
	Sig. (bilateral)	.299	.482	.329	.476	.058	.771	.380		.442	.289
	Ν	68	68	68	68	68	68	68	68	68	68
RSOLAR	Correlación de Pearson	.460	316	.552	378	628	402	.043	.095	1	467
	Sig. (bilateral)	.000	.009	.000	.001	.000	.001	.728	.442		.000
	Ν	68	68	68	68	68	68	68	68	68	68
TemMed	Correlación de Pearson	997	.331	759	.606	174	.646	236	.131	467	1
	Sig. (bilateral)	.000	.006	.000	.000	.156	.000	.053	.289	.000	
	Ν	68	68	68	68	68	68	68	68	68	68

Timberline 2012

Estadísticos descriptivos	Timberline 2012
---------------------------	-----------------

	N	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	etría	Curt	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	1418	405	3792	4198	4013.15	2.203	82.945	6879.913	490	.065	137	.130
ASNS	1418	180	0	180	84.21	1.332	50.155	2515.475	.100	.065	-1.124	.130
ASEW	1418	180	0	180	96.05	1.408	53.035	2812.679	149	.065	-1.227	.130
SLOPE	1418	52.53	.74	53.27	22.4049	.26464	9.96535	99.308	.337	.065	365	.130
CPROFILE	1418	3.18	-1.81	1.37	0206	.01053	.39657	.157	189	.065	1.150	.130
CPLAN	1418	3	-2	1	.00	.009	.343	.118	040	.065	1.671	.130
FACC	1418	4082	0	4082	54.85	8.138	306.446	93909.177	9.227	.065	94.981	.130
RSOLAR	1418	1147115	1387838	2534954	2244640.17	5717.876	215314.293	4636024475 4.207	-1.143	.065	.949	.130
TemMed	1418	2.39	4.44	6.83	5.5342	.01323	.49802	.248	.487	.065	131	.130
N válido (según lista)	1418											

Segmento 5 de Timberline de 2012

Estadísticos	descriptivos	Segmento 5
--------------	--------------	------------

	N	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	etría	Curt	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	97	195	3973	4169	4095.10	4.400	43.333	1877.741	845	.245	.330	.485
ASNS	97	143	9	152	90.91	3.581	35.274	1244.231	065	.245	-1.213	.485
ASEW	97	81	99	180	148.66	1.614	15.894	252.623	198	.245	191	.485
SLOPE	97	35.91	11.34	47.25	26.8874	.90130	8.87674	78.797	.361	.245	554	.485
CPROFILE	97	1.61	85	.76	0939	.03671	.36156	.131	.013	.245	594	.485
CPLAN	97	2	-1	1	.03	.031	.310	.096	.091	.245	.862	.485
FACC	97	713	0	713	41.18	14.505	142.853	20407.084	4.300	.245	17.515	.485
RSOLAR	97	707812	1802353	2510165	2265581.58	19208.966	189186.373	3579148370 0.738	875	.245	321	.485
TemMed	97	1.14	4.64	5.78	5.0426	.02621	.25813	.067	.847	.245	.453	.485
N válido (según lista)	97											

		ALTITUD	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
ALTITUD	Correlación de Pearson	1	.354	177	464	428	.212	.064	.629	991
	Sig. (bilateral)		.000	.082	.000	.000	.037	.536	.000	.000
	Ν	97	97	97	97	97	97	97	97	97
ASNS	Correlación de Pearson	.354	1	024	.101	214	.002	047	.635	358
	Sig. (bilateral)	.000		.816	.323	.035	.983	.646	.000	.000
	Ν	97	97	97	97	97	97	97	97	97
ASEW	Correlación de Pearson	177	024	1	.130	.201	117	.338	116	.177
	Sig. (bilateral)	.082	.816		.205	.049	.254	.001	.257	.083
	Ν	97	97	97	97	97	97	97	97	97
SLOPE	Correlación de Pearson	464	.101	.130	1	058	118	241	657	.471
	Sig. (bilateral)	.000	.323	.205		.575	.249	.017	.000	.000
	Ν	97	97	97	97	97	97	97	97	97
CPROFILE	Correlación de Pearson	428	214	.201	058	1	357	.138	140	.423
	Sig. (bilateral)	.000	.035	.049	.575		.000	.178	.171	.000
	Ν	97	97	97	97	97	97	97	97	97
CPLAN	Correlación de Pearson	.212	.002	117	118	357	1	083	.069	205
	Sig. (bilateral)	.037	.983	.254	.249	.000		.419	.500	.044
	Ν	97	97	97	97	97	97	97	97	97
FACC	Correlación de Pearson	.064	047	.338	241	.138	083	1	.132	075
	Sig. (bilateral)	.536	.646	.001	.017	.178	.419		.196	.468
	Ν	97	97	97	97	97	97	97	97	97
RSOLAR	Correlación de Pearson	.629	.635	116	657	140	.069	.132	1	639
	Sig. (bilateral)	.000	.000	.257	.000	.171	.500	.196		.000
	Ν	97	97	97	97	97	97	97	97	97
TemMed	Correlación de Pearson	991	358	.177	.471	.423	205	075	639	1
	Sig. (bilateral)	.000	.000	.083	.000	.000	.044	.468	.000	
	Ν	97	97	97	97	97	97	97	97	97

Correlaciones segmento 5

Treeline 2012

Estadísticos descriptivos Treeline 2012

	Ν	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	etría	Curte	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	1404	416	3858	4274	4072.99	1.964	73.584	5414.593	.064	.065	613	.131
ASNS	1404	180	0	180	75.27	1.334	49.981	2498.146	.260	.065	-1.118	.131
ASEW	1404	180	0	180	102.37	1.343	50.336	2533.739	302	.065	-1.030	.131
SLOPE	1404	53.84	.89	54.73	23.4738	.25360	9.50236	90.295	.385	.065	138	.131
CPROFILE	1404	3.14	-1.85	1.28	0022	.01021	.38243	.146	052	.065	1.433	.131
CPLAN	1404	4	-2	2	.00	.010	.385	.148	.283	.065	2.278	.131
FACC	1404	3209	0	3209	56.38	7.202	269.867	72828.308	7.497	.065	65.451	.131
RSOLAR	1404	1262419	1301836	2564255	2225238.66	5591.294	209505.706	4389264072 9.172	945	.065	.850	.131
TemMed	1404	2.51	3.99	6.50	5.1738	.01182	.44273	.196	068	.065	606	.131
N válido (según lista)	1404											

Segmento 13 de Treeline de 2012

Estadísticos descriptivos segmento 13

	N	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	etría	Curt	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	59	193	3894	4087	3981.15	5.930	45.548	2074.636	.078	.311	231	.613
ASNS	59	179	0	179	106.20	7.079	54.377	2956.889	390	.311	-1.213	.613
ASEW	59	92	8	100	51.49	3.258	25.024	626.185	033	.311	969	.613
SLOPE	59	36.90	2.81	39.71	18.0065	1.13664	8.73072	76.225	.328	.311	682	.613
CPROFILE	59	2.21	-1.06	1.15	.1010	.05876	.45138	.204	246	.311	.377	.613
CPLAN	59	2	-1	1	12	.046	.351	.123	1.419	.311	5.636	.613
FACC	59	2705	0	2705	107.54	63.926	491.024	241104.701	5.209	.311	26.285	.613
RSOLAR	59	949156	1557447	2506603	2332763.49	23911.896	183670.762	3373494868 2.185	-2.068	.311	4.957	.613
TemMed	59	1.16	5.10	6.26	5.7260	.03646	.28007	.078	058	.311	287	.613
N válido (según lista)	59											

		ALTITUD	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
ALTITUD	Correlación de Pearson	1	.544	.081	.009	175	069	.077	.432	995
	Sig. (bilateral)		.000	.540	.944	.185	.605	.565	.001	.000
	Ν	59	59	59	59	59	59	59	59	59
ASNS	Correlación de Pearson	.544	1	.281	182	.075	282	123	.823	519
	Sig. (bilateral)	.000		.031	.167	.574	.030	.354	.000	.000
	Ν	59	59	59	59	59	59	59	59	59
ASEW	Correlación de Pearson	.081	.281	1	.348	061	063	223	197	095
	Sig. (bilateral)	.540	.031		.007	.647	.636	.089	.135	.475
	Ν	59	59	59	59	59	59	59	59	59
SLOPE	Correlación de Pearson	.009	182	.348	1	.124	.078	140	529	033
	Sig. (bilateral)	.944	.167	.007		.351	.559	.289	.000	.803
	Ν	59	59	59	59	59	59	59	59	59
CPROFILE	Correlación de Pearson	175	.075	061	.124	1	291	025	.112	.195
	Sig. (bilateral)	.185	.574	.647	.351		.025	.853	.400	.140
	Ν	59	59	59	59	59	59	59	59	59
CPLAN	Correlación de Pearson	069	282	063	.078	291	1	071	264	.050
	Sig. (bilateral)	.605	.030	.636	.559	.025		.594	.043	.709
	Ν	59	59	59	59	59	59	59	59	59
FACC	Correlación de Pearson	.077	123	223	140	025	071	1	.022	080
	Sig. (bilateral)	.565	.354	.089	.289	.853	.594		.866	.545
	Ν	59	59	59	59	59	59	59	59	59
RSOLAR	Correlación de Pearson	.432	.823	197	529	.112	264	.022	1	390
	Sig. (bilateral)	.001	.000	.135	.000	.400	.043	.866		.002
	Ν	59	59	59	59	59	59	59	59	59
TemMed	Correlación de Pearson	995	519	095	033	.195	.050	080	390	1
	Sig. (bilateral)	.000	.000	.475	.803	.140	.709	.545	.002	
	Ν	59	59	59	59	59	59	59	59	59

Segmento 3 Treeline 2012

Estadísticos descriptivos de segmento 3

	N	Rango	Mínimo	Máximo	Me	dia	Desv. típ.	Varianza	Asim	etría	Curt	osis
	Estadístico	Estadístico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Estadístico	Estadístico	Error típico	Estadístico	Error típico
ALTITUD	102	208	4066	4274	4173.96	3.911	39.502	1560.409	-1.071	.239	1.623	.474
ASNS	102	174	0	174	112.11	4.091	41.314	1706.830	809	.239	.427	.474
ASEW	102	180	0	180	138.87	3.206	32.377	1048.251	-1.172	.239	2.962	.474
SLOPE	102	46.97	3.17	50.14	28.6515	.86620	8.74822	76.531	513	.239	.757	.474
CPROFILE	102	2.12	94	1.18	0478	.04135	.41758	.174	.773	.239	.633	.474
CPLAN	102	1	-1	1	.05	.025	.257	.066	136	.239	.801	.474
FACC	102	161	0	161	9.80	1.828	18.459	340.733	6.076	.239	45.982	.474
RSOLAR	102	594218	1925708	2519925	2319441.19	12156.992	122779.600	1507483011 1.663	-1.154	.239	1.418	.474
TemMed	102	1.21	4.02	5.22	4.5614	.02327	.23506	.055	1.048	.239	1.472	.474
N válido (según lista)	102											

		ALTITUD	ASNS	ASEW	SLOPE	CPROFILE	CPLAN	FACC	RSOLAR	TemMed
ALTITUD	Correlación de Pearson	1	.545	.360	.589	306	.119	004	.160	991
	Sig. (bilateral)		.000	.000	.000	.002	.235	.970	.109	.000
	Ν	102	102	102	102	102	102	102	102	102
ASNS	Correlación de Pearson	.545	1	206	.431	338	043	002	.526	554
	Sig. (bilateral)	.000		.038	.000	.001	.669	.983	.000	.000
	Ν	102	102	102	102	102	102	102	102	102
ASEW	Correlación de Pearson	.360	206	1	.162	205	.100	.048	075	345
	Sig. (bilateral)	.000	.038		.103	.039	.319	.635	.454	.000
	Ν	102	102	102	102	102	102	102	102	102
SLOPE	Correlación de Pearson	.589	.431	.162	1	.095	123	139	427	596
	Sig. (bilateral)	.000	.000	.103		.340	.219	.163	.000	.000
	Ν	102	102	102	102	102	102	102	102	102
CPROFILE	Correlación de Pearson	306	338	205	.095	1	395	011	544	.291
	Sig. (bilateral)	.002	.001	.039	.340		.000	.915	.000	.003
	Ν	102	102	102	102	102	102	102	102	102
CPLAN	Correlación de Pearson	.119	043	.100	123	395	1	297	.130	117
	Sig. (bilateral)	.235	.669	.319	.219	.000		.002	.192	.240
	Ν	102	102	102	102	102	102	102	102	102
FACC	Correlación de Pearson	004	002	.048	139	011	297	1	.113	.005
	Sig. (bilateral)	.970	.983	.635	.163	.915	.002		.256	.962
	Ν	102	102	102	102	102	102	102	102	102
RSOLAR	Correlación de Pearson	.160	.526	075	427	544	.130	.113	1	162
	Sig. (bilateral)	.109	.000	.454	.000	.000	.192	.256		.103
	Ν	102	102	102	102	102	102	102	102	102
TemMed	Correlación de Pearson	991	554	345	596	.291	117	.005	162	1
	Sig. (bilateral)	.000	.000	.000	.000	.003	.240	.962	.103	
	Ν	102	102	102	102	102	102	102	102	102

ANEXO C

Dendrocronología

Tabla muestras de dendrocronología

					ANILLOS	ANILLOS							
NOMBRE	FECHA	x	Y	z	CONTADOS	AÑADIDOS	TOTAL	H ÁRBOL	H-AÑOS	h MUESTRA (cm)	H-ANUAL	EDAD CALIBRADA ERRO	R Observaciones
IzTim-01	31-OCT-12 1	539343	2115500	3963 m	172	19	191	13	7.55813953	50	6.615384615	198 ±2	
IzTim-02	31-OCT-12 12	539340	2115493	3964 m	211	9	220	13	6.16113744	112	18.17846154	238 ±1	
IzTim-03	31-OCT-12 1	539353	2115487	3960 m	117	4	121	12	10.2564103	95	9.2625	130	
IzTim-04	31-OCT-12 1:	539339	2115551	3938 m	76	8	84	12	15.7894737	60	3.8	88	
IzTim-05	31-OCT-12 1:	539341	2115552	3938 m	72		72	12	16.6666667	100	6	78	
IzTim-06	31-OCT-12 1:	539345	2115579	3950 m	187		187	12	6.4171123	120	18.7	206 ±1	
IzTim-07	31-OCT-12 1:	539353	2115595	3951 m	61	3	64	12	19.6721311	103	5.235833333	69	
IzTim-08	31-OCT-12 1:	539329	2115590	3960 m	62	3	65	11	17.7419355	46	2.592727273	68	
IzTim-09	31-001-121	539328	2115590	3961 m	122	13	135	11	9.01639344	106	11.75636364	147	
IzTim-10	31-0CT-121	539355	2115030	2072 m	20	22	120	11	0.4017004	112	3.103030304	151	
IzTim-12	31-0CT-121	520250	2115628	2072 m	21	22	139	12	5 71/29571	20	12.01909091	25 +1	17 pudor
IzTim-13	31-0CT-12 2	539344	2115627	3972 m	15	1	16	0.7	4 66666667	10	2 142857143	18 +1	17 110005
IzTim-14	31-OCT-12 2	539353	2115632	3979 m	212		212	12	5.66037736	85	15.016666667	227 +3	
IzTim-15	31-OCT-12 2	539342	2115665	3985 m	214		214	12	5.60747664	86	15.336666667	229 ±2	
IzTim-16	31-OCT-12 2:	539343	2115665	3987 m	15		15	1.37	9.13333333	10	1.094890511	16	15 nudos
IzTim-17	31-OCT-12 2:	539344	2115657	3998 m	188	5	193	13	6.91489362	80	11.56923077	205	
IzTim-18	31-OCT-12 3:	539344	2115669	4015 m	135	2	137	12	8.88888889	90	10.125	147	
IzTim-19	31-OCT-12 2:	539345	2115658	3998 m	14	1		1.32	9.42857143	10	1.060606061	16	15 nudos
IzTim-20	31-OCT-12 3:	539356	2115680	4019 m	128		128	12	9.375	80	8.533333333	137 ±1	
IzTim-21	31-OCT-12 3:	539364	2115665	4025 m	104	3	107	12	11.5384615	128	11.09333333	118	
IzTim-22	31-OCT-12 4:	539355	2115716	4034 m	67	3	70	13	19.4029851	40	2.061538462	72	
IzTim-23	31-OCT-124:	539346	2115717	4037 m	86	-	86	13	15.1162791	116	7.673846154	94	
IzTim-24	31-OCT-124:	539341	2115726	4044 m	87	3	90	14	16.091954	50	3.107142857	93	
IzTim-25	31-OCT-124:	539342	2115733	4043 m	61		61	11	18.0327869	102	5.656363636	67	25
IzTim-26	31-OCT-124	539339	2115/29	4042 m	21	3	24	5	23.8095238	20	0.84	25	25 nudos
IzTim-27	31-0CT-124	53932/	2115/50	4052 m	93	11	93	14	16.9674600	100	1.779571420	200	
IzTim-29	14-NOV-121	539330	2115747	4046 m	84	9	94	14	11 9047619	50	5.04	90	
IzTim-30	14-NOV-121	539324	2115785	4056 m	67		67	10	14.9253731	106	7,102	74 +1	
IzTim-31	14-NOV-121	539307	2115794	4062 m	111	2	113	12	10.8108108	119	11.0075	124	
IzTim-32	14-NOV-12 1	539301	2115792	4067 m	152	12	164	12	7.89473684	105	13.3	177 ±1	
IzTim-33	14-NOV-121	539309	2115834	4080 m	54	5	59	8	14.8148148	55	3.7125	63	
IzTim-34	14-NOV-121	539299	2115838	4080 m	94		94	9	9.57446809	133	13.89111111	108	MAS 14
IzTim-35	14-NOV-12 1	539294	2115843	4081 m	57	7	64	10	17.5438596	90	5.13	69	
IzTim-36	14-NOV-121	539273	2115842	4086 m	84		84	11	13.0952381	97	7.407272727	91	
IzTim-37	14-NOV-121	539281	2115844	4089 m	26	2	28	2.8	10.7692308	15	1.392857143	29	
IzTim-38	14-NOV-121	539261	2115865	4098 m	132	5	137	11	8.333333333	75	9	146	
IzTim-39	14-NOV-121	539258	2115866	4098 m	95		95	7	7.36842105	93	12.62142857	108	
IzTim-40	14-NOV-122	53925/	2115886	4097 m	66		55	8	12.1212121	95	7.83/5	74	
IzTim-41	14-NOV-123	539242	211588/	4100 m	/1		07	11	12.4929577	120	9.052946154	106	
IzTim-42	14-NOV-12 3	539232	2115004	4108 m	55	4	50	10	18 1818182	120	6.535040134	601	Decanitado
IzTim-44	14-NOV-12 3	539254	2115934	4119 m	74		74	8	10.8108102	55	5.0875	79	Decapitado
IzTim-45	14-NOV-12 3	539247	2115935	4122 m	111	7	118	9	8.10810811	115	14.18333333	132	Decapitado
IzTim-46	14-NOV-12 4	539260	2115976	4140 m	79	3	82	3	3.79746835	76	20.01333333	102 ±1	Mucho disturbio
IzTim-47	14-NOV-12 4	539249	2115971	4142 m	30		30	4	13.3333333	30	2.25	32	
IzTim-48	14-NOV-12 4	539258	2115977	4143 m	15		15	1.9	12.6666667	16	1.263157895	16 ±1	12 nudos
IzTim-49	15-NOV-121	538902	2116208	4286 m	13	9	22	2	15.3846154	40	2.6	25	
IzTim-50	15-NOV-121	539044	2116413	4312 m	15	1	16	1.8	12	25	2.083333333	18	
IzTim-51	15-NOV-12 1	538996	2116456	4334 m	10		10	0.9	9	5	0.555555556	11	6 nudos
IzTim-52	15-NOV-121	539004	2116459	4336 m	8	1	9	0.64	8	5	0.625	10	8 nudos
IzTim-53	15-NOV-121	538969	2116461	4350 m				0.45	42.442057		4.005004/10		6 nudos
IzTim-54	15-NOV-121	539050	2116387	4312 m	14	1	15	1.7	12.1428571	15	1.235294118	16	
IzTim 55	15-NOV-121	539119	2116400	42/8 M	27	2	29	2	9.21052622	49	6.615	36	
12Tim-57	15-NOV-12 2	539125	2116290	4237 m	30		30	1 75	11 6666667	40	0.428571420	42	10 pudos
IzTim-58	15-NOV-12 2	539137	2116234	4226 m	30	2	32	4	13,3333333	50	3.75	36	10110003
IzTim-59	15-NOV-12 3	539198	2116265	4217 m	12	3	15	2.5	20.8333333	18	0.864	16	16 nudos
IzTim-60	15-NOV-12 3	539197	2116265	4216 m	17		17	2.5	14.7058824	26	1.768	19	13 nudos
IzTim-61	15-NOV-12 3	539207	2116225	4208 m	36	1	37	3.5	9.72222222	31	3.188571429	40 ±1	
IzTim-62	15-NOV-12 3	539209	2116226	4207 m	25	5	30	5	20	40	2	32	
IzTim-63	15-NOV-12 3	539227	2116196	4197 m	64	4	68	2	3.125	28	8.96	77 ±1	
IzTim-64	15-NOV-12 3	539231	2116188	4196 m	33		33	2.8	8.48484848	35	4.125	37	
IzTim-65	15-NOV-124	539215	2116157	4189 m	53	8	61	5	9.43396226	62	6.572	68	
IzTim-66	15-NOV-124	539208	2116119	4175 m	47		47	3.5	7.44680851	65	8.728571429	56	
IzTim-67	15-NOV-124	539241	2116091	4163 m	16	1	17	2.5	15.625	22	1.408	18	
IzTim-68	15-NOV-124	539248	2116083	4162 m	37	7	44	4.5	12.1621622	38	3.124444444	47	
IzTim-69	15-NOV-124	539224	2116056	4160 m	46	2	48	2.5	5.45478261	35	5.44	54	
IzTim-71	15-NOV-124	539241	2110025	4141 m	40		40	3.5	12 062062	30	3.342837143	50	
IzTim-72	15-NOV-124	530240	2116001/	4140 m	2/	1	32	5.5	19 1176471	40	2 092307692	27	
IzTim-73	15-NOV-124	539250	2116001	4140 m	34	5	43	35	9 21052632	40	6 731428571	50	

Dendrocronología

Tabla muestras de dendrocronología

Estadísticos de media edad calibrada

	A4000	N	Media	Desviación típ.	Error típ. de la media
EDADCALIBRADA	-4000	18	120.56	81.305	19.164
	+4000	55	64.89	41.610	5.611

Prueba de muestras independientes	5
-----------------------------------	---

	Prueba de para la igu	e Lev ene ualdad de								
									95% Inte confianz	ervalo de a para la
							Diferencia	Error típ. de		
EDADCALIBRADA	Se han asumido varianzas iguales	28.020	.000	3.807	71	.000	55.665	14.622	26.509	84.821
	No se han asumido varianzas iguales			2.788	19.993	.011	55.665	19.968	14.011	97.319

Histogramas de la edad calibrada

