

CÁLCULO DEL GRADIENTE DE PRESIÓN EN FLUJO BIFÁSICO HORIZONTAL LÍQUIDO-GAS ANÁLISIS DE ALGUNOS DE LOS MODELOS EXISTENTES

Tesis que para obtener el grado de Ingeniero Mecánico presenta

MAURICIO ADOLFO SOLIS MALDONADO

Director de tesis: Dr. Arturo Palacio Pérez

México D.F., marzo de 2013

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A mi madre, como un testimonio de cariño y eterno agradecimiento, ya que sin escatimar esfuerzo alguno, ha invertido gran parte de su vida en mi formación. Por lo que soy y porque nunca podré pagar todo lo que ha hecho por mí.

A Ari, por su cariño, ayuda, apoyo y comprensión. Por haberme dado ánimos en los momentos más difíciles y haber vivido conmigo paso a paso el desarrollo de este trabajo.

A mi hermano, por haberme ayudado y apoyado en todo momento.

AGRADECIMIENTOS

A mi director de tesis, el doctor Arturo Palacio Pérez, por su paciencia, apoyo, confianza y quien sin más interés que el de ver culminar esta parte de mi trayectoria, me asesoró y me guió en todo momento.

Al doctor Alejandro Rodríguez Valdés, quien me apoyó con información muy útil para desarrollar este trabajo.

Al ingeniero Silverio Caudillo Fernández, por su apoyo, confianza y por haberme abierto las puertas que me llevaron a conocer al doctor Arturo Palacio Pérez.

Al ingeniero Vicente González Dávila, por haberse interesado en mi trabajo, por su paciencia y por la oportunidad que me brindó de incorporarme a su equipo de trabajo.

A la UNAM, mi alma máter, por haberme permitido realizar mis estudios.

A la Facultad de Ingeniería, por haberme dado la formación necesaria para gozar de esta extraordinaria profesión.

Al Instituto de Ingeniería, por haberme permitido llevar a cabo este trabajo y por la beca que me fue otorgada.

A mis sinodales: Dr. Arturo Palacio Pérez, Dr. José Luis Fernández Zayas, Dr. Alejandro Rodríguez Valdés, Dr. Francisco Javier Solorio Ordaz y al M.I. Juan Carlos Cedeño Vázquez por sus valiosas sugerencias. Gracias por su tiempo invertido en la revisión de esta tesis.

A mi tía Male y a su familia, por los ánimos que me brindaron para la culminación de este trabajo.

Índice

1- Resumen
2- Antecedentes
2.1- Características y tipos de flujo multifásico 4
2.2- Regímenes de flujos bifásicos 4
3- Representación matemática de flujo bifásico7
3.1- Revisión de los modelos actualizados de flujo bifásico horizontal gas-líquido9
3.2- Modelo Beggs y Brill
3.3- Modelo Lockhart Martinelli 15
3.4- Modelo Dukler
3.5- Modelo Olujic 22
4- Simulaciones realizadas y análisis de resultados
4.1- Análisis de la densidad en función del contenido de gas
4.2- Análisis de la viscosidad en función del contenido de gas
4.3- Análisis del factor de fricción en función del contenido de gas
4.4- Análisis del número de Reynolds en función del contenido de gas
4.5- Análisis de los gradientes de presión en función del contenido de gas
4.6- Evaluación del comportamiento de los modelos42
5- Conclusiones y recomendaciones
6- Bibliografía
7- Anexo 1
1.1- Resumen de las ecuaciones54
1.2- Tablas y gráficas de la densidad en función del contenido de gas
1.3- Tablas y gráficas de la viscosidad en función del contenido de gas67
1.4- Tablas y gráficas del factor de fricción en función del contenido de gas

1.5-	- Tablas y gráficas del número de Reynolds en función del contenido de gas	83
1.6-	- Tablas y gráficas de los gradientes de presión en función del contenido de gas	97
1.7-	- Tablas y gráficas de porcentaje de variación de los gradientes de presión1	11

CÁLCULO DEL GRADIENTE DE PRESIÓN EN FLUJO BIFÁSICO HORIZONTAL LÍQUIDO-GAS ANÁLISIS DE ALGUNOS DE LOS MODELOS EXISTENTES

1- RESUMEN

El problema práctico que se pretende abordar es el del cálculo del gradiente de presión en ductos horizontales de diámetro grande (aproximadamente 24 in), transportando una mezcla de crudo y gas bajo diferentes proporciones.

El presente trabajo proporciona un análisis y una comparación de algunos de los modelos reportados en la literatura para flujo bifásico en tuberías horizontales transportando una mezcla de líquido-gas, considerados como los más convenientes, algunos por robustez, otros por su popularidad y otros por ser los más recientes.

Dentro de los modelos más relevantes considerados en el presente estudio se pueden mencionar los siguientes:

Beggs y Brill [21], el cual es citado generalmente como el más exacto y ofrece un método de predicción del patrón de flujo, en función del cual calcula los correspondientes gradientes de presión.

Lockhart Martinelli [21], es el modelo tradicionalmente más aceptado para calcular gradientes de presión en flujo bifásico horizontal, pero no ha mostrado ser generalizable a todo tipo de condiciones de flujo en cuanto a tamaño de diámetro y proporciones líquido/gas.

Dukler [4], es un modelo que se puede considerar como robusto, y que por ende es recomendado en un manual de diseño publicado conjuntamente por AGA (American Gas Association) y API (American Petroleum Institute).

Olujic [22], se encuentra entre los publicados más recientemente, y argumenta ser el más exacto en algunos artículos, pero no establece los límites de aplicación ni el grado de certeza.

Existen otros modelos que si bien fueron contemplados, no son discutidos en extenso aquí por considerarse de menor relevancia que los previamente mencionados.

Para llevar a cabo una comparación fidedigna entre los modelos y así establecer su factibilidad de aplicación de acuerdo con el problema práctico en consideración, es evidente que lo más adecuado sería comparar todos los modelos con datos experimentales que de preferencia hubieran sido generados de manera repetitiva y bajo condiciones controladas. Desafortunadamente cada autor emplea un conjunto de datos enfocándose a alguna circunstancia particular, es decir, algunos se enfocan en tuberías de diámetro pequeño (menores a 2 in), otros a mezclas de fluidos con relativamente baja viscosidad (agua-aire), o altas proporciones gas/líquido, lo cual dificulta su extrapolación a problemas prácticos como el que aquí se pretende abordar, que es flujo de crudo pesado, con bajo contenido de gas (<10%), en tuberías de diámetro grande (aproximadamente 24 in).

Adicionalmente a lo anterior, las bases de datos que se presentan en los artículos carecen frecuentemente de uno o varios de los parámetros que resultan cruciales para reproducir el

cálculo del gradiente de presión reportado por el autor, ya que no especifican exactamente los fluidos utilizados (i.e., mencionan simplemente "aceite"), o no reportan las propiedades de los fluidos como son la densidad o la viscosidad dinámica, o cuando llegan a mencionar estas propiedades, las reportan a una temperatura o presión de operación que no fue la utilizada en sus pruebas y por lo mismo se tienen que hacer suposiciones de ciertos parámetros para intentar reproducir sus datos experimentales.

Con base en lo anterior, en este trabajo se optó por realizar un análisis comparativo de sensitividad de los modelos seleccionados, que permitiera identificar las diferencias básicas entre ellos, y que dejara claramente establecidos los requerimientos de cada uno de ellos para la predicción de gradientes de presión en tuberías horizontales con flujo bifásico. De esta manera, una segunda etapa natural y complementaria de este trabajo sería la recopilación en campo de un grupo de datos experimentales teniendo en cuenta de antemano todos los parámetros que serán necesarios para aplicar cualquiera de los modelos analizados, y de esta manera poder ya sea seleccionar directamente o calibrar alguno de ellos para la aplicación particular que se quiera hacer del mismo, acotando los límites de aplicabilidad de cada uno de ellos.

Objetivo

Identificar un modelo que se pueda considerar más generalizable y que pueda ser utilizado para predecir con bajo margen de error gradientes de presión en tuberías horizontales de amplio diámetro, transportando fluidos de alta viscosidad y contenidos bajos de gas.

2- ANTECEDENTES

El denominado flujo multifásico es encontrado en un gran número de industrias y es simplemente la presencia de dos o más fases en una misma línea de flujo. Los sistemas bifásicos son el caso más común y pueden presentarse en varias combinaciones.

La necesidad de entender el comportamiento de una mezcla líquido-gas dentro de una tubería se ha hecho más importante últimamente debido a que la industria petrolera tendría un gran avance si se pudiera manejar eficientemente el flujo bifásico proveniente de los pozos antes de llegar a la refinería.

Hasta la fecha no se sabe con exactitud lo que sucede en el interior de las tuberías. Dentro del tubo, la mezcla de fluidos puede presentar diversos arreglos que dependen de las velocidades y propiedades de cada sustancia, así como de la inclinación de la tubería; estos arreglos son conocidos como patrones de flujo. Al igual que en el flujo monofásico, las tuberías pueden encontrarse horizontales, verticales o inclinadas.

Si se conociera a detalle el comportamiento de las sustancias dentro de la tubería, sería posible manipular las condiciones de trabajo para aprovechar al máximo la presión del flujo, la cantidad de gas o el patrón de flujo existente, economizando en transporte y equipos de separación. La exactitud en la determinación del gradiente de presión en flujo bifásico líquido-gas es importante para el diseño y la operación de sistemas donde este tipo de flujo esté presente.

En todo el mundo y para el caso particular de México, la disponibilidad de crudo ligero es cada vez menor, lo que obliga a encontrar maneras eficientes de transportar crudo pesado y extra pesado, el cual por definición es un fluido de muy alta viscosidad. Desde su extracción del yacimiento a través de pozos, este crudo emerge como una mezcla de líquido y gas, y es transportado a través de sistemas de tuberías tanto en instalaciones marinas como terrestres. Las potencias de bombeo para manejar este tipo de crudo son muy altas, con los correspondientes costos asociados tanto al tamaño de los equipos de bombeo como a la energía utilizada para su operación. El conocimiento adecuado de las condiciones de flujo bajo las cuales se transporta esta mezcla, permite diseñar el sistema de ductos, las bombas y los equipos periféricos tales como los separadores, de tal forma que los costos de inversión y de operación se reducen de manera considerable.

La gran mayoría de los modelos matemáticos han sido desarrollados con base en flujo de agua y aire a través de tuberías de 2 in o menos, y se basan en correlaciones empíricas, lo cual hace muy limitada su aplicación. Adicionalmente, un análisis de los principales modelos reportados en la literatura, indica que para las mismas condiciones de flujo existen discrepancias en la predicción del gradiente de presión de hasta 300% o más.

Este trabajo se centra en el análisis de algunos de los modelos existentes para la predicción de gradientes de presión en flujo bifásico a través de tuberías horizontales, conteniendo una mezcla de líquido y gas. Se pretende establecer sus límites de aplicación, para que cuando se disponga de una base de datos para el caso específico de mezclas de crudo pesado con gas, se pueda elegir y calibrar alguno de dichos modelos para su adecuada aplicación e implementación en el diseño y operación de sistemas de transporte.

2.1- Características y tipos de flujo multifásico

La clase más común de flujos multifásicos son los flujos bifásicos, los cuales implican la presencia de dos fases en un mismo sistema y conducto y pueden presentarse en varias combinaciones.

- Gas-sólido: Las partículas sólidas están suspendidas en los gases (secaderos a contracorriente).
- Líquido-líquido: Flujo de dos líquidos inmiscibles (flujos de emulsión de agua y aceite en tuberías).
- Líquido sólido: Flujo en donde se encuentra presente una fase líquida y una sólida (Flujos ampliamente encontrados en el transporte hidráulico de material sólido).
- Gas-líquido: Flujo de una fase gaseosa y una líquida (Flujo en tuberías con aceite y gas).

Los flujos trifásicos también son de importancia práctica y se clasifican en:

- Gas-líquido-sólido: Reacciones gas-líquido en la presencia de un catalizador de partículas.
- Gas-líquido-líquido: Agua, aceite y gas natural. Estos flujos se encuentran en la condensación o evaporación de mezclas de líquidos (condensación de una mezcla de vapor e hidrocarburos).
- Sólido-líquido-líquido: Mezcla de arena con aceite y agua en una tubería.

2.2- Regímenes de flujos bifásicos

El presente trabajo se concentra en el flujo bifásico, en donde se encuentran presentes una fase líquida y otra gaseosa, es decir, gas-líquido.

Los tipos de distribución interfacial se denominan regímenes o patrones de flujo, y a pesar de que su clasificación proporciona un punto de partida muy útil, no ofrece una descripción completa del sistema. Una definición generalmente aceptada de los diversos patrones de flujo bifásico se presenta en la Figura 1.

Flujo estratificado (stratified)

A bajas velocidades de líquido y de gas ocurre una separación completa de las dos fases. El gas fluye en la parte superior del tubo y el líquido en la parte inferior, separados por una interfase horizontal sin perturbaciones. Este patrón de flujo se denomina estratificado.

Flujo estratificado ondulado (stratified wavy)

Conforme la tasa de flujo de masa de gas se incrementa en el flujo estratificado, se forman inestabilidades en la interfase gas-líquido debido a la diferencia de la velocidad superficial. Este patrón de flujo es llamado estratificado ondulado y se caracteriza por la formación de pequeñas ondas interfaciales.

Flujo anular (annular)

Cuando el líquido recubre la pared del tubo completamente (formando un anillo anular de la fase líquida) y el gas fluye a través del núcleo del tubo, el patrón de flujo se denomina flujo anular. En el flujo anular puede haber pequeñas gotas de líquido arrastradas en el núcleo de gas.

Flujo tapón (plug)

Está caracterizado por una corriente continua de burbujas alargadas de gas fluyendo en el líquido. Los diámetros de éstas son más pequeños que el diámetro del tubo, de manera que la fase líquida es continua a lo largo de la parte inferior del tubo, por debajo de las burbujas de gas, las cuales se mantienen intactas y uniformes.

Flujo pistón (slug)

Conforme la tasa de flujo de masa de gas se incrementa en el flujo tapón, se forman disturbios en las burbujas de gas, hasta que éstas se rompen en pequeñas burbujas que quedan atrapadas en el flujo de líquido. En este punto el patrón de flujo se convierte en flujo slug.

Flujo burbuja (bubble)

Las burbujas de gas están dispersas en el líquido con una alta concentración de burbujas en la mitad superior del tubo. Éste régimen ocurre a tasas de flujo de líquido altas.

Flujo neblina (mist)

Conforme la velocidad del gas aumenta en el flujo burbuja, el tamaño de la burbuja disminuye y éstas se dispersan a través de la sección transversal del tubo.

Figura 1. Patrones de flujo generales para flujo horizontal de líquido y gas

3- REPRESENTACIÓN MATEMÁTICA DE FLUJO BIFÁSICO

La ecuación de gradiente de presión se puede obtener al combinar la ecuación de conservación de masa con la de conservación de movimiento.

Conservación de masa

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial L} = 0 \qquad ...1$$

Para estado estacionario

$$\frac{d(\rho v)}{dL} = 0 \qquad \dots 2$$

Conservación de movimiento

 $\frac{\partial(\rho v)}{\partial t} + \frac{\partial(\rho v^2)}{\partial L} = -\frac{\partial p}{\partial L} - \tau \frac{\pi d}{A} - \rho g sen \theta \qquad ... 3$ $\frac{\partial(\rho v^2)}{\partial L} = v \frac{d(\rho v)}{dL} + \rho v \frac{dv}{dL} \quad ... 4$

Combinando las ecuaciones 2,3 y 4 y asumiendo flujo en estado estacionario, resulta:

$$\frac{\partial(\rho v)}{\partial t} = 0$$

$$\frac{\partial(\rho v)}{\partial t} + v \frac{d(\rho v)}{dL} + \rho v \frac{dv}{dL} = -\frac{\partial p}{\partial L} - \tau \frac{\pi d}{A} - \rho gsen\theta$$

$$\rho v \frac{dv}{dL} = -\frac{\partial p}{\partial L} - \tau \frac{\pi d}{A} - \rho gsen\theta \quad \dots 5$$

$$\frac{dp}{dL} = -\tau \frac{\pi d}{A} - \rho gsen\theta - \rho v \frac{dv}{dL} \quad \dots 6$$
Donde:

Donue.

$$\tau = \frac{f\rho v^2}{8} \quad \dots 7$$

Sustituyendo 7 en 6

 $\frac{dp}{dL} = \frac{f\rho v^2}{8} \left(\frac{\pi d}{A}\right) + \rho g sen\theta + \rho v \frac{dv}{dL}$

$$\frac{\mathrm{d}p}{\mathrm{d}L} = \frac{\mathrm{f}\rho v^2}{2\mathrm{d}} + \rho \mathrm{gsen}\theta + \rho v \frac{\mathrm{d}v}{\mathrm{d}L} \qquad \dots 8$$

Donde:

 ρ es la densidad

v es la velocidad

t es el tiempo

L es la longitud

d es el diámetro

A es el área

p es la presión

 τ es el esfuerzo cortante

f es el factor de fricción

g es la aceleración de la gravedad

 θ es el ángulo de inclinación

La primer componente es el gradiente de presión debido a la fricción o al esfuerzo de corte del fluido con la pared de la tubería, la segunda componente es el gradiente de presión debido a los cambios de energía potencial como consecuencia de la inclinación de la tubería y la tercer componente es el gradiente de presión debido a los cambios de energía cinética en el fluido o de aceleración.

Para una tubería horizontal, el gradiente de presión debido a los cambios de energía potencial es cero y generalmente el término de gradiente de presión debido a los cambios de energía cinética se considera despreciable, es decir, en general se considera que el gradiente de presión total en una tubería horizontal es debido principalmente al esfuerzo de corte del fluido con la pared de la tubería.

Flujo horizontal bifásico

Con base en el desarrollo anterior, las ecuaciones para el cálculo del gradiente de presión en un flujo bifásico horizontal se pueden escribir como sigue:

$$\frac{dp}{dL} = \frac{f \cdot \rho \cdot V_m^2}{2 \cdot g \cdot d} + \frac{\rho \cdot V_m \cdot dV_m}{g \cdot dL}$$

 $\frac{dp}{dL} = \frac{dp}{dL_{f}} + \frac{dp}{dL_{ac}}$

La primer componente es el gradiente de presión debido a la fricción o al esfuerzo de corte del fluido con la pared de la tubería, la segunda componente es el gradiente de presión debido a los cambios de energía cinética en el fluido o de aceleración, la cual generalmente es despreciable y solamente es calculada para velocidades de flujo altas (del orden de la velocidad del sonido).

Donde:

f es el factor de fricción (adimensional)

 ρ es la densidad (kg/m³)

V_m es la velocidad de la mezcla (m/s)

d es el diámetro (m)

x es la longitud (m)

g es la aceleración de la gravedad (9.81 m/s² o 32.174 ft/s²)

f y ac son subíndices que indican fricción y aceleración

3.1- Revisión de los modelos actualizados de flujo bifásico horizontal gas-líquido

Como se mencionó anteriormente, la literatura para flujo bifásico en tuberías horizontales transportando una mezcla de líquido-gas es muy amplia, y en este trabajo se presentan, analizan y comparan entre sí cuatro de dichos modelos, considerados los más representativos.

La caída de presión causada por las pérdidas de fricción requiere la evaluación de un factor de fricción bifásico, mientras que la caída de presión debida a la aceleración generalmente es despreciable y solamente es calculada para velocidades de flujo altas (del orden de la velocidad del sonido).

Existen varias correlaciones para predecir gradientes de presión en flujo bifásico, las cuales difieren en la forma de calcular las componentes del gradiente de presión. Algunos investigadores asumen que el líquido y el gas viajan a la misma velocidad (no hay deslizamiento entre fases) para evaluar la densidad de la mezcla y el factor de fricción de manera empírica. Otros utilizan métodos para calcular el holdup líquido (que representa el volumen de líquido presente en una sección de tubería) y el factor de fricción, y algunos deciden separar las condiciones de flujo en patrones o regímenes y desarrollan correlaciones separadas para cada régimen de flujo.

3.2- Modelo Beggs y Brill

El modelo Beggs y Brill descrito para flujo vertical puede ser aplicado para flujo horizontal [4]. Este modelo también ofrece un método de predicción del patrón de flujo para flujo horizontal.

El modelo de Beggs y Brill fue desarrollado a partir de datos experimentales obtenidos en una instalación de pruebas a pequeña escala. La instalación consistía en dos secciones de tubería de acrílico de 1 y 1.5 in de diámetro y 90 ft de longitud.

Los parámetros estudiados y su tasa de variación fueron:

- 1) Tasa de flujo de gas: 0 a 300 Mscf/d (miles de pies cúbicos estándar/día)
- 2) Tasa de flujo de líquido: 0 a 30 gal/min
- 3) Presión media del sistema: 35 a 95 psia
- 4) Diámetro de la tubería: 1 y 1.5 in
- 5) Holdup líquido: 0 a 0.870
- 6) Gradiente de presión: 0 a 0.8 psi/ft
- 7) Ángulo de inclinación: -90° a 90°
- 8) Patrón de flujo horizontal

Los fluidos utilizados fueron agua y aire. Para cada medida de tubería las tasas de líquido y gas fueron variadas para que todos los patrones fueran observados cuando la tubería se encontraba en posición horizontal.

A partir de 584 pruebas experimentales, los autores desarrollaron diferentes correlaciones para la determinación del holdup líquido, tomando en consideración tres regímenes de flujo: segregado, intermitente y distribuido, mismos que se ilustran en la figura 2. Se puede observar que en el régimen segregado agrupan al flujo estratificado, al ondulado y al anular, en el intermitente consideran al flujo de tapón y el de pistón, mientras que el flujo de burbuja y el de neblina caen en el régimen distribuido. Dependiendo del valor de los parámetros que se definen abajo, los autores consideran un régimen de transición entre el segregado y el intermitente.

Figura 2. Patrones de flujo horizontal de líquido y gas considerados en el modelo de Beggs y Brill

Determinación del régimen de flujo

Las siguientes variables son utilizadas para determinar el régimen de flujo de acuerdo con la clasificación previamente descrita:

$$N_{FR} = \frac{V_m^2}{g \cdot d}$$

$$L_1 = 316 \cdot \lambda_1^{0.302}$$

$$L_2 = 0.0009252 \cdot \lambda_2^{-2.4684}$$

$$L_3 = 0.1 \cdot \lambda_2^{-1.4516}$$

$$L_4 = 0.5 \cdot \lambda_1^{-6.738}$$

$$\lambda_{L} = \frac{V_{SL}}{V_{m}}$$

$$V_{m} = V_{SL} + V_{Sg}$$

$$V_{SL} = \frac{q_{L}}{A}$$

$$V_{sg} = \frac{q_{g}}{A}$$

Donde:

NFR es el número de Froude

VsL es la velocidad superficial del líquido (ft/s)

VsL: velocidad que tendría el líquido si éste ocupara toda la tubería

V_{sg} es la velocidad superficial del gas (ft/s)

 V_{sg} : velocidad que tendría el gas si éste ocupara toda la tubería

V_m es la velocidad de la mezcla (ft/s)

q_L es la tasa de flujo volumétrica del líquido (ft³/s)

q_g es la tasa de flujo volumétrica del gas (ft³/s)

A es el área transversal de la tubería (m²)

Los límites de régimen de flujo horizontal establecidos son:

<u>Segregado</u>

Límites: λ_L <0.01 y N_{FR}<L₁ o λ_L ≥0.01 y N_{FR}<L₂

<u>Transición</u>

Límites: $\lambda_L \ge 0.01$ y L₂ $\le N_{FR} \le L_3$

Intermitente

Límites: 0.01≤ λ_L <0.4 y L₃< N_{FR}≤ L₁ o λ_L ≥0.4 y L₃< N_{FR}≤L₄

<u>Distribuido</u>

Límites: λ_L <0.4 y N_{FR}≥0.1 o λ_L ≥0.4 y N_{FR}>L₄

El holdup (H_L), representa el volumen de líquido presente en una sección de tubería y se calcula de la siguiente manera:

$$H_{L} = \frac{a \cdot \lambda_{L}^{b}}{N_{FR}^{c}}$$

Donde a, b, c son determinadas de la tabla 1 para cada patrón de flujo:

Patrón de flujo	а	b	С
Segregado	0.98	0.4846	0.0868
Intermitente	0.845	0.5351	0.0173
Distribución	1.065	0.5824	0.0609

Tabla 1. Valores de a, b y c en función del patrón de flujo

Cuando el flujo cae en el régimen de transición el holdup líquido debe ser calculado utilizando las ecuaciones tanto para segregado como para intermitente e interpolado con los siguientes factores.

 $H_{Ltransición} = A \cdot H_{Lsegregado} + B \cdot H_{Lintermitente}$

Donde:

$$A = \frac{L_3 - N_{FR}}{L_3 - L_2}$$

B = 1 – A

Gradiente de presión por fricción

Las ecuaciones empleadas para el cálculo del gradiente de presión son las siguientes:

$$\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{m} \cdot V_{m}^{2}}{2 \cdot g \cdot d}$$
$$V_{m} = V_{sL} + V_{sg}$$
$$f_{tp} = f \cdot exp(S)$$

El factor de fricción se determina a partir del diagrama de Moody y se expresa como:

$$f = \frac{1}{\left[2 \cdot \log\left(\frac{N_{Ren}}{4.5223 \cdot \log(N_{Ren}) - 3.8215}\right)\right]^2}$$

Utilizando el siguiente número de Reynolds

$$N_{Ren} = \frac{\rho_m \cdot V_m \cdot d}{\mu_m}$$

Donde la densidad y la viscosidad de la mezcla se calculan como:

$$\rho_{m} = \rho_{L} \cdot \lambda_{L} + \rho_{g} \cdot (1 - \lambda_{L})$$

$$\mu_{m} = \mu_{L} \cdot \lambda_{L} + \mu_{g} \cdot (1 - \lambda_{L})$$

$$\lambda_{\rm L} = \frac{V_{\rm SL}}{V_{\rm m}}$$

El factor de fricción bifásico se calcula de:

$$f_{tp} = f \cdot exp(S)$$

Donde:

$$S = \frac{\ln (y)}{-0.0523 + 3.182 \cdot \ln (y) - 0.8725 \cdot \ln^{2}(y) + 0.01853 \cdot \ln^{4}(y)}$$
$$y = \frac{\lambda_{L}}{H_{L}^{2}}$$

El valor de S se convierte en ilimitado en un punto en el intervalo 1<y<1.2, para y en este intervalo, la función S se calcula de la siguiente manera:

 $S = In (2.2 \cdot y - 1.2)$

Término de aceleración

El gradiente de presión de aceleración no repercute a menos que la velocidad de flujo sea del orden de la velocidad del sonido, sin embargo puede ser calculado de la siguiente manera:

$$\frac{dp}{dx_{ac}} = \frac{\rho_s \cdot V_m \cdot V_{sg}}{g \cdot x}$$

Si se define un término de aceleración como:

$$E_{k} = \frac{\rho_{s} \cdot V_{m} \cdot V_{sg}}{g \cdot P \cdot 144}$$
$$\rho_{s} = \rho_{L} \cdot H_{L} + \rho_{g} \cdot (1 - H_{L})$$

El gradiente de presión total puede ser calculado como:

$$\frac{dp}{dx} = \frac{\frac{dp}{dx_f}}{1 - E_k}$$

f_{tp} es el factor de fricción bifásico (adimensional)

 ρ_m es la densidad de la mezcla (lb/ft³)

 ρ_{L} es la densidad del líquido (lb/ft³)

 ρ_{g} es la densidad del gas (lb/ft³)

 ρ_s es la densidad de la mezcla sin deslizamiento (lb/ft³)

V_m es la velocidad de la mezcla (ft/s)

VsL es la velocidad superficial del líquido (ft/s)

V_{sg} es la velocidad superficial del gas (ft/s)

N_{Ren} es el número de Reynolds de la mezcla (adimensional)

 μ_{m} es la viscosidad dinámica de la mezcla (lb/fts)

μ_L es la viscosidad dinámica del líquido (lb/fts)

μ_g es la viscosidad dinámica del gas (lb/fts)

x es la longitud (ft)

P es la presión (psi)

g=32.174 (ft/s²)

3.3- Modelo Lockhart Martinelli

El modelo de Lockhart Martinelli presenta el gradiente de presión bifásico en términos de un gradiente monofásico multiplicado por un factor de corrección [4]. Los gradientes monofásicos son calculados como si cada fase fluyera sola en el tubo.

La aceleración fue ignorada en el método de Lockhart y Martinelli.

Lockhart y Martinelli presentaron datos para flujo simultáneo de aire y líquidos, incluyendo benceno, queroseno, agua y diferentes tipos de aceites en tuberías que iban desde 0.0586 in hasta 1.017 in. Ellos desarrollaron su método para presiones que iban desde la atmosférica hasta 50 psi y consideraron cuatro tipos de flujo con dos componentes. Estos cuatro mecanismos de flujo se resumen en la Tabla 2 en función del número de Reynolds de cada fase.

Líquido	Gas	Mecanismo de flujo
>2000	>2000	Líquido turbulento, gas turbulento
<1000	>2000	Líquido laminar, gas turbulento
>2000	<1000	Líquido turbulento, gas laminar
<1000	<1000	Líquido laminar, gas laminar

Tabla 2. Números de Reynolds y su mecanismo de flujo

Gradiente de presión por fricción

La expresión empleada para el cálculo del gradiente de presión es la siguiente:

$$\frac{dp}{dx} = \varphi_{g}^{2} \cdot \frac{dp}{dx_{g}} = \varphi_{L}^{2} \cdot \frac{dp}{dx_{L}}$$

Donde

$$\frac{dp}{dx_{g}} = \frac{f_{g} \cdot \rho_{g} \cdot V_{sg}^{2}}{2 \cdot g \cdot d}$$
$$\frac{dp}{dx_{L}} = \frac{f_{L} \cdot \rho_{L} \cdot V_{sL}^{2}}{2 \cdot g \cdot d}$$

Los factores de fricción f_g y f_L se determinan del diagrama de Moody para los valores de los números de Reynolds.

$$N_{\text{Reg}} = \frac{\rho_{\text{g}} \cdot V_{\text{sg}} \cdot d}{\mu_{\text{g}}}$$

$$N_{ReL} = \frac{\rho_L \cdot V_{sL} \cdot d}{\mu_L}$$
$$V_{sL} = \frac{q_L}{A}$$
$$V_{sg} = \frac{q_g}{A}$$

Siendo:

f_g es el factor de fricción del gas (adimensional)

f_L es el factor de fricción del líquido (adimensional)

V_{sg} es la velocidad superficial del gas (ft/s)

V_{sL} es la velocidad superficial del líquido (ft/s)

 ρ_L es la densidad del líquido (lb/ft³)

 ρ_g es la densidad del gas (lb/ft³)

d es el diámetro (ft)

N_{Reg} es el número de Reynolds del gas (adimensional)

N_{ReL} es el número de Reynolds del líquido (adimensional)

 μ_g es la viscosidad dinámica del gas (lb/fts)

μ_L es la viscosidad dinámica del líquido (lb/fts)

Los factores de corrección ($\phi_L y \phi_g$) están correlacionados con un parámetro definido como:

$$X = \left[\begin{array}{c} \frac{dp}{dx_{L}} \\ \frac{dp}{dx_{g}} \end{array} \right]^{0.5}$$

La correlación se muestra gráficamente en la Figura 3. Ellos encontraron que existían diferentes curvas para cada ϕ dependiendo del número de Reynolds para cada fase. Los subíndices en los términos ϕ representan flujo laminar o turbulento. Con el primer subíndice se representa la fase del gradiente de presión monofásico. Por ejemplo ϕ_{Ltv} es el factor de corrección aplicado al gradiente de presión líquido monofásico cuando la fase líquida es turbulenta y la fase gaseosa es laminar.

Figura 3. Factor de corrección de Lockhart Martinelli

Chisholm [5], correlacionó las curvas de Lockhart Martinelli y recomendó las siguientes relaciones:

 $\phi_{L}^{2} = 1 + \frac{C}{X} + \frac{1}{X^{2}}$ $\phi_{0}^{2} = 1 + C \cdot X + X^{2}$

Los valores de C dependen de si los números de Reynolds del gas y del líquido se encuentran en flujo laminar o turbulento.

Tabla 3. Valores de	C para los	diferentes tipos	s de fluj	0
---------------------	------------	------------------	-----------	---

Líquido	Gas	С
Turbulento	Turbulento	20
Laminar	Turbulento	12
Turbulento	Laminar	10
Laminar	Laminar	5

3.4- Modelo Dukler

Este modelo se recomienda en un manual de diseño publicado conjuntamente por AGA y API [4].

Para validar su modelo, Dukler tomó como referencia el trabajo realizado por Hoogendoorn [14] para flujo de aire y aceite con una viscosidad de 5 cP a través de una tubería horizontal de 5 in, cuyos datos aparecen en la Tabla 4.

Tabla 4. Caídas de presión medidas y calculadas para flujo de aire-aceite en tuberíahorizontal de 5 in

Relación volumétrica de líquido a gas	Fracción volumétrica de líquido en la tubería	dp/dL (actual)	dp/dL (calculada) Con puro flujo de gas	dp/dL (calculada) Flujo a través del área disponible para el gas
0.0017	0.060	0.35	0.192	0.262
0.0089	0.095	0.55	0.194	0.315
0.0415	0.190	3.10	0.188	0.540
0.0720	0.270	5.98	0.192	0.927

Gradiente de presión por fricción

La expresión empleada para el cálculo del gradiente de presión es la siguiente:

$$\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{tp} \cdot V_{m}^{2}}{2 \cdot g \cdot d}$$

Donde

$$\rho_{p} = \frac{\rho_{L} \cdot \lambda_{L}^{2}}{H_{L}} + \frac{\rho_{g} \cdot \lambda_{g}^{2}}{H_{g}}$$

$$H_{g} = 1 - H_{L}$$

$$V_{m} = V_{sL} + V_{sg}$$

$$\lambda_{L} = \frac{V_{sL}}{V_{m}}$$

$$\lambda_{g} = \frac{V_{sg}}{V_{m}}$$

Siendo:

 f_{tp} es el factor de fricción bifásico (adimensional)

 ρ_{tp} es la densidad de la mezcla (lb/ft³)

V_m es la velocidad de la mezcla (ft/s)

d es el diámetro (ft)

 ρ_{L} es la densidad del líquido (lb/ft³)

 ρ_{g} es la densidad del gas (lb/ft³)

 λ_{L} es la fracción volumétrica de líquido sin deslizamiento (adimensional)

 λ_L es la fracción volumétrica de gas sin deslizamiento (adimensional)

H_L es la fracción volumétrica de líquido con deslizamiento (adimensional)

H_g es la fracción volumétrica de gas con deslizamiento (adimensional)

Se desarrolló una correlación para el factor de fricción bifásico. El factor de fricción f_{tp} se obtiene de:

$$\frac{f_{tp}}{f} = 1 + \frac{y}{1.281 - 0.478 \cdot y + 0.444 \cdot y^2 - 0.094 \cdot y^3 + 0.00843 \cdot y^4}$$

$$f = 0.0056 + 0.5 \cdot N_{Ren}^{-0.32}$$

$$y = -\ln(\lambda_L)$$

$$N_{Ren} = \frac{\rho_P \cdot V_m \cdot d}{\mu_m}$$

$$\mu_m = \mu_L \cdot \lambda_L + \mu_g \cdot (1 - \lambda_L)$$

Donde:

N_{Ren} es el número de Reynolds de la mezcla (adimensional)

 μ_m es la viscosidad dinámica de la mezcla (lb/fts)

μ_L es la viscosidad dinámica del líquido (lb/fts)

μ_g es la viscosidad dinámica del gas (lb/fts)

Holdup líquido

Para calcular el holdup líquido es necesario llevar a cabo un procedimiento iterativo (ensayo y error).

El procedimiento para obtener un valor de holdup consiste en:

1- Calcular λ_L

2-Estimar H_L

3-Calcular N_{Ren}

4-Obtener H_L de la figura 4

5-Comparar los valores de H_L de los pasos 2 y 4. Si no son lo suficientemente aproximados, fijar el valor del paso 4 como el nuevo valor y regresar al paso 3. Se considera que una variación de las H_L entre 5% es suficientemente aproximada.

El holdup de Dukler se estima a partir de una gráfica en la cual es necesario darle un valor al holdup para poder obtener un número de Reynolds y así poder calcular el factor de fricción y el gradiente de presión, Figura 4. Para esto, primero se tiene que hacer la suposición de que el holdup es igual a la fracción volumétrica sin deslizamiento, con esto se obtiene un valor de la densidad de la mezcla que a su vez es utilizada para calcular el número de Reynolds, el factor de fricción y el gradiente de presión. Una vez que se llevó a cabo este procedimiento se tiene que tomar el número de Reynolds obtenido y el valor de la fracción volumétrica sin deslizamiento para obtener otro valor del holdup líquido mediante la gráfica que correlaciona estas variables. Ahora que se tienen dos valores para holdup líquido, se hace la comparación entre estos, si no son lo suficientemente aproximados, se fija el valor que se calculan los demás parámetros necesarios para poder estimar el gradiente de presión. Se considera que una variación de las H_L entre 5% es suficientemente aproximada.

Figura 4. Correlación para holdup líquido de Dukler

Término de aceleración

El gradiente de presión debido a la aceleración está dado por:

$$\frac{dp}{dx_{ac}} = \frac{1}{g \cdot x} \cdot \left[\frac{\rho_g \cdot V_{sg}^2}{H_g} + \frac{\rho_L \cdot V_{sL}^2}{H_L} \right]$$

El gradiente de presión total es:

 $\frac{dp}{dx} = \frac{dp}{dx_f} + \frac{dp}{dx_{ac}}$

3.5- Modelo Olujic

Este modelo considera dos regímenes para flujo horizontal líquido-gas [22]:

-Región β : en la que la velocidad del gas es igual a la del líquido (flujo burbuja y plug).

-Región α : en la que la velocidad del gas es mayor que la del líquido (flujo ondulado, slug y anular).

Las velocidades promedio del gas y del líquido son:

$$V_{g} = \frac{V_{sg}}{\alpha}$$

$$V_{L} = \frac{V_{sL}}{1 - \alpha}$$

$$V_{sg} = \frac{q_{g}}{A}$$

$$V_{sL} = \frac{q_{L}}{A}$$

$$\alpha = \frac{K}{1 + \beta}$$

$$\beta = \frac{q_{L}}{q_{g}}$$

$$K = \frac{(7 + 8 \cdot n) \cdot (7 + 15 \cdot n)}{60 \cdot (n + 1) \cdot (2 \cdot n + 1)}$$

$$K_{1} = 1.02$$

$$K_{2} = 1.2 \cdot \left[\frac{(7 + 8 \cdot n) \cdot (7 + 15 \cdot n)}{(7 + 9 \cdot n) \cdot (7 + 16 \cdot n)}\right]$$

Donde:

$$\begin{split} &V_{sL} \text{ es la velocidad superficial del líquido (ft/s)} \\ &V_{sg} \text{ es la velocidad superficial del gas (ft/s)} \\ &q_L \text{ es la tasa de flujo volumétrica del líquido (ft³/s)} \\ &q_g \text{ es la tasa de flujo volumétrica de gas (ft³/s)} \\ &M_g \text{ es la tasa de flujo de masa del gas (lb/s)} \\ &M_L \text{ es la tasa de flujo de masa del líquido (lb/s)} \\ &A \text{ es el área (ft)} \\ &\rho_g \text{ es la densidad del gas (lb/ft³)} \end{split}$$

 ρ_L es la densidad del líquido (lb/ft³) α es la fracción de vacío (adimensional) K es el parámetro de Bankoff (adimensional) K₁, K₂ son los parámetros de Mousalli (adimensionales) n es el perfil de fracción de vacío (adimensional)

Gradiente de presión en la región β

Gradiente de presión por fricción

$$\frac{dp}{dx} = f_{\beta} \cdot \frac{m^2}{2 \cdot g \cdot d \cdot \rho_L} \cdot (1 + x \cdot (R - 1)) \cdot (1 - (x \cdot (R - 1) \cdot (K_2 - 1)))$$

$$\cdot$$

$$f_{\beta} = -2 \cdot log \left[\frac{\kappa}{d \cdot 3.7} - \frac{5.02}{N_{Re}} \cdot log \left(\frac{\kappa}{d \cdot 3.7} + \frac{14.5}{N_{Re}} \right) \right]$$

$$N_{Re} = \frac{m \cdot d}{\mu_{TP}}$$

$$\mu_{TP} = \mu_L \cdot (1 - x \cdot (1 - \gamma))$$

El factor γ que aparece en esta referencia está definido como:

$$\gamma = \frac{\mu_{L}}{\mu_{g}}$$

Sin embargo, en el apartado 4 de esta tesis se explica que para ser consistente con la expresión para el cálculo de la viscosidad de la mezcla, dicho factor debe ser el inverso, es decir:

$$\gamma = \frac{\mu_g}{\mu_L}$$

$$m = \frac{M_L + M_g}{A}$$

$$x = \frac{M_g}{M_g + M_L}$$

$$R = \frac{\rho_L}{\rho_g}$$

$$K_{2} = 1.2 \cdot \left[\frac{(7 + 8 \cdot n) \cdot (7 + 15 \cdot n)}{(7 + 9 \cdot n) \cdot (7 + 16 \cdot n)} \right]$$

$$n = \frac{0.671}{\beta} \cdot (1 + (1 + 0.907 \cdot \beta)^{(1/2)})$$

$$\beta = \frac{q_{L}}{\beta}$$

$$\beta = \frac{q_L}{q_g}$$

Siendo:

 f_{β} es el factor de fricción (adimensional)

m es la velocidad de masa de la mezcla (lb/ft²s)

g=32.174 (ft/s²)

x es la calidad (adimensional)

R es la relación de densidad de las fases (adimensional)

d es el diámetro (ft)

 κ es la rugosidad absoluta (ft)

N_{Re} es el número de Reynolds (adimensional)

 μ_{TP} es la viscosidad de la mezcla (lb/fts)

A es el área (ft)

 M_g es la tasa de flujo de masa del gas (lb/s)

M_L es la tasa de flujo de masa del líquido (lb/s)

 ρ_g es la densidad del gas (lb/ft³)

 ρ_L es la densidad del líquido (lb/ft³)

n es el perfil de fracción de vacío (adimensional)

q_L es la tasa de flujo volumétrica del líquido (ft³/s)

q_g es la tasa de flujo volumétrica del gas (ft³/s)

 β es la relación de tasa de flujo volumétrico de las fases (adimensional)

Gradiente de presión en la región α

Gradiente de presión por fricción

.

$$\begin{aligned} \frac{dp}{dx} &= f_{\alpha} \cdot \frac{\left(m + x\right)^{2}}{2 \cdot g \cdot d \cdot \rho_{g}} \cdot \left[1 + \frac{1 - x}{x \cdot \varepsilon \cdot R}\right]^{\left[\frac{19}{8}\right]} \\ \vdots \\ f_{\alpha} &= 0.3164 \cdot \left[\frac{m \cdot x \cdot d}{\mu_{g}}\right]^{\left[\frac{-1}{4}\right]} \\ m &= \frac{M_{L} + M_{g}}{A} \\ x &= \frac{M_{g}}{M_{g} + M_{L}} \\ R &= \frac{\rho_{q}}{\rho_{g}} \\ \vdots \\ \varepsilon &= \left(\varepsilon_{1}^{-3} + \varepsilon_{2}^{-3}\right)^{\left[\frac{-1}{3}\right]} \\ \varepsilon_{1} &= 0.77 \cdot R^{-0.55} \cdot \Gamma^{\left(0.266 \cdot R^{-0.057}\right)} \\ \varepsilon_{2} &= 2.19 \cdot R^{-0.61} \cdot \Gamma^{\left(1.78 \cdot R^{-0.078}\right)} \\ \vdots \\ \Gamma &= \left[\left(\frac{1 - x}{x}\right) \cdot \left(\frac{m^{2} \cdot (1 - x)^{2}}{\rho_{c}^{2} \cdot g \cdot d}\right)^{\left(\frac{-1}{4}\right)}\right] \cdot \left[\frac{\rho_{1}}{\rho_{1}}\right]^{\left[\frac{-1}{2}\right]} \cdot \left[\frac{\mu_{L}}{\mu_{g}}\right]^{\left[\frac{-1}{8}\right]} \end{aligned}$$

Donde:

 f_{α} es el factor de fricción (adimensional)

m es la velocidad de masa de la mezcla (lb/ft²s)

g=32.174 (ft/s²)

x es la calidad (adimensional)

d es el diámetro (ft)

R es la relación de densidad de las fases (adimensional)

 N_{Re} es el número de Reynolds (adimensional)

- μ_g es la viscosidad dinámica del gas (lb/fts)
- μ_{L} es la viscosidad dinámica del líquido (lb/fts)
- M_ges la tasa de flujo de masa del gas (lb/s)
- M_L es la tasa de flujo de masa del líquido (lb/s)
- A es el área (ft)
- $\rho_{\text{g}}\,\text{es}$ la densidad del gas (lb/ft³)
- ρ_{L} es la densidad del líquido (lb/ft³)
- ε es el parámetro de flujo bifásico (adimensional)
- ϵ_1, ϵ_2 son los parámetros de flujo bifásico expresados en función de un número adimensional (Γ)
- En el anexo 1.1 se muestra un resumen de las ecuaciones utilizadas en cada modelo.

4- SIMULACIONES REALIZADAS Y ANÁLISIS DE RESULTADOS

Para poder comparar los modelos seleccionados, se escribió un programa empleando el Engineer Equation Solver (EES) y se llevó a cabo una serie de aproximadamente 700 corridas. El objetivo del programa realizado en EES es poder calcular y comparar directamente los gradientes de presión utilizando los modelos de Beggs y Brill, Lockhart Martinelli, Dukler y Olujic para diferentes diámetros y porcentajes ya sea de gas o de líquido, tratando de inferir sus semejanzas y diferencias, ventajas y desventajas, y procurando establecer sus intervalos de aplicación.

Para llevar a cabo el análisis comparativo, se utilizaron los datos reportados por Beggs y Brill en el libro Two-Phase Flow in Pipes [4], en el cual se hace la comparación de tres de estos modelos bajo ciertas condiciones preestablecidas. A pesar de que las discrepancias resultantes entre los cálculos de estos modelos son grandes, los autores no ofrecen una discusión que justifique dichas variaciones, ni proponen bajo qué circunstancias se recomienda el uso de cualquiera de los modelos. La discrepancia que presentó el modelo Lockhart Martinelli con respecto al modelo Beggs y Brill fue del 226%, mientras que la discrepancia del modelo Dukler con respecto al modelo Beggs y Brill fue del 89%. Los datos empleados por dichos autores, y que en este trabajo son empleados como base para las comparaciones son los siguientes:

q_g'= 400 MM scf/D

q_o'= 4000 STBO/D

d=16 in= 1.333 ft

API= 40°

P= 2500 psi

T= 60°F

ε= 0.0006 ft

 $R_p = q_g' / q_o' = 100000 \text{ scf/STBO}$

R_s= 919 scf/STBO

B_o= 1.419 bbl/STBO

 B_q = 0.003916 ft³/scf

 μ_0 = 1.359 cp= 91.32x10⁻⁵ lb/fts

 μ_{q} = 0.0233 cp= 1.566x10⁻⁵ lb/fts

 $\rho_0 = 42.25 \text{ lb/ft}^3$

 ρ_{q} = 13.66 lb/ft³

 $q_o = q_o'B_o(5.614/86400) = 0.369 \text{ ft}^3/\text{s}$

 $q_{a=} q_o'(R_p - R_s) (B_a/86400) = 17.963 \text{ ft}^3/\text{s}$

Como se mencionó previamente, se partió de este conjunto de datos para hacer un análisis de sensitividad.

Primero se realizó el cálculo del gradiente de presión para el modelo Beggs y Brill en el programa EES para la tubería de 16 pulgadas de diámetro planteada en el libro y se compararon ambos resultados. Al observar que el gradiente de presión reportado en el libro y el calculado con el programa fueron muy aproximados entre sí, se realizó el mismo procedimiento para los modelos Lockhart Martinelli y Dukler. También se compararon los gradientes de presión reportados en el libro con los obtenidos en el programa de estos dos modelos, siendo muy aproximados.

El modelo de Olujic no es presentado en el libro del cual se tomaron los datos. El modelo se tomó del artículo "Predicting two-phase flow friction loss in horizontal pipes" [21], por lo tanto los resultados de éste, programados en EES, no pudieron ser comparados con otra fuente.

Al haber realizado las simulaciones para este modelo, se observó que el comportamiento de la viscosidad y del número de Reynolds era inverso al de los otros modelos, por lo que se hizo un desarrollo de la expresión utilizada para calcular la viscosidad de la mezcla, encontrando que no era consistente a menos que la relación de viscosidades fuera inversa a la planteada en el artículo. Al hacer esta modificación, el cálculo de la viscosidad de la mezcla resulta similar al de cualquier propiedad en función de la calidad, haciendo que las propiedades de éste modelo sean consistentes con las de los otros modelos analizados en este trabajo.

Para el modelo Beggs y Brill se realizaron pruebas en el programa para la tubería de 16 pulgadas con q_g = 0.369 ft³/s y q_L = 0.369 ft³/s y se consideró que cada uno de estos gastos era equivalente al 100% de gas y de líquido respectivamente. A partir de esto se fue disminuyendo el porcentaje de gas a 50, 20, 10, 5, 4, 3, 2, 1 y 0%, manteniendo el porcentaje de líquido al 100% para observar el comportamiento de los gradientes de presión a medida que el porcentaje de gas era variado. Posteriormente se llevó a cabo el mismo procedimiento variando el diámetro de la tubería a 24, 8, 3, 2, 1.5 y 1 pulgadas.

En el flujo bifásico, cada fluido se mueve a diferente velocidad debido a las diferentes fuerzas gravitacionales y otros factores, la fase más pesada se mueve más lento que la fase más ligera. El holdup es la fracción presente de una de las fases en un intervalo de tubería, y por lo tanto teóricamente el valor del holdup líquido es de uno cuando q_L = 100% y q_g = 0% y de cero cuando q_a = 100% y q_L = 0%.

Al revisar los valores del holdup para los diferentes diámetros y concentraciones de gas en el modelo Beggs y Brill, se encontró que ese valor que por teoría no puede ser mayor a 1 cuando q_L= 100% y q_g = 0%, llegó a tomar un valor máximo de 2.048 para la tubería de 24 pulgadas. Por lo tanto se propuso una modificación al modelo de Beggs y Brill. Se utilizó la expresión H_L= λ_{L} . Lo que se pretende al hacer la modificación es ver lo que sucede físicamente sin hacer los ajustes que ellos hacían, para que de esta manera el modelo sea consistente con lo que físicamente se define como la fracción ocupada por el líquido en la tubería.

También se hizo la suposición f_{tp} =f, para comparar lo que sucede cuando no se calcula el factor de fricción como lo propone el modelo de Beggs y Brill y ver que tanto se aleja y

cuando es que se aproxima más a tubos de mayor, mediano y pequeño diámetro o mezclas de mucho, poco o casi nada de contenido de gas.

Se realizaron pruebas siguiendo el mismo método que se utilizó en el modelo original, de los resultados obtenidos se puede concluir que al hacer esta modificación, el modelo se ajusta a los datos que siguen las tendencias experimentales, obteniendo así un modelo consistente y congruente, a diferencia del modelo original el cual ni siquiera arrojaba resultados consistentes en una sola fase.

Al concluir con esta parte se llevaron a cabo pruebas para el modelo Lockhart Martinelli para la tubería de 16 pulgadas con q_g = 0.369 ft³/s y q_L = 0.369 ft³/s, tomando en cuenta las mismas consideraciones que en el modelo Beggs y Brill y se fue disminuyendo el porcentaje de gas a 50, 20, 10, 5, 4, 3, 2, 1 y 0%. De igual manera se llevó a cabo para una tubería de 24, 8, 3, 2, 1.5 y 1 pulgadas y se mantuvo el porcentaje de líquido al 100% para observar el comportamiento de los gradientes de presión a medida que variaba el porcentaje de gas.

El modelo Lockhart Martinelli, calcula el gradiente de presión bifásico en términos de un gradiente monofásico multiplicado por un factor de corrección relacionado con un parámetro X, estos gradientes monofásicos son calculados como si cada fase fluyera sola en la tubería. Al realizar las pruebas para este modelo se encontró algo muy interesante, cuando q_L = 100% y q_g = 0% y viceversa la caída de presión no puede ser calculada ya que el modelo propuesto se indetermina al calcular el parámetro X de Lockhart Martinelli.

Para el modelo Dukler se hicieron las mismas pruebas que en los modelos anteriores. Primero para la tubería de 16 pulgadas con q_g = 0.369 ft³/s y q_L = 0.369 ft³/s y se fue disminuyendo el porcentaje de gas a 50, 20, 10, 5, 4, 3, 2, 1 y 0%. Las pruebas también se realizaron para tuberías de 24, 8, 3, 2, 1.5 y 1 pulgadas. El porcentaje de líquido se mantuvo al 100%.

Para el modelo de Olujic se realizaron las mismas pruebas que en los tres modelos anteriores, se fue disminuyendo el porcentaje de gas y se fue variando el diámetro de la tubería, manteniendo constante el porcentaje de líquido.
4.1- Análisis de la densidad en función del contenido de gas

Los modelos de Beggs y Brill y el de Dukler, calculan una densidad para la mezcla, la cual como era de esperarse, aumenta al disminuir el contenido de gas, coincidiendo con la densidad del líquido cuando el contenido de gas es 0%, y por lo tanto los valores de la densidad son los mismos en estos modelos.

En el modelo Lockhart Martinelli y en el modelo Olujic no se calcula una densidad para la mezcla y manejan las densidades de ambas fases ($\rho_L y \rho_g$) de manera independiente; por esta razón no cambian los valores de éstas al variar el contenido de gas y las densidades calculadas son las mismas en ambos modelos.

Como era de suponer, se observa que la densidad, ya sea la del gas, la del líquido o la de la mezcla son independientes del diámetro, debido a que la densidad es una propiedad del fluido, por lo tanto no varían al aumentar o disminuir el diámetro.

En la figura 5 se muestra la gráfica de la densidad en función del contenido de gas. Vale la pena reiterar que se trata de un crudo con 40 grados API y temperatura de 15 °C, es decir, corresponde a un aceite ligero a temperatura ambiente. Se puede apreciar que la densidad de la mezcla calculada con el modelo de Beggs y Brill y el de Dukler, presenta un valor bastante uniforme para bajos contenidos de gas, y empieza a decrecer apreciablemente a partir de aproximadamente 5% de gas hasta llegar a 200%. La densidad de la mezcla se reduce en aproximadamente el 15% de la densidad del líquido para un contenido de gas del 30%, el cual ya se puede considerar relativamente alto en la mayoría de los pozos productores en México.

Como se mencionó previamente, en todos los cálculos se ha mantenido constante el gasto de líquido y se ha variado el porcentaje del contenido de gas en función del gasto de líquido. Por esta razón es que aún para los altos porcentajes de gas aquí mostrados (200%), no se alcanza el valor de la densidad de la fase gaseosa.

Figura 5. Variación de la densidad en función del contenido de gas

4.2- Análisis de la viscosidad en función del contenido de gas

Al observar las gráficas de viscosidad contra contenido de gas, se concluye lo siguiente:

En el modelo Beggs y Brill y en el de Dukler se calcula una viscosidad para la mezcla, la cual aumenta al disminuir el contenido de gas. Cuando el contenido de gas es 0%, esta viscosidad coincide la viscosidad del líquido. Los valores de la viscosidad son los mismos para estos modelos.

En el modelo Olujic también se calcula una viscosidad para la mezcla y al igual que en el modelo de Beggs y Brill y en el modelo de Dukler, aumenta al disminuir el contenido de gas.

Sin embargo, la viscosidad de la mezcla de Olujic siempre es mayor, debido a que este autor emplea en el cálculo las fracciones másicas en lugar de volumétricas.

En el modelo Lockhart Martinelli se toma el valor específico de la viscosidad del líquido y del gas, por lo tanto éstas no cambian al aumentar o disminuir el contenido de gas. Nuevamente como resultado esperado, las viscosidades del gas, del líquido y de la mezcla son independientes del diámetro.

En la figura 6 se muestra la gráfica de la viscosidad en función del contenido de gas. Al igual que se mencionó en el apartado anterior para el caso de la densidad, en todos los cálculos se ha mantenido constante el gasto de líquido, y se ha variado el porcentaje del contenido de gas en función del gasto de líquido, razón por la cual no se alcanza el valor de la viscosidad del gas para los porcentajes mostrados.

Figura 6. Variación de la viscosidad en función del contenido de gas

4.3- Análisis del factor de fricción en función del contenido de gas

Al comparar las gráficas de los modelos seleccionados se puede observar que para el modelo Beggs y Brill, el factor de fricción aumenta conforme se disminuye el contenido de gas en las tuberías de 24, 16, 2, 1.5 y 1 in, mostrando una ligera variación para 8 y 3 in. Figura 7.

En la tubería de 8 in, entre 200 y 100% el factor de fricción aumenta al disminuir el contenido de gas al igual que en la tubería de 24 y 16 in, pero al pasar de 100 a 50% el factor de fricción disminuye, retomando la tendencia ascendente de 50 a 0%.

En la tubería de 3 in el factor de fricción va aumentando hasta llegar al 20% de gas, a partir de este punto la tendencia del factor de fricción cambia, disminuyendo conforme se disminuye el contenido de gas hasta llegar a 0%.

Figura 7. Variación del factor de fricción de Beggs y Brill en función del contenido de gas para tubería de 16, 8 y 3 in

La causa del cambio en el comportamiento del factor de fricción en el modelo de Beggs y Brill se debe a que ellos contemplan dos maneras diferentes para calcular un parámetro que denominan "y", que a su vez es utilizado para calcular otro parámetro denominado "S".

$$y = \frac{\lambda_{L}}{H_{L}^{2}}$$

Cuando 1<y<1.2, la función S se calcula de la siguiente manera:

$$S = In (2.2 \cdot y - 1.2)$$

Cuando "y" no se encuentra dentro de ese intervalo, "S" se calcula de la siguiente forma:

S = $\frac{\ln (y)}{-0.0523 + 3.182 \cdot \ln (y) - 0.8725 \cdot \ln^{2}(y) + 0.01853 \cdot \ln^{4}(y)}$

En la tubería de 8 in cuando existe 50% de gas y en la tubería de 3 in al disminuir desde 20 a 0 % de contenido de gas, los valores de "y" se encuentran dentro del intervalo: 1 < y < 1.2

Para esos mismos diámetros, con cualquier otro contenido de gas, los valores de "y" se encuentran fuera del intervalo antes mencionado.

El cambio en el comportamiento del factor de fricción se comprobó haciendo la suposición de que para cualquier valor de "y":

$$S = \frac{\ln (y)}{-0.0523 + 3.182 \cdot \ln (y) - 0.8725 \cdot \ln^{2}(y) + 0.01853 \cdot \ln^{4}(y)}$$

Al hacer esta suposición se observó que la tendencia del factor de fricción era la misma que para cualquier otro diámetro.

En la figura 8 se observa el cambio en el comportamiento del factor de fricción para el modelo Beggs y Brill en la tubería de 3 in haciendo la suposición mencionada.

Figura 8. Tubería de 3 in (q_g vs f)

En el modelo ajustado de Beggs y Brill, en el de Lockhart Martinelli y en el de Olujic, el factor de fricción aumenta conforme se disminuye el contenido de gas para cualquier diámetro. En el modelo de Dukler, al contrario del modelo Beggs y Brill, el modelo ajustado del mismo, el de Lockhart Martinelli y el de Olujic, el factor de fricción tiene tendencia descendente conforme se disminuye el contenido de gas para cualquier diámetro. Figura 9.

Figura 9. Variación del factor de fricción en función del contenido de gas para tubería de 16 in

En el modelo Beggs y Brill, el ajustado de Beggs y Brill, el de Dukler y el de Olujic, el factor de fricción de la mezcla disminuye para un mismo contenido de gas conforme se reduce el diámetro de la tubería. En la figura 10 se muestra el comportamiento del factor de fricción en función del diámetro para 3% de contenido de gas, mientras que en la figura 11 se observa el comportamiento del factor de fricción en función del diámetro para 100% de contenido de gas.

Para el modelo de Lockhart Martinelli no se calcula un factor de fricción bifásico, se calculan dos factores de fricción, el del líquido y el del gas. En este caso como se está variando el contenido de gas, el factor de fricción del líquido se mantiene constante (para un mismo diámetro). El factor de fricción depende de la rugosidad y del número de Reynolds. Para la rugosidad empleada, que equivale aproximadamente a una tubería de acero fundido y para las condiciones de flujo que aquí se probaron, resultó que para esa rugosidad y esos gastos, al disminuir el diámetro hasta 8 in se fue obteniendo una disminución del factor de fricción del líquido y del gas, pero para diámetros pequeños (3, 2, 1.5 y 1 in), con esa misma rugosidad y con esos mismos gastos, el factor de fricción que se fue obteniendo fue mayor debido a que la rugosidad fue influyendo cada vez más.

Figura 10. Factor de fricción en función del diámetro para 3% de contenido de gas

4.4- Análisis del número de Reynolds en función del contenido de gas

En el modelo Beggs y Brill, en el modelo Dukler y en el modelo Olujic se calcula un número de Reynolds para la mezcla, el cual disminuye al disminuir el contenido de gas. Los números de Reynolds de Beggs y Brill son idénticos a los obtenidos con el modelo de Dukler. Figura 12.

En la Figura 12 se omite el número de Reynolds de Lockhart Martinelli para el gas, pudiendo apreciar el comportamiento de los otros modelos.

Para el modelo Lockhart Martinelli se calculan dos números de Reynolds, uno para el gas y otro para el líquido. El número de Reynolds del líquido se mantiene constante, debido a que el contenido de gas es lo que está siendo variado, mientras que el número de Reynolds del gas se reduce al ir disminuyendo el contenido de gas. Figura 13.

En todos los modelos se verifica que el número de Reynolds aumenta conforme se reduce el diámetro de la tubería, ya que para un gasto constante el número de Reynolds es inversamente proporcional al diámetro.

Las gráficas para las tuberías de 24, 8, 3, 2, 1.5 y 1 in se encuentran en el anexo 1.1.5.

Figura 13. Variación del número de Reynolds en función del contenido de gas para tubería de 16 in

4.5- Análisis de los gradientes de presión en función del contenido de gas

Al analizar las gráficas que representan la variación de los gradientes de presión en función del contenido de gas en la tubería, se observa que todos los modelos presentan la misma tendencia, misma que indica que a medida que se incrementa el porcentaje de gas en la tubería para un mismo gasto de líquido, el gradiente de presión también se incrementa. Esto se muestra claramente en la Figura 14.

Este resultado es consistente con todos los análisis presentados previamente en este apartado para los demás parámetros, ya que se demostró que si se mantiene constante el gasto de la fase líquida, a medida que se incrementa el contenido de gas la densidad de la mezcla disminuye monótonamente, el Número de Reynolds aumenta con la consecuente disminución paulatina del factor de fricción, y la velocidad aumenta, lo cual causa un incremento global del gradiente de presión ya que este varía con el cuadrado de la velocidad de acuerdo con la ecuación ya presentada en la sección 3 y que aquí se repite para pronta referencia:

$$\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{m} \cdot V_{m}^{2}}{2 \cdot g \cdot d}$$

Figura 14. Variación del gradiente de presión en función del contenido de gas para tubería de 16 in

Al igual que para el caso monofásico, en todos los modelos el gradiente de presión aumenta al disminuir el diámetro de la tubería.

Debido a que los gradientes de presión obtenidos con el modelo de Lockhart Martinelli son muy grandes comparados con los de los otros modelos, en la Figura 15 se omite éste para poder apreciar mejor las diferencias entre los otros modelos.

Las gráficas para las tuberías de 24, 8, 3, 2, 1.5 y 1 in se encuentran en el anexo 1.1.6.

Figura 15. Variación del gradiente de presión en función del contenido de gas para tubería de 16 in

4.6- Evaluación del comportamiento de los modelos

Para poder hacer una comparación entre las variaciones en los gradientes de presión de los modelos analizados, se tomó como referencia el modelo de Olujic, debido a que es el más reciente y en su publicación argumenta ser más preciso, además de que no se dispone de una base de datos para el caso específico de crudo pesado con gas. A partir de esto se hicieron comparaciones para los diferentes diámetros y concentraciones de gas. Al ser calculado el porcentaje de variación con respecto al modelo de Olujic, los porcentajes positivos indican que el modelo en comparación predice gradientes de presión más grandes, mientras que los porcentajes negativos implican gradientes menores a los predichos por Olujic.

Olujic-Beggs y Brill

Para 24, 16, 8, 3 y 2 in, los porcentajes de variación en los gradientes de presión calculados aumentan al disminuir el contenido de gas. Para el diámetro más grande (24 in), la variación con el contenido más alto de gas empleado en este trabajo (200%), es de 165.69%, mientras que para el contenido más bajo de gas la variación es de 860.26%. Figura 16.

Para 1.5 in, entre 200 y 50% de gas, el modelo de Beggs y Brill predice los gradientes de presión por debajo del modelo Olujic, invirtiéndose este comportamiento por debajo de 50% de gas. Esto significa que para este caso ambos modelos coinciden con contenido de gas de 50. Para el contenido más alto de gas la variación es de -39.84, mientras que para el contenido más bajo de gas la variación es de 22.15%. Figura 17.

Para 1 in, los gradientes de presión del modelo de Beggs y Brill se encuentran por debajo de los que predice el modelo Olujic, esto sucede para cualquier contenido de gas. Con el contenido más alto de gas la variación es de -82.74% y con el contenido más bajo la variación es de -8.35%. Figura 18.

Figura 16. Porcentaje de variación del gradiente de presión de Beggs y Brill con respecto a Olujic para tubería de 24 in

Figura 17. Porcentaje de variación del gradiente de presión de Beggs y Brill con respecto a Olujic para tubería de 1.5 in

Figura 18. Porcentaje de variación del gradiente de presión de Beggs y Brill con respecto a Olujic para tubería de 1 in

Olujic-Beggs y Brill ($H_L = \lambda_{L, f_{tp}} = f$)

Para las tuberías de 2, 1.5 y 1 in, el modelo ajustado de Beggs y Brill predice los gradientes de presión por debajo del modelo de Olujic. Con la tubería más pequeña y teniendo el contenido más alto de gas la variación es de -89.26%, con el contenido más bajo de gas la variación es de -39.16. Figura 19.

Para el diámetro más grande con el contenido más alto de gas, el porcentaje de variación es de 108.80%, mientras que para el contenido más bajo de gas la variación es de 664.90%. Figura 20.

Figura 19. Porcentaje de variación del gradiente de presión del modelo ajustado de Beggs y Brill con respecto a Olujic para tubería de 1 in

Figura 20. Porcentaje de variación del gradiente de presión del modelo ajustado de Beggs y Brill con respecto a Olujic para tubería de 24 in

Olujic-Dukler

Los porcentajes de variación entre estos se incrementan al disminuir el contenido de gas para las tuberías de 24, 16 y 8 in. Para la tubería más grande y con el contenido más alto de gas la variación es de 310.19%, para el contenido más bajo de gas la variación es de 695.25%. Figura 21.

Para diámetros pequeños (3, 2, 1.5 y 1 in) los porcentajes de variación disminuyen para bajos contenidos de gas. Se puede observar que en la tubería más pequeña la variación entre estos modelos teniendo el contenido más alto de gas es de -80.42% y para el contenido más bajo de gas es de -38.81%. Para un contenido de gas menor a 10%, la diferencia entre los modelos se mantiene casi constante alrededor de 40%. Figura 22.

Figura 21. Porcentaje de variación del gradiente de presión de Dukler con respecto a Olujic para tubería de 24 in

Figura 22. Porcentaje de variación del gradiente de presión de Dukler con respecto a Olujic para tubería de 1 in

Olujic-Lockhart Martinelli

Se puede observar que entre estos dos modelos los porcentajes de variación son menores con bajos contenidos de gas, mismos que se hacen más pequeños al ir disminuyendo el diámetro de la tubería. Para la tubería de 24 in con 200% de contenido de gas la variación es de 1052.67%, para el contenido más bajo de gas la variación disminuye a 780.24%. Figura 23. Por otro lado con la tubería de 1 in la variación con 200% de gas es de 57%, mientras que para el contenido más bajo de gas es de 55.80%, alcanzándose discrepancias cercanas al 400% con 50% de gas. Figura 24.

Figura 23. Porcentaje de variación del gradiente de presión de Lockhart Martinelli con respecto a Olujic para tubería de 24 in

Figura 24. Porcentaje de variación del gradiente de presión de Lockhart Martinelli con respecto a Olujic para tubería de 1 in

5- CONCLUSIONES Y RECOMENDACIONES

Como resultado esperado, las densidades y las viscosidades por ser propiedades del fluido son independientes de las características geométricas de la tubería, es decir, del diámetro. Éstas disminuyen a medida que se aumenta el contenido de gas.

Los factores de fricción aumentan al disminuir el contenido de gas, excepto en el modelo Beggs y Brill, en donde dependiendo de la combinación de los parámetros (gasto, contenido de gas, diámetro, holdup), se experimenta un cambio de comportamiento en el factor de fricción, debido a que estos autores contemplan dos maneras diferentes para calcular un parámetro denominado "y", que a su vez es utilizado para calcular otro parámetro denominado "S". Ellos mencionan que cuando 1<y<1.2, "y" toma un valor ilimitado, por lo que la función "S" se calcula con cierta ecuación, fuera de ese intervalo se calcula con una ecuación diferente. Al hacer esto se está tratando de evitar una discontinuidad matemática, misma que no siempre sucede.

En los cálculos aquí presentados, para el caso de la tubería de 8 in con 50% de gas y la tubería de 3 in al disminuir desde 20 a 0 % de contenido de gas, los valores de "y" se encuentran entre 1 y 1.2. Para esos mismos diámetros, con cualquier otro contenido de gas, los valores de "y" se encuentran fuera del intervalo antes mencionado.

Como se demostró en la figura 8, lo recomendable es que cuando 1<y<1.2, se haga un análisis del factor de fricción para observar su comportamiento; si se presenta una discontinuidad en la tendencia de éste, lo más recomendable es hacer caso omiso a la ecuación que sugieren utilizar dentro de ese intervalo.

En el modelo de Dukler, al contrario del modelo Beggs y Brill, el modelo ajustado del mismo y el de Olujic, el factor de fricción tiene tendencia descendente conforme se disminuye el contenido de gas para cualquier diámetro, sin embargo al calcular los gradientes de presión presenta las mismas tendencias de los demás modelos. Esto se debe a que a pesar de que el factor de fricción va disminuyendo al disminuir el contenido de gas, la variación es tan pequeña que no se ve reflejada en los gradientes de presión. Por ejemplo, para que en la tubería de 24 in la tendencia en los gradientes de presión de Dukler se invirtiera, el factor de fricción debería aumentar en un 35%.

En el modelo Dukler, al hacer los cálculos de las densidades de la mezcla con la suposición de que el holdup es igual a la fracción volumétrica sin deslizamiento, se pudo observar que éstas aumentan al disminuir el contenido de gas y no varían con el diámetro de la tubería. Las densidades obtenidas con el valor real del holdup (obtenido de la gráfica), son menores que las que se obtuvieron haciendo la suposición, sin embargo presentaron las mismas tendencias, aumentan al disminuir el contenido de gas y no varían con el diámetro. Al igual que las densidades de la mezcla, los números de Reynolds y los gradientes de presión son menores al obtener el valor del holdup mediante la gráfica, pero las tendencias se mantienen iguales que cuando $H_1 = \lambda_1$. Al hacer una comparación entre las propiedades y los gradientes de presión obtenidos con ambos procedimientos, se pudo observar que las variaciones más grandes que se presentaron fueron de aproximadamente 5%. Para contenidos bajos de gas, las variaciones entre las H_L calculadas de las dos formas son menores al 5%, por lo que se considera que $H_L = \lambda_L$ como se menciona en las especificaciones del modelo. Debido a que las variaciones más grandes que se observaron en los gradientes de presión calculándolos de las dos formas distintas fueron menores al 5%, se optó por considerar para todos los casos que $H_L = \lambda_L$, de este modo se evita estar llevando a cabo un procedimiento iterativo para obtener el valor del holdup necesario para calcular el gradiente de presión. Anexo 1.1.7, tabla 31.

Pese a que todos los cálculos realizados en este trabajo condujeron a regímenes de flujo turbulentos se hizo una suposición para casos laminares para ver que sucedía y se encontró que las variaciones al calcular los gradientes de presión con los dos métodos diferentes fueron menores al 5%, por lo tanto, hacer la suposición de que $H_L=\lambda_L$ no repercute de manera significativa en los cálculos, además de que las tendencias en la densidad de la mezcla, la viscosidad de la mezcla, el número de Reynolds, el factor de fricción y el gradiente de presión se conservan de la misma manera.

Como se mencionó anteriormente, para poder hacer una comparación entre las variaciones en los gradientes de presión de los modelos analizados, se tomó como referencia el modelo de Olujic, debido a que es el más reciente y en su publicación argumenta ser más preciso, por lo que los porcentajes de variación positivos indican que el modelo en comparación predice gradientes de presión más grandes, mientras que los porcentajes negativos implican gradientes menores a los predichos por Olujic.

Se puede observar que las tendencias en los gradientes de presión son las mismas para todos los modelos, sin embargo entre estos existen considerables diferencias a partir de ciertos contenidos de gas. Habiéndose analizado de acuerdo con la sección precedente los gradientes de presión para cada uno de los modelos, se observa que para tuberías de 24, 16, 8, 3 y 2 in y mezclas con alto contenido de gas (>30%), el modelo Beggs y Brill presenta los porcentajes de variación más bajos. Para esos mismos diámetros pero con bajo contenido de gas (<30%), el modelo Dukler es el más aproximado, sin olvidar que todos estos resultados son tomando como referencia el modelo Olujic.

Para la tubería de 1.5 in y altos contenidos de gas, el modelo más aproximado es el de Dukler, mientras que para bajos contenidos de gas se adapta mejor el de Beggs y Brill.

Para la tubería de 1 in y altos contenido de gas, el modelo de Beggs y Brill es el que presenta los porcentajes de variación más pequeños, para bajos contenidos de gas este mismo modelo es el más aproximado, ya que la variación en los gradientes de presión es menor.

Para diámetros grandes o pequeños y altos o bajos contenidos de gas el modelo de Lockhart Martinelli presenta las variaciones más grandes al calcular los gradientes de presión.

Es notorio que las mayores discrepancias se encuentran para grandes diámetros y altos contenidos de gas, lo cual abarca las condiciones típicas de operación de la industria petrolera. Este comportamiento es debido a que Beggs y Brill, Lockhart Martinelli y Dukler desarrollaron sus modelos a partir de datos experimentales en tuberías de diámetro pequeño (<2 in) y bajos contenidos de gas. Por su parte, Olujic no desarrolló un modelo con base en datos experimentales, sino que infirió el suyo a partir de los que ya existían.

A lo anterior se aúna el hecho de que la mayoría de los datos experimentales se han generado para agua y aire, y el comportamiento para mezclas de flujos altamente viscosos con gas es marcadamente diferente [24], tal como sucede con crudos pesados y extra pesados.

Dada la amplia discrepancia encontrada empleando sólo un conjunto de datos, se recomienda que para poder optar por cualquiera de los modelos analizados en este trabajo,

se realicen pruebas experimentales controladas, repitiendo el análisis con datos en los que se tengan tanto condiciones de flujo como propiedades perfectamente conocidas.

Se sugiere que los resultados que se obtengan se agrupen de manera adimensional, y de esta forma se determinen las condiciones de flujo para las cuales es más confiable cada modelo. En función de los resultados que se obtengan de dichas comparaciones, se deberá analizar la factibilidad de realizar ajustes en alguno de los modelos con el objeto de intentar generalizarlo para el mayor intervalo posible de condiciones.

6- BIBLIOGRAFÍA

- 1. Abdo S. Fayed. "Comparing measured with calculated multiphase flow pressure drop". Oil and Gas Journal. August 1983.136-144; (136,137,138,140,144)
- 2. Abduvayt P. "Analysis of Oil/Water-Flow Tests in Horizontal, Hilly Terrain, and Vertical Pipes". Society of Petroleum Engineers. February 2006.123-133; (123,127,128,131)
- 3. Bankoff S.G.J. Heat Transfer. ASME.1960.265-272;(268,269,270)
- Brill James P., Beggs Dale. "Two-phase flow in pipes".6th edition.January.1991.1-626; (226,227,231,232,233,234,235,282,286,287,288,289,290,291,292,293,294,295,296,3 02,303,304,304)
- 5. Chisholm D. "A theorical basis for the Lockhart Martinelli correlation for two-phase flow".Journal of heat mass transfer.1967.1767-17778; (1768,1769,1770,1772)
- Coleman John. "Characterization of two-phase flow patterns in small diameter round and rectangular tubes". International Journal of Heat and Mass Transfer. August 1999.2869-2881;(2869,2870,28712872)
- 7. Dukler A.E. "Frictional pressure drop in two-phase flow: B. an approach through similarity analysis".A.I.Ch.E Journal.January 1994.44-51; (44,46,47,48)
- Dukler A.E. "Gas-liquid flow in pipelines I. research results". American gas association, inc.New York.University of Houston, Texas.American petroleum institute,New York.May 1969. 1-200; (101,102,103,104,105,107,108,110,111,112,113,114,115,116,117,140,141)
- 9. Falcone Giola, F, Hewitt Geofrey, Alimonti Claudio. "Multiphase Flow Metering". 2009. 1-340; (1,2,6,8)
- Ferguson Michael. "Measurement and prediction of pressure drop in two-phase flow". Journal of Chemical Technology and Biotechnology. March 1995. 262-278; (262,263,264,265,266,273,274,276)
- 11. Govier G.W. "The horizontal pipeline flow of air water mixtures". The Canadian Journal of Chemical Engineering. June 1962.93-104; (93,94,95,99)
- 12. Haoulo M."Gradiente de presión de flujo de gas y líquido en tuberías horizontales considerando el efecto de las propiedades de mezcla". Revista de la facultad de ingeniería Universidad Central de Venezuela. Vol.(20). 2005.1-26; (1,3,5,6,7,11,21)
- Hemeida Adel, Sumait Faisal. "Improving the Lockhart and Martinelli Two-Phase Flow Correlation by SAS". Journal of Engineering Science. Vol. (14). 1988.423-434; (424,426,428,429)
- 14. Hoogendoorn, C.J. Chemical engineering science. May 1959.200-210; (205)

- 15. Lockhart R.W, Martinelli R.C. "Proposed correlation of data for isothermal twophase,two-component flow in pipes". Chemical engineering progress. Vol. (45). January 1949.39-48; (39,42,43,44,45)
- 16. Maurer Engineering Inc. "Multiphase Flow Production Model Theory and User's Manual". January 1994.1-86; (21-23)
- M. Garcia Janneth, García Francisco. "Efecto de la Viscosidad y de la Densidad de Mezcla en el Gradiente de Presión de Flujo Homogéneo Gas-Líquido en Tuberías Horizontales". Información tecnológica. Vol (20-4). 2009.95-106; (96,97,98,99,100)
- 18. M.M. Awad and Y.S. Muzychka. "A simple two-phase frictional multiplier calculation method". American Society of Mechanical Engineers. October 2004.1-9;(2,3,4)
- M.M. Awad and Y.S. Muzychka. "Bounds on Two Phase Flow Part I-Frictional Pressure gradient in Circular Pipes". American Society of Mechanical Engineers. November 2005.1-9;(2,3)
- 20. Mousalli G. and Chawla J.M.Forsch.Ing.Wes. September 1976.149-153;(150,151)
- 21. Olujic Zarco."Predicting two-phase-flow friction loss in horizontal pipes". Chemical engineering, University of Zagreb. June 1985.45-50;(45,46,47,48,49,50)
- 22. Spedding P.L. "Prediction of pressure drop in multiphase horizontal pipe flow". September 2006.1-10;(1,2,3,4,5,8,9)
- 23. Volfango Bertola."Modelling and experimentation in two phase flow".Springer Wien New York.2003.1-429;(1,4,5,174,175)
- 24. Zhang H., Sarica Cem. "Review of high viscosity oil multiphase pipe flow". The University of Tulsa.2012.1-7;(1,2,3,4,5,6)

7- ANEXO 1

1.1- Resumen de las ecuaciones

Tabla 1. Beggs y Brill

Determinación del régimen de flujo

Las siguientes variables son utilizadas para determinar el régimen de flujo.

$$\begin{split} N_{FR} &= \frac{V_m^2}{g \cdot d} \\ L_1 &= 316 \cdot \lambda_L^{0.302} \\ L_2 &= 0.0009252 \cdot \lambda_L^{-2.4684} \\ L_3 &= 0.1 \cdot \lambda_L^{-1.4516} \\ L_4 &= 0.5 \cdot \lambda_L^{-6.738} \\ \lambda_L &= \frac{V_{sL}}{V_m} \\ V_m &= V_{sL} + V_{sg} \\ V_{sL} &= \frac{q_L}{A} \\ V_{sg} &= \frac{q_g}{A} \\ \\ Los límites de régimen de flujo horizontal son: \\ \underline{Segregado} \\ Límites: \lambda_L < 0.01 \text{ y } N_{FR} < L_1 \text{ o } \lambda_L \ge 0.01 \text{ y } N_{FR} < L_2 \\ \underline{Transición} \\ Límites: \lambda_L \ge 0.01 \text{ y } L_2 \le N_{FR} \le L_3 \end{split}$$

Intermitente

Límites: 0.01≤ λ_L <0.4 y L₃< N_{FR}≤ L₁ o λ_L ≥0.4 y L₃< N_{FR}≤L₄

<u>Distribuido</u>

Límites: λ_L <0.4 y N_{FR}≥0.1 o λ_L ≥0.4 y N_{FR}>L₄

$$H_{L} = \frac{a \cdot \lambda_{L}^{b}}{N_{FR}^{c}}$$

Donde a, b, c son determinadas de la tabla para cada patrón de flujo:

Patrón de flujo	а	b	С
Segregado	0.98	0.4846	0.0868
Intermitente	0.845	0.5351	0.0173
Distribución	1.065	0.5824	0.0609

Cuando el flujo cae en el régimen de transición el holdup líquido debe ser calculado como:

 $H_{Ltransición} = A \cdot H_{Lsegregado} + B \cdot H_{Lintermitente}$

Donde

 $A = \frac{L_3 - N_{FR}}{L_3 - L_2}$ B = 1 - A

Gradiente de presión por fricción

$$\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{m} \cdot V_{m}^{2}}{2 \cdot g \cdot d}$$

$$\rho_{m} = \rho_{L} \cdot \lambda_{L} + \rho_{g} \cdot (1 - \lambda_{L})$$

$$\lambda_{L} = \frac{V_{SL}}{V_{m}}$$

$$V_{m} = V_{SL} + V_{Sg}$$

$$f_{tp} = f \cdot exp(S)$$

$$S = \frac{ln(y)}{-0.0523 + 3.182 \cdot ln(y) - 0.8725 \cdot ln^{2}(y) + 0.01853 \cdot ln^{4}(y)}$$

$$y = \frac{\lambda_{L}}{H_{L}^{2}}$$

El valor de S se convierte en ilimitado en un punto en el intervalo 1<y<1.2, para y en este intervalo, la función S se calcula de:

$$S = In (2.2 \cdot y - 1.2)$$

El factor de fricción se expresa como:

$$f = \frac{1}{\left[2 \cdot \log\left(\frac{N_{Ren}}{4.5223 \cdot \log(N_{Ren}) - 3.8215}\right)\right]^2}$$
$$N_{Ren} = \frac{\rho_m \cdot V_m \cdot d}{\mu_m}$$

$$\mu_{m} = \mu_{L} \cdot \lambda_{L} + \mu_{g} \cdot (1 - \lambda_{L})$$

Gradiente de presión por aceleración

$$\frac{dp}{dx_{ac}} = \frac{\rho_s \cdot V_m \cdot V_{sg}}{g \cdot x}$$

$$\rho_s = \rho_L \cdot H_L + \rho_g \cdot (1 - H_L)$$

El gradiente de presión total puede ser calculado como:

$$\frac{dp}{dx} = \frac{dp}{dx_f} + \frac{dp}{dx_{ac}}$$

Tabla 2. Beggs y Brill $H_L = \lambda_L$

Determinación del régimen de flujo

Las siguientes variables son utilizadas para determinar el régimen de flujo.

$$\begin{split} N_{FR} &= \frac{V_m^2}{g \cdot d} \\ L_1 &= 316 \cdot \lambda_1^{0.302} \\ L_2 &= 0.0009252 \cdot \lambda_1^{-2.4684} \\ L_3 &= 0.1 \cdot \lambda_1^{-1.4516} \\ L_4 &= 0.5 \cdot \lambda_1^{-6.738} \\ \lambda_L &= \frac{V_{sL}}{V_m} \\ V_m &= V_{sL} + V_{sg} \\ V_{sL} &= \frac{q_L}{A} \\ V_{sg} &= \frac{q_g}{A} \\ \end{split}$$

$$Los límites de régimen de flujo horizontal son:
Seqregado \\ Límites: \lambda_L < 0.01 y N_{FR} < L_1 o \lambda_L \ge 0.01 y N_{FR} < L_2 \\ \frac{Transición}{Límites: \lambda_L \ge 0.01 y L_2 \le N_{FR} \le L_3 \\ \frac{Intermitente}{V_{sg}} \\ \end{split}$$

Límites: 0.01≤ λ_L <0.4 y L₃< N_{FR}≤ L₁ o λ_L ≥0.4 y L₃< N_{FR}≤L₄

<u>Distribuido</u>

Límites: λ_L <0.4 y N_{FR}≥0.1 o λ_L ≥0.4 y N_{FR}>L₄

Donde

Η_L = λ_L

Cuando el flujo cae en el régimen de transición el holdup líquido debe ser calculado como:

 $H_{Ltransición} = A \cdot H_{Lsegregado} + B \cdot H_{Lintermitente}$

Donde

$$A = \frac{L_3 - N_{FR}}{L_3 - L_2}$$
$$B = 1 - A$$

Gradiente de presión por fricción

$$\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{m} \cdot V_{m}^{2}}{2 \cdot g \cdot d}$$

$$\rho_{m} = \rho_{L} \cdot \lambda_{L} + \rho_{g} \cdot (1 - \lambda_{L})$$

$$\lambda_{L} = \frac{V_{sL}}{V_{m}}$$

$$V_{m} = V_{sL} + V_{sg}$$

$$f_{tp} = f \cdot exp(S)$$

El factor de fricción se determina a partir de:

$$f = \frac{1}{\left[2 \cdot \log\left(\frac{N_{Ren}}{4.5223 \cdot \log(N_{Ren}) - 3.8215}\right)\right]^2}$$

 $f_{tp} = f$ $N_{Ren} = \frac{\rho_m \cdot V_m \cdot d}{\mu_m}$ $\mu_m = \mu_L \cdot \lambda_L + \mu_g \cdot (1 - \lambda_L)$ **Gradiente de presión por aceleración** $\frac{dp}{dx_{ac}} = \frac{\rho_B \cdot V_m \cdot V_{Sg}}{g \cdot x}$ $\rho_B = \rho_L \cdot H_L + \rho_g \cdot (1 - H_L)$ El gradiente de presión total puede ser calculado como: $\frac{dp}{dx} = \frac{dp}{dx_f} + \frac{dp}{dx_{ac}}$

Tabla 3. Lockhart-Martinelli

Gradiente de presión por fricción

$$\frac{dp}{dx} = \phi_{g}^{2} \cdot \frac{dp}{dx_{g}} = \phi_{L}^{2} \cdot \frac{dp}{dx_{L}}$$
Donde

$$\frac{dp}{dx_{g}} = \frac{f_{g} \cdot \rho_{g} \cdot V_{sg}^{2}}{2 \cdot g \cdot d}$$

$$\frac{dp}{dx_{L}} = \frac{f_{L} \cdot \rho_{L} \cdot V_{sL}^{2}}{2 \cdot g \cdot d}$$

$$V_{m} = V_{sL} + V_{sg}$$

$$V_{sL} = \frac{q_L}{A}$$

$$V_{sg} = \frac{q_g}{A}$$

Los factores de fricción f_g y f_L se determinan del diagrama de Moody para los valores de los números de Reynolds.

$$N_{\text{Reg}} = \frac{\rho_{\text{g}} \cdot V_{\text{sg}} \cdot d}{\mu_{\text{g}}}$$
$$N_{\text{ReL}} = \frac{\rho_{\text{L}} \cdot V_{\text{sL}} \cdot d}{\mu_{\text{L}}}$$

Los factores de corrección ($\phi_L y \phi_g$) están correlacionados con un parámetro definido como:

$$x = x^2$$

 $y_q^2 = 1 + C \cdot X + X^2$

Los valores de C dependen de si los números de Reynolds del gas y del líquido se encuentran en flujo laminar o turbulento. Los valores de C fueron obtenidos a partir de mezclas líquido-gas de aire-agua. Los diferentes valores de C se muestran en la tabla.

Líquido	Gas	С
Turbulento	Turbulento	20
Laminar	Turbulento	12
Turbulento	Laminar	10
Laminar	Laminar	5

Gradiente de presión por fricción $\frac{dp}{dx_{f}} = \frac{f_{tp} \cdot \rho_{tp} \cdot V_{m}^{2}}{2 \cdot q \cdot d}$ Donde $\rho_{p} = \frac{\rho_{L} \cdot \lambda_{L}^{2}}{H_{L}} + \frac{\rho_{g} \cdot \lambda_{g}^{2}}{H_{g}}$ $V_m = V_{sL} + V_{sg}$ $\lambda_{\rm L} = \frac{V_{\rm sL}}{V_{\rm m}}$ $\lambda_{\rm g} = \frac{V_{\rm sg}}{V_{\rm m}}$ $V_{\rm m} = V_{\rm sL} + V_{\rm sg}$ Se desarrolló una correlación para el factor de fricción bifásico. El factor de fricción f_{tp} se obtiene de: $\frac{f_{tp}}{f} = 1 + \frac{y}{1.281 - 0.478 \cdot y + 0.444 \cdot y^2 - 0.094 \cdot y^3 + 0.00843 \cdot y^4}$ f = 0.0056 + 0.5 \cdot N_{Ren} $^{-0.32}$ $y = -\ln(\lambda_{L})$ $N_{Ren} = \frac{\rho_{Pp} \cdot V_m \cdot d}{\mu_m}$ $\mu_{m} = \mu_{L} \cdot \lambda_{L} + \mu_{g} \cdot (1 - \lambda_{L})$

Holdup líquido

Para calcular el holdup líquido es necesario llevar a cabo un procedimiento iterativo (ensayo y error).

El procedimiento para obtener un valor de holdup consiste en:

1- Calcular λ_L

2-Estimar H_L

 $\mbox{3-Calcular}\ N_{\text{Ren}}$

4-Obtener H_L de la figura 4

5-Comparar los valores de H_L de los pasos 2 y 4. Si no son lo suficientemente aproximados, fijar el valor del paso 4 como el nuevo valor y regresar al paso 3. Se considera que una variación de las H_L entre 5% es suficientemente aproximada.

Gradiente de presión por aceleración

El gradiente de presión debido a la aceleración está dado por:

$$\frac{dp}{dx_{ac}} = \frac{1}{g \cdot dx} \cdot \Delta \quad \cdot \left[\frac{\rho_g \cdot V_{sg}^2}{H_g} + \frac{\rho_L \cdot V_{sL}^2}{H_L} \right]$$

El gradiente de presión total es:

$$\frac{dp}{dx} = \frac{dp}{dx_f} + \frac{dp}{dx_{ac}}$$

$$\begin{aligned} & \frac{\text{Gradiente de presión en la región } \alpha}{\text{Gradiente de presión por fricción}} \\ & \frac{dp}{dx} = f_{\alpha} \cdot \frac{(m \cdot x)^2}{2 \cdot g \cdot d \cdot p_{\beta}} \cdot \left[1 + \frac{1 - x}{x \cdot \varepsilon \cdot R}\right]^{\left[\frac{19}{8}\right]} \\ & \cdot \\ f_{\alpha} = 0.3164 \cdot \left[\frac{m \cdot x \cdot d}{\mu g}\right]^{\left[\frac{-1}{4}\right]} \\ & m = \frac{M_{L} + M_{g}}{A} \\ & x = \frac{M_{g}}{M_{g} + M_{L}} \\ & R = \frac{R}{P_{g}} \\ & \cdot \\ \varepsilon = (\varepsilon_{1}^{-3} + \varepsilon_{2}^{-3})^{\left[\frac{-1}{3}\right]} \\ & \varepsilon_{1} = 0.77 \cdot R^{-0.55} \cdot \Gamma^{\left(0.266 \cdot R^{-0.057}\right)} \\ & \varepsilon_{2} = 2.19 \cdot R^{-0.61} \cdot \Gamma^{\left(1.78 \cdot R^{-0.076}\right)} \\ & \cdot \\ & \Gamma = \left[\left(\frac{1 - x}{x}\right) \cdot \left(\frac{m^{2} \cdot (1 - x)^{2}}{\rho_{c}^{2} \cdot g \cdot d}\right)^{\left[\frac{-1}{4}\right]} \cdot \left[\frac{\mu}{P_{g}}\right]^{\left[\frac{-1}{8}\right]} \end{aligned}$$

1.2- Tablas y gráficas de la densidad en función del contenido de gas

d=16 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic	Olujic
q _g [%]	q _g [ft³/s]	q∟ [%]	q _L [ft ³ /s]	ρ _m [lb/ft ³]	ρ _m [Ib/ft ³]	ρ _{tp} [lb/ft ³]	ρ∟ [lb/ft³]	ρ _g [lb/ft ³]	ρ∟ [lb/ft³]	ρ _g [lb/ft³]
200	0.738	100	0.369	23.26	23.26	23.26	42.45	13.66	42.45	13.66
150	0.5535	100	0.369	25.18	25.18	25.18	42.45	13.66	42.45	13.66
120	0.4428	100	0.369	26.75	26.75	26.75	42.45	13.66	42.45	13.66
100	0.369	100	0.369	28.06	28.06	28.06	42.45	13.66	42.45	13.66
50	0.1845	100	0.369	32.85	32.85	32.85	42.45	13.66	42.45	13.66
20	0.0738	100	0.369	37.65	37.65	37.65	42.45	13.66	42.45	13.66
10	0.0369	100	0.369	39.83	39.83	39.83	42.45	13.66	42.45	13.66
5	0.01845	100	0.369	41.08	41.08	41.08	42.45	13.66	42.45	13.66
4	0.01476	100	0.369	41.34	41.34	41.34	42.45	13.66	42.45	13.66
3.9	0.01439	100	0.369	41.37	41.37	41.37	42.45	13.66	42.45	13.66
3.8	0.01402	100	0.369	41.4	41.4	41.4	42.45	13.66	42.45	13.66
3.7	0.01365	100	0.369	41.42	41.42	41.42	42.45	13.66	42.45	13.66
3.6	0.01328	100	0.369	41.45	41.45	41.45	42.45	13.66	42.45	13.66
3.5	0.01291	100	0.369	41.48	41.48	41.48	42.45	13.66	42.45	13.66
3.4	0.01254	100	0.369	41.5	41.5	41.5	42.45	13.66	42.45	13.66
3.3	0.01217	100	0.369	41.53	41.53	41.53	42.45	13.66	42.45	13.66
3.2	0.0118	100	0.369	41.56	41.56	41.56	42.45	13.66	42.45	13.66
3.1	0.01143	100	0.369	41.59	41.59	41.59	42.45	13.66	42.45	13.66
3	0.01107	100	0.369	41.61	41.61	41.61	42.45	13.66	42.45	13.66
2	0.00738	100	0.369	41.89	41.89	41.89	42.45	13.66	42.45	13.66
1	0.00369	100	0.369	42.16	42.16	42.16	42.45	13.66	42.45	13.66
0	0	100	0.369	42.25	42.25	42.25	42.45	13.66	42.45	13.66

Tabla 1. Densidades en función del contenido de gas para tubería de 16 in

Figura 1. Densidades en función del contenido de gas para tubería de 16 in
1.3- Tablas y gráficas de la viscosidad en función del contenido de gas

d=16 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft ³ /s]	μ _m [lb/fts]	μ _m [lb/fts]	μ _m [lb/fts]	μ∟ [Ib/fts]	μ _g [lb/fts]	μ _{ΤΡ} [lb/fts]
200	0.738	100	0.369	0.0003148	0.0003148	0.0003148	0.0009132	0.00001566	0.0005617
150	0.5535	100	0.369	0.0003747	0.0003747	0.0003747	0.0009132	0.00001566	0.000621
120	0.4428	100	0.369	0.0004236	0.0004236	0.0004236	0.0009132	0.00001566	0.0006632
100	0.369	100	0.369	0.0004644	0.0004644	0.0004644	0.0009132	0.00001566	0.0006947
50	0.1845	100	0.369	0.000614	0.000614	0.000614	0.0009132	0.00001566	0.0007888
20	0.0738	100	0.369	0.0007636	0.0007636	0.0007636	0.0009132	0.00001566	0.0008589
10	0.0369	100	0.369	0.0008316	0.0008316	0.0008316	0.0009132	0.00001566	0.0008852
5	0.01845	100	0.369	0.0008705	0.0008705	0.0008705	0.0009132	0.00001566	0.000899
4	0.01476	100	0.369	0.0008787	0.0008787	0.0008787	0.0009132	0.00001566	0.0009018
3.9	0.01439	100	0.369	0.0008795	0.0008795	0.0008795	0.0009132	0.00001566	0.0009021
3.8	0.01402	100	0.369	0.0008803	0.0008803	0.0008803	0.0009132	0.00001566	0.0009024
3.7	0.01365	100	0.369	0.0008812	0.0008812	0.0008812	0.0009132	0.00001566	0.0009026
3.6	0.01328	100	0.369	0.000882	0.000882	0.000882	0.0009132	0.00001566	0.0009029
3.5	0.01291	100	0.369	0.0008829	0.0008829	0.0008829	0.0009132	0.00001566	0.0009032
3.4	0.01254	100	0.369	0.0008837	0.0008837	0.0008837	0.0009132	0.00001566	0.0009035
3.3	0.01217	100	0.369	0.0008845	0.0008845	0.0008845	0.0009132	0.00001566	0.0009038
3.2	0.0118	100	0.369	0.0008854	0.0008854	0.0008854	0.0009132	0.00001566	0.0009041
3.1	0.01143	100	0.369	0.0008862	0.0008862	0.0008862	0.0009132	0.00001566	0.0009043
3	0.01107	100	0.369	0.0008871	0.0008871	0.0008871	0.0009132	0.00001566	0.0009046
2	0.00738	100	0.369	0.0008956	0.0008956	0.0008956	0.0009132	0.00001566	0.0009075
1	0.00369	100	0.369	0.0009043	0.0009043	0.0009043	0.0009132	0.00001566	0.0009103
0	0	100	0.369	0.0009132	0.0009132	0.0009132	0.0009132	0.00001566	0.0009132

Tabla 2. Viscosidades en función del contenido de gas para tubería de 16 in

Figura 2. Viscosidades en función del contenido de gas para tubería de 16 in

1.4- Tablas y gráficas del factor de fricción en función del contenido de gas

d=24 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	fg	f
200	0.738	100	0.369	0.02637	0.02072	0.04071	0.03061	0.01664	0.01251
150	0.5535	100	0.369	0.028	0.02206	0.04046	0.03061	0.01705	0.01344
120	0.4428	100	0.369	0.0292	0.02304	0.03991	0.03061	0.01742	0.01421
100	0.369	100	0.369	0.03013	0.02381	0.03931	0.03061	0.01776	0.01487
50	0.1845	100	0.369	0.03313	0.02627	0.03651	0.03061	0.01944	0.01768
20	0.0738	100	0.369	0.03565	0.02835	0.03363	0.03061	0.02274	0.02224
10	0.0369	100	0.369	0.03668	0.02921	0.03242	0.03061	0.02631	0.02645
5	0.01845	100	0.369	0.03725	0.02967	0.03178	0.03061	0.03111	0.03145
4	0.01476	100	0.369	0.03737	0.02977	0.03165	0.03061	0.03299	0.03325
3.9	0.01439	100	0.369	0.03738	0.02978	0.03164	0.03061	0.03322	0.03346
3.8	0.01402	100	0.369	0.03739	0.02979	0.03162	0.03061	0.03345	0.03368
3.7	0.01365	100	0.369	0.0374	0.0298	0.03161	0.03061	0.0337	0.03391
3.6	0.01328	100	0.369	0.03741	0.02981	0.0316	0.03061	0.03395	0.03414
3.5	0.01291	100	0.369	0.03743	0.02982	0.03158	0.03061	0.03421	0.03439
3.4	0.01254	100	0.369	0.03744	0.02983	0.03157	0.03061	0.03449	0.03464
3.3	0.01217	100	0.369	0.03745	0.02984	0.03156	0.03061	0.03477	0.0349
3.2	0.0118	100	0.369	0.03746	0.02985	0.03154	0.03061	0.03507	0.03517
3.1	0.01143	100	0.369	0.03747	0.02986	0.03153	0.03061	0.03539	0.03545
3	0.01107	100	0.369	0.03748	0.02987	0.03152	0.03061	0.03571	0.03573
2	0.00738	100	0.369	0.0376	0.02997	0.03138	0.03061	0.04019	0.03954
1	0.00369	100	0.369	0.03773	0.03007	0.03125	0.03061	0.05022	0.04703
0	0	100	0.369	0.03785	0.03017	-	-	-	-

Tabla 3. Factores de fricción en función del contenido de gas para tubería de 24 in

Figura 3. Factores de fricción en función del contenido de gas para tubería de 24 in

d=16 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	fg	f
200	0.738	100	0.369	0.02455	0.01897	0.03707	0.02803	0.01729	0.0113
150	0.5535	100	0.369	0.02599	0.02014	0.03676	0.02803	0.01755	0.01214
120	0.4428	100	0.369	0.02706	0.02101	0.03621	0.02803	0.01779	0.01284
100	0.369	100	0.369	0.02788	0.02168	0.03562	0.02803	0.01802	0.01344
50	0.1845	100	0.369	0.03051	0.02383	0.03299	0.02803	0.01909	0.01598
20	0.0738	100	0.369	0.03272	0.02563	0.03032	0.02803	0.02168	0.02009
10	0.0369	100	0.369	0.03362	0.02637	0.02921	0.02803	0.02452	0.02389
5	0.01845	100	0.369	0.03411	0.02677	0.02862	0.02803	0.02845	0.02842
4	0.01476	100	0.369	0.03422	0.02686	0.0285	0.02803	0.02999	0.03005
3.9	0.01439	100	0.369	0.03423	0.02687	0.02849	0.02803	0.03018	0.03024
3.8	0.01402	100	0.369	0.03424	0.02687	0.02847	0.02803	0.03037	0.03043
3.7	0.01365	100	0.369	0.03425	0.02688	0.02846	0.02803	0.03057	0.03064
3.6	0.01328	100	0.369	0.03426	0.02689	0.02845	0.02803	0.03078	0.03085
3.5	0.01291	100	0.369	0.03427	0.0269	0.02844	0.02803	0.031	0.03107
3.4	0.01254	100	0.369	0.03428	0.02691	0.02843	0.02803	0.03122	0.0313
3.3	0.01217	100	0.369	0.03429	0.02692	0.02841	0.02803	0.03146	0.03153
3.2	0.0118	100	0.369	0.0343	0.02693	0.0284	0.02803	0.0317	0.03177
3.1	0.01143	100	0.369	0.03431	0.02693	0.02839	0.02803	0.03196	0.03203
3	0.01107	100	0.369	0.03432	0.02694	0.02838	0.02803	0.03223	0.03229
2	0.00738	100	0.369	0.03442	0.02703	0.02825	0.02803	0.03591	0.03573
1	0.00369	100	0.369	0.03453	0.02712	0.02813	0.02803	0.04409	0.04249
0	0	100	0.369	0.03464	0.0272	-	-	-	-

Tabla 4. Factores de fricción en función del contenido de gas para tubería de 16 in

Figura 4. Factores de fricción en función del contenido de gas para tubería de 16 in

d=8 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	fg	f
200	0.738	100	0.369	0.02373	0.01643	0.03184	0.02545	0.01951	0.009499
150	0.5535	100	0.369	0.025	0.01738	0.03144	0.02545	0.01961	0.01021
120	0.4428	100	0.369	0.02601	0.01808	0.03089	0.02545	0.0197	0.01079
100	0.369	100	0.369	0.0265	0.01862	0.03032	0.02545	0.0198	0.0113
50	0.1845	100	0.369	0.0224	0.02034	0.02793	0.02545	0.02031	0.01343
20	0.0738	100	0.369	0.02767	0.02178	0.02556	0.02545	0.02158	0.01689
10	0.0369	100	0.369	0.02905	0.02236	0.0246	0.02545	0.02323	0.02009
5	0.01845	100	0.369	0.02963	0.02268	0.02408	0.02545	0.02572	0.02389
4	0.01476	100	0.369	0.02975	0.02275	0.02397	0.02545	0.02675	0.02526
3.9	0.01439	100	0.369	0.02976	0.02275	0.02396	0.02545	0.02688	0.02542
3.8	0.01402	100	0.369	0.02977	0.02276	0.02395	0.02545	0.02701	0.02559
3.7	0.01365	100	0.369	0.02978	0.02277	0.02394	0.02545	0.02714	0.02576
3.6	0.01328	100	0.369	0.02979	0.02277	0.02393	0.02545	0.02728	0.02594
3.5	0.01291	100	0.369	0.0298	0.02278	0.02392	0.02545	0.02743	0.02612
3.4	0.01254	100	0.369	0.02981	0.02279	0.02391	0.02545	0.02758	0.02631
3.3	0.01217	100	0.369	0.02983	0.02279	0.0239	0.02545	0.02774	0.02651
3.2	0.0118	100	0.369	0.02984	0.0228	0.02389	0.02545	0.02791	0.02671
3.1	0.01143	100	0.369	0.02985	0.02281	0.02388	0.02545	0.02809	0.02693
3	0.01107	100	0.369	0.02986	0.02281	0.02387	0.02545	0.02827	0.02714
2	0.00738	100	0.369	0.02997	0.02288	0.02376	0.02545	0.03081	0.03004
1	0.00369	100	0.369	0.03008	0.02295	0.02365	0.02545	0.03652	0.03572
0	0	100	0.369	0.03019	0.02302	-	-	-	-

Tabla 5. Factores de fricción en función del contenido de gas para tubería de 8 in

Figura 5. Factores de fricción en función del contenido de gas para tubería de 8 in

d=3 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	f _g	f
200	0.738	100	0.369	0.01998	0.01361	0.02618	0.02655	0.02468	0.007436
150	0.5535	100	0.369	0.02099	0.01434	0.02569	0.02655	0.02471	0.00799
120	0.4428	100	0.369	0.02173	0.01486	0.02513	0.02655	0.02473	0.008448
100	0.369	100	0.369	0.02229	0.01527	0.02459	0.02655	0.02475	0.008842
50	0.1845	100	0.369	0.02381	0.01655	0.02245	0.02655	0.02488	0.01052
20	0.0738	100	0.369	0.02538	0.01761	0.02042	0.02655	0.02523	0.01322
10	0.0369	100	0.369	0.02449	0.01804	0.0196	0.02655	0.02575	0.01572
5	0.01845	100	0.369	0.02393	0.01828	0.01916	0.02655	0.02665	0.0187
4	0.01476	100	0.369	0.02381	0.01833	0.01908	0.02655	0.02706	0.01977
3.9	0.01439	100	0.369	0.0238	0.01833	0.01907	0.02655	0.02712	0.0199
3.8	0.01402	100	0.369	0.02379	0.01834	0.01906	0.02655	0.02717	0.02003
3.7	0.01365	100	0.369	0.02377	0.01834	0.01905	0.02655	0.02723	0.02016
3.6	0.01328	100	0.369	0.02376	0.01835	0.01904	0.02655	0.02728	0.0203
3.5	0.01291	100	0.369	0.02375	0.01835	0.01903	0.02655	0.02735	0.02045
3.4	0.01254	100	0.369	0.02374	0.01836	0.01902	0.02655	0.02741	0.02059
3.3	0.01217	100	0.369	0.02373	0.01836	0.01901	0.02655	0.02748	0.02075
3.2	0.0118	100	0.369	0.02372	0.01837	0.019	0.02655	0.02755	0.02091
3.1	0.01143	100	0.369	0.0237	0.01837	0.01899	0.02655	0.02763	0.02108
3	0.01107	100	0.369	0.02369	0.01837	0.01899	0.02655	0.0277	0.02125
2	0.00738	100	0.369	0.02357	0.01842	0.0189	0.02655	0.02886	0.02351
1	0.00369	100	0.369	0.02345	0.01847	0.01881	0.02655	0.03172	0.02796
0	0	100	0.369	0.02333	0.01853	-	-	-	-

Tabla 6. Factores de fricción en función del contenido de gas para tubería de 3 in

Figura 6. Factores de fricción en función del contenido de gas para tubería de 3 in

d=2 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	f _g	f
200	0.738	100	0.369	0.01911	0.01265	0.02431	0.02868	0.02761	0.006718
150	0.5535	100	0.369	0.0199	0.0133	0.02379	0.02868	0.02762	0.007219
120	0.4428	100	0.369	0.02048	0.01377	0.02322	0.02868	0.02763	0.007633
100	0.369	100	0.369	0.02093	0.01413	0.0227	0.02868	0.02765	0.007989
50	0.1845	100	0.369	0.02235	0.01528	0.02064	0.02868	0.02772	0.009501
20	0.0738	100	0.369	0.02354	0.01622	0.01872	0.02868	0.02792	0.01195
10	0.0369	100	0.369	0.02403	0.0166	0.01795	0.02868	0.02821	0.01421
5	0.01845	100	0.369	0.0243	0.01681	0.01754	0.02868	0.02875	0.0169
4	0.01476	100	0.369	0.02435	0.01685	0.01746	0.02868	0.029	0.01786
3.9	0.01439	100	0.369	0.02436	0.01686	0.01745	0.02868	0.02903	0.01798
3.8	0.01402	100	0.369	0.02436	0.01686	0.01744	0.02868	0.02906	0.0181
3.7	0.01365	100	0.369	0.02437	0.01687	0.01743	0.02868	0.02909	0.01822
3.6	0.01328	100	0.369	0.02437	0.01687	0.01742	0.02868	0.02913	0.01834
3.5	0.01291	100	0.369	0.02438	0.01687	0.01741	0.02868	0.02917	0.01847
3.4	0.01254	100	0.369	0.02439	0.01688	0.01741	0.02868	0.02921	0.01861
3.3	0.01217	100	0.369	0.02439	0.01688	0.0174	0.02868	0.02925	0.01875
3.2	0.0118	100	0.369	0.0244	0.01689	0.01739	0.02868	0.02929	0.01889
3.1	0.01143	100	0.369	0.0244	0.01689	0.01738	0.02868	0.02934	0.01904
3	0.01107	100	0.369	0.02441	0.0169	0.01737	0.02868	0.02939	0.0192
2	0.00738	100	0.369	0.02447	0.01694	0.01729	0.02868	0.03012	0.02124
1	0.00369	100	0.369	0.02452	0.01698	0.0172	0.02868	0.03203	0.02526
0	0	100	0.369	0.02458	0.01703	-	-	-	-

Tabla 7. Factores de fricción en función del contenido de gas para tubería de 2 in

Figura 7. Factores de fricción en función del contenido de gas para tubería de 2 in

d=1.5 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	f _{tp}	f _{tp} =f	f _{tp}	fL	f _g	f
200	0.738	100	0.369	0.01861	0.01202	0.02313	0.03075	0.03003	0.006253
150	0.5535	100	0.369	0.01934	0.01263	0.02258	0.03075	0.03004	0.006719
120	0.4428	100	0.369	0.01986	0.01306	0.02201	0.03075	0.03004	0.007104
100	0.369	100	0.369	0.02027	0.0134	0.02149	0.03075	0.03005	0.007436
50	0.1845	100	0.369	0.02156	0.01446	0.01949	0.03075	0.03001	0.008842
20	0.0738	100	0.369	0.02262	0.01533	0.01764	0.03075	0.03023	0.01112
10	0.0369	100	0.369	0.02305	0.01568	0.0169	0.03075	0.03043	0.01322
5	0.01845	100	0.369	0.02329	0.01587	0.01651	0.03075	0.03079	0.01572
4	0.01476	100	0.369	0.02334	0.01591	0.01643	0.03075	0.03096	0.01663
3.9	0.01439	100	0.369	0.02334	0.01591	0.01642	0.03075	0.03098	0.01673
3.8	0.01402	100	0.369	0.02335	0.01592	0.01641	0.03075	0.03101	0.01684
3.7	0.01365	100	0.369	0.02335	0.01592	0.01641	0.03075	0.03103	0.01695
3.6	0.01328	100	0.369	0.02336	0.01593	0.0164	0.03075	0.03105	0.01707
3.5	0.01291	100	0.369	0.02336	0.01593	0.01639	0.03075	0.03108	0.01719
3.4	0.01254	100	0.369	0.02337	0.01593	0.01638	0.03075	0.03111	0.01732
3.3	0.01217	100	0.369	0.02337	0.01594	0.01637	0.03075	0.03114	0.01745
3.2	0.0118	100	0.369	0.02338	0.01594	0.01637	0.03075	0.03117	0.01758
3.1	0.01143	100	0.369	0.02338	0.01595	0.01636	0.03075	0.0312	0.01772
3	0.01107	100	0.369	0.02339	0.01595	0.01635	0.03075	0.03123	0.01787
2	0.00738	100	0.369	0.02344	0.01599	0.01627	0.03075	0.03175	0.01977
1	0.00369	100	0.369	0.02349	0.01603	0.01619	0.03075	0.03312	0.02351
0	0	100	0.369	0.02354	0.01607	-	-	-	-

Tabla 8. Factores de fricción en función del contenido de gas para tubería de 1.5 in

Figura 8. Factores de fricción en función del contenido de gas para tubería de 1.5 in

d=1 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft ³ /s]	f _{tp}	f _{tp} =f	f _{tp}	f∟	f _g	f
200	0.738	100	0.369	0.01805	0.01122	0.02163	0.03445	0.03404	0.005649
150	0.5535	100	0.369	0.01869	0.01176	0.02106	0.03445	0.03405	0.006071
120	0.4428	100	0.369	0.01916	0.01215	0.02049	0.03445	0.03405	0.006419
100	0.369	100	0.369	0.01952	0.01246	0.01998	0.03445	0.03406	0.006718
50	0.1845	100	0.369	0.02064	0.01341	0.01804	0.03445	0.03408	0.007989
20	0.0738	100	0.369	0.02157	0.01419	0.01627	0.03445	0.03416	0.01005
10	0.0369	100	0.369	0.02195	0.0145	0.01558	0.03445	0.03427	0.01195
5	0.01845	100	0.369	0.02215	0.01467	0.01521	0.03445	0.03448	0.01421
4	0.01476	100	0.369	0.02219	0.01471	0.01513	0.03445	0.03457	0.01502
3.9	0.01439	100	0.369	0.02219	0.01471	0.01512	0.03445	0.03459	0.01512
3.8	0.01402	100	0.369	0.0222	0.01471	0.01512	0.03445	0.0346	0.01522
3.7	0.01365	100	0.369	0.0222	0.01472	0.01511	0.03445	0.03461	0.01532
3.6	0.01328	100	0.369	0.02221	0.01472	0.0151	0.03445	0.03463	0.01542
3.5	0.01291	100	0.369	0.02221	0.01472	0.01509	0.03445	0.03464	0.01553
3.4	0.01254	100	0.369	0.02222	0.01473	0.01509	0.03445	0.03466	0.01565
3.3	0.01217	100	0.369	0.02222	0.01473	0.01508	0.03445	0.03468	0.01576
3.2	0.0118	100	0.369	0.02222	0.01473	0.01507	0.03445	0.03469	0.01589
3.1	0.01143	100	0.369	0.02223	0.01474	0.01506	0.03445	0.03471	0.01601
3	0.01107	100	0.369	0.02223	0.01474	0.01506	0.03445	0.03473	0.01614
2	0.00738	100	0.369	0.02228	0.01478	0.01498	0.03445	0.03503	0.01786
1	0.00369	100	0.369	0.02232	0.01481	0.0149	0.03445	0.03586	0.02124
0	0	100	0.369	0.02236	0.01485	-	-	-	-

Tabla 9. Factores de fricción en función del contenido de gas para tubería de 1 in

Figura 9. Factores de fricción en función del contenido de gas para tubería de 1 in

1.5- Tablas y gráficas del número de Reynolds en función del contenido de gas

d=24 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	52058	52058	52058	10920	409821	29176
150	0.5535	100	0.369	39462	39462	39462	10920	307366	23809
120	0.4428	100	0.369	32629	32629	32629	10920	245893	20843
100	0.369	100	0.369	28381	28381	28381	10920	204911	18974
50	0.1845	100	0.369	18854	18854	18854	10920	102455	14676
20	0.0738	100	0.369	13900	13900	13900	10920	40982	12357
10	0.0369	100	0.369	12377	12377	12377	10920	20491	11628
5	0.01845	100	0.369	11640	11640	11640	10920	10246	11271
4	0.01476	100	0.369	11495	11495	11495	10920	8196	11200
3.9	0.01439	100	0.369	11480	11480	11480	10920	7992	11193
3.8	0.01402	100	0.369	11466	11466	11466	10920	7787	11186
3.7	0.01365	100	0.369	11451	11451	11451	10920	7580	11179
3.6	0.01328	100	0.369	11437	11437	11437	10920	7375	11172
3.5	0.01291	100	0.369	11422	11422	11422	10920	7169	11165
3.4	0.01254	100	0.369	11408	11408	11408	10920	6964	11158
3.3	0.01217	100	0.369	11393	11393	11393	10920	6758	11151
3.2	0.0118	100	0.369	11379	11379	11379	10920	6553	11144
3.1	0.01143	100	0.369	11364	11364	11364	10920	6347	11137
3	0.01107	100	0.369	11350	11350	11350	10920	6147	11130
2	0.00738	100	0.369	11206	11206	11206	10920	4098	11060
1	0.00369	100	0.369	11063	11063	11063	10920	2049	10990
0	0	100	0.369	10920	10920	10920	10920	0	10920

Tabla 10. Números de Reynolds en función del contenido de gas para tubería de 24 in

Figura 10. Números de Reynolds en función del contenido de gas para tubería de 24 in

d=16 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	78106	78106	78106	16384	614886	43776
150	0.5535	100	0.369	59207	59207	59207	16384	461164	35722
120	0.4428	100	0.369	48956	48956	48956	16384	368931	31273
100	0.369	100	0.369	42582	42582	42582	16384	307443	28468
50	0.1845	100	0.369	28287	28287	28287	16384	153721	22019
20	0.0738	100	0.369	20854	20854	20854	16384	61489	18540
10	0.0369	100	0.369	18570	18570	18570	16384	30744	17446
5	0.01845	100	0.369	17465	17465	17465	16384	15372	16911
4	0.01476	100	0.369	17247	17247	17247	16384	12298	16805
3.9	0.01439	100	0.369	17225	17225	17225	16384	11990	16794
3.8	0.01402	100	0.369	17203	17203	17203	16384	11683	16784
3.7	0.01365	100	0.369	17181	17181	17181	16384	11373	16773
3.6	0.01328	100	0.369	17160	17160	17160	16384	11065	16762
3.5	0.01291	100	0.369	17138	17138	17138	16384	10756	16752
3.4	0.01254	100	0.369	17116	17116	17116	16384	10448	16741
3.3	0.01217	100	0.369	17094	17094	17094	16384	10140	16730
3.2	0.0118	100	0.369	17072	17072	17072	16384	9832	16720
3.1	0.01143	100	0.369	17051	17051	17051	16384	9523	16709
3	0.01107	100	0.369	17030	17030	17030	16384	9223	16699
2	0.00738	100	0.369	16813	16813	16813	16384	6149	16594
1	0.00369	100	0.369	16598	16598	16598	16384	3074	16489
0	0	100	0.369	16384	16384	16384	16384	0	16384

Tabla 11. Números de Reynolds en función del contenido de gas para tubería de 16 in

Figura 11. Números de Reynolds en función del contenido de gas para tubería de 16 in

d=8 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _L [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	156329	156329	156329	32792	1.23E+06	87617
150	0.5535	100	0.369	118504	118504	118504	32792	923021	71498
120	0.4428	100	0.369	97985	97985	97985	32792	738417	62593
100	0.369	100	0.369	85228	85228	85228	32792	615347	56978
50	0.1845	100	0.369	56617	56617	56617	32792	307674	44072
20	0.0738	100	0.369	41740	41740	41740	32792	123069	37108
10	0.0369	100	0.369	37169	37169	37169	32792	61535	34918
5	0.01845	100	0.369	34956	34956	34956	32792	30767	33847
4	0.01476	100	0.369	34519	34519	34519	32792	24614	33635
3.9	0.01439	100	0.369	34476	34476	34476	32792	23999	33613
3.8	0.01402	100	0.369	34432	34432	34432	32792	23383	33592
3.7	0.01365	100	0.369	34388	34388	34388	32792	22763	33571
3.6	0.01328	100	0.369	34345	34345	34345	32792	22146	33550
3.5	0.01291	100	0.369	34301	34301	34301	32792	21529	33528
3.4	0.01254	100	0.369	34258	34258	34258	32792	20912	33507
3.3	0.01217	100	0.369	34214	34214	34214	32792	20295	33486
3.2	0.0118	100	0.369	34171	34171	34171	32792	19678	33465
3.1	0.01143	100	0.369	34127	34127	34127	32792	19061	33444
3	0.01107	100	0.369	34085	34085	34085	32792	18460	33423
2	0.00738	100	0.369	33652	33652	33652	32792	12307	33212
1	0.00369	100	0.369	33221	33221	33221	32792	6153	33002
0	0	100	0.369	32792	32792	32792	32792	0	32792

Tabla 12. Números de Reynolds en función del contenido de gas para tubería de 8 in

Figura 12. Números de Reynolds en función del contenido de gas para tubería de 8 in

d=3 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	416461	416461	416461	87359	3.28E+06	233412
150	0.5535	100	0.369	315694	315694	315694	87359	2.46E+06	190469
120	0.4428	100	0.369	261032	261032	261032	87359	1.97E+06	166748
100	0.369	100	0.369	227047	227047	227047	87359	1.64E+06	151790
50	0.1845	100	0.369	150829	150829	150829	87359	819642	117408
20	0.0738	100	0.369	111196	111196	111196	87359	327857	98856
10	0.0369	100	0.369	99017	99017	99017	87359	163928	93020
5	0.01845	100	0.369	93123	93123	93123	87359	81964	90168
4	0.01476	100	0.369	91960	91960	91960	87359	65571	89603
3.9	0.01439	100	0.369	91844	91844	91844	87359	63932	89546
3.8	0.01402	100	0.369	91728	91728	91728	87359	62293	89490
3.7	0.01365	100	0.369	91611	91611	91611	87359	60640	89433
3.6	0.01328	100	0.369	91495	91495	91495	87359	58996	89376
3.5	0.01291	100	0.369	91378	91378	91378	87359	57353	89320
3.4	0.01254	100	0.369	91262	91262	91262	87359	55709	89263
3.3	0.01217	100	0.369	91146	91146	91146	87359	54065	89207
3.2	0.0118	100	0.369	91030	91030	91030	87359	52422	89150
3.1	0.01143	100	0.369	90914	90914	90914	87359	50778	89094
3	0.01107	100	0.369	90802	90802	90802	87359	49179	89039
2	0.00738	100	0.369	89649	89649	89649	87359	32786	88477
1	0.00369	100	0.369	88501	88501	88501	87359	16393	87917
0	0	100	0.369	87359	87359	87359	87359	0	87359

Tabla 13. Números de Reynolds en función del contenido de gas para tubería de 3 in

Figura 13. Números de Reynolds en función del contenido de gas para tubería de 3 in

d=2 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	624941	624941	624941	131091	4.92E+06	350258
150	0.5535	100	0.369	473730	473730	473730	131091	3.69E+06	285819
120	0.4428	100	0.369	391704	391704	391704	131091	2.95E+06	250222
100	0.369	100	0.369	340707	340707	340707	131091	2.46E+06	227776
50	0.1845	100	0.369	226333	226333	226333	131091	1.23E+06	176182
20	0.0738	100	0.369	166861	166861	166861	131091	491982	148344
10	0.0369	100	0.369	148585	148585	148585	131091	245991	139586
5	0.01845	100	0.369	139740	139740	139740	131091	122996	135306
4	0.01476	100	0.369	137995	137995	137995	131091	98396	134458
3.9	0.01439	100	0.369	137821	137821	137821	131091	95937	134373
3.8	0.01402	100	0.369	137646	137646	137646	131091	93477	134288
3.7	0.01365	100	0.369	137471	137471	137471	131091	90997	134203
3.6	0.01328	100	0.369	137297	137297	137297	131091	88530	134118
3.5	0.01291	100	0.369	137122	137122	137122	131091	86064	134033
3.4	0.01254	100	0.369	136948	136948	136948	131091	83597	133948
3.3	0.01217	100	0.369	136774	136774	136774	131091	81130	133864
3.2	0.0118	100	0.369	136600	136600	136600	131091	78664	133779
3.1	0.01143	100	0.369	136426	136426	136426	131091	76197	133694
3	0.01107	100	0.369	136257	136257	136257	131091	73797	133612
2	0.00738	100	0.369	134527	134527	134527	131091	49198	132769
1	0.00369	100	0.369	132805	132805	132805	131091	24599	131929
0	0	100	0.369	131091	131091	131091	131091	0	131091

Tabla 14. Números de Reynolds en función del contenido de gas para tubería de 2 in

Figura 14. Números de Reynolds en función del contenido de gas para tubería de 2 in

d=1.5 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft³/s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	832922	832922	832922	174718	6.56E+06	466823
150	0.5535	100	0.369	631388	631388	631388	174718	4.92E+06	380939
120	0.4428	100	0.369	522064	522064	522064	174718	3.93E+06	333496
100	0.369	100	0.369	454094	454094	454094	174718	3.28E+06	303580
50	0.1845	100	0.369	301657	301657	301657	174718	1.64E+06	234815
20	0.0738	100	0.369	222392	222392	222392	174718	655714	197712
10	0.0369	100	0.369	198034	198034	198034	174718	327857	186041
5	0.01845	100	0.369	186246	186246	186246	174718	163928	180336
4	0.01476	100	0.369	183919	183919	183919	174718	131143	179205
3.9	0.01439	100	0.369	183687	183687	183687	174718	127864	179092
3.8	0.01402	100	0.369	183455	183455	183455	174718	124586	178979
3.7	0.01365	100	0.369	183221	183221	183221	174718	121280	178866
3.6	0.01328	100	0.369	182989	182989	182989	174718	117993	178753
3.5	0.01291	100	0.369	182757	182757	182757	174718	114706	178640
3.4	0.01254	100	0.369	182525	182525	182525	174718	111418	178527
3.3	0.01217	100	0.369	182293	182293	182293	174718	108131	178414
3.2	0.0118	100	0.369	182061	182061	182061	174718	104843	178301
3.1	0.01143	100	0.369	181829	181829	181829	174718	101556	178188
3	0.01107	100	0.369	181603	181603	181603	174718	98357	178078
2	0.00738	100	0.369	179298	179298	179298	174718	65571	176954
1	0.00369	100	0.369	177003	177003	177003	174718	32786	175834
0	0	100	0.369	174718	174718	174718	174718	0	174718

Tabla 15. Números de Reynolds en función del contenido de gas para tubería de 1.5 in

Figura 15. Números de Reynolds en función del contenido de gas para tubería de 1.5 in

d=1 in				Beggs y Brill	Beggs y Brill (H∟=λ∟)	Dukler	Lockhart-Martinelli	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft ³ /s]	N _{Ren}	N _{Ren}	N _{Ren}	N _{ReL}	N _{Reg}	N _{Re}
200	0.738	100	0.369	1.25E+06	1.25E+06	1.25E+06	262182	9.84E+06	700515
150	0.5535	100	0.369	947461	947461	947461	262182	7.38E+06	571637
120	0.4428	100	0.369	783409	783409	783409	262182	5.90E+06	500444
100	0.369	100	0.369	681413	681413	681413	262182	4.92E+06	455551
50	0.1845	100	0.369	452667	452667	452667	262182	2.46E+06	352364
20	0.0738	100	0.369	333722	333722	333722	262182	983964	296687
10	0.0369	100	0.369	297171	297171	297171	262182	491982	279173
5	0.01845	100	0.369	279480	279480	279480	262182	245991	270612
4	0.01476	100	0.369	275989	275989	275989	262182	196793	268915
3.9	0.01439	100	0.369	275641	275641	275640	262182	191873	268746
3.8	0.01402	100	0.369	275293	275293	275293	262182	186953	268576
3.7	0.01365	100	0.369	274942	274942	274942	262182	181993	268406
3.6	0.01328	100	0.369	274593	274593	274593	262182	177060	268236
3.5	0.01291	100	0.369	274245	274245	274245	262182	172127	268067
3.4	0.01254	100	0.369	273896	273896	273896	262182	167194	267897
3.3	0.01217	100	0.369	273548	273548	273548	262182	162261	267727
3.2	0.0118	100	0.369	273200	273200	273200	262182	157328	267558
3.1	0.01143	100	0.369	272852	272852	272852	262182	152394	267389
3	0.01107	100	0.369	272514	272514	272514	262182	147595	267224
2	0.00738	100	0.369	269054	269054	269054	262182	98396	265538
1	0.00369	100	0.369	265610	265610	265610	262182	49198	263857
0	0	100	0.369	262182	262182	262182	262182	0	262182

Tabla 16. Números de Reynolds en función del contenido de gas para tubería de 1 in

Figura 16. Números de Reynolds en función del contenido de gas para tubería de 1 in

1.6- Tablas y gráficas de los gradientes de presión en función del contenido de gas

d=24 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	0.0005917	0.000465	0.0009135	0.002567	0.0002227
150	0.5535	100	0.369	0.0004723	0.000372	0.0006824	0.001964	0.0001635
120	0.4428	100	0.369	0.0004052	0.0003198	0.0005539	0.001607	0.0001309
100	0.369	100	0.369	0.0003625	0.0002864	0.0004729	0.001369	0.0001104
50	0.1845	100	0.369	0.0002625	0.0002082	0.0002893	0.000776	0.00006328
20	0.0738	100	0.369	0.0002072	0.0001648	0.0001954	0.0004131	0.0000373
10	0.0369	100	0.369	0.0001895	0.0001509	0.0001675	0.0002862	0.00002842
5	0.01845	100	0.369	0.0001808	0.0001441	0.0001543	0.0002191	0.00002347
4	0.01476	100	0.369	0.0001791	0.0001427	0.0001517	0.000205	0.00002236
3.9	0.01439	100	0.369	0.0001789	0.0001426	0.0001515	0.0002036	0.00002224
3.8	0.01402	100	0.369	0.0001788	0.0001424	0.0001512	0.0002021	0.00002213
3.7	0.01365	100	0.369	0.0001786	0.0001423	0.0001509	0.0002007	0.00002201
3.6	0.01328	100	0.369	0.0001784	0.0001422	0.0001507	0.0001993	0.00002189
3.5	0.01291	100	0.369	0.0001782	0.000142	0.0001504	0.0001978	0.00002177
3.4	0.01254	100	0.369	0.0001781	0.0001419	0.0001502	0.0001964	0.00002165
3.3	0.01217	100	0.369	0.0001779	0.0001417	0.0001499	0.0001949	0.00002153
3.2	0.0118	100	0.369	0.0001777	0.0001416	0.0001497	0.0001934	0.0000214
3.1	0.01143	100	0.369	0.0001776	0.0001415	0.0001494	0.000192	0.00002128
3	0.01107	100	0.369	0.0001774	0.0001413	0.0001491	0.0001905	0.00002116
2	0.00738	100	0.369	0.0001757	0.00014	0.0001466	0.0001755	0.00001981
1	0.00369	100	0.369	0.000174	0.0001386	0.0001441	0.0001595	0.00001812
0	0	100	0.369	0.0001722	0.0001373	-	-	-

Tabla 17. Gradientes de presión en función del contenido de gas para tubería de 24 in

Figura 17. Gradientes de presión en función del contenido de gas para tubería de 24 in

d=16 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _L [ft³/s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	0.004188	0.003236	0.006324	0.01903	0.001748
150	0.5535	100	0.369	0.003334	0.002583	0.004714	0.01447	0.001306
120	0.4428	100	0.369	0.002855	0.002217	0.00382	0.01178	0.00106
100	0.369	100	0.369	0.00255	0.001983	0.003258	0.009993	0.0009039
50	0.1845	100	0.369	0.001838	0.001436	0.001988	0.005575	0.0005399
20	0.0738	100	0.369	0.001446	0.001133	0.00134	0.002915	0.0003333
10	0.0369	100	0.369	0.001321	0.001036	0.001148	0.002002	0.0002607
5	0.01845	100	0.369	0.001259	0.0009883	0.001056	0.001525	0.0002193
4	0.01476	100	0.369	0.001247	0.0009789	0.001039	0.001426	0.0002099
3.9	0.01439	100	0.369	0.001246	0.0009779	0.001037	0.001416	0.0002089
3.8	0.01402	100	0.369	0.001245	0.000977	0.001035	0.001406	0.0002079
3.7	0.01365	100	0.369	0.001243	0.000976	0.001033	0.001395	0.0002069
3.6	0.01328	100	0.369	0.001242	0.0009751	0.001032	0.001385	0.0002059
3.5	0.01291	100	0.369	0.001241	0.0009741	0.00103	0.001375	0.0002049
3.4	0.01254	100	0.369	0.00124	0.0009732	0.001028	0.001365	0.0002038
3.3	0.01217	100	0.369	0.001238	0.0009722	0.001026	0.001355	0.0002028
3.2	0.0118	100	0.369	0.001237	0.0009713	0.001025	0.001344	0.0002017
3.1	0.01143	100	0.369	0.001236	0.0009703	0.001023	0.001334	0.0002007
3	0.01107	100	0.369	0.001235	0.0009694	0.001021	0.001324	0.0001996
2	0.00738	100	0.369	0.001223	0.00096	0.001004	0.001219	0.000188
1	0.00369	100	0.369	0.00121	0.0009506	0.0009862	0.001108	0.0001732
0	0	100	0.369	0.001198	0.0009412	-	-	-

Tabla 18. Gradientes de presión en función del contenido de gas para tubería de 16 in

Figura 18. Gradientes de presión en función del contenido de gas para tubería de 16 in

d=8 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q ₉ [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	0.13	0.09005	0.1745	0.6181	0.06101
150	0.5535	100	0.369	0.103	0.07161	0.1295	0.4666	0.04696
120	0.4428	100	0.369	0.08814	0.06129	0.1047	0.3773	0.03901
100	0.369	100	0.369	0.07784	0.05471	0.08909	0.3184	0.03389
50	0.1845	100	0.369	0.04335	0.03937	0.05405	0.1735	0.02166
20	0.0738	100	0.369	0.03927	0.03091	0.03628	0.08769	0.01438
10	0.0369	100	0.369	0.03666	0.02822	0.03103	0.05902	0.0117
5	0.01845	100	0.369	0.03514	0.02689	0.02855	0.04444	0.01012
4	0.01476	100	0.369	0.03482	0.02663	0.02807	0.04146	0.009749
3.9	0.01439	100	0.369	0.03479	0.0266	0.02802	0.04116	0.00971
3.8	0.01402	100	0.369	0.03476	0.02657	0.02797	0.04086	0.009671
3.7	0.01365	100	0.369	0.03473	0.02655	0.02792	0.04056	0.009631
3.6	0.01328	100	0.369	0.0347	0.02652	0.02787	0.04026	0.009591
3.5	0.01291	100	0.369	0.03467	0.0265	0.02782	0.03995	0.00955
3.4	0.01254	100	0.369	0.03463	0.02647	0.02778	0.03965	0.009509
3.3	0.01217	100	0.369	0.0346	0.02644	0.02773	0.03935	0.009467
3.2	0.0118	100	0.369	0.03457	0.02642	0.02768	0.03904	0.009425
3.1	0.01143	100	0.369	0.03454	0.02639	0.02763	0.03874	0.009383
3	0.01107	100	0.369	0.03451	0.02636	0.02758	0.03834	0.009341
2	0.00738	100	0.369	0.03419	0.0261	0.02711	0.03535	0.008869
1	0.00369	100	0.369	0.03387	0.02584	0.02663	0.03213	0.008257
0	0	100	0.369	0.03355	0.02558	-	-	0.06101

Tabla 19. Gradientes de presión en función del contenido de gas para tubería de 8 in

Figura 19. Gradientes de presión en función del contenido de gas para tubería de 8 in
d=3 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _∟ [ft ³ /s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	14.7	10.02	19.25	95.31	10.12
150	0.5535	100	0.369	11.61	7.927	14.2	71.62	7.944
120	0.4428	100	0.369	9.883	6.761	11.43	57.69	6.767
100	0.369	100	0.369	8.789	6.02	9.694	48.52	6.015
50	0.1845	100	0.369	6.182	4.299	5.829	26	4.187
20	0.0738	100	0.369	4.833	3.355	3.889	12.76	3.034
10	0.0369	100	0.369	4.146	3.055	3.318	8.395	2.582
5	0.01845	100	0.369	3.806	2.908	3.049	6.212	2.302
4	0.01476	100	0.369	3.74	2.879	2.996	5.775	2.234
3.9	0.01439	100	0.369	3.733	2.876	2.991	5.731	2.226
3.8	0.01402	100	0.369	3.727	2.873	2.986	5.687	2.219
3.7	0.01365	100	0.369	3.72	2.87	2.981	5.643	2.212
3.6	0.01328	100	0.369	3.713	2.867	2.975	5.599	2.204
3.5	0.01291	100	0.369	3.707	2.864	2.97	5.555	2.197
3.4	0.01254	100	0.369	3.7	2.861	2.965	5.511	2.189
3.3	0.01217	100	0.369	3.694	2.858	2.96	5.467	2.181
3.2	0.0118	100	0.369	3.687	2.855	2.954	5.423	2.173
3.1	0.01143	100	0.369	3.68	2.852	2.949	5.379	2.165
3	0.01107	100	0.369	3.674	2.849	2.944	5.336	2.158
2	0.00738	100	0.369	3.609	2.82	2.892	4.896	2.067
1	0.00369	100	0.369	3.544	2.791	2.841	4.45	1.945
0	0	100	0.369	3.479	2.762	-	-	-

Tabla 20. Gradientes de presión en función del contenido de gas para tubería de 3 in

Figura 20. Gradientes de presión en función del contenido de gas para tubería de 3 in

d=2 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft³/s]	q∟ [%]	q _L [ft³/s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	107.3	71.01	136	797.3	103.6
150	0.5535	100	0.369	83.91	56.05	100	598.7	73.21
120	0.4428	100	0.369	71	47.72	80.34	482	60.43
100	0.369	100	0.369	62.87	42.44	68.07	405.1	53.29
50	0.1845	100	0.369	44.19	30.2	40.77	216.6	37.67
20	0.0738	100	0.369	34.12	23.51	27.12	105.8	28.13
10	0.0369	100	0.369	30.96	21.39	23.12	69.27	24.31
5	0.01845	100	0.369	29.41	20.35	21.23	51.05	21.89
4	0.01476	100	0.369	29.11	20.14	20.86	47.41	21.3
3.9	0.01439	100	0.369	29.08	20.12	20.83	47.05	21.23
3.8	0.01402	100	0.369	29.04	20.1	20.79	46.68	21.17
3.7	0.01365	100	0.369	29.01	20.08	20.75	46.31	21.11
3.6	0.01328	100	0.369	28.98	20.06	20.72	45.95	21.04
3.5	0.01291	100	0.369	28.95	20.04	20.68	45.58	20.97
3.4	0.01254	100	0.369	28.92	20.02	20.64	45.22	20.91
3.3	0.01217	100	0.369	28.89	20	20.61	44.85	20.84
3.2	0.0118	100	0.369	28.86	19.98	20.57	44.49	20.77
3.1	0.01143	100	0.369	28.83	19.96	20.53	44.12	20.7
3	0.01107	100	0.369	28.8	19.94	20.5	43.77	20.63
2	0.00738	100	0.369	28.5	19.73	20.14	40.12	19.82
1	0.00369	100	0.369	28.19	19.53	19.78	36.45	18.72
0	0	100	0.369	27.89	19.32	-	-	-

Tabla 21. Gradientes de presión en función del contenido de gas para tubería de 2 in

Figura 21. Gradientes de presión en función del contenido de gas para tubería de 2 in

d=1.5 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	442.8	286	544.1	3621	736
150	0.5535	100	0.369	344.5	225	399.4	2718	426.1
120	0.4428	100	0.369	290.6	191.1	320.3	2188	316
100	0.369	100	0.369	256.8	169.8	271.1	1838	265
50	0.1845	100	0.369	179.4	120.4	161.9	981.7	180
20	0.0738	100	0.369	138	93.49	107.5	478.7	136.5
10	0.0369	100	0.369	124.9	84.98	91.56	312.8	119.1
5	0.01845	100	0.369	118.6	80.81	84.04	230.1	108
4	0.01476	100	0.369	117.3	79.98	82.58	213.6	105.2
3.9	0.01439	100	0.369	117.2	79.9	82.43	212	104.9
3.8	0.01402	100	0.369	117.1	79.82	82.29	210.3	104.6
3.7	0.01365	100	0.369	116.9	79.74	82.14	208.6	104.3
3.6	0.01328	100	0.369	116.8	79.65	82	207	104
3.5	0.01291	100	0.369	116.7	79.57	81.85	205.3	103.7
3.4	0.01254	100	0.369	116.6	79.49	81.7	203.7	103.4
3.3	0.01217	100	0.369	116.4	79.41	81.56	202	103
3.2	0.0118	100	0.369	116.3	79.32	81.41	200.4	102.7
3.1	0.01143	100	0.369	116.2	79.24	81.27	198.7	102.4
3	0.01107	100	0.369	116.1	79.16	81.13	197.1	102.1
2	0.00738	100	0.369	114.8	78.34	79.69	180.6	98.27
1	0.00369	100	0.369	113.6	77.52	78.26	164	93
0	0	100	0.369	112.3	76.7	-	-	-

Tabla 22. Gradientes de presión en función del contenido de gas para tubería de 1.5 in

Figura 22. Gradientes de presión en función del contenido de gas para tubería de 1.5 in

d=1 in				Beggs y Brill	Beggs y Brill (H _L =λ _L)	Dukler	Lockhart-Martinelli	Olujic
q _g [%]	q _g [ft ³ /s]	q∟ [%]	q _L [ft ³ /s]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]	dp/dx [psf/ft]
200	0.738	100	0.369	3415	2125	3872	31054	19780
150	0.5535	100	0.369	2608	1644	2834	23307	8919
120	0.4428	100	0.369	2178	1384	2268	18754	5161
100	0.369	100	0.369	1912	1223	1917	15758	3557
50	0.1845	100	0.369	1316	856	1140	8408	1711
20	0.0738	100	0.369	1003	660.2	754.7	4093	1278
10	0.0369	100	0.369	905.9	598.8	642.1	2670	1128
5	0.01845	100	0.369	858.5	568.7	589	1962	1031
4	0.01476	100	0.369	849.1	562.8	578.7	1820	1006
3.9	0.01439	100	0.369	848.2	562.2	577.7	1806	1004
3.8	0.01402	100	0.369	847.3	561.6	576.7	1792	1001
3.7	0.01365	100	0.369	846.3	561	575.6	1778	998.2
3.6	0.01328	100	0.369	845.4	560.4	574.6	1763	995.5
3.5	0.01291	100	0.369	844.4	559.8	573.6	1749	992.7
3.4	0.01254	100	0.369	843.5	559.2	572.5	1735	989.9
3.3	0.01217	100	0.369	842.6	558.6	571.5	1721	987
3.2	0.0118	100	0.369	841.6	558	570.5	1707	984.1
3.1	0.01143	100	0.369	840.7	557.4	569.5	1692	981.2
3	0.01107	100	0.369	839.8	556.9	568.5	1679	978.2
2	0.00738	100	0.369	830.5	550.9	558.3	1537	944.1
1	0.00369	100	0.369	821.2	545.1	548.3	1396	896
0	0	100	0.369	811.9	539.2	-	-	-

Tabla 23. Gradientes de presión en función del contenido de gas para tubería de 1 in

Figura 23. Gradientes de presión en función del contenido de gas para tubería de 1 in

1.7- Tablas y gráficas de porcentaje de variación de los gradientes de presión

Olujic (24 in)					Beggs y Brill	Beggs y Brill	Beggs y Brill (H∟=λ∟)	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
0.0002227	200	0.738	100	0.369	0.0005917	165.69%	0.000465	108.80%	0.0009135	310.19%	0.002567	1052.67%
0.0001635	150	0.5535	100	0.369	0.0004723	188.87%	0.000372	127.52%	0.0006824	317.37%	0.001964	1101.22%
0.0001309	120	0.4428	100	0.369	0.0004052	209.55%	0.0003198	144.31%	0.0005539	323.15%	0.001607	1127.65%
0.0001104	100	0.369	100	0.369	0.0003625	228.35%	0.0002864	159.42%	0.0004729	328.35%	0.001369	1140.04%
0.00006328	50	0.1845	100	0.369	0.0002625	314.82%	0.0002082	229.01%	0.0002893	357.17%	0.000776	1126.30%
0.0000373	20	0.0738	100	0.369	0.0002072	455.50%	0.0001648	341.82%	0.0001954	423.86%	0.0004131	1007.51%
0.00002842	10	0.0369	100	0.369	0.0001895	566.78%	0.0001509	430.96%	0.0001675	489.37%	0.0002862	907.04%
0.00002347	5	0.01845	100	0.369	0.0001808	670.35%	0.0001441	513.98%	0.0001543	557.44%	0.0002191	833.53%
0.00002236	4	0.01476	100	0.369	0.0001791	700.98%	0.0001427	538.19%	0.0001517	578.44%	0.000205	816.82%
0.00002224	3.9	0.01439	100	0.369	0.0001789	704.41%	0.0001426	541.19%	0.0001515	581.21%	0.0002036	815.47%
0.00002213	3.8	0.01402	100	0.369	0.0001788	707.95%	0.0001424	543.47%	0.0001512	583.24%	0.0002021	813.24%
0.00002201	3.7	0.01365	100	0.369	0.0001786	711.45%	0.0001423	546.52%	0.0001509	585.60%	0.0002007	811.86%
0.00002189	3.6	0.01328	100	0.369	0.0001784	714.98%	0.0001422	549.61%	0.0001507	588.44%	0.0001993	810.46%
0.00002177	3.5	0.01291	100	0.369	0.0001782	718.56%	0.000142	552.27%	0.0001504	590.86%	0.0001978	808.59%
0.00002165	3.4	0.01254	100	0.369	0.0001781	722.63%	0.0001419	555.43%	0.0001502	593.76%	0.0001964	807.16%
0.00002153	3.3	0.01217	100	0.369	0.0001799	735.58%	0.0001417	558.15%	0.0001499	596.24%	0.0001949	805.25%
0.0000214	3.2	0.0118	100	0.369	0.0001777	730.37%	0.0001416	561.68%	0.0001497	599.53%	0.0001934	803.74%
0.00002128	3.1	0.01143	100	0.369	0.0001776	734.59%	0.0001415	564.94%	0.0001494	602.07%	0.000192	802.26%
0.00002116	3	0.01107	100	0.369	0.0001774	738.37%	0.0001413	567.77%	0.0001491	604.63%	0.0001905	800.28%
0.00001981	2	0.00738	100	0.369	0.0001757	786.93%	0.00014	606.71%	0.0001466	640.03%	0.0001755	785.92%
0.00001812	1	0.00369	100	0.369	0.000174	860.26%	0.0001386	664.90%	0.0001441	695.25%	0.0001595	780.24%
-	0	0	100	0.369	0.0001722	-	0.0001373	-	-	-	-	-

Tabla 24. Porcentajes de variación con respecto al modelo Olujic para tubería de 24 in

Figura 24. Porcentajes de variación con respecto al modelo Olujic para tubería de 24 in

Olujic (16 in)					Beggs y Brill	Beggs y Brill	Beggs y Brill (H _L =λ _L)	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
0.001748	200	0.738	100	0.369	0.004188	139.59%	0.003236	85.13%	0.006324	261.78%	0.01903	988.67%
0.001306	150	0.5535	100	0.369	0.003334	155.28%	0.002583	97.78%	0.004714	260.95%	0.01447	1007.96%
0.00106	120	0.4428	100	0.369	0.002855	169.34%	0.002217	109.15%	0.00382	260.38%	0.01178	1011.32%
0.0009039	100	0.369	100	0.369	0.00255	182.11%	0.001983	119.38%	0.003258	260.44%	0.009993	1005.54%
0.0005399	50	0.1845	100	0.369	0.001838	240.43%	0.001436	165.98%	0.001988	268.22%	0.005575	932.60%
0.0003333	20	0.0738	100	0.369	0.001446	333.84%	0.001133	239.93%	0.00134	302.04%	0.002915	774.59%
0.0002607	10	0.0369	100	0.369	0.001321	406.71%	0.001036	297.39%	0.001148	340.35%	0.002002	667.93%
0.0002193	5	0.01845	100	0.369	0.001259	474.10%	0.0009883	350.66%	0.001056	381.53%	0.001525	595.39%
0.0002099	4	0.01476	100	0.369	0.001247	494.09%	0.0009789	366.36%	0.001039	395.00%	0.001426	579.37%
0.0002089	3.9	0.01439	100	0.369	0.001246	496.46%	0.0009779	368.12%	0.001037	396.41%	0.001416	577.84%
0.0002079	3.8	0.01402	100	0.369	0.001245	498.85%	0.000977	369.94%	0.001035	397.84%	0.001406	576.29%
0.0002069	3.7	0.01365	100	0.369	0.001243	500.77%	0.000976	371.73%	0.001033	399.28%	0.001395	574.24%
0.0002059	3.6	0.01328	100	0.369	0.001242	503.21%	0.0009751	373.58%	0.001032	401.21%	0.001385	572.66%
0.0002049	3.5	0.01291	100	0.369	0.001241	505.66%	0.0009741	375.40%	0.00103	402.68%	0.001375	571.06%
0.0002038	3.4	0.01254	100	0.369	0.00124	508.44%	0.0009732	377.53%	0.001028	404.42%	0.001365	569.77%
0.0002028	3.3	0.01217	100	0.369	0.001238	510.45%	0.0009722	379.39%	0.001026	405.92%	0.001355	568.15%
0.0002017	3.2	0.0118	100	0.369	0.001237	513.29%	0.0009713	381.56%	0.001025	408.18%	0.001344	566.34%
0.0002007	3.1	0.01143	100	0.369	0.001236	515.84%	0.0009703	383.46%	0.001023	409.72%	0.001334	564.67%
0.0001996	3	0.01107	100	0.369	0.001235	518.74%	0.0009694	385.67%	0.001021	411.52%	0.001324	563.33%
0.000188	2	0.00738	100	0.369	0.001223	550.53%	0.00096	410.64%	0.001004	434.04%	0.001219	548.40%
0.0001732	1	0.00369	100	0.369	0.00121	598.61%	0.0009506	448.85%	0.0009862	469.40%	0.001108	539.72%
-	0	0	100	0.369	0.001198	-	0.0009412	-	-	-	-	-

Tabla 25. Porcentajes de variación con respecto al modelo Olujic para tubería de 16 in

Figura 25. Porcentajes de variación con respecto al modelo Olujic para tubería de 16 in

Olujic (8 in)					Beggs y Brill	Beggs y Brill	Beggs y Brill $(H_1 = \lambda_1)$	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
0.06101	200	0.738	100	0.369	0.13	113.08%	0.09005	47.60%	0.1745	186.02%	0.6181	913.11%
0.04696	150	0.5535	100	0.369	0.103	119.34%	0.07161	52.49%	0.1295	175.77%	0.4666	893.61%
0.03901	120	0.4428	100	0.369	0.08814	125.94%	0.06129	57.11%	0.1047	168.39%	0.3773	867.19%
0.03389	100	0.369	100	0.369	0.07784	129.68%	0.05471	61.43%	0.08909	162.88%	0.3184	839.51%
0.02166	50	0.1845	100	0.369	0.04335	100.14%	0.03937	81.76%	0.05405	149.54%	0.1735	701.02%
0.01438	20	0.0738	100	0.369	0.03927	173.09%	0.03091	114.95%	0.03628	152.29%	0.08769	509.81%
0.0117	10	0.0369	100	0.369	0.03666	213.33%	0.02822	141.20%	0.03103	165.21%	0.05902	404.44%
0.01012	5	0.01845	100	0.369	0.03514	247.23%	0.02689	165.71%	0.02855	182.11%	0.04444	339.13%
0.009749	4	0.01476	100	0.369	0.03482	257.16%	0.02663	173.16%	0.02807	187.93%	0.04146	325.27%
0.00971	3.9	0.01439	100	0.369	0.03479	258.29%	0.0266	173.94%	0.02802	188.57%	0.04116	323.89%
0.009671	3.8	0.01402	100	0.369	0.03476	259.43%	0.02657	174.74%	0.02797	189.22%	0.04086	322.50%
0.009631	3.7	0.01365	100	0.369	0.03473	260.61%	0.02655	175.67%	0.02792	189.90%	0.04056	321.14%
0.009591	3.6	0.01328	100	0.369	0.0347	261.80%	0.02652	176.51%	0.02787	190.58%	0.04026	319.77%
0.00955	3.5	0.01291	100	0.369	0.03467	263.04%	0.0265	177.49%	0.02782	191.31%	0.03995	318.32%
0.009509	3.4	0.01254	100	0.369	0.03463	264.18%	0.02647	178.37%	0.02778	192.14%	0.03965	316.97%
0.009467	3.3	0.01217	100	0.369	0.0346	265.48%	0.02644	179.29%	0.02773	192.91%	0.03935	315.65%
0.009425	3.2	0.0118	100	0.369	0.03457	266.79%	0.02642	180.32%	0.02768	193.69%	0.03904	314.22%
0.009383	3.1	0.01143	100	0.369	0.03454	268.11%	0.02639	181.25%	0.02763	194.47%	0.03874	312.87%
0.009341	3	0.01107	100	0.369	0.03451	269.45%	0.02636	182.20%	0.02758	195.26%	0.03844	311.52%
0.008869	2	0.00738	100	0.369	0.03419	285.50%	0.0261	194.28%	0.02711	205.67%	0.03535	298.58%
0.008257	1	0.00369	100	0.369	0.03387	310.20%	0.02584	212.95%	0.02663	222.51%	0.03213	289.12%
-	0	0	100	0.369	0.03355	-	0.02558	-	-	-	-	-

Tabla 26. Porcentajes de variación con respecto al modelo Olujic para tubería de 8 in

Figura 26. Porcentajes de variación con respecto al modelo Olujic para tubería de 8 in

Olujic (3 in)					Beggs y Brill	Beggs y Brill	Beggs y Brill (Η _L =λ _L)	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
10.12	200	0.738	100	0.369	14.7	45.26%	10.02	-0.99%	19.25	90.22%	95.31	841.80%
7.944	150	0.5535	100	0.369	11.61	46.15%	7.927	-0.21%	14.2	78.75%	71.62	801.56%
6.767	120	0.4428	100	0.369	9.883	46.05%	6.761	-0.09%	11.43	68.91%	57.69	752.52%
6.015	100	0.369	100	0.369	8.789	46.12%	6.02	0.08%	9.694	61.16%	48.52	706.65%
4.187	50	0.1845	100	0.369	6.182	47.65%	4.299	2.67%	5.829	39.22%	26	520.97%
3.034	20	0.0738	100	0.369	4.833	59.29%	3.355	10.58%	3.889	28.18%	12.76	320.57%
2.582	10	0.0369	100	0.369	4.146	60.57%	3.055	18.32%	3.318	28.51%	8.395	225.14%
2.302	5	0.01845	100	0.369	3.806	65.33%	2.908	26.32%	3.049	32.45%	6.212	169.85%
2.234	4	0.01476	100	0.369	3.74	67.41%	2.879	28.87%	2.996	34.11%	5.775	158.50%
2.226	3.9	0.01439	100	0.369	3.733	67.70%	2.876	29.20%	2.991	34.37%	5.731	157.46%
2.219	3.8	0.01402	100	0.369	3.727	67.96%	2.873	29.47%	2.986	34.57%	5.687	156.29%
2.212	3.7	0.01365	100	0.369	3.72	68.17%	2.87	29.75%	2.981	34.76%	5.643	155.11%
2.204	3.6	0.01328	100	0.369	3.713	68.47%	2.867	30.08%	2.975	34.98%	5.599	154.04%
2.197	3.5	0.01291	100	0.369	3.707	68.73%	2.864	30.36%	2.97	35.18%	5.555	152.84%
2.189	3.4	0.01254	100	0.369	3.7	69.03%	2.861	30.70%	2.965	35.45%	5.511	151.76%
2.181	3.3	0.01217	100	0.369	3.694	69.37%	2.858	31.04%	2.96	35.72%	5.467	150.66%
2.173	3.2	0.0118	100	0.369	3.687	69.67%	2.855	31.39%	2.954	35.94%	5.423	149.56%
2.165	3.1	0.01143	100	0.369	3.68	69.98%	2.852	31.73%	2.949	36.21%	5.379	148.45%
2.158	3	0.01107	100	0.369	3.674	70.25%	2.849	32.02%	2.944	36.42%	5.336	147.27%
2.067	2	0.00738	100	0.369	3.609	74.60%	2.82	36.43%	2.892	39.91%	4.896	136.87%
1.945	1	0.00369	100	0.369	3.544	82.21%	2.791	43.50%	2.841	46.07%	4.45	128.79%
-	0	0	100	0.369	3.479	-	2.762	-	-	-	-	-

Tabla 27. Porcentajes de variación con respecto al modelo Olujic para tubería de 3 in

Figura 27. Porcentajes de variación con respecto al modelo Olujic para tubería de 3 in

Olujic (2 in)					Begas y Brill	Beggs v Brill	Beggs y Brill ($H_1 = \lambda_1$)	Beggs y Brill (H _I =λ _I)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
103.6	200	0.738	100	0.369	107.3	3.57%	71.01	-31.46%	136	31.27%	797.3	669.59%
73.21	150	0.5535	100	0.369	83.91	14.62%	56.05	-23.44%	100	36.59%	598.7	717.78%
60.43	120	0.4428	100	0.369	71	17.49%	47.72	-21.03%	80.34	32.95%	482	697.62%
53.29	100	0.369	100	0.369	62.87	17.98%	42.44	-20.36%	68.07	27.74%	405.1	660.18%
37.67	50	0.1845	100	0.369	44.19	17.31%	30.2	-19.83%	40.77	8.23%	216.6	474.99%
28.13	20	0.0738	100	0.369	34.12	21.29%	23.51	-16.42%	27.12	-3.59%	105.8	276.11%
24.31	10	0.0369	100	0.369	30.96	27.35%	21.39	-12.01%	23.12	-4.90%	69.27	184.94%
21.89	5	0.01845	100	0.369	29.41	34.35%	20.35	-7.04%	21.23	-3.02%	51.05	133.21%
21.3	4	0.01476	100	0.369	29.11	36.67%	20.14	-5.45%	20.86	-2.07%	47.41	122.58%
21.23	3.9	0.01439	100	0.369	29.08	36.98%	20.12	-5.23%	20.83	-1.88%	47.05	121.62%
21.17	3.8	0.01402	100	0.369	29.04	37.18%	20.1	-5.05%	20.79	-1.79%	46.68	120.50%
21.11	3.7	0.01365	100	0.369	29.01	37.42%	20.08	-4.88%	20.75	-1.71%	46.31	119.37%
21.04	3.6	0.01328	100	0.369	28.98	37.74%	20.06	-4.66%	20.72	-1.52%	45.95	118.39%
20.97	3.5	0.01291	100	0.369	28.95	38.05%	20.04	-4.43%	20.68	-1.38%	45.58	117.36%
20.91	3.4	0.01254	100	0.369	28.92	38.31%	20.02	-4.26%	20.64	-1.29%	45.22	116.26%
20.84	3.3	0.01217	100	0.369	28.89	38.63%	20	-4.03%	20.61	-1.10%	44.85	115.21%
20.77	3.2	0.0118	100	0.369	28.86	38.95%	19.98	-3.80%	20.57	-0.96%	44.49	114.20%
20.7	3.1	0.01143	100	0.369	28.83	39.28%	19.96	-3.57%	20.53	-0.82%	44.12	113.14%
20.63	3	0.01107	100	0.369	28.8	39.60%	19.94	-3.34%	20.5	-0.63%	43.77	112.17%
19.82	2	0.00738	100	0.369	28.5	43.79%	19.73	-0.45%	20.14	1.61%	40.12	102.42%
18.72	1	0.00369	100	0.369	28.19	50.59%	19.53	4.33%	19.78	5.66%	36.45	94.71%
-	0	0	100	0.369	27.89	-	19.32	-	-	-	-	-

Tabla 28. Porcentajes de variación con respecto al modelo Olujic para tubería de 2 in

Figura 28. Porcentajes de variación con respecto al modelo Olujic para tubería de 2 in

Olujic (1.5 in)					Beggs y Brill	Beggs y Brill	Beggs y Brill (Η _L =λ _L)	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
736	200	0.738	100	0.369	442.8	-39.84%	286	-61.14%	544.1	-26.07%	3621	391.98%
426.1	150	0.5535	100	0.369	344.5	-19.15%	225	-47.20%	399.4	-6.27%	2718	537.88%
316	120	0.4428	100	0.369	290.6	-8.04%	191.1	-39.53%	320.3	1.36%	2188	592.41%
265	100	0.369	100	0.369	256.8	-3.09%	169.8	-35.92%	271.1	2.30%	1838	593.58%
180	50	0.1845	100	0.369	179.4	-0.33%	120.4	-33.11%	161.9	-10.06%	981.7	445.39%
136.5	20	0.0738	100	0.369	138	1.10%	93.49	-31.51%	107.5	-21.25%	478.7	250.70%
119.1	10	0.0369	100	0.369	124.9	4.87%	84.98	-28.65%	91.56	-23.12%	312.8	162.64%
108	5	0.01845	100	0.369	118.6	9.81%	80.81	-25.18%	84.04	-22.19%	230.1	113.06%
105.2	4	0.01476	100	0.369	117.3	11.50%	79.98	-23.97%	82.58	-21.50%	213.6	103.04%
104.9	3.9	0.01439	100	0.369	117.2	11.73%	79.9	-23.83%	82.43	-21.42%	212	102.10%
104.6	3.8	0.01402	100	0.369	117.1	11.95%	79.82	-23.69%	82.29	-21.33%	210.3	101.05%
104.3	3.7	0.01365	100	0.369	116.9	12.08%	79.74	-23.55%	82.14	-21.25%	208.6	100.00%
104	3.6	0.01328	100	0.369	116.8	12.31%	79.65	-23.41%	82	-21.15%	207	99.04%
103.7	3.5	0.01291	100	0.369	116.7	12.54%	79.57	-23.27%	81.85	-21.07%	205.3	97.97%
103.4	3.4	0.01254	100	0.369	116.6	12.77%	79.49	-23.12%	81.7	-20.99%	203.7	97.00%
103	3.3	0.01217	100	0.369	116.4	13.01%	79.41	-22.90%	81.56	-20.82%	202	96.12%
102.7	3.2	0.0118	100	0.369	116.3	13.24%	79.32	-22.77%	81.41	-20.73%	200.4	95.13%
102.4	3.1	0.01143	100	0.369	116.2	13.48%	79.24	-22.62%	81.27	-20.63%	198.7	94.04%
102.1	3	0.01107	100	0.369	116.1	13.71%	79.16	-22.47%	81.13	-20.54%	197.1	93.05%
98.27	2	0.00738	100	0.369	114.8	16.82%	78.34	-20.28%	79.69	-18.91%	180.6	83.78%
93	1	0.00369	100	0.369	113.6	22.15%	77.52	-16.65%	78.26	-15.85%	164	76.34%
-	0	0	100	0.369	112.3	-	76.7	-	-	-	-	-

Tabla 29. Porcentajes de variación con respecto al modelo Olujic para tubería de 1.5 in

Figura 29. Porcentajes de variación con respecto al modelo Olujic para tubería de 1.5 in

Olujic (1 in)					Beggs y Brill	Beggs v Brill	Beggs y Brill (Η, =λ,)	Beggs y Brill (H _L =λ _L)	Dukler	Dukler	Lockhart Martinelli	Lockhart Martinelli
dp/dx [psf/ft]	q _g [%]	q _g [ft ³ /s]	q∟ [%]	q∟ [ft³/s]	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación	dp/dx [psf/ft]	% de variación
19780	200	0.738	100	0.369	3415	-82.74%	2125	-89.26%	3872	-80.42%	31054	57.00%
8919	150	0.5535	100	0.369	2608	-70.76%	1644	-81.57%	2834	-68.23%	23307	161.32%
5161	120	0.4428	100	0.369	2178	-57.80%	1384	-73.18%	2268	-56.06%	18754	263.38%
3557	100	0.369	100	0.369	1912	-46.25%	1223	-65.62%	1917	-46.11%	15758	343.01%
1711	50	0.1845	100	0.369	1316	-23.09%	856	-49.97%	1140	-33.37%	8408	391.41%
1278	20	0.0738	100	0.369	1003	-21.52%	660.2	-48.34%	754.7	-40.95%	4093	220.27%
1128	10	0.0369	100	0.369	905.9	-19.69%	598.8	-46.91%	642.1	-43.08%	2670	136.70%
1031	5	0.01845	100	0.369	858.5	-16.73%	568.7	-44.84%	589	-42.87%	1962	90.30%
1006	4	0.01476	100	0.369	849.1	-15.60%	562.8	-44.06%	578.7	-42.48%	1820	80.91%
1004	3.9	0.01439	100	0.369	848.2	-15.52%	562.2	-44.00%	577.7	-42.46%	1806	79.88%
1001	3.8	0.01402	100	0.369	847.3	-15.35%	561.6	-43.90%	576.7	-42.39%	1792	79.02%
998.2	3.7	0.01365	100	0.369	846.3	-15.22%	561	-43.80%	575.6	-42.34%	1778	78.12%
995.5	3.6	0.01328	100	0.369	845.4	-15.08%	560.4	-43.71%	574.6	-42.28%	1763	77.10%
992.7	3.5	0.01291	100	0.369	844.4	-14.94%	559.8	-43.61%	573.6	-42.22%	1749	76.19%
989.9	3.4	0.01254	100	0.369	843.5	-14.79%	559.2	-43.51%	572.5	-42.17%	1735	75.27%
987	3.3	0.01217	100	0.369	842.6	-14.63%	558.6	-43.40%	571.5	-42.10%	1721	74.37%
984.1	3.2	0.0118	100	0.369	841.6	-14.48%	558	-43.30%	570.5	-42.03%	1707	73.46%
981.2	3.1	0.01143	100	0.369	840.7	-14.32%	557.4	-43.19%	569.5	-41.96%	1692	72.44%
978.2	3	0.01107	100	0.369	839.8	-14.15%	556.9	-43.07%	568.5	-41.88%	1679	71.64%
944.1	2	0.00738	100	0.369	830.5	-12.03%	550.9	-41.65%	558.3	-40.86%	1537	62.80%
896	1	0.00369	100	0.369	821.2	-8.35%	545.1	-39.16%	548.3	-38.81%	1396	55.80%
-	0	0	100	0.369	811.9	-	539.2	-	-	-	-	-

Tabla 30. Porcentajes de variación con respecto al modelo Olujic para tubería de 1 in

Figura 30. Porcentajes de variación con respecto al modelo Olujic para tubería de 1 in

Dukler (24 in)															
q _g [%]	q _g [ft³/s]	q∟[%]	q∟[ft³/s]	$H_L = \lambda_L$	HL	% de variación	$N_{Ren}(H_L=\lambda_L)$	N_{Ren}	% de variación	$f_{tp}(H_L=\lambda_L)$	f _{tp}	% de variación	dp/dx (H _L = λ_L)	dp/dx [psf/ft]	% de variación
200	0.738	100	0.369	0.3333	0.54	62.02%	52058	49094	-5.69%	0.04071	0.04128	1.40%	0.0009135	0.0008734	-4.39%
150	0.5535	100	0.369	0.4	0.617	54.25%	39462	37380	-5.28%	0.04046	0.04099	1.31%	0.0006824	0.0006549	-4.03%
120	0.4428	100	0.369	0.4545	0.65	43.01%	32629	30627	-6.14%	0.03991	0.04054	1.58%	0.0005539	0.000528	-4.68%
100	0.369	100	0.369	0.5	0.7	40.00%	28381	26852	-5.39%	0.03931	0.03985	1.37%	0.0004729	0.0004536	-4.08%
50	0.1845	100	0.369	0.6667	0.839	25.84%	18854	18315	-2.86%	0.03651	0.03678	0.74%	0.0002893	0.0002831	-2.14%
20	0.0738	100	0.369	0.8333	0.9056	8.68%	13900	13501	-2.87%	0.03363	0.03388	0.74%	0.0001954	0.0001913	-2.10%
10	0.0369	100	0.369	0.9091	0.962	5.82%	12377	12255	-0.99%	0.03242	0.03251	0.28%	0.0001675	0.0001663	-0.72%
5	0.01845	100	0.369	0.9524	0.9811	3.01%	11640	11585	-0.47%	0.03178	0.03182	0.13%	0.0001543	0.0001538	-0.32%
4	0.01476	100	0.369	0.9615	0.9813	2.06%	11495	11421	-0.64%	0.03165	0.0317	0.16%	0.0001517	0.000151	-0.46%
3.9	0.01439	100	0.369	0.9625	0.9814	1.96%	11480	11407	-0.64%	0.03164	0.03169	0.16%	0.0001515	0.0001507	-0.53%
3.8	0.01402	100	0.369	0.9634	0.9815	1.88%	11466	11393	-0.64%	0.03162	0.03168	0.19%	0.0001512	0.0001505	-0.46%
3.7	0.01365	100	0.369	0.9643	0.9816	1.79%	11451	11379	-0.63%	0.03161	0.03166	0.16%	0.0001509	0.0001502	-0.46%
3.6	0.01328	100	0.369	0.9653	0.9817	1.70%	11437	11365	-0.63%	0.0316	0.03165	0.16%	0.0001507	0.00015	-0.46%
3.5	0.01291	100	0.369	0.9662	0.9818	1.61%	11422	11352	-0.61%	0.03158	0.03163	0.16%	0.0001504	0.0001497	-0.47%
3.4	0.01254	100	0.369	0.9671	0.9819	1.53%	11408	11339	-0.60%	0.03157	0.03162	0.16%	0.0001502	0.0001495	-0.47%
3.3	0.01217	100	0.369	0.9681	0.982	1.44%	11393	11326	-0.59%	0.03156	0.03161	0.16%	0.0001499	0.0001493	-0.40%
3.2	0.0118	100	0.369	0.969	0.9821	1.35%	11379	11313	-0.58%	0.03154	0.03159	0.16%	0.0001497	0.000149	-0.47%
3.1	0.01143	100	0.369	0.97	0.9822	1.26%	11364	11301	-0.55%	0.03153	0.03158	0.16%	0.0001494	0.0001488	-0.40%
3	0.01107	100	0.369	0.9709	0.983	1.25%	11350	11289	-0.54%	0.03152	0.03156	0.13%	0.0001491	0.0001486	-0.34%
2	0.00738	100	0.369	0.9804	0.989	0.88%	11206	11165	-0.37%	0.03138	0.03141	0.10%	0.0001466	0.0001462	-0.27%
1	0.00369	100	0.369	0.9901	0.993	0.29%	11063	11045	-0.16%	0.03125	0.03126	0.03%	0.0001441	0.0001439	-0.14%
0	0	100	0.369	-	-	-	-	-	-	-	-	-	-	-	-

Tabla 31. Porcentajes de variación al calcular los gradientes de presión con los dos métodos diferentes propuestos en elmodelo Dukler para tubería de 24 in