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Introducción a la Tesis

Como el lector ha visto en el título de esta tesis, ésta trata de tres temas distintos
que poco (o nada) tienen que ver uno con el otro. Los tres temas son temas de
Topología General y se espera que el lector tenga un buen nivel para poder leerla;
dos buenos cursos de Topología General deben ser suficientes. Cada una de las
tres partes de esta tesis tiene su propia introducción técnica así que aquí nos
dedicaremos a hablar de los asuntos más mundanos sobre ella.

Todo empezó con los cursos impartidos por el Dr. Ángel Tamaríz durante
mi maestría, con el libro [135]. Tal curso provocó en mi una gran emoción al
descubrir una nueva forma de ver la Topología de la que yo conocía por mis
estudios de licenciatura. Le pedí a Ángel una tesis de maestría sobre el tema y
ya encarrerado, le pedí hacer el doctorado en el mismo tema con él.

Nuestros primeros resultados, de la Parte I, reflejan un intento de resolver
problemas combinando la nueva Topología que aprendí en el curso de Ángel y las
técnicas de hiperespacios que aprendí durante mi trabajo con el Dr. Alejandro
Illanes. En particular el Teorema 4.6 y el Ejemplo 4.12 son ejemplos de la
aplicación de esos dos puntos: la inducción transfinita y la intuición geométrica
de como se “ve” el espacio de Erdős. Estos resultados se han publicado en el
artículo [79].

En la Parte II, Ángel y yo intentamos adentrarnos en los temas conjuntistas
que se encuentran en el libro [135]. Sin embargo, necesitábamos la experiencia
de alguien familiarizado con los métodos. Por esta razón le pedimos ayuda al Dr.
Michael Hrušák. Fruto de esta colaboración redactamos un artículo [80], que a
pesar de que no contiene todas las respuestas a las preguntas que nos hicimos,
salió bastante bien y nos dió algunas sorpresas (en particular el Ejemplo 9.24).

Completada la investigación de la Parte II, me quedé en Morelia con Michael
para aprender más sobre la relación de la Teoría de Conjuntos con la Topología.
Al principio intentamos abordar un tema cercano al de los puntos remotos de
la Parte II. Sin embargo, el tema no dió los frutos deseados y nos movimos a
un tema distinto. El tema de espacios densos en un conjunto numerable es un
tema en el que Michael decía que al parecer únicamente él y el Prof. Jan van
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Mill estaban interesados. Sin embargo, en esas fechas Michael recibió el borrador
del artículo [110] gracias al cual obtuvimos la inspiración necesaria para obtener
el Teorema 11.12 y escribir un artículo [81]. Más tarde, el Prof. Jan van Mill
estuvo en Morelia trabajando con Michael en el mismo tema. Con la motivación
de saber que se estaba trabajando arduamente en el tema en el cubículo de a
lado, pude obtener un resultado más (Teorema 12.25) que respondía algunas
preguntas. Así concluí exitosamente la escritura de otro artículo [78]. Ambos
artículos [81] y [78] que forman la Parte III de la tesis se encuentran en estos
momentos en revisión.

Escribir la tesis como está fue algo cansado. A mi siempre me ha molestado
ver una prueba incompleta, haciendo referencias a articulos oscuros, que inclusive
se te pide un pago si los quieres obtener por internet, eso si están disponibles.
He intentado ser lo más explícito posible en las pruebas, incluyendo el mayor
número posible de ellas. Sin embargo, no he logrado que la tesis sea completa-
mente autocontenida. Claramente al escribir un trabajo de este nivel, uno tiene
que suponer bastante material de Topología General “básica”, tal material se en-
cuentra en el Capítulo de Preliminares en la página ix. En la Parte II, dejé dos
resultados escenciales sin prueba: el Teorema 6.41 que hubiera necesitado desar-
rollar mucha teoría y la Proposición 8.14, cuya prueba requeriría desarrollar el
artículo original por completo. Debido a cuestiones de tiempo, no fue posible
aplicar esta filosofía de la escritura en la Parte III.

Por el mismo camino de ayudar al lector lo más posible, he incluido muchos
ejemplos y a veces hecho discusiones de más. Creo que, además de la formalidad
que deben estar presentes en los textos matemáticos, los ejemplos y la imagi-
nación de los matemáticos es parte escencial de la escencia de las matemáticas.
Sin la motivación del problema, ejemplos bonitos, una intuición de como son los
objetos matemáticos y su discusión de como se relacionan unas cosa con otras,
las matemáticas carecerían de sentido. La tesis ha sido escrita en inglés ya que
considero que así llegaré a un público más amplio.

Los resultados que considero mios están marcados con mi nombre (y los de
mis coautores correspondientes). Estos resultados pueden ser resultados que
fueron publicados en los artículos de investigación o simplemente resultados que
no encontré en ningún lugar y considero de mi invención, aunque sean muy
sencillos.



General Introduction

As the reader will notice from the title of this dissertation, we are in fact covering
three different topics that have little relation with each other (perhaps none).
These three topics are from General Topology and the reader is expected to have
a good level in order to understand; two good courses on General Topology will
do. Since each of these three parts has its own technical introduction, here we
will focus on more trivial matters.

Everything started with the postgraduate courses based on the book [135]
and given by Professor Ángel Tamariz while I was a master’s student. Those
courses woke up in me a new way of looking at topology that I had not seen in
my BA studies. I asked Ángel for a master’s thesis in the topic and just after
completing it I also asked him to become my Ph.D. supervisor.

Our first results from Part I reflect an attempt to solve problems by combining
the new Topology I learned at Ángel’s course and the hyperspace techniques I
learned during my work with Professor Alejandro Illanes. In particular, Theorem
4.6 and Example 4.12 give two instances of this duality: the use of transfinite
induction and the geometric intuition of how Erdős space “looks like”. These
results have been published on the paper [79].

In Part II, Ángel and I were trying to go deeper into some topics related to
set theory from the book [135]. However, we needed the experience of an expert
in these methods. For this reason we asked Professor Michael Hrušák for help.
Thanks to his collaboration we were able to write a paper [80]. Even if this paper
does not contain all the answers to our questions, it came out pretty well and
gave us some surprises (particularly, Example 9.24).

Having completed research in Part II, I stayed in Morelia with Michael so I
could learn more about the relation between Set Theory and Topology. At first
we tried to solve a problem related to the remote points from Part II. However,
this topic was not fruitful enough and we moved towards a different topic. The
topic of countable dense homogeneous spaces is a topic which Michael thought
that only Professor Jan van Mill and him were interested in. However, during
this time, Michael recieved a preprint [110] that gave us some inspiration to prove
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Theorem 11.12 and write a paper [81]. Later, Professor Jan van Mill came to
Morelia to work with Michael in that same topic. With the motivation to know
that there was work in progress in the office next to mine about the same topic, I
was able to obtain a new result (Theorem 12.25) that answered some questions.
With this result I was able to write another paper [78]. Both papers [81] and
[78] that form the core of Part III are being refereed as this is written.

Writing the dissertation as it is was tiring. I hate when I see an incomplete
proof with references to obscure papers, some of which are unavailable or per-
haps require online payment in order to gain access. I have tried to be explicit in
the proofs, including most of them. However, I could not write a self-contained
dissertation. Clearly in a work at this level we have to assume a lot of Gen-
eral Topology’s “basic” background, such topics are included in the Preliminaries
Chapter in page ix. In Part II, I left two essential results without proof: Theorem
6.41 that would have required to develop a great amount of theory and Propo-
sition 8.14, whose prove would have required to develop the complete original
paper. Due to time constrains, it was not possible to apply this philosophy to
Part III.

Following the same idea of helping the reader as much as possible, I have in-
cluded many examples and sometimes made long discussions about some topics.
I think that besides all the formality that must be present in a mathematics text,
examples and the mathematician’s imagination are an essential part of mathe-
matics. Without the mathematical motivation, nice examples, some intuition
of how mathematical objects behave and interact with each other, mathematics
would have no meaning. This dissertation was written in English because I think
that it will arrive to a broader audience in this way.

The results I consider as mine are marked with my name (and my respective
coauthors). Some results are from the submitted papers but some of them are
results I could not find anywhere so I consider them mine, even if they are very
simple.



Preliminaries

Set Theory

Set Theoretic knowledge has become crucial for the General Topologist. We will
assume that the reader has at least knowledge of the axioms of ZFC and the
axiomatic construction of ordinal numbers. Chapter 1 of [99] will do enough.
Of course the other excellent reference for Set Theory is [90]. We will briefly
mention some important concepts.

A partially ordered set is a set A with a binary relation ≤ such that: (a) for
all a ∈ A, a ≤ a; (b) if a, b ∈ A are such that a ≤ b and b ≤ a, then a = b; and (c)
if a, b, c ∈ A are such that a ≤ b and b ≤ c, then a ≤ c. As usual, we abreviate
(a ≤ b) ∧ (a 6= b) by a < b. A set D ⊂ A is dense1 with respect to the order if
every time a ∈ A, then there is d ∈ D such that d ≤ a. Two partially ordered
sets 〈A,≤〉 and 〈B,≤〉 are order isomorphic if there is a bijection h : A → B
such that x ≤ y if and only if h(x) < h(y) for all x, y ∈ A; such an h is called
order isomorphism. A partially ordered set 〈A,≤〉 is linearly ordered if for every
x, y ∈ A either x ≤ y or y ≤ x. A partially ordered set is well-ordered if every
non-empty subset has a minimum.

Ordinals are those defined by von Neumann. Ordinals form a proper class
ON that is well-ordered by the ∈ relation. If α and β are ordinals, we will write
α < β for α ∈ β. In particular, every ordinal α is the set of its predecesors
{β : β < α}. We will identify every natural number n with the set of its
predecessors {0, . . . , n − 1} (thus, 0 = ∅) so we will consider that each natural
number is an ordinal. Recall that there are two types of non-zero ordinals:
succesors and limits. The order type of a well ordered set (S,≤) is the unique
ordinal α such that (S,≤) is order-isomorphic to (α,∈). The basic theory of
ordinals gives us the Theorems of Induction and Recursion.

Induction Let O a class of ordinals such that:
1Dense with respect to an order is a different notion from dense subset of a topological

space.

ix



x

(1) ∅ ∈ O and

(2) if β is an ordinal and for all α < β we have that α ∈ 0, then β ∈ O.

Then it follows that O = ON.

Recursion Let G : V → V be a functional where V is the class of all sets.
Then there is a functional F : ON→ V such that F (α) = F (G[α]).

Cardinals are initial ordinals, this means that an ordinal κ is a cardinal if
and only if for every α < κ we have that there is no bijection between α and κ.
Natural numbers are precisely the finite cardinals (finite by definition) and ω is
the first infinite cardinal.

Each cardinal κ has its succesor κ+. Using this, we can use recursion to list
all infinite cardinals in a transfinite list {ωα : α ∈ ON} in the following way:
ω0 = ω is the set of natural numbers, ωα+1 = (ωα)

+ for each α ∈ ON and
ωβ = sup{ωα : α < β} when β is a limit ordinal.

An ordinal α is regular if every time β < α and {θγ : γ < β} ⊂ α, then
sup{θγ : γ < β} < α. If an ordinal is regular, then it is a cardinal. If κ is
a cardinal, then κ+ is regular. An example of a singular (that is, non-regular)
cardinal is ωω.

A very good review of the main ideas of ordinals can also be found in Chapter
1 of [29].

Lemma 0.1 If κ is a regular cardinal, then there is a function φ : κ → κ such
that {β < κ : φ(β) = α} is cofinal in κ for every α < κ.

Proof. Let T = {〈α, β〉 ∈ κ × κ : α ≤ β} be ordered lexicographically, that
is, 〈α0, β0〉 < 〈α1, β1〉 if either α0 < α1 or both α0 = α1 and β0 < β1. Then
T is well-ordered so it has the order type of an ordinal. Since κ is regular, it
is not hard to see that such type is indeed κ so there is an order isomorphism
i : κ → T . Let φ : κ → κ be defined by φ = π ◦ i, where π : T → κ is such that
π(〈α, β〉) = β. Then it is not hard to see that φ is as required.

The Axiom of Choice plays an important role in mainstream mathematics,
particularly in General Topology, since many of its results turn out to be depen-
dent of this axiom (see [77] for more on this). Thus, we will assume the Axiom of
Choice (as it would be expected) and use in any of the different following forms.

AC In ZF, the following are equivalent.

(1) The Axiom of Choice: for each set x 6= ∅ there is a function f with
dom(f) = x such that for each y ∈ x, f(y) ∈ y;
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(2) The Well-ordering Principle: every set can be well-ordered;

(3) The Kuratowski-Zorn Lemma2: if (X ,≤) is a partially ordered non-empty
set such that every totally ordered C ⊂ X has an upper bound in X , then
there is a maximal element of (X ,≤).

We recall some essential facts about filters. If X is a set, then F ⊂ P(X) is a
filter on X if: (0) ∅ /∈ F , X ∈ F ; (1) if A,B ∈ F , then A ∩B ∈ F ; (2) if A ∈ F
and A ⊂ B ⊂ X, then B ∈ F . A filter that is not contained in any other filter
(so it is maximal with respect to inclusion order) is called an ultrafilter .

The Fréchet filter is the filter Fω = {A ⊂ ω : ω \ A is finite}. A family A ⊂
P(X) has the finite intersection property if every time n < ω and A0, . . . , An ∈ A
we have that A0∩. . .∩An 6= ∅. Any family A ⊂ P(X) with the finite intersection
property is contained in the filter

{F ⊂ X : ∃n < ω ∃{A0, . . . , An} ⊂ A (A0 ∩ . . . ∩An ⊂ F )}.

An important result relating filters to the axiom of choice is that of existence
of ultrafilters.

UFT (Ultrafilter Theorem) Every filter is contained in an ultrafilter.

It is known that the Axiom of Choice implies the Ultrafilter Theorem (shown
first by Tarski in [155]) but they are not equivalent (see [77, Diagram 2.21] and
[89, Hint to excercise 5, p. 132]). Moreover, it is known that the Ultrafilter
Theorem is independent of ZFC (see [89, pp. 183–184]).

If X is an arbitrary set, a family A ⊂ P(X) is called independent if every
time m,n < ω and A0, . . . , Am, B0, . . . , Bn ∈ A are all different, then A0 ∩ . . . ∩
Am ∩ (ω \B0) ∩ . . . ∩ (ω \Bn) 6= ∅.

A tree is a partially ordered set (T,≤) where {t ∈ T : t ≤ s} is well-ordered
for each s ∈ T . A branch in T is a totally ordered subset of T maximal with
respect to inclusion. The height of T is the supremuum of the order types of
branches in T .

An issue we must discuss in this section is independence results. The most fa-
mous problem that turned out to be independent was the Continnum Hypothesis,
that is, the following statement.

Continum Hypothesis CH is the statement c = ω1.

2This is sometimes called just Zorn Lemma. According to [16], Kuratowski actually discov-
ered/invented this principle and later Zorn rediscovered it.
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Gödel proved in 1940 that CH is consistent with ZFC set theory and Cohen
proved in 1963 that ¬CH is consistent with ZFC as well. So there are indeed some
mathematical questions that cannot be solved with the axioms of ZFC alone.
Many problems have resulted to be undecidable from ZFC. In this dissertation we
will ocassionally mention some results independent of ZFC. For a more complete
study of independence, see for example [99] or the more modern [101].

Martin’s axiom is the first example of a general set-theoretic quotable prin-
ciple that has been widely used. See [99, Chapter 2], [101, III.3] or [164] for
introductions to Martin’s axiom. We will just give the definition of Martin’s
axiom and briefly mention its relation to some other concepts.

Martin’s Axiom Let P some class of partially ordered sets. Then MA(P) is
the following statement.

If (P,≤) is a partially ordered set from P, κ < c and {Dα : α < κ} is
a collection of subsets of P dense with respect to the order, then there exists
G ⊂ P such that

1. if p, q ∈ G, then there is r ∈ G with r ≤ p and r ≤ q,

2. if p ∈ G and q ∈ P is such that p ≤ q, then q ∈ G, and

3. G ∩Dα 6= ∅ for each α < κ.

Also, MA means MA(Q) where Q is the class of all posets and MA(countable)
means MA(Q′) where Q′ is the class of all countable posets.

It turns out that MA is a strong form of the Baire Category Theorem 0.25
below. MA follows directly from CH but it is also consistent with its negation.
We also mention that the inspiration for the invention of MA was the method
of forcing invented by Cohen to prove the consistency of ¬CH and in fact the
consistency of MA is proved by an iteration of forcing (all of this is contained
in [99]). See [63] for some consequences of MA.

A topic related to independence and Martin’s axiom is that of small car-
dinals. These are cardinals that are defined as combinatorial characteristics of
the topological space ωω. See [39] for a topological introduction to these small
cardinals and [19] for a modern and set-theoretically oriented point of view.

The cardinals we will mention in this dissertation are the ones denoted by t,
p, b and d. We will not give the precise definition of these cardinals since we will
only mention them in quoted results and our results do not use the definitions
of these cardinals. Perhaps the only essential information about them is the
following.
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Theorem 0.2 [39]

• In ZFC it is known that ω1 ≤ p ≤ t ≤ b ≤ d ≤ c.

• MA implies that p = c.

• If one takes a pair of cardinals from ω1, t, b, d, c then it is consistent that
the two are different.

Recently the following has been shown.

Theorem 0.3 [106] p = t in ZFC.

Finally, let us comment a little about measurable cardinals. Let X be a set,
λ an infinite cardinal and U an ultrafilter on X. We will say that U is κ-complete
if for every λ < κ and every {Uα : α < λ} ⊂ U we have that

⋂
{Uα : α < λ} ∈ U .

Notice that every ultrafilter in an infinite set is ω-complete. A cardinal κ is called
measurable if there exists a κ-complete ultrafilter U on κ.

Measurable cardinals are related to the problem of extending Lebesgue mea-
sure. See [90, Chapter 10, pp. 125–138] to read more about this topic. There is
also an excellent recent B.S. thesis about the topic [24]. An important point we
must stress here is that (1) it is consistent that there are no measurable cardi-
nals, and (2) by Gödel’s second incompleteness theorem it is impossible to prove
that the consistency of the existence of measurable cardinals (see [103, Theorem
IV.5.32]).

General Topology

We will assume that the reader has some maturity in General Topology. In
particular, it is assumed that the reader knows facts from two basic courses in
General Topology. However, as it is natural that the Topological background of
different readers is different, in this Chapter we will give some definitions that
may not be of the main stream. We will also give some results that we will use
but are not central to our results. All other concepts of General Topology not
defined here can be found in [50]. Other good references for General Topology are
[165] and [49]. Following van Douwen, a space is crowded if it does not contain
isolated points.

Lemma 0.4 [50, Theorem 1.5.4] If X is a space, Y is a Hausdorff space, D is
dense in X and f, g : X → Y are continuous functions such that f↾D= g↾D, then
f = g.
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One of the most important and representative results in General Topology is
the following one.

Theorem 0.5 (“Tychonoff theorem”, [50, 3.2.4]) The product of compact spaces
is compact.

The proof of the Tychonoff theorem uses the Axiom of Choice in the following
way.

Proposition 0.6 [77, Theorems 4.68 and 4.70]

(1) The Tychonoff Theorem is equivalent to the Axiom of Choice.

(2) Tychonoff Theorem for Hausdorff spaces ⇔ UFT ⇔ for every set S, S [0, 1]
is compact.

A very interesting discussion of the role of the Axiom of Choice in compact-
ness is contained in Chapters 3.3 and 4.8 of [77].

Compactness of a space can be of course evaluated by using only covers by
basic sets. It is surprising that this is true of covers whose elements come from
a subbasis (not surprisingly, the standard proof of this fact uses the axiom of
choice).

Theorem 0.7 (“Alexander’s subbase theorem”, see hints in [50, Exercise 3.12.2]
or [165, Exercise 17S]) LetX be a Hausdorff space and B a subbase ofX. ThenX
is compact if and only if every cover of X by members of B has a finite subcover.

Let X be a space. We will say that A,B ⊂ X are completely separated in
X if there exists a continuous function f : X → [0, 1] such that A ⊂ f←(0) and
B ⊂ f←(1).

Lemma 0.8 [69, 1.14, Theorem] Let X be a Tychonoff space and A,B ⊂ X.
Then A and B are completely separated if and only if they are contained in
disjoint zero sets of X.

Recall that a subset A of a topological space X is C-embedded in X if every
continuous function f : A → R can be continuously extended to X. Also, A
is C∗-embedded in X if every continuous bounded function f : A → R can be
continuously extended to X.

Theorem 0.9 (“Urysohn’s Extension Theorem”, [69, 1.17]) Let X be a Ty-
chonoff space and Y ⊂ X. Then Y is C∗-embedded in X if and only if every two
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completely separated subsets of Y are also completely separated in X.

Theorem 0.10 (“Taimanov’s Theorem”, [135, 4.1.m] or [62, §4, 4.6]) Let X be
a dense subset of a Tychonoff space T , K a compact space and f : X → K a
continuous function. Then f can be continuously extended to T if and only if
for every two disjoint zero sets A,B of X we have clT (A) ∩ clT (B) = ∅.

A function f : X → Y between topological spaces X and Y is perfect if it is
closed and for every y ∈ Y the fiber f←(y) is compact.

Proposition 0.11 [135, Theorem 1.8(i)] If f : X → Y is a continuous function
between Hausdorff spaces, D ⊂ X is dense and f↾D: D → f [D] is perfect, then
f [X \D] ⊂ Y \ f [D].

An important concept in General Topology is that of normality. A standard
and classical criterion for non-normality is given by the next result.

Theorem 0.12 (“Jones’ Lemma”, [165, Lemma 15.2, p. 100]) If X is a normal
space and D is a closed and discrete subset of X, then 2|D| ≤ 2d(X).

Given a Tychonoff space X, we will denote its Čech-Stone compactification
by βX. In Section 6.1 we will give the definition of this space and some of its
most important properties.

If (X,<) is a strict linear order, there is a natural topology that embodies
the order. For x ∈ X, define

(←, x) = {y ∈ X : y < x} and (1)

(x,→) = {y ∈ X : x < y}. (2)

Consider the topology in (X,<) generated by the set

{(←, x) : x ∈ X} ∪ {(x,→) : x ∈ X}.

We will say that (X,≤) is a linearly ordered space if we consider it with this
topology. For example, in this way ordinals can be though of as topological
spaces.

Theorem 0.13 [135, Theorem 2.5.(m)] Any linearly ordered space is hereditar-
ily normal.

Theorem 0.14 [135, Theorem 2.6.(q)(5)] Let κ be a cardinal of uncountable
cofinality. Then for every continuous function f : (κ,∈) → R there exists an
α < κ and r ∈ R such that f(β) = r for every β ∈ [α, κ).
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Given a topological spaceX, its weight w(X) is defined as the smallest infinite
cardinal κ such that X has a base of cardinality κ.

Lemma 0.15 Let X be a space of weight κ. If B is any base of open sets, then
there exists a base B0 ⊂ B with |B0| = κ.

Proof. Let B1 be a base of X of cardinality κ. For every U, V ∈ B1, let [U, V ] =
{W ∈ B : U ⊂ W ⊂ V }. Define R = {(U, V ) ∈ B1 × B1 : [U, V ] 6= ∅} and by
the Axiom of Choice, let f : R → B be a function with f((U, V )) ∈ [U, V ] for
each (U, V ) ∈ R. Finally, let B0 = f [R]. Then it is not hard to see that B0 ⊂ B,
|B0| ≤ κ and B0 is a base.

Let X be a topological space. The density of X, denoted by d(X), is the
smallest cardinal κ such that X has a dense subset of cardinality κ and the
cellularity of X, denoted by c(X), is the supremum of all cardinals κ such that
there is a parwise disjoint family of exactly κ open subsets of X.

We will need some facts about metrizable spaces.

Theorem 0.16 [50, 4.1.18] Each compact metrizable space has countable weight.

Theorem 0.17 [50, 4.1.15] In metrizable spaces, the cardinal functions weight,
cellularity and density coincide.

Theorem 0.18 [83, Theorem 8.1] If X is a metrizable space and c(X) = κ,
then there is a pairwise disjoint family of open subsets of X of cardinality κ.

Recall that a collection of sets B of a space X is discrete if for every x ∈ X
there is an open set U such that x ∈ U and |{B ∈ B : U ∩B 6= ∅}| ≤ 1.

Lemma 0.19 Every metrizable and non-compact space has a countable infinite
discrete collection of open subsets.

Proof. Let X be a metrizable non-compact space and d a compatible metric for
X. It is well-known that X is not countably compact, so there exists a countable,
closed and discrete subset {xn : n < ω} ⊂ X. Inductively, it is easy to construct
a sequence of open subsets U = {Un : n < ω} whose closures are pairwise disjoint
and such that if n < ω, then xn ∈ Un and Un has diameter less than 1

n+1 .
We claim that U is the desired discrete family. Assume that there is a point

x ∈ X such that every open neighborhood of x interesects more than one open
set from U . Notice that since the closures of elements of U are pairwise disjoint,
there is at most one n < ω such that x ∈ clX(Un). Thus, we may inductively
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define a strictly increasing function φ : ω → ω and for each n < ω choose a point
yn ∈ Uφ(n) such that d(x, yn) < 1

n+1 . Clearly, the sequence {yn : n < ω}

converges to x. Moreover, since d(xφ(n), yn) < 1
φ(n)+1 for each n < ω, the

sequence {xn : n < ω} also converges to x. This is a contradiction so the
lemma follows.

A crucial property of metrizable spaces that plays a vital role is paracompact-
ness. We first give some definitions about covers and families of sets, let X be
a topological space. A family U ⊂ P(X) such that X =

⋃
U is called a cover .

If U and V are covers of X, we will say that V is a refinement of U if for every
V ∈ V there is U ∈ U such that V ⊂ U . If U ⊂ P(X), we will say that U is
locally finite if for every x ∈ X there is an open set V of X such that x ∈ V
and {U ∈ U : U ∩ V 6= ∅} is finite. A collection U ⊂ P(X) is σ-locally finite if
U =

⋃
{Un : n < ω}, where Un is locally finite for each n < ω. If U ⊂ P(X) and

x ∈
⋃
U , then the star of x with respect to U is defined to be the set

St(x,U) =
⋃
{U ∈ U : x ∈ U}.

If U and V are covers of X, we will say that U star-refines V if {St(x,U) : x ∈ X}
is a refinement of V . If d is a compatible metric for X and U ⊂ P(X), the mesh
of U is the supremum of the diameters of the elements of U with respect to d
(considering the extended positive reals (0,∞] so this is well-defined).

Lemma 0.20 [50, 1.1.1] If G is a locally finite family of subsets of a topological
space X, then

⋃
{clX(A) : A ∈ G} is closed in X.

A space X is paracompact if X is Hausdorff and every open cover of X has
a locally finite refinement.

Theorem 0.21 (“Stone’s theorem”, [50, 4.4.1]) Every metrizable space is para-
compact.

Theorem 0.22 (“Nagata-Smirnov metrization theorem”, [50, 4.4.7]) A regular
space is metrizable if and only if it has a σ-locally finite base.

Theorem 0.23 (“Urysohn metrization theorem”, [50, 4.2.9]) A second countable
regular space is metrizable.

If f : X → Y is a closed map between topological spaces and A ⊂ X, we let
f ♯[A] = X \ f [X \ A], this is called the small image of A. Notice that if f is
closed and A is closed, then f ♯[A] is closed as well.
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Recall that a Tychonoff space X is Čech-complete if it is a set of type Gδ in
its Čech-Stone compactification.

Proposition 0.24 [50, 4.3.23 and 4.3.24] A subspace Y of a completely metriz-
able space X is completely metrizable if and only if Y is a set of type Gδ in
X.

Theorem 0.25 (“Baire Category Theorem”, [50, 3.9.3]) Let X be a Čech-
complete space (in particular, if X is a completely metrizable space or a locally
compact Hausdorff space). Then every countable sequence of dense open sets of
X has dense intersection.

The completeness of a metric can be characterized in the following way.

Theorem 0.26 [50, 4.3.9] A metric space 〈X, d〉 is complete if and only if for
every sequence {Fn : n < ω} of closed sets with Fn+1 ⊂ Fn for n < ω and with
diameters with respect to d converging to 0 the intersection

⋂
{Fn : n < ω} is

non-empty.

Symbols used

In the following table we will include the notation we will use throughout the
text.

〈x0, . . . , xn−1〉 ordered n-tuple

P(X) power set of X

N set of positive integers

ω set of natural numbers, ω = N ∪ {0}

YX set of functions from Y to X;
when Y = n ∈ N, it’s the set of n-tuples of X

f←[A] inverse image, {x : f(x) ∈ A}

R set of real numbers
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ω2 Cantor set as a topological space

c cardinality of the continuum, c = 2ω = |R| = |ω2|

intX(A) interior of A in the topological space X

clX(A) closure of A in the topological space X

X ≈ Y topological spaces X and Y are homeomorphic

χ(X,x) character of point x in topological space X

[X]<κ collection of subsets of X of cardinality strictly less than κ

[X]≤κ collection of subsets of X of cardinality less or equal than κ

f ♯[A] small image of A ⊂ X when f : X → Y is a continuous
function, Y \ f [X \A]
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Disconnectedness Properties of
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Introduction

Given a property P defined for topological spaces, a natural question is whether
P is preserved under topological operations such as subspaces, products or sums.
Specifically, we are interested in the case when P is a property that talks about
some degree of disconnectednes and the operation of taking a hyperspace.

In general, by taking a hyperspace we mean the following: given a topological
space X, consider some collection H(X) of subsets of X and give H(X) some
topology. We are interested in the case where

H(X) ⊂ CL(X) = {A ⊂ X : A is closed and non-empty}

and the topology in CL(X) called the Vietoris topology. The reason of our
interest in this topology is that, in the author’s opinion, this is a topology in
which the notion of closedness coincides with our intuition. The fact that for
metrizable spaces the Vietoris topology in the hyperpace of compact subsets
coincides with the one generated by the Hausdorff distance ([88, Theorem 3.1])
can be used to argue in favor of this intuitive feeling.

We shall focus on hyperspaces that have been widely studied such as the
hyperspace of compact sets, the hyperspace of finite sets and the so called sym-
metric products. To read about hyperspaces in other contexts, we refer the reader
to [15], [84] [88].

The study of hyperspaces with the Vietoris topology in its generality started
with Ernest Michael’s paper [111]. In this paper, E. Michael studied the preser-
vation of diverse topological properties under the operation of taking some hy-
perspaces. Particularly, the author talks about some classical disconnectedness
type properties. Thus, we may think that some parts of this section are the
continuation of Michael’s paper.

The first classes of “disconnectedness properties” we will consider are those
found in the study of Extensions and Absolutes of Spaces and discussed in the
book [135]. These properties are of “extremal disconnectedness” because each
of them implies 0-dimensionality (for regular spaces). The preservation of these
properties under hyperspaces can be characterized right away, as the reader will
notice.

The disconnectedness property that will be the most interesting in the context
of taking hyperspaces is the one called “hereditary disconectedness”. Hereditary
disconnecteness is a property implied by but not equivalent to 0-dimensionality.

The chapter about hereditary disconnectedness is the most complex in this
Part. We could not characterize when a hyperspace is hereditarily disconnected.
In fact, our analysis will make clear that this property behaves in different ways
in seemingly similar cases. We may think that the main Theorem in this Part
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is Theorem 4.6 and that Example 4.12 illustrates how the converse of this main
Theorem does not hold in all cases.

Besides this disconnectedness results, in this Part we will give some partial
results of pseudo-compactness and the space CL(ω), topics in which we could
not find strong results but are worth mentioning. Finally, we will give a list of
problems about hyperspaces we could not solve and a small discussion about why
we found them interesting.

The results of disconnectedness in this chapter have been published on refer-
ence [79].

This Part of the dissertation is almost self-contained. Some results and proofs
about the Čech-Stone compactification that are used for examples in this Part
are only referenced. The spirit of this Part I of the thesis is to focus on the
structure of the hyperspaces. However, since Part II of this thesis is related
to the Čech-Stone compactification, we have chosen to give the proofs of those
results in Part II.



Chapter 1

General Properties of
Hyperspaces

In this chapter we will give definitions and basic results on hyperspaces. Let X
be a Hausdorff space. The following sets will be our hyperspaces.

CL(X) = {A ⊂ X : A is non-empty and closed in X},

K(X) = {A ∈ CL(X) : A is compact},

Fn(X) = {A ⊂ X : 0 < |A| ≤ n}, for each n ∈ N,

F(X) =
⋃
{Fn(X) : n ∈ N}.

We will define the topology of our hyperspaces by defining a subbase. For
each subset Y ⊂ X let

Y + = {A ∈ CL(X) : A ⊂ Y } and (1.1)

Y − = {A ∈ CL(X) : A ∩ Y 6= ∅}. (1.2)

We define the Vietoris topology in CL(X) as the one generated by all sets of
the form U+ y U−, where U is open in X. A base for the Vietoris topology is
the one given by the Vietoris sets1, that is, sets of the form2:

〈〈U0, . . . , Un〉〉 =
{
A ∈ CL(X) : A ⊂

n⋃

i=0

Ui and A ∩ Uk 6= ∅ for all i ≤ n
}
, (1.3)

where U0, . . . , Un are non-empty open subsets of X.
1In Mexico we call these sets “Vietóricos”.
2Notice the similarity between the notation for Vietoris sets 〈〈U0, . . . , Un〉〉 and ordered tuples

〈x0, . . . , xn〉.

4
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Figure 1.1: A closed subset (in grey) and a Vietoris set neighborhood of it.

The following equation will be important for some proofs.

〈〈U0, . . . , Un〉〉 = (U0 ∪ . . . ∪ Un)
+ ∩

(⋂{
U−k : k ≤ n

})
. (1.4)

The other sets we have defined are subsets of CL(X) so we will give them
the topology as subspaces of CL(X), this topology will also be called Vietoris
topology. All these sets will be called hyperspaces, and more specifically: CL(X)
is the hyperspace of closed subsets, K(X) is the hyperspace of compact subsets
and F(X) is the hyperspace of finite subsets.

If we are considering the hyperspace H ⊂ CL(X) and U0, . . . , Un are non-
empty open subsets of X, 〈〈U0, . . . , Un〉〉 will denote the interesection of the Vi-
etoris set defined by Equation 1.3 and H when no confussion arises.

Given n ∈ N, the hyperspace Fn(X) is also known as the n-th symmetric
product (called n-th symmetric power by other authors). The reason for this
name is the fact that Fn(X) is the quotient of nX by an action of the group
of permutations; this will be formalized in Lemma 1.2. To prove this result we
must first give a nice base for the symmetric product.

Lemma 1.1 Let X be a Hausdorff space, n < ω, A ∈ Fn+1(X) \Fn(X) (where
F0(X) = ∅) and U an open subset of CL(X) such that A ∈ U . Then there are
pairwise disjoint open sets U0, . . . , Un such that

A ∈ 〈〈U0, . . . , Un〉〉 ⊂ U .

Proof. Let A = {x0, . . . , xn}. Take pairwise disjoint open subsets V0, . . . , Vn of
X such that xk ∈ Vk for each k ≤ n. Let us consider an Vietoris open subset
such that

A ∈ 〈〈W0, . . . ,Ws〉〉 ⊂ U ∩ 〈〈V0 . . . , Vn〉〉.
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For each k ≤ n, let Uk = Vk ∩ (
⋂
{Wr : xk ∈ Wr}). Notice that U0, . . . , Un are

pairwise disjoint open subsets such that

A ∈ 〈〈U0, . . . , Un〉〉 ⊂ 〈〈W0, . . . ,Ws〉〉 ⊂ U ,

which completes the proof.

Lemma 1.2 Let X be a Hausdorff space and n ∈ N. The function f : nX →
Fn(X) defined by f(〈x0, . . . , xn−1〉) = {x0, . . . , xn−1} is a quotient. In particular,
the function x 7→ {x} is a homeomorphism between X and F1(X).

Proof. First, we will prove that f is continuous. It is enough to prove the con-
tinuity in a base of Fn(X) so by Lemma 1.1 consider m < n and a collection
U0, . . . , Um of pairwise disjoint open subsets of X. Then,

f←[〈〈U0, . . . , Um〉〉] =
⋃
{W0 × · · · ×Wn−1 : {W0, . . . ,Wn−1} = {U0, . . . , Um}},

so the continuity of f follows.
To see that f is indeed a quotient, let U ⊂ Fn(X) be such that f←[U ] is open,

we must prove that U is open. Let {x0, . . . , xm} ∈ U with m < n. Consider some
point in the preimage, 〈y0, . . . , yn−1〉 where yi = xi if i < m − 1 and yi = xm−1
if m ≤ i < n. Let U0, . . . , Um−1 be pairwise disjoint open subsets of X such that
xi ∈ Ui for i < m. Define Vi = Ui if i < m− 1 and Vi = Um−1 if m ≤ i < n. As
〈y0, . . . , yn−1〉 is in the open set f←[U ], we may choose Ui so that

〈y0, . . . , yn−1〉 ∈ V0 × · · · × Vn−1 ⊂ f
←[U ].

Now notice that

f [V0 × · · · × Vn−1] = 〈〈U0, . . . , Um−1〉〉

so
{x0, . . . , xm−1} ∈ 〈〈U0, . . . , Um−1〉〉 ⊂ U ,

which proves that {x0, . . . , xm−1} is an interior point of U . That is, U is open.

When meeting a new concept, one must look at some examples that will
make the concept more comprehensible. We will now give examples of geometric
models of hyperspaces. That is, for some spaces X it is possible to know that
H(X) is homeomorphic to some known space.

Example 1.3 Geometric models of hyperspaces.
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F2([0,1]) : By Lemma 1.2, we can obtain F2(X) as the quotient of 2[0, 1] by
identifying points of the form 〈a, b〉 and 〈b, a〉. In this way, F2([0, 1]) may be
represented as the set {〈a, b〉 ∈ 2R : 0 ≤ a ≤ b ≤ 1}. Thus, F2([0, 1]) is
homeomorphic to 2[0, 1].

Figure 1.2: F2([0, 1])

Fn([0,1]) : A result of Borsuk and Ulam says that if n ∈ N, then Fn([0, 1])
is homeomorphic to n[0, 1] if and only if n ≤ 3. Moreover, Fn([0, 1]) cannot be
embedded in n[0, 1] if n ≥ 4. Both results mentioned are in [20]. These facts
have been exploited by the authors and others in research that is not relevant to
the development of this dissertation, see [82].
K([0,1]) : In general, if X is a Peano continuum (a continuous image of the

interval [0, 1]), there is a deep result of infinite-dimensional topology that implies
that K(X) is homeomorphic to the Hilbert cube ω[0, 1]. To see the proof of this
result, the reader is refered to [115] where the theory needed to prove this result is
developed and then the result is proved in [115, Theorem 8.4.5]. Another option
is to see Chapter III in [88], where the focus is on the hyperspace techniques
used; the infinite-dimensional theory needed is just cited.
K(ω2) : It can be proved that K(ω2) is compact, metrizable, 0-dimensional

and crowded. By a known result, it follows that K(ω2) is homeomorphic to ω2.
See [156, Section 27] for a proof.
K(ω + 1) : If X is a compact, metrizable, 0-dimensional and infinite space

such that the set of its isolated points is dense, it can be proved ([88, 8]) that
K(X) is homeomorphic to the Pelczyński compactum. The Pelczyński com-
pactum is the only compact, metrizable, 0-dimensional space that has a dense
subset of isolated points accumulating at a Cantor set ([156, Section 27, Corol-
lary 2]). In [156, Chapter IV], there is a list of all possible spaces of the type
K(X) when X is a compact, metrizable and 0-dimensional space.
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Figure 1.3: The Pelczyński compactum.

The following result gives some conditions of inclusion between hyperspaces.
Their proof is easy and is left to the reader.

Lemma 1.4 Let X be Hausdorff, Y ⊂ X and n ∈ N.

(a) If Y is dense in X, then F(Y ) is dense in CL(X).

(b) If Y is dense in X, then Fn(Y ) is dense in Fn(X).

(c) If Y is open in X, then Fn(Y ) is open in Fn(X).

(d) If Y is closed in X, then CL(Y ) is closed in CL(X).

All examples given above are metrizable compacta. We will now study when
some separation axioms hold for hyperspaces.

We will leave the discussion of separation axioms on CL(X) for Section 5.3.
The reason for doing this is that CL(X) will not be of interest in the context of
high disconnectedness properties by Proposition 3.3. We will now focus on K(X)
and its subspaces.

Lemma 1.5 If X is a Hausdorff space, then K(X) (and any smaller hyperspace)
is Hausdorff.

Proof. Let A,B ∈ K(X) with A 6= B. Choose, without loss of generality, p ∈
A \B and find two disjoint open subsets U and V such that p ∈ U and B ⊂ V .
Then A ∈ U−, B ∈ V + and U− ∩ V + = ∅.

Lemma 1.6 Let X and Y be Hausdorff spaces and f : X → Y a continuous
function. Then the function f∗ : K(X) → K(Y ) defined by f∗(A) = f [A] is
continuous.
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Proof. Clearly, f∗ is well defined because the continuous image of compact sets
is compact. Let U be an open subset of Y , notice that (f∗)←[U+] = f←[U ]+

and (f∗)←[U−] = f←[U ]−, so the result follows.

Recall that a zero set (cozero set) in a space X is a set of the form f←{0}
(f←[(0, 1]], respectively) where f : X → [0, 1] is continuous. The complement of
a zero set is a cozero set. It is also known that a T1 space is Tychonoff if it has
a base of cozero sets ([69, 3.2]).

Lemma 1.7 Let X be Hausdorff, Z be a zero set (cozero set) of X. Then Z+

and Z− are zero sets (cozero sets, respectively) of K(X).

Proof. It is enough to prove the statement of the Lemma for a cozero set U of
X because A+ = (X \ A)− for all A ⊂ X. Let f : X → [0, 1] be such that U =
f←[(0, 1]]. Let us consider the associated function f∗ : K(X)→ K([0, 1]) defined
by f∗(A) = f [A], which is continuous (Lemma 1.6); and the two continuous
functions g0 : K([0, 1]) → [0, 1], g1 : K([0, 1]) → [0, 1] defined as g0(A) = minA,
g1(A) = max(A). Finally, notice that

U+ ∩ K(X) = (g0 ◦ f
∗)←[(0, 1]],

U− ∩ K(X) = (g1 ◦ f
∗)←[(0, 1]],

which completes the proof.

Since the Vietoris sets are formed by unions and intersections of subbasic
sets (Equation 1.4, page 5) we only need the following result to show that X
Tychonoff implies K(X) is Tychonoff.

Lemma 1.8 Let X be a Hausdorff space, B a base of X closed under finite
unions. Then

〈〈B〉〉 = {〈〈U0, . . . , Un〉〉 : n < ω, ∀k ≤ n(Uk ∈ B)}

is a base of K(X).

Proof. Let A ∈ K(X) and 〈〈U0, . . . , Un〉〉 a Vietoris set containing it. Since A is
compact, there is a finite subset V ⊂ B such that (a) for each V ∈ V there is
k ≤ n such that V ⊂ Uk; (b) A ⊂

⋃
V ; (c) for each V ∈ V , A∩V 6= ∅ and (d) for

each k ≤ n there is V ∈ V such that V ⊂ Uk. For each k ≤ n, let Wk =
⋃
{V ∈

V : V ⊂ Uk}, this is a non-empty open set that is an element of B. It is easy to
see that A ∈ 〈〈W0, . . . ,Wn〉〉 ⊂ 〈〈U0, . . . Un〉〉 and 〈〈W0, . . . ,Wn〉〉 ∈ 〈〈B〉〉.



10

Since the property of being Tychonoff is hereditary and by Lemmas 1.7 and
1.8, we obtain the following characterization.

Corollary 1.9 The following are equivalent for a Hausdorff space X:

(a) X is Tychonoff,

(b) K(X) is Tychonoff,

(c) F(X) is Tychonoff,

(d) for all n ∈ N, Fn(X) is Tychonoff,

(e) there is an n ∈ N such that Fn(X) is Tychonoff.

Also notice that Lemma 1.8 implies the following.

Corollary 1.10 If X is Hausdorff, then w(X) = w(K(X)).

An interesting situation for hyperspaces is that, in general, properties that
depend on some base can be easily transfered from a space to its hyperspace,
such as in Corollary 1.9. In Chapter 2 we will see this situation does hold for
some disconnectedness properties defined with properties of a base. However, the
Main Theorem of Section 4 shows that in other cases it is impossible to transfer
disconnectedness properties to the hyperspace.

We will need the following convergence result later.

Lemma 1.11 Let X be a Hausdorff space and {Fn : n < ω} ⊂ CL(X) such
that Fn ⊂ Fn+1 for all n < ω. Then the sequence {Fn : n < ω} converges to
clX(

⋃
{Fn : n < ω}) in CL(X).

Proof. Let C = clX(
⋃
{Fn : n < ω}) ∈ CL(X). We must prove that C is

the limit of the sequence {Fn : n < ω} so take a Vietoris set neighborhood
〈〈U0, . . . , Um〉〉 of C. Clearly, for all n < ω we have that Fn ⊂ U0 ∪ . . . , Um.
Fix i ≤ n, then there exists k(i) < ω such that Fk(i) ∩ Ui 6= ∅; otherwise
Fn ⊂ X \ Ui for all n < ω which implies F ⊂ X \ Ui, a contradiction. Let
k = sup{k(i) : i < ω} < ω. Since the sequence is strictly increasing, we have that
for all m ≥ k, Fm∩Ui 6= ∅. Thus, for all m ≥ k we have that Fm ∈ 〈〈U0, . . . , Um〉〉.
This proves the convergence

As a last example to the beauty of hyperspaces, we present the proof of the
following theorem.
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Theorem 1.12 If X is a compact Hausdorff space, then K(X) is compact.

Proof. We will use the Alexander Subbase Theorem 0.7. So let U = {U+
t : t ∈

S0} ∪ {V
−
t : t ∈ S1} be an open cover of K(X). Let T = X \

⋃
{Vt : t ∈ S1},

which is a compact subset of X. If T = ∅, let t0 ∈ S0 be arbitrary. If T 6= ∅, T
must be contained in some element of U , so by the definition of T , there exists
t0 ∈ S0 such that T ⊂ Ut0 . Now let K = X \ Ut0 , which is a compact subset of
X. By the definition of T , K is covered by {Vt : t ∈ S1}. So by compactness,
there is a finite subset F ∈ [S1]

<ω such that K ⊂
⋃
{Vt : t ∈ F}. From this, it is

easy to see that K(X) is covered by {U+
t0
} ∪ {V −t : t ∈ F}.



Chapter 2

Disconnectedness Properties

In this Chapter we will give definitions of the properties we will study in hyper-
spaces and how they relate. From now on, we will use the following notation. If
X is any space, then

CO(X) = {U ⊂ X : U is open and closed in X}

is the set of “clopen” subsets of X.

2.1 Properties of weak disconnectedness

Let’s start with the properties that are the most natural and have nice geomet-
rical examples.

Definition 2.1 Let X a T1 space.

(a) We say that X is 0-dimensional if for each point x ∈ X and each closed
subset F ⊂ X with x /∈ F there is U ∈ CO(X) such that x ∈ U and
U ∩ F = ∅.

(b) We say that X is totally disconnected if for any two points x, y with x 6= y
there is U ∈ CO(X) such that x ∈ U and y /∈ U .

(c) We say that X is hereditarily disconnected if any Y ⊂ X with |Y | > 1 is
disconnected.

Clearly each 0-dimensional space is totally disconnected and each totally
disconnected space is hereditarily disconnected. We will now give some examples
to show that these definitions are not equivalent. Some of our claims inside the

12
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examples will be left unproved because in Chapter 4 we will prove stronger results
that imply what we leave with no proofs here. However, in the the examples we
will refer the reader to references when proofs or outlines of proofs are given.

Example 2.2 Universal 0-dimensional spaces.

If κ is an infinite cardinal, then the space κ2 is a compact, Hausdorff and 0-
dimensional spae of weight κ. In fact, if X is any Hausdorff 0-dimensional space
of weight ≤ κ, X can be embedded in κ2. To see this, let B = {Bα : α < κ} ⊂
CO(X) be a basis of X. For each α < κ let fα : X → 2 be the characteristic
function of Bα. It is then not hard to see that the function ∇α<κfα : X → κ2
defined by (∇α<κfα)(x)(β) = fβ(x) for all x ∈ X is an embedding. In the
countable case, ω2 contains a topological copy of every separable, 0-dimensional
and metrizable space. Later, in Part II, Proposition 8.6, there is another example
of universal space.

Example 2.3 A space that is totally disconnected but not 0-dimensional

Choose s ∈ ωN be such that s(n) < s(n+1) for all n < ω. For example, we may
take s(n) = n+ 1 for all n < ω. Define the function φs : ω2→ [0,∞] for x ∈ ω2
as

φs(x) =
∑

n<ω

x(n)

s(n)
=
x(0)

s(0)
+
x(1)

s(1)
+ · · ·

Define Xs = {〈x, t〉 ∈ ω2 × R : t = φs(x)}. Since the projection π : Xs → ω2
is a condensation (that is, a continuous bijection), it is easy to see that Xs is a
totally disconnected space. To prove that Xs is not 0-dimensional it is necessary
to use a technique invented by Erdős in [52]; we refer the reader to [30, Corollary
2] for a complete proof of this fact. The essential property from [30, Corollary 2]
is that every U ∈ CO(Xs) has an unbounded image under the second projection.
It is worth mentioning that the proof that Xs is not 0-dimensional is completely
analogous to the technique we will use later in Example 4.12.

We now make some interesting remarks about this space. Notice that Xs is
the graph of a 0-dimensional space under a upper semicontinuous function. An
intuitive way of thinking about this is that we are taking a 0-dimensional space
and the upper semicontinuous function φs is being declared continuous to define
a new topology. These type of constructions are used to study the space called
Erdős space, see [32, Theorem 4.15]. Moreover, Xs is related to Continua Theory
because, just as Dijkstra mentions in en [30], Xs is homeomorphic to the set of
endpoints of the Lelek fan (see [27] for an intuitive description of the Lelek fan).
An alternative construction of Xs is given in [51, 1.4.6].
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Figure 2.1: An embedding of space Xs from Example 2.3 in the plane. Its
closure is marked in grey. In this embedding, projection to the first coordinate
is one-to-one restricted to Xs.

Figure 2.2: Space Xs from Example 2.3 embedded in the Lelek fan (in grey) as
its set of endpoints.

Example 2.4 A space that is hereditarily disconnected but not totally discon-
nected.

Let φs be as in Example 2.4. Consider the space Ys = Xs ∪ {〈0,∞〉}, where
0 is the constant 0 function. Using φs it is possible to show that any pair of
points of Ys can be separated by clopen subsets, except maybe for p = 〈0, 0〉
and q = 〈0,∞〉. Since {p, q} is not connected, we obtain that Ys is hereditarily
disconnected.

We follow the idea in [51, 1.4.7] in order to see that Ys is not totally discon-
nected. If U is a clopen subset of Ys with q ∈ U , by the definition of the product
topology there is r ∈ R and V a clopen subset of ω2 such that V × {r} ⊂ U .
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Thus, we obtain that W = (V × [0, r]) \ U ∈ CO(Ys) is bounded in its second
coordinate. By [30, Corollary 2] we obtain that W = ∅ so p ∈ U . The reader
will notice that this argument is used again in Example 4.12.

Example 2.5 The Knaster-Kuratowski fan.1

In Example 2.4 we showed an space that is totally disconnected “modulo one
point”. We will now describe a hereditarily disconnected space that has no to-
tally disconnected open subsets. Our example is homeomorphic to the famous
Knaster-Kuratowski fan with its appex removed, see [51, 1.4.C] for the usual
description.

Let C ⊂ [0, 1] be the Cantor set constructed removing middle-thirds as usual,
let Q ⊂ C be the set of endpoints of removed intervals and P = C \Q. For each
c ∈ C, let

Lc =

{
{c} × ([0, 1] ∩Q), if c ∈ Q,
{c} × ([0, 1] \Q), if c ∈ P.

Let F =
⋃
{Lc : c ∈ C}, notice that X is dense in the compact set C ×

[0, 1] ⊂ R2. For each c0 6= c1, Lc0 and Lc1 are separated hereditarily disconnected
sets in X, so X is hereditarily disconnected. The proof that F has no totally
disconnected open sets is more difficult. If the reader wants to see the proof of
this fact right away, we suggest to see [145, Examples 128 and 129] or the hint in
[51, 1.4.C]. However, in Example 4.2 we will prove a stonger property and that
proof can be easily adapted to show that F has no totally disconnected open
sets.

Now we will give the two results that Ernest Michael proved about discon-
nectedness properties of hyperspaces.

Theorem 2.6 [111, Theorem 4.10] Let X be a T1 space and F(X) ⊂ H ⊂
CL(X). If any of X, Fn(X) (n ∈ N) or H is connected, then the following
hyperspaces are also connected: X, Fm(X) for each m ∈ N and any H′ satisfying
F(X) ⊂ H′ ⊂ CL(X).

Proof. First assume that X is disconnected and infinite (otherwise the conclusion
is obvious). Then X = U ∪ V where U, V ∈ CO(X) \ {∅, X} are disjoint. If
F2(X) ⊂ H ⊂ CL(X) then H = (U+ ∪ V +) ∪ 〈〈U, V 〉〉, this is a decomposition

1In [145, Examples 128 and 129], the Knaster-Kuratowski fan is refered to as Cantor’s

leaky tent and F is called Cantor’s teepee; although it is not clear which space is which in the
description, one can infer the correct names from the General Reference Chart in [145, pp.
194–203].
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Figure 2.3: Space F from Example 2.5.

in two non-empty closed disjoint subsets, so H is disconnected. Thus, if any
one of the hyperspaces in the statement of the Theorem is connected, then X is
connected as well.

Now assume that X is connected. By Lemma 1.2, we obtain that for each
n ∈ N, Fn(X) is connected. Since the symmetric products form an increasing
chain of connected spaces, we obtain that F(X) is connected. If F(X) ⊂ H ⊂
CL(X), we obtain that H is connected by (a) in Lemma 1.4.

Theorem 2.7 [111, Proposition 4.13] Let X be a T1 space. Then the following
holds.

(1) X is 0-dimensional if and only if K(X) is 0-dimensional.

(2) X is totally disconnected if and only if K(X) is totally disconnected.

(3) X is discrete if and only if K(X) is discrete.

(4) X has no isolated points if and only if CL(X) has no isolated points.
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Proof. Recall that F1(X) is a topological copy of X contained in any of our
hyperspaces (Lema 1.2) so the implications from right to left are clear.

Assume that X is 0-dimensional. By Lemma 1.8, the set 〈〈CO(X)〉〉 is a base
of K(X). By Equation 1.4 in page 5, we only need to prove that F+ y F− are
closed when F is closed. This follows from the facts that X \ F+ = (X \ F )−

and X \ F− = (X \ F )+. Thus, K(X) is 0-dimensional.
Now assume that X is totally disconnected. Let A,B ∈ K(X) be such that

A 6= B. Without loss of generality, there exists p ∈ A \ B. Since X is totally
disconnected and B is compact, there is U ∈ CO(X) with p ∈ U and U ∩B = ∅.
From this it follows that U− ∈ CO(K(X)) is such that A ∈ U− and B /∈ U−.

If X is discrete, any compact subset is finite. Further, for any finite subset
{x0, . . . , xn} the Vietoris set 〈〈{x0}, . . . , {xn}〉〉 = {{x0, . . . , xn}} is a singleton.
If CL(X) has an isolated point, there is a Vietoris set 〈〈U0, . . . , Un〉〉 that is a
singleton in CL(X) and it can be easily seen that for all k ≤ n, Uk is a singleton
of an isolated point in X.

So at least we have the question of when the hyperspace of compact subsets
is hereditarily disconnected. This will be the most important question we found
in this Part and will be extensively discussed in Chapter 4.

Finally, let us recall scattered spaces. We will not consider them in our test
properties for hyperspaces but will be relevant in Theorem 4.10. Recall that a
space X is scattered if for any nonempty Y ⊂ X, the set of isolated points of Y
is nonempty.

It is known that if X is compact and second countable, then X is countable
if and only if it is scattered (this follows from the Cantor-Bendixson Theorem,
see [94, 6.11]). Compact scattered spaces in general can in fact be characterized
in a simple way, we refer the reader to [98, Section 17, pp. 271–284] for more
details. We will need the following result.

Lemma 2.8 If X and Y are compact Hausdorff spaces, X is scattered and Y
is a continuous image of X, then Y is also scattered.

Proof. Let f : X → Y be continuous and onto. Assume K ⊂ Y is nonempty
and does not have isolated points. By taking closure, we may assume that K is
closed. Using the Kuratowski-Zorn lemma, we can find a closed subset T ⊂ X
that is minimal with the property that f [T ] = K. Since X is scattered, there
exists an isolated point t ∈ T of T . Notice that K \ {f(t)} ⊂ f [T \ {t}]. Also,
since K has no isolated points, K \ {f(t)} is dense in K. But T \ {t} is compact
so it follows that K ⊂ f [T \ {t}]. This contradicts the minimality of T so such
K cannot exist.
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2.2 Quasicomponents

Recall that in a topological space, a component is defined to be a maximal
connected set. Thus, the components of a space form a decomposition. We are
going to need a coarser decomposition that that provided by the components.
Recall that if X is any topological space, then the quasicomponent of X in p ∈ X
is the following set.

Q(X, p) =
⋂
{U ∈ CO(X) : p ∈ U}.

Notice that Q(X, p) is a closed subset of X and contains the component of X
at p. The following classic example shows that components and quasicomponents
do not coincide in general.

Example 2.9 Components and Quasicomponents do not coincide.

For each n < ω, let Ln = [0, 1]×{ 1
n+1}. Define X = {p, q}∪(

⋃
{Ln : n < ω}) as a

subspace of the plane, where p = (0, 0) and q = (1, 0). Clearly, the component of
X at p is {p}. However, we now show that Q(X, p) = {p, q}. Let U ∈ CO(X) be
such that p ∈ U . There exists N < ω such that for all n ≥ N we have U∩Ln 6= ∅.
Since Ln is a topological copy of the unit interval, it is connected and thus Ln ⊂ U
for all n ≥ N . But since U is closed, q ∈ U . Thus, {p, q} ⊂ Q(X, p). The other
inclusion is easy.

Once we have the language of components and quasicomponents, we can give
characterizations of some disconnected spaces in these terms. Its proof should
be clear from the definitions.

Proposition 2.10 Let X be a T1 space. Then,

(a) X is totally disconnected if and only if all the quasicomponents of X are
singletons,

(b) X is hereditarily disconnected if and only if all the components of X are
singletons.

Even if components and quasicomponents do not coincide, they do in some
special cases. Proposition 2.12 is a key ingredient of our results of Chapter
4 because the compact subsets of hereditarily disconnected spaces will have a
stronger form of disconnectedness.
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Lemma 2.11 If X is a compact space, then every quasicomponent of X is
connected. Particularly, quasicomponents and components coincide in X.

Proof. Let X be a locally compact space and x ∈ X. Assume that Q(X,x) is
disconnected. Then there exist two disjoint open subsets U and V of X such
that Q(X,x) ⊂ U ∪ V and Q(X,x) ∩ U 6= ∅ 6= Q(X,x) ∩ V . Consider the
open cover U = {U ∪ V } ∪ {X \W : W ∈ CO(X), x ∈ W}. By compactness,
there must be a finite subcover {U ∪ V } ∪ {X \W0, . . . , X \Wn} of U . Thus,
x ∈ W0 ∩ . . . ∩Wn ⊂ U ∪ V . We may assume that x ∈ U , then it is easy to see
that U ∩W0 ∩ . . . ∩Wn is a clopen subset of X that contains x and misses V .
This is a contradiction to the definition of V so we have that in fact Q(X,x) is
connected.

Figure 2.4: Space from Example 2.9.

Proposition 2.12 Every locally compact, Hausdorff and hereditarily discon-
nected space is 0-dimensional.

Proof. Let X be a locally compact, Hausdorff and hereditarily disconnected
space. Since X is locally compact and Hausdorff, there exists a basis B of
open sets such that clX(U) compact for all U ∈ B. To prove that X is 0-
dimensional, it is enough that for each x ∈ X and U ∈ B with x ∈ U we find
a clopen set V ∈ CO(X) such that x ∈ V ⊂ U . Fix such x and U . Since
clX(U) is compact and hereditarily disconnected, by Lemma 2.11 we have that
Q(clX(U), x) = {x}. Thus, for each y ∈ bdX(U), there exists Vy ∈ CO(clX(U))
such that x ∈ Vy and y /∈ Vy. Since bdX(U) is compact, there exist an open
subcover {W (0), . . . ,W (n)} of the cover {clX(U)\Vy : y ∈ bdX(U)} of bdX(U).
Let V = (clX(U) \W (0))∩ . . .∩ (clX(U) \W (n)), then V ∈ CO(clX(U)), x ∈ V
and V ∩ bdX(U) = ∅. From this, it can easily be seen that V ∈ CO(X) and
x ∈ V ⊂ U . This concludes the proof.
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We remark that in [51, 1.4.5], there is a stronger version of Proposition 2.12.
As a corollary, the following fact about scattered spaces is easy to prove.

Lemma 2.13 Any compact, Hausdorff and scattered space is 0-dimensional.

Proof. Let X be compact, Hausdorff and scattered. If C ⊂ X, then C has an
isolated point so C is connected if and only if C is a singleton. This shows that
X is hereditarily disconnected. By Proposition 2.12, X is 0-dimensional.

Now we will iterate the operation of taking a quasicomponent. This can
be viewed intuitively in the following way. Totally disconnected spaces can be
thought of as a special class of hereditarily disconnected spaces where points
can be separated via clopen subsets immediately. Notice that in order to prove
that Example 2.4 is hereditarily disconnected, first we saw that point p could be
separated by clopen sets from all other points in Xs and we were left to prove
that {p, q} is disconnected, which is true in Hausdorff spaces. Also in Example
2.5 we proved that every two sets of the form Lc could be separated by clopen sets
and then used that Lc was totally disconnected. Thus, in both cases we needed
two steps to test the hereditary disconnectedness of the space in question. By
iterating the operation of taking a quasicomponent, we can count the number of
steps needed to show that a given space is hereditarily disconnected.

For any space X and p ∈ X we define by transfinite recursion the α- quasi-
component of X at p, Qα(X, p), in the following way.

Q0(X, p) = X,
Qα+1(X, p) = Q(Qα(X, p), p), for each ordinal α,
Qβ(X, p) =

⋂
α<β Q

α(X, p), for each limit ordinal β.

We call nc(X, p) = min{α : Qα+1(X, p) = Qα(X, p)} the non-connectivity
index of X at p. Intuitively, nc(X, p) tells us how many times we must iterate
the quasicomponent operation in order to obtain a connected set. So, if X is
hereditarily disconnected and p ∈ X, then nc(X, p) = min{α : Qα(X, p) =
{p}}. Notice that if X is hereditarily disconnected and |X| > 1, then X is
totally disconnected if and only if nc(X, p) = 1 for every p ∈ X. Thus, the
iterated quasicomponent and the non-connectivity index give us a formal idea of
disconnectedness degree of spaces.

A natural question when one sees this definition is whether for every ordinal
α there exists a (hereditarily disconnected) space X such that nc(X,x) = α for
some x ∈ X. The answer is affirmative, we will mention some interesting results
in this direction. The proofs of these results are not relevant to the development
of the dissertation so we only cite the references where proofs can be found.
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The first example is van Douwen’s. Since the example is a dendroid explicitly
constructed in the plane, we recommend the reader to take a look at it.

Example 2.14 [42] There exists a rational metrizable continuum X and a point
p ∈ X such that sup{nc(Y, x) : x ∈ Y ⊂ X} = ω1.

The next three results are from Mihail Ursul and talk about topological
groups. We refer the reader to [11] for a general reference to topological groups.
It can be proved that if G is a topological group and g, h ∈ G then Q(G, g) is
homoemorphic to Q(G, h) via the translation given by g−1h and that Q(G, q)
is a closed normal subgroup ([158, Theorem 12.3]). Thus, the high symmetry of
topological groups reflects to its quasicomponents.

The first result gives a subgroup of the plane that needs two applications
of the quasicomponent operation in order to become trivial. The second result
is more abstract but proves that every Abelian group can be realized as an α-
quasicomponent for arbitrary α. Finally, the third result shows that we cannot
hope to get a general result for arbitrary (non-Abelian) groups.

Theorem 2.15 [158, Theorem 12.9] There exists a hereditarily disconnected
subgroup G of 2R such that Q(G, 0) is topologically isomorphic to Z.

Theorem 2.16 [158, Theorem 12.24] Let α be any ordinal and H some topo-
logical Abelian group. Then there exists a topological Abelian group G such that
Qα(G, 0) = H.

Theorem 2.17 [158, Example 12.1] A discrete group G is a quasi-component
of another group if and only if G is Abelian.

There is one more quasicomponent construction we must consider. IfX is any
space (no separation axioms required), we can define a quotient space Q(X) by
shrinking each quasicomponent of X to a point (that is, Q(X) = {Q(X, p) : p ∈
X} with the quotient topology). We will call Q(X) the space of quasicomponents
of X. The following can be easily proved from the definition of quotient topology.

Lemma 2.18 If X is any space, Q(X) is a Hausdorff totally disconnected space.

2.3 Highly disconnected spaces

In this section we will study some disconnectedness properties that are in some
sense extremal.
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Definition 2.19 Let X be a Hausdorff space.

(a) X is extremally disconnected (ED) if for every open subset U of X we have
that clX(U) is open.

(b) X es basically disconnected (BD) if for every cozero set U of X we have
that clX(U) is open.

(c) X is a P -space if every Gδ set of X is open.

There exist Hausdorff ED spaces that are not Tychonoff (for example the
Katetov extension of ω, see the definition in [135, p. 307] and [135, The-
orem 6.2(b)]). However, for regular spaces, all these properties imply being
0-dimensional (see Propostion 2.24 below). The reader will notice that every
metrizable BD space is discrete. This is perhaps why these classes of spaces
seem to be counterintuitive in some sense.

In fact, topologists started looking at these properties while studying the
Čech-Stone compactification (see the definition in Section 6.1). In particular,
βω is ED, this will be seen in Corollary 6.35. Now we generalize (or perhaps
particularize) some disconnectedness properties in the following way.

Definition 2.20 Let X be a Tychonoff space

(a) X is an F -space if every cozero set of X is C∗-embedded in βX.

(b) X is an F ′-space if any two disjoint cozero sets of X have disjoint closures.

(c) X is a weak P -space if every countable subset of X is closed and discrete.

Let’s briefly discuss the history of these properties. Some of these spaces have
their origin in papers of Gillman and Henriksen. First, P -spaces were defined in
[67] in an algebraic way, considering rings of real-valued continuous functions de-
fined in topological spaces. After this, in [68], the authors studied other types of
rings and defined various classes of spaces according to the corresponding prop-
erties of their rings of real-valued continuous functions. Two of these classes of
spaces are F -spaces and F ′-spaces. For example, F -spaces were defined as those
spaces X such that the ring C(X) of real-valued continuous functions defined
in X is an F -ring2, this means that every finitely generated ideal of C(X) is
generated by one element (see [69, 14.25]). Gillman and Henriksen studied these

2The mathscinet review of [68] says that F -rings were studied first by Irving Kaplanski but
it seems that the term was given by Gillman and Henriksen. See also the Introduction and
Section 4 of [45].
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classes of spaces from the algebraic point of view but the ideas involved turned
out to be important in the development of the Čech-Stone compactification.
ED and BD spaces appear naturally when one considers Stone spaces of some
Boolean Algebras; we shall talk about this in more detail when we construct the
Absolute of a Tychonoff space in Section 6.3. The story of weak P -spaces comes
from the non-homogeneity problem and we need to give an alternative definition
of these spaces in order to make this clear.

The definitions of P -space and weak P -space can be localized (made local)
in the following way.

Definition 2.21 Let X be an space and x ∈ X.

(i) We say that x is a P -point of X if for every Gδ set G with x ∈ G we have
that x ∈ intX(G).

(ii) We say that x is a weak P -point of X if for every countable subset N ⊂
X \ {x} we have that x /∈ clX(N).

Notice that intuitively, P -points and weak P -points are points that are far
away from the outside even in a countable number of steps (although the precise
notion of this is different in each case). Every compact space has points that are
neither P -points nor weak P -points. Using CH, Walter Rudin proved in [142]
that ω∗ = βω \ ω has P -points and thus is not homogeneous under CH. Later,
Kenneth Kunen introduces the weak P -points in [100] and proves that ω∗ has
weak P -points in ZFC so it is not homogeneous. We will talk about this in more
detail in Section 6.5. The following trivial observation relates our definitions.

Lemma 2.22 A space X is a (weak) P -space if and only if every point of X is
a (weak) P -point (respectively).

In this way, we may consider weak P -spaces as the natural generalization of
P -spaces. We will need the following characterization for our results in Chapter
3.

Lemma 2.23 A Tychonoff space is a P -space if and only if every zero set is
clopen.

Proof. Let X be a Tychonoff space. If X is a P -space, then every zero set is a Gδ
set. Thus every zero set is open and is clearly closed by definition. Now assume
that all zero sets of X are clopen and let {Un : n < ω} a sequence of open subsets
of X. We must prove that G =

⋂
{Un : n < ω} is open, so let x ∈ G. Since X

is Tychonoff, for each n < ω, there is a continuous function fn : X → [0, 1] such
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that fn(x) = 0 and fn[X \Un] ⊂ {1}. Let f : X → [0, 1] be the function defined
by f(x) =

∑
n<ω

fn(x)
2n . As mentioned in [50, Corollary 1.5.12], f is a continuous

function. Notice that x ∈ f←(0) ⊂ G. Thus, G is open.

The following diagram (that is part of the one found in [68, p. 390]) shows all
the possible relations that one can find in the classes of spaces we have defined
in this Section.

ED
(b)

%%J
JJJJJJJJJ F

(h) // F′

discrete

(a)
99ssssssssss

(c)

%%K
KKKKKKKKK BD

(g)
88qqqqqqqqqqqq

(f)
// 0−dim

P

(d)
99tttttttttt

(e)
// weak P

(2.1)

We will also see that F -spaces and P ′-spaces are not necessarily disconnected
(see Example 2.27). Nevertheless, F ′-spaces will be relevant to our study of
disconnectedness properties in hyperspaces, see Theorem 3.9.

Proposition 2.24 All implications in Diagram 2.1 hold for Tychonoff spaces.

Proof. For (a), (b) and (c), the implications are clear by definition. For (d),
notice that every cozero set in a P -space is clopen because it is an Fσ.

To prove (e), let X be a P -space and N = {xn : n < ω} ⊂ X be countable.
Fix y ∈ X. For each n < ω, let Un be an open subset such that y ∈ Un and
xn /∈ Un \ {y}. Then G =

⋂
{Un : n < ω} is a Gδ set, thus open. If y ∈ N , G

witnesses that y is an isolated point of N . If y /∈ N , G witnesses that y /∈ clX(N).
Then N is a closed and discrete subset of X.

Tychonoff BD spaces are 0-dimensional by regularity and the fact that cozero
sets form a base, so we have (f). To prove (g), let U be a cozero set of a BD
Tychonoff space X. Let’s prove that U is C∗-embedded in X. Since clX(U) is
clopen, any continous function defined in clX(U) can be arbitrarly extended to a
continous function by defining it to be constant on X\clX(U). Thus, it is enough
to assume that U is dense in X. We will now use Taimanov’s Theorem 0.10 so
let A and B be disjoint zero subsets of U . Since U is a cozero set, there is a
continuous function f : X → [0, 1] such that U = f←[(0, 1]]. For each n < ω, let
Un = clX(f

←[( 1
n+2 , 1]]), clearly Un ∈ CO(X) and moreover, U =

⋃
{Un : n < ω}.

In fact it is easy to verify that An = A∩Un and Bn = B∩Un are disjoint zero sets
of X for each n < ω. By Lemma 0.8, for each n < ω there exist disjoint cozero
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sets Vn and Wn of X such that An ⊂ Vn and Bn ⊂Wn. Let V =
⋃
{Vn : n < ω}

and W =
⋃
{Wn : n < ω}, these are disjoint cozero sets of X. Since X is BD it

is easy to see that clX(V )∩ clX(W ) = ∅. This implies that clX(A)∩ clX(B) = ∅.
By Taimanov’s Theorem 0.10, we obtain that U is C∗-embedded in X.

Finally, for (h), let X be an F -space and U , V two disjoint cozero sets of X.
Then U ∪V is a cozero set and the function f : U ∪V → [0, 1] defined by f [U ] ⊂
{0} and f [V ] ⊂ {1} is continuous. Let F : X → [0, 1] be a continuous extension,
then clX(U) ⊂ F←[0, 13 ] and clX(V ) ⊂ F←[23 , 1] so clX(U) ∩ clX(V ) = ∅.

Now we will give examples that show that no implication in Diagram 2.1 is
an equivalence.

Example 2.25 ED non-discrete spaces

For a ED non-discrete space, it is enough to consider βω, it is ED by Corollary
6.35 and it is clearly not discrete as it is compact and infinite. In fact, βω is too
much: if p ∈ ω∗ = βω\ω, it follows from Lemma 6.30 that the space ω∪{p} ⊂ βω
is ED. This proves that (a) in Diagram 2.1 is not an equivalence.

For (b), as we will see in Theorem 6.34, it is enough to consider the Stone space
of a σ-complete but non-complete Boolean algebra, for example, the collecton
of Borel sets or Lebesgue-measurable sets of the reals. However, studying these
examples would be quite technical and perhaps outside our objectives. This is
why we will give two examples that will also serve as examples for (c). Both are
subsets of linearly ordered spaces and will be very visual.

Example 2.26 Two P -spaces that are suborderable.

The first example is L = {α + 1 : α < ω1} ∪ {ω1} as a subspace of the linearly
ordered ω1 + 1. Notice that all points of L \ {ω1} are isolated in L. Also, ω1 is
a P -point of L: if {(αn, ω1]L : n < ω} are basic open neighborhoods of ω1 and
α = sup{αn : n < ω}, then (α + 1, ω1]L is an open subset of L that contains ω1

and is contained in
⋂
{(αn, ω1]L : n < ω}. So L is a P -space. The second example

appears in [69, 13.18], we describe it next. For x, y ∈ ω12 different points, we
define x <lex y if x(ξ) < y(ξ), where ξ = min{α < ω1 : x(α) 6= y(α)}. This
defines a strict total ordering on ω12 that is called lexicographic order . Define

Q = {x ∈ ω12 : {α < ω1 : x(α) = 1} has a maximum}.

Now we prove that Q is a P -space and has no isolated points with the topology
of the linear order (Q,<lex). Since there is a basis of open intervals, it is enough
to prove that if q ∈ Q and {xn : n < ω} ⊂ X are such that xn <lex xn+1 <lex q
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for all n < ω or q <lex xn+1 <lex xn for all n < ω, then there is x ∈ Q such that
xn <lex x <lex q for all n < ω or q <lex x <lex xn for all n < ω, respectively.
Assume that xn <lex xn+1 <lex q for all n < ω, the other case is analogous.

Let ξ = max{α < ω1 : q(α) = 1}, ξn = max{α < ω1 : xn(α) = 1} for n < ω
and ξ′ = sup{ξn : n < ω}+ ξ + 1 < ω1. Define x ∈ ω12 as

x(α) =





q(α) if α < ξ;
0 if α = ξ;
1 if ξ < α ≤ ξ′;
0 if ξ′ < α < ω1.

Clearly, x ∈ Q. Since ξ = min{α < ω1 : x(α) 6= q(α)} and x(ξ) = 0 < 1 =
q(ξ), x <lex q. Now we have to prove that xn <lex x for every n < ω. Notice
that x(ξ′) = 1 and xn(ξ′) = 0 for each n < ω so we know that x /∈ {xn : n < ω}.

Fix n < ω and define β = min{α < ω1 : x(α) 6= xn(α)}, this is possible by
the discussion above. If β < ξ, then x(β) = q(β) and β = min{α < ω1 : q(α) 6=
xn(α)} so xn(β) < q(β) = x(β), this shows that xn <lex x. If β = ξ, then we
obtain the following: xn(β) = 1 = q(β), q(α) = x(α) = xn(α) if α < β and
xn(α) ≥ q(α) = 0 if β < α. Thus, q = xn or q <lex xn, which is a contradiction
so it is impossible that β = ξ. If β > ξ, notice that xn(α) = 0 = x(α) when
ξ′ < α < ω1 so in fact β ≤ ξ′; this implies that x(β) = 1 so xn(β) = 0 and thus
xn <lex x. Thus, we have proved that xn <lex x for all n < ω.

As both L and Q are P -spaces, they are also BD by Proposition 2.24. It is
easy to see that L is not ED: the sets {α ∈ L : α is odd} and {α ∈ L : α is even}
are disjoint open subsets of L that have ω1 in its closure. Now we prove that Q
is not ED. Let p ∈ Q be such that p(0) = 1 and p(α) = 0 for all 1 ≤ α < ω1 and
for each α < ω1, let pα ∈ Q be defined as

pα(β) =

{
0 if β = 0 or α+ 1 < β,
1 if 1 ≤ β ≤ α+ 1.

Notice that for all α < β < ω1, pα <lex pβ <lex p. It is also easy to see that
p = sup{pα : α < ω1}. For each α < ω1, let Iα = (pα+1, pα+2)<lex

, which is a
non-empty open subset of Q. From this it follows that

p ∈ clQ(
⋃
{Iα : α is even}) ∩ clQ(

⋃
{Iα : α is odd}).

So Q is not ED. Another way to prove that L and Q are not ED is quoting the
following more general result: if X is a ED space with cellularity strictly smaller
than the first measurable cardinal, then any P -point of X is isolated ([135, 6.O]).

The examples for (d), (e), (f) and (g) are either too difficult to include here
in detail or almost trivial. The following is a fast sketch of those examples.
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Example 2.27 More examples for Diagram 2.1.

For (d), consider βω, this is a compact ED space (Corollary 6.35), so it is BD by
Proposition 2.24. However, in any compact infinite space there must exist points
that are limits of countable infinite discrete subsets. Thus, βω is BD but not a
P -space.

For (e), there exists a famous example by Dmitrĭı B. Shakhmatov [152]. This
example is a Tychonoff, connected, pseudocompact space that is a weak P -space
and such that every countable subset is C∗-embedded. This space cannot be a
P -space because every P -space must be 0-dimensional by Propostion 2.24.

For (f) it is enough to consider any metrizable, 0-dimensional, non-discrete
space X. In X it is easy to give two disjoint open sets (that must be cozero sets)
whose closures intersect. From this it follows that X is not BD.

To see that (g) is not reversible, consider β[0, 1)\[0, 1). By a result of Gillman
and Henriksen ([68, Theorem 2.7]), we know that if X is a locally compact,
σ-compact space, then X∗ = βX \ X is an F -space. The original proof is
algebraic, a topological proof atributed to van Douwen can be found on [113,
1.2.5]. Moreover, it is easy to see that β[0, 1) \ [0, 1) is connected and has more
than one point, so it cannot be BD by Poposition 2.24.

Finally, for (h) in Diagram 2.1 we shall give the example from [68, Example
8.14].

Example 2.28 An F ′-space that is not a F -space.

Let L be the space described in Example 2.26 and let L′ = {α+1 : α < ω2}∪{ω2}
as a subspace of the linearly ordered space ω2+1. Let L0 = (L′×L)\{〈ω2, ω1〉},
it is easy to see that L0 is a P -space and thus, BD by Proposition 2.24.

Let N = {xn : n < ω} be a countable set disjoint from L0. For each α < ω1,
let Dα = (N ∪ {ω2})× {α + 1}. Let p ∈ βω \ w be chosen arbitrarily. For each
α < ω, there is a bijection from Dα to ω∪{p} that takes 〈ω2, α+1〉 to p; give Dα

the topology so that this bijection is a homeomorphism. By the remarks given
in Example 2.25, Dα is ED and its only non-isolated point is 〈ω2, α+ 1〉.

The space we are looking for is L1 = L0 ∪ (
⋃
{Dα : α < ω1}), so we have to

define its topology. Give L1 the topology such that U ⊂ L1 is open if and only
if U ∩ L0 is open in L0 and for every α < ω1, U ∩Dα is open in Dα.

If f : L1 → [0, 1] is defined as f(〈xn, α + 1〉) = 1
n+1 for all n < ω, α < ω1

and f(x) = 0 if x /∈
⋃
{Dα : α < ω1}, then f is a continuous function that

witnesses that L0 is a zero set of L1. If g : L0 → R is a continuous function, we
can extend it to a continuous function G : L1 → R by defining G(〈xn, α+ 1〉) =
g(〈ω2, α+ 1〉) + 1

n+1 . Thus, L0 is C-embedded and C∗-embedded in L1.
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First we argue that L1 is an F ′-space. Let U and V be two disjoint cozero
sets of L1, it is enough to prove that clL1

(U)∩ clL1
(V ) = ∅. Since L0 is a closed

P -space, clL1
(U ∩ L0)∩clL1

(V ∩ L0) = ∅ by Proposition 2.24. Thus, it is enough
to assume that U ∪ V ⊂ L1 \L0. Moreover, L1 \L0 is an open discrete subset of
L1, so clL1

(U)∩clL1
(V ) ⊂ {ω2}×ω1. However, if α < ω1, the point 〈ω2, α+1〉 is

contained in the clopen ED subspace Dα. Thus, 〈ω2, α+1〉 /∈ clL1
(U)∩ clL1

(V ).
This completes the proof that clL1

(U) ∩ clL1
(V ) = ∅ so L1 is an F ′-space.

Since L1 \ L0 = N × {α + 1 : α < ω1} is a cozero set of L1, let us define a
continuous function h : L1 \ L0 → [−1, 1] and prove that it cannot be extended
to L1. Define

h(〈xn, α+ 1〉) =

{
1 if α is odd,
−1 if α is even.

Since N × {α + 1 : α < ω1} is discrete, h is continuous. Assume that it can
indeed be extended to H : L1 → R, we will arrive to a contradiction. Notice
that H(〈ω2, α + 1〉) = 1 if α is odd and H(〈ω2, α + 1〉) = −1 if α is even.
Thus, for all α < ω1, there is β(α) < ω2 such that if β(α) < γ < ω2, then
|H(〈γ, α + 1〉) − H(〈ω2, α + 1〉)| < 1

2 . Let Γ = sup{β(α) : α < ω1} < ω2. If
Γ < γ < ω2 then any neighborhood of 〈γ, ω1〉 has points a, b such that H(a) > 1

2
and H(b) < −1

2 . This contradiction3 proves that h cannot be extended so L1 is
not an F -space.

L′

L L0

〈ω2, ω1〉

Dα

Figure 2.5: Space L1 from Example 2.28.

3This argument is very similar to the one used to prove that the deleted Tychonoff plank is
not normal, see [145, 87].
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We will need the following result later.

Lemma 2.29 Every F ′-space of countable cellularity is ED.

Proof. Let X be an F ′-space of countable cellularity and U ⊂ X an open subset.
Define V = X \clX(U) and let U be a maximal cellular family of cozero sets of X
contained in U∪V . Since X is regular, it is easy to prove that W =

⋃
U is dense.

Observe that U is countable so by [69, 1.14], we have that W ∪U and W ∪V are
cozero sets. Since X is an F ′-space, we know that clX(W ∩ U)∩clX(W ∪ V ) = ∅.
By the density of W we obtain that clX(U) = clX(U ∩W ) and V = clX(V ∩W ),
so clX(U) is clopen.



Chapter 3

Extreme Disconnectedness in
Hyperspaces

In this Chapter, we shall study how properties given in Diagram 2.1, p. 24
behave in the context of hyperspaces. The results in this Chapter were published
in Sections 2, 3 and 4 of [79].

We begin with two easy facts that show that in this context CL(X) is trivial.

Fact 3.1 If X is an infinite Hausdorff space, then CL(X) contains a convergent
sequence.

Proof. Let N = {xn : n < ω} be an countable infinite subspace of X. If Am =
{xn : n ≤ m} for m < ω, then {Am : m < ω} is a sequence in CL(X) that
converges to clX(N) by Lemma 1.11.

Fact 3.2 If X is an F ′-space, then X does not contain convergent sequences

Proof. If N = {xn : n < ω} is a faithfully indexed sequence that converges to
x0, let U, V be disjoint cozero sets of X such that {x2n : n ∈ N} ⊂ U and
{x2n−1 : n ∈ N} ⊂ V . Then x0 ∈ clX(U) ∩ clX(V ).

Thus, we obtain the following.

Proposition 3.3 If X is Hausdorff and CL(X) is an F ′-space, then X is finite.

Although CL(X) has no extreme disconnectedness properties (except in triv-
ial cases), it is known that it can be 0-dimensional, see Proposition 5.18.

30
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3.1 A Hyperspace is an F -space if and only if it is a

P -space

First, let us show how to detect P -points in symmetric products.

Proposition 3.4 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
Let X be a Hausdorff space and A ∈ F(X). The following conditions are equiv-
alent

(a) A is a P -point of F(X),

(b) A is a P -point of Fn(X) for each n ≥ |A|,

(c) every x ∈ A is a P -point of X.

Proof. Let A = {x0, . . . , xm}. The implication (a) ⇒ (b) is clear because the
property of being a P -point is hereditary to subspaces. Assume A is a P -point
of Fm+1(X). Let {Ui : i < ω} be a collection of open subsets of X such that
x0 ∈

⋂
i<ω Ui. Take W0, . . . ,Wm pairwise disjoint open subsets of X such that

xi ∈Wi for j ≤ m. For each i < ω, define

Ui = 〈〈Ui ∩W0,W1, . . . ,Wm〉〉.

Since A is a P -point in Fm+1(X), by Lemma 1.1, there is a collection V0, . . . , Vm
consisting of pairwise disjoint open subsets of X such that

A ∈ 〈〈V0, . . . , Vm〉〉 ⊂
⋂

i<ω

Ui.

We may assume xj ∈ Vj for each j ≤ m. We now prove V0 ⊂
⋂
i<ω Ui.

Take y ∈ V0 and consider the element B = {y, x1, . . . , xm} ∈ 〈〈V0, . . . , Vm〉〉. Since
B ∈ Ui for each i < ω, we get y ∈

⋂
i<ω Ui. This proves that x0 is a P -point

of X and by similar arguments, each point of A is a P -point of X. This proves
(b)⇒ (c).

Now, let {Ui : i < ω} be a collection of open subsets of F(X) that coin-
tain A and assume each point of A is a P -point of X. Using Lemma 1.1, for
each i < ω one may define a collection U(0, i), . . . , U(m, i) consisting of pair-
wise disjoint open subsets of X such that for each j ≤ m, xj ∈ U(j, i) and
〈〈U(0, i), . . . , U(m, i)〉〉 ⊂ Ui. Each point of A is a P -point so we may take, for
each j ≤ m, an open subset Uj of X such that xj ∈ Uj ⊂

⋂
i<ω U(j, i). Thus,

A ∈ 〈〈U0, . . . , Um〉〉 ⊂
⋂

i<ω

Ui,

which proves (c)⇒ (a).
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We give the following example of how the construction of hyperspaces can
produce complicated spaces from simple ones (compare with the fact that K(ω+
1) is the Cantor set by Example 1.3).

Example 3.5 A crowded homogeneous P -space using hyperspaces.

Let L be the linearly ordered space from Example 2.26. Let

X = {A ∈ F(L) : ω1 ∈ A},

which is a P -space (Proposition 3.4). Let A ∈ X and let 〈〈U0, . . . , Uk〉〉 be a
Vietoris set neighborhood of A. We may assume that U0, . . . , Uk are pairwise
disjoint (Lemma 1.1) and ω1 ∈ U0. Let α ∈ U0 \ {ω1}, then A 6= A ∪ {α} ∈
〈〈U0, . . . , Un〉〉. Thus, X has no isolated points.

To prove the homogeneity of X it is sufficient to prove the following:

(1) if A,B ∈ X are such that |A| = |B|, then there exists a homeomorphism
H : X → X such that H(A) = B,

(2) for every n ∈ N, there are A,B ∈ X such that |A|+1 = |B| = n+1 and a
homeomorphism H : X → X such that H(A) = B.

For (1), let h : L → L be a bijection such that h[A] = B and h(ω1) = ω1.
Define H(P ) = h[P ] for every P ∈ X.

For (2), let H : Y → Y be defined by

H(P ) =

{
P \ {1}, if 1 ∈ P,
P ∪ {1}, if 1 /∈ P.

Then H is a homeomorphism such that for each A ∈ X with 0 /∈ A, |H(A)| =
|A|+ 1. It follows that X is homogeneous.

Next, let us show that the hyperspaces we are considering are extremally
disconnected if and only if they are discrete, even in the realm of Hausdorff
spaces.

Proposition 3.6 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
Let X be a Hausdorff space and F2(X) ⊂ H ⊂ K(X). Then H is extremally
disconnected if and only if X is discrete.

Proof. Clearly, X discrete implies H discrete. So assume that X is not discrete,
take a non-isolated point p ∈ X and consider Z the set of all collections G such
that the elements of G are pairwise disjoint nonempty open subsets of X and if
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U ∈ G, then p /∈ clX(U). By the Kuratowski-Zorn Lemma, we can consider a
⊂-maximal elementM∈ Z. Since X is Hausdorff,

⋃
M is dense in X.

Let U =
⋃
{U+∩H : U ∈M}. LetN be the filter of open neighborhoods of p.

For each W ∈ N , there must be UW , VW ∈M such that UW 6= VW , W ∩UW 6= ∅
and W ∩ VW 6= ∅. Let V =

⋃
{〈〈UW , VW 〉〉 ∩ H : W ∈ N}. Then, U and V are

pairwise disjoint nonempty open subsets of H but {p} ∈ clH(U) ∩ clH(V).

Now we will see what happens when a hyperspace is an F ′-space. The defini-
tion of an F ′-space requires the Tychonoff separation axiom (Definition 2.20). By
Corollary 1.9 we may assume that the base space of the hyperspaces in question
is Tychonoff.

Remark 3.7 Let X be an infinite Tychonoff space. If K(X) is an F ′-space,
then K(X) = F(X).

Proof. If Y ∈ K(X)\F(X), then CL(Y ) ⊂ K(X) contains a convergent sequence
by Fact 3.1. This contradicts Fact 3.2.

The following is the most important result in this Chapter.

Proposition 3.8 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
Let X be a Tychonoff space and let F2(X) ⊂ H ⊂ K(X). If H is an F ′-space,
then X is a P -space.

Proof. Let us assume X is not a P -space, by Lemma 2.23, we may assume there
is a continuous function f : X → I such that Z = f←(0) is not clopen. Let
p ∈ Z \ intX(Z) and consider the following two statements:

(E) There is a neighborhood U of p with f [U ] ⊂ {0} ∪ { 1
2m : m ∈ N}.

(O) There is a neighborhood V of p with f [V ] ⊂ {0} ∪ { 1
2m−1 : m ∈ N}.

Notice that since p /∈ intX(Z), we cannot have (E) and (O) simultaneaously.
Assume without loss of generality that (E) does not hold. For each m ∈ N, let
Um = f←[( 1

2m+2 ,
1
2m)]. Then {Um : m ∈ N} is a collection of pairwise disjoint

cozero sets. Observe that every neighborhood of p intersects some Um. Also,
f←[[0, 1

2m+2)] is a neighborhood of p that misses Um. Thus,

(∗) p ∈ clX(
⋃
{Um : m ∈ N}) \

⋃
{clX(Um) : m ∈ N}.

Consider the sets:

U =
⋃
{U+

m ∩H : m ∈ N},

V =
⋃
{〈〈Um, Uk〉〉 ∩H : m, k ∈ N,m 6= k},
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these are nonempty pairwise disjoint cozero sets by Lemma 1.7 and Equation 1.4,
page 5. By (∗), it follows that {p} ∈ clH(U)∩clH(V), so H is not an F ′-space.

This allows us to show the following structure result for hyperspaces.

Theorem 3.9 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Tychonoff space and F2(X) ⊂ H ⊂ K(X). Then the following are
equivalent:

(a) X is a P -space,

(b) H is a P -space,

(c) H is an F ′-space.

Proof. First, assume (a). By Lemma 3.4, F(X) is a P -space and by Remark
3.7, K(X) = F(X) so H ⊂ K(X) is a P -space. So (b) holds. The fact that
(b) implies (c) follows from Proposition 2.24 and (c) implies (a) by Proposition
3.8.

3.2 Some spaces such that K(X) = F(X)

Notice that we have discussed all classes of spaces in Diagram 2.1, p. 24, in
the context of hyperspaces, except for weak P -spaces. In this section we will
consider weak P -spaces and give some remarks of the class of spaces X such that
K(X) = F(X). This class includes F ′-spaces by the results of the last section
and also weak P -spaces.

Fact 3.10 If X is a weak P -space, then K(X) = F(X).

Proof. If X is a weak P -space, then every countable subset of X is closed and
discrete. If K ⊂ X is compact and infinite, it contains a countable infinite
discrete subset N ⊂ K and if x ∈ clX(N) \ N , then N ∪ {x} is countable but
not discrete.

We have the following results for weak P -spaces, analogous to those of P -
spaces.

Proposition 3.11 Let X be a Hausdorff space and A ∈ F(X). The following
conditions are equivalent

(a) A is a weak P -point in F(X),
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(b) A is a weak P -point in Fn(X) for each n ≥ |A|,

(c) every x ∈ A is a weak P -point of X.

Proof. Let A = {x0, . . . , xm}. Notice (a)⇒ (b) because being a weak P -point is
hereditary to subspaces.

To prove (b) ⇒ (c), assume x0 is not a weak P -point of X. Let D = {yk :
k < ω} ⊂ X \ {x0} be such that x0 ∈ clX(D). Define Bk = {yk, x1, . . . , xm} ∈
Fm+1(X) for each k < ω. Then, {Bk : k < ω} ⊂ Fm+1(X) \ {A} and A ∈
clFm+1(X)({Bk : k < ω}).

Now we prove (c)⇒ (a). Assume (c) and take {Bk : k < ω} ⊂ F(X) \ {A}.
For each k < ω, choose t(k) ∈ {0, . . . ,m} such that xt(k) /∈ Bk. Define Er =
{k < ω : t(k) = r} for each r ≤ m. So given r ≤ n, xr /∈

⋃
{Bk : k ∈ Er}. Since⋃

{Bk : k ∈ Er} is countable, there exists an open subset Ur with xr ∈ Ur and
Ur ∩ (

⋃
{Bk : k ∈ Er}) = ∅. Finally, let U = 〈〈U0, . . . , Un〉〉. Then A ∈ U and

U ∩ {Bk : k < ω} = ∅.

Theorem 3.12 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Hausdorff space. Then the following are equivalent

(a) X is a weak P -space,

(b) K(X) is a weak P -space,

(c) F(X) is a weak P -space,

(d) Fn(X) is a weak P -space for all n ∈ N.

Proof. If we assume (a), by Fact 3.10 we have K(X) = F(X), which is a weak
P -space by Proposition 3.11. Clearly, (b) implies (c) and (c) implies (d). Finally,
(d) and (a) are equivalent by Proposition 3.11.

We next show that condition K(X) = F(X) behaves well under the operation
of taking hyperspace in the following way.

Proposition 3.13 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
If X is a Hausdorff space, then K(X) = F(X) if and only if every compact subset
of K(X) is finite (that is, K(K(X)) = F(K(X))).

Proof. First, assume K(X) = F(X), and let C ⊂ K(X) be compact. Write
C =

⋃
n∈N Cn where Cn = C ∩ Fn(X). Notice each Cn is compact because Fn(X)

is closed in F(X).
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Claim. Each Cn is finite.

Fix n ∈ N. To prove the claim, consider the natural identification π : nX →
Fn(X) that sends each n-tuple to the set of its coordinates (Lemma 1.2). Also,
consider πk : nX → X the projection onto the kth-coordinate. Since π is per-
fect, the set Kn = πk[π

←[Cn]] is a compact subset of X and thus, finite. Now,
π←[Cn] ⊂ K1 × · · · ×Kn so Cn must also be finite. This proves the Claim.

By the Claim, C is a compact Hausdorff countable space. Since the weight
of an infinite compact Hausdorff space is less or equal to its cardinality ([50,
3.1.21]), C is a compact metric space. Assume C is infinite, then we can find a
faithfully indexed sequence {An : n < ω} ⊂ C such that A0 = limAn.

Let A0 = {x0, . . . , xs} and take U0, . . . , Us pairwise disjoint open sets such
that xi ∈ Ui for i ≤ s. We may thus assume that for every n < ω, An ∈
〈〈U0, . . . , Us〉〉. For each n ∈ N, let kn ≤ s be such that An ∩Ukn 6= {xkn}, we may
assume without loss of generality that kn = 0 for every n ∈ N. Let

Y =
⋃
{An ∩ U0 : n < ω}.

First, if Y is finite, there is an open set V such that V ∩ Y = {x0}, so
the neighborhood 〈〈V ∩U0, U1, . . . , Us〉〉 intersects the sequence only in A0, which
contradicts the convergence of the An. Thus, Y is infinite. We now prove that
Y converges to x0. Let V be an open set such that x0 ∈ V . Let k < ω be such
that An ∈ 〈〈V ∩ U0, U1, . . . , Us〉〉 for each n ≥ k. From this it follows that the set

Y \
⋃
{An ∩ U0 : n < k}

is a cofinite subset of Y contained in V . Thus, Y is a nontrivial convergent
sequence in X. This contradiction implies C is finite.

The other implication follows from the fact that X is homeomorphic to
F1(X) ⊂ K(X) (Lemma 1.2).

We end the discussion by showing that weak P -spaces are not the only ones
in which the equality compact=finite holds.

Example 3.14 A non weak P -space where all compact subsets are finite.

Let X = ω ∪ P , where P is the set of weak P -points of ω∗. It is a famous
result of Kunen ([100]) that P is a dense subset of ω∗ of cardinality 2c. We
claim that K(X) = F(X). Every infinite compact space contains a separable
compact subspace, so it is sufficient to show that the closure of every infinite
countable subset N ⊂ X is not compact. Since P is a weak P -space closed in
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X, clX(N ∩ P ) = clP (N ∩ P ) = N ∩ P that is compact if and only if it is finite.
Thus, we may assume N ⊂ ω. Since ω∗ \P is also dense in ω∗, clβω(N) \X 6= ∅.
It easily follows that clX(N) is not compact. Notice that X is not a weak P -space
because N is dense in X.

Observe that the space X from Example 3.14 is extremally disconnected
because it is a dense subspace of βω (Proposition 6.30 and Corollary 6.35). We
now present an example of a space whose compact subspaces are finite but it is
not an F ′-space.

Example 3.15 A non F ′-space where all compact subsets are finite.

Let ω =
⋃
{An : n < ω} be a partition in infinite subsets. Let Fω be the Fréchet

filter (or any filter that contains it) and

F = {B ⊂ ω : {n < ω : An \B is finite} ∈ Fω}.

Define the space X = ω ∪ {F} where every point of ω is isolated and the
neighborhoods of F are of the form {F} ∪A with A ∈ F .

Any infinite compact subspace of X must be a convergent sequence. Let
S ⊂ ω be infinite. If there exists m < ω such that S ∩ Am is infinite, let
R = ω \Am. If for each n < ω, |S ∩An| < ω holds, let R = ω \ S. In both cases
R ∈ F and S \R is infinite, so S cannot converge to F .

Also, notice that X is an F ′-space if and only if it is extremally disconnected
because X has countable cellularity (use Lemma 2.29) and it is easy to see
this happens if and only if F is an ultrafilter. To see F is not an ultrafilter,
for each n < ω, let An = Pn ∪ Qn be a partition in infinite subsets. Then
P =

⋃
{Pn : n < ω} /∈ F , Q =

⋃
{Qn : n < ω} /∈ F and ω = P ∪ Q. However,

by maximality an ultrafilter must contain either P or Q. Thus, F is not an
ultrafilter.

Thus, X is a space in which all compact subsets are finite but it is not an
F ′-space.



Chapter 4

Hereditarily Disconnected Spaces

In this chapter we will give the main results of Part I. Recall that Theorem 2.7
gave characterizations of 0-dimensionality and total disconnectedness in hyper-
spaces. In [88, 80.5], Alejandro Illanes and Sam B. Nadler asked whether K(X)
is hereditary disconnected when X is hereditarily disconnected and metrizable.
In [133], Elżbieta Pol and Roman Pol answered this question in the negative and
gave some other remarks. Our first results generalize some of the results of [133].

We remark that some of the examples in Chapter 2 will be used. Moreover,
the arguments missing in those examples can be given in analogous ways to
arguments we will provide here.

Our first result gives a method to locate connected sets in a hyperspace.

Lemma 4.1 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Hausdorff space. Assume there is a K ∈ K(X) such that for every
U ∈ CO(X) with K ⊂ U we have X = U . Then

C = {K ∪ {x} : x ∈ X}

is a connected subset of K(X).

Proof. Let U and V be open subsets of K(X) such that K ∈ U , C ⊂ U ∪ V and
C ∩U ∩V = ∅. Let U = {x ∈ X : K ∪{x} ∈ U} and V = X \U . Clearly, K ⊂ U ,
we now prove that U is clopen.

First, we prove every point x ∈ U is in the interior of U , we have two cases.
If x ∈ K, let n < ω and U0, . . . , Un be open subsets of X such that

K ∈ 〈〈U0 . . . , Un〉〉 ⊂ U .

Notice that x ∈ K ⊂ U0 ∪ . . . ∪ Un ⊂ U . If x /∈ K, let V0, . . . , Vm,W be open
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subsets of X such that K ⊂ V0 ∪ . . . ∪ Vm, x ∈W , W ∩ (V0 ∪ . . . ∪ Vm) = ∅ and
K ∪ {x} ∈ 〈〈V0, . . . , Vm,W 〉〉 ⊂ U . Then, x ∈W ⊂ U .

Now let x ∈ V , then K ∪ {x} ∈ C \ U ⊂ V . Let V0, . . . , Vm,W be open
subsets of X such that K ⊂ V0 ∪ . . . ∪ Vm, x ∈W , W ∩ (V0 ∪ . . . ∪ Vm) = ∅ and
K ∪ {x} ∈ 〈〈V0, . . . , Vm,W 〉〉 ⊂ V . Then x ∈ W ⊂ V . This proves V is open and
thus, U is closed.

Therefore, U is clopen and contains K so by hypothesis U = X. But this
implies that C ⊂ U . Then C is connected.

Using Lemma 4.1, we give a modification of Example 1.1 of [133] showing
there was no need to add a Cantor set to the original space.

Example 4.2 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) The
hyperspace of the Knaster-Kuratowski fan.

Let F be the space from Example 2.5. Recall that F is a hereditarily disconnected
space that is not totally disconnected. Let π : F → C be the projection to the
first coordinate (in the plane). We now prove:

Claim 1. There is a compact G ⊂ F such that if c ∈ C, |π←(c) ∩G| = 1.

To prove Claim 1, let D = Q∪ [Q∩ (I \C)] which is a countable dense subset
of [0, 1]. It is a well-known fact that there is a homeomorphism h : [0, 1]→ [0, 12 ]
such that f [D] = Q ∩ [0, 12 ] (see Theorem 10.2 in Part III). Let G = f ↾C ⊂
C × [0, 12 ], the graph of the function f restricted to the Cantor set. Claim 1
follows.

Claim 2. Let A,B closed sets of the plane such that A∩B ∩F = ∅, G ⊂ A and
F ⊂ A ∪B. Then F ∩B = ∅.

To prove Claim 2, let Q ∩ [0, 1) = {qn : n < ω} be an enumeration. For each
n < ω, let Pn = C ×{qn} and Kn = π[A∩B ∩Pn]. Notice that Kn is a compact
subset of P because A ∩B ∩ F = ∅ and F ∩ Pn = Q× {qn}.

Moreover, Kn is nowhere dense in P . To see this, assume W is a nonempty
regular open subset of C with W ∩ P ⊂ Kn. We have clC(W ∩ P ) = clC(W )
because P is dense in C. Let x ∈ W ∩ Q, then x ∈ W ⊂ clC(W ∩ P ) ⊂ Kn.
So (x, qn) is a point of F whose first coordinate is in Kn, this implies (x, qn) ∈
A ∩B ∩ F, a contradiction.

Since P is completely metrizable, it is a Baire space and the set Z = P \
(
⋃
n<ωKn) is a dense open subset of P . Fix c ∈ Z. Then for each n < ω,

〈c, qn〉 /∈ A ∩ B. Since Lc is dense in {c} × [0, 1], {c} × [0, 1] ⊂ A ∪ B. Now,
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{c} × [0, 1] is connected so either {c} × [0, 1] ⊂ A or {c} × [0, 1] ⊂ B. Since
〈c, f(c)〉 ∈ G ⊂ A, we necessarily have {c} × [0, 1] ⊂ A. But this implies that⋃
{Lc : c ∈ Z} is a dense subset of F contained in A. Then F ⊂ A so F∩B = ∅.

This proves Claim 2.
By Claim 2 and Lemma 4.1, C = {G ∪ {x} : x ∈ F} is a connected subset of

K(F) with more than one point. We have proved that K(F) is not hereditarily
disconnected.

Figure 4.1: Set G in F from Example 4.2.

Now assume that X is a hereditarily disconnected Hausdorff space that is
“almost” totally disconnected. By this, we mean that X is the union of two
totally disconnected subsets X = F ∪ Y . We must ask some other condition on
F and Y , because we have examples of connected non-trivial spaces that are the
union of two 0-dimensional subspaces (for example, the real line R). We will ask
that F is closed. Our Main Theorem 4.6 says that in this case K(X) is hereditarly
disconnected when the quotient space X/F is hereditarily disconnected. Before
proving it, we isolate two technical Lemmas we will use often.

Lemma 4.3 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let X
be a T1 space, T ⊂ X such that

(a) for every x ∈ X \T there is a W ∈ CO(X) such that x ∈W and W ∩T = ∅,

(b) X \ T is totally disconnected.

Let C ⊂ K(X) be connected. Then the following holds

(∗) if Y1, Y2 ∈ C, then Y1 \ T = Y2 \ T .
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Proof. For the sake of producing a contradiction, let us assume (∗) does not hold
for some Y1, Y2 ∈ C. Let, without loss of generality, y ∈ Y2 \ T be such that
y /∈ Y1. For each x ∈ Y1 \T , let Ux ∈ CO(X) such that x, y ∈ Ux and Ux∩T = ∅,
this can be done by (a). Since Ux ⊂ X \ T is totally disconnected by (b), let
Vx ∈ CO(Ux) be such that x /∈ Vx and y ∈ Vx. Let Wx = X \ Vx, observe both
Vx,Wx ∈ CO(X).

Notice that T ∪ {x} ⊂Wx and y /∈Wx. By compactness, there is a finite set
{x0, . . . , xn} ⊂ Y1\T such that Y1∪T ⊂Wx0∪· · ·∪Wxn . So W =Wx0∪. . .∪Wxn

is a clopen subset of X such that Y1 ∈ W+ and Y2 /∈ W
+. But this contradicts

the connectedness of C so (∗) holds.

Lemma 4.4 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let X
be a T1 space, T ⊂ X a closed subset and ∅ 6= C ⊂ K(X) such that

(a) if Y1, Y2 ∈ C, then Y1 \ T = Y2 \ T ,

(b) if Y ∈ C, then Y ∩ T 6= ∅.

Define Φ : C → K(T ) by Φ(Y ) = Y ∩ T . Then Φ is a well-defined, injective and
continuous function.

Proof. The function Φ is well-defined by (b) and is injective by (a), we only have
to prove the continuity. Let Y0 ∈ C. Define Z = Y0 \ T . Notice that by (a),
Z = Y \T for every Y ∈ C. If Z = ∅, Φ is an inclusion that is clearly continuous
so assume Z 6= ∅.

Let U be an open subset of K(T ) with Φ(Y0) ∈ U . We now prove there is an
open subset V of K(X) such that Y0 ∈ V and Φ[V ∩ C] ⊂ U . We may assume
that U = 〈〈U1, . . . , Un〉〉 where U1, . . . , Un are nonempty open subsets of T .

Let V0 = X \ T . For 1 ≤ m ≤ n, let Vm be an open subset of X such
that Vm ∩ T = Um and if Um ∩ clX(Z) = ∅, then also Vm ∩ clX(Z) = ∅. Let
V = 〈〈V0, V1, . . . , Vn〉〉, clearly Y0 ∈ V .

Let Y ∈ V∩C. First, if y ∈ Φ(Y ), then y ∈ Vm∩T for some 1 ≤ m ≤ n. Thus,
Φ(Y ) ⊂ U1∪. . . Un. Now, let 1 ≤ m ≤ n. If there is a point y ∈ Um∩clX(Z) 6= ∅,
then since clX(Z) ⊂ Y , y ∈ Um ∩ Φ(Y ). If Um ∩ clX(Z) = ∅, let y ∈ Y ∩ Vm so
that y ∈ Um ∩ Φ(Y ). In both cases, Um ∩ Φ(Y ) 6= ∅. This shows Φ(Y ) ∈ U and
completes the proof.

The Main Theorem will be proved in two steps. The first step is to add just
one point to a totally disconnected space.
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Proposition 4.5 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
Let X be a Hausdorff hereditarily disconnected space and p ∈ X be such that
X \ {p} is totally disconnected. Then K(X) is hereditarily disconnected.

Proof. Start with a connected subset C ⊂ K(X). By considering iterated quasi-
components, we shall prove that |C| = 1.

For each ordinal α, let Tα = Qα(X, p) and Γ = nc(X, p). Notice that {Tα :
α < Γ} is a strictly decreasing family of closed subsets of X that contain p and
TΓ = {p}. We prove the following two properties by transfinite induction on α:

(∗)α If Y1, Y2 ∈ C, then Y1 \ Tα = Y2 \ Tα.

(⋆)α If there exists Y0 ∈ C such that Y0 ∩ Tα = ∅, then C = {Y0}.

To prove (∗)0, just apply Lemma 4.3 to the pair of spaces T0 ⊂ X. Now, let
Y0 as in (⋆)0, so one can find W ∈ CO(X) such that Y0 ⊂ W and T0 ∩W = ∅.
But then W+ is a clopen set so Y ∈W+ for all Y ∈ C. By (∗)0, we get (⋆)0.

Now assume (∗)γ and (⋆)γ for every γ ≤ β. We now prove (∗)β+1 and (⋆)β+1.
We first consider (∗)β+1. If there exists Y0 ∈ C such that Y0 ∩ Tβ = ∅,

by (⋆)β , we have C = {Y0} and (∗)β+1 is clearly true. So assume that every
Y ∈ C intersects Tβ . By Lemma 4.4, the function Φβ : C → K(Tβ) defined by
Φβ(Y ) = Y ∩ Tβ is continuous and injective. Let Cβ = Φβ [C]. Using Lemma 4.3
for the pair of spaces Tβ+1 ⊂ Tβ and the connected subset Cβ we get for every
Y1, Y2 ∈ C, (Y1 ∩ Tβ) \ Tβ+1 = (Y2 ∩ Tβ) \ Tβ+1. By (∗)β , this implies (∗)β+1.

Notice that if there is a Y0 ∈ C such that Y0 ∩ Tβ = ∅, then (⋆)β implies
(⋆)β+1 so assume for every Y ∈ C, Y ∩ Tβ 6= ∅. Again we may consider Φβ and
Cβ as in the former paragraph. Let Y0 ∈ C such that Y0 ∩ Tβ+1 = ∅. Then one
can find W ∈ CO(Tβ) such that Φβ [Y0] ⊂ W and W ∩ Tβ+1 = ∅. So W+ is a
clopen set that intersects the connected set Cβ , therefore, Φβ [Y ] ∈W+ for every
Y ∈ C. By (∗)β+1 we conclude (⋆)β+1.

We have left to prove (∗)β and (⋆)β for a limit ordinal β but these proofs
follow from (∗)γ and (⋆)γ for each γ < β using that Tβ =

⋂
γ<β Tγ .

Observe that (∗)Γ means that if Y1, Y2 ∈ C, then Y1 \ {p} = Y2 \ {p}. By (⋆)Γ
it easily follows that |C| = 1. So K(X) is hereditarily disconnected.

We now procede to prove the main result.

Theorem 4.6 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Hausdorff space. Assume that there is a closed subset F ⊂ X such that

(a) both F and X \ F are totally disconnected,
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(b) the quotient X/F is hereditarily disconnected.

Then K(X) is hereditarily disconnected.

Proof. Let C ⊂ K(X) be a connected subset. Denote by π : X → X/F the
quotient map and denote by F̃ the unique point in π[F ]. Let D = {π[C] : C ∈ C},
this set is connected because D = π∗[C] where π∗ : K(X) → K(X/F ) is the
continuous function defined in Lemma 1.6. Using Proposition 4.5 for F̃ ∈ X/F
it follows that D = {T} for some T ∈ K(X/F ). If F̃ /∈ T , since π is inyective in
X \F , |C| = 1. If F̃ ∈ T , then Y ∩F 6= ∅ for every Y ∈ C. Thus, by Lemma 4.4,
the function Φ : C → K(F ) given by Φ(Y ) = Y ∩ F is continuous and injective.
But F is totally disconnected, so by Theorem 2.7, K(F ) is totally disconnected.
Thus, |C| = |D| = 1.

A natural question here is if the converse to the Main Theorem 4.6 is true.
That is, assume X = Y ∪ F where both Y, F are totally disconnected, F is
closed and K(X) is hereditarily disconnected, is it true that the quotient X/F
must also be hereditarily disconnected? When F is compact, the answer is in
the affirmative (Corollary 4.7) but it may not be in general (Case 2 of Example
4.12).

Corollary 4.7 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Hausdorff space. Assume X = Y ∪ T where both Y and T are totally
disconnected and T is compact. Then K(X) is hereditarily disconnected if and
only if the quotient space X/T is hereditarily disconnected.

Proof. Let π : X → X/T be the quotient and T̃ the unique point in π[T ]. If X/T
is hereditarily disconnected, then K(X) is hereditarily disconnected by the Main
Theorem. If X/T is not hereditarily disconnected, let R ⊂ X/T be a connected
subset with more than one point. Clearly T̃ ∈ R. Let F = π←[R], notice T ⊂ F .
Define C = {T ∪ {x} : x ∈ F} which is connected by Lemma 4.1. Moreover,
|C| > 1 because R 6= {T̃}.

So Corollary 4.7 contains a converse of the statement of the Main Theorem
for the case that T is a compact space. In Example 4.12 we present two examples
related to the Main Theorem. However, before presenting this, we will present
some other results.

First, let us prove that if K(X) has a connected subset with more than one
point, then it must also contain a cannonical one in some sense.

Proposition 4.8 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79])
LetX be a Hausdorff hereditarily disconnected space. If C ⊂ K(X) is a connected
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set with more than one point and K ∈ C, then there is a closed subset F ⊂ X
with K ( F such that the set D = {K ∪ {x} : x ∈ F} is connected and |D| > 1.

Proof. Consider the set

Z = {Z ⊂ X : Z is closed and for every Y ∈ C, Y ⊂ Z}.

By the Kuratowski-Zorn lema, there exists a ⊂-minimal element F ∈ Z. Notice
K ⊂ F . Let D = {K ∪ {x} : x ∈ F}.

Assume K = F . Since K is compact, it is zero-dimensional (Proposition
2.12) and K(K) is also zero-dimensional (Theorem 2.7). Then C is a connected
subset of K(K), this implies |C| = 1. This is a contradiction so we have K ( F ,
which implies |D| > 1.

Let q : F → Q(F ) be the quotient map onto the space of quasicomponents
of F . Consider the continuous function q∗ : K(F ) → K(Q(F )) from Lemma
1.6. Since K(Q(F )) is totally disconnected (Lemma 2.18 and Theorem 2.7),
q∗[C] = {T} for some compact T ⊂ Q(F ). Then G = q←[T ] is such that G ⊂ F
and C ⊂ K(G). By minimality of F , F = G. Thus, q[K] = q∗(K) = T = q[F ] =
Q(F ) so K intersects every quasicomponent of F . From this and Lema 4.1 it
easily follows that D is a connected subset of K(X).

We generalize the “countable” in Theorem 1.3 of [133] to “scattered”. We start
with a useful remark that will help with the proof.

Remark 4.9 If F is hereditarily disconnected and K ⊂ F is a compact subset
such that {K ∪ {x} : x ∈ F} is connected, then K intersects every quasicompo-
nent of F .

Theorem 4.10 Let X be a Hausdorff hereditarily disconnected space. If C ⊂
K(X) is connected and there exists T ∈ C that is scattered, then |C| = 1.

Proof. Assume that C ⊂ K(X) is connected and |C| > 1. By Proposition 4.8, we
may assume C = {T ∪ {x} : x ∈ F} for some closed subset F ⊂ X such that
T ⊂ F .

We now define a descending transfinite sequence of closed sets Fα (α an
ordinal) in the following way. We first take F0 = F . Assume we have already
defined Fα. Let qα : Fα → Q(Fα) be the quotient map and let Uα ⊂ Q(Fα) be
the set of isolated points of Q(Fα). Define Fα+1 = Fα \ q

←
α [Uα]. Finally, if β is

a limit ordinal, let Fβ =
⋂
α<β Fα.

We also define for each ordinal α, Tα = Fα ∩ T (so that T0 = T ) and

Cα = {Tα ∪ {x} : x ∈ Fα}.
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By transfinite induction on α we shall prove the following properties

(0)α If for each β < α we have Fβ 6= ∅, then for each β < α, Fα ( Fβ .

(1)α (a) For every Y1, Y2 ∈ C, Y1 \ Fα = Y2 \ Fα,
(b) For each Y ∈ C, Tα ⊂ Y ,
(c) If Fα 6= ∅, the function Φα : C → K(Fα) given by Φα(Y ) = Y ∩ Fα is
well-defined, continuous and injective. Moreover, Cα = Φα[C].

(2)α qα[Tα] = Q(Fα).

First, notice that (1)α implies (2)α. To see this, observe that (1c)α implies
Cα is connected. By Remark 4.9, we get (2)α.

Clearly, (0)0 and (1)0 are true. Assume (0)α, (1)α and (2)α hold.
Since Tα is a compact Hausdorff scattered space, it must be 0-dimensional

(Lemma 2.13) so by (2)α, Lemma 2.8, Lemma 2.13 and Lemma 2.18, Q(Fα) is a
compact 0-dimensional scattered space. Thus, if Fα 6= ∅, then also Uα 6= ∅ and
since qα is onto, Fα+1 ( Fα. From this (0)α+1 follows.

Observe that for each x ∈ Uα, q←α (x) is a clopen quasicomponent of Fα, so it
must be an isolated point {y}. By (2)α, y ∈ Tα. We have obtained

(⋆)α q
←
α [Uα] ⊂ Tα.

So we can write

(∗)α Cα = {Tα ∪ {x} : x ∈ Fα+1} ∪ {Tα}.

We now prove (1)α+1.
First, let Y1, Y2 ∈ C and x ∈ Y1 \ Fα+1. If x /∈ Fα, by (1a)α, x ∈ Y2 \

Fα ⊂ Y2 \ Fα+1. If x ∈ Fα, by (∗)α, we get Tα ∪ {x} = Tα ∪ {y} for some
y ∈ Fα+1 or Tα ∪ {x} = Tα. Notice x 6= y so it must be that x ∈ Tα. Thus,
x ∈ T ⊂ Y2. We have obtained that Y1 \ Fα+1 ⊂ Y2 \ Fα+1 and by a similar
argument, Y2 \ Fα+1 ⊂ Y1 \ Fα+1. This proves (1a)α+1.

Condition (1b)α+1 is true because of (1b)α and the fact that Tα+1 ⊂ Tα.
Assume Fα+1 6= ∅. Notice that by (2)α, Tα+1 = Tα∩Fα+1 6= ∅. Then, (1b)α+1

implies that for each Y ∈ C, Y ∩ Fα+1 6= ∅. Using this, (1a)α+1 and Lemma 4.4
it can be shown that Φα+1 is a well-defined, continuous and injective function.
By similar arguments and (1c)α, we may define a function Ψ : Cα → K(Fα+1)
by Ψ(Y ) = Y ∩ Fα+1 this function is continuous and injective. Moreover, the
following diagram commutes:
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C

Φα

��

Φα+1

$$I
IIIIIIIII

Cα Ψ
// K(Fα+1)

From equation (∗)α, we deduce Φα+1[C] = Ψ[Cα] = Cα+1. This proves
(1c)α+1.

Now, let us assume (0)α, (1)α and (2)α for all α < γ for some limit ordinal γ.
Assume Fα 6= ∅ for each α < γ. Fix α < γ. From Fγ ⊂ Fα+1 ⊂ Fα we see that
Fγ 6= Fα. Otherwise, Fα+1 = Fα, which contradicts (0)α+1. Thus, we get (0)γ .

From Fγ =
⋂
α<γ Fα, Tγ =

⋂
α<γ Tα and (1a)α, (1b)α, one can easily deduce

(1a)γ and (1b)γ . Assume Fγ 6= ∅. By (2)α, Tα 6= ∅ for each α < γ. Then by (0)α,
the Tα, with α < γ, form a strictly descending chain of compact nonempty sets,
this implies Tγ =

⋂
α<γ Tα 6= ∅. By (1a)γ and (1b)γ , we can apply Lemma 4.4

to conclude that Φγ is well-defined, continuous and injective. Then, it is easy to
see that Φγ [C] = Cγ . This proves (1c)γ .

This completes the induction. Notice that by (0)α, one can define

Γ = min{α : Fα = ∅}.

One can show, using (2)α and the compactness of the Tα, that Γ = Λ+ 1 for
some ordinal Λ. Observe that FΓ = FΛ \q

←
Λ [UΛ], so every point of FΛ is isolated.

Then, TΓ is a discrete compact set and thus finite. By (2)Λ, Q(FΛ) must be finite
and since it is a space of quasicomponents, FΛ = Q(FΛ). Thus, CΛ = {TΛ}. But
CΛ is the injective image of C under ΦΛ. This contradicts |C| > 1. Therefore,
|C| = 1.

It is inmediate that the following holds

Corollary 4.11 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Let
X be a Hausdorff space. Then the following are equivalent

(a) X is hereditarily disconnected,

(b) for some (equivalently, for each) n ∈ N, Fn(X) is hereditarily disconnected,

(c) F(X) is hereditarily disconnected.

Finally, we will present the example for the Main Theorem 4.6. The first
example (Case 1) is an example of this inverse implication. The second example
(Case 2) shows that one cannot obtain an inverse of the statement of the Main
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Theorem relaxing the requirement of compactness of T to that of being a closed
subset of X.

Example 4.12 (Hernández-Gutiérrez and Tamariz-Mascarúa, [79]) Two
examples related to the Main Theorem.

We are going to use a special case of Example 2.3 (specifically, when s(n) = n+1
for all n < ω). Let π : ω2 × [0,∞] → ω2 and h : ω2 × [0,∞] → [0,∞] be the
first and second projections, respectively. For each i < ω, let ρi : ω2 → 2 be
the projection onto the i-th coordinate. We will say a subset A ⊂ ω2× [0,∞] is
bounded if suph[A] < ∞ and unbounded if it is not bounded (thus, h denotes
the “height”). Let φ : ω2→ [0,∞] be the function

φ(t) =
∑

m<ω

tm
m+ 1

.

We will consider the spaces X = {x ∈ ω2 : φ(x) <∞} and X0 = {(x, φ(x)) : x ∈
X}. In [30, p. 600], Dijkstra shows that X0 is homeomorphic to complete Erdős
space. Moreover, this space has the following property

(∇) every nonempty clopen subset of X is unbounded.

We will use the basis of ω2 formed by the clopen subsets of the form

[a0, . . . , an] = {x ∈
ω2 : ρm(x) = am for all m ≤ n}

where {a0, . . . , an} ⊂ {0, 1}.
Observe that both X and ω2 \ X are dense: for every open set of the form

[a0, . . . , an] we may choose x, y ∈ [a0, . . . , an] such that xm = 0 = 1−ym for each
m > n; then x ∈ X and y ∈ ω2 \X.

For each K ⊂ ω2 we define K0 = K × {∞} and Y = X0 ∪ K0. Notice
that since π↾Y is ≤2-to-1 and π[Y ] ⊂ ω2 is 0-dimensional, then Y is hereditarily
disconnected. By a similar argument, X0 and K0 are totally disconnected. We
now analyze whether K(Y ) is hereditarily disconnected for two specific examples
of K.

Case 1. K = ω2.

First, Y/K0 is connected: if U ∈ CO(Y ) is such that K0 ⊂ U , using the
compactness of K we get that X \U is bounded, so Y = U by (∇). By Corollary
4.7, K(Y ) is not hereditarily disconnected. In this case, Y/K0 is homeomorphic
to the space of Example 1.4.8 of [51]. By [30, p. 600], Y/K0 is also homeomorphic
to the set of non-ordinary points of the Lelek fan.
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Figure 4.2: In example 4.12, when the set K is compact, if we take the quotient
we obtain the endpoints and the appex of the Lelek fan. The image of K is the
appex of the Lelek fan.

Case 2. K = X

First, we see that Y/K0 is connected. Observe that since K0 is not compact,
Y/K0 is not the same quotient as in Case 1 (it is not even first countable at
the image of K0). If U ∈ CO(Y ) is such that K0 ⊂ U and (x,∞) ∈ K0, there
exists W ∈ CO(ω2) and t ∈ [0,∞) such that (x,∞) ∈ W × (t,∞] ⊂ U . Thus,
V = (W × [0,∞]) \ U is a bounded clopen subset. By (∇), V = ∅. Since (x,∞)
was arbitrary, we get U = Y . Thus, Y/K0 is connected. However, we cannot
use Corollary 4.7 because K0 is not compact. In fact, we will show that K(Y )
is hereditarily disconnected. Observe that the proof that Y/K0 is connected can
be modified to show that Y is not totally disconnected, so it is not obvious that
K(Y ) is hereditarily disconnected.

A first attempt to prove that K(Y ) is hereditarily disconnected could be show-
ing that any compact subset of Y is scattered and use Theorem 4.10. However,
this is false. Recall that

∑∞
m=0

1
m+1 = π2

6 <∞, then the subset

P = {(x, t) ∈ Y : for each square-free n ∈ N, ρn−1(x) = 0}

is bounded. As it is pointed out in [30, p. 600], P is homeomorphic to the
Cantor set. Fortunately, every compact subset of Y will be “almost everywhere
bounded” in the sense of (0)′α below. We will follow the technique of Theorem
4.10 to prove that K(Y ) is hereditarily disconnected.

Assume that K(Y ) contains a connected subset C with more than one point.
We may assume by Proposition 4.8 that C = {T ∪ {x} : x ∈ F} for some closed
F ⊂ Y and some compact T ( F . We now construct a decreasing sequence of
closed subsets Fα ⊂ Y for each ordinal α. Start with F0 = F . If Fα has already
been defined, let
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Uα = {x ∈ Fα : there is an open subset U ⊂ ω2 and r ∈ (0,∞) with
π(x) ∈ U such that if y ∈ Fα ∩ π←[U ], then h(y) < r or h(y) =∞}.

Notice that Uα is open in Fα. Moreover, if x ∈ Fα and U is like in the
definition above for x, then Fα ∩ π←[U ] ⊂ Uα. Thus

(⋆)α Let x, y ∈ Fα be such that π(x) = π(y). Then x ∈ Uα if and
only if y ∈ Uα.

So let Fα+1 = Fα \ Uα, which is closed. Finally, if β is a limit ordinal, let
Fβ =

⋂
α<β Fα. We also define for each ordinal α, Tα = T ∩ Fα and Cα =

{Tα ∪ {x} : x ∈ Fα}.
We now prove the following properties by transfinite induction.

(1)α (a) For every Y ∈ C, Tα ⊂ Y ,
(b) If Y1, Y2 ∈ C, Y1 \ Fα = Y2 \ Fα.
(c) If Fα 6= ∅, the function Φα : C → K(Fα) given by Φ(Y ) = Y ∩ Fα is
well-defined, continuous and injective. Moreover, Cα = Φα[C].

(2)α For each x ∈ X, Fα ∩ π←(x) 6= ∅ implies Tα ∩ π←(x) 6= ∅.

(3)α If x ∈ π[Uα], Fα ∩ π←(x) = Tα ∩ π
←(x).

We will procede in the following fashion:

• Step 1: (1)0 is true.

• Step 2: (1c)α implies (2)α and (3)α for each ordinal α.

• Step 3: (1)α implies (1)α+1 for each ordinal α.

• Step 4: If β is a limit ordinal, (1)α for each α < β implies (1)β .

This proof is very similar to that of Theorem 4.10, so we will omit some
arguments when they follow in a similar way. Step 1 is clear, observe that Φ0 is
the identity function.

Proof of Step 2: Notice that if Fα = ∅, (2)α and (3)α are true, so we may
assume Fα 6= ∅. Thus, (1c)α implies Cα is connected.

First, we prove (2)α. Let x ∈ X and

(•) Y ∩ π←(x) = {〈x, t0〉, 〈x, t1〉}.
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Aiming towards a contradiction, assume 〈x, t0〉 ∈ Fα and Tα ∩ π←(x) = ∅. Since
x is not in the compact set π[Tα], there is a W ∈ CO(ω2) such that x ∈ W and
W ∩π[Tα] = ∅. Since Tα∪{〈x, t0〉} ∈ (π←[W ])− and Tα /∈ (π←[W ])−, the clopen
set (π←[W ])− separates Cα. This contradiction shows that (2)α holds.

Next, we prove (3)α. Let x ∈ π[Uα] be such that π←(x) ∩ Fα 6= ∅. Let us
use equation (•) above. By (2)α and the fact that Tα ⊂ Fα, we only have to
show that the case when π←(x) ∩ Fα = π←(x) and π←(x) ∩ Tα = {〈x, t0〉} is
impossible. We will analyze when t0 <∞, the other possibility being similar.

Since x ∈ π[Uα], there is an open subset U ⊂ ω2 and r ∈ (0,∞) such that
if y ∈ Fα and π(y) ∈ U , then h(y) /∈ [r,∞). Since Tα ∩ (ω2 × [0, r]) = R is a
nonempty compact set and x /∈ π[R], there exists W0 ∈ CO(

ω2) such that x ∈W0

and W0 ∩ π[R] = ∅. We may assume that W0 ⊂ U . Let

W1 = (W0 × [0, r]) ∩ Fα = (W0 × [0, r)) ∩ Fα

which is a clopen subset of Fα. Further, Tα ∪{〈x, t0〉} ∈W−1 and Tα /∈W−1 , this
gives a separation of Cα. This is a contradiction so (3)α follows.

Proof of Step 3: Assume (1)α. By Step 2, (2)α and (3)α hold. We may also
assume that Fα+1 6= ∅, otherwise (1)α+1 is clearly true. First we prove that

(∗)α Cα = {Tα ∪ {x} : x ∈ Fα+1} ∪ {Tα}.

The right side of (∗)α is clearly contained in the left side. Let Tα ∪ {x} ∈ Cα
with x ∈ Fα. If x /∈ Fα+1, by (3)α, x ∈ Tα. Thus, Tα ∪ {x} = Tα that is in the
right side of (∗)α. Thus, (∗)α follows.

We also need that Tα+1 6= ∅. Let x ∈ π[Fα+1], by (2)α there are x1, x2 ∈
Fα ∩ π

←(x) such that x1 ∈ Fα+1 and x2 ∈ Tα. By (⋆)α, x2 ∈ Tα+1.
The remaining part of the argument is similar to that of Theorem 4.10, in

the part where it is shown that (1)α+1 is a consequence of (0)α, (1)α and (2)α.
The proof of Step 4 is also similar to the part of Theorem 4.10 where it is

shown (1)β is the consequence of (0)α,(1)α and (2)α for all α < β when β is a
limit ordinal so we ommit it. This completes the induction.

The key to this example is the following statement:

(0)α If Fα 6= ∅, then Uα 6= ∅.

We shall use the technique Erdős used for for the proof of (∇) (for the original
Erdős space, see [52]) to prove (0)α. Assume Fα 6= ∅ but Uα = ∅ for some α.
We now use induction to find elements {xn : n < ω} ⊂ Fα, a strictly increasing
sequence {sn : n < ω} ⊂ ω, y ∈ ω2\X and a decreasing sequence of open subsets
{Un : n < ω}. For each n < ω, call tn = π(xn) and yn = ρn(y). We find all these
with the following properties
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(i) tn ∈ Un,

(ii) for each m ≤ n and r ≤ sn, ρr(tm) = yr,

(iii) if m < n, then m+ h(xm) < h(xn) <∞,

(iv) if m < n, then m+ h(xm) <
∑n+1

m=0
ym
m+1 <∞,

(v) Un = [y0, . . . , ysn ].

For n = 0 define s0 = 0 and choose x0 ∈ Fα arbitrarily. Assume that we have
the construction up to n. Since xn /∈ Uα, there exists xn+1 ∈ Fα ∩ π

←[Un] such
that n+ h(xn) < h(xn+1) <∞. Since

∑

m<ω

ρm(tn+1)

m+ 1
= h(xn+1) <∞,

by the convergence of this series, there exists sn+1 > sn such that

n+ h(xn) <

sn+1∑

m=0

ρm(tn+1)

m+ 1
.

Define ym = ρm(tn+1) for m ∈ {sn+1, . . . , sn+1}. Clearly, conditions (i)−(v)
hold. Notice that by (iv), φ(y) =∞ so in fact y ∈ ω2 \X.

By (ii), {tn : n < ω} converges to y. Moreover, by (iii), {xn : n < ω}
converges to 〈y,∞〉 /∈ Y . Since Tα is compact, there exists N < ω such that for
each N ≤ n < ω, xn ∈ Fα \ Tα.

Let zn = 〈tn,∞〉 for each n < ω. If N ≤ n < ω then by (2)α, zn ∈ Tα. But
{zn : N ≤ n < ω} converges to 〈y,∞〉 /∈ Tα, which is a contradiction. Thus, (0)α
follows.

Obseve that one may also use a similar argument to prove:

(0)′α Uα is dense in Fα.

We are now ready to produce a contradiction to the assumption that K(Y ) is
not hereditarily disconnected. By (0)α, we know that if Fα 6= ∅, then Fα+1 ( Fα.
Thus, there exists

Γ = min{α : Fα = ∅}.

By (2)α and a compactness argument, it can be proved that Γ = Λ+ 1 for some
Λ. Then UΛ = FΛ, by (3)Λ this implies FΛ = TΛ. Thus CΛ = {TΛ}. But ΦΛ

is an injective function by (1c)Λ so we have a contradiction. This contradiction
proves that K(Y ) is hereditarily disconnected.



Chapter 5

Miscellanea on Hyperspaces

In this chapter we will present observations on four aspects of hyperspaces. The
results presentes in this chapter are not strong enough to be published in a
research journal. However, the author thinks that they do reserve to be analysed
and mentioned in the dissertation due to their interest.

In the last Section, we will give a summary of our problems on hyperspaces
that remain open.

5.1 Symmetric products of ω∗

Recall that if X is any Tychonoff space, then X∗ = βX \ X (see Section 6.1).
This section’s result is motivated by the following result by van Douwen.

Theorem 5.1 [37, Theorem 2.4] Let κ, τ be nonzero cardinals and Z a first
countable noncompact realcompact space without isolated points. Then κ(Z∗)
is homeomorphic to τ (Z∗) if and only if κ = τ .

The symmetric product is in some sense a reduced topological product (and
in fact becomes more complicated). So it is natural to try to extend Theorem
5.1 to symmetric products. As van Douwen himself points out ([37, Remark
6.6]), the difficult and interesting part of Theorem 5.1 is for finite cardinals. To
prove it in its most general situation, van Douwen defined βω-spaces to be those
spaces X such that if N is a countable discrete subset of X such that clX(N)
is compact, then clX(N) is homeomorphic to βω. A βω-space in non-trivial if
it does contain some copy of βω. By Lemma 6.48, ω∗ is a non-trivial βω-space
(hence the terminology).

Lemma 5.2 [37, 6.3] (“Number of Factors Lemma”) Let κ, τ be nonzero cardi-
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nals. For each α < τ , let Zα be a non-trivial βω-space. Then κ ≤ τ if and only
if κβω can be embedded in

∏
α<τ Zα.

From the Number of Factors Lemma we can easily infer our result.

Theorem 5.3 (Hernández-Gutiérrez) Let n,m < ω. If Fn(ω∗) is homeo-
morphic to Fm(ω∗), then n = m.

Proof. Let h : Fn(ω
∗) → Fm(ω

∗) be a homeomorphism and consider U =
Fn(ω∗) \ Fn−1(ω∗) and V = Fm(ω∗) \ Fm−1(ω∗). Let V0, . . . , Vm−1 be a col-
lection of nonempty pairwise disjoint clopen subsets of ω∗. Notice that U and V
are dense open subsets in the corresponding spaces. Thus, there are non-empty
pairwise disjoint clopen subsets U0, . . . , Un−1 of ω∗ such that

h[〈〈U0, . . . , Un−1〉〉] ⊂ 〈〈V0 . . . , Vm−1〉〉.

Notice that 〈〈U0, . . . , Un−1〉〉 is homeomorphic to the product U0× . . .×Un−1 and
〈〈V0, . . . , Vn−1〉〉 is homeomorphic to V0× . . .×Vn−1. Since each non-empty clopen
subset of ω∗ is homeomorpich to ω∗, we may apply Lemma 5.2. From this, we
obtain that n ≤ m. But the argument is symmetric so m = n.

5.2 Pseudocompactness in Hyperspaces

Recall that if X is Hausdorff, then K(X) is compact if and only if X is compact
(Theorem 1.12). It is natural to try to weaken the hypothesis on compactness
in the hyperspace and try to find similar equivalences. In this section we will
explore weakenings of compactness on hyperspaces.

A Hausdorff space X is countably compact if every countable infinite subset
of X has a limit point and X is pseudocompact if every continuous real-valued
function f : X → R is bounded. These concepts are natural1 specializations of
the notion of compactness. Every countably compact space is pseudocompact
([50, 3.10.20]) and the converse holds for compact spaces ([50, 3.10.21]). How-
ever, there are examples of countably compact spaces that are not compact (for
example, ω1 with the order topology, see [50, 3.10.16]) and pseudocompact spaces
that are not countably compact (for example, see 5I or 8.20 in [69]).

It is known that countable compactness and pseudocompactness are not pro-
ductive properties in general (see [50, 3.20.19]). So it is natural to think that

1Actually, in the early 20th century, compact spaces were called bicompact and countably
compact spaces were called compact, as mentioned in [50, p. 205] and witnessed in numerous
papers of that time.
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symmetric products and hyperspaces do not behave well under these properties.
We will now give a series of results in this direction. For an exposition of most
of them, we recommend the reader to see the recent thesis [59] (in Spanish).

Theorem 5.4 [70, Corollary 2.3] Let X be a Hausdorff space. The following
are equivalent.

(i) for every cardinal κ, κX is countably compact,

(ii) for every n < ω, nX is countably compact,

(iii) CL(X) is countably compact.

Theorem 5.5 [97, Theorem 1.3] Let X be a Tychonoff space and n < ω. Then
Fn(X) is pseudocompact if and only if nX is pseudocompact.

Theorem 5.6 [70, Corollary 2.7] Let X be a Tychonoff space. If CL(X) is
pseudocompact, then nX is pseudocompact for all n < ω.

Theorem 5.7 [70, Example 3.1] There exists a Tychonoff space X such that
nX is countably compact for all n < ω but CL(X) is not pseudocompact.

Theorem 5.8 [85, Theorem 5.1] There is a subspace X ⊂ βω such that ωX is
pseudocompact but CL(X) is not pseudocompact.

As the reader has noticed with these results, much work has been done about
hyperspace CL(X) and the symmetric products have an easy characterization for
their pseudocompactness. However, we lack results about pseudocompactness of
hyperspaces K(X) and F(X).

A regular space X is feebly compact if every locally finite collection of open
subsets of X is finite. Feeble compactness is related to pseudocompactness in
the following way.

Lemma 5.9 [135, 1.11(d)] Every feebly compact space is pseudocompact. A
Tychonoff space is feebly compact if and only if it is pseudocompact.

Proposition 5.10 (Hernández-Gutiérrez) If X is a regular and infinite
space, then F(X) is not feebly compact so it is not pseudocompact.

Proof. Let {Un : n < ω} be a family of non-empty open subsets of X with
pairwise disjoint closures, this is possible since X is regular. Define

Un = 〈〈U0, . . . , Un〉〉 ∩ F(X),
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for each n < ω. Notice that V = {Un : n < ω} is a pairwise disjoint family
of open subsets of F (X), let us prove that it is locally finite. Let A ∈ F (X),
define m = min{k < ω : A ∩ clX(Uk) = ∅}, this is possible as A is finite. Let
V = X \ clX(UM ), this is non-empty open set. Then A ∈ V + and for all k ≥ m,
V + ∩ Uk = ∅. This proves that V is locally finite. Then F(X) is not feebly
compact.

There exists a characterization of countable compactness in K(X) by Milo-
vančević. A Tychonoff space X is called ω-bounded if every time N ⊂ X is
countable it follows that clX(N) is compact.

Theorem 5.11 [120, Theorem 2.2] Let X be a Tychonoff space. Then the
following are equivalent.

(1) Every σ-compact subset of X has compact closure,

(2) K(X) is countably compact,

(3) K(X) is ω-bounded,

(4) K(K(X)) is countably compact.

It is interesting to notice that Theorem 5.11 has been recently generalized to
higher cardinals in [7, Theorem 1.6]. See also [129].

Thus, we only have left the question of pseudocompactness for K(X). It
turns out that this question is far from easy and it is still unsolved. The first
observation is the following.

Proposition 5.12 (Hernández-Gutiérrez) Let X be a Tychonoff space. If
K(X) is pseudocompact, then X is pseudocompact.

Proof. If X is not pseudocompact, there is a collection of pairwise disjoint non-
empty open subsets {Un : n < ω} such that {clX(Un) : n < ω} is a discrete
family. For each n < ω we define

Un = 〈〈U0, . . . , Un〉〉 ∩ K(X).

Notice that {Un : n < ω} is a pairwise disjoint family of non-empty open
subsets of K(X), we will see that it is discrete. Let C ∈ K(X) and notice that
{n < ω : C ∩ clX(Un) 6= ∅} is a finite set by the compactness of C. Let m < ω be
such that C ∩ clX(Um) = ∅ and consider V = X \ clX(Um). Notice that C ∈ V +

and if k ≥ m, V + ∩ Uk = ∅. This proves that K(X) is not pseudocompact
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The other direction of Proposition 5.12 is false. For an example, consider
any pseudocompact space X where K(X) = F(X), then use Proposition 5.10.
Of course we have to prove that such spaces exist. We will consider an example
that has already been mentioned in Example 2.27 and analyze its hyperspace of
compact sets and symmetric products.

First we need a definition. Let κ be an infinite cardinal. If B ∈ [κ]≤ω,
then πB : κ[0, 1] → B[0, 1] denotes the projection (restriction) to B[0, 1]. For
X ⊂ κ[0, 1], we will say that X is ω-dense in κ[0, 1] if for all B ∈ [κ]≤ω, the
projection πB[X] = B[0, 1].

Example 5.13 [152] Dmitrĭı B. Shakhmatov’s space: There exists a pseudo-
compact, connected, weak P -space X (2) that is ω-dense in c[0, 1].

Notice that since X is a weak P -space, K(X) = F(X) is not pseudocompact
by Proposition 5.10. In our final result of this section, we will show that the
symmetric products of X have the same properties, see Proposition 5.16. We
need some preliminary results.

Theorem 5.14 (“Arhangel’skĭı’s Factorization Theorem”) [8, 0.2.3] Let S be a
non-empty set and {Xs : s ∈ S} a family of second countable Hausdorff spaces.
Assume that Y ⊂

∏
{Xs : s ∈ S} is a dense subset and f : Y → R is a continuous

function. Then there is B ∈ [A]≤ω and a continuous function g : πB[Y ] → R
such that f = g ◦ πB.

Proposition 5.15 Let κ be an infinite cardinal and X ⊂ κ[0, 1] be a dense
subset. Then X is pseudocompact if and only if X is ω-dense in κ[0, 1].

Proof. First assume that X is pseudocompact and let A ∈ [κ]≤ω. Since pseu-
docompactness is preserved under continuous images ([50, 3.10.24]), πA[X] is
pseudocompact. Since A[0, 1] is metrizable, πA[X] is compact ([50, 3.10.21,
4.1.17]). Further, since X is dense in A[0, 1], πA[X] is dense in A[0, 1]. Thus,
πA[X] = A[0, 1].

Now assume the second part and let f : X → R be a continuous function. By
the Factorization Theorem 5.14, there is A ∈ [κ]≤ω and a continuous function
g : πA[X]→ R such that f = g ◦ πA. Since πA[X] = A[0, 1], g is bounded. Thus,
f is bounded.

Proposition 5.16 If n ∈ N, then Fn(X) is a pseudocompact, connected, weak
P -space.

2
X is the initial of Shakhmatov in the Cyrillic alphabet
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Proof. Let n ∈ N. Notice that since X is connected, by Theorem 2.6, Fn(X) is
connected. Also, Fn(X) is a weak P -space by Theorem 3.12. By Theorem 5.5,
it is enough to prove that nX is pseudocompact. It is not difficult to prove from
the definition of X that n

X is a ω-dense subspace of n×c[0, 1]. By Proposition
5.15 we obtain that n

X is pseudocompact.

5.3 CL(X) for discrete X

In this section, we will give some remarks about the hyperspace CL(X) when
X is a discrete space. As promised in Chapter 1, we will first discuss separation
axioms for CL(X).

In the following previously known results we will notice a peculiarity of hy-
perpace CL(X): if we want CL(X) to have some property P, we need that X
has a property stronger than P.

Proposition 5.17 Let X be a Hausdorff space. Then

(a) CL(X) is Hausdorff if and only if X is regular,

(b) CL(X) is regular if and only if CL(X) is Tychonoff if and only if X is
normal.

Proof. Let us start with the proof of (a). First, assume that X is regular, let
A,B ∈ CL(X) with A 6= B. Choose, without loss of generality, p ∈ A \ B and
find two disjoint open subsets U and V such that p ∈ U and B ⊂ V . Then
A ∈ U−, B ∈ V + and U− ∩ V + = ∅. Then CL(X) is Hausdorff.

Now assume that CL(X) is Hausdorff, we shall prove that X is regular so
consider a closed set F ⊂ X and p ∈ X \F . Let U and V be disjoint open subsets
of CL(X) with F ∈ U and F∪{p} ∈ V . We may assume that U and V are Vietoris
sets so U = 〈〈U0, . . . , Un〉〉 and V = 〈〈V0, . . . , Vm〉〉. Let U =

⋃
{Uk : k ≤ n}, then

U is an open set that contains F . Let V =
⋂
{Vk : k ≤ m, p ∈ Vk} and let

{W0, . . . ,Wr} be an enumeration of {Vk − {p} : k ≤ n, F ∩ Vk 6= ∅}. Notice
that K ∪ {p} ∈ 〈〈V,W0, . . . ,Wr〉〉 ⊂ V . We claim that U ∩ V = ∅. Otherwise,
let q ∈ U ∩ V . Then it can be easily seen that F ∪ {q} ∈ U ∩ V , which is a
contradiction. Thus, U and V are disjoint open subsets of X that separate F
from p so X is regular.

Now we prove (b). Clearly, CL(X) Tychonoff implies CL(X) regular. Now
assume that CL(X) is regular and let A,B ⊂ X be disjoint closed subsets of X.
Notice that B− is a closed subset of CL(X) since B− = X \ (X \B)+. Further,
A /∈ B− so by regularity there is an open set U with A ∈ U and clCL(X)(U)∩B

− =
∅. We may assume that U is a Vietoris set 〈〈U0, . . . , Un〉〉. Let U = U0 ∪ · · · ∪ Un,
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clearly A ⊂ U so let us prove B ∩ clX(U) = ∅. Assume this is not the case and
let p ∈ B∩ clX(U). Then it is easy to see that A∪{p} ∈ B−∩ clCL(X)(U), which
is a contradiction. This proves that X is normal.

Finally, assume that X is normal and let us prove that CL(X) is Tychonoff.
Let A ∈ CL(X) and U an open set in CL(X) with A ∈ U . We may assume that
U is a Vietoris set 〈〈U0, . . . , Un〉〉. We will define n + 2 functions F,G0, . . . , Gn
from CL(X) to [0, 1] such that if G = F · G0 · . . . · Gn is their product, then
G(A) = 0 and G(B) = 1 whenever B ∈ CL(X)\U . These arguments are similar
to those of Lemma 1.7.

First, by normality, let f : X → [0, 1] be a continuous function such that
f [A] ⊂ {0} and X \ (U0 ∪ . . . ∪ Un) ⊂ f←(1). Define F : CL(X) → [0, 1] as
F (Y ) = sup {f(y) : y ∈ Y } for all Y ∈ CL(X). It is not hard to see that F is a
continuous function, F (A) = 0 and F (B) = 1 if B 6⊂ U0 ∪ . . . ∪ Un.

For each m ≤ n, let pm ∈ A ∩ Um. Then there is a continuous function
gn : X → [0, 1] such that gm(pm) = 0 and X \ Um ⊂ g←m (1). Define Gm :
CL(X) → [0, 1] by Gm(Y ) = inf {g(y) : y ∈ Y } for all Y ∈ CL(X). Again, it
can be proved that Gm is a continuous function, Gm(A) = 0 and Gm(B) = 1 if
B ∩ Un = ∅.

Thus, by defining the product G = F · G0 · . . . · Gn we obtain that G :
CL(X)→ [0, 1] is a continuous function with G(A) = 0 and G(B) = 1 whenever
B ∈ CL(X) \ U . Also, by (a), CL(X) is T1. Thus, CL(X) is Tychonoff.

As shown in Proposition 3.3, CL(X) does not have high disconnectedness
properties. However, it is known when it is 0-dimensional. A Tychonoff space X
is strongly 0-dimensional if for every two disjoint zero sets of X can be separated
by a clopen set. Of course a strongly 0-dimensional space is 0-dimensional but
the converse is not true in general (not even for metrizable spaces, see [131,
Chapter 7, Section 4]).

Proposition 5.18 Let X be a Hausdorff space. Then CL(X) is 0-dimensional
if and only if X is normal and strongly 0-dimensional.

Proof. First, assume that X is normal and strongly 0-dimensional. Let A ∈
CL(X) and let U be an open set of CL(X) such that A ∈ U . We may assume
that U is a Vietoris set 〈〈U0, . . . , Un〉〉. The following argument is analogous to
the second part of the proof of (b) in Proposition 5.17. Since X is normal, A
and X \ (U0 ∪ . . . ∪ Un) can be separated by zero sets, so by hypothesis there is
U ∈ CO(X) with A ⊂ U and U ⊂ U0∪. . .∪Un. For each m ≤ n, let Vm ∈ CO(X)
with Vm∩A 6= ∅ and Vm ⊂ Um. Then V = U+∩ (V −0 ∩ . . .∩V

−
n ) ∈ CO(CL(X)),

A ∈ V and V ⊂ U . Thus, CL(X) is 0-dimensional.



Section 5.3. CL(X) for discrete X 59

Now assume that CL(X) is 0-dimensional. By Proposition 5.17, X is normal.
Let A and B be two disjoint zero sets of X. Then A ∈ CL(X) and B− is a closed
subset of CL(X) with A /∈ B−. Thus, there is U ∈ CO(CL(X)) such that A ∈ U
and U ∩ B− = ∅. However, we cannot assume that U is a Vietoris set (as we
did in the first part of the proof of (b) in Proposition 5.17) so we need a more
elaborated argument to separate A and B. Let

U = {x ∈ X : A ∪ {x} ∈ U},

clearly A ⊂ U and B ∩U = ∅. We will see that U ∈ CO(X), this will prove that
X is strongly 0-dimensional.

First, let p ∈ U . Since A ∪ {p} ∈ U , there is a Vietoris set 〈〈U0, . . . , Un〉〉 such
that A ∪ {p} ∈ 〈〈U0, . . . , Un〉〉 ⊂ U . We may assume that p ∈ U0 so if q ∈ U0 then
A ∪ {q} ∈ U . Then p ∈ U0 ⊂ U , which proves that U is open.

Finally, let p ∈ X \ U . This means that A ∪ {p} ∈ CL(X) \ U so by an
argument analogous to that in the previous paragraph, there is an open set V
such that p ∈ V ⊂ X \ U . So U is closed as well. This proves that U ∈ CO(X)
separates A from B.

Concerning separation axioms, we only have normality left. The problem of
normality in CL(X) was a difficult one and was finally solved in the following
way.

Theorem 5.19 [159] If X is a Hausdorff space and CL(X) is normal, then X
is compact.

The original proof of Theorem 5.19 is in Russian. For a proof in Spanish, we
recommend the reader to see [59]. As we will be considering only discrete spaces
for the rest of this Section, we will give a proof of the fact that the hyperspace
of closed sets of a discrete space is not normal.

Proposition 5.20 Let X be an infinite discrete space. Then CL(X) is not
normal.

Proof. Let X = X0 ∪ X1 be a partition of X into two sets of cardinality |X|.
For each i ∈ 2, let fi : X → Xi be a bijection. Consider the space D =
{f0[Y ] ∪ f1[X \ Y ] : Y ∈ CL(X)} ⊂ CL(X). We shall prove that D is a closed
and discrete subset of CL(X).

First we prove thatD is discrete. Let Y ∈ CL(X), we claim that 〈〈f0[Y ], f1[X\
Y ]〉〉∩D = f0[Y ]∪ f1[X \Y ]. So let Z ∈ CL(X) be such that f0[Z]∪ f1[X \Z] ∈
〈〈f0[Y ], f1[X \ Y ]〉〉. Then f0[Z] ⊂ f0[Y ] and f1[X \ Z] ⊂ f1[X \ Y ] which imply
Z ⊂ Y and X \ Z ⊂ X \ Y , respectively. Thus Y = Z.
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Now let Z ∈ CL(X) \ D and define Zi = Z ∩ Xi for i ∈ 2. Since Z /∈ D,
then either f←0 [Z0] ∩ f

←
1 [Z1] 6= ∅ or f←0 [Z0] ∪ f

←
1 [Z1] 6= X. In the first case,

let p ∈ f←0 [Z0] ∩ f
←
1 [Z1]. Then Z ∈ {f0(p)}

− ∩ {f1(p)}
− and ({f0(p)}

− ∩
{f1(p)}

−) ∩ D = ∅. For the second case, let q ∈ X \ (f←0 [Z0] ∪ f
←
1 [Z1]). Then

Z ∈ CL(X) \ {f0(q), f1(q)}
− and D ⊂ {f0(q), f1(q)}−.

Thus, D is a closed and discrete subset of CL(X) of cardinality 2|X|. Since
F(X) is a dense subset of CL(X) (Lemma 1.4) of cardinality |X|, by Jones’
Lemma (Theorem 0.12) we obtain that CL(X) is not normal.

Since we found a discrete subset of size 2|X|, we have the following.

Corollary 5.21 Let X be an infinite discrete space. Then CL(X) has weight
2|X|.

Regarding the normality of K(X), the problem is still open as far as the
author of this dissertation knows. We mention this in Question 5.39.

For the rest of the section, we will restrict to the case when X is discrete. So
in this case CL(X) is a 0-dimensional and non-normal space. Notice that in this
case CL(X) has a dense set of isolated points, as the following result shows.

Lemma 5.22 Let X be discrete. Then A ∈ CL(X) is an isolated point if and
only if A ∈ F(X).

Proof. If A = {a0, . . . , an}, then 〈〈{a0}, . . . , {an}〉〉 = {A} so A is isolated. For the
other implication, if A ∈ CL(X) \ F(X), we next show that A is not an isolated
point. Consider any Vietoris set neighborhood A ∈ 〈〈U0, . . . , Un〉〉. Without loss
of generality, we may assume that |A ∩ U0| = ω and take x ∈ A \ U0. Then
A \ {x} ∈ 〈〈U0, . . . , Un〉〉 and ∅ 6= A \ {x} 6= A.

Thus, we can add finitely many points to CL(X) without changing the space
(when X is discrete). We will use this fact later so we emphasize it.

Observation 5.23 If X is an infinite discrete space and F is any finite set (with
the discrete topology), CL(X)⊕ F is homeomorphic to CL(X).

So CL(ω) has a dense set of isolated points. So a natural question is how
different the other points of CL(ω) are from each other. More formally, we
will show that CL(ω) \ F(ω) is homogeneous. In general, we will calculate the
homogeneity degree of CL(X) for infinite discrete X. Since the homeomorphism
type of a discrete space depends only in its cardinality, we will be considering
infinite cardinals with the discrete topology.
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Lemma 5.24 If κ and τ are infinite cardinals, CL(κ)×CL(τ) is homeomorphic
to CL(κ+ τ).

Proof. Let X, Y be disjoint sets with |X| = κ, |Y | = τ and p a point such that
p /∈ CL(X ∪ Y ). Give X and Y the discrete topology. Define the function

h : (CL(X)⊕ {p})× (CL(Y )⊕ {p})→ CL(X ∪ Y )⊕ {p}

in the following way:

h(〈A,B〉) =





A ∪B, if A 6= p,B 6= p,
A, if A 6= p,B = p,
B, if A = p,B 6= p,
p, if A = p,B = p.

Notice that h is bijective and the four domains of definition of h are clopen
sets of its domain. From this, it is easy to see that h is a homeomorphism. By
observation 5.23 we obtain the result.

Lemma 5.25 If κ and τ are infinite cardinals, then CL(κ)⊕ CL(τ) is homeo-
morphic to CL(κ+ τ).

Proof. Let us first do the case when κ = τ . Let us notice that CL(κ) = (κ \
{0})+ ∪ {0}−. Clearly (κ − {0})+ is homeomorphic to CL(κ). Notice that
{A ∪ {0} : A ∈ CL(κ \ {0})} ≈ CL(κ \ {0}) by means of the homeomorphism
A ∪ {0} 7→ A. So

{0}− = {{0}} ∪ {A ∪ {0} : A ∈ CL(κ \ {0})} ≈ {0} ⊕ CL(κ \ {0}) ≈ CL(κ),

by Observation 5.23. Thus, CL(κ) ≈ CL(κ)⊕ CL(κ).
Now we prove the general case, let X and Y be disjoint sets such that |X| = κ

and |Y | = τ . Give X and Y the discrete topology and take p /∈ CL(X ∪ Y ).
Also assume without loss of generality that κ ≥ τ so that κ + τ = κ. Consider
the function h : CL(X)⊕ CL(Y )→ (CL(X)⊕ {p})× (CL(Y )⊕ {p}) given by

h(A) =

{
〈A, p〉, if A ⊂ X,
〈p,A〉, if A ⊂ Y.

Clearly h is an embedding, let A = h[CL(X)⊕ CL(Y )]. Notice that

(CL(X)⊕ {p})× (CL(Y )⊕ {p}) = (CL(X)× CL(Y )) ∪ (A ∪ {〈p, p〉}). (∗)

By Observation 5.23 and Lemma 5.24, the left side of equation (∗) is home-
omorphic to CL(κ+ τ) ≈ CL(κ).
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The right side of equation (∗) is homeomorphic to

(CL(κ)× CL(τ))⊕ (A⊕ {p}) ≈ CL(κ)⊕A

by Observation 5.23 and Lemma 5.24.
Considering the observations made about equation (∗), we obtained

CL(κ) ≈ CL(κ)⊕A ≈ CL(κ)⊕ CL(κ)⊕ CL(τ) ≈ CL(κ)⊕ CL(τ),

where we are using that CL(κ) ≈ CL(κ)⊕CL(κ). This completes the proof.

Proposition 5.26 Let κ ≥ ω and A ∈ CL(κ) with A 6= κ. Then A− is
homeomorphic to CL(κ).

Proof. Notice that

A− = 〈〈A, κ \A〉〉 ∪A+ ≈ (CL(A)× CL(κ \A))⊕ CL(A). (∗)

We have different cases depending on whether A or κ\A are finite or infinite.
If F ⊂ X is finite, then CL(F ) is just a discrete set of 2|F |− 1 points. Moreover,
since the product of a space Y and a discrete space of cardinality k < ω is just
a sum of k copies of Y , we obtain by Lemma 5.25 and the fact that |κ \ F | = κ
that

CL(F )× CL(κ \ F ) ≈ (2|F | − 1)× CL(κ \ F ) ≈ CL(κ \ F ) ≈ CL(κ).

Thus, if either A is finite or κ \A is finite, CL(A)×CL(κ \A) ≈ CL(κ). By
Equation (∗), in both of these cases we obtain that A− ≈ CL(κ): if A is finite,
use Observation 5.23; if κ−A is finite, use Lemma 5.25.

If both A and κ \ A are infinite, Lemmas 5.24 and 5.25 applied to equation
(∗) directly show that A− ≈ CL(κ).

Proposition 5.27 Let κ be an infinite cardinal and A ∈ CL(κ) \ F(κ). Then

χ(CL(κ), A) = |A|.

Proof. For each F ∈ [A]<ω, take an enumeration F = {x1, . . . , xn} and consider

UF = 〈〈{x1}, . . . , {xn}, A \ F 〉〉.

Clearly
U = {UF : F ∈ [A]<ω}
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is a local base of CL(X) at A, and it is of cardinality |[A]<ω| = |A|. Now let V
be a local base of CL(X) at A and assume that |V| < |A|. By Lemma 0.15, we
may assume that V ⊂ U . Then

V = {UF : F ∈ F},

For some F ⊂ [A]<ω. As we are assuming that |F| < |A| and each element of F is
finite, there is y ∈ A\

⋃
F . Then, since A is infinite, A\{y} ∈ UF for all F ∈ F .

This contradicts the fact that V is a basis. Thus, χ(CL(X), A) = |A|.

Proposition 5.28 (Hernández-Gutiérrez) Let κ be an infinite cardinal and
A,B ∈ CL(κ) \ K(κ). Then the following are equivalent:

(1) |A| = |B|,

(2) there is a homeomorphism H : CL(κ)→ CL(κ) such that H(A) = B.

Proof. The implication (2) ⇒ (1) is clear from Proposition 5.27. For the other
implication, we may assume that B 6= κ. Notice that CL(κ) = B+ ∪ (κ \ B)−.
By Proposition 5.26, (κ \B)− ≈ CL(κ).

If A 6= κ, then CL(κ) = A+ ∪ (κ \ A)−, where (κ \ A)− ≈ CL(κ) (again by
Proposition 5.26). So there is a homeomorphism h0 : (κ \ A)− → (κ \ B)−. Let
h : A → B be a bijection and define h1 : A+ → B+ by h1(X) = h[X] for every
X ∈ A+. It is easy to see that h1 is a homeomorphism. Then H = h0 ∪ h1 :
CL(κ)→ CL(κ) is a homeomorphism with H(A) = B.

So now assume that A = κ. Consider the following sets:

U = {X ∪ {0, 1} : X ∈ CL(κ \ {0, 1})},

V0 = {X ∪ {0} : X ∈ CL(κ \ {0, 1})},

V1 = {X ∪ {1} : X ∈ CL(κ \ {0, 1})}.

Notice that each one of these sets is clopen in CL(κ) and

CL(κ) = U ⊕ V0 ⊕ V1 ⊕ {{0}, {1}, {0, 1}}

By Lemma 5.25 and Observation 5.23, we have that V = V0⊕V1⊕{{0}, {1}, {0, 1}} ≈
CL(κ). Then, consider any homeomorphism h0 : V → (κ \ B)−. Given a bijec-
tion h : A \ {0, 1} → B, define h1 : U → B+ by h1(X) = h[X \ {0, 1}], which is
a homeomorphism. Then H = h0 ∪ h1 : CL(κ) → CL(κ) is a homeomorphism
with H(A) = B.

So in particular, we have the following in the countable case.
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Corollary 5.29 CL(ω) \ F(ω) is homogeneous.

Regarding homogeneity properties, the next natural question is whether the
homogeneous space CL(ω)\F(ω) is in fact a topological group. A famous result
of Birkhoff and Kakutani says that a Hausdorff topological group is metrizable if
and only if it is first countable (see [11, Theorem 3.3.12]). Then CL(ω) \F(ω) is
not a topological group as it is first countable (Proposition 5.27) but not normal
(Proposition 5.20) and thus, not metrizable.

As a summary of the results above, we mention that CL(ω) is a first count-
able, 0-dimensional, non-normal, crowded, homogeneous space of weight c. We
remark that it has been recently shown that CL(ω) is strongly 0-dimensional
(see [96]).

We next focus on trying to find whether some classes of spaces can be em-
bedded in CL(ω). This is not a new idea: it was shown in [38] that the existence
of subspaces of CL(ω) that are L-spaces or S-spaces is independent of ZFC (see
[139] for an introduction to L-spaces and S-spaces).

Theorem 5.30 (Hernández-Gutiérrez) For any discrete space X there is a
closed embedding e : CL(X)→ CL(X) \ F(X).

Proof. Let A ∈ CL(X) be such that |A| = |X \A| = |X|. Consider the following
subset of CL(X) \ K(X):

A = {B ∈ CL(X) : A ( B}.

The set A is closed by the following argument. If C /∈ A, we have two cases.
The first case is that there is a ∈ A \C, then (X \ {a})+ is a neighborhood of C
that does not intersect A. If C = A, then A+ is a neighborhood of A that does
not intersect A. Define a function h : A → CL(X \ A) as h(A ∪ Y ) = Y . Then
it is easy to see that h is a homeomorphism.

So in some sense the isolated points do not play a role on embeddability.
Finally, we will see which ordinals are embeddable in CL(ω).

Proposition 5.31 Let κ be an infinite cardinal and α ∈ κ+. Then the linearly
ordered space (α,∈) can be embedded in CL(κ).

Proof. It is enough to show that if α is a limit ordinal, then the linearly ordered
space (α,∈) can be embedded in CL(κ), where κ = |α|. Consider an enumeration
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κ = {xβ+1 : β < α} ∪ {x0}. Recursively define:

X0 = {x0},
Xβ+1 = Xβ ∪ {xβ+1}, for every ordinal β < α,
Xγ =

⋃
β<γ Xβ , for every limit ordinal γ < α.

Notice that then {Xβ : β < α} is a strictly ⊂-increasing sequence.
Define h : α → CL(κ) as h(β) = Xβ . Clearly h is an injective function,

we have to prove that it is an embedding. We shall see that the two topologies
involved in fact coincide.

First we will see that isolated points in (α,∈) are mapped to isolated points
in CL(κ). For 0, notice that X0 = 〈〈{x0}〉〉, which is an open set. If β < α, then

〈〈Xβ , {xβ+1}〉〉 ∩ h[α] = {Xβ+1},

so Xβ+1 is an isolated point in the image.
Fix β < α a limit ordinal.
First consider a basic open neighborhood of Xβ , a Vietoris set of the form

〈〈U0, . . . , Un〉〉. Let xγ(i) ∈ Ui ∩ Xβ for each i ≤ n and let γ = sup{γ(i) : i ≤
n} + 1 < β. Then for all ξ ∈ (γ, β], we have that Xξ ∈ 〈〈U0, . . . , Un〉〉 because
Xξ ⊂ Xβ ⊂ U0 ∪ · · · ∪ Un and xγ(i) ∈ Xξ ∩ Ui for i ≤ n. Thus, every open
neighborhood of Xβ in CL(κ) contains an ordered neighborhood of Xβ .

Now let γ < β, notice that

〈〈Xβ , {xγ+1}〉〉 ∩ h[α] = {Xξ : γ < ξ ≤ β},

so each ordered neighborhood is also a neighborhood in CL(κ). This completes
the proof.

So every countable ordinal can be embedded in CL(ω). Obviously ω1 + 1
cannot be embedded in CL(ω) because ω1 + 1 is not first countable. However,
it is not straightforward to prove that ω1 cannot be embedded in CL(ω). Our
method to prove this is generalizing Theorem 0.14 to the following result.

Proposition 5.32 Let κ be a cardinal. If f : (κ+,∈)→ CL(κ) is a continuous
function, there is β < κ+ such that f ↾(β,κ+) is constant.

Proof. For each α < κ, define a function gα : κ+ → {0, 1} by

gα(β) =

{
0, if α /∈ f(β),
1, if α ∈ f(β).
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Notice that gα is continuous because g←α (0) = f←[(κ \ {α})+] is clopen.
By Theorem 0.14, for each α < κ, there is β(α) < κ+ and tα ∈ {0, 1} such
that if γ ∈ [β(α), κ+), then gα(γ) = tα. Define B = {α < κ : tα = 1} and
β = sup{β(α) : α < κ} < κ+. From this it is easy to see that if γ ∈ (β, κ), then
f(γ) = B.

We immediately obtain the following.

Theorem 5.33 (Hernández-Gutiérrez) If α is an ordinal and X is an infinite
discrete space, then (α,∈) can be embedded in CL(X) if and only if α < |X|+.

Corollary 5.34 An ordinal with the order topology can be embedded in CL(ω)
if and only if it is countable.

5.4 When is K(X) C∗-embedded in CL(X)?

In this Section, we will mention some results about C-embeddings in hyperspaces.
First let us state the motivation for this problem. LetX be a normal space (so

that CL(X) is Tychonoff by Proposition 5.17). Then CL(X) can be embedded
in CL(βX) by the mapping e : CL(X) → CL(βX) defined by e(A) = clβX(A).
Since e[CL(X)] is dense in CL(βX), then CL(βX) is a compactification of
CL(X). Thus, an interesting question is when CL(βX) and βCL(X) are equiv-
alent compactifications of CL(X), in the sense of [135, 4.1.(d)]. This problem
has been solved in the following way3.

Theorem 5.35 ([71] and [128]) Let X be a normal space. Then the following
are equivalent

(1) βCL(X) is equivalent to CL(βX),

(2) CL(X)× CL(X) is pseudocompact,

(3) CL(X) is pseudocompact.

Notice that this problem can be re-stated as follows: “when is e[CL(X)] is
C∗-embedded in CL(βX)? Considering this, the author thinks that determining
when K(X) is C∗-embedded in CL(X) is an interesting problem. The following
observation was made.

3Natsheh’s paper [128] contains an error in the proof of the result but the argument still
applies correctly to give the solution.
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Proposition 5.36 (Hernández-Gutiérrez) Let X be a Hausdorff space. If
K(X) is a normal space that is C∗-embedded in CL(X), then K(X) is ω-bounded.

Proof. Let {Tn : n < ω} ⊂ K(X). By Theorem 5.11, we have to show that
C = clX(

⋃
{Tn : n < ω}) is compact. Assume this is not the case. For each

n < ω, let Kn = T0 ∪ · · · ∪ Tn, which is compact. Then by Lemma 1.11, {Kn :
n < ω} converges to C in CL(X). This means that {Kn : n < ω} is a countably
infinite, closed and discrete space in the normal space K(X). However, K(X) is
C∗-embedded in CL(X). Thus, for example, the function φ : {Kn : n < ω} →
{−1, 1} such that φ(Kn) = (−1)n can be extended to C. This is impossible so
we obtain that C is indeed compact.

The author of this dissertation was not able to solve this problem. However,
some other students of Professor Tamariz-Mascarúa got interested in the problem
and were able to solve it jointly with Nobuyuki Kemoto. They obtained the
following result.

Theorem 5.37 [95] Let κ an ordinal with the order topology. Then K(κ) is
C∗-embedded in CL(κ) if and only if cof(κ) > ω.

Notice that the question for general spaces remains open (see Question 5.40
below).

5.5 Open Questions

In this section, we mention some interesting questions about the topics of Part
I that remain open. We will comment a little about the problems before stating
them.

The first two problems concern some properties on K(X). The spirit is to find
equivalents of these properties in K(X) with some nice property in the base space
X. Recall that the following problems have been solved: countable compactness
of K(X) by Theorem 5.11, normality of CL(X) by Theorem 5.19.

Question 5.38 Give a characterization of Tychonoff spaces X such that K(X)
is pseudocompact.

Question 5.39 When is K(X) a normal space?

The following problem is a generalization of Theorem 5.37. See the discussion
before Theorem 5.37 for some background.
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Question 5.40 Give a characterization of (normal) spaces X such that K(X)
is C∗-embedded in CL(X).

Another type of space that one would like to embedd in CL(ω) besides count-
able ordinals (Corollary 5.34) are Mrówka-Isbell ψ-spaces. Recall that a family
A of subsets of ω is almost disjoint (“AD family”, for short) if |A∩B| < ω every
time A,B ∈ A with A 6= B (see [99, Chapter II, § 1]).

If A is an AD family, we can define a space which will be called ψ(A). The
underlying set of ψ(A) is ω ∪ A. Every n ∈ ω is declared an isolated point and
if A ∈ A, then a basic open neighborhood of A is of the form {A} ∪ (A \ n)
where n ∈ ω. A space of the form ψ(A) is called Mrówka-Isbell ψ-space4 in the
literature.

A

ω

Figure 5.1: A picture of a ψ-space constructed from an AD family A.

See [69, 5I], [135, 1N] or [126, chapter 9, 4.15] for some properties of ψ(A).
As far as this author knows, there are no books that treat ψ(A) in a central way.
However, there is an excellent B.S. thesis in Spanish with a lot of information on
ψ(A), see [4].

It is known that if α is an ordinal less or equal to ω · ω (see [90, Definition
2.18, p. 23] or [103, Definition I.8.21, p. 40] to see what this means), then there
is an AD family A such that ψ(A) is homeomorphic to the linearly ordered space
(α,∈) (see [4, Proposición 3.2.1] for a nice proof). Thus, the following question
seems natural when considering Corollary 5.34.

4In [48, Section § 2], Alan Dow and Jerry Vaughan give a small summary of the history of
ψ(A). Apparently, some special cases of ψ(A) appear in papers from Alexandroff-Urysohn [2,
Chapter V, 1.3] and Katetov [92]. The idea of asking A to be maximal is due to Mrówka [122].
Gillman and Jerison attribute ψ(A) when A maximal to Isbell in [69, Notes to Chapter 5, p.
269].
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Question 5.41 Let A be an AD family. When can ψ(A) be embedded in
CL(ω)?

In general we can ask the following question.

Question 5.42 For which spaces X is it possible to embedd X in CL(ω)?

The last questions on hyperspaces are the author’s hopes to extend the results
of Chapter 4. The first one is wishful thinking: one would always like to have
nice and easy characterizations, although it might not be possible.

Question 5.43 Give tangible conditions on X so that K(X) is hereditarily
disconnected.

The second one is another hope to see homogeneity playing some important
role in the problem.

Question 5.44 Let X be a homogeneous (topological group, perhaps) hered-
itarily disconnected space. Can one give some characterization of hereditarily
disconnectedness of K(X) in terms of (iterated) quasicomponents and/or the
space of quasicomponents Q(X)?

Finally, a related problem, although it does not talk about hyperspaces. Com-
pare with Theorems 2.15, 2.16 and 2.17.

Question 5.45 [158, Question 8, p. 307] Does there exist a hereditarily discon-
nected subgroup of 3R for which the quasicomponent of the quasicomponent is
not zero?
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Part II

Spaces of Remote Points
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Introduction

It is known that the class of Tychonoff spaces coincides with the class of spaces
that can be embedded in compact Hausdorff spaces (Proposition 6.1). In partic-
ular, for each Tychonoff space X there exists a space βX called the Čech-Stone
compactification of X that has a dense copy of X and that is maximal with
respect to this property in some sense ((2) in Theorem 6.4).

A point p ∈ βX \X is called a remote point of X if p is not in the βX closure
of any nowhere dense subset of X. So in some sense, remote points of X are far
away from X. In this Part, we will study the set ̺(X) of remote points of X as
topological spaces. In particular, we address the following problem: if X and Y
are two metrizable spaces, when are ̺(X) and ̺(Y ) homeomorphic? The results
of our research have been published in [80].

What follows is an historical introduction to the theory of remote points. The
historical context of remote points goes back to the effort for understanding the
space βX. Even for simple spaces X, most of the times βX is a very complicated
space. For example, if X is a metrizable and non-compact space, then βX has
cardinality 2c (Proposition 6.49) and none of the points of βX \X is of type Gδ
(Corollary 6.50). Once such a complicated object is constructed, it is desirable
to be able to “see inside” it and be able to understand its structure. For example,
since ω (with the discrete topology) is clearly homogeneous, one wonders if it is
also the case that the set of non-isolated points of βω, βω \ ω is homogeneous.

Non-homogeneity of βω \ ω

It turns out that βω \ω is highly non-homogeneous. As shown by Zdeněk Frolik
in 1967 (Theorem 6.55), βω \ ω has exactly 2c different kinds of points in ZFC.
Frolik’s result shows the non-homogeneity of βω\ω but it does not tells us “why”
this space is non-homogeneous, since the argument is combinatorial in nature and
does not exhibit two different types of points in βω \ ω.

Previously, in 1956 ([142]), Walter Rudin did construct, under CH, a special
type of points of βω \ω defined in a topological way: the famous P -points. Since
not all points in a infinite compact Hausdorff space can be P -points, Rudin’s
result shows that βω\ω is not homogenous under CH (Corollary 6.54). However,
the existence of P -points without further hypothesis was left open. Even after
Frolik’s solution to the homogeneity problem in βω \ ω, Rudin’s method was
perhaps closer to what a General Topologist might wish for.

In 1977-1978, Saharon Shelah proved that there is a model of ZFC in which
there are no P -points in βω \ ω (this was published by Wimmers in [166]). This
may sound dissapointing but at the same time, Kenneth Kunen gave ([100]) a
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proof of the existence (in ZFC) of the so called weak P -points in βω \ ω. As in
the case of P -points, there are points in βω \ ω that are not weak P -points and
being a weak P -point is a topological property so βω \ ω is not homogeneous.
See [117] for a longer and more detailed retelling of this story.

Non-homogeneity and remote points

Kunen’s result finally settles “why” βω \ ω is not homogeneous. So a natural
question is for what spaces X is X∗ homogeneous. Frolik’s result on βω \ ω
also shows that if X is not psedocompact, then βX \ X is not homogeneous
(see Theorem 6.56). Also, it is known that if G is a topological group, then βG
is homogeneous if and only if G is a pseudocompact ([34]). See, for instance,
Example 6.6.

However, once again, Frolik’s results do not answer the question of “why”
βX \X is not homogeneous. Eric van Douwen was one of the advocates of this
philosophy and used far points (see definition in Chapter 7, p. 108) in [35] to
prove that if X is a nowhere locally compact and metrizable space, then βX \X
is not homogeneous. Later, in [36] van Douwen proved that if X is a nowhere
locally compact and non-pseudocompact space with countable π-weight, then
βX \X is not homogeneous because it is extremally disconnected at its (many)
remote points but has points of non-extremal disconnectedness (Theorem 7.9).

The origin of remote points

In [58], Fine and Gillman proved, assuming CH, that there is a point p ∈ βR
such that if D is a discrete subset of R then p /∈ clβR(D). Fine and Gillman called
such a point a remote point, this does not conflict with the current terminology as
every nowhere dense subset of R is contained in the closure of a discrete subset of
R. According to Fine and Gillman’s paper (see footnote 4 in [58]), W.F. Eberlein
was the first to construct a point p ∈ βR − R such that for all closed discrete
subsets D ⊂ R we have p /∈ clβR(D). We remark that Eberlein’s proof used
Lebesgue measure and does not use additional assumptions. However, notice
that the point found by Eberlein is not necessarily a remote point.

Finally, van Douwen ([36]) and independently Soo Bong Chae and Jeffrey H.
Smith ([26]) were able to find remote points in ZFC. Van Douwen proved that
if X is a non-pseudocompact space of countable π-weight, then X has 2c remote
points ([36, Theorem 1.5]). Chae and Smith proved that if X is a metrizable
space without isolated points, then X has 2c remote points as well ([26, Theorem
1]). Notice that none of the two results is more general than the other. Moreover,
van Douwen gave many applications of remote points in [36], in particular, the
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non-homogeneity results mentioned above.

Finding remote points

After the existence of remote points for some spaces was proved, one can naturally
hope to extend these results for other spaces. We will mention results that in
opinion of the author have been significant. In [43], van Douwen and van Mill
proved that there non-compact σ-compact spaces without remote points. In [102]
Kenneth Kunen, Jan van Mill and Charles F. Mills proved that CH is equivalent
to the assertion that each non-pseudocompact space with at most c continuous
and bounded real-valued functions has a remote point. Moreover, it is consistent
that there is a separable non-pseudocompact space with no remote points as
shown by Alan Dow in [44]. Also, Dow shows in [44] that a pseudocompact space
does not have remote points. Dow has been one of the most active researchers
in this topic. See [46] where there are references to several of his results. The
latest paper about the existence of remote points is [22].

Spaces of remote points

As the reader has noticed, most of research on remote points has been about
their existence. However, R. Grant Woods published an interesting result in
[167]: CH implies every non-compact, locally compact and crowded metrizable
space of weight κ has its set of remote points homeomorphic to the set of remote
points of κ×ω2. Later, Catherine L. Gates extended the results of Woods in [66].
By the time of the publication of [66], van Douwen had anounced his results on
[36] so it followed that Wood’s results in [167] could be proved in ZFC.

Our results

The objective of this Part of the dissertation is to extend the results of Gates and
Woods to metrizable spaces that are not necessarily locally compact. In Chapter
9 we will give the results we were able to obtain. Most of them are about
nowhere locally compact and completely metrizable spaces. In Proposition 9.31,
the reader will notice a duality between the space of remote points of the rationals
and the one of the irrationals. We were not able to completely characterize these
spaces, see the Questions scattered in this Chapter.



Chapter 6

The Čech-Stone
Compactification and the
Absolute

In this chapter, we will give the basic definitions of two of the constructions we
will use: the Čech-Stone compactification and the Illiadis Absolute.

6.1 Basics of βX

If X is a Tychonoff space, a compactification is a pair 〈T, e〉 where T is a compact
Hausdorff space and e : X → T is an embedding such that e[X] is dense in X.
The remainder of X in 〈T, e〉 is the set T \e[X]. In general, a remainder of X is a
space Y such that there is a compactification 〈T, e〉 of X and Y is homeomorphic
to T \X.

Let us recall Čech’s1 classical construction of the Čech-Stone compactifica-
tion2. Let X be a Tychonoff space and

C∗(X) = {f ∈ XR : f is continuous and bounded}.

For each f ∈ C∗(X), let If = [inf f [X], sup f [X]]. By the Tychonoff theorem

1There has been some controversy as to whether Tychonoff constructed the Čech-Stone
compactification. Čech does give credit to Tychonoff in his paper [28]. However, according to
[61], Tychonoff only constructed some other compactification that is not always the Čech-Stone
compactification.

2In books and papers by US authors this space is called “Stone-Čech compactification”,
perhaps to honor their co-national Marshal Harvey Stone. We however, take the more natural
and less controversial alphabetical order.
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0.5, the space IX =
∏
{If : f ∈ C∗(X)} is compact. Define eX : X → IX by

eX(x)(f) = f(x) for all x ∈ X and f ∈ C∗(X).
It is not hard to prove that eX is an embedding (for example, using [161, 1.5,

p. 4]). Thus, eX [X] is a homeomorphic copy of X. We define βX = clIX (eX [X]).
Notice that since βX is a closed subset of the compact space IX , it is a compact
set that contains a dense topolgical copy of X. Notice that if X is already
compact, then βX is homeomorphic to X.

Since we are using the Tychonoff Theorem to prove the compactness of βX, at
least it is apparent from Proposition 0.6 that we need some version of the Axiom
of Choice to construct βX. An interesting discussion of the relation between the
Axiom of Choice and the Čech-Stone compactification is contained in Chapter
4.8 of [77].

From all this and the fact that the Tychonoff property is hereditary, the
following result follows easily.

Proposition 6.1 Let X be any space. Then the following are equivalent.

(1) X is a Tychonoff space,

(2) X can be embedded in a compact Hausdorff space,

(3) there is an infinite cardinal number κ and an embedding e : X → κ[0, 1].

We gave a precise definition of βX. However, rather than the explicit defini-
tion, it is sometimes desirable to have some topological characterization of βX
and forget about the original construction.

Lemma 6.2 Let X be a Tychonoff space. Then eX [X] is C∗-embedded in βX.

Proof. Let f : X → R be continuous and bounded. Define βf : βX → If as

βf((xg)g∈C∗(X)) = xf ,

that is, the projection into the coordinate indexed by f . It is easy to prove that
βf ◦ eX = f , so this is the desired continuous extension.

Lemma 6.3 Let X and Y be Tychonoff spaces such that X is dense and C∗-
embedded in Y . If K is a compact Hausdorff space and f : X → K is a
continuous function, then there is a continuous function F : Y → K such that
F↾X= f .

Proof. Since K is compact, we may assume that K = eK [K] ⊂ IK . For each
f ∈ C∗(X), let f∗ ∈ C∗(Y ) be such that f∗↾X= f . Define a function F : Y → IK
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by F (x)(g) = (g ◦ f)∗(x) for all g ∈ C∗(K).

Y
(g◦f)∗

''OOOOOOOOOOOOOOO

X

⊂

f
// K g

// Ig

It is not hard to prove that F is continuous and F↾X= f . Since X is dense in Y
and K is compact, F [Y ] ⊂ K. Thus, F is the continuous extension we want.

The following characterization will allow us to see βX not just as a construc-
tion but as an abstract topological object. In fact, in most of our applications,
we will assume that X is a dense subset of βX. For example, Theorem 6.23 gives
an alternative definition of βX when X is discrete.

Theorem 6.4 Let X be a Tychonoff space and assume that there is a compact
Hausdorff space T such that X is a dense subset of T . Then the following are
equivalent.

(0) There is as homeomorphism h : βX → T such that (h ◦ eX)[X] is the
identity function.

(1) X is C∗-embedded in T .

(2) For every compact Hausdorff space K and each continuous function f :
X → K there exists a continuous function F : T → K such that F↾X= f .

(3) Any two disjoint zero sets in X have disjoint closures in T .

Proof. By Lemma 6.2 (0) implies (1) and by Lemma 6.3, (1) implies (2). If f :
X → R is bounded, then If is a compact Hausdorff space such that f : X → If
so (2) clearly implies (1).

To see that (2) implies (0), consider e0 : X → T the inclusion and e1 = eX :
X → βX. By Lemmas 6.2 and 6.3, there is a continuous function f0 : βX → T
such that f0 ◦ e1 = e0. By (2) there is a continuous function f1 : T → βX such
that f1 ◦ e0 = e1. Notice that then f1 ◦ f0 : βX → βX is a continuous function
such that (f1 ◦ f0) ↾e1[X] is the identity in e1[X].

βX
f0 // T

f1 // βX

X

e1

aaBBBBBBBB
e0

OO

e1

==||||||||
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By Lemma 0.4, we obtain that f1◦f0 is the identity in βX. By a similar argu-
ment, f0◦f1 is the identity in T . Thus, f1 is the inverse function of f0, this shows
that both functions are homeomorphisms. Then h = f0 is the homeomorphism
we wanted.

Finally, notice that the equivalence of (2) and (3) is Taimanov’s Theorem
0.10.

We will say that a pair 〈T, e〉 is the Čech-Stone compactification of a Ty-
chonoff space X whenever e : X → T is a dense embedding, T is a compact
Hausdorff space and any of the properties of Theorem 6.4 hold. The spirit is
that this pair defines the Čech-Stone compactification modulo homeomorphism.
Notice that in most of the cases we will assume that X ⊂ βX and eX is the
inclusion without saying it explicitly.

Let X∗ = βX \X, this is called the Čech-Stone remainder of X is βX.
There are many other ways to construct the Čech-Stone compactification.

Chapter 1 of [161] contains three different descriptions of βX in terms of ultra-
filters of zero sets and spaces of maximal ideals. It also contains references to
other different constructions of βX. We also refer the reader to [161] for histor-
ical information of these constructions, for example, the diagram in [161, p. 27]
is quite interesting.

The classical reference for the Čech-Stone compactification was for many
years [69], it takes an algebraic approach. Other interesting sources include
[161], [135], [62], [29] and [113].

For an approach on the Čech-Stone compactification that use proximities see
[127]. A recent M.S. thesis in Spanish about some aspects of the Čech-Stone
compactification and its relation to other compactifications is [33].

Notice that the definition of βX we gave is of some subspace of IX , which,
in general, may be very complicated and very difficult to visualize. Thus, in the
spirit of grasping the “nature” of the Čech-Stone compactification, we would like
to have examples of spaces X such that βX is known or can be “seen”. It turns
out that βX is complicated for simple spaces such as ω, Q or R. We will speak
more about these spaces in Section 6.4. The examples we will give here are some
“unusual” spaces that will have “simple” compactifications.

Recall that a Tychonoff spaceX is pseudocompact if every continuous function
f : X → R is bounded. Also, X is ω-bounded if every countable subset of X has
compact closure. Clearly, an ω-bounded space is pseudocompact.

Example 6.5 Compactifications of ordinals.

First recall that linearly ordered spaces are Tychonoff (Theorem 0.13). Let κ
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be an ordinal of uncountable cofinality with the order topology. Notice that κ
is a dense subset of the compact space κ + 1. If f : κ → R is a continuous
function, then by Theorem 0.14 there is r ∈ R and α < κ such that f(β) = r
when α ≤ β < κ. Thus, we may define a continuous extension f∗ : κ + 1 → R
by f∗(α) = f(α) for α < κ and f∗(κ) = r. By (1) in Theorem 6.4, κ+ 1 = βκ.

We remark that it is known that if X is a linearly ordered space, then βX
can be linearly ordered if and only if X is pseudocompact ([138], see [137] for
more details of the proof).

Example 6.6 Σ-products.

Let κ be an uncountable cardinal and consider κ2, this space is clearly homoge-
neous since it is a topological group. Let

Σ = {x ∈ κ2 : {α < κ : x(α) 6= 0} is countable}.

The space Σ is called a Σ-product (see [11] for a general definition). Notice
that Σ is in fact a subgroup of κ2 (with the coordinate-wise sum modulo 2) so
in particular it is homogeneous. It is easy to prove that Σ is ω-bounded so in
particular it is pseudocompact. By [135, Problem 1X], Σ is C∗-embedded in κ2.
Thus, βΣ = κ2 by Theorem 6.4.

We remark that it is known that if G is a topological group, then βG is
homogeneous if and only if G is a pseudocompact (see [34]). For other properties
of Σ-products and its generalizations, see [129].

Example 6.7 Mrówka-Isbell ψ-spaces3.

Recall that a family A of subsets of ω is almost disjoint (“AD family”, for short)
if |A∩B| < ω every time A,B ∈ A with A 6= B (see [99, Chapter II, § 1]). If A is
an AD family, we can define a space which will be called ψ(A). The underlying
set of ψ(A) is ω ∪ A. Every n ∈ ω is declared an isolated point and if A ∈ A,
then a basic open neighborhood of A is of the form {A} ∪ (A \ n) where n < ω.
A space of the form ψ(A) is called Mrówka-Isbell ψ-space.

It is known that ψ(A) is pseudocompact if and only if A is maximal with
respect to the inclusion order (among AD families), see [69, 5I]. Of course the
nature of ψ(A) and βψ(A) depends on the combinatorial properties of A. In

3In [48, Section § 2], Alan Dow and Jerry Vaughan give a small summary of the history of
ψ(A). Apparently, some special cases of ψ(A) appear in papers from Alexandroff-Urysohn [2,
Chapter V, 1.3] and Katetov [92]. The idea of asking A to be maximal is due to Mrówka [122].
Gillman and Jerison attribute ψ(A) when A maximal to Isbell in [69, Notes to Chapter 5, p.
269].
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particular, there is a very interesting result of Mrówka, [124], that states that
there exisists a maximal AD family A such that |ψ(A)∗| = 1. See [4, Capítulo 5]
for a proof of this result.

Recent work by Alan Dow and Jerry Vaughan gives generalizations of ψ-
spaces to uncountable families and give analogous results to Mrówka’s classical
one, see [48].

A

ω

Figure 6.1: A picture of a ψ-space constructed from an AD family A.

The examples we have shown are pseudocompact. Moreover, by the com-
ments given, it is apparent that pseudocompactness is quite important in the
study of the Čech-Stone compactification. The following result gives a charac-
terization of pseudocompactness in terms of the Čech-Stone compactification.

Theorem 6.8 [161, Theorem 1.57] Let X be a Tychonoff space. Then X is
pseudocompact if and only if every non-empty subset of βX of type Gδ intersects
X.

Proof. First, assume that G is a subset of βX of type Gδ contained in X∗. It is
not hard to find a zero set of βX contained in G. In other words, there exists a
continuous function f : βX → [0, 1] such that f←(0) ⊂ X∗. Notice that f > 0 in
X and for all n < ω there is xn ∈ X such that f(xn) < 1

n
. Define g : X → [0, 1]

by g(x) = 1
f(x) for all x ∈ X, this is a well-defined continuous function. However,

limn→∞ g(xn) =∞ so X is not pseudocompact.
Now, assume that every non-empty subset of βX of type Gδ intersects X.

Let f : X → R be a continuous function, we must prove that f is bounded. Let
g : X → R be defined by g(x) = 1

|f(x)|+1 , then g is a well-defined continuous
function that is moreover bounded by 1. Let βg : βX → [0, 1] be a continuous
extension of g by (1) in Theorem 6.4. If βg←(0) 6= ∅, by hypothesis, there
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is t ∈ βg←(0) ∩ X. But then 0 = βg(t) = g(t) = 1
|f(t)|+1 > 0, which is a

contradiction. Thus, there is 0 < δ < 1 such that βg(x) > δ for all x ∈ βX. In
particular, |f(x)| < 1

δ
− 1 for all x ∈ X so f is bounded.

The opposite situation from pseudocompactness is that of realcompactness.
A space X is realcompact if for every p ∈ X∗ there exist a non-empty set G ⊂ βX
of type Gδ of βX such that p ∈ G ⊂ X∗. It turns out that most of the “simple”
spaces are in fact realcompact.

Proposition 6.9 Every Lindelöf space is realcompact. In particular, R, Q, ω
and the Sorgenfrey line are realcompact.

Proof. Let p ∈ X∗. For each x ∈ X, since X is Tychonoff, there exists a cozero
set U(x) of βX such that x ∈ U(x) and p /∈ U(x). The open cover {U(x) : x ∈ X}
of X has a countable subcover {Un : n < ω}. Let G = βX \

⋃
{Un : n < ω}.

Then G is a set of type Gδ of βX such that p ∈ G ⊂ X∗.

In general, we may classify points of X∗ as whether or not there are Gδ
sets that contain them and miss X. For a Tychonoff space X we define the
Hewitt-Nachbin realcompactification of X as the space

νX = βX \
⋃
{G : G is a set of type Gδ of βX and G ⊂ X∗}.

Notice that βX = νX if and only if X is pseudocompact and X = νX if
and only if X is realcompact. However, it is always true that X ⊂ νX ⊂ βX.
The reader is refered to the book [163] for more on realcompactness and its
generalizations. Chapter 8 of [69] also contains a lot of information.

There is a very nice and useful basis of βX. The definition was attributed to
Šanin [153] in [50, p. 388]. If X is a Tychonoff space and U ⊂ X is an open set,
we define

ExX(U) = βX \ clβX(X \ U).

We may think that ExX(U) is the maximal extension of U to βX, as the following
result shows.

Proposition 6.10 [118] Let X be a Tychonoff space and U , V open subsets of
X. Then.

(a) X ∩ ExX(U) = U ,

(b) clβX(ExX(U)) = clβX(U),



82 Chapter 6. βX AND EX

(c) if W is an open subset of βX such that W ∩X = U , then W ⊂ ExX(U),

(d) ExX(U) ∩ExX(V ) = ExX(U ∩ V ) and ExX(U) ∪ExX(V ) ⊂ ExX(U ∪ V ),

(e) if X is normal, then ExX(U) ∪ ExX(V ) = ExX(U ∪ V ).

Proof. The proof of (a) is straightforward. Since X is dense in βX, by (a) U is
dense in ExX(U) and (b) follows from this.

Let W be as in the hypothesis of (c). If there were a point p ∈W \ExX(U),
then p ∈ clβX(X \ U) and W is an open set that contains p so W ∩ (X \U) 6= ∅,
a contradiction. Thus, (c) holds.

Property (d) holds by properties of the closure operator. Now assume that
X is normal and (e) does not hold. Then one can find p ∈ (clβX(X \ U) ∩
clβX(X \ V )) \ clβX(X \ (U ∪ V )). Let W be an open set of βX such that p ∈
W and clβX(W ) ∩ clβX(X \ (U ∪ V )) = ∅. Let A = (X \ U) ∩ clβX(W ) and
B = (X \V )∩ clβX(W ). Then A and B are disjoint closed subsets of X and it is
not hard to see that p ∈ clβX(A)∩ clβX(B). Since X is normal, A and B can be
separated by disjoint zero sets, so by (3) in Theorem 6.4, clβX(A)∩clβX(B) = ∅.
This is a contradiction so (e) does hold.

Proposition 6.11 [118] Let X be a Tychonoff space. Then

{ExX(U) : U is open in X}

is a base of open subsets of βX.

Proof. Let V be any non-empty open set of βX and let p ∈ V . Let W be an
open subset of βX such that p ∈ W and clβX(W ) ⊂ V . Define U = W ∩ X,
we will show that p ∈ ExX(U) ⊂ V . By (c) in Proposition 6.10, p ∈ W ⊂
ExX(U). Since U is a dense subset of W , by (b) in Proposition 6.10 we obtain
that clβX(ExX(U)) = clβX(W ) ⊂ V .

We need the following result. It was first known to hold for normal spaces
(see [50, 7.1.14]) but aparently it was proved for all Tychonoff spaces in [144, p.
218]. See also [36, Lemma 3.2].

Proposition 6.12 Let X be a Tychonoff space and U an open subset of X.
Then bdβX(ExX(U)) = clβX(bdX(U)).

Proof. First, let p ∈ clβX(bdX(U)) and let V an open subset of βX such that p ∈
V . Since V ∩bdX(U) 6= ∅, (V ∩X)∩bdX(U) 6= ∅. Moreover, V ∩X is a non-empty
open subset of X so (V ∩X)∩U 6= ∅ and (V ∩X)∩ (X \U) 6= ∅. In particular,
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V ∩U 6= ∅ and V ∩(X\U) 6= ∅; since V was arbitrary, p ∈ clβX(U)∩clβX(X \ U).
By (b) in Proposition 6.10, p ∈ clβX(ExX(U)). Also, p ∈ clβX(X \ U) = βX \
ExX(U). Thus, p ∈ clβX(ExX(U)) ∩ clβX(βX \ ExX(U)) = bdβX(ExX(U)).

Now assume that there is p ∈ bdβX(ExX(U))\clβX(bdX(U)), we shall arrive
to a contradiction. Let V = X \ clX(U). Let f : βX → [0, 1] be a continuous
function such that bdX(U) ⊂ f←(0) and f(p) = 1. Let us prove the following.

(∗) p ∈ clβX(U ∩ f
←[(1/2, 1]]) ∩ clβX(V ∩ f

←[(1/2, 1]]).

Let W be an open subset of X with p ∈ W , we may further assume that W ⊂
f←[(1/2, 1]]. Notice that by the definition of p, p ∈ clβX(U) ∩ clβX(V ). Thus,
there are x ∈ W ∩ U and y ∈ W ∩ V . So x, y ∈ W are such that x ∈ U ∩
f←[(1/2, 1]] and y ∈ V ∩ f←[(1/2, 1]]. This proves (∗).

Since clX(U) ∩ (X \ U) = bdX(U), the function g : X → [−1, 1] defined
by g↾clX(U)= f and g↾X\U= −f is continuous. Let βg : βX → [−1, 1] be the
continuous extension guaranteed by (1) in Theorem 6.4. Notice that by (∗),
p ∈ clβX(U ∩ g

←[(1/2, 1]]) and p ∈ clβX(V ∩ g
←[[−1,−1/2)]). These imply that

βg(p) ≥ 1/2 and βg(p) ≤ −1/2, respectively. Thus, we obtain a contradiction.
This concludes the proof of the result.

Now that we have our nice base for βX we will return to realcompactness
for a while. According to Proposition 6.9 and Theorem 0.17, every separable
and metrizable space is realcompact. So one wonders if all metrizable spaces are
realcompact. Unfortunately, it may be that there are non-realcompact metrizable
spaces, although they have to be really big. More precisely the following is known.

Theorem 6.13 [163, Theorem 13.13] Let X be a non-compact, metrizable
space. Then X is realcompact if and only if w(X) is strictly less than the first
measurable cardinal.

However, even if there are metrizable spaces that are not realcompact, they
are nearly realcompact. A space X is nearly realcompact if βX \ νX is dense in
X∗. The following has been observed by Woods in [168].

Proposition 6.14 Every metrizable space is nearly realcompact.

Proof. Let X be a metizable space and let V be any open subset of βX such
that V ∩ X∗. By Proposition 6.11, there is an open subset U of X such that
ExX(U) ⊂ V and ExX(U) ∩ X∗ 6= ∅. By Lemma 0.19, there exists a discrete
collection of open non-empty subsets {Un : n < ω} ⊂ X. For each n < ω, let
Vn =

⋃
{Uk : n ≤ k < ω}.
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Define G =
⋂
{ExX(Vn) : n < ω}, then G is a subset of βX of type Gδ. First,

notice that by (a) in Proposition 6.10, ExX(Vn) ∩ X = Vn so G ⊂ X∗. To see
that G is non-empty, choose xn ∈ Un for each n < ω. Then D = {xn : n < ω}
is a closed and discrete subset of X, so clearly there is p ∈ clβX(D) \D, we will
prove now that p ∈ G. For each k < ω, the set Dk = {xn : k ≤ n < ω} is such
that Dk ⊂ ExX(Vn) and p ∈ clβX(Dk). Fix k < ω. Notice that Dk and X \ Vk
are pairwise disjoint closed subsets of X so they are completely separated by the
normality of X. Thus, by Lemma 0.8 and (3) in Theorem 6.4, p /∈ clβX(Vk).
This means that p ∈ ExX(Vk). So in fact p ∈ G and G is non-empty.

Finally, for each n < ω we have that ExX(Vn) ⊂ ExX(U) so G is a non-empty
subset of βX of type Gδ that is contained in ExX(U). Thus, V ∩ (βX − νX) 6=
∅.

Notice that the sequence D = {xn : n < ω} played a special role in the proof
of Proposition 6.14. In fact D is just a copy of ω with the discrete topology and
clβX(D) is just βω. In general, the following holds, its proof of this result should
be easy from Theorem 6.4.

Corollary 6.15 If X is Tychonoff and Y ⊂ X is and C∗-embedded in X, then
there is a embedding h : βY → βX such that h ↾Y is the identity in Y and
h[βY ] = clβX(Y ).

We will finally mention that βω is of great use for studying some properties
of βX for non-pseudocompact X. This will be the main topic in Section 6.4.
However, to study βω we need to find a more concrete construction of βω than
the one given in this Section. This will be the topic of Section 6.2 next. We will
also use some tools from Section 6.3 to give some properties of βω.

6.2 Stone Spaces of Boolean Algebras

The objects of study in this dissertation are topological spaces but in this moment
it will be useful to use some algebraic objects to describe spaces. Both the Čech-
Stone compactification and the Absolute are constructed as spaces of ideal points.
In the case of the Čech-Stone compactification, we add points at infinity. For
the absolute, we can think that we want to blow up each point of the space
to some collection of ideal points. Both of these constructions use the concept
of an ultrafilter : in some informal sense a filter is “a method of convergence to
infinity”4. The important point is that ultrafilters can be decribed in a general
setting by using Boolean algebras.

4See the Introduction in [29].
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A Boolean algebra is an ordered set (B,≤) with two distinguished elements
0, 1 ∈ B with5 0 6= 1 and such that

(·) for every b ∈ B, 0 ≤ b ≤ 1;

(·) (B,≤) is a lattice: this means that every two elements a, b ∈ B have a least
upper bound (also called supremum) in B, which we denote by a∨ b and a
greatest lower bound (also called infimum) in B, which we denote by a∧ b;

(·) (B,≤) is a distributive lattice: this means that (a∧ b)∨ c = (a∨ c)∧ (b∨ c)
and (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) for every a, b, c ∈ B.

(·) for every b ∈ B there exists a unique b′ ∈ B, which we call the complement
of b, such that b ∨ b′ = 1 and b ∧ b′ = 0.

The operations induced by ∧ and ∨ are easily seen to be associative and
commutative. If F = {b0, . . . , bn} ⊂ B, the symbol ∧F denotes b0 ∧ . . . ∧ bn and
∨F denotes b0 ∨ . . . ∨ bn (with their obvious meaning).

An excellent reference for Boolean algebras is the “Handbook of Boolean
Algebras”, published in three volumes ([98], [73] and [74] ). The first volume [98]
starts with definitions, basic properties and constructions.

We will be interested in relating Boolean algebras to topology. First we will
give some examples. If (B,≤) is a Boolean algebra and b ∈ B \ {0} is an element
such that 0 < c ≤ b implies c = b for all c ∈ B, we say that b is an atom.

Example 6.16 P(X) is a Boolean algebra.

The archetype of a Boolean algebra is without doubts the structure (P(X),⊂),
where X is any non-empty set. Clearly, if Y0, Y1 ∈ P(X), then X ∨ Y = X ∪ Y
and X ∧ Y = X ∩ Y . Also, 0 = ∅, 1 = X and Y ′ = X \ Y for all Y ∈ P(X).
Notice that for every x ∈ X, the element {x} is an atom.

Example 6.17 Algebra of clopen sets.

If X is a topological space, then (CO(X),⊂) is a Boolean algebra. The opera-
tions, 0 and 1 are the same as in Example 6.16. Notice that if X is connected,
then CO(X) = {∅, X} and if X is discrete, then CO(X) = P(X). In some
sense (Theorem 6.19), CO(X) tells us something about X only when X is 0-
dimensional, since in this case CO(X) separates points. If X is 0-dimensional

5If a partially ordered set (B,≤) satisfies the properties of a Boolean algebra with the
exception that 0 = 1, then B = {0}, this one is called trivial Boolean algebra. However, for
our purposes, our Boolean algebras will be non-trivial by definition.
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and has no isolated points, then it is easy to see that (CO(X),≤) has no atoms
and is infinite.

Like in any algebraic (perhaps mathematical) structure, one must say which
are the morphisms of that structure. A function f : B0 → B1 between Boolean
algebras (B0,≤) and (B1,≤) will be called a morphism of Boolean algebras if the
following conditions hold:

(·) f(0) = 0, f(1) = 1,

(·) if a, b ∈ B0, then f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b), and

(·) if a ∈ B0, then f(a′) = f(a)′.

Notice that we have made an abuse of notation by not making distintion
between the 0 of B0 and the 0 of B1 and similarly for 1 and the operational
symbols. Also, a morphism of Boolean algebras f : B0 → B1 is a

(·) monomorphism if f(b) = 0 implies b = 0 for all b ∈ B,

(·) epimorphism if for all b ∈ B1 there is a ∈ B0 such that f(a) = b,

(·) isomorphism if f is a monomorphism and an epimorphism.

These concepts have of course some motivation from Category Theory (see
[1]).

Example 6.18 Maps between spaces.

Let X and Y be topological spaces and f : X → Y a continuous function. Define
f∗ : CO(Y ) → CO(X) by f∗(A) = f←[A] for all A ∈ CO(Y ). Then it is easy
to see that f∗ is a morphism of Boolean algebras. So every continuous function
induces a morphism of Boolean algebras in the opposite direction.

Notice that the examples we have given up until now are in essence, clopen
subsets of some space. The definition of Boolean algebras is quite abstract, so
we may wonder whether there is some way to “see” what Boolean algebras are in
a more concrete way. All this in answered in the following way.

Theorem 6.19 (Stone’s duality6) The category of Boolean algebras and mor-
phisms of Boolean algebras is the category opposite to the category of compact,
Hausdorff and 0-dimensional spaces with continuous maps.

6As a personal comment, this is the author’s favourite mathematical theorem.



Section 6.2. Stone Spaces 87

Informally, what we mean is that there is a one-to one correpondence be-
tween Boolean algebras and compact, Hausdorff and 0-dimensional spaces. This
correspondence is not just a bijection; it also preserves structure. However, the
correct mathematical statement of Theorem 6.19 would take a lot of space and
is outside the interest of this dissertation. We refer the reader to Chapter 2 of
[29] or Chapter 3 of [135] for a more detailed statement and proof of Theorem
6.19.

We do give a part of Stone duality that will be interesting to us. In particular,
for each Boolean algebra B we will construct a topological space st(B) whose
algebra of clopen subsets is isomorphic to B (Theorem 6.22).

Let (B,≤) be a Boolean algebra and U ⊂ B. Then U is called an filter in B
if (a) 0 /∈ U , 1 ∈ U ; (b) if a, b ∈ U then a ∧ b ∈ U ; and (c) if a ∈ U and b ∈ B
is such that a ≤ b, then b ∈ U . Moreover, U is called an ultrafilter in B if U is a
filter and whenever a ∈ B, then either a ∈ U or a′ ∈ U .

Example 6.20 Principal ultrafilters.

If X is any non-empty set and x ∈ X, then the collection {A ∈ P : x ∈ A} is
an ultrafilter in the Boolean algebra P(X). More generally, if B is a Boolean
algebra and b ∈ B \ {0}, then {a ∈ B : b ≤ a} is an ultrafilter if and only if b
is an atom. In both cases, these ultrafilters are called principal ultrafilters and
they are completely determined by one only element of B.

Notice that this notion of filter extends the regular, set-theoretical one: an
ultrafilter in the Boolean algebra (P(X),⊂) is just an ultrafilter on the set X
(see page xi in the Introduction).

The key idea here is: “ultrafilters are points”. If B is a Boolean algebra, we
define the Stone space of B as the set

st(B) = {U : U is an ultrafilter in B}.

We will give the Stone space a topology. For every b ∈ B, let b̂ = {U ∈ st(B) :
b ∈ U}. The following is not hard to prove.

Proposition 6.21 Let (B,≤) be a Boolean algebra. Then

(a) if b, c ∈ B are such that b 6= c, then b̂ 6= ĉ,

(b) st(B) = 1̂, ∅ = 0̂,

(c) if a, b ∈ B, then â ∨ b = â ∨ b̂ and â ∧ b = â ∧ b̂,

(d) if a ∈ B, then â = st(B) \ b̂.
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Thus, {b̂ : b ∈ B} is a base of a 0-dimensional topology in st(B).

We will always assume that st(B) has the topology defined by the base {b̂ :
b ∈ B}.

Theorem 6.22 (Stone’s Representation Theorem) If (B,≤) is a Boolean
algebra, then st(B) is a compact, Hausdorff and 0-dimensional space. Moreover,
the map λ : B → CO(st(B)) defined by λ(b) = b̂ is an isomorphism of Boolean
algebras.

Proof. If U ,V ∈ st(B) are such that U 6= V , then there exists b ∈ U \ V . By the
definition of an ultrafilter, b′ ∈ V . Also it is easy to see that b′ /∈ U . Then b̂
and b̂′ are disjoint clopen subsets of st(B) that separate U and V . Thus, st(B)
is Hausdorff. By Proposition 6.21, st(B) is 0-dimensional.

Now consider an open cover W of st(B), we must find a finite subcover. We
may assume that all elements of W are basic clopen sets. So W = {b̂ : b ∈ S}
for some S ⊂ B. Assume that W has no finite subcover, so for each F ∈ [S]<ω,
{b̂ : b ∈ F} does not cover st(X). By (c) in Proposition 6.21, this means that
for each F ∈ [S]<ω, ∨F 6= 1. Thus, it is not hard to see that the collection

F = {c ∈ B : there is F ∈ [S]<ω with ∧ F ≤ c}

is a filter. By the Kuratowski-Zorn lemma it is easy to find U ⊃ F that is
maximal with respect to the property of being a filter. Then it is easy to see
that U is an ultrafilter and U ∈ st(B)\ (

⋃
W). This is a contradiction soW does

have a finite subcover and st(B) is thus compact.
Finally, let U ∈ CO(st(B)). By compactness, there is F ∈ [B]<ω such that

U =
⋃
{b̂ : b ∈ F} = ∨̂F . Thus, CO(st(B)) = {b̂ : b ∈ B}. The fact that λ is an

isomorphism follows from Proposition 6.21.

Thus, Theorem 6.22 says that every Boolean algebra is the set of clopen
subsets of some topological space. We will now give an example of the use of
Theorem 6.22. It turns out that the Čech-Stone compactification of a discrete
space can be expressed as a Stone space. This will give us a concrete construction
of βω that gives much more information than the definition we gave above. This
point of view will help in Section 6.4.

Theorem 6.23 Let X be a discrete space. Define the function e : X →
st(P(X)) where e(p) = {A ⊂ X : p ∈ A} for all p ∈ X. Then (st(P(X)), e)
is the Čech-Stone compactification of X. Moreover, e[X] is precisely the set of
principal ultrafilters.
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Proof. The fact that e[X] is the set of principal ultrafilters is easy to prove (see
Example 6.20). Thus, for each x ∈ X, λ({x}) = {̂x} is the isolated point {e(x)}.
Thus, e is an embedding. To see that e[X] is dense, notice that if A ∈ P(X)
and x ∈ A, then e(x) ∈ λ(A). Then e[X] is a topological copy of X that is
dense in the compact space st(P(X)). According to (3) in Theorem 6.4, it is
enough to prove that if A,B are two completely separated subsets of X, then
clst(B)(e[A]) ∩ clst(B)(e[B]) = ∅. But for Y ⊂ X, e[Y ] is easily seen to be dense
in the clopen subset λ(Y ) so clst(B)(e[Y ]) = λ(Y ). Notice that A,B ⊂ X are
completely separated if and only if A ∩ B = ∅ (since X is discrete). Finally, if
A ∩B = ∅, then λ(A) ∩ λ(B) = λ(A ∩B) = ∅. This finishes the proof.

Stone’s duality was developed by Marshal Harvey Stone in a series of papers
([149], [150], [151]). The importance of Stone’s duality is in the fact that one
can look at topological spaces from an algebraic point of view (and the other
way around). This point of view of Stone’s duality is also related to Category
theory (see [1]). Thanks to this duality, many topological problems that may
seem untrackable from the pure topological point of view can be attacked by the
use of other techniques. A good example of this phenomenon is βω, see [113].

We finally define a special kind of Boolean algebras we will need later. We
have already mentioned that a Boolean algebra always has suprema and infima of
finite subsets. However, there may be infinite subsets that do not have suprema
or infima.

Example 6.24 CO(ω + 1).

For each n < ω, let bn = {n} ∈ CO(ω + 1). We will now see that B = {b2n :
n < ω} has no supremum. Let b ∈ CO(ω + 1) be any upper bound of B. Since
ω ∈ clω+1(B) and b is closed, then ω ∈ b. Since b is open, there exists m < ω
such that [m,ω] ⊂ b. Let k < ω be such that 2k+1 > m. Then c = b \ {2k+1}
is also an upper bound of B and c < b. Thus, b is not the supremum of B.

A Boolean algebra B is called complete if every subset of B has a supremum.
If every countable subset of B has a supremum, then B is called σ-complete. It
is not hard to see that in a σ-complete Boolean algebra every countable subset
has an infimum and in a complete Boolean algebra every subset has an infimum.

Example 6.25 Algebras of definable sets.

Let X be a separable and metrizable space. By recursion on an ordinal α, we
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define the following sets.

Σ0
0(X) =

{
U ⊂ X : U is open

}
,

Σ0
α(X) =

{⋃
A : A ⊂

⋃
{Π0

β(X) : β < α}, |A| ≤ ω
}
, for each α > 0.

Π0
α(X) =

{
X \A : A ∈ Σα0

}
, for each α.

So Σ0
0(X) are open sets, Π0

0(X) are closed, Σ0
1(X) are Fσ and Π0

1(X) are Gδ . By
induction it is possible to prove that for α < β < ω1, Σ0

α(X)∪Π0
α(X) ⊂ Σ0

β(X).
Let BOR(X) =

⋃
{Σ0

α(X) : α < ω1}. Sets from BOR(X) are called Borel sets
of X. It is not hard to see that BOR(X) is a σ-complete Boolean algebra.

A set A ⊂ X is said to have the Baire property if there is an open set U such
that A△U is meager. Equivalently, A ⊂ X has the Baire property if and only if
there is F ⊂ X of type Fσ such that A \F is meager (see [94, Proposition 8.23]).
This is dual to the fact that a set A ⊂ R is Lebesgue measurable if and only if
there is F ⊂ R of type Fσ such that A \ F is of measure 0 (see [130, Theorem
3.15]).

Then {A ⊂ X : A has the Baire property} can be seen to be a σ-complete
Boolean algebra that extends BOR(X). Borel and Baire property are concepts
used to measure the complexity of a subset of X, see [94] for more on this.

Also, from the fact that there are sets without the Baire property (for exam-
ple, a Bernstein set, see [94, Example 8.24]), it can be easily seen that both of
these Boolean algebras are not complete.

Just as the algebra of clopen subsets is the archetype of a Boolean algebra, we
have another class of Boolean algebras that cover all complete Boolean algebras.

Let X be a topological space. A set A ⊂ X is called regular closed if A =
clX(intX(A)). Notice that a set A ⊂ X is regular closed if and only if there is
an open set U of X such that A = clX(U).

Let
R(X) = {A ⊂ X : A is regular closed}.

The following is not hard to prove.

Proposition 6.26 If X is a regular space, then R(X) is a base of closed neigh-
borhoods of X.

Proposition 6.27 If X is any topological space, then (R(X),⊂) is a complete
Boolean algebra such that

(a) ∅ is the smallest element, X is the greatest one,
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(b) if G ⊂ R(X), then the supremum of U is given by clX(
⋃
G),

(c) if A,B ∈ R(X), then the infimum of A and B is given by clX(intX(A ∩B))
and

(d) if A ∈ R(X), then the complement of A is given by clX(X \A) = X \
intX(A).

Notice that in the case of regular closed sets, the infimuum is not just the
intersection. So (R(X),⊂) is not a subalgebra of (P(X),⊂) in general.

Let B0 be a Boolean algebra. A completion of B0 is a Boolean algebra
monomorphism e : B0 → B1 such that B1 is complete and for each b ∈ B1
there is a ∈ B0 such that e(a) ≤ b. Recall that in this situation it is said that
e[B0] is dense in B1 as an order (see p. ix the Introduction). It turns out that
completion is unique in the following sense.

Proposition 6.28 Let B0 be a Boolean algebra and let e1 : B0 → B1 and
e2 : B0 → B2 be completions of B0. Then there is a Boolean algebra isomorphism
h : B1 → B2 such that h ◦ e1 = e2.

Proof. For each b ∈ B1, let

h(b) = ∨{e2(c) : c ∈ B1, e1(c) ≤ b}.

By the completeness of B2, h is well-defined. It is not hard to prove that h has
the desired properties.

Using completions, we can see that complete Boolean algebras are just R(X)
for some X, in the following way.

Theorem 6.29 (a) Every Boolean algebra has a completion.

(b) In particular, if X is a 0-dimensional Hausdorff space, then R(X) is the
completion of CO(X).

(c) If B is a complete Boolean algebra, then R(st(B)) = CO(st(B)).

Proof. By Theorem 6.22, (b) implies (a). Notice that CO(X) is a dense suborder
of R(X) when X is 0-dimensional. Thus, the inclusion of CO(X) in R(X)
is the completion of CO(X) in this case. To see (c), by Theorem 6.22, B is
isomorphic to CO(st(B)), so both the identity CO(st(B))→ CO(st(B)) and the
inclusion CO(st(B)) → R(st(B)) are completions. By uniqueness of completion
(Proposition 6.28) we obtain that R(st(B)) = CO(st(B)).
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We will study spaces X such that CO(X) = R(X) next in Section 6.3.

6.3 Extremally Disconnected Spaces and the Absolute

A space X will be called extremally disconnected (ED for short) if X is regular
and for every open subset U of X we have that clX(U) is open. Notice that
regularity implies 0-dimensionality of ED spaces.

As the reader will see later, ED spaces appear naturally in our work. Clearly
all discrete spaces are ED but we will soon see examples of non-discrete (or even
crowded) ED spaces. First let us give some important properties of ED spaces.

Proposition 6.30 If X is an ED space and Y ⊂ X is either open or dense in
X, then Y is ED.

Proof. Let V be an open subset of Y . Then there is an open subset U of X such
that V = U ∩Y . Notice that in both cases V is a dense subset of U (if Y is open,
then even V = U). So clX(V ) = clX(U) which is open since X is ED. Finally,
notice that clY (V ) = clX(V ) ∩ Y in both cases. Thus, clY (V ) is open.

Lemma 6.31 LetX be a regular space. ThenX is ED if and only if for every two
open subsets U and V of X we have that U ∩V = ∅ implies clX(U)∩clX(V ) = ∅.

Proof. First, assume that X is ED and U and V are disjoint open subsets.
Then clX(U) and clX(V ) are open so clX(U) ∩ clX(V ) is a clopen subset of
bdX(U) ∩ bdX(V ), which is nowhere dense. Thus, clX(U) ∩ clX(V ) = ∅.

Now assume that any two disjoint open subsets of X have disjoint closures.
Let U be any non-empty open subset of X and let V = X \ clX(U). Then
U ∩ V = ∅ so clX(U) ∩ clX(V ) = ∅. But X = clX(U) ∪ V and V ∩ clX(U) = ∅
so V = clX(V ). Then clX(U) is also open.

Following Lemma 6.31, we can localize the notion of being ED. If X is a
Tychonoff space and p ∈ X, we will say that X is extremally disconnected at
p (ED at p) if whenever U and V are disjoint open subsets of X we have that
p /∈ clX(U) ∩ clX(V ). Extremal disconnectedness can be tested locally in dense
subsets by the following result.

Lemma 6.32 Let D be a dense subset of a Tychonoff space X. If X is ED at
each point of D, then D is ED.

Proof. Consider two disjoint open subsets of D, U ∩D and V ∩D where U and
V are non-empty open subsets of X. Notice that U and V must be disjoint.
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Since X is ED at each point of D, we have that clD(U ∩D) ∩ clD(V ∩D) ⊂
clX(U) ∩ clX(V ) ⊂ X \ D. Then clD(U ∩D) ∩ clD(V ∩D) = ∅ so by Lemma
6.31, D is ED.

We also have a property of extension of continuous functions for subspaces
of ED spaces as follows.

Proposition 6.33 Let X be a Tychonoff ED space and let D ⊂ X be dense.
Then D is C∗-embedded in X.

Proof. By Taimanov’s Theorem 0.10 it is enough to prove that if A and B are
disjoint zero sets of D, then clX(A) ∩ clX(B) = ∅. By Lemma 0.8, A and B are
completely separated inD so in particular, they can be separated by open subsets
of D. But D is dense so there are disjoint open subsets U and V of X such that
A ⊂ U and B ⊂ V . Since X is ED, clX(U)∩clX(V ) = ∅ so clX(A)∩clX(B) = ∅.
This concludes the proof of the Proposition.

It turns out that ED spaces are just those spacesX such that CO(X) = R(X).
Thus, this fact shows that ED spaces are dual to complete Boolean algebras by
Theorem 6.29. We will next show this, along with an analogue result for basically
disconnected spaces for the sake of completeness of Part I of this thesis. Recall
that in Part I we defined a space X to be basically disconnected (BD) if for every
cozero set U of X we have that clX(U) is open.

Theorem 6.34 Let B be a Boolean algebra. Then st(B) is ED (BD) if and
only if B is complete (σ-complete, respectively).

Proof. First assume that B is a complete Boolean algebra. Let U ⊂ st(B) be
any open set. By Theorem 6.29, clst(B)(U) is clopen. Thus, st(B) is ED.

Now assume that st(B) is ED. Let B0 ⊂ B, we have to show that B0 has a
supremuum in B. Let

U = clst(B)(
⋃
{B̂ : B ∈ B0}).

By hypothesis, U is clopen. Notice that U is then an upper bound for {B̂ :
B ∈ B0} in the Boolean algebra CO(B). If V ∈ CO(st(B)) were another upper
bound, then

⋃
{B̂ : B ∈ B0} ⊂ V and taking closure we obtain that U ⊂ V .

Thus, if B0 ∈ B is such that U = B̂0, then B0 = ∨B0.
Now we prove the analogue result for BD spaces. The proof that st(B) is

BD implies B is σ-complete is completely analogous to proving that st(B) is ED
implies B is complete.
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So assume that B is σ-complete and let U be a cozero set of st(B). Since
cozero sets are Fσ and closed subsets of st(B) are compact, it is not hard to
find a countable family {Bn : n < ω} ⊂ B such that U =

⋃
{B̂n : n < ω}. Let

B ∈ B be such that B = ∨{Bn : n < ω}. Notice that this implies that U ⊂ B̂.
Also, U is dense in B̂, otherwise there is some non-empty clopen set V ⊂ B̂ \U ,
which contradicts the definition of B. Thus, clst(B)(U) = B̂ is open. Notice that
this same argument can be modified to give another proof of the fact that B is
complete implies st(B) is ED.

So for example, the argument in Example 6.24 essentially showed that a
convergent sequence is not ED. By the characterization of βX when X is discrete
given in Theorem 6.23, we obtain the following.

Corollary 6.35 If X is a discrete space, then βX is ED.

However, there is a more general result than Corollary 6.35.

Theorem 6.36 Let X be a Tychonoff space. Then βX is ED if and only if X
is ED.

Proof. If βX is ED, then X is ED by Proposition 6.30. So assume that X is ED.
Let U be an open subset of βX. Then U ∩X is open and thus, clX(U ∩X) ∈
CO(X). Clopen subsets are clearly zero sets so clX(U ∩X) and Z = X \
clX(U ∩X) are disjoint zero sets of X. By (3) in Theorem 6.4, clβX(clX(U ∩X))
and clβX(Z) are disjoint with union βX. Thus, clβX(clX(U ∩X)) = clβX(U) is
open. This proves that βX is ED.

A natural question one may ask is which well-known spaces are ED. It is
not hard to convince oneself that a non-discrete metrizable space is not ED by
constructing two disjoint open sets with closures that intersect. Non-discrete
ED spaces are in fact hard to find. Basically, Theorem 6.34, Corollary 6.35
and Proposition 6.30 give the only methods known to the author to construct
compact ED spaces.

Now we will give another important construction we will use in our results.
For a Tychonoff space X, define the Gleason space of X by G(X) = st(R(X)).
Define the following subspace of G(X):

EX = {U ∈ G(X) :
⋂
U 6= ∅}.

Let U ∈ G(X) and consider p, q ∈ X with p 6= q. There are A,B ∈ R(X) with
p ∈ A, q ∈ B and A ∩ B = ∅. Since A ∧ B = ∅ in the Boolean algebra R(X),
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U contains at most one of A or B. Since U is an ultrafilter, this shows that
|
⋂
U| ≤ 1.
Thus, we may define the function kX : EX → X so that kX(U) is such

that
⋂
U = {kX(U)}. The pair 〈EX, kX〉 will be called the absolute of X. The

isomorphism between the Boolean algebra R(X) and the clopen subsets of its
Stone space EX defined in Theorem 6.22 will be denoted by λX : R(X) →
CO(EX). We now state some of the properties of the absolute.

A function between topological spaces f : X → Y will be called irreducible if
it is closed7 and every time C is a closed subset of X, then f [C] = Y if and only
if C = X. So irreducible functions are in particular onto.

Proposition 6.37 Let X be a Tychonoff space. Then EX is a dense subspace
of G(X). Thus, EX is Tychonoff and ED. Also, kX : EX → X is a perfect and
irreducible continuous function.

Proof. For p ∈ X, the collection {A ∈ R(X) : p ∈ intX(A)} can be easily seen
to be a filter in the Boolean algebra R(X) so using the Axiom of Choice we may
choose some ultrafilter Up ∈ G(X) that contains it.

Consider any basic open subset Â of G(X), where A is an regular closed
non-empty subset of X and let p ∈ intX(A). Notice that it follows that Up ∈ Â
and kX(Up) = p. This shows that EX is dense in G(X) and kX is onto. The
fact that EX is ED follows from Proposition 6.30.

We will need the following two facts

(∗) If U is open in X, then k←X [U ] =
⋃{

λX(A) ∩ EX : A ∈ R(X), A ⊂ U
}
.

(⋆) If B ∈ R(X), then kx[λX(B)] = B.

The right side of (∗) is clearly contained in the left side. Now, let U ∈ EX be
such that p = kX [U ] ∈ U . By the regularity of X, there is an open set V of X
such that p ∈ V and clX(V ) ⊂ U . Let A = clX(V ), since U is an ultrafilter,
either A or its Boolean complement X \ V is in U . Since p ∈ V we obtain that
A ∈ U so U ∈ λX(A). This proves (∗).

The left side of (⋆) is clearly contained in the right side. To see the other
inclusion, let p ∈ B. Let V be any ultrafilter extending {A ∈ R(X) : p ∈
intX(A)} ∪ {B}. Then it follows that V ∈ λX(B) and kX(V) = p. Thus, (⋆)
holds.

7Other authors do not require irreducible functions to be closed. Our definition is chosen
to avoid repetition.
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By (∗), kX is continuous. Next, we see that kX is irreducible. Let F ⊂ EX be
a closed, proper subset. By the definition of the topology of st(R(X)), there is a
non-empty A ∈ R(X) such that F ∩ λX(A) = ∅. By (⋆), kX [λX(clX(X \A))] =
clX(X \A) which is a proper subset. Since F ⊂ λX(clX(X \A)), kX [F ] is a
proper subset. Now, let p ∈ X \ kX [F ]. Since Up is an ultrafilter that is not
in F , there is a non-empty regular closed set A ⊂ X such that F ∩ λX(A) = ∅
and Up ∈ λX(A). Then kX [F ] ⊂ kX [λX(clX(X \A))] = clX(X \A) and p ∈
kX [A] \ kX [F ] = A \ clX(X \A) = intX(A) by (⋆). Thus, p ∈ intX(A) and
intX(A) ∩ kX [F ] = ∅, this proves that kX is closed.

Finally, we prove that kX is perfect, we only need to prove that it has compact
fibers. Since G(X) is compact, it is enough to prove that each fiber is a closed
subset of G(X). Let p ∈ X and assume that U ∈ G(X) is such that kX [U ] 6= p.
Notice that U does not extend {A ∈ R(X) : p ∈ intX(A)}, otherwise

⋂
U =

{p} and U would map to p under kX . So there is some B ∈ R(X) such that
p ∈ intX(B) but B /∈ U . Since U is an ultrafilter, C = clX(X \B) ∈ U so
U ∈ λX(C). If V = intX(B), then k←X (p) ⊂ k←X [V ]. By (∗) and the fact that
λX(C) ∩ λX(A) = λX(C ∧ A) = ∅ for each A ∈ R(X) with A ⊂ V , we obtain
that λX(C) ∩ k←X (p) = ∅. Thus, k←X (p) is closed in G(X) so it is compact.

Also, we have the following immediate consequence of Theorem 6.37.

Corollary 6.38 For every Tychonoff space X, the following are equivalent:

(a) X is compact,

(b) EX is compact,

(c) G(X) = EX.

Notice also that kX is a homeomorphism if and only if X is ED.
With this we can notice the following essential difference between the con-

struction of βX with ultrafilters and the construction of EX. In Theorem 6.23
it was shown that for every point p of a discrete space X there is an ultrafilter
e(p) and in some sense e(p) is the only ultrafilter that converges to p (since e is
an embedding). In other constructions of βX for an arbitrary topological space
X using ultrafilters, one gives an injective correspondence from points of X to
ultrafilters in some sense (see for example, [161, 1.37]). However, in the case of
the absolute, for one point p ∈ X we may have several ultrafilters that converge
to p, Up in the proof of Proposition 6.37 was only one of them. More precisely,
|k←X (p)| > 1 in general.

Example 6.39 For every r ∈ R, |k←R (r)| ≥ |ω∗|.



Section 6.3. ED spaces and EX 97

We simplify the notation by assuming, without loss of generality, that r = 0. For
every U ∈ ω∗ we shall construct Ũ ∈ ER such that kR[Ũ ] = 0 and if U0,U1 ∈ ω∗

are such that Ũ0 = Ũ1, then U0 = U1. For each n < ω, let xn = 1
n+1 and let In

be the middle-third closed interval between xn+1 and xn, more specifically:

In =
[2
3
· xn+1 +

1

3
· xn,

1

3
· xn+1 +

2

3
· xn

]
.

For each A ⊂ ω, let IA = (
⋃
{In : n < ω}) ∪ {0}. Notice that for each infinite

A ⊂ ω, IA ∈ R(R). Using this, for each U ∈ ω∗, it is possible to find an ultrafilter
Ũ in the Boolean algebra R(R) that extends the collection

{B ∈ R(R) : 0 ∈ intX(B)} ∪ {IA : A ∈ U}.

The fact that these ultrafilters are as requested is left to the reader.

r

I0I1I2I3I4I5

Figure 6.2: For r ∈ R, |k←R (r)| ≥ |ω∗|.

In Theorem 6.47 we will see that |ω∗| = 2c so each fiber of kR is of size 2c.
Later we will be interested in cases when kX has fibers of cardinality 1 to obtain
homeomorphisms, Proposition 7.12 is analogous to this fact. For the time being,
we prove the following.

Lemma 6.40 Let X be a Tychonoff space and p ∈ X. Then |k←X (p)| = 1 if and
only if X is ED at p.

Proof. Consider the neighborhood filter of regular closed neighborhoods of p,
F = {A ∈ R(X) : p ∈ intX(A)}. If X is ED at p, it is not hard to see that F is
in fact a ultrafilter in the Boolean algebra R(X) so in this case k←X (p) = {F}.

If X is not ED at p, there are disjoint open subsets U and V such that p ∈
clX(U) ∩ clX(V ). Define B0 = clX(U) and B1 = clX(V ). Then B0, B1 ∈ R(X)
and p ∈ B0 ∩ B1 but B0 ∧ B1 = clX(intX(B0 ∩B1)) = ∅. For each i ∈ 2, the
collection

{B ∈ R(X) : there is A ∈ F such that A ∩Bi ⊂ B}

is a filter in the Boolean algebra R(X) so it is contained in an ultrafilter Ui.
Then U0,U1 ∈ EX, U0 6= U1 and kX [Ui] = {p} for i ∈ 2.
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Now we know the existence of the absolute, we will state its topological
characterization as we did with the Čech-Stone compactification.

Theorem 6.41 Let X be a Tychonoff space. Let f0 : Y0 → X, f1 : Y1 → X
be perfect and irreducible continuous functions where Y0 and Y1 are ED. Then
there exists a homeomorphism h : Y0 → Y1 such that f0 = f1 ◦ h.

The proof of Theorem 6.41 is technical and long. We will not include a
detailed proof as this would require too much space and background results.
However, the idea of the proof follows one simple idea: every point of Y0 is an
ultrafilter in R(X) and the same goes for points in Y1, one just has to pair them
so that they have the same combinatorial properties.

Y0

f0   A
AA

AA
AA

h // Y1

f1~~}}
}}

}}
}

X

We will give a brief sketch of this idea in hope that the reader gets at least
an intuitive feeling of what the proof entails. For a detailed proof see [135, 6.7].

Sketch of proof. For each y ∈ Y0, let

Fy = {clY1(f
←
1 [X \ f0[Y0 \ U ]]) : U is open in Y0 and y ∈ U}

and define h(y) ∈ Y1 as the only point in the intersection
⋂
Fy. With some work,

it is possible to prove that h is a well-defined continuous function. Moreover, h
defined in this way satisfies f0 = f1 ◦ h. To show that h is a homeomorphism, it
is possible to define a function h′ : Y1 → Y0 in an analogous way to h. That is,
for each y ∈ Y1, let

Gy = {clY0(f
←
0 [X \ f1[Y1 \ U ]]) : U is open in Y1 and y ∈ U},

and define h′(y) to be the only point in the intersection
⋂
Gy. Then h′ is also

continuous and h′ is the inverse function of h. This proves that h is a homeo-
morphism.

Thus, if Y is a Tychonoff ED space and f : Y → X is a perfect and irreducible
continuous function where X is Tychonoff, we can say that 〈Y, f〉 is the absolute
of X. Two Tychonoff spaces X and Y will be called coabsolute if they have the
same absolute, more formally, if there is a ED Tychonoff space E and two perfect
and irreducible continuous functions f : E → X, g : E → Y .
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Corollary 6.42 If f : X → Y is a perfect and irreducible continous function
between Tychonoff spaces, then X and Y are coabsolute.

Proof. If we consider the absolute kX : EX → Y and take the composition
f ◦ kX : EX → Y , by Theorem 6.41 we notice that ◦EX, f ◦ kX is the absolute
of Y . Thus, X and Y are coabsolute.

We give our first application of the characterization by relating the Čech-
Stone compactification with the absolute. More generally, the absolute is “pre-
served” under dense subsets as the following shows. Its proof follows easily from
Proposition 6.30 and Theorem 6.41.

Proposition 6.43 Let X be a Tychonoff space and D ⊂ X a dense subspace.
If f : Y → X is the absolute of X, then f↾f←[D]: f

←[D]→ D is the absolute of
D.

Being an ED space, the absolute is a very complicated space in general. We
give an example of the absolute, relating it to the Čech-Stone compactification.

Example 6.44 The absolute of a convergent sequence.

The convergent sequence ω + 1 = ω ∪ {ω} is perhaps the simpliest compact
Hausdorff space. Define the function f : βω → ω+ 1 by f(n) = n for n < ω and
f(p) = ω for p ∈ ω∗. It is not hard to prove that 〈βω, f〉 is in fact the absolute
of ω + 1. Notice that the point {ω} was “blown up” to the whole remainder ω∗.

In fact, if X is a discrete space and K is a compact space containing X
densely, by Theorem 6.4 there is a continuous function f : βX → K such that
f↾X is the identity function. Then it is easy to see that 〈βX, f〉 is the absolute
of K.

A question that has been asked by several authors is whether given some
Tychonoff space X, one can find all Tychonoff spaces Y such that X and Y are
coabsolute. This question is related to our results as we will see in Corollary
7.13.

For the sake of completeness, we present some properties of irreducible func-
tions that we will use later.

Lemma 6.45 Let f : X → Y be an irreducible continuous function between
Tychonoff spaces.

(a) If D ⊂ Y is dense in Y , then f←[D] is dense in X.
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(b) If C ⊂ X is closed and nowhere dense inX, then f [C] is closed and nowhere
dense in Y .

(c) If βf : βX → βY is the unique continuous extension of f , then βf is
irreducible.

Proof. For (a), notice that if U is an open set of X with U ∩ f←[D] = ∅, then
f ♯[U ] is a non-empty open subset of Y disjoint from Y .

For (b), notice that f [C] is closed since f is closed so we only have to prove
that it is nowhere dense. Assume this is not the case and let U ⊂ f [C] be a
non-empty open set. Since C is closed and nowhere dense, then V = f←[U ] \ C
is a non-empty open subset of X. Then f [X \U ] = Y which contradicts the fact
that f is irreducible. This proves (b).

Now we prove (c), notice that βf is immediately closed and onto. Let F ⊂ βX
be a closed proper subset of βX. Then there exists a non-empty open subset
U ⊂ X such that ExX(U) ∩ F = ∅ by Proposition 6.11. Let G = X \ U , then
F ⊂ βX \ExX(U) = clβX(G). Since f is irreducible, then V = Y \ f [G] is open
and non-empty. Then βf [F ] ⊂ βf [clβX(G)] ⊂ clβY (f [G]) = clβY (Y \ V ), which
is disjoint from V . Thus, βf [F ] is a proper subset of βY , this proves (c).

6.4 The importance of βω

In this section, we give some properties of βω and applications to non pseudo-
compact spaces. Recall that by Theorem 6.23, we have the following algebraic
model of βω: βω = st(P(ω)), each n ∈ ω is identified to the principal ultrafilter
{A ⊂ ω : n ∈ A} and the family {Â : A ⊂ ω} is the family of all clopen subsets
of βω that moreover is a base.

Theorem 6.46 w(βω) = c.

Proof. By Lemma 0.15, there is a set N ⊂ P(ω) of cardinality w(βω) such that
B = {Â : A ∈ N} is a base. We may assume that B is closed under finite
unions. If A ⊂ ω, by compactness there is m < ω and A0, . . . , Am ∈ N such
that Â0 ∪ . . . ∪ Âm = Â. This implies that A = A0 ∪ . . . ∪ Am and since B
is closed under finite unions, A ∈ N . This shows that N = P(ω) so in fact
w(βω) = |P(ω)| = c.

Now we calculate the cardinality of βω.

Theorem 6.47 |βω| = 2c.



Section 6.4. Basics of βω 101

Notice that since st(P(ω)) ⊂ P(P(ω)), we have that |βω| ≤ 2c. So the diffi-
cult part is to prove that |βω| ≥ 2c. We will give two proofs. Pospíšil’s original
proof ([136]) consists in constructing a compactification of ω with remainder of
power 2c. Later, S. Mrówka ([123]) gave a simplier proof in which it is shown
that it was not necessary to construct such compactification. Our first proof is
perhaps a summary of both proofs, notice it is of topological nature.

First Proof. Let X be the Cantor set with its usual topology (or any other
compact crowded metrizable space) and fix some countable base B of X. Let
K = XX, that is, the set of functions f : X → X with the product topology.
Clearly, K is a compact Hausdorff space and |K| = 2c.

Let G be the set such that if F ∈ G, then F is a finite collection of pairs
〈B,C〉 where B,C ∈ B and if 〈B0, C0〉, 〈B1, C1〉 ∈ F are such that B0 ∩B1 6= ∅,
then 〈B0, C0〉 = 〈B1, C1〉. For each F ∈ G, choose a function fF ∈ K such that
if 〈B,C〉 ∈ F , then fF [B] ⊂ C. Notice that such fF can be even chosen to be a
continuous function, although this is not essential to the proof.

Let D = {fF : F ∈ G}. Then D is a countable subset of K and it is not
hard to see that D is dense in K. Let e : ω → D be a bijection, clearly e is
a continuous function. By (2) in Theorem 6.4, there is a continuous function
f : βω → K such that f↾ω= e. Since D is dense and βω is compact, f is onto.
Thus, |βω| ≥ |K| = 2c.

Our second proof is by Hausdorff [76] and is set-theoretic in nature. It is
interesting to notice that Hausdorff’s proof was given before the definition of the
Čech-Stone compactification (and was therefore stated in another language).

Second Proof. According to Theorem 6.23, it is enough to prove that there are 2c

ultrafilters on ω. Let Fω = {A ⊂ ω : ω \A is finite} be the Frechet filter. Notice
that every ultrafilter on ω that extends Fω is non-principal so it is contained in
ω∗. Then we need to find 2c different ultrafilters that extend Fω. For this, we
will construct an independent family.

Assume that A ⊂ P(ω) is an independent family. Then for every function
φ : A → 2 define

Fφ = Fω ∪ {A : A ∈ A, φ(A) = 0} ∪ {ω \A : A ∈ A, φ(A) = 1}.

Then Fφ has the finite intersection property since A is an independent family so
it is contained in an ultrafilter Uφ. If φ 6= ψ, let A ∈ A be such that φ(A) = 0
and ψ(A) = 1, without loss of generality. Then A ∈ Uφ and A /∈ Uψ so Uφ 6= Uψ.
This proves that {Uφ : φ ∈ A2} is a family of 2|A| ultrafilters on ω. Thus, it is
enough to find an independent family of size c consisting of subsets of ω in order
to show that |βω| ≥ 2c.
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Let N be the set of pairs 〈F,S〉 where F ⊂ ω is finite and S ⊂ P(F ). Then
N is a countable infinite set. We will define an independent family A ⊂ P(N)
of size c, clearly this is enough to finish the proof.

For each A ⊂ ω, define Ã = {〈F,S〉 ∈ N : A ∩ F ∈ S}. We now argue that
A = {Ã : A ⊂ ω} is an independent family of size c.

First, let A,B ⊂ ω such that A 6= B. So there exists, without loss of
generality, x ∈ A \ B. So 〈{x}, {{s}}〉 ∈ Ã \ B̃. This proves that |A| = c. To
prove that A is independent, let A0, . . . , Am, B0, . . . , Bn be distinct subsets of ω,
we must prove that

J = Ã0 ∩ . . . Ãm ∩ (N \ B̃0) ∩ . . . ∩ (N \ B̃n) 6= ∅.

For each pair 〈i, j〉 ∈ m × n, Ai 6= Bj so there is some x(i, j) ∈ Ai △ Bj . Let
G = {x(i, j) : 〈i, j〉 ∈ m× n}. Then it is not hard to see that

〈G, {A0 ∩G, . . . , Am ∩G}〉 ∈ Ã0 ∩ . . . Ãm ∩ (N \ B̃0) ∩ . . . ∩ (N \ B̃n).

This shows that A is indeed independent and finishes the proof.

However, we can do more. Any infinite Hausdorff space has a countable
discrete subset. So by the following Proposition 6.48, every infinite closed subset
of βω is of weight c and cardinality 2c.

Proposition 6.48 If N is a countable discrete subset of βω, then clβω(N) is
homeomorphic to βω.

Proof. Notice that clβω(N) is a compact space in which N is densely embedded.
Since N is homeomorphic to ω, by Theorem 6.4 it is enough to prove that N is
C∗-embedded in βω. By the Urysohn Extension Theorem 0.9, the fact that N
is discrete and βω is normal, it is enough to prove that if A and B are disjoint
subsets of N , then clβω(A) ∩ clβω(B) = ∅.

We may assume that N = A ∪ B. Let A = {xn : n < ω} and Bn = {yn :
n < ω} be enumerations. Recursively, it is possible to construct clopen sets
{Un : n < ω} and {Vn : n < ω} of βω such that

(·) if n < ω, then xn ∈ Un, yn ∈ Vn and

(·) if m,n < ω, then Um ∩ Vn = ∅.

Let U =
⋃
{Un : n < ω} and V =

⋃
{Vn : n < ω}. Then U and V are disjoint

open subsets of βω with A ⊂ U and B ⊂ V . By Corollary 6.35, βω is ED so it
follows that clβω(U) ∩ clβω(V ) = ∅. Thus, clβω(A) ∩ clβω(B) = ∅. This finishes
the proof.
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As we saw on Example 6.5, there are spaces whose Čech-Stone compactifica-
tion is obtained by adding just one point. This is not true for non-pseudocompact
spaces because there are copies of βω, as the following result shows.

Proposition 6.49 LetX be a Tychonoff space and G a non-empty subset of βX
of type Gδ. If G ⊂ X∗, then G contains a topological copy of ω∗. In particular,
if X is non-pseudocompact, X∗ contains a topological copy of ω∗ and |X∗| ≥ 2c.

Proof. Assume that G is a subset of βX of type Gδ such that G ⊂ X∗. It is not
hard to find a continuous function f : βX → [0, 1] such that f←(0) ⊂ G. Since
X is dense in βX, there is a countable discrete N = {xn : n < ω} ⊂ X such that
f(xn) > f(xn+1) > 0 for all n < ω and limn→∞ f(xn) = 0.

Notice that clβX(N) \N ⊂ X∗ so if we prove that N is C∗-embedded in X,
then by Theorem 6.4, there is a topological copy of ω∗ in X∗. By the Urysohn
Extension Theorem 0.9 and Lemma 0.8, it is enough to prove that every time
N = A0 ∪A1 is a partition, then A0 and B0 are contained in disjoint zero sets.

To see this, let {Jn : n < ω} be a collection of pairwise disjoint closed intervals
of (0, 1] such that xn ∈ Jn. Then

Zi = f←
[
(
⋃
{Jn : n ∈ Ai}) ∪ {0}

]
∩X

is a zero set of X that contains Ai for i ∈ 2 and Z0∩Z1 = ∅ since f←(0)∩X = ∅.
This shows that N is C∗-embedded in X and completes the proof.

In particular, we obtain the following.

Corollary 6.50 If X is any non-compact space and p ∈ X∗, then {p} is not of
type Gδ.

6.5 Non-homogeneity of ω∗

In this section, we will give a summary of some results related to the non-
homogeneity of ω∗. Recall that a space X is homogeneous if every time x, y ∈ X
there exists a homeomorphism h : X → X such that h(x) = y. So in some way,
this means that you cannot distinguish one point from another in a homogeneous
space.

A discrete space is homogeneous and at first sight any two non-principal
ultrafilters “look the same”. So a natural question is whether ω∗ is homogeneous.
In [142], Walter Rudin showed that, assuming CH, some points of ω∗ are P -
points, but there are also non-P -points. We shall only prove this result and give
a summary of the further results on non-homogeneity of ω∗.
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If X is a topological space and p ∈ X, then p is called a P -point of X if every
time {Un : n < ω} are open subsets of X with p ∈

⋂
{Un : n < ω}, then there is

an open set U such that p ∈ U ⊂
⋂
{Un : n < ω} (see Definition 2.21).

From Theorem 6.23, ω∗ is the space of non-principal ultrafilters on ω. If U
is an ultrafilter in ω, then its neighborhoods in ω∗ are of the form Â ∩ ω∗ for
A ∈ U . In βω, by the Stone Representation Theorem 6.22, clearly Â ⊂ B̂ if and
only if A ⊂ B. However, in ω∗ the following holds.

Lemma 6.51 Let A,B ⊂ ω. Then Â∩ω∗ ⊂ B̂∩ω∗ if and only if A\B is finite.

Proof. The result follows easily from the fact that is A \ B is infinite, every
ultrafilter extending Fω ∪ {A \ B} (where Fω is the Fréchet filter) is a non-
principal ultrafilter in (Â ∩ ω∗) \ (B̂ ∩ ω∗).

If A,B ⊂ ω, we define the almost inclusion A ⊂∗ B if A \B is finite. If A is
a family of sets, then a pseudointersection of A is a set B such that B ⊂∗ A for
all A ∈ A.

Theorem 6.52 CH implies that ω∗ has P -points.

Proof. By the discussion above, we must find an ultrafilter U such that every
time {An : n < ω} ⊂ U , then there is A ∈ U such that A ⊂∗ An for all n < ω.
We will construct U by a recursion of length ω1 = c.

Let {Aα : α < ω1} be an enumeration of P(ω) and let {Aα : α < ω1} be an
enumeration of [[ω]ω]ω such that every set repeats cofinally often (this is possible
by Lemma 0.1). We will construct a sequence of filters {Fα : α < ω1} on ω such
that

(a) if α < β < ω1, then Fα ⊂ Fβ ;

(b) if α < ω1, then Fα+1 ∩ {Aα, ω \Aα} 6= ∅;

(c) if α < ω1 and Aα ⊂ Fα, then there is B ∈ Fα+1 such that B ⊂∗ A for all
A ∈ Aα,

(d) if α < ω1, then there is a countable set Nα ⊂ Fα such that Fα is the filter
generated by Nα.

Define F0 = Fω, the Fréchet filter. If α < ω1 is a limit ordinal, let Fα =⋃
{Fβ : β < α}, this is a filter by (a). To see (d) when α < ω1 is a limit ordinal,

let {α(n) : n < ω} ⊂ α be such that sup{α(n) : n < ω} = α and notice that the
set

⋃
{Nα(n) : n < ω} is countable and generates Fα so let Nα be this set.
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Once the construction is finished, let U =
⋃
{Fα : α < ω1}. Then U is an

ultrafilter by (a) and (b). Since Fω ⊂ U , then U is non-principal. If {An :
n < ω} ⊂ U , let α < ω1 be such that {An : n < ω} ⊂ Fα. Since sequences
of infinite subsets are listed cofinally often, there is a β ∈ (α, ω1) such that
Aβ = {An : n < ω} and by (c) there is a pseudointersection B ∈ Fβ+1 ⊂ U of
A. This proves that U is a P -point.

Now let us show that this construction is indeed possible. We are only left
to show that it is possible to carry out the succesor step. So assume that Fβ is
defined. If Aβ 6⊂ Fβ , let G = Fβ and M = Nβ .

Otherwise, by (d), let Nβ = {Bk : k < ω} be an enumeration and let
Aβ = {Ck : k < ω} be an enumeration. We must find B ⊂ ω that is a pseudoin-
tersection of Aβ and such that Nβ ∪ {B} has the finite intersection property. In
this way, Nβ∪{B} generates a filter that extends Fβ and has a pseudointersection
of Aβ .

Let [ω]<ω = {Fn : n < ω} be an enumeration such that every set repeats
cofinally often (Lemma 0.1). Recursively, for each n < ω, choose

xn ∈
((⋃

{Bk : k ∈ Fn}
)
∩ (C0 ∪ . . . ∪ Cn)

)
\ {x0, . . . , xn−1},

this is possible because we are considering finitely many sets contained in Fβ
and Fβ contains the Fréchet filter. Finally, let B = {xk : k < ω}. It is not
hard to see that B has the properties requested. Thus, define G to be the filter
generated by Nβ ∪ {B}, or equivalently, the filter generated by Fβ ∪ {B}. Also,
define M = Nβ ∪ {B}.

Finally, consider G as defined in any of the two cases. There must be some C ∈
{Aβ , ω\Aβ} such that G∪{C} generates a filter. Let Fβ+1 be the filter generated
by G ∪ {C} and let Nβ+1 = M ∪ {C}. Then all conditions of the construction
hold. This finishes the construction and the proof of the Theorem.

Corollary 6.53 CH implies that ω∗ has a dense set of P -points.

Proof. Every clopen subset of ω∗ is of the form Â ∩ ω∗ = clβω(A) \ A so it is
homeomorphic to ω∗ by Proposition 6.48. The result follows from Theorem 6.52
and the fact that ω∗ is 0-dimensional.

Corollary 6.54 CH implies that ω∗ is not homogeneous.

Proof. Clearly, being a P -point is a topological property. By Theorem 6.52,
ω∗ has P -points. However, not every point of ω∗ (or of any infinite compact
Hausdorff space) is a P -point: let N be a countable discrete subset of ω∗, then
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no point of clω∗(N) is a P -point. Thus, there are at least two types of points:
P -points and non-P -points.

Of course, it is desirable to have a ZFC proof of the non-homogeneity of ω∗.
The first such proof was given in Zdeněk Frolík.

Theorem 6.55 [64] There is a set S ⊂ ω∗ such that (a) |S| = 2c; (b) if x, y ∈ S
are such that there is a homeomorphism h : ω∗ → ω∗ with h(x) = y, then x = y;
and (c) if x ∈ ω∗ then there exists y ∈ S and a homeomorphism h : ω∗ → ω∗

such that h(x) = y.

A proof of Theorem 6.55 can be found in [161, 3.40 to 3.46]. Other proofs
of the non-homogeneity of ω∗ using Frolík’s arguments can be found in [161,
6.31] (Frolik’s fixed point theorem) and [113] (which gives a proof in modern
terminology). From Frolik’s results we can also obtain the following whose proof
can be found in [161, 4.12].

Theorem 6.56 [65] Let X be a non-pseudocompact space. Then X∗ is not
homogeneous.

Frolík’s arguments prove that ω∗ is not homogeneous. However, in some
sense, those arguments do not prove “why” ω∗ is not homogeneous. More pre-
cisely, the proof does not show two different points of ω∗ with different topological
properties. It was desirable to find a “honest” proof (in the words of van Douwen)
of the non-homogeneity of ω∗.

One possible solution to this question was the existence of P -points of ω∗ in
ZFC. However, Saharon Shelah showed that there is a model of ZFC where ω∗

has no P -points. The proof of this is a very profund result that relies on iteration
of proper forcing. We refer the reader to Chapter VI, Section 4 of [154] for a
proof of this fact. Also, recently a Diploma thesis with a very clear and detailed
proof of Shelah’s theorem has been written, see [169].

Even though it is not possible to find P -points of ω∗ in ZFC, Kenneth Kunen
found another special type of point. A point p in a topological space X is called
a weak P -point if for every countable set N ⊂ X \{p} it follows that p /∈ clX(N).
As shown in Corollary 6.54, in any compact Hausdorff space there must be points
that are not weak P -points.

Theorem 6.57 [100] There are weak P -points in ω∗. Thus, ω∗ is not homoge-
neous because there are points with different topological properties.

The proof of Theorem 6.57 can be also found in [62, Chapter 6].
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One of the strongest promoters of “honest” proofs of non-homogeneity was
Eric K. van Douwen. In the next Chapter, we will start by giving a proof of
existence of a special kind of points called remote points and its applications to
the theory of non-homogeneity of Čech-Stone compactifications by van Douwen.
These remote points will become our object of study in this Part.



Chapter 7

Remote Points and their Density

Let X be a Tychonoff space. A point p ∈ X∗ is called a remote point of X if
p /∈ clβX(A) for every nowhere dense subset A of X. Following van Douwen [36],
we will denote the set of remote points of X by ̺(X). In some informal sense,
points of X∗ are “infinite points” of X and points in ̺(X) are “more infinite than
[all] others” ([36, 1.3]).

As discussed in the end of Chapter 6, even though Theorem 6.56 had been
proved, van Douwen wanted to find points with different topological properties
that showed “why” some spaces of the form X∗ were not homogeneous. In [35],
van Douwen finally found an answer to his question in the following way.

Theorem 7.1 [35] Let X be a nowhere locally compact metrizable space. Then
some but not all points of X∗ are far from X∗∗ in βX∗, and so X∗ is not homo-
geneous.

A point p ∈ Y is far from A ⊂ Y if for there is no discrete D ⊂ A closed in A
such that p ∈ clY (D). So every remote point of X is far from X∗ in βX. Notice
that however, Theorem 7.1 is not quite a “honest” proof of non-homogeneity
because one has to see X∗ from “outside” (from βX∗) to know why it is not
homogeneous.

According to [114], van Douwen had proved the existence of remote points in
some remainders using Martin’s axiom and proved the non-homogeneity of these
spaces using those remote points (this paper was published posthumosly as [40]).
However, the proof was not published until finally in [36], van Douwen gave the
same results in ZFC, that is, without additional hypothesis.

Our main interest is the set ̺(X) as a topological space. Roughly speaking,
our main theorems in this Part (Theorem 9.13, Corollary 9.22 and Corollary 9.27)
give a classification of homeomorphism type of ̺(X) when X is a metrizable

108
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space. In this Chapter, we will give some results on the homeomorphism type of
̺(X) when X is a locally compact metrizable space. These results were given in
the 70s and 80s by R. Grant Woods and Catherine Gates (Theorems 7.20 and
7.12, respectively).

7.1 Existence of remote points

The first step is of course, proving that ̺(X) 6= ∅ when X is a metrizable space.
In [36], van Douwen proved that a non-pseudocompact space of countable π-
weight has remote points. As there are metrizable spaces with arbitrarily large
π-weight, we will present the argument given by Soo Bong Chae and Jeffrey H.
Smith in [26].

Lemma 7.2 [26, Theorem 3] Let X be a regular space with a σ-locally finite
π-base. Then for every non-empty open subset U of X and every n < ω there
is a family Gn(U) of closed subsets of X contained in U such that every dense
open subset of U contains an element of Gn(U) and any n+1 elements of Gn(U)
have non-empty intersection.

Proof. Let B =
⋃
{Bn : n < ω} be a π-base of X such that Bn is locally finite

for all n < ω. We may assume that Bn ⊂ Bn+1 for all n < ω. If V is a non-
empty open subset of X, define Ξ(V ) to be the smallest m < ω such that there
is W ∈ Bm with clX(W ) ⊂ V .

For any non-empty open subset U of X and n < ω, let us define a non-empty
closed subset Gn(U) ⊂ U by recursion. First, let

G0(U) =
⋃
{clX(V ) : V ∈ BΞ(U), clX(V ) ⊂ U}.

By the definition of Ξ(U) and the fact that Bn is locally finite for all n < ω, we
obtain that G0(U) is indeed a non-empty and closed subset of U (Lemma 0.20).
For all n < ω, define

Gn+1(U) =
(⋃
{Gn(U ∩ V ) : V ∈ BΞ(U), U ∩ V 6= ∅}

)
∪Gn(U).

Again, by similar arguments, Gn+1(U) is a non-empty and closed subset of U .
Finally, we define for n < ω,

Gn(U) = {Gn(W ) :W is an open dense subset of U}.

Clearly, Gn(U) is a collection of closed subsets of U . If W is dense open in U ,
then Gn(W ) is an element of Gn(U) contained in W . To show that this family
is as required, we prove the following claim by induction.



110 Chapter 7. REMOTE POINTS

Claim. If U ⊂ X is a non-empty open subset then any n+1 elements of Gn(U)
have non-empty intersection.

For n = 0, we just have to notice that if W is dense open in U , then Gn(W ) 6=
∅, this has already been shown above. Now assume inductively that we have
proved the claim for n = k. Let W0, . . . ,Wk+1 be dense open subsets of U . We
may assume that Ξ(W0) ≤ Ξ(Wi) for all 1 ≤ i ≤ k + 1. Notice that this implies
that BΞ(W0) ⊂ BΞ(Wi) for 1 ≤ i ≤ k + 1. By the definition of Ξ(W0), there is a
non-empty V ∈ BΞ(W0) such that clX(V ) ⊂W0. In particular, V is an non-empty
open subset of U so V ∩Wi is dense in V for all 1 ≤ i ≤ k+1. From the inductive
hypothesis appplied to the open set V , we obtain that the set

L = Gk(V ∩W1) ∩Gk(V ∩W2) ∩ . . . ∩Gk(V ∩Wk+1)

is non-empty. For 1 ≤ i ≤ k + 1, by the recursive definition of Gk+1(Wi) and
the fact that V ∈ BΞ(W0) ⊂ BΞ(Wi), L ⊂ Gk(V ∩Wi) ⊂ Gk+1(Wi). Notice that
moreover, since L ⊂ V , then L ⊂ G0(W0). By the definition of Gk+1(W0), we
obtain that L ⊂ G0(W0) ⊂ Gk+1(W0). Then

L ⊂ Gk+1(W0) ∩Gk+1(W1) ∩ . . . ∩Gk+1(Wk+1)

so this intersection is non-empty. This proves the claim and concludes the proof
of this Lemma.

Theorem 7.3 [26, Theorem 1] Let X be a normal space with a σ-locally finite
π-base. If G is a non-empty subset of βX of type Gδ such that G ⊂ X∗, then G
contains 2c remote points.

Proof. It is not hard to find a continuous function f : βX → [0, 1] such that
f←(0) ⊂ G. For each n < ω, let Un = f←[( 1

n+1 ,
1

n+2)] and choose a non-empty
open subset Vn of X such that clX(Vn) ⊂ Un. Then {Vn : n < ω} is a locally
finite family of non-empty open subsets of X whose closures are pairwise disjoint
(this is a refined version of Lemma 0.19).

By Lemma 7.2, for each n < ω, there is a family Gn(Vn) of closed subsets of
Vn such that (a) every open dense subset of Vn contains an element of Gn(Vn)
and (b) every n + 1 elements of Gn(Vn) have non-empty intersection. For every
U ∈ ω∗, consider the following family of closed subsets of X:

GU =
{⋃
{Fn : n ∈ A} : A ∈ U , ∀n ∈ A(Fn ∈ Gn(Vn))

}
.

For each U ∈ ω∗, let R(U) =
⋂
{clβX(G) : G ∈ GU}. We will now prove that⋃

{R(U) : U ∈ ω∗} consists of remote points of X contained in G.
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Claim 1. For every U ∈ ω∗, ∅ 6= R(U) ⊂ ̺(X) ∩G.

Fix some U ∈ ω∗. First, we show that R(U) is a subset of G.
Let m < ω. Since U is non-principal, there is A ∈ U such that A ⊂ ω \m.

For each n ∈ A, let Fn ∈ Gn(Un). Then
⋃
{Fn : n ∈ A} ∈ GU ∩ (

⋃
{Vn : n > m}).

By the definition of the family {Vn : n < ω}, this implies that

R(U) ∈ clβX({Vn : m < n < ω}) ⊂ G ∪ (
⋃
{clβX(Vn) : m < n < ω})

But this holds for every m < ω, so we obtain that R(U) ⊂ G.
Since βX is a compact space, to prove that R(U) 6= ∅, it is enough to prove

that the family GU has the finite intersection property. Let m < ω and {Gk :
k < m + 1} ⊂ GU . Then there exist A0, . . . , Am ∈ U and for each k < m + 1
a collection {Fn(k) : n ∈ Ak} such that Fn(k) ∈ Gn(Vn) for all n ∈ Ak and
Gk =

⋃
{Fn(k) : n ∈ Ak}. Let r ∈ A0 ∩ . . . ∩ Am be such that m < r. Then

by property (b) of the definition of Gr(Vr), Fr(0) ∩ . . . ∩ Fr(m) 6= ∅. Thus,
G0 ∩ . . . ∩Gm 6= ∅.

Now we prove that R(U) ⊂ ̺(X) so let F be a nowhere dense subset of X.
Then for each n < ω, Vn \ F is a dense open subset of Vn. So by property (a)
in the definition of Gn(Vn), there is Hn ∈ Gn(Vn) such that Hn ∩ F = ∅. Notice
that H =

⋃
{Hn : n < ω} ∈ GU . Since F ∩ H = ∅ and X is normal, F and

H can be separated by zero sets of X. From (3) in Theorem 6.4, we obtain
that clβX(F ) ∩ clβX(H) = ∅. Thus, R(U) ∩ clβX(F ) = ∅. This implies that
R(U) ⊂ ̺(X) and concludes the proof of Claim 1.

Claim 2. If U0,U1 ∈ ω∗ are such that U0 6= U1, then R(U0) ∩R(U1) = ∅.

Since U0 6= U1, there is A ⊂ ω such that A ∈ U0 and ω \ A ∈ U1. For each
n < ω, let Fn ∈ Gn(Vn). Let H0 =

⋃
{Fn : n ∈ A} and H1 =

⋃
{Fn : n ∈ ω \A}.

ThenH0 ∈ GU0 , H1 ∈ GU1 andH0∩H1 = ∅. SinceX is normal, by (3) in Theorem
6.4, we obtain that clβX(H0)∩clβX(H1) = ∅. This implies that R(U0)∩R(U1) = ∅
so Claim 2 has been proved.

By Claims 1, 2 and Theorem 6.47, we have proved the statement of the
Theorem.

Notice that Theorem 7.3 is a kind of dual to Proposition 6.49: while Propo-
sition 6.49 gives 2c points that are in the closure of a discrete subset, Theorem
7.3 gives 2c points that are not in the closure of any discrete subset.

The author of this dissertation was not able to remove the normality as-
sumptions from Theorem 7.3. Nevertheless, Theorem 7.3 is stong enough for our
main purpose: a metrizable space is clearly normal and by the Nagata-Smirnov
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metrization theorem (Theorem 0.22), it has a σ-locally finite base. Thus, The-
orem 7.3 applies to metrizable spaces. Moreover, metrizable spaces are nearly
realcompact by Proposition 6.14 so we obtain the following.

Corollary 7.4 If X is a metrizable non-compact space, then ̺(X) is dense in
X∗.

Also, van Douwen’s Theorem [36, Theorem 4.2] on existence of remote points
can be easily obtained by a careful manipulation of Theorem 7.3 as follows.

Corollary 7.5 [36, Theorem 4.2] Let X be a Tychonoff space with countable
π-weight. If G is a non-empty subset of βX of type Gδ such that G ⊂ X∗, then
G contains 2c remote points.

Proof. Let Y = βX \G. Then X ⊂ Y ⊂ βX so the equivalence of (0) and (1) in
Theorem 6.4 (or Corollary 6.15) easily implies that βY = βX. Also, notice that
Y is σ-compact so Y is normal (this follows from Lemma 1.5.15 and Theorem
3.1.9 in [50]). If F is a nowhere dense subset of X, then clY (F ) is a nowhere
dense subset of Y . From this, ̺(Y ) ⊂ ̺(X) ∩ G. Since X has a countable π-
base and X is dense in Y , it is not hard to construct a countable π-base for Y .
Obviously any countable π-base of Y is σ-locally finite. The result then follows
by applying Theorem 7.3 to Y .

Now we will give some properties of remote points studied by van Douwen in
[36]. First, we will notice that we have extremal disconnecteness at remote points
and then use this to give van Douwen’s “honest” proofs of non-homogeneity.

Proposition 7.6 [36, Corollary 5.2] Let X be a Tychonoff space and p ∈ ̺(X).
Then βX is ED at p.

Proof. Let p ∈ ̺(X). First we prove a preliminary claim.

Claim: If U is an open subset of βX such that p ∈ clβX(U), then p ∈ ExX(U∩X).

To prove the claim, notice that clβX(U) = clβX(ExX(U ∩X)) by Propo-
sition 6.11. Notice that bdX(U ∩X) is a nowhere dense subset of X so p /∈
clβX(bdX(U ∩X)). By Lemma 6.12, we obtain that p ∈ ExX(U ∩ X). This
proves the claim.

Thus, assume that U and V are disjoint open subsets of βX such that p ∈
clβX(U) ∩ clβX(V ). By the claim, p is in the open set W = ExX(U ∩ X) ∩
ExX(V ∩ X). However, by Proposition 6.10, W = ExX(U ∩ V ∩ X) = ∅ since
U ∩ V = ∅. This contradiction proves that βX is ED at p.
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In view of Proposition 7.6, we can give examples of spaces without remote
points.

Example 7.7 Some spaces with no remote points.

In Example 6.5, we saw that if κ is an ordinal of uncountable cofinality, then
βκ = κ + 1. So the Čech-Stone remainder of κ is just one point {κ}. However,
if A is the set of limit ordinals of κ, then A is nowhere dense and κ ∈ clκ(A) so
κ is not a remote point of κ. Thus, ̺(κ) = ∅.

In Example 6.6 we considered a dense subspace Σ of the power κ2, where
κ is an uncountable cardinal. We next argue that κ2 is not ED at any point.
By Proposition 7.6 and the fact that βΣ = κ2, we obtain that Σ has no remote
points.

We will prove that κ2 is not ED at the constant 0 function 0, for other points
the argument is similar. For each α < κ, let πα : κ2→ 2 be the projection onto
the α-th coordinate. Let U0 = π←0 (1) and if n < ω, let

Un+1 = (
⋂
{π←k (0) : k ≤ n}) ∩ π←n+1(1).

Then {Un : n < ω} is a pairwise disjoint collection of clopen subsets of κ2. If
U =

⋃
{U2n : n < ω} and V =

⋃
{U2n+1 : n < ω}, then U and V are disjoint

open sets with p ∈ clκ2(U) ∩ clκ2(V ). So κ2 is not ED at 0.

Notice that both spaces from Example 7.7 are pseudocompact. This is not a
coincidence. In [44], Alan Dow proved that no pseudocompact space has remote
points.

We would like to have a topological property opposite to extremal discon-
nectedness in non-remote points. Of course, we have to ask for more conditions
on X since βX is ED at all its points when X is ED (Theorem 6.36). A point p
in a space X is called a κ-point of X, where κ is a cardinal, if there is a collection
S of pairwise disjoint open subsets of X such that |S| ≥ κ and p ∈ clX(U) for
each U ∈ S. Clearly, p ∈ X is a 2-point of X if and only if X is not ED at p.

Lemma 7.8 [36, Lemma 6.5] Let κ be a cardinal and let X be a Tychonoff
space with a dense set of κ-points. If G is a non-empty subset of βX of type Gδ
with G ⊂ X∗, then G contains at least 2c points that are κ-points of βX.

Proof. We make the following assertions that can be shown analogously as in the
proofs of Theorem 7.3 and Corollary 7.5. First, we may assume without loss of
generality that G is a zero set of βX, call Y = βX \ G so that βX = βY and
Y ∗ = G. Also it is not hard to find a locally finite collection of non-empty open



114 Chapter 7. REMOTE POINTS

sets {Vn : n < ω} of βY with pairwise disjoint closures so that clβY (Vn) ⊂ Y for
all n < ω (again, this is a refined version of Lemma 0.19).

For each n < ω, let xn ∈ Vn be a κ-point of X. It is not hard to see that
for each n < ω there exists a family of pairwise disjoint open subsets {U(n, α) :
α < κ} of Y such that xn ∈

⋂
{clY (U(n, α)) : α < κ}. For every n < ω and

α < κ we may further assume that U(n, α) ⊂ Vn so that U(n, α) is an open
subset of βY as well. Let Uα =

⋃
{U(n, α) : n < ω} for each α < κ and let

F = clβY ({xn : n < ω}). Notice that {Uα : α < ω} is a family of non-empty
open subsets of βY such that F ⊂

⋂
{clβY (Uα) : α < ω}. Thus, every point of

F is a κ-point of βY = βX.
Since {Vn : n < ω} is a locally finite family, it is not hard to use the Urysohn

Extension Theorem 0.9 to prove that {xn : n < ω} is C∗-embedded in Y . Thus,
by Corollary 6.15, F is homeomorphic to βω and |F | = 2c by Theorem 6.47. No-
tice that this argument is basically the same one used in the proof of Proposition
6.49.

Then F ∩ X∗ is a set of 2c points that are κ-points of βX contained in G.
This concludes the proof of this Lemma.

With these tools we can provide proofs of non-homogeneity in certain cases.

Theorem 7.9 Let X be a nowhere locally compact Tychonoff space. If ̺(X)
is dense in X and X fails to be ED at a dense set of points, then X∗ is not
homogeneous because it is ED at some points but not at others.

Proof. Notice that X∗ is dense in βX since X is nowhere locally compact. Thus,
by Proposition 7.6 and Lemma 6.32, ̺(X) is ED, so in particular X∗ is ED at
each point of ̺(X). The rest of the result follows from Lemma 7.8.

For example, by Corollary 7.4 we have the following.

Corollary 7.10 If X is a nowhere locally compact metrizable space, then X∗

is not homogeneous because it is ED at some points but not at others.

We remark that van Douwen gave many more applications of remote points
in his paper [36]. As stated in the Introduction to this Part, further work has
been done to investigate the existence of remote points in wider classes of spaces.

After van Douwen’s results, Johannes Vermeer and Evert Wattel proved the
following, which shows that in some cases, being a remote point is in fact a
topological property.
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Theorem 7.11 [160] Let X be a nowhere locally compact Tychonoff space. If
h : X∗ → X∗ is a homeomorphism, then h[̺(X)] = ̺(X).

Proof. It is enough to prove that if p /∈ ̺(X), then h(p) /∈ ̺(X). Notice that since
X is nowhere locally compact, X∗ is dense in βX and thus, is nowhere locally
compact as well. By (2) in Theorem 6.4, there exists a continuous function
f : βX∗ → βX such that f↾X∗ : X∗ → X∗ is the identity function. Also by (2) in
Theorem 6.4 there is a unique function βh : βX∗ → βX∗ such that βh↾X∗= h.
Since h is a homeomorphism, βh can be easily see to be a homeomorphism as
well.

It is not hard to see that f [X∗∗] = X and f↾X∗∗ : X∗∗ → X is an irreducible
function from the fact that both X∗ and X∗∗ are dense in βX∗.

Thus, if F ⊂ X is a closed and nowhere dense in X such that p ∈ clβX(F ),
then G0 = f←[F ] is a closed and nowhere dense subset of X∗∗. We claim that
p ∈ clβX∗(G0). Assume that this is not the case and let U be an open subset of
βX∗ such that p ∈ U and U ∩G0 = ∅. Then f ♯[U ] = βX \ f [βX∗ \U ] is an open
subset of βX∗ that contains p and misses F . This is a contradiction.

LetG1 = βh[G0] andH = f [G1]. ThenG1 is a closed nowhere dense subset of
X∗ such that h(p) ∈ clβX∗(G1). Since f↾X∗∗ is irreducible, by (b) in Lemma 6.45
it follows that H is a closed and nowhere dense subset of X and h(p) ∈ clβX(H).
Thus, h(p) /∈ ̺(X).

However, Theorem 7.11 cannot be generalized to locally compact spaces. It
was shown by Joseph Yi-Chung Yu ([170]) that it is consistent that there is a
autohomeomorphism of R∗ that maps a remote point to a non remote point. A
proof of this fact can also be found in [75].

7.2 Coabsolute spaces and remote points

As it has been mentioned before, our main problem is the following: if X and
Y are two metrizable spaces, when are ̺(X) and ̺(Y ) homeomorphic? In [66],
Catherine Gates gave some tools that relate the absolute to this problem. More
precisely, ̺(X) is homeomorphic to ̺(EX), see Corollary 7.13. In this section
we will give Gate’s proof of this result.

Proposition 7.12 [66, Theorem 2.4] Let X be a Tychonoff space, let Y be a
normal space and let f : X → Y be an irreducible continuous function. Denote by
βf : βX → βY the unique continuous extension of f . Then ̺(X) = βf←[̺(Y )]
and βf↾̺(X): ̺(X)→ ̺(Y ) is a homeomorphism.
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Proof. We first show that

(∗) ̺(X) = βf←[̺(Y )].

First, let p ∈ ̺(X) and q = βf(p), we want to show that q ∈ ̺(Y ).

Claim. For every closed nowhere dense subset B of Y , q /∈ clβY (B).

Assume that this is not the case and let B be a witness closed nowhere dense
set. Let A = f←[B], then A is closed and nowhere dense since f is irreducible.
Since p ∈ ̺(X), p /∈ clX(A). From Proposition 6.11, there is a non-empty open
set U of X such that p ∈ ExX(U) and clβX(ExX(U)) ∩ clX(A) = ∅. From the
fact that f is closed it follows that B and f [clX(U)] are disjoint closed subsets
of Y . Notice that (b) in Proposition 6.10 implies that p ∈ clβX(clX(U)). Thus,
q ∈ clβY (B) ∩ clβY (f [clX(U)]), but this contadicts the normality of Y . So the
Claim has been established.

We still have to show that q ∈ X∗ to prove that q ∈ ̺(Y ). Assume that this is
not the case, then q ∈ Y . If q is not an isolated point, then take B = {q}, this is a
closed nowhere dense subset of Y so by the Claim, q /∈ B, a contradiction. Thus,
the only chance left is that q is an isolated point of Y . Then f←(q) is clopen
and by the irreducibility of f , f←(q) = {x} for some isolated point x ∈ X. Since
p ∈ clβX(X \ {x}), then q ∈ clβY (Y \ {q}) ⊂ βY \ {q} since q is also an isolated
point of βY . This is a contradiction. Thus, we have proved that q ∈ ̺(Y ).

Now let p ∈ βX be such that q = βf(p) ∈ ̺(Y ). Since f [X] = Y , we obtain
that p ∈ X∗. Assume that there is a closed nowhere dense subset A of X such
that p ∈ clβX(A). By (b) in Lemma 6.45, B = f [A] is closed and nowhere dense
in Y . Moreover, q ∈ clβY (B), this is a contradiction. Thus, p ∈ ̺(X). This
argument completes the proof of (∗).

From (∗), it is not hard to see that βf↾̺(X): ̺(X)→ ̺(Y ) is continuous and
closed, we just have to prove that it is one to one. So assume that there exists
p ∈ ̺(Y ) such that |βf←(p)| > 1. Then there are disjoint open subsets U0 and U1

of βX such that Ui ∩ βf←(p) 6= ∅ for i ∈ 2. Let Vi = βf ♯[Ui] for i ∈ 2. By (c) in
Lemma 6.45, V0 and V1 are non-empty disjoint open subsets of βY . Moreover, it
is not hard to see that p ∈ clβY (V0)∩ clβY (V1). But this contradicts Proposition
7.6. This proves that in fact, |βf←(p)| = 1. Thus, βf↾̺(X): ̺(X) → ̺(Y ) is a
homeomorphism and the proof is complete.

Proposition 7.12 and Corollary 6.42 immediately show the following.

Corollary 7.13 If two normal spaces X and Y are coabsolute, then ̺(X) is
homeomorphic to ̺(Y ).
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However, Proposition 7.12 gives us more information than Corollary 7.13. For
one part, we don’t just obtain some arbitrary homeomorphism but we know how
to obtain it. Also, we do not need to “see” the absolute of X and the absolute of
Y to compare ̺(X) and ̺(Y ); we just need a function between X and Y .

We state two more results that will be useful for our results.

Lemma 7.14 Let X be a normal space and U ⊂ X be open and dense in X.
Then ̺(X) is homeomorphic to ̺(U).

Proof. Consider the absolute kX : EX → X. By Proposition 6.43 kX ↾k←
X

[U ]:
k←X [U ] → U is the absolute of U . Identify k←X [U ] with EU and kX ↾k←

X
[U ] with

kU . Also, since kX is irreducible and U is dense, by (a) in Lemma 6.45, EU is
dense in EX. By Proposition 6.33, EU is a C∗-embedded subset of EX. This
implies that clβEX(EU) can be identified with βEU . No remote point of EX
can lie in βEX \βEU because this set is contained in the closure of the nowhere
dense subset EX \EU of EX. Thus, it can be shown that ̺(EX) = ̺(EU). By
applying Corollary 7.13 it follows that ̺(U) and ̺(X) are homeomorphic.

Proposition 7.15 Let X be a normal space. Assume that Y is a regular closed
subset of X and identify clβX(Y ) with βY . Then ̺(Y ) = ̺(X) ∩ clβX(Y ).
Moreover, since clX(X − Y ) is also a regular closed subset, we can write ̺(X) =
̺(Y ) ∪ ̺(clX(X − Y )) and ̺(Y ), ̺(clX(X − Y )) are disjoint clopen subsets of
̺(X).

Proof. Define Z to be the direct sum of Y and clX(X \ Y ), formally, Z = A0∪A1,
where A0 = Y × {0} and A1 = clX(X \ Y ) × {1}. Let φ : Z → X be the
natural projection to the first coordinate. It is easy to see that φ is a perfect
and irreducible continuous function so we may apply Proposition 7.12 to obtain
that βφ↾̺(Z): ̺(Z) → ̺(X) is a homeomorphism. Notice that A0 and A1 are
complementary clopen subsets of Z. Thus, clβZ(Ai) can be identified with βAi
for i ∈ 2 and βA0 ∩ βA1 = ∅. From this, it is straightforward that ̺(Ai) =
̺(X) ∩ clβZ(Ai) for i ∈ 2, ̺(Z) = ̺(A) ∪ ̺(B) and ̺(A) ∩ ̺(B) = ∅. From the
fact that both φ↾A0

: A0 → Y and φ↾A1
: A1 → clX(X \ Y ) are homeomorphisms,

it is not hard to prove that βφ[̺(A0)] = ̺(Y ) and βφ[̺(A1)] = ̺(clX(X \ Y )).
The result follows from these observations.

7.3 Locally compact spaces

In this Section we will prove a result by R. Grant Woods that completely charac-
terizes remote points of locally compact crowded metrizable spaces, see Theorem
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7.20. We start by mapping the Cantor set to any compact metrizable space in
an irreducible way.

Proposition 7.16 [167, Lemma 2.1] Let X be a compact crowded metrizable
space. Then there is a irreducible continuous function f : ω2→ X.

Proof. Fix some metric d for X. By recursion, we will construct a sequence of
covers {Un : n < ω} of X and an increasing sequence {kn : n < ω} ⊂ ω such
that for all n < ω the following hold

(a) Un ⊂ R(X),

(b) if A ∈ Un, then the diameter of A is ≤ 1
n+1 ,

(c) if A,B ∈ Un and A 6= B, then A ∩ intX(B) = ∅,

(d) Un+1 refines Un,

(e) if A ∈ Un, then {B ∈ Un+1 : B ⊂ A} covers A,

(f) |Un| = 2kn ,

(g) if A ∈ Un, then |{B ∈ Un+1 : B ⊂ A}| = 2kn+1−kn .

Assume that we have constructed {U0, . . . ,Um} and {k0, . . . , km}. Let Um =
{Ai : i ≤ 2km}.

Fix i ≤ 2km . Since Ai is a compact metrizable space, there exists p(i) < ω
and a cover Vi = {Vj : j ≤ p(i)} of Ai by open sets in Ai of diameter ≤ 1

m+2 .
Recursively, for j ≤ p(i) we define an open set V ′j of Ai in the following way.
First, V ′0 = V0. If j ≤ p(i), let

V ′j+1 = Vj+1 \ clAi
(V ′0 ∪ . . . V

′
j ).

Let q(i) < ω and let {Wj : j ≤ q(i)} = {V ′j : j ≤ p(i)} \ {∅} be a precise
enumeration. Notice that for each j ≤ p(i), clAi

(Wj) ∈ R(Ai). Moreover, since
Ai ∈ R(X), it is not hard to see that clAi

(Wj) = clX(Wj) ∈ R(X). Finally, let
Wi = {clAi

(Wj) : i ≤ q(i)}.
Then it is easy to see that Wi is a family of q(i) regular closed subsets of X

contained in Ai, each with diameter ≤ 1
m+2 and with pairwise disjoint interiors

(with respect to X). Notice that if we define Um+1 =
⋃
{Wi : i ≤ 2km}, then

conditions (a) to (e) hold. However, conditions (f) and (g) still may not hold,
we have to do additional work.

Let us make a general observation: in any crowded regular space Y for any
A ∈ R(Y ), there are B,C ∈ R(Y ) such that A = B ∪ C and B ∩ C is nowhere
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dense. Let r be the smallest j < ω such that 2j ≥ max{q(i) : i ≤ km+1} and
define km+1 = km+r. From this observation, it is possible to modify each family
Wi to obtain a familyW ′i of precisely 2r regular closed subsets of X contained in
Ai, each one of diameter ≤ 1

m+2 and with pairwise disjoint interiors with respect
to X, for each i ≤ km+1. Then defining Um+1 =

⋃
{W ′i : i ≤ 2km} conditions (a)

to (g) hold. This completes the construction.
Now we will do a similar construction for the Cantor set. For every s ∈ <ω2,

let Us = {x ∈ ω2 : x(i) = s(i) for all i ∈ dom(s)}. Then {Us : s ∈ <ω2} is a
basis of clopen subsets of ω2. Using properties (d), (e) and (f), it is not hard to
construct by recursion a bijection φ :

⋃
{kn2 : n < ω} →

⋃
{Un : n < ω} such

that φ[kn2] = Un for all n < ω and φ(s) ⊂ φ(t) if and only if t ⊂ s.
Finally, define f : ω2 → X in the following way: if s ∈ ω2, let f(s) be

the only point in the intersection
⋂
{φ(s↾kn) : n < ω}. Clearly this function is

well-defined. Notice that

(∗) f [Us] ⊂ φ(Us) for every s ∈
⋃
{kn2 : n < ω}.

To prove that f is continuous, let t ∈ ω2 and let V an open set in X such
that f(t) ∈ V , we must find an open set U in ω2 such that t ∈ U and f [U ] ⊂ V .
There exists m < ω such that {y ∈ X : d(f(t), y) ≤ 1

m+1} ⊂ V . Let r = t↾km ,
then by the definition of m, property (b) and (∗), we have that φ(Ur) ⊂ V . Let
U = Ur, then U is an open set of ω2 such that t ∈ U and f [Ur] ⊂ φ(Ur) ⊂ V by
(∗). This proves the continuity of f and since f is a function between compact
spaces, it is also closed.

Finally, we prove that f is irreducible. To see that f is onto, let x ∈ X. By
property (e) recursively choose An ∈ Un such that x ∈ An and An+1 ⊂ An if
n < ω. Then {φ−1(An) : n < ω} is a strictly increasing sequence of functions
and

⋃
{φ−1(An) : n < ω} = y ∈ ω2 is such that f(y) = x.

Now, let F ⊂ ω2 be a closed proper subset, we must prove that f [F ] is proper.
Then there is t ∈

⋃
{kn2 : n < ω} such that F ∩Ut 6= ∅. Let m = dom(t) and let

C = φ(Ut). By (∗),

f [F ] ⊂
⋃
{f [Us] : dom(s) = m, s 6= t} ⊂

⋃
{φ(Us) : dom(s) = m, s 6= t}

so f [F ] ⊂ X\intX(C) by property (c). Thus, f [F ] 6= ω2 and f is then irreducible.

From this we obtain the following well-known result.

Corollary 7.17 If K is a compact crowded metrizable space, then K is coab-
solute with the Cantor set.
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Figure 7.1: Refining covers in Proposition 7.16.

Next we give two results about the structure of locally compact metrizable
spaces.

Proposition 7.18 [167, Theorem 1.1] Let X be a locally compact metrizable
space of weight κ.

(a) If κ = ω, then X is σ-compact.

(b) If κ > ω, then X is the free union of precisely κ locally compact, σ-compact
and non-compact metrizable spaces.

Proof. For each x ∈ X, let Ux be an open subset of X such that x ∈ Ux and
clX(Ux) is compact. Since X is paracompact (Theorem 0.21), there exists a
locally finite open cover U that refines {Ux : x ∈ X}. Thus, every member of U
has compact closure.

We define an equivalence relation in U in the following way. We will say
that U ∼ V for U, V ∈ U if there exists m < ω and {Un : n ≤ m} ⊂ U such
that U0 = U , Um = V and Un ∩ Un+1 6= ∅ for all n < m. For every U ∈ U ,
let ⌊U⌋ be the equivalence class of U defined by ∼. It is not hard to see that
if U, V ∈ U , then either (

⋃
⌊U⌋) ∩ (

⋃
⌊V ⌋) = ∅ or (

⋃
⌊U⌋) = (

⋃
⌊V ⌋). Then

V = {(
⋃
⌊U⌋) : U ∈ U} is a partition of X into clopen subsets.

Claim. ⌊U⌋ is countable for each U ∈ U .

Fix U ∈ U . To prove the Claim, we define a function ρ : ⌊U⌋ → ω. Let ρ(V )
to be the smallest number m < ω such that there is {Un : n ≤ m} ⊂ U such that
U0 = U , Um = V and Un ∩ Un+1 6= ∅ for all n < m. Clearly, ρ is well-defined by
the definition of ⌊U⌋. Inductively, let us prove that Sn = {V ∈ ⌊U⌋ : ρ(V ) = n}
is finite for all n < ω. Clearly, S0 = {U}. Assume that Sk is finite, then

(∗) Sk+1 ⊂
⋃
{{W ∈ U : V ∩W 6= ∅} : V ∈ Sk}.
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Since U is locally finite, {W ∈ U : V ∩W 6= ∅} is finite for all V ∈ U so equation
(∗) implies that Sk+1 is finite. Since ⌊U⌋ =

⋃
{Sn : n < ω}, we have proved the

Claim.
By the Claim and the fact that each element of U has compact closure, we

easily obtain that V is a partition of X into countably many clopen, locally
compact and σ-compact subsets of X. If w(X) = ω, then V must be countable
and X is σ-compact.

Moreover, since compact metrizable spaces have countable weight (Theorem
0.16), the weight of X is precisely |V|. So in the case that w(X) = κ > ω, we can
give a precise enumeration V = {V (α, n) : α < κ, n < ω}. Let Vα =

⋃
{V (α, n) :

n < ω} for each α < κ. Then {Vα : α < κ} is a partition of precisely κ locally
compact, σ-compact and non-compact metrizable spaces.

Proposition 7.19 Let X be a locally compact, σ-compact and non-compact
Hausdorff space. Then there is a sequence {Kn : n < ω} of compact, regular
closed subsets of X such that

(a) X =
⋃
{Kn : n < ω};

(b) if m,n < ω and |m− n| > 1, then Km ∩Kn = ∅ and

(c) if m,n < ω and m 6= n, then Kn ∩ intX(Km) = ∅.

Moreover, if X is crowded then we may ask that Kn is crowded for every n < ω.

Proof. Since X is a countable union of compact sets, there is a countable open
cover U = {Un : n < ω} of X such that clX(Un) is compact and non-empty for
all n < ω. We first define a sequence of compact sets {Tn : n < ω} such that
Tn ( intX(Tn+1) for all n < ω and X =

⋃
{Tn : n < ω}.

Let T0 = clX(U0). Recursively, if we have defined {Tn : n ≤ m}, let t(m) =
min{n < ω : Un 6⊂ Tm} and let Um ⊂ U be a finite collection that covers Tm.
Define Tm+1 = clX(Ut(m) ∪ (

⋃
Un)). It is easy to see that the family {Tn : n < ω}

constructed is as requested.
Finally, define K0 = T0 and Kn+1 = clX(Tn+1 \Kn) for n < ω. It is not

hard to see that the collection {Kn : n < ω} is as requested.

Finally, we can prove the following.

Theorem 7.20 [167] Let X be a non-compact, locally compact and crowded
metrizable space of weight κ. Then ̺(X) is homeomorphic to ̺(κ× ω2).

Proof. If κ > ω, by Proposition 7.18, X =
⊕
{Xα : α < κ} where Xα is non-

compact, locally compact, crowded and σ-compact for each α < κ. Assume that
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XK0 K1 K2 K3 K4

Figure 7.2: The regular closed sets in Proposition 7.19.

for each α < κ we are able to define a perfect, continuous and irreducible con-
tinuous function fα : ω× ω2→ Xα. Then the function f : κ×ω× ω2→ X given
by f(α, n, x) = fα(n, x) for all (α, n, x) ∈ κ× ω × ω2 is also perfect, continuous
and irreducible. By Proposition 7.12, f witnesses that ̺(X) is homeomorphic
to ̺(κ × ω × ω2) and this set is homeomorphic to ̺(κ × ω2). If κ = ω, then X
is σ-compact by Proposition 7.18. If f : ω × ω2 → X is a perfect, continuous
and irreducible function, we have that ̺(X) is homeomorphic to ̺(ω × ω2) by
Proposition 7.12.

So for both cases it is enough to assume that X is σ-compact and find a
perfect, continuous and irreducible function f : ω × ω2→ X. Let {Kn : n < ω}
be a family of sets for X as in Proposition 7.19. For each n < ω, by Proposition
7.16 there is a perfect, continuous and irreducible function fn : ω2→ Kn. Define
f : ω × ω2 by f(〈n, x〉) = fn(x) for all 〈n, x〉 ∈ ω × ω2. Clearly, f is continuous
and onto.

To see that f is closed, let F ⊂ ω × ω2 be closed. Then f [F ] =
⋃
{fn[F ∩

({n} × ω2)] : n < ω}. Notice that fn[F ∩ ({n} × ω2)] is closed in X because it
is a closed subset of Kn for each n < ω. By properties (b) and (c) of the family
{Kn : n < ω}, {fn[F ∩ ({n} × ω2)] : n < ω} is locally finite so its union f [F ] is
then closed (Lemma 0.20).

Now we see that f is pefect, let p ∈ X. By property (b) of the sequence
{Kn : n < ω}, there are m0,m1 < ω such that p ∈ Kn implies n ∈ {m0,m1}



Section 7.3. ̺(κ× ω2) 123

(m0 might be equal to m1). Thus, f←(p) = ({m0}× f
←
m0

(p))∪ ({m1}× f
←
m1

(p)).
Thus, every fiber is compact and f is closed so f is thus perfect.

We only have to see that f is irreducible. Notice that f is onto because
fn[

ω2] = Kn for all n < ω. Let F ⊂ ω × ω2 be a proper closed subset. Then
there is m < ω such that ({m} × ω2) \ F is non-empty. Then

f [F ] ⊂ (
⋃
{Kn : n < ω, n 6= m}) ∪ fm[F ∩ ({m} × ω2)].

But fm is an irreducible function so U = Km\fm[F∩({m}×ω2)] is an non-empty
open subset of Km. From properties (b) and (c) of the collection {Kn : n < ω},
we obtain that intX(U) 6= ∅ and f [F ] ∩ intX(U) = ∅. Thus, f is irreducible and
the proof has been completed.

One may also wonder what happens with locally compact spaces with isolated
points. Recall from Example 6.44 that for every compact Hausdorff space X
with a countable dense set of isolated points there is a perfect, continuous and
irreducible function f : βω → X. Also, notice that ̺(ω) = ω∗. So for example, if
X = (ω×ω2)⊕ω, then ̺(X) = ̺(ω×ω2)⊕̺(ω) by Proposition 7.15. In general,
the problem of finding a common model for ̺(X) in some larger class of locally
compact metrizable spaces X is not obvious. However, in this dissertation we
will not deal with this problem.

We finally remark that the following was later shown.

Theorem 7.21 [66, Corollary 5.8] Let X be a non-compact, separable and
crowded metrizable space whose set of non-locally compact points is compact
and non-empty. Then ̺(X) is homeomorphic to ω × ̺(ω × ω2).

Let us give an example of an space as in Theorem 7.21.

Figure 7.3: Example 7.22.
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Example 7.22 A metrizableX space with ̺(X) homeomorphic to ω×̺(ω×ω2).

For each n < ω, let In = { 1
n+1}× (0, 1) and let C be the Cantor middle-third set

in the interval [0, 1]. Define

X = (
⋃
{In : n < ω}) ∪ ({0} × C)

as a subspace of the Euclidean plane 2R. Then X is locally compact in the dense
set

⋃
{In : n < ω} but no point in {0}×C has a relatively compact neighborhood.

Thus, by Theorem 7.21, ̺(X) is homeomorphic to ω × ̺(ω × ω2).



Chapter 8

Special Tools

In this Chapter, we will develop four topics that at first sight has nothing to do
with our problems on remote points but will nevertheless provide some key ideas
for our results in Chapter 9. Since our main problem (Question 9.1) concerns
metrizable spaces, the topics developed in this chapter will be mainly in the
context of metrizable spaces.

8.1 Strongly 0-dimensional spaces

It turns out that in order to study spaces of remote points of metrizable spaces, it
is enough to consider a special class of metrizable spaces (Proposition 9.6 below).
We will give a brief summary of the background we need to prove this result.

It is not hard to convince oneself that a space X is 0-dimensional if for every
pair 〈p, F 〉 where p ∈ X, F ⊂ X is closed and p /∈ F , there is C ∈ CO(X)
such that C separates p from F ; more precisely, p ∈ C and C ∩ F = ∅. We can
obtain another property if instead of separating a point from a closed set, we can
separate two disjoint closed subsets.

A Tychonoff space X is strongly 0-dimensional if for every two disjoint zero
sets F,G ⊂ X there is C ∈ CO(X) such that C ⊂ F and C ∩G = ∅. Clearly, if
X is normal we may change “zero sets” in this definition by “closed sets”.

We remark that for each n ∈ ω ∪ {∞}, there are notions of n-dimensional
which generalize 0-dimensional and strongly 0-dimensionality (see Chapter 7 of
[50] or the specialized book [51]). There is a famous example of a metrizable
space which is 0-dimensional but not strongly 0-dimensional, this space is due
to Prabir Roy ([140] and [141]). We also refer the reader to [131, Chapter 7,
Section 4] where this example is given in detail. We have, however, that these
two notions coincide sometimes.

125
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Proposition 8.1 If X is any 0-dimensional separable metrizable space, then X
is strongly 0-dimensional.

Proof. Let F and G be disjoint closed subsets of X. By Lemma 0.15, there is
a countable base B ⊂ CO(X). For every x ∈ X, let Bx ∈ B such that either
Bx ∩ F = ∅ or Bx ∩ G = ∅. Since B is countable, we can give an enumeration
{Bx : x ∈ X} = {An : n < ω}. For n < ω, define Cn = An \ (

⋃
{Am : m < n}).

Then {Cn : n < ω} is a partition of X into clopen sets (some which may be
empty). Moreover, for each n < ω, either Cn ∩ F = ∅ or Cn ∩ G = ∅. Let
C =

⋃
{Cn : n < ω,Cn ∩ F 6= ∅} and D =

⋃
{Cn : n < ω,Cn ∩ F = ∅}. Then

C = X \D, F ⊂ C and G ⊂ D. Thus, C and D are clopen subsets that separate
F and G. This proves that X is strongly 0-dimensional.

As Corollary 9.6 shows, the “correct” notion of dimension 0 for us will be
that of strongly 0-dimensional spaces. Let us give a characterization of strong
dimension 0 for metrizable spaces.

Theorem 8.2 Let X be a metrizable space. Then the following conditions are
equivalent.

(0) X is strongly 0-dimensional.

(1) For every metric on X there is a sequence {Un : n < ω} of partitions of X
into clopen subsets such that (a) for all n < ω, Un has mesh ≤ 1

n+1 and (b)
for each n < ω, Un+1 refines Un.

(2) There is a metric on X and a sequence {Un : n < ω} of partitions of X
into clopen subsets such that (a) for all n < ω, Un has mesh ≤ 1

n+1 and (b)
for each n < ω, Un+1 refines Un.

Proof. Clearly, (1) implies (2). Assume (2) and let d be the metric in the hy-
pothesis. Let F,G be two disjoint closed subsets of X. Define

V0 =
⋃
{U ∈ U0 : U ∩ F 6= ∅, U ∩G = ∅}

which is clopen since U0 is a partition and it is disjoint from G. Recursively, for
each n < ω, let

Vn+1 =
⋃
{U ∈ Un+1 : U ∩ (F \ (V0 ∪ . . . ∪ Vn)) 6= ∅, U ∩G = ∅},

which is also clopen and disjoint from G.
Let V =

⋃
{Vn : n < ω}, then V is an open set and clearly V ∩ G = ∅. We

claim that F ⊂ V and V ∈ CO(X), this will show (0).
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To see that F ⊂ V , assume this is not the case. Then there is x ∈ F \ V , let
m < ω be such that d(x,G) = inf{d(x, y) : y ∈ G} < 1

m+1 . Let W ∈ Um be such
that x ∈ W , notice that W ∩ G = ∅. Since x /∈ Vm, we obtain that W ⊂ Vm+1

by the definition of Vm+1. But this implies that x ∈ Vm+1, a contradiction. This
proves that F ⊂ V .

Now we see that V is closed, since X is metrizable, we can check this using
convergent sequences. Let {xn : n < ω} ⊂ V have limit x. If there is m < ω
such that {n < ω : xn ∈ Vm} is infinite, then x ∈ Vm ⊂ V as Vm is closed. If this
is not the case, taking a subsequence if necessary, we may assume that there is a
strictly increasing s : ω → ω such that xn ∈ Vs(n) for all n < ω. For each n < ω,
let yn ∈ Vs(n) ∩ F be such that d(xn, yn) < 1

s(n)+1 . Then clearly {yn : n < ω}
also converges to x. But F is closed so x ∈ F and we have already proved that
F ⊂ V so x ∈ V . Thus V is closed. This completes the proof of the fact that
(2) implies (0).

Now we assume (0) and prove (1). Let d be a metric on X. We will construct
the partitions {Un : n < ω} recursively. Assume that we have constructed
{Un : n ≤ m} for some m < ω, now we have to construct Um+1. Since X is
paracompact (Theorem 0.21), there is a locally finite cover V0 of X such that
V0 refines Um+1. By taking more refinements, we may assume that V0 has mesh
≤ 1

m+2 . Let V1 be a locally finite refinement of V0. By the regularity of X, we
may further ask that for every V ∈ V1 there is U ∈ V0 such that clX(V ) ⊂ U .

Let V0 = {Vα : α < κ} be a precise enumeration, where κ is some cardinal.
For each α < κ, let Fα =

⋃
{clX(V ) : V ∈ V1, clX(V ) ⊂ Vα}, this is a closed

subset of X since V1 is locally finite (Lemma 0.20). Define G = {Fα : α < κ},
this is a closed cover of X that refines V0 with the additional property that this
refinement is a shrinking: Fα ⊂ Vα for all α < κ.

Since X is strongly 0-dimensional, there is Wα ∈ CO(X) such that Fα ⊂
Wα ⊂ Vα for all α < κ. Let W = {Wα : α < κ}. Then W is a cover since G
is a cover. Let x ∈ X, since V0 is locally finite, let U be an open set such that
{α : Vα ∩ U 6= ∅} is finite. If β < κ is such that U ∩Wβ 6= ∅, then U ∩ Vβ 6= ∅.
This proves that {α : Wα ∩ U 6= ∅} ⊂ {α : Vα ∩ U 6= ∅}. Thus, W is a locally
finite clopen cover of X.

Recursively, define U0 = W0 and Uα = Wα \ (
⋃
{Wβ : β < α}) if 0 < α < κ.

Then by Lemma 0.20, Uα ∈ CO(X) for all α < κ. Define Um+1 = {Uα : α <
κ} \ {∅}. Notice that Um+1 is a partition of X into clopen sets. Clearly, Um+1

refines V0 so the mesh of Um+1 is ≤ 1
m+2 and Um+1 refines Um. This proves (1)

and concludes the proof of the Theorem.

We obtain the following Corollary. We remark that it is not true in general
that a subspace of a strongly 0-dimensional space is also strongly 0-dimensional,
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F
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V4

· · ·

Figure 8.1: (2) implies (0) in Theorem 8.2.

as an example by Dowker [50, 6.2.20] shows.

Corollary 8.3 If X is a strongly 0-dimensional metrizable space and Y ⊂ X,
then Y is strongly 0-dimensional as well.

Proof. Fix some metric for X, notice that this metric restricts to a metric for Y .
From (1) in Theorem 8.2, we obtain a sequence of clopen partitions {Un : n < ω}
for X. For all n < ω, let Vn = {U ∩ Y : U ∈ Un}. Then {Vn : n < ω} witnesses
(2) in Theorem 8.2 for Y . Thus, Y is also strongly 0-dimensional.

We now introduce the space which is the archetype for strongly 0-dimensional
spaces.

Definition 8.4 If κ is an infinite cardinal, the product space ωκ is called the
κ-Baire space. There exists a very natural metric d in ωκ: if x, y ∈ ωκ and x 6= y,
let d(x, y) = 1

∆(x,y)+1 , where ∆(x, y) = min{n < ω : x(n) 6= y(n)}. For each
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f ∈ <ωκ, let Bf = {x ∈ ωκ : f ⊂ x}. For each n < ω, let Bn = {Bf : f ∈ n+1κ}
and define B =

⋃
{Bn : n < ω}.

Lemma 8.5 For every infinite cardinal κ, ωκ is a nowhere locally compact,
strongly 0-dimensional completely metrizable space of weight κ. Moreover, B
from Definition 8.4 is a base of clopen sets all homeomorphic to ωκ and d from
Definition 8.4 is a complete metric that generates the topology of ωκ.

Proof. It is not hard to see that B is a base of clopen sets of ωκ with the product
topology. Moreover, if f ∈ n+1κ for n < ω, then Bf = {f(0), . . . , f(n)} ×
ω\(n+1)κ, which is homeomorphic to ωκ. Thus, B is a base of precisely κ clopen
sets all homeomorphic to the whole space ωκ.

If x ∈ ωκ, n < ω and f = x↾n+1, then Bf = {y ∈ ωκ : d(x, y) < 1
n+1}.

This proves that d generates the product topology on ωκ. Now we see that d is
a complete metric. Let {xn : n < ω} ⊂ ωκ be a Cauchy sequence, in particular,
such that d(xm, xn) ≤ 1

m+1 if m ≤ n < ω. Let t ∈ ωω be such that t(n) = xn(n)
for all n < ω. Inductively it follows that xn(k) = t(k) for all k ≤ n < ω. Then
{xn : n < ω} converges to t and d is thus complete.

Notice that Bn is a partition into clopen sets with mesh 1
n+1 . Let f, g ∈ <ωκ.

If f and g are compatible, say f ⊂ g, then Bg ⊂ Bf . Otherwise, Bf ∩ Bg = ∅.
Thus, {Bn : n < ω} satisfies condition (2) in Theorem 8.2. This implies that ωκ
is strongly 0-dimensional.

Since |B| = κ, we obtain that ωκ has weight ≤ κ. Moreover, B0 is a partition
of ωκ into exactly κ disjoint non-empty open sets, this easily implies that w(ωκ) ≥
κ. Thus, w(ωκ) = κ.

If ωκ were locally compact at some point, then there would be an element
of the base B that is compact. This and the fact that all elements of B are
homeomorphic to ωκ imply that ωκ is compact. However, B0 is a partition of ωκ
into exactly κ disjoint non-empty open sets, which contradicts the compactness.
Thus, ωκ is nowhere locally compact.

In the rest of this Section we shall give properties of the κ-Baire space we
will use later. The first property is that κ-Baire space is a universal space, see
Example 2.2 in Part I for a related result.

Proposition 8.6 If X is a strongly 0-dimensional metrizable space of weight κ,
then X can be embedded in ωκ.

Proof. Fix some metric on X. There is a family of clopen partitions {Un : n < ω}
of X as in (1) of Theorem 8.2. Define U =

⋃
{Un : n < ω}. Let B =

⋃
{Bn : n <
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B∅

Bs, s ∈
nω with n ∈ ω{

{Bt : t = s ∪ {〈n, k〉}, k ∈ ω}

Figure 8.2: Base B from Definition 8.4 forms a tree.

ω} be as in Definition 8.4, from Lemma 8.5 we know that B is a base of clopen
subsets of ωκ.

Notice that |Bn| = κ for each n < ω. Since X has weight κ, the partition
Un must have cardinality ≤ κ for each n < ω. From this, it is not hard to use
recursion to define a one-to-one function φ : U → <ωκ such that φ[Un] ⊂ n+1κ
for each n < ω and φ(V ) ⊂ φ(U) whenever U, V ∈ U and U ⊂ V .

Now we define e : X → ωκ. If x ∈ X, the set {U ∈ U : x ∈ U} is linearly
ordered by inclusion and intersects Un in exactly one element for each n < ω.
Thus, {φ(U) : x ∈ U ∈ U} is also linearly ordered by inclusion and intersects
n+1κ in exactly one element for each n < ω. This implies that {φ(U) : x ∈
U ∈ U} = {fn : n < ω}, where fn ∈ n+1κ and fn ⊂ fn+1 for n < ω. Define
e(x) =

⋃
{φ(U) : x ∈ U ∈ U} =

⋃
{fn : n < ω} ∈ ωκ.

To see that e is continuous, notice that e←[Bf ] = ∅ if f /∈ φ[U ] and otherwise
e←[Bf ] = φ−1(f). To see that e is open, notice that e[U ] = Bφ(U)∩e[X] for every
U ∈ U . Finally, let x, y ∈ X with x 6= y. Then there is n < ω and U, V ∈ Un
such that x ∈ U , y ∈ V and U ∩ V = ∅. From this, e(x) ∈ Bφ(U), e(y) ∈ Bφ(V )

and Bφ(U) ∩Bφ(V ) = ∅ so e(x) 6= e(y). This shows that e is an embedding.

One of the properties of the κ-Baire space is that it can be topologically
characterized by simple topological properties. We divide our characterization
in two parts as the special case when κ = ω uses other hypothesis.

Theorem 8.7 [3] Let X be a 0-dimensional, separable and metrizable space.
Then X is homeomorphic to ωω if and only if X is completely metrizable and
nowhere locally compact.

Proof. We have already seen that ωω is 0-dimensional, separable, nowhere locally
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compact and completely metrizable in Lemma 8.5. Let X be a space with the
described properties and fix some complete metric.

Claim: For each non-empty clopen set V ⊂ X and every m < ω there exists a
partition {V (n) : n < ω} of U into exactly ω clopen subsets of diameter ≤ 1

m+1 .

Let us prove the Claim. Clearly, V is also 0-dimensional. Since V is non-
compact, by Lemma 0.19, there is a countable infinite closed and discrete set
D. By Lemma 0.15, there is a countable base V ⊂ CO(V ). For each x ∈ V ,
let Vx ∈ V of diameter ≤ 1

m+1 such that |Vx ∩ D| ≤ 1. Since V is countable,
there is an enumeration {Wn : n < ω} = {Vx : x ∈ V }. Define V0 = W0 and
Vn+1 = Wn+1 \ (W0 ∪ . . . ∪Wn) for n < ω. Then {Vn : n < ω} is a partition
of V into clopen subsets of diameter ≤ 1

m+1 . Notice that |Vn ∩D| ≤ 1 for each
n < ω. Since D is infinite, we must have that {Vn : n < ω} is infinite as well.
Then {Vn : n < ω} \ {∅} is the partition requested by the Claim.

Using the Claim recursively, it is not hard to construct a family of partitions
{Un : n < ω} ofX into clopen subsets such that |Un| = ω, Un has mesh≤ 1

n+1 and
Un+1 refines Un for each n < ω. Let U =

⋃
{Un : n < ω}. Let B =

⋃
{Bn : n < ω}

be the collection from Definition 8.4, recall that B is a base by Lemma 8.5. Then
it is not hard to construct a bijection φ : B → U such that φ[Bn] = Un for each
n < ω and φ(U) ⊂ φ(V ) if and only if U ⊂ V whenever U, V ∈ B.

We now define a function h : ωω → X. For each x ∈ ωω, the set {B ∈
B : x ∈ B} is decreasing and intersects Bn in exactly one element for each
n < ω so {φ(B) : x ∈ B ∈ B} is a decreasing chain of non-empty clopen
subsets of X of diameter converging to 0. Since the metric we chose is complete,⋂
{φ(B) : x ∈ B ∈ B} is non-empty (Theorem 0.26) and consists of only one

point, let h(x) be this point. Notice that h[B] = φ(B) for each B ∈ B and
h←[U ] = φ−1(U) for each U ∈ U so h is continuous and open. It is also not
hard to see that h is one-to-one and onto so in fact h is a homeomorphism. Thus
completes the proof of the Theorem.

One interesting consequence of this characterization is the following.

Corollary 8.8 The space of irrational numbers is homeomorphic to ωω.

We also obtain an embedding result as follows. An alternative proof is given
in Example 2.2.

Corollary 8.9 If X is a 0-dimensional separable metrizable space, then X can
be embedded in ω2.

Proof. Let Q = {x ∈ ω2 : ∃n < ω ∀m ≥ n (x(n) = x(m))}. Then it is not hard
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to see that Q is countable and dense in ω2. Thus, ω2 \ Q is easily seen to be
nowhere locally compact. By Theorem 8.7, ω2 \ Q is homeomorphic to ωω. By
Proposition 8.6, X may be embedded in ω2\Q. In particular, we have embedded
X in ω2.

Theorem 8.10 [148] Let X be a strongly 0-dimensional metrizable space and
κ an uncountable cardinal. Then X is homeomorphic to ωκ if and only if every
non-empty open subset of X has weight κ.

Proof. Again, the κ-Baire space has these properties so we assume that X is
some space with the properties and construct a homeomorphism h : ωκ → X.
Fix some complete metric on X.

Claim: For each non-empty clopen set V ⊂ X and every m < ω there exists a
partition {V (α) : n < κ} of U into exactly κ clopen subsets of diameter ≤ 1

m+1 .

We start by proving the Claim. By (1) in Theorem 8.2, there is a sequence
of clopen partitions {Vn : n < ω} of X such that Vn has mesh ≤ 1

m+1 and Vn+1

refines Vn for every n < ω. It is not hard to see that V =
⋃
{Vn : n < ω} is a base

of X so |V| ≥ κ. By discarding some members of the sequence {Vn : n < ω}, we
may assume that |V0| ≥ ω and V0 has mesh ≤ 1

m+1 . Let {Wn : n < ω} ⊂ V0 be
countably infinite and indexed faithfully.

If cof(κ) = ω, let {κn : n < ω} ⊂ κ such that κ = sup{κn : n < ω}.
Otherwise, let κn = κ for every n < ω.

Fix n < ω. Notice that {V ∈ V : V ⊂Wn} is a base ofWn andWn is of weight
κ by hypothesis. Notice that |{V ∈ Vk : V ⊂Wn}| ≤ |{V ∈ Vk+1 : V ⊂Wn}| for
every k < ω. Thus, there exists k(n) < ω such that |{V ∈ Vk(n) : V ⊂ Wn}| ≥
κn.

We may choose {k(n) : n < ω} recursively such that k(n) < k(n + 1) for
every n < ω. Finally, let

W = (V0 \ {Wn : n < ω}) ∪ {V : ∃n < ω(V ∈ Vk(n), V ⊂Wn)}.

ThenW is a partition of V into ≥ κ clopen subsets of diameter ≤ 1
m+1 . Since

w(V ) = κ, then |W| = κ. This completes the proof of the Claim.
Using the Claim, we continue as in Theorem 8.7. That is, we recursively

construct a sequence of partions {Un : n < ω} into clopen subsets such that
|Un| = κ, Un has mesh ≤ 1

n+1 and Un+1 refines Un for all n < ω. Proceeding as
in Theorem 8.7, it is not hard to construct an order isomorphism φ : U → B,
where B is the cannonical base of ωκ (Definition 8.4 and Lemma 8.5) and U =⋃
{Un : n < ω}. Finally, using φ, it is not hard to construct the homeomorphism

h : ωκ→ X in a way completely analogous to Theorem 8.7.
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An interesting example we obtain is the following surprising fact.

Corollary 8.11 For each n < ω, let Xn be a discrete space of cardinality ωn.
Then

∏
{Xn : n < ω} is homeomorphic to ω(ωω).

Proof. Let S =
⋃
{
∏
{Xn : n ≤ k} : k ∈ ω} and X =

∏
{Xn : n < ω}. For

each f ∈ S, let Bf = {x ∈ X : f ⊂ x}. Then {Bf : f ∈ S} is a base of X of
cardinality ωω. This shows that w(X) ≤ ωω.

Let f ∈ S and m ≥ n = dom(f). The set
∏
{Xk : n ≤ k ≤ m} is a discrete

set of cardinality ωm. Thus, the set

{Bf∪g : g ∈
∏
{Xk : n ≤ k ≤ m}}

is a partition of Bf into ωm clopen subsets. This shows that ωm ≤ w(Bf ) ≤
w(X) ≤ ωω. Since this inequality is true when n ≤ m < ω, we obtain that
w(Bf ) = w(X) = ωω.

Thus, we have proved that X has a base of open sets of weight ℵω. Thus,
every non-empty open subset of X has weight ωω.

Clearly, X is metrizable since it is a product of metrizable (discrete) spaces.
Moreover, it is easy to define a metric d for X: let d(x, y) = 1

n+1 if n = min{k <
ω : x(k) 6= y(k)}. If Un = {Bf : f ∈

∏
{Xk : k ≤ n}}, then {Un : n < ω} with

the metric d witnesses (2) in Theorem 8.2 so X is strongly 0-dimensional.
Finally, by Theorem 8.10, we obtain that X is homeomorphic to ω(ωω).

8.2 Games on topological spaces

The Baire Category Theorem 0.25 is one of the most important General Topology
theorems. It is not only important in General Topology but also in other areas
of mathematics. For example, one may infer the existence of continuous nowhere
differentiable functions ([130, Chapter 11]) or Liouville Numbers ([130, Chapter
2]) from the Baire Category Theorem. Another interesting example is that the
Baire Category Theorem shows that most subcontinua (a dense Gδ in the hyper-
space of continua) of the plane are pseudoarcs (see [125, Exercise 12.70] or [105,
Theorem 3.15]). Also, besides this direct applications, the Forcing Method and
Martin’s Axiom in Set Theory is a generalization of the Baire Category Theorem
(this was mentioned in the introduction, see page xii).

A space X is a Baire space if it satisfies the Baire Category Theorem; that
is, if each intersection of countably many open dense sets of X is dense. Here
we explore topological games1 that test this property in a metrizable space. In

1See Chapter 6 of [130] for a historical introduction.
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general, a game will be played between two players, commonly named I and II,
who choose open subsets of some fixed metrizable space in turns. These games
have ω turns and at the end of the game, some rule on the chosen open sets
determines the winner. The games we consider here test the Baire property in
various degrees of strength according to whether one of the players has a winning
strategy. For other types of games, see [94, Sections 20, 21]. We will define two
games: the Choquet game and the strong Choquet game.

Let X be a topological space. The Choquet game of X is defined as follows:

(·) In turn 0, I chooses a non-empty open set U0 ⊂ X; after this, II chooses
a non-empty open set V0 ⊂ U0,

(·) In turn n + 1, where n < ω, I chooses a non-empty open set Un+1 ⊂ Vn;
after this, II chooses a non-empty open set Vn+1 ⊂ Un+1.

We will say that II wins this round in the Choquet game if
⋂
{Un : n < ω} =⋂

{Vn : n < ω} 6= ∅; otherwise, I wins.

X

U0V0U1 V1

Figure 8.3: Playing a topological game in space X using open sets.

I U0 . . . Un Un+1 . . .
⋂
n<ω Un = ∅

II V0 . . . Vn Vn+1 . . .
⋂
n<ω Vn 6= ∅

The strong Choquet game of X is defined as follows:

(·) In turn 0, I chooses a non-empty open set U0 ⊂ X and a point x0 ∈ U0;
after this, II chooses an open set V0 ⊂ U0 such that x0 ∈ V0,

(·) In turn n + 1, where n < ω, I chooses a non-empty open set Un+1 ⊂ Vn
and a point xn+1 ∈ Un+1; after this, II chooses a non-empty open set
Vn+1 ⊂ Un+1 such that xn+1 ∈ Vn+1.
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We will say that II wins this round in the strong Choquet game if
⋂
{Un :

n < ω} =
⋂
{Vn : n < ω} 6= ∅; otherwise, I wins.

I U0, x0 . . . Un, xn . . .
⋂
n<ω Un = ∅

II x0 ∈ V0 . . . xn ∈ Vn . . .
⋂
n<ω Vn 6= ∅

In both games, we will use the expression “draw U ” when the player in turn
chooses the open set U as part of his turn.

Notice that in some sense, the strong Choquet game gives player I an addi-
tional advantage over player II than in the Choquet game, since I can choose
“where” II must draw his next open set Vn, by requiring that xn ∈ Vn. We will
formalize this below.

First, we must define what a winning strategy is. Informally, a winning
strategy for one of the players A (where A is either I or II) is a rule that tells
A what to draw in each of A’s turns, according to the sets drawn by both I and
II in previous turns and such that if A follows the rule of the strategy, then A
wins.

Formally, we would have to give four definitions of winning strategy, one for
each player in each of the two games. We will only give the definition of winning
strategy for player II in the Choquet game, the other definitions can be given in
a similar fashion and are left to the reader. Let X be a topological space and let

T = {〈W0, . . . ,Wn〉 : n < ω, Wn ⊂Wn+1 ⊂ . . . ⊂W1 ⊂W0,

∀i ≤ n(Wi is open in X and non-empty )},

that is, T is the tree of all legal positions in the Choquet game with the order
defined as 〈W0, . . . ,Wn〉 ≤ 〈W

′
0, . . .W

′
m〉 if and only if n ≤ m and Wi = W ′i for

all i ≤ n. Notice that all branches of T are of order type ω. A strategy for II in
the Choquet game is a subtree T0 ⊂ T such that the following conditions hold:

(a) if 〈U0, V0, . . . , Un〉 ∈ T0 for some n < ω, then there is a non-empty open
subset V of X such that 〈U0, V0, . . . , Un,W 〉 ∈ T0 if and only if W = V ,

(b) 〈W 〉 ∈ T0 for every non-empty open subset W of X,

(c) if 〈U0, V0, . . . , Un, Vn〉 ∈ T0 for some n < ω, then for every non-empty open
subset W of Vn it follows that 〈U0, V0, . . . , Un, Vn,W 〉 ∈ T0.

Informally, condition (a) gives player II a unique open set to draw in turn
n < ω and conditions (b) and (c) include every possible draw of player I in turns
0 and n + 1, respectively. Finally, a winning strategy for II (in the Choquet
game) is a strategy T0 ⊂ T such that
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(d) if {sn : n < ω} is a branch in T0, where sn = 〈U0, . . . , Un〉, then
⋂
{Un :

n < ω} 6= ∅.

Clearly, if player II plays the sets given in a winning strategy for the Choquet
game, then II wins the Choquet game.

As the reader will notice in the proofs below, games give a nice and rather
entertaining way to test properties. Our proofs using games will be quite infor-
mal, but in this way it will be easier to understand the usefulness of proofs using
games. Our first result proves that the property of being a Baire space can be
tested using games.

Lemma 8.12 Let X be a second countable space. Then X is a Baire space if
and only if player I does not have a winning strategy in the Choquet game.

Proof. First assume that X is not a Baire space. Let {Wn : n < ω} be a sequence
of dense open subsets of X and W an open subset of X such that W is disjoint
from

⋂
{Wn : n < ω}. We will now informally describe a winning strategy for

player I. In turn 0, player I draws U0 =W . Given n < ω, assume that player II
drew the open set Vn in turn n. Then player I draws Un+1 = Vn∩Wn in turn n+1;
this set is clearly non-empty. Then

⋂
{Un : n < ω} ⊂W ∩ (

⋂
{Wn : n < ω}) = ∅

so player I wins this round of the game. Thus, we have produced a winning
strategy for player I.

Now let us assume that X is a Baire space and player I uses some strategy.
We will play as player II and produce a round in which I does not win, so that
the strategy is not a winning strategy. As player I is using a fixed strategy, all
possible outcomes of the game will be decided by the sets drawn by player II.
Notice that since player I’s first move is to draw U0, the rest of the game will be
played inside U0. Also, every open subspace of a Baire space is easily seen to be
a Baire space. So we may assume that U0 = X without loss of generality for the
rest of the proof.

Choose some countable base B of X such that ∅ /∈ B. Let T be the tree of
all V ∈ <ωB such that either V = ∅ or 0 6= dom(V ) = n+ 1 for some n < ω and
there is an instance of the game in which I uses the strategy and II draws V (i)
in step i for all i ≤ n. Notice that T is countable. Let φ be the function defined
in T such that φ(∅) = X and whenever V ∈ T and 0 6= dom(V ) = n+1, φ(V ) is
the open set given by the strategy of player I in turn n+ 1 for games where the
first n turns of II are given by 〈V (0), . . . , V (n)〉. Notice that φ(V ) ⊂ V (n) by
the definition of the Choquet game. We may think that φ is the strategy used
by player I.

Let V ∈ T be such that dom(V ) = n and let B ∈ B such that B ⊂ φ(V ).
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Define

⌊V,B⌋ =
⋃{

φ(V ∪ {〈n,W 〉}) : V ∪ {〈n,W 〉} ∈ T,W ⊂ B,W ∈ B}.

Clearly, ⌊V,B⌋ is an open subset of B and it is not hard to see that it is dense
in B. Thus, the set

D =
⋂
{⌊V,B⌋ ∪ (X \ clX(B)) : V ∈ T and B ∈ B is such that B ⊂ φ(V )}

is non-empty, being a countable intersection of dense open subsets of the Baire
space X.

Let x ∈ D, we will now recursively choose open sets {Vn : n < ω} ⊂ B and
show that they can be drawn by player II in a round of the game in such a way
that x ∈

⋂
{Vn : n < ω}. In this way, we will have a prove that the strategy used

by player I is not a winning strategy.
In turn 0, player I draws φ(∅) = U0 = X. Choose B ∈ B such that x ∈ B.

Notice that x ∈ ⌊∅, B⌋ so by the definition of ⌊∅, B⌋ there exists W ∈ B such that
x ∈ φ(〈0,W 〉). Define V0 = W , in this way x ∈ V0. Now assume that k < ω, we
have defined {Vn : n ≤ k} ⊂ B and that x ∈ φ(V ), where V ∈ k+1B is such that
V (n) = Vn for n ≤ k and V ∈ T . Let B ∈ B be such that x ∈ B ⊂ φ(V ). Then
by the definition of D, x ∈ ⌊V,B⌋. By the definition of ⌊V,B⌋, we have that
there is some W ∈ B such that x ∈ φ(V ∪{〈k+1,W 〉}) and V ∪{〈k+1,W 〉} ∈ T .
Then it is possible to define Vk+1 =W .

In this way, it is possible to continue the recursion to construct {Vn : n < ω}
with x ∈

⋂
{Vn : n < ω}. As discussed before, this is a contradiction to the fact

that player I was playing with a winning strategy. Thus, player I has no winning
strategy.

A strengthening of the property of being a Baire space is the following. We
will say that a topological space X is a Choquet space if player II has a winning
strategy in the Choquet game for X. Further, X is a strong Choquet space
if player II has a winning strategy in the strong Choquet game for X. So
Choquet and strong Choquet are stronger properties than being a Baire space. In
particular, it is not hard to see that the following implications hold for separable
metrizable spaces. Recall that a Polish space is a completely metrizable separable
space.

Polish // strong Choquet // Choquet // Baire

Our final result in this section gives a translation of the Choquet and strong
Choquet spaces in terms of well-known topological propeties. A set A in a
topological space X is said to be comeager if its complement X \ A is meager;
equivalently, if it contains a countable intersection of dense open subsets of X.
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Theorem 8.13 Let X be a separable metrizable space and let Y be any Polish
space such that X is dense in Y .

(1) X is a Choquet space if and only if X is comeager in Y .

(2) X is a strong Choquet space if and only if X is of type Gδ in Y if and only
if X is Polish.

Proof. We begin with statement (1). First assume that X is comeager in the
complete metric space (Y, d) so that Y \ X =

⋃
{Fn : n < ω}, where Fn is

nowhere dense in Y for each n < ω. We now describe a strategy for player II
in the Choquet game: in turn n < ω, if player I draws Un, player II chooses
an open set Wn of Y such that Wn ∩ Fn = ∅, clX(Wn ∩X) ⊂ Un and Wn has
diameter ≤ 1

n+1 ; then player II draws Vn = Wn ∩ X. By the completeness of
d,

⋂
{Wn : n < ω} is non-empty (using Theorem 0.26) and misses X \ Y , so⋂

{Vn : n < ω} 6= ∅.
Now assume that X is embedded in the complete metric space 〈Y, d〉, and II

has a winning strategy φ for the Choquet game in X. We have to prove that
there is a dense subset of Y of type Gδ contained in X. We will recursively
construct a family {Un : n < ω}, where such that

(a) Un is a pairwise disjoint family of open subsets of Y for all n < ω,

(b) if U ∈ Un, then U has diameter ≤ 1
n+1 for every n < ω,

(c)
⋃
Un is dense in X for all n < ω,

(d) Un+1 refines Un for all n < ω and

(e) for every k < ω, if {Vn : n < k} is such that Vn ∈ Un and Vn+1 ⊂ Vn for
each n < k, then there is an instance of the Choquet game such that II
uses strategy φ and draws Vn ∩X in turn n for each n < k.

For n = 0, consider the set W0 of all possible draws of player II in turn 0
using strategy φ and let U0 some maximal pairwise disjoint family of elements of
{W :W is open in Y,W ∩X ∈ W0}. We now show how to construct Uk+1 once
we have {Un : n ≤ k}. Let W be the family of non-empty open sets contained
in exactly one element of Uk. Fix some W ∈ W and let Wn be the only element
of Un such that W ⊂Wn for n ≤ k. By property (e), there is an instance of the
Choquet game where II uses φ and draws W0 ∩X, . . . ,Wk ∩X succesively. Let
player I draw set W ∩X in turn k+1 and let φ(W ) be the set given by φ in this
situation for turn k+1 of player II. Define Uk+1 to be a maximal pairwise disjoint
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family of elements of {U : U is open in Y and U∩X = φ(W ) for some W ∈ W}.
Property (c) can be easily proved by induction.

For each n < ω, let Un =
⋃
Un, this is a dense open subset of Y . Notice

that if {Vn : n < ω} is such that Vn ∈ Un and Vn+1 ⊂ Vn for each n < ω, from
properties (b), (e) and the assumption that φ is a winning strategy we obtain
that

⋂
{Vn : n < ω} = {x} for some x ∈ X. From properties (a) and (b) it is not

hard to show that (compare with [146, Lemma 1.12.3])

⋂
{Un : n < ω} =

⋃
{
⋂
{Vn : n < ω} : Vn ∈ Un, Vn+1 ⊂ Vn for all n < ω}.

So we obtain that G =
⋂
{Un : n < ω} is a set of type Gδ of Y contained in

X. Also, Un is an open dense subset of the Polish, hence Baire space Y so G is
dense. This proves that X is comeager in Y .

Now we prove the equivalence of (2). The fact that a metrizable space is
Polish if and only if it is a Gδ set of every metrizable space in which it is embedded
is well-known, see [50, 4.3.23 and 4.3.24]. If X is Polish we can give a winning
strategy for player II in the strong Choquet game as follows. Let d a complete
metric for X. In turn n, if player I draws a non-empty open set Un and a point
pn ∈ Un, let player II draw an open set Vn such that p ∈ Vn, clX(Vn) ⊂ Un and
Vn has diameter ≤ 1

n+1 . From the completeness of the metric we obtain that⋂
{Vn : n < ω} 6= ∅ (Theorem 0.26) so this gives a winning strategy for player

II.
Finally, assume that X is a dense subset of the Polish space Y and player II

has a winning strategy for the strong Choquet game in X. Fix some complete
metric for Y . We will show that X is a Gδ set of Y by constructing a family
{Wn : n < ω} of open subsets of Y with intersection X.

The fact that player II has a winning strategy can be expressed in the fol-
lowing way. When player II uses a strategy, an instance of the game is com-
pletely defined by the pairs 〈Un, xn〉 drawn by player I. Every time k < ω and
〈〈U0, x0〉, . . . , 〈Uk, xk〉〉 represents the first k draws of player I in a game where
player II uses the winning strategy, the set drawn by player II in turn k will be
denoted by ψ〈〈U0, x0〉, . . . , 〈Uk, xk〉〉.

We will define a collection of locally finite covers {Un : n < ω} of X by open
subsets of Y and then Wn will be defined equal to

⋃
Un for all n < ω. The

definition of {Un : n < ω} will be recursive and we will need to make auxiliar
definitions. We need a collection Vn = {V (n, x) : x ∈ X} of open sets of Y such
that x ∈ V (n, x) for each n < ω. For each n < ω and U ∈ Un+1, we will also
define a finite set φ(n,U) ⊂ X. The following conditions shall be satisfied:

(i) if x ∈ X, n < ω and U ∈ Un, then x ∈ V (n, x) ⊂ U ,
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(ii) if x ∈ X and m ≤ n < ω then {U ∈ Um : V (n, x) ⊂ U} is non-empty and
finite,

(iii) if n < ω, U ∈ Un+1 and x ∈ φ(n,U) then U ⊂ V (n, x),

(iv) if n < ω, U ∈ Un+1 and x ∈ X is such that there is W ∈ Un with
U ⊂ V (n, x) ⊂W , then there is y ∈ φ(n,U) with U ⊂ V (n, y) ⊂W .

For n < ω, let U0 be a locally finite open cover of X with open subsets of Y
of diameter ≤ 1. For each x ∈ X, define V (0, x) to be an open set of Y such that

(∗)0 V (0, x) ∩X =
⋂
{ψ〈〈U, x〉〉 : x ∈ U ∈ U0},

this is possible as U0 is locally finite so the set on the right of equation (∗)0 is a
finite intersection of open sets. Clearly (i) and (ii) hold in this step.

Assume that we have defined {Un : n ≤ k} and {Vn : n ≤ k} and conditions
(i), (ii), (iii) and (iv) hold in the current domain of definition. Let Uk+1 be a
locally finite refinement of Vk with mesh ≤ 1

k+2 , as Vk may not cover Y , this is
carried out in the space

⋃
Vk, which is open in Y and contains X. We may also

ask that every element of Uk+1 intersects finitely many elements of Uk since Uk
is locally finite. If U ∈ Uk+1, there are only finitely many elements of Uk that
contain U ; using this it is not hard to define φ(n,U) in such a way that (iii) and
(iv) hold.

For every x ∈ X, we choose an open set V (k + 1, x) of
⋃
Vk such that

(∗)k+1 V (k + 1, x) ∩X =
⋂
{ψ〈〈U0, x0〉, . . . , 〈Uk, xk〉, 〈Uk+1, x〉〉 :

x ∈ Uk+1 ∈ Uk+1, ∀i ≤ k (Ui ∈ Ui, xi ∈ φ(i, Ui+1) ∩ Ui)}

To prove that this is possible, we have to prove that the right side of the
equation in (∗)k+1 is a finite intersection. To do this, we have to show that the
set of all such possible 〈〈U0, x0〉, . . . , 〈Uk, xk〉, 〈Uk+1, x〉〉 is finite. Notice that
since Uk+1 is locally finite, there are only finitely many options for Uk+1. Once
〈Ui+1, . . . , Uk + 1〉 and 〈xi+1, . . . , xk+1〉 have been chosen for some i ≤ k, we
must choose Ui. Clearly, xi is in the finite set φ(i, Ui+1) so there are only finitely
many possibilities for the choice of xi. By property (iv), we must choose Ui
such that Ui+1 ⊂ V (i, xi) ⊂ Ui and there is only finitely many options by the
definition of Uk+1. This proves that there are only finitely many options for
〈〈U0, x0〉, . . . , 〈Uk, xk〉, 〈Uk+1, x〉〉 so it is indeed possible to define V (k + 1, x).

It is not hard to prove that the inductive assumptions (i), (ii), (iii) and (iv)
hold. This completes the definitions of the covers {Un : n < ω} and thus, of
Wn =

⋃
Un for all n < ω. By definition, clearly X ⊂

⋂
{Wn : n < ω}, we must
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then prove the other inclusion. Let p ∈
⋂
{Wn : n < ω}. Recall that Un has mesh

≤ 1
n+1 . If we prove the following claim, we obtain that p ∈ X, which concludes

the proof of this Lemma.

Claim. There is S = {〈Un, xn〉 : n < ω} such that there is an instance of the
game where player II uses the winning strategy, player I draws 〈Un, xn〉 in turn
n, and p ∈ Un ∈ Un for all n < ω.

We will construct a tree of all possibilities and from it, we will extract S. Let
T be the defined such that s ∈ T if and only if s = ∅ or there is n < ω such that
s is a function, dom(s) = n+ 1 and s(i) = 〈Ui, xi〉 for i ≤ n, where

(v) if i ≤ n, p ∈ Ui ∈ Ui,

(vi) if i < n, xi ∈ φ(i, Ui+1) ∩ Ui and

(vii) there is W ∈ Un+1 such that p ∈W and xn ∈ φ(n,W ) ∩ Un.

It is not hard to prove that if s ∈ T and t ⊂ s, t ∈ T so T is indeed a tree. For
every n < ω, let Tn = {s ∈ T : dom(s) = n}.

Let us argue that Tn is finite and non-empty for every n < ω. This is
clear for n = 0, let 0 < k < ω. Since Uk+1 is locally finite, there are only
finitely many W ∈ Uk+1 with p ∈ W . By the recursive construction of Uk+1

and properties (ii) and (iv), there exist W ∈ Uk+1, Uk ∈ Uk and xk ∈ φ(n,W )
such that condition (vii) holds. Moreover, there are only finitely many such sets
by the local finiteness of the covers and the fact that φ(n,W ) is finite. Once
〈Ui+1, . . . , Uk+1〉 and 〈xi+1, . . . , xk+1〉 have been chosen so that conditions (v)
and (vi) are satisfied for some i ≤ k, it is possible to choose Ui and xi and there
are finitely many such choices. The argument is completely analogous to the
previous one and we will omitt it.

So it has been proved that Tn is finite and non-empty for every n < ω. Then
it is possible to recursively choose sn ∈ Tn such that {t ∈ T : sn ⊂ t} is infinite
and sn ⊂ sn+1 for all n < ω (this argument is known as König’s lemma, see [94,
4.12]). Let S ′ =

⋃
{sn : n < ω} and define S = {S ′(n) : n < ω}.

We now prove the property of S given in the claim, let S(n) = 〈Un, xn〉 for
each n < ω. From properties (iii), (v) and (vi), we obtain that p ∈ Un+1 ⊂
V (n, xn) ⊂ Un for all n < ω. Play the strong Choquet game as player I drawing
〈Un, xn〉 in turn n. Then player II responds with an open set Vn and by the
definition of V (n, xn) it is possible to see that V (n, xn) ⊂ Vn ⊂ Un. So it is indeed
possible to us, taking the role of player I, to draw 〈Un+1, xn+1〉 in turn n + 1.
This completes the proof of the Claim and thus the proof of the Theorem.
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8.3 Paracompact M-spaces

In our main problem for this Part (Question 9.1, p. 148), we are dealing with
metrizable spaces only. However, by Corollary 7.13, our results will always ex-
tend to spaces coabsolute with the spaces we are considering, even if they are
not metrizable. In this section we will mention a result by Ponomarev that
characterizes spaces coabsolute with metrizable spaces and make an additional
remark.

A space X is an M -space if there exists a sequence {Cn : n < ω} of covers of
X such that

(i) if xn ∈ St(x, Cn) for each n < ω, then {xn : n < ω} has a cluster point,

(ii) for each n < ω, Cn+1 star-refines Cn.

The following result was proved by Ponomarev. Its proof is long and requires
many steps. By this reason, we will not give the details of the proof.

Proposition 8.14 [134] Let X be a Tychonoff space. Then the following are
equivalent

(a) X is coabsolute with a metrizable space,

(b) there exists a metrizable space that is a perfect and irreducible continuous
image of X,

(c) X is a paracompact M -space with a σ-locally finite π-base.

Actually, in [134], (c) says “paracompact p-space” (p-space in the sense of
Arkhangel’skĭı) but this is equivalent to the formulation we have given (see [72,
Corollary 3.20]). So according to Propositions 7.12 and 8.14, we will be able
to obtain results about remote points of paracompact M -spaces. However, our
results will be stated in terms of metrizable spaces only. The main reason for
doing this is that for our arguments it is enough to consider metrizable spaces.
Moreover, the corresponding results for paracompact M -spaces can be easily
obtained by using Proposition 8.14.

Remark 8.15 By Proposition 8.14, it is not hard to prove that in Proposi-
tion 9.12, Theorems 9.13, 9.26 and Corollary 9.27 we can change “(completely)
metrizable” by “(Čech-complete) paracompact M -space with a σ-locally finite
π-base”.
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We will now address another technical matter. Notice that Proposition 7.12
talks about irreducible closed mappings, while talking about coabsolutes we asked
that the function be perfect. We now show that there is nothing else we can
obtain using Proposition 7.12 inside the class of paracompact M -spaces.

Proposition 8.16 Let f : X → Y be an irreducible continuous function be-
tween paracompact M -spaces. Then f is perfect.

Proof. By (b) in Proposition 8.14, there exists a metrizable spaceM and a perfect
and irreducible continuous function g : Y → M . We will follow the proof of
Văınštĕın’s Lemma and the Hanai-Morita-Stone Theorem from [50, 4.4.16]. Let
h = g ◦ f .

Claim: For every p ∈M , bdX(h←(p)) is countably compact.

To prove the Claim, let {xn : n < ω} ⊂ bdX(h
←(p)). Since M is metrizable

let {Un : n < ω} be a local open basis of p such that clM (Un+1) ⊂ Un for each
n < ω. Let {Cn : n < ω} be the sequence of open covers for X given by the
definition of M -space. For each n < ω, let yn ∈ (h←[Un] \ h←(p)) ∩ St(xn, Cn).
Then it is easy to see that {h(yn) : n < ω} is a sequence converging to p. Since
h is a closed function, it follows that there exists a cluster point q ∈ h←(p) of
{yn : n < ω}.

We construct a strictly increasing function φ : ω → ω with φ(n) ≥ n+ 1 for
all n < ω as follows: for each n < ω let φ(n) be such that yφ(n) ∈ St(q, Cn+1).
Since yφ(n) ∈ St(xφ(n), Cφ(n)) and φ(n) ≥ n+1, by condition (ii) in the definition
of an M -space we obtain that xφ(n) ∈ St(q, Cn). Thus, by condition (i) in the
definition of M -space we obtain that {xφ(n) : n < ω} has a cluster point. Such
cluster point must be in bdX(h

←(p)) so the Claim follows.
Now, by the Claim and the fact that X is paracompact we have that the

set bdX(h
←(p)) is compact for each p ∈ M . Since h is irreducible, either

bdX(h
←(p)) = h←(p) or h←(p) is a singleton. Thus, h is perfect and so is

f .

We now present some examples of non-metrizable paracompact M -spaces so
that the reader has an idea of what kind of generalization we have. Recall that
the Sorgenfrey line S is the set R with {[x, y) : x, y ∈ R, x < y} as a base of open
sets.

Example 8.17 The Alexandroff-Urysohn double arrow space A.

Let A0 = (0, 1]×{0}, A1 = [0, 1)×{1} and A = A0∪A1. Define the lexicographic
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strict order on A as 〈x, t〉 < 〈y, s〉 if x < y or both x = y and t < s. Then A
is given the order topology. Notice that both A0 and A1 have the Sorgenfrey
line topology as subspaces of A and both are dense in A. It is easy to see
that A is separable, first countable, compact, 0-dimensional and of weight c (see
Proposition 12.7 in Part III). The function π : A→ [0, 1] defined by π(〈x, t〉) = x
is a ≤ 2-to-1 continuous function. Also, it is not hard to see that π is irreducible,
so in fact π witnesses that A and [0, 1] are coabsolute (Corollary 6.42). Since A
is compact and of weight c, it is not metrizable (Theorem 0.16).

A1

A0

A

[0, 1]

π

Figure 8.4: The double arrow space.

Being coabsolute to a metrizable space is not hereditary. As Example 8.17
shows, A is coabsolute with [0, 1], and thus with any compact crowded metrizable
space (Corollary 7.17). The Sorgenfrey line S is a subspace of A but it is not
coabsolute with a metrizable space.

Proposition 8.18 The Sorgenfrey line S is not coabsolute with a metrizable
space.

Proof. The Sorgenfrey line is paracompact (since it is Lindelöf) and has countable
π-weight. However, we show next that S is not an M -space. Let {Cn : n < ω}
be the sequence of covers of S.

For each n < ω, let

En = {p ∈ S : there is y ∈ S such that y < p and (y, p) ∩ St(p, Cn) = ∅}.

If p ∈ En, there is U ∈ Cn such that p ∈ U and x ∈ S such that [p, x) ⊂ U so
En ∩ [p, x) = {p}. This shows that En is discrete so it is countable.

Choose p ∈ S \
⋃
{En : n < ω}. For each n < ω, let xn ∈ S be such that

xn < p and xn ∈ St(p, Cn). We can further ask that xn < xn+1 for every n < ω.



Section 8.4. c-points 145

Thus, {xn : n < ω} is a strictly increasing sequence in S, so it is discrete. This
shows that condition (a) in the definition of an M -space does not hold. Thus, S
is not an M -space.

Another general method that can be used to construct spaces coabsolute to
metrizable spaces that are not metrizable are resolutions, see Chapter 3 in [162].
Of course, if X is a non-discrete metrizable space, then EX is not metrizable
(since it is ED) and coabsolute to X. But EX is too “big” and it is sometimes
hard to see inside the structure of this space. Using resolutions, one can obtain
spaces coabsolute with X with some control of their properties.

8.4 c-points in some spaces

As seen in Proposition 7.6, βX is ED at each remote point for every Tychonoff
space X. Also, this implies that when X is nowhere locally compact, then X∗

is ED at each remote point as well (this follows from the proof of Theorem 7.9).
However, if X is locally compact and metrizable, we will see that we have the
opposite situation (Theorem 8.20).

Recall that a point p in a topological space X is a κ-point if there is a family
of exactly κ disjoint open subsets of X that have p in their closure. It is not
hard to show that, for example, in a metrizable space any non-isolated point is
an ω-point. In [12], Balcar and Vojtáš proved that any point of ω∗ is a c-point
of ω∗, a fact that strongly contrasts with the fact that βω is ED so no point of
ω∗ is a c-point of βω.

Figure 8.5: Every point in the plane is an ω-point.

Theorem 8.19 [12] Every point of ω∗ is a c-point of ω∗.

The proof of Theorem 8.19 is hard and is outside the objectives of this thesis.
A proof can be found in [62, Chapter 5, Theorem 3.5]. In [41], van Douwen gave
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a technique to transfer some properties of ω∗ to spaces of the form X∗ for some
Tychonoff spaces X. We will present van Douwen’s proof of the following.

Theorem 8.20 [41, Theorem 5.2] If X is a locally compact, non-compact,
realcompact Tychonoff space, then every point of X∗ is a c-point of X∗.

Proof. Fix p ∈ X∗. We will find a regular closed subset F of X∗ such that p ∈ F
and a open continuous function f : F → ω∗. From this it follows that p is a
c-point in the following way. By Theorem 8.19, there is a collection V of precisely
c pairwise disjoint open subsets of ω∗ such that f(p) ∈ clω∗(V ) for each V ∈ V .
Let U = {f←[V ] : V ∈ V}, by the continuity of f we obtain that U is a collection
of c pairwise disjoint sets. Assume that p /∈ clω∗(f

←[V ]) for some V ∈ V . Then
W = ω∗ \ clω∗(f

←[V ]) is an open set of ω∗ so f [W ] is open, f(p) ∈ f [W ] and
f [W ] ∩ V = ∅; thus, f(p) /∈ clω∗(V ), a contradiction. Thus, U witnesses that p
is a c-point.

Let us describe how to construct such F and g. From the definition of real-
compactness it is not hard to construct a continuous function f : βX → [0, 1]
such that f(p) = 0 and G = f←(0) ⊂ X∗. Define Y = βX \ f←(0) = f←[(0, 1]].
It is not hard to see that Y is normal since it is locally compact and σ-compact
(this follows from Lemma 1.5.15 and Theorem 3.1.9 in [50]). Notice that that
βX = βY and Y ∗ = G.

Claim 1. G is a regular closed set of X∗.

To prove Claim 1, let U be open in X such that G∩ExX(U) 6= ∅. According
to Proposition 6.11, it is enough to find an open set V of X such that ∅ 6=
ExX(V ) ∩X∗ ⊂ ExX(U) ∩G.

Since ExX(U) ∩X∗ 6= ∅ and U is dense in ExX(U) (Proposition 6.10), there
are {yn : n < ω} ⊂ U such that yn+1 < yn and f(xn) <

1
n+1 for n < ω. Let

z0 = 0 and zn+1 = 1
2(xn+1 + xn+2) for n < ω. For each n < ω, let Vn be an

open set of X such that yn ∈ Vn, f [Vn] ⊂ (zn+1, zn), clX(Vn) ⊂ U and clX(Vn)
is compact. Notice that {clX(Vn) : n < ω} is pairwise disjoint and locally finite.
Let V =

⋃
{Vn : n < ω}. Notice that clX(V ) =

⋃
{clX(Vn) : n < ω} (Lemma

0.20) and clX(V ) ⊂ U .
From the definition of {Vn : n < ω} it follows that f [clβX(V ) ∩ X∗] ⊂ {0}

so clβX(V ) ∩X∗ ⊂ G. Then ExX(V ) ∩X∗ ⊂ G by (b) in Proposition 6.10 and
ExX(V ) ⊂ ExX(U) since V ⊂ U . To complete the proof of the claim, we just
need to show that ExX(V ) ∩X∗ 6= ∅. Notice that D = {yn : n < ω} is a closed
and discrete subset of V so there is y ∈ clX(D) ∩ X∗. Clearly, y ∈ clβX(V ) =
clβX(ExX(V )) (Proposition 6.10). By Proposition 6.12, it is enough to prove that
y /∈ clβX(bdX(V )). Notice that bdX(V ) =

⋃
{bdX(Vn) : n < ω}. Also, bdX(V )
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and D are disjoint closed subsets of the normal space Y so they are completely
separated in Y . Thus, clβY (bdX(V )) ∩ clβY (D) = ∅ by (3) in Theorem 6.4. But
βX = βY so in fact p /∈ clβX(bdX(V )), which is what we wanted to prove. This
completes the proof of Claim 1.

From the fact that Y is locally compact and σ-compact, we may apply Propo-
sition 7.19 and find a collection of regular closed, non-empty compact subsets
{Kn : n < ω} of Y that cover Y and such that for m,n < ω, Km ∩ Kn = ∅
if |m − n| > 1 and Kn ∩ intX(Km) = ∅ if m 6= n. Let W0 =

⋃
{intX(K2n) :

n < ω} and W1 =
⋃
{intX(K2n+1) : n < ω}. Then Y = clY (W0) ∪ clY (W1)

so βY = clβY (W0) ∪ clβY (W1). We may assume without loss of generality that
p ∈ clβY (W0). Let Z = clY (W0) and F = clβY (W0) ∩ Y

∗.

Claim 2. F is a regular closed set of G that contains p.

Clearly, F is closed. Recall that clβY (Z) = clβY (ExY (W0)) (Proposition
6.10). To prove Claim 2 it is enough to show that ExY (W0) ∩ Y

∗ is dense in
F . The argument is similar to the one in the proof of Claim 1. Let U be a
non-empty subset of Y such that F ∩ExY (U) 6= ∅. Then there exists an infinite
set A ⊂ {2n : n < ω} such that U ∩Km 6= ∅ for each m ∈ A. For each m ∈ A,
let ym ∈ U ∩ intX(Km). Then D = {ym : m ∈ A} is a closed and discrete set of
W0 so there is a point y ∈ clY (D) \D. Since D∩bdY (W0) = ∅ and Y is normal,
y /∈ bdβY (ExY (W0)) by (3) in Theorem 6.4. By Proposition 6.12, y ∈ ExY (W0).
Thus, ExX(W0) ∩ Y

∗ is dense in F .

From Claims 1 and 2 we obtain that F is a regular closed subset of X∗ with
p ∈ F . We are only left with the task of defining an open continuous function
f : F → ω∗.

Define a function f0 : Z → ω by f0(x) = n if x ∈ K2n. Notice that K2n is
clopen in Z for each n < ω so it follows that f0 is continuous. Since Y is normal,
Z is C∗-embedded in βY . Thus, there is a continuous function f1 : clβY (Z)→ βω
such that f1↾Z= f0.

Notice that f1[F ] = ω∗. By Lemma 0.11, f1[F ] ⊂ ω∗. Also, f1[clY (W0)] =
f0[clY (W0)] is dense in βω and clβY (Z) is compact so in fact f1[F ] = ω∗.

Finally, define f : F → ω∗ as f = f1↾F . We are only left to prove that f is
open. Let U be an open set of Z, it is enough to prove that f maps ExZ(U)∩F
to an open set by Proposition 6.11. Let A = {n < ω : U ∩K2n 6= ∅}. Recall that
βω can be taken as the space of ultrafilters on ω2 (Theorem 6.23) and recall that
B̂ = {p ∈ βω : B ∈ p} is clopen in βω for each B ⊂ ω. It is not hard to see that
f1[ExZ(U)] = Â so f [ExZ(U) ∩ F ] = Â ∩ ω∗. Thus, f is indeed open and this
completes the proof of this theorem.



Chapter 9

Homeomorphic Spaces of
Remote Points

In this Chapter we will define our main problem and show the results we were able
to obtain. In a general form, the problem we are interested in is the following.

(∗) Given a Tychonoff space X, find all Y such that ̺(X) is homeo-
morphic to ̺(Y ).

Notice that problems of type (∗) can be formulated every time we can con-
struct a space in terms of some other in a topological way. Due to the results
of Woods and Gates presented in Theorem 7.20 and 7.21, we already know that
some classes of metrizable spaces have homeomorphic sets of remote points. The
question we will focus on is the following.

Question 9.1 Let X be a metrizable non-compact space. Find some simple or
known topological property P such that if Y is metrizable then Y has P if and
only if ̺(X) is homeomorphic to ̺(Y ).

A reason to restrict X to be metrizable is that we already know that we
have a rich collection of remote points (Corollary 7.4). This will allow us to
transfer some properties of X to ̺(X). However, by Proposition 8.14, we may
also consider paracompact M -spaces, see Remark 8.15.

Some of our results are of the following type: if X has topological property P

and ̺(X) is homeomorphic to ̺(Y ), then Y also has P. In particular we study
properties such as dimension, local compactness, topological completeness and σ-
compactness. For the other implication, our main results are perhaps Theorem
9.13 and Corollary 9.27 that characterize remote points of the irrationals and

148
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rationals up to some restrictions. These results generalize the following result of
Eric K. van Douwen.

Theorem 9.2 [36, Theorem 16.2] ̺(Q) and ̺(ωω) are not homeomorphic be-
cause ̺(Q) is a Baire space and ̺(ωω) is meager.

However the main question that remains unanswered is the following.

Question 9.3 Find all metrizable X such that ̺(X) is homeomorphic to either
̺(Q) or ̺(ωω).

See Questions 9.15 and 9.33 for reformulations of Question 9.3. In Section
9.2 we also give a classification of nowhere locally compact, completely metriz-
able spaces by a sort of cardinal invariant we call cellular type. It turns out
that cellular type almost characterizes remote points for this class of spaces, see
Corollary 9.22 and Example 9.24.

Finally, we remark that we know nothing about non-definable sets (of ω2).
Thus, we finish the discussion with the following question.

Question 9.4 Do there exist two Bernstein sets X and Y such that ̺(X) is not
homeomorphic to ̺(Y )?

9.1 Dimension and Local Compactness

We start by showing that it is enough to consider strongly 0-dimensional spaces.
The following result is original but its proof resembles one given by Morita in
[121, Part 5].

Proposition 9.5 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) For every metrizable spaceX of weight κ there exists a strongly 0-dimensional
space Y of weight κ and a perfect and irreducible continuous function f : Y → X.

Proof. Let d be the metric for ωκ defined in Definition 8.4 and let d′ be some
compatible metric for X. In this proof we shall use some notation given in
Definition 8.4. We shall construct construct locally finite covers {Un : n < ω} of
non-empty regular closed sets of X in such a way that the following hold.

(a) Un has mesh ≤ 1
n+1 for every n < ω,

(b) |Un| ≤ κ for each n < ω,

(c) if n < ω and A,B ∈ Un are such that A 6= B, then A ∩ intX(B) = ∅,
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(d) Un+1 refines Un for all n < ω,

(e) if n < ω and A ∈ Un, then {B ∈ Un+1 : B ⊂ A} covers A.

The existence of this family of covers can be easily deduced from the following.

Claim 1. Let A ∈ R(X) and m < ω. Then there exists a locally finite cover V
of mesh ≤ 1

m+1 consisting of ≤ κ non-empty regular closed sets of A such that if
B,C ∈ V and B 6= C, then B ∩ intA(C) = ∅.

To prove Claim 1, let W be a locally finite open cover of A with open sets
of diameter ≤ 1

m+1 , this is possible by Stone’s Theorem 0.21. Choose some well-
order W = {Wα : α < λ} for some ordinal λ. Recursively, let V0 = W0 and
Vα = Wα \

⋃
{clA(Vβ) : β < α}, these are pairwise disjoint open sets (Lemma

0.20). Since A has weight ≤ κ, it follows that {Vα : α < λ} \ {∅} is a collection
of ≤ κ pairwise disjoint open subsets of A. Let V = {clA(Vα) : α < λ} \ {∅}. It
is easy to see that V is as required by Claim 1.

Let U =
⋃
{Un : n < ω}. Recursively on n < ω, it is not hard to choose

Sn ⊂
n+1κ and a bijection φn : Sn → Un in such a way that

• for every g ∈ Sn we have g↾m+1∈ Sm for all m ≤ n < ω and

• if g ∈ Sn then φn(g) ⊂ φm(g↾m+1) for all m ≤ n < ω.

Define S =
⋃
{Sn : n < ω} ⊂ <ωκ and φ =

⋃
{φn : n < ω}. Then φ : S → U

is a bijection such that φ(h) ⊂ φ(g) if and only if g ⊂ h whenever g, h ∈ S. We
will use φ to define f and Y . Let

Y =
{
x ∈ ωκ : ∀n < ω (x↾n+1∈ Sn) and

⋂
{φ(x↾n+1) : n < ω} 6= ∅

}
,

and define f(x) to be the only point in
⋂
{φ(x↾n+1) : n < ω} for each x ∈ Y ,

this is well-defined as the diameter of φ(x↾n+1) is ≤ 1
n+1 for all n < ω.

Notice that Y is strongly 0-dimensional with w(Y ) ≤ κ by Lemma 8.5 and
Corollary 8.3. Moreover, since every dense set of Y is mapped to a dense set of
X, κ = w(X) = d(X) ≤ d(Y ) = w(Y ) so w(Y ) = κ. We now prove that f is
perfect, continuous and irreducible. We will use the following claim.

Claim 2. If n < ω and g ∈ Sn, then f [Bg] = φ(Bg).

We now prove Claim 2. The definition of f easily shows that f [Bg] ⊂ φ(Bg).
Now let x ∈ φ(Bg). By property (e) it is possible to choose Am ∈ Um such
that x ∈ Am and Am+1 ⊂ Am for every m < ω and An = φ(Bg). Then⋃
{φ−1(Am) : m < ω} = y ∈ Y is such that y ∈ Bg and f(y) = x. This

completes the proof of Claim 2.
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To see that f is continuous, let y ∈ Y and let U be an open set of X such
that f(x) ∈ U . Let m < ω be such that {x ∈ X : d′(x, y) < 1

m+1} ⊂ U .
Thus, A ⊂ U for every A ∈ Um with f(x) ∈ A. Let g = x↾m+2∈

m+2κ, then
V = Bg ∩ Y = {z ∈ Y : g ⊂ z} is an open set (see Lemma 8.5) of Y such that
y ∈ V and f [V ] ⊂ U . This shows that f is continuous.

Next, let us prove that f is perfect. We start by showing that if p ∈ X, then
f←(p) is compact. For each n < ω, from the fact that Un is locally finite, the set

Fn = {α < κ : ∃g ∈ Sn (p ∈ φn(g), g(n) = α)}

is finite. Then f←(p) is a closed subset of the compact set
∏
{Fn : n < ω} ⊂ ωκ

so it is compact as well.
Let F ⊂ Y be closed, we now prove that f [F ] is closed. Let x ∈ X\f [F ], since

f←(x) is compact, there is m < ω such that {d(y, z) : x = f(y), z ∈ F} ≤ 1
m+1 .

Let T = {g ∈ m+1κ : Bg ∩ F 6= ∅} and V =
⋃
{Bg : g ∈ T}. Then F ⊂ V ∩ Y

and f←(x) ∩ V ∩ Y = ∅. Thus, f [F ] ⊂ f [V ∩ Y ], x /∈ f [V ∩ Y ]. By Claim 2,
f [V ∩Y ] =

⋃
{φ(g) : g ∈ T ∩Sm}, this set is closed by Lemma 0.20. This proves

that f is closed.
Notice that Claim 2 implies that f is onto. It is only left to prove that f is

irreducible. Let F ⊂ Y be closed and F 6= Y . As in the last paragraph, it is not
hard to find m < ω and T ⊂ m+1κ such that T 6= Sm and if V =

⋃
{Bg : g ∈ T},

then F ⊂ V ∩ Y and f [V ∩ Y ] =
⋃
{φ(g) : g ∈ T ∩ Sm} by Claim 2. Let

h ∈ Sm \ T . Then by condition (c), if g ∈ T ∩ Sm, then φ(g) ∩ intX(φ(h)) = ∅.
Thus, intX(φ(h)) \

⋃
{φ(g) : g ∈ T ∩ Sm} is non-empty. Thus, f [V ∩ Y ] is a

proper subset of X. This proves that f is irreducible.

Thus, by Proposition 9.5 and Corollary 6.42 we obtain the following.

Corollary 9.6 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Each metrizable space is coabsolute with a strongly 0 - dimensional metriz-
able space.

Thus, to study the remote points of a metrizable space X it is enough to
assume that X is strongly 0-dimensional by Proposition 7.12 and Corollary 9.6.

The next step is to see that local compactness is distinguished by remote
points. For any space X, let LX be the points where X is locally compact and
NX = X \ clX(LX). Gates [66] has already noticed the following Corollary of
Proposition 7.15.

Lemma 9.7 Let X be a normal space. Then ̺(X) is homeomorphic to the
direct sum ̺(clX(LX))⊕ ̺(clX(NX)).
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Now we must find a topological way to distinguish between ̺(clX(LX)) and
̺(clX(NX)).

Theorem 9.8 Let X be a metrizable space. Then ̺(clX(LX)), if non-empty,
contains a dense set of c-points and ̺(NX) is extremally disconnected.

Proof. Let us start with NX. By Proposition 7.6, β(NX) is extremally dis-
connected at each point of ̺(NX). Notice that (NX)∗ is dense in β(NX) so
by Corollary 7.4, ̺(NX) is dense in β(NX). It follows from Lemma 6.32 that
̺(NX) is extremally disconnected.

Let Y = clX(LX). Assume that Y is not compact so that ̺(Y ) 6= ∅. Let
ExX(U) be a basic open subset of βY that intersects Y ∗. By (b) in Proposition
6.10, clY (U) is not compact so by Lemma 0.19 we may find a discrete collection
{Un : n < ω} of open sets of U . Since U is locally compact, we may assume that
clY (Un) is compact for each n < ω.

Let A =
⋃
{clY (Un) : n < ω}. Then A is a regular closed subset of Y (Lemma

0.20) and since Y is a normal space A and X \ U are completely separated so
clβY (A) ⊂ ExX(U) by (3) in Theorem 6.4. By Proposition 7.15 we have that
̺(A) is a clopen subspace of ̺(Y ) ∩ ExX(U). Notice that A is realcompact by
Proposition 6.9, as each clX(Un) has countable weight by Theorem 0.16. By
Proposition 8.20 each point of ̺(A) is a c-point of clY (A) \ A. By Corollary 7.4
it follows that each point of ̺(A) is a c-point of ̺(A). Thus, any point of ̺(A)
is a c-point of ̺(Y ) contained in ExX(U).

The following follows immediately from Lemma 7.14, Lemma 9.7 and Theo-
rem 9.8.

Corollary 9.9 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) LetX and Y be metrizable spaces. If h : ̺(X)→ ̺(Y ) is a homeomorphism
then h[̺(clX(LX))] = ̺(clX(LY )) and h[̺(NX)] = ̺(NY ).

Results for LX were mentioned in Theorems 7.20 and 7.21. We will now
direct our efforts towards nowhere locally compact spaces (that is, spaces where
X = NX). If X is nowhere locally compact (and metrizable) and ̺(X) is home-
omorphic to ̺(Y ) then it follows from Corollary 9.9 that clX(LX) is compact.
Since ̺(Y ) = ̺(NY ) in this case, we may restrict to the case when both X and
Y are nowhere locally compact.
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9.2 Completely Metrizable Spaces

We would like to give a classification of the set of remote points of nowhere locally
compact, completely metrizable spaces in the spirit of Theorem 7.20. Recall that
a metrizable space is completely metrizable if and only if it is Čech-complete ([50,
Theorem 4.3.26]).

We shall start by characterizing spaces coabsolute to the Baire space ωκ,
where κ is an infinite cardinal, see Proposition 9.12.

Lemma 9.10 Let f : X → Y be a perfect and irreducible continuous function
between Tychonoff spaces. Then

(a) X is a Čech-complete space if and only if Y is,

(b) X is nowhere locally compact if and only if Y is and

(c) X is σ-compact if and only if Y is.

Proof. Let βf : βX → βY be the unique continuous extension of f (Theorem
6.4). By Lemma 0.11, βf [X∗] = Y ∗.

Using βf it is easy to see that X∗ is σ-compact if and only if Y ∗ is also σ-
compact. This implies that X is Čech-complete if and only if Y is Čech complete.

If Y has some compact set K with non-empty interior, then f←[K] is also
a compact set because f←[K] = βf←[K] is closed in βX and f←[K] has non-
empty interior in X. If T ⊂ X is compact with non-empty interior, then f [T ] is
a compact subset of Y and f ♯[intX(T )] is a non-empty open subset of f [T ] since
f is irreducible. These two observations prove (b).

A continuous image of a σ-compact space is clearly also σ-compact. As
mentioned in the paragraph above, the preimage of a compact set under f is
compact. Thus, if Y is σ-compact then X is σ-compact. Thus, (c) holds.

Recall that for metrizable spaces cellularity, weight and density all coincide
(Theorem 0.17); we shall use this in what follows. We will say that X is of
uniform cellularity (κ) if c(X) = c(U)(= κ) for each non-empty open subset
U ⊂ X. We are interested in spaces of uniform cellularity because ωκ is such a
space and this property is preserved as the following result shows.

Lemma 9.11

(i) Let f : Y → X be an irreducible continuous function. Then c(X) = c(Y )
and X is of uniform cellularity if and only if Y is.
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(ii) Let X be a space and D ⊂ X a dense subset. Then c(X) = c(D) and X is
of uniform cellularity if and only if D is.

Proof. We start with (i). That c(X) = c(Y ) is easy to prove. Assume that
X is of uniform cellularity and let U ⊂ Y be a non-empty open subset. Let
V = f ♯[U ]. Then it is easy to see that f ↾f←[V ]: f

←[V ] → V is an irreducible
and continuous function. Thus, c(V ) = c(f←[V ]). Since f←[V ] ⊂ U we obtain
that c(X) = c(V ) = c(f←[V ]) ≤ c(U) ≤ c(X) so c(U) = c(X). The rest of the
argument for (i) is similar and the proof of (ii) is not hard.

Proposition 9.12 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a metrizable space and κ an infinite cardinal. Then X is coabso-
lute with ωκ if and only if X is a nowhere locally compact, completely metrizable
space of uniform cellularity κ.

Proof. If X is coabsolute with ωκ then the result follows from Lemmas 9.10
and 9.11. Now assume that X has the properties given in the Proposition. By
Corollary 9.6 we may assume that X is coabsolute with a strongly 0-dimensional
metrizable space. The result now follows either from Theorem 8.7 or Theorem
8.10.

Notice that in Proposition 9.12, nowhere locally compact can be omitted
when κ > ω and of uniform cellularity ω simply means being separable.

Theorem 9.13 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a nowhere locally compact, completely metrizable space and
κ > ω. Then ̺(X) is homeomorphic to ̺(ωκ) if and only if X is of uniform
cellularity κ.

Proof. If X is of uniform cellularity κ, use Proposition 9.12 and Corollary 7.13.
Now, assume that ̺(X) is homeomorphic to ̺(ωκ). Both X and ̺(X) are dense
in βX. Also, ̺(ωκ) and ωκ are dense in β(ωκ). By Lemma 9.11 we obtain that
X is of uniform cellularity κ.

Wondering if the hypothesis that X is complete is necessary in Theorem 9.13
we observe the following.

Example 9.14 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) For each completely metrizable, realcompact and non-compact space X
there exists a Tychonoff space Y that is neither Čech complete nor an M -space
such that ̺(X) is homeomorphic to ̺(Y ).
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Let D = {xn : n < ω} be a countable closed discrete and infinite subset of X
(Lemma 0.19). Let p ∈ clβX(D) \X and let Y = X ∪ {p} as a subspace of βX.
Notice that βX = βY . We now show that Y is not Čech-complete and it is not
an M -space.

Assume that Y is Čech-complete and let {Un : n < ω} be a family of open
subsets of βX whose intersection is Y . Thus, {Un ∩X∗ : n < ω} witnesses that
{p} is a Gδ set of X∗. But X is realcompact so there exists a subset of type Gδ
of βX that contains p and misses X. It easily follows that {p} is a Gδ set of βX.
But this contradicts Corollary 6.50.

Now assume that Y is an M -space, we will reach a contradiction. Let {Cn :
n < ω} be a sequence of covers as in the definition of an M -space. Let d be a
metric forX. As in the proof of Proposition 8.16, we consider a strictly increasing
φ : ω → ω as follows: let φ(n) be such that xφ(n) ∈ St(p, Cn). For each n < ω, let
yn ∈ St(p, Cn) \D be such that d(xφ(n), yn) <

1
n+1 . Then it can be proved that

{yn : n < ω} is a closed discrete subset of X. Since X is normal, {yn : n < ω} is
also closed in Y . But this contradicts (i) in the definition of an M -space.

Finally, p /∈ ̺(X) because D is nowhere dense. Thus, ̺(X) = ̺(Y ).

However, since the space in Example 9.14 is not an M -space, we can ask the
following more specific question.

Question 9.15 Let X and Y be metrizable spaces such that ̺(X) is home-
omorphic to ̺(Y ). If X is completely metrizable, must Y be also completely
metrizable?

We have obtained a characterization of spaces with remote points homeo-
morphic to the remote points of some specific completely metrizable spaces in
Theorem 9.13. In an effort to classify them all we make the following definition.

Definition 9.16 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a space, let S be a set of infinite cardinals and φ a function with
domain S such that for each κ ∈ S, φ(κ) is a cardinal ≥ κ. We will say that X
has cellular type 〈S, φ〉 if there exists a pairwise disjoint family of open subsets
B = {V (κ, α) : κ ∈ S, α < φ(κ)} of X whose union is dense in X and such that
if κ ∈ S and α < φ(κ) then V (κ, α) is of uniform cellularity κ. In this case we
say that B is a witness to the cellular type of X.

Lemma 9.17 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Every crowded metrizable space has a cellular type.

Proof. Let X be a crowded metrizable space. By the Kuratowski-Zorn Lemma,
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find a maximal pairwise disjoint family U of open, non-empty subsets of X of
uniform cellularity. Notice that

⋃
U is dense, otherwise let V be an open subset

of X \ clX(
⋃
U) of minimal cellularity; U ∪{V } contradicts the maximality of U .

We define

S = {κ : κ is a cardinal and there is U ∈ U such that c(U) = κ}.

Clearly S is a set of infinite cardinals because X is crowded. For each κ ∈ S let

U(κ) = {U ∈ U : c(U) = κ}.

We may assume that |U(κ)| ≥ κ by the following argument. If the size of
this family is smaller than κ, using the fact that the cellularity is attained in
metrizable spaces (Theorem 0.18), replace U(κ) by a family of κ pairwise disjoint
open subsets of

⋃
U(κ) that is dense in

⋃
U(κ). We finally define φ: for each

κ ∈ S we let φ(κ) = |U(κ)|. Clearly U witnesses that X has cellular type
〈S, φ〉.

Lemma 9.18 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) If a Tychonoff space X has cellular types 〈S, φ〉 and 〈T , ψ〉, then 〈S, φ〉 =
〈T , ψ〉.

Proof. Let {V (κ, α) : κ ∈ S, α < φ(κ)} witness type 〈S, φ〉 and {W (κ, α) :
κ ∈ T , α < ψ(κ)} witness type 〈T , ψ〉. For each κ ∈ S, V (κ, 0) is a non-
empty open subset of X so it must intersect some W (τ, α), with τ ∈ T and
α < ψ(τ). By the definition of uniform cellularity it follows that κ = τ so
S ⊂ T . By a similar argument S = T . Notice that V (κ, α) ∩ W (τ, β) 6= ∅
implies κ = τ . Assume φ(κ) < ψ(κ) for some κ ∈ S. For each α < φ(κ)
let J(α) = {β < ψ(τ) : V (κ, α) ∩ W (κ, β) 6= ∅}. Then |J(α)| ≤ κ because
c(V (κ, α)) = κ. Let γ ∈ ψ(τ) \

⋃
{J(α) : α < φ(κ)}, then it follows that W (κ, γ)

does not intersect any element of {V (κ, α) : κ ∈ S, α < φ(κ)}, which contradicts
the density of

⋃
{V (κ, α) : κ ∈ S, α < φ(κ)}. This completes the proof.

So at least metrizable spaces have a cellular type and cellular type is unique.
Sometimes cellular type can be transfered from one space to another. For exam-
ple we have the following easy transfer result. Its proof is easy and will be left
to the reader.

Lemma 9.19 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be any space and D a dense subset of X. Then X has cellular type
〈S, φ〉 if and only if D has cellular type 〈S, φ〉.
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In the case of nowhere locally compact, completely metrizable spaces, cellular
type can be transfered to the remote points. For this nice witnesses are needed.

Lemma 9.20 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a regular space with cellular type 〈S, φ〉. Then there exists a
witness family B of the cellular type of X such that any two different members
of B have disjoint closures.

Proof. Let {W (κ, α) : κ ∈ S, α < φ(κ)} witness the cellular type of X. For
each κ ∈ S and α < φ(κ) let B(κ, α) be a maximal family of open subsets of
W (κ, α) whose closures are pairwise disjoint and contained in W (κ, α). Clearly
|B(κ, α)| ≤ κ. Give an enumeration {V (κ, α) : α < φ(κ)} of

⋃
{B(κ, α) : α <

φ(κ)}. Clearly {V (κ, α) : κ ∈ S, α < φ(κ)} is the witness we were looking
for.

Theorem 9.21 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a nowhere locally compact and completely metrizable space of
cellular type 〈S, φ〉. Then there exists a family {V (κ, α) : κ ∈ S, α < φ(κ)}
consisting of clopen subsets of ̺(X) that witnesses that ̺(X) has cellular type
〈S, φ〉 and has the additional property that for each κ ∈ S and α < φ(κ), V (κ, α)
is homeomorphic to ̺(ωκ).

Proof. Let {W (κ, α) : κ ∈ S, α < φ(κ)} witness the cellular type of X. By
Lemma 9.20, we may assume that every two subsets of this family have disjoint
closures. Let D(κ, α) = clX(W (κ, α)) for each κ ∈ S and α < φ(κ), also define

V (κ, α) = ̺(X) ∩ clβX(D(κ, α)).

It easily follows from Proposition 7.15 that V (κ, α) = ̺(D(κ, α)) for each κ ∈ S,
α < φ(κ) and B = {V (κ, α) : κ ∈ S, α < φ(κ)} is a pairwise disjoint family of
clopen subsets of ̺(X). Since ̺(X) is dense in βX (Corollary 7.4), V (κ, α) 6= ∅
for each κ ∈ S, α < φ(κ) and

⋃
B is dense.

Finally, fix κ ∈ S and α < φ(κ), we now prove that V (κ, α) is homeomorphic
to ̺(ωκ), which will complete the proof. Notice that D(κ, α) is nowhere locally
compact, completely metrizable and of uniform cellularity κ. The result now
follows from Theorem 9.13.

Corollary 9.22 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) If X and Y are nowhere locally compact, completely metrizable spaces
with the same cellular type then ̺(X) and ̺(Y ) have open dense homeomorphic
subspaces.
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The following is true but maybe not worth proving in detail. We leave it as
an exercise to the reader.

Proposition 9.23 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80])

• Let X and Y be coabsolute Tychonoff spaces. Then X has cellular type
〈S, φ〉 if and only if Y has cellular type 〈S, φ〉.

• Every paracompact p-space has a cellular type.

So the remaining question is if cellular type completely characterizes remote
points of nowhere locally compact and completely metrizable spaces. We end
this section showing that this is not the case by means of an example.

Example 9.24 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) There exist two nowhere locally compact and completely metrizable spaces
X and Y that have the same cellular type but such that ̺(X) is not homeomor-
phic to ̺(Y ).

For each n < ω, let Xn be homeomorphic to ωωn such that {Xn : n < ω}
are pairwise disjoint. Let us define X =

⊕
{Xn : n < ω}, clearly this is a

nowhere locally compact and completely metrizable space. For each n < ω let
Kn = clβX(Xn) and let P = βX \

⋃
{Kn : n < ω}.

We now define T as the quotient space of βX obtained by identifying P to
a point and let ρ : βX → T be this identification. Let p ∈ T be such that
{p} = ρ[P ] and define Y = {p} ∪ (

⋃
{Xn : n < ω}) as a subspace of T .

Notice X and Y have the same cellular type, simply because X is dense in
Y (Lemma 9.19).

To see that Y is metrizable, we may use the Bing-Nagata-Smirnov Theorem
(Theorem 0.22), since X is already metrizable it is enough to notice that Y is
first-countable at p. Since Y is a Gδ in T , Y is completely metrizable.

We claim that Y is C∗-embedded in T . Let f : Y → [0, 1] be a continuous
function. Let g = f↾X , we now prove that βg : βX → [0, 1] is constant restricted
to P . Assume this is not the case and let x, y ∈ P be such that βg(x) < βg(y).
Let ǫ = 1

3(βg(y) − βg(x)) and define U = βg←[(−∞, βg(x) + ǫ)] and V =
βg←[(βg(y)− ǫ,∞)]. Then there exist two closed countable discrete subsets D0,
D1 of X such that D0 ⊂ U and D1 ⊂ V . Clearly, both D0 and D1 converge to p
in Y , this contradicts the definition of U and V . Thus the function F : T → [0, 1]
given by F (x) = βg(x) if x 6= p and {F (p)} = βg[P ] is a continuous extension
of f . Thus, T = βY .
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Since P is a non-empty Gδ subset of βX, by Theorem 7.3 we have that
̺(X) ∩ P 6= ∅. Also notice that

̺(X) = ̺(Y ) ∪ (̺(X) ∩ P ), and

̺(Y ) =
⋃
{̺(Xn) : n < ω}.

To prove that ̺(X) is not homeomorphic to ̺(Y ) it is enough to notice
the following two facts which show different topological properties of points in
̺(X) ∩ P to those in ̺(Y ).

(a) if n < ω, c(̺(Xn)) = ωn,

(b) if q ∈ ̺(X) ∩ P then for every open set U ⊂ ̺(X) such that q ∈ U ,
c(U) ≥ ωω.

Statement (a) is clear. For statement (b) let q ∈ ̺(X)∩P and U be an open
subset of ̺(X) with q ∈ U . Let A ⊂ ω be an infinite set such that U ∩Kn 6= ∅
for all n ∈ A. For each n ∈ A we may choose a pairwise disjoint family of open
sets {V (α, n) : n < ωn} of ̺(Xn) ∩ U . Then {V (α, n) : n < ω, α < ωn} is a
collection of ωω pairwise open sets contained in U . Thus, c(U) ≥ ωω.

pωω ωω1
ωω2

ωω3
ωω4

K0

K1

K2

K3

K4

Figure 9.1: Space βY from Example 9.24. Space X is in lighter grey.

9.3 Meager vs Comeager

In this section we consider separable metrizable spaces. We already know some
spaces X with ̺(X) homeomorphic to ̺(ωω) (Theorem 9.13). We start by con-
sidering the problem for Q.



160 Chapter 9. SPACES OF REMOTE POINTS

Lemma 9.25 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Any two remainders of a nowhere locally compact Tychonoff space are
coabsolute.

Proof. Let X be nowhere locally compact Tychonoff space. Consider any com-
pactification T of X with remainder Y and let f : βX → T be the contin-
uous extension of the identity function (Theorem 6.4). By Proposition 0.11,
X∗ = f←[Y ]. Then g = f ↾X : X

∗ → Y is a perfect and irreducible continuous
function. So Y is coabsolute with X∗.

Theorem 9.26 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a metrizable space. Then X is coabsolute with Q if and only if
X is nowhere locally compact and σ-compact.

Proof. If X is coabsolute with Q, then X is nowhere locally compact and σ-
compact by Lemma 9.10. Assume now that X is nowhere locally compact and
σ-compact. By Corollary 9.6 we may assume that X is strongly 0-dimensional.
Since X is σ-compact, it is separable (Theorems 0.16 and 0.17) so it can be
embedded in ω2 (Corollary 8.9). Moreover X is crowded so the closure of X in
ω2 is also crowded. So we may assume that X is dense in ω2, let Y = ω2 \ X.
But then Y is a separable, nowhere locally compact and completely metrizable 0-
dimensional space. Then Y is homeomorphic to ωω by Theorem 8.7. Notice that
ω2 is a compactification of Y . Also, if Q = {x ∈ ω2 : ∃n < ω ∀m ≥ n (x(n) =
x(m))}, then ω2 \ Q is a dense set of ω2 homeomorphic to ωω (Theorem 8.7).
Thus, ω2 is a compactification of ωω with remainder Q, that is homeomorphic
to Q (see Theorem 10.3 in Part III). By Lemma 9.25 we obtain X is coabsolute
with Q.

Corollary 9.27 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) If X is a σ-compact, nowhere locally compact, metrizable space then ̺(X)
is homeomorphic to ̺(Q).

Another proof of Theorem 9.26 can be given by considering the following
result of van Mill and Woods.

Theorem 9.28 [119, Theorem 3.1] Let X be a σ-compact, nowhere locally
compact metrizable space. Then there exists a perfect and irreducible continuous
function f : Q×ω2→ X such that f←(p) is homeomorphic to ω2 for every p ∈ X.

Notice we have the following situation: For two specific spaces ωω and Q
we have found non-trivial classes of metrizable spaces that have the same set of
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remote points as these spaces. Now we want to know if these classes of spaces
are the best possible. We were not able to solve this problem but we will prove
Proposition 9.31 that is in the spirit of van Douwen’s Theorem 9.2. We will
use the Choquet game for this purpose. Recall that every separable completely
metrizable space is a Choquet space by Theorem 8.13. Also notice that a σ-
compact nowhere locally compact metrizable space is meager. So in some sense
ωω and Q are dual.

Lemma 9.29 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let f : X → Y be an irreducible continuous function between crowded
regular spaces. Then

(a) X is meager if and only if Y is meager, and

(b) X is a Choquet space if and only if Y is a Choquet space.

Proof. Let us start with (a). A meager space can be written as the union of ω
closed nowhere dense subsets. Since f is closed irreducible, the image of a closed
nowhere dense subset of X is also closed nowhere dense by Lemma 6.45. The
other implication is easier.

Now we prove (b). First assume that X is a Choquet space. We will now use
player II’s strategy on X to produce one on Y . Every time player I draws an
open set Un ⊂ Y , let Wn = f←[Un]. Using the strategy of player II on X, we
obtain an open subset Vn ⊂Wn of X. Since f is irreducible, player II draws the
non-empty open subset f ♯[Vn] of Y . Since II wins in X, there exists p ∈

⋂
{Vn :

n < ω} =
⋂
{Wn : n < ω} so f(p) ∈

⋂
{Un : n < ω} =

⋂
{f ♯[Vn] : n < ω}. Thus,

II also wins in Y .
Now assume that Y is a Choquet space, again we transfer II’s strategy to

X. If I draws an open set Un ⊂ X, consider Wn = f ♯[Un] which is open and
non-empty in Y . Using II’s strategy, we obtain an open subset Vn ⊂Wn. Then
player II draws f←[Vn] ⊂ Un on X. We know that II wins on Y so there exists
p ∈

⋂
{Vn : n < ω}, clearly f←(p) ⊂

⋂
{f←[Vn] : n < ω} so II wins on X as

well. This completes the proof of (b).

Lemma 9.30 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X be a space and Y ⊂ X be Gδ-dense in X. Then

(a) X is meager if and only if Y is meager, and

(b) X is a Choquet space if and only if Y is a Choquet space.

Proof. Start with (a). If X is meager, then Y is also meager because it is dense
in X. Assume that Y is meager, so Y =

⋃
{Yn : n < ω} where Yn is nowhere
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dense for each n < ω. Let Xn = clX(Yn), this is a closed and nowhere dense
subset of X for each n < ω. Since X \

⋃
{Xn : n < ω} is a subset of type Gδ of

X that does not intersect Y , it must be empty. Thus, X is meager.
Now we prove (b). First assume that X is a Choquet space. As in the proof

of Lemma 9.29, we transfer strategies. If player I draws an open subset Un of
Y , let U ′n be an open subset of X such that U ′n ∩ Y = Un. Player II’s strategy
gives an open subset Vn ⊂ U ′n of X so player II draws Vn ∩ Y 6= ∅. By player
II’s strategy in X, we know that G =

⋂
{Vn : n < ω} is a non-empty subset of

X of type Gδ. Thus, G ∩ Y 6= ∅, which implies that the described strategy for
II is a winning strategy in Y .

Now assume that Y is a Choquet space. We again transfer II’s strategy in
Y to X. Every time I draws an open subset Un of X, consider the open subset
Wn = Un∩Y of Y . The strategy in Y for player II gives an open subset Vn ⊂Wn.
Choose an open subset V ′n of X such that V ′n ∩ Y = Vn. So II draws V ′n. Since⋂
{Vn : n < ω} is non-empty, we obtain that

⋂
{V ′n : n < ω} is non-empty as

well. This shows that II has a winning strategy so X is a Choquet space. We
have finished the proof.

Proposition 9.31 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) Let X and Y be two separable, nowhere locally compact metrizable spaces
such that ̺(X) is homeomorphic to ̺(Y ). Then

(i) X is a Choquet space if and only if Y is a Choquet space, and

(ii) X is meager if and only if Y is meager.

Proof. Let K be a metrizable compactification of X and T be a metrizable
compactification of Y , and assume thatX ⊂ K and Y ⊂ T . Let f : βX → K and
g : βY → T continuously extend the identity function. Then f↾X∗ : X∗ → K \X
and g↾Y ∗ : Y

∗ → T \ Y are easily seen to be irreducible continuous functions.
Notice that if we give T and K some metric, these spaces are the completion of
X and Y , respectively, with respect to appropriate restrictions of these metrics.
Thus, we can use Theorem 8.13.

Let us prove (i). Assume that X is a Choquet space. Then, by Theorem 8.13
X is comeager in K. Thus, K \X is meager. By Lemma 9.29 applied to f↾X∗ ,
X∗ is meager. Recall ̺(X) is Gδ-dense in X∗ (Theorem 7.3) so by Lemma 9.30,
̺(X) is meager. Thus, ̺(Y ) is meager. Therefore, we can again use Lemmas
9.29 and 9.30 to obtain that Y ∗ and T \ Y are meager as well. Again, Theorem
8.13 proves that Y is a Choquet space. Using a similar argument it is easy to
prove (ii).
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One good hope to extend the results given above is to consider the strong
Choquet game because the fact that player II has a winning strategy provides a
way to prove that a space is completely metrizable (Theorem 8.13). However, it
was not possible for the author to prove a transfer result analogous to Proposition
9.31. We could only prove the following observation, that is only half the way to
the proof.

Proposition 9.32 (Hernández-Gutiérrez, Hrušák and Tamariz-Mascarúa,
[80]) ̺(Q) is a strong Choquet space.

Proof. Fix some enumeration Q = {qn : n < ω}. If player I draws the open
set Un of ̺(Q) and xn ∈ Un, then player II draws Vn ∩ ̺(Q), where Vn is an
open subset of βQ such that xn ∈ Vn, clβQ(Vn) ∩ ̺(Q) ⊂ Un and qn /∈ Vn. Then
G =

⋂
{Vn : n < ω} =

⋂
{clβQ(Vn) : n < ω} 6= ∅ is a non-empty Gδ set of βQ

contained in Q∗. Recall that ̺(Q) intersects every Gδ subset of βQ contained in
Q∗ (Theorem 7.3). Thus, G ∩ ̺(Q) 6= ∅. This implies that

⋂
{Vn ∩ ̺(Q) : n <

ω} 6= ∅. Thus, the strategy described is a winning strategy for player II in the
strong Choquet game for ̺(Q).

So the following remains unanswered.

Question 9.33 Let X be a metrizable space such that ̺(X) is homeomorphic
to ̺(Q). Is X σ-compact?

Now we make some comments about the use of Proposition 9.31. Let X and
Y be separable, nowhere locally compact and metrizable. If, for example, X has
some open subset that is meager and Y is comeager then we can say that ̺(X)
and ̺(Y ) are not homeomorphic using Propositions 7.15 and 9.31. However we
are not able to distinguish between, for example, ̺(Q) and ̺(ωω×Q) or between
̺(ωω) and ̺(2P ∪ 2Q) where P = R \Q.
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Countable Dense Homogeneous
Spaces
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Introduction

In [25], Cantor showed that any countable linearly ordered set with no least or
greatest element that is densely ordered is order-isomorphic to the rational num-
bers. Cantor’s method of proof is now known as back-and-forth induction (see
[29, §4] for applications of back-and-forth induction to algebraic constructions).
Although Cantor’s result is order-theoretic, it can be shown to have topological
consequences. In particular, for every two countable dense subsets D,E ⊂ R it
is possible to find a homeomorphism h : R → R such that h[D] = E (Theorem
10.2).

Thus, it is natural to take the abstract property as a topological definition.
A separable space X will be called countable dense homogeneous if every time
D,E ⊂ X are countable dense subsets of X, there is a homeomorphism h : X →
X such that h[D] = E. Which spaces are countable dense homogeneous?

At least for connected spaces, countable dense homogeneity implies homo-
geneity (Corollary 10.10). However, homogeneity does not imply countable dense
homogeneity (see examples in Section 10.1). It can be shown that many famil-
iar spaces are countable dense homogeneous, such as manifolds, the Cantor set,
separable Hilbert space and the space of irrational numbers (see Section 10.2).
In fact, there are some characterizations of countable dense homogeneous spaces
in the classes of locally compact spaces (see Theorem 10.25).

However, we know little outside the class of Polish spaces. In the Open Prob-
lems in Topology book, there was a paper [57] in which the authors asked whether
there are separable metrizable spaces that are countable dense homogeneous but
not complete. There are consistent examples of non-definable countable dense
homogeneous spaces such as Bernstein sets (Theorem 10.30). Michael Hrušák
and Beatriz Zamora-Áviles proved that such spaces cannot be Borel (Theorem
10.32). Later, Ilijas Farah, Michael Hrušák and Carlos Martínez-Ranero showed
that there is a ZFC example of a non-Polish countable dense homogeneous metriz-
able space of cardinality ω1 (Theorem 10.34).

One of the latest papers on the subject was due to Medini and Milovich
([110]). In this paper, ultrafilters with the Cantor ser topology are studied. In
particular, some CDH and non-CDH ultrafilters are constructed under Martin’s
axiom for countable posets. The author and Professor Michael Hrušák were
able to extend part of these results, in particular, we showed that non-meager
P -filters are countable dense homogeneous (Theorem 11.12). Our results are in
ZFC except for the fact that non-meager P -filters are known to exist only under
special hypothesis (Theorem 11.3).

Another insteresting problem posed by Jan van Mill is to find compact CDH
spaces of uncountable weight (Question 12.4). We were not able to solve this
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problem, but due to another result of the author (Theorem 12.25), we rule out
many possible examples of such spaces (see Example 12.29).

Chapter 10 gives an introduction to countable dense homogeneity, Chapter
11 gives our results on filters and Chapter 12 gives the collection of results obtain
related to the problem of compact CDH spaces. The research of this Part was
done during the author’s stay in the Centro de Ciencias Matemáticas, UNAM in
Morelia city.



Chapter 10

Structure of Countable Dense
Homogeneous Spaces

A space X is called countable dense homogeneous if it is Hausdorff, separable
and every time D and E are countable dense subsets of X there is a homeomor-
phism h : X → X such that h[D] = E. We will abbreviate “countable dense
homogeneous” as CDH from this point on. In this Chapter we give a summary
of some general results about CDH spaces.

10.1 Examples and simple properties

Historically, in [25] Cantor gave the first result related to CDH spaces. The
technique invented by Cantor is now called “back and forth induction”.

Theorem 10.1 [25] Let 〈Q,≤〉 be a countable linearly ordered set that has
neither least nor greatest element and for every a, b ∈ Q with a < b there exists
c ∈ Q such that a < c < b. Then 〈Q,≤〉 is order-isomorphic to 〈Q,≤〉.

Proof. Let Q = {qn : n < ω} and Q = {rn : n < ω} be one-to-one enumerations.
Recursively, we define finite bijections hn for n < ω such that:

(a) if n < ω, {q0, . . . , qn} ⊂ dom(hn) and {r0, . . . , rn} ⊂ im(hn);

(b) if n < ω, a, b ∈ dom(hn) and a < b, then hn(a) < hn(b);

(c) if n < ω then hn ⊂ hn+1.

Assume that we have defined hm for some m < ω, let us define hm+1. We
will define hm+1 in two steps, first we describe the construction of a bijection g
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Section 10.1. Simple properties of CDH spaces 169

that extends hm. If qm+1 ∈ dom(hm), let g = hm. Otherwise, we must do some
work. Let dom(hm) = {a0, . . . , ak} and im(hm) = {b0, . . . , bk} where ai < aj
and bi < bj whenever 0 ≤ i < j ≤ k. Consider the following intervals of Q:
I0 = (←, a0), Ii = (ai, ai+1) for 0 < i < k and Ik = (ak,→). Also consider
the following intervals of Q: J0 = (←, b0), Ji = (bi, bi+1) for 0 < i < k and
Jk = (bk,→). There exists i ≤ k such that qk+1 ∈ Ii. By the properties of Q,
Ji 6= ∅ so we may choose r ∈ Ji. Let g = hm ∪ {〈qm+1, r〉}. Thus, we have
defined g in both cases. If rm+1 ∈ im(g), let hm+1 = g. Otherwise, we may use
an argument as above to choose q ∈ Q such that hm+1 = g ∪ {〈q, rm+1〉} has
properties (a) and (b).

This completes the construction of {hn : n < ω}. Define h =
⋃
{hn : n < ω},

then it is easy to check that h : Q→ Q is an order isomorphism.

Figure 10.1: Using back-and-forth induction to prove Theorem 10.1.

From this result it is possible to obtain the first example of a CDH space.

Theorem 10.2 The real line R is CDH.

Proof. Let D,E ⊂ R two countable dense subsets of R. From Theorem 10.1
it is easy to see that both D and E are order-isomorphic to Q with the order
of R. Thus, there is a order isomorphism h : D → E. Define H : R → R by
H(x) = inf{h(d) : x ≤ d, d ∈ D}. It is not hard to see that H is a well-defined
order isomorphism. Thus, H is a autohomeomorphism of R as a topological
space and H[D] = E.

We also obtain the following characterization of spaces homeomorphic to Q.
This result shows the power of Cantor’s technique.

Theorem 10.3 (Sierpiński) Every countable, first countable, crowded, regular
space is homeomorphic to Q.
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Proof. Let X be countable, crowded and first countable. Since metrizable spaces
are first countable and X is itself countable, X has a countable base so X is
second countable. Then X is metrizable by Theorem 0.23.

Moreover, X is 0-dimensional by the following argument. Choose some com-
patible metric d for X. Let x ∈ X and F be a closed set of X such that x /∈ F .
Let f : X → R be the function defined as f(y) = d(x, y) for all y ∈ X, this is a
continuous function so f [F ] ⊂ [ǫ,∞) for some ǫ > 0. Since X is countable, f [X]
is countable as well. Thus, there exists δ ∈ (0, ǫ) \ f [X]. Let U = f←[[0, δ)] and
V = f←[(δ,∞)]. Then U and V are disjoint open subsets of X whose union is
X and separate x from F .

Since X is second countable and 0-dimensional, we may assume that X is a
subspace of ωω (Propositions 8.1 and 8.6). Let Y = clωω(X). Notice that Y is
also a completely metrizable space (Proposition 0.24). Every open subspace of Y
is also completely metrizable (again by Proposition 0.24) and no countable space
is completely metrizable (more generally, it cannot be a Baire space by Theorem
0.25) so Y \X is dense in Y . Then there exists a countable dense subset E ⊂ Y
such that E ∩ X = ∅. Define Z = Y \ E. It easily follows that Z is nowhere
locally compact and by Theorem 8.7 and Corollary 8.8, Z is homeomorphic to
the space of irrational numbers.

Thus, we have shown that X is homeomorphic to a countable dense subset
of the irrational numbers. In particular X is a countable dense subset of R. By
Theorem 10.2, there is a homeomorphism h : R→ R such that h[X] = Q. Thus,
X is homeomorphic to Q.

Corollary 10.4 Every countable, first countable, regular space can be embed-
ded in Q.

Proof. Let X be countable and first countable. By arguments similar to those in
the proof of Theorem 10.3, we may assume that X ⊂ ωω. Let Q be a countable
dense subset of ωω. Then X is a subspace of X ∪Q, which is homeomorphic to
Q by Theorem 10.3.

Naturally, being CDH looks like being homogeneous. But the concepts are
independent, as the following examples show.

Example 10.5 Q is not CDH although it is homogeneous.

Both Q and Q \ {0} are countable dense subsets of Q but there is no homeo-
morphism h : Q→ Q that takes the whole space Q to the proper space Q \ {0}.
However, Q is homogeneous, as the homeomorphism h : Q → Q defined by
h(x) = x+ q for some fixed q ∈ Q takes 0 to q.
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We need the following to give our second example.

Lemma 10.6 If X0 and X1 are CDH spaces, then X0 ⊕X1 is CDH.

Proof. Let D0, D1 ⊂ X0⊕X1 be countable dense subsets. Let D(i, j) = Di ∩Xj

for i, j ∈ 2. Let h0 : X0 → X0 and h1 : X1 → X1 be homeomorphisms such that
hj [D(0, j)] = D(1, j) for j ∈ 2. Define h : X0 ⊕X1 → X0 ⊕X1 by h(x) = hi(x)
if x ∈ Xi for i ∈ 2. Then h is a homeomorphism and h[D0] = D1.

Example 10.7 Let S1 = {〈x, y〉 ∈2R : x2 + y2 = 1} be the unit circle. Then S1

is CDH. Thus, R⊕ S1 is CDH but not homogeneous.

First, we need to argue that S1 is CDH. Let D0, D1 ⊂ S1 be countable dense
subsets, choose di, ei ∈ Di two different points for each i ∈ 2. Let J(i,+)
and J(i,−) be two arcs whose union is S1 and their intersection is {di, ei}, for
i ∈ 2. Using the methods of Theorems 10.1 and 10.2, it is possible to find
homeomorphisms h+ : J(0,+) → J(1,+) and h− : J(0,−) → J(1,−) such that
h+[D0 ∩ J(0,+)] = D1 ∩ J(1,+) and h−[D0 ∩ J(0,−)] = D1 ∩ J(1,−). Then
h = h+ ∪ h− is a homeomorphism h : S1 → S1 such that h[D] = E. The rest
follows by Lemma 10.6.

Even though being CDH does not imply homogeneity, a CDH space must be
a free sum of homogeneous spaces.

For each space X, H(X) denotes the set of all autohomeomorphisms of X.
For every space X and x ∈ X, let O(x,X) = {h(x) : h ∈ H(X)}, we call this set
the orbit of x (under homeomorphisms).

Theorem 10.8 Let X be a CDH space. Then O(x,X) is clopen and CDH for
every x ∈ X.

Proof. We begin by proving the following.

Claim 1. For every x ∈ X, clX(O(x,X)) is a clopen subset of X.

Fix x ∈ X and denote O = O(x,X). Notice that O is fixed under autohome-
omorphisms of X.

If O were nowhere dense, there would be a countable dense set D of X
that misses O. Notice that there is no homeomorphism h : X → X such that
h[D] = D ∪ {x} so we obtain a contradiction. Thus, intX(clX(O)) 6= ∅.

The next step to prove Claim 1 is showing that intX(clX(O)) is dense in
clX(O). Let U be an open subset of clX(O), choose y ∈ U ∩ O and z ∈
intX(clX(O)). By the definition of orbit, there is a homeomorphism h : X → X
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such that h(z) = y. Since h[intX(clX(O))] = intX(clX(O)), it follows that
y ∈ intX(clX(O)). From this, intX(clX(O)) intersects U so it is dense in clX(O).

Let y ∈ clX(O) be arbitrary, we now prove that y ∈ intX(clX(O)). Since
every open subset of X is separable, we may choose a countable dense subset D
of intX(clX(O)) and a countable dense subset E of X \ clX(O). Then D ∪ E is
a countable dense subset of X. There exists a homeomorphism h : X → X such
that h[D∪E] = D∪E∪{y}. Since h[clX(O)] = clX(O) we obtain that h(y) ∈ D.
Then h(y) ∈ intX(clX(O)). Moreover, h←[intX(clX(O))] = intX(clX(O)) so
x ∈ intX(clX(O)). Since y was arbitrary, we have completed the proof of Claim
1.

Claim 2. If x, y ∈ X are such that clX(O(x,X)) ∩ clX(O(y,X)) 6= ∅, then
clX(O(x,X)) = clX(O(y,X)).

To prove Claim 2, assume that x, y ∈ X are such that clX(O(x,X)) ∩
clX(O(y,X)) 6= ∅ but clX(O(x,X)) \ clX(O(y,X)) 6= ∅. Let p, q ∈ O(x,X)
be such that p ∈ clX(O(y,X)) and q /∈ clX(O(y,X)), this is possible by Claim
1. Then there is a homeomorphism h : X → X such that h(p) = q. Since
h[clX(O(y,X))] = clX(O(y,X)), then q ∈ clX(O(y,X)), a contradiction. With
this we have proved Claim 2.

Now fix x ∈ X for the rest of the proof, let Y = clX(O(x,X)). Notice that
Y is CDH by the following argument. Let D and E be countable dense sets
of Y . Choose F a countable dense in X \ Y , then there is a homeomorphism
h0 : X → X with h0[D ∪ F ] = E ∪ F . Since h0[Y ] = Y , h1 = h0↾Y : Y → Y is a
homeomorphism such that h1[D] = E.

We must prove that O(x,X) = Y so assume this is not the case. By Claims 1
and 2, O(y,X) is dense in Y for every y ∈ Y . Then both O(x,X) and Y \O(x,X)
are dense in Y . Choose some countable dense set D of Y . Let D0 = D∩O(x,X)
and D1 = D \ O(x,X).

Case 1: clY (D0) = X. Let p ∈ Y \ O(x,X) be arbitrary. Then there exists a
homeomorphism h : Y → Y such that h[D0] = D0 ∪ {p}. Then p ∈ O(x,X),
which is a contradiction.

Case 2: clY (D1) = X. There is a homemorphism h : Y → Y such that h[D1] =
D1 ∪ {x}. However, D1 ∩ O(x,X) = ∅ so we obtain a contradiction again.

Case 3: Not Case 1 or 2. Let U = Y \clY (D1), then U is a non-empty open set of
Y and D0∩U is a countable dense set of U . Since clY (D0) 6= Y , there is an non-
empty open set V of Y such that V ∩D0 = ∅. Notice that then V ∩D1 is dense
in V and V ∩U = ∅. Let p ∈ V ∩O(x,X). Define E = (D0 ∩U)∪D1, then E is
a countable dense subset of Y . Let h : Y → Y be a homeomorphism such that
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h[E] = E∪{p}. Notice that since both O(x,X) and Y \O(x,X) are dense in Y ,
then E∩O(x,X) has no isolated points. Notice that V ∩(E∪{p})∩O(x,X) = {p}
so p is an isolated point of (E∪{p})∩O(x,X). But this is a contradiction to the
fact that h[E ∩O(x,X)] = (E ∪ {p}) ∩O(x,X). Thus, this case is not possible.

Thus, we have obtain a contradiction on each of the three possibilities. This
shows that contrary to our assumption, O(x,X) = Y and this finishes the proof
of the Theorem.

Thus, in particular we have the following.

Corollary 10.9 Every CDH space can be decomposed as a pairwise disjoint
union of clopen CDH homogeneous spaces.

Corollary 10.10 [55, Theorem, p. 20] Every connected CDH space is homoge-
neous.

Let us give some other examples of spaces and whether they are CDH or not.

Example 10.11 The Sorgenfrey line S is CDH.

The Sorgenfrey line is the set R with the topology that has B = {(a, b] : a, b ∈
R, a < b} as a base for the open sets (see [50, Example 1.2.2]). When R is given
the Sorgenfrey line topology, it will be denoted by S. The Sorgenfrey line is a
very famous example in General Topology. Let us mention some properties of S.

It is easy to see that every set from B is clopen so S is Hausdorff and 0-
dimensional. As the set of rational numbers is dense in S, it is separable. We
now argue that S has weight c.

Since |B| = c, w(S) ≤ c. Assume that w(S) < c, we shall arrive to a contra-
diction. By Lemma 0.15, there exists B′ = {(xα, yα] : α < w(S)} ⊂ B that is a
base. However, if y ∈ (0, 1] \ {yα : α < w(S)}, then there is no B ∈ B′ such that
y ∈ B ⊂ (0, y]. This is a contradiction so in fact w(S) = c.

Since the Euclidean topology (that is, the topology in R) is contained in the
Sorgenfrey line topology, every dense set of S is also a dense subset of R. Let
D,E be two countable dense subsets of S. By the argument given in Theorem
10.2, there is an order isomorphism h : S→ S such that h[D] = E. It is not hard
to see that any order isomorphism of S is a homeomorphism so indeed S is CDH.

The following two examples will illustrate an interesting phenomenon: if a
space can be decomposed into subsets such that any homeomorphism gives a
permutation of such subsets, there is a big chance that the space is not CDH
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even if it is homogeneous. Such subsets are components in the first example and
composants in the second one.

Example 10.12 Q× R is homogeneous but not CDH

Notice that the components of Q×R are precisely {{q}×R : q ∈ Q} and each one
is nowhere dense in Q× R. Thus it is possible to define two essentially diferent
countable dense subsets D and E in the following way.

To define D, choose a countable dense subset Dq ⊂ {q} × R for each q ∈ Q
and define D =

⋃
{Dq : q ∈ Q}. To construct E, let {Un : n < ω} be an

enumeration of a base of Q × R. Recursively choose {qn : n < ω} ⊂ Q and
E = {xn : n < ω} ⊂ Q×R such that xn ∈ Un∩ ({qn}×R) and qn /∈ {qk : k < n}
for all n < ω. Then E intersects each component of the space in at most one
point, while D intersects all components of the space in infinitely many points.
Thus, there is no homeomorphism of the space that takes D to E.

Q

R

Figure 10.2: The components of Q× R are vertical lines.

Example 10.13 Homogeneous, metrizable continua that are not CDH; one of
them a topological group.

A continuum is a compact, connected and Hausdorff space. A continuum X is
indecomposable if every time X = Y ∪Z where Y and Z are both continua, then
Y = X or Z = X. Two well-known examples of metrizable, homogeneous and
indecomposable continua are the dyadic solenoid and the pseudoarc. The dyadic
solenoid is the space

{
x ∈ ω(S1) : ∀n < ω (x(n) = x(n+ 1) · x(n+ 1))

}
,

where z·w denotes multiplication in the complex plane. A geometric construction
of the solenoid can be described in the following way (also, see the discussion
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after 2.8 in [125]). Let T0 be a solid torus in Euclidean space and for each n < ω,
let Tn+1 be a solid torus contained in the solid torus Tn in such a way that Tn+1

turns around Tn twice and the width of Tn+1 is half the width of Tn (see Figure
10.1); then the dyadic solenoid is homeomorphic to

⋂
{Tn : n < ω}. Since S1 is

a topological group, it can be easily proved that a structure of topological group
can be given to the dyadic solenoid. For a description of the pseudoarc, see [105]
or [125, Exercise 1.23].

It turns out, however, that an indecomposable continuum is never CDH. If X
is an indecomposable continuum, let x ∼ y mean that there is a continuum Y (
X such that x, y ∈ Y ; it can be easily proved that this is an equivalence relation.
The equivalence classes of such equivalence relation are called composants. It
can be proved that any metrizable indecomposable continuum X has precisely c

composants ([108]) and each of one is dense in X ([125, Exercise 5.20(a)]).
Let X be any metrizable indecomposable continuum. It is possible to con-

struct two countable dense sets D and E of X in the following way. Let D be
contained in exactly one composant of X and let E = D ∪ {p} where p is in a
composant different to the one that contains D. Then there is no autohomeo-
morphism of X that sends D to E. This proves that X is not CDH.

We remark that the following properties are known of CDH metrizable con-
tinua.

Theorem 10.14 [17, Theorem 2] A CDH metrizable continuum is not irre-
ducible between any two of its points

Theorem 10.15 [54] Any CDH metrizable continuum is locally connected.

We end this section with the following result that has been obtained recently.

Theorem 10.16 [9] If X is a countable dense homogeneous space, then |X| ≤ c.

Proof. Assume that |X| > c, we will arrive to a contradiction. Let Q be some
fixed countable dense subset of X. For each x ∈ X, there is a homeomorphism
hx : Q→ Q∪{x}. Let y(x) = h−1x (x) ∈ Q. Since there are > c homeomorphisms
of the form hx, there is Y ⊂ X with |Y | > c and y ∈ Q such that y(x) = y for
all x ∈ Y . Moreover, there are at most c functions from Q \ {y} to Q so there is
Z ⊂ Y with |Z| > c such that hp↾Q\{y}= hq↾Q\{y} for all p, q ∈ Z.

Let p, q ∈ Z with p 6= q. Then hp : Q → X and hq : Q → X are continuous
functions that concide in the dense subset Q \ {y}. By Lemma 0.4, hp = hq so
p = hp(y) = hq(y) = q, a contradiction. This proves that |X| ≤ c.
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Figure 10.3: Construction of the dyadic solenoid.

10.2 Strongly locally homogeneous spaces

In the previous section, we showed that the real line R and the circle S1 are
CDH. We would like to find more examples of CDH spaces. It turns out that
many natural examples of homogeneous spaces turn out to be CDH. As in the
proof of Theorem 10.2, the natural candidate for a proof of CDHness is defining
a homeomorphism recursively between the dense sets and then extending it to
the whole space. In this section we give a property that will give this result in
a precise way. We shall restrict to separable metrizable spaces in this section.
Recall that a space is Polish if it is separable and completely metrizable.

A space X will be called strongly locally homogeneous1, SLH for short, if for
every p ∈ X and every open subset U if X such that p ∈ U there is an open set
V with p ∈ V ⊂ U such that if q ∈ V there is a homeomorphism h : X → X
such that h(p) = q and h(x) = x for all x ∈ X \ V .

Theorem 10.17 [18] A SLH Polish space is CDH.

Theorem 10.17 was originally proved by Bennett in [17] for locally compact
metrizable spaces. For a proof of Theorem 10.17, see [10, Theorem 14.1]. We
will now give some examples of this result.

1This property is also called representable by some authors.
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Example 10.18 The space of irrational numbers and the Cantor set are SLH
Polish spaces. Thus, they are both CDH.

Recall that a manifold is a Hausdorff space such that every point has an open
neighborhood homeomorphic to nR for some n ∈ N. Since Euclidean spaces are
clearly SLH, manifolds are also SLH. Moreover, second countalbe manifolds are
locally compact so they are Polish.

Corollary 10.19 If X is a second countable manifold, then X is CDH.

Separable Hilbert space is any space homeomorphic to ωR. The Hilbert cube
is ω[0, 1]. Both of these spaces are SLH (see [60]) and Polish so they provide
infinite-dimensional examples of CDH spaces; separable Hilbert space is nowhere
locally compact and the Hilbert cube is compact.

Example 10.20 Separable Hilbert space and the Hilbert cube are CDH.

Another famous example of SLH space is the Menger universal curve M , it
is a locally connected metrizable continuum of dimension 1 that contains homeo-
morphic copies of all 1-dimensional separable metrizable spaces (see Figure 10.2).
It was shown in [5] that the Menger universal curve is SLH.

Figure 10.4: A step in the construction of the Menger universal curve.



178 Chapter 10. INTRODUCTION TO CDH SPACES

Example 10.21 The Menger universal curve is SLH and CDH.

We remark that the following is known.

Theorem 10.22 Let X be a 1-dimensional metrizable continuum. Then the
following are equivalent.

(a) X is CDH.

(b) X is homogeneous and locally connected.

(c) X is homeomorphic to either the circle or the Menger universal curve.

Proof. Both the circle and the Menger universal curve are SLH metrizable con-
tinua (see [5]) so they are CDH by Theorem 10.17. If X is a CDH metrizable
continuum, then X is locally connected by Theorem 10.15. Then X is homo-
geneous by Corollary 10.10. A result of Anderson says that any homogeneous
1-dimensional locally connected metrizable continuum is either the circle or the
Menger universal curve ([5] and [6]).

Our final example is complete Erdős space. This space has already been
mentioned in Example 2.3. Complete Erdős space is a 1-dimensional, totally
disconnected Polish space. See [32] for more information on this space. It turns
out that Complete Erdős is CDH but not CDH.

Example 10.23 Complete Erdős space is CDH ([93, Theorem 12]) but not SLH
([31, Proposition 6.9]).

Obviously SLH does not imply CDH in general, as Q is SLH but not CDH.
However, the question of how much one can relax the hypothesis of completeness
in Theorem 10.17 and still obtain CDH is interesting.

Example 10.24 [112] There is a subspace of the Euclidean plane that is a Baire
space, connected, locally connected, SLH but not CDH.

10.3 Ungar’s theorem and generalizations

By Corollary 10.10 it follows that in the presence of connectedness, CDH is
stronger than homogeneity. One natural question is how strong it is. That
is, is it possible that CDH spaces have stronger homogeneity properties? In
the other direction, we would like to know if there is some charaterization of
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CDH connected spaces in terms of their homogeneity. Ungar has shown such a
characterization, we present it in Theorem 10.25.

LetX be a topological space and n ∈ N. We will say thatX is n-homogeneous
if for every F,G ⊂ X with |F | = |G| = n there is a authomeomorphism h : X →
X such that h[F ] = G. We will say that X is strongly n-homogeneous if for
every F,G ⊂ X with |F | = |G| = n and every bijection φ : F → G there is a
autohomeomorphism h : X → X such that h(x) = φ(x) whenever x ∈ F .

Theorem 10.25 [157] Let X be a locally compact, separable and metrizable
space such that cannot be separated by any finite set. Then the following are
equivalent.

(a) X is CDH.

(b) X is n-homogeneous for every n ∈ N.

(c) X is strongly n-homogeneous for every n ∈ N.

Notice that the hypothesis from Theorem 10.25 that the space X cannot be
separated by finite subsets cannot be removed: the real line R is CDH (Theorem
10.2) and in fact it is n-homogeneous for every n ∈ N (follow the method of
back-and-forth from Theorem 10.1 in finitely many steps) but it is not strongly
3-homogeneous since 〈0, 1, 2〉 cannot be sent to 〈0, 2, 1〉 by a homeomorphism. It
has also been proved by van Mill that the hypothesis of local compactness cannot
be removed.

Example 10.26 [116] There is a Polish space that is n-homogeneous for every
n ∈ N but not CDH.

Very recently, Ungar’s result has been strengthened by Michael Hrušák and
Jan van Mill in the following way.

Theorem 10.27 [87] Let X be a locally compact separable metrizable space.
The following are equivalent.

(a) X is CDH.

(b) For every finite subset F of X there is a partition U of X \ F into rela-
tively clopen sets such that for every U ∈ U and every p, q ∈ U there is a
homeomorphism h : X → X such that h(p) = q and f [F ] = F .

(b) For every finite subset F of X there is a partition U of X \ F into rela-
tively clopen sets such that for every U ∈ U and every p, q ∈ U there is a



180 Chapter 10. INTRODUCTION TO CDH SPACES

homeomorphism h : X → X such that h(p) = q and f(x) = x for every
x ∈ F .

10.4 Questions on Definability

Notice that all our results on CDH spaces so far are for completely metrizable
spaces, so it is natural to wonder whether there are non-complete CDH spaces.
In their Open Problems in Topology paper [57], Fitzpatrick and Zhou precisely
asked that question.

Question 10.28 Does there exist a CDH metrizable space that is not completely
metrizable?

Question 10.29 For which 0-dimensional subsets X of R is ωX CDH?

The first results in this direction were given in the presence of some hypothesis
that goes beyond ZFC set theory.

IfX ⊂ R, we say thatX is a Bernstein set if every compact crowded subspace
of R (equivalently, every Cantor set contained in R) intersects both X and R\X.
It is not hard to construct a Bernstein set: let {Cα : α < c} be the collection
of all Cantor sets contained in X and recursively choose xα, yα ∈ Cα such that
xα /∈ {xβ : β < α} ∪ {yβ : β < α} and yα /∈ {xβ : β ≤ α} ∪ {yβ : β < α} for all
α < c, then X = {xα : α < c} is a Bernstein set.

A Bernstein set is not completely metrizable, as it is known that every un-
countable Polish space contains a copy of the Cantor set c ([94, 6.5]). Even
though it is easy to prove the existence of Bernstein sets in ZFC alone, it has not
been yet possible to show the existence of a CDH Bersnstein set without further
hypothesis. The only result known so far about this is the following one.

Theorem 10.30 [13] If MA(countable) holds, then there exists a CDH Bernstein
set.

Thus, the following remains unanswered.

Question 10.31 Can the existence of a CDH Bernstein set be proved in ZFC?

Let us recall some facts about Borel sets. Let X be a Polish space. By
recursion on an ordinal α, we define the following sets.
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Σ0
0(X) =

{
U ⊂ X : U is open

}
,

Σ0
α(X) =

{⋃
A : A ⊂

⋃
{Π0

β(X) : β < α}, |A| ≤ ω
}
, for each α > 0.

Π0
α(X) =

{
X \A : A ∈ Σα0

}
, for each α.

So Σ0
0(X) are open sets, Π0

0(X) are closed, Σ0
1(X) are Fσ and Π0

1(X) are
Gδ. By induction it is possible to prove that for α < β < ω1, Σ0

α(X)∪Π0
α(X) ⊂

Σ0
β(X). Let BOR(X) =

⋃
{Σ0

α(X) : α < ω1}. Sets from BOR(X) are called
Borel sets of X.

In some sense, Borel sets are “definable”. For example, in R, open sets are just
countable unions of intervals, which can be easily defined; taking the σ-algebra
generated by such a collection should also be “definable”. It can also be proved
that being a Borel set of some Polish space is a topological property: if X is a
Borel subset of Y and Z is a Polish space in which X is densely embedded, then
X is also a Borel set of Z. (see [146, 3.3.7]). Thus, we can define a separable
metrizable space to be a Borel space if it is a Borel set of some (equivalently,
each) Polish space in which it is (densely) embedded. Notice that Polish spaces
are Borel themselves.

One of the reasons Borel spaces are thought to be definable is that they have
many properties in common to closed sets. In particular, a Borel space X has
the perfect set property, that is, there is a Cantor set contained in X ([94, 13.6]).
This is a big contrast with Bernstein sets, which do not contain Cantor sets.

It turns out that CDH Borel spaces can only be Polish, this was shown by
Michael Hrušák and Beatriz Zamora-Avilés.

Theorem 10.32 [86] Let X be a separable metrizable space.

(a) If X is a CDH Borel space, then X is completely metrizable.

(b) If ωX is CDH, then X is a Baire space.

In fact, it is possible to give a list of Borel 0-dimensional CDH spaces that
are ω-powers in the spirit of Question 10.29.

Theorem 10.33 [86] Let X ⊂ ω2 be Borel. Then the following are equivalent.

(a) ωX is CDH.

(b) X is a subset of type Gδ in ω2.
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(c) ωX is homeomorphic to a point, ω2 or ωω.

A space X is a λ-set if every countable subset of X is a subset of type Gδ in
X. By the Baire Category Theorem (Theorem 0.25), a Polish space cannot be
a λ-set. A CDH λ-set has been shown to exist in ZFC, this answers Question
10.28.

Theorem 10.34 [53] There is a CDH set of reals X of size ω1 that is a λ-set
and thus, not completely metrizable.

The techniques used for the proof of Theorem 10.34 produce spaces that
cannot be Baire spaces, so by (b) in Theorem 10.32 they cannot answer Question
10.29.

We finally show some results about the Baire property of CDH spaces. The
following is a straighforward generalization of [56, Lemma 3.2]. Recall that a
space X is meager if it is a countable union of nowhere dense subsets of X.

Lemma 10.35 Let X be a crowded, first countable, separable, meager space.
Then X has a countable dense set that is a set of type Gδ of X.

Proof. Using first countability and separability, it is possible to show that there
is a countable π-base B = {Bn : n < ω} of X. Let X =

⋃
{Fn : n < ω} be such

that Fn is closed and nowhere dense in X for every n < ω. We may assume that
Fm ⊂ Fn for all m ≤ n < ω. Recursively choose xn ∈ Bn \ (Fn ∪ {xm : m < n})
for all n < ω.

Let Gn = (X \Fn)∪{xm : m ≤ n} for all n < ω and define D = {xn : n < ω}.
Since X is first countable, Gn is a set of type Gδ of X. Also, Gn ⊂ Gm if m < n
and

⋂
{Gn : n < ω} = D. Thus, D is dense, countable and of type Gδ of X.

Proposition 10.36 [56, Lemma 3.1] If X is a homogeneous space, then X is
either meager or a Baire space.

Proof. If X is not a Baire space, there is a countable collection of dense open
sets {Dn : n < ω} and a non-empty open set U ⊂ X such that U ∩ (

⋂
{Dn : n <

ω}) = ∅. Then U is a meager open subset of X. Since X is homogeneous, every
point of X has a meager neighbordhood.

Let U be a maximal collection of open meager sets whose closures do not
intersect pairwise and let F = X \ (

⋃
U). It is not hard to prove that F is closed

and nowhere dense.
For each U ∈ U , let {F (n,U) : n < ω} be a collection of nowhere dense closed
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subsets whose union is clX(U). For each n < ω, let

Fn = F ∪ (
⋃
{F (n,U) : U ∈ U}).

It is not hard to see that Fn is a nowhere dense closed set of X. Further,
X =

⋃
{Fn : n < ω} so X is meager.

From Lemma 10.35 and Proposition 10.36 we obtain another structure theo-
rem about CDH spaces that extends Corollary 10.9.

Corollary 10.37 Any first countable CDH space is a disjoint union of clopen
CDH λ-sets and CDH Baire spaces.

Proof. LetX be CDH. By Corollary 10.9, X is a direct sum of CDH homogeneous
spaces. Take one of this summands Y , it is enough to prove that Y is a λ-set
or a Baire space. If Y is not a Baire space, then it is meager by Proposition
10.36. If Y has an isolated point, then it is discrete because it is homogeneous
and homogeneous spaces are Baire spaces so we obtain a contradiction. Thus, Y
is crowded. We conclude the proof by using Lemma 10.35 and noting that any
countable subset of Y is contained in a countable dense subset.



Chapter 11

Countable Dense Homogeneous
Filters

The purpose of this Chapter is to give the proofs of the results we obtained on
CDH filters, which consistently answer Question 10.28 and give a non-definable
Example for Question 10.29. We will first give the theoretical background and
mention previous results given by Medini and Milovich. After this, we will present
the results obtain. Such results have been submitted for their publication in [81].

11.1 P(ω) with the Cantor set topology and filters

The Cantor set is usually defined as the set ω2 of functions f : ω → 2. Recall that
there is a natural bijection Ξ : P(ω) → ω2 such that Ξ(A) is the characteristic
function of A. Using this bijection, it is natural to identify the Cantor set with
the power set of the natural numbers P(ω). In this way, any subset of P(ω) can
be considered as a separable metrizable space.

The subsets of P(ω) we will be considering are filters. We have already seen
that ultrafilters are points in some spaces (see the Stone Representation Theorem
6.22). Our point of view here is different, as a single filter will be considered a
topological space. We will assume that all filters under the discussion in this
Chapter are filters on ω and they all contain the Frechet filter Fω = {A ⊂ ω :
ω \A is finite}.

Filters are combinatorial objects; by this we mean that their topological
properties are equivalent to properties that can be stated in combinatorial terms,
without refering to the topology. As all our filters contain the Frechet filter, which
is a countable dense subset of the Cantor set, all filters under consideration are
dense subsets of P(ω).

184
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If X ⊂ ω2, define X ∗ = {ω\A : A ∈ X}. Notice that X ∗∗ = X for all X ⊂ ω2.
An ideal on ω2 is a set I ⊂ ω2 such that I∗ is a filter and F and I are called
dual . The function A 7→ ω\A is easily seen to be a autohomeomorphism of P(ω)
so it follows that any set X ⊂ P(ω) is homeomorphic to its dual X ∗. Sometimes
it is easier to give results in the language of ideals than in the language of filters
(for example, Lemma 11.11 below).

The sum modulo 2 in 2 = {0, 1}, defined as 0 + 0 = 0 = 1 + 1 and 0 + 1 =
1 = 1 + 0, makes 2 a topological group. Thus, coordinate-wise sum in ω2 also
gives an structure of topological group. The corresponding operation in ω2 is the
symmetric difference, that is A△ B = (A \ B) ∪ (B \ A). Thus, (P(ω),△, ∅) is
a topological group. Notice that the symmetric difference is nilpotent, that is,
x△ x = ∅ for all x ∈ P(ω). We will now see that filters are homogeneous, using
the topological group structure of (P(ω),△, ∅).

As discussed before, it is enough to prove that every ideal I ⊂ P(ω) is
homogeneous. By the definition of ideal, I △ y = {x△ y : x ∈ I} is contained
in I for all y ∈ P(ω). Thus, (I △ y)△ y ⊂ I △ y ⊂ I for all y ∈ P(ω). From
nilpotency, (I △ y)△ y = I so in fact I △ y = I for every y ∈ ω2. With this
observation, given p, q ∈ I, the function h : I → I defined by h(x) = x△ (p△ q)
is a homeomorphism such that h(p) = q. This shows that I is homogeneous.

Proposition 11.1 Every filter F on ω that extends the Fréchet filter is a
homogeneous and dense subset of the Cantor set P(ω). The dual ideal I = F∗ is
homeomorphic to F via the homeomorphism A 7→ ω \ A. Moreover, I is closed
under the symmetric diference of P(ω).

Now we would like to start considering properties that some filters have but
others do not. Recall that the Ultrafilter Theorem UFT in page xi is not provable
from ZFC. But clearly Fω is definable. So ultrafilters must be also topologically
distinct from the Fréchet filter in some way.

Let X be a Polish space. Recall that a Borel set of X is any subset in
the σ-algebra generated by open subsets of X. A set A ⊂ X is said to have
the Baire property1 if there is a meager set M ⊂ X such that A△M is open
(perhaps empty). It can be shown that the sets with the Baire property are
precisely those in the smallest σ-algebra generated by open sets and meager sets
([94, Proposition 8.22]). In particular, all Borel sets have the Baire property. It
turns out that the Baire property is the right notion to topologically distinguish
ultrafilters from filters like the Fréchet filter.

Lemma 11.2 [14, Theorem 4.1.2] Let F be a filter on ω. Then the following

1Do not confuse with the concept of a Baire space.
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are equivalent.

(a) F has the Baire property.

(b) F is meager in itself.

(c) There is a partition of ω into finite sets {Jn : n < ω} such that for each
F ∈ F there is m < ω such that X ∩ Jn 6= ∅ whenever m ≤ n < ω.

So meager filters are, in some sense, definable and small. It is not hard to
see that an ultrafilter is in fact non-meager (use (c) in Lemma 11.2).

An important class of filters are P -filters. A filter F on ω will be called a
P -filter if every time {Fn : n < ω} ⊂ F there exists F ∈ F such that F \ Fn is
finite for all n < ω. We have considered ultrafilters that are P -filters in Section
6.5, we called them “P -points in ω∗”. If A,B ⊂ ω, we define the almost inclusion
A ⊂∗ B if A \B is finite. If A is a family of sets, then a pseudointersection of A
is a set B such that B ⊂∗ A for all A ∈ A. Thus, a P -filter is a filter in which
every countable family has a pseudointersection.

Clearly, Fω is a P -filter. But as discussed in Section 6.5, the existence of
P -points is independent of ZFC. So a natural question is whether there are non-
meager P -filters in ZFC. This is a major question in Set Theory and has not been
solved, see [14, 4.4.C] for more details. Basically, the following is everything that
is known.

Theorem 11.3 [91] If all P -filters are meager then t < b = d < cof [d]ω and
there are inner models with large cardinals.

Non-meager P -filters surprisingly have the most interesting combinatorial
properties. As seen in [169], they play an important role in the proof of the
independence of existence of P -points in ω∗. It turns out that these filters will be
just what we need for CDHness (Theorem 11.12). We will need a combinatorial
characterization of non-meager P -filters. Let us give some notation: if s ∈ <ωA
for some set A and a ∈ A, s⌢a denotes s ∪ {(n, a)} where n = dom(s).

Definition 11.4 Let X ⊂ [ω]ω. A tree T ⊂ <ω([ω]<ω) is called a X -tree of
finite sets if for each s ∈ T there is Xs ∈ X such that for every a ∈ [Xs]

<ω we
have s⌢a ∈ T .

Lemma 11.5 [104, Lemma 1.3] Let F be a filter on P(ω) that extends the
Fréchet filter. Then F is a non-meager P -filter if and only if every F-tree of
finite sets has a branch whose union is in F .
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Finally, we mention that the ω-power of a non-meager P -filter is topologically
homeomorphic to a non-meager P -filter. This result was originally proved by
Shelah (see [143, Fact 4.3, p. 327] or [169, Lemma 3.10]).

Lemma 11.6 If F is a non-meager P -filter, then ωF is homeomorphic to a
non-meager P -filter.

Proof. Let
G = {A ⊂ ω × ω : ∀n < ω(A ∩ ({n} × ω) ∈ F)}.

Notice that G is homeomorphic to ωF . It is easy to see that G is a filter on ω×ω.
We next prove that G is a non-meager P -filter.

Let {Ak : k < ω} ⊂ G. For each {k, n} ⊂ ω, let Ank = {x ∈ ω : (n, x) ∈ Ak} ∈
F . Since F is a P -filter, there is A ∈ F such that A ⊂∗ Ank for all {k, n} ⊂ ω.
Let f : ω → ω be such that A \ f(n) ⊂ Ank for all k ≤ n. Let

B =
⋃{
{n} × (A \ f(n)) : n < ω

}
.

Then it is easy to see that B ∈ G and B is a pseudointersection of {An : n < ω}.
So G is a P -filter.

Let {Jk : k < ω} a partition of ω × ω into finite subsets. Recursively, we
define a sequence {Fn : n < ω} ⊂ F and a sequence {An : n < ω} ⊂ [ω]ω such
that An+1 ⊂ An and An ⊂ {k < ω : Jk ∩ ({n} × Fn) = ∅} for all n < ω.

For n = 0, since F is non-meager, by Lemma 11.2 there is F0 ∈ F such that
{k < ω : Jk ∩ ({0} × F0) = ∅} is infinite, call this last set A0. Assume that we
have the construction up to m < ω, then B = {Jk ∩ ({m + 1} × ω) : k ∈ Am}
is a family of pairwise disjoint finite subsets of {m+ 1} × ω. If

⋃
B is finite, let

Fm+1 ∈ F be such that Fm+1∩ (
⋃
B) = ∅ and let Am+1 = Am. If

⋃
B is infinite,

let {Bk : k ∈ Am} be any partition of ({m + 1} × ω) \
⋃
B into finite subsets

(some possibly empty). For each k ∈ Am, let Ck = (Jk ∩ ({m + 1} × ω)) ∪ Bk.
Then {Ck : k ∈ Am} is a partition of {m+ 1} × ω into finite sets so by Lemma
11.2, there is Fm+1 ∈ F such that {k ∈ Am : Ck ∩ ({m + 1} × Fm+1) = ∅} is
infinite, call this set Am+1. This completes the recursion.

Define an increasing function s : ω → ω such that s(0) = minA0 and s(k +
1) = min (Ak+1 \ {s(0), . . . , s(k)}) for k < ω. Also, define t : ω → ω such that
t(0) = 0 and

t(n+ 1) = min {m < ω : (Js(0) ∪ . . . ∪ Js(n)) ∩ ({n+ 1} × ω) ⊂ {n+ 1} ×m}.

Finally, let
G =

⋃
{{n} × (Fn \ t(n)) : n < ω}.
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Then G ∈ G and for all k < ω, G ∩ Js(k) = ∅. Thus, G is non-meager by
Lemma 11.2.

11.2 CDH Ultrafilters

In [110], Andrea Medini and David Milovich studied some topological properties
of ultrafilters. In particular, they study CDHness of ultrafilters and prove the
following result.

Theorem 11.7 [110, Theorems 15, 21, 24, 41, 43 and 44] Assume MA(countable).
Then there exists an ultrafilter U ⊂ P(ω) with any of the following properties:

(a) U is CDH and a P -point,

(b) U is CDH and not a P -point,

(c) U is not CDH and not a P -point, or

(d) ωU is CDH.

The construction of CDH ultrafilters from Theorem 11.7 roughly follows the
following. Give an enumeration of all pairs of countable dense subsets of P(ω),
{〈Dα, Eα〉 : α < c}, and construct the ultrafilter U in a recursion of length c. In
step α < c, ifDα∪Eα is contained in the filter we have constructed so far one finds
a homeomorphism hα : P(ω) → P(ω) such that hα[Dα] = Eα and hα[U ] = U .
Of course the hard part in this argument is to find such a homeomorphism hα
that restricts to the yet to construct ultrafilter U . Medini and Milovich found a
way to characterize such homeomorphisms in a simple way ([110, Lemma 20]).
We will now prove this result in the form that will be useful for us. Notice that
the following result is stated in terms of ideals since the characterization is more
naturally expressed in this way.

Lemma 11.8 Let I ⊂ P(ω) be an ideal, f : P(ω) → P(ω) a continuous
function and D a countable dense subset of I. If there exists x ∈ I such that
{d△ f(d) : d ∈ D} ⊂ P(x), then f [I] = I.

Proof. Since D is dense in P(ω) and d△ f(d) ⊂ x for all d ∈ D, by continuity it
follows that y△ f(y) ⊂ x for all y ∈ P(ω). Then y△ f(y) ∈ I for all y ∈ P(ω).
Since I is closed under △ and △ is nilpotent, it is easy to see that y ∈ I if and
only if f(y) ∈ I for all y ∈ P(ω).
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We make two final comments. If one looks at Theorem 11.7, a natural ques-
tion is whether all P -points are CDH ([110, Question 11]). As our Theorem 11.12
shows, the answer is in the affirmative.

Also, Medini and Milovich ask whether an ultrafilter is a P -point if and only
if it is hereditarily Baire (that is, every subspace is a Baire space). We remark
that this was already known as the following result shows.

Proposition 11.9 [107, Theorem 1.2] Let F ⊂ P(ω) be a filter. Then F is
hereditarily Baire if and only if F is a non-meager P -filter.

What completeness properties must CDH filters have? First, they must be
non-definable.

Proposition 11.10 (Hernández-Gutiérrez and Hrusšak, [81]) Let F ⊂
P(ω) be a filter. If one of F or ωF is CDH, then F is non-meager.

Proof. If ωF is CDH, then F is non-meager by (b) in Theorem 10.32. Assume
that F is CDH. If F is the Fréchet filter, then F is homeomorphic to Q (Theorem
10.3) so it is not CDH (Example 10.5). If F is not the Fréchet filter, there exists
x ∈ F such that ω \ x is infinite. Thus, C = {y : x ⊂ y ⊂ ω} is a copy of
the Cantor set contained in F . Assume that F is meager, let us arrive to a
contradiction.

Let D ⊂ F be a countable dense subset of F such that D ∩C is dense in C.
Since F is meager in itself, by Lemma 10.35, it is possible to find a countable
dense subset E of F that is a Gδ set relative to F . Let h : F → F be a
homeomorphism such that h[D] = E. Then h[D∩C] is a countable dense subset
of the Cantor set h[C] that is a relative Gδ subset of h[C], this is impossible by the
Baire Category Theorem 0.25. This contradiction shows that F is non-meager
and completes the proof.

Thus, CDH filters must be non-meager (Proposition 11.10) and there are
consistent examples of CDH filters that are hereditarily Baire (P -points by (a)
in Theorem 11.7) and some that are Baire but not hereditarily Baire ((c) in
Theorem 11.7 and Proposition 11.9).

11.3 Non-meager P -filters are Countable Dense Ho-

mogeneous

In this Section we will prove our main result. The proof can be naturally divided
in two parts: first a Lemma that gives a combinatorial property of non-meager
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P -filters and then the proof that this combinatorial property implies CDHness.
Recall that Ξ(x) ∈ ω2 denotes the characteristic function of x ∈ P(ω).

Lemma 11.11 (Hernández-Gutiérrez and Hrušák, [81]) Let I be a non-
meager P -ideal and D0, D1 be two countable dense subsets of I. Then there
exists x ∈ I such that

(i) for each d ∈ D0 ∪D1, d ⊂∗ x and

(ii) for each i ∈ 2, d ∈ Di, n < ω and t ∈ n∩x2, there exists e ∈ D1−i such that
d \ x = e \ x and Ξ(e)↾n∩x= t.

Proof. Let F = I∗. We will construct an F-tree of finite sets T and use Lemma
11.5 to find x ∈ I with the properties listed. Let us give an enumeration (D0 ∪
D1)×

<ω2 = {〈dn, tn〉 : n < ω} such that {dn : n ≡ i (mod 2)} = Di for i ∈ 2.
The definition of T will be by recursion. For each s ∈ T we also define

n(s) < ω, Fs ∈ F and φs : dom(s) → D0 ∪D1 so that the following properties
hold.

(1) ∀s, t ∈ T (s ( t⇒ n(s) < n(t)),

(2) ∀s ∈ T ∀k < dom(s) (s(k) ⊂ n(s↾k+1) \ n(s↾k)),

(3) ∀s, t ∈ T (s ⊂ t⇒ Ft ⊂ Fs),

(4) ∀s ∈ T (Fs ⊂ ω \ n(s)),

(5) ∀s, t ∈ T (s ⊂ t⇒ φs ⊂ φt),

(6) ∀s ∈ T, if k = dom(s) ((dk−1 ∪ φs(k − 1)) \ n(s) ⊂ ω \ Fs).

Since ∅ ∈ T , let n(∅) = 0 and F∅ = ω. Assume we have s ∈ T and a ∈ Fs,
we have to define everything for s⌢a. Let k = dom(s). We start by defining
n(s⌢a) = max {k,max (a), dom(tk)}+1. Next we define φs⌢a. We only have to
do it at k because of (5). We have two cases.

Case 1. There existsm < dom(tk) with tk(m) = 1 andm ∈ s(0)∪. . .∪s(k−1).
We simply declare φs⌢a(k) = dk.

Case 2. Not Case 1. We define rs⌢a ∈ n(s⌢a)2 in the following way.

rs⌢a(m) =





dk(m), if m ∈ s(0) ∪ . . . ∪ s(k − 1) ∪ a,
tk(m), if m ∈ dom(tk) \ (s(0) ∪ . . . ∪ s(k − 1) ∪ a),
1, in any other case.
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Let i ∈ 2 be such that i ≡ k (mod 2). So dk ∈ Di, let φs⌢a(k) ∈ D1−i be
such that φs⌢a(k)∩n(s

⌢a) = (rs⌢a)
←(1), this is possible because D1−i is dense

in P(ω). Finaly, define

Fs⌢a = (Fs ∩ (ω \ dk−1) ∩ (ω \ φs⌢a(k − 1))) \ n(s⌢a).

Clearly, Fs⌢a ∈ F and it is easy to see that conditions (1) – (6) hold.
By Lemma 11.5, there exists a branch {〈y0, . . . , yn〉 : n < ω} of T whose

union y =
⋃
{yn : n < ω} is in F . Let x = ω \ y ∈ I. We prove that x is the

element we were looking for. It is easy to prove that (6) implies (i).
We next prove that (ii) holds. Let i ∈ 2, n < ω, t ∈ n∩x2 and d ∈ Di. Let

k < ω be such that 〈dk, tk〉 = 〈d, t′〉, where t′ ∈ n2 is such that t′↾n∩x= t and
t′↾n−x= 0. Consider step k + 1 in the construction of y, that is, the step when
y(k+1) was defined. Notice that we are in Case 2 of the construction and ry↾k+1

is defined. Then φy↾k+1
(k) = e is an element of D1−i. It is not very hard to see

that d \ x = e \ x and Ξ(e)↾n∩x= t. This completes the proof of the Lemma.

Theorem 11.12 (Hernández-Gutiérrez and Hrušák, [81]) Let F be a
non-meager P -filter on P(ω) extending the Fréchet filter. Then both F and ωF
are CDH.

Proof. By Lemma 11.6, it is enough to prove that F is CDH. Let I = F∗, it is
enough to prove that I is CDH. Let D0 and D1 be two countable dense subsets
of I. Let x ∈ I be given by Lemma 11.11.

We will construct a homeomorphism h : P(ω)→ P(ω) such that h[D0] = D1

and
∀d ∈ D (d△ h(d) ⊂ x). (⋆)

By Lemma 11.8, h[I] = I and we will have finished.
We shall define h by approximations. By this we mean the following. We

will give a strictly increasing sequence {n(k) : k < ω} ⊂ ω and in step k < ω a
homeomorphism (permutation) hk : P(n(k))→ P(n(k)) such that

∀j < k < ω ∀a ∈ P(n(k)) (hk(a) ∩ n(j) = hj(a ∩ n(k))). (∗)

By (∗), we can define h : P(ω) → P(ω) to be the inverse limit of the hk,
which is a homeomorphism.

Let D0 ∪D1 = {dn : n < ω} in such a way that {dn : n ≡ i (mod 2)} = Di

for i ∈ 2. To make sure that h[D0] = D1, in step k we have to decide the value
of h(dk) when k is even and the value of h−1(dk) when k is odd. We do this by
approximating a bijection π : D0 → D1 in ω steps by a chain of finite bijections
{πk : k < ω} and letting π =

⋃
{πk : k < ω}. In step k < ω, we would like to
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ω2

<ω2

ω2

<ω2

h

Figure 11.1: Constructing a homeomorphism on ω2 as the inverse limit of home-
omorphisms.

have πk defined on some finite set so that the following conditions hold whenever
πk ⊂ π:

(a)k if j < k is even, then hk(dj ∩ n(k)) = π(dj) ∩ n(k), and

(b)k if j < k is odd, then hk(dj ∩ n(k)) = π−1(dj) ∩ n(k).

Notice that once π is completely defined, if (a)k and (b)k hold for all k < ω,
then h[D] = E. As we do the construction, we need to make sure that the
following two conditions hold.

(c)k ∀i ∈ n(k) \ x ∀a ∈ P(n(k)) (i ∈ a⇔ i ∈ hk(a))

(d)k ∀d ∈ dom(πk) (d \ x = πk(d) \ x)

Condition (c)k is a technical condition that will help us carry out the recur-
sion. Notice that if we have condition (d)k for all k < ω, then (⋆) will hold.

Assume that we have defined n(0) < . . . < n(s− 1), h0, . . . , hs−1 and a finite
bijection πs ⊂ D0 ×D1 with {dr : r < s} ⊂ dom(πs) ∪ dom(π−1s ) in such a way
that if π ⊃ πs, then (a)s−1, (b)s−1, (c)s−1 and (d)s−1 hold. Let us consider the
case when s is even, the other case can be treated in a similar fashion.

If ds = π−1s (dr) for some odd r < s, let n(s) = n(s − 1) + 1. If we let
πs+1 = πs, it is easy to define hs so that it is compatible with hs−1 in the sense
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of (∗), in such a way that (a)s, (b)s, (c)s and (d)s hold for any π ⊃ πs+1. So we
may assume this is not the case.

Notice that the set S = {dr : r < s + 1} ∪ {πs(dr) : r < s, r ≡ 0 (mod 2)} ∪
{π−1s (dr) : r < s, r ≡ 1 (mod 2)} is finite. Choose p < ω so that ds \ p ⊂ x. Let
r0 = hs−1(ds ∩ n(s− 1)) ∈ P(n(s− 1)). Choose n(s− 1) < m < ω and t ∈ m∩x2
in such a way that t−1(1)∩ n(s− 1) = r0 ∩ n(s− 1)∩ x and t is not extended by
any element of {χ(a) : a ∈ S}. By Lemma 11.11, there exists e ∈ E such that
ds \ x = e \ x and χ(e) ↾m∩x= t. Notice that e /∈ S and χ(e) ↾n(s−1)= r0. We
define πs+1 = πs ∪ {(ds, e)}. Notice that (d)s holds in this way.

Now that we have decided where π will send ds, let n(s) > max {p,m} be
such that there are no two distinct a, b ∈ S∪{πs+1(ds)} with a∩n(s) = b∩n(s).
Topologically, all elements of S ∪{πs+1(ds)} are contained in distinct basic open
sets of measure 1/(n(s) + 1).

Finally, we define the bijection hs : P(n(s))→ P(n(s)). For this part of the
proof we will use characteristic functions instead of subsets of ω (otherwise the
notation would become cumbersome). Therefore, we may say hr : n(r)2 → n(r)2
is a homeomorphism for r < s.

Let (q, q′) ∈ n(s−1)2 × n(s)\x2 be a pair of compatible functions. Notice that
(hs−1(q), q

′) are also compatible by (c)s−1. Consider the following condition.

▽(q, q′) : ∀a ∈ n(s)2 (q ∪ q′ ⊂ a⇔ hs−1(q) ∪ q
′ ⊂ hs(a))

Notice that if we define hs so that ▽(q, q′) holds for each pair (q, q′) ∈ n(s−1)2×
n(s)\x2 of compatible functions, then (∗) and (c)s hold as well.

Then for each pair (q, q′) ∈ n(s−1)2× n(s)\x2 of compatible functions we only
have to find a bijection g : T 2→ T 2, where T = (n(s)∩x)\n(s−1) (this bijection
will depend on such pair) and define hs : n(s)2→ n(s)2 as

hs(a) = hs−1(q) ∪ q
′ ∪ g(f ↾T ),

whenever a ∈ n(s)2 and q ∪ q′ ⊂ a. There is only one restriction in the definition
of g and it is imposed by conditions (a)s and (b)s; namely that g is compatible
with the bijection πs+1 already defined. However by the choice of n(s) this is
not hard to do. This finishes the inductive step and the proof.

Notice that Theorem 11.12 consistently answers Question 10.28 and gives
consistent examples for Question 10.29. We finish this Section and Chapter with
the natural questions of what else can it be done?

Question 11.13 Is there a combinatorial characterization of CDH filters?



194 Chapter 11. CDH FILTERS

Question 11.14 Is there a CDH filter (ultrafilter) in ZFC? Is there a non-CDH
and non-meager filter (ultrafilter) in ZFC?



Chapter 12

Compact CDH spaces of
uncountable weight

In this Chapter we will consider another natural question regarding the existence
of CDH spaces. This question is whether there are compact CDH spaces of
uncountable weight. We will present some consistent examples from the literature
in the first section. After this, we will explore a specific space that was a natural
candidate for a counterexample: the Alexandroff-Urysohn double arrow space A.
Inspired on A, we shall show some restrictions on CDH spaces that are products,
see Theorem 12.25. The results presented in this Chapter have been submitted
for publication in the paper [78].

12.1 Some consistent examples

The first candidates for non-metrizable CDH spaces are of course “generaliza-
tions” of metrizable spaces that are known to be CDH. For example, we have
seen that the Sorgenfrey line is CDH (Example 10.11). Other candidates for such
spaces are manifolds. The following result is of Steprāns and Zhou.

Theorem 12.1 [147]

• Every separable manifold of weight < b is CDH.

• There is a separable manifold of weight c that is not CDH.

On one hand, Theorem 12.1 generalizes Corollary 10.19 but it also restricts
Theorem 10.17, as manifolds are SLH. So, for example, it is independent of ZFC

195
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whether there is a separable non-CDH manifold of weight ω1. The following
question of Steprāns and Zhou is still open.

Question 12.2 Let

τ = min{κ : there is a separable manifold of weight κ that is not CDH}.

Is τ = c?

The next spaces that we may think of are infinite products of CDH spaces,
in particular the powers κ2, κR and κ[0, 1].

Theorem 12.3 ([147] and [86]) Let X be one of 2, R or [0, 1]. Then

p = min{κ : κX is not CDH}.

Thus, taking any model in which p > ω1, for example any model of MA+c >
ω1, ω12 is a compact CDH space of uncountable weight. This motivates the
following question.

Question 12.4 [10, Problem 15.6] Does there exist a compact CDH space of
countable weight in ZFC?

Question 12.4 remains unsolved. Jan van Mill and Alexander Arhangel’skĭı
have recently obtained a consistent result using CH.

Theorem 12.5 [9] CH implies that there is a compact CDH space of uncount-
able weight that is hereditarily separable and hereditarily Lindelöf.

12.2 The double arrow space

A natural candidate for a ZFC example of a compact CDH space of uncountable
weight is the Alexandroff-Urysohn double arrow space A.

Definition 12.6 Let A0 = (0, 1] × {0}, A1 = [0, 1) × {1} and A = A0 ∪ A1.
Define the lexicographic strict order on A as 〈x, t〉 < 〈y, s〉 if x < y or both x = y
and t < s. Then A is given the order topology. Define the function π : A→ [0, 1]
by π(〈x, t〉) = x.

Notice that both A0 and A1 have the Sorgenfrey line topology as subspaces
of A and both are dense in A (see Example 10.11).
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A1

A0

A

[0, 1]

π

Figure 12.1: The double arrow space.

Proposition 12.7 A is separable, first countable, compact, 0-dimensional and
of weight c.

Proof. The set Q × {0, 1} is clearly a countable dense subset of A. If p ∈
A \ {〈0, 1〉, 〈1, 0〉} let {xn : n < ω} ⊂ (0, 1) be strictly increasing and {yn :
n < ω} ⊂ (0, 1) be strictly decreasing such that π(p) = limxn = lim yn; then
{[〈xn, 1〉, 〈yn, 0〉] : n < ω} is a countable local base of clopen sets at p. In a
similar manner it is possible to find such countable local bases of clopen sets at
〈0, 1〉 and 〈1, 0〉. This shows that A is first countable and 0-dimensional.

To see that A is compact, it is enough to prove it is sequentially compact. Let
{xn : n < ω} ⊂ A. Notice that any sequence in A contains either an increasing
sequence or a decreasing sequence. So we may assume that {xn : n < ω} is
strictly increasing, the other case is analogous. Since {π(xn) : n < ω} ⊂ [0, 1],
let x = sup{π(xn) : n < ω}. Then x ∈ (0, 1] and 〈x, 0〉 = sup{xn : n < ω}.

Notice that {(〈0, 1〉, 〈x, 0〉] : x ∈ (0, 1]} ∪ {[〈y, 1〉, 〈1, 0〉) : y ∈ [0, 1)} is a
subbase of the topology of A of cardinality c so w(A) ≤ c. Moreover, A0 is a
subspace of A that is homeomorphic to S. In Example 10.11 we saw that w(S) = c

so w(A) ≥ c. Thus, w(A) = c.

The function π : A → [0, 1] is a ≤ 2-to-1 continuous function. Also, it is
not hard to see that π is irreducible, so in fact π witnesses that A and [0, 1]
are coabsolute (Corollary 6.42). Since A is compact and of weight c, it is not
metrizable (Theorem 0.16).

So A is one possible candidate for a ZFC answer to Question 12.4. However,
recently, Arhangel’skĭı and van Mill have proved that this is not the case.

Theorem 12.8 [9, Theorem 3.2] A is not CDH.
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So the most natural candidate does not work. Arhangel’skĭı, van Mill and
Michael Hrušák wondered if it was possible to obtain a CDH space using some
modification of A.

Question 12.9 [9, Question 3.3] Is A× ω2 CDH?

Question 12.10 (van Mill and Hrušák) Is ωA CDH?

Recently, in [87], M. Hrušák and J. van Mill have studied the topological types
of countable dense subsets of separable metrizable spaces. If X is a separable
space and κ a cardinal number, we will say that X has κ types of countable dense
subsets if κ is the minimum cardinal number such that there is a collection D
of countable dense subsets of X such that |D| ≤ κ and for any countable dense
subset E ⊂ X there is D ∈ D and a homeomorphism h : X → X such that
h[D] = E. Among other results, they were able to obtain the following result.

Theorem 12.11 [87] A locally compact separable metrizable space that is ho-
mogeneous and not CDH has uncountably many types of countable dense subsets.

So another natural question was the following.

Question 12.12 (Hrušák) How many types of countable dense subsets does A
have?

For the rest of this section we will focus on proving properties of A that will
help us answer Questions 12.9, 12.10 and 12.12. First we will answer Question
12.12, as it only requires an analysis of the topology of A. The answer to Ques-
tions 12.9 and 12.10 will be presented in Section 12.3, where we give more general
results on products, see Corollary 12.26 and Example 12.29.

So let us start with the proof of Theorem 12.16 below. We need two previous
properties of A. The first one says that autohomeomorphisms of A behave in a
very simple manner. We need a preliminary result about the Sorgenfrey line.

Lemma 12.13 The Sorgenfrey line S is a Baire space.

Proof. To prove Claim 1, let {Un : n < ω} be a collection of dense open subsets of
S. Then, using the definition of the Sorgenfrey line topology, it is easy to see that
the Euclidean interior Vn = intR(Un) is dense in Un for all n < ω. In particular,
{Vn : n < ω} is a collection of dense open subsets of R. Since R is a Baire space
(it is completely metrizable),

⋂
{Vn : n < ω} 6= ∅ so

⋂
{Un : n < ω} 6= ∅.

The following result is a more explicit version of [9, Lemma 3.1]. According



Section 12.2. The double arrow space 199

to [9], the main idea comes from van Douwen.

Proposition 12.14 Let h : A → A be a homeomorphism. Then there exists a
collection U of pairwise disjoint clopen intervals of A such that

⋃
U is dense in

A and for every J ∈ U , h↾J : J → A is either increasing or decreasing.

Proof. Notice that the statement of the Proposition follows from the following
statement.

(∗) For every non-empty open set U ⊂ A there are p, q ∈ (0, 1) such that p < q,
[〈p, 1〉, 〈q, 0〉] ⊂ U and h is either increasing or decrasing on [〈p, 1〉, 〈q, 0〉].

Fix a non-empty open set U ⊂ A. To prove (∗), we will use a Baire category
type argument. Notice that both A0 and A1 are homeomorphic to the Sorgenfrey
line. Let X = A1∩U ∩h←[A1] and Y = A1∩U ∩h←[A0]. Then X ∪Y = A1∩U ,
which is a Baire space by Lemma 12.13. So it is impossible that both X and Y
are meager in A1 ∩ U . Let us first assume that X is non-meager in A1 ∩ U .

For each n < ω, let Xn = {x ∈ X : h[[π(x), π(x) + 1/(n + 1)) × {1}] ⊂
[h(x),→)}. Then by the continuity of h, X =

⋃
{Xn : n < ω}. Then again, since

X is non-meager in A1 ∩U , then there is an m < ω such that Xm is non-meager
in A1 ∩ U . In particular, clA1

(Xm) has non-empty interior so let V ⊂ U be a
non-empty open set of A1 such that Xm is dense in V . Let p, q ∈ V be such
that 0 < q − p < 1/(m + 1) and (p, q) ⊂ V . We claim that h is increasing in
(p, q) ⊂ A1.

Assume that there exist x, y ∈ (p, q) ∩Xm such that x < y but h(y) < h(x).
By the continuity of h and the fact thatXm is dense in V , there are a ∈ (x, y)∩Xm

and b ∈ (y, q) ∩ Xm such that h(a) ∈ [h(x),→) and h(b) ∈ [h(y), h(x)). Then
h(y) < h(b) < h(x) < h(a). But a ∈ Xm and b ∈ [π(a), π(a)+1/(m+1))∩A1 so
h(b) ∈ [h(a),→). This means that h(b) < h(a) and h(a) < h(b), a contradiction.

Thus, h is increasing in (p, q) ⊂ A1. Since (p, q) ⊂ A is a dense subset of
[〈p, 1〉, 〈q, 0〉], we obtain that h is also increasing in this interval.

If Y is non-meager in A1 ∩ U the argument is analogous with the exception
that h is decreasing in the interval obtained in this way. This completes the
proof of (∗) and the Proposition.

We also need c pairwise non-homeomorphic countable metrizable spaces. The
first proof of this fact was apparently given by Stefan Mazurkiewicz and Wacław
Sierpiński in [109]. A different proof was given by Brian, van Mill and Sabedissen
in [21].

Lemma 12.15 [87, Lemma 2.4] The number of distinct homeomorphism classes
of countable metrizable spaces is c.
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The proof of Theorem 12.8 consisted in exhibiting two different countable
dense subsets of A. We will manipulate those two dense subsets and get c different
ones. If (X,<) is a linearly ordered set, an interval [a, b] ⊂ X with a < b and
X ∩ (a, b) = ∅ will be called a jump.

Theorem 12.16 (Hernández-Gutiérrez, [78]) A has c types of countable
dense subsets.

Proof. Since |A| = c, it is enough to find c countable dense subsets of A that are
different with respect to autohomeomorphisms of A.

The classical middle-thirds Cantor set in [0, 1] is the complement of a union
of countably many open intervals {(xn, yn) : n < ω}. For each n < ω, let
Jn = [〈xn, 1〉, 〈yn, 0〉], this is a clopen subinterval of A. Define

X = A \
⋃
{Jn : n < ω}.

Then X is a closed, crowded and nowhere dense subset of X. Since X is first
countable and regular, every countable dense subset of X is homeomorphic to the
space of rational numbers Q (Theorem 10.3). Since Q is universal for countable
metrizable spaces (Corollary 10.4), by Lemma 12.15 there is a collection {Cα :
α < c} of countable subsets of X that are pairwise non-homeomorphic.

Let Q0, Q1 be two disjoint countable dense subsets of
⋃
{(xn, yn) : n < ω}

(with the Euclidean topology). For each n < ω, choose zn ∈ (xn, yn) and define
the following sets: K0

n = (xn, zn), K1
n = (zn, yn), J0

n = [〈xn, 1〉, 〈zn, 0〉] and
J1
n = [〈zn, 1〉, 〈yn, 0〉]. Let D be the subset of A \X defined such that

(∗) if n < ω and i, j ∈ 2, then π[J in ∩ Aj ∩D] = Qi·j ∩K
j
n.

Notice that D is then a countable dense subset of A \ X and thus, of A.
For each α < c, let Dα = D ∪ Cα. Then Dα is a countable dense subset of A.
Assume that there are β < γ < c and a homeomorphism h : A → A such that
h[Dβ] = Dγ , we shall arrive to a contradiction.

Claim: h[X] = X.

We shall prove the claim proceeding by contradiction. Then there are k < ω,
i ∈ 2 and x ∈ J ik such that h(x) ∈ X. By the definition of the middle-thirds
Cantor set, it is easy to see that every neighborhood of a point of X contains
some interval from {Jn : n < ω}. Thus, by continuity there exist m < ω and
clopen intervals I0 and I1 such that I0 ⊂ J ik, I1 ⊂ J

1−i
m and h[I0] ⊂ I1.

By Proposition 12.14, we may assume that h is increasing or decreasing on
I0. Let us consider the case when h is increasing on I0, the other case is treated
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X

ω2

π

Figure 12.2: Set X from Theorem 12.16, its complement is a countable union of
clopen segments (in lighter grey). Notice that X maps onto the usual Cantor set
under π and π is one-to-one in the endpoints of the Cantor set.

similarly. Compactness implies that every clopen subset of A is a finite union of
clopen intervals. Thus, h[I0] can be written as the union of finitely many clopen
intervals [a0, b0] ∪ . . . ∪ [at, bt]. Since h is increasing in I0, [h−1(a0), h

−1(b0)]
is a subinterval of I0. Thus, we may assume that h[I0] = I1. In particular,
h↾I0 : I0 → I1 is an order isomorphism.

Assume that i = 0, the other case is entirely symmetric. Since I0 ⊂ J0
k , by

(∗), there are p, q ∈ I0 ∩D such that [p, q] is a jump in A. Thus, [h(p), h(q)] is
a jump in A such that h(p), h(q) ∈ I1 ∩ D. But then h(p), h(q) ∈ J1

m ∩ D and
π(h(p)) = π(h(q)). This contradicts (∗) so we have proved the claim.

Thus, given that Dα∩X = Cα for all α < c, we obtain that h[Cβ ] = Cγ from
the claim. But this contradicts the choice of the family {Cα : α < c}. Thus,
there can be no such homeomorphism h and we have finished the proof.

We will next give a characterization of those subsets of A that are homeo-
morphic to A. Compare this with [23, Theorem 4.6] in which a classification
of subsets of the Sorgenfrey line homeomorphic to the Sorgenfrey line itself are
given.

Proposition 12.17 (Hernández-Gutiérrez, [78]) Every closed and crowded
subset of A is homeomorphic to A.

Proof. Let X ⊂ A be closed and crowded. We will construct a homeomorphism
h : X → A.

Since X is compact, T = π[X] is a compact subspace of [0, 1]. Notice that
since X is crowded, T is crowded as well. View T as an ordered subspace of
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[0, 1] and consider the equivalence relation ∼ on T obtained by defining x ∼ y if
either x = y or [min {x, y},max {x, y}] is a jump in T . Since T is crowded, each
equivalence class of ∼ consists of at most two points. Since the equivalence classes
are convex, the quotient T/ ∼ can be linearly ordered in a natural way. Then it
is not hard to see that the resulting order topology coincides with the quotient
space topology and is homeomorphic to [0, 1]. Thus, there exists a continuous
function f : T → [0, 1] that is order preserving and the following property holds.

(∗) Fix t ∈ [0, 1]. Then |f←(t)| 6= 1 if and only if f←(t) = {x, y},
where 0 < x < y < 1 and [x, y] ∩ T = {x, y}. Moreover, if f←(t) =
{x}, then x is not in a jump of T .

The function f works as the classical continuous function collapsing jumps
in the Cantor middle-third set to points in [0, 1]. The following is not hard to
prove from the fact that X is crowded.

(⋆) If [x, y] is a jump in T , then X ∩ {〈x, 0〉, 〈x, 1〉} = {〈x, 0〉} and
X ∩ {〈y, 0〉, 〈y, 1〉} = {〈y, 1〉}.

Define h : X → A by h(〈x, t〉) = 〈f(x), t〉. We will prove that h is a homeo-
morphism. Since both X and A are linearly ordered topological spaces, to prove
that h is continuous and one-to-one, it is enough to prove that the strict order
is preserved by h.

Let 〈x, t〉 < 〈y, s〉 be two points in X. If x = y, then 0 = t < s = 1 so
h(〈x, t〉) = 〈f(x), t〉 < 〈f(x), s〉 = h(〈y, s〉). If f(x) < f(y), then also h(〈x, t〉) <
h(〈y, s〉). So assume that x < y and f(x) = f(y). By (∗), [x, y] is a jump in T .
Using (⋆) it is not hard to see that t = 0 and s = 1. Thus, h(〈x, t〉) = 〈f(x), 0〉 <
〈f(x), 1〉 = h(〈y, s〉).

Finally, we show that h is onto. Let 〈x, t〉 ∈ A. By (∗), there are two cases.

Case 1: There is a unique y ∈ T with x = f(y).

By (∗), y is not in a jump. If y ∈ {0, 1}, then clearly 〈y, 1 − y〉 ∈ T and
h(〈y, 1 − y〉) = 〈x, t〉. Assume that y /∈ {0, 1}. Then for all n < ω there are
z0n, z

1
n ∈ T such that

y −
1

n+ 1
< z0n < y < z1n < y +

1

n+ 1
.

For each n < ω and i ∈ 2, let tin ∈ 2 be such that 〈zin, t
i
n〉 ∈ X. Notice that

limn→∞ 〈z0n, t
0
n〉 = 〈y, 0〉 and limn→∞ 〈z0n, t

0
n〉 = 〈y, 1〉. By the compactness of X,

{〈y, 0〉, 〈y, 1〉} ⊂ X. Thus, 〈y, t〉 ∈ X and h(〈y, t〉) = 〈x, t〉.
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Case 2: There are y0, y1 ∈ T with y0 < y1 and x = f(y0) = f(y1).

By (∗), [y0, y1] is a jump in T . By (⋆), we obtain that 〈yi, i〉 ∈ X for i ∈ 2.
Thus, 〈yt, t〉 ∈ X and h(〈yt, t〉) = 〈x, t〉.

This concludes the proof that h is the homeomorphism that we were looking
for.

Recall that a space X is scattered if every subspace of X has an isolated
point.

Corollary 12.18 Any compact and metrizable subset of A is scattered. In
particular, A does not contain topological copies of ω2.

We finally show some interesting results on homeomorphisms of A that have
interesting properties. These results were discovered while trying to prove The-
orem 12.16.

For example, in the proof of Theorem 12.16 we used a crowded subspace X
of A to construct c different dense subsets of A. The author’s first idea was to
use a scattered space, but this does not work by Proposition 12.19.

For any space Y , we recursively define

• Y (0) = Y ,

• Y (1) = Y \ {y ∈ Y : y is isolated},

• Y (α+1) = (Y (α))(1) for every ordinal α, and

• Y (β) =
⋂
{Y (α) : α < β} for every limit ordinal β.

These operations are called Cantor-Bendixon derivatives . Define

rk(Y ) = min{α : Y (α) = Y (α+1)},

we will call this the Cantor-Bendixon rank of Y . If X is scattered then it follows
that rk(X) = min{α : X(α) = ∅}.

Proposition 12.19 (Hernández-Gutiérrez, [78]) Let C ⊂ A0 be compact
and scattered. Then there is a homeomorphism h : A→ A such that h[A0 \C] =
A0.

Proof. We will prove this result by induction on rk(C) = κ. Since any Cantor-
Bendixon derivative of C is closed in C and C is compact, κ is a successor
ordinal τ + 1 and C(τ) is a finite non-empty set. There are pairwise disjoint
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clopen intervals J0, . . . , Jm of A such that |C(τ) ∩ Ji| ≤ 1 for each i ≤ m and
A = J0 ∪ . . . ∪ Jm. Every clopen interval of A is of the form [〈p, 0〉, 〈q, 1〉] where
0 ≤ p < q ≤ 1. So Ji is order-isomorphic (in particular, homeomorphic) to A for
i ≤ m. Thus, it is enough to define the homeomorphism in each of the intervals
Ji for i ≤ m. For the rest of the proof let us assume without loss of generality
that C(τ) = {〈p, 0〉} for some p ∈ (0, 1].

First assume that p 6= 1, let A0 = [〈0, 1〉, 〈p, 0〉] and A1 = [〈p, 1〉, 〈1, 0〉]. Let
f0 : [0, p] → [1/2, 1] and f1 : [p, 1] → [0, 1/2] be order isomorphisms and define
f : A→ A by

f(〈q, t〉) =

{
〈f0(q), t〉 if 〈q, t〉 ∈ A0,
〈f1(q), t〉 if 〈q, t〉 ∈ A1.

Then f is a homeomorphism, f [C] ⊂ A0 and f(〈p, 0〉) = 〈1, 0〉. This shows that
we may assume that p = 1 for the rest of the proof.

Let {xn : n < ω} ⊂ (0, 1) be increasing such that sup{xn : n < ω} = 1. Let
I0 = [〈0, 1〉, 〈xn, 0〉] and In+1 = [〈xn, 1〉, 〈xn+1, 0〉] for n < ω. Notice that

A =
(⋃
{In : n < ω}

)
∪ {〈1, 0〉}

and In is a clopen subset order-isomorphic to A for each n < ω. Since C(τ) =
{〈1, 0〉}, rk(C ∩ In) < τ for each n < ω. Thus, by the inductive hypothesis,
there exists a homeomorphism hn : In → [〈1/(n+2), 1〉, 〈1/(n+1), 0〉] such that
hn[(A0 ∩ In) \ (C ∩ In)] = [1/(n+2), 1/(n+1))×{0} for each n < ω. We define
h : A0 → A0 by

h = 〈〈1, 0〉, 〈0, 1〉〉 ∪
(⋃
{hn : n < ω}

)
.

It is not hard to see that h is a homeomorphism and h[A0 \ C] = A0. This
completes the proof.

h

I0 h[I0]
I1 h[I1]

I2 h[I2]
I3 h[I3]

I4 h[I4]

〈1, 0〉

h(〈1, 0〉)

Figure 12.3: Proving Proposition 12.19.
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Even if A is not “compatible” with the Cantor set (Corollary 12.18), it seems
from Proposition 12.19 that it may be somehow compatible with compact scat-
tered spaces. The product of the Cantor set with a compact, metrizable and scat-
tered space is homeomorphic to the Cantor set (this follows from [50, 6.2.A(c)]).
However, there is not an equivalent theorem with A.

Proposition 12.20 (Hernández-Gutiérrez, [78]) A× (ω + 1) is not home-
omorphic to A.

Proof. Assume that there is a homeomorphism h : A×(ω+1)→ A, we will reach
a contradiction. It is not hard to prove that every clopen subset of A is the finite
union of clopen intervals. Then for all n < ω there is mn < ω and a collection of
disjoint clopen subsets J(n, 0), . . . , J(n,mn) of A such that h[J(n, i)× {n}] is a
clopen interval for all i ≤ mn. The family

U = {J(n, i) : n < ω, i ≤ mn}

is a countable collection of clopen subsets of A. Since A has weight c (Proposition
12.7), U is not a base of A. From the compactness of A it is possible to find
x, y ∈ A with x 6= y and such that x ∈W if and only if y ∈W for all W ∈ U .

By the definition of the product topology, {〈x, n〉 : n < ω} converges to 〈x, ω〉
and {〈y, n〉 : n < ω} converges to 〈y, ω〉. Let p = h(〈x, ω〉), we will show that
{h(〈y, n〉) : n < ω} converges to p, this contradicts the injectiveness of h and we
will have finished.

Assume that p ∈ A0, the other case is entirely analogous. It is enough to
prove that for every q ∈ A with q < p there is an k < ω with h(〈y, k〉) ∈ (q, p].
Since h[A× {ω}] is crowded, there is r ∈ h[A× {ω}] ∩ (q, p). By the continuity
of h, there exists k < ω such that h(〈x, k〉) ∈ (q, p). Let j ≤ mk be such that
〈x, k〉 ∈ J(k, j). Since h[J(k, j) × {k}] is an interval that intersects (q, p) and
does not contain its endpoints, h[J(k, j)× {k}] ⊂ (q, p). Then h(〈y, k〉) ∈ (q, p).
This proves that {h(〈y, n〉) : n < ω} converges to p and as discussed above,
finishes the proof.

Since every compact, metrizable and scattered space contains a clopen con-
vergent sequence, we obtain the following.

Corollary 12.21 (Hernández-Gutiérrez, [78]) Let C be compact Hausdorff
and countable. Then A× C is neither homogeneous nor CDH.

Question 12.22 Let C, D be compact Hausdorff and countable. Is it true that
A× C is homeomorphic to A×D if and only if rk(C) = rk(D)?
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No countable power of A is CDH (Example 12.29) so one might ask about
the finite powers. It turns out that no finite power of A is CDH, as Proposition
12.24 below shows. The technique we will use is entirely analogous to the original
proof of Theorem 12.8. We need a preliminary lemma which can be proved in
an analogous way to the proof of Proposition 12.14.

Proposition 12.23 (Hernández-Gutiérrez, [78]) Let f : A → A be a con-
tinuous function. Then there exists a collection U of pairwise disjoint clopen
intervals of A such that

⋃
U is dense in A and for every J ∈ U , f↾J : J → A is

either non-increasing or non-decreasing.

Proposition 12.24 (Hernández-Gutiérrez, [78]) If 1 ≤ n < ω, then nA is
not CDH.

Proof. Assume that n ≥ 2, since the case n = 1 is Theorem 12.8. Let Q =
Q∩ (0, 1), D = Q×{0} and E = Q×{0, 1}. Then D and E are countable dense
subsets of A so nD and nE are countable dense subsets of nA. Assume that
there is a homeomorphism h : nA → nA such that h[nE] = nD, we will reach a
contradiction.

Let d ∈ D and define X = {x ∈ nA : x(i) = d for all 1 ≤ i ≤ n− 1}, this is a
topological copy of A and nE ∩X is dense in X. For i ≤ n− 1, let πi : X → A
be the projection to the i-th coordinate and let fi = πi ◦ h↾X : X → A, this is a
continuous function.

By Proposition 12.23 there is some non-empty interval J ⊂ X such that
fi↾J : J → A is either non-decreasing or non-increasing for each i ≤ n− 1. Notice
that it is impossible that fi is constant on an interval for all i ≤ n−1 because this
would contradict the injectivity of h. Thus, we may assume that fj↾J : J → A is
one-to-one for some j ≤ n.

Let p, q ∈ J be such that π(p) = π(q) ∈ Q so that p, q ∈ nE and q is
the immediate succesor of p in the order of X. By the fact that fj is strictly
increasing, it is not hard to prove that fj(p) ∈ A0 and fj(q) ∈ A1. But h(q) ∈ nD
by the choice of h and πj [

nD] ⊂ D is disjoint from A1. This is a contradiction.
This shows that such a homeomorphism h cannot exist.

12.3 Results on products

In this Section we will prove that neither A × ω2 nor ωA are CDH. Our results
are nevertheless more general and place restrictions on products of spaces that
are CDH.
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Theorem 12.25 (Hernández-Gutiérrez, [78]) Let X and Y be two crowded
spaces of countable π-weight. If X × Y is CDH, then X contains a subset
homeomorphic to ω2 if and only if Y contains a subset homeomorphic to ω2.

Proof. Assume that X contains a subspace homeomorphic to the Cantor set
and Y does not, we shall arrive to a contradiction. Since X × Y contains a
Cantor set, there is a countable dense subset D ⊂ X × Y and Q ⊂ D such that
clX×Y (Q) ≈ ω2. We shall construct a countable dense subset E ⊂ X × Y that
does not have this property.

Let B = {Un × Vn : n < ω} be a π-base of the product X × Y , where Un
is open in X and Vn is open in Y for each n < ω. Let πX : X × Y → X and
πY : X × Y → Y be the projections. Recursively, choose {en : n < ω} ⊂ X × Y
such that πX(en) ∈ Un and

πY (en) ∈ Vn \ {πY (e0), . . . , πY (en−1)}

for all n < ω. Let E = {en : n < ω}. Thus, πY↾E : E → Y is one-to-one.
Assume that there is some autohomeomorphism of X × Y that takes D to

E. Then there exists R ⊂ E such that K = clX×Y (R) is homeomorphic to ω2.
Notice that T = πY [K] is a compact subset of Y of countable weight. Since
Y does not contain topological copies of the Cantor set, T is scattered. Then
T contains an isolated point p. Since (X × {p}) ∩ K is a clopen subset of K,
πY ↾R: R→ Y is one to one and R is dense in K, we obtain that (X × {p}) ∩K
is a singleton. But K is crowded so this is a contradiction. Thus, the theorem
follows.

We immediately obtain the following from Theorem 12.25 and Proposition
12.17. This answers Question 12.9.

Corollary 12.26 (Hernández-Gutiérrez, [78]) A× ω2 is not CDH.

Corollary 12.28 gives a necessary condition on X for ωX to be CDH. It is
the first criterion of this kind that works for non-metrizable spaces. See also the
discussion in Example 12.29(c). This contrasts with the following result of Alan
Dow and Elliott Pearl.

Theorem 12.27 [47] If X is regular, first countable and 0-dimensional, then
ωX is homogeneous.

Corollary 12.28 (Hernández-Gutiérrez, [78]) Let Z be a crowded space of
countable π-weight. If ωZ is CDH, then Z contains a subspace homeomorphic
to ω2.



208 Chapter 12. COMPACT CDH SPACES

Proof. Assume that Z contains no subspace homeomorphic to ω2. Let X = Z
and Y = ωZ. Then both X and Y are crowded spaces of countable π-weight.
Notice that Z has at least two points so Y contains a topological copy of ω2. By
Theorem 12.25, we obtain a contradiction.

We finally present some examples.

Example 12.29 (Hernández-Gutiérrez, [78])

(a) If Q is the space of rational numbers, ωQ is not CDH, this was first shown
by Fitzpatrick and Zhou ([56]) and obviously follows from Theorem 10.32.

(b) If S is the Sorgenfrey line, S is CDH by Example 10.11. However, ωS is not
CDH.

(c) By Theorem 10.32, any separable and metrizable space X such that ωX must
be a Baire space. Thus, a Bernstein set is a natural candidate for such a space.
However, by Corollary 12.28, the ω-power of a Bernstein set is not CDH. Thus,
we have obtained additional conditions for spaces to have their ω-power CDH.
In fact, the only (consistently) known non-Borel spaces X such that ωX is CDH
are filters (Theorem 11.7 of Medini and Milovich and Theorem 11.12) and filters
always contain Cantor sets (see the proof of Proposition 11.10).

(d) Finally, by Proposition 12.17, ωA is not CDH, as announced.

Notice that Theorem 12.25 applies to first countable separable spaces. This
observation is important since any absolute example of a CDH compact space of
uncountable weight must be first countable by the following result of Arhangel’skĭı
and van Mill.

Theorem 12.30 [9] Under 2ω < 2ω1 , every CDH compact space is first count-
able.

So the existence of compact CDH spaces of uncountable weight is still open.
The presence of Cantor sets in spaces whose ω-power is CDH may shed some
light on this problem. We end the discussion with a related problem.

Question 12.31 Let X be a compact CDH space. Does it follow that X must
contain topological copies of the Cantor set?
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[10] Arhangel’skĭı, Alexander V. and van Mill, Jan; “Topological Homogeneity.”
survey paper, to appear in Recent Progress in General Topology III

209



210 Bibliography
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