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Abstract

We consider the problem

−∆u+W (x)u = f(x, u), u ∈ H1
0 (Ω),

where Ω is an exterior domain in RN , N ≥ 3, W ∈ C 0(RN ), infRN W > 0, W (x)→ V∞ > 0
as |x| → ∞ and the function f is either the local nonlinearity

f(x, u) = |u|p−2u,

or the nonlocal one
f(x, u) =

(
1

|x|α
∗ |u|p

)
|u|p−2u.

In the first case we assume that 2 < p < 2∗ := 2N
N−2 , while in the second one we assume that

α ∈ (0, N) and 2N−α
N < p < 2N−α

N−2 .
Under symmetry assumptions on Ω and W, and appropriate assumptions on the decay of

W at infinity, we establish the existence of a positive solution and multiple sign changing
solutions to this problem, having small energy (in the symmetric sense). Moreover, we show
that there is an effect of the topology of the orbit space of certain symmetric subsets of the
domain on the number of low energy sign changing solutions to this problem.
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Chapter 1
Introduction

We consider the problem {
−∆u+ (V∞ + V (x))u = f(x, u),
u ∈ H1

0 (Ω),

where N ≥ 3 and Ω is an unbounded smooth domain in RN , whose complement RN r Ω is
bounded, possibly empty. The potential V∞ + V is assumed to satisfy

(V0) V ∈ C0(RN ), V∞ ∈ (0,∞), infx∈RN {V∞ + V (x)} > 0, lim|x|→∞ V (x) = 0.

The function f can be either the local nonlinearity

f(x, u) = |u|p−2u,

or the nonlocal one

f(x, u) =

(
1

|x|α
∗ |u|p

)
|u|p−2u.

In the first case we assume that 2 < p < 2∗ := 2N
N−2 , while in the second one we assume that

α ∈ (0, N) and 2N−α
N < p < 2N−α

N−2 .
In this thesis, we are interested in obtaining positive and sign changing solutions to this

problem.
We are going to consider separately the local case and the nonlocal one. In both of

them, we analyse two model situations: first, we assume that V tends to its limit at infinity
exponentially from below. Then, we consider the case in which V tends exponentially to
its limit at infinity taking on values greater than its limit (which includes the autonomous
case V = 0). The speed of convergence depends on the distance between the elements of
the orbits in a certain symmetric subset of the domain. Weaker conditions on the decay of
the potential require stronger conditions on the symmetries.

The main results of this thesis, here revised and extended, are contained in two joint
works with M. Clapp ([26] and [27]).



2 Introduction

1.1 The local problem
We consider the problem {

−∆u+ (V∞ + V (x))u = |u|p−2u,
u ∈ H1

0 (Ω),
(1.1)

where Ω is an unbounded smooth domain in RN , N ≥ 3, whose complement RN r Ω is
bounded, possibly empty, and 2 < p < 2∗ := 2N

N−2 . The potential V∞ + V is assumed to
satisfy (V0).

1.1.1 On the most closely related known results
Equations of this kind arise naturally in various branches of physics and in some problems
in biology as well, see for example [10, 33]. The existence of solutions to (1.1) has been
extensively studied during the last 25 years. A detailed account is given in Cerami’s survey
article [15]. In what follows we make reference to the results more closely related to our
study.

The main difficulty in dealing with problem (1.1) by means of variational methods is the
lack of compactness. This difficulty does not appear when Ω and V are radially symmet-
ric and we look for radial solutions [55, 10, 31]. However if, either Ω or V do not have
symmetries, or if they have symmetries with finite orbits, the lack of compactness prevails.

Remarkable progress was made when P.-L. Lions introduced in [41] his concentration
compactness method, which allowed to show the existence of a solution of problem (1.1) in
RN by a minimization argument for V ≤ 0. This also applies in an exterior domain Ω, like
the one we are considering, when V < 0 satisfies a suitable decay assumption at infinity.
However, when V ≥ 0 and Ω 6= RN or when V > 0 and Ω = RN the question of the existence
cannot be treated by minimization. To handle this situation a deeper understanding of the
lack of compactness of the variational problem is needed. Benci and Cerami gave in [9] a
complete description of the lack of compactness in terms of the solutions to the limit problem{

−∆u+ V∞u = |u|p−2u,
u ∈ H1(RN ),

(1.2)

associated to (1.1). This allowed them to solve the existence problem for V ≡ 0 when the
diameter of RN r Ω is small enough. Bahri and Lions in [4] eliminated this restriction and,
considering some decay assumptions at infinity on V , they showed the existence of a solution
for V ≥ 0. In all of these cases the solution obtained is positive.

A result concerning the existence of multiple solutions with small energy was obtained
by Clapp and Weth in [28] when Ω = RN and V approaches to 0 from below at infinity
in a suitable way. However, the techniques employed there, provide no information on
whether these solutions change sign or not. Cerami, Devillanova and Solimini established
the existence of infinitely many solutions in [17] assuming that Ω = RN and V tends to zero
from below at infinity at some suitable rate. Recently, Wei and Yan [58] proved the existence
of infinitely many positive solutions to this problem when Ω = RN and V is a radial function
tending to 0 at infinity, in a polynomial way. Without any symmetry assumptions on the
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potential, Cerami, Passaseo and Solimini proved in [19] an analogous result for potentials
that decay very slowly.

We are interested in obtaining multiplicity of sign changing solutions to this problem.
For Ω = RN and V ≡ 0 existence of infinitely many sign changing solutions with large
symmetries was shown in [8, 43, 49]. When Ω and V have only finite symmetries, existence
of a sign changing solution to problem (1.1) was shown by Cerami and Clapp in [16] and by
Carvalho, Maia and Miyagaky in [14], under suitable assumptions. We shall refer to these
results later in more detail.

Several multiplicity results have been obtained for the singularly perturbed problem
−ε∆u + (V∞ + V (x))u = |u|p−2u, u ∈ H1(RN ), for small enough ε > 0. It is well-known
that, when ε→ 0, there are solutions to this problem which concentrate at critical points of
the potential V, see [2, 29]. Hence, it is not surprising that the topology of certain subsets
of critical points of V has an effect on the number of solutions to this problem, as has been
shown for example in [23]. Even though a similar concentration phenomenon is not present
in the problem we are treating here, we will prove in this thesis that, when looking for sign
changing solutions, there is a combined effect of the topology and the symmetries of certain
subsets of the domain on the number of solutions to problem (1.1).

1.1.2 Main results: Multiplicity of sign changing solutions
In this subsection we state our existence results for the local problem and give some examples
of symmetric situations for which they apply.

We study the case where both Ω and V have some symmetries. If Γ is a closed subgroup
of the group O(N) of linear isometries of RN , we denote by

Γx := {gx : g ∈ Γ}

the Γ-orbit of x, by #Γx its cardinality, and by

`(Γ) := min{#Γx : x ∈ RN r {0}}.

We assume that Ω and V are Γ-invariant, this means that Γx ⊂ Ω for every x ∈ Ω and
that V is constant on Γx for each x ∈ RN . We consider a continuous group homomorphism
φ : Γ→ Z/2 and we look for solutions which satisfy

u(gx) = φ(g)u(x) for all g ∈ Γ and x ∈ Ω. (1.3)

A function u with this property will be called φ-equivariant. We denote by

G := kerφ.

Note that, if u satisfies (1.3), then u isG-invariant. Moreover, u(γx) = −u(x) for every x ∈ Ω
and γ ∈ φ−1(−1). Therefore, if φ is an epimorphism (i.e. if it is surjective), every nontrivial
solution to (1.1) which satisfies (1.3) changes sign. If φ ≡ 1 is the trivial homomorphism,
then Γ = G, and (1.3) simply says that u is G-invariant.

If Z is a Γ-invariant subset of RN and φ is an epimorphism, the group Z/2 acts on the
G-orbit space Z/G := {Gx : x ∈ Z} of Z as follows: we choose γ ∈ Γ such that φ(γ) = −1
and we define

(−1) ·Gx := G(γx) for all x ∈ Z.
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This action is well defined and it does not depend on the choice of γ. We denote by

Σ := {x ∈ RN : |x| = 1, #Γx = `(Γ)}, Σ0 := {x ∈ Σ : Gx = G(γx)}.

If Z is a nonempty Γ-invariant subset of Σ r Σ0, the action of Z/2 on its G-orbit space
Z/G is free and the Krasnoselskii genus of Z/G, denoted genus(Z/G), is defined to be the
smallest k ∈ N such that there exists a continuous map

f : Z/G→ Sk−1 := {x ∈ Rk : |x| = 1}

which is Z/2-equivariant, i.e. f((−1) ·Gz) = −f(Gz) for every z ∈ Z.We define genus(∅) :=
0.

For each subgroup K of O(N) and each K-invariant subset Z of RN r {0} we set

µ(Kz) :=

{
inf{|gz − hz| : g, h ∈ K, gz 6= hz} if #Kz ≥ 2,
2 |z| if #Kz = 1,

µK(Z) := inf
z∈Z

µ(Kz) and µK(Z) := sup
z∈Z

µ(Kz).

In what follows, we will assume that Ω is Γ-invariant, that V is a Γ-invariant function and
that (V0) holds. We will also assume that `(Γ) <∞, because otherwise, as we are going to
see later, problem (1.1) has infinitely many solutions.

We denote by ĉ∞ the energy of the positive solution to the limit problem (1.2). We shall
look for solutions with small energy, i.e. which satisfy

p− 2

2p

∫
Ω
|u|p < `(Γ) ĉ∞. (1.4)

We shall prove the following result.

Theorem 1.1. If φ : Γ→ Z/2 is an epimorphism, Z is a Γ-invariant subset of ΣrΣ0, and
V satisfies the following:

(V1) There exist r0 > 0, c0 > 0 and λ ∈ (0, µΓ(Z)
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0,

then problem (1.1) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy
(1.3) and (1.4).

Let us look at some examples.

Example 1. Let Γ be the group spanned by the reflection γ : RN → RN on a linear subspace
W of RN of dimension 0 ≤ dimW < N . If Ω and V are invariant under this reflection, we
may take φ : Γ → Z/2 to be the epimorphism given by φ(γ) := −1 and Z to be the unit
sphere in the orthogonal complement of W . Then, Theorem 1.1 yields

genus(Z) = N − dimW

pairs of solutions to problem (1.1) provided (V1) holds for some λ ∈ (0, 2
√
V∞).
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Under analogous assumptions to those of the previous theorem, Carvalho, Maia and Miya-
gaki proved in [14] the existence of a solution to (1.1) satisfying (1.3) and (1.4) in the case
considered in the above example. Note that in our example µΓ(Z) = 2, so our assumption
(V1) is less restrictive than the one in [14] where λ ∈ (0,

√
V∞) is required.

Another interesting example is the following:

Example 2. If N = 2n we identify RN with Cn and take Γ to be the cyclic group of order
2m spanned by

ρ(z1, . . . , zn) := (eπi/mz1, . . . , e
πi/mzn)

and φ : Γ→ Z/2 to be the epimorphism given by φ(ρ) := −1. Then G := kerφ is the cyclic
subgroup of order m spanned by ρ2. Since the action is free, we have that Σ = SN−1 and
Σ0 = ∅, so we may take Z := SN−1. The genus of SN−1/G can be estimated in many cases.
For example, if m = 2k, Lemma C.1 below together with Theorem 1.2 of [5] give

genus(SN−1/G) ≥ N − 1

2k
+ 1.

Since µΓ(SN−1) =
∣∣eπi/m − 1

∣∣ , condition (V1) becomes more restrictive as m increases. So,
if condition (V1) holds for m = 2k, it will also hold for m = 2j with 0 ≤ j < k. Now, if uj
is a solution provided by Theorem 1.1 for m = 2j , then uj satisfies (1.3), i.e.

uj(e
πil/(2j)z) = (−1)luj(z) ∀ l = 0, . . . , 2j+1 − 1, z ∈ Ω ⊂ Cn.

This implies that uk 6= uj if k > j. Indeed, if k > j and uk(z) = uj(z) 6= 0 at some z ∈ Ω

then, since uj(eπi/(2
j)z) = −uj(z) and

uk(e
πi/(2j)z) = uk(e

πi(2k−j)/(2k)z) = (−1)2k−juk(z) = uj(z),

we have that uk(eπi/(2
j)z) 6= uj(e

πi/(2j)z). Therefore, Theorem 1.1 provides at least

k∑
j=0

N − 1

2j
+ k + 1 = (N − 1)

2k+1 − 1

2k
+ k + 1

pairs of sign changing solutions in this case.

On the other hand, similar actions in odd dimensions give no solutions. For example, if
we take polygonal symmetry in R3 given by ρ(z, t) := (eπi/mz, t), (z, t) ∈ C × R = R3—as
considered in [56] for a related problem—and φ(ρ) := −1, then

Σ = {±(0, 0, 1)} = Σ0.

So Theorem 1.1 gives no information in this case. However, if we consider the group Γ
generated by ρ and the reflection τ(z, t) := (z,−t), and take φ(ρ) := 1 and φ(τ) := −1, then
Σ = {±(0, 0, 1)} and Σ0 = ∅ and Theorem 1.1 yields one pair of sign changing solutions.

For potentials with an analogous behavior at infinity, but without requiring any symmetry
property neither on the domain nor on the potential, in [28] it was shown that problem (1.1)
has at least N

2 + 1 pairs of solutions. However, the argument used there gives no precise



information whether the solutions obtained change sign or not. If φ is an epimorphism,
property (1.3) asserts that u changes sign and, as we have seen, in some cases Theorem 1.1
yields more than N

2 + 1 pairs of solutions.
We shall prove also the following multiplicity result of sign changing solutions, with a

different condition on the potential.

Theorem 1.2. Let Z be a Γ-invariant subset of Σ. Assume that the following hold:
(Z0) There exists a0 > 1 such that

dist(γz,Gz) ≥ a0µ(Gz) for all z ∈ Z and γ ∈ Γ rG,

(V2) There exist c0 > 0 and κ > µΓ(Z)
√
V∞ such that

V (x) ≤ c0e
−κ|x| for all x ∈ RN .

Then (1.1) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy (1.3)
and (1.4).

Let us pointed out that this theorem corresponds to [26, Theorem 1.2]. However, there
we assumed Z to be a compact Γ-invariant subset of Σ which satisfies the slightly different
condition
(Ẑ0) dist(γz,Gz) > µ(Gz) for all z ∈ Z and γ ∈ Γ rG.
We noticed that the compactness assumption for Z can be removed just asking for condition
(Z0) above.

Theorem 1.2 is an extension of the result obtained by Cerami and Clapp in [16], which
states the existence of a sign changing solution to the autonomous problem V ≡ 0 if (Z0)
holds for some z ∈ Σ. Note that (Z0) implies that Z ⊂ Σ r Σ0. Note also that condition
(Z0) cannot be realized if N = 3 or if `(G) = 1. However, we next give an example which
illustrates the situation in Theorem 1.2 for higher dimensions.

Example 3. We identify R4n with Cn×Cn and consider the subgroup Γ of O(4n) spanned
by ρ and γ, where ρ(y, z) := (eπi/my, eπi/mz) and γ(y, z) := (−z, y) for (y, z) ∈ Cn×Cn and
some m ≥ 3. We define φ : Γ→ Z/2 by φ(ρ) = 1, φ(γ) = −1. Then G := kerφ is the cyclic
subgroup of order 2m spanned by ρ. Since m ≥ 3, property (Z0) holds for Z := S4n−1. We
will prove in Appendix C that

genus(S4n−1/G) ≥ 2n+ 1.

Consequently, if Ω and V are Γ-invariant and (V2) holds, Theorem 1.2 yields 2n + 1 pairs
of sign changing solutions to problem (1.1). Note that µG(S4n−1) =

∣∣eπi/m − 1
∣∣ , hence (V2)

becomes less restrictive as m increases.

1.2 The nonlocal problem
We consider the problem{

−∆u+ (V∞ + V (x))u =
(

1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1
0 (Ω),

(1.5)
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where N ≥ 3, α ∈ (0, N), p ∈
(

2N−α
N , 2N−α

N−2

)
and Ω is an unbounded smooth domain in

RN whose complement RN r Ω is bounded, possibly empty. We also assume that (V0) is
satisfied.

1.2.1 A brief historical background

A special case of (1.5), relevant in physical applications, is the Choquard equation

−∆u+ u =

(
1

|x|
∗ |u|2

)
u, u ∈ H1(R3), (1.6)

which models an electron trapped in its own hole, and was proposed by Choquard in 1976
as an approximation to Hartree-Fock theory of a one-component plasma [38]. This equation
arises in many interesting situations related to the quantum theory of large systems of
nonrelativistic bosonic atoms and molecules, see for example [34, 40] and the references
therein. It was also proposed by Penrose in 1996 as a model for the self-gravitational collapse
of a quantum mechanical wave-function [53]. In this context, problem (1.6) is usually called
the nonlinear Schrödinger-Newton equation, see also [46, 47].

In 1976 Lieb [38] proved the existence and uniqueness (modulo translations) of a minimizer
to problem (1.6) by using symmetric decreasing rearrangement inequalities. Later, in [42],
Lions showed the existence of infinitely many radially symmetric solutions to (1.6). Further
results for related problems may be found in [1, 22, 24, 45, 51, 54, 57] and the references
therein.

In 2010, Ma and Zhao [44] considered the generalized Choquard equation

−∆u+ u =

(
1

|x|α
∗ |u|p

)
|u|p−2u, u ∈ H1(RN ), (1.7)

and proved that, for p ≥ 2, every positive solution of it is radially symmetric and monotone
decreasing about some point, under the assumption that a certain set of real numbers,
defined in terms of N, α and p, is nonempty. Under the same assumption, Cingolani, Clapp
and Secchi [21] recently gave some existence and multiplicity results in the electromagnetic
case, and established the regularity and some decay asymptotics at infinity of the ground
states of (1.7). Moroz and van Schaftingen [48] eliminated this restriction and showed the
regularity, positivity and radial symmetry of the ground states for the optimal range of
parameters, and derived decay asymptotics at infinity for them, as well. These results will
play an important role in our study.

1.2.2 Main results: Positive and sign changing solutions
In this subsection we state our existence results for the nonlocal problem. We still use the
same notation as in the statement of the main results for the local problem (see subsection
1.1.2). The only difference is that in the special case where K = G and Z = Σ, we simply
write

µG := µG(Σ) and µG := µG(Σ).
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We just consider the case `(Γ) < ∞, because if all Γ-orbits of Ω are infinite it was already
shown in [21, Theorem 1.1] that (1.5) has infinitely many solutions. In this case, µG > 0.

We denote by c∞ the energy of a ground state of the problem{
−∆u+ V∞u =

(
1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1(RN ).
(1.8)

We shall look for solutions with small energy, i.e. which satisfy

p− 1

2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy < `(Γ)c∞. (1.9)

In what follows, we assume that V satisfies (V0). We shall prove the following results:

Theorem 1.3. If p ≥ 2, Ω is G-invariant and V is a G-invariant function which satisfies

(V3) There exist r0 > 0, c0 > 0 and λ ∈ (0, µG
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0,

then (1.5) has at least one positive solution u which is G-invariant and satisfies (1.9) with
Γ = G.

Theorem 1.4. If p ≥ 2, Ω is Γ-invariant, φ : Γ → Z/2 is an epimorphism, Z is a Γ-
invariant subset of Σ r Σ0 and V is a Γ-invariant function which satisfies

(V1) There exist r0 > 0, c0 > 0 and λ ∈ (0, µΓ(Z)
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0,

then problem (1.5) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy
(1.3) and (1.9).

Theorem 1.5. If p ≥ 2, `(G) ≥ 3, Ω is G-invariant and V is a G-invariant function which
satisfies
(V4) There exist c0 > 0 and κ > µG

√
V∞ such that

V (x) ≤ c0e
−κ|x| for all x ∈ RN ,

then (1.5) has at least one positive solution u which is G-invariant and satisfies (1.9) with
Γ = G.

Theorem 1.6. If p ≥ 2, Ω is Γ-invariant, φ : Γ → Z/2 is an epimorphism, Z is a Γ-
invariant subset of Σ, V is a Γ-invariant function and the following hold:

(Z0) There exists a0 > 1 such that

dist(γz,Gz) ≥ a0µ(Gz) for all z ∈ Z and γ ∈ Γ rG,

(V2) There exist c0 > 0 and κ > µΓ(Z)
√
V∞ such that

V (x) ≤ c0e
−κ|x| for all x ∈ RN ,

then (1.5) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy (1.3)
and (1.9).



Let us point out that conditions (V1), (V2) and (Z0) are the same ones we required in the
local case.

Theorem 1.3 was proved in [21] for Ω = RN , under additional assumptions on α and p. As
far as we know, Theorem 1.5 is the first existence result for potentials V which are nontrivial
and take nonnegative values at infinity. In the local case, Bahri and Lions proved existence
for this type of potentials without any symmetries [4]. Unfortunately, some of the facts used
in their proof are not available in the nonlocal case.

As we mentioned before, the existence of infinitely many solutions is known in the radial
case [42] and in the case where every Γ-orbit in Ω is infinite [21]. In contrast, Theorems 1.4
and 1.6 provide multiple solutions when the data have only finite symmetries.

The examples which illustrate the results for the local case continue being valid in this
context. To be precise, if Γ and φ are as in the Example 1 and we choose Z in the same
way, then Theorem 1.4 yields genus(Z) = N − dimW pairs of solutions to problem (1.5)
provided (V1) holds for some λ ∈ (0, 2

√
V∞). Furthermore, if Γ and φ are as in the Example

2 and condition (V1) holds for m = 2k, taking Z := SN−1, Theorem 1.4 provides at least

k∑
j=0

N − 1

2j
+ k + 1 = (N − 1)

2k+1 − 1

2k
+ k + 1

pairs of sign changing solutions satisfying (1.3) and (1.9).
The group G in Example 2 satisfies `(G) = m. This shows that there are many groups

satisfying the symmetry assumption in Theorem 1.5 when N is even. If N is odd not many
groups satisfy `(G) ≥ 3. For example, if N = 3, the only subgroups of O(3) which satisfy
this condition are the rotation groups of the icosahedron, octahedron and tetrahedron, I, O
and T , and the groups I × Zc2, O × Zc2, T × Zc2 and O− described in [20, Appendix A].

Note that (Z0) implies that Z ⊂ Σ r Σ0. Condition (Z0) cannot be realized if N = 3. In
the context of Example 3 we can see that property (Z0) holds for Z := S4n−1. Therefore, if
Ω and V are Γ -invariant and (V2) holds, Theorem 1.6 yields 2n+ 1 pairs of sign changing
solutions to problem (1.5).

1.3 Some open problems
Here we indicate some of the open problems which are motivated by the work of this thesis
and some application of the technics developed there to related problems that we plan to
study in the near future.

1.3.1 Further questions concerning the nonlocal problem
1. In the nonlocal problem that we considered in [27] the symmetries played an important

role to prove the existence of a positive solution for potentials V which are nontrivial
and take nonnegative values at infinity. This is, as far as we know, the first existence
result in this situation. The problem of existence without symmetries is open, and
seems to be nowhere studied in the literature.
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In the local case, Bahri and Lions [4] proved existence for this type of potentials
without any symmetries. Unfortunately, some of the facts used in their proof are not
available in the nonlocal case. Particularly, it is not known whether the ground state
of the limit problem (1.8) with the nonlocal nonlinearity

f(x, u) =

(
1

|x|α
∗ |u|p

)
|u|p−2u

is, in general, the only positive solution (up to translations).

Recently, Ma and Zhao [44] showed that in the classical case N = 3, α = 1, p = 2, the
ground state is the only positive solution. We plan to investigate whether, at least in
this case, a positive solution to problem (1.5) exists for this type of potentials without
any symmetry assumption.

2. Recently, S. Cingolani, M. Clapp and S. Secchi considered the stationary nonlinear
magnetic Choquard problem

(−i∇+A(x))2u+ V (x)u =
(

1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ L2(RN ,C),
∇u+ iA(x)u ∈ L2(RN ,CN ),

where A : RN → RN is a C1-vector potential, V : RN → R is a positive continuous
scalar potential, N ≥ 3, α ∈ (0, N) and p ∈ [2, 2N−α

N−2 ). Under symmetry assumptions
on the data and some additional condition on α and p, they proved in [21] that, if V
tends to its limit at infinity exponentially from below at an appropriate speed which
depends on the symmetries, there exists a complex-valued solution to this problem
exhibiting a vortex-type behavior.

We would like to work on an extension of the results obtained in [27] to the magnetic
problem above, with the following specific goals: 1) to eliminate the additional con-
dition on α and p, 2) to allow scalar potentials which take on values greater than its
limit at infinity, and 3) to obtain multiplicity of vortex-type solutions to this problem.

3. In addition to this, we are interested in obtaining solutions to the nonlocal problem
in the symmetric case when p ∈ (2N−α

N , 2). In this case, solutions should be possible
but the arguments used in this thesis do not apply since the energy functional associ-
ated to this problem is nowhere twice Fréchet-differentiable. However, one should be
able to apply the mountain pass method in order to obtain existence results. Decay
asymptotics for the ground state of the limit problem are available, but they are not
exponential in this case. They were recently obtained by Moroz and van Schaftingen
in [48].

1.3.2 The local and nonlocal problem in domains with un-
bounded boundary

We are also interested in studying problem (1.5) when Ω is an unbounded smooth domain
having unbounded boundary. In 2009, Cerami and Molle [18] considered the problem of
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finding positive solutions u ∈ H1
0 (Ω) of the equation

−∆u+W (x)u = |u|p−2u,

where p ∈ (2, 2∗), Ω is either RN or an unbounded domain which is periodic in the first q
coordinates and whose complement is contained in a cylinder

{(x′, x′′) ∈ Rq × RN−q : |x′′| < R}.

Under appropriate decay assumptions at infinity on the potential W, they showed the ex-
istence of one solution when the potential approaches its limit at infinity from below and
of q + 1 solutions when the potential takes on values larger than its limit at infinity. Our
purpose is to obtain multiplicity of sign changing solutions of problem (1.5) for this kind of
domains, both in the local and the nonlocal case. It is worth mentioning that this problem is
particularly interesting because in unbounded smooth domains having unbounded boundary
compactness may fail at all energy levels, as shown in [45].

1.3.3 Other related problems
We believe that the methods developed in this thesis may be useful for other problems. For
example, recently, Felmer, Quaas and Tan [32] proved the existence of positive ground states
of the fractionary laplacian problem{

(−∆)αu+ u = f(x, u) in RN ,
lim
|x|→∞

u(x) = 0,

under suitable assumptions on f . Particularly, they showed that the ground states are
radially symmetric and, in contrast with the case α = 1, they proved that when 0 < α < 1 the
decay of the ground state at infinity is not exponential, but it is a power-type decay. Using
this information, we wish to investigate whether, under suitable assumptions, it is possible
to obtain the appropriate asymptotic estimates we need to prove that the nonautonomous
problem {

(−∆)αu+W (x)u = f(x, u) in RN ,
lim
|x|→∞

u(x) = 0,

has multiple sign changing solutions.

This thesis is organized as follows: In Chapter 2 we set the variational framework for
problems (1.1) and (1.5), with an emphasis on the nonlocal case, where some facts are not
widely explained in the literature. In Chapter 3 we provide a detailed account of the main
tools for proving our existence results. We begin with a careful analysis of the behavior of
the Palais–Smale sequences satisfying some symmetry properties, which refines that given
in [9]. This allow us to establish a lower bound for the lack of compactness of the variational
funcional associated to our problem in the appropriate symmetric subspaces of H1

0 (Ω). Then
we derive some delicate asymptotic estimates which enable us to control the energy of the
interaction between the positive and negative ground states of the limit problem{

−∆u+ V∞u = f(x, u),
u ∈ H1

0 (Ω),
(1.10)
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which appear as summands in the test functions we use. The behavior of the ground states
in the nonlocal case was recently described in [21, 48]. This yields the existence of positive
symmetric solutions. We conclude this chapter with the relation between the Krasnoselskii
genus and the critical point theory with symmetries.

Chapter 4 is devoted to the proof of the main results of this thesis, once more, we focus on
the nonlocal case and add some remarks which describe the situation in the local one. In the
first section, we consider potentials which are strictly negative at infinity and prove Theorems
1.3 and 1.4. In the second section, we consider potentials which take on nonnegative values
at infinity and prove Theorems 1.5 and 1.6. In contrast with the semiclassical case considered
in [29], our problem exhibits no concentration. Nevertheless, to obtain multiplicity, we are
able to apply a new variant of a variational principle which has been successfully used in
problems in which concentration occurs [23, 7, 22]. We show there is an effect of the topology
of some symmetric subsets of the domain on the number of sign changing solutions. More
precisely, the Krasnoselskii genus of the orbit space Z/G provides a lower bound for the
number of sign changing solutions with a specific type of symmetries.

Finally, to provide examples of our multiplicity results, in the Appendix, we prove a
topological result which relates the Krasnoselskii genus of the orbit space Z/G with the gene-
ralized genus of Z, thus allowing the use of well-known estimates for the generalized genus
of a representation sphere, like those given in [5, 6], to obtain estimates of the Krasnoselskii
genus of its orbit space.



Chapter 2
The variational setting

Throughout this chapter we mainly focus in the nonlocal case, because the variational frame-
work for the local problem is well-known in the literature. More precisely we consider the
problem {

−∆u+ (V∞ + V (x))u =
(

1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1
0 (Ω),

(2.1)

where N ≥ 3, α ∈ (0, N), p ∈
(

2N−α
N , 2N−α

N−2

)
and Ω is an unbounded smooth domain in RN

whose complement RN r Ω is bounded, possibly empty. We continue to assume that the
potential V∞ + V satisfies

(V0) V ∈ C0(RN ), V∞ ∈ (0,∞), infx∈RN {V∞ + V (x)} > 0, lim|x|→∞ V (x) = 0.

From now on we shall assume without loss of generality that V∞ = 1.
Notice that even though the support of the function

(
1
|x|α ∗ |u|

p
)
is not contained inside

Ω, the support of
(

1
|x|α ∗ |u|

p
)
|u|p−2u is a subset of Ω for every u ∈ H1

0 (Ω).
Observe that if u satisfies

−∆u+ (1 + V (x))u =

(
1

|x|α
∗ |u|p

)
|u|p−2u,

multiplying each side of this equation by ϕ ∈ C∞c (Ω) and integrating, we obtain

−
∫

Ω
(∆u)ϕ+

∫
Ω

(1 + V (x))uϕ =

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uϕ ∀ϕ ∈ C∞c (Ω).

Applying the Green formula to the first integral in the left-hand side, we conclude that∫
Ω
∇u · ∇ϕ+

∫
Ω

(1 + V (x))uϕ =

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uϕ ∀ϕ ∈ C∞c (Ω).

A function u ∈ H1
0 (Ω) which satisfies the above is called a weak solution of (2.1). Throughout

this thesis, we shall refer to a weak solution just as a solution.
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We consider the functional JV : H1
0 (Ω)→ R given by

JV (u) :=
1

2

∫
Ω

(
|∇u|2 + (1 + V (x))u2

)
− 1

2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p.

We write
〈u, v〉V :=

∫
Ω
∇u · ∇v +

∫
Ω

(1 + V (x))uv (2.2)

and

‖u‖V :=

(∫
Ω

(
|∇u|2 + (1 + V (x))u2

))1/2

. (2.3)

If V = 0 we write 〈u, v〉 and ‖u‖ instead of 〈u, v〉0 and ‖u‖0 .

Proposition 2.1. If V satisfies (V0), then 〈·, ·〉V is a scalar product in H1
0 (Ω) and the

induced norm ‖u‖V is equivalent to the usual one.

Proof. Assumption (V0) guarantees that there exist V1, V2 > 0 such that

V1 ≤ 1 + V (x) ≤ V2 ∀x ∈ RN .

Using the first inequality one can easily check that 〈·, ·〉V is a scalar product in H1
0 (Ω). On

the other hand, the following holds true:∫
Ω

(
|∇u|2 + (1 + V (x))u2

)
≥
∫

Ω

(
|∇u|2 + V1u

2
)
≥ min{V1, 1}‖u‖2∫

Ω

(
|∇u|2 + (1 + V (x))u2

)
≤
∫

Ω

(
|∇u|2 + V2u

2
)
≤ max{V2, 1}‖u‖2.

Therefore, taking C1 := min{
√
V1, 1} and C2 := max{

√
V2, 1} we obtain

C1‖u‖ ≤ ‖u‖V ≤ C2‖u‖.

As usual, we identify u ∈ H1
0 (Ω) with its extension to RN obtained by setting u = 0 in

RN r Ω and denote by |u|q :=
(∫

RN |u|
q)1/q the norm in Lq(RN ).

We define

D(u) :=

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p =

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy

and set r := 2N
2N−α . Since p ∈ (2N−α

N , 2N−α
N−2 ), one has that pr ∈ (2, 2N

N−2). Hence, the
continuous Sobolev embedding H1

0 (Ω) ↪→ Lpr(Ω) holds.

The classical Hardy-Littlewood-Sobolev inequality [39, Theorem 4.3] implies∣∣∣∣∫
RN

∫
RN

ϕ(x)ψ(y)

|x− y|α
dx dy

∣∣∣∣ ≤ C̄|ϕ|r|ψ|r, (2.4)

for some positive constant C̄ = C̄(α,N) and all ϕ, ψ ∈ Lr(RN ). In particular,

D(u) ≤ C̄|u|2ppr for all u ∈ H1
0 (Ω). (2.5)



This shows that D is well defined.
We can rewrite the functional JV as

JV (u) =
1

2
‖u‖2V −

1

2p
D(u).

The proof of the following proposition is given in Appendix B.

Proposition 2.2. If p ≥ 2, the functional JV is of class C2 and

J ′V (u)v = 〈u, v〉V −
∫

Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv.

Consequently, u is a solution of problem (2.1) if and only if u is a critical point of JV .

2.1 The variational framework for the symmetric pro-
blem

From now on, we shall assume that p ≥ 2. As in the Introduction, we consider a closed
subgroup Γ of the group O(N) of linear isometries of RN and denote by

Γx := {gx : g ∈ Γ}

the Γ-orbit of x.
Throughout this section we shall assume that Ω and V are Γ-invariant, this means that

Γx ⊂ Ω for every x ∈ Ω and that V is constant on Γx for each x ∈ RN . We consider a
continuous group homomorphism

φ : Γ→ Z/2

and we look for solutions to (2.1) which satisfy

u(gx) = φ(g)u(x) for all g ∈ Γ and x ∈ Ω. (2.6)

A function u with this property will be called φ-equivariant. We denote by

G := kerφ.

Note that, if u satisfies (2.6), then u is G-invariant. Moreover,

u(γx) = −u(x) for every x ∈ Ω and γ ∈ φ−1(−1).

Therefore, if φ is an epimorphism (i.e. if it is surjective), every nontrivial solution to (2.1)
which satisfies (2.6) changes sign. If φ ≡ 1 is the trivial homomorphism, then Γ = G and
(2.6) simply says that u is G-invariant.

The homomorphism φ induces an action of Γ on H1
0 (Ω) as follows: for γ ∈ Γ and u ∈

H1
0 (Ω) we define γu ∈ H1

0 (Ω) by

(γu)(x) := φ(γ)u(γ−1x). (2.7)

The following lemma asserts that JV is Γ-invariant under this action.
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Lemma 2.3. For all u, v ∈ H1
0 (Ω) and γ ∈ Γ,

〈γu, γv〉V = 〈u, v〉V , D(γu) = D(u), and D′(γu)(γv) = D′(u)v.

Consequently, JV (γu) = JV (u) and J ′V (γu)(γv) = J ′V (u)(v).

Proof. Let γ ∈ Γ and u, v ∈ H1
0 (Ω). Since γ ∈ O(N), | det γ| = 1 and (γx) · (γy) = x · y for

all x, y ∈ RN . We also have that

∇(γu)(x) = φ(γ)γ∇u(γ−1x).

Thus, as γ(Ω) = Ω and V is Γ-invariant, the change of variable x̃ = γ−1x yields

〈γu, γv〉V =

∫
Ω

[∇(γu) · ∇(γv) + (1 + V (x))(γu)(γv)]

=

∫
Ω

[
(φ(γ))2γ∇u(γ−1x) · γ∇v(γ−1x) + (1 + V (x))(φ(γ))2u(γ−1x)v(γ−1x)

]
dx

=

∫
Ω

[
∇u(γ−1x) · ∇v(γ−1x) + (1 + V (x))u(γ−1x)v(γ−1x)

]
dx

=

∫
Ω

[∇u(x̃) · ∇v(x̃) + (1 + V (γx̃))u(x̃)v(x̃)] | det γ|dx̃

=

∫
Ω

[∇u(x̃) · ∇v(x̃) + (1 + V (x̃))u(x̃)v(x̃)] dx̃

= 〈u, v〉V .

Consequently,

‖γu‖2V = ‖u‖2V ∀u ∈ H1
0 (Ω), γ ∈ Γ.

Similarly, the change of variables x̃ = γ−1x, ỹ = γ−1y implies

D(γu) =

∫
RN

∫
RN

|(γu)(x)|p|(γu)(y)|p

|x− y|α
dx dy

=

∫
RN

∫
RN

|φ(γ)u(γ−1x)|p|φ(γ)u(γ−1y)|p

|x− y|α
dx dy

=

∫
RN

∫
RN

|φ(γ)|2p|u(x̃)|p|u(ỹ)|p

|γx̃− γỹ|α
dx̃ dỹ

=

∫
RN

∫
RN

|u(x̃)|p|u(ỹ)|p

|x̃− ỹ|α
dx̃ dỹ

= D(u).
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On the other hand,

D′(γu)(γv) =

∫
Ω

(
1

|x|α
∗ |γu|p

)
|γu|p−2(γu)(γv)

=

∫
RN

∫
RN

|(γu)(y)|p|(γu)(x)|p−2(γu)(x)(γv)(x)

|x− y|α
dx dy

=

∫
RN

∫
RN

|φ(γ)u(γ−1y)|p|φ(γ)u(γ−1x)|p−2φ(γ)u(γ−1x)φ(γ)v(γ−1x)

|x− y|α
dx dy

=

∫
RN

∫
RN

|φ(γ)|2p|u(ỹ)|p|u(x̃)|p−2u(x̃)v(x̃)

|γx̃− γỹ|α
dx̃ dỹ

=

∫
RN

∫
RN

|u(ỹ)|p|u(x̃)|p−2u(x̃)v(x̃)

|x̃− ỹ|α
dx̃ dỹ

= D′(u)v.

Now, we consider the fixed point space of H1
0 (Ω) under the action defined in (2.7), namely

H1
0 (Ω)φ : = {u ∈ H1

0 (Ω) : γu = u ∀γ ∈ Γ}
= {u ∈ H1

0 (Ω) : u(γx) = φ(γ)u(x) ∀γ ∈ Γ, ∀x ∈ Ω}.

Observe that H1
0 (Ω)φ is a closed linear subspace of H1

0 (Ω), and so, H1
0 (Ω)φ is a Hilbert

space.
Next, we have a particular case of the well-known principle of symmetric criticality due

to Palais [52, 59], which states that the critical points of the restriction of JV to the fixed
point space H1

0 (Ω)φ are the solutions to problem (2.1) that satisfy (2.6).

Theorem 2.4 (Principle of symmetric criticality). The following hold true:

(a) ∇JV : H1
0 (Ω)→ H1

0 (Ω) is φ-equivariant, i.e.

∇JV (γu) = γ∇JV (u) ∀u ∈ H1
0 (Ω), γ ∈ Γ.

Consequently, if u ∈ H1
0 (Ω)φ, then ∇JV (u) ∈ H1

0 (Ω)φ.

(b) If u ∈ H1
0 (Ω)φ is a critical point of the restriction JV |H1

0 (Ω)φ : H1
0 (Ω)φ → R, then u is

a critical point of JV .

Proof. Let γ ∈ Γ and u ∈ H1
0 (Ω). From Lemma 2.3 we have that

〈∇JV (γu), v〉V = J ′V (γu)v

= J ′V (u)(γ−1v)

= 〈∇JV (u), γ−1v〉V
= 〈γ∇JV (u), v〉V ∀v ∈ H1

0 (Ω).

Hence, ∇JV (γu) = γ∇JV (u). In particular, if u ∈ H1
0 (Ω)φ, then γu = u and so

∇JV (u) = γ∇JV (u) ∀γ ∈ Γ.



That is, ∇JV (u) ∈ H1
0 (Ω)φ for all u ∈ H1

0 (Ω)φ. Accordingly,

∇
(
JV |H1

0 (Ω)φ
)
(u) = ∇JV (u) ∀u ∈ H1

0 (Ω)φ.

This proves (b).

Next, we analyse the graph of the functional JV |H1
0 (Ω)φ in order to find some information

about the critical points. To do that, we fix a direction u ∈ H1
0 (Ω)φ, u 6= 0 and study

how the graph of JV looks like on the line generated by u. More precisely, we consider the
function JV,u : R→ R given by

JV,u(t) := JV (tu) =

(
1

2
‖u‖2V

)
t2 −

(
1

2p
D(u)

)
t2p. (2.8)

Notice that this is a polynomial function of t. Since 2p > 2 and the sign on the leading
coefficient is negative, the graph will be down on both ends and, near to zero, the graph
will behave roughly like a positive quadratic. Actually, the graph of JV,u has the following
shape:

t

t

V,uJ

u

Hence, JV |H1
0 (Ω)φ is not bounded below and has a local minimum point at 0. Clearly, 0 is

a solution of problem (2.1), but we are interested in nontrivial solutions.
The unique critical point of JV,u over (0,∞) corresponds to a maximum. The set of

maximum points of JV,u for all directions u ∈ H1
0 (Ω)φ, u 6= 0, is the set

N φ
Ω,V : =

{
u ∈ H1

0 (Ω)φ : J ′V (u)u = 0
}

=
{
u ∈ H1

0 (Ω)φ : u 6= 0, ‖u‖2V = D(u)
}
,

which is called the Nehari manifold. Note that the Nehari manifold contains all of the
nontrivial critical points of JV |H1

0 (Ω)φ .
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2.2 The Nehari manifold
We shall assume from now on that p ∈

[
2, 2N−α

N−2

)
. We denote by TuN φ

Ω,V the tangent space
to the Nehari manifold N φ

Ω,V at the point u ∈ N φ
Ω,V .

Proposition 2.5. N φ
Ω,V has the following properties:

(a) There exists d0 > 0 such that ‖u‖V ≥ d0 for all u ∈ N φ
Ω,V . Consequently, N φ

Ω,V is a
closed subset of H1

0 (Ω).

(b) N φ
Ω,V is a submanifold of class C2 of H1

0 (Ω)φ.

(c) u /∈ TuN φ
Ω,V for every u ∈ N φ

Ω,V .

(d) For each u ∈ H1
0 (Ω)φ, u 6= 0, there exists a unique tu > 0 such that tuu ∈ N φ

Ω,V .
Furthermore, tu is the only point in (0,∞) which satisfies

max
t≥0

JV (tu) = JV (tuu).

Proof. (a): Inequality (2.5), together with the continuous Sobolev embedding H1
0 (Ω) ↪→

Lpr(Ω) and Proposition 2.1, implies that there exists C > 0 such that

C ≤
‖u‖2pV
D(u)

∀u ∈ H1
0 (Ω) r {0}.

Therefore,

C ≤
(‖u‖2V )p

D(u)
= ‖u‖2(p−1)

V ∀u ∈ N φ
Ω,V .

Hence, taking d0 := C
1

2(p−1) , we have that

‖u‖V ≥ d0 ∀u ∈ N φ
Ω,V .

Consequently,

N φ
Ω,V =

{
u ∈ H1

0 (Ω)φ : ‖u‖V ≥ d0 and ‖u‖2V − D(u) = 0
}
,

which is clearly a closed subset of H1
0 (Ω)φ.

(b) and (c): Consider the function F : H1
0 (Ω)φ r {0} → R given by

F (u) := ‖u‖2V − D(u).

Notice that N φ
Ω,V = F−1(0).

As in the proof of Proposition 2.2 (see Appendix B), F is of class C2 and its derivative is
given by

F ′(u)v = 2〈u, v〉V − D′(u)v ∀u, v ∈ H1
0 (Ω)φ.
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Moreover, 0 is a regular value of F since

F ′(u)u = 2‖u‖2V − 2pD(u) = 2(1− p)‖u‖2V 6= 0 ∀u ∈ N φ
Ω,V .

This shows that N φ
Ω,V is a submanifold of class C2 of H1

0 (Ω)φ and that u /∈ kerF ′(u) =

TuN φ
Ω,V .

(d): Let u ∈ H1
0 (Ω)φ, u 6= 0. Let JV,u : (0,∞) → R be the function given by (2.8). This

function has exactly one critical point over (0,∞), which corresponds to a maximum point.
Furthermore, for t ∈ (0,∞), the following holds true:

J ′V,u(t) = J ′V (tu)u = 0⇐⇒ J ′V (tu)tu = 0⇐⇒ tu ∈ N φ
Ω,V .

Thus, JV,u has a maximum point at t if and only if tu ∈ N φ
Ω,V . This proves (d).

Observe that
JV (u) =

p− 1

2p
‖u‖2V =

p− 1

2p
D(u) ∀u ∈ N φ

Ω,V . (2.9)

From the above proposition we can conclude the following:

Corollary 2.6. (a) inf
u∈NφΩ,V

JV (u) > 0.

(b) If u ∈ N φ
Ω,V is a critical point of JV on N φ

Ω,V , then u is a nontrivial critical point of
JV : H1

0 (Ω)→ R and, consequently, a nontrivial solution of problem (2.1).

Proof. The statement (a) is an immediate consequence of the identity (2.9) and Proposition
2.5 (a).

(b) If u ∈ N φ
Ω,V is a critical point of JV on N φ

Ω,V , then

J ′V (u)v = 0 ∀v ∈ TuN φ
Ω,V .

In addition, from the definition of N φ
Ω,V it follows that J ′V (u)u = 0. As the orthogonal

complement of TuN φ
Ω,V in H1

0 (Ω)φ has dimension 1 and u /∈ TuN φ
Ω,V (Proposition 2.5 (c)),

one has that
H1

0 (Ω)φ = TuN φ
Ω,V ⊕ {tu : t ∈ R}.

Consequently,
J ′V (u)v = 0 ∀v ∈ H1

0 (Ω)φ,

this means, u is a critical point of JV |H1
0 (Ω)φ : H1

0 (Ω)φ → R. So, by Theorem 2.4 (b), we can
conclude that u is a critical point of JV .

The Nehari manifold N φ
Ω,V is radially diffeomorphic to the unit sphere in H1

0 (Ω)φ. The
radial projection π : H1

0 (Ω)φ r {0} → N φ
Ω,V is given by

π(u) :=

(
‖u‖2V
D(u)

) 1
2(p−1)

u. (2.10)



2.2. The Nehari manifold 21

Accordingly, for every u ∈ H1
0 (Ω)φ r {0},

JV (π(u)) =
p− 1

2p

(
‖u‖2V
D(u)

1
p

) p
p−1

. (2.11)

Remark 2.7. The solutions of problem (1.1) are the critical points of the functional ĴV :
H1

0 (Ω)→ R given by

ĴV (u) :=
1

2
‖u‖2V −

1

p
|u|pp ,

where |u|p :=
(∫

Ω |u|
p)1/p is the norm in Lp(Ω).

From Claim 1 in the proof of Proposition 2.2 and [59, Proposition 1.12] it follows that, if
p ∈ (2, 2∗), the functional ĴV is of class C2 and

Ĵ ′V (u)v = 〈u, v〉V −
∫

Ω
|u|p−2uv.

Consequently, u is a solution of problem (1.1) if and only if u is a critical point of ĴV . On
the other hand, a suitable change of variable, like in Lemma 2.3, allows us to conclude that
the functional ĴV is Γ-invariant under the action defined in (2.7). So, by the Principle of
Symmetric Criticality (which still works for the functional ĴV ), the critical points of the
restriction of ĴV to the fixed point space of this action, namely,

H1
0 (Ω)φ = {u ∈ H1

0 (Ω) : u(γx) = φ(γ)u(x) ∀γ ∈ Γ, x ∈ Ω},

are the solutions of problem (1.1) that satisfy (1.3). The nontrivial ones lie on the Nehari
manifold

N̂ φ
Ω,V :=

{
u ∈ H1

0 (Ω)φ : u 6= 0, ‖u‖2V = |u|pp
}
,

which is of class C2 and is radially diffeomorphic to the unit sphere in H1
0 (Ω)φ. Actually,

it is easy to check that N̂ φ
Ω,V and ĴV satisfy properties analogous to those established in

Proposition 2.5 and Corollary 2.6.
The radial projection π̂ : H1

0 (Ω)φ r {0} → N̂ φ
Ω,V is given by

π̂(u) :=

(
‖u‖2V
|u|pp

) 1
p−2

u.

Observe that, for every u ∈ H1
0 (Ω)φ r {0},

ĴV (π̂(u)) =
p− 2

2p

(
‖u‖2V
|u|2p

) p
p−2

= max
t≥0

ĴV (tu).

We set
cφΩ,V := inf

NφΩ,V
JV .



If φ ≡ 1 is the trivial homomorphism, then Γ = G := kerφ. In this case we shall write
H1

0 (Ω)G, NG
Ω,V and cGΩ,V instead of H1

0 (Ω)φ, N φ
Ω,V and cφΩ,V . If G = {1} is the trivial group,

we shall omit it from the notation and write simply H1
0 (Ω), NΩ,V and cΩ,V .

The problem {
−∆u+ u =

(
1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1(RN ),
(2.12)

plays a special role: it is the limit problem for (2.1). In this case we write J∞, N∞ and
c∞ instead of J0, NRN ,0 and cRN ,0.

2.3 Non-existence of minimizers for nonnegative po-
tentials

It is known that c∞ is attained at a positive function ω ∈ H1(RN ) (see for example [48,
Theorem 3]). The following result shows, however, that cφΩ,V is not necessarily attained.

Proposition 2.8. If V ≥ 0, then cΩ,V = c∞. If, additionally, V 6≡ 0 when Ω = RN , then
cΩ,V is not attained.

The proof of Proposition 2.8 is based on the following three lemmas and Theorem 2.12
below.

Lemma 2.9. If vn ⇀ 0 weakly in H1
0 (Ω), then after passing to a subsequence, we have that

lim
n→∞

(‖vn‖2V − ‖vn‖2) = 0.

Proof. Let ε > 0. Since (vn) is bounded in H1
0 (Ω) a subsequence satisfies that vn → 0

strongly in L2
loc(Ω). Let C > 0 be such that |vn|22 < C for all n ∈ N. Set

Aε :=
{
x ∈ Ω : |V (x)| ≥ ε

2C

}
.

Assumption (V0) guarantees that Aε is a bounded set and, since vn → 0 strongly in L2
loc(Ω),

there exists n0 ∈ N such that∫
Aε

|V (x)||vn|2 ≤ sup
RN
|V |
∫
Aε

|vn|2 <
ε

2
if n ≥ n0.

On the other hand, ∫
ΩrAε

|V (x)||vn|2 ≤
ε

2C

∫
ΩrAε

|vn|2 ≤
ε

2
.

Consequently, ∫
Ω
|V (x)||vn|2 < ε if n ≥ n0.

From ‖vn‖2V − ‖vn‖2 =
∫

Ω V (x)|vn|2 we obtain the conclusion.
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We choose a radially symmetric cut-off function χ ∈ C∞c (RN ) such that 0 ≤ χ ≤ 1,
χ(x) = 1 if |x| ≤ 1 and χ(x) = 0 if |x| ≥ 2. Let S > 0 and u : RN → R given. We define

χS(x) := χ
(x
S

)
and uS := χSu.

Observe that χS(x) = 1 if |x| ≤ S and χS(x) = 0 if |x| ≥ 2S.

Lemma 2.10. If u ∈ H1(RN ), then

uS → u strongly in H1(RN ),

D
(
uS
)
→ D(u) in R

as S →∞.

Proof. Note first that

∫
RN

∣∣u− uS∣∣2 =

∫
RN

∣∣1− χS∣∣2 |u|2 (2.13)

≤
∫
|x|≥S

|u|2.

Let C > 0 be such that |∇χ(x)| ≤ C for all x ∈ RN . Then

∫
RN

∣∣∇ (u− uS)∣∣2 =

∫
RN

∣∣∇ ((1− χS)u)∣∣2
=

∫
RN

∣∣(1− χS)∇u− u∇χS∣∣2
≤ 4

(∫
RN

(
1− χS

)2 |∇u|2 +

∫
RN
|u|2

∣∣∇χS∣∣2) (2.14)

≤ 4

(∫
|x|≥S

|∇u|2 +
C2

S2

∫
RN
|u|2
)
.

Consequently, since u ∈ H1(RN ),

‖u− uS‖2 ≤ 4

∫
|x|≥S

|∇u|2 +
4C2

S2

∫
RN
|u|2 +

∫
|x|≥S

|u|2 → 0 as S →∞.

This shows that uS → u strongly in H1(RN ).
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Now, using the Hardy– Littlewood–Sobolev inequality (2.4) one has

∣∣D(u)− D
(
uS
)∣∣ ≤ ∫

RN

∫
RN

∣∣|u(x)|p|u(y)|p − |uS(x)|p|uS(y)|p
∣∣

|x− y|α
dx dy

≤
∫
RN

∫
RN

∣∣|u(x)|p|u(y)|p − |u(x)|p|uS(y)|p
∣∣

|x− y|α
dx dy

+

∫
RN

∫
RN

∣∣|u(x)|p|uS(y)|p − |uS(x)|p|uS(y)|p
∣∣

|x− y|α
dx dy

≤ 2

∫
RN

∫
RN

|u(x)|p
∣∣|u(y)|p − |uS(y)|p

∣∣
|x− y|α

dx dy

≤ 2C̄|u|ppr
∣∣|u|p − |uS |p∣∣

r
(2.15)

≤ C

(∫
|x|≥S

|u|pr
) 1

r

,

where r := 2N
2N−α and C := 2C̄|u|ppr.

Therefore, since u ∈ Lpr(RN ), we can deduce that∣∣D(u)− D
(
uS
)∣∣→ 0 as S →∞.

Lemma 2.11. Set K(x) := 1
|x|α . Every solution u ∈ H1(RN ) to problem (2.12) has the

following properties:

(a) u ∈ Lr(RN ) for every r ∈ [2,∞).

(b) K ∗ |u|p is continuous on RN and lim|x|→∞ (K ∗ |u|p) (x) = 0.

(c) u is of class C2.

Proof. (a) and (c) are shown in [48, Proposition 4.1.]. The proof of (b) follows the same
lines as the one of [21, Lemma A.1.(iii)].

Theorem 2.12 (Unique continuation principle). Let Ω be a connected open subset of RN ,
N ≥ 3 and W ∈ C0(Ω). If u ∈ H1(Ω) satisfies

−∆u+W (x)u = 0,

and u = 0 on a nonempty open subset of Ω, then u = 0 on Ω.

Proof. See for instance [35, 37].

We write
Br(ξ) := {x ∈ RN : |x− ξ| < r}.
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Proof of Proposition 2.8. Since H1
0 (Ω) ⊂ H1(RN ) and V ≥ 0 one easily concludes that

cΩ,V ≥ c∞. Let R > 0 be such that
(
RN r Ω

)
⊂ BR(0), and let (xn) be a sequence in RN

such that |xn| > R and |xn| → ∞. We choose a cut-off function χ ∈ C∞c (RN ) such that
0 ≤ χ ≤ 1, χ(x) = 1 if |x| ≤ 1 and χ(x) = 0 if |x| ≥ 2. We define rn := 1

2(|xn| −R) and

un(x) := χ
(x− xn

rn

)
ω(x− xn).

Then un ∈ H1
0 (Ω), un 6= 0, un ⇀ 0 weakly in H1(RN ) and un → 0 strongly in L2

loc(RN ).
From Lemma 2.9 we obtain that

lim
n→∞

‖un‖2V = lim
n→∞

‖un‖2

and since un(x) = ωrn(x− xn), from Lemma 2.10 we deduce that

lim
n→∞

‖un‖2V = lim
n→∞

‖un‖2 = ‖ω‖2 and lim
n→∞

D(un) = D(ω).

Consequently, from (2.11) we obtain that JV (π(un))→ J∞(ω) = c∞. Therefore cΩ,V ≤ c∞,
and hence cΩ,V = c∞.

Now, if there were u ∈ NΩ,V satisfying JV (u) = cΩ,V , then u would be a nontrivial solution
of problem (2.12) with minimum energy and ‖u‖2V = ‖u‖2. Therefore, u would satisfy

−∆u+W (x)u = 0,

where
W (x) = 1−

(
1

|x|α
∗ |u|p

)
|u|p−2.

From Lemma 2.11 (b) and (c) we would have that W is continuous. We distinguish two
cases: (1) If Ω = RN then, by assumption, V is strictly positive on some open set U of RN .
Since

0 = ‖u‖2V − ‖u‖2 =

∫
RN

V (x)u2 ≥
∫
U
V (x)u2 ≥ 0,

we conclude that u = 0 in U. (2) If Ω 6= RN then u = 0 in RN rΩ. In both cases, we obtain
a contradiction to the unique continuation principle (Theorem 2.12). As a result, cΩ,V is
not attained.

Remark 2.13. In the local case, it is well-known that also the existence of ground states
(i.e. minimum points of ĴV on the Nehari manifold) turns out to heavily depend on the
sign of the potential. In fact, it has been proved that no ground state is allowed if, either
V ≥ 0 is strictly positive on a set of positive measure or if V ≥ 0 and RN rΩ is nonempty,
while a positive ground state solution exists if V ≤ 0 is strictly negative on a set of positive
measure.
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Chapter 3
Main tools for proving existence

3.1 Representation of Palais-Smale sequences
This section is mainly devoted to the description of the lack of compactness to the nonlocal
problem {

−∆u+ (V∞ + V (x))u =
(

1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1
0 (Ω),

(3.1)

where N ≥ 3, α ∈ (0, N), p ∈
[
2, 2N−α

N−2

)
and Ω is an unbounded smooth domain in RN

whose complement RN r Ω is bounded, possibly empty. The potential V∞ + V is assumed
to satisfy

(V0) V ∈ C0(RN ), V∞ ∈ (0,∞), infx∈RN {V∞ + V (x)} > 0, lim|x|→∞ V (x) = 0.

From now on we shall assume without loss of generality that V∞ = 1.
As usual, we identify u ∈ H1

0 (Ω) with its extension to RN obtained by setting u ≡ 0 in
RN r Ω.

Recall that the energy functional JV : H1
0 (Ω)→ R associated to problem (3.1) is given by

JV (u) :=
1

2
‖u‖2V −

1

2p
D(u),

where
D(u) :=

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p =

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy

and ‖·‖2V is the norm induced by the scalar product

〈u, v〉V :=

∫
Ω
∇u · ∇v +

∫
Ω

(1 + V (x))uv.

If V = 0 we write 〈u, v〉 and ‖u‖ instead of 〈u, v〉0 and ‖u‖0 .
In the nonsymmetric case, Benci and Cerami [9] described the lack of compactness of the

functional ĴV associated to the local problem (1.1). They showed that the Palais-Smale
sequences which do not converge to a solution of problem (1.1) approach a sum of a possibly
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trivial solution of (1.1) plus nontrivial solutions of the limit problem (1.2) translated by
sequences of points in the domain which go to infinity.

We analyze next the Palais-Smale sequences for the functional JV belonging to

H1
0 (Ω)φ := {u ∈ H1

0 (Ω) : u(γx) = φ(γ)u(x) ∀γ ∈ Γ, ∀x ∈ Ω},

where, as in the previous chapter, Γ is a closed subgroup of the group O(N) of linear
isometries of RN and φ : Γ→ Z/2 is a continuous group homomorphism.

We shall give a precise description of the relation between the symmetries of the translation
points and those of the corresponding solution to the limit problem{

−∆u+ u =
(

1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1(RN ).
(3.2)

This plays an important role in the proof of Corollary 3.7, which will be crucial for our
results.

Recall that the Γ−orbit of a point x ∈ RN is the set

Γx = {ηx : η ∈ Γ}

and that the Γ-isotropy group of x is the subgroup

Γx := {η ∈ Γ : ηx = x}

of Γ. We write
(RN )H = {x ∈ RN : ηx = x for all η ∈ H}

for the fixed point space of the action of a closed subgroup H of Γ on RN .
Recall that the subgroups H and K of Γ are called conjugate in Γ if and only if there

exists η ∈ Γ such that H = ηKη−1. The conjugacy class of H in Γ is the set

(H) = {ηHη−1 : η ∈ Γ}.

The relation
(L) ≤ (M) if and only if ηLη−1 ⊆M for some η ∈ Γ

defines a partial order on the set of conjugacy classes of closed subgroups of Γ. The conjugacy
class (Γx) of an isotropy group Γx is called an isotropy class.

Next, we collect some known results on spaces with group actions which will be used in
the proof of the following lemma.

(F1) The Γ-orbit Γx of x is Γ-homeomorphic to the homogeneous space Γ/Γx. The homeo-
morphism is given by

ηx : Γ/Γx → Γx, ηΓx 7→ ηx.

See for instance [11, I.4.(4.1)] or [30, I.3.(3.19)].

(F2) Isotropy groups satisfy
Γηx = ηΓxη

−1.

Hence, the conjugate groups to an isotropy group are isotropy groups and so, if Γx is
finite, there is only a finite number of groups conjugate to Γx. See for instance [11,
I.2.(2.1)].
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(F3) Every finite–dimensional vector space has only finitely many isotropy classes (see [30,
I.5.(5.11)] and [11, IV.10]).

(F4) If K ⊂ Γζ and (K) = (Γζ), then K = Γζ . Indeed, let η ∈ Γ be such that ηΓζη
−1 = K.

Since K ⊂ Γζ one has that (RN )Γζ ⊂ (RN )K . On the other hand, the map x 7→ ηx
is an isomorphism between (RN )Γζ and (RN )K and hence both spaces have the same
dimension. Consequently, (RN )Γζ = (RN )K and, since ηζ ∈ (RN )K , we conclude that
Γζ ⊂ Γηζ = K. This proves that K = Γζ .

The following lemma and its proof are taken from [21, Lemma 3.2]. We just add some
details.

Lemma 3.1. Given a sequence (yn) in RN there exist a sequence (ζn) in RN and a closed
subgroup K of Γ such that for some subsequence of (yn), which we still denote in the same
way, the following hold:
(a) dist(Γyn, ζn)) is bounded.
(b) Γζn = K for all n ∈ N.
(c) If |Γ/K| <∞ then |ηζn − η̃ζn| → ∞ for any [η] , [η̃] ∈ Γ/K with [η] 6= [η̃].
(d) If |Γ/K| =∞ then there exists a closed subgroup K ′ of Γ such that K ⊂ K ′, |Γ/K ′| =∞
and |ηζn − η̃ζn| → ∞ for any [η] , [η̃] ∈ Γ/K ′ with [η] 6= [η̃].

Proof. Set
V := {x ∈ RN : |Γ/Γx| <∞}.

Note that V is a Γ-invariant linear subspace of RN . Indeed, let x, y ∈ V and a ∈ R. From
(F1) one has that Γx and Γy are finite and so, Γ(x+ y) and Γ(ax) are finite too. Moreover
Γ(ηx) = Γx for all η ∈ Γ. Using again (F1) the claim follows.

Next, two cases are considered.
Case 1. The sequence (dist(yn, V )) is bounded.
Let = be the set of isotropy classes (Γx) such that x ∈ V and, for some η ∈ Γ,(

dist
(
yn, (RN )ηΓxη−1)) contains a bounded subsequence.

Let us see that = 6= ∅. Indeed, if zn is the orthogonal projection of yn onto V , from (F3)
there exists an isotropy class (L) such that after passing to a subsequence (Γzn) = (L) for all
n ∈ N. Moreover, (F1) implies that the Γ−orbit of every point in V is finite and then (F2)
yields that the isotropy class of each element in V has only finitely many groups. Therefore,
after passing to another subsequence one can assume that Γzn = L for all n ∈ N. Note that
(RN )L ⊆ V . Indeed, if x ∈ (RN )L, then L ⊆ Γx and so |Γ/Γx| ≤ |Γ/L| <∞. Therefore,

dist(yn, (RN )L) = |yn − zn| = dist(yn, V ),

and hence (L) ∈ =.
Now, choose K and a subsequence of (yn)—which will be denoted in the same way—

such that (K) is a maximal element of = (i.e. if (H) ∈ = is such that (K) ≤ (H), then
(K) = (H)) and

dist(yn, (RN )K) < c <∞ ∀n ∈ N.

Let ζn be the orthogonal projection of yn onto (RN )K .
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(a) is trivially satisfied since

dist(Γyn, ζn) ≤ |yn − ζn| = (dist(yn, (RN )K) < c ∀n ∈ N.

Since (RN )K ⊂ V , by the same argument as above, passing to a subsequence, one can
assume that Γζn = L for all n ∈ N . Since K ⊂ L, (RN )L ⊂ (RN )K . Then

dist(yn, (RN )L) = |yn − ζn| < c ∀n ∈ N.

Therefore (L) ∈ =. Since K ⊂ Γζn and (K) is maximal, one can conclude that (K) = (Γζn).
It follows from (F4) that Γζn = K. This proves (b).

Since |Γ/K| <∞, in order to prove (c) it suffices to show that, if η /∈ K, then (ηζn − ζn)
does not contain a bounded subsequence. Arguing by contradiction, assume that there exist
η̃ /∈ K and a bounded subsequence of (η̃ζn − ζn). Let L be the subgroup of Γ generated by
K ∪ {η̃}, W := (RN )L and W⊥ be the orthogonal complement of W in (RN )K . Write

ζn = ζ1
n + ζ2

n with ζ1
n ∈W and ζ2

n ∈W⊥.

Then
η̃ζn − ζn =

(
η̃ζ1
n − ζ1

n

)
+
(
η̃ζ2
n − ζ2

n

)
= η̃ζ2

n − ζ2
n.

Since η̃ /∈ K, assertion (b) implies that η̃ζn 6= ζn. Hence ζ2
n 6= 0 and, passing to a subse-

quence, one has
ζ2
n

|ζ2
n|
→ ζ.

If (ζ2
n) is unbounded, a subsequence satisfies∣∣∣∣ η̃ζ2

n

|ζ2
n|
− ζ2

n

|ζ2
n|

∣∣∣∣ =
|η̃ζn − ζn|
|ζ2
n|

→ 0.

Therefore η̃ζ = ζ. Moreover, since ζ2
n
|ζ2
n|
∈ (RN )K for all n ∈ N, then ζ ∈ (RN )K . Hence

ζ ∈W , which is a contradiction.
If, on the other hand, (ζ2

n) is bounded then, passing to a subsequence such that Γζ1
n

= L1

for all n ∈ N, the following holds true:

dist(yn, (RN )L1) = |yn − ζ1
n| ≤ |yn − ζn|+ |ζ2

n| ≤ c̃ <∞,

where c̃ is a positive constant. Therefore (L1) ∈ =. Note that K ⊂ L ⊂ L1. Since (K) is
maximal one has that (L1) = (K) and by (F4) one infers that L1 = K, which is again a
contradiction.

Case 2. The sequence (dist(yn, V )) is unbounded.
Passing to a subsequence, one can assume that dist(yn, V ) → ∞ and by (F3) one can

also assume that there exists an isotropy class (K) such that (Γyn) = (K) for all n ∈ N.
Choosing ζn ∈ Γyn such that Γζn = K, it immediately follows that (a) and (b) hold. Note
that yn /∈ V . Moreover, ηyn /∈ V for any η ∈ Γ and then |Γ/K| =∞.

Let us see that (d) holds. Let V ⊥ be the orthogonal complement of V in RN and ξn be
the orthogonal projection of ζn onto V ⊥. Passing to a subsequence, one has that

ξn
|ξn|
→ ξ.
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Set K ′ := Γξ. Thus K ⊂ K ′. Moreover, since ξ ∈ V ⊥, |Γ/K ′| = ∞. If [η], [η̃] ∈ Γ/K ′ are
such that [η] 6= [η̃], then d := |ηξ − η̃ξ| > 0. Let n0 ∈ N be such that

∣∣∣ ξn|ξn| − ξ∣∣∣ < d
4 for

n ≥ n0. Taking into account that η and η̃ are isometries on RN one has that

d = |ηξ − η̃ξ|

≤
∣∣∣∣ηξ − ηξn

|ξn|

∣∣∣∣+

∣∣∣∣ηξn|ξn| − η̃ξn
|ξn|

∣∣∣∣+

∣∣∣∣ η̃ξn|ξn| − η̃ξ
∣∣∣∣

=
|ηξn − η̃ξn|
|ξn|

+ 2

∣∣∣∣ ξn|ξn| − ξ
∣∣∣∣

≤ |ηξn − η̃ξn|
|ξn|

+
d

2
∀n ≥ n0.

Hence,
d

2
|ξn| ≤ |ηξn − η̃ξn| ∀n ≥ n0.

Consequently,

d

2
dist(ζn, V ) =

d

2
|ξn| ≤ |ηξn − η̃ξn| ≤ |ηζn − η̃ζn| ∀n ≥ n0.

Since dist(ζn, V )→∞, assertion (d) holds.

The following lemma says that D is invariant under translations.

Lemma 3.2. For all u ∈ H1(RN ) and z ∈ RN ,

D(u(·+ z)) = D(u).

Proof. The change of variables x̃ = x+ z, ỹ = y + z yields

D(u(·+ z)) =

∫
RN

∫
RN

|u(x+ z)|p|u(y + z)|p

|x− y|α
dx dy

=

∫
RN

∫
RN

|u(x̃)|p|u(ỹ)|p

|(x̃− z)− (ỹ − z)|α
dx̃ dỹ

=

∫
RN

∫
RN

|u(x̃)|p|u(ỹ)|p

|x̃− ỹ|α
dx̃ dỹ

= D(u).

Lemma 3.3. Let (un) be a sequence in H1
0 (Ω) such that JV (un) → c and J ′V (un) → 0 in

H−1(Ω). Then (un) is a bounded sequence in H1
0 (Ω) and c ≥ 0.

Proof. For n sufficiently large one has that

p− 1

2p
‖un‖2V = JV (un)− 1

2p
J ′V (un)un (3.3)

≤ |JV (un)|+ 1

2p
‖∇JV (un)‖V ‖un‖V

≤ |c|+ 1 + ‖un‖V .
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Consequently, (‖un‖V ) is bounded. Therefore, from (3.3) it follows that

p− 1

2p
‖un‖2V → c

and so c ≥ 0.

As in the previous chapter we denote by J0 the functional associated to problem (3.1)
with V ≡ 0, i.e.

J0(u) :=
1

2
‖u‖2 − 1

2p
D(u).

The following proposition corresponds to a slight variant of [1, Lemma 3.5] which states a
Brezis-Lieb lemma for a large class of nonlocal functions. A proof of it can be found in
Appendix A.

Proposition 3.4. Let (un) be a sequence in H1
0 (Ω) such that un ⇀ u weakly in H1

0 (Ω). The
following hold:

1. D′(un)v → D′(u)v for all v ∈ H1
0 (Ω).

2. After passing to a subsequence, we have

D(un)− D(un − u)→ D(u) in R,
D′(un)− D′(un − u)→ D′(u) in H−1(Ω).

The proof of the following lemma follows exactly the same lines as the proof of [59, Lemma
8.2.]. However, we include it here for the sake of completeness.

Lemma 3.5. If

un ⇀ u in H1
0 (Ω),

un → u a.e. on Ω,

JV (un)→ c,

J ′V (un)→ 0 in H−1(Ω),

then J ′V (u) = 0 and vn := un − u is such that

J0(vn)→ c− JV (u),

J ′0(vn)→ 0 in H−1(Ω).

Proof. From Lemma 2.9, one has that

JV (vn)− J0(vn) =
1

2
(‖vn‖2V − ‖vn‖2) = o(1).
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Moreover, from Proposition 3.4 it follows that

JV (vn) =
1

2
‖un − u‖2V −

1

2p
D(un − u)

=
1

2

(
‖un‖2V − ‖u‖

2
V

)
− 1

2p
(D(un)− D(u)) + o(1)

= JV (un)− JV (u) + o(1)

= c− JV (u) + o(1).

Therefore,
J0(vn) = c− JV (u) + o(1).

Let v ∈ H1
0 (Ω). Since un ⇀ u in H1

0 (Ω), Proposition 3.4 yields

J ′V (un)v = 〈un, v〉V − D′(un)v → 〈u, v〉V − D′(u)v = J ′V (u)v in R.

On the other hand, by the hypotheses, we have that J ′V (un)v → 0 in R. As the limit must
be unique, we conclude that J ′V (u)v = 0. Hence, J ′V (u) = 0.

Set w ∈ H1
0 (Ω). In what follows, C denotes a positive constant, possibly different at each

occurrence. By assumption (V0) we have that, for ε > 0 given, there exists R > 0 such that
|V (x)| ≤ ε for all x ∈ RN rBR and then

|J ′V (vn)w − J ′0(vn)w| =
∣∣∣∣∫

Ω
V vnw

∣∣∣∣
≤ sup

BR

|V |
∫
BR

|vnw|+ ε

∫
RNrBR

|vnw|

≤ C|vn|2,BR |w|2 + ε|vn|2|w|2
≤ C(|vn|2,BR + ε|vn|2)‖w‖.

Since vn ⇀ 0 in H1
0 (Ω), (vn) is a bounded sequence in L2(Ω) and so

‖J ′V (vn)− J ′0(vn)‖ ≤ C(|vn|2,BR + ε).

Moreover, after passing to a subsequence if necessary, we have that vn → 0 in L2
loc(Ω) and

then
lim sup
n→∞

‖J ′V (vn)− J ′0(vn)‖ ≤ Cε.

Letting ε→ 0 we conclude that

lim
n→∞

‖J ′V (vn)→ J ′0(vn)‖ = 0.

Now, Proposition 3.4, together with Riesz representation theorem, gives

∇D(un)−∇D(un − u)→ ∇D(u) in H1
0 (Ω)



34 Chapter 3

and then, since ∇JV (vn) = vn − 1
2p∇D(vn) with respect to the scalar product defined in

(2.2), we obtain

∇JV (vn) = (un − u)− 1

2p
∇D(un − u)

= (un − u)− 1

2p
(∇D(un)−∇D(u)) + o(1)

= ∇JV (un)−∇JV (u) + o(1).

Consequently,

J ′0(vn) = J ′V (vn) + o(1)

= J ′V (un)− J ′V (u) + o(1)

= o(1).

Recall that the energy functional J∞ : H1(RN )→ R associated to problem (3.2) is given
by

J∞(u) :=
1

2
‖u‖2 − 1

2p
D(u).

We denote by Br(y) := {x ∈ RN : |x− y| < r}. If v ∈ H1(RN ) and η ∈ Γ we simply write
vη for the composition v ◦ η.

Proposition 3.6. Let (un) be a sequence in H1
0 (Ω)φ such that un ⇀ 0 in H1

0 (Ω), J0(un)→
c > 0 and J ′0(un)→ 0 in H−1(Ω). Then there exist a sequence (ζn) in Ω, a closed subgroup
K of finite index in Γ, a nontrivial solution v to problem (3.2) and a sequence (wn) in
H1

0 (Ω)φ such that

(a) Γζn = K for all n ∈ N,

(b) |ζn| → ∞ and |ηζn − η̃ζn| → ∞ if η̃η−1 /∈ K, η̃, η ∈ Γ,

(c) v(ηx) = φ(η)v(x) for all x ∈ RN , η ∈ K,

(d)

∥∥∥∥∥un − wn − ∑
[η]∈Γ/K

φ(η)vη−1 (· − ηζn)

∥∥∥∥∥→ 0,

(e) wn ⇀ 0 in H1
0 (Ω), J0(wn)→ c− |Γ/K| J∞(v) and J ′0(wn)→ 0 in H−1(Ω).

Proof. Lemma 3.3 guarantees that (un) is a bounded sequence in H1
0 (Ω). Thus

p− 1

2p
D(un) = J0(un)− 1

2
J ′0(un)un → c > 0.

That is, D(un)→ 2p
p−1c > 0. From (2.5) and Lions’ lemma [59, Lemma 1.21] it follows that

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)

|un|2 > 0.
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We choose yn ∈ RN such that ∫
B1(yn)

|un|2 > δ/2

and, for the sequence (yn), we choose K and (ζn) as in Lemma 3.1. We define vn(x) :=
un(x+ ζn). Passing to a subsequence if necessary, we may assume that

vn ⇀ v weakly in H1(RN ),

vn → v strongly in L2
loc(RN ),

vn → v a.e. on RN .

Fixing C > 0 such that dist(Γyn, ζn) ≤ C for every n, we have that B1(ηnyn) ⊂ BC+1(ζn)
for some ηn ∈ Γ. Since |un| is Γ-invariant we obtain∫

BC+1(0)
|vn|2 =

∫
BC+1(ζn)

|un|2 ≥
∫
B1(yn)

|un|2 >
δ

2
.

This implies that v 6= 0. But un ⇀ 0 in H1(RN ), so |ζn| → ∞.
We claim that v is a solution to problem (3.2). Indeed, Since J∞ is invariant under

translations, we have that

‖∇J∞(un(·+ ζn))‖ = ‖∇J0(un)‖

Therefore, from ∇J0(un) → 0 in H1
0 (Ω) we get that ∇J∞(un(·+ ζn)) → 0 in H1(RN ). On

the other hand, since un(·+ ζn) ⇀ v in H1(RN ), Proposition 3.4 asserts that

∇J∞(un(·+ ζn))→ ∇J∞(v).

Since the limit must be unique we conclude that ∇J∞(v) = 0.
Assertion (b) of Lemma 3.1 insures that, for every η ∈ K,

un(η x+ ζn) = un (η(x+ ζn)) = φ(η)un(x+ ζn).

Hence v(ηx) = φ(η)v(x).
Let η1, η2, . . . ηt ∈ Γ be such that |ηjζn − ηiζn| → ∞ when i 6= j. Then

φ(ηj)vnη
−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn) ⇀ φ(ηj)vη

−1
j (3.4)

weakly in H1(RN ). Therefore,∥∥∥φ(ηj)vnη
−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)

∥∥∥2
=∥∥∥φ(ηj)vnη

−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)− φ(ηj)vη

−1
j

∥∥∥2
+
∥∥∥φ(ηj)vη

−1
j

∥∥∥2
+ o(1).

Now observe that, since un is φ-equivariant, for all η ∈ Γ,

un(y) = φ(η)un(η−1y) = φ(η)vn(η−1y − ζn) = φ(η)vnη
−1(y − ηζn). (3.5)
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Therefore, the change of variable y = x+ ηjζn in the above expression yields

∥∥∥un − t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥2
=
∥∥∥un − t∑

i=j

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥2
+ ‖v‖2 + o(1).

Iterating this equality, starting from j = t, we obtain

‖un‖2 =

∥∥∥∥un − t∑
i=(t−1)+1

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥∥2

+ ‖v‖2 + o(1)

=

∥∥∥∥un − t∑
i=(t−2)+1

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥∥2

+ 2‖v‖2 + o(1)

...

=

∥∥∥∥un − t∑
i=1

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥∥2

+ t‖v‖2 + o(1).

Consequently,

‖un‖2 −
∥∥∥un − t∑

i=1

φ(ηi)vη
−1
i (· − ηiζn)

∥∥∥2
= t‖v‖2 + o(1). (3.6)

Since ‖un‖2 → 2p
p−1c, letting n→∞ in the above expression, we deduce that

2p

p− 1
c ≥ t‖v‖2.

Hence, assertion (d) of Lemma 3.1 implies that |Γ/K| < ∞, i.e. K has finite index in Γ.
Thus assertion (c) of Lemma 3.1 allows us to take t := |Γ/K| .

On the other hand, since (3.4) holds, Proposition 3.4 asserts that

D
(
φ(ηj)vnη

−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)

)
=

D
(
φ(ηj)vnη

−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)− φ(ηj)vη

−1
j

)
+ D

(
φ(ηj)vη

−1
j

)
+ o(1).

From Lemma 2.3, we have that D(ηjv) = D(v), i.e. D
(
φ(ηj)vη

−1
j

)
= D(v). Moreover, from

Lemma 3.2 with z = −ηjζn, we obtain that

D
(
φ(ηj)vη

−1
j (· − ηjζn)

)
= D(v).

Therefore, taking into account (3.5), it follows that

D
(
un −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn)

)
= D

(
un −

t∑
i=j

φ(ηi)vη
−1
i (· − ηiζn)

)
+ D(v) + o(1).
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Iterating this equality, starting from j = t, we get

D(un)− D
(
un −

t∑
i=1

φ(ηi)vη
−1
i (· − ηiζn)

)
= tD(v) + o(1). (3.7)

Similarly, by Proposition 3.4 we also have that

D′
(
φ(ηj)vnη

−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)

)
=

D′
(
φ(ηj)vnη

−1
j −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn + ηjζn)− φ(ηj)vη

−1
j

)
+D′

(
φ(ηj)vη

−1
j

)
+ o(1).

Making the change of variable x̃ = x− ηjζn and taking into account (3.5), we obtain

D′
(
un −

t∑
i=j+1

φ(ηi)vη
−1
i (· − ηiζn)

)
=

D′
(
un −

t∑
i=j

φ(ηi)vη
−1
i (· − ηiζn)

)
+ D′

(
φ(ηj)vη

−1
j (· − ηjζn)

)
+ o(1).

Iterating this equality, starting from j = t, we get

D′(un)− D′
(
un −

t∑
i=1

φ(ηi)vη
−1
i (· − ηiζn)

)
−

t∑
i=1

D′
(
φ(ηi)vη

−1
i (· − ηiζn)

)
= o(1) (3.8)

in H−1(RN ). Setting

w̃n(x) := un(x)−
|Γ/K|∑
i=1

φ(ηi)v
(
η−1
i (x− ηiζn)

)
,

we can rewrite expressions (3.6), (3.7) and (3.8) as:

‖un‖2 − ‖w̃n‖2 → |Γ/K|‖v‖2 (3.9)
D(un)− D(w̃n)→ |Γ/K|D(v) (3.10)

D′(un)− D′(w̃n)−
t∑
i=1

D′
(
φ(ηi)vη

−1
i (· − ηiζn)

)
→ 0 in H−1(Ω). (3.11)

From (3.9) and (3.10) it follows that

J∞(w̃n)→ c− |Γ/K|J∞(v).
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Let ρ ∈ H1
0 (Ω). From the bilinearity of the scalar product in H1(RN ) and (3.11) we obtain

J ′∞(w̃n)ρ = 〈w̃n, ρ〉 − D′(w̃n)ρ

=
〈
un −

t∑
i=1

φ(ηi)vη
−1
i (· − ηiζn), ρ

〉
− D′(w̃n)ρ

= 〈un, ρ〉 −
t∑
i=1

〈φ(ηi)vη
−1
i (· − ηiζn), ρ〉

− D′(un)ρ+

t∑
i=1

D′
(
φ(ηi)vη

−1
i (· − ηiζn)

)
ρ+ o(1)

= J ′0(un)ρ−
t∑
i=1

J ′∞
(
φ(ηi)vη

−1
i (· − ηiζn)

)
ρ.

Since J ′∞(v) = 0, clearly J ′∞
(
φ(η)vη−1(· − ηζn)

)
→ 0 in H−1(RN ) for all η ∈ Γ. Moreover

J ′0(un)→ 0 in H−1(Ω) and hence

J ′∞(w̃n)→ 0 en H−1(Ω).

Finally, we choose R > 0 such that
(
RN r Ω

)
⊂ BR(0), and a radially symmetric cut off

function χ ∈ C∞(RN ) such that 0 ≤ χ(x) ≤ 1, χ(x) = 0 if |x| ≤ R and χ(x) = 1 if |x| ≥ 2R.
We define

wn(x) := un(x)−
|Γ/K|∑
i=1

φ(ηi)χ(x)v
(
η−1
i (x− ηiζn)

)
.

Then wn ∈ H1
0 (Ω)φ. To see that (wn) satisfies (d) and (e) it suffices to observe that

wn − w̃n → 0 in H1(RN ) as |ζn| → ∞.

We shall say that JV satisfies the φ-equivariant Palais-Smale condition (PS)φc at the level
c if every sequence (vn) such that

vn ∈ H1
0 (Ω)φ, JV (vn)→ c, J ′V (vn)→ 0 in H−1(Ω), (3.12)

has a convergent subsequence in H1
0 (Ω). If φ ≡ 1, we write (PS)Γ

c instead of (PS)φc . The
proposition above gives us a level below which the functional JV satisfies the Palais-Smale
condition.

Corollary 3.7. JV satisfies condition (PS)φc for all c < `(Γ) c∞.

Proof. Let (vn) be a sequence which satisfies (3.12). From Lemma 3.3, we have that (vn)
is bounded in H1

0 (Ω)φ and then a subsequence satisfies that vn ⇀ v0 weakly in H1
0 (Ω)φ,

vn → v0 strongly in L2
loc(Ω) and vn(x) → v0(x) a.e. in Ω. Defining un := vn − v0 we have

that un ⇀ 0 in H1
0 (Ω)φ. Furthermore, Lemma 3.5 asserts that

J0(un)→ d := c− JV (v0), J ′0(un)→ 0 in H−1(Ω)
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and v0 is a solution of (3.1).
If d ≤ 0, Lemma 3.3 guarantees that un → 0 strongly in H1

0 (Ω). If d > 0, there exist
ζn ∈ Ω, a closed subgroup K of finite index in Γ, a nontrivial solution v of (3.2) and a
sequence (wn) in H1

0 (Ω)φ with properties (a)-(e) of Proposition 3.6. In particular,

J0(un) = J0(wn) + |Γ/K| J∞(v) + o(1).

Consequently,
c ≥ d ≥ |Γ/K|J∞(v) ≥ `(Γ)c∞.

From this contradiction to our hypothesis, we conclude that un → 0 strongly in H1
0 (Ω).

We denote by ∇JV the gradient of JV with respect to the scalar product (2.2), and by
∇NJV (u) the orthogonal projection of ∇JV (u) onto the tangent space TuN φ

Ω,V to the Nehari
manifold N φ

Ω,V at the point u ∈ N φ
Ω,V . We shall say that JV satisfies condition (PS)φc on

N φ
Ω,V if every sequence (un) such that

un ∈ N φ
Ω,V , JV (un)→ c, ∇NJV (un)→ 0, (3.13)

contains a convergent subsequence in H1
0 (Ω).

Corollary 3.8. JV satisfies condition (PS)φc on N φ
Ω,V for all c < `(Γ) c∞.

Proof. Let (un) be a sequence which satisfies (3.13). In view of Corollary 3.7, we just need
to prove that ∇JV (un)→ 0.

If u ∈ N φ
Ω,V , Theorem 2.4 (a) asserts that ∇JV (u) ∈ H1

0 (Ω)φ. Moreover, the tangent
space TuN φ

Ω,V is the subspace of H1
0 (Ω)φ which is orthogonal to ∇F (u), where F (u) :=

‖u‖2V − D(u). Since

〈∇F (u), v〉V = 2 〈u, v〉V − 2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv,

clearly (as in the proof of Theorem 2.4 (a)), ∇F (u) ∈ H1
0 (Ω)φ. We express ∇JV (un) as

∇JV (un) = ∇NJV (un) + tn∇F (un), tn ∈ R. (3.14)

By taking the scalar product of the above equality with un and taking into account Propo-
sition 2.5 (a) one gets

〈∇NJV (un), un〉V = 〈∇JV (un), un〉V − tn 〈∇F (un), un〉V
=
(
‖un‖2V − D(un)

)
− tn

(
2‖un‖2V − 2pD(un)

)
= 2(p− 1)tn‖un‖2V
≥ C1tn, (3.15)

with C1 > 0. Observe that, by (2.9),

p− 1

2p
‖un‖2V = JV (un)→ c,



then (un) is bounded in H1
0 (Ω) and, since by the hypotheses ∇NJV (un)→ 0, one has that

〈∇NJV (un), un〉V → 0. Thus, (3.15) yields that tn → 0. Now, set r := 2N
2N−α . By the

Hardy– Littlewood–Sobolev inequality (2.4) and the Sobolev embedding, one has that there
exists a constant C2 > 0 such that

|〈∇F (un), v〉V | ≤ 2‖un‖V ‖v‖V + 2pC(N,α) |un|2p−1
pr |v|pr ≤ C2‖v‖V

for all v ∈ H1
0 (Ω). In particular, if for each n ∈ N we take v = ∇F (un) in the above

inequality, we obtain ‖∇F (un)‖V ≤ C2, i.e. (∇F (un)) is bounded. Thus, from identity
(3.14), ∇JV (un)→ 0 follows.

Remark 3.9. To prove that the functional ĴV associated to problem (1.1) satisfies condition
(PS)φc on N̂ φ

Ω,V for all c < `(Γ) ĉ∞, we follow an entirely analogous procedure. The only
difference is that we need to use the Brezis-Lieb Lemma [13] instead of Proposition 3.4. See
[26, Section 3] for further details.

3.2 Asymptotic estimates
In this section we study some asymptotic estimates for the nonlocal problem, which will be
mainly used in the proof of Theorems 1.5 and 1.6 stated in the Introduction.

The ground states of problem (3.2) have been recently studied in [21, 48]. The following
result holds true.

Theorem 3.10. Let ω be a ground state of problem (3.2). Then ω ∈ L1(RN ) ∩ C∞(RN ),
ω does not change sign and it is radially symmetric and monotone decreasing in the radial
direction with respect to some fixed point. Moreover, ω has the following asymptotic behavior:

(i) If p > 2, then
lim
|x|→∞

|ω(x)||x|
N−1

2 e|x| ∈ (0,∞).

(ii) If p = 2, then
lim
|x|→∞

|ω(x)||x|
N−1

2 eQ(|x|) ∈ (0,∞),

where

Q(t) :=

∫ t

δ

√
1− δα

sα
ds and δα := (4− α)c∞.

Proof. See Theorems 3 and 4 in [48]. Note that ω is a solution of (3.2) if and only if
u := λ

− 1
2(p−1)ω is a solution of problem (1.1) in [48], where λ := Γ(α/2)

Γ((N−α)/2)πN/22N−α
and Γ

denotes here (and only here) the gamma function (and not the group).

In what follows, ω will denote a positive ground state of problem (3.2) which is radially
symmetric with respect to the origin. We continue to assume that p ≥ 2.
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Lemma 3.11.

lim
|x|→∞

ω(x)|x|
N−1

2 ea|x| =

{
∞ if a > 1,

0 if a ∈ (0, 1).

Proof. Set b := N−1
2 . We shall prove this result for p = 2. The proof for p > 2 is an

immediate consequence of Theorem 3.10. Observe that, for every ν ∈ (0, 1) it holds true
that √

1− δα

sα
≤ 1 if s ≥ δ and

√
1− δα

sα
≥ ν if s ≥ δ

(1− ν2)1/α
=: sν ,

and, hence, that

Q(t) ≤ t if t ≥ δ and ν(t− sν) ≤ Q(t) if t ≥ sν .

Consequently, if |x| ≥ δ then

ω(x)|x|bea|x| = ω(x)|x|beQ(|x|)ea|x|−Q(|x|) ≥ ω(x)|x|beQ(|x|)e(a−1)|x|.

If a > 1, the conclusion follows from Theorem 3.10. If a ∈ (0, 1), we fix ν ∈ (a, 1). Then,
for all |x| ≥ sν ,

ω(x)|x|bea|x| = ω(x)|x|beQ(|x|)ea|x|−Q(|x|) ≤ ω(x)|x|beQ(|x|)e(a−ν)|x|+νsν ,

and using once more Theorem 3.10 the conclusion follows.

For ζ ∈ RN we set
ωζ(x) := ω(x− ζ).

Lemma 3.12. For each a ∈ (0, 1),

lim
|ζ|→∞

∫
RN

ωp−1ωζ |ζ|
N−1

2 ea|ζ| = 0.

Proof. By Lemma 3.11 we have that, for each ν ∈ (0, 1), there exists a constant Cν > 0 such
that

ω(x) ≤ Cνe−ν|x| for all x ∈ RN .

We fix ν1, ν2 ∈ (a, 1) with ν1 < ν2. In what follows, C will denote different positive constants
depending only on ν1 and ν2. We have that∫

RN
ωp−1ωζ ≤ C

∫
RN

e−ν1(p−1)|x|e−ν2|x−ζ| dx ≤ C
∫
RN

e−ν1|x|e−ν2|x−ζ| dx

= C

∫
RN

e−ν1(|x|+|x−ζ|)e−(ν2−ν1)|x−ζ| dx ≤ Ce−ν1|ζ|
∫
RN

e−(ν2−ν1)|x| dx

= Ce−ν1|ζ|.

Therefore,

0 ≤
∫
RN

ωp−1ωζ |ζ|
N−1

2 ea|ζ| ≤ C|ζ|
N−1

2 e−(ν1−a)|ζ|,

which implies the result.
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For ζ ∈ RN we define

I(ζ) :=

∫
RN

(
1

|x|α
∗ ωp

)
ωp−1ωζ . (3.16)

Lemma 3.13. For each a ∈ (0, 1),

lim
|ζ|→∞

I(ζ) |ζ|
N−1

2 ea|ζ| = 0.

Proof. From Lemma 2.11 (b) we infer that 1
|x|α ∗ ω

p ∈ L∞(RN ). Hence,

0 ≤ I(ζ)|ζ|
N−1

2 ea|ζ| ≤ C
∫
RN

ωp−1ωζ |ζ|
N−1

2 ea|ζ|.

The conclusion follows from Lemma 3.12.

Lemma 3.14. For every a > 1, there exists a positive constant ka such that

I(ζ)|ζ|
N−1

2 ea|ζ| ≥ ka for all |ζ| ≥ 1.

Proof. Set b := N−1
2 . Lemma 3.11 asserts the existence of positive constants Ca, Ra such

that
Ca|x|−be−a|x| ≤ ω(x) if |x| ≥ Ra.

Let C1 > 0 be such that

ω(x) ≥ C1e
−a|x| for all |x| ≤ Ra.

Setting C2 := min{Ca, C1} we conclude that

ω(x) ≥ C2(1 + |x|)−be−a|x| for all x ∈ RN .

Hence,

ω(x− ζ)|ζ|bea|ζ| ≥ C2(1 + |x− ζ|)−be−a|x−ζ||ζ|bea|ζ|

≥ C2(1 + |x− ζ|)−b|ζ|be−a|x| for x, ζ ∈ RN .

Note that, if |x| ≤ 1 ≤ |ζ|, then 1 + |x− ζ| ≤ 1 + |x|+ |ζ| ≤ 3 |ζ| and so

ω(x− ζ)|ζ|bea|ζ| ≥ C3e
−a|x| for x, ζ ∈ RN with |x| ≤ 1 ≤ |ζ| ,

where C3 := 3−bC2. Consequently,

I(ζ)|ζ|bea|ζ| =
∫
RN

(
1

|x|α
∗ ωp

)
(x)ωp−1(x)ω(x− ζ)|ζ|bea|ζ| dx

≥ C3

∫
|x|≤1

(
1

|x|α
∗ ωp

)
(x)ωp−1(x)e−a|x| =: ka for |ζ| ≥ 1,

as claimed.
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For ζ ∈ RN we define

A(ζ) :=

∫
RN

V +(x)ω2(x− ζ)dx. (3.17)

Lemma 3.15. Let M ∈ (0, 2). If V (x) ≤ ce−ι|x| for all x ∈ RN with c > 0 and ι > M, then

lim
|ζ|→∞

A(ζ) |ζ|
N−1

2 eM |ζ| = 0.

Proof. Throughout this proof c will denote possibly distinct positive constants that are
independent of ζ. Let us fix ε ∈ (0, 1) such that ι(1− ε) > M . Then∫

Bε|ζ|(ζ)
V +(x)ω2(x− ζ) |ζ|

N−1
2 eM |ζ|dx ≤ c |ζ|

N−1
2 e−(ι(1−ε)−M)|ζ|

∫
RN

ω2(x)dx

= c |ζ|
N−1

2 e−(ι(1−ε)−M)|ζ|. (3.18)

On the other hand, let us fix a ∈ (0, 1) such that 2a > M . According to Lemma 3.11, for
x ∈ RN rBε|ζ|(ζ) and |ζ| large enough,

ω2(x− ζ) ≤ c|x− ζ|−(N−1) e−2a|x−ζ|.

Therefore, making the change of variable y = x
|ζ| and defining z := ζ

|ζ| , we obtain∫
RNrBε|ζ|(ζ)

V +(x)ω2(x− ζ) |ζ|
N−1

2 eM |ζ|dx

≤ c
∫
RNrBε|ζ|(ζ)

|ζ|
N−1

2 e−(ι|x|+2a|x−ζ|−M |ζ|)

|x− ζ|N−1
dx

= c

∫
RNrBε(z)

|ζ|
N+1

2 e−|ζ|(ι|y|+2a|y−z|−M)

|y − z|N−1
dy. (3.19)

Set ι0 := min{ι, 2a} and fix δ ∈ (0, 1) such that ι0δ > M. Then

ι |y|+ 2a |y − z| −M ≥ ι0(|y|+ |y − z| − δ) + (ι0δ −M) ≥ ι0δ −M > 0.

Taking into account that maxt∈R t
N+1

2 e−dt =
(
N+1

2e

)N+1
2 d−

N+1
2 for d > 0, we conclude that∫

RNrBε(z)

|ζ|
N+1

2 e−|ζ|(ι|y|+2a|y−z|−M)

|y − z|N−1
dy

≤ e−(ι0δ−M)|ζ|
∫
RNrBε(z)

|ζ|
N+1

2 e−ι0(|y|+|y−z|−δ)|ζ|

|y − z|N−1
dy

≤ e−(ι0δ−M)|ζ|
∫
RNrBε(z)

dy(
ι0(|y|+ |y − z| − δ)

)N+1
2 |y − z|N−1

= ce−(ι0δ−M)|ζ|. (3.20)

Now the assertion of Lemma 3.15 follows from inequalities (3.18), (3.19) and (3.20).
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Lemma 3.16. If f ∈ C0
c

(
RN
)
, q > 1 and a ∈ (0, 1), then

lim
|ζ|→∞

(∫
RN

f(x)ωq(x− ζ)dx

)
|ζ|

N−1
2 eqa|ζ| = 0.

Proof. Set b := N−1
2 . Let T > 0 be such that supp(f) ⊂ BT (0). By Lemma 3.11 there exists

C > 0 such that
ω(x) ≤ C(T + |x|)−be−a|x| for all x ∈ RN .

Therefore, if |x| ≤ T,

ωq(x− ζ) |ζ|b eqa|ζ| ≤ Cq(T + |x− ζ|)−qbe−qa|x−ζ| |ζ|b eqa|ζ|

≤ Cq(|x|+ |x− ζ|)−qbe−qa|x−ζ| |ζ|b eqa|ζ| ≤ Cq |ζ|(1−q)b eqa|x|.

Consequently,∫
RN
|f(x)|ωq(x− ζ) |ζ|b eqa|ζ|dx ≤ Cq |ζ|(1−q)b

∫
|x|≤T

|f(x)| eqa|x|dx =: C1 |ζ|(1−q)b ,

from which the assertion of Lemma 3.16 follows.

Remark 3.17. (Asymptotic estimates for the local problem)

In order to prove Theorem 1.2 we need the corresponding asymptotic estimates for the
local problem.

Let ω̂ ∈ H1(RN ) be the unique positive solution to problem (1.2) (namely, the limit
problem associated to the local one) which is radially symmetric about the origin. It is
well-known (see [10, 36]) that there exist positive constants b0, b1 such that

lim
|x|→∞

∣∣Diω̂(x)
∣∣ |x|N−1

2 exp |x| = bi for i = 0, 1. (3.21)

Observe that (3.21) implies an analogous result to that given in Lemma 3.11 because, for
a > 0, one has

lim
|x|→∞

ω̂(x)|x|
N−1

2 ea|x| =

(
lim
|x|→∞

ω̂(x)|x|
N−1

2 e|x|
)(

lim
|x|→∞

e(a−1)|x|
)
.

Therefore, if we set

Î(ζ) :=

∫
RN

ω̂p−1ω̂ζ ,

we can obtain similar statements to those given in Lemmas 3.13, 3.14 and 3.16, due to the
proof of these lemmas relies essentially on Lemma 3.11.

However, we did not proceed in this way in [26]. Thanks to (3.21), in the local case, it
is not necessary to consider separately the estimates for a < 1 and a > 1. It suffices to
consider a = 1. More precisely, in order to describe the asymptotic behavior of Î we use the
following result of Bahri and Li [3, Proposition 1.2].



Lemma 3.18. Let f ∈ C0(RN )∩L∞(RN ) and h ∈ C0(RN ) be radially symmetric functions
satisfying

lim
|x|→∞

f(x) |x|b ed|x| = τ and
∫
RN
|h(x)| (1 + |x|b)ed|x|dx <∞

for d ≥ 0, b ≥ 0 and τ ∈ R. Then

lim
|y|→∞

(∫
RN

f(x+ y)h(x)dx

)
|y|b ed|y| = τ

∫
RN

h(x)e−dx1dx.

As ω̂ is radially symmetric, from (3.21) and Lemma 3.18 we deduce

lim
|ξ|→∞

Î(ξ) |ξ|
N−1

2 e|ξ| = k1 > 0. (3.22)

This asymptotic estimate plays the same role as Lemmas 3.13 and 3.14 together. Further-
more, (3.21) and Lemma 3.18 implies

lim
|ζ|→∞

(∫
RN

f(x)ω̂q(x− ζ)dx

)
|ζ|

N−1
2 eq|ζ| = 0, (3.23)

provided f ∈ C0
c

(
RN
)
is radially symmetric and q > 1. This is the statement corresponding

to Lemma 3.16.
On the other hand, Lemma 3.15 continues being valid for the local case without any

modifications in the statement; the only difference is that in the proof we need to take a = 1
in order to apply (3.21).

3.3 The Krasnoselskii genus and multiplicity of cri-
tical points

In this section we introduce the notion of Krasnoselskii’s genus, which will be a fundamental
tool in finding multiplicity of sign changing solutions to both: the local problem and the
nonlocal one.

Recall that a Z/2-space is a topological space Y together with a continuous action

Z/2× Y → Y, (−1, y) 7→ (−1) · y.

Let S be a subset of a Z/2-space Y which is Z/2-equivariant (i.e. (−1) · y ∈ S for all y ∈ S)
and such that (−1) · y 6= y for all y ∈ S.

Definition 1. If S 6= ∅, the Krasnoselskii genus of S, denoted genus(S), is defined to be
the smallest k ∈ N such that there exists a continuous map h : S → Sk−1 which is Z/2-
equivariant (i.e. h((−1) · y) = −h(y) for all y ∈ S). If there is not a map with the above
property, then genus(S) :=∞. We set genus(∅) := 0.

The following lemma states an important property of the Krasnoselskii genus which will
be useful for our purposes.
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Lemma 3.19 (Monotonicity property of the genus). Assume that Yi, i = 1, 2, are Z/2-
spaces. Let Si be a subset of Yi which is Z/2-equivariant and such that (−1) · yi 6= yi for all
yi ∈ Si. If η ∈ C0(S1,S2) is Z/2-equivariant (i.e. η((−1) · y) = (−1) · η(y) for all y ∈ S1),
then

genus(S1) ≤ genus(S2).

Proof. See for instance [6, Proposition 2.15].

Recall that the Krasnoselskii genus provides a lower bound for the number of pairs of
critical points of an even functional on a Hilbert Manifold. More precisely, one has the
following result:

Theorem 3.20. LetM be a submanifold of class C2 of a Hilbert space H which is symmetric
(i.e. u ∈ M ⇔ −u ∈ M) and does not contain the origin. Let I : H → R be an even
functional of class C2 which is bounded from below on M and satisfies the Palais-Smale
condition (PS)c onM for all c < d0. If d < d0, then I has at least

genus(M∩ I d)

pairs of critical points ±u onM with critical value I(u) ≤ d, where Id := {u ∈M : I(u) ≤
d}.

Proof. See for instance [6, Theorem 2.19 and Proposition 2.10].

The above theorem is true for more general symmetries than those we are considering
here. See for instance [25].

Remark 3.21. If Γ is a closed subgroup of O(N) such that `(Γ) = ∞, Ω and V are Γ-
invariant, φ : Γ→ Z2 is a continuous group homomorphism and additionally, dimH1

0 (Ω)φ =
∞ when φ is an epimorphism, then problem (1.1) has infinitely many solutions satisfying
(1.3). Indeed, since `(Γ) = ∞, Remark 3.9 insures that the functional ĴV associated to
problem (1.1) satisfies condition (PS)φc on N̂ φ

Ω,V for all c ∈ R. On the other hand, by
Remark 2.7, one also has that ĴV is an even C2-function which is bounded from below on
N̂ φ

Ω,V and that N̂ φ
Ω,V is a C2-manifold which is symmetric and does not contain the origin.

Therefore, by Theorem 3.20, ĴV has at least genus(N̂ φ
Ω,V ) pairs of critical points.

Now, N̂ φ
Ω,V is radially diffeomorphic to the unit sphere in H1

0 (Ω)φ. It is known that
if kerφ = Γ, H1

0 (Ω)φ has infinite dimension, but this is not true, generally, if φ is an
epimorphism. That is why, in this case, we need additionally to assume that dimH1

0 (Ω)φ =

∞. Finally, if SφΩ denotes the unite sphere in H1
0 (Ω)φ, from

genus(N̂ φ
Ω,V ) = genus(SφΩ) =∞,

one can deduce the existence of infinitely many solutions to (1.1) satisfying (1.3).
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Existence of positive and sign changing
solutions

We consider the problem{
−∆u+ (V∞ + V (x))u =

(
1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1
0 (Ω),

(4.1)

where N ≥ 3, α ∈ (0, N), p ∈
[
2, 2N−α

N−2

)
and Ω is an unbounded smooth domain in RN

whose complement RN r Ω is bounded, possibly empty. The potential V∞ + V is assumed
to satisfy

(V0) V ∈ C0(RN ), V∞ ∈ (0,∞), infx∈RN {V∞ + V (x)} > 0, lim|x|→∞ V (x) = 0.

As in the previous chapter, we consider a closed subgroup Γ of the group O(N) of linear
isometries of RN and a continuous group homomorphism φ : Γ → Z/2. We denote by
G := kerφ, by

`(Γ) := min{#Γx : x ∈ RN r {0}},

and by
Σ := {x ∈ RN : |x| = 1,#Γx = `(Γ)},

where Γx := {gx : g ∈ Γ} is the Γ-orbit of x and #Γx is its cardinality.
Recall that a subset Z of RN is Γ-invariant if Γx ⊂ Z for every x ∈ Z, and a function

u : Z → R is Γ-invariant if it is constant on each Γ-orbit Γx with x ∈ Z. If Z is Γ-invariant
and φ is an epimorphism, the group Z/2 acts on the G-orbit space Z/G := {Gx : x ∈ Z} of
Z as follows: we choose γ ∈ Γ such that φ(γ) = −1 and we define

(−1) ·Gx := G(γx) for all x ∈ Z.

This action is well defined and it does not depend on the choice of γ. We denote by

Σ0 := {x ∈ Σ : Gx = G(γx)}.
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Thus, if Z is a Γ-invariant subset of Σ r Σ0, the action of Z/2 on its G-orbit space Z/G is
free.

For each subgroup K of Γ we set

µ(Kz) :=

{
inf{|α1z − α2z| : α1, α2 ∈ K, α1z 6= α2z} if #Kz ≥ 2,
2 |z| if #Kz = 1,

µK(Z) := inf
z∈Z

µ(Kz) and µK(Z) := sup
z∈Z

µ(Kz).

In the special case where K = G and Z = Σ, we simply write

µG := µG(Σ) and µG := µG(Σ).

The energy functional JV : H1
0 (Ω)→ R associated to problem (4.1) is given by

JV (u) =
1

2
‖u‖2V −

1

2p
D(u),

where ‖ · ‖V is the norm defined in (2.3) and

D(u) =

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p.

We are interested in obtaining solutions to problem (4.1) which satisfy

u(gx) = φ(g)u(x) for all g ∈ Γ and x ∈ Ω. (4.2)

By the principle of symmetric criticality (Theorem 2.4), the solutions to problem (4.1) that
satisfy (4.2) are the critical points of the restriction of JV to the space

H1
0 (Ω)φ = {u ∈ H1

0 (Ω) : u(γx) = φ(γ)u(x) ∀γ ∈ Γ, ∀x ∈ Ω}.

The nontrivial ones lie on the Nehari manifold

N φ
Ω,V :=

{
u ∈ H1

0 (Ω)φ : u 6= 0, ‖u‖2V = D(u)
}
,

which is of class C2 and radially diffeomorphic to the unit sphere in H1
0 (Ω)φ. The radial

projection π : H1
0 (Ω)φ r {0} → N φ

Ω,V is given by

π(u) :=

(
‖u‖2V
D(u)

) 1
2(p−1)

u.

Accordingly, for every u ∈ H1
0 (Ω)φ r {0},

JV (π(u)) =
p− 1

2p

(
‖u‖2V
D(u)

1
p

) p
p−1

.

We set
cφΩ,V := inf

NφΩ,V
JV .
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If φ ≡ 1 is the trivial homomorphism, then Γ = G := kerφ. In this case we shall write
H1

0 (Ω)G, NG
Ω,V and cGΩ,V instead of H1

0 (Ω)φ, N φ
Ω,V and cφΩ,V . If G = {1} is the trivial group,

we shall omit it from the notation and write simply H1
0 (Ω), NΩ,V and cΩ,V . For the special

problem {
−∆u+ u =

(
1
|x|α ∗ |u|

p
)
|u|p−2u,

u ∈ H1(RN ),
(4.3)

we write J∞, N∞ and c∞ instead of J0, NRN ,0 and cRN ,0.
We shall look for solutions with small energy, i.e. which satisfy

p− 1

2p

∫
RN

∫
RN

|u(x)|p|u(y)|p

|x− y|α
dx dy < `(Γ)c∞. (4.4)

4.1 Proof of Theorems 1.3 and 1.4
In this section we are concerned with potentials which are strictly negative at infinity. More
precisely, we are concerned with potentials V which, for some subset Z of Σ, satisfy

(V∗) There exist r0 > 0, c0 > 0 and λ ∈ (0, µΓ(Z)
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0.

In particular, no behavior is prescribed to V near the origin and so, it can take on negative
and nonnegative values there. The aim of this section is to prove the following results (which
correspond to Theorems 1.3 and 1.4 stated in the Introduction, respectively).

Theorem 4.1. If p ≥ 2, Ω is G-invariant and V is a G -invariant function which satisfies

(V3) There exist r0 > 0, c0 > 0 and λ ∈ (0, µG
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0,

then (4.1) has at least one positive solution u which is G -invariant and satisfies (4.4) with
Γ = G.

Theorem 4.2. If p ≥ 2, Ω is Γ-invariant, φ : Γ → Z/2 is an epimorphism, Z is a Γ-
invariant subset of Σ r Σ0 and V is a Γ-invariant function which satisfies

(V1) There exist r0 > 0, c0 > 0 and λ ∈ (0, µΓ(Z)
√
V∞) such that

V (x) ≤ −c0e
−λ|x| for all x ∈ RN with |x| ≥ r0,

then problem (4.1) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy
(4.2) and (4.4).

Let Z be a Γ-invariant subset of Σ and let λ ∈ (0, µΓ(Z)) be such that (V1) holds (recall
that we are assuming that V∞ = 1). We choose ν ∈ (0, 1) such that λ ∈ (0, µΓ(Z)ν), ε ∈(
0, µΓ(Z)ν−λ

µΓ(Z)ν+λ

)
and a radially symmetric cut-off function χ ∈ C∞(RN ) such that 0 ≤ χ ≤ 1,

χ(x) = 1 if |x| ≤ 1 − ε and χ(x) = 0 if |x| ≥ 1. Let ω ∈ H1(RN ) be a positive ground
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state of problem (4.3) which is radially symmetric about the origin. For S > 0 we define
ωS ∈ H1(RN ) by

ωS(x) := χ
(x
S

)
ω(x).

Lemma 3.11 allows to obtain the following asymptotic estimates. The proof we include here
was given by S. Cingolani, M. Clapp and S. Secchi [21, Lemma 4.1].

Lemma 4.3. As S →∞,∣∣∣‖ω‖2 − ∥∥ωS∥∥2
∣∣∣ = O

(
e−2ν(1−ε)S), ∣∣D(ω)− D(ωS)

∣∣ = O
(
e−pν(1−ε)S).

Proof. Throughout this proof C will denote some positive constants, not necessarily the
same one. From (2.13) and (2.14) one has that

‖ω − ωS‖2 ≤ C

(∫
|x|≥(1−ε)S

|∇ω|2 +

∫
|x|≥(1−ε)S

|ω|2
)
.

Therefore, from Lemma 3.11 and [21, (4.1)] it follows that

|‖ω‖2 − ‖ωS‖2| ≤ C ‖ω − ωS‖2

≤ C
∫
|x|≥(1−ε)S

|x|−(N−1)e−2ν|x|dx

≤ C
∫ ∞

(1−ε)S
e−2νtdt

= Ce−2ν(1−ε)S .

On the other hand, if r := 2N
2N−α , from (2.15), one has that∣∣D(ω)− D

(
ωS
)∣∣ ≤ 2C̄|ω|ppr

∣∣ωp − (ωS)p
∣∣
r

≤ C

(∫
|x|≥(1−ε)S

ωpr

) 1
r

.

Therefore, from Lemma 3.11 it follows that

∣∣D(ω)− D
(
ωS
)∣∣ ≤ C (∫

|x|≥(1−ε)S
|x|−

pr
2

(N−1)e−prν|x|dx

) 1
r

≤ C

(∫ ∞
(1−ε)S

e−prνtdt

) 1
r

= Ce−pν(1−ε)S ,

as S →∞.
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We set ρ := µΓ(Z)ν+λ
4ν , and for every z ∈ Z we consider the function (ωρR)Rz ∈ H1(RN )

given by
(ωρR)Rz(x) := ωρR(x−Rz).

Note that supp((ωρR)Rz) ⊂ BρR(Rz).
The following lemma is a special case of [21, Lemma 4.2] with A = 0.

Lemma 4.4. There exist d0 > 0 and R0 > 0 such that (ωρR)Rz ∈ H1
0 (Ω) and

JV (π((ωρR)Rz)) ≤ c∞ − d0e
−λR for all z ∈ Z and R ≥ R0.

Proof. Assume without loss of generality that the r0 > 0 of condition (V1) also satisfies(
RN rBr0(0)

)
⊂ Ω. Note that, since µΓ(Z) ≤ 2, ρ ∈ (0, 1). Therefore,

R− ρR→∞ as R→∞

and so, there exists R0 > 0 such that R − ρR ≥ r0 provided R ≥ R0, which implies that
(ωρR)Ry ∈ H1

0 (Ω) for all y ∈ Z and R ≥ R0.
From Proposition 2.5 (d) and (2.10) one has that

max
t≥0

JV (tu) = JV (tuu) if and only if tu =

(
‖u‖2V
D(u)

)1/(2p−2)

.

By Lemma 2.10, ωρR → ω in H1(RN ) and D(ωρR)→ D(ω) as R→∞, and so tωρR → tω
as R→∞. Therefore, one may choose t1 > tω > t0 > 0 and R0 > 0 such that the following
also holds:

max
t≥0

JV (t(ωρR)Ry) = max
t∈[t0,t1]

JV (t(ωρR)Ry) for all y ∈ Z and R ≥ R0.

By condition (V1), for every t ∈ [t0, t1], y ∈ Z and R ≥ R0, one has that∫
Ω
V (x)

∣∣tωρR(x−Ry)
∣∣2 dx =

∫
|x|≤ρR

V (x+Ry)
∣∣tωρR(x)

∣∣2 dx
≤ −

(
c0t

2

∫
|x|≤ρR

e−λ|x+Ry| |ω(x)|2 dx

)

≤ −
(
c0t

2
0

∫
RN

e−λ|x||ω(x)|2 dx
)
e−λR =: −C2e

−λR.

Using the asymptotic estimates from Lemma 4.3 and taking into account that p ≥ 2, we
conclude that choosing R0 > 0 even larger if necessary, there exists C1 > 0 such that

JV (t(ωρR)Ry) =
1

2

∥∥t(ωρR)Ry
∥∥2

+
1

2

∫
Ω
V (x)

∣∣t(ωρR)Ry
∣∣2 dx− 1

2p
D
(
t(ωρR)Ry

)
≤1

2

(
‖tω‖2 +O(e−2ν(1−ε)ρR)

)
− C2

2
e−λR

− 1

2p

(
D(tω) +O(e−pν(1−ε)ρR)

)
≤1

2
‖tω‖2 − 1

2p
D(tω) +O(e−2ν(1−ε)ρR)− C2

2
e−λR

≤J∞(tω)− C1e
−λR

≤c∞ − C1e
−λR,
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because c∞ = maxt≥0 J∞(tω) and

2ν (1− ε)ρ > 2ν

(
1− µΓ(Z)ν − λ

µΓ(Z)ν + λ

)
µΓ(Z)ν + λ

4ν
= λ.

We fix R ≥ R0, and for z ∈ Z we define

θ(z) :=
∑

gz∈Γz

φ(g)(ωρR)Rgz. (4.5)

Proposition 4.5. If either φ ≡ 1 or Z ⊂ Σ r Σ0, then θ(z) is well defined. θ(z) is
φ-equivariant and

JV (π(θ(z))) ≤ `(Γ)
(
c∞ − d0e

−λR
)

for all z ∈ Z.

If moreover Z 6= ∅, then cφΩ,V < `(Γ)c∞.

Proof. Let z ∈ Z. If g1, g2 ∈ Γ are such that g1z = g2z, then g−1
2 g1z = z. Hence, if either

φ ≡ 1 or z /∈ Σ0, it must be true that φ(g−1
2 g1) = 1. Thus φ(g1) = φ(g2). This shows that

θ(z) is well defined. It is clearly φ-equivariant.
On the other hand, since

|Rg1z −Rg2z| ≥ RµΓ(Z) > 2ρR when g1z 6= g2z,

we have that
supp((ωρR)Rg1z) ∩ supp((ωρR)Rg2z) = ∅.

Consequently,

‖θ(z)‖2V = `(Γ)‖(ωρR)Rz‖2V and D(θ(z)) > `(Γ)D((ωρR)Rz).

From (2.11) and Lemma 4.4 we obtain

JV (π(θ(z))) ≤ p− 1

2p

(
`(Γ)‖(ωρR)Rz‖2V

[`(Γ)D((ωρR)Rz)]
1
p

) p
p−1

= `(Γ)JV (π((ωρR)Rz)) ≤ `(Γ)
(
c∞ − d0e

−λR
)
.

Finally, since π(θ(z)) ∈ N φ
Ω,V , we conclude that cφΩ,V < `(Γ)c∞.

Proof of Theorem 4.1. Let (un) be a minimizing sequence for JV on NG
Ω,V . By Ekeland’s

variational principle [59, Theorem 8.5] we may assume that it is a Palais–Smale sequence
for JV .

Let φ ≡ 1, so that Γ = G. If assumption (V3) holds for λ ∈ (0, µG), we choose ζ ∈ Σ
such that µ(Gζ) ∈ (λ, µG] and define Z := Gζ. Thus µG(Z) = µ(Gζ) and assumption (V1)
holds for λ ∈ (0, µG(Z)). Hence, we may apply Proposition 4.5 to these data to conclude
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that cGΩ,V < `(G)c∞. Corollary 3.8 then asserts that JV satisfies condition (PS)Gc on NG
Ω,V

for c := cGΩ,V . Therefore, there exists u ∈ NG
Ω,V such that un → u strongly in H1

0 (Ω) and,
since JV is of class C1, u is a minimum of JV on NG

Ω,V . Finally, observe that |u| ∈ NG
Ω,V and

JV (|u|) = JV (u). Hence, by Corollary 2.6, problem (4.1) has a G-invariant positive solution
|u| satisfying JV (|u|) < `(G)c∞.

Proof of Theorem 4.2. Proposition 2.5 guarantees that N φ
Ω,V is a C2-manifold which is sym-

metric and does not contain the origin. Proposition 2.2, together with Corollary 2.6 and
Corollary 3.8, asserts that JV : N φ

Ω,V → R is an even C2-function, which is bounded from
below and satisfies (PS)φc on N φ

Ω,V for all c < `(Γ)c∞. Therefore, by Theorem 3.20 and
Corollary 2.6, if d := `(Γ)

(
c∞ − d0e

−λR) , then JV has at least

genus(N φ
Ω,V ∩ J

d
V )

pairs of critical points ±u with JV (u) ≤ d, where JdV := {u ∈ H1
0 (Ω) : JV (u) ≤ d}.

The map θ : Z → N φ
Ω,V ∩ JdV defined by (4.5) is continuous. Furthermore, θ(gz) = θ(z)

for all g ∈ G and θ(γz) = −θ(z) if φ(γ) = −1. Consequently, θ induces a continuous map
θ̂ : Z/G→ N φ

Ω,V ∩ JdV , given by θ̂(Gz) := θ(z), which satisfies

θ̂((−1) ·Gz) = −θ̂(Gz) for all z ∈ Z.

By Lemma 3.19, this implies that

genus(Z/G) ≤ genus(N φ
Ω,V ∩ J

d
V )

and concludes the proof.

Remark 4.6. Theorem 1.1 in the Introduction also considers potentials which are strictly
negative at infinity. In order to prove Theorem 1.1, we follow the same procedure as in the
proof of Theorem 4.2, using (3.21) instead of Lemma 3.11 and taking ν = 1 in Lemmas 4.3,
4.4 and Proposition 4.5. Note that (3.21) implies∣∣∣|ω|pp − |ωS |pp∣∣∣ = O(e−p(1−ε)S).

Notice also that
|θ(z)|pp = `(Γ)|(ωρR)Rz|pp .

4.2 Proof of Theorems 1.5 and 1.6
The purpose of this section is to prove Theorems 1.5 and 1.6 stated in the Introduction,
namely,
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Theorem 4.7. If p ≥ 2, `(G) ≥ 3, Ω is G-invariant and V is a G-invariant function which
satisfies

(V4) There exist c0 > 0 and κ > µG
√
V∞ such that

V (x) ≤ c0e
−κ|x| for all x ∈ RN ,

then (4.1) has at least one positive solution u which is G-invariant and satisfies (4.4) with
Γ = G.

Theorem 4.8. If p ≥ 2, Ω is Γ-invariant, φ : Γ → Z/2 is an epimorphism, Z is a Γ-
invariant subset of Σ, V is a Γ-invariant function and the following hold:

(Z0) There exists a0 > 1 such that

dist(γz,Gz) ≥ a0µ(Gz) for all z ∈ Z and γ ∈ Γ rG,

(V2) There exist c0 > 0 and κ > µΓ(Z)
√
V∞ such that

V (x) ≤ c0e
−κ|x| for all x ∈ RN ,

then (4.1) has at least genus(Z/G) pairs of sign changing solutions ±u, which satisfy (4.2)
and (4.4).

As you can notice, these theorems only consider potentials which take on nonnegative
values at infinity.

As in the previous section, let φ : Γ→ Z/2 be a continuous group homomorphism and set
G := kerφ. Let ω ∈ H1(RN ) be a positive ground state of problem (4.3) which is radially
symmetric about the origin, and let Z be a nonempty Γ-invariant subset of Σ. If φ is an
epimorphism, we also assume that Z ⊂ Σ r Σ0. Thus, for z ∈ Z and R > 0, the function

σRz :=
∑

gz∈Γz

φ(g)ωRgz, where ωζ(x) := ω(x− ζ),

is well defined and φ-equivariant (see Proposition 4.5). In addition, we assume that
(Z∗) µΓ(Z) < 2 and there exists a0 > 1 such that

dist(γz,Gz) ≥ a0µ(Gz) for any z ∈ Z and γ ∈ Γ rG.

We choose R0 > 0 such that
(
RN r Ω

)
⊂ BR0(0), and a radially symmetric cut-off

function χ ∈ C∞(RN ) such that 0 ≤ χ(x) ≤ 1, χ(x) = 0 if |x| ≤ R0 and χ(x) = 1 if
|x| ≥ 2R0. Observe that χσR ∈ H1

0 (Ω)φ. We shall prove the following result.

Proposition 4.9. If Z and V satisfy (Z∗) and (V2) then there exist C0, R0 > 0 and β > 1
such that

‖χσRz‖2V
D(χσRz)

1
p

≤
(
`(Γ) ‖ω‖2

) p−1
p − C0e

−βR for any R ≥ R0, z ∈ Z. (4.6)

Consequently, cφΩ,V < `(Γ)c∞.
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We require some preliminary lemmas. The first two ones yield that µΓ(Σ) > 0. As a
result, µΓ(Z) > 0 also holds.

Lemma 4.10. Σ is a compact subset of RN .

Proof. Let yn be a sequence in Σ such that yn → y in SN−1. Thus

#Γy ≥ `(Γ) = #Γyn.

Now, let g1, · · · , g`(Γ) ∈ Γ be such that giy 6= gjy if i 6= j, and fix δ > 0 such that

Bδ(giy) ∩Bδ(gjy) = ∅ if i 6= j.

Since giyn ∈ Bδ(giy) for sufficiently large n, we conclude that #Γy ≤ #Γyn. Therefore,
#Γy = `(Γ) and so y ∈ Σ. This proves that Σ is closed. The conclusion follows because,
additionally, Σ is bounded.

Lemma 4.11. The function Σ→ R, y 7→ µ(Γy) is continuous.

Proof. Let ε > 0 be given. Let (yn) be a sequence in Σ such that yn → y. Then, there exists
n0 ∈ N such that |yn − y| < ε

2 if n ≥ n0. For every g ∈ Γ one has that

|y − gy| ≤ |y − yn|+ |yn − gyn|+ |gyn − gy| = 2|yn − y|+ |yn − gyn|,

and so
µ(Γy) ≤ ε+ µ(Γyn) for all n ≥ n0.

Analogously, we obtain

µ(Γyn) ≤ ε+ µ(Γy) for all n ≥ n0.

Consequently µ(Γyn)→ µ(Γy).

Lemma 4.12. (i) If p ≥ 2 and a1, . . . , an ≥ 0, then∣∣∣∣ n∑
i=1
ai

∣∣∣∣p ≥ n∑
i=1
api + (p− 1)

∑
i 6=k
ap−1
i ak.

(ii) If p ≥ 2 and a, b ≥ 0, then

|a− b|p ≥ ap + bp − p
(
ap−1b+ abp−1

)
.

Proof. See Lemma 4 in [16].
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Lemma 4.13. If p ≥ 2, A =
n∑
i=1
ai, Ã =

n∑
i=1
ãi, B =

n∑
i=1
bi and B̃ =

n∑
i=1
b̃i with ai, ãi, bi, b̃i ≥

0, then

ApBp ≥
n∑
i=1
api b

p
i + (p− 1)

( ∑
j 6=m

apjb
p−1
j bm +

∑
i 6=k
bpi a

p−1
i ak

)
, (4.7)

A2B2 ≥
n∑
i=1
a2
i b

2
i + 2

( ∑
j 6=m

a2
jbjbm +

∑
i 6=k
b2i aiak

)
, (4.8)∣∣∣A− Ã∣∣∣p ∣∣∣B − B̃∣∣∣p ≥ ApBp + ÃpB̃p (4.9)

− pnp−1
(
Bp + B̃p

)[( n∑
i=1
ap−1
i

)
Ã+

(
n∑
i=1
ãp−1
i

)
A

]
− pnp−1

(
Ap + Ãp

)[( n∑
i=1
bp−1
i

)
B̃ +

(
n∑
i=1
b̃p−1
i

)
B

]
.

Proof. Using Lemma 4.12(i) we obtain∣∣∣∣ n∑
i=1
ai

∣∣∣∣p
∣∣∣∣∣ n∑
j=1

bj

∣∣∣∣∣
p

≥

(
n∑
i=1
api + (p− 1)

∑
i 6=k
ap−1
i ak

)(
n∑
j=1

bpj + (p− 1)
∑
j 6=m

bp−1
j bm

)

≥
n∑
i=1
api b

p
i + (p− 1)

∑
j 6=m

(apj + apm)bp−1
j bm + (p− 1)

∑
i 6=k

(
bpi + bpk

)
ap−1
i ak.

Inequalities (4.7) and (4.8) can be immediately deduced from the above expression.
On the other hand, applying Lemma 4.12 (ii) we obtain∣∣A− Ã∣∣p∣∣B − B̃∣∣p ≥ [Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)]∣∣B − B̃∣∣p
Notice that, if Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)
≥ 0 then∣∣A− Ã∣∣p∣∣B − B̃∣∣p

≥
[
Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)]∣∣B − B̃∣∣p
≥
[
Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)][
Bp + B̃p − p

(
Bp−1B̃ +BB̃p−1

)]
≥ ApBp + ÃpB̃p − p

(
Bp + B̃p

)(
Ap−1Ã+AÃp−1

)
− p
(
Ap + Ãp

)(
Bp−1B̃ +BB̃p−1

)
.

Otherwise, since
∣∣B − B̃∣∣p ≤ Bp + B̃p,∣∣A− Ã∣∣p∣∣B − B̃∣∣p ≥ [Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)]∣∣B − B̃∣∣p
≥
[
Ap + Ãp − p

(
Ap−1Ã+AÃp−1

)][
Bp + B̃p

]
≥ ApBp + ÃpB̃p − p

(
Bp + B̃p

)(
Ap−1Ã+AÃp−1

)
.

In any case, inequality (4.9) follows.

Lemma 4.14. For every u ∈ H1(RN ) the following inequalities hold:

‖χu‖2V ≤ ‖u‖2V −
∫
RN

(χ∆χ)u2,

D(χu) ≥ D(u)− 2

∫
RN

∫
RN

(1− χp(x))|u(x)|p|u(y)|p

|x− y|α
dx dy.
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Proof. For every u ∈ H1(RN ) one has that

‖χu‖2V =

∫
RN

(
|χ∇u+ u∇χ|2 + (1 + V (x)) |χu|2

)
=

∫
RN

χ2
(
|∇u|2 + (1 + V (x))|u|2

)
+

∫
RN

(
|∇χ|2 − 1

2
∆(χ2)

)
u2

≤ ‖u‖2V −
∫
RN

(χ∆χ)u2.

Writing ab = 1 − (1 − a) − (1 − b) + (1 − a)(1 − b) and taking a := χp(x), b := χp(y), we
obtain

D(χu) =

∫
RN

∫
RN

χp(x)χp(y)|u(x)|p|u(y)|p

|x− y|α
dx dy

= D(u)− 2

∫
RN

∫
RN

(1− χp(x))|u(x)|p|u(y)|p

|x− y|α
dx dy

+

∫
RN

∫
RN

(1− χp(x))(1− χp(y))|u(x)|p|u(y)|p

|x− y|α
dx dy.

Notice that the last summand in the right-hand side of the above expression is nonnegative.
Then the second inequality follows.

We shall apply this lemma to the function σRz to derive inequality (4.6). To this purpose
we also require some asymptotic estimates, which will be provided by the following four
lemmas.

Since ω is a solution of problem (4.3), for any z, z′ ∈ RN , one has that J ′∞(ωz)ωz′ = 0,
which is equivalent to∫

RN
[∇ωz · ∇ωz′ + ωzωz′ ] =

∫
RN

(
1

|x|α
∗ ωpz

)
ωp−1
z ωz′ .

A change of variable in the right-hand side of this inequality allows us to express it as

〈ωz, ωz′〉 = I(z′ − z) for all z, z′ ∈ RN , (4.10)

where 〈·, ·〉 is the usual scalar product in H1(RN ) and I is the function defined by

I(ζ) :=

∫
RN

(
1

|x|α
∗ ωp

)
ωp−1ωζ .

We denote by Fz := {(gz, hz) ∈ Γz × Γz : gz 6= hz} and define

εRz :=
∑

(gz,hz)∈Fz
φ(g)=φ(h)

I(Rgz −Rhz),

ε̂Rz :=
∑

(gz,hz)∈Fz
φ(g) 6=φ(h)

I(Rgz −Rhz) if φ 6≡ 1, and ε̂Rz := 0 if φ ≡ 1.
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We choose gz, hz ∈ G such that

|gzz − hzz| = µ(Γz) := min{|gz − hz| : g, h ∈ Γ, gz 6= hz}

and set
ξz := gzz − hzz.

Lemma 4.15. If (Z∗) holds, then
ε̂Rz = o(εRz)

uniformly in z ∈ Z.

Proof. For a0 > 1 as in condition (Z∗) we fix â ∈ (0, 1) such that a := âa0 > 1. Thus,
a |ξz| = aµ(Gz) ≤ â |gz − hz| for any z ∈ Z, g, h ∈ Γ with gz 6= hz and φ(g) 6= φ(h). Lemma
3.14 yields a constant ka > 0 such that

I(Rξz)|Rξz|bea|Rξz | ≥ ka if R ≥ µΓ(Z)−1,

where b := N−1
2 . So, setting C := k−1

a we obtain

I(Rgz −Rhz)
I(Rξz)

≤ I(Rgz −Rhz) |Rgz −Rhz|b eâ|Rgz−Rhz|

I(Rξz)|Rξz|bea|Rξz |

≤ CI(Rgz −Rhz) |Rgz −Rhz|b eâ|Rgz−Rhz| if R ≥ µΓ(Z)−1.

Let ε > 0. Lemma 3.13 asserts that there exists S > 0 such that I(ζ) |ζ|b eâ|ζ| < ε if |ζ| > S.
As â |Rgz −Rhz| ≥ RaµG > 0, taking R0 := max{ âSaµG , µΓ(Z)−1} we conclude that

0 ≤ ε̂Rz
εRz
≤

∑
gz 6=hz∈Γz
φ(g)6=φ(h)

I(Rgz −Rhz)
I(Rξz)

≤ `(G)2Cε if R ≥ R0,

which proves the assertion.

Lemma 4.16. If (Z∗) holds then, for any g, h ∈ Γ such that φ(g) 6= φ(h) and γ ∈ Γ r G,
we have that ∫

RN

(
1

|x|α
∗
(
|
∑
ζ∈Gz

ωRζ |p + |
∑
ζ∈Gz

ωRγζ |p
))

ωp−1
RgzωRhz = o(εRz)

uniformly in z ∈ Z.

Proof. Since 1
|x|α ∗ω

p ∈ L∞(RN ), we have that 1
|x|α ∗

(
|
∑
ζ∈Gz

ωRζ |p+ |
∑
ζ∈Gz

ωRγζ |p
)
is bounded

on RN uniformly in z. Hence,

0 ≤
∫
RN

(
1

|x|α
∗
(
|
∑
ζ∈Gz

ωRζ |p + |
∑
ζ∈Gz

ωRγζ |p
))

ωp−1
RgzωRhz

≤ C
∫
RN

ωp−1
RgzωRhz = C

∫
RN

ωp−1ωR(hz−gz).

Arguing as in Lemma 4.15, using this time Lemma 3.12, we obtain the conclusion.
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Lemma 4.17. If Z and V satisfy (Z∗) and (V2), then∫
RN

V +σ2
Rz = o(εRz)

uniformly in z ∈ Z.

Proof. Let κ > µΓ(Z) be as in assumption (V2) (recall that V∞ = 1 is assumed). We fix
a > 1 such that M := aµΓ(Z) < min{2, κ}. Lemma 3.14 implies that there exists a positive
constant ka such that

I(Rξz)|Rξz|bea|Rξz | ≥ ka if R ≥ µΓ(Z)−1,

where b := N−1
2 . Observing that M |Rz| = MR = aRµΓ(Z) ≥ a|Rξz| for all z ∈ Z, we

conclude that∫
RN V

+σ2
Rz

εRz
≤ C

∑
gz∈Γz

A(Rgz)

I(Rξz)
≤ C

∑
gz∈Γz

A(Rgz)|Rgz|beM |Rgz|

I(Rξz)|Rξz|bea|Rξz |

≤ C
∑

gz∈Γz

A(Rgz)|Rgz|beM |Rgz| if R ≥ µΓ(Z)−1,

where C denotes different positive constants and A is the map defined in (3.17). Taking
Lemma 3.15 into account, we obtain that

lim
R→∞

∫
RN V

+σ2
Rz

εRz
= 0

uniformly in z ∈ Z, as claimed.

Lemma 4.18. If f ∈ C0
c

(
RN
)
and q > max{µΓ(Z), 1}, then∫

RN
fσqRz = o(εRz)

uniformly in z ∈ Z.

Proof. Let us fix a > 1 such that â := aµΓ(Z)
q < 1. Lemma 3.14 yields that there exists

ka > 0 such that
I(Rξz)|Rξz|bea|Rξz | ≥ ka if R ≥ µΓ(Z)−1,

where b := N−1
2 . Since qâ|Rz| = qâR = aRµΓ(Z) ≥ a|Rξz| for all z ∈ Z, we conclude that∫

RN |f |σ
q
Rz

εRz
≤ C

∑
gz∈Γz

∫
RN |f |ω

q
Rgz

I(Rξz)
≤ C

∑
gz∈Γz

∫
RN |f |ω

q
Rgz|Rgz|beqâ|Rgz|

I(Rξz)|Rξz|bea|Rξz |

≤ C
∑

gz∈Γz

∫
RN
|f |ωqRgz|Rgz|

beqâ|Rgz| if R ≥ µΓ(Z)−1,

where C denote distinct positive constants. Hence, from Lemma 3.16 we get

lim
R→∞

∫
RN fσ

q
Rz

εRz
= 0

uniformly in z ∈ Z.
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Finally, we need the following result.

Lemma 4.19. Let ψ : (0,∞)→ R be the function given by

ψ(t) :=
a+ t+ o(t)

(a+ bt+ o(t))β
,

where a > 0, β ∈ (0, 1) and bβ > 1. Then, there exist constants C0, t0 > 0 such that

ψ(t) ≤ a1−β − C0t for all t ∈ (0, t0).

Proof. Taking 1
β < q < b and 1 < s < r < βq, we have that there exists t1 ∈ (0, 1) such that

ψ(t) ≤ a+ st

(a+ qt)β
=

a+ rt

(a+ qt)β
− (r − s)t

(a+ qt)β
for all t ∈ (0, t1).

We denote by f(t) := a+rt
(a+qt)β

. Since f ′(0) = (r − βq) a−β < 0, there exists t0 ∈ (0, t1) such
that

f(t) ≤ f(0) = a1−β for all t ∈ (0, t0).

Consequently,

ψ(t) ≤ a1−β − (r − s)
(a+ q)β

t for all t ∈ (0, t0),

which concludes the proof.

Proof of Proposition 4.9. Let γ ∈ Γ rG. If Gz = {z1, . . . , z`} with ` := `(G), we write

σRz = σ1
Rz − σ2

Rz with σ1
Rz :=

∑̀
i=1
ωRzi and σ2

Rz :=
∑̀
i=1
ωRγzi .

Applying Lemma 4.13 to ai := ωRzi(x), âi := ωRγzi(x), bi := ωRzi(y), b̂i := ωRγzi(y) and
using Lemma 4.16 we conclude that

D(σRz) ≥ D(σ1
Rz) + D(σ2

Rz) + o(εRz)

≥
{
`(Γ)D(ω) + 2(p− 1)εRz + o(εRz) if p > 2,
`(Γ)D(ω) + 4εRz + o(εRz) if p = 2.

Note that, since 1
|x|α ∗ ω

p ∈ L∞(RN ), 1
|x|α ∗ |σRz|

p is bounded uniformly in z. So, since
µΓ(Z) < 2 ≤ p, χ∆χ ∈ C0

c

(
RN
)
and 1− χp ∈ C0

c

(
RN
)
, Lemma 4.18 yields that∫

RN
(χ∆χ)σ2

Rz = o(εRz) and
∫
RN

(1− χp)
(

1

|x|α
∗ |σRz|p

)
σpRz = o(εRz)
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uniformly in z. This, together with Lemmas 4.14, 4.15 and 4.17 and expression (4.10), yields

‖χσRz‖2V ≤ ‖σRz‖2 +

∫
RN

V σ2
Rz −

∫
RN

(χ∆χ)σ2
Rz

≤ `(Γ) ‖ω‖2 + εRz − ε̂Rz +

∫
RN

V +σ2
Rz + o(εRz)

≤ `(Γ) ‖ω‖2 + εRz + o(εRz),

D(χσRz) ≥ `(Γ)D(ω) + bpεRz + o(εRz)− 2

∫
RN

(1− χp)
(

1

|x|α
∗ |σRz|p

)
σpRz

≥ `(Γ)D(ω) + bpεRz + o(εRz),

where bp := 2(p − 1) if p > 2 and bp := 4 if p = 2. Consequently, since ‖ω‖2 = D(ω) and
εRz → 0 as R → ∞ uniformly in z, Lemma 4.19 insures that there exist c1, R1 > 0 such
that

‖χσRz‖2V
D(χσRz)

1
p

≤ `(Γ) ‖ω‖2 + εRz + o(εRz)

(`(Γ)D(ω) + bpεRz + o(εRz))
1
p

≤
(
`(Γ) ‖ω‖2

) p−1
p − c1εRz

for R ≥ R1 and z ∈ Z. Using Lemma 3.14 we conclude that there exist C0, R0 > 0 and
β > 1 such that

‖χσRz‖2V
D(χσRz)

1
p

≤
(
`(Γ) ‖ω‖2

) p−1
p − C0e

−βR for any R ≥ R0, z ∈ Z,

which is inequality (4.6). Finally, since π(χσRz) ∈ N φ
Ω,V and

JV (π(χσRz)) =
p− 1

2p

(
‖χσRz‖2V
D(χσRz)

1
p

) p
p−1

<
p− 1

2p
`(Γ) ‖ω‖2 = `(Γ)c∞,

one has that cφΩ,V < `(Γ)c∞.

Remark 4.20. The reason why we require condition (Z0) is because, as we have seen,
the energy of the function π(χσRz) decreases and remains below the level `(Γ)c∞ when
the concentration points of at least two positive terms of σRz are closer than any pair of
concentration points of contrary sign terms.

Now we are ready to proof Theorems 4.7 and 4.8.

Proof of Theorem 4.7. Let φ ≡ 1, so that Γ = G. If assumption (V4) holds for κ > µG, we
choose ζ ∈ Σ such that µ(Gζ) ∈ [µG, κ) and set Z := Gζ. Thus µG(Z) = µ(Gζ) and assump-
tion (V2) holds for κ. Moreover, since `(G) ≥ 3, µG(Z) = µ(Gζ) < 2. Therefore (Z∗) holds
and we can apply Proposition 4.9 to these data to conclude that cGΩ,V < `(G)c∞. Corollary
3.8 then insures that JV satisfies condition (PS)Gc onNG

Ω,V for c := cGΩ,V . Consequently, there
exists u ∈ NG

Ω,V such that JV (u) = cGΩ,V . Since |u| ∈ NG
Ω,V and JV (|u|) = JV (u), by Corollary

2.6, |u| is a positive solution of (4.1) which is G-invariant and satisfies JV (|u|) < `(G)c∞.
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Proof of Theorem 4.8. If φ is an epimorphism and (Z0) holds, then Z ⊂ Σ r Σ0 and 2 >
2
a0
≥ µ(Gz) = µ(Γz). Therefore, µΓ(Z) < 2, and hence (Z∗) holds. We choose R > R0 and

set
d :=

p− 1

2p

[(
`(Γ) ‖ω‖2

) p−1
p − C0ε

−βR] p
p−1 .

Proposition 4.9 then asserts that the map σ : Z → N φ
Ω,V ∩ JdV given by σ(z) := π(χσRz) is

well defined. Furthermore, σ(gz) = σ(z) for all g ∈ G and σ(γz) = −σ(z) if φ(γ) = −1.

Consequently, σ induces a continuous map σ̂ : Z/G→ N φ
Ω,V ∩ JdV , given by σ̂(Gz) := σ(z),

which satisfies σ̂((−1) ·Gz) = −σ̂(Gz) for all z ∈ Z. This implies that

genus(Z/G) ≤ genus(N φ
Ω,V ∩ J

d
V ).

Since N φ
Ω,V is a C2-manifold (see Proposition 2.5) and JV : N φ

Ω,V → R is an even C2-function
which is bounded from below and satisfies condition (PS)φc on N φ

Ω,V for all c < `(Γ)c∞ (see
Proposition 2.2, Corollary 2.6 and Corollary 3.8), Theorem 3.20 and Corollary 2.6, allows us
to conclude that JV has at least genus(Z/G) pairs of critical points ±u with JV (u) ≤ d.

Remark 4.21. (Some comments about the proof of Theorem 1.2)

As we have mentioned in the Introduction, Theorem 1.2 corresponds to [26, Theorem
1.2] and it also considers potentials which take on nonnegative values at infinity. To prove
this theorem we may follow the same lines of the proof of Theorem 4.8, taking into account
Remark 3.17 and making the obvious modifications derived of considering the term |u|pp
instead of D(u) in the energy functional.

However, this is not exactly the proof that we gave in [26]. What we did there was to
give a proof in the same style as the proof of Theorem 4.8, but working directly with a = 1,
using estimates (3.22) and (3.23) and taking into account Remarks 2.7 and 3.9. See [26,
Section 5] for further details.

It is also worth mentioning that in [26, Theorem 1.2] we assumed Z to be a compact
Γ-invariant subset of Σ which satisfies the slightly different condition
(Ẑ0) dist(γz,Gz) > µ(Gz) for all z ∈ Z and γ ∈ Γ rG.

However, we realized that the compactness assumption for Z can be removed just asking for
condition
(Z0) There exists a0 > 1 such that dist(γz,Gz) ≥ a0µ(Gz) for all z ∈ Z and γ ∈ Γ rG.

Indeed, if (Z0) holds, setting c := (a0 − 1)µG(Σ) > 0, we obtain that

dist(γz,Gz)− µ(Gz) ≥ (a0 − 1)µ(Gz) ≥ c for all z ∈ Z and γ ∈ Γ rG.

Moreover, (Z0) yields that 2 > 2
a0
≥ µ(Gz). Therefore,

M := µG(Z) = sup
z∈Z

µ(Gz) < 2.

Additionally,
m := µG(Z) = inf

z∈Z
µ(Gz) ≥ µG(Σ) > 0.

The above are precisely the facts that we need in order to prove Proposition 5.1 in [26],
which is fundamental for the proof of Theorem 1.2 in [26].



Appendix A
A Brezis-Lieb lemma for the nonlocal term
of the energy functional

The main purpose of this section is to prove Proposition A.1 below. It corresponds to a
slight variant of [1, Lemma 3.5] which states a Brezis-Lieb lemma for a large class of nonlocal
functions. We follow the same lines of Ackermann’s proof, the main differences are that we
use Lemma A.6 below instead of [1, Lemma 3.2] and that we are only interested in the
special function

D : H1
0 (Ω)→ R, D(u) =

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p,

and its derivative. Throughout this section we assume thatN ≥ 3, α ∈ (0, N), p ∈
[
2, 2N−α

N−2

)
and Ω is an unbounded smooth domain in RN whose complement RNrΩ is bounded, possibly
empty.

Proposition A.1. Let (un) be a sequence in H1
0 (Ω) such that un ⇀ u weakly in H1

0 (Ω).
The following hold:

1. D′(un)v → D′(u)v for all v ∈ H1
0 (Ω).

2. After passing to a subsequence, we have

D(un)− D(un − u)→ D(u) in R,
D′(un)− D′(un − u)→ D′(u) in H−1(Ω).

In the sequel, for Λ ⊆ RN and u ∈ Lq(Λ), let |u|q,Λ :=
(∫

Λ |u|
q
) 1
q and set |u|q = |u|q,RN .

Also set Lq := Lq(RN ) and BR := {x ∈ RN : |x| < R}.

Lemma A.2. Let r, s, q ∈ [1,∞) with 1
q = 1

r + 1
s and (un) be a bounded sequence in Lr. If

un → u in Lrloc and v ∈ Ls, then unv → uv in Lq.

Proof. We may assume without loss of generality that un → 0 in Lrloc. Let ε > 0. Since
v ∈ Ls and s <∞ there exists R > 0 such that

|v|s,RNrBR ≤ ε.
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Therefore, from the Hölder inequality, taking into account that (|un|r) is bounded, one has
that ∫

RN
|unv|q =

∫
BR

|unv|q +

∫
RNrBR

|unv|q

≤ |un|qr,BR |v|
q
s + |un|qr|v|

q
s,RNrBR

≤ C1|un|qr,BR + C2ε
q,

where Ci denotes positive constants. Letting n→∞ and then ε→ 0 we reach the conclusion
of this lemma.

The following lemma has been shown by Ackermann (see [1, Lemma 3.1]).

Lemma A.3. Let r ∈ [1,∞) and K ∈ Lr. Set s := 2r
2r−1 and let s′ be the conjugate exponent

for s. If t ∈ [s,∞) and µ is given by 1
s′ + 1

t = 1
µ , then the bilinear map Ls × Lt → Lµ,

sending (u, v) to (K ∗ u)v, is well defined and continuous, with

|(K ∗ u)v|µ ≤ |K ∗ u|s′ |v|t ≤ |K|r|u|s|v|t.

If (un) ⊂ Ls and (vn) ⊂ Lt are bounded and either un → u in Ls and vn → v in Ltloc or
un → u in Lsloc and vn → v in Lt, then (K ∗ un)vn → (K ∗ u)v in Lµ.

Proof. Throughout this proof Ci will denote positive constants. Let u ∈ Ls and v ∈ Lt.
Since 1

r + 1
s = 1 + 1

s′ , the Young convolution theorem [12, Theorem 4.33] asserts that
K ∗ u ∈ Ls′ and

|K ∗ u|s′ ≤ |K|r|u|s.
From t ≥ s it follows that µ ≥ 1. So, the Hölder inequality implies

|(K ∗ u)v|µ ≤ |K ∗ u|s′ |v|t ≤ |K|r|u|s|v|t, (A.1)

which yields the continuity of the bilinear map (u, v) 7→ (K ∗ u)v.
On the other hand, let (un) and (vn) be given as in the statement of this lemma. In the

case that un → u in Ls, it may be assumed without loss of generality that vn → 0 in Ltloc.
From (A.1), taking into account that (|vn|t) is bounded, one has that

|(K ∗ un)vn|µ ≤ |(K ∗ (un − u))vn|µ + |(K ∗ u)vn|µ
≤ |K|r|un − u|s|vn|t + |(K ∗ u)vn|µ
≤ C0|un − u|s + |(K ∗ u)vn|µ.

Now, since K ∗ u ∈ Ls
′ and (vn) satisfies the assumptions of Lemma A.2, (K ∗ u)vn →

0 in Lµ. Therefore,
(K ∗ un)vn → 0 in Lµ.

In the case that vn → v in Lt, again one can assume that un → 0 in Lsloc. From the Hölder
inequality and the fact that |K ∗ un|s′ is bounded one has that

|(K ∗ un)vn|µ ≤ |(K ∗ un)(vn − v)|µ + |(K ∗ un)v|µ
≤ |K ∗ un|s′ |vn − v|t + |(K ∗ un)v|µ
≤ C3|vn − v|t + |(K ∗ un)v|µ.
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Hence it suffices to show that
(K ∗ un)v → 0 in Lµ. (A.2)

First let us see that
K ∗ un → 0 in Ls

′
loc. (A.3)

Fix R1 > 0. Since K ∈ Lr and r <∞, for any ε > 0, there is R2 > 0 such that

|K|r,RNrBR2
≤ ε.

Put K1 := χBR2
K and K2 := K − K1 (here χBR2

denotes the characteristic function of
BR2). The following holds:

|K1 ∗ un|s
′
s′,BR1

≤
∫
BR1

(∫
RN
|K1(x− y)un(y)|dy

)s′
dx

≤
∫
BR1

(∫
BR1+R2

|K1(x− y)un(y)|dy

)s′
dx

≤ |K1|s
′
r |un|s

′
s,BR1+R2

.

The last inequality follows from [50, Theorem 3.1.], a generalized form of the Young theorem
on convolutions. Since |K2|r ≤ ε and (|un|s) is bounded, it follows that

|K ∗ un|s′,BR1
≤ |K1 ∗ un|s′,BR1

+ |K2 ∗ un|s′,BR1

≤ |K1|r|un|s,BR1+R2
+ |K2|r|un|s

≤ C4|un|s,BR1+R2
+ C5ε.

Letting n→∞ and then ε→ 0 one gets (A.3) because R1 was arbitrary.
Finally, since v ∈ Lt and (K ∗ un) is a bounded sequence in Ls

′ which satisfies (A.3),
Lemma A.2 yields (A.2).

Lemma A.4. Let Λ be an open set in RN . Let p ≥ 2 and q ∈ [p − 1,∞). Set r := q
p−1 .

Then the map f : Lq(Λ)→ Lr(Λ) given by f(u) := |u|p−2u is continuous.

Proof. Let u ∈ Lq(Λ). We first claim that any sequence (un) such that un → u in Lq(Λ) has
a subsequence (unk) such that f(unk) → f(u) in Lr(Λ). Indeed, let (un) be a sequence in
Lq(Λ) such that un → u in Lq(Λ). Lemma A.1 in [59] asserts that, there exist a subsequence
(unk) of (un) and g ∈ Lq(Λ) such that,

unk → u a.e. on Λ and |unk |, |u| ≤ g a.e. on Λ.

This yields that f(unk)− f(u)→ 0 a.e. on Λ and

|f(unk)− f(u)|r =
∣∣|unk |p−2unk − |u|

p−2u
∣∣ q
p−1 ≤ C(|unk |

q + |u|q) ≤ Cgq a.e. on Λ,

where C denotes different positive constants. Thus, from the Lebesgue dominated conver-
gence theorem we obtain that f(unk)→ f(u) in Lr(Λ).
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The above claim yields that f is continuous at u. Indeed, if there were (un) in Lq(Λ) such
that un → u in Lq(Λ) and f(un) does not converge to f(u) in Lr(Λ) then it would exist
ε0 > 0 and a subsequence (vn) of (un) such that

|f(vn)− f(u)|r ≥ ε0 ∀n ∈ N. (A.4)

Since vn → u in Lq(Λ), by the first claim, vn would have a subsequence (vnk) such that
f(vnk)→ f(u) in Lr(Λ). It contradicts (A.4). Therefore, f is continuous at u.

Lemma A.5. Let q > 1 and s ∈ [q,∞). Set r := s
q . Let f : R −→ R be a continuously

differentiable function with

|f ′(u)| ≤ C|u|q−1 for all u ∈ R.

If (un) is a bounded sequence in Ls such that un → u in Lsloc, then

f(un)− f(un − u)→ f(u) in Lr.

Proof. Since for every t ∈ (0, 1) one has that |tun+(1−t)(un−u)| = |un−(1−t)u| ≤ |un|+|u|,
the mean value theorem asserts that, almost everywhere on RN ,

|f(un)− f(un − u)| ≤ C[|un|+ |u|]q−1|u|.

For R > 0, from the Hölder inequality one gets that

|f(un)− f(un − u)|r ,RNrBR ≤ C0

∣∣[|un|+ |u|]q−1|u|
∣∣
r,RNrBR

≤ C1

[
|un|q−1

s + |u|q−1
s

]
|u|s,RNrBR

≤ C2|u|s,RNrBR ∀n ∈ N.

Here Ci denotes positive constants. Since |f(u)| ≤ C
q |u|

q for all u ∈ R, one also has that

|f(u)|r,RNrBR ≤
C

q
|u|q

s,RNrBR
.

Therefore, since |u|s,RNrBR → 0 as R→∞, for ε > 0 given, there exists R > 0 such that

|f(un)− f(un − u)− f(u)|r,RNrBR ≤ |f(un)− f(un − u)|r,RNrBR + |f(u)|r,RNrBR

≤ ε/2. (A.5)

On the other hand, since un → u strongly in Ls(BR), Lemma A.4 insures that

f(un)− f(un − u)→ f(u) strongly in Lr(BR),

i.e. for n sufficiently large one has that

|f(un)− f(un − u)− f(u)|r,BR ≤ ε/2. (A.6)

Finally, from (A.5) and (A.6) we obtain the conclusion.
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Lemma A.6. Let q ≥ 2 and s ∈ [q − 1,∞) Set r := s
q−1 . If (un) is a bounded sequence in

Ls such that un → u in Lsloc, then

|un|q−2un − |un − u|q−2(un − u)→ |u|q−2u in Lr. (A.7)

|un|q−1 − |un − u|q−1 −→ |u|q−1 in Lr. (A.8)

Proof. If q > 2, (A.7) and (A.8) follow from Lemma A.5 taking f(u) := |u|q−2u and f(u) :=
|u|q−1, respectively. If q = 2, (A.7) clearly holds, while (A.8) is an easy consequence of the
Lebesgue dominated convergence theorem, since∣∣|un|q−1 − |un − u|q−1 − |u|q−1

∣∣r =
∣∣|un| − |un − u| − |u|∣∣s

≤
(
||un| − |un − u||+ |u|

)s
≤ (2|u|)s.

Lemma A.7. Let p ≥ 2 and q ∈ [p,∞). Let v ∈ Lq. If (un) is a bounded sequence in Lq

such that un → u in Lqloc, then

|un|p−2unv → |u|p−2uv in L
q
p .

Proof. Set r := q
p−1 and consider the map f : Lq → Lr given by

f(w) := |w|p−2w.

Lemma A.4 asserts that f is continuous and hence

f(un)→ f(u) in Lrloc.

Moreover, (|f(un)|r) is bounded because (un) is a bounded sequence in Lq. Therefore, from
Lemma A.2

f(un)v −→ f(u)v in L
q
p .

We now have the ingredients to prove Proposition A.1.

Proof of Proposition A.1. First note that

2N − α
N − 2

−
(

2N

N − 2

)(
2N − α− 2δ

2N − 2δ

)
=

2αδ

(N − 2)(2N − 2δ)
→ 0 as δ → 0.

Therefore, as p < 2N−α
N−2 , we can choose δ ∈ (0, N − α) such that

p <

(
2N

N − 2

)(
2N − α− 2δ

2N − 2δ

)
. (A.9)
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Let us set K(x) := 1
|x|α , r1 := N−δ

α and r2 := N+δ
α . Write K := K1 +K2 with K1 ∈ Lr1 and

K2 ∈ Lr2 . For example, you can take K1 := χBr1K and K2 := K −K1 (here χBr1 denotes
the characteristic function of Br1).

For i = 1, 2, consider Di : H1
0 (Ω)→ R given by

Di(u) :=

∫
RN

(Ki ∗ |u|p) |u|p.

We claim that this map is well defined and continuous. Indeed, setting si := 2ri
2ri−1 one has

that 1 < s2 < s1 and then, by (A.9), sip ∈ (2, 2∗). One also has the continuous operator

Lsip(Ω) −→ Lsi(Ω)
u 7−→ |u|p.

Continuity of Di is then a consequence of continuous Sobolev embedding

H1
0 (Ω) ↪→ Lsip(Ω)

and Lemma A.3 with t = s = si, r = ri and µ = 1.
Observe that D′i : H1

0 (Ω)→ H−1(Ω) is given by

D′i(u)(v) = 2p

∫
RN

(Ki ∗ |u|p) |u|p−2uv.

Let (un) be a sequence in H1
0 (Ω) such that un ⇀ u weakly in H1

0 (Ω). Then un is a bounded
sequence in H1

0 (Ω) and so in Lsip(Ω). Moreover, after passing to a subsequence we have
that un → u a.e. on Ω and un → u in Lsiploc (Ω).

Let v ∈ H1
0 (Ω). Then v ∈ Lsip(Ω) and by Lemma A.7 with q = sip,

|un|p−2unv → |u|p−2uv in Lsi(Ω).

We also have
|un|p → |u|p in Lsiloc(Ω). (A.10)

Thus, from Lemma A.3 with t = s = si, r = ri and µ = 1, we conclude

D′(un)v → D′(u)v for all v ∈ H1
0 (Ω).

Now note that, for every n ∈ N,

Di(un)− Di(un − u) =

∫
RN

(Ki ∗ |un|p) |un|p −
∫
RN

(Ki ∗ |un − u|p) |un − u|p

=

∫
RN

(Ki ∗ (|un|p − |un − u|p)) (|un|p − |un − u|p)

+ 2

∫
RN

(Ki ∗ (|un|p − |un − u|p)) |un − u|p.

Applying Lemma A.6 with q = p+ 1 and s = sip, we obtain that

|un|p − |un − u|p → |u|p strongly in Lsi(Ω). (A.11)
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Moreover, since |un − u|p → 0 ∈ Lsiloc(Ω), by Lemma A.3 with t = s = si, r = ri and µ = 1,
we have that

(Ki ∗ (|un|p − |un − u|p)) (|un|p − |un − u|p)→ (Ki ∗ |u|p) |u|p in L1

(Ki ∗ (|un|p − |un − u|p)) |un − u|p → 0 in L1.

Therefore,
Di(un)− Di(un − u)→ Di(u) in R.

On the other hand, observe that, for every n ∈ N,

(Ki ∗ |un|p) |un|p−2un − (Ki ∗ |un − u|p) |un − u|p−2(un − u)

= (Ki ∗ |un|p) (|un|p−2un − |un − u|p−2(un − u))

+ (Ki ∗ (|un|p − |un − u|p)) |un − u|p−2(un − u).

Applying Lemma A.6 with q = p and s = sip, we obtain that

|un|p−2un − |un − u|p−2(un − u)→ |u|p−2u in L
sip

p−1 (Ω).

Moreover, since

|un − u|p−2(un − u)→ 0 in L
sip

p−1

loc

and (A.10), (A.11) hold, Lemma A.3 with t = sip
p−1 , r = ri and µ = (sip)

′ (the conjugate
exponent for sip), yields

(Ki ∗ |un|p) (|un|p−2un − |un − u|p−2(un − u))→ (Ki ∗ |u|p)|u|p−2u in L(sip)
′
(Ω)

(Ki ∗ (|un|p − |un − u|p)) |un − u|p−2(un − u)→ 0 in L(sip)
′
(Ω).

Therefore,

(Ki ∗ |un|p) |un|p−2un − (Ki ∗ |un − u|p) |un − u|p−2(un − u)→ (Ki ∗ |u|p) |u|p−2u

in L(sip)
′
(Ω), and from the continuous embedding L(sip)

′
(Ω) ↪→ H−1(Ω), we deduce that

D′i(un)− D′i(un − u)→ D′i(u) in H−1(Ω).

Finally, since D(u) = D1(u) + D2(u) and D′(u) = D′1(u) + D′2(u), the conclusion of this
lemma follows.
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Appendix B
Proof of Proposition 2.2

This appendix is devoted to the proof of Proposition 2.2, namely

Proposition B.1. If p ≥ 2, the functional

JV (u) =
1

2
‖u‖2V −

1

2p
D(u)

is of class C2 and

J ′V (u)v = 〈u, v〉V −
∫

Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv.

We shall split the proof of Proposition 2.2 in the proof of some claims.

Claim 1. The functional

ψ : H1
0 (Ω)→ R, ψ(u) = ‖u‖2,

is of class C∞,
ψ′(u)v = 2〈u, v〉, ψ′′(u)(v, w) = 2〈v, w〉,

and ψ(k) = 0 for all k ≥ 3.

Proof of claim 1. Let u, v ∈ H1
0 (Ω). From

‖u+ tv‖2 = ‖u‖2 + 2t〈u, v〉+ t2‖v‖2,

we obtain

lim
t→0

‖u+ tv‖2 − ‖u‖2

t
= 2〈u, v〉

and, since the function v 7→ 〈u, v〉 is linear and continuous, we conclude that ψ is Gâteaux
differentiable and ψ′(u)v = 2〈u, v〉 for all v ∈ H1

0 (Ω). Notice that

ψ′ : H1
0 (Ω)→ H−1(Ω), ψ′(u) = 2〈u, ·〉
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is a linear map. From

|ψ′(u)v| = 2|〈u, v〉| ≤ 2‖u‖‖v‖ = 2‖u‖ if ‖v‖ = 1,

it follows that

‖ψ′(u)‖H−1(Ω) := sup
‖v‖=1

|ψ′(u)v| ≤ 2‖u‖ ∀u ∈ H1
0 (Ω).

Therefore, ψ′ : H1
0 (Ω)→ H−1(Ω) is continuous, and so ψ is of class C1. As ψ′ is linear and

continuous, we have that ψ is of class C2, ψ′′(u) = ψ′ and that ψ(k) = 0 for all k ≥ 3. This
concludes the proof.

Claim 2. If p ≥ 2, the functional

D : H1
0 (Ω)→ R, D(u) =

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p,

is Gâteaux differentiable and

D′(u)v = 2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv ∀v ∈ H1

0 (Ω).

Proof of claim 2. Let u, v ∈ H1
0 (Ω). Set r := 2N

2N−α . Since pr ∈ (2, 2N
N−2), one has that

u, v ∈ Lpr(Ω).
For each x ∈ Ω, consider the function f : [−1, 1]→ R given by

f(t) =

(
1

|x|α
∗ |u+ tv|p

)
|u(x) + tv(x)|p.

This function is of class C1 and its derivative is given by

f ′(t) =

(
1

|x|α
∗ p|u+ tv|p−2(u+ tv)v

)
|u(x) + tv(x)|p

+

(
1

|x|α
∗ |u+ tv|p

)
p|u(x) + tv(x)|p−2(u(x) + tv(x))v(x).

By the mean value theorem, for each 0 < |t| < 1, there exists sx ∈ (0, 1) such that∣∣∣∣f(t)− f(0)

t

∣∣∣∣ = |f ′(sxt)|.

Therefore, since

|f ′(sxt)| ≤ p
(

1

|x|α
∗ (|u|+ |v|)p−1|v|

)
(|u(x)|+ |v(x)|)p

+ p

(
1

|x|α
∗ (|u|+ |v|)p

)
(|u(x)|+ |v(x)|)p−1|v(x)| =: h(x),
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we obtain ∣∣∣∣∣∣
(

1
|x|α ∗ |u+ tv|p

)
|u(x) + tv(x)|p −

(
1
|x|α ∗ |u|

p
)
|u(x)|p

t

∣∣∣∣∣∣ ≤ h(x).

Since α
N + 2

r = 2 and |u + tv|p ∈ Lr for all t ∈ [−1, 1], the Hardy-Littlewood-Sobolev
inequality (2.4) guarantees that(

1
|x|α ∗ |u+ tv|p

)
|u+ tv|p −

(
1
|x|α ∗ |u|

p
)
|u|p

t
∈ L1(Ω) for all 0 < |t| < 1.

Moreover, since (|u| + |v|)p−1 ∈ L
pr
p−1 and |v| ∈ Lpr(Ω), by the Hölder inequality, (|u| +

|v|)p−1|v| ∈ Lr(Ω). Therefore, by the Hardy-Littlewood-Sobolev inequality (2.4), h ∈ L1(Ω).
Finally, since, for each x ∈ Ω, f is differentiable in t = 0, we have that

lim
t→0

(
1
|x|α ∗ |u+ tv|p

)
|u(x) + tv(x)|p −

(
1
|x|α ∗ |u|

p
)
|u(x)|p

t

= p

(
1

|x|α
∗ |u|p−2uv

)
|u(x)|p + p

(
1

|x|α
∗ |u|p

)
|u(x)|p−2u(x)v(x).

Thus, by the Lebesgue dominated convergence theorem, we obtain

lim
t→0

D(u+ tv)− D(u)

t
= p

∫
Ω

(
1

|x|α
∗ |u|p−2uv

)
|u(x)|pdx

+ p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u(x)|p−2u(x)v(x)dx

= 2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv.

Now, for each u ∈ H1
0 (Ω), the function T : H1

0 (Ω)→ R, given by

Tv := 2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv

is clearly linear. Furthermore, observe that |u|p−2uv ∈ Lr(Ω) and so, by the Hardy-
Littlewood-Sobolev inequality (2.4) and the Hölder inequality, we obtain

|Tv| ≤ 2pC||u|p|r||u|p−2uv|r

≤ 2pC|u|ppr
(
|u|p−2

pr
p−2
|u|pr|v|pr

)
≤ 2pC|u|p+1

pr |u|
p−2
pr
p−2
|v|pr,

where C is a positive constant. This proves that T is continuous. Consequently, D is Gâteaux
differentiable and

D′(u)v = 2p

∫
Ω

(
1

|x|α
∗ |u|p

)
|u|p−2uv.
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Let u ∈ Lpr(Ω). The Hölder inequality asserts that |u|p−2u ∈ L
pr
p−1 (Ω). Moreover, since

α
N + 1

r = 1 + α
2N , then (

1

|x|α
∗ |u|p

)
∈ L

2N
α (Ω),

cf.[39, Section 4.3(9)]. Hence, if q is given by 1
q = α

2N + p−1
pr , the Hölder inequality insures

that the map

Φ : Lpr(Ω)→ Lq(Ω), Φ(u) =

(
1

|x|α
∗ |u|p

)
|u|p−2u,

is well defined.
Now, if X,Y are Banach spaces, we denote by

B(X,Y ) := {T : X → Y : T is linear and continuous}.

Recall that this is a Banach space under the norm

‖T‖B(X,Y ) := sup
‖x‖X=1

‖Tx‖Y .

Consider the map
L : Lq(Ω)→ B(Lpr(Ω),R), u 7→ Lu,

where Lu is given by

Lu(v) :=

∫
Ω
uv.

Since q = 2Np
2Np−2N+α > 1 and 1

q + 1
pr = 1, we can deduce that L is a linear isometry (see for

example [12, Theorem 4.11]).
The map D′ : H1

0 (Ω)→ H−1(Ω) is obtained as

D′ = 2p(L ◦ Φ ◦ ι),

where ι : H1
0 (Ω) ↪→ Lpr(Ω) is the continuous Sobolev embedding. Therefore, to see that D

is of class C1, it suffices to show the following claim.

Claim 3. If p ≥ 2, Φ is continuous.

Proof. Let u ∈ Lpr(Ω). We first assert that any sequence (un) such that un → u in Lpr(Ω)
has a subsequence (unk) such that Φ(unk)→ Φ(u) in Lq(Ω). Indeed, let (un) be a sequence
in Lpr(Ω) such that un → u in Lpr(Ω). Lemma A.1 in [59] insures the existence of a
subsequence (unk) of (un) and g ∈ Lpr(Ω) such that,

unk → u a.e. on Ω and |unk |, |u| ≤ g a.e. on Ω.

This yields that Φ(unk)− Φ(u)→ 0 a.e. on Ω and

|Φ(unk)− Φ(u)| =
∣∣∣∣( 1

|x|α
∗ |unk |

p

)
|unk |

p−2unk −
(

1

|x|α
∗ |u|p

)
|u|p−2u

∣∣∣∣
≤
(

1

|x|α
∗ |unk |

p

)
|unk |

p−1 +

(
1

|x|α
∗ |u|p

)
|u|p−1

≤ 2

(
1

|x|α
∗ gp

)
gp−1 a.e. on Ω.
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Since the map in the right-hand side of this inequality belongs to Lq(Ω), the Lebesgue
dominated convergence theorem in Lq guarantees that Φ(unk)→ Φ(u) in Lq(Ω).

The above assertion yields that Φ is continuous at u. Indeed, if there were (un) in Lpr(Ω)
such that un → u in Lpr(Ω) and Φ(un) does not converge to Φ(u) in Lq(Ω) then it would
exist ε0 > 0 and a subsequence (vn) of (un) such that

|Φ(vn)− Φ(u)|q ≥ ε0 ∀n ∈ N. (B.1)

Since vn → u in Lpr(Ω), by the first assertion, vn would have a subsequence (vnk) such that
Φ(vnk)→ Φ(u) in Lq(Ω). It contradicts (B.1). Therefore, Φ is continuous at u.

Finally, since D′ = 2p(L ◦ Φ ◦ ι) and L, ι are of class C∞ (because they are linear and
continuous), in order to see that D is of class C2, it suffices to show the following claim.

Claim 4. If p ≥ 2, Φ is of class C1 and its derivative Φ′(u) : Lpr(Ω)→ Lq(Ω) is given by

Φ′(u)v = p

(
1

|x|α
∗ |u|p−2uv

)
|u|p−2u+ (p− 1)

(
1

|x|α
∗ |u|p

)
|u|p−2v.

Proof. Let u, v ∈ Lpr(Ω). For each x ∈ Ω, consider the function f : [−1, 1]→ R given by

f(t) =

(
1

|x|α
∗ |u+ tv|p

)
|u(x) + tv(x)|p−2(u(x) + tv(x)).

This function is of class C1 and its derivative is given by

f ′(t) =

(
1

|x|α
∗ p|u+ tv|p−2(u+ tv)v

)
|u(x) + tv(x)|p−2(u(x) + tv(x))

+

(
1

|x|α
∗ |u+ tv|p

)
(p− 1)|u(x) + tv(x)|p−2v(x).

Set
Tv := p

(
1

|x|α
∗ |u|p−2uv

)
|u|p−2u+ (p− 1)

(
1

|x|α
∗ |u|p

)
|u|p−2v.

From
lim
t→0

f(t)− f(0)

t
= f ′(0),

we can deduce that
Φ(u+ tv)− Φ(u)

t
→ Tv a.e in Ω as t→ 0.

On the other hand, by the mean value theorem, for each 0 < |t| < 1, there exists sx ∈ (0, 1)
such that ∣∣∣∣f(t)− f(0)

t

∣∣∣∣ = |f ′(sxt)|.

Therefore, since

|f ′(sxt)| ≤ p
(

1

|x|α
∗ (|u|+ |v|)p−1|v|

)
(|u(x)|+ |v(x)|)p−1

+ (p− 1)

(
1

|x|α
∗ (|u|+ |v|)p

)
(|u(x)|+ |v(x)|)p−2|v(x)| := h(x),
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we obtain ∣∣∣∣Φ(u+ tv)− Φ(u)

t

∣∣∣∣ ≤ h a.e in Ω.

Notice that h ∈ Lq(Ω). Thus, by the Lebesgue dominated convergence theorem in Lq, we
obtain that

Φ(u+ tv)− Φ(u)

t
→ Tv in Lq(Ω) as t→ 0.

Accordingly,

lim
t→0

Φ(u+ tv)− Φ(u)

t
= Tv for all v ∈ Lpr(Ω).

Now, for each u ∈ H1
0 (Ω), the function T is clearly linear. Moreover, the Hölder inequality,

together with [39, Section 4.3(9)], implies

|Tv|q ≤ p
∣∣∣∣ 1

|x|α
∗ |u|p−2uv

∣∣∣∣
2N
α

∣∣|u|p−1
∣∣
pr
p−1

+ (p− 1)

∣∣∣∣ 1

|x|α
∗ |u|p

∣∣∣∣
2N
α

∣∣|u|p−2v
∣∣
pr
p−1

≤ pC1

∣∣|u|p−2uv
∣∣
r

∣∣|u|p−1
∣∣
pr
p−1

+ (p− 1)C2 ||u|p|r
∣∣|u|p−2v

∣∣
pr
p−1

≤ pC1|u|p−1
pr |v|pr|u|p−1

pr + (p− 1)C2|u|ppr|u|p−2
pr |v|pr

= (pC1 + (p− 1)C2)|u|2p−2
pr |v|pr.

where Ci are positive constants. Thus, T is continuous. This proves that Φ is Gâteaux
differentiable and that

Φ′(u)v = p

(
1

|x|α
∗ |u|p−2uv

)
|u|p−2u+ (p− 1)

(
1

|x|α
∗ |u|p

)
|u|p−2v.

Arguing in a similar way as in the proof of Claim 3, we can conclude that

Φ′ : Lpr(Ω)→ B(Lpr(Ω), Lq(Ω))

is continuous.

Proof of Proposition B.1. The statement of this proposition is an immediate consequence of
the above claims.
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The genus of an orbit space

In Theorems 1.1, 1.2, 1.4 and 1.6, the number of solutions is given in terms of the genus of
the orbit space Z/G. We shall give estimates for it in terms of the Γ-genus of Z.

Let us recall the notion of Γ-genus, see [6] for further details. Let Γ be a compact Lie
group. The join of the Γ-spaces X1, . . . , Xm is the space

X1 ∗ · · · ∗Xm :=

{
[s1, x1, . . . , sm, xm] : si ∈ [0, 1],

m∑
i=1
si = 1, xi ∈ Xi

}
where [s1, x1, . . . , sm, xm] = [t1, y1, . . . , tm, ym] if, for each i = 1, ...,m, either si = ti and
xi = yi or si = ti = 0. This is again a Γ-space with the action

g[s1, x1, . . . , sm, xm] := [s1, gx1, . . . , sm, gxm].

The Γ-genus of a nonempty Γ-space X is the smallest m ∈ N such that there exist closed
subgroups Γ1, ...,Γm of Γ with Γi 6= Γ and a continuous Γ-equivariant map

f : X → Γ/Γ1 ∗ · · · ∗ Γ/Γm,

i.e. f(gx) = gf(x) for all x ∈ X, g ∈ Γ. We denote it by Γ-genus(X). If no such map exists
we set Γ-genus(X) :=∞.

If Γ = Z/2 then Z/2 ∗ · · · ∗ Z/2 ∼= Sm−1 with the action given by multiplication, so that
the Z/2-genus is just the Krasnoselskii genus.

Let Γ and Λ be compact Lie groups, φ : Γ→ Λ be a continuous epimorphism, K := kerφ
and X a Γ-space. Then Λ acts on the orbit space X/K as follows: for each x ∈ X, g ∈ Λ
and some γ ∈ Γ such that φ(γ) = g we define

g ·Kx := K(γx). (B.1)

This action is well defined because K is a normal subgroup of Γ. The quotient map q : X →
X/K satisfies that q(γx) = φ(γ) · q(x) for any γ ∈ Γ, x ∈ X. The following result holds:

Lemma C.1. Γ-genus(X) = Λ-genus(X/K).
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Proof. Let Λ1, ...,Λm be closed subgroups of Λ, Λi 6= Λ, and let

f : X/K → Λ/Λ1 ∗ · · · ∗ Λ/Λm

be a continuous Λ-equivariant map. We define Γi := {γ ∈ Γ : φ(γ) ∈ Λi}. Then φ induces
homeomorphisms φi : Γ/Γi → Λ/Λi that satisfy φi(γΓi) = φ(γ)Λi, which in turn induce an
homeomorphism

φ1 ∗ · · · ∗ φm : Γ/Γ1 ∗ · · · ∗ Γ/Γm → Λ/Λ1 ∗ · · · ∗ Λ/Λm,

defined in the obvious way. The map F : X → Γ/Γ1 ∗ · · · ∗ Γ/Γm given by

F := (φ1 ∗ · · · ∗ φm)−1 ◦ f ◦ q

is continuous and Γ-equivariant. Hence,

Γ-genus(X) ≤ Λ-genus(X/K).

Conversely, let Γ1, ...,Γm be closed subgroups of Γ, Γi 6= Γ, and let

F : X → Γ/Γ1 ∗ · · · ∗ Γ/Γm

be a continuous Γ-equivariant map. We define Λi := φ(Γi) and set φ1 ∗ · · · ∗ φm as above.
Observe that (φ1 ∗ · · · ∗ φm) ◦ F is continuous and constant on q−1(Kx) for each x ∈ X.
Hence, it induces a map

f : X/K → Λ/Λ1 ∗ · · · ∗ Λ/Λm

which is continuous and Λ-equivariant. Therefore,

Λ-genus(X/K) ≤ Γ-genus(X).

Let us look at an example. Let Γ be the subgroup of O(4n) spanned by ρ and γ, where

ρ(y, z) := (eπi/my, eπi/mz), γ(y, z) := (−z, y), ∀(y, z) ∈ Cn × Cn ≡ R4n,

z = (z1, ..., zn) and zi is the conjugate of zi. Note that ρ is of order 2m, γ is of order 4,
ρm = γ2 and γρ = ρ−1γ. Let us consider the homomorphism φ : Γ→ Z/2 given by φ(ρ) = 1
and φ(γ) = −1. Then G := kerφ is the cyclic subgroup spanned by ρ. The following holds:

Proposition C.2. (a) genus(S4n−1/G) ≥ 2n+ 1.
(b) If m ≥ 3, then there exists a0 > 1 such that dist(γx,Gx) ≥ a0µ(Gx) for all x ∈ S4n−1.

Proof. (a) Let us consider the cyclic subgroup of order 4 of Γ spanned by γ and denote it
by Z/4. The kernel of the restriction of φ to Z/4 is the group K = {1, γ2}. Lemma C.1,
together with Theorem 1.2 of [5], yields

genus(S4n−1/K) = Z/4-genus(S4n−1) ≥ 2n+
1

2
.
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As K ⊂ G the quotient map S4n−1/K → S4n−1/G is well defined and is Z/2-equivariant
for the action defined in (B.1). Therefore,

genus(S4n−1/G) ≥ genus(S4n−1/K).

Combining both inequalities one obtains the assertion.
(b) Note that γx · ρjx = 0 and, consequently,

∣∣γx− ρjx∣∣ =
√

2 for any x ∈ S4n−1, j =

1, ..., 2m. On the other hand, µ(Gx) =
∣∣eπi/m − 1

∣∣ < √2 if m ≥ 3. Hence, taking a0 > 1

such that a0

∣∣eπi/m − 1
∣∣ < √2, we get the conclusion.
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