

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS

INSTITUTO DE INVESTIGACIONES BIOMÉDICAS

EVALUACIÓN DE LA REORGANIZACIÓN CROMATÍNICA DURANTE LA PLASTICIDAD

CORTICAL DE LA RATA ENCEGUECIDA AL NACIMIENTO

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTORA EN CIENCIAS

PRESENTA:

INGRID ANNETTE FETTER PRUNEDA

TUTOR PRINCIPAL DE TESIS: DR. GABRIEL GUTIÉRREZ OSPINA INSTITUTO DE INVETSIGACIONES BIOMÉDICAS COMITÉ TUTOR: DRA. ROSALINDA GUEVARA GUZMÁN FACULTAD DE MEDICINA COMITÉ TUTOR: DR. FÉLIX RECILLAS TARGA INSTITUTO DE FISIOLOGÍA CELULAR

MÉXICO, D.F.

MAYO, 2013.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Dr. Isidro Ávila Martínez Director General de Administración Escolar, UNAM P r e s e n t e

Ciencias Biológicas

Me permito informar a usted que en la reunión ordinaria del Comité Académico del Posgrado en Ciencias Biológicas, celebrada el día 21 de mayo de 2012, se aprobó el siguiente jurado para el examen de grado de DOCTORA EN CIENCIAS de la alumna FETTER PRUNEDA INGRID ANNETTE con número de cuenta 400095963 con la tesis titulada "EVALUACION DE LA REORGANIZACION CROMATINICA DURANTE LA PLASTICIDAD CORTICAL DE LA RATA ENCEGUECIDA AL NACIMIENTO", realizada bajo la dirección del Dr. Gabriel Gutiérrez Ospina.

	Presidente:	DRA. MARIA DE LOURDES MASSIEU TRIGO
Î	Vocal:	DR. GABRIEL ROLDAN ROLDAN
	Secretario:	DR. FELIX RECILLAS TARGA
	Suplente:	DRA. ROSA ESTELA NAVARRO GONZALEZ
5	Suplente:	DRA. PATRICIA RIVAS MANZANO

Sin otro particular, me es grato enviarle un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARA EL ESPIRITU" Cd. Universitaria, D.F., a 10 de Abril de 2013.

I'del Cuo ayres

DRA. MARÍA DEL CORO ARIZMENDI ARRIAGA COORDINADORA DEL PROGRAMA

Edif. de Posgrado P. B. (Costado Sur de la Torre II de Humanidades) Ciudad Universitaria C.P. 04510 México, D.F. Tel. 5623-0173 Fax: 5623-0172 http://pcbiol.posgrado.unam.mx

AGRADECIMIENTOS

Al Posgrado en Ciencias Biológicas de la UNAM.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT). No. Becario 203862.

Al apoyo económico brindado por: CONACyT a través de los proyectos J28035N, 38615N y

P45872-M; a DGAPA PAPIIT IN203702, IN232604 y a las fundaciones Ricardo Zevada y Miguel

Alemán.

A los miembros del Comité Tutoral:

Dr. Gabriel Gutiérrez Ospina

Dra. Rosalinda Guevara Guzmán

Dr. Félix Recillas Targa

Al Dr. Gabriel Gutiérrez Ospina por todas sus enseñanzas y su contribución a mi formación. Por compartir sus ideas inovadoras, por el tiempo que dedicó a la discusión de mi trabajo y por siempre estimular mi crecimiento académico.

Al Dr. Félix Recillas y la Dra. Rosalinda Guevara por contribuír a mi proceso de formación a través de su valiosa tutoría y supervisión durante mis estudios doctorales.

A los sinodales que revisaron esta tesis, la Dra. Lourdes Massieu, el Dr. Gabriel Roldán, la Dra. Rosa Navarro y la Dra. Patricia Rivas, por las observaciones que permitieron enriquecer este trabajo.

A todos los miembros del laboratorio dirigido por el Dr. Gutiérrez Ospina, muchas gracias por todo el tiempo que compartimos en este proceso de aprendizaje. En especial a Leonora Olivos por su apoyo incondicional, su invaluable amistad y complicidad durante este proyecto. Así como a Marcela Sandoval con quien tuve la oportunidad de trabajar.

Al valioso apoyo técnico brindado por Patricia Padilla, Pedro Medina, Hugo Olvera, Jesús Ramírez y Claudia Rivera sin cuya participación este trabajo no habría sido posible.

Este trabajo se realizó en colaboración con el Instituto Nacional de Medicina Genómica. Agradezco particularmente a Laura Uribe y a Gabriela Mercado por su contribución académica, así como a Raúl Mojica, Dan Gutiérrez y Claudia Rangel.

A Daniel Díaz por su ayuda para hacer el análisis estadístico de este trabajo.

Al personal de la coordinación de enseñanza del Instituto de Investigaciones Biomédicas en particular a Beatriz Vera Cano.

Al personal de la biblioteca del Instituto de Investigaciones Biomédicas.

A todos ustedes muchas gracias.

Dedico este trabajo a mis padres, Laura Pruneda y Hans Fetter a quienes les debo lo que soy. Gracias por todo su amor y apoyo incondicional, admiro mucho su entereza.

Índice

RESUMENI
ABSTRACTIV

CAPÍTULO 1

INTRODUCCIÓN	
ANTECEDENTES	

Plasticidad intermodal en organismos ciegos: Generalidades sobre su fenomenología y mecanismos que la subyacen

Heterocronía y Plasticidad Fenotípica: Los barriles como un posible caso de peramorfosis

Remodelación de la cromatina y control de la temporalidad de la especificación de S1: hacia el mecanismo epigenético de modulación de la plasticidad intermodal

PLANTEAMIENTO DEL PROBLEMA	22
HIPÓTESIS	23

OBJETIVO GENERAL	
OBJETIVOS PARTICULARES	24-25

CAPÍTULO 2

MATERIALES Y MÉTODOS	26-37
Animales	
Enucleación	
Inmunohistoquímica para la histona 4 acetilada (H4ac)	
Cuantificación de foci de H4 acetilada (H4ac)	
Análisis de metilación de DNA	
Tratamiento con ácido valpróico	
Análisis de expresión diferencial: Microarreglo	
RT-PCR en tiempo real	

CAPÍTULO 3

Los niveles de acetilación de las neuronas de la capa IV de S1 disminuyen antes en las ratas cegadas al nacimiento.

Los niveles globales de metilación de DNA no cambian entre organismos controles y enucleados.

La alimentación de las crías con ácido valpróico retarda la especificación de los barriles y previene la expansión de S1 en las ratas cegadas neonatalmente

Explorando la expresión génica diferencial en el proceso de plasticidad intermodal en S1

La expansión de los barriles en los organismos cegados también se asocia con un perfil transcripcional más maduro

RNAs no codificantes son expresados diferencialmente durante el fenómeno de plasticidad intermodal en S1

Cuantificación de la expresión del gen Ttr mediante RT-PCR en tiempo real como método de validación del microarreglo

CAPÍTULO 4

DISCUSIÓN	54-62
CONCLUSIONES	63

REFERENCIAS	-6	6	5	ξ	3
-------------	----	---	---	---	---

APÉNDICE

TABLAS	
ARTÍCULO	

Lista de Figuras

Figura	Título	Página
1	Corteza somatosensorial primaria de la rata.	5
2	Reorganización cortical intermodal.	5
3	La expansión de S1 no depende de los niveles de activación	7
	neuronal a lo largo de la vía somatosensorial: evidencias	
	anatómicas de los paradigmas de privación sensorial.	
4	No existen diferencias significativas en los niveles relativos de	9
	marcadores de actividad metabolica entre los animales	
	controles y cegados de 10 y 60 días de edad a lo largo de la via somatosensorial.	
5	Esquema de procesos heterocrónicos que conducen a	12
	variaciones en la talla de los organismos, sus estructuras	
	anatómicas y /o componentes celulares.	
6	La formación de barriles comienza antes en la S1 de las ratas	14
	cegadas neonatalmente y las aferentes tálamocorticales son	
	más grandes a los 7 días de edad.	
7	Los barriles de S1 no se forman en mutantes condicionales de Dnmt1	20
8	Los niveles de H4ac en las neuronas de la corteza	40
	somatosensorial son inferiores a las 48 y 82h en ratas	
	enucleadas neonatalmente.	
9	No hay diferencias en los niveles globales de metilación de	42
	DNA en S1 entre organismos controles y cegados	
	neonatalmente.	
10	El tratamiento con VPA, administrado a través de la	44
	alimentación normaliza los niveles de acetilación de H4 y el	
	tiempo de formación de los barriles e impide la expansión de	
	la S1 en las ratas cegadas al nacimiento.	
11	Expresión génica diferencial en ratas controles y enucleadas.	47
12	Ontologías génicas.	50
13	Análisis por q-RT-PCR de la expresión de <i>Ttr</i> en la corteza somatosensorial de ratas de 48h, 82h y 168h.	53

Lista de cuadros y tablas

	Título	Página
Cuadro 1	Ejemplos de modificaciones epigenéticas en mamíferos y sus efectos transcripcionales	16
Tabla 1	Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 48h	69-81
Tabla 2	Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 82h	82-90
Tabla 3	Tabla 3. Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 168h	91-105
Tabla 4	Conjunto de genes expresados diferencialmente que coinciden en todas o en dos de las edades estudiadas.	106-107
Tabla 5	Tipos de secuencias expresadas diferencialmente	108

Abreviaturas

2DG	3H2-desoxiglucosa
CyOx	Citocromo oxidase
DNMT	Metiltransferasa de DNA de mantenimiento
Н	Histona
H4ac	Histona 4 acetilada
HDAC	Desacetilasa de histonas
PMBSF	Subcampo posteromedial de barriles
PD	Día posnatal
S1	Corteza somatosensorial primaria
miRNAs	Micro RNAs
snRNAs	Pequeños RNAs nucleares
snoRNAs	Pequeños RNAs nucleolares
VPA	Ácido valpróico

Resumen

En los mamíferos, la pérdida de la visión de manera temprana durante el desarrollo postnatal conduce a una reorganización anatómica y funcional la de corteza cerebral. Dicha reorganización se caracteriza, en parte, por una expansión del área correspondiente a la corteza somatosensorial primaria (S1) y por una reactivación de la corteza visual en respuesta a estímulos somestésicos y auditivos. La concepción histórica sostiene que la expansión de los barriles se debe a un aumento por incrementos en la actividad neuronal asociada al uso de la vía trigeminal durante el desarrollo postnatal. Sin embargo, evidencia reciente obtenida en modelos experimentales de plasticidad intramodal, así como resultados obtenidos en nuestro laboratorio cuestionan esta concepción. En el campo de la biología evolutiva se ha documentado que la plasticidad fenotípica resulta de cambios en el tiempo del desarrollo (heterocronía) tanto a evolutivo como intraespecífico. Experimentos nivel realizados en un modelo de ceguera en ratas, en nuestro laboratorio, demuestran que el desarrollo S1 de se encuentra adelantado en las organismos enucleados al nacimiento. Adicionalmente cambios en la estructura de la

i

cromatina y el control de la traducción y transcripción por codificantes controlan la calendarización RNAs no de diversos procesos ontogenéticos. Por lo que en esta tesis si la recalendarización exploramos directamente ontogenética es mediada por la remodelación cromatínica e, indirectamente, si cambios en la disponibilidad de RNAs no codificantes pudiesen conducir a la expansión de S1 en ratas cegadas al nacimiento.

Nuestros resultados muestran que las neuronas de S1 en las ratas cegadas neonatalmente remodelan su cromatina más tempranamente que las ratas control, situación que se asocia a un adelanto en la especificación de los barriles. Nuestros experimentos muestran que la acetilación de la histona (H) 4 en los núcleos neuronales ubicados en la capa IV de S1 se encuentra disminuída en las ratas enucleadas con respecto a las controles a las 48 horas (h) y 82 h posnatales. De manera interesante, al prevenirse la desacetilación prematura de la histona H4 en las ratas enucleadas utilizando ácido valpróico, un inhibidor de las desacetilasas de histonas, se recupera la especificación de los barriles a un tiempo comparable al observado en las ratas controles y se previene la expansión de éstos. Los resultados comentados apoyan que los cambios en el tiempo del desarrollo modulados а través de mecanismos

ii

epigenéticos están involucrados en la plasticidad intermodal cortical en las ratas enucleadas al nacimiento, al menos a nivel de S1. Adicionalmente, los análisis de expresión diferencial realizados mediante microarreglos disponibilidad de sugieren que la diversos RNAs no codificantes (microRNAs, RNAs pequeños nucleares y RNAs pequeños nucleolares) se modifica, en asociación a la respuesta plástica intermodal de S1 en ratas cegadas al nacimiento, así como la expresión de genes codificantes para proteínas como el gen de la transtiretina (Ttr) que se encuentra asociado con un reloj biológico que controla el tiempo del desarrollo en células oligodendrogliales. En conjunto nuestros resultados muestran que el adelanto de la especificación y la expansión de S1, en respuesta a la enucleación, resulta de un proceso global de interacciones moleculares que incluyen la desacetilación temprana de la H4 modulada epigenéticamente y el cambio en la expresión de diversos genes, incluídos RNAs no codificantes, que nos permitirán en un futuro profundizar en los mecanismos que subyacen a la plasticidad intermodal.

iii

Abstract

In mammals, loss of vision during early postnatal development leads to an anatomical and functional rearrangement of the brain. In the cortex, this plastic response features two main elements. First, the primary somatosensory (S1) and auditory cortices expand. Second, the former visual cortex acquires the ability to process tactile and auditory stimuli. The historical view maintains that barrel expansion results from incremental increases in neuronal activity along the trigeminal pathway during postnatal development. However, evidence obtained in experimental models of intramodal plasticity as well as recent data from our group challenges this view.

It has been shown that phenotypic plasticity may result from changes in developmental timing and that the control of developmental timing is in turn regulated by chromatin remodeling together with the action of non coding RNAs. In this thesis we propose that shifts of developmental timing - through chromatin remodeling and differential gene expression - lead to S1 expansion in rats enucleated at birth.

iv

To this end, we examined histone modifications, DNA methylation and differential gene expression. It was found that neurons in S1 from birth-enucleated rats displayed early chromatin remodeling, demonstrated by premature H4 deacetylation at 48h and 82h postpartum. Importantly, when H4 deacetylation was prevented with a histone deacetylase inhibitor, barrel specification timing returned to normal and barrel expansion did not occur. Using microarrays to assess expression in the somatosensory cortex of enucleated rats, we show that different kinds of non-coding RNAs and snoRNAs) are differentially (microRNAs, snRNAs expressed together with approximately 300 protein coding genes per experimental condition. The most differentially expressed gene is Ttr, which is an effector protein that regulates oligodendrocyte developmental timing. These genes and non-coding RNAs therefore provide us with a list of candidates for future functional studies. Thus, this thesis provides evidence that shifts in developmental timing modulated through epigenetic mechanisms promote barrel expansion in the primary somatosensory cortex of rats enucleated at birth.

V

CAPÍTULO 1

INTRODUCCIÓN

La pérdida de la vista conduce a la expansión de los territorios corticales cerebrales ocupados por las modalidades sensoriales asociadas con la somatosensación v la audición, además de causar la activación auditiva y somestésica del territorio cortical cerebral previamente resposansable de procesar información visual [1-3]. Aunque la fenomenología de este proceso ha sido extensamente descrita [4-6], poco sabemos sobre los mecanismos que conducen a esta reorganización. Sin embargo, con relación a la expansión de las cortezas somatosensorial (S1) V auditiva primarias, se ha postulado que es el incremento en actividad neuronal asociada con el la uso de dichas modalidades el factor que la promueve [7-9]. En contraste a idea, estudios recientes llevados a cabo esta en el laboratorio sugieren que la expansión de S1 en ratas cegadas al nacimiento ocurre algunos días después de la enucleación y de manera independiente de los niveles de activación neuronal asociados con la experiencia sensorial. Adicionalmente, describimos que la expansión de S1 se asocia a un adelanto en la fecha de especificación de S1 y una tasa acelerada del crecimiento axonal de las а

aferentes tálamo-corticales somestésicas, todo ello durante semana de vida. Esta asociación la primera abre la posibilidad de que la modulación diferencial del tiempo de desarrollo pudiera conducir a la expansión de S1 en las cegadas neonatalmente. Al ratas respecto, desde hace algunos años se reconoce a la recalendarización de los procesos ontogenéticos (embrionario, fetal y postnatal temprano) y a los cambios en la tasa de crecimiento de los elementos celulares que en ellos participan como fuentes importantes de variación fenotípica individual [10,11]. De esta manera, debido a que la regulación de la estructura de la cromatina y el control de la traducción y transcripción por RNAs no codificantes controlan la calendarización de diversos procesos ontogenéticos [12-14], en este trabajo directamente si la recalendarización exploramos ontogenética mediada por la remodelación cromatínica, e indirectamente si cambios en la disponibilidad de RNAs no codificantes, pudiesen contribuir a la expansión de S1 en ratas cegadas al nacimiento. Esta idea esta sustentada por obervaciones que muestran que el retardo de la desacetilación de las histonas retrasa la diferenciación de los oligodendrocitos [13] y que la pérdida de la habilidad para metilar el DNA acelera la diferenciación astrocítica [12].

ANTECEDENTES

PLASTICIDAD INTERMODAL EN ORGANISMOS CIEGOS: GENERALIDADES SOBRE SU FENOMENOLOGÍA Y MECANISMOS QUE LA SUBYACEN

un hecho bien documentado que el cerebro Es se reorganiza en respuesta a la privación sensorial. Por ejemplo, la pérdida de la visión asociada con un daño de la retina genera una reorganización del cerebro a gran escala. En la corteza cerebral, esta respuesta se caracteriza por dos eventos principales. Por un lado, la corteza visual adquiere la habilidad de procesar estímulos táctiles y auditivos [1-3]. Por el otro, las cortezas somatosensorial (S1) y auditiva (A1) primarias se expanden [1-3]. A pesar de que se asume que diversos factores interactúan para generar esta respuesta plástica, los mecanismos precisos que la subyacen se desconocen. No obstante ello, con respecto a la expansión de S1, la hipótesis dominante sostiene que es la acción del aumento en el uso de las vías somatosensoriales, y así de la actividad neuronal a lo largo de la vía, la fuerza que promueve el sobrecrecimiento de los elementos celulares de esta área cortical en los organismos ciegos [7-9]. Sin embargo, resultados obtenidos

otros grupos de investigación cuestionan esta por posibilidad. Por ejemplo el bloqueo de la función de los receptores mecanosensoriales o la supresión genética de los receptores glutamatérgicos tipo NMDA directamente en S1 conducen a una expansión de los axones tálamocorticales [15-17]. Asi mismo, la amputación de la extremidad anterior en fetos de rata promueve la expansión de algunas de las subrepresentaciones del cuerpo en S1 sólo si la manipulación se lleva a cabo antes del día embrionario 17 [18]. Estas evidencias cuestionan la importancia de la actividad neuronal asociada con el uso como factor promotor de la expansión de S1 en los organismos ciegos.

Dada la información precedente, desde hace algunos años el laboratorio ha venido desarrollando un proyecto de investigación que explora los posibles mecanismos que subyacen a la plasticidad intermodal en la corteza somatosensorial primaria (S1) de ratas enucleadas al nacimiento (Figura 1); modelo que replica el fenómeno general de reorganización cortical que se ha reportado en humanos invidentes [1,19,20] (Figura 2). En este modelo mostramos que los barriles, las unidades citoarquitectónicas que constituyen a la S1 (Figura 1), ya se encuentran expandidos en las ratas enucleadas al ser comparadas con aquellas controles a los 10 días de vida. La

S1 PMBSF

Figura 1 Corteza somatosensorial primaria de la rata. En la capa IV de la corteza somatosensorial primaria (S1) hay una representación del cuerpo formada por unidades citológicas denominadas barriles. Los barriles más prominentes son los correspondientes a las vibrisas faciales y pertenecen al Subcampo de Barriles Postero-Medial (PMBSF, por sus siglas en inglés). Esta representación está organizada de manera homotópica al arreglo facial de vibrisas. Los principales componentes celulares que forman los barriles son neuronas estelares espinosas y axones tálamo-corticales.

Figura 2 Reorganización cortical intermodal. Representación esquemática del proceso de reorganización cortical resultado de la enucleación neonatal en ratas. La pérdida de la vista conduce a una expansión de las áreas ocupadas por las cortezas auditiva (A1) y somatosensorial (S1) primarias, y a una reactivación de la corteza visual (V1) por aferentes somestésicas y auditivas.

magnitud de esta expansión es del 16%, equivalente a la observada en ratas adultas enucleadas neonatalmente (18%) (Figura 3). En contraste, los barriles de ratas adultas cuyos ojos fueron removidos al día posnatal 7 no mostraron evidencias de expansión (Figura 3). De igual forma, la privación unilateral de las vibrisas faciales a los 7 días de edad fue ineficaz para prevenir la expansión de los barriles en los hemisferios privados de las ratas adultas cegadas neonatalmente. Esta manipulación tampoco promovió una expansión mayor de los barriles localizados en los hemisferios no privados en estos mismos animales (Figura 3). Finalmente, los barriles en las ratas adultas privadas funcionalmente de la vista, a través de mantenerlas bajo obscuridad continua, desde el nacimiento no incremenetaron 3). Adicionalmente, se estimó S11 talla (Figura el crecimiento de los barriles del Subcampo de Barriles Postero-Medial (PMBSF, por sus siglas en inglés) entre los días PD10 y PD60 en ratas control y ciegas. En promedio, el área de sección de los barriles aumentó en un 87 \pm 9% y 90 \pm 15% en los animales control y ciegos, respectivamente, entre ambas edades. Este conjunto de observaciones indican que la reorganización cerebral en ratas ciegas desde el nacimiento procede predominantemente durante la primera semana de vida (i.e., existe un periodo crítico) y de

manera independiente de los niveles de actividad neuronal asociada al uso, al menos de los mecanoreceptores asociados a las vibrisas. Adicionalmente estos datos apoyan que la reorganización cerebral ocurre sólo si existe un compromiso anatómico importante del ojo.

Figura 3 La expansión de S1 no depende de los niveles de activación neuronal a lo largo de la vía somatosensorial: evidencias anatómicas de los paradigmas de privación sensorial. A) Reconstrucciones bidimensionales del PMBSF de animales sometidos a diferentes paradigmas de privación sensorial elaboradas con *cámara lucida*. Todas las reconstrucciones se derivaron de secciones tangenciales teñidas para CyOx. B) El área de los barriles de PMBSF de ratas enucleadas al nacimiento fue significativamente mayor que en los animales controles en PD10 (* p <0,01) y PD60 (** p <0,001). No se encontraron diferencias significativas en el área de barriles en ratas de PD60 que fueron cegadas en PD7 en comparación con las ratas PD60 controles. Desbigotar no impide la expansión de los barriles en los animales enucleados al nacer. No se encontraron diferencias en el área de barriles de animales de PD60 cuando las ratas fueron sometidas a oscuridad continua desde el nacimiento.

Con el objetivo de evaluar los posibles cambios en los niveles de actividad neuronal en el sistema trigeminal de

ratas control y cegadas al nacimiento, se monitoreó la actividad de la enzima oxidativa citocromo oxidasa (CyOx) en los ganglios del trigémino y en S1. Esta enzima se ha utilizado previamente para documentar cambios en los niveles de actividad neuronal asociada al uso en rebanadas de tejido obtenidas de la corteza somatosensorial primaria de roedores [21]. Los resultados obtenidos se muestran en Figura 4 A-D. La actividad relativa de la enzima la citocromo oxidasa fue similar en todos los tejidos estudiados al comparar ratas control y ciegas desde el nacimiento tanto a los 10 como a los 60 días de edad. Por otro lado, en el sistema nervioso existe una relación directa entre el consumo de glucosa y la actividad electroquímica neuronal [22]. Los resultados muestran que los niveles de captación de glucosa radioactiva en las S1 de los cerebros de ratas control y cegadas al nacimiento no difieren significativamente al ser comparados a los 10 y 60 días de edad (Figura 4 E-F). Estas observaciones apoyan aún que la expansión de la S1 en las ratas cegadas más neonatalmente procede de manera independiente a elevaciones de los niveles de actividad asociados con el uso de las vibrisas.

Β

Diferencia porcentual de los niveles relativos de actividad de CyOx en neuronas del ganglio del trigémino.

Crune (n)	Edad		
Grupo (<i>n</i>)	PD10	PD60	
Control (16)	74 ± 2.5	83 ± 1.3	
Enucleado (16)	75 ± 2.5	82 ± 1.3	

No se encontraron diferencias entre los grupos pertenecientes a la misma edad (p>0.05).

Diferencia porcentual de los niveles relativos de actividad de CyOx en barriles del PMBSF de S1

Chung (n)	Edad		
Grupo (<i>n</i>)	PD10	PD60	
Control (16)	56 ± 10.0	49 ± 9.0	
Enucleado (16)	79 ± 12.8	35 ± 4.5	

No se encontraron diferencias entre los grupos pertenecientes a la misma edad (p>0.05).

Diferencia porcentual de los niveles relativos de captura de 2DG en S1.

Grupo (n)	Edad		
	PD10	PD60	
Control (8)	5 ± 0.7	31 ± 5.0	
Enucleado (8)	7 ± 0.7	24 ± 3.6	

No se encontraron diferencias entre los grupos pertenecientes a la misma edad (p>0.05).

Figura 4 No existen diferencias significativas en los niveles relativos de marcadores de actividad metabólica entre los animales controles y cegados de 10 y 60 días de edad a lo largo de la vía somatosensorial. A) Microfotografías representativas que ilustran secciones longitudinales a través del tercio medio del ganglio trigémino teñidas con citocromo oxidasa (CyOx). B) Los niveles relativos de CyOx dentro de las neuronas del ganglio trigémino fueron similares (p> 0.05) entre los animales controles y cegados en PD10 y PD60. C) Microfotografías que ilustran secciones tangenciales típicas de la capa IV de S1 teñidas con CyOx. El subcampo de barriles posteromedial (PMBSF) se indica con flechas. D) No se encontraron diferencias significativas (p> 0.05) en los niveles relativos de CyOx de S1 entre los animales controles y cegados de PD10 y PD60. E) Autoradiogramas representativos de 3H2-desoxiglucosa (2DG) en

cortes de la capa IV de animales controles y cegados de PD10 y PD60. F) El análisis densitométrico de los autoradiogramas reveló niveles similares de recaptura de 2DG (p> 0.05) entre las ratas controles y cegadas.

Información adicional de la literatura que apoya que la actividad neuronal dependiente de la experiencia desempeña un papel menor en la plasticidad intermodal es la 1) La expansión de los barriles siquiente: en ratas enucleadas se lleva a cabo antes de la edad reportada para el inicio de exploración activa con las vibrisas que ocurre a partir del PD12 [23-27], 2) No se ha detectado actividad evocada abundante en S1 durante la primera semana de vida [28-30]; 3) La captura de glucosa radioactiva en el S1 es [22] V, insignificante antes de PD8 4) el metabolismo oxidativo la densidad capilar V en los músculos relacionados con el movimiento de las vibrisas son similares entre las ratas con visión y las ciegas en el momento en que se lleva a cabo la expansión S1 [25].

Así, aunque la fenomenología asociada con la plasticidad intremodal consecutiva a la pérdida de la visión es clara, los mecanismos que la subyacen siguen desconociéndose.

HETEROCRONÍA Y PLASTICIDAD FENOTÍPICA: LOS BARRILES COMO UN POSIBLE CASO DE PERAMORFOSIS

En biología evolutiva se conoce como heterocronía a todo cambio en el calendario y/o en la tasa de los eventos ontogenéticos que conducen a variaciones fenotípicas entre [10,11,31] y por extensión de distintos las especies individuos de la misma especie. Existen varios tipos de procesos heterocrónicos (Figura 5), de éstos los que nos que conducen aquellos interesan son а caracteres fenotípicos exagerados o peramórficos como sería el caso de barriles de mayor tamaño. En uno de ellos, conocido como pre-desplazamiento, el inicio de la formación de los barriles occuriría antes en las ratas enucleadas que en las controles, situación que daría más tiempo del desarrollo dedicado al crecimiento de los mismos. Otra posibilidad es que la fecha del término del proceso de crecimiento de los barriles se retrasara (i.e. hipermorfósis), circunstancia que también obligaría a dedicar más tiempo del desarrollo a su crecimiento. Finalmente, la aceleración o el incremento en la tasa de crecimiento de los componentes celulares del sistema en ausencia de modificaciones de las fechas de inicio o terminación del periodo de especificación y

Figura 5 Esquema de procesos heterocrónicos que conducen a variaciones en la talla de los organismos, sus estructuras anatómicas y /o componentes celulares.

crecimiento de los barriles, también podría conducir a barriles de mayor tamaño. Con base en esto, exploramos como alternativa si la expansión de S1 en las ratas cegadas neonatalmente pudiese resultar de procesos heterocrónicos asociados con la pérdida de la vista. Por ello, se evaluó el tiempo preciso de formación de S1 en ratas del grupo control aquellas enucleadas al nacimiento. en Los V barriles, evidenciados a través de la tinción histoquímica para la CyOx, fueron detectados en el 68% de los organismos cegados a las 82h postpartum. En cambio, únicamente el 29% de los organismos controles presentaron barriles a esta

edad (Figura 6A y B). A las 92 horas esta diferencia esencialmente desapareció.

Por otro lado, el área de los barriles se especifica por el área ocupada por el árbol terminal de las aferentes tálamocorticales somatosensoriales [32]. Por lo tanto, barriles expandidos y la formación prematura de ellos las aferentes tálamocorticales sugieren que somatosensoriales crecen a una tasa mayor. Para inferir esto, trazamos axones con DiI en rebanadas fijadas de ratas controles y enuceladas neonatalmente a la edad de 7 días de vida. Los árboles terminales de los axones tálamocorticales somatosensoriales fueron consistentemente más largos y mas expandidos en ratas cegadas neonatalamente que en sus contrapartes control, (Figura 6 C y D), apoyando la idea de que crecen a una tasa mayor.

Figura 6 La formación de barriles comienza antes en la **S1** de las ratas cegadas neonatalmente y las aferentes tálamocorticales son más grandes a los 7 días de edad. A) Microfotografías que ilustran secciones tangenciales a través de la capa IV de S1 de ratas controles y cegadas como se visualizan con CyOx a las 82 horas (recuadro superior) y 92 horas (panel inferior) de nacimiento. B) Gráficas de barras apiladas que muestran el porcentaje de animales con o sin barriles en las edades evaluadas. C) Microfotografías que ilustran el patrón de tinción típico con Dil en cortes coronales de la corteza cerebral a nivel de PMBSF después de ser inyectados en el núcleo ventroposteromedial del tálamo a las 168h (panel izquierdo). Las flechas indican la posición de los barriles. El panel de la derecha muestra un aumento mayor de los campos de las terminales axónicas en el hueco de un barril de PMBSF después de haber sido trazado con Dil como se muestra en el panel izquierdo. Las flechas indican la ubicación aproximada de los límites superior e inferior de la capa IV. Los paneles inferiores muestran ejemplos de reconstrucciones realizadas con *cámara lucida* de los axones tálamo-corticales D) El área axonal promedio (panel izquierdo) así como la longitud (panel derecho) son diferentes significativamente p *** <0.001 entre las ratas controles y cegadas. El porcentaje de incremento se muestra dentro de cada panel.

REMODELACIÓN DE LA CROMATINA Y CONTROL DE LA TEMPORALIDAD DE LA ESPECIFICACIÓN DE S1: HACIA EL MECANISMO EPIGENÉTICO DE MODULACIÓN DE LA PLASTICIDAD INTERMODAL

En años recientes, se ha propuesto que cambios en la temporalidad de los eventos del desarrollo pudieran resultar de cambios en la organización de la cromatina y en la transcripción y/o traducción mediada por microRNAs [12,13,33]. Estudios realizados en los últimos 20 años han mostrado que existen, en esencia, dos procesos responsables la cromatina: La modificación la remodelación de de estructural de las histonas y la metilación del DNA. Al respecto, la estructura de las histonas puede ser modificada por la adición o sustracción de grupos radicales del tipo acetilo, metilo y fosfato, y de péptidos tales como la ubiquitina y SUMO [34,35]. Además, las histonas pueden ser intercambiadas entre si o desplazadas por complejos de proteínas conocidas como remodeladoras de cromatina dependientes de la presencia de ATP [34,36] En conjunto estas modificaciones se encargan de regular la expresión génica У se les denomina modificaciones epigenéticas. En general la acetilación de histonas conduce

a la relajación de la cromatina haciéndola transcripcionalmente activa y la metilación del DNA tiene un efecto inverso [34,37]. En el cuadro 1, se enlistan marcas que facilitan o impiden la expresión génica en mamíferos (Modificado de [38]).

	Cuadro 1 Ejemplos de modificaciones epigenéticas en mamíferos y sus efectos transcripcionales
--	---

Modificaciones Cromatínicas					
Marca	Sitio	Papel			
		transcripcional			
Metilación de DNA					
Metilación de Citosinas (meC)	СрG	Represión			
Histonas (PTMs)					
Acetilación de Lisinas (Kac)	H3 (9, 14, 18, 56), H4 (5, 8, 13, 16), H2A, H2B	Activación			
Fosforilación de Serina/Treonina (S/Tph)	H3 (3, 10, 28), H2A, H2B	Activación			
Metilación de argininas (Rme)	H3 (17, 23), H4 (3)	Activación			
Metilación de lisinas	H3 (4, 36, 79)	Activación			
(Kme)	H3 (9, 27), H4 (20)	Represión			
Libiquitinación de lisinas	H2B (120)	Activación			
(Kub)	H2A (119)	Represión			
()	()				
Sumoilación de lisinas (Ksu)	H2B (6/7), H2A (126)	Represión			
Isomerización de prolinas (Pisom)	H3 (30–38)	Activación			

PTMs (Modificaciones postraduccionales, por sus siglas en inglés). Modificado de Berger S., 2007

También se ha documentado que la remodelación de la cromatina durante la ontogenia conduce a cambios en el calendario de los procesos del desarrollo [12,13,33]. Las modificaciones epigenéticas se han asociado por ejemplo con el control del tiempo de diferenciación de los precursores de oligodendrocitos y astrocitos [12,13]. En el caso de la diferenciación de precursores oligodendrogliales, la desacetilación de histonas juega un papel central. Dicha desacetilación es llevada a cabo por la actividad de las desacetilasas de histonas (HDACs por sus siglas en Inglés). Si este proceso se impide mediante la administración de ácido valpróico (VPA), un inhibidor específico de las HDACs, durante los primeros 10 días postnatales, resulta en hipomielinización significativa de las una células acompañada de un retardo en la expresión de marcadores tardíos de diferenciación y una retención en la expresión de marcadores de progenitores. Sin embargo, al permitir un tiempo de recuperación después de la administración de VPA, la diferenciación a oligodendrocitos se consuma, mostrando únicamente un retraso en la misma [13]. Por otro lado, se documentado que la metilación del DNA es central ha durante el proceso de diferenciación de los precursores astrogliales. La eliminación condicional del gen que codifica para la DNA metiltransferasa de mantenimiento (DNMT1 por sus siglas en inglés) en células progenitoras neuronales conduce a una disminución en la metilación del DNA que se asocian con una diferenciación glial precoz in

vivo [12]. Ambos ejemplos apoyan la idea de que mecanismos globales de control de la expresión génica como la remodelación de la cromatina pudieran ser los responsables de regular la temporalidad de los eventos del desarrollo.

Dados estos antecedentes en la presente tesis nos preguntamos si los mecanismos epigenéticos de remodelación de la cromatina serían capaces de controlar la temporalidad de especificación de áreas corticales como S1 en un evento de plasticidad intermodal.

E1 estudio la relación entre la remodelación de cromatínica y la plasticidad cerebral es muy reciente en el campo de estudio de las neurociencias. El sistema nervioso generar adaptaciones rápidas a permite condiciones constante cambio sin la necesidad ambientales en de mutaciones genéticas [39]. Se sabe que las respuestas plásticas neuronales involucran cambios sinápticos funcionales y estructurales duraderos, que requieren de cambios en la expresión génica [40]. Diversos estudios han sugerido que los mecanismos epigenéticos como la metilación del DNA y las modificaciones de histonas se encuentran involucradas activamente en la plasticidad neuronal, el aprendizaje y la memoria, mediante la regulación de la procesos transcripción de genes críticos para estos

biológicos [41,42] (Para una revisión extensa ver [43]). Trabajos recientes indican que procesos epigenéticos de control de la estructura de la cromatina participan en la especificación de S1. Recientemente, Golshani et al. 2005, generaron una deleción específica condicional del gen DNMT1 neuronas glutamatérgicas del cerebro anterior. en La deleción genera una hipometilación del DNA de las neuronas e impide el desarrollo de los barriles de la corteza somatosensorial (Figura 7) [44]. A pesar de la falta de formación de barriles segregados en S1 en el mutante, los autores reportan que hay neurotransmisión tálamo-cortical funcional. Sin embargo, no se puede inducir potenciación a largo plazo en rebanadas de cerebro de los mutantes condicionales de Dnmt1. Los autores sugieren que los axones tálamocorticales generaron sinapsis con células que no estaban determiandas a formar parte de la capa IV y que por este motivo no se define el mapa de barriles [44]. Por lo tanto, la metilación del DNA parece juegar un papel central tanto en el desarrollo de mapas sensoriales como en procesos de plasticidad sináptica de los mismos durante el desarrollo.

Figura 7 Los barriles de S1 no se forman en mutantes condicionales de Dnmt1. Secciones tangenciales aplanadas de la corteza somatosensorial de ratones mutantes condicionales de Dnmt1 en animales de PD8. Nótese la ausencia de barriles en el ratón mutante (Modificado de Golshani et al., 2005)

Otros ejemplos que apoyan que la remodelación cromatínica tiene efectos sobre procesos globales neurales se presentan a continuación:

La acetilación de histonas controla la transcripción de genes requeridos para la consolidación de la memoria a largo plazo y la potenciación a largo plazo (LTP). En particular la actividad de acetil transferasa de histonas de la proteína de unión a CREB (CBP) es necesaria para que se presente la plasticidad sináptica en el hipocampo y la expresión de genes dependientes de actividad en modelos murinos [45,46]; Algunas enfermedades como el síndrome de Rubinstein Taiby o de Rett son producto de mutaciones en genes relacionados con la estructura de la cromatina como el gen CBP o MECP2. En dichas enfermedades se produce retraso mental y se encuentra comprometida la memoria a

largo plazo[45,47]; La fosfoacetilación de las histonas en el estriado se encuentra involucrada en la plasticidad neural y de conducta en el síndrome de abstinencia inducido por cocaína [48,49]; Por último, en organismos privados de visión monocularmente o mantenidos en oscuridad constante se ha descrito que pierden la plasticidad y capacidad de recuperación en el adulto. Putignano y colaboradores reportaron recientemente que dicha plasticidad puede ser recuperada al ser tratados con tricostatina A (TSA), una molécula que inhibe a las HDACs [50].
PLANTEAMIENTO DEL PROBLEMA

Los cerebros de individuos ciegos muestran una expansión del terrirorio cortical dedicado al procesamiento información somestésica. Aunque tradicionalmente de se piensa que la expansión de S1 resulta del incremento en el uso de la vía sensorial correspondiente, evidencia reciente sugiere que este punto de vista es equívoco. Alternativamente, hemos mostrado que la expansión de S1 en ratas cegadas neonatalmetne se asocia con el adelanto en la especificación de S1 y con la acelaración del crecimiento aferentes tálamocorticales somatosensoriales, de la situaciones ambas que podrían llevar a la expansión temprana de S1. Debido a que la remodelación de la cromatina controla la calendarización de diversos eventos desarrollo, aquí evaluamos si la remodelación del cromatínica participa en el control de la especificación de S1 así como en su expansión en ratas cegadas al nacimiento.

Hipótesis

El adelanto en la especificación de S1, así como su expansión en respuesta a la enucleación, se asociará a cambios temporales del proceso de reorganización de la cromatina, inferida a través de cambios en la acetilación de la histona 4 en los núcleos de las neuronas estelares espinosas ubicadas en la capa IV de la S1.

El tratamiento con inhibidores de las desacetilasas de histonas (HDACs) normalizará la fecha de especificación de S1 y el proceso de remodelación de la cromatina en ratas enucleadas, esta última inferida a través de cambios en la acetilación de la histona 4 en los núcleos de las neuronas estelares espinosas ubicadas en la capa IV de la S1. El tratamiento con inhibidores de HDACs evitará la expansión de S1 en ratas enucleadas.

Objetivo General

Evaluar si la remodelación cromatínica participa en el mecanismo que conduce a la expansión de S1 en las ratas cegadas al nacimiento.

Objetivos particulares

- I. Evaluar el estado de acetilación global de la H4 en los núcleos de neuronas estelares espinosas ubicadas en la capa IV de S1 en las ratas controles y cegadas neonatalmente durante el periodo de especificación de S1, mediante técnicas cuantitativas de inmunocitoquímica y microscopía de fluorescencia.
- II. Evaluar el estado de acetilación global de H4 en los núcleos de neuronas estelares espinosas ubicadas en la capa IV de S1 y la calendarización del inicio del periodo de especificación de S1 en los organismos controles y cegados neonatalmente, tratados o no con ácido valpróico durante los primeros días de vida, mediante técnicas cuantitativas de inmunocitoquímica y microscopía de fluorescencia.
- III. Evaluar el área de sección de los barriles a los 7 días de edad en ratas controles y cegadas

neonatalmente tratados o no con ácido valpróico durante la especificación de S1, utilizando la tinción de CyOx y técnicas cuantitativas de morfometría con microscopía de campo claro.

IV. Identificar genes que pudieran estar involucrados en el proceso de plasticidad intermodal, particularmente genes que pudieran participar en el control del tiempo del desarrollo a través de un análisis de expresión diferencial utilizando microarreglos.

CAPÍTULO 2

MATERIALES Y MÉTODOS

Animales

En este estudio se utilizaron ratas de la cepa Wistar criadas en los bioterios del Instituto de Investigaciones Biomédicas y del Instituto de Fisiología Celular. Los experimentos fueron realizados en ratas machos neonatas de 48, 82 y 168 horas posnatales. Todos los animales tuvieron acceso ad líbitum a comida y aqua y se mantuvieron en cuartos con temperatura e iluminación controladas (ciclo de luz y oscuridad de 12h). Al momento del nacimiento el número de crías se ajustó a 8 por camada. En cada camada la mitad de las crías se destinó al grupo control y la otra mitad al grupo experimental. Las ratas neonatas se mantuvieron con sus madres desde el nacimiento hasta el momento del sacrificio. Todos los procedimientos experimentales fueron aprobados por la comisión para el cuidado y uso de animales de laboratorio del Instituto. Todos los experimentos se diseñaron para usar el menor número de animales y aminorar su posible sufrimiento.

Enucleación

La enucleación o remoción quirúrgica bilateral de los ojos se realizó siguiendo los lineamientos descritos en el protocolo descrito por Bronchti, et. al. (1992). Las crías fueron anestesiadas por hipotermia entre las 6 y 10 horas posnatales. Posteriormente se realizó una incisión fina sobre la fisura palpebral y con una pinza se removió por completo el tejido ocular. Posteriormente las crías se colocaron en un cojín termorregulado a 32°C hasta que recuperaron su temperatura, color y movimiento y se le regresaron a la madre. Las crías del grupo control fueron tratadas de la misma manera, omitiendo el procedimiento quirúrgico.

Inmunohistoquímica para la histona 4 acetilada (H4ac)

Las ratas neonatas controles y enucleadas de 48h, 82h y 168h de edad fueron anestesiadas y perfundidas con solución salina seguida por una solución de paraformaldehído (PFA) al 3.7% en PBS, Ph 7.4, durante 25 minutos a temperatura ambiente. Posteriormente los cerebros fueron disecados y postfijados en PFA 3.7% a 4°C y subsecuentemente procesados para inclusión en parafina. Se obtuvieron secciones coronales de 15µm con un microtomo

y se montaron en laminillas gelatinizadas. Para la inmunotinción laminillas con las los cortes se desparafinaron; realizamos un proceso de desenmascaramiento de antígenos incubando las laminillas con un amortiguador citratos a 65°C por 90 min. Las muestras de fueron secuencialmente tratadas con: 1) Triton X-100 al 0.5% en PBS por 60 minutos; 2) Glicina 0.1M en PBS con 1% de suero de albúmina bovina fetal (BSA) por 30 minutos y 3) Tween 20 al 0.01% en PBS por 5 minutos. Posteriormente las incubaron con el anticuerpo primario laminillas se policlonal de conejo anti-histona 4 acetilada (Chemicon) por 68h a 4°C en una solución de BSA al 1% y triton X al 0.5% en PBS. Después de esta incubación las laminillas se lavaron con tween 20 al 0.01% en PBS, y se incubaron con el anticuerpo secundario anti-conejo Alexa 594 (Molecular Probes) por 90 minutos. Posteriormente se removió el anticuerpo secundario, se realizaron lavados con PBS y las laminillas se contratiñeron con DAPI y se montaron con un medio de montaje acuoso (DAKO, anti-fading medium).

Capturamos secciones ópticas de los núcleos neuronales de la capa 4 con un microscopio confocal Carl Zeiss para los cortes de 82h de edad y para los de 48h y 168h se utilizó un microscopio Olympus de disco giratorio, en ambos casos usamos el objetivo de 100X. Los valores de la ganacia, el

contraste y el brillo se mantuvieron constantes durante las sesiones de adquisición de imágenes por edad.

Cuantificación de foci de H4 acetilada (H4ac)

El análisis de las imágenes se realizó adaptando el programa de análisis de partículas de ImageJ (Rasband, 1997-2001) para el conteo de foci de H4ac. Las imágenes adquiridas se transformaron a imágenes binarias utilizando ImageJ. Primero fue necesario ajustar el contraste de las imágenes, dicho ajuste se realizó para todas las imágenes capturadas durante la misma sesión tanto de organismos controles como de enucleados. Posteriormente utilizamos un algoritmo de image J que se llama "watershed", dicho algoritmo detecta y separa partículas que se sobrelapan menos de 30%. Posteriormente se realizó el análisis de partículas que en nuestro caso fue la cuantificación del número de foci por núcleo neuronal. El número de foci de H4ac por núcleo neuronal obtenido para cada edad (48h, 82h y condición and 168h) se comparó utilizando un procedimiento de modelo lineal general (GLM) utilizando el sistema de análisis estadístico SAS 9.2 (SAS Institute, Cary, NC, USA). La variable de número de foci se transformó utilizando el procedimiento de Box-Cox. Los efectos

principales así como la interacción se incluyeron en el modelo.

Análisis de metilación de DNA

Hidrólisis del ADN: Se utilizó 1 µg de DNA genómico y se adiciono 1µL de ácido perclórico (HCLO₄) al 70%, se incubó a 100°C durante una hora. Una vez hidrolizada la muestra fue necesario neutralizar la reacción utilizando hidróxido de sodio 10N. Posteriormente la muestra, se filtró por un cartucho de nylon de 4mm de diámetro y de 0.2 µm de tamaño de poro. Las muestras se mantuvieron a 4°C antes de ser inyectadas a la columna de cromatografía. Condiciones cromatográficas: La separación y cuantificación se realizó mediante cromatografía líquida en fase reversa detector UV-visible. Εl sistema acoplada а าวท cromatográfico utilizado fue un equipo marca Waters, se usó una columna YMC-Pack ODS (5µm, 250 x 4.6mm). Las bases nitrogenadas fueron cuantificadas con un detector de UV-VIS a una longitud de onda de 280nm. El flujo utilizado fue de 1.0mL/min. El programa del gradiente de elución consistió al tiempo 0 de un 98% de A (acetato de amonio 5mM en aqua y ácido acético glacial a pH 3.5) y 2% de B (metanol); de O a 15min se realizó un gradiente lineal para alcanzar un 20% de B; de 15 a 20min se realizó un gradiente cóncavo para

alcanzar un porcentaje del 60% de B. De ahí se programó linealmente para tener un 2% de B en 5 min, una vez alcanzado este porcentaje se mantuvo durante 10 min para preparar el sistema para la siguiente inyección.

La concentración de las bases nitrogenadas se determinó por el método de estándar externo, integrando el área bajo la curva. Los estándares de las bases nitrogenadas fueron preparadas en agua grado HPLC y almacenadas a -20°C. E1 día del análisis se mezclaron los estándares de las bases nitrogenadas para obtener una concentración final de 0.07mM para Citosina y Guanina; de 0.05mM para Adenina y Timina; de 0.04mM para Uracilo y de 0 .003mM para 5-metilcitosina. El porcentaje de metilación de la citosina se calculó de acuerdo a la fórmula reportada por Corvetta et.al. (1991). decir las unidades de área encontradas para la 5-Es metilcitosina divididas entre la suma de las unidades de área de la 5-metilcitosina mas las unidades de área de la citosina y el resultado multiplicado por 100.

Tratamiento con ácido valpróico

Las ratas lactantes fueron tratadas con inyecciones intraperitoneales de ácido valpróico disuelto en vehículo (PBS) o únicamente con vehículo a partir del día del parto.

El VPA se administró a una dosis de 600mg/kg el primer día y desde el segundo día hasta las 82h y 168h postpartum a una dosis diaria de 300mg/kg.

Medición del área promedio de barril

Las ratas se perfundieron a través del corazón con salina 0.15M seguida de solución una solución de paraformaldehído al 3.7% en PBS. Los cerebros fueron removidos las cortezas cerebrales cuidadosamente V disecadas, aplanadas entre dos portaobjetos separados por deshidratadas en con un gradiente de sacarosa y 2mm, congeladas con 2-metilbutano previamente enfriado en hielo seco. Se obtuvieron cortes tangenciales de 50 μ m con un criostato y se realizaron tinciones de CyOx siguiendo el protocol descrito por Riddle et al., 1993. Se capturaron imágenes de las secciones a partir de las cuales se trazaron mapas del PMBSF. Cada barril fue trazado en cada uno de los cortes en los que se presentaba. Los vasos sanguíneos así como los barriles que eran evidentes en más de un corte fueron utilizados para alinear las secciones y completar el mapa de cada corteza. Se utilizaron los bordes más grandes dibujados para integrar el mapa completo. Las imágenes se digitalzaron. Para estimar el área de barril

promedio las imágenes se convirtieron en binarias y se analizaron utilizando el modulo de análisis de partículas de ImageJ. El área de los 36 barriles que constituyen al PMESF se promedió y fue estimada para cada hemisferio. El efecto del tratamiento con VPA en el tamaño de los barriles se analizó utilizando el procedimiento de GLM mencionado previamente. Para esto se realizó una transformación Log_{10} de los datos. Con el análisis de GLM se detectaron diferencias significativas entre los grupos con (p<0.05), por lo que se utilizó una prueba Tukey-Kramer *post-hoc* para determinar las diferencias promedio (p<0.05).

Análisis de expresión diferencial: Microarreglo

Obtención de la muestras de tejido cortical Se extrajo tejido cerebral de la corteza somatosensorial primaria de ratas controles y enucleadas de 48h, 82h y 168h. Para esto, los animales fueron anestesiados por Una vez inconscientes fueron hipotermia. decapitados, cuidadosamente disecados V las áreas corticales correspondientes a S1 obtenidas con la ayuda de un sacabocados (diámetro 2mm). Las muestras fueron congeladas y preservadas a -80°C hasta su uso.

Obtención de RNA y DNA

Se extrajo el RNA y DNA total de las muestras utilizando el kit para purificación de RNA, DNA y Proteína de Qiagen (All prep RNA/RNA/Protein kit, Qiagen) de acuerdo al protocolo sugerido por Qiagen. Se extrajeron muestras de RNA de 15 individuos de 48h, 24 de 82h y 12 de 168h por condición experimental para cada edad. Las muestras se agruparon para preparar 3 réplicas de cada condición para las tres edades. Una cuarta réplica fue preparada juntando todas las muestras de RNA de un grupo específico.

Los experimentos de microarreglo se realizaron bajo la supervisión de la M en C. Laura Uribe Figueroa de la Unidad de Genotipificación y Análisis de Expresión del INMEGEN. Las muestras fueron primero homogenizadas mecánicamente utilizando un amortiquador de lisis y un homogenizador de tejido, según las instrucciones del proveedor (Tissue lyser, Qiagen). Los homogenados fueron purificados utilizando las columnas de purificación para ADN y ARN del Kit ALL Prep de Qiagen (All prep RNA/RNA/Protein kit, Qiagen) como lo indicado. Se extrajo de esta manera el DNA y RNA de las muestras de tejido. La concentración y calidad, de los ácidos nucleicos purificados, fueron cuantificadas utilizando un espectrofotómetro (Nanodrop 1000 Spectophotometer).

Para verificar la calidad del RNA ésta fue evaluada utilizando un bioanalizador de geles automático (Lab on Chip Bioanalyzer 2000, Agilent Technologies).

Las cuatro muestras de RNA por edad y condición fueron procesadas e hibridadas al chip de Affymetrix (Affymetrix Rat Gene 1.0 ST array) como lo indicaban las instrucciones manufactura. A partir del RNA extraído se sintetizó de cDNA de cadena simple usando la enzima transcriptasa reversa Superscript II y oligos PolyT. Una segunda cadena de CDNA fue sintetizada, seguida de una ronda de transcripción in vitro para generar cRNA. El cRNA fue usado como templado para otro ciclo de síntesis de cDNA donde se incorporaron los dUPTs. El cDNA fue posteriormente fragmentado con la ayuda en una glicosilasa V una endonucleasa apurina/apirimidina. Los fragmentos (40 - 70)nucléotidos) fueron marcados con บท desoxinucleótido fue calentado a 95°C e biotinilado. El cDNA marcado hibridado al chip de Affymetrix por 17 horas a 45°C. Las muestras fueron lavadas con dos soluciones amortiquadoras diferentes y teñidas con la ayuda de la estación fluida de Affymetrix y siguiendo el protocolo del proveedor (Affimetrix Fluidics Station 450, protocolo FS450 0007). Los microarreglos (chips) fueron escaneados para registrar las señales fluorescentes utilizando un scanner (GeneChip

Scanner 3000 7G, Affymetrix, Santa Clara CA). Las intensidades de señal y la calidad de los datos de cada microarreglo fueron obtenidas con la consola de expresión (Expression Console, Affymetrix, Santa Clara CA).

Análisis del Microarreglo

Con el objetivo de establecer los cambios transcripcionales a través de estimar los niveles de expresión e identificar los RNAs codificantes y no codificantes de proteínas que pudieran estar participando en la especificación temporal y por lo tanto en la expansión después de de S1 la privación de la visión en etapas postnatales tempranas, se realizaron 24 experimentos de microarreglo (Affymetrix Rat Gene 1.0 ST array) como se describió anteriormente. El análisis de la base de datos fue realizado utilizando el software privado Partek (Partek Genomics Suite). Antes del análisis los datos fueron normalizados mediante el método RMA (Robust Multiarray Averaging). Se utilizó un análisis de varianza de dos vías (Two-way-ANOVA) para identificar los transcritos expresados diferencialmente, utilizando los siguiente criterios: magnitud de cambio en expresión (fold change, FC) menor o igual a -1.2 o mayor igual a 1.2 y un valor p menor o igual a 0.05 (p ≤ 0.05). Bajo estos criterios, se consideró como sobre-expresados a aquellos

genes con una ρ menor o igual a 0.05 y un FC mayor o igual a 1.2, y sub-expresados a aquellos con una ρ menor o igual a 0.05 y un FC menor o igual a 1.2 [81,82].

Rt-PCR en tiempo real

A partir de muestras de RNA extraído de la misma forma que para los microarreglos sintetizamos cDNA con la polimerasa reversa SuperScript II (Invitrogen) e incluímos un control sin templado para cada experimento. Se utilizaron 600ng de cDNA de cada muestra para las reacciones de RTqPCR; las muestras se analizaron por triplicado. Utilizamos una sonda para Ttr de Taqman (Rn00562124_m1 applied biosystems) y la enzima de Taqman junto con sus reactivos (TaqMan Universal PCR Master mix no AmpErase) de acuerdo al protocolo del proveedor. Para la estandarización de los niveles de expresión estimamos los cocientes de mRNA relativos al gen endógeno GAPDH. En total evaluamos la expresión de 4 grupos de muestras para cada edad y condición experimental. Los resultados se analizaron utilizando el método de $2^{-\Delta \Delta CT}$

CAPÍTULO 3

RESULTADOS

Los niveles de acetilación de H4 en las neuronas de la capa IV de S1 disminuyen antes en las ratas cegadas al nacimiento con respecto a las controles.

Uno de los eventos o proceso molecular que se ha relacionado con el control y las transiciones del tiempo del desarrollo en eucariontes, es la remodelación de la cromatina. De hecho, en el cerebro de los mamíferos el retraso en la desacetilación de histonas retarda la diferenciación de oligodendrocitos [13]. Cabe destacar que el desarrollo cortical se durante da un proceso de desacetilación global de la histona 4 (H4ac) que ocurre al final de la etapa embrionaria y durante los primeros 3 días posnatales [51] y que se ha correlacionado tanto con

diferenciación neuronal como con la maduración cerebral. lo tanto, decidimos estudiar, mediante tinciones Por inmunohistoquímicas, si los niveles globales de acetilación de histonas se relacionan con el momento de la especificación de S1 y su plasticidad. Dado que el desarrollo posnatal de S1 se encuentra acelerado y/o adelantado en las ratas cegadas neonatalmente, uno esperaría encontrar los niveles de acetilación disminuídos durante el tiempo de especificación de los barriles en las ratas cegadas en comparación con las ratas controles. Nuestros resultados muestran que los niveles de H4ac en los núcleos de las neuronas de la capa IV S1 de son significativamente menores en las ratas cegadas en comparación con los niveles de H4ac en ratas controles tanto a las 48h posnatales como a las 82h posnatales. Esta diferencia desaparece a las 168h de vida (Figura 8).

Figura 8 Los niveles de H4ac en las neuronas de la corteza somatosensorial son inferiores a las 48 y 82h en ratas enucleadas neonatalmente. Microfotografías representativas que muestran neuronas de la capa IV de S1 inmunoteñidas para H4ac (rojo) y contrateñidas con DAPI (azul) en organismos controles y cegados de 48h, 82h y 168h posnatales. B) Análisis cuantitativo del número de foci de H4ac para cada condición experimental. Dentro de los grupos las barras unidas por un corchete son diferentes significativamente con p <0.01 y 0.001 según lo indicado por ** y ***, respectivamente. En el análisis por edad para cada condición, barras con literales diferentes son estadísticamente distintas (p <0.05).

Los niveles globales de metilación de DNA no cambian entre organismos controles y enucleados.

Como mencionó previamente, otro mecanismo se epigenético que se ha relacionado con el control del tiempo desarrollo cortical es la metilación del DNA; del la deleción condicional de DNMT1 en ratones, además de reducir los niveles de metilación de DNA, adelanta la diferenciación de astrocitos [12,44]. Así, con el objetivo de explorar si hay diferencias en los niveles de metilación entre los organismos controles y enucleados utilizamos la técnica de HPLC para cuantificar los niveles globales de metilación de DNA, a partir de muestras de S1 obtenidas a las 48h, 82h y 168h de ratas controles y cegadas neonatalmente. No encontramos diferencias significativas entre los organismos controles y cegados al ser comparados a las tres edades referidas (Figura 9).

Figura 9 No hay diferencias en los niveles globales de metilación de DNA en S1 entre organismos controles y cegados neonatalmente. Gráfica de barras que muestra el porcentaje global de 5meC en ratas controles y cegadas de 48h, 82h y 168h de edad obtenidos por HPLC. ANOVA de 2 vías: no significativa entre condiciones experimentales; significativa **p<0.01 entre edades de la misma condición experimental. Los resultados se representan como la media (+/- Error Estándar).

La alimentación de las crías con ácido valpróico retarda la especificación de los barriles y previene la expansión de S1 en las ratas cegadas neonatalmente

coincidencia La temporal de la especificación prematura de los barriles con la desacetilación temprana de la H4 en los núcleos de las neuronas de la capa IV de S1, pudieran sugiere ambos eventos causalmente que estar relacionados. Para evaluar esta posibilidad se alimentó а través de la leche materna a las ratas neonatas controles

o cegadas neonatalmente con ácido valpróico (VPA), un inhibidor de las HDACs [52]. En estos experimentos, el VPA debería prevenir los efectos que la enucleación produce sobre la calendarización del inicio de la especificación de los barriles en las ratas cegadas neonatalmente. De acuerdo a esto, nuestros resultados muestran que sólo el 40% de las crías cegadas tratadas con VPA presentaron barriles a la edad de 82h a diferencia de lo que se observó en sus contrapartes tratadas con vehículo en quienes el 80% mostraron barriles a la misma edad (Figura 10A). Las crías cegadas tratadas con VPA presentaron niveles más elevados de H4ac en comparación con las tratadas con vehículo a las 82h. Cabe resaltar que mientras el tratamiento con VPA previno la expansión de los barriles en las ratas cegadas, este tratamiento no tuvo efecto sobre el crecimiento de los barriles en la ratas control al ser comparadas a las 168h de vida (Figura 10B).

Figura 10 El tratamiento con VPA, administrado a través de la alimentación normaliza los niveles de acetilación de H4 y el tiempo de formación de los barriles e impide la expansión de la S1 en las ratas cegadas al nacimiento. A) Panel superior, microfotografías que ilustran secciones tangenciales de la capa IV de S1 de crías cegadas tratadas con VPA o vehículo visualizadas con la histoquímica para CyOx 82 horas después del nacimiento. Nótese que se normaliza la formación de barriles en el grupo de las crías cegadas tratadas con VPA. Panel inferior, microfotografías representativas de alta magnificación de secciones coronales de la capa IV de S1 inmunomarcadas para H4ac (rojo) y contrastadas con DAPI (azul) en los animales cegados de 82h alimentados con leche con VPA o vehículo. B) Panel izquierdo: Reconstrucciones bidimensionales de los barriles de PMBSF de animales de 168h cegados al nacimiento tratados con VPA o vehículo a través de la alimentación. Panel derecho: El área promedio de barriles de PMBSF en los animales de 168h enucleados tratados con VPA a través de la alimentación es igual que el área de los organismos controles.

Explorando la expresión génica diferencial en el proceso de plasticidad intermodal en S1

Debido a que el reacomodo de la cromatina se asocia con cambios en la expresión génica, y con el fin de profundizar en un futuro en los mecanismos moleculares que subyacen al fenómeno de plasticidad intermodal, llevamos a cabo un análisis de expresión diferencial con microarreglos. Estos experimentos fueron realizados con RNA de muestras obtenidas de extractos de la S1 de ratas controles y de aquellas cegadas al nacimiento a diferentes edades durante el periodo de especificación de esta área cortical. Los microarreglos fueron analizados con el programa Partek Genomic suite. Al realizar un análisis de varianza con los datos de todos los grupos experimentales nuestros resultados mostraron que la fuente principal de diferencias en la expresión génica entre los grupos de animales controles y cegados de 48h, 82h y 168h se debe al de ontogenia en si. Sin embargo, también proceso encontramos cambios sutiles en la expresión génica debidos a la enucleación (Figura 11A). Así, de un total de ~26.008 transcritos que se pueden evaluar en el microarreglo y que coinciden prácticamente con la totalidad de los genes en el genoma de la rata, 422, 304 y 507 genes se expresaron

diferencialmente en la ratas cegadas a las edades de 48h, 82h y 168 horas, respectivamente (Figura 11B y tablas 1, 2 y 3). De este conjunto de datos, sólo dos genes, Calhm3 y un pseudogen, se expresaron diferencialmente a las tres edades estudiadas en las ratas ciegas (Tabla 4.1). Algunos otros se compartieron entre dos grupos de edad (Figura 11B y tablas 4.2-4.4). Las secuencias expresadas diferencialmente incluyen genes que codifican para proteínas, micro (mi) RNAs, RNAs pequeños nucleares (snRNAs), RNAs pequeños nucleolares (snoRNAs), así como pseudo-genes (Tabla 5).

Figura 11 Expresión génica diferencial en ratas controles y enucleadas. A) Gráfica de barras que muestra las principales fuentes de variación transcripcional en nuestros grupos experimentales. La principal fuente de variación es la edad B) Diagrama de Venn que muestra el número de genes expresados diferencialmente en ratas enculeadas con respecto a las controles en animales de 48h, 82h y 168h. C) Representación de agrupamiento jerárquico de los genes expresados diferencialmente para la lista de genes expresados diferencialmente a las 82h. Nótese que el grupo de 82h control (C) se encuentra más cercano al grupo de 48h de controles y enucleados (E) y el grupo de 82 h enucleado se encuentra más próximo a los grupos de 168h controles y enucleados.

Con el objetivo de identificar los procesos biológicos que podrían conducir a una especificación temprana de S1 y su expansión, los genes expresados diferencialmente а fueron clasificados en categorías generales funcionales. Los comentarios los restringimos a las categorías que, pensamos, dan una idea sobre el proceso en estudio. Sin embargo, el conjunto de datos completo y la lista de genes específicos, que pueden participar en el proceso, están disponibles en las tablas (Tablas 1-3). En el caso de la agrupación general para procesos biológicos, las principales categorías obtenidas para todas las edades estudiadas fueron las relacionadas con el metabolismo, el y los procesos celulares desarrollo que involucran movimiento. La categoría de crecimiento se destacó a las 48 y 168 horas mientras que la categoría de procesos rítmicos a las 82 y 168 horas (Figura 12A).

Un análisis detallado también proporcionó información sobre las principales subcategorías funcionales relacionados con los procesos de desarrollo tales como la morfogénesis y la maduración (48h, 82h y de 168 horas), la muerte celular (48h y 82h), especificación de patrones anatómicos (48 horas), el envejecimiento (48 horas y 168 horas) y el crecimiento durante el desarrollo (168 horas)

(Figura 12B). Cuando las categorías se definieron bajo "componente celular o parte del tejido", los genes más relevantes fueron los agrupados en las subcategorías de la matriz extracelular, el espacio extracelular y la sinapsis (48h, 82h, y 168 horas) (Figura 12C); de forma interesante la última subcategoría adquirió más importancia a las 82h.

🛢 región extracelular 🛢 componente de región extracellular 🛛 🗧 organelo 🗮 componente de organelo 🛢 componente de sinapsis 🗧 sinapsis 🝵 componente celular

Figura 12 Ontologías génicas. Gráficas de pastel que representan las categorías principales en las que fueron clasificados los genes expresados diferencialmente mediante ontologías de genes con base en: A) Procesos biológicos, B) Procesos del desarrollo y C) Parte de la célula o del tejido a la que pertenecen.

La expansión de los barriles en los organismos cegados también se asocia con un perfil transcripcional más maduro

Como mostró el capítulo anterior, se en la desacetilación prematura de la H4 se asocia con el adelanto en la formación de barriles en las ratas cegadas. Mediante เมท análisis estadístico de agrupaciones jerárquicas encontramos que los perfiles transcripcionales de las ratas cegadas de 82h son más similares a los obtenidos para las ratas controles y cegadas de 168h. Adicionalmente los perfiles transcripcionales de las ratas controles de 82h se encuentran agrupados más próximos al grupo de 48h de ratas tanto controles como cegadas (Figura 11C). Esto podría sugerir que incluso a nivel transcripcional hay un adelanto en el grupo de los organismos cegados.

RNAs no codificantes son expresados diferencialmente durante el fenómeno de plasticidad intermodal en S1

En los análisis de microarreglos, además de identificar genes anotados que codifican para proteínas, secuencias de también encontramos RNAS no codificantes expresadas diferencialmente (Tabla 5). Cabe resaltar que este grupo incluye: microRNAs (miRNAs), RNAs pequeños

nucleolares (snoRNAs) y RNAs pequeños nucleares (snRNAs) que constituyen entre el 6 y el 16 % de los genes expresados diferencialmente. Muchos de los transcritos reportados no han sido descritos previamente en el cerebro (Tabla 5).

Cuantificación de la expresión del gen Ttr mediante RT-PCR en tiempo real como método de validación del microarreglo

validar los resultados obtenidos Para con los microarreglos se analizaron los perfiles de expresión del gen Ttr mediante experimentos de tiempo real cuantitativo con la reacción en cadena de la polimerasa utilizando sondas Taqman® específicas para Ttr. Se eligió a este gen debido a que el cambio en su nivel de expresión alcanzó las recomendaciones mínimas descritas por Morey et al., 2006 [53] para ser validado mediante este tipo de tecnología. Los niveles de expresión se normalizaron con sondas para el gen GAPDH y los experimentos se realizaron por triplicado a partir de cDNAs obtenidos de las muestras de RNA extraídas de S1 utilizados para los análisis de microarreglo. Encontramos que en las ratas enucleadas el gen Ttr se encuentra sobre-expresado con respecto a las controles con una magnitud en el cambio de expresión ~13 veces mayor.

Figura 13 Análisis por q-RT-PCR de la expresión de *Ttr* en la corteza somatosensorial de ratas de 48h, 82h y 168h. En la gráfica se muestra la magnitud del cambio en la expresión de *Ttr* en ratas enucleadas con respecto a las controles. Los datos fueron normalizados con GAPDH. Anova de dos vías: ***p<0.01. Los datos se representan como la media (+/- SEM).

CAPÍTULO 4

Discusión

Durante años se ha pensado que la expansión del territorio cortical cerebral dedicado al procesamiento de información sometésica, observada en roedores que han perdido la vista al nacimiento, se debe a incrementos en el de las vías somatoceptivas durante el desarrollo uso postnatal. En estudios previos, sin embargo, desestimamos esta idea al mostrar que los niveles de actividad neuronal en la vía somestésica trigeminal de ratas controles y cegadas al nacimiento son equivalentes durante el periodo de especificación y plasticidad de la S1 y en la vida adulta (Geovaninni H. (2001). Tesis de maestría, Instituto Investigaciones Biomédicas, UNAM). Alternativamente, de sugerimos que la expansión de la S1 en ratas cegadas al nacimiento se asocia al predesplazamiento de la especificación de S1 y al incremento de la tasa de crecimiento de la aferentes somatosensoriales durante el periodo de especificación de la S1 (Ibarrarán Viniegra S.

(2006). Tesis de Licenciatura, Instituto de Investigaciones Biomédicas, UNAM). En el presente trabajo, confirmamos la ideas a través primera de estas de mostrar que la acetilación de la H4 disminuye prematuramente en las ratas cegadas neonatalmente, que el perfil transcripcional de las ratas cegadas neonatalmente a las 168 horas es similar al presentado por ratas control y cegadas a las 82 horas y que la normalización de la calendarización del inicio de la especificación de S1 en ratas cegadas al nacimiento previene la expansión de S1. Así, los resultados apoyan que la expansión de S1 en las ratas cegadas al nacimiento se debe, al menos en parte, al predesplazamiento del inicio de la formación de los barriles.

Uno de los datos centrales en nuestro trabajo se refiere al hecho de que la desacetilación de H4 ocurre más tempranamente en las ratas cegadas, y que la normalización de la fecha de desacetilación lograda mediante la administración de VPA, vía la dieta, previene la expansión. Estos datos no solamente sugieren que la remodelación de la cromatina es un evento necesario para conducir a la expansión de S1 en las ratas cegadas al nacimiento, sino también que dicha respuesta es inducida y regulada por factores epigenéticos (probablemente la pérdia de ojo) que conducen a un proceso de diferenciación celular también

adelantada. Al respecto, recordemos que la desacetilación ocurre progresivamente en el cerebro en desarrollo en asociación a la diferenciación neuronal [51] y que los árboles dendríticos de las neuronas corticales estelares espinosas alcanzan su madurez prematuramente en ratones cegados al nacimiento (Hernández Miranda L. (2006). Tesis Maestría, Instituto de Investigaciones Biomédicas, de UNAM). Nuestros resultados son así compatibles con información reportada previamente que apoya que la remodelación de la cromatina forma parte de los mecanismos que controlan la calendarización de las transiciones entre fases del desarrollo y la expresión diferencial de genes a lo largo del proceso ontogenético [12,13], y extienden esta concepción del nivel celular al de procesos más globales como el de la especificación de la áreas corticales cerebrales.

Si bien los datos obtenidos mediante la administración de VPA sobre la desacetilación en núcleos celulares neuronales y la expansión de S1 son claros, dada la relativa inespecificidad de los tratamientos farmacológicos, es posible que los efectos observados en respuesta al VPA pudieran también llevarse a cabo a través de mecanismos complementarios. Así, el VPA podría también modificar los niveles de metilación del DNA [54]. Aunque no

podemos descartar la influencia de esta acción en las ratas tratadas, en este trabajo no encontramos que los niveles de metilación global fueran diferentes entre las ratas controles enucleadas. No obstante ello, estudios У subsecuentes deberán analizar si los patrones de metilación de DNA se modifican en respuesta a la enucleación en secuencias génicas específicas. Por otro lado, el VPA también aumenta los niveles del GABA. Debido a que el GABA presenta acciones excitatorias durante las etapas postnatales tempranas [55,56], y a que la activación de los elementos neuronales detiene el crecimiento axonal [57-60], el VPA podría prevenir la expansión de los barriles también a través de promover un aumento en la excitabilidad local. Adicionalmente las acciones tróficas del GABA [61,62] podrían promover la expansión de los barriles. Sin embargo, observación de que los barriles no se encuentran la expandidos en los animales tratados con VPA y que a las 82h la expresión de la subunidad del receptor GABA A beta 3 (Gabrb3; Tabla 2) está disminuida en los organismos cegados esta última posibilidad. Finalmente, parecen retar mecanismos adicionales por los que el VPA pudiera actuar sobre el tiempo de especificación y plasticidad de los barriles en las ratas cegadas podrían mediarse a través de las cascadas asociadas con la acetilación/desacetilación de
receptores de andrógenos, p53, MyoD, E2F1 y/o STAT3 que también son sustratos de HDAC1 [63]. Aunque indudablemente estudios posteriores deberán evaluar las posibles contribuciones de cada una de estas alternativas, el hecho de que el VPA no altere el tamaño de los barriles en las crías control, mientras que sólo evita la expansión de los barriles en las ratas cegadas, sugiere que sus efectos son específicos del fenómeno de plasticidad.

Los análisis de microarreglos llevados a cabo en el presente trabajo documentaron que entre 300 y 600 genes codificantes y no codificantes de proteínas se expresan diferencialmente en las ratas cegadas al nacimiento. La combinación de estos cambios sin duda genera un código que modifica las trayectorias ontogenéticas de las neuronas que conduce a la expansión del barril. Si bien, en los próximos años, los objetivos de los experimentos deben centrarse en intentar comprender el papel de los genes expresados diferencialmente durante el proceso de plasticidad intermodal, en este momento, con base en los resultados obtenidos podríamos especular sobre el papel de algunos productos en el fenómeno de plasticidad qenes y sus intermodal: 1) El gen que encontramos con mayor diferencia de expresión codifica para el transportador de la hormona

tiroidea, Ttr. Este transportador es el componente efector de un "reloj" del desarrollo durante la diferenciación a oligodendrocitos en células del nervio óptico de la rata [64] por lo que pudiera anticipar cambios en el proceso de mielinización del cerebro en las ratas cegadas. En apoyo a esta posibilidad, también se observaron cambios en los transcritos que codifican para proteínas relacionadas con la síntesis de mielina (Tabla 3). 2) El sobrecrecimiento de las aferentes tálamocorticales somatosensoriales pudiera resultar de cambios en la expresión de los canales rectificadores de potasio (Cuadros A1-3) ya que éstos participan en el control de la excitabilidad espontánea de las neuronas [65] la cual requla los patrones de crecimiento axonal [66]. 3) La expansión de los barriles parece asociarse con un incremento en su densidad vascular [9]. Nuestros estudios muestran que el receptor 2 para angiotensina II, la prolactina y transcritos de otros factores angiogénicos se elevan en S1 de las ratas cegadas (Tabla 2). Estas modificaciones podrían explicar la hipervascularización reportada en los barriles en ratas adultas enucleadas al nacimiento [9]. 4) Finalmente, consideramos particularmente interesante el hecho de haber encontrado diversos tipos RNAs codificantes de no expresados diferencialmente durante el periodo de especificación y

plasticidad de S1 en las ratas cegadas. Estudios recientes han revelado la importancia de los miRNAs, por ejemplo, en una gran cantidad de procesos celulares tales como la regulación de la estabilidad de mRNAs, la traducción rápida de heterocromatina, de proteínas, la formación la regulación del tiempo del desarrollo, la diferenciación neuronal, la proliferación celular y la programación de la muerte celular, entre otros [14,67-69]. Estudios adicionales han mostrado también que los miRNAs participan en la regulación de la transición de una etapa larvaria a otra en Caenorabhditis elegans y Drosophila melanogaster [33,70,71]. Se han encontrado también miRNAs específicos de cerebro en Rattus norvegicus y Mus musculus [72-74] que modulan el desarrollo cerebral, controlando procesos tales la maduración neuronal, la regulación y plasticidad como sináptica, el crecimiento axonal, el desarrollo y tamaño de las espinas dendríticas, entre otros [73,75,76]. También se han observado patrones de expresión tiempo-dependientes de miRNAs en el cerebro de rata durante la corticogénesis [72,73,77]. Muchos miRNAs se encuentran conservados en mamíferos y creemos que pudieran presentar funciones análogas (revisado por Ambros, 2011 [14] y por Nimmo y Slack, 2009 [78]). De esta manera, sería muy interesante evaluar si los miRNAs se encuentran involucrados en el

control del tiempo del desarrollo de S1. Finalmente, es importante destacar que algunos de los transcritos no codificantes de proteínas correspondieron a snoRNAs. Estos comúnes las denominadas fábricas RNAS son en donde transcripcionales nucleares en llevan а cabo funciones de regulación de la edición alternativa de mRNAs y/o controlan la transcripción de genes. Con esto, la imagen que emerge de nuestros estudios con microarreglos es que existen códigos formados por RNAs no codificantes que pudieran jugar papeles centrales en la construcción de la respuesta plástica cerebral intermodal.

Consideraciones adicionales

Nuestros resultados muestran que mediante un tratamiento farmacológico, que inhibe a las desacetilasas de histonas, se puede prevenir o modular la respuesta plástica (la expansión) de la corteza somatosensorial en ratas enucleadas al nacimiento. Los avances recientes logrados con células madre para recuperar la vision así como el desarrollo de ojos biónicos (E.g. Homma K. 2013 y B, 2012) generan la necesidad de modular la Falsini plasticidad cerebral para poder recuperar la función visual. Con respecto a la corteza visual desconocemos los

mecanismos moleculares y celulares que generan que se transforme y responda a estímulos somestésicos y auditivos en los organismos ciegos por lo que es crucial describir primero dichos mecanismos.

Los resultados obtenidos en el modelo clásico de plasticidad por privación monocular a largo plazo que sugieren que la capacidad plástica (la recuperación de la agudeza visual) puede ser recuperada o modualda en organimsos adultos a través de tratamientos epigenéticos [50 y 79] junto con nuestros resultados abren la posibilidad de que en un futuro se pueda recuperar la función visual en los organismos ciegos.

Conclusiones

En este trabajo encontramos evidencia molecular V farmacológica que apoya que la expansión de S1 se asocia con un adelanto en la especificación de la corteza de componentes celulares. barriles y sus Esta recalendarización está modulada por cambios en la estructura de la cromatina, en parte mediada por un proceso de desacetilación temprana de la histona 4, como fue evidenciada en los núcleos de neuronas de la capa IV de la corteza somatosensorial primaria de los organismos ciegos. Dichos cambios epigenéticos se relacionan a su vez con cambios a nivel transcripcional que incluyen a un gran número de moléculas, entre ellas RNAs no codificantes, que pudieran estar participando en diversos aspectos de la modulación del tiempo del desarrollo y/o la plasticidad intermodal.

REFERENCIAS

- 1. Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3: 443-452.
- 2. Burton H (2003) Visual cortex activity in early and late blind people. J Neurosci 23: 4005-4011.
- 3. Merabet LB, Rizzo JF, Amedi A, Somers DC, Pascual-Leone A (2005) What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses. Nat Rev Neurosci 6: 71-77.
- 4. Pascual-Leone A, Cammarota A, Wassermann EM, Brasil-Neto JP, Cohen LG, et al. (1993) Modulation of motor cortical outputs to the reading hand of braille readers. Ann Neurol 34: 33-37.
- 5. Sathian K (2000) Practice makes perfect: sharper tactile perception in the blind. Neurology 54: 2203-2204.
- 6. Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, et al. (2000) A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20: 2664-2672.
- 7. Bronchti G, Schonenberger N, Welker E, Van der Loos H (1992) Barrelfield expansion after neonatal eye removal in mice. Neuroreport 3: 489-492.
- 8. Rauschecker JP, Tian B, Korte M, Egert U (1992) Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals. Proc Natl Acad Sci U S A 89: 5063-5067.
- 9. Zheng D, Purves D (1995) Effects of increased neural activity on brain growth. Proc Natl Acad Sci U S A 92: 1802-1806.
- 10. McNamara K (1997) Shapes of time : the evolution of growth and development. Baltimore, Md.: Johns Hopkins University Press. xii, 342 p. p.
- 11. Smith KK (2003) Time's arrow: heterochrony and the evolution of development. Int J Dev Biol 47: 613-621.
- 12. Fan G, Martinowich K, Chin MH, He F, Fouse SD, et al. (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132: 3345-3356.
- 13. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169: 577-589.
- 14. Ambros V (2011) MicroRNAs and developmental timing. Curr Opin Genet Dev.
- 15. Antonini A, Stryker MP (1993) Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci 13: 3549-3573.
- 16. Catalano SM, Robertson RT, Killackey HP (1995) Rapid alteration of thalamocortical axon morphology follows peripheral damage in the neonatal rat. Proc Natl Acad Sci U S A 92: 2549-2552.

- 17. Jensen KF, Killackey HP (1987) Terminal arbors of axons projecting to the somatosensory cortex of the adult rat. II. The altered morphology of thalamocortical afferents following neonatal infraorbital nerve cut. J Neurosci 7: 3544-3553.
- 18. Killackey HP, Dawson DR (1989) Expansion of the Central Hindpaw Representation Following Fetal Forelimb Removal in the Rat. Eur J Neurosci 1: 210-221.
- 19. Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, et al. (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389: 180-183.
- 20. Kujala T, Alho K, Naatanen R (2000) Cross-modal reorganization of human cortical functions. Trends Neurosci 23: 115-120.
- 21. Wong-Riley MT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12: 94-101.
- 22. Riddle DR, Gutierrez G, Zheng D, White LE, Richards A, et al. (1993) Differential metabolic and electrical activity in the somatic sensory cortex of juvenile and adult rats. J Neurosci 13: 4193-4213.
- 23. Landers M, Philip Zeigler H (2006) Development of rodent whisking: trigeminal input and central pattern generation. Somatosens Mot Res 23: 1-10.
- 24. Micheva KD, Beaulieu C (1996) Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J Comp Neurol 373: 340-354.
- 25. Toscano-Marquez B, Martinez-Martinez E, Manjarrez E, Martinez L, Mendoza-Torreblanca J, et al. (2008) Late onset muscle plasticity in the whisker pad of enucleated rats. Proc Natl Acad Sci U S A 105: 15973-15978.
- 26. Welker E, Rao SB, Dorfl J, Melzer P, van der Loos H (1992) Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal. J Neurosci 12: 153-170.
- 27. Welker WI (1964) Analysis of sniffing of the albino rat. Behavior 12: 223-244.
- 28. Armstrong-James M (1975) The functional status and columnar organization of single cells responding to cutaneous stimulation in neonatal rat somatosensory cortex S1. J Physiol 246: 501-538.
- 29. Chiaia NL, Fish SE, Bauer WR, Bennett-Clarke CA, Rhoades RW (1992) Postnatal blockade of cortical activity by tetrodotoxin does not disrupt the formation of vibrissa-related patterns in the rat's somatosensory cortex. Brain Res Dev Brain Res 66: 244-250.
- 30. McCandlish CA, Li CX, Waters RS (1993) Early development of the SI cortical barrel field representation in neonatal rats follows a lateral-to-medial gradient: an electrophysiological study. Exp Brain Res 92: 369-374.
- 31. Gould SJ (1977) Ontogeny and phylogeny. Cambridge, Mass.: Belknap Press of Harvard University Press. ix, 501 p. p.
- 32. Killackey HP, Belford GR (1979) The formation of afferent patterns in the somatosensory cortex of the neonatal rat. J Comp Neurol 183: 285-303.
- 33. Pasquinelli AE, Ruvkun G (2002) Control of developmental timing by micrornas and their targets. Annu Rev Cell Dev Biol 18: 495-513.
- 34. Allis CD, Jenuwein T, Reinberg D (2006) Epigenetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press. x, 502 p. p.

- 35. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41-45.
- 36. Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25: 1192-1200.
- 37. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074-1080.
- 38. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447: 407-412.
- 39. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. New York: McGraw-Hill, Health Professions Division. xli, 1414 p. p.
- 40. Kandel ER (2001) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21: 565-611.
- 41. Hsieh J, Gage FH (2005) Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 17: 664-671.
- 42. Levenson JM, Sweatt JD (2005) Epigenetic mechanisms in memory formation. Nat Rev Neurosci 6: 108-118.
- 43. Graff J, Kim D, Dobbin MM, Tsai LH (2011) Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol Rev 91: 603-649.
- 44. Golshani P, Hutnick L, Schweizer F, Fan G (2005) Conditional Dnmt1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat Syst 3: 227-233.
- 45. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42: 961-972.
- 46. Martin KC, Sun YE (2004) To learn better, keep the HAT on. Neuron 42: 879-881.
- 47. Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, et al. (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42: 947-959.
- 48. Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, et al. (2005) Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 48: 303-314.
- 49. Levine AA, Guan Z, Barco A, Xu S, Kandel ER, et al. (2005) CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci U S A 102: 19186-19191.
- 50. Putignano E, Lonetti G, Cancedda L, Ratto G, Costa M, et al. (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53: 747-759.
- Pina B, Martinez P, Suau P (1988) Differential acetylation of core histones in rat cerebral cortex neurons during development and aging. Eur J Biochem 174: 311-315.
- 52. Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, et al. (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276: 36734-36741.

- 53. Morey JS, Ryan JC, Van Dolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8: 175-193.
- 54. Wang Z, Xu L, Zhu X, Cui W, Sun Y, et al. (2010) Demethylation of specific Wnt/beta-catenin pathway genes and its upregulation in rat brain induced by prenatal valproate exposure. Anat Rec (Hoboken) 293: 1947-1953.
- 55. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14: 515-519.
- 56. Luhmann HJ, Prince DA (1991) Postnatal maturation of the GABAergic system in rat neocortex. J Neurophysiol 65: 247-263.
- 57. Baird DH, Trenkner E, Mason CA (1996) Arrest of afferent axon extension by target neurons in vitro is regulated by the NMDA receptor. J Neurosci 16: 2642-2648.
- 58. Chang S, De Camilli P (2001) Glutamate regulates actin-based motility in axonal filopodia. Nat Neurosci 4: 787-793.
- 59. Cohan CS, Kater SB (1986) Suppression of neurite elongation and growth cone motility by electrical activity. Science 232: 1638-1640.
- 60. Fields RD, Neale EA, Nelson PG (1990) Effects of patterned electrical activity on neurite outgrowth from mouse sensory neurons. J Neurosci 10: 2950-2964.
- 61. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3: 715-727.
- 62. Represa A, Ben-Ari Y (2005) Trophic actions of GABA on neuronal development. Trends Neurosci 28: 278-283.
- 63. Witt O, Deubzer HE, Milde T, Oehme I (2009) HDAC family: What are the cancer relevant targets? Cancer Lett 277: 8-21.
- 64. Durand B, Raff M (2000) A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays 22: 64-71.
- 65. Wang CL, Zhang L, Zhou Y, Zhou J, Yang XJ, et al. (2007) Activity-dependent development of callosal projections in the somatosensory cortex. J Neurosci 27: 11334-11342.
- 66. Mire E, Mezzera C, Leyva-Diaz E, Paternain AV, Squarzoni P, et al. (2012) Spontaneous activity regulates Robo1 transcription to mediate a switch in thalamocortical axon growth. Nat Neurosci.
- 67. Barbato C, Giorgi C, Catalanotto C, Cogoni C (2008) Thinking about RNA? MicroRNAs in the brain. Mamm Genome 19: 541-551.
- 68. Schratt G (2009) Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol 19: 213-219.
- 69. Schratt G (2009) microRNAs at the synapse. Nat Rev Neurosci 10: 842-849.
- 70. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, et al. (2000) The 21nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906.
- 71. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855-862.

- 72. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9: 1274-1281.
- 73. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Sestan N, et al. (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5: R68.
- 74. Gao FB (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5: 25.
- 75. Olsson-Carter K, Slack FJ (2010) A developmental timing switch promotes axon outgrowth independent of known guidance receptors. PLoS Genet 6.
- 76. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. (2006) A brainspecific microRNA regulates dendritic spine development. Nature 439: 283-289.
- 77. Fiore R, Siegel G, Schratt G (2008) MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta 1779: 471-478.
- 78. Nimmo RA, Slack FJ (2009) An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118: 405-418.
- 79. Silingardi D, Scali M, Belluomini G, Pizzorusso T (2010) Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. Eur J Neurosci 31: 2185-2192.
- Schneider T, Przewlocki R (2005) Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 30: 80-89.
- 81. Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, et al. (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135: 907-918.
- 82. Maria E. Frigolet NT, Laura Uribe-Figueroa, Claudia Rangel,, Gerardo Jimenez-Sanchez ART (2011) White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats. Journal of Nutritional Biochemistry 22: 118-129.
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.

APÉNDICE

Tabla 1. Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 48h

Gen	Nombre en inglés e identificadores más comúnes	p-value(48h* E vs. 48h * C)	Fold-Change(48h*
RGD1564858	ENSRNOT00000059958 // RGD1564858 // similar to putative protein kinase //	0.0241338	-1.2011
Vom2r12	NM_001099488 // Vom2r12 // vomeronasal 2 receptor, 12 // 1q12 // 690566	0.000886435	-1.65717
Olr5	NM_001000112 // Olr5 // olfactory receptor 5 // 1q12 // 292561 /// ENSRNOT000000	0.0235361	-1.45402
V1rd24	NM_001008937 // V1rd24 // vomeronasal 1 receptor, D24 // 1q12 // 494284 /// AY51	0.0061008	1.69805
V1rd25	NM_001008964 // V1rd25 // vomeronasal 1 receptor, D25 // 1q12 // 494307 /// ENSR	0.0296826	1.23567
Vom2r31	NM_173319 // Vom2r31 // vomeronasal 2 receptor, 31 // 1q21 // 286985 /// ENSRNOT	0.0422448	-1.3216
Irgq	NM_001135742 // Irgq // immunity-related GTPase family, Q // 1q21 // 292708 ///	0.0123016	-1.47802
Dmkn	BC166816 // Dmkn // dermokine // 1q21 // 361548 /// ENSRNOT00000040607 // Dmkn /	0.00535772	-1.22036
Klk1b3	NM_031523 // Klk1b3 // kallikrein 1-related peptidase b3 // 1q22 // 24594 /// EN	0.0265876	-1.32311
Ntf4	NM_013184 // Ntf4 // neurotrophin 4 // 1q22 // 25730 /// ENSRNOT00000028194 // N	0.0237363	-1.24514
Mcee	NM_001106341 // Mcee // methylmalonyl CoA epimerase // 1q22 // 293829 /// ENSRNO	0.0203612	-1.22738
Rab38	NM_145774 // Rab38 // RAB38, member RAS oncogene family // 1q32 // 252916 /// EN	0.00430412	-1.30456
Phox2a	NM_053869 // Phox2a // paired-like homeobox 2a // 1q32 // 116648 /// ENSRNOT0000	0.0330232	-1.21914
Olr41	NM_001000126 // Olr41 // olfactory receptor 41 // 1q32 // 293195 /// ENSRNOT0000	0.00927541	1.20206
Olr49	NM_001000132 // Olr49 // olfactory receptor 49 // 1q32 // 293211 /// ENSRNOT0000	0.000381693	1.33788
LOC686149	XM_001066709 // LOC686149 // similar to Actin, aortic smooth muscle (Alpha- actin-2)//1q41	0.0178055	1.22816
LOC293697	XM_001072560 // LOC293697 // similar to 60S ribosomal protein L29 (P23) // 1q43	0.000515051	-1.30613
Pnlip	NM_013161 // Pnlip // pancreatic lipase // 1q55 // 25702 /// ENSRNOT00000024065	0.00772316	-1.20444
Cnksr3	NM_001012061 // Cnksr3 // Cnksr family member 3 // 1p11 // 308113 /// ENSRNOT000	0.00574989	1.21919
V1re23	NM_001008962 // V1re23 // vomeronasal 1 receptor, E23 // 1q12 // 494306 /// ENSR	0.0337994	1.20085
Obox5	ENSRNOT00000045660 // Obox5 // oocyte specific homeobox 5 // 1q12 // 308331	0.036184	-1.22256
Leng8	NM_001037790 // Leng8 // leukocyte receptor cluster (LRC) member 8 // 1q12 // 36	0.0111547	1.21049
Hcst	NM_001005900 // Hcst // hematopoietic cell signal transducer // 1q21 // 474146 /	0.0423521	1.31555
Upk1a	NM_001108911 // Upk1a // uroplakin 1A // 1q21 // 365227 /// ENSRNOT00000033621 /	0.0451456	1.2039
Hamp	NM_053469 // Hamp // hepcidin antimicrobial peptide // 1q21 // 84604 /// ENSRNOT	0.00389165	1.28051
LOC292801	ENSRNOT00000046226 // LOC292801 // lacrimal gland protein // 1q21 // 292801 ///	0.020001	-1.30342
Plekhf1	NM_001013148 // Plekhf1 // PH domain-containing family F member 1;	0.0219828	-1.26475

	pleckstrin homology domain-containing family F member 1//1q22		
RGD1309036	NM_001106255 // RGD1309036 // hypothetical LOC292874 // 1q22 // 292874	0.0359882	-1.20094
RGD1561859	XR_007854 // RGD1561859 // similar to pyroglutamyl-peptidase I // 1q22 // 365280	0.0308023	1.2359
Fah	NM_017181 // Fah // fumarylacetoacetate hydrolase // 1q31 // 29383 /// ENSRNOT00	0.00477127	1.23346
Olr80	NM_001001270 // Olr80 // olfactory receptor 80 // 1q32 // 293223 /// ENSRNOT0000	0.0464143	1.2909
Olr109	NM_001000952 // Olr109 // olfactory receptor 109 // 1q32 // 405298 /// ENSRNOT00	0.0162668	1.33606
Olr131	NM_001001285 // Olr131 // olfactory receptor 131 // 1q32 // 405071 /// ENSRNOT00	0.032289	-1.22523
RGD1562433	BC127523 // RGD1562433 // similar to ubiquilin 1 isoform 2 // 1q32 // 499222 ///	0.0189491	-1.28583
RGD1310717	NM_001106287 // RGD1310717 // similar to RIKEN cDNA E030002003 // 1q32 // 293288	0.00481218	1.26656
RGD1564933	ENSRNOT00000048478 // RGD1564933 // similar to olfactory receptor Olr271 // 1q33	0.00516955	-1.27616
Calca	NM_001033955 // Calca // calcitonin/calcitonin-related polypeptide, alpha // 1q3	0.0136406	-1.23338
Olr378	NM_001001286 // Olr378 // olfactory receptor 378 // 1q43 // 405366 /// ENSRNOT00	0.000867982	1.27373
RGD1561986	ENSRNOT00000054797 // RGD1561986 // similar to RIKEN cDNA 3110001l22 // 1q43 //	0.0200948	-1.40748
Psat1	NM_198738 // Psat1 // phosphoserine aminotransferase 1 // 1q43 // 293820 /// ENS	0.00441642	1.23857
Calhm3	ENSRNOT00000036202 // Calhm3 // calcium homeostasis modulator 3 // 1q54 // 49936	0.012723	-1.22594
RGD1311190	ENSRNOT00000022697 // RGD1311190 // similar to Neuronal pentraxin II precursor (NP-II) (NP2)//10q12	0.00615908	-1.29711
RGD1565284	NM_001109032 // RGD1565284 // similar to RIKEN cDNA A530088H08 gene // 10q24 //	0.00882791	-1.2914
Chad	NM_019164 // Chad // chondroadherin // 10q31 // 29195 /// ENSRNOT00000004435 //	0.0296844	-1.22177
LOC680428	NM_001109406 // LOC680428 // hypothetical protein LOC680428 // 10q32.1 // 680428	0.0347566	-1.5592
Imp5	NM_001105847 // Imp5 // intramembrane protease 5 // 10q32.1 // 287753 /// BC1609	0.00562757	-1.24334
Kcnj16	NM_053314 // Kcnj16 // potassium inwardly-rectifying channel, subfamily J, member//10q32.1	0.00390459	-1.26287
Olr1364	NM_001000858 // Olr1364 // olfactory receptor 1364 // 10q12 // 405150 /// ENSRNO	0.00599199	-1.2869
Rnf151	NM_001106987 // Rnf151 // ring finger protein 151 // 10q12 // 302977 /// ENSRNOT	0.00508206	-1.27566
Adra1b	NM_016991 // Adra1b // adrenergic, alpha-1B-, receptor // 10q21 // 24173 /// BC0	0.0175508	-1.28874
Olr1436	NM_001000014 // Olr1436 // olfactory receptor 1436 // 10q22 // 287324 /// NM_001	0.00368959	1.27275
Hist3h2bb	NM_001109641 // Hist3h2bb // histone cluster 3, H2bb // 10q22 // 691488	0.00902006	-1.29135
Chrnb1	NM_012528 // Chrnb1 // cholinergic receptor, nicotinic, beta 1 (muscle) // 10q24	0.0448651	-1.20362
Slc2a4	NM_012751 // Slc2a4 // solute carrier family 2 (facilitated glucose transporter)//10q24	0.0186754	1.23436
RGD1359156	NM_001005531 // RGD1359156 // similar to hypothetical protein FLJ25414 // 10q32.	0.0186025	-1.29329
Lgals3bp	NM_139096 // Lgals3bp // lectin, galactoside-binding, soluble, 3 binding protein	0.000355268	1.31521
RGD1307569	ENSRNOT0000002838 // RGD1307569 // similar to Protein C21orf63 homolog precursor//11q11	0.0378192	1.21216
Olr1532	NM_001001103 // Olr1532 // olfactory receptor 1532 // 11q12 // 405999 /// ENSRNO	0.0283345	-1.23927
RGD1308138	ENSRNOT00000060577 // RGD1308138 // similar to hypothetical protein LOC131368 //11q12	0.019317	-1.20752

Stfa2l2	ENSRNOT00000045639 // Stfa2l2 // stefin A2-like 2 // 11q22 // 288070	0.0156868	1.27983
Lrrc33	NM_001024995 // Lrrc33 // leucine rich repeat containing 33 // 11q22 // 303875 /	0.0070217	-1.27664
RGD1566186	ENSRNOT00000046693 // RGD1566186 // similar to 60S ribosomal protein L29 (P23) //chr11 //Ensembl retrotransposed gene with one transcript and one exon	0.00804141	1.23003
Stfa3	NM_001105877 // Stfa3 // stefin A3 // 11q22 // 288075	0.0262718	-1.24263
Ostn	NM_207612 // Ostn // osteocrin // 11q22 // 360730 /// ENSRNOT00000049841 // Ostn	0.0214646	1.25637
Cd209a	NM_001105904 // Cd209a // CD209a molecule // 12p12 // 288375 /// ENSRNOT00000061	0.00414353	1.23357
Vom2r63	NM_001099499 // Vom2r63 // vomeronasal 2 receptor, 63 // 12q11 // 288541 /// ENS	0.0398901	-1.31654
Cmklr1	NM_022218 // Cmklr1 // chemokine-like receptor 1 // 12q16 // 60669 /// ENSRNOT00	0.0213595	-1.38793
Pxmp2	NM_031587 // Pxmp2 // peroxisomal membrane protein 2 // 12q16 // 29533 /// ENSRN	0.00610763	1.21545
Lrrc8e	NM_001034139 // Lrrc8e // leucine rich repeat containing 8 family, member E // 1	0.0361503	1.33894
RGD1311899	BC088751 // RGD1311899 // similar to RIKEN cDNA 2210016L21 gene // 12q16 // 2887	0.00229646	-1.24667
RGD1565977	XR_008717 // RGD1565977 // similar to 40S ribosomal protein S3 // 13q21 // 28908	0.000948209	-1.28235
Angptl1	NM_001109383 // Angptl1 // angiopoietin-like 1 // 13q22 // 679942	0.0140223	1.24769
Optc	NM_001107176 // Optc // opticin // 13q13 // 304802	0.0288354	-1.213
Vom2r65	NM_001099654 // Vom2r65 // vomeronasal 2 receptor, 65 // 14p22 // 689403 /// NM_	0.000593041	1.26678
Tgfbr3	NM_017256 // Tgfbr3 // transforming growth factor, beta receptor III // 14p22 //	0.00240181	1.2078
LOC498330	NM_001017495 // LOC498330 // similar to hypothetical protein MGC26744 // 14p22 /	0.0423012	-1.20708
Zfp518b	ENSRNOT00000037291 // Zfp518b // zinc finger protein 518B // 14q21 // 498390 ///	0.00226064	1.21293
Vom2r-ps125	XR_006701 // Vom2r-ps125 // vomeronasal 2 receptor, pseudogene 125 // 14p22 // 3	0.0312537	-1.26564
Ibsp	NM_012587 // Ibsp // integrin binding sialoprotein // 14p22 // 24477 /// ENSRNOT	0.00802593	-1.34965
Grxcr1	ENSRNOT00000059439 // Grxcr1 // glutaredoxin, cysteine rich 1 // 14p11 // 498355	0.0327586	-1.20111
Gba3	NM_001106010 // Gba3 // glucosidase, beta, acid 3 (cytosolic) // 14q11 // 289687	0.0235218	-1.26291
LOC289806	ENSRNOT00000045434 // LOC289806 // similar to calcium-regulated heat- stable protein//14q22	0.0167826	-1.31675
Mcpt9	NM_019323 // Mcpt9 // mast cell protease 9 // 15p12 // 54272 /// ENSRNOT00000050	0.0267374	1.35275
Nkx2-6	NM_001127653 // Nkx2-6 // NK2 transcription factor related, locus 6 (Drosophila)//15p11	0.0140419	-1.301
Olr1635	NM_001000970 // Olr1635 // olfactory receptor 1635 // 15p14 // 405325 /// ENSRNO	0.00578255	-1.2611
Slc7a7	NM_031341 // Slc7a7 // solute carrier family 7 ,L-type amino acid transporter 1//15p13	0.00622384	1.20226
Setl1	NM_194353 // Setl1 // SET translocation-like 1 // 15q21 // 290432 /// AY366388 /	0.00148107	-1.25876
Ppif	ENSRNOT00000061886 // Ppif // peptidylprolyl isomerase F (cyclophilin F) // 16p1	0.0418	-1.22146
LOC502044	XR_008088 // LOC502044 // similar to 60S ribosomal protein L21 // 16p16 // 50204	0.0032028	-1.35361
RGD1564308	ENSRNOT00000059317 // RGD1564308 // similar to LOC495042 protein // 16q11 // 502	0.00110709	-1.28524
RGD1562638	BC128761 // RGD1562638 // similar to MAP/microtubule affinity-regulating kinase 3//16q12.3	0.034647	-1.32439
Rab20	NM_001109535 // Rab20 // RAB20, member RAS oncogene family // 16q12.5	0.0112462	-1.29777

	// 689377		
Slc18a3	NM_031663 // Slc18a3 // solute carrier family 18 (vesicular monoamine) member 3; vesicular acetylcholine transporter//16p16	0.00410932	-1.32278
LOC364620	BC079270 // LOC364620 // similar to RIKEN cDNA 4921537P18 // 16q12.3 // 364620 /	0.0100304	-1.21708
Tpte	NM_001108877 // Tpte // transmembrane phosphatase with tensin homology // 16q12.	0.0484355	1.22787
RGD1565806	ENSRNOT00000035742 // RGD1565806 // similar to 60S ribosomal protein L23a // 16g	0.00805331	1.20194
RGD1559950	ENSRNOT00000047795 // RGD1559950 // similar to STELLA // 17p14 // 498686	0.0347439	-1.20863
Neurog1	NM_019207 // Neurog1 // neurogenin 1 // 17p14 // 29410 /// ENSRNOT00000015916 //	0.0294283	-1.24823
Edaradd	ENSRNOT00000003535 // Edaradd // EDAR-associated death domain // 17q12.1 // 4987	0.0440491	1.20576
Mrpl36	NM_001108879 // Mrpl36 // mitochondrial ribosomal protein L36 // 17p14 // 364656	0.00783243	-1.25392
RGD1560527	ENSRNOT00000046348 // RGD1560527 // similar to serine/threonine kinase // 17p14	0.0391132	1.31613
RGD1565598	ENSRNOT00000031010 // RGD1565598 // similar to serine/threonine kinase // 17p14	0.0281397	1.20953
Tmem14c	NM_134395 // Tmem14c // transmembrane protein 14C // 17p12 // 171432 /// NM_0011	0.0180297	-1.25379
RGD1563458	NM_001107349 // RGD1563458 // similar to D0H6S2654E protein // 17p12 // 306883 /	0.000425034	1.42585
Znf307	ENSRNOT00000024797 // Znf307 // zinc finger protein 307 // 17q11 // 291164 /// X	0.0111222	-1.21385
RGD1559149	ENSRNOT00000041927 // RGD1559149 // sim to 60S ribosomal protein L7a // 17q11 //	0.0346292	-1.43087
Armc4	ENSRNOT00000025585 // Armc4 // armadillo repeat containing 4 // 17q12.1 // 30703	0.0396275	-1.24178
Hrh4	NM_131909 // Hrh4 // histamine receptor H4 // 18p13 // 170704 /// ENSRNOT0000002	0.0468292	-1.24748
Znf474	NM_001107380 // Znf474 // zinc finger protein 474 // 18q11 // 307310 /// ENSRNOT	0.0188854	1.24635
Prelid2	ENSRNOT00000060262 // Prelid2 // PRELI domain containing 2 // 18p11 // 681037	0.0160629	1.21966
LOC689570	NM_001109539 // LOC689570 // similar to Kazal type serine protease inhibitor 4 //18q12.1	0.0207095	1.22281
LOC685411	ENSRNOT00000041115 // LOC685411 // similar to spermatogenesis associated	0.0447771	1.34463
Sntb2	ENSRNOT00000027561 // Sntb2 // syntrophin, basic 2 // 19q12 // 689421	0.00115987	1.25136
Hydin	XM_226468 // Hydin // hydrocephalus inducing // 19q12 // 292017	0.0262026	1.30018
LOC688309	ENSRNOT00000043027 // LOC688309 // similar to 60S ribosomal protein L29 (P23) //	0.0175328	-1.2915
Mt2A	NM_001137564 // Mt2A // metallothionein 2A // 19p12 // 689415 /// BC168768 // Mt	0.00413142	1.22372
Fam89a	NM_001011711 // Fam89a // family with sequence similarity 89, member A // 19a12	0.0203165	-1.40652
Pou5f2	NM_001081751 // Pou5f2 // POU domain class 5, transcription factor 2 // 2q11	0.00607693	1.27733
LOC499499	XR_006305 // LOC499499 // similar to Glyceraldehyde-3-phosphate dehydrogenase (G	0.0206805	1.31663
LOC294844	ENSRNOT00000047137 // LOC294844 // similar to Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)//2022	0.0448351	-1.25179
RGD1562059	NM_001108558 // RGD1562059 // similar to RIKEN cDNA 1110038F21 // 2q34 // 361993	0.0379557	1.22869
Vtcn1	NM_001024244 // Vtcn1 //V-set domain-containing T-cell activation inhibitor 1; immune costimulatory protein B7-H4//2q34	0.0222246	1.21011
Gpr98	D87256 // Gpr98 // G protein-coupled receptor 98 // 2q11 // 685383	0.0095782	1.25778
Marveld2	NM_001108936 // Marveld2 // MARVEL domain containing 2 // 2q12 // 365657 /// ENS	0.0274127	-1.21073

LOC365659	ENSRNOT00000029207 // LOC365659 // similar to 60S ribosomal protein L7a	0.0313584	1.20086
Llank 2	(Surfeit locus protein 3)//2q12	0.0260644	1 21(72
нѕроз	NM_031/50 // Hspb3 // heat shock protein 3 // 2q14 // 78951 ///	0.0269641	-1.21673
C7	ENSRNOT00000060343 // C7 // complement component 7 // 2q16 // 117517	0.00289962	1.25736
	/// ENSRNOT		
СраЗ	NM_019300 // Cpa3 // carboxypeptidase A3, mast cell // 2q24 // 54242 /// ENSRNOT	0.0457361	1.24047
Ccna2	NM_053702 // Ccna2 // cyclin A2 // 2q25 // 114494 /// ENSRNOT00000021156	0.0121342	1.22382
21	// Clia NM_001108943 // II21 // interleukin 21 // 2α25 // 365769 ///	0.0498183	1,21783
	ENSRNOT00000023348		
Slc33a1	NM_022252 // Slc33a1 // solute carrier family 33 (acetyl-CoA transporter), membe//2g31	0.0107147	1.24727
Atp6v1a	ENSRNOT00000002727 // Atp6v1a // ATPase, H+ transporting, lysosomal V1 subunit A//11g21	0.0241321	1.24784
Tmem144	NM_001108551 // Tmem144 // transmembrane protein 144 // 2q32 // 361968	0.0121223	-1.32727
Lce1c	ENSRNOT00000012420 // Lce1c // late cornified envelope 1C // 2q34 // 685998	0.0464992	-1.27516
Olr1705	NM 001000887 // Olr1705 // olfactory receptor 1705 // 20p12 // 405188	0.0288889	1.21285
Olr1730		0.0419436	1 54083
011/30	NM_213	0.0115150	1.5 1005
Vgll2	NM_001107630 // Vgll2 // vestigial like 2 (Drosophila) // 20q11 // 309772 /// EN	0.0355714	-1.24953
RGD1565550	ENSRNOT00000044322 // RGD1565550 // similar to double homeobox, 4 //	0.0455952	1.31221
Olr1678	NM_001000893 // Olr1678 // olfactory receptor 1678 // 20p12 // 405194 ///	0.0240615	1.2538
	ENSRNO		
Olr1686	NM_001001373 // Olr1686 // olfactory receptor gene Olr1686 // 20p12 // 294152 //	0.0334201	1.26198
Rnf39	NM_134374 // Rnf39 // ring finger protein 39 // 20p12 // 171387 /// ENSRNOT00000	0.0112275	-1.27535
Chst3	NM_053408 // Chst3 // carbohydrate sulfotransferase 3 // 20q11 // 84468 /// ENSR	0.0074894	1.23935
Entpd2	NM_172030 // Entpd2 // ectonucleoside triphosphate diphosphohydrolase 2 // 3n13	0.00653296	1.20443
Lcn10	NM_001128137 // Lcn10 // lipocalin 10 // 3p13 // 499756 ///	0.0409626	-1.22271
Vegp1	NM 022945 // Vegp1 // von Ebners gland protein 1 // 3p13 // 65039 ///	0.0188679	1.25304
	ENSRNOT000		
RGD1307355	NM_001107822 // RGD1307355 // similar to gene model 711 // 3p12 // 311825 /// BC	0.0024064	1.20188
Xirp2	NM_201989 // Xirp2 // xin actin-binding repeat containing 2 // 3q21 // 311098	0.0430024	-1.24719
Dlx1	NM_001100531 // Dlx1 // distal-less homeobox 1 // 3q21 // 296500 /// ENSRNOT0000	0.000763577	1.2068
Cdca7	NM_001025693 // Cdca7 // cell division cycle associated 7 // 3q22 // 311742	0.00745946	1.23088
Ppp1r1c	NM_001109200 // Ppp1r1c // protein phosphatase 1, regulatory (inhibitor)	0.0146294	-1.28831
Olr559	NM_001000668 // Olr559 // olfactory receptor 559 // 3q24 // 404870 ///	0.0320396	1.22417
Olr581	NM_001000663 // Olr581 // olfactory receptor 581 // 3q24 // 404863 ///	0.038756	1.24077
Olr660	NM_001000635 // Olr660 // olfactory receptor 660 // 3q24 // 404828 ///	0.024045	-1.23225
Olr727	NM_001000619 // Olr727 // olfactory receptor 727 // 3q24 // 404811 ///	0.0115599	1.23381
Itpka	NM_031045 // Itpka // inositol 1,4,5-trisphosphate 3-kinase A // 3q35 // 81677	0.0306886	-1.21805
MGC105649	// NM_001008518 // MGC105649 // hypothetical LOC302884 // 3q35 // 302884	0.00316659	1.30437
Astl	NM 001106504 // Astl // astacin-like metalloendopeptidase (M12 family) //	0.0291942	1.25804
		5.0251512	1.20001

	3q36 /		
RGD1306991	BC087680 // RGD1306991 // similar to Protein C20orf103 precursor // 3q36 // 3622	0.0139534	-1.34069
Banf2	ENSRNOT00000007946 // Banf2 // barrier to autointegration factor 2 // 3q41 // 29	0.023154	1.20544
Cst8	NM_019258 // Cst8 // cystatin 8 (cystatin-related epididymal specific) // 3q41 /	0.04825	-1.24283
Plunc	NM_172031 // Plunc // palate, lung, and nasal epithelium associated // 3q41 //	0.025693	1.42021
Tcfap2c		0.000434277	1.29356
LOC689618	NM_001109542 // LOC689618 // similar to Protein C20orf85 homolog // 3q42 // 6896	0.0322649	-1.23111
Tmem141	M_001109197 // Tmem141 // transmembrane protein 141 // 3p13 // 499755 /// ENSRN	0.00121507	1.20238
Stom	ENSRNOT00000025904 // Stom // stomatin // 3p11 // 296655	0.0181889	-1.24523
Olr411	NM_001000385 // Olr411 // olfactory receptor 411 // 3q11 // 296675 /// ENSRNOT00	0.043314	-1.21556
Olr416	NM_001000387 // Olr416 // olfactory receptor 416 // 3q11 // 296678 /// ENSRNOT00	0.00304341	-1.33684
Neurod1	NM_019218 // Neurod1 // neurogenic differentiation 1 // // 29458 /// ENSRNOT	0.0193678	1.29777
Olr539	NM_001000320 // Olr539 // olfactory receptor 539 // 3q24 // 295790 /// ENSRNOT00	0.0109586	-1.23344
Olr541	NM_001000565 // Olr541 // olfactory receptor 541 // 3q24 // 366104 /// ENSRNOT00	0.00790755	-1.98352
Olr551	NM_001000670 // Olr551 // olfactory receptor 551 // 3q24 // 404872 /// NM_001000	0.00309077	-1.20903
Olr675	NM_001000632 // Olr675 // olfactory receptor 675 // 3q24 // 404825 /// ENSRNOT00	0.0118257	-1.21292
Olr760	NM_001001069 // Olr760 // olfactory receptor 760 // 3q34 // 405957 /// ENSRNOT00	0.0301224	1.21569
Fsip1	NM_001013078 // Fsip1 // fibrous sheath interacting protein 1 // 3q35 // 296074	0.00537377	1.26333
Pdyn	NM_019374 // Pdyn // prodynorphin // 3q36 // 29190 /// ENSRNOT00000037576 // Pdy	0.00834393	-1.28927
RGD1306816	NM_001106515 // RGD1306816 // similar to chromosome 20 open reading frame 42; UNC-112 related protein 1; kindlin 1//3q36	0.00765745	-1.22086
Cst11	NM_139085 // Cst11 // cystatin 11 // 3q41 // 245916 /// ENSRNOT0000006427 // Cs	0.0112081	1.28316
Plagl2	NM_001106528 // Plagl2 // pleiomorphic adenoma gene-like 2 // 3q41 // 296281 ///	0.00208206	1.25389
Wfdc5	NM_001106538 // Wfdc5 // WAP four-disulfide core domain 5 // 3q42 // 296352 ///	0.00394539	1.231
Tac1	NM_012666 // Tac1 // tachykinin 1 // 4q21 // 24806 /// NM_001124768 // Tac1 // t	0.0138421	-1.22395
Tas2r137	NM_001025149 // Tas2r137 // taste receptor, type 2, member 137 // 4q22 // 500089	0.0312235	1.2178
Mgam	XM_001070897 // Mgam // maltase-glucoamylase // 4q22 // 312272	0.0149138	1.34449
Gimap9	NM_001008398 // Gimap9 // GTPase, IMAP family member 9 // 4q24 // 493865 /// ENS	0.0175063	1.26298
RGD1566107	NM_001134621 // RGD1566107 // similar to cAMP responsive element binding protein//4	0.0156941	1.24673
Ccdc129	ENSRNOT00000045930 // Ccdc129 // coiled-coil domain containing 129 // 4q24 // 50	0.000672199	-1.32653
V1rc36	NM_001008924 // V1rc36 // vomeronasal 1 receptor, C36 // 4q24 // 494273 /// ENSR	0.0292889	-1.22086
Krcc1	NM_001009413 // Krcc1 // lysine-rich coiled-coil 1 // 4q33 // 312437 /// ENSRNOT	0.024113	-1.21167
V1rb9	NM_173297 // V1rb9 // vomeronasal 1 receptor, B9 // 4q34 // 286956 /// U36897 //	0.00466901	-1.20991
Vnr1	NM_173113 // Vnr1 // vomeronasal receptor 1 // 4q34 // 286893 /// ENSRNOT0000004	0.00749775	1.37189

Vnr2	NM_173298 // Vnr2 // vomeronasal receptor 2 // 4q34 // 286957 ///	0.0326531	-1.21537
Hnrnpf	NM 001037286 // Hnrnpf // heterogeneous nuclear ribonucleoprotein F //	0.0220243	-1.23738
	4q42 // 6		
Fgf23	NM_130754 // Fgf23 // fibroblast growth factor 23 // 4q42 // 170583 /// ENSRNOTO	0.0379772	-1.25665
Kird1	NM_012745 // KIrd1 // killer cell lectin-like receptor, subfamily D, member 1 //4042	0.0149535	-1.21034
Hgf	NM_017017 // Hgf // hepatocyte growth factor // 4q12 // 24446 /// ENSRNOT0000000	0.0287804	1.23759
Cdk6	ENSRNOT00000012597 // Cdk6 // cyclin-dependent kinase 6 // 4q13 // 114483 /// AF	0.00391596	1.2523
RGD1565367	ENSRNOT00000059960 // RGD1565367 // similar to Solute carrier family 23, member 2 (Sodium-dependent vitamin C transporter 2)//4g22	0.00915164	-1.24974
ll23r	XM_001067609 // Il23r // interleukin 23 receptor // 4q31 // 689932	0.00470024	-1.42762
Tacstd2	NM_001009540 // Tacstd2 // tumor-associated calcium signal transducer 2 // 4031	0.0284115	-1.25391
Vamp8	NM_031827 // Vamp8 // vesicle-associated membrane protein 8 // 4q33 // 83730 ///	0.0345659	-1.22679
Cml5	NM_080884 // Cml5 // camello-like 5 // 4q34 // 114020 /// BC158648 // Cml5 // ca	0.00608614	-1.50452
Rps25	NM_001005528 // Rps25 // ribosomal protein s25 // 8q22 // 122799 /// ENSRNOT0000	0.0193332	-1.21156
Lmod3	ENSRNOT00000047453 // Lmod3 // leiomodin 3 (fetal) // 4q34 // 500267	0.0127905	-1.25795
Olr832	NM_001000898 // Olr832 // olfactory receptor 832 // 4q42 // 405208 /// ENSRNOT00	0.0107657	-1.21794
C3ar1	NM_032060 // C3ar1 // complement component 3a receptor 1 // 4q42 // 84007 /// EN	0.0403518	1.37809
Prb1	NM_172065 // Prb1 // proline-rich protein BstNI subfamily 1 // 4q42 // 257651 //	0.0307414	-1.22291
Gsg1	NM_001013166 // Gsg1 // germ cell associated 1 // 4q43 // 312793 /// ENSRNOT0000	0.0074682	-1.21768
RGD1562265	ENSRNOT00000042939 // RGD1562265 // similar to ribosomal protein S12 // 5q21 //	0.00892578	1.26548
Skint1	NM_001135916 // Skint1 // selection and upkeep of intraepithelial T cells 1 // 5q35	0.0025199	1.27906
RGD1308878	NM_001134522 // RGD1308878 // similar to arylacetamide deacetylase // 5q36 // 29	0.0220194	-1.2013
Penk1	NM_017139 // Penk1 // proenkephalin 1 // 5q12 // 29237 /// ENSRNOT00000011892 //	0.00550827	-1.58414
Gja10	ENSRNOT00000008469 // Gja10 // gap junction protein, alpha 10 // 5q21 // 313126	0.0163807	1.48982
RGD1305158	NM_001106644 // RGD1305158 // similar to RIKEN cDNA 1810030N24 // 5q21 // 297971	0.0160147	-1.49848
Mobkl2b	NM_001108970 // Mobkl2b // MOB1, Mps One Binder kinase activator-like 2B (yeast)//5q21-q22	0.00130758	1.24895
Ccl21b	NM_001008513 // Ccl21b // chemokine (C-C motif) ligand 21b (serine) // 5q22 // 2	0.0265737	-1.21626
Obp3	NM_147215 // Obp3 // alpha-2u globulin PGCL4 // 5q24 // 259247 /// NM_001033958	6.95E-05	-1.20003
RGD1565761	ENSRNOT00000034394 // RGD1565761 // similar to novel protein similar to esterases//5q36	0.0392468	-1.2777
Epcam	NM_138541 // Epcam // epithelial cell adhesion molecule // 6q12 // 171577 /// EN	0.0166899	-1.24846
Cib4	ENSRNOT00000013123 // Cib4 // calcium and integrin binding family member 4 // 6q14	0.0204148	1.25688
Batf	NM_001106748 // Batf // basic leucine zipper transcription factor, ATF-like // 6q31	0.0112214	1.23388
Prox2	ENSRNOT0000006704 // Prox2 // prospero homeobox 2 // 6q31 // 314319	0.0097187	1.2314
LOC500703	XR_006625 // LOC500703 // similar to heterogeneous nuclear ribonucleoproteins mehyltransferase-like 2//6q31	0.00470461	-1.25841
Ankrd9	NM_001012112 // Ankrd9 // ankyrin repeat domain 9 // 6q32 // 314457 /// ENSRNOT0	0.00930401	-1.229

Olr950	NM_001001370 // Olr950 // olfactory receptor 950 // 7q11 // 288878 ///	0.0169415	1.20504
Olr995	NM_001000938 // Olr995 // olfactory receptor 995 // 7q11 // 405265 /// ENSRNOT00	0.0442829	-1.27111
Olr1063	NM_001000064 // Olr1063 // olfactory receptor 1063 // 7q11 // 288828 /// ENSRNOT	0.0284971	-1.23644
Olr1073	NM_001000998 // Olr1073 // olfactory receptor 1073 // 7q11 // 405362 ///	0.0185865	-1.2061
Cthrc1	NM_172333 // Cthrc1 // collagen triple helix repeat containing 1 // 7q22 // 2828	0.00808572	-1.2183
Slc48a1	NM_001127456 // Slc48a1 // solute carrier family 48 (heme transporter), member 1//7g36	0.012583	1.21735
Prph	NM_012633 // Prph // peripherin // 7q34 // 24688 /// ENSRNOT00000021192 // Prnh	0.00680723	-1.21959
Hoxc13	ENSRNOT00000033300 // Hoxc13 // homeobox C13 // 7q36 // 315337 /// XM_235695 //	0.0291842	-1.25699
RGD1564409	ENSRNOT0000044079 // RGD1564409 // similar to hypothetical protein 4930509022 //7g13	0.00931042	-1.24023
Ascl1	NM_022384 // Ascl1 // achaete-scute complex homolog 1 (Drosophila) // 7q13 // 64	0.00327487	1.26872
LOC299744	XR_006002 // LOC299744 // similar to glyceraldehyde-3-phosphate dehydrogenase //7q13	0.00664148	1.22345
RGD1563996	ENSRNOT00000048111 // RGD1563996 // similar to Protein UNQ9166/PRO28631 precursor//7q34	0.0219796	-1.21982
Lalba	NM_012594 // Lalba // lactalbumin, alpha // 7q36 // 24528 /// ENSRNOT00000014456	0.0040405	1.20476
Rdh8	ENSRNOT00000032076 // Rdh8 // retinol dehydrogenase 8 (all-trans) // 8q13 // 690	0.0165117	1.21878
Olr1198	NM_001000436 // Olr1198 // olfactory receptor 1198 // 8q21 // 300525 /// NM_0010	0.00256424	1.21691
Olr1325	NM_001000473 // Olr1325 // olfactory receptor 1325 // 8q22 // 300625	0.026529	1.23964
RGD1311251	BC092578 // RGD1311251 // similar to RIKEN cDNA 4930550C14 // 8q24 // 315665 ///	0.036935	-1.25486
Crabp1	NM_001105716 // Crabp1 // cellular retinoic acid binding protein 1 // 8q24 // 25	0.0197743	-1.35058
Myo1e	NM_173101 // Myo1e // myosin IE // 8q24 // 25484	0.000370023	1.22638
Prss35	NM_001008560 // Prss35 // protease, serine, 35 // 8q31 // 315866 /// ENSRNOT0000	0.0243028	-1.20974
RGD1309873	NM_001108774 // RGD1309873 // similar to hypothetical protein BC010003 // 8a31 /	0.0397857	-1.21694
Nt5e	NM_021576 // Nt5e // 5' nucleotidase, ecto // 8q31 // 58813 /// ENSRNOT000000150	0.00311222	1.2322
RGD1307220	ENSRNOT00000038160 // RGD1307220 // similar to RIKEN cDNA E330026B02 // 8q32 //	0.0191068	-1.22422
Dlec1	BC079413 // Dlec1 // deleted in lung and esophageal cancer 1 isoform DLEC1- N1 //8q32	0.019216	1.25792
Jrkl	NM_001108122 // Jrkl // jerky homolog-like (mouse) // 8q11 // 315417 /// ENSRNOT	0.00731372	1.20315
Spa17	NM_053482 // Spa17 // sperm autoantigenic protein 17 // 8q21 // 85244 /// ENSRNO	0.00351385	-1.25418
Olr1314	NM_001000468 // Olr1314 // olfactory receptor 1314 // 8q22 // 300615 /// ENSRNOT	0.0128494	1.31744
Olr1338	ENSRNOT00000060028 // Olr1338 // olfactory receptor 1338 // 8q22 // 405073	0.0219736	-1.20824
Gcnt3	NM_173312 // Gcnt3 // glucosaminyl (N-acetyl) transferase 3, mucin type // 8g24	0.0206663	-1.20399
Filip1	NM_145682 // Filip1 // filamin A interacting protein 1 // 8q31 // 246776 /// ENS	0.0135735	-1.2388
Ccdc72	NM_001126048 // Ccdc72 // coiled-coil domain containing 72 // 8q32 // 679747 ///	0.0361606	-1.21163
Scn11a	NM_019265 // Scn11a // sodium channel, voltage-gated, type XI, alpha // 8q32 //	0.0109839	-1.20757
RGD1561662	ENSRNOT00000020516 // RGD1561662 // similar to Al661453 protein // 9q12 // 30123	0.00458318	-1.2036

RGD1310819	ENSRNOT00000051376 // RGD1310819 // similar to putative protein (5S487) //	0.0172186	-1.30406
Olr1343	9q21 NM_001001088 // Olr1343 // olfactory receptor 1343 // 9q36 // 405982 ///	0.00466364	-1.28988
	ENSRNOT		
Glod5	NM_001106957 // Glod5 // glyoxalase domain containing 5 // Xq13 // 302554 /// EN	0.00865796	-1.40676
Car5b	NM_001005551 // Car5b // carbonic anhydrase 5b, mitochondrial // Xq21 //	0.0138163	1.23573
Gpr174	NM_001106938 // Gpr174 // G protein-coupled receptor 174 // Xq31 //	0.00145613	-1.42537
RGD1561958	NM_001108819 // RGD1561958 // similar to RIKEN cDNA 2010106E10 // Xq32	0.012261	-1.26555
	// 363490		
ll1rapl2	ENSRNOT00000040816 // Il1rapl2 // interleukin 1 receptor accessory protein- like//Xq35	0.0229293	1.22283
Brs3	NM_152845 // Brs3 // bombesin-like receptor 3 // Xq36 // 260319 /// ENSRNOT00000	0.00391116	-1.23847
LOC689396	ENSRNOT00000041429 // LOC689396 // similar to RNA polymerase II	0.0327731	1.23504
Gpr50	ENSRNOT00000015147 // Gpr50 // G protein-coupled receptor 50 // Xq37 //	0.00557427	-1.28645
RGD1559446	ENSRNOT00000023238 // RGD1559446 // similar to zinc finger protein 92 //	0.00537854	-1.6614
LOC685774	Xq37 // ENSRNOT00000029966 // LOC685774 // hypothetical protein LOC685774 //	0.0241559	-1.38172
10000750	Xq21 // 685		
LOC302759	XR_006063 // LOC302759 // similar to muscle protein684 // Xq22 // 302759	0.00757798	1.24645
lgsf1	NM_175763 // lgsf1 // immunoglobulin superfamily, member 1 // Xq36 // 302822 ///	0.0470764	1.20584
	cdna:known / chr1 / gene:ENSRNOG0000031178//similar to zinc finger and SCAN domain	0.0136617	1.32258
	cdna:known / chr1 / gene:ENSRNOG0000027102 //similar to F49E2.5d	0.00247447	1.31776
	cdna:known / chr3 / gene:ENSRNOG0000012051//Ncaph//non-SMC condensin L complex, subunit H	0.00497189	1.22853
	cdna:known/chr10/gene:ENSRNOG0000020641/similar to ribosomalproteinS2	0.0138521	-1.20783
	cdna:known / chr11 / gene:ENSRNOG0000040050// keratin associated	0.00923939	1.26897
	cdna:known / chr11 / gene:ENSRNOG00000032728 //similar to stefin A2	0.0397971	1.20741
	cdna:known / chr14 / gene:ENSRNOG0000039734//hypothetical protein coding I OC681149	0.00806091	-1.23762
	cdna:known / chr14 / ENSRNOG0000022441 //hypotetical protein coding	0.0429669	-1.26436
	cdna:known / chr2 / gene:ENSRNOG0000029679//similar to Galectin- 9//nseudogene	0.0284126	-1.23525
	cdna:known/ chr4 / gene:ENSRNOG0000006857//similar to RIKEN cDNA	0.00016915	1.42063
	cdna:known / chr4 / gene:ENSRNOG0000029400//hypothetical LOC502860	0.0301464	-1.60839
	cdna:known / chr4 / gene:ENSRNOG0000031185// taste receptor, type 2, member 106	0.00849377	1.21608
	cdna:known / chrX /gene:ENSRNOG0000031566//hypothetical protein LOC684422	0.0241723	-1.33374
	ncrna:snRNA / chr1 / gene:ENSRNOG00000035817	0.0169493	1.39514
	ncrna:snRNA / chr7 / gene:ENSRNOG0000036111	0.00413999	1.28946
	ncrna:snRNA / chr1 / gene:ENSRNOG0000035723	0.0358293	1.22392
	ncrna:snRNA/ chr17 / gene:ENSRNOG00000034757	0.0205378	1.21118
	ncrna:snRNA / chrX / gene:ENSRNOG0000040588	0.00845068	-1.21864
	ncrna:snRNA / chr6 / gene:ENSRNOG00000040710	0.00845068	-1.21864
	ncrna:snRNA / chr1 / gene:ENSRNOG00000041094	0.00845068	-1.21864
	ncrna:snRNA/ chr9 / gene:ENSRNOG00000040608	0.00845068	-1.21864

ncrna:snRNA / chr4 / gene:ENSRNOG00000040931	0.00845068	-1.21864
ncrna:snRNA / chr 16 / gene:ENSRNOG0000040622	0.00845068	-1.21864
ncrna:snRNA / chr10 /gene:ENSRNOG00000041108	0.00845068	-1.21864
ncrna:snRNA / chrX / gene:ENSRNOG0000035142	0.0217315	-1.22821
ncrna:snRNA / chr1 / gene:ENSRNOG0000036285	0.0184002	-1.23746
ncrna:snRNA / chr2 / gene:ENSRNOG0000041741	0.0279764	-1.24057
ncrna:snRNA / chr3 / gene:ENSRNOG0000034921	0.00544432	-1.24244
ncrna:snRNA / chr1 / gene:ENSRNOG0000035381	0.0350466	-1.24259
ncrna:snRNA / chr10 / gene:ENSRNOG00000035196	0.0352464	-1.26404
ncrna:snRNA / chr16 / gene:ENSRNOG0000036225	0.00367356	-1.26771
ncrna:snRNA / chr17 / gene:ENSRNOG0000034329	0.0101136	-1.26851
ncrna:snRNA / chr1 / gene:ENSRNOG0000035941	0.0106164	-1.27152
ncrna:snRNA / chr18 / gene:ENSRNOG00000035176	0.0363222	-1.2756
ncrna:snRNA / chr1 / gene:ENSRNOG0000035366	0.00751448	-1.28726
ncrna:snRNA / chr8 / gene:ENSRNOG0000041797	0.00956766	-1.29411
ncrna:snRNA / chr14 / gene:ENSRNOG0000035310	0.0170626	-1.2999
ncrna:snRNA / chr8 / gene:ENSRNOG0000035095	0.00158274	-1.34864
ncrna:snRNA / chr7 / gene:ENSRNOG0000034873	0.0493568	-1.36535
ncrna:snRNA / chr4 / gene:ENSRNOG00000041982	0.029965	-1.39559
ncrna:snRNA / chr3 / gene:ENSRNOG0000034474	0.0213909	-1.40571
ncrna:snRNA / chr17 / gene:ENSRNOG0000034853	0.00528753	-1.41272
ncrna:snRNA / chr7 / gene:ENSRNOG0000034410	0.0488606	-1.41704
ncrna:snRNA / chr8 / gene:ENSRNOG0000036029	0.0488606	-1.41704
ncrna:snRNA / chr8 / gene:ENSRNOG0000034524	0.0436005	-1.42109
ncrna:snRNA / chr15 / gene:ENSRNOG0000034626	0.00805665	-1.44298
ncrna:snRNA / chr7 / gene:ENSRNOG0000034325	0.00265369	-1.44966
ncrna:snRNA / chr11 / gene:ENSRNOG0000034767	0.0121785	-1.45467
ncrna:snRNA / chr7 / gene:ENSRNOG0000035990	0.00464839	-1.53674
ncrna:snRNA / chr8 / gene:ENSRNOG0000034869	0.0444082	-1.54091
ncrna:snRNA / chr17 / gene:ENSRNOG00000035318	0.00196578	-1.58781
ncrna:snRNA / chr 13 / gene:ENSRNOG0000035127	0.0227445	-1.65934
ncrna:snRNA / chr 20 / gene:ENSRNOG0000035834	0.0164802	-2.06469
ncrna:snoRNA / chr6 / gene:ENSRNOG0000035671	0.0392949	1.36008
ncrna:snoRNA / chr6 / gene:ENSRNOG0000035988	0.0450307	1.34643
ncrna:snoRNA / chr8 / gene:ENSRNOG0000035992	0.0380958	1.33629
ncrna:snoRNA / chr 1 / gene:ENSRNOG0000035968	0.0380958	1.33629
ncrna:snoRNA / chr1 / gene:ENSRNOG00000035138	0.0466258	1.26532
ncrna:snoRNA / chr6 / gene:ENSRNOG0000035807	0.0444981	1.25609
ncrna:snoRNA / chr6 /gene:ENSRNOG00000035275	0.0444981	1.25609
ncrna:snoRNA / chr6 / gene:ENSRNOG0000034320	0.0444981	1.25609
ncrna:snoRNA / chr6 /gene:ENSRNOG0000036215	0.0444981	1.25609
ncrna:snoRNA / chr6 / gene:ENSRNOG0000035001	0.0444981	1.25609
ncrna:snoRNA / chr6 / gene:ENSRNOG0000034616	0.0444981	1.25609

ncrna:snoRNA / chr6 / gene:ENSRNOG0000034769	0.0444981	1.25609
ncrna:snoRNA / chr11 / gene:ENSRNOG00000034758	0.0127507	1.21066
ncrna:snoRNA / chr4 / gene:ENSRNOG0000035150	0.0495112	-1.21221
ncrna:snoRNA / chr8 / gene:ENSRNOG0000035133	0.0202186	-1.21603
ncrna:snoRNA / chr1 / ENSRNOG0000036203	0.0202186	-1.21603
ncrna:snoRNA / chr14 / gene:ENSRNOG0000036229	0.0214211	-1.23896
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034872	0.00201559	-1.25472
ncrna:miRNA / chr17 / gene:ENSRNOG0000036404	0.0298774	-1.38169
ncrna:miRNA / chr5 / gene:ENSRNOG0000036484	0.00472112	-2.06195
ncrna:miRNA / chr3 / gene:ENSRNOG0000036444	0.0218885	1.23465
MI0000642 Rattus norvegicus miR-351 stem-loop / chrX	0.0234009	1.27119
MI0000882 Rattus norvegicus miR-98 stem-loop / chrX	0.00481891	-1.2255
MI0003483 Rattus norvegicus miR-224 stem-loop / chrX	0.0442123	-1.24124
MI0000874 Rattus norvegicus miR-33 stem-loop / chr7	0.00710417	1.41455
MI0003525 Rattus norvegicus miR-543 stem-loop / chr6	0.0320405	-1.24972
MI0000847 Rattus norvegicus miR-19b-1 stem-loop / chr15	0.0101836	1.27373
MI0001656 Rattus norvegicus miR-365 stem-loop / chr10	0.0255035	-1.2124
MI0000849 Rattus norvegicus miR-19a stem-loop / chr15	0.0377059	1.31808
cdna:known / chr20 / gene:ENSRNOG0000026207 //pseudogene	0.00866124	-1.30106
cdna:known / chr1 / gene:ENSRNOG0000025122 //similar to ribosomal protein S14//pseudogene	0.0480569	-1.27527
cdna:known / chr9 /gene:ENSRNOG00000034205 //similar to glyceraldehyde- 3-phosphate dehydrogenase	0.0252797	1.23847
cdna:known / chr6 / gene:ENSRNOG0000032248//pseudogene similar to M phase phosphoprotein 6	0.0423484	1.26872
cdna:known / chr8 / gene:ENSRNOG00000027743 //similar to Galectin-8 (LGALS-8)//pseudogene	0.039912	-1.20307
cdna:pseudogene / chr8 / gene:ENSRNOG0000026117	0.0207595	1.33877
cdna:pseudogene / chr10 / gene:ENSRNOG0000020303	0.00843148	1.32805
cdna:pseudogene / chr10 / gene:ENSRNOG0000021333	0.0296525	1.27515
cdna:pseudogene / chr5 / gene:ENSRNOG0000038586	0.0116345	1.27433
cdna:pseudogene / chr9 / gene:ENSRNOG0000014421	0.0158516	1.2544
cdna:pseudogene / chr6 / gene:ENSRNOG0000025246	0.0481171	1.24433
cdna:pseudogene / chr1 / gene:ENSRNOG0000021766	0.00358186	1.24101
cdna:pseudogene / chr1 / gene:ENSRNOG0000036721	0.00489497	1.23677
cdna:pseudogene / chr2 / gene:ENSRNOG0000024586	0.021368	1.23547
cdna:pseudogene / chrX / gene:ENSRNOG0000037881	0.00143694	1.23539
cdna:pseudogene / chr14 / gene:ENSRNOG0000025813	0.0397517	1.22884
cdna:pseudogene / chr1 / gene:ENSRNOG0000017501	0.0478822	1.20676
cdna:pseudogene / chr3 / gene:ENSRNOG0000036853	0.0262487	1.20366
cdna:pseudogene / chr7 / gene:ENSRNOG0000025369	0.025201	-1.20463
cdna:pseudogene / chr15 / gene:ENSRNOG00000025918	0.0327737	-1.20822
cdna:pseudogene / chr2 / gene:ENSRNOG0000038764	0.0233182	-1.21804
cdna:pseudogene / chr4 / gene:ENSRNOG0000007274	0.0193875	-1.22302
cdna:pseudogene / chr11 / gene:ENSRNOG00000039495	0.0204632	-1.22638

cdna:pseudogene / chr6 / gene:ENSRNOG0000033401	0.00138107	-1.2641
cdna:pseudogene / chr19 / gene:ENSRNOG00000039611	0.0489829	-1.27869
cdna:pseudogene / chr3 / gene:ENSRNOG0000028442	0.00601281	-1.37996
cdna:novel / chr6 / gene:ENSRNOG0000038834	0.0137618	1.38116
cdna:novel / chr18 / gene:ENSRNOG0000038787	0.00490337	1.36104
cdna:novel / chr11 / gene:ENSRNOG0000027656	0.0397405	1.35898
cdna:novel / chr7 / gene:ENSRNOG0000008352	0.00963738	1.34313
cdna:novel / chr5 / gene:ENSRNOG0000000119	0.0375541	1.3296
cdna:novel / chr4 / gene:ENSRNOG0000030647	0.0127801	1.32538
cdna:novel / chr13 / gene:ENSRNOG0000031708	0.0370961	1.31974
cdna:novel / chr12 / gene:ENSRNOG0000028540	0.00312282	1.29788
cdna:novel / chr 1 / gene:ENSRNOG0000031240	0.00140372	1.28888
cdna:novel / chr2 / gene:ENSRNOG0000029393	0.0301838	1.26033
cdna:novel / chr1 / gene:ENSRNOG00000037324	0.0243606	1.25524
cdna:novel / chr10 / gene:ENSRNOG0000036774	0.010486	1.25227
cdna:novel / chr4 / gene:ENSRNOG00000037168	0.00717729	1.24886
cdna:novel / chr1 / gene:ENSRNOG0000027424	0.0264592	1.24615
cdna:novel / chr3v / gene:ENSRNOG0000036864	0.0171354	1.24234
cdna:novel / chr10 / gene:ENSRNOG00000037006	0.000783389	1.23846
cdna:novel / chr14 / gene:ENSRNOG00000038954	0.024679	1.2352
cdna:novel / chr3 / gene:ENSRNOG0000038236	0.00792631	1.23144
cdna:novel / chr2 / gene:ENSRNOG0000033577	0.0320814	1.23135
cdna:novel / chr4 / gene:ENSRNOG0000038024	0.0225212	1.2245
cdna:novel / chr1 / gene:ENSRNOG0000023684	0.00431026	1.21998
cdna:novel / chr4 / gene:ENSRNOG0000032176	0.016697	1.20802
cdna:novel / chr11 / gene:ENSRNOG0000038931	0.0281343	1.20365
cdna:novel / chr19 / gene:ENSRNOG0000025773	0.0433015	-1.20064
cdna:novel / chr13 / gene:ENSRNOG0000040233	0.0396307	-1.20963
cdna:novel / chr8 / gene:ENSRNOG0000039124	0.0217329	-1.2183
cdna:novel / chr5 / gene:ENSRNOG0000037530	0.00493163	-1.21971
cdna:novel / chr4 / gene:ENSRNOG0000015324	0.0479053	-1.22562
cdna:novel / chrX / gene:ENSRNOG0000023415	0.00774017	-1.22579
cdna:novel / chr7 / gene:ENSRNOG0000030060	0.0195239	-1.24789
cdna:novel / chr2 / gene:ENSRNOG0000037555	0.0350529	-1.25246
cdna:novel / chr1 / gene:ENSRNOG0000011787	0.038327	-1.25393
cdna:novel / chr5 / gene:ENSRNOG0000031622	0.0498429	-1.2612
cdna:novel / chr13 / gene:ENSRNOG0000039616	0.0196792	-1.26644
cdna:novel / chr7 / gene:ENSRNOG0000030924	0.0366822	-1.26725
cdna:novel / chr4 / gene:ENSRNOG0000029562	0.0113448	-1.28638
cdna:novel / chr1 / gene:ENSRNOG0000039835	0.00800937	-1.31493
cdna:novel / chr4 / gene:ENSRNOG0000021926	0.0459768	-1.31658
cdna:novel / chr3 / gene:ENSRNOG0000038849	0.0264082	-1.33511
cdna:novel / chr4 / gene:ENSRNOG0000029302	0.00883557	-1.33929

cdna:novel / chr15 / gene:ENSRNOG0000034211	0.00195981	-1.35231
cdna:novel / chr10 / gene:ENSRNOG0000003744	0.00216918	-1.41267
cdna:novel / chr6 / gene:ENSRNOG0000011939	0.00277541	-1.58384
cdna:novel / chr 1 / gene:ENSRNOG0000037094	0.00023439	-1.68784
cdna:novel / chr X / gene:ENSRNOG0000037491	0.000747506	-1.69692

Tabla 2. Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 82h

Gen	Nombre en inglés e identificadores más comúnes	p-value(82h* E vs. 82h * C)	Fold- Change(82h * E vs. 82h* C)
Pabpc3	NM_001106208 // Pabpc3 // poly(A) binding protein, cytoplasmic 3 // 1q11 // 2922	0.0130156	-1.20206
Vom2r12	NM_001099488 // Vom2r12 // vomeronasal 2 receptor, 12 // 1q12 // 690566	0.0442795	-1.31621
Vom2r24	NM_001099493 // Vom2r24 // vomeronasal 2 receptor, 24 // 1q12 // 690816 /// ENSR	0.032917	1.28472
Cyp2b2	ENSRNOT00000028196 // Cyp2b2 // cytochrome P450, family 2, subfamily b, polypeptide 1// 1	0.0403832	-1.26122
Klk1l	NM_012593 // Klk1l // kallikrein 1-like peptidase // 1q22 // 24523	0.0240178	-1.27902
Mrgprb5	NM_001002284 // Mrgprb5 // MAS-related G protein-coupled receptor, member B5 // 1q22	0.0305857	1.27175
Gabrb3	AY742860 // Gabrb3 // gamma-aminobutyric acid (GABA) A receptor, beta 3 // 1q22	0.0118641	-1.28696
Olr122	NM_001000156 // Olr122 // olfactory receptor 122 // 1q32 // 293258 /// ENSRNOT00	0.0328597	-1.23049
LOC499234	ENSRNOT00000051854 // LOC499234 // similar to NACHT, leucine rich repeat and PYD containing 14-like//1q33	0.0170494	-1.42045
Mpeg1	NM_022617 // Mpeg1 // macrophage expressed gene 1 // 1q43 // 64552 /// AF156540	0.010521	1.23727
Myb	ENSRNOT00000019313 // RGD1560020_predicted // similar to Myb proto- oncogene protein//1	0.0330518	1.21451
Taar1	NM_134328 // Taar1 // trace-amine-associated receptor 1 // 1p12 // 113914 /// EN	0.0458563	1.22371
LOC292516	NM_001013893 // LOC292516 // similar to actin-like 7-alpha-like protein // 1q12	0.00151778	-1.26349
Obox5	ENSRNOT00000045660 // Obox5 // oocyte specific homeobox 5 // 1q12 // 308331	0.00661971	1.31309
V1rd26	NM_001008913 // V1rd26 // vomeronasal 1 receptor, D26 // 1q12 // 494264 /// ENSR	0.000926035	-1.35947
RGD1310257	ENSRNOT00000018989 // RGD1310257 // similar to RIKEN cDNA 6330408A02 gene // 1q2	0.00843733	1.25971
Mrga10	NM_145787 // Mrga10 // nuclear receptor MrgA10 RF-amide G protein- coupled receptor//1q22	0.0380433	-1.38089
Mrgprx2	NM_001002280 // Mrgprx2 // MAS-related GPR, member X2 // 1q22 // 404640 /// ENSR	0.00416144	-1.30655
LOC365268	XR_005502 // LOC365268 // similar to COMM domain containing 9 // 1q22 // 365268	0.0320083	-1.42564
MGC72973	NM_198776 // MGC72973 // beta-glo // 1q32 // 361619 /// ENSRNOT00000019913 // MG	0.0491101	-1.20124
Olr218	NM_001000551 // Olr218 // olfactory receptor 218 // 1q33 // 365340 /// ENSRNOT00	0.0343906	-1.29943
LOC691211	ENSRNOT00000050823 // LOC691211 // similar to Cytochrome c, somatic // 1q34 // 6	0.0132092	-1.35392
Cuzd1	NM_054005 // Cuzd1 // CUB and zona pellucida-like domains 1 // 1q41 // 117179 //	0.0488326	-1.20302
Irf7	NM_001033691 // Irf7 // interferon regulatory factor 7 // 1q41 // 293624 /// ENS	0.00490983	1.26894
Rps6kb2	NM_001010962 // Rps6kb2 // ribosomal protein S6 kinase, polypeptide 2 // 1q42 //	0.000189916	1.21993
Cyp2c13	NM_138514 // Cyp2c13 // cytochrome P450 2c13 // 1q53 // 171521 /// M32277 // Cyp	0.0228128	1.20726
Calhm3	ENSRNOT000000036202 // Calhm3 // calcium homeostasis modulator 3 // 1q54 // 49936	0.0134574	-1.22356
Prm2	NM_012873 // Prm2 // protamine 2 // 10q11 // 25345 /// ENSRNOT0000003450 // Prm	0.0297153	-1.27576

Tpsb2	NM_019180 // Tpsb2 // tryptase beta 2 // 10q12 // 29268 ///	0.00111547	1.25904
Ebf1	ENSRNOT00000025220 / NM_053820 // Ebf1 // early B-cell factor 1 // 10q21 // 116543 /// ENSRNOT0000004	0.0397458	1.21082
Olr1443	NM_001000018 // Olr1443 // olfactory receptor 1443 // 10q22 // 287331 ///	0.0383257	-1.25114
RGD1561277	ENSRNO ENSRNOT00000039449 // RGD1561277 // RGD1561277 // 10q22 // 497911	0.00162702	1.2008
Ccl12	NM_001105822 // Ccl12 // chemokine (C-C motif) ligand 12 // 10q26 // 287562 ///	0.0152278	1.20056
Hbq1	XM_347266 // Hbq1 // hemoglobin, theta 1 // 10q12 // 303007	0.0133772	-1.23754
LOC686661	ENSRNOT00000036481 // LOC686661 // similar to CG1998-PA // 10	0.00429206	1.25326
Cryba1	ENSRNOT00000011608 // Cryba1 // crystallin, beta A1 // 10q24-q25 // 25583	0.0137466	-1.4628
Ddc8	NM_001017481 // Ddc8 // differential display clone 8 // 10q32.3 // 498028 /// EN	0.0382207	-1.3736
Lgals3bp	NM_139096 // Lgals3bp // lectin, galactoside-binding, soluble, 3 binding protein//10q32.3	0.00309969	1.23758
Olig2	ENSRNOT0000000325 // Olig2 // oligodendrocyte lineage transcription factor 2 //11q11	0.0257725	-1.36212
Olr1528	NM_001001099 // Olr1528 // olfactory receptor 1528 // 11q12 // 405995 /// ENSRNO	0.0400632	-1.29788
Parp14	ENSRNOT00000051838 // Parp14 // poly (ADP-ribose) polymerase family, member 14 //11q22	0.0264251	1.26249
Olr1565	NM_001000908 // Olr1565 // olfactory receptor 1565 // 11q23 // 405218 /// NM_001	0.0295696	1.20723
Cldn17	NM_001107112 // Cldn17 // claudin 17 // 11q11 // 304125 /// ENSRNOT00000032663 /	0.00631196	-1.21017
Kcne1	NM_012973 // Kcne1 // potassium voltage-gated channel, lsk-related subfamily, member 1//1q11	0.0337767	1.25761
Retnlb	NM_001024281 // Retnlb // resistin like beta // 11q21 // 498074 /// ENSRNOT00000	0.0234396	-1.26832
Parp9	NM_001103351 // Parp9 // poly (ADP-ribose) polymerase family, member 9 // 11g22	0.00373812	1.23989
Ocm	NM_012995 // Ocm // oncomodulin // 12p11 // 25503 /// ENSRNOT00000043439 // Ocm	0.0216238	-1.22525
Vom2r63	NM_001099499 // Vom2r63 // vomeronasal 2 receptor, 63 // 12q11 // 288541 /// ENS	0.0265763	-1.34968
LOC363903	XM_001065988 // LOC363903 // similar to ribosomal protein S13 // 12q12 // 363903	0.0147095	-1.2047
LOC501799	ENSRNOT00000061397 // LOC501799 // similar to chromobox homolog 3 // 12p12 // 50	0.0163727	-1.29354
Gal3st4	NM_001109064 // Gal3st4 // galactose-3-O-sulfotransferase 4 // 12q11 // 498166 /	0.0103366	1.26131
Oas1b	NM_144752 // Oas1b // 2-5 oligoadenylate synthetase 1B // 12q16 // 246268 /// EN	0.000482222	1.40299
F11r	NM_053796 // F11r // F11 receptor // 13q24 // 116479 /// ENSRNOT00000006141 // F	0.0276285	1.29518
Olr1588	NM_001000082 // Olr1588 // olfactory receptor 1588 // 13q24 // 289250	0.0333875	-1.37026
Wdr64	XM_001071080 // Wdr64 // WD repeat domain 64 // 13q25 // 689524	0.0356829	1.27715
Sft2d2	NM_001034011 // Sft2d2 // SFT2 domain containing 2 // 13q23 // 360868 /// ENSRNO	0.0158162	1.23126
Hlx	NM_001077674 // Hlx // H2.0-like homeobox // 13q26 // 364069 /// ENSRNOT00000003	0.0360144	-1.33057
Vom2r70	NM_001099477 // Vom2r70 // vomeronasal 2 receptor, 70 // 14p22 // 364086 /// ENS	0.0227834	-1.24453
Naaa	NM_001010967 // Naaa // N-acylethanolamine acid amidase // 14p22 // 497009 /// E	0.0166305	1.21453
Vcsa2	NM_198729 // Vcsa2 // variable coding sequence A2 // 14p22-p21 // 289526 /// NM_	0.0281309	-1.22034
Smr3a	NM_001017497 // Smr3a // submaxillary gland androgen regulated protein 3A // 14p	0.00200193	1.35109
LOC501427	ENSRNOT00000061061 // LOC501427 // similar to Spetex-2F protein // Chr15	0.0253133	-1.4169

	// 501427		
Olr1617	NM_001000839 // Olr1617 // olfactory receptor 1617 // 15p14 // 405128 /// ENSRNO	0.0013418	-1.29323
Irf9	NM_001012041 // Irf9 // interferon regulatory factor 9 // 15p13 // 305896 /// EN	0.00195084	1.23983
LOC684994	ENSRNOT00000033048 // LOC684994 // similar to retinoic acid receptor, beta // 15	0.0137178	1.23929
Olr1625	NM_001000971 // Olr1625 // olfactory receptor 1625 // 15p14 // 405326 /// ENSRNO	0.00104823	1.30026
Olr1644	NM_001000101 // Olr1644 // olfactory receptor 1644 // 15p14 // 290055 /// ENSRNO	0.0473281	-1.2067
Gzmb	X76996 // Gzmb // granzyme B // 15p12 // 171528 /// X66693 // Gzmb // granzyme B	0.0170987	1.32694
Esco2	ENSRNOT00000021320 // LOC691979 // similar to N-acetyltransferase ESCO2 (Establi	0.0357657	1.49547
Slitrk6	NM_001106057 // Slitrk6 // SLIT and NTRK-like family, member 6 // 15q23 // 29046	0.0448775	-1.25075
Farp1	NM_001107287 // Farp1 // FERM, RhoGEF (Arhgef) and pleckstrin domain protein 1//15q24-q25	0.00698891	-1.2158
Ddx60	ENSRNOT00000019667 // Ddx60 // DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 // 16p1	8.47E-05	1.51424
Defb40	NM_001037511 // Defb40 // defensin beta 40 // 16q12.5 // 641637 /// ENSRNOT00000	0.014122	-1.32111
Bst2	NM_198134 // Bst2 // bone marrow stromal cell antigen 2 // 16p14 // 378947	0.000917701	1.37699
Defb10	NM_001037510 // Defb10 // defensin beta 10 // 16q12.5 // 641635 /// ENSRNOT00000	0.0273685	-1.21505
Defb4	NM_022544 // Defb4 // defensin beta 4 // 16q12.5 // 64389 /// ENSRNOT00000058029	0.0397053	-1.25277
Mxd3	NM_145773 // Mxd3 // Max dimerization protein 3 // 17p14 // 252915 /// ENSRNOT00	0.0204235	1.21277
Edaradd	ENSRNOT00000003535 // Edaradd // EDAR-associated death domain // 17q12.1 // 4987	0.0270998	1.23109
Akr1c19	NM_001100576 // Akr1c19 // aldo-keto reductase family 1, member C19 // 17q12.3 /	0.025917	1.23531
Prl	NM_012629 // Prl // prolactin // 17p12 // 24683 /// ENSRNOT00000023412 // Prl //	0.00714183	1.21247
RGD1561231	ENSRNOT00000047232 // RGD1561231 // similar to MAP/microtubule affinity- regulating kinase 4//17q12.3	0.0406076	-1.43868
Gypc	NM_001013233 // Gypc // glycophorin C (Gerbich blood group) // 18p12 // 364837 /	0.0447668	1.25258
March3	NM_001007759 // March3 // membrane-associated ring finger (C3HC4) 3 // 18q12.1 /	0.00233322	1.24705
Ecg2	ENSRNOT00000040936 // Ecg2 // esophagus cancer-related protein 2 // 18q12.1 // 4	0.00634903	1.3046
LOC685226	ENSRNOT00000045972 // LOC685226 // similar to spermatogenesis associated glutamate E-rich protein//19q11	0.0158327	1.27644
RGD1308358	NM_001106175 // RGD1308358 // similar to 2210023G05Rik protein // 19q11 // 29195	0.0129041	1.21529
RGD1306072	ENSRNOT00000030658 // RGD1306072 // hypothetical LOC304654 // 19q11 // 304654	0.0110051	1.23254
Olr1667	NM_001000537 // Olr1667 // olfactory receptor 1667 // 19q11 // 364979 /// ENSRNO	0.018232	-1.26427
Fam89a	NM_001011711 // Fam89a // family with sequence similarity 89, member A // 19q12	0.00368572	-1.56365
Tas2r119	NM_023993 // Tas2r119 // taste receptor, type 2, member 119 // 2q22 // 78979 ///	0.00274592	-1.31661
Slc2a2	NM_012879 // Slc2a2 // solute carrier family 2 (facilitated glucose transporter)//2q24	0.00173681	-1.22905
Crnn	ENSRNOT00000011762 // Crnn // cornulin // 2q34 // 295186 /// XM_227367 // Crnn /	0.00940708	-1.2393
Dkk2	NM_001106472 // Dkk2 // dickkopf homolog 2 (Xenopus laevis) // 2q43 // 295445 //	0.0206903	1.29364
1121	NM_001108943 // Il21 // interleukin 21 // 2q25 // 365769 ///	0.033406	-1.24093

	ENSRNOT0000023348		
Olr392	NM_001000914 // Olr392 // olfactory receptor 392 // 2q34 // 405227 /// ENSRNOT00	0.0142568	-1.22424
Gstm2	NM_177426 // Gstm2 // glutathione S-transferase mu 2 // 2q34 // 24424 /// ENSRNO	0.0263804	1.33341
Sypl2	NM_001108563 // Sypl2 // synaptophysin-like 2 // 2q34 // 362018	0.00516715	1.24245
Rwdd3	NM_001128152 // Rwdd3 // RWD domain containing 3 // 2q41 // 65026 /// ENSRNOT000	0.0336011	1.25582
H2-T23	NM_001008886 // H2-T23 // histocompatibility 2, T region locus 23 // 20p12 // 29	0.0151084	1.23294
H2-T24	NM_001008826 // H2-T24 // histocompatibility 2, T region locus 24 // 20p12 // 41	0.00228688	1.25406
RT1-T24-1	NM_001008858 // RT1-T24-1 // histocompatibility 2, T region locus 24 // 20p12 //	0.013501	1.34087
Olr1738	NM_001006599 // Olr1738 // olfactory receptor 1738 // 20p12 // 406039 /// ENSRNO	0.0324173	1.23719
LOC10012537 7	ENSRNOT00000039741 // LOC100125377 // hypothetical LOC100125377 // 20	0.0321741	-1.22671
Olr597	NM_001000331 // Olr597 // olfactory receptor 597 // 3q24 // 295827 /// ENSRNOT00	0.0102292	-1.27886
Olr623	NM_001000651 // Olr623 // olfactory receptor 623 // 3q24 // 404848 /// NM_001000	0.00765953	1.22314
Olr634	NM_001000647 // Olr634 // olfactory receptor 634 // 3q24 // 404843 /// ENSRNOT00	0.000856359	1.24324
Olr664	NM_001000347 // Olr664 // olfactory receptor 664 // 3q24 // 295870 /// ENSRNOT00	0.000678394	1.23673
RGD1561276	ENSRNOT00000047015 // RGD1561276 // similar to olfactory receptor Olfr1289 // 3q	0.0191926	1.26086
Mcm8	NM_001106514 // Mcm8 // minichromosome maintenance complex component 8 // 3q36 /	0.0084858	1.21371
Cst9l	NM_001108597 // Cst9l // cystatin 9-like // 3q41 // 362231 /// ENSRNOT000000686	0.0159887	-1.25616
Cst7	NM_001106523 // Cst7 // cystatin F (leukocystatin) // 3q41 // 296257 /// ENSRNOT	0.0423855	1.29154
Angpt4	NM_001106526 // Angpt4 // angiopoietin 4 // 3q41 // 296269 /// ENSRNOT0000000678	0.00323042	-1.25756
Lrp1b	NM_001107843 // Lrp1b // low density lipoprotein-related protein 1B (deleted in tumors)//3q12	0.0138944	-1.22828
Olr462	NM_001000295 // Olr462 // olfactory receptor 462 // 3q24 // 295732 /// ENSRNOT00	0.0433891	-1.21871
Olr490	NM_001000933 // Olr490 // olfactory receptor 490 // 3q24 // 405253 /// ENSRNOT00	0.00141362	1.3317
Olr513	NM_001000313 // Olr513 // olfactory receptor 513 // 3q24 // 295766 /// ENSRNOT00	0.0265095	1.22588
Olr613	NM_001000654 // Olr613 // olfactory receptor 613 // 3q24 // 404852 /// ENSRNOT00	0.0437121	1.22844
Olr658	NM_001000344 // Olr658 // olfactory receptor 658 // 3q24 // 295864 /// ENSRNOT00	0.048975	1.28824
Olr671	NM_001001061 // Olr671 // olfactory receptor 671 // 3q24 // 405949 /// ENSRNOT00	0.0179364	-1.21435
Slc28a2	NM_031664 // Slc28a2 // solute carrier family 28 (sodium-coupled nucleoside transporter)member 2//3q35	0.0489293	1.23675
RGD1559924	XR_007622 // RGD1559924 // similar to Eukaryotic translation initiation factor 1// 3q41	0.0137828	-1.2698
Wfdc16	ENSRNOT00000042234 // Wfdc16 // WAP four-disulfide core domain 16 // 3q42 // 685	0.0121385	1.22346
Cbln4	NM_001109210 // Cbln4 // cerebellin 4 precursor // 3q42 // 499947 /// ENSRNOT000	0.0281361	1.20602
Napepld	NM_199381 // NapepId // N-acyl phosphatidylethanolamine phospholipase D // 4q11	0.0036489	1.27728
Wee2	ENSRNOT00000036398 // Wee2 // WEE1 homolog 2 (S. pombe) // 4q22 // 502750	0.0260194	-1.20333
V1rc29	NM_001008972 // V1rc29 // vomeronasal 1 receptor, C29 // 4q24 // 494314	0.0325266	1.24968

	/// ENSR		
Usp18	NM_001014058 // Usp18 // ubiquitin specific peptidase 18 // 4q42 // 312688 /// E	0.0386202	1.46388
LOC500331	BC086997 // LOC500331 // similar to osteoclast inhibitory lectin // 4q42 // 5003	0.0344842	-1.20121
Tas2r124	NM_001080938 // Tas2r124 // taste receptor, type 2, member 124 // 4q42 // 690472	0.0207724	-1.26306
Gprc5a	NM_001079890 // Gprc5a // G protein-coupled receptor, family C, group 5, member A// 4q43	0.00461606	-1.37111
Herc6	ENSRNOT00000031023 // Herc6 // potential ubiquitin ligase // 4q24 // 362376 ///	0.0316218	1.23587
LOC502884	XR_006326 // LOC502884 // similar to 60S ribosomal protein L29 // 4q42 // 502884	0.0141766	-1.33364
RGD1562831	EF100686 // RGD1562831 // similar to osteoclast inhibitory lectin // 4q42 // 362	0.0152447	1.34659
LOC689757	NM_001101019 // LOC689757 // similar to osteoclast inhibitory lectin // 4q42 //	0.00136491	1.20479
LOC689770	NM_001142304 // LOC689770 // similar to osteoclast inhibitory lectin // 4q42 //	0.0103108	-1.62702
Styk1	ENSRNOT00000013833 // Styk1 // serine/threonine/tyrosine kinase 1 // 4q42 // 500	0.00531014	-1.20625
Кар	NM_052802 // Kap // kidney androgen regulated protein // 4q43 // 24937 /// ENSRN	0.0467644	-1.20379
Casc1	NM_001106627 // Casc1 // cancer susceptibility candidate 1 // 4q44 // 297720 ///	0.00792535	1.20641
Rp1h	ENSRNOT00000047093 // Rp1h // retinitis pigmentosa 1 homolog (human) // 5q12 //	0.0310607	1.26145
Zcchc7	NM_001106658 // Zcchc7 // zinc finger, CCHC domain containing 7 // 5q22 // 29808	0.0338202	-1.22313
Tyrp1	NM_001106664 // Tyrp1 // tyrosinase-related protein 1 // 5q31 // 298182 /// ENSR	0.00636795	1.23161
RGD1560989	ENSRNOT00000031390 // RGD1560989 // similar to SPOC domain containing 1 // 5q36	0.0491164	-1.20268
Spata21	NM_001004447 // Spata21 // spermatogenesis associated 21 // 5q36 // 366491 /// E	0.0017928	-1.25217
RGD1304931	NM_001108001 // RGD1304931 // similar to RIKEN cDNA 2310042D19 // 5q36 // 313776	0.0390602	-1.32005
Gja10	ENSRNOT00000008469 // Gja10 // gap junction protein, alpha 10 // 5q21 // 313126	0.00549504	-1.60784
Ddx58	NM_001106645 // Ddx58 // DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 // 5q22 // 29	0.00593453	1.31807
RGD1306576	NM_001106648 // RGD1306576 // similar to hypothetical protein // 5q22 // 298002	0.0429516	-1.21309
Baat	NM_017300 // Baat // bile acid Coenzyme A: amino acid N-acyltransferase (glycine L- choloyIrtanferase//5q22	0.00312489	1.24266
lfnb1	NM_019127 // lfnb1 // interferon beta 1, fibroblast // 5q31-q33 // 24481 /// ENS	0.0305681	-1.21473
RGD1561246	ENSRNOT00000058363 // RGD1561246 // similar to put. precursor MuIFN- alpha 5 // 5q32	0.0235497	-1.22798
Cyp4b1	NM_016999 // Cyp4b1 // cytochrome P450, family 4, subfamily b, polypeptide 1 // 5q36	0.0108734	1.24484
Tspan1	NM_001004236 // Tspan1 // tetraspanin 1 // 5q36 // 298436 /// ENSRNOT00000018766	0.0114489	1.21304
Artn	NM_053397 // Artn // artemin // 5q36 // 362572 /// ENSRNOT00000026852 // Artn //	0.00331497	1.25613
Lin28	NM_001109269 // Lin28 // lin-28 homolog (C. elegans) // 5q36 // 500562 /// ENSRN	0.0374734	-1.23412
Cd52	NM_053983 // Cd52 // CD52 antigen // 5q36 // 117054 /// ENSRNOT00000020688 // Cd	0.0398072	-1.23204
Phf13	NM_001107995 // Phf13 // PHD finger protein 13 // 5q36 // 313742 /// ENSRNOT0000	0.0125914	1.22043
G1p2	NM_001106700 // G1p2 // interferon, alpha-inducible protein (clone IFI-15K) // 5	0.000955711	1.28691

RGD1311019	NM_001134523 // RGD1311019 // similar to hypothetical protein	0.0221328	1.2007
	DKFZp434H2010 // 5		
RGD1304963	ENSRNOT00000011832 // RGD1304963 // similar to hypothetical protein	0.0174604	1.28929
100214140	NGC38/16// 6013	0.00110747	1 22626
100314140		0.00110747	1.52020
LOC689408	ENSRNOT00000040085 // LOC689408 // similar to H2A histone family, member	0.0108308	-1.31134
	V isoform 1// 6q24		
RGD1562420	ENSRNOT0000007683 // RGD1562420 // similar to hypothetical protein //	0.00936799	-1.30142
	6q33 // 3		
Sp8	ENSRNOT00000008362 // Sp8 // Sp8 transcription factor // 6q33 // 299499 ///	0.0390072	1.20907
Dia 2	XM_0	0.0262220	1 20027
DIOZ	NM_031720 // Dio2 // delodinase, iodotnyronine, type II // 6d31 // 65162 ///	0.0363329	1.20927
Vom2r53	NM_173131 // Vom2r53 // vomeronasal 2 receptor, 53 // 7q11 // 286915 ///	0.0340111	-1.28294
Ccdc59	NM 001108090 // Ccdc59 // coiled-coil domain containing 59 // 7g21 //	0.0402995	-1 2091
ccucss	314799 ///	0.0402555	1.2051
RGD1564548	ENSRNOT00000051728 // RGD1564548 // similar to H3 histone, family 3B //	0.0494559	1.33456
	7q34 //		
Glipr1	NM_001011987 // Glipr1 // GLI pathogenesis-related 1 // 7q21 // 299783 ///	0.0458655	1.29478
	ENSRN		
Frs2	NM_001108097 // Frs2 // fibroblast growth factor receptor substrate 2 // 7q22 //	0.0144841	-1.25431
LOC314942	XM_001063221 // LOC314942 // similar to CUB and Sushi multiple domains 3	0.033491	-1.21764
	isoform 1//7q31		
LOC314942	XM_001063221 // LOC314942 // similar to CUB and Sushi multiple domains 3	0.0190754	-1.21077
T 71	ISOTORM 1// /q31	0.0242605	1 2420
Imem/1	690657 /// F	0.0242695	1.2438
LOC686362	XM_001073742 // LOC686362 // similar to LY6/PLAUR domain containing 2 // 7	0.00437311	-1.23046
Olr1105	NM 001001078 // Olr1105 // olfactory receptor 1105 // 7036 // 405968 ///	0.0133873	1.24038
	ENSRNOT		
Kb21	NM_001008814 // Kb21 // type II keratin Kb21 // 7q36 // 407761 /// ENSRNOT000000	0.0481143	-1.22612
Mmp8	NM_022221 // Mmp8 // matrix metallopeptidase 8 // 8q11 // 63849 ///	0.0148299	1.22787
Rup?	NM_001034950 // Run2 // urinary protein 2 // 8g21 // 619560 ///	0.0102697	1 3/3/5
Nupz	ENSRNOT000000428	0.0102037	1.54545
Olr1200	NM_001000966 // Olr1200 // olfactory receptor 1200 // 8q21 // 405319 ///	0.0245424	1.22198
	ENSRNOT		
Olr1219	NM_001000965 // Olr1219 // olfactory receptor 1219 // 8q21 // 405318 /// ENSRNOT	0.0292196	1.21015
RGD1563941	NM_001109293 // RGD1563941 // similar to hypothetical protein FLJ20010 //	0.039213	1.41601
	8q23 /		
Slco2a1	NM_022667 // Slco2a1 // solute carrier organic anion transporter family, member 2a1//8032	0.00820251	1.22694
RGD1564060	ENSRNOT00000047563 // RGD1564060 // similar to procollagen, type VI, alpha	0.0218963	-1.23413
	3 isoform 4//8q32		
lqcf5	NM_001145072 // lqcf5 // lQ motif containing F5 // 8q32 // 503228 /// ENSRNOT000	0.0469574	-1.25183
Zmynd10	NM_001004284 // Zmynd10 // zinc finger, MYND-type containing 10 // 8q32 //	0.00719636	1.27695
Pml	ENSRNOT00000043434 // Pml // promyelocytic leukemia // 8g24 // 315713	0.0169251	1.21751
Crean 1		0.016477	1 2477
SheshT	501010 /	0.010477	-1.34//
Nck1	NM_001106851 // Nck1 // NCK adaptor protein 1 // 8q31 // 300955 /// ENSRNOT00000	0.0481331	-1.20427
RGD1559960	XM_576496 // RGD1559960 // similar to Sulfotransferase K1 (rSULT1C2) //	0.0344478	-1.31265
Kcne4	NM_212526 // Kcne4 // potassium voltage-gated channel, Isk-related	0.0331828	1.41615
Sp100	NM 001014220 // Sp100 // SP100 nuclear antigen // 9035 // 363269 ///	0.000192202	1,33599
39100		5.000172202	1.55555

	ENSRNOT0000		
Olr1352	NM_001000953 // Olr1352 // olfactory receptor 1352 // 9q36 // 405301 /// ENSRNOT	0.0155441	-1.22861
LOC302192	BC100254 // LOC302192 // similar to RIKEN cDNA 1700001E04 // 9q11 // 302192 ///	0.0422335	-1.2685
Gpr110	NM_001106894 // Gpr110 // G protein-coupled receptor 110 // 9q12 // 301266 /// E	0.00935024	-1.28706
LOC501110	ENSRNOG00000033402//BC079271 // LOC501110 // similar to Glutathione S- transferase A1 (GTH1)	0.0174454	1.29691
Agtr2	NM_012494 // Agtr2 // angiotensin II receptor, type 2 // Xq34 // 24182 /// BC161	0.0489444	1.23738
RGD1561445	ENSRNOT00000039710 // RGD1561445 // similar to novel protein // Xq12 // 298320 /	0.0355837	1.21149
LOC367796	XR_007347 // LOC367796 // similar to 60S ribosomal protein L13 // Xq21 // 367796	0.0222074	-1.27563
Pou3f4	NM_017252 // Pou3f4 // POU class 3 homeobox 4 // Xq31 // 29589 /// ENSRNOT000000	0.016207	1.20796
RGD1566225	ENSRNOT00000049312 // RGD1566225 // similar to RIKEN cDNA 1700001F22 // Xq36 //	0.0155235	-1.21761
RGD1563270	ENSRNOT00000056718 // RGD1563270 // similar to synaptonemal complex protein 3 //Xq36	0.0423684	-1.22607
LOC367939	XR_006332 // LOC367939 // similar to(Helix-destabilizing protein) (Single- strand binding protein) (Topoisomerase-inhibitor suppressed)//Xq36	0.0299205	-1.34949
RGD1562980	ENSRNOT00000042809 // RGD1562980 // similar to KIAA1387 protein // Xq22 // 30244	0.0281423	1.23868
RGD1561552	BC162049 // RGD1561552 // similar to WASP family 1 // Xq31 // 302367 /// ENSRNOT	0.00195532	-1.27349
RGD1565430	ENSRNOT00000041350 // RGD1565430 // similar to RIKEN cDNA 1700001F22 // Xq35 //	0.0266077	-1.28212
RGD1562644	ENSRNOT00000044666 // RGD1562644 // similar to Heat shock transcription factor, Y-linked (Heat shock transcription factor 2-like protein)//Xq37	0.0113025	-1.42414
LOC690041	ENSRNOT00000040782 // LOC690041 // similar to X-linked lymphocyte- regulated protein 3A//Xq37	0.00372748	-1.40249
	cdna:known / chrX / gene:ENSRNOG0000032797//similar to prohibitin	0.0203017	-1.22165
	cdna:known / chr5 / gene:ENSRNOG0000009365//similar to GA binding protein transcription factor, beta subunit 2 isoform beta 2	0.00890931	-1.2258
	ncrna:miRNA / chr18 / gene:ENSRNOG0000036406	0.015958	-1.21342
	ncrna:miRNA / chr11 / gene:ENSRNOG0000036327	0.0111113	-1.34574
	MI0003719 Rattus norvegicus miR-378 stem-loop / chr18	0.021524	-1.20112
	MI0000936 Rattus norvegicus miR-193 stem-loop / chr10	0.0351134	-1.2034
	MI0000854 Rattus norvegicus miR-24-1 stem-loop / chr17	0.000968806	1.37406
	ncrna:snoRNA / chr10 / gene:ENSRNOG00000034738	0.0335326	1.21318
	ncrna:snoRNA / chr13 / gene:ENSRNOG00000036004	0.0429048	-1.20279
	ncrna:snRNA / chr2 / gene:ENSRNOG0000035059	0.0202847	1.23001
	ncrna:snRNA / chr18 / gene:ENSRNOG00000034944	0.0275354	1.33538
	ncrna:snRNA / chr8 / gene:ENSRNOG0000035815	0.0367585	1.2395
	ncrna:snRNA / chr2 / gene:ENSRNOG0000035927	0.0305451	-1.20528
	ncrna:snRNA / chr14 / gene:ENSRNOG00000036102	0.0130023	-1.22458
	ncrna:snRNA / chr3 / gene:ENSRNOG00000035117	0.00778238	-1.23623
	ncrna:snRNA / chr1 / gene:ENSRNOG0000036116	0.0488928	-1.24754
	ncrna:snRNA / chr3 / gene:ENSRNOG0000035187	0.00229067	-1.27886
	ncrna:snRNA / chr14 / gene:ENSRNOG00000041976	0.00155213	-1.28114
	ncrna:snRNA / chr3 / gene:ENSRNOG0000035080	0.000489766	-1.2989
	cdna:novel / chr13 / gene:ENSRNOG0000034232	0.0332274	1.57298

cdna:novel / chr2 / gene:ENSRNOG0000032580	0.0289939	1.37752
cdna:novel / chr15 / gene:ENSRNOG0000025619	0.000382527	1.2786
cdna:novel / chr4 / gene:ENSRNOG0000029016	0.0451899	1.27123
cdna:novel / chr4 / gene:ENSRNOG0000037153	0.00951352	1.23916
cdna:novel / chr5 /gene:ENSRNOG0000022601	0.048572	1.23763
cdna:novel / chr1 / gene:ENSRNOG0000039027	0.0129805	1.23446
cdna:novel / chr1 / gene:ENSRNOG0000039655	0.0168059	1.22422
cdna:novel / chr12 / gene:ENSRNOG0000028540	0.0173253	1.22189
cdna:novel / chrX / gene:ENSRNOG0000029497	0.0132733	1.21555
cdna:novel / chr2 / gene:ENSRNOG0000037112	0.023873	1.21386
cdna:novel / chr4 / gene:ENSRNOG0000029777	0.00757377	1.21251
cdna:novel / chr13 / gene:ENSRNOG0000040233	0.0411444	1.20768
cdna:novel / chr4 / gene:ENSRNOG0000038265	0.0235953	1.20552
cdna:novel / chr17 / gene:ENSRNOG00000039073	0.0302629	1.20253
cdna:novel / chr16 / gene:ENSRNOG0000020128	0.0301923	1.20198
cdna:novel / chr4 /gene:ENSRNOG0000040338	0.0166965	-1.20296
cdna:novel / chr4 / gene:ENSRNOG0000038352	0.0450974	-1.20363
cdna:novel / chr1 / gene:ENSRNOG0000029219	0.0244454	-1.207
cdna:novel / chr1 / gene:ENSRNOG0000036981	0.0216926	-1.20933
cdna:novel / chr15 / gene:ENSRNOG0000038690	0.0424767	-1.20951
cdna:novel / chrX / gene:ENSRNOG0000039889	0.0269606	-1.21179
cdna:novel / chr7 / gene:ENSRNOG0000033995	0.0344803	-1.22062
cdna:novel / chrX / gene:ENSRNOG0000024053	0.0133519	-1.22223
cdna:novel / chr6 / gene:ENSRNOG0000038238	0.011481	-1.22246
cdna:novel / chr19 / gene:ENSRNOG0000029599	0.0430024	-1.2306
cdna:novel / chr8 / gene:ENSRNOG0000037904	0.00552231	-1.2473
cdna:novel / chr6 / gene:ENSRNOG0000038581	0.0494927	-1.24999
cdna:novel / chr3 / gene:ENSRNOG0000036820	0.000363899	-1.2501
cdna:novel / chr6 / gene:ENSRNOG0000040165	0.0141553	-1.25229
cdna:novel / chr9 / gene:ENSRNOG0000024469	0.00620696	-1.25619
cdna:novel / chr4 / gene:ENSRNOG0000040325	0.0470377	-1.26257
cdna:novel / chr1 / gene:ENSRNOG0000036739	0.0363279	-1.27552
cdna:novel / chr2 / gene:ENSRNOG0000034144	0.0387255	-1.27845
cdna:novel / chr14 / gene:ENSRNOG0000038954	0.0105509	-1.27877
cdna:novel / chr19 / gene:ENSRNOG0000039586	0.0287205	-1.28162
cdna:novel / chr11 / gene:ENSRNOG0000026142	0.0170344	-1.29698
cdna:novel / chrX / gene:ENSRNOG0000037758	0.0183459	-1.30175
cdna:novel / chr7 / gene:ENSRNOG0000025176	0.00485656	-1.31344
cdna:novel / chr5 / gene:ENSRNOG0000030866	0.0341728	-1.32203
cdna:novel /chr18 / gene:ENSRNOG0000015114	0.0174333	-1.33789
cdna:novel / chr2 / gene:ENSRNOG0000032915	0.039512	-1.33961
cdna:novel / chr2 / gene:ENSRNOG0000028388	0.00810856	-1.3518
cdna:novel chromosome:RGSC3.4:3:67344283:67345278:1	0.0183792	-1.37507

gene:ENSRNOG0000022026		
cdna:novel / chr19 / gene:ENSRNOG0000034297	0.0249545	-1.37594
cdna:novel / chr1 / gene:ENSRNOG0000038309	0.023226	-1.39044
cdna:novel / chr13 / gene:ENSRNOG0000031708	0.0143105	-1.39667
cdna:novel / chr5 / gene:ENSRNOG0000029050	0.0332386	-1.42594
cdna:novel / chr10 / gene:ENSRNOG0000026794	0.00297251	-1.51849
cdna:pseudogene / chr5 / gene:ENSRNOG0000037195	0.00145804	1.48307
cdna:pseudogene / chr10 / gene:ENSRNOG0000038963	0.016177	1.2887
cdna:pseudogene / chr8 / gene:ENSRNOG0000038514	4.10E-06	1.27372
cdna:pseudogene / chr18 / gene:ENSRNOG0000038461	0.0254549	1.22846
cdna:pseudogene / chr7 / gene:ENSRNOG0000025549	0.0382237	-1.20231
cdna:pseudogene / chr19 / gene:ENSRNOG00000027523	0.00336581	-1.21034
cdna:pseudogene / chro3 / gene:ENSRNOG0000037083	0.0430902	-1.23227
cdna:pseudogene / chr8 / gene:ENSRNOG0000009551	0.0456364	-1.2377
cdna:pseudogene / chr8 / gene:ENSRNOG0000018786	0.0306853	-1.23803
cdna:pseudogene / chr6 / gene:ENSRNOG0000039382	0.0197788	-1.24154
cdna:pseudogene / chr2 / gene:ENSRNOG0000038994	0.00447848	-1.24526
cdna:pseudogene / chr19 / gene:ENSRNOG0000006900	0.00842289	-1.25425
cdna:pseudogene / chr8 / gene:ENSRNOG0000026540	0.00579794	-1.25875
cdna:pseudogene / chr7 / gene:ENSRNOG0000029438	0.0330296	-1.26407
cdna:pseudogene / chr15 / gene:ENSRNOG0000039875	0.0470151	-1.35866
cdna:pseudogene / chr18 / gene:ENSRNOG0000039162	0.0234193	-1.37796
cdna:pseudogene / chr2 / gene:ENSRNOG0000032721	0.00387615	-1.52124
cdna:pseudogene / chr4 / gene:ENSRNOG0000037166	0.0193287	-1.54956
cdna:pseudogene / chr20 / gene:ENSRNOG0000027153	0.017797	-1.58247
cdna:pseudogene / chr13 / gene:ENSRNOG0000026688	0.00374583	-1.69191
cdna:known / chr16 / gene:ENSRNQG0000028542//similar to Fructose-	0.00994948	-1.21967
bisphosphate aldolase A (Muscle-type aldolase) (Aldolase 1)//pseudogene		
cdna:known / chr6 / gene:ENSRNOG0000028973//similar to developmental nurinotency associated 4 isoform 1//nseudogene	0.0342172	-1.2593
cdna:known / chr7 / gene:ENSRNOG0000009129//similar to Shwachman-	0.00805468	-1.26909
Bodian-Diamond syndrome//pseudogene	0.0132438	-1 27225
3-phosphate dehydrogenase//pseudogene	0.0152458	-1.27255
cdna:known / chr4 / gene:ENSRNOG0000029400//pseudogene	0.0171955	-1.69869
cdna:known / chr2 / gene:ENSRNOG0000023829 //similar to N-terminal	0.0238726	1.4712
cdna:known / chr7 / gene:ENSRNOG0000028998 //similar to RIKEN cDNA	0.0307443	1.38655
2210421G13//pseudogene		
XR_007925 // RGD1565480 // similar to hypothetical protein MGC35130 //	0.0127124	1.22904
5q33 // pseudogene	0.00070.0007	4 0000
XIVI_001074420 // KGD1561412 // Similar to olfactory receptor Olfr735 // 15p14 // pseudogene	0.000764635	-1.29334
XR_006536 // LOC367955 // similar to tropomyosin 3, gamma isoform 2 //	0.0382076	-1.20145
Xq36 // pseudogene		

Tabla 3. Listado de genes expresados diferencialmente en S1 en ratas enucleadas al nacimiento a las 168h

Gen	Nombre en inglés e identificadores más comúnes	p-value(168h * E vs. 168h * C)	Fold- Change(168h * E vs. 168h* C)
Sf3b5	NM_001126092 // Sf3b5 // splicing factor 3b, subunit 5 // 1p13 // 680891 /// ENS	0.0187861	-1.26231
RGD1560695	ENSRNOT00000061512 // RGD1560695 // similar to hypothetical protein 4930474N05 //1p12	0.047273	-1.27893
Ahrr	NM_001024285 // Ahrr // aryl-hydrocarbon receptor repressor // 1p11 // 498999 //	0.00549554	-1.20423
Vom2r7	NM_001099463 // Vom2r7 // vomeronasal 2 receptor, 7 // 1q12 // 685557 /// ENSRNO	0.0202376	-1.26877
V1re26	NM_001008903 // V1re26 // vomeronasal 1 receptor, E26 // 1q12 // 494253 /// ENSR	0.0174044	-1.21841
V1re2	NM_001009512 // V1re2 // vomeronasal 1 receptor, E2 // 1q12 // 494231 /// ENSRNO	0.0114225	-1.22113
RGD1564272	ENSRNOT00000059241 // RGD1564272 // similar to RIKEN cDNA 9930022N03 gene // 1q1	0.0273085	-1.27208
Olr5	NM_001000112 // Olr5 // olfactory receptor 5 // 1q12 // 292561 /// ENSRNOT000000	0.0163859	1.49258
Zfp583	NM_001134609 // Zfp583 // zinc finger protein 583 // 1q12 // 499068 /// ENSRNOT0	0.0337222	1.20474
V1rd25	NM_001008964 // V1rd25 // vomeronasal 1 receptor, D25 // 1q12 // 494307 /// ENSR	0.0332697	1.22948
Ap2s1	NM_022952 // Ap2s1 // adaptor-related protein complex 2, sigma 1 subunit // 1q21	0.0342961	-1.21469
Ttc9b	NM_001108478 // Ttc9b // tetratricopeptide repeat domain 9B // 1q21 // 361528 //	0.00744708	-1.21238
RGD1563574	NM_001134610 // RGD1563574 // similar to Hypothetical protein MGC30332 // 1q21 /	0.0413817	1.21243
Chchd8	NM_001127655 // Chchd8 // coiled-coil-helix-coiled-coil-helix domain containing 8//1q32	0.0086723	1.37771
RGD1561034	ENSRNOT00000040672 // RGD1561034 // similar to hypothetical protein MGC34805 // 1q33	0.0448428	-1.24854
Cckbr	NM_013165 // Cckbr // cholecystokinin B receptor // 1q33 // 25706 /// ENSRNOT000	0.000280758	-1.32372
Olr270	NM_001000229 // Olr270 // olfactory receptor 270 // 1q33 // 293437 /// ENSRNOT00	0.00824492	-1.26045
Trim72	NM_001077675 // Trim72 // tripartite motif-containing 72 // 1q36 // 365377 /// E	0.0184764	1.20052
Cd163l1	NM_001106312 // Cd163l1 // CD163 molecule-like 1 // 1q41 // 293591 /// ENSRNOT00	0.0173021	1.22009
Nudt8	ENSRNOT0000024237 // Nudt8 // nudix (nucleoside diphosphate linked moiety X)-type motif-8//1q42	0.00291101	-1.20648
Batf2	ENSRNOT0000028527 // Batf2 // basic leucine zipper transcription factor, ATF-like 2//1q43	0.0138067	1.21942
Psbpc2	NM_207593 // Psbpc2 // prostatic steroid-binding protein C2 // 1q43 // 293731 //	0.0292942	-1.40859
RGD1564018	ENSRNOT00000011092 // RGD1564018 // similar to lysophospholipase I // 1q43 // 36	0.00176608	1.27386
Tectb	NM_001106200 // Tectb // tectorin beta // 1q55 // 292124 /// ENSRNOT0000021041	0.0161705	1.22814
Emx2	ENSRNOT00000012564 // Emx2 // empty spiracles homeobox 2 // 1q55 // 499380 /// E	0.00923946	-1.22352
Raet1l	NM_001013063 // Raet1l // retinoic acid early transcript 1L // 1p13 // 292461 //	0.00999912	1.21207
RGD1560020_pr edicted	ENSRNOT00000019313 // RGD1560020_predicted // similar to Myb proto- oncogene protein//1p12	0.00791967	1.28581
LOC685764	XR_006289 // LOC685764 // similar to High mobility group protein 1 (High mobility group protein B1) (Amphoterin) (Heparin-binding protein	0.0220568	1.29452

	p30)//1p12		
Slc22a2	NM_031584 // Slc22a2 // solute carrier family 22 (organic cation transporter)//1q11	0.0230157	1.23192
Fosb	ENSRNOT00000022556 // Fosb // FBJ osteosarcoma oncogene B // 1q21 // 308411 ///	0.0425542	1.23938
RGD1564357	ENSRNOT00000026006 // RGD1564357 // RGD1564357 // 1q21 // 502306 /// XM_577770 /	0.00542134	1.24345
RGD1562079	BC159436 // RGD1562079 // RGD1562079 // 1q21 // 499125	0.00677356	-1.248
Fxyd7	NM_022008 // Fxyd7 // FXYD domain-containing ion transport regulator 7 // 1q21 /	0.0112555	-1.28565
RGD1310371	BC158775 // RGD1310371 // similar to RIKEN cDNA 1700026D08 // 1q31 // 308794 ///	0.013082	1.20679
Olr57	NM_001000749 // Olr57 // olfactory receptor 57 // 1q32 // 405018 /// ENSRNOT0000	0.0025018	-1.37145
Olr92	NM_001000140 // Olr92 // olfactory receptor 92 // 1q32 // 293233 /// ENSRNOT0000	0.0397595	-1.28689
Hbb	NM_033234 // Hbb // hemoglobin, beta // 1q22 // 24440 /// ENSRNOT00000044783 //	0.0448262	-1.34548
LOC687087	ENSRNOT00000033009 // LOC687087 // similar to olfactory receptor 509 // Chr 1	0.00128884	-1.20153
Gp2	NM_134418 // Gp2 // glycoprotein 2 (zymogen granule membrane) // 1q35 // 171459	0.012608	1.21436
Giyd2	NM_001009292 // Giyd2 // GIY-YIG domain containing 2 // 1q36 // 293489 /// ENSRN	0.00102748	-1.21798
Sirt3	NM_001106313 // Sirt3 // sirtuin (silent mating type information regulation 2 homolog)//1q41	1.23874E-05	-1.22952
lfitm2	NM_030833 // Ifitm2 // interferon induced transmembrane protein 2 // 1q41 // 114	0.0217877	-1.31619
Tsga10ip	NM_001004278 // Tsga10ip // testis specific 10 interacting protein // 1q43 // 36	0.00291626	1.25411
Olr334	NM_001001041 // Olr334 // olfactory receptor 334 // 1q43 // 405927	0.00478671	-1.21295
Olr343	NM_001000254 // Olr343 // olfactory receptor 343 // 1q43 // 293788 /// ENSRNOT00	0.0470475	-1.24654
Olr383	NM_001000262 // Olr383 // olfactory receptor 383 // 1q43 // 293816 /// ENSRNOT00	0.00127537	-1.21682
Gcnt1	NM_022276 // Gcnt1 // glucosaminyl (N-acetyl) transferase 1, core 2 // 1q43 // 6	0.00303085	-1.26716
Anxa1	NM_012904 // Anxa1 // annexin A1 // 1q51 // 25380 /// ENSRNOT00000023664 // Anxa	0.0156621	1.20749
Ears2	NM_001159493 // Ears2 // glutamyl-tRNA synthetase 2 mitochondrial (putative) // 1q36	0.0362598	1.20522
Calhm3	ENSRNOT00000036202 // Calhm3 // calcium homeostasis modulator 3 // 1q54 // 49936	0.0198978	1.207
LOC365476	ENSRNOT00000050111 // LOC365476 // similar to chromosome 10 open reading frame 79//1q54	0.00738799	1.26172
Olr1401	NM_001000003 // Olr1401 // olfactory receptor 1401 // 10q22 // 287247 /// ENSRNO	0.0033077	1.5085
Wnt9a	NM_001105783 // Wnt9a // wingless-type MMTV integration site family, member 9A //10q22	0.0166644	1.22834
LOC691750	NM_001109648 // LOC691750 // hypothetical protein LOC691750 // 10q24 // 691750	0.00101308	-1.20076
Fam64a	BC158692 // Fam64a // family with sequence similarity 64, member A // 10q24 // 3	0.0442739	-1.22928
Olr1515	NM_001001098 // Olr1515 // olfactory receptor 1515 // 10q24 // 405994 /// ENSRNO	0.0334095	1.29601
Olr1519	NM_001000037 // Olr1519 // olfactory receptor 1519 // 10q24 // 287517 /// ENSRNO	0.0054431	1.2548
Sebox	NM_023951 // Sebox // SEBOX homeobox // 10q25 // 58922 /// ENSRNOT00000013296 //	0.000826286	1.35278
Gngt2	NM_001135767 // Gngt2 // guanine nucleotide binding protein (G protein), gamma transducing activity polypeptide 2//10q31	0.0296124	1.21452
Hoxb5	ENSRNOT00000010724 // Hoxb5 // homeo box B5 // 10q31 // 497987	0.0342121	-1.24372

Cntnap1	NM_032061 // Cntnap1 // contactin associated protein 1 // 10q32.1 //	0.0151471	-1.21268
LOC363695	XR_009477 // LOC363695 // similar to CDK105 protein // 10q32.1 // 363695	0.0401963	1.22402
Rnf213	XM_001081768 // Rnf213 // ring finger protein 213 // 10q32.3 // 303735	0.0475871	1.2404
LOC687502	ENSRNOT00000037433 // LOC687502 // hypothetical protein LOC687502 // Chr10	0.0259343	1.50705
LOC360479	NM_001014115 // LOC360479 // similar to hypothetical protein // 10q12 // 360479	0.0136151	1.27942
Paqr4	NM_001017377 // Paqr4 // progestin and adipoQ receptor family member IV // 10q12	3.92054E-05	-1.21749
LOC688419	XR_006388 // LOC688419 // similar to 60S ribosomal protein L21 // 10q12 // 68841	0.00819448	1.20312
Timd2	NM_001013855 // Timd2 // T-cell immunoglobulin and mucin domain containing 2 // 1p12	0.00848202	-1.30456
LOC691352	NM_001109638 // LOC691352 // similar to Robo-1 // 10q22 // 691352	0.0192678	1.20276
Olr1436	NM_001000014 // Olr1436 // olfactory receptor 1436 // 10q22 // 287324 /// NM_001	0.00393935	1.27002
Plod1	NM_053827 // Plod1 // procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1 // 5q	9.41901E-05	1.36581
Olr1475	NM_001000027 // Olr1475 // olfactory receptor 1475 // 10q24 // 287487 /// ENSRNO	0.036537	-1.21976
Rph3al	NM_133591 // Rph3al // rabphilin 3A-like (without C2 domains) // 10q24 // 171123	0.022693	1.20698
Glod4	NM_001014227 // Glod4 // glyoxalase domain containing 4 // 10q24 // 363644 /// B	0.016171	-1.26157
Nog	NM_012990 // Nog // noggin // 10q26 // 25495 /// ENSRNOT00000032388 // Nog // no	0.0351397	-1.22213
Dusp3	BC169043 // Dusp3 // dual specificity phosphatase 3 // 10q32.1 // 498003 /// ENS	0.00889925	-1.21111
RGD1307966	ENSRNOT00000028563 // RGD1307966 // similar to hypothetical protein // 10q32.1 /	0.00066333	-1.21788
Sectm1a	NM_001013043 // Sectm1a // secreted and transmembrane 1A // 10q32.3 // 287885 //	0.0279782	1.28273
Olr1541	NM_001000728 // Olr1541 // olfactory receptor 1541 // 11q12 // 404983 /// ENSRNO	0.000275231	-1.41907
Col8a1	NM_001107100 // Col8a1 // collagen, type VIII, alpha 1 // 11q12 // 304021 /// EN	0.0407741	1.20402
RGD1308138	ENSRNOT00000060577 // RGD1308138 // similar to hypothetical protein LOC131368 //Chr 11	0.00687357	1.25103
Stfa2l3	ENSRNOT00000042777 // Stfa2l3 // stefin A2-like 3 // 11q22 // 498087	0.00433014	2.00316
Fam162a	NM_001029903 // Fam162a // family with sequence similarity 162, member A // 11q2	0.000484802	1.27944
Lamp3	NM_001012015 // Lamp3 // lysosomal-associated membrane protein 3 // 11q23 // 303	0.0452924	1.20978
Spag6	NM_001034960 // Spag6 // sperm associated antigen 6 // 11q23 // 360747 /// ENSRN	0.0354763	1.22882
Samsn1	NM_130821 // Samsn1 // SAM domain, SH3 domain and nuclear localization signals//11p11	0.0248258	1.26304
RGD1559942	NM_001134590 // RGD1559942 // similar to hypothetical protein // 11q21 // 363782	0.0246951	1.28948
Drd3	NM_017140 // Drd3 // dopamine receptor D3 // 11q21 // 29238 /// ENSRNOT000000294	0.0063284	1.28675
Stfa3	NM_001105877 // Stfa3 // stefin A3 // 11q22 // 288075	0.04291	1.21588
P2rx6	NM_012721 // P2rx6 // purinergic receptor P2X, ligand-gated ion channel, 6 //11q23	0.00725302	1.2341
Ydjc	NM_001013863 // Ydjc // YdjC homolog (bacterial) // 11q23 // 287938 /// ENSRNOT0	0.00429221	-1.20392
Vom2r60	ENSRNOT00000041244 // Vom2r60 // vomeronasal 2 receptor, 60 // 12p12 // 501794	0.0283641	1.37296
Higd2a	NM_001106102 // Higd2a // HIG1 domain family, member 2A // 17p14 // 290999 /// E	0.0189099	-1.22383
Erp29	NM_053961 // Erp29 // endoplasmic reticulum protein 29 // 12q16 //	0.00276361	-1.3951
-------------	---	-------------	----------
Selnlg	11/030 /// EN NM_001013230 // Selnlg // selectin_nlatelet (n-selectin) ligand // 12016 //	0 0228444	1 28142
ScibiB	363	0.0220111	1.20112
Brca2	U89653 // Brca2 // breast cancer 2 // 12p12 // 360254 /// U89653 // Brca2 // bre	0.0434966	1.23788
Spry3	NM_001109063 // Spry3 // sprouty homolog 3 (Drosophila) // 12q11 // 498159 /// F	0.00713604	1.20045
Mmp17	NM_001105925 // Mmp17 // matrix metallopeptidase 17 // 12q13 // 288626 /// ENSRN	0.00115822	-1.25198
Pm20d1	NM_001109068 // Pm20d1 // peptidase M20 domain containing 1 // 13q13 // 498226 /	0.0209989	-1.21669
Fmod	NM_080698 // Fmod // fibromodulin // 13q13 // 64507 /// ENSRNOT00000004382 // Fm	0.0433248	1.22913
Selp	NM_013114 // Selp // selectin, platelet // 13q22 // 25651 /// ENSRNOT00000003759	0.00752068	1.2818
Wdr64	XM_001071080 // Wdr64 // WD repeat domain 64 // 13q25 // 689524	0.0207311	-1.24406
Lamb3	ENSRNOT00000008440 // Lamb3 // laminin, beta 3 // 13q27 // 305078 ///	0.0079009	1.2332
Hnrnpa1-ps1	XR_008269 // Hnrnpa1-ps1 // heterogeneous nuclear ribonucleoprotein A1, nseudoge	0.039651	1.23955
Ptprc	NM_138507 // Ptprc // protein tyrosine phosphatase, receptor type, C //	0.00481335	1.24377
Rgs18	NM_001047084 // Rgs18 // regulator of G-protein signaling 18 // 13q21 // 289076	0.00880858	-1.2744
LOC680781	ENSRNOT00000031809 // LOC680781 // similar to glutaminyl-tRNA synthase	0.0432203	1.20255
Fmo3	NM_053433 // Fmo3 // flavin containing monooxygenase 3 // 13q22 //	0.0211916	1.2215
Uhmk1	NM_017293 // Uhmk1 // U2AF homology motif (UHM) kinase 1 // 13q24 //	0.0147035	-1.34462
LOC289334	ENSRNOT00000037997 // LOC289334 // similar to hypothetical protein	0.013304	1.2157
Barhl2	NM_022956 // Barhl2 // BarH-like homeobox 2 // 14p22 // 65050 ///	0.0237974	1.25859
RGD1564709	NM_001107205 // RGD1564709 // similar to ATP-binding cassette, sub- family G //14022	0.0143996	1.25963
LOC498330	NM_001017495 // LOC498330 // similar to hypothetical protein MGC26744 // 14022 /	0.037933	-1.21276
Cxcl11	NM_182952 // Cxcl11 // chemokine (C-X-C motif) ligand 11 // 14p22 // 305236 ///	0.000988348	1.36865
LOC680039	NM_001109388 // LOC680039 // hypothetical protein LOC680039 // 14q21 // 680039	0.010258	1.3185
Selm	NM_001115013 // Selm // selenoprotein M // 14q21 // 498398	0.0127557	-1.21414
Upp1	NM_001030025 // Upp1 // uridine phosphorylase 1 // 14q21 // 289801 ///	0.00228114	1.38373
Cxcl13	NM_001017496 // Cxcl13 // chemokine (C-X-C motif) ligand 13 // 14p22 // 498335 /	0.0242124	-1.22023
Vcsa1	NM_012684 // Vcsa1 // variable coding sequence A1 // 14p22-p21 // 24867	0.0477361	-1.28335
LOC494224	NM_001009505 // LOC494224 // follicular dendritic cell secreted // 14p21 // 4942	0.0313237	1.21791
Ccdc96	ENSRNOT00000058411 // Ccdc96 // coiled-coil domain containing 96 //	0.0157747	1.21707
RGD1560394	NM_001106014 // RGD1560394 // RGD1560394 // 14q21 // 289728 /// ENSRNOT000000580	0.000498237	-1.24561
LOC685322	BC166935 // LOC685322 // similar to ubiquinol-cytochrome c reductase complex 7.2kDa protein isofrom b//14a21	0.0196621	-1.31233
Comtd1	NM_001107249 // Comtd1 // catechol-O-methyltransferase domain containing 1 // 15	0.0373367	-1.24473
Spetex-2E	NM_001011702 // Spetex-2E // Spetex-2E protein // 15p16 // 361012 /// ENSRNOT000	0.0196799	1.54987
Olr1607	NM_001000534 // Olr1607 // olfactory receptor 1607 // 15p16 // 364275	0.00131319	-1.24678

	/// ENSRNO		
LOC364392	XR_007199 // LOC364392 // similar to Ferritin light chain 1 (Ferritin L subunit 1)//15p12	0.0321247	-1.20839
Mrp63	NM_001109649 // Mrp63 // mitochondrial ribosomal protein 63 // 15p12 // 691814 /	0.0474008	-1.23756
Phyhip	NM_001017376 // Phyhip // phytanoyl-CoA 2-hydroxylase interacting protein //15p11	0.00604031	-1.26597
Olr1629	NM_001001015 // Olr1629 // olfactory receptor 1629 // 15p14 // 405389 /// ENSRNO	0.00208443	-1.28914
Olr1632	NM_001000836 // Olr1632 // olfactory receptor 1632 // 15p14 // 405125 /// ENSRNO	0.00787925	-1.39264
Olr1633	NM_001000835 // Olr1633 // olfactory receptor 1633 // 15p14 // 405124 /// ENSRNO	0.0044	-1.27227
Gzmn	ENSRNOT00000059672 // Gzmn // granzyme N // 15p12 // 691668 /// NM_001109646 //	0.0194853	1.22991
Cenpj	NM_001107265 // Cenpj // centromere protein J // 15p12 // 305909	0.010364	1.22719
Ephx2	NM_022936 // Ephx2 // epoxide hydrolase 2, cytoplasmic // 15p12 // 65030 /// ENS	0.00411286	-1.24635
Eif3j	NM_001077670 // Eif3j // eukaryotic translation initiation factor 3, subunit J // 3q35	0.0324203	-1.2018
Abhd8	NM_001107301 // Abhd8 // abhydrolase domain containing 8 // 16p14 // 306338 ///	0.00261139	-1.22495
RGD1564941	ENSRNOT00000034595 // RGD1564941 // similar to ankyrin repeat domain 26 // 16p14	0.0438027	-1.34756
Tm2d2	NM_001017444 // Tm2d2 // TM2 domain containing 2 // 16q12.4 // 290833 /// ENSRNO	0.00415944	-1.22702
LOC689526	ENSRNOT00000060667 // LOC689526 // hypothetical protein LOC689526 // 17p14 // 68	0.0474083	1.20055
F13a1	NM_021698 // F13a1 // coagulation factor XIII, A1 polypeptide // 17p12 // 60327	0.0152028	1.25442
LOC364709	XR_007101 // LOC364709 // similar to 60S ribosomal protein L21 // 17p12 // 36470	0.0229665	1.30969
RGD1565379	ENSRNOT00000058768 // RGD1565379 // similar to serine/threonine kinase // 17q12.	0.0233834	1.20199
Mrpl36	NM_001108879 // Mrpl36 // mitochondrial ribosomal protein L36 // 17p14 // 364656	0.00101364	-1.34473
RGD1564382	ENSRNOT00000040053 // RGD1564382 // similar to Sprouty homolog 3 (Spry-3) // 17p	0.0364723	1.34948
Nqo2	NM_001004214 // Nqo2 // NAD(P)H dehydrogenase, quinone 2 // 17p12 // 291084 ///	0.0344877	-1.2517
Znf307	ENSRNOT00000024797 // Znf307 // zinc finger protein 307 // 17q11 // 291164 /// X	0.014915	-1.20248
Bambi	NM_139082 // Bambi // BMP and activin membrane-bound inhibitor, homolog (Xenopus laevis)//17q12.1	0.0104891	-1.24753
RGD1564791	ENSRNOT00000042424 // RGD1564791 // similar to hypothetical protein 4930474N05 //17q12.1	0.0319584	1.4193
Ttr	NM_012681 // Ttr // transthyretin // 18p // 24856 /// ENSRNOT00000022113 // Ttr	0.0095961	4.34867
Pcdhb5	NM_001114602 // Pcdhb5 // protocadherin beta 5 // 18p11 // 291654 /// ENSRNOT000	0.00163105	1.23748
LOC364872	XR_007489 // LOC364872 // similar to TAF15 RNA polymerase II, TATA box binding protein associated factor//18q11	0.00420405	1.31006
Sncaip	NM_001107379 // Sncaip // synuclein, alpha interacting protein // 18q11 // 30730	0.0112734	1.20624
RGD1560341	ENSRNOT00000021149 // RGD1560341 // similar to Methionine aminopeptidase 2 (MetAp2)//CHr18	0.0458333	1.23734
MGC108823	NM_001012353 // MGC108823 // similar to interferon-inducible GTPase // 18q12.1 /	0.0440998	1.45717
Мbр	NM_001025291 // Mbp // myelin basic protein // 18q // 24547 /// NM_001025292 //	0.00103781	-1.20337
RGD1562312	ENSRNOT00000047765 // RGD1562312 // similar to High mobility group protein 1 (HMG-1)//1q21	0.0299011	1.3225
Slc6a7	NM_053996 // Slc6a7 // solute carrier family 6 (neurotransmitter	0.000490962	-1.23181

	transporter, L-proline)//18q12.1		
Thap11	NM_001107422 // Thap11 // THAP domain containing 11 // 19q12 // 307806 /// ENSRN	0.00266286	-1.20795
RGD1311422	ENSRNOT00000004718 // RGD1311422 // similar to CG8841-PA // 10q32.3 // 287822	0.000161591	-1.22357
Inpp4b	ENSRNOT00000024981 // Inpp4b // inositol polyphosphate-4-phosphatase, type II //19q11	0.0148969	1.36155
B3gnt9	XM_226431 // B3gnt9 // UDP-GlcNAc:betaGal beta-1,3-N- acetylglucosaminyltransferase 9//19g11	0.00105233	-1.24788
Ocel1	NM_001106065 // Ocel1 // occludin/ELL domain containing 1 // 16p14 // 290628 ///	0.0051477	-1.21916
Ccno	NM_001109175 // Ccno // cyclin O // 2q14 // 499528 /// ENSRNOT00000013871 // Ccn	0.0177523	1.26538
Capsl	NM_001106417 // Capsl // calcyphosine-like // 2q16 // 294795 /// ENSRNOT00000023	0.0128117	1.6408
ll12a	NM_053390 // Il12a // interleukin 12a // 2q31 // 84405 /// ENSRNOT00000012831 //	0.0316902	1.21986
Fga	NM_001008724 // Fga // fibrinogen alpha chain // 2q34 // 361969 /// NM_052797 //	0.0017302	-1.27636
RGD1566121	XM_227368 // RGD1566121 // similar to filaggrin // 2q34 // 310586	0.0209367	-1.27969
Vtcn1	NM_001024244 // Vtcn1 // V-set domain containing T cell activation inhibitor 1 //2q34	0.00781106	1.25623
Vcan	AF072892 // Vcan // versican // 2q12 // 114122 /// ENSRNOT00000045532 // Vcan //	0.00762816	1.20902
LOC365647	XR_005504 // LOC365647 // hypothetical LOC365647 // 2q12 // 365647	0.0339426	1.20688
Crhbp	NM_139183 // Crhbp // corticotropin releasing hormone binding protein // 2q12 //	0.00752936	-1.21006
Cdk105	NM_134415 // Cdk105 // CDK105 protein // 2q12 // 171456 /// ENSRNOT00000022138 /	0.0173311	1.24536
C7	ENSRNOT00000060343 // C7 // complement component 7 // 2q16 // 117517 /// ENSRNOT	0.000351539	1.33926
LOC686123	ENSRNOT00000059442 // LOC686123 // similar to leucine rich repeat and coiled-coil domain containing 1//2q23	0.0307209	1.25616
RGD1307595	NM_001134511 // RGD1307595 // similar to RIKEN cDNA 1700018B24 // 2q26 // 295019	0.0128341	1.23435
Atp6v1a	ENSRNOT00000002727 // Atp6v1a // ATPase, H+ transporting, lysosomal V1 subunit A//Chr 11	0.0164687	1.26851
RGD1565007	NM_001134592 // RGD1565007 // similar to RIKEN cDNA 4632419K20 // 2q34 // 365834	0.0420772	-1.23546
S100a9	NM_053587 // S100a9 // S100 calcium binding protein A9 // 2q34 // 94195 /// ENSR	0.00598351	1.41851
LOC685662	ENSRNOT00000038134 // LOC685662 // similar to S100 calcium-binding protein, ventral prostate//2q34	0.02913	1.29696
Sprr1b	ENSRNOT00000040171 // Sprr1b // small proline-rich protein 1B (cornifin) // 2q34	0.00568649	1.24282
Olfml3	NM_001107708 // Olfml3 // olfactomedin-like 3 // 2q34 // 310743 /// ENSRNOT00000	0.020274	1.28171
Gstm7	NM_031154 // Gstm7 // glutathione S-transferase, mu 7 // 2q34 // 81869 /// ENSRN	0.000338899	-1.21005
Fndc7	NM_001107717 // Fndc7 // fibronectin type III domain containing 7 // 2q34 // 310	0.0179275	-1.25549
RGD1306519	ENSRNOT00000055648 // RGD1306519 // similar to T-cell activation Rho GTPase-activating protein isoform b//2q42	0.0338116	-1.26332
Dnase2b	NM_021664 // Dnase2b // deoxyribonuclease II beta // 2q44 // 59296 /// ENSRNOT00	0.00220216	1.23808
Olr1684	NM_001000270 // Olr1684 // olfactory receptor 1684 // 20p12 // 294151 /// ENSRNO	0.0417926	-1.20066
RT1-M6-2	NM_001008853 // RT1-M6-2 // RT1 class I, M6, gene 2 // 20p12 // 365527 /// ENSRN	0.00768318	-1.38772
Cyp21a1	NM_057101 // Cyp21a1 // cytochrome P450, subfamily 21A, polypeptide 1 // 20p12 /	0.00465999	-1.22303
Mif	NM_031051 // Mif // macrophage migration inhibitory factor // 20p12 // 81683 ///	0.00971137	-1.29263

RGD1306739	NM_001134576 // RGD1306739 // similar to RIKEN cDNA 1700040L02 //	0.00786297	1.25395
Din	20p11 // 36183	0.0157051	1 20702
PIII	ENSRNOT0000000469 // Pl	0.0157951	-1.20/03
RGD1560386	ENSRNOT00000035265 // RGD1560386 // similar to novel protein // 20q12 // 294521	0.00446039	1.23314
Olr1699	// D1001001112 // Olr1699 // olfactory receptor 1699 // 20p12 // 406011 /// ENSRNO	0.0251433	-1.20976
Olr1722	NM_001001117 // Olr1722 // olfactory receptor 1722 // 20p12 // 406016 /// ENSRNO	0.0202817	-1.37115
RT1-Bb	NM_001004084 // RT1-Bb // RT1 class II, locus Bb // 20p12 // 309622 /// ENSRNOT0	0.00353399	1.30542
Tulp1	NM_001107642 // Tulp1 // tubby like protein 1 // 20p12 // 309900	0.0310875	1.25762
Icoslg	ENSRNOT00000038547 // lcoslg // inducible T-cell co-stimulator ligand // 20p12 /	0.00543188	-1.22922
Ddt	NM_024131 // Ddt // D-dopachrome tautomerase // 20p12 // 29318 /// ENSRNOT000000	0.000997206	-1.31006
Bxdc1	NM_001106391 // Bxdc1 // brix domain containing 1 // 20q12 // 294436 /// ENSRNOT	0.000417942	1.22174
Armc2	XM_001069261 // Armc2 // armadillo repeat containing 2 // 20q13 // 499470	0.00703864	-1.21032
Kcnt1	NM_021853 // Kcnt1 // potassium channel, subfamily T, member 1 // 3p13 // 60444	0.000195469	-1.23163
Olr395	NM_001000559 // Olr395 // olfactory receptor 395 // 3p11 // 366024 /// ENSRNOT00	0.0213959	-1.25365
Olr406	NM_001000383 // Olr406 // olfactory receptor 406 // 3p11 // 296669 /// ENSRNOT00	0.0297964	-1.24609
Wdr38	ENSRNOT00000018921 // Wdr38 // WD repeat domain 38 // 3q11 // 366035	0.00890455	1.29605
Olr446	NM_001001050 // Olr446 // olfactory receptor 446 // 3q24 // 405937 /// ENSRNOT00	0.0236204	-1.22063
Olr566	NM_001000665 // Olr566 // olfactory receptor 566 // 3q24 // 404867 /// ENSRNOT00	0.0148504	1.21258
Olr660	NM_001000635 // Olr660 // olfactory receptor 660 // 3q24 // 404828 /// ENSRNOT00	0.0139824	-1.25951
Pax6	NM_013001 // Pax6 // paired box 6 // 3q32 // 25509 /// ENSRNOT0000005882 // Pax	0.0211502	1.20596
Otor	NM_001108960 // Otor // otoraplin // 3q41 // 366206 /// ENSRNOT00000034252 // Ot	0.0357787	1.20836
Cst8	NM_019258 // Cst8 // cystatin 8 (cystatin-related epididymal specific) // 3q41 /	0.0350046	-1.26354
Cdca7l	NM_001034953 // Cdca7l // cell division cycle associated 7 like // 6q33 // 61956	0.00651091	1.30109
Map1lc3a	NM_199500 // Map1lc3a // microtubule-associated protein 1 light chain 3 alpha //3q42	0.0236953	-1.23482
Nnat	NM_053601 // Nnat // neuronatin // 3q42 // 94270 /// NM_181687 // Nnat // neuron	0.00764273	-1.23889
Svs3	NM_001007605 // Svs3 // seminal vesicle secretion 3 // 3q42 // 192239 /// ENSRNO	0.0396031	-1.31828
LOC685079	ENSRNOT00000030054 // LOC685079 // similar to Protein SYS1 homolog // 3q42 // 68	0.000304326	-1.29666
Zswim3	NM_001107801 // Zswim3 // zinc finger, SWIM-type containing 3 // 3q42 // 311630	0.00817276	-1.21016
Nr5a1	ENSRNOT00000017651 // Nr5a1 // nuclear receptor subfamily 5, group A, member 1 //Chr 3	0.0201432	1.2426
RGD1566198	XR_007404 // RGD1566198 // similar to 60S ribosomal protein L9 // 3q21 // 502629	0.038166	1.28808
Olr442	NM_001000284 // Olr442 // olfactory receptor 442 // 3q24 // 295713 /// ENSRNOT00	0.032315	-1.23193
Olr531	NM_001001051 // Olr531 // olfactory receptor 531 // 3q24 // 405939 /// ENSRNOT00	0.0337834	-1.23604
Olr729	NM_001000574 // Olr729 // olfactory receptor 729 // 3q24 // 366116 /// ENSRNOT00	0.0142344	-1.26143
Mdk	NM_030859 // Mdk // midkine // 3q24 // 81517 /// ENSRNOT00000033978	0.00136173	1.25688

Olr785	NM_001000603 // Olr785 // olfactory receptor 785 // 3q34 // 404792 /// ENSRNOT00	0.0042602	-1.40243
LOC311687	XR_007843 // LOC311687 // similar to 60S ribosomal protein L7a // 3q43 // 311687	0.0424788	1.24527
RGD1559502	NM_001109228 // RGD1559502 // similar to RIKEN cDNA 1700025E21 // 4q22 // 500068	0.00883086	1.20077
Clec2l	NM_001044233 // Clec2l // C-type lectin domain family 2, member L // 4q22 // 296	0.000499068	-1.22093
Atp6v0e2	NM_001002253 // Atp6v0e2 // ATPase, H+ transporting V0 subunit e2 // 4q24 // 436	0.00327818	-1.25583
Ccdc126	NM_001109232 // Ccdc126 // coiled-coil domain containing 126 // 4q24 // 500117 /	0.00924214	-1.20613
Gsbs	NM_153467 // Gsbs // G substrate // 4q24 // 266705 /// ENSRNOT00000016414 // Gsb	0.0435456	1.21737
Olr823	NM_001000992 // Olr823 // olfactory receptor 823 // 4q42 // 405352 /// ENSRNOT00	0.0075838	-1.2237
Vom2r48	NM_001099514 // Vom2r48 // vomeronasal 2 receptor, 48 // 4q42 // 686145 /// ENSR	0.00186404	-1.30796
LOC689619	ENSRNOT00000055890 // LOC689619 // similar to nuclear receptor interacting protein 2// 4q42	0.0132883	1.23099
lqub	NM_001034130 // Iqub // IQ motif and ubiquitin domain containing // 4q22 // 2969	0.0294448	1.28361
Tas2r38	NM_001024685 // Tas2r38 // taste receptor, type 2, member 38 // 4q22 // 500091 /	0.00996563	-1.25286
Lsm5	NM_001107289 // Lsm5 // LSM5 homolog, U6 small nuclear RNA associated (S. cerevisae)//4q24	0.0172614	-1.48887
LOC500210	XR_008705 // LOC500210 // similar to High mobility group protein 1 (Amphoterin) (Heparin-binding protein p30)//4q33	0.0188229	1.81593
Tmem72	NM_001108643 // Tmem72 // transmembrane protein 72 // 4q42 // 362424 /// ENSRNOT	0.0309788	1.20688
C3ar1	NM_032060 // C3ar1 // complement component 3a receptor 1 // 4q42 // 84007 /// EN	0.0367074	-1.38757
LOC689757	NM_001101019 // LOC689757 // similar to osteoclast inhibitory lectin // 4q42 //	0.000174008	-1.26123
Klrc2	NM_019261 // Klrc2 // killer cell lectin-like receptor subfamily C, member 2 // 4g42	0.0327954	1.22033
Dusp16	NM_001106624 // Dusp16 // dual specificity phosphatase 16 // 4q43 // 297682 ///	0.0319345	1.24149
LOC679583	ENSRNOT00000050921 // LOC679583 // similar to UPF0197 protein C11orf10 homolog // 5q36	0.0486695	-1.20331
Slc26a7	NM_001106638 // Slc26a7 // solute carrier family 26, member 7 // 5q13 // 297910	0.0101955	1.26004
LOC366355	XR_008382 // LOC366355 // similar to L-lactate dehydrogenase A chain (LDH-A) //5g22	0.00584808	1.22046
RGD1565912	ENSRNOT00000043909 // RGD1565912 // similar to ribosomal protein S18 // 5g24 //	0.0086935	1.21788
RGD1307983	ENSRNOT00000022987 // RGD1307983 // similar to HSPC043 protein // 5q24 // 298032	0.0103515	1.21573
Ambp	NM_012901 // Ambp // alpha-1-microglobulin/bikunin precursor // 5q24 // 25377 //	0.00507888	1.2111
lfnb1	NM_019127 // Ifnb1 // interferon beta 1, fibroblast // 5q31-q33 // 24481 /// ENS	0.0288617	1.21757
Lrrc19	NM_001109413 // Lrrc19 // leucine rich repeat containing 19 // 5q33 // 680478 //	0.0332288	-1.22284
LOC298509	XR_007384 // LOC298509 // similar to 60S ribosomal protein L21 // 5q36 // 298509	0.00996758	1.57746
Dnali1	NM_001031647 // Dnali1 // dynein, axonemal, light intermediate chain 1 // 5q36 /	0.0127196	1.23731
LOC366469	XR_006216 // LOC366469 // similar to 60S ribosomal protein L7a // 5q36 // 366469	0.000254705	1.76722
Dnajc8	NM_001013168 // Dnajc8 // DnaJ (Hsp40) homolog, subfamily C, member 8 // 5q36 //	0.00850863	1.20949
Extl1	NM_001107985 // Extl1 // exostoses (multiple)-like 1 // 5q36 // 313610 /// ENSRN	0.00103973	-1.21986

Slc30a3	NM_001013243 // Slc30a3 // solute carrier family 30 (zinc transporter),	0.000766342	-1.23418
LOC500712	member 3//6q14 ENSRNOT00000033897 // LOC500712 // Ab1-233 // 6q32 // 500712	0.0375662	1.2165
Tdrd9	XM 001072421 // Tdrd9 // tudor domain containing 9 // 6q32 // 299343	0.0216604	1.20168
Adam6	NM_138906 // Adam6 // a disintegrin and metallopeptidase domain 6 //	0.0438187	1.21528
PCD1562420	6q32 // 192	0 00247680	1 2740
KGD1302420	6q33 // 3	0.00247689	1.3740
Macc1	ENSRNOT00000056654 // Macc1 // metastasis associated in colon cancer 1 // 6q33 /	0.0117973	-1.23759
Cox7a2l	NM_001106704 // Cox7a2l // cytochrome c oxidase subunit VIIa polypeptide 2 like //6q12	0.0482746	-1.20215
Kcnk3	NM_033376 // Kcnk3 // potassium channel, subfamily K, member 3 // 6q14 // 29553	0.00513252	-1.24549
MGC94915	NM_001007009 // MGC94915 // similar to hypothetical protein // 6q14 // 362712 //	0.000972636	1.26029
Nudt14	NM_001106760 // Nudt14 // nudix (nucleoside diphosphate linked moiety X)-type motif 14//6q32	0.0419479	-1.26512
Olr875	NM_001000054 // Olr875 // olfactory receptor 875 // 7q11 // 288789 /// ENSRNOT00	0.0250529	1.21192
Timm13	NM_145781 // Timm13 // translocase of inner mitochondrial membrane 13 homolog //7q11	0.00773419	-1.21789
Olr1084	NM_001000709 // Olr1084 // olfactory receptor 1084 // 7q11 // 404958 /// ENSRNOT	0.0143053	-1.38972
Olr1086	NM_001000419 // Olr1086 // olfactory receptor 1086 // 7q11 // 299588	0.000874579	-1.30423
Glt8d2	ENSRNOT00000059584 // Glt8d2 // glycosyltransferase 8 domain containing 2 // 7q1	0.0197826	1.2112
RGD1562814	ENSRNOT00000049362 // RGD1562814 // similar to peptidylprolyl isomerase A (cyclophilin A)//7a13	0.0481796	1.21467
Dusp6	NM_053883 // Dusp6 // dual specificity phosphatase 6 // 7q13 // 116663 /// ENSRN	0.0353079	-1.21548
Pdxp	NM_001135819 // Pdxp // pyridoxal (pyridoxine, vitamin B6) phosphatase // 7q34 /	0.0124205	-1.24362
LOC500908	ENSRNOT00000048614 // LOC500908 // similar to hypothetical protein FLJ23584 // 7q34	0.0422932	1.20493
LOC366974	XR_007583 // LOC366974 // similar to suppression of tumorigenicity 13 // 7q35 //	0.0340525	1.22415
Irak4	NM_001106791 // Irak4 // interleukin-1 receptor-associated kinase 4 // 7q35 // 3	0.0495168	1.22355
Slc48a1	NM_001127456 // Slc48a1 // solute carrier family 48 (heme transporter), member 1//7q36	0.00990622	-1.22701
Coq10a	NM_001108727 // Coq10a // coenzyme Q10 homolog A (S. cerevisiae) // 7q11 // 3628	0.00104363	-1.24535
Olr881	NM_001000056 // Olr881 // olfactory receptor 881 // 7q11 // 288792	0.00271759	-1.25405
Olr886	NM_001001382 // Olr886 // olfactory receptor 886 // 7q11 // 302254 /// ENSRNOT00	0.00403703	1.47452
Dohh	NM_001025006 // Dohh // deoxyhypusine hydroxylase/monooxygenase // 7q11 // 31464	0.00129008	-1.21877
RGD1307722	NM_001108730 // RGD1307722 // similar to hypothetical protein MGC20700 // 7q11 /	0.00348058	-1.21273
Ascl1	NM_022384 // Ascl1 // achaete-scute complex homolog 1 (Drosophila) // 7q13 // 64	0.0127629	1.21435
LOC503131	XR_009333 // LOC503131 // similar to Glyceraldehyde-3-phosphate dehydrogenase (GAPDG)//7013	0.000820085	1.22209
Inhbe	NM_031815 // Inhbe // inhibin beta E // 7q22 // 83711 /// ENSRNOT00000010106 //	0.0142282	1.23836
RGD1565493	XR_007761 // RGD1565493 // similar to DKFZP434I092 protein // 7q22 // 500853	0.0265707	1.45626
Kcnv1	NM_021697 // Kcnv1 // potassium channel, subfamily V, member 1 // 7q31 // 60326	0.00233627	-1.21179
Rps19	NM_001037346 // Rps19 // ribosomal protein S19 // 1q21 // 29287 /// ENSRNOT00000	0.0153533	-1.27441

Lynx1	NM_001130546 // Lynx1 // Ly6/neurotoxin 1 // 7q34 // 300018 ///	0.0010547	-1.31522
Cum11b1	ENSRNOT000000079	0.00260021	1 2422
Сурты	NM_012537 // Cyp1101 // Cytochrome P450, Subramily 11B, polypeptide 1 // $7\sigma_34$ //	0.00369931	-1.3423
Rabl4	NM_001130495 // Rabl4 // RAB, member of RAS oncogene family-like 4 //	0.00793113	-1.21377
	7q34 // 30		
Phf21b	NM_001130680 // Phf21b // PHD finger protein 21B // 7q34 // 300117 ///	0.000299232	1.21543
	ENSRNOTOO		
Lima1	ENSRNOT00000026265 // Lima1 // LIM domain and actin binding 1 // 7q36	0.00113645	1.26087
Mmn13	// 300228 NM 133530 // Mmp13 // matrix metallopentidase 13 // 8011 // 171052 ///	0 0478471	-1 20037
initip15	ENSRNOTOO	0.0170171	1.20037
Olr1124	NM_001000426 // Olr1124 // olfactory receptor 1124 // 8q13 // 300392 ///	0.0476356	-1.30847
	ENSRNOT		
Olr1166	NM_001000867 // Olr1166 // olfactory receptor 1166 // 8q13 // 405164 ///	0.00121665	-1.32462
01-1214	ENSRNOT	0.0422722	1 220 (1
OIr1214	NM_001000438 // OIF1214 // OIFactory receptor 1214 // 8q21 // 300538 ///	0.0433722	1.22061
Ccdc153	NM 001013953 // Ccdc153 // coiled-coil domain containing 153 // 8g22 //	0.000902641	1.31733
	300663 /		101/00
II18	NM_019165 // Il18 // interleukin 18 // 8q23 // 29197 ///	0.0206849	-1.20843
	ENSRNOT00000013093 // I		
RGD1310727	NM_001108764 // RGD1310727 // LOC363070 // 8q24 // 363070 ///	0.00122109	-1.22408
Heve	ENSRNO100000032543	0.0141001	1 21 5 4 0
пеха	NM_001004443 // Hexa // Hexosaminidase A // 8q24 // 300757 /// ENSRNOT0000001374	0.0141001	-1.21549
RGD1561996	XR 007349 // RGD1561996 // similar to 60S ribosomal protein L35 // 8g24	0.00917623	1.24692
	// 30082		
Bmp5	NM_001108168 // Bmp5 // bone morphogenetic protein 5 // 8q24 //	0.0467675	1.22771
	315824 /// ENSRN		
Zmynd10	NM_001004284 // Zmynd10 // zinc finger, MYND-type containing 10 // 8q32	0.0329475	1.20488
Tmom42	// 36313	0.00969019	1 21252
rmem42	263171	0.00868018	-1.21252
Limd1	NM 001112737 // Limd1 // LIM domains containing 1 // 8g32 // 316101 ///	0.0148934	-1.20157
	ENSRNOTO		
Olr1117	NM_001000884 // Olr1117 // olfactory receptor 1117 // 8q12 // 405183 ///	0.00612232	1.47747
	ENSRNOT		
RGD1563738	ENSRNOT00000043957 // RGD1563738 // similar to Discs, large homolog 5	0.0436876	1.20898
Cycr5	$\frac{(Placellia and prostate DGL)}{8q21}$ NM 053303 // Cycr5 // chemokine (C-X-C motif) recentor 5 // 8q22 // 29363	0 0324521	1 52968
CACID	/// EN	0.0524521	1.52700
Spesp1	NM_001077682 // Spesp1 // sperm equatorial segment protein 1 // 8q24 //	0.0156049	1.35161
	501010 /		
Tex9	ENSRNOT00000032268 // Tex9 // testis expressed gene 9 // 8q24 // 300822	0.0357479	1.23091
DCD1207265	/// BC16	0.000077	101065
KGD1307305	BC099201// RGD1307305 // Similar to RIAA1009 protein // 8q31 // 300880	0.0328277	1.21265
Nck1	NM 001106851 // Nck1 // NCK adaptor protein 1 // 8q31 // 300955 ///	0.0425831	-1.21083
	ENSRNOT00000		
RGD1560174	ENSRNOT00000056386 // RGD1560174 // similar to IQ motif containing F4	0.0106517	1.38393
	// 8q32 //		
Gnat1	NM_001108780 // Gnat1 // guanine nucleotide binding protein, alpha	0.00451244	1.21274
Tmem158	NM 057212 // Tmem158 // transmembrane protein 158 // 8032 // 117582	0 00295839	-1 27095
memiso	/// ENSRNOTO	0.00233033	1.27055
RGD1564811	NM_001134567 // RGD1564811 // similar to hypothetical protein	0.044585	-1.25487
	phosphatase 2C domain containing protein//9q11		
Pex6	NM_057125 // Pex6 // peroxisomal biogenesis factor 6 // 9q12 // 117265 ///	0.000181953	-1.32335
[om122-		0.000.4757	1.00(4
Fam123C	EINSKING FOUDDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	0.0394757	-1.6064
ll1r1	NM 013123 // Il1r1 // interleukin 1 receptor. type I // 9a21 // 25663 ///	0.0202544	1.2637
	ENSRNO		

LOC686092	ENSRNOT00000050090 // LOC686092 // similar to UPF0197 protein	0.0440137	-1.20177
Aox3	NM_001008527 // Aox3 // aldehyde oxidase 3 // 9q31 // 493909 ///	0.0183672	1.22575
Spag16	AY665586 // Aox	0.0207104	1 24064
Shagio	/// BC15	0.0307104	-1.24964
Sag	NM_013023 // Sag // S-antigen; retina and pineal gland (arrestin) // 9q35 // 255	0.00775956	1.21009
Klhl30	ENSRNOT00000027232 // Klhl30 // kelch-like 30 (Drosophila) // 9q36 // 316624	0.0270447	-1.25505
LOC680862	ENSRNOT00000048975 // LOC680862 // similar to triggering receptor expressed on myeloid cells-like 4 isoform 1// 9q12	0.0387211	1.26294
Tbcc	NM_001108200 // Tbcc // tubulin folding cofactor C // 9q12 // 316221 /// BC16646	0.00071082	-1.21395
RGD1566284	XM_001060457 // RGD1566284 // similar to heterogeneous nuclear ribonucleoprotein	0.00971445	1.24834
Hsfy2	NM_001012132 // Hsfy2 // heat shock transcription factor, Y linked 2 // 9q31 //	0.0391814	-1.22722
Wdr12	NM_199410 // Wdr12 // WD repeat domain 12 // 9q31 // 363237 /// ENSRNOT000000234	0.00959175	1.20401
Nmur1	NM_023100 // Nmur1 // neuromedin U receptor 1 // 9q35 // 65276 /// ENSRNOT000000	0.0269278	-1.20492
Kcnj13	NM_053608 // Kcnj13 // potassium inwardly-rectifying channel, subfamily J, member 13//9q35	0.0317468	1.41651
Chchd2	NM_001015019 // Chchd2 // coiled-coil-helix-coiled-coil-helix domain containing 2//9q36	0.0150379	-1.49031
Gin1	NM_001025012 // Gin1 // gypsy retrotransposon integrase 1 // 9q36 // 316687 ///	0.00808022	1.20281
LOC307727	NM_001047882 // LOC307727 // similar to Probable chromodomain- helicase-DNA-bind//Xq13	0.00982925	1.28382
Glod5	NM_001106957 // Glod5 // glyoxalase domain containing 5 // Xq13 // 302554 /// EN	0.0259915	1.32465
RGD1561004	XM_001057408 // RGD1561004 // similar to AMME syndrome candidate gene 1 protein homolog//Xq14	0.00558103	1.25657
RGD1561958	NM_001108819 // RGD1561958 // similar to RIKEN cDNA 2010106E10 // Xq32 // 363490	0.00502925	-1.31026
Chst7	NM_207600 // Chst7 // carbohydrate (N-acetylglucosamine 6-0) sulfotransferase 7 //Xq12	0.00304559	-1.23232
LOC315380	XR_005743 // LOC315380 // similar to hormone-regulated proliferation- associated 20kDa protein//Xq14	0.0127579	-1.24739
Zcchc16	XM_001058813 // Zcchc16 // zinc finger, CCHC domain containing 16 // Xq14 // 680	0.0010867	-1.23638
RGD1560203	ENSRNOT00000041781 // RGD1560203 // similar to ferritin heavy polypeptide-like 17//Xq21	0.0131025	-1.5321
Obp1f	NM_138903 // Obp1f // odorant binding protein I f // Xq22 // 192267 /// ENSRNOT0	0.0494519	-1.21115
LOC367808	BC087125 // LOC367808 // similar to Sid3177p // Xq22 // 367808 /// ENSRNOT000000	0.00503097	1.28898
RGD1563846	ENSRNOT00000047823 // RGD1563846 // similar to Gene model 784 // Xq31 // 317224	0.0326148	-1.24087
Glra4	ENSRNOT00000052302 // Glra4 // glycine receptor, alpha 4 // Xq35 // 367912	0.0213481	1.20886
Hist1h2ah	cdna:known / chr17 / gene:ENSRNOG0000038904//histone cluster 1, H2ah	0.00233224	-1.25483
LOC691661	cdna:known / chr1 / gene:ENSRNOG0000031178//similar to zinc finger and SCAN domain containing 4	0.0200237	1.29831
LOC683865	cdna:known / chr1 / gene:ENSRNOG0000029789//similar to fatty aldehyde dehydrogenase-like	0.00348073	1.29324
Vom2r65	cdna:known / chr1 / gene:ENSRNOG0000033371//vomeronasal 2 receptor, 65	0.0113507	-1.39725
LOC682399	cdna:known / chro14 / gene:ENSRNOG0000033640//similar to developmental pluripotency-associated 3	0.04413	1.36336
RGD1308305	cdna:known / chr2 / gene:ENSRNOG0000009610//similar to RIKEN cDNA 5430400H23	0.0137054	1.23252

Cyb5rl	cdna:known / chr5 / gene:ENSRNOG0000009148//cytochrome b5 reductase-like	0.00707923	1.22026
RGD1310444	cdna:known / chr8 / gene:ENSRNOG0000024757// similar to LOC363015	0.0352255	-1.21125
	ncrna:miRNA / chr8 / gene:ENSRNOG0000036533	0.00414803	1.23559
	ncrna:miRNA / chr8 / gene:ENSRNOG0000036536	0.0368632	1.22104
	MI0000890 Rattus norvegicus miR-107 stem-loop / chr1	0.0416846	-1.20308
	MI0000934 Rattus norvegicus miR-191 stem-loop / chr8	0.00592925	1.24407
	MI0003481 Rattus norvegicus miR-361 stem-loop / chrX	0.0184329	-1.23075
	MI0003528 Rattus norvegicus miR-542 stem-loop / chrX	0.0232567	-1.28097
	ncrna:snRNA / chr13 / gene:ENSRNOG00000035973	0.0303966	1.50331
	ncrna:snRNA / chr3 / gene:ENSRNOG00000034940	0.0132418	1.35496
	ncrna:snRNA / chr7 / gene:ENSRNOG00000034540	0.0265932	1.2983
	ncrna:snRNA / chr15 / gene:ENSRNOG0000034536	0.03649	1.27334
	ncrna:snRNA / chr3 / gene:ENSRNOG00000034777	0.000315864	1.24934
	ncrna:snRNA / chr/ 2 / gene:ENSRNOG00000036095	0.0182176	1.21432
	ncrna:snRNA / chr2 / gene:ENSRNOG00000035411	0.0486358	1.21391
	ncrna:snRNA / chr5 / gene:ENSRNOG00000035668	0.0456826	1.21371
	ncrna:snRNA / chr6 / gene:ENSRNOG00000034888	0.00196951	-1.20504
	ncrna:snRNA / chr13 / gene:ENSRNOG0000035294	0.0236895	-1.21001
	ncrna:snRNA / chr1 / gene:ENSRNOG0000036307	0.0168553	-1.2272
	ncrna:snRNA / chr5 / gene:ENSRNOG00000041712	0.0179078	-1.22744
	ncrna:snRNA / chrX / gene:ENSRNOG00000041810	0.039465	-1.22911
	ncrna:snRNA / chr19 / gene:ENSRNOG00000041890	0.00101409	-1.23303
	ncrna:snRNA / chr17 / gene:ENSRNOG0000035240	0.0171429	-1.24416
	ncrna:snRNA / chr2 / gene:ENSRNOG0000035331	0.00472577	-1.24872
	ncrna:snRNA / chr5 / gene:ENSRNOG00000034617	0.00854976	-1.25069
	ncrna:snRNA / chr19 / gene:ENSRNOG0000034808	0.038164	-1.26359
	ncrna:snRNA / chr6 / gene:ENSRNOG0000035848	0.0102048	-1.29287
	ncrna:snRNA / chr1 / gene:ENSRNOG0000036116	0.0202596	-1.30552
	ncrna:snRNA / chr9 / gene:ENSRNOG0000036000	0.00745739	-1.30809
	ncrna:snRNA / chr20 / gene:ENSRNOG0000035967	0.000737541	-1.37651
	ncrna:snoRNA / chr8 / gene:ENSRNOG0000035992	0.0357436	1.34179
	ncrna:snoRNA chromosome:RGSC3.4:1:36508256:36508325:1 gene:ENSRNOG00000035968	0.0357436	1.34179
	ncrna:snoRNA / chr6 gene:ENSRNOG00000036007	0.0385563	1.21104
	ncrna:snoRNA / chr14 / gene:ENSRNOG00000036229	0.0436074	1.20271
	ncrna:snoRNA / chr8 / gene:ENSRNOG0000035153	0.0360379	-1.22485
	ncrna:snoRNA / chr19 / gene:ENSRNOG00000035812	0.0210094	-1.23926
	ncrna:snoRNA / chr3 / gene:ENSRNOG0000035356	0.0185298	-1.24274
	ncrna:snoRNA / chr1 / gene:ENSRNOG0000034441	0.0295976	-1.26109
	ncrna:snoRNA / chr1 / gene:ENSRNOG0000035279	0.0120787	-1.26367
	ncrna:snoRNA / chr1 / gene:ENSRNOG00000034870	0.0339539	-1.27096
	ncrna:snoRNA / chr1 / gene:ENSRNOG00000035759	0.0235812	-1.27843
	ncrna:snoRNA / chr1 / gene:ENSRNOG0000035438	0.0235812	-1.27843

ncrna:snoRNA / chr1 / gene:ENSRNOG0000035083	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG00000034572	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG00000035876	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034310	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034887	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034596	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035118	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034344	0.0235812	-1.27843
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034958	0.00393997	-1.32038
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035770	0.0278209	-1.32786
ncrna:snoRNA / chr1 / gene:ENSRNOG00000035158	0.0355023	-1.3529
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035851	0.0373319	-1.37377
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034538	0.0458316	-1.42557
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034610	0.0458316	-1.42557
ncrna:snoRNA / chr1 / gene:ENSRNOG0000034994	0.0386667	-1.43091
ncrna:snoRNA chromosome:RGSC3.4:1:111472244:111472335:-1 gene:ENSRNOG00000035732	0.0396853	-1.49511
ncrna:snoRNA / chr1 / gene:ENSRNOG00000035676	0.0250615	-1.50356
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035061	0.0337843	-1.51811
ncrna:snoRNA chromosome:RGSC3.4:1:111369407:111369499:-1 gene:ENSRNOG00000035813	0.0442332	-1.53654
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035406	0.0490512	-1.56042
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035757	0.0240672	-1.593
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035130	0.0217064	-1.64085
ncrna:snoRNA / chr1 / gene:ENSRNOG0000035811	0.0254031	-1.72597
cdna:novel / chr13 / gene:ENSRNOG0000039526	7.61461E-05	1.61276
cdna:novel chromosome:RGSC3.4:13:72214448:72362835:1 gene:ENSRNOG00000038923	0.0276429	1.45723
cdna:novel / chro8 / gene:ENSRNOG0000037572	0.0388495	1.38231
cdna:novel / chr7 / gene:ENSRNOG0000032168	0.0353372	1.37096
cdna:novel / chr11 / gene:ENSRNOG0000001872	0.000651306	1.36043
cdna:novel / chr10 / gene:ENSRNOG0000003744	0.0056535	1.35471
cdna:novel / chr7 / gene:ENSRNOG0000030924	0.0102472	1.35106
cdna:novel / chr18 / gene:ENSRNOG0000005913	0.00764939	1.30335
cdna:novel / chrX / gene:ENSRNOG0000021496	0.0496066	1.29622
cdna:novel / chr4 / gene:ENSRNOG0000030995	0.0189796	1.29608
cdna:novel / chrX / gene:ENSRNOG0000037611	0.00632564	1.28808
cdna:novel / chr11 / gene:ENSRNOG0000023438	0.0396809	1.28213
cdna:novel / chr7 / gene:ENSRNOG0000037150	0.0497406	1.27768
cdna:novel / chr4 / gene:ENSRNOG0000023880	0.0464741	1.26046
cdna:novel / chr3 / gene:ENSRNOG0000036754	0.0332373	1.25992
cdna:novel / chr11 / gene:ENSRNOG0000032380	0.0452012	1.25022
cdna:novel / chr5 / gene:ENSRNOG0000028647	0.00626288	1.24751
cdna:novel / chr3 / gene:ENSRNOG0000039018	0.024193	1.24231
cdna:novel / chr1 / gene:ENSRNOG0000029219	0.0132066	1.23439

cdna:novel / chr7 / gene:ENSRNOG0000028988	0.0107756	1.23051
cdna:novel / chr2 / gene:ENSRNOG0000037159	0.0136393	1.21953
cdna:novel / chr11 / gene:ENSRNOG0000001685	0.0121829	1.21915
cdna:novel / chr17 / gene:ENSRNOG0000027390	0.00717153	1.21911
cdna:novel / chr1 / gene:ENSRNOG0000013043	0.00488174	1.21525
cdna:novel / chr10 / gene:ENSRNOG0000036939	0.045552	1.21463
cdna:novel / chr17 / gene:ENSRNOG0000033516	0.0187438	1.21429
cdna:novel / chr2 / gene:ENSRNOG0000025406	0.0112419	1.20789
cdna:novel / chr2 / gene:ENSRNOG0000036861	0.0420453	1.20489
cdna:novel / chr13 / gene:ENSRNOG0000002726	0.00648051	1.20117
cdna:novel / chr2 / gene:ENSRNOG0000008250	0.031559	1.20115
cdna:novel / chr14 / gene:ENSRNOG0000027788	0.026194	1.20089
cdna:novel / chrX / gene:ENSRNOG0000037952	0.00612904	-1.20038
cdna:novel / chr5 / gene:ENSRNOG0000021792	0.0432115	-1.20193
cdna:novel/chr10 gene:ENSRNOG0000003285	0.00444809	-1.20619
cdna:novel / chr11 / gene:ENSRNOG0000002010	0.0374513	-1.20755
cdna:novel / chr6 / gene:ENSRNOG00000040294	0.00863753	-1.20836
cdna:novel / chr3 / gene:ENSRNOG0000036750	0.0395892	-1.21384
cdna:novel / chr19 / gene:ENSRNOG0000025773	0.0268054	-1.22484
cdna:novel / chrX / gene:ENSRNOG0000023722	0.0283532	-1.23128
cdna:novel / chr5 / gene:ENSRNOG0000040211	0.00542851	-1.23413
cdna:novel / chr14 / gene:ENSRNOG00000040014	0.000522799	-1.23417
cdna:novel / chr3 / gene:ENSRNOG0000037525	0.0181667	-1.24094
cdna:novel / chr13 / gene:ENSRNOG0000039616	0.0255496	-1.25185
cdna:novel / chrX / gene:ENSRNOG0000030261	0.0394558	-1.25376
cdna:novel / chr5 / gene:ENSRNOG0000037062	0.0084398	-1.27905
cdna:novel / chr2 / gene:ENSRNOG0000037669	0.0174387	-1.28104
cdna:novel / chr10 / gene:ENSRNOG0000036957	0.00212884	-1.31477
cdna:novel / chr1 / gene:ENSRNOG0000028365	0.0113094	-1.32315
cdna:novel / chr6 / gene:ENSRNOG0000031460	0.0330907	-1.33077
cdna:novel / chr3 / gene:ENSRNOG0000025674	0.0167482	-1.34485
cdna:novel / chr4 / gene:ENSRNOG0000037021	0.0441177	-1.39167
cdna:novel / chr12 / gene:ENSRNOG0000030450	0.0176353	-1.42498
cdna:novel / chr4 / gene:ENSRNOG0000005986	0.00159166	-1.43613
cdna:novel / chr6 / gene:ENSRNOG0000037486	0.0350242	-1.46412
cdna:novel / chr4 / gene:ENSRNOG0000013130	0.00348343	-1.54026
cdna:novel / chr1 / gene:ENSRNOG0000030564	0.00846921	1.33934
cdna:pseudogene / chro3 / gene:ENSRNOG0000028304	0.00803282	1.39757
cdna:pseudogene / chr13 / gene:ENSRNOG00000021960	0.0235789	1.3199
cdna:pseudogene / chrX / gene:ENSRNOG0000000868	0.014163	1.28108
cdna:pseudogene / chr9 / gene:ENSRNOG0000014421	0.0144092	1.25921
cdna:pseudogene / chr17 / gene:ENSRNOG0000015490	0.0298744	1.25673
cdna:pseudogene / chr12 / gene:ENSRNOG0000003182	0.032382	1.25667

cdna:pseudogene / chr5 / gene:ENSRNOG0000006107	0.0222756	1.25125
cdna:pseudogene / chr2 / gene:ENSRNOG0000033408	0.0367406	1.2507
cdna:pseudogene / chr17 / gene:ENSRNOG00000039423	0.00271315	1.24589
cdna:pseudogene / chr17 / gene:ENSRNOG0000023950	0.00705811	1.24494
cdna:pseudogene / chr1 / gene:ENSRNOG0000013739	0.0369348	1.22952
cdna:pseudogene / chr11 / gene:ENSRNOG00000026765	0.021909	1.22026
cdna:pseudogene / chr1 / gene:ENSRNOG0000016986	0.00347227	1.21878
cdna:pseudogene / chr18 / gene:ENSRNOG00000039843	0.0161457	1.2127
cdna:pseudogene / chr17 / gene:ENSRNOG0000000103	0.0246792	1.20986
cdna:pseudogene / chr1 / gene:ENSRNOG0000030129	0.0124804	1.2087
cdna:pseudogene / chr10 / gene:ENSRNOG00000031037	0.0124804	1.2087
cdna:pseudogene / chr9 gene:ENSRNOG0000002084	0.00744471	1.20734
cdna:pseudogene / chr3 / gene:ENSRNOG0000038233	0.0436639	1.2063
cdna:pseudogene / chr3 gene:ENSRNOG0000028666	0.015215	1.20522
cdna:pseudogene / chr14 gene:ENSRNOG00000040207	0.0176386	1.20154
cdna:pseudogene / chr3 / gene:ENSRNOG0000038650	0.0443815	-1.20084
cdna:pseudogene / chr17 / gene:ENSRNOG0000033943	0.0345724	-1.2051
cdna:pseudogene / chrX / gene:ENSRNOG0000037881	0.003256	-1.21008
cdna:pseudogene / chr2 / gene:ENSRNOG0000034042	0.00151268	-1.22981
cdna:pseudogene / chr1 / gene:ENSRNOG0000015453	0.0021145	-1.23363
cdna:pseudogene / chr8 / gene:ENSRNOG0000038763	0.00622695	-1.23506
cdna:pseudogene / chr11 / gene:ENSRNOG00000001745	0.00676257	-1.23761
cdna:pseudogene / chr1 / gene:ENSRNOG0000040262	0.0278686	-1.26806
cdna:pseudogene / chr16 / gene:ENSRNOG0000024515	0.00585964	-1.30833
cdna:pseudogene / chr4 / gene:ENSRNOG0000026045	0.0446367	-1.31209
cdna:known//pseudogene / chr13 / gene:ENSRNOG00000025006//similar to 60S ribosomal protein L7a	0.00484346	1.39412
cdna:known//pseudogene / chr9 /gene:ENSRNOG00000034205 //similar to glyceraldehyde-3-phosphate dehydrogenase	0.00558647	1.3176
cdna:known//pseudogene / chr2 / gene:ENSRNOG00000031758//similar to Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)	0.0205186	-1.39438

Tabla 4. Conjunto de genes expresados diferencialmente que coinciden en todas o en dos de las edades estudiadas.

Tabla 4.1

48h/82h/168h								
Gen	Ensmebl ID		P-value		Fold-change			
		48h	82h	168h	48h	82h	168	
Calhm3	ENSRNOT0000036202	0.01272	0.013457	0.01989	-1.22594	-1.22356	1.207	
Pseudogene	ENSRNOG0000034205	0.02527	0.013243	0.00558	1.23847	-1.27235	1.3176	

Tabla 4.2

48h/82h									
Gen	Ensmebl ID	P-value		Fold-change					
		48h	48h 82h 48h		82h				
Vom2r12	ENSRNOG0000010717	0.00088644	0.0442795	-1.65717	-1.31621				
Obox5	ENSRNOG0000029702	0.036184	0.00661971	-1.22256	1.31309				
Lgals3bp	ENSRNOG0000003217	0.00035527	0.00309969	1.31521	1.23758				
Novel Gene	ENSRNOG0000028540	0.00312282	0.0173253	1.29788	1.22189				
Vom2r63	ENSRNOG0000025912	0.0398901	0.0265763	-1.31654	-1.34968				
Novel gene	ENSRNOG0000040233	0.0396307	0.0411444	-1.20963	1.20768				
Novel gene	ENSRNOG0000031708	0.0370961	0.0143105	1.31974	-1.39667				
Novel gene	ENSRNOG0000038954	0.024679	0.0105509	1.2352	-1.27877				
Edaradd	ENSRNOG0000002624	0.0440491	0.0270998	1.20576	1.23109				
Fam89a	ENSRNOG0000019022	0.0203165	0.00368572	-1.40652	-1.56365				
<i>II21</i>	ENSRNOG0000017376	0.0498183	0.033406	1.21783	-1.24093				
Pseudogene	ENSRNOG0000029400	0.0301464	0.0171955	-1.60839	-1.69869				
Gja10	ENSRNOG0000006478	0.0163807	0.00549504	1.48982	-1.60784				

Tabla 4.3

48h/168h								
Gen	Ensmebl ID	P-value Fold			-change			
		48h	168h	48h	168h			
snoRNA	ENSRNOG0000035968	0.0380958	0.0357436	1.33629	1.34179			
Olr5	ENSRNOG0000015263	0.0235361	0.0163859	-1.45402	1.49258			
V1rd25	ENSRNOG0000038644	0.0296826	0.0332697	1.23567	1.22948			
LOC691661	ENSRNOG0000031178	0.0136617	0.0200237	1.32258	1.29831			
Novel Gene	ENSRNOG000000374	0.00216918	0.0056535	-1.41267	1.35471			
Olr1436	ENSRNOG0000031528	0.00368959	0.00393935	1.27275	1.27002			
RGD1308138	ENSRNOG0000039517	0.019317	0.00687357	-1.20752	1.25103			
Stfa3	ENSRNOG0000033933	0.0262718	0.04291	-1.24263	1.21588			
Novel Gene	ENSRNOG0000039616	0.0196792	0.0255496	-1.26644	-1.25185			
LOC498330	ENSRNOG0000032961	0.0423012	0.037933	-1.20708	-1.21276			
snoRNA	ENSRNOG0000036229	0.0214211	0.0436074	-1.23896	1.20271			
Mrpl36	ENSRNOG0000023407	0.00783243	0.00101364	-1.25392	-1.34473			
Znf307	ENSRNOG0000038818	0.0111222	0.014915	-1.21385	-1.20248			
Novel Gene	ENSRNOG0000025773	0.0433015	0.0268054	-1.20064	-1.22484			
Vtcn1	ENSRNOG0000015279	0.0222246	0.00781106	1.21011	1.25623			
С7	ENSRNOG0000012516	0.00289962	0.00035154	1.25736	1.33926			
Atp6v1a	ENSRNOG0000001992	0.0241321	0.0164687	1.24784	1.26851			
Olr660	ENSRNOG0000034028	0.024045	0.0139824	-1.23225	-1.25951			
Cst8	ENSRNOG0000004989	0.04825	0.0350046	-1.24283	-1.26354			
C3ar1	ENSRNOG0000009211	0.0403518	0.0367074	1.37809	-1.38757			
Novel Gene	ENSRNOG0000030924	0.0366822	0.0102472	-1.26725	1.35106			
Slc48a1	ENSRNOG0000008192	0.012583	0.00990622	1.21735	-1.22701			
Ascl1	ENSRNOG0000004294	0.00327487	0.0127629	1.26872	1.21435			
snoRNA	ENSRNOG0000035992	0.0380958	0.0357436	1.33629	1.34179			
Pseudogene	ENSRNOG0000014421	0.0158516	0.0144092	1.2544	1.25921			
Glod5	ENSRNOG0000039571	0.00865796	0.0259915	-1.40676	1.32465			
Pseudogene	ENSRNOG0000037881	0.00143694	0.003256	1.23539	-1.21008			
RGD1561958	ENSRNOG0000022411	0.012261	0.00502925	-1.26555	-1.31026			

Tabla 4.4

82h/168h								
Gen	Ensmebl ID	P-va	lue	Fold-change				
		82h	168h	82h	168h			
Novel gene	ENSRNOG0000029219	0.0244454	0.0132066	-1.207	1.23439			
snRNA	ENSRNOG0000036116	0.0488928	0.0202596	-1.24754	-1.30552			
Myb	ENSRNOG0000014313	0.0330518	0.00791967	1.21451	1.28581			
LOC689757	ENSRNOG0000037076	0.00136491	0.00017401	1.20479	-1.26123			
lfnb1	ENSRNOG0000006268	0.0305681	0.0288617	-1.21473	1.21757			
RGD1562420	ENSRNOG0000005826	0.00936799	0.00247689	-1.30142	1.3748			
Zmynd10	ENSRNOG0000021602	0.00719636	0.0329475	1.27695	1.20488			
Spesp1	ENSRNOG0000025359	0.016477	0.0156049	-1.3477	1.35161			
Nck1	ENSRNOG0000014917	0.0481331	0.0425831	-1.20427	-1.21083			

Tabla 5. Tipos de secuencias expresadas diferencialmente

	48h			82h			168h		
Tipo de secuencia	Expresados diferencial- mente	Sobre- exresa- dos	Reprimi- dos	Expresados diferencial- mente	Sobre- exresa- dos	Reprimi- dos	Expresados diferencial- mente	Sobre- exresa- dos	Reprimi- dos
Genes codificantes de proteínas	282	126	156	208	105	103	354	184	170
Pseudogenes	26	15	11	30	7	23	34	23	11
Genes nuevos	45	23	22	49	16	33	56	32	24
miRNAs	11	5	6	5	1	4	6	3	3
snoRNAs	18	5	13	2	1	1	35	4	31
snRNAs	40	4	36	10	3	7	22	8	14
Total	422	178	244	304	133	171	507	254	253