

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DEL MAR Y LIMNOLOGÍA

GEOLOGÍA MARINA

SEDIMENTOLOGÍA DE UN NÚCLEO DE SEDIMENTOS DE MAR PROFUNDO RECOLECTADO AL NORTE DE LA ISLA CLARIÓN, COLIMA, MÉXICO

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN CIENCIAS

PRESENTA:

BIÓL. JOAQUÍN RODRIGO MARTÍNEZ CORREA

TUTOR:

DR. ARTURO CARRANZA EDWARDS, INSTITUTO DE CIENCIAS DEL MAR Y LIMNOLOGÍA

COMITÉ TUTORAL:

DR. RAYMUNDO MARTÍNEZ SERRANO, INSTITUTO DE GEOLOGÍA

DR. ARMSTRONG ALTRIN JOHN SAM SELVAMONY, INSTITUTO DE CIENCIAS DEL MAR Y LIMNOLOGÍA

DR. JUAN JOSÉ KASPER ZUBILLAGA, INSTITUTO DE CIENCIAS DEL MAR Y LIMNOLOGÍA

DR. LIBERTO DE PABLO, GALÁN INSTITUTO DE GEOLOGÍA

DR. JAIME URRUTIA FUCUGAUCHI, INSTITUTO DE GEOFÍSICA

MÉXICO, D.F., DICIEMBRE DE 2012

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DEDICATORIA

A todas las personas que han tocado mi vida de distintas formas, ya que sin ellas, no sería posible esto como es, ni yo como soy.

Quiero dedicar esta tesis al amor de mis abuelos, de mis padres, de mi hermana, de mi novia y de toda mi familia en general. Dedicarla también a la fuerza y sensibilidad de mamá y papá para seguirme alentando a mejorar día con día y por brindarme todos los recursos espirituales, físicos e intelectuales; a las bromas y amor de mi hermana Moni; al amor incondicional y eterno de mi Circe, el cual es recíproco; a la lealtad de mis amigos, que saben ellos son como hermanos; a la gente que ha aplaudido mis éxitos conmigo; a la disciplina y conocimientos que me han inculcado mis maestros; a los consejos de tanta gente.

Y les quiero decir que este proyecto no es solo mío, es la suma de todos, es el orgulloso resultado del trabajo de ustedes, que han tocado mi vida de tantas maneras. Ahora es momento de agradecerles y hacerles este pequeño homenaje a todos ustedes.

Gracias!

Tato.

AGRADECIMIENTOS

Agradezco al Instituto de Ciencias del Mar y Limnología de la Universidad Nacional Autónoma de México por formarme académicamente y moldearme como persona, también a las autoridades del Posgrado de Ciencias del Mar y Limnología por educarme en el nivel de maestría, del mismo modo agradezco al CONACyT por brindarme la beca para cursar mis estudios de maestría, asimismo al PAPIIT por su apoyo a través del proyecto IN105710, titulado: "Investigación sobre el origen de nódulos polimetálicos y la composición de sedimentos asociados en el Pacífico mexicano". Igualmente agradezco a todas las personas que me han apoyado moral y económicamente y que contribuyeron a la culminación de esta tesis, aunque su nombre no aparezca, les agradezco su apoyo.

Quiero reconocer sinceramente al Dr. Arturo Carranza Edwards por haberme aceptado como alumno de maestría y no haber escatimado en tiempo, recursos ni esfuerzo para asesorarme y colaborar para la elaboración de esta tesis. Extiendo estos agradecimientos a los miembros de mi comité tutoral: Dr. Raymundo Martínez Serrano, Dr. Juan José Kasper Zubillaga Dr. Liberto de Pablo Galán, Dr. Armstrong Altrin John Sam Selvamony y Dr. Jaime Urrutia Fucugauchi, debido a que sus valiosos consejos y conocimientos han dado forma a esta tesis.

Reconozco con gratitud a las siguientes personas ya que su colaboración fue trascendental para el desarrollo de esta tesis: al M. en C. Eduardo Morales de la Garza por la realización de los análisis granulométricos en el analizador láser de partículas aparte de brindarme su apoyo en el desarrollo de la tesis; al Sr. Ricardo Martínez Domínguez por su apoyo incondicional en el laboratorio de sedimentología del Instituto de Ciencias del Mar y Limnología; a la Dra. Leticia Rosales Hoz y a la Q.F.B. Susana Santiago Pérez por la facilitación de las instalaciones del laboratorio de Química Acuática del ICML; a la Dra. Ligia Pérez Cruz de la Nucleoteca del Instituto de Geofísica de la UNAM por enseñarme y ayudarme a medir la susceptibilidad magnética del núcleo de sedimentos; a la Quim. Patricia Girón García del laboratorio de fluorescencia de rayos x del LUGIS (Laboratorio Universitario de Geoquímica Isotópica) de la UNAM por los análisis realizados al sedimento para conocer los elementos mayores y traza; a la M en C. Elena Lounejeva Baturina por auxiliarme en analizar las Tierras Raras del sedimento en el laboratorio de ICPMS del LUGIs de la UNAM; a la Dra. Teresa Pi Puig por la determinación de la mineralogía en muestra total

y arcillas del sedimento en el laboratorio de Difracción de rayos X del Instituto de Geología de la UNAM; al Ing. Carlos Linares López del Laboratorio Universitario de Petrografía por brindarme su asesoría y analizar las muestras en la microsonda; al Sr. Agustín Rodríguez por la preparación de las láminas delgadas.

ÍNDICE

RESUMEN	1
ABSTRACT	2
1. INTRODUCCIÓN	3
1.1. Localización del área de estudio	4
1.2. Hipótesis	6
1.3. Objetivo general	7
1.3.1 Objetivos específicos	7
2. ANTECEDENTES	8
2.1 Generalidades	11
3. MATERIALES Y MÉTODOS	16
3.1. Campo	16
3.2. Laboratorio	16
3.2.1. Susceptibilidad magnética	18
3.2.2. Color	19
3.2.3. Parámetros texturales	20

3.2.4. Elementos mayores y traza, Tierras Raras, mineralogía de muestra total y de arcillas	22
Preparación mecánica de las muestras de sedimentos	22
3.2.5. Láminas delgadas	25
3.2.6. Petrografía	25
4. RESULTADOS Y DISCUSIÓN	27
4.1. Granulometría	27
4.2. Susceptibilidad magnética	34
4.3. Composición de los sedimentos	35
4.3.1. Color	35
4.3.2. Petrografía	36
Microsonda	39
4.3.3. Mineralogía por DRX en muestra total y arcillas	41
4.3.4. Geoquímica	46

Elementos mayores	46
Elementos traza	70
Tierras Raras	73
5. CONCLUSIONES	77
6. BIBLIOGRAFÍA	80
7. ANEXOS	85
7.1. Anexo 1	86
7.2. Anexo 2	91
7.3. Anexo 3	101

RESUMEN

Se recolectó un núcleo de sedimentos de 234 cm de largo a 194 km al norte de la Isla Clarión y se caracterizó sedimentológicamente. Se encontró que los sedimentos del núcleo fueron de color pardo, lo que sugirió condiciones oxidantes del medio. La susceptibilidad magnética indicó el horizonte donde la fracción metalífera tuvo su mayor porcentaje en el nivel 160 cm, además de que mostró los horizontes donde hubo mayor porcentaje de óxidos de hierro, manganeso, cobre, cobalto y níquel. El análisis granulométrico mostró la presencia de limos, arcillas y arenas (en orden de abundancia de mayor a menor), con mala clasificación y su comportamiento general fue como el de los sedimentos terrígenos. Esto es, mejor clasificación en las fracciones finas. Dicho comportamiento no se observó del nivel 141 al 160 cm. El sedimento se clasificó como limo arcilloso. La petrografía en la fracción arenosa mostró un dominio de biógenos en los primeros 48 centímetros, después disminuyeron hasta no encontrarse en las láminas delgadas de niveles más profundos. En total hubo mayor cantidad de líticos volcánicos, seguido de minerales pesados, vidrio volcánico, biógenos y feldespatos.

En la mineralogía por DRX de la muestra total se identificaron por orden de abundancia de mayor a menor: cuarzo, plagioclasa, halita, ópalo, barita, hematita y filosilicatos. En estos filosilicatos se encontró illita como fracción dominante en el nivel de 0 a 1 cm, en los niveles 98 a 99 y 232 a 233 cm interestratificados de illita-esmectita.

La procedencia del sedimento sugirió influencia de rocas máficas ígneas. El valor de Al/Ti (24.42) indicó la posible presencia de terrígenos. Las muestras del núcleo de sedimentos estuvieron constituidas por mezclas de sedimentos de origen volcánico con terrígenos pelágicos, con estos últimos como componente mayoritario. Cuando se compararon los elementos mayores del sedimento con los de las rocas circundantes se vio que el promedio de las muestras es parecido al de una traquita granular y a una traquiandesita de la Isla Clarión. El contenido de sílice no biogénica en el sedimento fue de 90.1% y el de ópalo de 7.5%. El núcleo de sedimentos de acuerdo con los valores encontrados en arcillas pelágicas del Pacífico tuvo mayor aporte de sedimentos terrígenos (92% promedio). El mayor porcentaje de terrígenos ocurrió de los centímetros 79 al 99 que fueron los niveles donde hubo mayor porcentaje de arenas. El sedimento también contuvo excesos de SiO₂, Fe₂O₃, MnO, CaO, Na₂O, K₂O y P₂O₅ con respecto a las arcillas pelágicas del Pacífico. La mayor parte del exceso de Fe₂O₃ se encontró en fase hidrotermal, y la mayor parte de MnO estuvo en fase hidrogénica (tal vez por la presencia de micronódulos de ferromanganeso). En los niveles 125, 145, 160 y 232 se encontraron los mayores porcentajes de fracción hidrogénica y metalífera por lo que se infirió que ocurrieron eventos volcánicos o de influencia hidrotermal que influyeron más que en otros niveles. Cuando se comparó la cantidad de Ba en el sedimento con la cantidad que hay las arcillas pelágicas del Pacífico se notó que es mucho mayor por lo que probablemente este elemento sea de origen hidrotermal. Las anomalías negativas de Ce en Tierras Raras indicaron que existió vulcanismo marino así como óxidos de ferromanganeso de origen hidrotermal y que existió cercanía con una zona de expansión del piso marino.

Palabras clave: Océano Pacífico Mexicano, Zona Económica Exclusiva, Núcleo de sedimentos pelágicos, terrígenos, biógenos, autígenos, Isla Clarión.

ABSTRACT

It was collected a sediment core 234 cm length at 194 km north of Clarion Island and sedimentologically characterized. It was found that the sediments are brown, suggesting oxidizing conditions. The magnetic susceptibility indicated the horizon where the metalliferous fraction had its greatest percentage in the 160 cm level, besides showing the horizons where there were a greater percentage of oxides of iron, manganese, copper, cobalt and nickel. The particle size distribution showed the presence of silt, clay and sand (in order of highest to lowest abundance), with misclassification and his general behavior was like that of terrigenous sediments. This is better classification as the size is smaller, this behavior was not observed at level of 141 to 160 cm, the sediment is classified as silty clay. The petrography in the sandy fraction, by thin section, showed a predominance of biogenic in the first 48 centimeters, then diminished to be not found in the bottom core. There were dominant volcanic lithics, followed by heavy minerals, volcanic glass, biogenic and feldspars. In mineralogy by XRD of the total sample were identified from highest to lowest abundance: quartz, plagioclase, halite, opal, barite, hematite and phyllosilicates. In these phyllosilicates, illite was found to dominate the level of 0 to 1 cm, at the levels from 98 to 99 and 232 to 233 cm interstratified illite-smectite. The provenance of the sediment resulted in mafic igneous. The ratio of Al/Ti (24.42) indicated the presence of terrigenous. The sediment core samples were found to be mixtures of volcanic and terrigenous pelagic sediments, with the latter as a major component. When comparing the major elements of the sediment with the surrounding rocks, the average of the samples is similar to a granular trachyte and a trachyandesite of Clarion Island. The non-biogenic silica content in sediment was 90.1% and 7.5% opal. The sediment core according to the values found in Pacific pelagic clays was more terrigenous contribution (92% average). The highest percentage of terrigenous occurred 79 to 99 with a higher percentage of sand. The sediments also contained SiO₂, Fe₂O₃, MnO, CaO, Na₂O, K₂O and P₂O₅ in excess compared to the Pacific pelagic clays. Most of the excess Fe₂O₃ was found in hydrothermal phase, and most of MnO was hydrogenous phase (perhaps by the presence of ferromanganese micronodules). At levels 125, 145, 160 and 232 showed higher percentages of metalliferous and hydrogenous fraction that suggest events with volcanic or hydrothermal influence that affected more than in other levels. When comparing the amount of Ba in the sediment with the quantity to Pacific pelagic clays was noted to be much higher due probably by hydrothermal origin. Negative Ce anomalies in rare earth indicated that existed marine volcanism as well as ferromanganese oxides of hydrothermal origin and that there was an area close to the sea floor expansion.

Key words: Mexican Pacific Ocean, Exclusive Economic Zone, pelagics sediment core, terrigenous, biogenics, authigenics, Clarion Island.

1. INTRODUCCIÓN

México es un país con una extensa línea de costa, lo que implica que su zona económica exclusiva (ZEE) sea muy grande. Esto significa que México podría aprovechar los distintos recursos en dicha zona, por lo que es de gran relevancia conocer el origen, la cantidad, además de la disponibilidad de estos recursos para su potencial aprovechamiento.

La presente tesis de Maestría forma parte del proyecto PAPIIT IN105710 "Investigación sobre el origen de nódulos polimetálicos y la composición de sedimentos asociados en el Pacífico mexicano" cuyo objetivo es caracterizar un núcleo de sedimentos pelágicos recolectado en el mar profundo al Norte de la Isla Clarión, en el archipiélago Revillagigedo. Esta área es de gran importancia pues, al ampliar la zona económica exclusiva de México, hace que exista mayor potencial de aprovechamiento de recursos marinos, clave para el desarrollo político y económico del país (Llinas-Gutiérrez *et al.*, 1993; Ortega *et al.*, 1992).

En el océano hay diversos recursos que pueden ser aprovechados, entre los que se encuentran arenas de placer mineral, materias primas para la construcción, fosforitas, sulfuros y nódulos polimetálicos (Carranza-Edwards, 1985). Los minerales que se encuentran en el continente tienden a agotarse o son insuficientes, además es muy raro encontrar nuevos yacimientos, por esto los minerales del piso oceánico adquieren mayor relevancia como materiales aprovechables (Carranza-Edwards y Rosales-Hoz, 1994).

Los sedimentos de la región están constituidos principalmente por arcillas pelágicas y detritos volcánicos (Carranza-Edwards y Aguayo-Camargo, 1992). En estos sedimentos se han encontrado nódulos polimetálicos (materia prima potencial de interés estratégico) con texturas lisas y granulares así como formas ovoides, elipsoides, lenticulares y geoidales (Carranza-Edwards *et al.*, 1987).

Es importante estudiar el sedimento asociado con los nódulos polimetálicos para conocer el origen de los mismos para un posible aprovechamiento. La presente tesis de maestría se suma a las investigaciones del sedimento del fondo oceánico. Es por esto de interés hacer una descripción precisa del sedimento del área para reconocer sus variaciones en la columna sedimentaria.

1.1. Localización del área de estudio

El área de estudio se encuentra en el Océano Pacífico Oriental a 194 km al Norte de la Isla Clarión dentro de la Zona Económica Exclusiva de México. El núcleo fue recolectado en las coordenadas 19° 59'24'' N y 114° 59'24'' O, a una profundidad de 3729 m (Figuras. 1 y 2).

Figura 1. Área de estudio (Tomada de Google Earth, 2012). El punto N4 indica la posición de donde se extrajo el núcleo de sedimentos de esta tesis.

5

Limnología

Figura 2. Ubicación del núcleo 4 dentro de la Zona Económica Exclusiva (ZEE) de México. El círculo rojo representa la Isla Clarión.

El sitio de recolecta se localiza al Oeste de la dorsal del Pacífico oriental (530 km aproximadamente), al Noreste del monte submarino Shimada (400 km aproximadamente) y cerca de la Fractura Clarión (Figura 1). De acuerdo con Lugo-Hubp (1985) en la cercanía del área de estudio se encuentran las siguientes morfoestructuras:

- a) Dorsal del Pacífico Oriental al Este.
- b) laderas y superficies de meseta con montañas de más de 1000 m de altura.
- c) Planicies abisales con lomeríos y montañas.
- d) Planicie abisal ondulada con lomeríos (Figura 3).

En las Figuras 1, 2 y 3 se observa que la zona de recolecta del núcleo se encuentra cerca de la fractura Clarión, la cual es una fosa alargada y profunda con montañas volcánicas en sus márgenes, entre las cuales emergen las del archipiélago Revillagigedo.

Figura 3. Morfoestructuras del fondo oceánico (Tomado de Ramírez-Argáez (1987) con modificaciones de Lugo Hubp, (1985)). El círculo negro representa la localidad del núcleo.

1.2. Hipótesis

Si la zona dónde se obtuvo el núcleo de sedimentos está rodeada por montes submarinos formados como resultado de la actividad volcánica o existe una fractura de donde emerge magma de la corteza oceánica, entonces los sedimentos estarán conformados por cenizas volcánicas así como líticos volcánicos, entre otros materiales característicos de dichas formaciones.

1.3. Objetivo General

Determinar las características sedimentológicas y geoquímicas de un núcleo recolectado en el Pacífico mexicano, con el fin de proponer un modelo de la sedimentación en la zona cercana a la Isla Clarión.

1.3.1 Objetivos Específicos

- 1) Analizar los parámetros texturales y de susceptibilidad magnética de los sedimentos para determinar las posibles variaciones dentro del núcleo.
- Realizar el análisis composicional de sedimentos, para identificar los procesos más relevantes que los constituyen.
- A partir de los estudios texturales, petrográficos y geoquímicos, integrar la información para evaluar la influencia terrígena, biogénica y autigénica de los sedimentos pelágicos.

2. ANTECEDENTES

En 1873, al suroeste de la Isla de Ferro en las Islas Canarias, fueron recolectados por primera vez nódulos polimetálicos en el viaje del H.M.S. *Challenger* (Glasby, 1977).

Boström y Peterson (1969) mencionaron que los sedimentos pelágicos de los flancos de las crestas oceánicas activas deberían ser mezclas de depósitos de ferromanganeso y sedimentos producto del intemperismo continental.

Boström *et al.* (1969) mostraron la naturaleza terrígena del Ti y del Al cuando la proporción Al/Ti es cercana a 20, ya que dicha cifra fue la proporción encontrada en el promedio de rocas continentales; mientras que la relación de Al/Ti es de 5 para el promedio de los productos del intemperismo de rocas oceánicas.

Posteriormente en 1970 Boström estudió el vulcanismo como fuente de hierro de sedimentos cercanos al área de estudio de la presente tesis y descubrió que el porcentaje de Fe en el sedimento era de 4 a 8%. La tasa de sedimentación general de la zona es de 10 a 30 mm/1000 años, mientras que la tasa de sedimentación de Fe es de 5 a 10 mg/cm² por cada 1,000 años. Este autor mencionó que en los flancos de las dorsales oceánicas activas, los sedimentos depositados deberían ser una mezcla de materiales de ferromanganeso y productos del intemperismo de rocas continentales o insulares. También concluyó que la erosión submarina de material basáltico es una fuente secundaria de sedimentos.

Durante los sondeos del Deep Sea Drilling Project en 1971 se obtuvieron catorce núcleos (sitio 159) a una profundidad de 4484 metros, de una sola perforación. Este sitio se encuentra entre la zona de fracturas Clipperton y Clarión. De los 0 a 18 metros de profundidad del núcleo se obtuvieron arcillas pelágicas ligeramente silíceas, de un color de naranja grisáceo a pardo amarillento, a partir de los 9 metros se encontraron radiolarios del Cuaternario con una menor proporción de diatomeas y una pequeña concentración de feldespatos, vidrio volcánico y palagonita, además de contener muchos óxidos de ferromanganeso dispersos (Van Andel *et al.*, 1973).

Bischoff y Rosenbauer (1976) estudiaron los sedimentos recolectados en la región C del proyecto Deep Ocean Mining Enviromental Study (DOMES). Esta región se encuentra al sur de la fractura Clarión donde ellos supusieron que existía actividad hidrotermal

relacionada con la fractura. En su trabajo concluyeron que los sedimentos eran metalíferos y que presentaron propiedades físicas, contenido de agua, mineralogía y composición química similares a los de la cuenca Bauer, que se ubica al Noroeste de la Placa de Nazca y que contiene nódulos de manganeso enriquecidos en Ni y Cu (Lyle y Dymond, 1977).

Rao (1986) estudió la mineralogía del sedimento asociado con nódulos polimetálicos de la cuenca oceánica índica y encontró que éste tenía radiolarios además de ser rico en montmorillonita, clorita e illita.

Ramírez-Argáez (1987) hizo un análisis composicional y granulométrico de los sedimentos superficiales así como de núcleos de sedimentos cercanos al área de estudio. Así pudo establecer las posibles fuentes de aporte de los sedimentos: actividad biológica del plancton y la actividad volcánica.

Lozano-Santa Cruz *et al.* (1988), estudiaron la distribución de minerales arcillosos de los sedimentos del Pacífico Central Mexicano y establecieron que la distribución de la montmorillonita se asocia con el vulcanismo (Dorsal del Pacífico Oriental e Islas Revillagigedo) mientras que las illitas se asocian con zonas de menor influencia volcánica básica.

En 1989 Dean *et al.* analizaron los parámetros físicos y químicos del sedimento localizado en los alrededores del volcán Shimada para determinar su influencia. Ellos concluyeron que había en la arcilla pelágica cerca de 77% de material detrítico terrígeno típico de la arcilla pelágica del Pacífico. Dicho sedimento mostró excesos de Fe₂O₃, SiO₂, MgO y CaO con respecto al promedio de la arcilla pelágica del Pacífico (APP). Además, encontraron exceso de Mn en la fracción metalífera pero más en la fracción hidrogénica (micronódulos de ferromanganeso). De acuerdo con ellos, la mayor parte de la sílice biogénica se convirtió por medio de diagénesis en esmectita.

Toyoda y Masuda (1990) analizaron la composición química de 140 muestras de sedimento de mar profundo recolectados en el océano Pacífico. Sus observaciones en arcillas rojas sugirieron que la proporción de Al/Ti y la concentración de Fe podrían ser buenas indicadoras de la contribución de detritos de rocas máficas. La fracción hidrogénica en los sedimentos se caracterizaba por tener altas concentraciones de Co y

Mn y bajas de V. Así mismo consideraron que el contenido de Mn podría estar influido por la productividad primaria de las aguas superficiales.

Márquez-García (1990) realizó un análisis de la textura y mineralogía de sedimentos asociados con nódulos polimetálicos en el Pacífico mexicano. Encontró que la composición de los sedimentos era de tres tipos: volcánicos (arcillas, pómez y otros detritos), biogénicos (silíceo y calcáreo) y autígenos (óxidos).

Toyoda *et al.* (1990) describieron las características y la composición de las Tierras Raras del sedimento pelágico del Pacífico. Así encontraron que en latitudes bajas, el cerio mostraba anomalías negativas, mientras que en latitudes altas las anomalías eran positivas. Estas anomalías positivas en las arcillas rojas se asociaron con la incorporación preferencial del Ce del agua de mar al sedimento. Los sedimentos pelágicos con anomalías negativas de Ce mostraron enriquecimiento en Tierras Raras pesadas y fósforo, pero estaban empobrecidas en Tierras Raras ligeras con respecto al patrón de Tierras Raras de lutita. Ellos concluyeron que las anomalías negativas de Ce se encontraban próximas a las crestas activas y además cerca del Pacífico ecuatorial, y que tales anomalías estaban relacionadas con la actividad hidrotermal de centros de expansión del piso marino. Por otro lado, Usui *et al.* (1997) estudiaron las microchimeneas que encontraron enterradas en sedimentos pelágicos de la región del Pacífico central. Sus patrones de Tierras Raras mostraban que eran similares a otros depósitos marinos de Mn hidrotermales de baja temperatura, esto es bajas concentraciones de Tierras Raras y una fuerte anomalía de Ce.

Durante la campaña oceanográfica MIMAR II, denominada así porque es acrónimo de "minerales del mar", efectuada por el B/O El Puma se recolectaron muestras de nódulos cercanos a la Isla Clarión, estas muestras fueron recolectadas con nucleadores de caja. En ellas se realizaron análisis a los nódulos polimetálicos superficiales y sepultados. Encontraron que la relación Mn/Fe resultó mayor en los nódulos sepultados, lo que parecía indicar que durante el sepultamiento se producen procesos diagenéticos enriquecedores de manganeso a través de las aguas intersticiales (Carranza-Edwards y Rosales-Hoz, 1994).

Carranza-Edwards y Rosales-Hoz (2003) realizaron un estudio al suroeste de México e identificaron la región más importante de nódulos polimetálicos ubicada entre la Fractura Clarión y la Fractura Clipperton, al Suroeste de la Isla Clarión, en una zona llamada por ellos Depresión MIMAR.

2.1. Generalidades

Los sedimentos marinos son muy variables, ya que son producto del intemperismo y erosión de los continentes y plataformas, así como de la acumulación de materia orgánica, sales precipitadas de la columna de agua y eventos volcánicos (Seibold y Berger, 1993). Estos sedimentos se pueden clasificar por su origen en: litógenos, biógenos, autígenos y cosmogénicos.

Existe un tipo especial de alteración que ocurre en las dorsales oceánicas y otras formaciones volcánicas jóvenes en el océano; pues las reacciones del agua marina caliente con el basalto pueden aportar grandes cantidades de material al agua marina y después al sedimento. Sin embargo aún se desconoce como puede darse este aporte (Seibold y Berger, 1993).

Los sedimentos litógenos son los productos detríticos de la desintegración de rocas prexistentes y de eyecciones volcánicas. Éstos entran al océano como partículas, se dispersan y asientan en el fondo marino. Son transportados por el viento, por ríos, por corrientes marinas, etc. Se nombran con base en su tamaño: gravas, arenas, limos o arcillas y también por sus componentes litológicos: terrígenos, calcáreos, volcanogénicos, entre otros. También se clasifican en función de su estructura sedimentaria y color (Kennett, 1982).

Los sedimentos volcanogénicos son resultado de la actividad volcánica y pueden tener los siguientes orígenes:

a) Sedimentos marinos piroclásticos, formados por la explosión de volcanes y transportados hacia el fondo del océano.

b) Sedimentos epiclásticos, son aquellos fragmentos retrabajados que proceden de la erosión de rocas volcánicas submarinas y de depósitos piroclásticos prexistentes.

c) Sedimentos resultantes de la erupción de volcanes submarinos.

d) Sedimentos autígenos, resultado de actividad hidrotermal.

Los sedimentos transportados por el viento se conocen como loess. Estos sedimentos deben ser finos para que el viento sea un medio efectivo para su transporte. Bonatti y Arrhenius (1965) documentaron el importante transporte eólico de polvo del desierto de Sonora hacia el Océano Pacífico, al observar nubes de polvo procedentes del Este. Estos autores analizaron los cuarzos transportados eólicamente y encontraron que estaban barnizados por una capa de oxi-hidróxidos de hierro-aluminio conocida como "barniz de desierto".

Kasper-Zubillaga y Faustinos-Morales (2007), realizaron un análisis en microscopio electrónico de barrido (MEB o SEM por sus siglas en inglés) de granos de cuarzo encontrados en el desierto del Altar y encontraron que los efectos de la abrasión mecánica o química se ven reflejados en la textura superficial del mineral. También mencionaron una serie de características superficiales relacionadas con la acción mecánica como son: fracturas concoidales, superficies lisas, formas en *V* de origen mecánico, así como las curvas o estrías lineales y que se relacionaron con el transporte eólico y marino de diferentes energías.

Con respecto a los sedimentos transportados eólicamente, Leinen *et al.* (1986) estudiaron la distribución de la sílice biogénica y del cuarzo en los sedimentos recientes de mar profundo y concluyeron que el cuarzo del sedimento pelágico depositado lejos del continente, es generalmente de origen eólico. Su distribución reflejó los sistemas dominantes de viento en el Pacífico. Sin embargo en el Atlántico y en el Índico los patrones de distribución estaban fuertemente modificados por turbiditas y procesos de corrientes de fondo.

Las arcillas son los minerales terrígenos con mayor distribución en los sedimentos del mar profundo. Están compuestas por hidrosilicatos de aluminio y algunas se forman como productos del intemperismo de minerales de sílice y otras son minerales primarios muy finos como la mica, cuarzo, feldespato y piroxeno. Las arcillas rojas o pardas son parte de los sedimentos pelágicos que se forman por la lenta acumulación de materiales en zonas muy profundas (4000 m). El color es debido al recubrimiento de óxidos de hierro poco cristalino en las partículas del sedimento. Dichas arcillas pueden ser

transportadas por el viento y frecuentemente contienen ceniza volcánica, dientes y huesos de peces, y micronódulos de manganeso (Kennett, 1982).

De acuerdo con Kennet (1982) las arcillas pueden contener clorita, caolinita, illita y esmectita (montmorillonita). La clorita puede considerarse como un mineral arcilloso primario producto del metamorfismo o hidrotermalismo. Este mineral es inestable y se encuentra donde la erosión es principalmente mecánica más que química. Se ha identificado en latitudes altas donde los procesos erosivos físicos son más importantes que los químicos.

El grupo de la illita se utiliza para referirse a los minerales micáceos de la arcilla y se diferencian de las micas porque tienen más agua, el potasio en parte es sustituido por el calcio y contienen menos silicio sustituido por aluminio (Klein y Hurlburt, 1997). Este grupo de minerales es abundante y son considerados en su mayoría como minerales primarios más que productos de recristalización por intemperismo. Su abundancia en el hemisferio sur varía de 20 a 50 % en el sedimento, mientras que en el hemisferio norte generalmente hay un 50%, lo que refleja el aporte continental (Kennett, 1982).

La caolinita se produce por alteración hidrotermal de alumino-silicatos, en particular de feldespatos (Klein y Hurlburt, 1997). Tiene una distribución latitudinal, donde la abundancia en zonas tropicales es diez veces mayor que en las polares. La presencia y cantidad de este mineral manifiesta la intensidad de procesos de formación del piso en las áreas de origen, por tal motivo en las áreas polares donde la formación del piso es lenta debido a la falta de intemperismo químico, las cantidades de caolinita en el sedimento son muy bajas. La parte oriental del Pacífico muestra pequeñas concentraciones de caolinita quizá por la ausencia de un área fuente en la costa occidental de América (Kennett, 1982).

La esmectita (montmorillonita) es un producto de alteración de materiales volcánicos en los océanos y continentes. Es el mineral de arcilla dominante en la bentonita, que es una ceniza volcánica alterada (Klein y Hurlburt, 1997). Es común en zonas de baja sedimentación, cercanas a fuentes de materiales volcánicos, donde se forma a partir de cenizas volcánicas transportadas eólicamente, como por alteración de vidrio basáltico en el piso oceánico (Kennett, 1982).Todas las arcillas oceánicas son detríticas, con

excepción de la esmectita, que es transportada directamente de fuentes continentales y no se precipitan en los océanos.

Los sedimentos biógenos son los remanentes de organismos, principalmente formados por carbonatos, silicatos y fosfatos de calcio. La nomenclatura se basa en el tipo de organismo y en la composición química, pero otras clasificaciones tienen en cuenta la estructura, color, tamaño y materiales accesorios (Seibold y Berger, 1993). Kennet (1982) mencionó que a pesar de que los organismos marinos son diversos sólo algunos de ellos tienen partes duras capaces de adicionarse a los sedimentos. Además sólo algunos producen especímenes en cantidades suficientes para formar los tipos de sedimentos mayores.

Los sedimentos autígenos son aquellos que están compuestos por minerales formados *in situ* en el fondo oceánico. Se forman en su mayoría al precipitarse lentamente minerales de la columna de agua. Sobre el fondo marino del Pacífico, son comunes los nódulos polimetálicos que están compuestos por manganeso, hierro, níquel, cobre y cobalto, de importancia económica por su valor estratégico. Los nódulos están envueltos en capas concéntricas alrededor de un núcleo que puede ser algún biógeno u otra partícula. (Kennett, 1982; Carranza-Edwards y Rosales-Hoz, 1994).

Los procesos de erosión e intemperismo en los continentes provocan que el manganeso sea transportado al océano muy probablemente en formas amorfas de vernadita criptocristalina así como de manganita (Stumm y Giovanoli, 1976). El tamaño de las partículas seguramente no pasa de algunos Angstroms por lo que son fácilmente transportadas por las corrientes marinas a ambientes de depositación lejanos a los continentes (Burns y Burns, 1979).En las cercanías del fondo marino con actividad volcánica e hidrotermal ocurre la acreción rápida de óxidos de ferromanganeso (Burns y Burns, 1979). Los depósitos de estos óxidos se han formado por la interacción entre los fluidos hidrotermales y el agua marina óxica. En cuanto al hierro y al manganeso, son resultado probable de la infiltración del agua marina a través de basaltos fracturados del piso oceánico donde se calientan y son extraídos de las rocas volcánicas.

Además de los sedimentos anteriores, existen los cosmogénicos. Sobre la atmósfera terrestre caen continuamente micrometeoritos que forman una fracción insignificante de sedimentos de mar profundo, éstos son distintos de los sedimentos terrígenos y son

conspicuos cuando están en sedimentos de mar profundo, cuando la tasa de sedimentación es muy baja, particularmente en arcillas pardas. Estos micrometeoritos son llamados microtektitas, que son pequeños cuerpos vítreos de 30 µm a 1mm de diámetro, de distintas formas: ovoides, de gota, de mancuerna y de varios colores, pero dominan los pardos amarillentos a pardos. En su superficie vítrea exhiben varias características desde tersa a rugosa, pero la mayoría tersa presenta cavidades someras. Estas microtektitas han sido encontradas cerca de tres áreas de tektitas conocidas: Australasia, Costa de Marfil y Norte América (Kennett, 1982).

3. MATERIALES Y MÉTODOS

3.1. Trabajo de campo

A bordo del Buque Oceanográfico El Puma de la UNAM (Figura 4) se llevó a cabo la campaña oceanográfica MIMAR VI, del 12 al 24 de Febrero de 2009. Se muestrearon quince estaciones alrededor de la Isla Clarión. Se recuperaron catorce muestras completas, once con el nucleador de caja y tres con el nucleador de gravedad. La estación No. 4 fue donde se obtuvo el núcleo de sedimentos de esta tesis con nucleador de gravedad. Este núcleo tuvo una longitud de 234 cm. Posterior a su extracción el núcleo fue refrigerado a 4°C.

Figura 4. Buque oceanográfico El Puma (Tomada de http://www.buques.unam.mx/).

3.2. Laboratorio

El núcleo de sedimentos se cortó a la mitad longitudinalmente en el laboratorio de sedimentología del Instituto de Ciencias del Mar y Limnología (ICMyL) de la UNAM. A una parte se le midió la susceptibilidad magnética y posteriormente se dividió por

centímetro para los análisis de parámetros texturales, petrografía y análisis de arcillas. La otra parte sólo se dividió por centímetro para determinar las concentraciones de elementos mayores y traza incluidas las Tierras Raras, y determinar la mineralogía de materiales finos por difracción de rayos X (Figura 5).

Figura 5. Núcleo N4 de sedimentos, cortado de manera longitudinal. Se puede apreciar el color en fresco del sedimento. Cabe señalar que no había variaciones en el color aunque aquí se observen por causa de la luz.

3.2.1. Susceptibilidad magnética

Para caracterizar al sedimento se utilizó, entre otros, la susceptibilidad magnética, que es una medida de la concentración y tipo de minerales magnéticos presentes en una muestra (Thompson *et al.*, 1975). En la naturaleza la susceptibilidad magnética de los sedimentos refleja la presencia de diversos minerales portadores de hierro. La medición de la susceptibilidad magnética se efectuó en la nucleoteca de la UNAM, se midió cada medio centímetro con un susceptibilímetro de tipo Magnetic Susceptibility Meter MS2E High Resolution Surface Scanning Sensor de la marca Bartington con el sensor MS2E, utilizado para exploración de superficie de alta resolución. Éste mide variaciones de la susceptibilidad magnética a muy pequeña escala (Figura 6).

Antes de medir la susceptibilidad magnética del núcleo, se cubrió el sedimento del mismo con una película de plástico, después se marcó cada 0.5 cm la longitud total del núcleo (234 cm). Posteriormente, se calibró el susceptibilímetro para obtener datos correctos y que no tuviera ruido eléctrico que pudiera interferir con las mediciones. Una vez calibrado se comenzaron a tomar las mediciones a cada 0.5 cm, es decir 468 mediciones, las cuales se repitieron 3 veces cada centímetro para obtener un promedio de las mediciones y disminuir el error, en total fueron 1404 mediciones a lo largo del núcleo. En el Anexo I se muestran las tablas con relación a las mediciones obtenidas de susceptibilidad magnética.

Figura 6. Medición de la susceptibilidad magnética de los sedimentos a cada 0.5 cm.

3.2.2. Color

El color es un importante atributo en la descripción de los sedimentos, el método más objetivo para determinar el color es con una tabla estándar de color como la publicada por la Geological Society of America, basada en el sistema de tablas de color de Münsell. Para determinar el color, el primer paso es identificar el tono del sedimento, hay 10 tonos mayores, cada uno dividido en 10 compartimentos. Después de esto se selecciona un valor del 1 al 9, el 1 es el más oscuro y el 9 el más claro (Figura 7). También, se selecciona un croma que es el grado de saturación del color. Estos son valores dados desde el 0, donde no hay saturación de color, hasta el 6 donde están los colores más vivos, por ejemplo un color puede ser representado por un código como 10YR 4/6 denominado pardo oscuro amarillento (Tucker, 1988).

20

Figura 7. Arreglo del sistema de color de Münsell (modificado de Tucker, 1988).

La medición del color se realizó cada centímetro a lo largo del núcleo; en dos fases: medición de color en fresco y en seco. La primera constó de colocar sobre una charola de porcelana un poco de sedimento y con la tabla de Münsell obtener el color, en la segunda fase después de colocar el sedimento en la charola se puso a secar a temperatura ambiente, una vez seca la muestra con la tabla se obtuvo el color en seco.

La tabla con los nombres de los colores y sus respectivos códigos se muestran en el anexo II.

3.2.3. Parámetros texturales

Las muestras de sedimentos tomadas a cada centímetro del núcleo fueron enviadas al analizador láser de partículas del ICMyL para obtener los parámetros texturales. El equipo utilizado fue un *LS 230 Beckman Coulter*, que funciona con el principio de difracción láser y que midió la distribución de tamaño de partículas.

Principio de funcionamiento del analizador laser de partículas LS 230 Beckman Coulter. La muestra se coloca en el módulo de fluido y circula a través de una celda a velocidad constante. El rayo láser brilla a través de la celda y es difractado por las

partículas de la muestra y la luz dispersada o difractada es recolectada por una serie de detectores. La distribución de la luz obtenida en los sensores permite que la distribución de tamaños de la muestra sea calculada. Este método posibilita la medición de tamaños de partícula entre 0,4 μ m y 2000 μ m (11 ϕ a -1 ϕ).

Los parámetros texturales que se consideraron fueron: tamaño gráfico promedio, desviación estándar gráfica inclusiva, asimetría gráfica y curtósis gráfica.

El tamaño gráfico promedio (Mz ϕ) se refiere al tamaño promedio del grano en una muestra y está en función del rango de tamaño de los materiales presentes y de la cantidad de energía suministrada al sedimento. Esta depende de la velocidad de corriente o turbulencia según sea el medio de transporte. El tamaño gráfico promedio está en escala de ϕ en donde cada unidad es múltiplo de 2, entonces una categoría es el doble de la anterior o la mitad de la siguiente (Davis y Fitzgerald, 2004).

Los sedimentos generalmente llegan a ser más finos en la dirección del transporte como resultado de la clasificación selectiva que indica que los granos más finos avanzan más que los gruesos en la dirección corriente abajo. También, cabe precisar que los sedimentos terrígenos son más finos en cuanto la energía disminuye (Folk, 1980).

La desviación estándar gráfica inclusiva ($\sigma_I \phi$) o clasificación se refiere a la homogeneidad o heterogeneidad del tamaño de los granos en una muestra. Entre más homogénea sea la muestra, mejor clasificación tendrá. La clasificación depende de cuatro factores importantes:

1) El rango de tamaños del material aportado hacia el ambiente.

2) El tipo de dispersión o depósito de los granos. Si una corriente actúa continuamente sobre los sedimentos estos tendrán una mejor clasificación que si no tuvieran la influencia continua de una corriente.

3) Características de la corriente. Corrientes constantes resultarán en una mejor clasificación del sedimento que los que estén sometidos a corrientes intermitentes, corrientes muy fuertes o muy débiles tampoco clasificarán bien a los sedimentos. Existe una velocidad óptima para clasificar bien a los sedimentos, es decir los sedimentos se clasificarán mejor si están sujetos a una corriente constante y de velocidad media.

4) El ritmo de aporte de detritos comparado con la eficacia del agente clasificador (Folk, 1980).

La asimetría gráfica es una medida sin unidades relativa a la asimetría de una curva. Si esta es positiva, entonces representa aquellas muestras con mayor cantidad de material fino mientras que la asimetría negativa representa las muestras con mayor cantidad de material grueso (Folk, 1980).

La curtósis gráfica es un acercamiento al valor medio de la curva y es una medida sin unidades. Cuando una curva unimodal presenta una zona horizontal en el máximo se denomina platicúrtica; si presenta un pico muy agudo es leptocúrtica y si es similar a la normal entonces es mesocúrtica (Turner, 1970; Folk, 1980).

3.2.4 Elementos mayores y traza, Tierras Raras, mineralogía de muestra total y de arcillas

Químicamente el sedimento está compuesto por elementos mayores y traza. Los elementos mayores son los elementos que predominan en cualquier análisis de rocas y son Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K y P. Son los elementos formadores de minerales debido a sus altas concentraciones (Rollinson, 1993); mientras que los elementos traza se definen como aquellos elementos que están presentes en concentraciones menores a 0.1% ó 1000 ppm (Rollinson, 1993).

Preparación mecánica de las muestras de sedimentos

Las muestras se prepararon de la siguiente manera para ser analizadas: se seleccionaron 20 muestras las cuales, se colocaron en una estufa de secado durante dos semanas a una temperatura de 40° C; posteriormente se pulverizaron en un molino mecánico y se tamizaron para obtener partículas con un tamaño menor a las 200 mallas. Se utilizaron 5g de cada una de las veinte muestras pulverizadas para el análisis por fluorescencia de rayos x (FRX) en la obtención de elementos mayores y traza; 5g para el análisis por ICPMS de Tierras Raras y 5g para el análisis mineralógico por difracción de rayos x (DRX).

Fluorescencia de rayos X

Para identificar elementos mayores y algunos traza, uno de los métodos más populares es la fluorescencia de rayos x (FRX), el cual es versátil ya que puede analizar hasta 80

elementos en una amplia gama de sensibilidad. Puede detectar desde concentraciones del 100% en peso a mínimas de ppm (partes por millón).

El método de FRX funciona de manera que un haz de rayos x se hace incidir sobre la muestra, lo que produce rayos X secundarios, cuyas longitudes de onda son características de cada uno de los elementos presentes en la muestra. La intensidad de los rayos X secundarios se utiliza para conocer las concentraciones de los elementos (Rollinson, 1993). Las concentraciones de los elementos mayores y algunos traza fueron determinadas en el Laboratorio Universitario de Geoquímica Isotópica (LUGIs) del Instituto de Geología, UNAM, el cual cuenta con un equipo de fluorescencia de rayos x, marca *Siemens*.

ICP-MS

Para medir las Tierras Raras (REE por sus siglas en inglés) se utilizó la espectrometría de masas con plasma inductivamente acoplado (ICP-MS). Esta técnica tiene un bajo límite de detección así como buena precisión y exactitud, por lo cual es utilizada para análisis isotópicos al igual que elementos traza. De acuerdo con Rollinson (1993) los iones son extraídos desde el plasma a través de un pequeño orificio hacia un sistema de bombeo por vacío y guiados hacia el espectrómetro de masas que identifica los elementos químicos. La obtención de las Tierras Raras se efectuó en el laboratorio de ICPMS del Instituto de Geología de la UNAM.

Difracción de rayos X

En la identificación de minerales aparte de conocer sus componentes químicos se debe conocer su estructura cristalina. La estructura de un material cristalino, como los minerales, consiste en un arreglo periódico, tridimensional ordenado de átomos, así como del tamaño y forma de las celdas unitarias. Las dimensiones típicas de estas celdas van desde unos angstroms hasta algunas decenas de angstroms; esto es comparable en magnitud con las longitudes de onda típicas de los rayos X, por lo tanto cuando un haz de rayos X incide en un cristal, los rayos X se difractan y dan lugar a un patrón de difracción único para cada mineral (Kennett, 1982). Este es el principio básico de la difracción de rayos X (DRX), un método para identificar distintas fases minerales.

Los análisis por difracción de rayos X se llevaron a cabo en el laboratorio de Difracción de rayos X, del Instituto de Geología, UNAM. Los difractogramas se obtuvieron en un Difractómetro Shimadzu XRD-6000 equipado con filtro de Ni, tubo de cobre y monocromador, cuyas condiciones analíticas se muestran en la Tabla 1. Todas las muestras totales (20 en total) se homogenizaron mediante un mortero de ágata y posteriormente se analizaron mediante un portamuestras de aluminio en el intervalo angular 20 de 4° a 70° y velocidades de 1°/minuto.

Tabla 1. Condiciones instrumentales de medición para la DRX utilizadas para identificación de fases en muestra total.

Tubo de Rayos X	Cátodo de Cu y foco fino
	40Kv
	30mA
Ventanas o slits	"Divergency slit": 1°
	"Scatter slit": 1°
	"Receiving slit" : 0.30 mm
Medición	Rango de medición 4-70°
	Modo de escaneo: continuo
	Velocidad de escaneo: 1°/minuto

Para la DRX de arcillas sólo se analizaron 3 muestras: la más superficial (0-1), una media (98-99) y la más profunda (233-234), debido a que la mineralogía de muestra total fue similar en todas.

- El procedimiento para preparar y analizar las muestras fue el siguiente:
- i. Separación de la fracción arcilla (<2micras)

Se separó la fracción < 2 micras y según la metodología que a continuación se describe:

- a) Las muestras se dispersaron y homogenizaron en agua destilada durante 24h
- b) Se decantó la fracción fina.
- c) Se centrifugó la fracción fina a 6000 rpm.
- d) Se recuperó la fracción fina.

e) Se prepararon tres agregados orientados para cada muestra en portamuestras de vidrio.

f) Se dejaron secar a temperatura ambiente (24h aprox.).

g) Se comprobó por pesada que los agregados orientados tuvieran más de 2.5mg/ cm^2 de muestra.

ii. Medición por DRX

De cada muestra se analizaron tres fracciones orientadas por DRX: una fracción sin tratamiento, una fracción tratada con etilenglicol y una fracción calentada a 450° y 550°C. Los resultados obtenidos se presentan más adelante.

3.2.5. Láminas delgadas

Cada una de las 20 muestras escogidas se colocaron en un vaso de precipitados, se les agregó 300 ml de agua destilada, se agitó la muestra y se tamizó a 4 ϕ y así se obtuvo la fracción arenosa de las muestras. El sobrante se guardó para su posterior análisis ya que contenía arcillas y limos. Las arenas recolectadas en el tamiz fueron enviadas para la preparación de láminas delgadas de tipo petrográfico.

3.2.6. Petrografía

Se realizó la descripción petrográfica de veinte láminas delgadas en un microscopio petrográfico del laboratorio de sedimentología del ICMyL. Se utilizó el método de Basu (1976) para la petrografía. Así, se emplearon ocho campos para clasificar los componentes de la fracción arenosa: radiolarios, diatomeas (biógenos), micronódulos (autígenos), cuarzo, feldespato, líticos volcánicos, vidrio y minerales pesados (terrígenos). Para obtener la abundancia modal de los componentes en cada lámina delgada se contaron trescientos puntos con la finalidad de tener datos estadísticamente significativos.

Adicionalmente a la petrografía, se utilizó una microsonda electrónica Jeol JXA-8900R WD/ED COMBINED MICROANALYSER con espectrómetro de energía dispersada de rayos X, del Laboratorio Universitario de Petrografía de la UNAM, para confirmar la presencia de micronódulos de Mn, así como identificar otros óxidos. Se estimaron

cualitativamente los elementos de ciertos componentes de las láminas delgadas 14-15 y 98-99.

4. RESULTADOS Y DISCUSIÓN

4.1. Granulometría

Los análisis texturales hechos al sedimento del núcleo a cada centímetro, mostraron que su curtósis fue platicúrtica, el sedimento es asimétrico hacia los finos y su tamaño gráfico promedio varía de 5.9 a 7.8 ϕ (lo que son tamaños de grano muy finos). La clasificación varía en un rango de 1.6 a 2.1 ϕ , es decir es una mala clasificación. Dicho en otras palabras, el sedimento es heterogéneo en cuanto a tamaño de partícula (Figura 8).

Figura 8. Clasificación vs. tamaño gráfico promedio en unidades phi ø.

En la Figura 9, se graficaron estos dos parámetros texturales (clasificación y tamaño gráfico promedio) a cada 20 cm para observar con mayor resolución el comportamiento de los mismos a lo largo del núcleo.

29

Limnologi

Figura 9. Clasificación $\sigma I\phi$ vs. tamaño gráfico promedio Mz ϕ para cada 20 cm del núcleo N4.

En casi todas las gráficas, con excepción del tramo correspondiente a los cm 141 a 160, se observa una proporción negativa, es decir tiende el sedimento hacia una mejor clasificación cuando existen tamaños más finos, lo que parece un comportamiento similar al de terrígenos. Es probable que los puntos más dispersos y que no muestran tal tendencia correspondan con biógenos y autígenos. Quizá en el intervalo correspondiente al tramo 141 - 160 cm, el aporte mayor no sea de tipo terrígeno.

Dentro de los análisis de parámetros texturales, también se obtuvieron los porcentajes de arenas, limos y arcillas a lo largo del núcleo. En la Figura 10, se puede observar que predominan los limos, le siguen las arcillas y existe un pequeño porcentaje de arenas.

Figura 10. Porcentajes de arena, limos y arcillas a lo largo del nucleo de sedimentos. En azul las arenas, en rojo los limos y en verde las arcillas.

En la Figura 11 se muestra el porcentaje de arcillas en los niveles del núcleo de sedimentos. Se observa que en los niveles 86 a 87 cm está el porcentaje más bajo de arcillas, con 17.27% y el más alto está en los niveles 7 a 8 cm con 46.11% .

En cuanto a los porcentajes de limos, el punto donde abundan más estos es en el cm 89 a 90 cm con 74.99% y el nivel donde hay menor porcentaje de limos es el 7 a 8 cm con 53.88% (Figura 12).

Con respecto a las arenas se observa que en los niveles 90 a 91 cm se presenta la mayor cantidad de arenas con 17.02% de arenas pero en los centímetros 7 a 8 y 8 a 9 no hay arenas (Figura 13).

Figura 11. Porcentajes de arcilla en las 234 muestras de sedimento.

Figura 12. Porcentajes de limos en las 234 muestras del núcleo de sedimentos.

Figura 13. Porcentajes de arena en las 234 muestras del núcleo de sedimento.

Se utilizaron los triángulos de Folk (1970) y Shepard (1954) para caracterizar al sedimento. Se encontró que para el triángulo de Folk el sedimento del núcleo entra en tres campos: limo en su mayor proporción, después lodo y pocas muestras cayeron en limo arenoso (Figura 14). Por otra parte en el triángulo de Shepard el sedimento cayó en el campo de limo arcilloso (Figura 15).

Figura 14. Triángulo de Folk (1970). Los sedimentos del núcleo en 3 campos.

Figura 15. Triángulo de Shepard (1954). Los sedimentos caen en un solo grupo textural.

34

Figura 16. Susceptibilidad magnética y parámetros texturales vs. profundidad del núcleo.

4.2. Susceptibilidad Magnética

La medición de la susceptibilidad magnética resultó con una tendencia al incremento de la misma conforme aumentaba la profundidad del núcleo; lo cual indicó que la mayor concentración de materiales ferromagnéticos aumenta con la profundidad del núcleo de sedimentos, específicamente en el centímetro 157 (Figura 17).

SI

Figura 17. Gráfica de susceptibilidad magnética obtenida a lo largo del núcleo.

En el intervalo de 1.5 a 2.0 cm se observa el pico más bajo de susceptibilidad con un valor de 25.43 de mientras que en el intervalo de 157 a 157.5 cm se tiene el valor mayor de 48,5 SI. Los picos más altos se relacionan con la gran concentración de minerales pesados, como se pudo observar en la petrografía.

4.3. Composición de los sedimentos

4.3.1. Color del sedimento

La prueba de color con la tabla de Münsell en fresco y seco (Anexo 2) mostró que los colores dominantes en fresco fueron los pardos oscuros amarillentos y que hubo pocos pardos oscuros. En seco, los colores fueron variables desde pardo, pardo pálido, pardo amarillento, pardo muy pálido y pardo oscuro. En ambas fases de medición de color (en fresco y en seco) no hay gran variación. Esto sugiere que la composición global del núcleo es homogénea. Dicha coloración también sugiere que las condiciones del

ambiente de depósito son oxidantes porque el color pardo se debe al recubrimiento de óxidos de hierro poco cristalino en las partículas del sedimento.

4.3.2. Petrografía

La descripción petrográfica de las 20 láminas delgadas preparadas de la fracción arenosa del núcleo se resume en la tabla 2 y Figura 18.

	3		0 /	0 1	U			0	
Lámina	% Rad	% Diat	% Micro	% Cz	% Feld	% LV	% v	% M. p.	% Total
0-1	33	15	0	1	6	17	0	29	100
14-15	33	13	4	2	3	29	4	12	100
27-28	5	0	0	0	1	80	6	7	100
37-38	9	0	3	1	5	64	5	13	100
48-49	16	1	5	2	4	45	18	9	100
61-62	9	0	0	1	4	66	6	15	100
67-68	5	0	0	1	5	45	18	26	100
79-80	7	0	0	0	4	32	37	21	100
90-91	4	0	0	0	2	26	53	13	100
98-99	6	0	0	0	1	21	54	17	100
111-112	1	0	0	0	1	40	3	55	100
125-126	0	0	0	0	1	53	0	47	100
145-146	1	0	0	0	7	57	1	34	100
160-161	0	0	0	0	6	46	3	44	100
172-173	0	0	0	0	4	60	0	36	100
186-187	0	0	0	0	0	71	0	28	100
207-208	0	0	0	1	3	51	2	43	100
219-220	0	0	0	0	4	57	0	39	100
229-230	0	0	0	0	4	60	0	37	100
232-233	0	0	0	0	3	56	1	41	100
Promedio	6	1	1	0	3	49	11	28	100
Desv. Estandar	10	4	2	1	2	17	17	14	0
Max	33	15	5	2	7	80	54	55	100
Min	0	0	0	0	0	17	0	7	100

Tabla 2. Porcentaje modal de biógenos, autígenos y terrígenos en 20 láminas delgadas.

Las láminas corresponden con los intervalos en centímetros. Rad= radiolarios, Diat= diatomeas, Micro= micronódulos, Cz= cuarzo, Feld= feldespatos, LV= líticos volcánicos, v= vidrio, M.p.= minerales pesados

Figura 18. Porcentaje de biógenos, terrígenos y autígenos a lo largo del núcleo de sedimentos en la fracción arenosa.

En la Figura 19 se puede observar que en las láminas delgadas la abundancia de biógenos fue mayor en las muestras más superficiales al igual que el tamaño de los granos fue más grande que en las inferiores donde al poner nicoles cruzados se observaron más diluidos y en menor cantidad.

Figura 19. Láminas delgadas. Fotomicrografías donde se observa la proporción de biógenos, terrígenos y autígenos. A= Lámina 14-15; A1= 14-15 con nicoles cruzados; B= Lámina 98-99; B1= 98-99 con nicoles cruzados; C= Lámina 111-112; C1= 111-112 con nicoles cruzados.

Como se puede apreciar en la Figura 18, hubo una mayor cantidad de líticos volcánicos, seguido de minerales pesados, vidrio volcánico, biógenos y feldespatos. Esto, aunado al comportamiento del tamaño gráfico promedio y la desviación gráfica inclusiva

Limnologi

(clasificación), confirman la presencia dominante de terrígenos (volcánicos) cuando menos en la fracción arenosa.

Los biógenos son más abundantes en los primeros niveles del núcleo debido a que se han depositado recientemente y no han sido destruidos por el peso del sedimento sobre yaciente. Los biógenos en su mayoría fueron radiolarios espumelarios y diatomeas centrales, mientras que hacia niveles inferiores del núcleo se encontraron fragmentos de radiolarios espumelarios y de espículas principalmente y algunos fragmentos de diatomeas centrales. Todos los biógenos son silíceos debido a que la zona de compensación de carbonatos debe estar más somera y por lo tanto los biógenos carbonatados se disolvieron antes de llegar al piso oceánico.

Los autígenos observados en la fracción arenosa están representados por micronódulos que se localizaron en 3 láminas delgadas ubicadas en la parte menos profunda del núcleo. Posiblemente a profundidad existan condiciones menos favorables para la formación de micronódulos que requieren de un ambiente oxidante. Se halló una proporción mayor de vidrio volcánico en tres muestras: 79 a 80, 90 a 91 y 98 a 99 cm. En esas muestras se encontró la mayor cantidad de arenas. La mayor proporción de minerales pesados se observó desde 111 cm hasta 208 cm.

Microsonda Electrónica

Algunos componentes de las láminas delgadas 14-15 y 98-99 fueron analizados cualitativamente en una microsonda. En la lámina 14-15 (Figura 20) se encontró para el biógeno, al parecer una diatomea central localizada con el número 1, una composición de SiO₂ con FeO y Al₂O₃. Probablemente el biógeno con alguna arcilla y óxido de Fe. Con el No. 2 se identificó un mineral compuesto en su mayoría por MnO y poco SiO₂, probablemente se trate de un micronódulo de manganeso que comenzó a formar una acreción quizá sobre un biógeno o sobre un cuarzo. El No. 3 mostró una composición muy similar al No. 2 con lo que se confirma la gran cantidad de MnO en el sedimento. Se identificó con el No.4 una partícula compuesta de cloro, SiO₂ y CaO. En la Figura 21 se identificó de nuevo la presencia de óxidos de manganeso (No. 5), poca cantidad de NiO y SiO₂. En la microsonda se pudo observar un núcleo de SiO₂ en este grano, probablemente un microfósil.

Figura 20. Imagen de la lámina 14-15 con biógenos, autígenos y óxidos (ver texto para explicación).

Figura 21. Imagen de micronódulo de manganeso con núcleo de sílice.

La microsonda electrónica mostró que la lámina delgada 98-99 contenía abundantes *shards* de vidrio, fragmentos de hematita y magnetita, fragmentos de biógenos,

Limnolog

feldespatos, escasos minerales de óxidos de Zn así como escasos anfíboles, tal como se observó en la petrografía (Figura 22).

Figura 22. Imagen de la lámina 98-99. V=vidrios; B= biógenos; A= anfíboles; F= feldespatos, Zn= óxidos de zinc.

4.3.3. Mineralogía por Difracción de Rayos X

El análisis por DRX fue cualitativo, se observó que la cristalinidad de las muestras totales fue intermedia-baja (aproximadamente 25%). La mineralogía de las veinte muestras fue muy similar y como fases cristalinas se identificaron: cuarzo, plagioclasa, halita y barita (Tabla 3 y Anexo 3). También se identificaron interestratificados de illita-

esmectita, mica (posiblemente de tipo illita), caolín (Tabla 5) además de sílice amorfa del tipo ópalo. Se logró identificar el pico principal de hematita (2.70 Å) en los sedimentos por lo que la presencia de este óxido de hierro es muy probable tal y como lo mostraron las descripciones petrográficas y datos de microsonda electrónica.

MUESTRA	FASES IDENTIFICADAS ¹	Ficha DRX	OBSERVACIONES
N4-1 140100	Cuarzo: SiO ₂ Plagioclasa intermedia (Ca, Na)(Al, Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃	[46-1045] [9-0465] [5-628] [42-1401] [38-0448] [24-1035]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
	Filosilicatos a ≈ 10 A y ≈ 7 A	[33-664]	

Aunque el estudio fue cualitativo, mediante la tabla de intensidad integrada se pudo identificar las abundancias relativas de las diferentes fases al comparar entre muestras (Tabla 4). La mayor cantidad de cuarzo cristalino se encontró en los niveles 14 al 49 cm, 98 a 99, 111 a 112, 125 a 126, 145 a 146, 186 a 187 y 229 a 230 cm. Respecto a las plagioclasas los picos de difracción mejor definidos se encuentran en las muestras: 0 a 1, 27 a 28, 37 a 38, 90 a 91 (en esta fue la mayor), 111 a 112, 125 a 126, 186 a 187, 229 a 230 y 232 a 233. Esto no se ve reflejado en la petrografía, debido a que las láminas delgadas se realizaron solo en la fracción arenosa de la muestra y dicha fracción no representa la composición de la muestra total del sedimento. La fórmula química de las plagioclasas va de Na [AlSi₃O₈] hasta Ca [Al₂Si₂O₈] y en los análisis de elementos mayores el CaO tiene su mayor porcentaje en peso en la muestra 14-15, el Na₂O en la muestra 160-161, el Al₂O₃ en el nivel 207-208 y el SiO₂ en la 67-68. Curiosamente ninguna de estas muestras refleja la mayor cantidad de plagioclasas. Es probable entonces, que la mayor cantidad de Al y Si se deban a la presencia de arcillas, pero también el contenido de Si se deba a la presencia de cuarzo, biógenos, ópalo y vidrio. La presencia de Ca se puede deber a que es un elemento mayor en el agua de mar.

La halita (NaCl) tuvo sus picos máximos en las muestras: 0-1, 79-80 (fue ésta la mayor), 125-126, 145-146, 186-187, 219-220 y 232-233. En contraste el mayor porcentaje en peso de Na se encontró en la muestra 160-161. Sin embargo seguramente afectó que no se separó el agua de mar en las muestras para preservarlas en su estado original y que por lo tanto conservaran sal en el sedimento.

La barita (BaSO₄) se encontró en las muestras: 79-80, 125-126, 145-146, 160-161, 172-173, 186-18, 207-208, 219-220, 229-230 y 232-233 (junto con la 219-220 fueron las que tenían mayor concentración de barita). En los elementos traza el nivel con mayor concentración de Ba fue la muestra 145-146.

En la descripción de las arcillas rojas Kennett (1982) mencionó entre sus características el color pardo rojizo a chocolate y que están controladas por minerales arcillosos transportados por el viento, así como minerales de tamaño fino como: cuarzo, feldespato, piroxeno, cenizas volcánicas, además de restos de peces, dientes de tiburón y micronódulos de manganeso. En el presente caso la mineralogía mostró que el sedimento contiene en orden de abundancia: cuarzo, plagioclasas intermedias, ópalo, barita, hematita, filosilicatos y pequeñas cantidades de piroxenos y en adición con el color y lo expuesto en la petrografía, concuerda con lo descrito por Kennet.

En la mineralogía de filosilicatos se observó en la muestra 0 a 1 cm: illita como fase dominante, un interestratificado de illita-esmectita y evidencias de caolín; mientras que en las muestras 98 a 99 y 232 a 233 cm la fase dominante fue un interestratificado de illita-esmectita, seguido por illita además de caolín (Tablas 5 y 6).

Muestra	Cuarzo	Plagioclasa	Halita	Barita
0-1	5758	1824	2758	362
14-15	6048	1289	1916	200
27-28	6379	1890	2267	360
37-38	6145	2405	2292	385
48-49	6159	1706	2282	326
61-62	4911	1480	2232	260
67-68	5430	1774	2370	328
79-80	4542	1407	3759	398
90-91	5350	3678	2330	396
98-99	5534	1031	2323	328
111-112	6038	2292	2097	322
125-126	5796	2181	2466	467
145-146	5707	1418	3010	445
160-161	4349	1636	2109	465
172-173	5424	1551	2299	402
186-187	5906	1839	2584	428
207-208	5372	1324	2234	502
219-220	4793	1452	2433	539
229-230	5520	1849	1705	489
232-233	4908	1818	2912	539
promedio	5503	1792	2419	397
desv. Esta	565	562	439	90
max	6379	3678	3759	539
min	4349	1031	1705	200

Tabla 4. Intensidad integrada de los minerales cristalinos.

MUESTRA	PICOS SIN TRATAMIENTO	PICOS CON ETILENGLICOL	PICOS A 550° C	FASES IDENTIFICADAS
N4-1 (0 a 1 cm)	13Å	14 Å	10 Å	Interestratificado de illita-esmectita
	10 Å	10 Å	10 Å	Mica posiblemente de tipo illita
	7 Å	7 Å	Х	Mineral del grupo caolín
N4-10 (98 a 99 cm)	14 Å	15 Å	10 Å	Interestratificado de illita-esmectita
	10 Å	10 Å	10 Å	Mica posiblemente de tipo illita
	7 Å	7 Å	Х	Mineral del grupo caolín
N4 20	14-15 Å	15-16 Å	10 Å	Interestratificado de illita-esmectita
N4-20 (232 a 233 cm)	10 Å	10 Å	10 Å	Mica posiblemente de tipo illita
	7 Å	7 Å	Х	Mineral del grupo caolín

Tabla 5. Mineralogía de filosilicatos en fracción orientada.

Nota: En **negritas** se muestran las fases dominantes en cada muestra.

MUESTRA	MINERAL	D 002/003	2 THETA	%INTERESTRATIFICADO
N4-1 gl	Esmectita	5.57	15.9	≤20% de illita Predominantemente esmectita
N4-1 gl	Illita	5.02	17.6	95-100% illita
N4-10 gl	Esmectita	5.53	16	≤30% de illita Predominantemente esmectita
N4-10 gl	Illita	5.09	17.4	95-100% illita
N4-20 gl	Esmectita	5.63	15.7	≤10% de illita Predominantemente esmectita
N4-20 gl	Illita	4.99	17.8	95-100% illita

Tabla 6. Predominancia en los interestratificados de illita-esmectita.

En la muestra 0-1 donde la mica illita predomina sobre los interestratificados, se infiere que son un producto detrítico. El interestratificado illita-esmectita en dicha muestra es predominantemente esmectita. La esmectita es producto de la alteración de material volcánico y en la petrografía se encontraron líticos volcánicos y vidrio como materiales volcánicos de donde se pudo originar la esmectita. El mineral del grupo de caolín identificado fue producto de la alteración del feldespato, el cual fue observado en la petrografía. Esta alteración pudo ser de tipo hidrotermal, según lo reportado por Lozano-Santa Cruz *et al.* (1988), debida a la cercanía con la Dorsal del Pacífico oriental y con la Fractura Clarión.

Así lo mismo en las muestras 98-99 y 232-233, únicamente la diferencia radica en que el componente dominante es el interestratificado de illita-esmectita, seguida de la mica tipo illita y del mineral del grupo caolín.

La fracción arcillosa a lo largo del núcleo de sedimentos parece ser de origen principalmente detrítico en la porción superior del núcleo, combinado con la alteración

de productos volcánicos, además de la alteración de plagioclasas. En las porciones subsecuentes hasta el fondo la fracción arcillosa tuvo origen en la alteración de productos volcánicos, con algún aporte detrítico probable de las islas circundantes y del continente, así como un aporte por la intemperización de feldespatos.

El hecho de que en la muestra superior dominó la illita sobre la esmectita, que fue la fase dominante hacia el fondo del núcleo de sedimentos, denota que ha disminuido la actividad volcánica en la zona o que domina el aporte terrígeno.

4.3.4. Geoquímica

A las 20 muestras seleccionadas del núcleo de sedimentos, se les aplicó la técnica de fluorescencia de rayos x para conocer la concentración de elementos mayores (Tabla 7) y traza (Tabla 11). Para la obtención de las concentraciones de los elementos de Tierras Raras se utilizó el ICPMS (Tabla 12).

Elementos mayores

Los resultados se muestran en porcentaje en peso de cada óxido. Se normalizaron los valores a 100% en peso sin incluir los valores de PXC (Pérdida por calcinación), debido a que estos valores reflejan la cantidad de agua y no la composición de las fases sólidas (Tabla 7).

En general, se observó que la cantidad de SiO_2 es mayor que la de los demás compuestos mayores y esta abundancia del SiO_2 hace pensar que se trataría de sedimentos procedentes de una roca ígnea intermedia (andesítica). No obstante, en el diagrama de funciones discriminantes de Roser y Korsch (1988) para procedencia sedimentaria, se mostró que la procedencia podría ser máfica ígnea (Figura 23).

Se sabe que los minerales y rocas máficas son característicos de la corteza oceánica, así como de la corteza continental inferior que está en contacto con el manto (Tarbuck *et al.*, 2005). La mayoría de las capas superiores de la corteza oceánica así como muchas islas volcánicas presentan una composición predominante de basalto, por lo tanto se puede esperar que el sedimento cercano al área de estudio presente una composición máfica similar.

Muastras	SiO_2	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Suma
widesulas	%	%	%	%	%	%	%	%	%	%	%
0-1	59.6	0.7	16.4	8.2	1.4	3.2	1.8	5.0	3.3	0.4	100
14-15	59.0	0.7	17.2	8.3	1.4	3.2	1.8	4.6	3.4	0.4	100
27-28	59.1	0.7	17.2	8.2	1.4	3.4	1.7	4.5	3.4	0.4	100
37-38	59.1	0.8	17.0	8.5	1.2	3.4	1.7	4.7	3.3	0.4	100
48-49	58.3	0.7	17.3	8.3	1.6	3.4	1.8	4.9	3.3	0.5	100
61-62	59.8	0.7	16.7	8.0	1.3	3.3	1.8	4.7	3.3	0.5	100
67-68	59.8	0.7	17.3	7.7	1.2	3.3	1.7	4.4	3.3	0.4	100
79-80	59.0	0.7	17.5	8.1	1.3	3.4	1.7	4.5	3.2	0.4	100
90-91	58.7	0.7	17.4	8.2	1.3	3.5	1.7	4.6	3.4	0.4	100
98-99	58.5	0.7	17.4	8.5	1.5	3.4	1.8	4.3	3.3	0.5	100
111-112	59.0	0.7	17.0	8.7	1.2	3.5	1.6	4.5	3.3	0.5	100
125-126	58.1	0.7	16.7	8.9	2.1	3.4	1.8	4.5	3.4	0.5	100
145-146	58.4	0.7	16.6	8.9	2.0	3.4	1.7	4.4	3.3	0.5	100
160-161	58.0	0.7	16.4	8.9	2.1	3.4	1.7	5.0	3.2	0.5	100
172-173	59.0	0.8	17.4	8.4	1.3	3.5	1.6	4.3	3.4	0.4	100
186-187	59.1	0.8	17.3	8.5	1.1	3.6	1.6	4.4	3.3	0.4	100
207-208	58.9	0.8	17.5	8.5	1.0	3.6	1.6	4.4	3.3	0.4	100
219-220	58.8	0.8	17.4	8.6	0.8	3.8	1.6	4.4	3.3	0.4	100
229-230	58.6	0.8	17.4	8.5	1.3	3.5	1.6	4.4	3.3	0.5	100
232-233	58.2	0.8	16.9	9.0	1.8	3.6	1.7	4.3	3.3	0.5	100
Promedio	58.8	0.7	17.1	8.4	1.4	3.4	1.7	4.6	3.3	0.4	100
Desv. Est.	0.52	0.03	0.37	0.34	0.34	0.14	0.08	0.22	0.04	0.06	0
Máx.	59.8	0.8	17.5	9.0	2.1	3.8	1.8	5.0	3.4	0.5	100
Mín.	58.0	0.7	16.4	7.7	0.8	3.2	1.6	4.3	3.2	0.4	100

Tabla 7. Valores normalizados (base anhidra) de elementos mayores.

Figura 23. Diagrama de funciones discriminantes para procedencia sedimentaria con uso de elementos mayores (modificado de Roser y Korsch, 1988). Las funciones son: Función discriminante $1 = (-1.773*TiO_2) + (0.607*Al_2O_3) + (0.760*Fe_2O_3) + (-1.500*MgO) + (0.616*Cao) + (0.509*Na_2O) + (-1.224*K_2O) + (-9-090); Función discriminante 2= (0.445*TiO_2) + (0.070*Al_2O_3) + (-0.250*Fe_2O_3) + (-1.142*MgO) + (0.438*Cao) + (1.475*Na_2O) + (-1.426*K_2O) + (-6.861). El círculo negro representa los sedimentos del núcleo que se recolectó en la Estación 4 de la campaña MIMAR VI.$

Para mostrar la posible relación de la susceptibilidad magnética con la presencia de los elementos ferromagnéticos del núcleo de sedimentos, se comparó la dicha susceptibilidad con la variación química de algunos elementos. En las Figuras 24 a 28, se presentan algunas de las relaciones más significativas que se obtuvieron para ciertos elementos.

as del Mar y Limnología

Figura 24. Susceptibilidad magnética comparada con el porcentaje en peso del Fe_2O_3 . La línea vertical representa e valor promedio.

En la Figura 24 se puede observar la aparente concordancia de las mediciones de la susceptibilidad magnética con el contenido de Fe_2O_3 . En la parte media del núcleo se presentaron los valores mayores de susceptibilidad magnética que coincidieron con la mayor concentración de Fe_2O_3 y por lo tanto, la presencia de minerales ferromagnéticos.

Igualmente para el caso del MnO se graficó su variación respecto a su media y se comparó con la susceptibilidad magnética (Figura 25) donde se observó la relación directa que tiene el contenido de Mn con respecto a la susceptibilidad magnética. Lo mismo ocurrió con las concentraciones de algunos elementos traza: cobalto, níquel y cobre. Ello indica la presencia, en los mismos horizontes del núcleo, de elementos presentes de los nódulos polimetálicos (Figuras 26, 27 y 28).

Figura 25. Susceptibilidad magnética comparada con el porcentaje en peso de MnO. Sus incrementos y decrementos son similares. Las líneas verticales representan el valor promedio.

Figura 26. Susceptibilidad magnética comparada con el contenido de cobalto. Sus variaciones son muy parecidas en ambos casos.

Figura 27. Susceptibilidad magnética y contenido de níquel. Aunque sus curvas no son tan semejantes, ambas muestran su mayor pico a la misma profundidad del núcleo.

Figura 28. Susceptibilidad magnética y contenido de cobre. Sus curvas son casi análogas con respecto de la profundidad.

A continuación, se muestran los diagramas bivariados de SiO₂ contra los demás elementos mayores. En la mayoría de los diagramas no se observa alguna correlación, solamente el SiO₂ *vs*. Fe₂O₃, *vs*. MnO y *vs*. P₂O₅ presentan cierta correlación negativa; es decir, con el aumento del SiO₂ disminuyen los contenidos de estos elementos (Figura 29), por esta razón se sugiere que el SiO₂ procede de una fuente diferente al Fe₂O₃, al

MnO y al P_2O_5 como lo son el ópalo (reportado en la difracción), el vidrio, los biógenos, además de cuarzo (observados en la petrografía). Es probable que el MnO y Fe₂O₃ procedan de micronódulos, así como de minerales de hierro y óxidos. Con el P_2O_5 se observa igualmente una relación negativa con el SiO₂. Posiblemente se deba a un empobrecimiento relativo de P_2O_5 , de origen volcánico, por un mayor aporte de cuarzos o feldespatos terrígenos continentales.

54

Figura 29. Diagramas binarios de $SiO_2 vs$. los demás óxidos de elementos mayores continuación. La r es significativa a partir de 0.44.

La proporción de Al_2O_3 y TiO₂ se graficó en un diagrama binario y se encontró una r = 0.53 la cual fue estadísticamente significativa, lo importante de esta gráfica es mostrar la relación positiva entre ambos elementos terrígenos ya que indica que provienen del mismo origen, porque aumentan en la misma proporción uno con respecto a otro (Figura 30). Se sabe que son terrígenos porque la proporción de Al/Ti dio valores entre 20.5 y 24. De acuerdo con Boström *et al.* (1969) los valores de Al/Ti cercanos a 20 indicarían una fuente terrígena. Mientras que una relación de Al/Ti cercana a 5 sugiere una fuente de intemperismo de rocas oceánicas.

Figura 30. Proporción de Al₂O₃ con respecto al TiO₂.

En el diagrama de Boström (1970) de variaciones de Fe/Ti y Al/(Al+Fe+Mn) de sedimentos pelágicos, las muestras del núcleo N4 cayeron al final de la curva de DPO (Dorsal del Pacífico oriental) a MT (Material terrígeno) (Figura 31), lo que implica que se tiene una mezcla de sedimento volcánico con materia de la corteza continental. Es decir, probablemente existió un aporte de terrígenos, compuestos por cuarzo, plagioclasa y arcillas, los cuales pudieron llegar al océano por transporte eólico.

1000

Figura 31. Fe/Ti versus Al/(Al+Fe+Mn) modificado de Boström (1970). El círculo negro indica el punto de la curva donde cae el sedimento del núcleo N4 de la campaña MIMAR VI. MT= Material terrígeno, DPO= Dorsal del Pacífico oriental, B= material basáltico.

Para conocer la similitud entre el contenido de elementos mayores del sedimento del núcleo N4 con el contenido de elementos mayores de diversas rocas de las islas cercanas, se graficaron la media de los elementos mayores en el núcleo 4 contra los elementos mayores en distintas rocas pertenecientes a islas del archipiélago Revillagigedo así como sus alrededores (Figura 32).

Limnolog

Basalto Draga 107 de I. Socorro [2]

```
---- N4 media 194 km N de I. Clarión. Este trabajo
```

Figura 32. Comparación entre el promedio del porcentaje de elementos mayores y diversas rocas volcánicas ([1] Bryan, 1967 y [2] Moore, 1970).

La composición promedio de elementos mayores de los sedimentos del N4 es parecida a cinco muestras de roca volcánica del archipiélago Revillagigedo: la traquita de la punta este de la Isla Clarión en sus concentraciones de SiO₂, TiO₂, CaO y K₂O; el basalto de San Benedicto de la draga 89 en sus concentraciones de Al₂O₃ y P₂O₅; la traquiandesita del este del Monte Gallegos (Clarión) en sus concentraciones de Fe₂O₃, K₂O y Na₂O; el traquibasalto, de olivino de la punta este de la playa del Monte Gallegos en Clarión con concentraciones de MgO y de MnO (aunque en MnO fue el más cercano de todas las muestras, aún dicha concentración es muy distante a la del sedimento del núcleo 4); y por último el basalto del sur del Monte Gallegos en su concentración de Na₂O (Figura 33). Se observa un enriquecimiento de MnO en el sedimento en comparación con todas

las muestras de rocas, lo que sugiere la presencia de micronódulos de manganeso u óxidos de manganeso.

Figura 33. Se observan las cinco rocas con mayor similitud al sedimento del núcleo de la estación 4 de la campaña MIMAR VI (también representado gráficamente). Las barras de la gráfica del N4 representan los valores máximos y mínimos de cada óxido ([1] Bryan, 1967 y [2] Moore, 1970).

En la gráfica de la Figura 33 se compara la composición química promedio del N4 con análisis de rocas de las islas Clarión, San Benedicto y Socorro. Se puede apreciar un comportamiento muy similar para la mayoría de los óxidos de los sedimentos y de una traquita granular y una traquiandesita recolectadas en la Isla Clarión.

Con base en los datos de elementos mayores del Deep sea drilling Project (DSDP) del sitio de muestreo 159 (Yeats *et al.*, 1973), que es el más cercano al área de estudio, se compararon dichos datos con los de la media de las muestras de sedimento del núcleo N4, así como con los de la muestra de roca de la traquita de la isla Clarión y con la

traquiandesita de Clarión de Bryan (1967). Se observó que la composición de elementos mayores es más parecida a las muestras de las rocas de la Isla Clarión que al sedimento del DSDP (Figura 34).

Figura 34. Comparación de elementos mayores del sedimento del núcleo N4 con elementos mayores de DSDP ([1] Yeats *et al.*, 1973) y de rocas de la Isla Clarión ([2] Bryan, 1967).

El sedimento del N4 en lo que respecta al SiO₂ fue muy similar al de las rocas y al de los sedimentos del DSDP. El TiO₂ en el sedimento del núcleo 4 fue igual al de la traquita, pero menor que el de la traquiandesita y el sedimento del DSDP. Se observa que el sedimento estaba enriquecido en Fe_2O_3 y en MgO cuando se compara con las rocas, pero empobrecido en lo comparación con el sedimento del DSDP. El CaO del sedimento del núcleo 4 estaba empobrecido en comparación con las rocas y con el sedimento del DSDP. El sedimento del núcleo 4 estuvo enriquecido con MnO, ni siquiera su valor de concentración mínimo estuvo cercano a los valores de las rocas. El

contenido de K_2O en el núcleo 4 estuvo muy cercano a los valores de ambas rocas pero muy por encima del valor reportado por el DSDP. Respecto al contenido de Na₂O el sedimento del núcleo 4, el del DSDP y las rocas fue muy similar. Respecto al P₂O₅, cabe señalar que el valor que mostró el sedimento fue igual que el de la traquita pero menor que el de la traquiandesita.

Al comparar las concentraciones promedio de elementos mayores del núcleo N4 con datos similares de la traquiandesita y de la traquita de la Isla Clarión, del sitio 159 del DSDP y con valores promedio de la arcilla pelágica del Pacífico (APP). También se observó que el sedimento es más similar a los valores de APP (Bischoff *et al.*, 1979) (Tabla 8 y Figura 35).

Figura 35. Comparación química entre la APP (Arcilla pelágica del Pacífico) ([1] Bischoff *et al.*, 1979), traquita y traquiandesita ([2] Bryan, 1967) y el sitio 159 del DSDP ([3] Yeats *et al.*, 1973) con el núcleo de sedimentos N4.

Se puede observar que los sedimentos del núcleo 4 (Tabla 8) están relativamente más enriquecidos en SiO₂, Al₂O₃, Fe₂O₃, MnO, CaO, Na₂O, K₂O y P₂O₅ respecto a los de la APP. Las cantidades de un elemento que sean mayores a las de APP fueron definidas por Bischoff *et al.* (1979) como "excesos". Por ejemplo los excesos de MgO, SiO₂ y Fe₂O₃ se obtienen de la siguiente manera: (MgO total-0.2 Al₂O₃ medido), (SiO₂ total-3.3 Al₂O₃ medido) y (Fe₂O₃ total – 0.46 Al₂O₃ medido) respectivamente, donde 0.2, 3.3 y 0.46 son las relaciones MgO/Al₂O₃, SiO₂/Al₂O₃ y Fe₂O₃/Al₂O₃ de las APP. Al utilizar estas fórmulas se obtuvo el exceso de elementos mayores de la media de las muestras del sedimento del núcleo N4 (Tabla 9).

ELEMENTO	APP	N4 MEDIA
SiO ₂	54.9	58.8
TiO_2	0.78	0.75
Al_2O_3	16.6	17.1
Fe_2O_3	7.7	8.4
MnO	0.56	1.4
MgO	3.4	3.4
CaO	0.7	1.7
Na ₂ O	1.3	4.6
K ₂ O	2.7	3.3
P_2O_5	0.25	0.4
Rb		184.2
Sr	710	456.2
Ba	3900	9406.6
Y	150	215.7
Zr		33.7
Nb		15
V	120	143.5
Cr	64	64
Со	113	106.6
Ni	210	372.5
Cu	230	386.5
Zn	165	321.9
Th		8.9
Pb	34	38.3

Tabla 8. Promedio de elementos mayores y traza de la arcilla pelágica del Pacífico (APP) y el promedio del sedimento estudiado.

ELEMENTO	Valores para obtener excesos	% de excesos en N4
SiO ₂	3.3	2.28
TiO ₂	0.05	-0.06
Al_2O_3	1	0
Fe_2O_3	0.46	0.51
MnO	0.03	0.84
MgO	0.2	-0.07
CaO	0.04	0.99
Na ₂ O	0.08	3.21
K_2O	0.16	0.52
P_2O_5	0.02	0.19

Tabla 9. Valores de exceso en medias de elementos mayores del núcleo N4 con respecto a los valores de APP.

Nota: % exceso del elemento "x" = % total del elemento "x" – (Valor para obtener excesos*Al₂O₃ medido).

Para definir si los sedimentos de DOMES (Deep Ocean Mining Enviromental Study por sus siglas en inglés) eran biógenos, metalíferos o hidrogénicos Bischoff *et al.* (1979) idearon varios índices. Asumieron que la fracción de arcilla pelágica del Pacífico (APP) de sus muestras contenía la misma concentración absoluta de Al_2O_3 que el promedio de APP definido por ellos. Las diferencias entre esta concentración (16.6 %) (Tabla 8) y el Al_2O_3 medido en una muestra dada, es la medida de la cantidad de APP en dicha muestra, es decir (Al_2O_3 medido/ Al_2O_3 de APP)*100= % APP. Al asumir esto se mostró que en el sedimento del núcleo N4 la cantidad de APP es en promedio de 92% (Tabla 10).

Para calcular la fracción hidrogénica de los sedimentos de DOMES Bischoff *et al.* (1979) asumieron que todo el manganeso se encontraba en la fracción hidrogénica, y que esta fracción tenía el mismo contenido absoluto de MnO que el promedio de los nódulos de ferromanganeso de DOMES (32%). Entonces propusieron la fórmula para obtener dicha fracción: % fracción hidrogénica = (MnO/32)*100. Cuando se utilizó dicha fórmula con el contenido promedio de Mn del núcleo N4 resultó que la fracción hidrogénica promedio fue baja (3.9%).

Se obtuvo también la fracción metalífera del sedimento promedio, a través la fórmula propuesta por Bischoff *et al.* (1979). Esto es a través del porcentaje promedio de Fe_2O_3 del sedimento metalífero de la cuenca Bauer, con la siguiente fórmula: % fracción metalífera = (% exceso $Fe_2O_3/33.3$)*100, donde 33.3 es el % de Fe_2O_3 en promedio del sedimento metalífero de la cuenca Bauer. Cuando se utilizó esta fórmula resultó que el contenido promedio de fracción metalífera en el N4 fue de 1.4%.

Bischoff y Rosenbauer (1976) obtuvieron la proporción MnO/Fe₂O₃ en sedimentos metalíferos de la cuenca Bauer y fue de 0.12. Posteriormente Bischoff *et al.* (1979) obtuvieron la proporción MnO/Fe₂O₃ en nódulos de ferromanganeso y fue de 3.1. Al basarse en estas proporciones se puede anticipar que la mayor parte del exceso de Fe₂O₃ se encuentra en fase hidrotermal, y que la mayor parte de MnO está en fase hidrogénica (seguramente como micronódulos de ferromanganeso). La relación promedio de MnO/Fe₂O₃ en el sedimento del N4 fue de 0.16. Es decir, es más similar al sedimento metalífero de la cuenca Bauer y con mayor contenido de Fe₂O₃.

Dean *et al.* (1989), en los análisis de un núcleo de sedimentos recolectado al norte del monte Shimada, interpretaron que el sedimento tenía influencia hidrotermal ya que presentaban sedimentos metalíferos. Estos sedimentos tenían altas concentraciones de hierro y las concentraciones de Ba (eran el doble de las encontradas en las arcillas pelágicas del Pacífico, en sedimentos de DOMES y en sedimentos de la cuenca Bauer).
Muestras	MnO	% Fracción	Fe ₂ O ₃	Al_2O_3	Excesos	%Fracción	% APP
	%	hidrogénica	%	%	Fe2O3	metalífera	
0-1	1.29	4.02	7.26	14.59	0.50	1.5	87.9
14-15	1.27	3.98	7.41	15.38	0.28	0.8	92.6
27-28	1.20	3.76	7.33	15.28	0.24	0.7	92.0
37-38	1.11	3.48	7.59	15.19	0.54	1.6	91.5
48-49	1.42	4.45	7.35	15.43	0.20	0.6	92.9
61-62	1.13	3.54	7.14	14.94	0.21	0.6	90.0
67-68	1.11	3.47	6.93	15.51	-0.26	-0.8	93.4
79-80	1.17	3.64	7.30	15.67	0.03	0.1	94.4
90-91	1.18	3.68	7.32	15.63	0.07	0.2	94.2
98-99	1.36	4.26	7.59	15.64	0.34	1.0	94.2
111-112	1.08	3.38	7.80	15.17	0.77	2.3	91.4
125-126	1.87	5.83	7.91	14.93	0.98	3.0	89.9
145-146	1.75	5.47	7.95	14.78	1.09	3.3	89.1
160-161	1.83	5.71	7.87	14.53	1.13	3.4	87.5
172-173	1.13	3.53	7.51	15.56	0.29	0.9	93.7
186-187	1.01	3.17	7.58	15.44	0.42	1.3	93.0
207-208	0.85	2.66	7.52	15.60	0.28	0.8	94.0
219-220	0.74	2.30	7.71	15.52	0.51	1.5	93.5
229-230	1.18	3.68	7.57	15.53	0.37	1.1	93.6
232-233	1.56	4.88	8.04	14.98	1.09	3.3	90.2
Promedio	1.3	3.9	7.5	15.3	0.5	1.4	92.0
Máximo	1.9	5.8	8.0	15.7	1.1	3.4	94.4
Mínimo	0.7	2.3	6.9	14.5	-0.3	-0.8	87.5

Tabla 10. Porcentajes de las fracciones hidrogénicas, metalíferas y de APP obtenidas para las muestras del sedimento de la estación 4 de la campaña MIMAR VI.

En la Figura 36 se observó que la fracción hidrogénica varía entre 2.3 y 5.8% y los valores más latos se presentan en el cm 125, 160 (5.71%), 145 cm (5.47%) y 232 cm (4.88%). Mientras que los valores mínimos ocurrieron en los cm 219 (2.3%) y 207 (2.66%). En la fracción metalífera se observó que su máximo se encuentra en los cm 160 (3.4%), 145 y 232 (3.3%) y en el 125 (3.0%). En la porción superior del núcleo se notó que la fracción metalífera disminuyó, en el centímetro 67 no se obtuvo fracción metalífera y por lo tanto no hay exceso de Fe_2O_3 . Con respecto al porcentaje de APP se mostró que la mayor cantidad estuvo en el nivel 79 cm, seguido de los niveles 90, 98 cm (94.2%) y 207 (94%). El menor porcentaje ocurrió en el nivel de 160 a 161cm. Como ya se mencionó, las APP representan el material detrítico terrígeno típico del Océano

Pacífico. En los niveles donde hubo porcentajes mayoritarios de APP (79, 90 y 98) también se encontraron los niveles donde se presentaron las mayores cantidades de arena (granulometría) y vidrio (petrografía).

En general se puede observar que existe una relación inversa entre el porcentaje de las APP y los porcentajes de las fracciones hidrogénicas y metalíferas (Figura 37). Durante la depositación del nivel 160 cm hubo mayor aporte de sedimentos metalíferos e hidrogénico y una disminución en el aporte terrígeno, lo que podría significar que hubo aporte hidrotermal. En las gráficas donde se compararon la $\sigma I\phi vs$. Mz ϕ cada 20 cm (Figura 9), se pudo observar que en la mayoría del sedimento esta relación $\sigma I\phi vs$. Mz ϕ mostró un comportamiento terrígeno con excepción del nivel 141 a 160 cm. Esto confirma que el aporte de terrígenos fue menor que en los demás niveles del núcleo de sedimentos. Esto fue comprobable también con la evidencia de que las fracciones hidrogénica y metalífera tuvieron su segundo y su mayor porcentaje en tal nivel (160 cm), respectivamente y al aumentar el contenido de una o dos fracciones, por ende disminuyen las demás.

Figura 36. Variaciones de porcentajes de las fracciones hidrogénicas, metalíferas y APP a lo largo del núcleo de sedimentos. Se aclara que en la fracción metalífera el porcentaje negativo del nivel 67 cm es resultado de la fórmula matemática aplicada.

Figura 37. Proporción inversa entre APP y las fracciones hidrogénicas y metalíferas. La susceptibilidad magnética tuvo su mayor medición justo en el nivel donde la fracción metalífera tuvo su mayor porcentaje en el nivel correspondiente al centímetro 160 (Figura 38).

Figura 38. Patrones de porcentajes de la fracción metalífera y de susceptibilidad magnética a lo largo del núcleo de sedimentos.

Con respecto al origen de la sílice, Leinen (1977) propuso la siguiente ecuación para obtener el porcentaje no biogénico del sedimento: 4.33 Al+1.36 Mg²=*non biogenic silica*. Mientras que Boström *et al.* (1972) propusieron otra ecuación para calcular el porcentaje de SiO₂ opalino a partir del supuesto de que la proporción SiO₂:Al₂O₃ en la

corteza continental sea cercana a 3:1 (SiO₂ opalino= SiO₂ medido - 3 Al₂O₃ medido). Para ambas ecuaciones se utilizó la media de los elementos mayores a lo largo del núcleo de sedimentos y los resultados fueron los siguientes:

De acuerdo con la ecuación de Leinen (1977): 4.33 Al+1.36 Mg^2 = 90.1 % de sílice no tuvo origen biogénico, y con la ecuación de Boström *et al.* (1972): SiO₂ medido - 3 Al₂O₃ medido= 7.5 % de sílice opalino.

Ambas ecuaciones no difieren demasiado, si se considera que las testas de los radiolarios y de las diatomeas son de ópalo; por lo tanto, el aporte biogénico en forma de ópalo estaría entre 7.5 y 10%.

Parte de la sílice no biogénica podría tener origen terrígeno por transporte eólico, mientras que el 7.5% de sílice opalina nos indica que probablemente el núcleo fue recolectado cerca de una fuente de SiO_2 biogénico. En la Figura 39 se puede observar el viento superficial en el océano para el mes de Enero. Es importante considerar la influencia de los vientos alisios del noreste, los cuales al pasar por lugares de depósito de arenas finas y limos gruesos de los desiertos pueden transportar cuarzo y otros minerales hacia el océano.

Los sedimentos de origen eólico pueden proceder de los desiertos del Noroeste mexicano. Por ejemplo, en el desierto del Altar, Sonora dónde Kasper-Zubillaga y Faustinos-Morales (2007) y Kasper-Zubillaga (2009) escanearon con microscopio electrónico de barrido los granos de cuarzo de las arenas del desierto de Sonora y observaron que éstos mostraban fracturas concoidales asociadas con transporte eólico.

Figura 39. Viento climatológico superficial (tomado de Fernández-Eguiarte *et al.*, 2011).

En la Figura 40 se muestran las concentraciones de ópalo en el sedimento marino, donde a la zona donde fue recolectado el núcleo de sedimentos de esta tesis le corresponde la isolinea de 5%, lo cual es muy cercano al resultado obtenido de la ecuación de Boström *et al.*(1972) que fue de 7.5% de sílice opalino.

El cuarzo es estable en el piso marino y no se forma autigénicamente en sedimentos recientes, por lo tanto su origen es continental. Debido a que el cuarzo es resistente a la abrasión y a la disolución, se le puede encontrar en el fondo del océano en las mismas condiciones en las que llegó a la superficie del océano. La mayoría del cuarzo en los sedimentos pelágicos se puede encontrar en forma de esquirlas y hojuelas, Rex y Goldberg, (1958). Debido a que el flujo de sedimentos hemipelágicos y fluviales disminuye conforme aumenta la distancia al continente, Rex y Goldberg (1958) consideraron que el cuarzo, en el sedimento pelágico lejos del continente y de corrientes de turbidez, habría sido transportado eólicamente.

Aunque no se tienen evidencias físicas sobre el origen del cuarzo en los sedimentos del N4, se puede considerar de acuerdo con la ecuación propuesta por Leinen (1977), que resultó en un 90.1% de sílice no biogénica y de la distribución del cuarzo en el sedimento marino (Figura 41) de la zona de estudio (cantidad de cuarzo ~ 15%) que entre 10 y 15% podría tratarse de cuarzo transportado por el viento. El porcentaje

restante de sílice se debe encontrar en forma de vidrio, líticos volcánicos o en los filosilicatos.

Figura 40. Porcentajes de ópalo en fracciones libres de carbonatos mostrados en isolíneas (modificado de Leinen *et al.*, 1986). El círculo rojo representa el núcleo de sedimentos recolectado en la estación 4 de la campaña MIMAR VI.

Figura 41. Distribución de cuarzo en isolíneas (modificado de Leinen *et al.*, 1986) en la fracción no biogénica de sedimentos de mar profundo. El círculo rojo corresponde con el sitio del núcleo de sedimentos de la estación 4 de la campaña oceanográfica MIMAR VI.

Elementos Traza

Los elementos traza (Tabla 11) se normalizaron con respecto a la lutita norteamericana NASC (por sus siglas en inglés *North American Shale Composite*) de Gromet *et al.* (1984) y con el promedio de corteza superior de Taylor y Mc Lennan (1981) ya que representan la media del material cortical. Cada uno de los estándares utilizados se cita en Rollinson (1993).

Se encontraron anomalías positivas de Ba y Ni cuando se normalizó con NASC (Figura 44) y de Ba, Y y Ni cuando se normalizaron con el promedio de corteza superior (Figura 42). El Ba (aparentemente como barita), además de Cu, Zn, V y Ni, se encuentran entre los elementos traza asociados con sedimentos metalíferos (Boström, 1970). Sin embargo estos elementos también se asocian con fracciones biogénicas e hidrogénicas. Existen varios estudios que indican que elementos como el hierro, manganeso y bario son aportados al océano debido al vulcanismo submarino a lo largo de dorsales oceánicas activas (zonas de expansión del piso marino) (Boström, 1970).

En el caso del sedimento del núcleo N4, la cantidad de bario es muy alta en comparación con la reportada para APP que es de 3600 ppm (Dean *et al.*, 1989) mientras que el promedio de Ba en el sedimento estudiado es de 9406 ppm. El hierro que en las APP fue de 7.7%, fue menor que en el núcleo de sedimentos de 8.4% (Tabla 8). Esto indica de acuerdo a Dean *et al.* (1989) que el Ba puede proceder de fuentes hidrotermales. También cabe recordar que la fracción metalífera tuvo sus concentraciones máximas en los niveles 160, 145 y 232 cm, donde también se encontraron las mayores concentraciones de Ba. Otra evidencia que apoya el origen hidrotermal del bario es que en la mineralogía se encontró que las mayores concentraciones de barita se encontraron en las partes más profundas del núcleo de sedimentos en los niveles correspondientes con 207, 219, 229 y 232 cm.

Tabla 11. Elementos traza (en ppm) en distintos intervalos de los sedimentos del núcleo N4.

Los valores de elementos traza de la Tabla 11 concuerdan con la mineralogía, debido a que la mayor proporción de esmectita asociada con el vulcanismo se encuentra en las partes profundas del núcleo de sedimentos, y la mayor proporción de barita encontrada en la mineralogía se encuentra al fondo del núcleo de sedimentos, y los menores contenidos de barita y esmectita (domina la illita) en la parte superficial del núcleo de sedimentos. Ello podría indicar que la actividad volcánica e hidrotermal ha ido disminuyendo. El Ni que también mostró estar enriquecido en el sedimento, es un elemento asociado con los sedimentos metalíferos, lo que puede indicar por lo tanto el aporte hidrotermal e hidrogénico ya que sus mayores concentraciones las tuvo en las muestras correspondientes con 145, 232 y 160 cm como el Ba (Tabla 11), así como el mayor porcentaje de las fracciones hidrogénicas y metalíferas que se presentó en las muestras de 125, 160, 145 y 232 cm para ambas fracciones (Tabla 10). El Y que tuvo

también una anomalía positiva al normalizar con el promedio de la corteza superior (Figura 43) tuvo sus máximas concentraciones en los centímetros 145, 232 y 160 (Tabla 11) esto puede indicar la presencia de las fracciones metalíferas e hidrogénicas del núcleo, por haber sido hallado en altas concentraciones en los niveles donde el porcentaje de dichas fracciones era máximo.

Figura 42. Patrones de variación de elementos traza para las 20 muestras del núcleo N4 con respecto a la lutita NASC (Gromet *et al.*, 1984).

Figura 43. Elementos traza normalizados contra el valor promedio de la corteza continental superior (UCC, por sus siglas en inglés) (Taylor y Mc Lennan, 1981).

Tierras Raras

Las concentraciones de Tierras Raras de las veinte muestras del N4 (Tabla 12) se normalizaron con valores de la lutita norteamericana NASC (*North american shale composite*) de Gromet *et al.* (1984) obtenidos de Rollinson (1993). Se encontró que las Tierras Raras ligeras se encuentran empobrecidas en comparación con las pesadas. Se observaron algunas anomalías negativas de Cerio y Disprosio (Tierras Raras ligeras y pesadas respectivamente) (Figura 44).

Tabla 12. Concentraciones de Tierras Raras (ppm) de las veinte muestras del núcleo de sedimentos N4.

Muestra	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
0-1	61.5	115.4	16.9	68.3	15.5	3.6	16.5	2.6	14.4	2.9	8.2	1.2	7.6	1.2
14-15	62.4	115.9	17.0	68.4	15.5	3.5	16.6	2.6	14.4	2.9	8.1	1.2	7.5	1.2
27-28	58.5	108.1	15.9	64.5	14.5	3.3	15.3	2.4	13.5	2.7	7.6	1.1	7.2	1.2
37-38	59.7	112.0	16.3	66.1	14.9	3.4	15.9	2.5	13.7	2.8	7.7	1.1	7.1	1.2
48-49	61.0	109.6	16.8	68.1	15.4	3.5	16.3	2.5	14.1	2.8	7.8	1.1	7.2	1.2
61-62	66.1	114.2	18.1	74.1	16.6	3.8	17.8	2.8	15.5	3.1	8.5	1.2	7.9	1.3
67-68	67.3	107.5	18.1	74.3	16.6	3.8	18.1	2.8	15.8	3.2	8.8	1.3	8.1	1.3
79-80	76.2	106.3	19.5	79.8	17.6	4.0	19.7	3.1	17.6	3.7	10.2	1.5	9.4	1.5
90-91	81.0	115.3	20.5	83.7	18.2	4.1	20.2	3.2	18.2	3.8	10.5	1.5	9.7	1.6
98-99	74.4	121.0	19.4	78.0	17.3	3.8	18.6	2.9	16.6	3.4	9.5	1.4	8.9	1.5
111-112	68.0	111.1	18.3	74.3	16.8	3.8	18.0	2.8	15.9	3.3	9.1	1.3	8.5	1.4
125-126	68.8	110.8	18.7	76.6	17.2	4.0	18.6	2.9	16.3	3.3	9.2	1.3	8.5	1.4
145-146	68.4	111.5	18.6	76.3	17.2	4.0	18.6	2.9	16.2	3.3	9.1	1.3	8.5	1.4
160-161	77.5	118.7	21.0	86.5	19.6	4.6	21.2	3.3	18.7	3.8	10.6	1.5	9.8	1.6
172-173	81.2	125.9	22.1	90.7	20.7	4.8	22.5	3.5	19.7	4.0	11.2	1.6	10.4	1.7
186-187	77.8	124.8	21.5	88.0	20.0	4.7	21.8	3.4	19.1	3.9	10.7	1.5	9.9	1.6
207-208	81.4	128.8	22.0	90.8	20.4	4.8	22.7	3.5	20.1	4.2	11.4	1.7	10.6	1.8
219-220	79.5	124.4	21.6	89.3	20.2	4.8	22.4	3.5	20.0	4.1	11.3	1.6	10.5	1.7
229-230	88.0	128.4	23.7	97.6	22.0	5.1	24.2	3.8	21.3	4.4	12.0	1.7	11.1	1.8
232-233	80.7	120.1	21.7	89.6	20.1	4.6	22.1	3.5	19.5	4.0	11.0	1.6	10.3	1.7
Promedio	72.0	116.5	19.4	79.3	17.8	4.1	19.4	3.0	17.0	3.5	9.6	1.4	8.9	1.5
Desv. Est.	8.8	7.1	2.3	9.7	2.2	0.5	2.6	0.4	2.4	0.5	1.4	0.2	1.3	0.2
Máximo	88.0	128.8	23.7	97.6	22.0	5.1	24.2	3.8	21.3	4.4	12.0	1.7	11.1	1.8
Mínimo	58.5	106.3	15.9	64.5	14.5	3.3	15.3	2.4	13.5	2.7	7.6	1.1	7.1	1.2

Figura 44. Patrones de variaciones de las Tierras Raras del sedimento normalizadas con respecto a la lutita NASC (Gromet *et al.*, 1984).

Las anomalías negativas de Ce en sedimentos cercanos a zonas de expansión activas se han asociado con actividad hidrotermal debido a que cerca de la dorsal del Pacífico oriental se ha observado dicha anomalía. Aunque los efluentes hidrotermales no tienen anomalías de Ce, la corteza por donde pasan estos fluidos hidrotermales y los sedimentos metalíferos tienen anomalías negativas de Ce, dichas anomalías se cree son resultado de los óxidos de ferromanganeso hidrotermales con patrones de Tierras Raras parecidos al del agua de mar. Estos óxidos de Fe-Mn de origen hidrotermal incorporan

rápidamente Tierras Raras del agua de mar, con poca o nula incorporación de Ce, mientras que los óxidos de ferromanganeso hidrogénicos se acumulan lentamente e incorporan preferencialmente al Ce y muestran anomalías positivas de Ce. Esto indica que existe una relación entre las anomalías negativas de Cerio con el vulcanismo submarino en los centros de expansión del piso marino (Toyoda *et al.* 1990), en el caso preciso de esta investigación, el área donde fue extraído el núcleo de sedimentos se encuentra al Oeste de la dorsal del Pacífico oriental a 550 km aproximadamente y muy cercana a la fractura Clarión y 194 km al norte de la Isla Clarión, lo que puede estar influyendo en la anomalía negativa del Cerio. Por lo tanto se podría considerar que los óxidos de ferromanganeso tienen un origen hidrotermal y no hidrogénico. Toyoda *et al.* (1990) encontraron que los óxidos de Fe-Mn hidrotermales y la esmectita de su sedimento tenían anomalías negativas de Ce, lo cual concuerda con los valores encontrados en los análisis del sedimento del núcleo estudiado.

5. CONCLUSIONES

5.1. Análisis textural y de susceptibilidad magnética

El sedimento es mayoritariamente limo arcilloso, con pequeñas proporciones de arenas.

La clasificación textural y el tamaño gráfico promedio indican que en varios tramos del núcleo los sedimentos pueden ser terrígenos.

El color del sedimento es pardo con tonos variables, lo que sugiere un ambiente de depósito con condiciones oxidantes.

La susceptibilidad magnética mostró un incremento conforme aumentaba la profundidad del núcleo, lo cual indicó la mayor concentración de materiales ferromagnéticos particularmente hacia el nivel de 157 cm. Los picos más altos de susceptibilidad magnética se relacionan con elevadas concentraciones de minerales pesados.

5.2. Análisis composicional

En promedio el 92% del sedimento está compuesto de material terrígeno detrítico típico de las arcillas pelágicas del Pacífico (APP). Es muy probable que dicho material terrígeno sea transportado eólicamente del continente e islas circundantes. El sistema dominante de vientos muestra que los vientos alisios del noreste pueden aportar sedimentos continentales al océano.

En la petrografía de la fracción arenosa, se observaron grandes cantidades de vidrio en el intervalo 79 a 99 cm. El vidrio es terrígeno de origen volcánico y además coincidió con la mayor concentración promedio de arcilla pelágica del Pacífico (APP), es decir donde hubo más sedimentos terrígenos y con los niveles donde hubo mayor cantidad de arenas. Esto parece deberse a un mayor aporte de terrígenos tanto volcánicos como no volcánicos ocurrió en el tramo de 79 a 99 cm.

A lo largo del núcleo de sedimentos dominó la sílice no biogénica sobre la sílice biogénica (ópalo).

La relación Al/Ti (24.42) aplicada por Boström *et al.* en 1969, es que los valores cercanos a 20 corresponden con terrígenos. En el diagrama de Boström (1970) las muestras del núcleo de los sedimentos estudiados correspondieron con una mezcla de

sedimento terrígeno volcánico con sedimento terrígeno no volcánico, con estos últimos como componente mayoritario.

Al normalizar las Tierras Raras de los sedimentos del núcleo, contra las Tierras Raras del promedio de la lutita de Norteamérica (NASC) se observó una anomalía negativa de Ce. Esta anomalía está controlada por los óxidos de ferromanganeso de origen hidrotermal y por el vulcanismo submarino. También dichas anomalías indican que hay cercanía con zonas de expansión del piso marino. Como el núcleo estudiado se recolectó cerca de la fractura Clarión y a 550 km aproximadamente al Oeste de la dorsal del Pacífico oriental podría estar influido por actividad hidrotermal.

En los niveles 125, 145, 160 y 232 cm se observa la posible ocurrencia de eventos volcánicos o de influencia hidrotermal que influyeron más que en otros niveles, debido a que en estos niveles las fracciones hidrogénicas y metalíferas tuvieron sus porcentajes más altos, así también concordó con la mineralogía donde la barita existió en mayor cantidad en la base del núcleo de sedimentos, específicamente en los niveles 125,145, 160 y 232 cm.

5.3. Integración de los diversos parámetros investigados

La fracción arcillosa en la porción superior del núcleo es principalmente terrígena no volcánico, combinado con la alteración de productos terrígenos volcánicos, además de la de feldespatos. En las porciones inferiores del núcleo dominó la esmectita en los interestratificados, lo que refleja la actividad volcánica que influye en la composición arcillosa de los sedimentos. Tal actividad volcánica puede proceder de fuentes como la dorsal del Pacífico Oriental o del vulcanismo del archipiélago Revillagigedo. La presencia del caolín observado en parte de los sedimentos, es producto de la alteración de feldespatos, lo que sugiere el aporte de terrígenos de las islas de la región así como su posible procedencia continental.

La procedencia del sedimento en el diagrama de Roser y Korsch (1988) resultó en máfica ígnea.

La investigación de los sedimentos del núcleo estudiado permite inferir que existen distintos procesos sedimentarios, así como distintas fuentes de aporte que contribuyen a

la composición del sedimento. Es decir, no únicamente influyen los procesos marinos sino también los eólicos.

Los constituyentes del sedimento y sus variaciones permitieron reconocer la procedencia de los mismos. En donde se encontró el mayor porcentaje de arenas (79 a 99 cm) también se encontró la mayor cantidad de vidrio volcánico, y además se observó el mayor porcentaje del promedio de arcillas pelágicas del Pacífico constituidas por material terrígeno.

La presencia mayoritaria de microfósiles en los niveles superiores del núcleo, así como la ausencia de los mismos en los niveles inferiores, indicó posiblemente disolución de ópalo debida al sepultamiento al cual estuvieron expuestos.

Los componentes autigénicos están constituidos por micronódulos de manganeso y mostraron que están controlados por la depositación de material terrígeno, es decir, cuando aumenta la proporción de uno disminuye la del otro. El origen de dichos sedimentos al parecer es hidrotermal. La zona de depósito tiene condiciones oxidantes que favorecen la precipitación de óxidos.

Los patrones de depósito en el núcleo mostraron dos eventos volcánicos y/o hidrotermales ubicados en los intervalos 125 - 160 y en el nivel 232 cm; durante los cuales los aportes terrígenos debieron ser menores.

La fuente hidrotermal o volcánica que más pudo influir es la influenciada por la fractura Clarión así como la dorsal del Pacífico oriental, dada su cercanía a la localización del núcleo. El aporte eólico por los vientos alisios debió influir en la composición del sedimento. La fauna plantónica fue otra característica importante de la composición del sedimento en lo que se refiere a las fracciones biogénicas.

Finalmente, el constituyente más importante fue debido a terrígenos, seguido por fracciones hidrogénicas y metalíferas (micronódulos polimetálicos), y en menor grado constituyentes biogénicos.

6. BIBLIOGRAFÍA

- Basu, A., 1976, Petrology of Holocene fluvial sand derived from plutonic source rocks: implications to paleoclimatic interpretation: Journal of Sedimentary Petrology, 46, 694-709.
- Bischoff, J. L. y Rosenbauer, R. J.,1976, Recent metalliferous sediment in the north Pacific manganese nodule area: Earth and Planetary Science Letters, 33, 379-388.
- Bischoff, J.L., Heath, G.R. y Leinen, M.,1979, Geochemistry of deep sea sediments from the Pacific manganese nodule province: Domes Sites A, B and C, *in* Bischoff, J.L. y Piper, D.Z. (eds.) *Marine Geology and Oceanography of the Pacific Manganese Nodule Province*: New York, Plenum press, 397-436.
- Bonatti, E. y Arrhenius, G.,1965, Eolian sedimentation in the Pacific off northern Mexico: Marine Geology, 3(1965), 337-348.
- Boström, K. y Peterson, M.N.A., 1969, Origin of aluminium poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise: Marine Geology,7, 427-477.
- Boström, K., Peterson M.N.A., Joensuu, O. y Fisher, D.E., 1969, Aluminium-poor ferromanganoan sediments on active oceanic ridges: Journal of Geophysical Research, 74, 3261-3270.
- Boström, K., 1970, Submarine volcanism as a source for iron: Earth and planetary science letters, 9, 348-354.
- Boström, K., Joensuu, O., Valdes, S. y Riera, M., 1972, Geochemical history of South Atlantic Ocean sediments since late Cretaceus: Marine Geology, 12, 85-122.
- Bryan, W.B,1967, Geology and petrology of Clarion Island, Mexico: bull. Geological Society of America, 78 (1967), 1461-1476.
- Burns, R.G. y Burns, V.M.,1979, Manganese oxides: Reviews in mineralogy: Marine minerals. Mineralogical Society of America, 6, 1-39.

- Carranza- Edwards, A., 1985, Materias Primas y minerales del mar: Gaceta Mineral. Sociedad Mexicana de Mineralogía, 1 (3): 22-26.
- Carranza-Edwards, A., Márquez-García, A.Z. y Morales-de-la-Garza, E.A., 1987, Distribución y características físicas externas de nódulos polimetálicos en el sector central del Pacífico Mexicano: BOL. MINERAL, 3(1),78-94.
- Carranza-Edwards, A. y Aguayo-Camargo, J. E., 1992, Carta de geología marina, Sedimentología Marina, escala 1:12,000,000 del Atlas Nacional del Instituto de Geografía, Vol. II, Naturaleza, 1 mapa.
- Carranza-Edwards, A. y Rosales-Hoz, L, 1994, Importancia de los Recursos Minerales Marinos de la Región, *En:* Ortega-Rubio, A. y A. Castellanos-Vera (Eds.), La Isla Socorro, Reserva de la Biosfera, Archipiélago de las Revillagigedo, México. Centro de Investigaciones Biológicas de La Paz, Publicación No. 8 del Centro de Investigaciones Biológicas del Noroeste, S. C., en colaboración con el Fondo Mundial de la Vida Silvestre (WWF), 33-42.
- Carranza-Edwards, A. y Rosales-Hoz, L., 2003, Los nódulos polimetálicos de la Zona Económica Exclusiva de México: Revista de la Sociedad Mexicana de Historia Natural, 3ª Época, 1, 1-8.
- Coordinación de la Investigación Científica, Coordinación de plataformas oceanográficas, UNAM, <u>http://www.buques.unam.mx/</u> consulta: Octubre 2012.
- Davis, R.A. y Fitzgerald, D.M., 2004, Beaches and coasts. Blackwell Publishing. Inglaterra. 419pp.
- Dean, W. E., Gardner, J. V. y Parduhn, N. L., 1989, Influence of Shimada seamount on sediment composition in the eastern tropical North Pacific: Geochimica et Cosmochimica Acta, 53, 1523-1536.
- Fernández-Eguiarte, A., Zavala-Hidalgo, J., Romero-Centeno, R., 2011, Atlas climático digital de México (versión 2.0), Centro de Ciencias de la Atmósfera, UNAM. Servicio Meteorológico Nacional, CONAGUA, <u>http://uniatmos.atmosfera.unam.mx/</u> consulta: Enero 2012.

- Folk, R.L., 1980, Petrology of sedimentary rocks. Hemphill Publishing Company. Austin, Texas. 182 pp.
- Glasby, G.P., 1977, Marine manganese deposits: Elsevier Oceanography Series. Elsevier Publishing Company, Amsterdam. 523 pp.
- Google, (2012), Foto satelital del Océano Pacífico mexicano, <u>http://earth.google.com</u> consulta: Enero 2012.
- Gromet, L.P., Dymek R.F., Haskin, L.A. y Korotev, R.L., 1984, The "North American Shale Composite": its compilation, major and trace element characteristics: Geochimica et Cosmochimica Acta, 48, 2469-2482.
- Kasper-Zubillaga, J.J. y Faustinos-Morales, R., 2007, Análisis por microscopía electrónica de barrido de granos de cuarzo de dunas desérticas y costeras (Desierto de Altar, NW México): Ciencias Marinas 33(1), 11-22.
- Kasper-Zubillaga, J.J.,2009, Roundness in quartz grains from inland and coastal dune sands, Altar Desert, Sonora, Mexico: Boletín de la Sociedad Geológica Mexicana 61 (1), 1-12.
- Kennet, J.P., 1982, Marine Geology. Prentice Hall. New Jersey. 405-492 pp.
- Klein, C. y Hurlbut, C. S., Jr., 1997, Manual de mineralogía. Basado en la obra de J. Dana. 4ta edición. Barcelona.568-570 pp.
- Leinen, M., 1977, A normative calculation technique for determining opal in deep-sea sediments: Geochimica et Cosmochimica Acta, 41, 671-676.
- Leinen, M., Cwienk, D., Heath, G. R., Biscaye, P.E., Kolla, V., Thiede, J., y Dauphin, J.P., 1986, Distribution of biogenic silica and quartz in recent deep-sea sediments: Geology 14(3), 199-203.
- Lyle, M. y Dymond, J., 1977. Copper-nickel-enriched ferromanganese nodules and associated crusts from the Bauer Basin, northwest Nazca plate: Earth and Planetary Science Letters, 35 (1), 55-64.

- Llinas-Gutiérrez. J., Lluch-Cota, D., Castellanos, A. y Ortega- Rubio, A., 1993, La Isla Socorro, Revillagigedo, México. Comisión. Nacional de Biodiversidad y CIQRO. México, 865 pp.
- Lozano-Santa-Cruz, R., Altuzar-Coello, P., Carranza-Edwards, A. y Rosales-Hoz, L., 1988, Distribución de minerales en la fracción arcillosa de sedimentos del Pacífico Central Mexicano, Anales del Instituto de Ciencias Del Mar y Limnología, UNAM, 16(2), 321-330.
- Lugo-Hubp, J.,1985, Morfoestructuras del fondo oceánico mexicano: Boletín del Instituto de Geografía, UNAM, México,15, 39pp.
- Márquez-García, A.Z., 1990, Análisis textural y mineralógico de nódulos polimetálicos y sedimentos del piso oceánico del Pacífico en la porción central de la zona económica exclusiva de México, UNAM, Instituto de Ciencias del Mar y Limnología, Tesis de Maestría en Ciencias del Mar (especialidad Oceanografía Geológica), 127 pp.
- Moore, J.G., 1970, Submarine basalts from the Revillagigedo islands region, Mexico: Marine geology, 9 (1970), 331-345.
- Ortega, A., Castellanos, A., Arnaud, G., Maya, Y., Rodríguez, R., León, J., Cancino, J., Jiménez, C., Llinas, J., Alvarez, S., Galina, P., Breceda, A., Troyo, E., Salinas, F., Díaz, S., Servín, R., Romero, H., Rodríguez, A. y Coria, R., 1992, Recursos naturales de la Isla Socorro, Revillagigedo, México: CIENCIA, 45, 175-184.
- Ramírez-Argáez, G., 1987, Estudio de sedimentos en un sector del Pacífico Oriental, Facultad de Ingeniería. UNAM. Tesis profesional,44pp.
- Rao, V., 1986, Mineralogy of polymetallic nodules and associated sediments from the central Indian ocean basin: Marine Geology, 74, 151-157.
- Rex, R.W. y Goldberg, E.D.,1958, Quartz contents of pelagic sediments of the Pacific ocean: Tellus,10,153-159.
- Rollinson, H. R., 1993, Using Geochemical data: evaluation, presentation, interpretation. Longman Scientific & Technical. New York. 352 pp.

- Seibold, E. y Berger, W.H., 1993, The sea floor, An introduction to marine geology. 2^{da} edición. Berlín. 356 pp.
- Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios: Journal of Sedimentary Petrology, 24, 151-158.
- Stumm, W. y Giovanoli, R., 1976, On the nature of particulate manganese in simulated lake waters: Chimia, 30, 423-425.
- Tarbuck, E.J., Lutgens, F.K., Tasa, D., 2005, Ciencias de la tierra: una introducción a la geología física. 8ª edición. Pearson Educación. Madrid, 107-135.
- Taylor, S.R. y Mc Lennan, S.M., 1981, The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks: Philosophical Transaction of the Royal Society of London., A301, 381-399.
- Thompson, R., Batarbee, R. W., O' Sullivan, P.E. y Oldfield, F., 1975, Magnetic susceptibility of lake sediments: Lymnology and Oceanography 20(5), 687-698.
- Toyoda, K. y Masuda, A., 1990, Sedimentary environments and chemical composition of Pacific pelagic sediments: Chemical Geology, 88, 127-141.
- Toyoda, K., Nakamura, Y. y Masuda, A., 1990, Rare earth elements of Pacific pelagic sediments: Geochimica et Cosmochimica Acta, 54, 1093-1103.
- Tucker, M., 1988, Techniques in sedimentology. Blackwell Science. Department of geological Science, Durham, UK. 15-17 pp.
- Turner, J. C., 1970, Matemática moderna aplicada. Probabilidades, estadística e investigación. Operativa Alianza Editorial. España. 550 pp.
- Usui, A., Bau, M., Yamasaki, T., 1997, Manganese microchimneys buried in the central Pacific pelagic sediments: evidence of intraplate water circulation?: Marine Geology 141, 269-285.

- Van Andel, T. H., Heath, G.R., Bennet, R.H., Bukry J.D., Charleston S., Cronan, D.S., Dinkelman, M.N., Kaneps, A.G., Rodolfo, K.S. y Yeats R.S., 1973, Deep sea drilling project. Site 159.doi:10.2973/dsdp.proc.16.106.1973.
- Yeats, R.S., Forbes, W.C., Heath, G.R., Scheidegger, Kenneth F., 1973, Petrology and geochemistry of DSDP leg 16 basalts, easter equatorial Pacific. Cap 22. Pág.: 617-640.

7. Anexos

Inter	Intervalos		Inter	Promedio	
0	0.5	32.80	19	19.5	38.13
0.5	1	35.43	19.5	20	37.67
1	1.5	36.37	20	20.5	40.23
1.5	2	25.43	20.5	21	40.63
2	2.5	36.57	21	21.5	39.10
2.5	3	36.27	21.5	22	38.70
3	3.5	35.93	22	22.5	38.80
3.5	4	35.47	22.5	23	37.97
4	4.5	35.40	23	23.5	37.13
4.5	5	36.27	23.5	24	34.93
5	5.5	37.17	24	24.5	35.60
5.5	6	36.10	24.5	25	37.50
6	6.5	36.43	25	25.5	37.60
6.5	7	37.60	25.5	26	38.73
7	7.5	36.47	26	26.5	37.63
7.5	8	38.17	26.5	27	39.07
8	8.5	37.37	27	27.5	38.67
8.5	9	37.20	27.5	28	38.83
9	9.5	37.73	28	28.5	39.73
9.5	10	38.00	28.5	29	39.37
10	10.5	36.20	29	29.5	36.43
10.5	11	37.83	29.5	30	37.17
11	11.5	37.17	30	30.5	37.97
11.5	12	36.97	30.5	31	38.23
12	12.5	37.40	31	31.5	38.57
12.5	13	34.77	31.5	32	38.90
13	13.5	35.63	32	32.5	41.43
13.5	14	35.80	32.5	33	41.30
14	14.5	36.20	33	33.5	43.57
14.5	15	36.27	33.5	34	42.33
15	15.5	39.60	34	34.5	42.93
15.5	16	39.03	34.5	35	42.27
16	16.5	38.20	35	35.5	41.73
16.5	17	36.87	35.5	36	39.87
17	17.5	38.37	36	36.5	40.00
17.5	18	36.80	36.5	37	40.50
18	18.5	37.40	37	37.5	39.67
18.5	19	36.93	37.5	38	39.87

7.1. Anexo 1. Mediciones promedio de la susceptibilidad magnética.

Inter	valos	Promedio	Inter	valos	Promedic
38	38.5	40.47	57	57.5	40.20
38.5	39	41.03	57.5	58	41.43
39	39.5	40.57	58	58.5	41.03
39.5	40	40.20	58.5	59	41.23
40	40.5	41.57	59	59.5	39.53
40.5	41	40.87	59.5	60	38.53
41	41.5	38.67	60	60.5	38.53
41.5	42	39.20	60.5	61	38.23
42	42.5	39.57	61	61.5	39.33
42.5	43	40.77	61.5	62	39.97
43	43.5	38.40	62	62.5	40.30
43.5	44	40.17	62.5	63	39.83
44	44.5	41.10	63	63.5	40.50
44.5	45	39.43	63.5	64	39.97
45	45.5	38.67	64	64.5	39.10
45.5	46	39.87	64.5	65	40.10
46	46.5	40.77	65	65.5	40.33
46.5	47	40.27	65.5	66	38.60
47	47.5	40.77	66	66.5	37.43
47.5	48	41.90	66.5	67	36.93
48	48.5	40.83	67	67.5	37.00
48.5	49	41.10	67.5	68	37.57
49	49.5	38.83	68	68.5	39.80
49.5	50	39.07	68.5	69	39.40
50	50.5	39.43	69	69.5	38.50
50.5	51	37.93	69.5	70	38.13
51	51.5	39.73	70	70.5	37.37
51.5	52	39.03	70.5	71	36.13
52	52.5	40.03	71	71.5	34.47
52.5	53	39.23	71.5	72	36.23
53	53.5	38.93	72	72.5	37.27
53.5	54	39.37	72.5	73	39.20
54	54.5	39.30	73	73.5	38.97
54.5	55	38.57	73.5	74	39.53
55	55.5	38.33	74	74.5	37.53
55.5	56	39.20	74.5	75	37.17
56	56.5	39.73	75	75.5	36.20
56.5	57	40.10	75.5	76	35.10

Inter	valos	Promedio	Inter	valos	Promedi
76	76.5	36.30	95	95.5	39.67
76.5	77	37.13	95.5	96	39.80
77	77.5	36.57	96	96.5	40.43
77.5	78	35.60	96.5	97	36.87
78	78.5	35.90	97	97.5	42.57
78.5	79	37.23	97.5	98	40.80
79	79.5	36.83	98	98.5	40.80
79.5	80	37.00	98.5	99	42.83
80	80.5	37.57	99	99.5	43.10
80.5	81	37.67	99.5	100	41.60
81	81.5	37.03	100	100.5	39.93
81.5	82	36.67	100.5	101	40.40
82	82.5	38.40	101	101.5	40.93
82.5	83	39.20	101.5	102	39.90
83	83.5	38.90	102	102.5	38.90
83.5	84	39.23	102.5	103	38.27
84	84.5	38.63	103	103.5	37.10
84.5	85	37.67	103.5	104	36.67
85	85.5	38.43	104	104.5	38.97
85.5	86	38.37	104.5	105	38.90
86	86.5	38.83	105	105.5	40.03
86.5	87	39.03	105.5	106	39.83
87	87.5	40.37	106	106.5	40.27
87.5	88	40.73	106.5	107	40.50
88	88.5	41.27	107	107.5	42.13
88.5	89	40.60	107.5	108	42.53
89	89.5	39.90	108	108.5	42.77
89.5	90	40.63	108.5	109	42.37
90	90.5	40.53	109	109.5	42.63
90.5	91	40.53	109.5	110	42.83
91	91.5	38.03	110	110.5	42.17
91.5	92	39.07	110.5	111	42.77
92	92.5	39.87	111	111.5	42.17
92.5	93	39.93	111.5	112	42.83
93	93.5	40.30	112	112.5	42.43
93.5	94	40.97	112.5	113	41.97
94	94.5	39.27	113	113.5	42.33
94.5	95	40.50	113.5	114	41.30

Inter	valos	Promedio	Inter	valos	Promedio
114	114.5	41.07	133	133.5	42.17
114.5	115	39.93	133.5	134	43.57
115	115.5	39.93	134	134.5	44.23
115.5	116	40.10	134.5	135	44.37
116	116.5	40.13	135	135.5	41.93
116.5	117	41.27	135.5	136	41.90
117	117.5	41.77	136	136.5	41.57
117.5	118	41.87	136.5	137	41.17
118	118.5	41.73	137	137.5	41.43
118.5	119	41.53	137.5	138	41.13
119	119.5	42.87	138	138.5	41.00
119.5	120	40.73	138.5	139	41.80
120	120.5	40.27	139	139.5	41.70
120.5	121	39.67	139.5	140	43.93
121	121.5	42.23	140	140.5	43.47
121.5	122	38.83	140.5	141	42.37
122	122.5	39.97	141	141.5	43.73
122.5	123	40.43	141.5	142	43.83
123	123.5	41.83	142	142.5	43.77
123.5	124	41.80	142.5	143	42.43
124	124.5	42.63	143	143.5	43.30
124.5	125	41.63	143.5	144	44.47
125	125.5	41.67	144	144.5	43.83
125.5	126	42.60	144.5	145	42.63
126	126.5	42.40	145	145.5	42.50
126.5	127	43.13	145.5	146	39.97
127	127.5	43.00	146	146.5	40.20
127.5	128	42.57	146.5	147	40.77
128	128.5	42.03	147	147.5	42.83
128.5	129	42.70	147.5	148	44.37
129	129.5	43.40	148	148.5	43.33
129.5	130	43.37	148.5	149	44.17
130	130.5	43.73	149	149.5	43.93
130.5	131	42.70	149.5	150	44.87
131	131.5	43.27	150	150.5	44.93
131.5	132	42.33	150.5	151	45.17
132	132.5	43.43	151	151.5	45.13
132.5	133	43.13	151.5	152	46.40

Inter	valos	Promedio	Inter	valos	Promedio
152	152.5	46.23	171	171.5	44.33
152.5	153	45.80	171.5	172	43.40
153	153.5	45.30	172	172.5	43.27
153.5	154	45.20	172.5	173	43.17
154	154.5	45.50	173	173.5	43.70
154.5	155	45.77	173.5	174	43.43
155	155.5	42.80	174	174.5	44.50
155.5	156	40.30	174.5	175	43.37
156	156.5	41.07	175	175.5	42.27
156.5	157	46.10	175.5	176	44.40
157	157.5	48.50	176	176.5	44.90
157.5	158	47.03	176.5	177	44.37
158	158.5	47.20	177	177.5	41.77
158.5	159	47.47	177.5	178	41.07
159	159.5	46.67	178	178.5	42.63
159.5	160	47.80	178.5	179	43.87
160	160.5	44.87	179	179.5	42.40
160.5	161	44.23	179.5	180	40.47
161	161.5	44.50	180	180.5	40.73
161.5	162	46.20	180.5	181	40.43
162	162.5	47.43	181	181.5	42.20
162.5	163	45.77	181.5	182	39.33
163	163.5	47.90	182	182.5	38.67
163.5	164	48.03	182.5	183	38.80
164	164.5	48.40	183	183.5	38.20
164.5	165	46.77	183.5	184	38.90
165	165.5	46.67	184	184.5	38.87
165.5	166	41.90	184.5	185	41.17
166	166.5	44.47	185	185.5	42.80
166.5	167	42.80	185.5	186	41.23
167	167.5	42.50	186	186.5	38.07
167.5	168	43.57	186.5	187	38.93
168	168.5	42.87	187	187.5	38.00
168.5	169	41.53	187.5	188	37.07
169	169.5	41.97	188	188.5	37.43
169.5	170	42.40	188.5	189	37.83
170	170.5	42.37	189	189.5	37.53
170.5	171	42.30	189.5	190	38.00

Inter	valos	Promedio	Inter	valos	Promedio
190	190.5	37.53	209	209.5	42.33
190.5	191	39.27	209.5	210	41.20
191	191.5	39.77	210	210.5	42.50
191.5	192	40.23	210.5	211	43.10
192	192.5	38.30	211	211.5	41.97
192.5	193	37.73	211.5	212	42.63
193	193.5	37.23	212	212.5	42.47
193.5	194	38.20	212.5	213	42.07
194	194.5	41.37	213	213.5	41.60
194.5	195	41.33	213.5	214	40.90
195	195.5	40.33	214	214.5	41.10
195.5	196	38.50	214.5	215	42.63
196	196.5	37.93	215	215.5	42.87
196.5	197	39.10	215.5	216	43.40
197	197.5	36.57	216	216.5	40.93
197.5	198	40.77	216.5	217	41.43
198	198.5	41.87	217	217.5	42.33
198.5	199	39.30	217.5	218	43.53
199	199.5	40.13	218	218.5	43.07
199.5	200	41.13	218.5	219	41.13
200	200.5	42.27	219	219.5	40.27
200.5	201	41.93	219.5	220	40.63
201	201.5	39.53	220	220.5	40.10
201.5	202	40.23	220.5	221	40.17
202	202.5	42.57	221	221.5	40.67
202.5	203	42.13	221.5	222	39.70
203	203.5	41.50	222	222.5	42.90
203.5	204	41.53	222.5	223	42.53
204	204.5	40.77	223	223.5	42.03
204.5	205	41.07	223.5	224	40.67
205	205.5	42.93	224	224.5	40.93
205.5	206	42.37	224.5	225	41.27
206	206.5	41.37	225	225.5	42.07
206.5	207	41.30	225.5	226	41.03
207	207.5	41.17	226	226.5	39.83
207.5	208	42.00	226.5	227	44.17
208	208.5	42.63	227	227.5	41.97
208.5	209	42.27	227.5	228	41.37

Inter	valos	Promedio
228	228.5	40.80
228.5	229	39.00
229	229.5	38.63
229.5	230	39.87
230	230.5	40.10
230.5	231	38.07
231	231.5	38.20
231.5	232	38.97
232	232.5	37.53
232.5	233	40.17
233	233.5	38.10
233.5	234	38.20

NIVEL	*	Color	fresco	color	seco
0	1	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
1	2	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo amarillento
				6/4	claro
2	3	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
-	U	1102101110, 1	amarillento	5/3	1 41 60
3	4	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
5	•		amarillento	5/3	i u uo
4	5	HUE10YR $4/4$	Pardo oscuro	HUE10YR	Pardo
•	5		amarillento	5/3	1 uluo
5	6	HUE10YR $4/4$	Pardo oscuro	HUE10YR	Pardo Pálido
5	0		amarillento	6/3	i uldo i uldo
6	7	HUELOVE 3/A	Pardo oscuro		Pardo Pálido
0	/	110L101K 3/4	amorillonto	6/3	1 and 1 and
7	Q		Pardo oscuro		Dordo Dólido
7	0	110E101K 5/4	r aluo osculo	110E101K	r aluo r alluo
o	0	$\mathbf{H}\mathbf{H}\mathbf{E}10\mathbf{V}\mathbf{D}\mathbf{A}/\mathbf{A}$	Dordo occuro		Danda Dálida
0	9	ΠUE101Κ 4/4	raido osculo	HUE101K	Faluo Faluo
0	10	$\mathbf{H} = 10 \mathbf{V} \mathbf{D} \ 2 / 4$	Dordo occuro		Danda
9	10	$\Pi U E I U I K 3/4$	raido osculo	TUEIUIK	Faluo
10	11	$\mathbf{H} = 10 \mathbf{V} \mathbf{D} \cdot 2/2$	amarinento Danda accura	$\frac{3}{3}$	Danda
10	11	HUEIUIK 5/5	Pardo oscuro	HUEIUIK	Pardo
11	10	$\mathbf{H} = 10 \mathbf{V} \mathbf{D} 2 / 4$	D1	$\frac{5}{3}$	Danila
11	12	HUEIUYK 3/4	Pardo oscuro	HUEIUYK	Pardo
10	12		amarillento	$\frac{5}{3}$	D 1
12	13	HUEIUYR 3/4	Pardo oscuro	HUEIUYR	Pardo
10	1.4		amarillento	5/3	
13	14	HUEIUYR 3/4	Pardo oscuro	HUEIUYR	Pardo
1.4	1.7		amarillento	5/3	
14	15	HUE10YR $3/4$	Pardo oscuro	HUEIOYR	Pardo Palido
1.5	1.0		amarillento	6/3	
15	16	HUEI0YR 4/6	Pardo oscuro	HUEIOYR	Pardo Pálido
	. –		amarıllento	6/3	
16	17	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
. –			amarillento	5/3	
17	18	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
18	19	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
19	20	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
20	21	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
21	22	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
22	23	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
23	24	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
24	25	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido

7.2. Anexo 2. Colores del sedimento obtenidos con la tabla de color de Münsell.

			amarillento	6/3	
25	26	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
26	27	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
27	28	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
28	29	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
29	30	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo
				5/3	
30	31	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
31	32	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
32	33	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
33	34	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
34	35	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
35	36	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
36	37	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
37	38	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
38	39	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
39	40	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
40	41	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
41	42	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
42	43	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
43	44	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
44	45	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
45	46	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
46	47	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
47	48	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
48	49	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
49	50	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
50	51	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo Pálido

UN/M POSCR/DO Ciencias del Mar y Limnologia

			amarillento	5/3	
77	78	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
78	79	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
79	80	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
80	81	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
81	82	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
82	83	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
83	84	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
84	85	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
85	86	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
86	87	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo Pálido
~-			amarillento	6/3	
87	88	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	D 1
88	89	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
00	00		amarillento	5/3	
89	90	HUE10YR 4/6	Pardo oscuro	HUEIOYR	Pardo
0.0	0.1		amarillento	5/3	
90	91	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo
01	00		amarillento	5/3	D 1 D/1'1
91	92	HUEIUYR 3/4	Pardo oscuro	HUEIUYR	Pardo Palido
02	02		amarillento	0/3	D
92	95	HUEIUIR 5/4	Pardo oscuro	HUEIUIK	Pardo Pando
02	04	LILIE 10VD 2/A	Derde escure		Dardo
93	94	$\Pi U E I U I K 3/4$	ratuo oscuto	TUEIUIK 5/2	raido
0/	05	HUELOVE 3/A	Pardo oscuro		Dardo
24	95	110L101K 3/4	amarillento	110E101K 5/3	1 aluo
95	96	HUE10YR 3/4	Pardo oscuro	HUF10YR	Pardo Pálido
))	70	110/210110 5/4	amarillento	6/3	T undo T undo
96	97	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
20	21	IICEICTICS/ I	amarillento	6/3	Turdo Turdo
97	98	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
	20	1102101110,1	amarillento	6/3	1 41 00 1 411 00
98	99	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
99	100	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
100	101	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
101	102	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo oscuro
				4/3	
102	103	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro

			amarillento	4/3	
103	104	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
104	105	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
105	106	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
106	107	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
107	108	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
108	109	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
109	110	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
110	111	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
111	112	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
112	113	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo
				5/3	
113	114	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
114	115	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
115	116	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
116	117	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
		1102101110, 1	amarillento	5/3	1 41 40
117	118	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
118	119	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
-	-		amarillento	5/3	
119	120	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	6/4	claro
120	121	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
-			amarillento	5/4	
121	122	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
122	123	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
	-		amarillento	5/3	
123	124	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
124	125	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
	-		amarillento	5/4	
125	126	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo Pálido
-	-		amarillento	6/3	
126	127	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
-			amarillento	5/3	
127	128	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
128	129	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido

			amarillento	6/3	
129	130	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
130	131	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
131	132	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
132	133	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
133	134	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
134	135	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
135	136	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
136	137	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
137	138	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
138	139	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
139	140	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
140	141	HUE10YR 4/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
141	142	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
142	143	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
143	144	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
144	145	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
145	146	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
146	147	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
147	148	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
148	149	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
149	150	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
150	151	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
151	152	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
152	153	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
153	154	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
154	155	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro

UN/M POSGR/DO Ciencias del Mar y Limnología
			amarillento	1/3	
155	156	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
155	150	HOLIOIR 5/4	amarillento	5/3	1 ardo
156	157	HUE10VR 3/4	Pardo oscuro	HUE10VR	Pardo oscuro
150	157	110L101K 3/4	amarillento	4/3	1 and 0 oscuro
157	158	HUELOVR 3/A	Pardo oscuro		Pardo
157	150	110L101K 3/4	amarillanto	110E101K 5/3	1 a100
150	150	LUELOVD 2/A	Dardo occuro		Dardo occuro
130	139	$\Pi U E I U I K 3/4$	raido osculo		ratuo oscuto
150	160	LITE10VD 3/A	Pardo occuro		Dardo
139	100	110E101K 3/4	amorillonto	110E101K	r aluo
160	161	LILIE 10VD 2/A	Dardo occuro		Dardo
100	101	110E101K 3/4	amorillonto	110E101K	r aluo
161	162	LITE10VD 3/A	Pardo occuro		Pardo oscuro
101	102	110E101K 3/4	amorillonto	110L101K	r aluo osculo
162	162	LILIE 10VD 2/A	Dardo occuro	4/3	Dardo occuro
102	105	110E101K 3/4	amorillonto		r aluo osculo amarillanto
162	164	LILIE 10VD 2/A	Dardo occuro	4/4	
105	104	$\Pi U E I U I K 3/4$	raido osculo		Faluo osculo
161	165	IIIIE10VD 2/4		4/3	Danda acauna
104	105	HUE101K 3/4	Pardo Oscuro		Pardo oscuro
165	166	IIIIE10VD 2/4	Danda assume	4/3	Danda acauma
103	100	HUE101K 3/4	Pardo Oscuro		Pardo oscuro
166	167	IIIIE10VD 2/4		4/3	Danda aman'illanta
100	107	HUE101K 3/4	Pardo Oscuro		Pardo amarmento
167	160	IIIIE10VD 2/4	amarinento Derde ecouro	$\frac{3}{4}$	Danda
10/	108	HUE101R 3/4	Pardo oscuro	HUEIUIK	Pardo
160	160	IIIIE10VD 2/4		$\frac{3}{3}$	Danda
108	169	HUEIUYR 3/4	Pardo oscuro	HUEIUYK	Pardo
1.0	170		amarinento	$\frac{3}{3}$	D 1-
169	170	HUEIUYR 3/4	Pardo oscuro	HUEIUYK	Pardo
170	171		amarillento	$\frac{5}{3}$	
1/0	1/1	HUEIUYR 3/4	Pardo oscuro	HUEIUYR	Pardo oscuro
171	170		amarillento	4/4	amarillento
1/1	172	HUEIUYR 3/4	Pardo oscuro	HUEIUYK	Pardo oscuro
170	170		amarillento	4/4	amarillento
172	1/3	HUEIUYK 4/4	Pardo oscuro	HUEIUYR	Pardo
172	174		amarillento	$\frac{3}{3}$	Dende
1/3	1/4	HUEIUYR 3/4	Pardo oscuro	HUEIUYR	Pardo
174	175		amarillento	5/3	D 1
1/4	1/5	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo
175	176		amarillento	J/J	D 1
1/5	1/6	HUEIUYR 3/6	Pardo oscuro	HUEIUYR	Pardo
170	1 7 7		amarillento	5/3	
1/6	1//	HUE10YR $3/6$	Pardo oscuro	HUEIOYR	Pardo
1.77	170		amarillento	5/3	
1//	1/8	HUEIUYR 3/6	Pardo oscuro	HUEIOYR	Pardo
170	170		amarillento	5/3	
1/8	1/9	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo
170	100		amarillento	5/3	D 1
1/9	180	HUE10YK 3/4	Pardo oscuro	HUEIUYR	Pardo
100	101		amarillento	5/3	
180	181	HUEIUYR $3/4$	Pardo oscuro	HUEI0YR	Pardo

			amarillento	5/3	
181	182	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
182	183	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
183	184	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
184	185	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
185	186	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
186	187	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
187	188	HUE10YR 4/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
188	189	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
189	190	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
190	191	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
191	192	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
192	193	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
193	194	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
194	195	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
195	196	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
196	197	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
197	198	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo grisáceo
				5/2	
198	199	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
199	200	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo oscuro
			amarillento	4/3	
200	201	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
201	202	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
202	203	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
203	204	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
204	205	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
005	0.0 -		amarıllento	5/4	D 1
205	206	HUE10YR 3/6	Pardo oscuro	HUE10YR	Pardo amarillento
0 0 -	0 0 -		amarillento	5/4	~
206	207	HUE10YR 3/4	Pardo oscuro	HUEI0YR	Pardo

UN/M POSGR/DO Ciencias del Mar y Limnología

			amarillento	5/3	
207	208	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
208	209	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
209	210	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
210	211	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
211	212	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
212	213	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo Pálido
			amarillento	6/3	
213	214	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo amarillento
014	015		amarillento	5/4	D 1 111
214	215	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo amarillento
215	216		amarillento	5/4	Devile
215	216	HUE10YK 3/4	Pardo oscuro	HUEIUYR	Pardo
216	217	$\mathbf{H} = 10 \mathbf{V} \mathbf{D} \ 2 / 4$	Danda accura	$\frac{3}{3}$	Danda
210	217	HUE101K 3/4	Pardo oscuro	HUEIUIR	Pardo
217	218	LITE10VD 3/A	Pardo oscuro	3/3	Dordo
217	210	110E101K 3/4	amarillento	110L101K 5/3	r aluo
218	210	HUE10VR 3/A	Pardo oscuro	HUE10VR	Pardo
210	21)	110L101K 3/4	amarillento	110L101R 5/3	1 4140
219	220	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
21)	220	110/210/110/07	amarillento	5/3	i uiuo
220	221	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
		110 210 1100/1	amarillento	5/4	
221	222	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
222	223	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
223	224	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
			amarillento	5/3	
224	225	HUE10YR 3/3	Pardo oscuro	HUE10YR	Pardo amarillento
				5/4	
225	226	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo amarillento
			amarillento	5/4	
226	227	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
	•••		amarillento	5/3	N 1 11
227	228	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo amarillento
220	220		amarillento	5/4	D 1
228	229	HUE10YR 3/4	Pardo oscuro	HUEIOYR	Pardo
220	220	$\mathbf{HIE}\mathbf{10VD} 2/4$	amarillento	$\frac{5}{3}$	Danda aman'ilanta
229	230	HUE101K 5/4	Pardo oscuro	HUEIUIR	Pardo amarinento
220	221	LITE10VD 3/A	Pardo oscuro	J/4	Pardo amarillanto
250	201	110L101KJ/4	amarillento	110L101K 5/4	
231	232	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo
_01			amarillento	5/3	i uido
232	233	HUE10YR 3/4	Pardo oscuro	HUE10YR	Pardo

UN/M POSGR/DO Ciencias fiel Mar y Limnología

			amarillento	5/3	
233	234	HUE10YR 5/6	Pardo amarillento	HUE10YR	Pardo muy pálido
				7/4	

*Nivel en cm

7.3. Anexo 3. Resultados de mineralogía por DRX.

MUESTRA	FASES IDENTIFICADAS ¹	Ficha DRX	OBSERVACIONES
N4-1 140100	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-2 150740	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-3 161420	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.

N4-4	Cuarzo: SiO ₂	[46-1045]	Predominio de Sílice (amorfa y
104737	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	cristalina)
	Halita: NaCl	[5-628]	Cristalinidad intermedia ~25%.
	Ópalo: SiO ₂ y/o	[42-1401] y	Bajo desarrollo de los filosilicatos.
	Barita :BaSO ₄	[38-0448]	Se detectaron pequeñas cantidades
	Hematita : Fe_2O_3	[24-1035]	de piroxenas.
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	-
	Cuarzo: SiO ₂	[46-1045]	Dradominio do Sílico (omorfo y
	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	aristolina)
N14 5	Halita: NaCl	[5-628]	Cristalinidad intermedia 25%
IN4-3 115710	Ópalo: SiO ₂ y/o	[42-1401] y	Paio deservello de los filosiliestos
113410	Barita :BaSO ₄	[38-0448]	Sa detectoron negueños contidados
	Hematita : Fe_2O_3	[24-1035]	de ninevenes
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	de piloxenas.
	Cuarzo: SiO ₂	[46-1045]	Dradominio do Sílico (omorfo y
	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	aristolino)
N4 6	Halita: NaCl	[5-628]	Cristalinidad intermodia 25%
120058	Ópalo: SiO ₂ y/o	[42-1401] y	Paio deserrollo de los filosilicatos
150058	Barita :BaSO ₄	[38-0448]	Sa detactoron naquañas contidadas
	Hematita : Fe_2O_3	[24-1035]	de pirovopas
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	de piloxenas.
	Cuarzo: SiO ₂	[46-1045]	Predominio de Sílice (amorfa y
	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	cristalina)
N4 7	Halita: NaCl	[5-628]	Cristalinidad intermodia 25%
114-7	Ópalo: SiO ₂ y/o	[42-1401] y	Paio deserrollo de los filosiliestos
140730	Barita :BaSO ₄	[38-0448]	Sa detactoron naquañas contidadas
	Hematita : Fe_2O_3	[24-1035]	de pirovenas
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	ue piroxellas.

N4-8 154614	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-9 165254	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-10 175934	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.

N4-11 190614	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-12 201330	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-13 131838	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita</i> : Fe_2O_3 Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.

N4-14	Cuarzo: SiO ₂	[46-1045]	Predominio de Sílice (amorfa y
142518	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	cristalina)
	Halita: NaCl	[5-628]	Cristalinidad intermedia ~25%.
	Ópalo: SiO ₂ y/o	[42-1401] y	Bajo desarrollo de los filosilicatos.
	Barita :BaSO ₄	[38-0448]	Se detectaron pequeñas cantidades
	Hematita : Fe_2O_3	[24-1035]	de piroxenas.
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	-
	Cuarzo: SiO ₂	[46-1045]	Duradaminia da Cílica (amorfo y
	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[9-0465]	predominio de Since (amoria y
N4-15	Halita: NaCl	[5-628]	Cristalina)
154415	Ópalo: SiO ₂ y/o	[42-1401] y	Cristalinidad intermedia ~25%.
	Barita :BaSO ₄	[38-0448]	Bajo desarrono de los mosmicalos.
	Hematita : Fe_2O_3	[24-1035]	de ninovenes
	Filosilicatos a ≈10Å y ≈7Å	[33-664]	de piroxenas.
	Cuarzo: SiO ₂		
	Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈	[46-1045]	Duradaminia da Cílica (amorfo y
	Halita: NaCl	[9-0465]	predominio de Since (amoria y
N4-16	Ópalo: SiO ₂ y/o	[5-628]	Cristalinidad intermedia 250(
Dr.Carranza165055	Barita :BaSO ₄	[42-1401] y	Cristallindad Internedia ~25%.
	Hematita : Fe_2O_3	[38-0448]	Bajo desarrono de los mosmicalos.
	Filosilicatos a ≈10Å y ≈7Å	[24-1035]	Se detectaron pequenas cantidades
		[33-664]	de piroxenas.
	Cuarzo: SiO ₂	[46-1045]	Predominio de Sílice (amorfa y
	Plagioclasa intermedia: (Ca.Na)(Al.Si) ₂ Si ₂ O ₈	[9-0465]	cristalina)
N4-17	Halita: NaCl	[5-628]	Cristalinidad intermedia ~25%.
Dr.Carranza175735	Ópalo: SiO ₂ y/o	[42-1401] v	Bajo desarrollo de los filosilicatos.
	Barita :BaSO4	[38-0448]	Se detectaron pequeñas cantidades
	Hematita : Fe_2O_3	[24-1035]	de piroxenas.

	Filosilicatos a ≈10Å y ≈7Å	[33-664]	
N4-18 Dr.Carranza190415	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-19 Dr.Carranza110127	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita</i> : Fe_2O_3 Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.
N4-20 Dr.Carranza120807	Cuarzo: SiO ₂ Plagioclasa intermedia: (Ca,Na)(Al,Si) ₂ Si ₂ O ₈ Halita: NaCl Ópalo: SiO ₂ y/o Barita :BaSO ₄ <i>Hematita : Fe</i> ₂ O ₃ Filosilicatos a \approx 10Å y \approx 7Å	[46-1045] [9-0465] [5-628] [42-1401] y [38-0448] [24-1035] [33-664]	Predominio de Sílice (amorfa y cristalina) Cristalinidad intermedia ~25%. Bajo desarrollo de los filosilicatos. Se detectaron pequeñas cantidades de piroxenas.

NOTAS

1. Las fases se indican por orden de abundancia. El estudio es Cualitativo.

2. En *cursiva* las fases por confirmar por otros métodos.