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Abstract

We consider the problem
—Au+W(z)u = f(z,u), u€ H(Q),

where  is an exterior domain in RY, N >3, W € CO(RY), infgn W > 0, W(z) — Voo > 0
as |x| — oo and the function f is either the local nonlinearity

fl@,u) = ul’~?u,

or the nonlocal one .
) = (o ) a2

In the first case we assume that 2 < p < 2* := ]\2% while in the second one we assume that

29
a € (0,N) and QNN_O‘ <p< 2]]\,\[__20‘.

Under symmetry assumptions on €2 and W, and appropriate assumptions on the decay of
W at infinity, we establish the existence of a positive solution and multiple sign changing
solutions to this problem, having small energy (in the symmetric sense). Moreover, we show
that there is an effect of the topology of the orbit space of certain symmetric subsets of the
domain on the number of low energy sign changing solutions to this problem.
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Chapter

Introduction

We consider the problem

{ —Au+ (Voo + V(2))u = f(z,u),
u € HH (D),

where N > 3 and € is an unbounded smooth domain in RY, whose complement RY . Q is
bounded, possibly empty. The potential V., + V is assumed to satisfy

(Vo) V eCORY), Vy € (0,00), infycpn{Voo + V(2)} >0, lim|g 00 V(z) = 0.

The function f can be either the local nonlinearity
fla,u) = [ulP~2u,

or the nonlocal one

) = (o ) a2

[

In the first case we assume that 2 < p < 2* := %, while in the second one we assume that

a € (0,N) and 22 < p < 2=x,

In this thesis, we are interested in obtaining positive and sign changing solutions to this
problem.

We are going to consider separately the local case and the nonlocal one. In both of
them, we analyse two model situations: first, we assume that V tends to its limit at infinity
exponentially from below. Then, we consider the case in which V' tends exponentially to
its limit at infinity taking on values greater than its limit (which includes the autonomous
case V' = 0). The speed of convergence depends on the distance between the elements of
the orbits in a certain symmetric subset of the domain. Weaker conditions on the decay of
the potential require stronger conditions on the symmetries.

The main results of this thesis, here revised and extended, are contained in two joint
works with M. Clapp (]|26] and [27]).



2 Introduction

1.1 The local problem

We consider the problem

—Au+ (Voo + V(2))u = |ulP~?u,
Lo @

where Q is an unbounded smooth domain in RN, N > 3, whose complement RV . € is
bounded, possibly empty, and 2 < p < 2* := % The potential Vo, + V is assumed to

satisfy (Vp).

1.1.1 On the most closely related known results

Equations of this kind arise naturally in various branches of physics and in some problems
in biology as well, see for example [10, 33]. The existence of solutions to (1.1) has been
extensively studied during the last 25 years. A detailed account is given in Cerami’s survey
article [15]. In what follows we make reference to the results more closely related to our
study.

The main difficulty in dealing with problem (1.1) by means of variational methods is the
lack of compactness. This difficulty does not appear when Q2 and V are radially symmet-
ric and we look for radial solutions [55, 10, 31|. However if, either Q or V' do not have
symmetries, or if they have symmetries with finite orbits, the lack of compactness prevails.

Remarkable progress was made when P.-L. Lions introduced in [41] his concentration
compactness method, which allowed to show the existence of a solution of problem (1.1) in
RY by a minimization argument for V' < 0. This also applies in an exterior domain 2, like
the one we are considering, when V' < 0 satisfies a suitable decay assumption at infinity.
However, when V' > 0 and  # RY or when V > 0 and = R" the question of the existence
cannot be treated by minimization. To handle this situation a deeper understanding of the
lack of compactness of the variational problem is needed. Benci and Cerami gave in [9] a
complete description of the lack of compactness in terms of the solutions to the limit problem

— = |y|P—2
{ Au + Veou = |ulP~%u, (1.2)

u € HY(RY),

associated to (1.1). This allowed them to solve the existence problem for V' = 0 when the
diameter of RY \ € is small enough. Bahri and Lions in [4] eliminated this restriction and,
considering some decay assumptions at infinity on V', they showed the existence of a solution
for V> 0. In all of these cases the solution obtained is positive.

A result concerning the existence of multiple solutions with small energy was obtained
by Clapp and Weth in [28] when Q = RY and V approaches to 0 from below at infinity
in a suitable way. However, the techniques employed there, provide no information on
whether these solutions change sign or not. Cerami, Devillanova and Solimini established
the existence of infinitely many solutions in [17] assuming that = RY and V tends to zero
from below at infinity at some suitable rate. Recently, Wei and Yan [58] proved the existence
of infinitely many positive solutions to this problem when Q = RY and V is a radial function
tending to 0 at infinity, in a polynomial way. Without any symmetry assumptions on the
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potential, Cerami, Passaseo and Solimini proved in [19] an analogous result for potentials
that decay very slowly.

We are interested in obtaining multiplicity of sign changing solutions to this problem.
For © = RY and V = 0 existence of infinitely many sign changing solutions with large
symmetries was shown in [8, 43, 49]. When € and V' have only finite symmetries, existence
of a sign changing solution to problem (1.1) was shown by Cerami and Clapp in [16] and by
Carvalho, Maia and Miyagaky in [14], under suitable assumptions. We shall refer to these
results later in more detail.

Several multiplicity results have been obtained for the singularly perturbed problem
—eAu+ (Voo +V(2))u = [ulP~2u, u € HY(RY), for small enough ¢ > 0. It is well-known
that, when € — 0, there are solutions to this problem which concentrate at critical points of
the potential V, see [2, 29|. Hence, it is not surprising that the topology of certain subsets
of critical points of V' has an effect on the number of solutions to this problem, as has been
shown for example in [23|. Even though a similar concentration phenomenon is not present
in the problem we are treating here, we will prove in this thesis that, when looking for sign
changing solutions, there is a combined effect of the topology and the symmetries of certain
subsets of the domain on the number of solutions to problem (1.1).

1.1.2 Main results: Multiplicity of sign changing solutions

In this subsection we state our existence results for the local problem and give some examples
of symmetric situations for which they apply.

We study the case where both 2 and V' have some symmetries. If I' is a closed subgroup
of the group O(N) of linear isometries of RV, we denote by

lz:={gr:gel}
the I'-orbit of x, by #I'z its cardinality, and by
() := min{#T'z : 2 € RY < {0}}.

We assume that  and V' are I'-invariant, this means that 'z C Q for every x € 2 and
that V is constant on 'z for each z € R™. We consider a continuous group homomorphism
¢ : ' — 7Z/2 and we look for solutions which satisfy

u(gz) = ¢(g)u(z) for all g € T and z € Q. (1.3)
A function u with this property will be called ¢-equivariant. We denote by
G = ker ¢.

Note that, if u satisfies (1.3), then u is G-invariant. Moreover, u(yx) = —u(z) for every z € Q
and v € ¢~ (—1). Therefore, if ¢ is an epimorphism (i.e. if it is surjective), every nontrivial
solution to (1.1) which satisfies (1.3) changes sign. If ¢ = 1 is the trivial homomorphism,
then I' = G, and (1.3) simply says that u is G-invariant.

If Z is a I'-invariant subset of RY and ¢ is an epimorphism, the group Z/2 acts on the
G-orbit space Z/G := {Gx : x € Z} of Z as follows: we choose v € T" such that ¢(v) = —1
and we define

(-1) - Gz := G(yx) for all z € Z.
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This action is well defined and it does not depend on the choice of v. We denote by
Yi={z e RV :|z| =1, #I'z = (T}, Yo:={xeX:Gx=G()}.

If Z is a nonempty I'-invariant subset of ¥ \ X, the action of Z/2 on its G-orbit space
Z/G is free and the Krasnoselskii genus of Z/G, denoted genus(Z/@G), is defined to be the
smallest k € N such that there exists a continuous map

f:2/G =S i={z eR": 2| =1}

which is Z/2-equivariant, i.e. f((—1)-Gz) = —f(Gz) for every z € Z. We define genus()) :=
0.
For each subgroup K of O(N) and each K-invariant subset Z of RY ~ {0} we set

| inf{lgz —hz|:g,h € K, gz # hz} if #Kz> 2,
K 2) = { 22| if #K2 =1,
i (Z) = inf p(Kz) and p(Z) = sup (K z2).

zeZ z2€Z

In what follows, we will assume that §2 is I'-invariant, that V is a [-invariant function and
that (Vp) holds. We will also assume that ¢(I') < oo, because otherwise, as we are going to
see later, problem (1.1) has infinitely many solutions.

We denote by ¢, the energy of the positive solution to the limit problem (1.2). We shall
look for solutions with small energy, i.e. which satisfy

p— 2 / p ~
— ul|? < 4(T) Coo. 1.4
el AR (14)
We shall prove the following result.

Theorem 1.1. If ¢ : T' — Z/2 is an epimorphism, Z is a I'-invariant subset of ¥\ ¥, and
V' satisfies the following:

(V1) There exist 1o > 0, cg > 0 and X € (0, ur(Z)v/Voo) such that
V(z) < —coe ! for all x € RY with |x| > ro,

then problem (1.1) has at least genus(Z/G) pairs of sign changing solutions +u, which satisfy
(1.3) and (1.4).

Let us look at some examples.

Example 1. Let I' be the group spanned by the reflection v : RN — R” on a linear subspace
W of RN of dimension 0 < dimW < N. If Q and V are invariant under this reflection, we
may take ¢ : I' — Z/2 to be the epimorphism given by ¢(v) := —1 and Z to be the unit
sphere in the orthogonal complement of W. Then, Theorem 1.1 yields

genus(Z) = N —dim W

pairs of solutions to problem (1.1) provided (V}) holds for some A € (0,2v/ V).
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Under analogous assumptions to those of the previous theorem, Carvalho, Maia and Miya-
gaki proved in [14] the existence of a solution to (1.1) satisfying (1.3) and (1.4) in the case
considered in the above example. Note that in our example pp(Z) = 2, so our assumption
(V1) is less restrictive than the one in [14] where X € (0,/Va) is required.

Another interesting example is the following;:

Example 2. If N = 2n we identify RY with C" and take I" to be the cyclic group of order

2m spanned by
p(zlv s 7zn) = (eﬂZ/mzlv SER) eﬂ—l/mzn)

and ¢ : I' — Z/2 to be the epimorphism given by ¢(p) := —1. Then G := ker ¢ is the cyclic
subgroup of order m spanned by p?. Since the action is free, we have that ¥ = SV~! and
Yo = 0, so we may take Z := SV~1. The genus of S¥~!/G can be estimated in many cases.
For example, if m = 2¥, Lemma C.1 below together with Theorem 1.2 of [5] give

N -1
genus(SV71/G) > o + 1.

Since pr(SV1) = ‘e’ri/m — 1|, condition (V1) becomes more restrictive as m increases. So,
if condition (V;) holds for m = 2¥, it will also hold for m = 2/ with 0 < j < k. Now, if u;
is a solution provided by Theorem 1.1 for m = 27, then u; satisfies (1.3), i.e.

uj(eml/@j)z) = (=D uj(z) Vi=0,...,2" —1, zeQccC™

This implies that ug # u; if k > j. Indeed, if k > j and ug(2) = u;(z) # 0 at some z € Q
then, since u;(e™/(?")2) = —u;(z) and

(€™ z) = ug (™0 2) = (—1)7 T w(2) = (=),
we have that ug(e™/ () z) £ uj(e™/ (2)2). Therefore, Theorem 1.1 provides at least

k
N -1 oktl _q
> g thHl=(N D)= k1

Jj=0
pairs of sign changing solutions in this case.

On the other hand, similar actions in odd dimensions give no solutions. For example, if
we take polygonal symmetry in R? given by p(z,t) := (e™/™z,t), (z,t) € C x R = R*—as
considered in |56] for a related problem—and ¢(p) := —1, then

% = {£(0,0,1)} = 2.

So Theorem 1.1 gives no information in this case. However, if we consider the group I'
generated by p and the reflection 7(z,t) := (2, —t), and take ¢(p) := 1 and ¢(7) := —1, then
¥ ={%£(0,0,1)} and Xy = @) and Theorem 1.1 yields one pair of sign changing solutions.
For potentials with an analogous behavior at infinity, but without requiring any symmetry
property neither on the domain nor on the potential, in [28] it was shown that problem (1.1)
has at least % + 1 pairs of solutions. However, the argument used there gives no precise



information whether the solutions obtained change sign or not. If ¢ is an epimorphism,
property (1.3) asserts that u changes sign and, as we have seen, in some cases Theorem 1.1
yields more than % + 1 pairs of solutions.

We shall prove also the following multiplicity result of sign changing solutions, with a
different condition on the potential.

Theorem 1.2. Let Z be a I'-invariant subset of X. Assume that the following hold:
(Zo) There exists ag > 1 such that

dist(vz, Gz) > agpu(Gz) forallze€ Z and vy €T \ G,
(Vo) There exist cg > 0 and k> pu (Z)\/Viso such that
V(z) < coe "] for all z € RV,

Then (1.1) has at least genus(Z/G) pairs of sign changing solutions +u, which satisfy (1.3)
and (1.4).

Let us pointed out that this theorem corresponds to [26, Theorem 1.2]. However, there
we assumed Z to be a compact I'-invariant subset of 3 which satisfies the slightly different
condition
(Zo) dist(yz,Gz) > u(Gz) forall z € Z and vy € T\ G.

We noticed that the compactness assumption for Z can be removed just asking for condition
(Zp) above.

Theorem 1.2 is an extension of the result obtained by Cerami and Clapp in [16], which
states the existence of a sign changing solution to the autonomous problem V = 0 if (Zj)
holds for some z € ¥. Note that (Zp) implies that Z C ¥ \ 3. Note also that condition
(Zp) cannot be realized if N = 3 or if /(G) = 1. However, we next give an example which
illustrates the situation in Theorem 1.2 for higher dimensions.

Example 3. We identify R*" with C" x C" and consider the subgroup I' of O(4n) spanned
by p and v, where p(y, 2) := (e™/™y, e™/™2) and (y, 2) := (=%, 7) for (y,z) € C* x C" and
some m > 3. We define ¢ : I' — Z/2 by ¢(p) = 1, ¢(7) = —1. Then G := ker ¢ is the cyclic
subgroup of order 2m spanned by p. Since m > 3, property (Zy) holds for Z := S~ We
will prove in Appendix C that

genus(S™"1/G) > 2n + 1.

Consequently, if 2 and V are I'-invariant and (V3) holds, Theorem 1.2 yields 2n + 1 pairs
of sign changing solutions to problem (1.1). Note that u@(S*~1) = ’e”/m — 1’ , hence (132)
becomes less restrictive as m increases.

1.2 The nonlocal problem

We consider the problem

{ Bt (Voo + V(@) u = (il *ul?) [ul 2 (1)

u € Hy(9),
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where N > 3, a € (0,N), p € (2NN_°‘, 2107:20‘) and € is an unbounded smooth domain in

RY whose complement RY \ € is bounded, possibly empty. We also assume that (Vo) is
satisfied.

1.2.1 A brief historical background

A special case of (1.5), relevant in physical applications, is the Choquard equation
* |u|2> u, u€ H'(RY), (1.6)

which models an electron trapped in its own hole, and was proposed by Choquard in 1976
as an approximation to Hartree-Fock theory of a one-component plasma [38]. This equation
arises in many interesting situations related to the quantum theory of large systems of
nonrelativistic bosonic atoms and molecules, see for example [34, 40] and the references
therein. It was also proposed by Penrose in 1996 as a model for the self-gravitational collapse
of a quantum mechanical wave-function [53]. In this context, problem (1.6) is usually called
the nonlinear Schrédinger-Newton equation, see also [46, 47].

In 1976 Lieb [38] proved the existence and uniqueness (modulo translations) of a minimizer
to problem (1.6) by using symmetric decreasing rearrangement inequalities. Later, in [42],
Lions showed the existence of infinitely many radially symmetric solutions to (1.6). Further
results for related problems may be found in [1, 22, 24, 45, 51, 54, 57| and the references
therein.

In 2010, Ma and Zhao [44] considered the generalized Choquard equation

1
—Au+tu= ( * u\p) luP~?u, we HY(RY), (1.7)

||

and proved that, for p > 2, every positive solution of it is radially symmetric and monotone
decreasing about some point, under the assumption that a certain set of real numbers,
defined in terms of N, « and p, is nonempty. Under the same assumption, Cingolani, Clapp
and Secchi [21] recently gave some existence and multiplicity results in the electromagnetic
case, and established the regularity and some decay asymptotics at infinity of the ground
states of (1.7). Moroz and van Schaftingen [48] eliminated this restriction and showed the
regularity, positivity and radial symmetry of the ground states for the optimal range of
parameters, and derived decay asymptotics at infinity for them, as well. These results will
play an important role in our study.

1.2.2 Main results: Positive and sign changing solutions

In this subsection we state our existence results for the nonlocal problem. We still use the
same notation as in the statement of the main results for the local problem (see subsection
1.1.2). The only difference is that in the special case where K = G and Z = X, we simply
write

po = pe(Y)  and  pf = pd(s).
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We just consider the case ¢(I") < oo, because if all T-orbits of Q are infinite it was already
shown in [21, Theorem 1.1] that (1.5) has infinitely many solutions. In this case, ug > 0.
We denote by co the energy of a ground state of the problem

{ —Au+ Vaou = (W yuyp) ulP~2u

ue H'(RY). (18)

We shall look for solutions with small energy, i.e. which satisfy

|u()[Pluly)|”
————dxdy < /{ 1.9
N M A 19

In what follows, we assume that V' satisfies (Vj). We shall prove the following results:
Theorem 1.3. If p > 2, Q is G-invariant and V is a G-invariant function which satisfies
(V3) There exist 1o >0, cg > 0 and X\ € (0, u%/Vio) such that

V(z) < —coe N7 for all z € RN with |z| > ro,

then (1.5) has at least one positive solution u which is G-invariant and satisfies (1.9) with
I'=aG.

Theorem 1.4. If p > 2, Q is T-invariant, ¢ : T' — Z/2 is an epimorphism, Z is a T-
invariant subset of X\ Yo and V is a I'-invariant function which satisfies

(V1) There exist 1o > 0, cg > 0 and X € (0, ur(Z)v/Voo) such that
V(z) < —coe Nl for all x € RY with |x| > ro,

then problem (1.5) has at least genus(Z/G) pairs of sign changing solutions tu, which satisfy
(1.3) and (1.9).

Theorem 1.5. If p > 2, {(G) > 3, Q is G-invariant and V is a G-invariant function which
satisfies

(Vi) There ezist co > 0 and k > pa/ Voo such that
V(z) < coe "l for all z € RY,

then (1.5) has at least one positive solution u which is G-invariant and satisfies (1.9) with

I'=aG.

Theorem 1.6. If p > 2, Q is I'-invariant, ¢ : I' — Z/2 is an epimorphism, Z is a T'-
invariant subset of X3, V' is a I'-invariant function and the following hold:

(Zo) There exists ag > 1 such that
dist(yz, Gz) > aou(Gz) forallze Z and y € I' \ G,
(Vo) There exist cg > 0 and k> put'(Z)\/Viso such that
V(z) < coe "] for all z € RV,

then (1.5) has at least genus(Z/G) pairs of sign changing solutions tu, which satisfy (1.3)
and (1.9).



Let us point out that conditions (V7), (V) and (Zp) are the same ones we required in the
local case.

Theorem 1.3 was proved in [21] for Q = RY under additional assumptions on « and p. As
far as we know, Theorem 1.5 is the first existence result for potentials V' which are nontrivial
and take nonnegative values at infinity. In the local case, Bahri and Lions proved existence
for this type of potentials without any symmetries [4]. Unfortunately, some of the facts used
in their proof are not available in the nonlocal case.

As we mentioned before, the existence of infinitely many solutions is known in the radial
case [42] and in the case where every I'-orbit in () is infinite [21]. In contrast, Theorems 1.4
and 1.6 provide multiple solutions when the data have only finite symmetries.

The examples which illustrate the results for the local case continue being valid in this
context. To be precise, if I' and ¢ are as in the Example 1 and we choose Z in the same
way, then Theorem 1.4 yields genus(Z) = N — dim W pairs of solutions to problem (1.5)
provided (V7) holds for some A\ € (0,2/VL,). Furthermore, if I and ¢ are as in the Example
2 and condition (V7) holds for m = 2F, taking Z := SV~!, Theorem 1.4 provides at least

k

N —1 2k+1_
ZO S e e A
J:

pairs of sign changing solutions satisfying (1.3) and (1.9).

The group G in Example 2 satisfies /(G) = m. This shows that there are many groups
satisfying the symmetry assumption in Theorem 1.5 when N is even. If N is odd not many
groups satisfy £(G) > 3. For example, if N = 3, the only subgroups of O(3) which satisfy
this condition are the rotation groups of the icosahedron, octahedron and tetrahedron, I, O
and T, and the groups I x Z§, O x Z§, T x Z§ and O~ described in [20, Appendix A].

Note that (Zp) implies that Z C ¥ \ ¥. Condition (Z) cannot be realized if N = 3. In
the context of Example 3 we can see that property (Zp) holds for Z := S*~1. Therefore, if
Q and V are I' -invariant and (V3) holds, Theorem 1.6 yields 2n + 1 pairs of sign changing
solutions to problem (1.5).

1.3 Some open problems

Here we indicate some of the open problems which are motivated by the work of this thesis
and some application of the technics developed there to related problems that we plan to
study in the near future.

1.3.1 Further questions concerning the nonlocal problem

1. In the nonlocal problem that we considered in [27] the symmetries played an important
role to prove the existence of a positive solution for potentials V' which are nontrivial
and take nonnegative values at infinity. This is, as far as we know, the first existence
result in this situation. The problem of existence without symmetries is open, and
seems to be nowhere studied in the literature.



10 Introduction

In the local case, Bahri and Lions [4] proved existence for this type of potentials
without any symmetries. Unfortunately, some of the facts used in their proof are not
available in the nonlocal case. Particularly, it is not known whether the ground state
of the limit problem (1.8) with the nonlocal nonlinearity

f(o,u) = (|1 ' ru\p) fufP~2u

is, in general, the only positive solution (up to translations).

Recently, Ma and Zhao [44] showed that in the classical case N =3, « = 1, p = 2, the
ground state is the only positive solution. We plan to investigate whether, at least in
this case, a positive solution to problem (1.5) exists for this type of potentials without
any symmetry assumption.

2. Recently, S. Cingolani, M. Clapp and S. Secchi considered the stationary nonlinear
magnetic Choquard problem

(—iV + A(2)u+ V(@)u = (e« lul?) [ul2u,
u € L2(RN,C),
Vu +iA(z)u € L2(RN,CN),

where A : RV — RY is a Cl-vector potential, V : RV — R is a positive continuous
scalar potential, N > 3, o € (0, N) and p € [2, 2}5_}“). Under symmetry assumptions
on the data and some additional condition on « and p, they proved in [21] that, if V/
tends to its limit at infinity exponentially from below at an appropriate speed which
depends on the symmetries, there exists a complex-valued solution to this problem

exhibiting a vortex-type behavior.

We would like to work on an extension of the results obtained in [27] to the magnetic
problem above, with the following specific goals: 1) to eliminate the additional con-
dition on « and p, 2) to allow scalar potentials which take on values greater than its
limit at infinity, and 3) to obtain multiplicity of vortex-type solutions to this problem.

3. In addition to this, we are interested in obtaining solutions to the nonlocal problem
in the symmetric case when p € (QNN_ 2 2). In this case, solutions should be possible
but the arguments used in this thesis do not apply since the energy functional associ-
ated to this problem is nowhere twice Fréchet-differentiable. However, one should be
able to apply the mountain pass method in order to obtain existence results. Decay
asymptotics for the ground state of the limit problem are available, but they are not
exponential in this case. They were recently obtained by Moroz and van Schaftingen

in [48].

1.3.2 The local and nonlocal problem in domains with un-
bounded boundary

We are also interested in studying problem (1.5) when € is an unbounded smooth domain
having unbounded boundary. In 2009, Cerami and Molle [18]| considered the problem of
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finding positive solutions u € H{ () of the equation
At W (@) = a2,

where p € (2,2%), Q is either RV or an unbounded domain which is periodic in the first ¢
coordinates and whose complement is contained in a cylinder

{(2',2") e RY x RN~ : |2"| < R}.

Under appropriate decay assumptions at infinity on the potential W, they showed the ex-
istence of one solution when the potential approaches its limit at infinity from below and
of ¢ + 1 solutions when the potential takes on values larger than its limit at infinity. Our
purpose is to obtain multiplicity of sign changing solutions of problem (1.5) for this kind of
domains, both in the local and the nonlocal case. It is worth mentioning that this problem is
particularly interesting because in unbounded smooth domains having unbounded boundary
compactness may fail at all energy levels, as shown in [45].

1.3.3 Other related problems

We believe that the methods developed in this thesis may be useful for other problems. For
example, recently, Felmer, Quaas and Tan [32] proved the existence of positive ground states
of the fractionary laplacian problem

(=A)u +u = f(r,u) inRN,
{ lim u(z) =0,
|z|—o0
under suitable assumptions on f. Particularly, they showed that the ground states are
radially symmetric and, in contrast with the case @ = 1, they proved that when 0 < a < 1 the
decay of the ground state at infinity is not exponential, but it is a power-type decay. Using
this information, we wish to investigate whether, under suitable assumptions, it is possible
to obtain the appropriate asymptotic estimates we need to prove that the nonautonomous
problem

lim wu(z) =
|z|—o00

{ (—=A)u+ W (z)u = f(x,u) in RY,

has multiple sign changing solutions.

This thesis is organized as follows: In Chapter 2 we set the variational framework for
problems (1.1) and (1.5), with an emphasis on the nonlocal case, where some facts are not
widely explained in the literature. In Chapter 3 we provide a detailed account of the main
tools for proving our existence results. We begin with a careful analysis of the behavior of
the Palais—Smale sequences satisfying some symmetry properties, which refines that given
in [9]. This allow us to establish a lower bound for the lack of compactness of the variational
funcional associated to our problem in the appropriate symmetric subspaces of H&(Q) Then
we derive some delicate asymptotic estimates which enable us to control the energy of the
interaction between the positive and negative ground states of the limit problem

{ —Au+ Voou = f(z,u),

ue HUO), (1.10)
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which appear as summands in the test functions we use. The behavior of the ground states
in the nonlocal case was recently described in [21, 48]. This yields the existence of positive
symmetric solutions. We conclude this chapter with the relation between the Krasnoselskii
genus and the critical point theory with symmetries.

Chapter 4 is devoted to the proof of the main results of this thesis, once more, we focus on
the nonlocal case and add some remarks which describe the situation in the local one. In the
first section, we consider potentials which are strictly negative at infinity and prove Theorems
1.3 and 1.4. In the second section, we consider potentials which take on nonnegative values
at infinity and prove Theorems 1.5 and 1.6. In contrast with the semiclassical case considered
in [29], our problem exhibits no concentration. Nevertheless, to obtain multiplicity, we are
able to apply a new variant of a variational principle which has been successfully used in
problems in which concentration occurs [23, 7, 22|. We show there is an effect of the topology
of some symmetric subsets of the domain on the number of sign changing solutions. More
precisely, the Krasnoselskii genus of the orbit space Z/G provides a lower bound for the
number of sign changing solutions with a specific type of symmetries.

Finally, to provide examples of our multiplicity results, in the Appendix, we prove a
topological result which relates the Krasnoselskii genus of the orbit space Z/G with the gene-
ralized genus of Z, thus allowing the use of well-known estimates for the generalized genus
of a representation sphere, like those given in [5, 6], to obtain estimates of the Krasnoselskii
genus of its orbit space.



Chapter

The variational setting

Throughout this chapter we mainly focus in the nonlocal case, because the variational frame-
work for the local problem is well-known in the literature. More precisely we consider the
problem

{ Bt (Voo + V(@) u = (ha #ul?) [ul 22, (2.1)

u € HY(Q),

where N >3, a € (0,N), p € (QNN*O‘, 211\,\7:2‘3‘) and (Q is an unbounded smooth domain in RY

whose complement RY < Q is bounded, possibly empty. We continue to assume that the
potential Vi, + V satisfies

(Vo) V eC'RY), Vi € (0,00), inf,cpn{Veo + V(z)} > 0, limy o0 V() = 0.

From now on we shall assume without loss of generality that V,, = 1.

Notice that even though the support of the function (ﬁ * |u\p> is not contained inside

Q, the support of (i * |u|p) lulP~2u is a subset of Q for every u € H} ().

|z

Observe that if u satisfies

~du (V@) u = (G ) P2

4

multiplying each side of this equation by ¢ € C2°(2) and integrating, we obtain

_/Q(AU)SO‘F/Q(I-FV(QZ))UQO: /Q <1 % |u|7’> WP 2up Vo € C(Q).

]

Applying the Green formula to the first integral in the left-hand side, we conclude that

[vuves [aavienue= [ () 2 voecm.

[

A function u € HE () which satisfies the above is called a weak solution of (2.1). Throughout
this thesis, we shall refer to a weak solution just as a solution.
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We consider the functional Jy : H}(Q2) — R given by

wot)i= 5 (VP4 e vne) - o [ (el )
We write
(u,v)y = /QVU -Vou + /Q 1+ V(z))uv (2.2)
and

lully = (/Q (Iva + 1 +V(m))u2)>1/2_ (2.3)

If V=0 we write (u,v) and |Ju|| instead of (u,v), and |lul|,.

Proposition 2.1. If V satisfies (Vo), then (-,-)y, is a scalar product in H}(Y) and the
induced norm |lul|,, is equivalent to the usual one.

Proof. Assumption (1)) guarantees that there exist Vi, Vo > 0 such that
Vi<1+V(z)<Vy VzeRY

Using the first inequality one can easily check that (-, ),  is a scalar product in H}(£2). On
the other hand, the following holds true:

/Q<]Vu|2+(l—|—V(:L"))u2) z/ﬂ(ywhvlu?) > min{ V4, 1}]|u/2

/ (|Vu\2+(1+V(:c))u2> g/ (|vu\2+v2u2) < max{Va, 1}u/%.
Q Q
Therefore, taking C; := min{y/V}, 1} and C5 := max{/V2, 1} we obtain
Cillull < llullv < Callull. 0

As usual, we identify u € H} () with its extension to RY obtained by setting u = 0 in
RY \ Q and denote by ul, = (Jp~ ]u\q)l/q the norm in L(RY).

We define
p) z)[Plu(y)[?
D(u) := = [ul” ) Julf = ————dxdy
| ’ RN JRN |$—3/|
and set r = 2]%,]:1. Since p € (QNN_O‘, 2]@7:20‘), one has that pr € (2,%). Hence, the

continuous Sobolev embedding Hg () < LP" () holds.
The classical Hardy-Littlewood-Sobolev inequality |39, Theorem 4.3| implies

/RN /RN |z — y|™ dx dy| < Clol [l (2.4)

for some positive constant C' = C(a, N) and all ¢, ¢ € L"(RY). In particular,

D(u) < Clu??  for all u € HY(S). (2.5)



This shows that D is well defined.
We can rewrite the functional Jy as

1 1
Jo(u) = 5 Julf, = 5-Dlw).

The proof of the following proposition is given in Appendix B.

Proposition 2.2. If p > 2, the functional Jy is of class C* and

1
ptayo = (wsahy = [ (s <1l ) =2
o \l|z|

Consequently, u is a solution of problem (2.1) if and only if u is a critical point of Jy .

2.1 The variational framework for the symmetric pro-
blem

From now on, we shall assume that p > 2. As in the Introduction, we consider a closed
subgroup T of the group O(N) of linear isometries of RY and denote by

Iz :={gx:gel}

the I'-orbit of x.

Throughout this section we shall assume that 2 and V' are I'-invariant, this means that
'z C Q for every z € Q and that V is constant on I'z for each € RY. We consider a
continuous group homomorphism

¢p:T —=7/2
and we look for solutions to (2.1) which satisfy
u(gz) = ¢(g)u(z) for all g € T and z € Q. (2.6)
A function u with this property will be called ¢-equivariant. We denote by
G = ker ¢.
Note that, if u satisfies (2.6), then u is G-invariant. Moreover,
u(yz) = —u(z) for every x € Q and v € ¢~ 1(—1).

Therefore, if ¢ is an epimorphism (i.e. if it is surjective), every nontrivial solution to (2.1)
which satisfies (2.6) changes sign. If ¢ = 1 is the trivial homomorphism, then I' = G' and
(2.6) simply says that u is G-invariant.

The homomorphism ¢ induces an action of I' on H}(f2) as follows: for v € I and u €
H} () we define yu € H}(Q) by

(yu)(z) = d(7)uly ™ 2). (2.7)

The following lemma asserts that Jy is [-invariant under this action.
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Lemma 2.3. For all u,v € H}(Q) and v € T,
(v 7}y = (wv)y, Dlyu) =D(w), and D'(yu)(y0) = D' (w)o.

Consequently, Jy (yu) = Jy(u) and J{,(yu)(yv) = J{, (u)(v).

Proof. Let v € T and u,v € H}(2). Since v € O(N), |dety| =1 and (yz) - (yy) =z - y for
all z,y € RV, We also have that

V(yu)(z) = p(v)yVu(y ' z).

-1

Thus, as 7(2) = Q and V is ['-invariant, the change of variable & = v~z yields

(yu, )y = | [Vyu) - V(yo) + (1 + V(2))(yu)(yv)]

[(6(M)*7Vuly™ z) -y Vu(y ™ a) + (1 + V(@)(¢(1)*uly " 2)v(y " 2)] do

[Vu(’yflx) . Vv('yflx) +(1+ V(x))u('yflx)v('yflx)} dx

I
S~ S5 — 5

Vu(z) - Vo(Z) + (1 4+ V(yz))u(z)v(Z)] | det v|dz

[Vu(z) - Vo(z) + (1 + V(2))u(@)v(z)] dz

I
B

)y -

Consequently,

lyully = lull} Vu € Hy(Q), v €T

Similarly, the change of variables # = y~'z, j = v~ 'y implies

p p
D7) / / (yu) () [P[(yu) (y)| de dy
RN JRN ’w—y|a
—1 p -1 D
/ / u(y $’|¢(a) u(y"y)| dz dy
RN JRN |1»‘—Z/|
210 p
L[ [ ey,
RN JRN 'Vw—wla

p
gl Tt
RN RN ’fU*y’a
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On the other hand,

Do) = [ (G hal?) a2 u)

:/ / ’YU)(ZJ)W(’YU)(JU)|p72(7u)(9@)(w)($)dxdy
RN JRN |z — y|*
/ / u(y ') Plop(y)uly _11‘)|p_2¢>(7)u(7_1$)¢(7)U(7_1$)dxdy
RN JRN |z — y|*
/ / )P u(y )|p|u(f)|p_2u(i)v(i)d£ di
RN JRN [T — yg|®
/ / PP lu(@) P~ (x)v(j;)djdg
RN JRN 1T — >

_ ]D)/

O
Now, we consider the fixed point space of Hg () under the action defined in (2.7), namely
HY ) ={uec H}(Q) :yu=u VyeT}
={u € H}(Q) : u(yz) = ¢(y)u(z) Vy €T, Vo € Q}.

Observe that H{(Q2)? is a closed linear subspace of HE(Q), and so, H}(Q)? is a Hilbert
space.

Next, we have a particular case of the well-known principle of symmetric criticality due
to Palais [52, 59|, which states that the critical points of the restriction of Jy to the fixed
point space HE(Q)? are the solutions to problem (2.1) that satisfy (2.6).

Theorem 2.4 (Principle of symmetric criticality). The following hold true:
(a) VJy : HY(Q) — H}(Q) is ¢-equivariant, i.e.
VJy(yu) = yVJy(u) Yu € H}(Q), v €T.
Consequently, if u € HL(Q)?, then VJy (u) € HE(Q)?.

(b) Ifu € HE(Q)? is a critical point of the restriction JV|H6(Q)¢ c HYQ)? = R, then u is
a critical point of Jy .

Proof. Let v € T and u € H}(Q2). From Lemma 2.3 we have that
(Vv (yu),0)v = Jy (yu)v
= Jy(u)(v"'v)
= (Vv (u),v o)y
= (yVJy(u),v)y Yo e HY(Q).
Hence, VJy (yu) = yVJy (u). In particular, if u € H}(2)?, then yu = u and so
Vv (u) =~4VJy(u) vy eT.



That is, VJy (u) € H}(Q)? for all u € H}(2)?. Accordingly,
V(vlmipe) (@) = Vv(u)  VYue Hy(Q)%.

This proves (b). O

Next, we analyse the graph of the functional Jy | H1(Q)? in order to find some information

about the critical points. To do that, we fix a direction u € H&(Q)¢, u # 0 and study
how the graph of Jy looks like on the line generated by u. More precisely, we consider the
function Jy, : R — R given by

Irat) = vten) = (3l ) - (5,00 ) (28)

Notice that this is a polynomial function of ¢. Since 2p > 2 and the sign on the leading
coefficient is negative, the graph will be down on both ends and, near to zero, the graph
will behave roughly like a positive quadratic. Actually, the graph of Jy, has the following
shape:

JVA,u

Hence, Jy| mi(e)¢ 18 not bounded below and has a local minimum point at 0. Clearly, 0 is
a solution of problem (2.1), but we are interested in nontrivial solutions.

The unique critical point of Jy, over (0,00) corresponds to a maximum. The set of
maximum points of Jy,, for all directions u € H&(Q)‘z’, u # 0, is the set

Ng,v t= {u € HYQ)? : J{(u)u = 0}
= {ue H{@)?: u#0, |ul} =D(w)},

which is called the Nehari manifold. Note that the Nehari manifold contains all of the
nontrivial critical points of Jv |1 q)e-
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2.2 The Nehari manifold

We shall assume from now on that p € [2, 2]]\,\[__20‘). We denote by TUNS%”V the tangent space
to the Nehari manifold Ngv at the point u € Ngv-

Proposition 2.5. Ngv has the following properties:

a) There exists dy > 0 such that ||u|ly > dy for all u € NS .. Consequently, NS isa
Qv Qv
closed subset of HJ ().

(b) Ng,v is a submanifold of class C? of H}(Q)?.
(c) u¢ Tu/\/'gy for every u € Ngy.

d) For each u € HF(Q)?, u # 0, there exists a unique t, > 0 such that t,u € NS
0 Qv
Furthermore, t, is the only point in (0,00) which satisfies

Jy (tu) = Jy (tyu).

max Jy (tu) = Jy (tuu)

Proof. (a): Inequality (2.5), together with the continuous Sobolev embedding H} () —
LP"(Q) and Proposition 2.1, implies that there exists C' > 0 such that

ul[27
D(u)

C < Yu € H} (Q) ~ {0}.

Therefore,
o< WL _ et vueng,.
Hence, taking dg := Cﬁ, we have that
lully >do  YueNG,.
Consequently,

Ny = {ue HYQ)? s Jully = do and [[ul} - D(u) =0},

which is clearly a closed subset of H{(Q)?.
(b) and (c): Consider the function F : H}(92)? \ {0} — R given by

F(u) = [[ull} — D(u).

Notice that ./\/'gy = F~10).
As in the proof of Proposition 2.2 (see Appendix B), F is of class C? and its derivative is
given by
Fl(u)v = 2{u,v)y — D' (u)v Yu,v € Hi(Q)%.
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Moreover, 0 is a regular value of F' since
F'(u)u = 2|Jul} — 2pD(w) = 2(1 = p)|ull}, #0  Vue NF,.

This shows that Ngv is a submanifold of class C% of H}(Q)? and that u ¢ ker F'(u) =
TNG -

(d): Let u € H}(Q)?, u # 0. Let Jy, : (0,00) — R be the function given by (2.8). This
function has exactly one critical point over (0, 0c), which corresponds to a maximum point.
Furthermore, for t € (0, 00), the following holds true:

T (t) = i (tu)u = 0 <= Ji (tu)tu = 0 <= tu € N .

Thus, Jy,, has a maximum point at ¢ if and only if tu € Ng v- This proves (d). O

Observe that . )
pb— 2 p—
Jy(u) = s ul)? = WID)(u) Yu e NGy (2.9)

From the above proposition we can conclude the following:

Corollary 2.6. (a) inf _,» Jy(u)>0.
Qv

(b) Ifu e Ngv is a critical point of Jy on Ngv, then u is a nontrivial critical point of
Jv : H}(Q) — R and, consequently, a nontrivial solution of problem (2.1).

Proof. The statement (a) is an immediate consequence of the identity (2.9) and Proposition
2.5 (a).
(b) If u € N, is a critical point of Ji- on N/, then

Jy(upp=0  VYve Tuj\/gy.

In addition, from the definition of Ng,v it follows that Ji,(u)u = 0. As the orthogonal

complement of T, N, in H}(2)? has dimension 1 and u ¢ T, N, (Proposition 2.5 (c)),
one has that
Hg(Q)° = TLNG @ {tu:t € R}

Consequently,
Jy(wpw =0  VYve HHQ)?,

this means, u is a critical point of JV|H&(Q)¢ : HY(Q)? — R. So, by Theorem 2.4 (b), we can
conclude that u is a critical point of Jy . O

The Nehari manifold J\/'g v 1s radially diffeomorphic to the unit sphere in H&(Q)qs. The
radial projection 7 : H}(Q)? \ {0} — Ngv is given by

oy o (BT
(u) := (D@)) . (2.10)
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Accordingly, for every u € H(Q)? \ {0},

e\
Jv(ﬂ(u))—pzpl<m|)(”)vl> . (2.11)

Remark 2.7. The solutions of problem (1.1) are the critical points of the functional Jy :
H}(Q) — R given by

. 1, 5 1
Jy(u) = 5 [ully, — = [ul?,
2 P

where |ul, := (Jo [ul?) P is the norm in LP(Q).

From Claim 1 in the proof of Proposition 2.2 and [59, Proposition 1.12] it follows that, if
p € (2,2%), the functional Jy is of class C? and

Tyt = vy = [ a2
Q

Consequently, u is a solution of problem (1.1) if and only if u is a critical point of Jyv. On
the other hand, a suitable change of variable, like in Lemma 2.3, allows us to conclude that
the functional .Jy is I-invariant under the action defined in (2.7). So, by the Principle of
Symmetric Criticality (which still works for the functional jv), the critical points of the
restriction of Jy to the fixed point space of this action, namely,

HY(Q)° = {u € HY(Q) : u(ya) = d(7)u(x) ¥y € T, = € O},

are the solutions of problem (1.1) that satisfy (1.3). The nontrivial ones lie on the Nehari
manifold

NGy o= {ue BYQ)? su 0, Julfy = lupp}

which is of class C? and is radially diffeomorphic to the unit sphere in H}(€2)?. Actually,
it is easy to check that Ngv and Jy satisfy properties analogous to those established in
Proposition 2.5 and Corollary 2.6.

The radial projection # : H} (2)? . {0} — Ngv is given by

| ”2\/ =
. U p=
(u) : < ]u\p>

P

Observe that, for every u € HE(Q)? ~ {0},

o p=2 (lluli )2 2
Jv ((u)) = o CIU!E/ = max Jv (tu).

We set

Cgv := inf Jv.
T My



If ¢ = 1 is the trivial homomorphism, then I' = G := ker ¢. In this case we shall write
H} ()Y, N&V and cgy instead of H{ ()2, Ng,v and C?Z,V' If G = {1} is the trivial group,
we shall omit it from the notation and write simply H}(£2), N,y and cq v .

The problem

— = (L P p—2
{ Au+u (Irl‘* * |ul )|u\ u, (2.12)

u € HY(RY),

plays a special role: it is the limit problem for (2.1). In this case we write Joo, Ny and
Coo instead of Jo, Ngw o and cgw g.

2.3 Non-existence of minimizers for nonnegative po-
tentials

It is known that c. is attained at a positive function w € H'(RYM) (see for example [48,
Theorem 3|). The following result shows, however, that c?l v 18 not necessarily attained.

Proposition 2.8. If V' > 0, then coyv = cso. If, additionally, V' # 0 when Q = RN, then
co,v 1s not attained.

The proof of Proposition 2.8 is based on the following three lemmas and Theorem 2.12
below.

Lemma 2.9. If v, — 0 weakly in H&(Q), then after passing to a subsequence, we have that
. 2 2
Tim (e~ floal?) = 0.

Proof. Let € > 0. Since (vy,) is bounded in H{ () a subsequence satisfies that v, — 0
strongly in L2 (). Let C' > 0 be such that |v,|3 < C for all n € N. Set

loc
A= {x e |Viz) > %}

Assumption (V) guarantees that A, is a bounded set and, since v, — 0 strongly in L? (),
there exists ng € N such that

€
[ Wl <supiv] [ o< itz
Ac RN A, 2

On the other hand,

DO

€
V(@)l[onl? < / o2 <
/Q\Ae " 2C Jo-a. "

/ V(@)||vn]? < € if n > ng.
Q

Consequently,

From [[v,||# — [Jvn|? = [ V(2)|vn|* we obtain the conclusion. O
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We choose a radially symmetric cut-off function x € CZ° (RM) such that 0 < y < 1,
x(x) = 1if |2| <1 and x(z) = 0 if |z| > 2. Let S >0 and u : RY — R given. We define

Sty (T S._ .S
% (m).-x(s) and u° = x u.
Observe that x°(z) = 1 if |z| < S and x°(z) = 0 if |z| > 2S.
Lemma 2.10. If u € H'Y(RY), then

uw’ = u strongly in H*(R™),

D (uS) —D(u) mR
as S — oo.

Proof. Note first that

/]RN ‘u—us‘Qz/RN}l—XS‘QMZ (2.13)

Let C' > 0 be such that |Vx(z)| < C for all z € RN, Then
.8 2: .S 2
[ v =F = [ 9 (=x))]
:/ ‘(I—XS)VU—UVXS’2
RN
34(/ (1—X5)2Nu|2+/ yu\2|vxs}2) (2.14)
RN RN

<4/ |Vu|2—|—02/ 2
B |z|>$ 52 Jrn '

Consequently, since v € H'(RY),

2
|u—u5||2§4/ |Vu|2+46;/ |u|2+/ ul? -0 as S — oo.
o[>S 5% Jrw ]S

This shows that u® — u strongly in H'(RY).
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Now, using the Hardy— Littlewood—Sobolev inequality (2.4) one has

u(z) [Plu(y) P — |u(@)|Pus (y)|P
‘D(u)_D(uS”S/RN/RN“()H(y)| |u” (@) [”] (y)lldxdy

[z —yl|*
< [ [ Pl - Mg,
RN JRN |x _ y‘a
N lu(@) P WP ~ [ @],
RN JRN ’x _ y’a
p P _ |0S(1))|P
Sz/ / Ju(@)|P |Ju(y) P — v (y)] \dmdy
RN JRN |z —y[®
< 2Cuf, ||uf’ — [u77], (2.15)
1
<C / [ulP" |
BES
where r := QJ%ZXQ and C = 26’|u|£T.

Therefore, since u € LP"(RY), we can deduce that
‘]D)(u)—]D)(uS)‘—)O as S — 0. O

Lemma 2.11. Set K(z) := ﬁ Every solution v € H'(RN) to problem (2.12) has the
following properties:

(a) ue L"(RYN) for every r € [2,00).
(b) K * |ulP is continuous on RN and limy, o (K * [ulP) () = 0.

(¢) wu is of class C2.

Proof. (a) and (c) are shown in [48, Proposition 4.1.]. The proof of (b) follows the same
lines as the one of |21, Lemma A.1.(iii)]. O

Theorem 2.12 (Unique continuation principle). Let Q be a connected open subset of RY,
N >3 and W € CY(Q). If u € HY(Q) satisfies

—Au+ W(z)u =0,
and u =0 on a nonempty open subset of 1, then u =0 on €.
Proof. See for instance [35, 37]. O

We write
B (&) ={zeRY |z —¢| < r}
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Proof of Proposition 2.8. Since Hi(Q) € H'(RY) and V > 0 one easily concludes that
€O,V > Coo- Let R > 0 be such that (RN ~ Q) C Bg(0), and let (z,,) be a sequence in RY
such that |z,| > R and |z,| — oo. We choose a cut-off function x € C°(RY) such that
0<x<1,x(z)=1if|z| <1and x(z) =0 if |2| > 2. We define r,, := 3(|z,| — R) and

T — Ty

up(x) = X< )w(m — Ip).

Tn
Then u, € HE(Q), up, # 0, up, — 0 weakly in HY(RY) and u,, — 0 strongly in L2 (RY).
From Lemma 2.9 we obtain that

. 2 _ 2
Jim fJup [ = Hm{jun|]
and since uy,(x) = w™(x — xy,), from Lemma 2.10 we deduce that

2 7 2 _ 2 : _
lunllf = Jim funl? = Jol*  and  lim D(un) = D(w).

lim
n—o0
Consequently, from (2.11) we obtain that Jy (7(us)) = Joo(w) = ¢s. Therefore cqy < ¢,
and hence co v = Cxo.
Now, if there were u € Ny satisfying Jy (u) = cq,v, then u would be a nontrivial solution
of problem (2.12) with minimum energy and |ul|}, = ||ul|?. Therefore, u would satisfy

—Au+ W(z)u =0,

where .
W(x)=1- ( * |u|p> ]u|p_2.

Ed

From Lemma 2.11 (b) and (¢) we would have that W is continuous. We distinguish two
cases: (1) If Q = RY then, by assumption, V is strictly positive on some open set U of RV,
Since

o:m%—mwa/vsz/vmﬁza
RN U

we conclude that u = 0 in U. (2) If Q # RY then u = 0 in RY \ . In both cases, we obtain
a contradiction to the unique continuation principle (Theorem 2.12). As a result, cq v is
not attained. O

Remark 2.13. In the local case, it is well-known that also the existence of ground states
(i.e. minimum points of Jv on the Nehari manifold) turns out to heavily depend on the
sign of the potential. In fact, it has been proved that no ground state is allowed if, either
V > 0 is strictly positive on a set of positive measure or if V' > 0 and RY ~ Q is nonempty,
while a positive ground state solution exists if V' < 0 is strictly negative on a set of positive
measure.
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Chapter

Main tools for proving existence

3.1 Representation of Palais-Smale sequences

This section is mainly devoted to the description of the lack of compactness to the nonlocal
problem

—Au+ (Voo +V(x))u= (ﬁ * |u]p) |u|P~2u, (3.1)
ue HY(Q), '
where N > 3, a € (0,N), p € [2, 2]]\,\[ 2‘") and € is an unbounded smooth domain in RY

whose complement RY < € is bounded, possibly empty. The potential Vao + V is assumed
to satisfy

(Vo) VeC'RY), Vi € (0,00), infepn{Voo + V(2)} > 0, limy 00 V() = 0.

From now on we shall assume without loss of generality that Vo, = 1.

As usual, we identify u € H&(Q) with its extension to RV obtained by setting u = 0 in
RY Q.

Recall that the energy functional Jy : H}(2) — R associated to problem (3.1) is given by

1

1
Jo(u) = 5 Jullf — 5-D(w)

o) = [ (el e = [ [ R

and HH%, is the norm induced by the scalar product

where

(a1, 0}y ::/QVU-VU+/Q(1+V(90))UU

If V=0 we write (u,v) and |lu|| instead of (u,v), and |ul|, .

In the nonsymmetric case, Benci and Cerami [9] described the lack of compactness of the
functional Jy associated to the local problem (1.1). They showed that the Palais-Smale
sequences which do not converge to a solution of problem (1.1) approach a sum of a possibly
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trivial solution of (1.1) plus nontrivial solutions of the limit problem (1.2) translated by
sequences of points in the domain which go to infinity.
We analyze next the Palais-Smale sequences for the functional Jy belonging to

Hy ()% := {u € Hy(Q) : u(yz) = ¢p(7)u(z) ¥y €T, Vo € O},

where, as in the previous chapter, I' is a closed subgroup of the group O(N) of linear
isometries of RY and ¢ : I' — Z/2 is a continuous group homomorphism.

We shall give a precise description of the relation between the symmetries of the translation
points and those of the corresponding solution to the limit problem

{ —Au+u= (ﬁ * |u]p) |u|P~2u,

ue H'(RN). (3:2)

This plays an important role in the proof of Corollary 3.7, which will be crucial for our
results.
Recall that the T—orbit of a point z € RY is the set

I'e={nz:nel}
and that the I'-isotropy group of = is the subgroup
Iy:={nel:nx=uxa}

of I'. We write
RN ={z e RN :pz =z for all n € H}

for the fized point space of the action of a closed subgroup H of I" on RY.
Recall that the subgroups H and K of I' are called conjugate in I' if and only if there
exists n € T such that H = nKn~'. The conjugacy class of H in T is the set

(H)={nHn ' :neT}.

The relation
(L) < (M) ifand only if 5Ly *C M for somen eI’

defines a partial order on the set of conjugacy classes of closed subgroups of I'. The conjugacy
class (I';) of an isotropy group I'; is called an isotropy class.

Next, we collect some known results on spaces with group actions which will be used in
the proof of the following lemma.

(F1) The I'-orbit I'z of z is T-homeomorphic to the homogeneous space I'/T";.. The homeo-
morphism is given by
Ne : /Ty — Tx, nly— ne.
See for instance [11, 1.4.(4.1)] or [30, 1.3.(3.19)].
(F») Isotropy groups satisfy
Iy = ann_l.
Hence, the conjugate groups to an isotropy group are isotropy groups and so, if 'z is

finite, there is only a finite number of groups conjugate to I';. See for instance [11,
[.2.(2.1)].
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(F3) Every finite-dimensional vector space has only finitely many isotropy classes (see |30,
[.5.(5.11)] and [11, IV.10]).

(Fy) If K C T¢ and (K) = (I'¢), then K =T'¢. Indeed, let n € T be such that nI'¢cn~! = K.
Since K C T'¢ one has that (RV)'c ¢ (RV)X. On the other hand, the map = — nz
is an isomorphism between (RY)I'< and (RY)% and hence both spaces have the same
dimension. Consequently, (RV)T'c = (RV)X and, since n¢ € (RV)X | we conclude that
I'c € T'y¢ = K. This proves that K = I'¢.

The following lemma and its proof are taken from [21, Lemma 3.2]. We just add some
details.

Lemma 3.1. Given a sequence (y,) in RY there exist a sequence ((,) in RY and a closed
subgroup K of T' such that for some subsequence of (yp), which we still denote in the same
way, the following hold:

(a) dist(Tyn,(n)) is bounded.

(b) T'¢, = K for alln € N,

(¢) If [T/K]| < oo then 1 — 7Cn| — 00 for any [n], [i)] € I'/K with [] # [7].

(d) If|T/K| = oo then there exists a closed subgroup K' of T such that K C K', |[T'/K'| = 0o
and [y — ial — 00 for any [n], 7] € /K’ with ] # [7].

Proof. Set
Vi={z eRY :|I/T,| < c0}.

Note that V is a I'-invariant linear subspace of RY. Indeed, let 2,y € V and a € R. From
(F1) one has that I'z and I'y are finite and so, I'(x + y) and I'(az) are finite too. Moreover
I'(nz) = T'z for all n € I'. Using again (F}) the claim follows.

Next, two cases are considered.

Case 1. The sequence (dist(yy,V')) is bounded.

Let & be the set of isotropy classes (I';) such that z € V and, for some n € T,
(dist (yn, (RN )"Fz’rl)) contains a bounded subsequence.

Let us see that & # (). Indeed, if z, is the orthogonal projection of y,, onto V, from (F3)
there exists an isotropy class (L) such that after passing to a subsequence (I';,) = (L) for all
n € N. Moreover, (F7) implies that the I'—orbit of every point in V' is finite and then (F)
yields that the isotropy class of each element in V' has only finitely many groups. Therefore,
after passing to another subsequence one can assume that I', = L for all n € N. Note that
(RV)E C V. Indeed, if z € (RV)%, then L C T, and so |T'/T';| < |T'/L| < co. Therefore,

dist (yn, (RN)L) = |yn — zn| = dist(yn, V),

and hence (L) € .

Now, choose K and a subsequence of (y,)—which will be denoted in the same way—
such that (K) is a maximal element of & (i.e. if (H) € < is such that (K) < (H), then
(K) = (H)) and

dist (yn, (RM)F) < ¢ < o0 Vn € N.

Let ¢, be the orthogonal projection of g, onto (R™V)X.
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(a) is trivially satisfied since
dist(Tyn, Cn) < |yn — Co| = (dist(y,, RM)E) < ¢ ¥Yne N.

Since (RM)X < V, by the same argument as above, passing to a subsequence, one can
assume that I'c, = L for all n € N. Since K C L, (RN)L c (RM)K. Then

dist(yp, (RN)L) =|yn — Gu| < c Vn € N.

Therefore (L) € . Since K C I'¢,, and (K') is maximal, one can conclude that (K) = (I'¢,,).
It follows from (F}) that I'c, = K. This proves (b).

Since |I'/ K| < oo, in order to prove (c) it suffices to show that, if n ¢ K, then (¢, — ()
does not contain a bounded subsequence. Arguing by contradiction, assume that there exist
7 ¢ K and a bounded subsequence of (7(, — (). Let L be the subgroup of I" generated by
K u{n}, W := (RV)E and W+ be the orthogonal complement of W in (RV)X. Write

Co=C4+ ¢ with ¢teW and (2ewt

Then

i = Gu = (Gh = Ga) + (G — G2) = 76 — G
Since 77 ¢ K, assertion (b) implies that 7¢,, # (,. Hence (2 # 0 and, passing to a subse-
quence, one has

&
— = (.
l&]
If (¢2) is unbounded, a subsequence satisfies
< -2 2 s
Cal Gl il

Therefore 71 = (. Moreover, since % € (RM)X for all n € N, then ¢ € (RV)X. Hence
¢ € W, which is a contradiction. !

If, on the other hand, (¢2) is bounded then, passing to a subsequence such that Pa =1Ly
for all n € N, the following holds true:

dist(yn, (RY)5) = |y — Ghl < |y — Gl +1¢2] < € < o0,

where ¢ is a positive constant. Therefore (L) € . Note that K C L C L. Since (K) is
maximal one has that (L;) = (K) and by (F}) one infers that L; = K, which is again a
contradiction.

Case 2. The sequence (dist(yy,V)) is unbounded.

Passing to a subsequence, one can assume that dist(y,,V) — oo and by (F3) one can
also assume that there exists an isotropy class (K) such that (I'y,) = (K) for all n € N.
Choosing ¢, € I'y, such that I'r, = K, it immediately follows that (a) and (b) hold. Note
that y, ¢ V. Moreover, ny, ¢ V for any n € I and then |I'/K| = oco.

Let us see that (d) holds. Let V* be the orthogonal complement of V in RV and &, be
the orthogonal projection of ¢, onto V. Passing to a subsequence, one has that

&n

— —&.

[nl
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Set K’ :=T¢. Thus K C K'. Moreover, since £ € V*, [I'/K'| = cc. If [, []] € T/K' are
such that [n] # [7], then d := |n§ — 7¢| > 0. Let ny € N be such that ‘ f‘ d for
n > ng. Taking into account that n and 7 are isometries on R one has that
d = [ng§ — ¢
’5% nfn%+ﬁ£"~€‘
&l 11&nl 1€l [1&n]
_ € =] 5’
[ \fn
n€n — 1]
< —F + - Vn > ng.
|nl 2
Hence,
d _
§|§n| < ‘nfn - n£n| Vn > ng.
Consequently,
d .. d _ .
§d15t(CmV) = §‘§n‘ < [nén = nl < INCn — 71Ca| Y1 > ng.
Since dist((,, V') — oo, assertion (d) holds. O

The following lemma says that D is invariant under translations.

Lemma 3.2. For allu € H'(RY) and z € RV,
D(u(- + 2)) = D(u).

Proof. The change of variables T = x 4+ z, § = y + z yields

)P
(+2)) / / |u:1:—|—z||u(i;—|—z)|d dy
RN JRN |a:—y\
)P P
[ [ e g,
RN RN|$—Z (7 —2)|~
)Pl ()|P
// @) PP, -
RN RN T =gl

O

Lemma 3.3. Let (u,) be a sequence in H}(SY) such that Jy (u,) — ¢ and Ji,(u,) — 0 in
H=Y(Q). Then (uy) is a bounded sequence in H} () and ¢ > 0.

Proof. For n sufficiently large one has that

p—1

1

1
< [Jv (un)| + %HVJv(un)HvllunHv

< lef + 1+ JJun]lv-
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Consequently, (||uy||y) is bounded. Therefore, from (3.3) it follows that

p—1
2p

[unlfr — ¢
and so ¢ > 0. ]

As in the previous chapter we denote by Jyp the functional associated to problem (3.1)
with V =0, i.e.

1 1
Jo(u) = B Jul* - %D(U)-

The following proposition corresponds to a slight variant of [1, Lemma 3.5 which states a
Brezis-Lieb lemma for a large class of nonlocal functions. A proof of it can be found in
Appendix A.

Proposition 3.4. Let (uy,) be a sequence in HE(Q) such that u, — u weakly in H}(Q). The
following hold:

1. D' (up)v — D' (u)v for all v € HE (D).
2. After passing to a subsequence, we have
D(up) — D(up —u) — D(u) in R,

D (up) — D' (up — u) = D' (u) in H Q).

The proof of the following lemma follows exactly the same lines as the proof of [59, Lemma
8.2.]. However, we include it here for the sake of completeness.

Lemma 3.5. If

u, —u in Hy (),
Uy —> U a.e. on ),
Jv(un) = ¢,
Ji(ug) =0 in HYQ),

then J{,(u) =0 and v, := u, — u is such that

Jo(vn) = ¢ = Jv (u),
Jo(vy) =0 in HYQ).

Proof. From Lemma 2.9, one has that

Jv(vn) = Jo(vn) = %(HUTLH%/ — Jloall?) = o(1).
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Moreover, from Proposition 3.4 it follows that

1

Fo(vn) = 5 i =l = 5B (un — )
= 5 (lunliy = i) = 5= () = D)) + o(1)

= Jy(un) — Jv(u) +o(1)
=c— Jy(u) +o(1).

Therefore,
Jo(vn) =c— Jv(u) + 0(1).

Let v € H}(Q). Since u, — u in HZ (), Proposition 3.4 yields
U (up)v = (up, v)y — D (up)v = (u,v)y — D' (u)v = Ji,(u)v  in R.

On the other hand, by the hypotheses, we have that J{,(u,)v — 0 in R. As the limit must
be unique, we conclude that Ji,(u)v = 0. Hence, J{,(u) = 0.

Set w € H}(Q). In what follows, C denotes a positive constant, possibly different at each
occurrence. By assumption (Vj) we have that, for € > 0 given, there exists R > 0 such that
|V (z)| < ¢ for all z € RV \ Br and then

/ anw‘
Q

< SUP‘V/ |vpwl +5/ [vpwl
Br Br RN Bg

< Clonl2,gwl2 + €lvn2]w|s
< C(lvnl2,Bx + €lvnl2)[w]|-

[Ty (vn)w = Jo(vn)w]| =

Since v, — 0 in H (), (v,) is a bounded sequence in L%(Q) and so
15 (vn) = Jo(0n) | < C(lvnl2,B, +€)-

Moreover, after passing to a subsequence if necessary, we have that v, — 0 in L%OC(Q) and
then

lim sup |7 (v,) — Jy(va)]| < Ce.
n—oo
Letting € — 0 we conclude that
lim .5 (v) = Jp(wa)]| = 0.

Now, Proposition 3.4, together with Riesz representation theorem, gives

VD (up) — VD(uy, — u) — VD(u) in  H(Q)
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1

and then, since V.Jy (vn) = vn — 5,VD(v,) with respect to the scalar product defined in

(2.2), we obtain

Vv (o) = (tn — ) — ;pVD(un )

Consequently,

O

Recall that the energy functional J,, : H'(RY) — R associated to problem (3.2) is given

by
1 1
Joo(u) = 3 [ %D(U)-

We denote by B,(y) := {x € RN : |z —y| < r}. If v € HY(RY) and € T we simply write

vn for the composition v o 7.

Proposition 3.6. Let (uy,) be a sequence in H}(Q)? such that u, — 0 in HE(Q), Jo(un) —
c¢>0 and J(un) — 0 in H-Y(Q). Then there exist a sequence (C,) in Q, a closed subgroup
K of finite index in T, a nontrivial solution v to problem (3.2) and a sequence (wy) in

HE(Q)? such that
(a) T'¢, = K foralln €N,
(b) [Cul = 00 and |Gy —iiGn| = 00 if ™t ¢ K, f,n €T,
(c) v(nz) = d(n)v(x) foralz e RN nekK,

(@) |jun —wn— 3 d(mvn~" (- = 1)

el/K

— 0,

(€) wp, — 0 in HI(Q), Jo(w,) = ¢ —|T/K|Jw(v) and J\(w,) — 0 in H-X(Q).
Proof. Lemma 3.3 guarantees that (u,) is a bounded sequence in H}(£2). Thus

p—1

1 !/
W]D)(un) = Jo(upn) — EJO(un) Up, — ¢ > 0.

That is, D(uy,) — p%plc > 0. From (2.5) and Lions’ lemma [59, Lemma 1.21] it follows that

d :=limsup sup / |un|? > 0.
Bi(y)

n—oo yeRN
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We choose 4, € RN such that

/ lunl? > 6/2
Bl(yn)

and, for the sequence (y,), we choose K and ((,) as in Lemma 3.1. We define v,(x) :=
un(x + ). Passing to a subsequence if necessary, we may assume that

Up — U weakly in HY(RY),
Up =V strongly in L7 (RY),

Up —> VU a.e. on RV.

Fixing C' > 0 such that dist(T'yy,, (,) < C for every n, we have that By (n,yn) C Be+1(Cn)
for some 7, € I'. Since |uy| is I'-invariant we obtain

/ rvn|2=/ Wz/ 2> 2.
Be41(0) Bet1(Cn) Bi(yn) 2

This implies that v # 0. But u, — 0 in H'(RY), so |¢,| — oo.
We claim that v is a solution to problem (3.2). Indeed, Since J is invariant under
translations, we have that

IV oo (un (- + Ca)) | = IV Jo(un)|

Therefore, from VJy(u,) — 0 in H}(Q) we get that VJu (un(- + () — 0 in HY(RY). On
the other hand, since u, (- + ¢,) — v in H'(R"), Proposition 3.4 asserts that

vJoo(un( + Cn)) — VJOO(U)

Since the limit must be unique we conclude that VJy(v) = 0.
Assertion (b) of Lemma 3.1 insures that, for every n € K,

Un(NT + Cn) = un (N(T + Cn)) = d(N)un(z + Cn)-

Hence v(nz) = ¢(n)v(x).
Let 11,72, ...m¢ € I' be such that |1;¢, — 7:¢n| = oo when i # j. Then

t

¢(nj)onn; ' = ZI+1¢(77i)v7751(- = 1iCn + 0jCn) = B(ny)on; ! (3.4)
i=j

weakly in H'(R"). Therefore,

2

t
ch(nj)vnnj‘l - Z)+1<Z>(m)v77{1(- = NiCn + 1jCn)
i=j

otmpoan™ = 5 stmon = mca+nya) — stng)en; ||+ [ompon || +o(0)
i=j+1

Now observe that, since u,, is ¢-equivariant, for all n € T,

un(y) = dMun(n™'y) = dM)va(n™'y = Ca) = d(M)van" (y — néa). (3.5)
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Therefore, the change of variable y = = + 1;(, in the above expression yields

Iterating this equality, starting from j = ¢, we obtain

t

Un — Z ¢(77i)v77i_ ( Thgn

i=j+1

Z¢ (eyon - = mGa)||” + el + o().

2

Hun||2 = [|Up — Z Qb(?’]z)vnl ( — nlcn) + ”,UHQ + 0(1)
=(t—1)+1
¢ 2
= lun— > dm)on (- —mGa)|| +2lvl* +o(1)
i=(t—2)+1

t

un — Y (mi)on; (- = 1miln)

i=1

2
+ t|v||> + o(1).

Consequently,

=S sty —m)|| = ol + o1): (3.6)
=1

2

- —P-c, letting n — oo in the above expression, we deduce that

Since [Ju,|? —

2
plcz w2

Hence, assertion (d) of Lemma 3.1 implies that [I'/K| < oo, i.e. K has finite index in T'.
Thus assertion (c) of Lemma 3.1 allows us to take t := [['/K]|.
On the other hand, since (3.4) holds, Proposition 3.4 asserts that

> oo (-~ i+ i) ) =

D(otm)van; ! = 3
1=7+

D (6(n;)van; ! — z+ Sm)on (= G+ mia) = Smy)ony ) + D(0m)emy ) + o1

From Lemma 2.3, we have that D(n;v) = D(v), i.e. ]D)((Z)(nj)vnj_l) = D(v). Moreover, from
Lemma 3.2 with z = —n;(,, we obtain that

D(¢(n;)vn; ' (- = n¢a)) = D(v).

Therefore, taking into account (3.5), it follows that

D (un - S oo (- 1iGa)) = D, - im)vn;l(- —1iGa)) + (o) + o(1).

i=j+1
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Iterating this equality, starting from j = t, we get

D(un) =D = Y ém)on; (- = mi6a)) = tD(v) +0(1). (3.7)
=1

Similarly, by Proposition 3.4 we also have that
¢
D’ <¢(nj)vnnj1 = > dlm)on (- —midn + m@)) =

i—j+1

D’( n;)onn; ! Z d(ni)on; (- = niCn +1jCn) — ¢(77j)v77j1) + D <¢(nj)vnjl) +o(1).

i=j7+1
Making the change of variable Z = x — 7;(, and taking into account (3.5), we obtain
t
D/ <“n = > dlmvn; (- —m%)) =

i=j+1

t
(1 = 30 omon = i6a) )+ (oo (= 1i6)) + o)
i=j
Iterating this equality, starting from j = ¢, we get
D () — (un Z¢ ni)vn; (- = 1iCa) ) ZD (mi)on; (- = mi¢a)) = o(1)  (3.8)

in H=Y(RY). Setting

T/ K|

U~)n( Z ¢ 771 :L' - 771Cn))

we can rewrite expressions (3.6), (3.7) and (3.8) as:

[unl? = l[@n]1? = T/ K[][v]|? (3.9)
D(un) — D(wn) — !F/K | D(v) (3.10)
D' (u, ZD (i)vn; ' = niCa)) = 0 in HH(Q). (3.11)

From (3.9) and (3.10) it follows that

Joo(Wp) = ¢ — [T/ K| Jso (v).
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Let p € H}(Q). From the bilinearity of the scalar product in H!(RY) and (3.11) we obtain
T (Wn)p = (Wn, p) — D' (1) p

:<un - zt: S(mi)on; (- = min), p> — D' (in)p
i=1

~+

(tn, p) = > _(d(mi)om; ' (- = miGn), p)

=1

=D (ua)p + Y D (dm)om; (- = mia)) p + o(1)
=1

ZJ’ o(ni)vn; (- = 1iCn)) p-

Since J.(v) = 0, clearly J. (¢(n)vn~1(- — n¢y)) — 0 in H-Y(RY) for all n € . Moreover
J§(ur) — 0 in H=1(Q) and hence

J' () = 0 en HH(Q).

Finally, we choose R > 0 such that (]RN ~ Q) C Bgr(0), and a radially symmetric cut off
function y € C*°(RY) such that 0 < x(z) < 1, x(x) = 0 if |z| < R and x(x) = 1 if |z| > 2R.

We define
/K|

Wy, () Z (i) x (l’ - 771Cn))

Then w, € H}(Q)?. To see that (w,) satisfies (d) and (e) it suffices to observe that
wy, — b, — 0 in HY(RY) as |¢,] = oc. O

We shall say that Jy satisfies the ¢-equivariant Palais-Smale condition (PS)? at the level
¢ if every sequence (vy,) such that

v, € HYQ)?,  Jy(v) = ¢, Ji(vy) = 0in H1(Q), (3.12)

has a convergent subsequence in H(Q). If ¢ = 1, we write (PS)L instead of (PS)¢. The
proposition above gives us a level below which the functional Jy satisfies the Palais-Smale
condition.

Corollary 3.7. Jy satisfies condition (PS)¢ for all ¢ < 4(T') co

Proof. Let (v,) be a sequence which satisfies (3.12). From Lemma 3.3, we have that (v,)
is bounded in HE(Q)? and then a subsequence satisfies that v, — vy weakly in H(Q)?,
vp, — Vg strongly in Lloc(ﬂ) and v, (z) — vo(z) a.e. in Q. Defining u,, := v, — vg we have
that u, — 0 in H(Q)?. Furthermore, Lemma 3.5 asserts that

Jo(un) = d:=c— Jy(vg), Jy(un) =0 in H Q)
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and v is a solution of (3.1).

If d < 0, Lemma 3.3 guarantees that u, — 0 strongly in H}(Q). If d > 0, there exist
(n € Q, a closed subgroup K of finite index in I', a nontrivial solution v of (3.2) and a
sequence (wy) in H}(2)? with properties (a)-(e) of Proposition 3.6. In particular,

Jo(un) = Jo(wn) + |0/ K| Jeo(v) + o(1).

Consequently,
c>d>|I/K|Jx() > T)coo.

From this contradiction to our hypothesis, we conclude that w,, — 0 strongly in H& Q). O

We denote by VJy the gradient of Jy with respect to the scalar product (2.2), and by
VnJv (u) the orthogonal projection of V.Jy (u) onto the tangent space Tuj\/g5 v to the Nehari

manifold Ngv at the point u € Ngv We shall say that Jy satisfies condition (PS)¢ on
Ng v if every sequence (uy,,) such that

un ENG v, Jv(un) = e, Vndy(ug) =0, (3.13)
contains a convergent subsequence in H}(€2).

Corollary 3.8. Jy satisfies condition (PS)S on Ng,v for all ¢ < U(I') coo.

Proof. Let (uy,) be a sequence which satisfies (3.13). In view of Corollary 3.7, we just need
to prove that VJy (u,) — 0.
If u e Ngv, Theorem 2.4 (a) asserts that VJy (u) € H3(Q)?. Moreover, the tangent

space Tu/\/g’v is the subspace of H}(Q)? which is orthogonal to VF(u), where F(u) :=
[ul[} — D(u). Since

(VE(u), o)y = 2 {u, v), — Qp/ﬂ <1 \ |uyp> P2,

[
clearly (as in the proof of Theorem 2.4 (a)), VF(u) € H}(2)?. We express V.Jy (uy) as
VJy(un) = Vady(un) + tn, VE (uy), tn, € R. (3.14)

By taking the scalar product of the above equality with u,, and taking into account Propo-
sition 2.5 (a) one gets

(VN v (un), un)y = (VIv(un), un)y — tn (VF(up), un)y
= (lunll¥ = D(un)) = tn 2llunli — 20D (un))
= 2(p — Dtul|unll¥,
> Citp, (3.15)
with C7 > 0. Observe that, by (2.9),

—1
Foy unllt = v (n) =



then (u,) is bounded in H}(2) and, since by the hypotheses Vs Jy (un) — 0, one has that
(Vardv(up),un)y — 0. Thus, (3.15) yields that ¢, — 0. Now, set r := ;2% By the
Hardy— Littlewood—Sobolev inequality (2.4) and the Sobolev embedding, one has that there
exists a constant Cy > 0 such that

(VE(un), v)y| < 2unllv[vlly +2p C(N, ) [unlpr ™ 0]

o < Cofjvllv

pr =
for all v € H}(Q). In particular, if for each n € N we take v = VF(u,) in the above
inequality, we obtain |VF(u,)|ly < Co, ie. (VF(uy)) is bounded. Thus, from identity
(3.14), VJy (uy) — 0 follows. O

Remark 3.9. To prove that the functional .Jis associated to problem (1.1) satisfies condition

(PS)? on Ng v for all ¢ < {(I') ¢, we follow an entirely analogous procedure. The only
difference is that we need to use the Brezis-Lieb Lemma [13| instead of Proposition 3.4. See
[26, Section 3| for further details.

3.2 Asymptotic estimates

In this section we study some asymptotic estimates for the nonlocal problem, which will be
mainly used in the proof of Theorems 1.5 and 1.6 stated in the Introduction.

The ground states of problem (3.2) have been recently studied in [21, 48|. The following
result holds true.

Theorem 3.10. Let w be a ground state of problem (3.2). Then w € L*(RN) N C®(RYN),
w does not change sign and it is radially symmetric and monotone decreasing in the radial
direction with respect to some fixzed point. Moreover, w has the following asymptotic behavior:

(i) If p > 2, then
lim |w(@)||z| 7 el € (0,00).
|z|—o00
(i1) If p=2, then
lim |w(a:)|]x\%eQ(|z|) € (0,00),

|z| =00

Q) :== /; \/1— i—jds and 0% := (4 — a)Ceo.

Proof. See Theorems 3 and 4 in [48]. Note that w is a solution of (3.2) if and only if

w:= A" T is a solution of problem (1.1) in [48], where A := F((Nial;/(%fj)w%]v_a and I’

denotes here (and only here) the gamma function (and not the group). O

where

In what follows, w will denote a positive ground state of problem (3.2) which is radially
symmetric with respect to the origin. We continue to assume that p > 2.
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Lemma 3.11.
lim w($)|x|%ea\r| _ oo ifa>1,
|| —o0 0 ifac(0,1).
Proof. Set b := % We shall prove this result for p = 2. The proof for p > 2 is an

immediate consequence of Theorem 3.10. Observe that, for every v € (0,1) it holds true

that
1—6—§1 ifs>9 and \/1—5—21/ ifsz#::sy,
P P! (1—1/2)1/0‘

and, hence, that
Qity<t ift>0 and v(t—s,) <Q(t) ift>s,.
Consequently, if |z| >  then
w(z)|z]Pe?! = w(z)|z|PeRQD e =RUZD > ) (z)|z|PeQ*D ela-Dl

If a > 1, the conclusion follows from Theorem 3.10. If a € (0,1), we fix v € (a,1). Then,
for all |x| > sy,

w(x)mbealxl = w(x)|x’beQ(\x|)ealx\*Q(lxl) < w(m)’x‘beQ(lxl)e(a*V)lfvasV7
and using once more Theorem 3.10 the conclusion follows. O
For ¢ € RN we set
we(z) = w(x — Q).
Lemma 3.12. For each a € (0,1),
lim wp_lwdd¥e“|<| =0.
|¢]—=o0 JRN

Proof. By Lemma 3.11 we have that, for each v € (0, 1), there exists a constant C}, > 0 such
that
w(z) < Ce T for all z € RV,

We fix 11,5 € (a,1) with v; < v,. In what follows, C' will denote different positive constants
depending only on v; and vo. We have that

/ Pl <0 [ el g < ¢ [ el g,
RN ey ey

_o [ et -l gy < ce-mildl [ gmtmmiel g
RN o RN
= Ce 11l

Therefore,
0< /RN wp—lwdd%eald < Ol T e~ m-alel,

which implies the result. O
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For ¢ € RY we define

I(¢) == /RN <|;‘a * wp> wPLwe. (3.16)

Lemma 3.13. For each a € (0,1),

lim I(C)|¢| = el¢l = o.

|¢|—o0

Proof. From Lemma 2.11 (b) we infer that ﬁ *wP € L°(RYN). Hence,

0 HOI e <0 | W s e

The conclusion follows from Lemma 3.12. O]
Lemma 3.14. For every a > 1, there exists a positive constant kg such that
N—-1
1O 7 el >k, forall |¢] > 1.

Proof. Set b := % Lemma 3.11 asserts the existence of positive constants C,, R, such
that
Colz| el < w(z) if |z| > R,.

Let C7 > 0 be such that
w(z) > Cre~®l for all |z| < R,.
Setting Co := min{C,, C;} we conclude that
w(z) > Co(1+ |z)) Pl for all z RV,
Hence,

w(z — ¢)[¢[Pel > Cy(1 + |z — ¢[)~Pee=5l|c|Peal]
> Co(1+ |z — C‘)ibmbewlx‘ for z, ¢ e RV,

Note that, if |z] <1 < |([, then 1 4 |z — (] < 1+ |z| + |¢] < 3]|¢| and so
w(w — O)[¢Pel > Cze=7l for z,¢ € RN with |z <1< ¢,
where C3 := 37°Cy. Consequently,
1(Q)[¢[Pe ! = / (1 * wp) () W~ (2)w(z — ¢)|¢|Pe! da
N
> C3/| - (1 *wp> (2)wP M (@)e ! =ik, for |¢| > 1,

as claimed. 0
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For ¢ € RY we define

A(Q) == o VT (z)w?(z — ¢)dx. (3.17)

Lemma 3.15. Let M € (0,2). If V(z) < ce="®l for all 2 € RN with ¢ > 0 and > M, then

lim A(Q)[¢]"F M4l =0,
|¢|—o00

Proof. Throughout this proof ¢ will denote possibly distinct positive constants that are
independent of ¢. Let us fix € € (0,1) such that ¢(1 —¢) > M. Then

/ VH@) (@ — ) ¢]F MAlde < ¢]¢) T e @=a-201 [ 2(0)dp
Bej¢1(€) RN

_Cm 7 o~ (l—e)=M)I¢|. (3.18)

On the other hand, let us fix a € (0,1) such that 2a > M. According to Lemma 3.11, for
r e RN < B,¢|(¢) and |(] large enough,

WQ(ZL‘ o C) < C|IL’ _ <|—(N—1) e—2a|;c—(|.

iz

Therefore, making the change of variable y = i

and defining z := ‘—g', we obtain

[ Vi@ete - T M
RN~ B¢ (€)

K’ 7 o—(dzl+2ale—¢|—M(C])
< c/ ~ 1 dzx
RN\ B, ¢/(€) |95 — |

\C| b o lCI(elyl+2aly—z|— M)
—c/ T dy. (3.19)
RN\ Bc(2) ’y_z|

Set tp := min{¢,2a} and fix § € (0, 1) such that ¢p0 > M. Then

vyl +2aly —z| = M > wo(ly| + |y — 2| — ) + (06 — M) > 106 — M > 0.

N+1 N+1 N+1
e = ()

|<| b o—ICl(elyl+2aly—2]— M)
/ N-1 dy
RN\ Bc(2) ly — 2|

c]"2 emtollyl+Hly—21-)I¢]

Taking into account that maxscgr t for d > 0, we conclude that

—(tod—M
< (b= . e dy
< e~ (wd-MD)c] dy
BYSB(2) (1g(|y] + ly — 2| — 8))  Jy— 2N
= ce(WI=M)IC], (3.20)

Now the assertion of Lemma 3.15 follows from inequalities (3.18), (3.19) and (3.20). O
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Lemma 3.16. If f € CO (RY), ¢ >1 and a € (0,1), then

lim ( fz)wl(z — C)daz) \C\¥ etelcl = g,
¢]=o0 \J/RN
Proof. Set b:= &=L, Let T' > 0 be such that supp(f) C Br(0). By Lemma 3.11 there exists
C > 0 such that

w(z) < C(T +|z|)"Pe @ for all z € RV,

Therefore, if |z| < T,

(o = Q) ¢I* 71 < COT + fo — ¢y obemele=Cl [ el
< CY(|z| + |z — C,)—qbe—qalr—CI |C|beqa|C| < m(lffl)b edale]

Consequently,

/ |f(@)|wi(z — ) |¢]’ e®lldz < c]¢) 0~ / |f ()] e®lldz =: ¢y ¢ 0797,
RN

|z|<T
from which the assertion of Lemma 3.16 follows. O
Remark 3.17. (Asymptotic estimates for the local problem)

In order to prove Theorem 1.2 we need the corresponding asymptotic estimates for the
local problem.

Let @ € H'(RY) be the unique positive solution to problem (1.2) (namely, the limit
problem associated to the local one) which is radially symmetric about the origin. It is
well-known (see [10, 36]) that there exist positive constants by, by such that

lim |Dio(z)| |7 expla|=b;  fori=0,1. (3.21)

|z| =00

Observe that (3.21) implies an analogous result to that given in Lemma 3.11 because, for
a > 0, one has

lim (e 7 el = (| lim @mmﬁ*ewl) ( lim e<a—l>wl>.

Therefore, if we set

1(¢) = /RN@”_IL%,

we can obtain similar statements to those given in Lemmas 3.13, 3.14 and 3.16, due to the
proof of these lemmas relies essentially on Lemma 3.11.

However, we did not proceed in this way in [26]. Thanks to (3.21), in the local case, it
is not necessary to consider separately the estimates for a < 1 and a > 1. It suffices to
consider a = 1. More precisely, in order to describe the asymptotic behavior of I we use the
following result of Bahri and Li [3, Proposition 1.2].



Lemma 3.18. Let f € CO(RY) N L>®(RYN) and h € CO(RN) be radially symmetric functions
satisfying

lim f(z) |z el = 7 and /RN \h(z)] (1 + |z[*)ed®ldz < 0o

|z|—o00

ford>0,b>0 and 7 € R. Then

lim ( f(z +y)h(a:)dx) ’y‘bed\w — 7-/ h(l’)e_dxlda;.
RN RN

ly|—o0
As @ is radially symmetric, from (3.21) and Lemma 3.18 we deduce

lim 1) €] elél = ky > 0. (3.22)
€] =00
This asymptotic estimate plays the same role as Lemmas 3.13 and 3.14 together. Further-
more, (3.21) and Lemma 3.18 implies

lim ( F2)at(a — C)dx) )" et = 0, (3.23)
¢]=o0 \JRN
provided f € C? (]RN ) is radially symmetric and ¢ > 1. This is the statement corresponding
to Lemma 3.16.

On the other hand, Lemma 3.15 continues being valid for the local case without any
modifications in the statement; the only difference is that in the proof we need to take a = 1
in order to apply (3.21).

3.3 The Krasnoselskii genus and multiplicity of cri-
tical points

In this section we introduce the notion of Krasnoselskii’s genus, which will be a fundamental
tool in finding multiplicity of sign changing solutions to both: the local problem and the
nonlocal one.

Recall that a Z/2-space is a topological space Y together with a continuous action

2)2xY =Y, (=ly —(-1)-y.

Let S be a subset of a Z/2-space Y which is Z/2-equivariant (i.e. (—1)-y € Sforall y € S)
and such that (—1) -y #y for all y € S.

Definition 1. If S # 0, the Krasnoselskii genus of S, denoted genus(S), is defined to be
the smallest k € N such that there exists a continuous map h : S — SF=1 which is 7./2-
equivariant (i.e. h((—=1)-y) = —h(y) for ally € S). If there is not a map with the above
property, then genus(S) := co. We set genus(0)) := 0.

The following lemma states an important property of the Krasnoselskii genus which will
be useful for our purposes.
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Lemma 3.19 (Monotonicity property of the genus). Assume that Y;, ¢ = 1,2, are Z/2-
spaces. Let S; be a subset of Y; which is Z/2-equivariant and such that (—1) - y; # y; for all
yi € S;. If n € C%(81,82) is Z)2-equivariant (i.e. n((—1)-y) = (=1)-n(y) for all y € S1),
then

genus(Sy) < genus(Sa).

Proof. See for instance |6, Proposition 2.15]. O

Recall that the Krasnoselskii genus provides a lower bound for the number of pairs of
critical points of an even functional on a Hilbert Manifold. More precisely, one has the
following result:

Theorem 3.20. Let M be a submanifold of class C* of a Hilbert space H which is symmetric
(ie. w € M & —u € M) and does not contain the origin. Let I : H — R be an even

functional of class C*> which is bounded from below on M and satisfies the Palais-Smale
condition (PS). on M for all ¢ < dy. If d < dy, then I has at least

genus(M N I19)

pairs of critical points £u on M with critical value I(u) < d, where I? := {u € M : I(u) <

d}.
Proof. See for instance |6, Theorem 2.19 and Proposition 2.10]. O

The above theorem is true for more general symmetries than those we are considering
here. See for instance [25].

Remark 3.21. If I' is a closed subgroup of O(N) such that {(I') = oo, Q and V are I'-
invariant, ¢ : T' — Zs is a continuous group homomorphism and additionally, dim Hg (Q)? =
oo when ¢ is an epimorphism, then problem (1.1) has infinitely many solutions satisfying
(1.3). Indeed, since ¢(I') = oo, Remark 3.9 insures that the functional Jy associated to
problem (1.1) satisfies condition (PS)? on Ngv for all ¢ € R. On the other hand, by
Remark 2.7, one also has that Jy is an even C2-function which is bounded from below on
Ng v and that Ng v isa C%-manifold which is symmetric and does not contain the origin.
Therefore, by Theorem 3.20, Jv has at least genus(Ng ) pairs of critical points.

Now, Ngv is radially diffeomorphic to the unit sphere in H&(Q)¢. It is known that

if ker¢ = T, H&(Q)¢ has infinite dimension, but this is not true, generally, if ¢ is an
epimorphism. That is why, in this case, we need additionally to assume that dim H} (Q)? =
oo. Finally, if Sg denotes the unite sphere in H{(Q)?, from

genus(/(fgv) = genus(S(é) = 00,

one can deduce the existence of infinitely many solutions to (1.1) satisfying (1.3).
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Existence of positive and sign changing
solutions

We consider the problem
—Au+ (Vo + V(2))u= (% * |u]p> |u|P~2u
el : (4.1)
u € Hy(Q),

where N > 3, a € (0,N), p € [2, 2]]\,\[:20‘) and € is an unbounded smooth domain in RV

whose complement RY < € is bounded, possibly empty. The potential Vi, + V is assumed
to satisfy

(Vo) V €CORY), Vy € (0,00), infycpn{Voo + V(2)} >0, limy,| oo V(2) = 0.

As in the previous chapter, we consider a closed subgroup I' of the group O(N) of linear
isometries of R and a continuous group homomorphism ¢ : I' — Z/2. We denote by
G := ker ¢, by

() := min{#Tz : 2 € RN < {0}},

and by
Yi={z e RV :|z| = 1,4z = ()},

where 'z := {gx : g € '} is the I-orbit of x and #I'x is its cardinality.

Recall that a subset Z of RY is T-invariant if Tz C Z for every & € Z, and a function
u : Z — R is [-invariant if it is constant on each I'-orbit 'z with x € Z. If Z is I-invariant
and ¢ is an epimorphism, the group Z/2 acts on the G-orbit space Z/G := {Gx : z € Z} of
7 as follows: we choose v € T" such that ¢(y) = —1 and we define

(—1)- Gz := G(yx) for all x € Z.
This action is well defined and it does not depend on the choice of v. We denote by

Yo:={reX:Gx=G(r)}.
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Thus, if Z is a I-invariant subset of ¥ \ X, the action of Z/2 on its G-orbit space Z/G is
free.
For each subgroup K of I we set

| inf{lanz —agz| taq, a0 € K, onz # gz} if #Kz > 2,
Kz) = { 2|2 if 4Kz =1,
ur(Z) = inf p(Kz) and p(Z) = sup (K z2).
z2€Z z2eZ

In the special case where K = G and Z = 3, we simply write

pei=pe(®)  and  p% = po(D).
The energy functional Jy : H}(Q) — R associated to problem (4.1) is given by

1

1
Jy(u) = B ||UH%/ - %D(U)a

where || - ||y is the norm defined in (2.3) and

D(u):/9<|;|a*|uyp) ul?.

We are interested in obtaining solutions to problem (4.1) which satisfy
u(gr) = ¢(g)u(x) forall g eI and z € Q. (4.2)

By the principle of symmetric criticality (Theorem 2.4), the solutions to problem (4.1) that
satisfy (4.2) are the critical points of the restriction of Jy to the space

Hy ()% = {u € Hy() : u(yz) = p(7)u(z) ¥y €T, Vo € Q.
The nontrivial ones lie on the Nehari manifold

NGy = {ue B Q)7 00, Jul} =D},

which is of class C? and radially diffeomorphic to the unit sphere in H}(€)?. The radial
projection 7 : H ()¢ \ {0} — Ngv is given by

o=(58)"

Accordingly, for every u € Hi(Q)? \ {0},

We set
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If ¢ = 1 is the trivial homomorphism, then I' = G := ker ¢. In this case we shall write
H(Q)Y, Ngv and cgy instead of H{(Q)?, Ngv and c?z v- If G = {1} is the trivial group,
we shall omit it from the notation and write simply H{ (), Nq,y and cq,v. For the special
problem

_ — (1 P p—2
{ Au+u <|x‘a*|u\)|u| u, (4.3)

u € HY(RY),

we write Joo, Noo and coo instead of Jy, Ngn g and cgn .
We shall look for solutions with small energy, i.e. which satisfy

/ / [w@PRWIP ) gy < 6Ten (4.4)
RV JRN T —y|*

4.1 Proof of Theorems 1.3 and 1.4

In this section we are concerned with potentials which are strictly negative at infinity. More
precisely, we are concerned with potentials V' which, for some subset Z of ¥, satisfy

(Vi) There exist 19 > 0, co > 0 and X € (0, ur(Z)v/Vao) such that
V(z) < —coe ! for all z € RY with |z > 7.

In particular, no behavior is prescribed to V' near the origin and so, it can take on negative
and nonnegative values there. The aim of this section is to prove the following results (which
correspond to Theorems 1.3 and 1.4 stated in the Introduction, respectively).

Theorem 4.1. If p > 2, Q is G-invariant and V is a G -invariant function which satisfies

(V3) There exist 1o > 0, cg > 0 and X € (0, u®/Vao) such that
V(z) < —coe ! for all x € RN with || > ro,

then (4.1) has at least one positive solution u which is G -invariant and satisfies (4.4) with

r'=aG.

Theorem 4.2. If p > 2, Q is U-invariant, ¢ : T' — Z/2 is an epimorphism, Z is a T'-
invariant subset of X\ g and V is a I'-invariant function which satisfies

(Vi) There exist 1o > 0, cg > 0 and X € (0, ur(Z)v/Voo) such that
V(x) < —coe V! for all x € RY with |x| > ro,

then problem (4.1) has at least genus(Z/G) pairs of sign changing solutions +u, which satisfy
(4.2) and (4.4).

Let Z be a I-invariant subset of ¥ and let A € (0, up(Z)) be such that (V4) holds (recall
that we are assuming that Vo = 1). We choose v € (0,1) such that A € (0, ur(Z)v), € €
(0, %) and a radially symmetric cut-off function y € C>(R™) such that 0 < x < 1,
x(x) = 1if |2] <1 —¢ and x(x) = 0 if |2| > 1. Let w € H'(RY) be a positive ground
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state of problem (4.3) which is radially symmetric about the origin. For S > 0 we define

wS € HY(RY) by

x

Sy (E
w”(x) == x (S) w(x).
Lemma 3.11 allows to obtain the following asymptotic estimates. The proof we include here

was given by S. Cingolani, M. Clapp and S. Secchi [21, Lemma 4.1].

Lemma 4.3. As S — oo,
‘HWHQ _ HwSHﬂ _ O(@—QV(l—E)S)’ |]D>(w) _ ]D)(wS)‘ — O(e—pu(l—a)S).

Proof. Throughout this proof C' will denote some positive constants, not necessarily the

same one. From (2.13) and (2.14) one has that
fo-wP<e( [ e[ WP
|z[>(1—¢)S |z[>(1-¢)S

Therefore, from Lemma 3.11 and [21, (4.1)] it follows that

el = llw®|?] < C flow — w®|?
T f(Nfl)efQV\:ddx

<C
21> (1-2)S

<C e Vit
(1-¢)S

_ Cef2u(1f€)S.

On the other hand, if r := 21%7]Lw from (2.15), one has that

’]D(w) - D (ws)‘ < 2C_'|w\£7, ’wp — (ws)p|

<C </ pr>
|z|>(1—¢)S

Therefore, from Lemma 3.11 it follows that

3= s

3=

p) - <o VDol
l2|>(1-2)S

00
<ol [ e
(1—¢)S

_ Ce—pl/(l—s)s,

-

as S — oo.



4. Existence of positive and sign changing solutions 51

We set p = %, and for every z € Z we consider the function (w”f®)g, € H'(RY)
given by
(W) g (z) == wP(z — R2).
Note that supp((w’?)r.) C B,r(Rz2).
The following lemma is a special case of [21, Lemma 4.2| with A = 0.
Lemma 4.4. There exist dy > 0 and Ry > 0 such that (w*?)g, € H(Q) and
Jv(m((w)R.)) < coo —doe™  for all 2 € Z and R > Ry.

Proof. Assume without loss of generality that the rg > 0 of condition (V) also satisfies
(RN \ By, (0)) C Q. Note that, since pur(Z) <2, p € (0,1). Therefore,

R—pR— as R—

and so, there exists Ry > 0 such that R — pR > 7o provided R > Ry, which implies that
(wPB)R, € HY(Q) for all y € Z and R > Ry.
From Proposition 2.5 (d) and (2.10) one has that

Jult )
D(w) > '

By Lemma 2.10, w”® — w in H'(RY) and D(w?) — D(w) as R — oo, and 50tz — t,,
as R — oo. Therefore, one may choose t; > t, > tg > 0 and Ry > 0 such that the following
also holds:

max Jy (t(w’)p,) = max Jy (L(wF)ry) forally € Z and R > Ry.
t>0 t€lto,t1]

max Jy (tu) = Jy(tyu) if and only if ¢, = <

By condition (V4), for every t € [to,t1], y € Z and R > Ry, one has that

/ V(z) ‘twa(iL‘ — Ry)‘2 dzx = / V(z + Ry) ‘twa(x)‘Q dx
Q |z|<pR

- cot2/ e MR (2) ]2 da
[z|<pR

— (cotg/ e_)‘|x||w(:1:)|2dac> e M = _(Che M
RN

Using the asymptotic estimates from Lemma 4.3 and taking into account that p > 2, we
conclude that choosing Ry > 0 even larger if necessary, there exists C7; > 0 such that

Tt ) =3 1| + 5 [ V@) Ml do = 5D ()

IN

IN

1 2 —2u(1-€)pR C2 _»gr
<= v p _ 2
<3 (Il + 0te ) - S

1
_ —pv(l—e)pR
o (]D)(tw) +O(e ))
1 2 1 “ou(1-e)pry _ C2 AR
<= - v P - =
<5 [|tw]| 2p]D)(tw) +O(e ) 5 ¢

<o (tw) — Cre M

SCOO - Cle_)\Rv
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because oo = max;>( Joo(tw) and

2w (1l—¢)p> 2w (1 - Z;E;;Z - i) “F(i): A
O
We fix R > Ry, and for z € Z we define
0(z) = % d(9) (@ )y (4.5)

gz€l'z

Proposition 4.5. If either ¢ = 1 or Z C X \ X, then 0(z) is well defined. 6(z) is
¢-equivariant and

Jy(m(6(2))) < 4(T) (coo — doe_/\R) forall z € Z.

If moreover Z # (), then Cé,v < (I Coo-

Proof. Let z € Z. If g1,92 € ' are such that g1z = go2, then g;lglz = z. Hence, if either
¢ =1or z ¢ X, it must be true that ¢(g2_1g1) = 1. Thus ¢(g1) = ¢(g2). This shows that
0(z) is well defined. It is clearly ¢-equivariant.

On the other hand, since

|Rg1z — Rgez| > Rur(Z) > 2pR  when g1z # goz,

we have that
SUPP((WPR)Rgﬂ) N Supp((wa)RQZZ) = 0.

Consequently,
10() 1% = €D [ (w)pallf and  D(B(2)) > £T)D((W)gz).

From (2.11) and Lemma 4.4 we obtain

_p
(O (wWPrNF "
2p 7

[((T)D((wPF)g.)]
= (D) Jy (n((wPP) ro)) < £(T) (coo . doe_m) .

J(n(0()) < P2 (

Finally, since 7(6(z)) € Ns%)v’ we conclude that Cg,v < () Coo- O

Proof of Theorem j.1. Let (uy) be a minimizing sequence for Jy on Ngv. By Ekeland’s
variational principle [59, Theorem 8.5] we may assume that it is a Palais-Smale sequence
for Jy.

Let ¢ = 1, so that T' = G. If assumption (V3) holds for A € (0, u%), we choose ¢ € ¥
such that u(G¢) € (A, u%] and define Z := G¢. Thus ug(Z) = u(G¢) and assumption (V})
holds for A € (0, uc(Z)). Hence, we may apply Proposition 4.5 to these data to conclude
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that cg’v < £(G)coo. Corollary 3.8 then asserts that Jy, satisfies condition (PS)S on Ng v
for ¢ := Cg,v- Therefore, there exists u € Ngv such that u, — u strongly in H(Q) and,
since Jy is of class C!, u is a minimum of Jy on Ng’v. Finally, observe that |u| € Nfiv and

Jv(lu]) = Jy(u). Hence, by Corollary 2.6, problem (4.1) has a G-invariant positive solution
|u| satistying Jy (Ju|) < ¢(G)coo- O

Proof of Theorem 4.2. Proposition 2.5 guarantees that Ng v isa C%-manifold which is sym-
metric and does not contain the origin. Proposition 2.2, together with Corollary 2.6 and
Corollary 3.8, asserts that Jy : Ng v — R is an even C%-function, which is bounded from

below and satisfies (PS)¢ on N$,V for all ¢ < ¢(I')cso. Therefore, by Theorem 3.20 and
Corollary 2.6, if d := {(T') (coo — doe*?), then Jy has at least

genus(/\/'gy NnJd)
pairs of critical points +u with Jy (u) < d, where J& := {u € H}(Q) : Jy(uv) < d}.
The map 0 : Z — Ngv N J& defined by (4.5) is continuous. Furthermore, 0(gz) = 6(z)

for all g € G and 0(~vz) = —0(z) if ¢(y) = —1. Consequently, 0 induces a continuous map
0 Z/G — /\/'gv N J&, given by H(Gz) := 0(z), which satisfies

~

0((—1)-Gz) = —0(Gz) forall z € Z.
By Lemma 3.19, this implies that

genus(Z/G) < genus(./\/’gy N Jd)
and concludes the proof. O
Remark 4.6. Theorem 1.1 in the Introduction also considers potentials which are strictly
negative at infinity. In order to prove Theorem 1.1, we follow the same procedure as in the

proof of Theorem 4.2, using (3.21) instead of Lemma 3.11 and taking v = 1 in Lemmas 4.3,
4.4 and Proposition 4.5. Note that (3.21) implies

oy — | = O(e079).
Notice also that

6()15 = ()| pslf

4.2 Proof of Theorems 1.5 and 1.6

The purpose of this section is to prove Theorems 1.5 and 1.6 stated in the Introduction,
namely,
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Theorem 4.7. If p > 2, ((G) > 3, Q is G-invariant and V is a G-invariant function which
satisfies

(Vi) There exist co > 0 and k > pgv/ Voo such that
V() < coe " for all z € RY,

then (4.1) has at least one positive solution u which is G-invariant and satisfies (4.4) with
I'=aG.

Theorem 4.8. If p > 2, Q is U-invariant, ¢ : T' — Z/2 is an epimorphism, Z is a T-
invariant subset of X2, V is a I'-invariant function and the following hold:

(Zo) There exists ag > 1 such that
dist(vz,Gz) > apu(Gz) forall z€ Z and v e T' \ G,
(Vo) There exist co > 0 and r > p' (2)\/Vo such that
V(z) < coe "] for all z € RY,

then (4.1) has at least genus(Z/G) pairs of sign changing solutions tu, which satisfy (4.2)
and (4.4).

As you can notice, these theorems only consider potentials which take on nonnegative
values at infinity.

As in the previous section, let ¢ : I' — Z/2 be a continuous group homomorphism and set
G = ker¢. Let w € H'(RY) be a positive ground state of problem (4.3) which is radially
symmetric about the origin, and let Z be a nonempty I'-invariant subset of . If ¢ is an
epimorphism, we also assume that Z C ¥ \ Xg. Thus, for z € Z and R > 0, the function

ORr: = ), ¢(g)wrgz, Wwhere we(z):=w(xz - (),
gz€l'z
is well defined and ¢-equivariant (see Proposition 4.5). In addition, we assume that
(Z.) pr(Z) <2 and there exists ag > 1 such that

dist(yz,Gz) > agu(Gz) forany z € Z and vy € ' \ G.

We choose Ry > 0 such that (R \ Q) C Bg,(0), and a radially symmetric cut-off
function xy € C®(R¥) such that 0 < x(z) < 1, x(x) = 0 if |z| < Ry and x(x) = 1 if
|z| > 2Ry. Observe that yor € H}(Q)?. We shall prove the following result.

Proposition 4.9. If Z and V satisfy (Z«) and (Va) then there exist Cy, Ry > 0 and § > 1
such that

Ixor: |3 2\ 2o+ ~BR
S (D) |lw]F) P = Coe for any R> Ry, z € Z. (4.6)

D(XJRz)p

Consequently, Cg,v < (T oo
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We require some preliminary lemmas. The first two ones yield that pup(X) > 0. As a
result, ur(Z) > 0 also holds.

Lemma 4.10. ¥ is a compact subset of RYN.
Proof. Let y, be a sequence in ¥ such that y, — y in S¥~1. Thus
#Ly > (') = #Lyn.

Now, let g1, ,gyr) € I' be such that g;y # g;y if i # j, and fix § > 0 such that

Bs(giy) N Bs(gy) =0 if i # j.
Since g;yn € Bs(giy) for sufficiently large n, we conclude that #I'y < #I'y,. Therefore,
#I'y = 4(T') and so y € X. This proves that ¥ is closed. The conclusion follows because,
additionally, ¥ is bounded. O

Lemma 4.11. The function ¥ — R, y +— p(Ty) is continuous.

Proof. Let € > 0 be given. Let (y,) be a sequence in 3 such that y, — y. Then, there exists
no € N such that |y, —y| < § if n > ng. For every g € I one has that

1y — gyl < |y = ynl + [Yn — 9Ynl + [9Yn — 9yl = 2|yn — Y| + [yn — g¥nl,

and so
w(ly) < e+ pu(Ty,) for all n > ng.

Analogously, we obtain
w(lyn) < e+ u(ly) for all n > ng.
Consequently u(Ty,) — u(Ty). O

Lemma 4.12. (i) If p > 2 and ay,...,a, > 0, then

p

n
> a;
=1

n
>l + (p—1) Ya¥ ay.
i=1 i#k

(ii) If p > 2 and a,b > 0, then
la—b]P > aP + b —p(a” b+ abP).

Proof. See Lemma 4 in [16]. O
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n . n n - no. ~
Lemma 4.13. ]fp > 2, A= Zai, A= ZCNLZ', B= sz and B = sz with ai,&i,bi,bi >

i=1 i=1 i=1 =1
0, then
APBP > Saiby +(p—1) (Z AV by + bl ) (4.7)
i=1 j#Em i#k
A’B? > Za2b2 +2 ( > ajbiby, + Zb?aiak> , (4.8)
i=1 j#Em i#k
‘A—fl‘p’B—B‘ > APBP 4 APBP (4.9)

—pnP~! (BP + Bp) [( %jlaf*) A+ < ?Nf*) A]
— pnP? (AP + AP> K Zb{?‘1> B+ < ZB?*) B] .

Proof. Using Lemma 4.12(i) we obtain

p

n
2. bj
j=1

- ( éa?Jr (p—1) ;Caflak> < ib§+ p-1 bﬁ?lbm)
>

o
=1
i +(p=1) X () + @) b+ (p— 1)
=1 ]#m Z#k‘

Inequalities (4.7) and (4.8) can be immediately deduced from the above expression.
On the other hand, applying Lemma 4.12 (ii) we obtain

|A—A|P|B—B|" > [AP + AP — p(AP~' A + AAP7Y)]|B - B
Notice that, if AP + AP — p(ApflA + Aflp’l) > 0 then
[A—A["|B - B"
> [AP + AP — p(APTA + AAP7Y)]|B - B
> [AP + AP — p(APTYA + AAPTY)| [BP + B — p(B*'B + BB )]
> APBP 4 APBP — p(BP + B7) (AP A+ AAPY) — p(A” + A7) (B7AB + BB,
Otherwise, since }B — B‘p < BP + BP,
|A—A|’|B—B|’ > [AP + AP — p(AP~'A + AAP7Y)]|B - B
> [Ap + AP — p(AP~ YA+ AAP- 1)] [Bp + Bp]
> APBP 4 APRP — p(BP + BY) (AP A+ AAY).
In any case, inequality (4.9) follows. O
Lemma 4.14. For every u € H'(RY) the following inequalities hold:

Iul® < lull? - / (xAx)?

_ p P p
o 20 2 [ [ ATXEBY
RN JRN |9E—y|°‘
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Proof. For every u € H'(R™) one has that
eulfy = [ (Wt w9 + (14 Vi) bl
]RN
1

= [ (vl + v + [ (VxR - 5a08)w
RN RN

<lulf - [ v

RN

Writing ab=1— (1 —a) — (1 —b) + (1 — a)(1 — b) and taking a := xP(x), b := xP(y), we
obtain

oo = [ [ @l P,

|z —y|*
— D(u) — (L = xP(@))|u(@)Pluiy)P
=D 2/]RN /RN |z —y|o o dy
(1= xP(2)) (X = xP(y))|u(@)[P|u(y) [P
+/]RN/]RN 7yl dx dy.

Notice that the last summand in the right-hand side of the above expression is nonnegative.
Then the second inequality follows. O

We shall apply this lemma to the function og, to derive inequality (4.6). To this purpose
we also require some asymptotic estimates, which will be provided by the following four
lemmas.

Since w is a solution of problem (4.3), for any 2,2’ € RY, one has that J/ (w,)w, = 0,
which is equivalent to

1
/ [Vw, - Vw, + w,wy] = / ( * w’z’> Wb,
RN RV \ |z[*

A change of variable in the right-hand side of this inequality allows us to express it as
(Wyywo) =12 — 2) for all z,2/ € RV, (4.10)

where (-, -) is the usual scalar product in H*(R¥) and I is the function defined by

I1(¢) := /RN (’ml|a *wp) wPwe.

We denote by Fz :={(g9z,hz) € 'z x 'z : gz # hz} and define

err:= », I(Rgz— Rhz),
(9z,hz)eFz
p(g9)=0(h)

Er.:= ., I(Rgz—Rhz) if¢p#1, and Er,:=0 ifp=1.
(9z,hz)eFz

P(g)#p(h)
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We choose g,, h, € G such that
|92 — h.z| = p(Tz) := min{|gz — hz| : g,h € T, gz # hz}

and set
&, =9.2—h,z.
Lemma 4.15. If (Z,) holds, then
é\Rz - 0(5Rz)

uniformly in z € Z.

Proof. For ap > 1 as in condition (Z,) we fix @ € (0,1) such that a := aap > 1. Thus,
alé] = au(Gz) <algz — hz| for any z € Z, g,h € I" with gz # hz and ¢(g) # ¢(h). Lemma
3.14 yields a constant k, > 0 such that

I(RE:)|RE[Pe1 > 1, if R>pur(2)7",
where b := &=L So, setting C := k! we obtain

I(Rgz — Rhz)
I(RE.)

I(Rgz — Rhz) |Rgz — Rhz|" eflRoz—Rhz|
I(RE,)|RE, beal B
< CI(Rgz — Rhz)|Rgz — Rhz|’ ¢@R9z=Fhzl it R > n(2)~1.

<

Let € > 0. Lemma 3.13 asserts that there exists § > 0 such that I(¢)[¢|" el < g if [¢] > S.
As @|Rgz — Rhz| > Raug > 0, taking Ry := max{ 22 an b (Z )~} we conclude that

S, I _
0< R < I(Rg> — Rhz) < U(G)*Ce if R > Ry,
€R:  githzer. 1(RE:)
#(g)#p(h)
which proves the assertion. O

Lemma 4.16. If (Z.) holds then, for any g,h € T such that ¢(g) # ¢(h) and v € T' N\ G,
we have that

1
/RN <|a:|a * <|<% wrel? + | Z WR7C|p>>ngszhz = o(cR2)
cGz

uniformly in z € Z.

Proof. Since ﬁ*wp € L>®(RY), we have that Iw\“ (\ > wrelP+] Y wpwdp) is bounded
CeGz CeGz
on RY uniformly in z. Hence,

1 -1
0< /RN (W « (1 2wl +1 % wR’YC|p))w€?gszhz

CEG2 CEG2

p—1 _ -1
< C/ ngszhz =C w? WR(hz—gz)-
RN RN

Arguing as in Lemma 4.15, using this time Lemma 3.12, we obtain the conclusion. O
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Lemma 4.17. If Z and V satisfy (Z) and (V3), then

/ V*tok, = o(er.)
RN
uniformly in z € Z.

Proof. Let k > pu''(Z) be as in assumption (Vz) (recall that V,, = 1 is assumed). We fix
a > 1 such that M := au'(Z) < min{2,x}. Lemma 3.14 implies that there exists a positive
constant k, such that

I(R52)|R£Z|bealR£zl Z ka lf R Z /LF(Z)_17

where b := % Observing that M|Rz| = MR = aRu*(Z) > a|RE,| for all z € Z, we
conclude that

Vto2 A b M\Rgz|
Jen ViR _ 5 AlR9z) _ o 5 (RQZ)IRQZIb !
€R= grere I(RE:) — 7 ylat. I(RE.)|RE,[Pet! RE:|
< C Y A(Rgz)|Rgz|PeMIfo?] if R>pur(2)7",
gzel'z

where C' denotes different positive constants and A is the map defined in (3.17). Taking
Lemma 3.15 into account, we obtain that

+ .2
R—o0 ERz

=0

uniformly in z € Z, as claimed. O

Lemma 4.18. If f € C (RY) and ¢ > max{u" (2),1}, then
folh, =o(er:)
RN
uniformly in z € Z.
Proof. Let us fix a > 1 such that a := % < 1. Lemma 3.14 yields that there exists

k, > 0 such that
I(RE)|RE|Pe B > &y if R > pr(2)7,

where b := £-1. Since qa|Rz| = qaR = aRu" (Z) > a|RE,| for all z € Z, we conclude that

f]RN |f‘ ORs <C Z fRN |f| Rgz <c Z fRN ‘f|ngz|Rgz|beqa\Rgz|

gzel'z I(RE:) gzelz I(RE,)|RE, [Peal Re:|
<C X |fwh,.|Rgz|>e®@ o=l if R > pup(2)71,
gz€lz JRN

where C' denote distinct positive constants. Hence, from Lemma 3.16 we get

q
i J2 %R _
R—o0 ERz

uniformly in z € Z. O
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Finally, we need the following result.

Lemma 4.19. Let ¢ : (0,00) — R be the function given by

a+t+o(t)
(a+ bt +o(t))"’

() =

where a > 0, B € (0,1) and b > 1. Then, there exist constants Cy,to > 0 such that
Y(t) < a'=P — Cot  forallt € (0,tg).
Proof. Taking % <g<band 1< s<r< fq wehave that there exists t; € (0,1) such that

a+ st a+rt (r—s)t
t) < = — fi 11¢ t1).
YOS P “ara)f  (arqp AIEOR)

We denote by f(t) := ~2t%. Since f/(0) = (r — Bq) a=® < 0, there exists to € (0,¢1) such

(a+qt)?”
that
f(t) < f(0)=a'"" forallt € (0,t).
Consequently,
P(t) < al=B ((c:Jr_;))ﬁt for all ¢ € (0,1t),
which concludes the proof. O

Proof of Proposition .9. Let vy e ' N G. If Gz = {z,..., 2z} with £ :={(G), we write
1 2 : 1 £ 2 £
OR: = Op, — Ops with o, = Y wr,;, and 0%, (= ) WRys,.
i=1 i=1

Applying Lemma 4.13 to a; := Wg:, (%), G; = WRyz(T), bi = Wrs (Y), b = WRyz; (y) and
using Lemma 4.16 we conclude that

D(og.) > D(og,) + D(o%.) + o(er:)
{ (T)D(w) +2(p — 1)er. +o(er:) ifp>2,

v

{I)D(w) + 4er. + o(eRrz) if p=2.

Note that, since ﬁ x wP € L®(RY), e * |or:|P is bounded uniformly in z. So, since

pr(Z) <2 <p, xAxecC? (]RN) and 1 — xP € CY (]RN), Lemma 4.18 yields that

1
[ ook =oen)  and [ @) (o slonl) b = ofer)
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uniformly in z. This, together with Lemmas 4.14, 4.15 and 4.17 and expression (4.10), yields

Ixor:l? < llonsl? + / Vo, - / (xAx)ok,
RN RN

or ||w\2+eRz—€Rz+/

o V+a}2?/2 + o(eRrz)

< 4(I)

< AT |Jw|* + ers + o(eR2),

D(xor:) > UI)D(w) + byeg: + 0(ers) — 2/RN(1 —xP) (\a:l|0¢ * \URZ\”> oh.
> ()

/(T ]D(UJ) + bp€Rz + O(ERZ),

where b, := 2(p — 1) if p > 2 and b, := 4 if p = 2. Consequently, since ||w||* = D(w) and
€r, — 0 as R — oo uniformly in z, Lemma 4.19 insures that there exist ¢, R > 0 such
that

. 2 T 2 p—1
bonelly, o QO+ e *oCre) | o (yry )5 — cicp

D(xoRr.)? (U(I)D(w) + bper: + 0(cRrz))?
for R > R; and z € Z. Using Lemma 3.14 we conclude that there exist Cy, Ry > 0 and
B > 1 such that

[un

2 —1
”X‘TiRZHV1 < ((1) ”wH2)pT — Coe PR for any R> Ry, 2 € Z,

D(XGRz)E

which is inequality (4.6). Finally, since m(xog,) € /\fé5 v and

p—1(lxor:l} \* _p—1
Ie(rlxons) = Lo (H!( . ”)%) < 2L i) o = (e,
XORz)?

one has that cgy < A(T)Coo- O

Remark 4.20. The reason why we require condition (Zy) is because, as we have seen,
the energy of the function m(yog,) decreases and remains below the level /(T")co, when
the concentration points of at least two positive terms of or, are closer than any pair of
concentration points of contrary sign terms.

Now we are ready to proof Theorems 4.7 and 4.8.

Proof of Theorem 4.7. Let ¢ = 1, so that I' = G. If assumption (Vj) holds for k > ug, we
choose ¢ € ¥ such that u(G¢) € [ug, &) and set Z := G¢. Thus u%(Z) = u(G¢) and assump-
tion (V3) holds for k. Moreover, since £(G) > 3, u“(Z) = u(G¢) < 2. Therefore (Z,) holds
and we can apply Proposition 4.9 to these data to conclude that ng < l(G)ex. Corollary
3.8 then insures that Ji, satisfies condition (PS)$ on Ng y forc:= cgy. Consequently, there
exists u € N&V such that Jy (u) = cg’v. Since |u| € NS%*:V and Jy (|u|) = Jy (u), by Corollary
2.6, |u| is a positive solution of (4.1) which is G-invariant and satisfies Jy (Ju|) < ¢(G)coo. O
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Proof of Theorem 4.8. If ¢ is an epimorphism and (Zj) holds, then Z C ¥ \ ¥y and 2 >
% > u(Gz) = p(T'z). Therefore, u'(Z) < 2, and hence (Z,) holds. We choose R > Ry and
set
p—1 p=1 _ap P
ai= 2= [(er) ) 7~ Coe™#R]7°T,
p

Proposition 4.9 then asserts that the map o : Z — Ngv N J& given by o(2) := m(xoRs) is
well defined. Furthermore, o(gz) = o(z) for all ¢ € G and o(yz) = —o(z) if ¢(vy) = —1.
Consequently, ¢ induces a continuous map o : Z/G — Nfdz)v N J&, given by 5(Gz) == o(z),
which satisfies ((—1) - Gz) = —0(Gxz) for all z € Z. This implies that

genus(Z/G) < genus(/\/'gy nJd).

Since Ng v is a C2-manifold (see Proposition 2.5) and Jy : Ng v — Ris an even C*-function

which is bounded from below and satisfies condition (PS)? on Ng v for all ¢ < £(I')coo (see
Proposition 2.2, Corollary 2.6 and Corollary 3.8), Theorem 3.20 and Corollary 2.6, allows us
to conclude that Jy has at least genus(Z/G) pairs of critical points +u with Jy (u) < d. O

Remark 4.21. (Some comments about the proof of Theorem 1.2)

As we have mentioned in the Introduction, Theorem 1.2 corresponds to [26, Theorem
1.2| and it also considers potentials which take on nonnegative values at infinity. To prove
this theorem we may follow the same lines of the proof of Theorem 4.8, taking into account
Remark 3.17 and making the obvious modifications derived of considering the term |ul}
instead of D(u) in the energy functional.

However, this is not exactly the proof that we gave in [26]. What we did there was to
give a proof in the same style as the proof of Theorem 4.8, but working directly with a = 1,
using estimates (3.22) and (3.23) and taking into account Remarks 2.7 and 3.9. See |26,
Section 5| for further details.

It is also worth mentioning that in [26, Theorem 1.2] we assumed Z to be a compact
I'-invariant subset of ¥ which satisfies the slightly different condition

(Zo) dist(yz,Gz) > u(Gz) forall z€ Z and vy € T~ G.

However, we realized that the compactness assumption for Z can be removed just asking for
condition

(Zo) There exists ag > 1 such that dist(yz,Gz) > aou(Gz) forall z€ Z and vy eI\ G.
Indeed, if (Zp) holds, setting ¢ := (ag — 1)ug(X) > 0, we obtain that

dist(vz,Gz) — u(Gz) > (ap — 1)u(Gz) > ¢ forall z € Z and y € I' \ G.
Moreover, (Zp) yields that 2 > a% > u(Gz). Therefore,

M = p%(Z) = sup u(Gz) < 2.
2€Z
Additionally,
m = pe(Z) = inf W(Gz) = pe() > 0.

The above are precisely the facts that we need in order to prove Proposition 5.1 in [26],
which is fundamental for the proof of Theorem 1.2 in [26].
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A Brezis-Lieb lemma for the nonlocal term
of the energy functional

The main purpose of this section is to prove Proposition A.1 below. It corresponds to a
slight variant of [1, Lemma 3.5| which states a Brezis-Lieb lemma for a large class of nonlocal
functions. We follow the same lines of Ackermann’s proof, the main differences are that we
use Lemma A.6 below instead of [1, Lemma 3.2] and that we are only interested in the
special function

D: H Q) = R, MW=A<1*W@WW

||

and its derivative. Throughout this section we assume that N >3, a« € (0,N), p € [2, 2]]\\,[:20‘)

and Q is an unbounded smooth domain in RY whose complement RV~ is bounded, possibly
empty.

Proposition A.1. Let (u,) be a sequence in HZ(Q) such that u, — u weakly in H}(S).
The following hold:

1. D' (up)v — D' (u)v for all v € HE (D).
2. After passing to a subsequence, we have
D(up) — D(up —u) = D(u) in R,
D (up) — D (up — u) = D' (u) in H Q).

1
In the sequel, for A C RY and u € LI(A), let |ulga := ([, |ul?)? and set |ulg = |u|, .
Also set L9 := LY(RN) and Bg := {z ¢ RV : |z| < R}.

Lemma A.2. Letr,s,q € [1,00) with é = % + % and (uy,) be a bounded sequence in L. If

Up — u in Li . and v € L®, then u,v — wv in LY.

Proof. We may assume without loss of generality that u, — 0 in Lj . Let ¢ > 0. Since
v € L® and s < oo there exists R > 0 such that

[v|s ryv B, < €
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Therefore, from the Holder inequality, taking into account that (|uy|.) is bounded, one has

that
/ lunv|? :/ lupv|? —|—/ |unv|?
RN Br RN Bg

< Junly g VIE+ lunlF0l gr g,
< Chlunl g, + Cag?,

where C; denotes positive constants. Letting n — oo and then ¢ — 0 we reach the conclusion
of this lemma. O

The following lemma has been shown by Ackermann (see |1, Lemma 3.1]).

Lemma A.3. Letr € [1,00) and K € L". Set s := 2311 and let s' be the conjugate exponent
- 1,1 _ 1 0 ¢
for s. If t € [s,00) and p is given by 5 + 3 = W then the bilinear map L® x L* — LV,

sending (u,v) to (K *u)v, is well defined and continuous, with

(K * w)ol, < K xulg ol < |Kpfuls|ol

t
loc

If (up) C L* and (vy,) C L are bounded and either u, — w in L* and v, — v in L
up = uw in L and v, — v in LY, then (K * up)v, — (K xu)v in L.

or

Proof. Throughout this proof C; will denote positive constants. Let u € L® and v € Lt
Since % + % =1+ é, the Young convolution theorem [12, Theorem 4.33] asserts that
K su e L* and

|K s ulg < [K]|r|uls.

From t > s it follows that p > 1. So, the Holder inequality implies
(K s+ w)oly < K * ulg vl < | Kpluls|ol, (A1)

which yields the continuity of the bilinear map (u,v) — (K *u)v.

On the other hand, let (u,) and (v,) be given as in the statement of this lemma. In the
case that u, — w in L?, it may be assumed without loss of generality that v, — 0 in Lfoc.
From (A.1), taking into account that (|v,|¢) is bounded, one has that

(K un )vp|p < [(K * (un — w)only + [(K * u)vn|y
< K r[un — ulslon]e + [(K % w)vnl,
< Colun — uls + |(K * u)vy|,.
Now, since K xu € L¥ and (v,) satisfies the assumptions of Lemma A.2, (K % u)v, —

0 in L*. Therefore,
(K *up)v, — 0 in LF.

In the case that v,, — v in L, again one can assume that u,, — 0 in Lj .. From the Holder
inequality and the fact that |K * u,|s is bounded one has that
[(K % un)vn|p < [(K % un)(0n = 0) |+ [ (K % un)vly
<K s up g |vn, — vl + [(K % up)v|y
< Cslvp, — vl + (K * up)v|,.
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Hence it suffices to show that
(K *xup)v—0 in L¥. (A.2)

First let us see that
K *u, —0 in Lj,. (A.3)

Fix Ry > 0. Since K € L" and r < oo, for any € > 0, there is Ry > 0 such that

| K

rRN\Bp, < €

Put Ky = XBRQK and Ko := K — K (here XBg, denotes the characteristic function of
Bpg,). The following holds:

Kl < [ ([ 1@ -l do
Br RN

1
/

s/BR (/B y \Kl<m—y>un<y>|dy>s dz

< | K|

’ ’
f‘ ‘un‘§7BR1+R2 .

The last inequality follows from [50, Theorem 3.1.], a generalized form of the Young theorem
on convolutions. Since |K3|, < e and (Juy,ls) is bounded, it follows that
|K * un’s’,BRl < |K1 * un‘s’,BRl + |K2 * un|s/,BRl
< |K1|T’un|57BR1+R2 + [ Kolrunls
< C4|un‘s,BR1+R2 + Chse.
Letting n — oo and then € — 0 one gets (A.3) because Ry was arbitrary.

Finally, since v € L and (K * uy,) is a bounded sequence in L® which satisfies (A.3),
Lemma A.2 yields (A.2). O

Lemma A.4. Let A be an open set in RN, Let p > 2 and q € [p —1,00). Setr :=
Then the map f : LI(A) — L"(A) given by f(u) := |u|P~%u is continuous.

q
p—1°

Proof. Let uw € L1(A). We first claim that any sequence (u,) such that u, — w in L?(A) has
a subsequence (uy, ) such that f(uy,) — f(u) in L"(A). Indeed, let (u,) be a sequence in
L%(A) such that u,, — w in LI(A). Lemma A.1 in [59] asserts that, there exist a subsequence
(un,,) of (uy,) and g € LI(A) such that,

Up, > u a.e onA and |up,|, [uf <g ae. onA.
This yields that f(uy,) — f(u) = 0 a.e. on A and
£ ) = FEOI = [t [P, — [ 2u]7T < Olfun |7+ [uf?) < Cg?  ae. on A,

where C denotes different positive constants. Thus, from the Lebesgue dominated conver-
gence theorem we obtain that f(u,,) — f(u) in L"(A).
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The above claim yields that f is continuous at u. Indeed, if there were (u,,) in LI(A) such
that w, — w in LY(A) and f(u,) does not converge to f(u) in L"(A) then it would exist
g0 > 0 and a subsequence (vy,) of (u,) such that

[f(vn) = f(u)lr >0 Yn €N (A.4)

Since v, — u in LI(A), by the first claim, v, would have a subsequence (vy, ) such that
f(vn,) = f(u) in L"(A). It contradicts (A.4). Therefore, f is continuous at u. O

Lemma A.5. Let ¢ > 1 and s € [q,00). Set r := 2. Let f : R — R be a continuously
differentiable function with

|f'(w)| < Clu|Tt for all ueR.
If (un) is a bounded sequence in L*® such that u, — u in Lj ., then
f(un) - f(un - ’LL) - f(u) in L".

Proof. Since for every t € (0, 1) one has that |[tu,+(1—t)(u,—u)| = Jup,—(1—t)u| < |up|+|u|,
the mean value theorem asserts that, almost everywhere on R,

|f (un) = fun = w)| < Cllun| + [ul]?ul.
For R > 0, from the Holder inequality one gets that
|f (un) = f(un =)l mv gy, < Co|lun] + [ull? ull, v g,
< Cl Uun’gil + |u’gil] |U‘S,RN\BR
< Coluls gy Vn e N.

\Br

Here C; denotes positive constants. Since |f(u)| < %|u\q for all u € R, one also has that

‘f(u)‘r,RN\BR < E”U“E,]RN\BR'

Therefore, since |u|s g~ — 0 as R — oo, for € > 0 given, there exists R > 0 such that

~\Br

|fun) = fun —u) = f(u)lmv By < |f(un) = flun — )| rvop, + [f(Wlry By
<e/2. (A.5)

On the other hand, since u,, — wu strongly in L*(Bpg), Lemma A.4 insures that
f(un) = fun —u) = f(u) strongly in L"(Bgr),
i.e. for n sufficiently large one has that
[ (un) = f(un —u) = f(u)lrBy <e/2. (A.6)

Finally, from (A.5) and (A.6) we obtain the conclusion. O
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Lemma A.6. Let ¢ > 2 and s € [¢ — 1,00) Set r:= =5. If (un) is a bounded sequence in

L? such that up, — u in Ly, then
|t |7 20 — g — w|? 2 (up — u) — |u|9%u in L. (A.7)
[ |77 = Jup — w7 — [Tt in L (A.8)

Proof. If ¢ > 2, (A.7) and (A.8) follow from Lemma A.5 taking f(u) := |u|?"2u and f(u) :=
|u|?71, respectively. If ¢ = 2, (A.7) clearly holds, while (A.8) is an easy consequence of the
Lebesgue dominated convergence theorem, since

[ln 771 = Jun = ul T = [l =[] = Jun = ] = Jul |
< (llun| = fun — ul| + ful)”
< (2ful)?

O]

Lemma A.7. Let p > 2 and q € [p,00). Let v € LY. If (uy) is a bounded sequence in L1

such that u, — w in L _, then

|t [P~ 20 — [P 2un  in Lv.
Proof. Set r := p%l and consider the map f : L? — L given by
f(w) == |wP~w.
Lemma A.4 asserts that f is continuous and hence
flun) = f(u) in Li,.

Moreover, (|f(uy)|-) is bounded because (u,) is a bounded sequence in L?. Therefore, from
Lemma A.2
q
flup)v — f(u)v in Lr.

We now have the ingredients to prove Proposition A.1.

Proof of Proposition A.1. First note that

2N — « 2N 2N —a—20\ 2a0 S0 50
N—2 \N-2 ON -2 ) (N —2)(2N — 2) o ‘

Therefore, as p < 21137__2"‘, we can choose 0 € (0, N — «) such that

< (525) () (A9
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Let us set K(x) := ﬁ, r| = NT_‘S and 79 1= NT“";. Write K := K + Ko with K7 € L™ and
Ky € L™, For example, you can take K := XB'rlK and Ko := K — K (here XB, denotes
the characteristic function of By, ).

For i = 1,2, consider D; : H}(Q) — R given by

Difw)i= [ (Ko ul?)

We claim that this map is well defined and continuous. Indeed, setting s; := 23_”11 one has

that 1 < s9 < s1 and then, by (A.9), s;p € (2,2*). One also has the continuous operator

LsP(Q) — L% (Q)
u — JulP.

Continuity of Dj; is then a consequence of continuous Sobolev embedding
Hy () — L*?(Q)

and Lemma A3 witht=s=s;, 7 =1r; and p = 1.
Observe that D} : HE(Q) — H1(Q) is given by

D) =2 | (s o)l

Let (uy) be a sequence in Hg () such that u, — u weakly in H}(Q2). Then u,, is a bounded
sequence in H} () and so in L*P(Q). Moreover, after passing to a subsequence we have

that u,, — u a.e. on Q and u,, — u in L};7(Q).

Let v € H}(Q). Then v € LP(Q2) and by Lemma A.7 with ¢ = s;p,
|t [P 2w — |uP 2w in L5(Q).

We also have

Junl” = |ul?in Ly,

(). (A.10)

Thus, from Lemma A.3 with t = s =s;, r = r; and u = 1, we conclude
D (up)v — D' (u)v  for all v € HE(Q).
Now note that, for every n € N,
Di(ua) = i~ ) = [ (e funl?) ol = [ (0o = ) =
RN RN
=/ (£ (Junl” = [un = uf?)) (Junl” — un — ul?)
RN
2 [l = o = 0l —
RN
Applying Lemma A.6 with ¢ = p+ 1 and s = s;p, we obtain that

|un|P — |Jup — ulP — |u|P  strongly in L% (). (A.11)
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Moreover, since |u, —ulP — 0 € L}!

1.(Q), by Lemma A.3 with t = s =s;, 7 =r; and pp = 1,
we have that

(£ (Junl” = [un = uf?)) (Jun|” = |un — ul?) = (K |[ul?) [ul? in L*
(Ki * (|unl? = |un = ulP)) [up — ulP =0 in L.
Therefore,
D;(un) — Di(up —u) = Di(u) in R.
On the other hand, observe that, for every n € N,

(Ki * [un|?) |un|p_2“n — (K * [up — ul?) [upn, — u|p_2(un —u)
= (K Junl?) (Jun P~ 2un — |un — ufP~?(up — u))

+ (K * (Jun|P — [un — ulP)) Jup — u]p72(un —u).

Applying Lemma A.6 with ¢ = p and s = s;p, we obtain that

S;P
P 2un — [t — ulP "2 (uy — u) = |[ulP~2u  in Le-1(Q).

Moreover, since
;P

[ty — u|p_2(un —u)— 0 in Ll’;l

and (A.10), (A.11) hold, Lemma A.3 with ¢ = ;ipl, r =r; and u = (s;p)’ (the conjugate
exponent for s;p), yields

(i ) (21, = it = 0”2 = w) = (K [ a2 i L ()

(K * (Junl? — |un — ulP)) Jun — wfP~2(uy — u) = 0 in LEP)(Q).
Therefore,
(K # [ P) [un ™1 — (B # Jun — lP) Jun — ulP ™2 (up — 1) = (K * [ul?) [ulP"u
in L) (Q), and from the continuous embedding L&P)' (Q) — H~1(Q), we deduce that
D (up) — D (uy, — u) — Di(u) in H Q).

Finally, since D(u) = Dq(u) + Da(u) and D' (u) = D) (u) + Djy(u), the conclusion of this
lemma follows. O
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Appendix

Proot of Proposition 2.2

This appendix is devoted to the proof of Proposition 2.2, namely

Proposition B.1. Ifp > 2, the functional

1 1
Jolu) = 3 lulfy — 5-D(w)

is of class C? and
1
Ju(u)v = (u,v)y, — / ( * \u|p> |ul|P~2uw.
o \ |z
We shall split the proof of Proposition 2.2 in the proof of some claims.
Claim 1. The functional
YiH(Q) =R, () = [lul?,

s of class C™,
Y (u)v = 2{u,v), P (u) (v, w) = 2{v, w),
and Y =0 for all k > 3.

Proof of claim 1. Let u,v € H}(2). From
lu+ tol|* = [lul® + 2t{u, v) + o],

we obtain

woll2 — w2
Jigg e ol = Jlul® _ 2, )
t—0 t

and, since the function v — (u,v) is linear and continuous, we conclude that 1) is Gateaux

differentiable and v/ (u)v = 2(u,v) for all v € H}(Q). Notice that

W Hp(Q) = HTHQ), () = 2(u, )
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is a linear map. From

¢ (u)v

=2[(u, v)| < 2[ullljv]| = 2[jull if [jv]| =1,
it follows that

1% (W)l g-1(0) = sup. ¥ (wo] < 2llull  Vu € Hy(€).

Ivl

Therefore, 7' : HE(Q) — H~1(2) is continuous, and so ¢ is of class C1. As 1’ is linear and
continuous, we have that v is of class C2, ¢ (u) = ¢’ and that ¢)*) = 0 for all k > 3. This
concludes the proof. O

Claim 2. If p > 2, the functional

D: H)(Q) = R, D(u):/ <|1|Q*IUI”) ul?,

is Gateauz differentiable and

1
D' (u)v = 2p/ (Ha * |u]p> lulP"2uv Yo € HL(Q).
Proof of claim 2. Let u,v € H}(). Set r = 2]%]Xa. Since pr € (2,%), one has that
u,v € LP(Q).
For each z € Q, consider the function f : [—1,1] — R given by

£(t) = <‘ 1|a |u+tvp> () + to(@)].
This function is of class C' and its derivative is given by
1) = <‘ 1|a s plu+ toP=2(u + to)o > (@) + to(z)
+ <| 1|a lu + tv\p> plu(z) + to(z) P2 (u(z) + tv(z))v(zx).

By the mean value theorem, for each 0 < |t| < 1, there exists s, € (0, 1) such that

OO s,

Therefore, since

| f/ (set !<p<|1

L Pl y(2)| =: h(z
+p<’ B (IU|+|U)>(IU($)I+IU(96)|) [v(z)| =: h(z),

* (Jul + |o])P~ 1!v|> (lu(@)] + [o()])”



B. Proof of Proposition 2.2 73

we obtain

(e * o+ o) (@) + to(@)P = (e + P ) [u(@) P
t

< h(zx).

Since & + 2 = 2 and |u + tv[P € L" for all t € [—1,1], the Hardy-Littlewood-Sobolev
inequality (2.4) guarantees that

(ﬁ * |u+ tv|p> |u + toP — (ﬁ * |u\p> |ulP
t

e L'(Q) forall0< |t| <1.

Moreover, since (|Ju| + |v])P~! € L7 1 and lv| € LP"(Q)), by the Holder inequality, (|u| +
|v])P~tv| € L"(£2). Therefore, by the Hardy-Littlewood-Sobolev inequality (2.4), h € LY(Q).
Finally, since, for each x € ), f is differentiable in t = 0, we have that

(B x ok ) Ju(e) + @) — (e b ) [u(@)P

t—0 t

—p (== a2 ) [u(@)P +p %*IU\” Ju(@) [P~ *u(z)v(z).
||

Ed

Thus, by the Lebesgue dominated convergence theorem, we obtain

lim 280 =D(w) /Q <|xl’a \ |uyp—2uv> () Pdae

t—0 t

o [ () @) uta)ote)is

1
= 2p/ < * ]u\p> lulP~2uw.
o \|z[®

Now, for each u € H}(f2), the function T : H}(Q2) — R, given by

1
Tv := 2p/ ( * |u\p> |ulP~?uw
o \|z[*

is clearly linear. Furthermore, observe that |u[P~2uv € L"(Q)) and so, by the Hardy-
Littlewood-Sobolev inequality (2.4) and the Holder inequality, we obtain

|| < 2pClJul?|, | |ulfP~*uv],

)
< 20Cluly (ue2lulrlolr

-2
< QPC‘U|57J~F1’UV}TT2|U‘W7

where C'is a positive constant. This proves that 7' is continuous. Consequently, D is Gateaux

differentiable and .
]D)’uv:2p/ (* up> ulP~2u. O
o =2 [ (sl ) ul
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Let u € LP"(Q). The Holder inequality asserts that |u|P~2u € L%(Q) Moreover, since
%—i—%:l—kﬁ,then

1
—wful? ) € LY (@),
||
cf.[39, Section 4.3(9)]. Hence, if ¢ is given by o =5+ ppT , the Holder inequality insures

that the map

® D@ 5 L), 8w = (o <l ) a2,

is well defined.
Now, if X,Y are Banach spaces, we denote by
B(X,Y):={T: X — Y : T is linear and continuous}.

Recall that this is a Banach space under the norm

I1Tgx,y) == sup ||Tz|y.
llz|| x =1

Consider the map
L: L) — B(LP"(Q2),R), U Ly,

L, (v) ::/uv.
Q
2Np

Since ¢ = SNp—aNTa > 1 and % + pir = 1, we can deduce that L is a linear isometry (see for
example [12, "Theorem 4.11)).
The map D' : H}(2) — H~1(Q) is obtained as

D' =2p(Lo®oy),

where L, is given by

where ¢ : H}(Q) < LP"(Q) is the continuous Sobolev embedding. Therefore, to see that D
is of class C!, it suffices to show the following claim.

Claim 3. If p > 2, ® is continuous.

Proof. Let u € LP"(§2). We first assert that any sequence (uy,) such that u, — u in LP"(Q)
has a subsequence (uy, ) such that ®(u,,) — ®(u) in LI(Q). Indeed, let (u,) be a sequence
in LP"(Q2) such that u, — w in LP"(Q2). Lemma A.1 in [59] insures the existence of a
subsequence (up, ) of (u,) and g € LP"(§2) such that,

Up, = u ae onf) and |u,l, |ul <g ae on Q.

This yields that ®(uy,, ) — ®(u) — 0 a.e. on Q and

_ 1 _
Bty ) \(, g \unkr)wna 2y <||a*|u|f’) uP~2u
1 _
(  Juny 7 )|unk\p1 (, - ru\p) P!
(H ) Lo 1 a.e. on Q
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Since the map in the right-hand side of this inequality belongs to L4(f2), the Lebesgue
dominated convergence theorem in L? guarantees that ®(uy,) — ®(u) in LI(Q).

The above assertion yields that ® is continuous at w. Indeed, if there were (uy,) in LP"(Q)
such that u, — u in LP"(Q2) and ®(u,,) does not converge to ®(u) in LI(2) then it would
exist 9 > 0 and a subsequence (vy,) of (uy) such that

|®(vn) — P(u)|g >0 VneN. (B.1)

Since v, — w in LP"(Q2), by the first assertion, v,, would have a subsequence (vy, ) such that
O (vy,) = ®(u) in LI(Q). It contradicts (B.1). Therefore, ® is continuous at . O

Finally, since D = 2p(L o ® o ¢) and L, are of class C* (because they are linear and
continuous), in order to see that I is of class C2, it suffices to show the following claim.

Claim 4. If p > 2, ® is of class C! and its derivative ®'(u) : LP" () — L9(Q) is given by

1 1
&' (u)v =p (|$|a * ]u|p_2uv> luP~%u + (p — 1) ( * |u|p> |u|P~2v.

||

Proof. Let u,v € LP"(Q). For each = € Q, consider the function f:[—1,1] — R given by

£(t) = (:L»<ht+-m4p>\u<x>—%tv<x>w2<u<x>—+tv<x>»

||

This function is of class C' and its derivative is given by

f'(t) = (1 s plu + toP~2 (u + tv)v> lu(z) + to(z) P2 (u(z) + tv(z))

Ed

+ (1 * |u + tv]p) (p — D|u(x) + to(x)[P~2v(x).

[
Set
Tv:=p (;‘a * |u|p_2uv> |ulP~2u + (p — 1) <’$1‘a * u|p> u|P~2v.
From
SIUES (O

we can deduce that
O(u+tv) — ®(u)
t
On the other hand, by the mean value theorem, for each 0 < |¢| < 1, there exists s, € (0,1)

such that
‘f (t) — £(0) ‘
t

—Tv aein{) ast— 0.

= |f'(sat)]-

Therefore, since
\f@ﬂﬂép<;@*WA+WW1@0(W@H+W@mpl
+@—n(1MmummﬁummwwmmWquﬂ:hmx

Eds
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we obtain
D(u+tv) — P(u)

; <h a.ein .

Notice that h € L(€2). Thus, by the Lebesgue dominated convergence theorem in L9, we

obtain that
O(u+tv) — P(u)

t

—Tv in LY(Q) ast—0.

Accordingly,
lim O(u+tv) — P(u)
t—0 t

=Tv forall ve L (Q).

Now, for each u € H{ (), the function T is clearly linear. Moreover, the Holder inequality,
together with [39, Section 4.3(9)|, implies

_ 1
Toly < p| rg * P uw o+l

P~ e +(p—1)
2N p—1

1
_ p—2
’ma o 10y
< pCh [[ulP?uv|, Hu|p71‘£l + (p— 1)Ca|[[ul”], \IUV’*%\%

p— p—
< pCilulby  wlprlubt + (p — 1)Calulb, [ulh (0]
= (pC1 + (p — 1)Co) [ul 227> v pr-

where C; are positive constants. Thus, T is continuous. This proves that ® is Gateaux
differentiable and that

1 1
& (u)v =p <|xa * |u|p_2uv> |u|p_2u +(pp-1) ( * |up> |u|p_2v.

||
Arguing in a similar way as in the proof of Claim 3, we can conclude that
' LPT(Q2) — B(LP"(2), L1(£2))
is continuous. U

Proof of Proposition B.1. The statement of this proposition is an immediate consequence of
the above claims. O



Appendix

The genus of an orbit space

In Theorems 1.1, 1.2, 1.4 and 1.6, the number of solutions is given in terms of the genus of
the orbit space Z/G. We shall give estimates for it in terms of the I'-genus of Z.

Let us recall the notion of I'-genus, see [6] for further details. Let I" be a compact Lie
group. The join of the I'-spaces X1, ..., X,, is the space

m
Xy %% X, = {[sl,:zrl,...,sm,a:m] 18, €00,1], dYosi=1, x; € Xi}
i=1
where [s1,21,...,8m, Tm] = [t1,Y1,- -, tm, ym] if, for each i = 1,...,m, either s; = t; and
x; =y; or s; = t; = 0. This is again a I'-space with the action

g[slyxl) .. wsmuxm] = [Slagxla .- '7Sm7gl‘m]'

The I'-genus of a nonempty I'-space X is the smallest m € N such that there exist closed
subgroups I'y, ..., 'y, of I' with I'; # I' and a continuous I'-equivariant map

f: X =>T/Ty*--xT/T,

ie. f(gr) =gf(z) for all x € X, g € T. We denote it by I'-genus(X). If no such map exists
we set ['-genus(X) := oo.

If ' =7Z/2 then Z/2  --- % Z/2 = S™! with the action given by multiplication, so that
the Z/2-genus is just the Krasnoselskii genus.

Let " and A be compact Lie groups, ¢ : I' — A be a continuous epimorphism, K := ker ¢
and X a I'-space. Then A acts on the orbit space X/K as follows: for each x € X, g € A
and some v € I" such that ¢(y) = g we define

g- Kz = K(yz). (B.1)

This action is well defined because K is a normal subgroup of I'. The quotient map ¢ : X —
X/K satisfies that q(yx) = ¢(7) - q(x) for any v € I, z € X. The following result holds:

Lemma C.1. T'-genus(X) = A-genus(X/K).
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Proof. Let Ay, ..., Ay, be closed subgroups of A, A; # A, and let
f:X/K — AJAyx---x AJA,

be a continuous A-equivariant map. We define I'; := {y € I' : ¢() € A;}. Then ¢ induces
homeomorphisms ¢; : I'/T; — A/A; that satisfy ¢;(7[;) = ¢(y)A;, which in turn induce an
homeomorphism

Grk- kP T/T1 % xT/Tp, — AJAy - x A Ay,
defined in the obvious way. The map F' : X — I'/T'y *--- x I'/T'y, given by
Fi=(¢1#%¢m) 'ofoq
is continuous and I'-equivariant. Hence,
I-genus(X) < A-genus(X/K).
Conversely, let T'y, ..., T, be closed subgroups of ', T'; # T, and let
F:X—>T/Ty*---«T/T),

be a continuous I'-equivariant map. We define A; := ¢(I[';) and set ¢1 * - - - * ¢y, as above.
Observe that (¢1 * --- * ¢,) o F is continuous and constant on ¢~ '(Kz) for each z € X.
Hence, it induces a map

[:X/K—A/Arx---xA/Ay,

which is continuous and A-equivariant. Therefore,

A-genus(X/K) < I'-genus(X). O

Let us look at an example. Let I' be the subgroup of O(4n) spanned by p and ~y, where
p(y, 2) = (€™/My, e™/M2), Ay, 2) = (-77), V(y2z) €C"xC"=R",

z = (z1,...,2n) and Zz; is the conjugate of z;. Note that p is of order 2m, ~y is of order 4,
p™ = ~2% and vp = p~!4. Let us consider the homomorphism ¢ : I' — Z/2 given by ¢(p) = 1
and ¢(y) = —1. Then G := ker ¢ is the cyclic subgroup spanned by p. The following holds:

Proposition C.2. (a) genus(S*"~1/G) > 2n + 1.
(b) If m >3, then there exists ag > 1 such that dist(yx, Gx) > aou(Gx) for all x € S,

Proof. (a) Let us consider the cyclic subgroup of order 4 of I spanned by v and denote it

by Z/4. The kernel of the restriction of ¢ to Z/4 is the group K = {1,7?}. Lemma C.1,
together with Theorem 1.2 of [5], yields

1
genus(S" 1/ K) = Z/4-genus(S™ 1) > 2n + 7
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As K C G the quotient map S*~!'/K — §*~1/G is well defined and is Z/2-equivariant
for the action defined in (B.1). Therefore,

genus(S* /@) > genus(S™!/K).

Combining both inequalities one obtains the assertion.

(b) Note that vz - p/z = 0 and, consequently, |yz — p7x| = /2 for any z € S"°1, j =
1,...,2m. On the other hand, u(Gz) = ’em/m — 1’ < /2 if m > 3. Hence, taking ag > 1
such that ag }e’”/ m_ 1} < /2, we get the conclusion. ]
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